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Preface

This volume contains the papers presented at GoTAL 2008, the 6th Interna-
tional Conference on Natural Language Processing, held on August 25–27, 2008,
at Chalmers University of Technology in Gothenburg, Sweden. GoTAL was the
sixth conference in the TAL series, preceded by FracTAL 1997 (Université de
Franche-Comté, Besançon, France), VexTAL 1999 (Università Ca’ Foscari di
Venezia, Venice, Italy), PorTAL 2002 (Universidade do Algarve, Faro, Portu-
gal), EsTAL 2004 (Universitat d’Alacant, Alicante, Spain), and FinTAL 2006
(University of Turku, Turku, Finland).

The conference received 107 submissions. Each submission was reviewed by
three programme committee members or external reviewers. The committee fi-
nally accepted 44 papers to be presented at the conference and included in the
proceedings. The conference programme also included three invited talks, which
are the first three papers in this volume.

We are grateful to the programme committee members and the external re-
viewers for their careful and punctual work. The staff in the local organization
team at Chalmers helped in a very professional way. The sponsors contributed,
in particular, to the social programme planned for the conference. The invited
speakers – Johan Bos, Lori Lamel, and Joakim Nivre – gave the scientific pro-
gramme the broad, yet focused, profile that we wanted to achieve. And finally,
it is essentially the authors of the submissions that created the substance of the
conference and this volume, with all their good papers and their cooperative
attitude.

The EasyChair software was used throughout the reviewing and editing pro-
cess. It saved us a lot of work by doing exactly the things that could be autom-
atized, in exactly the ways we expected.

June 2008 Bengt Nordström
Aarne Ranta
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Finite Matters: Verbal Features in Data-Driven Parsing of Swedish . . . . . 500
Lilja Øvrelid

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511



Formal Semantics in the Real World

J. Bos

Linguistic Computing Laboratory
Department of Computer Science

University of Rome “La Sapienza”, Italy
bos@di.uniroma1.it

Formal methods for the analysis of the meaning of natural language expressions
have long been restricted to the ivory tower built by semanticists, logicians,
and philosophers of language. It is only in exceptional cases that these methods
make their way straight into open-domain natural language processing tools.
Recently, however, this situation has changed. Thanks to (i) the development of
treebanks, i.e., large collections of texts annotated with syntactic structures, (ii)
robust statistical parsers trained on such treebanks, and (iii) the development of
large-scale semantic lexica such as WordNet [1], VerbNet [2], PropBank [3], and
FrameNet [4], we now have witnessed the development of wide-coverage systems
that are able to produce formal semantic representations for open-domain texts.

One such system, developed by myself over the last four years, is Boxer, which
follows the principles of Discourse Representation Theory (DRT) to construct
and represent meaning of natural languages texts [5,6]. DRT is a formal theory of
meaning, initially proposed by Hans Kamp [7] to solve various problems related
to anaphoric pronouns. Throughout the years DRT faced various extensions
and improvements and by now covers a wide range of semantic issues includ-
ing plurals and tense [8], discourse segmentation and rhetorical structure [9],
and presupposition [10]. Boxer constructs Discourse Representation Structures
(DRSs, which are graphically displayed as boxes) with the help of Combinatory
Categorial Grammar (CCG) for producing syntactic structure [11] and a typed
lambda calculus to specify the syntax-semantics interface [12]. In conjunction
with a robust CCG parser [13,14], Boxer achieves very high coverage (> 98% on
the Wall Street Journal sections of the Penn Treebank [15]) on newswire text pro-
ducing DRSs with neo-Davidsonian predicate-argument structure. These DRSs
can be translated into standard first-order logic syntax and then fed into auto-
mated theorem provers and model builders to check for logical consistency or
informativeness [12,16].

The existence of systems like Boxer is clear evidence that practicing formal
semantics is not bound to pencil and paper exercises anymore, nor to imple-
mentations covering relatively small fragments of natural language. A case in
point is the use of Boxer in real-world applications such as open-domain ques-
tion answering [17]. These developments mark a milestone in the development of
computational linguistics in general and computational semantics in particular.
They also trigger new research questions, directions and challenges, including the
identification of gaps between theory and practice, the inclusion of background

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Bos

knowledge, transferring theoretical ideas developed in isolation within different
logical formalisms into one unifying framework [18], and the issue of evaluation.

In particular the evaluation issue is of major importance for further progress
in the field. Modelling all nuances of meaning is an immense task — perhaps
even impossible. The representations that Boxer produces for a text, as any rival
system would, only characterise an approximation of its meaning. An interesting
question to ask then is how good this approximation is. How do we measure the
semantic adaquacy of systems like Boxer that claim are able to compute mean-
ing? A timely question, but despite various proposals aiming to deal with this
issue, as yet we cannot answer this question satisfactorily. Comparing a system’s
output with gold-standard semantic representations would be an obvious choice
but annotated semantic corpora simply don’t exist. Most promising are probably
theory-neutral evaluation techniques such as recognising textual inference that
we know from the FRACAS project [19], Monz and De Rijke [20], and the recent
PASCAL challenges [21,22,23]. But such exercises are either considered artificial
or fail to isolate semantic competence in systems [24].
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Speech Processing for Audio Indexing�

Lori Lamel and Jean-Luc Gauvain

LIMSI-CNRS, BP 133, 91403 Orsay Cedex, France
{lamel,gauvain}@limsi.fr

Abstract. This paper addresses some of the recent trends in speech processing,
with a focus on speech-to-text transcription as a means to facilitate access to
multimedia information in a multilingual context. A brief overview of automatic
speech recognition is given along with indicative performance measures for a
range of tasks. Enriched transcriptions, that is enhancing the automatic word tran-
scripts with meta-data derived from the audio data is discussed, followed by some
hightlights of recent progress and remaining challenges in speech recognition.

1 Introduction

The last decade has witnessed major advances in spoken language technologies, with
a growing interest in applications that rely on techniques for automatic structurization
of multimedia, multilingual data. Although the different media types typically bring
complementary information, for most documents much of the accessible content is pro-
vided by the audio and text streams. Thus speech and language processing technologies
are key components for indexing. Some of the applications that can potentially make
use of spoken language technologies are the creation and access to digital multimedia
libraries, media monitoring services to provide selective dissemination of information
based on automatic detection of topics of interest, and more generally speaking as News
on Demand and Internet watch services which already are available for text documents.
Developing speech technologies is by nature an interdisciplinary process, requiring
knowledge and competence in a range of disciplines including signal processing, acous-
tics, phonetics, linguistics, artificial intelligence, etc. In addition to speech transcription,
speech processing techniques can be used to provide other metadata, such as the lan-
guage being spoken, the identity of the speaker, as well as to locate named entities or
identify topics.

While the performance of speech recognition technology has dramatically improved
for a number of ’dominant’ languages (English, Mandarin, Arabic, French, Spanish, ...),
generally speaking technologies for language and speech processing are available only
for a small proportion of the world’s languages. By several estimations there are over
6000 spoken languages in the world, but only about 15% of them also are written.
Text corpora, which can be useful for training the language models used by speech
recognizers, are becoming more and more readily available on the Internet. The site

� This work has been partially financed under the GALE program of the Defense Advanced
Research Projects Agency, Contract No. HR0011-06-C-0022 and by OSEO under the Quaero
program.

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 4–15, 2008.
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http://www.omniglot.com lists about 800 languages that have a written form.
According to http://www.nvtc.gov/lotw the top 10 languages on the Internet
account over 80% of use, with the dominant language being English (almost 30%) and
the second Chinese (14%). For speech recognition training purposes the best texts are
speech transcripts, or texts that are close to spoken language. For prepared speech, such
as broadcast news type data, newspaper texts are quite useful, and some efforts have
been made to transform such material to better match spoken language [12]. For more
conversational speech less formal texts are more appropriate and there have been recent
effort to locate such data from the web, for example, from blogs [9].

It is difficult to estimate the amount of audio data on the Internet. A study by the
University of Berkeley School of Information Management and Systems1, attempts to
estimate the proportions of different data types based on the file types and sizes. From
these estimations of file size, about 30% of the files correspond to text data, about 20%
image, 5% video and 3% audio. Considering worldwide sources of radio and televi-
sion, about 100 million hours of original programming (about 20% from the US) are
broadcast per year, representing about 10 terawords of data.

There have been numerous national and international projects addressing different
aspects of processing multimedia, multilingual data for information access. Perhaps
the longest running project is the National Science Foundation (NSF) Digital Libraries
Informedia project (http://www.informedia.cs.cmu.edu), which started in
the mid 1990s, aims to incorporate automatic text, speech, image and video processing
to enable content-based search in multimedia digital archives. A list of ongoing national
and European sponsored projects can be found on the web site of the Chorus coordinat-
ing action (http://www.ist-chorus.org/projects.asp), some of which
include research on speech and audio processing.

During the last twenty years there has also been an accompanying growth in a support
infrastructure for data collection, annotation and evaluation. Concerning data, the most
notable actors are the Linguistic data consortium (LDC,http://www.ldc.upenn.edu),
founded in 1992 with the goal of developing a mechanism for the creation of and the
widespread sharing of linguistic resources for linguistic research, and the European Lan-
guage Resources Association (ELRA, http://www.elra.info), founded in 1995
with the aim of promoting language resources and evaluation for the Human Language
Technology sector. The Speech Group at the National Institute of Standards and Tech-
nology (NIST) has been organizing benchmark evaluations for a range of human
language technologies (speech recognition, speaker and language recognition, spoken
document retrieval, topic detection and tracking, automatic content extraction, spoken
term detection) for over 20 years, recently extending to related multi-modal technolo-
gies2. Comparative evaluation of technologies in international campaigns is important
in order to objectively assess the methods and models developed, and serves to increase
the information exchange among participants. These evaluations require the develop-
ment of methods and metrics to measure performance, as well as the annotation of

1 http://www2.sims.berkeley.edu/research/projects/how-much-info-
2003

2 See http://www.nist.gov/speech/tests for a summary of previous and current
evaluation campaigns.

http://www.omniglot.com
http://www.nvtc.gov/lotw
http://www.informedia.cs.cmu.edu
http://www.ist-chorus.org/projects.asp
http://www.ldc.upenn.edu
http://www.elra.info
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
http://www.nist.gov/speech/tests
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development and test data. The post-evaluation workshops provide the opportunity for
each participant to describe their research and development work in preparation for
the evaluation, thus promoting the exchange of information. The most promising tech-
niques are seen to be quickly adopted by other members of the research community,
thus leading to rapid advances in the state-of-the-art.

Many of the recent advances can be attributed to the increased use of real world
data, with its challenges and advantages. There has been a shift towards algorithms
that can benefit from large corpora, and the development of methods to reduce the
amount of supervision required for model training. While this paper focuses on speech
recognition, there has been a trend to use corpus-based methods for other technologies,
such as speech synthesis, speech understanding and machine translation of speech.

2 Speech Recognition Basics

Most state-of-the-art automatic speech recognition systems make use of statistical mod-
els, the principles of which have been known for many years [7,14]. From this point of
view, speech is assumed to be generated by a language model which provides estimates
of Pr(w) for all word strings w, and an acoustic model encoding the message w in
the signal x, which is represented by a probability density function f(x|w). Given the
observed acoustic signal, the goal of speech recognition is to determine the most likely
word sequence. The speech decoding problem thus consists of maximizing the proba-
bility of the word sequence w given the speech signal x, or equivalently, maximizing
the product Pr(w)f(x|w). Considerable progress has been made in recent years in part
due to the availability of large speech and text corpora, along with increased processing
power which have allowed more complex models and algorithms to be implemented.
The advances in acoustic, language and pronunciation modeling have enabled reason-
able performance to be obtained for a range of data types and acoustic conditions.

The principle problems in speech recognition have been the focus of many years
of research. The variability observed in the acoustic signal is due to multiple factors,
including the linguistic message and the characteristics of the speaker, acoustic en-
vironment, recording conditions and transmission channel. Figure 1 shows the main
components of a speech recognition system using statistical methods for training and
decoding [19]. The main knowledge sources are the speech and text training data and
the pronunciation lexicon. Acoustic and language model training relies on the prepro-
cessing and normalization of the data. In general, speech data is manually transcribed,
however recent research has been directed at reducing the need for supervision. Con-
cerning the text corpus, after some initial processing to remove material unsuitable for
sentence-based language modeling, such as tables and lists, the texts need to be nor-
malized. This step, which helps reduce lexical variability and transforms the texts to
better represent spoken language, is typically language specific. It includes rules to the
process numbers, abbreviations and acronyms, and may also concern how hyphenated
words, other compounds or words with apostrophes are treated.

The most popular language models for large vocabulary speech recognition [27]
are n-gram models, which attempt to capture the syntactic and semantic constraints
by estimating the frequencies of sequences of n words. The probability of a given
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Fig. 1. System diagram of a speech recognizer based on statistical models, including training and
decoding processes

word string (w1, w2, ..., wk) is approximated by
∏k

i=1 Pr(wi|wi−n+1, ..., wi−2, wi−1),
thereby reducing the word history to the preceeding n−1 words. A back-off mechanism
is generally used to smooth the estimates of the probabilities of rare n-grams by relying
on a lower order n-gram when there is insufficient training data, and to provide a means
of modeling unobserved word sequences [15]. While 3- and 4-gram LMs are the most
widely used, class-based n-grams, and adapted LMs are recent research areas aimed at
improving LM accuracy.

Acoustic feature extraction is concerned with the choice and optimization of acous-
tic features in order to reduce model complexity while trying to maintain the linguis-
tic information relevant for speech recognition. Acoustic modeling must take into
account different sources of variability present in the speech signal: those arising from
the linguistic context and those associated with the non-linguistic context such as the
speaker and the acoustic environment and recording channel. Most state-of-the-art sys-
tems make use of hidden Markov models (HMMs) for acoustic modeling, which con-
sists of modeling the probability density function of a sequence of acoustic feature
vectors. The most widely used solutions model context-dependent phones and use a
host of techniques such as parameter sharing, feature analysis, linear and non-linear
transformation, noise compensation and discriminative training to improve model ac-
curacy. Regarding the training data, the first 100-200 hours of representative data pro-
vide the most gain for acoustic modeling, with additional data giving only small
improvements.

The pronunciation lexicon is the link between the representation at the acoustic-level
(frames of features) and at the word level. At the lexical and pronunciation level, two
main sources of variability are the dialect and individual preferences of the speaker.
There are three main steps in designing a recognition lexicon: definition and selection
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of the vocabulary items, representation of each pronunciation entry using the basic
acoustic units of the recognizer, and estimation of probabilities for pronunciation vari-
ants. Lexical coverage has a large impact on recognition performance, and the accuracy
of the acoustic models is linked to the consistency of the pronunciations in the lexi-
con. The recognition vocabulary is usually selected to maximize lexical coverage for a
given size lexicon. Since on average, each out-of-vocabulary (OOV) word causes more
than a single error (usually between 1.5 and 2 errors), word list selection is an impor-
tant design step. At LIMSI, word list selection is carried out by choosing the n most
probable words after linear interpolation of unigram LMs trained on the different text
sources so as to maximize the coverage on a set of development data. The vocabulary
size, n is chosen so as to minimize the OOV rate while keeping a reasonable size and
avoiding typos. The lexicon typically contains canonical pronunciations and frequent
variants, which are generated either manually or by rule. Sometimes non-speech events
and compound words or short phrases are also explicitly included as lexical entries.

Given the speech signal and the models (lexicon, acoustic and language), the job of
the decoder is to determine the word sequence with the highest likelihood (MAP decod-
ing) or maximizing the expected accuracy of the hypothesis (consensus decoding). The
main decoding challenge for large vocabulary continuous speech recognition (LVCSR)
is to design an efficient algorithm to explore the huge search space, for which it is gener-
ally impossible to carry out an exhaustive search. Many techniques have been proposed
to reduce the needed computation by limiting the search space [6]. It has become com-
mon practice to use multi-pass decoding strategies which can limit the complexity of
each individual decoding pass, allowing more complex models (additional knowledge)
to be used progressively. Information is usually transmitted between passes via word
graphs, containing the word hypotheses and their respective scores.

Table 1. Indicative speech recognition word error rates for different tasks and speaking styles

Task Condition Word Error
Dictation read speech, close-talking mic. 3-4% (humans 1%)

read speech, noisy (SNR 15dB) 10%
read speech, telephone 20%
spontaneous dictation 14%
read speech, non-native 20%

Found audio TV & radio news broadcasts 10-15% (humans 4%)
documentaries 20-30%
European Parliament 8%
telephone conversations 20-30% (humans 4%)
lectures (close mic) 20%
lectures (distant mic) 50%

Table 2 gives some indicative word error rates for a range of speech recognition tasks
and speaking styles. For a few of the tasks some measures of human performance are
available. Studies comparing human and machine transcription performance [26,11,22]
show that humans consistently do considerably (5 to 10 times) better than machines.
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Fig. 2. NIST summary of automatic speech recognition evaluation history (May’07). The word
error rate (WER) of the best system for each evaluation/task is shown. (Figure reprinted from [24].

The results in the top part of the table are for a dictation task, where under ideal
conditions (i.e. the text is already prepared and the speaker uses a close-talking mi-
crophone in a quiet acoustic environment, and the goal is to speak to the machine),
quite low error rates can be achieved. It can be noted however than even in this sit-
uation human performance is much better than the machine. Any perturbation, such
as a noisy environment, a telephone acoustic channel, or accented speech from a non-
native speaker results in a very significant increase in error rate. There is also a much
higher error rate if the speaker does not read a text, but rather prepares the subject
and formulates the ideas on the fly as shown by the entry labeled spontaneous dic-
tation. The lower part of the table reports performance on some different types of
’found data,’ that is data that was produced for independent purposes, but have been
of interest to the research community since there are a range of potential applica-
tions that can be enabled via speech processing technologies. Broadcast data has been
attracting growing interest since the task was introduced by DARPA over a decade
ago. While initial error rates were quite high, today word error rates in the range of
10-15% have been reported on broadcast news data for a number of languages (En-
glish, French, Spanish, German, Dutch, Arabic, Mandarin, Portuguese, Japanese). A
wide range in performance is observed for different data types, with quite low error
rates for the speech of main announcers in recording studios, and much higher er-
ror rates for distant reporters, particularly when the acoustic channel or environment
is poor. Similarly, the error rate can increase dramatically if the interactivity is high
(interviews, debates). Documentaries are particularly challenging to transcribe, as the
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audio quality is often not very high, and there is a large proportion of voice over. The
recent TC-STAR project (http://www.tc-star.org), which targeted speech-to-
speech translation of unconstrained conversational speech from the European Parlia-
ment Plenary Sessions (EPPS), reported word error rates of about 8% for European
English and Spanish. Word error rates on conversational telephone speech and lectures
(http://chil.server.de) and meetings (http://www.amiproject.org)
are substantially higher, reflecting some of the additional challenges of these domains.

Figure 2 summarizes the results of NIST sponsored benchmark speech recognition
evaluations over the last 20 years. Each curve corresponds to a specific task, and plots
the word error rate of the best system in each evaluation. The first evaluations were for
read speech, with a move in the mid 1990’s to conversation telephone speech and to
broadcast data. Over time the amount of data used to train the speech recognizers in-
creased along with model complexity (and vocabulary size). It can be seen that typically
as the performance of the best systems approached 10%, more challenging tasks were
introduced. The performance of humans is significantly better than that of machines for
all types of real-world data.

3 Enriched Transcription

The speech signal encodes both the linguistic message and other types of information
such as the characteristics of the speaker, the acoustic environment, the recording con-
ditions and the transmission channel. Ideally we would like to identify as many of these
characteristics as possible from the audio channel. For example, a first processing step
can partition the audio signal, extracting acoustic-based meta-data and creating a de-
scription of the audio document in terms of the language(s) spoken, the speaker(s),
accent(s), acoustic background, speaker’s emotional state etc. Such information can
be used to improve speech recognition performance, and to provide an enriched text
output for downstream processing. The automatic transcription can also be used to pro-
vide information about the linguistic content of the data (topic, named entities, speech
style, ...). By associating each word and sentence with a specific audio segment, an au-
tomatic transcription can allow access to any arbitrary portion of an audio document.
If combined with other meta-data (language, speaker, entities, topics) access via other
attributes can be facilitated. Enriched transcription also includes the inclusion of case
and punctuation in the output.

Language and speaker recognition make use of similar modeling techniques as those
use for speech recognition. There are two predominant approaches to language recog-
nition, acoustic (Gaussian mixture) models) and phonotactic models [33]. Both types
of systems require only untranscribed training data each target language of interest, but
phonotactic-based systems are somewhat less sensitive to changes in recording con-
ditions. Other techniques such as Support Vector Machines and system combination
(fusion) have also been proposed. Speaker recognition [10] is the process of identifying
a speaker from their voice. Two tasks are typically distinguished, speaker identifica-
tion and speaker verification. For the former, the speaker is identified as one of a set of
known speakers (closed task) or as none of them (open task). For the second task, given
a speech sample, the system needs to decide if the sample was produced by a given

http://www.tc-star.org
http://chil.server.de
http://www.amiproject.org
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speaker (the decision is yes or no). NIST (http://www.nist.gov/speech/tests)
has been organizing language and speaker recognition benchmarks for conversational
telephone speech since 1996.

Speech-to-text systems historically produce a case insensitive, unpunctuated output.
In the context of the TC-STAR project tools to automatically add case and punctuation
were developed [18]. Both linguistic and acoustic information (essentially pause and
breath noise cues) are used to add punctuation marks in the speech recognizer output.
This is done by rescoring a word lattice that has been expanded to permit punctuation
marks after each word, sentences boundaries at each pause, with a specialized case
sensitive, punctuated language model.

Speaker diarization, also referred to speaker segmentation and clustering, has been of
recent interest to the speech community. It is a useful preprocessing step for an automatic
speech transcription system, in that it enables unsupervised speaker adaptation to be car-
ried out at a cluster level, thus increasing the amount of available data which can improve
transcription performance. The performance of diarization systems has been assessed
in the Rich Transcription benchmarks(http://www.nist.gov/speech/tests/rt)
under the DARPA EARS program, as well as in the CHIL, AMI and ESTER evaluation
campaigns. One of the major issues is that the number of speakers is unknown a pri-
ori and needs to be automatically determined. In [8,31] speaker recognition techniques
were shown to improve the performance of a diarization system. In these evaluations
the goal was to correctly attribute speech segments to unidentified speakers in the audio
document, that is there was no attempt to determine the true identity of the speaker.

Speaker diarization can also improve the readability of an automatic transcription
by structuring the audio stream into speaker turns, in some cases by providing the true
speaker identity. For example, in broadcast news programs, the speaker names are often
explicitly stated, providing the true identities of those taking part in the show. A future
aim is to combine speaker recognition techniques to identity speakers from a very large
population. One of the goals in the QUAERO project (http://www.quaero.org) is
to explore the novel use of the linguistic information produced by a speech recognizer
to complement the information derived from the acoustics. The main idea of the ‘Who’s
Who’ procedure is to exploit the structure of broadcast data to automatically learn the
names of speakers in a large unannotated corpus without the need for human intervention.

4 Some Recent Progress and Outstanding Challenges

One of the challenges for automatic language processing is the portability of technol-
ogy across languages. Multilinguality is of particular interest for Internet-based appli-
cations, where information may first (or only) be available in another language than the
user’s mother tongue. A recent book [2] addresses issues in multilingual speech pro-
cessing. Word error rates below 20% were reported for a number of languages [21].
With appropriately trained models, recognizer performance was observed to be more
dependent upon the type and source of data, than on the language.

Speech recognizers for well-covered languages are typically trained on hundreds
of hours of transcribed speech and hundreds of millions of words of texts. Thus data
collection and preparation require significant investment, in terms of money, time and

http://www.nist.gov/speech/tests
http://www.nist.gov/speech/tests/rt
http://www.quaero.org
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human effort. Reducing these costs is an important research direction
(http://coretex.itc.it). For acoustic modeling, it has been proposed to use
a speech recognizer [16,20,30] to reduce transcription costs. For some applications it-
erative training using automatic transcripts may be sufficient, whereas in other cases
a human may need to correct the transcription. In the context of the DARPA EARS

(http://w2.eff.org/Privacy/TIA/ears.php) program, extensive experi-
ments were reported using ’quick’ transcriptions to reduce the human annotator time
for a conversational telephone speech task [17]. The approach has also adopted for
use in the DARPA GALE (http://www.darpa.mil/ipto/programs/gale/
gale.asp ) program in order to reduce transcription costs and therefore provide more
data. Acoustic model training requires an alignment between the audio signal and the
phone models, which usually relies on a perfect orthographic transcription of the speech
data and a good phonetic lexicon. Making use of these quick transcriptions has led to
revisions in acoustic model training procedures to make them more flexible [25] and
less dependent on a perfect transcription.

Obtaining resources is particularly difficult for ’lesser’ represented languages that do
not have a strong strategic (economic or security) push. Language preservation is impor-
tant for cultural diversity, and transmission of cultural heritage (http://cmuspice.org,
http://projects.ldc.upenn.edu/LCTL). A recent workshop addressed the
topic of developing spoken languages technologies for under-resourced languages [1].
Given recent trends for computerization, such languages pose many new research chal-
lenges. In general it is relatively easy to obtain audio data, by recording radio or television
programs. Finding text material in electronic form is often more difficult since many lan-
guages are poorly represented, if at all, on the Internet. For some languages there are no
commonly adopted writing conventions or there may have been recent writing reforms
which result in quite varied text materials. Another complication is that it is difficult to
find people that have expertise in both the language of interest and in language process-
ing. Written resources and a pronunciation dictionary are the most critical for todays
technologies: reasonable acoustic models can be trained on several tens to hundreds of
hours of data which can be obtained at a reasonable cost. Given that economic or political
reasons are unlikely to support the development of technologies for many of these lesser
languages, likely viable solutions will rely on new lightly supervised or unsupervised
training techniques. Some work in this direction has been reported in [23,5] for pronun-
ciation modeling, and a framework for the development of resources and models is be-
ing developed in the SPICE project (http://cmuspice.org).As mentioned earlier,
only about 15% of the world’s languages are written, so current word based modeling
techniques cannot be directly applied to the remaining languages. For relatively small
data collections, approaches based on phone-like units may provide a short-term solu-
tion for such languages [29].

Concerning language modeling, as the amount of available data has increased, most
state-of-the-art systems use back-off n-gram language models which result from the
interpolation of language models trained on non-overlapping subsets of the available
language model training material. This allows different interpolated weights to be asso-
ciated with different data subsets, thus increasing or reducing their importance. The in-
terpolation weights are optimized on a set of development data. It is often the case that the

http://coretex.itc.it
http://w2.eff.org/Privacy/TIA/ears.php
http://www.darpa.mil/ipto/programs/gale/gale.asp
http://www.darpa.mil/ipto/programs/gale/gale.asp
http://cmuspice.org
http://projects.ldc.upenn.edu/LCTL
http://cmuspice.org
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Table 2. Observed pronunciations for four inflected forms of the word ’interest’ in American
English broadcast news (BN) and conversational telephone speech (CTS) data

Word Pronunciation BN CTS Word Pronunciation BN CTS
interest IntrIst 238 488 interests IntrIss 52 53

IntXIst 3 33 IntrIsts 19 30
InXIst 0 11 IntXIsts 3 2

IntXIss 3 1
interested IntrIstxd 126 386 interesting IntrIst|G 193 1399

IntXIstxd 3 80 IntXIst|G 8 314
InXIstxd 18 146 InXIst|G 21 463

vast majority of training texts come from written sources (newspapers, newswires, ...),
and audio transcripts represent only a small portion of the data. In the LIMSI Arabic
speech-to-text system, the coefficients associated with the audio transcriptions, account
for almost 0.5, even though these texts represent only about 1% of the available data.
This highlights the importance of audio transcripts for language modeling of speech.

Although proposed a decade ago[13], Multi-Layer Perceptron (MLP) features have
recently been attracting interest for large vocabulary speech recognition due to their
complementarity with cepstral features [32]. Even though probabilistic features have
never been shown to consistently outperform cepstral features in LVCSR, having dif-
ferent properties they can markedly improve the performance when used in conjunction
with them. Connectionist models have also been shown to be effective for language
modeling [28].

Concerning pronunciation modeling, most of todays state-of-the-art systems include
pronunciation variants in the dictionary, associating pronunciation probabilities with
the variants [3,4]. However, for large vocabulary systems most of the lexical items are
never or only rarely observed. Table 4 shows the observed pronunciation counts for
four inflected forms of the word ’interest’ in about 100 hours American English broad-
cast news and conversational telephone speech data. It can be seen that the number of
occurrences varies quite a bit for the different forms, and the data type. As can be ex-
pected there is a higher proportion of reduced forms are observed in CTS data than in
BN data. Two main reductions are observed: the transformation of ’ter’ into ’tr’ (loss
of the schwa) and the deletion of the ’t’ (’inter’ is realized as ’iner’). In the recognition
dictionary there are a number of similar, less frequent words: interestingly, disinterest,
disinterested for which it would be nice to predict pronunciation variants, as well as for
other words with a similar syllabic structure: interfere, interfering, interconnect, inter-
com, ... So an unresolved problem is how to accurately model pronunciation variants.
It has been observed that a person will pretty much systematically choose a pronun-
ciation variant, so one research direction is to develop style-specific or accent-specific
pronunciations models, which could be adapted to a particular speaker.

Unsupervised model adaptation has been demonstrated to be quite successful for
acoustic modeling, and is widely used in most state-of-the-art transcription systems.
Several directions have been explored for adaptive language modeling with less
convincing results [27]. Concerning pronunciation modeling, large amounts of data are
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needed to estimate accurate pronunciation probabilities. Where for acoustic modeling
a few minutes of speech provides a fair amount of acoustic data for adaptation, this
data only contains a few hundred words, many of which do not carry much information
content. There are a few more phones for pronunciation modeling, however most are
unlikely to be distinctive of the speaker/dialect.

5 Conclusion

Automatic speech recognition is a key technology for audio indexing. Recent progress
has enabled the development of systems for a handful of languages that achieve word
errors rates the order of 10 to 30% depending upon the type of data. Such performance
levels are sufficient to support some near-term applications for structuring and mining
spoken data collections, in particular those containing prepared speech. Higher error
rates on the order of 20-50% have been reported for speech data from more interactive
situations (interviews, debates, conversations, meetings). Transcriptions of speech data
remain critical for language modeling, since 100 hours represents only about 1 million
words of texts which is largely insufficient. Some recent efforts have been devoted to
locating speech-like texts on the Internet.
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Abstract. This paper explores the idea that non-projective dependency
parsing can be conceived as the outcome of two interleaved processes,
one that sorts the words of a sentence into a canonical order, and one
that performs strictly projective dependency parsing on the sorted input.
Based on this idea, a parsing algorithm is constructed by combining
an online sorting algorithm with an arc-standard transition system for
projective dependency parsing.

Keywords: parsing, sorting, non-projective dependency parsing.

1 Introduction

In syntactic parsing of natural language, we analyze sentences by constructing
representations of their syntactic structure. Many different representations have
been proposed for this purpose, but in this paper we will restrict our attention to
dependency graphs. This form of representation, which comes out of a long tra-
dition of theoretical work in dependency grammar [1,2,3,4], has recently enjoyed
widespread interest in the computational linguistics community and have been
used for applications as diverse as information extraction [5], machine translation
[6], textual entailment [7], lexical ontology induction [8], and question answering
[9]. We attribute this increase in interest to the fact that dependency graphs pro-
vide a transparent encoding of predicate-argument structure, which is useful for
certain types of applications, together with the fact that they can be processed
both efficiently and accurately, in particular using data-driven models that are
induced from syntactically annotated corpora. Such models have recently been
applied to a wide range of languages in connection with the CoNLL shared tasks
on dependency parsing in 2006 and 2007 [10,11].

The dependency graph for a sentence is usually taken to be a directed tree,
with nodes corresponding to the words of the sentence and with labeled arcs rep-
resenting syntactic relations between words. For simplicity, it is often assumed
that the single root of this tree is an artificial word root prefixed to the sentence,
as illustrated in Figure 1. One issue that is often debated is whether dependency
graphs should also be assumed to be projective, that is, whether the yield of
every subtree should be a continuous substring of the sentence. The dependency
graph in Figure 1 fails to satisfy this condition, because the subtrees rooted at
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Fig. 1. Dependency graph for an English sentence (non-projective)

the words hearing and scheduled both have discontinuous yields (words 1, 2, 5, 6,
7 in the first case, words 4, 8 in the second). Most researchers today assume that,
although projectivity is appealing from a computational point of view, it is too
restrictive from a linguistic representational point of view, and most frameworks
therefore allow non-projective dependency graphs for representing discontinuous
linguistic constructions. This raises the question of how to parse such represen-
tations accurately and efficiently, given that most parsing algorithms proposed
for natural language are limited to the derivation of continuous structures.

Current approaches to non-projective dependency parsing typically take one
of two routes. Either they employ a non-standard parsing algorithm that is not
limited to the derivation of continuous substructures, or they try to recover non-
projective dependencies by post-processing the output of a strictly projective
parser. The most well-known example of the former approach is the application of
the Chu-Liu-Edmonds maximum spanning tree algorithm for directed graphs to
dependency parsing [12], although other algorithms also exist [13,14]. The second
approach is exemplified by pseudo-projective parsing [15], corrective modeling
[16], and approximate second-order spanning tree parsing [17]. In this paper, we
start exploring a third route, based on the idea that the parsing problem for
dependency graphs can be decomposed into a sorting problem, where the input
words need to be sorted into a canonical order, and a simpler parsing problem,
where the ordered input is mapped to a strictly projective dependency graph.

The rest of the paper is structured as follows. Section 2 reviews the transition-
based approach to projective dependency parsing, which is one of our building
blocks. Section 3 introduces the idea of sorting the input words to facilitate
parsing, defines the canonical sort order in terms of tree traversals, and presents
a transition-based sorting algorithm. Section 4 puts the two building blocks
together and presents an algorithm that simultaneously sorts the words in the
input and constructs a projective dependency graph for the sorted input, a graph
that may or may not be non-projective with respect to the original word order.
Section 5 concludes and makes suggestions for future research.

2 Projective Dependency Parsing

The transition-based approach to dependency parsing has two key components.
The first is a transition system for mapping sentences to dependency graphs;
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Fig. 2. Dependency graph for an English sentence (projective)

the second is a treebank-induced classifier for predicting the next transition for
arbitrary configurations of the parser [18]. We will focus here on the first compo-
nent and define a transition system that derives strictly projective dependency
graphs, using a bottom-up, arc-standard parsing strategy, which is essentially a
variant of the system described previously in [19,20,21]. But first of all, we need
to define the notion of a dependency graph a little more precisely.

Given a set L = {l1, . . . , l|L|} of dependency labels, a dependency graph for
a sentence S = w0w1 · · · wn (where w0 = root) is a labeled directed graph
G = (VS , A), where

1. VS = {0, 1, . . . , n} is a set of nodes;
2. A ⊆ VS × L × VS is a set of labeled directed arcs;

The set VS of nodes (or vertices) is the set of non-negative integers up to and
including n, each corresponding to the linear position of a word in the sentence
(including root). The set A of arcs (or directed edges) is a set of ordered triples
(i, l, j), where i and j are nodes and l is a dependency label. Since arcs are used
to represent dependency relations, we will say that i is the head and l is the
dependency type of j. Conversely, we say that j is a dependent of i.

For a dependency graph G = (VS , A) to be well-formed we in addition require
that it is a tree rooted at the node 0. This implies that there is a unique directed
path from the root node to every other node of the graph, and that every node
except the root has exactly one incoming arc. By contrast, we do not require
that G is projective with respect to the sentence S, i.e., that the yield of every
subtree of G forms a continuous substring of S (where the yield of a subtree is
the set of words corresponding to nodes in the subtree).

As already noted, the dependency graph depicted in Figure 1 is not projective,
since the subtrees rooted at nodes 2 and 4 do not have continuous yields. Note,
however, that projectivity is not a property of the dependency graph in isolation,
but only of the graph in combination with the word order of a sentence. Thus,
the dependency graph in Figure 2, while isomorphic to the graph in Figure 1, is
projective because the words of the sentence occur in a different order. We will
return to this observation in the next section, but first we will concentrate on
parsing sentences with strictly projective dependency graphs.

A transition system for dependency parsing consists of a set of configurations
and transitions between configurations. Given a sentence S = w0w1, · · ·wn, we
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Transition Condition

Left-Arcl ([σ|wi, wj ], β, A) ⇒ ([σ|wj ], β, A∪{(j, l, i)}) i �= 0

Right-Arcl ([σ|wi, wj ], β, A) ⇒ ([σ|wi], β, A∪{(i, l, j)})

Shift (σ, [wi|β], A) ⇒ ([σ|wi], β, A)

Fig. 3. Transitions for projective dependency parsing

take a configuration to be a triple c = (σ, β, A), where σ is a stack of words
wi ∈ S, β is a buffer of words wi ∈ S, and A is a set of labeled directed
arcs (i, l, j) ∈ VS × L × VS . When necessary, we use σc, βc and Ac to refer to
the different components of a configuration c, and we use Gc to refer to the
dependency graph G = (VS , Ac) defined by c. Both the stack and the buffer will
be represented as lists, although the stack will have its head (or top) to the right
for reasons of perspicuity. Thus, [σ|wi] represents a stack with top wi and tail σ,
while [wj |β] represents a buffer with head wj and tail β. We use square brackets
for enumerated lists, e.g., [1, 2, . . . , n], with [ ] for the empty list as a special case.

Given the notion of a parser configuration, we can now define a transition
to be a (partial) function from configurations to configurations. The following
set of transitions, defined more formally in Figure 3, are sufficient for projective
dependency parsing:

1. The transition Left-Arcl, parameterized for an arc label l ∈ L, updates a
parser configuration with words wi, wj on top of the stack by adding the arc
(j, l, i) to the arc set A and replacing wi, wj on the stack by wj alone. This
is a legal transition as long as wi �= root0.

2. The transition Right-Arcl, parameterized for an arc label l ∈ L, updates
a parser configuration with words wi, wj on top of the stack by adding the
arc (i, l, j) to the arc set A and replacing wi, wj on the stack by wi alone.

3. The transition Shift updates a parser configuration with the word wi as the
first word of the buffer by removing wi from the buffer and pushing it onto
the stack.

The transition system defined in Figure 3 is complete for the set of well-formed
projective dependency graphs in the sense that, for any sentence S = w0w1 · · · wn

with projective dependency graph G, there is a transition sequence (c0, c1, . . . , cm)
such that:

1. c0 = ([w0], [w1, . . . , wn], ∅)
2. ci+1 = ti(ci) for some transition ti (0 ≤ i < m)
3. Gcm = G

For example, the dependency graph for the sentence in Figure 2 is derived by the
transition sequence given in Figure 4. Ideally, the system should also be sound
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Transition Stack (σ) Buffer (β) New Arc
[r0] [A1, . . . , .9]

Shift [r0, A1] [hearing2, . . . , .9]
Shift [r0, A1, hearing2] [on3, . . . , .9]
LAdet [r0, hearing2] [on3, . . . , .9] (2,det, 1)
Shift [r0, hearing2, on3] [the4, . . . , .9]
Shift [r0, . . . , on3, the4] [issue5, . . . , .9]
Shift [r0, . . . , the4, issue5] [is6, . . . , .9]
LAdet [r0, . . . , on3, issue5] [is6, . . . , .9] (5,det, 4)
RApc [r0, hearing2, on3] [is6, . . . , .9] (3, pc, 5)
RAnmod [r0, hearing2] [is6, . . . , .9] (2,nmod, 3)
Shift [r0, hearing2, is6] [scheduled7, . . . , .9]
LAsbj [r0, is6] [scheduled7, . . . , .9] (6, sbj, 2)
Shift [r0, is6, scheduled7] [today8, .9]
Shift [r0, . . . , scheduled7, today8] [.9]
RAadv [r0, is6, scheduled7] [.9] (7,adv, 8)
RAvg [r0, is6] [.9] (6,vg, 7)
Shift [r0, is6, .9] [ ]
RAp [r0, is6] [ ] (6, p, 9)
RAroot [r0] [ ] (0,root, 6)

Fig. 4. Transition sequence for parsing the English sentence in Figure 2

with respect to the set of well-formed projective dependency graphs, in the
sense that every transition sequence derives a well-formed graph, which unfortu-
nately is not the case. However, every dependency graph derived by a transition
sequence is guaranteed to be a forest (set of trees), which means that it can
trivially be converted to a well-formed dependency graph by adding arcs from
the node 0 to all (other) root nodes.1

We define an oracle o to be a function from configurations to transitions such
that, for any sentence S with (projective) dependency graph G, if (c0, c1, . . . , cm)
is the transition sequence that derives G for S, then o(ci) = ti (for every i such
that 0 ≤ i < m). That is, for every configuration ci, the oracle returns the cor-
rect transition ti out of ci. Given an oracle, projective dependency parsing can be
performed deterministically using the following algorithm:

Parse(S = w0w1 · · · wn)

1 c ← ([w0], [w1, . . . , wn], ∅)
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t ∈ {Left-Arcl,Right-Arcl}
6 c ← t(c)
7 t ← o(c)
8 return Gc

1 For proofs of soundness and completeness for this transition system, see [20].
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The parser is initialized to the configuration c = ([w0], [w1, . . . , wn], ∅), where
the stack σc contains the artificial root word root, the buffer βc contains all the
real words of the sentence (in their linear order), and the arc set Ac is empty.
The outer while loop is executed as long as there are words remaining in the
buffer and starts by shifting the next word onto the stack after which it calls the
oracle. The inner while loop is executed as long as the oracle predicts a Left-

Arcl or Right-Arcl transition and simply updates the configuration using the
predicted transition and then calls the oracle again. After parsing is completed,
the dependency graph Gc defined by the final configuration c is returned.

It is not hard to show that this algorithm terminates after at most 2n transi-
tions, as it performs exactly n Shift transitions (one for each word initially in
the buffer) and can perform at most n other transitions (since both Left-Arcl

and Right-Arcl reduce the size of the stack by 1). This means that, if oracle
calls (lines 4 and 7) and transitions (lines 3 and 6) can be computed in constant
time, then the time complexity of the parsing algorithm is O(n) [20].

In order to build practical parsing systems, the oracle o has to be approxi-
mated by a classifier trained on data derived from a treebank. For every sentence
S with dependency graph G, we construct a set of training instances of the form
(ci, ti), where ci is a parser configuration and ti the correct transition out of ci

for the sentence. Training a classifier on such instances can be done using stan-
dard machine learning methods for discriminative classification, such as support
vector machines or memory-based learning [22,23], and transition-based parsing
using treebank-induced classifiers has been shown to give state-of-the-art pars-
ing accuracy in several experimental evaluations [10,11,24]. For the rest of this
paper, however, we will ignore the machine learning aspects and concentrate on
the construction of a parsing algorithm that is not limited to projective graphs.

3 Sorting to Projective Order

As noted in the preceding section, the projectivity constraint on dependency
graphs only holds in relation to a particular word order. And given a sentence
S = w0w1 · · · wn with (non-projective) dependency graph G, it is always possible
to find a permutation S′ of S such that G is a projective dependency graph for S′.
Moreover, since the graph structure remains the same, all the information about
the syntactic structure encoded in G is preserved in this permutation. To take
a concrete example, the sentence in Figure 1 can be permuted to the sentence
in Figure 2 in order to make the dependency graph projective. In this section,
we are going to explore the idea that this kind of permutation can be viewed as
a sorting problem, which can be solved using standard sorting algorithms, and
that this is a way of extending the transition-based dependency parsing method
described in the preceding section to non-projective dependency graphs.

Let S = w0w1 · · · wn be a sentence with dependency graph G = (VS , A).
We define the projective order of the words in S to be the order in which the
corresponding nodes in VS are visited in an inorder traversal of G starting at
the root node 0, where the local order on a node and its children is given by the
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Transition Condition

Swap (m, [σ|wi, wj |σm], β) ⇒ (m+1, [σ|wj , wi|σm], β) i �= 0

Shift (m, σ, [wi|β]) ⇒ (0, [σ|wi], β)

Fig. 5. Transitions for sorting into projective order

arithmetic order < on VS induced by the original word order. The basic idea
behind the notion of a projective order is to find a way to impose a linear order
on the nodes of the dependency graph in such a way that we guarantee that
every subtree has a continuous yield. This can be done in a variety of ways, but
because we want to preserve as much as possible of the original word order, we
choose an ordering that respects the original ordering of words corresponding to
nodes that stand in a parent-child or sibling relation. We can exemplify this by
returning to the sentence in Figure 1:

root0 A1 hearing2 is3 scheduled4 on5 the6 issue7 today8 .9

Given the dependency graph in Figure 1, the projective order of the words is the
following (which corresponds to the word order of the sentence in Figure 2):

root0 A1 hearing2 on5 the6 issue7 is3 scheduled4 today8 .9

We now want to explore the idea that (non-projective) dependency parsing can
be performed by sorting the words of a sentence into their projective order
and deriving a strictly projective dependency graphs for the sorted input. In
principle, we could use any one of the many algorithms that have been proposed
for sorting, but our desire to combine sorting with a transition-based approach
to parsing imposes certain constraints on the kind of algorithm that can be
used. First of all, it should be an online algorithm, so that we can start sorting
(and parsing) before having seen the end of the input, in an incremental left-to-
right fashion. Secondly, it should be an exchange sort, which sorts by exchanging
adjacent elements, so that sorting and parsing transitions can be defined on the
same kinds of configurations. One algorithm that satisfies these constraints is
gnome sort, which is similar to insertion sort, except that moving an element
to its proper place is accomplished by a series of swaps, as in bubble sort. The
worst-case time complexity of gnome sort is O(n2), but in practice the algorithm
can run as fast as insertion sort and is very efficient on nearly sorted lists. This
is an attractive property given that dependency graphs for natural language
sentences tend to be very nearly projective, which means that the projective
order will typically be close to the original word order [25,26].

In order to facilitate integration with the parser defined earlier, we first present
a transition-based version of gnome sort, where a configuration is a triple c =
(m, σ, β), consisting of an index m and two lists σ and β, and where we use the
two transitions defined in Figure 5. The idea is that the list β contains the list
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Transition m List (σ) Buffer (β)
0 [r0] [A1, . . . , .9]

Shift 0 [r0,A1] [hearing2, . . . , .9]
Shift 0 [r0, A1,hearing2] [is3, . . . , .9]
Shift 0 [r0, hearing2, is3] [scheduled4, . . . , .9]
Shift 0 [r0, . . . , is3, scheduled4] [on5, . . . , .9]
Shift 0 [r0, . . . , scheduled4,on5] [the6, . . . , .9]
Swap 1 [r0, . . . , is3,on5, scheduled4] [the6, . . . , .9]
Swap 2 [r0, hearing2,on5, is3, scheduled4] [the6, . . . , .9]
Shift 0 [r0, . . . , scheduled4, the6] [issue7, . . . , .9]
Swap 1 [r0, . . . , is3, the6, scheduled4] [issue7, . . . , .9]
Swap 2 [r0, . . . , on5, the6, is3, scheduled4] [issue7, . . . , .9]
Shift 0 [r0, . . . , scheduled4, issue7] [today8, .9]
Swap 1 [r0, . . . , is3, issue7, scheduled4] [today8, .9]
Swap 2 [r0, . . . , the6, issue7, is3, scheduled4] [today8, .9]
Shift 0 [r0, . . . , scheduled4, today8] [.9]
Shift 0 [r0, . . . , .9] [ ]

Fig. 6. Transition sequence for sorting the English sentence in Figure 1 (σ[m] in bold)

of remaining words to be sorted, while the list σ contains the words sorted so
far, with the index m referring to the position in σ of the word that is being
inserted into its proper place (with the first position having index 0). The two
transitions work as follows:

1. The Swap transition swaps the mth and m+1th words in σ and increments
the index to m+1 (the position of the word in mth position before the swap).

2. The Shift transition takes the next word from β, inserts it at the head of
σ and sets the index m to 0 (the position of the newly inserted word).

Note that we use the notation [σ|wi, wj |σm] to refer to a list (with its head to
the right) with a prefix of m words, followed by the words wi and wj and a tail
σ of unspecified length.

Assume now that we have an oracle o, which maps each configuration to the
correct transition (Swap or Shift) in order to sort the words of a sentence into
their projective order. Then sorting can be performed using an algorithm that
is very similar to the parsing algorithm described in the previous section:

Sort(S = w0w1 · · · wn)

1 c ← (0, [w0], [w1, · · · , wn])
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t = Swap

6 c ← t(c)
7 t ← o(c)
8 return σc
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Transition Condition

Swap (m, [σ|wi, wj |σm], β, A) ⇒ (m+1, [σ|wj , wi|σm], β, A) i �= 0

Left-Arcl (m, [σ|wi, wj |σm], β, A) ⇒ (m, [σ|wj |σm], β, A∪{(j, l, i)}) i �= 0

Right-Arcl (m, [σ|wi, wj |σm], β, A) ⇒ (m, [σ|wi|σm], β, A∪{(i, l, j)})

Shift (m, σ, [wi|β], A) ⇒ (0, [σ|wi], β, A)

Fig. 7. Transitions for integrated sorting and parsing

The outer while loop is executed once for each word to be inserted into its place
in the projective order, while the inner while loop is executed as many times as
the word needs to be swapped with its neighbor in order to reach its place. To
illustrate how this sort procedure works, Figure 6 shows the transition sequence
for sorting the words of the sentence in Figure 1 into their projective order.

4 Integrated Sorting and Parsing

In the two previous sections, we have shown how to perform projective depen-
dency parsing and how to sort the words of a sentence into their projective
order, in both cases relying on oracles for predicting the next transition, which
in practice can be approximated by classifiers trained on syntactically annotated
sentences. In this section, we will put the two pieces together and define an al-
gorithm that simultaneously sorts the words of a sentence into their projective
order and derives a projective dependency graph for the sorted input, which may
or may not be non-projective in relation to the original word order.

We let a configuration be a quadruple c = (m, σ, β, A), where m, σ, and β are
as in section 3, and where A is a set of dependency arcs as in section 2; we use
the transitions in Figure 7, where Swap and Shift are exactly as in section 3,
and where Left-Arcl and Right-Arcl have been modified to apply to the mth
and m+1th word in σ instead of the first and second; and we use the following
algorithm:

SortParse(S = w0w1 · · · wn)

1 c ← (0, [w0], [w1, . . . , wn], ∅)
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t = Swap

6 c ← t(c)
7 t ← o(c)
8 while t ∈ {Left-arcl,Right-arcl}
9 c ← t(c)

10 t ← o(c)
11 return Gc
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Transition m List (σ) Buffer (β) New Arc
0 [r0] [A1, . . . , .9]

Shift 0 [r0,A1] [hearing2, . . . , .9]
Shift 0 [r0, A1, hearing2] [is3, . . . , .9]
LAdet 0 [r0,hearing2] [is3, . . . , .9] (2, det, 1)
Shift 0 [r0, hearing2, is3] [scheduled4, . . . , .9]
Shift 0 [r0, . . . , is3, scheduled4] [on5, . . . , .9]
Shift 0 [r0, . . . , scheduled4,on5] [the6, . . . , .9]
Swap 1 [r0, . . . , is3,on5, scheduled4] [the6, . . . , .9]
Swap 2 [r0, hearing2, on5, is3, scheduled4] [the6, . . . , .9]
Shift 0 [r0, . . . , scheduled4, the6] [issue7, . . . , .9]
Swap 1 [r0, . . . , is3, the6, scheduled4] [issue7, . . . , .9]
Swap 2 [r0, . . . , on5, the6, is3, scheduled4] [issue7, . . . , .9]
Shift 0 [r0, . . . , scheduled4, issue7] [today8, .9]
Swap 1 [r0, . . . , is3, issue7, scheduled4] [today8, .9]
Swap 2 [r0, . . . , the6, issue7, is3, scheduled4] [today8, .9]
LAdet 2 [r0, . . . , on5, issue7, is3, scheduled4] [today8, .9] (7, det, 6)
RApc 2 [r0, hearing2, on5, is3, scheduled4] [today8, .9] (5, pc, 7)
RAnmod 2 [r0,hearing2, is3, scheduled4] [today8, . . . , .9] (2, nmod, 5)
Shift 0 [r0, . . . , scheduled4, today8] [.9]
RAadv 0 [r0, . . . , is3, scheduled4] [.9] (4, adv, 8)
RAvg 0 [r0, hearing2, is3] [.9] (3, vg, 4)
LAsbj 0 [r0, is3] [.9] (3, sbj, 2)
Shift 0 [r0, is3, .9] [ ]
RAp 0 [r0, is3] [ ] (3, p, 9)
RAroot 0 [r0] [ ] (0, root, 3)

Fig. 8. Transition sequence for parsing the English sentence in Figure 1 (σ[m] in bold)

As before, the outer while loop is executed once for each word wi (1 ≤ i ≤ n),
which is inserted at the head of the list σ. The first inner while loop in-
serts wi in its proper place, by performing the required number of Swap tran-
sitions, and the second inner while loop adds the required number of arcs
before the next word is shifted to σ. The parsing procedure is exemplified
in Figure 8, which shows the transition sequence for parsing the sentence in
Figure 1.

Provided that oracle predictions and transitions can both be performed in
constant time,2 the time complexity of the algorithm is O(n2) in the worst
case but O(n) in the best case where the input words are already sorted in the
projective order. Since dependency graphs for natural language sentences tend
to be very nearly projective, the algorithm can therefore be expected to be very
efficient in practice.

2 The time taken to compute the oracle prediction depends heavily on the time of
classifier used but does not in general depend on the length of the input sentence.
It can therefore be regarded as a constant in this context, corresponding to the
grammar constant in grammar-based approaches to parsing.
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5 Conclusion

In this paper, we have explored the idea that the general parsing problem for
dependency graphs can be decomposed into a sorting problem and a simpler
parsing problem restricted to projective dependency graphs. Based on this idea,
we have constructed a parsing algorithm for non-projective dependency graphs
by combining an online sorting algorithm with a projective parsing algorithm.
The next important step in the exploration of this approach is to develop a
practical parsing system by training classifiers to approximate the oracle used to
predict the next transition. This methodology has previously proven successful
for strictly projective dependency parsing, but it is an open question how well
it will perform for the more complex problem of integrated sorting and parsing.
Finally, it is worth emphasizing that the projective order and sorting algorithm
proposed in this paper only define one of many conceivable realizations of the
basic idea of integrated sorting and parsing. Exploring alternative orders and
sorting strategies is another important area for future research.
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Abstract. We are interested in finding how people feel about certain
topics. This could be considered as a task of classifying the sentiment :
sentiment could be positive, negative or neutral. In this paper, we ex-
amine the problem of automatic sentiment analysis at sentence level. We
observe that sentence structure has a fair contribution towards sentiment
determination, and conjunctions play a major role in defining the sen-
tence structure. Our assumption is that in presence of conjunctions, not
all phrases have equal contribution towards overall sentiment. We com-
pile a set of conjunction rules to determine relevant phrases for sentiment
analysis. Our approach is a representation of the idea to use linguistic re-
sources at phrase level for the analysis at sentence level. We incorporate
our approach with support vector machines to conclude that linguistic
analysis plays a significant role in sentiment determination. Finally, we
verify our results on movie, car and book reviews.

Keywords: Sentiment Analysis, Linguistic Analysis, Natural Language
Processing, Support Vector Machines, Machine Learning.

1 Introduction

Recent boom in the popularity and use of internet has resulted in easy and active
exchange of information over weblogs and online discussion boards. This infor-
mation usually conveys opinions of users on variety of products (e.g. automobiles,
movies). A considerable effort has been made to analyze such information, called
Sentiment Analysis. Sentiment analysis aims at classifying these reviews based
on author’s emotions. It finds useful application in fields like affective tutoring in
e-learning systems [17], text summarization [5], quicker response times to market
analysis etc. However, motivation to perform sentence level analysis arises from
domains (like car) where users praise some features of the product, while being
unhappy about some other features. In such cases, classifying entire review as
positive or negative makes less sense, rather a deeper analysis is required.

Sentiment analysis is considered to be a difficult problem because: (1) It re-
quires deeper understanding of sentence structure. (2) It requires proper eval-
uation of the attitude expressed by the opinion words. (3) Classification needs

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 28–39, 2008.
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to be done on the opinion expressed by the author which needs to be derived
from the content of the text. While the presence of certain feeling words plays a
major role in sentiment identification [13], the task becomes much more complex
at sentence level due to the presence of mixed sentiment, sarcasm or irony, co-
reference between subjects [11], and structure variations caused by the presence
of conjuncts and negations.

In this work, we address a two level problem: (1) separating subjective and
objective reviews (called review identification henceforth), and (2) classifying
subjective reviews as positive or negative (called sentiment analysis henceforth).
We observed that conjunctions occur with a high frequency in reviews, and they
tend to affect the sentiment. Given a sentence with conjunction, our approach
uses a set of conjunction rules to determine relevant phrases for overall sentiment
determination. Consider this review:

“The film compels, but overall the field of roughage dominates.”

Both positive (compels) and negative (roughage) feeling words co-occur. A hu-
man can easily guess that the review is negative, but the task becomes complex
for machines without any linguistic knowledge. In our approach, a parser would
tell that but is used as a coordinating conjunct joining the two underlined verb
and adverb phrases. Our conjunction rules will add that sentiment is dominated
by the latter phrase, making it easier to classify this review as negative.

The rest of the paper is organized as follows. In the next section we briefly
discuss the related work in the area of sentiment analysis. Section 3 studies the
effect of conjunctions in sentiment analysis and explains our conjunction rules
with examples. In Section 4 we compare various approaches and describe our
proposed model alongwith the training and testing methodologies. In Section 5
we discuss the results and perform further analysis. Finally, in Section 6 we
conclude our work and discuss possible future work.

2 Related Work

Much of the earlier research in sentiment analysis has been done at document
level [1,11,13]. In previous approaches, major concern has been the co-occurrence
of expressions, frequent patterns [3], document contents [1] and variations in
feature selection for machine learning algorithms [8,11]. Their results show that
supervised machine learning methods have been very promising at document
level. Other approaches tried to gain advantage from linguistic knowledge sources
[9,15] by adding polarity information of adjectives. Sentence level classification
is considered significantly harder task [4,16]; these approaches are however, un-
supervised in nature. They rely on the fact that sentiment terms of similar
orientation tend to co-occur. A sentence level work (mostly unsupervised) has
been done by [7], but they calculate phrase level polarities using General In-
quirer1 and Wordnet2. A phrase level work by [14] uses a large stable of clues
1 http://www.wjh.harvard.edu/~inquirer
2 http://wordnet.princeton.edu
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marked with prior polarity to identify contextual polarities of phrases. Sentence
level work by [6] finds productive synonyms and antonyms of an opinion bearing
word through automatic expansion in Wordnet and uses them as feature sets of
a classifier. Our work differs from previous works in these aspects: (1) Our focus
is on classifying each sentence in a review as positive, negative or neutral. (2) We
emphasize on sentence structure and conjunction analysis to locate dominating
phrases in a sentence. (3) Our approach is supervised in nature and we verify
our results using support vector machines on movie, car and book reviews. We
also study the effect of combinations of various feature selection techniques like
unigrams, n-grams and part-of-speech tags at sentence level.

3 Sentiment Analysis

In sentiment analysis, the essential issue is to identify the sentiments expressed
in texts, and whether the expressions indicate positive (favorable) or negative
(unfavorable) opinion. In topic classification problems, what is being communi-
cated has been the major concern; whereas for sentiment analysis, we need to
explore how is it being communicated.

3.1 Dependency Relations

Thematic relations3 in a sentence explain the meaning of a noun phrase, as de-
picted by the verb present in the sentence. Example - “Alice liked the movie”:
Alice is an agent ; movie is a patient. Major thematic relations include: agent –
one who performs the action; patient – one who undergoes the action; and ex-
periencer – one who receives an emotional input. English language often marks
such thematic relations with prepositions (after, of, between, without, above etc.)
and verbs. These are important in exploiting “who liked what ” kind of relations
and appear to be a good tool in deciding the subject-verb relationship. As an
example, consider this review: “We liked the movie as the locations were great”.
Figure 1 shows the typed dependencies given by Stanford NLP Parser4 for this
review. Looking at the nsubj and dobj relationships, it becomes clear that “we
liked ”, “liked movie” and “great locations” are the associated dependencies. Oth-
erwise, high order n-grams based model is required to capture such relationships,
increasing the dimensionality of feature space.

3.2 Effect of Conjunctions

Conjunctions are special words used to join different words, phrases or clauses
together to form sentences, and define the relationship among their meanings.
There are three main types of conjunctions:

3 http://www.wikipedia.org
4 We use the Stanford NLP parser available at http://nlp.stanford.edu/software/lex-

parser.shtml
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nsubj (liked-2, We-1)
det (movie-4, the-3)
dobj (liked-2, movie-4)
mark (great-9, as-5)
det (locations-7, the-6)
nsubj (great-9, locations-7)
cop (great-9, were-8)
advcl (liked-2, great-9)

Fig. 1. Typed dependencies for the example review

1. Coordinating conjuncts join one or more words of similar kind (like subject-
subject, verb phrase–verb phrase). Examples: and, nor, but, yet.

2. Correlative conjuncts occur in pairs and they connect sentence elements of
the same kind. Examples: either-or, neither-nor, not only-but also.

3. Subordinating conjuncts are adverbs used to connect secondary clauses to a
main clause. Examples: until, although, though, whereas, while, whether or
not, even if.

Conjunctions play a vital role in deciding the overall sentiment. Following ex-
amples will explain in detail:

Example 1. “Dark and disturbing, yet compelling to watch.”

Here, yet is used as a coordinating conjunct, used to connect an adjective phrase
and a noun phrase, having opposite sentiments. Clearly, the overall polarity
is positive and dominated by the latter phrase. A system without conjunction
analysis would fail to exploit this because of the presence of one positive and
two negative feeling words.

Example 2. “Not only unfunny, but also sad.”

This is an example of a correlative conjunct; they usually connect phrases with
similar polarity. Using the usual negation word filtering techniques as in [2], first
phrase will be marked as NOT_unfunny, changing its sentiment to positive.
However, conjunction analysis will be able to preserve the actual relationship.

Example 3. “Although bright, well-acted and thought-provoking, Heritage
suffers from a laconic pace and a lack of traditional action.”

Example 3 illustrates the use of a subordinating conjunct, connecting an ad-
jective phrase and noun phrase. This class of conjuncts when appear at the
beginning of a sentence, usually connect phrases of opposite polarity. A system
without conjunction analysis will be disguised by the presence of strong positive
words in the adjective phrase.
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Table 1. Examples of conjunction rules

1 if (conj=‘although’ class=‘IN’ begin=true)
2 if (Phrase1=‘VP’ Phrase2=‘NP’)
3 polarity = Phrase2; Phrase1 = !Phrase2;
4 if (Phrase1=‘FRAG’ Phrase2=‘NP’)
5 polarity = Phrase1 + Phrase2;
6 if (conj=‘but’ class=‘CC’ begin=false)
7 if (Phrase1=‘NP’ Phrase2=‘NP’)
8 polarity = Phrase2; Phrase1 = !Phrase2;
9 if (Phrase1=‘ADJP’ Phrase2=‘SBAR’)
10 polarity = Phrase1 + Phrase2;

3.3 Conjunction Rules

Based on Section 3.1 and Section 3.2, we compiled a set of about 50 conjunction
rules, taking into account the way they affect the associated sentiment. The
position of a conjunct in a sentence, alongwith the linguistic knowledge of phrases
being joined, explains the behavior of that conjunct in sentiment determination.
Our basic assumption is: “Not all phrases joined by a conjunct have same level
of significance in overall sentiment determination”. Table 1 cites some examples
of our conjunction rules. In Line 1, class=‘IN ’5 checks if although occurs as a
subordinating conjunct and begin=true ensures that this conjunct occurs at the
beginning of the sentence. Line 2 checks if first phrase is a verb phrase and
second phrase is a noun phrase. Line 3 states the rule and suggests that the
sentiment of overall sentence is dominated by Phrase2 (latter phrase). Line 3
gives additional information that the sentiments of Phrase1 and Phrase2 may be
opposite. Similarly, Lines 6-10 state the rule for but as a coordinating conjunct.
In Line 6, begin=false means that the conjunct may occur anywhere in the
sentence, except the beginning. As an example, Figure 2 shows the parsed output
for following review:

“Although shot with less style, skins is heartfelt.”

Looking at the output of the parser in Figure 2, it becomes clear that although is
used as a subordinating conjunct, connecting a verb phrase and a noun phrase.
As, although occurs at the beginning of this sentence, from Line 2 of Table 1,
we can say that the sentiment is dominated by the latter phrase, and the verb
phrase becomes irrelevant for overall sentiment determination.

4 Evaluation Framework

4.1 Corpora

For our experiments, we have used three sentence level datasets. First dataset
is in the movie domain where we use 5,331 positive, 5,331 negative and 5,000
5 We follow the conventions from Penn Treebank tag set.
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(ROOT
(S

(SBAR (IN although)
(S

(VP (VBD shot)
(PP (IN with)

(NP (JJR less) (NN style))))))
(, ,)
(NP (NNS skins))
(VP (VBZ is)

(ADJP (JJ heartfelt)))
(. .)))

Fig. 2. Parsed output for the example review

neutral sentences, to train and test our classifiers. The positive and negative
sentences are taken from Pang et al.’s [10] sentence polarity dataset (version 1.0)
and neutral sentences are taken from Pang et al.’s subjectivity dataset (version
1.0)6. The polarity dataset contains about 21,000 different words (unigrams)
and the average length of each sentence is 21 words. Second dataset is relatively
smaller, comprising of car reviews collected from various car review websites7.
After filtering out profane examples, three annotators hand annotated a corpus
of about 8,000 sentences. These annotators had an agreement score of 68.90%
on the original data, indicating ambiguities in sentence level analysis, even for
humans. It is to be noted that we finally included only those sentences in our
dataset that agreed to all the three annotators, leaving us with a set of 1,500
positive, 1,500 negative and 2,500 neutral sentences. Average length of these
sentences is 20 words. This dataset contains about 6,900 different unigrams.
Third dataset is a collection of book reviews collected from amazon website8. We
mined the book reviews to extract one-line comments given by users before the
start of each descriptive review. Reviews with 4 or 5 star rating were considered
as positive, while 1 and 2 star reviews were taken as negative. This dataset
contains 4000 positive and 4000 negative sentences9 and consists of about 6,000
different unigrams with average length of each sentence being close to 14 words.

4.2 Experimental Settings

We perform 10-fold cross-validation (CV) experiments on all the three datasets
using Joachims’ (1999) SV MLight package10 with default parameter values11.
6 Both the datasets are available at http://www.cs.cornell.edu/people/pabo/movie-

review-data
7 www.carsurvey.org and www.motortrend.com
8 www.amazon.com
9 We do not experiment with neutral reviews in book domain

10 Available at http://svmlight.joachims.org
11 Default values gave the best results for all classifiers
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For each fold, we take 90% of the total data for training our classifiers and
remaining 10% as unseen test data. Let f1, f2, .., fk be a set of features that can
appear in a sentence. In a sentence Sy, feature fx is given a weight wxy = 1 if
fx is present in Sy, otherwise wxy = 0. Each sentence Sy is represented by the
sentence vector −→

Sy := (w1y , w2y, .., wky) in the vector space model. Similar to [11],
we experimented with frequency and presence of features, and found that even at
sentence level, presence based approaches give better accuracies. To circumvent
the problem of negations, we consider the manually constructed list of polarity-
shifters from [5] and tag each word between a negation and next punctuation
with NOT_ [2]. Similar to [9], we penalize longer reviews and neutralize their
effect using length normalization. We perform cosine normalization [12], and
observe that not performing normalization hurts the performance slightly. The
cosine factor is computed as:

√
w2

1 + w2
2 + .. + w2

n, where w1, w2, .., wn are the
raw weights corresponding to the features present in the sentence.

4.3 Comparison of Methods

Majority Voting Approach: This method simply counts and compares the
presence of positive and negative feeling words in a review. General Inquirer
(GI) provides a list of 4,206 feeling words (1,915 positive and 2,291 negative).
We perform stemming12 on the dataset and also consider the effect of negation
words preceding the feeling words, to achieve the results shown in Table 2. The
columns show percentage accuracy for positive and negative sentences. As per
Table 2, we get an accuracy of 68.8%, 71.6% and 50.1% for positive sentences in
movie, car and book domains respectively. The accuracies on negative sentences
are as low as 34.1%, 43.2% and 30.6% respectively. GI + Conjunction lists the
accuracy when conjunction analysis approach is incorporated with GI. Incorpo-
rating conjunction analysis with GI improved the accuracies by almost 4-5% for
both positive and negative categories. An observation of the results showed that
2,300 negative movie sentences were identified as positive indicating the pres-
ence of mixed sentiment or sarcasm, specially in negative reviews. These results
also confirm the presence of positive sentiment words in negative reviews and
vice-versa. This analysis motivates to incorporate conjunction analysis approach
with supervised learning techniques like SVMs to achieve better accuracies.

Table 2. Accuracy in % of majority voting approach

Movie Dataset Car Dataset Book Dataset
Approach Positive Negative Positive Negative Positive Negative

GI 68.8 34.1 71.6 43.2 50.1 30.6
GI + Conjunction 73.4 38.5 76.2 46.7 51.9 31.5

12 We used Porter stemming algorithm, available at http://tartarus.org/ ~mar-
tin/PorterStemmer/
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Table 3. Average 10-fold CV precision/recall values in % for review identification

Movie Data Car Data
Approach Precision Recall Precision Recall
Unigram 92.6 96.3 83.1 79.3
N-gram 93.0 96.4 83.9 81.0

Unigram + POS 92.7 96.3 82.0 79.3
Conjunction + N-gram 93.0 96.6 84.1 81.4

Table 4. Average 10-fold CV precision/recall values in % for sentiment analysis

Movie Data Car Data Book Data
Approach Precision Recall Precision Recall Precision Recall
Unigram 78.1 75.8 88.1 89.3 80.9 80.3
N-gram 78.6 76.8 89.0 91.1 81.1 80.6

Unigram + POS 76.4 75.1 87.5 89.7 80.1 80.4
Conjunction + Unigram 80.2 78.3 90.1 90.8 81.2 80.6
Conjunction + N-gram 81.9 79.8 92.7 92.5 81.4 81.0
Modified Conjunction 80.5 78.4 91.7 91.0 81.2 80.8

Unigrams: Rather than relying on a fixed set of sentiment words, we try to
incorporate corpus-based learning with SVM. A set of all unique words present
in the corpus, having frequency above a threshold (χ) are considered as features.
While preparing the unigram list, negation words were handled as discussed in
Section 4.2. In Tables 3 and 4, Unigram shows the results for review identification
and sentiment analysis tasks respectively. On all the three datasets, χ = 2 (fre-
quency cut-off) appeared to give the best results. Clearly, learning methods with
corpus statistics outperform the majority voting approach, achieving precisions
of 78.1%, 88.1% and 80.9% for movie, car and book datasets respectively.

Bigrams/Trigrams: To capture the context in a better way and exploit the
co-occurrence of sentiment expressions, we added frequent bigrams and trigrams
to the unigrams list. Results are shown as N-gram in Tables 3 and 4 (frequency
cut-off of χ = 3 gave the best results). Negations were not handled explicitly as
n-grams are supposed to capture their effect. N-gram gives better accuracy for
both phases of the experiment. It is clear that bigrams and trigrams are able to
capture the context in a better way as compared to unigrams. A drawback of
including bigrams and trigrams is that they increase the complexity.

Parts-of-Speech Tags: To distinguish between different usages of same fea-
ture word, we added POS tags to unigrams. Unigram + POS lists the results
for both the phases in Table 3 and Table 4. However, the precision drops to
76.4% for movie data, 87.5% for car data and 80.1% for book data. So, part-of-
speech tags alone are not able to provide any additional benefit for the task of
sentiment analysis. However, accuracies are almost similar to N-gram for review
identification task.
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Conjunction Analysis: Our approach ‘Conjunction’ (Tables 3 and 4) is imple-
mented as follows: Consider a sentence: “abc phrase1 conj phrase2 pqr ”, where
phrase1 and phrase2 are phrases joined by the conjunct conj ; abc and pqr may
be any phrase, sentence or even null. If rule for conj (as in Table 1) says that
phrase2 dominates, then during training and testing our classifiers, we use this
sentence as “abc conj phrase2 pqr ”. That means we simply ignore the irrelevant
phrase as per the conjunction rule, and final sentence shortens in length.

Modified Conjunction: If rule for conjunction conj additionally states that
sentiment of phrase1 is opposite of phrase2 (e.g. Line 3, Table 1), above sentence
is used as “abc NOT_phrase1 conj phrase2 pqr”, i.e. we reverse the polarity of
phrase1 to synchronize it with phrase2 and try to improve classifier learning
(NOT_phrase1 is formed by prefixing NOT_ before each word in phrase1 ). If
no such rule exists, sentence remains same as in Conjunction approach. Fea-
tures for Modified Conjunction are n-grams. Table 4 suggests that Conjunction
+ N-gram approach significantly improves the precision of sentiment analysis
phase to 81.9% and 92.7% respectively for movie and car data. However, review
identification accuracies are not much affected by this approach. We discuss this
in detail in the following section.

5 Discussion and Further Analysis

Table 2 lists the percentage accuracy for the Majority Voting approach. For
both positive and negative categories in our datasets, conjunction analysis in-
corporated with GI gives better accuracy. Conjunction analysis is comparatively
less effective on book dataset because of improper grammatical structure of sen-
tences. These results show that conjunction analysis is indeed able to remove few
opposite sentiment feeling words from the sentences. Also, our belief that mixed
sentiment reviews usually contain conjunctions appears to be true. This moti-
vates for incorporating conjunction analysis with supervised learning techniques
(like SVM) to achieve better results.

Fig. 3. Comparison of F1 measures for review identification
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Figure 3 plots the average F1 measure of the 10-fold CV for review identi-
fication. It is clear that the review identification task is relatively simpler. If
less complexity is desired, only unigrams can also be taken as features. We ob-
served that movie dataset has 28,525 and 21,081 unigrams respectively for review
identification and sentiment analysis tasks, indicating the existence of features
peculiar to each task. However, N-gram is better than Unigram, which means
that context is important for review identification task as well. As one might
guess, for review identification, Conjunction approach is not much fruitful. This
is because the discarded phrases in neutral sentences carry no sentiment any-
ways. Still the results are better than Unigram because some of the adjective
and adverbial phrases, carrying feeling words, might get discarded by our con-
junction rules. In Figure 3, lower F1 measure on car dataset is mainly because
of smaller corpus and objective sentences being wider in scope with lot of car
domain knowledge. For example: “Big projector, xenon lights are now standard
on the coupe” is actually a neutral sentence, despite the presence of adjectives.

