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Abstract. Automatic Term Recognition (ATR) is defined as the task
of identifying domain specific terms from technical corpora. Termhood-
based approaches measure the degree that a candidate term refers to a
domain specific concept. Unithood-based approaches measure the attach-
ment strength of a candidate term constituents. These methods have
been evaluated using different, often incompatible evaluation schemes
and datasets. This paper provides an overview and a thorough eval-
uation of state-of-the-art ATR methods, under a common evaluation
framework, i.e. corpora and evaluation method. Our contributions are
two-fold: (1) We compare a number of different ATR methods, showing
that termhood-based methods achieve in general superior performance.
(2) We show that the number of independent occurrences of a candi-
date term is the most effective source for estimating term nestedness,
improving ATR performance.
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Introduction

A terminology bank (vocabulary) contains the terms, which refer to the concepts
of a domain. Constructing such a vocabulary is crucial, because it is the starting
point for many applications such as machine translation, indexing, and ontol-
ogy learning [8]. Manual construction is time-consuming, error-prone, labour-
intensive and unable to deal with the rapid growth of technical terms. ATR
targets at solving these obstacles.

ATR techniques can be divided into two broad categories: unithood-based and
termhood-based ones [8]. Unithood refers to the attachment strength of the con-
stituents of a candidate term. Termhood refers to the degree that a candidate
term is related to a domain-specific concept. For example, in an eye-pathology
corpus, “soft contact lens” is a valid term, which has both high termhood and
unithood. However, its frequently occurring substring “soft contact”, has high
unithood and low termhood, since it does not refer to a key domain concept.

Unithood-based methods, such as t-test, χ2-test, Log-likelihood (LL) [3] and
pointwise mutual information (PMI) [1], have been thoroughly evaluated for
the task of collocation extraction [3,4,2,14]. In [3,4] the authors show that LL
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Fig. 1. Experimental procedure

performs better than the other statistical measures due to its milder tendency
to overestimate rare events.

Given that unithood- and termhood-based methods capture different types of
information, it is still unclear whether the former are able to perform better
than the latter methods, such as C Value [5] and Statistical Barrier (SB) [13].
Furthermore, most ATR methods [5,3,1,13] have been evaluated using different
technical corpora, under different evaluation frameworks, with different sets of
parameters depending on the domain and test corpus. This lack of a common
evaluation scheme complicates the interpretation of results. It is unclear which
are the strengths and weaknesses of each method, making unmanageable the
choice of an appropriate ATR method as a starting point for other applications.

This paper provides an overview of the field of ATR and evaluates a num-
ber of linguistic and statistical approaches using two English corpora i.e. the
GENIA[6] and the PennBioIE [9] corpus. Figure 1 presents a block diagram of
our experimental procedure. A linguistic filter is applied on the corpus text to
identify candidate terms. Then, a statistical method ranks these candidates, to
create a list in decreasing order of scores. The evaluation scheme compares this
list to the gold standard terms, generated by the corpus annotation. The scheme
consists of a manually annotated corpus, and an evaluation method which as-
sesses the performance of ATR methods at a fine-grained scale; i.e. increments
of 0.5% of their candidate term ranked list, based on the one proposed in [16].

Our contributions are two-fold: firstly, we extensively compare state-of-the-art
approaches to ATR under a common evaluation scheme. We show that termhood-
based approaches, which take into consideration the nestedness of a candidate
term into others, such as C Value and SB, have in general superior performance
over methods which measure the strength of association among the tokens of
a multi-word candidate term, such as LL and PMI. Secondly, after further ex-
perimentation with different statistical approaches to nestedness we show that
the independent occurrences1 of a term is the most effective source of nested-
ness information, clearly improving the performance of ATR methods, in this
evaluation setting.

The rest of the paper is structured as follows: Sections 1 and 2 review linguistic
filtering and statistical approaches, respectively. Section 3 presents the evaluation
scheme, the experimental results and comments on them. Section 4 concludes
this paper.

1 Number of occurrences on its own; without being nested within others candidate
terms.
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1 Linguistic Filters

Initial ATR research focused on exploiting the parts-of-speech (PoS ) of multi-
word expression constituents. As a result, different pattern-based models (lin-
guistic filters) were proposed, to identify terms. For example, the linguistic filter
in formula 2 would recognise terms consisting of nouns (N ) or adjectives (A).
The choice of linguistic filter depends on the language and the domain of the
corpus and the application [5]. If the target is to identify terms with high recall
an open filter should be used, such as the one in formula 3, which applies on
numbers (#) and prepositions (P).

