
Chapter 3
Primes

As we go to larger and larger integers, primes become rarer and rarer. Is there a
largest prime after which all whole numbers are composite? This sounds counter-
intuitive and, in fact, it isn’t true, as Euclid demonstrated a long time ago. Actually,
he did it without demonstrating any primes – he just showed that assuming a finite
number of primes leads to a neat contradiction.

Primes are found by sieves, not by formulas, the classical sieve having been de-
signed by Eratosthenes in classic Greece. (Formulas that pretend to give only primes
are really shams.) Primality testing has advanced to a stage where the primality or
compositeness of 100-digit numbers can now be ascertained by computer in less
than a minute, without actually giving any of the factors [3.1]. Factoring, on which
the security of certain kinds of cryptographic systems depends (Chaps. 10–15), is
still very difficult at this writing.

The largest primes known are of a special form called Mersenne primes because
they don’t hide their compositeness too well and, indeed, some were discovered by
high-school students. The largest Mersenne prime known (in mid-1983) has 25,962
digits! Mersenne primes lead to even perfect numbers and to prime “repunits”,
meaning repeated units, i. e., numbers consisting exclusively of 1’s in any given
base system. (The Mersenne primes are repunits in the binary number system.)

Of special interest are the Fermat primes of which, in spite of Fermat’s expecta-
tions, only 5 are known, the largest one being 65537. Each Fermat prime allows the
construction of a regular polygon by using only straightedge and compass – Gauss’s
great discovery made just before he turned nineteen.

3.1 How Many Primes are There?

Again we turn to Euclid, who proved that there are infinitely many primes by giving
one of the most succinct indirect proofs of all of mathematics:

Suppose that the number of primes is finite. Then there is a largest prime pr.
Multiply all primes and add 1:

N = p1 p2 . . . pr +1.
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Now N is larger than pr and thus cannot be a prime because pr was assumed to be
the largest prime. Thus N must have a prime divisor. But it cannot be any of the
known primes because by construction of N, all known primes divide N − 1 and
therefore leave the remainder 1 when dividing N. In other words, none of the known
primes divides N. Thus, there is a prime larger than pr – a contradiction! We must
therefore conclude that there is no largest prime, i. e., that there are infinitely many.

In actual fact, the above construction often (but not always) does give a prime.
For example:

2+1 = 3

2 ·3+1 = 7

2 ·3 ·5+1 = 31

2 ·3 ·5 ·7+1 = 211

2 ·3 ·5 ·7 ·11+1 = 2311,

all of which are prime. But

2 ·3 ·5 ·7 ·11 ·13+1 = 30031 = 59 ·509.

Suppose we set P1 = 2 and call Pn+1 the largest prime factor of P1P2 . . .Pn + 1.
Is the sequence Pn monotonically increasing? No! Both P9 and P10 have 16 decimal
digits but P10 equals only about 0.3P9.

3.2 The Sieve of Eratosthenes

Like gold nuggets, primes are mostly found by sieves – the first one having been de-
signed in ancient Greece by Eratosthenes of Kyrene around 200 B.C. Eratosthenes’s
sieve idea is charmingly simple.

To find the primes below 100, say, write down the integers from 1 to 100 in
order. Then, after 2, cross out every second one (4,6,8 . . .), in other words all the
even numbers, because they are divisible by 2 and therefore not prime (except 2
itself). Then, after 3, cross out every third number that is still standing (9,15,21 . . .)
because these numbers are divisible by 3 and therefore also not prime. Repeat the
crossing out process for every fifth number after 5 and every seventh number after
7. The remaining numbers (except 1, which is not considered a prime) are the 25
primes below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Roughly speaking, to find the primes below a given integer N, we only have to
use sieving primes smaller than

√
N. (This rule would tell us that by sieving with 2,

3, 5 and 7 we will find all primes below 112 = 121, while actually we have found 4
more primes.)
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Fig. 3.1 The sieve of
Eratosthenes (modulo 6)

In applying Eratosthenes’s sieve method there is an additional trick that sim-
plifies matters considerably: we write the integers in six columns starting with 1
(Fig. 3.1). Then only the first and the fifth columns (no pun) contain primes because
all numbers in the second, fourth, and sixth columns are divisible by 2, and those in
the third column are divisible by 3.

To eliminate the numbers divisible by 5 and 7 as well, a few 45◦ diagonals have
to be drawn, as shown in Fig. 3.1.