Fig. 4. Comparison of F1 measures for sentiment analysis

Figure 4 plots the average F1 measure of the 10-fold CV for sentiment analysis.
It becomes clear that corpus based learning with unigrams is better than naive
approach like Majority Voting. Since features of opposite class can also occur
in a sentence (Section 4.3), machine learning based approaches are expected to
perform better. POS tags slightly deteriorate the performance at sentence level:
we guess, the benefit of being able to differentiate between feature usages is
over-ruled by the inability to take into account the effect of negations and also
the increased feature space dimensionality. Our approach based on conjunction
analysis appears to give the best results with n-grams as features, as context is
captured in a better way using n-grams. Our assumption that conjunctions affect
sentence level sentiment is very much true. Modified Conjunction performs better
than N-gram and even Conjunction + Unigram. So, our rules for conjunctions
joining opposite sentiment phrases hold true. However, this approach is less
accurate than Conjunction + N-gram because of the inability to efficiently negate
a phrase; simply adding a NOT_ before each word may not work accurately for
all phrases. Finally, we hunch that higher accuracies on car reviews are because
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of: (1) Relatively smaller feature dimension (6,900 unigrams compared to 21,000
for movie reviews), and (2) We included only those reviews in the car dataset
that agreed to all three annotators.

6 Conclusions and Future Work

Automatic sentiment analysis can never be perfect at sentence level: the senti-
ment of a statement depends on context, domain knowledge, sarcasm or irony -
all of which are still far beyond the current classification techniques. However,
we have shown that at sentence level, machine learning algorithms alone are
effective for differentiating between subjective/objective reviews, but linguistic
analysis becomes essential for sentiment analysis. While n-grams are able to cap-
ture context, they are unable to handle mixed sentiments that exist in reviews.
We believe that not all phrases connected by a conjunct, have same level of
significance in overall sentiment determination. We propose an approach based
on conjunction analysis that determines phrases in a sentence which dominate
the sentiment. On movie, car and book reviews, our approach when incorporated
with SVM outperformed other non-linguistic classifiers. In future work, we would
like to explore the applicability of our approach to perform sentiment analysis
on documents. Our conjunction rules can be extended to cover all conjunctions
in the language with deeper linguistic knowledge. Instead of relying on the fre-
quency of feature words, a good feature selection criterion may be considered so
as to limit the feature vector dimensionality and achieve better results.
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Abstract. We present an analysis of the linguistic markers of the enunciative 
modalities in direct reported speech, in a multilingual framework concerning 
Arabic and French. Furthermore, we present a platform for automatic annota-
tion of semantic relations, based on the Contextual Exploration method. This 
platform allows the automatic annotation and categorisation of quotational 
segments in both languages, exploiting a semantic map based on the notion of 
speaker commitment in enunciation. 

Keywords: Automatic annotation, multilingual approach, commitment, seman-
tic map, Contextual Exploration. 

1   Introduction 

Reported speech, both in the form of direct quotation and indirect paraphrases, is the 
most frequent expression found in newspapers, where it can occur in up to 90% of the 
sentences of the latter[1]. Nevertheless, the existing Natural Language Processing 
systems do not usually target on reported speech itself, since they mainly focus on an 
automated retrieval of quoted segments, without going further into neither the linguis-
tic analysis of the introduction markers of the reported speech, nor the enunciative 
modality. The latter concerns, for instance, the position of the enunciator towards 
what he reports, or the manner in which he describes the reported enunciation or the 
attitude of the others speakers, etc. 

Some research on the Opinion Mining uses automatic procedures, generally based 
on statistical methods, in order to assign a subjective or objective character to a word, 
a sentence or a text, and to determine the attitude of the speaker (orientation: positive, 
negative or neutral) or the degree (strength) of this attitude [3] ; [4] ; [5] ; [6]. This 
lexical approach seems to be limited because the terms in a certain context may have 
an emotional value which is exactly opposed to their values if considered individu-
ally, for example: 

“This film should be brilliant. It sounds like a great plot, the actors are first grade, 
and the supporting cast is good as well, and Stallone is attempting to deliver a good 
performance. However, it can’t hold up”, cited in [7]. 
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Many researchers in this field have observed the same phenomenon and speak in 
favour of combining lexical information with more complex linguistic analysis: Po-
lanyi and Zaenen [8] (cited in [9]), state the necessity of taking into consideration the 
negations, some connectors (Although Boris is brilliant in math, he is a horrific 
teacher) and the modal operators (If Mary were a terrible person, she would be mean 
to her dogs). 

We can also mention other existing works [2] that develop a linguistic analysis of the 
modalities concerning events (in the aspectual sense). The term modality for the author 
refers to certain degrees of possibility, beliefs, opinions, evidentiality, etc., however the 
polysemy of modal auxiliaries (must, may…) is not taken into consideration. 

In our work, we propose a linguistic analysis of enunicative modalities in direct re-
ported speech (D-RS) in Arabic and French. This analysis takes into account the 
marks of the enunciator in the discourse (his attitude towards what is reported), and 
allows the organisation of modality values in a semantic map. This map is exploited 
by an automatic system of grammatical and discursive annotations, based on the Con-
textual Exploration. This method, unlike the above-stated approach [2], requires only 
the analysis of surface linguistic forms. 

Our presentation is organized around two main lines: a linguistic one, which ex-
poses the theoretical principles of the analysis and categorization of linguistic data; 
and an other, computational, which explains the architecture of the implemented sys-
tem on the different processing levels. 

2   Contextual Exploration Methodology 

In the linguistic study of enunciation, the construction of an utterance (or a text) has 
to take into account some language operations such as predication, discourse opera-
tions and operations of commitment, the expression of which leaves a certain amount 
of surface linguistic traces. By analysing these linguistic indicators, the linguist is able 
to reconstruct, according to the process of abduction [10], the underlying operations 
of language production. Our methodology, the Contextual Exploration (CE) [11], is 
based on the analysis of these surface linguistic indicators, caracterising the textual 
representations used by the enunciator and which correspond to a given point of view1 
frame, such as citations, definitions or causal relations, etc. And because in natural 
languages the relationship between operations and linguistic indicators is rarely an 
one-to-one function, we need to explore the context in order to identify complemen-
tary clues that confirm or falsify the pertinence of the hypothesis first motivated by 
the indicators. The following example is analyzed by the CE’ strategy: 

 

The writer fascinated us by giving to us this mocking sentence: “all suns rise from the dor-
mer window of Hajja Adiba, the sun of the West Bank, the sun of 48th and the sun of Bush”! 

                                                           
1 The notion of “point of view” in our approach corresponds to the analysis of a concrete task 

defined by the user. 
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In this example2, the indicator of quotation is the quotation marks, and the  
complementary clues are combination of the verb «  رح  by giving » and the » / « تط
declarative noun « ارة  ,sentence ». As far as the modal clues are concerned » / « العب
they are: «  اخرة  / « أسَرَتنا » ; mocking » which marks the attitude of the speaker » / « الس
« fascinated us » and « ! », that denote the attitude of the enunciator. 

 

The linguistic analysis performed by the CE method does not rely on any prelimi-
nary morpho-syntactic analysis or statistical method, and is composed mainly of two 
parts of procedure made by the linguist: one that consists in studying various types of 
texts in different languages and distinguishes between two types of linguistic markers: 
indicators and clues ; and another that concerns CE’s rules and exploits these markers 
(by using a CE engine), in order to find the surface level markers of the textual repre-
sentations corresponding to the given point of view. 

This method has been used in different computer applications, such as automatic 
summarization [12] [13] [14], extraction of causal relationships [15] and relationships 
between concepts [16]. 

3   The Linguistic Markers of Enunciative Modalities in D-RS 

The notion of modality has been studied from many different perspectives: Logic, 
Philosophy and Linguistics [28] ; [29] ; [30]. In the field of Linguistics, modality can 
be considered from a syntactic, semantic or enunciative perspective. 

We shall consider modality in an enunciative approach, according to Ch. Bally 
[31], E. Benveniste [32] and A. Culioli [33], so we distinguish between the enunciator 
and the speaker [34]: in reported speech, the enunciator makes a commitment to  
the utterance in its totality (the author), and the speaker is the third person quoted by 
the author, the “last enunciator who directly makes commitment to the predicative 
relation” [35]. 

In the theory of Enunciation, the commitment of an enunciator of an utterance in-
troduces aspect and tense variations or enunciative modalities, marked in the utter-
ance by traces that the enunciator leaves in his speech. In our case, these traces can 
manifest themselves in the introductory portion of the direct speech in different 
forms: they may indicate the enunciator’s position towards what is reported, describe 
the speaker’s attitude towards what is being said (in general) or towards what the 
speaker himself is saying; or refer to the relationship between the speaker and the 
enunciator, etc. In each of the processed languages, the enunciative modality markers 
in D-RS are either those that introduce the citation, or other markers that are other-
wise appointed. 

                                                           
2 http://www.arabicstory.net 
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3.1   Citational Linguistic Markers 

The term reported speech covers a number of forms [17]: direct and indirect speech, 
free indirect speech, direct speech introduced by “that” [18], etc. We are particularly 
interested in direct reported speech (quotations). This linguistic act permits the  
enunciator to make a commitment for what is said or written by the speaker, without 
modifying it.  

As we have already mentioned above, we can distinguish two types of linguistic 
markers: indicators and clues. For us, the indicators of D-RS are typographical signs 
(in French, Arabic and also in a number of many other languages) that define the 
scope of the D-RS. These signs are the quotation marks surrounding the clause3, 
sometimes preceded by a colon (therefore the clause constitutes a syntactically inde-
pendent sentence) or by the conjunction ‘that’.  

As to the contextual clues for D-RS, they are the declarative linguistic markers that 
introduce or succeed the citation:  

- verbs (X denied the facts: “…”): Arabic examples:  ;  ...أشار إلى, عبّر عن, أعلن, زعم
 French examples: écrire, souligner, avouer, affirmer, critiquer, … 

- nouns (This is the declaration of X: “…”): Arabic examples: بيان, تصريح, اعلان  ; 
 French examples: déclaration, annonce, slogan, appel… 

- gerunds (X affirmed this by adding: “…”): Arabic ex.: ًمؤآداً, مضيفاً, قائلا...  ; 
 French examples: en soulignant, en affirmant, en ajoutant… 
- adverbials (According to X: “…”): Arabic ex.: اً لـوفق,  على ذمة, نقلاً عن, بحسب... 
 French examples: d’après, selon… 

We note that in French, unlike Arabic, verbs can be positioned in the middle of the 
citation (“…, affirme-t-il, …”). 

3.2   Linguistic Modality Markers 

In a D-RS, the enunciator can take into account the oral or written speech of the 
speaker, or describe the speaker’s attitude towards his own speech or that of his inter-
locutor. On the other hand, the enunciator can show his position towards what he 
reports. We shall see in more detail some of these enunciative relationships: 

- The enunciator reports the speaker’s declaration (he says, he declares, he adds, 
he repeats, etc.). The latter makes a commitment to the predicative relation 
without getting involved. 

- The enunciator reports the speaker’s commitment (he confirms, he asserts, he 
certifies, etc.). The latter takes the responsibility for the matter of the clause. 
This language act is a commitment concerning the validity of a predicative re-
lation. 

- The enunciator describes the relationship between the speaker and the inter-
locutor: this relationship can be related to the volutive modalities (to encour-
age, to forbid, to command) or to evaluative modalities (to make fun, to  
denounce, to apologize). In a question, for example, the speaker demands the 

                                                           
3 We do not take into consideration the ‘textual islands’ (She criticised the president’s  

“machiavelism”). 
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commitment of the interlocutor in regard to the content suggested by the 
speaker (he asked his son: “…”). 

- The enunciator relates the act of locution (I say that X said: « … ») 
- The enunciator makes a commitment to the truth of the locution act: I affirme / 

it’s sur that X said: « … » ; 
- The enunciator indicates a judgement on the spatio-temporal realisation of the 

predicative relation: X said in Goteborg yesterday that: « … ». 
- The enunciator makes commitment on the evaluative modalities that pertain to 

the veracity of the speaker’s utterance (an untrue declaration, a credible ex-
planation…) or on positive or negative values (good / bad explanation…). 

- The enunciator makes commitment on the evaluative modalities pertaining on 
his own attitude (happily he confessed…) or to the attitude of other speakers 
who are implied in the reported enunciation (sincerity: to pretend ; agree-
ment/disagreement: wrongly ; pronunciation: to babble). 

These modalities can be marked by the choice of the declarative expression intro-
ducing the citation seen above (to say, to whisper…). But they can also be tagged by 
polysemic declarative markers (to make fun of, to humiliate…) or by non declarative 
markers that denote the speaker’s attitude for example (to interrupt, to blush…). 
Other grammatical categories are also to be observed, such as adverbs (alas, finally) 
and adjectives (untrue, credible). 

Among the markers of modality, some expressions introducing citations, especially 
the verbs, have been subject to diverse syntactic, semantic and pragmatic analysis 
[19] ; [20] ; [21] ; [22] ;  [23] ; [24] ; [25]; [26] ; [27]. The analysis that we have 
adopted here differs on several points: the linguistic markers of the reported speech 
and modality concern all lexical categories (verbs, nouns, adverbs…) ; these markers 
have been studied cross-linguistically (Arabic and French); the framework is that of 
the Enunciative Linguistics where the mark of the enunciator is analysed in the dis-
course ; finally, this work is carried out in the perspective of automatic language 
processing and our final goal is to provide automatic applications that respond to 
concrete needs. 

4   Categorisation of the Enunciative Modalities: Semantic Map 

We have analysed, in a contrastive manner, the markers of enuncicative modalities in 
Arabic and French and we then organized them according to a semantic map, based 
on the principle of commitment [35], [36].  

This semantic map (SM) is a “linguistic ontology” of grammatical or discursive 
categories, interlinked by the elements of specification, opposition, application, value 
attribution, etc. It corresponds to one or more points of view. The values of the SM 
(the nodes of the graph) are represented in texts by different indicators and clues 
(node instances) in one language or another4, and by the CE rules that are associated 
to these instances. Thus, we have organised the enunciative relations [37] in the fol-
lowing figure: 

                                                           
4 Some values of the SM can be attested in one language and not in another. 
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Fig. 1. Semantic Map of enunciative modalities in D-RS 

The fundamental dialogical dipole is between the enunciator (I) and the co-
enunciator (YOU). The (I) reports to (YOU) the utterance of a speaker (X), absent 
from the dialogue. In the same way, the D-RS is centered on the dialogical relation 
speaker-interlocutor. All the enunciative relations in this SM are under the commit-
ment of the enunciator. Some of them concern the simple I-YOU speech relation 
(M0), and others concern the D-RS (M1 to M7). 

The categories M1 to M4 denote the relation between the speaker and his utterance 
; the categories M5 to M7 indicate the relation between the speaker and the interlocu-
tor. We have also added other categories to the SM, in order to describe the attitudes 
of the different speakers implicated in the D-RS: Attitude-I, Attitude-YOU, Attitude-
X (speaker), Attitude-Y (interlocutor) and Attitude-Z (speaker absent). 

The categories of the SM can be related by application, incompatibility, specifica-
tion, etc. In this way, the spatio-temporal category that depends on the enunciator can 
be applied to all the sub-categories from M0 to M7. Similarly, all the categories con-
tain other sub-classes, such as assertion of the speaker, that can take several values 
(individual assertion, universal or collective assertion, etc. [35]). 

5   Program Implementation of the Automatic Annotation 

The applicative part of our work [38] consists in the implementation of an automatic 
annotation tool for grammatical or discursive categories. This tool, EXCOM5, is com-
posed by a CE engine and the supplementary modules6 connected to it. 

The automatic annotation requires pre-processing of the linguistic resources, which 
means: corpora segmentation, markers organization and CE rules construction. 

                                                           
5 For “EXploration COntextuelle Multilingue”. Our system in its second edition is freely avail-

able online for the use of researchers on the following address: https://www.excom.fr 
6 For the implementation we have used Java, XML, JDOM, XLINK, JNLP, etc. 
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5.1   Automatic Segmentation 

In our work, the segmentation of a text into smaller parts helps in determining the 
search fields for linguistic markers, and the textual segments which are to be anno-
tated. This consists in defining the boundaries of sections, titles, paragraphs and  
sentences.  

The sections are determined by the presence of titles in the text, the titles are defined 
by several heuristics7, and the paragraphs are delimited by the sign of carriage return. 
In order to split the paragraphs into sentences, we used a set of rules, which can be 
modified by the user, and based on disambiguation of typographical signs8 and linguis-
tic terms9. This method [39] takes into account the difficulties encountered in Arabic 
(lack of capitalization and of vocalization) and in French (many abbreviations). 

The input files for the segmentation module are raw text files in UTF-8 encoding, 
in different languages, and the output files are in the XML DocBook format for arti-
cles. The results of segmentation are satisfactory, however they must be evaluated in a 
large scale, and improved, for example, by the identification of item lists and the 
hierarchy between titles and sub-titles. 

5.2   Automatic Annotation 

The core of the EXCOM architecture (Fig. 2) consists of a CE engine that manipu-
lates the CE rules and linguistic markers associated with the annotations. The annota-
tion process consists in the research of the indicators in the search fields defined by 
the segmentation process. The presence of indicators calls the application of CE rules 
and then the conditions of these rules are examined (research of contextual clues). If 
all the conditions are satisfied, the CE engine either attributes the corresponding anno-
tation to the segment, or calls (recursively) another CE rule.  

 

 

Fig. 2. Simplified architecture of the platform EXCOM 

                                                           
7 For example, if the line is not longer than n words and if it is terminated by colon. 
8 For example: period, semicolon, question mark, etc.  
9 Connectors like but, however, nevertheless, so that, etc.  
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As to the CE rules, they are automatically generated (with XML format) by using a 
graphical user interface that offers the possibility of defining and modifing all of the 
functional parameters of the CE engine, in order to separate maximally the data from 
the implementation. The efficiency of the CE rules corresponds to the functionalities 
of localization and disambiguation of markers, offered by the CE engine, such as for 
example: 

- The hierarchy between the indicators that carry the semantic meaning of the cate-
gory in question and the contextual clues. From a theoretical perspective, this 
principle is fundamental for us and concerns one of the differences between the 
CE method and other context analysis methods. 

- The contextual clues can be of two types: positive (their presence is obligatory) 
and negative (their presence cancels the action of annotation). 

- The markers (indicators or clues) can be either linguistic units (words or regular 
expressions), or already annotated segments (in an already annonated text). 

- The targeting of a part of a text can be specified and used as search field by using 
the XML structure of the file and the identified titles in the segmented document 
(for ex.: find indicators in all the titles, or find indicators in the last sentence of 
the second paragraph of the first section). 

- The research of the contextual clues is carried out in the context of the indicators: 
before, after or inside the indicator (for ex.: a morphem in a word).  

- Different types of clues can be combined by logical operators: between the posi-
tive clues, before and after the indicator, between the negative clues, before and 
after the indicator. These operators can be: AND, OR, XOR. (for ex. looking at 
clues before OR exclusively (XOR) after indicators). 

- An order can be defined between the positive and the negative clues in the con-
text before or after each indicator (for ex.: in the context before the indicator, a 
negative clue cannot occur before a positive clue). 

- Meta-rules can be set by the user in order to define priority between rules or the 
navigation mode in the semantic map (this second section is under construction). 

The annotation of the segments contains the following meta-data: the semantic 
category of the annotation, the class of the indicator that has triggered the annotation, 
the identifier of the CE rule that has carried out the annotation, etc. This information 
allows the linguist to improve the rules, as well as the relevance of the linguistic 
markers. 

This is an example of a simple EC rule for the citation, in a declarative form: 

CE rule # 5: 
Given P the following research space: all sentences of the first paragraph of the last section 
If (indicator from the class “2-quotes” exists in P) 
If (in the before-indicator-context does not exists a negative clue from the class “references”) 
If (in the middle-indicator context exists a positive clue from “declaration-verb-reversed”) 
Then: Give the semantic annotation "quotation-middle-conclusive" to P 

This rule can annotate some sentences found in the first paragraph of the last sec-
tion of an article which carry a conclusive value in addition to their enunciative mo-
dality. For example:  
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“Nevertheless, he concludes, this rapprochement between the European business 
companies is one of the challenges of tomorrow”. 

Once the texts are annotated, the user can then proceed to the post-processing 
treatment by using a module which compiles all annotated segments of the corpus in a 
database, with an interface allowing the navigation between these segments and their 
original contexts. 

6   Evaluation 

We set up a first evaluation test consisting in the judgment of the capacity of the sys-
tem to categorize10 the marked segments of quotations, according to the SM. The 
corpus on which we worked was composed of 250 texts of journalistic articles per 
language handling various subjects11. We made preliminary tests on 80 % of the cor-
pus aiming the EC rules adjustment. Then we performed the evaluation test on the 
other part of the texts (20 %). 

Based on the results on each corpus, we extracted randomly 39 segments annotated 
according to the following three semantic categories12:  

1) the declaration of the speaker without commitment to the content (category M1), 
for instance, X says: "…" ;  

2) the commitment of the speaker in regard to the content (category M2): for instance, 
X affirms: "…" ;  

3) the enunciator’s comments about the speech of the speaker, concerning the degree 
of the sincerity of the speaker or the truth of his speech (category M3): for instance, 
X claims: “…”. 

The test consisted then in asking the subjects (15 French-speaking persons13, and 9 
Arabic-speaking persons14) to annotate manually the 39 extracted segments, according 
to the same semantic categories. For each segment the subjects had to choose one of 
the proposed categories and assign it to the sentence. For the calculation of the 
evaluation measures, we have used the evaluation interface EVA-215. 

In order to calculate the precision and recall measures, the “correct” annotations 
were determined on the basis of the set of human annotations. These correct annota-
tions are defined as the most frequent annotations attributed by the subjects. The re-
sults for the Arabic and French corpus are the following: 

                                                           
10 As for quotations localization by means of typographical indicators, no evaluation has been 

made due to the relative simplicity of the task. 
11 The French corpus was taken from the following newspapers: Le Monde Diplomatique, le 

Figaro, l’Humanité and Libération ; and the Arabic one from: Al-Nahar, AL-Ahram, 
Tishreen, Al-Jazeera, Al-Sabah, Al-Alam and Al-Quds. 

12 The only restriction was that the segment numbers by category had to be the same for both 
languages. 

13 PhD and Master students of Human Sciences Department of Paris-Sorbonne University and 
Paris 7 - Denis Diderot University. 

14 Arabic-speaker students of Sorbonne Univ., Paris-Jussieu Univ., Lyon and Damascus Univ. 
15 Evaluation d’Annotation Automatique, developped by I. Atanassova and M. Bertin (LaLIC). 
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Precision 0,71 0,73 0,86

Recall 0,75 0,79 0,67

F-measure 0,73 0,76 0,75

Declaration Assertion Comments
0,00

0,50

1,00

Precision 0,65 0,87 1

Recall 0,92 1 0,50

F-measure 0,76 0,93 0,67

Declaration Assertion Comments

Fig. 3. The results of evaluation on the Arabic (left) and French (right) corpora 

7   Perspectives 

Our first evaluation results are quite encouraging. We are currently drawing up a 
deeper protocol for the evaluation of all categories in the SM, in order to validate this 
part of the work.  

These tests have allowed us to draw comparisons between French and Arabic on 
several levels. First, we have noticed that in Arabic the surface forms are generally 
more polysemous than in French, especially the forms that have a three-letter root. 
This difficulty, already well known [40] ; [41] ; [42] ; [43], is due to the morphologi-
cal ambiguity in Arabic caused, above all, by the absence of vocalisation, the aggluti-
nation and the relatively free word order in a sentence. To resolve this problem, we 
have used clues for the disambiguation of certain markers, in order to validate or not 
their correspondence to the researched forms. Secondly, we remark that the occur-
rences of direct speech in French texts and the use of enunciative modalities are much 
more frequent than in texts in Arabic. Finally, we should elaborate more our reflexion 
on our categorization of the assertion class and its sub-categories. Some of these cate-
gories were manually annotated as a declaration. 

As the annotation procedure is independent of a given point of view (the D-RS in 
our case) and of the processed languages (Arabic and French), it is absolutely possible 
to annotate other types of texts with different linguistic resources, in different lan-
guages and according to other points of view. The annotation platform has also been 
then tested in the following works: identification of the hypotheses in biological arti-
cles in English16, annotation of D-RS in Korean17 and of events in articles in French 
and Polish18. These works are in progress and will be published shortly. It becomes 
also conceivable, in futur work, to intersect the annotations according to different 
semantic maps, such as, for example, that of D-RS and the SM of bibliosemantics or 
contact between people (meetings). 

                                                           
16 Desclés J., Ecole Normal Supérieure de Paris. 
17 Suh J., Seoul Women's Univ. 
18 Gwiazdecka E., Univ. of Warsaw. 
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Type-Theoretical Bulgarian Grammar

Krasimir Angelov

Chalmers University of Technology, Computer Science and Engineering,
SE-412 96 Göteborg, Sweden

Abstract. We describe a type-theoretical resource grammar for Bulgar-
ian in the Grammatical Framework (GF). The grammar allows parsing
and generation of natural language text to and from abstract syntax
representation. The representation is common for all languages in the
resource library in GF which makes it possible to translate between any
of the two supported languages and to have multilingual text authoring.
We developed formalized grammar rules for Bulgarian and we show how
the language specifics fit into this multilingual setting.

1 Introduction

Grammatical Framework (GF) [1] is a grammar formalism based on the type
theory and there is a high-level language with compiler and interpreter for it.
Within the framework a resource grammar library was developed that contains
grammars for ten languages: one Slavic language: Russian [2], three Scandinavian
languages: Swedish, Danish and Norwegian, three Romance languages: Italian,
Spanish and French, two Germanic languages: English and German and finally
one Finno-Ugric language: Finnish. There is also a still unfinished grammar for
Arabic [3]. We added the eleventh language - Bulgarian.

Although this is not the first Slavic language in the library, this is the first
South-Slavic language. Russian itself is East-Slavic and it differs significantly
both in morphology and syntax. Furthermore, Bulgarian belongs to the Balkan
linguistic area and has some characteristic properties such as a complete loss of
case declension, lack of verb infinitive forms and the development of a definite
article.

The GF grammars can share common code via inheritance and parametricity
[4]. This is already used to capture the similarities between the Scandinavian
and the Romance languages. There are common Scandinavian and Romance
modules from which the concrete grammars are inherited. Although this can
not be easily done for Bulgarian and Russian, the Bulgarian grammar is a good
common ground candidate for Serbian and Macedonian since they are of the
same family and of the same language area.

The grammar has two levels in GF: abstract and concrete. The abstract level
is language independent and represents the original textual sentence as a typed
lambda term (abstract syntax). The concrete level gives the mapping from a
given lambda term to its concrete textual representation. It is possible to have
multiple concrete syntaxes for each abstract syntax. This allows one language

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 52–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to be translated into another or to simultaneously generate equivalent texts in
different languages.

Furthermore, the grammars in GF are divided into resource grammars and
application grammars. The resource grammars have a wider coverage and are lin-
guistically oriented but they can be highly ambiguous. The application grammars
reuse the already existing resource grammars but specialize them in a specific
context. In this way they are less ambiguous and usually they are extended with
an application specific dictionary.

The grammar that we developed is a resource grammar. On top of it, the
developer could create an application specific grammar with a very limited lin-
guistic knowledge. It could be started with an English grammar which then could
be translated to Bulgarian just by introduction of new lexicon since the abstract
syntax representation is common for all languages.

The current abstraction proved to be enough for many dialog and text gener-
ation projects (KeY, TALK, WebALT). For that reason constructions that are
not covered in the current abstract syntax are out of the scope of the current
project. We found that the current design provides sufficient abstraction and we
did not have to change it in order to fit the new language.

In the next sections we first explain the morphology and then the most impor-
tant parts of the grammar: noun, verb and adjective phrases, numerals, declara-
tive sentences, questions and imperative utterances. Comparative examples are
given mainly in English but where it is more appropriate there are also examples
from other languages.

2 Morphology

The grammar has a complete morphology for adjectives, nouns, verbs, numerals
and pronouns. The full word classification is given in [5] where the words are
divided in 187 paradigms. Each paradigm in GF is defined as a function that
takes the base form and produces a table with all possible word forms.

GF has a small parallel dictionary of 350 words that is translated to all lan-
guages and is used mainly for development and testing purposes. Another small
dictionary of about one hundred words contains structural words like pronouns,
prepositions and quantifiers. These dictionaries are translated to Bulgarian as
well. In addition there is a bigger dictionary of 57805 words that is only for Bul-
garian and defines the base form, the part of speech category and its inflection
paradigm. The dictionary is an import of all adjectives, nouns and verbs from
the BGOffice project.1

In the abstract syntax the words are defined as constants of some of the
lexical categories. For example in the Lexicon the words red, go and apple are
declared as:

fun red A : A ;
go V : V ;
apple N : N ;

1 http://bgoffice.sourceforge.net

http://bgoffice.sourceforge.net
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The corresponding linearization rules in the concrete syntax for Bulgarian are2:
lin red A = mkA076 ”červen” ;

apple N = mkN041 ”jabâlka” ;
go V = actionV (mkV186 ”otivam”) (mkV146 ”otida”) ;

Here the numbers 076, 041, 186 and 146 are the paradigm numbers given in
Krustev [5]. The verbs have two base forms which correspond to perfective and
imperfective aspect. The usage of verb aspect is explained in section 4.

For comparison we also give the linearization rules for English:
lin red A = duplADeg ”red” ;

apple N = regN ”apple” ;
go V = mk5V ”go” ”goes” ”went” ”gone” ”going” ;

In English apple is a regular noun and it is defined with the regN function. In
contrast red is defined with duplADeg because it doubles the ending consonant
in the comparative form. The verb go itself is irregular and it is defined by
enumerating all its forms.

The application grammars are supposed to use their own context specific
dictionaries but when it is appropriate they can reuse the already existing one.
The advantage of having a context specific dictionary is that it is much less
ambiguous. For example the Bulgarian word vreme in general has the meaning of
either time, weather or tense. Despite this an application in the weather forecast
area will use the second translation while an application for airport service is
more likely to use the first one and neither of them will use the tense meaning.

3 Noun Phrases

The nouns in Bulgarian are divided into four genders: masculine animate, mascu-
line inanimate, feminine and neuter. There are two numbers singular and plural.
The main noun forms are illustrated on fig. 1.

In the sentence the noun modifiers (adjectives, numerals) are in gender and
number agreement with the noun. The inflection for all modifiers except the car-
dinal numerals does not distinguish between masculine animate and masculine
inanimate so they have effectively merged into a single gender. For the cardinals
there is a distinct masculine animate form (mǎžkolična forma).

dvama mǎže two men
dva učebnika two textbooks
The animate gender includes all human masculine words like man, teacher

and king while others like kon (horse) are inanimate despite that they are alive.
Most informal grammars do not mention the existence of four genders and de-
scribe the masculine animate form as an exception. In the formalized rules it
behaves exactly as a separate gender and this is not something uncommon in
the other Slavic languages. For example in Czech there is a much clearer dis-
tinction between masculine animate and masculine inanimate in the declension
system. In Bulgarian the animate gender is not fully developed.

2 In the paper we use the scientific transliteration of cyrilic but the actual grammar is
in cyrilic.
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In the rest of the section we will state masculine gender when there is no
distinction between animate and inanimate and we will specify it explicitly
otherwise.

Bulgarian and Macedonian are the only Slavic languages that developed defi-
nite article. The article is a clitic and attaches to the end of the first nominal in
the noun phrase that is noun, adjective, pronoun or numeral. Its form depends
on the ending of the nominal and on the case when the nominal is a masculine
singular noun. The masculine nouns use full definite article (pǎlen opredelitelen
člen) when they are in singular and they have the role of subject in the sentence.
The definite noun forms are recorded in the inflection tables together with the
singular and the plural forms.

There is also a vocative form used for a noun identifying the object being
addressed: mǎžo, ženo. The vocative form is a remnant from the old vocative
case in the Old Church Slavonic.

The masculine inanimate nouns have also a special plural form used for count-
ing and after the determiner njakolko (few):

mnogo učebnici many textbooks
njakolko učebnika few textbooks
dva učebnika two textbooks
Although some masculine animate nouns also have countable forms, their

usage in the literary language is discouraged [6]. One exception is the case of
homonyms with animate and inanimate meanings. In this case they are two
different abstract syntax constants in GF and are treated properly. The usage
of the countable forms for masculine animate in our grammar is not supported.

Sg+Indef Sg+Def SgDefNom Pl+Indef Pl+Def English Gender

mǎž mǎža mǎžǎt mǎže mǎžete man masc animate
učebnik učebnika učebnikǎt učebnici učebnicite textbook masc inanimate
momče momčeto momčeto momčeta momčetata boy neut
žena ženata ženata ženi ženite woman feminine

Fig. 1. Noun Forms

In the concrete syntax the category N is represented by the record:
lincat N = {s : NForm ⇒ Str; g : DGender} ;

where NForm is:
param NForm = NF Number Species

| NFSgDefNom
| NFPlCount
| NFVocative
;

The Number, Species and DGender parameters are defined on figure 2. Here
the NF constructor represents the common case while NFSgDefNom, NFPlCount
and NFVocative represent the forms with full definite article, the countable form
and the vocative. When the noun does not have some of the special forms then
the corresponding normal singular or plural form is filled in.
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The noun is the head of the common noun (CN ) phrase. The phrase is formed
by these three functions:

fun UseN : N → CN ;
UseN2 : N2 → CN ;
ComplN2 : N2 → NP → CN ;
AdjCN : AP → CN → CN ;

Here N2 is a category of the relational nouns and AP is the adjective phrase.
The common noun itself is the head of the noun phrase (NP) formed by:

fun DetCN : Det → CN → NP ;
DetSg : Quant → Ord → Det ;
DetPl : Quant → Num → Ord → Det ;
every Det, someSg Det, somePl Det : Det ;
much Det, many Det : Det ;
few Det : Det ;

The first two determiners are synthetic and they combine quantifiers with
ordinal and/or cardinal numerals. The Quant category specifies the definiteness.
It has two members DefArt and IndefArt which in English generate the “a” and
“the” articles. In Bulgarian there is no indefinite article and the noun phrase is
just unchanged. When the DefArt is chosen then it adds the definite article to
the first nominal in the noun phrase. The selection of the first nominal is ensured
by a system of parameters in DetSg , DetPl and AdjCN .

The determiners also specify whether the noun has to be in singular, plural or
countable plural form. Singular is used with DetSg , DetPl with cardinal one and
with the lexical determiners someSg Det (njakoj, njakoja, njakoe) and much Det
(mnogo). The determiners somePl Det (niakoi), many Det (mnogo) and DetPl
without numeral (NoNum) require the noun to be in plural. Finally few Det
(nijakolko) and DetPl with any cardinal greater than one select a countable
form for the noun.

In the N category the g field is of type DGender (fig. 2) and this allows the
right numeral inflection in DetPl. At the same time the agreement in NP:

lincat NP = {s : Role ⇒ Str; a : Agr} ;

param Number = Sg | Pl ;
Person = P1 | P2 | P3 ;
Gender = Masc | Fem | Neut ;
DGender = MascA | Masc | Fem | Neut ;
Species = Indef | Def ;
Case = Acc | Dat ;

AForm = ASg Gender Species
| ASgMascDefNom
| APl Species
;

oper Agr = {gn : GenNum ; p : Person} ;

Fig. 2. Inflection Parameters
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contains only the simplified Gender which does not make a distinction between
masculine animate and masculine inanimate. This reflects the fact that the ad-
jectives and the verb participles have only one form for masculine.

The Role parameter plays the role of the case in the other languages. The
role can be either subject (RSubj) or object (RObj c, where c is of type Case).
In the other languages there is a nominative case which is used to mark the
subject and is equivalent to our RSubj role. In Bulgarian it is more useful to
distinguish between case and role because the case is also used as a synthesized
parameter in the medial and phrasal verbs and also in the prepositions. In these
situations the case is always accusative or dative and never nominative. In fact
the Bulgarian language is mostly analytic and the case makes a distinction only
for the pronouns and the definite forms in masculine.

4 Verb Phrases

The verb category is the most complex. There are three simple verb tenses
(present, aorist, imperfect) and three synthetic participles (perfect, plusquam-
perfect, present participle). These synthetic forms are used in six other com-
pound tenses: future, past future, present perfect, past perfect, future perfect
and past future perfect. There are also passive voice and imperative, conditional
and inferential moods.

In addition almost all verbs come in pairs with equivalent lexical meanings
but with different aspects. For example otivam and otida are two different verbs
which are both translated as “go” in English but they express different aspects
in Bulgarian. The former is with imperfective aspect and represents the event
in action while the letter is with perfective aspect and represents the event as a
whole together with its start and end. The grammar has only one abstract syntax
constant for each lexical meaning and for that reason the verbs are coupled
together in pairs. Which verb will be used in the linearization depends on the
grammatical tense and aspect.

The verb category V in the concrete syntax is defined as:
param VForm = VPres Number Person

| VAorist Number Person
| VImperfect Number Person
| VPerfect AForm
| VPluPerfect AForm
| VPresPart AForm
| VPassive AForm
| VImperative Number
| VGerund
;

VType = VNormal
| VMedial Case
| VPhrasal Case
;

Aspect = Imperf | Perf ;
lincat V = {s : Aspect ⇒ VForm ⇒ Str; vtype : VType} ;
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The inherent VForm parameter is a mixture of tenses, voices and moods
because it enumerates all possible morphological forms. The compound tenses
and moods are not listed because they are formed on the level of the VP category.

The VType parameter marks two special kinds of verbs medial and phrasal:

Bulgarian English VType
Az rabotja I work VNormal
Az se smeja I smile VMedial Acc
Az si spomnjam I remember VMedial Dat
Men me trese I shiver VPhrasal Acc
Na men mi lipsvaš I miss you VPhrasal Dat

The medial verbs express middle voice but syntactically are marked with the
passive voice particle se/si. The difference is that they either cannot be used
without it (a) or they have different meanings if they are used without it (b-c):

a * Az boja
b Az se kazvam . . . My name is . . .
c Az kazvam . . . I say . . .

The passive/middle voice is marked with the clitic se for accusative or si for
dative. Similarly, the phrasal verbs are always coupled with the clitic form of
the personal pronoun in accusative or dative. The number and person agreement
is marked on the clitic instead of on the verb. The subject in the sentence is
inflected as an object in the specified case. The choice of accusative or dative
case for both the medial and phrasal verbs depends only on the verb so it is
specified in its lexical definition. In the lexicon the medial and phrasal verbs are
created with these functions:

medialV : V → Case → V
phrasalV : V → Case → V

First a normal verb form is created with some of the mkV function and after
that it is modified with medialV or phrasalV .

A verb forms a verb phrase VP with the following constructors:

fun UseV : V → VP ;
ComplV2 : V2 → NP → VP ;
ComplV3 : V3 → NP → NP → VP ;

Here the V2 and V3 categories have a structure similar to V and contain the
transitive and ditransitive verbs. The VP category itself is defined as:

lincat VP = { s : Tense
⇒ Anteriority
⇒ Polarity
⇒ Agr
⇒ Bool
⇒ Aspect
⇒ Str ;

} ;
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There are also other fields but only the s field is shown because the others are
not relevant for the explanation. The first two parameters Tense and Anteriority
define the tense system in the resource library. The supported tenses are present,
past, future and conditional3. In English the anteriority distinguishes between
the simple and the perfect tenses. This system of tense and anteriority is over-
simplified. There are 8 different combinations of Tense and Anteriority but this
is not enough to cover all Bulgarian and even some English tenses. For example
there are two past tenses - past imperfect and aorist, but only the second one
is currently supported in the grammar. It is usually translated as past simple
in English. In addition there is a past future tense which is translated as “was
going to” tense but the “going to” tense is also not supported. This is overcome
in the Romance grammar where the concrete syntax has more tenses than the
abstract syntax. They are not accessible from the common API but still can
be used from language specific modules. Currently only the minimal number of
tenses is implemented for Bulgarian. The tense system in the resource library is
just an intersection between the tenses of all supported languages.

The verb phrase in Bulgarian has a complex structure where clitics and aux-
iliary verbs are combined with the main verb to form a phrase [7]. The basic
components are the pronoun and the reflexive clitics, the li clitic, the da, ne
and šte articles and the auxilary verb sǎm (be). The particle ne marks phrases
with negative polarity (the Polarity parameter is Neg) and it is always in the
beginning of the phrase. The li clitic marks questions and is added after the
first stressed word in the verb phrase. The future tense is formed with the šte
particle and the auxiliary verb sǎm is used in the perfect tenses.

Most languages distinguish between progressive and finite actions. In English
this is expressed with the so called -ing verb forms or gerund. In the grammar
the verb phrases use nonprogressive tenses by default. This could be changed
with the function:

ProgrVP : VP → VP
It converts the phrase “work” for example to the continuous phrase “am

working”. For Bulgarian the same function deals with the lexical aspect of the
verb. In the lexicon all verbs come in pairs: one with perfective aspect and one
with imperfective. The perfective aspect is the default but when the ProgrVP
function is applied it is replaced with the imperfective.

An important exception is the present tense when the perfective aspect can-
not be used. In this case the imperfective aspect is used regardless of whether
the ProgrVP function is applied or not. The imperfective aspect in present tense
is ambiguous and can have the meaning of both progressive and finite action.
The parser from Bulgarian will produce two different abstract trees from the
verb otivam: (UseV go V) and (ProgrVP (UseV go V)). In the opposite direc-
tion from abstract tree to English phrase the linearizer will produce both “go”
and “going”.

3 This is actually a mood but it is defined as a tense because it is parallel to the other
tenses.
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Another kind of ambiguity exists between the reflexive verb phrases and the
phrases with passive voice. In the grammar they are created with these functions:

ReflV2 : V2 → VP
PassV2 : V2 → VP
It was already mentioned that the reflexive verbs are marked with the clitic

se or si, but the same construction might mean passive voice as well [6]. The
following sentences:

Pesenta se pee
Pesenta e pjata (passive participle)

both have the meaning of “the song is sung” (passive voice) but the first has
also the meaning of “the song sings itself” (reflexive verb). Of course the second
meaning is rejected from the common knowledge that the song cannot sing. On
the other side, the second sentence is ambiguous between present and present
perfect while the first one is not - pesenta se e pjala.

The grammar does not try to disambiguate between the tenses or between
passive voice and reflexive verb because this would require external common
sense knowledge which is beyond the scope of the current project. Instead, the
phrases marked with se/si are parsed as reflexive and the phrases formed with
the passive participle are parsed as passive but the anteriority parameter remains
ambiguous in the abstract tree.

The Balkan languages are known to lack verb infinitives and Bulgarian is not
an exception. Instead, the Bulgarian language has developed the da complex [7].
The particle da is placed in the beginning of the verb phrases in the cases when
we expect an infinitive in the other languages. The main verb itself can be in
any tense and it is aggreement with the subject.

One place where infinitives are used in the other languages is the VV category.
It contains verbs which take another verb in infinitive form as a complement.
For example in Russian it is Ja doľzen hodit’ (I must go) but Ja hožu (I go). In
English usually the infinitive coincides with the present, singular, first person.
In Bulgarian these phrases are translated with da complex:

Az trjabva da hodja
Az hodja

here the main verb (hodja) is in present simple while the VV verb (trjabva)
can be in any tense, anteriority and polarity. Although da complexes with other
conjugations of the main verbs are also possible the abstract syntax does not
have constructions that require that.

5 Adjective Phrases

The adjectives have forms for masculine, feminine and neuter in singular and a
separate form for plural which is common for all genders. There are also definite
and indefinite forms. The A category definition is:

lincat A = {s : AForm ⇒ Str} ;

There are also comparative and superlative forms which are formed analyti-
caly on the AP level.
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krasiv beautiful
po-krasiv ot nego more beautiful than he
naj-krasiv most beautiful

The examples are generated from the following abstract syntaxes:
PositA beautiful A
ComparA beautiful A (UsePron he Pron)
OrdSuperl beautiful A
For comparison, in German the comparative and superlative forms are syn-

thethic (schön - schöner als er - schönst) but they still use the same abstract
syntax.

The AP clauses are attached to the common nouns with the function:
fun AdjCN : AP → CN → CN ;

and are in gender and number agreement with the noun.

6 Numerals

The basic building blocks of the numerals are the digits from one to nine. They
are divided in three groups. The first group includes only the digit one. It has
forms for masculine (edin), feminine (edna) and neuter (edno). There is also
a form for plural (edni) which is used to refer to a group as a whole. The
second group includes the digit two. It has forms for masculine animate (dvama),
masculine inanimate (dva) and a common form for feminine and neuter (dve).
All other digits are in the third group. They have separated form for masculine
animate and a common form for all other genders. There are also definite and
indefinite forms.

The cardinal and ordinal numbers in Bulgarian are also marked morphologi-
caly (edin-pǎrvi, dve-vtori).

The Digit category is defined as:
param CardOrd = NCard DGenderSpecies

| NOrd AForm ;
DForm = unit | teen | ten | hundred ;

lincat Digit = {s : DForm ⇒ CardOrd ⇒ Str} ;

The DForm parameter enumerates all numeral forms which are defined syn-
theticaly.

edno edinadeset deset sto
one eleven ten hundred
A similar parameter exists in the other grammarsbut it usually has different val-

ues. For example in Arabic there are forms only for unit and ten. All other numerals
are formed analytically. Since the parameters are only in the concrete syntax on
an abstract level, the numerals have uniform representation in all languages.

7 Clauses and Declarative Sentences

The simplest clause is formed by PredVP:
lincat Cl = {s : Tense ⇒ Anteriority ⇒ Polarity ⇒ Order ⇒ Str} ;
fun PredVP : NP → VP → Cl ;
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It just combines one noun phrase and one verb phrase. The NP category has
an agreement as a synthesized parameter which is passed by PredVP to the
verb as an inherent parameter. This guarantees the subject-verb agreement in
the clause. The clause does not have fixed tense, anteriority and polarity. Instead
they are given as an inherent parameters which are fixed on the sentence (S) level:

fun UseCl : Tense → Ant → Pol → Cl → S ;

Here Tense, Ant and Pol are syntactic categories whose constructors does
not have linearizations but just fix the corresponding Tense, Anteriority and
Polarity parameters in Cl. The constructed sentences can be used to construct
utterances or they could be embedded in other sentences.

8 Imperative Sentences

The GF resource grammars have a limited support for imperative sentences. Ba-
sically, you can turn any verb phrase to Imp and from it an imperative utterance
can be formed with positive or negative polarity:

fun ImpVP : VP → Imp ;
UttImpSg, UttImpPl, UttImpPol : Pol → Imp → Utt ;

In the formation of the Imp category, the verb phrase is turned into imperative
mood and after that it is negated if negative polarity is specified.

9 Questions

There are various ways to form a question in GF. The two basic constructors are
QuestCl and QuestVP. The first one creates yes/no questions and the second
one creates wh-questions:

fun QuestCl : Cl → QCl ;
QuestVP : IP → VP → QCl ;
UseQCl : Tense → Ant → Pol → QCl → QS ;

Just like with the definitive sentences, the above constructors create clauses
which do not have fixed tense and polarity. The UseQCl create interrogative
sentences (QS) and fixes the tense and polarity.

In Bulgarian the questions are formed with the li clitic. It can appear either
in the verb phrase or in the noun phrase and it indicates whether we are asking
about the action or about the subject. In the GF grammar only the first option
is used. The reason is that questions like “Do you work?” usually ask about the
action. The opposite question is “Is it you who work?”. This is an idiomatic
construction and has different translations in the different languages; anyway it
still can be translated literally in Bulgarian and is still grammatical.

10 Future Work

There are many constructions that are not covered in the abstract syntax. Some
are very language specific while others are more or less common. The right
abstraction is not always obvious but it is also not necessary to have a single
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abstraction for all languages. Having a single language independent abstraction
is definitely an advantage because then the application level grammar is just a
parameterized module built on top of the abstract syntax. If there is not a single
abstraction, then a language dependent abstract syntax can be used and the
application level grammar will use different resource modules.

One immediate candidate for further extension is the tense system. A language
specific module could be provided that implements all possible tenses, aspects
and moods. However, the common abstract syntax could still work with the
already existing language independent abstraction.

Other candidates are the pronouns. In Bulgarian the personal pronoun is quite
often avoided because it is clear from the verb conjugation. For example:

(Ti) Govorǐs li bǎlgarski? — Do you speak Bulgarian?
The pronoun ti is often skipped because it is clear from the verb conjugation that

the subject is in thirdperson singular.Thegenerated sentence is stillgrammatically
correct but the construction is used only for clarity or to stress the pronoun itself.
In this respect it makes sense to have stressed and unstressed forms of the pronouns
where the unstressed form will be just empty when the pronoun is in subject posi-
tion. The same construction can be used also for the other pro-drop languages.

The possessive pronouns in Bulgarian have definite and indefinite forms: moja-
mojata (my), tvoja-tvojata (your). The definite form is used to specify one par-
ticular object that belongs to the subject. In both cases in English my/your is
used. This could be illustrated in Italian where both “la mia penna” and “una
mia penna” (my pen) are possible. The difference is that in Bulgarian the defi-
nite article is a clitic and it attaches to the first word in the NP phrase which is
the pronoun, so we have two different forms for the possessive pronouns.

11 Conclusion

The grammar does not cover all aspects of the language and it cannot be used
to parse arbitrary text. This limits its usage in applications like information
extraction and question answering where the input is often assumed to be free
text. Despite this GF has been proven useful for dialog systems, text generation
applications and for software localization where a well defined controlled lan-
guage is used. The Bulgarian grammar can be successfully applied in the same
areas. It is even more important for multilingual systems because with GF the
translation can be done automatically or at least semi-automatically.
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Abstract. Applications of statistical Arabic NLP in general, and text mining in 
specific, along with the tools underneath perform much better as the statistical 
processing operates on deeper language factorizations than on raw text. Lexical 
semantic factorization is very important in this regard due to its feasibility, high 
level of abstraction, and the language independence of its output. 

In the core of such a factorization lies an Arabic lexical semantic DB. While 
building this LR, we had to go beyond the conventional exclusive collection of 
words from dictionaries and thesauri that cannot alone produce a satisfactory 
coverage of this highly inflective and derivative language. 

This paper is hence devoted to the design and implementation of an Arabic 
lexical semantics LR that enables the retrieval of the possible senses of any 
given Arabic word at a high coverage. 

Instead of tying full Arabic words to their possible senses, our LR flexibly 
relates morphologically and PoS-tags constrained Arabic lexical compounds to 
a predefined limited set of semantic fields across which the standard semantic 
relations are defined. With the aid of the same large-scale Arabic morphological 
analyzer and PoS tagger in the runtime, the possible senses of virtually any 
given Arabic word are retrievable. 

Keywords: Arabic, AWN, coverage, language factorization, language resource, 
lexical compounds, lexical semantics, LR, morphology, morpho-PoS constrain-
ing, PoS tagging, semantic fields, semantic mapping, semantic relations, text 
mining, word net, word senses. 

1   Introduction 

This paper presents an Arabic lexical semantics LR that is composed of the following 
four logical components: 

1- A compact basis set of predefined semantic fields; i.e. word senses. 
2- Lexical semantics relational data base (RDB) where the Arabic lexical compounds 

from a given lexicon are one-to-many mapped to semantic fields both in the  
forward and backward directions. 
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3- A set of predefined standard semantic relations; e.g. antonymy, hyponymy,  
entailment ... etc. 

4- An RDB connecting the semantic fields to one another via none, one, or multiple 
standard semantic relations. 

In what follows; the need for this LR is first manifested in sec. 2. Next, the criteria 
that governed the design of the LR is manifested in sec. 3, hence the design itself is 
dissected in sec. 4 and the process of building the LR is explained in sec. 5. 

Finally, sec. 6 compares this LR to the Arabic Word Net (AWN) which seems to 
be the most relevant one to ours. 

2   Need for This LR 

While the wide spectrum of text mining applications might perform patterns detec-
tion/comparison for many tasks by directly processing raw text, performance gets 
better and better as the mining is done on deeper and deeper linguistic analysis of this 
text given the same algorithms, training corpora, and computational power.  

Mathematically, as we delve deeper in linguistic analysis (e.g. from morphological, 
to semantic …) resolving more and more complex relations, the raw text is factorized 
into more fundamental - and typically less numerous - atomic entities to be dealt with. 
This in turn reveals more concentrated statistical correlations and reduces the dimen-
sionality of the problem, which both sharpen the effectiveness of the mining process. 
[8], [9], [11], [12] 

The importance of language factorization gets more and more magnified as the vo-
cabulary and structure of the subject language gets richer. In fact, while Arabic is on 
the extreme of richness as per its vocabulary when regarded as full-form words, this 
language is also on the extreme of compactness of atomic building entities due to its 
systematic and rich derivative and inflective nature. [1], [2], [6], [24] This positions 
language factorization not only as a performance boosting enhancement to Arabic text 
mining tasks, but also as a necessity for producing workable applications with useful 
output. 

Among the fundamental and feasible factorizations in this regard comes Arabic 
morphological analysis, Part-of-Speech (PoS) tagging, and lexical semantic analysis. 

3   Design Criteria of the LR 

In order to meet the abovementioned need, our Arabic lexical semantic analyzer had 
to rely on an Arabic lexical semantics LR built according to the following criteria: 

1- Originality of the source Arabic lexical semantic knowledge base. This means the 
LR, esp. its lexical side, should be designed in accordance with the intricate spe-
cifics of the Arabic language from the very beginning. This is a missing feature in 
other similar LR’s like the Arabic Word Net (AWN). [5] 

2- Widest coverage of possible Arabic lexical compounds, and semantic relations. 
Unless the highly derivative and inflective nature of Arabic is effectively han-
dled, the runtime retrieval miss ratio of input words vs. the (inevitably limited) 
terms explicitly covered by the source of raw Arabic lexical semantics would be 
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unacceptably high. So, this LR must go beyond the simplistic vocabulary-based 
model for maximally covering input Arabic terms and tying them to their possi-
ble senses/semantic fields. 

3- Compactness of the resulting LR. Such an LR should never be huge in size not 
only in order to avoid prohibitive development, reviewing, and updating cost & 
time, but also to keep the LR development process from being excessively error-
prone. So, this LR should be cleverly designed with a pacified growth of lexi-
cal/semantic relations versus the size of lexicon entries and semantic fields. 

4- Independence and simplicity of the LR. Just like any professionally built LR; 
independence from the applications and from any LR development tools, as well 
as the simplicity of the LR format, are vital implicit aspects of this LR design. 

5- Minimum implementation and updating cost. Less than 100 man-months within 2 
calendar years had been allocated for building, refining, and verifying this LR. 
So, design decisions were always made in favor of the smaller, the clearer, the 
cleaner, and the faster choices. It was not always straightforward to satisfy this 
aspect together with the other ones of the criteria. 

4   Design Description of the LR 

To produce a sound Arabic lexical semantics LR complying with the abovementioned 
criteria, the implemented design relied on the following key concepts and choices: 

4.1   Source of Raw Arabic Lexical Semantics 

The published literature had been surveyed for sound semantic knowledge bases 
crafted originally for the Arabic language by specialized Arabic linguistics teams led 
by credible experts. [6], [16], [17], [19], [20], [22], [23], [24], [25] 

Neatly based on the theory of semantic fields [10], [21], the Grand Thesaurus [22] 
containing over 35,000 explicit Arabic lexical entries and relying on around 1,800 
semantic fields has been elected to be our initial source of raw Arabic lexical seman-
tics. Other sources are also used for the refinement and enrichment of the LR. 

4.2   Arabic Lexical Compounds and Morpho-PoS Constraining 

In order to avoid a prohibitively high runtime retrieval miss-ratio of input Arabic 
words versus the terms covered by the source(s) of raw Arabic lexical semantics1, 
Arabic lexical compounds and morpho-PoS constraining are introduced as two power-
fully flexible concepts for taming the highly inflective and derivative nature of Arabic. 

Instead of full-form words, the units of the lexical side in the lexical semantics DB 
of the LR are encoded as lexical compounds composed of the underlying morphemes 
that are flexible to be fully or partially matched against the morphemes composing the 
input words. 

A morpheme code is explicitly mentioned only if its exact existence in the lexical 
compound is necessary to imply the semantic field(s) tied to this lexical compound. If 

                                                           
1 The size of lexical entries in any such source has an order of magnitude of O(104.5) while that 

of the generable Arabic lexical compounds via inflection and derivation is O(107). 
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the existence of any morpheme containing a certain PoS tag is only necessary to im-
ply those semantic field(s), the code of this PoS tag with a negative sign is mentioned 
in place of that morpheme. A don’t-care code (assigned -1000) in some place signi-
fies that the morpheme at that place is semantically neutral. 

Illustrative examples on morpho-PoS constrained lexical compounds are provided 
in tables 4 and 5 in section 5 below. 

To realize such design concepts, RDI’s Arabic morphological and PoS tagging fac-
torization models are adopted in this LR. [1], [2], [3] 

4.2.1   Arabic Morphological and PoS-Tagging Factorization Models from RDI 
This Arabic morphological model assumes the canonical structure uniquely representing 
any given Arabic word w to be a quadruple of morphemes so that w→q = (t: p, r, f, s) 
where p is prefix code, r is root code, f is pattern (or form) code, and s is suffix code. 
The type code t can signify words belonging to one of the following 4 classes: Regular 
Derivative (wrd), Irregular Derivative (wid), Fixed (wf), or Arabized (wa). 

Prefixes & suffixes; P and S, the 4 classes applied on patterns; Frd, Fid, Ff, and Fa, and 
only 3 classes applied on roots2; Rd, Rf, and Ra constitute together the 9 categories of 
morphemes in this model. The total number of morphemes of all these categories in this 
model is around 7,800. With such a limited set of morphemes, the dynamic coverage 
exceeds 99.8% measured on large Arabic text corpora excluding transliterated words. 

While table 1 on the next page shows this model in application on few representative 
sample Arabic words, the reader is kindly referred to [2] for the  detailed documentation 
of this Arabic morphological factorization model and its underlying lexicon along with 
the dynamics of the involved morphological analysis/synthesis algorithms. 

Table 1. Exemplar Arabic morphological analyses 

Sample word Word type Prefix & 
prefix code 

Root & 
root code 

Pattern & 
pattern code 

Suffix & 
suffix code 

 Fixed  فَمَا
  فَـ
2  

  اَلَّذِي
87  

  مَا
48  

  ـ
0  

 Regular تَتَنَاوَله
Derivative 

  تـ
86  

  ن و ل
4077  

  تَفَاعَلَ
176  

  ـه
8  

 Regular تاَلْكِتَابَا
Derivative 

  الـ
9 

  ك ت ب
3354  

  فِعَال
684  

  ـات
27  

 Regular اَلْعِلْمِيَّة
Derivative 

  الـ
9  

  ع ل م
2754  

  فِعْل
842  

  ـيَّة
28  

 Fixed مِنْ
  ـ
0  

  نْمِ
63  

  نْمِ
118  

  ـ
0  

 Regular مَوَاضِيع
Derivative 

  ـ
0  

  و ض ع
4339  

  مَفَاعِيل
93  

  ـ
0  

 Irregular مُتَّخَذة
Derivative 

  ـ
0  

  أ خ ذ
39  

  مُتَّخَذ
13  

  ـة
26  

                                                           
2 The roots are common among both the regular and irregular derivative Arabic words. 
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On the other hand, our Arabic PoS-tagging model relies on a compact set of Arabic 
PoS tags containing only 62 tags covering all the possible atomic context-free syntac-
tic features of Arabic words. While many of these Arabic PoS tags may have corre-
sponding ones in other languages, few do not have such counterparts and may be 
specific to the Arabic language. 

This PoS tags-set has been extracted after thoroughly scanning and decimating the 
morpho-syntactic features of the 7,800 morphemes in our morphologically factorized 
Arabic lexicon. Completeness, atomicity, and insurability of the scanned morpho-
syntactic features were the criteria adhered to during that process. 

Due to the atomicity of our Arabic PoS-tags as well as the compound nature of 
Arabic morphemes in general, the PoS labels of Arabic morphemes are represented by 
PoS tags-vectors. Each morpheme in our Arabic factorized lexicon is hence labeled 
by a PoS tags-vector as exemplified by table 2 on the next page. 

Table 2. PoS labels of sample Arabic morphemes 

Morpheme Type & Code Arabic PoS tags vector label 

 P الـ
9 

[Definitive] 

]ال التعريف[  

 P سَيـ
125 

[Future, Present, Active] 

]استقبال، مضارع، مبني للمعلوم[  

 Frd مُفَاعِل

482 
[Noun, Subjective Noun] 

]اسم، اسم فاعل[  

 Frd اسْتِفْعَال

67 
[Noun, Noun Infinitive] 

]اسم، مصدر[  

 Fid مَلَائِك

29 
[Noun, No SARF, Plural] 

]اسم، ممنوع من الصرف، جمع[  

 Ff هُوَ

8 
[Noun, Masculine, Single, Subjective Pronoun] 

]اسم، مذآر، مفرد، ضمير رفع[  

 Ff ذُو

39 
[Noun, Masculine, Single, Adjunct, MARFOU’] 

]اسم، مذآر، مفرد، مضاف، مرفوع[  

 S ـات
27 

[Feminine, Plural] 

]مؤنث، جمع[  

 S ـونَهُمْ
427 

[Present, MARFOU’, Subjective Pronoun, Objective Pronoun] 

]مضارع، مرفوع، ضمير رفع، ضمير نصب[  

 S ـيَّتَانِ
195 

[Relative Adjective, Feminine, Binary, Non Adjunct,  MARFOU’] 

]نسب، مؤنث، مثنى، غير مضاف، مرفوع[  

 
While the Arabic PoS-tagging of stems is retrieved from the PoS label of the pattern 

only, not the root’s, the PoS-tagging of the affixes is obtained from the PoS labels of the 
prefix and suffix. So, the Arabic PoS-tagging of a quadruple corresponding to a morpho-
logically factorized input Arabic word is given by the concatenation of its PoS labels of 
the prefix, the pattern, and suffix respectively after eliminating any redundancy.  

While table 3 on the next page shows the Arabic PoS-tagging of few sample words, 
the reader is kindly referred to [3] and chapter 3 of [1] for the detailed documentation 
of this Arabic PoS-tagging model along with its underlying PoS tags-set. 
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Table 3. PoS tags-vectors of sample Arabic words 

Sample word Arabic PoS tags vector 

 [Conjunction, Noun, Relative Pronoun, Null Suffix]  فَمَا

]عطف، اسم، اسم موصول، لا لاحقة[  

 تَتَنَاوَله
[Present, Active, Verb ,Objective Pronoun] 

]مضارع، مبني للمعلوم، فعل، ضمير نصب[  

 اَلْكِتَابَات
[Definitive, Noun, Plural, Feminine] 

]ال التعريف، اسم، جمع، مؤنَّث[  

 اَلْعِلْمِيَّة
[Definitive, Noun, Relative Adjective, Feminine, Single] 

]ال التعريف، اسم، نسب، مؤنَّث، مفرد[  

 مِنْ
[Null Prefix, Preposition, Null Suffix] 

]لا سابقة، حرف، لا لاحقة[  

 مَوَاضِيع
[Null Prefix, Noun, No SARF, Plural, Null Suffix] 

]لا سابقة، اسم، ممنوع من الصرف، جمع، لا لاحقة[  

 خَذةمُتَّ
[Null Prefix, Noun, Objective Noun, Feminine, Single] 

 ]لا سابقة، اسم، اسم مفعول، مؤنَّث، مفرَد[

4.3   Arabic Lexical Compounds and Morpho-PoS Constraining 

All the components of this LR are formally structured as relational databases (RDB) 
which guarantees both its independence and simplicity. 

4.4   Multi-level Indirect Semantic Mapping 

Instead of the infeasible direct semantic mapping of the whole Arabic vocabulary 
across itself with a size complexity of O(V2); V is the huge vocabulary size of Arabic, 
our LR is designed for the multi-level semantic mapping; wi↔LCm↔SFu↔SFv↔ 
LCn↔wj. 

Input Arabic words wi are analyzed into morpho-PoS constrained lexical com-
pounds LCm which are in turn mapped in the inverse direction of the lexical semantics 
RDB to semantic fields SFu. 

The semantic fields are semantically interrelated through an S×S matrix per each 
defined semantic relation; where S is the size of the predefined basis set of semantic 
fields.3 The third step of the mapping is hence possible.  

Navigating our lexical semantics RDB in the forward direction can infer the possi-
ble LCn that correspond to the semantic fields SFv obtained in the previous step. 

Morphological and PoS-tagging models help again at the last link in the chain of 
indirect semantic mapping across all the generable Arabic words. 

Given that S<<V`<<V; where V` is the number of core lexical compounds men-
tioned explicitly in our LR, the size complexity of the indirect semantic mapping 
approach is then O(S2+S·V`)=O(S·V`) which is much more tractable than O(V2) of the 
direct semantic mapping. 

                                                           
3 This size has typically an order of magnitude of O(103.5). 
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5   The Building Process of the LR 

The sources of raw Arabic lexical semantics knowledge base are usually organized so 
that the semantic fields/word senses are the primary keys that recall the terms belong-
ing to them. Assuming such sources, the process of building our Arabic lexical se-
mantics LR proceeds as follows:  

1- After adding each distinct semantic field in the raw source to the basis set of 
semantic fields, the terms belonging to each field are linguistically reviewed to 
explicitly add/remove any missing/irrelevant terms under this semantic field. 

2- Each of these Arabic terms is analyzed to obtain its morphological as well as 
PoS-tagging factorization, and is hence encoded as a morpho-PoS constrained 
lexical compound as previously explained in section 4.2. 

3- This lexical semantic knowledge base obtained so far is then formally structured 
as an RDB with the semantic fields acting as the primary keys. This is called the 
forward Arabic lexical semantics RDB of which table 4 on the next page shows a 
sample fragment: 

Table 4. A fragment of the forward lexical semantic RDB 
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The detailed documentation of the building process of this forward Arabic 
lexical semantics RDB, written by Attia et al., is freely downloadable at 
http://www.rdieg.com/rdi/downloads/process_of_building_the_forward_Arabic_ 
lexical_semantic_db.pdf 

4- Using SQL operations, this forward RDB is automatically inverted so that the 
lexical compounds act as the primary keys. A sample fragment of this inverse 
lexical semantic RDB is shown by table 5 on the next page. 

5- While building the inverse RDB, a special back-off row is inserted per each dis-
tinct root in the inverse RDB in order to further attenuate the runtime retrieval 
miss ratio of input words. The lexical compound of a back-off row mentions only 
the root morpheme explicitly, and all the other morphemes (prefix, pattern, and 
suffix) as don’t care.  

If an input word matches none of the explicitly registered derivatives of some 
root in the inverse RDB, the corresponding back-off row is resorted to. The re-
called semantic fields of such a row are the union of the recalled semantic fields 
of all the registered derivatives of its root in the inverse RDB. 

6- The basis set of semantic fields are interrelated via a matrix per each predefined 
standard semantic relation. So far, in addition to relatedness, the following 20 
semantic relations [22] are defined in our Arabic lexical semantic LR: 

1- Antonymy. 
2- Approximate Synonymy. 
3- “Whole→Part” relation. 
4- “Part→Whole” relation. 
5- Hyponymy; “is-a-special-type-of” relation. 
6- Inverse of no. 5: “is-a-general-type-of” relation. 
7- Hyponymy; “is-a-member-of” relation. 
8- Inverse of no. 7: “includes-several” relation. 
9- Hyponymy; “is-originated-from” relation. 
10- Inverse of no. 9: “is-the-origin-of” relation. 
11- Hyponymy; “is-integrally-included-in” relation. 
12- Inverse of no. 11: “includes-integrally” relation. 
13- Causality: “is-a-cause-of” relation. 
14- Inverse of no. 13: “due-to” relation. 
15- Conditionality; “is-conditional-on” relation. 
16- Inverse of no. 15: “is-a-condition-for” relation. 
17- Temporal locality: “is-a-time-for” relation. 
18- Inverse of no. 17: “occurs-during” relation. 
19- Spatial locality: “is-a-place-of” relation. 
20- Inverse of no. 19: “takes-place-in” relation. 

7- The totality of these matrices is then unified in one formal RDB compatible with 
the format of our LR.  

It should be noted that the development team followed a cross-checking policy for 
ensuring the quality of this LR whose first edition had been completed in Oct. 2007 
followed by a more refined one in mid. 2008. 
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6   Comparison with AWN 

Disseminated LR’s relevant to ours, esp. Word Nets and Thesauri are surveyed; [4], 
[5], [7], [13], Visual Thesaurus; http://www.VisualThesaurus.com. 

Among those LR’s; the beta release of the Arabic Word Net (AWN) www. 
GlobalWordNet.org/AWN/, www.LDC.UNPENN.edu, announced in Mar. 2007, has 
apparently been found closest and hence been thoroughly investigated and compared 
to our Arabic lexical semantics LR. 

Interestingly, each of the two has shown superior/inferior complementary aspects 
to the other. While the AWN has a richer taxonomized set of semantic fields, and can 
also map to sister Word Nets in other languages (esp. English), our LR on the other 
hand has much richer semantic relations, much more explicit lexical entries, and 
much lower miss-ratio versus input words due to lexical compounds, morph-PoS 
constraining as well as the back-off. 

A concise comparison between the two LR’s is given in table 6 below. 

Table 6. AWN vs. our Arabic Lexical Semantics LR 

Feature AWN Our LR 

Underlying theories 

Semantic Fields, and Compo-

nential Analysis of  

Semantic Fields 

Semantic Fields, and  

Componential Analysis of  

Semantic Fields 

Data format of LR Hierarchical RDB 

Current no. of lexical entries ≈ 12,038 ≈ 40,000 

Current no. of semantic fields 5,861 1,824 

Semantic relations defined Hyponymy only 
20 semantic relations 

(see section 5 above) 

Auxiliary technologies None 
Morphological and PoS-Tagging 

factorization 

Back-off upon mismatches None To the semantic fields of the root 

Mapping to other languages Many; esp. English None 

7   Conclusion 

This paper has presented a large-scale Arabic lexical semantics LR with a wide cov-
erage of the huge generable Arabic vocabulary. Based on the theory of semantic 
fields, the raw source content of this LR is primarily drawn from the best experts’ 
works crafted originally for the Arabic language. 

Packaged as an RDB, the primary key of this LR in its inverse format is a morpho-
logically and PoS-tags constrained lexical compound that provokes in real time, using 
an Arabic morphological analyzer and PoS tagger, the semantic fields it may belong 
to. The relatively compact predefined set of semantic fields addresses the most com-
mon, if not all, the context-free word senses. 
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The standard semantic relations are labeled in matrices across that set of semantic 
fields which, indirectly along with the morphological & PoS-tags constraining, en-
ables semantically relating virtually any possible couple of Arabic lexical compounds. 

The mostly language independent issue of disambiguating the retrieved word 
senses has deliberately been located outside the scope of the presented LR and left to 
the applications layer that can benefit from numerous works reported in the rich pub-
lished literature on that concern. 
 
Acknowledgments. Building this Arabic semantic LR has taken off in late 2005 out of 
the need for a reliable Arabic lexical semantic analyzer to power the diverse applica-
tions of the 3-year “Arabic Text Mining” project funded by the “Data Mining & Com-
puter Modeling” (DMCM) “Centre of Excellence” (CoE) which is the first centre within 
the national R&D CoE’s initiative launched by the Egyptian Ministry of Communica-
tions and Information Technology: www.MCIT.gov.eg/Centers_Excellence.aspx. 
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Abstract. Extracting aliases of an entity is important for various tasks
such as identification of relations among entities, web search and entity
disambiguation. To extract relations among entities properly, one must
first identify those entities. We propose a novel approach to find aliases of
a given name using automatically extracted lexical patterns. We exploit a
set of known names and their aliases as training data and extract lexical
patterns that convey information related to aliases of names from text
snippets returned by a web search engine. The patterns are then used
to find candidate aliases of a given name. We use anchor texts to design
a word co-occurrence model and use it to define various ranking scores
to measure the association between a name and a candidate alias. The
ranking scores are integrated with page-count-based association mea-
sures using support vector machines to leverage a robust alias detection
method. The proposed method outperforms numerous baselines and pre-
vious work on alias extraction on a dataset of personal names, achieving
a statistically significant mean reciprocal rank of 0.6718. Experiments
carried out using a dataset of location names and Japanese personal
names suggest the possibility of extending the proposed method to ex-
tract aliases for different types of named entities and for other languages.
Moreover, the aliases extracted using the proposed method improve re-
call by 20% in a relation-detection task.

1 Introduction

Precisely identifying entities in web documents is necessary for various tasks
such as relation extraction [16], search and integration of data [9] and entity
disambiguation [14]. Nevertheless, identification of entities on the web is difficult
for two fundamental reasons: first, different entities can share the same name
(lexical ambiguity); secondly, a single entity can be designated by multiple names
(referential ambiguity). As an example of lexical ambiguity the name Jim Clark
is illustrative. Aside from the two most popular namesakes, the formula-one
racing champion and the founder of Netscape, at least 10 different people are
listed among the top 100 results returned by Google for the name. On the other
� Research Fellow of the Japan Society for the Promotion of Science (JSPS).
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hand, referential ambiguity occurs because people use different names to refer to
the same entity on the web. For example, the American movie star Will Smith
is often called the the Fresh Prince in web contents. Although lexical ambiguity,
particularly ambiguity related to personal names, has been explored extensively
in the previous studies of name disambiguation [14,4], the problem of referential
ambiguity of entities on the web has received much less attention. In this paper,
we specifically examine on the problem of automatically extracting the various
references on the web to a particular entity.

For an entity e, we define the set A of its aliases to be the set of all words
or multi-word expressions that are used to refer to e on the web. For example,
Godzilla is a one-word alias for Hideki Matsui, whereas the alias the Fresh Prince
contains three words and refers to Will Smith. Various types of terms are used as
aliases on the web. For instance, in the case of an actor, the name of a role or the
title of a drama (or a movie) can later become an alias for the person (e.g., Fresh
Prince, Knight Rider). Titles or professions such as president, doctor, professor,
etc. are also frequently used as aliases. Variants or abbreviations of names such
as Bill for William and acronyms such as J.F.K. for John Fitzgerald Kennedy
are also types of name aliases that are observed frequently on the web.

Identifying aliases of a name is important for extracting relations among
entities. For example, Matsuo et al. [16] propose a social network extraction
algorithm, in which they compute the strength of the relation between two in-
dividuals A and B by the web hits for the conjunctive query, “A” AND “B”.
However, both persons A and B might also appear in their alias names in web
contents. Consequently, by expanding the conjunctive query using aliases for
the names, a social network extraction algorithm can accurately compute the
strength of a relationship between two persons.

Searching for information about people on the web is an extremely common
activity of Internet users. Around 30% of search engine queries include personal
names [1]. However, retrieving information about a person merely using his or
her real names is insufficient when that person has nicknames. Particularly with
keyword-based search engines, we will only retrieve pages which use the real name
to refer to the person about whom we are interested in finding information. In
such cases, automatically extracted aliases of the name are useful to expand a
query in a web search, thereby improving recall.

Our contributions in this paper are two fold:

– We propose a lexical pattern-based approach to extract aliases of a given
name using snippets returned by a web search engine. We propose an al-
gorithm to automatically generate lexical patterns using a set of real-world
name-alias data.

