
Chapter 2
The Natural Numbers
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– Carl Friedrich Gauss

Here we encounter such basic concepts as integers, composites, and primes, and we
learn the very fundamental fact that the composites can be represented in a unique
way as a product of primes.

The least common multiple and the greatest common divisor of two or more
integers may be familiar from high school, but they are ideas that pervade all of
number theory. Here we demonstrate some of their basic properties and point to
some natural phenomena in the real world of gears, planetary motion, and musical
pitch.

If integers can be prime, pairs of integers can be “mutually prime” or coprime if
they have no common factors, in other words, if their greatest common divisor is 1.
Coprimality is another important property of two (or more) integers.

One of the very early tools of number theory is Euclid’s algorithm; it allows us
to find, in a systematic manner, the greatest common divisor of two integers without
solving the often difficult problem of factoring the two integers. As we shall later
see, Euclid’s algorithm generalizes to polynomials and allows us to solve important
integer equations, the so-called Diophantine equations.

2.1 The Fundamental Theorem

We will speak here of the “whole numbers” or integers . . . −3, −2, −1, 0, 1, 2,
3, . . ., denoted by the letter Z, and more often of the so-called “natural” numbers
or positive integers: 1, 2, 3, 4, 5 and so forth. Some of these are divisible by others
without leaving a remainder. Thus, 6 = 2 ·3, i. e., 6 is divisible by 2 and by 3 without
a remainder. Such numbers are called composites.

Other numbers have no divisors other than 1 and themselves, such as 2, 3, 5,
7, 11, 13, 17, etc. These numbers are called prime numbers or simply primes. All
primes are odd, except 2 – the “oddest” prime (a designation alluding to the special
role which 2 plays among the primes). The number 1 is considered neither prime nor
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22 2 The Natural Numbers

composite. Otherwise some theorems would require very awkward formulations –
such as the following.

The fundamental theorem of arithmetic states that each natural number n can be
uniquely factored into primes:

n = pe1
1 pe2

2 . . . pek
k . . . per

r = ∏
i

pei
i . (2.1)

Here the order of the factors is considered irrelevant.
Equation (2.1) can be read in two ways:

1) pi is the ith prime – in which case the exponent ei has to be zero if pi is not a
factor of n.

2) Only those primes that are factors of n appear in (2.1). We will use either reading
of (2.1) and state which if it makes a difference.

There is no corresponding theorem for the additive decomposition of natural
numbers into primes. This is one of the reasons why additive number theory, for ex-
ample partitions (Chap. 22), is such a difficult subject. In this book we will be mostly
concerned with multiplicative number theory, which has many more applications.

2.2 The Least Common Multiple

Two integers n and m have a least common multiple (LCM) [n,m]. The LCM is
needed to combine two fractions with denominators n and m into a single fraction. In
fact, that is where the everyday expression “to find the least common denominator”
(of divergent views, for example) comes from. For example, for n = 6 and m = 9,
[6,9] = 18.

Example:
1
6

+
2
9

=
3

18
+

4
18

=
7
18

.

It is easily seen that with n as in (2.1) and

m = ∏
i

p fi
i , (2.2)

[n,m] = ∏
i

pmax(ei, fi)
i , (2.3)

because in the LCM each prime factor pi must occur at least as often as it does in
either n or m. Thus, for n = 6 = 21 ·31 and m = 9 = 32, [6,9] = 21 ·32 = 18.

There are numerous applications of the LCM. Consider two gears with n and
m teeth meshing, and suppose we mark with a white dot one of the n teeth on the
first gear and one of the m spaces between teeth of the second gear. When the gears
turn, how often will the two white dots meet? Perhaps never! But if they meet once,
they will meet again for the first time after [n,m] teeth have passed the point of
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contact, i. e., after the first gear has undergone [n,m]/n (an integer!) revolutions and
the second gear an integer [n,m]/m revolutions.

2.3 Planetary “Gears”

Our “gears”, of course, could be any of a plethora of other objects that can be mod-
elled as meshing gears even if no teeth are visible. Thus, the revolutions of the
planet Mercury around itself and the Sun are locked by gravitational forces as if
geared: during two revolutions around the Sun, Mercury revolves three times around
itself. (As a consequence, one day on Mercury lasts two Mercury years. Strange
gears – and even stranger seasons!) Similarly, the Earth’s moon revolves exactly
once around itself while completing one orbit around the Earth; that is why it al-
ways shows us the same side. On the moon, Earth day (or night) lasts forever.

The “teeth” that keep the moon locked to the Earth are, as in the case of Mercury
and the sun, gravitational forces. But these “gravitational teeth” are relatively weak
and would not “engage” if unfavourable initial conditions were not damped out by
friction such as that provided by the ocean tides on Earth. (Eventually, the Earth day
may lock in with the Earth year, which will play havoc with night and day as we
know it.)

