
Chapter 15
Knapsack Encryption

As a diversion we return in this chapter to another (once) promising public-key
encryption scheme using a trap-door function: Knapsack encryption. It, too, is based
on residue arithmetic, but uses multiplication rather than exponentiation, making it
easier to instrument and theoretically more transparent.

The required trap door is obtained from the ancient knapsack puzzle: given the
total weight of a knapsack and the weight of individual objects, which objects are
in the bag? As it turns out, this problem can be made quite difficult to solve for
someone who doesn’t have the proper “key”.

15.1 An Easy Knapsack

Number-theoretic exponentiation is not the only trap-door function potentially suit-
able for public-key encryption. Another trap door is opened (and kept almost closed)
by knapsack problems.

Suppose we have a set of six stones, weighing 1, 2, 4, 8, 16 and 32 kilograms, re-
spectively. Now, if a knapsack containing some of these stones weighs 23 kilograms
more than its empty weight, then which stones are in the knapsack? The answer is
given by the binary decomposition of 23:

23 = 16+4+2+1,

i. e., the stones weighing 1, 2, 4 and 16 kilograms are in the knapsack and no others.
This is an example of an easy knapsack problem. The problem remains easy if

each weight exceeds the sum of the lower weights by at least one measureable unit.
The binary sequence of weights 1, 2, 4, 8, etc., fulfills this condition, because 2 > 1,
4 > 2 + 1, 8 > 4 + 2 + 1, etc. Such sequences are called “superincreasing”. In fact,
the binary sequence is the smallest positive superincreasing sequence if 1 is the just
discriminatable weight difference [15.1].

Table 15.1 shows such an easy knapsack embedded in leading and trailing dig-
its. If the clear message in binary form is 110101, then the encrypted message is
21,853,232. It is obtained by multiplying each knapsack row by 0 or 1 in accordance
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Table 15.1 Encryption with an easy knapsack using binary “weights” 1, 2, 4, 8, 16, and 32 (see
fourth and third columns in centre)

with the binary message and adding as shown in Table 15.1. To decrypt this number
we only need the two digits 53 and its binary expansion

53 = 32+16+4+1,

corresponding to 110101 in binary notation, the original clear message.

15.2 A Hard Knapsack

Adding extra digits has not made the knapsack one bit harder to solve – so far. But
now look at Table 15.2, in which each row of the simple knapsack is multiplied by
s = 324,358,647 and reduced modulo r = 786,053,315 to form a hard knapsack.

Table 15.2 Encryption with a hard knapsack, obtained from the easy knapsack at left by multipli-
cation and residue reduction (After N. J. A. Sloane [15.1])
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Now, if encryption proceeds as before by multiplying the binary message with
the rows of the knapsack (the hard knapsack!), the result, after the multiplied rows
have been summed, is 1,832,885,704, which is “a little” harder to decrypt if only
the public encryption key is available.

To design a trap-door function based on a hard knapsack, proceed as follows
[15.2]:

1) Pick a set of easy knapsack weights ai, i. e., one that forms a superincreasing
sequence:

ai+1 >
i

∑
k=1

ak. (15.1)

2) Pick a modulus r and a coprime multiplier s, i. e., (s,r) = 1.
3) Calculate the hard knapsack

bk ≡ sak (modr) (15.2)

and publish only the bk.
4) Calculate a decrypting multiplier t such that

st ≡ 1 (modr) (15.3)

and do not publish it.

Suppose M is a message and its binary digits are mk:

M =
K

∑
k=0

mk2k. (15.4)

The encrypted message E is now calculated as follows:

E =
K

∑
k=0

mkbk. (15.5)

To decrypt, the legitimate receiver, knowing t, now forms

tE = ∑
k

mktbkk. (15.6)

But

tbk ≡ tsak ≡ ak (modr). (15.7)

Thus,

tE ≡ ∑
k

mkak (modr), (15.8)
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and to recover the message bits mk is an easy knapsack problem, because the ak form
a superincreasing sequence. Specifically, for ak = 2k, tE is the original message:

tE ≡ M (modr). (15.9)

One of the advantages of knapsack encryption is that it does not rely on the
supposed difficulty of factoring specially constructed very large numbers. On the
other hand, knapsacks are presently under attack because Shamir [15.3] and others
[15.4] have shown the equivalence of the knapsack problem to a problem in integer
programming for which a “fast” algorithm was recently invented by H. W. Lenstra of
the University of Amsterdam. Further progress in knapsack ripping has been made
by L. Adleman, and by J. C. Lagarias and A. M. Odlyzko [15.5]. Thus knapsacks, as
described here, have developed holes through which our “secret” weights can fall
for everyone to see. Who will darn the ripped knapsack?