– To select the best aliases among the extracted candidates, we propose numer-
ous ranking scores based upon two approaches: a word co-occurrence model
using anchor texts, and page-counts returned by a search engine. Moreover,
using real world name alias data, we train a ranking support vector machine
to learn the optimal combination of individual ranking scores to leverage a
robust alias extraction method.
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2 Related Work

The problem of extracting aliases of a given name can be considered as a special
case of the more general problem of extracting the words Y that have a given
relation R with a word X . For example, extracting hyponyms [10], synonyms [13],
meronyms [5] are specific instances of this general problem of relation extraction.
Manually created or automatically extracted lexico-syntactic patterns have been
successfully used to identify various relations between words [17,18]. For example,
patterns such as X is a Y and X such as Y are typically used to introduce
hypernyms, whereas, X of a Y and X’s Y are frequently used with meronyms.
However, alias extraction poses several unique challenges that separates it from
the more general relation extraction problem. Firstly, personal names and their
aliases are not typically listed in manually created dictionaries. Therefore, an
alias extraction algorithm must first extract a possible set of candidate aliases
for a given name and then verify each extracted candidate. Secondly, names and
aliases can be multi-word expressions. For example, in the case of Will Smith,
who has a two-word alias fresh prince, it is inaccurate to extract fresh as an alias.
Thirdly, unlike hypernyms or meronyms, it is not obvious as to which lexical
patterns convey useful clues related to aliases of a given name. This makes it
difficult to manually create a sufficiently large list of lexical patterns to cover
various types of name aliases. In addition to above mentioned challenges, the
lack of evaluation benchmark dataset for aliases makes it difficult to compare
and evaluate different approaches. Although it is relatively easy to manually
verify whether an extracted candidate is a correct alias of a given name, it is
not always possible to obtain a list of all the aliases of a name, which makes it
difficult to compute the recall or coverage of an alias extraction algorithm.

Alias identification is closely related to the problem of cross-document coref-
erence resolution, in which the objective is to determine whether two mentions
of a name in different documents refer to the same entity. Bagga and Baldwin [3]
proposed a cross-document coreference resolution algorithm by first performing
within-document coreference resolution for each individual document to extract
coreference chains, and then clustering the coreference chains under a vector
space model to identify all mentions of a name in the document set. However,
the vastly numerous documents on the web render it impractical to perform
within-document coreference resolution to each document separately and then
cluster the documents to find aliases.

In personal name disambiguation the goal is to disambiguate various people
that share the same name (namesakes) [14,4]. Given an ambiguous name, most
name disambiguation algorithms have modeled the problem as one of document
clustering, in which all documents that discuss a particular individual of the
given ambiguous name are grouped into a single cluster. However, the name dis-
ambiguation problem differs fundamentally from that of alias extraction because,
in name disambiguation the objective is to identify the different entities that are
referred by the same ambiguous name; in alias extraction, we are interested in
extracting all references to a single entity from the web.
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Fig. 1. Outline of the proposed method

Approximate string matching algorithms have been used for extracting variants
or abbreviations of personal names (e.g. matching Will Smith with the first name
initialized variant W. Smith) [8]. Rules in the form of regular expressions and edit-
distance-based methods have been used to compare names. However, an inherent
limitation of such string matching approaches is that they cannot identify aliases
which sharenowordsor letterswith the real name. For example,approximate string
matching methods would not identify Fresh Prince as an alias for Will Smith.

Hokama and Kitagawa [11] propose an alias extraction method that is specific
to the Japanese language. For a given name p, they search for the query “* koto
p” and extract the context that matches the asterisk. The Japanese word koto,
roughly corresponds to also known as in English. However, koto is a highly am-
biguous word in Japanese that can also mean incident, thing, matter, experience
and task. As reported in their paper, many noisy and incorrect aliases are ex-
tracted using this pattern, which requires various post-processing heuristics that
are specific to Japanese language to filter-out the incorrect aliases. Moreover,
manually crafted patterns do not cover various ways that convey information
about name aliases. In contrast, we propose a method to leverage such lexical
patterns automatically using a training dataset of names and aliases.

3 Method

The proposed method is outlined in Fig.1 and comprises two main components:
pattern extraction, and alias extraction and ranking. Using a seed list of name-
alias pairs, we first extract lexical patterns that are frequently used to convey
information related to aliases on the web. The extracted patterns are then used to
find candidate aliases for a given name. We define various ranking scores using
the hyperlink structure on the web and page counts retrieved from a search
engine to identify the correct aliases among the extracted candidates.

3.1 Extracting Lexical Patterns from Snippets

Many modern search engines provide a brief text snippet for each search result
by selecting the text that appears in the web page in the proximity of the query.
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Such snippets provide valuable information related to the local context of the
query. For names and aliases, snippets convey useful semantic clues that can be
used to extract lexical patterns that are frequently used to express aliases of
a name. For example, consider the snippet returned by Google1 for the query
“Will Smith * The Fresh Prince”.

...Rock the House, the duo's debut album of 1987, 

demonstrated that Will Smith, aka the Fresh Prince,

 was an entertaining and amusing storyteller...

Fig. 2. A snippet returned for the query “Will Smith * The Fresh Prince” by Google

Here, we use the wildcard operator * to perform a NEAR query and it matches
with one or more words in a snippet. In Fig.2 the snippet contains aka (i.e. also
known as), which indicates the fact that fresh prince is an alias for Will Smith.
In addition to a.k.a., numerous clues exist such as nicknamed, alias, real name
is, nee, which are used on the web to represent aliases of a name. Consequently,
we propose the shallow pattern extraction method illustrated in Fig.3 to capture
the various ways in which information about aliases of names is expressed on the
web. Lexico-syntactic patterns have been used in numerous related tasks such
as extracting hypernyms [10] and meronyms.

Given a set S of (NAME, ALIAS) pairs, the function ExtractPatterns re-
turns a list of lexical patterns that frequently connect names and their aliases
in web-snippets. For each (NAME, ALIAS) pair in S, the GetSnippets function
downloads snippets from a web search engine for the query “NAME * ALIAS”.
Then, from each snippet, the CreatePattern function extracts the sequence of
words that appear between the name and the alias. Results of our preliminary
experiments demonstrated that consideration of words that fall outside the name
and the alias in snippets did not improve performance. Finally, the real name
and the alias in the snippet are respectively replaced by two variables [NAME]
and [ALIAS] to create patterns. For example, from the snippet shown in Fig.2,
we extract the pattern [NAME] aka [ALIAS]. We repeat the process described
above for the reversed query, “ALIAS * NAME” to extract patterns in which
the alias precedes the name.

Once a set of lexical patterns is extracted, we use the patterns to extract
candidate aliases for a given name as portrayed in Fig.4. Given a name, NAME
and a set, P of lexical patterns, the function ExtractCandidates returns a list of
candidate aliases for the name. We associate the given name with each pattern,
p in the set of patterns, P and produce queries of the form: “NAME p *”. Then
the GetSnippets function downloads a set of snippets for the query. Finally, the
GetNgrams function extracts continuous sequences of words (n-grams) from the
beginning of the part that matches the wildcard operator *. Experimentally, we
selected up to 5-grams as candidate aliases. Moreover, we removed candidates
1 www.google.com
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Algorithm 1: ExtractPatterns(S)

comment: S is a set of (NAME, ALIAS) pairs

P ← null
for each (NAME, ALIAS) ∈ S

do

⎧
⎨

⎩

D ← GetSnippets(“NAME ∗ ALIAS”)
for each snippet d ∈ D
do P ← P + CreatePattern(d)

return (P )

Fig. 3. Given a set of (NAME, ALIAS) instances, extract lexical patterns

�

�

�

�

Algorithm 2: ExtractCandidates(NAME, P )

comment: P is the set of patterns

C ← null
for each pattern p ∈ P

do

⎧
⎨

⎩

D ← GetSnippets(“NAME p ∗ ”)
for each snippet d ∈ D
do C ← C + GetNgrams(d, NAME, p)

return (C)

Fig. 4. Given a name and a set of lexical patterns, extract candidate aliases

that contain only stop words such as a, an, and the. For example, assuming that
we retrieved the snippet in Fig.3 for the query “Will Smith aka *”, the procedure
described above extracts the fresh and the fresh prince as candidate aliases.

3.2 Ranking of Candidates

Considering the noise in web-snippets, candidates extracted by the shallow lexi-
cal patterns might include some invalid aliases. From among these candidates, we
must identify those which are most likely to be correct aliases of a given name.
We model this problem of alias recognition as one of ranking candidates with re-
spect to a given name such that the candidates which are most likely to be correct
aliases are assigned a higher rank. First, we define various ranking scores to mea-
sure the association between a name and a candidate alias using two approaches:
co-occurrences in inbound anchor texts of a url and page-counts retrieved from
a search engine. Next, we integrate those ranking scores using ranking support
vector machines (SVMs) [12] to leverage a robust ranking function.

3.3 Co-occurrences in Anchor Texts

Anchor texts have been studied extensively in information retrieval and have
been used in various tasks such as synonym extraction, query translation in
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cross-language information retrieval, and ranking and classification of web
pages [7], However, anchor texts have not been exploited fully in Semantic Web
applications. We revisit anchor texts to measure the association between a name
and its aliases on the web. Anchor texts pointing to a url provide useful semantic
clues related to the resource represented by the url. For example, if the major-
ity of inbound anchor texts of a url contain a personal name, it is likely that
the remainder of the inbound anchor texts contain information about aliases of
the name.

We define a name p and a candidate alias x as co-occurring, if p and x appear in
two different inbound anchor texts of a url u. Moreover, we define co-occurrence
frequency (CF) as the number of different urls in which they co-occur. We can use
this definition to create a contingency table like that shown in Table 1. Therein,
C is the set of candidates extracted by the algorithm described in Fig.4, V is the
set of all words that appear in anchor texts, C − {x} and V − {p} respectively
denote all candidates except x and all words except the given name p, k is the co-
occurrence frequency between x and p. Moreover, K is the sum of co-occurrence
frequencies between x and all words in V , whereas n is the same between p and all
candidates in C. N is the total co-occurrences between all word pairs taken from
C and V . To measure the strength of association between a name and a candidate
alias, using Table 1 we define nine popular co-occurrence statistics: chi-squared
measure (CS), Log-likelihood ratio (LLR), hyper-geometric distributions (HG)
and the six measures shown in Table 2. Because of the limited availability of
space, we omit the definitions of these measures (see Manning and Schutze [15]
for a detailed discussion).

Table 1. Contingency table for a candi-
date alias x

x C − {x} C

p k n − k n

V − {p} K − k N − n − K + k N − n

V K N − K N

Table 2. Anchor text-based co-occurrence
measures

Measure Definition Measure Definition

CF k tfidf k log N
K+1

PMI log2
kN
Kn

cosine k√
n+

√
K

Dice 2k
n+K

Overlap k
min(n,K)

A frequently observed phenomenon related to the web is that many pages
with diverse topics link to so-called hubs such as Google, Yahoo, or MSN. Two
anchor texts might link to a hub for entirely different reasons. Therefore, co-
occurrences coming from hubs are prone to noise. To overcome the adverse effects
of a hub h when computing co-occurrence measures, we multiply the number of
co-occurrences of words linked to h by a factor α(h, p), where

α(h, p) =
t

d
. (1)

Here, t is the number of inbound anchor texts of h that contain the real name
p, and d is the total number of inbound anchor texts of h. If many anchor texts
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that link to h contain p (i.e. larger t value), then the reliability of h as a source of
information about p increases. On the other hand, if h has many inbound links
(i.e. larger d value), then it is likely to be a noisy hub and gets discounted when
multiplied by α(<< 1). Intuitively, Eq.1 boosts hubs that are likely to contain
information related to p, while penalizing those that contain various other topics.

3.4 Page-Count-Based Association Measures

In previous section we defined various ranking scores using anchor texts. How-
ever, not all names and aliases are equally well represented in anchor texts.
Consequently, in this section, we define word association measures that consider
co-occurrences not only in anchor texts but in the web overall. Page counts re-
trieved from a web search engine for the conjunctive query, p∩x, for a name p and
a candidate alias x can be regarded as an approximation of their co-occurrences
in the web. We define the four measures shown in Table 3 using page-counts
retrieved from a search engine. Therein, the function H(q) denotes the page-
counts for a query q. WebDice and WebPMI [6] respectively are based on the
Dice coefficient and pointwise mutual information. In WebPMI, L is the number
of pages indexed by the web search engine, which we approximated as L = 1010

according to the number of pages indexed by Google. Prob(x|p) and Prob(p|x)
respectively denote the conditional probabilities of a candidate (x) given a name
(p) and a name given a candidate.

Table 3. Page-count-based association measures

Measure Definition Measure Definition

WebPMI log2
L×H(p∩x)
H(p)×H(x) Prob(p|x) H(p∩x)

H(x)

WebDice 2×H(p∩x)
H(p)+H(x) Prob(x|p) H(p∩x)

H(p)

3.5 Training

Using a dataset of name-alias pairs, we train a ranking support vector machine
[12] to rank candidate aliases according to their strength of association with a
name. For a name-alias pair we define three feature types: anchor text-based
co-occurrence measures, web page-count-based association measures, and fre-
quencies of observed lexical patterns. The nine co-occurrence measures: CF,
tfidf, CS, LLR, PMI, HG, cosine, overlap, Dice (Table 2) are computed
with and without weighting for hubs to produce 18(2×9) features. Moreover, the
four page-count-based association measures defined in Table 3 and the frequency
of lexical patterns extracted by algorithm 1 are used as features in training the
ranking SVM. If numerous patterns connects a name and a candidate alias in
snippets, then the confidence of the candidate alias as a correct alias of the name
increases. During training, ranking SVMs attempt to minimize the number of
discordant pairs in the training data, thereby improving the average precision.
The trained SVM model is used to rank the set of candidates that were ex-
tracted for a name. Finally, the highest-ranking candidate is selected as the alias
of the name.
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Table 4. Lexical patterns with the high-
est F -scores

patterns for personal names F -score

* aka [NAME] 0.335

[NAME] aka * 0.322

[NAME] better known as * 0.310

[NAME] alias * 0.286

[NAME] also known as * 0.281

* nee [NAME] 0.225

patterns for location names F -score

[NAME] nickname the * 0.739

[NAME] is nicknamed the * 0.723

[NAME] employment nickname * 0.627

[NAME] state flag or * 0.589

[NAME] nicknamed the * 0.5567

[NAME] is called the * 0.3199

Table 5. Comparison with baselines and
previous work

Method MRR Method MRR

SVM (Linear) 0.6718 Prob(p|x) 0.1414
SVM (Quad) 0.6495 CS(h) 0.1186
SVM (RBF) 0.6089 CF 0.0839
Hokama & Kitagawa 0.6314 cosine 0.0761
tfidf(h) 0.3957 tfidf 0.0757
WebDice 0.3896 Dice 0.0751
LLR(h) 0.3879 overlap(h) 0.0750
cosine(h) 0.3701 PMI(h) 0.0624
CF(h) 0.3677 LLR 0.0604
HG(h) 0.3297 HG 0.0399
Dice(h) 0.2905 CS 0.0079
Prob(x|p) 0.2142 PMI 0.0072
WebPMI 0.1416 overlap 0.0056

4 Experiments

To train and evaluate the proposed method, we create three name-alias datasets2:
the English personal names dataset (50 names), the English place names dataset
(50 names), and the Japanese personal names (100 names) dataset. Both our
English and Japanese personal name datasets include people from various fields
of cinema, sports, politics, science, and mass media. The place name dataset
contains aliases for the 50 U.S. states. Aliases were manually collected after
referring various information sources such as Wikipedia and official home pages.
The anchor texts collection we used to compute the measures in Table 2 contains
24, 456, 871 anchor texts pointing to 8, 023, 364 unique urls.

Algorithm 1 extracts over 8000 patterns for the 50 English personal names in
our dataset. We rank the patterns according to their F scores to identify the pat-
terns that accurately convey information about aliases. F score of a pattern s is
computed as the harmonic mean between the precision and recall of the pattern:

Precision(s) =
No. of correct aliases retrieved by s

No. of total aliases retrieved by s
,

Recall(s) =
No. of correct aliases retrieved by s

No. of total aliases in the dataset
.

Table 4 shows the patterns with the highest F scores extracted using English per-
sonal names. As shown in the table, unambiguous and highly descriptive patterns
are extracted by the proposed method. Experimentally, we selected the top ranked
200 patterns as features for training. Interestingly, among the extracted pattens
we found patterns written in languages other than English, such as de son vrai
nom (French for his real name) and vero nome (Italian for real name).

2 www.miv.t.u-tokyo.ac.jp/danushka/aliasdata.zip
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In Table 5, we compare the proposed SVM-based method against various indi-
vidual ranking scores (baselines) and previous studies of alias extraction Hokama
and Kitagawa [11]) on Japanese personal names dataset. We used linear, poly-
nomial (quadratic), and radial basis functions (RBF) kernels for ranking SVM.
Mean reciprocal rank (MRR) [2] is used to evaluate the various approaches. If a
method ranks the correct aliases of a name on top, then it receives a higher MRR
value. As shown in Table 5, the best results are obtained by the proposed method
with linear kernels (SVM(Linear)). Both ANOVA and Tukey HSD tests confirm
that the improvement of SVM(Linear) is statistically significant (p<0.05). A
drop of MRR occurs with more complex kernels, which is attributable to over-
fitting. Hokama and Kitagawa’s method which uses manually created patterns,
can only extract Japanese name aliases. Their method reports an MRR value of
0.6314 on our Japanese personal names dataset. In Table 5 we denote the hub-
weighted versions of anchor text-based co-occurrence measures by (h). Among
the numerous individual ranking scores, the best results are reported by the hub-
weighted tfidf score (tfidf(h)). It is noteworthy that, for anchor text-based rank-
ing scores, the hub-weighted version always outperforms the non-hub-weighted
counterpart, which justifies the proposed hub-weighting method. Among the
four page-count-based ranking scores, WebDice reports the highest MRR. It is
comparable to the best anchor text-based ranking score, tfidf(h). The fact that
Prob(x|p) gives slightly better performance over Prob(p|x) implies that we have
a better chance in identifying an entity given its real name than an alias.

Table 6. Overall performance

Dataset MRR AP

English Personal Names 0.6150 0.6865
English Place Names 0.8159 0.7819
Japanese Personal Names 0.6718 0.6646

Table 7. Aliases extracted by the proposed
method

Real Name Extracted Aliases

David Hasselhoff hoff, michael knight, michael
Courteney Cox dirt lucy, lucy, monica
Al Pacino michael corleone
Teri Hatcher susan mayer, susan, mayer
Texas lone star state, lone star, lone
Vermont green mountain state, green,
Wyoming equality state, cowboy state
Hideki Matsui Godzilla, nishikori, matsui

In Table 6 we evaluate the overall performance of the proposed method on each
datasetusingMRRandaverageprecision (AP) [2].Different fromthemean recipro-
cal rank, which focuses only on rank, average precision incorporates consideration
of both precision at each rank and the total number of correct aliases in the dataset.
Both MRR and average precision have been used in rank evaluation tasks such as
evaluating the results returned by a search engine. With eachdatasetwe performed
a 5-fold cross validation. As shown in Table 6, the proposed method reports high
scores for both MRR and average precision on all three datasets. Best results are
achieved for the place name alias extraction task. Table 7 presents the aliases ex-
tracted for some entities included in our datasets. Overall, the proposed method
extracts most aliases in the manually created gold standard (shown in bold).
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Table 8. Effect of aliases on relation detection

Real name only Real name and top alias

Precision Recall F Precision Recall F

.4812 .7185 .4792 .4833 .9083 .5918

We evaluate the effect of the extracted aliases on a real-world relation detec-
tion task. First, we manually classify 50 people in the English personal names
dataset, depending on their field of expertise, into four categories: music, poli-
tics, movies, and sports. Then, we measure the association between two people
using the pointwise mutual information (WebPMI) as defined in Table 3. We
then use group average agglomerative clustering (GAAC) to group the people
into four clusters. Initially, each person is assigned to a separate cluster. In sub-
sequent iterations, GAAC merges the two clusters with the highest correlation.
We terminate the GAAC process when exactly four clusters are formed. Ideally,
people who work in the same field should be clustered into the same group. We
use the B-CUBED method [3] and compute the precision, recall and F -score for
each name in the dataset and average the results over the number of people in
the dataset. Table 8 shows performance of clustering when only the real name is
used and the real name disjunctively coupled with the top alias extracted by the
proposed method for the name. The use of aliases significantly improves recall
(ca. 20%) and consequently the F score. This significant improvement in recall
can be attributed to the discovery of relations between entities that use not only
their real names but also numerous aliases. In such cases, using only the real
name would extract only a fraction of the relations between the entities under
consideration. By considering not only real names but also aliases, it is possible
to discover relations that are unidentifiable solely using real names.

5 Conclusion

We proposed a lexical-pattern-based approach to extract aliases of a given name.
The extracted candidates were ranked using various ranking scores computed
using the hyperlink structure on the web and page-counts retrieved from a
search engine. The proposed method reported high MRR scores on three dif-
ferent datasets and outperformed numerous baselines and a previously proposed
method. Moreover, the extracted aliases significantly improved recall in a rela-
tion detection task.
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Abstract. In this paper, we propose an efficient strategy for summa-
rizing scientific documents in Organic Chemistry that concentrates on
numerical treatments. We present its implementation named yachs (Yet
Another Chemistry Summarizer) that combines a specific document pre-
processing with a sentence scoring method relying on the statistical
properties of documents. We show that yachs achieves the best results
among several other summarizers on a corpus made of Organic Chemistry
articles.

1 Introduction

Over 1.7 million new Chemistry articles were published in 20071, thereby most of
scientists today are on information overload. Information extraction technology
arose in response to the need for efficient processing of documents in specialized
domains. Scientists, especially chemists, want to be able to promptly access infor-
mation concealed in a document in addition to the author’s abstract that is often
too concise or not satisfying. Automatically producing summaries from Organic
Chemistry documents is a challenging but critical task for chemical information
retrieval. Text Summarization is the process of distilling the most important
information from a source (or sources) to produce an abridged version for a par-
ticular user and task [1]. There are many uses of text summarization in everyday
activities, we are familiar with summaries such as headlines, reviews or digests.
Introduced by [2] in the late 1950’s, text summarization was characterized by
the use of a surface level approach (i.e. exploiting term frequencies). The first
entity-level approaches based on syntactic analysis appeared in the early 1960’s
[3] while the use of location features and cue phrases was not developed until
later [4]. The investigations reported by [5] at the Chemical Abstracts Service

1 See Chemical Abstracts Publication Record, http://www.cas.org/

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 89–99, 2008.
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(CAS) provide further insight into the effectiveness of automatic summarization
in particular domain areas. Corpus-based approaches were introduced by [6] with
a trainable summarization system using a collection of text/summaries pairs as
training set. A Bayes classifier algorithm takes each sentence and, based on fea-
tures such as cue phrases, sentence length or location, computes a probability
that it should be included in the summary. Thereafter, [7] have extended this
model using decision tree rules instead of bayesian classifiers. Rhetorical status
was proposed by [8] to summarize scientific articles (Computational Linguistic
conference articles) that can highlight the new contribution of the source article.
The main drawback of this approach is that it depends on manually constructed
resources (metadiscourse features are manually annotated). [9] proposes to com-
bine semantic-based and frequency-distribution approaches for extractive text
summarization in biomedical documents. However, this approach requires a dif-
ficult concept identification process. Benefits of automatic abstracting are now
clearly identified: it is inexpensive compared to human effort and, unlike hu-
mans, it is consistent and avoid subjectivity and variability observed in human
abstracts. Typically, summarization systems are two-phased, consisting of a con-
tent selection step followed by a generation step. Firstly, text fragments (most
often sentences) are assigned a score that reflects how important they are. The
highest-ranking material can then be arranged and displayed as an “extract”.
This paper presents yachs (Yet Another Chemistry Summarizer), a summa-
rization system that generates extracts from scientific articles in a specialized
domain, Organic Chemistry. The motivation behind this work is to allow non-
experts users to access information contained in high-end scientific documents
by dynamically generating extracts. Specifically, through statistical entity level
approaches, we seek to produce highly informative extracts that can stand in
place of the original author’s abstracts as surrogates.

2 Method

2.1 Pre-processing

The first question we are concerned with is whether classical Natural Language
Processing (NLP) tools are reasonably consistent across the Organic Chemistry
domain (no significant performance loss). The answer is clearly no. Tools such
as parsers, taggers or chunkers achieve very poor on these documents without
requiring a strenuous, costly and often manual adaptation phase. Issues encoun-
tered by classical tools are due to domain specificity: very wide vocabulary, long
sentences containing noise (citations, chemical formulas, tables, pictures refer-
ences, etc.), high quantity of hapax legomena2, etc.

The basic idea is to represent the document within the vector space model in-
troduced by [10] and apply specific numeric treatments to select the most salient
sentences. An n-dimensional term-space Γ , where n is the number of different
terms found in the document, is constructed. One convenient way to represent

2 Terms which only appears once in a document.
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the document in Γ is a matrix M = [ax,y] x=1...m; y=1...n where m is the number
of sentences and n the number of different terms. In this interpretation, every
row of M is a vector �sx representing the sentence x in which each component is
the term frequency within the sentence.

In order to reduce the size of the matrix M and accordingly cut down the
computational complexity, sentences are filtered and normalized (see Table 1).
In written language, some words carry more meaning than others. Thereby, a
stop-words elimination phase is performed (1) to delete non representative words
(words such as ‘the’, ‘of ’, ‘in’... are removed). One standard pre-processing would
normalize character case, remove punctuation and special characters (2). How-
ever, important information about chemical compounds may be lost during the
filtering process (e.g. ‘1,2-dienes’ is transformed into ‘dienes’). Besides if word
normalization (in our case stemming3) is applied afterwards (3), erroneous in-
formation is brought in the sentence (e.g. ‘1,2-dienes’ is transformed into ‘dien’).
We propose to perform a chemical compounds detection to protect these terms
during the normalization process (2′). Finally stemming is performed only on
non-chemical terms (3′). Chemical compounds are detected within sentences

Table 1. Example of sentence pre-processing

Original Cycloalkynes are known to isomerize to the 1,2-dienes under basic conditions.

(1) Cycloalkynes known isomerize 1,2-dienes under basic conditions.
(2) cycloalkynes known isomerize dienes under basic conditions
(3) cycloalkyn know isomer dien under basic condit

(2′) cycloalkynes know isomerize 1,2-dienes under basic conditions
(3′) cycloalkynes know isomer 1,2-dienes under basic condit

using a combination of two classifiers. The first one is a Bayes classifier trained
on 3-grams of letters whereas the second one uses pattern matching with a small
number of manually written rules (7 rules). Each sentence is tokenized in words
and each word is classified by the two classifiers, precision is prioritized by us-
ing the and combination (a word has to be classified as chemical compound by
the two classifiers). This hybrid approach (statistical and symbolic) for chem-
ical term recognition achieves very good results on a test corpus composed by
Organic Chemistry articles [12].

2.2 Sentence Ranking

Once sentences are pre-processed, a combination of features (also called metrics)
is used to assign a score to each sentence. That score reflects how important the
sentences are in relation to the whole document. The main advantage of this
approach is that zero knowledge is required and that makes the system fully

3 The Porter Stemmer algorithm [11] is used to normalize words by removing com-
moner morphological and inflexional endings from words.
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adjustable to any language and/or domain. This section formally describes the
metrics calculated by yachs.

Authors normally conceive titles as circumscribing the topic of the document.
Sentences sharing words, containing words related to or similar with the title are
likely to be relevant. Following this assumption, two metrics computing similarity
measures between a sentence and the title have been implemented. The first
measure is the well known cosine angle [10] between a sentence and the title
vectorial representations in Γ . The main weakness of cosine and more generally
of all similarity measures using words for tokens is that they are relying too much
on term normalization. Their performance dramatically decrease with wrongly
or non normalized words. We propose a second similarity measure based on
the Jaro-Winkler distance [13] that can bridge morphologically similar words in
order to smooth normalization and misspelling errors. The original Jaro-Winkler
measure, denoted Jw, uses the number of matching characters and transpositions
to compute a similarity score between two terms, giving more favourable ratings
to terms that match from the beginning (see examples in Table 2). We have
extended this measure to calculate the similarity between a sentence sx and the
title t (see Table 3):

Jwe(sx, t) =
1
|t| ·

∑

wi∈t

max
wj∈S′

Jw(wi, wj) (1)

where S′ is the term set of sx in which the terms wj that already have maximized
Jw(wi, wj) are removed.

Table 2. Examples of Jaro-Winkler distance (Jw) between words

Word 1 Word 2 Jw

nucleophile nucleophilic 0.94515
nucleophile electrophile 0.47643
diphenyl 1,1-Diphenylmethanone 0.35516
1,1-Diphenylmethanone nucleophile 0.11038

Experiments have shown that sentence position within the document is a
very important feature [1]. Indeed, the information is not homogeneously spread
across the document but scattered tidily by the author respecting universally
accepted writing rules. Document beginnings and endings usually contain sen-
tences that are highly relevant because their original goals are to present and
sum up the topic. Sentence position is therefore used as metric, denoted P
(Equation 2), by computing a normalized parabolic function depending on the
total number of sentence m in the document.

Px =
(x − 
m

2 �)2
�m

2 2
(2)
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Table 3. Example of similarity measures between the title and a sentence (Tpreproc.

and Spreproc. are the pre-processed title and the pre-processed sentence)

Title Generation of Cycloalkynes by Hydro-Iodonio-Elimination of Vinyl Iodonium Salts

Sentence Cycloalkylidenecarbene can provide a ring-expanded cycloalkyne via 1,2-rearrangement.

Tpreproc. generat cycloalkynes hydro-iodonio-elimination vinyl iodonium salt
Spreproc. cycloalkylidenecarbene provid ring expand cycloalkyne via rearrang
cosine 0 (no co-occurrencies)
Jwe 0.43348

where 
x� is the ceiling function that returns the smallest integer not less than x
and �x is the floor function that returns the highest integer less than or equal to x.

We have implemented four other metrics relying on numerical treatments, they
are computed on the matrix M (previously introduced in section 2.1). The first one
is the sum of word frequencies, denoted F (Equation 3), that uses the frequencies
of words in sentences. Sentences that are containing a high number of informative
words (words remaining after pre-processing) are considered relevant.

Fx =
n∑

y=1

ax,y (3)

The second metric, denoted C (Equation 4), relies on the number of chemical
compounds detected in the sentence giving a penalty to sentences that do not
contain any chemical compounds.

Cx =

{
1 if x contains at least one chemical compound
0 Otherwise

(4)

The third metric, denoted I (Equation 5), represents the interaction relation-
ship between sentences. The underlying idea is that sentences containing words
that are used in other sentences are statistically more representative for the
document [14].

Ix =
n∑

y=1
ax,y �=0

m∑

z=1
z �=x

az,y (5)

The last metric, denoted H (Equation 6), is the sum of the Hamming distances
computed on the sentence pair words [14]. The idea is to give more weight to
pairs of words that appears independently in sentences. Synonyms and topic-
related words generally are, according to the Hamming distance, high weighted.
In order to compute this metric, a second matrix denoted Mh is constructed
from M . Mh is a n × n triangular matrix constructed from word co-occurrences
between sentence pairs:
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Mh = [hi,j ] i=1...n; j=1...n

hi,j =
m∑

x=0

{
1 if ax,i �= ax,j

0 Otherwise

Hx =
n−1∑

i=1

n∑

j=i+1

{
hi,j if ax,i �= 0 and ax,j �= 0
0 Otherwise

(6)

Sentences are scored by using a equiprobable linear combination4 of the nor-
malized metrics (i.e. ranged in [0, 1]) described above. A ranked sentences list is
produced by the system allowing to construct the extract by arranging the high
scored sentences until the desired size is reached.

3 Experimental Settings

Considerable interest has been expressed and effort expended in attempting to
evaluate automatically the quality of the summaries. There exists two different
types of evaluation: extrinsic and intrinsic [15]. Extrinsic evaluations measure the
quality of a summary based on how it affects certain tasks. In intrinsic evalua-
tions, summary’s quality is evaluated by an analysis of its content. Most existing
automated evaluation methods work by comparing the produced summaries to
one or more reference summaries (ideally, produced by humans). In order to
evaluate our system, we have collected a testing set from http://pubs.acs.org.
The testing set is composed by 100 pairs of articles/abstracts coming from dif-
ferent journals (Organic Letters, Accounts of Chemical Research and Journal
of Organic Chemistry) of different years (respectively 2000-2002, 2005-2007 and
2007-2008), different authors and topics. Each document has been cleaned up
manually from the PDF (or HTML) version (figures, bibliographic references,
special characters, etc. have been removed). By ways of comparison the corpus
used in the Document Understanding Conference (DUC)5 2005 competition was
also composed of 100 sets. Table 4 shows some statistics about the testing set.

3.1 Performance Measures

To evaluate the quality of our generated summaries, we choose to use the Rouge
6

[16] evaluation toolkit, that has been found to be highly correlated with human
judgments [17]. Rouge-n is a n-gram recall measure calculated between a candi-
date summary and one or more reference summaries. In our experiments Rouge-

1, Rouge-2 and Rouge-su4 will be computed. Each generated extract will be
4 Other combinations might be considered, but a large training corpus is required to

tune the parameters.
5 Document Understanding Conferences are competitions on text summarization con-

ducted since 2000 by the National Institute of Standards and Technology (NIST),
http://www-nlpir.nist.gov

6
Rouge is available at http://haydn.isi.edu/ROUGE/
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Table 4. Testing corpus description

Journal Year Number Sentences Words
Organic Letters 2000-2008 63 5.313 104.588
Accounts of Chemical Research 2005-2006 10 979 18.337
The Journal of Organic Chemistry 2007-2008 27 2.631 66.242

Total - 100 8.923 189.167

evaluated by comparison with the author’s abstract. The size of the produced ex-
tracts is set at 5% of the original document (in sentence number) with a mini-
mum of three sentences. This value corresponds to the average compression rate
observed on the evaluation corpus (average compression rate is 5, 39%).

4 Results

The first experiment is focused on the study of metrics. Figure 1 shows the
Rouge results of each metric alone and their combination. As we can see from
these results, the combination, denoted by Combi., always outperforms the best
metric alone. The most discriminant metrics are the similarity measures with the
title (Jwe and cosine) and the interaction relationship between sentences (I).
The title similarity measures allow to focus the summary on the document main
topic, delineated by the author. The similarity measure Jwe that we propose
is globally the most discriminant metric, its ability to bridge morphologically
similar words is well adapted for Organic Chemistry documents. The interaction
metric uses the networks built by words within the document to compute a rele-
vance score, sentences that are constructed with terms appearing in many other
sentences are selected. These sentences are judged as being the most represen-
tative to the document because they are containing most of the information.

A second evaluation compares yachs to a generic statistical summarizer and a
baseline on the corpus of manually segmented documents (see Figure 2). We use
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Fig. 1. Rouge-1, Rouge-2 and Rouge-su4 recall scores for each metric independently
and for their combination (denoted Combi.)
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the Cortex summarizer [14] which is based on the same approach that yachs,
namely a combination of relevance metrics, but without the chemical compounds
detection process and the powerful Jwe metric. The baseline is generated by
arranging n sentences selected randomly from the document, n being 5% of
the document sentence number with a minimum of three sentences. In order to
smooth the baseline results, the average of 100 baseline evaluations is used in
our experiments. yachs achieves the best results among the Rouge evaluations.
It confirms that the specialized pre-processing and sentence scoring are well
adapted to process domain specialized (Organic Chemistry) documents.
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Fig. 2. Rouge-1, Rouge-2 and Rouge-su4 recall scores of yachs, Cortex and the
random baseline

The last evaluation models a real world summarization task: a plain text is
given as input (without manual sentence segmentation), each summarizer has to
produce an extract of size equals to 5% of the original document (in sentence
number). We compare yachs to six extractive summarizers and one baseline,
results are shown in Figure 3. yachs, Cortex and the baseline use the same
automatic sentence segmentation process which consists in a standard sentence
boundaries detection system enriched with lists of abbreviations. The other sys-
tems using their own sentence splitters. The baseline is generated by arranging
n sentences selected randomly from the document, n being 5% of the docu-
ment sentence number with a minimum of three sentences. Again, the average
of 100 baseline evaluations is used in our experiments. MEAD7 is a centroid
based summarizer [18] that extract sentences according to three features: sen-
tence centrality within the cluster, sentence position within the document and
weighted similarity with the title. Open Text Summarizer8 (OTS) [19] is an
Open Source project that, similarly to MEAD, use statistical word-frequency
methods to score sentences that are beforehand parsed. It also incorporates
an English language lexicon with synonyms and cue terms. Pertinence Sum-
marizer9 performs linguistic processing of a document to generates an extract,

7 Available at http://www.summarization.com/mead/
8 Available at http://libots.sourceforge.net
9 Available at http://www.pertinence.net/ps/
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the sentence scoring method considering general and specialized (Chemistry) lin-
guistic markers. Besides, two frequency-based summarizers are evaluated: Coper-
nic10 summarizer and the AutoSummarize feature of Microsoft Word. Exact
details of their algorithms are unfortunately not documented.
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Fig. 3. Comparison of the Rouge-1, Rouge-2 and Rouge-su4 recall scores for the
seven summarizers and the random baseline

yachs and Cortex clearly stand out from the crowd. These two methods
perform significantly better than the other systems (and the baseline) confirming
that these statistical techniques work well for Organic Chemistry documents.
yachs achieves the best results among all summarizers proving that specialized
pre-processing and adapted sentence scoring are features allowing to generate
better specialized extracts.

5 Conclusion

In this paper we have described an efficient approach for automatically gen-
erating extracts from documents in Organic Chemistry. Through experiments
performed on a corpus composed of scientific articles, we have showed that our
approach (implemented in the yachs

11 system) achieves promising results. This
work represent a good starting point but do show a critical point: a lot of in-
formation is lost during document pre-processing. Indeed, pictures, tables or
captions, that are removed during PDF (or HTML) to text conversion, are con-
taining salient information that can be used to enhance extracts. Among the
others, there are several points that would be worthy of further investigation:

– Usemulti-media information (pictures, texts, tables, etc.) to generate extracts.
– Fuse text summarization and Question Answering (QA) to model real-world

complex QA, in which a question cannot be answered by simply stating a
name, date, quantity, etc.

10 Available at http://www.copernic.com/en/products/summarizer/index.html
11 An demonstration version of yachs is available at http://daniel.iut.univ-metz.

fr/yachs

http://daniel.iut.univ-metz.fr/yachs
http://daniel.iut.univ-metz.fr/yachs
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Abstract. This paper presents an algorithm for Word Sense Discrimination that 
divides the global representation of a word into a number of classes by deter-
mining for any two occurrences whether they belong to the same sense or not. 
We rely on the notion that words that are used in similar contexts will have the 
same or a closely related meaning, thus, given a target word, we group its de-
pendency co-occurrences in a Word Space Model. Each cluster represents a dis-
tinct meaning or sense of that word. We experiment with augmenting the bag of 
words of each cluster of co-occurrences, the dictionary of sense definition, and 
augmenting both. Then we count the number of intersections of each word of 
the bag of clustered senses and the bag of the dictionary of senses following the 
Lesk method. We find an increase in recall and a decrease in precision when 
augmenting. However, the best resulting F-measure is for the option of aug-
menting the both dictionary of senses and the bag of words from the clusters. 

1   Introduction 

In several natural language applications such as text mining, information retrieval or 
question answering, it is convenient to have disambiguated sentences. Word Sense 
Discrimination divides the occurrences of a word into a number of classes by deter-
mining for any two occurrences whether they belong to the same sense or not [15]. 
Approaches to this problem rely on the notion that words that are used in similar con-
texts will have the same or a closely related meaning [10], thus Word Sense Discrimi-
nation (WSDisc) can be seen as grouping multiple occurrences of a given target word 
into clusters, where each cluster represents a distinct meaning or sense of that  
word [11].  

Following Salton and McGill [14] and Schütze [15], we model context as a vector 
space model for sense discrimination. This model is related to the Latent Semantic 
Analysis [4, 6] and has been adapted to Word Sense Disambiguation (WSDisc), for 
example, by Schütze [15] and Purandare and Pedersen [11]. Following them, each 
                                                           
* This work was done under partial support of Mexican Government (SNI, SIP-IPN, COFAA-

IPN, and PIFI-IPN). We thank to Ted Pedersen and our anonymous reviewers for their useful 
comments and discussion. 
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dimension corresponds to a word, and each vector represents the co-occurrence with 
other words. 

Several techniques have been used for improving WSDisc, such as using syntactic 
relationships instead of bigram co-occurrences (See [8] and [16]), other techniques 
include augmenting the Vector Space with content-words that occur in the glosses of 
each word in Machine Readable Dictionaries (manually created MRD) [11]. In this 
work, we explore with both improvements, using syntactic dependency relationships, 
and augmenting the vector space with related words; however we use automatically 
obtained related words from an automatically created thesaurus instead of a manually 
created MRD. 

In the following sections we give details of our implementation, as well as details 
of experiments and results. 

2   Vector Space Model and Clustering 

2.1   Construction of the Context Vector Space Model 

Each context in which a target word occurs in a set of test data is represented by a 
vector. The set of vectors conforms what is called a vector space model. A vector 
space model (or term vector model) is an algebraic model for representing text docu-
ments as vectors of identifiers, such as, for example, words. They have been used in 
information retrieval systems long ago since 1960s with the SMART system [2]  
developed at Cornell University in the 1960s by the group leaded by Gerard Stalton1.  

The vector space model we use is a symmetric table, constructed by adding up the 
dependency relations co-occurrences, normalized by dividing by the number of times  
 

Table 1. Fragment of Vector Space Model for the word ‘band’ 

 
 

atenta- 
do sonar 

asal-
tante 

ase-
sino 

al- 
bum 

fre- 
cuencia 

delic-
tivo 

seques-
trador 

infor- 
mación 

partici- 
pación 

co- 
meter 

atentado 
‘attack’  0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19 4.40 194.03 
sonar 
‘to sound’ 0.00 0.00 0.00 14.3 18.44 0.00 0.00 0.31 0.34 0.00 
asaltante 
‘robber’ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.53 
asesino 
‘killer’ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 7.72 
álbum 
‘album’ 0.00 14.30 0.00 0.00 0.00 0.00 0.00 0.00 2.04 0.00 
frecuencia 
‘frequency ‘ 0.00 18.44 0.00 0.00 0.00 4.20 0.00 6.06 0.21 5.47 
delictivo 
‘delictive ‘ 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.35 0.39 0.00 
secuestrador 
‘kidnapper ‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.06 0.00 5.43 
información 
‘information ‘ 1.19 0.31 0.00 0.75 0.00 6.06 0.35 1.06 0.69 0.33 
participación 
‘participation‘ 4.40 0.34 0.00 0.00 2.04 0.21 0.39 0.00 0.69 0.00 
cometer 
‘commit ‘ 194.03 0.00 5.53 7.72 0.00 5.47 0.00 5.43 0.33 0.00 

                                                           
1 Michael Lesk was among the contributors of this group. 
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each word occurs. This matrix is obtained exclusively from the dependency relations 
extracted from the corpus Prensaw in Spanish. This corpus consists of 4 years of 4 
mexican newspapers. The size of Prensaw is more than 1GB of text. We use the 
Spanish parser DILUCT [3] for extracting the dependency relationships from this 
text2. See Table 1 for an example of this matrix. 

Table 1 shows only 12 x 12 cells of the total 345 x 345 features for the word banda 
‘band’. We adjust the threshold automatically to obtain matrices between 250 and 350 
rows (and equal number of columns, as matrices are symmetric). The threshold is ad-
justed by increasing the number of pairs occurrences (as banda, delincuente ‘band, 
robber’) needed to be considered in the wordspace matrix. Each cell is divided by the 
number of occurrences of both words. Values are multiplied by 108 because resulting 
values are too small due to a big number of occurrences of words individually. 
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As an example, consider the first column of Table 1; it is possible to see that cometer 
‘commit’ and atentado ‘attack’ are highly related (it is almost a collocation in Spanish, 
since other combinations sound strange, as for ‘make’ an ‘attack’). The second column 
shows that sonar ‘to sound’ is highly related to album and frequencia ‘frequency’. 

Table 2. CLUTO clustering for the Dependency Context Vector Space of banda ‘band’ 

Cluster Size ISim ESim Descriptive Discriminating 
0 46 0.399 0.027 presunto  0.9%, captura  0.7%, or-

ganización  0.7%, robar  0.6% 
país  2.8%, grupo  1.9%, momen-
to  1.8%, año  1.7% 

1 20 0.210 0.004 internet 27.1%, radio 25.4%, red  
9.6%, espectro  7.8%, frecuencia  
6.0%  

internet 16.5%, banda 15.1%, ra-
dio 15.1%, espectro  5.4%, red  
3.7% 

2 25 0.199 0.005 canción 24.9%, grabar 13.4%, dis-
co  8.7%, álbum  6.8%, interpretar  
6.0%  

canción 12.9%,grabar 10.0%, in-
terpretar  5.0%, álbum  4.7% 

3 27 0.193 0.040 grupo 25.6%, organización  6.5%, 
movimiento  6.2%, músico  4.9%  

grupo 14.4%, movimiento  5.8%, 
gira  4.3%, músico  4.0% 

4 69 0.158 0.018 momento  7.1%, vez  4.2%, año  
3.4%, nombre  3.3%, país  3.0%  

momento  4.7%, vez  2.7%, lugar  
2.4%, cuenta  2.2% 

5 32 0.124 0.006 oscilar  9.7%, llegar  9.4%, dere-
cha  5.4%, hacer  4.8%, ubicar  
3.4%  

oscilar  6.5%, llegar  5.3%, dere-
cha  2.9%, hacer  2.5% 

6 32 0.133 0.012 méxico 29.2%, estados  8.0%, 
país  6.4%, droga  6.2%, parte  
2.9%  

méxico 17.9%, estados  5.7%, 
droga  4.1%, romper  2.5% 

7 29 0.127 0.006 flotación  9.0%, cotización  8.6%, 
precio  7.2%, fluctuación  4.8%, 
control  4.6%  

flotación  7.2%, cotización  6.2%, 
precio  4.9%, fluctuación  4.0% 

8 34 0.120 0.001 narcotráfico 24.3%, arizmendi  
6.8%, delito  5.6%, arellano  5.5%, 
asesinar  4.6%  

narcotráfico 12.4%, arizmendi  
5.4%, arellano  4.2%, delito  3.4% 
 

9 31 0.134 0.015 policía 20.5%, delincuente  9.7%, 
militar  6.5%, elemento  4.7%, te-
rrorista  4.0%  

policía 12.3%, delincuente  6.1%, 
militar  3.7%, pandilleros  3.6% 

                                                           
2 We have made available the Spanish dependency relationships and their count at http:// 

hiramcalvo.com/diluct/resources/ in Ted Pedersen’s ngram format. 
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2.2   Clustering of the Context Vectors 

CLUTO is a family of data clustering software tools [12]. We use vcluster version 
2.1.1 to cluster the rows of the Vector Space Model (like the fragment shown in  
Table 1), using the co-ocurrences of each word as features. We used direct k-way 
clustering. CLUTO computes a direct k-way clustering as follows [13]: Initially, a set 
of k objects is selected from the data sets to act as the seeds of the k clusters. Then, for 
each object, its similarity to these k seeds is computed, and it is assigned to the cluster 
corresponding to its most similar seed. This forms the initial k-way clustering. This 
clustering is then repeatedly refined so that it optimizes a desired clustering criterion 
function. This optimization is performed using a randomized incremental optimiza-
tion algorithm that is greedy in nature, has low computational requirements, and pro-
duces high-quality solutions [17]. 

In Table 2 we show an example of clustering of meanings for the word banda 
‘band’. Isim shows the internal similarity of each cluster, Esim shows the external 

Table 3. Examples of w ordbags to be intersected for banda ‘band’ 

bagclu (fragment)  bagdir 
0:asaltante, asesino, armada, delictivo, rival, neza, vocalista, colabo-
ración, alternar, flotación, ladrón, legendario, arizmendi, operar, mafi-
oso, especializado, pertenencia, dedicada, desmembrar, desli-
zamiento, robo, criminal, desintegrar. 

 

1:sonar, frecuencia, servicio, información, acceso, través, comunica-
ción, ampliar, concesión, conexión, transmitir, escuchar, transmisión, 
radio, espectro,  
2:álbum, video, dedicar, tocar, interpretar, canción, éxito, sonido, can-
tar, musical, conformar, componer, grabar, estilo, músico, ritmo, pre-
sentación, tema, película, concierto, disco, incluir, género, música, 
producción 
3:ofrecer, miembro, iniciar, participación, organizar, británico, civil, 
acompañar, jazz, colaborar, trabajo, existencia, integrante, gira, per-
tenecer, participar, apoyo, dirigir, paramilitar, jóvenes, líder, unir, inte-
grar, encabezar, compañero, apoyar,  
4:imponer, vivir, ir, regresar, seguir, surgir, llevar, decir, encontrar, 
ver, traer, primero, hacer, nacer, crear, pasar, grande, propio, to mar, 
considerar, oscilar, rebasar, mexicano, acercar, abandonar, poder, 
jugar, existir, ubicar, nueva,  
5:cabeza, límite, 22, 20, nombre, cuenta, salida, paso, escenario, ju-
gada, 25, tierra, punto, 10, viento, propuesta, 15, año, momento, vez, 
extremo, izquierda, fin, calle, centro, mano, derecha, grado, lugar, 30, 
carrera 

 

6:estado, ciudad, tráfico, mundo, comercio, intereses, negociación, 
guerra, llegada, formar, traficante, presidente, pueblo, resto, comuni-
dad, gobierno, política, país, tradición, diferencia, movimiento, histo-
ria, alianza, territorio, estados, sur,  

 

7:cambio, respecto, mecanismo, peso, instrumento, internacional, ca-
lidad, precio, control, acuerdo, mantener, tipo, dólar, cambiaria, obje-
tivo, mercado, área, permitir, base, fluctuación, régimen, acción, ca-
pacidad, baja, operación,  

 

8:secuestrador, cometer, crimen, asesinato, secuestro, delincuencia, 
sicario, lucha, tiro, droga, actividad, aprehensión, investigación, per-
sona, captura, organizado, pistoleros, involucrar, delito, combate, 
asalto, organización, combatir, violencia, caso, narcotráfico, vínculo, 
sujeto, víctima, impunidad, nexo,  

 

9:detener, utilizar, grupo, argentino, seguridad, enfrentar,  elemento, 
colonia, presunto, decena, proteger, acabar, actuación, ataque, pro-
tección, intervenir,  jefe, barrio, presencia,.  

 

banda.1: Cinta que se coloca cruzada sobre el 
pecho y que es señal de un cargo o una distinción 
Ex: ha conseguido unas cuantas bandas, inclu-
yendo la novedosa de Miss Internet  

banda.2: Tira de tela u otro material 
Ex: unas bandas de lona, unas bandas de velcro 
Syn: tira, cinta 

banda.3: Conjunto de músicos que tocan juntos 
Ex: banda de jazz, banda de cornetas y tambores 
Syn: grupo 
Collo: banda militar, banda de música, banda de 
rock, banda musical 

banda.4: Grupo de personas que se une con fines 
comunes, especialmente delictivos 
Ex: banda de atracadores, banda de traficantes 
Syn: grupo 
Collo: banda armada, banda callejera, banda de 
delincuentes, banda juvenil, banda militar, banda 
organizada, banda paramilitar, banda terrorista, 
banda ultra 

banda.5: Zona lateral de un objeto o lugar 
Ex: recorrió toda la banda derecha con el balón 
cosido a sus botas 
Syn: margen, lateral, lado, costado 
Collo: banda derecha, banda izquierda, línea de 
banda, saque de banda 

banda.6: Conjunto de animales que pertenecen a 
una misma especie y se desplazan en grupo 
Ex: banda de gaviotas 
Syn: bandada, manada 

banda.7: Intervalo de frecuencias entre dos pun-
tos que permite transmitir una señal por medio de 
ondas electromagnéticas 
Ex: los radiofaros trabajan en la banda 280 
Syn: frecuencia 
Collo: banda de frecuencia 



104 H. Calvo 

similarity with other clusters, and the descriptive and discriminating features for each 
cluster. Features are words which co-occurr with the word to desambiguate. 

Different senses of “banda” can be spotted from the descriptive words for each 
cluster. Cluster #0 would correspond to banda de delincuentes ‘robbers band’, Cluster 
#1 to banda de frecuencia ‘frequency band’ (AM, FM,…), Cluster #3 to organized 
band, etc. Cluster #7 is interesting, since it shows a meaning that is not present in 
Spanish Wordnet or Minidir (the inventory of senses used for Spanish Senseval-3 
[9]). It is related to banda de flotación, which means an interval where Mexican peso 
fluctuates in comparison to U.S. dollar.  

We experimented with several parameter combinations. We obtained better results 
with the co-relational coefficient and no less than 10 clusters. For less than 10 clus-
ters, meanings tend to clutter. Using more clusters leads to several clusters corre-
sponding to one meaning in WordNet or Minidir, which is not indeed a problem, 
since we can map several clusters to a single sense in Minidir. In all experiments we 
set the number of classes to 10. 

2.3   Mapping of Clusters to Sense’s Inventory 

For evaluation, clusters must be mapped to an inventory of senses. For our experiments, 
we used Minidir from Senseval-3 Spanish Lexical Test3. We used intersection of word-
bags following the Simplified Lesk approach [5] with all words weighted as 1 (i.e., no 
IDF as in [5]). See Table 3 for an example of the words belonging to each cluster (bag-
clu) and the words from Minidir (bagdir). The Senseval-3 task for Spanish is slightly 
different from English, since they supply a Minidir which includes examples, synonyms 
and frequent collocations, whereas in the English test the sense directory is taken from 
WordNet. The resulting mappings are shown in Table 3 with connecting lines. 

2.4   Evaluation 

Once the clusters are mapped to senses, their words (bagclu) can be intersected using 
Simple Term Matching (STM) as in the Simplified Lesk algorithm with the words 
from the Senseval-3 Lexical Sample Test of Spanish (bagtest) to find the correct 
sense; so that we are using the algorithm of intersection of words (STM) twice: Once 
for mapping bagclu to bagdir, and then to intersect bagclu with bagtest. 

The results are: precision: 48.87%, recall: 28.68%, uncovered cases: 42.10%, F-
Measure: 33.35. We have not applied any augmentation of the bags of words yet. 

3   Augmenting the Word Space Model with a Thesaurus 

We created a thesaurus following the Lin method described in [7]. The corpus used to 
create the thesaurus was the whole Encarta encyclopaedia 2004 in Spanish [1]. It has 
18.59 M tokens, 117,928 types in 73MB of text, 747,239 sentences, and 39,685 defi-
nitions. See Table 4 for an example of similar words obtained from this corpus4. 
 

                                                           
3 See http://www.lsi.upc.es/~nlp/senseval-3/Spanish.html and [9] for a description of this test 

and information about the 46 words which make up test. Each word has in average 91 in-
stances with a standard deviation of σ=30.29. In total there are 4195 instances. 

4 The Lin Distributional Thesaurus from Encarta is available at http://hiramcalvo.com/resources 
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Table 4. Example of similar words using Lin similarity method 

word w similar word w’ English simlin(w,w’) 
guitarrista pianista pianist 0.141 
‘guitarist’ fisiólogo physiologist 0.139 
 educador teacher 0.129 
devoción afecto affection 0.095 
‘devotion’ respeto respect 0.091 
 admiración admiration 0.078 
leer editar to edit 0.078 
‘to read’ traducir to translate 0.076 
 publicar to publish 0.072 

 
We used a thesaurus from this corpus because this corpus is smaller than prensaw5, 
and we considered that an encyclopaedia is wide enough to consider many different 
words; however we should be aware that the different word distribution of Encarta vs. 
prensaw may influence the outcome. All augmentations considered only the top 10 
similar words for each word in the bag, thus, multiplying the size of the bag by 10. 

There are four ways to use the thesaurus from Encarta on the first mapping (bagclu 
to bagdir):  

0. No augmentation (See results of Section 2.4). 
1. Augmenting the matrix, before clustering, with similar words, i.e., for each 

word, add its top n similar words. That results in a (345 x n) x (345 x n) matrix. 
This option adds a considerable quantity of noise, so it was not further explored. 

2. Augmenting bagclu: Adding the top n similar words for each content word in 
bagclu. 

3. Augmenting bagdir: Adding the top n similar words for each content word in 
bagdir.  

4. Augmenting both baclu and bagdir 

Table 5. Results of WSDisc Augmenting the Word Space Model 

encarta Precision Recall uncovered F-measure Description 
0 48.87 28.68 42.10 33.35 raw 
2 45.34 33.71 23.67 36.92 aug. bagclu 
3 41.91 32.35 23.64 35.38 aug. bagdir 
4 42.26 34.89 18.63 37.55 aug. both 

prensaw Precision Recall uncovered F-measure desc. 
0 46.33 38.53 18.51 41.52 raw 
2 40.00 38.50 4.15 39.21 aug. bagclu 
3 42.73 40.73 5.06 41.65 aug. bagdir 
4 42.58 41.80 2.23 42.18 aug. both 

                                                           
5 The algorithm to obtain a Lin-Thesaurus from prensaw might take up to one month due to the 

increased combination of words. 
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Table 6. Results of Senseval-3 systems 

System Supervised Precision Recall Coverage F-measure 
IRST Yes 84.20% 84.20% 100.0% 84.20 
UA-SRT Semi 84.00% 84.00% 100.0% 84.00 
UMD Yes 82.48% 82.48% 100.0% 82.48 
UNED Yes 81.76% 81.76% 100.0% 81.76 
SWAT Yes 79.45% 79.45% 100.0% 79.45 
D-SLSS Yes 74.29% 75.02% 100.0% 74.65 
CSUSMCS Yes 67.84% 67.82% 99.9% 67.83 
UA-NSM No 61.93% 61.93% 100.0% 61.93 
UA-NP No 84.31% 47.27% 56.1% 60.58 
Baseline (MFS) -- 67.72% 67.72% 100.0% 67.72 

 
The results are shown in Table 5, for Context Vector Space Models obtained from 

the prensaw corpus and the encarta corpus separatedly. Note that we did not explore 
option 1 since it resulted in very big tables with a high amount of noise. 

4   Conclusions and Future Work 

Compared with the similar system of Purandare and Pedersen [11], their system 
achieves similar results (42.35% F-measure with no gloss augmentation vs. 46.9% F-
measure with gloss augmentation). It is important to notice that results are not directly 
comparable, because they test against the Senseval-2 Lexical Sample test in English. 
In addition, they report an increase of F-measure, while they do not report the particu-
lar values of precision and recall. 

It is important to note the following differences between our system and Purandare 
and Pedersen’s: Our system is based on dependency relationships for building the Word 
Space Model, whereas their system is based on co-occurrences in a window of size 3. 
Secondly, we do not perform matrix packing (SVDPack). Third, we augment the WSM 
using an automatically created thesaurus instead of a manually obtained MRD. 

We show in Table 6 the results of other systems at the Spanish Lexical Sample 
Test of Senseval-3 [9]. The baseline was calculated as the most frequent sense from 
MiniDir. Compared with these results, the overall results of our system fall below the 
baseline, and below the unsupervised systems (which achieve 61.92 and 60.58 respec-
tively). Such systems work only for nouns; our system works for every part of speech. 
The evaluation of our system considering only nouns (18 of 46 words) yields very 
similar results than for all words. 

In general, the best F-measure is obtained by augmenting both the bag of directory 
of senses (bagdir) and the bag of words of the clustered senses (bagclu). Both aug-
mentations sum to each other. Coverage rises notably when using a bigger corpus 
such as prensaw for the wordspace model (WSM). We think that using an even larger 
WSM might attain better results. In addition, when using the same corpus for WSM 
and for the Lin-Thesaurus, the increase on performance is more noticeable.  

We think that using resources such as thesaurus and WSM clearly benefit WSD. In 
a future work, we should experiment with applying these resources to more complex 
algorithms for WSD, aside from WSDisc. As for WSDisc, as future work, we plan to 
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experiment with other clustering algorithms that find the number of classes automati-
cally, as we set always 10 clusters. We should explore the impact of varying the num-
ber of neighbors for augmentation; and experiment with distributional thesaurus  
obtained from different sources, particularly from prensaw. 
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Abstract. Plagiarism is a widely spread problem that is the main focus of inter-
est these days. In this paper, we propose a new method solving associations of 
phrases contained in text documents. This method, called SVDPlag, employs 
Singular Value Decomposition (SVD) for this purpose. Further, we discuss 
other approaches to plagiarism detection and compare them with our method. 
To examine the efficiency of plagiarism detection methods, we used 
an experimental corpus of 950 text documents about politics, which were cre-
ated from the standard CTK corpus. The experiments indicate that our approach 
significantly improves the accuracy of plagiarism detection and overcomes 
other methods. 

Keywords: Plagiarism, Copy Detection, Natural Language Processing, Phrases, 
N-grams, Singular Value Decomposition, Latent Semantic Analysis. 

1   Introduction 

In recent years, the growing popularity of plagiarism has raised general awareness and 
searching for new protections has started. Although various protections have been 
developed for CDs, DVDs, and other media, it always contains a vulnerability that is 
later exploited to bypass the protection. The Internet can be considered as a particular 
case of public media where whatever can be found. Thanks to its wide popularity, it is 
an inexhaustible source of information. If we take a brief look at the content of the 
Internet, we discover that most of the information distributed on CDs, DVDs, and 
some other media is available in an unprotected form. 

The aim is not to protect the information, but looking for the plagiarists and punish 
them. The main advantage of this approach rests in psychology since every plagiarism 
may be identified by comparing it with a database of existing works. Plagiarism in 
written text is in the center of public interest for its wide use in education, research, 
politics, etc. A tool for identification plagiarism among various text documents is 
required by every institution you can think of. For instance, it is crucial for education 
system, because many students try to submit someone else’s works. 

Clough [4, 5] and Maurer [13] carried out an observation of the current state of 
plagiarism in written text. In this paper, we are going deeper to propose an advanced 
plagiarism detection method specialized in written text. It is the center of our attention 
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due to its wide use and general public demands for new approaches. Paraphrasing is 
still a key issue for plagiarism detection and therefore further development is re-
quired. We employed the Latent Semantic Analysis (LSA) framework to infer 
the latent semantic associations and subsequently determine the document similarity. 
During this process, LSA applies Singular Value Decomposition (SVD). An essential 
goal of our method is to process all selected documents together. 

The following text is organized as follows. Section 2 describes the current state of 
the art in the field of plagiarism detection. Section 3 proposes our method based on 
SVD. The comparison of our method with other existing approaches is presented in 
Section 4. Finally, Section 5 summarizes our results and proposes some improve-
ments for future work. 

2   Related Work 

In the field of Information Retrieval (IR), Vector Space Model (VSM) has been often 
employed. This method computes the cosine measure between two documents accord-
ing to the occurrence frequencies of single words. In the field of plagiarism detection 
we can regard it as a baseline. An implementation of this method can be found, for 
instance, in Detection of Duplicate Defect Reports [14]. 

Shivakumar and Garcia-Molina introduced the most famous Relative Frequency 
Model (RFM), which is partly derived from the VSM. In 1995, they developed 
SCAM system [16] based on RFM. Later in 1996, they proposed an improvement 
[17] to reach better accuracy and scalability. This system uses single words as fea-
tures for plagiarism detection. A similar approach was used in COPS system [3] as 
well. The only one difference is that it uses whole sentences as features instead of 
single words. 

The previous two methods employed mainly single words as features. The main 
disadvantage is that it detects rather the topic similarity than the real text overlap. On 
the other hand, COPS uses whole sentences, where the only one word mismatch 
causes the failure of the sentence matching. The proper solution seems to be the use 
of phrases since they contain only simple ideas. Therefore, the modern plagiarism 
detection turned to identification of overlapping phrases. 

In 2006, Lane presented system Ferret [10, 11] based on comparison of common 
trigrams. The resulting similarity is computed according to the Jaccard-Tanimoto 
coefficient [12]. Analogously, Bao used this approach in a study dealing with plagia-
rism in academic conference papers [1]. 

Some other approaches for plagiarism detection have been developed, such as 
PPChecker [7] or Hoad&Zobel [6]. Although, they improve the accuracy of plagia-
rism detection, single words are still being utilized. For instance, PPChecker identifies 
a certain plagiarism pattern based on three decision conditions, i.e. word overlap, 
word difference, and size overlap. Hoad&Zobel proposed several modifications to the 
traditional VSM. Some of the similarity measures, they proposed, improve the score 
of separation of the correctly plagiarized documents from the incorrectly ones. In 
some cases, they slightly improve the accuracy. 
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3   The Proposed Plagiarism Detection Method 

To achieve better results, we decided to employ SVD in the field of plagiarism detec-
tion. Generally, SVD is a tool for LSA to infer the latent semantic associations be-
tween two different entities [2, 9]. In our case we deal with phrases contained in text 
documents. 

We can imagine phrases as word N-grams of a concrete length n, i.e. a sequence of 
n words. With the help of N-grams, we are able to identify the overlapping parts of 
text documents. Although the document overlap can be sufficient to identify plagia-
rism, we propose to employ SVD to infer the latent semantics based on statistical 
computations of large data. The following text describes our method SVDPlag in 
detail. Fig. 1 is just the presentation of our system which is based on the proposed 
method. 

Documents 
stored in a local 

database 

Text Pre-processing 

Phrase Extraction 

Latent Semantic Analysis 

Document Similarity Normalization 

Summary of plagiarized 
documents 

1) 

2) 

5) 

6) 

Phrase Analysis and Reduction 3) 

Building a Document Model 4) 

 

Fig. 1. Scheme of the system based on SVDPlag 

3.1   Text Pre-processing 

Text pre-processing is an important step for every Natural Language Processing 
(NLP) task to achieve outstanding results. In SVDPlag we use stop-word removal and 
lemmatization. Stop-word removal is the most fundamental NLP technique, which 
removes all common and inconvenient words from the text. In our case, we use it as 
a necessary data reduction technique. Lemmatization is the process of determining 
the lemma for a given word [18]. In contrast to Stemming, it involves techniques such 
as understanding the context and determining the part of speech of a word. 
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3.2   Phrase Extraction 

The second step retrieves simple ideas from the text. For this purpose, we extract 
word N-grams of a specified length from the pre-processed text. Recent experiments 
have shown that the most suitable length of N-grams lies between 2 and 7. For our 
experiments, introduced in the following section, we used N-grams of the length 
1 to 5. Indeed, 1-grams are just single words that do not identify any text overlap and 
therefore the accuracy of the used method significantly decreases. We employed sin-
gle words just to make a comparison with the VSM and RFM method. On the other 
hand, N-grams having length 6 or more are not able to identify fine-grained text 
modifications. Thus, the accuracy of the used method decreases as quickly as 
the length of N-grams increases. 

3.3   Phrase Analysis and Reduction 

Analysis and reduction is an essential step that should follow every data extraction. 
The longer phrases, in terms of N-grams, are extracted, the higher amount of distinct 
phrases has to be compared to identify plagiarized documents. This can seem to be 
a disadvantage of longer phrases; however, we have to take into account that not all 
phrases have the same importance. If we employ a feature selection technique, 
the amount of phrases can be significantly reduced. 

The most simple and from our point of view the best method for plagiarism detec-
tion is a Document Frequency (DF) feature selection. According to the document 
frequency we can simply determine if the given phrase is important or not. The 
phrases existing just in one document are removed right away since they cannot be 
plagiarized in any other document. Moreover, we propose to remove such phrases that 
are contained in more than μ + σ documents, where μ is the mean document fre-
quency and σ is the standard deviation from the mean document frequency. In other 
words, it removes all common phrases from the documents. 

Table 1. Number of phrases before and after reduction of a sample of 1000 pieces of news 
obtained from the standard CTKcorpus. We use the DF feature selection for N-gram reduction. 

N-gram 
length 

Number of  
original phrases 

Number of  
reduced phrases 

Average phrase 
occurrence freq. 

1 30550 15343 7.45 
2 128449 28206 1.76 
3 169093 23337 1.34 
5 189621 18281 1.18 
7 195999 15549 1.13 
9 199421 13536 1.10 

 
Table 1 presents the number of phrases after the DF feature selection. As you can 

see, the number of phrases after reduction decreases with the increasing length of 
N-grams. The main reason is that longer phrases more often occur just in one docu-
ment and are subsequently removed. For phrases of the length 5, the reduction ratio 
achieves about 10. Thus, we are able to reduce the number of phrases in a significant 
way and accelerate the further processing in terms of time consumption. 
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3.4   Building a Document Model 

This part deals with a simplified description of text documents. We propose 
a phrase-by-document model considering occurrence frequencies of phrases contained 
in the examined documents. These relationships are depicted in a matrix form, where 
columns represent phrases and rows represent documents. Let matrix A be an n-by-m 
rectangular matrix to be composed of n vectors [A1, A2, …, Am], where the vector Ai 
represents phrases contained in document i. Then, each vector Ai is composed of m 
elements ai,j representing the weighted occurrence frequency of phrase j in document 
i, as depicted in Equation 1. This equation is a modification of the standard TF-IDF 
weighting [15] we propose for initialization of matrix A. 

 

=jia , { ( ) ( )

otherwise

idocumentinoccursjphraseif
NPF

DF

N
PF

ji
i

j
ji

0

logmax2

log

2

1

,

,

⋅⋅

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

+  
(1)

PFi,j represents the occurrence frequency of phrase j in document i, DFj represents the 
number of documents where phrase j occurs, and finally |N| is the number of all 
documents. The difference in comparison to TF-IDF rests in IDF normalization. We 
divide it by log(|N|) in order to ai,j ∈ <0.5, 1>. On the other hand, if phrase j does not 
occur in document i, then ai,j =  0. This weighting mechanism yields the best result for 
SVD that is employed in the following subsection. 

3.5   Latent Semantic Analysis 

In this step, we infer the latent semantic associations among phrases contained in 
the examined documents. We apply SVD to decompose matrix A into three independ-
ent matrices U, Σ, and V. All these matrices can be decomposed in a reduced latent 
space k to perform the best k-rank approximation of A so that singular values 
σk+1,σk+2,…,σm are replaced by 0, where 1 ≤ k ≤ m. Then, matrix U is an n-by-k column 
orthonormal, whose columns are phrase singular vectors. Σ is a k-by-k diagonal ma-
trix without negative and zero numbers that represents singular values. 

0...... 121 ===>≥≥≥ + mkk σσσσσ  (2)

 

A characteristic feature of SVD is that the singular values on the diagonal are 
placed in descending order and satisfy Equation 2. Matrix VT is a k-by-m row or-
thonormal, whose rows are document singular vectors. 

Fig. 2 presents the decomposition in a more detailed fashion. After the decomposi-
tion, matrix VT is an essential building element for further processing since it contains 
independent profile vectors of the examined documents. 
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Fig. 2. Singular value decomposition of a phrase-by-document matrix 

3.6   Document Similarity Normalization 

The last step computes the mutual pairwise document similarity. Before we use ma-
trix VT, single elements of all document profiles must be rescaled with 
the corresponding singular values, as shown in Equation 3. 

TVB ×Σ=  (3)

Finally, we compute the mutual pairwise correlation according to Equation 4, 
where the columns of matrix B are length-normalized. The resulting simSVD is 
a symmetric matrix where each pair of documents is evaluated by a score representing 
the percentage similarity. 

BBsim
T

SVD ×=  (4)

Although everything might seem to have been solved now, the opposite is true. Let 
us have a look at Fig. 3; we remember the reduction process employed in the third 
step. Actually, this has to affect the measure of similarity because of the smaller set of 
phrases considered during the decomposition. Thus, simSVD obtains much higher score 
for such documents where vast majority of phrases are removed as meaningless. 

 

Fig. 3. An intersection of two sets of phrases 
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Therefore, we propose to modify the evaluation in matrix simSVD. Such expression 
is depicted in Equation 5, where the evaluation of documents R and S is weighted by 
the ratio between the number of original phrases |phorig| and the number of phrases 
after reduction |phred|. 

The resulting evaluation corresponds with general assumptions for measure of 
similarity. Now, let us define threshold τ that determines a minimal level of similar-
ity. If similarity between two document R and S is greater than τ, we consider such 
documents as plagiarized, see Equation 6. 
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4   Evaluation Measures 

To compare our proposed method SVDPlag with other approaches, we decided to use 
a standard mechanism well-known from IR. We define precision p and recall r ac-
cording to Equations 7 and 8, where relevant represents a set of documents to be 
selected as plagiarized by users and retrieved is a set of documents to be selected as 
plagiarized by the examined algorithm. 

retrieved

retrievedrelevant
p

∩
=  (7)

relevant

retrievedrelevant
r

∩
=  (8)

In the following figures, we use a more representative measure F1 depending on 
threshold τ, where τ determines a minimal level of similarity. Measure F1 combines 
precision and recall, as depicted in Equation 9. 

rp

rp
F

+
⋅⋅= 2

1  (9)

Although precision and recall suite well for most of tasks, we recommend include 
in a complementary measure [6] especially developed for plagiarism detection. This 
measure combines highest false match (HFM) and separation (SEP), where HFM  
is the highest percentage given to an incorrect result and SEP is the difference be-
tween the lowest correct result and the HFM. Because a high HFM is acceptable in 
case the SEP is high too and vice versa for the low score, both the SEP and HFM need 
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to be considered together. The ratio between the SEP and HFM provides a useful 
measure how plagiarism is separated from original documents. Equation 10 expresses 
the ratio we call SH. 

HFM

SEP
SH =  (10)

5   Experiments 

For our initial experiments, we gathered a collection of 150 plagiarized text docu-
ments in Czech language. This collection was created manually by students from the 
standard CTK corpus. We selected 300 articles from the politics and used them as a 
baseline to create the plagiarized documents. Subsequently, students were assigned to 
combine two or more randomly selected articles by the following rules: 

• Take paragraphs from the selected articles and create a new article 
• Remove about 20% of sentences from the new article 
• Remove about 10% of single words 
• Exchange about 20% of sentences from different paragraphs 
• Exchange about 10% of words from different sentences 
• Exchange the order of several paragraphs, sentences, and words 
• Insert several new words to get the sentence meaning 

As result we obtained 150 plagiarized documents where the underlying articles are 
known. Then we mixed up the plagiarized documents with the original 300 articles 
and appended it by 500 other articles of the same topic. Thus, we obtained 
an experimental corpus, which contained 950 text documents about politics. 
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Fig. 4. The dependency of measure F1 on threshold τ for plagiarism detection based on VSM 
and RFM 
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Fig. 5. The dependency of measure F1 on threshold τ for plagiarism detection based on Jac-
card-Tanimoto coefficient using single words, bigrams, trigrams, 4-grams, and 5-grams 
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Fig. 6. The dependency of measure F1 on threshold τ for plagiarism detection based on SVD 
using single words, bigrams, trigrams, 4-grams, and 5-grams 

We focused our attention on the comparison of our method SVDPlag to other 
available approaches for plagiarism detection. We selected VSM approach used, for 
instance, in Detection of Duplicate Defect Reports [14], and RFM approach employed 
in SCAM system [16]. Further, we selected Jaccard-Tanimoto coefficient using 
N-grams of different length, which was employed in Ferret system [10] or in a study 
of academic conference papers [1]. All these methods employ the same 
pre-processing and feature selection as introduced in Section 3.1, 3.2, and 3.3. 