Things become a little more complicated if we include the next two primes, 11
and 13, in our sieve because the numbers divisible by 11 and 13 follow “knight’s-
move” patterns as known from chess. But then we have already eliminated all com-
posite numbers below 17 ·19 = 323. In other words, we have caught the 66 primes
up to 317 in our 6-prime sieve.

Sieving may connote a child playing in a sandbox or a gold digger looking for
a prime metal, but sieving in number theory is a very respectable occupation and
sometimes the only method of finding an elusive prime or unmasking a composite as
such. Of course, the sieving algorithms employed today are becoming increasingly
sophisticated. We will hear more about the search for primes, especially the urgently
needed very large ones, in subsequent chapters.

3.3 A Chinese Theorem in Error

The ancient Chinese had a test for primality. The test said that n is prime iff1 n
divides 2n −2:

n|(2n −2). (3.1)

1 Here and in the rest of this book, “iff” means if and only if. Further, x “divides” y means that x
divides y without leaving a remainder. As a formula this is written with a vertical bar: x|y.
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As we shall prove later, (3.1) is indeed true if n is an odd prime (by Fermat’s theo-
rem). Of course, for n = 2, (3.1) is trivially true.

Example: for n = 5, 2n −2 = 30, which is indeed divisible by 5.

Conversely, for odd n < 341, if n is not prime n does not divide 2n −2.

Example: for n = 15, 2n −2 = 32,766, which is not divisible by 15.

Fortunately (for their self-esteem!), the ancient Chinese never tried n = 341,
which is composite: 341 = 11 · 31 and yet 341 divides 2341 − 2 without remain-
der. This might be a bit hard to check by abacus, but the test is within reach of many
a programmable pocket calculator. Of course, the calculation does not give the quo-
tient (2341 −2)/341, a number 101 digits long, but rather the remainder, which is 0,
thereby falsely asserting that 341 = 11 ·31 is prime.

The rules for calculating high powers efficiently will be given later, together with
a “fast” calculator program.

3.4 A Formula for Primes

In 1947, Mills [3.2] showed that there is a constant A, such that �A3n� is2 prime
for every n. Here we have a formula that, although it does not generate each and
every prime, could be used to generate arbitrarily large primes – for which the sieve
methods are less suited.

For anyone who has an appreciation of what a precious thing a prime is, this
seems impossible. And indeed, there is trickery at play here, albeit cleverly hid-
den trickery: determination of the constant A presupposes prior knowledge of the
primes! This trickery is explained in the excellent little book by Nagell [3.3], but it
is a bit tricky, and we will illustrate the point by another, not quite so surreptitious,
trick. Consider the real constant

B = 0.20300050000000700000000000000110 . . . . (3.2)

Upon multiplying by 10 and taking the integer part, one obtains 2 – the first prime.
Dropping the integer part, multiplying by 100, and taking the integer part then gives
3 – the second prime. In general, after the nth prime has been extracted from B,
multiplying by 102n

and taking the integer part yields the (n+1)th prime. Thus, we
have specified a (recursive) algorithm3 for specifying not only primes but all the
primes, and in proper order at that!

2 The so-called “Gauss bracket” or “floor function” �x� is defined as the largest integer not exceed-
ing x. Thus, �4.9� = 4; but �5.0� = 5. The Gauss bracket (for x ≥ 0) corresponds to the instruction
“take integer part”, often designated by INT in computer programs.
3 Can the reader specify a nonrecursive algorithm, i. e., one that gives the nth prime directly, with-
out calculating all prior ones?



3.5 Mersenne Primes 35

Of course, here the trick is patently transparent: we have simply “seeded” the
primes, one after another, into the constant B, interspersing enough 0’s so that they
do not “run into” each other. In other words, the constant B does not yield any primes
that are not already known. (How many 0’s between seeded primes are required to
guarantee that adjacent primes do not overlap in B? If 0’s are considered expensive
because they make B very long, that question is not easy to answer and, in fact,
requires a little “higher” number theory.)

Apart from (3.2) and Mill’s formula, there have been many other prescriptions for
generating primes or even “all” primes. Most of these recipes are just complicated
sieves in various disguises, one of the few really elegant ones being Conway’s Prime
Producing Machine (cf. R. K. Guy, Math. Mag. 56, 26–33 (1983)). Other attempts,
making use of Wilson’s theorem (Sect. 8.2), are hilarious at best and distinguished
by total impracticality. All this (non)sense is reviewed by U. Dudley in a delightful
article (“Formulas for Primes”, Math. Mag. 56, 17–22 (1983)).