In this paper, four lenient PoS filters were employed to capture as many
terms as possible. Their performance was experimentally compared. The most
basic, Nouns, accepts sequences of Ns, only, since terms mainly consist of Ns.
The second, A&N, applies on sequences consisting of As and Ns ending with a
N (formula 1). The third linguistic filter, J&K (formula 2) was introduced by
Justeson and Katz [7] and has been widely used. Its first part is identical to A&N,
whereas the second applies on sequences which start with one or more Ns or As,
continue with a N followed by a P and end with zero or more Ns or As followed
by a N. Justeson and Katz [7] used this filter to extract multi-word terms from
large text collections in a variety of domains -metallurgy, space engineering and
nuclear energy-, reporting coverage of 97% (99% if Ps are allowed).

(A|N)+ N (1)
( (A|N)+ | (A|N)∗ (NP )? (A|N)∗ ) N (2)

( (A|N |#)+ | (A|N |#)∗ (NP )? (A|N |#)∗ ) N (3)

Nouns and A&N extract sequences of As, Ps and Ns. However, our initial
experimental projections show that approximately 6% of GENIA gold standard
terms contain numbers. To capture those, we extended J&K to J&K# (formula
3), so as to accept numbers (#) whenever it accepts Ns or As.

2 ATR Statistical Approaches

Approaches to ATR have been largely based on statistical information. However,
most of them include some linguistic part; usually a linguistic filter, to produce a
list of candidate terms (section 1). The statistical part assigns to each candidate
term, ct, a score, indicating how likely ct is a valid term. The most simple
statistical measure is the frequency of occurrence (FR), which captures terms
occurring frequently in the corpus. FR is used as a baseline in our evaluation.

2.1 Termhood-Based Methods

C Value [5] focuses on nested terms. The basic intuition is that a candidate term,
ct, should occur frequently on its own, not nested in other candidate terms. For
example, in an eye-pathology corpus, “soft contact lens” is a valid term, possibly
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occurring frequently. However, its substring “soft contact” is not an actual term
and should not be extracted, since it occurs frequently as nested [5].

However, the nested frequency of ct is not a reliable measure of its nestedness,
since it does not take into account the number of different candidate terms, in
which ct appears as nested. For example, consider the following terms in the
domain of real time systems: “real time clock”, “real time systems”, “real time
group” and “real time expert system”. The fact that they all contain “real time”
as substring, increases its possibility to be a term.

Consequently, the nestedness, NST , of ct is defined as the fraction of its nested
frequency over the number of distinct candidate terms, in which it appears as
nested. The length of a ct in tokens, |ct|, is also taken into account. The longer
ct is, the more likely ct is an actual term.

NST (ct) =
1

P (Tct)
∗

∑

b∈Tct

f(b)) (4)

In order to compute a termhood value, Frantzi et al. [5] subtract the nested-
ness, NST , of ct from its frequency of occurrence, f(ct). In case that ct appears
as nested, C Value is defined by the upper branch of equation 5, where Tct is the
set of candidate terms, in which ct appears as nested, P (Tct) is its cardinality
and L(ct) = log2(|ct|). In the opposite case, ct is assigned a value based on its
length and frequency of occurrence (lower branch of equation 5).

CV (ct) =
{

(f(ct) − NST (ct))L(ct), nested ct
f(ct)L(ct), otherwise (5)

NC Value incorporates contextual information into the C Value ATR process.
It consists of three parts. Firstly, C Value is applied on a corpus cp, to extract
a ranked list of candidate terms, l. Secondly, the top n candidate terms are
selected from l. For each of these, its context words cw are collected, using a
window of ±w words around it. Context words can be nouns, adjectives or verbs.
For each cw, the following weight is computed as: w(cw) = t(cw)

n , where t(w) is
the number of candidate terms cw appears with.

Thirdly, the C Value ranked list is refined by applying the weights w(cw)
to compute a context factor, CF , for each ct. The context factor of a ct ∈ l is
formally defined by equation 6, where Cct is the set of context words of ct, b is an
element of Cct, fct(b) is its frequency of occurrence as a context word and w(b)
is its weight as a context word. In the case that b was not encountered during
the stage of creating the list of context words it is assigned a 0 weight. NC Value
is computed as the linear interpolation of C Value (CV) and CF (equation 7).