Fig. 4 presents the dependency of measure F1 on threshold τ for VSM and RFM 
plagiarism detection methods. As you can see, both curves are quite wide, because 
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only word matches are searched. There is no problem to determine the right threshold 
τ due to the flatness around the maximum of F1. On the other hand, it reaches lower 
score because more unrelated documents are recognized as plagiarized. RFM slightly 
overcomes VSM because it computes an asymmetric measure taking into account 
a document is a subset of another one. Thus, it better evaluates such pairs of docu-
ments that have different number of features. 

The following method is the one based on Jaccard-Tanimoto coefficient. Fig. 5 
presents various dependency curves for single words, bigrams, trigrams, 4-grams, and 
5-grams. All curves, as obvious, are narrower in comparison with VSM and RFM. 
Moreover, the longer N-gram is used the narrower the curve is. Jaccard-Tanimoto 
coefficient evaluates the pairs of related documents with a lower score. Therefore, 
the peak F1 is reached for very low threshold τ. By virtue of narrow curves, peak 
values are obtained just for a short interval of τ. 

Finally, Fig. 6 presents the dependency of measure F1 on threshold τ  for SVDPlag. 
In comparison to Jaccard-Tanimoto, the curves are slightly wider. Thus, it is easier to 
determine the right threshold. Although the curves are wider, SVDPlag achieves bet-
ter F1 score and overcomes the other methods for each N-gram length we used. 

Table 2 summarizes peak F1 achieved for a concrete threshold τ during 
the experiments. Moreover, we present measure HFM, SEP, and SH for all 
the methods using various N-gram lengths. As obvious from the table, SVDPlag 
overcomes the other methods. The best results yield SVDPlag for phrase match of 
four consecutive words, i.e. 4-gram. Jaccard-Tanimoto yields the best results for tri-
grams; however, it achieves only 90.82% for F1 compared to 92.57% in case of 
SVDPlag. As you can see, SVDPlag has very similar results for trigrams and 4-grams 
as well. The same situation occurs in Jaccard-Tanimoto, where bigrams, trigrams, and 
4-grams get similar results. From this observation, we can state that 4-grams are con-
venient not only for our SVDPlag method. 

Now, let us have a look at HFM, SEP, and SH. The longer N-gram match is used 
the lower HFM and SEP is. It is obvious because less number of N-gram matches is 
found. As result, SH slightly increases because SEP does not decrease as quickly as 
HFM. This is the reason why we recommend using longer N-grams for plagiarism 
detection since they better separate documents and make fewer mistakes between two 
 

Table 2. The best results achieved for F1, HFM, SEP, and SH 

Method Threshold τ F1 HFM SEP SH 
VSM 30% 84.97% 76.67% 66.01% 0.8610 
RFM 37% 87.03% 85.12% 65.84% 0.7734 
Jaccard (words) 16% 85.84% 56.07% 51.73% 0.9227 
Jaccard (bigrams) 10% 90.56% 55.35% 53.33% 0.9635 
Jaccard (trigrams) 8% 90.82% 50.00% 48.76% 0.9753 
Jaccard (4-grams) 6% 90.53% 45.12% 44.34% 0.9827 
Jaccard (5-grams) 4% 89.36% 40.25% 39.76% 0.9878 
SVDPlag (words) 28% 87.31% 72.09% 60.12% 0.8339 
SVDPlag (bigrams) 17% 91.36% 70.72% 56.28% 0.9231 
SVDPlag (trigrams) 15% 92.48% 65.32% 61.93% 0.9480 
SVDPlag (4-grams) 12% 92.57% 61.21% 59.16% 0.9665 
SVDPlag (5-grams) 8% 91.03% 56.45% 55.08% 0.9756 
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unrelated documents. Thus, 4-grams are also a good choice for Jaccard-Tanimoto 
despite of the fact that the measure F1 is slightly worse. 

In our comparison, we regard VSM and RFM just as the baseline because they can 
compete neither with Jaccard-Tanimoto nor SVDPlag. Moreover, SVDPlag that em-
ploys only single words as features overcomes both VSM and RFM. 

5   Conclusion 

In this paper, we proposed a new plagiarism detection method based on SVD. 
It solves associations among phrases contained in the examined documents to infer 
the mutual similarity of all pairs of the documents. According to Lancaster [8], 
SVDPlag can be classified both as a Structural and Corpal method. 

From our observation of existing techniques for plagiarism detection and 
the experiments we performed, it is evident that SVDPlag overcomes the other meth-
ods. SVDPlag achieves the best results for 4-grams at the threshold level τ of 12%. 
Under these circumstances measure F1 achieves 92.57% on the experimental corpus. 
This corpus is composed of 950 documents about politics, which were obtained from 
the standard CTK corpus. 

In view of the future we intend to enlarge our experimental corpus and add topics 
focused not only on politics. Further, we are going to examine our method in detail. 
The aim is to find the influence of text pre-processing on the quality of results. There 
are some possibilities to improve our method with an advanced word normalization 
technique using, for instance, the WordNet thesaurus. The further possibility rests in 
weighting mechanism used for phrase occurrence frequencies. In our method, we used 
a modification of the TF-IDF weighting. Another solution might be, for instance, 
entropy weighting. 
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Abstract. This paper details a network infrastructure for representing and shar-
ing multiword units. It enables connecting local networks describing linguistic
semi-fixed components in the form of local grammars.

1 Introduction

Multiword units (MWUs) have deep impact on Natural Language Processing (NLP)
because their lexical, syntactic or semantic behaviour is often unpredictable from their
individual words [14]. In the past twenty years, researches pointed out the lack of data
resources of these expressions and attempted to build broad-coverage lexicons, such
as [7, 5, 6].

Local grammars (LGs) [8] have been shown of great interest to represent multiword
units and especially those involving some degree of lexical and syntactic variability
[16, 13, 4]. Their easy integration in NLP applications is also very convenient like in
[9, 15, 3]. They are in the form of Recursive Transition Networks (RTNs) that describe
word sequences in a factorized and structured manner. They form linguistic components
that can be reused by other local grammars. Nevertheless, in pratice, local grammars are
often stored on isolated machines and their components cannot be directly used by oth-
ers. Our objective is to connect these local networks in order to facilitate collaborative
work, to share them freely with the community and use them in NLP applications.

This paper describes an infrastructure for networking LGs and details different im-
plemented services facilitating importation, access and publishing. This network is
formed of three layers: (1) a formal network (RTN) representing word sequences; (2) a
linguistic network combining linguistic components in the form of local networks; (3) a
collaborative network connecting linguistic components of different authors. First, we
describe local grammars as linguistic recursive networks and illustrate it with MWUs1.
Next, we detail a colaborative infrastructure connecting local grammars together and
the different services implemented. We finally present the current state of the system,
which contains local grammars compatible with platforms Unitex [10] and Outilex [2].

2 Local Grammars as Linguistic Recursive Networks

The MWUs we are dealing with are contiguous semi-fixed collocations2 of two or
more words, that can be considered as lexical units. There exist many varieties such as

1 LGs can formalize other types of linguistic units (e.g. chunks or phrases). We decided to focus
on MWUs because they are considered key elementary units in many modern applications.

2 The continuity of the collocation is not strict because it might contain adjectival or adverbial
inserts like in ministre [français] de l’Agriculture ([French] minister of Agriculture).

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 120–125, 2008.
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nominal collocations (e.g. red wine), light verb constructions (to have the impression),
compounds (e.g. of course, close to), auxiliary predicates (e.g. continue to <verb>),
named entities such as time adverbials (January 12, 2007) or person names (George W.
Bush), and so on. Some of them accept lexical variations. For instance, in the expression
(gold+silver+bronze) medal, the modifier paradigm is limited to a small semantic class.
When lexical variation is limited to classes of few elements, this type of expressions
might be listed in dictionaries. Nevertheless, some expressions accept larger variations
that are not suitable to be listed in the form of dictionaries. For instance, the expression
world champion may vary in (E+defending+reigning) (European+African+...) cham-
pion. In that case, it is more convenient to describe the variation with a more compact
formalism like local grammars.

A local grammar [8] is a recursive transition network [17]. It is composed of re-
cursive automata which transition labels can be either lexical items or calls to other
automata. There exist a main automaton which is the entry point of the network. These
grammars theoretically recognize algebraic languages. Numerical expressions are a typ-
ical kind of expressions the description of which local grammars is best suited for. A
significant interest is that linguistic components described by local grammars can be
used by other local grammars by means of a simple reference. For instance, the com-
pound locative preposition around ten meters east of is recognized by the simple lo-
cal grammar given in figure 1. This grammar combines linguistic components defined

Fig. 1. Locative preposition

in other automata. PredDnum is an automaton that describes all possible numerical
predeterminers such as around, approximatively. Dnum points out the automaton rep-
resenting numbers. Direction is an automaton that recognizes different directions
such as west, north, southwest. This grammar can be integrated to a larger grammar of
compound prepositions by a simple reference to its axiom automaton.

3 A Collaborative Network Insfrastructure

3.1 A Decentralized Architecture

In theory, a LG can use components of other LGs. Nevertheless, in pratice, authors do
not have an overview of available components and they cannot directly use them in their
own grammars because they are stored on isolated machines. We propose a decentral-
ized network infrastructure to handle this issue. It consists of a set of HTTP servers (see
figure 2). These servers are only used as repositories of LGs, that are managed inde-
pendently of each others by their respective owners. Reporitories are in the most part
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Fig. 2. Architecture

located on the own web site of the grammar authors. A user that needs to get access
to the LGs, uses an access server including an index. The queries are processed with
the use of this index that gathers all data information of the network. The decentralized
architecture is then invisible for the user.

Each repository includes a collection of packages of local grammars. A package is an
archive including a set of (recursive) automata, a license and documentations in XML
and HTML. This documentation contains information such as authors, language, lin-
guistic description, entry points (main automata), required preprocessing and linguistic
resources (e.g. dictionaries). An automaton of a given package can call any automaton
contained in a package referenced by the system. A system of automata referencing has
been developped for that purpose.

The index contains precise information on repository packages, especially on the
linguistic content. In its current state, it contains the following information: addresses of
all repositories; packages (language, repository, path); terms used in the documentations
and in the automata; dependency between the automata (which automata call which
automata); entry points of the network (main automata).

3.2 Web Services

As any network containing data, this infrastucture requires some services to make it
useful. In addition of a manager that helps publishing packages and importing grammars
on local machines, we implemented a network browser and a search engine gathered in
GraalWeb, a Java Applet3.

The search engine has been implemented to help users to find grammars. The query
is a set of terms occurring either in the automata or in the documentation. The com-
putation of the query produces a list of automata sorted according to their relevancy to
the query. This tool is based on standard Information Retrieval techniques [1] by using
space vector models for representing queries, automata and documentations. We devel-
oped three techniques to search grammars according to their lexical content. The first

3 http://igm.univ-mlv.fr/˜mconstan/library
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one consists in considering that the terms of an automaton are its lexical items. The
similarity rate between an automaton and a query is the cosine between their respective
vectors. The second technique (independent from the query) consists in computing a
popularity rate for each automaton by using the PageRank technique used for Google
search engine [11]: the more an automaton is called by popular automata, the more it is
popular. We called this procedure GrammarRank as a tribute to its well-known inspira-
tion. The third technique consists in combining lexicon and dependency. It is based on
the fact that a term used in an automaton is also indirectly used by an automaton call-
ing it. Our algorithm propagates terms in the inverted dependency graph of the library.
Recent similar experiments have been conducted successfully for information retrieval
on the web like in [12]. The final score of a retrieved automaton combines the three
techniques the scores of which are assigned coefficients. When searching in the docu-
mentation content of the packages, we use a variant of the first technique. If a package
is relevant, solely the main automata are listed.

The implemented browser provides global and detailed views of the network. Firstly,
all available packages are listed and their documentation can be seen to get an overview
of the linguistic content. The structure of the dependency between the automata of a
package can be visualized in the form of a tree like in file system browsers. Each au-
tomaton can be explored in detail with a graph viewer implemented from Unitex source
code. A call to another automaton is considered as an hypertext link that can be followed
to be vizualized (by a simple mouse click). The browser is also used to follow the in-
verted dependency of the library, i.e. to get the list of automata that calls the current
automaton, select one and vizualize it.

The manager tool especially provides a functionality that projects a local grammar
of a package (including external components) on the filesytem of a local machine by
keeping the structure of the network.

4 Current State

The networked library currently contains local grammars compatible with formats and
resources of the Unitex and Outilex platforms. It includes 6 repositories and 9 packages.
In total, 1,496 automata including 11 main automata, are referenced by the system. The
network has 33,577 states and 77,978 transitions. For instance, we consider that the
automaton in figure 1 has 7 states and 7 transitions. The dependency graph is composed
of 5,258 edges. Two languages are represented: English and French. Several types of
MWU grammars are referenced: sequences of determiners in French, e.g. la plupart des
dix (most of the ten), named entities (location, organizations, persons, time) in French
and English, sequences of verbs in French and English (has continued to be afraid of
eating), locative prepositions in French (ten meters west of ).

5 Conclusion and Future Work

The network infrastructure and services described in this paper aims at sharing local
grammars of linguistic phenomena (especially, MWUs) in the NLP community. It has
the specificity of being decentralized: authors have their grammars on their own web
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site. An indexer is in charge of centralizing all the information on an access server.
Users can freely publish, access and import grammars from it in a transparent manner.
This library is presently limited to Unitex grammars, but we intend to extend it to other
formats. We also plan to provide a corpus that have been annotated by the application
of all grammars in order to show their coverage. The size of the library is rather small
but it is slowly growing. We hope that it will encourage NLP researcher to share their
grammars trough the system and then help new significant advances in the domain.
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Abstract. We introduce a technique for inducing a refinement of the set of part of
speech tags related to verbs. We cluster verbs according to their syntactic behavior
in a dependency structure setting. The set of clusters is automatically determined
by means of a quality measure over the probabilistic automata that describe words
in a bilexical grammar. Each of the resulting clusters defines a new part of speech
tag. We try out the resulting tag set in a state-of-the art phrase structure parser and
we show that the induced part of speech tags significantly improve the accuracy
of the parser.

1 Introduction

A part-of-speech (POS) tag is a linguistic category of words that are characterized by
their particular syntactic behaviors. These POS tags are usually defined within a syn-
tactic theory and supervised algorithms for parsing use them as they are defined.

A given definition of POS tags may not be the best for supervised algorithms for
parsing; words might be grouped differently in order to improve parsing performance.
Our main research question is: Can we redefine the set of POS tags so that when a state-
of-the-art parser is trained using the new set its performance improves? We answer this
question by presenting an algorithm that induces sets of POS tags capable of improving
state-of-the-art-parsing performance. We show that our POS tag sets improve parsing
by means of encoding some additional linguistic information into the new set of tags,
which is clearly useful for the parsing model.

We extract information from dependency trees based on Bilexical Grammars [1].
In Bilexical Grammars there are two automata for each word in the lexicon. These au-
tomata model, respectively, right and left dependents. We cluster words whose automata
are “similar”, and we treat each cluster as a new POS tag.

We design a procedure that implements this simple idea; a procedure that aims at
finding the best possible POS tag set clustering words whose automata show similar be-
haviors. The procedure is defined as an optimization problem. As every in optimization
problem, we define the quality measure it has to optimize, its search space, and strategy
it should follow to find the optimal POS tag set among all possible tag sets.

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 126–137, 2008.
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The search space also defines the type of information that will be codified into the
POS tags. Different syntactic features are used to generate different search spaces and,
consequently, different resulting POS tag sets. The quality measure for a tag set is com-
puted by tagging a dependency tree-bank using the POS tag to be evaluated, inducing
a bilexical grammar and evaluating the grammar’s quality, so that the quality measure
for POS tags is evaluated using quality measures for bilexical grammars. Finally, the
strategy for traversing the search space is implemented using Genetic Algorithms.

The set of new POS tags can be used to retag a phrase structure corpus. In our case,
we retag the Penn Treebank (PTB) [2] to test our new sets of POS tags in a phrase
structure setting. POS tag sets are evaluated using Collins parser [3] by means of Bikel’s
implementation [4]. We add our new POS tags to the training material, we re-train the
parser and we evaluate the parser performance, showing a significant improvement on
parsing results.

The rest of the paper is organized as follows. Section 2 provides details on how to
compute the quality measure, Section 3 explains how to build and traverse the search
space, Section 4 explain how the new tag sets are used for training a phrase structure
parser and it also reports the performance for the different tag sets we built. Section 5
gives an overview of different approaches to the same problem from the literature and
it hints some possible future directions. Finally, Section 6 concludes the paper.

2 Quality Measure for Tag Sets

This section introduces the quality measure q that we used for evaluating and optimizing
POS tag sets. This measure is defined using a further quality measure q′ for a particular
flavor of bilexical grammars. Briefly speaking, the quality q of a tag set C is computed
by means of retagging a dependency tree-bank with C, inducing a bilexical grammar B

from it, and computing a quality function q′ on B.
This section introduces our flavor of bilexical grammars, it shows how bilexical gram-

mars are induced from dependency tree-banks and how the measure q is defined in terms
of q′. It also discusses why we think q is a good measure of the quality of a tag set C.

2.1 Bilexical Grammars

Bilexical grammars are a formalism in which lexical items, such as verbs and their ar-
guments, can have idiosyncratic selective influences on each other. Formally, our flavor
of a bilexical grammar B is a 3-tuple (C, {rc}w∈C , {lc}c∈C, ) where:

– C is a set of POS tags, which contains a distinguished symbol ROOT.
– For each tag c ∈ C, lc and rc are a pair of probabilistic automata with start symbols

Slc and Src respectively. Each automaton accepts some regular subset of C∗.
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Fig. 1. Tree extracted from the PTB, file wsj 0297.mrg and transformed to a dependency tree

In our definition there are two automata per POS tag instead of two automata per word,
as in the original definition. In the rest of the paper we refer to our flavor of bilexical
grammars directly as bilexical grammars.

A dependency tree is a tree whose nodes (internal and external) are labeled with tags
from C; the root is labeled with the symbol ROOT. The children (‘dependents’) of a
node are ordered in a sequence with respect to each other and the node itself, so that
each node may have both left children that precede it and right children that follow it.
A dependency tree T is grammatical if, for every tag token c that appears in the tree,
lc accepts the (possibly empty) sequence of c’s left children (from right to left), and rc

accepts the sequence of c’s right children (from left to right).

2.2 Induction of Bilexical Grammars

Bilexical grammars can be induced from a dependency tree-bank by inducing two au-
tomata for each tag in C. Once the tag set C is defined, the induction of a bilexical
grammar is straightforward. The induction of Bilexical Grammars is carried out in a su-
pervised fashion. Our training material comes from Sections 02–21 of the PTB. Trees
are first transformed to dependency trees using Collins rules as implemented by Bikel’s
parser. All words in the PTB are removed and original POS tags are replaced by tags
in a given tag set C. This means that for each candidate POS tag set C the training
material has to be rewritten.

Once the training material reflects the tag set C, two bags T c
L and T c

R of strings for each
tag c in C are extracted. An example illustrates the extraction procedure better: Figure 1
shows a dependency tree and Table 1 shows some of the bags of left and right dependents

Table 1. Bags of left and right dependents extracted from dependency tree in Figure 1. Left
dependents are to be read from right to left. All displayed sets are singletons.

Word # i T i
L T i

R

0 NN {NN} {NN}
1 MD {MD NN} {MD VB DOTSYB}
2 VB {VB} {VB IN}
3 IN {IN} {IN NN}
4 NN {NN} {NN TO}
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that are extracted. Note that in the example, the tag set C is the PTB tag set, and all sets
of strings displayed in the table are strings extracted from the example tree only. In the
actual setting, T c

L and T c
R are built joining strings coming from all trees in the tree-bank.

Once T c
L and T c

R are extracted, two probabilistic automata Ac
L and Ac

R are built.
For this purpose, we use the minimum discrimination information (MDI) [5] algorithm.
The MDI algorithm receives as arguments a bag of strings and it outputs a probabilistic
deterministic automata that accepts and generalizes over the input bag of strings. The
algorithm has a unique parameter alpha, which we optimize during the grammar opti-
mization phase as explained in Section 3. Since a bilexical grammar is defined through
its automata, once all automata Ac

L and Ac
R, c in C are induced, the bilexical grammar

associated to the tag set C is completely defined.

2.3 Quality Measure for Grammars

The measure q′ for bilexical grammars is based on two quality measures for proba-
bilistic automata [6]. The first, called test sample perplexity (PP), is the per symbol
log-likelihood of strings belonging to a test sample according to the distribution defined
by the automaton. The minimal perplexity PP = 1 is reached when the next symbol is
always predicted with probability 1, while PP = |Σ| corresponds to uniformly guess-
ing from an alphabet Σ of size |Σ|. The second measure is given by the number of
missed samples (MS). A missed sample is a string in the test sample that the automaton
fails to accept. One of such instance suffices to have PP undefined. Since an undefined
value of PP only witnesses the presence of at least one MS we count the number of
MS separately, and compute PP without considering MS. The test sample that is used
to compute PP and MS comes from all trees in sections 00-01 of the PTB. These trees
are transformed to dependency trees and they reflect tag sets C as the training material.

We can now define the measure q′ for bilexical grammars. q′ has two parts, one
considering all automata related to right-hand side dependents, and one considering
left-hand side. To simplify our exposition, we give the component referring to the right-
hand side; the other component is obtained by replacing R in the superscripts with L.

Let C = {c1, . . . , cn} be a candidate tag set. Let Aci

R , i = 1, . . . , n be the automata
induced as described previously. Let PPci

R and MSci

R be the values of PP and MS re-
spectively for the automaton Aci

R . We combine all values of PPi and MSi to obtain a
quality value for the whole grammar.

PP and MS values can not simply be summed up as the importance of an automaton
is proportional to the number of times it is used in parsing, as a consequence we com-
bine the different values of PP and MS using weights. Define pci

R = |T ci

R |/|TR|, where
i = 1, . . . , n; where TR is union of all T ci

R ; we view pci

R as the probability of using the
automata Aci

R . Let E[MSR
C ] and E[PPR

C ] be the expected value of MS and PP for a
right automata, defined as E[MSR

C ] =
∑n

i=1 pci

RMSci

R , and E[PPR
C ] =

∑n
i=1 pci

RPPci

R ,

respectively. Let E[MSL
C ] and E[PPL

C ] be the corresponding values for the left sides.
The expected values depend on a tag set, hence the subscript C.
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The quality measure q′ for a bilexical grammar B is defined using E[PPR
C ], E[MSR

C ],
E[PPL

C ] and E[MSL
C ]. Formally, the function q′C0

that we minimize for grammars is

q′C0
(B) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖X‖ + k if E[PPR
C ] > E[PPR

C0
]

‖X‖ + k if E[MSR
C ] > E[MSR

C0
]

‖X‖ + k if E[PPL
C ] > E[PPL

C0
]

‖X‖ + k if E[MSL
C ] > E[MSL

C0
]

‖X‖ otherwise,

where
X=(E[PPR

C ], E[MSR
C ], E[PPL

C ], E[MSL
C ]),

‖(x1, x2, . . . , xn)‖ =
√

x2
1 + x2

2 + . . . + x2
n,

k is a constant used to penalize configurations that we know are not part of the set
of possible solutions, and C0 is the set of POS tags defined by the PTB. Finally, the
function q(C) for a given candidate POS tag C is defined as q′(B) where B is the
bilexical grammar that can be induced using C as the tag set. Note that, q′ and q are
essentially the same function, they only differ on the type of the argument they take.
Given that q uses C0 as a referent, we can see q as a function that penalizes POS tag
sets whose expected values of PP and MS are worse than those values obtained by the
PTB tag set. Better values of MS and PP for a grammar mean that its automata capture
better the regular language of dependents by producing most strings in the automata
target languages with fewer levels of perplexity.

Another point of view on q comes from formal language theory: for a given tag c,
the automata Ac

R and Ac
L model the probabilistic regular language of right and left de-

pendents respectively. The idea behind q′ is that these probabilistic languages might be
better described as the disjoint union of several smaller probabilistic regular languages.
The two measures (PPand MS) in which q is based, indirectly measure the diversity of
languages that are associated to each POS tag. Such analysis was first introduce in [6].
As we show in the next section, the optimization tries to detect which are these several
languages and to define a new POS tag for each of them.

3 Building and Traversing the Search Space

The search space is built by means of 2 elements: a subset V of PTB POS tags and a
function f called feature. V is the portion of the PTB tag set that we want to refine. f is
a function that takes two arguments, a dependency tree t and a number i. The number
i refers to the i-th node, from left to right, in the dependency tree t. Since words in the
yield of t are in direct correspondence to its nodes, the index i also corresponds to the
i-th word in the yield of t. A feature returns some information around the i-th node in
the tree; they are meant to characterize the dependents a verb might take. Figure 2 lists
a few features and it shows examples of features applied to the tree in Figure 2.
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VerbAllDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ,MD,TO} in the
path that goes from node i to the ROOT node. f(t, 6) = 3.
VerbDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ,MD} in the path that
goes from node i to the ROOT node. f(t, 6) = 2.
VerbVBDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ} in the path that
goes from node i to the ROOT node. f(t, 6) = 1.
NumSib: the number of sibling. f(t, 2) = 1.
NumDep: the number of dependents. f(t, 6) = 2.
NumChanges: the number of times the label changes in consecutive nodes in the path that
goes from node i to the ROOT node. f(t, 10) = 7.
Depth: The length of the path that goes from node i to the ROOT node. f(t, 6) = 5.
GFather: The POS tag of the grand-father of node i. f(t, 6) = NN.
FstRightDep: The POS tag of first dependent to the right of node i. f(t, 6) = NONE.

Fig. 2. Description and examples of some of the features we used. Examples are obtained using t

as the tree in Figure 1.

Given f and V , the search space is built using a 2-step procedure. The first step defines an
initial tag set Ci while the second uses Ci to define the family of all possible candidate
tag sets in the search space. The initial tag set is built by applying f(t, i) to all trees t in
the tree-bank, and for their words i that have their original tags in the PTB tag set. The
result of applying f to one tree t and to one word w of t whose tag belongs to V is added
to Ci. Suppose that the tree in Figure 1 is processed for building Ci with feature father ,
and V = {V B}; then tags VB-MD and VB-TO are added to Ci. Formally, Ci is defined
as (O − V ) ∪ Img(f) where O is the set of PTB POS and Img(f) is the image of f .

If original tags are replaced by the results of f , the training material can be com-
pletely retagged. In the previous example, VB-MD and VB-TO replace V B in position
2 and 6 respectively.

The second step builds the family of possible candidate tag set. The search space for
feature f and tag set V is defined as all possible tags sets that are the product of merging
arbitrary tags c1, . . . , ck, ci in Ci. Building a tag set C by merging tags c1, . . . , ck means
that a new tag symbol t is introduced and that C is defined as Ci − {c1, . . . , ck} ∪ t.
Merging tags also means that the training material has to be rewritten; this is done by
replacing tags c1, . . . ck by tag t.

Since the family of possible tag sets is constructed by merging subsets of the ini-
tial tag set, the size of the search space is exponential. The traversing strategy for in-
specting the search space is based on Genetic Algorithms. Genetic Algorithms need for
their implementation (1) A definition of individuals: our individuals codify both a value
of alpha to be used for building the automata and candidate tag set of the training
material. (2) A fitness function defined over individuals: the quality measure q′ we de-
fined in Section 2.3. (3) A strategy for evolution: we apply two different operations to
genes, namely crossover and mutation; crossover gets 0.95 probability of being applied,
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Table 2. A subset of a new POS tag set which shows entries corresponding to the new tags related
to VB calculated with feature Depth

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 6 NEWTAG 4 4 NEWTAG 7 11
NEWTAG 2 2 NEWTAG 5 5 NEWTAG 8 7,12
NEWTAG 3 8 NEWTAG 6 10 NEWTAG 9 17,18,20,15,24
NEWTAG 10 1,16,13,9 NEWTAG 11 0,3,14

while mutation gets 0.05. We select individuals using the roulette wheel strategy [7]. Fi-
nally, at each generation the population consists of 50 individuals; we let the population
evolve for 100 generations. The outcome of our optimization method is a set of new
tags. The algorithm also outputs a table that assigns a new tag to each possible outcome
of the feature used during the optimization procedure . This table, together with the fea-
ture f , can be used for retagging the training material with the new set of POS tags. For
example, using Table 2 together with feature Depth it is possible to calculate the new
tag for word number 4 of Figure 3 (a). Note that feature Depth(4) returns 1 and that
Table 2 states that for words with value 1 for this feature should receive NEWTAG 10.
Words that are originally not tagged with VB keep their old tags.

As such, the algorithm for inducing our POS tag sets is a mixture between algorithms
for inducing automata and genetic algorithms. Genetic algorithms were chosen because
they provide a direct map from our problem to their representation. Genetic algorithms
are used to search for the best way to merge POS tags from the initial tagging. Measure
PP was chosen because it is the standard measure to evaluate automata (c.f., [5]).
Before trying genetic algorithms we tried out standard clustering algorithms, but the
failure to capture the idea behind the q measure.

4 Parsing with New Sets of Tags

All tags computed in the previous section encode information regarding some syntactic
feature. Even though these features are computed using dependency trees, the informa-
tion codified in the new tags help phrase structure parsers to improve their performance.
Our tag sets are introduced in the training material of a supervised parsing model.

4.1 Rewriting the Training Material

The parser is trained in a modified version of Sections 02–21 of the PTB. All trees in
those sections are modified to reflect the new set of POS tags: Our tags are introduced
as new nodes above the original POS tags, as depicted in Figure 3 (b), by adding a new
node with the new tag (in the example, NEWTAG 10) above the original node (VB).
The new tag comes from the retagging schema for dependency trees returned by our
optimization algorithm as explained in the previous section.
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Fig. 3. (a) Tag NEWTAG 10 is assigned to word number 4. (b) The new tag is introduced in the
phrase structure above the original tag.

Note that instead of replacing the original POS tags with the new POS tags, we
choose to add an extra-node above the original POS tag. The reason for the extra-node
is given by the way the parser deals with POS tagging: The parser might guess the POS
tags or they can be given with the sentence. Formally, the parser can be fed either with a
sequence of pairs 〈(w1, c1), . . . , (wk, ck)〉, wi and ci being words and tags respectively
or with a sequence of words 〈w1, . . . , wk〉.

If extra-nodes are not used in the training material, we can not resort to the first type
of sequences because syntactic trees are needed to obtain the correct sequence of POS
tags. In other words, in order to tag the sentence with our new POS tag set, we need to
know the syntactic tree that yields the sentence, which is not available during testing.
The extra-nodes are used to reflect a new set of POS tags. Adding one extra-node above
each original POS tag allows reflecting one of our POS tag sets, while using two extra-
nodes we can reflect two of our sets of new POS tags.

Still, without using extra-nodes, the second type of sequences can be used. We tried
out replacing old tags with our new tags and we let the parser guess the correct new
POS tags. Unfortunately, the performance of such approach drops dramatically. We
believe that this is due to the fact that the tagger that is being used inside the parser
is incapable of recovering our tags. We speculate that, since new POS tags encode
syntactic information, they can not be recovered with a POS tagger; however, this point
requires further research.
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It is important to note that the generative model that results from training in our
own version of the training material does not suffer from the extra nodes. In order to
empirically try this out, we carried out a dummy experiment consisting of adding an
extra node CLUSTER above the tag VB in the training material. That is, we just add an
extra node that does not codify extra information. The resulting model reports the same
result as the original model. This experiment shows that the generative model that is
built from the material containing the extra node behaves exactly as the model without
extra nodes.

4.2 Modifying the Parser’s Training Algorithm

The parser’s training algorithm was modified to make it aware of the new set of POS
tags. During the training phase, Bikel’s parser transforms phrase structure trees into
dependency trees. During this process, the parser uses a function to determine the head
symbol of each constituent. The aforementioned function uses a head-definition table
that provides all the necessary information for finding heads in context-free grammar
rules. Since entries in this table are non-terminal symbols, the table should be aware of
the new set of extra-nodes that were introduced in the training material.

There are two different ways to make the head finding function aware of the new set
of non-terminals: The first approach adds the new set of labels to the head-definition
table. This approach is straightforward but it presents some problems when features are
applied to redefine more than one syntactic category. The second approach changes the
algorithm that computes heads using the head-definition table so that the new POS are
completely ignored. The second approach is the one we use in our experiments.

4.3 Experimental Results

The results reported in this sections were performed on sentences in Section 23 of the
PTB. Since the parser returns trees with extra-nodes, they are deleted before evaluation.
Standard measures of labeled precision and labeled recall are reported.

We tested 17 different features applied to different sets of tags related to verbs.
None of our experiments showed significant decrease in parsing performance, but many
showed significant increases. Table 3 reports 11 experimental results, 10 of them show
improvements. Features were selected without any optimization method. We selected
features by hand using intuitions provided in [8] and by selecting new features that
take into consideration the syntactic structure above a tree node. Such information was
shown to be useful in [9] and it is not being modeled by Collins’ model.

Each row displays the feature that was used (see Table 2 for explanation), the tag set
that was redefined, the results on labeled precision, labeled recall and the significance
level pval of the result; the latter was computed against baseline results. The baseline
row reports the performance of Bikel implementation for Collins model.

The table is divided in three. The upper part shows statically significant results. The
middle part provides an example of a feature that does decrease parser performance but
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whose decrease is not statistically significant. The bottom part reports results where fea-
tures are combined with statistically significant improvements. In all cases, we consider
a result statistically significant if its significance level pval is below 0.05. Performance
is measured using evalb script while significance is measured using Bikel’s Random-
ized Parsing Evaluation Comparator script.

Table 3. Experiments result. The middle part shows a feature whose performance results de-
creases. The bottom part shows features combinations.

Num. Feature Tags L. R. L. P. pval R. pval P. F1

Baseline 88,53 88,63 0,8858
(1) Depth VB,MD 88,64 88,78 0,067 0,020 0,8871
(2) Depth VBN,VB,MD 88,65 88,86 0,120 0,004 0,8875
(3) gFather VB,MD 88,69 88,80 0,047 0,044 0,8874
(4) gFather VBN,VB,MD 88,64 88,80 0,160 0,047 0,8872
(5) NumChanges VB,MD 88,69 88,80 0,030 0,020 0,8874
(6) NumChanges VBN,VB,MD 88,62 88,81 0,200 0,030 0,8871
(7) VerbAllDepth VBN,VB,MD 88,67 88,79 0,047 0,024 0,8873
(8) VerbDepth VBN,VB,MD 88,67 88,78 0,069 0,051 0,8872
(9) VerbVBDepth VBN,VB,MD 88,70 88,83 0,017 0,008 0,8876

(10) NumSib VBN, VB,MD 88,66 88,77 0,079 0,048 0,8871

(11) FstRightDep VB 88,52 88,57 0,439 0,260 0,8854

(2)-(9) Depth-VerbVBDepth VBN,VB,MD-VBN,VB,MD 88,68 88,86 0,081 0,010 0,8876
(2)-(4) Depth-gFather VBN,VB,MD-VBN,VB,MD 88,62 88,82 0,210 0,020 0,8872

From Table 3, it can be seen that the combination of features (2) and (4) does not
necessarily improve the results obtained by each of the features separately. For this
particular example, the parser loses both performance and significance. We think that
the reason for the decrease lies in the fact that the parser suffers the extra number of
rules that it is has to handle. Recall from the previous section that two extra-nodes
are added for every possible combination of new POS tags. Combination of features
are not intended to obtain the best performance, but to investigate the impact of the
combination. We tried also to combine two features by using their Cartesian product in
the GA search space. In this way, we could rewrite the training material by using only
one extra-node which combines both features. However, the resulting number of new
tags obtained was too large and the parsing performance decreased significantly.

Our experimental results show that even though our approach hardly increases the
performance figures for Bikel’s parser, improvements are significant. We think that this
is due to the syntactic information codified in the new set of extra-nodes. In some
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cases, e.g., when gFather feature is used, non-local information is stored in these
extra-nodes. The experimental results show that not only the parser is able to recover
the extra-nodes but it is also capable of taking advantage of the information stored in
these nodes. Our approach minimally modifies the learning algorithm; we can state that
the underlying parsing model has been left intact. Our approach mainly modifies the
training material trying to incorporate information that is present there but which is not
currently used by the parser.

5 Related and Future Work

Two relatively recent approaches studied the use of automatic split of non-terminals to
improve parsing performance. In [10] the authors induce a parsing model by using a
generative process which starts with a standard PCFG and splits each non-terminal in a
fixed number of categories. The resulting model is a generative unlexicalized grammar
named PCFG-LA. Using this parser they obtained a F1 measure comparable to state
of the art unlexicalized parsers. Similarly, in [11] the authors induce a PCFG grammar
using an automatic split and merge of non-terminal symbols to maximize the likelihood
of training treebank. The hierarchical split and merge used also captures linguistic phe-
nomena that used to be added manually in previous works. Furthermore, they obtain a
lexicalized parser model with a performance comparable to the parser in [12], though
the grammar induced is significantly smaller. In contrast, our approach uses an auto-
matic unlexicalized split only for pre-terminal symbols, and we use the new POS set to
rewrite the training material for a given parser to improve its performance.

Rewriting the training material is an important aspect of our paper that has been stud-
ied in the literature. For example, [13] present a technique that induces better perform-
ing PCFGs. They split and factorize non-terminals that have been detected as structural
zeros in a given training material. Our approach differs from theirs in that we split only
pre-terminal and that our splitting is based on syntactic behavior.

Klein and Manning [14] split POS tags related to verbs in order to detect constituents.
They did this in the context of induction of rules for grammars. All categories used,
such as transitive, intransitive, etc., were set in advance. In [15] the authors use a fixed
number of categories that are based on universal language rules to build an unsuper-
vised POS tagger. In contrast to the latter two approaches, our approach induces all
categories automatically and, moreover, the resulting categories are tested in phrase
structure-grammars, providing a better way to asses the quality of the resulting tags.

Our tags were tested by means of one particular parsing model. Clearly, the set of
experiments we present here can be run using other parsing models. We think that such
experiments can help understanding how different models take advantage of the infor-
mation that is coded in our non-terminals. Since our tags are built using dependency
trees, we believe that they can better help parsers that do not rely so heavily on depen-
dencies (e.g., [12,16]) as Collins model. During our experiments we could not directly
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replace old POS tags with our new tags because the parser’s built in tagger did not han-
dle our tags correctly. This puts forward questions that require further research, such
as: can we build POS taggers that are able to recover complex tags that encode deep
syntactic information?, or, more generally, which information can be coded in tags so
that it can be recovered using taggers? Some answers to this question have been given
in the literature [17].

6 Conclusions

We introduced an algorithm that induces sets of POS tags. These tag sets are the result
of clustering words with similar syntactic behavior. Word behaviors were characterized
by means of probabilistic regular automata in a dependency syntax setting. We showed
that the resulting tags encode syntactic information that was used by an state-of-the-art
parser to significantly improve its performance.
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Abstract. Word prediction is the problem of guessing the words which are 
likely to follow in a given text segment by displaying a list of the most probable 
words that could appear in that position. In this research, we designed and im-
plemented three word predictors for Persian. Our baseline is a statistical-based 
system which uses language models. The first system uses word statistics; in the 
second one we use the main syntactic categories of a Persian POS tagged cor-
pus; and the last one uses the main syntactic categories along with their mor-
phological, syntactic and semantic subcategories. Using KeyStroke Saving 
(KSS) as the most important metrics to evaluate systems’ performance, the pri-
mary word-based statistical system achieved 37% KSS, and the second system 
that used only the main syntactic categories with word-statistics achieved 
38.95% KSS. Our last system which used all of the available information to the 
words get the best result by 42.45% KSS. 

Keywords: word prediction, statistical language modeling, POS tagging. 

1   Introduction 

A word prediction system facilitates the typing of text for users with physical or cog-
nitive disabilities. As the user enters each letter of the word, the system displays a list 
of most likely completions of the partially typed word. As the user continues typing 
more letters, the system updates the suggestion list accordingly. If the required word 
is in the list, the user can select it with a single keystroke. Then, the system tries to 
predict the next word. It displays a list of suggestions to the user, who can select the 
next intended word if it appears in the list. Otherwise, the user can enter the first letter 
of the next word to restrict the suggestions. The process continues until the comple-
tion of the text. 

For someone with physical disabilities, each keystroke is an effort; as a result, the 
prediction system saves the user's energy by reducing his or her physical effort. Addi-
tionally, the system assists the user in the composition of the well-formed text qualita-
tively and quantitatively (Fazly, 2002). Moreover, the system helps to increase the 
user’s concentration (Klund and Novak, 2001). 

Traditionally, word predictors have been built based on statistical language model-
ing (SLM; Gustavii and Pederssen, 2003). SLM could be merely based on the  
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probability of a sequence of n given words (n-gram), or a combination of the se-
quence of words themselves taking advantage of the Part-of-Speech (POS) tags of the 
words. Using such knowledge of the language makes predictions more appropriate. A 
number of word prediction systems are available today for languages such as English 
and Swedish that use the linguistic knowledge of these languages.  

This paper discusses the design and implementation of a word prediction SLM 
based system which uses the POS tags for Persian text. 

2   Related Work 

Early prediction systems that were developed in the 1980s were used as writing assis-
tance systems for people with learning difficulties. Those early systems mainly sug-
gested the high frequency words that matched the partially typed word and ignored 
the entire previous context (Swiffin et al, 1985) such as SoothSayer, and PAL (Booth 
et al, 1990) for English. PAL has been shown to save over 50% of keystrokes. Sys-
tems like Profet (Carlberger et al, 1997a; Carlberger et al, 1997b) for Swedish, and 
WordQ (Nantais et al, 2001; Shein et al, 2001) for English are among the examples 
that use word unigram and bigram sequences. Profet has saved keystrokes by 26.1% 
(Carlberger, 1997). Ghayoomi (2004) reports the first attempt to develop a word pre-
diction system for Persian. His system simply used the statistical knowledge of uni-, 
bi- and trigram word models in algorithms. It is further reported that this system saves 
keystrokes by 57.57% (Ghayoomi and Assi, 2005). The best result that their system 
has achieved experimentally is 65.46% KSS after adaptation of the system to the 
user’s writing style (Ghayoomi, 2006). 

Using solely statistical word knowledge for prediction often results in the sugges-
tion of inappropriate words syntactically. In contrast, by using the POS tags of a lan-
guage in prediction algorithms, we can filter the inappropriate words in the  
predictions. Systems such as Syntax PAL (Morris et al, 1992) for English, Prophet 
(Carlberger, 1997) for Swedish are among the examples which have used syntactic 
knowledge of the language in predictions. Syntax PAL has decreased the problems of 
using PAL and has made it possible for the users to write longer and more compli-
cated sentences (Wood, 1996). Prophet saved 33% keystrokes (Carlberger, 1997) 
compared to the earlier version, Profet. 

This paper discusses the design and implementation of a word predictor for Persian 
using the bi, tri-, and quadrogram word statistics, and the bi-, tri-, and quadrogram 
POS tag statistics of the language. The paper also compares a system that solely uses 
word statistics with the designed systems that use word statistics as well as POS tags. 

3   Language Models 

3.1   N-Gram Word Modeling 

The task of predicting the next word can be stated as attempting to estimate the prob-
ability function P: 

P(Wn|W1,…, Wn-1) 
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In such a stochastic problem, we use the previous word(s), the history, to predict 
the next word. To give reasonable prediction to the words which appear together, we 
try to use the Markov assumption that only the last few words affect the next word 
(Fazly, 2002). So if we construct a model where all histories restrict the word that 
would appear in the next position, we will then have an (n-1)th order Markov model or 
an n-gram word model (Manning and Schütze, 1999; Jurafsky and Martin, 2000). 

3.2   Knowledge Modeling 

The systems that merely use statistical modeling for prediction often present words 
that are syntactically, semantically or pragmatically inappropriate (Rosenfeld, 1994; 
McCoy and Demasco, 1995). Syntactic prediction is a method that tries to present 
words that are appropriate syntactically in a particular position within the sentence. 
This means that knowledge from the syntactic structure of the language is used. In 
syntactic prediction, POS tags of all the words in a corpus are identified and the sys-
tem uses this knowledge for making predictions (Fazly, 2002; Woods, 1996). Statisti-
cal syntax and rule-based grammars are two general syntactic prediction methods.  

3.2.1   Statistical Syntax 
This approach uses the sequence of syntactic categories and POS tags for predictions. 
The appearance of a word in this method is based upon the correct usage of syntactic 
categories. In other words, the Markov assumption about n-gram word tags is used. 
Fazly (2002) has discussed three methods that can be used to obtain statistical knowl-
edge about the syntax: (a) POS tags only, (b) previous word and two previous POS 
tags, and (c) linear combination. 

In the system presented here, we have used the three previous words as well as 
their syntactic knowledge in order to predict the following word.  

4   Some Properties of Persian 

Persian is a member of the Indo-European language family and has many features in 
common with them in terms of morphology, syntax, phonology, and lexicon.  

Although Persian uses a modified version of the Arabic alphabet, it is worth noting 
that Arabic is from the Semitic family of languages and the two languages differ from 
one another in many respects. One important point which is related to the topic of the 
present research is that there are a number of graphemes which represent the same 
spoken sound. The alphabet used in Persian is more appropriate for the Arabic sound 
system. For instance, the letters ‘ض‘ ,’ذ‘ ,’ز’ and ‘ظ’ are four letters of the alphabet in 
both Persian and Arabic. However, all of these letters are pronounced the same way in 
Persian, namely /z/, while, they are each pronounced differently in Arabic. Persian 
writing system is right to left, the same as Arabic, but quite distinct from the Euro-
pean languages that have a left to right writing system. 

Persian letters have joined or non-joined forms; i.e., based on the position that the 
letters appear within a word, they have different forms. The vocabulary of Persian has 
been greatly influenced by Arabic and to some extent by French in which a great 
number of words are borrowed from these two languages. 
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Space is a word boundary for Persian words. There is also pseudo-space behaving 
as a morpheme boundary within a word.  

Persian is a null-subject language with SOV word order in unmarked structures. 
Word order is relatively free in Persian. The subject mood is widely used. Verbs are 
inflected in the language and they indicate tense and aspect, and agree with subject in 
person and number. The language does not make use of gender. 

5   Word Prediction Algorithms 

Suppose the user is typing a sentence and the following sequence has been entered so 
far from right to left according to the Persian writing system: 

Wi PWi PPWi           PPPWi        … 

Where PPPWi, PPWi and PWi are the most recently completed words, and Wi is the 
current word that is going to be predicted or completed. Let W be the set of all words in 
the lexicon that would likely appear in that position. Our statistical prediction algorithm 
first attempts to estimate the probability of each candidate word’s POS, (t Wi), according 
to the previous tags (t PWi), (t PPWi), and (t PPPWi). Then, it tries to estimate the probability 
of the candidate word in the current position, (Wi), according to the previous words 
(PWi), (PPWi), and (PPPWi); i.e., P(wi, tWi | PW, tPWi, PPWi, tPPWi, PPPWi, tPPPWi) 

Then the algorithm selects the N most appropriate words from W that are likely to 
be the user’s intended words, where N is usually between 1, 5, 9 or 10 based on the 
experiment done by Soede and Foulds (1986). The general approach is to estimate the 
probability of each candidate word, Wi ∈ W, being the user’s required word in that 
context based on the POS tags of the preceding words.  

6   Methodology 

6.1   Corpus 

The corpus that we have used in our research consists of about ten million tokens; it 
also contains about 143 thousand types. It seems to be a balanced corpus in the sense 
that to be a good representative of the language in terms of source, genre, style, regis-
ters, and theme1. 80 percent of the available texts are written, and 20 percent are dia-
log transcriptions. The source of the data is the Internet, publications, magazines, 
journals, newspapers, and various circular letters.  

For our purposes, we have divided the corpus into three parts: nine million tokens 
as training corpus; one million as developing corpus; and half a million as test corpus.  

6.2   Annotation 

To annotate the corpus in our research, some inflectional morphemes are automati-
cally added to the stems. Instead of a space, a pseudo-space is used between the com-
ponents of a word to make the separated morphemes to become joined to each other 

                                                           
1 This corpus is provided by the Research Center for Intelligent Signal Processing. 
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in order to form a complete word. The spelling of certain words was replaced by a list 
of accepted spellings. 

The corpus is tagged both automatically and manually. First, a POS tagger was 
trained manually. The most important reason to tag them manually was in order to be 
able to distinguish homographs in terms of both syntactic distribution and semantic 
features. Then, based on the context, the corpus was tagged automatically. The accu-
racy of the tagger was experimentally over 90%. Finally, the corpus was checked 
again manually to remove bugs and problems. Homographs and scientific texts were 
problematic for the tagger. Other problems were with genitive (Ezafe2), words not 
existent in the lexicon, and some multicategorical functional words such as ‘ نيا ’ /in/ 
(this), ‘آن’ /ān/ (that). The examples below show problems in tagging ‘ساعت’ /sā?at/ 
(watch).  

There are 19 POS tags as main syntactic categories in the corpus along with mor-
phological, syntactic, and semantic subcategories. Example (1) below illustrates how 
tags are ordered in terms of their hierarchy: 

 اين ساعت دو هزار تومان ارزش دارد.         (1)
in     sā?at   do   hezār        tumān       arzeš   dārad. 
this  watch  two thousand   Thamen      worth  has 
‘This watch is worth two thousand Thamens’. 

The tag order of ‘sā?at’  in this example is N, SING, COM. Its main syntactic cate-
gory is ‘noun’; and its semantic subcategories are ‘single’ and ‘common’. 

Compare these categories and subcategories with example (2) below: 

 ساعت دو آنجا می آيم.                 (2)
sā?at-e               do     ānjā                   mi’āyam 
hour-genitive    two    there   progressive-come-I 
‘I am coming there by two o’clock.’ 

The tag order of ‘sā?at-e’ in this example is N, SING, TIME, GEN. Its main syn-
tactic category is ‘noun’; its semantic subcategories are ‘single’ and ‘time’; and geni-
tive (Ezafe) is its syntactic subcategory (Bijankhan, p.c).  

6.3   Tokenization 

For the tokenization process, we used a software written in Visual Basic to compute, 
the needed statistics. The software ran on the training corpus to compute word bi- , 
tri-, and quadrograms. The software was then used to extract POS bi-, tri- and 
quadrograms of the main categories only. The software was finally used to extract 
POS bi-, tri- and quadrograms of the main categories with their morphological, syn-
tactic, and semantic subcategories. Space was considered as a word boundary, and 
alphanumeric characters were treated as words. Finally, all words along with their 
POS tags (unigram) were extracted from the corpus as the main lexicon of the system. 
These sources of information for the system were organized in hash tables. 

                                                           
2 Ezafe in Persian is a vowel /e/. It is a genitive case marker; and it has only phonetic represen-

tation but is not written. It functions something like ‘of’ in English. 
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6.4   Solving Sparseness 

Since a big corpus includes only a fraction of n-grams, increasing n makes the distri-
bution of the events rarer. We have used the Simple Linear Interpolation (SLI) 
method (Manning and Schütze, 1999) to smooth the probability distribution. The 
developed corpus was used to compute the lambda values of both word and POS n-
gram models to solve the sparse data problem. We have used the Boosting Algorithm 
to compute the lambda values (Freund and Shapire, 1996). 

7   Implementation 

7.1   The Algorithm 

The architecture of our algorithm is shown in Figure 1. The system we developed has 
four major components: (a) the statistical information extracted from the training 
corpus for the prediction algorithm, (b) the component computing lambda values for 
solving the sparseness of both word and POS n-gram models, (c) the predictive pro-
gram that tries to suggest words to the simulated user, and (d) a simulated user that 
types the test text.  

Component (c) has two parts: word completion and word prediction. The predic-
tion algorithm first completes the partially spelled word and then it predicts the next 
probable words and presents them in the suggestion list. The simulated typist is a 
perfect user who always chooses the desired word when it is available in the predic-
tion list and does not miss it. 

7.2   Performance Measures 

Following Woods (1996) and Fazly (2002), we used three standard performance met-
rics to evaluate our system.  

Keystroke Saving (KSS) is referred to the percentage of keystrokes that the user 
saves by using the word prediction system. A higher value for keystroke saving implies 
a better performance. Hit Rate (HR) is the percentage of correct words that appear in the 
suggestion list without entering any letters of the following word. A higher hit rate also 
implies a better performance. Keystroke until Prediction (KuP) refers to the average 
number of keystrokes that the user enters for each word before it appears in the predic-
tion list. A lower value for this measure implies a better performance. 

8   Results 

Since the corpus we used to develop our systems was different from the Persian cor-
pus used by Ghayoomi (2004) and Ghayoomi and Assi (2005), our obtained results 
were not comparable with the output of their systems. 

One of the differences of their corpus with the one we used in our research is in 
terms of the number of tokens in their training, development, and test corpus. Their 
training corpus contained of about 6 million tokens; the development corpus about 
850 thousand tokens; and the test corpus about 13 thousands tokens.  
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Fig. 1. The architecture of our algorithm 

The other difference is the genre of their corpus in which only newspaper texts 
have been gathered for the training, development, and test corpus. Quite contrary in 
our corpus it has contained a wider coverage of genres.  

The n-gram word models that have been used in their algorithms are merely word 
statistics of uni-, bi-, and trigram. They have not benefited from the POS tags of the 
words; while we developed and tested our system in three different scenarios. 

The first test used only bi-, tri- and quadrogram word models; we called it System 
A. A second system was tested using the described n-gram word models along with 
the words’ POS bi-, tri- and quadrograms of the main syntactic categories only; we 
called it System B. Finally the system was tested using the described n-gram word 
models along with the words’ POS n-grams of both the main syntactic categories and 
their morphological, syntactic, and semantic subcategories; we called this System C. 

The test corpus was given to the simulated typist. It contained half a million to-
kens, and 1,950,000 characters; white space was not treated as a character. The reason 
for not considering space is that after selecting any word, a space will automatically 
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be entered which results in a saved keystroke. On the other hand, to select a word 
from the list, one of the Function Keys, F1 through F9, are required to be pressed in 
order to drag and drop the intended word into the text being typed. The result is that 
the keystroke which was saved by entering the automatic space would now be lost. 

The virtual typist is a Visual C++ program that reads in each text letter by letter. Af-
ter reading each letter, it determines what the correct prediction for the current posi-
tion is. The prediction program is then called and a list of suggestions is returned to 
the user. The user searches the prediction list for the correct one. If the correct predic-
tion is found in the list, the user increases the amount of correct predictions by the 
predictor. The correctly predicted word is then completed and the user continues to 
read the rest of the text.  

The results obtained from using the various n-gram models are presented in table 1 
for only 9 suggestions in the prediction list: 

Table 1. Summary of the results obtained by using word and POS n-gram models from the test 
corpus 

 KSS% HR% KuP 
System A  37 43.56 2.13 
System B  38.95 46.08 1.98 
System C 42.45 56.20 1.53 

 
As shown in table 1, higher KSS and HR and the lowest KuP were obtained when 

the system used the word statistics and syntactic knowledge of the language (systems 
B and C); compared to the model which only used word statistics (system A). But this 
differentiation is not very remarkable between systems A and B when only words and 
the first main syntactic categories are used for prediction. Probably the reason is that 
the main syntactic categories are too noisy for the system, and the 2% better perform-
ance is achieved by simply doing minor filtering the sequence of words by consider-
ing the main syntactic categories that belong to the words. System C had the best 
performance among the developed systems, since it has used all of the word and syn-
tactic knowledge available to the system; so having more syntactic information avail-
able to the words would highly improve predictions.  

The 42.45% KSS means that for each 100 characters that the user is required to type 
to enter a text segment, at least 42 characters are entered by the system, and the rest, 
the remaining 58 characters, were entered by the user. 56% of words, more than half of 
the user’s required words, appeared in the prediction list before entering any of the 
letters of the following word. At least one keystroke is needed by the user to type a 
word on the system while the average length of words for the corpus we used was 3.86. 

9   Conclusion 

By using POS tags of Persian in the word prediction algorithm, we achieved a higher 
keystroke saving rate. Since every keystroke is an effort for disabled users, the result 
obtained is very important for users with disabilities. 
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Moreover, there is a significant difference between the performances of the system 
that uses all of the available syntactic knowledge which achieved a sudden increase in 
KSS, comparing to the one that uses mere word statistic knowledge.  

Using the POS tags of the language allows the system to filter words in the predic-
tions list that are syntactically inappropriate in a particular position within the sen-
tence. Thus, it would increase the user’s confidence to enable him or her to select 
words from the prediction list that can result in better written sentences, along with 
imposing a lower cognition load on him or her. This feature is useful for users with 
cognitive disabilities, specially the ones suffering from aphasia. 

10   Further Work 

To achieve higher percentage of KSS, we are planning to add the feature of adaptabil-
ity of the system to the user’s writing style. By adapting itself to the user, the system 
would gradually improve its performance. Also, it is necessary to add a POS tager to 
the system in order to identify the POS tags of new words and tag them automatically.  
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Abstract. The structure of a sentence can be seen as a spanning tree in a linguis-
tically augmented graph of syntactic nodes. This paper presents an approach for
unlabeled dependency parsing based on this view. The first step involves mark-
ing the chunks and the chunk heads of a given sentence and then identifying the
intra-chunk dependency relations. The second step involves learning to identify
the inter-chunk dependency relations. For this, we use an initialization technique
based on a measure we call Normalized Conditional Mutual Information (NCMI),
in addition to a few linguistic constraints. We present the results for Hindi. We
have achieved a precision of 80.83% for sentences of size less than 10 words and
66.71% overall. This is significantly better than the baseline in which random
initialization is used.

Keywords: Weakly Supervised Learning, Dependency Parsing, Multilingual Pro-
cessing, South Asian Languages, Association Measures.

1 Introduction

Parsing a sentence can be described as finding the correct syntactic structure of that sen-
tence according to a particular formalism. Most of the work on parsing so far can be cate-
gorized as either based on rules or based on supervised learning [8,24,6,4,1]. Fairly good
parsers are available for English [3] and for some other languages [7]. Some of the latest
work was presented at the CoNLL Shared Task Session of EMNLP-CoNLL 2007 [17].
There has also been work on learning models of dependency trees [16,22,21,23,25,15].
However, many other languages of the world still lack good parsers. This is mainly be-
cause these languages do not have the resources required for building either rule based
parsers (extensive computational grammars) or supervised parsers (treebanks). Since the
researchers working on most of these languages usually happen to be short of funding
and other support, we need to find reasonably good methods for unsupervised or weakly
supervised parsing, either for direct use or for making the task of creating treebank like
resources easier.

A sentence can be seen as a graph consisting of syntactic units as the nodes and
dependency relations as the edges. The weight of an edge represents the degree of as-
sociation between the two nodes. We can view the syntactic structure of the sentence
as the best spanning tree for that graph. There has been some previous work where
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the problem of parsing was modeled as finding the maximum spanning tree (MST) in a
graph representing the sentence [14,13]. Our work is in a similar direction. We also rep-
resent the sentence as a graph, but we have ‘chunks’ rather than words as the nodes. This
is because we are focusing on languages which have fixed word order inside chunks,
but which can have relatively free order as far as chunks are concerned. One example
of such languages are the languages of the South Asian linguistic area [10]. Having
chunks as the nodes reduces the complexity of the problem significantly and is likely
to increase the accuracy. Another justification for doing this is that the intra-chunk de-
pendencies in these languages are very easy to find by using some simple rules, as we
will explain later. It is also relatively quite easy to identify the chunks using a few rules
defined in terms of the part of speech (POS) tags. It should be noted that the notion of a
chunk as used by us is somewhat specific to our purposes, i.e., identifying dependency
relations. So, for our purposes, a chunk is a sequence of words inside which the order
of words is fixed and the dependencies are very easily identifiable. This is why we do
not make the assumption that a chunker is available for the languages concerned, as we
can identify the ‘chunks’ using some simple rules.

One assumption that we do make is that a POS tagger is available for the concerned
language. The parsing algorithm runs over the sequence of POS tags for the given sen-
tence. This assumption is valid for several South Asian languages [19,20], even though
there is still a lot of scope for improving the accuracy of the POS taggers. For learn-
ing dependency relations, we can either use manually POS tagged data (if available),
or we can use the output of the POS tagger on a raw corpus. In our experiments, we
do the latter. Due to this and the other reasons mentioned above, our method can be
easily extended for other similar languages, even though we have experimented only on
Hindi so far.

During the last few years there has been a steady progress in the area of unsupervised
parsing [2,12], but most of the work is based on phrase structure grammars, rather than
dependency grammars. Very few efforts have been made towards building unsupervised
or weakly supervised dependency parsers. Klein and Manning had [12] proposed a
hybrid approach, which combines constituency and dependency models. This approach
yielded 77.6% f-score on WSJ-10 corpus.

The model learnt using the method described in this paper can also be used as De-
pendency Language Model [11]. This could be an important application of the work
even if the parser, as it is, may not be directly usable for some practical applications.

2 Overview of the Parsing Method

In the training phase, our method requires a raw text corpus and a POS tagger. The
corpus is first POS tagged. After that, we identify the chunks, chunk heads and the intra-
chunk dependencies using simple rules (see Section-3). From then on, we basically
work with sequences of POS tags of chunk heads.

To create the parsing (training) model, we have designed a non-projective weakly
supervised dependency parsing algorithm to learn the dependency relations between
the head words of chunks using an Expectation-Maximization (EM)-like iterative algo-
rithm. The approach that we describe in this paper to create the initial dependency
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Fig. 1. Overview of the parsing method based on syntactic structure as the best spanning tree in a
linguistically augmented graph of syntactic nodes

model uses a measure called Normalized Conditional Mutual Information (NCMI)
along with a few linguistic constraint which are applicable across all the major South
Asian languages.

In this proposed approach to build a parser, no treebank is required and it can also
be applied to other free order languages by changing the linguistic constraints, which
are very few in number. All the rules and the model parameters of parsing model in this
approach are based on only POS tags.

One of the reasons for using a sequence of POS tags for learning is that the depen-
dency relations between two words mostly depend on their POS tags, since words of
the same POS tags are usually mutually substitutable. This is an established practice
and was used by Klein [12]. Also, as we are using some rules to identify the chunks and
chunk heads, it is easy to define such rules on tags instead of lexical items.

Figure-1 illustrates the basic ideas used in the method described in this paper.

3 Syntactic Properties of the Languages Covered

As indicated earlier, our method is suitable for languages with certain properties. These
properties include a relatively free word order nature. ‘Relatively’ because the order
within a chunk may be fixed and languages like Hindi are verb final languages. A sen-
tence in such languages is typically divided into non-overlapping phrases (chunks), and
these chunks can occur in any order without affecting the core meaning of the sentence.
Each chunk consists of one content word, referred to as the head word H , and several
other words, which are function words F . The head of the chunk is the main element
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of the chunk and it carries the meaning of the chunk and can occur independently. For
example, consider the following Hindi sentences:

S1: [merI nayI kiwAba] [rAma] [paDZa rahA hE].
[my new book] [Ram] [is reading]

S2: [rAma] [merI nayI kiwAba] [paDZa rahA hE].
[Ram] [my new book] [ is reading]

Both the sentences S1 and S2 convey the same meaning, even though [merI nayI
kiwAba] and [rAma] are swapped in S2. Here [merI nayI kiwAba ] and [rAma] are
noun chunks and [paDZa rahA hE] is a verb chunk. The chunks are (internally) fixed
word order units, but they can be combined in almost any order. The underlined word
in each chunk is the head word and the other words are function words.

One important condition while building a dependency parser for South Asian lan-
guages is that we can not apply the projectivity constraint because these languages are
relatively free word order languages. Our study of the dependency relations inside the
chunks clearly shows that, almost always, the words inside the chunk modify the head
of that chunk.

In our experiments, we have used some rules which generalize to many South Asian
languages. Some of these rules used by the Chunker and Intra-chunk Dependency
Finder (CIDF) are given below1:

1. r1: (QFNUM | QF | INTF | QFN | JJ)* (NN | (NNPC)* NNP | (NNC)* NN | PRP)
(PREP | NLOC | RP | SYM)*

2. r2: (NEG)* (VRB | NVB | VJJ | VFM | VAUX) + (PREP | NLOC | RP | SYM)*
3. r3: (RB)+
4. r4: (CC)+
5. r5: (JJ)+

The rule r1 is used for identifying noun chunks in a sentence, r2 is for verb chunks,
r3 is for adverbs, r4 is for conjunctions, and r5 is for adjectives. These rules are applied
one after the other (i.e., in the order given above) to identify the different chunks in the
given sentence.

We have conducted some experiments to evaluate the performance of the CIDF. The
precision for chunking is 77%, for intra-chunk dependencies it is 96%, and for finding
the head of the chunk it is 98%. There are some issues still to be resolved, e.g. if PRP
NN is a tag sequence then it is difficult to decide whether to combine them as a chunk
or not. If the PRP is a demonstrative PRP then it will be a chunk, otherwise there will
be two different chunks. This situation is not currently handled by the CIDF.

4 Weakly Supervised Dependency Parsing Model

In this section, we present an approach to create an weakly supervised dependency
parsing model using chunks head sequences. It captures the strength of a dependency
relation between any two chunk head tags at a particular distance.

1 We are using a POS tagset which has been designed for many Indian languages. The details
are available at http://shiva.iiit.net/SPSAL2007/downloads.php
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4.1 Notation

We view the sentences of a language L as sequences of word tokens drawn from some
set of word types or vocabulary of L. Let V = {t0, t1, · · · tv} be the vocabulary of
the language L and S =< x0, x1, · · · , xn > be a sentence of n words such that
x0 = ROOT , ∀n such that xn ∈ V . Let C = {S0, S1, · · · SN} be the set of N
sentences in the language L. Let GS = (VS , ES) be a complete directed graph of a
sentence S such that,

1. the set of vertices VS = {x0, x1, · · · , xn}
2. the set of edges ES = {< x, y >S |∀x, y ∈ VS}

where GS is a graph such that each word in the sentence is a node and there is a directed
edge between every pair of nodes, corresponding to the dependencies. By definition,
GS is a digraph. GS encodes all possible dependencies among the words (actually,
chunk heads) of the sentence S. Thus, every possible dependency graph of S must be a
subgraph of GS . Let < x, y >S represent the edge from x to y in the sentence S.

Let x →+ y be a dependency relation that is true if and only if there is a non-empty
directed path from node x to node y in some graph under consideration. A directed
spanning tree of a graph GS that originates out of a particular node xr ∈ VS , is any
subgraph T = (VT , ET ) such that,

1. VT = VS and ET ⊆ ES

2. ∀xj ∈ VT , xr →+ xj if and only if xr �= xj

3. If < xi, xj >S ∈ ET , then:
< xm, xj >S /∈ ET ∀xm �= xi

Let T (GS) be the set of all directed spanning trees of the graph GS . As McDonald
et al. [14] noted, there is a one-to-one correspondence between spanning trees of GS

and dependency graphs of S. This implies that T (GS) is the set of all possible projective
and non-projective dependency graphs for the sentence S.

For a given sentence S, using the parsing model, we can estimate the conditional
probability P (T |S) and the parser finds the most likely parse of the sentence using:

Tbest = arg max
T

P (T |S) (1)

We assume that each dependency decision is independent. The class of dependency
models which follow this assumption are called edge-factored models [18,14]. Un-
der this assumption, every edge in GS of a sentence S is associated with a score
Score(x, y) ≥ 0 that maps edge between x and y to a real valued score ranging from
0 to 1. These scores represent the likelihood of the dependency relation occurring from
word x to y. We refer to this score as the dependency score of x being the head of y and
we denote it by Score(x, y). The way Score(x, y) is calculated depends on the frame-
work in which it is being used. For example, in a generative probabilistic model such as
Paskin’s [18] it could represent the conditional probability of x being generated by y.

Based on the above assumption, we define P (T |S) as follows:

P (T |S) =
∏

(x, y)∈ET

Score(x, y) (2)
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We can also write Tbest of a sentence S as follows:

Tbest = arg max
T∈T (GS)

P (T |S) = arg max
T∈T (GS)

∏

(x,y)∈ET

Score(x, y)

Here, Score(x, y) represents the probability of x being the head of y. It can also be
represented as P (x|y). McDonald et al.[14] showed that this can be solved in O(n2)
time using the Chu-Liu-Edmonds algorithm for standard digraphs [5,9]. We will use the
parsing algorithm proposed by McDonald et al.[14] to parse a given test sentence, once
the training has been completed.

We need to estimate the parsing model parameters, i.e., P (x|y) to find Tbest for a
sentence. Before describing the way Score(x, y) (or P (x|y)) is estimated, we define
the following:

1. We denote the sum of the scores of all the possible output parses of a given input
sentence S as ZS :

ZS =
∑

T∈T (GS)

P (T |S) =
∑

T∈T (GS)

∏

(x, y)∈ET

P (x|y)

where x, y ∈ VS

2. The expected value (or the dependency score) of each edge in GS for a sentence S
is represented as < P (x|y) >S and is computed as:

< P (x|y) >S =
∑

T∈T (GS)

P (T |S) × I(< x, y >, T )

where I(< x, y >, T ) is an indicator function that is equal to 1 when the edge
< x, y > is in the tree T and is zero otherwise.

An estimate based on the identities of the two tokens alone is problematic and the
lexical distance between the words will strongly influence the likelihood of one word
modifying other [6]. So, we include the distance while deciding whether two words are
related or not. We estimate, < P (x|y, d) >S, i.e., the probability of x being the head of
y at a lexical distance d, instead of just P < (x|y) >S .

4.2 Language Model for Parameter Estimation

In principle, a language model recovers the probability of a sentence P (S) over all
possible T given S by estimating the joint probability P (S, T ):

P (S) =
∑

T

P (S, T ) (3)

In practice, we approximate P (S) to the sum of tree scores (probabilities) of k best
probable trees generated for the sentence S. Let Tk(S) be the set of k best probable



154 J. Gorla et al.

trees generated for the sentence. Each tree T ∈ Tk(S) is the most probable tree for
sentence S when each word of the sentence is taken as the root node.

P (S) =
∑

T

P (S, T ) ≈
∑

T∈T (Tk(S))

P (S, T ) =
∑

T∈T (Tk(S))

∏

(x,y,d)∈ET

< P (x|y, d) >S

To generate the trees in Tk(S), we first generate a single child, xr ∈ VS , of ROOT
and then we select the single best incoming edge of each node xg such that xg ∈ VS ,
xg �= xr and Txr should satisfy the spanning tree properties (no cycles). In other words,
Txr is the directed maximum spanning tree of GS generated from the node xr. In this
way, in each tree, we have to choose the head of each word (incoming edge) in the
sentence S based on the probability of each edge, i.e., P (x| y, d), where x, y ∈ VS .

It is very unlikely that the same sentence will appear in the training data and the test
data. We thus approximate < P (x| y, d) >S by P (x| y, d) and estimate the depen-
dency probability from the training sentences, where x, y ∈ V . From now onwards, we
denote P (x| y, d) as P d

x, y .
Let ta, tb ∈ V . We can estimate the maximum likelihood P d

ta, tb
by maximizing the

log-likelihood
∑N

c=1 log(P (Sc)) subjected to the normalization constraints:

∑

ta

P d
ta, tb

= 1 (4)

and
P d

ta, tb
≥ 0 (5)

Let xci be the ith word of Sc. By solving the above constraint optimization problem
with the usual Lagrange multipliers method, we get the probability P d

tatb
as:

P d
tatb

=

∑N
c=1

1
ZSc

∑
xci=ta
xcj=tb

< P d
xci,xcj

>Sc

∑N
c=1

1
ZSc

∑
ta,d

∑
xci=ta
xcj=tb

< P d
xci,xcj

>Sc

(6)

P d
ta, tb

are the maximum likelihood parameters for the dependency parsing model.
We estimate these parameters from the head tagged corpora using an EM-like iterative
algorithm described below.

Learning the Dependency Parsing Model. To create a dependency model, we first
create the chunk head corpus by running a tagger on a corpus (21857 sentences) fol-
lowed by running the CIDF on the tagged corpora, which gives the head corpus. We
then apply the following three steps to create the parsing model:

1. Initialize the parsing model parameters
2. For each sentence in the chunk head corpus:

(a) Construct a complete weighted directed graph with the nodes as chunk heads
and the edge weights as the parsing model weights between the chunk heads

(b) Find out what is the possible root of the sentence, i.e., is it CC or VFM
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(c) Find out the possible parse trees of the sentences by finding the MST of the
graph by taking the each possible root as the head of the sentence, i.e., take the
possible root as the child of the dummy root and generate the MST.

3. Estimate P d
ta, tb

from the set of generated trees and update the weight of each pa-
rameter and create a new model

4. Repeat from the step-2(b) with newly estimated edge weights in step-3 until the
KL-divergence between the two successive models is decreasing

5 Creating Initial Parsing Model

The effectiveness of the dependency model is highly dependent on the initial depen-
dency model weights. We initialize the dependency model using a measure called Nor-
malized Conditional Mutual Information (NCMI) and a few linguistic constraints.
NCMI is a measure of association between distant word (or POS tag) pairs, i.e., two
words occurring at a particular distance d. We use NCMI between two tags as an initial
undirected dependency score between them.

First we define a measure called Conditional Mutual Information (CMI), which is
a modified version of the mutual information measure that takes into account the extra
variable of the lexical distance between the words. The condition in the ‘conditional’ is
the value of the distance. CMI is calculated as:

CMI(x, y, d) = p(x, y, d)log
p(x, y, d)
p(x)p(y)

(7)

where x, y are the POS tags and d is the distance between x and y.
All CMI scores are then normalized to get the NCMI (NCMI ∈ [0, 1]), which is

calculated as:

NCMI =
CMI − min(CMI)

max(CMI) − min(CMI)
(8)

As mentioned earlier, NCMI gives the measure of association or interdependency
score between the two tags at a particular distance. It does not represent the exact mea-
sure of dependency between two tags, but is an approximation to the measure of depen-
dency which can be effectively used for initialization.

5.1 Dependency Constraints

Based on the linguistic reality and the frequencies of occurrence of dependency relations,
we have defined a small set of constraints that any valid dependency tree must satisfy.

A tree is considered a valid dependency tree of sentence iff :

1. It has either a main verb (VFM) or a conjunction (CC) as the root of the depen-
dency tree

2. It does not have any adjective (JJ) as the head of any verb (VFM, VJJ, VRB)
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3. It does not have any noun (NN) as a child of a pronoun (PRP)
4. It does not have a dependency relation between two conjunctions (CCs) or two

main verbs (VFMs).
5. If there is an adverb (RB) or a non-finite adverbial (VRB) then it modifies (i.e., is

the child of) its closest main verb (VFM)
6. Two nouns (NN) are not related at a lexical distance greater than 2.

The first three constraints are based on the linguistic reality while the rest are based
on frequencies.

