
Chapter 4
The Prime Distribution

“All this is amusing,
though rather elementary1 . . ., Watson.”

– Sir Arthur Conan Doyle
(Sherlock Holmes)

How are the primes distributed among the integers? Here “distribution” is a mis-
leading term because a given positive integer either is a prime or is not a prime –
there is nothing chancy about primality. Yet superficially, the occurrence of primes
appears to be rather haphazard, and, indeed, many properties can be derived by play-
ing “dumb” and assuming nothing more than that “every other integer is divisible by
2, every third is divisible by 3”, etc., and letting complete randomness reign beyond
the most obvious. The result of this loose thinking suggests that the average interval
between two successive primes near n is about lnn. This is not easy to prove rig-
orously, especially if one forgoes such foreign tools as complex analysis. Yet fairly
simple probabilistic arguments come very close to the truth. In fact, probabilistic
thinking as introduced here can reveal a lot about primality and divisibility [4.1],
and we shall make ample use of the probabilistic approach throughout this book to
gain an intuitive understanding of numerous number-theoretic relationships. For a
formal treatment of probability in number theory see [4.2].

4.1 A Probabilistic Argument

Two facts about the distribution of the primes among the integers can be noticed
right away:

1) They become rarer and rarer the larger they get.
2) Apart from this regularity in their mean density, their distribution seems rather

irregular.

In fact, their occurrence seems so unpredictable that perhaps probability theory can
tell us something about them – at least that is what the author thought in his sec-
ond (or third) semester at the Georg-August University in Göttingen. He had just

1 In number theory elementary methods are often the most difficult, see [4.5].
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taken a course in Wahrscheinlichkeitsrechnung at “Courant’s” famous Mathematics
Institute, and one afternoon in 1948, in the excruciatingly slow “express” train from
Göttingen to his parents’ home in the Ruhr, he started putting some random ideas to
paper. His train of thought ran roughly as follows.

The probability that a given “arbitrarily” selected integer is divisible by pi is
1/pi. In fact, starting with 1, precisely every pith number is divisible by pi (every
third is divisible by 3, every fifth by 5 and so forth). Thus, the “probability” that a
given selected number is not divisible by pi is 1−1/pi.

Assuming that divisibility by different primes is an independent2 property, the
probability that x is not divisible by any prime below it is given by the product

W (x) ≈
(

1− 1
2

)(

1− 1
3

)(

1− 1
5

)

. . . ≈ ∏
p1<x

(

1− 1
pi

)

. (4.1)

If x is not divisible by any prime below it, it is, of course, not divisible by any smaller
number, i. e., x is prime.

More strictly, we could limit the product to primes p1 <
√

x (see Sect. 3.2 on
the sieve of Eratosthenes). In fact, in that 1948 train the author did limit the product
to primes smaller than the square root of x. But since the end result is not much
affected, we will not bother about this “refinement”.

If one feels uncomfortable with a product, it can be quickly converted into a sum
by taking (naturally) logarithms:

lnW (x) ≈ ∑
pi<x

ln

(

1− 1
pi

)

. (4.2)

If one does not like the natural logarithm on the right-hand side, expanding it and
breaking off after the first term does not make much difference, especially for the
larger primes:

lnW (x) ≈− ∑
pi<x

1
pi

. (4.3)

There is something about the sum that is still bothersome: it is not over consec-
utive integers, but only over the primes. How can one convert it into a sum over all
integers below x? Again, one can use a probability argument: a given term 1/n in
the sum occurs with probability W (n). Thus, let us write (and this is the main trick
here):

lnW (x) ≈−
x

∑
n=2

W (n)
n

. (4.4)

2 Simultaneous independence for all primes is never exactly true, but there is near independence
that suffices for our argument.
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By now sums may have become boring, and one wishes the sum were an integral.
Thus, we write with our now customary nonchalance:

lnW (x) ≈−
∫ x

2

W (n)
n

dn. (4.5)

The next thing that may strike one as offensive is the minus sign on the right-hand
side. Introducing the average distance A(x) = 1/W (x) between primes, we get a
positive expression:

lnA(x) ≈
∫ x

2

dn
nA(n)

. (4.6)

Now, suddenly, the integral has served its purpose and can go; most people would
rather solve differential equations than integral ones. Differentiating will of course
be the appropriate integral vanishing trick:

A′(x)
A(x)

≈ 1
xA(x)

, or (4.7)

A′(x) ≈ 1
x
. (4.8)

And the unexpected has happened: we have an answer (fortuitously correct)! The
average distance between primes ought to be

A(x) ≈ lnx, (4.9)

and the mean density becomes

W (x) ≈ 1
lnx

. (4.10)

Example: x = 20, ln20 ≈ 3.00, and, indeed, the average spacing of the 3 primes
closest to 20, namely 17, 19 and 23, is exactly 3.

Around x = 150, the average spacing should be about 5, and in the neighbourhood
of x = 1050, every 115th number, on average, is a prime.

4.2 The Prime-Counting Function πππ(x)

If we accept the estimate (4.10) of the average prime density, the number of primes
smaller than or equal to x, usually designated by π(x), is approximated by the “in-
tegral logarithm”:

π(x) ≈
∫ x

2

dx′

lnx′
=: Li(x), (4.11)
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Fig. 4.1 The prime-counting
function π(x) for 2 ≤ x ≤ 100

where the sign =: indicates that the notation Li(x) is defined by the integral on the
left.

The prime-counting function π(x) is plotted in Fig. 4.1 for x ≤ 100. Every time
x equals a prime, π(x) jumps up by 1. But apart from the “jumpiness” of π(x), a
smoother, slightly concave trend is also observable. This smoothness becomes more
obvious when we plot π(x) for x up to 55,000 as in Fig. 4.2. On this scale, the
jumpiness has disappeared completely.