CF (ct) =
∑

b∈Cct

fct(b) ∗ w(b) (6)

NCV (ct) = 0.8 ∗ CV (ct) + 0.2 ∗ CF (ct) (7)

Statistical Barrier (SB) [13] is another ATR termhood-based approach, which
assumes that terms having complex structure are made of existing simple terms.
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Thus, they first measure the termhood of single words, and then use it to measure
the termhood of complex terms. The basic intuition is that if a single word N ,
expresses a key concept of a domain, then N occurs not only frequently, but also
in various ways. Thus, there will be a number of valid terms containing N . This
potential relationship between single words and multi-word candidate terms is
exploited to perform ATR.

In particular, after PoS tagging a given corpus, Nakagawa [13] extracts a
list of single words. Let R(N) and S(N) be two functions that calculate the
number of distinct words that adjoin N or N adjoins, respectively. Then, for
each candidate term, ct = N1, N2, . . . , Nk a score is calculated (equation 8).

IMP (ct) = (
k∏

i=1

((R(Ni) + 1) ∗ (S(Ni) + 1))))1/2k (8)

Nakagawa [13] notes that the frequency of independent occurrences of candi-
date terms have a significant impact on the term recognition process. Indepen-
dent occurrences are the ones, where the candidate term ct, is not nested to any
other candidate term. To incorporate this, IMP is multiplied by the marginal
frequency, MF (ct), the number of independent occurrences of ct (equation 9).

SB(ct) = IMP (ct)MF (ct) (9)

2.2 Unithood-Based Methods

Termhood-based methods focus on measuring how likely a candidate term, ct, is a
domain-specific concept, by considering nestedness information. On the contrary,
unithood-based methods attempt to identify if the constituents of a multi-word
candidate term form a collocation rather than co-occurring by chance.

Log-likelihood (LL) [3] is a unithood-based measure. For bigram terms, ct =
N1N2, LL compares the observed frequency counts with the counts that would be
expected, if N1 and N2 were co-occurring assuming independence: P (N1, N2) =
P (N1)P (N2). A high LL means that observed and expected values diverge sig-
nificantly, indicating that N1 and N2 do not co-occur by chance. Contrarily, a
LL close to 0 indicates that N1 and N2 co-occur by chance.

For the computation, two tables are created. The first one, OT, holds the
observed counts taken from the corpus. The second, ET, contains the expected
values assuming independence (table 1). LL can then be calculated using equa-
tion 10, where nij is the i, j cell of OT, mij is the i, j cell of ET and T =

∑j
i nij .

LL = 2 ∗
∑

i,j

nij · log
(

nij

mij

)
, where mij =

∑
k nik ∗

∑
k nkj

T
(10)

For N -grams, where N > 2, there are more than one hypothesized models to
compare against the observed counts. For example, table 2 shows the different
hypothesized models for trigrams. We use the extended LL [11], in order to
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Table 1. Observed (OT ) and expected (ET ) value tables. Bigram: “gene expression”.

OT N1 ¬N1 ET N1 ¬N1

N2 n11 = 563 n12 = 702 N2 m11 = 35.44 m12 = 1, 229.56
¬N2 n21 = 1, 085 n22 = 57, 553 ¬N2 m21 = 1, 612.56 m22 = 55, 940.44

Table 2. Hypothesized models for trigrams

Model1 =
P (N1N2N3)

(P (N1)P (N2)P (N3))
Model2 =

P (N1N2N3)
(P (N1N2)P (N3))

Model3 =
P (N1N2N3)

(P (N1)P (N2N3))
Model4 =

P (N1N2N3)
(P (N1N3)P (N2))

calculate LL values for each hypothesized model. For each model a different
table of expected values is computed, while the observed values table remains
the same for all. Then, for each model LL is calculated (equation 10). The model
with the lowest LL value best represents the N -gram, since when a model is a
good fit the observed values are close to the expected ones.

Pointwise mutual information (PMI) [1] is an information theoretic measure
applied for N -gram terms. For bigrams, PMI quantifies the distance between
the joint distribution of N1 and N2 and the joint distribution if N1 and N2 were
independent. Equation 11 shows the PMI formula for bigram terms. If N1, N2
are independent: P (N1, N2) = P (N1) ∗ P (N2), then PMI is 0. For N -grams of
N > 2, there are more than one hypothesized models to compare against the
joint distribution of N -gram constituents. The process is similar to the process
followed in LL. For each model we calculate different PMI values, and we choose
the one with the lowest PMI value, i.e. the model which best represents the
observed counts. For example, the PMI formula for the ith 3-gram model of
table 2 is log(Modeli).

