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Dedicated to the Memory of
Hermann Minkowski

who added a fourth dimension to our World
and many more to Number Theory



Foreword

“Beauty is the first test: there is no
permanent place in the world for
ugly mathematics.”

– G. H. Hardy

Number theory has been considered since time immemorial to be the very paradigm
of pure (some would say useless) mathematics. In fact, the Chinese characters for
mathematics are Number Science. “Mathematics is the queen of sciences – and num-
ber theory is the queen of mathematics”, according to Carl Friedrich Gauss, the life-
long Wunderkind, who himself enjoyed the epithet “Princeps Mathematicorum”.
What could be more beautiful than a deep, satisfying relation between whole num-
bers? (One is almost tempted to call them wholesome numbers.) In fact, it is hard
to come up with a more appropriate designation than their learned name: the inte-
gers – meaning the “untouched ones”. How high they rank, in the realms of pure
thought and aesthetics, above their lesser brethren: the real and complex numbers –
whose first names virtually exude unsavory involvement with the complex realities
of everyday life!

Yet, as we shall see in this book, the theory of integers can provide totally un-
expected answers to real-world problems. In fact, discrete mathematics is taking on
an ever more important role. If nothing else, the advent of the digital computer and
digital communication has seen to that. But even earlier, in physics the emergence of
quantum mechanics and discrete elementary particles put a premium on the methods
and, indeed, the spirit of discrete mathematics.

And even in mathematics proper, Hermann Minkowski, in the preface to his in-
troductory book on number theory, Diophantische Approximationen, published in
1907 (the year he gave special relativity its proper four-dimensional clothing in
preparation for its journey into general covariance and cosmology) expressed his
conviction that the “deepest interrelationships in analysis are of an arithmetical
nature”.

Yet much of our schooling concentrates on analysis and other branches of con-
tinuum mathematics to the virtual exclusion of number theory, group theory, combi-
natorics and graph theory. As an illustration, at a recent symposium on information
theory, the author met several young researchers formally trained in mathematics
and working in the field of primality testing, who – in all their studies up to the
Ph.D. – had not heard a single lecture on number theory!
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viii Foreword

Or, to give an earlier example, when Werner Heisenberg discovered “matrix”
mechanics in 1925, he didn’t know what a matrix was (Max Born had to tell him),
and neither Heisenberg nor Born knew what to make of the appearance of matrices
in the context of the atom. (David Hilbert is reported to have told them to go look
for a differential equation with the same eigenvalues, if that would make them hap-
pier. They did not follow Hilbert’s well-meant advice and thereby may have missed
discovering the Schrödinger wave equation.)

The present book seeks to fill this gap in basic literacy in number theory – not
in any formal way, for numerous excellent texts are available – but in a manner that
stresses intuition and interrelationships, as well as applications in physics, biology,
computer science, digital communication, cryptography and more playful things,
such as puzzles, teasers and artistic designs.

Among the numerous applications of number theory on which we will focus in
the subsequent chapters are the following:

1) The division of the circle into equal parts (a classical Greek preoccupation) and
the implications of this ancient art for modern fast computation and random
number generation.

2) The Chinese remainder theorem (another classic, albeit far Eastern) and how
it allows us to do coin tossing over the telephone (and many things besides).

3) The design of concert hall ceilings to scatter sound into broad lateral patterns
for improved acoustic quality (and wide-scatter diffraction gratings in general).

4) The precision measurement of delays of radar echoes from Venus and Mercury
to confirm the general relativistic slowing of electromagnetic waves in grav-
itational fields (the “fourth” – and last to be confirmed – effect predicted by
Einstein’s theory of general relativity).

5) Error-correcting codes (giving us distortion-free pictures of Jupiter and Saturn
and their satellites).

6) “Public-key” encryption and deciphering of secret messages. These methods
also have important implications for computer security.

7) The creation of artistic graphic designs based on prime numbers.
8) How to win at certain parlor games by putting the Fibonacci number systems

to work.
9) The relations between Fibonacci numbers and the regular pentagon, the Golden

ratio, continued fractions, efficient approximations, electrical networks, the
“squared” square, and so on – almost ad infinitum.

I dedicated this book to Hermann Minkowski because he epitomizes, in my mind,
the belief in the usefulness outside mathematics of groups and number theory. He
died young and never saw these concepts come to full fruition in general relativity,
quantum mechanics and some of the topics touched upon here. I am therefore glad
that the town of Göttingen is moving to honor its former resident on the occasion
of the 100th anniversary of his doctorate on 30 July, 1885 (under F. Lindemann, in
now transcendental Königsberg). The late Lilly Rüdenberg, née Minkowski (born in
Zürich, while her father was teaching a still unknown Albert there), communicated
valuable information in preparation for this late recognition.



Preface to the Fifth Edition

With the advent of quantum cryptography, the endlessly debated Einstein-Podolski-
Rosen (EPR) paradox of quantum mechanics has left the sphere of pure speculation
and entered the domain of tangible applications. Accordingly, new material on some
of the number-theoretic aspects of quantum cryptography (Sects. 9.7–9.9) has been
added in this edition.

Also, a number of minor topics, such as a “stamp coverage” problem, related
to the work on linear forms by F.G. Frobenius (Sect. 7.3), have been included.
There are also two new chapters – on Permutations (Chap. 9) and Covering Sets
(Chap. 23).

Göttingen and Berkeley Heights Manfred R. Schroeder
July 2008
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Preface to the Fourth Edition

On February 23, 2005, the city of Göttingen, where Gauss had spent most of his
life, commemorated the 150th anniversary of his death.

The day began with a brief ceremony at his grave, not far from his observatory,
and continued with the opening of a comprehensive exhibition including the original
of his famous notebook and, besides much of his astronomical and geodesic gear,
one of the author’s quadratic-residue diffusors as described in this book (Chap. 16).

The Göttinger Tageblatt published a series of articles entitled My Gauss, to which
the author was invited to contribute a summary of his “encounters” with the great
man. It read, in translation, as follows:

Already as a young boy I had an abiding interest in mathematics. While my
classmates were playing softball in the street, I was ensconsed in my upstairs cubicle
“pulling little roots”, as my mother called it. Among other endeavors, I tried to sum
the infinite sequence of reciprocal squares: 1 + 1

4 + 1
9 + · · · . But I didn’t succeed.

Gauss made Euler’s solution, π2/6, later widely known. The rate of convergence
of this sequence played a crucial role in my computer graphic “Prime Spectrum”
(Fig. 4.9) conceived several decades later.

In high school too I was always inclined towards mathematics. Occasionally I
had to help the teacher along when, for example, his explanation of the Doppler-
effect threatened do dissolve in thin air.

But my grandmother always thought I should become a physicist and in 1947,
after returning from the war, I registered for physics in Göttingen, where Max von
Laue and Werner Heisenberg were the shining stars. But in my soul I always re-
mained a mathematician. My parents lived then in Hamm (Westphalia) and during
one trip home (4 hours by “express” train) I wanted to calculate the average distance
between adjacent primes. After 4 hours I had the answer: the average distance grows
with the natural logarithm. For 20, this gives log20 = 3.00 and, indeed, the spac-
ings between the three primes near 20 (17, 19 and 23) are 2 and 4, or 3 on average
(Sect. 4.1).

Gauss had discovered the logarithm in the distribution of primes at a very young
age but he has never published a proof. – A formal proof did not appear until a
hundred years later.
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Preface to the Fourth Edition xi

Althoug originally “married” to theoretical physics in Göttingen, I eventually
alighted on the acoustics of concert halls, the topic of my dissertation. Soon I noticed
that the spatial transmision function in larger enclosures is a complex Gaussian pro-
cess, which then (in 1954) was a sensation. I even became a little famous and soon
I found myself at the prestigious Bell Laboratories, famous for the invention of the
transistor, information theory and error-correcting codes. At Bell, I concentrated on
human speech and its efficient representation for transatlantic communication, later
applied successfully to mobile telephony (cell phones) and the internet. The criteria
I used were based on Gauss’ method of least squares which he had pioneered in the
rediscovery of the asteroid Ceres.

But deep down I never lost my attachment to the prime numbers. I “discov-
ered” that the probability that two arbitrarily selected integers are relative prime
approaches 6/π2 or about 0.608, i.e. the reciprocal of the aforementioned infinite
sum 1+ 1

4 + 1
9 + · · · . – It is always surprising to see how different problems in math-

ematics are interwoven!
But my most consequential encounter with Gauss still lay in the future. In

September 1962, in the presence of Jacqueline Kennedy, Philharmonic Hall, the
first installment of the Lincoln Center for the Performing Arts in New York City,
was ceremoniously inaugurated. But the acoustics of the hall (now called Avery
Fisher Hall) left something to be desired: there were disturbing echoes, the celli
were difficult to hear, and, worst, the new hall lacked in “intimacy,” the feeling of
being enveloped by the music. Detailed studies with my students in Göttingen con-
firmed that for good acoustics, a hall had to have strong lateral reflections arriving
at a listener’s head. But how to realize this goal in a modern wide enclosure with a
low ceiling? It occurred to me that the lateral sound in such halls could be enhanced
by a structured ceiling that scatters the sound from the orchestra into a broad lateral
pattern. But what should such a ceiling look like?

During a talk by the French mathematician André Weil, brother of Simone Weil,
in 1977, celebrating the 200th anniversary of Gauss’ birth, I fainally saw the light:
the ceiling structure should be based on Gauss sums and quadratic residues. Such
structures, known as “Schroeder diffusors,” are now in worldwide use for improving
acoustic quality in concert halls, recording studios and even private homes.

In this fourth edition new material has been added on the Fibonacci numbers
(Sects. 5.6, 5.7, 5.8).

Newly rediscovered divisibility tests for 7, 13, 17, and 19 can be found in
Sect. 6.1.

An intriguing application of the greatest common divisor is in Sect. 2.4.
A new viewpoint on the decimal system is given in Sect. 2.9.
The section on the two-squares theorem is expanded by a prescription of how

to actually decompose a given prime (congruent 1, modulo 4) into two squares.
Generalizations of the form p = x2 + cy2, with c = ±2,±3, . . . are also considered
(Sect. 7.9).

Sections 20.6 (Deterministic Primality Testing) and 20.8 (Factoring with Elliptic
Curves) have been updated to incorporate recent progress.



xii Preface to the Fourth Edition

Finally, the Introduction is amplified by a consideration of the “Family of Num-
bers” (p. 4).

Göttingen and Zürich Manfred R. Schroeder
July 2005



Preface to the Third Edition

Number theory has not rested on its laurels since the appearance of the second
edition in 1985. Fermat’s last theorem has finally been proven – some 350 years
after its bold pronouncement. And Andrew Wiles will before long receive the cov-
eted Wolfskehl Prize of the Göttingen Academy of Sciences. Elliptic curves, which
played such a large role in the proof, have given new impetus to fast factoring
(Sect. 20.8). Even faster factoring is in the offing if ever quantum computers can
be persuaded to cohere long enough for the results to be read out (Sect. 20.8).

Additive number theory has found new applications in exact models in statistical
mechanics. This new edition has therefore been amplified by several topics from ad-
ditive number theory: prime clusters and prime spacings (Sects. 4.8–12), the Gold-
bach conjecture (Sect. 4.13), and the sum of three primes (Sect. 4.14). “Golomb
rulers”, which started out as a curiosity, have found important applications in radio
astronomy and signal processing (Sect. 30.6). A new application of the two-squares
theorem allows the creation of circularly polarized acoustic waves (Sect. 7.9).

Much has also happened in the application of number theory to dynamical sys-
tems (Sects. 5.10.1 and 5.10.2).

Galois (“maximum-length”) sequences have been turned into multidimensional
arrays with surprising applications in X-ray astronomy (Sect. 14.10). New gratings
and antenna arrays based on the number-theoretic logarithm show directional pat-
terns with suppressed broadside radiation (Sect. 16.10).

Finally, certain aperiodic sequences of integers have given rise to intriguing
rhythms and “baroque” melodies that make us recall the Italian composer Domenico
Scarlatti (Sect. 31.4).

Commensurate with its practical importance, the chapters on cryptography and
data security have been amplified (Chaps. 10 and 13).

Since the appearance of the second edition several conferences have been de-
voted to the practical applications of number theory, such as the Les Houches Winter
School “Number Theory in Physics” [J. M. Luck et al. Number Theory in Physics,
Springer 1990] and the symposium of the American Mathematical Society on the
“Unreasonable Effectiveness of Number Theory”. [S. A. Burr (Ed.): The Unreason-
able Effectiveness of Number Theory, Am. Math. Soc. 1991].

Göttingen and Berkeley Heights Manfred R. Schroeder
March 1997
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Preface to the Second Edition

The first edition quickly shrank on Springer’s shelves, giving me a welcome oppor-
tunity to augment this volume by some recent forays of number theory into new
territory. The most exciting among these is perhaps the discovery, in 1984, of a new
state of matter, sharing important properties with both perfect crystals and amor-
phous substances, without being either one of these. The atomic structure of this
new state is intimately related to the Golden ratio and a certain self-similar (rab)bit
sequence that can be derived from it. In fact, certain generalizations of the Golden
ratio, the “Silver ratios” – numbers that can be expressed as periodic continued frac-
tions with period length one – lead one to postulate quasicrystals with “forbidden”
8- and 12-fold symmetries and additional quasicrystals with 5-fold symmetry whose
lattice parameters are generated by the Lucas numbers (Sect. 32.1).

The enormously fruitful concept of self-similarity, which pervades nature from
the distribution of atoms in matter to that of the galaxies in the universe, also oc-
curs in number theory. And because self-similarity is such a pretty subject, in which
Cantor and Julia sets join Weierstrass functions to create a new form of art (dis-
tinguished by fractal Hausdorff dimensions), a brief celebration of this strangely
attractive union seems all but self set.

It is perhaps symptomatic that with set theory still another abstract branch of
mathematics has entered the real world. Who would have thought that such utterly
mathematical constructions as Cantor sets, invented solely to reassure the scep-
tics that sets could have both measure zero and still be uncountable, would make
a difference in any practical arena, let alone become a pivotal concept? Yet this is
precisely what happened for many natural phenomena from gelation, polymeriza-
tion and coagulation in colloidal physics to nonlinear systems in many branches of
science. Percolation, dendritic growth, electrical discharges (lightnings and Licht-
enberg figures) and the composition of glasses are best described by set-theoretic
fractal dimensions.

Or take the weird functions Weierstrass invented a hundred years ago purely to
prove that a function could be both everywhere continuous and yet nowhere differ-
entiable. The fact that such an analytic pathology describes something in the real
world – nay, is elemental to understanding the basins of attraction of strange attrac-
tors, for one – gives one pause. These exciting new themes are sounded in Chap. 32.
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Preface to the Second Edition xv

Physicists working in deterministic chaos have been touting the Golden ratio g
as the “most irrational” of irrational numbers; and now they gladden us with yet
another kind of new number: the noble numbers, of which g (how aptly named!)
is considered the noblest. Nonlinear dynamical systems governed by these “new”
numbers (whose continued-fraction expansions end in infinitely many 1’s) show the
greatest resistance to the onslaught of chaotic motion (such as turbulence). The rings
of Saturn and, indeed, the very stability of the solar system are affected by these
numbers. This noble feat, too, merits honorable mention (in Sects. 5.3 and 32.1).

Another topic, newly treated and of considerable contemporary import, is error-
free computation, based on Farey fractions and p-adic “Hensel codes” (Sect. 5.12).

Other recent advances recorded here are applications of the Zech logarithm to
the design of optimum ambiguity functions for radar, new phase-arrays with unique
radiation patterns, and spread-spectrum communication systems (Sects. 27.7–9).

A forthcoming Italian translation occasioned the inclusion of a banking puz-
zle (Sect. 5.11) and other new material on Fibonacci numbers (in Sect. 1.1 and
Chap. 32).

Murray Hill and Göttingen Manfred R. Schroeder
April 1985
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Part I
A Few Fundamentals



Chapter 1
Introduction

“Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk.”

– Leopold Kronecker

Hermann Minkowski, being more modest than Kronecker, once said “The primary
source (Urquell) of all of mathematics are the integers.” Today, integer arithmetic is
important in a wide spectrum of human activities and natural phenomena amenable
to mathematic analysis.

Integers have repeatedly played a crucial role in the evolution of the natural sci-
ences. Thus, in the 18th century, Lavoisier discovered that chemical compounds are
composed of fixed proportions of their constituents which, when expressed in proper
weights, correspond to the ratios of small integers. This was one of the strongest
hints to the existence of atoms, but chemists for a long time ignored the evidence
and continued to treat atoms merely as a conceptual convenience devoid of any
physical meaning. (Ironically, it was from the statistical laws of large numbers in
Einstein’s analysis of Brownian motion at the beginning of our own century, that the
irrefutable reality of atoms and molecules finally emerged.)

In the analysis of optical spectra, certain integer relationships between the wave-
lengths of spectral lines emitted by excited atoms gave early clues to the structure of
atoms, culminating in the creation of matrix mechanics in 1925, an important year
in the growth of integer physics.

Later, the near-integer ratios of atomic weights suggested to physicists that the
atomic nucleus must be made up of an integer number of similar nucleons. The
deviations from integer ratios led to the discovery of elemental isotopes.

And finally, small divergencies in the atomic weight of pure isotopes from exact
integers constituted an early confirmation of Einstein’s famous equation E = mc2,
long before the “mass defects” implied by these integer discrepancies blew up into
widely visible mushroom clouds.

On a more harmonious theme, the role of integer ratios in musical scales has
been widely appreciated ever since Pythagoras first pointed out their importance.
The occurence of integers in biology – from plant morphology to the genetic code –
is pervasive. It has even been hypothesized that the North American 17-year cicada
selected its life cycle because 17 is a prime number, prime cycles offering better
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protection from predators than nonprime cycles. (The suggestion that the 17-year
cicada “knows” that 17 is a Fermat prime has yet to be touted though.)

Another reason for the resurrection of the integers is the penetration of our
lives achieved by that 20th-century descendant of the abacus, the digital computer.
(Where did all the slide rules go? Ruled out of most significant places by the ubiq-
uitous pocket calculator, they are sliding fast into restful oblivion. – Collectors of
antiques take note!)

An equally important reason for the recent revival of the integer is the congru-
ence of congruential arithmetic with numerous modern developments in the natural
sciences and digital communications – especially “secure” communication by cryp-
tographic systems. Last but not least, the proper protection and security of computer
systems and data files rests largely on congruence relationships.

In congruential arithmetic, what counts is not a numerical value per se, but rather
its remainder or residue after division by a modulus. For example, in wave interfer-
ence (be it of ripples on a lake or of electromagnetic fields on a hologram plate) it
is not path differences that determine the resulting interference pattern, but rather
the residues after dividing by the wavelength. For perfectly periodic events, there
is no difference between a path difference of half a wavelength or one and a half
wavelengths: in either case the interference will be destructive.

One of the most dramatic consequences of congruential arithmetic is the exis-
tence of the chemical elements as we know them. In 1913, Niels Bohr postulated
that certain integrals associated with electrons in “orbit” around the atomic nucleus
should have integer values – a requirement that 10 years later became comprehen-
sible as a wave interference phenomenon of the newly discovered matter waves:
essentially, integer-valued integrals meant that path differences are divisible by the
electron’s wavelength without leaving a remainder.

But in the man-made world, too, applications of congruential arithmetic abound.
In binary representation and error-correcting codes, the important Hamming dis-
tance is calculated from the sum (or difference) of corresponding places modulo 2.
In other words, 1+1 equals 0 – just as two half-wavelength path differences add up
to no path difference at all.

Another example of a man-made application of congruential arithmetic is a
public-key encryption method in which messages represented by integers are raised
to a given power and only the residue, modulo a preselected encryption modulus, is
transmitted from sender to receiver. Thus, in a simplified example, if the message
was 7, the encrypting exponent 3 and the modulus 10, then the transmitted message
would not be 73 = 343, but only the last digit: 3. The two most significant digits are
discarded. Of course, in a serious application, the prime factors of the modulus are
so large (greater than 10200, say) that knowledge of their product gives no usable
clue to the factors, which are needed for decryption.

Thus, we are naturally led to the most important concept of number theory: the
distinction between primes and nonprimes, or composites, and to the properties of
divisibility, the greatest common divisor and the least common multiple – precursor
to the art of factoring.
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These topics form the theme of the first four chapters of the book. The reader will
find here an emphasis on applications (musical scales and human pitch perception,
for example). Also, the useful probabilistic viewpoint in number theory is intro-
duced here (Chap. 4) and applied to “derivations” of the prime density and coprime
probability.

The book continues with a discussion of continued fractions, Fibonacci series
and some of their endless applications (Chap.5).

In Chap. 6 congruences are introduced and put to work on Diophantine equa-
tions – both linear and nonlinear (Chap. 7). Again, there are interesting applications
both within mathematics (Minkowski’s geometry of numbers) and without.

In Chap. 8, in preparation for one of our main themes – cryptography (Chaps. 10,
13, 15) – we become acquainted with the pivotal theorems of Fermat and Euler.

Some of the basic concepts of factoring – the various divisor functions – are
taken up in Chaps. 11 and 12, again stressing the probabilistic viewpoint.

Chapter 14 is devoted to the important concepts of order, primitive roots and the
number theoretic index function. Among the applications encountered are period
lengths of periodic fractions and, surprisingly, a prescription for better concert hall
acoustics.

In Chap. 16 we are introduced to quadratic residues, Gauss sums and their
Fourier spectrum properties.

The Chinese remainder theorem (Chap. 17) allows us to tackle simultaneous con-
gruences and quadratic congruences (Chap. 19). The so-called Sino-representation
of integers leads to important fast algorithms, a theme that is continued in Chap. 18
where we examine the basic principle (Kronecker factorization, direct products) be-
hind such indispensable algorithms as the fast Hadamard (FHT) and Fourier trans-
forms (FFT).

Since in encryption there will always be a need for very large primes beyond the
“primality horizon”, that need may have to be satisfied by pseudoprimes which we
define in Chap. 20. The techniques of testing the so-called strong pseudoprimes are
related to such “games” as coin tossing over the telephone and certified digital mail.

Chapter 22 introduces generating functions and partitions, an important topic in
additive number theory, which is a difficult field and poses many unsolved problems.

In preparation for our excursion into the art and science of dividing the circle
(Chap. 24), we acquaint ourselves with the Möbius function (Chap. 21) and then put
polynomials (Chaps. 25 and 26) to use to construct finite number fields (Chap. 27).
Some of their numerous applications based on the spectrum and correlation proper-
ties of “Galois” sequences are discussed in Chap. 28 (error-correcting codes, preci-
sion measurements and antenna theory), Chap. 29 (random number generators) and
Chap. 30 (special waveforms for sonar, radar and computer speech synthesis). Min-
imum redundancy arrays, important in radio astronomy, underwater sound detection
and real-time diagnostic tomography, are also mentioned here.

The book concludes with a brief excursion into the world of fractals and artistic
design based on the aesthetically desirable mixture of regularity and randomness
inherent in the distribution of primes and primitive polynomials.
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In the sections which follow some of these topics are introduced informally, to-
gether with the leading dramatis personae. The reader interested in widening her or
his arithmetic horizon is referred to [1.1–28].

The Family of Numbers

Whole(some) Numbers

Before approaching prime and other numbers, we should take a brief look at the
family of numbers in which they grew up. There are, first of all, the natural numbers
or positive ‘whole numbers’ – 1, 2, 3, 4 and so forth – which, according to the
German mathematician Leopold Kronecker, were created by God. Good to know!
All the rest, Kronecker decreed, is Menschenwerk (the work of mere mortals).

Of course, the integers werde not revealed in one fell swoop. First came the
positive integers (although not a mathematical text, recall the Book of Numbers).

But soon people, especially traders, felt a need for negative numbers (think of
overdrawn bank accounts). But the zero so familiar to us remained unrecognized
for a long long time. What a difficult time our distant ancestors had with ‘nothing’
is perhaps best illustrated by the following tale. The ancient Egyptians, perennial
pyramid builders, had a neat formula for the volume V of an unfinished pyramid,

V =
h
3
(a2 +ab+b2), (1)

where h is the height, and a und b are the sides of the base and the top square,
respectively. Of course, for a = b, they got the volume of the cube: ha2. Check!

The above formula ist quite an accomplishment. Even with modern calculus it
takes a clever trick or two to derive it. And of course, the Egyptians didn’t have
calculus, modern or otherwise.

Admittedly, the formula for unfinished pyramids was important because it al-
lowed them to calculate, on the basis of the added volume, necessary material and
the weekly wages (if any). But, beyond belief, they never seem to have hit upon the
simple formula for the finished pyramid,

V =
h
3

a2, (2)

obtained by setting b equal to zero in their equation. Where they afraid of zero? Did
they ‘equate’ it with nothingness, the fearsome void? After all, as the pyramid nears
completion, b gets smaller and smaller and, upon completion, b vanishes. It sounds
so easy to our modern minds. But what do you do, if you don’t have zero? This little
story just goes to show again how misleading it can be to argue an ancient case from
hindsight.
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How dangerous ‘nothing’ or ‘nobody’ can be is nicely illustrated by the account
of Odysseus and the Cyclops whom Odysseus told his name was Outis, Greek for
nobody. Later when the itinerant hero attacked the one-eyed monster, this cried
‘Help, help. Nobody is killing me’. And nobody came.

Rational Numbers

The positive and negative whole numbers, supplemented by zero, constitute the inte-
gers . . . −3,−2,−1,0,1,2, . . . , literally (from Latin) the ‘untouched ones’. But they
didn’t remain ‘untouched’ for long. Already the old Greeks used them to describe
ratios, like the side ratio 3/4 of a 3-by-4 rectangle. Or the ratio of the rectangle’s
diagonal (5 according to Pythagoras) to the longer side: 5/4, a rational number.

Maybe the Greeks, so fond of ratios, should have stopped then and there. But no,
they had to venture forth and ask for the ratio of the diagonal of a 1-by-1 square to its
side – and almost lost their minds. Obviously, the desired ratio is greater than 1 but
less than 2. So what is it? Let’s try m/n, where m/n is the ratio of two integers with
no common factors, say 7/5. The square of this ratio, 49/25, once more following
Pythagoras, must equal 12 +12 = 2. Thus, we can see that 7/5 was not a bad guess –
a bit to small, but close. Really, we are looking for two numbers m and n such that
m2 = 2n2, implying that m must be even, say m = 2k. With k we have m2 = 4k2 = 2n2

or 2k2 = n2. Now it is the turn of n to be even. Hence the solution of the Greek’s
problem is two even integers that have no common factors. Unfortunately, two even
integers do have a common divisor, namely 2. Hence there are no integers m and n
such that (m/n)2 = 2. End of proof.

The Greeks were devasted. Here they had found a manifest length, the diagonal
of a square, that to their way of reckoning had no length. There was no common
yardstick for measuring both the sides and the diagonal of a square. And they had
had such an enduring faith in ‘yardsticks’! Their enduring dictum ‘everything is
number’ endured no more.

It took a long time for mathematicians, not only in Greater Greece, to simply
call such numbers as the square root of 2, written

√
2, irrational numbers. And

it wasn’t until the 19th century that the German mathematician Richard Dedekind
(1831–1916) showed that irrational numbers were nothing to be afraid of and that
one could calculate with them without running the risk of contradiction. Thus, for
example, the product of the diagonal of the 1-by-1 square,

√
2, and the diagonal of

the 2-by-2 square, which equals
√

22 +22 =
√

8, is
√

2×
√

8 =
√

16 = 4. In other
words, ‘no yardstick times no yardstick equals a yardstick.’ Try it on your pocket
calculator (but don’t throw it away if the answer is 3.999999999).

Transcendental Numbers

Irrational numbers, such as
√

2, are given by algebraic equations like x2 = 2 or
y2 + y = 1. the latter equation has the positive solution y = 1

2 (
√

5−1), an irrational
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number known as the golden mean. (In fact, loose-lipped physicists sometimes call
the golden mean ‘the most irrational number’ – for excellent reasons, as we shall
see.)

What algebraic equation gives π as a solution? Again we are stymied. the number
π transcends the algebraic irrationals and is therefore called transcendental, a fact
that was not proved until 1882 by Ferdinand Lindemann1 (This proof should have
put a full stop to the syndicate of circle squares, but some people are still trying.)

Another well-known transcendental number is Napier’s number e, the base of the
natural logarithmus. And there are many more: in fact, the number of transcenden-
tals is not only infinite but uncountably infinite. In other words, you can’t make a
list of them, not even an infinitely long list. By contrast, the algebraic numbers, like√

2 and the golden mean, form a countably infinite set.
Some algebraic numbers are difficult to approximate by rationals. By contrast,

there are transcendental numbers that come dangerously close to being mistaken for
a rational number. Take the ‘Liouville number’

L = 0.1100010000000000000000010 . . .

whose only nonzero digits are 1s with the nth 1 appearing in the (n!)th place. Li-
ouville was able to show that L cannot be the solution of any algebraic equation. L
was thus the first solid evidence for the existence of transcendental numbers, even
before e and π were shown to be transcendental. The ‘degree of irrationality’ plays
a significant role in the physics of nonlinear dynamical systems.

Another numerical distinction important in modern physics is the difference be-
tween normal numbers and nonnormals. For normal numbers in a given base all
digits and digit combinations are equally likely. For example π is believed to be a
normal number in the decimal system and the first billion digits bear this out, but
there is no proof. Similarly,

√
2 appears to be normal in decimal notation but, ac-

cording to recent extensive tests, less so than π . And e seems to be less normal in
decimal than either π or

√
2. Very Curious!

1.1 Fibonacci, Continued Fractions
and the Golden Ratio

In 1202, the Italian mathematician Fibonacci (also known as Leonardo da Pisa)
asked a simple question. Suppose we have a pair of newly born rabbits who, after
maturing, beget another pair of rabbits. These children, after they mature, beget
another pair. So we have first one pair of rabbits, then two pairs, and then three
pairs. How will this continue, if it does, supposing that each new pair of rabbits,
after one season of maturing, will beget another pair each and every breeding season
thereafter? To make things simple, Fibonacci also assumed that rabbits never die.

1 Lindemann’s greatest scientific contribution may have been to physics rather then mathematics by
scaring away the young Heisenberg who originally wanted to study mathematics under Lindemann.
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Obviously, the number of rabbit pairs in the nth breeding season will be equal to
the number of pairs one season earlier (because none have died) plus the number of
rabbits two seasons earlier because all of those rabbits are now mature and each pair
produces a new pair.

Calling the number of rabbit pairs in the nth season Fn (F as in Fibonacci), we
then have the recursion formula

Fn = Fn−1 +Fn−2.

Starting with one immature pair of rabbits (F1 = 1, F2 = 1), it is easy to calculate
the number of rabbit pairs each successive season:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,

where each number is the sum of its two predecessors. Nothing could be much sim-
pler than this – and few things probably seem as useless. At least this is what one
might be led to believe by the unreality and triviality of this rabbit story. And yet
this apparently harmless example of numerology touches more domains of mathe-
matics and more diverse applications than many other simply defined collections of
numbers.

For one, the ratio of successive numbers approaches the so-called Golden ra-
tio g = 1.618 . . . , often considered the ideal proportion in art. (Strangely, the very
same ratio also plays a role in modern theories of deterministic chaos, where g is
considered the “most irrational” of all ratios.)

The Golden ratio is defined in geometry by sectioning a straight line segment in
such a way that the ratio of the total length to the longer segment equals the ratio of
the longer to the shorter segment. In other words, calling the total length of the line
l, and the longer segment a, g is determined by the equation

g :=
l
a

=
a

l −a
.

Substituting g for l/a on the right side of the equation yields

g =
1

g−1
,

which leads to the quadratic equation for g:

1+g−g2 = 0.2

The only positive solution (length ratios are positive) is

g =
1+

√
5

2
,

2 The connoisseur may recognize the similarity between this equation, which defines the Golden
ratio, and the generating function of the Fibonacci sequence: 1/(1− x− x2).
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which also happens to be the ratio of a diagonal to a side in the regular pentagon.
Since no higher roots than square roots (

√
5) appear in this ratio, it follows that

the regular pentagon can be constructed by straightedge and compass alone. So
Fibonacci’s rabbits have now brought us into contact with one of the classical prob-
lems of geometry – the problem of circle division or cyclotomy, a problem that will
occupy us again and again in this book because of its importance for fast computa-
tional algorithms and numerous other applications.

Incidentally, there is also a fast algorithm making use of g to compute Fn without
repeated additions:

Fn ≈
gn
√

5
,

where the wavy equal sign here means “take the nearest integer”.
The remarkable numbers Fn can also be used to represent any positive integer

N in a unique way by the simple rule that N is written as the greatest Fn not ex-
ceeding N and a (positive) remainder. Then this remainder is represented by the
greatest Fibonacci number not exceeding it and another remainder, and so forth. For
example, with the aid of the above sequence,

83 = 55+28

28 = 21+7

7 = 5+2.

Thus, in the Fibonacci system,

83 = 55+21+5+2.

Note that no two of the Fibonacci numbers occurring in the expansion of 83 are
adjacent Fn. This is a general rule and distinguishes the Fibonacci system from the
binary system where adjacent powers of 2 are often needed. (For example, 83 =
64+16+2+1, where 2 and 1 are adjacent powers of 2.)

This property of the Fibonacci system has two interesting (and somewhat un-
expected) consequences. The first is that in fast search algorithms it is often more
efficient to base sequential searches (for the zero of a given function, for example)
on Fibonacci numbers rather than binary segmentation. As a second consequence,
the Fibonacci system leads to a winning strategy for a game of Fibonacci Nim.
[Rules of the game: 1) Take at least one chip, but not more than twice the number of
chips just removed by your opponent. 2) On the first move, don’t take all the chips.
3) He who takes the last chips wins.] In our numerical example, if you have before
you a pile of 83 chips, take away 2 chips (the least term in the decomposition of 83)
to start your winning strategy.

Interestingly, the ratios of successive Fibonacci numbers are given by a very sim-
ple continued fraction involving only the integer 1. To wit: 1 is the ratio of the first
two Fibonacci numbers. Then 1 + 1/1 = 2 is the ratio of the next two Fibonacci
numbers. Next 1 + 1/(1 + 1/1) = 3/2 gives the next two numbers. Repeating this
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process yields successively 5/3, 8/5, 13/8, etc. and converges on the Golden ra-
tio. Numbers, like the Golden ratio, whose continued fraction expansion ends in
infinitely many 1’s have recently been christened “noble” numbers, because such
numbers characterize nonlinear dynamic systems that are most resistant to chaos.

Continued fractions, treated in detail in Chap. 5, are a powerful mathematical tool
playing a role of increasing importance in modern physics and other quantitative
sciences. Indeed they are much more “natural” and inherently mathematical than,
say, decimal fractions.

1.2 Fermat, Primes and Cyclotomy

No one doubts that 9 plus 16 equals 25, or, somewhat more elegantly,

32 +42 = 52.

In fact, even the Pythagoreans knew that

x2 + y2 = z2, (1.1)

has solutions for many values of x,y,z other than the (trivial) x = y = z = 0 and
the above solution x = 3, y = 4, z = 5; another example is x = 5, y = 12, z = 13.
Such triplets of numbers, of which there are infinitely many, are called Pythagorean
numbers. The problem of finding all such numbers is treated in Diophantus’s Arith-
metica, a Latin translation of which was published in 1621.

About fifteen years later, Pierre de Fermat (1601–1665), son of French leather
merchants, accomplished Toulouse jurist, eminent part-time mathematician and in-
ventor of the principle of least action (Fermat’s principle) scribbled in his personal
copy of Diophantus’s book the following now famous note: “I have discovered a
truly remarkable proof of this theorem which this margin is too small to contain.”
By “this theorem” Fermat meant that

xn + yn = zn (1.2)

has no integral solution with xyz �= 0 for n > 2. “This theorem” is now known as
Fermat’s last theorem or simply FLT. Unfortunately, Fermat’s note notwithstanding
FLT was not a theorem, but only a conjecture, because it was only recently proved –
in spite of massive mathematical efforts spanning several centuries.

As a result of these efforts, which have spawned much new mathematics, it is now
known that up to very large values of the exponent n (n ≈ 108 if xyz and n have no
common divisor) there are no solutions of (1.2). But 350 years after Fermat’s casual
remark, a general proof was still not in sight. In fact, the question of FLT’s validity
might have remained unresolved forever, because if it is false, it is very unlikely that
a counterexample will be found – even with the aid of today’s fastest computers. (Of
course, a single counterexample would suffice to inter FLT for good.)
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However, some progress on FLT had been made. In 1922, Lewis Joel Mordell
conjectured that (1.2) for n > 3 has at most a finite number of solutions. In spite
of many attempts by the world’s leading mathematicians, it was not until 1983 that
a young German mathematician, Gerd Faltings, proved the recalcitrant conjecture
true.

Fermat was luckier with an earlier edict, now called Fermat’s theorem (without
the “last”). It states that a prime number p divides ap−1 −1 without remainder if a
and p have no common divisor. Symbolically Fermat’s theorem looks as follows

p|ap−1 −1, if (p,a) = 1. (1.3)

For example, p = 7 divides 26 −1 = 63.
Although the ancient Chinese thought otherwise, a converse of Fermat’s theorem

is not true: if p > 2 divides 2p−1 −1, p is not necessarily a prime. Since large prime
numbers are in great demand these days (for cryptographic purposes, for example)
such a converse would have been very useful as a sieve for primes. This is regret-
table, but primes are simply not that easy to catch. Nevertheless, Fermat’s theorem
forms the basis of sophisticated primality tests that are capable of stilling our hunger
for primes a hundred or more digits long.

Another great invention of Fermat’s are the so-called Fermat numbers, defined by

Fm := 22m
+1, (1.4)

which Fermat mistakenly thought to be prime for all m ≥ 0. Indeed F0 = 3, F1 = 5,
F2 = 17, F3 = 257, F4 = 65537 are all prime numbers (called Fermat primes) but,
as Leonhard Euler showed, F5 = 4294967297 is divisible by 641. This is easily
verified with a good pocket calculator – which neither Fermat nor Euler possessed.
But Euler knew that 5 · 27 + 1 = 641 was a potential factor of F5 and he could do
the necessary calculations in his head (which stood him in good stead when he went
blind).

To this day, no Fermat prime larger than F4 has been found. At present the small-
est Fermat number whose primality status remains unknown is F20, a 315653-digit
number. On the other hand, a numerical monster such as F3310 is known to be
composite. In fact, modern factoring algorithms have shown it to be divisible
by 5 · 23313 + 1. This is no small achievement, because F3310 is unimaginably
large, having more than 10990 digits! (This is not to be confused with the ex-
tremely large number 10990 which, however, is miniscule by comparison with
F3310.)

On March 30, 1796, the Fermat primes, until then largely a numerical curiosity
(the mathematical sleeper of the century, so to speak), were raised from dormancy
and took on a new beauty embracing number theory and geometry. On that day
the young Carl Friedrich Gauss showed that a circle could be divided into n equal
parts by straightedge and compass alone, if n was a Fermat prime. Progress on this
problem had eluded mathematicians since classical Greece, in spite of many efforts
over the intervening 2000 years.
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Since the time of Gauss the art of cyclotomy, the learned name for dividing the
circle, has been studied and perfected in numerous other number fields with spectac-
ular successes. Among the many ingenious applications are methods for designing
highly effective error-correcting codes and fast computational algorithms, for mak-
ing precision measurements of exceedingly weak general relativistic effects, and
even designing unique phase gratings for scattering sound in concert halls to achieve
better acoustic quality. Sometimes the range of applications is even more dazzling
than the mathematical invention itself!

1.3 Euler, Totients and Cryptography

Fibonacci, the lone mathematical luminary of the European Dark Ages, and Fermat,
man of the Renaissance, were followed in the 18th century by an almost baroque
flowering of mathematical genius, of whom Leonhard Euler was the most colourful
and prolific centrepiece. Euler’s collected works, currently numbering 70 published
volumes, are still incomplete. Besides being foremost in geometry and analysis, and
a pioneer in the most varied applications of mathematics to physics and astronomy,
he added much to the theory of numbers.

Among his myriad contributions while working at the Academies of St. Petersburg
and Berlin, few epitomize his genius as concisely as the formula

eiπ = −1, (1.5)

which he not only discovered as a mathematical identity but which also comprises
three of Euler’s enduring notational inventions: e for the base of the natural loga-
rithms, i for the square root of −1, and π for the ratio of a circle’s circumference to
its diameter.

One of Euler’s fundamental contributions to number theory was a generalization
of Fermat’s theorem (1.3) which he extended to composite (nonprime) exponents m:

m|aφ(m) −1, (1.6)

if m and a have no common divisor. Here φ(m) is Euler’s totient function, which
counts how many integers from 1 to m−1 have no common divisor with m. If m is
prime, then φ(m) equals m−1, and we are back to Fermat’s theorem (1.3). But for
composite m we obtain totally new and often unexpected results. For example, for
m = 10, φ(m) = 4 and we have

10|a4 −1.

In other words, the fourth power of any number not containing the factors 2 or 5
has 1 as the last digit, to wit: 34 = 81, 74 = 2401, 94 = 6561, 134 = 28561, and
so on.
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Euler’s totient function pervades much of number theory, including such statis-
tical concepts as the probability that two numbers selected at random will have no
common divisor. This probability tends to the average value of φ(m)/m, which in
turn approaches 6/π2 ≈ 0.61 even for relatively small ranges of m (m = 1 to 10, say).
The same asymptotic average of φ(m)/m, incidentally, also describes the probabil-
ity that a random integer will not contain a square as a factor. In fact, even among
the 10 smallest natural numbers (1 to 10) the proportion of “squarefree” numbers
(1, 2, 3, 5, 6, 7, i. e., 6 out of 10) is already close to the asymptotic value 6/π2.

Recently, Euler’s function has taken on a new and most practical significance: it
is the basis of a promising public-key encryption system. In public-key encryption
the encrypting keys of all participants are, as the name implies, publicly known.
Thus, anyone wishing to send a secret message to Mr. Sorge can encrypt it with
Sorge’s published key. And Sorge can, of course, decrypt the message intended for
him, because he has the proper “inverse” key. But no one else can do this, since the
published key contains no useful cue to the inverse key. If the key consists of an
“exponent” k and a “modulus” m (typically the product of two 100-digit numbers),
the inverse exponent k′ is in principle computable from the expression

kφ(φ(m))−1. (1.7)

But in practice this is impossible because, to calculate φ(m), the factors of m must
be known. And those factors are not published – nor are they easily derived from m.
Even with today’s fastest factoring algorithms it could take aeons to find the factors
of properly chosen 200-digit numbers. And random guessing is no help either, be-
cause φ(m) fluctuates between m− 1 (for prime m) and values small compared to
m. In other words, the chances of a random guess are about 1 in 10100.

On the other hand, for one who knows the factors of m, Euler’s function quickly
gives the answer with the aid of (1.7). Did Euler ever dream of such an application
when he invented the totient function?

1.4 Gauss, Congruences and Diffraction

Carl Friedrich Gauss, the son of a poor labourer in the German ducal city of
Brunswick, was one of the greatest mathematicians in history. Yet he almost missed
becoming a mathematician because he excelled in languages, being fluent at an early
age in classical Greek and Latin, in addition to French and his native German. But
his desire to study philology came to an abrupt end the day he discovered how to
divide a circle into 17 equal parts. Gauss was not yet 19 years old when he made this
epochal discovery. From his extensive reading, Gauss knew that no progess in “cy-
clotomy” had been made since the time of the ancient Greeks, though no effort had
been spared in the course of two millennia. Gauss therefore reasoned that he must
be a pretty good mathematician, and resolved to devote his life to mathematics –
without, however, forsaking his love of literature and languages. In fact, when he
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was in his sixties he added another foreign language, Russian, to his repertoire en-
abling him to read Pushkin in the original as well as some innovative mathematical
papers that had never been translated into a Western language.

One of Gauss’s many mathematical inventions was the congruence notation. In-
stead of writing m|a for “m divides a”, Gauss introduced a kind of equation, a
congruence:

a ≡ 0 (modm), (1.8)

which reads “a is congruent 0 modulo m”. This notation can be immediately gener-
alized to

a ≡ b (modm), (1.9)

which means that a−b is divisible by m or, equivalently, a divided by m leaves the
remainder b.

Just as calculus was much advanced by the seductive notation of Leibniz (the
differential quotient and the integral sign), so the congruence notation of Gauss had
an import beyond expectation. One reason was that the congruence notation brings
out remainders, and remainders are often more important than the rest of a problem.
This is true not only in wave interference, as has already been pointed out, but also
in many other situations in science, technology and daily life. For example, the trick
of many cryptographic systems is to work with remainders: the secret information
is locked up in remainders, so to speak, to be released only with a secret decrypting
key.

One of the mathematical entities that occupied Gauss a long time are certain
complex sums like

S(n) =
n−1

∑
k=0

ei2πk2/n (1.10)

now called Gauss sums. It is relatively easy to show that |S(n)|2 = n for odd n. But
it took even the great Gauss, to his own dismay, years to prove his guess of the value
of S(n) itself.

The sequence defined by the individual terms in the sum (1.10), which repeats
with a period of n if n is prime, has a noteworthy correlation property: the periodic
correlation is strictly zero for nonzero shifts. As a consequence, the Fourier spec-
trum of such a periodic sequence has components whose magnitude are all alike.
Such spectra are called flat or white. And of course the terms of the sequence itself
also have equal magnitudes, namely 1. These facts have led to numerous interesting
applications in physics and communications.

If the above sequence represents wave amplitudes at uniform intervals along a
linear spatial coordinate then, at some distance, the wave will break up into many
wavelets with (nearly) equal energies! Thus, if the terms of a Gauss sum are put to
proper use in what may be called quadratic-residue phase gratings, then coherent
light, radar beams or sound waves can be very effectively scattered. For light this



16 1 Introduction

leads to the ultimate in frosted glass, with interesting applications in coherent op-
tical processing. For radar and sonar detection this means less visibility. In noise
control, such phase gratings permit one to disperse offending sound where it cannot
be absorbed (along highways, for example). And in concert hall acoustics, the pos-
sibility of diffusing sound without weakening it means better acoustic quality for
more musical enjoyment.

1.5 Galois, Fields and Codes

We all hear in school about fractions or rational numbers, easy objects of adding,
subtracting, multiplying and dividing (except by zero). Like whole numbers, the
rational numbers form a countable, albeit infinite, set. Such a corpus of numbers is
called a field.

Interestingly, there are also finite fields. Consider the seven numbers 0, 1, 2, 3,
4, 5, 6. If we disregard differences that are multiples of 7 (i. e., if we identify 3,
10, −4, and so forth), we can add, subtract and multiply to our heart’s content and
stay within these seven numbers. For example 5+4 = 2, 3−6 = 4, 2 ·4 = 1. These
operations obey the customary commutative, associative and distributive laws. To
illustrate, 4 · (5 + 4) = 4 ·5 + 4 ·4 = 6 + 2 = 1; and we obtain the same result if we
first add then multiply: 4 · (2) = 1.

But what happens with division; for example, what is 1 divided by 2, 1/2, in this
finite number field? It must be one of the numbers 0, 1, 2, 3, 4, 5, 6, but which? In
other words, what number times 2 equals 1? By trial and error (or consulting one
of the above examples) we find 1/2 = 4 and, of course, 1/4 = 2, and consequently
3/2 = 3 ·4 = 5.

How can we find reciprocals in a systematic way; what is the general law? The
answer is

1/n = n5

for n �= 0. (As usual, 0 has no inverse.) Thus, 1/3 = 35 = 5, and therefore 1/5 = 3.
Likewise 1/6 = 65 = 6, i. e., 6 is its own inverse! But this is not unusual because the
rational numbers, too, have a self-inverse other than 1, namely −1. (And inciden-
tally, in our finite number system −1 is equivalent to 6.)

While it may seem odd that the sum of 2 odd numbers is sometimes odd (3+5 =
1, for example) and sometimes even (1 + 5 = 6) or that 1/4 of 1/4 is 1/2, all of
these results are nevertheless perfectly consistent, and it is consistency that counts
in mathematics.

But what good is consistency? Are finite fields just consistent nonsense? The
answer is an emphatic no. For one thing, finite fields have held a secure place in
algebra ever since the young Frenchman Evariste Galois used them to show the
conditions under which algebraic equations have solutions in radicals (roots).
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Such “radical” solutions had been known for quadratic equations since antiquity
and for cubic and quartic equations since the Renaissance. But curiously enough,
no one had been able to find a formula in radicals for the general equation of the
fifth degree or higher. Then, in 1830, the 19-year-old Galois, generalizing a result
obtained by the very able Norwegian mathematician Niels Abel, gave the general
and definitive answer to a problem that had baffled many generations of mathemati-
cians. Unfortunately, Galois was killed in a duel (probably a political provocation in
amorous disguise) before he turned 21, but his name will be enshrined forever in the
annals of algebra and immortalized by the addition to the mathematical vocabulary
of such important terms as Galois group and Galois field, the latter a synonym for
finite field.

Of particular importance in modern digital applications are the finite fields having
pm members, where p is some prime number, p = 2 being the case most relevant to
computers, communication and encryption. The simplest such field with m > 1 has
22 = 4 elements (members). But these elements cannot be the scalar numbers (0, 1,
2, 3, say) if we want to interpret them as usual. Because then we would have, for
example, 2 · 2 = 4; and 4 is congruent 0 modulo 4. As a consequence the equation
2x = 0 has two solutions in such a “nonfield”: x = 0 and x = 2. On the other hand,
the equation 2x = 1 has no solution; in other words, 2 has no inverse. This is no way
to construct a field!

How then are we to construct a field with four elements? The problem is remi-
niscent of the situation in quantum mechanics when physicists tried to convert the
Schrödinger wave equation into a relativistically invariant form. In order to preserve
both quantum essence and Lorentz invariance, P. A. M. Dirac discovered that he had
to replace the Schrödinger scalar ψ-function by a vector function with four compo-
nents, representing two possible spins and two electric charges (spin “up” or “down”
and electron or positron).

Similarly, with our four-element field, the solution is to choose vectors or “n-
tuples” as field elements. For a four-element field we may try binary vectors with
two components, each component being 0 or 1:

0 0

1 0

0 1

1 1

Addition is componentwise, without carries. The 00-element is the zero-element
of the field, and the 10 is the one-element. The two remaining elements must be
multiplicative inverses of each other:

0 1 ·1 1 = 1 0.

Any nonzero element raised to the third power must equal the one-element 10. This
fixes the multiplication table of the field:
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· 1 0 0 1 1 1

1 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0
1 1 1 1 1 0 0 1 .

(1.11)

Here the entry 01 · 01 = 11 is the only nonredundant one; all others follow or are
fixed a priori.

Instead of proving the consistency of the resulting algebra, we give a simple
example of the distributive law:

0 1 · (1 1+1 0) = 1 0+0 1 = 1 1,

which yields the same result as adding before multiplying:

0 1 (1 1+1 0) = 0 1 · (0 1) = 1 1.

The choice of symbols for our finite field is of course arbitrary. To save ink, we
might write simply 0 instead of 00 and 1 instead of 10. However, for 01 we need a
new symbol, say ω . We must then identify 11 with ω2 because of our multiplication
table (1.11). With this notation, one of the entries of (1.11) tells us that ω ·ω2 =
ω3 = 1. Furthermore, 1+ω +ω2 =̂ 10+01+11 = 00 =̂ 0.

This is all we need to know about our new symbol ω to calculate in our four-
element field GF(4). There is a convenient interpretation of ω in terms of complex
numbers. Because ω3 = 1, ω must be a third root of 1, and, because ω �= 1, it
must be either exp(2πi/3) or exp(−2πi/3). This is of course no accident: the three
nonzero elements of GF(4) form a cyclic group of order three, of which the three
roots of 1 are another representation. (However, this analogy does not carry over to
addition. For example, our −ω equals ω . To wit: −ω = 0−ω ∧= 00−01 = 01

∧= ω .)
The ω-representation of GF(4) is used in Sect. 31.3 to construct a pretty necklace

with four different kinds of pearls.
Of course, a four-element Galois field is not very exciting, but the eight-element

field GF(23) has interesting applications. But first we must give a rule for its con-
struction. We start with the zero- and one-elements.

0 0 0

1 0 0

and generate the following two elements by rightward shifts, calling them g1 and
g2, respectively:

g1 = 0 1 0

g2 = 0 0 1.

Then we continue shifting, and for each 1 “disappearing” on the right, we add (mod-
ulo 2) a 1 to each of the two left places. Thus, our field elements are
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g−∞ = 0 0 0
g0 = 1 0 0
g1 = 0 1 0
g2 = 0 0 1
g3 = 1 1 0
g4 = 0 1 1
g5 = 1 1 1
g6 = 1 0 1

g7 = 1 0 0 = g0

g8 = 0 1 0 = g1, etc.

(1.12)

Another (equivalent) method of generating GF∗(23), i. e., the nonzero elements of
GF(23), is to focus on the columns of (1.12). The columns are generated by the
recursion

an+3 = an+1 +ana (1.13)

with the initial conditions 100, 010, 001, respectively. All columns have period
23 −1 = 7 and are identical within a cyclic shift. Each of the seven nonzero triplets
occurs exactly once per period.

An important application of GF(2m) occurs in binary error-correcting codes. One
of the simplest codes of block lengths m is obtained by using m information bits
as the initial condition computing the remaining 2m −m− 1 “check bits” with an
appropriate recursion. For m = 3, for example, the three information bits 111 (say)
are supplemented by the four check bits, which according to (1.13) are 0010. Thus,
the total seven-bit code word for the information bits 111 is

1 1 1 0 0 10. (1.14)

Except for the 0000000-word, all code words are cyclic shifts of (1.14). Using our
finite field algebra, it is easy to show that the “Hamming distance” (defined as the
modulo 2 component-wise sum) between any two code words so generated is 4.
Thus, we have constructed a code capable of correcting a single error and detecting
a second error. The occurrence and location of a single error is found by the oc-
currence and position of a single 1 in the sum of the erroneous code word with all
possible code words.

Many other powerful codes can be derived from Galois-field algebra. For ex-
ample, interchanging the roles of information and check bits in the above example
results in the famous Hamming error-correcting code of block length 7.

Other interesting applications arise when we choose +1 and −1 as elements of
GF(2m). The above code words then become periodic pulse trains whose power
spectrum is “white”; i. e., all finite-frequency components of the Fourier trans-
form have equal magnitudes. Thus, Galois-field theory has given us a method of
generating “signals” with constant power in both Fourier domains (time and fre-
quency or space and direction). Such signals are of great value in making precision
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measurements at very low energies – such as in the observation of general relativis-
tic effects in radar echoes from planets and interplanetary spacecraft.

Interestingly, by interchanging the time and frequency domains, the same Galois-
field algebra also yields continuous periodic waveforms with near-minimal ampli-
tude ranges and flat power spectra. Such waveforms have found useful application
in the synthesis by computer of more human-sounding speech.

And by applying these “Galois” sequences of ±1’s is to spatial coordinates,
diffraction gratings of high scattering power can be realized. Such gratings are ideal
diffusors for all kinds of waves: laser light, radar radiations, noise emissions and mu-
sical sound waves. Here is another example of how a relatively abstract mathemati-
cal theory – initiated in the early 19th century by a precocious teenager – can yield
useful results in a variety of applications for which the theory was not constructed.
As is so often the case in human affairs, it is the unexpected that matters most.



Chapter 2
The Natural Numbers

‘O θ ε ò ζ
,

α ρ ı θ μ η τ ı́ ζ ε ı
– Carl Friedrich Gauss

Here we encounter such basic concepts as integers, composites, and primes, and we
learn the very fundamental fact that the composites can be represented in a unique
way as a product of primes.

The least common multiple and the greatest common divisor of two or more
integers may be familiar from high school, but they are ideas that pervade all of
number theory. Here we demonstrate some of their basic properties and point to
some natural phenomena in the real world of gears, planetary motion, and musical
pitch.

If integers can be prime, pairs of integers can be “mutually prime” or coprime if
they have no common factors, in other words, if their greatest common divisor is 1.
Coprimality is another important property of two (or more) integers.

One of the very early tools of number theory is Euclid’s algorithm; it allows us
to find, in a systematic manner, the greatest common divisor of two integers without
solving the often difficult problem of factoring the two integers. As we shall later
see, Euclid’s algorithm generalizes to polynomials and allows us to solve important
integer equations, the so-called Diophantine equations.

2.1 The Fundamental Theorem

We will speak here of the “whole numbers” or integers . . . −3, −2, −1, 0, 1, 2,
3, . . ., denoted by the letter Z, and more often of the so-called “natural” numbers
or positive integers: 1, 2, 3, 4, 5 and so forth. Some of these are divisible by others
without leaving a remainder. Thus, 6 = 2 ·3, i. e., 6 is divisible by 2 and by 3 without
a remainder. Such numbers are called composites.

Other numbers have no divisors other than 1 and themselves, such as 2, 3, 5,
7, 11, 13, 17, etc. These numbers are called prime numbers or simply primes. All
primes are odd, except 2 – the “oddest” prime (a designation alluding to the special
role which 2 plays among the primes). The number 1 is considered neither prime nor
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composite. Otherwise some theorems would require very awkward formulations –
such as the following.

The fundamental theorem of arithmetic states that each natural number n can be
uniquely factored into primes:

n = pe1
1 pe2

2 . . . pek
k . . . per

r = ∏
i

pei
i . (2.1)

Here the order of the factors is considered irrelevant.
Equation (2.1) can be read in two ways:

1) pi is the ith prime – in which case the exponent ei has to be zero if pi is not a
factor of n.

2) Only those primes that are factors of n appear in (2.1). We will use either reading
of (2.1) and state which if it makes a difference.

There is no corresponding theorem for the additive decomposition of natural
numbers into primes. This is one of the reasons why additive number theory, for ex-
ample partitions (Chap. 22), is such a difficult subject. In this book we will be mostly
concerned with multiplicative number theory, which has many more applications.

2.2 The Least Common Multiple

Two integers n and m have a least common multiple (LCM) [n,m]. The LCM is
needed to combine two fractions with denominators n and m into a single fraction. In
fact, that is where the everyday expression “to find the least common denominator”
(of divergent views, for example) comes from. For example, for n = 6 and m = 9,
[6,9] = 18.

Example:
1
6

+
2
9

=
3

18
+

4
18

=
7
18

.

It is easily seen that with n as in (2.1) and

m = ∏
i

p fi
i , (2.2)

[n,m] = ∏
i

pmax(ei, fi)
i , (2.3)

because in the LCM each prime factor pi must occur at least as often as it does in
either n or m. Thus, for n = 6 = 21 ·31 and m = 9 = 32, [6,9] = 21 ·32 = 18.

There are numerous applications of the LCM. Consider two gears with n and
m teeth meshing, and suppose we mark with a white dot one of the n teeth on the
first gear and one of the m spaces between teeth of the second gear. When the gears
turn, how often will the two white dots meet? Perhaps never! But if they meet once,
they will meet again for the first time after [n,m] teeth have passed the point of
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contact, i. e., after the first gear has undergone [n,m]/n (an integer!) revolutions and
the second gear an integer [n,m]/m revolutions.

2.3 Planetary “Gears”

Our “gears”, of course, could be any of a plethora of other objects that can be mod-
elled as meshing gears even if no teeth are visible. Thus, the revolutions of the
planet Mercury around itself and the Sun are locked by gravitational forces as if
geared: during two revolutions around the Sun, Mercury revolves three times around
itself. (As a consequence, one day on Mercury lasts two Mercury years. Strange
gears – and even stranger seasons!) Similarly, the Earth’s moon revolves exactly
once around itself while completing one orbit around the Earth; that is why it al-
ways shows us the same side. On the moon, Earth day (or night) lasts forever.

The “teeth” that keep the moon locked to the Earth are, as in the case of Mercury
and the sun, gravitational forces. But these “gravitational teeth” are relatively weak
and would not “engage” if unfavourable initial conditions were not damped out by
friction such as that provided by the ocean tides on Earth. (Eventually, the Earth day
may lock in with the Earth year, which will play havoc with night and day as we
know it.)

And not long ago, it was discovered that even the distant planets Pluto and Nep-
tune are coupled to each other strongly enough to be locked into an integer “reso-
nance” (in the astronomer’s lingo).

Another question answered by the LCM, although no teeth are in evidence, has to
do with the coincidence of dates and weekdays. Because the number of days per year
(365) is not divisible by the numer of days per week (7), coincidences of dates and
weekdays do not recur from one year to the next. Furthermore, because every fourth
year is a leap year, coincidences are not equally spaced in years. However, even
without knowing when leap years occur, we can always guarantee that a coincidence
will recur after 28 years, 28 being the LCM of 4 and 7. (In the year 2100 the leap
day will be dropped, temporarily violating the 28-year cycle.)

Equation (2.3) easily generalizes to more than two integers: the max function in
(2.3) then contains as many entries as there are integers whose LCM we want to
determine.

As we indicated above when introducing the meshing gear picture, the two white
markers may never meet. More learnedly, we would say that a certain linear Dio-
phantine equation (see Chap. 7) has no solution. This can happen only if n and m
have a greatest common divisor greater than 1. This brings us to our next topic.

2.4 The Greatest Common Divisor

Another important relation between integers is their greatest common divisor (GCD).
For two integers n and m given by (2.1) and (2.2), the GCD is
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(n,m) = ∏
i

pmin(ei, fi)
i , (2.4)

because for the GCD to divide both n and m it cannot have the factor pi more often
than it is contained in either n or m, whichever is less.

Example: n = 10 = 21 ·51 and m = 25 = 52. Thus (10,25) = 5.

Two numbers n and m that have no common factors are called relatively prime,
mutually prime or coprime. In this case the GCD equals 1.

Example: (6,35) = (2·3,5·7) = 1.

For any two numbers n and m, the product of the GCD and the LCM equals the
product of n and m:

(n,m)[n,m] = nm,

because whenever the formula (2.4) for the GCD picks the exponent ei for pi, the
formula (2.3) for the LCM picks the exponent fi, and vice versa.

Thus,

(n,m)[n,m] = ∏
i

pei+ fi
i = nm. (2.5)

Example:

(4,10) = (22,2·5) = 2; [4,10] = [22,2·5] = 20; 2 ·20 = 4 ·10 . Check!

The generalization of (2.5) to three integers is

(n,m,k)[nm,mk,kn] = nmk, (2.6)

which is easily verified. Assume that a given prime p occurring in the prime factor-
ization of the product nmk occurs en times in n, em times in m and ek times in k and
that, without loss of generality,

en ≤ em ≤ ek.

Then the exponent of p in (n,m,k) is en, and in [nm,mk,kn] it is em + ek. Thus the
left side of (2.6) has the prime p with the exponent en + em + ek, as does the right
side of (2.6). The same is true for all primes occurring in nmk. The correctness of
(2.6) then follows from the fundamental theorem of arithmetic.

The dual of (2.6) is

[n,m,k](nm,mk,kn) = nmk, (2.7)

which is proved by the same reasoning. Generalizations of (2.6) and (2.7) to more
than three factors should be obvious.
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For more than two integers, some particularly interesting relations between GCD
and LCM exist. For example, two such relations are the “distributive law”

(k[m,n]) = [(k,m),(k,n)], (2.8)

and its dual

[k,(m,n)] = ([k,m], [k,n]), (2.9)

both of which are a direct consequence of the properties of the min and max func-
tions in (2.4) and (2.3).

There is even a very pretty self-dual relation:

([k,m], [k,n], [m,n]) = [(k,m),(k,n),(m,n)], (2.10)

i. e., in the expression appearing on either side of (2.10), the operations LCM and
GCD can be completely interchanged without affecting their validity!

However, from a practical point of view there is a difference: The right-hand side
of (2.10), i. e., doing GCDs before the LCMs, is usually easier to figure out. Thus,
(2.10) can be exploited to computational advantage.

It is interesting to note that relations such as (2.6–2.10) occur in many other
mathematical fields, such as mathematical logic or set theory, where our LCM cor-
responds to the set-theoretic union ∪ and the GCD corresponds to intersection ∩.

But what, in number theory, corresponds to the set-theoretic relation

(A∪B) = A∩B,

where the bar stands for complement?
For additional relations see [2.1].
The GCD appears in the solution to many, seemingly unrelated, problems. For

example, take n jugs with capacities of L1,L2, . . . ,Ln liters. What amounts k of water
(or wine) can be dispensed by these n/1 jugs?

Answer: k must be a multiple of the GCD [L1,L2, . . . ,Ln]. (After T. J. Pfaff and
M. M. Tran. The Pi Mu Epsilon Journal 12:1 (2004), 37–38.)

2.5 Human Pitch Perception

An interesting and most surprising application of the GCD occurs in human
perception of pitch: the brain, upon being presented with a set of harmonically re-
lated frequencies, will perceive the GCD of these frequencies as the pitch. Thus, the
subjective pitch of the two-tone chord (320 Hz and 560 Hz) is (320,560) = 80Hz,
and not the difference frequency (240 Hz).

Upon a frequency shift of +5Hz applied to both frequencies, the GCD drops to
5 Hz; and for an irrational frequency shift, the GCD even drops to 0 Hz. But that is
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not what the ear perceives as the pitch. Rather it tries to find a close match in the
range of pitches above 50 Hz. For the frequencies 325 Hz and 565 Hz such a match
is given by 81 Hz, which is the GCD of 324 Hz and 567 Hz – close to the two given
frequencies.

Note that the concept that pitch is given by the difference frequency or “beat”
frequency has been beaten: if both frequencies are shifted by the same amount, their
difference remains unchanged. Yet psychoacoustic experiments clearly show that
the perceived pitch is increased, from 80 Hz to about 81 Hz in our example, just as
the amplified GCD model predicts [2.2].

What this tells us is that the human brain switches on something like a GCD-
spectral matching computer program when listening to tone complexes. Fascinat-
ing? Indeed. Unbelievable? Well, the brain has been caught doing much trickier
things than that.

2.6 Octaves, Temperament, Kilos and Decibels

The Pythagoreans discovered that subdividing the string of a musical instrument
into the ratio of small integers resulted in pleasing musical intervals. Thus, dividing
the string into 2 equal parts gives a frequency ratio (compared with the full-length
string) of 2 : 1 – the musical octave. Shortening the string by one third gives rise to
the frequency ratio 3 : 2 – the musical fifth. And dividing the string into 4 equal parts
results in the frequency ratio 4 : 3 – the musical fourth.

The Pythagorean musical scale was constructed from these simple ratios. How
do they fit together? How many fifths make an integral number of octaves? Or, what
is x in

[

3
2

]x

= 2y,

or, equivalently,

3x = 2z,

where z = y + x? The fundamental theorem (Sect. 2.1) tells us that there are no
integer solutions. But there are approximate solutions, even in small integers. Thus,

35 = 243 ≈ 256 = 28. (2.11)

Consequently, 5 musical fifths equal about 3 octaves. To make the octave come out
correctly, we would have to tamper with the ratio 3 : 2 = 1.5, increasing it by about
1% to 1.515. . ., to achieve a well-tempered temperament.

The fact that (3/2)5, with a little tampering, equals 23 also has its effect on the
musical fourth: from
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[

3
2

]5

≈ 23

follows directly

[

4
3

]5

≈ 22;

in other words, 5 fourths make about 2 octaves. The tampering required on the
fourth to make it fit 2 octaves exactly is, as in the case of the fifth, only one part in
a hundred.

We shall leave the musical details to J. S. Bach and his well-tempered clavier and
ask ourselves the more general question of how we can find approximate integer
solutions to equations like ax = by in a more systematic way. The answer: by ex-
panding logarithms into continued fractions, as will be explained in Sect. 5.1. There
we learn that for a = 3 and b = 2, for example, the next best approximation (after
35 ≈ 28) is 312 ≈ 219, requiring an adjustment of the musical fifth by only one part
in a thousand so that 12 “tampered” fifths will make 7 octaves, thereby avoiding
the Pythagorean comma. This is of great interest to musicians because it allows the
construction of a complete key from ascending fifths (the famous Circle of Fifths).

A much closer numerical coincidence, with important consequences in music,
computer memory, photography and power measurements, is the approximation

53 = 125 ≈ 128 = 27. (2.12)

Musically, this means that 3 major thirds (frequency ratio = 5 : 4) equal about one
octave:

[

5
4

]3

≈ 2,

which requires an adjustment of less than 8 parts in a thousand in the major third so
that 3 of them match the octave exactly.

Another consequence of (2.12) is that

210 = 1024 ≈ 103.

According to international standards, the factor 103 is denoted by the prefix kilo, as
in kilometre. But computer memories are not measured in kilometres or weighed in
kilograms; rather they are addressed, and the proper form of address is binary. As
a consequence, memory sizes are usually powers of 2, and in computerese a 256-
kilobit memory chip can actually store 262144 bits of information because, to hard-
and software types, kilo means 1024 – not 1000.

The near coincidence of 53 and 27 also shows up among camera exposure times,
where 1/125 of a second is 7 lens-aperture “stops” away from 1 second. But 7 stops
correspond to a light energy factor of 27 = 128.
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Still another application in which 53 ≈ 27 is exploited is the field of power or in-
tensity measurement. The preferred logarithmic measure of intensity is the decibel,1

10 decibels being equal to an intensity ratio of 10 : 1. Thus, twice as much power (of
a loudspeaker output, for example) means an extra 3 decibels – almost exactly. (A
better figure would be 3.01 decibels, but who can hear a hundredth of a decibel?)

J. R. Pierce, lately of Stanford University, has recently proposed a new musical
scale based on dividing the frequency ratio 3 : 1 (instead of the 2 : 1 octave) into 13
(instead of 12) equal parts. This scale matches such simple integer ratios as 5 : 3 and
7 : 5 (and 9 : 7) with an uncanny accuracy, resulting from the number-theoretic fluke
that certain 13th powers of both 5 and 7 are very close to integer powers of 3. To wit:
513 = 3.007719, and 713 = 3.003723. Since the integers appearing in the exponents
(13, 19, 23) are also coprime (in fact, all three are prime), it is easy to construct
complete musical scales exclusively from the small-integer ratios 5 : 3 and 7 : 5. The
basic chords of the new scale, 3 : 5 : 7 and 5 : 7 : 9, are superbly approximated by
the equal tempered scale 3k/13 and were found by M. V. Mathews, A. Reeves, and
L. Roberts to provide a strong harmonic foundation for music written in the new
scale.

2.7 Coprimes

Two integers are said to be coprime if their GCD equals 1. Thus, 5 and 9 are coprime:
(5,9) = 1, while 6 and 9 are not coprime: (6,9) = 3 �= 1.

The probability that two “randomly selected” integers will be coprime is 6/π2

(see Sect. 4.4). This is also the probability that a randomly selected integer is
“squarefree” (not divisible by a square).

Of three or more integers it is often said that they are pairwise coprime if all
possible pairs are coprime. Thus, 2, 5 and 9 are pairwise coprime: (2,5) = (2,9) =
(5,9) = 1. However, 2, 5 and 8 are not pairwise coprime because (2,8) = 2, although
the three numbers seen as a triplet have no common factor. The probability that three
randomly selected integers will be pairwise coprime is 0.28 . . . (see Sect. 4.4).

2.8 Euclid’s Algorithm

If the GCD is so important, how does one go about finding it? Answer: by Euclid’s
algorithm, which is best illustrated by an example. To find the GCD of 35 and 21,
first divide the larger number by the smaller:

35
21

= 1+
14
21

,

1 Curiously, one never hears about the full unit, the bel, perhaps because a difference of 10 bel is
the difference between the sound of a babbling brook and an earsplitting screech.
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and repeat the process on the remainder:

21
14

= 1+
7
14

,

until the remainder is 0:

14
7

= 2+0,

which is guaranteed to happen sooner or later. The GCD is the last divisor, 7 in our
case. Thus, (35,21) = 7, which is the correct answer.

The philosophy behind Euclid’s algorithm is the following. It is easy to show that
(a,b) = (a− kb,b), where k is an integer. If a > b > 0 and if one picks k as large as
possible without making a− kb negative, then a− kb < b. Thus, we have reduced
the problem of computing the GCD of a and b to that of two smaller numbers,
namely a− kb and b. Now b is the larger number of the pair, and it can be reduced
by subtracting a proper multiple of a−kb. Continuing this simple process generates
smaller and smaller number pairs all having the same GCD. Finally we must arrive
at two numbers that are multiples of each other and the smaller of the two numbers
is the GCD. (If a and b are coprime that “smaller number” is of course 1.) This
is how and why the Euclidean algorithm works: it chops large numbers down to
manageable size.

2.9 The Decimal System Decimated

One of the greatest arithmetical inventions was that of the 0 as a place holder. Thus,
in the decimal system, 903 means 9 times 100 plus 3 times 1. Their sensitivity to
place is the foundation of the decimal, the binary and similar number systems based
on place.

But choosing a base, 10 say, there are other ways to represent the integers which
does not depend on the customary place principle while still using only the 10 digits
0 through 9. For example, 100 integers from 0 to 99 can be thought of as the direct
sum of two sets of integers each of size 10: {0,1,2, . . . ,9} and {0,10,20, . . . ,90}.
(Direct sum of two sets means every member of one set is added to every member
of the other set.) Representing the integers from 0 through 99 by the direct sum of
the above two sets is of course analoguous to the standard decimal representation.
And, if the base is a prime, this representation is unique. But if the base, like 10
can be factored, there are other nonstandard representations by the direct sum of
two sets, each of size 10. For example, the sets {0,20,22,40,42,60,62,80,82} and
{0,1,4,5,8,9,12,13,16,17} are two such sets.

Are there other such sets? And how many? What is the “sister” set of {0,1,2,3,4,
25,26,27,28,29}?



Chapter 3
Primes

As we go to larger and larger integers, primes become rarer and rarer. Is there a
largest prime after which all whole numbers are composite? This sounds counter-
intuitive and, in fact, it isn’t true, as Euclid demonstrated a long time ago. Actually,
he did it without demonstrating any primes – he just showed that assuming a finite
number of primes leads to a neat contradiction.

Primes are found by sieves, not by formulas, the classical sieve having been de-
signed by Eratosthenes in classic Greece. (Formulas that pretend to give only primes
are really shams.) Primality testing has advanced to a stage where the primality or
compositeness of 100-digit numbers can now be ascertained by computer in less
than a minute, without actually giving any of the factors [3.1]. Factoring, on which
the security of certain kinds of cryptographic systems depends (Chaps. 10–15), is
still very difficult at this writing.

The largest primes known are of a special form called Mersenne primes because
they don’t hide their compositeness too well and, indeed, some were discovered by
high-school students. The largest Mersenne prime known (in mid-1983) has 25,962
digits! Mersenne primes lead to even perfect numbers and to prime “repunits”,
meaning repeated units, i. e., numbers consisting exclusively of 1’s in any given
base system. (The Mersenne primes are repunits in the binary number system.)

Of special interest are the Fermat primes of which, in spite of Fermat’s expecta-
tions, only 5 are known, the largest one being 65537. Each Fermat prime allows the
construction of a regular polygon by using only straightedge and compass – Gauss’s
great discovery made just before he turned nineteen.

3.1 How Many Primes are There?

Again we turn to Euclid, who proved that there are infinitely many primes by giving
one of the most succinct indirect proofs of all of mathematics:

Suppose that the number of primes is finite. Then there is a largest prime pr.
Multiply all primes and add 1:

N = p1 p2 . . . pr +1.

M. Schroeder, Number Theory in Science and Communication, 5th ed., 31
DOI 10.1007/978-3-540-85298-8 3, c© Springer-Verlag Berlin Heidelberg 2009
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Now N is larger than pr and thus cannot be a prime because pr was assumed to be
the largest prime. Thus N must have a prime divisor. But it cannot be any of the
known primes because by construction of N, all known primes divide N − 1 and
therefore leave the remainder 1 when dividing N. In other words, none of the known
primes divides N. Thus, there is a prime larger than pr – a contradiction! We must
therefore conclude that there is no largest prime, i. e., that there are infinitely many.

In actual fact, the above construction often (but not always) does give a prime.
For example:

2+1 = 3

2 ·3+1 = 7

2 ·3 ·5+1 = 31

2 ·3 ·5 ·7+1 = 211

2 ·3 ·5 ·7 ·11+1 = 2311,

all of which are prime. But

2 ·3 ·5 ·7 ·11 ·13+1 = 30031 = 59 ·509.

Suppose we set P1 = 2 and call Pn+1 the largest prime factor of P1P2 . . .Pn + 1.
Is the sequence Pn monotonically increasing? No! Both P9 and P10 have 16 decimal
digits but P10 equals only about 0.3P9.

3.2 The Sieve of Eratosthenes

Like gold nuggets, primes are mostly found by sieves – the first one having been de-
signed in ancient Greece by Eratosthenes of Kyrene around 200 B.C. Eratosthenes’s
sieve idea is charmingly simple.

To find the primes below 100, say, write down the integers from 1 to 100 in
order. Then, after 2, cross out every second one (4,6,8 . . .), in other words all the
even numbers, because they are divisible by 2 and therefore not prime (except 2
itself). Then, after 3, cross out every third number that is still standing (9,15,21 . . .)
because these numbers are divisible by 3 and therefore also not prime. Repeat the
crossing out process for every fifth number after 5 and every seventh number after
7. The remaining numbers (except 1, which is not considered a prime) are the 25
primes below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Roughly speaking, to find the primes below a given integer N, we only have to
use sieving primes smaller than

√
N. (This rule would tell us that by sieving with 2,

3, 5 and 7 we will find all primes below 112 = 121, while actually we have found 4
more primes.)
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Fig. 3.1 The sieve of
Eratosthenes (modulo 6)

In applying Eratosthenes’s sieve method there is an additional trick that sim-
plifies matters considerably: we write the integers in six columns starting with 1
(Fig. 3.1). Then only the first and the fifth columns (no pun) contain primes because
all numbers in the second, fourth, and sixth columns are divisible by 2, and those in
the third column are divisible by 3.

To eliminate the numbers divisible by 5 and 7 as well, a few 45◦ diagonals have
to be drawn, as shown in Fig. 3.1.

Things become a little more complicated if we include the next two primes, 11
and 13, in our sieve because the numbers divisible by 11 and 13 follow “knight’s-
move” patterns as known from chess. But then we have already eliminated all com-
posite numbers below 17 ·19 = 323. In other words, we have caught the 66 primes
up to 317 in our 6-prime sieve.

Sieving may connote a child playing in a sandbox or a gold digger looking for
a prime metal, but sieving in number theory is a very respectable occupation and
sometimes the only method of finding an elusive prime or unmasking a composite as
such. Of course, the sieving algorithms employed today are becoming increasingly
sophisticated. We will hear more about the search for primes, especially the urgently
needed very large ones, in subsequent chapters.

3.3 A Chinese Theorem in Error

The ancient Chinese had a test for primality. The test said that n is prime iff1 n
divides 2n −2:

n|(2n −2). (3.1)

1 Here and in the rest of this book, “iff” means if and only if. Further, x “divides” y means that x
divides y without leaving a remainder. As a formula this is written with a vertical bar: x|y.
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As we shall prove later, (3.1) is indeed true if n is an odd prime (by Fermat’s theo-
rem). Of course, for n = 2, (3.1) is trivially true.

Example: for n = 5, 2n −2 = 30, which is indeed divisible by 5.

Conversely, for odd n < 341, if n is not prime n does not divide 2n −2.

Example: for n = 15, 2n −2 = 32,766, which is not divisible by 15.

Fortunately (for their self-esteem!), the ancient Chinese never tried n = 341,
which is composite: 341 = 11 · 31 and yet 341 divides 2341 − 2 without remain-
der. This might be a bit hard to check by abacus, but the test is within reach of many
a programmable pocket calculator. Of course, the calculation does not give the quo-
tient (2341 −2)/341, a number 101 digits long, but rather the remainder, which is 0,
thereby falsely asserting that 341 = 11 ·31 is prime.

The rules for calculating high powers efficiently will be given later, together with
a “fast” calculator program.

3.4 A Formula for Primes

In 1947, Mills [3.2] showed that there is a constant A, such that �A3n� is2 prime
for every n. Here we have a formula that, although it does not generate each and
every prime, could be used to generate arbitrarily large primes – for which the sieve
methods are less suited.

For anyone who has an appreciation of what a precious thing a prime is, this
seems impossible. And indeed, there is trickery at play here, albeit cleverly hid-
den trickery: determination of the constant A presupposes prior knowledge of the
primes! This trickery is explained in the excellent little book by Nagell [3.3], but it
is a bit tricky, and we will illustrate the point by another, not quite so surreptitious,
trick. Consider the real constant

B = 0.20300050000000700000000000000110 . . . . (3.2)

Upon multiplying by 10 and taking the integer part, one obtains 2 – the first prime.
Dropping the integer part, multiplying by 100, and taking the integer part then gives
3 – the second prime. In general, after the nth prime has been extracted from B,
multiplying by 102n

and taking the integer part yields the (n+1)th prime. Thus, we
have specified a (recursive) algorithm3 for specifying not only primes but all the
primes, and in proper order at that!

2 The so-called “Gauss bracket” or “floor function” �x� is defined as the largest integer not exceed-
ing x. Thus, �4.9� = 4; but �5.0� = 5. The Gauss bracket (for x ≥ 0) corresponds to the instruction
“take integer part”, often designated by INT in computer programs.
3 Can the reader specify a nonrecursive algorithm, i. e., one that gives the nth prime directly, with-
out calculating all prior ones?
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Of course, here the trick is patently transparent: we have simply “seeded” the
primes, one after another, into the constant B, interspersing enough 0’s so that they
do not “run into” each other. In other words, the constant B does not yield any primes
that are not already known. (How many 0’s between seeded primes are required to
guarantee that adjacent primes do not overlap in B? If 0’s are considered expensive
because they make B very long, that question is not easy to answer and, in fact,
requires a little “higher” number theory.)

Apart from (3.2) and Mill’s formula, there have been many other prescriptions for
generating primes or even “all” primes. Most of these recipes are just complicated
sieves in various disguises, one of the few really elegant ones being Conway’s Prime
Producing Machine (cf. R. K. Guy, Math. Mag. 56, 26–33 (1983)). Other attempts,
making use of Wilson’s theorem (Sect. 8.2), are hilarious at best and distinguished
by total impracticality. All this (non)sense is reviewed by U. Dudley in a delightful
article (“Formulas for Primes”, Math. Mag. 56, 17–22 (1983)).

One of the most astounding algorithms for producing primes, in fact seemingly
all of them and in perfect order, is the Perrin sequence. This sequence is defined by
the recursion A(n + 1) = A(n− 1)+ A(n− 2), with the initial condition A(0) = 3,
A(1) = 0, and A(2) = 2 (cf. I. Stewart, Sci. Am. 247, 6, 102–103 (June 1996)). Lucas
has proved that whenever n is prime n divides A(n). But the converse also seemed
to be true: if n divides A(n), n is prime. But alas, a first counterexample was found
for n = 271441 = 5212.

3.5 Mersenne Primes

A Mersenne number is a number Mp = 2p − 1, where p is prime. If Mp itself is
prime, then it is called a Mersenne prime. Note that numbers of the form 2n − 1,
where n is composite, can never be prime because, for n = pq,

2n −1 = (2p −1)(2p(q−1) +2p(q−2) + . . .+1), (3.3)

However, not all primes p yield Mersenne primes, the first exception being p =
11, because 211 −1 = 2047 = 23 ·89. Still, there is a fairly simple primality test for
numbers of the form 2p − 1, the so-called Lucas Test: 2p − 1 is prime iff (note the
double f , meaning if and only if ) Mp divides Sp (p > 2), where Sn is defined by the
recursion

Sn = S2
n−1 −2, (3.4)

starting with S2 = 4.
Thus, for example, S11 is given by the 10th number in the sequence

4, 14, 194, 37634, . . . ,

which is not divisible by M11 = 2047. Thus, M11 is composite.
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Fig. 3.2 Mersenne primes on
a checkerboard

While this test does not reveal any factors, there is another test that can give a
factor for Mp with p = 4k +3: for q = 2p+1 prime, q|Mp iff p ≡ 3mod4.

Example: p = 11 = 4 · 2 + 3; M11 = 2047 is not divisible by (p− 1)/2 = 5 and is
therefore divisible by 2p + 1 = 23. Check: 2047 = 23 · 89. Check! Similarly, 47 is
discovered as a factor of M23 = 8388607, etc.

Figure 3.2 shows the first 9 Mersenne primes arranged on a checkerboard. On
January 17, 1968, the largest known prime was the Mersenne prime 211213 − 1, an
event that was celebrated with a postmark (Fig. 3.3) from Urbana, Illinois (at no
profit to the U.S. Post Office, considering the zero value of the stamp).

In the meantime, much larger Mersenne primes have been found. The record on
November 18, 1978, stood at 221701 −1, a prime with 6533 decimal digits found by
two California high-school students, Laura Nickel and Curt Noll, using 440 hours on
a large computer. The next Mersenne prime is 223209 −1. By early 1982 the largest
known prime was 24497 −1, having 13395 digits [3.4].

More recently, another Mersenne prime was discovered by D. Slowinski, the 28th
known specimen: 286243 − 1. Assuming that there are no other Mersenne primes
between it and M(27) = 244497 −1, then 286243 −1 is, in fact, M(28).

Are there more Mersenne primes beyond 286243 − 1? The answer is almost cer-
tainly yes. Curiously, we can even say roughly how large the next Mersenne prime
is: 1038000 – give or take a dozen thousand orders of magnitude. How can we make
such a seemingly outrageous statement?

