
Chapter 14
Primitive Roots

In this chapter we introduce the concepts of order and the primitive root, two of
the more fascinating and useful ideas in number theory. On the fundamental side,
they helped the young Gauss to reduce the equation x16 + x15 + . . .+ x + 1 = 0 to
several quadratic equations leading to the construction of the regular 17-gon. These
same concepts also allow us to see why the decimal fraction of 1/7 has a period of
length 6, while the decimal fraction for 1/11 has a period of only 2. And why does
1/99007599, written as a binary fraction, have a period of nearly 50 million 0’s and
1’s? We shall see!

Closely related to the primitive root is the concept of index, a kind of number-
theoretic logarithm that permits us to solve exponential Diophantine equations and
even show that 2n = 3m −1 has only two, and precisely two solutions (n = 1, m = 1
and n = 3, m = 2).

Periodic sequences constructed from primitive roots also have an interesting
Fourier-transform property that permits the construction of wave-scattering surfaces
with very broad scatter and little specular reflection. Such surfaces can be useful in
improving concert hall acoustics, in noise abatement measures, and in making ships
and planes more difficult to see by sonar or radar. And, of course, there are applica-
tions to our main theme: digital encryption and electronic contracting (Sect. 20.3).

14.1 Orders

Some of the things we want to accomplish by electronic mail – other than public
key encryption and certified signatures – have to do with certifiable “coin tossing”,
registered mail with or without receipt, and signed contracts. For these options we
need the number-theoretic concepts of a primitive root and a quadratic residue, both
delightful entities in their own right.

Let us look at increasing powers of 2 modulo 7:

n = 1 2 3 4 5 6

2n ≡ 2 4 1 2 4 1
etc.
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196 14 Primitive Roots

Here the period after which the sequence repeats for the first time is obviously 3.
One therefore says that the integer 2 has order 3 modulo 7:

ord7 2 = 3. (14.1)

Of course, the order of any integer must be divisor of p− 1, where p is the prime
modulus (7 in our example). This is so because of Fermat’s theorem, which requires
of any integer b coprime to the modulus p that the congruence bp−1 ≡ 1 (mod p)
must hold. Obviously, for p = 7, the order could never be 4, for example, because
then the sequence of powers would repeat after 4 and 8 steps, etc., and not, as re-
quired by Fermat, after p−1 = 6 steps.

What is the largest order of any integer modulo a prime p? Certainly it cannot be
larger than p−1, because there are only p−1 values of least positive residues such
that (m, p) = 1, and once all residues have appeared they must repeat.

What is the order of 3 modulo 7? The following table will tell us.

n = 1 2 3 4 5 6 7 8

3n ≡ 3 2 6 4 5 1 3 2
etc.

Thus, the order of 3 modulo 7 is 6, the highest possible value. Therefore 3 is called
a primitive root modulo 7. A primitive root is also called a generating element,
or generator, because it generates a complete residue system (in our example the
integers from 1 to 6) in some permutation.

Once we have found a primitive root g, we can immediately find another one, its
inverse modulo p:

g2 ≡ gφ(p)−1
1 (mod p), (14.2)

or, since φ(p) = p−1 for a prime,

g2 ≡ gp−2
1 . (14.3)

In our example, with g1 = 3, we get g2 ≡ 35 = 243≡ 5 (mod7). Check: 5 ·3 = 15≡ 1
(mod7). Check! And 5 raised to successive powers yields

n = 1 2 3 4 5 6 7 8

5n ≡ 5 4 6 2 3 1 5 4
etc.

Thus 5, too, has order p−1 = 6 and is therefore another primitive root.
How many primitive roots are there? If we raise a given primitive root g to the

power m > 1, where (m,φ(p)) = 1, then gm must be another primitive root. Thus
there are φ(φ(p)) primitive roots. (For p = 7, the number is φ(6) = 2, both of which
we have already found: 3 and 5.)