PMI(N1, N2) = log
P (N1, N2)

P (N1)p(N2)
(11)

3 Evaluation

3.1 Experimental Setting

For evaluation, the GENIA [6] and the PennBioIE [9] were used (table 3). Both
corpora consist of MEDLINE abstracts, 2, 000 and 2, 257 respectively, and their
terms are manually annotated.

For PennBioIE [9] evaluation we excluded annotations of quantitative values
and units. In GENIA, annotation terms are not part of the text, but of separate
xml attributes. Thus, GENIA gold standard (GS ) is created by collecting these
xml values and cleaning most non-alphanumerical characters. We observed that
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Table 3. GENIA and PennBioIE corpus statistics

sentences tokens terms distinct terms terms types
GENIA 18,546 454,848 97,876 35,947 36
PennBioIE 32,692 712,551 76,535 13,759 22

Table 4. GS term counts and candidate term counts per ling. filter and term length.

GENIA PennBioIE
Length GS N A&N J&K J&K# GS N A&N J&K J&K#
Any 28,142 29,751 69,457 85,978 138,251 7,447 46,519 80,205 99,194 178,939
2-grams 12,654 17,103 33,021 33,021 36,866 4,034 28,489 44,072 44,072 58,086
3-grams 9,051 8,813 21,401 28,071 37,146 1,820 11,421 22,530 31,930 49,570
4-grams 3,839 3,199 9,356 15,204 29,803 821 4,157 8,629 14,945 35,746
5-grams 1,559 1,020 3,699 6,339 18,099 388 1,486 3,070 5,447 20,019
6-grams 606 297 1,317 2,239 9,005 207 694 1,172 1,822 9,105

in a few cases annotation tokens are not lemmatized (e.g. “activators of transcrip-
tion”, “activating function”) or erroneous (e.g. “latent proviru”). However, we
hypothesize that a corpus with low level of noise is acceptable for our purposes.
Both GENIA and PennBioIE text was similarly cleaned. Then, both corpora
were tokenized and part-of-speech (PoS ) tagged using the GENIA tagger2.

The first and sixth column of table 4 shows GS term counts of GENIA and
PennBioIE, respectively. The following columns present candidate term counts,
identified by each linguistic filter, for each corpus. The filters are shown in order
of descending strictness. For example, the A&N filter identified far fewer candi-
dates than the J&K. However, even the most strict filter, Nouns, creates more
candidate terms than the valid ones. Note that, for each column, the count of
candidates of any length (row 1, table 4) is not equal to the sum of all N -grams,
because candidates of any length include sequences up to 12 tokens long.

The standard evaluation metrics Precision (P) and Recall (R) [12,15] (equa-
tion 12) were used for evaluating ATR statistical methods. F-Score is defined as
the weighted harmonic mean of P and R: 2

(
R−1 + P−1

)−1.

P =
# correctly identified terms

# identified terms
R =

# correctly identified terms
# GS terms

(12)

Table 5 shows R and P for every linguistic filter for candidates of any length
and N -grams for both corpora. We observe that the less strict a filter is, the
higher the R and the lower the P. A&N seems to achieve the best compromise
between R and P. ATR statistical methods re-rank the list of candidates, with
a target to output the actual terms higher. Thus, considering the whole list, the
performance of all statistical methods is the same (table 5).

2 www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
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Table 5. R (%) and P (%) per linguistic filter and length of candidate term

GENIA PennBioIE
Nouns A&N J&K J&K# Nouns A&N J&K J&K#

Length R P R P R P R P R P R P R P R P
Any 35.4 33.5 80.2 32.5 80.2 26.3 85.4 17.4 37.2 6.0 63.1 5.9 63.7 4.8 76.1 3.2