The inadequacy of Gauss’s original estimate π(x) ≈ x/ lnx is illustrated by
Fig. 4.3. By contrast, the integral logarithm, which we “derived” above (and which
was also conjectured by Gauss) gives seemingly perfect agreement with π(x) in the
entire range plotted in Fig. 4.4.

However, even Li(x), labelled “Gauss” in Fig. 4.5, shows noticeable deviations
when we expand the ordinate by a factor 104 as was done in that figure (see [4.3]).
In fact, for x = 107, the excess of Li(x) over π(x) is about 300 and remains positive
for all x < 109. Nevertheless, π(x)−Li(x) has infinitely many zeros, at least one of

which occurs below x = 10101034

; in fact, it may be near x = 10370. (A number such

as 10101034

, introduced by S. Skewes in 1933, was once considered a large number.
But much much much larger numbers have now become important in connection
with Gödel’s famous “incompleteness” theorem [4.4].)

Fig. 4.2 Same as Fig. 4.1 but
x ≤ 55,000
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Fig. 4.3 π(x) and x/ lnx

Fig. 4.4 π(x) and the integral
logarithm Li(x)

Legendre, independently of Gauss, gave the following formula in 1778:

π(x) ≈ x
lnx−1.08366

, (4.12)

a closer approximation than (4.11) up to about x = 4 ·106, as can be seen in Fig. 4.5.
However, above x = 5 ·106 Legendre’s formula begins to go to pieces. (Expanding
Li(x) gives 1 as the constant in (4.12), but Legendre missed that.)

Either formula (4.11) or Legendre’s (4.12) says that there are about 7.9 · 1047

50-digit primes – plenty to go around for the “trap-door” encryption schemes to be
discussed later in Chap. 10.

In our “derivation” of π(x), we considered primes up to x and pointed out that
consideration of primes up to

√
x would have sufficed. This idea was further pursued

by Bernhard Riemann, who showed that

Fig. 4.5 Comparison of formulas by Gauss: Li(x), Legendre: x/(lnx− 1.08366), and Riemann:
Li(x)−1/2Li(x1/2)−1/3Li(x1/3)− . . . (Courtesy of D. Zagier)
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π(x) ≈ R(x) := Li(x)− 1
2 Li
(√

x
)

− 1
3 Li
(

3
√

x
)

− . . . . (4.13)

Figure 4.5 demonstrates how good an approximation R(x) is; the curve labelled
“Riemann” does not seem to have any deviant trend up to x = 107.

The closeness of R(x) to π(x) is further emphasized by Table 4.1, which shows
that, even for x = 109, the error of R(x) is only 79 (out of 5 ·107).

It is interesting to note that it was not until 1896, almost a hundred years after
Gauss’s and Legendre’s conjectures, that Hadamard and de la Vallée Poussin proved
the “Prime Number Theorem” in the form

lim
x→∞

π(x) ln(x)
x

= 1 (4.14)

using “analytic” methods, i. e., mathematical tools from outside the domain of inte-
gers. The first “elementary” proof not using such tools did not come until 1948 and
is due to Erdös [4.5] and Selberg. This illustrates the vast gap between obtaining an
easy estimate, as we have done in the preceding pages, and a hard proof.

Perhaps one of the most surprising facts about π(x) is that there “exists” an exact
formula, given by a limiting process of analytic functions Rk(x):

π(x) = lim
k→∞

Rk(x), where (4.15)

Rk(x) := R(x)−
k

∑
l=−k

R(xρl ). (4.16)

Here ρl is the lth zero of the Riemann zetafunction [4.6]:

ζ (s) :=
∞

∑
n=1

1
ns . (4.17)

Figure 4.6 shows π(x) and the two approximations R10(x) and R29(x), the latter
already showing a noticeable attempt to follow the jumps of π(x).

Table 4.1 Comparison of prime-counting function π(x) and Riemann’s approximation R(x)

x π(x) R(x)

100000000 5761455 5761552
200000000 11078937 11079090
300000000 16252325 16252355
400000000 21336326 21336185
500000000 26355867 26355517
600000000 31324703 31324622
700000000 36252931 36252719
800000000 41146179 41146248
900000000 46009215 46009949

1000000000 50847534 50847455
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Fig. 4.6 Riemann’s approx-
imation to π(x). [After
H. Riesel, G. Göhl: Math.
Comp. 24, 969–983 (1970)]

Table 4.2 The first five zeros of the zetafunction with real part equal to 1/2

ρ1 = 1
2 +14.134725 i

ρ2 = 1
2 +21.022040 i

ρ3 = 1
2 +25.010856 i

ρ4 = 1
2 +30.424878 i

ρ5 = 1
2 +32.935057 i

The zeros for l = 1,2, . . . ,5 of ζ (s) are shown in Table 4.2. The real parts are all
equal to 1/2. In fact, more than 100 years ago Riemann enunciated his famous hy-
pothesis that all complex zeros of ζ (s) have real part 1/2. Riemann thought at first
that he had a proof, but the Riemann Hypothesis (and the so-called Extended Rie-
mann Hypothesis, abbreviated ERH) has remained unproved to this day, although
hundreds of millions of zeros have been calculated, all with real part 1/2. In fact,
the ERH is so widely believed today that a sizable edifice is based on it, and will
collapse when the first Re(ρl) �= 1/2 makes its appearance.

(In late 1984, a possible proof was presented by Matsumoto in Paris. Mind bog-
gling! If it can only be confirmed . . .)