If, by contrast, the greatest common divisor (GCD) d of m and φ(p) is greater
than 1, (m,φ(p)) = d > 1, then the order of g = gm

1 is only φ(p)/d. To show this,
we observe first that φ(p)/d is a period of g:
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gφ(p)/d = gφ(p)m/d
1 ≡ 1m/d = 1 (mod p), (14.4)

and second that it is the shortest period, because by introducing the least common
multiple [φ(p),m], we can write

gφ(p)/d = g[φ(p),m]
1 = gφ(p)·k

1 ≡ 1k = 1 (mod p). (14.5)

Thus, φ(p)/d is the smallest exponent for which gφ(p)/d is congruent 1 modulo p.
How many positive m < p are there that have order T = φ(p)/d ? As we saw

in Chap. 7, there are exactly φ [φ(p)/d] values of m that have d as the GCD with
φ(d). Hence, the number of residue classes that have order T equals φ(T ). This is
illustrated by the following table for p = 7, φ(p) = 6:

m m2 m3 m4 m5 m6 T

1 1 1 1 1 1 1
2 4 1 2 4 1 3
3 2 6 4 5 1 6
4 2 1 4 2 1 3
5 4 6 2 3 1 6
6 1 6 1 6 1 2

Indeed, there are exactly φ(1) = 1 order T = 1, φ(2) = 1 order T = 2, φ(3) = 2
orders T = 3 and φ(6) = 2 orders T = 6. Further, all T divide φ(7) = 6.

Primitive roots are possessed by the integers 1, 2, 4, pk and 2 · pk (where p is
an odd prime and k > 0). All that has been said about primitive roots for a prime
modulus transfers, mutatis mutandi, to these other cases.

The smallest integer not having a primitive root is 8. A prime residue system
modulo 8 is given by 1, 3, 5, and 7, and all of these have order 1 or 2: 11 ≡ 32 ≡
52 ≡ 72 ≡ 1 (mod8). There is no residue that has order φ(8) = 4.

Why are 3 and 5 primitive roots modulo 7 and not, say, 4? How are the primitive
roots distributed within a residue system? For example, 71 and 73 both have 24
primitive roots, of which they share exactly one half, namely

11, 13, 28, 31, 33, 42, 44, 47, 53, 59, 62, 68.

What distinguishes these numbers?
Gauss said in his Disquisitiones [14.1] that the distribution of primitive roots is

a deep mystery; there is no way to predict where they will occur – only their total
number is known. But Gauss did give some fast algorithms for ferreting them out.

14.2 Periods of Decimal and Binary Fractions

As every high-school student knows, 1/2 written as a decimal fraction is 0.5 and 1/50
becomes 0.02. Both 0.5 and 0.02 are terminating decimal fractions. By contrast 1/3
becomes a nonterminating decimal fraction, namely 0.3333 . . ., and so does 1/7:
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0.142857142857 . . . .

Both 1/3 and 1/7 lead to periodic decimal fractions. By contrast
√

2 =
1.41421356 . . . and π = 3.14159265 . . . are irrational and have nonterminating ape-
riodic decimal representation.

What reduced rational fractions m/n, where (m,n) = 1, have terminating decimal
representation? The answer is very simple and devolves directly from the prime
factor decomposition of the denominator n:

n = ∏
pi|n

pei
i , (14.6)

where the product is over all prime pi that divide n. Now, if the only pi in (14.6)
are 2 and 5, then the fraction terminates because 2 and 5 are the only prime factors
of 10.

Specifically, if n = 2a5b and, for example, a > b, then n = 2a−b10b and for
a−b = 2, say,

1
n

= 0.0 . . .025,

where the number of zeros to the right of the decimal point equals b.

Example: n = 80 = 24 ·5 = 23 ·10. Thus, 1/80 = 2−3 ×10−1 = 0.0125.

The numerator m of the fraction m/n simply converts a terminating decimal fraction
into another terminating decimal fraction.

Things become more interesting if the denominator n is divisible by prime factors
other than 2 or 5. Let us begin with the prime factor 3 and write

1
3

=
3
9

=
3

10−1
=

3
10

· 1

1− 1
10

=
3

10
·
[

1+
1

10
+

1
100

. . .

]

.

This brings the periodic nature of the decimal fraction for 1/3 into direct evidence.
The fraction 3/10 is, of course, 0.3 and the 3 has to be repeated over and over again
with increasing right shifts:

1
3

= 0.3+0.03+0.003+ . . . = 0.333 . . . .

To save ink, periodic decimal fractions are usually written with a bar over a single
period. Thus, 1/3 = 0.3 and 1/7 = 0.142857.