And not long ago, it was discovered that even the distant planets Pluto and Nep-
tune are coupled to each other strongly enough to be locked into an integer “reso-
nance” (in the astronomer’s lingo).

Another question answered by the LCM, although no teeth are in evidence, has to
do with the coincidence of dates and weekdays. Because the number of days per year
(365) is not divisible by the numer of days per week (7), coincidences of dates and
weekdays do not recur from one year to the next. Furthermore, because every fourth
year is a leap year, coincidences are not equally spaced in years. However, even
without knowing when leap years occur, we can always guarantee that a coincidence
will recur after 28 years, 28 being the LCM of 4 and 7. (In the year 2100 the leap
day will be dropped, temporarily violating the 28-year cycle.)

Equation (2.3) easily generalizes to more than two integers: the max function in
(2.3) then contains as many entries as there are integers whose LCM we want to
determine.

As we indicated above when introducing the meshing gear picture, the two white
markers may never meet. More learnedly, we would say that a certain linear Dio-
phantine equation (see Chap. 7) has no solution. This can happen only if n and m
have a greatest common divisor greater than 1. This brings us to our next topic.

2.4 The Greatest Common Divisor

Another important relation between integers is their greatest common divisor (GCD).
For two integers n and m given by (2.1) and (2.2), the GCD is
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(n,m) = ∏
i

pmin(ei, fi)
i , (2.4)

because for the GCD to divide both n and m it cannot have the factor pi more often
than it is contained in either n or m, whichever is less.

Example: n = 10 = 21 ·51 and m = 25 = 52. Thus (10,25) = 5.

Two numbers n and m that have no common factors are called relatively prime,
mutually prime or coprime. In this case the GCD equals 1.

Example: (6,35) = (2·3,5·7) = 1.

For any two numbers n and m, the product of the GCD and the LCM equals the
product of n and m:

(n,m)[n,m] = nm,

because whenever the formula (2.4) for the GCD picks the exponent ei for pi, the
formula (2.3) for the LCM picks the exponent fi, and vice versa.

Thus,

(n,m)[n,m] = ∏
i

pei+ fi
i = nm. (2.5)

Example:

(4,10) = (22,2·5) = 2; [4,10] = [22,2·5] = 20; 2 ·20 = 4 ·10 . Check!

The generalization of (2.5) to three integers is

(n,m,k)[nm,mk,kn] = nmk, (2.6)

which is easily verified. Assume that a given prime p occurring in the prime factor-
ization of the product nmk occurs en times in n, em times in m and ek times in k and
that, without loss of generality,

en ≤ em ≤ ek.

Then the exponent of p in (n,m,k) is en, and in [nm,mk,kn] it is em + ek. Thus the
left side of (2.6) has the prime p with the exponent en + em + ek, as does the right
side of (2.6). The same is true for all primes occurring in nmk. The correctness of
(2.6) then follows from the fundamental theorem of arithmetic.

The dual of (2.6) is

[n,m,k](nm,mk,kn) = nmk, (2.7)

which is proved by the same reasoning. Generalizations of (2.6) and (2.7) to more
than three factors should be obvious.
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For more than two integers, some particularly interesting relations between GCD
and LCM exist. For example, two such relations are the “distributive law”

(k[m,n]) = [(k,m),(k,n)], (2.8)

and its dual

[k,(m,n)] = ([k,m], [k,n]), (2.9)

both of which are a direct consequence of the properties of the min and max func-
tions in (2.4) and (2.3).

There is even a very pretty self-dual relation:

([k,m], [k,n], [m,n]) = [(k,m),(k,n),(m,n)], (2.10)

i. e., in the expression appearing on either side of (2.10), the operations LCM and
GCD can be completely interchanged without affecting their validity!

However, from a practical point of view there is a difference: The right-hand side
of (2.10), i. e., doing GCDs before the LCMs, is usually easier to figure out. Thus,
(2.10) can be exploited to computational advantage.

It is interesting to note that relations such as (2.6–2.10) occur in many other
mathematical fields, such as mathematical logic or set theory, where our LCM cor-
responds to the set-theoretic union ∪ and the GCD corresponds to intersection ∩.

But what, in number theory, corresponds to the set-theoretic relation

(A∪B) = A∩B,

where the bar stands for complement?
For additional relations see [2.1].
The GCD appears in the solution to many, seemingly unrelated, problems. For

example, take n jugs with capacities of L1,L2, . . . ,Ln liters. What amounts k of water
(or wine) can be dispensed by these n/1 jugs?

Answer: k must be a multiple of the GCD [L1,L2, . . . ,Ln]. (After T. J. Pfaff and
M. M. Tran. The Pi Mu Epsilon Journal 12:1 (2004), 37–38.)