Fermat and Euler proved that all factors of Mp must be of the form 2kp + 1 and
simultaneously of the form 8m± 1. Thus, potential factors of Mp are spaced on
average 4p apart. Assuming that, subject to this constraint, the number of factors
of a Mersenne number is governed by a Poisson process, Gillies [3.5] conjectured
that of all the primes in the “octave” interval (x,2x), on average approximately 2

Fig. 3.3 The largest known
Mersenne prime on Januar 17,
1968
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give Mersenne primes. More precisely, the density of primes near p giving rise to
Mersenne primes Mp = 2p −1 would be asymptotic to

2
p ln2

.

In a recent paper S. S. Wagstaff, Jr. (“Divisors of Mersenne primes”, Math.
Comp. 40, 385–397 (1983)), following an argument by H. W. Lenstra, Jr., suggested
that the expected number of primes p in an octave interval is eγ = 1.78 . . . . Thus,
the correct asymptotic density would be

eγ

p ln2
.

Comparing this with the general prime density for primes near p, 1/ ln p, we see
that of

p
eγ log2 p

primes, one prime on average leads to a Mersenne prime. For p ≈ 100000, this
means that roughly every 3000th prime gives a Mersenne prime. (The appearance of
the factor eγ is a consequence of Merten’s theorem, see Sect. 12.1, and its relevance
to prime sieving.)

The distribution of primes p that generate Mersenne primes is expressed even
more simply if we consider the density of log2 p: it is constant and should equal
eγ . Since log2 p very nearly equals log2(log2 Mp), these statements are equivalent to
the following: if log2(log2 M(n)) is plotted as a function of n, we can approximate
the empirical “data” by a straight line with a slope of about 1/eγ = 0.56. In fact,
for the 27 smallest Mersenne primes (2 ≤ p ≤ 44497) the average slope is 0.57,
remarkably close to 1/eγ . The correlation coefficient between log2(log2 M(n)) and
n in this range exceeds 0.95.

Figure 3.4 shows log2(log2 M(n)) versus n for 28 known Mersenne primes (as-
suming n = 28 for p = 86243). The great regularity is nothing short of astounding.

Fig. 3.4 log2(log2 M(n))
versus n
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As a Poisson process, the cumulative distribution P of the intervals between suc-
cessive values of log2(log2 M(n)) should go according to the exponential law:

P = 1− e−d/d

with d = 1/eγ . This function is plotted in Fig. 3.5 together with the empirical ev-
idence (in interval ranges of 0.2). Here again, the correspondence with the theo-
retical result expected from a Poisson process is very good. Specifically, the mean
interval (0.57) is close to the standard deviation (0.51) and (beyond the informa-
tion contained in Fig. 3.5) successive intervals are nearly uncorrelated (correlation
coefficient = −0.17).

Using 0.56 as the average increment of log2(log2 M(n)) with n, we expect the
next Mersenne prime above 286243 −1 in the “neighbourhood” of 2130000 ≈ 1038000.
Of course, to find a prime in this vast “haystack” that gives a Mersenne prime is no
small order.

More accurately, we can say that the probability of finding the next Mersenne
prime either below or above 1034000 is about 0.5, and the probability that it exceeds
1065000 is less than 10 %. But where is it, exactly – not with an uncertainty of thou-
sands of orders of magnitude? Even the fastest number crunchers available today,
using the most efficient search algorithms, will have a hey (hay?) day.

Unfortunately, the Mersenne primes are very thinly seeded. Thus, if one is look-
ing for a 50-digit prime among the Mersenne primes, one is out of luck: 2127 − 1
has 39 digits and the next Mersenne prime, 2521 − 1, has 157 digits – an awesome
gap!

Does a Mersenne prime Mp always yield another Mersenne prime by the formula

2Mp −1 ?

This had been widely conjectured, but a counterexample is now known: the prime
p = 13 gives a Mersenne prime M13 = 8191, but 28191 − 1 is composite. Too bad!
The nearest Mersenne primes, 24423 −1 and 29689 −1, have 1332 and 2917 decimal
digits, respectively – leaving another great void.

Fig. 3.5 Interval statistics
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3.6 Repunits

Expressed as binary numbers, all numbers of the form 2n − 1 consist exclusively
of 1’s, namely exactly n 1’s. For example M4 = 24 − 1 = 15, or 1111 in binary.
Similarly, for any a, (an − 1)/(a− 1) expressed in base a consists of precisely n
1’s and no other digits. Such numbers are called “repunits”, and apart from those to
the base 2, those to base 10 have been the most widely studied. For a repunit to be
prime, n must be prime, but as with the Mersenne numbers, that is not sufficient.

Examples: (105−1)/9 = 11111 = 41 ·271 and (107−1)/9 = 1111111 = 239 ·4649.

More examples for which (109 − 1)/9 is composite can be created by finding
primes q > 3 such that ordq 10 = p (see Chap. 14 for the definition of ord). In fact,
q then divides (10p −1)/9.

Which prime exponents p give repunit primes and whether there are infinitely
many are two of the many unsolved problems of number theory. With some luck
(10317 −1)/9 was proved prime, but not until most 50 years after (1023 −1)/9 was
found to be prime. Primality testing of large numbers is not easy and factoring is
even more difficult! In fact, the factoring of (1071 − 1)/9 (into two primes with 30
and 41 digits, respectively) had to wait for 1984 machines and algorithms.

3.7 Perfect Numbers

Each Mersenne prime has a companion perfect number P = Mp2p−1. A perfect num-
ber is a number for which the sum of all divisors (not including P itself) equals P.
Thus, for example, M2 = 22 −1 = 3 leads to the perfect number P = 6; and indeed,
the sum of the divisors of 6: 1+2+3 equals 6 itself.

The next Mersenne prime, M3, equals 23 − 1 = 7 and the corresponding perfect
number is 28. Check: 1+2+4+7+14 = 28. Check!

It is easy to see why this is so. Since Mp is by definition prime, the only divisors
of the perfect number P = Mp2p−1 are

1,2, . . . ,2p−1,Mp,2Mp, . . . ,2
p−1Mp,

and their sum equals

∑ = 1+2+ . . .+2p−1 +Mp(1+2+ . . .+2p−1), or (3.5)

∑ = (1+Mp)(2p −1) = 2pMp = 2P. (3.6)

(The factor 2 appears here because we included, in the sum, P itself as a divisor
of P.) The remarkable fact that all even perfect numbers are of the form Mp2p−1,
where Mp is a Mersenne prime, was first proved by Leonhard Euler (1707–1783),
the great Swiss mathematician (and not just that!) from Basel who worked for most
of his life in St. Petersburg, the then new capital of all the Russias.
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Because 37 Mersenne primes are known, at the time of this writing, there are
exactly 37 known perfect numbers, all of them even, and the largest one having
909526 decimal places. No odd perfect numbers are known and, tantalizingly, it is
not known whether there are any such. As of 1971, no odd perfect number had been
found among all the numbers up to 1036. P. Hagis, Jr., showed recently that an odd
perfect number not divisible by 3 has at least eleven prime factors (Math. Comp. 40,
399–404 (1983)).

Apart from perfect numbers, there are pseudoperfect numbers (Sect. 5.9) and
amicable numbers. Amicable numbers come in pairs. The sum of divisors of one
amicable number equals its mate and vice versa. The smallest amicable pair is 220
and 284. Another pair is 17296 and 18416. In a sense, perfect numbers are “self-
amicable”.

In a further generalization, certain number sequences are called sociable. In
these, each number equals the sum of the divisors of the preceding number, and the
first number equals the sum of divisors of the last number. One such five-member
sociable group is 14288, 15472, 14536, 14264, 12496. There is a sociable chain of
length 28 whose smallest member is 14316.

A frequently used concept in number theory is the sum of some function f taken
over all divisors of a number n, including n itself. This is usually shown by the
following notation:

∑
d|n

f (d).

Using this notation, our statement about perfect numbers P reads

∑
d|p

d = 2P, (3.7)

the factor 2 appearing here because by definition P itself is a divisor of itself and
therefore is included in the sum.

There was a time when the present author was much impressed by the fact that
the sum of reciprocal divisors of P is always 2:

∑
d|p

1
d

= 2! (3.8)

(Here, for once, the exclamation mark does not do any harm because 2! – read “two
factorial” – still equals 2.) However, (3.8) is a “trivial” consequence of (3.7) because,
in a sum over all divisors d of a given number n, the divisor d may be replaced by
n/d. This reverses the order of the terms in such a sum, but does not affect its value:

∑
d|n

f (d) = ∑
d|n

f (n/d). (3.9)

Indeed, for n = 6 and f (d) = d,

1+2+3+6 = 6+3+2+1. (3.10)
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Applying (3.8) to (3.6), we have

2P = ∑
d|P

d = ∑
d|P

P
d

, (3.11)

confirming (3.8). Check: 1+
1
2

+
1
3

+
1
6

= 2. Check!

It is remarkable that the sum of the reciprocal divisors of a perfect number always
equals 2, no matter how large it is. This implies that perfect numbers cannot have
too many small divisors, as we already know.

3.8 Fermat Primes

Besides the Mersenne primes 2p − 1, which lead to perfect numbers, and of which
only 37 are presently known, there is another kind of prime family with even fewer
known members: the Fermat primes. Only 5 such primes are currently known.

Fn = 22n
+1 for n = 0, 1, 2, 3, 4. (3.12)

They are F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537.
Incidentally, for 2m + 1 to be prime, m must be a power of 2. In fact, for any

am +1 to be prime, a must be even and m = 2n.
All numbers of the form 22n

+1, whether prime or composite, are called Fermat
numbers. They obey the simple (and obvious) recursion

Fn+1 = (Fn −1)2 +1, or (3.13)

Fn+1 −2 = Fn(Fn −2), (3.14)

which leads to the interesting product

Fn+1 −2 = F0F1 . . .Fn−1. (3.15)

In other words, Fn −2 is divisible by all lower Fermat numbers:

Fn−k | (Fn −2), 1 < k ≤ n. (3.16)

With (3.16) it is easy to prove that all Fermat numbers are coprime to each other,
and the reader may wish to show this.

Fermat thought that all Fermat numbers Fn were prime, but Euler showed that
F5 = 4294967297 = 641 · 6700417, which can easily be confirmed with a good
pocket calculator.

The fact that F6 and F7 are also composite is a little harder to show because F6

has 20 decimal digits and F7 has 39. Nevertheless, complete factorizations of F6, F7

and, since 1981, F8 are now known. Further, it is now known that F11, F12 and F13
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are composite, and some of their factors are known. Another Fermat number known
to be composite is F73, which has more than 1021 digits! For special primality tests
for Fermat numbers, see Hardy and Wright [3.6].

At present the smallest, and so far most enduring mystery is presented by F20: its
primality status remains unknown. However, the latest progress in primality testing,
reported by Walter Sullivan in The New York Times in February 1982 and in [3.1],
might yet reveal other Fermat primes, although the next candidate, F20, has 315653
digits. One helpful clue which has been utilized in the past is that, if Fn is composite,
then it is divisible by k ·2n+2 +1 for some k. In fact, Euler knew this, and that is how
he discovered the factor 641 = 5 ·27 +1 in F5.

In this manner the compositeness of some very large Fermat numbers has been
established. For example, 5 ·23313 +1 is a factor of F3310. By the way, F3310 has more
than 10990 digits – not to be confused with the comparatively miniscule number
10990.

3.9 Gauss and the Impossible Heptagon

In March 1796, the Fermat primes suddenly took on a new and overwhelming sig-
nificance. A precocious teenager from the German ducal town of Brunswick had just
discovered that the circle could be divided into 17 equal parts by purely “geometric
means”, i. e., by straightedge and compass – something that had eluded professional
mathematicians and amateurs alike for over two millennia. In fact, nobody had even
suspected that such a feat could be possible. After the cases of 2, 3, 4, 5 and 6 had
been solved by the ancient Greeks, “everybody” had been working on the “next”
case: the regular heptagon (7-gon). But the Brunswick youth proved that that was
impossible and that the only regular n-gons that could be constructed were those
derivable from the Fermat primes.

The young person, of course, was none other than Carl Friedrich Gauss [3.7],
who was himself so impressed by his feat of unlocking a door that had been closed
for 2000 years that he decided to become a mathematician rather than a philologist,
to which fate his excellence in the classical languages seemed to have “condemned”
him.4

4 His love of books and languages never left Gauss for the rest of his life. At the age of 62 he
learned yet another foreign language – Russian – and began to read Pushkin in the original. Gauss
selected the University of Göttingen rather than his “state” university, Helmstedt, for his studies,
mainly because of Göttingen’s open library policy. Even in his first semester at Göttingen, Gauss
spent much time in the university library, which was well stocked and where he had access to the
writings of Newton and Euler and many others of his predecessors. Much of what Gauss read there
he had already derived himself, but he still felt that reading was essential – in stark contrast to
other scientific geniuses, notably Einstein, who was convinced he could create most of the correct
physics from within himself and who is supposed to have said, in jest, that if nature was not the
way he felt it ought to be, he pitied the Creator for not seeing the point (“Da könnt’ mir halt der
liebe Gott leid tun, die Theorie stimmt doch.” [3.8]).
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We shall return to the important subject of dividing the circle, or cyclotomy by
its learned name, in several other contexts later in this book. Let it only be said
here that for the circle to be divisible into n parts, n must be the product of dif-
ferent Fermat primes or 1 and a nonnegative power of 2. Thus, regular polygons
of n = 2,3,4,5,6,8,10,12,15,16,17,20,24,30, . . . sides can be geometrically con-
structed, while n = 7,9,11,13,14,18,19,21,22,23,25, . . . are impossible to con-
struct in this manner. Here the “impossible” part of Gauss’s assertion is as significant
as his positive statement.



Chapter 4
The Prime Distribution

“All this is amusing,
though rather elementary1 . . ., Watson.”

– Sir Arthur Conan Doyle
(Sherlock Holmes)

How are the primes distributed among the integers? Here “distribution” is a mis-
leading term because a given positive integer either is a prime or is not a prime –
there is nothing chancy about primality. Yet superficially, the occurrence of primes
appears to be rather haphazard, and, indeed, many properties can be derived by play-
ing “dumb” and assuming nothing more than that “every other integer is divisible by
2, every third is divisible by 3”, etc., and letting complete randomness reign beyond
the most obvious. The result of this loose thinking suggests that the average interval
between two successive primes near n is about lnn. This is not easy to prove rig-
orously, especially if one forgoes such foreign tools as complex analysis. Yet fairly
simple probabilistic arguments come very close to the truth. In fact, probabilistic
thinking as introduced here can reveal a lot about primality and divisibility [4.1],
and we shall make ample use of the probabilistic approach throughout this book to
gain an intuitive understanding of numerous number-theoretic relationships. For a
formal treatment of probability in number theory see [4.2].

4.1 A Probabilistic Argument

Two facts about the distribution of the primes among the integers can be noticed
right away:

1) They become rarer and rarer the larger they get.
2) Apart from this regularity in their mean density, their distribution seems rather

irregular.

In fact, their occurrence seems so unpredictable that perhaps probability theory can
tell us something about them – at least that is what the author thought in his sec-
ond (or third) semester at the Georg-August University in Göttingen. He had just

1 In number theory elementary methods are often the most difficult, see [4.5].
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taken a course in Wahrscheinlichkeitsrechnung at “Courant’s” famous Mathematics
Institute, and one afternoon in 1948, in the excruciatingly slow “express” train from
Göttingen to his parents’ home in the Ruhr, he started putting some random ideas to
paper. His train of thought ran roughly as follows.

The probability that a given “arbitrarily” selected integer is divisible by pi is
1/pi. In fact, starting with 1, precisely every pith number is divisible by pi (every
third is divisible by 3, every fifth by 5 and so forth). Thus, the “probability” that a
given selected number is not divisible by pi is 1−1/pi.

Assuming that divisibility by different primes is an independent2 property, the
probability that x is not divisible by any prime below it is given by the product

W (x) ≈
(

1− 1
2

)(

1− 1
3

)(

1− 1
5

)

. . . ≈ ∏
p1<x

(

1− 1
pi

)

. (4.1)

If x is not divisible by any prime below it, it is, of course, not divisible by any smaller
number, i. e., x is prime.

More strictly, we could limit the product to primes p1 <
√

x (see Sect. 3.2 on
the sieve of Eratosthenes). In fact, in that 1948 train the author did limit the product
to primes smaller than the square root of x. But since the end result is not much
affected, we will not bother about this “refinement”.

If one feels uncomfortable with a product, it can be quickly converted into a sum
by taking (naturally) logarithms:

lnW (x) ≈ ∑
pi<x

ln

(

1− 1
pi

)

. (4.2)

If one does not like the natural logarithm on the right-hand side, expanding it and
breaking off after the first term does not make much difference, especially for the
larger primes:

lnW (x) ≈− ∑
pi<x

1
pi

. (4.3)

There is something about the sum that is still bothersome: it is not over consec-
utive integers, but only over the primes. How can one convert it into a sum over all
integers below x? Again, one can use a probability argument: a given term 1/n in
the sum occurs with probability W (n). Thus, let us write (and this is the main trick
here):

lnW (x) ≈−
x

∑
n=2

W (n)
n

. (4.4)

2 Simultaneous independence for all primes is never exactly true, but there is near independence
that suffices for our argument.
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By now sums may have become boring, and one wishes the sum were an integral.
Thus, we write with our now customary nonchalance:

lnW (x) ≈−
∫ x

2

W (n)
n

dn. (4.5)

The next thing that may strike one as offensive is the minus sign on the right-hand
side. Introducing the average distance A(x) = 1/W (x) between primes, we get a
positive expression:

lnA(x) ≈
∫ x

2

dn
nA(n)

. (4.6)

Now, suddenly, the integral has served its purpose and can go; most people would
rather solve differential equations than integral ones. Differentiating will of course
be the appropriate integral vanishing trick:

A′(x)
A(x)

≈ 1
xA(x)

, or (4.7)

A′(x) ≈ 1
x
. (4.8)

And the unexpected has happened: we have an answer (fortuitously correct)! The
average distance between primes ought to be

A(x) ≈ lnx, (4.9)

and the mean density becomes

W (x) ≈ 1
lnx

. (4.10)

Example: x = 20, ln20 ≈ 3.00, and, indeed, the average spacing of the 3 primes
closest to 20, namely 17, 19 and 23, is exactly 3.

Around x = 150, the average spacing should be about 5, and in the neighbourhood
of x = 1050, every 115th number, on average, is a prime.

4.2 The Prime-Counting Function πππ(x)

If we accept the estimate (4.10) of the average prime density, the number of primes
smaller than or equal to x, usually designated by π(x), is approximated by the “in-
tegral logarithm”:

π(x) ≈
∫ x

2

dx′

lnx′
=: Li(x), (4.11)
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Fig. 4.1 The prime-counting
function π(x) for 2 ≤ x ≤ 100

where the sign =: indicates that the notation Li(x) is defined by the integral on the
left.

The prime-counting function π(x) is plotted in Fig. 4.1 for x ≤ 100. Every time
x equals a prime, π(x) jumps up by 1. But apart from the “jumpiness” of π(x), a
smoother, slightly concave trend is also observable. This smoothness becomes more
obvious when we plot π(x) for x up to 55,000 as in Fig. 4.2. On this scale, the
jumpiness has disappeared completely.

The inadequacy of Gauss’s original estimate π(x) ≈ x/ lnx is illustrated by
Fig. 4.3. By contrast, the integral logarithm, which we “derived” above (and which
was also conjectured by Gauss) gives seemingly perfect agreement with π(x) in the
entire range plotted in Fig. 4.4.

However, even Li(x), labelled “Gauss” in Fig. 4.5, shows noticeable deviations
when we expand the ordinate by a factor 104 as was done in that figure (see [4.3]).
In fact, for x = 107, the excess of Li(x) over π(x) is about 300 and remains positive
for all x < 109. Nevertheless, π(x)−Li(x) has infinitely many zeros, at least one of

which occurs below x = 10101034

; in fact, it may be near x = 10370. (A number such

as 10101034

, introduced by S. Skewes in 1933, was once considered a large number.
But much much much larger numbers have now become important in connection
with Gödel’s famous “incompleteness” theorem [4.4].)

Fig. 4.2 Same as Fig. 4.1 but
x ≤ 55,000
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Fig. 4.3 π(x) and x/ lnx

Fig. 4.4 π(x) and the integral
logarithm Li(x)

Legendre, independently of Gauss, gave the following formula in 1778:

π(x) ≈ x
lnx−1.08366

, (4.12)

a closer approximation than (4.11) up to about x = 4 ·106, as can be seen in Fig. 4.5.
However, above x = 5 ·106 Legendre’s formula begins to go to pieces. (Expanding
Li(x) gives 1 as the constant in (4.12), but Legendre missed that.)

Either formula (4.11) or Legendre’s (4.12) says that there are about 7.9 · 1047

50-digit primes – plenty to go around for the “trap-door” encryption schemes to be
discussed later in Chap. 10.

In our “derivation” of π(x), we considered primes up to x and pointed out that
consideration of primes up to

√
x would have sufficed. This idea was further pursued

by Bernhard Riemann, who showed that

Fig. 4.5 Comparison of formulas by Gauss: Li(x), Legendre: x/(lnx− 1.08366), and Riemann:
Li(x)−1/2Li(x1/2)−1/3Li(x1/3)− . . . (Courtesy of D. Zagier)
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π(x) ≈ R(x) := Li(x)− 1
2 Li
(√

x
)

− 1
3 Li
(

3
√

x
)

− . . . . (4.13)

Figure 4.5 demonstrates how good an approximation R(x) is; the curve labelled
“Riemann” does not seem to have any deviant trend up to x = 107.

The closeness of R(x) to π(x) is further emphasized by Table 4.1, which shows
that, even for x = 109, the error of R(x) is only 79 (out of 5 ·107).

It is interesting to note that it was not until 1896, almost a hundred years after
Gauss’s and Legendre’s conjectures, that Hadamard and de la Vallée Poussin proved
the “Prime Number Theorem” in the form

lim
x→∞

π(x) ln(x)
x

= 1 (4.14)

using “analytic” methods, i. e., mathematical tools from outside the domain of inte-
gers. The first “elementary” proof not using such tools did not come until 1948 and
is due to Erdös [4.5] and Selberg. This illustrates the vast gap between obtaining an
easy estimate, as we have done in the preceding pages, and a hard proof.

Perhaps one of the most surprising facts about π(x) is that there “exists” an exact
formula, given by a limiting process of analytic functions Rk(x):

π(x) = lim
k→∞

Rk(x), where (4.15)

Rk(x) := R(x)−
k

∑
l=−k

R(xρl ). (4.16)

Here ρl is the lth zero of the Riemann zetafunction [4.6]:

ζ (s) :=
∞

∑
n=1

1
ns . (4.17)

Figure 4.6 shows π(x) and the two approximations R10(x) and R29(x), the latter
already showing a noticeable attempt to follow the jumps of π(x).

Table 4.1 Comparison of prime-counting function π(x) and Riemann’s approximation R(x)

x π(x) R(x)

100000000 5761455 5761552
200000000 11078937 11079090
300000000 16252325 16252355
400000000 21336326 21336185
500000000 26355867 26355517
600000000 31324703 31324622
700000000 36252931 36252719
800000000 41146179 41146248
900000000 46009215 46009949

1000000000 50847534 50847455
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Fig. 4.6 Riemann’s approx-
imation to π(x). [After
H. Riesel, G. Göhl: Math.
Comp. 24, 969–983 (1970)]

Table 4.2 The first five zeros of the zetafunction with real part equal to 1/2

ρ1 = 1
2 +14.134725 i

ρ2 = 1
2 +21.022040 i

ρ3 = 1
2 +25.010856 i

ρ4 = 1
2 +30.424878 i

ρ5 = 1
2 +32.935057 i

The zeros for l = 1,2, . . . ,5 of ζ (s) are shown in Table 4.2. The real parts are all
equal to 1/2. In fact, more than 100 years ago Riemann enunciated his famous hy-
pothesis that all complex zeros of ζ (s) have real part 1/2. Riemann thought at first
that he had a proof, but the Riemann Hypothesis (and the so-called Extended Rie-
mann Hypothesis, abbreviated ERH) has remained unproved to this day, although
hundreds of millions of zeros have been calculated, all with real part 1/2. In fact,
the ERH is so widely believed today that a sizable edifice is based on it, and will
collapse when the first Re(ρl) �= 1/2 makes its appearance.

(In late 1984, a possible proof was presented by Matsumoto in Paris. Mind bog-
gling! If it can only be confirmed . . .)

4.3 David Hilbert and Large Nuclei

In conclusion, we mention that David Hilbert once conjectured that the zeros of
the Riemann zetafunction were distributed like the eigenvalues of a certain kind
of random Hermitian matrix. This same kind of matrix, incidentally, later gained
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Fig. 4.7 Interval distribution
between successive zeros
(x = 1/2) of zetafunction.
(——–) Conjecture by Hilbert
(Courtesy of A. Odlyzko, Bell
Laboratories)

prominence in the physics of large atomic nuclei, where its eigenvalues correspond
to the energy levels of the nucleons (protons and neutrons) [4.7]. In physics the
resulting distribution of energy level differences is called the Wigner distribution
after Eugene Wigner, who derived it. It is shown in Fig. 4.7 as a solid line. The dots
are the results of computer calculations by Andrew Odlyzko of Bell Laboratories
(private communications) of the zeros of the Riemann zetafunction around x = 108.
Since the density of zeros increases logarithmically with their distance from the real
line, the spacing of zeros normalized by their average spacing is shown. The close
agreement between the solid line (Hilbert) and the dots (Odlyzko) shows how close
Hilbert’s conjecture, made almost a century ago, is.

Even so, there are noticeable differences between Hilbert’s conjecture and the nu-
merical data. Was Hilbert off? Of course not. More recent calculations by Odlyzko
of hundreds of millions of zeros around the 1020th zero show no discernible differ-
ences with the conjecture. In other words, convergence to the asymptotic result is
very very slow. But this is not unusual for number theory where not a few results
go with the twice or thrice iterated logarithm, and ln ln ln1020 is just a little more
than 1 (1.34 to be more exact). While for some problems in physics 3 is already a
large number (“almost infinity” in the physicist’s book, reminiscent of the sayings
“three’s a crowd” or “period three means chaos”), even such a monster as 1020 is
not all that large in some corners of number theory.

4.4 Coprime Probabilities

What is the probability that two arbitrarily and independently selected numbers from
a large range do not have a common divisor, i. e., that they are coprime? The prob-
ability that one of them is divisible by the prime pi is, as we have seen, 1/pi, and
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the probability that both of them are divisible by the same prime, assuming inde-
pendence, is 1/p2

i . Thus, the probability that they are not both divisible by pi equals
1− 1/p2

i . If we assume divisibility by different primes to be independent, then the
probability of coprimality becomes

W2 ≈ ∏
pi

(

1− 1

p2
i

)

, or (4.18)

1
W2

≈ ∏
pi

1

1−1/p2
i

= ∏
pi

(

1+
1

p2
i

+
1

p4
i

+ . . .

)

, (4.19)

where we have expanded the denominator into an infinite geometric series.
Now if, for simplicity, we extend the product over all primes, then – as Euler

first noted – the result is quite simple: one obtains exactly every reciprocal square
integer once (this follows from the unique decomposition of the integers into prime
factors). Thus,

1
W2

≈
∞

∑
n=1

1
n2 = ζ (2) =

π2

6
, (4.20)

and the probability of coprimality W2 should tend towards 6/π2 ≈ 0.608 for large
numbers.

The probability that a randomly selected integer n is “squarefree” (not divisible
by a square) also tends to 6/π2. The reasoning leading to this result is similar to that
applied above to the coprimality of two integers: for an integer to be squarefree it
must not be divisible by the same prime pi more than once. Either it is not divisible
by pi or, if it is, it is not divisible again. Thus,

Prob
{

p2
i � | n

}

=
(

1− 1
pi

)

+
1
pi

(

1− 1
pi

)

= 1− 1

p2
i

.

Taking the product over all pi (assuming again independence of the divisibility by
different primes) gives the above expression for W2 ≈ 6/π2.

How fast is this asymptotic value reached? The sum over the reciprocal squares
in (4.20) converges quite rapidly and the value of 6/π2 might already hold for the
coprimality and squarefreeness of small numbers. In fact, 61 of the first 100 integers
above 1 are squarefree and of the 100 number pairs made up from the integers 2 to
11, exactly 60 are coprime. This is the closest possible result because the answer
has to be an even number and 62 is further away from 600/π2 than 60.

Figure 4.8 shows a computer-generated plot of coprimality in the range from 2
to 256: a white dot is plotted if its two coordinates are coprime. As expected, the
density of white dots is quite uniform. All kinds of interesting micropatterns can
be observed, and a number of long-range structures at angles whose tangents are
simple ratios: 0, 1/2, 1, 2, etc., are also visible. Does such a plot pose new questions
or suggest new relationships for number theory?
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Fig. 4.8 The coprimality
function, a simple
number-theoretic function, in
the range 2 ≤ x ≤ 256 and
2 ≤ y ≤ 256. A white dot is
shown if (x,y) = 1. Whenever
(x,y) > 1, there is no dot
(black)

When the author first had this plot prepared (by Suzanne Hanauer at Bell Lab-
oratories), he thought that a two-dimensional Fourier transform should make an
interesting picture because the Fourier transformation brings out periodicities. And,
of course, divisibility is a periodic property.

Figure 4.9 shows the result, which with its prominent starlike pattern would make
a nice design for a Christmas card (and has, in fact, been so used). What is plotted
here (as increasing brightness) is the magnitude of the two-dimensional discrete
Fourier transform of the number-theoretic function f (n,m), for n,m = 1,2, . . . ,256
with f = 1 if the GCD (n,m) = 1 and f = −1 otherwise.

Since the original function is symmetric around the 45◦ diagonal, so is the Fourier
transform. Since only magnitude is plotted, there is another symmetry axis: the

Fig. 4.9 The magnitude of the
Fourier transform (simulated
by increasing brightness) of
the number-theoretic function
shown in Fig. 4.8. The pres-
ence of a white dot, (x,y) = 1,
is interpreted as +1, and the
absence of a white dot as −1
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−45◦ diagonal. In addition, there are near symmetries about the horizontal and ver-
tical axes which are not so easy to explain. We leave it as an exercise to the reader
to explain both this near symmetry and each of the stars in Fig. 4.9. (See also [4.8].)

The coprimality probability for more than two randomly selected integers is ob-
tained in the manner that led to (4.20). The general result that k integers are co-
primes is

Wk := Prob{(n1,n2 . . . ,nk) = 1} ≈ [ζ (k)]−1, (4.21)

where ζ (k) is Riemann’s zetafunction as defined in (4.17). For k = 3 one obtains
W3 ≈ 0.832, and for k = 4, W4 ≈ 90/π4 = 0.9239 . . . . (The actual proportions in the
range from 2 to 101 are 0.85 and 0.93, respectively.)

The probabilities that a randomly selected integer is not divisible by a cube, a
fourth power, and in general by a kth power, also tend towards (4.21). Thus, roughly
84% of all integers are “cubefree”.

A somewhat more difficult problem is posed by the probability of pairwise co-
primality of three (or more) randomly selected integers. The probability that none
of k integers has the prime factor pi is

(

1− 1
pi

)k

and that exactly one has pi as a factor is

k
pi

(

1− 1
pi

)k−1

.

The sum of these two probabilities is the probability that at most one of the integers
has pi as a factor. The product over all primes pi then approximates the probability
that the k integers are pairwise coprime, i. e., that

(n j,nm) = 1 for all j �= m.

The reader may want to show that for k = 3, this probability can be written

36
π4 ∏

pi

(

1− 1
(pi +1)2

)

= 0.28 . . . .

Thus, only about 28% of three randomly selected integers are pairwise coprime.
(Compare this with the above result W3 ≈ 0.832.)

Jobst von Behr of Hamburg, who read the first edition of this book, generalized
this problem by considering the probability Pk(d) that the greatest common divi-
sor (GCD) of k integers equal d > 1. By Monte Carlo computation on his home
computer he obtained numerical results that looked suspiciously like

Pk(d) = d−kζ−1(k).
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Can the reader of this edition prove this seductively simple scaling law? Sum-
ming over all d gives of course 1, as it should for a proper probability.

For the probability that the GCD of k random integers is even the above formula
gives 2−k; is this in conformity with elementary probability?

Here is another charming problem amenable to the probabilistic viewpoint: In
the prime factor decomposition of a randomly selected integer n > 1, what is the
probability P(p) that the smallest prime divisor equals p? The probability (density)
that n is divisible by p is of course 1/p. For p to be the smallest prime factor, all
prime smaller than p must not divide n. Hence

P(p) =
1
p ∏

q<p

(

1− 1
q

)

where the product is extended over all primes q smaller than p. For example, for
p = 7, P(7) = 4/105, i.e roughly 4% of all integers have 7 as their smallest prime
factor.

Now let us sum the above expression over all primes, 2, 3, 5, 7, 11, . . ., so we get

P = ∑
p

1
p ∏

q<p

(

1− 1
q

)

the probability that an integer n > 1 has some prime number as its smallest prime
divisor which, given the sets P(p) are pairwise disjoint, equals of course 1! Every
integer > 1 has prime divisors one of which is necessarily the smallest.

To what extent does the above result for P depend on the exact values of the
primes? For the (very rough) approximation m logm for the mth prime, the sum
converges to 1.5 (instead of 1).

4.5 Primes in Progressions

A famous theorem by Dirichlet (1837), Gauss’s successor in Göttingen, states: there
are infinitely many primes in every linear progression

a ·n+b, n = 1,2,3, . . . , (4.22)

provided the constants a and b are coprime: (a,b) = 1. Thus, for example, with
a = 10 and b = 1, 3, 7 or 9, we see that there are infinitely many primes whose last
digit is 1, 3, 7 or 9. (In fact, as we shall see later, these four kinds of primes occur in
equal proportion.)

The longest sequence known in early 1982 for which a · n + b gives primes for
consecutive n is the progression

223092870 ·n+2236133941,
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Fig. 4.10 Primes (dots)
plotted on a spiral. Many
primes fall on straight lines

which is prime for sixteen consecutive values: n = 0,1,2, . . . ,15. Since then a 19-
member progression has been discovered.

The record for a quadratic progression stands at 80 consecutive primes, namely

n2 +n+41 for n = −40,−39, . . . ,0, . . . ,39. (4.23)

This is remarkable because it would ordinarily take a polynomial in n of degree 80
to get 80 primes for consecutive values of n.

Many primes are of the form 4n2 +an+b, which makes them lie on straight lines
if n is plotted along a square spiral. This fact is illustrated by so plotting the primes
(see Figs. 4.10, 4.11).

Fig. 4.11 The primes between 41 and 439 plotted on a square spiral beginning with 41 in the
centre. Note the “solid-prime” diagonal
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However, there is no polynomial, no matter how high its degree, which yields
primes for all values of n. If there was a polynomial in n of finite degree r
generating primes for all n, then r + 1 primes would determine the r + 1 coef-
ficients of the polynomial and infinitely many other primes could then be cal-
culated from these r + 1 primes. The location of primes among the integers is
simply too unpredictable to be “caught” by something as regular and finite as a
polynomial.

4.6 Primeless Expanses

On the other hand, there is always a prime between n3 and (n + 1)3 − 1 for large
enough n. This fact was exploited by W. H. Mills (1947) to construct a constant A
such that �A3n� is prime for all n [4.9, p. 160]. But of course, the Mills expression is
not a polynomial, and as we remarked before (Sect. 3.4), the primes thus generated
have been “smuggled” into A first.

Somewhat paradoxically, there are also arbitrarily large intervals without a single
prime! For example, the one million consecutive integers

(106 +1)!+n, n = 2,3,4, . . . ,1,000,001 (4.24)

are all composite! In fact, there is even a set of one million somewhat smaller con-
secutive integers that are all composite, namely those in which the additive term n
in the above expression is replaced by −n.

In relative terms, the primeless expanse of one million integers is, of course,
rather small. A (weak) upper bound on the relative size of primeless ranges is an
“octave” of integers; i. e., there is always a prime p in the range n and 2n (inclusive):

n < p ≤ 2n, (4.25)

or, equivalently, each prime is less than twice its predecessor [4.10]:

pk+1 < 2pk. (4.26)

Check: 3 < 2 ·2, 5 < 2 ·3, 7 < 2 ·5, 11 < 2 ·7, etc.
In fact, the number of primes in the interval from n to 2n is of the same order as

those below n. This follows directly from the asymptotic expression for π(x):

π(x) ≈ x
lnx

, (4.27)

so that

π(2x)−π(x) ≈ 2x
lnx+ ln2

− x
lnx

≈ x
lnx

− 2x ln2

ln2 x
. (4.28)
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4.7 Squarefree and Coprime Integers

The probability that a given integer is squarefree approaches 6/π2 (see Sect. 4.4)
and 6/π2 is also the asymptotic probability that two randomly chosen integers are
coprime. Are these two properties independent? No! Among 500 random integers
von Behr found 205 that were both squarefree and coprime (to another random in-
teger), instead of only 500 ·36/π4 ≈ 185 if these two properties were independent.
Thus, there seems to be a positive correlation between squarefreeness and coprimal-
ity. The reader may wish to show that the joint probability equals 36/π4 times a
peculiar product, which is larger than 1:

∏
i

(

1+
1

p3
i + p2

i − pi −1
≈ 1.16

)

.

4.8 Twin Primes

Primes not infrequently come in pairs called twin primes, like 11 and 13 or 29
and 31. How often does it happen? An estimate [4.2] shows their density to be
proportional to 1/(lnx)2, i.e. the square of the density of single primes, suggesting
that they may occur independently. But one must be careful here because prime
triplets of the form (x,x +2,x +4) can never happen (other than the triplet 3, 5, 7),
since one member of such a triplet is always divisible by 3. (Reader: try to show
this – it is easy.)

On the other hand, triplets of the form (x,x +2,x +6) or (x,x +4,x +6) are not
forbidden and do happen, for example, 11, 13, 17 or 13, 17, 19. Is their asymptotic
density proportional to 1/(lnx)3? In number theory, what is not explicitly forbidden
often occurs, and often occurs randomly – resembling total chaos rather than neat
order.

Let us try to estimate the density of twin primes. The probability that a natural
number x is not divisible by a prime p < x equals about 1− 1/p. The probability
W (x) that x is prime is therefore approximately

W (x) =
x′

∏
p

(

1− 1
p

)

. (4.29)

Here p ranges over all primes below some “cut-off” value x′, where x′ is about
x0.5. On the other hand the prime number theorem [4.10, Theorem 6] tells us that,
asymptotically,

W (x) =
1

lnx
. (4.30)
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How are (4.29) and (4.30) related? According to Mertens’ Theorem [4.10, Theorem
429]

x

∏
p

(

1− 1
p

)

→ e−γ

lnx
, (4.31)

where γ = 0.5772 is Euler’s constant. To have (4.29) agree with (4.30) we set x′ =
xe−γ ≈ x0.56.

While such heuristic estimates may appear rather rough, the numerical evidence
is quite reassuring. Thus, for x = 103, (4.29) yields W (x) = 0.139, whereas (4.30)
and an actual count of primes around x = 103 give 0.145 and 0.144, respectively.
For x = 106, the corresponding results are 0.0723, 0.0724 and 0.0726. For x = 109,
we get 0.0482, 0.0483 and 0.0484.

The probability W2(x) that both x and x + 2 are primes is obtained from the fol-
lowing two “inequalities” or rather incongruences:

x �≡ 0 and x �≡ −2 mod p. (4.32)

(For the definition and rules of congruences see Chap. 6.) For p = 2, both parts of
(4.32) amount to just one condition (x must be odd) yielding the probability factor
1
2 . For p > 2, the two parts of (4.32) are two independent conditions, yielding the
probability factor (1−2/p). Thus,

W2(x) =
1
2

x′

∏
p>2

(

1− 2
p

)

. (4.33)

To connect (4.33) with (4.29) we rewrite the product in (4.33) as follows

x′

∏
p>2

(

1− 2
p

)

=
∏x′

p>2

(

1− 2
p

)

∏x′
p>2

(

1− 1
p

)2

x′

∏
p>2

(

1− 1
p

)2

. (4.34)

Here the ratio of the two products converges for large x′ to 0.66016 . . . , called the
twin-prime constant. The remaining product equals, according to (4.29) and (4.30),
4/ ln2 x. Thus,

W2(x) =
1.32032

ln2 x
, (4.35)

showing the expected trend with 1/ ln2 x. Note, that the sum over all x diverges,
implying an (unproven) infinity of twin primes.

Although there is no mathematical proof for an infinity of twin primes, (4.35) is
supported by excellent numerical evidence. (Curiously, Kummer, the great mathe-
matician of early Fermat fame, obtained, for some reason, an erroneous answer for
W2(x) that, in the pre-computer age, remained long undetected.)



4.9 Prime Triplets 61

Interestingly, while the sum of 1/p over all primes diverges (albeit very slowly –
namely like ln(lnx)), the sum of 1/p2, where p2 is the smaller member of a twin-
prime pair, converges. Thus, although there probably are infinitely many twin primes
(according to our heuristic estimate (4.35)), their density is not sufficient to make
∑1/p2 diverge. To what value does the ∑1/p2 converge? Numerical evidence ob-
tained by summing 1/p2 up to p2 = 1299451 gives 0.9652. Adding to this the inte-
gral of 1/p over the density (4.35) beyond 1299451 yields approximately 1.06 for
∑1/p2.

What can we deduce about twin primes with a spacing of 4 instead of 2? Instead
of the incongruences (4.32) we now have

x �≡ 0 and x �≡ −4 mod p. (4.36)

Again, for p > 2, two remainders, 0 and 4, are forbidden. Thus, the density W4(x)
of (x,x+4) twins equals the density of W2(x) of (x,x+2) twins:

W4(x) = W2(x). (4.37)

If both x and x+4 are primes, x+2 cannot be prime. In fact, x+2 must be divisible
by 3. Thus, x and x+4 are true twins, i. e. primes with no intervening primes.

4.9 Prime Triplets

There are two kinds of prime triplets, those with a 2;4 spacing pattern and others
with a 4;2 pattern. We first consider the 2;4 pattern, that is those cases for which x,
x+2 and x+6 are primes. Thus the following three incongruences must be obeyed

x �≡ 0, x �≡ −2, x �≡ −6 mod p. (4.38)

For p = 2, this amounts again to just one condition: x must be odd, which yields
the probability factor 1

2 . For p = 3, the incongruences (4.38) impose two conditions,
namely neither x nor x+2 must be divisible by 3, yielding the probability factor 1

3 .
For p > 3, all three incongruences of (4.38) are “active”, eliminating three out of
p cases and yielding the probability factor 1− 3/p. The probability W2;4(x) for a
prime triplet with differences between successive primes of 2 and 4, respectively, is
therefore

W2;4(x) =
1
6

x′

∏
p>3

(

1− 3
p

)

, (4.39)

or

W2;4(x) =
1
6

∏x′
p>3

(

1− 3
p

)

∏x′
p>3

(

1− 1
p

)3

x′

∏
p>3

(

1− 1
p

)3

. (4.40)
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Here the ratio of the two products converges for large x′ to 0.63516. . . (which might
be called the triple-prime constant). With (4.29) and (4.30), the remaining product
is seen to approach 27ln3 x. Thus, approximately,

W2;4(x) =
2.858

ln3 x
. (4.41)

For prime triplets with x, x+4 and x+6 prime, the incongruences are

x �≡ 0, x �≡ −4, x �≡ −6 mod p, (4.42)

leading to equinumerous sets of restrictions as (4.38). Thus, the corresponding prob-
ability W4;2(X) is given by

W4;2(x) = W2;4(x). (4.43)

4.10 Prime Quadruplets and Quintuplets

As with prime triplets, there are two different spacing patterns for quadruplets of
close primes: 2;4;2 and 4;2;4. Curiously, numerical evidence suggests that the latter
pattern (4;2;4) seems to be twice as numerous as the other pattern (2;4;2). We
would like to understand why.

For the 2;4;2 pattern the four incongruences are

x �≡ 0, x �≡ −2, x �≡ −6, x �≡ −8 mod p. (4.44)

The effective number of incongruences for p = 2 equals one; for p = 3 the number
equals two; for p > 3 all four incongruences are active. The probability of the 2;4;2
pattern is therefore

W2;4;2(x) =
1
6

x′

∏
p>3

(

1− 4
p

)

, (4.45)

or

W2;4;2(x) =
1
6

∏x′
p>3

(

1− 4
p

)

∏x′
p>3

(

1− 1
p

)4

x′

∏
p>3

(

1− 1
p

)4

. (4.46)

Here the ratio of the two products converges to 0.307496. . . (the “quadruplet con-
stant”) and the remaining factor tends to 81/ ln4 x. Thus

W2;4;2(x) =
4.15

ln4 x
. (4.47)

For the spacing pattern 4;2;4 the four congruences are
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x �≡ 0, x �≡ −4, x �≡ −6, x �≡ −10 mod p. (4.48)

Here, for p = 5, the last incongruence is automatically fulfilled by the first (x �≡ 0).
Thus there are only three (instead of four) active incongruences for p = 5. The
probability factor for p = 5 therefore doubles from (1− 4/5) to (1− 3/5). As a
result, we have

W4;2;4(x) = 2W2;4;2(x), (4.49)

confirming the numerical evidence.
The next closely spaced cluster of primes is a quintuplet with the spacing pattern

2;4;2;4, such as 5, 7, 11, 13, 17 which repeats at 11, 13, 17, 19, 23 and 101, 103,
107, 109, 113, etc. Another possible quintuplet type has the spacing pattern 4;2;4;2,
such as 7, 11, 13, 17, 19, which repeats at 97, 101, 103, 107, 109 but not again
until 1867, 1871, . . . . The reader should have no difficulty deriving the asymptotic
densities for these quintuplets following the recipe of Sects. 4.8–4.10.

However, not all patterns are possible, as we have already seen in Sect. 4.9 with
prime triplets: the spacing pattern 2;2 is impossible after 3, 5, 7 because one member
of such a triplet must be divisible by 3. Another way to demonstrate the impossibility
of the spacing pattern 2;2 uses the appropriate incongruences: for x, x + 2, x + 4 to
be prime. These are

x �≡ 0, x �≡ −2, x �≡ −4 mod p.

For p = 3, the last incongruence may be written as x �≡ −1mod3. Thus all three
possible remainders modulo 3 (0,−2,−1) are forbidden and 3, 5, 7 is the only
triplet with the 2;2 pattern.

In a similar manner, we can show that the sextet with the spacing pattern
2;4;2;4;2 occurs only once (5, 7, 11, 13, 17, 19) and never again. The six incongru-
ences for the sextet considered are

x �≡ 0, −2, −6, −8, −12, −14 mod p.

For p = 5 we may write

x �≡ 0, −2, −1, −3, −2, −4 mod5,

which excludes all five possible classes of remainders modulo 5.
What if any spacing pattern of length 7, 8 etc. is unique in the sense that, like 2,

3 and 3, 5, 7 and 5, 7, 11, 13, 17, 19, it occurs only once and never again?

4.11 Primes at Any Distance

In Sect. 4.8 we derived the formula W2(x) = 1.32032/ ln2 x for the asymptotic den-
sity of twin primes with a distance of 2 (such as 3 and 5 etc.). We also noted that twin
primes with a distance of 4 (like 7 and 11 etc.) are equally probable: W4(x) =W2(x).
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What is the density of pairs of odd primes, not necessarily adjacent, with a distance
of Δ = 6 (like 5 and 11) or a distance of Δ = 8 (like 3 and 11) or any other distance
Δ irrespective of any intervening primes?

For Δ = 6, the incongruences (4.32) have to be replaced by

x �≡ 0 and x �≡ −6 mod p. (4.50)

For p = 2 and p = 3, only one of these two incongruences is active, yielding a
probability factor (1− 1/2) (1− 1/3) = 1/3. For p > 3 both incongruences are
active yielding probability factors (1−2/p). Hence, with (4.33),

W6(x) =
1
3

x′

∏
p>3

(

1− 2
p

)

=
x′

∏
p>2

(

1− 2
p

)

= 2W2(x), (4.51)

i.e. pairs of primes with a distance Δ = 6 are twice as numerous as twin primes.
For Δ = 8, the second of the two incongruences (4.50) becomes x �≡ −8mod p.

Since 8 does not contain any prime factors p > 2, we can proceed as in the derivation
of the twin-prime density with Δ = 2 and Δ = 4. The result is

W8(x) = W2(x). (4.52)

In fact, for any Δ = 2k, k = 1,2,3 . . . , we obtain

W2k(x) = W2(x). (4.53)

More generally, for arbitrary Δ , only the prime factors of Δ are important. Of the
two incongruences

x �≡ 0 and x �≡ −Δ mod p (4.54)

only one is active for all odd prime factors q of Δ . Thus

WΔ (x) =
1
2 ∏

q

1− 1
q

1− 2
q

x′

∏
p>2

(

1− 2
p

)

, (4.55)

where q are the different odd prime factors of Δ and p are all primes above 2 and
below x′. With (4.33) we get

WΔ (x) = Π(Δ)W2(x), where Π(Δ) = ∏
q>2
q|Δ

q−1
q−2

, (4.56)

a charming generalization of our earlier result (4.51) that W6(x) equals 2W2(x). But
W6 is not the largest value. For Δ = 30 we get W30 = 2.66W2. In fact, there is no
upper bound for Π(Δ) because the product over q diverges if all possible primes
are included as prime factors of Δ . More specifically, the product Π(Δ) diverges as
1.349lnqmax, where qmax is the largest prime factor of Δ . Are there two different
coprime values of Δ having the same Π(Δ)? Let the reader decide – or rather find
out.
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Fig. 4.12 The number of
primes with a given spacing

Of the two factors in (4.56) one is slowly varying, representing a monotonic
trend, W2(x), whereas the product Π(Δ) fluctuates appreciably with changing values
of Δ . Figure 4.12 shows a plot of Π(Δ) as a function of Δ . For every value of Δ
that is divisible by 3, i.e. every third value, the quotient (q−1)/(q−2) contributes
a factor of 2 to the product. Similarly, for every value of Δ divisible by 5, i.e. every
5th value, a factor of 4/3 is contributed – and so on for 7, 11 etc.

These inherent periodicities are brought out nicely by the Fourier transform of
Π(Δ): see Fig. 4.13, which shows a pronounced peak at one third the sampling
frequencies, corresponding to p = 3, and smaller peaks corresponding to p = 5
and 7 and their “harmonics”. As we shall see, Π(Δ) has a certain universal air
about it because it also governs the sum of two primes (cf. Sect. 4.13).

Π(Δ) is also related to Euler’s Φ function Φ(m) (see Sect. 8.3) and in fact re-
sembles m/Φ(m):

m
Φ(m)

= ∏
p|m

p
p−1

,

Fig. 4.13 The magnitude of
the Fourier transform showing
the preponderance of spacings
at multiples of 6



66 4 The Prime Distribution

whereas

Π(m) = ∏
p>2
p|m

p−1
p−2

. (4.57)

4.12 Spacing Distribution Between Adjacent Primes

The prime number theorem prescribes the average spacing s between adjacent
primes. For n� 1, this spacing is about lnn. (For example, for n = 20, s≈ ln20≈ 3.)

All spacings between odd primes are of course even. If the distribution of spac-
ings were otherwise unconstrained, then, given an average spacing, the maximum-
entropy principle [4.11] would tell us that the distribution of k = s/2 is the geometric
distribution:

d(k) =
1

k

(

k

1+ k

)k

, k =
1
2

lnn, k = 1,2, . . . . (4.58)

In reality, the distribution of spacings is anything but unconstrained. We already
know (4.37) that the frequencies of the spacings s = 2 (i.e. k = 1) and s = 4
(i.e. k = 2) are equal, while (4.58) would predict a ratio of d(1)/d(2) = 1 + 1/k.
Figure 4.14 shows a plot of the logarithm of d(k) in the range p20000 to p40000

for k = 1 to 36. There is the predicted overall linear trend: lnd(k) ∼ r/k with
r = − ln(1 + 1/k). But the “bumps” at k = 3 (i.e. s = 6), k = 15 (i.e. s = 30) and
other places (especially multiples of 3) are also visible.

The average slope obtained by regression of the data in Fig. 4.14 is r = −0.148,
in good agreement with the theoretical value of r = −0.146.

Fig. 4.14 The distribution of
the spacings between adjacent
primes
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4.13 Goldbach’s Conjecture

One of the most enduring (if not endearing) mathematical conjectures, made by
the Russian mathematician Christian Goldbach (1690–1764) in a letter to Leonhard
Euler, is the famous Goldbach conjecture. It asserts that every even number n > 4
is the sum of two odd primes. Some progress has been made on related weaker
assertions, and the Goldbach conjecture itself has been numerically confirmed up to
very large numbers. But alas, even if it had been shown to hold up to 101010

, there
would be no guarantee that it would not fail for 101010

+2.
Let us try our heuristic muscle at this recalcitrant conjecture. We want to get a

feeling for the number of representations

x+ y = n,

where x and y are odd primes and n > 4 is even. We want to count permuted repre-
sentations, such as 3 + 5 = 5 + 3 = 8, as only one case. Without loss of generality
we assume x ≤ n/2.

The number of odd primes below n/2 equals approximately n/(2lnn). Each such
prime is a candidate for x+y = n and contributes to the count in question if y = n−x
is also prime. What is the probability of n− x being prime, given that x is an odd
prime?

To answer this question, we have to distinguish two cases. For a given potential
prime divisor p of n− x: does p divide n or does it not? In the first case (p|n) the
two incongruences

x �≡ 0 and n− x �≡ 0 mod p (4.59)

amount to only one condition because, for p|n, n−x ≡ xmod p. Thus the probability
factor is (1−1/p). In the other case (p � | n) and p > 2, the incongruences (4.59) are
independent of each other. The probability factor is therefore (1−2/p). For p = 2
the factor is 1/2. Multiplying these probability factors yields

∏
p|n

(

1− 1
p

)

∏
p>2
p|n

(

1− 2
p

)

· 1
2
.

This factor has to be divided by the unrestricted probability factor

∏
p

(

1− 1
p

)2

and multiplied by the a priori probability that n− x is prime. Since n− x is already
odd (because n is even and x is odd), this probability equals

2
ln(n− x)

≈ 2
lnn

(because x ≤ n/2).
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Thus, the total estimated count C2(n) of cases for which both x and n− x are
prime is given by

C2(n) = ∏
p>2

(

1− 2
p

)

(

1− 1
p

)2 · ∏
p>2
p|n

p−1
p−2

· n

ln2 n
. (4.60)

Here the first factor approaches our old friend, the twin-prime constant 0.66016. . .
(4.34). This factor combined with the last factor (n/ ln2 n) is nothing but the twin-
prime density W2(n), see (4.35), multiplied by 1/2. Thus

C2(n) =
n
2

W2(n) ∏
p>2
p|n

p−1
p−2

. (4.61)

To simplify this formula even further, we recall the function WΔ (n) [see (4.55)].
With Δ = n

C2(n) = n
2Wn(n). (4.62)

Thus the number of Goldbach representations C2(n) equals, within a factor n/2, the
density of prime pairs Wn(n) with a spacing of n in the neighbourhood of n.

Another interesting aspect of this result is the product in (4.61). Suppose n is a
multiple of 3, then this product, for p = 3, contributes a factor of 2 to the count. If n
is divisible by 5, the product contributes a factor 4/3, which is still appreciably larger
than 1. Thus, we see that the count C2(n) has a pronounced periodic component with
a period of 3 (and weaker periodicities with periods of 5, 7, 11, etc.), just like Π(n)
(see Figs. 4.12 and 4.13).

4.14 Sum of Three Primes

Another problem from additive number theory that Goldbach posed in 1742 in cor-
respondence with Euler, then at St. Petersburg, concerned the sum of three primes.
Goldbach asked whether every sufficiently large odd n can be written as

n = p1 + p2 + p3. (4.63)

Positive proof that this is indeed possible had to wait almost 200 years – until 1937
when I. M. Vinogradov [4.12] furnished a proof based on Fourier-like trigonometric
sums. Trigonometric sums have played an important role in number theory ever
since, forging a strong link between additive and multiplicative number theory.

How did Vinogradov get from (4.63) to trigonometric sums? The number of cases
including permutations C3(n) for which (4.63) holds can be written as follows
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C3(n) = ∑
p1<n

∑
p2<n

∑
p3<n

∫ 1

0
exp [2πi(p1 + p2 + p3 −n)x]dx, (4.64)

because when (4.63) holds the integral equals 1 and the triple sum is augmented by
1; otherwise the integral is 0 and nothing is added.

As a next step, Vinogradov converted the triple sum into a single sum:

C3(n) =
∫ 1

0
∑
p<n

[exp(2πixp)]3 exp(−2πin)dx, (4.65)

which he was able to convert into the product of (1− 1/(p2 − 3p + 3)) taken over
all prime divisors of n.

The final result of Vinogradov’s method is that the number of representations
C3(n) of an odd integer as the sum of three primes equals, asymptotically,

C3(n) = C∏
p|n

(

1− 1
p2 −3p+3

)

n2

ln3 n
. (4.66)

This formula resembles (4.60) for the sum of two primes, except that the slowly
varying factor n/ ln2 n (the “trend”) has been replaced by n2/ ln3 n and the prod-
uct over p|n is over a quadratic expression in p. However, like Π(n) [see (4.57)]
this product, too, depends sensitively on the small prime factors of n. Thus, if n is
divisible by 3, the term for p = 3 contributes a factor 2/3 to the product.



Part II
Some Simple Applications



Chapter 5
Fractions: Continued, Egyptian and Farey

Continued fractions are one of the most delightful and useful subjects of arithmetic,
yet they have been continually neglected by our educational factions. Here we dis-
cuss their applications as approximating fractions for rational or irrational numbers
and functions, their relations with measure theory (and deterministic chaos!), their
use in electrical networks and in solving the “squared square”; and the Fibonacci
and Lucas numbers and some of their endless applications.

We also mention the (almost) useless Egyptian fractions (good for designing
puzzles, though, including unsolved puzzles in number theory) and we resurrect
the long-buried Farey fractions, which are of considerable contemporary interest,
especially for error-free computing.

Among the more interesting recent applications of Farey series is the reconstruc-
tion of periodic (or nearly periodic) functions from “sparse” sample values. Applied
to two-dimensional functions, this means that if a motion picture or a television film
has sufficient structure in space and time, it can be reconstructed from a fraction of
the customary picture elements (“pixels”). (“Sufficient structure” in spacetime im-
plies that the reconstructions might not work for a blizzard or a similar “snow job”.)

5.1 A Neglected Subject

Continued fractions (CFs) play a large role in our journey through number theory
[5.1]. A simple continued fraction

b0 + 1

b1 + 1

b2 + 1

b3 + . . . ,

(5.1)

a typographical nightmare if there ever was one, is usually written as follows:
[b0;b1,b2,b3, ...]. Here the bm are integers. A finite simple CF then looks like this:

[b0;b1, . . . ,bn]. (5.2)
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If a finite or infinite CF is broken off after k < n, then [b0;b1, . . . ,bk] = Ak/Bk is
called the approximating fraction or convergent of order k. Here Ak and Bk are co-
prime integers; they obey the recursion

Ak = bk Ak−1 +Ak−2, (5.3)

with A0 = b0, A−1 = 1 and A−2 = 0. The Bk are derivable from the same recursion:

Bk = bk Bk−1 +Bk−2, (5.4)

with B0 = 1 and B−1 = 0.
As the order of the approximating fractions increases, so does the degree of ap-

proximation to the true value of the fraction, which is approached alternately from
above and below.

CFs are unique if we outlaw a 1 as a final entry in the bracket. Thus 1/2 should
be written as [0;2] and not [0;1,1]. In general, if a 1 occurs in the last place, it can
be eliminated by adding it to the preceding entry.

Continued fractions are often much more efficient in approximating rational or
irrational numbers than ordinary fractions, including decimals. Thus,

r =
964
437

= [2; 4, 1, 5, 1, 12], (5.5)

and its approximating fraction of order 2, [2;4,1] = 11/5, approaches the final value
within 3 parts in 103.

One interesting application of CFs is to answer such problems as “when is the
power of the ratio of small integers nearly equal to a power of 2?”, a question of
interest in designing cameras, in talking about computer memory and in the tuning
of musical instruments (Sect. 2.6). For example, what integer number of musical
major thirds equals an integral number of octaves, i. e., when is

(

5
4

)n

≈ 2m, or

5n ≈ 2m+2n?

By taking logarithms to the base 2, we have

log2 5 ≈ m
n

+2.

The fundamental theorem tells us that there is no exact solution; in other words,
log2 5 is irrational. With the CF expansion for log2 5 we find

log2 5 = 2.3219 · · · = [2;3,9, . . . ] or

log2 5 ≈ 2+ 1
3 ,



5.1 A Neglected Subject 75

yielding m = 1 and n = 3. Check:

(

5
4

)3

= 1.953 · · · ≈ 2.

In other words, the well-tempered third-octave 21/3 matches the major third within
0.8 % or 14 musical cents. (The musical cent is defined as 1/1200 of an octave. It
corresponds to less than 0.6 Hz at 1 kHz, roughly twice the just noticeable pitch
difference.)

The next best CF approximation gives

log2 5 ≈ 2+ 9
28 ,

or m = 9, n = 28, a rather unwieldy result.
Because log10 2, another frequently occurring irrational number, is simply related

to log2 5:

log10 2 = 1/(1+ log2 5),

it has a similar CF expansion:

log10 2 = [0;3,3,9, . . . ].

It, too, is well approximated by breaking off before the 9. This yields

log10 2 ≈ [0;3,3] = 3
10 ,

a well-known result (related to the fact that 210 ≈ 103).
Some irrational numbers are particularly well approximated. For example, the

widely known first-degree approximation to π , namely, [3;7] = 22/7, comes within
4 parts in 103. The second-order approximation [3;7,16] = 355/113, known to the
early Chinese, approaches π within 10−7.

Euler [5.2] discovered that the CF expansion of e = 2.718281828 . . . , unlike that
of π , has a noteworthy regularity:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . . ], (5.6)

but converges initially very slowly because of the many 1’s. In fact, the CF for the
Golden section or Golden ratio g = [1;1,1,1,1 . . . ], which contains infinitely many
1’s, is the most slowly converging CF. It is therefore sometimes said, somewhat
irrationally, that g is the “most irrational” number. In fact, for a given order of ra-
tional approximation the approximation to g is worse than for any other number.
Because of this property, up-to-date physicists who study what they call “determin-
istic chaos” in nonlinear systems often pick the Golden ratio g as a parameter (e. g.,
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a frequency ratio) to make the behaviour “as aperiodic as possible”. A strange ap-
plication of number theory indeed!

CFs are also useful for approximating functions. Thus, in a generalization of our
original bracket notation, permitting noninteger entries,

tanz =
[

z
1−

z2

3−
z2

5− . . .

]

:=
z

1− z2

3− z2

5

. . .

(5.7)

yields the second-order approximation [5.3]

tanz = z
15− z2

15−6z2 . (5.8)

For z = π/4, this is about 0.9998 (instead of 1). By contrast, the three-term power
series for tanz, tanz = z + z3/3 + z5/5, makes an error that is 32 times larger. The
reason for the superiority of the CF over the power-series expansion is quite obvious.
As we can see from (5.8), the CF expansion makes use of polynomials not only in the
numerator but also in the denominator. (Not making use of this degree of freedom is
as if a physicist or engineer tried to approximate the behaviour of a resonant system
by zeros of analytic functions only, rather than by zeros and poles: it is possible, but
highly inefficient.)

Equally remarkable is the approximation of the error integral by a CF. The third-
order approximation

∫ z

0
e−x2

dx ≈ 49140+3570z3 +739z5

49140+19950z2 +2475z4 (5.9)

makes an error of only 1.2 % for z = 2, as opposed to a power series including terms
up to z9 which overshoots the true value by 110 %.

Incidentally, the fact that e has so regular a CF representation as (5.6), while π
does not, does not mean that there is no regular relationship between CFs and some
relative of π . In fact, the (generalized) CF expansion of arctanz for z = 1 leads to
the following neat CF representation:

π
4

=
[

1
1+

1
2+

9
2+

25
2+

49
2+

. . .

]

.

Gauss, the prodigious human calculator, used CFs profusely; even on the first
page of his new notebook begun on the occasion of the discovery of the regular
17-gon, CFs make their appearance (Fig. 5.1).

Why are CFs treated so negligently in our high (and low) schools? Good ques-
tion, as we shall see when we study their numerous uses.
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Fig. 5.1 First page of Gauss’s notebook, begun in his native city of Brunswick when he was only
18. The first entry concerns the epochal “geometrical” construction of the regular 17-gon which
convinced him that he should become a mathematician. The last entry on this page, written like the
three preceding ones in Göttingen, shows his early interest in continued fractions

5.2 Relations with Measure Theory

Consider the CF

α = [0;a1,a2, . . . ]. (5.10)

In 1828, Gauss established that for almost all α in the open interval (0,1) the prob-
ability
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W ([0;an,an+1, . . . ] < x) (5.11)

tends to log2(1+ x) as n goes to infinity. Gauss also showed that the probability

W (an = k) → log2

[

1+
1

k(k +2)

]

, (5.12)

i. e., the probabilities for an = 1,2,3, . . . decline as 0.42, 0.17, 0.09, . . . , in contrast
to the equal probabilities of the 10 digits for “most” decimal digits. Khinchin [5.4]
showed in 1935 that for almost all real numbers the geometric mean

(a1a2 . . . an)
1
n →

∞

∏
k=1

[

1+
1

k(k +2)

]log2 k

= 2.68545 . . . , (5.13)

and that the denominators of the approximating fractions

(Bn)
1
n → eπ2/12ln2 = 3.27582 . . . . (5.14)

These strange constants are reminiscent of the magic numbers that describe pe-
riod doubling for strange attractors in deterministic chaos. And perhaps there is
more than a superficial connection here.

5.3 Periodic Continued Fractions

As with periodic decimals, we shall designate (infinite) periodic CFs like [1;2,2,
2, . . . ] by a bar over the period:

[1;2]. (5.15)

Incidentally, [1;2] has the value
√

2. In general, periodic CFs have values in which
square (but no higher) roots appear.

An integer that is a nonperfect square, whose square root has a periodic, and
therefore infinite, CF, has an irrational square root. However, there are simpler
proofs that

√
2, say, is irrational without involving CFs. Here is a simple indirect

proof: suppose
√

2 is rational:

√
2 =

m
n

, (5.16)

where m and n are coprime:

(m,n) = 1, (5.17)

i. e., the fraction for
√

2 has been “reduced” (meaning the numerator m and the
denominator n have no common divisor). Squaring (5.16) yields
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2n2 = m2. (5.18)

Thus, m must be even:

m = 2k, (5.19)

or, with (5.18),

2n2 = 4k2, (5.20)

which implies that n is also even. Consequently,

(m,n) > 1, (5.21)

contradicting (5.17). Thus, there are no integers n,m such that
√

2 = m/n; in other
words:

√
2 is irrational. Q.E.D.

An even shorter proof of the irrationality of
√

2 goes as follows. Suppose
√

2
is rational. Then there is a least positive integer n such that n

√
2 is an integer. Set

k = (
√

2−1)n. This is a positive integer smaller than n, but

k
√

2 =
(√

2−1
)

n
√

2 = 2n−
√

2n

is the difference of two different integers and so is a positive integer. Contradiction:
n was supposed to be the smallest positive integer such that multiplying it by

√
2

gives an integer! Using this kind of proof, for which s can one show that
√

s is
irrational? What modification(s) does the proof require?

Another exhibition example for CF expansion which we have already encoun-
tered is

[1;1] = 1
2

(

1+
√

5
)

, (5.22)

the famous Golden ratio g: if a distance is divided so that the ratio of its total length
to the longer portion equals g, then the ratio of the longer portion to the shorter one
also equals g. By comparison with (5.13) we see that the expansion coefficients in
the continued fraction of g, being all 1, are 2.68. . . times smaller than the geometric
mean over (almost) all numbers.

Golden rectangles have played a prominent role in the pictorial arts, and Fig. 5.2
illustrates the numerous appearances of g in a painting by Seurat. Figure 5.3 shows
an infinite sequence of “golden rectangles” in which the sides have ratio g. To con-
struct this design, lop off a square from each golden rectangle to obtain the next
smaller golden rectangle.

The Golden ratio, involving as it does the number 5 – a Fermat prime – is also
related, not surprisingly, to the regular pentagon, as illustrated in Fig. 5.4. It is easily
verified (from Pythagoras) that AB/AT = g. Thus, the Golden ratio emerges as the
ratio of the diagonal of the regular pentagon to its side.

Finally, the Golden ratio g emerged as the noblest of “noble numbers”, the lat-
ter being defined by those (irrational) numbers whose continued fraction expansion
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Fig. 5.2 Golden ratios in a painting by Seurat

ends in infinitely many 1’s. In fact, the CF of g, see (5.22), has only 1’s, whence
also its nickname “the most irrational number” (because no irrational has a CF
approximation that converges more slowly than that for g).

The designation noble numbers stems from the fact that in many nonlinear dy-
namical systems “winding numbers” (the frequency ratios of orbits in phase space)
that equal noble numbers are the most resistant against the onset of chaotic motion,
which is ubiquitous in nature. (Think of turbulence – or the weather, for that matter.)

Cassini’s divisions in the rings of Saturn are a manifestation of what happens
when, instead of noble numbers, base numbers reign: rocks and ice particles consti-
tuting the rings, whose orbital periods are in simple rational relation with the periods
of other satellites of Saturn, are simply swept clean out of their paths by the reso-
nance effects between commensurate orbital periods. In fact, the very stability of
the entire solar system depends on the nobility of orbital period ratios.

Fig. 5.3 The beginning of an
infinite sequence of Golden
rectangles. Some sea shells
are said to use this
construction
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Fig. 5.4 The Golden ratio
and the construction of the
regular pentagon

A double pendulum in a gravitational field is a particularly transparent nonlinear
system. As the nonlinearity is increased (by slowly “turning on” the gravitation),
the last orbit to go chaotic is the one with a winding number equal to 1/(1 + g) =
[0;2,1,1,1, . . . ], a very noble number!

For physical systems a winding number w < 1 is often equivalent to the winding
number 1−w. Suppose w = [0;a1,a2, . . . ], what is the CF for 1−w? The reader will
find it easy to show that

1− [0;a1,a2, . . . ] = [0;1,a1 −1,a2, . . . ]. (5.23)

Thus, if w is noble, so is 1−w. Note that if a1 −1 = 0, we need to invoke the rule

[. . . ,am,0,am+2, . . . ] = [. . . ,am +am+2, . . . ],

which assures that the CF for 1− (1−w) equals that for w.
Among the most exciting nonlinear systems where CF expansions have led to

deep insights are the fractional quantization in a two-dimensional electron gas [5.5]
and “Frustrated instabilities” in active optical resonators (lasers) [5.6].

5.4 Electrical Networks and Squared Squares

One of the numerous practical fields where CFs have become entrenched – and for
excellent reasons – are electrical networks.

What is the input impedance Z of the “ladder network” shown in Fig. 5.5 when
the Rk are “series” impedances and the Gk are “shunt” admittances? A moment’s
thought will provide the answer in the form of a CF:
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Fig. 5.5 Electrical ladder
network. Input impedance is
given by continued fraction
[R0;G1,R1,G2, . . . ]

Z = [R0;G1,R1,G2,R2, . . . ].

Here, in the most general case, the Rk and Gk are complex-valued rational func-
tions of frequency.

If all Rk and Gk are 1-ohm resistors, the final value of Z for an infinite network,
also called the characteristic impedance Z0, will equal

g = 1
2

(

1+
√

5
)

ohm.

The application of CFs to electrical networks has, in turn, led to the solution of
a centuries-old teaser, the so-called Puzzle of the Squared Square, i. e., the problem
of how to divide a square into unequal squares with integral sides. This problem
had withstood so many attacks that a solution was widely believed impossible [5.7].
Thus, the first solution, based on network theory, created quite a stir when it ap-
peared (Fig. 5.6).

In the meantime Littlewood has given a solution for a 112 by 112 square, which
is the smallest squared square found so far.

Fig. 5.6 The first squared
square, a solution based on
the theory of electrical
networks and continued
fractions (courtesy
E. R. Wendorff)
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5.5 Fibonacci Numbers and the Golden Ratio

Another close relative of CFs are the Fibonacci numbers [5.8], defined by the
recursion

Fn = Fn−1 +Fn−2, with F0 = 0 and F1 = 1, (5.24)

which is identical with the CF recursion for the case bk = 1. The first Fibonacci
numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . where each number is the sum
of its two predecessors.

The ratio of two successive Fn approaches the Golden ratio g = (1 +
√

5)/2,
which is easily verified in terms of CFs. From the recursion (5.24) it follows that

Fn+1/Fn = [1; 1, . . . ,1
︸ ︷︷ ︸

n−1 1′s

] (n > 1), (5.25)

where the right-hand side of (5.25) is the approximating fraction to the Golden ratio.
Equation (5.25) also implies that successive Fn are coprime:

(Fn,Fn+1) = 1, n > 0. (5.26)

Also, the product of Fn (n > 1) and its predecessor differs by ±1 from the product
of their two neighbours:

Fn−1Fn −Fn−2Fn+1 = (−1)n. (5.27)

Examples: 21 ·34 = 13 ·55−1; 34 ·55 = 21 ·89+1.

The reader may wish to prove his or her prowess by proving these simple statements.
Equations such as (5.27) often provide quick answers to a certain class of problems
such as the “banking” puzzle described in Sect. 5.11.

A simple alternative recursion for Fn is

Fn = 1+
n−2

∑
k=1

Fk. (5.28)

Because of the internal structure of the Fn, which relates each Fn to its two pre-
decessors, the odd-index Fn can be obtained from the even-index Fn alone:

F2n+1 = 1+
n

∑
k=1

F2k. (5.29)

It is sometimes said that there is no direct (nonrecursive) formula for the Fn,
meaning that all predecessors Fk, with k < n, have to be computed first. This state-
ment is true, however, only if we restrict ourselves to the integers. If we extend our
number field to include square roots, we get the surprising direct formula, discov-
ered by A. de Moivre in 1718 and proved ten years later by Nicolas Bernoulli:
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Fn =
1√
5

[(

1
2
(1+

√
5)
)n

−
(

1
2
(1−

√
5)
)n]

, (5.30)

and if we admit even complex transcendental expressions, we obtain a very compact
formula:

Fn = in−1 sin(nz)
sinz

, z =
π
2

+ i ln

(

1+
√

5
2

)

. (5.31)

In (5.30), the first term grows geometrically, while the second term alternates in
sign and decreases geometrically in magnitude because

−1 < 1
2 (1−

√
5) < 0.

In fact, the second term is so small, even for small n, that it can be replaced by
rounding the first term to the nearest integer:

Fn =
⌊

1√
5

[

1
2

(

1+
√

5
)

]n

+
1
2

⌋

. (5.32)

The result (5.30) is most easily obtained by solving the homogeneous difference
equation (5.24) by the Ansatz

Fn = xn. (5.33)

This converts the difference equation into an algebraic equation:

x2 = x+1. (5.34)

(This is akin to solving differential equations by an exponential Ansatz.)
The two solutions of (5.34) are

x1 =
1
2

(

1+
√

5
)

and x2 =
1
2

(

1−
√

5
)

. (5.35)

The general solution for Fn is then a linear combination:

Fn = axn
1 +bxn

2, (5.36)

where with the initial conditions F0 = 0 and F1 = 1,

a = −b =
1√
5
. (5.37)

Equations (5.35–5.37) taken together yield the desired nonrecursive formula (5.30).
Equation (5.30) can be further compacted by observing that x1 = −1/x2 = g, so

that
√

5Fn = gn − (−g)−n. (5.38)

The right side of (5.38) can be converted into a trigonometric function by setting
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t = i lng, (5.39)

yielding

√
5Fn = 2in−1 sin

(π
2

+ t
)

n, (5.40)

which is identical with (5.31) because

sin
(π

2
+ i lng

)

=
1
2

√
5, (5.41)

a noteworthy formula in itself.
There are also numerous relations between the binomial coefficients and the Fi-

bonacci numbers. The reader might try to prove the most elegant of these:

Fn+1 =
�n/2�

∑
k=0

(

n− k
k

)

. (5.42)

In other words, summing diagonally upward in Pascal’s triangle yields the Fibonacci
numbers. (Horizontal summing, of course, gives the powers of 2.)

There is also a suggestive matrix expression for the Fibonacci numbers:
(

1 1
1 0

)n

=
(

Fn+1 Fn

Fn Fn−1

)

, (5.43)

which is obviously true for n = 1 and is easily proved by induction. Since the deter-
minant on the left equals −1, it follows immediately that

Fn+1 Fn−1 −F2
n = (−1)n, (5.44)

which generalizes to

Fn+k Fm−k −Fn Fm = (−1)nFm−n−k Fk,y (5.45)

where any negative-index Fn are defined by the “backward” recursion

Fn−1 = Fn+1 −Fn, (5.46)

giving

F−n = −(−1)nFn. (5.47)

Summation leads to some interesting relationships, for example

n

∑
k=1

F2
k = Fn Fn+1,

which is easily proved by induction.
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Products of reciprocals, too, have noteworthy sums:

n

∑
k=2

1
Fk−1Fk+1

= 1− 1
Fn Fn+1

.

Ratios of successive Fibonacci numbers have very simple continued fractions. In-
stead of (5.25) we may write:

Fn

Fn+1
= [1,1, . . . ,1,2],

where the number of 1’s equals n−2.
By adding Fibonacci numbers, the positive integers can be represented uniquely,

provided each Fn (n > 1) is used at most once and no two adjacent Fn are ever used.
Thus, in the so-called Fibonacci number system,

3 = 3

4 = 3+1

5 = 5

6 = 5+1

7 = 5+2

8 = 8

9 = 8+1

10 = 8+2

11 = 8+3

12 = 8+3+1

1000 = 987+13 etc.

A simple algorithm for generating the Fibonacci representation of m is to find the
largest Fn not exceeding m and repeat the process on the difference m−Fn until this
difference is zero.

The Fibonacci number system answers such questions as to where to find 0’s or
1’s or double 1’s in the following family of binary sequences:

0

1

1 0

1 0 1

1 0 1 1 0 etc.,

where the next sequence is obtained from the one above by appending the one above
it. (See Sect. 32.1.)
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Another application of the Fibonacci number system is to nim-like games: from a
pile of n chips the first player removes any number m1 �= n of chips; then the second
player takes 0 < m2 ≤ 2m1 chips. From then on the players alternate, never taking
less than 1 or more than twice the preceding “grab”. The last grabber wins.

What is the best first grab? We have to express n in the Fibonacci system:

n = Fk1 +Fk2 + · · ·+Fkr .

The best initial move is then to take

Fk j + · · ·+Fkr

chips for some j with 1 ≤ j ≤ r, provided j = 1 or

Fk j−1 > 2(Fk j + · · ·+Fkr).

Thus, for n = 1000, the first player should take 13 chips – the only lucky number
in this case: only for m1 = 13 can he force a victory by leaving his opponent a
Fibonacci number of chips, making it impossible for the second player to force
a win.

5.6 Fibonacci, Rabbits and Computers

Fibonacci numbers abound in nature. They govern the number of leaves, petals and
seed grains of many plants (see Fig. 5.7 [5.9, 10]), and among the bees the number
of ancestors of a drone n generations back equals Fn+1 (Fig. 5.8).

Rabbits, not to be outdone, also multiply in Fibonacci rhythm if the rules are
right: offspring beget offspring every “season” except the first after birth – and they
never die (Fig. 5.9). As already mentioned, this was the original Fibonacci problem
[5.11] considered in 1202 by Fibonacci himself.

Leonardo da Pisa, as Fibonacci was also known, was a lone star of the first magni-
tude in the dark mathematical sky of the Middle Ages. He travelled widely in Arabia
and, through his book Liber Abaci, brought the Hindu-Arabic number system and
other superior methods of the East to Europe. He is portrayed in Fig. 5.10.

Fibonacci numbers also tell us in how many ways a row of n squares can be
covered by squares or “dominoes” (two squares side-by-side). Obviously for n = 2,
there are two ways: either 2 squares or 1 domino. For n = 11 there are 144 ways.
What is the general rule?

n squares can be covered by first covering n−1 squares and then adding another
square or by first covering n− 2 squares and then adding 1 domino. Thus, calling
the number of different coverings of n squares fn, we have

fn = fn−1 + fn−2,
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Fig. 5.7 Flowers have petals
equal to Fibonacci numbers

i.e., the familiar recursion for the Fibonacci numbers Fn. With the initial values
f1 = 1 and f2 = 2, we thus see that fn = Fn+1.

Fibonacci numbers also crop up in computer science and artificial languages.
Suppose there is a “language” with variables A,B,C, . . . and functions of one or
two variables A(B) or A(B,C). If we leave out the parentheses, how many ways
can a string of n letters be parsed, i. e., grammatically decomposed without repeated
multiplication? For a string of three letters, there are obviously two possibilities:
A ·B(C) and A(B,C). In general, the answer is Fn ways, or so says Andrew Koenig
of Bell Laboratories [5.12].

Another area in which Fibonacci numbers have found useful application is that of
efficient sequential search algorithms for unimodal functions. Here the kth interval
for searching is divided in the ratio of Fibonacci numbers Fn−k/Fn, so that after
the (n− 1)st step, the fraction of the original interval (or remaining uncertainty)

Fig. 5.8 Bees have Fibonacci-
number ancestors
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Fig. 5.9 Pairs of rabbits
under certain (artifical) birth
constraints, multiply
according to a Fibonacci
series

is 1/Fn �
√

5/[(1 +
√

5)/2]n as opposed to (1/
√

2)n for “dichotomic” sequential
search. After 20 steps, the precision of the Fibonacci-guided search is 6.6 times
higher than the dichotomic one [5.13]. For an extensive treatment of applications of
number theory in numerical analysis, see [5.14].

Fig. 5.10 Leonardo da Pisa,
widely known as Fibonacci
(“blockhead”), the great
mathematical genius of the
Middle Ages – a
mathematical dark age
outside the Middle East (and
the Middle Kingdom!)
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5.7 Fibonacci and Divisibility

It can be proved by induction that

Fn+m = Fm Fn+1 +Fm−1 Fn, (5.48)

which for m = 2 is our fundamental recursion (5.24).
By choosing m as a multiple of n, one can further infer that Fnk is a multiple of

Fn (and of Fk).

Example: F30 = 832040, which is divisible by F15 = 610, F10 = 55, F6 = 8, F5 = 5,
etc.

In other words, every third Fn is even, every fourth Fn is divisible by F4 = 3, every
fifth Fn by F5 = 5, etc. As a consequence, all Fn for composite n (except n = 4) are
composite. However, not all Fp are prime. For example, F53 = 953 ·55945741.

In 1876 Lucas showed even more, namely that, magically, the two operations
“take GCD” and “compute Fibonacci” commute:

(Fm,Fn) = F(m,n), (5.49)

a “magic” that can be proved with the help of Euclid’s algorithm.

Example: (F45,F30) = (1134903170,832040) = 610 = F15 .

One of the most interesting divisibility properties of the Fibonacci numbers is
that for each prime p, there is an Fn such that p divides Fn. More specifically, p �= 5
divides either Fp−1 [for p ≡ ±1 (mod5)] or Fp+1 [for p ≡ ±2 (mod5)]. And of
course, for p = 5 we have p = Fp. In fact, every integer divides some Fn (and there-
fore infinitely many).

Also, for odd prime p,

Fp ≡ 5
p−1

2 (mod p) (5.50)

holds.
Many intriguing identities involve powers of Fibonacci numbers, e.g.

(F2
n +F2

n+1 +F2
n+2)

2 = 2[F4
n +F4

n+1 +F4
n+2]

5.8 Generalized Fibonacci and Lucas Numbers

By starting with initial conditions different from F1 = F2 = 1, but keeping the re-
cursion (5.24), one obtains the generalized Fibonacci sequences, which share many
properties with the Fibonacci sequences proper. The recursion for the generalized
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Fibonacci sequence Gn, in terms of its initial values G1 and G2 and the Fibonacci
numbers, is

Gn+2 = G2Fn+1 +G1Fn. (5.51)

Of course, for G1 = G2 = 1 the original Fibonacci sequence is obtained. For some
initial conditions, there is only a shift in the index, as for example with G1 = 1 and
G2 = 2.

However, for G1 = 2 and G2 = 1, one obtains a different sequence:

2, 1, 3, 4, 7, 11, 18, 29, . . . , (5.52)

the so-called Lucas sequence [5.8]. Of course, obeying the same recursion as the
Fibonacci numbers, the ratio of successive Lucas numbers also approaches the
Golden ratio. However, they have “somewhat” different divisibility properties.

For example, statistically only two out of three primes divide some Lucas number.
This result is deeper than those on the divisibility of Fibonacci numbers that we
mentioned; it was observed in 1982 by Jeffrey Lagarias [5.15].