4.3 David Hilbert and Large Nuclei

In conclusion, we mention that David Hilbert once conjectured that the zeros of
the Riemann zetafunction were distributed like the eigenvalues of a certain kind
of random Hermitian matrix. This same kind of matrix, incidentally, later gained
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Fig. 4.7 Interval distribution
between successive zeros
(x = 1/2) of zetafunction.
(——–) Conjecture by Hilbert
(Courtesy of A. Odlyzko, Bell
Laboratories)

prominence in the physics of large atomic nuclei, where its eigenvalues correspond
to the energy levels of the nucleons (protons and neutrons) [4.7]. In physics the
resulting distribution of energy level differences is called the Wigner distribution
after Eugene Wigner, who derived it. It is shown in Fig. 4.7 as a solid line. The dots
are the results of computer calculations by Andrew Odlyzko of Bell Laboratories
(private communications) of the zeros of the Riemann zetafunction around x = 108.
Since the density of zeros increases logarithmically with their distance from the real
line, the spacing of zeros normalized by their average spacing is shown. The close
agreement between the solid line (Hilbert) and the dots (Odlyzko) shows how close
Hilbert’s conjecture, made almost a century ago, is.

Even so, there are noticeable differences between Hilbert’s conjecture and the nu-
merical data. Was Hilbert off? Of course not. More recent calculations by Odlyzko
of hundreds of millions of zeros around the 1020th zero show no discernible differ-
ences with the conjecture. In other words, convergence to the asymptotic result is
very very slow. But this is not unusual for number theory where not a few results
go with the twice or thrice iterated logarithm, and ln ln ln1020 is just a little more
than 1 (1.34 to be more exact). While for some problems in physics 3 is already a
large number (“almost infinity” in the physicist’s book, reminiscent of the sayings
“three’s a crowd” or “period three means chaos”), even such a monster as 1020 is
not all that large in some corners of number theory.

4.4 Coprime Probabilities

What is the probability that two arbitrarily and independently selected numbers from
a large range do not have a common divisor, i. e., that they are coprime? The prob-
ability that one of them is divisible by the prime pi is, as we have seen, 1/pi, and
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the probability that both of them are divisible by the same prime, assuming inde-
pendence, is 1/p2

i . Thus, the probability that they are not both divisible by pi equals
1− 1/p2

i . If we assume divisibility by different primes to be independent, then the
probability of coprimality becomes

W2 ≈ ∏
pi

(

1− 1

p2
i

)

, or (4.18)

1
W2

≈ ∏
pi

1

1−1/p2
i

= ∏
pi

(

1+
1

p2
i

+
1

p4
i

+ . . .

)

, (4.19)

where we have expanded the denominator into an infinite geometric series.
Now if, for simplicity, we extend the product over all primes, then – as Euler

first noted – the result is quite simple: one obtains exactly every reciprocal square
integer once (this follows from the unique decomposition of the integers into prime
factors). Thus,

1
W2

≈
∞

∑
n=1

1
n2 = ζ (2) =

π2

6
, (4.20)

and the probability of coprimality W2 should tend towards 6/π2 ≈ 0.608 for large
numbers.

The probability that a randomly selected integer n is “squarefree” (not divisible
by a square) also tends to 6/π2. The reasoning leading to this result is similar to that
applied above to the coprimality of two integers: for an integer to be squarefree it
must not be divisible by the same prime pi more than once. Either it is not divisible
by pi or, if it is, it is not divisible again. Thus,

Prob
{

p2
i � | n

}

=
(

1− 1
pi

)

+
1
pi

(

1− 1
pi

)

= 1− 1

p2
i

.

Taking the product over all pi (assuming again independence of the divisibility by
different primes) gives the above expression for W2 ≈ 6/π2.

How fast is this asymptotic value reached? The sum over the reciprocal squares
in (4.20) converges quite rapidly and the value of 6/π2 might already hold for the
coprimality and squarefreeness of small numbers. In fact, 61 of the first 100 integers
above 1 are squarefree and of the 100 number pairs made up from the integers 2 to
11, exactly 60 are coprime. This is the closest possible result because the answer
has to be an even number and 62 is further away from 600/π2 than 60.

Figure 4.8 shows a computer-generated plot of coprimality in the range from 2
to 256: a white dot is plotted if its two coordinates are coprime. As expected, the
density of white dots is quite uniform. All kinds of interesting micropatterns can
be observed, and a number of long-range structures at angles whose tangents are
simple ratios: 0, 1/2, 1, 2, etc., are also visible. Does such a plot pose new questions
or suggest new relationships for number theory?
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Fig. 4.8 The coprimality
function, a simple
number-theoretic function, in
the range 2 ≤ x ≤ 256 and
2 ≤ y ≤ 256. A white dot is
shown if (x,y) = 1. Whenever
(x,y) > 1, there is no dot
(black)

When the author first had this plot prepared (by Suzanne Hanauer at Bell Lab-
oratories), he thought that a two-dimensional Fourier transform should make an
interesting picture because the Fourier transformation brings out periodicities. And,
of course, divisibility is a periodic property.

Figure 4.9 shows the result, which with its prominent starlike pattern would make
a nice design for a Christmas card (and has, in fact, been so used). What is plotted
here (as increasing brightness) is the magnitude of the two-dimensional discrete
Fourier transform of the number-theoretic function f (n,m), for n,m = 1,2, . . . ,256
with f = 1 if the GCD (n,m) = 1 and f = −1 otherwise.

Since the original function is symmetric around the 45◦ diagonal, so is the Fourier
transform. Since only magnitude is plotted, there is another symmetry axis: the

Fig. 4.9 The magnitude of the
Fourier transform (simulated
by increasing brightness) of
the number-theoretic function
shown in Fig. 4.8. The pres-
ence of a white dot, (x,y) = 1,
is interpreted as +1, and the
absence of a white dot as −1
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−45◦ diagonal. In addition, there are near symmetries about the horizontal and ver-
tical axes which are not so easy to explain. We leave it as an exercise to the reader
to explain both this near symmetry and each of the stars in Fig. 4.9. (See also [4.8].)