One of the most astounding algorithms for producing primes, in fact seemingly
all of them and in perfect order, is the Perrin sequence. This sequence is defined by
the recursion A(n + 1) = A(n− 1)+ A(n− 2), with the initial condition A(0) = 3,
A(1) = 0, and A(2) = 2 (cf. I. Stewart, Sci. Am. 247, 6, 102–103 (June 1996)). Lucas
has proved that whenever n is prime n divides A(n). But the converse also seemed
to be true: if n divides A(n), n is prime. But alas, a first counterexample was found
for n = 271441 = 5212.

3.5 Mersenne Primes

A Mersenne number is a number Mp = 2p − 1, where p is prime. If Mp itself is
prime, then it is called a Mersenne prime. Note that numbers of the form 2n − 1,
where n is composite, can never be prime because, for n = pq,

2n −1 = (2p −1)(2p(q−1) +2p(q−2) + . . .+1), (3.3)

However, not all primes p yield Mersenne primes, the first exception being p =
11, because 211 −1 = 2047 = 23 ·89. Still, there is a fairly simple primality test for
numbers of the form 2p − 1, the so-called Lucas Test: 2p − 1 is prime iff (note the
double f , meaning if and only if ) Mp divides Sp (p > 2), where Sn is defined by the
recursion

Sn = S2
n−1 −2, (3.4)

starting with S2 = 4.
Thus, for example, S11 is given by the 10th number in the sequence

4, 14, 194, 37634, . . . ,

which is not divisible by M11 = 2047. Thus, M11 is composite.
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Fig. 3.2 Mersenne primes on
a checkerboard

While this test does not reveal any factors, there is another test that can give a
factor for Mp with p = 4k +3: for q = 2p+1 prime, q|Mp iff p ≡ 3mod4.

Example: p = 11 = 4 · 2 + 3; M11 = 2047 is not divisible by (p− 1)/2 = 5 and is
therefore divisible by 2p + 1 = 23. Check: 2047 = 23 · 89. Check! Similarly, 47 is
discovered as a factor of M23 = 8388607, etc.

Figure 3.2 shows the first 9 Mersenne primes arranged on a checkerboard. On
January 17, 1968, the largest known prime was the Mersenne prime 211213 − 1, an
event that was celebrated with a postmark (Fig. 3.3) from Urbana, Illinois (at no
profit to the U.S. Post Office, considering the zero value of the stamp).

In the meantime, much larger Mersenne primes have been found. The record on
November 18, 1978, stood at 221701 −1, a prime with 6533 decimal digits found by
two California high-school students, Laura Nickel and Curt Noll, using 440 hours on
a large computer. The next Mersenne prime is 223209 −1. By early 1982 the largest
known prime was 24497 −1, having 13395 digits [3.4].

More recently, another Mersenne prime was discovered by D. Slowinski, the 28th
known specimen: 286243 − 1. Assuming that there are no other Mersenne primes
between it and M(27) = 244497 −1, then 286243 −1 is, in fact, M(28).

Are there more Mersenne primes beyond 286243 − 1? The answer is almost cer-
tainly yes. Curiously, we can even say roughly how large the next Mersenne prime
is: 1038000 – give or take a dozen thousand orders of magnitude. How can we make
such a seemingly outrageous statement?

Fermat and Euler proved that all factors of Mp must be of the form 2kp + 1 and
simultaneously of the form 8m± 1. Thus, potential factors of Mp are spaced on
average 4p apart. Assuming that, subject to this constraint, the number of factors
of a Mersenne number is governed by a Poisson process, Gillies [3.5] conjectured
that of all the primes in the “octave” interval (x,2x), on average approximately 2

Fig. 3.3 The largest known
Mersenne prime on Januar 17,
1968
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give Mersenne primes. More precisely, the density of primes near p giving rise to
Mersenne primes Mp = 2p −1 would be asymptotic to

2
p ln2

.

In a recent paper S. S. Wagstaff, Jr. (“Divisors of Mersenne primes”, Math.
Comp. 40, 385–397 (1983)), following an argument by H. W. Lenstra, Jr., suggested
that the expected number of primes p in an octave interval is eγ = 1.78 . . . . Thus,
the correct asymptotic density would be

eγ

p ln2
.