A closed form for the Lucas numbers is

Ln = gn +
(

−1
g

)n

, with g =
1
2

(

1+
√

5
)

, (5.53)

where the second term is again alternating and geometrically decaying. This sug-
gests the simpler formula obtained by rounding to the nearest integer:

Ln =
⌊

gn +
1
2

⌋

, n ≥ 2. (5.54)

Like the ratios of Fibonacci numbers, the ratios of successive Lucas numbers
have very simple continued fractions:

Ln

Ln+1
= [1,1, . . . ,1,3] ,

where the number of 1’s equals n−2.
Equation (5.53) leads to an intriguing law for the continued fractions of the odd

powers of the Golden ratio g. With

g2n+1 = L2n+1 +g−2n−1,

we get

g2n+1 =
[

L2n+1;L2n+1
]

,

i. e., a periodic continued fraction of period length 1 with all partial quotients equal
to the corresponding Lucas number.
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What are the continued fractions of the even powers of g? What other irrationals
have similarly simple continued fractions? What is the eighth root of the infinite
continued fraction:

2207− 1

2207− 1
2207 − . . .

?

(The latter question was asked as problem B-4 in the 56th Annual William Low-
ell Putnam Mathematical Competition; see Mathematics Magazine 69, 159 (April
1996), where a somewhat tortuous solution was given.)

Lucas numbers can be used to advantage in the calculation of large even Fi-
bonacci numbers by using the simple relation

F2n = Fn Ln (5.55)

to extend the accuracy range of limited-precision (noninteger arithmetic) calcula-
tors. Similarly, we have for the even Lucas numbers

L2n = L2
n −2(−1)n. (5.56)

For odd-index Fn, one can use

F2n+1 = F2
n +F2

n+1 (5.57)

to reach higher indices.
The “decimated” Lucas sequence

L̃n = L2n , i.e.,

3, 7, 47, 2207, 4870847, . . . ,

for which the simple recursion (5.56) L̃n+1 = L̃2
n −2 holds, plays an important role

in the primality testing of Mersenne numbers Mp with p = 4k + 3 (see Chap. 3 for
the more general test).

It is not known whether the Fibonacci or Lucas sequences contain infinitely many
primes. However, straining credulity, R. L. Graham [5.16] has shown that the gener-
alized Fibonacci sequence with

G1 = 1786 772701 928802 632268 715130 455793

G2 = 1059 683225 053915 111058 165141 686995

contains no primes at all!
Interesting results are obtained by introducing random signs into the Fibonacci

recursion:
fn = fn−1 ± fn−2,

or a “growth factor” b:
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fn = fn−1 +b fn−2,

or combining both random signs and b �= 1. For b = 1
2 and random signs (±1 with

equal probabilities) the series doesn’t grow but converges on 0. For which value of
b does the series neither grow indefinitely nor decay to 0?

Another generalization of Fibonacci numbers allows more than two terms in the

recursion (5.24). In this manner kth order Fibonacci numbers F(k)
n are defined that

are the sum of the k preceding numbers with the initial conditions F(k)
0 = 1 and

F(k)
n = 0 for n < 0. For k = 3, the 3rd order Fibonacci numbers sequence starts as

follows (beginning with n = −2): 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, . . . .
Generalized Fibonacci numbers have recently made their appearance in an in-

triguing railroad switch yard problem solved by Ma Chung-Fan of the Institute of
Mathematics in Beijing (H. O. Pollak, personal communication). In a freight classi-
fication yard, a train arrives with its cars in more or less random order, and before
the train leaves the yard the cars must be recoupled in the order of destination.
Thus, the cars with the nearest destination should be at the front of the train so
they can simply be pulled off when that destination is reached, those with the sec-
ond stop as destination should be next, etc. Recoupling is accomplished with the
aid of k spur tracks, where usually 4 ≤ k ≤ 8. The initial sequence of cars is de-
composed into ≤ k subsequences by backing successive cars onto the various spurs,
and the subsequences can then be recombined in an arbitrary order as segments in
a new sequence. For any initial sequence, the desired rearrangement should be ac-
complished with a minimum number of times that a collection of cars is pulled from
one of the spurs. These are called “pulls”. For example, if 10 cars with
possible destinations 1 to 7 are given in the order 6324135726, we wish to get them
into the order 1223345667. On two tracks, this can be done by first backing

341526 onto the first track,

6237 onto the second track.

Pull both into the order 3415266237 (that’s two pulls); then back them onto the two
tracks in order

1223 onto the first track,

345667 onto the second track.

Then pull the first track’s content onto the second, and pull out the whole train in
the right order. Thus, it takes 4 pulls on 2 tracks to get the train together.

Define the index m(σ) of the sequence σ = 6324135726 as follows: Start at the
leftmost (in this case the only) 1, put down all 1’s, all 2’s to the right of the last 1,
3’s to the right of the last 2 if you have covered all the 2’s, etc. In this case, the first
subset defined in this way is 12 (positions 5 and 9). The next subset takes the other 2
and the second 3 (positions 3 and 6); it can’t get to the first 3. The next subset takes
the first 3, the 4, the 5, and the second 6; the last subset is 67. Thus 6324135726 has
been decomposed into 4 nondecreasing, non-overlapping, non-descending sequences
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12, 23, 3456, 67. The “4” is the index m(σ) of the given sequence σ ; the general
definition is analogous; it is the number of times the ordering comes to the left end
of the sequence.

Now Ma showed that the minimum number of pulls in which a sequence σ can
be ordered on k tracks is the integer j such that

F(k)
j−1 < m(σ) ≤ F(k)

j .

Fibonacci would be delighted!

5.9 Egyptian Fractions, Inheritance
and Some Unsolved Problems

A rich sheik, shortly before his death (in one of his limousines; he probably wasn’t
buckled up) bought 11 identical cars, half of which he willed to his eldest daughter,
one quarter to his middle daughter, and one sixth to his youngest daughter. But the
problem arose how to divide the 11 cars in strict accordance with the will of the
(literally) departed, without smashing any more cars. A new-car dealer offered help
by lending the heirs a brand-new identical vehicle so that each daughter could now
receive a whole car: the eldest 6, the middle 3 and the youngest 2. And lo and behold,
after the girls (and their retinues) had driven off, one car remained for the dealer to
reclaim!

The problem really solved here was to express n/(n+1) as a sum of 3 Egyptian
fractions, also called unit fractions:

n
n+1

=
1
a

+
1
b

+
1
c
. (5.58)

In the above story, n = 11 and a = 2, b = 4, c = 6.
Interestingly, for n = 11, there is another solution (and potential story) with a = 2,

b = 3, c = 12 because two subsets of the divisors of 12 (1,2,3,4,6,12) add to 11.
Check: 2 + 3 + 6 = 1 + 4 + 6 = 11. Check! The inheritance problem is related
to pseudoperfect numbers, defined as numbers equal to a sum of a subset of their
divisors [5.17].

For 3 heirs and 1 borrowed car there are only 5 more possible puzzles, the number
of cars being n = 7, 17, 19, 23 and 41 [5.18].

As opposed to continued fractions, unit fractions are of relatively little use (other
than in tall tales of inheritance, perhaps). In fact, they probably set back the de-
velopment of Egyptian mathematics incalculably. However, they do provide fertile
ground for numerous unsolved problems in Diophantine analysis [5.17].

Of special interest are sums of unit fractions that add up to 1. Thus, for example,
it is not known what is the smallest possible value of xn, called m(n), in
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n

∑
k=1

1
xk

= 1, x1 < x2 < · · · < xn. (5.59)

It is “easy” to check that m(3) = 6, m(4) = 12 and m(12) = 30. But what is the
general law? Is m(n) < cn for some constant c? Unknown!

Is xk+1 − xk ≤ 2 ever possible for all k? Erdös in [5.17] thinks not and offers ten
(1971?) dollars for the solution.

Graham [5.19] was able to show that for n > 77, a partition of n into distinct
positive integers xk can always be found so that ∑1/xk = 1.

5.10 Farey Fractions

Another kind of fraction, the Farey Fractions have recently shown great usefulness
in number theory [5.20].

For a fixed n > 0, let all the reduced fractions with nonnegative denominator ≤ n
be arranged in increasing order of magnitude. The resulting sequence is called the
Farey sequence of order n or belonging to n.

Example: for n = 5, in the interval [0,1] we have:

0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
1
1
. (5.60)

For other intervals, the Farey fractions are congruent modulo 1 to the Farey frac-
tions in (5.60). In the interval (c,c+1] there are exactly ∑n

b=1 φ(b) ≈ 3n2/π2 Farey
fractions [see Chap. 8 for the definition of φ(n)].

Calling two successive Farey fractions a/b and c/d, then

b+d ≥ n+1, and (5.61)

cb−ad = 1, for
a
b

<
c
d

. (5.62)

One of the outstanding properties of the Farey fractions is that given any real
number x, there is always a “nearby” Farey fraction a/b belonging to n such that

∣

∣

∣x− a
b

∣

∣

∣≤ 1
b(n+1)

. (5.63)

Thus, if b > n/2 the approximating error (5.63) is bounded by 2/n2. This compares
well with the approximate approximating error π2/12n2 which would result if the
Farey fractions were completely uniformly distributed.

What is the spectrum (Fourier transform) of the process defined by (5.63) when
x goes uniformly from 0 to 1?

The following recursion provides a convenient method of generating the Farey
fractions xi/yi of order n: Set x0 = 0, y0 = x1 = 1 and y1 = n. Then
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xk+2 =
⌊

yk +n
yk+1

⌋

xk+1 − xk,

yk+2 =
⌊

yk +n
yk+1

⌋

yk+1 − yk.

(5.64)

The mediant of two fractions a
b and e

f is defined by

mediant

(

a
b
,

e
f

)

:=
a+ e
b+ f

, (5.65)

which lies in the interval

(

a
b
,

e
f

)

. Each term in a Farey series . . .
a
b
,

c
d

,
e
f

. . . is

the mediant of its two neighbours:

c
d

=
a+ e
b+ f

. (5.66)

In fact, the mediant of any two terms is contained in the Farey series, unless the sum
of their (reduced) denominators exceeds the order n of the series.

There is also an interesting geometrical interpretation of Farey fractions in terms
of point lattices, especially the fundamental point lattice consisting of all integer
pairs (x,y). The Farey fractions a/b belonging to n are precisely all those lattice
points (x = a, y = b) in the triangle defined by y = 0, y = x, y = n which can be
“seen” from the origin x = y = 0, or, equivalently, which can “see” the origin with
no other “Farey points” lying on the line of sight (see also Fig. 4.8).

Farey fractions are useful in rational approximations. Continued fractions give
the excellent approximation

1
π
≈ 113

355
.

But suppose we want to construct mechanical gears in the approximate ratio π : 1
using fewer than 100 teeth on the smaller of the two gears. Continued fractions
would then give us

1
π
≈ 7

22
,

but we can do better with Farey fractions. In a table published by the London Royal
Society [5.21] of the Farey series of order 1025 we find near 113/355 the entries

99
311

,
92

289
,

85
267

,
78

245
,

71
223

and
64

201
,

any one of which is a better approximation than 7/22.
Or suppose we want one of the gears to have 2n teeth. We find in the table

1
π
≈ 163

512
,
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with an error of 1.5 · 10−4. This table is of course quite voluminous, having a total
of 319765 entries (and a guide to locate the fraction nearest to any given number
in the interval (0,1) quickly). (With ∑n

b=1 φ(b) ≈ (3/π2)n2, (see Chap. 8) we expect
about 320000 Farey fractions of order 1025.)

Another important practical application of Farey fractions implied by (5.62) is
the solution of Diophantine equations (see Chap. 7). Suppose we are looking for a
solution of

243b−256a = 1 (5.67)

in integer a and b. By locating the Farey fraction just below 243/256, namely
785/827, we find a = 785 and b = 827. Check: 243 ·827 = 200961 and 256 ·785 =
200960. Check!

Of course, we can reduce the above solution for a modulo 243 (Chap. 6) giving
the smallest positive solution a = 56 and b = 59. Thus, a table of Farey fractions of a
given order n contains all integer solutions to equations like (5.67) with coefficients
smaller than n.

Another, and quite recent, application of Farey series is the recovery of under-
sampled periodic (or nearly periodic) waveforms [5.22]. If we think of “nearly
periodic waveforms” as a line-scanned television film, for example, then for most
pictorial scenes there are similarities between adjacent picture elements (“pixels”),
between adjacent scan lines, and between successive image frames. In other words,
the images and their temporal sequence carry redundant information (exception: the
proverbial “snowstorm”).

Because of this redundancy, such images can, in general, be reconstructed even
if the image is severely “undersampled”, i. e., if only every nth pixel (n � 1) is
preserved and the others are discarded. The main problem in the reconstruction is the
close approximation of the ratio of the sampling period to one of the quasi periods in
the sampled information by a rational number with a given maximal denominator –
precisely the problem for which Farey fractions were invented!

5.10.1 Farey Trees

While Farey sequences have many useful applications, such as classifying the ratio-
nal numbers according to the magnitudes of their denominators, they suffer from a
great irregularity: the number of additional fractions in going from Farey sequences
of order n−1 to those of order n equals the highly fluctuating Euler function φ(n).
A much more regular order is infused into the rational numbers by Farey trees, in
which the number of fractions added with each generation is simply a power of 2.

Starting with two fractions, we can construct a Farey tree by repeatedly taking
the mediants of all numerically adjacent fractions. For the interval [0,1], we start
with 0/1 and 1/1 as the initial fractions, or “seeds”. The first five generations of the
Farey tree then appear as follows:
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0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4

1
5

2
7

3
8

3
7

4
7

5
8

5
7

4
5

Each rational number between 0 and 1 occurs exactly once somewhere in the infinite
Farey tree.

The location of each fraction within the tree can be specified by a binary address,
in which 0 stands for moving to the left in going from level n to level n + 1 and 1
stands for moving to the right. Thus, starting at 1/2, the rational number 3/7 has
the binary address 011. The complement of 3/7 with respect to 1 (i. e., 4/7) has the
complementary binary address: 100. This binary code for the rational numbers is
useful in describing frequency locking in coupled oscillators.

Note that any two numerically adjacent fractions of the tree are unimodular. For
example, for 4/7 and 1/2, we get 2 ·4−1 ·7 = 1.

Some properties of the Farey tree are particularly easy to comprehend in terms
of continued fractions w in the interval [0, 1]:

w =
1

a1 +
1

a2 +
1
a3

· · ·

or more conveniently w = [a1,a2,a3, . . . ], where the “partial quotients” ak are pos-
itive integers. Irrational w have nonterminating continued fractions. For quadratic
irrational numbers the ak will (eventually) repeat periodically. For example, 1/

√
3 =

[1, 1, 2, 1, 2, 1, 2, . . . ] = [1, 1, 2] is preperiodic and has a period of length 2; 1/
√

17 =
[8 ] has period length 1 and 1/

√
61 has period length 11. (It is tantalizing that no

simple rule is known that predicts period lengths in general.) Interestingly, for any
fraction on level n of the Farey tree, the sum over all its ak equals n:

∑
k

ak = n n = 2,3,4, . . . .

We leave it to the reader to prove this equation (by a simple combinatorial argument,
for example).

There is also a direct way of calculating, from each fraction on level n− 1, its
two neighbours or direct descendants on level n. First write the original fraction as a
continued fraction in two different ways, which is always possible by splitting off a
1 from the final ak. Thus, for example, 2/5 = [2,2] = [2,1,1]. Then add 1 to the last
term of each continued fraction; this yields [2,3] = 3/7 and [2,1,2] = 3/8, which
are indeed the two descendants of 2/5.
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Conversely, the close parent of any fraction (the one on the adjacent level) is
found by subtracting 1 from its last term (in the form where the last term exceeds 1,
because ak = 0 is an illegal entry in a continued fraction). The other (distant) parent
is found by simply omitting the last term. Thus, the two parents of 3/7 = [2,3] are
the close parent [2,2] = 2/5 and the distant parent [2] = 1/2. (But which parent is
greater, in general – the close or the distant one? And how are mediants calculated
using only continued fraction?)

Interestingly, if we zigzag down the Farey tree from its upper right (1/1→ 1/2→
2/3 → 3/5 → 5/8, and so on), we land on fractions whose numerators and denomi-
nators are given by the Fibonacci numbers Fn, defined by Fn = Fn−1 +Fn−2; F0 = 0,
F1 = 1. In fact, on the nth zig or zag, starting at 1/1, we reach the fraction Fn+1/Fn+2,
which approaches the golden mean γ = (

√
5−1)/2 = 0.618 . . . as n → ∞. (Starting

with 0/1 we land on the fractions Fn/Fn+2, which converge on γ2 = 1− γ .) The
binary address of γ in the Farey tree is 101010. . . .

As already noted, the continued fraction expansions of the ratios Fn/Fn+1 have a
particularly simple form:

Fn

Fn+1
= [1,1, . . . ,1] (with n 1′s).

Obviously, continued fractions with small ak converge relatively slowly to their final
values, and continued fractions with only 1’s are the most slowly converging of all.
Since

γ = lim
n→∞

Fn

Fn+1
= [1,1,1, . . . ] = [1 ],

where the bar over the 1 indicates infinitely many 1’s, the golden mean γ has the
most slowly converging continued fraction expansion of all irrational numbers. The
golden mean γ is therefore sometimes called (by physicists and their ilk) “the most
irrational of all irrational numbers” – a property of γ with momentous consequences
in a wide selection of problems in nonlinear physics, from the double swing to the
three-body problem.

Roughly speaking, if the frequency ratio of two coupled oscillators is a rational
number P/Q, then the coupling between the driving force and the “slaved” oscillator
is particlarly effective because of a kind of a resonance: every Q cycles of the driver,
the same physical situation prevails so that energy transfer effects have a chance to
build up in a resonancelike manner. This resonance effect is particularly strong if Q
is a small integer. This is precisely what happened with our moon: resonant energy
transfer between the Moon and the Earth by tidal forces slowed the Moon’s spinning
motion until the spin period around its own axis locked into the 28-day cycle of its
revolution around the Earth. As a consequence the Moon always shows us the same
face, although it wiggles (“librates”) a little.

Similarly, the frequency of Mercury’s spin has locked into its orbital frequency at
the rational number 3/2. As a consequence, one day on Mercury lasts two Mercury
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years. (And one day – in the distant future, one hopes – something strange like that
may happen to Mother Earth!)

The rings of Saturn, or rather the gaps between them, are another consequence of
this resonance mechanism. The orbital periods of any material (flocks of ice and
rocks) in these gaps would be in a rational resonance with some periodic force
(such as the gravitational pull from one of Saturn’s “shepherding” moons). As a
consequence, even relatively weak forces have a cumulatively significant effect over
long time intervals, accelerating any material out of the gaps.

For rational frequency ratios with large denominators Q, such a resonance effect
would, of course, be relatively weak, and for irrational frequency ratios, resonance
would be weaker still or absent.

For strong enough coupling, however, even irrational frequency ratios might be
affected. But there is always one irrational frequency ratio that would be least dis-
turbed: the golden mean, because, in a rational approximation to within a certain
accuracy, it requires the largest denominators Q. This property is also reflected in
the Farey tree: on each level n the two fractions with the largest denominators are the
ones that equal Fn−1/Fn+1 and Fn/Fn+1, which for n → ∞ approach γ2 = 0.382 . . .
and γ = 0.618 . . . , respectively. (Conversely, the fractions with the smallest Q on a
given level of the Farey tree are from the harmonic series 1/Q and 1−1/Q.)

Another way to demonstrate the unique position of the golden mean among all
the irrational numbers is based on the theory of rational approximation, an im-
portant part of number theory. For a good rational approximation, one expands
an irrational number w into a continued fraction and terminates it after n terms
to yield a rational number [a1,a2, . . . ,an] = pn/qn. This rational approximation
to w is in fact the best for a given maximum denominator qn. For example, for
w = 1/π = [3,7,15,1,293, . . . ] and n = 2, we get pn/qn = 7/22, and there is no
closer approximation to 1/π with a denominator smaller than 22.

Now, even with such an optimal approximation as afforded by continued frac-
tions, the differences for the golden mean γ

∣

∣

∣

∣

γ − pn

qn

∣

∣

∣

∣

exceed c/q2
n (where c is a constant that is smaller than but arbitrarily close to 1/

√
5)

for all values of n above some n0. And this is true only for the golden mean γ and
the “noble numbers” (defined as irrational numbers whose continued fractions end
in all 1’s). Thus, in this precise sense, the golden mean (and the noble numbers) keep
a greater distance from the rational numbers than does any other irrational number.
Small wonder that the golden mean plays such an important role in synchronization
problems.

5.10.2 Locked Pallas

On 5 May, 1812, Gauss communicated to his friend Friedrich Wilhelm Bessel
(1784–1846) a strange discovery he had just made: the periods of revolution around
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the sun of Jupiter and Pallas are exactly in the ratio 18/7. Gauss asked Bessel not
to tell anyone else because he was afraid of being accused of Zahlen-Mystik (num-
ber mysticism), then, as now, rampant in astronomy. Instead (to preserve priority)
he “published” his result in the Göttingschen Gelehrten Anzeigen (No. 67, 25 April
1812) as a cryptogram, a string of 16 0’s and 1’s:

1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1.

He would divulge the key to unlock his discovery at an appropriate time, Gauss
added. But he never did “divulge” and the great Gauss was rather peeved (although
he did not perish) when later other astronomers did publish and claimed priority.

Knowing the encrypted message (18/7) my student Inga Holube showed the way
to read Gauss’s cryptogram. By appropriate segmentation,

1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1,

and by interpreting the resulting snippets as binary numbers she obtained the
numbers

7 8 18 9.

Thus Gauss was probably saying that the period 7 belongs to the 8th planet (as Pallas
was considered at the time) and the period 18 belongs to the 9th planet (Jupiter)
[5.23].

Incidentally, 7 and 18 are not “any old” numbers; they are close Lucas numbers
(see Sect. 5.8). The series of Lucas numbers are constructed like the Fibonacci se-
ries: each number is the sum of its two predecessors, but the series begins with 1
and 3 and continues 4, 7, 11, 18, . . . . As mentioned before (Sect. 5.8), the ratios of
successive Lucas numbers have simple continued fractions and approach the golden
mean. Like the Fibonacci numbers they play an important role in nonlinear dynam-
ics and synchronization problems.

What ratio of periods would the orbits of Pallas and Jupiter lock into if the grav-
itational coupling between them was increased (for example by increasing the mass
of Jupiter). The real experiment cannot of course be done but such questions can
conveniently be studied by computer simulation.

Analytically, too, we can venture a guess. For increased coupling strengths, the
period ratios are typically represented by fractions lying higher in the Farey tree
(see Sect. 5.10.1), such as one of their “parent” fractions. For 7/18 = [2,1,1,3], the
parent fractions are [2,1,1,2] = 5/13 and [2,1,1] = 2/5. Thus, the period ratio of
Jupiter and Pallas might lock into 5/13 or 2/5.

For an even stronger gravitational coupling we have to consult the “grandparents”
of 7/18, i. e., the parents of 5/13 and 2/5. With our familiar algorithm for Farey
families this yields 3/8 and 2/5 and 1/3 and 1/2, respectively. Curiously, the ratio
2/5 is both parent and grandparent to 7/18. Unusual relationships between humans
but perhaps par for the course among the Greek gods – especially if Jupiter is part
of the party.
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5.11 Fibonacci and the Problem of Bank Deposits

There is an interesting family of problems, appearing in many guises, to which Fi-
bonacci numbers provide a quick solution. Suppose Bill, a wealthy Texan chemist,
opens a new bank account with x1 dollars. The next (business) day he deposits x2

dollars, both integer dollar amounts. Thereafter his daily deposits are always the
sum of the previous two deposits. On the nth day Bill is known to have deposited xn

dollars. What were the original deposits?
A solution of this problem, posed by L. A. Monzert (cf. Martin Gardner [5.24]),

argues that, for sufficiently large n, successive deposits should be in the golden ratio.
This reasoning permits one to find the (n−1)th deposit xn−1 and, together with xn,
by backward recursion, all prior ones.

However, with the knowledge gained in this chapter, we can find a direct answer
to this financial problem, one that is valid even for small n. Since the recursion rule
for xn is like that for the Fibonacci numbers, the xn must be expressible as a linear
combination of Fibonacci numbers. In fact, two such terms suffice:

xn = aFn+k +bFn+m. (5.68)

With F0 = 0 and F−1 = F1 = 1, the initial conditions are satisfied by

xn = x1Fn−2 + x2Fn−1. (5.69)

Now, because of (5.27), an integer solution to (5.69) is given by

x1 = (−1)nxn Fn−3, (5.70)

x2 = −(−1)nxn Fn−4.

Solutions (not only to mathematical problems) become that simple if one knows and
uses the proper relations!

However, we are not quite done yet. According to (5.70) one or the other initial
deposit is negative; but we want all deposits to be positive of course. Looking at
(5.69) we notice that we can add to x1 any multiple of Fn−1 as long as we subtract
the same multiple of Fn−2 from x2. Thus, the general solution is

x1 = (−1)nxn Fn−3 +mFn−1, (5.71)

x2 = −(−1)nxn Fn−4 −mFn−2.

We can now ask for what values (if any!) of m both x1 and x2 are positive. Or,
perhaps, for what value of m x2 is positive and as small as possible. The answer,
which leads to the longest chain of deposits to reach a given xn, is

m =
⌊

−(−1)nxn
Fn−4

Fn−2

⌋

. (5.72)
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For x20 = 1000000 (dollars), (5.72) yields m = −381966 and (5.71) gives x1 = 154
and x2 = 144.

lf we had asked that the twenty-first deposit be one million dollars, (5.72) would
have given the same absolute value of m, and with (5.71), x2 = 154 and x1 = −10.
In other words, we would have posed an illicit problem.

Here we have, unwittingly, solved a Diophantine equation, of which more in
Chaps. 6 and 7.

5.12 Error-Free Computing

One of the overriding problems in contemporary computing is the accumulation of
rounding errors to such a degree as to make the final result all but useless. This is
particularly true if results depend on the input data in a discontinuous manner. Think
of matrix inversion.

The inverse of the matrix

A =
(

1 1
1 1+ ε

)

(5.73)

for ε �= 0 equals

A−1 =
(

1+1/ε −1/ε
−1/ε 1/ε

)

. (5.74)

An important generalization of a matrix inverse, applicable also to singular matri-
ces, is the Moore-Penrose inverse A+ [5.25]. For nonsingular matrices, the Moore-
Penrose inverse equals the ordinary inverse:

A+ = A−1. (5.75)

As ε → 0 in (5.73), the matrix A becomes singular and the Moore-Penrose inverse
no longer equals A−1 but can be shown to be

A+ = 1
4 A. (5.76)

In other words, as ε → 0, the elements of A+ become larger and larger only to drop
discontinuously to 1/4 for ε = 0.

Examples of this kind of sensitivity to small errors abound in numerical anal-
ysis. For many computations the only legal results are integers, for example, the
coefficients in chemical reaction equations. If the computation gives noninteger co-
efficients, their values are rounded to near integers, often suggesting impossible
chemical reactions.

In some applications of this kind, double-precision arithmetic is a convenient
remedy. (The author once had to invoke double precision in a very early (ca. 1959)
digital filter, designed to simulate concert hall reverberation, because the sound
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would refuse to die away when the music stopped.) In other situations, number-
theoretic transforms can be used, of which the Hadamard transform (see Chap. 18)
is only one example.

However, quite general methods for error-free computing have become available
in the recent past, and it is on these that we shall focus attention in this section.

Specifically, we want to sketch a strategy for computing that will not introduce
any rounding errors whatsoever, no matter how long or complex the computation.
How is this possible? Of the four basic mathematical operations, three (addition,
subtraction and multiplication) are harmless: if we start with integers, we stay with
integers – no rounding problems there. But division is a real bugbear. Computers
can never represent the fraction 1/7, for example, in the binary (or decimal system)
without error, no matter how many digits are allowed. If we could only do away with
division in our computations! Surprisingly, this is in fact possible, as we shall see.

Of course, computers cannot deal with continuous data – both input and output
are, by necessity, rational numbers, and the rational numbers we select here to rep-
resent both input data and final results are Farey fractions of a given order N (see
Sect. 5.10). Once we have chosen a large enough value of N to describe adequately
the input data of a problem and all of the answers to that problem, then within this
precision, no errors will be generated or accumulated.

In this application, we shall generalize our definition of Farey fractions a/b of
order N, where a and b are coprime, to include negative and improper fractions:

0 ≤ |a| ≤ N, 0 < |b| ≤ N. (5.77)

The error-free strategy, in its simplest form, [5.25] then proceeds as follows. A prime
modulus m is selected such that

m ≥ 2N2 +1, (5.78)

and each Farey fraction a/b, with (b,m) = 1, is mapped into an integer k modulo m:

k =
〈

ab−1〉

m , (5.79)

where the integer b−1 is the inverse of b modulo m and the acute brackets signify
the smallest nonnegative remainder modulo m (see Sect. 1.5). It is in this manner
that we have abolished division! The inverse b−1 can be calculated by solving the
Diophantine equation

bx+my = 1, (5.80)

using the Euclidean algorithm (see Sect. 7.2). The desired inverse b−1 is then con-
gruent modulo m to a solution x of (5.80).

After this conversion to integers, all calculations are performed in the integers
modulo m. For example, for N = 3 and m = 19, and with 3−1 = 13, the fraction
2/3 is mapped into 26 ≡ 7, and the fraction −1/3 is mapped into −13 ≡ 6. The
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operation (2/3)+ (−1/3) is then performed as 7 + 6 = 13, which is mapped back
into 1/3, the correct answer.

It is essential for the practical application of this method that fast algorithms
be available for both the forward and backward mappings. Such algorithms, based
on the Euclidean algorithm, were described by Gregory and Krishnamurthy [5.25],
thereby reclaiming error-free computing from the land of pious promise for the real
world.

Sometimes intermediate results may be in error, but with no consequence for
the final result, as long as it is an order-N Farey fraction. For example, for m = 19,
2−1 = 10, so that 1/2 maps into 10, and (1/3)−(1/2) maps into 13−10 = 3, which
is the image of 3 – an erroneous result because −1/6 is the correct answer! But 3
is still useful as an intermediate result. For example, multiplying 3 by 2 produces 6,
which is the image of −1/3, the correct result.

For the large values of N that are needed in practical applications, the prime m
has to be correspondingly large. Since calculating modulo very large primes is not
very convenient, a multiple-modulus residue (or Chinese remainder) system, see
Chap. 16, is often adopted. For example, for N = 4, the smallest prime not smaller
than 2N2 +1 = 33 is 37. Instead, one can calculate with the residues modulo the two
primes m1 = 5 and m2 = 7, whose product m = m1 ·m2 = 35 exceeds 2N2 +1 = 33.
Such calculations, described in Chap. 17, are much more efficient than the corre-
sponding operation in single-modulus systems, the savings factor being proportional
to m/∑mi. For decomposition of large m into many small prime factors, the savings
can be so large as to make many otherwise impossible calculations feasible.

Another preferred number system for carrying out the calculations is based on
the integers modulo a prime power: m = pr. For example, for N = 17, the modulus
m must exceed 578 and a convenient choice would be p = 5 and r = 4, so that
m equals 54 = 625. There is only one problem with this approach: all fractions
whose denominators contain the factor 5 cannot be represented because 5 has no
inverse modulo 625. However, an ingenious application of p-adic algebra and finite-
length Hensel codes has solved the problem and looks like the wave of the future in
error-free computing. We shall attempt a brief description; for details and practical
applications the reader is referred to [5.25].

Essentially, what the Hensel codes do is to remove bothersome factors p in the
denominators, so that the “purified” fractions do have unique inverses.

For integers, the p-adic Hensel codes are simply obtained by “mirroring” the
p-ary expansion. With the 5-ary expansion of 14, for example,

14 = 2 ·51 +4,

the Hensel code for 14 becomes

H(5,4,14) = .4200. (5.81)

In general, H(p,r,α) is the Hensel code of α to the (prime) base p, having precisely
r digits.
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A fraction a/b whose denominator b does not contain the factor p is converted to
an integer modulo pr, which is then expressed as a Hensel code. For example, with
pr = 54 = 625, we get

1
16

∧=
〈

16−1〉

625 = 586 = 4 ·53 +3 ·52 +2 ·5+1,

or in Hensel code:

H
(

5,4, 1
16

)

= .1234. (5.82)

Similarly, with 〈3/16〉625 = 508 = 4 ·53 +1 ·5+3, becomes

H
(

5,4, 3
16

)

= .3104. (5.83)

Of course, the Hensel code for 3/16 can be obtained directly by multiplying (5.82)
with the code for 3:

H(5,4,3) = .3000, (5.84)

where the multiplication proceeds from left to right. (Remember, Hensel codes are
based on a mirrored p-ray notation.) Thus, H(5,4,1/16)×H(5,4,3) equals

.1234
× .3000

.3142
carries 112

= .3104

which agrees with H(5,4,3/16), see (5.83). Note that any carries beyond four dig-
its (the digit 2 in the above example) are simply dropped. It is ironic that such a
“slipshod” code is the basis of error-free computation!

If the numerator contains powers of p, the corresponding Hensel code is simply
right-shifted, always maintaining precisely r digits. For example

H
(

5,4, 5
16

)

= 0.0123. (5.85)

Powers of p in the denominator are represented by a left-shift. Thus, with
H(5,4,1/3) = .2313,

H
(

5,4, 1
15

)

= 2.313. (5.86)

To expand the range of the Hensel codes to arbitrary powers of p in the denomi-
nator or numerator, a floating-point notion, Ĥ(p,r,α), is introduced. For example,

Ĥ
(

5,4, 1
15

)

= (.2313,−1), and (5.87)
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Ĥ(5,4,375) = (.3000,3), (5.88)

where the first number on the right is the mantissa and the second number the
exponent.

When multiplying floating-point Hensel codes, their mantissas are multiplied and
their exponents are added. For example,

1
3 ×

6
5

∧= (.2313,0)× (.1100,−1) = (.2000,−1),

and with

.2313× .1100 = .2000,

we obtain

(.2313,0)× (.1100,−1) = (.2000,−1),

which corresponds to 2/5, the correct answer. (Remember, all operations proceed
from left to right and Hensel code .1000 corresponds to 1 and not 1/10.)

Strange and artificial as they are, Hensel codes perform numerical stunts and
never slip a single digit.



Part III
Congruences and the Like



Chapter 6
Linear Congruences

Suppose a certain airline is consistently 25 hours late in departure and arrival (this
has happened, but no names will be mentioned) while another one, flying the same
route, is only 2 to 3 hours late. If you were in a hurry, which airline would you fly –
food, lack of leg room and all else being equal? Obviously, being 25 hours late is as
good (or bad) as being only 1 hour late. In other words, in a daily recurring event
an extra day, or even several, makes no difference. The mathematics that deals with
this kind of situation is called modular arithmetic, because only remainders modulo
a given integer matter.

Another application of modular arithmetic occurs in wave interference phenom-
ena such as ripples on a lake or patterns of light and dark in a hologram. In all these
cases a path difference of, say, half a wavelength is indistinguishable from a path
difference of one and a half or two and a half, etc., wavelengths.

And of course, there are many applications in mathematics proper. For example,
few people care what n560 is, but the remainder of n560 when divided by 561 for all
n coprime to 561 is a question of some actuality. (As it happens, all these remain-
ders are 1 – a terrible thing to happen, as we shall see.) But first we have to know
the ground rules of modular arithmetic, so that n560 for, say, n = 500, a 1512-digit
monster of a number, cannot frighten us.

6.1 Residues

When c divided by m leaves the remainder b (not necessarily positive) we write
(following Gauss)

c ≡ b (modm); (6.1)

read: c is congruent b modulo m.
More generally, we define the above congruence as meaning

m|(c−b); (6.2)

read: m divides c minus b (without remainder).

M. Schroeder, Number Theory in Science and Communication, 5th ed., 111
DOI 10.1007/978-3-540-85298-8 6, c© Springer-Verlag Berlin Heidelberg 2009
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Example: 16 ≡−2(mod9) implies 9|(16+2).

Together with c, all

b = mq+ c; q = integer (6.3)

belong to the same residue class modulo m [6.1].
A complete residue system modulo m consists of m integers, one representa-

tive each from each residue class. The most common residue systems are the least
nonnegative residue system modulo m, consisting of the integers 0,1,2, . . . ,m− 1,
and the least absolute residue system, consisting of the integers 0,±1,±2, . . . ,
±(m−1)/2 (for odd m).

For many purposes, one calculates with the congruence sign for a given modulus
as if it were an equal sign.

Addition:

Example: 13 ≡ 4 (mod9)
16 ≡−2 (mod9)

29 ≡ 2 (mod9) Check!

(6.4)

Multiplication of the two upper congruences results in

208 = −8 (mod9) Check! (6.5)

The congruence

c ≡ 5 (modm) (6.6)

can be “cancelled” by the GCD of c, b and m. With (c,b,m) = d, we may write

c
d
≡ b

d

(

mod
m
d

)

. (6.7)

Example: 28 ≡ 4 (mod6) can be converted to 14 ≡ 2 (mod3).

Another useful rule is the following. If

mc ≡ mb (modn) (6.8)

and the GCD (m,n) = d, then

c ≡ b
(

mod
n
d

)

. (6.9)

Example: 28 ≡ 4 (mod6) implies 7 ≡ 1 (mod3).

Among the many useful applications of linear congruences is the ancient error-
detecting algorithm sailing under the name of “casting out 9’s” [6.2]. If we add two
decimal numbers column by column, then if in any one column the sum exceeds
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9, we reduce the result modulo 10 and add 1 (or 2 or 3, etc.) to the next column.
Thus, in terms of the sum of the decimal digits, we have added 1 (or 2 or 3, etc.) and
subtracted 10 (or 20 or 30, etc.). We have therefore changed the sum of the digits by
a multiple of 9; in other words, the sum of the digits has not changed modulo 9.

Example:

86 sum of digits = 14, sum of sum of digits = 5
+ 57 sum of digits = 12, sum of sum of digits =3

= 143 sum of digits = 8,

Check: 14 + 12 = 26 ≡ 8(mod9). Check! Of course in the check we can apply
the same rule and consider sums of sums of digits: Check: 5 + 3 = 8 ≡ 8(mod9).
Check!

The same rule also holds for multiplication.

Example:

15 sum of digits = 6,
× 17 sum of digits = 8,

= 255 sum of digits = 12, sum of sum of digits = 3 .

Check: 6×8 = 48, sum of digits = 12, sum of sum digits = 3. Check!

The reason why sums of digits when multiplied give the same result modulo 9 as
the numbers themselves is that, trivially, any power of 10 is congruent 1 modulo 9:

10 ≡ 1 (mod9) and therefore 10k ≡ 1 (mod9) for any k ≥ 0.

The only problem with this ancient error-detecting code is that it can fail to signal
an error. In fact, for random errors, about 10 % of the errors go undetected. Fortu-
nately, though, the casting-out-9’s is not restricted to the decimal system; it works
for any base b, casting out (b−1)’s. Specifically, it also works for a much neglected
(and very simple) number system: the base-100 or “hectic” system. One of the ad-
vantages of the hectic system is that it needs no new digits. For example, the year of
Gauss’s birth in hectic notation looks like this:

17 77, sum of digits = 94,

and that of his death

18 55, sum of digits = 73,

and the difference of these two hectic numbers (his age when he died) is

00 78, sum of digits = 78.
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Check: 73−94 = −21 ≡ 78 (mod99). Check!
This example is perhaps too simple, but with the hectic error-detecting algorithm

the undetected error rate has dropped to about 1 %.
A simple rule exists also for divisibility by 11, used in the International Standard

Book Numbers (ISBN). It follows from 10 ≡ −1mod11 and 100 ≡ 1mod11 that
divisibility by 11 of an integer and its digital sum, taken with alternating signs, are
equivalent. Thus 517, for example, is immediately seen to be divisible by 11 because
5−1 + 7 = 11. If the result of this operation is itself a large number, the operation
can of course be repeated until manageable numbers, like 0 or 11, are reached.

Divisibility checks also exist for 7, 13, 17, 19 etc., but they are not as efficient.
Thus, to check n for a factor 7, one writes

n = 10a+b

and
m = a−2b .

Now if m ≡ 0mod7, it follows that a ≡ 2b and 10a ≡ 20b ≡ 6b. Thus n ≡ 6b+b ≡
7b ≡ 0mod7. Of course the rule can be iterated.

The same approach tells us that, for divisibility by 13, we should check a + 4b.
Thus, for example, for n = 91, we have 9 + 4 = 13, implying that 91 is divisible
by 13.

Similarly, for n = 17, we should look at a−5b and for n = 19, the test is a+2b.

6.2 Some Simple Fields

Complete residue systems modulo a prime form a field, i. e., a set of numbers for
which addition, subtraction, multiplication and division (except by 0) are defined
and for which the usual commutative, associative and distributive laws apply [6.3].

For the least nonnegative residue system modulo 2, consisting of 0 and 1 (perhaps
the most important one in this computer age) we have the addition table:

0 1

0 0 1
1 1 0

(6.10)

which is isomorphic both to the logical operation “exclusive or” and to multiplica-
tion of signs (if we identify 0 with + and 1 with −).

The multiplication table for 0 and 1:

0 1

0 0 0
1 0 1

(6.11)

is isomorphic to the logical “and” and the set-theoretic “intersection”.
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Multiplication for a complete residue system modulo a composite number has
no inverse for some of its members, as can be seen from the multiplication table
modulo 4:

0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(6.12)

Thus, there is no number which when multiplied by 2 gives 1, i. e., 2 has no inverse.
Also, division by 2 is not unique: 2 divided by 2 could be either 1 or 3.

This grave defect is rectified by prime residue systems which consist only of
those residue classes that are coprime to the modulus. Thus, the least nonnegative
prime residue system modulo 10 consists of the integers 1, 3, 7 and 9, and their
multiplication table is well behaved:

1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(6.13)

If f is a polynomial with integer coefficients, then a ≡ b (modm) implies

f (a) ≡ f (b) (modm), (6.14)

For (m,n) = 1 if x and y run through complete residue systems modulo n and m,
respectively, then mx+ny runs through a complete residue system modulo mn.

Example: n = 5, m = 3:

x = 0 1 2 3 4

y = 0 0 3 6 9 12
1 5 8 11 14 2
2 10 13 1 4 7

We will encounter this kind of decomposition of a residue class modulo a prod-
uct of coprimes again when we discuss simultaneous congruences and the Chinese
Remainder Theorem with its numerous applications in Chap. 17.

6.3 Powers and Congruences

What is 2340 (mod341)? Obviously, the ancient Chinese did not know or they would
not have formulated their primality test (Sect. 2.3). With the aid of the congruence
notation we may rewrite the Chinese test as
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2n ≡ 2 (modn), (6.15)

if and only if n is prime. Here the first “if” is all right (see Fermat’s Theorem,
Chap. 8) but the “and only if” is wrong, as we shall presently demonstrate with the
composite n = 341 = 11 ·31. For odd n we may write, because of (6.9),

2n−1 ≡ 1 (modn).

Of course, it is foolish actually to calculate 2340, a 103-digit number, if we are
interested only in the remainder modulo 341. Instead we will decompose 340 into
10 ·34 and first raise 2 to the 10th power, giving 1024. Dividing 1024 by 341 leaves
the remainder 1:

210 ≡ 1 (mod341). (6.16)

Now raising the result to the 34th power is easy because 134 = 1. Thus,

2340 ≡ 1 (mod341), or (6.17)

341 | (2341 −2), (6.18)

in spite of the fact that 341 is composite. Woe to the Chinese and three cheers for the
congruence notation! We could even have done this in our heads, without recourse
to pencil and paper, and thereby demolished a false “theorem” which had stood
undisputed for so many centuries.

Composite numbers which masquerade as primes vis-a-vis Fermat’s theorem are
called pseudoprimes. 341 is actually the smallest pseudoprime to the base 2. In a
certain sense, pseudoprimes have become almost as important as actual primes in
modern digital encryption. We will hear more about pseudoprimes and even abso-
lute and strong pseudoprimes in Chap. 20.

Of course, in calculating 2340 (mod341) we were lucky, because 210 already
gave the remainder 1. In general we will not be so lucky, and we need a universal
algorithm that will see us through any base b or exponent n.

More formally, to calculate bn (modm), we first find the binary decomposition
of n:

n =
�log2 n�

∑
k=0

nk2k with nk = 0 or 1, (6.19)

where � � is the Gauss bracket, or “floor function”, signifying the integer part.
The binary expansion coefficients nk can be found by any of a variety of

“analog”-to-digital conversion algorithms.
Omitting all terms with nk = 0 in the sum, we may write

n =
M

∑
m=1

2cm . (6.20)
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In other words we write, for example, 6 = 2+4 or 13 = 1+4+8, etc.
Using this decomposition into a sum of powers of 2, we write bn as follows:

bn =
M

∏
m=1

bcm = (. . .(b2) . . .)2

︸ ︷︷ ︸

c1 squarings

. . . (. . .(b2) . . .)2

︸ ︷︷ ︸

cM squarings

. (6.21)

In words: we calculate bn by squaring b c1 times in succession. Then we square b
c2 times. (Of course, we make use of the previous result, i. e., we need square only
c2−c1 more times, etc.) Then we multiply the results of all these squarings together
to obtain bn.

Apart from the gain in computational efficiency (if n is a power of 2, then only
about log2 n squarings are required, instead of n multiplications), the main raison
d’être for the repeated squaring algorithm is that if we want the result modulo m,
then after each squaring we can reduce the intermediate result modulo m without
running the risk of calculator “overflow” (as long as m2 is smaller than the largest
number the machine can handle).

Here is another rule that makes working with powers and congruences easier:

(x+ y)n ≡ xn + yn (modn), (6.22)

n prime (or absolute pseudoprime), i. e., of the n+1 terms obtained upon expanding
(x + y)n binomially only two remain, because all others, being multiplied by ( n

k ),
with k �= 0 or n, are divisible by n and therefore do not contribute to the end result
modulo n.

Incidentally, the condition k �= 0 or n can be expressed with the following more
widely applicable and succinct notation:

k �≡ 0 (modn).

Read: k is not congruent to zero modulo n.



Chapter 7
Diophantine Equations

Diophantine equations, i. e., equations with integer coefficients for which integer
solutions are sought, are among the oldest subjects in mathematics. Early historical
occurrences often appeared in the guise of puzzles, and perhaps for that reason,
Diophantine equations have been largely neglected in our mathematical schooling.
Ironically, though, Diophantine equations play an ever-increasing role in modern
applications, not to mention the fact that some Diophantine problems, especially
the unsolvable ones, have stimulated an enormous amount of mathematical thinking,
advancing the subject of number theory in a way that few other stimuli have.

Here we shall deal with some of the basic facts and rules and get to know tri-
angular and Pythagorean numbers, Fermat’s Last Theorem, an unsolved conjecture
by Goldbach, and another conjecture by Euler – one that was refuted, although it
looked quite convincing while it lasted.

7.1 Relation with Congruences

The congruence

ax ≡ c (modm) (7.1)

has a solution iff (a,m) | c. In fact, there are then (a,m) solutions that are incongruent
modulo m [7.1].

Example:

3x ≡ 9 (mod6). (7.2)

With (3,6) = 3 and 3 | 9, there are exactly three incongruent solutions: x = 1, 3
and 5. Adding or subtracting multiples of 6 to these three solutions gives additional
solutions congruent to the three already found (7, 9, 11, 13, etc.).

For (a,m) = 1, the solution is unique modulo m.

M. Schroeder, Number Theory in Science and Communication, 5th ed., 119
DOI 10.1007/978-3-540-85298-8 7, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 7.1 Linear Diophantine
equations have simple
geometric interpretations: the
straight line 3y = 4x−1 cuts
through points {−2,−3} and
{4,5}, two solutions of the
equation

The solution of the congruence ax ≡ c (modm) is identical with solutions in
integers x and y of the Diophantine equation [7.1]:

ax = my+ c, (7.3)

so named after Diophantus of Alexandria (ca. A. D. 150) [7.2].
For (a,m) = d and m = m′d, a = a′d and c = c′d [note that (a,m) must divide c

for a solution to exist], we can write instead of the above equation

a′x = m′y+ c′, (7.4)

whose solution is unique modulo m′, because (a′,m′) = 1. Additional solutions that
are incongruent modulo m are obtained by adding km′, where k = 1,2, . . . ,d −1.

Diophantine equations also have a geometric interpretation, which is illustrated
for 3y = 4x − 1 in Fig. 7.1. The straight line representing this equation goes
through only those points of the two-dimensional integer lattice shown in Fig. 7.1
for which x and y are solutions. In the illustration this is the case for the points
{x,y} = {−2,−3}, {1,1} and {4,5}. Additional solutions are obviously given by
linear extrapolation with multiples of the difference {4,5}−{1,1} = {3,4}.

7.2 A Gaussian Trick

For (b,m) = 1, Gauss [7.3] suggested writing the congruence bx ≡ c (modm) as

x ≡ c
b

(modm) (7.5)

and adding or subtracting multiples of m to c and b so that cancellation becomes
possible as if c/b were, in fact, a fraction.
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Example: 27x ≡ 1 (mod100).

Solution:

x ≡ 1
27

≡ −99
27

≡ −11
3

≡ −111
3

≡−37 ≡ 63 (mod100).

Check: 27 ·63 = 1701 ≡ 1 (mod100). Check!
Another method uses Euclid’s algorithm (Sect. 2.7) for solving congruences or

Diophantine equations. A congruence is first converted into a Diophantine equation.
For example, the congruence

15x ≡ 1 (mod11) (7.6)

has a solution, because (15,11) = 1 divides 1. The corresponding Diophantine equa-
tion is

15x = 11y+1. (7.7)

Solving for y, we obtain

y = x+
4x−1

11
. (7.8a)

For (7.8a) to have an integer solution 4x−1 must be a multiple of 11:

4x−1 = 11w.

Now solving for x, we get

x = 2w+
3w+1

4
. (7.8b)

By now, the denominator has become so small that a solution is obvious: for x to be
an integer, 3w+1 must be a multiple of 4, for example w = 1. Or, more formally:

3w+1 = 4ν ,

whence

w = ν +
ν −1

3
. (7.8c)

Here an integer solution is even more obvious: ν = 1.
Solutions for x and y are now obtained by backward substitutions: with ν = 1,

(7.8c) gives w = 1 (as we noted before); and with w = 1, (7.8b) gives x = 3 and
finally, if we so desire, (7.8a) gives y = 4.
Check: 15 ·3 = 11 ·4+1 = 45 ≡ 1 (mod11). Check!

The trick of this method of solution is that, in going from (7.8a) to (7.8b) and
(7.8c), we have made the denominators smaller and smaller – just as in the Euclidean
algorithm. In fact, the Euclidean algorithm applied to 15/11, the original factors in
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(7.7), gives precisely the emainders and denominators as appear in the equations
(7.8a–c):

15 : 11 = 1+
4
11

11 : 4 = 2+
3
4

4 : 3 = 1+
1
3
.

For numerous calculations with the same modulus, it is most convenient to cal-
culate a table of inverses once and for all. Such a table for the modulus 11 would
contain, for example, the entry 4−1 = 3. Check: 4 ·3 = 12 ≡ 1 (mod11). Check!

Thus, the solution of 4x ≡ 7 (mod11) becomes x ≡ 4−1 ·7 = 21 ≡ 10 (mod11).
Check: 4 ·10 = 40 ≡ 7 (mod11). Check!

7.3 A Stamp Problem

Suppose you have an unlimited supply of 26-cent and 41-cent postage stamps.
Which postage amounts can you cover exactly? Obviously, the smallest amounts
that are covered (26, 41, 52, 78, 82 cents etc) have sizeable gaps that cannot be
covered (1 to 25 cents, 27 to 40 cents etc.) But for larger amounts, these gaps get
smaller and smaller. Thus, the question arises whether there is an amount after which
all postages can be covered. An answer to this question (not in this guise, of course)
was provided by the English mathematician J. Sylvester in 1884, who showed that
for two kinds of stamps whose different values, a and b, are relatively prime, the
critical amount is (a−1)(b−1), or 1000 cents for a = 26 and b = 41 cents. Let us
see whether there is a solution for 26x+41y ≡ 1000 as promised by Sylvester. First
we solve the standard linear Diophantine equation.

26x+41y = 1

Using the (Euclidean) algorithm described in this section, we find x = −11 and
y = 7 Check:

−11 ·26÷7 ·41 = 1

(Alternatively, the solution can be found with the MathematicaTM command
“Extended GCD” which does Euclid’s algorithm for you.)

To get the solution for 1000, we multiply the solution for 1 by 1000 and add
(subtract) k 26 41 to the first (second) term:

(−11000 + k41)26 +(7000− k− 26)41 = 1000 For the factor of 26 to become
positive k has to exceed 268. For k = 269 we get

29 ·26+6 ·41 = 1000

for the basic solution.
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For the 1001 we simply add the basic solution −11 ·26+7 ·41 = 1 to yield

18 ·26+13 ·41 = 1001

and similarly for 1002:
7 ·26+20 ·41 = 1002.

Proceeding in the same manner we would get for 1003

−4 ·26+27 ·41 = 1003

Of course, there are no negative postages, but by adding (subtracting) 26 ·41 to the
first (second) term we get

37 ·26+1 ·41 = 1003

This procedure can be continued indefinitely for all higher postages. But what about
999? By subtracting our basic solution (−11 ·26+7 ·41 = 1) from the one for 1000
we obtain

40 ·26−1 ·41 = 999

Again we run into a negative postage, but this time there is no way out. We are stuck
By adding 26 · 41 to the second term to make it positive while subtracting 26 · 41
from the first summand, we get

−1 ·26+25 ·41 = 999

But now we need a negative 26-cent stamp. In other words the postage 999 cents
cannot be covered by 26-cent and 41-cent stamps. In fact, 1000 cents is the small-
est postage after which all higher postages can be realized. According to Sylvester
this crossover should occur at (a-1)(b-1) or, for a = 26 and b = 41, at 25× 40 =
1000. The interested reader may want to prove this result for general coprime
a and b.

Unfortunately, there is no simple formula for the largest impossible amount for
three or more postages. This was shown to be a NP-hard problem (see B. Cipra:
“Exact Postage Poser Still Not Licked” in Science Vol. 319, page. 899).

With an unlimited supply of 26-cent and 41-cent stamps 500 postages (between
1 cent and 999 cents) cannot be covered. Suppose the post office decides to issue a
third stamp, which value (above 41 cents) should it be given to minimize the number
of uncovered postages? The surprising answer is 42 cents, which leaves only 152
postages uncovered. If values above 26 cents are considered, the optimum stamp
value is 32 cents, which leaves just 134 postages uncovered. Of course, some of
those choices require a lot of stamp licking.

The stamp problem described here is related to the work (on linear forms
with integer coefficients) of the German mathematician F.G. Frobenius (1849–
1917), a student of Kronecker, Kummer and Weierstrass in Berlin. He was the
teacher of Edmund Landau and Issai Schur to mention only the two most famous
alummi.
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7.4 Nonlinear Diophantine Equations

A simple example of a nonlinear Diophantine equation is

x2 −Ny2 = ±1, (7.9)

where x and y are integers. Two solutions for +1 on the right-hand side (the so-called
Pell equation) are obviously x = ±1, y = 0. Are there others? For N = 2,

x2 −2y2 = ±1 (7.10)

has the solution x = ±3, y = ±2. Are there more? Yes, and they are obtained by the
continued-fraction (CF) expansion of

√
N. For n = 2, we have

√
2 = 1+

√
2−1, (7.11)

1√
2−1

= 2+
√

2−1, (7.12)

i. e., as we already know, we obtain the periodic CF:
√

2 =
[

1;2
]

. (7.13)

The approximants Ak and Bk are thus obtained recursively from

Ak = 2Ak−1 +Ak−2, (7.14)

and similarly for the Bk. With the initial conditions A0 = A1 = 1 and B0 = 0, B1 = 1,
we obtain

Ak = 1, 1, 3, 7, 17, 41, 99, . . .

Bk = 0, 1, 2, 5, 12, 29, 70, . . . .
(7.15)

Here each pair of values (Ak,Bk) corresponds alternately to a solution of x2−2y2 = 1
and x2 −2y2 = −1. This is not really too surprising, because we already know that
Ak/Bk will tend to

√
2 alternately from above and below. However, the general proof

is a bit tedious [7.1].
The first two solutions {1,0} and [1,1] we already know. We will check the third

and fourth solutions: 72 −2 ·52 = −1. 172 −2 ·122 = 1. Check!
The CF’s of the squareroots of integers are not only periodic; they are also palin-

dromic, i. e., the periods are symmetric about their centres, except for the last num-
ber of the period, which equals twice the very first number (left of the semicolon).
For example,

√
29 = [5;2,1,1,2,10 ] or

√
19 = [4;2,1,3,1,2,8 ].

Some periods are very short, such as those of numbers of the form n2 + 1,
which have period length 1. For example,

√
10 = [3;6 ] or

√
101 = [10;20 ]. But

the squareroots of other integers can have rather long periods. For example,
√

61 =
[7;1,4,3,1,2,2,1,3,4,1,14 ] has a period length of 11, and

√
109 has a period length

of 15. There seems to be no simple formula that predicts long-period lengths.
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Solving Pell’s equation for such integers is quite tedious, a fact that Fermat
exploited when he wrote his friend Frénicle in 1657, rather mischievously, to try
N = 61 and N = 109 “pour ne vous donner pas trop de peine”. (The smallest solu-
tion of the latter problem has 14 and 15 decimal places, respectively. Poor Frénicle!)

7.5 Triangular Numbers

The kth triangular number is defined as

Δk = 1+2+ . . .+ k = 1
2 k(k +1). (7.16)

Δk is the number of unordered pairs of k + 1 objects or, more tangibly, the number
of handshakings when k + 1 persons meet (no self-congratulations, please!). The
smallest Δk are 0, 1, 3, 6, 10, 15, . . . . Their first differences form a linear progres-
sion: 1, 2, 3, 4, 5, . . . .

On July 10, 1796, Gauss wrote in his still very fresh diary (then in its 103rd day):

Eureka! n = Δ +Δ +Δ , (7.17)

by which he meant that every integer can be represented by the sum of 3 triangular
numbers. For example, 7 = 3 + 3 + 1 = 6 + 1 + 0; 8 = 6 + 1 + 1; 9 = 3 + 3 + 3 =
6 + 3 + 0; 10 = 6 + 3 + 1, etc. What this means is that the Δk, although they grow
like k2/2, are still distributed densely enough among the integers that three of them
suffice to reach any (nonnegative) whole number.

Gauss’s discovery implies that every integer of the form 8n+3 as a sum of three
odd squares, an interesting nonlinear Diophantine equation, is always solvable. First
we note that the square of an odd number, 2k+1, equals 8 times a triangular number
plus 1:

(2k +1)2 = 4k2 +4k +1 = 8Δk +1. (7.18)

Hence if

n = Δk1 +Δk2 +Δk3 ,

then we obtain, in view of Gauss’s Eureka discovery, a solution to the following
nonlinear Diophantine equation:

3

∑
m=1

(2km +1)2 = 8n+3. (7.19)

Example: 35 = 4 ·8+3 = 1+9+25.

Finally, there is a connection with the perfect numbers Pp: every even perfect
number is also a triangular number:

Pp = (2p −1)2p−1 = (2p −1)2p 1
2 = Δ2p−1. (7.20)
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Fig. 7.2 Geometrical
interpretation of the triangular
numbers (and the reason for
their name). Note the simple
recursion

Fig. 7.3 The square numbers,
their geometrical
interpretation and their
recursion

Triangular numbers can also be illustrated geometrically as the number of equidis-
tant points in triangles of different sizes (Fig. 7.2). They were defined this way in
antiquity (by the Pythagoreans). These points form a triangular lattice.

In a generalization of this concept, square numbers are defined by the number of
points in square lattices of increasing size, as illustrated in Fig. 7.3.

Fig. 7.4 The pentagonal
numbers, their geometrical
interpretation and their
recursion. The pentagonal
numbers, n(3n−1)/2, also
play a role in partitioning
problems (see Chap. 22)
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Higher n-gonal or figurate numbers, such as pentagonal numbers (Fig. 7.4) and
hexagonal numbers, are defined similarly. Can the reader derive the general formula
for figurate numbers? Calling the kth (beginning with k = 0) n-gonal number gn(k),
the answer is

gn(k) = 1
2 (n−2)k2 + 1

2 nk +1, (7.21)

which for n = 4 gives the square numbers g4(k) = (k +1)2. Check!

7.6 Pythagorean Numbers

Another nonlinear Diophantine equation is the well-known

x2 + y2 = z2, (7.22)

expressing Pythagoras’s theorem for right triangles. Solutions in integers are called
Pythagorean triplets, the smallest positive one being 4, 3, 5:

42 +32 = 52.

To avoid redundancy, we shall require x to be even and y to be odd. (If both x and
y were even, then z would also be even and the equation could be divided by 4.) All
basic solutions, i. e., those for which x, y and z do not have a common divisor and x
is even, are obtained from the two coprime integers m and n, m > n > 0, at least one
of which must be even, as follows:

x = 2mn

y = m2 −n2

z = m2 +n2.

(7.23)

It is easy to verify that x2 + y2 = z2 and that x is even and y > 0 is odd. Of course, z
is also odd.

With these conventions, the first case is m = 2, n = 1, yielding the triplet (4,3;5).
The next basic case is m = 3, n = 2, yielding (12,5;13). The third basic case, m = 4,
n = 1, yields (8,15;17).

Incidentally, at least one pair of basic Pythagorean triples has the same product
xy, meaning that there are (at least) two incongruent right triangles with integer sides
and equal areas:

m = 5, n = 2 : (20,21;29)
m = 6, n = 1 : (12,35;37)

(7.24)

both of which have area 210. Are there other equal-area pairs?
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Fig. 7.5 The Pythagorean
numbers x2 + y2 = z2 in the
range 1 ≤ x ≤ 52, 1 ≤ y ≤ 52.
The two prominent straight
“lines” correspond to the
basic triplet 42 + 32 = 52, the
triplet 32 + 42 = 52 and their
multiples

Figure 7.5, prepared by Suzanne Hanauer of Bell Laboratories, shows the x and
y values of all (not just the basic) Pythagorean triplets up to x,y = 52. The two
pronounced straight “lines” are the solutions obtained from the basic triplet (3,4;5).
Each plotted point in Fig. 7.5 is one corner of an integer right triangle obtained by
connecting it with the origin {0,0} and drawing the normal to the abscissa through
it. It is apparent that there is a certain “thinning out” as x and y get larger.

7.7 Exponential Diophantine Equations

Another type of Diophantine equation, in which the unknowns appear in the expo-
nent is exemplified by

2n = 3m −1. (7.25)

The background against which the author encountered this equation is the following.
The Fast Fourier Transform (FFT) works most efficiently for data whose length is a
power of 2. On the other hand, pseudorandom “maximum-length” sequences, which
are ideal for precision measurements (see Chap. 27), have period lengths pm − 1,
where p is a prime. In most applications, the preferred sequences are binary, i. e.,
p = 2. Of course, there is no integer solution to the equation 2n = 2m−1, except the
uninteresting one n = 0, m = 1.

For some physical applications, ternary-valued sequences would also be accept-
able. Thus, the question arises whether the equation 2n = 3m − 1 has integer solu-
tions other than the two obvious ones n = 1, m = 1 and n = 3, m = 2.1 Lewi Ben
Gerson (1288–1344) proved that these are indeed the only solutions.

1 In fact, in 1844 Catalan [7.4] posed a more general question and conjectured that 23 and 32 are
the only perfect powers that differ by 1.
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7.8 Fermat’s Last “Theorem”

Perhaps the most famous Diophantine equation is

xn + yn = zn, (n > 2) (7.26)

for which Fermat asserted that no nontrivial (xyz �= 0) solution in integers exists.
Fermat thought he had a proof, but this seems more than doubtful after centuries of
vain efforts by some of the greatest mathematicians who came after Fermat.

Some special cases for n are relatively easy to prove, for example the quartic
case, n = 4. The cubic case, n = 3, was solved by Euler. Sophie Germain in Paris,
who mailed her proof to Gauss in Göttingen under the male pseudonym of Monsieur
Le Blanc [7.5], showed Fermat’s Last Theorem to be likely true for all odd primes p
such that 2p+1 is also prime. These primes are now called Sophie Germain primes,
the smallest being p = 3.

The greatest breakthrough (as some would say today) was made in 1851 by the
German mathematician Ernst Eduard Kummer. He showed that Fermat’s Last The-
orem (FLT) was true for what he called regular primes pr, defined as those primes
which do not divide any of the numerators of the Bernoulli numbers Bk up to Bpr−3

[7.6].
The only irregular primes below 100 are 37, 59, and 67, i. e., three primes out of

25. It is believed that the asymptotic fraction of the irregular primes tends toward
1 − 1/

√
e = 0.393469 . . . . Thus, there would be an infinity of irregular primes,

roughly 40 % of all primes. This is in stark contrast to the Fermat primes, of which
only 5 are presently known.

In 1908 the Göttingen Academy of Sciences established the Wolfskehl Prize to
the tune of 100,000 (gold!) marks for proving FLT. In 1958, two World Wars later,
this was reduced to 7,600 Deutsche Mark, but FLT had still not been proved or
disproved. By 1976, it had been shown to be correct for all prime exponents smaller
than 125,000.

If the proof of FLT has proved so difficult, perhaps the theorem is just not true,
and one should look for a counterexample. (One counterexample, of course, would
suffice to demolish FLT once and for all.) But unfortunately, since the exponent
n has to be larger than 125000, and it can also be shown that x must be greater
than 105, any counterexample would involve numbers millions of decimal digits
long [7.7]. Hence the counterexample route seems closed, even if FLT was false.
Consequently, we will have to conclude, more than 300 years after its somewhat
offhand assertion, that FLT will probably never be disproved. However work on the
FLT has led to some profound mathematical insights and innovations.

In the meantime, the “impossible” has happened and Fermat’s Last Theorem has
been proved. Although the proof, presented by Andrew Wiles on 23 June 1993,
was still defective, all holes, even the most recalcitrant ones, have been closed with
the collaboration of Richard Taylor. The proposition proved by Wiles and Taylor
is the main part of the Shimura-Taniyama-Weil conjecture related to elliptic curves
y2 = x3 +ax+b [7.8].
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In the summer of 1997 the Göttingen Academy of Sciences, after due considera-
tion of the published proof, is expected to award Wiles the Wolfskehl Prize, which
now amounts to about 70,000 Marks.

FLT, although for long the most famous unsolved case, is not an isolated quirk.
Another seemingly unprovable (but probably false) conjecture is the following one
by Georg Cantor: All numbers generated by the recursion

pn+1 = 2pn −1, with p0 = 2 (7.27)

are prime. The first Cantor numbers after 2 are p1 = 3, p2 = 7, p3 = 127 and
p4 = 2127 − 1, all of which are (Mersenne) primes. Unfortunately, little is known
about the next Cantor number, p5, other than that it has more than 5 × 1037

decimal digits! (This should not be confounded with the large – but “infinitely”
smaller – number 5× 1037, which has only 38 digits.) Nevertheless, with the lat-
est advances in primality testing (see Chap. 12) perhaps the primality of p5 can
be confirmed – or refuted, thereby demolishing another conjecture. (Note: if pm is
composite, then all pn, n ≥ m are composite – see Sect. 3.5).

One of the perennial conjectures is the famous Goldbach conjecture, asserting
that every even number > 2 is the sum of two primes. Some progress has been
made on related weaker assertions, and the Goldbach conjecture itself has been
numerically confirmed up to very large numbers. But alas, even if it had been shown
to hold up to 101010

, there would be no guarantee that it would not fail for 101010
+2.

See Sect. 4.13 for some numerical results and an heuristic estimate.

7.9 The Demise of a Conjecture by Euler

Euler conjectured that (excepting trivial cases)

xn
1 + xn

2 + . . .+ xn
k = zn (7.28)

has nontrivial integer solutions iff k ≥ n. For n = 3 and k = 2, Euler’s conjecture
corresponds to the proven case n = 3 of FLT: the sum of 2 cubes cannot be another
cube. For n = 3 and k = 3, (7.28) asserts that the sum of three cubes can be another
cube. Euler’s conjecture stood for two centuries but fell in 1966 to the joint effort of
Lander and Parkin, who found a counterexample for n = 5:

275 +845 +1105 +1335 = 1445, (7.29)

which can be verified with a good pocket calculator (and which Euler himself could
have done in his head).

Thus Fermat was avenged, whose fifth “prime” Euler had shown to be composite.
In fact, in 1987 Noam Elkies, a Harvard graduate student, found a first case

where only three fourth powers are needed to get another fourth power. A year later,
R. Frye found a solution in which the sum of three fourth powers equals 4224814.
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Another, more difficult problem that has also been successfully tackled, is the
Diophantine equation

a4 +b4 + c4 +d4 = (a+b+ c+d)4.

(See The American Mathematical Monthly, March 2008).

7.10 A Nonlinear Diophantine Equation in Physics
and the Geometry of Numbers

In 1770, Lagrange proved that “the set of squares is a basis of order 4”. This means
that every positive integer can be represented as the sum of 4 squares. If we allow
ourselves just 3 squares, then some integers cannot be so represented.

Which integers n can be expressed as the sum of 3 squares? The author first
encountered this problem in the formula for the resonant frequencies of a cube-
shaped resonator, which in units of the lowest resonant frequency are:

f 2
x,y,z = x2 + y2 + z2. (7.30)

An important question in some areas of physics is whether f 2
x,y,z can take on all posi-

tive integer values or whether there are gaps. (This problem occurred in the author’s
Ph.D. thesis on normal-mode statistics.) To answer this question let us consider the
complete residue system modulo 8:

r = 0, 1, 2, 3, 4, 5, 6, 7. (7.31)

Hence,

r2 ≡ 0, 1 or 4 (mod8).

Thus, the sum of 3 squares modulo 8 is precisely those numbers that can be gener-
ated by adding 3 of the integers 0, 1, 4 (with repetition allowed). This is possible for
integers 0 through 6, but not 7. Thus, certainly,

x2 + y2 + z2 �= 8m+7. (7.32)

However, it can be shown that these “forbidden” numbers, when multiplied by a
nonnegative power of 4, are also not possible as the sum of 3 squares [7.1]. In fact,

x2 + y2 + z2 = n (7.33)

has a solution in integers iff

n �= 4k(8m+7), k ≥ 0. (7.34)

This means that on average, the fraction
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1
8

+
1

4 ·8 +
1

16 ·8 + . . . =
1
6

(7.35)

of all integers cannot be represented as the sum of 3 squares.
Since any positive integer n can be represented by a sum of 4 squared integers,

it is interesting to ask how many ways r2(n) a given n can be so represented. The
answer (due to Jacobi), including permutation, signs and 0’s, is

r2(n) = 8 ∑
d|n,4 � |d

d, (7.36)

i. e., 8 times the sum of the divisors of n that are not divisible by 4.

Example: r2(4) = 8(1+2) = 24. Check:

4 = (±1)2 +(±1)2 +(±1)2 +(±1)2 (16 cases) and

4 = (±2)2 +02 +02 +02 (+8 cases) Check!

For a recent proof see Hirschhorn [7.9].
On the other hand, Fermat proved that a certain class of integers can be repre-

sented by the sum of just 2 squares, and in a unique way at that. This class consists
of all primes of the form 4k +1.

This result has an enticing geometrical interpretation. Consider the integer lattice
in the plane, i. e., all the points (x,y) in the plane with integer coordinates. Draw
a circle around the origin (0,0) with radius p1/2, where p is a prime with p ≡ 1
(mod4). Then there are exactly eight lattice points on the circle.

No solutions exist for the primes p ≡ −1(mod4). For composite n,
we have to distinguish between the factor 2 and the two kinds of primes
pi ≡ 1(mod4) and qi ≡−1(mod4):

n = 2α ∏
pi

pi
βi ∏

qi

qi
γi .

Solutions for n = x2 +y2 exist only if all γi are even. Hardy and Wright [7.1, p. 299]
give four different proofs, no less, one going back to Fermat and his “method of
descent”.

If all γi are even, the number of solutions is ∏i(βi + 1), including permutations.
(“Trivial” solutions with x or y equal to 0 are counted only once.) Example: 325 =
52 ·13 has 6 solutions. 325 = 12 +182 = 62 +172 = 102 +152 = 152 +102 = 172 +
62 = 182 +12 and no others.

The question which squared integers sum to a given prime p is a little trickier to
answer. It requires the Legendre symbol (a/p), see Eq. (16.17), which equals +1 if
a is a quadratic residue modulo p, and −1 for a a nonresidue, and 0 for a ≡ 0mod p.
Thus, for example, for p = 5, beginning with a = 0

(a/5) = 0 +1 −1 −1 +1 0 . . .

Now taking the product of 3 consecutive terms, beginning with 0 +1 −1, yields
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0 +1 +1 0

summing to +2. Thus, 5 = 22 + y2 where, obviously, y = 1.
For p = 173, the same procedure yields 233 = 132 + y2 with y = 8.
The two-squares theorem, as it has been called, has an unexpected application in

the generation of circulary polarized sound waves. Ordinarily, sound waves in air are
thought of as longitudinal waves with no transverse field components that could give
rise to elliptic or circular polarizations. But in a laterally restricted medium, such as
an air-filled duct, sound waves do exhibit lateral motions and are thus polarizable.

Figure 7.6 shows a square box, a short piece of duct with a square cross-section,
covered with plexiglas. This cavity resonator supports acoustic modes at frequencies

fn =
c

2L

√
n,

where c is the velocity of sound in air, L is the side length of the box and n is a
positive integer equal to the sum of two squares, the number of half-wavelengths
along the side of the box:

n = k2 +m2.

To excite an elliptic wave, the mode must be degenerate, i. e., k and m must be
different. Also, to avoid a mode “salad”, we require precisely two modes at the same
resonance frequency. Thus all exponents βi in the above factorization of n must be
0 except one, which must equal 1, or n must be a square, in which case all βi must

Fig. 7.6 Acoustic resonator with a square cross-section for circularly polarized sound waves
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equal 0. Values of n which fulfill these conditions are 1 = 12 + 02, 4 = 22 + 02,
5 = 22 + 12, 9 = 32 + 02, 10 = 32 + 12, 13 = 32 + 22, etc. If the cavity shown in
Fig. 7.6 is excited at one of these resonances by means of the two loudspeakers with
a phase difference of 90◦, a circularly polarized acoustic field will fill the cavity. The
circularity can be made visible by a piece of sound-absorbing material supported by
a sharp needle in the centre of the cavity: turn on the loudspeakers and the “carousel”
will start rotating because the absorber absorbs sound energy, which, in a circularly
polarized field, has an angular momentum. Reverse the electrical connections to one
of the loudspeakers and the carousel will slow down and start rotating the other way.
Replace the absorber by an empty yoghurt cup, which does not absorb much sound,
and nothing will happen [7.10].

Geometrically speaking, the resonance frequencies of our square cavity form a
two-dimensional square lattice. According to a well-known result by H. Weyl the
asymptotic number of resonances (“eigenvalues”) up to a given frequency f equals
πL2 f 2/c2, which agrees with a result already obtained by Gauss concerning the
asymptotic number of representations of the integers by the sum of two squares.

The connection between geometry and number theory was forged into a strong
link by Hermann Minkowski. In his Geometrie der Zahlen (published in 1896)
Minkowski established and proved many beautiful relationships at the interface of
geometry and number theory. His most famous result, known as Minkowski’s the-
orem, says that any convex region symmetrical about (0,0) having an area greater
than 4 contains integer lattice points other than (0,0). This theorem, and its gener-
alization to higher dimensional spaces, is particularly useful in proofs concerning
the representation of numbers by quadratic forms, such as the above result on the
decomposition of certain primes into sums of squares.

In an address before the Göttingen Mathematical Society commemorating the
100th anniversary of Dirichlet’s birth, Minkowski hypothesized that some day soon,
number theory would triumph in physics and chemistry and that, for example, the
decomposition of primes into the sum of two squares would be seen to be related to
important properties of matter.2

Another intriguing geometrical concept by Minkowski is that of a Strahlkörper
(literally: ray body) defined as a region in n-dimensional Euclidean space containing
the origin and whose surface, as seen from the origin, exhibits only one point in any
direction. In other words, if the inner region was made of transparent glass and only
the surface was opaque, then the origin would be visible from each surface point of
the Strahlkörper (i. e., there are no intervening surface points). Minkowski proved
that if the volume of such a Strahlkörper does not exceed ζ (n), a volume preserving
linear transformation exists such that the Strahlkörper has no points in common with
the integer lattice (other than the origin). Here ζ (n) is Riemann’s zetafunction which
we encountered already in Chap. 4 in connection with the distribution of primes.

2 “In letzterer Hinsicht bin ich übrigens für die Zahlentheorie Optimist und hege still die Hoffnung,
dass wir vielleicht gar nicht weit von dem Zeitpunkt entfernt sind, wo die unverfälschteste Arith-
metik gleichfalls in Physik und Chemie Triumphe feiern wird, und sagen wir z. B., wo wesentliche
Eigenschaften der Materie als mit der Zerlegung der Primzahlen in zwei Quadrate im Zusammen-
hang stehend erkannt werden.” [7.11].



7.11 Normal-Mode Degeneracy in Room Acoustics 135

The fact that ζ (n) should determine a Strahlkörper property is not totally sur-
prising. If we look at our “coprimality function”, Fig. 4.8, it consists of precisely
all those points of the lattice of positive integers from which the origin is visible,
i. e., the white dots in Fig. 4.8 define the surface of a (maximal) Strahlkörper. And
the asymptotic density of dots is 1/ζ (2) = 6/π2 (see Sect. 4.4) or, in n dimensions,
1/ζ (n).

The reader may wants to explore the more general decomposition of primes p

p = x2 + cy2

with c = ±2,±3, . . . .
For c = 2, Lagrange showed that all primes

p ≡ 3mod8

are uniquely representable, e. g. 19 = 1+2 ·32.
For c = −2 and p ≡ 7mod8 there are infinitely many solutions obtainable by a

simple linear recursion, which the reader may want to discover.

7.11 Normal-Mode Degeneracy in Room Acoustics
(A Number-Theoretic Application)

The minimum frequency spacing of two nondegenerate normal modes of a cubical
room, in the units used above in (7.30), is

Δ fmin =
1

2 fx,y,z
. (7.37)

Because of the gaps in the numbers representable by the sum of 3 squares, the
average nondegenerate frequency spacing becomes 7/6 of this value:

Δ f =
7

12 f
. (7.38)

The asymptotic density of normal modes per unit frequency (using a famous for-
mula on the distribution of eigenvalues, proved in its most general form by Hermann
Weyl) is

ΔZ =
π
2
· f 2. (7.39)

Thus the average degree of degeneracy D (i. e., the number of modes having the
same resonance frequency) becomes [7.12]:

D = ΔZ ·Δ f =
7π
24

· f � 0.92 · f . (7.40)
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The degree of degeneracy is important because a high degeneracy can be detri-
mental to good room acoustics: normal modes that coincide in frequency are missing
elsewhere and leave gaps in the frequency scale. Consequently, musical notes gen-
erated at those frequencies are not well transmitted to the attending audience (or mi-
crophones). This problem is most significant for small enclosures such as recording
studios, where the mode density, especially at the lower end of the audiofrequency
range, is already small and any unnecessary degeneracy impairs the acoustic respon-
siveness [7.12].

7.12 Waring’s Problem

A problem that has stimulated much mathematical thought, by Hilbert among oth-
ers, is Waring’s problem [7.1]: given a positive integer n > 0, what is the least num-
ber of terms G(k) in the sum:

n = ∑
j

mk
j (7.41)

for all sufficiently large n?
Another question is how many terms g(k) are needed so that all n can be repre-

sented as in (7.41). Of course:

g(k) ≥ G(k). (7.42)

As we saw in Sect. 7.9, g(2) = 4. It is also known that g(3) = 9. In fact, there are
only finitely many n for which 9 third powers are required. Probably the only two
cases are

23 = 2 ·23 +7 ·13 and

239 = 2 ·43 +4 ·33 +3 ·13.

Thus, by definition:

G(3) ≤ 8.

Also G(3) ≥ 4, but the actual value of G(3) is still not known – another example
of how a seemingly innocent question can lead to mathematically most intractable
problems!

If we ask how many different ways rk(n) an integer n can be represented as the
sum of kth powers (including different sign choices and permutations), then for
example by (7.36), r2(5) = 8. Of particular interest are the following asymptotic
averages [7.1]:

N

∑
n=1

r2(n) = πN +0
(√

N
)

and (7.43)
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N

∑
n=1

r3(n) =
4π
3

N3/2 +0(N). (7.44)

Both (7.43) and (7.44) are intuitively obvious because they count the number of
integer lattice points in a circle and, respectively, a sphere of radius

√
N.



Chapter 8
The Theorems of Fermat, Wilson and Euler

These three theorems, especially the one by Euler, play a central role in many mod-
ern applications, such as digital encryption. They are deeply related to the theory of
groups, and indeed, their most elegant proofs are group theoretic. Here, however, we
shall stress the purely arithmetic viewpoint. We also introduce the important Euler
φ function (or totient function) which reaches into every corner of number theory
and which, by way of illustration, tells us how many ways an n-pointed star can be
drawn by n straight lines without lifting the pen.

8.1 Fermat’s Theorem

For prime p and integer b not divisible by p, the following congruence holds:

bp−1 ≡ 1(mod p), p � | b. (8.1)

Let us check this for p = 5: 14 = 1, 24 = 16 ≡ 1, 34 = 81 ≡ 1, 44 = 256 ≡ 1 (mod5).
One of several proofs of Fermat’s theorem relies on the fact that a complete

residue system modulo a prime, excluding 0, i. e., the numbers 1,2, . . . , p−1 (if we
decide to use least positive residues) form a multiplicative group of order p−1. It is
well known from elementary group theory that any element of such a group, when
raised to the power equal to the order of the group, will yield the unit element.

Another proof starts from the product

P = 1b ·2b ·3b . . .(p−2)b · (p−1)b = bp−1(p−1) ! (8.2)

Here multiplication modulo p of the numbers 1,2,3, . . . , p− 2, p− 1 by any factor
b which is coprime to p will only change their sequence, but not the value of the
product. Thus, P ≡ (p− 1)!(mod p). Since the factor (p− 1)! is coprime to p, we
can cancel it and conclude that bp−1 must be congruent 1 modulo p.

Example: for p = 5 and b = 2,

P = 2 ·4 ·6 ·8 = 24 ·4!, (8.3)

M. Schroeder, Number Theory in Science and Communication, 5th ed., 139
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but taking each factor in P modulo 5 gives

P ≡ 2 ·4 ·1 ·3 = 4! (mod5).

Hence 24 ≡ 1 (mod5).

8.2 Wilson’s Theorem

If and only if p is prime, then

(p−1) ! ≡−1 (mod p). (8.4)

For a proof when p is a prime, not relying on group theory, consider the product

2 ·3 ·4 . . .(p−3) · (p−2). (8.5)

Here each factor has its own inverse (modulo p) somewhere among the other factors.
For example, for p = 7, in the product 2 · 3 · 4 · 5 the factors 2 and 4 form a pair of
inverses modulo 7, and so do 3 and 5. The product of such a pair is by definition
congruent 1 modulo p, and so is the product of all the (p−3)/2 pairs in the above
product. Thus,

2 ·3 ·4 . . .(p−3) · (p−2) ≡ 1 (mod p), (8.6)

and multiplying by p−1 yields:

(p−1) ! ≡ p−1 ≡−1 (mod p), Q.E.D. (8.7)

Another way to state Wilson’s theorem is as follows:

p | (p−1) !+1. (8.8)

Example: for p = 5: 5 divides 24+1. Check!

Using this form of Wilson’s theorem, we construct the function

f (n) = sin

[

π
(n−1) !+1

n

]

, (8.9)

which has a truly remarkable property: f (n) is zero if and only if n is prime. Here
we seem to have stumbled across the ultimate test for primality!

By contrast, Fermat’s theorem, always true for primes, can also be true for com-
posite numbers. Not so for Wilson’s theorem, which holds if and only if p is prime.

Unfortunately, this primality test is of no practical advantage, because calculating
f (n) takes much longer than even a slow sieve method. For example, to test whether
101 is prime, we would have to compute 101! first – a 160 digit tapeworm!
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Another proof of Wilson’s theorem uses Fermat’s theorem in the following form:

xp−1 −1 ≡ 0 (mod p), (8.10)

which holds for x = 1,2, . . . , p−1. According to the fundamental theorem of algebra
these p−1 roots must be all the roots of the above equation. We can therefore write

xp−n −1 ≡ (x−1) · (x−2) . . .(x− p+1) (mod p). (8.11)

Now letting x = p yields

pp−1 −1 ≡ (p−1) · (p−2) . . .1 = (p−1) ! (mod p). (8.12)

Here pp−1 is of course congruent 0 modulo p and Wilson’s theorem is proved.

8.3 Euler’s Theorem

For b and m coprime, i. e., (b,m) = 1, Euler asserted that

bφ(m) ≡ 1 (modm). (8.13)

Here φ(m) is Euler’s φ function (also called totient function) defined as the number
of positive integers r smaller than m that are coprime to m, i. e., for which 1 ≤ r < m
and (r,m) = 1 holds.

Example: m = 10: r = 1,3,7,9. Thus φ(10) = 4. Note: φ(1) = 1.

For prime moduli, each of the numbers r = 1,2, . . . , p− 1 is coprime to p and
therefore φ(p) = p−1.