5.2 Generating Initial Dependency Trees

This section describes the method to generate the initial set of dependency trees for
each sentence using the NCMI scores and the dependency constraints and then creating
the initial model from the trees. We know that the NCMI score is a rough measure
of the strength of a dependency relation between two tags. From the constraints given
above, we also know that two conjunctions (CC) or two main verbs (VFM) or two
nouns (NN) at a lexical distance of more than 2 are not related. This means that we
can modify the NCMI scores between two conjunctions, main verbs or nouns at lexical
distance more than 2 to 0 (weak dependency score). And so on for other constraints.
The modified NCMI scores are used to generate the most likely dependency trees for a
given sentence.

Let S be the sentence and gs be the weighted undirected complete graph of S con-
structed using the words/tags of the sentence as nodes. Following are the steps to gen-
erate the initial dependency trees for a sentence S:

1. Construct gs by taking words/tags of S as nodes and the NCMI score as edge
weight.

2. Modify the weights of the edges connecting the node tag VNN or VRB or RB in gs

to its closest 2 VFM node in the graph to 1 (strong dependency score).
3. Generate the set of M maximum spanning trees of gs.

Each spanning tree of gs represents the possible undirected dependency tree of the
sentence S and the tree score (product of edge scores) represents the likelihood of
tree being the undirected dependency tree of S.

4. Generate the set of directed trees from each undirected tree by taking each possible
head (CC and VFM) as a root and converting the undirected tree to a directed tree
by assigning directions to each edge as going out from the parent towards the child.

After applying the above steps on the sentences, we get the set of most likely parse
trees of the sentences and their scores (P (S, T )). The basic intuition here is that once
we modify the edge weights using the constraints, when generating the top M-spanning
trees, edges with strong dependency score are likely to be included in the top MSTs.
Once the initial possible trees are generated for each sentence, we can estimate the ini-
tial parsing model parameters by calculating P d

ta, tb
as described in the previous section.

One important observation here is that we are estimating the parsing model parameters

2 Here closeness is in terms of the lexical distance between the nodes in the sentence.
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using the trees generated based on the NCMI scores modified by the linguistic con-
straints and these linguistic constraints are used only in estimating the initial parameter
values.

5.3 Parsing

The output of the training model (or learning model) described in the above sections are
the dependency relations between tags at a particular distance with their corresponding
probabilities. To parse a new (test) sentence, we apply the following steps:

1. Run the POS tagged and the CIDF and find chunks, chunk heads and intra-chunk
dependency relations

2. Construct a complete weighted graph of the sentence by taking the chunk heads as
nodes and assigning the parsing model weights for the tag-tag-distance triples to
the edges

3. Compute the Maximum Spanning Tree of the sentence graph using the Chu-Liu-
Edmonds algorithm [5,9]

The output MST gives us the most likely parse of the sentence.

6 Experimental Setup and Results

As not much parsed data is available for Indian Languages, we used raw (unannotated)
text to build a parser and tested the parser accuracy on 1997 human tagged sentences
(these sentences were not the part of the training corpus). For training, we tagged 22187
sentences using a POS tagger for which the reported performance is 88.8%. We calcu-
lated the NCMI scores between the tags at a maximum lexical distance d of 20. We
used the standard evaluation metric used in supervised parsing techniques to evaluate
the parser performance, i.e.:

Accuracy =
correct dependency relations

total relations
We conducted two main experiments. The first was on sentences of length less than

ten words and the second was on sentences of all lengths. We calculated the perfor-
mance for both the sets of sentences. The results are shown in Table-1 and Table-2.
Note that these results are only for the accuracy of inter-chunk head dependency rela-
tions. The precision of the CIDF for intra-chunk dependency identification was found
to be 88.69%, 83.21% and 90.50% for Hindi, Telugu and Bengali, respectively. Since
the CIDF is able to find intra-chunk relations much more accurately, the overall perfor-
mance of the parser will be greater than shown in Table-1, even more so because the
average length of sentence in the training data was 20.34, whereas it was only 10.14
after the chunking step.

We also conducted an experiment where the initialization was performed with ran-
dom values. The performance is this case (for sentences of all lengths) was 48.44%. The
performance when initialization was performed with the NCMI scores modified by the
linguistic constraints was 66.71%. This clearly shows that our method of initialization
is making a significant difference to the performance.



158 J. Gorla et al.

Table 1. Parser Evaluation: Sentence Length and Initialization Method

Sentence Length Accuracy
≤ 10 80.83%

Overall 66.71%

Initialization Accuracy
Random (Baseline) 48.44%

Only NCMI 64.13%
NCMI + Constraints 66.71%

7 Future Work

There are several possible areas of further research as an extension of this work. One of
them is improving the learning and parsing algorithms. Right now, the parser is using
only the tags to learn the dependency relations. Since we know that lexical information
can be crucial in parsing, we can use such information, especially the post-positions or
case markers, to make the parser more accurate. Such improvements can perhaps make
the parser practically usable. One other very important area for future work is domain
adaptation of the parser for restricted domains as has been successfully attempted for
many other languages [17].

8 Conclusion

In this paper we presented a method for weakly supervised dependency parsing. This
method is based on the idea that the problem of parsing can be defined as the computa-
tion of the best spanning tree in the complete graph generated from the syntactic units
of the sentence, where these units are the nodes in the graph. In our case, we select
chunks as the units because our focus was on South Asian languages which have fixed
word order but free chunk order. Also, it is very easy to identify the chunks relevant
for our purposes as well as to identify the intra-chunk dependencies. We described an
algorithm for learning the parsing model from POS tagged sequences prepared from
the unannotated training data. A novel way was used to initialize the parameters of
the model (i.e., weights of the edges between two tags at particular distances). This
method of initialization used a measure of association called Normalized Conditional
Mutual Information (NCMI) and application of a few simple linguistic constraints. Our
parser achieved an accuracy of 80.80% for sentence of length less than ten and 66.71%
for sentences of all lengths. We were also able to show that our method of initializa-
tion significantly increased the performance of the parser over the baseline of random
initialization.
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17. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The CoNLL
2007 shared task on dependency parsing. In: Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pp. 915–932 (2007)

18. Paskin, M.A.: Grammatical bigrams. In: Proceedings of NIPS, pp. 91–97 (2001)
19. Avinesh, P.V.S., Karthik, G.: Part-of-speech tagging and chunking using conditional random

fields and transformation based learning. In: Proceedings of the IJCAI 2007 Workshop on
Shallow Parsing in South Asian Languages, Hyderabad, India (2007)

20. Rao, D., Yarowsky, D.: Part of speech tagging and shallow parsing for indian languages.
In: Proceedings of the IJCAI-07 Workshop on Shallow Parsing in South Asian Languages,
Hyderabad, India (2007)

21. Smith, D.A., Eisner, J.: Bootstrapping feature-rich dependency parsers with entropic priors.
In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 667–677

22. Smith, D.A., Smith, N.A.: Probabilistic models of nonprojective dependency trees. In: Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 132–140

23. Smith,N.A.: Discovery of linguistic relations using lexical attraction. PhD thesis (1998)
24. Yoshinaga, N., Miyao, Y., Torisawa, K., Tsujii, J.: Efficient LTAG parsing using HPSG

parsers. In: Proc. of PACLING, pp. 342–351 (2001)
25. Yuret,D.: Discovery of linguistic relations using lexical attraction. PhD thesis (1998)



A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 160–168, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Web-Based Self-training Approach for  
Authorship Attribution* 

Rafael Guzmán-Cabrera1,2, Manuel Montes-y-Gómez3,  
Paolo Rosso2, and Luis Villaseñor-Pineda3 

1 FIMEE, Universidad de Guanajuato, México 
guzmanc@salamanca.ugto.mx 

2 NLE Lab, DSIC, Universidad Politécnica de Valencia, Spain 
prosso@dsic.upv.es 

3 LabTL, Instituto Nacional de Astrofísica, Óptica y Electrónica, México 
{mmontesg,villasen}@inaoep.mx 

Abstract. As any other text categorization task, authorship attribution requires 
a large number of training examples. These examples, which are easily obtained 
for most of the tasks, are particularly difficult to obtain for this case. Based on 
this fact, in this paper we investigate the possibility of using Web-based text 
mining methods for the identification of the author of a given poem. In particu-
lar, we propose a semi-supervised method that is specially suited to work with 
just few training examples in order to tackle the problem of the lack of data 
with the same writing style. The method considers the automatic extraction of 
the unlabeled examples from the Web and its iterative integration into the train-
ing data set. To the knowledge of the authors, a semi-supervised method which 
makes use of the Web as support lexical resource has not been previously em-
ployed in this task. The results obtained on poem categorization show that this 
method may improve the classification accuracy and it is appropriate to handle 
the attribution of short documents. 

1   Introduction 

Nowadays, there is a lot of information available in digital format. This situation has 
produced a growing need for tools that help people to find, organize and analyze all 
these resources. In particular, text categorization [14], the automatic assignment of free 
text documents to one or more predefined categories, has emerged as a very important 
component in many information management tasks. Most of these tasks are of thematic 
nature, such as newswire and spam filtering, whereas some others are non-thematically 
restricted, for instance, authorship attribution and sentiment classification. 

The state-of-the-art approach for automatic text categorization considers the appli-
cation of a number of statistical and machine learning techniques, including Bayesian 
classifiers, support vector machines, nearest neighbour classifiers and artificial neural 
networks [14]. A major difficulty with this kind of supervised techniques is that they 
                                                           
* This work was done under partial support of CONACYT-Mexico (43990, C01-39957), 

MCyT-Spain (TIN2006-15265-C06-04) and PROMEP (UGTO-121). 
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commonly require a great number of labelled examples (training instances) to  
construct an accurate classifier. Unfortunately, because a human expert must manu-
ally label these examples, the training sets are extremely small for many application 
domains. In order to overcome this problem, recently many researchers have been 
working on semi-supervised learning algorithms (for an overview see [15]). It has 
been showed that by augmenting the training set with additional unlabelled informa-
tion it is possible to improve the classification accuracy using different learning algo-
rithms such as naïve Bayes [12], support vector machines [8], and nearest-neighbour 
algorithms [19]. 

In line with these current works, we have proposed a new semi-supervised method 
for text categorization [5, 6]. This method differs from previous approaches in two 
main issues. On the one hand, it does not require a predefined set of unlabelled train-
ing examples, instead it considers their automatic extraction from the Web. On the 
other hand, it applies a self-training approach that selects instances not only consider-
ing their labelling confidence by a base classifier, but also their correspondence with a 
web-based labelling1. This method has been applied with success in thematic text 
classification tasks, indicating that it is possible to automatically extract discrimina-
tive thematic information from the Web. The method was evaluated on training sets 
of different sizes demonstrating its usefulness for dealing with very small data sets. 
As an example of this fact, our method improved the categorization of natural disaster 
news by 26% using a naïve Bayes classifier and a small training set with 10 examples 
per class [5]. 

In this paper, we investigate the application of the proposed web-based self-
training method in a non-thematic classification task, namely, authorship attribution. 
This task confronts the method with new challenges since an author may write about 
several topics as well as a topic may be treated by different authors. Therefore, in this 
task, words by themselves do not allow distinguishing among classes; it is necessary 
to take into account how words are used together (i.e., the author’s writing style). In 
order to make harder the evaluation, we focus our experiments on poem classification 
where documents are usually very short and their vocabulary and structure are very 
different from everyday –web– language. 

The rest of the paper is organized as follows. Section 2 introduces the task of au-
thorship attribution and discusses some representative works. Section 3 describes our 
web-based self-training approach for text classification. Then, Section 4 presents 
some evaluation results on poem classification by author. Finally, Section 5 depicts 
our conclusions. 

2   Authorship Attribution 

Authorship attribution is the task of identifying the author of a given text. It can be 
considered as a classification problem, where a set of documents with known author-
ship are used for training, and the aim is to automatically determine the corresponding 
author of an anonymous text. 

                                                           
1 Given that each unlabelled example is downloaded from the Web using a set of automatically 

defined class queries, each of them has a default category or web-based label. 
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There are several methods for authorship attribution. These methods may be clus-
tered in the following three main approaches: 

Stylometric measures as document features. This approach considers features such as 
the length of words and sentences as well as the richness of the vocabulary [7, 10]. Its 
results are not conclusive, but they have shown that these features are not sufficient 
for the task. It seems that they vary depending on the genre of the text, and that they 
lost most of their meaning when dealing with short texts. 

Syntactic cues as document features. This approach uses a set of style markers. These 
markers go beyond the stylometric measures by integrating information related to the 
structure of the language, which is obtained by an in depth syntactic analysis of 
documents [2, 4, 17]. Mainly, texts are characterized by the presence and frequency of 
certain syntactic structures. This characterization is very detailed and relevant; unfor-
tunately, it is computationally expensive and even impossible to build for languages 
lacking of robust text-processing resources (e.g. POS tagger, syntactic parser, etc.). 
Besides, it is also clearly influenced by the length of documents. 

Word-based document features. This approach includes at least three different kinds 
of methods. The first one characterizes documents using a set of functional words, 
ignoring content words since they tend to be highly correlated with the document 
topics [1, 21]. This kind of methods works properly, but it is also affected by the size 
of documents. In this case, the document length not only influences the frequency of 
occurrence of the functional words but also their sole presence. The second kind of 
methods applies the traditional bag-of-words representation and uses single content-
words as document features [9]. It is very robust and produces excellent results when 
there is a noticeable relation between authors and topics. Finally, a third kind of 
method considers word n-gram features, i.e., features consisting of sequences of n 
consecutive words. It attempts to capture the language structure of texts by simple 
word sequences instead of by complex syntactic structures [13]. Somehow, its pur-
pose is to obtain a rich characterization of texts without performing an expensive 
syntactic analysis. Nevertheless, due to the feature explosion, it tends to use only  
n-grams up to three words. 

In contrast to all these works, this paper does not propose another document repre-
sentation for authorship attribution, it describes instead a new semi-supervised learn-
ing method that allows working with small training sets. As expected, our web-based 
self-training classification method may be applied along with all these kinds of fea-
tures. However, given that our interest is to have a general approach for authorship 
attribution that allows analyzing documents of different sizes and domains, we have 
decided to mainly explore the use of word-based features, in particular, n-grams. 

3   Our Text Categorization Method 

Figure 1 shows the general scheme of our semi-supervised text classification method. 
It consists of two main processes. The first one deals with the corpora acquisition 
from the Web, whereas the second one focuses on the self-training learning approach 
[11]. The following sections describe in detail these two processes. 
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Fig. 1. General overview of our classification method 

3.1   Corpora Acquisition 

This process considers the automatic extraction of unlabeled examples from the Web. 
In order to do this, it first constructs a number of queries by combining the most sig-
nificant words for each class; then, using these queries, it looks at the Web for some 
additional training examples related to the given classes. 

Query Construction. In order to form queries for searching the Web, it is necessary 
to previously determine the set of relevant words for each class in the training corpus. 
The criterion used for this purpose is based on a combination of frequency of 
occurrence and information gain of words. We consider that a word wi is relevant for 
a class C if it satisfies the following two conditions: 

1. The frequency of occurrence of wi in C is greater than the average occurrence of 
all words (happening more than once) in that class. That is: 
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2. The information gain of wi is positive, that is 0>
iwIG . 

Once obtained the set of relevant words per class, it is possible to construct the cor-
responding set of queries. Founded on the method by Zelikovitz and Kogan [20], we 
decide to construct queries of three words. This way, we create as many queries per 
class as all three-word combinations of its relevant words. We measure the signifi-
cance of a query q = {w1, w2, w3} to the class C as indicated below: 
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Web Searching. The next action is using the defined queries to extract from the Web a 
set of additional unlabeled text examples. Based on the observation that most significant 
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queries tend to retrieve the most relevant web pages, our method for searching the Web 
determines the number of downloaded examples per query in a direct proportion to its 
Γ-value. Therefore, given a set of M queries {q1,…, qM} for class C, and considering 
that we want to download a total of N additional examples per class, the number of 
examples to be extracted by a query qi is determined as follows: 
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3.2   Self-training Learning 

As we previously mentioned, the purpose of this process is to increase the classification 
accuracy by gradually augmenting the originally small training set with the examples 
downloaded from the Web. Our algorithm for self-training learning is an adaptation of a 
method proposed elsewhere [16]. It mainly considers the following steps: 

1. Build a weak classifier (Cl) using a specified learning method (l) and the training 
set available (T). 

2. Classify the unlabeled web examples (E) using the constructed classifier (Cl). In 
order words, estimate the class for all downloaded examples. 

3. Select the best m examples (Em ⊆ E) based on the following two conditions: 
a. The estimate class of the example corresponds to the class of the query 

used to download it. In some way, this filter works as an ensemble of two 
classifiers: Cl and the Web (expressed by the set of queries). 

b. The example has one of the m-highest confidence predictions. 

4. Combine the selected examples with the original training set (T ← T ∪ Em) in 
order to form a new training set. At the same time, eliminate these examples from 
the set of downloaded instances (E ← E – Em). 

5. Iterate σ times over steps 1 to 4 or repeat until Em = ∅. In this case σ is a user 
specified threshold. 

6. Construct the final classifier using the enriched training set. 

4   Evaluation on Authorship Attribution 

4.1   Experimental Setup 

Corpus. Given that there is not a standard data set for evaluating authorship attribu-
tion methods, we had to assemble our own corpus. This corpus was gathered from the 
Web and consists of 353 poems written by five different authors [3]. Table 1 resumes 
some statistics about this corpus. It is important to notice that, on the one hand, the 
collected poems are very short texts (172 words in average), and on the other hand, 
that all of them correspond to contemporary Mexican poets. In particular, we were 
very careful in selecting modern writers in order to avoid the identification of authors 
by the use of anachronisms. 
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Table 1. Corpus Statistics 

Poets Number of 
documents 

Word 
forms  

Word 
tokens 

Number of
Phrases 

Average
Word 

Tokens by
Document 

Average 
Phrases 

by 
Document 

Efraín Huerta 48 3831 11352 510 236.5 22.3 

Jaime Sabines 80 3955 12464 717 155.8 17.4 

Octavio Paz 75 3335 12195 448 162.6 27.2 

Rosario Castellanos 80 4355 11944 727 149.3 16.4 

Rubén Bonifaz 70 4769 12481 720 178.3 17.3 

Baseline Configurations. Because of the difficulty of comparing our approach with 
other previous works (mainly because of the absence of a standard evaluation corpus), 
we performed several experiments in order to establish a baseline. These experiments 
consider the use of four different kinds of word-based features: (i) functional words, 
(ii) content words, (iii) the combination of functional and content words, and (iv) 
word n-grams. Table 2 shows the results corresponding to each one of these kinds of 
word-based features. 

Table 2. Baseline Configurations 

Features Accuracy 
Macro Average 

Precision 
Average 
Recall 

Functional words 0.41 0.42 0.39 
Content words 0.73 0.78 0.73 
All kind of words 0.73 0.78 0.74 
n-grams (unigrams plus bigrams) 0.78 0.84 0.79 
n-grams (from unigrams to trigrams) 0.76 0.84 0.77 

 
Our main interest in this first experiment was to determine a baseline configuration 

for our subsequent experiments. Because of that, we used in all cases the same  
classification algorithm (namely, the naïve Bayes classifier), the same technique for 
dimensionality reduction (information gain) as well as the same evaluation schema (a 
10-cross-fold validation). In all experiments, we used the implementations facilitated 
by the WEKA machine-learning environment [18].  

The results shown in Table 2 are very interesting since they confirm some of our 
major assumptions. First, functional words by themselves do not help to capture the 
writing style of short texts. Second, content words contain some relevant information 
to distinguish among authors, even when all documents correspond to the same genre 
and discuss similar topics. Third, the lexical collocations, captured by word n-gram 
sequences, are useful for the task of authorship attribution. Fourth, due to the feature 
explosion and the small size of the corpus, the use of higher n-gram sequences not 
necessarily improves the classification performance. 

4.2   Experimental Results 

This section describes the application of the proposed semi-supervised method to the 
task of authorship attribution. The method, as depicted in Section 3, includes two 
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main processes: the corpora acquisition from the Web and the self-training learning 
approach. Following, we detail some results from both of them. 

The central task for corpora acquisition is the automatic construction of a set of 
queries that expresses the relevant content of each class. Using these queries, we col-
lected from the Web a set of 2,400 snippets per class, obtaining 12,000 additional 
unlabeled examples. Then, we applied the self-training method for constructing the 
final poem classifier. 

It is important to point out that there is not a clear criterion to determine the parame-
ters m and σ of a self-training method [11]. In our case, we determined the number of 
unlabeled examples that must be incorporated into the training set at each iteration 
based on the following condition: the added information –expressed in number of 
words– must be proportionally small with respect to the original training data. This last 
condition is very important because of the small size of poems (176 words on average). 
In particular, we decided to incorporate 60 unlabeled examples per iteration (m = 60), 
approximately 10 examples per class. However, it is necessary to perform further ex-
periments in order to determine the best value of m for this task. 

Table 3. Training/test data sets 

Poets Training
Set 

Test 
Set 

Word forms  
(in Training Set) 

Efraín Huerta 38 10 2827 

Jaime Sabines 64 16 2749 
Octavio Paz 60 15 2431 

Rosario Castellanos 64 16 3280 
Rubén Bonifaz 56 14 3552 

Total 282 71 8377 

 
For this new experiment, we organized the corpus in a different way with respect 

to the baseline experiment described in Section 4.1 The corpus was divided in two 
data sets: training (with 80% of the labelled examples) and test (with 20% of the ex-
amples). The idea was to carry out the experiment in an almost-real situation, where it 
is not possible to know in advance all the vocabulary. This is a very important aspect 
to take into account in poem classification since poets tend to employ a very rich 
vocabulary. Table 3 shows some numbers about this collection. 

Taking into account the results described in the previous section, we decided to use 
n-grams as document features. We mainly performed two different experiments. In 
the first one we used bigrams as features, whereas in the second one we used trigrams. 
Table 4 shows the results corresponding to the first five iterations of the method. As 
can be observed, the integration of new information improved the baseline results. In 
particular, the best result was obtained at the second iteration when using bigrams. 
We suppose this behaviour was due because bigrams are better suited to look for the 
most used collocations of an author from a small corpus; for trigrams –we presume– it 
is necessary to have more information. 

Table 4 also shows the vocabulary’s growing: aproximately 300 new words per 
iteration. Due to this increment it was possible to correctly classify more poems from 
the very first iteration. However, this increment was also the reason for the accuracy 
decrement in subsequent iterations where several non-relevant words were inserted 
into the training set. 



 A Web-Based Self-training Approach for Authorship Attribution 167 

Table 4. Accuracy percentages after the training corpus enrichment 

n-grams Iteration 

 

Initial 
Accu-
racy  1 2 3 4 5 

Bigrams 78.9 80.3 82.9 80.3 78.9 78.9 
Trigrams 74.6 74.7 78.8 80.3 80.3 78.7 

Vocabulary 
Size 

8377 8732 9019 9319 9676 9915 

 
Although being preliminary results, it is surprising to verify that it is feasible to ex-

tract useful examples from the Web for the task of authorship attribution. In fact, our 
intuition suggested the opposite: given that poems tend to use rare and improper word 
combinations, the Web seemed not to be an adequate source of relevant information 
for this task. 

5   Conclusions 

This paper proposed a novel approach for authorship attribution based on a web-based 
self-training learning method. This method differs from others in that: (i) it is spe-
cially suited to work with few training examples, and (ii) it considers the automatic 
extraction of additional training knowledge from the Web. 

In general, the achieved results allow us to formulate the following preliminary 
conclusions: 

• Our web-based self-training classification method seems to be portable to non-
thematic tasks. In particular, the achieved results in authorship attribution sup-
port this observation. 

• The proposed method for authorship attribution, which uses n-gram features and 
a semi-supervised learning approach, could outperform most common ap-
proaches for authorship attribution. Furthermore, our method, contrary to other 
current approaches, is not affected by the small size of the texts, and avoids us-
ing any sophisticated linguistic analysis of documents. 

• The proper identification of an author, even from a poem, must consider both 
stylometric and topic features of documents. Therefore, our conclusion points to 
use word-based features such as word n-grams. 

Finally, it is important to comment that it is necessary to achieve a detailed analy-
sis of current results as well as to perform further experiments in order to define better 
empirical criteria for selecting the values of the parameters m and σ. 
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Abstract. This paper presents a novel technique for parsing discontin-
uous phrase structure representations, labeled with both phrase labels
and grammatical functions. Phrase structure representations are trans-
formed into dependency representations with complex edge labels, which
makes it possible to induce a dependency parser model that recovers the
phrase structure with both phrase labels and grammatical functions. We
perform an evaluation on the German TIGER treebank and the Swedish
Talbanken05 treebank and report competitive results for both data sets.

1 Introduction

Data-driven parsing is a popular method for deriving the syntactic representa-
tion of a sentence by inducing a parser model from a treebank of syntactically
annotated sentences of a given language. However, there is often a discrepancy
between the original treebank annotation and the representations used by the
parser. Take for instance parsers trained on the Penn Treebank, where it is of-
ten the case that function labels and empty categories are not recovered by the
parser. Notable exceptions, among others, are Musillo and Merlo [1], who enrich
the parser output with function labels, and Gabbard et al. [2], who recover both
function labels and empty categories.

For German, the Negra annotation scheme is the basis for the annotation of
both the Negra Corpus [3] and the TIGER treebank [4]. The Negra annotation
scheme uses a combination of dependency and phrase structure representations,
and encodes both local and non-local dependencies, which sometimes results in
discontinuous phrases. Data-driven parsing of these two German treebanks of-
ten involve a simplification of the syntactic representation, and it is common to
restrict the task to deriving only the continuous phrase structure and only the
phrase labels. Kübler et al. [5] recover grammatical functions, but not discon-
tinuities. By contrast, Plaehn [6] parses discontinuous phrase structure using a
probabilistic extension of discontinuous phrase structure grammar (DPSG), but
evaluation is restricted to only phrase labels.

This paper describes how a data-driven dependency parser can be turned
into a phrase structure parser that recovers both continuous and discontinuous

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 169–180, 2008.
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phrases with both phrase labels and grammatical functions.1 Evaluation is car-
ried out on two treebanks: the German TIGER treebank [4] and the Swedish Tal-
banken05 treebank [7]. Both treebanks are encoded in the TIGER-XML format,
but use different annotation schemes. The parser system induces a parser model
from the original treebanks by automatically transforming the phrase structure
representations into dependency representations. Our method for parsing phrase
structure with grammatical functions consists of four steps:

1. Transform phrase structures into dependency graphs that encode the inverse
transformation in complex edge labels.

2. Train a transition-based dependency parser on dependency graphs derived
in step 1.

3. Parse new sentences using the parser model induced in step 2.
4. Apply the inverse transformation to dependency graphs produced in step 3,

using the information encoded in the complex edge labels.

This paper is structured as follows: Section 2 describes the target syntactic rep-
resentation, and shows how this representation is transformed to a dependency
representation and back. In section 3 we explain how the transformed depen-
dency graphs are parsed with a transition-based dependency parser. Section 4
presents the experimental evaluation and discusses the results, while section 5
compares our results to previous work. Finally, section 6 concludes.

2 Syntactic Representations

We have selected two treebanks for evaluating our approach that are both en-
coded in the TIGER-XML treebank encoding format [8], which is generic format
for representing various corpora and treebanks. This format allows a treebank
creator, in a straightforward way, to encode continuous and discontinuous phrase
structures with phrase labels but also with grammatical functions.2 The format
is well-suited for deriving a dependency representation of a phrase structure,
because of all the information at hand (especially the grammatical functions are
very useful).

Our approach is not restricted to treebanks encoded in TIGER-XML, but
we have used treebanks encoded in TIGER-XML as the target encoding format
because it allows discontinuous phrase structure with grammatical functions.
To define our algorithms for transforming a phrase structure representation to
a dependency representation and back, we need a formal framework. In this
framework, the syntactic representation of a sentence can be encoded either as
a phrase structure graph GP or as a dependency graph GD. The two representa-
tions are equivalent in the sense that we can convert between them without loss
of information, but whereas GP corresponds to the representation found in the

1 We have used MaltParser 1.1, which can be downloaded free of charge from following
page: http://www.vxu.se/msi/users/jha/maltparser/

2 We have ignored the secondary edges in TIGER-XML.
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treebank, GD is the representation used internally by the parser. Our notion
of phrase structure graph is inspired by the notion of syntax graph defined by
König and Lezius [9].

Definition 1. Let LNT be the set of non-terminal labels (phrase labels) and let
LE be the set of edge labels (grammatical functions). A phrase structure graph
GP for a sentence x = (w1, . . . , wn) is a quintuple GP = (VNT , VT , EP , <, RP ),
where

1. VNT is a finite set of non-terminal nodes, labeled by elements of LNT ,
2. VT is a non-empty finite set of terminal nodes, one for each wi ∈ x,3

3. EP is a set of directed edges (vi, vj) (vi ∈ VNT , vj ∈ VNT ∪VT ), labeled by
elements of LE ,

4. < is a linear order on VT (defined by the order of words in x),
5. RP ∈ (VNT ∪ VT ) is the root node.

A phrase structure graph GP is well-formed if it is a directed tree rooted at RP .

Definition 2. Let LNT and LE be as in definition 1. A dependency graph GD

for a sentence x = (w1, . . . , wn) is a quadruple GD = (VT , ED, <, RD), where

1. VT is a non-empty finite set of terminal nodes, one for each wi ∈ x, plus an
extra root node v0,

2. ED is a set of directed edges (vi, vj) (vi, vj ∈ VT ), labeled by complex labels
(lE , pE , pNT , a), where
(a) lE is an edge label in LE ,
(b) pE is a sequence (or path) of edge labels in LE ,
(c) pNT is a sequence (or path) of phrase labels in LNT ,
(d) a is a positive integer,

3. < is a linear order on VT (defined by the order of words in x),
4. RD is the root node v0.

A dependency graph GD is well-formed if it is a directed tree rooted at RD.

Figure 1 shows a German sentence from the TIGER treebank with its phrase
structure graph (top) and dependency graph (bottom).4 The elements of a com-
plex edge label (lE , pE , pNT , a) for an edge (vi, vj) ∈ ED in the dependency
graph have the following interpretation:

– The label lE is the grammatical function of the highest non-terminal node
vk ∈ VNT such that vj is the lexical head of vk in GP .

– The sequence pE is the path of grammatical functions from vj to vk in GP .
– The sequence pNT is the path of phrase labels from vj to vk in GP .
– The integer a is the attachment level of vk with respect to the non-terminal

nodes that have vi as their lexical head in GP .
3 We assume that terminal nodes are labeled with part-of-speech tags as well as word

forms.
4 Note that sequence elements in the complex edge labels in the dependency graph

are separated by a vertical bar |.
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The transformation GP → GD → GP involves several steps and the rest of
this section is structured according to these steps. The first step is to find the
head child for each non-terminal node in the phrase structure graph GP . The
second step builds a dependency graph GD according to the heads identified in
the first step, where the inverse transformation is encoded in the complex edge
labels of GD. To make this more understandable, we go through an example
of the transformation GP → GD. Finally, we define the inverse transformation
GD → GP .

2.1 Head Identification

The first steps are basically the steps that are used to convert a phrase structure
to a dependency graph. One way of doing this is to traverse the phrase structure
graph from the root node and identify the head-child vhc and the lexical head
vhcl for all nodes v ∈ VNT in a recursive depth-first search. The algorithm is
defined in the following way:

Identify-Head(v,HR)
1 if v ∈ VT

2 return v
3 else
4 vhc ← Identify-HeadChild(v, HR)
5 vhcl ← Identify-Head(vhc, HR)
6 for i = 1 up to NumberOfChildren(v)
7 if Get-child(v, i) �= vhc

8 vlc ← Identify-Head(Get-Child(v, i), HR)
9 Set-TerminalHead(vlc, vhcl)

10 return vhlc

The algorithm starts from the root RP and visits all nodes in the phrase struc-
ture graph, but it is only the non-terminals that will be assigned a head-child vhc

and a lexical head vhcl; if the node v is a terminal then it is its own lexical head.
The function Identify-HeadChild takes the current node v and the head rules
HR and returns the head-child vhc of v according to the head rules. The head
rules can be very simple, such as: Take the leftmost terminal child as the head-
child if it exists; otherwise take the leftmost non-terminal child. But the head
rules can also be more complex with a priority list for each phrase type. The next
step is to find the lexical head of the head-child vhcl by invoking the function
Identify-Head recursively. Finally, the algorithm iterates over all children of
node v, and if the child returned by Get-Child(v, i) is different from the head-
child vhc, Set-TerminalHead assigns the lexical head vhcl as the head of the
lexical terminal child vlc returned by recursively invoking Identify-Head. In
other words, after we have visited all nodes in the phrase structure graph, all
non-terminal nodes VNT have been assigned a head-child and a lexical head, and
all terminal nodes VT (except the terminal node that is the lexical head-child
of the root RP ) have been assigned another terminal node as head. The latter
assignment contains all the information need to derive an unlabeled dependency
graph.
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2.2 Phrase Structure Graph → Dependency Graph

The next step builds a labeled dependency representation that encodes the in-
verse transformation in the edge labels of the dependency graph. The function
Create-DependencyGraph defines this algorithm as follows:

Create-DependencyGraph(VT , ED)
1 for i = 1 up to |VT |
2 vpt ← vi

3 while vi = Get-LexicalHead(vpt)
4 if ∃Get-Parent(vpt)
5 vpt ← Get-Parent(vpt)
6 lE ← Get-EdgeLabel(vpt)
7 pE ← Get-EdgeLabel-Path(vi, vpt, ”|”)
8 pNT ← Get-PhraseLabel-Path(vi, vpt, ”|”)
9 a ← 0

10 if vpt ∈ VNT

11 vhc ← Get-HeadChild(vpt)
12 while vhc ∈ VNT

13 a ← a + 1
14 vhc ← Get-HeadChild(vpt)
15 if ∃Get-TerminalHead(vi)
16 Add-Edge(ED,Get-TerminalHeadIndex(vi), vi, (lE , pE, pNT , a))
17 else
16 Add-Edge(ED, v0, vi, (lE, pE, pNT , a))

For each terminal node vi ∈ VT , we first identify the parent vpt of the highest non-
terminal node of which vi is the lexical head. This is done by traversing the phrase
structure upwards, invoking the function Get-Parent until we encounter a non-
terminal node for which vi is not the lexical head. The next steps find the first
three elements of the complex label for the edge going into vi: the grammatical
function lE (line 6), the path of grammatical functions pE (line 7), and the path
of phrase labels pNT (line 8). If vi = vpt, there are no paths to encode, which is
indicated by pE = pNT = ∗. Moreover, the lines 9–14 calculate the attachment
level a of the path of nodes from vi to vpt by following the head-child as long as
it is a non-terminal. Finally, an edge (vj , vi) is added to the set of directed edges
ED with the complex edge label (lE , pE, pNT , a), where j is either the index of
the terminal head of the terminal vi or the special root node RD = v0.

2.3 Example

Figure 1 illustrates the procedure of encoding the phrase structure graph as a
dependency graph with complex edge labels for a German sentence. For this
example, we have used very simple head rules to identify the head-child for
each non-terminal: Select the leftmost lexical child if present; otherwise use the
leftmost non-terminal child. The phrase VP has one lexical child verlangen and
therefore this child will be both the head-child and the lexical head of VP. By
contrast, the phrase NP has no lexical child and therefore the head-child is the
leftmost non-terminal AVP. The lexical head of NP is the token nicht because
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Fig. 1. The sentence s4962 is taken from the TIGER treebank and a possible translation
is: “Nevertheless, when hiring, you should not only, as before, require a sport and
spelling test.”. The phrase structure graph is illustrated above the sentence and the
derived dependency graph below the sentence.

it is the lexical head of AVP. Because VP dominates NP the lexical head of VP
verlangen will be the head of the terminal nicht, and this is illustrated with an
edge in the dependency graph from verlangen to nicht.

The edge between these two terminals is labeled with a complex label (OA,
NG|MO, AVP|NP, 0), which consists of four sublabels (lE = OA, pE = NG|MO,
pNT = AVP|NP, a = 0). The first sublabel OA is the grammatical function above
NP. The sublabel NG|MO encodes the path of grammatical functions from the
lexical head nicht to NP. The phrase labels are encoded in the same way in the
third sublabel AVP|NP. Finally, the fourth sublabel indicates the attachment
level of the non-terminal NP. In this case, NP should be attached directly under
the non-terminal VP and the sublabel is therefore 0. By contrast, the edge from
nicht to Sport- with the label (NK, CJ, CNP, 1) has the attachment level 1,
which means that the non-terminal CNP should be attached to NP, which is one
level up in the structure with respect to the head nicht.5 We can also see that
the discontinuous NP gives rise to a non-projective edge from nicht to Sport-.

2.4 Dependency Graph → Phrase Structure Graph

The last step of our presented strategy is to make the inverse transformation from
a dependency graph to a phrase structure graph. This is done by a bottom-up
and top-down process on the dependency graph. The algorithm is defined in the
function Create-PhraseStructureGraph:
5 If the attachment level had been 0, then the non-terminal CNP would have been

attached to the non-terminal AVP instead of the non-terminal NP.
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Create-PhraseStructureGraph(VT )
1 for i = 1 up to n
2 (lE, pE, pNT , a) ← Get-EdgeLabel(vi)
2 vpt ← Build-Path(pE, pNT )
3 for i = Get-NumberOfDependents(v0) down to 1
4 Attach-Path(Get-Dependent(v0, i))

For each node vi in the dependency graph, we invoke the function Build-Path,
which restores the path of non-terminal nodes with phrase labels and grammat-
ical functions for each terminal using the information in the sublabels pE and
pNT of the incoming edge. After this bottom-up process we have a lineage from
vi to the highest non-terminal node of which vi is the lexical head. The top-
down process then traverses the dependency graph recursively from the root(s)
by invoking the function Attach-Path, which is defined as follows:

Attach-Path(vi)
1 vpt ← Get-PathTop(vi)
2 vph ← Get-Parent(Get-Head(vi))
3 (lE, pE, pNT , a) ← Get-EdgeLabel(vi)
4 k ← 0
5 while k < a and ∃Get-Parent(vph)
6 k ← k + 1
7 vph ← Get-Parent(vph)
8 if Get-Head(vi) = v0 or vph ∈ VT

9 Attach-Root(vpt, lE)
10 else
11 Add-Edge(vph, vpt, lE)
12 for j = 1 up to Get-NumberOfDependents(vi)
13 Attach-Path(Get-Dependent(vi, j))

The function Attach-Path uses a pre-order depth-first search to attach the
lineage of a node to its head lineage or to the root of the phrase structure graph.
First, the algorithm starts by assigning vpt the highest non-terminal (or terminal)
of the lineage by invoking Get-PathTop. In lines 2–7, the algorithm traverses
the head lineage a steps up in the structure to find vph, where a is the attachment
level defined in the sublabel a of the complex edge label (lE , pE, pNT , a).6

If the current node vi has the root of the dependency graph as its head, then
the highest non-terminal node vpt of the lineage will be the root RP of the phrase
structure graph, and the function Attach-Root is invoked.7 If the node vi does
not attach to the root, then an edge from vph to vpt is added with the sublabel

6 The function Get-Head returns the head of vi in the dependency graph. During
parsing it is possible that the attachment level is higher than the number of nodes in
the lineage and therefore the loop condition checks whether the parent node exists
or not.

7 The if statement also contains the condition vph ∈ VT , which is possible during
parsing. The function Attach-Root also hides two special cases, which can occur
during parsing: if vpt ∈ VT , then a non-terminal node is inserted with a default root
label, and if the root RP already has been assigned a node, then vpt will be a child
of the root RP .
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lE of the complex edge label (lE , pE , pNT , a). Finally, all dependents of the node
vi are visited recursively by invoking Attach-Path.

3 Parsing

Section 2 describes how we can transform phrase structure representations to de-
pendency representations, which makes it possible to recover the phrase structure
with both phrase labels and grammatical functions. The next natural step is to
find a way of parsing these dependency representations. McDonald and Nivre [10]
define global, exhaustive, graph-based parsing and local, greedy, transition-based
parsing, which are two different approaches to data-driven dependency parsing
with almost the same performance. For our parsing experiments, we have chosen
to implement the transition-based approach, because we believe that it makes
it easier to handle the large number of distinct edge labels that occur in our
dependency representations.

The basic idea of transition-based parsing is to derive dependency graphs us-
ing a greedy parsing algorithm that approximates a globally optimal solution by
making a sequence of locally optimal choices. Since discontinuous phrases are
transformed into non-projective dependency graphs we need a way to manage
such graphs. Covington [11] presents an incremental parsing strategy for depen-
dency representations that can recover non-projective graphs in quadratic time.
Nivre [12] formulates this parsing strategy as follows:

PARSE(x = (w1, . . . , wn))
1 for j = 1 up to n
2 for i = j − 1 down to 0
3 LINK(i, j)

The operation LINK(i, j) is nondeterministic and either adds an edge (vi, vj)
(with some label), adds an edge (vj , vi) (with some label), or does nothing at all.
Our parser system uses history-based feature models for predicting the outcome
of the operation LINK(i, j). The complex edge labels defined in section 2 will
result in a large set of distinct edge labels, and to make it more feasible we
divide prediction into nine feature models. First, we have a model for predicting
one of the three possible operations. If the prediction is to do nothing then the
nondeterminism is resolved, but if the prediction is either a right edge (vi, vj) or
a left edge (vj , vi), the system continues by predicting the complex edge label.
There are four models, one for each sublabel, for predicting a label for a right
edge operation and four models for a left edge.

All symbolic features are then converted to numerical features and we use the
quadratic kernel of the LIBSVM package [13] for mapping histories to parser
actions and edge labels.

4 Experiments

The evaluation of the presented method is divided into two experiments. First,
we want to validate the transformation of phrase structure representations to de-
pendency representations by transforming them back to phrase structure without
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losing any information about the structure and the labels. Secondly, we want to
train a parser model based on the transformed dependency representations, parse
new sentences using the parser model, and then apply the inverse transformation
to the parsed dependency graphs.

A secondary goal of designing our parser system is to take a TIGER-XML
document as input for training a parser model and output a TIGER-XML docu-
ment after completing the parse and the inverse transformation.8 We have chosen
to use two treebanks that are both encoded in TIGER-XML, but with different
annotation schemes. The first data set is the TIGER treebank version 2.1 [4],
which contains 50 472 sentences (888 238 tokens) of German newspaper text,
with an average sentence length of 17.6 tokens, and 54 distinct part-of-speech
tags. The German data set contains 22.5% discontinuous phrases, but many of
the discontinuities are due to punctuation being attached to the root. The sec-
ond data set is taken from the professional prose section of the Swedish treebank
Talbanken05 [7], containing 6100 sentences (97 335 tokens). More precisely we
use the Deep Phrase Structure version. The average sentence length is 16.0 to-
kens, there are 252 distinct part-of-speech tags, and 1.2% of the phrases are
discontinuous.

Our first experiment verified for both treebanks that all well-formed phrase
structures can be transformed to dependency graphs and back to phrase struc-
tures with all phrases and edges correctly labeled.9

For the second experiment we used a pseudo-randomized method to divide
the data into 10 sections, where sentence i is allocated to section i mod 10.
During optimization of the two parsing models we used sections 1–9 and for
the final evaluation we trained two parser models on sections 1–9 and tested on
section 0.10

The results on the final test set (section 0) are shown in table 1. For both
treebanks we present four rows of results. The first two rows contain results with
gold standard part-of-speech tags (tagging accuracy = TA = 100%). The last
two rows contain results where the input has been tagged automatically (tagging
accuracy = TA). Both sets of results are divided into two groups: evaluation on
all sentences (∞) and evaluation on all sentences up to 40 words long (40). Every
row presents an evaluation according to the F1-score, which is the harmonic mean
of recall (R) and precision (P ), that is, F1 = (2PR)/(P + R). The column UF1

shows the unlabeled F1-Score, which means that unlabeled recall UR is defined
as the percentage of phrases in the final test set which are correctly found by
our parser system. Notice that correctly means that the two phrases dominate

8 It is impossible to recover exactly the same TIGER-XML document with its meta-
data and the numbers of the identifiers in the same way as the treebank creator.

9 Talbanken05 contains six malformed structures: s1549, s2908, s2326, s3355, s4035
and s5903. TIGER contains two malformed structures: s46234 and s50224; TIGER
also contains one well-formed structure with one token (s39172), where the lonely
token is not the root of the structure which is the case for all other one token
sentences in TIGER.

10 In the evaluation on TIGER we used 45424 sentences for training and 5048 sentences
for testing, and on Talbanken05 5490 for training and 610 for testing.
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Table 1. Parsing accuracy; TA = tagging accuracy; SL = sentence length; F1 = F1-
score; M = exact match; U = unlabeled; P = phrase labels; E = edge labels; L =
labeled (both phrase and edge labels); T = includes incoming edge labels to terminals

Treebank TA SL UF1 PF1 EF1 LF1 UM PM EM LM TEM TLM

TIGER 100 ∞ 81.35 78.69 70.95 69.32 39.10 36.53 32.21 30.69 29.69 29.44
40 82.55 79.93 72.44 70.79 40.44 37.78 33.35 31.77 30.74 30.48

97.0 ∞ 77.50 74.04 66.69 64.82 34.31 31.56 28.39 26.92 25.87 25.61
40 78.76 75.33 68.16 66.27 35.48 32.63 29.39 27.87 26.78 26.52

Talbanken05 100 ∞ 76.82 73.97 66.96 65.33 32.30 30.16 22.95 22.13 18.36 17.87
40 79.80 76.90 70.09 68.34 33.16 30.98 23.57 22.73 18.86 18.35

84.2 ∞ 70.85 66.72 59.77 58.03 25.25 22.46 17.87 16.72 13.93 13.44
40 73.47 69.21 62.23 60.46 25.93 23.06 18.35 17.17 14.31 13.80

the same terminals. The unlabeled precision UP is defined as the percentage
of phrases proposed by our parser system which are actually correct according
to the structures in the treebank. The column PF1 presents results where also
phrase labels are required to be correct; for EF1, edge labels must be correct; and
for LF1 both phrase labels and edge labels must match. The metric UM is the
unlabeled exact match, that is, the proportion of sentences that are assigned the
completely correct unlabeled phrase structure, while PM , EM and LM are the
corresponding metrics for phrase labels, edge labels, and all labels, respectively.
The metrics TEM and TLM are the same as EM and LM except that they also
consider edge labels going into terminals, which are ignored in all other metrics.

The results with gold-standard part-of-speech tags show that the parser can
reconstruct the phrase structure with an F1-score of 81.35 for TIGER and 76.82
for Talbanken05, and that it is able to recover the phrase structure with all
phrase labels and all edge labels going into non-terminals with an F1-score of
69.32 for TIGER and 65.33 for Talbanken05. The parser recovers the complete
structure of a sentence with all its labels (phrase labels and both incoming edge
labels to non-terminals and terminals) with an accuracy of 29.44 for TIGER and
17.87 for Talbanken05.

If we replace the gold-standard part-of-speech tags with part-of-speech tags
that have been assigned by a part-of-speech tagger with a tagging accuracy of
97.0 for TIGER and 84.2 for Talbanken05,11 we can recover discontinuous and
continuous phrase structure with all its labels and edge labels with an F1-Score
of 64.82 for TIGER and 58.03 for Talbanken05.

In addition to the results in table 1, we have investigated the precision and
recall with respect to discontinuous phrases only. For TIGER, discontinuous
phrases have an unlabeled recall of 53.6% and an unlabeled precision of 62.9%,
when evaluated on all sentences and tagged data. This is an encouraging re-
sult, given that discontinuous phrases are generally harder to parse correctly
than continuous phrases, which shows that the parser can learn to process a

11 Unfortunately, the Talbanken05 tagger suffers from sparse data due to the large
part-of-speech tagset (over 250 distinct tags) and the small data set.
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very significant proportion of these structures. Unfortunately, the results for
Talbanken05 are much more disappointing in this respect, with an unlabeled
precision and recall of approximately 1% for discontinuous phrases under the
same conditions. The most likely explanation for this result is that discontinous
phrases are simply too rare in the Swedish treebank for the parser to be able to
learn how to process them. Comparing the two data sets, we find not only that
the German training set is ten times larger than the Swedish one, but also that
discontinuous phrases are twenty times more frequent.

5 Related Work

It is difficult to compare our results with other published results on German and
Swedish, because of different data sets and experimental setup. The most obvious
comparison for German is the work of Plaehn [6], which is the only previous work
that we can find that recovers both discontinuous and continuous structures.
Plaehn reports an F1-score of 73.16 (evaluation metric PF1 and sentence length
SL <= 15) for the Negra treebank using an agenda-based chart parser. The
closest comparable result for our parser is 75.33, but this result includes sentences
up to a length of 40 tokens and is based on three times as much training data.
Dubey [14] uses an unlexicalized parser which employs smoothing and suffix
analysis and is capable of parsing continuous phrase structure with an F1-Score of
76.3 for Negra (PF1 and SL <= 40). This score is higher than our result (75.33),
but Dubey has removed all discontinuous phrases, which arguably makes the
parsing task easier. The score 66.27 for LF1 and SL <= 40 is also competitive,
if we compare with Kübler et al. [5], who report 51.41 F1-score (LF1 and SL <=
35) on the Negra treebank using the unlexicalized, markovized PCFG version of
the Stanford parser.

For Swedish and Talbanken05 we could only find one paper on parsing phrase
structure. Hall et al. [15] report an F1-Score of 74.88 (PF1 and SL <= 100)
with gold standard part-of-speech tags using a dependency parser on a hybrid
representation of phrase structure and dependency. This can be compared with
our score of 73.97 (PF1 and SL < ∞), but the results of Hall et al. [15] are
again based on a simplified representation, where all phrases that do not have
at least one terminal child have been removed.

6 Conclusion

We have presented a technique for syntactic parsing that makes it possible for
a transition-based dependency-driven parser to recover both discontinuous and
continuous phrase structure, labeled with both phrase labels and grammatical
functions. The evaluation on two treebanks shows state-of-art results for parsing
the TIGER treebank and the Talbanken05 treebank. The second contribution
of this paper is a lossless method for automatically transforming phrase struc-
ture representations to dependency representations and back to phrase structure
representations.
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Abstract. Acquiring and enriching lexical resources is crucial for var-
ious areas of the computational linguistics applications, especially in
specialized domains. In this paper, we propose a high-quality method
exploiting the compositionality of complex terms issued from a struc-
tured terminology in order to infer three kinds of semantic relations
(synonymy, hierarchical and meronymy) between words or terms. The
approach has been applied and evaluated on the Gene Ontology biomed-
ical terminology: 1,273 is-a, 178 part-of and 921 synonymy relations
have been inferred and show a precision over 90%. We analyze these
results and the possibility of their cross-validation through a graph
representation.

1 Introduction

Detection of semantic similarity between terms is an important but heavy step
within various natural language processing (NLP) applications. For instance,
tasks like query expansions, information retrieval, knowledge extraction or ter-
minology matching highly rely on such information and would generate different
results according to whether the semantic proximity between two terms (i.e.,
aromatic amino acid family anabolism and aromatic amino acid family biosyn-
thesis) is established or not. In order to help the NLP applications, specific lexica,
offering various semantic relations (hyperonymy, meronymy and synonymy) as
well as morphological and orthographic variants, can be used. But, depending on
languages and on specialized areas, such resources are not equally well described.

We can mention the availability of morphological resources for common lan-
guage [1,2] and for medical area [3,4,5]. We can also mention the common lan-
guage resource of synonyms WordNet [6] for English, although the corresponding
resources for other languages are not freely available. Notice that the initiative
for fitting this resource for the medical area [7] is still ongoing, and that there
is no initiative for the creation of a similar resource for the NLP processing of
biological documents. Besides, lexica with hierarchical or meronymy relations,
especially in specialized areas, are not available. The purpose of our work is to
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fill in this gap in the biological domain. Within this area, several terminolo-
gies are created and continuously updated. We propose to reuse them in order
to infer lexica of semantically related words or terms specific to biology. The
relationships aimed include synonymy, hyperonymy and meronymy. All these
relationships can be used for computing the semantic similarity between words
and terms [8,9,10]. Moreover, they are basic resources for structuring terminolo-
gies as well as a way to improving the sensitivity of information retrieval and
extraction applications.

The proposed novel method provides high-quality results. This method is
language-independent. It exploits the compositionality of complex terms ex-
tracted from structured terminologies and is based on the identification of their
syntactic invariants. The main originality of our work is that the same method
is applied for inferring various semantic relationships as far as input material is
correctly constrained.

2 Material

Our main material is Gene Ontology [11] (GO), which goal is to produce a struc-
tured, common, controlled vocabulary for describing the roles of genes and their
products in any organism. GO terms convey three types of biological meanings:
biological processes, molecular functions and cellular components. Within GO ,
terms are structured through three types of relations: (1) hierarchical subsump-
tion or hyperonymy, also called is-a relation; (2) meronymy or part-of relation;
(3) and synonymy. Synonyms are grouped within the same concept, which are
related between them through hierarchical and part-of relations.

For instance, within the concept GO:0009073, the preferred term aromatic
amino acid family biosynthetic process has several synonyms (i.e., aromatic
amino acid family anabolism, aromatic amino acid family biosynthesis). This
concept is related to the concept GO:0008652 amino acid biosynthetic process
through a hierarchical relation.

The used version of GO provides 24,537 is-a and 2,726 part-of relations,
while synonymy relations are established among 18,315 terms and their 13,850
synonyms.

3 Method

Often within biomedical terminologies, terms are coined on the same syntactic
and compositional scheme which can be exploited in order to induce the elemen-
tary relations between simple terms. For instance, the GO concept GO:0009073
contains the following synonyms, which show the compositionality through the
substitution of one of their components (underlined):

aromatic amino acid family biosynthesis
aromatic amino acid family anabolism
aromatic amino acid family formation
aromatic amino acid family synthesis
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component
expansion head

component

aromatic amino acid family anabolism

component
expansion head

component

aromatic amino acid family biosynthesis

Fig. 1. Parsing syntactic trees of the terms aromatic amino acid family anabolism and
aromatic amino acid family biosynthesis for the acquisition of synonymous relations

It is possible to exploit this scheme and to induce the following paradigm of ele-
mentary synonyms: biosynthesis, anabolism, formation, synthesis. We propose a
method for generalizing this observation for the acquisition of various elementary
semantic relationships. Like in the given examples, the method exploits composi-
tional structure of terms and relies on existence of structured terminologies. The
notion of compositionality assumes that the meaning of a complex expression
is fully determined by its syntactic structure, the meaning of its parts and the
composition function [12]. In our work, the syntactic analysis of terms is cru-
cial: it normalizes the representation of terms through their head and expansion
components and it prepares thus the syntactic dependencies computing.

In the following of this section, we first present the approach for achieving the
syntactic analysis of terms (section 3.1) and then the compositionality-based
method for acquisition of lexical resources (section 3.2).

3.1 Preprocessing and Syntactic Analysis: Ogmios

Figure 2 presents general workflow scheme implemented for computing elementary
relations existing within GO . For this, GO terms are preprocessed through the
Ogmios linguistic annotation platform [13] in order to automatically analyze these
terms andgenerate their syntactic analysis. As result, all terms are parsed into their
head and expansion components. The used tools are developed in Perl5 language.

The Ogmios platform is adapted to the processing of large amount of data
and, moreover, can be easily tuned to a specialized domain. Through this plat-
form, several types of linguistic processing are performed. First, the TagEN [14]
tool is applied for the recognition on named entities (i.e., gene names, chem-
ical products). Its application at the beginning of linguistic pipeline helps the
forthcoming segmentation into words and sentences. Indeed, the recognition of
named entities allows disambiguating special characters, such as punctuation
marks, dashes, slashes, etc, widely used within named entities in biology and
often altering the segmentation into words and sentences.

After the segmentation, the GeniaTagger [15] tool is applied in order to per-
form POS-tagging and lemmatization.

The final step within the Ogmios platform is the shallow syntactic analysis
of terms in order to syntactically parse them. This task is carried out thanks to
the rule-based term extractor YATEA [16]. Syntactic dependencies between term
components are computed according to assigned POS tags and shallow pars-
ing rules. Thus, each term is considered as a syntactic binary tree (figure 1)
composed of two elements: head component and expansion component. For
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Fig. 2. General flowchart of the method

instance, in terms of syntactic dependencies, anabolism is the head component of
aromatic amino acid family anabolism term, while aromatic amino acid family is
its expansion component. It goes without saying that each complex component
(i.e., aromatic amino acid family) is also syntactically parsed, which can give
place to inferring even more elementary relations. Moreover, because we used the
syntactic structure of the terms, their surface form is not an obstacle for their
alignment. For instance, once two synonym terms like replication of mitochon-
drial DNA and mtDNA replication are lemmatized and syntactically analyzed,
replication is recognized to be their head component and mitochondrial DNA
and mtDNA their expansion components (figure 3).

Such analyzed GO terms are then aligned through specific compositional rules
and ready for detection of elementary semantic relations within GO terms.

component
expansion head

component

replicationmtDNA

component
expansionhead

component

mitochondrial DNAreplication (of)

Fig. 3. Parsing syntactic trees of synonym terms replication of mitochondrial DNA and
mtDNA replication with surface syntactic variation for the acquisition of synonymous
relations

3.2 Acquisition of Elementary Relations

In this work, the compositionality-based method designed for the terminology
structuring through corpora [17], is adapted to inferring elementary relations
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between simple terms. The method is applied for the acquisition of synonymy,
hierarchical and part-of relations, as described below. It should be noticed
that the method is recursive and each inferred elementary relation can then be
propagated in order to infer new elementary relations, and thus to generate a
more exhaustive lexicon with a given relationship.

Acquisition of Synonymy Relations. For the acquisition of synonymy re-
lations, we consider that if the meaning M of two complex terms A rel B and
A′ rel B is given as following:

M(A rel B) = f(M(A), M(B), M(rel))

M(A′ rel B) = f(M(A′), M(B), M(rel))

for a given composition function f , if A rel B and A′ rel B are complex synony-
mous terms and if B is identical, then the synonymy relation between simpler
terms A and A′ can be inferred. The method takes into account the syntactic
structure of complex terms. The fully parsed terms are represented as a ter-
minological network, within which the deduction of the elementary synonymy
relations is based on the three rules:

R1. If two terms are synonymous and their expansion components are identi-
cal, then an elementary synonymy relation is inferred: the pair {anabolism,
biosynthesis} is inferred from the original synonymy relation between acetone
anabolism and acetone biosynthesis where the expansion component acetone
is identical in both terms (figure 1).

R2. If both terms are synonymous and their head components are identical, then
an elementary synonymy relation is inferred: the pair {endocytic, endocy-
totic} is inferred from the synonymy relation between endocytic vesicle and
endocytotic vesicle where the head component vesicle is identical.

R3. If both terms are synonymous and either their head or expansion compo-
nents are synonymous, then an elementary synonymy relation is inferred:
the pair {nicotinamide adenine dinucleotide, NAD} is inferred from the syn-
onymy relation between nicotinamide adenine dinucleotide catabolism and
NAD breakdown where the head components {catabolism, breakdown} are
already known synonymous.

Acquisition of Hierarchical and Part-of Relations. The same method is
applied for the acquisition of hierarchical (or part-of) relations. For this, orig-
inal pairs are composed of the GO hierarchical (or part-of) pairs. Thus, if the
meaning M of two complex terms A rel B and C rel B are given as following:

M(A rel B) = f(M(A), M(B), M(rel))

M(C rel B) = f(M(C), M(B), M(rel))

for a given composition function f , if A rel B and C rel B are complex terms
related through hierarchy (or part-of relation) and if B is identical, then the hi-
erarchical (or part-of) relation between simpler terms A and C can be inferred.
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component
expansion head

component

cell activation

component
expansion head

component

astrocyte activation
(a) Parsing tree of the terms cell activation and astrocyte activation
related through a hierarchical relation

component
expansion head

component

developmentcerebral cortex

component
expansion head

component

regionalizationcerebral cortex

(b) Parsing tree of the terms cerebral cortex development and cerebral cortex regional-
ization related through a part-of relation

Fig. 4. Parsing syntactic trees for the acquisition of hierarchical and part-of relations

For the acquisition of these relations we exploit the same three rules. For in-
stance, figure 4 exemplifies rules R2 and R1, where one of components of the
original terms is identical. On figure 4(a), original terms are two biological pro-
cesses: cell activation GO:0001775 and astrocyte activation GO:0048143. They
have between them hierarchical relation: cell activation is the hierarchical par-
ent to astrocyte activation. Further to their syntactic analysis and application
of the compositional rule R2, the hierarchical relation between their expansion
components cell ⇒ astrocyte can be inferred.

Similarly, on figure 4(b), original terms are two biological processes: cerebral
cortex development GO:0021987 and cerebral cortex regionalization GO:0021796.
They have between them part-of relation: cerebral cortex regionalization is
a part of a more large biological process cerebral cortex development. Further
to their syntactic analysis and application of the compositional rule R1, the
part-of relation between their head components development ⇒ regionalization
can be inferred.

Notice that another work [18] aimed at the acquisition of elementary hierar-
chical relations from structured terminologies. Their approach relies on string
substitution within identical lexical contexts, while in the work we propose we
perform a more rich NLP approach by syntactically analysing terms and apply-
ing compositionality-based transformation syntactic rules.

4 Results and Discussion

23,899 GO terms have been fully parsed through the Ogmios platform. The
three compositional rules have been then applied and allowed to infer elementary
synonyms (n=921), is-a (n=1,273) and part-of pairs (n=178). We present and
discuss these results. For the inferred synonymy relations, we present also their
productivity (number of original GO pairs which allowed to infer them).
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Fig. 5. Connected components (CCs) presenting elementary synonymy relations. Com-
ponents can have various shapes: star-shaped connection between nodes for MRX CC,
or cliques (strongly connected components) for the two other CCs.

4.1 Elementary Synonyms

The 921 inferred elementary synonyms have been grouped into 627 connected
components (CCs) – groups of synonyms which are linked between them. For in-
stance, the CC MRX of figure 5 contains five elementary synonyms (MRX, Rad50-
Rad32-Nbs1, RMX, Rad50 and Mre11) inferred from the GO concept GO:0030870
which preferred term is MRX complex. Elementary synonymy relations are la-
belled Syn on figures, and numbers indicate their productivity (number of original
GO pairs from which an elementary relation has been inferred). In this CC, the
preferred elementary term MRX is linked to all its synonyms – this is a star-shaped
CC. The two other CCs are strongly connected, or cliques: all their nodes are re-
lated between them. Observing synonyms through their CCs, rather than pairs of
synonyms (i.e., {MRX, Rad50}, {B-cell, B-lymphocyte}, {B-cell, B cell}, {vitamin
B9, vitamin M}) gives a more global view of their semantics. In this way, the con-
textual nature of synonyms, which can influence their acceptance, is more easily
detected within CCs though terms or their relations.
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Fig. 6. Productivity of the inferred elementary synonyms within GO (logarithmic scale)

Productivity of the elementary synonyms within GO is presented on figure 4.1
(scaled logarithmically). Its axes represent the support (number of original GO
synonyms that allow to infer a given pair of elementary synonyms) and the fre-
quency of each support value. Pairs, which productivity values are concentrated
near the top left corner, are the more reliable: their meaning and use are the most
common. For instance, {breakdown, catabolism} is the most productive (and re-
liable) synonym pair: it is inferred within 274 GO synonyms and appears to be
a fundamental notion in biology. At the other end, we have pairs like {MRX,
Rad50} or {vitamin B9, vitamin M} inferred from one or two original synonyms.
As their meaning seems to be more specific, they may convey more specific se-
mantics. Besides, such rare pairs represent nearly 80% (n=722) of the whole set
of the inferred synonyms.

4.2 Elementary Hierarchical and Part-of Relations

We inferred 1,273 hierarchical and 178 part-of elementary relations. Figure 7
presents two of the generated connected components.

Most of the acquired hierarchical pairs (85%, n=1089) are inferred from only
one pair of original GO terms. This is the case for differentiation ⇒ fate cell
commitment and differentiation ⇒ germination pairs on figure 7(a) and with
the relations on figure 7(b). The most frequent elementary hierarchical pair is
membrane ⇒ part. It is found within nine GO term pairs, for instance, within
the following cellular components terms:

vacuolar part (GO:0044437) ⇒ vacuolar membrane (GO:0005774)
peroxisomal part (GO:0044439) ⇒ peroxisome membrane (GO:0005778)
endoplasmic reticulum part (GO:0044432) ⇒ endoplasmic reticulum
membrane (GO:0005789)
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(a) CC of elementary hierarchical relations of activation.

(b) CC of elementary part-of relations of envelope.

Fig. 7. Connected components of elementary hierarchical and part-of relations. Num-
bers indicate the productivity of the inferred pairs within original GO terms.

As for elementary part-of relations, the most frequent one is development
⇒ morphogenesis. It is acquired within 46 GO term pairs, denoting mostly
biological processes, for instance:

compound eye development (GO:0048749) ⇒ compound eye morphogen-
esis (GO:0001745)
Bolwig’s organ development (GO:0055034) ⇒ Bolwig’s organ morpho-
genesis (GO:0001746)
neural plate development (GO:0001840) ⇒ neural plate morphogenesis
(GO:0001839)
endothelial cell development (GO:0001885) ⇒ endothelial cell morpho-
genesis (GO:0001886)

First evaluation of the acquired resources showed that the quality of syn-
onyms is very good (over 90% precision). Evaluation of hierarchical and part-of
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Fig. 8. Connected components with lexical inclusions, hierarchical and part-of relations
(possible weak points of connected components)

relations is still ongoing. Recall of these resources could not be evaluated because
there is no reference data for this kind of lexica. Nevertheless we assume that
a better POS-tagging and then shallow parsing would improve detection of the
semantic relations within terms. Our results showed also that the redundancy of
use of elementary synonyms is very high: productivity of several pairs is greater
than 100 original GO term pairs. Redundancy within hierarchical and part-of
relationships is rather small.

5 Conclusion and Perspectives

In this paper, we propose a compositionality-based method for inferring different
types of elementary semantic relations from structured terminologies in order to
help the natural language processing applications. The method relies on syntactic
analysis of terms and exploits three compositional rules. The main originality
of this work is that the same approach is applied for inferring different types of
semantic relations: synonymy, hierarchical and part-of relations. The semantic
nature of the source term pairs has to be constrained, while the NLP part of the
method remains the same.

The inferred resources are useful for different NLP applications, particularly
for those initiated by Philip Resnik [8] for computing the semantic distance
between terms.

The presented work has several perspectives. For instance, the inferred ele-
mentary relations can be used for enriching the existing terminologies through
the detection of additional synonymous or hierarchically related terms. For this,
the reverse method should be applied on corpora [17].

This method is language-independent, and it is possible to apply it to other
languages as far as (1) the required linguistic processing can be realized and (2)
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semantic relations between complex terms are available. In the biomedical area,
we plan to apply our method on the UMLS resource [3], or more specifically the
MeSH [19] or Snomed [20] terminologies which are available in several languages.

Additionally, the inferred resources can be used for their cross-validation. For
instance, if the same elementary relation is inferred as being synonymy and hi-
erarchical, it can help detecting possibly weak points within network of the gen-
erated relations and ambiguities or inconsistencies within original terminologies.
As shows figure 8, some of the inferred relations are indeed ambiguous:

– envelope and membrane are found to be both synonymously and part-of
related;

– binding and DNA binding are found to be both synonymously and hierarchi-
cally related.

In this perspective, the three relationships between elementary terms (synonymy,
hierarchical and part-of) can be cross-validated between them. This would
prepare the human validation of the inferred resources which must be thoroughly
evaluated still.
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Abstract. Statistical language models (SLMs) for speech recognition
have the advantage of robustness, and grammar-based models (GLMs)
the advantage that they can be built even when little corpus data is
available. A known way to attempt to combine these two methodologies
is first to create a GLM, and then use that GLM to generate training
data for an SLM. It has however been difficult to evaluate the true util-
ity of the idea, since the corpus data used to create the GLM has not
in general been explicitly available. We exploit the Open Source Regu-
lus platform, which supports corpus-based construction of linguistically
motivated GLMs, to perform a methodologically sound comparison: the
same data is used both to create an SLM directly, and also to create a
GLM, which is then used to generate data to train an SLM. An evalu-
ation on a medium-vocabulary task showed that the indirect method of
constructing the SLM is in fact only marginally better than the direct
one. The method used to create the training data is critical, with PCFG
generation heavily outscoring CFG generation.

1 Introduction

Non-trivial speech recognition always requires some kind of language model [1].
At least in the world of research, it has generally been assumed that language
models are best constructed using some kind of data-driven process; the most
common alternative in practice is the N-gram grammar. We will generically refer
to models built in this way as “Statistical Language Models” or SLMs.

SLMs perform extremely well when there is adequate training data available,
but in practice this is not always the case. When training data is limited or,
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in the worst case, completely unavailable, an alternative method is to construct
the language model as a hand-coded grammar [2,3,4,5]. We will refer to models
of this kind as “Grammar-based Language Models” or GLMs. GLMs appear to
be particularly suitable for applications which require high levels of accuracy,
and which will also be used by expert users, who can reasonably be expected
to produce a high percentage of in-coverage material [6,7,8,9]. The distinction
between SLMs and GLMs is by no means black-and-white. SLMs can contain
embedded GLM-style subgrammars that define simple types of phrase like dates
or times [10]. In the other direction, once a GLM has been created, it is possible
to use available data to perform statistical tuning, which technically transforms
the GLM into a type of SLM. We will have more to say about this later.

Statistical tuning of a GLM is certainly one way to add some of the advantages
associated with SLMs. It fails, however, to address the key problem, which is
brittleness. In general, grammar-based speech recognition tends to be unforgiving
for naive users, since it gives results only for utterances within grammar coverage.
This suggests another compromise position between the two methodologies. As
noted, SLMs clearly perform well when they are trained on enough data. The
grammar in a GLM can also be used to generate data; this data can be used
to train an SLM. The hope is that the result will combine the advantages of
both methodologies. The final language model is an SLM, so it will not be
subject to brittleness; but since this language model is created from a GLM,
it will be possible to achieve reasonable performance without large amounts of
training data.

Although the idea of creating SLMs from GLM-generated data has been used
successfully in more than one study [11,12], one cannot help feeling that there is
something, methodologically speaking, that is slightly suspicious about it. It is
always clear what data has been used to construct an SLM; it is, however, much
harder to be quantative about the process of building a GLM. When a grammar
writer hand-codes a grammar, there are always utterances that they have in
mind to cover. If those items were recorded as the grammar was built, they
would constitute a corpus that represented what data the hand-coded grammar
was “trained” on. The same corpus could be used for other purposes, in particular
for explicit training of an SLM. It is certainly possible a priori that this would
produce a recognizer that yielded just as good performance as one built through
the roundabout route of first creating a grammar, and then using it to generate
training data. However, grammar-writers are rarely, if ever, methodical enough
to write down all their example sentences, and comparisons of the kind suggested
are hard to carry out in practice.

This kind of problem is inherent in any comparison between data-driven ma-
chine learning and hand-coded rules. However, the Regulus project offers an
approach to address this problem. Regulus [13] is an Open Source toolkit for spo-
ken language system development, which builds grammar based language models
for the commercial Nuance1 platform using example-based methods driven by
small corpora of examples. In [14], it was shown how Regulus made possible

1 Nuance 8.5 was used for the work discussed in this paper.
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a methodologically fair comparison between a GLM and a normal SLM on a
medium-vocabulary speech-understanding task; the same data could be used
explicitly to build both language models, rendering irrelevant any speculation
about intangible grammar-writer’s intuitions.

The paper also showed up another potential methodological pitfall. When
recognizers derived from the two language models were compared in terms of
Word Error Rate (WER) on a corpus which contained data both in-coverage
and out-of-coverage with respect to the GLM, the SLM-based recognizer pro-
duced slightly better performance. Further analysis, however, revealed that the
raw WER scores were in fact very misleading; they represented the average of
better performance of the SLM on out-of-coverage data, and worse performance
on in-coverage data. Performance of both recognizers on the out-of-coverage data
(WER = 48% for SLM and 58% for GLM) was however so bad as to be essentially
uninteresting in the context of the speech translation task, which required pre-
cise, fine-grained analysis2. Conversely, performance on in-coverage data showed
a WER for the GLM (6%) that was less than half that of the SLM (13%), an
extremely useful improvement. This is by no means the first study which has
shown up the weakness of WER as a metric for evaluating speech understanding,
as opposed to raw speech recognition [15].

In the present paper, we use the Regulus platform and a methodology which
borrows several elements from [14] to evaluate the idea of creating SLMs from
GLM-generated training data. This approach makes it possible to address the key
methodological problems in a sound way, which has not been the case in previous
studies. The paper is organized as follows. Section 2 describes the framework that
we have adopted for performing the language modeling experiments. Section 3
describes the experiments performed. Section 4 summarizes the results and draws
conclusions for language modeling in sparse data situations.

2 Experimental Framework

As discussed in the previous section, a key problem with earlier work has been
the impossibility of knowing what “seed corpus” was used to construct the hand-
coded grammars used to generate the SLM training data. The Regulus platform
allows us to address these issues head-on, since it makes the role of the seed
corpus completely explicit. The basic idea is to start with a general resource
grammar, and then use the seed corpus to drive an example-based process
that creates the final domain-specific language model. We now present a brief
overview of how this is done; the details of the various compilation steps are
described in [13, Chapters 9 and 10].

The Regulus release contains a fairly substantial domain-independent feature
grammar for English [13, Chapter 8], which also contains a function-word lexicon
of about 500 words. The grammar developer adds to them a domain-specific
lexicon containing the necessary content words, a domain-specific seed corpus,
2 In tasks involving coarse-grained speech understanding, for example call-routing,

this difference might have been more important.
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and a set of “operationality criteria”, whose role will be explained shortly. These
resources constitute the input to the grammar creation process. The Regulus
parser is first used to convert the seed corpus into a set of parse trees. The
operationality criteria then define how each tree is to be cut up into a number
of subtrees. The rules in each subtree are collapsed into a derived rule. The set
of all such derived rules constitutes a specialised version of the original feature
grammar.

By construction, the specialised feature grammar produces analyses compat-
ible with those of the original grammar, and covers all the examples in the seed
corpus, but will in general have coverage strictly less than that of the original
grammar. The specialised feature grammar is next subjected to another compi-
lation phase, which converts it into a CFG grammar in Nuance’s GSL notation.
Finally, the seed corpus can optionally be used a second time, as training data
to convert the CFG grammar into a PCFG grammar. This final conversion stage
is performed by the Nuance compute-grammar-probs utility.

Nuance contains another utility, generate, which can be used to generate
an arbitrary number of sentences from a GSL-formatted CFG grammar. We
also wrote a utility of our own, which performs generation on GSL-formatted
PCFG grammars produced by the Regulus compilation process. Both Nuance’s
generate and our own generation utility work by sampling the space of gener-
ated utterances, starting with the root symbol and expanding non-terminals until
the result contains only terminals. The critical difference is that generate, when
randomly choosing a rule to expand a non-terminal N , assigns equal weights to
all the productions where N occurs on the LHS. Our PCFG generation utility,
in contrast, weights the productions with the probabilities attached to them.