Comparing this with the general prime density for primes near p, 1/ ln p, we see
that of

p
eγ log2 p

primes, one prime on average leads to a Mersenne prime. For p ≈ 100000, this
means that roughly every 3000th prime gives a Mersenne prime. (The appearance of
the factor eγ is a consequence of Merten’s theorem, see Sect. 12.1, and its relevance
to prime sieving.)

The distribution of primes p that generate Mersenne primes is expressed even
more simply if we consider the density of log2 p: it is constant and should equal
eγ . Since log2 p very nearly equals log2(log2 Mp), these statements are equivalent to
the following: if log2(log2 M(n)) is plotted as a function of n, we can approximate
the empirical “data” by a straight line with a slope of about 1/eγ = 0.56. In fact,
for the 27 smallest Mersenne primes (2 ≤ p ≤ 44497) the average slope is 0.57,
remarkably close to 1/eγ . The correlation coefficient between log2(log2 M(n)) and
n in this range exceeds 0.95.

Figure 3.4 shows log2(log2 M(n)) versus n for 28 known Mersenne primes (as-
suming n = 28 for p = 86243). The great regularity is nothing short of astounding.

Fig. 3.4 log2(log2 M(n))
versus n
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As a Poisson process, the cumulative distribution P of the intervals between suc-
cessive values of log2(log2 M(n)) should go according to the exponential law:

P = 1− e−d/d

with d = 1/eγ . This function is plotted in Fig. 3.5 together with the empirical ev-
idence (in interval ranges of 0.2). Here again, the correspondence with the theo-
retical result expected from a Poisson process is very good. Specifically, the mean
interval (0.57) is close to the standard deviation (0.51) and (beyond the informa-
tion contained in Fig. 3.5) successive intervals are nearly uncorrelated (correlation
coefficient = −0.17).

Using 0.56 as the average increment of log2(log2 M(n)) with n, we expect the
next Mersenne prime above 286243 −1 in the “neighbourhood” of 2130000 ≈ 1038000.
Of course, to find a prime in this vast “haystack” that gives a Mersenne prime is no
small order.

More accurately, we can say that the probability of finding the next Mersenne
prime either below or above 1034000 is about 0.5, and the probability that it exceeds
1065000 is less than 10 %. But where is it, exactly – not with an uncertainty of thou-
sands of orders of magnitude? Even the fastest number crunchers available today,
using the most efficient search algorithms, will have a hey (hay?) day.

Unfortunately, the Mersenne primes are very thinly seeded. Thus, if one is look-
ing for a 50-digit prime among the Mersenne primes, one is out of luck: 2127 − 1
has 39 digits and the next Mersenne prime, 2521 − 1, has 157 digits – an awesome
gap!

Does a Mersenne prime Mp always yield another Mersenne prime by the formula

2Mp −1 ?

This had been widely conjectured, but a counterexample is now known: the prime
p = 13 gives a Mersenne prime M13 = 8191, but 28191 − 1 is composite. Too bad!
The nearest Mersenne primes, 24423 −1 and 29689 −1, have 1332 and 2917 decimal
digits, respectively – leaving another great void.

Fig. 3.5 Interval statistics
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3.6 Repunits

Expressed as binary numbers, all numbers of the form 2n − 1 consist exclusively
of 1’s, namely exactly n 1’s. For example M4 = 24 − 1 = 15, or 1111 in binary.
Similarly, for any a, (an − 1)/(a− 1) expressed in base a consists of precisely n
1’s and no other digits. Such numbers are called “repunits”, and apart from those to
the base 2, those to base 10 have been the most widely studied. For a repunit to be
prime, n must be prime, but as with the Mersenne numbers, that is not sufficient.

Examples: (105−1)/9 = 11111 = 41 ·271 and (107−1)/9 = 1111111 = 239 ·4649.

More examples for which (109 − 1)/9 is composite can be created by finding
primes q > 3 such that ordq 10 = p (see Chap. 14 for the definition of ord). In fact,
q then divides (10p −1)/9.

Which prime exponents p give repunit primes and whether there are infinitely
many are two of the many unsolved problems of number theory. With some luck
(10317 −1)/9 was proved prime, but not until most 50 years after (1023 −1)/9 was
found to be prime. Primality testing of large numbers is not easy and factoring is
even more difficult! In fact, the factoring of (1071 − 1)/9 (into two primes with 30
and 41 digits, respectively) had to wait for 1984 machines and algorithms.

