Chapter 12
The Prime Divisor Functions

Here we consider only prime divisors of n and ask, for given order of magnitude
of n, “how many prime divisors are there typically?” and “how many different ones
are there?” Some of the answers will be rather counterintuitive. Thus, a 50-digit
number (102! times the age of our universe measured in picoseconds) has only about
5 different prime factors on average and — even more surprisingly — 50-digit numbers
have typically fewer than 6 prime factors in all, even counting repeated occurrences
of the same prime factor as separate factors.

We will also learn something about the distribution of the number of prime fac-
tors and its implications for the important factoring problem. Thus, we discover that
even for numbers as large as 10%°, the two smallest primes, 2 and 3, account for
about 25% of all prime factors!

12.1 The Number of Different Prime Divisors

In connection with encrypting messages by means of Euler’s theorem, the number
of distinct prime divisors of a given integer 1, (n), is of prime importance. Its defi-
nition is similar to that of the divisor function d(n), except that the sum is extended —
as the name implies — only over the prime divisors of n:

o(n) =Y 1. (12.1)
piln
It is easily seen that w(n) is additive, i. e., for (n,m) =1,
omm)=Y 1=Y 1+ 1=0()+o(m). (12.2)
pilnm piln pilm

Of particular interest to our encrypting desires will be the behaviour of @(n) for
large n, i.e., its asymptotic behaviour. We shall try to get an idea of this behaviour
by means of our usual “dirty tricks”. First, we will convert the sum of those primes
that divide n into a sum over all primes up to n, using the “probability” factor 1/p;:
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180 12 The Prime Divisor Functions

on)=Y1~ Y iy (12.3)

piln pi<n Pi

This, in turn, we will convert into a sum over all integers up to n, using the proba-
bility factor for primality 1/1nx:

o(n)~ Y

x<n

1
xInx’

which we will approximate by an integral:

o dx

@(n) %/ = 1In(lnn)+0.367 ... (12.4)
> xlnx

Of course @(n) is a wildly fluctuating function and exact results [12.1] are available

only for asymptotic averages, just as in the case of ¢ (n) and d(n):

% 3" o(k) = In(lnn) +0(1), (12.5)
k=1

where 0(1) is a fancy way of writing a bounded quantity.

To get a better grip on this constant, we calculate the sum over the reciprocal
primes in (12.3) out to some p,, and convert only the remaining sum to a sum over
all integers using the probability factor Inx:

WrY -+ Y = (126)
o(n)~ —+ . .
pi=2 pi x=ppm+1 xInx
Approximating the second sum by an integral, we have
Pm 1
@(n)~ Y, —+Inlnn—Inlnp,,. (12.7)
pi=2 i

In other words, our estimate tells us that the difference between @(rn) and Inlnn,
i.e., the constant in (12.5), is given by

Pm

1
@(n)—Inlnn~ lim » — —Inlnp,. (12.8)
pm_’“’pi:Z Di

In the last century Kronecker, assuming that the limiting average of w(n) existed,
obtained

@(n) =1In(Inn) + by, (12.9)
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with

by =7+ i {m (1—1) +1], (12.10)

pi=2 Pi Pi

where 7 is again Euler’s constant.
To compare Kronecker’s constant b; with ours, we make use of the following
asymptotic result (Merten’s theorem [12.1]):

Pm 1
lim e’Inp, [] (1 — ) =1, (12.11)
Pm— pi=2 Di
which yields for Kronecker’s constant
Pm 1
b= lim Y — —In(Inpy), (12.12)
pm_’“’pizz Di

which is identical with our “crude” estimate (12.8)!

Equation (12.12) is not very suitable to obtain a numerical value for by, because
it converges rather slowly. (In fact, even for p,, as large as 104759, the relative error
is still larger than 1073.) A faster converging series is obtained by expanding the
logarithm in (12.10), which yields

=11
y—by = <++...>. (12.13)
p,z;z 27 3p}

Now, if we remember the Riemann zetafunction (Chap. 4), we have

= co 1 -1
Ck)y= ), <= (1—> : (12.14)
n:lnk pll-_:[2 p{'(
or
> 1
Ing(k)=—Y In{1-—]. (12.15)
pi=2 i
Expanding the logarithm, we obtain
In¢ (k) = i <1+1+ ) (12.16)
2\ taEt) .