For prime powers pα , one obtains in a similar fashion

φ(pα) = (p−1)pα−1 = pα
(

1− 1
p

)

. (8.14)

Example: φ(9) = 6. Check! (There are exactly six positive integers below 9 co-
prime to 9, namely, 1, 2, 4, 5, 7, and 8.)

Euler’s φ function is a so-called multiplicative function, which in number theory
is defined as a function for which

φ(n ·m) = φ(n) ·φ(m) for all (n,m) = 1 (8.15)

holds. Thus, we have for any
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m = ∏
i

pei
i (8.16)

φ(m) = ∏
i

(pi −1)pei−1
i (ei > 0), (8.17)

or in a form without the restriction on the exponents:

φ(m) = m∏
i

(

1− 1
pi

)

. (8.18)

As can be seen from (8.17), the totient function φ(m) is always even, except φ(2) =
φ(1) = 1.

Example: for m = 10, φ(10) = 10(1− 1
2 )(1− 1

5 ) = 4; and 14 = 1, 34 = 81 ≡ 1,
74 = 492 ≡ (−1)2 = 1, 94 = 812 ≡ 12 = 1 (mod10).

One proof of Euler’s theorem parallels that of Fermat’s: Consider the prime
residue system modulo m:

r1,r2, . . . ,rφ(m) (8.19)

and multiply each rk with b, where (b,m) = 1. This multiplication changes the se-
quence of the above residues, but their total product is not affected. For example,
for m = 10,

r = 1, 3, 7, 9,

which upon multiplication with b = 7 becomes

rb = 7, 21, 49, 61 ≡ 7, 1, 9, 3 (mod10).

This is, of course, a consequence of the fact that prime residue systems form a
multiplicative group.

Hence,

bφ(m)r1r2 . . .rφ(m) ≡ r1r2 . . .rφ(m) (modm). (8.20)

Since the residues are by definition prime to m, we can cancel these factors and
are left with

bφ(m) ≡ 1 (modm). (8.21)

The reader may wish to show the following curious but important property of the
totient function:

m | φ(pm −1), (8.22)

which holds for any m.
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8.4 The Impossible Star of David

How many ways can an n-pointed star be drawn from n straight lines without lifting
the pen? An n-pointed star has of course n outer corners. For simplicity we assume
that these corners lie equidistantly on a circle. Connecting corners that are adjacent
on the circle produces a polygon, not a star. To obtain a star we must connect each
corner with one of its n−2 non-neighbors. For n = 6, we get the six-pointed Star of
David: two superimposed triangles.

But suppose we are asked to draw a six-pointed star in six straight consecutive
strokes. The Star of David then becomes impossible (the reader is invited to try the
following himself). Suppose the points are numbered 1,2,3,4,5,6 and we connect
1 with 3 with 5 with 1. But that is not a six-pointed star; that is a triangle and points
2,4,6 have been left out. Suppose we skip two points. Then we connect 1 with 4
with 1, and we have missed four points. Suppose we permit irregular skippings and
connect, for example, 1 with 3 with 6 with 2 with 4 – but now we cannot skip any
more because the only missing point is the adjacent point 5.

No matter how hard we try, a six-pointed star cannot be completed in this way.
Yet it is easy to draw a five-pointed star by five straight lines without lifting the pen:
connect point 1 with 3 with 5 with 2 with 4 with 1. And there are even two seven-
pointed stars: skipping one point at a time, connect point 1 with 3 with 5 with 7 with
2 with 4 with 6 with 1 (Fig. 8.1); or, skipping two points at a time, connect point 1
with 4 with 7 with 3 with 6 with 2 with 5 with 1 (Fig. 8.2).

When is a star possible? If k−1 is the number of points skipped, then k must be
greater than 1 and smaller than n− 1 (or we would get a polygon) and k must be
coprime with n, the number of corners. Because φ(5) = 4, there are four values of
k such that (k,5) = 1, of which only two differ from 1 or n−1: k = 2 and k = 3.

The two stars drawn with k = 2 and k = 3 are indistinguishable once the drawing
is completed. Thus, there is only one possible five-pointed star.

From the discussion it should be clear that for general n, the following holds:

Number of possible stars =
φ(n)−2

2
. (8.23)

Fig. 8.1 One of two possible
regular seven-pointed stars. It
is based on the fact that 7 is
coprime with 2 (and 5)
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Fig. 8.2 The other possible
seven-pointed stars based on
the coprimality of 7 with 3
(and 4)

Let us try this formula for n = 6. With φ(6) = 2, we get no stars – as we have
already discovered by trial and error.

For n = 7 we get, with φ(7) = 6, (6−2)/2 = 2 stars. Check! (See Figs. 8.1, 8.2.)
Question: for which n do we get 6 different stars? Answer: for no n – the number

2 ·6+2 = 14 is a so-called nontotient: φ(n) can never equal 14. (Can the reader show
this?)

The number 6 seems to have an unlucky star: not only is a singly connected
six-pointed star impossible, but there is no n for which exactly six different stars
are possible. Other nontotients are 26 and 34. What is the general condition for a
number to be a nontotient?

8.5 Dirichlet and Linear Progression

Consider the linear progression

ak = mk + c, (c,m) = 1, k = 0,1,2, . . . . (8.24)

There are exactly φ(m) incongruent choices for c and therefore φ(m) nonoverlap-
ping progressions. In 1837 Dirichlet showed, in one of the most spectacular early
applications of analytic number theory, that the primes are equally distributed over
these φ(m) different progressions, i. e., each progression contains asymptotically the
fraction 1/φ(m) of all the primes [8.1].

For m = 3, for example, φ(3) = 2, and all primes (except 3 itself) belong to one
of two residue classes: 3k+1 and 3k−1. And Dirichlet asserted that these two kinds
of primes are equally frequent, each class (on average) laying claim to one-half of
all primes.

For m = 4, φ(4) = 2, there are likewise two kinds of primes: 4k± 1, and again
they are equally frequent (but see below!).
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For m = 6, φ(6) = 2, and we conclude that primes of the form 6k±1 are equally
frequent.

For m = 10, φ(10) = 4, and all the primes (except 2 and 5) have 1, 3, 7 or 9 as
their last digits, and we find that each class asymptotically gets a quarter of the total.

For m = 100, φ(100) = 40, the conclusion from Dirichlet’s theorem is that the
second-to-last digit (the “tens” digit) will be 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 with equal
probability. In fact, in the interval from 7200 to 8800, where we would expect to
find a total of 16600/ ln8000 = 178 primes, there are actually 176 primes with the
following distribution over the tens digits:

0: 15 5: 15

1: 20 6: 18

2: 20 7: 14

3: 17 8: 20

4: 20 9: 17 ,

with a mean value of 17.6 primes and a standard deviation of σ = 2.2 – considerably
less than for a Poisson process, which would have σ = 4.2.

The author once thought that nothing but equipartition of the primes between
different prime residue classes of a given modulus k was even thinkable. After all,
what is the difference between primes of the form 4k +1 and 4k−1? Well, for one,
+1 is a quadratic residue of 4 and −1 is not. As a result, there is a subtle “quadratic
effect” on the distribution of primes taken modulo 4. As Chebyshev [8.2] noted in
1853, there are more primes of the form 4k− 1 than 4k + 1, although not as many
as some people believed. In fact, the difference in number between these two kinds
of primes changes sign infinitely often! The number of primes below x = 2.5 · 109

is about 1.2 ·108, and the absolute excess of primes 4k−1 is roughly 2000 – subtle
but finite.

There are even subtler cubic residue effects. However, in relative terms, all these
effects vanish as x approaches infinity, and Dirichlet is ultimately vindicated.



Chapter 9
Permutations, Cycles and Derangements

Permutations pervade much of mathematics including number theory. Besides innu-
merable peaceful uses, permutations were crucial in classical cryptography, such as
the German Geheimschreiber (secret writer) and Enigma enciphering machines—
and their demise. The Geheimschreiber was broken during World War II by the
Swedish mathematician Arne Beurling—with the occasional help from the leading
Swedish statistician Harald Cramér (see B. Beckman: Codebreakers).

Polish and British cryptanalysts were able to break the Enigma code by obser-
ving—among other factors—the cycle structure of the code. Cycles of permutations
and their distributions are therefore considered in Section 9.4 of this chapter.1

9.1 Permutations

The number of arrangements (“permutations”) of n distinct objects equals the fac-
torial of n:

n! := 1 ·2 ·3 · · ·n, (9.1)

a formula easily proved by induction. Factorials grow very fast: while 5! equals just
120, 10! is already equal to 3 628 800. A good and relatively simple approximation
is Stirling’s famous formula:

n! ≈
√

(2πn)nn e−n, (9.2)

which yields 3 598 696 for n = 10.
A better approximation multiplies the Stirling result by e1/12n, yielding 10! ≈

3628810 (for an error of less than 0.0003%!).
Factorials are also related to the “Euler” integral. Repeated partial integration

shows that

1 While the Germans, after a few years, became aware of the Geheimschreiber’s vulnerability and
curtailed its use, the fact that the Allies had broken Enigma was one of the best-kept secrets of the
war. The Enigma decrypts therefore continued to provide the Allies with invaluable information
during the entire war.
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∞
∫

0

tn e−t dt = n! (9.3)

The related gamma-function

Γ(z) :=
∞
∫

0

tz−1 e−t dt

is single-valued and analytic in the entire complex plane, except for the points z =
−n (n = 0,1,2, . . .) where it possesses simple poles with residues (−1)n/n!. Γ(z)
obeys the recurrence formula

Γ(z+1) = zΓ(z) (9.4)

and the curious “reflection” formula

Γ(z)Γ(1− z) = −zΓ(−z)Γ(z) = πcsc(πz), (9.5)

which for z = 1/2 yields
Γ(1/2) =

√
π.

9.2 Binomial Coefficients

As we learn in high school (?), the “binomial” (1+x)n can be expanded (multiplied
out) as follows:

(1+ x)n =
n

∑
k=0

(

n
k

)

xk (9.6)

where the
(n

k

)

(read n choose k) are the binomial coefficients—

With 0! defined as 1,

(

n
0

)

=
(

n
n

)

= 1, (9.7)

(n
1

)

equals n and
(n

2

)

equals n(n− 1)/2 = 0,1,3,6,10,15, . . . the “triangular” num-
bers (see Sec. 7.4). The binomial coefficient

(n
2

)

= 1/2 n(n− 1) is (by definition)
the number of pairs that can be selected from n distinct objects. Thus, at a party
of n people, each guest clinking his glass with everyone else, produces a total of
1/2 n(n− 1) clinkings. (Of course, for n = 1, the number of possible clinkings is
zero, just as there is no applause with just one hand clapping. For two people (n = 2),
there is just one clinking.)

Permutations when just two objects change places are called transpositions. Ev-
ery permutation can be decomposed into a unique (modulo 2) number of transposi-
tions. If this number is odd, the permutation is called odd. Otherwise it is called an
even permutation. The identity permutation is even because the number of transpo-
sitions is 0 (an even number). For example for n = 5, there are a total of n! = 120
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permutations of which 60 are odd and 60 are even, the latter forming the famous
symmetrical group S5 which was crucial in Galois’ historic proof that the general
quintic equation has no solution in radicals. This put to rest a problem that had
baffled mathematicians for centuries.

Other special permutations with unique properties are those generated by prim-
itive roots, the number-theoretic logarithm (index), and the Zech logarithm (see
Chaps. 14 and 27).

If the n objects consist of m groups containing k1, k2, . . . ,km elements, respec-
tively, the binomial coefficients can be generalized to the multinomials. The multi-
nomial coefficients are defined by

n!
k1!,k2! . . .km!

, where
m

∑
r=1

kr = n (9.8)

The differences between consecutive triangular numbers equal 1, 2, 3, 4, 5, . . ., i.e.
a set covering all positive integers. Thus, as the young Gauss discovered, they are
sufficiently dense so that every positive integer can be represented by the sum of
just 3 triangular numbers Δ. Or, as Gauss wrote in 1796 in his still new notebook:

Eureka! n = Δ+Δ+Δ.

Note that already n = 5 requires 3 triangular numbers (5 = 3+1+1).
By contrast, the square numbers, 0, 1, 4. 9, 16, 25 . . . have differences equal to

1, 3, 5, 7, 9 . . ., i.e. they cover only the odd numbers. They are therefore less dense
and up to 4 squares are required to represent all positive integers. For example,
7 = 4 + 1 + 1 + 1 cannot be represented by just 3 squares. The same is true for
n = 15,23,31, . . .28, . . . (see Sect. 7.9 for more on the sum of 3 squares).

9.3 The Binomial and Related Distributions

If p is the probability that one of n possible events occurs, the probability of k
events occurring in n independent trials is proportional to the binomial coefficient
“nchoosek”. With k ranging from 0 to n, the (discrete) probability distribution is
the so-called binomial distribution

p(k) = c

(

n
k

)

,0 ≤ k ≤ n (9.9)

where the constant c must be chosen so that

n

∑
k=0

p(k) = c ·2n (9.10)

equals 1, i.e. c must equal 1/2n.
The mean value of k equals np and its variance is np(1− p), which for fixed n

achieves its maximum for p = 1/2.
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For large n, the binomial distribution looks like samples from a Gaussian (nor-
mal) distribution. And in fact, for large n, the binomial distribution can be approxi-
mated by a normal distribution with mean np and variance np(1− p).

For n → ∞, but np fixed: np = m, the binomial distribution turns into the impor-
tant Poisson distribution

pm(k) =
mk

k!
e−m, k = 0,1,2 . . . (9.11)

with mean and variance equal to m.
The Poisson distribution gives the number of “clicks” per second of a Geiger-

counter near a radioactive source with an average click rate equal to m clicks per sec-
ond. The Poisson distribution also describes the occurrence of other “rare” events,
i.e. events for which p is so small that, even as n → ∞, np stays finite.

9.4 Permutation Cycles

One important subject in the study of permutations is their cycle structure. It was by
the analysis of cycles, and particularly an invariance property of the cycle structure
that the Polish mathematician Marian Rejewski, before the outbreak of World War
II, was able to crack the Enigma enigma (see C. Christensen, Mathematics Maga-
zine, Vol. 80, No. 4 (October 2007), pp. 247–273).

For n = 2, the two possible permutations are the “identity” permutation (1, 2)
and the transposition (2, 1). Note that the notation (2, 1) means that the first object
is now in the second position and the second object appears in the first position.

Here (1, 2) has two cycles of period length 1 each:

1 → 1 and 2 → 2.

Whereas the transposition (2, 1) has only one cycle of period length 2:

1 → 2 → 1.

Thus, the total number of cycles equals 3, two of which have period length 1 and
one (1 → 2 → 1) has length 2.

Now let us study the cycle structure for the case of n = 3.
For the 6 permutations of 3 objects, cycle-analysis yields for the identity permu-

tation (1, 2, 3): 1 → 1, 2 → 2, 3 → 3, i.e. 3 cycles of length 1.
For the permutation (1, 3, 2) we have 2 cycles: 1 → 1 and 2 → 3 → 2, one of

which has length 1 and the other cycle has length 2.
For (2, 1, 3), we find again 2 cycles, 2 → 1 → 2 and 3 → 3, with lengths 1 and 2,

respectively.
For (2, 3, 1), a “cyclic” permutation, we have just 1 cycle, 1 → 2 → 3 → 1, with

length 3.
For (3, 1, 2), the other cyclic permutation, we find again just 1 cycle, 1 → 3 →

2 → 1, with length 3.
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And, finally, for the permutation (3, 2, 1), we find 2 cycles, 1→ 3 → 1 and 2→ 2,
with lengths 1 and 2, respectively.

Thus, for n = 3, we have found a total number of 11 cycles, namely 2 permuta-
tions with 1 cycle, 3 permutations with 2 cycles and 1 permutation with 3 cycles.
In general, the number of cycles is given by the Stirling numbers of the first kind
Sn

(m), with the generating function

x(x−1) · · ·(x−n+1) =
n

∑
m=0

Sn
(m)xm (9.12)

and the recurrence relation

Sn+1
(m) = Sn

(m−1) −nSn
(m).

In fact, the number of permutations of n symbols which have exactly m cycles
equals

#n(m) = (−1)(n−m)Sn
(m), (9.13)

which for n = 3 and for m = 1, 2, 3 yields the values 2, 3, 1, respectively.
The total number of cycles is given by the simple formula

n

∑
m=1

m#n(m) = #n+1(2), (9.14)

which, for n = 3, yields 11 (as we already found by enumerating all 6 permutations
for n = 3).

For more on the Stirling numbers, see Graham, Knuth and Patashnik: Concrete
Mathematics, a veritable treasure trove of discrete (discreet?) mathematics.

Now let us look at the total number of different cycle lengths. By summing up the
above results for n = 3, we find that there are a total of six cycles of period length
1, three cycles of length 2 and two cycles of length 3. Bell Labs mathematician S.P.
Lloyd has shown that, in general, for the n! permutations of n distinct objects there
are n! cycles of length 1, n!/2 cycles of length 2 and, generally, n!/k cycles of length
k, 1 ≤ k ≤ n.

Thus, the total number of cycles equals n!(1 + 1/2 + +1/n). Here, the sum is
the harmonic number Hn, which can be approximated by a definite integral from
x = 1/2 to x = n+1/2, over 1/x, yielding

Hn ≈ ln(2(n+1/2)). (9.15)

However, considering that 1/x is concave (i.e. a “sagging” function), the factor 2
in the above formula overestimates Hn. Taking a cue from Euler, we replace the
factor 2 by eγ ≈ 1.781, where γ = 0.57721 . . . is Euler’s constant. This yields the
astonishingly accurate approximation

Hn ≈ ln(1.781(n+1/2)), (9.16)
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giving (exact values in parentheses) H1 ≈ 0.98 (1.0), H2 ≈ 1.49 (1.5), H3 ≈ 1.83
(1.83. . .) and H50 ≈ 4.49915 (4.49921) with an error of less than 0.007%. (Of
course, n!Hn must be an integer, so that multiplying the approximation for Hn by
n! and rounding to the nearest integer gives an even better approximation for Hn).

In a computer simulation using the Random Permutation routine of Mathema-
ticaTM, I found for 105 random permutations of 50 objects, 100 098 cycles of length
1, 49 970 cycles of length 2 etc. down to 2 005 cycles of length 50 and a total number
of cycles (450 836) in close agreement (0.2%) with the expected number of cycles
of 105 ·H50 = 449921. These agreements are remarkable, given that the investigated
105 permutations are a very small fraction of the total of 50!≈ 3 ·1064 permutations.

9.5 Derangements

A (complete) derangement is a permutation that leaves no object in its original place.
A well-known derangement problem is that of n envelopes and n letters: What is the
probability that not a single letter will end up in its proper envelope if the assignment
of letters to envelopes is random? (For large n, the probability tends to 1/e ≈ 0.37
or 37%.) For two objects, there is exactly one derangement, the transposition (2, 1).
For 3 objects, there are two complete derangements, the two cyclic permutations (2,
3, 1) and (3, 1, 2).

No matter what n is there is always exactly one permutation, with no derange-
ments, namely the identity permutation where all objects are in their original place.
There are never any permutations with just a single derangement because if one ob-
ject is “deranged”, there must be another one that is also “out of place”. From these
facts (plus a few other “insights”) I once guessed the proper formula for the number
D(n) of complete derangements of n symbols:

D(n) = n!
n

∑
k=0

(−1)k

k!
(9.17)

where the sum converges to 1/e for n → ∞.
This is not to be confused with the birthday problem: how many people must

be present at a party so that the probability that at least two persons have the same
birthday exceeds 1/2? (Answer: 23).

9.6 Ascents and Descents

One aspect of permutations that has taken on considerable significance in recent
times is the question of the longest rising (or falling) subsequence. Thus, in the
permutation (1, 3, 5, 2, 4) of the first five positive integers, the longest rising sub-



9.7 Quantum Decrypting 153

sequence is 1, 3, 5 while the longest falling subsequence is 5, 2. According to a
theorem by the celebrated Paul Erdös and Gyorgy Szekeres, (proved by the pi-
geonhole principle) any list of k2 + 1 distinct numbers contains an increasing (or
decreasing) subsequence of length k +1.

Thus, for k = 2, any list of k2 + 1 = 5 distinct numbers contains a subsequence
of length 3.

Here is a list of three random permutations of 5 numbers 1, 2, 3, 4, 5:

(3,4,5,1,2); (2,5,3,1,4); (2,3,4,1,5).

The longest monotone subsequence of the first permutation is an increasing sub-
sequence, namely (3, 4, 5). The longest subsequence of the second permutation is a
decreasing one: (5, 3, 1). Both have length 3.

The third permutation has a longest increasing subsequence of length 4, (2, 3, 4,
5), i.e. greater than the guaranteed minimum of 3. Note that non-monotonic mem-
bers (like the 1 in the third permutation) can intervene. The members of such subse-
quences don’t have to be contiguous. They are therefore sometimes called scattered
subsequences.

It is interesting to observe that the distribution of increasing (or decreasing) sub-
sequences of random permutations is related to the distribution of the eigenvalues
of certain chaotic dynamical systems. Such distributions are therefore of great con-
temporary concern.

9.7 Quantum Decrypting

The days of the RSA2 public-key encryption scheme may be numbered. The reader
will recall that the difficulty of breaking RSA encrypted messages hinges on the
difficulty of factoring large numbers. While the ever-advancing speeds of number-
theoretic factoring3 can be easily held at bay by using ever larger key numbers, going
from, say, 300 digits to 400 digits, a new paradigm is arising on the cryptographic
horizon that will thoroughly undo RSA: quantum factoring. In 1994 Peter Shor4

then working at Bell Laboratories in Murray Hill, New Jersey, proposed a quantum
algorithm for very fast factoring large composite numbers. Shor’s algorithm is based
on finding the order (“period length”) of certain number-theoretic sequences.

As is well known (no, this is not translated from Russian), to compute the
decrypting exponent t from the (public) encrypting exponent s, the following

2 The RSA algorithm was named after Donald Rivest, Adi Shamir and Leonhard Adleman who
published it in 1977. It was actually invented by Clifford Cocks three years earlier in a project
classified TOP SECRET by British Intelligence.
3 In May 2007 the largest number factored was 21039-1—which has over 300 decimal digits—
with the help of some 500 computers running “in parallel” for 6 months (see Discover Magazine
(January 2008), pp. 17–30).
4 P. Shor: Proc. 35th Annual Symposium of the Foundations of Computer Science, p. 124. See also
SIAM Journal on Computing 26 (1997), p. 1484, for a full version of Shor’s paper.
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Diophantine equation must be solved:

s · t ≡ 1modφ(m)

where φ is Euler’s φ-function (also called totient-function) and m is the (public)
encrypting modulus. Now, if m is the product of two primes, p and q, then φ(m) =
(p − 1)(q − 1). Thus, to obtain the value of φ, the (secret) factors of m, i.e. the
individual primes, must be known—not just their product!

How does Shor get these factors? Take a look at Euler’s generalization of Fer-
mat’s “Little Theorem”:

aφ(m) ≡ 1modm

for coprime a and m. It follows that the sequence ak modm, k = 1,2,3 . . . has a period
length that divides φ(m). For example, for m = 10, and a = 3, we get the sequence

3,9,7,1,3,9 . . . ,

which has a period length of 4. (Remember: 9 · 3 = 27 ≡ 7 mod 10.) And 4 does
indeed divide φ(10) = φ(2 ·5) = (2−1)(5−1) = 4.

The same period length is obtained for a = 7: to wit 7, 9, 3, 1, 7, 9 . . .. But for
a = 9 we get 9, 1, 9, 1 . . ., i.e. a period length of 2, but still a divisor of φ(10) = 4.

The period lengths of 3k and 7k are therefore as long as possible. Such numbers
a are called primitive roots. 3 and 7 are thus two (the only) primitive roots of 10.
(Only integers 1, 2, 4, pk and 2 · pk, where p is an odd prime, have primitive roots.
The number of primitive roots equals φ(φ(m)), or 2 for m = 10.)

Now, if the primes p and q are different (and larger than 2), then m = p · q has
no primitive roots and the period length L can never attain the value φ(m) = (p−1)
(q−1). But, L is of course still a divisor of (p−1)(q−1). In fact, in a large number
of all (legal) choices of a, L equals (p−1)(q− r)/2, so that the calculation of p and
q from L and m = p ·q is easily accomplished.

One interesting relation between the period lengths of ak modulo p, q, and pq,
respectively, is

Lpq = LCM (Lp,Lq) where the L are period lengths and LCM stands for “least
common multiple”.

For example, for p = 5 and q = 7 and a = 3 we get L5 = 4, L7 = 6 and L35 = 12,
which is indeed the least common multiple of 4 and 6 and which also a divisor
of φ(35) = 4 · 6 = 24. Here is a somewhat larger (randomly generated) example:
p = 229, q = 349, a = 7, for which Lp = 228. Lq = 348 and Lpq = 6612—which
divides (p−1)(q−1) = 79344 and is divisible by both 228 and 348, as it should as
the least common multiple.

This is not surprising, because—as every physicist knows (but a mathematician
still has to prove)—the period length Lab of two added oscillations (periodic se-
quences) with period lengths La and Lb, respectively, is simply LCM (La, Lb). In
physics and musicology this is known as a beat note and its frequency equals the
largest common divisor of the two “beating” tones or, what is the same, the beat pe-
riod is the least common multiple of the two (or more) beating periods. But there is
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a big difference between telling the fundamental frequency (or period) of a musical
note and determining the period length of a number-theoretic sequence ak. For ex-
ample, for a = 97 and the above (p = 229, and q = 349), the sequence ak mod (pq)
starts as 97, 9409, 33542, 56734, . . . and continues in a seemingly random fashion
showing no periodicity. Only after 6612 = 228 ·348/12 steps does it start over again:
. . ., 11535, 1, 97, 94909, . . .. Such long periods are difficult to discern on a graphical
printout. However, if converted to an audible tone, then even for fundamental period
lengths as long as one or several seconds, the periodicity can be heard. (Typically,
depending on the sampling rate, it sounds like the idling engine of a motorboat.)

9.8 Decrypting without Factoring

While the need of factoring the encryption modulus m into its prime factors was
considered an article of faith for breaking RSA, some number theorists have come
up with a method of decrypting RSA that does not require factoring. In fact, with a
sprinkling of (elementary) group theory and Euler’s Theorem, it can be shown that
the Diophantine equation

s · t ≡ 1mod φ(m)

can be solved for t without factoring m. Surprisingly, φ(m) in the above equation can
be replaced by the order of the (publicly transmitted) encrypted message modulo m,
the (public) encryption modulus. For the still necessary period finding one could use
the Shor algorithm. So, while RSA has not yet been cracked, it is good to know that
factoring is not a sine qua non. Also, the order is usually smaller than φ(m).

As an example, let us take p = 617 and q = 2273, i.e. p · q = 1402441. For an
encrypting exponent s = 101 and message n = 31415, the encrypted message is
31415101 mod 1402441 which equals 81679. Now the decrypting exponent t, as
usually obtained, is given by

s · t ≡ 1modφ(m),

which requires factoring of m (a 7-digit number in the example).
In the alternative method, φ(m) in the above equation is replaced by the or-

der of the cryptogram, 81697, modulo m. This yields for the decrypting exponent
t = 1122413 and it is easy to confirm the correctness of this result by calculating,
modulo m, 81697t which equals, wonder of wonders, the original message: 31415—
and we still don’t know (or care) what p and q are.

But where is the connection with quantum mechanics (QM) and its calculating
speed? Well, QM is good at Fourier transforming or spectral analysis. And Shor
finds the period lengths of ak by Fourier analysis on a “quantum computer”. I put
quantum computer between quotation marks because Shor’s algorithm isn’t really a
full-blown quantum computer—it’s just a super fast period-length finder relying on
quantum mechanics.
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Of course, as a final step, the Shor algorithm calls for a measurement leading,
in a quantum system, to a “collapse” of the wave function. However, the system
collapses with high probability to the desired state, namely the spectral peak whose
frequency is to be determined.

9.9 Quantum Cryptography

In an early realization of quantum cryptography, Anton Zeilinger and co-workers5

transmitted an image (of a prehistoric statuette of a woman—the “Venus von
Willendorf”), making use of entangled photon states originally called “verschränkte
Zustände” by Erwin Schrödinger.

Entangled states are at the core of the Einstein, Podolsky, Rosen (EPR) paradox.
Einstein, for one, never believed in the spukhafte Fernwirkungen (spooky actions at
a distance) that are implied by EPR. But he was wrong and the seeming paradoxon
invented by him, Podolsky and Rosen is now an experimentally verified foundation
of quantum physics.

The use of entangled states allows single photons to be used in the quantum en-
cryption scheme—a breathtaking achievement, especially in view of the fact that in
the original interpretation of quantum mechanics, its laws were considered to be ap-
plicable only to large ensembles (Of course, because of photon loss during transmis-
sion and detection, the “single-photon” schemes usually employ several photons).

In the quantum cryptography scheme, invented by Charles Bennet and Gilles
Brossard6; (see Sect. 9.11), the encrypted data is transmitted via an open (public)
channel. But the data is made unintelligible by a secret key, a one-time-pad. And it
is the one-time pad key, a sequence of random bits, that is transmitted via a secure,
unbreakable, quantum channel.

9.10 One-Time Pads

One-time pads are considered the only really secure method of encryption because
the key bits are used only a single time and then never used again so that no statis-
tical information can be exploited. (The clever use of statistical dependencies is of
course the root of most decrypting schemes.—C.E. Shannon derived a mathemati-
cal requirement for a key to be secure involving its entropy and the entropy of the
message to be encrypted.)

In the world’s navies, secret keys are often printed with water-soluble ink on
blotting paper. But sometimes the ship doesn’t sink and the key is recovered—as in

5 T. Jennewein et al: Quantum Cryptography with Entangled Photon Phys Rev. Lett. 84, 4729–4732
(15 May 2000) See also Bouwmeester, Ekert, Zeilinger (Eds): The Physics of Quantum Information
(Springer, 2000).
6 See C.H Bennet and G. Brossard, in Proc. IEEE Int. Conference on Computers, Bangalore (1984).
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the case of the German submarine U 505 that was “sunk” off West Africa on June
4th, 1944, by the U.S. Navy and then dragged to Bermuda across the Atlantic below
the water’s surface (to hide the fact that the key was captured). Three weeks later
the captured code books were at Bletchley Park, the British deciphering center (with
Alan Turing in residence).7

An ingenious variant of the one-time pad was used by the famous Soviet spy
Richard Sorge. Sorge (who, on KGB orders, joined the Nazi party as a camouflage)
memorized which page of the German Statistisches Jahrbuch for 1937 (publicly
available at German embassies around the world) he had to consult on any partic-
ular day to extract the key. He was able to tell Stalin that the Japanese would “go
south” and not attack the Soviet Union, which allowed the Russians to transfer their
crack Siberian divisions to Moscow in November 1941—with the well-known re-
sult: Hitler’s first major defeat.8

9.11 The Bennet-Brossard Key Distribution Scheme (BB84)

The seed idea for the BB84 scheme was the (totally impractical) proposal for “quan-
tum money” by Stephen Wiesner in which each dollar bill, in addition to its serial
number, carries 20 different polarized photons known only to the issuing bank. Be-
cause of the rules of quantum mechanics, such a bill could never be copied because
the secret polarizations where (randomly) choses from two possible “channels”: ei-
ther horizontal/vertical or ±45◦. Here a “1” might be encoded by a vertical or a
+45◦ polarization. A “0” would be encoded by a horizontal or −45◦ polarization.

If the potential money faker measured, for example, a ±45◦ photon with a hori-
zontal/vertical photon counter, he would get a random result—without knowing that
it was random! The bank, on the other hand, knowing all 20 polarizations, would, of
course, have no problem reading the secret code and verifying the validity by com-
paring it to the serial number of the bill. The only problem with this lovely, totally
secure, scheme: how do you store 20 photons for any length of time in a paper bill?

While the idea of using two different polarization channels was impractical for
the creation of quantum money, it was resurrected for a quantum-mechanical secret-
key distribution scheme called BB84. Here Alice, who wants to send secret mes-
sages to Bob (in the presence of an eavesdropper Eve) first constructs a one-time
key pad shared with Bob. For this purpose she generates a sequence of random 1s

7 U 505 is now at the Museum of Science and Industry in Chicago. Earlier submarines whose
codebooks (and equipment) were captured include U 110 (May 1941) and U 559 (October 1942).
8 Sorge was made a posthumous Hero of the Soviet Union under Khrushchev and a street in East
Berlin was named after him. The German Democratic Republic also issued a postage stamp with a
portrait of Sorge—but not until after Stalin’s death, who loathed Sorge—a “thorn in his side”—for
being privy to his greatest blunder: ignoring the massive warnings of the imminent Nazi attack in
June 1941.
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and 0s9. Alice also generates a sequence of polarization channels chosen randomly
from horizontal/vertical and ±45◦.

Next she transmits to Bob the random bits, each one over one of the randomly
chosen polarization channels. Bob detects the photons he receives with randomly
chosen polarization channels, which of course agrees only 50% of the time with the
channel used by Alice. In a subsequent public communication Alice tells Bob which
channels she has used and Bob discards all results measured by his using the wrong
channel. Alice can do this publicly because she only communicates the channels
and not the actual bits she transmitted. So evil Eve is none the wiser.

Quantum mechanics also guarantees that any eavesdropping can be easily de-
tected. As a consequence of Heisenberg’s indeterminacy principle, Eve’s observing
the photon stream from Alice to Bob will necessarily change some of the photon
polarization states. To know that this is happening, Alice and Bob only have to
compare some, say 50, bits and, if they all agree, they can safely assume that their
photon link was undisturbed. If they do this publicly, they cannot of course use the
check bits for encrypting.

One of the remaining principal difficulties is the inability of the polarized photon
channel to work over large distances in the atmosphere, (which is apt to change
polarizations) thereby precluding—for the time being—worldwide key distribution
via satellites. However, optical glass fibers are sufficiently stable and such systems
have in fact been successfully implemented.

Another open—political—problem is whether states should allow the free use of
quantum cryptography because it would allow criminals unfettered communication.

9 based on some physical source of randomness, such as a radioactive decay. If she were to use an
algorithmic (pseudo) random number generated instead, she would of course, according to John
von Neumann, live in a state of sin—there is no way to generate truly random numbers on a
computer.
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Chapter 10
Euler Trap Doors and Public-Key Encryption

Here we describe a public-key digital encryption scheme that does not require secret-
key distribution – one of the Achilles’ heels of secret-key cryptographic systems be-
cause once the secret encrypting key becomes known, transmissions are no longer
secret. Figure 10.1 illustrates the situation for a generic encryption/decryption sys-
tem. Both transmitter and receiver need to be in possession of the same key, a long
string of “random” binary digits. At the transmitter, on the left, these bits (0 or 1)
are added modulo 2 to the message bits to form the encrypted message. A “bad guy”
tapping into the output cannot decrypt the transmitted cryptogram unless he knows
the key. In fact, he does not even know whether there is traffic on the tapped line:
even if there is no traffic (a “message” consisting only of 0’s) the line still carries
random 0’s and 1’s. (This disguise of traffic volume is itself an important asset of the
illustrated encryption method – many impending enemy actions have been betrayed
simply by a rise in traffic.)

The problem implicit in the illustrated method is of course the secure trans-
portation or transmission of the key between sender and receiver. Many ingenious
schemes have been invented to solve the key problem. In addition the keys have to
be protected from enemy ogling. To forestall illicit snooping, the navies of the world
print sensitive keys on water-soluble paper. In other words, the key will dissolve into
thin water when the ship sinks. A great idea – but not all vessels will sink when at-
tacked by the enemy. Figure 10.2 shows a case in point: His Majesty’s Ship, the
German light cruiser Magdeburg, run aground off the Baltic Coast in August 1914
while trying to outmaneuver a Russian man-of-war. The poor Magdeburg refused to
sink and the Russians got hold of the undissolved key book of the imperial German
Navy (see Fig. 10.3). After examining it for several weeks, they shipped it to the
British Admiralty (First Lord none other than Winston Churchill) who could make
excellent use of it.

This kind of mishap is completely avoided if there is no secret key to be kept
secret. In fact, in public-key encryption, every potential recipient of secret messages
publishes his encrypting key (hence the name public key). But knowledge of the
encrypting key is of no practical help in decryption. The public-key is the key to
a “trap door” through which messages can vanish, not to be recovered – except
through a different route to which only the legitimate receiver holds the required
key, the decrypting key. (Trap door means easily in, but out only with the proper
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Fig. 10.1 Encrypting a binary message by adding modulo 2 bits from a key. The identical key must
be available at the receiver on the right

tools.) It is as if everyone had a (chained!) box in front of his house into which secret
messages could be stuffed and to which only the owner had the proper opening key.

The required trap-door behaviour is realized for digital messages (represented by
long strings of digits) by the fact that it is easy to multiply two large numbers, but
impossible to factor sufficiently large numbers in a reasonable amount of time.

The public-key cryptographic systems described here are based on modular arith-
metic, requiring knowledge of the Euler φ function of the modulus n to calculate
inverses, i.e., to decrypt. And of course, to determine φ(n), we have to know the
factors of n.

Fig. 10.2 The German cruiser Magdeburg run aground off the Baltic coast in August 1914
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Fig. 10.3 The key book of the
German Navy captured by the
Russians

Some exceedingly interesting interrelations between cryptography and error-
correcting codes (Sect. 28.2) are discussed by Sloane, and the reader seeking deeper
insights into these seemingly conflicting goals is referred to [10.1].

10.1 A Numerical Trap Door

An important practical application of Euler’s theorem today is public-key encryp-
tion [10.2], and specifically the construction of trap-door functions for such secret
activities [10.3].

What is a trap-door function? It is, as the name implies, a (mathematical) function
that is easy to calculate in one direction but very hard to calculate in the opposite
direction. For example, it takes a modern computer only microseconds to multiply
two 500-digit numbers. By contrast, to take a 1000-digit number having two 500-
digit factors and decompose it into its factors can take ages, even on the very fastest
computers available and using the most efficient factoring algorithms known today.

Although no completely satisfactory theoretical definition of trap-door functions
has been given, or a proof that they exist, reasonable candidates for such functions
have been proposed, for example the Euler trap-door function to be discussed here.
These are not proved secure, but are considered empirically (at present) secure trap
doors.
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10.2 Digital Encryption

Before encryption, a written message is usually first converted into a positive integer
1 < M < r, i.e., a string of (decimal or binary) digits. In addition, we will assume
that M and r are coprime.

The encryption we want to discuss here consists in raising M to a certain power
s and keeping only the remainder modulo r. Thus, the encrypted message E is rep-
resented by the number

E ≡ Ms (modr), 1 < E < r. (10.1)

Now, if we had chosen a prime for our modulus r, decrypting E, i.e., recovering M
from E, would be easy. First we find the inverse, t, of the encrypting exponent s
modulo r−1 by solving the congruence

st ≡ 1 (modr−1). (10.2)

For this congruence to have a solution, s and r−1 must be coprime: (s,r−1) = 1.
One method of obtaining t from s is by an application of Euler’s theorem:

t ≡ sφ(r−1)−1 (modr−1), (10.3)

because for such a t, according to Euler,

st ≡ sφ(r−1) ≡ 1 (modr−1), (10.4)

provided that (s,r−1) = 1.
Now, if we raise the encrypted message E to the power t and reduce the result

modulo r, we obtain the original message M back. First,

Et ≡ Mst (modr), (10.5)

and since st ≡ 1 (modr−1) we can write

st = (r−1)k +1 (for some integer k). (10.6)

Thus,

Et ≡ M(r−1)k+1 (modr). (10.7)

Now Euler intervenes again (or rather Fermat, as long as r is prime), telling us that

Mr−1 ≡ 1 (modr) (10.8)

if (M,r) = 1, which we initially assumed.
With this intermediate result, we obtain

Et ≡ 1kM1 = M (modr), (10.9)
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i.e., we have recovered the original message M from the encrypted message E,
which is what we wanted to show.

Example: s = 3, r = 17; φ(r−1) = 8.

With this choice of s and r, for which (s,φ(r)) = 1 as required, the decrypting
exponent t becomes

t ≡ sφ(r−1)−1 = 37 ≡ 11 (mod16).

Check: st = 3 ·11 = 33 ≡ 1 (mod16). Check!
Now take a message, say M = 4. The encrypted message becomes

E ≡ Ms = 43 = 64 ≡ 13 (mod17).

The decrypted message is obtained by raising E = 13 to the decrypting exponent
t = 11:

Et = 1311 = (135)2 ·13 = (371293)2 ·13 ≡ 132 ·13

≡ 4 = M (mod17). Check!

We have now set the stage for our central theme.

10.3 Public-Key Encryption

We shall try to understand one of the greatest advances in the safeguarding and
secure transmission of secrets: public-key encryption. This story has both “logistic”
and mathematical aspects. I shall attempt to illuminate both.

One form of public-key encryption makes use of a very large composite number,
the encrypting modulus r. Specifically, we shall assume that r has exactly two prime
factors, p and q, both of which are also very large

r = pq. (10.10)

More specifically, we may think of p and q as being each about 100 decimals long,
so that r has roughly 200 decimal places.

In addition, the method makes use of an encrypting exponent s, which is chosen
so that s and φ(r) are coprime:

(s,φ(r)) = 1. (10.11)

Everyone who ever wishes to receive a secret message selects such a triplet of num-
bers p, q and s and publishes s and the product r of p and q. The publishing may
take the form of a kind of “telephone” book, where behind the name and address
of each prospective secret-message recipient R, two numbers appear, an encrypting
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exponent s and an encrypting modulus r – selected in the manner just described.
Thus, anyone – say a person named S – wishing to send a secret message raises its
digital form M to the power s and reduces it modulo r.

Now notice something very important here: a key never had to be sent from R
to S; R simply published it in a “telephone” book for everyone to see and use if he
or she so desires. Thus, the grave problems of secure key transmission, which fill
volumes in the literature of espionage, have been circumvented.

But cannot everyone now decrypt the encrypted message? The answer is no, if
the encryption has made use of a trap-door (or almost one-way) function.

But what if the encryption was by a true one-way process like, let us say, the
randomizing of air molecules in a bicycle tire: if the tire was initially half filled
with air – also known among cyclists as (half) flat – and then pumped up full, all
the molecules just pumped in could never be extracted again while leaving all the
original ones in the tire. Here we have an everyday example of a true one-way
function. In public-key encryption the function is not totally one-way – or the sender
might as well burn the message and scatter it to the winds. No, it is only a trap
door, i.e., a door that can still be opened from one side – the side of the legitimate
recipient. Here is how.

As in the previous example, the recipient needs a decrypting exponent t, given
again by the congruence

ts ≡ 1 (modφ(r)). (10.12)

Now, if the factors of r are known, then φ(r) is also known. For r = pq, we have

φ(r) = (p−1)(q−1), (10.13)

and t can be calculated from the following congruence:

t ≡ sφ(φ(r))−1 (modφ(r)), (10.14)

because then

ts ≡ sφ(φ(r)) (modφ(r)), (10.15)

which, according to Euler, is congruent to 1 modulo φ(r), provided (s,φ(r)) = 1, as
initially required of s.

Having demonstrated that t is the proper (and, incidentally, essentially unique)
decrypting exponent, decryption now proceeds as before. The received encrypted
message is

E ≡ Ms (modr), (10.16)

and decrypting with t yields

Et ≡ Mst = Mφ(r)k+1 (modr). (10.17)
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Now, with Euler,

Mφ(r) ≡ 1 (modr). (10.18)

Thus,

Et ≡ M (modr), (10.19)

as desired. Note that for the encryption to work, M has to be coprime to r, but the
chances of this not being the case are of order 10−100.

The main point here is that the decrypting exponent t cannot be derived from
the publicly known s and r, but only from s and the factors of r, namely p and q.
Thus, as long as the receiver keeps knowledge of p and q to himself and publishes
only their product r, he is safe, i.e., the messages he receives cannot be read by
unauthorized third parties – provided that r cannot be factored.

At present, a 200-digit number that is the product of two 100-digit numbers can-
not be factored in any reasonable time – say a couple of minutes. In fact, not so long
ago, the most efficient factoring algorithms on a very fast computer were estimated
to take 40 trillion years, or 2000 times the present age of the universe. That sounds
very safe indeed. But algorithms get more efficient by the month and computers be-
come faster and faster every year, and there is no guarantee that one day a so-called
“polynomial-time” algorithm1 will not emerge that will allow fast factoring of even
1000-digit numbers [10.4]. Few mathematicians believe that a true polynomial-time
algorithm is just around the corner, but there also seems to be no prospect of proving
that this will not occur [10.5].

10.4 A Simple Example

Next we will illustrate public-key encryption with a simple example: s = 7, r = 187.
Say the message is M = 3; then the encrypted message is

E ≡ M7 = 37 = 2187 ≡ 130 (mod187).

Now for the receiver to decrypt E, he needs to know the decrypting exponent t,
which he can obtain from the factors of r = 187 = 11 ·17, which only he knows (or
that only he would know if r were a much larger number).

With r = 11 ·17, he has φ(r) = 10 ·16 = 160 and φ(φ(r)) = 64, and

t ≡ sφ(φ(r))−1 = 763 = (79)7 = (40353607)7

≡ 77 = 823543 ≡ 23 (mod160).

1 A polynomial-time algorithm is one in which computing time increases like some power or
polynomial of the “size” of the problem. Thus, if the polynomial were of the third degree, for
example, every doubling of size would increase computation time eightfold.
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Knowing that t = 23, the receiver can now proceed with this decryption:

Et = 13023 ≡ 3 = M (mod187). Check!

10.5 Repeated Encryption

Here are two more examples which illustrate an important point:

M1 = 123, E1 = 183, Et
1 ≡ 123 (mod187). Check!

M2 = E1 = 183, E2 = 72, Et
2 ≡ 183 (mod187). Check!

Thus, for the above choice of parameters the encrypting operation is not its own
inverse. Symbolically:

E{E{M}} �= M, or (10.20)

E−1{ } �= E{ }. (10.21)

This is important, because otherwise an eavesdropper who tried, perhaps acciden-
tally, to double-encrypt with the publicly known key would recover the message.

Because of the uniqueness of the decrypting exponent t, a necessary and suffi-
cient condition for E−1 �= E is that the exponents for encryption and decryption be
different: s �= t.

If we continue encrypting M1 = 123, the third round will look like this:

M3 = E2 = 72, E3 = 30, Et
3 = 72. Check!

Thus, for this choice of parameters,

E{E{E{M}}} �= M, (10.22)

or E3 �= 1, for short. Of course, for some number n of repetitions of the encryption
process the original message must reappear. Symbolically: En = 1. The smallest n
for which this is true is called the order of E. For practical security considerations
the order of E should be fairly high. However, it is easy to see that it cannot be
larger than φ(r), because there are only φ(r) different possible messages (remem-
ber: (M,r) = 1).

Whether the maximal order φ(r) can in fact be obtained is another question for
which we require the concept of a “primitive element”, to be introduced in Chap. 14.
In our example, starting with M = 123, the fourth round of encrypting yields

M4 = E3 = 30, E4 = 123, Et
4 = 30. Check!
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So after 4 successive encryptions, we get the original message back, i.e., the order
of our encrypting exponent is 4. And, indeed 74 = 2401 ≡ 1 (modφ(r) = 160).

From a practical point of view, such a small order would be completely unaccept-
able, but then so would our choice of a three-digit integer as encryption modulus.

The encrypting exponent s = 3 and its inverse modulo 160, s−1 = 107, have
order 8. Other triplets of exponent, inverse and order are: (9,89,4), (11,131,8),
(13,37,8), (17,113,4), (19,59,8), (21,61,8), (23,7,4), (27,83,8), (29,149,8),
(31,31,1). As we shall see in Chap. 14, all orders must be some divisor of φ(r) =
160. In the above examples we found the divisors 1, 4 and 8.

Large orders for repeated encryption can be achieved by a judicious choice of
prime numbers, p and q, for the encryption modulus n = pq. Specifically, the prime
numbers p and q should be of the following form

p = 2p1 +1 with p1 = 2p2 +1,

and (10.23)

q = 2q1 +1 with q1 = 2q2 +1,

where, p1, p2, q1 and q2 are also prime numbers.
With such p and q, φ(n) = 4p1q1 and φ(φ(n)), the number of primitive roots (see

Sect. 14.1), equals 8p2q2, assuring large orders for almost all encryption exponents.
In fact, most exponents will have the maximal order of φ(φ(n))/4 = 2p2q2. With
p2 and q2 of the order of 10100 (i.e. n is of the order 10200), the maximal order
would thus be about 2 · 10200 and the probability of an exponent having an order
smaller than p2q2 would be roughly 1/p2 +1/q2 ≈ 2 ·10−100. In other words, “bad”
exponents would be highly unlikely [10.6].

Luckily, there is no dearth of prime numbers of the desirable forms (10.23). The
probability of an integer near p2 being prime is approximately 1/ ln p2, and the
probabilities that in addition both p1 = 2p2 +1 and p = 2p1 +1 are prime are about
2/ ln2p1 and 2/ ln4p1, respectively. (The two factors of 2 in the numerators stem
from the fact that p1 and p2 are already by definition odd.) Assuming independence,
the total probability of finding a “special” prime p2 such that p1 and p are also prime
is roughly 4/(ln2p1)3. Indeed the range 100 000 to 110 000 contains 861 primes of
which 17 are of the desired special form. The theoretical expectations are 865 primes
and roughly 22 special primes.

10.6 Summary and Encryption Requirements

For public-key encryption according to the method just outlined, proceed as follows:

(1) Pick two large primes p and q and publish their product the modulus
r = pq. This might make factoring difficult and there will be few “forbidden”
messages for which (M,r) �= 1.
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(2) Select an encrypting exponent s which is coprime to φ(r) = (p− 1)(q− 1):
(s,φ(r)) = 1. Make sure that the order of s is large, to prevent accidental
decryption by repeated encryption.

(3) Calculate the decrypting exponent t and do not publish it.

Here the following problem occurs: To determine t from s and p and q we have
to calculate

t ≡ sφ(φ(r))−1 (modφ(r)),

where φ(r) = (p− 1)(q− 1). To calculate φ(φ(r)), we have to factor p− 1 and
q−1. Now since p and q are large numbers, so are p−1 and q−1 and the required
factoring might be difficult or impossible.2

This problem can be avoided by constructing p−1 and q−1 from known primes
and then testing the resulting p and q for primality. For example, we might try
p− 1 = 2 · 3 · 11 = 66, and 67 is indeed prime. The subject of primality testing,
which becomes very important here, will be discussed in Chap. 12.

On the other hand, factoring p− 1 and q− 1, even though they may be 100-
digit numbers, is in general not as difficult as factoring a 200-digit number, whose
smallest prime factor has 100 digits. We will also consider the factoring problem
in greater detail in Chap. 12 when we discuss prime divisor functions. We will see
there that the median value p0.5 of the prime factors of n is given approximately by

p0.5 ≈ e(lnn/2.81)0.5
.

Thus, for n≈ 10100, half the prime factors can be expected to be smaller than roughly
9000.

The application of cryptography to computer data security is extensively dis-
cussed in [10.8]. Other up-to-date information in this fast-moving field can be
found in a new journal, Cryptologica, published by Albion College (Albion, MI
23 ·3 ·7 ·293) and in the proceedings of the recurring international symposia on in-
formation theory sponsored by the Institute of Electrical and Electronics Engineers
(New York, N.Y. 10017).

2 The is an implied logical contradiction here: if we consider subtraction of 1 not to change the
attribute “large”, then by induction we can show that 0 is a large number. However, it is clear
here that we only mean that if 1050 is large, then so is 1050 − 1. A similar quandary, related to
the expression “close enough”, is illustrated by the following situation: Suppose all the young
gentlemen in a class were to line up on one side of the room, and all the young ladies on the
other. At a given signal, the two lines move toward each other, halving the distance between them.
At a second signal, they move forward again, halving the remaining distance; and so on at each
succeeding signal. Theoretically the boys would never reach the girls; but actually, after a relatively
small number of moves, they would be close enough for all practical purposes [10.7].



Chapter 11
The Divisor Functions

Some numbers have few divisors, such as primes, and some numbers have many
divisors, such as powers of 2. The number of divisors, although it fluctuates wildly
from one integer to the next, obeys some interesting rules, and averages are quite
predictable, as we shall see below.

11.1 The Number of Divisors

By definition, φ(n) is the number of integers in the range from 1 to n which have
1 as greatest common divisor (GCD) with n (see Chap. 8). To codify this statement
we introduce the following notation, making use of the number sign #:

φ(n) := #{m : 1 ≤ m < n, (m,n) = 1}. (11.1)

This notation is, of course, equivalent to the more frequently encountered nota-
tion using the sum sign:

φ(n) = ∑
(m,n)=1,m<n

1.

Let (cf. Chap. 2)

n = ∏
pi|n

pei
i . (11.2)

Then all divisors of n are of the form

dk = ∏
pi|n

p fi
i with 0 ≤ fi ≤ ei. (11.3)

Here each exponent fi can take on ei +1 different values. Thus the number of distinct
divisors of n is given by the divisor function defined as

d(n) := #{dk : dk|n},
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and equal to

d(n) = ∏
i

(ei +1). (11.4)

Example: n = 12 = 22 ·31, d(12) = 3 ·2 = 6.

Check: dk = 1, 2, 3, 4, 6, 12, i. e., there are indeed 6 distinct divisors of 12. Check!
In some applications (11.3) is used more than once. Consider a small (elite) uni-

versity with N = 3174 (or was it only 1734) students, subdivided into groups of
equal size, each group being cared for by one of x tutors. The tutors in turn are su-
pervised by y professors, each professor looking after the same number of tutors.
It is clear that y|x|N. Repeated applications of (11.4) show that there are a total of
54 solutions for x and y. Even requiring that there will be more than one professor
and more tutors than professors, leaves 31 possibilities. The university president,
unhappy with this extravagant freedom of choice, fixed the number z of students
in each tutor’s group in such a (unique) way that the solution became unique. Not
surprisingly, the president, a former mathematician, called this the perfect solution.
(But what is his unique “perfect” z?)

Now take some m, 1 ≤ m ≤ n. Its GCD with n must be one of the divisors of n:

(m,n) = dk (11.5)

for some k. How many numbers are there that share the same GCD? We shall denote
the size of this family by Nk:

Nk := #{m : 1 ≤ m ≤ n, (m,n) = dk}. (11.6)

Of course, by definition of Euler’s function, for dk = 1, Nk = φ(n). We can rewrite
the above definition of Nk as follows:

Nk = #

{

m : 1 ≤ m ≤ n,

(

m
dk

,
n
dk

)

= 1

}

, (11.7)

and now we see that

Nk = φ
(

n
dk

)

. (11.8)

Example: for n = 12 and dk = 4, Nk = φ(3) = 2, and there are indeed precisely 2
integers in the range 1 to 12 that share the GCD 2 with 12, namely 2 and 10. Check!

Now each m, 1 ≤ m ≤ n, must have one of the d(n) distinct divisors of n as the
GCD with n. Hence,

d(n)

∑
k=1

φ
(

n
dk

)

= n. (11.9)

Reverting to our old notation of summing over all divisors, we may write instead
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∑
d|n

φ
(n

d

)

= ∑
d|n

φ(d) = n, (11.10)

an interesting and important result.
The sum over all divisors of the argument of a number-theoretic function is called

its summatory function. Thus, the summatory function of Euler’s φ function is its
argument!

Example: n = 18:

Integers m for which (m,n) = d Number of such integers

Divisors d = 1 1 5 7 11 13 17 6 = φ (18)
2 2 4 8 10 14 16 6 = φ (18/2)
3 3 15 2 = φ (18/3)
6 6 12 2 = φ (18/6)
9 9 1 = φ (18/9)

18 18 1 = φ (18/18)

The divisor function d(n) is multiplicative, i. e., for coprime n and m:

d(nm) = d(n) ·d(m) for (n,m) = 1, (11.11)

which follows immediately from the formula (11.2) for d(n) in terms of prime ex-
ponents.

For the special case that n is the product of k distinct primes, none of which is
repeated,

d(n = p1 p2 . . . pk) = 2k. (11.12)

Such n are also called squarefree, for obvious reasons. For example, 18 is not square-
free, but 30 is, being the product of 3 distinct primes. Thus, 30 has 23 = 8 divisors.

As we saw in Sect. 4.4, the probability of a large integer being squarefree is
about 6/π2 ≈ 0.61. Thus, a (narrow) majority of integers are squarefree. In fact, of
the 100 integers from 2 to 101, exactly 61 are squarefree. And even among the first
20 integers above 1, the proportion (0.65) is already very close to the asymptotic
value. Thus, in this particular area of number theory, 20 is already a large number.
[But the reader should be reminded that in other areas (cf. Chap. 4) even 1010000,
for example, is not so terribly large.]

Using the notation for the sum over all divisors, we could have introduced d(n)
in the following way:

d(n) := ∑
d|n

1. (11.13)

Thus, d(n) is the summary function of n0.
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11.2 The Average of the Divisor Function

Using the Gauss bracket, there is still another way of expressing d(n) which is
especially suited for estimating an asymptotic average:

d(n) =
n

∑
k=1

(

⌊n
k

⌋

−
⌊n−1

k

⌋

)

. (11.14)

Here, if n is divisible by k, then the difference in the parentheses will be 1; otherwise
it will be zero. The important point in the above expression is that it is extended over
all k, not just the divisors of n, as in the definition of d(n).

Now if we sum, we obtain

N

∑
n=1

d(n) =
N

∑
k=1

⌊N
k

⌋

≈ N
N

∑
k=1

1
k
. (11.15)

Of course, the estimate on the right is an upper limit, because by dropping the Gauss
bracket we have increased (by less than 1) all summands for which N is not divisible
by k. However, for large N, this increase should be relatively small. Hence we expect
the average value to go with the sum of the reciprocal integers, i. e., the logarithm

1
N

N

∑
n=1

d(n) ≈ lnN. (11.16)

The exact results is [10.1]

1
N

N

∑
n=1

d(n) = lnN +2γ −1+0

(

1√
N

)

. (11.17)

Here γ is Euler’s constant:

γ := lim
n→∞

(

1+
1
2

+
1
3

+ . . .+
1
n
− lnn

)

= 0.57721 . . . , (11.18)

which makes the additive constant in (11.17) about 0.15442. The notation 0(1/
√

N)
means that the absolute error in (11.17) is smaller than c/

√
N, where c is some

constant.

11.3 The Geometric Mean of the Divisors

There is also a nice formula for the product of all divisors of a given integer n. With

n = ∏
pi|n

pei
i , (11.19)
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we have

∏
d|n

d = n
1
2 d(n). (11.20)

Example: n = 12. The product of divisors equals 1 ·2 ·3 ·4 ·6 ·12 = 1728. The num-
ber of divisors d(12) = 6 and 1728 = 123. Check!

To obtain the geometric mean of the divisors of n, we have to take the d(n)-th
root of their product, giving

√
n according to (11.20).

A curious result? Not really! Divisors come in pairs: if d divides n, so does
its distinct “mate” n/d (exception: for n = d2, the mate is not distinct). And the
geometric mean of each of these pairs equals

√
n, and so does the overall geometric

mean.

11.4 The Summatory Function of the Divisor Function

The summary function

σ(n) := ∑
d|n

d, (11.21)

like all summatory functions of multiplicative functions, is multiplicative. Thus, it
suffices to consider the problem first only for n that are powers of a single prime and
then to multiply the individual results. This yields with (11.3):

σ(n) = ∏
pi|n

p1+ei
i −1
pi −1

. (11.22)

The asymptotic behaviour of σ(n) is given by [11.1]:

1
N2

N

∑
n=1

σ(n) =
π2

12
+0

(

lnN
N

)

, (11.23)

a result that can be understood by dropping the −1 in the denominator in each term
of the product (11.23) and converting it into a product over all primes with the proper
probabilistic factors, and proceeding as in the case of φ(n)/n (see Sect. 11.6).

The above expression converges quite rapidly. For example, for N = 5, the result
is 0.84 compared to πn/12 ≈ 0.82.

11.5 The Generalized Divisor Functions

Generalized divisor functions are defined as follows:

σk(n) := ∑
d|n

dk. (11.24)
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Of course, σo(n) = d(n) and σ1(n) = σ(n). These generalized divisor functions
obey a simple symmetry with respect to their index:

σk(n) = ∑
d|n

dk = ∑
d|n

(

d
n

)−k

= nkσ−k(n). (11.25)

Example: n = 6, k = 3. Divisors d = 1, 2, 3, 6.

1+8+27+216 = 216

(

1+
1
8

+
1
27

+
1

216

)

.

The above symmetry relation, for k = 1, leads to the following relation between
divisor means of n: Arithmetic mean d times harmonic mean d̂ equals geometric
mean d̃ squared equals n:

dd̂ = d̃2 = n. (11.26)

Example: n = 6; d = 1, 2, 3, 6. d = 3, d̂ = 2, d̃ =
√

6, 3 ·2 = (
√

6)2 = 6. Check!

11.6 The Average Value of Euler’s Function

Euler’s φ function is a pretty “wild” function. For example,

φ(29) = 28, φ(30) = 8, φ(31) = 30, φ(32) = 16.

If we are interested in the asymptotic behaviour of φ(n), we had better consider
some average value. The following probabilistic argument will give such an average
automatically, because our probabilities ignore fine-grain fluctuations such as those
in the above numerical example.

Consider first
φ(n)

n
= ∏

pi|n

(

1− 1
pi

)

. (11.27)

Using our by now customary (but of course unproved) probabilistic argument, we
convert the above product over primes that divide n into a product over all primes.
The probability that “any old” prime will divide n equals 1/pi, and the probability
that it will not equals 1−1/pi. In that case, the prime pi “contributes” the factor 1
to the product. Thus, we may write

∏
pi|n

(

1− 1
pi

)

≈ ∏
pi

[(

1− 1
pi

)

1
pi

+1

(

1− 1
pi

)]

(11.28)

= ∏
pi

(

1− 1

p2
i

)

,
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an infinite product that we have encountered before and which we calculated by
converting the reciprocal of each factor into an infinite geometric series and then
multiplying everything out. This produces every squared integer exactly once. Thus,
we find

average of
φ(n)

n
≈
(

∞

∑
n=1

1
n2

)−1

=
6

π2 . (11.29)

The result corresponds to the asymptotic probability that two arbitrarily selected
integers are coprime – as it should, if we remember the definition of φ(n). In fact,
the number of white dots in Fig. 4.8 in a vertical line up to the 45◦ diagonal equals
Euler’s function for that coordinate.

The formal results for the asymptotic behaviour of φ(n) are as follows [11.1]:

1
n

n

∑
k=1

φ(k)
k

=
6

π2 +0

(

lnn
n

)

, and (11.30)

1
n2

n

∑
k=1

φ(k) =
3

π2 +0

(

lnn
n2

)

. (11.31)

The result (11.30) corresponds of course to our probabilistic estimate, and the
formula (11.31) is likewise unsurprising because the average factor inside the sum
in (11.31) compared to the sum (11.30) is n/2.

Example: n = 4

1
n

n

∑
k=1

φ(k)
k

=
1
4

(

1+
1
2

+
2
3

+
1
2

)

= 0.667,

as compared to the asymptotic value 0.608. And

1
n2

n

∑
k=1

φ(k) =
1

16
(1+1+2+2) = 0.375,

which also compares well with the asymptotic value (0.304).
What are the probabilities that three integers will not have a common divisor?

And what is the probability that each of the three pairs that can be formed with
three integers will be made up of coprime integers? The reader can find the (simple)
answers or look them up in Sect. 4.4.



Chapter 12
The Prime Divisor Functions

Here we consider only prime divisors of n and ask, for given order of magnitude
of n, “how many prime divisors are there typically?” and “how many different ones
are there?” Some of the answers will be rather counterintuitive. Thus, a 50-digit
number (1021 times the age of our universe measured in picoseconds) has only about
5 different prime factors on average and – even more surprisingly – 50-digit numbers
have typically fewer than 6 prime factors in all, even counting repeated occurrences
of the same prime factor as separate factors.

We will also learn something about the distribution of the number of prime fac-
tors and its implications for the important factoring problem. Thus, we discover that
even for numbers as large as 1050, the two smallest primes, 2 and 3, account for
about 25% of all prime factors!

12.1 The Number of Different Prime Divisors

In connection with encrypting messages by means of Euler’s theorem, the number
of distinct prime divisors of a given integer n, ω(n), is of prime importance. Its defi-
nition is similar to that of the divisor function d(n), except that the sum is extended –
as the name implies – only over the prime divisors of n:

ω(n) := ∑
pi|n

1. (12.1)

It is easily seen that ω(n) is additive, i. e., for (n,m) = 1,

ω(nm) = ∑
pi|nm

1 = ∑
pi|n

1+ ∑
pi|m

1 = ω(n)+ω(m). (12.2)

Of particular interest to our encrypting desires will be the behaviour of ω(n) for
large n, i.e., its asymptotic behaviour. We shall try to get an idea of this behaviour
by means of our usual “dirty tricks”. First, we will convert the sum of those primes
that divide n into a sum over all primes up to n, using the “probability” factor 1/pi:

M. Schroeder, Number Theory in Science and Communication, 5th ed., 179
DOI 10.1007/978-3-540-85298-8 12, c© Springer-Verlag Berlin Heidelberg 2009
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ω(n) = ∑
pi|n

1 ≈ ∑
pi≤n

1
pi

. (12.3)

This, in turn, we will convert into a sum over all integers up to n, using the proba-
bility factor for primality 1/ lnx:

ω(n) ≈ ∑
x≤n

1
x lnx

,

which we will approximate by an integral:

ω(n) ≈
∫ n

2

dx
x lnx

= ln(lnn)+0.367 . . . . (12.4)

Of course ω(n) is a wildly fluctuating function and exact results [12.1] are available
only for asymptotic averages, just as in the case of φ(n) and d(n):

1
n

n

∑
k=1

ω(k) = ln(lnn)+0(1), (12.5)

where 0(1) is a fancy way of writing a bounded quantity.
To get a better grip on this constant, we calculate the sum over the reciprocal

primes in (12.3) out to some pm and convert only the remaining sum to a sum over
all integers using the probability factor lnx:

ω(n) ≈
m

∑
pi=2

1
pi

+
n

∑
x=pm+1

1
x lnx

. (12.6)

Approximating the second sum by an integral, we have

ω(n) ≈
pm

∑
pi=2

1
pi

+ ln lnn− ln ln pm. (12.7)

In other words, our estimate tells us that the difference between ω(n) and ln lnn,
i.e., the constant in (12.5), is given by

ω(n)− ln lnn ≈ lim
pm→∞

pm

∑
pi=2

1
pi

− ln ln pm. (12.8)

In the last century Kronecker, assuming that the limiting average of ω(n) existed,
obtained

ω(n) = ln(lnn)+b1, (12.9)
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with

b1 = γ +
∞

∑
pi=2

[

ln

(

1− 1
pi

)

+
1
pi

]

, (12.10)

where γ is again Euler’s constant.
To compare Kronecker’s constant b1 with ours, we make use of the following

asymptotic result (Merten’s theorem [12.1]):

lim
pm→∞

eγ ln pm

pm

∏
pi=2

(

1− 1
pi

)

= 1, (12.11)

which yields for Kronecker’s constant

b1 = lim
pm→∞

pm

∑
pi=2

1
pi

− ln(ln pm), (12.12)

which is identical with our “crude” estimate (12.8)!
Equation (12.12) is not very suitable to obtain a numerical value for b1, because

it converges rather slowly. (In fact, even for pm as large as 104759, the relative error
is still larger than 10−3.) A faster converging series is obtained by expanding the
logarithm in (12.10), which yields

γ −b1 =
∞

∑
pi=2

(

1

2p2
i

+
1

3p3
i

+ . . .

)

. (12.13)

Now, if we remember the Riemann zetafunction (Chap. 4), we have

ζ (k) =
∞

∑
n=1

1
nk =

∞

∏
pi=2

(

1− 1

pk
i

)−1

, (12.14)

or

lnζ (k) = −
∞

∑
pi=2

ln

(

1− 1

pk
i

)

. (12.15)

Expanding the logarithm, we obtain

lnζ (k) =
∞

∑
pi=2

(

1

pk
i

+
1

2p2k
i

+ . . .

)

. (12.16)

Introducing this result into (12.13) yields

γ −b1 = 1
2 lnζ (2)+ 1

3 lnζ (3)+ 1
5 lnζ (5)− 1

6 lnζ (6)+ . . . . (12.17)
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This sum written in terms of the Möbius function μ(m) (Chap. 21) is:

γ −b1 = −
∞

∑
m=2

μ(m)
m

lnζ (m). (12.18)

This sum converges very quickly and, for just 7 terms yields a relative accuracy of
about 10−5. The result is

b1 = 0.2614 . . . . (12.19)

How do Milton Abramowitz and Irene Stegun feel about this? On page 862 of
their Handbook of Mathematical Functions [12.2] they list the prime factors of the
integers from 9000 to 9499 (see Fig. 12.1). I have counted a total of 1260 distinct
prime factors for these 500 integers. Thus, ω = 2.52, which should be compared to
our ln(ln9250)+0.26 = 2.47. Close enough? Certainly, because as we said before,
ω(n) fluctuates and an average, even over 500 consecutive integers, is not com-
pletely smooth. (More about the fluctuations of ω(n) in a moment.)

12.2 The Distribution of ωωω(n)

The probability that the prime factor pi does not occur in the prime factor decom-
position of n > pi is given by

1− 1
pi

.

The probability that it does occur (at least once) is therefore

1
pi

.

The mean occurrence is therefore

mi =
1
pi

, (12.20)

and its variance, according to the formula for the binomial distribution for two pos-
sible outcomes, equals

σ2
i =

1
pi

(

1− 1
pi

)

= mi −
1

p2
i

. (12.21)

Assuming divisibility by different primes to be independent, we get for the over-
all mean
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Fig. 12.1 The prime factors of n in the range 9000 ≤ n ≤ 9499. The number of distinct prime fac-
tors in this range is 1260; the corresponding theoretical expectation equals 1237±32. The number
of prime factors, including multiple occurrences, is 1650, compared to a theoretical expectation of
1632±31
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ω(n) ≈ ∑
pi<n

1
pi

≈ ln(lnn)+0.2614, (12.22)

as before [see (12.9) and (12.19)]. The overall variance becomes, with (12.21),

σ2
ω ≈ ω(n)−

∞

∑
pi=2

1

p2
i

, (12.23)

where we have extended the sum out to infinity because it converges quite rapidly.
The numerical value of the sum can be obtained most efficiently with the help of

Riemann’s zetafunction, expanded as in (12.16). This yields

∞

∑
pi=2

1

p2
i

= lnζ (2)− 1
2

lnζ (4)− . . .

=
∞

∑
m=1

μ(m)
m

lnζ (2m) ≈ 0.452248, (12.24)

where μ(m) is again the Möbius function (see Chap. 21).
Thus,

σ2
ω ≈ ω(n)−0.45 (12.25)

and, because σ2
ω ≈ ω , we expect ω to be approximately Poisson distributed [12.3].

Of course, each number has at least one prime factor (itself, if it is prime), so that
the Poisson distribution must be shifted by 1:

Prob{ω(n) = k} ≈ (ω −1)k−1

(k−1)!
e−ω+1, k = 1,2, . . . ,ω > 1, (12.26)

with ω from (12.22).
The mode (most probable value) of this distribution occurs for

ǩ = �ω�+1, (12.27)

where ǩ is read “kay check”. Although intended for large n, (12.27) seems to work
very well even for small n. Equation (12.27) predicts that the most probable number
ǩ of different prime factors of n is as follows:

ǩ = 1 for n < 9

ǩ = 2 for 9 ≤ n < 296

ǩ = 3 for 296 ≤ n < 5 ·106

ǩ = 4 for 5 ·106 ≤ n < 2 ·1018

ǩ = 5 for 2 ·1018 ≤ n < 4 ·1049

ǩ = 6 for 4 ·1049 ≤ n < 8 ·10134 etc.
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Thus, up to almost 10135 the most likely number of different prime factors is 6 or
less!

According to (12.26), the probability that n has exactly one prime factor, i.e., that
n is either a prime or a prime power, equals about 2/ lnn. This value is somewhat
larger than the one we would expect from the distribution of primes. But then, we
should not expect the Poisson distribution for ω(n) to be exact. For example, σ2

ω
should equal ω−1 for the shifted Poisson distribution and not ω−0.45 as in (12.23)
and (12.24).

12.3 The Number of Prime Divisors

Apart from the “little” ω(n) we need a “big” Ω(n), the number of prime divisors of
n, counted with multiplicity. For

n = ∏
pi|n

pei
i , (12.28)

we have the definition

Ω(n) := ∑
pi|n

ei. (12.29)

The divisor function Ω(n) is completely additive, i.e.,

Ω(mn) = Ω(m)+Ω(n), (12.30)

whether m and n are coprime or not.
To estimate an average value of Ω(n), we convert the sum appearing in its defi-

nition into a sum over all primes up to n:

Ω(n) ≈ ∑
pi≤n

ei
1

pei
i

(

1− 1
pi

)

, (12.31)

recognizing that the probability that pi occurs ei times equals (1−1/pi)/pei
i . Aver-

aging over these values of ei yields

Ω(n) ≈ ∑
pi≤n

1
pi −1

. (12.32)

Note the closeness of our estimates of Ω(n) and ω(n) according to (12.3)! The
difference (which some friends did not even think converged) is given by

Ω(n)−ω(n) ≈ ∑
pi≤n

1
pi(pi −1)

, (12.33)
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in agreement with a result by Kronecker. (This sum is upperbounded by the sum
over all integers out to infinity, which equals 1.)

Since the sum does not only converge, but converges quite rapidly, we will only
bother about its value taken out to infinity. First we write

∞

∑
pi=2

1
pi(pi −1)

=
∞

∑
pi=2

(

1

p2
i

+
1

p3
i

+
1

p4
i

+ . . .

)

(12.34)

and then introduce the zetafunction again, making use of (12.16). This yields

∞

∑
pi=2

1
pi(pi −1)

= lnζ (2)+ lnζ (3)

+
1
2

lnζ (4)+ lnζ (5)

+
1
6

lnζ (6)+ . . . ≈ 0.77317 or (12.35)

Ω(n) ≈ ω(n)+0.77317 ≈ ln(lnn)+1.0346. (12.36)

What do Abramowitz and Stegun have to say? In their table of prime fac-
tors for n in the range 9000 to 9499 [12.2, p. 862], I counted a total of 1650
prime factors, including multiplicity, yielding Ω = 3.30. Our theoretical value
ln(ln9250)+1.0346 ≈ 3.25, which is as similar as could be expected.

Incidentally, sums taken over all primes, with primes appearing in the denomina-
tor as in (12.13) and (12.34), need not always lead to irrational results. A noteworthy
counterexample (from an entire family of like-fashioned expressions) is

∞

∏
p=2

p2 +1
p2 −1

=
5
2
. (12.37)

This seems preposterous, but a quick numerical check indicates that the product
certainly could not deviate much from 5/2, and in fact, the infinite product does
equal 5/2. This is actually not too difficult to see, because

∏ p2 +1
p2 −1

= ∏ p4 −1
(p2 −1)2 = ∏

1− 1
p4

(

1− 1
p2

)2 ,

or, expanding into geometric series:

∏ p2 +1
p2 −1

=
∏
(

1+
1
p2 +

1
p4 + . . .

)2

∏
(

1+
1
p4 +

1
p8 + . . .

) =

(

∞
∑

n=1

1
n2

)2

∞
∑

n=1

1
n4

. (12.38)
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We have encountered the sum in the numerator several times before (Chaps. 4, 8),
and found it to equal π2/6. The sum in the denominator equals ζ (4) = π4/90, and
if we had not heard of the zetafunction, we could find out by calculating a certain
definite integral over the Fourier series

sinx− sin3x+ sin5x− . . . .

(The reader may want to try this.) The result is

∞

∏
p=2

p2 +1
p2 −1

=

π4

36
π4

90

=
5
2
.

Consideration of this product also leads to some rather unexpected relations for
Ω(n). Expanding

∏ p2 +1
p2 −1

=
∏
(

1+
1
p2 +

1
p4 + . . .

)

∏
(

1− 1
p2 +

1
p4 − . . .

) (12.39)

and multiplying out, one obtains, in the denominator, a sum of each reciprocal
square 1/n2 exactly once, with a sign that depends on the parity (odd or even) of the
total numbers of prime factors of n. Thus, with (12.37), remembering that Ω(1) = 0:

∞

∑
n=1

(−1)Ω(n)

n2 =
π2

15
, (12.40)

or

∑
Ω(n)odd

1
n2 =

π2

20
, (12.41)

two noteworthy results.
Similar procedures give the equally remarkable

∞

∑
n=1

(±1)Ω(n)

n2 2ω(n) =
(

5
2

)±1

, (12.42)

or

∑
Ω(n)odd

2ω(n)

n2 =
21
20

. (12.43)
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12.4 The Harmonic Mean of ΩΩΩ (n)

In order to estimate, as we would like to, the geometric mean of the prime factors
of n, we need the harmonic mean of Ω(n). If we designate geometric means by a
tilde, then the desired mean is given by

p̃(n) := n1/Ω(n). (12.44)

Now if we average over several (similar) values of n, we are led to the harmonic
mean of Ω(n), which we identify by a “hat”:

Ω̂(n) :=
(

1/Ω(n)
)−1

. (12.45)

With this notation, we have

p̃(n) ≈ n1/Ω̂(n). (12.46)

Of course, like any harmonic mean of a fluctuating quantity, Ω̂(n) is smaller than
the previously computed arithmetic mean Ω(n) ≈ ln(lnn)+ 1.035. By how much?
to answer this question, we have to find out about the distribution of Ω(n). Reverting
to our earlier “unaveraged” estimate of Ω(n):

Ω(n) ≈ ∑
pi≤n

ei
1

pei
i

(

1− 1
pi

)

, (12.47)

we recognize geometric distributions1 in the exponents ei. The mean value mi for
each term of the sum is

mi =
1

pi −1
, (12.48)

a result we used before in estimating Ω(n).
Now we also want the variance σ2

i of each term, which for a geometric distribu-
tion is given in terms of the mean mi by the following well-known formula:2

σ2
i = mi +m2

i . (12.49)

1 Physicists call a related distribution “Bose-Einstein” in honor of Bose, the Indian scientist who
discovered its significance for photons and other “bosons”, and Einstein, who publicized it when
people would not believe it.
2 This formula played a role in physics that can hardly be overestimated. According to Maxwell’s
equation, the intensity fluctuations σ2

i in “black-body” radiation should equal the squared intensity
m2

i . It was Einstein who discovered, from deep considerations of entropy, that the actual fluctua-
tions exceeded m2

i by mi, recognizing the additional term mi as stemming from a non-Maxwellian
“granularity” of the field. This observation led him to the photon concept for electromagnetic ra-
diation on much more persuasive grounds than Planck’s inherently contradictory discretization of
the energies of harmonic oscillators. As a result, Einstein believed in the reality of the photons
from 1905 on (and he received his Nobel prize in physics for this work and not for his theory of
relativity), while Planck continued to doubt the meaningfulness of his “ad hoc” trick.
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By summing over the index i, assuming independence of the pi, we obtain the
variance of Ω(n):

σ2
Ω = Ω(n)+ ∑

pi=2

1
(pi −1)2 . (12.50)

Using the expansion (12.16) again, we can write the sum here as

∑
pi

(

1

p2
i

+
2

p3
i

+
3

p4
i

+ . . .

)

= lnζ (2)+2lnζ (3)

+
5
2

lnζ (4)+ . . . ≈ 1.3751. (12.51)

Again, σ2
Ω ≈ Ω , and we also expect a shifted Poisson distribution for Ω :

Prob{Ω(n) = k} ≈ (Ω −1)k−1

(k−1)!
e−Ω+1 , k = 1,2, . . . , Ω > 1 , (12.52)

with Ω from (12.36).
This theoretical distribution is shown by dots in Fig. 12.2 for Ω = 3.25 (n ≈

9500). The shaded bars are from actual prime factor counts between n = 9000 and
9499. The agreement is remarkably good.

For the shifted Poisson distribution, the harmonic mean Ω̂ is easily evaluated:

Ω̂ =
Ω −1

1− e−Ω+1
, or (12.53)

Ω̂ ≈ ln(1.035lnn)
1−1/1.035lnn

. (12.54)

Fig. 12.2 The distribution of
the number of prime factors
(bars) in the interval 9000 ≤
n ≤ 9499 and the Poisson
distribution (dots) for the
theoretical mean
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For n = 9250, we obtain Ω̂ ≈ 2.51. The “experimental” value for the range n = 9000
to 9499 is Ω̂ = 2.47 – as close as one can hope.

The geometric mean of the prime factors, calculated with the theoretical value of
Ω̂ , becomes

p̃(9250) ≈ 38,

while the actual value in the range n = 9000 to 9499 is p̃ = 40.
For n = 1050, a range of interest for public-key encryption, Ω̂ ≈ 4.8, and the

geometric mean p̃ ≈ 2.4 ·1010 – 40 orders of magnitude smaller than n.

12.5 Medians and Percentiles of ΩΩΩ (n)

With (12.36), the probability that the integer n equals a prime that divides N is given
approximately by

w(n = p|N) =
1

n lnn(ln(lnN)+1.035)
. (12.55)

Thus, the cumulative distribution for a prime divisor of N to be smaller than n is
approximated by

W (n;N) =
ln(lnn)+1.035
ln(lnN)+1.035

. (12.56)

From this expression the median value n0.5 follows directly:

n0.5 = e
√

lnN/2.81. (12.57)

Example: N = 9250, n0.5 = 6. Thus, the primes 2, 3, and 5 should account for
roughly half the prime factors around N = 9250. The actual count in the interval
9000 to 9499 is as follows (with the theoretical value, 500/(pi −1), in parenthesis):

pi = 2 : 500 times (500)
pi = 3 : 250 times (250)
pi = 5 : 126 times (125)

Thus, the total number of occurrences of 2, 3, and 5 is 876 times, or 53% of the total
of 1650 prime factors in that interval – in very good agreement with our theoretical
prediction.

For N = 1050, n0.5 = 600, a remarkably small value.
The above distribution formula gives the following percentile values n f , defined

by W (n f ) = f :
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n f (N) = exp
[

(lnN) f 2.81 f−1] . (12.58)

The lower-quartile value n0.25 (for N = 9250) becomes 2.2, which compares well
with the count of 30% (500 out of 1650) for the factor 2 in the interval 9000 to 9499.
In fact, according to (12.56), 29% of the prime factors should be below 2.5.

The theoretical upper-quartile value n0.75 = 57.8 is in very good agreement with
the count of 75%. (1231 out of 1650) prime factors up to and including 59. But the
median of the largest prime factor of N is about N0.6 (!).

12.6 Implications for Public-Key Encryption

For N = 1050, the theoretical lower- and upper-quartile values for the prime factors
are 4.5 and 6 ·1011, respectively. Thus, in three out of four cases of integers around
1050, one will encounter prime factors not exceeding 6 · 1011. If one assumes that
rapid factoring of such integers is no problem, then 75% of such large, randomly
selected integers can be easily factored.

This conclusion is in stark contrast to the (correct) assertion that sufficiently large
integers constructed so as to contain only two very large prime factors cannot be
easily factored.

Additional results on large prime factors in a given interval can be found in
[12.4]. As an introduction to the art of generating large primes, see [12.5].



Chapter 13
Certified Signatures

Here we learn how certified signatures can be attached to secret messages in the con-
text of public-key encryption. The degree of certitude (in the sense of avoiding ran-
dom confusions) achievable by this method, which is based on modular arithmetic,
appears to exceed by far that of notarized signatures, fingerprinting or, conceivably,
even genetic analysis.

Certified signatures are also important in protecting computer systems against
illicit entry and manipulation, and safeguarding data files from unauthorized “read-
ers”, falsification or destruction.

13.1 A Story of Creative Financing

Baron von Münchhausen, a close relative of the fabulous liar of the same name, and
founder of the Georg-August University at Göttingen under the auspices of his King
in Hanover, Georg August1, received a secret message in (say) 1743 saying (in part):

“SPEND ALL EXCESS FUNDS OF KINGDOM ON NEW UNIVERSITY IN
GOTTINGEN.” signed “GEORGE”.

How does von Münchhausen know that it was really King George who sent that
generous but unlikely message? George is about to establish two more institutions
of higher learning in his American colonies: King’s College on an island called
Manhattan (later to be known as Columbia University) and the College of New
Jersey (now Princeton University) and the royal treasure has few, if any, “excess
funds” to throw in the direction of Göttingen. The signature looks fine, but it could
have been faked.

13.2 Certified Signature for Public-Key Encryption

In one of the great advances of modern secure and reliable communication (apart
from public-key encryption itself), certified signatures can now be attached to
public-key encryption messages in such a manner as to remove any doubt about

1 Also known in London as George II, King of England, etc., etc.
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194 13 Certified Signatures

the sender [13.1]. This works as follows: The sender, call him N, encrypts his name,
address, etc., by his decrypting key t0 (which only he knows!). Thus, he forms

S ≡ Nt0 (modr0), (13.1)

which he appends to his message M (which includes his name) and encrypts both
M and S by the (public!) encrypting key of the receiver s1, r1.