The coprimality probability for more than two randomly selected integers is ob-
tained in the manner that led to (4.20). The general result that k integers are co-
primes is

Wk := Prob{(n1,n2 . . . ,nk) = 1} ≈ [ζ (k)]−1, (4.21)

where ζ (k) is Riemann’s zetafunction as defined in (4.17). For k = 3 one obtains
W3 ≈ 0.832, and for k = 4, W4 ≈ 90/π4 = 0.9239 . . . . (The actual proportions in the
range from 2 to 101 are 0.85 and 0.93, respectively.)

The probabilities that a randomly selected integer is not divisible by a cube, a
fourth power, and in general by a kth power, also tend towards (4.21). Thus, roughly
84% of all integers are “cubefree”.

A somewhat more difficult problem is posed by the probability of pairwise co-
primality of three (or more) randomly selected integers. The probability that none
of k integers has the prime factor pi is

(

1− 1
pi

)k

and that exactly one has pi as a factor is

k
pi

(

1− 1
pi

)k−1

.

The sum of these two probabilities is the probability that at most one of the integers
has pi as a factor. The product over all primes pi then approximates the probability
that the k integers are pairwise coprime, i. e., that

(n j,nm) = 1 for all j �= m.

The reader may want to show that for k = 3, this probability can be written

36
π4 ∏

pi

(

1− 1
(pi +1)2

)

= 0.28 . . . .

Thus, only about 28% of three randomly selected integers are pairwise coprime.
(Compare this with the above result W3 ≈ 0.832.)

Jobst von Behr of Hamburg, who read the first edition of this book, generalized
this problem by considering the probability Pk(d) that the greatest common divi-
sor (GCD) of k integers equal d > 1. By Monte Carlo computation on his home
computer he obtained numerical results that looked suspiciously like

Pk(d) = d−kζ−1(k).
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Can the reader of this edition prove this seductively simple scaling law? Sum-
ming over all d gives of course 1, as it should for a proper probability.

For the probability that the GCD of k random integers is even the above formula
gives 2−k; is this in conformity with elementary probability?

Here is another charming problem amenable to the probabilistic viewpoint: In
the prime factor decomposition of a randomly selected integer n > 1, what is the
probability P(p) that the smallest prime divisor equals p? The probability (density)
that n is divisible by p is of course 1/p. For p to be the smallest prime factor, all
prime smaller than p must not divide n. Hence

P(p) =
1
p ∏

q<p

(

1− 1
q

)

where the product is extended over all primes q smaller than p. For example, for
p = 7, P(7) = 4/105, i.e roughly 4% of all integers have 7 as their smallest prime
factor.

Now let us sum the above expression over all primes, 2, 3, 5, 7, 11, . . ., so we get

P = ∑
p

1
p ∏

q<p

(

1− 1
q

)

the probability that an integer n > 1 has some prime number as its smallest prime
divisor which, given the sets P(p) are pairwise disjoint, equals of course 1! Every
integer > 1 has prime divisors one of which is necessarily the smallest.

To what extent does the above result for P depend on the exact values of the
primes? For the (very rough) approximation m logm for the mth prime, the sum
converges to 1.5 (instead of 1).

4.5 Primes in Progressions

A famous theorem by Dirichlet (1837), Gauss’s successor in Göttingen, states: there
are infinitely many primes in every linear progression

a ·n+b, n = 1,2,3, . . . , (4.22)

provided the constants a and b are coprime: (a,b) = 1. Thus, for example, with
a = 10 and b = 1, 3, 7 or 9, we see that there are infinitely many primes whose last
digit is 1, 3, 7 or 9. (In fact, as we shall see later, these four kinds of primes occur in
equal proportion.)

The longest sequence known in early 1982 for which a · n + b gives primes for
consecutive n is the progression

223092870 ·n+2236133941,
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Fig. 4.10 Primes (dots)
plotted on a spiral. Many
primes fall on straight lines

which is prime for sixteen consecutive values: n = 0,1,2, . . . ,15. Since then a 19-
member progression has been discovered.

The record for a quadratic progression stands at 80 consecutive primes, namely

n2 +n+41 for n = −40,−39, . . . ,0, . . . ,39. (4.23)

This is remarkable because it would ordinarily take a polynomial in n of degree 80
to get 80 primes for consecutive values of n.

Many primes are of the form 4n2 +an+b, which makes them lie on straight lines
if n is plotted along a square spiral. This fact is illustrated by so plotting the primes
(see Figs. 4.10, 4.11).

Fig. 4.11 The primes between 41 and 439 plotted on a square spiral beginning with 41 in the
centre. Note the “solid-prime” diagonal
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However, there is no polynomial, no matter how high its degree, which yields
primes for all values of n. If there was a polynomial in n of finite degree r
generating primes for all n, then r + 1 primes would determine the r + 1 coef-
ficients of the polynomial and infinitely many other primes could then be cal-
culated from these r + 1 primes. The location of primes among the integers is
simply too unpredictable to be “caught” by something as regular and finite as a
polynomial.

4.6 Primeless Expanses

On the other hand, there is always a prime between n3 and (n + 1)3 − 1 for large
enough n. This fact was exploited by W. H. Mills (1947) to construct a constant A
such that �A3n� is prime for all n [4.9, p. 160]. But of course, the Mills expression is
not a polynomial, and as we remarked before (Sect. 3.4), the primes thus generated
have been “smuggled” into A first.