But why does 1/7 have a period length of 6? Modeling 1/7 on what we did to
1/3, we might try to express 1/7 as a rational fraction with a denominator that is
one less than a power of 10. Thus, we are looking for the smallest positive factor f
such that

7 f = 10k −1, (14.7)



14.2 Periods of Decimal and Binary Fractions 199

or, equivalently, we want to know the smallest k for which

10k ≡ 1 (mod7). (14.8)

That is, of course, just the definition of order (in the arithmetic sense!) that we
encountered in Sect. 14.1. Thus,

k = ord7 10 = 6. (14.9)

Check: 106 = 142857 ·7 + 1, and no lower power of 10 exceeds a multiple of 7 by
1. Check!

Hence, 1/7 has a decimal period of length 6 with the digits

f =
106 −1

7
= 142857, or (14.10)

1
7

= 0.142857.

More generally, 1/p, p �= 2 or 5, has a period length

k = ordp 10. (14.11)

Example: For p = 11, k = 2, f = 99/11 = 9; hence 1/11 = 0.09. For p = 13, k = 6,
f = 999999/13 = 76923; hence 1/13 = 0.076923.

It is also clear that the period cannot be longer than p− 1, because in carry-
ing out the long division 1/p, there are at most p− 1 possible remainders, namely
1,2, . . . , p−1, after which the remainders and therefore also the decimal digits must
repeat.

In fact, ordp 10 is always less than p, because according to Fermat’s theorem, for
(p,10) = 1:

10p−1 ≡ 1 (mod p). (14.12)

Thus ordp 10 is either p−1 (as in the case of p = 7) or a proper divisor of p−1 (as
in the cases p = 11 and p = 13).

The longest possible period p− 1 occurs whenever 10 is a primitive root of p.
According to Abramowitz and Stegun [14.2], 10 is a primitive root of p = 7, 17, 19,
23, 29, 47, 59, 61, 97, etc.

Example:
1

17
= 0.0588235294117647, which indeed has period length 16.

Of course, pocket calculators are not accurate enough to determine the 96 digits
of the decimal period of 1/97 directly. However, there is a trick that allows us to
get the desired digits nevertheless. We shall illustrate this with the 16 digits of the
period of 1/17. A 10-digit pocket calculator shows that

100
17

= 5.88235294(1),
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where the last digit may have been rounded off and is therefore uncertain. We have
thus found 9 of the 16 digits. The next digits are obtained by calculating, say,

160
17

= 9.41176470(6).

Thus we have found all 16 digits of 1/17. By merging the two digit strings we obtain

1
17

= 0.0588235294117647.

We leave it to the reader to discover a general and efficient algorithm for generat-
ing the digits of periodic fractions with a calculator of limited accuracy. In [14.3] all
primes with period lengths less than 17 are listed. Surprisingly, 37 is the only prime
with period length 3.

Without derivation or proof we also state that for

n = ∏
pi �=2,5

pni
i , (14.13)

the decimal expression has a period length T equal to the least common multiple of
the orders of 10 with respect to the different pi. Thus, with

ki := ordp
ni
i

10, (14.14)

T = [k1,k2, . . .]. (14.15)

Proving this is a nice exercise. If n also contains factors 2 or 5, the decimal fractions
are mixed, meaning they have a nonperiodic “head”.

Example: 1/119 = 1/(7 ·17) has period length T = [6,16] = 48. And for 1/2737 =
1/(7 ·17 ·23), T = [6,16,22] = 528.

Nonunitary fractions have a cyclically shifted period with respect to the corre-
sponding unitary fractions, provided T = φ(n). Otherwise there are φ(n)/T differ-
ent cycles, all of length T .

Example: 1/7 = 0.142857 and 6/7 = 0.857142. But for 13 we have φ(13) = 12
and ord13 10 = 6; thus there are 12/6 = 2 different cycles: 1/13 = 0.076923 and
2/13 = 0.153846.

Everything that has been said here about decimal fractions carries over to other
number bases. For example, 1/3 in binary notation has period length T = ord3 2 = 2.
In fact, 1/3 = 0.01. For 1/5 in binary, T = ord5 2 = 4, and indeed, 1/5 = 0.0011. The
prime 9949 has 2 as a primitive root [14.2]. Therefore, ord9949 2 = 9948 and 1/9949
will generate a sequence of 0’s and 1’s with period lengths 9948 = 22 ·3 ·829.