To recapitulate, the process we have just outlined allows us to use a gram-
mar to generate training data for building an SLM, but does it in a way which
makes completely explicit which corpus data was used to construct the genera-
tion grammar itself. In effect, the “seed corpus” reifies the linguistic intuitions
used to build the generation grammar. This has several very useful consequences.
In particular, since the seed corpus is just a normal domain corpus, it is also
possible to use it directly to train an SLM.

The concrete experiments we describe were performed using English corpora
and an English Regulus grammar taken from MedSLT [16], a medium-vocabulary
Open Source speech translation system for medical domains. Vocabulary size was
458 words. Most of the detailed aspects of the MedSLT system are not relevant
here, but one turned out to be potentially useful. Translation in the system is
interlingua-based: source-language representations are translated into interlin-
gua representations, and then into target-language representations. The space of
well-defined interlingua representations is defined by means of another Regulus
grammar [17]. Not all representations licensed by the source-language grammar
produce well-formed interlingua; it can be the case that constraints are hard
to formulate at the source-language level, but easy to capture in interlingua.
This means that the interlingua can be used as another source of information.
Since some of the randomly generated utterances do not produce well-formed
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interlingua after being passed through the source-language-to-interlingua trans-
fer phase, it is possible to treat the combination of the transfer rules and the
interlingua definition as a filter.

The actual construction of the SLMs was performed using the Nuance Say-
Anything c© utilities. Each SLM was a class trigram model, created using Good-
Turing discounting. The classes were defined using a Regulus utility which
extracted sets of words with similar syntactic and semantic properties from the
relevant specialized grammars. The properties for each class were defined by
specifying a small number, usually two or three, paradigm words, and comput-
ing the least common generalization of the corresponding lexicon entries.

In the next section, we describe the concrete experiments we carried out using
this basic framework.

3 Experiments

We used all of the following different kinds of corpus as input to train SLMs:

Seed. The original “seed corpora”. This consisted of 948 examples.
CFG-generated. Corpora generated from a CFG grammar derived by Regulus

from the seed corpus. We created datasets of several different sizes.
PCFG-generated. Corpora generated from a PCFG grammar derived by Reg-

ulus from the seed corpus. We created datasets of several different sizes.
CFG-generated-filtered. Corpora generated by a CFG grammar derived by

Regulus from the seed corpus, and then filtered by removing utterances which
do not give rise to well-formed interlingua. We created datasets of several
different sizes.

PCFG-generated-filtered. Corpora generated by a PCFG grammar derived
by Regulus from the seed corpus, and then filtered by removing utterances
which do not give rise to well-formed interlingua. We created datasets of
several different sizes.

We evaluated the quality of the resulting SLMs by using them to perform
recognition on the 810-utterance dataset described in [14], which consisted of
spontaneously generated utterances collected during studies carried out on naive
subjects who had not been involved in system development. 514 of these utter-
ances (63%) were within the coverage of the GLM grammar, and 296 out of
coverage.

The main results from the experiments are presented in Tables 1 to 6. As
in [14], we calculate WER and Sentence Error Rate (SER) both for the full
datasets, and also for the subset consisting only of in-coverage utterances. Our
primary reason for using SER as a metric is that it enables us to apply the
McNemar sign test, in order to evaluate the significance of differences between
recognition performance of different versions. We present significance as one
of the following: “not significant”, “significant at P < 0.05”, “significant at
P < 0.01” and “significant at P < 0.001”. In the rest of this section, we discuss
the implications of the results.
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3.1 Different Types of Corpora

Tables 1 and 2 presents results contrasting different methods for building the
SLM training corpora; the first line, for the GLM built using the “seed” corpus,
is intended to provide a reference point. Line 2 shows the SLM built from the
“seed” corpus. The other recognizers were all built from GLM-generated training
corpora of the same size. The small size of these corpora reflects the fact that
CFG generation (lines 3 and 4) produces very low-grade data. The interlingua-
based filtering operation discards over 99% of it; 4281 was the number of utter-
ances left by filtering from an initial CFG-generated set of 500K utterances, and
the other corpora were then truncated to that length3 Line 3 shows results for
unfiltered, and line 4 for filtered data. Lines 5 and 6 are PCFG-generated sets,
with and without interlingua filtering.

Several immediate conclusions can be drawn. First, as shownby line 1 in Table 2,
PCFGgeneration isvastly superior toCFG.Given thatCFG-generateddataclearly
did not deliver interesting performance, we onlyused PCFG-generateddata for the
other experiments.

A more interesting result (line 2 in Table 2) is that even the best SLM trained
on PCFG-generated data (line 6 in Table 1) is not clearly better than the one
trained directly from the original “seed” corpus (line 2, same table). The PCFG-
generated data produces a better WER; however, its SER is significantly worse.

Table 1. Recognition performance for SLMs trained on different types of generated
data. “Size” = number of utterances in training set; “WER” = Word Error Rate on test
set of in-coverage and out of coverage material; “SER” = sentence error rate on test
set of in-coverage and out of coverage material. GLM results included for comparison.

Version size WER SER

1 seed corpus GLM 948 21.96% 50.62%
2 seed corpus SLM 948 27.74% 58.40%
3 CFG/unfiltered 4281 49.0% 88.4%
4 CFG/filtered 4281 44.68% 85.68%
5 PCFG/unfiltered 4281 25.98% 65.31%
6 PCFG/filtered 4281 25.81% 63.70%

Alhough interlingua filtering does result in some improvement (lines 4 and 5
in Table 2), it does not have a very large effect on PCFG-generated data, and
in fact the difference in SER is not significant.

Finally, lines 6 and 7 in Table 2 show that the plain GLM recognizer pro-
duces significantly better performance than any of the other versions. It should

3 To test for the possibility of bias in the truncated unfiltered corpora, we created both
“head” (taken from the beginning of the larger file) and “tail” (taken from the end)
versions of the needed size. Performance on the head and tail versions was nearly
the same, leading us to conclude that it is unlikely that the truncation procedure is
creating a skewed corpus. The head versions are used in the paper.
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Table 2. Significance of differences between some of the versions of the recogniser
listed in Table 1, according to the McNemar sign test performed on SER. Significantly
better results are marked in bold.

First Second Score Significance

1 CFG/unfiltered PCFG/unfiltered 12–199 P < 0.001
2 seed corpus SLM PCFG/filtered 87–44 P < 0.001
3 seed corpus SLM CFG/unfiltered 244–15 P < 0.001
4 CFG/unfiltered CFG/filtered 27–49 P < 0.05
5 PCFG/unfiltered PCFG/filtered 16–29 not significant
6 seed corpus GLM seed corpus SLM 124–47 P < 0.001
7 seed corpus GLM PCFG/filtered 142–36 P < 0.001

be noted, however, that the generated training sets produced in these first exper-
iments are quite small. The next set of experiments investigates what happens
as they are made larger.

3.2 Increasing the Size of the Training Set

When SLMs are trained on human-generated data, performance usually improves
for some time as more data is added. A common rule of thumb when building
commercial SLM-based systems is that one should aim to collect about 20 000
utterances. Tables 3 and 4 presents results for SLMs trained off PCFG-generated
corpora of increasing size. As in the first set of experiments, unfiltered data sets
were truncated to make them equal in size to the corresponding filtered ones;
the labels “50K”, “1000K” and “1500K” indicate the number of utterances in
the original unfiltered PCFG-generated set, prior to truncation. The amount of
training data was incremented until addition of data no longer resulted in an
improvement in the error rates.

The recognizers trained on filtered data continued to improve as we increased
the size of the training set (lines 1 and 2, Table 4), though the improvement

Table 3. Recognition performance as training set size increases. “Size” = number
of utterances in training set; test set includes both in-coverage and out of coverage;
“WER” = Word Error Rate; “SER” = sentence error rate.

Version size WER SER

1 seed corpus GLM 948 21.96% 50.62%
2 seed corpus SLM 948 27.74% 58.40%
3 50K PCFG/unfiltered 16 619 24.84% 62.47%
4 50K PCFG/filtered 16 619 23.80% 59.51%
5 1000K PCFG/unfiltered 331 328 24.12% 58.77%
6 1000K PCFG/filtered 331 328 23.62% 57.28%
7 1500K PCFG/unfiltered 497 798 24.38% 59.88%
8 1500K PCFG/filtered 497 798 23.76% 57.16%
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Table 4. Significance of differences between some of the versions of the recogniser
listed in Table 3, according to the McNemar sign test performed on SER. Significantly
better results are marked in bold.

First Second Score Significance

1 50K PCFG/filtered 1000K PCFG/filtered 22–40 P < 0.05
2 1000K PCFG/filtered 1500K PCFG/filtered 4–5 not significant

3 50K PCFG/unfiltered 1000K PCFG/unfiltered 22–52 P < 0.001
4 1000K PCFG/unfiltered 1500K PCFG/unfiltered 11–2 P < 0.05

5 1000K PCFG/unfiltered seed corpus SLM 68–71 not significant
6 1500K PCFG/unfiltered seed corpus SLM 68–80 not significant
7 1500K PCFG/filtered seed corpus SLM 75–65 not significant

8 1500K PCFG/filtered 1000K PCFG/unfiltered 27–14 P < 0.05

9 1000K PCFG/unfiltered seed corpus GLM 33–99 P < 0.001
10 1500K PCFG/unfiltered seed corpus GLM 32–107 P < 0.001
11 1500K PCFG/filtered seed corpus GLM 36–89 P < 0.001

between the largest set (497 798 utterances) and the second-largest (331 328 ut-
terances) was not significant. With unfiltered data, we were surprised to discover
that moving from 331 328 utterances to 497 798 utterances actually degraded per-
formance (line 4, Table 4). It is not clear why this should be, but we can at least
note that the filtering operation appears to make the data less noisy.

The best recognizer trained on unfiltered data (line 5, Table 3) had lower
WER than the “seed corpus” SLM recogniser (line 2, same table). SER, however,
was almost the same between these two versions, and the difference was not
significant (line 5, Table 4). The best recognizers trained on filtered data (lines 6
and 8, Table 3) did better, and outscored the “seed corpus” SLM on both WER
and SER. The difference on SER, however, was again not significant (line 7,
Table 4). The difference between the best filtered and the best unfiltered versions
was significant (line 8, Table 4), again supporting the claim that filtering helps.

In terms of both WER and SER, however, all versions were still clearly inferior
to the GLM recognizer (lines 9–11, Table 4). Since the superiority of the GLM is
most marked on in-coverage data, our third set of experiments focussed on this.

3.3 In-Coverage Performance

The third and final set of experiments measured performance only on the 514-
utterance subset of the data that was within the coverage of the GLM. As
pointed out earlier, comparisons between GLM and SLM models depend heavily
on the mix of in-coverage and out of coverage data encountered in the test data.
Performance of both models is generally dismal on out-of-coverage data, and
consequently not very interesting; performance on in-coverage data is a more
useful metric. The results of these tests are shown in Tables 5 and 6.

The relationships between most of the scores are similar to those in Table 3
above. Two points are worth noting. First, as expected, restriction to in-coverage
data increases the difference between the GLM recognizer and the others in terms
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Table 5. Recognition performance as training set size increases, on in-coverage material
only. “Size” = number of utterances in training set; “WER” = Word Error Rate; “SER”
= sentence error rate.

Version size WER SER

1 seed corpus GLM 948 7.00% 22.37%
2 seed corpus SLM 948 14.40% 42.02%
3 50K PCFG/unfiltered 16 619 14.13% 46.11%
4 50K PCFG/filt 16 619 12.76% 40.86%
5 1000K PCFG/unfiltered 331 328 11.83% 38.91%
6 1000K PCFG/filtered 331 328 11.21% 36.58%
7 1500K PCFG/unfiltered 497 798 12.35% 40.66%
8 1500K PCFG/filtered 497 798 11.25% 36.19%

of both WER and SER; for both metrics, we see a relative decrease of over 35%
between results for the GLM and the best of the other versions. The second
point, rather more interestingly, is that the best SLM version is now the one
created from filtered PCFG-generated data (line 8, Table 5). This version is
significantly better than the “seed corpus” SLM (Table 6, line 7).

Table 6. Significance of differences between some of the versions of the recogniser
listed in Table 5, evaluated on in-coverage data only, according to the McNemar sign
test performed on SER. Significantly better results are marked in bold.

First Second Score Significance

1 50K PCFG/filtered 1000K PCFG/filtered 16–38 P < 0.01
2 1000K PCFG/filtered 1500K PCFG/filtered 2–4 not significant

3 50K PCFG/unfiltered 1000K PCFG/unfiltered 15–52 P < 0.001
4 1000K PCFG/unfiltered 1500K PCFG/unfiltered 11–2 P < 0.05

5 1000K PCFG/unfiltered seed corpus SLM 69–53 not significant
6 1500K PCFG/unfiltered seed corpus SLM 68–61 not significant
7 1500K PCFG/filtered seed corpus SLM 74–44 P < 0.01

8 1000K PCFG/unfiltered seed corpus GLM 13–98 P < 0.001
9 1500K PCFG/unfiltered seed corpus GLM 12–106 P < 0.001
10 1500K PCFG/filtered seed corpus GLM 17–88 P < 0.001

11 1500K PCFG/filtered 1000K PCFG/unfiltered 25–11 P < 0.05

4 Summary and Conclusions

The idea of creating a statistical language model by using a grammar to generate
training data has been known for some time, but previous attempts to evaluate it
objectively have run into methodological difficulties. The study we have presented
here has solved what we view as the key problem. By using the trainable Regulus
grammar-development framework, we have been able to quantify the data that
was used to create the grammar. This has made it possible for us to compare, on



202 B.A. Hockey, M. Rayner, and G. Christian

the one hand, the indirect method of using the data first to create a grammar,
which then creates training data for an SLM, and on the other the direct method
of simply creating an SLM from the original seed corpus. We have also compared
the utility of generating SLM training data using CFG and PCFG versions of the
grammar, investigated the effect of filtering the generated data using the Med-
SLT interlingua, and looked at the relationship between the size of the generated
training set and the quality of the SLM it produces. Our experiments have used
English grammars and data from the Open Source MedSLT project.

The key result, as we see it, is that the indirect method of constructing the
SLM actually turns out to be only marginally better than the direct one. When
measured on the whole dataset (Tables 3 and 4), several of the versions produced
better WER. However, only the best one yielded any reduction in SER, this
reduction was not statistically significant, and producing it required the extra
interlingua-based filtering step. This is consistent with the intuition that the
GLM grammar essentially contains only a little more information than the corpus
used to create it. The SLM trained from the PCFG-generated corpus does in fact
produce a slight improvement over the one trained from the “seed” corpus. We
hypothesize that this improvement is due to a combination of two factors. First,
the PCFG generation process probably helps, in effect, to smooth the training
data; second, it seems reasonable to believe that the general resource grammar
used to build the GLM contributes at least some information.

Restricting evaluation only to in-coverage data did finally produce a result
where an SLM recognizer trained on generated data significantly outperformed
the one trained on the seed corpus. This is again, unfortunately, still not very
interesting, since the main point of the SLM is to achieve greater robustness
on out-of-coverage material; as we had expected, the GLM recognizer strongly
outperformed all the SLM versions on the in-coverage material.

An incidental result that we found interesting was the large difference between
the models trained on PCFG-generated data and those trained on CFG-generated
data. In retrospect, this should not have been entirely surprising. However, looking
at previous work, it is worth noting that although [11] used PCFG generation, [12]
appeared not to. The experiments where we increased the size of the generated
corpus suggest that one needs to produce quite a large amount of data, on the
order of hundreds of thousands of sentences, before performance tops out.

In conclusion, we think we can reasonably claim to have put the idea of
using grammars to create SLM training data on a sounder theoretical footing.
Although the results reported here are more negative than positive, we hope that
the methodology we present will open new possibilities for research in this area.
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Abstract. We present a new mixed method lemmatizer for Icelandic,
Lemmald, which achieves good performance by relying on IceTagger [1]
for tagging and The Icelandic Frequency Dictionary [2] corpus for train-
ing. We combine the advantages of data-driven machine learning with
linguistic insights to maximize performance. To achieve this, we make use
of a novel approach: Hierarchy of Linguistic Identities (HOLI), which in-
volves organizing features and feature structures for the machine learning
based on linguistic knowledge. Accuracy of the lemmatization is further
improved using an add-on which connects to the Database of Modern
Icelandic Inflections [3]. Given correct tagging, our system lemmatizes
Icelandic text with an accuracy of 99.55%. We believe our method can
be fruitfully adapted to other morphologically rich languages.

Keywords: lemma, lemmatization, normalization, machine learning,
BLARK, Icelandic, Lemmald, IceTagger.

1 Introduction

Lemmatization is the task of finding the base form – the lemma – of a given
word form. The process is similar, while not identical, to the task of stemming
which removes affixes from a word and returns the stem, the largest common
part shared by morphologically related forms. Lemmatization and stemming are
normalization techniques which serve the purpose of creating a connection be-
tween related words or word forms. Such a normalization is important in various
natural language processing (NLP) applications, such as text classification and
information extraction, because it brings out actual grammatical or semantic
relations which are otherwise not accessible by the software (e.g. [4,5,6]).

In this paper, we describe Lemmald, a new lemmatizer for Icelandic, written
in Java. Since Icelandic is a highly inflected language, one of the most important
units in an Icelandic BLARK (Basic Language Resource Kit) [7] is an effective
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lemmatizer. Until now, the only available lemmatizer for Icelandic has been the
language-independent CST Lemmatizer which has been trained for Icelandic [8].
A practical motivation for developing another lemmatizer for Icelandic is, for
example, to be able to integrate it easily with other tools in the IceNLP toolkit
which is currently being developed [9]. Furthermore, the existence of Lemmald
gives the Icelandic NLP community the possibility of further improving the ac-
curacy in lemmatization without having to rely on a language-independent lem-
matizer. Unique aspects of the Icelandic language can thus by directly mirrored
in the program code.

The tagset we use for Icelandic is the one developed for the Icelandic Fre-
quency Dictionary corpus (IFD) [2]. It consists of about 700 different POS tags,
where each character in the tag string corresponds to a single morphosyntactic
category. The first character always marks the part of speech. Thus, the sentence
Hún mætti manninum ‘She met the man’ will be tagged like this:

(1) Hún fpven
mætti sfg3eþ
manninum nkeþg

The meaning of the tags is as follows: fpven: pronoun (f) - personal (p) -
feminine (v) - singular (e) - nominative (n); sfg3eþ: verb (s) - indicative (f) -
active (g) - 3rd person (3) - singular (e) - past (þ); nkeþg: noun (n) - masculine
(k) - singular (e) - dative (þ) - suffixed article (g).

In addition to dealing with a large tagset, an Icelandic NLP tool must address
the fact that several word formation processes are very active in the language.
Any given text is likely to contain a number of new compounds or derived forms
which a data-driven solution has not encountered when trained using a corpus.
To handle this, some kind of a compound analyzer is an important tool.

Lemmald uses a new algorithm for lemmatizing morphologically rich languages,
combining data-driven machine learning methods and linguistic knowledge. The
lemmatizer relies on three external NLP resources developed in previous projects.
It uses the rule-based POS tagger IceTagger [1] for tagging its input and it is
trained using the IFD corpus. Furthermore, Lemmald can optionally be run with
the Database of Modern Icelandic Inflections (DMII) [3] as an add-on for improved
results.

Our evaluation shows that, given correct tagging, Lemmald lemmatizes with
an accuracy of 98.54%. Using the DMII as an add-on further improves the result
to an accuracy of 99.55%. We consider this success an indication of the tool
being ready to be used in practical situations for purposes of linguistic research
or commercial software development.

The paper is organized as follows. In Sect. 2, we discuss related work concerned
with normalizing text. Section 3 presents the external NLP resources used by
Lemmald, and Sect. 4 describes some language specific issues when lemmatizing
Icelandic. Section 5 describes our algorithm and in Sect. 6 we present an evalution
of our system and the CST Lemmatizer. We conclude, in Sect. 7, with a summary.



A Mixed Method Lemmatization Algorithm Using a HOLI 207

2 Related Work

A frequently cited example of text normalization is the Porter Stemming Al-
gorithm [10]. Development of the algorithm is motivated by the idea that “the
performance of an IR system will be improved if [related] term groups [...] are
conflated into a single term”. The Porter Stemmer removes suffixes from a word
form until the “stem” is found. The stem may or may not be a linguistically
“correct stem” but in most cases serves well the purpose of reducing the size
and complexity of the data in the text it processes. For this purpose, the use
of a stemmer instead of a lemmatizer is often desirable, because it can make
a connection between a noun and a verb with the same stem which frequently
reflects an actual semantic relation. However, the method of suffix stripping does
not bring out such connections in irreglar inflection (e.g. good, better) – a job
better suited for a lemmatizer (given that the lemmatizer can handle such ir-
regularities). Actually, the advantages of both approaches can be combined to
a considerable extent by running a lemmatizer first and subsequently stemming
the lemmatized form.

The CST Lemmatizer [11] and the Euroling Stemmer [12] have been used
for normalizing text in the Nordic languages, cf. [13]. Those two normalization
systems represent the difference between stemming and lemmatization and also
the other main distinction in software of this kind – that is the difference between
hand-crafted and machine learned rules. The Euroling Stemmer uses only hand-
crafted rules while the CST Lemmatizer uses only machine learned rules.

The method used by the CST Lemmatizer involves discovering suffix sub-
stitution rules by examining a tagged and lemmatized training corpus. When
applying the rules to input data the rule with the longest suffix that matches
the input word (and tag if present) is selected. The training phase is responsible
for organizing the suffix substitution rules to maximize the probability of the
longest matching suffix in the rule set, resulting in a correct lemma.

There are two main differences between our Lemmald and these techniques.
Instead of focusing entirely on either hand-crafted rules or machine learning,
we attempt to combine linguistic knowledge with machine learning. Then we
attempt to use this combination to select from rules that apply minimally. By
rules that apply minimally, we mean that we use the shortest suffixes that will
map an input word to its lemma because Lemmald does not base its decisions on
suffix length. In the evaluation of Lemmald, we compare our results with running
the CST Lemmatizer on the same data as presented in Section 6.

3 External NLP Resources

3.1 Tagged Icelandic Corpus

Lemmald is designed to be trained on a tagged and lemmatized corpus. The
only such corpus available for Icelandic is the IFD corpus. The IFD corpus
contains about 590k tokens, where each token consists of a word form, a manually
corrected POS (morphosyntactic) tag, and a lemma. This kind of data is well
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suited for training NLP tools, but the main weakness is that most of the texts in
the corpus are literary works and thus the corpus may not represent other text
categories as well. In terms of our lemmatizer it may perform slightly better if
the input resembles literary texts.

3.2 IceTagger

Our lemmatizer can lemmatize text that has already been tagged, but in the
common case of untagged texts, Lemmald uses IceTagger to tag the input before
lemmatization is performed. Evaluations have indicated that IceTagger gives the
correct tag about 91.5% of the time [1].

This relatively low tagging accuracy, compared to related languages, seems to
limit the possibility of lemmatization which is based on the tag as well as the
word form. However, the impact of incorrect tagging is quite low, since most
tagging errors do not involve selecting the wrong word class (noun, verb, etc.),
but rather incorrect subfeatures such as case, number, and gender in ambiguous
word forms. Such an error does not affect lemmatization, because, for example,
the lemma for a noun is the same irrespective of case. Indeed the accuracy in
lemmatization is remarkably higher than the tagging accuracy. Accuracy when
tagging Icelandic only with respect to word class has been measured as high as
98.14% [14] which is substantially higher than when including all subfeatures.

3.3 Database of Modern Icelandic Inflections

Although it is possible to achieve relatively good results using only data from
the IFD corpus, a larger database of words can improve the results by filling
in the gaps. Therefore, we have included the option of running Lemmald with
an add-on which communicates with the DMII. Note that the DMII does not
contain any frequency data and thus complements, rather than replaces, the
IFD corpus.

The DMII is a huge database and its size causes some practical issues in terms
of implementation and performance. For our purposes, we use a format where
the data is contained within a table and each row consists of a set of a word
form, a tag and a lemma. All combinations of grammatical categories for nouns,
verbs and adjectives are included and in total there are over 5 million rows in
the table. Note that other word classes are closed and are thus well covered
by the IFD corpus. Our add-on is designed to communicate with any database
management system which contains such a table and supports JDBC connec-
tions. In our development tests, we used MS SQL Server which worked quite
efficently but frequent database queries will nevertheless affect the performance
of any software. Thus, the improved lemmatization is traded for slower execution
speeed when running the DMII add-on.

4 Language Specific Issues

When lemmatizing an unknown word in a language which uses suffixes for encod-
ing grammatical distinction, it seems intuitive to search for the longest known
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ending of the unknown word. This method is indeed frequently used in lemma-
tization (e.g. [11]). However, applying longest match substitution blindly to Ice-
landic words can lead to mistakes.

Consider, for example, the word götusópari ‘street sweeper’ which is a com-
pound made of the genitive of the noun gata ‘street’ and a noun derived from
the verb sópa, using the affix -ari ‘one who does what the verb expresses’ (sim-
ilar to the English -er). The masculine noun götusópari does not appear in the
590K word IFD corpus nor does the noun sópari ‘sweeper’. On the other hand,
the neuter noun pari (dative form of par ‘pair’) does exist in the corpus. Using
longest match analysis for unknown words results in the incorrect lemma götusó-
par, while the correct result would be an unmodified götusópari. In Lemmald, we
still use longest match analysis for cases where other methods fail, but first we
attempt to analyze compounds using other more precise modules.

Examples like götusópari are particularly difficult to handle, because both
the word itself and its second half, sópari, (the grammatical head) are unknown.
Usually, compound analysis for unknown word forms is easier when both parts
are known. However, it is not always enough to know both parts because of
the problem of compound ambiguity. Consider, for example, the feminine plural
noun álfelgur ‘alumininum rims’. Even if our lemmatizer recognizes the parts
ál ‘aluminium’ and felgur ‘rims’ it might mistake the ál-felgur compound for
álf-elgur ‘elf moose’, because of compound ambiguity.

Compound analysis may also fail because of what we might call partially
unknown word parts. This occurs when both parts of the compound are known as
word forms, but the grammatical head (the rightmost part) does not exist in the
corpus in a context where it fully agrees with the provided morphosyntactic tag.
Maintaining an agreement between the input tag and decisions of the lemmatizer
is important, because on most occasions, the occurrence of a partially unknown
compound can be attributed to a minor distinction within the inner structure of
the tag. Perhaps a particular noun has the same written form in the nominative
case and the accusative case, but the corpus only contains the accusative form.

An example of an Icelandic compound which could possibly be partially un-
known is drengja-móður ‘mother of boys’. The compound is in no way unusual
Icelandic but it is unlikely to appear in a corpus. The word form drengja-móður
is identical in the accusative, dative and genetive case. Even if the first part of
the compound drengja ‘boys’ was known and the second móður ‘mother’ also –
a problem would rise if the input móður is in genitive case but is only known in
accusative case in the corpus. This can of course happen irrespective of whether
the genitive form is a part of a compound or not. Thus, a mechanism is needed to
fall back to an agreement on, say, word class and gender, even if it is impossible
to also confirm agreement on case using the limited corpus.

To resolve this, we present the idea of a Hierarcy of Linguistic Identities
(HOLI) for Icelandic. It uses a simple linguistic insight to maintain a mostly data-
driven machine learning approach when lemmatizing compounds, while falling
back to nonperfect data in a linguistically sensible way when there are gaps in
the training data.
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5 Algorithm

5.1 Overview

We define the task of lemmatizing an Icelandic word as the one of implementing
the function getLemma( wordForm, tag ). This definition implies that for a given
word form and tag there exists one and only one correct lemma and it also leaves
all issues of context sensitivity to the task of determining the tag. In this sense,
our method is identical to the one of the CST Lemmatizer. The observation
that an input of word form and tag corresponds to a unique lemma holds for
almost all cases in Icelandic and the rare exceptions represent an insignificant
part of lemmatization errors. Thus, the input to Lemmald consists of a wordform
and a morposyntactic tag, whose format is described in Sect. 1. The tag can be
obtained by using any POS tagger for Icelandic, but, as discussed in Sect. 3, we
use IceTagger for this purpose.

Lemmald uses a mixed method approach to perform its task. The main
method is the HOLI method mentioned in the previous section. However, fur-
ther techniques are required to handle special cases, such as compound analysis,
umlaut substitution and various systematic exceptions to Icelandic morphology.
Finally, the add-on that connects to the DMII can be used for improved results.
Units of functionality are organized into modules that can be turned on or off
by adjusting configuration parameters of the program. The modules are as fol-
lows: (1) Hierarchy of Linguistic Identities Analysis, (2) Compound Analysis,
(3), Umlaut substitution, (4) Post processing, (5) Database of Modern Icelandic
Inflections Lookup.

5.2 Hierarchy of Linguistic Identities

It is a challenge for a data-driven NLP method to handle input that it does not
recognize from its training data. When working with fully known data patterns
is not an option, some kind of fallback to a more general method is inevitable and
the goal of machine learning is of course to be able to apply learned patterns to
new data. However, it may not be the best strategy to think of the problem ex-
clusively from the point of view of machine learning, because the success of such
an approach also depends on the features fed to the machine and the structure
of those features. This is where linguistic insights can be important, as Manning
has recently emphasized [15].

When dealing with the Icelandic tagset of about 700 different tags, data
sparseness problems are bound to occur and handling them well is essential.
Our approach to this task makes use of a HOLI. An example of a data sparse-
ness gap which can be resolved by HOLI analysis is if a corpus does not contain
a particular case of a noun. Consider, for example, the previously mentioned
word form móður, which may be the accusative, dative or genitive case of the
feminine noun móðir ‘mother’ (singular). This word can also be a masculine
singular form of an adjective which means ‘winded, out of breath’. The format
of the morphosyntactic tag for an Icelandic noun has four characters; the first
character ‘n’ stands for noun, the second character is for gender, the third is for
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number and the fourth is for case. The noun móður can thus have the following
tags: nveo, nveþ, nvee, where the second letter stands for feminine and the final
letter stands for accusative, dative and genitive case, respectively. The adjec-
tive móður has the tag lkensf which stands for adjective, masculine, singular,
nominative, strong declension, and positive degree, respectively.

Let us imagine that the lemmatizer is asked to lemmatize the word móður
with the tag nvee (noun, genitive), and while the genitive form of ‘mother’ is not
present in the training data there are a few occurrences of the identical accusative
and dative forms. If the tag was treated as one unit having no structure and the
fallback mechanism would just pick the most frequent lemma for the word form
according to the corpus, we might get the adjective form móður if the adjective
happened to occur frequently in the training data. Therefore, we generate four
levels of identities for <móður,nvee> from specific to general:

(2) word tag
-------------
móður nvee
móður nv
[any] nvee
móður [any]

Note that this particular hierarchy may not be the optimal representation of a
noun, it is simply something we have found to work well for our purpose. We
create an intermediate level of specificness for feminine noun (nv), but we do
not use number and case for creating such identities – those are just reflected
in the full tag string. The study of how it is best to construct hierarchies of
linguistic features is a complex issue. An example of such work in linguistics is
the feature tree in phonology (e.g. [16]).

When matching input words to machine learned rules, the lemmatizer goes for
the most specific matching identity. Note that when making a decision based on
specificness like here, we use strict domination of the most specific level relevant
to the given input. A lower ranking identity has no significance if it is possible to
base a decision on a higher ranking identity. In this sense, our model is similar
to Optimality Theory [17]. In the case of the genitive móður, it would be the
identity feminine noun resulting in correct lemmatization even if there were no
useful clues for lemmatizing the word according to its genitive case.

During the training phase, a HOLI is generated for every pair of word form
and tag encountered in the training data (the IFD corpus) along with a rule
which correctly lemmatizes the given word. An example HOLI along with the
corresponding lemmatization rules for <móður,nveo> is as follows:

(3) word tag rule
-----------------------
móður nveo ur>ir
móður nv ur>ir
[any] nveo ur>ir
móður [any] ur>ir
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The rule is the minimal suffix substitution needed to map the full word form to its
lemma. In a second run through the corpus, the full hierarchy is again generated
for each word and tested against all matching rules created in the previous run,
in order to obtain a score for each combination of identity+rule depending on
how often that combination results in a correct lemma. The score is recorded in
a rule database along with the identity and the rule. This score is used to select
a rule if more than one possible rule is available within a specificness level.

If the lemmatizer knows the above rules for <móður,nveo> but has not seen
<móður,nvee> it can not use the most specific identity in that case. Then it
must try a lower ranking one. The HOLI for <móður,nvee> is shown in (2).
The most specific known identity is <móður,nv> and therefore the rule ur>ir is
applied resulting in the correct lemma móðir. Without the intermediate level of
specificness, there would have been a conflict between the noun form móður and
the identical masculine adjective which might have given the rule r>r, resulting
in a lemmatization error.

Using a HOLI, we can still rely on machine learning to perform most of the
work and save time that would otherwise be spent on manually writing linguistic
rules. The HOLI takes care of “coming up with” linguistic insights such as picking
a pattern from a feminine noun instead of a masculine noun, or a pattern from
a noun rather than an adjective where appropriate. This way we can combine
some of the advantages of data-driven and linguistic rule-based NLP.

It is important to note that the key observation here is the general idea of
combining linguistic structure with how the machine learns, not this particular
implementation. A strictly machine learning motivated study would probably
treat the word form and the tag as two features with no internal structure. Even
if such an approach attempted to “machine learn” the internal structure of the tag
it could not make use of the linguistic understanding of “specificness” we employ
with little effort here. This sort of thinking provides opportunities for linguistics
to contribute to NLP without switching from machine-learning to hand-crafted
rules. Instead of choosing between the approaches, they are combined.

5.3 Compound Analysis

By checking for the existance of an identity of the most specific level (which
is identical to a dictionary lookup), the compound analyzer determines if the
input word is known. This happens before the HOLI analysis and if the word
is known, there is no reason to attempt compound analysis. In contrast, an
unknown word can go through up to three levels of compound analysis: strict
analysis, loose analysis and longest match analysis which is attempted only if
the previous methods fail.

Strict analysis requires that both parts of the compound are known and that
the tag of the the latter part (the grammatical head) is known to exist for
that word form. Loose analysis has the same requirements for the grammatical
head, but tries to construct a well formed first part using a few known Icelandic
derivation methods. If the word is still unknown and is longer than 6 letters an
attempt is made to find the longest matching known ending while requiring that
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the first part has at least one vowel. Should the compound analysis result in
a successfully split compound, the grammatical head is sent to HOLI analysis
along with its tag.

Let us, for example, say that the input is the noun <hestaskip,nheo> ‘horse
ship’. Strict analysis then determines that while this is an unknown word it is
probably a compound made of the parts hesta-skip since hesta is a known word
and skip is known to have the tag <nheo>. Then the input to the HOLI module
becomes <skip,nheo> and the compound analyzer makes sure that the first part
hesta is added to the result before it is returned.

All of the above methods can of course fail to find a probable compound
analysis of the input word as is supposed to happen if the word is not really a
compound, but a (simple) unknown word. Then a HOLI analysis takes over.

Although the compound analyzer works in most cases, it is a module which
can without a doubt be improved. The authors hope to develop an indepen-
dent and powerful unit for this task in future research as a contribution to the
Icelandic BLARK.

5.4 Umlaut Substitution, Post-Processing and DMII Lookup

Umlaut substitution is a known issue in the lemmatization of other Germanic
languages (e.g. [18]). For common words, the automatically generated rules in
the HOLI analysis take care of changing ‘ö’ in an inflected form to ‘a’ in the
lemma, but to make sure that this happens in less common words as well, every
rule which removes the umlaut trigger ‘u’ causes the umlaut substitution module
to reverse its effect in an affected root if appropriate.

For example, if the rule u>a is applied to the noun tösku ‘bag’ (accusative,
dative or genitive) the resulting lemma without umlaut substitution would be
*töska. The umlaut module of Lemmald corrects this by substituting the ‘ö’ in
the root for ‘a’ giving the correct lemma taska.

A few systematic errors appear in the output of the lemmatizer due to ir-
regularities in Icelandic morphology. Some of those, particularly the ones that
result in consonant clusters which violate constraints of Icelandic phonology, are
corrected using a list of substitutions which is applied after all other modules
have finished their work. The program must be taught to perform u-epenthesis
when its machine-learned rules result in word final consonant clusters like -kr
replacing them with -kur.

As previously mentioned, the program can be configured to communicate
with the DMII using an add-on. The format of the database we use consists of
just over 5 million rows, each containing a word form and a tag along with the
corresponding lemma. If turned on, this module is run before the HOLI analysis.
This improves precision of the lemmatization while slowing it down.

6 Evaluation

To evaluate the performance of Lemmald, and the effect of the modules it uses,
we ran a 10-fold cross validation test on the IFD corpus where the size of each
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training set was about 530k tokens and each test set contained about 60k tokens.
We used the word forms and the manually corrected morphosyntactic tags from
the corpus and measured the success of Lemmald in finding the correct lemma
for each token. We also trained the CST Lemmatizer using the IFD corpus and
performed an identical evaluation – with and without tags in the input. The
results are presented in Table 1, where mean accuracy is shown. In the first row
the success for the HOLI method without any additional modules is shown and
in each of the following rows one module is added to improve accuracy. The last
row contains the results of our evaluation of the CST Lemmatizer. Note that,
while assuming correct tagging is useful for evaluating different lemmatization
methods, real world results will in most cases rely on machine tagged text which
negatively affects accuracy. A preliminary test with one test set containing ap-
proximately 10,000 words was performed using Lemmald. This test showed a
drop in accuracy of about 1.5% between lemmatizing correctly tagged text and
a text tagged with IceTagger. The accuracy of the lemmatization is still much
higher than the accuracy of the machine tagging, because, as pointed out earlier,
most tagging errors do not affect lemmatization.

Table 1. Results

Lemmald Tagged Input Untagged Input
Basic (HOLI only) 97.85%
+ Compound Analysis 98.38%
+ Umlaut Substitution 98.42%
+ Post processing 98.54%
+ DMII 99.55%
CST Lemmatizer

98.99% 93.15%

The CST Lemmatizer trained on the IFD Corpus reaches 98.99% accuracy
when applied to correctly tagged text. A comparable number for Lemmald is
98.54%, which is obtained by omitting the use of the DMII. The difference is
statistically significant (α < 0.001). However, the difference between the best
result for Lemmald, 99.55% obtained when the DMII is used, is significantly
higher than the result with the CST lemmatizer (98.99%). Adding the DMII
should have the same effect on the CST Lemmatizer resulting in an even higher
accuracy. However, the above comparision has already confirmed that the CST
Lemmatizer performs better than Lemmald when trained on the same data so we
have not implemented such an evalution setting. Instead, we focus on measuring
the effect of each specialized module.

Taking a closer look at the Lemmald column in Table 1, we can see that every
language specific module contributes to the accuracy of the lemmatizer. This
clearly shows that addressing language specific issues does matter for the per-
formance. The language independent aspects of Lemmald are still a little behind
the CST Lemmatizer. The reason for this is that within a level of specificness
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in the HOLI, Lemmald uses a very primitive way of choosing between rules. In
such a situation there is no linguistic evidence to base the decision on and a
very simple score mechanism is employed. By improving the decision making on
this level, we believe the combination of our linguistically inspired method and
the powerful tools of data-driven methods can result in an Icelandic lemmatizer
which outperforms both systems evaluated here. Currently, there are examples
of each lemmatizer failing in a situation where the other succeeds. The strenghts
of the HOLI method in dealing with data sparseness in a large tagset is in many
cases successful, but in other cases when there is ambiguity within a specificness
level the method fails. We intend to improve our system in a future version so
that it covers most or all cases that can be learned in a language independent
way and goes beyond that when used with the language specific modules. Thus,
we believe that future versions of Lemmald (without using DMII) will outper-
form the CST Lemmatizer and the former could therefore be used in favour
of the latter. Additionally, as mentioned in Sect. 1, Lemmald allows for an easy
integration into the IceNLP toolkit, because both units are implemented in Java.

7 Conclusion

We have shown that the combination of linguistic knowledge with data-driven
machine learning can resolve issues that are difficult to handle when using one
of the approaches exclusively. Machine learning is essential to save the time
otherwise needed for hand-crafting linguistic rules. However, using linguistics to
determine features and feature structures can combine the advantges of both
approaches. Our way to achieve such combination in lemmatization is based
on a Hierarchy of Linguistic Identities. More important than this particular
implementation of such a HOLI, is the idea that a similar approach can be
used in a number of NLP tasks. We believe it is important to move away from
viewing the field as “just a branch of applied machine learning” [15] and towards
the strenghts of a truly cross disciplinary field. NLP may have “caught up with
what statisticians and machine learning people have discovered in 400 years” [15]
but now it is time to catch up with the knowledge of linguistics.

Lemmald is ready to be used in combination with other Icelandic BLARK
units in various practical situations in linguistic reasearch and commercial soft-
ware development. However, we will continue to improve the system and aim to
increase the lemmatization accuracy in future versions. This will involve more
intelligent machine learning to deal with cases where our method fails and de-
velopment of a more advanced compound analyser.
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Abstract. We introduce a project to enhance a valency lexicon of Czech
verbs with semantic roles. For this purpose, we make use of FrameNet.
At the present stage, frame elements from FrameNet have been mapped
to valency complementations of verbs of communication and verbs of
exchange. The feasibility of this task has been proven by the achieved
inter-annotator agreement – 95.6% for the verbs of communication and
91.2% for the verbs of exchange. As a result, we have obtained 37 seman-
tic roles for the verbs of communication and 34 for the verbs of exchange,
based on frame elements of upper level semantic frames from FrameNet.

1 Introduction

Semantic roles play a key role in NLP tasks in which semantic interpretation
is necessary, as information extraction, question answering, or summarization
[1]. In this paper, we report on labeling VALLEX valency complementations
with more verb-specific semantic roles. For this purpose, we exploit frame ele-
ments from FrameNet.

As a first step, we experimented with two groups of verbs with divergent
semantic and morphosyntactic properties, verbs of communication and verbs
of exchange. First semantic frames from FrameNet were manually assigned to
these verbs.1 Then their valency complementations were linked with frame el-
ements. Manual annotation is highly time consuming, however, it allows us to
reach the desired quality.

2 Two Lexical Resources: VALLEX and FrameNet

In this section, we briefly characterize two lexical resources: VALLEX which
takes into account mainly syntactic criteria and semantically oriented FrameNet.

Valency Lexicon of Czech verbs VALLEX. The Valency Lexicon of Czech
Verbs, Version 2.5 (VALLEX 2.5)2 provides information on the valency

� The research reported in this paper is carried under the project of the Ministry of
Education, Youth and Sports No. MSM0021620838 (Objects of Research), under the
grants LC536 (Center for Computational Linguistics II) and GA UK 7982/2007.

1 This part of the experiment is described in [2].
2 http://ufal.mff.cuni.cz/vallex/2.5/

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 217–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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structure of Czech verbs in their particular senses: primarily, the number of
valency complementations, their type (labeled with functors), and their possible
morphological forms. VALLEX 2.5 describes 2,730 lexeme entries containing
around 6,460 lexical units, ‘senses’ (LUs), see [3].

VALLEX 2.5 has a rather syntactic approach to valency, see [4]. Five functors
are determined for verb arguments: ‘Actor’, ‘Patient’, ‘Addressee’, ‘Effect’, and
‘Origin’. However, not having verb-specific meaning, this tight set does not reflect
similarities and differences in verb meaning. E.g., the following verbs remain
indistinct, despite being semantically different:

(1) Petr.ACT prodal Pavlovi.ADDR motorku.PAT
Eng. Peter.ACT has sold Paul.ADDR the motorbike.PAT
(2) Učitel.ACT vysvětlil dětem.ADDR pravidla.PAT hry
Eng. The teacher.ACT has explained the rules.PAT of the game to the
children.ADDR

Thus introducing verb-specific semantic roles to VALLEX allows us to capture
relations between semantically similar verbs. Moreover, it enables us to make
inferences on lexical entailments of verbs.

FrameNet. FrameNet3 is an on-line lexical resource for English. It documents
semantic and syntactic properties of each word in each of its senses, see [5].
FrameNet covers more than 10,000 LUs, i.e., pairs consisting of a word and its
meaning.

The descriptive framework of FrameNet is based on frame semantics . The se-
mantic frame (SF) represents a schematic representation of a particular situation
involving various participants, frame elements (FEs). These are defined for each
SF separately.

FrameNet records frame-to-frame relation (including FEs-to-FEs relation)
in the form of a hierarchical network. The relation of ‘Inheritance’, i.e., the hyper-
onymy / hyponymy relation, represents the most important one – the semantics
of the parent frame corresponds equally or more specifically to the semantics of
its child frames.

3 Mapping Frame Elements from FrameNet to Valency
Complementations in VALLEX

As a first step, we translated each LU belonging to the verbs of communication
and to the verbs of exchange from Czech to English.4 The total number of trans-
lated Czech LUs was 341 for the verbs of communication and 129 for the verbs
of exchange.

Two human annotators were asked to indicate an appropriate SF for each
given Czech LU. Then they assigned FE(s) of this SF to argument(s) of the

3 http://framenet.icsi.berkeley.edu/
4 The on-line dictionary at http://www.lingea.cz/ was used.
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given Czech LU. More than one FE could be assigned to a single argument
(‘Ambiguous annotation of FEs’). When no FE corresponded to a particular
argument, the annotators concluded that the given FE was missing. For the
overall statistics, see Table 1.

Table 1. Overall statistics on the annotations of FEs

annotator 1 annotator 2
Com Exch Com Exch

Annotations of arguments from VALLEX 1088 479 1088 479
Unambiguous annotations of FEs 869 435 879 416
Ambiguous annotations of FEs 453 88 435 142
Marked as missing FEs 47 47 34 50

Inter-Annotator Agreement. Table 2 summarizes the inter-annotator agree-
ment (IAA) and Cohen’s κ statistics [6] on the total number of assigned FEs.
IAA was measured only in the cases of match of SFs. Both the exact and inter-
section match of FEs (when both the annotators chose the same FEs regardless
of other variants of ambiguous annotations) gave satisfactory results for both the
verbs of communication (84.6% and 95.6%) and the verbs of exchange (85.4%
and 91.2%). The κ statistics represents an evaluation metric that reflects av-
erage pairwise agreement corrected for chance agreement. The achieved levels
represent significant results even in case of the exact match of FEs.

Table 2. Inter-annotator agreement and κ statistics

IAA [%] κ
Com Exch Com Exch

Exact match of FEs 84.6 85.4 0.83 0.84
Intersection match of FEs 95.6 91.2 0.95 0.91

4 Exploiting Frame Elements as Semantic Roles

1185 FEs (in which the annotators concurred) were mapped to 1088 arguments
of the verbs of communication and 433 FEs were assigned to 479 arguments of
the verbs of exchange.

As for ambiguous assignment of FEs, the annotators mapped more than
one FE to a single argument especially due to a variety of lexical entailments
imposed by a verb on such an argument. E.g., two valency slots of the verb
zmı́nit sepf ‘to mention’ were assigned ambiguously – (i) the FEs ‘Speaker’ and
‘Medium’ were mapped to ‘Actor’ and (ii) ‘Message’ and ‘Topic’ to ‘Patient’:

(1) PeterSpeaker did not mention (that he had moved away from her
wife.)Message

(2) This resolutionMedium mentions the problemTopic of the refugee camp.
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Frame Elements as Semantic Roles. We enhanced VALLEX with semantic
roles based on the FEs from the SFs from upper levels of the relation of ‘In-
heritance’ – we made use of the ancestor FEs belonging to the SFs from the
appropriate level of the relation of ‘Inheritance’, see [2].

Figure 1 illustrates the relation of ’Inheritance’ between core FEs from the
SFs ‘Giving’, ‘Commerce sell’, and ‘Renting out’. We mapped the FEs ‘Donor’,
‘Recipient’, and ‘Theme’ from the ancestor SF ‘Giving’ to the appropriate argu-
ments of the Czech LUs to which the descendant SFs ‘Renting out’ and ‘Com-
merce sell’ were assigned.

Fig. 1. The FEs-to-FEs relation of ‘Inheritance’ of the SFs ‘Giving’, ‘Commerce sell’,
and ‘Renting out’

As a result, 37 core FEs from nine SFs – belonging to the upper levels of the
relation of ‘Inheritance’, [2] – were applied as semantic roles to the arguments
of the verbs of communication. (We introduce only core FEs as the most
important ones.):

1. ‘Communication’: ‘Communicator’, ‘Medium’, ‘Message’, ‘Topic’
2. ‘Statement’: ‘Medium’, ‘Message’, ‘Speaker’, ‘Topic’
3. ‘Communication response’: ‘Addressee’, ‘Message’, ‘Speaker’, ‘Topic’, ‘Trigger’
4. ‘Judgment communication’: ‘Communicator’, ‘Evaluee’, ‘Expressor’, ‘Medium’,

‘Reason’, ‘Topic’
5. ‘Chatting’: ‘Interlocutor 1’, ‘Interlocutor 2’
6. ‘Prohibiting’: ‘Principle’, ‘State of affairs’
7. ‘Request’: ‘Addressee’, ‘Medium’, ‘Message’, ‘Speaker’, ‘Topic’
8. ‘Reporting’: ‘Authorities’, ‘Behavior’, ‘Informer’, ‘Wrongdoer’
9. ‘Commitment’: ‘Addressee’, ‘Medium’, ‘Message’, ‘Speaker’, ‘Topic’

(Note that the FEs with the same name cannot be confused across different
SFs.) The arguments of the verbs of exchange were labeled with 34 core FEs
as semantic roles, arisen from ten SFs from the upper levels of the relation of
‘Inheritance’:

1. ‘Giving’: ‘Donor’, ‘Recipient’, ‘Theme’
2. ‘Getting’: ‘Recipient’, ‘Theme’
3. ‘Replacing’: ‘Agent’, ‘New’, ‘Old’
4. ‘Exchange’: ‘Exchanger 1’, ‘Exchanger 2’, ‘Theme 1’, ‘Theme 2’
5. ‘Robbery’: ‘Perpetrator’, ‘Source’, ‘Victim’
6. ‘Hiring’: ‘Employee’, ‘Employer’, ‘Field’, ‘Position’, ‘Task’
7. ‘Transfer’: ‘Donor’, ‘Recipient’, ‘Theme’, ‘Transferors’
8. ‘Frugality’: ‘Behavior’, ‘Resource’, ‘Resource controller’
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9. ‘Taking’: ‘Agent’, ‘Source’, ‘Theme’
10. ‘Supply’: ‘Purpose of recipient’, ‘Recipient’, ‘Supplier’, ‘Theme’

As a result, the FEs from the upper level SFs cover 95.4% of arguments of
the verbs of exchange and almost 53% of arguments of the verbs of communi-
cation. The considerable difference is due to the low coverage of the relation of
‘Inheritance’ for the verbs of communication (only 68% of assigned SFs are con-
nected by this relation for the time being). In the future, we plan to continuously
increase the coverage following the progress made in FrameNet.

5 Conclusion

We have presented an experiment with enhancing the valency lexicon of Czech
verbs, VALLEX 2.5, with semantic roles derived from FrameNet. As a first step,
we mapped frame elements to arguments of the verbs of communication and the
verbs of exchange. The attained inter-annotator agreement has proved the fea-
sibility of this task. Then we labeled their arguments with semantic roles based
on the frame elements from the upper level semantic frames of the relation of
‘Inheritance’ – 37 and 34 semantic roles are determined for the verbs of com-
munication and the verbs of exchange, respectively. In the future, we plan to
expand this experiment to other groups of verbs and we intend to exploit the
obtained data for summarization of Czech texts.
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Abstract. This paper presents implementations of generative management 
method for morphological variation of query keywords. The method is called 
FCG, Frequent Case Generation. It is based on the skewed distributions of word 
forms in natural languages and is suitable for languages that either have fair 
amount of morphological variation or are morphologically very rich. The paper 
reports implementation and evaluation of automatic procedures of variant query 
keyword form generation with short and long queries of CLEF collections for 
English, Finnish, German and Swedish. The evaluated languages show varying 
degrees of morphological complexity. 

1   Introduction 

Morphological variation of textual words and keywords is a well known issue in in-
formation retrieval (IR) and needs some sort of management. Roughly put, the need for 
managing the variation of keywords increases as the morphological complexity of the 
language increases. For languages like English, it is not crucial, but for languages like 
Finnish, Turkish, Russian etc. it is much more important for better retrieval results. The 
first answers to management of morphological variation of keywords in IR have been 
manual term truncation and stemming. Later, lemmatization has been added to the rep-
ertoire. Generation of inflectional stems and generation of full word forms have been 
used less, although they also offer a suitable solution to the problem [1]. 

Kettunen [2] has divided the methods of keyword variation management into two 
groups: reductive and generative. The main idea behind reductive methods is that 
varying word forms are somehow reduced so that relationships between query key-
words and index words can be detected. These methods demand both reductive analy-
sis of textual data bases for index formation and reduction of query keywords. What is 
here called reductive methods have generally been named conflation in the IR litera-
ture [3], and the methods include stemming and lemmatization. Methods that generate 
inflectional stems or full word forms from a given input form may be called genera-
tive. With generative methods of keyword variation management textual indexes are 
left in their original form without any linguistic processing. Reductive methods have 
been used far more than generative so far, although also generative methods should be 
of interest e.g. in present web retrieval systems, where very large multilingual indexes 
may be impractical for reductive methods. 
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In this paper we shall report IR results of restricted automatic generation of varying 
query keyword forms for four languages. With English, Finnish, German, and Swed-
ish we have used CLEF 2003 materials. Our purpose is to show the feasibility of the 
Frequent Case Generation method that has been simulated earlier with languages that 
are morphologically different: one of the languages, English, is morphologically sim-
ple; German and Swedish are somehow complex and Finnish morphologically quite 
complex in the sense, that it has lots of word form variation that needs to be taken 
account for. We shall show that by generating the most frequent forms of nominal 
query keywords quite good IR performance is achieved. 

2   The FCG Method 

The FCG method has been earlier presented for management of morphological varia-
tion of query words with Finnish, Swedish, German and Russian in Kettunen and 
Airio [4] and Kettunen and colleagues [5]. The FCG method and its language specific 
evaluation procedure are characterized as follows: 

1) For a morphologically sufficiently complex language the distribution of nominal 
case/other word forms is first studied through corpus analysis. The used corpus can 
be quite small, because variation at this level of language can be detected even 
from smaller corpuses. Variation in textual styles may affect slightly the results, so 
a style neutral corpus is the best. 

2) After the most frequent (case) forms for the language have been identified with 
corpus statistics, the IR results of using only these forms for noun and adjective 
keyword forms are tested in a well-known test collection. As a comparison the best 
available reductive keyword and index management method (lemmatization or 
stemming) is used, if such is available. The number of tested FCG retrieval proce-
dures depends on the morphological complexity of the language: more procedures 
can be tested for a complex language, only a few for a simpler one. 

3) After evaluation, the best FCG procedure with respect to morphological normaliza-
tion is usually distinguished. The testing process will probably also show that more 
than one FCG procedure is giving quite good results, and thus a varying number of 
keyword forms can be used for different retrieval purposes, if necessary. 

It should be noted, that the FCG method does not usually outperform golden stan-
dard, usage of a lemmatizer, for morphologically complex languages. It provides, 
however, a simple and usually easily implementable alternative for lemmatization for 
languages that might lack language technology tools for information retrieval. 

Based on this method, Kettunen and Airio [4] first evaluated four different FCG 
procedures in two different full-text collections of Finnish, TUTK (with graded rele-
vance assessments, Sormunen [6]) and CLEF 2003 (with binary relevance). The re-
sults of [4] showed that frequent case form generation works in full-text retrieval of 
inflected indexes in a best-match query system (Inquery) and competes at best well 
with the gold standard, lemmatization, for Finnish. The best FCG procedures in  



224 K. Kettunen 

Kettunen and Airio. [4], FCG_9 and FCG_121, achieved about 86 % of the best aver-
age precisions of FINTWOL lemmatizer in TUTK and about 90 % in CLEF 2003. 
Kettunen and colleagues [5] tested the method with three new languages, German, 
Russian and Swedish. With German and Swedish the results were positive, but Rus-
sian results were reported to be inconclusive most obviously due to the limits of the 
Russian collection used.2 

So far the process of FCG query keyword generation has been simulated in tests, 
but we have now implemented fully automatic query generation using word form 
generators of four languages: English, Finnish, German and Swedish. Three of the 
languages are morphologically at least moderately rich and English has been included 
to see, how a morphologically simple language behaves with the same approach. 

3   Materials and Methods 

CLEF collections for English, Finnish, German and Swedish were utilized in this 
study. The used retrieval system was Lemur [8]. Lemur combines an inference net-
work retrieval model with language models, which are thought to give more sound 
estimates for word probabilities in documents [9, 10]. In Table 1, the number of 
documents and topics with relevant documents in each collection is shown. 

Table 1. Collections used in the study 

Language Collection Collection size (docs) Topics IR system  
     
EN CLEF 2003 169 477 54 Lemur 

FI CLEF 2003 55 344 45 Lemur 

DE CLEF 2003 294 809 56 Lemur 

SV CLEF 2003 142 819 54 Lemur 

3.1   Query Formation and Linguistic Tools Used 

Our query formation for all of the languages was based on application of a same type 
of routine: topics of the collection were first preprocessed and then lemmatized with 
the lemmatizers FINTWOL, SWETWOL, GERTWOL and ENGTWOL from Ling-
soft Ltd. for Finnish, Swedish, German and English. Stop words were omitted. From 
the base forms of topical words we generated the actual queries with word form gen-
erators for each language followingly: 

                                                           
1 Here 9 and 12 denote number of variant keyword forms used in the procedure. These figures 

are a fraction of all the possible grammatical noun forms (1872 - ≈ 2000) and 35-46 % of the 
productive noun forms (26). 

2 The limits of the Russian CLEF collection are most clearly expressed in Savoy [7]. 
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• generation was used only for nouns and adjectives in the topics (except for English, 
where only nouns are inflected in cases), all words of other parts of speech were left 
in the form they were in the topic 

• only one base form interpretation for each word in the output of lemmatizer was 
used for generation (first nominal interpretation given by the lemmatizer) 

• if the lemmatizer was not able to give a base form analysis for the topic word, it was 
anyhow given to the generator for generation: this would produce sometimes right 
generations and sometimes false generations depending on which form the word 
happened to be in the topic; Assumedly wrong generations will not harm queries be-
cause they usually match nothing but right generations might boost performance of 
the query. This tactic also makes the generation more independent of the lexicons of 
lemmatizers, which anyhow lack words. 

Generators for the four languages were obtained from different sources, free and 
commercial. Generator for English was obtained from the University of Sussex [11]. 
For Swedish we used Grim generator [12] from Nada KTH with Java interface of 
Martin Hassel; the functionality of the generator can be seen also from the Grim web 
page3. For Finnish we obtained Teemapoint’s generator FGEN4 and for German Ca-
noo’s WMTRANS5. Three of the generators, English, Finnish and Swedish, are rule 
based and lexiconless, German generator uses large lexicons for generation. The gen-
erators were embedded in the query generation process of each language with Unix 
scripts. The way they were used emulates use in an interactive search system: a user 
would give the keywords in their base forms and inflected forms of these would be 
generated using the generator. In our case, the base forms of topical words are pro-
duced by lemmatizers of each language. The process of query generation is shown 
schematically in Figure 1. 

Topics in XML
format

Query construction 
Base forms  (lemmatization)

Stop word elimination 
FCG generation 

Queries to Lemur

Unix scripting

 

Fig. 1. Generation of queries using FCG generation6 

3.2   Queries 

CLEF topics have the following structure: each topic has three parts, title, description 
and narrative as in the topic #200 in German: 

 

                                                           
3 http://skrutten.nada.kth.se/grim/ 
4 www.teemapoint.com 
5 http://www.canoo.com/wmtrans/home/index.html 
6 Due to lack of space no example scripts are included here. Model scripts can be shown upon 

request. 
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<top> 

<num> C200 </num> 

<DE-title> Hochwasser in Holland und Deutschland </DE-
title> 

<DE-desc> Finde statistische Angaben über die Ho-
chwasserkatastrophe in Holland und Deutschland im Jahre 
1995. </DE-desc> 

<DE-narr> Relevante Dokumente sollen das Ausmaß des 
Schadens beziffern, der durch die Überschwemmungen ent-
stand, die 1995 in Deutschland und den Niederlanden 
stattfanden. Die Dokumente sollen die Wirkung des durch 
Überschwemmung verursachten Schadens hinsichtlich der 
Anzahl von Menschen oder Tieren, die evakuiert wurden, 
und/oder hinsichtlich der ökonomischen Verluste bezif-
fern.</DE-narr> 

</top> 

Out of these three parts a query can be formulated using either all the three parts or 
some combination of parts, usually title and description. We chose to use title and 
description parts to make long queries and titles only to make short queries that re-
semble Web queries in the number of words. 

The FCG queries were structured with Lemur’s #SYN operator so, that all the gen-
erated morphological variants of the base form were combined by the same #SYN 
operator. This way they are handled and weighted as instances of the same form by 
the query program. As an example a generated title query #200 for Swedish is shown: 

<query> #combine(#syn(översvämning översvämningar 
översvämningarna översvämningen) #syn(holland ) 
#syn(tyskland ))</query> 

As can be seen, only the word översvämning (‘flood’) has got generated forms dur-
ing query construction, whereas country names (Holland and Tyskland) have not been 
recognized either by the lemmatizer or generator and thus they have been left in the 
original form. 

3.3   Distributions 

The prerequisite for applying the FCG method is that distributions of nominal case 
forms for the language need to be known so that only the most frequent nominal 
forms are generated for keywords in the FCG query construction process. For Finnish, 
German and Swedish, Kettunen and Airio [4] and Kettunen and colleagues. [5] had 
analyzed and published the distributions of nouns and adjectives, and we used the 
same forms in the FCG generation now. For English we needed distributional data. 

We analyzed English word form distributions for nouns from three different sam-
ples: 228 084 nouns from the Brown corpus, which is morphologically tagged and 
disambiguated material [13], a sample of 42 064 words from NY Times [14] and 38 
723 word forms from the CLEF collection’s English material (from Glasgow Herald). 
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The last two samples were run through ENGTWOL lemmatizer and all noun interpre-
tations given by the lemmatizer were counted. 

As expected, almost all of the nouns in different corpora of English are in singular 
or plural nominative. The majority of forms (72–76.5 %) were in singular nominative 
and 21.8–26.4 % in plural nominative depending on the corpus. The occurrences of 
genitive were very rare (0.9–1.7 % in plural and singular). Only proper nouns have a 
bigger share of genitive, as analyzed from the Brown corpus, which distinguishes 
proper nouns from common nouns. Out of 43 154 proper noun tokens in the Brown 
corpus 39 045 (90.5 %) were in singular nominative, and 1351 (3.1 %) were in plural 
nominative. 2716 forms (6.3 %) were in singular genitive and 42 forms (0.1 %) in 
plural genitive. 

From this kind of distribution and scarcity of variation in word forms follows that 
only generation of English plural nominative besides singular nominative form should 
yield fairly good IR results. The situation is basically the same as with the so called s-
stemmer, but in reverse: while s-stemmer removes plural and genitive s, we generate 
plural forms with the s [3]. This procedure is named En-FCG_2 in the tests. To see 
the effect of full paradigm generation we also made an En-FCG procedure which in-
cludes genitive forms. This procedure is named En-FCG_2G in the tests. 

4   Results 

4.1   Results of English Queries 

It was to be expected that English would not benefit much from any of the variation 
management methods used. So far usually a stemmer that combines both inflectional 
and derivational stemming has achieved best results for English IR, but the difference 
between doing nothing and the best method is usually small [15, 16]. For English we 
compared lemmatization, Snowball stemmer [17], plain query words and the two En-
FCG procedures. Table 2 shows results of our short English queries in mean average 
precisions (MAP, given by trec.eval program) for all the runs and Table 3 shows the 
results of long queries. Compared methods are coded in the tables as follows: Lem-
mas (ENGTWOL lemmatizer), Plain (plain query keywords), Stems (Snowball stem-
mer), EN-FCG_2 (only nominative forms in singular and plural) and En-FCG_2G 
(En-FCG_2 + genitive). 

Table 2. English results, title queries, MAP 

Lemmas Plain Stems En-FCG_2 En-
FCG_2G 

0.4102 0.4065 0.4287 0.4201 0.4256 

Table 3. English results, title-description queries, MAP 

Lemmas Plain Stems En-FCG_2 En-
FCG_2G 

0.4671 0.4467 0.4809 0.4591 0.4472 
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Fig. 2. P/R graphs of short English queries 

English Long Queries
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Fig. 3. P/R graphs of long English queries 

Figures 2 and 3 show the P/R graphs of short and long English queries. 
All the methods perform almost at the same level, and the best mean average preci-

sion is achieved by Snowball stemmer both in short and long queries. Lemmatization 
does not perform very well with English short queries, and it is the second worst 
method there. With long queries it performs better, being the second best method. 
Overall the difference of doing nothing to query words and the best achieved results is 
small, only 2.22 % with short queries and 3.42 % with the long ones. Generation of 
plural nominative forms for English nouns in En-FCG_2 with short queries increases 
MAP about 1.5 % compared to plain query words, and slightly less with long queries. 
En-FGC_2G with added genitive forms performs only slightly better than En-FCG_2 
with short queries, but worse with long queries. 
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Statistical significance of the results was tested using the Friedman test, using the 
version in Conover [18]. None of the differences between different methods were 
statistically significant for English. 

4.2   Results of Finnish Queries 

Finnish was morphologically the most complex language in our tests. Kettunen and 
Airio [5] had used four different FCG procedures in their tests, but two of the proce-
dures with least word forms did not yield too good IR results. Thus for Finnish we 
compared two FCG procedures with 9 and 12 variant query word forms with lemmati-
zation, Snowball stemmer and plain query words. Table 4 shows our Finnish results for 
short queries in mean average precisions for all the runs, and Table 5 shows the results 
of long queries. The methods compared are coded in the tables as follows: Lemmas 
(FINTWOL lemmatizer, compounds split in the index), Plain (plain query keywords), 
Stems (Snowball stemmer), FCG_12 (twelve forms of six cases in singular and plural) 
and FCG_9 (three cases in singular and plural and three cases in singular only). 

Table 4. Finnish results, title queries, MAP 

Lemmas Plain Stems FCG_12 FCG_9 

0.4525 0.3041 0.3841 0.4028 0.4021 

Table 5. Finnish results, title-description queries, MAP 

Lemmas Plain Stems FCG_12 FCG_9 

0.5071 0.3753 0.4624 0.4804 0.4734 

 
Figures 4 and 5 show the P/R graphs of short and long queries of Finnish. 
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Fig. 4. P/R graphs of short Finnish queries 
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Finnish Long Queries
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Fig. 5. P/R graphs of long Finnish queries 

As can be seen from the results, FINTWOL lemmatizer performs best with short 
queries and both of the FCG procedures perform about 5 % below it, but slightly  
better than Snowball stemmer. With long queries situation is similar: FINTWOL 
yields also best results, and both of the Finnish FCG procedures perform very well 
being slightly better than Snowball stemmer. The difference of FGCs to lemmatizer is 
2.7 – 3.4 per cent. 

Comparing the statistical significance of the performance of the methods using the 
Friedman test gave significant differences (p < 0.01) for the entire set of methods. 
Statistically significant pairwise differences (p ≤ 0.01) within short and long queries 
were found between all the variation management methods and plain queries using 
the Friedman test. There were no statistically significant pairwise differences between 
lemmatization, stemming and the FCG procedures. 

4.3   Results of Swedish Queries 

For Swedish we compared lemmatization, the Snowball stemmer, plain query words 
and two FCG procedures. Table 6 shows results of short queries for Swedish in mean 
average precisions for all the runs, and Table 7 shows results for long queries. The 
methods compared are coded in the tables as follows: Lemmas (SWETWOL lemma-
tizer, compounds split in the index), Plain (plain query keywords), Stems (Snowball 
stemmer), Sv-FCG_4 (four forms) and Sv-FCG_2 (two forms). The μ value below the 
 

Table 6. Swedish results, title queries, MAP 

Lemmas Plain Stems Sv-
FCG_4 

Sv-FCG_2 

0.3896 
(μ= 800) 

0.2950 
(μ= 
2500) 

0.3618 
(μ= 900) 

0.3620 
(μ= 900) 

0.3472 
(μ= 900) 
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Table 7. Swedish results, title-description queries, MAP 

Lemmas Plain Stems Sv-
FCG_4 

Sv-FCG_2 

0.4505 
(μ= 800) 

0.3738  
(μ= 
2500) 

0.4145  
(μ= 
1500) 

0.3913 
(μ= 500) 

0.3635  
(μ= 1100) 

 
MAP shows the used μ parameter value, which gave the best result for runs (default 
being 2500 with the Dirichlet smoothing [9]). 

Figures 6 and 7 show the P/R graphs of short and long queries of Swedish. 
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Fig. 6. P/R graphs of short Swedish queries 

Swedish Long Queries

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Recall

P
re

ci
si
on

SWETWOL

Sv-FCG_4

Sv-FCG_2

SNOWBALL

PLAIN

 
Fig. 7. P/R graphs of long Swedish queries 
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Our Swedish results for short queries are along the lines of earlier results of [5]. 
The baseline given by the plain query words with Lemur is 5 % higher than with In-
query used in Kettunen and colleagues [5], and so are also other results. Lemmatiza-
tion performs best with short queries, and the difference to the best Swedish FCG is 
about 2.7 %. Snowball stemmer performs at the same level as the best Sv-FCG  
procedure. 

With long queries SWETWOL lemmatizer is the best method and Snowball stem-
mer performs second best. Sv-FCGs do not perform very well, and FCG_2 performs 
worse than unprocessed query words with long queries. 

Comparing the statistical significance of the performance of the methods using the 
Friedman test gave significant differences (p < 0.01) for the entire set of methods. 
Statistically significant pairwise differences (p ≤ 0.01) for short queries were found 
between SWETWOL, Sv-FCG_4, Sv-FCG_2, Snowball and plain queries using the 
Friedman test. With long queries SWETWOL stemmer was significantly better than 
plain queries and both Sv_FCGs. Snowball stemmer was also statistically signifi-
cantly better than Sv_FCG_2. 

4.4   Results of German Queries 

For German we compared also lemmatization, Snowball stemmer, plain query words 
and two German FCG procedures. Table 8 shows the results of German short queries 
in mean average precisions for all the runs, and Table 9 the results of long queries. 
The methods compared are coded in the tables as follows: Lemmas (GERTWOL 
lemmatizer, compounds split in the index), Plain (plain query keywords), Stems 
(Snowball stemmer), De-FCG_4 (four forms) and De-FCG_2 (two forms). 

Figures 8 and 9 show the P/R graphs of short and long queries of German. 

Table 8. German results, title queries, MAP 

Lemmas Plain Stems De-
FCG_4 

De-FCG_2 

0.3524 
(μ= 2500) 

0.2854 
(μ= 
2300) 

0.3354 
(μ= 2000) 

0.2962 
(μ= 
1800) 

0.3029 
(μ= 2800) 

Table 9. German results, title-description queries, MAP 

Lemmas Plain Stems De-
FCG_4 

De-FCG_2 

0.4456 
(μ= 1500) 

0.3842 
(μ= 
2400) 

0.4332 
(μ= 
2000) 

0.4158 
(μ= 700) 

0.3937 
(μ= 700) 



 Automatic Generation of Frequent Case Forms of Query Keywords in Text Retrieval 233 

German Short Queries
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Fig. 8. P/R graphs of short German queries 

German Long Queries
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Fig. 9. P/R graphs of long German queries 

The results of German short queries seem to be the worst of all the results. The dif-
ference between doing nothing and the best De-FCG procedure is only 1.83 % in 
short queries, opposed to over 4 % earlier with Inquery in Kettunen and colleagues 
[5]. Lemmatization did not perform very well with Inquery, but with Lemur it per-
forms clearly best. Plain query words perform also quite well with Lemur. 

Lemmatization was the best method also with long queries. Snowball stemmer is 
the second best method with long German queries, but De-FCG_4 performs also quite 
well here, being only 2.98 % behind GERTWOL lemmatizer. The gap between De-
FCG_4 and plain query words is at best 3.13 % with long queries. 

Comparing the statistical significance of the performance of the methods using the 
Friedman test gave significant differences (p < 0.01) for the entire set of methods for 
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short queries. Statistically significant pairwise differences (p ≤ 0.01) for short queries 
were found between lemmatization and plain queries and between lemmatization and 
both of the De-FCG procedures. Also Snowball stemmer was statistically signifi-
cantly better than plain queries and both of the De-FCG procedures. With long  
queries statistical significance test of the methods using the Friedman test gave sig-
nificant differences (p < 0.01) for the entire set of methods. In pairwise comparisons 
GERTWOL and Snowball stemmer were significantly better than plain queries and 
De-FCG_2 procedure. 

5   Discussion and Conclusion 

We have now set up and evaluated automatized FCG query generation with four lan-
guages that are morphologically different. English is morphologically simple, Swed-
ish and German moderately complex, and Finnish the most complex of all. English 
FCGs performed quite well: they gained better mean average precisions than lemma-
tization (with short queries) or plain query words and were only slightly beyond  
performance of Snowball stemmer in a setting, where the overall difference between 
the best and worst method will anyhow be small regardless of the morphological tools 
used. This shows that the usage of FCG style generation for languages with little 
morphological variation in words is a feasible alternative to lemmatization and stem-
ming, if morphological tools need to be used with text retrieval. 

Our “mid-level” languages with respect to morphological complexity, Swedish and 
German, got partly expected and partly worse than expected FCG results. Swedish 
results for short queries were reasonably good, and results for long queries slightly 
worse. German results were worse than expected, as the German FCGs were only 
slightly better than plain query words with short queries. In long queries the gap was 
slightly bigger. Lower than expected German results are most obviously due to the 
fact, that the German generator version from Canoo uses a 100 000 word lexicon7 for 
generation and all the other generators are lexiconless and thus able to cope better 
with unknown words. Canoo’s generator was unable to generate any inflected forms 
for about 100 (19 %) of the nominal query words, because they were left either  
unanalyzed by GERTWOL or otherwise unknown to the generator. Most of these 
words are either proper names or compound nouns, which many times lack from dic-
tionaries, but are important for the queries. This emphasizes the limits of the lexical 
lemmatizers and generators and also limits of simulated query procedures used in 
Kettunen and colleagues [5]: upper limits of performance achieved with simulation 
may not be achieved with real word generation programs, which have their restric-
tions. Also impact of the retrieval system needs consideration. As the results of [4, 5] 
were achieved with InQuery, change of retrieval system to Lemur changes some of 
the results. Overall plain query words fare better with Lemur than with InQuery, but 
also other methods yield better results, and thus the relative differences between doing 
nothing and morphological processing are almost the same with all the languages. 
This emphasizes the pragmatic or empirical nature of IR as Robertson states [19]. 
                                                           
7 A lexicon with 210 000 base forms is also available. Usage of the larger generation lexicon 

might yield better results, but as also GERTWOL’s capability to analyze topical words to base 
forms affects the end result, the larger generation lexicon may not help much. 
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Our Finnish results were good as the results of FCG procedures were only about 
2.5-5 % worse than results of lemmatization and slightly better than results of the 
Snowball stemmer. Finnish FCGs behaved consistently in both short and long queries, 
being always statistically significantly better than plain query words, and never worse 
than lemmatization or stemming. FCG procedures fared actually slightly better with 
Lemur than with Inquery, gaining about 2 % in MAP with both short and long queries. 