Introducing this result into (12.13) yields

y—br=4In{(2)+3ing(3)+1Ing(5)— L nf(6)+.... (12.17)
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This sum written in terms of the Mdbius function p(m) (Chap. 21) is:

=3

y—b = — Mlnij(m). (12.18)
m=2

This sum converges very quickly and, for just 7 terms yields a relative accuracy of
about 1077, The result is

by =0.2614 .... (12.19)

How do Milton Abramowitz and Irene Stegun feel about this? On page 862 of
their Handbook of Mathematical Functions [12.2] they list the prime factors of the
integers from 9000 to 9499 (see Fig. 12.1). I have counted a total of 1260 distinct
prime factors for these 500 integers. Thus, @ = 2.52, which should be compared to
our In(In9250) 4+ 0.26 = 2.47. Close enough? Certainly, because as we said before,
o(n) fluctuates and an average, even over 500 consecutive integers, is not com-
pletely smooth. (More about the fluctuations of ®(n) in a moment.)

12.2 The Distribution of @(n)

The probability that the prime factor p; does not occur in the prime factor decom-
position of n > p; is given by
1
1——.
Pi
The probability that it does occur (at least once) is therefore

1

pi
The mean occurrence is therefore
1
mp=—, (12.20)
Pi

and its variance, according to the formula for the binomial distribution for two pos-
sible outcomes, equals

1 1 1
01,2:7 (1—) =mj— —. (12.21)
Di

Assuming divisibility by different primes to be independent, we get for the over-
all mean
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1

o(n)~ Y, — ~In(lnn)+0.2614, (12.22)
pi<n Pi

as before [see (12.9) and (12.19)]. The overall variance becomes, with (12.21),

=1
oy B — Y —, (12.23)

pi=2Pi

where we have extended the sum out to infinity because it converges quite rapidly.
The numerical value of the sum can be obtained most efficiently with the help of
Riemann’s zetafunction, expanded as in (12.16). This yields

iiz Ing(2 —%lng(4)—

2 K(m) In (2m) ~ 0.452248, (12.24)
— m

where (t(m) is again the Mobius function (see Chap. 21).
Thus,

02 ~®(n)—0.45 (12.25)

and, because 67 ~ @, we expect ® to be approximately Poisson distributed [12.3].
Of course, each number has at least one prime factor (itself, if it is prime), so that
the Poisson distribution must be shifted by 1:

Prob{w(n) = k} ~ ( e Ot k=12

a()ki_il)l ) ’ 7'--,w>1, (1226)

with @ from (12.22).
The mode (most probable value) of this distribution occurs for

k=|o|+1, (12.27)

where k is read “kay check”. Although intended for large n, (12.27) seems to work
very well even for small n. Equation (12.27) predicts that the most probable number
k of different prime factors of n is as follows:

1 for n<9

2 for 9<n<296

3 for 296 <n<5-10°
k=4for 5-10°<n<2-10"

Sfor 2-10"% <n<4.107

6 for 4-10% <n <810 etc
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Thus, up to almost 1013

less!

According to (12.26), the probability that n has exactly one prime factor, i.e., that
n is either a prime or a prime power, equals about 2/Inn. This value is somewhat
larger than the one we would expect from the distribution of primes. But then, we
should not expect the Poisson distribution for @(n) to be exact. For example, 62
should equal @ — 1 for the shifted Poisson distribution and not @ —0.45 as in (12.23)
and (12.24).

the most likely number of different prime factors is 6 or

12.3 The Number of Prime Divisors

Apart from the “little” @(n) we need a “big” (n), the number of prime divisors of
n, counted with multiplicity. For

n=[1r{". (12.28)
piln
we have the definition
Q(n):= e (12.29)
piln

The divisor function Q (n) is completely additive, i.e.,
Q(mn) =Q(m)+Q(n), (12.30)

whether m and n are coprime or not.
To estimate an average value of Q(n), we convert the sum appearing in its defi-
nition into a sum over all primes up to n:

Qn)~ Y e,-iei (1 1), (12.31)

pi<n  Fi i

recognizing that the probability that p; occurs e; times equals (1 —1/p;)/pi’. Aver-
aging over these values of ¢; yields

1

Q)= Y (12.32)

pi<n Pi— I
Note the closeness of our estimates of () and @(n) according to (12.3)! The
difference (which some friends did not even think converged) is given by

Qn)-an)~ Y !

_, (12.33)
pi<n pi(pi—1)
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in agreement with a result by Kronecker. (This sum is upperbounded by the sum
over all integers out to infinity, which equals 1.)