Another prime in the same range having 2 as a primitive root is 9851. With
9850 = 2 · 52 · 197, the binary expansion of 1/99007599 = 1/(9949 · 9851) has a
period length T = [22 ·3 ·829, 2 ·52 ·197] = 48993900. Here is a method of gener-
ating long pseudorandom binary sequences! What are their spectral properties?
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14.3 A Primitive Proof of Wilson’s Theorem

Because the sequence of least positive residues gk(mod p), k = 1,2, . . . , p−1 (where
g is a primitive root of the prime p), is a permutation of the integers 1,2, . . . , p−1,
one has

(p−1)! = 1·2 . . .(p−1) ≡ g·g2 . . .gp−1 = gp
p−1

2 ≡ g
p−1

2 (mod p). (14.16)

Now according to Fermat,

gp−1 ≡ 1 (mod p). (14.17)

Therefore

g
p−1

2 ≡±1 (mod p). (14.18)

However the plus sign is impossible, because g is a primitive root and p− 1 is the
smallest exponent m for which gm is congruent to 1. Thus,

g
p−1

2 ≡−1 (mod p), i.e. , (14.19)

(p−1)! ≡−1 (mod p), (14.20)

which is Wilson’s theorem. (However, note that we had to assume the existence of a
primitive root!)

14.4 The Index – A Number-Theoretic Logarithm

Let m have the primitive root g. For the prime residue system (k,m) = 1, one defines
the index of k modulo m as the smallest positive t for which

gt ≡ k (modm), (14.21)

and writes

t = indg k.

Read: t equals the index to the base g of k.

Example: for m = 5 and g = 2:

ind2 1 = 0, ind2 2 = 1, ind2 3 = 3, ind2 4 = 2.

It is easy to see that

indg(ab) ≡ indg a+ indg b (modφ(m)), (14.22)



202 14 Primitive Roots

a property the index shares with the logarithm. And in fact, the index is used much
like a logarithm in numerical calculations in a prime residue system. For example,
the congruence

3x ≡ 2 (mod5)

is converted to

ind2 3+ ind2 x ≡ ind2 2 (mod4),

or with the above “index table”

ind2 x ≡ 1−3 = −2 ≡ 2 (mod4).

Thus,

x = 4.

Check: 3 ·4 = 12 ≡ 2 (mod5). Check!
A rule that is handy for base conversion is

inda b · indb a ≡ 1 (modφ(m)), (14.23)

which is reminiscent of loga b · logb a = 1 for logarithms.
In preparing index tables, it is only necessary to list values for primes, because

index values of composites are obtained by addition. Also, one-half of a complete
index table is redundant on account of the following symmetry relation:

ind(m−a) ≡ inda+ 1
2 φ(m) (modφ(m)), (14.24)

which is a consequence of

g
1
2 φ(m) ≡−1 (modm). (14.25)

14.5 Solution of Exponential Congruences

The exponential congruence

ax ≡ b (modm), (14.26)

if m has a primitive root, can be solved by index-taking

x · inda ≡ indb (modφ(m)), (14.27)

which has a solution iff
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(inda,φ(m)) | indb. (14.28)

In fact, in that case, there are (inda,φ(m)) incongruent solutions.

Example: 7x ≡ 5 (mod17); with the primitive root g = 3 as a base, we have

x ·11 ≡ 5 (mod16).

Since (11,16) = 1 divides 5, there is one (and only one) incongruent solution. Using
Gauss’s recipe,

x ≡ 5
11

≡ 5
−5

= −1 ≡ 15 (mod16).

Check: 715 = 716/7 ≡ 1/7 ≡ 5 (mod17). Check!
In Sect. 7.6 on exponential Diophantine equations we considered the equation

2n = 3m −1 (14.29)

and asked whether there were solutions other than 2 = 3−1 and 8 = 9−1. Unfor-
tunately, the answer was negative, otherwise we could have used ternary maximum-
length sequences for precision measurements whose period was a power of 2, mak-
ing them amenable to Fast Fourier Transformation (FFT) algorithms.

Now we consider another equation and ask: does

3n = 2m −1

have any solutions other than n = 1, m = 2? If so, we could use binary maximum-
length sequences whose period is a power of 3, making only slightly less efficient
FFT algorithms based on the factor 3 (rather than 2) applicable.

We shall answer the above question using the concept of the order of an integer
[14.4]. We ask: is there a solution of the above equation for n > 1? If there were,
then 3n = 9 · k for some integer k ≥ 1. Thus,

2m ≡ 1 (mod9).

Now the order of 2 modulo 9 is 6:

ord9 2 = 6.