Our aim in this paper has been setting up an automatized query generation system 
for several languages with purpose to show feasibility of the FCG method that has 
been simulated earlier. The results of four languages, although not totally compatible 
with earlier results, show that the method works well with word forms generators 
taken off-the-shelf from different sources in a new retrieval system. On the basis of 
these and earlier findings and common knowledge about word form distributions in 
texts of natural languages, it is to be expected, that the method will work for other 
languages of equal morphological complexity as well. Applications of the proposed 
restricted generation method include in particular Web IR for languages poor in mor-
phological resources and with at least moderate amount of morphological variation 
that needs management in full-text retrieval. Also the multi-linguality of a web index 
[20] can be dealt with the approach. As the indexes consist of mixture of word forms 
in different languages with no linguistic processing (lemmatization or stemming), 
language specific FCG procedures will yield better retrieval results than usage of 
plain query words in random textual forms or especially base forms. A natural con-
tinuation for work done in this paper would thus be evaluation of web retrieval using 
the FCG method for a group of different languages showing different degrees of mor-
phological complexity. 
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Abstract. We propose a novel machine learning approach to the task
of identifying definitions in Polish documents. Specifics of the problem
domain and characteristics of the available dataset have been taken into
consideration, by carefully choosing and adapting a classification method
to highly imbalanced and noisy data. We evaluate the performance of a
Random Forest-based classifier in extracting definitional sentences from
natural language text and give a comparison with previous work.

1 Introduction

Natural Language Processing (NLP) tasks often involve heavily imbalanced data,
with a dominating “uninteresting” class and a minority “interesting” class. One
such task is that of definition extraction, where a set of sentences is to be clas-
sified into definitional and non-definitional sentences. There may be as many as
20 non-definition sentences for any single definition sentence in an instructive
text, but it is the latter class that a definition extraction system is interested in.

The usual Machine Learning (ML) classifiers, ranging from naïve bayesian
methods, through decision trees, perceptrons and various lazy learners, to the
currently very popular classifiers based on Support Vector Machines (SVMs) and
on Adaboost, do not work well in such cases, even when trained with subsam-
pling (of uninteresting examples) or oversampling (of the interesting examples).
The problem is that such classifiers attempt to minimise the overall error rate,
rather than concentrating on the interesting class. In case of a dataset with a
1:20 ratio of interesting to uninteresting cases, it is difficult to beat a classifier
uniformly assigning each new item to the uninteresting class: such a classifier
reaches the overall accuracy higher than 95%, but at the cost of misclassifying
all the interesting cases!

The problem of heavily imbalanced data has already been addressed in the
ML community, where most solutions consist either in the assignment of a high
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cost to the misclassification of the minority class or in subsampling and/or over-
sampling. A novel approach to the problem has been proposed in Chen et al.
2004 and it consists in a modification of the Random Forest (Breiman, 2001)
classifier.

Random Forest (RF) is a homogeneous ensemble of unpruned decision trees
(e.g., CART, C4.5), where — at each node of the tree — a subset of all attributes
is randomly selected and the best attribute on which to further grow the tree
is taken from that random set. Additionally, Random Forest is an example of
the bagging (bootstrap aggregating) method, i.e., each tree is trained on a set
bootstrapped1 from the original training set. Decisions are reached by simple
voting.

Balanced Random Forest (BRF; Chen et al. 2004) is a modification of RF,
where for each tree two bootstrapped sets of the same size, equal to the size of
the minority class, are constructed: one for the minority class, the other for the
majority class. Jointly, these two sets constitute the training set.

The aim of this paper is to demonstrate that BRF is a technique well-suited
to the difficult problem of definition extraction and, by extension, other NLP
tasks. When trained on the dataset of Polish instructive texts introduced in
Przepiórkowski et al. (2007b,a), BRF-based classifiers give better results than
manual definition extraction grammars (Przepiórkowski et al., 2007a), the usual
ML classifiers, even when sequentially combined with some a priori linguistic
knowledge (Degórski et al., 2008), or a linear combination of such ML classifiers
and complete manual grammars (Przepiórkowski et al., 2008).

In what follows we first introduce the attribute space assumed here (§2), then
describe the used classification approach (§3) and present the results of our
experiments (§4). Finally, we outline work conducted previously in the field (§5)
and conclude with possibilities of further research (§6).

2 Feature Selection

Employing any machine learning approach to unstructured data requires that
data is represented in the form of feature values, either binary, numeric or nom-
inal. We use a relatively straightforward approach of n-gram representation of
the sentences in the available document set. Each sentence is represented by a
vector of binary values, where each value indicates whether a particular n-gram
is present in the corresponding sentence. The n-grams consist of base forms of
words, their parts of speech and grammatical cases that appear in the greatest
number of sentences in all documents. We individually count the occurrences
of each of the n-grams in sentences marked as definitions and non-definitions.
Both lists are then combined and a number of most common entries is selected
to form a dictionary of features used for sentence description.

1 That is, examples in such a bootstrapped training set are uniformly and randomly
drawn with replacement from the original training set. As a result, some examples
will be repeated while other will not make it to the bootstrapped set.
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Even by limiting the length of generated n-grams to n ≤ 3 and having a
choice of three distinct n-gram types: base word form (further denoted as base),
part of speech of the word (ctag) and its grammatical case (case), we face a
problem of many possible dictionary configurations, selecting from the set of
31 + 32 + 33 = 39 possibilities. Including too many n-gram types would result
in a an extremely large attribute space, while including too few in reducing the
potential classification accuracy. We approached the problem by measuring the
average value of the χ2 statistic of each of the possible n-gram types with respect
to the class attribute. This was performed on a training set consisting of all the
available documents, on the basis of 100 n-grams for each of the 39 types. Table 1
presents a list of the 20 n-gram types with the highest average χ2 value.

Table 1. Top 20 values of the χ2 statistic of possible n-gram permutations

rank n-gram average χ2 rank n-gram average χ2

1 base 21.04 11 base base ctag 16.70
2 ctag ctag case 18.91 12 ctag base ctag 16.29
3 ctag base 18.53 13 ctag ctag base 14.77
4 base case 18.45 14 ctag case 14.69
5 base ctag 17.92 15 ctag ctag ctag 14.63
6 base base 17.81 16 base ctag case 14.52
7 base base case 17.73 17 base base base 14.33
8 ctag base case 17.43 18 ctag 13.88
9 ctag ctag 17.11 19 ctag case ctag 13.65

10 ctag base base 16.73 20 base ctag ctag 13.59

Unfortunately, just taking a number of attributes from the top of this list
does not guarantee the best possible selection of n-gram types. This is because
certain attribute pairs may be statistically dependent and introducing both of
them into the dictionary would result in noise, instead of meaningful data for
the classifier. Having experimented with different attribute configurations, we
have chosen the following heuristic procedure of attribute selection: we take one
attribute at a time from the sorted list, starting from the top, and reject these
n-grams of length n = 3, for which another trigram with one of the same feature
types has already been selected. The resulting set of 10 selected n-gram types is
presented in Table 2.

Table 2. The selected set of n-gram types

no. n-gram no. n-gram

1 base 6 base base
2 ctag ctag case 7 ctag ctag
3 ctag base 8 ctag case
4 base case 9 base base base
5 base ctag 10 ctag
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For comparison purposes, we also present here the results of experiments on a
dataset from the work of Degórski et al. 2008, where the set of n-grams has been
selected in a different manner and using a different set of attributes. Specifically,
this dataset, referenced later as the “baseline dataset”, has been created by using
the 100 most common uniform unigrams, bigrams and trigrams of base forms,
parts of speech and cases (i.e., base, base-base, . . . , ctag-ctag-ctag).

3 Classifying Imbalanced Data

As noted earlier, the available dataset of definitional and non-definitional sen-
tences is highly imbalanced and consists of 10830 sentences, 546 of which contain
— or are a part of — definitions. Consequently, any successful classification-based
approach to extraction of definitions from this data must take into consideration
— either explicitly or implicitly — the difference in training samples from both
categories.

The most common way of dealing with imbalanced data is introducing ap-
propriately weighted costs for specific classes or sampling the available training
set. Balanced Random Forest is an approach where equalizing the influences
of classes is not performed externally to classification algorithm by evaluating
weights, but is integrated in the very process. Here, for the task of extracting def-
initions from a set of documents by sentence classification, we use the following
algorithm, based on Chen et al. 2004:

– split the training corpus into definitions and non-definitions; let us assume
that there are nd definitions and nnd non-definitions, where nd < nnd;

– construct k trees, each in the following way:
• draw a bootstrap sample of size nd of definitions, and a bootstrap sample

of the same size nd of non-definitions;
• learn the tree (without pruning) using the CART algorithm, on the basis

of the sum of the two bootstrap samples as the training corpus, but:
• at each node, first select at random m features (variables) from the set

of all M features (m < M ; selection without replacement), and only
then select the best feature (out of these m features) for this node; this
random selection of m features is repeated for each node;

– the final classifier is the ensemble of the k trees and decisions are reached by
simple voting.

We have chosen the value of m to be equal to
√

M in all the experiments.
As Random Forest is a well known classifier and widely covered in the liter-

ature, it also allows having a greater insight into the results produced by the
BRF approach. RFs have been verified to be suitable both for large and highly
dimensional data, as is the case in natural language processing. They also pro-
vide means of estimating the classification error rate without performing a full
cross-validation procedure and for estimating variable importance and variable
interactions. In our current experiments we have not performed such estima-
tions, as we are more interested in selecting the optimal set of n-gram types,
than comparing the importance of particular features.
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4 Experimental Results

We use several statistical parameters to describe and compare the results of the
proposed classification approach: recall and precision are the most commonly
calculated information retrieval performance measures. We assume the sentences
marked as definitions to be the set of relevant documents in the retrieval task:

precision =
|{definitions} ∩ {retrieved sentences}|

|{retrieved sentences}| (1)

recall =
|{definitions} ∩ {retrieved sentences}|

|{definitions}| (2)

For a single-valued performance indicator, we use the F-measure, both in the
form used in the previous papers on Polish definition extraction (marked as
Fα) and in the more common sense (marked as Fβ). For F1 we just use F1 (as
Fα=1 = Fβ=1):

Fα =
(1 + α) · precision · recall

α · precision + recall
(3)

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
(4)

Finally, we also calculate the area under the ROC curve (AUC), which is another
single-valued measure of retrieval accuracy, but not tied to a single probability
threshold value, like the F-measure. Still, because in the task of definition ex-
traction we are more interested in maximizing the recall value (in other words:
minimizing the false negative rate), we compare all further experiment results
on the basis of Fα=2 and Fβ=2 values.

Our initial experiments aimed at verifying whether any additional prepro-
cessing of the available data, commonly applied to text classification problems,
would result in improving the accuracy of definition extraction. Firstly, we have
included the information about the relative position of an n-gram in a sentence
into the feature vector. By dividing the sentences into three equal parts and
counting the n-gram occurrences in each of the parts separately, we have in-
creased the attribute space three times, but achieved no increase in performance
(Table 3). We may speculate that the positional information introduced too
much noise, as the available dataset was too small to benefit from the signifi-
cantly larger feature space.

Similarly, there was no gain in definition extraction accuracy after includ-
ing the information about the actual number of occurrence counts of particular
n-grams in the analyzed sentences. This may also be explained by a relatively
small size of the available dataset and sparseness of the feature vector. The cal-
culated numbers of occurrences were negligibly small and provided no additional
information to the classifier.

Finally, applying a stop-list of most common words and filtering non-alpha-
numeric characters from the documents also proved to reduce both the value of
Fα=2 and Fβ=2 measures. Thus, neither of the attribute modifications and data
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Table 3. The influence of additional preprocessing steps on classification accuracy.
Ten-fold cross-validation results, with 100 iterations of random trees generation.

dataset precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

base 18.1% 66.1% 28.4% 35.1% 45.9% 43.2% 60.0% 82.4%
n-gram position 16.2% 63.9% 25.9% 32.3% 42.9% 40.2% 57.4% 81.2%

n-gram occurrence 17.2% 65.0% 27.2% 33.7% 44.4% 41.8% 58.7% 81.4%
base form stoplist 17.3% 63.0% 27.2% 33.5% 43.7% 41.2% 57.2% 81.4%

preprocessing steps mentioned above have been used in further experiments. A
detailed comparison of each of the approaches has been presented in Figure 2a.

In an effort to determine the optimal size of feature space for classification,
we have conducted a series of experiments with an increasing number of n-grams
used for sentence representation (Table 4 and Figure 1a). On the basis of the
results, we have decided to use 100 n-grams of each type in further experiments,
as increasing their number above that threshold does not seem to have any
positive influence on the classification accuracy. By choosing that number, we
obtained a training set consisting of 10830 instances and 929 attributes (as there
are less than 100 different n-grams of the type ctag).

Table 4. The influence of the number of used n-grams of each type on classifica-
tion accuracy. Ten-fold cross-validation results, with 100 iterations of random trees
generation.

n-grams precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

10 14.4% 57.7% 23.1% 28.8% 38.5% 36.0% 51.7% 76.6%
20 17.2% 63.7% 27.1% 33.5% 43.9% 41.4% 57.7% 81.7%
30 18.7% 65.4% 29.0% 35.6% 46.1% 43.6% 59.6% 82.7%
40 19.1% 66.8% 29.7% 36.4% 47.1% 44.5% 61.0% 82.6%
50 19.3% 67.9% 30.1% 37.0% 47.9% 45.2% 62.0% 83.1%
60 19.3% 67.2% 29.9% 36.7% 47.5% 44.9% 61.3% 82.9%
70 19.1% 66.8% 29.8% 36.5% 47.2% 44.6% 61.0% 83.2%
80 19.7% 67.2% 30.4% 37.2% 47.9% 45.3% 61.5% 83.7%
90 19.8% 69.4% 30.8% 37.8% 49.0% 46.2% 63.3% 84.5%

100 20.1% 70.1% 31.2% 38.3% 49.6% 46.8% 64.0% 83.8%
110 19.6% 68.1% 30.4% 37.3% 48.2% 45.6% 62.2% 84.1%
120 19.6% 67.8% 30.4% 37.3% 48.1% 45.5% 61.9% 84.1%

As the accuracy of Random Forest classification depends heavily on the num-
ber of generated random trees used in voting, we have conducted the exper-
iments both on the current dataset and on the baseline dataset provided by
Degórski et al. 2008 for several different numbers of iterations (Tables 5 and 6,
Figure 1b). We have performed ten-fold cross-validation experiments instead of
counting the out-of-bag error of the bagging classifier, so as to make the results
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Fig. 1. 1a Performance of classification with respect to the number of used n-grams,
1ba comparison between classification performance using the baseline dataset and the
current dataset for different number of iterations

as closely comparable with those of Degórski et al. 2008 as possible. The de-
tailed comparison of both sets, with respect to BRF classification accuracy for
the number of iterations which proved to give the best results for each of the
sets, is presented in Figure 2b.
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Fig. 2. ROC curve of classification: 2a using additional data preprocessing steps, 2b
using the baseline dataset and the current dataset

As may be seen from the results of the consecutive experiments, increasing
the number of generated random trees improves the accuracy of definitional
sentences classification only up to a certain point. Above that threshold the
performance reaches a plateau and no further iterations are necessary.

While the use of Balanced Random Forest classification method alone signif-
icantly improves the definition extraction performance over other pure machine
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Table 5. Ten-fold cross-validation results of the baseline dataset classification

iterations precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

100 15.1% 63.0% 24.4% 30.6% 41.2% 38.6% 56.2% 80.6%
200 16.1% 64.3% 25.8% 32.2% 42.9% 40.3% 57.7% 81.3%
300 16.2% 63.8% 25.9% 32.3% 42.8% 40.2% 57.3% 81.6%
400 16.5% 63.6% 26.2% 32.6% 43.1% 40.5% 57.3% 81.6%
500 16.8% 64.1% 26.6% 33.1% 43.7% 41.0% 57.9% 81.7%
600 16.7% 63.9% 26.5% 32.9% 43.5% 40.9% 57.7% 81.7%
700 16.9% 63.6% 26.7% 33.1% 43.5% 40.9% 57.5% 81.8%
800 17.0% 64.1% 26.9% 33.4% 43.9% 41.3% 58.0% 81.9%
900 16.9% 63.6% 26.7% 33.1% 43.5% 40.9% 57.5% 81.9%

1000 16.9% 64.0% 26.8% 33.2% 43.7% 41.1% 57.8% 81.9%

Table 6. Ten-fold cross-validation results of the current dataset classification

iterations precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

100 20.1% 70.1% 31.2% 38.3% 49.6% 46.8% 64.0% 83.8%
200 20.5% 68.7% 31.5% 38.5% 49.3% 46.7% 63.0% 84.4%
300 20.6% 68.7% 31.7% 38.7% 49.5% 46.8% 63.0% 84.5%
400 21.0% 69.2% 32.2% 39.2% 50.0% 47.4% 63.6% 84.6%
500 21.1% 68.9% 32.3% 39.3% 50.0% 47.4% 63.4% 84.7%
600 21.2% 68.9% 32.5% 39.4% 50.1% 47.5% 63.4% 84.7%
700 21.4% 69.0% 32.6% 39.6% 50.3% 47.7% 63.6% 84.7%
800 21.3% 69.0% 32.5% 39.5% 50.3% 47.7% 63.6% 84.8%
900 21.1% 68.7% 32.3% 39.2% 49.9% 47.3% 63.2% 84.8%

1000 21.2% 68.7% 32.4% 39.3% 50.0% 47.4% 63.2% 84.8%

learning based approaches (e.g., as reported by Degórski et al. 2008), it is worth
pointing out that a careful feature selection is an equally important step. We
achieve an over 18% increase in accuracy, as indicated by the Fα=2 measure, by
describing the sentences with a more representative set of attribute types.

5 Previous Work

To the best of our (and Google’s) knowledge, there is no previous NLP work tak-
ing advantage of the Balanced variety of RFs. Apparently, the first NLP appli-
cations of the plain Random Forests are those reported in Nielsen and Pradhan
2004, for PropBank-style (Kingsbury and Palmer, 2002) role classification, and
in Xu and Jelinek 2004 (followed by a series of papers by the same authors, cul-
minating in Xu and Jelinek 2007), where they are used in the classical language
modelling task (predicting a sequence of words) for speech recognition and give
better results than the usual n-gram based approaches.
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On the other hand, there is some substantial previous work on definition ex-
traction, as this is a subtask of many applications, including terminology extrac-
tion (Pearson, 1996), the automatic creation of glossaries (Klavans and Muresan,
2000, 2001), question answering (Miliaraki and Androutsopoulos, 2004;
Fahmi and Bouma, 2006), learning lexical semantic relations (Malaisé et al.,
2004; Storrer and Wellinghoff, 2006) and the automatic construction of on-
tologies (Walter and Pinkal, 2006). Despite the current dominance of the ML
paradigm in NLP, tools for definition extraction are invariably language-
specific and involve shallow or deep processing, with most work done
for English (Pearson, 1996; Klavans and Muresan, 2000, 2001) and other
Germanic languages (Fahmi and Bouma, 2006; Storrer and Wellinghoff, 2006;
Walter and Pinkal, 2006), as well as French (Malaisé et al., 2004).

When ML methods are used, it is in combination with linguistic processing.
For example, Fahmi and Bouma 2006 applied a robust wide-coverage parser of
Dutch to select candidate definition sentences, which were then subject to an ML
classifier. They experimented with three classifiers (Naïve Bayes, SVM and Max-
imum Entropy) and a number of possible feature configurations and obtained
the best results for the Maximum Entropy classifier and feature configurations,
which included some syntactic features.

For Polish, first attempts at constructing definition extraction systems are de-
scribed — in the context of other Slavic languages — in Przepiórkowski et al.
2007b, and improved results are presented in Przepiórkowski et al. 2007a. In that
work definitions were identified on the basis of a manually constructed partial
grammar (a cascade of regular grammars over morphosyntactically annotated
XML-encoded texts), with the best grammar giving the precision of 18.7% and
recall of 59.3%, which amounts to Fα=2 = 34.4%. Przepiórkowski et al. 2007a
note that these relatively low results are at least partially due to the inherent dif-
ficulty of the task: the inter-annotator agreement measured as Cohen’s κ is only
0.31 (the value of 1 would indicate perfect agreement, the value of 0 — complete
randomness). The same dataset was used in the experiments reported here.

An approach more directly comparable to ours is presented in Degórski et al.
2008. The general idea is analogous to that of Fahmi and Bouma 2006: first
candidate definition sentences are selected via linguistic methods and then they
are classified using ML methods. What is novel in Degórski et al. 2008 is the
very basic character of the linguistic knowledge (a small low-precision collection
of n-grams typical for definitions, including the copula, sequences corresponding
to that is and i.e., etc.), and the use of ensembles of classifiers in the second
stage. The best results reported there, the precision of 19.9%, recall of 69.2%,
and Fα=2 = 38.0%, are significantly better than those of Przepiórkowski et al.
2007a, but still, despite some use of a priori language-specific knowledge, worse
than the pure ML results reported here.

6 Conclusions and Future Work

Our currently reported results seem to restore hope in the machine learning
approach to the vaguely specified task of definition extraction from a small set of
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text documents. It is usually the case that the smaller, less structured and more
noisy the available training data, the lesser is the advantage of such methods over
hand-crafted rules and grammars, utilizing linguistic knowledge. Thus, achieving
better results in such circumstances by a pure machine learning approach seems
to justify the necessary work on feature and classification method selection.

It would still be interesting to combine the current classification method with
manually constructed grammars, similarly as in Degórski et al. 2008, to see if
such a sequential processing scheme would further improve the definition extrac-
tion performance. On the basis of the experiments described there, we might ex-
pect a considerable increase in retrieval precision, at the cost of a slight decrease
in recall.
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Abstract. Automatic Term Recognition (ATR) is defined as the task
of identifying domain specific terms from technical corpora. Termhood-
based approaches measure the degree that a candidate term refers to a
domain specific concept. Unithood-based approaches measure the attach-
ment strength of a candidate term constituents. These methods have
been evaluated using different, often incompatible evaluation schemes
and datasets. This paper provides an overview and a thorough eval-
uation of state-of-the-art ATR methods, under a common evaluation
framework, i.e. corpora and evaluation method. Our contributions are
two-fold: (1) We compare a number of different ATR methods, showing
that termhood-based methods achieve in general superior performance.
(2) We show that the number of independent occurrences of a candi-
date term is the most effective source for estimating term nestedness,
improving ATR performance.

Keywords: automatic term recognition, ATR, term extraction.

Introduction

A terminology bank (vocabulary) contains the terms, which refer to the concepts
of a domain. Constructing such a vocabulary is crucial, because it is the starting
point for many applications such as machine translation, indexing, and ontol-
ogy learning [8]. Manual construction is time-consuming, error-prone, labour-
intensive and unable to deal with the rapid growth of technical terms. ATR
targets at solving these obstacles.

ATR techniques can be divided into two broad categories: unithood-based and
termhood-based ones [8]. Unithood refers to the attachment strength of the con-
stituents of a candidate term. Termhood refers to the degree that a candidate
term is related to a domain-specific concept. For example, in an eye-pathology
corpus, “soft contact lens” is a valid term, which has both high termhood and
unithood. However, its frequently occurring substring “soft contact”, has high
unithood and low termhood, since it does not refer to a key domain concept.

Unithood-based methods, such as t-test, χ2-test, Log-likelihood (LL) [3] and
pointwise mutual information (PMI) [1], have been thoroughly evaluated for
the task of collocation extraction [3,4,2,14]. In [3,4] the authors show that LL

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 248–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Experimental procedure

performs better than the other statistical measures due to its milder tendency
to overestimate rare events.

Given that unithood- and termhood-based methods capture different types of
information, it is still unclear whether the former are able to perform better
than the latter methods, such as C Value [5] and Statistical Barrier (SB) [13].
Furthermore, most ATR methods [5,3,1,13] have been evaluated using different
technical corpora, under different evaluation frameworks, with different sets of
parameters depending on the domain and test corpus. This lack of a common
evaluation scheme complicates the interpretation of results. It is unclear which
are the strengths and weaknesses of each method, making unmanageable the
choice of an appropriate ATR method as a starting point for other applications.

This paper provides an overview of the field of ATR and evaluates a num-
ber of linguistic and statistical approaches using two English corpora i.e. the
GENIA[6] and the PennBioIE [9] corpus. Figure 1 presents a block diagram of
our experimental procedure. A linguistic filter is applied on the corpus text to
identify candidate terms. Then, a statistical method ranks these candidates, to
create a list in decreasing order of scores. The evaluation scheme compares this
list to the gold standard terms, generated by the corpus annotation. The scheme
consists of a manually annotated corpus, and an evaluation method which as-
sesses the performance of ATR methods at a fine-grained scale; i.e. increments
of 0.5% of their candidate term ranked list, based on the one proposed in [16].

Our contributions are two-fold: firstly, we extensively compare state-of-the-art
approaches to ATR under a common evaluation scheme. We show that termhood-
based approaches, which take into consideration the nestedness of a candidate
term into others, such as C Value and SB, have in general superior performance
over methods which measure the strength of association among the tokens of
a multi-word candidate term, such as LL and PMI. Secondly, after further ex-
perimentation with different statistical approaches to nestedness we show that
the independent occurrences1 of a term is the most effective source of nested-
ness information, clearly improving the performance of ATR methods, in this
evaluation setting.

The rest of the paper is structured as follows: Sections 1 and 2 review linguistic
filtering and statistical approaches, respectively. Section 3 presents the evaluation
scheme, the experimental results and comments on them. Section 4 concludes
this paper.

1 Number of occurrences on its own; without being nested within others candidate
terms.
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1 Linguistic Filters

Initial ATR research focused on exploiting the parts-of-speech (PoS ) of multi-
word expression constituents. As a result, different pattern-based models (lin-
guistic filters) were proposed, to identify terms. For example, the linguistic filter
in formula 2 would recognise terms consisting of nouns (N ) or adjectives (A).
The choice of linguistic filter depends on the language and the domain of the
corpus and the application [5]. If the target is to identify terms with high recall
an open filter should be used, such as the one in formula 3, which applies on
numbers (#) and prepositions (P).

In this paper, four lenient PoS filters were employed to capture as many
terms as possible. Their performance was experimentally compared. The most
basic, Nouns, accepts sequences of Ns, only, since terms mainly consist of Ns.
The second, A&N, applies on sequences consisting of As and Ns ending with a
N (formula 1). The third linguistic filter, J&K (formula 2) was introduced by
Justeson and Katz [7] and has been widely used. Its first part is identical to A&N,
whereas the second applies on sequences which start with one or more Ns or As,
continue with a N followed by a P and end with zero or more Ns or As followed
by a N. Justeson and Katz [7] used this filter to extract multi-word terms from
large text collections in a variety of domains -metallurgy, space engineering and
nuclear energy-, reporting coverage of 97% (99% if Ps are allowed).

(A|N)+ N (1)
( (A|N)+ | (A|N)∗ (NP )? (A|N)∗ ) N (2)

( (A|N |#)+ | (A|N |#)∗ (NP )? (A|N |#)∗ ) N (3)

Nouns and A&N extract sequences of As, Ps and Ns. However, our initial
experimental projections show that approximately 6% of GENIA gold standard
terms contain numbers. To capture those, we extended J&K to J&K# (formula
3), so as to accept numbers (#) whenever it accepts Ns or As.

2 ATR Statistical Approaches

Approaches to ATR have been largely based on statistical information. However,
most of them include some linguistic part; usually a linguistic filter, to produce a
list of candidate terms (section 1). The statistical part assigns to each candidate
term, ct, a score, indicating how likely ct is a valid term. The most simple
statistical measure is the frequency of occurrence (FR), which captures terms
occurring frequently in the corpus. FR is used as a baseline in our evaluation.

2.1 Termhood-Based Methods

C Value [5] focuses on nested terms. The basic intuition is that a candidate term,
ct, should occur frequently on its own, not nested in other candidate terms. For
example, in an eye-pathology corpus, “soft contact lens” is a valid term, possibly
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occurring frequently. However, its substring “soft contact” is not an actual term
and should not be extracted, since it occurs frequently as nested [5].

However, the nested frequency of ct is not a reliable measure of its nestedness,
since it does not take into account the number of different candidate terms, in
which ct appears as nested. For example, consider the following terms in the
domain of real time systems: “real time clock”, “real time systems”, “real time
group” and “real time expert system”. The fact that they all contain “real time”
as substring, increases its possibility to be a term.

Consequently, the nestedness, NST , of ct is defined as the fraction of its nested
frequency over the number of distinct candidate terms, in which it appears as
nested. The length of a ct in tokens, |ct|, is also taken into account. The longer
ct is, the more likely ct is an actual term.

NST (ct) =
1

P (Tct)
∗

∑

b∈Tct

f(b)) (4)

In order to compute a termhood value, Frantzi et al. [5] subtract the nested-
ness, NST , of ct from its frequency of occurrence, f(ct). In case that ct appears
as nested, C Value is defined by the upper branch of equation 5, where Tct is the
set of candidate terms, in which ct appears as nested, P (Tct) is its cardinality
and L(ct) = log2(|ct|). In the opposite case, ct is assigned a value based on its
length and frequency of occurrence (lower branch of equation 5).

CV (ct) =
{

(f(ct) − NST (ct))L(ct), nested ct
f(ct)L(ct), otherwise (5)

NC Value incorporates contextual information into the C Value ATR process.
It consists of three parts. Firstly, C Value is applied on a corpus cp, to extract
a ranked list of candidate terms, l. Secondly, the top n candidate terms are
selected from l. For each of these, its context words cw are collected, using a
window of ±w words around it. Context words can be nouns, adjectives or verbs.
For each cw, the following weight is computed as: w(cw) = t(cw)

n , where t(w) is
the number of candidate terms cw appears with.

Thirdly, the C Value ranked list is refined by applying the weights w(cw)
to compute a context factor, CF , for each ct. The context factor of a ct ∈ l is
formally defined by equation 6, where Cct is the set of context words of ct, b is an
element of Cct, fct(b) is its frequency of occurrence as a context word and w(b)
is its weight as a context word. In the case that b was not encountered during
the stage of creating the list of context words it is assigned a 0 weight. NC Value
is computed as the linear interpolation of C Value (CV) and CF (equation 7).

CF (ct) =
∑

b∈Cct

fct(b) ∗ w(b) (6)

NCV (ct) = 0.8 ∗ CV (ct) + 0.2 ∗ CF (ct) (7)

Statistical Barrier (SB) [13] is another ATR termhood-based approach, which
assumes that terms having complex structure are made of existing simple terms.
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Thus, they first measure the termhood of single words, and then use it to measure
the termhood of complex terms. The basic intuition is that if a single word N ,
expresses a key concept of a domain, then N occurs not only frequently, but also
in various ways. Thus, there will be a number of valid terms containing N . This
potential relationship between single words and multi-word candidate terms is
exploited to perform ATR.

In particular, after PoS tagging a given corpus, Nakagawa [13] extracts a
list of single words. Let R(N) and S(N) be two functions that calculate the
number of distinct words that adjoin N or N adjoins, respectively. Then, for
each candidate term, ct = N1, N2, . . . , Nk a score is calculated (equation 8).

IMP (ct) = (
k∏

i=1

((R(Ni) + 1) ∗ (S(Ni) + 1))))1/2k (8)

Nakagawa [13] notes that the frequency of independent occurrences of candi-
date terms have a significant impact on the term recognition process. Indepen-
dent occurrences are the ones, where the candidate term ct, is not nested to any
other candidate term. To incorporate this, IMP is multiplied by the marginal
frequency, MF (ct), the number of independent occurrences of ct (equation 9).

SB(ct) = IMP (ct)MF (ct) (9)

2.2 Unithood-Based Methods

Termhood-based methods focus on measuring how likely a candidate term, ct, is a
domain-specific concept, by considering nestedness information. On the contrary,
unithood-based methods attempt to identify if the constituents of a multi-word
candidate term form a collocation rather than co-occurring by chance.

Log-likelihood (LL) [3] is a unithood-based measure. For bigram terms, ct =
N1N2, LL compares the observed frequency counts with the counts that would be
expected, if N1 and N2 were co-occurring assuming independence: P (N1, N2) =
P (N1)P (N2). A high LL means that observed and expected values diverge sig-
nificantly, indicating that N1 and N2 do not co-occur by chance. Contrarily, a
LL close to 0 indicates that N1 and N2 co-occur by chance.

For the computation, two tables are created. The first one, OT, holds the
observed counts taken from the corpus. The second, ET, contains the expected
values assuming independence (table 1). LL can then be calculated using equa-
tion 10, where nij is the i, j cell of OT, mij is the i, j cell of ET and T =

∑j
i nij .

LL = 2 ∗
∑

i,j

nij · log
(

nij

mij

)

, where mij =
∑

k nik ∗
∑

k nkj

T
(10)

For N -grams, where N > 2, there are more than one hypothesized models to
compare against the observed counts. For example, table 2 shows the different
hypothesized models for trigrams. We use the extended LL [11], in order to
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Table 1. Observed (OT ) and expected (ET ) value tables. Bigram: “gene expression”.

OT N1 ¬N1 ET N1 ¬N1

N2 n11 = 563 n12 = 702 N2 m11 = 35.44 m12 = 1, 229.56
¬N2 n21 = 1, 085 n22 = 57, 553 ¬N2 m21 = 1, 612.56 m22 = 55, 940.44

Table 2. Hypothesized models for trigrams

Model1 =
P (N1N2N3)

(P (N1)P (N2)P (N3))
Model2 =

P (N1N2N3)

(P (N1N2)P (N3))

Model3 =
P (N1N2N3)

(P (N1)P (N2N3))
Model4 =

P (N1N2N3)

(P (N1N3)P (N2))

calculate LL values for each hypothesized model. For each model a different
table of expected values is computed, while the observed values table remains
the same for all. Then, for each model LL is calculated (equation 10). The model
with the lowest LL value best represents the N -gram, since when a model is a
good fit the observed values are close to the expected ones.

Pointwise mutual information (PMI) [1] is an information theoretic measure
applied for N -gram terms. For bigrams, PMI quantifies the distance between
the joint distribution of N1 and N2 and the joint distribution if N1 and N2 were
independent. Equation 11 shows the PMI formula for bigram terms. If N1, N2

are independent: P (N1, N2) = P (N1) ∗ P (N2), then PMI is 0. For N -grams of
N > 2, there are more than one hypothesized models to compare against the
joint distribution of N -gram constituents. The process is similar to the process
followed in LL. For each model we calculate different PMI values, and we choose
the one with the lowest PMI value, i.e. the model which best represents the
observed counts. For example, the PMI formula for the ith 3-gram model of
table 2 is log(Modeli).

PMI(N1, N2) = log
P (N1, N2)

P (N1)p(N2)
(11)

3 Evaluation

3.1 Experimental Setting

For evaluation, the GENIA [6] and the PennBioIE [9] were used (table 3). Both
corpora consist of MEDLINE abstracts, 2, 000 and 2, 257 respectively, and their
terms are manually annotated.

For PennBioIE [9] evaluation we excluded annotations of quantitative values
and units. In GENIA, annotation terms are not part of the text, but of separate
xml attributes. Thus, GENIA gold standard (GS ) is created by collecting these
xml values and cleaning most non-alphanumerical characters. We observed that
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Table 3. GENIA and PennBioIE corpus statistics

sentences tokens terms distinct terms terms types

GENIA 18,546 454,848 97,876 35,947 36

PennBioIE 32,692 712,551 76,535 13,759 22

Table 4. GS term counts and candidate term counts per ling. filter and term length.

GENIA PennBioIE
Length GS N A&N J&K J&K# GS N A&N J&K J&K#

Any 28,142 29,751 69,457 85,978 138,251 7,447 46,519 80,205 99,194 178,939
2-grams 12,654 17,103 33,021 33,021 36,866 4,034 28,489 44,072 44,072 58,086
3-grams 9,051 8,813 21,401 28,071 37,146 1,820 11,421 22,530 31,930 49,570
4-grams 3,839 3,199 9,356 15,204 29,803 821 4,157 8,629 14,945 35,746
5-grams 1,559 1,020 3,699 6,339 18,099 388 1,486 3,070 5,447 20,019
6-grams 606 297 1,317 2,239 9,005 207 694 1,172 1,822 9,105

in a few cases annotation tokens are not lemmatized (e.g. “activators of transcrip-
tion”, “activating function”) or erroneous (e.g. “latent proviru”). However, we
hypothesize that a corpus with low level of noise is acceptable for our purposes.
Both GENIA and PennBioIE text was similarly cleaned. Then, both corpora
were tokenized and part-of-speech (PoS ) tagged using the GENIA tagger2.

The first and sixth column of table 4 shows GS term counts of GENIA and
PennBioIE, respectively. The following columns present candidate term counts,
identified by each linguistic filter, for each corpus. The filters are shown in order
of descending strictness. For example, the A&N filter identified far fewer candi-
dates than the J&K. However, even the most strict filter, Nouns, creates more
candidate terms than the valid ones. Note that, for each column, the count of
candidates of any length (row 1, table 4) is not equal to the sum of all N -grams,
because candidates of any length include sequences up to 12 tokens long.

The standard evaluation metrics Precision (P) and Recall (R) [12,15] (equa-
tion 12) were used for evaluating ATR statistical methods. F-Score is defined as
the weighted harmonic mean of P and R: 2

(
R−1 + P−1

)−1.

P =
# correctly identified terms

# identified terms
R =

# correctly identified terms
# GS terms

(12)

Table 5 shows R and P for every linguistic filter for candidates of any length
and N -grams for both corpora. We observe that the less strict a filter is, the
higher the R and the lower the P. A&N seems to achieve the best compromise
between R and P. ATR statistical methods re-rank the list of candidates, with
a target to output the actual terms higher. Thus, considering the whole list, the
performance of all statistical methods is the same (table 5).

2 www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
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Table 5. R (%) and P (%) per linguistic filter and length of candidate term

GENIA PennBioIE
Nouns A&N J&K J&K# Nouns A&N J&K J&K#

Length R P R P R P R P R P R P R P R P
Any 35.4 33.5 80.2 32.5 80.2 26.3 85.4 17.4 37.2 6.0 63.1 5.9 63.7 4.8 76.1 3.2

2-grams 48.1 35.6 88.0 33.7 88.0 33.7 90.6 31.1 52.6 7.5 78.1 7.1 78.0 7.1 90.6 6.3
3-grams 31.9 32.8 80.4 34.0 80.5 25.9 84.5 20.6 26.8 4.3 60.7 4.9 61.6 3.5 73.1 2.7
4-grams 21.3 25.5 67.0 28.7 70.4 17.8 78.9 10.2 15.8 3.1 42.8 4.1 45.2 2.5 56.5 1.3
5-grams 14.9 22.7 63.8 26.9 64.2 15.8 77.0 6.6 4.7 1.2 17.1 2.2 18.7 1.3 38.3 0.7
6-grams 9.2 18.9 54.5 25.1 54.5 14.7 71.0 4.8 3.9 1.3 13.0 2.3 13.5 1.5 24.6 0.6

Table 6. Executed experiments on each corpus

Candidate term length Any, 2-grams, 3-grams, 4-grams, 5-grams, 6-grams

Linguistic filter Nouns, A&N, J&K, J&K#

ATR stat. approach NC Value, PMI (N-grams only)
LL (N-grams only), SB (Nouns and A&J only)

As discussed in section 2, the Log-likelihood (LL) method can only be applied
separately for sequences of a specific length. We implemented the extended LL
algorithm for N -grams, N ∈ [2, 6]. There are only 433 GENIA GS terms and 177
PennBioIE GS terms longer than 6 tokens, very few to experiment with (table
4). The results of the LL algorithm for different values of N are not comparable
to each other. Thus, we set separate experiments up for each value of N ∈ [2, 6].

For example, for 2-grams we first apply a linguistic filter to identify candidates
of which we keep 2-grams only. Next, 2-grams are re-ranked according to one
of the implemented statistical methods. Evaluation is performed towards the
2-gram GS terms. Experiments for the other values of N were set up identically.

Except for N -grams, we ran experiments taking into account sequences of
any length, higher than 2. For each one, candidate terms are identified using one
of our four linguistic filters. Then, one of C-Value, NC-Value or SB re-ranking
method is applied. Evaluation uses the whole GS term set. Note that the SB
method makes sense only when following the Nouns or the A&N linguistic filter.

The NC Value algorithm takes as input a list of candidates, ranked by the
C Value algorithm and is subject to two parameters: the percentage of the list,
starting from the top, that it will take into account to identify context terms
and the size of the context window. We experimented using values 5%, 7.5% and
10% for the former one and 2, 4, 6, 8, 10 for the latter.

Table 6 shows all executed experiments, referring to the combination of length
of candidate terms, filtering and statistical approach used. To visualise the re-
sults, we used an approach similar to the one indicated in [16]. R and P values
were calculated at 0.5% increments on the list of candidates and plotted on
graphs, such as figure 2. For each increment on the list, P refers to the ratio of
true positives over the overall number of candidates and R refers to the ratio of
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Fig. 2. GENIA 2-grams, J&K filter, NC Value results, R and P

true positives over the number of GS terms. The x-axis shows the percentage of
the list taken into account. Frequency of occurrence (FR) is used as baseline.

Intuitively, the P curve of a bad performing method would be relatively hor-
izontal indicating that the true positives were dispersed uniformly throughout
the list rather than pushed towards the top. Contrarily, the P curve of a well-
performing method would be 100% until the percentage point at which all GS
terms would have been retrieved, where a sharp decrease would occur [11].

3.2 Results

Figure 2 shows the 2-gram P and R curves of NC Value for 15 parameter com-
binations (see subsection 3.1), using the J&K linguistic filter on GENIA corpus.
We observe that different combinations do not affect the results. This behaviour
remains the same for all linguistic filters and for all term lengths. Interestingly,
for all the above experiments the performance of C and NC Value is almost
identical, both for GENIA and PennBioIE.

Figure 3 shows the F-Score performance for 3-gram candidate terms of GENIA
and PennBioIE as identified by the Nouns linguistic filter. We observe that
termhood-based methods outperform unithood-based ones. SB, C and NC Value
perform similarly with SB having a slightly better F-Score on GENIA. PMI
curves are below the baseline on both corpora. On the contrary, LL outperforms
the baseline of FR on PennBioIE but not on GENIA. Possible reasons for the
behaviour of LL and PMI are discussed in subsection 3.3. The ranking of ATR
methods remains the same as in figure 3 for any N -gram using both the Nouns
and the A&N linguistic filter, on both corpora.

The performance for N -gram candidate terms as identified by J&K and
J&K# demonstrate the following trends: On GENIA the highest performance
is achieved by C and NC Value methods throughout the plots. The remaining
methods in order of decreasing F-Score are: FR, LL and PMI. The bigger N is,
the closer FR, LL and PMI curves are to each other.

On PennBioIE, the performance differences between FR, LL, C and NC Value
are insignificant, while PMI clearly performs worse. In this corpus we observe
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Fig. 3. GENIA and PennBioIE 3-grams, Noun filter, F-Score

that termhood-based methods have a comparable performance with the baseline.
6-gram results follow the same trends in general, but they are not very reliable
due to the small number of candidates.

On both corpora for candidates of any length identified by Nouns and A&N,
SB, C and NC Value methods exceed the baseline of FR, achieving similar
levels of performance. Using the J&K and J&K# on GENIA (PennBioIE ), the
performances of C, NC Value and FR are similar for increments up to 10% (on
both corpora) of the candidate list. For increments between 10% and 30% (50%
for PennBioIE ), FR performs better than C and NC Value. After 30% (50%),
C and NC Value perform better than FR.

3.3 Discussion

Our results (section 3.2) show that termhood-based methods re-rank the can-
didate list better than unithood-based methods or equally well, irrespective of
the candidate terms length and linguistic filter used. A possible reason is that
unithood-based methods measure the strength of attachment of the candidate
term constituents, in effect assigning high scores to candidate terms, which might
not refer to domain concepts. For example, in GENIA, “allergic inflammatory”,
substring of the term “allergic inflammatory disease”, occurs at least equally
often as the term, although the former is not a term itself.

The only setting in which a unithood-based method (LL) performed equally
well to the termhood-based methods was when using J&K or J&K# to extract
N -gram candidates from PennBioIE. A possible explanation for this peculiarity
is the limited amount of nestedness information in PennBioIE, which degrades
the performance of termhood-based approaches. Particularly for 3-grams, the
average nested frequency in PennBioIE is 1.03, while in GENIA is 1.16. Note
that PennBioIE is almost double the size of GENIA (table 3).

PMI overestimates rare events, which dominate the candidate term lists. For
example, A&N identifies 69, 457 GENIA candidate terms, out of which 52, 998
(76.3%) occur only once, and 16, 459 twice. LL outperforms PMI, due to its
milder tendency in overestimating rare events.
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Fig. 4. GENIA sequences of any length, Nouns filter, various methods, R and P

C and NC Value exploit nestedness information, in the sense that the more
often a candidate appears as nested, the less likely it is a valid term. SB considers
this information through MF counts. NC Value attempts to improve C Value by
exploiting contextual information. However, unsuccessfully, under our evaluation
scheme. To investigate this, we adjusted the interpolation constant of equation 7
to assess the contribution of the CF only (NCV (ct) = 0 ∗CV (ct)+1 ∗CF (ct)).
P curves are almost uniform across most of the plot.

SB exploits two sources of information: Firstly, IMP (equation 8), assumes
that complex terms consist of existing simple terms. Secondly, MF (equation 9),
refers to the marginal frequency counts. To evaluate the contribution of each,
we executed two experiments, which re-rank the candidate term list taking into
account IMP and MF separately. Interestingly, P of IMP is roughly uniform
on GENIA (figure 4), which means that it contributes negatively to SB. On the
contrary, MF successfully redistributes candidates towards the top of the list.
Thus, the corresponding P curve is higher than the curve of SB in the x-axis
interval [0%, 30%]. PennBioIE experiments verified these results.

C Value suggests that the higher the nested frequency of a candidate term, ct,
the less likely it is a valid term, conditional to the number of distinct candidate
terms, in which ct appears as nested. Hence, C Value calculates a weighted
version of marginal frequency (MMF ), f(ct)−NST (ct) (formula 5). NST (ct) is
the ratio of the frequency of the candidate as nested over the number of distinct
terms, in which it appears nested. To examine the effect of MMF in C Value,
we replaced the MMF in the C Value formula with MF. Results show that the
modified version of C Value performs better i.e. MF captures nestedness better
than MMF. However, MF outperforms even this modified version of C Value, for
increments up to 25% of the candidate list for GENIA and 55% for PennBioIE.

4 Conclusion

We reviewed and evaluated state-of-the-art linguistic filtering and statistical
ATR methods under a common evaluation scheme. Our results indicate that:
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(1) termhood-based methods have in general superior performance over unithood-
based ones, and (2) that the number of independent occurrences of a candidate
term is the most effective source of nestedness information for ATR.
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Abstract. The goal of this paper is to demonstrate that usual evalua-
tion methods for text segmentation are not adapted for every task linked
to text segmentation. To do so we differentiated the task of finding text
boundaries in a corpus of concatenated texts from the task of finding
transitions between topics inside the same text. We worked on a corpus
of twenty two French political discourses trying to find boundaries be-
tween them when they are concatenated, and to find topic boundaries
inside them when they are not. We compared the results of our distance
based method to the well known c99 algorithm.

Keywords: Topic detection, topic change, evaluation methods, text
segmentation.

Introduction

The huge amount of text available on the Internet and other media, allows
users to access more and more information. The drawback of this abundance
is that information is less and less relevant and workable. Many research fields,
such as information retrieval (IR), try to solve this problem by formating data
and/or selecting information the more accurately possible. Text segmentation
significantly helps improving methods used in these domains since it is considered
as one of the fundamental actions in IR [14],[18] .

There are many distinct tasks labeled as ‘text segmentation’. For instance,
identifying and extracting text from multimedia support where it is mixed with
pictures or videos is called as such [13]. The task of grouping words into mor-
phemes or bigger linguistic units is sometimes also referred as text segmenta-
tion (e.g. in written Asiatic languages where words boundaries are not easy to
assess[26], [27]). In this paper, we concentrate on ‘topic based text segmen-
tation’. This type of process tries to find the topical structure [9] of a text and
thus provide a possible thematic decomposition of a given document [21]. Most
texts do not talk about only one topic. The bigger the documents, the more
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topics they include. The goal of topic based text segmentation is to find where
a topic begins and where it ends, within a text. For practical purposes, we will
use the name ’text segmentation’ to refer to topic based text segmentation.

Basically, the goal of text segmentation is to divide a text into multiple seg-
ments which are thematically coherent and distinct. Each of these text segments
should ideally bear one topic, but topics could be complex units from a rhetori-
cal point of view, needing explanations, examples or argumentations. This brings
out the question of defining the concept of a topic. Browsing literature shows
that there are several definitions of a topic and a large body of works in (top-
ical) text segmentation. Generally speaking, a topic is: the subject matter of a
conversation or discussion. In linguistics, it is defined as: the part of the propo-
sition that is being talked about (predicated). Thus one may admit that the topic
of a text segment is what talking is about. So, the goal of an automatized text
segmentation could be simplified into dividing a text in segments, each sentence
of which ”talks about” the same subject.

To evaluate automatic methods of text segmentation, most papers (among
which [6] and [7] are representative examples) use a common protocol: They
concatenate multiple texts, and consider each of them as an instance of a the-
matically coherent text segment. They assume that retrieving text boundaries in
a concatenation and segmenting topically a text are equivalent tasks. Although
they might appear as syntactically similar, semantically, actions are very dif-
ferent. A concatenation of texts is not designed by an author as a discourse
instance, in the way that collecting and grouping several papers on a subject
does not make a dissertation about that subject. In this paper, we will ques-
tion the commonly admitted hypothesis that finding boundaries of concatenated
texts and finding boundaries of topic segments are the same task, by present-
ing two complementary approaches: First, common text segmentation methods
which similarly process text boundaries and in text topic boundaries, and sec-
ond, our approach, which separates both tasks (all described in section 2). Then
we will compare one segmentation method of the first type(Choi’s c99 algo-
rithm) and our method on the same set of data a French political discourse
corpus in section 3. Results will definitely separate the methods capabilities:
Common segmentation methods get good results in finding text boundaries, but
their performances drop when handling in text topic boundaries, whereas our
method shows rather fair results in text boundaries whereas it scores satisfyingly
in topic boundaries detection. This section discusses the benefits of considering
text boundaries detection and topic change as two different task that should be
evaluated differently. We will conclude on possible other approaches of evaluating
text segmentation methods.

1 Existing Methods and the Task (Tasks?)

As said in introduction, literature is abundant on the subject, and mostly methods
divide into two main categories: Supervised ones, more or less data dependent, and
unsupervised methods, trying to avoid the liabilities of learning. In this paper we
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concentrate on unsupervised methods, since they can be evaluated on corpora as
broadly distinct as possible, which is a better case for evaluation.

1.1 Main Approaches for Unsupervised Text Segmentation

Within this subfield, there are also several methods of text segmentation, but
they can be classified into three main approaches.

Similarity Text Segmentation Methods. These methods consider each text
sentence as an atomic element in their analysis and represent it as a vector which,
most of the time, is built with the frequency of each term (TF) of the text after
the text has been stemmed and purged of useless words with the help of a stop
list. To give more weight to ’important’ words, the inverse document frequency
(IDF) is also quite often present.

The goal of such methods is to measure the gap between sentences, relying on
the angle between vectors . A mathematical measure such as the cosine (which
is the most used) as a similarity (more exactly, a dissimilarity) measure leads to
build similarity matrices, which are employed to search for boundaries in the text.

One of the most efficient similarity based method is probably Choi’s C99
algorithm [6]. C99 uses the similarity matrix to build local ranking of proximity
between sentences. The more similar to their neighbors the sentences are, the
higher their ranks. The lowest rank in the new built ranking matrix shows the
boundary between the two main parts of the text. These two parts are then
considered as two independent texts, and the algorithm is applied on each part.
The algorithm stop when the lowest rank detected is the last sentence of the
analyzed part of the text.

Graphical Text Segmentation Methods. By using a graphical representa-
tion of TF, it is easier to see how terms are dispatched all over the text. [10]
uses this kind of representation in IR. The principle is quite simple, each word
is represented by one or more dots on a a bi-dimensional graphic. The number
and positions of dots depend on where and how many times the word appears
in the text. For example, a word appearing in sentence i and sentence j will be
represented by four dots : (i, i), (i, j), (j, i) and (j, j). Parts of the text where a
strong term is repeated appear on the graphic as dot clouds.

This visual approach of TF representation has been used by [23] to develop his
DotPlotting algorithm, which identifies text segments by finding the boundaries
of the most dense dot clouds. Reynard computes the density of an area of the
graphic by dividing the number of dots by the surface of the area. Then the
algorithm finds the text segment boundaries by maximizing the density of the
dot clouds and/or minimizing the size of ”empty” areas in the graphic.

Graphical methods inspired also the one developed by [11], which considers
the text segmentation issue as a picture segmentation issue. The authors used an
anisotropic diffusion algorithm on a graphic representation of the text distance
matrix. By doing so, their algorithm strengthens the divergence between dense
areas and boundaries.
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Lexical Chains Text Segmentation Methods. Lexical chains text segmen-
tation links multiple occurrences of the same term in a text to form a chain.
When the distance between two occurrences of a term is too important, the
chain is considered broken. This distance is generally the number of sentences
between two consecutive occurrences of one word.

Segmenter [12], is software based on this approach with a little specificity:
The number of sentences breaking the word chain depends on the syntactic class
of the word, thus enhancing discrimination.

Another lexical chain based algorithm, is the TextT iling algorithm developed
by [8]. A consistency score is given to each text block depending the following
block. This score is computed on the basis of a first ”lexical” score given to each
pair of consecutive sentences. The ’lexical’ score is obtained by computing some
parameters between two consecutive pairs. These parameters are typically the
number of common words between the two pairs, the number of new words and
the number of still active lexical chains in the considered sentences. So, the score
of each text segment is a normalized scalar product of each pairs score. If a text
segment has a very different score from the next and previous text segments,
there is a change of topic in this text segment.

1.2 Limits in Current Text Segmentation

All these approaches have in common the almost exclusive use of lexical cohesion
[20], which means that they only look for similar and/or different words to find
text segments or boundaries. If a few use syntactic information, it is limited to
the word part-of-speech tag ( noun, verb, adjective, etc.). In natural language,
the word/constituent function also bears information. If a noun is the subject
of a verb, it could mean something totally different from what it means if it
were its object. This lack of syntactic information is one of the limits of such
word-based methods.

Another limitation of lexical cohesion based methods which as been pointed by
[25], is the intensive use of synonyms as a stylistic effect. In many languages, and
particularly in French, the language on which we experiment, repeating several
times the same word in a paragraph or even a short text is considered unsightly.
This massive use of synonyms makes these approaches quite inefficient as they
are based on the exact repetition of words. It is possible to use some semantic
resources like WordNet to counterbalance this, but languages requiring such a
use of synonyms have also great polysemy issues. So, doing so only changes the
problem into another.

More specifically, Bestgen and Piérard [2] have observed that, if these methods
are quite efficient at finding text boundaries in a corpus of concatenated texts,
they get poor results at finding in text topic segments [2] . These results can be
explained by the differences between a whole text and just a segment of it. A text,
is a complete entity. With a beginning (generally described as the introduction),
a main body (development) and an end (conclusion). So, a text is self-sufficient in
terms of information and structure. It does not need any contextual information
to be understood. On the other side, a text segment is just a part of a bigger
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entity. If the text is the ’main topic’ then segments are ’sub-topics’ and the
relation between main and sub is a semantic relation for sure. As an incomplete
entity, the segment needs other segments to bear any meaning. Lexical cohesion
based methods need a lot of information to be efficient, and most of the time
a single topic segment does not bear enough of it. Moreover, as an incomplete
entity, it has to refer to other parts of the text to be linked with it, in the way
a subtopic is also related to its parent, child or brother subtopic in a topical
tree [19].

1.3 Transeg: A Distance Based Method

We have developed a distance based text segmentation specifically designated
to find topic variations inside the text called Transeg.

Textual Representation. The first step of our approach is to convert each
text sentence into a semantic vector obtained using the French language parser
SYGFRAN [3]. These vectors are Roget like semantic vectors [24], but using the
Larousse thesaurus [16] as a reference. Sentence vectors are recursively computed
by linearly combining sentence constituents, which are themself computed by
linearly combining word vectors. The weights of each word vectors is the result
of a constituents and dependencies syntactic analysis1. So, these vectors bear
both the semantic and the syntactic information of the sentence.

Text Segmentation. Using this sentence representation, we try to find tran-
sition zones inside the text. The notion of transition zone come from the idea
that topic change boundaries inside a text are not isolated sentences, but small
groups of sentences. To find them, we slide a window along the text, consider-
ing each half of the window as a potential segment (fig. 1). Each potential text
segment is then represented by one vector, which is a weighted barycenter of
its sentence vectors. We added a stylistic information by giving a better weight
to first sentences, relying on the fact that introductions bear the important in-
formation [15],[17]. Then we compute a distance (we call it thematic distance)
between the two barycenter, and consider it as the window central sentence
transition score.

Transition zones are successive sentences with a transition score greater than a
threshold. This threshold is the result of a detailed observation of DEFT’06 polit-
ical corpus. We computed distances on many discourses and their topic segments
(the sum of their sentences were around 100000) and obtained an average distance
of 0.45 and a σ of 0.08. Boundary sentences are selected in the transition zones. A
more detailed description of this approach can be found in [22].

In our first implementations of this method we used the angular distance
to compute transition score. In this paper we used an extended version of the
concordance distance first proposed by [5].
1 The formula is given in [4] and has no relation with Kendall’s (1948) measure of

concordance.
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Fig. 1. Giving a transition score to each sentences

Concordance Distance. Semantic vectors resulting from the analysis have
873 components and most of them are not even activated. With so much null
values in the vector the angular distance is not enough discriminant. The goal
of the concordance distance is to be more discriminant by not only considering
the vectors components values, but their ranks to.

Considering two vectors A and B, we sorted their values from the most ac-
tivated to the less activated and chose to keep only the first values of the new
vectors (1

3 of the original vector). Asr and Bsr are respectively the sorted and
reduced versions of A and B. Obviously Asr and Bsr could have no common
strong component (so the distance will be 1), but if they have some we can
compute two differences :
The rank difference: if i is the rank of Ct a component of Asr and ρ(i) the
rank of the same component in Bsr, we have :

Ei,ρ(i) =
(i − ρ(i))2

Nb2 + (1 + i
2 )

(1)

Where Nb is the number of values kept.
The intensity difference: We also have to compare the intensity of common
strong components. If ai is the intensity of i rank component from Asr and bρ(i)

the intensity of the same component in Bsr (its rank is ρ(i)), we have:

Ii,ρ(i) =

∥
∥ai − bρ(i)

∥
∥

Nb2 + ( 1+i
2 )

(2)

These two differences allow us to compute an intermediate value P :

P (Asr , Bsr) = (

∑Nb−1
i=0

1
1+Ei,ρ(i)∗Ii,ρ(i)

Nb
)2 (3)
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As P concentrate on components intensities and ranks, we introduce the
overall components direction by mixing P with the angular distance. If δ(A, B)
is the angular distance between A and B, then we have:

Δ(Asr , Bsr) =
P (Asr , Bsr) ∗ δ(A, B)

β ∗ P (Asr , Bsr) + (1 − β) ∗ δ(A, B)
(4)

Where β is a coefficient used to give more weight (or less) to P . It is easy to
prove that neither P nor Δ(Asr, Bsr) are symmetric.

But Δ(Asr, Bsr) was designed in a context of text classification, to compare
text vectors to class vectors. As only the likelihood of a text to the class center
had to be measured, Δ(Asr, Bsr) did not need to be symmetric. But in our
context of text segmentation we needed a symmetric value. even if A come
before B in a text, A is not more important than B. So the final concordance
distance D(A, B) we use, is:

D(A, B) =
Δ(Asr , Bsr) + Δ(Bsr , Asr)

2
(5)

2 Experiment and Result on French Political Discourses

To test the assumption that text and topic boundaries detection are different
tasks, we have set up an experiment comparing C99 and our method. Both are
unsupervised, therefore not data sensitive (they do not learn, don’t adapt to data
specificities, therefore a given corpus could be used several times with no effect
on results). The first has been tested on concatenated texts by its author, the
second has been tested on both concatenated texts and un-concatenated texts in
the DEFT’06 [1] competition (an equivalent of TREC Novelty task for French).
So in order to compare methods, we tried them on a set of concatenated texts
and we measured their scores according to our two criteria : text boundaries
detection, in text topic boundaries detection. The following subsections describe
data, experiments and results.

2.1 Data: A Corpus of French Political Discourse

We chose a corpus of concatenated French political discourses, extracted from the
training corpus proposed in the workshop DEFT’06 [1], which proposed several
other corpora, but we chose to work on political discourses, for two main reasons:

– As they were identified by experts, internal boundaries looked less artificial
than just beginnings of concatenated texts.

– As an argumentative text, the topical structure of a political discourse should
be more visible than other more mundane texts. The mentioned workshop
was about finding topic boundaries in three different corpora in politics (the
one we chose) law and science but we discarded the other domains because
of several biases that could be introduced by artificial devices (words such as
‘article’ in European law texts or paragraph line break that was questionably
considered as a topic frontier in the science corpora by the organizers).
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There was a lot of noise inside the political corpus. Some discourses were
exclusively in capital letters, which is quite annoying when processing a language
like French, that discriminates words according to accents on vowels. And some
of the “discourses” were, in fact, interviews. So, we manually selected, separated
and cleaned discourses from this corpus and created two different corpora:

– Each discourse separately with its internal topic boundaries.
– All discourses concatenated. We only kept the first sentence of each discourse

as a boundary (internal topic boundaries were ignored).

From an original corpus of more than 30, 0000 sentences of a questionable qual-
ity we extracted 22 discourses totalizing 1, 895 sentences and 54, 551 (Table 1).
No information on the discourses were at our disposal, except the beginning of
topic segments (which could have been beginnings of texts or real topic bound-
aries), so this manual cleaning of the corpus took lot of time and significantly
reduced the amount data. But it was a necessity to have a workable data set.

The original corpus, full of noise (entire sentences in capital letter, empty
sentences, punctuation repetition, etc.), brings some discredit on the DEFT’06
workshop results. But, noise is a common problem in natural language processing
and as it should be done with, it should not invalidate the DEFT’06 experiment.
In our case, as we tried to differentiate two tasks commonly considered as one,
we needed the cleanest data set possible.

2.2 Experiments

We set up a first run of both Transeg and the LSA augmented c99 Choi algorithm
on the concatenated discourses, and a second one on each discourse separately.
We chose to use the latest version of c99 because it is commonly recognized
as one of the best text segmentation methods (if not the best at all). To be
sure that there is not any implementation error, we used the 1.3 binary release
that can be downloaded on Choi’s personal Linguaware Internet page (http://
www.lingware.co.uk/homepage/freddy.choi/software/software.htm).

To evaluate the results of both methods, we used the DEFT’06 workshop tol-
erant recall and precision ([1]). These recall and precision count as relevant po-
tential boundary sentences which are in a window around the boundary sentence
identified by experts. This evaluation give a better idea of algorithms efficiency
on the task of finding inner texts topic boundaries and does not have a signif-
icant influence on the task of finding texts boundaries. The team of DEFT’06
saw in [1] that the use of either strict or tolerant measure had no effect on the
ranking of the submissions they had to evaluate.

We computed the FScore with these tolerant recall and precision, using the
well known formula:

FScore =
(β2 + 1) ∗ recall ∗ precision

β2 ∗ precision + recall
(6)

With β = 1.

http://www.lingware.co.uk/homepage/freddy.choi/software/software.htm
http://www.lingware.co.uk/homepage/freddy.choi/software/software.htm
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We have to note that both method consider first sentences of texts as a bound-
aries and that every first sentence of each text is considered as a boundary when
computing recall, precision and FScore (so both methods have always at least
one good answer).

2.3 Results

All results were multiplied by 100 for legibility purpose. First of all, we see that
results are not spectacular (be it in table 1 or table 2). FScore is a very strict
measure, even when softened by using tolerant recall and precision. The best
FScore, obtained by Transeg in run 2 text 9, is of 85.72% for a precision of 75%
and a recall of 100% and the worst is of 5.72%. This give us a good view of the
quality of current text segmentation methods and of the progresses we can make
in this domain.

Considering run 1, c99 has a better FScore and precision than Transeg. This
confirm our initial postulate that c99 is better than us at finding texts bound-
aries. But, we also see that both methods have overall bad results. When watch-
ing in detail the results of both methods we see that:

– C99 bring back only 15 potential boundaries also it should have bring back at
least 22 (one for each text). And only 2 of them are in the tolerance window.

– Transeg bring back 190 potential boundaries (which is far to much), for only
7 in the tolerance window.

These results are significant of the differences between the two approaches.
Transeg has been conceived to be very sensitive to variations. So on the many
sentences composing the corpus, it detected many variations. Transeg is clearly
too sensitive for such tasks. C99 detected far less variations and seem far less
sensitive, why? C99 is designed to detect brutal changes in the lexical field. As
our corpus is exclusively composed of political discourses, texts are quite uniform.
This could explain its overall bad results (even if better than us) on run 1.

Considering run 2, Transeg has a better FScore on 16 on the 22 composing
the corpus. On these 16 texts our recall is always better or equal to c99 and our
FScore are from 20% (text 1) to 329% (text 9) better than c99 ones. Transeg
has also the best FScore of both runs with 85.72% on text 9. C99 has a better
FScore on 6 texts, but it is at best twice Transeg FScore on the same text.
Anyway, we should notice that c99 has comparatively good precision on most of
the texts. Thus, when examining texts where c99 is better we see that they are
in two categories: - Texts with few boundaries. C99 seems to be very effective on
short texts with just one inner topic boundary. With few boundaries identified,
and first sentences always identified as boundaries, mathematically c99 has a

Table 1. Results of run 1

Words Sentences Transeg c99

Precision Recall FScore Precision Recall FScore

All texts concatenated 54,551 1,895 3.68% 31.82% 3.3% 13.33% 9.09% 5.41
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Table 2. Results of run 2

Words Sentences Transeg c99

Precision Recall FScore Precision Recall FScore

Text 1 617 22 50% 33.33% 40% 33.33% 33.33% 33.33%

Text 2 3,042 100 33.33% 37.5% 35.3% 50% 12.5% 20%

Text 3 2,767 92 42.86% 85.71% 57.14% 20% 14.29% 16.67%

Text 4 1,028 40 33.33% 33.33% 33.33% 20% 33.33% 25%

Text 5 4,532 157 12.5% 18.18% 14.82% 16.67% 9.09% 11.76%

Text 6 5,348 212 8.7% 18.18% 11.76% 20% 18.18% 19.04%
Text 7 1,841 47 100% 42.86% 60% 100% 14.29% 25%

Text 8 1,927 74 60% 33.33% 42.86% 100% 11.11% 20%

Text 9 1,789 53 75% 100% 85.72% 25% 16.67% 20%

Text 10 1,389 31 33.33% 20% 12.5% 100% 20% 16.67%
Text 11 2,309 81 30% 50% 37.5% 33.33% 16.67% 22.22%

Text 12 7,193 211 15.38% 16.25% 8.88% 33.33% 3.13% 5.72%

Text 13 6,097 305 20.59% 33.33% 25.46% 17.65% 14.29% 15.78%

Text 14 1,417 57 40% 33.33% 36.36% 100% 16.67% 28.58%

Text 15 3,195 79 40% 8% 13.34% 66.67% 8% 14.28%
Text 16 1,995 60 66.67% 28.57% 40% 57.14% 57.14% 57.14%
Text 17 558 16 33.33% 33.33% 33.33% 50% 66.67% 57.14%
Text 18 696 25 100% 37.5% 54.54% 40% 25% 30.76%

Text 19 678 26 33.33% 33.33% 33.33% 50% 66.67% 57.14%
Text 20 1,388 57 50% 66.67% 57.14% 100% 16.67% 28.58%

Text 21 3,127 110 62.5% 25% 35.72% 40% 10% 16%

Text 22 1,618 40 60% 75% 66.66% 100% 25% 40%

very good precision on such short texts (text 10 for example). - Enumerations.
Text 6 for example, which is quite big, is a record of the government spokesman
where he enumerates dealt subject during the weekly minister reunion. So it is
basically an enumeration of different subjects with different vocabularies and no
real transition between the different segments.

3 Conclusion

In this paper we presented strong evidences that finding text boundaries in a
corpus of concatenated texts and finding topic segments inside a specific text are
two different task that need (at least) two different approaches. As we already
said in the introduction and in the first section, lexical cohesion based methods
are more efficient at identifying entire texts in a corpus of concatenated texts
than at finding topic boundaries inside texts. . On the opposite methods integrat-
ing syntactic, semantic and/or stylistic information seem to be more sensitive
to small variation inside a text and are more appropriated when it come to find
topic segments inside a text. So, developing methods specifically for one or an-
other of these tasks could be a better approach than the current one consisting
in considering the two tasks as one.
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Judging these results we should also consider evaluation methods specifically
designated for each task. If it is easy to create data set to evaluate methods
that find texts boundaries inside a huge amount of concatenated texts. It is far
more difficult to find data sets where inner topic segments are identified. Such
corpus need at least one linguistic or domain expert to identify each potential
topic boundaries, which is very time consuming even for a small amount of text.
And one expert is probably not enough. Due to the subjectivity of such task, it
is better to ask two groups of expert to generate the corpus. The first to propose
boundaries and the second to validate. This would be far more time consuming
and cost consuming than only one expert of course.

We were lucky to have the DEFT’06 corpus to test our method. But, topic
boundaries, in this corpus, were identified by people managing the government
Internet site. They are supposed to be political experts and to have the skills to
find change of topics inside a political discourse. But are their boundaries all ex-
act ? And a better question, are their choices the only right ones ? As we already
said, topic based text segmentation is a subjective task as well as other natural
language processing tasks like automatic summary for example. Maybe are we
doing wrong by trying to evaluate these tasks on generated (automatically or by
experts) data sets. We are envisaging other ways of evaluating these methods,
by, for example, asking experts to evaluate the result of the automatic method
and not to generate corpus.

Finally, we should notice the complementarity of both tasks and both ap-
proaches. If it is hard consider a fusion of both approaches, the development
of an automatic process choosing between methods that concentrate on finding
texts and methods that concentrate on finding inner topic segments could be of
great help in a domain such as IR.
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TALN 2006 (2006)
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Abstract. Question classification plays an important role in question answering 
systems. This paper presents the Conditional Random field (CRF) model based 
on Morpheme features for Tamil question classification. It is a process that ana-
lyzes a question and labels it based on its question type and expected answer 
type (EAT).  The selected features are the morpheme parts of the question terms 
and its dependent terms. The main contribution in this work is in the way of se-
lection of features for constructing CRF Model. They discriminates the position 
of expected answer type information with respect to question term’s position. 
The CRF model to find out the phrase which contains the information about 
EAT is trained with tagged question corpus. The EAT is semantically derived 
by analyzing the phrase obtained from CRF engine using WordNet. The per-
formance of this morpheme based CRF model is compared with the generic 
CRF engine. 

Keywords: Classification, Machine Learning. 

1   Introduction 

Question Classification (QC) is an important component of Question Answering Sys-
tem (QAS). QC strives to match a question into one or more categories which are 
defined in terms of type of answer expected. The purpose of QC is to reduce a large 
number of answer candidates by filtering out the possible answer candidate for the 
type of question and the type of expected answer. Every question class places some 
semantic restriction on the type of answer required within intern helps in the location 
of the correct answer. QA systems depend on information retrieval technique for 
answer extraction. In this context, QC provides important clues for answer selection 
and extraction and hence a good QC system improves performance of the overall QA 
system. QC helps in minimizing search space by generating the appropriate queries to 
the information retrieval system. 

One of the important issues to be decided for QC is the question/answer type tax-
onomy. There are a number of taxonomies that exists including flat and hierarchical 
taxonomies but they are different in size.  

In this work, we use two level hierarchical answer type taxonomy having total of 
50 answer type. We used Tamil questions corpus which has been derived by translat-
ing the TREC question corpus of 5500 questions. Tamil is a morphologically  
rich language and we exploit these morpheme feature variances and WordNet [4] 
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semantics for the purpose of QC. A morpheme is defined as the smallest part of a 
language that can be regularly assigned a meaning. 

This remaining part of this paper is organized as Section 2 describes the different 
approaches being implemented for QC.   Section 3 describes taxonomies for question 
types. Section 4 explains our original work for Tamil QC. Section 5 describes the 
experiment conducted on our work for Question classification. Section 6 outlines the 
results. In Section 7, we conclude this work and its future work. 

2     Related Work 

There are basically two approaches to QC, one of which uses regular expression and 
hand written grammar rules to analyse the question to determine the answer type. 
Though hand written grammar rules have been used successfully for question classifi-
cation, this approach is time consuming, that rules are often brittle, the number of 
answer handle is limited and it is difficult to extend the answer types to more specific 
types.  

The other approach is the probabilistic techniques which includes machine learning 
and language modeling. This approach to QC tries to find out the probability of a 
question given a question class [8]. In this approach language model is created for 
each question class from a large corpus of question tagged with the question class. 
Various models like unigram and bigram are used to predict the class of given ques-
tion. Pinto, in his work, he used Named Entity tag in addition to the words in the 
question for building the language model [8]. Wei Li combined unigram, bigram and 
language models with an absolute discount smoothing technique and a back off  
bigram model for QC [11]. 

The other important probabilistic approach of QC is machine learning technique. 
SVM has been used extensively for QC. Li & Roth have used SNoW learning archi-
tecture for classifying a question into one of 50 possible classes. They used two sim-
ple classifiers one for coarse and the other for fine classification. The features used by 
Snow for QC include words part-of-speech (POS) tags, chunks, Named Entities, head 
chunks and semantically related words [12]. Dell Zhang and Lee have used SVM for 
QC where bag of words and bag of n-grams are used as features. Here, the n-grams 
are word sequences represented as binary feature vector. Since QC is multiclass prob-
lem, one against one strategy has been used by them [3]. Vijay Krishnan et.al induced 
a Conditional Random Field (CRF) to identify informer spans and built a meta-
classifier using a linear SVM on the CRF output [10]. 

In our work, CRF model has been used for classifying Tamil questions. The mor-
pheme feature variance property of the morphologically rich Tamil language is the 
main role of this work. 

3    Question Classification  

Classifying questions into categories is a key task during question analysis, since it al-
lows filtering out unrelated documents and applying more tuned extraction rules in the 
candidate sentences. To address this, we used a set of 50 fine categories. These categories 
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are obtained from TREC corpus.  Table 1 illustrates some of the categories currently used 
in our QA system for factoid type questions. Table 2 illustrates some of the categories 
currently used in our QA system for definitional type questions. Table 3 illustrates some 
of the categories currently used in our QA system for List type questions.  