Since the sum does not only converge, but converges quite rapidly, we will only
bother about its value taken out to infinity. First we write

< 1 /1 1 1
ZWU:2(+3+4+“) (12.34)

. 2
pi=2 Pi pi=2 \DPi P; P

and then introduce the zetafunction again, making use of (12.16). This yields

- 1
——— =1In{(2)+1Ing(3
S o = M+
£5In¢(4) +Ing(5)
+é1n€(6)+...%0.77317 or (12.35)
Q(n) ~@(n) +0.77317 ~ In(Inn) + 1.0346. (12.36)

What do Abramowitz and Stegun have to say? In their table of prime fac-
tors for n in the range 9000 to 9499 [12.2, p.862], I counted a total of 1650
prime factors, including multiplicity, yielding € = 3.30. Our theoretical value
In(In9250) + 1.0346 ~ 3.25, which is as similar as could be expected.

Incidentally, sums taken over all primes, with primes appearing in the denomina-
tor as in (12.13) and (12.34), need not always lead to irrational results. A noteworthy
counterexample (from an entire family of like-fashioned expressions) is

o 2
p~+1 5
sz—l =5 (12.37)

p=2

This seems preposterous, but a quick numerical check indicates that the product
certainly could not deviate much from 5/2, and in fact, the infinite product does
equal 5/2. This is actually not too difficult to see, because

2 1 4_1
szi_l:H(pz_l)ZZH =

p p

or, expanding into geometric series:

H1+i+i+ 2
p’+1 ot

_ - : (12.38)

=
1M
3| =
N———
[ ]

hS]
[38)
|
—_
7 N\
—
+
"B&‘ —_
+
S| —
+
N——
M8
3~

3
I
—_
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We have encountered the sum in the numerator several times before (Chaps. 4, 8),
and found it to equal 7z2/6. The sum in the denominator equals §(4) = n*/90, and
if we had not heard of the zetafunction, we could find out by calculating a certain
definite integral over the Fourier series

sinx —sin3x+sinSx—....

(The reader may want to try this.) The result is
4
- e
P-1
p=2

SREE
\S]

Consideration of this product also leads to some rather unexpected relations for
Q(n). Expanding

1 1
1+=+—+...
H p2 +1 _ 1 ( p?  p )
5 =
p-—1 1 1
and multiplying out, one obtains, in the denominator, a sum of each reciprocal

square 1/n? exactly once, with a sign that depends on the parity (odd or even) of the
total numbers of prime factors of n. Thus, with (12.37), remembering that Q (1) =0:

(12.39)

oo (_I)Q(n) 2

S 12.40
2 s (12.40)
or
1 2
Yy = (12.41)
omowa™ 20

two noteworthy results.
Similar procedures give the equally remarkable

oo (:l:l)Q<n) ) 5 +1
2‘1 - 20(n) _ 3 , (12.42)
or
200 21
ggi)dd? =% (12.43)
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12.4 The Harmonic Mean of Q(n)

In order to estimate, as we would like to, the geometric mean of the prime factors
of n, we need the harmonic mean of Q(n). If we designate geometric means by a
tilde, then the desired mean is given by

p(n) == n'/20), (12.44)

Now if we average over several (similar) values of n, we are led to the harmonic
mean of (n), which we identify by a “hat”:

Q(n) = (1/2(m)) ", (12.45)
With this notation, we have
F(n) ~ n'/20), (12.46)

Of course, like any harmonic mean of a fluctuating quantity, Q (n) is smaller than
the previously computed arithmetic mean Q(n) ~ In(Inn) + 1.035. By how much?
to answer this question, we have to find out about the distribution of Q(n). Reverting
to our earlier “unaveraged” estimate of Q (n):

PIOEDY e,»iel_ (1 - 1) , (12.47)

pis<n Di i

we recognize geometric distributions! in the exponents ¢;. The mean value m; for
each term of the sum is

1

. (12.48)
pi—1

m; =

a result we used before in estimating Q (n).
Now we also want the variance G,-z of each term, which for a geometric distribu-
tion is given in terms of the mean m; by the following well-known formula:?

o2 =m;+m?. (12.49)

1 Physicists call a related distribution “Bose-Einstein” in honor of Bose, the Indian scientist who
discovered its significance for photons and other “bosons”, and Einstein, who publicized it when
people would not believe it.