The receiver decrypts using his secret key t1, and reads the message M followed
by a string of “garbled” symbols S, which must be the certified signature, because
the message was identified as carrying such a signature. The message also purports
to have been sent by N. Thus, knowing the protocol, the receiver applies the publicly
known encrypting parameters of N, namely s0 and r0, to S and obtains

Ss0 ≡ Nt0s0 ≡ N (modr0), (13.2)

i. e., the name and address, etc., of the sender. And no one, but no one, who did not
know t0, could have constructed S so that with the above operation it would yield N.
A certified signature to put all other “certified” signatures – including fingerprinting
and (present-day) genetic analysis – to shame!

The reader can find further information on digital signatures and authentications
to counteract potential threats2 in financial, diplomatic and military “transactions”
in [13.2–4].

With the spread of the Internet and electronic banking, data security and guaran-
teed signatures have taken on a wholly new dimension, see [13.5]. Proof of purchase
and the important concept of “oblivious transfer” on the Internet are discussed in
[13.6]. See also [13.7].

2 reneging the originator subsequently disowns a transaction
forgery the recipient fabricates a transaction
alteration the recipient alters a previous valid transaction
masquerading an originator attempts to masquerade as another



Chapter 14
Primitive Roots

In this chapter we introduce the concepts of order and the primitive root, two of
the more fascinating and useful ideas in number theory. On the fundamental side,
they helped the young Gauss to reduce the equation x16 + x15 + . . .+ x + 1 = 0 to
several quadratic equations leading to the construction of the regular 17-gon. These
same concepts also allow us to see why the decimal fraction of 1/7 has a period of
length 6, while the decimal fraction for 1/11 has a period of only 2. And why does
1/99007599, written as a binary fraction, have a period of nearly 50 million 0’s and
1’s? We shall see!

Closely related to the primitive root is the concept of index, a kind of number-
theoretic logarithm that permits us to solve exponential Diophantine equations and
even show that 2n = 3m −1 has only two, and precisely two solutions (n = 1, m = 1
and n = 3, m = 2).

Periodic sequences constructed from primitive roots also have an interesting
Fourier-transform property that permits the construction of wave-scattering surfaces
with very broad scatter and little specular reflection. Such surfaces can be useful in
improving concert hall acoustics, in noise abatement measures, and in making ships
and planes more difficult to see by sonar or radar. And, of course, there are applica-
tions to our main theme: digital encryption and electronic contracting (Sect. 20.3).

14.1 Orders

Some of the things we want to accomplish by electronic mail – other than public
key encryption and certified signatures – have to do with certifiable “coin tossing”,
registered mail with or without receipt, and signed contracts. For these options we
need the number-theoretic concepts of a primitive root and a quadratic residue, both
delightful entities in their own right.

Let us look at increasing powers of 2 modulo 7:

n = 1 2 3 4 5 6

2n ≡ 2 4 1 2 4 1
etc.
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Here the period after which the sequence repeats for the first time is obviously 3.
One therefore says that the integer 2 has order 3 modulo 7:

ord7 2 = 3. (14.1)

Of course, the order of any integer must be divisor of p− 1, where p is the prime
modulus (7 in our example). This is so because of Fermat’s theorem, which requires
of any integer b coprime to the modulus p that the congruence bp−1 ≡ 1 (mod p)
must hold. Obviously, for p = 7, the order could never be 4, for example, because
then the sequence of powers would repeat after 4 and 8 steps, etc., and not, as re-
quired by Fermat, after p−1 = 6 steps.

What is the largest order of any integer modulo a prime p? Certainly it cannot be
larger than p−1, because there are only p−1 values of least positive residues such
that (m, p) = 1, and once all residues have appeared they must repeat.

What is the order of 3 modulo 7? The following table will tell us.

n = 1 2 3 4 5 6 7 8

3n ≡ 3 2 6 4 5 1 3 2
etc.

Thus, the order of 3 modulo 7 is 6, the highest possible value. Therefore 3 is called
a primitive root modulo 7. A primitive root is also called a generating element,
or generator, because it generates a complete residue system (in our example the
integers from 1 to 6) in some permutation.

Once we have found a primitive root g, we can immediately find another one, its
inverse modulo p:

g2 ≡ gφ(p)−1
1 (mod p), (14.2)

or, since φ(p) = p−1 for a prime,

g2 ≡ gp−2
1 . (14.3)

In our example, with g1 = 3, we get g2 ≡ 35 = 243≡ 5 (mod7). Check: 5 ·3 = 15≡ 1
(mod7). Check! And 5 raised to successive powers yields

n = 1 2 3 4 5 6 7 8

5n ≡ 5 4 6 2 3 1 5 4
etc.

Thus 5, too, has order p−1 = 6 and is therefore another primitive root.
How many primitive roots are there? If we raise a given primitive root g to the

power m > 1, where (m,φ(p)) = 1, then gm must be another primitive root. Thus
there are φ(φ(p)) primitive roots. (For p = 7, the number is φ(6) = 2, both of which
we have already found: 3 and 5.)

If, by contrast, the greatest common divisor (GCD) d of m and φ(p) is greater
than 1, (m,φ(p)) = d > 1, then the order of g = gm

1 is only φ(p)/d. To show this,
we observe first that φ(p)/d is a period of g:
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gφ(p)/d = gφ(p)m/d
1 ≡ 1m/d = 1 (mod p), (14.4)

and second that it is the shortest period, because by introducing the least common
multiple [φ(p),m], we can write

gφ(p)/d = g[φ(p),m]
1 = gφ(p)·k

1 ≡ 1k = 1 (mod p). (14.5)

Thus, φ(p)/d is the smallest exponent for which gφ(p)/d is congruent 1 modulo p.
How many positive m < p are there that have order T = φ(p)/d ? As we saw

in Chap. 7, there are exactly φ [φ(p)/d] values of m that have d as the GCD with
φ(d). Hence, the number of residue classes that have order T equals φ(T ). This is
illustrated by the following table for p = 7, φ(p) = 6:

m m2 m3 m4 m5 m6 T

1 1 1 1 1 1 1
2 4 1 2 4 1 3
3 2 6 4 5 1 6
4 2 1 4 2 1 3
5 4 6 2 3 1 6
6 1 6 1 6 1 2

Indeed, there are exactly φ(1) = 1 order T = 1, φ(2) = 1 order T = 2, φ(3) = 2
orders T = 3 and φ(6) = 2 orders T = 6. Further, all T divide φ(7) = 6.

Primitive roots are possessed by the integers 1, 2, 4, pk and 2 · pk (where p is
an odd prime and k > 0). All that has been said about primitive roots for a prime
modulus transfers, mutatis mutandi, to these other cases.

The smallest integer not having a primitive root is 8. A prime residue system
modulo 8 is given by 1, 3, 5, and 7, and all of these have order 1 or 2: 11 ≡ 32 ≡
52 ≡ 72 ≡ 1 (mod8). There is no residue that has order φ(8) = 4.

Why are 3 and 5 primitive roots modulo 7 and not, say, 4? How are the primitive
roots distributed within a residue system? For example, 71 and 73 both have 24
primitive roots, of which they share exactly one half, namely

11, 13, 28, 31, 33, 42, 44, 47, 53, 59, 62, 68.

What distinguishes these numbers?
Gauss said in his Disquisitiones [14.1] that the distribution of primitive roots is

a deep mystery; there is no way to predict where they will occur – only their total
number is known. But Gauss did give some fast algorithms for ferreting them out.

14.2 Periods of Decimal and Binary Fractions

As every high-school student knows, 1/2 written as a decimal fraction is 0.5 and 1/50
becomes 0.02. Both 0.5 and 0.02 are terminating decimal fractions. By contrast 1/3
becomes a nonterminating decimal fraction, namely 0.3333 . . ., and so does 1/7:
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0.142857142857 . . . .

Both 1/3 and 1/7 lead to periodic decimal fractions. By contrast
√

2 =
1.41421356 . . . and π = 3.14159265 . . . are irrational and have nonterminating ape-
riodic decimal representation.

What reduced rational fractions m/n, where (m,n) = 1, have terminating decimal
representation? The answer is very simple and devolves directly from the prime
factor decomposition of the denominator n:

n = ∏
pi|n

pei
i , (14.6)

where the product is over all prime pi that divide n. Now, if the only pi in (14.6)
are 2 and 5, then the fraction terminates because 2 and 5 are the only prime factors
of 10.

Specifically, if n = 2a5b and, for example, a > b, then n = 2a−b10b and for
a−b = 2, say,

1
n

= 0.0 . . .025,

where the number of zeros to the right of the decimal point equals b.

Example: n = 80 = 24 ·5 = 23 ·10. Thus, 1/80 = 2−3 ×10−1 = 0.0125.

The numerator m of the fraction m/n simply converts a terminating decimal fraction
into another terminating decimal fraction.

Things become more interesting if the denominator n is divisible by prime factors
other than 2 or 5. Let us begin with the prime factor 3 and write

1
3

=
3
9

=
3

10−1
=

3
10

· 1

1− 1
10

=
3

10
·
[

1+
1

10
+

1
100

. . .

]

.

This brings the periodic nature of the decimal fraction for 1/3 into direct evidence.
The fraction 3/10 is, of course, 0.3 and the 3 has to be repeated over and over again
with increasing right shifts:

1
3

= 0.3+0.03+0.003+ . . . = 0.333 . . . .

To save ink, periodic decimal fractions are usually written with a bar over a single
period. Thus, 1/3 = 0.3 and 1/7 = 0.142857.

But why does 1/7 have a period length of 6? Modeling 1/7 on what we did to
1/3, we might try to express 1/7 as a rational fraction with a denominator that is
one less than a power of 10. Thus, we are looking for the smallest positive factor f
such that

7 f = 10k −1, (14.7)
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or, equivalently, we want to know the smallest k for which

10k ≡ 1 (mod7). (14.8)

That is, of course, just the definition of order (in the arithmetic sense!) that we
encountered in Sect. 14.1. Thus,

k = ord7 10 = 6. (14.9)

Check: 106 = 142857 ·7 + 1, and no lower power of 10 exceeds a multiple of 7 by
1. Check!

Hence, 1/7 has a decimal period of length 6 with the digits

f =
106 −1

7
= 142857, or (14.10)

1
7

= 0.142857.

More generally, 1/p, p �= 2 or 5, has a period length

k = ordp 10. (14.11)

Example: For p = 11, k = 2, f = 99/11 = 9; hence 1/11 = 0.09. For p = 13, k = 6,
f = 999999/13 = 76923; hence 1/13 = 0.076923.

It is also clear that the period cannot be longer than p− 1, because in carry-
ing out the long division 1/p, there are at most p− 1 possible remainders, namely
1,2, . . . , p−1, after which the remainders and therefore also the decimal digits must
repeat.

In fact, ordp 10 is always less than p, because according to Fermat’s theorem, for
(p,10) = 1:

10p−1 ≡ 1 (mod p). (14.12)

Thus ordp 10 is either p−1 (as in the case of p = 7) or a proper divisor of p−1 (as
in the cases p = 11 and p = 13).

The longest possible period p− 1 occurs whenever 10 is a primitive root of p.
According to Abramowitz and Stegun [14.2], 10 is a primitive root of p = 7, 17, 19,
23, 29, 47, 59, 61, 97, etc.

Example:
1

17
= 0.0588235294117647, which indeed has period length 16.

Of course, pocket calculators are not accurate enough to determine the 96 digits
of the decimal period of 1/97 directly. However, there is a trick that allows us to
get the desired digits nevertheless. We shall illustrate this with the 16 digits of the
period of 1/17. A 10-digit pocket calculator shows that

100
17

= 5.88235294(1),
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where the last digit may have been rounded off and is therefore uncertain. We have
thus found 9 of the 16 digits. The next digits are obtained by calculating, say,

160
17

= 9.41176470(6).

Thus we have found all 16 digits of 1/17. By merging the two digit strings we obtain

1
17

= 0.0588235294117647.

We leave it to the reader to discover a general and efficient algorithm for generat-
ing the digits of periodic fractions with a calculator of limited accuracy. In [14.3] all
primes with period lengths less than 17 are listed. Surprisingly, 37 is the only prime
with period length 3.

Without derivation or proof we also state that for

n = ∏
pi �=2,5

pni
i , (14.13)

the decimal expression has a period length T equal to the least common multiple of
the orders of 10 with respect to the different pi. Thus, with

ki := ordp
ni
i

10, (14.14)

T = [k1,k2, . . .]. (14.15)

Proving this is a nice exercise. If n also contains factors 2 or 5, the decimal fractions
are mixed, meaning they have a nonperiodic “head”.

Example: 1/119 = 1/(7 ·17) has period length T = [6,16] = 48. And for 1/2737 =
1/(7 ·17 ·23), T = [6,16,22] = 528.

Nonunitary fractions have a cyclically shifted period with respect to the corre-
sponding unitary fractions, provided T = φ(n). Otherwise there are φ(n)/T differ-
ent cycles, all of length T .

Example: 1/7 = 0.142857 and 6/7 = 0.857142. But for 13 we have φ(13) = 12
and ord13 10 = 6; thus there are 12/6 = 2 different cycles: 1/13 = 0.076923 and
2/13 = 0.153846.

Everything that has been said here about decimal fractions carries over to other
number bases. For example, 1/3 in binary notation has period length T = ord3 2 = 2.
In fact, 1/3 = 0.01. For 1/5 in binary, T = ord5 2 = 4, and indeed, 1/5 = 0.0011. The
prime 9949 has 2 as a primitive root [14.2]. Therefore, ord9949 2 = 9948 and 1/9949
will generate a sequence of 0’s and 1’s with period lengths 9948 = 22 ·3 ·829.

Another prime in the same range having 2 as a primitive root is 9851. With
9850 = 2 · 52 · 197, the binary expansion of 1/99007599 = 1/(9949 · 9851) has a
period length T = [22 ·3 ·829, 2 ·52 ·197] = 48993900. Here is a method of gener-
ating long pseudorandom binary sequences! What are their spectral properties?
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14.3 A Primitive Proof of Wilson’s Theorem

Because the sequence of least positive residues gk(mod p), k = 1,2, . . . , p−1 (where
g is a primitive root of the prime p), is a permutation of the integers 1,2, . . . , p−1,
one has

(p−1)! = 1·2 . . .(p−1) ≡ g·g2 . . .gp−1 = gp
p−1

2 ≡ g
p−1

2 (mod p). (14.16)

Now according to Fermat,

gp−1 ≡ 1 (mod p). (14.17)

Therefore

g
p−1

2 ≡±1 (mod p). (14.18)

However the plus sign is impossible, because g is a primitive root and p− 1 is the
smallest exponent m for which gm is congruent to 1. Thus,

g
p−1

2 ≡−1 (mod p), i.e. , (14.19)

(p−1)! ≡−1 (mod p), (14.20)

which is Wilson’s theorem. (However, note that we had to assume the existence of a
primitive root!)

14.4 The Index – A Number-Theoretic Logarithm

Let m have the primitive root g. For the prime residue system (k,m) = 1, one defines
the index of k modulo m as the smallest positive t for which

gt ≡ k (modm), (14.21)

and writes

t = indg k.

Read: t equals the index to the base g of k.

Example: for m = 5 and g = 2:

ind2 1 = 0, ind2 2 = 1, ind2 3 = 3, ind2 4 = 2.

It is easy to see that

indg(ab) ≡ indg a+ indg b (modφ(m)), (14.22)
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a property the index shares with the logarithm. And in fact, the index is used much
like a logarithm in numerical calculations in a prime residue system. For example,
the congruence

3x ≡ 2 (mod5)

is converted to

ind2 3+ ind2 x ≡ ind2 2 (mod4),

or with the above “index table”

ind2 x ≡ 1−3 = −2 ≡ 2 (mod4).

Thus,

x = 4.

Check: 3 ·4 = 12 ≡ 2 (mod5). Check!
A rule that is handy for base conversion is

inda b · indb a ≡ 1 (modφ(m)), (14.23)

which is reminiscent of loga b · logb a = 1 for logarithms.
In preparing index tables, it is only necessary to list values for primes, because

index values of composites are obtained by addition. Also, one-half of a complete
index table is redundant on account of the following symmetry relation:

ind(m−a) ≡ inda+ 1
2 φ(m) (modφ(m)), (14.24)

which is a consequence of

g
1
2 φ(m) ≡−1 (modm). (14.25)

14.5 Solution of Exponential Congruences

The exponential congruence

ax ≡ b (modm), (14.26)

if m has a primitive root, can be solved by index-taking

x · inda ≡ indb (modφ(m)), (14.27)

which has a solution iff
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(inda,φ(m)) | indb. (14.28)

In fact, in that case, there are (inda,φ(m)) incongruent solutions.

Example: 7x ≡ 5 (mod17); with the primitive root g = 3 as a base, we have

x ·11 ≡ 5 (mod16).

Since (11,16) = 1 divides 5, there is one (and only one) incongruent solution. Using
Gauss’s recipe,

x ≡ 5
11

≡ 5
−5

= −1 ≡ 15 (mod16).

Check: 715 = 716/7 ≡ 1/7 ≡ 5 (mod17). Check!
In Sect. 7.6 on exponential Diophantine equations we considered the equation

2n = 3m −1 (14.29)

and asked whether there were solutions other than 2 = 3−1 and 8 = 9−1. Unfor-
tunately, the answer was negative, otherwise we could have used ternary maximum-
length sequences for precision measurements whose period was a power of 2, mak-
ing them amenable to Fast Fourier Transformation (FFT) algorithms.

Now we consider another equation and ask: does

3n = 2m −1

have any solutions other than n = 1, m = 2? If so, we could use binary maximum-
length sequences whose period is a power of 3, making only slightly less efficient
FFT algorithms based on the factor 3 (rather than 2) applicable.

We shall answer the above question using the concept of the order of an integer
[14.4]. We ask: is there a solution of the above equation for n > 1? If there were,
then 3n = 9 · k for some integer k ≥ 1. Thus,

2m ≡ 1 (mod9).

Now the order of 2 modulo 9 is 6:

ord9 2 = 6.

Check: 2r ≡ 2, 4, 8, 7, 5, 1 (mod9). Check! This means that 6 must divide the
exponent m in the above congruence:

m = 6b for some integer b.

Hence,

2m = 26b = (23)2b = 82b ≡ 12b = 1 (mod7).
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In other words, 7 divides 2m − 1 = 3n, a contradiction because by the fundamental
theorem, 3n cannot be divisible by 7. Consequently, n ≤ 1 and 31 = 22 − 1 is the
only solution. Too bad for our intended application!

In a similar vein [14.4], we prove that there are no solutions to

2a = 3b −1 (14.30)

for a > 3 or 2a = 16 · k for some integer k ≥ 1. Thus, for a > 3:

3b ≡ 1 (mod16).

Since ord16 3 = 4, b must be some multiple of 4:

b = 4 · r

for some integer r ≥ 0. Thus,

34r ≡ 1 (mod16).

Now, note that ord5 3 = 4, i. e.,

34 ≡ 1 (mod5),

and therefore also

34r = 3b ≡ 1 (mod5),

or, equivalently,

5|(3b −1) = 2a,

a contradiction because 5 cannot divide a power of 2! Thus, a = 1, b = 1 and a = 3,
b = 2 are the sole solutions of 2a = 3b −1.

14.6 What is the Order Tm of an Integer m Modulo a Prime p?

As another example of solving exponential congruences we shall consider the con-
gruence

mTm ≡ 1 (mod p) or (14.31)

Tm · indm ≡ 0 (modφ(p)), i.e., (14.32)

Tm · indm = kφ(p). (14.33)

Here the left-hand side must be both a multiple of φ(p) and indm and, because of
the definition of Tm as the smallest solution, Tm · indm must be the least common
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multiple [indm,φ(p)]:

Tm · indm = [indm,φ(p)] =
indm ·φ(p)

d
, (14.34)

where d is the greatest common divisor of indm and φ(p). Thus,

Tm =
φ(p)

d
. (14.35)

For example, for p = 7 and m = 2 and using 3 as the index base: ind3 2 = 2 and
T2 = 6/(2,6) = 3, i. e., the order of 2 modulo 7 is 3. Check: 23 = 8 ≡ 1 (mod7) and
2k �≡ 1 (mod7) for k < 3. Check!

If we had taken 5 as the index base, the answer would have been the same:
ind5 2 = 4 and T2 = 6/(4,6) = 3. Check!

14.7 Index “Encryption”

The public-key encryption method described earlier is based on the fact that expo-
nentiation modulo a large composite number whose factors are not known is appar-
ently a “trap-door function”, i. e., it is easy to exponentiate with a known exponent
and to calculate a remainder, but it is very difficult to go in the opposite direction,
i. e., to determine which number has to be exponentiated to yield a known remainder.

Another way to describe this situation, for the case that the modulus has a prim-
itive root, is to say that taking logarithms in number theory (i. e., determining an
index) is a difficult operation. While the encrypted Message E is given by

E ≡ Ms (modr), (14.36)

the original message M can be obtained, at least formally, by taking the index to the
base g, where g is a primitive root of r:

indg E ≡ s · indg M (modφ(r)) or (14.37)

M ≡ g(indE)/s (modr). (14.38)

Example: r = 17, g = 3, s = 5. Say the cryptogram is E = 7. Then, with

ind3 7 = 11 (mod16) and
indE

s
=

11
5

≡ −5
5

= −1 ≡ 15 (mod16),

the original message is

M ≡ 315 ≡ 6 (mod17).
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Check: 65 ≡ 7 (mod17). Check!
The disadvantage in serious applications of index encryption is that the modulus

r is limited to integers that have primitive roots, i. e., primes, odd prime powers and
twice odd prime powers (apart from 1, 2 and 4).

14.8 A Fourier Property of Primitive Roots and Concert
Hall Acoustics

Consider the sequence

an = exp

(

i2πgn

p

)

, (14.39)

where g is a primitive root of the prime p. This sequence is periodic, with period
φ(p) = p−1. Also, the an have magnitude 1.

The periodic correlation sequence is defined by

cm :=
p−2

∑
n=0

ana∗n+m, (14.40)

where a∗ stands for the complex conjugate of a. Obviously,

c0 = p−1, (14.41)

or, more generally, cm = p−1 for m ≡ 0 (mod p−1).
On the other hand, for m �≡ 0 (mod p−1),

cm =
p−2

∑
n=0

exp

[

i2πgn(1−gm)
p

]

. (14.42)

Here the factor 1− gm �≡ 0 (mod p), and gn(1− gm) therefore runs through a com-
plete prime residue system except 0 as n goes from 0 to p−2. Thus, cm is the sum
over a complete set of pth roots of 1, except 1 itself. Since the “complete” sum
equals 0, we have

cm = −1, for m �≡ 0 (mod p−1). (14.43)

Now, a periodic correlation function that has only two distinct values (p−1 and
−1 in our case) has a power spectrum with only two distinct values [14.5]. By
power spectrum we mean the absolute square of the Discrete Fourier Transform
(DFT) defined by

Am :=
p−2

∑
n=0

an e−2πinm/(p−1). (14.44)
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It is easy to show that the power spectrum is given by

|Am|2 =
p−2

∑
k=0

ck e−2πikm/(p−1), (14.45)

i. e., by the DFT of the correlation sequence. This is reminiscent of the well-known
Wiener-Khinchin theorem [14.6].

For m = 0, or more generally m ≡ 0 (mod p− 1), we have, with the above two
values for ck,

|A0|2 = 1. (14.46)

For m �≡ 0 (mod p−1), with c0 = p−1 and ck = −1, we get

|Am|2 = p−1−
p−2

∑
k=1

e−2πikm/(p−1), (14.47)

where the sum is again over a complete set of roots of 1, except 1 itself. Thus,

|Am|2 = p for all m �≡ 0 (mod p−1). (14.48)

Such a constant power spectrum is called “flat” or “white” (from “white light”,
except that white light has a flat spectrum only in the statistical sense).

14.9 More Spacious-Sounding Sound

Flat power spectra are important in physics and other fields. (For example, a good
loudspeaker is supposed to radiate a flat power spectrum when driven by a short
electrical impulse.) Here, in addition, the original sequence an, whose spectrum is
flat, has constant magnitude 1. This leads to an interesting application in concert
hall acoustics.

It has been shown that concert halls with laterally traveling sound waves, all
else being equal, have a superior sound [14.7] to those halls that furnish short-path
sound arriving only from the front direction – as is the case in many modern halls
with low ceilings (dictated by high building costs and made possible by modern
air conditioning). To get more sound energy to arrive at the listeners’ ears from the
sides (laterally), the author [14.8] proposed scattering, or diffusing, the sound which
emanates from the stage and is reflected from the ceiling in all directions except the
specular direction [14.9]. Also, the ceiling should not absorb any sound: in a large
modern hall every “phonon”, so to speak, is valuable; otherwise the overall sound
level (loudness) will be too low.

Thus, what is called for on the ceiling is something the physicist calls a reflection
phase-grating that scatters equal sound intensities into all diffraction orders except
the zero order. Here “order” is used not as defined in mathematics but as in physics.
Zero-order diffraction corresponds to the specular direction, i. e., straight downward.
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Fig. 14.1 Concert hall ceiling designed as a reflection phase-grating (based on the primitive root 2
of the prime 11)

Reflection phase-gratings can be realized by a hard surface with “wells” of dif-
ferent depths dn, as shown in Fig. 14.1. Upon reflection, the phase of a normally in-
cident wave is changed by 2dn2π/λ , where λ is the wavelength. Now, if the depths
dn are chosen according to

dn =
1
2

λgn

p
, (14.49)

where g is a primitive root of the prime p, and gn can be the least residue modulo p,
then the reflected wave has complex amplitudes1 on its “wavefront” according to

an = e2πign/p,

just like the periodic sequence that we considered above and that had a flat power
spectrum.

Now, if the spatial distribution of wave amplitudes along a plane surface has a
flat power spectrum, then the intensities of the wavelets scattered into the different
diffraction orders will all be equal. Hence we expect a ceiling constructed according
to this principle, as shown in Fig. 14.1 for p = 11 and g = 2, to scatter sound widely
except in the specular direction (downward). That this is indeed so is illustrated
in Fig. 14.2, which shows the result of actual measurements on a “primitive root”
ceiling designed for improving concert hall acoustics. Such ceilings can be expected
to increase the feeling of spaciousness, i. e., of being surrounded by or “bathed” in
sound.

In order to form a two-dimensional array that scatters equal intensities into all
diffraction orders (except the zeroth) over the solid angle, the prime p must be so
chosen that p−1 has two coprime factors. For example, for p = 11, p−1 = 10 = 2 ·5

1 This is taking an approximate (“Kirchhoff”) view of diffraction. In reality, the complex amplitude
cannot change abruptly. For an exact treatment, see [14.10].
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Fig. 14.2 Backscatter from
primitive root ceiling. Note
low specular reflection
(vertically downward). p = 7,
g = 3

and the ten numbers an can be used to fill a 2-by-5 array in “Chinese remainder”
fashion (Chap. 17), for example as follows:

a1 a7 a3 a9 a5

a6 a2 a8 a4 a10, (14.50)

i. e., the horizontal (left-to-right) location of an in the array corresponds to 〈n〉5 and
the vertical (up-down) location of an is given by 〈n〉2. More generally, the array
locations can be given by 〈k ·n〉5, with any k for which (k,5) = 1, and 〈m ·n〉2, with
(m,2) = 1 (i. e., m must be odd). Here the acute brackets signify least remainders
(see Sect. 17.2 on Sino-representation).

In the most general case, an r-dimensional array with the desired r-dimensional
correlation and Fourier properties can be formed if p− 1 has r pairwise coprime
factors q1,q2, . . . ,qr and the location in the array of an has the coordinates

〈ki ·n〉qi , with (ki,qi) = 1, i = 1,2, . . . ,r. (14.51)

For three-dimensional arrays, the smallest prime p such that p−1 has three co-
prime factors is 31. Indeed, 30 = 2 ·3 ·5, giving a 2-by-3-by-5 array.

Another important principle that can be employed to diffuse sound involves
quadratic residues (Chap. 16), and an interesting application of primitive roots, to
the splicing of telephone cables, is given in [14.11].

14.10 Galois Arrays for X-Ray Astronomy

X-rays are notoriously difficult to focus. For X-ray photons, the index of refraction
of most earthly materials is so close to 1 that focussing lenses are all but impossible
to construct. This is a pity because the skies abound with interesting emitters of
X-rays. Fortunately, X-rays can be easily blocked by lead and other materials opaque
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Fig. 14.3 Shadow mask for
X-ray astronomy based on
Galois sequence of length
4095

to X-rays. The question then is “can we image X-rays sources with the help of
partially opaque masks?” And what patterns of opaqueness and translucence must
such a “shadow mask” have to form useful images?

One solution is a two-dimensional pattern of opaqueness (0) and translucence
(1) obtained from a Galois sequence (see Chap. 28) whose length L = 2m − 1
can be factored into (at least) two coprime factors. For a nearly square-shaped
mask, one chooses an even exponent, m = 2k, and obtains L = 22k − 1 = (2k + 1)

Fig. 14.4 Simulated X-ray
shadow obtained with mask
shown in Fig. 14.3
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Fig. 14.5 X-ray image
obtained by deconvolving
data shown in Fig. 14.4. Note
the two X-ray sources

(2k−1). Figure 14.3 shows such a mask for m = 12 with side lengths 63 by 65. Note
the bilateral symmetry around the vertical. Interestingly, the rows of length 63 are
themselves Galois sequences. All this is no accident but can be proved rigorously,
albeit by methods beyond the scope of this book. However, the interested reader
might try to derive these results without the use of the relevant number-theoretic
concepts (trace and norm).

Figure 14.4 shows the shadow of two distant X-ray sources cast by such a mask.
Observing this data with photon counters and scanning it into a computer allows
a reconstruction of the X-ray source by a two-dimensional deconvolution process.
Figure 14.5 shows the result of this imaging method for two (incoherent) X-ray point
sources [14.12].

14.11 A Negative Property of the Fermat Primes

The Fermat primes are, as Gauss discovered, precisely those primes p for which
a “Euclidean” construction of the regular p-gon is possible (see Sect. 3.9). Thus,
being a Fermat prime makes something possible.

Curiously, being a Fermat prime also makes something impossible, namely the
construction of two- or higher-dimensional primitive-root arrays, as described in the
preceding section. For such arrays, p−1 must be factored into two or more coprime
factors, but p−1 has only one prime factor, namely 2. Thus, the same circumstance
that allows the Euclidean construction forbids the construction of primitive-root ar-
rays with more than one dimension (a form of mathematical justice?).



Chapter 15
Knapsack Encryption

As a diversion we return in this chapter to another (once) promising public-key
encryption scheme using a trap-door function: Knapsack encryption. It, too, is based
on residue arithmetic, but uses multiplication rather than exponentiation, making it
easier to instrument and theoretically more transparent.

The required trap door is obtained from the ancient knapsack puzzle: given the
total weight of a knapsack and the weight of individual objects, which objects are
in the bag? As it turns out, this problem can be made quite difficult to solve for
someone who doesn’t have the proper “key”.

15.1 An Easy Knapsack

Number-theoretic exponentiation is not the only trap-door function potentially suit-
able for public-key encryption. Another trap door is opened (and kept almost closed)
by knapsack problems.

Suppose we have a set of six stones, weighing 1, 2, 4, 8, 16 and 32 kilograms, re-
spectively. Now, if a knapsack containing some of these stones weighs 23 kilograms
more than its empty weight, then which stones are in the knapsack? The answer is
given by the binary decomposition of 23:

23 = 16+4+2+1,

i. e., the stones weighing 1, 2, 4 and 16 kilograms are in the knapsack and no others.
This is an example of an easy knapsack problem. The problem remains easy if

each weight exceeds the sum of the lower weights by at least one measureable unit.
The binary sequence of weights 1, 2, 4, 8, etc., fulfills this condition, because 2 > 1,
4 > 2 + 1, 8 > 4 + 2 + 1, etc. Such sequences are called “superincreasing”. In fact,
the binary sequence is the smallest positive superincreasing sequence if 1 is the just
discriminatable weight difference [15.1].

Table 15.1 shows such an easy knapsack embedded in leading and trailing dig-
its. If the clear message in binary form is 110101, then the encrypted message is
21,853,232. It is obtained by multiplying each knapsack row by 0 or 1 in accordance
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Table 15.1 Encryption with an easy knapsack using binary “weights” 1, 2, 4, 8, 16, and 32 (see
fourth and third columns in centre)

with the binary message and adding as shown in Table 15.1. To decrypt this number
we only need the two digits 53 and its binary expansion

53 = 32+16+4+1,

corresponding to 110101 in binary notation, the original clear message.

15.2 A Hard Knapsack

Adding extra digits has not made the knapsack one bit harder to solve – so far. But
now look at Table 15.2, in which each row of the simple knapsack is multiplied by
s = 324,358,647 and reduced modulo r = 786,053,315 to form a hard knapsack.

Table 15.2 Encryption with a hard knapsack, obtained from the easy knapsack at left by multipli-
cation and residue reduction (After N. J. A. Sloane [15.1])
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Now, if encryption proceeds as before by multiplying the binary message with
the rows of the knapsack (the hard knapsack!), the result, after the multiplied rows
have been summed, is 1,832,885,704, which is “a little” harder to decrypt if only
the public encryption key is available.

To design a trap-door function based on a hard knapsack, proceed as follows
[15.2]:

1) Pick a set of easy knapsack weights ai, i. e., one that forms a superincreasing
sequence:

ai+1 >
i

∑
k=1

ak. (15.1)

2) Pick a modulus r and a coprime multiplier s, i. e., (s,r) = 1.
3) Calculate the hard knapsack

bk ≡ sak (modr) (15.2)

and publish only the bk.
4) Calculate a decrypting multiplier t such that

st ≡ 1 (modr) (15.3)

and do not publish it.

Suppose M is a message and its binary digits are mk:

M =
K

∑
k=0

mk2k. (15.4)

The encrypted message E is now calculated as follows:

E =
K

∑
k=0

mkbk. (15.5)

To decrypt, the legitimate receiver, knowing t, now forms

tE = ∑
k

mktbkk. (15.6)

But

tbk ≡ tsak ≡ ak (modr). (15.7)

Thus,

tE ≡ ∑
k

mkak (modr), (15.8)
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and to recover the message bits mk is an easy knapsack problem, because the ak form
a superincreasing sequence. Specifically, for ak = 2k, tE is the original message:

tE ≡ M (modr). (15.9)

One of the advantages of knapsack encryption is that it does not rely on the
supposed difficulty of factoring specially constructed very large numbers. On the
other hand, knapsacks are presently under attack because Shamir [15.3] and others
[15.4] have shown the equivalence of the knapsack problem to a problem in integer
programming for which a “fast” algorithm was recently invented by H. W. Lenstra of
the University of Amsterdam. Further progress in knapsack ripping has been made
by L. Adleman, and by J. C. Lagarias and A. M. Odlyzko [15.5]. Thus knapsacks, as
described here, have developed holes through which our “secret” weights can fall
for everyone to see. Who will darn the ripped knapsack?



Part V
Residues and Diffraction



Chapter 16
Quadratic Residues

Here we will acquaint ourselves with the fundamentals of quadratic residues and
some of their applications, and learn how to solve quadratic congruences (or per-
haps see when there is no solution).

Certain periodic sequences based on quadratic residues have useful Fourier-
transform and correlation properties. In fact, from the related Legendre symbol, we
can construct binary-valued sequences that equal their own Fourier transform, up
to a constant factor – a property reminiscent of the Gauss function exp(−x2/2)
which reproduces itself upon Fourier transformation. These Fourier properties are
intimately related to the fact that quadratic-residue sequences generate perfect dif-
ference sets.

To demonstrate these Fourier properties, we will introduce the so-called Gauss
sums, which added up to so many headaches for Carl Friedrich. We will also see
(literally) that incomplete Gauss sums make pretty pictures.

An interesting physical application of quadratic-residue sequences, stemming
from their Fourier property, is the design of broadly scattering diffraction gratings.

Another application, based on the auto- and cross-correlation properties of fami-
lies of quadratic-residue sequences, occurs in spread-spectrum communications (an
important technique for combating jamming and other interference).

And, of course, we will mention quadratic reciprocity and Gauss’s famous The-
orema Fundamentale.

16.1 Quadratic Congruences

Consider the quadratic congruence [16.1]

Ax2 +Bx+C ≡ 0 (modm). (16.1)

For m a prime p, there is an inverse A′ of A:

A′A ≡ 1 (mod p), (16.2)
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and we can write

x2 +A′Bx+A′C ≡ 0 (mod p). (16.3)

If A′B is even, then with

y = x+ 1
2 A′B, (16.4)

the original congruence can be written

y2 ≡ b (mod p), where (16.5)

b =
(

1
2

A′B

)2

−A′C. (16.6)

(For A′B odd and p odd, A′B is replaced by A′B + p in the above substitution of y
for x.)

Thus, to solve quadratic congruences, all we have to learn is how to extract square
roots. For example, for p = 7 and b = 2, the solutions are y = 3 or y = 4. Of course,
there may be no solution at all. For example, there is no y for which y2 ≡ 3 (mod7).
The same is true for y2 ≡ 5 or y2 ≡ 6 (mod7).

For a solution to y2 ≡ b (mod p) to exist, we say that b has to be a quadratic
residue (R) modulo p. If b is a quadratic nonresidue (N), then there is no solution.
For p = 7, the least positive residues are

R = 1, 2, 4;

and the nonresidues are

N = 3, 5, 6.

Not counting 0, there are exactly (p−1)/2 residues and also (p−1)/2 nonresidues.
The properties R and N obey the rules for the multiplication of signs in ordinary
arithmetic with R corresponding to + and N to −:

R ·R ≡ R, R ·N ≡ N, N ·N ≡ R. (16.7)

Example: for N ·N ≡ R:

5 ·6 = 30 ≡ 2 (mod7).

16.2 Euler’s Criterion

The integer a, (a, p) = 1, is a quadratic residue modulo p, p odd, iff

a
1
2 (p−1) ≡ 1 (mod p); (16.8)
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it is a quadratic nonresidue iff

a
1
2 (p−1) ≡−1 (mod p). (16.9)

Proof: According to Fermat, for (a, p) = 1:

ap−1 ≡ 1 (mod p). (16.10)

Thus, since in a prime residue system there are only two values for the square root:

a
1
2 (p−1) ≡±1 (mod p). (16.11)

Now, if g is a primitive root modulo p and if a can be written as follows:

a ≡ g2n (mod p), (16.12)

then

a
1
2 (p−1) = g(p−1)n ≡ 1n = 1 (mod p), (16.13)

and the solution of

y2 ≡ a (mod p) (16.14)

is

y ≡ gn(mod p), (16.15)

i. e., a is quadratic residue.
For a equal to an odd power of a primitive root,

a
1
2 (p−1) ≡ g

1
2 (p−1) ≡−1 (mod p), (16.16)

and a is a nonresidue. The same conclusion also follows from the fact that the for-
mula g2n, n = 1,2, . . . generates (p− 1)/2 distinct quadratic residues, so that the
remaining (p−1)/2 residue classes must be quadratic nonresidues.

In a sequence of successive powers of a primitive root, R’s and N’s must therefore
alternate.

Example: p = 7, g = 3, n = 1,2, . . .; gn ≡ 3, 2, 6, 4, 5, 1 (mod7). Here the R’s
appearing for n even, are underlined.

16.3 The Legendre Symbol

The Legendre symbol (a/p) is a shorthand notation for expressing whether a is or
is not a quadratic residue modulo p:
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(a/p) :=

{

1 for a = R
−1 for a = N

0 for a ≡ 0

}

(mod p). (16.17)

Because of the multiplication rule for residues, one has

(a/p) · (b/p) = (ab/p).

Let us look at an interesting property of what may be called Legendre sequences:

bn = (n/p).

Example: p = 7:

bn = 0, 1, 1, −1, 1, −1, −1; 0, . . . ,

etc., repeated periodically with period p. The sequence bn is three-valued and its
average is 0. Also, it reproduces itself by “decimating” with a quadratic residue. If
we take every ath term, where a equals some R, then, because of

bna = (an/p) = (a/p) · (n/p) = (n/p), (16.18)

we get

bna = bn. (16.19)

For example, in the above sequence, with a = 2:

b2n = 0, 1, 1, −1, 1, −1, −1; 0, . . . ,

which exactly equals bn.
For a equal to a nonresidue, we get ban = −bn. This follows from the above

derivation with (a/p) = −1 for a nonresidue. For example, with a = 6 ≡ −1, we
obtain the backward-running sequence:

b−n = 0, −1, −1, 1, −1, 1, 1; 0, . . . = −bn,

which is also the original sequence multiplied by −1.
More generally, we can say that when p− 1 is a quadratic nonresidue of p, as

in our example for p = 7, the sequence bn is antisymmetric, i. e., b−n = −bn. From
this follows that its discrete Fourier transform (DFT) is purely imaginary. For p ≡ 3
(mod4), p−1 is a quadratic nonresidue. On the other hand, for p ≡ 1 (mod4), p−1
is a residue.

Examples: for p = 5: p− 1 = 4 = 22; similarly for p = 13; p− 1 = 12 ≡ 25 = 52

(mod13).
It is easy to see that this is so, because if p ≡ 1 (mod4), then p−1 ≡ 0 (mod4)

and the congruence y2 ≡ 0 (mod4) always has a solution. In fact, it has two incon-
gruent solutions, namely y = 0 and y = 2.



16.4 A Fourier Property of Legendre Sequences 223

By contrast, if p ≡ 3 (mod4), then p−1 ≡ 2 (mod4), and there are no solutions
to y2 ≡ 2 (mod4). In fact, 02 = 0, 12 = 1, 22 ≡ 0, 32 ≡ 1 (mod4).

A convenient way to generate a Legendre sequence is by means of Euler’s crite-
rion

bn := (n/p) ≡ n
1
2 (p−1) (mod p), (16.20)

making use of the binary expansion of (p−1)/2 and reducing to least residues after
each multiplication, as discussed in Sect. 6.3.

16.4 A Fourier Property of Legendre Sequences

The DFT of a Legendre sequence is given by

Bm =
p−1

∑
n=0

bne−2πinm/p. (16.21)

For m ≡ 0 (mod p), we get

B0 = 0. (16.22)

For any m, we may replace bn by bnm(m/p) = bnmbm yielding

Bm = bm

p−1

∑
n=0

bnme−2πinm/p, (16.23)

or with nm = k, m �≡ 0 (mod p):

Bm = bm

p−1

∑
k=0

bke−2πik/p = bmB1, (16.24)

which, because of b0 = 0, also holds for m ≡ 0 (mod p). Thus, Bm, the DFT of
the Legendre sequence, equals bm times a constant (B1) – a remarkable property,
reminiscent of the fact that the Fourier integral of the Gauss distribution function
exp(−x2/2) reproduces the function to within a constant factor.1

1 More generally, this is true for the Gauss function multiplied by a Hermite polynomial, a circum-
stance that plays an important role in quantum mechanics, because of the manifest symmetry in
the phase space of the harmonic oscillator.
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16.5 Gauss Sums

To determine the multiplier B1, we consider the sum

S(p) :=
p−1

∑
k=0

(bk +1)e2πik/p. (16.25)

Here bk + 1 = 2 if k �= 0 is a quadratic residue modulo p and bk + 1 = 0 if k is a
nonresidue. Thus, only those terms contribute to S(p) for which k ≡ n2 (mod p) for
some n. As n goes from 1 to p−1, every such k is “touched” exactly twice. Hence

S(p) =
p−1

∑
n=0

e2πin2/p, (16.26)

a type of sum studied by Gauss.
Now, it is easy to show that

S2(p) = |S(p)|2 = p for p ≡ 1 (mod4) and

S2(p) = −|S(p)|2 = −p for p ≡ 3 (mod4),
(16.27)

but it took Gauss (somewhat inexplicably) several painful years to determine the
sign of S(p), i. e., to prove that

S(p) =
√

p for p ≡ 1 (mod4) and

S(p) = i
√

p for p ≡ 3 (mod4), (16.28)

where in both cases the positive sign of the square root is to be taken.
For p being replaced by the product of two primes, p and q, one has

S(pq) = (−1)(p−1)(q−1)/4 S(p)S(q). (16.29)

The sums S(p), or more generally S(n) for any n, are called Gauss sums, and
Gauss was eventually able to show that

S(n) =

⎧

⎪

⎨

⎪

⎩

(1+ i)
√

n for n ≡ 0√
n for n ≡ 1

0 for n ≡ 2
i
√

n for n ≡ 3

⎫

⎪

⎬

⎪

⎭

(mod4). (16.30)

Applying the above results to the DFT of our Legendre sequences, bm = (m/p),
we obtain:

Bm =
√

pbm for p ≡ 1 (mod4) and

Bm = −i
√

pbm for p ≡ 3 (mod4). (16.31)
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If we replace bm = 0 by b̃m = 1, i. e., if we make our sequence binary-valued,
then for p ≡ 3 (mod4), the new DFT is

B̃m = 1− i
√

pbm. (16.32)

Thus, we have succeeded in constructing a binary sequence (b̃m = ±1) with a
binary-valued power spectrum

|B̃m|2 = 1+ p for m �≡ 0 (mod p), (16.33)

and

|B0|2 = 1. (16.34)

Such binary sequences with a binary power spectrum are extremely useful in sev-
eral applications requiring Fourier transforms. If we store bm in a computer mem-
ory, we need not also store the DFT, because a simple “multiply-and-add” operation
converts the bm into the B̃m.

In Chap. 27 we will encounter another type of binary-valued periodic sequences
with a binary power spectrum, the so-called pseudorandom or maximum-length
sequences, with periods 2n − 1. Their DFT, by contrast, has φ(2n − 1)/n differ-
ent phase angles. For a typical value (for concert hall measurements), n = 16 and
φ(2n −1)/n = 2048, a sizable number when memory is expensive.

16.6 Pretty Diffraction

“Incomplete” Gauss sums defined by

S(m,k) :=
k

∑
n=0

e2πin2/m, k = 0,1, . . . ,m−1 (16.35)

make pretty pictures. Figure 16.1 shows S(m,k) for m ≡ 2 (mod4), for which the
complete sum equals 0, i. e., the incomplete sum “returns to the origin” (marked
by 0) after first having gone into and out of two spirals. For m → ∞, these spirals,

Fig. 16.1 Partial Gauss sums
form spirals. Here the case
m ≡ 2 (mod4), for which the
complete sum returns to the
origin (marked by 0)
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Fig. 16.2 Spiral representing
partial Gauss sums for the
case m ≡ 3 (mod4). The
origin is marked by 0. The
complete sum equals +1

properly scaled, will approach Cornu’s spiral [16.2], the visual counterpart of the
Fresnel integrals, which are important in diffraction theory. See also [16.3].

Figure 16.2 illustrates the case m ≡ 3 (mod4), where again the partial sum goes
into and out of two spirals but “gets stuck” at

√
m instead of returning to the origin

(0), as predicted by Gauss.

16.7 Quadratic Reciprocity

If p and q are odd primes, then, using the Legendre symbol, the following law of
quadratic reciprocity holds:

(p/q) · (q/p) = (−1)
(p−1)(q−1)

4 . (16.36)

Another way to state this Theorema Fundamentale, so called by Gauss, who gave
the first hole-free proof of this mathematical “gem” at age 18, is the following:

for p ≡ q ≡ 3 (mod4)

(p/q) · (q/p) = −1. Otherwise the product equals +1.

Example: p = 3, q = 7; (3/7) = −1, (7/3) = (1/3) = 1. Check!

The law of quadratic reciprocity can be very convenient when calculating
quadratic residues.

Example: (11/97) = (97/11) = (9/11) = (3/11)2 = 1.

Of particular interest are the following special cases:

(−1/p) = (−1)
1
2 (p−1), (16.37)

which we have already encountered, in a more general form, as Euler’s criterion,
and
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(2/p) = (−1)(p2−1)/8, (16.38)

i. e., 2 is a quadratic residue iff p ≡±1 (mod8).

16.8 A Fourier Property of Quadratic-Residue Sequences

Consider the complex sequence

rn = e2πin2/p. (16.39)

The magnitude of its individual terms equals 1, and it is periodic with period p. Its
periodic correlation sequence is given by

ck :=
p−1

∑
n=0

rnr∗n+k = e−2πik2/p
p−1

∑
n=0

e−4πink/p. (16.40)

Now, for any k �≡ 0 (mod p), the sum, being over a complete set of pth roots of 1,
vanishes. Thus,

ck = 0 for k �≡ 0 (mod p). (16.41)

On the other hand, for k ≡ 0 (mod p), we obtain

c0 = p. (16.42)

Thus, we have found another constant-magnitude periodic sequence whose peri-
odic correlation sequence has only two distinct values, one of which equals zero. As
a direct consequence, the squared magnitude of the DFT, i. e., the power spectrum
of the sequence rn, has only one value:

|Rm|2 = p, for all m. (16.43)

Again there are applications to broad scattering of waves [16.4], such as diffus-
ing sound waves from concert hall walls and ceilings to improve acoustic quality.
Figure 16.3 shows a “quadratic-residue” ceiling for p = 17.

Such surface structures have the highly diffusing property not only at the “funda-
mental” frequency, but at a set of p−1 discrete frequencies. The reason is that for a
frequency m times higher than the fundamental frequency, the phase shift suffered
upon reflection from the “wells” is m times greater, i. e., the effective reflection co-
efficient is raised to the mth power. It is not difficult to show that the correlation
property derived above holds not only for the sequence rn, but also for the sequence
rm

n , as long as m �≡ 0 (mod p). Thus, the ceiling shown in Fig. 16.3 is good for
p− 1 = 16 frequencies, spanning a range of 4 musical octaves; see Fig. 16.4 for
m = 3.
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Fig. 16.3 Proposed concert hall ceiling design, a reflection phase-grating based on a quadratic-
residue sequence for the prime 17

Fig. 16.4 Backscatter from model of concert hall ceiling illustrated in Fig. 16.3 for 3 times the
fundamental design frequency. Note broad scatter, including strong specular reflection (vertically
downward)

Fortunately, the good diffusing properties of such a quadratic-residue surface are
also maintained at nonrational frequencies. Figure 16.5 shows a scatter diagram for
2
√

2 times the fundamental frequency.

Fig. 16.5 Same as Fig. 16.4, for an irrational multiple of the fundamental design frequency
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Such reflection phase-gratings, to use the physicist’s term for such structures,
also scatter well for oblique incidence. To guarantee good backscatter even at graz-
ing incidence, the grating constant (width of the “wells”) should be a quarter-
wavelength, instead of the half-wavelength sufficient for normal incidence.

Quadratic-residue sequences are easily adapted to two-dimensional arrays anm,
scattering equal intensities into all diffraction orders over the solid angle. We simply
take two sequences rn and rm (based on the same prime p or different primes p1 and
p2) and multiply them together:

anm = rn · rm = exp

[

2πi

(

n2

p1
+

m2

p2

)]

. (16.44)

Equation (16.44) is useful in the design of surfaces that scatter incident radiation
widely with little of the total reflected energy going in any given direction. Potential
applications are in radar and sonar camouflage and noise abatement.

Equation (16.44) obviously generalizes to arrays in three or more dimensions
having the desired multidimensional correlation and Fourier properties.

Quadratic-residue sequences are also useful in the realization of broad (antenna)
radiation patterns [16.5], which are discussed in Chap. 30.

16.9 Spread Spectrum Communication

In order to minimize interference, and especially jamming, in wireless (“radio”)
communication, the use of broad spectra is recommended [16.6]. Since frequency
space in the “ether” is scarce, several users must therefore share the same frequency
band. How should they signal among themselves to keep interference with other
simultaneous users at a minimum?

Here again, quadratic residues offer a solution, and one that is especially transpar-
ent. Each user is assigned a particular quadratic-residue sequence as his “signature”.
By generalizing (16.39) we can construct p−1 such sequences:

r(m)
n = e2πimn2/p, m = 1,2, . . . , p−1. (16.45)

Each of these sequences has, of course, the desired autocorrelation property (16.41).
But in addition, the cross-correlations with all other sequences is small. Thus, if each
receiver is “matched” to his own sequence, he will only receive messages addressed
to him – without interference from any other simultaneously active user, although
they all share the same frequency band! (See Sect. 25.9 and [16.7, 8] for further
details and additional references.)
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16.10 Generalized Legendre Sequences Obtained Through
Complexification of the Euler Criterion

Consider the Legendre sequence

bn =
(

n
p

)

, (16.47)

where (n/p) is the Legendre symbol, see (16.17). Using Euler’s criterion (16.8),
(16.47) may be written as follows

bn ≡ n(p−1)/2 mod p, (16.48)

or with a primitive root g of p:

b0 = 0, bn = g(indg n)(p−1)/2, (16.49)

where n is taken modulo p and bn = ±1 for n �≡ 0. In (16.49) indg n is the index
function (see Sect. 14.4) or “number-theoretic logarithm” defined by

gindg n ≡ nmod p. (16.50)

Since

g(p−1)/2 ≡−1mod p, (16.51)

(16.49) can also be written as

b0 = 0, bn = eiπ indg n. (16.52)

Now, instead of admitting as possible values for bn only two roots of unity (±1),
we can generalize (16.52) by allowing each bn to equal one of the p− 1 different
(p−1)-th roots corresponding to the p−1 different values of indg n. Thus, we define
a generalized Legendre sequence, see also Lerner [16.9]:2

a0 = 0, an = exp

[

2πi(indg n)
p−1

]

, n �≡ 0mod p. (16.53)

Note that an ·am = anm, as for the original Legendre sequence.
What are the spectral properties of the so defined periodic sequence? The (peri-

odic) autocorrelation sequence

ck =
p−1

∑
n=1

ana∗n+k, (16.54)

2 I am grateful to C. M. Rader for alerting me to Lerner’s work.
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equals p−1 for k ≡ 0mod p. For k �≡ 0, (16.54) gives

ck =
p−1

∑
n=1

n+k �≡0

exp

{

2πi [indg n− indg(n+ k)]
p−1

}

, (16.55)

where the difference inside the brackets in the exponent assumes all integer values
between 1 and p−2, modulo p−1, exactly once. Thus,

c0 = p−1 and ck = −1 for k �≡ 0mod p, (16.56)

again as for the original Legendre sequence, see (30.22).
As a consequence of the correlation function being two-valued, the magnitude of

the discrete Fourier transform (DFT), see Sect. 14.8 and [16.10], is also two-valued:

A0 = 0 and |Am|2 = p−1 for m �≡ 0mod p. (16.57)

In fact, the DFT Am of the generalized Legendre sequence is proportional to the
conjugate complex or reciprocal sequence:

Am = A1a−1
m , (16.58)

a most remarkable property which also holds for the original Legendre sequence bm,
see (16.24).

In a further generalization, a scaling factor, r = 1,2, . . . , p−2, can be introduced
in the definition (16.53), yielding

a0 = 0 and an = exp

[

2πir (indg n)
p−1

]

, r �≡ 0mod p−1 , n �≡ 0mod p . (16.59)

For r = (p− 1)/2 the original three-valued Legendre sequence is recovered. The
generalized Legendre sequence can be used in the design of phase arrays and grat-
ings and for spread-spectrum communication (see Sect. 16.9).

Fig. 16.6 Radiation pattern of index array based on prime number 7 and primitive root 3. Note the
suppressed “broadside” lobe at 0◦
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Fig. 16.7 Same as Fig. 16.6 except for an additional linear phase. Note the wide gap at −45◦

In the latter application, because of the low crosscorrelation between sequences
with different values of r, the possibility of choosing p−2 different values of r al-
lows the specification of as many different “signature codes” for up to p−2 different
users sharing the same frequency channel (see also Sect. 27.9).

Figure 16.6 shows the radiation pattern of an index array for the prime number 7
and the primitive root 3 at the design frequency. Note the suppressed broadside lobe.
(The primitive root 5 gives the same result.) Figure 16.7 shows the radiation pattern
of the same index array at twice the design frequency and an additional linearly
increasing phase corresponding to a grating with an angle of incidence of 45◦. Note
the large gap in the pattern resulting from the missing lobe [16.11].
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Chapter 17
The Chinese Remainder Theorem
and Simultaneous Congruences

One of the most useful and delightful entities in number theory is the Chinese Re-
mainder Theorem (CRT). The CRT says that it is possible to reconstruct integers in
a certain range from their residues modulo a set of coprime moduli. Thus, for exam-
ple, the 10 integers in the range 0 to 9 can be reconstructed from their two residues
modulo 2 and modulo 5 (the coprime factors of 10). Say the known residues of a
decimal digit are r2 = 0 and r5 = 3; then the unknown digit is 8 (uniquely!).

It turns out that representing numbers in a notation based on the CRT has very
useful applications, to wit: fast digital computations (convolutions and Fourier trans-
forms), superfast optical transforms and, the solution of quadratic congruences,
which are discussed in Chap. 19.

17.1 Simultaneous Congruences

So far, we have only talked about one congruence at a time. We shall now explore
the inherent attractions of two or more simultaneous congruences:

x ≡ ai (modmi); i = 1,2, . . . ,k. (17.1)

Provided the moduli mi are pairwise coprime:

(mi,m j) = 1 for i �= j, (17.2)

a solution exists mod(m1,m2 . . .mk) and is unique.
Next we shall construct the solution. Define:

M :=
k

∏
i=1

mi and Mi =
M
mi

. (17.3)

Note that (mi,Mi) = 1. Thus, there are solutions Ni of

NiMi ≡ 1 (modmi). (17.4)

M. Schroeder, Number Theory in Science and Communication, 5th ed., 235
DOI 10.1007/978-3-540-85298-8 17, c© Springer-Verlag Berlin Heidelberg 2009
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With these Ni, the solution x to be simultaneous congruences is [17.1]:

x ≡ a1N1M1 + . . .+akNkMk (modM). (17.5)

To see this, we introduce as a convenient notation acute brackets with a subscript:

〈x〉m (17.6)

by which we mean the least positive (or, occasionally, the least nonnegative) residue
of x modulo m. With this notation we have

〈x〉mi ≡ aiNiMi ≡ ai (modmi), (17.7)

because all other terms in the sum (17.5) making up x contain the factor mi, and
therefore do not contribute to the residue modulo mi. Because NiMi ≡ 1 (modmi),
the solution is also unique modulo M. This is the Chinese Remainder Theorem.

Example: m1 = 3, m2 = 5; M = 15, M1 = 5, M2 = 3.

〈5N1〉3 = 1 yields N1 = 2 and

〈3N2〉5 = 1 yields N2 = 2.

Thus, the solution of the simultaneous congruences

x ≡ a1 (modm1), x ≡ a2 (modm2) is

x ≡ 10a1 +6a2 (mod15).

Example: a1 = 2 and a2 = 4.

x ≡ 20+24 = 44 ≡ 14 (mod15).

Check: 〈14〉3 = 2, 〈14〉5 = 4. Check!

17.2 The Sino-Representation: A Chinese Number System

Based on the Chinese Remainder Theorem (CRT), any positive integer x not ex-
ceeding M, where M can be written as a product of coprime integers:

0 < x ≤ M = m1 . . .mk, with (17.8)

(mi,m j) = 1 for i �= j, (17.9)

can be represented uniquely by its least positive residues modulo the mi. Thus, x is
represented by a k-tuple of residues. In “vector” notation
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x = (r1,r2, . . . ,rk), with (17.10)

ri = 〈x〉mi , m1 < m2 < .. . < mk. (17.11)

This is the so-called Sino-representation. For only two moduli, thea Sino-
representation admits of an illuminating graphic representation, in which r1 and
r2 form the ordinate and abscissa, respectively. For m1 = 3 and m2 = 5, and using
least nonnegative residues, we have

r2 = 0 1 2 3 4

r1 = 0 0 6 12 3 9
r1 = 1 10 1 7 13 4
r1 = 2 5 11 2 8 14

(17.12)

Here the position (1,1) is occupied by 1 and the successive integers follow a 45◦-
degree downward diagonal jumping back to r1 = 0 after r1 = 2 and back to r2 = 0
after r2 = 4.

As can be seen from the above table, the integer 14, for example, has the repre-
sentation 14 = (2,4). To go from the residues back to the integer, we use (17.5):

2 ·2 ·5+4 ·2 ·3 = 44 ≡ 14 (mod15).

The Sino-representation is much more useful, in our digital age, than other an-
cient systems, for example the Roman number system (although Shannon [17.2] at
Bell Laboratories did build a computer that truly calculated with Roman numerals –
a masochistic numerical exercise if ever there was one).

Addition in the Sino-representation is “column by column”: with

a = (a1,a2) and b = (b1,b2),
a+b = (〈a1 +b1〉m1 ,〈a2 +b2〉m2) ,

(17.13)

which is easy enough to show.
Similarly, multiplication proceeds columnwise:

a ·b = (〈a1b1〉m1 ,〈a2b2〉m2) . (17.14)

These rules generalize to any finite number of moduli.

17.3 Applications of the Sino-Representation

Consider the two sequences, each of length M:

a(k) and b(k); k = 0,1, . . . ,M−1. (17.15)

In numerous applications, the convolution sequence c(k) of two such sequences is
required [17.3]; it is defined by
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M

∑
l=1

a(l) ·b(〈k− l〉M) , k = 0,1, . . . ,M−1. (17.16)

Here arguments are taken modulo M, which makes this a circular convolution.
A two-dimensional circular convolution is defined as follows:

c(k1,k2) :=
m1

∑
l1=1

m2

∑
l2=1

a(l1, l2) ·b(〈k1 − l1〉m1 ,〈k2 − l2〉m2) . (17.17)

If we introduce the Sino-representation for the index l in the one-dimensional
convolution (17.17), we get

c̃(k1,k2) = ∑
(l1,l2)

ã(l1, l2) · b̃(〈k1 − l1〉m1 ,〈k2 − l2〉m2) , (17.18)

which is identical with the two-dimensional circular convolution (17.17). Thus, a
one-dimensional circular convolution in Sino-representation is equivalent to a two-
(or higher) dimensional circular convolution!

This has important consequences for the efficacy of calculating circular convolu-
tions if a and b can be factored. In the one-dimensional case, we need M multiplica-
tions for each of the M values of the result c(k), i. e., a total of M2 multiplications.
By contrast, in the two-dimensional Sino-representation, we need only m1 +m2 mul-
tiplications for each value of c(k1,k2), or a total of (m1 +m2)M multiplications. The
reduction factor ηs in the number of multiplications is thus (m1 +m2)/M or, in the
general case of decomposing M into r coprime factors,

ηs =
m1 +m2 + . . .+mr

M
. (17.19)

Example: say M ≈ 106. Make M = 13 · 15 · 16 · 17 · 19 = 1,007,760 (by appending
0’s to the data if necessary). Then a five-dimensional Sino-representation yields a re-
duction in the number of multiplications by a factor η−1

s = 12597, a very substantial
saving!

In fact, the saving realized by the Sino-representation is exactly the same as that
realizable by the famous Fast Fourier Transform (FFT) method [17.4]. In the FFT,
too, the reduction factor equals

ηF =
m1 +m2 + . . .+mr

M
, (17.20)

except that the mi are no longer required to be coprime (at the price of some other
complication, such as “twiddle” factors).

The greatest saving is of course realized if M is decomposed into as many small
factors as possible. Thus, for M ≈ 106, we can choose M = 220 = 1,048,576 and get
a reduction factor of 2 ·20/220 = 3.81 ·10−5, which is, however, only twice as good
as the Sino-decomposition.
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In general for the FFT, choosing all mi = 2, the optimum reduction factor is

ηF(mi = 2) =
2log2 M

M
, (17.21)

a well-known result [17.4].

Of course, if we wanted to apply FFT methods to circular convolution, 2 FFT’s
would be required [17.5] and the advantage of FFT over Sino-decomposition would
be lost. And many more integers can be decomposed into, say, 5 coprime factors
than factors of 2.

17.4 Discrete Fourier Transformation in Sino

The Discrete Fourier Transformation (DFT) of a sequence a(n), n = 0,1, . . . ,
M−1, is defined by

A(k) :=
M

∑
n=1

a(n)W nk, k = 0,1, . . . ,M−1. (17.22)

Here W is a (primitive) Mth root of unity, for example

W = e−2πi/M. (17.23)

Ordinarily, to compute all M values of A(k) takes M2 (complex) multiplications.
Now if M can be decomposed into coprime factors (we use only two factors in

this exposition), M = m1 ·m2, and if we represent indices k and n in Sino:

k = (k1 = 〈k〉m1 , k2 = 〈k〉m2) and (17.24)

n = (n1 = 〈n〉m1 , n1 = 〈n〉m2) ,

then the above DFT (17.22) can be rewritten

Ã(k1,k2) =
m1

∑
n1=1

m2

∑
n2=1

ã(n1,n2)W 〈n1k1〉m1 N1M1+〈n2k2〉m2 N2M2 , (17.25)

where as before, Mi = M/mi, and Ni is the (unique) solution of NiMi ≡ 1 (modmi).
Because of the sum in the exponent in (17.25), W can be represented by the

product of two factors, each one depending only on one ni. Thus, the total number
of multiplications is only (m1 + m2)M instead of M2. Again the reduction in the
number of multiplications due to the Sino-representation is ηs = (m1 +m2)/M or, in
the general case, where M is decomposed into r coprime factors, M = m1 ·m2 . . .mr,

ηs =
m1 +m2 + . . .mr

M
.
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Here, in the case of the DFT, too, the Sino-representation has converted the one-
dimensional operation into a multidimensional one. In fact, a two-dimensional DFT
is defined as follows:

A(k′1,k
′
2) :=

m1

∑
n1=1

m2

∑
n2=1

a(n1,n2)W M1n1k′1+M2n2k′2 , (17.26)

where the factors Mi = M/mi in the exponent convert the W from an Mth root of
unity to an mith root of unity, as required.

Comparing the two-dimensional DFT (17.26) with the Sino-representation, we
see that they are identical if we set

k′i = 〈Niki〉mi . (17.27)

In other words the Fourier array, indexed by k′i, differs from the Sino-array only by
the indexing (ki instead of k′i).

17.5 A Sino-Optical Fourier Transformer

The difference in indexing noted in the previous section becomes important in the
following application of the Sino-representation to the DFT of one-dimensional
data. Using Sino-representations, we can lay down the data in a two-dimensional
array; see Fig. 17.1 for the case M = 15, m1 = 3, m2 = 5. As shown in this illus-
tration, the “funny”-looking way of doing this becomes highly regular if we repeat
the array periodically: consecutive numbers simply follow a −45◦ diagonal straight
line.

Fig. 17.1 One-dimensional data of period 15, put into two-dimensional array according to Sino-
representation of index k modulo 3 and modulo 5 (the coprime factors of 15). On the right, the
corresponding Fourier (DFT) array
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If we Fourier-transform this data (one basic 3 × 5 array of it), we obtain the
Fourier array1 shown on the right of Fig. 17.1. Now, if we want to reconvert to
one-dimensional data (the original data never was two-dimensional!), we have to
know the sequence in which to “read” the data from the array. The proper “reading
instruction” is embodied in the above index conversion equation k′i = 〈Niki〉mi . With
N1 = N2 = 2, as we saw above, the proper reading “jumps” two units down and to
the right to go from one sample to the next. These samples, of course, also fall on a
straight line if the Fourier array is thought of as periodically repeated, as hinted in
Fig. 17.1.

17.6 Generalized Sino-Representation

Instead of representing an integer k in the range 1 to M by its residues modulo the
coprime factors mi of M:

k = (k1,k2, . . .kr) where

ki = 〈k〉mi , (17.28)

we can, instead, choose the “components” ki as follows:

ki = 〈αik〉mi , (17.29)

where each αi has to be chosen coprime to its modulus mi : (αi,mi) = 1. The inverse
relation, i. e., the calculation of k from its components ki, is the same as before:

k =
〈

∑
i

kiNiMi

〉

M
, (17.30)

except that the congruences that determine the Ni look a little different:

〈αiNiMi〉mi = 1. (17.31)

The congruences have unique solutions, because (αiMimi) = 1.
To check the above solution:

〈a jk〉m j = k j〈α jNjMj〉m j = k j. Check!

Figure 17.2 illustrates the Sino-array for α1 = 1 and α2 = 2; in other words, the
data is laid down in a “knight’s-move” manner, as defined in chess. The solutions
of 〈αiNiMk〉mi = 1 are N1 = 2 and N2 = 1. (Check: 〈1·2·5〉3 = 1 and 〈2·1·3〉5 = 1.

1 If we do this optically by means of Fourier optics methods [17.6] using coherent light from a
laser, the Fourier transform will be “calculated” (by interfering light waves) literally at the speed
of light!
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Fig. 17.2 Generalized conversion of one-dimensional data into two-dimensional array and corre-
sponding Fourier array

Check!) Thus, the Fourier array also has to be read in a knight’s-move fashion.

k′1 = 〈2k1〉3 and k′2 = 〈k2〉5

as illustrated on the right of Fig. 17.2.

17.7 Fast Prime-Length Fourier Transform

In the preceding sections we have learned how to exploit compositeness of the num-
ber M of data samples to realize fast convolution and Fourier transform algorithms.
But suppose M is prime and we cannot “pad” the data with zero-value samples to
make the number of samples highly composite; suppose we are stuck with a prime
M. What then?

Fortunately, Rader [17.7] comes to our rescue with a beautiful idea that bridges
the prime-M gap. In fact, for Rader’s algorithm to work, M has to be prime.

With (17.22) and (17.23) for the DFT, and assuming for the moment that
a(M) = 0, we have

A(k) =
M−1

∑
n=1

a(n)exp

(

−2πi
M

nk

)

. (17.32)

Since M is prime, it has a primitive root g, which we put to work to permute our
indices k and n as follows:

k =:
〈

gk′〉

M,

and

n =:
〈

gn′〉

M, (17.33)
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where k′ and n′ are the permuted indices; they cover the same range as k and n.
Defining further

a(gn′) =: a′
(

n′
)

,

A(gk′) =: A′ (k′
)

,

we can write (17.32) as

A′(k′) =
M−1

∑
n′=1

a′(n′)exp

(

−2πi
M

gn′+k′
)

k′ = 1,2, . . . ,M−1, (17.34)

which we recognize as a circular convolution. Thus, the availability of a primitive
root has allowed us to convert the product nk into the sum of the permuted indices
n′ + k′: we have turned a discrete Fourier transform into a circular convolution for
which fast algorithms are available, even if M − 1 is not highly composite [17.4].
(Note: the number of data samples is no longer the prime M, but the composite
M−1.)

Since k ≡ 0 (modM) is not included in our permutation (17.33), we have to
calculate A(0) separately, which causes no sweat:

A(0) =
M−1

∑
n=1

a(n). (17.35)

If a(M) [or a(0)] does not equal 0 as initially assumed, then all A(k) have to be
augmented by a(0) = a(M).

But these are small technical details. The important thing to remember is that the
existence of a primitive root has allowed us to convert a product in the exponent
(Fourier transform) into a sum (convolution). At the same time, the number of data
samples has been reduced by 1, thereby offering an escape from the unpleasant (for
fast algorithms) primeness of M.

Converting products into sums smacks, of course, of logarithms, and indeed,
although we never made it explicit, logarithms are implied by our permutation for-
mulae (17.33). Instead of (17.33) we could have introduced the permuted indices as
follows:

k′ := indg k and

n′ := indg n, (17.36)

where, as we recall (see Chap. 14), the index function is the number-theoretic equiv-
alent of the usual logarithm.



Chapter 18
Fast Transformation and Kronecker Products

“It is important for him who wants to discover not to confine
himself to one chapter of science, but to keep in touch with
various others.”

– Jacques Hadamard

While on the subject of fast computational algorithms based on the Chinese Re-
mainder Theorem and primitive roots (discussed in the preceding chapter), we will
now take time out for a glance at another basic principle of fast computation: de-
composition into direct or Kronecker products. We illustrate this by showing how
to factor Hadamard and Fourier matrices – leading to a Fast Hadamard Transform
(FHT) and the well-known Fast Fourier Transform (FFT).

The Hadamard transformation is related to certain “Galois sequences” introduced
in Chap. 26, and the FHT discussed here permits the computationally efficient uti-
lization of these sequences in measurement processes of astounding precision.

18.1 A Fast Hadamard Transform

A Hadamard matrix is an n×n matrix of elements that equal +1 or −1 and whose
rows and columns are mutually orthogonal [18.1]. Since the “norm” (sum of squared
elements) of each row or column equals n, we have

HnHT
n = HT

n Hn = nIn, (18.1)

where the raised T stands for “transpose” and In is the n×n unit matrix, having 1’s
in the main diagonal and 0’s elsewhere.

The simplest nontrival Hadamard matrix Hn is

H2 =
(

1 1
1 −1

)

. (18.2)

All other Hadamard matrices necessarily have n = 4k.
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Fig. 18.1 Construction of
direct product of two matrices

Of special interest are the Hadamard matrices of Sylvester type with n = 2m,
which are obtained from H2 by a “direct” or Kronecker product:

H4 = H2 ⊗H2, (18.3)

where ⊗ indicates the direct product, defined by replacing each element in the first
factor by the product of that element with the second factor (see Fig. 18.1). Thus,

H4 =

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎠

. (18.4)

All Sylvester-type Hadamard matrices are formed in the same manner:

H2m = H2 ⊗H2 ⊗ . . .⊗H2
︸ ︷︷ ︸

m factors

. (18.5)

In a shorter notation, this is also expressed as a Kronecker power or exponentiation,
indicated by a bracket in the exponent:

H2m =: H [m]
n . (18.6)

As an example H8 is shown in Fig. 18.2, where a horizontal line stands for −1.
Various properties of the direct product are the following:

(X +Y )⊗W = X ⊗W +Y ⊗W

(X ⊗Y )T = XT ⊗Y T

(X ⊗Y )(V ⊗W ) = (XV )⊗ (YW )

(X ⊗Y )−1 = X−1 ⊗Y−1

Trace(X ⊗Y ) = Trace(X)Trace(Y )
det(X ⊗Y ) = (detX)n(detY )m,

(18.7)

where X is n×n and Y is m×m.

Fig. 18.2 The Sylvester-

Hadamard matrix H8 = H [3]
2
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The eigenvalues of X ⊗Y are the nm products of the n eigenvalues of X and the
m eigenvalues of Y . This last property is particularly revealing, because it shows
that if we have a k× k matrix A, with k = nm, and if we can decompose A into two
Kronecker factors

A = Y ⊗Y, (18.8)

then instead of having to solve an nm-dimensional eigenvalue problem, we only
have one n-dimensional and one m-dimensional problem to solve. The product nm
is replaced by the sum n+m, just as in the Sino attack on convolutions and Fourier
transforms, with a potentially enormous saving – especially if further Kronecker
factors can be found, as in the case of the Sylvester-Hadamard matrices which com-
pletely decompose into the direct product of the 2×2 Hadamard matrices.

We shall demonstrate the attendant saving due to such decomposition for matrix-
vector multiplications [18.2]. Let

z = H4

⎛

⎜

⎜

⎝

a
b
c
d

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

a+b+ c+d
a−b+ c−d
a+b− c−d
a−b− c+d

⎞

⎟

⎟

⎠

. (18.9)

To calculate z, 12 additions/subtractions are required. In general, the number of
operations is n2 −n. [In (18.9) n = 4.]

However, by calculating intermediate results

a′ = a+b

b′ = a−b

c′ = c+d

d′ = c−d,

(18.10)

we get the end result by only four more additions/subtractions:

z =

⎛

⎜

⎜

⎝

a′ + c′

b′ +d′

a′ − c′

b′ −d′

⎞

⎟

⎟

⎠

, (18.11)

a total of 8 operations. A saving of 12− 8 = 4 operations does not seem very im-
pressive until we see the general formula: multiplication by a Sylvester-Hadamard
matrix in the manner illustrated above for H4 (possible because H4 = H2 ⊗ H2)
requires

n log2 n instead of n2 −n (18.12)

additions/subtractions. For n = 216, the reduction factor equals 2.44×10−4, a sav-
ings that may spell the difference between a problem being affordable (or even
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possible) to run on a given facility and impossible to run – perhaps on any ma-
chine. For further details and applications to spectroscopy see the excellent book by
Harwit and Sloane [18.2].

Hadamard matrix operations owe their importance in part to the great technical
significance of certain “maximum-length” sequences that are generated by prim-
itive polynomials over finite number (Galois) fields, GF(2m). We shall return to
this fascinating topic when we discuss cyclotomic polynomials over Galois fields
(Chaps. 26, 27).

18.2 The Basic Principle of the Fast Fourier Transforms

As we saw in Chap. 17, the Discrete Fourier Transform (DFT) is defined by [18.3]:

Ak :=
M

∑
n=1

ane−2πink/M, (18.13)

which can also be written as a matrix-vector product

A = FMa, (18.14)

where FM is the M×M DFT matrix, the simplest nontrivial one being

F2 =
(

1 1
1 −1

)

, (18.15)

which is exactly like the Hadamard matrix H2. Is F4 perhaps the direct product of
F2 with itself? Not quite:

F4 =

⎛

⎜

⎜

⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞

⎟

⎟

⎠

. (18.16)

However, if we permute rows 2 and 3 and multiply all imaginary terms by a “twiddle
factor” i (not to be confused with the “fudge factor”, so beloved among order-loving
scientists), we obtain

F̃4 =

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎠

= F2 ⊗F2 (!) (18.17)

Thus, with a little twiddling and some permuting, we have succeeded in decompos-
ing the 4× 4 DFT matrix into the direct product of two (identical) 2× 2 matrices,
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which – as an extra reward – are made up exclusively of ±1’s, requiring only addi-
tions or subtractions.

More generally, a properly twiddled and permuted 2m × 2m DFT matrix can be
written as a Kronecker power of F2:

F̃2m = F [m]
2 , (18.18)

which results in a fast algorithm as demonstrated for the Hadamard transform. This
is the basic principle of all Fast Fourier Transforms (FFT). The savings in the num-
ber of operations is again governed by the ratio log2 n/n, where n is the number of
data samples.

The rest is exhausting technical detail that is covered by a vast body of litera-
ture commensurate with the importance of the FFT (see [18.3] and the references
therein).



Chapter 19
Quadratic Congruences

Here we shall see how the Chinese Remainder Theorem allows us to solve quadratic
congruences for composite moduli. Quadratic congruences play a role in such digi-
tal communication tasks as certified receipts, remote signing of contracts, and coin
tossing – or playing poker over the telephone (discussed in Chap. 20). Finally,
quadratic congruences are needed in the definition of pseudoprimes, which were
once almost as important as actual primes in digital encryption (see Chap. 20).

19.1 Application of the Chinese Remainder Theorem (CRT)

First consider quadratic congruences [19.1] modulo an odd prime p:

x2 ≡ b (mod p), (19.1)

where p does not divide b, i. e., p � | b. This congruence has precisely two solutions:
x and p− x. The same is true for moduli that are powers of an odd prime: pei

i .
Quadratic congruences modulo a general modulus

m = pe1
1 . . . pek

k (19.2)

are solved by solving k simultaneous congruences modulo the coprime factors of m
[19.2]:

x2 ≡ b (mod pei
i ),

because owing to the CRT, solutions x to these simultaneous congruences will also
solve the congruence

x2 ≡ b (modm = pe1
1 . . . pek

k ). (19.3)

Example: x2 ≡ 9 (mod28). The coprime factors of 28 are 4 and 7. Thus, we solve

x2 ≡ 9 (mod4) and x2 ≡ 9 (mod7)

with the solutions
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〈x〉4 = 3 〈x〉7 = 3 and

〈x〉4 = 4−3 = 1 〈x〉7 = 7−3 = 4.

With these four values of x we can now construct four incongruent solutions
modulo 28:

x =
〈

〈x〉4 ·M1 ·N1 + 〈x〉7 ·M2 ·N2
〉

28,

where the Ni are given by

〈NiMi〉mi
= 1,

or with M1 = 7 and M2 = 4: N1 = 3 and N2 = 2 and

x =
〈

〈x〉4 ·21+ 〈x〉7 ·8
〉

28.

Substituting the above values for 〈x〉mi , we get the following four solutions

x++ = 〈3 ·21+3 ·8〉28 = 3

x+− = 〈3 ·21+4 ·8〉28 = 11

x−+ = 〈1 ·21+3 ·8〉28 = 17

x−− = 〈1 ·21+4 ·8〉28 = 25.

Check: 32 ≡ 112 ≡ 172 ≡ 252 ≡ 9 (mod28). Check!
Of course, these solutions still come in pairs:

x++ ≡−x−− (mod28) and

x+− ≡ −x−+ (mod28).

If we know one solution from each pair, we can find factors of the modulus by
computing the greatest common divisor of their sum and the modulus. For example
(3+11,28) = 14 or (3+17,28) = 4. We shall return to this point in Chap. 20 when
we discuss “coin tossing” by telephone.



Part VII
Pseudoprimes, Möbius Transform,

and Partitions



Chapter 20
Pseudoprimes, Poker and Remote Coin Tossing

In this chapter we take a closer look at numbers that are not primes, but are tanta-
lizingly close to primes in some respects. Of course, a given number n > 1 is either
prime or composite – in other words, n is either “pregnant” with factors or not; there
is no third alternative. But nevertheless, it makes sense to define and, as we do in
this chapter, discuss such odd entities as pseudoprimes, absolute (or universal) pseu-
doprimes and strong pseudoprimes. When talking about extremely large numbers,
pseudoprimality is sometimes the only evidence we can go by.

20.1 Pulling Roots to Ferret Out Composites

Fermat says

bn−1 ≡ 1 (modn), (20.1)

if b and n are coprimes and n is prime (cf. Chap. 8). However, as is well known, the
above congruence can also hold for composite n.

Example:

2340 ≡ 1 (mod341), (20.2)

in spite of the fact that 341 = 11 ·31 is composite. Because of this primelike property,
341 is called a pseudoprime to the base 2: 341 = psp(2).

More generally, a psp(a) is defined as an odd composite n for which

an−1 ≡ 1 (modn)

holds.
There are 245 pseudoprimes to the base 2 below one million, and the 6000th

psp(2) is 1,187,235,193 [20.1]. The number of actual primes, by comparison, is
about ten thousand times larger. Thus, numbers that are psp(2) are rather rare.
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Nevertheless, there are infinitely many1 [20.2] and, in fact, infinitely many in ev-
ery prime residue class [20.3]. Numerically, the number of pseudoprimes less than
n, Ψ(n), seems asymptotically related to the prime-counting function π(n) by

Ψ(n) = kπ
(√

n
)

,

with k ≈ 1.62 (the Golden ratio??).
The exponent 340 in (20.2) is even, and now that we have learned to pull square

roots, we might give it a try to see what happens. Of course, if 341 were prime, the
only possiblee results would be +1 or −1.

2170 = (210)17 ≡ 117 = 1 (mod341). (20.3)

Again, 341 does not reveal its compositeness.
In general, composite numbers n for which

a
n−1

2 ≡
(a

n

)

(modn),

are called Euler pseudoprimes, abbreviated epsp(a) [20.4]. Here (a/n) is the Leg-
endre symbol. Thus, because of (20.3), 341 is an epsp(2). Another epsp(2) is 1905.
Check: 2952 ≡ (2/1905) = 1 (mod1905). Check!

Since 170 is also even, we can execute another square-root operation:

285 = 32(210)8 ≡ 32 (mod341), (20.4)

since 210 ≡ 1 (mod341).
Here we have trapped 341 and discovered its compositeness, because 32 is nei-

ther congruent 1 nor −1 (mod341).
By repeated square rooting, we have, incidentally, also discovered the four solu-

tions to the quadratic congruence

x2 ≡ 1 (mod341), (20.5)

without inconveniencing the Chinese Remainder Theorem. Two of the solutions are
obviously ±1, and the other two are ±32. In our repeated square rooting of 2340, the
solution +1 occurred twice and the solution +32 once.

Again (see Chap. 19), two absolutely different solutions tell us “something”
about the factors of 341. Taking the greatest common divisors of the sum and dif-
ference of the two solutions with the modulus, we obtain

(32+1,341) = 11

and

(32−1,341) = 31, (20.6)

1 Indeed, every Fermat number, prime or not, obeys (20.1) (see Sect. 20.5).
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20.2 Factors from a Square Root

This looks too good to be true: we have unearthed both factors of 341. Is this an
accident? Or have we discovered a new approach to factoring the product of two
primes? If so, we had better know more about it, even if the algorithm relies on
the knowledge of two absolutely different square roots. To answer this question, we
write down the solution to

x2 ≡ 1 (mod341)

in terms of simultaneous congruences. Since both 〈x〉11 and 〈x〉31 equal ±1, we have

x =

〈

±341
11

〈

341
11

〉−1

11
± 341

11

〈

341
31

〉−1

31

〉

341

. (20.7)

Here we have made use of a new but obvious symbol: if

NiMi ≡ 1 (modmi) (20.8)

or, equivalently,

〈NiMi〉mi
= 1, (20.9)

we write

Ni =: 〈Mi〉−1
mi

, (20.10)

and say Ni is the inverse of Mi modulo mi. In the above numerical example, N11 = 5
and N31 = 17, and we have

x = 〈±155±187〉341 . (20.11)

In terms of least residues, we have x = ±1 or x = ±32, as we saw before.
Now, looking at the general solutions of

x2 ≡ 1 (mod pq), p and q odd primes, (20.12)

we have

x = ±
〈

q〈q〉−1
p + p〈p〉−1

q

〉

pq
(20.13)

and, using a different symbol, y, for the absolutely different solutions

y = ±
〈

q〈q〉−1
p − p〈p〉−1

q

〉

pq
. (20.14)

Taking the upper signs, we see immediately that the sum equals
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〈x+ y〉pq = 2
〈

q〈q〉−1
p

〉

pq
(20.15)

and the difference

〈x− y〉pq = 2
〈

p〈p〉−1
q

〉

pq
. (20.16)

Consequently, since we have assumed that p and q are odd,

(x+ y, pq) = q and (20.17)

(x− y, pq) = p. (20.18)

Thus, calculating greatest common divisors of n and the sum and differences of
quadratic congruences modulo n can indeed reveal the two factors of n.