Somewhat paradoxically, there are also arbitrarily large intervals without a single
prime! For example, the one million consecutive integers

(106 +1)!+n, n = 2,3,4, . . . ,1,000,001 (4.24)

are all composite! In fact, there is even a set of one million somewhat smaller con-
secutive integers that are all composite, namely those in which the additive term n
in the above expression is replaced by −n.

In relative terms, the primeless expanse of one million integers is, of course,
rather small. A (weak) upper bound on the relative size of primeless ranges is an
“octave” of integers; i. e., there is always a prime p in the range n and 2n (inclusive):

n < p ≤ 2n, (4.25)

or, equivalently, each prime is less than twice its predecessor [4.10]:

pk+1 < 2pk. (4.26)

Check: 3 < 2 ·2, 5 < 2 ·3, 7 < 2 ·5, 11 < 2 ·7, etc.
In fact, the number of primes in the interval from n to 2n is of the same order as

those below n. This follows directly from the asymptotic expression for π(x):

π(x) ≈ x
lnx

, (4.27)

so that

π(2x)−π(x) ≈ 2x
lnx+ ln2

− x
lnx

≈ x
lnx

− 2x ln2

ln2 x
. (4.28)
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4.7 Squarefree and Coprime Integers

The probability that a given integer is squarefree approaches 6/π2 (see Sect. 4.4)
and 6/π2 is also the asymptotic probability that two randomly chosen integers are
coprime. Are these two properties independent? No! Among 500 random integers
von Behr found 205 that were both squarefree and coprime (to another random in-
teger), instead of only 500 ·36/π4 ≈ 185 if these two properties were independent.
Thus, there seems to be a positive correlation between squarefreeness and coprimal-
ity. The reader may wish to show that the joint probability equals 36/π4 times a
peculiar product, which is larger than 1:

∏
i

(

1+
1

p3
i + p2

i − pi −1
≈ 1.16

)

.

4.8 Twin Primes

Primes not infrequently come in pairs called twin primes, like 11 and 13 or 29
and 31. How often does it happen? An estimate [4.2] shows their density to be
proportional to 1/(lnx)2, i.e. the square of the density of single primes, suggesting
that they may occur independently. But one must be careful here because prime
triplets of the form (x,x +2,x +4) can never happen (other than the triplet 3, 5, 7),
since one member of such a triplet is always divisible by 3. (Reader: try to show
this – it is easy.)

On the other hand, triplets of the form (x,x +2,x +6) or (x,x +4,x +6) are not
forbidden and do happen, for example, 11, 13, 17 or 13, 17, 19. Is their asymptotic
density proportional to 1/(lnx)3? In number theory, what is not explicitly forbidden
often occurs, and often occurs randomly – resembling total chaos rather than neat
order.

Let us try to estimate the density of twin primes. The probability that a natural
number x is not divisible by a prime p < x equals about 1− 1/p. The probability
W (x) that x is prime is therefore approximately

W (x) =
x′

∏
p

(

1− 1
p

)

. (4.29)

Here p ranges over all primes below some “cut-off” value x′, where x′ is about
x0.5. On the other hand the prime number theorem [4.10, Theorem 6] tells us that,
asymptotically,

W (x) =
1

lnx
. (4.30)
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How are (4.29) and (4.30) related? According to Mertens’ Theorem [4.10, Theorem
429]

x

∏
p

(

1− 1
p

)

→ e−γ

lnx
, (4.31)

where γ = 0.5772 is Euler’s constant. To have (4.29) agree with (4.30) we set x′ =
xe−γ ≈ x0.56.

While such heuristic estimates may appear rather rough, the numerical evidence
is quite reassuring. Thus, for x = 103, (4.29) yields W (x) = 0.139, whereas (4.30)
and an actual count of primes around x = 103 give 0.145 and 0.144, respectively.
For x = 106, the corresponding results are 0.0723, 0.0724 and 0.0726. For x = 109,
we get 0.0482, 0.0483 and 0.0484.

The probability W2(x) that both x and x + 2 are primes is obtained from the fol-
lowing two “inequalities” or rather incongruences:

x �≡ 0 and x �≡ −2 mod p. (4.32)

(For the definition and rules of congruences see Chap. 6.) For p = 2, both parts of
(4.32) amount to just one condition (x must be odd) yielding the probability factor
1
2 . For p > 2, the two parts of (4.32) are two independent conditions, yielding the
probability factor (1−2/p). Thus,

W2(x) =
1
2

x′

∏
p>2

(

1− 2
p

)

. (4.33)

To connect (4.33) with (4.29) we rewrite the product in (4.33) as follows

x′

∏
p>2

(

1− 2
p

)

=
∏x′

p>2

(

1− 2
p

)

∏x′
p>2

(

1− 1
p

)2

x′

∏
p>2

(

1− 1
p

)2

. (4.34)

Here the ratio of the two products converges for large x′ to 0.66016 . . . , called the
twin-prime constant. The remaining product equals, according to (4.29) and (4.30),
4/ ln2 x. Thus,

W2(x) =
1.32032

ln2 x
, (4.35)

showing the expected trend with 1/ ln2 x. Note, that the sum over all x diverges,
implying an (unproven) infinity of twin primes.

Although there is no mathematical proof for an infinity of twin primes, (4.35) is
supported by excellent numerical evidence. (Curiously, Kummer, the great mathe-
matician of early Fermat fame, obtained, for some reason, an erroneous answer for
W2(x) that, in the pre-computer age, remained long undetected.)
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Interestingly, while the sum of 1/p over all primes diverges (albeit very slowly –
namely like ln(lnx)), the sum of 1/p2, where p2 is the smaller member of a twin-
prime pair, converges. Thus, although there probably are infinitely many twin primes
(according to our heuristic estimate (4.35)), their density is not sufficient to make
∑1/p2 diverge. To what value does the ∑1/p2 converge? Numerical evidence ob-
tained by summing 1/p2 up to p2 = 1299451 gives 0.9652. Adding to this the inte-
gral of 1/p over the density (4.35) beyond 1299451 yields approximately 1.06 for
∑1/p2.