2 This formula played a role in physics that can hardly be overestimated. According to Maxwell’s
equation, the intensity fluctuations O'i2 in “black-body” radiation should equal the squared intensity
m?. It was Einstein who discovered, from deep considerations of entropy, that the actual fluctua-
tions exceeded ml2 by m;, recognizing the additional term m; as stemming from a non-Maxwellian
“granularity” of the field. This observation led him to the photon concept for electromagnetic ra-
diation on much more persuasive grounds than Planck’s inherently contradictory discretization of
the energies of harmonic oscillators. As a result, Einstein believed in the reality of the photons
from 1905 on (and he received his Nobel prize in physics for this work and not for his theory of
relativity), while Planck continued to doubt the meaningfulness of his “ad hoc” trick.
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By summing over the index i, assuming independence of the p;, we obtain the
variance of Q(n):

— 1
2
o5 =Q(n)+ (12.50)
@ plz:42 (Pi - 1)2
Using the expansion (12.16) again, we can write the sum here as
1 2 3
D <2+3+4+...> =1n¢(2)+21n¢(3)
pi \Pi Pi Pi
5
+§lnC(4)+...%1.3751. (12.51)
Again, 6!22 ~ Q, and we also expect a shifted Poisson distribution for £2:
Q- g4 ol
PrOb{Q(’l):k}zWe s k:172,,9>1 5 (1252)

with Q from (12.36).

This theoretical distribution is shown by dots in Fig. 12.2 for Q = 3.25 (n =~
9500). The shaded bars are from actual prime factor counts between n = 9000 and
9499. The agreement is remarkably good.

For the shifted Poisson distribution, the harmonic mean Qis easily evaluated:

Q-1

Q=—""__ o (12.53)
1 —e—02+1
N In(1.035Inn
O ~ n(.035Inn) (12.54)
1—1/1.0351nn
e Calculated from Poisson,
140 distribution for $2-1
/71"
120 ?
wt A -
ol
2 %
2
“ 60
40
Fig. 12.2 The distribution of
the number of prime factors 20
(bars) in the interval 9000 <
n < 9499 and the Poisson o LI
distribution (dots) for the 12 3 4

theoretical mean
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For n = 9250, we obtain Q ~2.51. The “experimental” value for the range n = 9000
t0 9499 is Q = 2.47 — as close as one can hope.

The geometric mean of the prime factors, calculated with the theoretical value of
Q, becomes

5(9250) ~ 38,

while the actual value in the range n = 9000 to 9499 is p = 40.
For n = 10%°, a range of interest for public-key encryption, Q ~ 4.8, and the
geometric mean p ~ 2.4 - 10'" — 40 orders of magnitude smaller than .

12.5 Medians and Percentiles of Q(n)

With (12.36), the probability that the integer n equals a prime that divides N is given
approximately by

1
win=pIN) = nlnn(In(InN) + 1.035)° (12.53)

Thus, the cumulative distribution for a prime divisor of N to be smaller than n is
approximated by

In(Inn) +1.035

—_ 12.56
In(InN) +1.035 ( )

W(n;N) =

From this expression the median value ng 5 follows directly:
ngs = eVInN/281, (12.57)

Example: N = 9250, ngs = 6. Thus, the primes 2, 3, and 5 should account for
roughly half the prime factors around N = 9250. The actual count in the interval
9000 to 9499 is as follows (with the theoretical value, 500/(p; — 1), in parenthesis):

pi =2:500 times (500)
pi =3:250 times (250)
pi=>5:126times (125)

Thus, the total number of occurrences of 2, 3, and 5 is 876 times, or 53% of the total
of 1650 prime factors in that interval — in very good agreement with our theoretical
prediction.

For N = 10°°, ng 5 = 600, a remarkably small value.

The above distribution formula gives the following percentile values 7, defined

by W(nys) = f:
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ng(N) =exp[(InN)/2.81/71]. (12.58)

The lower-quartile value ng 5 (for N = 9250) becomes 2.2, which compares well
with the count of 30% (500 out of 1650) for the factor 2 in the interval 9000 to 9499.
In fact, according to (12.56), 29% of the prime factors should be below 2.5.

The theoretical upper-quartile value ng 75 = 57.8 is in very good agreement with
the count of 75%. (1231 out of 1650) prime factors up to and including 59. But the
median of the largest prime factor of N is about NO6 (1),

12.6 Implications for Public-Key Encryption

For N = 10, the theoretical lower- and upper-quartile values for the prime factors
are 4.5 and 6- 10'!, respectively. Thus, in three out of four cases of integers around
10°°, one will encounter prime factors not exceeding 6- 10'!. If one assumes that
rapid factoring of such integers is no problem, then 75% of such large, randomly
selected integers can be easily factored.

This conclusion is in stark contrast to the (correct) assertion that sufficiently large
integers constructed so as to contain only two very large prime factors cannot be
easily factored.

Additional results on large prime factors in a given interval can be found in
[12.4]. As an introduction to the art of generating large primes, see [12.5].