2.5 Human Pitch Perception

An interesting and most surprising application of the GCD occurs in human
perception of pitch: the brain, upon being presented with a set of harmonically re-
lated frequencies, will perceive the GCD of these frequencies as the pitch. Thus, the
subjective pitch of the two-tone chord (320 Hz and 560 Hz) is (320,560) = 80Hz,
and not the difference frequency (240 Hz).

Upon a frequency shift of +5Hz applied to both frequencies, the GCD drops to
5 Hz; and for an irrational frequency shift, the GCD even drops to 0 Hz. But that is
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not what the ear perceives as the pitch. Rather it tries to find a close match in the
range of pitches above 50 Hz. For the frequencies 325 Hz and 565 Hz such a match
is given by 81 Hz, which is the GCD of 324 Hz and 567 Hz – close to the two given
frequencies.

Note that the concept that pitch is given by the difference frequency or “beat”
frequency has been beaten: if both frequencies are shifted by the same amount, their
difference remains unchanged. Yet psychoacoustic experiments clearly show that
the perceived pitch is increased, from 80 Hz to about 81 Hz in our example, just as
the amplified GCD model predicts [2.2].

What this tells us is that the human brain switches on something like a GCD-
spectral matching computer program when listening to tone complexes. Fascinat-
ing? Indeed. Unbelievable? Well, the brain has been caught doing much trickier
things than that.

2.6 Octaves, Temperament, Kilos and Decibels

The Pythagoreans discovered that subdividing the string of a musical instrument
into the ratio of small integers resulted in pleasing musical intervals. Thus, dividing
the string into 2 equal parts gives a frequency ratio (compared with the full-length
string) of 2 : 1 – the musical octave. Shortening the string by one third gives rise to
the frequency ratio 3 : 2 – the musical fifth. And dividing the string into 4 equal parts
results in the frequency ratio 4 : 3 – the musical fourth.

The Pythagorean musical scale was constructed from these simple ratios. How
do they fit together? How many fifths make an integral number of octaves? Or, what
is x in

[

3
2

]x

= 2y,

or, equivalently,

3x = 2z,

where z = y + x? The fundamental theorem (Sect. 2.1) tells us that there are no
integer solutions. But there are approximate solutions, even in small integers. Thus,

35 = 243 ≈ 256 = 28. (2.11)

Consequently, 5 musical fifths equal about 3 octaves. To make the octave come out
correctly, we would have to tamper with the ratio 3 : 2 = 1.5, increasing it by about
1% to 1.515. . ., to achieve a well-tempered temperament.

The fact that (3/2)5, with a little tampering, equals 23 also has its effect on the
musical fourth: from
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[

3
2

]5

≈ 23

follows directly

[

4
3

]5

≈ 22;

in other words, 5 fourths make about 2 octaves. The tampering required on the
fourth to make it fit 2 octaves exactly is, as in the case of the fifth, only one part in
a hundred.

We shall leave the musical details to J. S. Bach and his well-tempered clavier and
ask ourselves the more general question of how we can find approximate integer
solutions to equations like ax = by in a more systematic way. The answer: by ex-
panding logarithms into continued fractions, as will be explained in Sect. 5.1. There
we learn that for a = 3 and b = 2, for example, the next best approximation (after
35 ≈ 28) is 312 ≈ 219, requiring an adjustment of the musical fifth by only one part
in a thousand so that 12 “tampered” fifths will make 7 octaves, thereby avoiding
the Pythagorean comma. This is of great interest to musicians because it allows the
construction of a complete key from ascending fifths (the famous Circle of Fifths).

A much closer numerical coincidence, with important consequences in music,
computer memory, photography and power measurements, is the approximation

53 = 125 ≈ 128 = 27. (2.12)

Musically, this means that 3 major thirds (frequency ratio = 5 : 4) equal about one
octave:

[

5
4

]3

≈ 2,

which requires an adjustment of less than 8 parts in a thousand in the major third so
that 3 of them match the octave exactly.

Another consequence of (2.12) is that

210 = 1024 ≈ 103.

According to international standards, the factor 103 is denoted by the prefix kilo, as
in kilometre. But computer memories are not measured in kilometres or weighed in
kilograms; rather they are addressed, and the proper form of address is binary. As
a consequence, memory sizes are usually powers of 2, and in computerese a 256-
kilobit memory chip can actually store 262144 bits of information because, to hard-
and software types, kilo means 1024 – not 1000.