Check: 2r ≡ 2, 4, 8, 7, 5, 1 (mod9). Check! This means that 6 must divide the
exponent m in the above congruence:

m = 6b for some integer b.

Hence,

2m = 26b = (23)2b = 82b ≡ 12b = 1 (mod7).
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In other words, 7 divides 2m − 1 = 3n, a contradiction because by the fundamental
theorem, 3n cannot be divisible by 7. Consequently, n ≤ 1 and 31 = 22 − 1 is the
only solution. Too bad for our intended application!

In a similar vein [14.4], we prove that there are no solutions to

2a = 3b −1 (14.30)

for a > 3 or 2a = 16 · k for some integer k ≥ 1. Thus, for a > 3:

3b ≡ 1 (mod16).

Since ord16 3 = 4, b must be some multiple of 4:

b = 4 · r

for some integer r ≥ 0. Thus,

34r ≡ 1 (mod16).

Now, note that ord5 3 = 4, i. e.,

34 ≡ 1 (mod5),

and therefore also

34r = 3b ≡ 1 (mod5),

or, equivalently,

5|(3b −1) = 2a,

a contradiction because 5 cannot divide a power of 2! Thus, a = 1, b = 1 and a = 3,
b = 2 are the sole solutions of 2a = 3b −1.

14.6 What is the Order Tm of an Integer m Modulo a Prime p?

As another example of solving exponential congruences we shall consider the con-
gruence

mTm ≡ 1 (mod p) or (14.31)

Tm · indm ≡ 0 (modφ(p)), i.e., (14.32)

Tm · indm = kφ(p). (14.33)

Here the left-hand side must be both a multiple of φ(p) and indm and, because of
the definition of Tm as the smallest solution, Tm · indm must be the least common
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multiple [indm,φ(p)]:

Tm · indm = [indm,φ(p)] =
indm ·φ(p)

d
, (14.34)

where d is the greatest common divisor of indm and φ(p). Thus,

Tm =
φ(p)

d
. (14.35)

For example, for p = 7 and m = 2 and using 3 as the index base: ind3 2 = 2 and
T2 = 6/(2,6) = 3, i. e., the order of 2 modulo 7 is 3. Check: 23 = 8 ≡ 1 (mod7) and
2k �≡ 1 (mod7) for k < 3. Check!

If we had taken 5 as the index base, the answer would have been the same:
ind5 2 = 4 and T2 = 6/(4,6) = 3. Check!

14.7 Index “Encryption”

The public-key encryption method described earlier is based on the fact that expo-
nentiation modulo a large composite number whose factors are not known is appar-
ently a “trap-door function”, i. e., it is easy to exponentiate with a known exponent
and to calculate a remainder, but it is very difficult to go in the opposite direction,
i. e., to determine which number has to be exponentiated to yield a known remainder.

Another way to describe this situation, for the case that the modulus has a prim-
itive root, is to say that taking logarithms in number theory (i. e., determining an
index) is a difficult operation. While the encrypted Message E is given by

E ≡ Ms (modr), (14.36)

the original message M can be obtained, at least formally, by taking the index to the
base g, where g is a primitive root of r:

indg E ≡ s · indg M (modφ(r)) or (14.37)

M ≡ g(indE)/s (modr). (14.38)

Example: r = 17, g = 3, s = 5. Say the cryptogram is E = 7. Then, with

ind3 7 = 11 (mod16) and
indE

s
=

11
5

≡ −5
5

= −1 ≡ 15 (mod16),

the original message is

M ≡ 315 ≡ 6 (mod17).
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Check: 65 ≡ 7 (mod17). Check!
The disadvantage in serious applications of index encryption is that the modulus

r is limited to integers that have primitive roots, i. e., primes, odd prime powers and
twice odd prime powers (apart from 1, 2 and 4).

14.8 A Fourier Property of Primitive Roots and Concert
Hall Acoustics

Consider the sequence

an = exp

(

i2πgn

p

)

, (14.39)

where g is a primitive root of the prime p. This sequence is periodic, with period
φ(p) = p−1. Also, the an have magnitude 1.