2-grams 48.1 35.6 88.0 33.7 88.0 33.7 90.6 31.1 52.6 7.5 78.1 7.1 78.0 7.1 90.6 6.3
3-grams 31.9 32.8 80.4 34.0 80.5 25.9 84.5 20.6 26.8 4.3 60.7 4.9 61.6 3.5 73.1 2.7
4-grams 21.3 25.5 67.0 28.7 70.4 17.8 78.9 10.2 15.8 3.1 42.8 4.1 45.2 2.5 56.5 1.3
5-grams 14.9 22.7 63.8 26.9 64.2 15.8 77.0 6.6 4.7 1.2 17.1 2.2 18.7 1.3 38.3 0.7
6-grams 9.2 18.9 54.5 25.1 54.5 14.7 71.0 4.8 3.9 1.3 13.0 2.3 13.5 1.5 24.6 0.6

Table 6. Executed experiments on each corpus

Candidate term length Any, 2-grams, 3-grams, 4-grams, 5-grams, 6-grams
Linguistic filter Nouns, A&N, J&K, J&K#
ATR stat. approach NC Value, PMI (N-grams only)

LL (N-grams only), SB (Nouns and A&J only)

As discussed in section 2, the Log-likelihood (LL) method can only be applied
separately for sequences of a specific length. We implemented the extended LL
algorithm for N -grams, N ∈ [2, 6]. There are only 433 GENIA GS terms and 177
PennBioIE GS terms longer than 6 tokens, very few to experiment with (table
4). The results of the LL algorithm for different values of N are not comparable
to each other. Thus, we set separate experiments up for each value of N ∈ [2, 6].

For example, for 2-grams we first apply a linguistic filter to identify candidates
of which we keep 2-grams only. Next, 2-grams are re-ranked according to one
of the implemented statistical methods. Evaluation is performed towards the
2-gram GS terms. Experiments for the other values of N were set up identically.

Except for N -grams, we ran experiments taking into account sequences of
any length, higher than 2. For each one, candidate terms are identified using one
of our four linguistic filters. Then, one of C-Value, NC-Value or SB re-ranking
method is applied. Evaluation uses the whole GS term set. Note that the SB
method makes sense only when following the Nouns or the A&N linguistic filter.

The NC Value algorithm takes as input a list of candidates, ranked by the
C Value algorithm and is subject to two parameters: the percentage of the list,
starting from the top, that it will take into account to identify context terms
and the size of the context window. We experimented using values 5%, 7.5% and
10% for the former one and 2, 4, 6, 8, 10 for the latter.

Table 6 shows all executed experiments, referring to the combination of length
of candidate terms, filtering and statistical approach used. To visualise the re-
sults, we used an approach similar to the one indicated in [16]. R and P values
were calculated at 0.5% increments on the list of candidates and plotted on
graphs, such as figure 2. For each increment on the list, P refers to the ratio of
true positives over the overall number of candidates and R refers to the ratio of
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Fig. 2. GENIA 2-grams, J&K filter, NC Value results, R and P

true positives over the number of GS terms. The x-axis shows the percentage of
the list taken into account. Frequency of occurrence (FR) is used as baseline.

Intuitively, the P curve of a bad performing method would be relatively hor-
izontal indicating that the true positives were dispersed uniformly throughout
the list rather than pushed towards the top. Contrarily, the P curve of a well-
performing method would be 100% until the percentage point at which all GS
terms would have been retrieved, where a sharp decrease would occur [11].

3.2 Results

Figure 2 shows the 2-gram P and R curves of NC Value for 15 parameter com-
binations (see subsection 3.1), using the J&K linguistic filter on GENIA corpus.
We observe that different combinations do not affect the results. This behaviour
remains the same for all linguistic filters and for all term lengths. Interestingly,
for all the above experiments the performance of C and NC Value is almost
identical, both for GENIA and PennBioIE.

Figure 3 shows the F-Score performance for 3-gram candidate terms of GENIA
and PennBioIE as identified by the Nouns linguistic filter. We observe that
termhood-based methods outperform unithood-based ones. SB, C and NC Value
perform similarly with SB having a slightly better F-Score on GENIA. PMI
curves are below the baseline on both corpora. On the contrary, LL outperforms
the baseline of FR on PennBioIE but not on GENIA. Possible reasons for the
behaviour of LL and PMI are discussed in subsection 3.3. The ranking of ATR
methods remains the same as in figure 3 for any N -gram using both the Nouns
and the A&N linguistic filter, on both corpora.

The performance for N -gram candidate terms as identified by J&K and
J&K# demonstrate the following trends: On GENIA the highest performance
is achieved by C and NC Value methods throughout the plots. The remaining
methods in order of decreasing F-Score are: FR, LL and PMI. The bigger N is,
the closer FR, LL and PMI curves are to each other.