The near coincidence of 53 and 27 also shows up among camera exposure times,
where 1/125 of a second is 7 lens-aperture “stops” away from 1 second. But 7 stops
correspond to a light energy factor of 27 = 128.
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Still another application in which 53 ≈ 27 is exploited is the field of power or in-
tensity measurement. The preferred logarithmic measure of intensity is the decibel,1

10 decibels being equal to an intensity ratio of 10 : 1. Thus, twice as much power (of
a loudspeaker output, for example) means an extra 3 decibels – almost exactly. (A
better figure would be 3.01 decibels, but who can hear a hundredth of a decibel?)

J. R. Pierce, lately of Stanford University, has recently proposed a new musical
scale based on dividing the frequency ratio 3 : 1 (instead of the 2 : 1 octave) into 13
(instead of 12) equal parts. This scale matches such simple integer ratios as 5 : 3 and
7 : 5 (and 9 : 7) with an uncanny accuracy, resulting from the number-theoretic fluke
that certain 13th powers of both 5 and 7 are very close to integer powers of 3. To wit:
513 = 3.007719, and 713 = 3.003723. Since the integers appearing in the exponents
(13, 19, 23) are also coprime (in fact, all three are prime), it is easy to construct
complete musical scales exclusively from the small-integer ratios 5 : 3 and 7 : 5. The
basic chords of the new scale, 3 : 5 : 7 and 5 : 7 : 9, are superbly approximated by
the equal tempered scale 3k/13 and were found by M. V. Mathews, A. Reeves, and
L. Roberts to provide a strong harmonic foundation for music written in the new
scale.

2.7 Coprimes

Two integers are said to be coprime if their GCD equals 1. Thus, 5 and 9 are coprime:
(5,9) = 1, while 6 and 9 are not coprime: (6,9) = 3 �= 1.

The probability that two “randomly selected” integers will be coprime is 6/π2

(see Sect. 4.4). This is also the probability that a randomly selected integer is
“squarefree” (not divisible by a square).

Of three or more integers it is often said that they are pairwise coprime if all
possible pairs are coprime. Thus, 2, 5 and 9 are pairwise coprime: (2,5) = (2,9) =
(5,9) = 1. However, 2, 5 and 8 are not pairwise coprime because (2,8) = 2, although
the three numbers seen as a triplet have no common factor. The probability that three
randomly selected integers will be pairwise coprime is 0.28 . . . (see Sect. 4.4).

2.8 Euclid’s Algorithm

If the GCD is so important, how does one go about finding it? Answer: by Euclid’s
algorithm, which is best illustrated by an example. To find the GCD of 35 and 21,
first divide the larger number by the smaller:

35
21

= 1+
14
21

,

1 Curiously, one never hears about the full unit, the bel, perhaps because a difference of 10 bel is
the difference between the sound of a babbling brook and an earsplitting screech.
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and repeat the process on the remainder:

21
14

= 1+
7
14

,

until the remainder is 0:

14
7

= 2+0,

which is guaranteed to happen sooner or later. The GCD is the last divisor, 7 in our
case. Thus, (35,21) = 7, which is the correct answer.

The philosophy behind Euclid’s algorithm is the following. It is easy to show that
(a,b) = (a− kb,b), where k is an integer. If a > b > 0 and if one picks k as large as
possible without making a− kb negative, then a− kb < b. Thus, we have reduced
the problem of computing the GCD of a and b to that of two smaller numbers,
namely a− kb and b. Now b is the larger number of the pair, and it can be reduced
by subtracting a proper multiple of a−kb. Continuing this simple process generates
smaller and smaller number pairs all having the same GCD. Finally we must arrive
at two numbers that are multiples of each other and the smaller of the two numbers
is the GCD. (If a and b are coprime that “smaller number” is of course 1.) This
is how and why the Euclidean algorithm works: it chops large numbers down to
manageable size.

2.9 The Decimal System Decimated

One of the greatest arithmetical inventions was that of the 0 as a place holder. Thus,
in the decimal system, 903 means 9 times 100 plus 3 times 1. Their sensitivity to
place is the foundation of the decimal, the binary and similar number systems based
on place.

But choosing a base, 10 say, there are other ways to represent the integers which
does not depend on the customary place principle while still using only the 10 digits
0 through 9. For example, 100 integers from 0 to 99 can be thought of as the direct
sum of two sets of integers each of size 10: {0,1,2, . . . ,9} and {0,10,20, . . . ,90}.
(Direct sum of two sets means every member of one set is added to every member
of the other set.) Representing the integers from 0 through 99 by the direct sum of
the above two sets is of course analoguous to the standard decimal representation.
And, if the base is a prime, this representation is unique. But if the base, like 10
can be factored, there are other nonstandard representations by the direct sum of
two sets, each of size 10. For example, the sets {0,20,22,40,42,60,62,80,82} and
{0,1,4,5,8,9,12,13,16,17} are two such sets.

Are there other such sets? And how many? What is the “sister” set of {0,1,2,3,4,
25,26,27,28,29}?