20.3 Coin Tossing by Telephone

Alice and Bruno are divorcing (each other). Who gets the old jalopy, once the cou-
ple’s precious chromium-embroidered self-propelled couch (rhymes with ouch)?
Alice telephones Bruno and says: “Let’s toss coins.” Bruno: “Fine, I’ll toss.” But
Alice, tossing her head (invisible to Bruno, because they are not connected by
Picturephone R©), objects: “Let me do the tossing – you know, you always liked my
salads, if nothing else.” So Bruno gives in: “O.K. I choose TAILS.” Alice tosses (the
coin) and up comes HEADS. Alice to Bruno: “Sorry, you lost – you’d better look
around for another car.”

How can we make this situation immune to cheating without resorting to video
or witnesses? By extracting square roots! And here is how [20.5].

PROTOCOL

1) Alice selects two very large odd primes p and q and calculates n = pq.
2) Alice sends Bruno n.
3) Bruno picks a random number x smaller than n and calculates the least re-

mainder of x2 modulo n: 〈x2〉n.
4) Bruno sends Alice 〈x2〉n.
5) Alice, knowing p and q (and remembering the Chinese Remainder Theorem),

calculates the four square roots, ±x and ±y.
6) Alice sends Bruno one of these four values, not knowing which one Bruno

had originally selected under (3).
7) Bruno squares the received number to check that Alice has not made a mistake

(or cheated). If Alice sent +x or −x, Bruno has lost, admits it, and Alice gets
the remains of their car. However, if Alice sent +y or −y, Bruno tells Alice
that he has won and would she please have the car delivered to his new pad.

8) Alice does not believe that Bruno has won and challenges him to prove it.
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9) Bruno adds his x to the y Alice sent him and, using Euclid’s time-honored
algorithm, determines the greatest common divisor with n, which is one of
the two factors of n:

(x+ y,n) = p or q.

10) Bruno sends Alice (x+y,n) and n/(x+y,n), i. e., the two factors p and q of n.
11) Alice knowing that Bruno has succeeded in factoring n, throws in the towel

and hopes for better luck next time. Of course, Alice had picked p and q so
large that Bruno (or anyone else, except perhaps the Government) could not
factor n without knowledge of an absolutely different square root.

END OF PROTOCOL.

Example: (too small, except perhaps to wager on a set of seven-year-old snow tires):
p = 101, q = 113, n = 11413.

x = 1234, 〈x2〉11413 = 4827.

〈x〉101 = 22, 〈x〉113 = 104

〈113〉−1
101 = 59 〈101〉−1

113 = 47

x,y = ±〈22 ·113 ·59±104 ·101 ·47〉11413

x,y = ±1234 , ±4624; 〈46242〉1143 = 4827. Check!

x+ y = 5858

(5858,11413) = 101. Check!

y− x = 3390

(3390,11413) = 113. Check!

Suppose Bruno does not want to win. Then, even when Alice sends him ±y to his
±x, he can pretend that what Alice sent him was the square root he already knew,
and that therefore he has lost. If Alice wants Bruno to win, and if he did win the
toss, then under the present protocol she has no way of telling whether Bruno lied
when he said “I lost”.

To take care of this peculiar situation, a different protocol has been advanced by
Silvio Micali [20.6] of the University of California at Berkeley. It is called “tossing
coins into wells”. We will not describe Micali’s protocol, but simply mention that
the “well” into which Alice tosses the coin is so deep that Bruno cannot reach in
and turn the coin over. But he can see whether “heads” or “tails” is up, and if Alice
does not believe him, he can ask her to look at the “well” herself.

It is noteworthy, and perhaps surprising, that number theory, of all disciplines,
provides the solution to such mundane problems.

It is obvious that the general idea exploited here, namely the exchange of partial
information, can be exploited in other kinds of transactions such as

“I will tell you my secret only

if you tell me yours.”
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The problem, of course, arises when the two “clams” are remote from each other.
If clam A releases her secret, clam B may say “thank you” and remain shut up. To
avoid this kind of cheating, the secrets are represented by strings of bits, and one bit
from each clam is exchanged at any one time following a procedure similar to the
coin-tossing protocol. If either partner clams up in the middle of the exchange, then
both have acquired the same number of bits (give or take one bit). Of course, the
early bits of B (or A) could be relatively worthless. I shall leave it to the reader to
find a way out of this semantic quandary.

Another potential application of the coin-tossing protocol is to play poker [20.7]
over the wire. The author, not being a poker player himself, invites the interested
reader to devise a safe protocol. But then, poker might lose much of its charm with-
out the faces in a smoke-filled room.

20.4 Absolute and Strong Pseudoprimes

We showed above that 341 was a pseudoprime to the base 2 because it is composite
and 341|(2341 − 2). There are some numbers N called Carmichael numbers [20.8]
or absolute pseudoprimes, composites defined by N|(bN−1 − 1) for all (b,N) = 1.
The smallest member of this dangerous species (dangerous for primality tests) is
561 = 3 ·11 ·17.

How can it be possible for bN−1 to be congruent to 1 modulo N for all b coprime
to N? For N = 561 there are φ(561) = 320 such values b. Credulity is strained! Yet
the mystery behind the Carmichael numbers is not very deep. All we need are three
(or more) odd primes pi such that each pi − 1 divides N − 1 = ∏ pi − 1. This is
obviously the case for p1 = 3, p2 = 11 and p3 = 17 because 2, 10, and 16 all divide
3 ·11 ·17−1 = 560.

Why is this sufficient? First note that according to Fermat,

bpi−1 ≡ 1 (mod pi)

for all (b, pi) = 1. These are simultaneous congruences (see Chap. 17), and by writ-
ing them

x ≡ 1−bpi−1 (mod pi)

we have brought them into the form of (17.1). These congruences have a unique
solution modulo N = ∏ pi. (In Chap. 17 N is called M, and the coprime moduli mi

in (17.2) are in fact primes here, the primes pi.) This unique solution is, of course,
x = 0. Thus, we have

0 ≡ 1−bpi−1 (modN), or

bpi−1 ≡ 1 (modN).
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Since pi −1 divides N −1:

N −1 = ki(pi −1),

for some ki, we have

bN−1 ≡ 1ki ≡ 1 (modN).

This congruence holds for all (b, pi) = 1, i = 1,2, . . . , which implies (b,N) = 1. In
other words, N is an absolute pseudoprime.

Another example is N = 2821 = 7 · 13 · 31, because 6, 12 and 30 all divide
N − 1 = 2820. With φ(2820) = 2160, there are 2160(!) bases b for which 2821
divides b2820 −1.

The reader may wish to find other n-tuples of primes which give Carmichael
numbers.

To get a better grip on pseudoprimes, the concept of a strong pseudoprime [20.4]
has been introduced. Definition: N is a strong pseudoprime to the base b if it is
composite and the following holds. With N −1 = K2t , K odd, consider

xi =
〈

bK2t〉

N ,

xt−1 =
〈

bK2t−1〉

N (20.19)

...

...

x0 =
〈

bK〉

N ,

where 〈 〉N means least absolute remainder modulo N. Now let xi be the remainder
with the largest index i that differs from +1. If xi = −1, then N is called a strong
pseudoprime to the base b, abbreviated spsp(b).

The strong pseudoprimality test is capable of unmasking even absolute pseudo-
primes such as 561: While

2560 ≡ 2280 ≡ 1 (mod561),

the next halving of the exponent reveals 561 to be composite:

2140 ≡ 67 �≡ −1 (mod561).

And 2821 is exposed as nonprime by the first halving of the exponent:

21410 ≡ 1520 �≡ −1 (mod2821).

According to Rabin [20.9], the probability is less than 0.25 that an odd N is in fact
composite when N passes the above test. Thus, if the test for strong pseudoprimality
is repeated, say, 50 times with 50 different bases, the probability that a composite
number would have “slipped through the net” would be less than (0.25)50 = 2−100 ≈
10−30.
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As a consequence, if since the beginning of the universe (1017 seconds ago),
one million primes had been tested every second, then the probability that a single
composite number would be among the strong pseudoprimes so found would be is
less than 10−7. Of course, 10−7 is not zero, and with many extremely large numbers
we shall probably never know with certainty whether they are composite or prime:
they will keep their mystery forever.

Even so, strong pseudoprimality is a much more reliable indicator of primality
than some “unambiguous” deterministic computations that take, say one hundred
(or one trillion) years. Who will guarantee the fail-safety of the computer over such
long running times?

And while we are talking of complexity and absolute provability, what about a
proof that is more than 5000 pages long (or ten good-sized book volumes), like
the recent proof that all finite simple groups are now known and that the so-called
monster group is the largest sporadic simple group (i. e., has the largest order)?

Nevertheless, recent progress in deterministic primality testing promises reason-
able speeds for numbers with more than a 1000 digits (Sect. 20.6).

20.5 Fermat and Strong Pseudoprimes

It is interesting to note that all Fermat numbers

Fn := 22n
+1 (20.20)

are either primes or strong pseudoprimes to the base 2. To see this, we write:

2Fn−1 = 222n

= (22n
)22n−n

= (Fn −1)22n−n
. (20.21)

Taking the remainder modulo Fn yields

〈

2Fn−1〉

Fn
= (−1)22n−n

= 1. (20.22)

Now, taking square roots will always give 1’s until eventually, after 2n − n square-
rootings, a −1 will apear. Thus, all Fermat numbers are primes or strong pseudo-
primes to the base 2 – a weak partial vindication of Fermat’s erroneous conjecture
(“quasi persuadé”, to use Fermat’s own words) that all Fn are in fact prime.

On the other hand
〈

3F5−1〉

F5
= 3,816,461,520 �= 1, (20.23)

so that F5 is not even an ordinary pseudoprime to the base 3.
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20.6 Deterministic Primality Testing

Here we briefly review some background and the latest published advances in deter-
ministic tests for primality [20.2]. Mersenne once remarked (in translation) that “to
tell if a given number of 15 or 20 digits is prime or not, all time would not suffice for
the test”. How astonished he would be if he learned that the primality of 100-digit
numbers can now, albeit 340 years later, be ascertained in a matter of minutes! And
Gauss would be delighted too. In Disquisitiones Arithmeticae [20.10] he wrote (in
Latin): “The dignity of the science itself [number theory, of course] seems to require
that every possible means be explored for the solution of a problem so celebrated”
(distinguishing prime numbers from composite numbers and resolving the latter into
their prime factors).

However, the progress reported here is only one part of Gauss’s “problem”,
namely primality testing. No comparable progress has been made on the second
part of his problem, which is factoring [20.11]. We must always bear in mind the
distinction between these two tasks. Primality testing has become very efficient in
recent years, and that is good for public-key cryptography, because large primes are
at a premium. Factoring, on the other hand, is still very difficult, but that is also
good, nay vital, for the security of public-key cryptosystems.

The first deterministic primality test that we encountered was based on Wilson’s
theorem (Chap. 8): n is prime iff n|(n−1)!+1. Unfortunately, the factorial (n−1)!
destroys any attraction that Wilson’s theorem might have evoked: the slowest sieve
method will be lightning-fast compared to checking the divisibility of (n− 1)! + 1
for large n. If n has 100 digits, then (n− 1)! has roughly 10102 digits – not to be
confused with the “relatively” small number 10102; the utter futility is obvious.

Along came Edouard A. Lucas [20.12], who showed in 1876 that n is prime iff
there is a b, coprime to n, such that

bn−1 ≡ 1 (modn) (20.24)

and

b
n−1

p �≡ 1 (modn)

for each prime factor p of (n−1).
Lucas’s test is especially expeditious for n = 2m +1, because then n−1 has only

one prime factor: 2.

Example: n = 17, n− 1 = 24 = 16, 216 ≡ 1 (mod17) and 28 = 256 ≡ 1 (mod17).
Thus b = 2 does not tell us anything. But for b = 3, 316 ≡ 1 (mod17) and 38 =
6561 ≡ 16 �≡ 1 (mod17). Thus, 17 is a prime.

The problem, of course, is that for large n not all the prime factors of n − 1
may be known. Thus it came as a relief when in 1945, a primality test for n was
formulated requiring knowledge of only some of the prime factors of n − 1 and
n + 1. Later, a primality test was devised [20.13] for which partial factorization of
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n2 + 1 or n2 − n + 1 or n2 + n + 1 is required. However, if none of these numbers
factor easily, the test does not fly.

Finally, in 1980, Adleman and Rumely [20.14] constructed a test that has dras-
tically improved the efficacy of checking the primality of large numbers without
restriction. With some improvements by H. Cohen and H. W. Lenstra, Jr., the test
can now check a 100-digit number in less than a minute! And even a 1000-digit
number can now be tested in about a week.

More generally, it is conjectured [20.2] that to test the primality of n requires a
time not exceeding.

c(lnn)b ln(ln(lnn)),

where b and c are constants independent of n, and b is of order 1 and c depends,
of course, on the calculating speed of the computer. With c = 5 · 10−5 and b ≈ 1.5
(empirical), the maximal testing time for a 2000-digit number is less than a year –
only moderately unreasonable.

If we take present life expectancy at birth to be about 80 years, then a teenager
can know the primality of any 5000-digit number during his expected lifetime – and
sooner, if there is further progress in primality testing during the next decades, or
perhaps the next few weeks. However, there will always be a “primality horizon”
beyond which numbers will keep their prime secret “forever” – the half-life of a
proton (ca. 1031 years), say.

Update: As a result of the Agrawal-Kayal-Saxena algorithm (2002), the situation
has changed. Some of the recent developments are summarized at http://www.maths.
anu.edu.au/∼brent/talks.html#Strachey

20.7 A Very Simple Factoring Algorithm

The simplest method for factoring N is to divide N by all primes up to N1/2 and to
watch for zero remainders. Divisibility by 2, 3, 5 and 11 is of course easily tested
(see Sect. 6.1). But the main problem with this approach is the necessity to store
many primes (more than 400 million primes for N ≤ 1020).

The need to store any primes evaporates if we divide by all integers up to N1/2.
This method is of course very time consuming. A neat and simple algorithm, suitable
for pocket calculators, follows from the following observation.

Suppose we trial divide N first by 2. If 2 is not a divisor of N, then trial dividing
by any other even number is redundant. Thus, if suffices to trial divide only by 2 and
odd numbers.

Similarly, after trial division with 3, trial division by any multiple of 3 is unnec-
essary. Thus, only trial divisors congruent 1 or 5 modulo 6 are still in the running.

Finally, after also trial dividing by 5, which is just as easy, only trial divisors
congruent to 1, 7, 11, 13, 17, 19, 23 and 29 modulo 30 need be considered, i. e., 8
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out of each 30 integers. I encourage the reader to program her or his calculator for
this simple algorithm, which requires storing fewer than 10 integers.

Other factoring algorithms for calculators, home computers and large machines
are described by H. C. Williams in “Factoring on a Computer” in The Mathematical
Intelligencer (Volume 6, Number 3, 1984, pp. 29–36).

What are the factors (other than 2) of 1164 + 1, a 67-digit number? Is R1031 a
“repunit” consisting of 1031 1’s (see Sect. 3.6) prime?

20.8 Factoring with Elliptic Curves

After decades of slow progress on factoring large integers, an unlikely candidate has
given the factoring field a big boost: algebraic geometry, more specifically rational
points on elliptic curves. Elliptic curves, defined by an equation of the form y2 =
x3 + ax + b, have played a role also in the recent proof of Fermat’s Last Theorem
(see Sect. 7.7).

The elliptic curve method (ECM) for factoring, is due to Hendrik Lenstra [Annals
of Mathematics, 1987]. In 1997, Richard Brent showed that ECM could have been
used to find the 49-digit factor of F9, but by then the factors of the 9th Fermat num-
ber F9 were already known by the Number Field Sieve (NFS) which doesn’t involve
elliptic curves [Lenstra, Lenstra, Manasse & Pollard, Mathematics of Computation
61 (1993), 319–349].

F10 can be factored by ECM, and Brent did this in 1995. The possibility arises
because the second-largest prime factor of F10 has “only” 40 decimal digits, so can
be found by ECM.

Note that with ECM the work required depends mainly on the size of the factor,
whereas for NFS the work depends on the size of the number being factored (so
F10 is still beyond the range of NFS). Similarly, F11 can be factored by ECM,
and again Brent succeed in this in 1988 soon after ECM was discovered, see
http://www.maths.anu.edu.au/∼brent/F11.html

The smallest Fermat number whose complete factorisation is still unknown is
F12. The reader can find a summary of the current status at http://www.prothsearch.
net/fermat.html

20.9 Quantum Factoring

Enter quantum mechanics, the completely counter-intuitive field of physics of which
Richard Feynman once said “I think it is safe to say that nobody understands
quantum mechanics”. And the great Dane Niels Bohr thought that “If, in think-
ing about quantum mechanics, you don’t get dizzy, you really haven’t understood
it”. (Einstein, however, didn’t go along with the general consensus and stuck to his
“God doesn’t play dice” view of things.)
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Quantum computers, still unrealized but looming on the horizon, can strikingly
speed up the task of finding the prime factors of large numbers. Factors of a general
n-digit number can be found in a time proportional to n2 (as apposed to some expo-
nential growth for classical computation). The still unsolved problem is to slow the
decoherence (unavoidable in any quantum system with links to the classical world)
sufficiently to extract the result of the computation [20.15].



Chapter 21
The Möbius Function and the Möbius
Transform

After Euler’s totient function, the Möbius function (named after the Möbius of strip
fame) is one of the most important tools of number theory. It allows us to invert
certain number-theoretic relations. In a sense, if we liken summation over divisors
to integration, then taking the Möbius function is like differentiating. It is defined as
follows:

μ(n) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for n = 1

0 if n is divisible by a square

(−1)k if n is the product of k distinct primes.

(21.1)

Thus, μ(n) �= 0 only for 1 and squarefree integers. The Möbius function is
multiplicative:

μ(mn) = μ(m)μ(n) if (m,n) = 1.

Also,

μ(mn) = 0 if (m,n) > 1, (21.2)

because then mn is not squarefree.
The most important property of the Möbius function is that its summatory func-

tion (Sect. 11.4) equals zero, except for n = 1:

∑
d|n

μ(d) = δn1. (21.3)

Here δmn is the Kronecker symbol defined by

δmn :=

{

1 for n = m

0 for n �= m.
(21.4)
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21.1 The Möbius Transform and Its Inverse

Let F be the summatory function of f :

F(n) = ∑
d|n

f (d). (21.5)

Then

f (n) = ∑
d|n

μ
(n

d

)

F(d), (21.6)

and conversely, (21.6) implies (21.5). Thus, the Möbius function emerges as the one
that permits us to determine a function from its summatory function.

F(n) is also called the Möbius transform of f (n) and f (n) is called the inverse
Möbius transform of F(n) [21.1].

Example: As we have seen (and repeatedly used) in previous chapters, the following
identity holds for Euler’s function:

n = ∑
d|n

φ(d). (21.7)

Thus, n is the Möbius transform of φ(n).
By applying the above inversion formula, we obtain the following expression for

Euler’s function:

φ(n) = ∑
d|n

μ
(n

d

)

d = n∑
d|n

μ(d)
1
d

, (21.8)

a relation between Euler and Möbius that is good to know. How can we evaluate
the sum on the right? We only need to consider squarefree divisors d∗ of n because
μ(d) = 0 for nonsquarefree d. Writing

n = ∏
i

pei
i , (21.9)

such divisors d∗ are of the form pi or pi p j (i �= j), etc. Thus, with (21.1),

∑
d|n

1
d

μ(d) = 1−∑
i

1
pi

+ ∑
i �= j

1
pi p j

− . . .

= ∏
i

(

1− 1
pi

)

. (21.10)

In this manner, we have found another proof of

φ(n)
n

= ∏
i

(

1− 1
pi

)

, (21.11)

the average of which, as we know, tends to 6/π2 (see Sect. 4.4).
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The above proof is, of course, not complete without showing that (21.3) holds.
Defining

ε(n) := ∑
d|n

μ(d), (21.12)

we notice that trivially, ε(1) = 1. Next, we consider n to be a prime power pα

(α > 0). In that case, the divisors of n are p, p2, . . . , pα . Thus,

ε(pα) = 1+ μ(p)+ μ(p2)+ · · ·+ μ(pα). (21.13)

Here all terms vanish except the first two, which cancel. Hence

ε(pα) = 0, (α > 0). (21.14)

The result for general n now follows from the fact that μ(n) is multiplicative,
making its summatory function also multiplicative (which we do not prove here, but
is easy to show).

21.2 Proof of the Inversion Formula

We want to show that for

F(n) = ∑
d|n

f (d),

the inverse Möbius transform is

f (n) = ∑
d|n

μ(d)F
(n

d

)

,

and vice versa. We note that

F
(n

d

)

= ∑
d′| n

d

f (d′) (21.15)

and introduce this in the above equation, yielding

f (n) = ∑
d|n

μ(d) ∑
d′| n

d

f (d′). (21.16)

By inverting the order of summation over d and d′, we obtain

f (n) = ∑
d′|n

f (d′) ∑
d′| n

d′

μ(d), (21.17)

where the last sum equals zero, except for n/d′ = 1, i. e., d′ = n – which proves
(21.6). The converse is proved similarly.
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According to the basic relation (21.3) the Möbius function μ(n) is the Möbius
transform of the Kronecker delta function δ (n) = δn1 as defined in (21.4). The
Möbius transform of δ (n) is the constant 1.

The Möbius transform of nk is the generalized divisor function σk(n) as defined
in Chap. 11.

The inverse Möbius transform of nk could be called a generalized Euler function
φk(n), in view of the fact (21.8) that the inverse Möbius transform of n is φ(n) =
φ1(n). The so defined generalized Euler function is given by

φk(n) = nk ∏
p|n

(

1− 1
pk

)

, k = 1,2, . . . .

We mention one more function with interesting Möbius transform properties, the
von Mangoldt function, which plays an important role in analytic number theory
[21.2]:

Δ(n) =

{

ln p if p is the only prime factor of n

0 if n �= pm.

Its Möbius transform is the logarithm lnn. The inverse Möbius transform of the von
Mangoldt function is −μ(n) lnn [21.3].

21.3 Second Inversion Formula

Let

G(n) = ∏
d|n

g(d); then (21.18)

g(n) = ∏
d|n

G(d)μ(n/d) (21.19)

and vice versa. The proof follows from the one just given by setting g = e f and
G = eF .

Applying this formula to the one previously derived (Chap. 11)

∏
d|n

d = n1/2d(n),

where d(n) is the number of divisors of n, we obtain the following curious (and
probably useless) representation of n2:

n2 = ∏
d|n

dd(d)μ(n/d). (21.20)
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21.4 Third Inversion Formula

For x > 0, let

H(x) =
∞

∑
n=1

h(nx). Then (21.21)

h(x) =
∞

∑
n=1

μ(n)H(nx) (21.22)

and vice versa, provided

∑
m,n

| f (mnx)|

converges.

21.5 Fourth Inversion Formula

For x > 0, let

H(x) =
|x|

∑
n=1

h
( x

n

)

. Then (21.23)

h(x) =
|x|

∑
n=1

μ(n)H
( x

n

)

. (21.24)

21.6 Riemann’s Hypothesis and the Disproof
of the Mertens Conjecture

The Möbius function is involved in the following noteworthy sums:

∞

∑
n=1

μ(n)
n

= 0, (21.25)

∞

∑
n=1

μ(n)
n

lnn = −1, (21.26)

the former one being the result of E. Landau’s dissertation.
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The partial sums over the Möbius function

M(N) :=
N

∑
n=1

μ(n)

were conjectured by Mertens in 1897 to obey the bound |M(N)|< N1/2 for all N > 1.
The truth of this conjecture, which has attracted much attention over the last 100
years, would imply the Rieman hypothesis (see Sect. 4.2). But, alas, the Mertens
conjecture was disproved in 1984 by A. Odlyzko and H. J. J. te Riele, although no
counterexamples had been found for N up to 1010. In fact, there may be no coun-
terexamples below 1020 or even 1030, but Odlyzko and te Riele proved that, for some
N, M(N)N−1/2 exceeds 1.06 (and may, in fact, be unbounded for N → ∞). They did
not actually give a counterexample but expect one to occur “near” 101065

. Here, once
more, numerical evidence was – and would continue to be! – very misleading. But,
ironically, the disproof involved heavy numerical computation (of the zeros of the
zetafunction).

21.7 Dirichlet Series and the Möbius Function

A Dirichlet series is of the form [21.1]:

F(s) =
∞

∑
n=1

f (n)
ns , (21.27)

where F(s) is called the generating function of the function f (n), which appears as
the coefficient of n−s in a Dirichlet series. In the following we shall ignore questions
of convergence.

If f (n) is multiplicative, then

F(s) = ∏
p

[

1+
f (p)
ps +

f (p2)
p2s + . . .

]

, (21.28)

and if f (n) is completely multiplicative then

F(s) = ∏
p

[

1− f (p)
ps

]−1

, (21.29)

For f (n) = 1 in (21.27) or (21.29), F(s) equals the Riemann zetafunction ζ (s).
If we have a second Dirichlet series:

G(s) =
∞

∑
n=1

g(n)
ns , (21.30)
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then the product of F(s) and G(s) is given by

F(s)G(s) =
∞

∑
n=1

h(n)
ns where (21.31)

h(n) = ∑
d|n

f (d)g
(n

d

)

, (21.32)

which is called a number-theoretic convolution. In other words, if two arithmetic
functions are “convolved” as in (21.32), then the generating function is the product
of their Dirichlet series.

Because, by definition (21.1):

μ(pk) = 0 for k > 1,

we have

1− 1
ps = 1+

μ(p)
ps +

μ(p2)
p2s + . . . , (21.33)

and therefore

1
ζ (s)

= ∏
p

[

1− 1
ps

]

= ∏
p

[

1+
μ(p)

ps +
μ(p2)

p2s + . . .

]

, (21.34)

which, with (21.28) and (21.27), can be written:
∞

∑
n=1

μ(n)
ns = ζ−1(s). (21.35)

For s = 2, we obtain the interesting result:

∞

∑
n=1

μ(n)
n2 =

6
π2 (21.36)

In parting, we cite a few similarly derived Dirichlet series results, which the
reader may wish to prove:

∞

∑
n=1

|μ(n)|
ns =

ζ (s)
ζ (2s)

, (21.37)

∞

∑
n=1

d(n)
ns = ζ 2(s), (21.38)

∞

∑
n=2

lnn
ns = −ζ ′(s), (21.39)

∞

∑
n=1

(lnn)2

ns = ζ ′′(s), (21.40)
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∞

∑
n=2

Δ(n)
ns = −ζ ′(s)

ζ (s)
. (21.41)

If g(n) is the Möbius transform of f (n), then their generating functions, G(s) and
F(s), are related by

G(s) = ζ (s)F(s). (21.42)

Setting f (n) = φ(n), so that g(n) = n and therefore

G(s) =
∞

∑
n=1

n
ns = ζ (s−1),

we obtain the relationship:

∞

∑
n=1

φ(n)
ns =

ζ (s−1)
ζ (s)

(21.43)

and, in a similar manner,

∞

∑
n=1

φk(n)
ns = ζ (s)−1ζ (s− k). (21.44)

Relations between prime divisor functions and the zetafunction were already
mentioned in Sect. 12.3 (12.40–12.43), although the relation with ζ (s) was not made
explicit there, it is given by the following two identities:

ζ (2s)
ζ (s)

=
∞

∑
n=1

(−1)Ω(n)

ns and (21.45)

ζ 2(s)
ζ (2s)

=
∞

∑
n=1

2ω(n)

ns . (21.46)



Chapter 22
Generating Functions and Partitions

The generating functions introduced in Chap. 21 and defined by Dirichlet series are
not the only kind of generating functions. Here we shall briefly get to know another
type of generating function with many useful properties that are applicable in nu-
merous fields of mathematics and other sciences. As an illustration of that utility,
we shall acquaint ourselves with various partition problems such as the partitions of
our main subject: the positive integers. For example, the integer 4 has 5 unrestricted
partitions into integers:

4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1.

The subject of partitions is closely connected with Elliptic Modular functions
[22.1], one of the more fertile fields of mathematics, which, however, is beyond the
scope of this book.

Applications of partition functions abound throughout the natural sciences – we
mention only (quantum) statistical physics, where questions such as how to parti-
tion a given number of energy quanta or, perhaps, a fluctuating number of photons
among various “bins” or eigenstates are at the very root of our understanding of
what radiation and matter are about.

22.1 Generating Functions

A generating function F(s) for the function a(n) can be defined quite generally by:

F(s) = ∑a(n)u(n,s), (22.1)

where, again, we ignore questions of convergence [22.2].
With u(n,s) = n−s, (22.1) is a Dirichlet series as discussed in Sect. 21.7. Another

choice of u(n,s) is:

u(n,s) = e−sn,
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or, with

z = e−n,

F(z) = ∑a(n)z−n. (22.2)

F(z) is also known as the z transform of a(n), especially in engineering applica-
tions – to time-discrete electrical circuits, for example [22.3].

While Dirichlet series, as a result of (21.31) and (21.32), play an important role
in multiplicative problems of number theory (in particular the theory of primes and
divisibility), the z transform is dominant in additive problems, because of the fol-
lowing all-important convolution property: If F(z) is the z transform of a(n) as
defined in (22.2), and G(z) is the z transform of b(n), then the z transform of the
convolution (ubiquitous in linear systems)

c(n) = ∑
k

a(k)b(n− k) (22.3)

equals the product of the z transforms:

∑c(n)z−n = F(z)G(z). (22.4)

The decisive difference between Dirichlet series and z transforms is, of course, that
in the former the variable (s) appears in the exponent, whereas in the latter the
variable (z) appears as a base.

If we take z as a complex variable and consider it on the unit circle:

z = eiθ ,

then the z transform turns into a Fourier series – another important property of the
power-series type generating function as defined by (22.2).

Generating functions of this type also play a great role in probability theory,
where they are known as characteristic functions. They generate statistical moments
or cumulants of probability distributions and permit their convenient manipulation
[22.4]. Since summing two or more independent random variables results in a con-
volution of their distributions, the corresponding characteristic functions are simply
multiplied to obtain the characteristic function of the summed random variables.
(Thus, for example, the sum of several Poisson variables is immediately seen to be
another Poisson variable.)

As a simple example of a generating function, we consider

F(z) = (1+ z)n,

which, of course, generates the binomial coefficients
(N

n

)

:

(1+ z)N =
N

∑
n=0

(

N
n

)

zn, (22.5)
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which tell us how many ways n objects can be selected from a set of N distinct
objects without regard to order. (Often power series as in (22.5) are in z rather than
z−1, but that is a matter of choice depending on the field of application.)

We may also mention here the simple generating function of the Fibonacci num-
bers (Chap. 5):

∞

∑
n=0

Fnzn =
z

1− z− z2 , (22.6)

which is very useful in obtaining closed-form expressions for Fn as in (5.30).

22.2 Partitions of Integers

Let us ask ourselves how many ways p(n) a positive integer n can be partitioned so
that the sum of the parts equals n – without regard to order and with no restrictions
(other than that the parts shall also be positive integers).

Example: p(5) = 7, because:

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1

= 2+1+1+1 = 1+1+1+1+1,

i. e., there are 7 ways to partition 5 in the prescribed manner.
Partitions obey an endearing symmetry. For example, consider the 5 dots:

• • •

• •

This geometrical representation of a partition, called a Ferrer graph, illustrates two
partitions of the integer 5. Reading column-wise (vertically) we see that 5 = 2+2+
1 (which we already knew), and reading row-wise (horizontally) we discover that
5 = 3+2. Thus, each partition has a (not necessarily distinct) conjugate.1 Note that
the first partition (5 = 2 + 2 + 1) is into 3 integers of which the largest are 2, and
the second partition (5 = 3 + 2) is into 2 integers of which 3 is the largest. Some
partitions are self-conjugate, as for example 3+1+1.

The following two theorems are an interesting consequence of conjugacy [22.2]:

1) The number of partitions of n into m integers is equal to the number of parti-
tions of n into integers the largest of which is m.

For example, there are 2 partitions of 5 into 2 integers (4 + 1 and 3 + 2) and there
are equally 2 partitions of which 2 is the largest integer (2+2+1 and 2+1+1+1).

1 In quantum mechanics such geometric representations of partitions are known as Young tableaux,
after the inventor who introduced them to the study of symmetric groups. They are important in
the analysis of the symmetries of many-electron systems.
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2) The number of partitions of n into at most m integers is equal to the number of
partitions of n into integers which do not exceed m.

For example, there are 3 partitions of 5 into at most 2 integers (5, 4 + 1 and 3 + 2)
and there are equally 3 partitions whose integers do not exceed 2, namely 2 + 2 +
1, 2 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1. Astounding consequences, considering the
simplicity of the underlying symmetry!

22.3 Generating Functions of Partitions

The useful generating functions for partitions are of the power-series (or z-transform)
type, because when we talk about partitioning, we are talking additively.

The generating function of p(n) was found by Euler. Defining p(0) = 1, it is

∞

∑
n=0

p(n)zn =
1

(1− z)(1− z2)(1− z3) . . .
. (22.7)

To see that Euler was right, we expand each factor into a geometric series:

integer 1 : (z0 + z1 + z2 + z3 + . . .)

integer 2 : (z0 + z2 + z4 + z6 + . . .) (22.8)

integer 3 : (z0 + z3 + z6 + z9 + . . .)

taken 0 1 2 3 . . . times, etc.

In multiplying this out, we have to take one term from each factor. For example,
what is the coefficient of z3, i. e., how many ways are there to get z3?

First, we take the term z3 in the third factor (1-column) and the two 1’s in the
first two factors. (These 3 terms, one from each factor, are identified by underlining
with a single horizontal stroke.) Next we take the term z1 in the first factor, the term
z2 in the second factor, and the 1 in the third factor, indicated by underlining with
a double stroke. This gives us another z3 term in the product. Third, we take the
factor z3 from the first factor (3-column) and the 1’s from the other two factors, as
shown by overlining with a triple stroke. This gives us a third z3 term. Since there
are no more ways of making z3 terms (the next factor – not shown in (22.8) – is
1+ x4 + x8 + . . . ), we conclude, tentatively, that

p(3) = 3.

And indeed, there are precisely 3 partitions of 3: 3 = 2+1 = 1+1+1.
Why is the Euler formula (22.7) correct? In what way did our way of picking z3

terms correspond to the 3 partitions of 3? Let us identify the first factor in (22.8)
with the partitioning integer 1. Having picked the term z3 (3-column) from it (triple
overlined) we say we have used the integer 1 exactly 3 times. In other words, we
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identify this z3 term with the partition 1+1+1: the integer 1 (first row) taken 3 times
(3-column). Similarly, we identify the second and third factors in (22.8) with the
partitioning integers 2 and 3, respectively. Thus, the double underlined contribution
to the z3 term in the product corresponds to the partition 1+2. The single underlined
terms correspond to the partition 3; in other words, the integer 3 is taken once (1-
column) and the integers 1 and 2 are both taken 0 times (0-column). This is how
generating functions function.

A more formal way to define partitions is to consider the expression

k1 +2k2 +3k3 + · · · = n, (22.9)

and to ask how many sets of nonnegative integers km there are that satisfy (22.9).
Here km is the number of times the integer m appears in the partition of n.

22.4 Restricted Partitions

The above discussion of the generating function (22.7) for unrestricted partitions
immediately allows us to write down the generating functions Fm(z) for the partition
of n into integers the largest of which is m:

Fm(z) =
1

(1− z)(1− z2) . . .(1− zm)
. (22.10)

Similarly, the generating function for partitions into even integers exceeding 4,
for example, is

6Feven(z) =
1

(1− z6)(1− z8)(1− z10) . . .
.

If we are interested in partitions of n into distinct integers, a moment’s thought
will show that the generating function is

Fdist(z) = (1+ z)(1+ z2)(1+ z3) . . . . (22.11)

Since each factor in (22.11) has only one term other than 1, we can take each inte-
ger at most once, i. e., the integers in any partition are unequal or distinct. (Remem-
ber that the individual factors in these generating functions stand for the different
integers.)

We shall illustrate the supreme usefulness of generating functions by the follow-
ing example. Fdist(z) according to (22.11) can be rewritten

Fdist(Z) =
1− z2

1− z
1− z4

1− z2

1− z6

1− z3 . . .

=
1

(1− z)(1− z3)(1− z5) . . .
. (22.12)
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But the latter generating function is Fo(z), corresponding to partitions into odd
integers.

Thus, we have found the remarkable result that distinct partitions (that take each
integer at most once without repetition) and partitions into odd integers are equally
numerous:

pdist(n) = po(n). (22.13)

Example: There are three partitions of 5 into distinct integers, namely 5, 4 + 1 and
3 + 2. And there are also three partitions of 5 into odd integers: 5, 3 + 1 + 1 and
1+1+1+1+1. Check!

Suppose a hypothetical physical situation depends critically on the partition of n
elementary particles or quanta over a number of bins or eigenstates. Then the purely
arithmetic relation (22.13) would tell us that we could never distinguish between two
different interpretations or “statistics”, namely “distinct” versus “odd”. Distinctly
odd!

Could the reader have discovered the “parity” law (22.13) without generating
functions? He may wish to prove his prowess with generating functions by proving
the following simple generalization of (22.13): The number of partitions of n with
no part repeated more than r times is equal to the number of partitions of n with no
part divisible by r +1.

For r = 1, we obtain the above result (2.13). But for 1 < r < n− 3, interesting
new results emerge. For example, for n = 6 and r = 2, there are 7 (out of a total
of 11) partitions that do not use the integers 3 and 6: 5 + 1 = 4 + 2 = 4 + 1 + 1 =
2+2+2 = 2+2+1+1 = 2+1+1+1+1 = 1+1+1+1+1+1. And there are
also 7 partitions not using any integer more than twice 6 = 5+1 = 4+2 = 3+3 =
4+1+1 = 3+2+1 = 2+2+1+1.

Let us turn the argument around and write down certain polynomial identities
and ask what they mean in terms of partitions. Consider the wellknown (?) identity:

1
1− z

= (1+ z)(1+ z2)(1+ z4)(1+ z8) . . . . (22.14)

Its correctness can be established by multiplying it with (1− z), which yields

1 = (1− z2)(1+ z2)(1+ z4)(1+ z8) . . . .

And now a mathematical chain reaction sets in: Combining the first two factors
yields

(1− z4)(1+ z4)(1+ z8) . . . ,

which in turn yields

(1− z8)(1+ z8) . . . , etc.,

which converges to 1 for |z| < 1.
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But what does (22.14) imply in terms of partitions? The left side is the generating
function of the integers themselves; i. e., it generates each integer exactly once. The
right side of (22.14) is the partition of the integers into powers of 2 without repeti-
tion. Thus (22.14) tells us that each integer can be represented uniquely as a sum of
powers of 2 (including 20 = 1). How comforting to know!

Manipulations of generating functions, as illustrated by the identity (22.14), lead
to several fascinating interpretations as partitions. For example, Euler proved that

(1− z)(1− z2)(1− z3) · · · =
∞

∑
n=−∞

(−1)nzn(3n+1)/2

= 1− z− z2 + z5 + z7 − z12 − z15 + . . . , (22.15)

which, by multiplying with Fdist(z) from (22.12), can be converted into a more easily
recognizable form:

(1− z2)(1− z4)(1− z6) · · ·
(1− z)(1− z3)(1− z5) · · · = 1+ z+ z3 + z6 + z10 + . . . , (22.16)

where the exponents are the familiar triangular numbers n(n+1)/2 (see Sect. 7.4).
(In other words, the left side of (22.16) is the generating function of the triangular
numbers.) The exponents in (22.15) are the pentagonal numbers g5(n) and g5(−n),
see Sect. 7.4.

The identity (22.15) has a striking combinatorial interpretation. The coefficient
of zn on the left side of (22.15) is

∑(−1)k,

where the summation is over all partitions into distinct integers and k is the number
of integers in such a partition. Thus, the left side of (22.15) represents the differ-
ence between partitions (into distinct integers) with an even and an odd number of
integers, respectively.

Calling the number of partitions of n into an even number of distinct integers
peven(n), and the number of partitions into an odd number of distinct integers
podd(n), we get

peven(n)− podd(n) =

{

(−1)k for n = k(3k±1)/2

0 otherwise,
(22.17)

where n = k(3k ± 1)/2 corresponds to the terms occurring on the right side of
(22.15).

Example: n = 8, which does not appear as an exponent on the right side of (22.15).
Thus, peven(8) should equal podd(8). And indeed, there are three partitions into dis-
tinct integers of each kind:

7+1 = 6+2 = 5+3 (even number of distinct integers),
8 = 5+2+1 = 4+3+1 (odd number of distinct integers).



282 22 Generating Functions and Partitions

The identity (22.15) also leads to a recurrence formula [22.5] for p(n):

p(n) =
1
n

n

∑
k=1

σ(k)p(n− k), p(0) = 1, (22.18)

where σ(k) is the sum of the divisors of k (see Chap. 11).
With the asymptotic behaviour of σ(k) (Sect. 11.4), one obtains an asymptotic

law [22.5] for p(n) for large n:

p(n) ≈ exp[π(2n/3)
1
2 ]/4n3

1
2 (22.19)

Example: for n = 243 (21.19) gives p(n) ≈ 1.38 ·1014. The exact result,

p(243) = 133978259344888,

contradicts a famous conjecture by S. Ramanujan [22.6, 7] (see also [22.1], p. 289)
that if

d = 5a7b11c

and

24n ≡ 1 (modd),

then

p(n) ≡ 0(modd).

But p(243) is not divisible by d = 73 = 343, although 24 ·243 ≡ 1 (mod343).

However, Ramanujan found a number of striking congruence relations for p(n)
that stood the test of time (and proof). One of them involves the modulus 5:

p(5m+4) ≡ 0(mod5). (22.20)

In the meantime, many more congruence relations for partitions (and other com-
binatorial identities) have been discovered and proved, stimulating a lot of good
mathematics [22.8].

We conclude this chapter with another striking discovery by Ramanujan involv-
ing a (generalized) continued fraction (Chap. 5):

1+
e−2π

1+
e−4π

1+
e−6π

1+
= e−2π/5(51/4g1/2 −g)−1, (22.21)

where g is the Golden ratio:

g =
1
2
(51/2 +1) = 1.618 . . . .



Chapter 23
From Error Correcting Codes to Covering Sets

23.1 Covering Sets in Coding Theory

Covering sets are well known from coding theory, including the digitizing of analog
data. For example, for 2-dimensional data distributed over R2, to be quantized into m
digital words, regions around m representative points must cover the entire support
of the analog data. To minimize the mean-square error for a given value of m, the
representation points for each region must be at the centers of gravity of the different
regions and the border lines between two adjacent regions must be half-way between
the representation points. The resulting tessellation of the plane is called a Voronoi
diagram.

For one-dimensional data, the corresponding quantizing scheme is called a Max-
Lloyd quantizer; in which the support of the data is divided into m contiguous seg-
ments, each segment being represented by a representative (quantized) value equal
to the mean of the data for that segment and border lines half-way between them.

While Claude Shannon established upper limits for the error-free information
rate of a given communication channel, his proofs were existence proofs. It fell to
coding theory to develop digital codes which, for a given information rate, coding
delay (block length) and channel noise, gave an actual error rate. To minimize the
error rate, a wide range of error-correcting codes were invented. For some situations
the problem was akin to densest sphere packing as epitomized, in 3 dimensions, by
the stacking of oranges in a grocery store (see J.H. Conwey and N.J.A. Sloan: Sphere
Packings, Lattices and Groups).

One of the oldest (and simplest) codes is three-fold repetition in which the infor-
mation at the sending station, e.g. a single bit, is repeated 3 times and the receiving
station takes a “majority vote”. Of course this is guaranteed to work only for single
errors.

An early, more sophisticated error-correcting code was designed by Richard
Hamming in 1949 at Bell Laboratories: the 7-4 Hamming code in which 4 infor-
mation bits are supplemented by 3 control bits yielding a total of 7 bits for one
code word. In general, allowing m check bits, the Hamming code has length 2m −1
of which 2m − 1 − m bits are information bits. For the original Hamming code
discussed above m equals 3. If m = 2, we obtain the triple-repetition with length
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22 − 1 = 3 and 22 − 1− 2 = 1 information bit. Thus, the triple-repetition code is a
Hamming code. Its transmission efficiency (number of information bits divided by
code length) equals ε = 1/3. For the m = 4 Hamming code, ε = 11/15 = 0.73 . . . In
general, ε = 1−m/(2m −1). The efficiency is therefore seen to increase monotoni-
cally to 1 as m goes to infinity.

However, no matter how large m, the Hamming codes can at most correct a single
error. Larger error rates can be accommodated by the Simplex codes, see Sect. 1.5.
The Simplex codes are the duals of the Hamming codes, in which the role of in-
formation bits and check bits are interchanged. Thus for m = 5 and code length
25−1 = 31, the Simplex code has 5 information bits and 26 check bits. Its transmis-
sion efficiency ε equals only 5/31 = 0.16 but it can correct 2m−2 −1 = 7 errors. As
m goes to infinity, an astonishing 25% of the errors can be corrected, see Sect. 28.2.

We now turn to a different kind of covering set:

23.2 Discrete Covering Sets

The even numbers, i.e. the numbers n for which n ≡ 0 (mod 2) cover all integers
except the odd integers: . . .−1, 1, 3, 5 . . . By adding a second covering set, defined
by n ≡ 0 (mod 3), we leave uncovered all integers not divisible by either 2 or 3: i.e.
. . .− 1, 1, 5, 7, 11, 13, . . . Now adding a third covering set n ≡ 1 (mod 4) covers
. . .− 3 (which is already covered by n ≡ 0 (mod 3), 1, 5, 9 (which is also already
covered by n ≡ 0 (mod 3), 13, 17, . . .). The numbers still not covered by these three
sets are . . .−1, 7, 11, 19, 23, . . . which suggests the additional covering sets n ≡ 1
(mod 6) and n ≡ 11 (mod 12). It is relatively easy to show that these five sets cover
all integers ad infinitum. (One only has to check a range equal to the least common
multiple of 2, 3, 4, 6, 12, i.e. 12, beyond which patterns repeat.)

At the Joint Mathematics Meeting (of the American Mathematical Society and
the Mathematical Association of America) in January, 2008 in San Diego, Carl Pom-
merantz of Dartmouth College described recent progress in the theory of coverings,
i.e. collections of integer sequences that include every integer from minus infinity
to plus infinity. My friend and former Bell Labs colleague Jeffrey Lagarias, now at
the University of Michigan, stressed the continuing importance of discrete cover-
ing problems—which are easy to state but difficult to solve, illustrating how little
we know about additive number theory (think of the infamous Goldbach conjecture
and other enduring unsolved additive problems—see Sects. 7.7 and 7.8).

There are many different ways to cover the integers using n ≡ 0 mod 2, n ≡ 0
(mod 3) and n ≡ 1 (mod 4). But for smallest steps sizes much larger than 2, the cov-
ering problem quickly becomes difficult, so difficult in fact that Paul Erdös called it
his “favorite problem”, namely to prove that, even for an arbitrarily large smallest
step size, there are always solutions with a finite number of integer sequences. But
so far the smallest step size of 36 is the largest one for which a solution is known.
According to Pace Nielson of the University of Iowa the number of sequences re-
quired with 36 as the smallest step size may exceed 1040 (!).—The reader may try
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to find a solution with the smallest step size equal to 3. To avoid trivial solutions,
we require that each step size be used only once, otherwise the two sequences n ≡ 0
(mod 2) and n ≡ 1 (mod 2) would already cover all integers. One possible approach
to the problem is a “greedy algorithm”, in which one always chooses as the next
additional set the set which contains the largest number of uncovered elements.

Covering sets are part of additive number theory, a notoriously difficult field.
Here are a few recent results from the strange field of additive number theory: In
1960 W. Sierpinski of Warsaw University showed that, for infinitely many values of
k, numbers the form k 2n +1 are composite. But according to J. Selfridge k may have
to be as large as 78 557. A smaller candidate value of k, k = 33661, was recently
(2007) shown by S. Sunde to yield a prime for n = 7031232, a number with more
than 2 million digits!
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Chapter 24
Cyclotomic Polynomials

Cyclotomy, the art of dividing a circle into equal parts, was a Greek specialty, and
the only tools allowed were a straightedge and a compass. The subject is deeply re-
lated to number theory, as we saw in our discussion of Fermat primes in Sect. 3.8. In
addition, cyclotomic polynomials play an important role in modern digital processes
and fast computation (Sect. 26.3).

We begin this chapter with an informal discussion on dividing a circle into equal
parts and constructing regular polygons. After that we explore some of the important
properties of cyclotomic polynomials and their applications in physics, engineering
and, in Chap. 30, artistic design.

24.1 How to Divide a Circle into Equal Parts

A circle in the complex number plane z = x + iy, centered at the origin z = 0, is
described by the equation

z = reiα , (24.1)

where r is the radius of the circle and α the angle between the direction of z and the
real axis. As α goes from 0 to 2π , the circle is traversed exactly once.

If we only care about angles α , and not about the radius r of the circle, we might
as well set r = 1 and consider the unit circle,

z = eiα . (24.2)

Dividing the circle into, say, n equal parts means finding an angle α1/n such that

α1/n =
2π
n

. (24.3)

Then the incongruent (mod2π) multiples of α1/n divide the circle into n equal parts.
Of course, α1/n may not be unique. In fact, for (k,n) = 1,

αk/n = k
2π
n

(24.4)
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will also give the desired “Cyclotomy” – the learned expression for circle division.
Since there are φ(n) incongruent coprime values of k, there are φ(n) primitive, or
generating, angles αk/n, but of course, knowledge of one of these suffices to do
the job.

The n equidistant points on the unit circle

zm = ei2πm/n, m = 0,1, . . . ,n−1, (24.5)

not only divide the circle into equal parts but are also the corners of a regular n-gon
inscribed in the circle. Thus, we see that the tasks of equal division of the circle and
construction of a regular n-gon are related.

Mathematically, finding the zm of (24.5) is the same as finding the roots of the
polynomial

zn −1 = 0, (24.6)

i.e., we have converted our geometrical problem into an arithmetic one. Upon setting
z in (24.6) equal to zn from (24.5), we obtain

(ei2πm/n)n −1 = ei2πm −1 = 1−1 = 0,

for all integer values of zm, including the n incongruent ones:

m = 0,1, . . . ,n−1. (24.7)

But how do we find the zm, or at least one primitive root?

The Case n = 2.

Dividing the circle into two parts (n = 2) is simple: the equation

z2 −1 = 0 (24.8)

has the well-known solutions z = 1 and z = −1, corresponding to the angles α = 0
and α = π (180◦), which indeed divides the circle into two equal parts. In other
words, a straight line through the (known!) centre of the circle divides it into two
equal parts.

The Case n = 3.

To divide the circle into three equal parts, the equation we have to solve is

z3 −1 = 0, (24.9)

with the solutions

zm/3 = ei2πm/3, m = 0,1,2, (24.10)

corresponding to the angles 0, 120◦ and 240◦.
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Now comes a crucial question. The reader may recall that we started out with a
geometrical problem: the equal division of a circle or the construction of a regular
polygon. It is therefore legitimate – and quite natural – to ask whether we can, in
fact, solve zn−1 = 0 by “geometric means”, i.e., with a straightedge and a compass
but no other tools.

Let us look more closely at the problem for n = 3, the regular trigon – otherwise
known as an equilateral triangle. First we notice that z3 −1 can be factored

z3 −1 = (z−1)(z2 + z+1). (24.11)

Here the first factor gives the universal solution (valid for all n) z = 1. To find the
two remaining solutions, we have to solve a quadratic equation, namely

z2 + z+1 = 0, (24.12)

which is easy:

z = −1
2
± 1

2

√
−3 = e±i2π/3, (24.13)

as expected.
But the important point now is that we only had to solve a quadratic equation –

and this is something that can be accomplished purely by straightedge and compass,
as desired by the purist Greeks. In fact, (24.13) tells us that we should bisect the
negative real axis between z = 0 and z = −1 (the second intersection of the straight
line through z = 0 and z = 1, both of which can be selected arbitrarily). Erecting the
normal at z = −1/2 (also possible with the means at hand) we find that it intersects
the circle at x = −1/2 and y = ±

√

3/2.
Unwittingly, by this construction we have solved the quadratic equation

y =

√

12 −
(

1
2

)2

= ±1
2

√
3, (24.14)

because by erecting the normal at z = −1/2 and locating its intersection with the
circle |z| = 1, we have constructed a right triangle with a hypotenuse of length 1
and one side of length 1/2. The length of the other side is then of course given by
(24.14).

The Case n = 4.

How about the regular tetragon, widely known (in mathematics and other disci-
plines) as a square? Since we have already solved the case n = 2, a bisection of
the angle between the two solutions z = 1 and z = −1 will give the two additional
solutions for n = 4: z = i (α = 90◦) and z = −i (α = 270◦).

In arithmetic terms, we can express our ability to solve the case n = 4 geomet-
rically as follows. The equation whose roots we need is z4 − 1, which factors as
follows:
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z4 −1 = (z2 −1)(z2 +1). (24.15)

Thus, instead of an equation of the fourth degree, we only have to deal with second-
degree equations which, as we already know, pose no problems to geometrical
purists employing only straightedge and compass.

This process of bisection can be repeated arbitrarily often. Thus, if we have
a solution for the case n, we “automatically” have solutions for n · 2k with k =
1,2,3, . . . . So far, we have therefore shown how to construct regular polygons with
n = 2,3,4,6,8,12,16,24,32, etc. edges. In some of these cases there are particularly
simple solutions, as for n = 6, the regular hexagon, whose edge length equals the
radius of the circle.

The Case n = 5.

The lowest-degree case so far unsolved is that of the regular pentagon. The equation
z5 −1 factors into

z5 −1 = (z−1)(z4 + z3 + z2 + z+1). (24.16)

At first blush, this case looks impossible because of the fourth-degree polynomial
on the right of (24.16). But this polynomial must be factorizable into polynomials of
no higher degree than quadratic, or the Greeks couldn’t have constructed the regular
pentagon as they did.

Now instead of giving the Greek solution, we will use the case n = 5 to present
the gist of Gauss’s sensational solution of the case n = 17 [24.1]. This makes the
case n = 5 look slightly more difficult than necessary, but we can then see how
Gauss went about solving n = 17 and the other basic cases still possible, namely
when n equals a Fermat prime, i.e., a prime of the form n = 22m

+1. For m = 0 we
get the triangle, for m = 1 the pentagon and for m = 2 the heptadecagon (n = 17).
The only other known basic cases are m = 3 (n = 257) and m = 4 (n = 65537).

24.2 Gauss’s Great Insight

Gauss noticed that if n is a Fermat prime, then n−1 is a power of 2 (in fact, it must be
a power of a power of 2). Furthermore, Fermat primes, like all primes, have primitive
roots. And Gauss proceeded to order the roots of zn − 1 according to powers of a
primitive root of n, say w. We shall illustrate this, as we said, for n = 5 because it is
easier to write down than the case n = 17 – but the principle is the same.

First, as always, we factor out the universal factor z−1 (giving the solution z = 1):

z5 −1 = (z−1)(z4 + z3 + z2 + z+1).

Now we are looking for 4 values of z such that

z+ z2 + z3 + z4 = −1. (24.17)
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A primitive root of 5 is w = 2. (Check:wk ≡ 2,4,3,1 (mod5) for k = 1,2,3,4.
Check!) We now combine exponents in (24.17) according to alternating terms in
the series wk = 2,4,3,1, i.e., we write

z+ z2 + z3 + z4 = r1 + r2, where (24.18)

r1 = z2 + z3 and r2 = z4 + z1. (24.19)

Can we determine r1 and r2? Yes, we can! With (24.17) we have

r1 + r2 = −1 (24.20)

and with (24.19),

r1 · r2 = z6 + z3 + z7 + z4, (24.21)

which, because of z5 = z0, can be written

r1 · r2 = z1 + z3 + z2 + z4.

Here the sum on the right is the sum of all different fifth roots of 1, except 1 itself.
Since the sum of all roots equals zero, we have

r1 · r2 = −1. (24.22)

Now (24.20) and (24.22) are of the form of the two solutions r1 and r2 of a
quadratic equation in r:

r2 +ar +b = 0, (24.23)

where, according to Vieta’s rule [24.2],

a = −(r1 + r2) and (24.24)

b = r1 · r2 = −1. (24.25)

Hence our quadratic equation (24.23) for r is

r2 + r−1 = 0 (24.26)

with the solution

r1 = −
√

5+1
2

and r2 =
√

5−1
2

, (24.27)

where, incidentally, r2 equals the reciprocal of the Golden ratio, g = 1.618..., and r1

equals the negative of the Golden ratio (Sect. 5.5 and Fig. 5.4).
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With these intermediate solutions it is easy to obtain the final ones. Setting z4 =
z−1 in (24.19), we may write

z−1 + z = r2 =
1
g
, (24.28)

another quadratic equation! Its solutions are

z1,2 =
1

2g
± i

√

1− 1
4g2 , (24.29)

where, of course, |z1,2| = 1 and the real part is

x1,2 =
1

2g
=

√
5−1
4

. (24.30)

Thus, two of the roots are obtained by constructions of
√

5 (as the hypotenuse of a
right triangle with sides of lengths 1 and 2) and by proceeding according to (24.30).
Since all roots of the polynomial z4 + z3 + z2 + z + 1 are primitive roots, the re-
maining roots can be found geometrically by taking integral multiples of the angle
associated with, say, z1,2:

α1,2 = arccos
1

2g
= ±2π

5
= ±72◦. (24.31)

This equation tells us, incidentally, that 72◦ is an angle whose cosine is not tran-
scendental but is a quadratic irrational.

Thus, we have succeeded in factoring z4 + z3 + z2 + z + 1 using only quadratic
irrationals:

z4 + z3 + z2 + z+1 = (z− z1)(z− z2)(z− z3)(z− z4) (24.32)

with z1,2 as given by (24.29) and z3,4 given as the solutions of

z+ z−1 = r1 = −g,

namely

z3,4 =
g
2
± i

√

1− g2

4
, (24.33)

with associated angles

α3,4 = arcos

(

−g
2

)

= ±4π
5

= ±144◦. (24.34)
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If our solutions are correct, they must lie on the unit circle, which they do, and their
sum must equal −1. And indeed,

z1 + z2 + z3 + z4 =
1
g
−g = −1. Check!

The case n = 17 proceeds quite analogously but requires one extra step of the kind
used in (24.19), namely, assigning powers of z to two different sets. Rademacher
[24.3] wrote a lucid exposition of the case n = 17.

The Case n = 6.

The polynomial z6 −1 can be written as follows:

z6 −1 = (z2)3 −1, (24.35)

which resembles the case for n = 3, except that z in z3 −1 has been replaced by z2 .
Thus, n = 6 can be solved geometrically by obtaining the angle for n = 3, as already
described, and halving it. Further halvings crack the cases n = 12, 24, 48, etc.

The Case n = 7.

The polynomial z7 −1 factors over the rationals into

z7 −1 = (z−1)(z6 + z5 + z4 + z3 + z2 + z+1). (24.36)

Since 7 is a prime, the second factor can be shown to be irreducible over the ratio-
nals. But 7 is not a Fermat prime, and 6 is not a power of 2. Thus, the grouping
exemplified by (24.19), which works for n = 5,17,257 and 65537, leading to nested
quadratic equations, does not work for n = 7, and the regular heptagon can therefore
not be constructed by straightedge and compass. This insight by Gauss should have
ended a vain search that had lasted over 2000 years, but some people are still trying!

The Case n = 8.

The case n = 8 follows from the case n = 4 by angle halving, as do the cases n =
16,32,64, etc.

The Case n = 9.

While 9− 1 = 8 is a power of 2, the number 9 unfortunately is composite. The
polynomial z9 −1 can be written as

z9 −1 = (z3)3 −1, (24.37)

which requires solving the case n = 3 and then trisecting the resulting angle (120◦),
which unfortunately is still not possible. Alternatively, we could say that solving
n = 9 requires taking a third root, which is impossible geometrically. Thus, n = 9
also fails, but for a different reason than n = 7: n = 7 has a primitive root but 7−1
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is not a power of 2, while n = 9 exceeds a power of 2 by 1, as required, but 9
is composite. Both conditions must be fulfilled, and they are fulfilled only by the
Fermat primes.

The Case n = 10.

The case n = 10 reduces to the case n = 5 and angle halving, which also yields
geometrical solutions for n = 20,40,80, etc.
The Cases n = 11 and n = 13 are like n = 7: impossible.

The Case n = 15.

The case n = 15 is interesting. The composite 15 = 3 ·5 is the product of precisely
two Fermat primes. As we know, we can construct geometrically the angle for the
equilateral triangle (120◦) and the regular pentagon (72◦), and half the difference
angle, (120◦ − 72◦)/2 = 24◦, is the angle for the regular 15-gon. In like manner,
we can solve any n that is the product of different Fermat primes, such as 51, 85,
255, etc.

The Case n = 17.

The case n = 17 is the famous case first solved by Gauss [24.1, 3] using a primitive
root of 17 and “noting” that 17−1 = 16 is a power of 2. (See the discussion under
n = 5.)

The Case n = 257.

The cases n = 257 and 65537 are similar to n = 5 and n = 17 but require one and
two more decomposing steps, respectively, than the case n = 17.

The next new and interesting case would be given by a prime n = 2m + 1 which
requires m to be a power of 2. The next candidate is m = 232, i.e., n = 4294967297,
but unfortunately this is composite. This is the end of the road for geometrical cy-
clotomy until another Fermat prime is found. (But see Sect. 3.8 for the odds of this
being successful.)

After this brief excursion into the realm of cyclotomy, we shall study, in a some-
what more formal manner, some general properties of cyclotomic polynomials that
give rise to a host of enticing applications (fast algorithms, periodic sequences with
unique and very useful spectral properties, etc.).

24.3 Factoring in Different Fields

In numerous and diverse applications it will be important to factor the polynomial

PN(z) := zN −1. (24.38)

In fact, the applications we shall discuss here are so diverse that we seek factors
whose coefficients are from three different number fields:
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1) The complex number field C

2) The rational number field Q

3) Finite (Galois) number fields GF(pm)

In the following we will continue our discussion of cyclotomy and related factoring
on a somewhat more formal level, and in view of the importance of the subject, we
will even permit ourselves a bit of redundancy.

24.4 Cyclotomy in the Complex Plane

Factorization of zN −1 is easy if we admit complex coefficients. Setting

PN(z) = zN −1 = 0, (24.39)

we see immediately that the zeros of PN(z) are the N distinct Nth roots of unity

W r
N , r = 0,1, . . . ,N −1, (24.40)

where WN is a primitive Nth root of unity, for example:

Wn = e2πi/N . (24.41)

Insisting on a primitive root here insures that W r
N will indeed run through all N

distinct Nth roots as r goes from 0 to N −1. For example, for N = 4,

W4 = e2πi/4 = i (24.42)

is a primitive 4th root, and so is

W 3
4 = e6πi/4 = −i, (24.43)

because each will generate the remaining two roots of z4 −1 = 0, namely z = 1 and
z = −1.

All the primitive Nth roots are given by

W r
N , where (r,N) = 1. (24.44)

Thus, we see that there are φ(N) primitive Nth roots.
Since if (r,N) = 1, so is (N − r,N), and because r and N − r are distinct for

N > 2, the primitive roots come in “conjugate” pairs, which are seen to be conjugate
complex:

W r
N and W N−r

N = W−r
N = W r∗

N , (24.45)

where ∗ stands for conjugate complex in this book. (Physicists and engineers need
the horizontal bar for averages.) It is interesting to note that the term “conjugate
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complex” comes from the more general algebraic concept of “conjugate” and not
vice versa, as one might be led to think if one is familiar only with complex conju-
gates.

Thus, our factorization of PN(z) is

zN −1 =
N−1

∏
n=0

(z−W n
N), (24.46)

which is as far as one can go, because the individual factors are all linear in z.
Replacing the primitive root WN above by another primitive root, W r

N , with
(r,N) = 1, changes only the order of the factors. Thus, the above factorization is
essentially unique.

24.5 How to Divide a Circle with Compass
and Straightedge

How to divide a circle into N equal parts by compass and straightedge, i.e., by purely
geometric means, was one of the classical problems of geometry first brought into
prominence by the ancient Greeks. They discovered that a circle could be so divided
if N = 3 or 5. Since angles can also be halved geometrically, additional possibilities
are N = 6,12,24, . . . and N = 5,10,20, . . . . Finally, it is not difficult to see that
by dividing a circle both into 3 and 5 equal parts, the angle 2π/3 · 5 can also be
obtained, thereby permitting division of the circle into 15 equal parts.

In general, according to Euclid, a circle can be divided into N equal parts by
compass and straightedge if

N = 2k ·3m ·5n, (24.47)

where k is any nonnegative integer and n and m are either 0 or 1.
Since dividing a circle into N equal parts is equivalent to constructing a regular

N-gon, i.e., a polygon with N vertices (or edges), the lowest-order regular N-gon
that could not be constructed was the 7-gon or heptagon.

Since the time of Euclid, for almost 2000 years, mathematicians and amateurs
alike had been trying to smash the boundary at N = 7, but in vain. Then, on March
30, 1796, an 18-year-old Brunswick (Germany) youth scribbled in his brand-new
notebook, at the top of page 1, (see Fig. 5.1) freely translated from the Latin that
he was using: “How to divide the circle by geometric means into 17 equal parts.”
In other words Gauss (the name of the young man) had just discovered that the
numbers 3 and 5 of the ancient Greeks had to be supplemented by 17 and, in general,
by primes of the form

22n
+1, (24.48)

i.e., the Fermat primes Fn of which then, and to this day, only 5 are known: F0 = 3,
F1 = 5, F2 = 17, F3 = 257 and F4 = 65537.
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Of equal significance, Gauss proved that the only regular N-gons that can be
constructed by geometric means are of the form

N = 2k ∏
n

Fn, (24.49)

where the product is over distinct Fermat primes. Thus, apart from the factor 2k,
there are at present 25 − 1 = 31 different regular odd N-gons that can be con-
structed geometrically: from the triangle and the pentagon to the 17-gon and the
3 · 5 · 17 · 257 · 65537 = 4294967295-gon. (The author strongly advises against
attempting the latter case. Gauss said it is possible and that should suffice. On
the other hand, there is a suitcase at the Mathematics Institute of the Univer-
sity of Göttingen which is jam-packed with the details of constructing the regular
65537-gon.)

How is Gauss’s great discovery related to our factorization? One way to state it
is to say that the primitive Nth root WN involves only square roots, and square roots
can be constructed with a compass and a straightedge (following old Pythagoras and
his right triangle).

Example: N = 5:

W5 = e2πi/5 = cos(2π/5)+ i sin(2π/5), where (24.50)

cos(2π/5) = (
√

5−1)/4,

sin2(2π/5) = (
√

5+5)/8. (24.51)

24.5.1 Rational Factors of zN −1

One of our main aims is to factor

PN(z) = zN −1 (24.52)

into polynomials with rational coefficients. This is trivial for

P1(z) = z−1 (24.53)

(which leaves nothing to factor) and easy for P2(Z):

P2(z) = (z−1)(z+1). (24.54)

Furthermore, remembering geometric series, we write

P3(z) = (z−1)(z2 + z+1). (24.55)

But now we have reached the end of Easy Street – unless, that is, we recall Möbius
and the second inversion formula involving his function (Chap. 21).
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To be able to apply Möbius, we factor PN(z) as follows (perhaps as a long shot,
not knowing what else to do):

zN −1 = ∏
n|N

Cn(z), (24.56)

where according to the inversion formula (20.19), the factors Cn(z) are given by

Cn(z) = ∏
d|n

(zd −1)μ(n/d). (24.57)

Since μ = 0, ±1, these factors of zN − 1 are indeed rational. Also, they are not
further reducible over the rationals. The degree of Cn(z) is

deg[Cn(z)]∑
d|n

d μ
(n

d

)

= φ(n). (24.58)

Hence the degree of the product is

deg

[

∏
n|N

Cn(z)

]

= ∑
n|N

φ(n) = N. Check! (24.59)

Example: N = 6. With (24.56):

P6(z) = z6 −1 = C1(z) ·C2(z) ·C3(z) ·C6(z)

and with (24.57):

C1(z) = z−1

C2(z) =
z2 −1
z−1

= z+1

C3(z) =
z3 −1
z−1

= z2 + z+1

C6(z) =
(z−1)(z6 −1)
(z2 −1)(z3 −1)

= z2 − z+1.

Check: z6 −1 = (z−1)(z + 1)(z2 + z + 1)(z2 − z + 1). Check! Here the first factor,
z−1, “captures” the common root of all Pn(z) : z1 = 1. The second factor, C2(z) =
z + 1, captures the remaining root of z2 − 1 = 0, namely the primitive root z2 =
e2πi/2 = −1. The third factor, z2 + z + 1, captures the two primitive roots of z3 −1,
namely z3 = e2πi/3 and z4 = e4πi/3. Finally, the fourth factor, z2 − z + 1, captures
the two primitive roots of z6 − 1, namely z5 = e2πi/6 and z6 = e10πi/6. The angles
in the complex plane subtended between the real axis and these roots are, in the
above order, 0◦, 180◦, 120◦, 240◦, 60◦ and 300◦, i.e., all distinct multiples of 60◦ –
as expected.
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24.6 An Alternative Rational Factorization

Another way of representing the factors of Cn(z) is as follows. We first replace d by
n/d, which only changes the order of the factors:

Cn(z) = ∏
d|n

(zn/d −1)μ(d). (24.60)

Now it is apparent that we need only those divisors of n which are squarefree, be-
cause otherwise μ = 0. These squarefree divisors can be put into classes depending
on the number of distinct prime factors. We introduce the product

∏k := ∏
dk

(zn/dk −1). (24.61)

where the dk are all the squarefree divisors that have exactly k distinct prime factors.
Thus, for example,

∏0 = zn −1,

∏1 = ∏
pi

(zn/pi −1), (24.62)

∏2 = ∏
pi �=p j

(zn/pi p j −1), etc.,

where the pi are the prime factors of n.
With this notation, and because by definition μ(dk) = (−1)k, we get the

factorization

Cn(z) = ∏0 ∏2 ∏4 . . .

∏1 ∏3 ∏5 . . .
, (24.63)

which has several interesting theoretical applications. Specifically, it can be shown
that Cn(z) has only integral coefficients. Furthermore, for n < 105, the only coeffi-
cients that appear in Cn(z) other than 0 are ±1.1

24.7 Relation Between Rational Factors
and Complex Roots

We have found two seemingly independent factorizations of zN − 1 so far, one in-
volving the complex Nth roots of 1 but with factors linear in z, and the other in-
volving higher powers of z but with rational (in fact, integer) coefficients. How are

1 C105(z) is the lowest-order cyclotomic polynomial in which other coefficients (−2 in two places)
appear. The reason is that 105 is the smallest integer that is the product of three distinct odd primes
[24.4].
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these two factorizations related? Can we express the cyclotomic polynomials Cn(z)
in terms of the nth roots of 1, Wn? Yes, we can:

Cn(z) = ∏
0<r<n
(r,n)=1

(z−W r
n ). (24.64)

Here we recall that Wn, is the “first” nth root of 1:

Wn = e2πi/n, (24.65)

which is a primitive root, and the roots appearing in the above factorization are all
the primitive nth roots of 1. There are precisely φ(n) such roots, so that the degree
of Cn(z) becomes φ(n). Check!

But that does not suffice to establish the correctness of the factorization. Instead
of proving the above factorization of Cn(z) in terms of the (z−W r

n ), we will first
illuminate it for a special case, n = 6 (see also the above example). The Möbius
inversion gives us

C6(z) =
(z−1)(z6 −1)
(z2 −1)(z3 −1)

. (24.66)

Here the factor z3 −1, for example, can be written

z3 −1 = (z−1)(z−W 1
3 )(z−W 2

3 ). (24.67)

However, we shall express W3 by W6:

W3 = W 2
6 . (24.68)

Thus,

z3 −1 = (z−1)(z−W 2
6 )(z−W 4

6 ), (24.69)

or, more generally, we write

zd −1 = (z−1) ∏
(k,n)= n

d

(z−W k
n ). (24.70)

In the special case of C6(z), this factorization is as follows:2

C6(z) =
(z−W 1

6 )(z−W 2
6 ) . . .(z−W 5

6 )
(z−W 3

6 )(z−W 2
6 )(z−W 4

6 )
. (24.71)

2 Leaving out the four factors (z− 1) which always cancel, except for C1(z) = z− 1, because, as
we derived earlier,

∑
d|n

μ(d) = 0 for n > 1.
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Here, in the numerator the roots W k
6 , k = 1,2,3,4,5 appear, i.e., all the 6th roots of

1 except 1 itself. In the denominator all those W k
6 appear, where (k,6) > 1. Thus,

C6(z) is the product of precisely all factors W r
6 with 0 < r < 6 and (r,6) = 1:

C6(z) = ∏
0<r<n
(r,6)=1

(z−W r
6 ). (24.72)

i.e., C6(z) is the product of linear factors whose roots are precisely all the primitive
roots of z6 −1.

The demonstration would have been essentially the same for other squarefree
orders. For non-squarefree orders, some of the factors are missing. We leave it to
the reader to generalize this result to arbitrary orders n.

24.8 How to Calculate with Cyclotomic Polynomials

For prime order n = p, one has

Cp(z) =
p−1

∏
r=1

(z−W r
p) =

zp −1
z−1

, (24.73)

or,

RULE I : Cp(z) = zp−1 + zp−2 + · · ·+ z+1. (24.74)

Without proof,

RULE II : Cmpk(z) = Cmp
(

zpk−1)
. (24.75)

For (m, p) = 1,

RULE III : Cmp =
Cm(zp)
Cm(z)

. (24.76)

For odd n > 2,

RULE IV : C2n(z) = Cn(−z), for odd n ≥ 3. (24.77)

For z = 1, one has

RULE V : Cn(1) =

⎧

⎪

⎨

⎪

⎩

0 for n = 1

p for n = pk

1 otherwise.

(24.78)
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These rules expedite the calculation of cyclotomic polynomials:

C1(z) = z−1

C2(z) = z+1 (by RULE I)

C3(z) = z2 + z+1 (by RULE I)

C4(z) = C2(z2) = z2 +1 (by RULE II)

C6(z) = C2(z3)/C2(z) = z2 − z+1 (by RULE III)

Check : C6(z) = C3(−z). Check! (by RULE IV)
Check : C6(1) = 1. Check! (by RULE V)
Check : C4(1) = 2. Check! (by RULE V)

And, incidentally,

C17(z) = z16 + z15 + · · ·+ z+1, (24.79)

so that

z17 −1 = (z−1)C17(z). (24.80)

Now, while C17(z) cannot be further factored into polynomials with rational
coefficients, Gauss observed that C17(z) can be decomposed into a set of nested
quadratic equations, each solvable by “geometric means”, leading to the con-
structibility of the regular 17-gon with compass and straightedge (Sect. 24.2).



Chapter 25
Linear Systems and Polynomials

One of the main applications of polynomial theory occurs in the analysis of linear
electrical circuits and the many other physical situations that are customarily rep-
resented by linear-circuit analogs. With the advent of computers and digital signal
processing, time-discrete systems have taken on a special significance, and these
are effectively represented by polynomials called z transforms that are akin to gen-
erating functions in other branches of mathematics. The application of cyclotomic
polynomials, in particular, leads to fast computational algorithms, excellent error-
correcting codes, and special signals for precision measurement (Chap. 28).

25.1 Impulse Responses

If the capacitor C in Fig. 25.1 is charged up to voltage y0 at time t = 0 and thereafter
allowed to discharge via the resistor R, its voltage as a function of time will decay
exponentially:

y(t) = y0e−t/τ for t > 0. (25.1)

Here the “time constant” (in seconds) is τ = RC, where R is the resistance (in
ohms) and C is the capacitance (in farads). (The symbols R and C do double duty
here.)

If the charging impulse was of very short duration and the capacitor was “empty”
for negative times, then

y(t) = 0 for t < 0. (25.2)

Fig. 25.1 A simple linear
passive system

M. Schroeder, Number Theory in Science and Communication, 5th ed., 305
DOI 10.1007/978-3-540-85298-8 25, c© Springer-Verlag Berlin Heidelberg 2009
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If the charging voltage is a Dirac delta function δ (t), an idealized pulse which is
0 everywhere except for t = 0 and represents a unit charge, then the output of the
linear system is called its impulse response h(t). For the circuit in Fig. 25.1,

h(t) =

⎧

⎨

⎩

0 for t < 0
1
C

e−t/τ for t > 0.
(25.3)

The term “linear” in linear system means that its parameters (here the values R and
C) do not change with the relevant variables (here electrical current, voltage and
charge). Roughly: the resistor does not heat up and the capacitor does not break
down.

If an arbitrary voltage as a function of time, x(t), is applied to the input of the
linear system of Fig. 25.1, the output voltage is a convolution integral [25.1]:

y(t) =
∫

x(t ′)h(t − t ′)dt ′. (25.4)

This expression follows directly from the assumed linearity of the system (and its
time invariance and passivity; i. e., its parameters do not change with time and do
not generate energy).

25.2 Time-Discrete Systems and the z Transform

If we want to simulate linear systems on digital computers, we have to “discretize”,
i. e., represent by rational numbers, all constants and variables, including time. The
impulse response of a time-discrete system is a sequence hn, which is its output if at
“time” n = 0 a unit impulse was applied to the quiescent system.

The impulse response hn is often represented by its z transform (Chap. 22):

H(z) :=
∞

∑
n=−∞

hnz−n, (25.5)

which (except for the sign in the exponent of z) is nothing but the familiar generating
function for the sequence hn. If we set z = eiωT , then H(z) becomes the Fourier
transform, where ω is the radian frequency and T is the “sampling interval”, i. e.,
the time interval corresponding to a difference of 1 in the “time” index n.

25.3 Discrete Convolution

If we apply an input sequence xn to a linear system with impulse response hn, the
output sequence (because of linear superposition) becomes
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yn = ∑
k

xkhn−k. (25.6)

Such a discrete convolution is often abbreviated by the convolution star:

yn =: xn ∗hn, (25.7)

a convenient notation.
But if we express the above sequences yn, xn and hn by their z transforms, then

the (somewhat messy) discrete convolution becomes a simple product:

Y (z) = X(z) ·H(z), (25.8)

which is verified by comparing equal powers of z on the two sides of the equation.

25.4 Cyclotomic Polynomials and z Transform

For many applications it is either appropriate or convenient to consider the data and
the impulse responses to be periodic or circular [25.2]:

xn = xn+N , (25.9)

where N is the (fundamental) period. More generally, we may write

xn = xm

hn = hm

}

for n ≡ m (modN), (25.10)

and consequently also

yn = ym for n ≡ m (modN).

Circular convolution looks like this:

yn =
N−1

∑
k=0

xkh〈n−k〉N
, (25.11)

where we have used the acute brackets 〈〉N to indicate a least nonnegative residue
modulo N.

For circular data, the z transform contains the factor zN −1, and the possibility of
factorizing zN −1 leads to a reduction in the number of multiplications. We will not
pursue the details here, but simply cite a theorem by Winograd which states that the
number of multiplications can be reduced by as much as m, where m is the number
of irreducible factors of zN − 1, i. e., m = N if we factor over the complex number
field, and m = d(N) if we factor over the rationals [25.3].



Chapter 26
Polynomial Theory

In this chapter we further develop our acquaintance with polynomials, especially
those with integer coefficients and discover that in many ways, their arithmetic is
akin to that of integers: there are coprime polynomials, divisor polynomials, and
Diophantine equations in polynomials, and there is even a version of Euclid’s algo-
rithm and a Chinese Remainder Theorem for polynomials.

The most important application of integer polynomials is in the construction of
finite number fields, also called Galois fields (Chap. 27), which play a dominant role
in today’s digital world.

26.1 Some Basic Facts of Polynomial Life

Many of the things we have learned about numbers (residue systems, primitive ele-
ments, etc.) can be generalized to polynomials – with virtually unbounded applica-
tions. Since we will subsequently need at least the elements of polynomial theory,
we will familiarize ourselves with this fascinating extension now. A polynomial p(z)
of degree n over a field F looks like this [26.1]:

p(z) =
n

∑
k=0

akzk, n ≥ 0, an �= 0, (26.1)

where the coefficients ak are elements of the number field F , for example the com-
plex number field C, the rational number field Q, or some finite number field such
as GF(2), the Galois field of order 2 consisting typically of the elements 0 and 1.

If the leading term an = 1, the polynomial is said to be monic. The degree of p(z)
is denoted by deg[p(z)]. With an �= 0, deg[p(z)] = n.

A polynomial d(z) divides another polynomial p(z) if there exists a polynomial
(over the same field!) such that p(z) = q(z)d(z) holds. The polynomial d(z) is then
called a divisor of p(z), and we write d(z)|p(z). A polynomial whose only divisors
are of degree 0 or deg[p(z)] is called irreducible (over the chosen field) [26.2].

For example, z2 + 1 is reducible over C: z2 + 1 = (z + i)(z− i) but irreducible
over Q. Interestingly, z2 +1 is reducible over the finite field GF(2): z2 +1 = (z+1)2,
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because 1+1 = 0 in GF(2). Thus, possible factorizations depend on the field chosen,
and moreover they do so in a seemingly haphazard manner.

Just as integers can be uniquely factored into primes, so polynomials p(z) can be
uniquely factored into irreducible polynomials pi(z):

p(z) = K
s

∏
i=1

[pi(z)]ri , (26.2)

where K is a constant that allows us to restrict the pi(z) to monic polynomials. The
degree of p(z) is given by

deg[p(z)] =
s

∑
i=1

ri deg[pi(z)]. (26.3)

The “ultimate” factorization is, of course, into polynomials pi(z) of the first degree –
if that is possible in the chosen field. As a result of the Fundamental Theorem of
Algebra1 the number of such first-degree factors, including multiplicity, is precisely
equal to deg[p(z)]. Polynomials that have no common factors are called mutually
prime or coprime.

26.2 Polynomial Residues

It is always possible to write, for two polynomials p(z) and d(z):

p(z) = q(z)d(z)+ r(z), (26.4)

and this representation is unique, if

deg[r(z)] < deg[d(z)]. (26.5)

Here, for obvious reasons, r(z) is called the remainder polynomial.
In a well-wearing fashion of notation we will also express the above relationship

by [26.3]:

r(z) = 〈p(z)〉d(z) . (26.6)

These latter notations, of course, recommend themselves if we care not about the
quotient polynomial q(z) but only about the remainder. (It is peculiar that in this field
of human endeavor – as in few others – remainders should be the main pickings.)

The operation of obtaining r(z) from p(z) and d(z) is called polynomial residue
reduction. Two polynomials p1(z) and p2(z) are said to be congruent modulo d(z)
if they leave the same remainder r(z) upon residue reduction. Equivalently, they are

1 First complete proof by Gauss in his Ph.D. thesis at Helmstedt, Germany.
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congruent modulo d(z) if their difference is divisible by d(z): We write

p1(z) ≡ p2(z) (modd(z)), (26.7)

or equivalently,

d(z)|(p1(z)− p2(z)). (26.8)

Example:

〈

z2〉

z+1 = 1, (26.9)

or

z2 ≡ 1 (mod(z+1)), (26.10)

because

(z+1)|(z2 −1), (26.11)

namely:

z2 −1
z+1

= z−1. (26.12)

More generally,

〈p(z)〉z−a = p(a), (26.13)

and even more generally, for monic divisor polynomials

d(z) = zn +
n−1

∑
k=0

dkzk, (26.14)

we get:

〈zn〉d(z) = −
n−1

∑
k=0

dkzk, (26.15)

i. e., the highest power can always be reduced to the negative of the “tail” of the
divisor polynomial.

Example:
〈

x4 + x6
〉

x4+x+1
=
〈

x4〉

x4+x+1 (1+ x2) = −(x+1)(1+ x2).