What can we deduce about twin primes with a spacing of 4 instead of 2? Instead
of the incongruences (4.32) we now have

x �≡ 0 and x �≡ −4 mod p. (4.36)

Again, for p > 2, two remainders, 0 and 4, are forbidden. Thus, the density W4(x)
of (x,x+4) twins equals the density of W2(x) of (x,x+2) twins:

W4(x) = W2(x). (4.37)

If both x and x+4 are primes, x+2 cannot be prime. In fact, x+2 must be divisible
by 3. Thus, x and x+4 are true twins, i. e. primes with no intervening primes.

4.9 Prime Triplets

There are two kinds of prime triplets, those with a 2;4 spacing pattern and others
with a 4;2 pattern. We first consider the 2;4 pattern, that is those cases for which x,
x+2 and x+6 are primes. Thus the following three incongruences must be obeyed

x �≡ 0, x �≡ −2, x �≡ −6 mod p. (4.38)

For p = 2, this amounts again to just one condition: x must be odd, which yields
the probability factor 1

2 . For p = 3, the incongruences (4.38) impose two conditions,
namely neither x nor x+2 must be divisible by 3, yielding the probability factor 1

3 .
For p > 3, all three incongruences of (4.38) are “active”, eliminating three out of
p cases and yielding the probability factor 1− 3/p. The probability W2;4(x) for a
prime triplet with differences between successive primes of 2 and 4, respectively, is
therefore

W2;4(x) =
1
6

x′

∏
p>3

(

1− 3
p

)

, (4.39)

or

W2;4(x) =
1
6

∏x′
p>3

(

1− 3
p

)

∏x′
p>3

(

1− 1
p

)3

x′

∏
p>3

(

1− 1
p

)3

. (4.40)
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Here the ratio of the two products converges for large x′ to 0.63516. . . (which might
be called the triple-prime constant). With (4.29) and (4.30), the remaining product
is seen to approach 27ln3 x. Thus, approximately,

W2;4(x) =
2.858

ln3 x
. (4.41)

For prime triplets with x, x+4 and x+6 prime, the incongruences are

x �≡ 0, x �≡ −4, x �≡ −6 mod p, (4.42)

leading to equinumerous sets of restrictions as (4.38). Thus, the corresponding prob-
ability W4;2(X) is given by

W4;2(x) = W2;4(x). (4.43)

4.10 Prime Quadruplets and Quintuplets

As with prime triplets, there are two different spacing patterns for quadruplets of
close primes: 2;4;2 and 4;2;4. Curiously, numerical evidence suggests that the latter
pattern (4;2;4) seems to be twice as numerous as the other pattern (2;4;2). We
would like to understand why.

For the 2;4;2 pattern the four incongruences are

x �≡ 0, x �≡ −2, x �≡ −6, x �≡ −8 mod p. (4.44)

The effective number of incongruences for p = 2 equals one; for p = 3 the number
equals two; for p > 3 all four incongruences are active. The probability of the 2;4;2
pattern is therefore

W2;4;2(x) =
1
6

x′

∏
p>3

(

1− 4
p

)

, (4.45)

or

W2;4;2(x) =
1
6

∏x′
p>3

(

1− 4
p

)

∏x′
p>3

(

1− 1
p

)4

x′

∏
p>3

(

1− 1
p

)4

. (4.46)

Here the ratio of the two products converges to 0.307496. . . (the “quadruplet con-
stant”) and the remaining factor tends to 81/ ln4 x. Thus

W2;4;2(x) =
4.15

ln4 x
. (4.47)

For the spacing pattern 4;2;4 the four congruences are
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x �≡ 0, x �≡ −4, x �≡ −6, x �≡ −10 mod p. (4.48)

Here, for p = 5, the last incongruence is automatically fulfilled by the first (x �≡ 0).
Thus there are only three (instead of four) active incongruences for p = 5. The
probability factor for p = 5 therefore doubles from (1− 4/5) to (1− 3/5). As a
result, we have

W4;2;4(x) = 2W2;4;2(x), (4.49)

confirming the numerical evidence.
The next closely spaced cluster of primes is a quintuplet with the spacing pattern

2;4;2;4, such as 5, 7, 11, 13, 17 which repeats at 11, 13, 17, 19, 23 and 101, 103,
107, 109, 113, etc. Another possible quintuplet type has the spacing pattern 4;2;4;2,
such as 7, 11, 13, 17, 19, which repeats at 97, 101, 103, 107, 109 but not again
until 1867, 1871, . . . . The reader should have no difficulty deriving the asymptotic
densities for these quintuplets following the recipe of Sects. 4.8–4.10.

However, not all patterns are possible, as we have already seen in Sect. 4.9 with
prime triplets: the spacing pattern 2;2 is impossible after 3, 5, 7 because one member
of such a triplet must be divisible by 3. Another way to demonstrate the impossibility
of the spacing pattern 2;2 uses the appropriate incongruences: for x, x + 2, x + 4 to
be prime. These are

x �≡ 0, x �≡ −2, x �≡ −4 mod p.

For p = 3, the last incongruence may be written as x �≡ −1mod3. Thus all three
possible remainders modulo 3 (0,−2,−1) are forbidden and 3, 5, 7 is the only
triplet with the 2;2 pattern.