The periodic correlation sequence is defined by

cm :=
p−2

∑
n=0

ana∗n+m, (14.40)

where a∗ stands for the complex conjugate of a. Obviously,

c0 = p−1, (14.41)

or, more generally, cm = p−1 for m ≡ 0 (mod p−1).
On the other hand, for m �≡ 0 (mod p−1),

cm =
p−2

∑
n=0

exp

[

i2πgn(1−gm)
p

]

. (14.42)

Here the factor 1− gm �≡ 0 (mod p), and gn(1− gm) therefore runs through a com-
plete prime residue system except 0 as n goes from 0 to p−2. Thus, cm is the sum
over a complete set of pth roots of 1, except 1 itself. Since the “complete” sum
equals 0, we have

cm = −1, for m �≡ 0 (mod p−1). (14.43)

Now, a periodic correlation function that has only two distinct values (p−1 and
−1 in our case) has a power spectrum with only two distinct values [14.5]. By
power spectrum we mean the absolute square of the Discrete Fourier Transform
(DFT) defined by

Am :=
p−2

∑
n=0

an e−2πinm/(p−1). (14.44)



14.9 More Spacious-Sounding Sound 207

It is easy to show that the power spectrum is given by

|Am|2 =
p−2

∑
k=0

ck e−2πikm/(p−1), (14.45)

i. e., by the DFT of the correlation sequence. This is reminiscent of the well-known
Wiener-Khinchin theorem [14.6].

For m = 0, or more generally m ≡ 0 (mod p− 1), we have, with the above two
values for ck,

|A0|2 = 1. (14.46)

For m �≡ 0 (mod p−1), with c0 = p−1 and ck = −1, we get

|Am|2 = p−1−
p−2

∑
k=1

e−2πikm/(p−1), (14.47)

where the sum is again over a complete set of roots of 1, except 1 itself. Thus,

|Am|2 = p for all m �≡ 0 (mod p−1). (14.48)

Such a constant power spectrum is called “flat” or “white” (from “white light”,
except that white light has a flat spectrum only in the statistical sense).

14.9 More Spacious-Sounding Sound

Flat power spectra are important in physics and other fields. (For example, a good
loudspeaker is supposed to radiate a flat power spectrum when driven by a short
electrical impulse.) Here, in addition, the original sequence an, whose spectrum is
flat, has constant magnitude 1. This leads to an interesting application in concert
hall acoustics.

It has been shown that concert halls with laterally traveling sound waves, all
else being equal, have a superior sound [14.7] to those halls that furnish short-path
sound arriving only from the front direction – as is the case in many modern halls
with low ceilings (dictated by high building costs and made possible by modern
air conditioning). To get more sound energy to arrive at the listeners’ ears from the
sides (laterally), the author [14.8] proposed scattering, or diffusing, the sound which
emanates from the stage and is reflected from the ceiling in all directions except the
specular direction [14.9]. Also, the ceiling should not absorb any sound: in a large
modern hall every “phonon”, so to speak, is valuable; otherwise the overall sound
level (loudness) will be too low.

Thus, what is called for on the ceiling is something the physicist calls a reflection
phase-grating that scatters equal sound intensities into all diffraction orders except
the zero order. Here “order” is used not as defined in mathematics but as in physics.
Zero-order diffraction corresponds to the specular direction, i. e., straight downward.
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Fig. 14.1 Concert hall ceiling designed as a reflection phase-grating (based on the primitive root 2
of the prime 11)

Reflection phase-gratings can be realized by a hard surface with “wells” of dif-
ferent depths dn, as shown in Fig. 14.1. Upon reflection, the phase of a normally in-
cident wave is changed by 2dn2π/λ , where λ is the wavelength. Now, if the depths
dn are chosen according to

dn =
1
2

λgn

p
, (14.49)

where g is a primitive root of the prime p, and gn can be the least residue modulo p,
then the reflected wave has complex amplitudes1 on its “wavefront” according to

an = e2πign/p,

just like the periodic sequence that we considered above and that had a flat power
spectrum.

Now, if the spatial distribution of wave amplitudes along a plane surface has a
flat power spectrum, then the intensities of the wavelets scattered into the different
diffraction orders will all be equal. Hence we expect a ceiling constructed according
to this principle, as shown in Fig. 14.1 for p = 11 and g = 2, to scatter sound widely
except in the specular direction (downward). That this is indeed so is illustrated
in Fig. 14.2, which shows the result of actual measurements on a “primitive root”
ceiling designed for improving concert hall acoustics. Such ceilings can be expected
to increase the feeling of spaciousness, i. e., of being surrounded by or “bathed” in
sound.