Of course, if d(z) is not monic, d(z)/dn will be, and we can proceed as above.
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26.3 Chinese Remainders for Polynomials

Whenever it comes to simultaneous congruences (and a few other delicacies) we
turn to the Chinese, and sure enough, there is a Chinese Remainder Theorem for
polynomials also. To wit:

There exists a unique polynomial satisfying

y(z) ≡ yi(z) (modPi(z)), i = 1,2, . . . ,m, (26.16)

such that

0 ≤ deg[y(z)] <
m

∑
i=1

deg[Pi(z)], (26.17)

provided the monic polynomials Pi(z) are pairwise coprime.
For a constructive proof, let us first consider a simpler problem: find m “inverse”

polynomials Ri(z) such that each satisfies the following m congruences:

Ri(z) ≡ δi j (modPj(z)), j = 1,2, . . . ,m. (26.18)

With these, the solution is obviously

y(z) =
m

∑
i=1

Ri(z)yi(z) (modP(z)), (26.19)

where

P(z) =
m

∏
i=1

Pi(z). (26.20)

Now, the inverse polynomials must be of the form

Ri(z) = Si(z)P(z)/Pi(z), (26.21)

where Si(z) is obtained from the single congruence

Si(z)P(z)/Pi(z) ≡ 1 (modPi(z)). (26.22)

This will automatically satisfy the m congruences for Ri(z).
The above congruence can be written as

Si(z)P(z)/Pi(z)+Ti(z)Pi(z) = 1, (26.23)

which is the generalization to polynomials of the Diophantine equation that we stud-
ied earlier and solved by Euclid’s algorithm.
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26.4 Euclid’s Algorithm for Polynomials

To solve the above Diophantine equation, following Euclid, we expand P2
i (z)/P(z)

into a continued fraction:

P2
i (z)

P(z)
= C0(z)+

1

C1(z)+ 1

C2(z)+ · · ·+ 1
Ck(z)

, (26.24)

where the Cr(z) are determined successively by long division. Truncating the con-
tinued fraction yields the polynomial convergents Ar(z) and Br(z), which obey the
recursions

Ar(z) = Cr(z)Ar−1(z)+Ar−2(z) (26.25)

and

Br(z) = Cr(z)Br−1(z)+Br−2(z). (26.26)

The solution is then given by

Si(z) = (−1)kKAk−1(z) (26.27)

and

Ti(z) = (−1)kKBk−1(z), (26.28)

where K is the leading coefficient of Ak(z) and Bk(z).
In addition, the Euclidean algorithm gives the greatest common divisor of the

two polynomials: Bk−1(z).

Example:

R(z) ≡
{

1 (mod(z2 + z+1))
0 (mod(z−1))

(26.29)

i. e., with (26.23) (and dropping the index i = 1),

S(z)(z−1)+T (z)(z2 + z+1) = 1. (26.30)

We thus need the continued-fraction expansion

z2 + z+1
z−1

= z+2+
1

1
3
(z−1)

, (26.31)

yielding the approximants
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A0(z)
B0(z)

= z+2 and (26.32)

A1(z)
B1(z)

=
1
3 (z2 + z+1)

1
3 (z−1)

, (26.33)

and consequently, since k = 1,

S(z) = −1
3
(z+2). (26.34)

Thus, the solution is

R(z) = S(z)(z−1) = −1
3
(z2 + z+2). (26.35)

Check:

〈R(z)〉z−1 = −1
3
(12 +1−2) = 0. Check!

〈R(z)〉z2+z+1 = −1
3
(−1−2) = 1. Check!

The greatest common divisor of z2 + z + 1 and z − 1 equals Bk−1(z) =
B0(z) = 1. Check!

These rules and algorithms are about all we need to operate successfully with
polynomials.



Part IX
Galois Fields and More Applications



Chapter 27
Galois Fields

In Galois fields, full of flowers, Primitive elements dance for
hours . . .1

A residue system modulo a prime p forms a finite number field of order p. For
many applications, we need number fields of order pm. Here, with the knowledge
acquired in Chaps. 25 and 26, we learn how to construct and represent them, and
how to calculate in them.

27.1 Prime Order

We have already encountered finite number fields of prime order p. We now des-
ignate them by GF(p), where GF stands for Galois field [27.1]. They consist, for
example, of the elements 0,1,2, . . . , p− 1, for which addition, subtraction, multi-
plication and division (except by 0) are defined, obeying the usual commutative,
distributive and associative laws. Thus, in GF(3), for example, consisting of the el-
ements 0, 1 and 2, we have, by way of illustration, 1 + 2 = 0, 1− 2 = 2, 2 · 2 = 1,
1/2 = 2, etc.

27.2 Prime Power Order

We shall now construct finite number fields of order equal to a prime power pm,
designated GF(pm). These Galois fields have virtually unlimited application in such
diverse fields as physics (diffraction, precision measurements), communications
(error-correcting codes, cryptography) and artistic design (necklaces, etc.).

All realizations of GF(pm) are isomorphic. We will choose as field elements
either m-tuples (“vectors”), m×m matrices, or polynomials of degree m− 1, all
with components and coefficients, respectively, from GF(p).

1 S. B. Weinstein, found in [27.1].
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Since GF∗(pm), i. e., GF(pm) without the 0 element, forms a cyclic group with
multiplication as the group operation, we can also represent GF∗(pm), which has
order pm −1, by a primitive element α and its pm −1 distinct powers:

α,α2,α3, . . . ,α pm−1 = 1. (27.1)

We shall illustrate this for p = 2, i. e., GF(2m), which has order 2m. We begin with
the representation by m-tuples with components from GF(2), i. e., 0 or 1. There are
exactly 2m such m-tuples in agreement with the order 2m. For m = 4, GF(24) then
has the following 16 elements:

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0

...
1 1 1 1

(27.2)

The 4-tuples are written down here in binary sequence from 0 to 15 (with the least
significant digit on the left, for a change).

Addition and subtraction are defined column-wise modulo 2. Thus, for example,
1100 + 1111 = 0011 (which does not correspond to binary addition, because there
are no “carries”).

Multiplication is defined as follows. First, the m-tuples are represented by poly-
nomials of degree up to m−1. There are exactly pm such polynomials, i. e., as many
as the order of GF(pm). Each polynomial corresponds to one element of the field.
For example, the element 1100 corresponds to

x0 + x1 +0+0 = 1+ x, (27.3)

and the element 0101 corresponds to

0+ x1 +0+ x3 = x+ x3. (27.4)

Now, multiplication in GF(pm) is defined as multiplication of polynomials mod-
ulo a given irreducible polynomial π(x) over GF(p) of degree m. For p = 2 and
m = 4, there are precisely three such polynomials: 1 + x + x4, (its “reciprocal”)
1+ x3 + x4 and 1+ x+ x2 + x3 + x4. We choose

π(x) = 1+ x+ x4, (27.5)

as our modulus and define the product of two elements of GF(24), represented by
two polynomials g(x) and h(x), as

g(x) ·h(x) = 〈g(x) ·h(x)〉π(x) , (27.6)
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where the acute brackets indicate a least remainder, i. e. a polynomial of degree
smaller than the degree of π(x).

Thus, for example,

1101 ·1001
∧= (1+ x+ x3)(1+ x3) = 1+ x+ x4 + x6. (27.7)

As we saw before, calculating the remainder modulo π(x) is the same as setting
π(x) = 0, or replacing x4 by 1 + x. Thus, we may write (remember the coefficients
are from GF(2), i. e., 1+1 = 0, etc.):

1+ x+ x4 + x6 = 1+ x+1+ x+ x2(1+ x) = x2 + x3. (27.8)

Thus, we get

1101 ·1001 = 0011. (27.9)

For the multiplication to have an inverse in GF∗(pm), π(x) must be irreducible –
just as we require that for the multiplication of the integers 1,2, . . . ,n−1 to have an
inverse modulo n, n must be “irreducible”, i. e., prime.

To show that 1 + x + x4 is, in fact, irreducible, we have to show that it is not
divisible by any polynomial over GF(2) up to degree 4/2 = 2.

Obviously, 1 + x + x4 is not divisible by x or 1 + x. It is also not divisible by x2

or 1 + x2 [because (1 + x2)2 = 1 + x4], which leaves only 1 + x + x2 as a potential
divisor. By long division we get

x4 + x + 1 : x2 + x+1 = x2 + x

x4 + x3 + x2

x3 + x2 + x+1 (27.10)

x3 + x2 + x

remainder : 1 �= 0.

Thus, 1+ x+ x4 is indeed irreducible.
Another polynomial of degree 4 over GF(2) is the reciprocal defined by

π̂(x) := xdeg[π(x)]π(x−1), (27.11)

or, for π(x) = 1+ x+ x4:

π̂(x) = 1+ x3 + x4. (27.12)

In general, in a reciprocal polynomial, the exponents are “flipped”, i. e., the exponent
k becomes the exponent deg[π(x)]− k.
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27.3 Generation of GF(24)

We shall now try to generate the finite number field GF(24) of order 16 by making
use of the irreducible polynomial π(x) = 1+ x+ x4 and the primitive element

α = 0100
∧= x. (27.13)

We start with the 0 element (α−∞) and the 1 element (α0) and proceed by multiply-
ing with α , i. e., multiplying by the polynomial x (corresponding to a right shift in
the m-tuple) and residue reduction modulo 1+ x+ x4, which corresponds to adding
1’s (modulo 2) to the two left-most places of the m-tuple when a 1 “disappears” on
the right:

α power polynomial 4− tuple

−∞ 0 0000
0 1 1000
1 x 0100
2 x2 0010
3 x3 0001
4 1+ x 1100
5 x+ x2 0110
6 x2 + x3 0011
7 1+ x+ x3 1101
8 1+ x2 1010
9 x+ x3 0101

10 1+ x+ x2 1110
11 x+ x2 + x3 0111
12 1+ x+ x2 + x3 1111
13 1+ x2 + x3 1011
14 1+ x3 1001

15 1 1000

(27.14)

Thus, we see that α15 = α0 = 1 and αn �= 1 for 0 < n < 15, as is expected of a
primitive element. And we also see that the process has generated all 15 + 1 = 16
binary-valued 4-tuples and all polynomials over GF(2) of maximal degree 3.

It is interesting to note that the above listing also contains the representation of
GF(24) by 4× 4 matrices with elements 0 or 1. Consider the matrix consisting of
the third to sixth 4-tuples:

M =

⎛

⎜

⎜

⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞

⎟

⎟

⎠

. (27.15)
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M is a primitive element of this representation. The matrix representation is redun-
dant, but its advantage is that the other nonzero elements are generated by ordinary
matrix multiplication! For example,

M2 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0

⎞

⎟

⎟

⎠

, (27.16)

which corresponds to the fourth to seventh 4-tuple in the listing above. In general,
Mn+1 is obtained from Mn by deleting the upper row of Mn and appending the next
row from the (cyclical) list (27.14) to the bottom of Mn. In fact, Mk is the 4× 4
matrix whose top row is αk.

Note that we have a set of matrices here whose multiplication is commutative.

27.4 How Many Primitive Elements?

In generating GF(24), we used α as the primitive element, generating all 15 nonzero
elements by αk, k = 1,2, . . . ,15. How many such distinct primitive elements are
there? Obviously φ(15) = 8, because with α , αn is also a primitive element iff
(n,15) = 1. Thus, α2, α4, α7, α8, α11, α13 and α14 are the other primitive elements.

In general, the order of an element αn of GF(pm) equals (pm − 1)/(n, pm − 1).
Thus, for GF(24), α3, α6, α9 and α12 have order 5, while α5 and α10 have order 3.
The number of elements having order T , where T must be a divisor of pm − 1, is
φ(T ), as we saw in Chap. 13. As always, there is one element of order T = 1, namely
α0 = 1.

27.5 Recursive Relations

Still another way of looking at GF(pm) is to focus on the first column of the m-tuple
representation. Skipping the 0 element, we obtain a binary-valued periodic sequence
{ak}, one period of which for GF(24) looks like this:

{ak} = 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1. (27.17)

It is easy to see that this sequence is generated by the recursion

ak+4 = ak+1 +ak (27.18)

with the initial condition a1 = 1, a2 = a3 = a4 = 0.
The recursion is a direct consequence of having generated the m-tuples by means

of polynomial residue reduction. For our example of GF(24) we had chosen for
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the residue reduction the polynomial modulus π(x) = x4 + x + 1 which, as we saw,
corresponds to setting

x4 = x+1 = x1 + x0. (27.19)

Now, multiplication by x engenders a right shift in the m-tuple. This polynomial
equation therefore corresponds directly to the recursion

ak+4 = ak+1 +ak+0,

as already stated.
The above recursion has a “memory” of four binary digits. Once four consecutive

ak are specified, the sequence is uniquely determined by the recursion. One way to
implement a physical generator for the above sequence is by a finite-state machine,
a so-called shift register as shown in Fig. 27.1.
At the time of each clock pulse, the content of a register (0 or 1) is transferred to
its next neighbor to the right. The recursion is implemented by the linear feedback
connection to the input of the first register, also shown in Fig. 27.1.

Since this finite-state machine has m = 4 registers which can hold either a 0 or
a 1, there are 24 = 16 possible states. However, the state 0 0 0 0 never generates
anything but more 0’s and is therefore of no interest to us here. Thus, there remain
pm − 1 = 24 − 1 = 15 distinct nonzero states and the above sequence must repeat
after at most 15 steps – which it does. In this connection it is instructive to check
that the consecutive 4-tuples of {ak} cover all 15 possibilities except the all-zero
4-tuple 0 0 0 0.

It can be shown that such maximum-length sequences exist for all periods of
length pm − 1 [27.1]. What is needed is an irreducible polynomial of degree m, of
which there are, in fact, see also [27.2]:

1
m ∑

d|m
μ
(

m
d

)

pd .

For p = 2 and m = 4, there are three irreducible polynomials, as already noted
(Sect. 27.2).

Fig. 27.1 Four-stage linear shift register generating maximum-length Galois sequence correspond-
ing to the finite field GF(24). The contents of each of the four registers are transferred to the next
neighbor to the right upon application of a clock pulse (not shown). The sequence of pulses repeats
after 24 −1 = 15 clock pulses
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If the sequence is to be generated by a shift register, as illustrated in Fig. 27.1,
then, in addition, the root x of the irreducible polynomial must be a primitive el-
ement. Polynomials with this property are called primitive polynomials. There are
exactly

φ(pm −1)
m

(27.20)

such polynomials, each leading to a distinct maximum-length sequence. For pm > 4,
these sequences come in pairs, generated by pairs of reciprocal polynomials, that are
mirror images of each other (reflected in “time”).

For p = 2 and m = 4, (27.20) tell us there are two primitive polynomials. Hence
one of the three irreducible polynomials of degree 4 cannot be primitive. Indeed,
the polynomial 1 + x + x2 + x3 + x4, while irreducible, is not primitive because it
has no roots that are primitive elements. For example, the root x generates only 5
different elements, i. e. it only has order 5. To wit: x5 = x x4 = x+ x2 + x3 + x4 = 1.
The corresponding shift register connection or recursion

an+4 = an+3 +an+2 +an+1 +an (27.21)

produces sequences with period 5. In fact, starting with 1 0 0 0, we get

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 etc.

Irreducible polynomials that are not primitive are also “distinguished” by the
fact that they are factors of 1 + xn with n < pm − 1. Thus, for p = 2 and m = 4,
1+ x+ x2 + x3 + x4 is indeed a factor not only of 1+ x15 but also of 1+ x5:

(

1+ x+ x2 + x3 + x4)(1+ x) = 1+ x5.

This fact can be used to show, in a different way, why the corresponding recursion
has only period 5. First one shows (easily) that the recursion produces a sequence
that corresponds to the reciprocal of the corresponding polynomial. This, in turn,
can be written as

(

1+ x+ x2 + x3 + x4)−1
=

(1+ x)
1+ x5 = (1+ x)

(

1+ x5 + x10 + . . .
)

,

which has obviously period 5. As a binary sequence, the right side corresponds to 1
1 0 0 0 1 1 0 0 0, etc. which agrees, within a shift, with the above sequence found
directly by the recursion (27.21).

By the same token, a primitive polynomial is a factor of 1 + xn with n = 2m − 1
and no smaller n. Thus, its reciprocal repeats after 2m −1 terms and not before!

Interestingly, sequences generated by linear-recursion that do not have maximum
length depend on the initial condition (even when lateral shifts are discounted). For
example, the initial condition 1 1 1 1, with the above recursion (27.21), produces a
different sequence:

1 1 1 1 0 1 1 1 1 0 1 1 1 0 etc.
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By contrast, different initial conditions (excepting 0 0 . . . 0), for a recursion based
on a primitive polynomial, always give the same sequence (starting of course with
the initial condition). This must be so because a maximum-length sequence runs
through all m-tuples (except 0 0 . . . 0), and each possible initial condition therefore
occurs in the sequence; there is no variety to be obtained by different choices of
initial conditions other than a shift.

27.6 How to Calculate in GF(pm)

For adding and subtracting elements of GF(pm), the m-tuple representation is rec-
ommended. The m-tuples are added column-wise modulo p. For multiplying, divid-
ing, and exponentiating, the α-power representation is preferable.

Examples from GF(24):

0111 ·1111
∧= α11α12 = α23 = α8 ∧= 1010.

(1010)−1 ∧= (α8)−1 = α7 ∧= 1101.

(0110)1/2 ∧= (α5)1/2 = (α20)1/2 = α10 ∧= 1110.

The Zech logarithm Z(n), defined by

αZ(n) := 1+αn, (27.22)

permits both adding and multiplying using the α-power notation without anti-
logging!

Example:

(α9 +α10)2 = α3 +α5 = α3(1+α2),

and, from a table of Z(n), Z(2) = 8. Thus, 1+α2 = α8 and

(α9 +α10)2 = α11.

Check: (α9 + α10)2 ∧= (0101 + 1110)2 = (1011)2 ∧= (α13)2 = α11. Check! But the
latter (checking) operation takes three table-lookups (instead of one) and requires
going from α powers to m-tuples and back again to α powers. So Zech does some-
thing quite sobering for us.

27.7 Zech Logarithm, Doppler Radar and Optimum
Ambiguity Functions

The Zech logarithm has a noteworthy property that leads directly to several inter-
esting applications in some rather unlikely fields of human endeavor. Imagine, if
you can, the year 1943 – not a prime year. Radar had been developed to a fine tool
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for locating U-boats and air planes. But then a new trick was first tried that foiled
conventional radars: metal foil strips, called chaff, tuned to the searching radar’s
wavelength. When they were released by the target, they so overwhelmed the radar
scope with phoney reflections that the real target was all but invisible and often
escaped unharmed.

Of course, for every weapon there is a counter weapon, and for the chaff (code-
named Düppel-Streifen in German) it was the Doppler effect, named after the
Austrian physicist Johann Christian Doppler (1803–1853) who discovered it. The
Doppler effect says that a wave emitted or reflected from a moving target suffers a
change in its wavelength or frequency. (Interestingly, but perhaps not surprisingly,
considering that Doppler was born in Salzburg, the city of Mozart, his effect was
first verified in 1845 by using trumpeters on a moving train.)

To separate dangerous targets from harmless chaff, engineers (electrical) soon hit
upon the idea to measure the frequency shift of the radar echo; only the frequency-
shifted echoes were harvested for further action. But early Doppler radars, as they
were called, using frequency-modulated (“chirp”) pulses had a disturbing trait: they
confused range (target distance) with range rate (speed of approach). The same echo
could signal either stationary chaff at 10 km, say, or a fast approaching plane at
9 km – a potentially fatal ambiguity. To lasso this electronic double entendre into a
neat mathematical form, theoretically inclined engineers defined an ambiguity func-
tion. After that, everyone in the Doppler arena began hunting for the ideal ambiguity
function, dubbed thumb-tack function: a function of range and range rate that van-
ishes everywhere except at one sharp point, thereby defining both distance and speed
unambiguously.

What does an ideally unambiguous radar pulse look like? First, radar pulses are
periodic, with period T , so that target range and speed can be periodically updated,
say every T = 10 milliseconds, corresponding to a maximal range of 15 km. Radars
must also have a certain range accuracy Δr = 2c ·Δt, where c is the speed of light
and Δt the corresponding timing accuracy (typically a fraction of a microsecond).
Without imposing any severe constraints on the design of the radar, we shall assume
an integer relationship between T and Δt:

T = (pm −1)Δt, (27.23)

where p is a prime and m is an integer.
To achieve a timing accuracy Δt, the frequency bandwidth of the radar, according

to the uncertainty principle, must exceed 1/Δt. If all the frequencies contained in a
sufficiently wide frequency band were transmitted simultaneously in one time slot
Δt, the peak power limitation of the radar transmitter would be ill used. Instead we
assume that during each time slot, the nth one beginning at

tn = nΔt, n = 1, . . . , pm −2, (27.24)

only one discrete frequency is transmitted; every Δt seconds the radar frequency
hops to a new value and then remains constant at that value for a time interval Δt.
Calling these discrete frequencies
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f (n) = f0 + z(n)Δ f , (27.25)

the remaining problem in our radar design is to determine in which order they are
to be radiated. We want to make sure that for each delay difference k any frequency
difference occurs at most once. Mathematically speaking, we are looking for a per-
mutation z(n) of the integers from n = 1 to n = pm −2 such that

z(n+ k)− z(n) ≡ z(n′ + k)− z(n′) (27.26)

for k �≡ 0 and all n �≡ n′ mod pm −1.
Such “perfect” permutations are not so easy to generate. For example, the “ran-

dom” permutation z(n) = 3,1,4,5,2,6 of the integers from 1 to 6 does not have
property (27.26): for k = 2, n = 1 and n′ = 4, we have 4− 3 = 6− 5. In fact, per-
fect permutations, which obey (27.26), form a small minority among all possible
permutations.

This is where our Zech logarithm comes in: more than 30 years after the original
Doppler radar excitement it was suddenly discovered that primitive roots and Zech
logarithms can generate the required permutations with property (27.26) and thus
provide a new answer to the ambiguity problem [27.3].

Let us define the Zech logarithm z(n) by

αz(n) := 1−αn, (27.27)

where α is a primitive element of the Galois field GF(pm). (Note that, for p = 2,
z(n) = Z(n) as defined in (27.22). The minus sign in (27.27) was chosen for subse-
quent notational convenience.)

To illustrate the use of the Zech logarithm, let us construct a permutation of
the integers from 1 to 6 using the Galois field GF(23) with the primitive element

α = x
∧= 0 1 0 and the modulus polynomial x3 = 1+ x:

α−∞ 0 0 0
α0 1 0 0
α1 0 1 0
α2 0 0 1
α3 1 1 0
α4 0 1 1
α5 1 1 1
α6 1 0 1

(27.28)

Now with (27.27) we have, for n = 1,2, . . .6, z(n) = 3,6,1,5,4,2, which is indeed
a perfect permutation having property (27.26). This is easily checked, noting that
both z(n) and n are taken modulo pm −1 = 7.

A general (indirect) proof that this is so proceeds as follows. Suppose that (27.26)
is violated for some k �≡ 0 and some pair n �≡ n′ mod pm −1. Then, with (27.27),
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1−αn+k

1−αn ≡ 1−αn′+k

1−αn′ mod pm −1, or

αn(1−αk) ≡ αn′(1−αk) mod pm −1.

Since k �≡ 0, and therefore 1−αk �≡ 0, it follows that

αn ≡ αn′ mod pm −1,

which, for primitive α , is true if and only if n ≡ n′ mod pm − 1, contradicting our
assumption.

To construct a radar pulse of period T and time resolution Δt according to this
principle, a prime power pm near 1 + T/Δt is first selected. A primitive element α
in GF(pm) is then used to generate the pm − 2 successive frequencies f (n) in the
radar pulse according to (27.25) where z(n) is the Zech logarithm of n defined by
(27.27). To give the pulse the proper period T = (pm − 1)Δt, one empty interval,
during which no energy is radiated, is inserted into each period at n ≡ 0 mod pm−1.

In addition to the permutation z(n), generated directly by the Zech logarithm,
the product rz(n), where r is coprime to pm − 1, yields more permutations with
property (27.26). There are thus a total of φ(pm−1) “Zech-like” permutations, any-
one of which leads to the desired ambiguity function and can therefore be used
in the Doppler radar frequency hopping scheme (27.25). However, while the orig-
inal permutation z(n) is symmetric, in that z(z(n)) = n, this is no longer true for
r �≡ 1 mod pm −1. This absence of symmetry may be an advantage in certain appli-
cations where a potential adversary might exploit symmetry for his advantage. The
additional degree of freedom offered by different choices of the parameter r could
also be helpful in foiling attempts at jamming.

For m = 1, another method of generating perfect permutations of the integers
1,2, . . . , p− 1 is by means of successive powers of a primitive root g of the prime
p: g1,g2, . . . ,gp−1. This method is, however, limited to primes p, while the Zech
logarithm is applicable to all prime powers pm, a denser set. (How dense?)

Quadratic residues modulo an odd prime can also generate integers with the
property (27.26). However, for the periodic sequence n2 mod p, half the integers
in 1,2, . . . , p−1 do not occur and the other half occurs twice, violating our require-
ment of fully utilizing the available frequency space.

27.8 A Unique Phase-Array Based on the Zech Logarithm

Consider the periodic sequence with period pm −1:

a0 = 0 (27.29)

an = exp

[

2πiz(n)
pm −1

]

, for n = 1,2, . . . , pm −2,
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where z(n) is a Zech logarithm in GF(pm) defined according to (27.27). All an,
n �≡ 0mod pm − 1, have magnitude 1. The periodic correlation sequence cn (cf.
Sect. 14.8) is given by

c0 = pm −2 (27.30)

cn = −1− exp

[

−2πin
pm −1

]

.

This follows from the definition of cn (14.40), and the (easy to prove) fact that, for
n �≡ 0, the difference z(k+n)− z(k) attains all values from 1 to pm −2 exactly once,
except the value n. The corresponding power spectrum is

|A0|2 = |A1|2 = 1, (27.31)

|Ak|2 = pm, k = 2,3, . . . , pm −2.

Applied to antenna arrays, operated at a wavelength λ, this result means that a pe-
riodic array with element spacing λ/2 in which all individual elements are driven
with equal amplitudes and with phase angles according to (27.29), will radiate equal
energies into pm −3 distinct directions (corresponding to the index values k = 2 to
k = pm − 2 in (27.31)). The “broadside” direction (k = 0) and the first “side lobe”
(k = 1) will receive only 1/pm of the energy going into the other directions.

If the phase angles 2πz(n)/(pm−1) in (27.29) are multiplied by an integer factor
r the “undernourished” lobe (other than the broadside) will be the rth lobe. This
follows from (27.34), see Sect. 27.9. Figure 27.2 shows the radiation pattern of such
an array with element spacing of 9/16 wavelengths, based on p = 3, m = 2 and
r = 2. (Note that for this application r does not have to be coprime to pm−1, so that
rz(n) is no longer a perfect permutation obeying (27.26).)

27.9 Spread-Spectrum Communication and Zech Logarithms

Another interesting application of the Zech logarithms is to spread-spectrum com-

munication (see Sect. 16.9). Consider the periodic sequences a(r)
n , r = 1,2, . . . pm−2,

with period pm −1,

a(r)
0 = 0 (27.32)

a(r)
n = exp

[

2πirz(n)
pm −1

]

for n = 1,2, . . . , pm −2.

The autocorrelation sequences are similar to (27.30):

c0 = pm −2 (27.33)

cn = −1− exp

[

−2πirn
pm −1

]

.
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Fig. 27.2 Radiation pattern of constant-amplitude phase array with phase angles based on Zech
logarithm for GF(32). Array has two periods of period length 8 (total number of nonzero array
elements: 14). Spacing between individual antenna elements: 9/16 wavelengths. Note small lobes
in the broadside (0◦) and second order (26◦, corresponding to r = 2) directions. The attenuation of
the small lobes corresponds closely to the theoretical value 1/pm =̂−9.5 dB for infinite arrays. By
choosing other values for the parameter r any of the other nonbroadside lobes can be made small.
(Prepared by M. Rollwage.)

The corresponding power spectra are flat except for two components:

|A0|2 = |Ar|2 = 1

|Al |2 = pm for k �≡ 0 and k �≡ r. (27.34)

Thus, these sequences too, like the original one (r = 1), have constant power in
time (except for one “silent” time interval per period) and in frequency (except for
two spectral components). In addition, and most importantly, the cross-correlation
coefficient crs between two such sequences

crs :=
pm−2

∑
n=0

a(r)
n a(s)∗

n (27.35)

equals −1 for r �≡ s. For pm � 1, the cross-correlation is thus small compared to the
power of these sequences.

These three properties (nearly constant power in time and frequency and small
cross-correlation) make these sequences ideal as “carrier waves” or signature
sequences in the design of spread-spectrum communication systems where all chan-
nels occupy the same frequency band and yet have small mutual interference.



Chapter 28
Spectral Properties of Galois Sequences

Certain periodic sequences with elements from the Galois field GF(p), formed with
the help of primitive polynomials over GF(pm), have unique and much sought-after
correlation and Fourier transform properties. These Galois sequences, as I shall call
them, have found ingenious applications in error-correcting codes, interplanetary
satellite picture transmission, precision measurements in physiology and general
relativity, and even concert hall acoustics. Other applications are in radar and sonar
camouflage, and in noise abatement, because Galois sequences permit the design of
surfaces that scatter incoming waves very broadly, thereby making reflected energy
“invisible” or “inaudible”. A similar application occurs in work with coherent light,
where a “roughening” of wavefronts (phase randomization) is often desired (for
example, to avoid “speckles” in holograms). Excellent structures for this purpose
are light diffusers whose design is based on Galois arrays – in a sense the ultimate
in frosted (milk) glass. Finally, Galois sequences allow the design of loudspeaker
and antenna arrays with very broad radiation characteristics.

28.1 Circular Correlation

Some of the most interesting properties of Galois sequences {ak} for p = 2 emerge
when we consider their (circular) correlation. But first we shall convert the ak into
bk by replacing 0’s by 1’s and 1’s by −1’s according to the rule

bk = (−1)ak , (28.1)

or, equivalently,

bk = 1−2ak. (28.2)

The circular correlation of the sequence bk is defined, as before, by

cn =
2m−2

∑
k=0

bkbk+n, (28.3)

where the indices are reduced modulo the period of the bk, i. e., 2m −1.
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For n �≡ 0 (mod2m −1), we get

c0 = 2m −1. (28.4)

For n �≡ 0, we shall consider the special case GF(24). The recursion for the bk is
multiplicative:

bk+4 = bk+1bk,

or

bk = bk−3bk−4, (28.5)

which is isomorphic with the corresponding recursion for the ak (27.18). Now con-
sider the terms in the above correlation sum

dk := bkbk+n. (28.6)

It is easy to see that the product sequence dk has the same recursion as the bk:

dk = bkbk+n = bk−3bk−4bk+n−3bk+n−4. (28.7)

By definition, the product of the first and third factors on the right equals dk−3, and
the product of the remaining two factors equals dk−4. Thus,

dk = dk−3dk−4, (28.8)

as claimed. Since the recursion together with the initial condition determines the
sequence uniquely, except for a shift in the index, we have (for n �≡ 0)

dk = bk+s (28.9)

for some shift s.
Using this result in the above correlation, we find

cn =
2m−2

∑
k=0

bk+s =
2m−2

∑
k=0

bk = −1, (28.10)

since exactly 2m/2 of bk equal −1 and the remaining (2m − 2)/2 equal +1. This
is so because in the m-tuple representation of GF(2m) all possible 2m m-tuples ap-
pear exactly once. However, the Galois sequence {ak} was constructed without the
0000-tuple, so that one period of {ak} has one extra 1, i.e., in the sequence {bk}
there is one extra −1. Hence, the sum over one period of the bk equals −1.

Most importantly, this result is true for any n �≡ 0. Thus, our correlation function
is two-valued:
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cn =

{

2m −1 for n ≡ 0mod(2m −1)
−1 otherwise

, (28.11)

meaning that the spectrum of the bk is flat [28.1]:

|Bk|2 =

{

2m for k �≡ 0mod(2m −1)
1 otherwise

. (28.12)

Thus, we have discovered another class of binary-valued periodic sequences with
a flat spectrum. But in contrast to the Legendre sequences (Chap. 16), which are not
easily generated, our Galois sequences derived from GF(2m) are generated by a
simple linear recursion as illustrated in Fig. 27.1. The linearity of the recursion has
other important consequences, for example in applications to error-correcting codes
(Sect. 28.2).

The periods that are achievable for binary-valued sequences have length 2m − 1
and require for implementation an m-stage shift register and a feedback connection
based on a primitive polynomial π(x) over GF(2) of degree m.

Examples:

m = 2 : π(x) = 1+ x+ x2

m = 3 : π(x) = 1+ x+ x3

m = 4 : π(x) = 1+ x+ x4

m = 5 : π(x) = 1+ x2 + x5

m = 6 : π(x) = 1+ x2 + x6

Note: 1+x+x5 is not irreducible over GF(2); it factors into (1+x2 +x3)(1+x+x2).
Primitive polynomials over GF(2) up to high degrees m have been published

[28.2]. The period length of the Galois sequence with m = 168 equals 2168 − 1, a
51-digit number. With one clock pulse per picosecond, the sequence will repeat after
1022 times the age of the universe – long enough for most purposes.

28.2 Application to Error-Correcting Codes and Speech
Recognition

Galois sequences are useful for correcting multiple errors in digital representations,
for example in transmission and storage [28.3]. In the simplest case, the m-tuples
corresponding to the initial condition are determined by the information to be trans-
mitted, while the recursion generates 2m − 1−m check bits. Thus, putting our ex-
ample of GF(24) to work, with the initial condition 1000, the recursion appends 11
check bits for a 15-bit codeword:

1 0 0 0, 1 0 0 1 1 0 1 0 1 1 1.
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The efficiency of this code is, of course, only 4/15, or, to put it differently: of the
215 possible binary-valued codewords of length 15, the code uses only 24. But as a
reward for this frugality, the code can correct up to three errors.

To see this, we note that the Hamming distance between any two distinct code-
words is d = 8. (The Hamming distance is the number of places in which two code-
words differ. Since for the code at hand, the difference (or sum) modulo 2 of two
codewords is again a codeword, the above result for d follows immediately.) Now,
for an even Hamming distance d, the number of errors that can be corrected is
d/2− 1 (by choosing the nearest possible codeword). The occurrence of one addi-
tional error can be detected but it can no longer be corrected, because there are then
two possible codewords equidistant from the erroneous one. This so-called Simplex
Code based on GF(24) can correct three errors and detect a fourth one [28.4].

The general result is that a code based on GF(2m) in the manner described has
efficiency m/(2m −1) and corrects 2m−2 −1 errors per codeword of length 2m −1.
Thus, these codes can cope with error rates around 25%! Not bad at all. The fact that
the efficiency is low is of little concern in some applications, such as image trans-
mission from interplanetary space vehicles, which take months or years to reach
their destinations and have long periods of time available to transmit their pictures
of, say, Jupiter’s moon Io. But these space communication links need all the error-
correcting capabilities they can get, because the typical space probe’s transmitter has
low power and has to be “heard” over vast distances. In fact, the first good pictures
of the “canals” of Mars were obtained with an error-correcting code very similar to
the one sketched here. And who wants to confuse a digital error with a new moon
of Neptune?

Another advantage of the code described here is that the error correction is quite
simple: the received code, converted to the ±1 representation, is cross-correlated
with the above codeword (1 0 0 . . .0 1 1 1), which is also converted to ±1. If there
was no error in transmission, all values of the (circular) cross-correlation will equal
−1, except one, which has value 15 and which by its position will indicate which of
the 15 allowed codewords was sent.

If there was one error in transmission, the peak value of the correlation will be
reduced from 15 to 13 and the other correlation values will be increased from −1
to +1. A second error will give correlation values 11 and up to 3, respectively. Three
errors will result in correlations 9 and up to 5, respectively. Thus, the peak value (9)
is still distinct from the other values (≤5), and proper detection is assured.

Four errors will produce correlation values of 7 in the proper location and also
7 in some off-locations, so that correction is no longer possible. But the absence of
correlation values larger than 7 is an indication that there are four or more errors.

Error-correcting codes are not only useful for cleansing digital data; they are
applicable also to fault finding in other fields. Let us look at (rather than listen to)
speech synthesis from text (“talking computers”) and automatic speech recognition
[28.5]. These are the acoustic “bridges” between man and machine.

Speech recognition is a particularly difficult problem for the computer, even for
small vocabularies enunciated clearly by “his master’s voice”. But the talkwriter
(voice-operated typewriter) is waiting in the wings to replace the irreplaceable
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human secretary. And one of the advances that will speed the entry of the blood-
less transcriber will be the proper exploitation of syntax and semantics.

To illustrate, consider a vocabulary of only 2 words and sentences with a length
of 15 words. Without constraints, this strange “language” allows the combination of
215 different sentences. Now suppose that good grammar and meaningful statements
limit the number of useful sentences to 2048 = 211. Then 4 words in each sentence
are redundant “check words”, allowing 24 = 16 different cases to be distinguished,
indicating either no error or which of the 15 words in the sentence was recognized
incorrectly.

This is a single-error-correcting Hamming Code [28.4] of length 15, using four
check bits. It is the dual of the Simplex Code discussed above, which has also length
15 but 15−4 = 11 check bits. The challenge in the application of finite-field theory
to speech recognition is to translate linguistic constraints into algebraic structures
that permit fast codebook searches. For artificial languages, such as company tele-
phone numbers or stock item labels, one can often start the language design from
scratch, matching it to known good codes.

28.3 Application to Precision Measurements

As we saw in the chapter on error-correcting codes, the Galois sequence {bk} with
period 2m−1, derived from an irreducible polynomial π(x) of degree m over GF(2),
has the following amazing properties:

1) Its energy, b2
k , is distributed perfectly uniformly in “time” (time correspond-

ing to the index k): each “time slot” k = 0,1, . . . ,2m − 2 has exactly the same
energy, namely 1.

2) The enery of the sequence is also uniformly distributed over all 2m−2 nonzero
frequencies.

Property (1) means that a device limited in peak power, such as a transmitter, can
output a maximum amount of energy in a given time interval. This makes it possible
to measure at extremely low signal-to-noise ratios.

Of course, a sinewave also has its energy stretched out rather uniformly in time,
but it contains only a single frequency and therefore has poor time resolution. By
contrast, because of Property (2), a Galois sequence contains many frequency com-
ponents, all having the same power. This means that measurements made with Ga-
lois sequences as a test signal – such as measurements of interplanetary distances
to check out space-time curvature – will have very high time resolution. In fact,
the time resolution will be the same as that obtained with a short pulse having the
same broad frequency spectrum. The high temporal precision inherent in Galois se-
quences is brought out by correlation receivers that cross-correlate the received sig-
nal (a radar echo from the planet Mercury, for example, or a faint echo in a concert
hall) with the outgoing sequence to form sharp peaks at the delays corresponding to
pulse travel times.
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Thus, these two properties – the full, optimal use of both Fourier domains (time and
frequency)–make theGalois sequences,alsoknownasmaximum-lengthsequencesor
pseudorandom shift-register sequences, ideal candidates for precision measurements
with extremely low energies in the presence of strong interfering noises.

28.4 Concert Hall Measurements

Most measurements of concert halls are done in empty halls: no live audience wants
to listen to the pops, bangs, hisses and howls produced by acousticians to measure
the acoustic characteristics of a hall under scrutiny. But measurements made in an
empty hall are often irrelevant, because a sizable audience has a noticeable effect
on the acoustics of an enclosure. Can one make measurements during an ongoing
concert without interfering with the musical enjoyment of the audience?

The answer to this question is, most surprisingly, yes. A Galois sequence can be
radiated (from a loudspeaker) into a concert hall (or any other “noisy” environment)
at such extremely low sound levels as to be inaudible by the audience (owing to
an auditory phenomenon called masking). The required detection process is cross-
correlation – as in the case of the error-correcting code described above – between
the received acoustic signal (at some audience location) and the radiated Galois
signal (from the stage, for example). By integrating the correlation over not just one
fundamental period, but over many periods, namely the duration of the concert (one
hour, say), the required signal-to-noise ratios can be realized [28.6].

For concert hall measurements, the fundamental period of the Galois sequence
is chosen to equal approximately the reverberation time, say 2 seconds. The clock
frequency chosen must be higher than twice the upper audio cutoff frequency, or
about 32 kHz. The sequence must therefore have a period length of at least 2 seconds
times 32kHz = 64000. The smallest 2m − 1 that is large enough is obtained for
m = 16, leading to a period of 216−1 = 65535, which is, in fact, a preferred choice.

The author demonstrates this method of measuring acoustic responses in one of
his lecture courses at the University of Göttingen by measuring the impulse response
between a point near the lectern and some point in the back of the auditorium while
continuing his lecture. As long as what he says is sufficiently incoherent (with the
radiated Galois sequence), his speech signal averages out in the correlation process,
and a “noise-free” response builds up on a TV screen watched by the students. (For
didactic reasons, the Galois sequence is played at a soft but audible level.)

Galois sequences have also been used in physiological measurement of neuronal
systems [28.7].

28.5 The Fourth Effect of General Relativity

General Relativity Theory, the theory of gravitation propounded by Einstein in 1915,
passed three important experiment tests during Einstein’s lifetime. The following
effects predicted by him were confirmed:
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1) The motion of the perihelion (the point closest to the sun) of the orbit of the
planet Mercury, already known from observations in the last century.

2) The bending of light waves near the sun, first observed during a total eclipse in
1919.

3) The gravitational red shift, first seen in the light from massive stars, but now
measured even on the earth itself using the ultrasensitive Mössbauer effect.

A fourth effect predicted by Einstein’s theory (although not considered by Albert
himself) was not confirmed until fairly recently [28.8]: the slowing of electromag-
netic radiation in a gravitational field – as opposed to the acceleration of matter as
it approaches a heavenly body.1 The fourth effect was observed by means of radar
echoes from the planets Venus and Mercury as they disappeared behind the sun as
seen from the earth (“superior conjunction”). In that position, both the outgoing and
returning radar waves have to travel very near (indeed around) the sun. Even after
taking plasma effects near the sun’s surface and other factors into account, physicists
found an extra delay of 200μs – very close to the prediction of general relativity (see
Fig. 28.1).

Fig. 28.1 Additional delay of radar echoes from the planet Mercury as predicted by Einstein’s
general theory of relativity (solid curve) and radar measurements from two earth- bound locations

1 In the long struggle to put his principle of general equivalence of different reference frames into
proper mathematical clothing (Riemannian geometry), Einstein discovered – as early as 1909 –
that the speed of light could not be constant (as in special relativity) but must depend on the grav-
itational potential φ . Although he had no general theory then, Einstein found that, to first order,
c(φ) = c+φ/c, where c is the usual vacuum velocity of light in field-free space. (Note: φ ≤ 0.)

Ironically, the slowing of radiation in gravitational fields, although appreciated very early, was
not considered a testable proposition until the perfection of radar technology, using Galois se-
quences, in the second half of this century. The reason for this delay in testing the extra delay was,
of course, that no one could picture himself (or anyone else, for that matter) floating next to the
sun, stopwatch in hand, clocking the passing photons.
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Why was this measurement not done long ago? The reason is that the echo energy
from Mercury – exceedingly weak even when visible – drops to 10−27 (!) of the
outgoing energy as the planet slips behind the sun; in other words, a radar echo
would not even suffice to raise the potential of a single electron by a thousandth of
a volt.

The astounding fact that reliable results have been obtained in spite of these
miniscule energies is due mainly to a proper choice of the transmitted sequence
of radar pulses, based on irreducible polynomials over finite number fields (called
“Galois fields” after the 18th-century French mathematician who died at the age of
20 after a duel over a woman, but not without jotting down some highly ingenious
ideas the night before the fatal encounter [28.9]).

28.6 Toward Better Concert Hall Acoustics

Consider the following problem in concert hall acoustics. Recent research, based on
a subjective evaluation of the acoustics of 20 major European concert halls [28.10],
has shown that many modern halls have poor acoustics because their ceilings are low
relative to their widths. Such halls do not provide the listener with enough laterally
travelling sound waves – as opposed to sound travelling in front/back direction and
arriving at the listener’s head in his “median” plane (the symmetry plane through
his head). Such median-plane sound, of course, gives rise to two very similar acous-
tic signals at the listener’s two ears, and it is thought that the resulting excessive
“binaural similarity” is responsible for the poor acoustical quality [28.11].

How can one correct this shortcoming? One component of median-plane sound,
the direct sound from the stage, cannot be suppressed because it is needed to local-
ize properly the different instruments on the stage. In principle, the ceiling could be
raised so that lateral sound would dominate again, as in the preferred (but unprof-
itable) old-style high and narrow halls. But modern air-conditioning has made the
low ceiling possible – and that is where mounting building costs will keep it.

Still another escape would be to absorb the sound at the ceiling and thereby
curtail its deleterious effect. But although room acoustics is not usually thought of
as an “energy problem”, we cannot afford to waste precious musical sound energy,
especially in a large modern enclosure, where every “phonon” is needed.

There remains only one alternative, to disperse the sound from the ceiling into a
lateral pattern. In other words, the ceiling should be what the physicist would call
a reflection phase-grating – a grating that scatters sound waves comprising many
different frequency components into a broad lateral pattern, without absorbing them
and with a minimum of specular reflection. What would such a ceiling look like?

The far-field or Fraunhofer diffraction of a grating is approximated by the Fourier
transform of the complex amplitude of the wave as a function of position as it leaves
the grating. Thus, if we want a broad diffraction pattern, we have to look for distribu-
tions that have a broad Fourier spectrum. Furthermore, if we want the waves leaving
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the grating to have uniform magnitude, we need a function of constant magnitude
which has a broad Fourier spectrum.

A function which has these properties is given by the Galois sequence {bk} dis-
cussed in this chapter; it has a magnitude of 1:

|bk|2 = 1 for all k,

and the nonzero frequencies of its Fourier spectrum all have the same magnitude:

|Bn|2 = 2m n �≡ 0 mod(2m −1).

Here, in the spatial diffraction-pattern application, each frequency component cor-
responds to a given diffraction order or spatial frequency (to use the modern expres-
sion from the field of Fourier optics [28.12]). The diffraction angle an is given by

sinαn = nλ/L, |n| ≤
⌊L

λ

⌋

, (28.13)

where λ is the wavelength, L is the period of the grating:

L = (2m −1)w, (28.14)

and w is the “grating constant”, i.e., the step size from one element of the grating to
the next [28.13].

The next question is: how do we impart amplitudes distributed like Galois se-
quence bk to a wave? The answer is by a hard corrugated surface, such as that
shown in Fig. 28.2. A normally incident wave is reflected from a hard surface with a
reflection factor of +1. However, in places where the surface is set back by a quarter
wavelength, its phase at the reference plane, after having traveled an extra distance
of half a wavelength, is shifted by π , i.e., its complex amplitude is eiπ = −1.

Fig. 28.2 A corrugated surface acting as a reflection phase-grating. If the design is based on a
Galois sequence, then the reflected energy is broadly scattered as shown in Fig. 28.3
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Of course, the wave reflected from the corrugated structure shown in Fig. 28.2
will not have discontinuous jumps in its amplitude from +1 to −1; that would vio-
late the wave equation. We have taken here a kind of Kirchhoff view of diffraction:
we consider the diffracted wave to equal the incident wave as modified only in the
most obvious manner, without regard to the self-consistency of such assumptions
[28.13]. Nevertheless, it is well known that diffraction treated according to Kirch-
hoff, generally gives results in good agreement with reality, and our case, as proved
by subsequent measurements, is no exception (except for some low-frequency loss).

Figure 28.3 shows the diffraction pattern measured from the corrugated surface
shown in Fig. 28.2. We see that, indeed, about equal energies are scattered into the
different diffraction orders.

The only disadvantage of a ceiling based on a Galois sequence {bk} from GF(2m)
is that it is binary-valued, bk = ±1, so that the corrugated structure only has inden-
tations of one size, namely a quarter wavelength. If we consider an incident wave
one octave higher in frequency, i.e., having half the original wavelength, the phase
shift it suffers upon reflection by one of the indentations is 2π (instead of π). In
other words, there is no phase shift at all, and measurements confirm that there is an
almost specular reflection (Fig. 28.4). In fact, Fig. 28.5 shows the reflection from a
plane (uncorrugated) surface, and there is hardly any difference between it and the
diffraction pattern from the corrugated surface at the octave frequency.

How do we extend the broad diffraction pattern to a broad frequency band com-
prising several musical octaves? One way would be to make the indentation depths
correspond to a quadratic-residue sequence as already discussed (Sect. 16.6). But
then we lose the advantage of low specular reflection. Has Galois nothing to offer
that works at more than one frequency?

How about considering a finite number field GF(pm) with p > 2, and perhaps
just m = 1? For p = 11, a primitive element is 2. Using it to construct GF(11), we
get the recursion [see the analogous construction of GF(24), Sect. 26.5]:

an+1 = 2an (mod11). (28.15)

Thus, the Galois sequence for GF(11), beginning with 1, is

Fig. 28.3 Diffraction pattern from Galois reflection phase-grating shown in Fig. 28.2. Note nearly
equal energies being scattered into the (seven) diffraction orders
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Fig. 28.4 Same as Fig. 28.3
but at half the original
wavelength. Note strong
specular reflection despite
corruption of reflecting
surface

{an} = 1,2,4,8,5,10,9,7,3,6. (28.16)

However, this sequence is precisely the same as the primitive-root sequence for
p = 11 and the primitive root g = 2 that we studied in Sect. 14.8.

A scale model of a sound-diffusing structure base on GF(11) is shown in
Fig. 28.6. It consists of adjacent “wells” of different depths, the depth being pro-
portional to the following sequence of integers:

sn = 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, (28.17)

and so on (repeated periodically). It is obvious that the sequence of 10 integers
above is a permutation of the integers 1 to 10, i.e., each integer appears exactly

Fig. 28.5 Reflection from
plane surface. Note similarity
with reflection from
corrugated surface shown in
Fig. 28.4
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Fig. 28.6 Design of reflection phase-grating based on primitive roots

once. But what is so special about this particular arrangement among the 3,628,800
possible permutations? A little further inspection will reveal that each number in the
sequence is twice its predecessor – except when the doubling exceeds 10, in which
case 11 is subtracted from it.

In mathematical terms, the sequence sn is described by the following formula

sn = gn (mod p), (28.18)

where p is a prime number (p = 11 in our case) and g is one of its “primitive roots”
(here g = 2). A primitive root of a prime p is distinguished by the property that the
least positive remainder of gn runs through all the integers from 1 to p−1 (in some
order) as n goes from 1 to p−1.

The prime number 11 has 4 primitive roots (6,7,8 are the three others besides 2).
Thus, only one in nearly a hundred thousand permutation (not counting cyclic per-
mutations) is generated by primitive roots.

What distinguishes the permutation generated by a primitive root from the thou-
sands of others? The remarkable fact is that the periodic Fourier transform of the
sequence

rn = e2πisn/p (28.19)

has components of equal magnitude – except the zeroth, which is smaller. It is this
fact that results in the desired wave scattering when these numbers are used in the
design of a surface structure as illustrated in Fig. 28.6. The depths of the individual
wells are

dn =
snλ1

2p
, (28.20)

where λ1 is the fundamental wavelength.
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Fig. 28.7 Diffraction pattern
from primitive-root design for
p = 7, g = 3

Figure 28.7 shows the energy scattering from a ceiling structured according to a
primitive-root sequence.

What happens if the frequency of the waves is 2,3,4, . . . or 10 times higher than
the design frequency? Whatever the frequency factor, the structure acts essentially as
if the above sequence were multiplied by the frequency factor. Thus, for a frequency
5 times higher, for example, the effective sequence is

10,9,7,3,6,1,2,4,8,5 and so on,

which is exactly the old sequence shifted cyclically by 4 places to the left. But, as
is well known, the magnitude of the Fourier transform is unaffected by such a shift.
Quite a trick for a primitive root! Only if we multiply by a multiple of 11 does this
method fail. Then all remainders modulo 11 are zero and the structure shown in
Fig. 28.6 will act very much like a mirror.

While 2,6,7 and 8 are primitive roots of 11, the number 3, for example, is not.
To see this, we need only evaluate (28.17) for g = 3, which gives

3,9,5,4,1,3,9,5,4,1,

a sequence that has “forgotten” half the numbers between 1 and 10 (2,6,7,8 and
10 are missing!). A ceiling built on the number 3 would lead to poor scattering of
sound and lower acoustic quality.

28.7 Higher-Dimensional Diffusors

The wave-scattering principles described in Sect. 28.6 can be applied to two or
more dimensions. Suppose the period length of the flat-spectrum sequence has at
least two coprime factors m and n, as in 24 − 1 = 15 = 3 · 5 or 311 − 1 = 30 =
2 · 15 = 3 · 10 = 5 · 6. Then the sequence can be converted into a two-dimensional
array of length m and width n as illustrated in Fig. 17.1. Such arrays then have the
desired spatial correlation and spectrum properties in two dimensions and are useful
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in noise abatement (to disperse sound waves) or in radar and sonar camouflage and
X-ray astronomy (see Sect. 14.10).

If the period length can be factored into three or more coprime factors, corre-
spondingly higher-dimensional designs can be realized.

Other interesting generalizations are described by J. H. van Lint, F. J. MacWilliams,
and N. J. A. Sloane [28.14].

For a Galois sequence whose period length 2m−1 is a Mersenne prime, there are
of course no coprime factors and higher-dimensional arrays, based on factoring the
period, are impossible. Hence, Mersenne primes, which give us perfect numbers (see
Sect. 3.7), levy a certain toll when it comes to the construction of higher dimensional
arrays – just like the Fermat primes (see Sect. 14.11).

28.8 Active Array Applications

The principles discussed in Sects. 28.6 and 28.7 are also applicable to active arrays
(loud-speaker columns, radio and television antennas) in one, two or more dimen-
sions. In fact, since no Kirchhoff approximation is involved, flat-spectrum sequences
lead to arrays with highly uniform directional characteristics. Because of the time
reversal invariance (T invariance) of mechanics and electromagnetism (also referred
to as “reciprocity”), both transmitting and receiving arrays with the desired charac-
teristics can be realized [28.15].

Fig. 28.8 Radiation pattern of 20-element collinear antenna array with half-wavelength spacing.
Signals supplied to individual dipoles have constant amplitude across the array but phase angles
vary according to primitive-root sequence (g = 2, p = 11). Note uniformity of radiation in different
major lobes, except broadside (φ = 0◦ and 180◦) where it is low
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One application is to loud-speaker columns that do not focus sound undesirably
or whose directional characteristics can be switched from “narrow” to “broad”.

Figure 28.8 shows the directional characteristics of 2 ·10 = 20 elementary radia-
tors with a spacing of half a wavelength, whose phases have been selected according
to the primitive root g = 2 of the prime p = 11. The uniformity of the radiated en-
ergies into the different “side lobes” is impressive. Only the broadside radiation
(φ = 0◦ and φ = 180◦) is weak – as expected for a primitive-root design. Other
antenna applications of number theory are discussed in Chap. 30.

Further facts and applications of binary sequences, flat-spectrum or otherwise,
can be found in [28.16–18].



Chapter 29
Random Number Generators

“Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.”

– John von Neumann

In contemporary computation there is an almost unquenchable thirst for random
numbers. One particularly intemperate class of customers is comprised of the di-
verse Monte Carlo methods.1 Or one may want to study a problem (or control a
process) that depends on several parameters which one doesn’t know how to choose.
In such cases random choices are often preferred, or simply convenient. Finally, in
system analysis (including biological systems) random “noise” is often a preferred
test signal. And, of course, random numbers are useful – to say the least – in cryp-
tography.

In using arithmetical methods for generating “random” numbers great care must
be exercised to avoid falling into deterministic traps. Such algorithms never pro-
duce truly random events (such as the clicks of a Geiger counter near a radioactive
source), but give only pseudorandom effects. This is nicely illustrated by the fol-
lowing (true) story.

An associate of the author, for a study in human vision, wanted to generate visual
noise or “snow” (as seen on the screen of a broken TV set). The unwary researcher
selected a widely used random number routine available from a renowned software
source. The numbers produced by this algorithm had passed a battery of sophisti-
cated tests with random colors flying. Yet when the researcher selected alternative
output samples from the “random source” to determine abscissae and ordinates of
white dots on a TV screen, the result was not the expected random “snow” but just
a few diagonal streaks!

In the following we will sketch some fundamental facts about both random
and pseudorandom number generators. We will be interested in both discrete and
(quasi-)continuous distributions of random numbers. (Remember that nothing is re-
ally continuous in digital computation.) Our main tools will turn out to be congru-
ences and recursions.

1 The reader may recall that many analytically intractable problems can be solved (albeit with a
statistical error) by simulation with a random process and “tabulating” the results of one or more
simulation runs.

M. Schroeder, Number Theory in Science and Communication, 5th ed., 347
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29.1 Pseudorandom Galois Sequences

In Chap. 27 we became acquainted with a method of generating pseudorandom
sequences with elements from GF(p) and period length pm−1 [29.1]. For p = 2, we
obtain binary-valued sequences [29.2] with elements 0 and 1 or, as often preferred,
1 and −1.

These sequences an are generated by linear recursions [29.3]:

an = 〈 f1an−1 + . . .+ fman−m〉p, (29.1)

where addition is modulo p, as indicated by the acute brackets, which signify least
positive (or nonnegative) remainders. The coefficients fk are determined by primi-
tive polynomials in GF(pm) (Chap. 28).

These sequences are, of course, not truly random. Each period contains precisely
all m-tuples but one (the all-zero tuple). Also, their correlation is not that of a truly
random sequence (like, say, the pulses from a Geiger counter near a radioactive
source). In fact, the periodic autocorrelation has only two possible values (a highly
valued property in numerous applications; see Chap. 28). Nevertheless, by choosing
m very large, say m = 168, and selecting a relatively small excerpt from a full period,
pseudorandomness can approach true randomness under many statistical tests. For
m = 168 and p = 2, for example, the period length exceeds 1050 samples, and even
as many as 1010 samples from such a sequence constitute a very small portion of the
entire sequence.

If used in application where higher-order correlations are important, however,
trouble can still occur. As an illustration, for m = 5 and p = 2, and the recursion

an = 〈an−4 +an−5〉2, (29.2)

or, for bn = 1−2an,

bn = bn−4 ·bn−5, (29.3)

the third-order correlation coefficient becomes

c4,5 = ∑bn ·bn−4 ·bn−5 = ∑1. (29.4)

Thus, c4,5, instead of being appropriately randomly small, becomess catastrophi-
cally large.2

The problem with higher-order correlations can be somewhat alleviated by bas-
ing the recursion on primitive polynomials with a maximum number of terms. In our
example (m = 5, p = 2), this would mean replacing (29.3) by a recursion involving
four terms instead of only two:

2 Overlooking the importance of higher-order correlation in analyzing nonlinear systems has led to
some very misleading results in the animal neurophysiology of hearing when binary pseudorandom
sequences of the kind described here have been used as an acoustic input to the animal’s ear.
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bn = bn−1 ·bn−2 ·bn−3 ·bn−5. (29.5)

Now, of course, there is trouble with a fifth-order correlation. But for large m, the
recursion can be given so many terms that the nonrandom correlations are usually
of an irrelevantly high order.

29.2 Randomness from Congruences

Congruence relations are a preferred device for generating random numbers on a
computer [29.4]. A simple congruence

xn+1 = 〈axn +b〉m, x0 = c, (29.6)

has four parameteers: a multiplier a, an additive constant b, a modulus (“base”) m,
and an initial value (“seed”) c.

The integer range of the computer is often chosen as a modulus m, because then
if we interpret the acute brackets in (29.6) as meaning “take least absolute residue”,
the residue reduction is automatic. For example, if the computer is a 32-bit machine,
then its integer range is typically from −216 to 216 − 1 (or from −216 + 1 to 216),
in other words, a least absolute residue system of the modulus m = 232. Since inte-
ger “overflow” (an integer exceeding the computer’s range) is often automatically
handled by taking least absolute residue, the remainder operation in (29.6) therefore
does not require additional computation. (Never mind that in computerese residue
reduction goes by such, possibly unfamiliar terms as “twos-complement”, etc.)

The longest period of the xn generated according to (29.6) is, of course, m. (Once
an earlier value of xn reappears, the whole sequence of xn will be repeated; (29.6)
represents a first-order (pseudo-)Markov process with no memory beyond its im-
mediate past.) If m is power of 2, m = 2k, then to realize a period length of m, the
following conditions must be fulfilled [29.4]:

a ≡ 1 (mod4) (29.7)

and

(b,m) = 1, (29.8)

i. e., it suffices that b be odd.
With binary computers, a preferred choice for a is a = 25 +1, because then mul-

tiplication by a is a simple shift opertion and an addition.
If the period length is maximum, then since xn will eventually assume all m

possible different values, the choice of the initial value, x0, is not crucial.
The random numbers generated by a simple congruence with maximum period

length show shorter periods in their least significant digits.3 If this is troublesome,

3 Can the reader show why this is so?
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and the least significant digits are actually needed (otherwise they could simply be
discarded), it is best to adopt another algorithm such as the following.

A more sophisticated random number generator uses r random initial values in-
stead of only one:

x1,x2, . . . ,xr, (29.9)

which are read out successively. At the same time that an xn is read out, it is added
(modulo m) to the value in the circularly preceding storage location. (In other words,
xr precedes x1, etc.)

Thus, with the above “seeds”, the random sequence will be

x1,x2, . . . ,xr−1,〈xr + x1〉m,

〈x1 + x2〉m,〈x2 + x3〉m, . . .

〈x1 +2x2 + x3〉m, etc. (29.10)

29.3 “Continuous” Distributions

If we desire random variables uniformly distributed in the interval [0,1), then simple
scaling of the xn generated by (29.6) or (29.10) will suffice:

yn =
xm

m
. (29.11)

Of course, the distribution of the yn is not continuous – nothing is in a computer (or
the world, for that matter) – but for large m, the yn are often taken as a continuous
variable.

Distributions that are not uniform can be obtained from a uniform variable as fol-
lows. Say w(z) is the desired frequency distribution and W (z) is the corresponding
cumulative distribution:

0 ≤W (z) ≤ 1. (29.12)

Then the random variable z is obtained from y by the inverse W−1, of the (nonde-
creasing) W (z):

z = W−1(y). (29.13)

For example, for

w(z) =
1
z

e−z/z, z ≥ 0, and (29.14)

W (z) = 1− e−z/z, (29.15)
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inversion of W (z) gives

z = −z ln(1− y), (29.16)

or, more simply (because y is uniform):

z = −z lny. (29.17)

Of course, for y near 0, when the logarithm in (29.17) has a singularity, the step size
for z is relatively large:

dz
z

=
|dy|

y
=

1
my

. (29.18)

29.4 Four Ways to Generate a Gaussian Variable

One of the most often needed distributions is the normal or Gaussian distribution:

w(z) =
1√
2πσ

e−(z−z)2/2σ2
. (29.19)

A Gaussian variable z can be generated according to (29.13), which requires tabu-
lation or computation of the inverse error integral.

In another approach, recourse is had to the Central Limit Theorem of probabil-
ity theory: an approximation to a Gaussian variable is obtained by summing many
uniform variables (at least six, say – but this depends on the application).

A third method uses the fact that a Gaussian variable is obtained by multiplying
a Rayleigh variable

w(r) =
2r

r2
e−r2/r2

(29.20)

and the cosine of a uniform variable u, uniform in [0,2π). The variable r is obtained
with (29.13). Thus, the Gaussian variable g is given by

g = g+(−2g2 lny1)
1
2 · cos(2πy2), (29.21)

where y1,y2 are independent uniform variables in [0,1).
A second, uncorrelated Gaussian variable can be generated from the same y1,y2

by replacing the cosine in (29.21) by sine. More generally, a Gaussian variable with
correlation coefficient c can be generated by adding arccos(c) to the argument of
the cosine in (29.21).

In conclusion, we will give a method for generating two independent Gaussian
variables that does not require a trigonometric function as in (29.21). Again, we
need two uniform variables, y1,y2 which will be “centered”:

u1 = 2y1 −1, u2 = 2y2 −1, (29.22)
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and rejected, unless

r = u2
1 +u2

2 ≤ 1. (29.23)

With such r, we then compute the two uncorrelated Gaussian variables with mean 0
and variance 1 as follows:

g1 =

(

− 2
r

lnr
)

1
2

2
·u1, (29.24)

and

g2 =

(

− 2
r

lnr
)

1
2

2
·u2. (29.25)

Correlated variables can be obtained by linear combinations of g1 and g2.
Of course, none of the methods described here are (or could be!) exact, if only

because computation of the logarithm is only approximate. But precision can always
be carried as far as needs (and budgets) dictate.

29.5 Pseudorandom Sequences in Cryptography

At first blush, pseudorandom sequences look like a fine tool for srambling or en-
crypting secret messages. However, great care must be exercised to avoid some ter-
rible pitfalls when relying on pseudorandomness.

As early as 1953, E. N. Gilbert of Bell Laboratories wrote a memorandum
[29.5] in which he pointed out that binary Galois (linear shift-register) sequences
(Chap. 27) of (maximum) period lengths 2m − 1 can be distinguished from truly
random sequences on the basis of much fewer than 2m terms; in other words, long
before the sequence betrays its pseudorandomness by periodic repetition.

Specifically, Gilbert showed that the rank of a certain matrix constructed from N
consecutive terms of the Galois sequence is less than maximal because of the linear
dependence between terms. Conversely, the probability that this will happen for a
truly random sequence can be made arbitrarily small.

For example, suppose we consider N = 50 successive terms from a Galois se-
quence with m = 11. Although the repetition period is 2047, these 50 “bits” will, of
course, fail the randomness test based on maximal matrix rank. But the probability
that the randomness test will be failed by a truly random sequence with indepen-
dently distributed 0’s and 1’s (each with probability 1/2) is less than 10−6 [29.5].
To overcome this inherent weakness of linear shift-register sequences, recent re-
search has concentrated on the problem of increasing the “complexity” of such se-
quences by taking nonlinear functions of several such sequences [29.6, 7]. This field
is presently in considerable flux.
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Pronounced biases have also been discovered in pseudorandom (card) shuffles,
with interesting number-theoretic implications [29.8].

Good algorithms for pseudorandom permutations [29.9] are of particular interest
in cryptography.

New methods for encryption by “random rotations” were described by Sloane
[29.10] at the Cryptography Workshop held at Burg Feuerstein, Germany, in 1982.
Much recent work in cryptography was discussed at that meeting [29.11].



Chapter 30
Waveforms and Radiation Patterns

In numerous technical applications, as well as some theoretical considerations, an
enticing problem is encountered. In its most practical (and real) form the problem
may be that of designing a radar (or sonar) transmitter waveform with a given spec-
trum such that its peak factor is a minimum. Peak factor is defined here as the range
of the waveform values divided by their root-mean-square. This is important in radar
and sonar, because one often wants to radiate a maximum amount of signal power,
of a prescribed spectral shape, with a given peak power limitation on the transmitter.

In many applications, the prescribed spectral shape is a flat (or “white”) spec-
trum. One waveform that has such a flat spectrum is a sharp impulse; but in this
case all the power is concentrated at one point in time, leading to a maximum peak
power. What we want is a minimum peak power. The problem also occurs in talk-
ing computers and electronic speech synthesizers in general: synthetic speech made
from sharp impulses sounds harsh and reedy; it suffers from a none-too-pleasant
“electronic accent”. By contrast, computer speech from low peak-factor waveforms
sounds smoother.

How can we avoid sharp pulses1 without modifying the power spectrum? Obvi-
ously, we still have the phase angles of the Fourier coefficients to play with.

For a given amplitude spectrum (magnitudes of Fourier transform coefficients),
how does one choose the phase angles of the Fourier coefficients in order to achieve
the smallest range of magnitudes in the corresponding inverse Fourier transform?

The results on waveforms described in this chapter are also applicable to antenna
directivity problems. Specifically, a low peak factor corresponds to an antenna with
a wide radiation or receiving directivity pattern.

Another antenna problem solved by number theory is one of “sparse arrays”,
namely minimum-redundancy antennas. Such antennas play an important role in
astrophysics and ocean surveillance, where the individual antenna elements (e. g.,
steerable parabolic “dishes” or submerged hydrophones) are very expensive or
costly to control. In such cases, one wishes to construct arrays with the smallest

1 Also called Dirac functions after the famous theoretical physicist who first formulated quantum
electrodynamics (QED), one of the most accurate physical theories. Dirac also discovered, on paper
so to speak, as consequences of Lorentz invariance, two very fundamental facts of universal reality:
elementary particle spin and antimatter. (While spin had been observed before QED, antimatter was
another matter and its existence was even doubted by such supreme judges as Wolfgang Pauli.).

M. Schroeder, Number Theory in Science and Communication, 5th ed., 355
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number of elements for a given unambiguous target resolution (Sect. 30.5). Mini-
mum redundancy arrays have also become important in real-time diagnostic
tomography.

30.1 Special Phases

Early waveforms with low peak factors were found by the author and V. A. Vyssotsky
by Monte Carlo computations: several thousand periodic waveforms of a given
power spectrum, but different sets of random phase angles, were generated on the
computer and sorted according to increasing peak factor. The best waveforms thus
found had a peak factor several times smaller than the zero-phase impulse.

Later, the author [30.1] developed a formula for the phase angles αn of low peak-
factor waveforms with a given power spectrum Pn, based on asymptotic spectra of
certain frequency-modulated signals:

αn = α1 −
2π
P

n−1

∑
k=1

(n− k)Pk, (30.1)

where P is the total power:

P :=
N

∑
k=1

Pk. (30.2)

For flat power spectra, Pk = const, (30.1) can be simplified to

αn = α1 −
π
N

n2, (30.3)

a quadratic dependence of phase on harmonic number (frequency) n.
Figures 30.1 and 30.2 illustrate the reduction in peak factor achieved with for-

mula (30.1) for a nonflat power spectrum.
If the low peak-factor waveform is desired to be symmetric in time, then phase

angles are restricted to 0 or π . Formula (30.1) is then replaced by [30.1]:

αn = π

⌊

n−1

∑
k+1

(n− k)
Pk

P

⌋

, (30.4)

or, for flat spectra,

αn = π
⌊

n2

2N
+ c

⌋

, (30.5)

where c is a constant that can be adjusted to minimize rounding effects due to the
floor function (Gauss bracket) employed in (30.5).
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Fig. 30.1 Waveform with
“Hamming” power spectrum
and all (16) phase angles
equal to π

2

Fig. 30.2 Waveform with same power spectrum as in Fig. 30.1 but phase angles according to
(30.1). Note reduction in peak factor (same scale as in Fig. 30.1!)

Figures 30.3 and 30.4 illustrate the 2.64-fold reduction in peak factor achieved
with (30.5) for a waveform consisting of 31 harmonics of equal amplitude. The low
peak factor is 1.30.

Since this early work on peak factor reduction, several analytical and arithmetic
tools have become available which are described in the following sections.

Fig. 30.3 Waveform corresponding to 31 equal-amplitude harmonics in zero phase
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Fig. 30.4 Waveform with same power spectrum as in Fig. 30.3 with phase angles according to
(30.5). Reduction in peak factor is by a factor 2.64 (Same scale as in Fig. 30.3)

30.2 The Rudin-Shapiro Polynomials

The so-called Rudin-Shapiro polynomials [30.2] are defined by the following recur-
sion:

p0(t) = q0(t) = 1, (30.6)

pn+1(t) = pn(t)+ eit2n
qn(t),

and

qn+1(t) = pn(t)− eit2n
qn(t). (30.7)

It is clear from these definitions that pn and qn have period 2π/2n. In fact, their
Fourier transform consists of 2n frequency components (beginning at zero fre-
quency) of equal magnitude.

The first low-order Rudin-Shapiro polynomials are (abbreviating eit = z):

p1 = 1+ z, q1 = 1− z,

p2 = 1+ z+ z2 − z3, q2 = 1+ z− z2 + z3,

p3 = 1+ z+ z2 − z3 + z4 + z5 − z6 + z7,

q3 = 1+ z+ z2 − z3 − z4 − z5 + z6 − z7.

It is easy to see from (30.6) and (30.7) that (for |z| = 1)

|pn|2 + |qn|2 = 2n+1, (30.8)

and therefore

|pn|2 ≤ 2n+1,

|qn|2 ≤ 2n+1. (30.9)

On the other hand, time averaging over one period yields

|pn|2 :=
1

2π

∫ 2π

0
|pn(t)|2 dt = 2n. (30.10)
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Thus, the maximum of |pn|2 exceeds its average value by at most a factor 2 – a
property the Rudin-Shapiro polynomials share with a sinusoidal waveform. These
polynomials, although perhaps not optimum, are therefore well behaved in terms of
their peak factors.

For real waveforms having 2n frequency components, beginning with frequency
m, the real part of cei2πmt pn−1(t) or cei2πmtqn−1(t), where c is a complex constant
that determines amplitude and initial phase, is a good choice.

The lowest peak factor achieved for n = 5 (31 harmonics after elimination of the
zero frequency) was 1.35 for the real part of p5 and 1.36 for the real part of q5.

Cyclically shifting the sign sequence of the Fourier components and also allow-
ing their phase angles to be shifted by a constant amount improved the peak factors
for p and q to 1.29 and 1.31, respectively. These results are comparable to those
achieved with the special phases suggested by the author (Sect. 30.1), but at the
price of creating waveforms that are asymmetric in time. For symmetric waveforms
the best Rudin-Shapiro peak factor (1.35) is noticeably worse than the peak factor
(1.30) of the author’s phase combination.

30.3 Gauss Sums and Peak Factors

While the Rudin-Shapiro polynomials are limited to waveforms with 2n frequency
components, waveforms s(t) based on Gauss sums can be expected to be well be-
haved for a number of components equal to p−1, where p is a prime:

s(t) =
p−1

∑
k=0

(

k
p

)

eikt , (30.11)

where (k/p) is the Legendre symbol, with (0/p) = 0.
The reason why s(t) according to (30.11) can be expected to have a low peak

factor is the following. The (periodic) “Legendre” sequence (Chap. 16)

ak :=
(

k
p

)

(30.12)

has a periodic autocorrelation sequence

cn :=
p−1

∑
k=0

akak+n, (30.13)

which for zero shift is large:

cn = p−1 for n ≡ 0 (mod p), (30.14)
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and small otherwise:

cn = −1 for n �≡ 0 (mod p).

This follows from the property of the Legendre symbol
(

k
p

)(

k +n
p

)

=
(

k(k +n)
p

)

, (30.15)

or, after multiplying with
(

b2

p

)

= 1, (30.16)

where for n �≡ 0, b can be chosen so that

bn ≡ 1 (mod p), (30.17)
(

k
p

)(

k +n
p

)

=
(

bk(bk +1)
p

)

for n �≡ 0 (mod p). (30.18)

In the sum (30.13) we now replace summation over k by k′ = bk, which does not
affect the result, because k′ covers the same values as k. Thus

cn =
p−1

∑
k′=0

(

k′(k′ +1)
p

)

= c1 for n �≡ 0 (mod p),

and, of course,

cn = p−1 for n ≡ 0 (mod p). (30.19)

Since

p−1

∑
k=0

(

k
p

)

= 0, (30.20)

we also have

p−1

∑
n=0

cn = 0, (30.21)

and therefore, with (30.19),

cn = −1 for n �≡ 0 (mod p). (30.22)

Now, if the (k/p) are the amplitude spectrum of a periodic complex waveform
as defined in (30.11), the squared magnitude of s(t) has the following Fourier rep-
resentation:

|s(t)|2 =
p−1

∑
n=0

c̃n ei2πnt , (30.23)
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where the c̃n are the aperiodic correlation coefficients of the (k/p). Nevertheless,
with |cn| small (|cn| = 1 for n �≡ 0), the |c̃n| will also be relatively small. Since c0

is large (c0 = p− 1), |s(t)|2 will be relatively constant with small fluctuations. As
a consequence, the real part of the s(t) is expected to stay within relatively narrow
bounds – in other words, the peak factor of s(t) constructed according to (30.11)
will tend to be small.

Since (30.11) generates only 30 harmonics, a 31st harmonic was added with
either sign. The peak factor for either case is 1.66. When applying cyclic shifts, the
resulting smallest peak factor over all 30 cyclic shifts of (k/p) is 1.39 – not bad, but
not as good as the result obtained with the quadratic (“chirp”) phases (Sect. 30.1).

30.4 Galois Sequences and the Smallest Peak Factors

Another type of sequence with two-valued autocorrelation cn is that of the Galois
sequences gn (Chap. 28) generated by a linear recursion based on a primitive poly-
nomial over GF(2m). Their period length is 2m − 1 and the periodic correlation is
given by

cn = 2m −1 for n ≡ 0 (mod2m −1) and

cn = −1 for n �≡ 0 (mod2m −1). (30.24)

Thus, a periodic waveform

s(t) :=
2m−1

∑
k=1

gk ei2πkt/(2m−1) (30.25)

constructed with the gn (or any of their cyclic shifts) will have a relatively constant
|s(t)|2, i. e., the peak factor of s(t) will be small (Sect. 30.3).

For m = 5 (31 harmonics) there are

φ(25 −1)
5

= 6 (30.26)

different primitive polynomials over GF(2) of degree 5, namely

1+ x2 + x5 peak factor = 1.259

1+ x3 + x5 = 1.252

1+ x+ x2 + x3 + x5 = 1.209

1+ x2 + x3 + x4 + x5 = 1.249

1+ x+ x2 + x4 + x5 = 1.240

1+ x+ x3 + x4 + x5 = 1.282.
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Here the numbers on the right are the smallest peak factors achieved with each of
the six polynomials considering all 31 possible cyclic shifts.2 As can be seen, all
peak factors are smaller than 1.29, and the smallest one, 1.209, is achieved with the
third polynomial, giving rise to the recursion

gn = gn−1 ·gn−2 ·gn−3 ·gn−5,

when used with the initial condition

g1 = g2 = g3 = g4 = −1 and g5 = 1.

This initial condition happens to give the “idempotent”:

−−−−+−−−+++−+−+−
−+−++++−−++−++−.

Idempotent means that the polynomial representing this sequence reproduces it-
self upon squaring. Applied to the sequence, idempotent means that when only the
even-numbered terms of the periodically repeated sequence are taken, the sequence
is reproduced. Of all the possibilities investigated, the above sequence is the unique
choice that gives the smallest peak factor for 31 harmonics with phase angles re-
stricted to 0 or π . The corresponding waveform is shown in Fig. 30.5. This also holds
when the same phase angles are applied to a frequency-shifted waveform with har-
monics 51 to 81, which has a peak factor of 1.245. In Fig. 30.6, the frequency-shifted

Fig. 30.5 Waveform with 31 constant-amplitude harmonics (n = 1,2, . . . ,31) and phase angles
according to (idempotent) Galois sequence based on primitive polynomial 1+x+x2 +x3 +x5 over
GF(25). Peak factor is lowest so far found for the given power spectrum

2 I am grateful to J. L. Hall of Bell Laboratories for calculating these peak factors and for the plots
of Figs. 30.5 and 30.6.
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Fig. 30.6 Same as Fig. 30.5 but with harmonic numbers n = 51,52, . . . ,81. Hilbert envelope of
waveform is also shown

waveform is plotted, together with its “Hilbert” envelope. (The Hilbert envelope is
defined as the magnitude of the corresponding analytic signal.)

Thus, we see that Galois sequences – already found useful in diffraction prob-
lems, precision measurements and error-correction codes – solve yet another practi-
cal problem: how to design waveforms with low peak factors for such applications
as radar and sonar and computer-synthesized speech. See also [30.3–5].

In the next chapter, still another property of Galois sequences is utilized in the
design of necklaces.

30.5 Minimum Redundancy Antennas

The principles of designing waveforms with a low peak factor are also applicable
to the design of efficient transmitting or receiving antennas with broad directivity
patterns. Given a real or complex sequence having a constant-magnitude Fourier
transform, we can construct a linear array with a directivity pattern with constant (or
nearly constant) maxima. For the case of a primitive-root sequence (see Sects. 14.8
and 28.6), one resulting directivity pattern is illustrated in Fig. 28.7.

In contrast to such “broadcast” antennas, arrays that favor only one direction
are often needed. Such antennas have directivity patterns with only one major nar-
row “lobe”. To avoid ambiguity, the spacing between individual elements must be
smaller than half the shortest wavelength, λmin, contained in the signal to be re-
ceived or transmitted. (This requirement follows from the spatial sampling theorem.)
For a given directional resolution, the antenna must have a certain minimum size,
D. Roughly, for an unambiguous angular resolution Δα , the antenna size must be

D =
λmin

Δα
. (30.27)
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Fig. 30.7 Forked string that
can measure all integer dis-
tances from 1 to 15

Thus, for a uniform spacing, smaller than λmin/2, the number of elements N must
be at least

N =
2

Δα
+1. (30.28)

For the kinds of resolution required in radio astronomy and ocean surveillance, N
can be quite large and given the high cost of individual antenna elements (steer-
able parabolic reflectors or submerged hydrophones), arrays with uniformly spaced
elements can often not be economically realized.

Does this mean we have to give up good radio astronomy or affordable sea se-
curity? No. For some applications, especially detection tasks, it is sufficent if in the
array all required spacings occur at least once. Thus, instead of placing four ele-
ments on a straight line with constant spacings of 1 unit, giving an array of size 3
units, the three spacings between the four elements can be chosen to be 1, 3 and 2
units, respectively, giving an array of size 6, which has double the angular resolution
for the same number of elements. Unambiguous detection requires that all possible
element spacings between 1 and 6 occur at least once, which is the case: the spac-
ings 1, 2, 3 occur between adjacent elements and the remaining three spacings are
realized as follows:

1+3 = 4, 3+2 = 5, 1+3+2 = 6.

Unfortunately, there are no arrays having more than four elements that give every
spacing exactly once. For N > 4, some spacings will be duplicated resulting in an
inefficiency or redundancy. Nevertheless, minimum redundancy arrays have been
designed that give the greatest unambiguous resolution for a given number of el-
ements [30.6]. For example, for N = 5, a minimum redundancy configuration has
spacings 1,3,3,2 giving an array size of 9. Except for the spacing 3, all spacings
occur only once.

Figure 30.7 shows an interesting string design consisting of two pieces of thread
of lengths 3 and 12, connected by a third thread of length 5 as shown. Unsupported
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by any string theory, this frugal contrivance, communicated to me by H. O. Pollack,
can measure all integer distances from 1 to 15. The reader may like to think about
generalizations.

30.6 Golomb Rulers

Another minimum-redundancy device is the Golomb ruler, defined as a shortest
straight ruler of integer length L for a given number of marks n so that a maximum
number of distinct integer distances can be measured without repeating any dis-
tance. For example, for n = 5, L = 11 with marks at positions 1, 4 and 9 and at the
endpoints (0 and 11). This ruler can measure all distances between 1 and 11 except
6. Such a 5-mark ruler can measure at most 5 ·4/2 = 10 distances, as this one does;
so we can infer that no distance is duplicated, as required for a Golomb ruler [30.7].

A longer Golomb ruler has length L = 151 and 15 marks (elements) at positions
0, 6, 7, 15, 28, 40, 51, 75, 89, 92, 94, 121, 131, 147 and 151. These 15 marks
define a maximum of 15 ·14/2 = 105 distances. Since no distance is duplicated, all
105 possible distances actually occur. But 105 is short by 46 of the 151 distances
measurable by a conventional ruler of length 151. Thus 46 distances are “missing”,
i. e. they cannot be measured with this sparsely marked ruler.

Apart from radio astronomy, such long Golomb rulers are also useful in signal
processing tasks where computational effort is at a premium and drastic “undersam-
pling” of waveforms (or spectra) would be very helpful. In fact, in the mentioned
15-element Golomb ruler of length 151 the undersampling factor is about 10, lead-
ing to substantial savings in computation. This idea has been successfully applied
by D. Püschel and R. Koch (personal communication) to fundamental-frequency
extraction (“pitch detection”) of running speech. Even speech compression seems
feasible by means of “Golomb undersampling” and appropriate signal restoration
(e. g. by Fourier analysis or linear prediction using its approximate autocorrelation
function).

As an example, Fig. 30.8 shows a sine wave sampled by the just described
Golomb ruler with 15 sample points. Of course, the sine wave (24.03 periods in
the interval of length 151) is not visible to the naked eye, but Fourier analysis, see
Fig. 30.9, of the samples reveals its presence at the expected frequency amid, albeit,
plenty of “undersampling noise”. Signals consisting of several sine waves have been
recovered in this manner.

Golomb rulers have also been used to design sparse loudspeaker arrays for active
sound absorption in airconditioning ducts [30.8].

The discovery of new Golomb rulers is a task cut out for supercomputers. For
example, a Golomb ruler with 16 marks is known; it has length 177. But where to
put the 14 interior marks, even if the length was already known? There are more
than 1020 possibilities! [30.9].
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Fig. 30.8 Sine wave sampled by Golomb ruler of length 151

Fig. 30.9 Amplitude spectrum of samples shown in Fig. 30.8. Note the clearly visible peak at the
expected frequency 24 Hz above the “undersampling” noise

The number theoretical concept behind such designs is that of difference sets
discussed in greater detail in [30.10], which also gives solutions to other difficult
problems in additive number theory.



Chapter 31
Number Theory, Randomness and “Art”

Perfect symmetry is aesthetically boring, and complete randomness is not very ap-
pealing either. All works of art show both a degree of regularity and predictability on
the one hand, and innovation and “surprise” on the other. In fact, George Birkhoff,
of ergodicity fame, once constructed a mathematical formula intended to capture
aesthetic value. The formula’s two main variables represented regularity and ran-
domness, the aesthetic value function reaching its maximum for ample portions of
both ingredients.

While it is probably futile to try to capture artistic achievement in a mathemati-
cal formula, there is nevertheless some truth in the basic assumption that both pre-
dictability (or a degree of recognizability) and surprise are important in works of art.
If we accept this notion, then number theory should be a good store for finding these
two ingredients. The distribution of prime numbers, for example, exhibits both some
predictability and a certain amount of randomness. Thus, it is not surprising that we
can construct, from number-theoretic relationships, some attractive graphic designs
and other objects of pleasure. To call them art, however, would be presumptuous.

In this chapter we explore a few of these pleasurable possibilities of number
theory.