In a similar manner, we can show that the sextet with the spacing pattern
2;4;2;4;2 occurs only once (5, 7, 11, 13, 17, 19) and never again. The six incongru-
ences for the sextet considered are

x �≡ 0, −2, −6, −8, −12, −14 mod p.

For p = 5 we may write

x �≡ 0, −2, −1, −3, −2, −4 mod5,

which excludes all five possible classes of remainders modulo 5.
What if any spacing pattern of length 7, 8 etc. is unique in the sense that, like 2,

3 and 3, 5, 7 and 5, 7, 11, 13, 17, 19, it occurs only once and never again?

4.11 Primes at Any Distance

In Sect. 4.8 we derived the formula W2(x) = 1.32032/ ln2 x for the asymptotic den-
sity of twin primes with a distance of 2 (such as 3 and 5 etc.). We also noted that twin
primes with a distance of 4 (like 7 and 11 etc.) are equally probable: W4(x) =W2(x).
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What is the density of pairs of odd primes, not necessarily adjacent, with a distance
of Δ = 6 (like 5 and 11) or a distance of Δ = 8 (like 3 and 11) or any other distance
Δ irrespective of any intervening primes?

For Δ = 6, the incongruences (4.32) have to be replaced by

x �≡ 0 and x �≡ −6 mod p. (4.50)

For p = 2 and p = 3, only one of these two incongruences is active, yielding a
probability factor (1− 1/2) (1− 1/3) = 1/3. For p > 3 both incongruences are
active yielding probability factors (1−2/p). Hence, with (4.33),

W6(x) =
1
3

x′

∏
p>3

(

1− 2
p

)

=
x′

∏
p>2

(

1− 2
p

)

= 2W2(x), (4.51)

i.e. pairs of primes with a distance Δ = 6 are twice as numerous as twin primes.
For Δ = 8, the second of the two incongruences (4.50) becomes x �≡ −8mod p.

Since 8 does not contain any prime factors p > 2, we can proceed as in the derivation
of the twin-prime density with Δ = 2 and Δ = 4. The result is

W8(x) = W2(x). (4.52)

In fact, for any Δ = 2k, k = 1,2,3 . . . , we obtain

W2k(x) = W2(x). (4.53)

More generally, for arbitrary Δ , only the prime factors of Δ are important. Of the
two incongruences

x �≡ 0 and x �≡ −Δ mod p (4.54)

only one is active for all odd prime factors q of Δ . Thus

WΔ (x) =
1
2 ∏

q

1− 1
q

1− 2
q

x′

∏
p>2

(

1− 2
p

)

, (4.55)

where q are the different odd prime factors of Δ and p are all primes above 2 and
below x′. With (4.33) we get

WΔ (x) = Π(Δ)W2(x), where Π(Δ) = ∏
q>2
q|Δ

q−1
q−2

, (4.56)

a charming generalization of our earlier result (4.51) that W6(x) equals 2W2(x). But
W6 is not the largest value. For Δ = 30 we get W30 = 2.66W2. In fact, there is no
upper bound for Π(Δ) because the product over q diverges if all possible primes
are included as prime factors of Δ . More specifically, the product Π(Δ) diverges as
1.349lnqmax, where qmax is the largest prime factor of Δ . Are there two different
coprime values of Δ having the same Π(Δ)? Let the reader decide – or rather find
out.
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Fig. 4.12 The number of
primes with a given spacing

Of the two factors in (4.56) one is slowly varying, representing a monotonic
trend, W2(x), whereas the product Π(Δ) fluctuates appreciably with changing values
of Δ . Figure 4.12 shows a plot of Π(Δ) as a function of Δ . For every value of Δ
that is divisible by 3, i.e. every third value, the quotient (q−1)/(q−2) contributes
a factor of 2 to the product. Similarly, for every value of Δ divisible by 5, i.e. every
5th value, a factor of 4/3 is contributed – and so on for 7, 11 etc.

These inherent periodicities are brought out nicely by the Fourier transform of
Π(Δ): see Fig. 4.13, which shows a pronounced peak at one third the sampling
frequencies, corresponding to p = 3, and smaller peaks corresponding to p = 5
and 7 and their “harmonics”. As we shall see, Π(Δ) has a certain universal air
about it because it also governs the sum of two primes (cf. Sect. 4.13).

Π(Δ) is also related to Euler’s Φ function Φ(m) (see Sect. 8.3) and in fact re-
sembles m/Φ(m):

m
Φ(m)

= ∏
p|m

p
p−1

,

Fig. 4.13 The magnitude of
the Fourier transform showing
the preponderance of spacings
at multiples of 6
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whereas

Π(m) = ∏
p>2
p|m

p−1
p−2

. (4.57)

4.12 Spacing Distribution Between Adjacent Primes

The prime number theorem prescribes the average spacing s between adjacent
primes. For n� 1, this spacing is about lnn. (For example, for n = 20, s≈ ln20≈ 3.)

All spacings between odd primes are of course even. If the distribution of spac-
ings were otherwise unconstrained, then, given an average spacing, the maximum-
entropy principle [4.11] would tell us that the distribution of k = s/2 is the geometric
distribution:

d(k) =
1

k

(

k

1+ k

)k

, k =
1
2

lnn, k = 1,2, . . . . (4.58)

In reality, the distribution of spacings is anything but unconstrained. We already
know (4.37) that the frequencies of the spacings s = 2 (i.e. k = 1) and s = 4
(i.e. k = 2) are equal, while (4.58) would predict a ratio of d(1)/d(2) = 1 + 1/k.
Figure 4.14 shows a plot of the logarithm of d(k) in the range p20000 to p40000

for k = 1 to 36. There is the predicted overall linear trend: lnd(k) ∼ r/k with
r = − ln(1 + 1/k). But the “bumps” at k = 3 (i.e. s = 6), k = 15 (i.e. s = 30) and
other places (especially multiples of 3) are also visible.