3.7 Perfect Numbers

Each Mersenne prime has a companion perfect number P = Mp2p−1. A perfect num-
ber is a number for which the sum of all divisors (not including P itself) equals P.
Thus, for example, M2 = 22 −1 = 3 leads to the perfect number P = 6; and indeed,
the sum of the divisors of 6: 1+2+3 equals 6 itself.

The next Mersenne prime, M3, equals 23 − 1 = 7 and the corresponding perfect
number is 28. Check: 1+2+4+7+14 = 28. Check!

It is easy to see why this is so. Since Mp is by definition prime, the only divisors
of the perfect number P = Mp2p−1 are

1,2, . . . ,2p−1,Mp,2Mp, . . . ,2
p−1Mp,

and their sum equals

∑ = 1+2+ . . .+2p−1 +Mp(1+2+ . . .+2p−1), or (3.5)

∑ = (1+Mp)(2p −1) = 2pMp = 2P. (3.6)

(The factor 2 appears here because we included, in the sum, P itself as a divisor
of P.) The remarkable fact that all even perfect numbers are of the form Mp2p−1,
where Mp is a Mersenne prime, was first proved by Leonhard Euler (1707–1783),
the great Swiss mathematician (and not just that!) from Basel who worked for most
of his life in St. Petersburg, the then new capital of all the Russias.
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Because 37 Mersenne primes are known, at the time of this writing, there are
exactly 37 known perfect numbers, all of them even, and the largest one having
909526 decimal places. No odd perfect numbers are known and, tantalizingly, it is
not known whether there are any such. As of 1971, no odd perfect number had been
found among all the numbers up to 1036. P. Hagis, Jr., showed recently that an odd
perfect number not divisible by 3 has at least eleven prime factors (Math. Comp. 40,
399–404 (1983)).

Apart from perfect numbers, there are pseudoperfect numbers (Sect. 5.9) and
amicable numbers. Amicable numbers come in pairs. The sum of divisors of one
amicable number equals its mate and vice versa. The smallest amicable pair is 220
and 284. Another pair is 17296 and 18416. In a sense, perfect numbers are “self-
amicable”.

In a further generalization, certain number sequences are called sociable. In
these, each number equals the sum of the divisors of the preceding number, and the
first number equals the sum of divisors of the last number. One such five-member
sociable group is 14288, 15472, 14536, 14264, 12496. There is a sociable chain of
length 28 whose smallest member is 14316.

A frequently used concept in number theory is the sum of some function f taken
over all divisors of a number n, including n itself. This is usually shown by the
following notation:

∑
d|n

f (d).

Using this notation, our statement about perfect numbers P reads

∑
d|p

d = 2P, (3.7)

the factor 2 appearing here because by definition P itself is a divisor of itself and
therefore is included in the sum.

There was a time when the present author was much impressed by the fact that
the sum of reciprocal divisors of P is always 2:

∑
d|p

1
d

= 2! (3.8)

(Here, for once, the exclamation mark does not do any harm because 2! – read “two
factorial” – still equals 2.) However, (3.8) is a “trivial” consequence of (3.7) because,
in a sum over all divisors d of a given number n, the divisor d may be replaced by
n/d. This reverses the order of the terms in such a sum, but does not affect its value:

∑
d|n

f (d) = ∑
d|n

f (n/d). (3.9)

Indeed, for n = 6 and f (d) = d,

1+2+3+6 = 6+3+2+1. (3.10)
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Applying (3.8) to (3.6), we have

2P = ∑
d|P

d = ∑
d|P

P
d

, (3.11)

confirming (3.8). Check: 1+
1
2

+
1
3

+
1
6

= 2. Check!

It is remarkable that the sum of the reciprocal divisors of a perfect number always
equals 2, no matter how large it is. This implies that perfect numbers cannot have
too many small divisors, as we already know.

3.8 Fermat Primes

Besides the Mersenne primes 2p − 1, which lead to perfect numbers, and of which
only 37 are presently known, there is another kind of prime family with even fewer
known members: the Fermat primes. Only 5 such primes are currently known.