31.1 Number Theory and Graphic Design

Every third number is divisible by 3, every seventh by 7, etc. In general, the prob-
ability that a number picked at random from an infinite range is divisible by the
prime number pi is 1/pi, and these probabilities are apparently independent. Thus,
the probability that a number is divisible by both 3 and 7 is 1/21. Similarly, the
probability that a given number is not divisible by pi equals 1−1/pi.

The probability that two numbers picked independently at random are both di-
visible by the same prime factor pi is obviously 1/p2

i . And the probability that both
are not divisible by the same prime factor is consequently 1−1/p2

i .
What is the probability P that two randomly chosen numbers have no common

prime factor, i.e., that they are coprime? If we believe in the independence of prime
factors, the answer must be

M. Schroeder, Number Theory in Science and Communication, 5th ed., 367
DOI 10.1007/978-3-540-85298-8 31, c© Springer-Verlag Berlin Heidelberg 2009
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P = ∏
i

(

1− 1

p2
i

)

, (31.1)

where, because we are considering an infinite range, the product is extended over all
primes. Does P have a finite (nonzero) value? For the first 6 primes (2,3,5,7,11,13)
its value is 0.618 (no relation to the Golden ratio!) But that does not teach us much –
if we recall, for example, how slowly the distances between successive primes di-
verge. However, the reciprocal of the infinite product (31.1) can be multiplied out,
using the formula for geometric series:

1
P

= ∏
i

1

1−1/p2
i

= ∏
i

(

1+
1

p2
i

+
1

p4
i

+
1

p6
i

+ . . .

)

. (31.2)

The forbidding-looking infinite product of the infinite sum on the right is nothing
but all the reciprocal squares 1/n2, each square appearing exactly once (by the Fun-
damental Theorem). Thus, we have seen in earlier chapters:

1
P

=
∞

∑
n=1

1
n2 , (31.3)

a well-known sum (the Riemann zetafunction for z = 2). Its value, π2/6, can be
found in most collections of formulae. Hence P = 6/π2 = 0.6079 . . . .

While formally, the result only holds if we pick pairs of integers from an infinite
range, the value 6/π2 is already very close for the range from 2 to 11: exactly 60 of
all 100 possible pairs of integers from 2 to 11 have no common divisor.

Figure 4.8 shows (as white dots) all the integer pairs in the range 2 to 256 that
are coprime, i.e., have no common divider. As expected, the plane lattice is fairly
uniformly filled with white dots, and their average density is very close to 6/π2.

Many well-known number-theoretic relations can be observed in such a graphic
display, and who knows – close visual inspection might even suggest new theorems
[31.1]. The plot is also related to the topic of “visibility”: the white dots are precisely
those that can be “seen” from the point with coordinates (1,1), while all other points
are “hidden” behind one or several points on the straight line connecting them with
the point (1,1). To put it more dramatically, if a pellet of paint exploded at (1,1),
the paint would only stick on little pegs at lattice points where the white dots are
shown in Fig. 4.8.

As we remarked before, the property of divisibility is a periodic one. The Fourier
transform, of course, is also “sensitive” to periodicities. Thus, the Fourier transform
of the “holy” lattice shown in Fig. 4.8, interpreting a white dot as having value +1
and the other lattice points as having value −1, should be particularly interesting.
Figure 4.9 shows the magnitude of the two-dimensional Fourier transform of the
number-theoretic “coprimality” function (Fig. 4.8). Not unexpeectedly, we get a
cluster of “stars” and reflection symmetries around the two diagonals. But there are
also near (broken?) symmetries around the horizontal and vertical axes. They are
not so easy to explain (how is near symmetry defined?), and we will leave it to the
reader to explore this symmetry breaking [31.2].
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We may also view Fig. 4.9 as the result of X-ray diffraction from a “moth-eaten”
two-dimensional crystal with many atoms missing, but with the remaining ones in
perfect lattice positions. But no matter how we look at it, number theory has given
us quite a pretty picture here.

31.2 The Primes of Gauss and Eisenstein

Prime numbers can be defined in fields other than the integers. In the complex num-
ber field C we have the Gauss primes, a subset of the Gauss integers n+ im, where
i2 = −1. Primes of the form 4k− 1 in Z are still primes in C, but 2 and primes of
the form 4k +1 can be factored in C!

Examples: 2 = (1+ i)(1− i), 5 = (2+ i)(2− i), 13 = (2+3i)(2−3i), 17 = (4+ i)
(4− i), etc.

The Gauss primes form a pleasing pattern, shown in Fig. 31.1, which has been
used in weaving tablecloths and tiling floors.

Eisenstein, one of Gauss’s favorite mathematicians, defined his own primes based
on the complex cube root ω = (1−

√
−3)/2. (Note: 1 + ω + ω2 = 0.) They are a

subset of the Eisenstein integers n+ωm. The Eisenstein primes form an interesting
pattern with hexagonal symmetry (Fig. 31.2). Near the centre of Fig. 31.2, 6 times 6
hexagonal points from 6 hexagons. Are complete hexagons formed anywhere else?

The prime 2 and primes of the form 6k−1 are also Eisenstein primes, but 3 and
primes of the form 6k +1 can be factored.

Examples: 3 = (1−ω)(1−ω2), 7 = (2−ω)(2−ω2), 13 = (3−ω)(3−ω2), 19 =
(3−2ω)(3−2ω2), etc.

Another pleasing plot is obtained with the set-theoretic intersection of the Gauss
and Eisenstein composites. What are their asymptotic densities?

Fig. 31.1 Gauss primes
n+mi with norms n2 + m2

less than 1000. A favorite
design for tablecloths
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Fig. 31.2 Eisensteins primes
n+mω , where ω is a
(primitive) complex root of 3.
How would bees react to this
pattern?

An even more interesting pattern emerges if the Gauss and Eisenstein primes and
their intersections are plotted on the same lattice in 3 different colors.

31.3 Galois Fields and Impossible Necklaces

Suppose we inherited a collection of white and black pearls. Could we make a neck-
lace of only 16 pearls (a real choker!) in which all possible variations of 4 adjacent
colors appeared? There are 24 = 16 such variations; thus, the necklace would have
to have at least 16 pearls. But is it really possible?

Figure 31.3 shows the answer, with the 16th pearl, a black one, about to be in-
serted. With a bit of patience we can find every variation, as promised. For example,
the variation of a white pearl followed by a black and two more white ones is found
in position 6 to 9.

Fig. 31.3 A 15 + 1 pearl
necklace with all possible
quadruplets of black and
white pearls
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On what principle was the necklace designed? Galois field theory! Or, more
specifically, the cyclotomic polynomials over the Galois field GF(2) that we en-
countered in error-correcting codes and in the confirmation of the fourth general
relativistic effect with Mercury or Venus in superior conjunction.

To design the 16-pearl necklace we need a primitive factor of degree 4 of the
polynomial x15 +1. Such a factor is

x4 + x3 +1, (31.4)

leading to the recursion

an+4 = an+3 +an. (31.5)

With the initial condition a1 = a2 = a3 = a4 = 1, the recursion gives the following
binary sequence of period 15:

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0; 1 1 1 . . . , (31.6)

which contains all variations of length 4 except the quadruplet 0000. This short-
coming can be rectified by adjointing another 0 at the end of the period [(before the
semicolon in (31.6)]. If we now identify 1 with a white pearl and 0 with a black pearl
and tie one period of the string into a necklace, we obtain the “maximally varied”
design shown in Fig. 31.3.

In fact, instead of two colors, we can make such a necklace out of four different
colors, basing the design on polynomials over GF(4). Of course, now a necklace
of 16 pearls can have at most all possible pairs of the four colors. That such a
necklace is indeed possible is illustrated by Fig. 31.4. The design is based on GF(4)
consisting of the four elements (0,1,ω,ω2) with ω3 = 1 and 1 + ω + ω2 = 0 and
the primitive polynomial x2 + x + ω . With the initial condition 0, 1 and identifying
0 with red, 1 with blue, ω with yellow and ω2 with green, we obtain the 16-pearl
maximally varied necklace shown in Fig. 31.4 – not, however, before inserting an
extra red pearl into the 16th position.

Fig. 31.4 Four-color necklace
with 16 pearls exhibiting all
possible pairs of colors
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Can we go a step further and give each pearl two binary properties, such as color
and size and have all possible pairs of the four different kinds of pearls (large white,
small white, large black, small black) in a necklace of 16 pearls? The answer is yes:
we need only identify these four properties with the above four colors to obtain a
solution.

What is not possible, however, is a necklace with both the stated property for
pairs of adjacent pearls and all quadruplets of white and black pearls (regardless of
size) and all quadruplets of large and small size (regardless of color).

If we restrict ourselves to 15 pearls, excusing the occasional absence of a
small black pearl, then a solution is possible (see Fig. 31.5). For example, we
find the quadruplet black/black/white/black in position 7 to 10, or the quadruplet
small/large/small/large in positions 9 to 12. The doublet small white/large black
is found in positions 9 to 10. However, the doublets large white/small black and
small black/small black are missing unless we sneak in a 16th small black pearl
between positions 15 and 1. But even then the doublet small white/small black and
the quadruplet black/black/black/black is missing, unless we also allow the 16th
pearl to go between positions 5 and 6. In other words, we really need 17 pearls for
the super-varied necklace. But then some variations occur twice, for example small
black/small black – very inelegant! But for that one loose pearl, the arrangement
could not be more perfect.

The problem of the loose pearl is deeply related to the fact that 0 has no inverse,
not even in a finite field where we expect surprises: for example 3−1 = 5 in GF(7),
etc. (Does the reader remember why the inverse of 3 in GF(7) is 5 – and how to
calculate it, if it was not so easy to find by trial and error?)

If one pearl is always excused, the super-varied necklace can be extended to, say,
63 = 26 −1 pearls, having the following six binary properties:1

Fig. 31.5 A 16-pearl
necklace having pearls of two
colors and two sizes. It shows
all possible color and size
quadruplets and all possible
color and size pairs – if pearl
number 16 is allowed to move
around

1 Finite mathematicians Jessie MacWilliams and Andrew Odlyzko acted as assistant jewelers to
the author in the design of this necklace.
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large or small

round or octagonal

solid or pierced

polished or rough

bright or dark

colored or gray .

Except for an occasional missing small-octagonal-pierced-rough-dark-gray-pearl,
seen in the centre of Fig. 31.6, the necklace shown contains all possible 26 = 64
sextuplets of any of the 6 binary properties listed above, i.e., 6 ·63 = 378 prescribed
sextuplets.

In addition, if two properties are considered at a time, i.e.,
(6

2

)

= 15 paired prop-
erty choices, all 43 − 1 = 63 triplets can be found, or a total of 15 · 63 = 945 pre-
scribed triplets.

Further, if three properties are considered, in any of
(6

3

)

= 20 different ways, the
necklace has all 82−1 = 63 possible doublets, for a total of 20 ·63 = 1260 doublets.

Finally, considering six properties at a time, we find a total of 63 different singlets
in the necklace.

Fig. 31.6 A 64-pearl necklace with 6 binary properties including all 64 different pearls and show-
ing all possible pairs, triplets and sextuplets (a total of 2646 combinations) – if one pearl is allowed
to move around
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The total number of constraints that the necklace in Fig. 31.6 obeys is a stagger-
ing

[(6
1

)

+
(6

2

)

+
(6

3

)

+
(6

6

)]

· 63 = 42 · 63 = 2646. Permitting ourselves occasional
cheating with the loose small-octagonal-pierced-rough-dark-gray pearl, all singlets
and any variation of doublets, triplets and sextuplets of pearls occurs [31.3]. Such
a super-necklace would not only embellish the discriminating woman (or man) but
its design might even benefit some “experimental designs” (as the psychologists are
fond of saying).

31.4 “Baroque” Integers

Nothing, it seems, could be more pedestrian than the sequence of integers 1, 2, 3,
4, 5, 6, 7, . . . . Yet, as we shall see, the integers can give rise to surprising musical
effects.

To begin, write the integers in binary form,

0 1 10 11 100 101 110 111 . . . ,

then count the number of 1’s (in other words, form the digital root),

0 1 1 2 1 2 2 3 . . . . (31.7)

This sequence, which I have called the Dress sequence, can also be obtained by
a simple recursive algorithm [31.4]. Beginning with a single 0, append what you
already have augmented by +1:

0

0 1

0 1 1 2

0 1 1 2 1 2 2 3 (31.8)

. . .

Can the reader see why the recipe (31.8) leads to the same sequence as the one
obtained from counting 1’s in the binary representation of the integers (31.7)?

The recursive construction of the Dress sequence has two advantages: one, every
step doubles the length of the sequence instead of adding just a single term. Two, re-
cursive constructions lead to self-similarity. Thus, the infinite Dress sequence must
be self-similar, which it is indeed: taking every other term, starting with the initial 0
gives

0 1 1 2 . . . ,

i. e. the original Dress sequence.
If, instead of taking every second term, we take every third term, we obtain a

sequence
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Fig. 31.7 “Baroque” integer sequence obtained from the binary representation of every 63rd inte-
ger. When the resulting numbers are identified with musical notes, a Scarlatti-like tune is generated

0 2 2 2 2 4 2 3 2 4 4 . . . ,

whose partial sums exhibit fractal growth:

0 2 4 6 8 12 14 17 19 23 27 . . . .

I leave it to the interested reader to plot this sequence and to discover its fractal
growth property, i. e. the exponent with which the partial sums grow.

Similar – in fact self-similar – growth properties are also observed for the par-
tial sums of the Dress sequence decimated by other factors that are not pow-
ers of 2, especially factors of the form 2m − 1. Such decimated sequences have
been applied with surprising and pleasing results in the composing of music. My
student Lars Kindermann (kindermann@forwiss.uni-erlangen.de) has taken every
63rd term of the Dress sequence and converted it to musical notes in the C ma-
jor scale (1 = C, 2 = D, 3 = E, 4 = F etc.). To introduce rhythm into such a
number-theoretic “composition” a repeated note is sounded only once and held (see
Fig. 31.7). The resulting music has a fascinating and distinct “baroque” quality rem-
iniscent of the Italian composer Domenico Scarlatti (1685–1757). See (and listen
to) http://www.forwiss.uni-erlangen.de/∼kinderma/musinum.html or visit the Frac-
tal Music Project on the World Wide Web.

Other self-similar sequences that have been used in the composition of “fractal
music” are based on sequences of notes with pitches in the ratio 1 : 213/12 [31.5–7].
In addition to melody, self-similar sequences, such as the “rabbit” sequence, a bi-
nary sequence related to the Fibonacci numbers, have been used to create appealing
rhythms [31.5].
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Chapter 32
Self-Similarity, Fractals, Deterministic Chaos
and a New State of Matter

“O Julia, mir graut’s, wenn man bedenkt,
an dünnen Fädchen nur dein Schicksal hängt.
Dein body ist so thin und doch so schön,
wann werde ich dich sweet heart wiederseh’n.”

– Manfred Peschel

Nature abounds with periodic phenomena: from the motion of a swing to the oscil-
lations of an atom, from the chirping of a grasshopper to the orbits of the heavenly
bodies. And our terrestrial bodies, too, participate in this universal minuet – from
the heart beat to the circadian rhythm and even longer cycles.

Of course, nothing in nature is exactly periodic. All motion has a beginning and
an end, so that, in the mathematical sense, strict periodicity does not exist. Nev-
ertheless, periodicity has proved to be a supremely useful concept in elucidating
underlying laws and mechanisms.

One reason for the universality of simple harmonic motion is the linearity –
or near-linearity – of many physical systems and, more generally, the invariance
against displacement in space and time of the laws governing their behaviour.

But there are numerous other phenomena in which these fundamental principles
break down and, instead of periodicity, we get aperiodic or even chaotic motion:
the smooth waves on a well-behaved lake turn to violent turbulence in the moun-
tain brook and the daily sunrise, the paradigm of predictability, is overshadowed by
cloud formations, a haven for chaos – albeit deterministic chaos.

But no matter how chaotic life gets, with all regularity gone to bits, another
fundamental bulwark often remains unshaken, rising above the turbulent rubble:
self-similarity, an invariance with respect to scaling; in other words, invariance not
against additive translations, but invariance against multiplicative changes of scale.

Many laws of nature are independent, or nearly so, of a scaling factor. The fact
that scaling usually has a limit (Planck’s constant, when things get too small, or the
speed of light, when objects fly too fast) does no harm to the usefulness of “thinking
self-similar”, just as the lack (outside mathematics) of strict periodicity is no great
impediment in the real world. In fact, self-similarity is nothing but periodicity on a
logarithmic scale.

What has number theory got to do with all this? Are there any self-similar prin-
ciples at work behind the integers? If so, are they useful? Can they shed light into
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dark chaos? Surprisingly, the answers to these questions are affirmative; and, in this
final chapter, we shall try to show how.

Take the simplest concept from number theory, (“Kronecker’s”) integers. Starting
from nothing and counting up, we get

0, 1, 2, 3, 4, 5, 6, 7 . . .

Next, let us represent these numbers in the binary system:

0, 1, 10, 100, 101, 110, 111, . . .

Now take the “digital roots” or parity of each binary number (i. e., the sum of its
digits modulo 2):

0 1 1 0 1 0 0 1 . . .

The resulting sequence is called the Morse-Thue sequence. It has many remarkable
properties. For example, it can be constructed recursively by appending to each
subsequence the complemented subsequence, as follows:

0

0 1

0 1 1 0

0 1 1 0 1 0 0 1

This kind of construction makes it manifestly aperiodic; it never repeats. But it has a
much more interesting property: the infinite sequence is self-similar. In fact, striking
out every second term reproduces the sequence:

0 1/ 1 0/ 1 0/ 0 1/ . . . = 0 1 1 0 . . . . (32.1)

The sequence can also be constructed from “nothing” by having each term have
a “complementary baby”:

0
0 1
0 1 1 0
0 1 1 0 1 0 0 1

Such sequences are called self-generating [32.1]. Another nonrandom self-genera-
ting sequence is obtained from the signs of the Rudin-Shapiro polynomials, see
Sect. 30.2. These sequences mimic, in one dimension, the self-organization of
matter, such as crystal growth. However, the Morse-Thue sequence is an aperiodic
self-generating sequence, thus imitating not the growth of a periodic crystal, but a
recently discovered new solidification process.

Surprisingly, although the Morse-Thue sequence is aperiodic, its Fourier trans-
form or spectrum is not at all noiselike. The self-similarity of the sequence induces
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Fig. 32.1 Fourier amplitude spectrum of the self-similar number-theoretic Morse-Thue sequence:
01101001 . . ., defined by the parity of the integers 0,1,2,3, . . ., when expressed in the binary nota-
tion (0,1,10,11, . . .). The (infinite) sequence reproduces itself when, after each element, the com-
plementary element is inserted. Equivalently, the sequence also reproduces itself upon decimation,
namely when every other element is struck out. The scaling factor of the self-similarity is thus 2.
Although this sequence is aperiodic (it never repeats itself), the amplitude spectrum shows promi-
nent peaks that would be missing in a truly random sequence, such as an aperiodic sequence with-
out the long-range order of the Morse-Thue sequence. (For the discrete Fourier transform shown
here, the sequence was truncated to a length of 256.)

long-range correlations and causes its spectrum to be highly structured with many
high peaks, as if it were periodic. In other words, the Morse-Thue sequence, be-
ing self-similar, is both aperiodic and has a spectrum resembling that of a periodic
sequence, see Fig. 32.1.

This fact would perhaps be only mildly interesting if such sequences did not
model something that can actually happen in nature, but was discovered only re-
cently: a new state of matter!

We are all familiar with crystals, in which the individual atoms are arranged in
periodic lattices. And we also know amorphous substances, such as ordinary glasses
or most liquids, in which the atoms are randomly distributed. Until recently, few if
any people suspected that there could be another state of matter sharing important
aspects with both crystalline and amorphous substances. Yet, this is precisely what
D. Shechtman et al. [32.2] discovered when they recorded electron diffraction pat-
terns, see Fig. 32.2, of a special aluminum-manganese alloy (Al6Mn). The diffrac-
tion pattern, i. e., the two-dimensional Fourier transform, showed sharp peaks, just
like those for a periodic crystal. But the pattern also showed a five-fold symmetry
that periodic crystals simply cannot have.

However, as we know from the number-theoretic Morse-Thue sequence, sharp
spectral peaks and aperiodicity are no contradiction, as long as self-similarity
prevails.



382 32 Self-Similarity, Fractals, Deterministic Chaos and a New State of Matter

Fig. 32.2 Electron diffraction pattern of an alloy of aluminum and manganese obtained by Shecht-
man et al. [32.2]. The bright spots say that the alloy is not amorphous (like a glass) but “well-
ordered”. Yet the five-fold symmetry exhibited by the diffraction pattern cannot occur for any
periodic crystal. Thus, the alloy must be both aperiodic and well-ordered: a new state of matter
that is closely related in its structure to certain self-similar, but aperiodic, sequences known in
number theory (see Fig. 32.3)

The number 5, which occurs in the diffraction pattern, points to another self-
similar sequence in which perhaps the Golden ratio is involved, and this is indeed
the case. In fact, it turns out that an aperiodic self-similar sequence derived from the
Fibonacci numbers is a good model of this new state of matter, showing pronounced
peaks in its Fourier spectrum (see Fig. 32.3).

While visiting this newly found Garden of Eden, we will also, in this chapter,
make brief calls at an adjoining paradise, that of Cantor sets (from which, Hilbert
said, we will never be driven away), and at the strangely attractive zoo of fractal
objects, darlings of a new generation of physical scientists and computer artists.

32.1 Fibonacci, Noble Numbers and a New State of Matter

Let us take another peek at Fibonacci and his rabbits, Fig. 5.9. If we designate a
young pair by 0 and a mature pair by 1, Fig. 5.9 (in which this distinction is not
shown) becomes this:
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Fig. 32.3 The Fourier amplitude spectrum of the self-similar number-theoretic “rabbit” sequence:
10110101 . . ., which can be generated by replacing each 0 (signifying an immature rabbit pair)
by a 1 (mature pair) and inserting after each 1 a 0 (birth of a new pair). This generates the next
“generation” of the sequence from the previous one. The lengths of successive sequences equal
successive Fibonacci numbers, Fn. (In this illustration, the “breeding” process was terminated at
F12 = 144.) The rabbit sequence can also be generated from a Beatty sequence [32.1] ak = �ng� =
1,3,4,6,8 . . ., where g = 1.618 . . . is the Golden ratio, and the ak specify the indices of the nonzero-
terms in the rabbit sequence. (The Beatty sequence bk = �ng2�= 2,5,7, . . . gives the indices of the
zero-terms.) Note the pronounced spectral peaks near the two frequencies 1/g and 1/g2 times
the sampling frequency, and the self-similar features of the spectrum involving the (approximate)
scaling factors g and g2. This sequence models, in one dimension, the aperiodic long-range order
of the new state of matter recently discovered (see Fig. 32.2)

0
1
1 0
1 0 1 (32.2)
1 0 1 1 0
1 0 1 1 0 1 0 1

where each 1 generates a 1 and a 0 in the row below and each 0 gives rise to a 1.
Like the Morse-Thue sequence, this is also a self-generating sequence.

Another law of construction for this bit stream (which I shall call the rabbit
sequence) is quite apparent: after the first two rows, simply append to each row the
previous row to form the next one.

Interestingly, each term in the rabbit sequence rn can be constructed directly
without references to prior terms or subsequences. For this purpose, the index n has
to be decomposed according to the Fibonacci number system (see Sect. 5.5):

n = Fk1 +Fk2 + . . .+Fkr . (32.3)
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The parity of the last index, kr, determines rn:

rn = 〈kr +1〉2. (32.4)

So, as in the application to the game of Nim (Sect. 5.5), it is the least significant
Fibonacci number that is important.

By construction, this sequence is aperiodic although arbitrarily long subse-
quences will appear infinitely often in the sequence. This is of course true even for
random sequences. The point is that in the rabbit sequence identical subsequences
will be very close by. In fact, for n > 3, a given subsequence whose length does not
exceed Fn is never farther than Fn+1 steps away.

But is the rabbit sequence self-similar, and will it have a “peaky” spectrum like
that of a periodic sequence? A peaky spectrum is needed in order to model the newly
discovered state of matter.

Of course, the self-similarity of the rabbit sequence cannot be as simple as that
of the Morse-Thue sequence, where we could strike out every other bit to leave the
sequence invariant. The lengths of the rabbit subsequences (32.2) from one row to
the next increase in the ratio of successive Fibonacci numbers, tending to the Golden
ratio g = 1.618 . . . .

Interestingly, the ratio of 1’s to 0’s (mature rabbits to young rabbits) is also the
ratio of successive Fibonacci numbers. Let us therefore try striking out (rab)bits
depending on the bit itself: For a 1, let us hop two places before we strike out, and
for a 0 let us hop only 1 place. The result is the following:

1 0 1/ 1 0/ 1 0 1/

i. e., the beginning of the row: 10110. For the infinite sequence our striking rule
would simply reproduce the sequence itself: self-similarity! In fact, this “self-
decimating” rule is simply the inverse of the self-generating rabbit creation rule.

Another way to demonstrate the self-similarity of the rabbit sequence is to re-
place every bit pair 10 by a 1 and every triplet 110 by a 0. This “condensation”
also reproduces the rabbits, as does the mapping 101 → 1 and 10 → 0 and infinitely
many other mappings with an increasing degree of condensation.

After our experience with the spectrum of the self-similar Morse-Thue sequence,
it is therefore small wonder that the rabbit sequence, too, exhibits pronounced spec-
tral peaks, see Fig. 32.3. These peaks are the one-dimensional analogue of the
bright spots in the diffraction pattern (Fig. 32.2). The locations of these peaks,
moreover, reflect the Golden ratio (many times) as can easily be observed in
Fig. 32.3.

For comparison, Fig. 32.4 shows the spectrum of a random binary sequence,
calculated, like the Morse-Thue and rabbit spectra, by J. L. Hall of AT&T Bell Lab-
oratories. To make the comparison as close as possible, the random sequence was
produced by a three-state Markov process modeled on the rabbit sequence. The three
states correspond to the three possible bit pairs 11, 10, and 01, see (32.2), with de-
terministic transitions from 11 to 10 (generating a 0) and from 10 to 01 (generating
a 1) and a probabilistic transition from 01 to 11 (with probability γ = (

√
5− 1)/2,
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Fig. 32.4 Average Fourier amplitude spectrum of a three-state Markov process having the same
transition probabilities as the rabbit sequence (whose spectrum is shown in Fig. 32.3). Note smooth
spectral envelope and absence of pronounced single-harmonic spectral peaks, reflecting the ab-
sence of long-range order in the Markov process

the reciprocal of the Golden ratio, generating a 1) and a transition from 01 to 10
(with probability γ2, generating a 0).

The probabilities of the three states are γ4, γ3, and γ , respectively, and the prob-
abilities of 1 and 0 are γ and γ2, respectively. All these probabilities are in confor-
mity with those of the (infinitely long) rabbit sequence. Yet, although the Markov
machine mimics the short-range properties of the rabbit sequence, it lacks the long-
range coherence of the latter, a fact that is reflected in the absence of sharp peaks in
its spectrum, see Fig. 32.4.

The existence of pronounced peaks in Fig. 32.3 means that some long-range
order or “phase coherence” exists in the rabbit sequence, extending over its entire
length. Although aperiodic, the rabbit sequence, when converted to audible sound,
should sound tonal! And the diffraction pattern of a physical substance patterned on
such self-similar structure would show bright spots, as if it were a periodic crystal!
The new form of matter might also exhibit some rather unorthodox and hitherto
unsuspected physical properties.

The two highest peaks in the rabbit spectrum (Fig. 32.3) occur at harmonic
numbers (“frequencies”) Fn−1 and Fn−2 for the subsequence of length Fn. Here,
the frequency Fn−1 is simply the mirror image of the frequency Fn−2. (Note:
Fn−1 = Fn −Fn−2). The ratio Fn−1/Fn is approximately γ = 1/1.618 . . . and the ra-
tio Fn−2/Fn tends toward γ2 = 1/2.618 . . . . Why do these high peaks, reflecting
periodic behaviour, exist and why are they near 1/2.618 and 1/1.618 times the
“sampling frequency” Fn?
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Answer: If we “sample” the rabbit sequence with an average sampling interval
of 1.618 samples, we get the same symbol again and again ad infinitum! Indeed, the
sampled sequences rk, where k is the largest integer not exceeding n/γ becomes

rk = 1 1 1 1 1 1 1 . . . , k =
⌊n

γ

⌋

, (32.5)

a fact that follows from the above construction rules. Similarly, sampling with an
average interval size of 2.618 yields

rk = 0 0 0 0 . . . , k =
⌊ n

γ2

⌋

. (32.6)

The rabbit sequence is also related to the number-theoretic Beatty sequences
[32.1], defined as follows: if w < 1 is a positive irrational, then the two sequences

am =
⌊m

w

⌋

, m = 1,2,3, . . . (32.7)

bm =
⌊ m

1−w

⌋

, m = 1,2,3, . . . , (32.8)

together assume every positive integer value exactly once.
This is easy to see, because for the integer k to be a member of the first sequence,

am, the following inequalities must obtain for some m (with w irrational, equalities
need not be considered):

m
w
−1 < k =

⌊m
w

⌋

<
m
w

, or

m−w < kw < m. (32.9)

On the other hand, for k to be a member of the second sequence, bm, the inequal-
ities are the same as (32.9) with 1−w replacing w. Substituting the integer k−m for
m, one obtains as the condition for membership in the second sequence that there be
some m for which

m < kw < m+1−w. (32.10)

Comparing conditions (32.10) and (32.9), one sees that they are precisely comple-
mentary: a given integer k fulfills either (32.9) or (32.10) and is therefore a member
of either am, or bm. The “densities” of these two sequences are w and 1−w, respec-
tively, which add up to 1, as they should if no integer is duplicated or left out.

For a “winding number” (the physicist’s term) w = γ = 1/g, i. e., 1/w = g and
1/(1−w) = g2, the first sequence becomes

am = 1,3,4,6,8,9,11, . . . and the second sequence

bm = 2,5,7,10,13,15,18, . . . .

Now a rabbit sequence term rk equals 1 if k is a member of the Beatty sequence
am; otherwise (i. e., if k is a member of bm) it equals 0. – Who can show the equiva-
lence between this rule and (32.3, 4)? Hint: use (5.30).
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With this kind of long-range order it is small wonder that there are spectral
peaks near harmonic numbers γ2Fn and γFn. The other peaks visible in the spec-
trum (Fig. 32.3) result from the self-similarity of the rabbit sequence (scaling factor
equal to the Golden ratio 1.618 . . .) and the spectral folding (“aliasing”) inherent in
the Fourier transform of a discrete sequence of finite length.

Beyond the Golden ratio, self-similar sequences and new quasicrystals are gener-
ated by the “Silver ratios”, τ±N , defined by τ±N = N±1/τ±N , i. e., all those (quadratic)
irrationals that can be expressed by periodic continued fractions with period length
one and ±1 as the numerator. For example, τ+

2 = 1 +
√

2 is expected to gener-
ate a quasicrystal with the crystallographically forbidden 8-fold symmetry, while
τ−4 = 2 +

√
3 would underlie a likewise forbidden 12-fold symmetry axis. In ad-

dition to the Golden ratio g = τ+
1 , all τ±N , where N is the nth Lucas number (see

Sect. 5.8) and the sign superscript equals (−1)n, generate quasicrystals with a 5-fold
symmetry!

In another generalization, the noble numbers, recently defined as all those num-
bers whose continued-fraction expansions end in infinitely many 1’s, distinguish
themselves both in the present case and in the approach to chaos of nonlinear dy-
namical systems. In this nomenclature the Golden ratio is but the noblest of the
noble numbers.

Cassini’s divisions in the rings of Saturn are a manifestation of what happens
when, instead of noble numbers, simple rationals reign: rocks and ice particles con-
stituting the rings, whose orbital periods are in simple rational relation with the
periods of the moons of Saturn, are simply swept out of their paths by the resonance
effects between commensurate orbital periods. In fact, the very stability of the solar
system depends on the nobility of at least some of the orbital period ratios.

The noble numbers ν , defined by the continued fraction

ν :=
[

a0;a1, . . . ,an,1
]

, (32.11)

can be expressed with the help of the Golden ratio g as follows:

ν =
gAn +An−1

gBn +Bn−1
, (32.12)

where Ak and Bk are the numerator and denominator, respectively, of the kth ap-
proximating fractions of [a0;a1, . . . ,an], see (5.3.4). What is the CF of the noble
(81g+334)/(73g+301)?

A two-dimensional analogue of the new state of matter is the Penrose tiling [32.3]
of the plane, see Fig. 32.5. Like the one-dimensional rabbit sequence, it consists of
two elements (“arrows” and “kites”) that cover the plane without periodic repetition.
If we would replace the arrows and kites with 0’s and 1’s at their centres of gravity,
the Fourier transforms of the resulting two-dimensions array would show strong
peaks and exhibit the crystallographically forbidden five-fold symmetry apparent
in Fig. 32.2. This then is the gist of the paradoxical diffraction pattern shown in
Fig. 32.2. For a complete wrap-up of this matter, the three-dimensional case was
analyzed by D. Levine and P. J. Steinhardt [32.4].
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Fig. 32.5 Penrose tiling of
the plane with “arrows” and
“kites”. The five-fold
symmetry, forced by the
angles of the arrows and kites
and their edge-length
proportions (equal to the
Golden ratio g = 1.618 . . .),
makes a periodic tiling
impossible [32.3]. But there
is still a long-range order that
is the two-dimensional analog
of the recently discovered
new state of matter, see
[32.2, 4] and Fig. 32.2

32.2 Cantor Sets, Fractals and a Musical Paradox

In the midst of the animated debates on the foundations of mathematics – and
the very meaning of the concept number – during the last century, Georg Can-
tor (1845–1918), of set fame, wanted to present his colleagues with a set of
numbers between 0 and 1 that has measure zero (i. e., a randomly thrown “dart”
would be very unlikely to hit a member) and, at the same time, has so many
members that it is in fact uncountable (just like all the real numbers between 0
and 1).

Many mathematicians, and even Cantor himself for awhile, doubted that such a
“crazy” set existed – but it does, and its construction is in fact quite straightforward.
Imagine the real line between 0 and 1 (drawn with chalk on a blackboard if you will)
and wipe out the middle third. Then wipe out each middle third of each remaining
third, and so forth ad infinitum. The first seven wipings are illustrated in Fig. 32.6,
but there is no way to draw the final result, aptly called Cantor dust by B. Mandelbrot
[32.5].

However, there is a neat number-theoretic way to represent the “dust”, namely
by ternary fractions employing the digits 0, 1 and 2. For example, 0.5 corresponds
to 0.111 . . . in ternary notation. The ternary representation is unique if we forbid
periodic fractions ending in a 1 or 12 and, for example, write 0.0222 . . . instead of
0.1 and 0.2 instead of 0.12.

Now, the numbers in the interval [1/3,2/3] are precisely all those numbers that
in the ternary system have the digit 1 in the first position to the right of the pe-
riod. Wiping these numbers away on our route to the Cantor dust, we are left with
numbers that begin with 0.0 or 0.2.

Similarly, the second wiping (third line in Fig. 32.6) eliminates all numbers
with a 1 in the second place to the right of the period. In the end, having arrived
at the Cantor dust, we are left with all those numbers that have no 1’s in any
place.
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Fig. 32.6 The first steps to the Cantor “dust”, the original Cantor set obtained by repeatedly “wip-
ing out” middle thirds of remaining intervals. The resulting set, which can be represented by ternary
fractions using only the two digits 0 and 2, has only isolated points and zero measure. Yet its
cardinality is as uncountable as that of all the real numbers (“aleph one”). Cantor sets, which
are characterized by a (fractal) Hausdorff dimension, play a prominent role in modern nonlinear
physics where they describe “strange attractors”, i.e., aperiodic orbits in phase space that attract
other points from their “basin of attraction”. The boundaries of such basins, called Julia sets, are
also often fractal (nondifferentiable). The Hausdorff dimension of the original Cantor set equals
d = log2/ log3 = 0.631 . . . [32.5]

Incidentally, the members of the Cantor set form a self-similar set: take any line
in Fig. 32.6, leave out the left or right half and magnify the remainder three-fold.
This results in the line immediately above it. More precisely, the Cantor set is invari-
ant, modulo 1, to scaling by a factor 3. In fact, in the ternary notation, this scaling is
nothing but a left-shift of all digits and dropping any 2’s that protrude to the left of
the period. For example, the Cantor number 0.202202 maps into 0.02202, another
Cantor number.

Now it is easy to see why the Cantor set has measure zero: the probability that
a random digit in [0,1) has not a single 1 in its ternary expansion is of course zero.
More precisely, the expression for the probability that there is no 1 in n ternary
places equals (2/3)n, which goes to zero when n goes to infinity.

But why are the members of this extremely “thin” set so numerous that they
are not even countable (like the integers or rationals)? The reason is that we can
bring the members of the Cantor set in a one-to-one correspondence with all the
real numbers in the interval between 0 and 1. We simply identify with each Cantor
number the binary number obtained by changing all 2’s to 1’s. Thus, for example,
0.020222 corresponds to 0.010111 (= 23/64). In this manner, each member of the
Cantor set can be mapped into a real number and, conversely, all reals between 0
and 1 can be mapped into Cantor numbers, which have thus the same “cardinality”
as the reals.

The well-known fact that the reals form an uncountable set was proved by Cantor
using the “diagonal method” already known to Galileo. The diagonal method is used
in an indirect proof that proceeds as follows.

Assume that all the numbers between 0 and 1 form a countable set; they could
then be written down, one after another, in the counting sequence. In binary notation,
for example, the list might look as follows (outlawing terminating fractions):
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0.01011 . . .
0.11110 . . .
0.01011 . . .
0.10001 . . .
etc.

Now write down a number whose first digit to the right of the period is the com-
plement of the corresponding digit in the first number in the above list, and whose
second digit is the complement of the second digit in the second number, and so
forth. The resulting number, which begins

0.1011

cannot be found anywhere in the above list because it differs from each number in at
least one place. Thus, the list cannot be complete and our assumption that the reals
form a countable set was false.

But how can we quantify by some finite number a point set that has measure zero
and cardinality “uncountable”? This we often need to do in physical applications,
where Cantor sets may characterize the members of “strange attractors” in nonlinear
dynamical systems that revel in deterministic chaos (see Sect. 32.6).

Here the concept of the Hausdorff dimension, named after the German mathe-
matician F. Hausdorff (1868–1942), comes to our rescue. For a self-similar set, such
as the Cantor set, the Hausdorff dimension d is particularly simple to calculate. We
simply look at that part of the set that falls within a “length” one rth the original set,
where r is the scaling factor of the self-similarity, and ask what fraction f of the set
falls into that portion. Then the Hausdorff dimension is defined as

d :=
log(1/ f )

logr
, (32.13)

often a noninteger value.
For a straight line f equals of course 1/r and d = 1, as one would expect. For the

Cantor set f �= 1/r; in fact, r = 3 and f = 1/2. Thus, d = 0.6309 . . . . The Cantor set
having a d < 1 reflects its “thinness”, its dustlike consistency, compared to a piece
of coherent line.

If we calculate the Hausdorff dimension of another self-similar set, the Hilbert
curve (Fig. 32.7), then we find for r = 2, f = 1/4. Thus, d = log4/ log2 = 2, which
is nice considering the fact that (in the limit) the Hilbert curve goes through every
point in the unit square. (But note the monstrous result that a curve, something we
have always thought of as having just one dimension, has now dimension d = 2.)

The Hausdorff dimension even allows us to salvage a basic Euclidean theorem
that otherwise would go to pieces when applied to fractal objects. Look at Fig. 32.8:
it shows a hexagon surrounded by 6 identical hexagons. The total area of the figure
is 7 times the area of a hexagon, and its perimeter is 3 times that of a hexagon. Note
that the total figure is not a hexagon, i. e., the figure is not similar to its parts.
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Fig. 32.7 Intermediate stage,
on the way to the plane-filling
Hilbert curve. The Hausdorff
dimension of the Hilbert
curve equals
d = log4/ log2 = 2, as
behooves a curve that, in the
limit, touches every point in
the unit square. The
construction of the Hilbert
curve accomplishes a
continuous mapping of the
(two-dimensional) unit square
onto a (one-dimensional) line,
in contrast to the mapping by
alternating binary digits,
which is discontinuous

But we can make it so! The firt step is to break up each straight line in Fig. 32.8 to
be similar to one third of the perimeter of the entire figure. For this purpose we break
up each straight line by a zig-zag of three straight lines, each having 1/

√
7 length,

see Fig. 32.8. By repeating this breaking up process infinitely often, we arrive at a
figure, approximated by Fig. 32.9, that is exactly similar to its 7 parts. The area ratio
is obviously 7 to 1 and the perimeter is 3 times the perimeter of one of the 7 similar
pieces.

Now, following Euclid, areas of similar figures are proportional to their linear
dimensions squared. But 32 equals 9 and not 7. Where did we go astray? Has Euclid
finally been proven wrong??

Well, the old Greeks (with the possible exception of Zeno) can continue to rest
in peace. Geometric objects like the one illustrated (imperfectly) in Fig. 32.9 were

Fig. 32.8 Seven hexagons. Hexagons tile the plane, but they can never form a hexagon again (as
opposed to tiling by squares, for example). This tiling defect can be remedied by breaking up each
of the 30 straight lines (of unit length) in the figure into 3 straight-line segments, each of length
1/
√

7 and repeating the process ad infinitum. The result of the first breaking up is illustrated on
one edge
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Fig. 32.9 The seven hexagons after the first five edge-mutilating steps. The final figure is sim-
ilar to its seven parts and has a nondifferentiable fractal boundary (Hausdorff dimension d =
log3/ log

√
7 = 1.129 . . .). The perimeter of the large “hexagon” is 3 times as long as that of a

small “hexagon”. Yet its area is not 32 = 9 but only 7 times as large: a “non-Euclidean” paradox!
(See text.)

never on exhibit in Euclid’s school. Its boundaries, while everywhere continuous,
are nowhere differentiable. The object is a fractal, so named by Mandelbrot [32.5],
with an easily calculable Hausdorff dimension. Since the scaling factor equals

√
7

by construction and f equals 1/3, we obtain with (32.13) for the dimension the
following noninteger value:

d = 1.12915 . . .

Although noninteger, the appellation “dimension” for d is quite apt, because with
it we can reformulate Euclid’s theorem about similar areas and obtain a more gen-
erally valid result, applicable to fractals and nonfractals alike:

Theorem: FOR SIMILAR FIGURES, THE RATIOS OF CORRESPONDING MEA-
SURES ARE EQUAL WHEN REDUCED TO THE SAME DIMENSION.

Thus, the area ratio in Fig. 32.9 is 7. Since area has dimension 2, reduction to
dimension 1 results in 71/2 = 2.64575 . . . . and the perimeter ratio 3 when reduced
to dimension 1 gives the same number. To wit: 31/d = 31/1.12915 = 2.64575 . . . .
It is because of properties like this that the Hausdorff dimension is such a useful
concept. It is just an extension of the concept of dimension to fractal values, which
model many phenomena in the real world.

In Fig. 32.9 we have encountered a function, the boundary of the figure, that
is everywhere continuous and nowhere differentiable. Such exotic functions were
defined by Karl Weierstrass (1815–1897) to show an unbelieving world one of the
“impossible” things that could happen with what is innocently called “function”.
And like Cantor sets, Weierstrass functions are a rich mine of common-sense para-
doxes.

For example, a musical chord patterned after a Weierstrass function can have
the following weird property. If recorded on magnetic tape and replayed at twice
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the recording speed, the chord will not sound an octave higher in pitch (as every
well-behaved recorded sound would) but a semitone lower. How is this possible?

Let us construct a simple Weierstrass function

w(t) =
∞

∑
k=−∞

cos
(

β kt
)

. (32.14)

If we scale the time dimension t by a factor β , we obtain

w(β t) =
∞

∑
k=−∞

cos
(

β k+1t
)

=
∞

∑
k=−∞

cos
(

β kt
)

, (32.15)

i. e., w(β t) equals the unscaled function w(t). Thus, w(t) is self-similar. Obviously,
such a function cannot have a nonzero derivative anywhere, because derivatives
change with scaling. (It is interesting to note that the concept of self-similarity en-
tered mathematics at two independent points, Cantor sets and Weierstrass functions,
at about the same time in history and for similar reasons: to elucidate the foundations
of mathematics: numbers and functions.)

Now suppose we select β = 213/12 and convert w(t) to audible sound:

w(t) = ∑
k

cos
(

2k13/12t
)

, (32.16)

where k only has to cover the audio range (20 Hz to 20 000 Hz). Playing back w(t)
as constructed in (32.16) at twice the speed produces

w(2t) = ∑
k

cos
(

2k13/12+1t
)

= ∑
k′

cos
(

2k′13/122−1/12t
)

, (32.17)

where k′ = k + 1. Now, if the summations in (32.17) cover the entire audio range,
then, as far as the human ear is concerned,

w(2t) = w
(

2−1/12t
)

. (32.18)

Thus, a doubling of the tape speed will produce a sound with a pitch lowered by a
factor 2−1/12, the chord will sound one semitone lower rather than an octave higher!
This paradox was originally discovered by Jean-Claude Risset, see [29.5].

P. Meyer at the Drittes Physikalisches Institut, University of Göttingen, pro-
grammed a desk-top computer to produce a w(t) as in (32.16) with 11 components
comprising the frequencies from 10.0 Hz to 18245.6 Hz. By doubling the playback
speed the 6th component, for example, will change in frequency from 427.15 Hz to
854.3 Hz. But in comparing the two chords, the human auditory system will iden-
tify the doubled 6th component at 854.3 Hz with the nearest component of the orig-
inal chord, namely the 7th at 905.1 Hz. Since 854.3 Hz is a semitone lower than
905.1 Hz, a lowered pitch will be perceived. An astounding paradox, when listened
to, but quite easily accounted for.
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32.3 The Twin Dragon: A Fractal from a Complex
Number System

One of the most widely used number systems in the digital world is the binary
system, based on the base 2. In this system, a real number is represented by a sum
of powers of 2:

x = ∑
k

εk2k, (32.19)

where the binary digits εk are either 0 or 1; other values are not needed.
To extend the binary system to complex numbers z we could represent both real

and imaginary parts by sums like (32.19). But there is a more elegant method: we
select 1− i as a base and write

z = ∑
k

δk(1− i)k. (32.20)

What values for the digits δk do we need to cover all z in a given region of the
complex plane? Surprisingly, values of δk that are either 0 or 1 suffice, just as in
the binary system (32.19) for reals. Thus, (32.20) is a binary number system for
complex numbers!

What area of the complex plane is occupied by the proper fractions, i. e., all
those z for which δk = 0 for k ≥ 0? We should not have asked, because the answer
is monstrous: the region shown in Fig. 32.10. It has a fractal boundary with surfeit

Fig. 32.10 A number-theoretic fractal monster: Donald Knuth’s “Twin Dragon” [29.4, 32.5], de-
fined as the loci in the complex plane of all proper fractions in the binary number system with the
base 1− i. The Twin Dragon tiles the plane, is similar to its parts, and has a fractal perimeter with
Hausdorff dimension d = 1.5236 . . ., but is otherwise harmless
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of self-similarities. It is known as the Twin Dragon, and its perimeter has Hausdorff
dimensions d = 1.5236, a solution of 23d/2 −2d = 2 [32.5].

The Twin Dragon decomposes into similar dragons, indicated by different shad-
ings in Fig. 32.10. Conversely, Twin Dragons tile the plane, but rather perversely,
considering their fractal skin.

The physically attractive feature of the Twin Dragon is the fact that strange at-
tractors in nonlinear dynamical systems often have “basins of attraction” whose
boundary is fractal, much like the dragon skin. Attractors characterize stable orbits.
They can have a period of 1, in which case they are called fixpoints, or they can be
periodic with periods typically equal to 2, 4, 8, 16, etc., depending on the degree of
nonlinearity of the system.

As the nonlinearity is increased, the “bifurcation cascade”, i. e., the splitting of
one orbit into two, continues until the “period” of the attractor is infinite, in which
case it is no longer periodic. Initial conditions within the basin of attraction are
attracted to a “thin” set of points, a Cantor set (see Sect. 32.6).

32.4 Statistical Fractals

The fractal objects we have encountered so far are strictly self-similar in a deter-
ministic way. But the concept of self-similarity can also apply to statistical laws,
resulting in statistical fractals. In fact, Brownian motion, misinterpreted for so long,
is a statistical fractal par excellence (and so are stock market prices). As is well
known, the mean-square displacement r2 of a particle suspended in a warm liquid
at rest is proportional to time t:

r2 = 2Dt,

where D is the “diffusion constant”. If we sample the motion every t seconds and
connect the sample values of r(t) by straight lines, we obtain a rather jagged picture.
But this picture has almost nothing to do with the actual motion of the particle,
which changes direction upon every impact of the liquid’s molecules, perhaps every
billionth of a billionth of a second. Indeed, if we sample the path of the Brownian
particle 100 times as frequently and magnify the result by 10 diameters, we obtain
(statistically) the same picture as before.

This process of more frequent sampling and greater magnification can be re-
peated many times; it will always give a picture that is statistically indistinguishable
from the original. And this is precisely what is meant by statistical self-similarity.
For the Brownian motion, it spans the range from the mean-free path of the par-
ticle to the dimensions of the container – a great many orders of magnitude. The
Hausdorff dimension equals, by definition (32.13), d = 2. In other words, like the
Hilbert curve, see Fig. 32.7, the Brownian motion curve has the same dimension as
a two-dimensional surface (which is why a chemical reaction on a surface, governed
by a two-dimensional random walk, proceeds much faster than the same reaction in
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three dimensions – something nature discovered during evolution and still employs
to advantage in enzymatic reactions).

For those readers who are disappointed that the dimension of the Brownian mo-
tion is an integer (d = 2), I will mention the fact that the set of its “zero-crossings”
has fractal dimension d = 1/2. This “thinness” of zeros is a well-known fact for ran-
dom walks (“Wiener processes”), but it is hardly ever mentioned in terms of fractal
dimensions and Cantor-like sets. (A numerical model for a Cantor set with d = 1/2
is given by the quarternary fractions in which only two nonadjacent digits, 1 and 3
say, are allowed.)

It is interesting to recall that correct analysis of Brownian motion established
the existence of atoms and molecules of finite size, the diffusion constant D being
critically dependent on atomic dimensions. And who laid the foundation stone? One
Einstein (in 1905).

Figure 32.11 shows a statistical fractal obtained by computer simulation of
a diffusion-limited aggregation process [32.6]. Each dot represents an atom or
molecule that attached itself to the existing structure following simple probabilis-
tic rules that depend on occupancies of nearby sites. Such statistical fractals, as we
saw in the case of Brownian motion, can be characterized by a fractal Hausdorff di-
mension. This dimension is often determined numerically by counting the number
N of atoms inside spheres of different radii r. In two dimensions, for a nonfractal
substance, N is proportioned to r2. But in Fig. 32.11 proportionality of N with r1.7

was found. Thus, the fractal has Hausdorff dimension d = 1.7.
Electrical discharges on insulators obey laws very similar to diffusion-limited

aggregation, and the resulting spark patterns (called Lichtenberg figures, after the
18th-century Göttingen physicist and aphorist who studied them) look indeed very
much like Fig. 32.11.

Fig. 32.11 Result of a
computer simulation of a
two-dimensional
diffusion-limited aggregation
process, see Witten and
Sander [32.6], a statistical
fractal with Hausdorff
dimension d ∼= 1.7, i. e., the
number of molecules inside a
circle of radius r grows with
r1.7 (instead of r2).
Two-dimensional electric
discharges (“Lichtenberg
figures”) have similar
structures and Hausdorff
dimensions.
Three-dimensional lightnings
(worth looking at) have
Hausdorff dimension d = 2.4
or greater
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Simulations of such scale-invariant processes in three dimensions give fractal
Hausdorff dimensions between 2 and 3. The most beautiful (highly branching) light-
nings, for example, have Hausdorff dimensions near 2.4. (Have insurance companies
become aware and taken note of this?)

Another important application of fractal dimensionality lies in the analysis of
time series of a wide spectrum of natural phenomena. Are long-time temperature
variations [32.7] on the earth or other aspects of climate evolution describable as
fractal phenomena? Can we analyze brain waves (electro-encephalograms, EEGs)
and deduce insights into the state of mind of a patient [32.8] from the Hausdorff
dimension of the EEG? Perhaps such fractal evaluation will exceed in diagnostic
value even linear predictive analysis [32.9].

32.5 Some Crazy Mappings

A long time ago, Isaac Newton suggested finding the zeros of a function f (z) by an
iteration based on tangent extrapolations. Given an approximate value of zn to the
solution of f (z) = 0, Newton finds the next approximation by calculating

zn+1 = zn −
f (zn)
f ′(zn)

, (32.21)

where f ′(zn) �= 0 is the derivative of f (z).
For f (z) = z2 −1, (32.21) reads

zn+1 =
1
2

(

zn +
1
zn

)

. (32.22)

Not surprisingly, for an initial value z0, with a positive real part, zn converges toward
the positive root of z2−1 = 0, namely z = 1. Similarly, for a negative real part of z0,
the solution converges to the negative root, z = −1.

But what happens for purely imaginary z0 = ir0, where r0 �= 0 is real? Interest-
ingly, it does not converge at all; the iteration (32.22) cannot make up its mind, so
to speak, and hops all over the imaginary axis, according to the mapping

rn+1 =
1
2

(

rn −
1
rn

)

. (32.23)

For example, g = 1.618 . . . maps into 0.5, −0.5, 0.2916, −1.56845 . . ., etc. But some
r0 behave differently, such as r0 = 1+

√
2, which maps into 1, 0, ∞, a kind of fixed

point, if rather distant.
How can we bring order into this chaotic mapping? A trigonometric substitution

will do:

r = −cotan(απ), (32.24)
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which turns (32.23) into the simple

αn+1 = 2αn mod1. (32.25)

Now everything becomes transparent. If we express αn as a binary fraction, then
αn+1 will be simply the fractional part of αn shifted one place to the left. Thus,
periodic binary α0 will lead to periodic orbits. For example, α0 = 1/3 = 0.01 will
map into 0.10 = 2/3, which will map right back into α2 = 0.01 = α0. Indeed, r0 =
−cotan(π/3) =−1/

√
3 maps into r1 =

√
3, which maps back to r2 =−1/

√
3 = r0.

We also see by this analysis that any irrational α0 will lead to an aperiodic
“orbit” along the imaginary axis in the z-plane. This leaves us with the nonperi-
odic rationals. Where will they end up? Continued left-shifting and taking frac-
tional parts will, sooner or later, produce 0 which maps into ∞. For example, α0 =
7/8 = 0.111 will map into 0.11 = 3/4, then 0.1 = 1/2, which maps into 0. In fact,
the corresponding r0 = −cotan(7π/8) = 1 +

√
2 maps into 1, 0, ∞, as we already

saw.
Thus, the simple mapping given by Newton’s iteration for the function x2−1 has

rather strange consequences for initial values on the imaginary axis: numbers are
classified into

aperiodic binary rationals,

periodic binary rationals,

and

irrationals.

While aperiodic binary rationals “converge” on a fixed point (∞), periodic binary
rationals lead to periodic orbits. By contrast, irrational numbers α0, an uncountable
set, give aperiodic orbits: the same value never occurs twice, nor is αn ever rational.

Thus, we have the curious fact that the tiniest distinction – the difference between
rational and irrational numbers – makes a decisive difference in the final fate of a
situation. Ordinarily, one should think that physics, and certainly the tangible world
at large, are untouched by the purely mathematical dichotomy between rationals and
irrationals. But in reality this just is not so. While, true enough, everything in the real
world can be adequately described by rational numbers, it so happens that a mod-
eling that distinguishes between different kinds of numbers is not only extremely
useful but catches the true (perhaps hidden) spirit of a physical phenomenon.

More specifically, two different initial conditions that are completely indistin-
guishable by any finite measurement precision will sooner or later lead to a total
divergence as the system evolves in time or space. The essential condition for this to
happen is that the corresponding Poincaré map (see Sect. 32.6) be sufficiently non-
monotonic, such as (32.25), which has a sawtooth-like nonmonotonicity. The rate of
divergence is measured by the so-called Lyapunov exponent λ.

In our bare-bones example (32.25), λ = log(αn+1/αn) and taking natural loga-
rithms gives λ = log2 ≈ 0.693.

Newton’s method applied to f (t) = z3 −1 gives
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zn+1 =
2z3

n +1
3z2

n
. (32.26)

Now the mapping is even crazier. For one thing, the conjecture that all z0 will
converge toward the closest of the three roots is false. For example, z0 = −1 will
converge on 1, the root most distant from it.

Figure 32.12 shows the intimately intertwined “basins of attraction” of the three
roots – a real, or rather imaginary, crazy quilt. In fact, it can be shown that for the
mapping (32.26) two basins (colors) can never meet without the third one being
present also. This may sound impossible, and in fact it would be – if it were not for
fractal boundaries as intimated in Fig. 32.12 and already encountered in the dragon
skin (Fig. 32.10).

One way to begin to understand the basins of attraction in Fig. 32.12 is to con-
sider the neighbourhood of z = 0. By (32.26) the point z = 0 maps of course to ∞.
But points near 0 participate in a devil’s dance before approaching one of the three
attractors (or being mapped into 0). In fact, for |z0| � 1, z1

∼= 1/3z2
0, a large number.

The next iterations make z smaller again: z2
∼= 2/9z2

0, etc.; it is almost unpredictable
what zn will do as n goes to infinity.

Other “dangerous” points are the three points z0 = (−1/2)1/3, which land on
0. Since the mapping (32.26) is continuous, the devil’s dance around 0 will be
mimicked around these three points, as can be seen in Fig. 32.12. In fact, their 9
“preimages”, one of which is real (z−1 = −1.1388 . . .), show again the same dev-
ilish behaviour. And the same dance continues for prepreimages and so forth ad
infinitum. Several “generations” of these prepreimages, which form a fractal Julia
set, are readily visible in Fig. 32.12. The orbits of any points near them become
totally irrational (in the common sense of the world). And since all three basins of
attraction meet at 0, they also meet at all the preimages – which is everywhere where
different basins meet: two basins never meet without the third.

More precisely, the Julia set that forms the boundary between the different basins
is the set of all those z that map eventually into 0; it corresponds to the nonperiodic
rationals for the map f (z) = z2−1 discussed above. And any point z0 near a member
of the Julia set will be mapped in one or several steps into a point near zero, where
the real dance begins.

The Julia set is self-similar, as is apparent in Fig. 32.12 from the similarity of the
neighbourhood of 0 with its preimages. The Julia set is also uncountable and has a
fractal Hausdorff dimension between 1 and 2, which in the plane is pretty thin dust –
but the dust is there; in fact it holds Fig. 32.12 together.

32.6 The Logistic Parabola and Strange Attractors

Newton’s map is not the only map with pathological consequences. Even such a
simple mapping law as the “logistic parabola”

xn+1 = rxn(1− xn) (32.27)
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Fig. 32.12 The iteration zn+1 = (2z3
n + 1)/3z2

n (Newton’s method for finding the roots of z3 = 1).
The three different basins of attraction are indicated by 3 different colors. Whenever two colors
meet, the third is also present – a seemingly impossible feat. The meeting points form a Cantor-like,
fractal Julia set, consisting of the origin (z = 0) and all of its preimages. The different “annular”
zones indicate the number of iteration steps necessary to land in one of the (half black) disks
surrounding each of the three attractors. (The black portion of each “ring” lands in the black half
of the disk.) Each ring has twice as many black parts as its image ring, illustrating the increasingly
complex structure of the iteration near the Julia boundary. Because the map is continuous for
z �= 0, the figure shows a great deal of near self-similarity around z = 0 and its three preimages,
z = (−0.5)1/3, their nine preimages, and so forth, ad infinitum. While periodic repetition was (and
is) one of the staples of artistic expression, periodicity on a logarithmic scale, i. e., self-similarity
is now coming into its own – thanks to modern computer graphics which produced this figure
entitled Orchis Tertiarum by Forschungsgruppe Komplexe Dynamic (H.-O. Peitgen, P. H. Richter),
Universität Bremen

show very strange behaviour indeed. Equation (32.27) models the growth (or death)
of a population. Without the factor (1− xn) and for r > 1, the population would
grow geometrically. But if resources (think of food) are limited, so is the growth, as
modeled by the factor (1− xn).
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For 1 < r < 3, (32.27) has a unique nontrivial limit x∗. Any x0 �= 0 or 1 will be
attracted to x∗. For example, for r = 2 the attractor x∗ equals 0.5. With x0 = 0.8
(32.27) will yield 0.32, 0.435, 0.492, 0.4998 . . . which converges on the attractor
x∗ = 0.5.

But for r > 3, the attractor is no longer stable. For example, with r = 3.2 and
x0 = 0.8, (32.27) gives 0.512, 0.7995, 0.51288, . . . ,0.799455, 0.513044. Now there
is no longer a single-valued attractor; x∗ has bifurcated into an orbit of period 2, also
called a periodic attractor characterized by two values of x: 0.513 . . . and 0.799 . . . .
Other nontrival values of x0 are attracted to this pair of values.

If we keep increasing the “nonlinearity parameter” r the attractor will bifurcate
again and have a period of 4. Further increases of r will lead to periods 8, 16, 32,
etc. until, at a critical value r∞, the period has become infinite. In other words, the
orbit is now aperiodic, comprising a point set of infinitely many values of x that
never repeat. However, other values of x are attracted to this point set, which is in
fact a Cantor set with Hausdorff dimension d a little over 0.5. Such attractors have
been called strange, although once one knows about Cantor sets they are really not
so strange after all.

In fact, we even encounter the self-similarity again that we first met (Sect. 32.2)
when discussing the original Cantor set with d ∼= 0.631. The reason is that for the lo-
gistic parabola (and many other mapping laws) the interated map f (2)(x) := f ( f (x)),
where f (x) = rx(1−x), has again parabolic regions similar to that of f (x) itself. And
the same is true for f (4)(x), f (8)(x), etc. In fact, the important regions of f (2k)(x) be-
come increasingly similar to each other as k increases. This leads to a self-similar
scaling law for the parameter values rk at which bifurcation takes place: the ratios
of successive parameter intervals

rk − rk−1

rk+1 − rk

converge to a universal constant, the famous (and probably transcendental) Feigen-
baum constant 4.6692 . . . (originally found by S. Grossmann and S. Thomae). This
magic number has earned the epithet “universal” because it applies to many different
nonlinear laws, independent of the details of the mapping, as long as the mapping
has a parabolic maximum [32.10].

The logistic parabola becomes even more exciting if we allow the parameter r
in (32.27) to assume complex values. If we now plot in black all those values in
the r-plane for which (32.27) shows a simple periodic behaviour and the rest of the
r-plane in different shades (depending on the rapidity of divergence in the iteration),
we obtain a fractal image with many self-similarities, dominated by a funny looking,
rotund little being called “Apfelmännchen” in German, and Mandelbrot set more
formally.

Magnifying ever smaller portions of the r-plane, we will discover our model
“Apple Manikin” again and again, hiding in every nook and cranny of the com-
plex plane. One such blowup is shown in our last illustration, Fig. 32.13. We shall
have to leave the Apfelmännchen and a detailed discussion of the Julia world it
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Fig. 32.13 One of the uncountably many Apfelmännchen inhabiting the complex plane (and
sprouting smaller “Apple Manikins” on its skin). Computer graphic by Forschungsgruppe Kom-
plexe Dynamic (H.-O. Peitgen, P. H. Richter), Universität Bremen

(he?) inhabits for another book, in which the many uses (including artistic) of self-
similarity might be the main theme [32.11].

It is interesting to note that the simple logistic parabola models the behaviour of
many nonlinear physical systems, including some with rather complex dynamics.
The reason is that the often inconceivably complicated orbits in phase space of such
systems are adequately described for many purposes by a “cut” through phase space,
known as a Poincaré section after the famous French mathematician Henri Poincaré
(1854–1912). This ingenious trick converts the dynamics into a mapping that is
much easier to study than the original problem. Especially the chaotic behaviour
shown by such complex systems is faithfully modeled by the aperiodic behaviour
observable in such simple equations as the logistic parabola.

Just as for Newton’s method applied to the solution of z2 −1 = 0, see Sect. 32.5,
the logistic parabola, too, shows aperiodic behaviour that can be understood as left-
shifts of binary digits and the taking of fractional parts, as expressed by equation
(32.25). In fact, the deterministic chaos, which dominates many a physical discus-
sion these days, is ultimately understandable in these simple terms: the evolution
of a complex system, in the final analysis, is akin to the left-shifting of digits of
a real irrational number. No matter how precisely the initial conditions are known,
temporal evolution will sooner or later bring the originally unknowable, far-right,
digits (representing the exact initial conditions) into the neighbourhood of the “dec-
imal” point, where they will dominate the system’s behaviour, which will then seem
chaotic.

This has nothing to do with quantum uncertainty or Planck’s constant; unpre-
dictability or “chaos” prevails even for completely deterministic systems, which is
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why it is called deterministic chaos. It reflects the fact that initial conditions, no
matter how precisely specified, can never be given with an infinite precision, as
represented by a real irrational number with infinitely many nonperiodic digits.

This, in a nutshell, is what modern chaos is all about. (The mythical primeval
Chaos has not yet been studied in any great detail and may be quite another matter.)

32.7 Conclusion

We live in a age of increasing overlap between the traditional scientific disciplines.
Few are the advances in modern technology – and even basic scientific understand-
ing – that rely on a single field of learning. To give a few examples, our understand-
ing of the physical universe, which itself impinges on fundamental philosophical
questions of the beginning and the end of being, depends on progress in astronomy,
which in turn results from innovations in computer processing, image enhancement,
and a host of other new technologies. Our comprehension of the genetic code is
influenced by information theory as well as by physical chemistry, which in turn
is based on quantum mechanics, including the exclusion principle. Elementary par-
ticles and the even more elementary quarks, not to mention atoms, molecules and
crystals, are best described by universal principles of symmetry as embodied in
mathematical group theory.

The application of the theory of numbers and finite fields touched upon in this
volume – the design of concert halls, precision measurements, error-correcting
codes, secret communication, special waveforms and radiation patterns, efficient
diffraction gratings, pseudorandom numbers, deterministic chaos and even artistic
designs and more playful things – can only provide a flavor of the interdisciplinary
endeavors already undertaken, and of those yet to come.



Glossary of Symbols

a1 ≡ a2(modb) a1 congruent to a2, modulo b;
a1 −a2 divisible by b

C the field of complex number

d(n) the number of (positive) divisors of n; σo(n)

d|n d divides n; n is a multiple
of d; there is an integer q
such that dq = n

d � | n d does not divide n

e base of natural logarithms;
2.718281828459045 . . .

exp{} exponential function

Fn Fermat numbers: 22n
+1

Or Fibonacci numbers

f (x) = 0(g(x)) f (x)/g(x) → 0 as x → ∞

f (x) = 0(g(x)) there is a constant c such that | f (x)| < cg(x)

i square root of −1; i2 = −1

lnx natural logarithm of x

(m,n) GCD (greatest common
divisor) of m and n; highest
common factor of m and n
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[m,n] LCM (least common
multiple) of m and n. Also,
the block of consecutive
integers, m,m+1, . . .n

Mp Mersenne numbers: 2p −1

n! factorial n;
1×2×3× . . .×n

(n
k

)

n choose k; the binomial
coefficient n!/k!(n− k)!

(

p
q

)

or (p/q) Legendre symbol, also fraction

pa‖n pa divides n, but pa+1

does not divide n

pn the nth prime, p1 = 2,
p2 = 3, p3 = 5, . . .

Q the field of rational numbers

rk(n) least number of numbers not exceeding n, which
must contain a k-term arithmetic progression

�x� Gauss bracket or floor of x; greatest integer
not greater than x

�x� ceiling of x; last integer
not less than x

〈x〉n least positive (or nonnegative) remainder
of x modulo n

Z the ring of integers

Zn the ring of integers, 0, 1,
2, . . . ,n−1 (modulo n)

γ Euler’s constant;
0.577215664901532 . . .

π ratio of circumference of
circle to diameter;
3.141592653589793 . . .

π(x) number of primes not exceeding x,
also primitive polynomial
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π(x;a,b) number of primes not
exceeding x and congruent
to a, modulo b

∏ product

σ(n) sum of divisors of n

σk(n) sum of kth powers of divisors of n

∑ sum

φ(n) Euler’s totient function;
number of positive integers not
exceeding n and prime to n

ω complex cube root of 1,
ω3 = 1, ω �= 1,
ω2 +ω +1 = 0

ω(n) number of distinct prime
factors of n

Ω(n) number of prime factors of
n, counting repetitions
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Euler trap door, 161
Euler’s conjecture, 130
Euler’s constant, 174
Euler’s criterion, 220
Euler’s expansion, 75
Euler’s φ function, 13, 141, 268
Euler’s function average, 176
Euler’s theorem, 13, 141, 164
Evolution, 396
Exclusion principle, 403
Experimental design, 374
Exponential congruence, 202
Exponential Diophantine equation, 128
Extended Riemann Hypothesis (ERH), 51

Factoring, 263
Factoring algorithm, 264
Factorization, 299, 302, 310
Faltings’s proof, 12
Farey fraction, 95, 104
Farey series, 96
Farey tree, 97, 100
Fast Fourier Transform (FFT), 128, 238, 248
Fast Hadamard transform, 245
Fast prime-length Fourier transform, 242
Fatal ambiguity, 325
Feigenbaum constant, 401
Fermat p, 211
Fermat number, 12

Fermat prime, 12, 41, 211, 292, 298
Fermat’s Last Theorem (FLT), 11, 129
Fermat’s theorem, 12, 139
Ferrer graph, 277
Fibonacci, 382
Fibonacci number, 83, 102, 277
Fibonacci number system, 10, 86
Fibonacci’s rabbits, 8
Field element, 318
Finite field, 16
Finite-state machine, 322
Five-fold symmetry, 381, 387
Fixpoint, 395, 398
Floor function, 34
Flower, 88
Forgery, 194
Formula for primes, 34
Four-color necklace, 371
Fourier optics, 241
Fourier series, 276
Fourier spectrum, 338
Fourier transform, 306
Fourier transformation, 54
Fourth effect of general relativity, 336
Fractal, 379, 400

boundary, 399
Fractal skin, 395
Fractal value, 392
Fractals, 388
Fraunhofer diffraction, 338
Frequency channel, 232
Frequency hopping, 327
Frequency shift, 325
Frequency-modulated signal, 356
Fundamental theorem of arithmetic, 22

Galois array, 209, 331
Galois field, 17, 309, 317, 331
Galois group, 17
Galois phase-grating, 337
Galois sequence, 318–321, 331, 333, 335–337,

339, 348, 361, 363
spectral properties, 331

Galois sequences, 211
Gauss bracket, 34
Gauss primes, 369
Gauss sum, 15, 219, 224, 359
Gauss sum incomplete, 225
Gauss’s cryptogram, 101
Gauss’s estimate, 48
Gauss’s Eureka, 125
Gauss’s Insight, 292
Gauss’s notebook, 77
Gaussian variable, 351
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Geheimschreiber, 147
General relativity theory, 336
Generalized divisor function, 175
Generalized Euler function, 270
Generalized Fibonacci number, 93
Generalized Fibonacci sequence, 91
Generalized Legendre sequence, 230
Generating function, 272, 275, 276, 306
Genetic code, 403
Geometric interpretation, 120
Geometric mean, 291
“Geometrical” construction, 77
Geometrical interpretation, 132
Geometry of Numbers, 131
GF(pm), 324
Glass, 382
Glossary, 405
Gödel’s theorem, 48
Goldbach’s conjecture, 67, 130
Golden ratio, 9, 75, 80, 83, 102, 282, 383
Golden rectangles, 80
Golomb ruler, 365
Göttingen Academy of Science, 129
Göttingen Mathematical Society, 134
Göttingen University, 42
Graham’s partition, 95
Graham’s sequence, 92
Graphic design, 367
Gravitational coupling, 101
Gravitational field, 337
Gravitational potential, 337
Gravitational red shift, 337
Greatest common divisor, 23
Group theory, 403

Hadamard matrix, 245
Hadamard transform, 245
Hamming code, 335
Hamming distance, 4, 334
Hamming error-correcting code, 19
Hamming power spectrum, 357
Hard knapsack, 214
Harmonic foundation, 28
Harmonic mean of Ω(n), 188
Harmonic oscillator, 223
Hausdorff dimension, 390, 395, 399, 401
Hearing, 348
Hensel code, 105
Heptagon, 295, 298
Hermite polynomial, 223
Higher-dimensional diffusor, 343
Higher-order correlation, 348
Hilbert curve, 390, 391, 395
Hilbert envelope, 363

Hologram, 331
Home computer, 265
Human ear, 393
Human pitch perception, 25
Hydrophone, 364

Idempotent, 362
Iff, 33
Image enhancement, 403
Impulse response, 305
Impulse response, periodic, 307
Inaudible, 331
Index, 201
Index array, 231
Indirect proof, 389
Infinite precision, 403
Initial condition, 402
Integer, 3, 21

lattice, 132
lattice points, 134

Internet, 194
Interplanetary, 334
Intersection, 25
Inverse Möbius transform, 268, 270
Inverse polynomial, 312
Inversion formula, 269–271
Invisible, 331
Io, 334
Irrational frequency, 100
Irrational numbers, 75
Irrationality, 79
Irreducible polynomial, 318, 320
Isotope, 3
Iteration, 397

Jamming, 219
Julia set, 399, 400
Jupiter, 101
Jupiter’s moon Io, 334

Key distribution, 157
Kilo, 27
Kilobit, 27
Kirchhoff diffraction, 208, 340
Knapsack encryption, 213
Knapsack ripping, 216
Kronecker, 3

power, 246
products, 245
symbol, 267, 270

Kronecker’s constant, 181

Landau’s dissertation, 271
Language, 335
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design, 335
Lateral sound wave, 207, 338
LCM (The Least Common Multiple), 22
Least remainder, 261
Legendre formula, 49
Legendre sequences, 230, 333, 359
Legendre sequences, Fourier property, 223
Legendre symbol, 221, 226, 360
Li(x), 48, 49
Liber Abaci, 87
Lichtenberg figure, 396
Light diffuser, 331
Lightning, 396
Linear congruence, 111
Linear progression, 56, 144
Linear recursion, 333
Linear shift register, 322
Linear system, 305, 306
Logical “and”, 114
Logistic parabola, 399
Long-range coherence, 385
Long-range order, 387
Lorentz invariance, 355
Loud-speaker columns, 344
Low crosscorrelation, 232
Lucas number, 90
Lucas test, 263
Lyapunov exponent, 398

Magdeburg (German cruiser), 162
Major third, 74
Mandelbrot set, 401
Mapping, 397, 402
Markov process, 384
Mars, 334
Martian canals, 334
Masquerading, 194
Mathematical dichotomy, 398
Mathematical logic, 25
Mathematics Institute, University of Göttingen,

299
Matrix representation, 321
Matter wave, 4
Maximal matrix rank, 352
Maximum-length sequence, 225, 322, 336
Maxwell’s equation, 188
Mean-free path, 395
Measure, 389
Measure theory, 77
Median, 190
Mediant, 96
Mercury, 23, 335, 337
Mersenne number, 35
Mersenne prime, 31, 35

Merten’s theorem, 37, 181
Mertens conjecture, 271
Mill’s formula, 34
Minimum redundancy antenna, 363
Minimum redundancy array, 364
Minkowski’s theorem, 134
Minkowski’s Urquell, 3
Möbius function, 182, 184, 267, 272
Möbius inversion, 302
Möbius inversion formula, 299
Möbius transform, 268
Modeling, 398
Modular arithmetic, 111
Monic polynomials, 312
Monsieur Le Blanc, 129
Monster group, 262
Monte Carlo method, 347
Moon, 99
Moore-Penrose inverse, 103
Mordell conjecture, 12
Morse-Thue sequence, 380
Mössbauer effect, 337
Most irrational, 9
Motion, perihelion, 337
Multiplicative function, 141
Multiplicative group, 142
Multiplicative inverses, 17
Multiplicative problem, 276
Music, 28
Musical chord, 392
Musical paradox, 388

Natural number, 21
Necklace, 370, 371

maximally varied, 371
super-varied, 372

Neptune, 23, 334
Neurophysiology, 348
New musical scale, 28
New state of matter, 382
Newton’s iteration, 398
Newton’s method, 398
Nim, 10
Nim-like games, 87
Noble numbers, 382, 387
Noise abatement, 331
Non-Euclidean paradox, 392
Non-Maxwellian, 188
Nonfractals, 392
Nonlinear Diophantine equation, 124
Nonlinear dynamical system, 390, 395
Nonlinear function, 352
Nonlinear law, 401
Nonlinear physical system, 402
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Nonlinearity, 395
parameter, 401

Nonperiodic rational, 398
Nontotient, 144
Normal-mode degeneracy, 135
Nucleon, 3
Number of divisors, 171
Number of primitive elements, 323
Number of primitive roots, 196
Number-theoretic convolution, 273
Number-theoretic fluke, 28
Number-theoretic logarithm, 201, 230
Numerical computation, 272
Numerical evidence, 272

Oblivious transfer, 194
Ocean surveillance, 364
Octave, 26, 393
One-time-pad, 156
One-way process, 166
Optical spectra, 3
Orbital period, 387
Order, 195

P-adic algebra, 105
P-adic Hensel code, 105
Pallas, 101
Parabolic maximum, 401
Partition, 275, 277

generating function, 278
into distinct integer, 279
into even integer, 280
into odd integer, 280
recurrence formula, 282

Peak factor, 355–357, 359, 361
Pell equation, 124
Penrose tiling, 387
Pentagonal number, 281
Percentile, 190
Perfect number, 39
Perfect permutation, 326
Periodic attractor, 401
Periodic continued fraction, 78
Periodic correlation, 206
Periodic crystal, 385
Periodic decimal fraction, 197
Periodic lattice, 381
Periodic orbit, 398
Permutation, 147, 326
Permutation Cycles, 150
Perrin sequence, 35
Phase, 356

angle, 357
randomization, 331

Phase coherence, 385
Phase space, 402
Phase-array, 327
Phase-grating, based on primitive roots, 342
Photon, 188
Physiological measurement, 336
Pitch, 25, 393
Pitch detector, 365
Planck’s constant, 402
Planck’s harmonic oscillators, 188
Pluto, 23
Pocket calculator, 264
Poincaré map, 398
Poincaré section, 402
Poisson distribution, 185, 189
Poisson process, 38, 145
Poisson variables, 276
Poker, 255
Polynomial, 305

convergent, 313
reciprocal, 319
residue, 310
residue reduction, 310, 321
theory, 309

Polynomial’s Diophantine equation, 312
Polynomial-time algorithm, 167
Positron, 17
Power spectrum, 206
Precision measurement, 335
Predictive analysis, 397
Preimage, 400
Primality horizon, 264
Primality testing, 31, 263
Prime, 31

counting function, 48
divisor, 179
divisor function, 179, 274
divisor, cumulative distribution, 190
divisors, number of, 179, 185
number, 21
number theorem, 50
order, 317
power order, 317
quadruplets and quintuplets, 62
residue system, 115
spacings, 63, 66
triplet, 61

Primeless expanse, 58
Primitive element, 318
Primitive root, 195, 292, 302

ceiling, 208, 209
sequence, 344

Primitive root array, 211
Primitive roots, Fourier property, 206
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Princeton University, 193
Principle of symmetry, 403
Probabilistic argument, 45
Probability, 45

distribution, 276
theory, 276

Proper fraction, 394
Properties of matter, 134
Protocol, 258
Proton, 264
Pseudoperfect number, 40
Pseudoprime, 116, 255
Pseudorandom, 347
Pseudorandom permutation, 353
Pseudorandom sequence, 336, 348, 352
Pseudorandomness, 352
Public-key encryption, 4, 161, 165, 193
Pythagoras scale, 3
Pythagorean comma, 27
Pythagorean numbers, 11, 127

Quadratic congruence, 219, 251
Quadratic progession, 57
Quadratic reciprocity, 226
Quadratic residue, 219
Quadratic-residue sequence, 227
Quanta, 280
Quantum cryptography, 156
Quantum decrypting, 153
Quantum factoring, 256, 265
Quantum mechanics, 223, 403
Quarks, 403
Quotient polynomial, 310

Rabbit spectrum, 385
Radar, 229, 324, 331, 337
Radar echo, 325, 335
Radiation pattern, 229, 329, 344, 355
Radio astronomy, 364
Radio communication, 229
Railroad switch yard problem, 93
Ramanujan congruence relation, 282
Random number, 349
Random number generator, 347, 350
Random phase angle, 356
Random rotation, 353
Random variables, 276
Random walk, 395
Randomness, 367
Range, 325

rate, 325
Rate of divergence, 398
Rational factor, 299
Rational factorization, 301

Rayleigh variable, 351
Real-time tomography, 356
Reciprocal polynomial, 319
Recovery of undersampled periodic waveform,

97
Recursion, 321
Recursive relation, 321
Reflection phase-grating, 207, 228, 229, 339
Regular n-gon, 298
Regular 17-gon, 76
Regular pentagon, 79
Remainder, 15, 111

polynomial, 310
Remote coin tossing, 255
Reneging, 194
Repeated Encryption, 168
Repunit, 39
Residue, 4, 111

reduction, 320
Resonant frequency, 131
Resonator, 131
Restrict Partitions, 279
Reverberation time, 336
Riemann Hypothesis, 51, 272
Riemann zetafunction, 50, 55
Riemann’s approximation, 50, 51
Riemannian geometry, 337
Rings of Saturn, 387
Roman number system, 237
Rounding error, 103
Rudin-Shapiro polynomials, 358

Satellite picture transmission, 331
Saturn, 387
Scaling, 379

factor, 379
law, 401

Scattered wave, 338
Scattering, 207
Schrödinger wave equation, 17
Search algorithm, 88
Secret, 260
Security, 4
Self-conjugate, 277
Self-decimating, 384
Self-dual, 25
Self-generating sequences, 380
Self-similar sequence, 382, 387
Self-similar set, 389
Self-similarity, 379, 380, 387, 393, 400, 401
Semantics, 335
Semitone, 393
Set theory, 25
Shift register, 322, 333
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Shor algorithm, 153
Short-range property, 385
Sieve of Eratosthenes, 32, 46
Signal-to-noise ratio, 336
Signalbuch der Kaiserlichen Marine, 163
Signature code, 232
Signature sequence, 329
Silver ratio, 387
Similar areas, 392
Similar figures, 392
Simplex code, 334
Simultaneous congruence, 235
Sin, 347
Single modulus system, 105
Sino-optical Fourier transformer, 240
Sino-representation, 236, 239

application, 237
generalized, 241

“Slaved” oscillator, 99
Slowing of electromagnetic radiation, 337
Smallest prime divisor, 56
Sociable number, 40
Solar systems, 387
Sonar, 229, 331
Sound, 207
Space vehicle, 334
Speckle, 331
Spectroscopy, 248
Specular reflection, 209, 338
Speech recognition, 333
Spin, 17, 355
Spread-spectrum communication, 219, 229,

231, 328
Square number, 126
Squared square, 82
Squarefree, 28, 173

integer, 267
Squarefree and coprime integers, 59
Stabilities, 387
Stable orbit, 395
Stamp Problem, 122
Star of David, 143
Statistical fractal, 395
Statistical moments, 276
Statistical self-similarity, 395
Statistically indistinguisable, 395
Strahlkörper, 134
Straightedge and a compass, 291
Strange attractor, 389, 395, 399
Strong pseudoprime, 260, 261
Sum of 2 squares, 132
Sum of 3 squares, 131
Sum of 4 squares, 131
Sum of primes, 68

Summatory function, 173, 267
Superior conjunction, 337
Surprise, 367
Symbols, 405
Symmetry, 367
Syntaxes, 335

Talking computer, 334
Talkwriter, 334
Television antenna, 344
Temperament (musical), 26
Ternary fraction, 388, 389
Theorema fundamentale, 226
Third-order correlation, 348
Thumb-tack function, 325
Tiling, 391
Time reversal invariance, 344
Time-discrete, 276
Time-discrete system, 305, 306
Totient function, 141
Trap-door function, 163
Triangular number, 125, 281
Turbulence, 379
Twiddle factor, 248
Twin dragon, 394
Twin prime, 59
Two-dimensional array, 210, 229
Two-squares theorem, 133

U-505, 157
U-boat, 325
Ultimate test for primality, 140
Uncountable, 389, 399

set, 398
Union, 25
Unit fraction, 94
Universal constant, 401

Venus, 337
Visibility, 368
von Mangoldt function, 270
von Münchhausen’s secret message, 193

Waring’s problem, 136
Waveform, 355, 357
Weierstrass function, 392
Weyl’s theorem, 135
Wiener process, 396
Wiener-Khinchin theorem, 207
Wilson’s theorem, 139, 201
Winding number, 386
Wolfskehl Prize, 129

X-ray astronomy, 209

Young tableaux, 277
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z transform, 276, 305
z transform, 306, 307
Zahlen-Mystik, 101

Zech logarithm, 324, 327, 328
Zero-crossing, 396
Zetafunction, 50, 181, 184, 186, 187, 272, 368



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