The average slope obtained by regression of the data in Fig. 4.14 is r = −0.148,
in good agreement with the theoretical value of r = −0.146.

Fig. 4.14 The distribution of
the spacings between adjacent
primes
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4.13 Goldbach’s Conjecture

One of the most enduring (if not endearing) mathematical conjectures, made by
the Russian mathematician Christian Goldbach (1690–1764) in a letter to Leonhard
Euler, is the famous Goldbach conjecture. It asserts that every even number n > 4
is the sum of two odd primes. Some progress has been made on related weaker
assertions, and the Goldbach conjecture itself has been numerically confirmed up to
very large numbers. But alas, even if it had been shown to hold up to 101010

, there
would be no guarantee that it would not fail for 101010

+2.
Let us try our heuristic muscle at this recalcitrant conjecture. We want to get a

feeling for the number of representations

x+ y = n,

where x and y are odd primes and n > 4 is even. We want to count permuted repre-
sentations, such as 3 + 5 = 5 + 3 = 8, as only one case. Without loss of generality
we assume x ≤ n/2.

The number of odd primes below n/2 equals approximately n/(2lnn). Each such
prime is a candidate for x+y = n and contributes to the count in question if y = n−x
is also prime. What is the probability of n− x being prime, given that x is an odd
prime?

To answer this question, we have to distinguish two cases. For a given potential
prime divisor p of n− x: does p divide n or does it not? In the first case (p|n) the
two incongruences

x �≡ 0 and n− x �≡ 0 mod p (4.59)

amount to only one condition because, for p|n, n−x ≡ xmod p. Thus the probability
factor is (1−1/p). In the other case (p � | n) and p > 2, the incongruences (4.59) are
independent of each other. The probability factor is therefore (1−2/p). For p = 2
the factor is 1/2. Multiplying these probability factors yields

∏
p|n

(

1− 1
p

)

∏
p>2
p|n

(

1− 2
p

)

· 1
2
.

This factor has to be divided by the unrestricted probability factor

∏
p

(

1− 1
p

)2

and multiplied by the a priori probability that n− x is prime. Since n− x is already
odd (because n is even and x is odd), this probability equals

2
ln(n− x)

≈ 2
lnn

(because x ≤ n/2).
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Thus, the total estimated count C2(n) of cases for which both x and n− x are
prime is given by

C2(n) = ∏
p>2

(

1− 2
p

)

(

1− 1
p

)2 · ∏
p>2
p|n

p−1
p−2

· n

ln2 n
. (4.60)

Here the first factor approaches our old friend, the twin-prime constant 0.66016. . .
(4.34). This factor combined with the last factor (n/ ln2 n) is nothing but the twin-
prime density W2(n), see (4.35), multiplied by 1/2. Thus

C2(n) =
n
2

W2(n) ∏
p>2
p|n

p−1
p−2

. (4.61)

To simplify this formula even further, we recall the function WΔ (n) [see (4.55)].
With Δ = n

C2(n) = n
2Wn(n). (4.62)

Thus the number of Goldbach representations C2(n) equals, within a factor n/2, the
density of prime pairs Wn(n) with a spacing of n in the neighbourhood of n.

Another interesting aspect of this result is the product in (4.61). Suppose n is a
multiple of 3, then this product, for p = 3, contributes a factor of 2 to the count. If n
is divisible by 5, the product contributes a factor 4/3, which is still appreciably larger
than 1. Thus, we see that the count C2(n) has a pronounced periodic component with
a period of 3 (and weaker periodicities with periods of 5, 7, 11, etc.), just like Π(n)
(see Figs. 4.12 and 4.13).

4.14 Sum of Three Primes

Another problem from additive number theory that Goldbach posed in 1742 in cor-
respondence with Euler, then at St. Petersburg, concerned the sum of three primes.
Goldbach asked whether every sufficiently large odd n can be written as

n = p1 + p2 + p3. (4.63)

Positive proof that this is indeed possible had to wait almost 200 years – until 1937
when I. M. Vinogradov [4.12] furnished a proof based on Fourier-like trigonometric
sums. Trigonometric sums have played an important role in number theory ever
since, forging a strong link between additive and multiplicative number theory.

How did Vinogradov get from (4.63) to trigonometric sums? The number of cases
including permutations C3(n) for which (4.63) holds can be written as follows
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C3(n) = ∑
p1<n

∑
p2<n

∑
p3<n

∫ 1

0
exp [2πi(p1 + p2 + p3 −n)x]dx, (4.64)

because when (4.63) holds the integral equals 1 and the triple sum is augmented by
1; otherwise the integral is 0 and nothing is added.

As a next step, Vinogradov converted the triple sum into a single sum:

C3(n) =
∫ 1

0
∑
p<n

[exp(2πixp)]3 exp(−2πin)dx, (4.65)

which he was able to convert into the product of (1− 1/(p2 − 3p + 3)) taken over
all prime divisors of n.

The final result of Vinogradov’s method is that the number of representations
C3(n) of an odd integer as the sum of three primes equals, asymptotically,

C3(n) = C∏
p|n

(

1− 1
p2 −3p+3

)

n2

ln3 n
. (4.66)

This formula resembles (4.60) for the sum of two primes, except that the slowly
varying factor n/ ln2 n (the “trend”) has been replaced by n2/ ln3 n and the prod-
uct over p|n is over a quadratic expression in p. However, like Π(n) [see (4.57)]
this product, too, depends sensitively on the small prime factors of n. Thus, if n is
divisible by 3, the term for p = 3 contributes a factor 2/3 to the product.