On PennBioIE, the performance differences between FR, LL, C and NC Value
are insignificant, while PMI clearly performs worse. In this corpus we observe
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Fig. 3. GENIA and PennBioIE 3-grams, Noun filter, F-Score

that termhood-based methods have a comparable performance with the baseline.
6-gram results follow the same trends in general, but they are not very reliable
due to the small number of candidates.

On both corpora for candidates of any length identified by Nouns and A&N,
SB, C and NC Value methods exceed the baseline of FR, achieving similar
levels of performance. Using the J&K and J&K# on GENIA (PennBioIE ), the
performances of C, NC Value and FR are similar for increments up to 10% (on
both corpora) of the candidate list. For increments between 10% and 30% (50%
for PennBioIE ), FR performs better than C and NC Value. After 30% (50%),
C and NC Value perform better than FR.

3.3 Discussion

Our results (section 3.2) show that termhood-based methods re-rank the can-
didate list better than unithood-based methods or equally well, irrespective of
the candidate terms length and linguistic filter used. A possible reason is that
unithood-based methods measure the strength of attachment of the candidate
term constituents, in effect assigning high scores to candidate terms, which might
not refer to domain concepts. For example, in GENIA, “allergic inflammatory”,
substring of the term “allergic inflammatory disease”, occurs at least equally
often as the term, although the former is not a term itself.

The only setting in which a unithood-based method (LL) performed equally
well to the termhood-based methods was when using J&K or J&K# to extract
N -gram candidates from PennBioIE. A possible explanation for this peculiarity
is the limited amount of nestedness information in PennBioIE, which degrades
the performance of termhood-based approaches. Particularly for 3-grams, the
average nested frequency in PennBioIE is 1.03, while in GENIA is 1.16. Note
that PennBioIE is almost double the size of GENIA (table 3).

PMI overestimates rare events, which dominate the candidate term lists. For
example, A&N identifies 69, 457 GENIA candidate terms, out of which 52, 998
(76.3%) occur only once, and 16, 459 twice. LL outperforms PMI, due to its
milder tendency in overestimating rare events.
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Fig. 4. GENIA sequences of any length, Nouns filter, various methods, R and P

C and NC Value exploit nestedness information, in the sense that the more
often a candidate appears as nested, the less likely it is a valid term. SB considers
this information through MF counts. NC Value attempts to improve C Value by
exploiting contextual information. However, unsuccessfully, under our evaluation
scheme. To investigate this, we adjusted the interpolation constant of equation 7
to assess the contribution of the CF only (NCV (ct) = 0 ∗CV (ct)+1 ∗CF (ct)).
P curves are almost uniform across most of the plot.

SB exploits two sources of information: Firstly, IMP (equation 8), assumes
that complex terms consist of existing simple terms. Secondly, MF (equation 9),
refers to the marginal frequency counts. To evaluate the contribution of each,
we executed two experiments, which re-rank the candidate term list taking into
account IMP and MF separately. Interestingly, P of IMP is roughly uniform
on GENIA (figure 4), which means that it contributes negatively to SB. On the
contrary, MF successfully redistributes candidates towards the top of the list.
Thus, the corresponding P curve is higher than the curve of SB in the x-axis
interval [0%, 30%]. PennBioIE experiments verified these results.

C Value suggests that the higher the nested frequency of a candidate term, ct,
the less likely it is a valid term, conditional to the number of distinct candidate
terms, in which ct appears as nested. Hence, C Value calculates a weighted
version of marginal frequency (MMF ), f(ct)−NST (ct) (formula 5). NST (ct) is
the ratio of the frequency of the candidate as nested over the number of distinct
terms, in which it appears nested. To examine the effect of MMF in C Value,
we replaced the MMF in the C Value formula with MF. Results show that the
modified version of C Value performs better i.e. MF captures nestedness better
than MMF. However, MF outperforms even this modified version of C Value, for
increments up to 25% of the candidate list for GENIA and 55% for PennBioIE.

4 Conclusion

We reviewed and evaluated state-of-the-art linguistic filtering and statistical
ATR methods under a common evaluation scheme. Our results indicate that:
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(1) termhood-based methods have in general superior performance over unithood-
based ones, and (2) that the number of independent occurrences of a candidate
term is the most effective source of nestedness information for ATR.
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