Fn = 22n
+1 for n = 0, 1, 2, 3, 4. (3.12)

They are F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537.
Incidentally, for 2m + 1 to be prime, m must be a power of 2. In fact, for any

am +1 to be prime, a must be even and m = 2n.
All numbers of the form 22n

+1, whether prime or composite, are called Fermat
numbers. They obey the simple (and obvious) recursion

Fn+1 = (Fn −1)2 +1, or (3.13)

Fn+1 −2 = Fn(Fn −2), (3.14)

which leads to the interesting product

Fn+1 −2 = F0F1 . . .Fn−1. (3.15)

In other words, Fn −2 is divisible by all lower Fermat numbers:

Fn−k | (Fn −2), 1 < k ≤ n. (3.16)

With (3.16) it is easy to prove that all Fermat numbers are coprime to each other,
and the reader may wish to show this.

Fermat thought that all Fermat numbers Fn were prime, but Euler showed that
F5 = 4294967297 = 641 · 6700417, which can easily be confirmed with a good
pocket calculator.

The fact that F6 and F7 are also composite is a little harder to show because F6

has 20 decimal digits and F7 has 39. Nevertheless, complete factorizations of F6, F7

and, since 1981, F8 are now known. Further, it is now known that F11, F12 and F13
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are composite, and some of their factors are known. Another Fermat number known
to be composite is F73, which has more than 1021 digits! For special primality tests
for Fermat numbers, see Hardy and Wright [3.6].

At present the smallest, and so far most enduring mystery is presented by F20: its
primality status remains unknown. However, the latest progress in primality testing,
reported by Walter Sullivan in The New York Times in February 1982 and in [3.1],
might yet reveal other Fermat primes, although the next candidate, F20, has 315653
digits. One helpful clue which has been utilized in the past is that, if Fn is composite,
then it is divisible by k ·2n+2 +1 for some k. In fact, Euler knew this, and that is how
he discovered the factor 641 = 5 ·27 +1 in F5.

In this manner the compositeness of some very large Fermat numbers has been
established. For example, 5 ·23313 +1 is a factor of F3310. By the way, F3310 has more
than 10990 digits – not to be confused with the comparatively miniscule number
10990.

3.9 Gauss and the Impossible Heptagon

In March 1796, the Fermat primes suddenly took on a new and overwhelming sig-
nificance. A precocious teenager from the German ducal town of Brunswick had just
discovered that the circle could be divided into 17 equal parts by purely “geometric
means”, i. e., by straightedge and compass – something that had eluded professional
mathematicians and amateurs alike for over two millennia. In fact, nobody had even
suspected that such a feat could be possible. After the cases of 2, 3, 4, 5 and 6 had
been solved by the ancient Greeks, “everybody” had been working on the “next”
case: the regular heptagon (7-gon). But the Brunswick youth proved that that was
impossible and that the only regular n-gons that could be constructed were those
derivable from the Fermat primes.

The young person, of course, was none other than Carl Friedrich Gauss [3.7],
who was himself so impressed by his feat of unlocking a door that had been closed
for 2000 years that he decided to become a mathematician rather than a philologist,
to which fate his excellence in the classical languages seemed to have “condemned”
him.4

4 His love of books and languages never left Gauss for the rest of his life. At the age of 62 he
learned yet another foreign language – Russian – and began to read Pushkin in the original. Gauss
selected the University of Göttingen rather than his “state” university, Helmstedt, for his studies,
mainly because of Göttingen’s open library policy. Even in his first semester at Göttingen, Gauss
spent much time in the university library, which was well stocked and where he had access to the
writings of Newton and Euler and many others of his predecessors. Much of what Gauss read there
he had already derived himself, but he still felt that reading was essential – in stark contrast to
other scientific geniuses, notably Einstein, who was convinced he could create most of the correct
physics from within himself and who is supposed to have said, in jest, that if nature was not the
way he felt it ought to be, he pitied the Creator for not seeing the point (“Da könnt’ mir halt der
liebe Gott leid tun, die Theorie stimmt doch.” [3.8]).
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We shall return to the important subject of dividing the circle, or cyclotomy by
its learned name, in several other contexts later in this book. Let it only be said
here that for the circle to be divisible into n parts, n must be the product of dif-
ferent Fermat primes or 1 and a nonnegative power of 2. Thus, regular polygons
of n = 2,3,4,5,6,8,10,12,15,16,17,20,24,30, . . . sides can be geometrically con-
structed, while n = 7,9,11,13,14,18,19,21,22,23,25, . . . are impossible to con-
struct in this manner. Here the “impossible” part of Gauss’s assertion is as significant
as his positive statement.