In order to form a two-dimensional array that scatters equal intensities into all
diffraction orders (except the zeroth) over the solid angle, the prime p must be so
chosen that p−1 has two coprime factors. For example, for p = 11, p−1 = 10 = 2 ·5

1 This is taking an approximate (“Kirchhoff”) view of diffraction. In reality, the complex amplitude
cannot change abruptly. For an exact treatment, see [14.10].
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Fig. 14.2 Backscatter from
primitive root ceiling. Note
low specular reflection
(vertically downward). p = 7,
g = 3

and the ten numbers an can be used to fill a 2-by-5 array in “Chinese remainder”
fashion (Chap. 17), for example as follows:

a1 a7 a3 a9 a5

a6 a2 a8 a4 a10, (14.50)

i. e., the horizontal (left-to-right) location of an in the array corresponds to 〈n〉5 and
the vertical (up-down) location of an is given by 〈n〉2. More generally, the array
locations can be given by 〈k ·n〉5, with any k for which (k,5) = 1, and 〈m ·n〉2, with
(m,2) = 1 (i. e., m must be odd). Here the acute brackets signify least remainders
(see Sect. 17.2 on Sino-representation).

In the most general case, an r-dimensional array with the desired r-dimensional
correlation and Fourier properties can be formed if p− 1 has r pairwise coprime
factors q1,q2, . . . ,qr and the location in the array of an has the coordinates

〈ki ·n〉qi , with (ki,qi) = 1, i = 1,2, . . . ,r. (14.51)

For three-dimensional arrays, the smallest prime p such that p−1 has three co-
prime factors is 31. Indeed, 30 = 2 ·3 ·5, giving a 2-by-3-by-5 array.

Another important principle that can be employed to diffuse sound involves
quadratic residues (Chap. 16), and an interesting application of primitive roots, to
the splicing of telephone cables, is given in [14.11].

14.10 Galois Arrays for X-Ray Astronomy

X-rays are notoriously difficult to focus. For X-ray photons, the index of refraction
of most earthly materials is so close to 1 that focussing lenses are all but impossible
to construct. This is a pity because the skies abound with interesting emitters of
X-rays. Fortunately, X-rays can be easily blocked by lead and other materials opaque
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Fig. 14.3 Shadow mask for
X-ray astronomy based on
Galois sequence of length
4095

to X-rays. The question then is “can we image X-rays sources with the help of
partially opaque masks?” And what patterns of opaqueness and translucence must
such a “shadow mask” have to form useful images?

One solution is a two-dimensional pattern of opaqueness (0) and translucence
(1) obtained from a Galois sequence (see Chap. 28) whose length L = 2m − 1
can be factored into (at least) two coprime factors. For a nearly square-shaped
mask, one chooses an even exponent, m = 2k, and obtains L = 22k − 1 = (2k + 1)

Fig. 14.4 Simulated X-ray
shadow obtained with mask
shown in Fig. 14.3
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Fig. 14.5 X-ray image
obtained by deconvolving
data shown in Fig. 14.4. Note
the two X-ray sources

(2k−1). Figure 14.3 shows such a mask for m = 12 with side lengths 63 by 65. Note
the bilateral symmetry around the vertical. Interestingly, the rows of length 63 are
themselves Galois sequences. All this is no accident but can be proved rigorously,
albeit by methods beyond the scope of this book. However, the interested reader
might try to derive these results without the use of the relevant number-theoretic
concepts (trace and norm).

Figure 14.4 shows the shadow of two distant X-ray sources cast by such a mask.
Observing this data with photon counters and scanning it into a computer allows
a reconstruction of the X-ray source by a two-dimensional deconvolution process.
Figure 14.5 shows the result of this imaging method for two (incoherent) X-ray point
sources [14.12].

14.11 A Negative Property of the Fermat Primes

The Fermat primes are, as Gauss discovered, precisely those primes p for which
a “Euclidean” construction of the regular p-gon is possible (see Sect. 3.9). Thus,
being a Fermat prime makes something possible.

Curiously, being a Fermat prime also makes something impossible, namely the
construction of two- or higher-dimensional primitive-root arrays, as described in the
preceding section. For such arrays, p−1 must be factored into two or more coprime
factors, but p−1 has only one prime factor, namely 2. Thus, the same circumstance
that allows the Euclidean construction forbids the construction of primitive-root ar-
rays with more than one dimension (a form of mathematical justice?).