Table 1. Expected Answer Type category for factoid type 

Coarse category Fine Category 

Abbreviation Abb, exp 
Entity Animal ,body, color ,creative , currency, 

dis.med., event, food, Instrument, lang., 
letter, other, plant, Continued, Evaluation, 
Class, Product ,religion, sport,  substance, 
Symbol, technique, term, vehicle, word 

Human Group, ind, title,  

Location city, country, mountain 
other, state,  

Numeric Date, count, money, period, volsize, other, 
speed, perc, code, dist, temp, ordinal, weight, 
Class, order, other, period, size 

 

Table 2. Expected Answer Type category for Definitional type 

Coarse category Fine Category 

Description Definition, description, Manner, reason 

Human Description 
 

Table 3. Expected Answer Type category for List type 

Coarse category Fine Category 

Entity Animal ,body,color ,creative , currency, 
dis.med., event, food 

Instrument, lang., letter, other, plant 
Continued, Evaluation, Class 
Product ,religion, sport, substance 
Symbol, technique, term, vehicle 
word 

Human Group, title,  

Location city, country, mountain 
other, state,  
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We have included yes or no questions and List type questions along with given 
translated question. The problem of classification is to predict a single class variable y 
given a vector of features x = (x1, x2, . . . , xk). We classify the question into four main 
categories namely factoid type, yes or no type, definitional type or List type question.  
These questions are further classified into coarse categories and fine categories as 
shown in the corresponding tables.  

4   The Proposed Question Classifier System 

This work is organized as shown in the block diagram.  The Morphological analyser is 
used for separating morpheme components of words. These morpheme components are 
used to compute the POS type of the word. The second phase is to chunk the phrases 
like verb phrase, noun phrase by exploiting CRF chunker. The third phase is to extract 
features which are used in the next phase called morpheme based CRF classifier to 
identify the phrase which contains the information about the required answer type. 
Then the phrase analyzer analyses the phrase for identification of answer type. This 
section is organized to explain the various phases in the form of sub–sections. 

Question (Natural language) Factoid , 
Definitional, Yes or No and List Type 

                                                                                                  EAT 
                      (                                                         ( Expected 
                                                                                 Answer Type) 

Morphological 
Analyser

POS tagger 

CRF Chunker 

Feature Extraction 

Morpheme based CRF 

 Phrase 
Analyser 

WordNet 

 

Fig. 1. Question type classification 

4.1   Morphological Analyser (Atcharam) 

The available Linguistic tools like ‘Atcharam – Morphological Analyzer for Tamil’ 
[1], is used as processing tools in the question analysis module. Morphological Ana-
lyzer is a tool used to identify every morpheme parts of a word. It breaks a word into 
its root word and associated morphemes. [1]. 

4.2   POS Tagger 

Tamil is a morphologically rich language resulting in its relatively free word order 
characteristics. Normally most Tamil words take on more than one morphological 
suffix; often the number of suffixes is 3 with the maximum going up to 13. The role 
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of the sequence of the morphological suffixes attached to a word in determining the 
part-of-speech tag is an interesting property of Tamil language. In this work we have 
identified 79 morpheme components, which can combine to form about 2000 possible 
combination of integrated suffixes. Two basic parts of speech namely noun and verb 
are mutually distinguished by their grammatical inflections. In Tamil, noun gram-
matically marks number and cases. Tamil nouns basically take on eight cases. The 
normal morphological derivatives of Tamil nouns are as follows 

Root Noun + [Plural Marker]+[Oblique]+[Case Marker] 

The normal morphological derivative of Tamil Verb is as follows 

Root Verb + [Tense Marker] + [Verbal Participle Suffix] + [Auxiliary verb] (1 to 4) + 
[Tense Marker] + [Person, Number, Gender] 

In addition, adjective, adverb, pronoun, postposition are also some root words that 
take suffixes. In this work, we have used a tagged corpus of 4,70,910 words which 
have been tagged with 35 POS categories in a semi automatic manner using an avail-
able morphological analyzer [5] which separates root word and all morpheme compo-
nents. It also provides the type of root word using lexicon.  The value 1 to 4 indicated 
as power denotes maximum 4 auxiliary can occur for a single verb. 

4.3   CRF Chunker 

In partially free word order language, the order of words in a single phrase is a se-
quential one. In this characteristic point of view, the features to be considered in de-
signing a CRF model are its POS type, Last end morpheme component and Previous 
to last end morpheme component of a word. The size of the window is 3 words. 

The centre word of the window is considered as zeroth position. The sequence 
from left to right of 3 words snippet is -1 0 1. The zeroth position word are considered 
to be chunk tagged as B, I or O .The features of designed language specific CRF 
model for chunking are shown in table 4. 

Table 4. The List of features for Chunking 

The state features are 
POS(-1), POS(0), POS(1), E l-1(-1), E l-1 (0), E l-1 (1) , E l(-1), E l (0), E l (1) 

The transition features 
POS(-1)/ POS(0) ,POS(0)/ POS(1),  , E l-1 (-1)/ E l-1 (0), E l-1 (0)/ E l-1 (1), E l (-1)/ E l (0), E l

(0) / E l (1), POS(-1) / POS(0) / POS(1), E l-1 (-1)/ E l-1 (0)/ E l-1 (1) and E l (-1) / E l (0))/ P(E l

(1) 

 
 

This CRF model has trained by a large tagged corpus with the required features 
mentioned in this Model. The trained CRF model is used for separating the phrases in 
the question. 
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4.4   Feature Extraction 

The combinations of morphemes of a word include more information for discriminat-
ing the required information for computing question type. This property leads us to 
exploit the morpheme components for the construction of this morpheme based CRF 
model. The following features are extracted and arranged in sequence as follows 

Table 5. The List of features for Morpheme based CRF model 

Word (Qw-1)      Root_type(Qw-1 )  M_end (QW-1)   
Word (Qw)         Root_type (Qw)         M_ end (QW) 
Word (Qw+1)   Root_type(Qw+1)     M_end (QW+1) 

 

 
In this table QW denotes the word position of the question terms in the given ques-

tion. QW-1 denotes previous word to the question term . Similarly, QW+1 denotes 
next word of question term. The function called Word provides the term of the ques-
tion in the corresponding position specified by its parameter. The Root_type function 
provides the type of the root component of the word at the specified position. M_end 
provides the lost morpheme part of the word in the corresponding position.  Here is 
the case we consider the question term, previous and next word of the question term 
for features of morpheme based CRF model. 

4.5   Model Representation 

Conditional Random Fields (CRF). Conditional random fields (CRFs) are undi-
rected graphical models developed for labeling sequence data [6]. CRFs directly 
model )|( zxp , the conditional distribution over the hidden variables x given obser-

vations z. This model is different from generative models such as Hidden Markov 
Models or Markov Random Fields, which apply Bayes rule to infer hidden states [9]. 
CRFs can handle arbitrary dependencies between the observations z, which gives 
them substantial flexibility in using high-dimensional feature vectors. 

The nodes in a CRF represent hidden states, denoted x = < x1, x2. . . xn >, and data, 
denoted z. The nodes xi, along with the connectivity structure represented by the undi-
rected edges between them, define the conditional distribution )|( zxp over the 

hidden states x.  Let C be the set of cliques (fully connected subsets) in the graph of a 
CRF. Then, a CRF factorizes the conditional distribution into a product of clique 

potentials ),( cc xzφ , where every c ε C is a clique in the graph and z and cx  are the 

observed data and the hidden nodes in the clique c, respectively. Clique potentials are 
functions that map variable configurations to non-negative numbers. Intuitively, a 
potential captures the “compatibility” among the variables in the clique: the larger the 
potential value, the more likely the configuration. 

Using clique potentials, the conditional distribution over hidden states is written as  

),(
)(

1
)|( ∏

∈

=
Cc

cc xz
zZ

zxp φ                                               (1) 
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where ∑∏
∈

=
x Cc

cc xzzZ ),()( φ  is the normalizing partition function. The compu-

tation of this partition function can be exponential in the size of x. Hence, exact infer-

ence is possible for a limited class of CRF models only. Potentials ),( cc xzφ are 

described by log-linear combinations of feature functions  cf  i.e.,  

)),(.exp(),( cc
T
ccc xzfwxz =φ                                             (2) 

Where T
cw is a weight vector, and ),( cc xzf  is a function that extracts a vector of 

features from the variable values. Using feature functions, we rewrite the conditional 
distribution (1) as 

⎭
⎬
⎫

⎩
⎨
⎧= ∑

∈Cc
cc

T
c xzfw

zZ
zxp ),(.exp

)(

1
)|(                                (3) 

Generic CRF. The generic CRF model is designed by the words state features and 
transition features by considering the sequence of 3 words by arranging the question 
term in center position. 

Table 6. List of Features for Generic CRF Model 

   
State features Transition  features  
Word (Qw-1), Pos(Qw-1 ) 
Word (Qw), Pos(Qw )  
Word (Qw+1),  Pos(Qw-1 ) 

   Word (Qw)/ Word (Qw-1),  
   Word(Qw+1)/ Word (Qw),  
     POS(Qw)/POS(Qw-1),  
     POS(Qw+1)/ POS (Qw)  

 
The straight lines represent the state features and the curved lines represent the 

transition features. The center Word is the position of question term of question. The 
Position at which the term contains the EAT information is labeled as -1, 0, 1. The 
label 0 refers the position of question term as reference. Label -1 denotes the previous 
term of the question term and 1 refers the next term of question term. 

 
                              Word          POS             Word         POS        Word       POS 
                             (Qw-1)     (Qw-1 )          (Qw)        (Qw)      (Qw+1)    (Qw+1) 
 
 
 
 

 
 

                 -1 ,0 , 1 

Fig. 2. Graphical Representation of Generic CRF model 
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Morpheme Based CRF. The question statement is preprocessed so as to arrange the 
features which discriminate the position of expected answer type information with 
respect to question terms position. The main contribution of this work is the way of 
selection of features for constructing CRF Model. The list of features in the Cliques 
considered as unigram. 

Table 7. List of Features for Morpheme Based CRF Model 

State Features Transition features
Word  (Qw-1),  Root_type  (Qw-1  ),  
end(QW-1),Word (Qw),   
Root_type (Qw),   end (QW)  
Word  (Qw+1),    Root_type(Qw+1),   
end(QW+1),End(Qw-1)/Root(Qw-1)  
End(Qw)/Root(Qw)  

End(Qw+1)/Root(Qw+1)

End(Qw)/   
End(Qw-1)  
       End(Qw+1)/  
End(Qw) 

 

 
The following graph explains the totals features along with its position in the ques-

tion. The centre three nodes correspond to Word, root and Morpheme end of the ques-
tion word. The left side three nodes correspond to Word, root and Morpheme end of 
the previous word of question word and the right side three nodes correspond to 
Word, root and Morpheme end of the next word of question word. The horizontal 
edges represent the conditional features and the slanting edges represent individual 
features. 

 
 
                              Word    Root       end         Word  Root    end     Word     Root         end      
                              (Qw-1)  (Qw-1 )  (QW-1)  (Qw)  (Qw)  (QW)  (Qw+1)  (Qw+1)   (QW+1) 
    
 
 
 
 
 
 
  

-1, 0, 1 

Fig.3. Graphical Representation of Morpheme based CRF model 

4.6   Phrase Analyser 

The phrase chunk which incurred the EAT information is further analysed to compute 
the fine category of EAT with the help of Tamil WordNet. Tamil WordNet is the 
network of lexical relations between lexical items in Tamil. Lexical items are related 
to one another in the hierarchical dimension as taxonomies (which show hyponymy-
hypernymy and meronymy-holonymy relationship) and non-hierarchical dimension  
as opposites (which include complementaries, antonyms, antipodals, counterparts, 
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reversives and converses) and synonyms. Also words are related to one another due to 
their derivational as well as collocational meaning. Componential analysis which 
studies meanings of lexical items in terms of meaning components or features can 
help to capture the above mentioned net work of relations in a more systematic  
way [10]. 

If the phrase chunk is a noun phrase, the hypernym of head term of the phrase 
chunk is the most probable expected answer type. On the other hand, the phase chunk 
is as Verbal phrase the event which imply the verb is the expected answer type. When 
the Question phrase implied as the EAT information term, the rule is formed by the 
lexical term which denote question word itself categories the expected answer type. 

5   Experiment 

The question corpus for evaluating this work is prepared by translating the TREC 
question corpus with 5452 questions into Tamil. In addition that we formulate 300 
questions for yes or No type questions and 500 list type questions manually. The total 
question corpus is then tagged with POS tagger. The POS tagged corpus is then 
tagged by Phrase Chunker as next level tagging. The tagged corpus is manually ana-
lyzed and further tagged the position of phrase in which the expected answer type 
information inhered. From the tagged corpus, 5252 questions are selected in such a 
way that they uniformly distributed the types of questions for the CRF model training. 
The remaining 1000 questions which are not included in the training are used for 
testing. Table 8 shows an example for various processes of question classification. 

Table 8. Example for a Tamil question 

SL.   
No 

Question Translation Word       Root type    end 

1 Þï¢î¤ò£õ¤ù¢ 
«îê¤ò ðø¬õ 
â¶? 

What is the 
national bird of 
India? 

Þï¢î¤ò£   adjective     Þù¢     -3 
«îê¤ò    adjective      null      -2 
ðø¬õ   noun             null     -1 
â¶        quesword     null       0 
?           ques symbol null      1

 
 
Position of Expected answer type  -1     ie  ðø¬õ (bird)  
 
The word ðø¬õ is in the phrase chunk of Noun Phrase 
 Þï¢î¤ò£õ¤ù¢   «îê¤ò ðø¬õ (National animal of India) 
 
The expected answer type is ‘bird’ 
 
The question focus is  Þï¢î¤ò «îê¤ò ðø¬õ (National animal of India) 

This question category is <Factiod, entity, bird>   
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6   Results and Evaluation 

The results are tabulated in table 9 and table 10 for each question types by conducting 
test on QC with generic CRF model and QC with Morpheme based CRF model re-
spectively. 

Table 9. QC with generic CRF model 

Question↓       
Answer →

No of 
Question 

Correct  Wrong Inexact Accuracy 

Fact 
List 
Definitional  
Yes or No 
Total 

678 
134 
126 
62 

1000 

442 
98 
93 
43 
676 

122 
15 
19 
11 

167 

114 
21 
14 
8 

157 

65.19 
73.13 
73.81 
69.35 
67.60 

 

Table 10. QC with morpheme based CRF model 

Question
↓       
Answer →

No of 
Question 

Correct Wrong Inexact Accuracy

Fact 
List 
Definitional  
Yes or No 
Total 

678 
134 
126 
62 

1000 

491 
120 
108 
54 
773 

92 
5 
8 
6 

111 

95 
9 

10 
2 

116 

72.41 
89.55 
85.71 
87.09 
77.30 

 

Table 11. Computation for Row means and Grand means 

Fact List Defni Y or 
N 

Row 
totals 

Row 
means 

Generic 
CRF 

65.19 73.13 73.81 69.35 281.48 70.37 

Morpheme 
Based 

CRF 

72.41 89.55 85.71 87.09 334.76 83.69 

Column 
Total 

137.60 162.68 159.52 156.44 

Column 
Means 

68.8 81.34 79.76 78.22 

Grand total 
=616.24 

Grand mean 
=77.03  

 
Vr  = 4 [ (70.37-77.03)2 + (83.69-77.03)2] =354.84 
 
Vc  = 2 [ (68.80-77.03)2 + (81.34-77.03)2+ (79.76-77.03)2+ (78.22-77.03)2] = 190.35 
V = [ (65.19-77.03)2 + (73.13-77.03)2+ (73.81-77.03)2+ (69.35-77.03)2 + (72.41-77.03)2+ 
          (89.55-77.03)2+ (85.71-77.03)2+ (87.09-77.03)2] = 579.386 
Ve  =  V - Vr -Vc  
      = 34.196 
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Table 12. Analysis of Variance 

Variation Degree of 
Freedom 

Mean 
Square 

F 

Vr =354.84 1 354.84 31.154 
df :1,3 

Vc  = 
190.35 

3 63.45 5.57 
df:3,3 

Ve= 
34.196 

3 11.39 

V = 
579.386 

7  

 
 

The results are analysed by two factor experiments. Using the long method, test at 
the 0.05 level of significance whether there is a significant difference in identifying 
expected answer type due to Generic and Morpheme based CRF.  

 
Hypothesis: both models accuracy are same 

 
At the 0.05 level of significance with 1, 3 degrees of freedom, F0.95=10.1. Then, since 
31.154 > 10.1, we can reject the hypothesis that the row means are equal and con-
clude that at the 0.05 level there is significant deference in performance of Morpheme 
based CRF model. 

 

 

Fig. 4. Pictorial representation of performance comparison 

7    Conclusion 

This paper presents a CRF model for Tamil QC. The morpheme variants of morpho-
logically rich type of language embed much information to predict the dependency of 
terms. This concept is a crux idea for morphologically rich type natural language 
processing. Even though the morpheme component of the words pose the dominant 
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vital part, The deep semantic of root word cannot not be predicted by that compo-
nents. To come across these difficulties the lexical resource like WordNet is very 
useful. In this work the expected answer type can be exposed for the given question. 
But our assumption is that the previous or next phrase of the question term is the 
phrase where the question type is inhered. This assumption is precise for many other 
natural languages as for as the question statements are concerned. This work is to be 
extended for Question focus identification in future.  
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Abstract. Term translation has become a recurring need in many do-
mains. This creates an interest for robust methods which can translate
words in various languages. We propose a novel, analogy-based method
to generate word translations. It relies on a partial bilingual lexicon and
solves bilingual analogical equations to create candidate translations. We
evaluate our approach on medical terms. To study the robustness of the
method, we evaluate it on a series of datasets taken from different lan-
guage groups and using different scripts. We investigate to which extend
the approach can cope directly with multiword terms, and study its de-
pendency to the size of the training set.

1 Introduction

New words are coined all the time, especially in technical domains. Among oth-
ers, medicine is well-known for its propension to create new words to describe
new diseases (cardiomyopathy perivesiculitis), interventions (cystectomy), mi-
croorganisms (autoantibodies), substances (thiogalactosides), etc. Many of these
are named with complex words, built from existing morphemes: neoclassical com-
pounds are probably the most characteristic type, but other word formation de-
vices are also productive, e.g., words derived from person names (Wolffian). The
previous sentences list examples in English, but the same observation applies to a
number of other languages [1,2], seemingly with a great degree of parallelism. For
instance, one finds in Swedish: tiogalaktosider (thiogalactosides); Finnish: kys-
tektomia (cholecystectomy); Russian: аутоантитела (autoantibodies); French:
périvésiculite (perivesiculitis).

The question we address in this paper is then: are medical word formation
devices parallel enough in different languages for it to be possible to guess the
translation of a new word? For instance, given knowledge of a number of medical
words in a source language LS and their translations in a target language LT ,
can one generate the translation wT in LT of an unseen word wS in LS?

This problem has been addressed by Schulz and colleagues [3], who wrote
rules to generate words in Spanish from Portuguese medical words. Claveau
[4] went further by using machine learning techniques to learn transducers from
examples to generate French words from English medical words (and the reverse).
These methods can be called “generative” as they build new target words from

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 284–295, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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previously unseen source words. They can rely on human expertise [3] or on
machine learning methods [4].

Quite different, non-generative methods can also be used to identify word
translations in parallel corpora [5] if such corpora can be found which contain
the desired source words (and their translations). These word-alignment methods
take advantage of the prior existence of translations, but are intrinsically limited
by the availability of parallel corpora. They can be called “identification-based”
methods, as they must be provided with data which contain the solutions to the
problem (the target translations). Comparable corpora can also be used when
parallel corpora are scarce (e.g., [6]), but they make the task of translation
identification more difficult and error-prone.

Both kinds of methods can be helped if a morphological analyzer of the source
and/or target languages is available [7,8]: in that case, complex source words
can be decomposed and the generation or identification of target translations is
reduced to that of correspondences between component morphemes. However,
it requires a substantial human investment to obtain a precise morphological
analysis of derived and compound words and to specify the mapping between
component morphemes in source and target languages (even though it may be
partially helped by machine learning methods, e.g., [9]).

The present work explores the use of a different generative method: analogical
learning [10,11,12]. As the above-mentioned methods of this type [4] it is trained
on an initial bilingual lexicon and relies on the formal similarity of medical words
in some languages to propose new translations; in contrast to external methods,
it can generate translations for unseen words. In this paper, we examine how
this kind of method performs on medical words. We evaluate it on a series of
datasets and compare it to an identification-based, non-generative method based
on edit-distance.

This paper is organized as follows. We first present the datasets used for
testing the method. We introduce the principles of analogical learning on which
our system relies. We describe a series of evaluations which test different features
of the datasets. We discuss their respective results, which show that the method
performs as well on the different language and script pairs, in different translation
directions, on both uni- and multi-terms, but depends to some extent on the size
of the training set.

2 Datasets

We ran our experiments with several goals in mind. First, we wanted to check
whether analogical learning is better suited for specific language pairs. Second,
we were interested in observing whether it is more suited to translate into a
morphologic rich language (such as Finnish) or the other way round. Third,
we wanted to appreciate whether analogical learning is equally efficient when
translating multiterms (terms with several words) as when translating uniterms.
Last, we also wanted to gauge how important the quantity of training material
is to the overall approach.
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The UMLS Metathesaurus [13] is a large repository of medical terminologies,
with over 1.5 million distinct concepts and over 5 million distinct terms in 17
languages (version 2008AA, March 2008).1 A given concept may be labelled with
terms from different languages. It is therefore a very interesting resource to ex-
tract bilingual medical lexicons. A difficulty however is that terms which label
the same concept in different languages are not always linguistically translations
of each other: they may correspond to different ways of referring to the same
entity. For instance, UMLS concept C0027051 is labelled with Myocardial infarc-
tion, Heart attack, Infarto miocardico, Infarto del Miocardio, Ataque al corazon,
among a total of 105 distinct strings; each term is tagged with its language,
but there is no systematic tagging of which term is a translation of which other
term. Therefore, we designed a series of filters to extract sets of bilingual term
pairs from the UMLS Metathesaurus. Depending on the source terminologies,
datasets of different sizes could be obtained.
Small size datasets: MeSH thesaurus. The Medical Subject Headings (MeSH)
is the thesaurus used by the US National Library of Medicine to index the
biomedical scientific literature in the medline database.2 Its preferred terms are
called “Main Headings” (synonym terms are called “Entry Terms”). We collected
pairs of source and target Main Headings (TTY3 = ’MH’) with the same MeSH
identifiers (SDUI). We did not collect pairs of entry terms because we do not
know how to pair actual translations among the possibly numerous entry terms
of a given main heading.

Russian MeSH is normally written in Cyrillic, but some terms are simply En-
glish terms written in uppercase Latin script (e.g., ACHROMOBACTER for En-
glish Achromobacter). We filtered out these terms (1,366), retaining only Cyrillic
Russian MeSH terms (23,394).
Medium size datasets: MedDRA thesaurus. The Medical Drug Regulatory Ac-
tivities thesaurus (MedDRA) is intended to describe adverse effects of drugs and
other related terms. It contains different term types: high-level group terms (TTY
= ’HG’, 332 terms in English or Spanish), hierarchical terms (TTY = ’HT’, 1682
terms) and lower-level terms (TTY = ’LT’, 56580 terms). MedDRA also has pre-
ferred terms (TTY = ’PT’, 17867 terms). We collected pairs of source and target
terms of the same types (TTY= ’MH’) with the sameMedDRA identifiers (SDUI).
Large size dataset: SNOMED CT nomenclature
The Systematic Nomenclature of Medicine (SNOMED CT) has a large coverage
of signs and symptoms, but also of anatomy, diseases and other medical concepts.

1 The UMLS can be obtained at no cost from the National Library of Medicine at
http://www.nlm.nih.gov/research/umls/

2 The MeSH thesaurus and its translations are included in the UMLS Metathe-
saurus. Independently from the UMLS, the MeSH can also be browsed online at
http://www.nlm.nih.gov/mesh/MBrowser.html. The French-English bilingual ver-
sion can be seen at http://ist.inserm.fr/basismesh/mesh.html or at http://
www.chu-rouen.fr/ssf/arborescences.html

3 In the UMLS Metathesaurus tables, the TTY field codes the type of the term, with
values depending on the source terminology.

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/mesh/MBrowser.html
http://ist.inserm.fr/basismesh/mesh.html
http://www.chu-rouen.fr/ssf/arborescences.html
http://www.chu-rouen.fr/ssf/arborescences.html
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SNOMED CT has full-form descriptor terms (TTY = ’FN’, 311,313 terms in
English / 310,311 in Spanish), preferred terms (TTY = ’PT’, 311,313 / 310,311),
synonymous terms (TTY = ’SY’, 141,474 / 102,929). As in MeSH, we required
that only preferred terms should appear in term pairs.
Data preparation. In each source, each word was lowercased, and pairs of iden-
tical words were discarded. Table 1 shows the number of terms for each source
(column 2, All terms). We also prepared for each source its subset consisting of
uniterms (terms composed of exactly one word, i.e., with no space) made only
of alphabetic characters and possibly dashes, containing at least one lowercase
character (column 3 of Table 1). It can be seen that MedDRA and SNOMED
have a very small proportion of uniterms.

Table 1. Data sources: bilingual term lists. EN = English, FI = Finnish, FR = French,
RU = Russian, SP = Spanish, SW = Swedish.

Dataset All terms Uniterms
mesh-SW-EN 19090 5928
mesh-FR-EN 19230 5091
mesh-SP-EN 21021 6240
mesh-FI-EN 21787 7013
mesh-RU-EN 23394 7842
meddra-SP-EN 67523 3598
snomedct-SP-EN 284255 10921

3 Analogical Learning

An analogical proportion is a relation between four items [x : y = z : t] where
x is to y what z is to t in a sense to be specified (see Lepage [10] or Stroppa
and Yvon [11] for more detail). Here, formal relations between strings of char-
acters are considered, e.g., [aortotomy : aortitis = spondylotomy : spondylitis ].
An analogical equation is an analogical proportion where an item is unknown,
e.g., [x : y = z :?]. Stroppa and Yvon [11] propose a method to solve analog-
ical equations, i.e., to generate the missing fourth item. Complex objects may
also be considered in an analogical proportion, e.g., pairs of words of the form
(source, target) where target is the translation of source (these are entries in an
existing bilingual lexicon). Given such an object with a missing part (e.g., miss-
ing target), analogical inference can predict it by solving analogical equations.
It proceeds in three steps:

(i) collecting triplets of word pairs whose first elements define with source an
analogy;

(ii) solving the analogical equations between the corresponding second elements;
(iii) selecting the best candidate among these solutions.
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Let us illustrate this with the word pair (spondylitis, ?) where we want to
find as second term the French translation of spondylitis. The following ana-
logical proportions are identified in (i): that written above, [adenomalacia :
adenitis = spondylomalacia : spondylitis], [arthropathy : arthritis = spondylopa-
thy : spondylitis], etc., where (adenomalacia, adénomalacie), (adenitis, adénite),
(spondylomalacia, spondylomalacie), etc., are in our bilingual lexicon, but not
(spondylitis, ?). Analogical equations such as [adénomalacie : adénite = spondy-
lomalacie : ?] are thereby formed and solved in (ii), producing solutions among
which spondylite (the correct translation). The same solution may be generated
through multiple equations, therefore the frequency of each solution can be used
to rank the solutions generated in (iii).

The main difficulties in this method stem from the very large number of
analogical proportions that must be considered in (i) (it is cubic in the number
of input objects), and have been addressed by sampling and by using suitable
data structures.

4 Experiments

4.1 Experimental Setup

For each experimental condition, we computed the following measures [14]:

Coverage: The proportion of input words for which the system can generate
translations. If Nt words receive translations among N , coverage is defined as Nt

N .

Precision: Among the Nt words for which the system proposes an answer, pre-
cision is the proportion of those for which a correct translation is output. The
system proposes a ranked list of translations for each input word. Depending
on the number of output translations k that one is willing to examine, a correct
translation will be output for Nk input words. Precision at rank k is thus defined
as Pk = Nk

Nt
.

Recall : Is the proportion of the N input words for which a correct translation is
output. Recall at rank k is defined as Rk = Nk

N .

Edit-distance [15] computes a distance between two words based on their com-
mon and distinct characters. Since in our setting, source and target words are
often formally similar, given a list of potential target words, a candidate trans-
lation of an input word is the target word which is closest to it in terms of
edit-distance. An ideal situation for this method is one where all correct trans-
lations are included in the list of potential target words. We built such a list
by using the target part of each of our input bilingual lexicons, an extremely
favorable situation for this method.

To study the applicability of the method to any medical term, not only those
made of a single word (uniterms), we tested the methods both using the whole
bilingual term lists and using their subsets consisting of only uniterms.
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4.2 Results

The algorithm was applied to translate the different test sets, each consisting of a
random 10% split of the prepared source bilingual term lists searching analogies
(step i) in the search set, solving the resulting analogical equations (step ii)
then ranking solutions according to frequency (step iii).
Analogy. Table 2 shows the coverage, precision and recall obtained on all types of
terms from each language to English, then the same data for some of the reverse
language pairs. P1 and R1 stand for precision and recall at rank 1, i.e., when
looking at the top candidate translation proposed by the algorithm. P25 and R25

refer to precision and recall at rank 25: this provides an idea of whether using
a classifier to rerank candidate translations could find the correct translation
among the top ones proposed by the present simple frequency ordering. Similar
data is also displayed for uniterms only in Table 3.

Table 2. Generating translations through analogy for all types of terms. Coverage,
precision and recall are shown as percentages. Correct is the percentage of terms that
receive a reference translation by analogy. Because of the huge sizes of the full MedDRA
and SNOMED terminologies, tests were only performed on a subset of the test material.
However 90% of the whole terminologies were used to build analogies.

Dataset Test Coverage Correct P1 R1 P25 R25

All types of terms, Language X to English.
mesh-FI-EN 2178 44.3 32.5 38.3 17.0 63.7 28.2
mesh-FR-EN 1923 38.2 29.5 45.5 17.4 69.3 26.5
mesh-RU-EN 2340 40.0 30.8 49.2 19.7 69.2 27.6
mesh-SP-EN 2102 43.3 35.1 50.5 21.9 73.1 31.6
mesh-SW-EN 1907 44.2 33.6 44.6 19.7 68.2 30.2
meddra-SP-EN 1589 73.4 62.9 19.0 13.9 53.4 39.2
snomedct-SP-EN 2000 60.1 49.0 35.0 21.1 62.9 37.8
All types of terms, English to Language X
mesh-FI-EN 2178 46.5 31.7 34.0 15.8 54.7 25.4
mesh-FR-EN 1923 42.6 27.9 34.1 14.5 56.7 24.1
mesh-RU-EN 2340 46.7 33.4 36.8 17.2 60.7 28.3
mesh-SP-EN 2102 48.1 40.9 19.6 64.2 30.9 36.3
mesh-SW-EN 1909 43.8 31.9 38.0 16.7 64.2 28.1
meddra-SP-EN 1644 79.7 60.3 20.1 16.0 46.0 36.7
snomedct-SP-EN 1806 68.5 48.8 20.3 13.9 45.6 31.3

Edit-distance. Table 4 provides similar information collected with the edit-
distance method. To complement the investigation of edit-distance, we observed
that uniterms and their translations in close languages (such as French and En-
glish or Spanish and English) are very similar (less than 3 edit-operations on
average). Differences can be substantial for more distant language pairs (such as
Finnish and Swedish into/from English). Of course, for languages that do not
share the same alphabet, terms differ drastically, which plugs edit-distance based
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Table 3. Generating translations through analogy for uniterms

Dataset Test Coverage Correct P1 R1 P25 R25

Uniterms, Language X to English
mesh-FI-EN 701 44.2 30.4 49.0 21.7 65.5 29.0
mesh-FR-EN 509 34.4 23.0 46.3 15.9 63.4 21.8
mesh-RU-EN 784 48.6 32.1 38.1 18.5 61.7 30.0
mesh-SP-EN 624 46.0 29.8 42.5 19.6 60.6 27.9
mesh-SW-EN 592 41.0 29.1 46.1 18.9 64.2 26.4
meddra-SP-EN 361 50.8 41.7 48.5 24.6 77.3 39.3
snomedct-SP-EN 1094 57.8 34.6 34.6 20.0 54.8 31.7
Uniterms, Language English to X.
mesh-FI-EN 701 42.8 29.7 44.3 19.0 63.7 27.2
mesh-FR-EN 509 39.1 25.1 46.2 18.1 61.3 24.0
mesh-RU-EN 784 47.1 33.0 44.4 20.9 67.2 31.6
mesh-SP-EN 624 39.7 28.0 44.0 17.5 66.1 26.3
mesh-SW-EN 592 40.9 28.4 45.0 18.4 64.5 26.4
meddra-SP-EN 359 56.3 45.7 33.2 18.7 63.4 35.7
snomed-SP-EN 1094 56.6 34.2 33.1 18.7 55.6 31.5

approaches. In some exceptional instances though, the correct match may hap-
pen to be found; for instance, the unique case in mesh-RU-EN uniterms where
edit-distance provides the correct translation is инь-янь (yin-yang), where инь-
янь is the only Russian term in the MeSH thesaurus made of two sequences of
three letters separated by a hyphen.

Multi-terms and their translations are much less correlated in terms of edit-
distance. We computed that an average of 8 to 12 edit-operations distinguish
multi-terms from their translations in the different language pairs that share the
same alphabet. The SNOMED and MedDRA tasks (all terms) involve a more
important deviation of the source terms and their translations. Therefore, we
can expect edit-distance variants to perform very badly on these tasks. Besides,

Table 4. Identifying translations through edit-distance for the Language X to English
translation direction. As edit distance always proposes candidate translations, its cov-
erage is always 100% and P = R, so we simplify the table accordingly and only show
values for precision at ranks 1 and 25.

Test P1 P25 P1 P25

all terms uniterms
mesh-SW-EN 33.8 37.8 70.0 74.8
mesh-FR-EN 71.8 77.1 84.6 89.6
mesh-SP-EN 81.5 89.1 85.8 89.7
mesh-FI-EN 33.6 38.0 71.2 76.8
mesh-RU-EN 1.0 1.1 0.1 0.8
snomedct-SP-EN 4.1 5.3 83.8 91.4
meddra-SP-EN 4.4 4.4 75.2 82.6
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as underlined earlier, the proportion of (easier-to-handle) uniterms in these two
large terminologies is much lower.

5 Discussion

Examples of successful analogies are shown in Table 5. Example 1 (fr-en) shows
how a translation where a word ending is involved (-ie / -ia) leverages an
example with a prefix switch (exo- �→ ecto-), itself licensed by another word
pair (exosquelette �→ ectosquelette). This translation is indeed easy to find by
edit-distance. The rest of those listed in Table 5 could not be found by edit-
distance in our experiments. Example 2 (fi-en) pairs two formally unrelated
words, syöpägeenit and oncogenes. Example 3 (fi-en) shows how an analogy on
Finnish uniterms is parallelled by an analogy on English multiterms. In exam-
ple 4 (fi-en), English terms involve commas and different word orders in analogy
terms: legislation, drug vs drug industry. Example 5 (fi-en) has a hyphen and
different word orders in Finnish and English. This example contains a digit, as
does a rough 7% of the test terms in our dataset. Note that we do not treat
digits in any specific way. Example 6 (fi-en) illustrates that different analogies
can support the same translation.

Influence of parameters. The results do not evidence a strong influence of the
language pair on analogical translation, whereas edit-distance is hindered by
different scripts (Cyrillic) and (to a lesser extent) by more distant languages
(Swedish, Finnish). This can be explained by several factors. A first factor is
linked with the analogy method, which does not rely on a comparison of the
source and target terms. A second factor may come from the chosen domain,
medicine, where a part of the vocabulary is built in a more or less systematic
way. A third factor may come from the fact that most of the terms in our
international terminologies are translations of an initial version, generally in
English.

Table 5. Example analogies supporting correct translations

source/target triplets for analogical equations
1 exocardie <ectosquelette;ectocardie;exosquelette>

exocardia <ectoskeleton;ectocardia;exoskeleton>
2 syöpägeenit <kasviproteiinit;syöpägeeniproteiinit;kasvit>

oncogenes <plant proteins;plants;oncogene proteins>
3 otsaontelo <poskiontelotulehdus;poskiontelo;otsaontelotulehdus>

frontal sinus <maxillary sinusitis;frontal sinusitis;maxillary sinus>
4 elintarviketeollisuus <lääkelainsäädäntö;elintarvikelainsäädäntö;lääketeollisuus>

food industry <legislation, drug;drug industry;legislation, food>
5 epha5-reseptori <akvaporiini 1;akvaporiini 5;epha1-reseptori>

receptor, epha5 <aquaporin 1;receptor, epha1;aquaporin 5>
6 epha5-reseptori <alfa6beeta1-integriini;alfa5beeta1-integriini;epha6-reseptori>

receptor, epha5 <integrin alpha6beta1;receptor, epha6;integrin alpha5beta1>
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The translation direction has an impact on precision for some of the language
pairs. For MeSH (all terms), precision is better when translating into English
than the reverse. For MeSH uniterms, this is much less sensible. Globally though,
analogy does not seem to be too much disturbed by translating into a rich
morphological language.

Overall, analogical learning does equally well on uni- and multi-terms. This
was expected since the method does not rely on the notion of word. For MeSH,
between 23% (uniterms, French to English) to 40% (all terms, English to Span-
ish) of the test terms could be translated correctly by analogy. Many terms could
not be translated because of a failure to identify analogies in the input space
(step i).

For the MedDRA dataset, which is almost three times larger than the MeSH
dataset, analogical learning could translate 63% of the Spanish to English all
terms test set. Note however, that the precision is much smaller in that case.
This is because many analogies are being identified during step (i), which in
turn introduces many solutions. This clearly shows the need for a better filtering
strategy (step iii) than the simple frequency-based ranking we considered in this
study.

It is interesting to note, that for the SNOMED dataset, which is roughly four
times larger than MedDRA, we witness a decrease of the number of correctly
translated terms. If corpus size matters to a certain degree, what seems more
important is the diversity of the phenomenon present in the search material.

Comparison with edit-distance. An interesting observation can be made when
contrasting edit-distance and analogy variants. For uni-terms, edit-distance
seems to be more appropriate when the languages share the same alphabet; it is
the reverse for multi-terms. Translating multi-terms by analogy can lead to dras-
tic improvements in precision and recall, as can be observed for the SNOMED
and MEDDRA experiments, where edit-distance culminates at a recall of around
5% while analogy records a precision of 74% and a recall of 40% for the SNOMED
dataset (rank = 25) and a precision of 55% and a recall of 31% for MedDRA
(rank = 25). This clearly illustrates that analogy captures linguistic informa-
tion that helps in translating multi-terms. The fact that it does not outperform
edit-distance on single-terms (when using a single alphabet) is likely due to the
nature of medical terms which share the same latin or greek roots, which facili-
tates the task of edit-distance-like approaches. Note however that edit-distance
has access to the solution when translating, while analogy does not. Note also
that for languages with different scripts (RU/EN), edit-distance simply fails to
translate most of the terms. A transliteration step could alleviate this issue, but
this would require specific resources for each language and script.

We investigated more closely whether the terms translated had a special con-
figuration regarding edit-distance. We found out that the average edit-distance
between terms and their reference translation is larger for the terms that we
could not translate. The difference however, is not spectacular: in the order of
one point for uniterms, and two points for multi-terms. This means that analog-
ical learning is not especially biased toward translating “easy” terms.
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Table 6. Average number of analogies found in the input space nbi, average number
of target equations solved nbe, and average number of productive equations nbp, i.e.,
equations with at least one solution. These figures are computed on the only words that
received a translation by analogy for the X to English translation direction (similar
figures are observed for the reverse direction).

all terms uniterms
nbi nbe nbp nbi nbe nbp

mesh-FI-EN 55.5 28.3 25.4 7.8 6.3 5.2
mesh-FR-EN 63.2 26.2 23.7 6.4 5.8 4.9
mesh-RU-EN 43.4 28.6 25.4 30.3 8.1 6.8
mesh-RU-EN 37.5 29.9 26.3 30.3 8.1 6.8
mesh-SP-EN 30.2 27.4 25.3 15.8 6.7 5.5
mesh-SW-EN 60.3 18.8 16.5 17.8 7.5 5.9

Table 6 helps to appreciate the number of analogies identified in the input
space, as well as the number of productive equations4 formed in the output
space. We call productive an equation which generates at least one solution.
We observe that more analogies are identified while translating multi-terms.
This might simply be due to the larger training datasets considered in this
case. Another explanation could be that multi-terms exhibit strong construction
patterns, as for instance in the case of nervsystemets sjukdomar in Swedish
(nervous system diseases) that could be translated thanks to many analogies of
the form:

[hypotalamustumörer:nervsystemets tumörer =
hypotalamussjukdomar:nervous system diseases]

⇒ [hypothalamic neoplasms:hypothalamic diseases = nervous system neoplasms:? ].
[ileumtumörer:nervsystemets tumörer = ileumsjukdomar:nervsystemets sjukdomar]

⇒ [ileal neoplasms:ileal diseases = nervous system neoplasms:? ]

We also observe that most of the equations formed in the output space pro-
duce at least one solution, which indicates that the inductive bias of analogical
learning (an input formal analogy corresponds to an output one) seems to be
adequate.

Compared to analogy, edit-distance had an easier task since all target words
are included in the search list. Had we not added the list of target words, edit-
distance would have had a much lower potential recall. A more realistic test
would consist in using for a candidate list a large corpus or word list such as can
be found on the Web.
Synthesis and related work. A precise comparison with Claveau and Zweigen-
baum [4] is difficult since their test set was quite different from ours as it con-
tained pairs of identical words. Their best attainable precision was 75% when
4 We only count the output equations that are being solved. In practice, many equa-

tions produced can be ruled out without solving them, thanks to properties on formal
analogies.
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test words were randomly selected as in the present work, but included 10–12%
of identical words. They do not report the corresponding recall.

The analogical method can generate translations for unseen words. The res-
olution of an analogical equation combines the known words in the equation to
create a new, hypothetical word which solves it. Identifying and solving a large
number of such analogical equations builds cumulative support for the most
promising hypotheses. The frequency ordering used in this paper is a crude
method for selecting the best translation; the use of a suitable classifier can
boost selection (current experiments obtain a reduction of candidates by 90%
with little or no loss in recall).

Another way to improve the analogical method would be to provide it knowl-
edge on morphemes or “subwords,” as prepared, e.g., in [7]. This could be used
to enforce morphemic boundaries when generating analogical equation solutions
and therefore reduce the number of generated forms, or to perform a posteriori
filtering of candidate translations in step (iii).

6 Conclusion

We introduced an analogy-based method to generate word translations and
tested it to evaluate its potential on medical words. Its precision can be quite
good once a stronger selection component is integrated in its last step (current
upper bound at 81%, MeSH, sp-en). Its recall is lower, with an upper bound
at 55% (MedDRA, sp-en) in the current experiments. It can be increased by
a combination with complementary, existing methods based on attested words,
such as edit-distance with a large word list. It has the distinctive feature of being
able to generate translations for unseen words.

We checked that the analogy method is robust on a series of language pairs,
including distant languages (Finnish) and different scripts (Cyrillic). We also
verified that it can tackle the direct translation of multiword terms without
having to first segment them into words.
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Abstract. Pronominal anaphora resolution denotes antecedent identification for 
anaphoric pronouns expressed in discourses. Effective resolution relies on the 
kinds of features to be concerned and how they are appropriately weighted at 
antecedent identification. In this paper, a rich feature set including the innova-
tive discourse features are employed so as to resolve those commonly-used 
Chinese pronouns in modern Chinese written texts. Moreover, a maximum-
entropy based model is presented to estimate the confidence for each antecedent 
candidate. Experimental results show that our method achieves 83.5% success 
rate which is better than those obtained by rule-based and SVM-based methods. 

Keywords: pronominal anaphora resolution, maximum entropy model,  
Chinese, discourse. 

1   Introduction 

As Chinese becomes widely used in the world, the techniques to facilitate Chinese text 
understanding are demanded. Among various kinds of language processing techniques, 
few approaches have been presented to resolving commonly-displayed pronouns in 
Chinese written texts. The reasons are attributed to the difficulties in extracting useful 
explicit semantic or syntactic clues from contexts. For example, Chinese nouns rarely 
contain morphological clues to indicate their gender or plurality features. 

Essentially pronominal anaphora resolution relies on the ways to check those con-
straints between pronouns and their antecedent candidates. Among various kinds of 
constraints discussed in recent literatures, lexical, grammatical, and positional fea-
tures are commonly addressed in [6, 10, 15, 16]. On the contrary, it is not easy to 
acquire semantic features or syntactic features from contexts if effective parsing or 
named entity identification tools are not available [4, 16, 17].  

On the other hand, the ways to weight extracted features have been approached by heu-
ristic rules or machine learning models. In general, rule-based methods have problems of 
portability and scalability while learning-based methods require a large well-tagged train-
ing corpora for satisfactory performance [11, 12, 13]. Besides, learning approach like 
SVM-based classification manipulates candidates by labeling positive or negative classes 
rather than estimating the likelihood that a candidate becomes an antecedent. 



 Improving Chinese Pronominal Anaphora Resolution 297 

In this paper, an effective approach to Chinese pronoun resolution is presented. In 
addition to the features commonly used in previous approaches, two innovative fea-
tures are introduced by considering Chinese discourse structures. One is feature of 
coherence relations which are helpful to guide pronominal anaphora resolution [8]. 
The other is the feature of forward-looking centers associated with discourse utter-
ances [5, 14]. Such discourse features will be extracted by implementing the  
presented heuristic rules with the help of outer resources. Moreover, our antecedent 
identification is implemented by a maximum-entropy based model which is motivated 
to yield global optimization of feature weighting [1]. The experimental results show 
that our method yields 83.5% success rate on 651 anaphor-antecedent pairs, enhanc-
ing 8% and 3% success rates respectively while compared to the general rule-based 
method presented in [15] and a SVM-based method. Besides, the experimental results 
show that the impact of the innovative discourse features is positive in enhancing the 
presented pronoun resolution. 

2   The Pronoun Resolution 

The presented resolution is implemented in the training phase and the testing phase. 
The training phase is mainly to train the presented maximum-entropy confidence 
estimation on the selected feature set. The testing phase involves the tasks to process 
texts, extract informative features from both contexts and outer resources, and finally 
determine antecedents. Table 1 lists the target pronominal anaphors to be resolved in 
this paper. Unlike English pronouns, Chinese pronouns remain the same in expressing 
nominative and accusative cases. 

Table 1. The target pronominal anaphors 

 Singular Plural Possessive (Singular) Possessive (Plural) 
Male 他(he, him) 他們(they, them) 他的(his) 他們的(their, theirs) 
Female 她(she, her) 她們(they, them) 她的(her, hers) 她們的(their, theirs) 
Neutral 它(it) 它們(they, them) 它的(its) 它們的(their, theirs) 

2.1   Text Processing 

Text preprocessing involves sentence segmentation, Part-of-speech tagging, noun 
phrase chunking and grammatical tagging. The sentence segmentation and POS tag-
ging are processed by CKIP Chinese word segmentation system1. Noun phrase chunk-
ing is implemented by our finite-state machine chunker. All noun phrases appearing 
in the two sentences ahead of a target pronoun will be treated as antecedent candi-
dates. This is because 94% antecedents identified in our training corpus are in two 
sentences ahead of their corresponding anaphors.  

Since the text processing is implemented without any help of a parser, so we simply 
treat all noun phrases appearing in front of a verb as subjects and agents and those suc-
ceeding a verb as objects and patients. Other grammatical tags like gender, and number 
features for each noun phrase are implemented with the following heuristic rules.  

                                                           
1 CKIP Chinese word segmentation system is available at http://ckipsvr.iis.sinica.edu.tw/ 
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(1) Number identification procedure: 
Step 1: Define symbols as follows: 

NP= an given noun phrase; 
HNP= head noun of the noun phrase; 
Q= set of quantifiers; 
P= set of collective quantifiers like {群, 夥, 堆, 對, 批}; 
R= set of plural words like {都, 全, 全部, 全體, 皆, 所有, 每個, 雙方, 多
數, 一些, 某些, 若干, 幾個, 數個, 許多, 諸多}; 

Step 2: If NP satisfies any of the following conditions, then return singular. 
i. HNP is a person name; 
ii. NP contains a title; 
iii. NP ∈{[這|那|該|某|一] +{Q-P}+noun}; 

Step 3: Else if NP satisfies any of the following conditions, then return plural. 
i. HNP is an organization name; 
ii. The last character of NP∈{們, 倆}; 
iii. NP contains plural number + Q; 
iv. NP follows r, where r∈R; 

Step 4: For other cases, the number feature associated with the NP is marked  
unknown. 

(2) Gender identification procedure: 
Step 1: Check each NP whether it is an animate with the help of CKIP lexicon2.  
Step 2: If its semantic tag is not mankind, then return neutral; 
Step 3: Else if NP satisfies any of the following conditions; then return male; 

i. NP= person name+先生; 
ii. the first character of NP is “男”; 
iii. the last character of NP is “父”; 
iv. NP+的+female_title word; 
v. NP +他; 

Step 4: Else if NP satisfies any of the following conditions; then return female; 
i. NP= person name+女士; 
ii. the first character of NP is “女”; 
iii. the last character of NP is “母”; 
iv. NP+的+male_title word;  
v. NP +她; 
vi. first-name contains any female character; 

Step 5: For other cases, the gender feature is marked unknown. 

2.2   Extensive Feature Representation 

In this paper, each antecedent candidate is represented with a rich set of extracted 
features. As listed in Table 2, the features can be grouped into six categories. Among 
them, lexical, positional, grammatical and heuristic features are employed in our reso-
lution as well as most of previous resolutions. However, our approach acquires more 
semantic features instead of syntactic features like parsing results used in [4, 17].  
                                                           
2 CKIP (Chinese Knowledge Information Processing Group) lexicon is available at 

http://www.aclclp.org.tw/use_ckip_c.php 
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The extracted semantic features include the named entities identified by the named 
entity identifier presented in [7]. Moreover, two other semantic features are also in-
cluded in our rich feature set while we considering Chinese discourse structures. One 
is coherence relation feature and the other is forward-looking center feature. As 
pointed in [8], the establishment of coherence relation guides pronominal anaphora 
resolution, and vice versa. In this paper, we assume that a coherence relation exists 
between an antecedent candidate and a pronoun if they are in the same discourse unit 
which may cross sentences. The discourse unit is identified by checking whether there 
are explicit discourse markers collocating in the discourse unit containing an antece-
dent candidate and a pronoun. The collocating markers are those words of the dis-
course lexicon database presented in [3]. For example, “一方面” (“on the one hand”) 
and “另一方面” (“on the other hand”) are collocating markers linking the coherence 
relations among a discourse unit. 

As indicated [5, 14], a discourse utterance is associated with forward-looking or 
backward-looking centers. Backward-looking centers are often omitted or realized as 
pronouns while ranking of forward-looking centers corresponds to the likelihood that 
a center becomes the primary focus of subsequent discourses. Considering Chinese 
language is called a topic-prominence language, we hence extract forward-looking 
centers as one kind of discourse features by implementing the following simple  
center-identification rules. 

Table 2. The feature set 

Type Feature Description (C: antecendent candidate; P: pronoun) 
Same_Pro C and P are the same pronoun 
Per_Pro P is a personal pronoun 
Non_Emb C is not an embedded NP  

Lexical 

Reflexive P is a reflexive of C 
Gender C and P have gender agreement 
Number C and P have number agreement 
Animate C is a animate entity and P is a male or female pronoun 
Role C is the agent of a verb 

Grammatical 

Parallel C and P are the same grammatical roles 
NE_Per C is a person name and P is a male or female pronoun 

Semantic 
NE_Org C is an organization name and P is a plural pronoun 

Same_Clause C and P are in the same clause 
Same_Sent C and P are in the same sentence 
Same_Para C and P are in the same paragraph 
Near_NP C is the nearest NP to P 
Clause_Lead C is the first NP in the clause 

Positional 

Sent_Lead C is the first NP in the sentence 
Repeat C repeats more than once in text 

Heuristic 
Definite C follows a determiner 
Coherence  C and P are in the same discourse unit 

Discourse 
Fwd_cent C is the forward-looking center  
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1. The first noun phrase in a sentence is treated as topic by default. 
2. For each pronoun, all the noun phrases appearing in the preceding clause are 

treated as forward-looking center candidates. 
3. If one of the candidates is the identified topic, the topic becomes the forward 

looking center; otherwise, the candidates are selected to be the center by follow-
ing the priority rule, that is, subject-labeled candidate is firstly selected; an object-
labeled candidate is the second one; the other candidates are the last ones.  

2.3   Antecedent Identification 

With a rich set of extracted features, each antecedent candidate is estimated by our 
maximum entropy base model. The candidate is selected as antecedent if it has top 
confidence value as defined in Equation (1). In the experiments, we employed 
YASMET3, a language toolkit implementing a smoothing maximum entropy based 
model with a Gaussian prior [9].  
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where 
x: x∈{positive, negative} and x labels c as positive or negative 
c: an antecedent candidate for its corresponding pronoun 
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3   Comparative Results and Analysis 

The presented resolution is trained by a training corpus which contains 157 news 
documents extracted from a balanced corpus ASBC4. Another different set of 150 
news documents is used as testing data for performance comparison. The resolution is 
evaluated in terms of success rate (Equation (2)).  

 pairs antecedent-anaphor ofnumber  total
pairs antecedent-anaphor resolvedcorrectly  ofnumber 

rate success =
 

(2) 

The proposed resolution is verified and compared to rule-based and SVM-based ap-
proaches. The rule-based method is implemented in the way as presented in [15] in 
which only four features, namely, number, gender, grammatical, and position are  

                                                           
3 YASMET is available at http://www-i6.informatik.rwth-aachen.de/Colleagues/och/ 
4 Academia Sinica Balanced Corpus is available at http://www.sinica.edu.tw/SinicaCorpus/ 
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extracted and weighted manually. On the other hand, the SVM-method is implemented 
by using the toolkit LIBSVM5 with the presented 21 features. Table 3 shows that our 
method yields better success rate to the rule-based method by considering more fea-
tures at antecedent identification. On the other hand, a SVM-based approach essen-
tially ignores the remaining antecedent candidates whenever one candidate is tagged to 
be positive, hence less success rate is obtained by the SVM-based resolution while 
compared to the presented method.  

The impact of features is verified by implementing leave-group-out evaluation. 
Table 4 shows that grammatical features as well as semantic features are the first two 
important features. It also shows that the innovative discourse features are useful to 
enhance the pronoun resolution though they improve success rate slightly. The reason 
is that few inter-sentential discourse units were identified by the discourse marker 
based matching method. Improvement of discourse identification is expected in the 
future work. Besides, examining the resolution errors, we found that most of errors 
are attributed to text processing and gender identification. It is observed that Chinese 
pronoun “他” (he) is often incorrectly used for a female entity in Chinese texts.  

Table 3. Performance evaluation 

Method Success rate 
Wang & Mei (2005) 75.7% 
SVM-based classifier 80.6% 
Our method 83.5% 

Table 4. Performance of leave-group-out evaluation 

Excluded feature group Success rate 
Lexical 76.6% 
Grammatical 73.7% 
Semantic 74.6% 
Positional 77.5% 
Heuristic 81.7% 
Discourse 80.7% 

4   Conclusions 

This paper addressed the commonly-observed pronominal anaphora in Chinese texts. 
An effective resolution approach is presented by using extensive feature representa-
tion and confidence evaluation. To our best knowledge, the presented resolution is the 
first approach to employ discourse coherence and center features. With real experi-
ments, the innovative features are proved to be useful in enhancing resolution per-
formance. Meanwhile, the maximal entropy based confidence evaluation indeed 
yields better resolution performance than the SVM-based and rule-based approaches. 
                                                           
5 LIBSVM is available at http://www.csie.ntu.edu.tw/~cjlin/ 
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Abstract. We describe how to give a full specification of an ISU-based
dialogue system as a grammar. For this we use Grammatical Framework
(GF), which separates grammars into abstract and concrete syntax. All
components necessary for a working GoDiS dialogue system are spec-
ified in the abstract syntax, while the linguistic details are defined in
the concrete syntax. Since GF is a multilingual grammar formalism, it
is straightforward to extend the dialogue system to several languages.
Furthermore, the GF Resource Grammar Library can be used to write a
single concrete instance covering 13 different languages.

1 Introduction

1.1 The Information-State Update Approach

The GoDiS dialogue manager [1] is based on formal semantic and pragmatic
theories of dialogue, and provides general and fairly sophisticated accounts of
several common dialogue phenomena such as interactive grounding, accommo-
dation, multiple conversational threads, and mixed initiative. GoDiS is based
on the Information State Update (ISU) approach to dialogue management [2].
The ISU approach, which has been developed over the last 10 years in several
EU-funded projects, provides a generalization over previous theories of dialogue
management and allows exploring a middle ground between sophisticated but
brittle research systems, and robust but simplistic commercial systems. In the
ISU approach, a dialogue manager is formalized as:

1. an information state (IS) type declaration, indicating which kinds of infor-
mation the system needs to keep track of

2. a set of dialogue moves, i.e., abstract semantic representations of utterances
3. information state update rules, which:

(a) update the IS based on observed dialogue moves
(b) select moves to be performed by the system based on the current IS

The IS is a structured object which can contain e.g. sets, stacks, records, queues,
etc. This allows efficient scripting of ISU system applications. In GoDiS, which
is based on a theory of Issue-Based Dialogue Management (IBDM), a single

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 303–314, 2008.
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script (called a dialogue plan) can be used flexibly by the dialogue manager to
allow for a wide range of dialogues. While it would in principle be possible to
implement many GoDiS dialogues using finite state automata, the processes of
implementing, debugging and modifying these systems would be prohibitive.

The main benefit of the IBDM account as implemented in GoDiS is the com-
bination of advanced dialogue management and rapid prototyping (quick imple-
mentation, debugging and modification) enabled by cleanly separating general
dialogue solutions from application-specific domain knowledge.

1.2 Examples of Flexible Dialogue

Below are some examples of dialogues enabled by a single dialogue plan in the
IBDM framework. The examples are taken from an implementation of a cell-
phone application. The dialogue plan, in this case the plan for changing a phone
number in the phone book, specifies a default order of system actions to take:

1. ask for the name
2. ask for the type of number (home, cellphone, or work)
3. ask for the new number
4. change the phone book entry for the given name and type to the new number

Example 1. In the first example, after requesting the system to change a number,
the user gives initiative to the system and just answers system questions:

U: Change phone number.
S: Okay, let’s see. What name?
U: Lisa
S: Okay. Home number and work number are available. Which number
do you want to change?
U: Home number
S: Okay. What is the new number?
U: 11 12 13.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 2. Alternatively, the user can combine the request with answers to some
as-yet-unasked questions. The default ordering of system actions in the dialogue
plan can thus be overridden:

U: I would like to change Lisa’s number to 11 12 13.
S: Okay, let’s see. Home number and work number are available. Which
number do you want to change?
U: The home number please.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 3. It is also possible to just throw the system some information, and it
will try to figure out which action the user wants the system to perform. If there
is more than one candidate, the system will generate a clarification question.
(Here we are also using a plan for making calls and a plan for searching for
phone numbers):
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U: Lisa’s home number
S: Lisa’s home number. I don’t quite understand. Do you want to make
a call, change a phone number or search for a phone number?
U: Change phone number
S: Okay. What is the new number?
U: 11 12 13.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

Example 4. If we provide the application with additional plans, e.g. for reading
SMS messages, it is possible for the user to take new initiatives (ask questions
or request actions) at any point in a dialogue. The system will enter into a
sub-dialogue, and when the sub-dialogue is finished it will return to the previ-
ous dialogue topic. There is no intrinsic limit to the number of simultaneous
conversational topics that the system can keep track of:

U: I would like to change Lisa’s number to 11 12 13.
S: Okay, let’s see. Home number and work number are available. Which
number do you want to change?
U: Check my messages.
S: You have got this SMS: ”Hi! I have a new home number, it is 11 12 13.
Love, Lisa”. Let’s go back to changing an entry. Which phone number
do you want to change?
U: The home number please.
S: Okay. I have now changed Lisa’s home number to 11 12 13.

In addition to the above, general techniques for dealing with problems of per-
ception, understanding and acceptance enable both user and system to provide
feedback at any point in the dialogue. Such feedback can be either positive (sig-
naling successful perception, understanding and acceptance) or negative (signal-
ing problems).

We want to stress again that all the dialogues above use the same single
dialogue plan. That is, the addition of that single plan to the application domain
knowledge module enables many different dialogues.

1.3 Adding Natural Language to GoDiS

As previously mentioned, GoDiS enables rapid prototyping of systems with ad-
vanced dialogue behavior. However, the GoDiS dialogue manager only commu-
nicates with the outside world using semantic representations called dialogue
moves. The designer of the dialogue system must implement a translation be-
tween natural language utterances and dialogue moves, be it through a simple
lookup table, or an advanced feature-based grammar. If the system is speech-
based, it also needs a statistical language model or a speech recognition grammar.

These components have to be maintained. If we add a new concept, e.g., a
new dialogue plan, we have to add new grammar rules for handling the actions,
questions, answers, etc., that are associated with the concept. Each entity in the
database has to exist, both in the speech recognition component, in the grammar
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and in the dialogue system. If the dialogue system is multilingual, we have to
ensure consistency for each language.

There have been attempts of solving parts of these consistency problems.
The Regulus grammar compiler [3] or the Grammatical Framework [4] can au-
tomatically create speech recognition grammars from a higher-level grammar,
thus ensuring consistency between speech recognition and parsing. Both these
formalisms have been used for building grammars for GoDiS systems [5].

One problem is still not sufficiently addressed: consistency between the dia-
logue system and the grammar. The dialogue moves that the grammar outputs
from parsing have to conform to the dialogue moves that the GoDiS system
recognizes; and the other way around: The grammar has to be able to translate
dialogue moves from GoDiS into natural language utterances.

What we want is a single formalism where we can specify the complete dia-
logue system. There have already been some attempts of this, but not for ISU-
based dialogue systems. In [6] it is shown that a simple GF grammar can be
converted into a VoiceXML dialogue system. However, their translation can cur-
rently only handle small domains, and the resulting system has very limited
dialogue handling capabilities. In this paper we show how a GoDiS dialogue
system can be specified as a GF grammar. All components necessary for a full-
fledged ISU-based dialogue system are then automatically generated from the
grammar.

1.4 Grammatical Framework

Grammatical Framework [4] is a grammar formalism based on type theory. The
main feature is the separation of abstract and concrete syntax, which makes it
very suitable for writing multilingual grammars. A rich module system also fa-
cilitates grammar writing as an engineering task, by reusing common grammars.

The main idea of GF is the separation of abstract and concrete syntax. The
abstract part of a grammar defines a set of abstract syntactic structures, called
abstract terms or trees; and the concrete part defines a relation between abstract
structures and concrete structures. This separation of abstract and concrete
syntax is crucial for the treatment of dialogue systems in this article.

The abstract theory of GF is a version of Martin-Löf’s [7] dependent type the-
ory. A grammar consists of declarations of categories and functions. Categories
can depend on other categories – the following declarations state that Request
and Utterance are categories that depend on a Domain:

cat Domain
cat Request(Domain)
cat Utterance(Domain)

Functions are declared by giving argument and result types. Function declara-
tions can also bind variables to be used in dependent types. Here we state that
an Utterance can consist of a Request, provided that the share the same Domain:

fun request : (d:Domain)→ Request(d)→ Utterance(d)
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Concrete Syntax. GF has a linearization perspective to grammar writing,
where the relation between abstract and concrete is viewed as a mapping from
abstract to concrete structures, called linearization terms.

Linearizations are written as terms in a typed functional programming lan-
guage, which is limited to ensure decidability in generation and in parsing. The
language has records and inflection tables; and the basic types are strings and
inflection parameters. There are also local definitions, lambda-abstractions and
global macro definitions. The parameters are declared in the grammar; they can
be hierarchical but not recursive, to ensure finiteness.

The following things are declared in the concrete syntax:

– The inflection parameters have to be declared. E.g., a verb phrase request
in a simple variant of Swedish can be in imperative or infinitive:

param VerbForm = Imperative | Infinitive
– Each category should have a matching linearization type. E.g., a Swedish

verb phrase request depends on the VerbForm:
lincat Request = VerbForm ⇒ Str
lincat Utterance = Str

– For each function in the abstract we define its linearization function. An
utterance for our Swedish requests can either be a direct Imperative, or an
indirect (“I would like to” followed by an Infinitive):

lin request(req) =
variants{req ! Imperative ; “jag vill”++ req ! Infinitive ++“tack”}

– A category can have an optional default linearization, which is used for un-
known terms of that category:

lindef Request =
table{Imperative →“gör n̊agonting”; Infinitive →“göra n̊agonting”}

With these example definitions, the possible linearizations of the incomplete term
request( ) are“gör n̊agonting”(“do something”) and“jag vill göra n̊agonting tack”
(“I want to do something please”).

Multilinguality and Resource Grammars. It is possible to define different
concrete syntaxes for one particular abstract syntax. Multilingual grammars can
be used as a model for interlingua translation, but also to simplify localization
of language technology applications such as dialogue systems.

The abstract syntax of one grammar can be used as a concrete syntax of
another grammar. This makes it possible to implement grammar resources to be
used in several different application domains.

These points are currently exploited in the GF Resource Grammar Library
[8], which is a multilingual GF grammar with a common abstract syntax for 13
languages, including Arabic, Finnish and Russian. The grammatical coverage is
similar to the Core Language Engine [9]. The main purpose of the Grammar
Library is as a resource for writing domain-specific grammars.

Note that for ease of presentation we do not make use of resource grammars
in our running example. The interested reader is referred to [10], for a survey of
the GF module system and resource grammars.
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2 The GoDiS Dialogue Manager

In this section we give a short description of the building blocks of the GoDiS
dialogue manager. The purpose of this description is to give details on how to
specify a GoDiS system. We are not trying to explain the internals of the dialogue
manager, which is described thoroughly in [1].

The GoDiS system communicates with the user via dialogue moves. There
are three main dialogue moves – requesting actions, asking questions and giving
answers. All three moves take one argument – the action, question or answer
that the move is requesting, asking or giving.

Apart from the three main moves there are also different kinds of feedback
moves – confirmations, failure reports and interactive communications manage-
ment. We will not dwell into how these moves function, except for noting that
they are important for the dialogue flexibility demonstrated in section 1.2.

The basic building blocks in GoDiS are individuals, sorts, one-place predicates
and actions:

– The sorts are ordered in an hierarchy of sub- and supersorts. Each predicate
has a domain which is a specific sort.

– Each individual e belongs to a specific sort s, written e : s.
– A predicate p (with domain s’) can be applied to an individual e:s, where s

is a subsort of s’, to form a proposition p(e). A proposition can be used in
an answer, answer(p(e)), or a y/n-question, ask(?p(e)).

– A collection of y/n-questions can be asked as an alternative question,
ask({?p(e), ?p(f), . . . }).

– A predicate p can be eta-expanded to a wh-question ?x.p(x). Wh-questions
can be asked, ask(?x.p(x)).

– An action a can be requested, request(a). After the action has been performed
it is confirmed, confirm(a), or a failure is reported, report(fail(a,. . . )).

– From an action a or a question q we can form the special propositions ac-
tion(a) and issue(q).1 These propositions are mainly used when asking the
user what to do, or in feedback moves.

To specify a GoDiS dialogue system, we have to give the following information:

– The sortal hierarchy, i.e., the subsort relation.
– The individuals and the sorts they belong to.
– The predicates and their domains.
– The actions.
– The dialogue plans.

Apart from these things we have to have an interface for communicating with
the device. The only thing we assume about this interface is that it can accept
actions (using the dev do plan construct) and queries (using dev query).

1 The propositions can be read approximately as “action a should be performed” and
“question q should be resolved”, respectively.
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Dialogue Plans. Dialogue plans have already been touched upon in section 1.2.
They convey what the system can do and/or give information about. A dialogue
plan is a receipt for the system, so it knows how to answer a specific question, or
how to perform a given action. The dialogue plans can roughly be divided into
three different kinds – actions, issues and menus.

An action plan is when the user wants to perform an action, e.g., change the
number of a contact in the phone book. Action plans are usually built in the
same way. First the system asks some questions to get enough information, and
then the action is performed. As an example, this is a more formal version of
the plan in section 1.2:

changeNumber: findout(?x.nameToChange(x))
findout(?y.typeToChange(y))
findout(?z.newNumber(z))
dev do(changeNumber)

After the plan has finished, GoDiS reports to the user about the success or failure
of the action.

An issue plan is when the user has (explicitly or implicitly) asked a question,
which the system should answer. Issue plans usually follow the same pattern
as action plans, except that instead of telling the device to execute an action,
it is given a query to solve. Here is the example plan for searching for phone
numbers:

?x.searchForNumber(x): findout(?y.nameToSearch(y))
findout(?z.typeToSearch(z))
dev query(?x.searchForNumber(x))

The result of the query is an answer to the question, which GoDiS automatically
reports to the user.

A special kind of action plan is the menu, where the user can select from any
of a given number of sub-plans which the system then performs. Note that these
sub-plans can be menus themselves, which gives a hierarchy of menus.

managePhonebook: findout({ ?action(addContact)
?action(deleteContact)
?action(changeNumber)
?issue(?x.searchForNumber(x))
?issue(?y.searchForName(y)) })

3 Specifying a GoDiS System as GF Abstract Syntax

In this section we show how all necessary components of a GoDiS dialogue system
can be specified in the abstract syntax of a GF grammar. All GoDiS components
can be automatically extracted from the grammar.



310 P. Ljunglöf and S. Larsson

3.1 Menus, Actions and Issues

In our GF grammar we define a category Menu, and three categories depending
on Menu, reflecting the actions, issues and sub-menus in a plan.

cat Menu
cat Action(x) [x : Menu]
cat Issue(x) [x : Menu]
cat SubMenu(x,y) [x,y : Menu]

Each action and issue in our dialogue specification belongs to a menu. Now, the
first thing we have to do is to define the menus in our dialogue system:

fun mainMenu, makeCall, managePhonebook : Menu

An action plan is specified by giving a function with result category Action(m)
where m : Menu. An example is the plan for changing the phone number:

fun changeNumber : nameToChange → typeToChange → newNumber →
Action(managePhonebook)

An issue in GoDiS is a wh-question ?x.P(x). This is reflected in the GF grammar
where all issues are functions with the result Issue(m). Here is the issue plan for
searching for a contact’s phone number:

fun searchForNumber : nameToSearch → typeToSearch →
number → Issue(managePhonebook)

Note that there is a crucial difference between the arguments. All arguments
except the last one represent information which the system asks the user for.
The last argument represents the final answer of the query.

Each menu in the specification corresponds to a menu plan in GoDiS. The
elements of a menu are specified by the argument m to the dependent types
Action(m) and Issue(m). E.g., the menu managePhonebook consists of five choices,
of which changeNumber and searchForNumber are already specified above. With
this solution we do not have to specify the menu plans directly, but they can be
deduced automatically from the menu argument to each action and issue.

Finally, the mainMenu in our example asks whether we want to make a phone
call, or manage the phone book. Both these alternatives are menus themselves.
This is specified by creating instances of the SubMenu type:

fun makeCallSubMenu : SubMenu(mainMenu,makeCall)
fun managePhonebookSubMenu : SubMenu(mainMenu,managePhonebook)

3.2 The Dialogue System Ontology

Everything else in the GF grammar specifies the ontology of the dialogue sys-
tem. From the grammar we can extract the sorts and the sortal hierarchy, the
individuals and the sorts they belong to, and the predicates and their domains.
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Sorts. In our simple example we want to have two GoDiS sorts, names and
phone numbers. Names are defined as a simple database:

fun anna, bert, charles, diane : name

In our setting a phone number is simply a sequence of small numbers (i.e.,
numbers below 100):

fun single : smallNumber → number
fun cons : smallNumber → number → number
fun 0, 1, 2, . . . , 99 : smallNumber

Each of the GF types is automatically translated to a GoDiS sort, and each
instance becomes a GoDiS individual. The complex functions create non-atomic
individuals, so these are the accepted numbers in our GoDiS application:

single(n) : number if n : smallNumber
cons(n,m) : number if n : smallNumber and m : number

Note that the sort smallNumber will be created, which we do not use at all in
our application. But this is no problem since it doesn’t interfere with the sorts
we are using.

User Answers. Not all sorts are intended to be used in communication. E.g.,
we do not want the user to give answers of the form answer(smallNumber(. . . )),
but only of the form answer(number(. . . )). Therefore the grammar writer has to
specify which sorts can be uttered as answers, by supplying the category Answer:

fun answerName : name → Answer
fun answerNumber : number → Answer

With these two definitions, the user can give answers containing names and
phone numbers, but not small numbers.

Coercions and Subsorts. Each type that occurs as an argument in an Action
or an Issue reflects a system-initiated question. E.g., the action for calling a phone
number is:

fun callNumber : numberToCall → Action(makeCall)

From this specification, numberToCall will be translated to a one-place predicate
in GoDiS. But GoDiS also needs to know the domain of this predicate. This is
specified by a coercion function in GF:

fun coerceNumber : number → numberToCall

A function is a coercion if it, i) takes exactly one argument, and ii) is the only
function with the same result type. We do not translate coercions to instance
rules as we did for the sort of numbers. Instead we state that number is a sub-
sort of numberToCall, which in GoDiS term means that any answer of the form
answer(number(. . . )) is a relevant answer to the question ?x.numberToCall(x).
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4 User and System Utterances in the Concrete Grammar

In this section we exemplify how it is possible to specify concrete linearizations
of the abstract syntax, so that the final system can convert utterances to and
from dialogue moves.

4.1 Linearizations of Dialogue Moves

In a GF grammar, each abstract function has a corresponding concrete lineariza-
tion with the same number of arguments. E.g., the callNumber action, and the
sort number, can have the following linearizations:

lin callNumber(x) =“call”++ variants{x ;“a number”}
lin single(x) = x
lin cons(x,y) = x ++ y

Now, the result of parsing the sentence “call twelve nineteen sixty” will be the
GF term:

callNumber(cons(12,cons(19,single(60)))) : Action(makeCall)

There is an automatic translation from GF terms to GoDiS dialogue moves, and
the final result in this case will be:

request(callNumber), answer(numberToCall(cons(12,cons(19,single(60)))))

Note that there is one alternative linearization of callNumber where the argu-
ment is not used. This means that parsing of“call a number”will return callNum-
ber( X), which is a GF term with a metavariable X. The translation to GoDiS
dialogue moves yields:

request(callNumber), answer(numberToCall( X))

This is equivalent to request(callNumber), since the second dialogue move is un-
informative and will be ignored.

The GF linearizations are also used by the system; e.g., when it wants to raise
a question or give an answer. The dialogue moves generated by GoDiS will be
translated to (one or more) GF terms, which in turn are linearized to utterances.
So, when the system wants to ask the question ?action(callNumber), it linearizes
the term askAction(callNumber( X)) to the resulting utterance “Do you want to
call a number?”.

fun askAction : (m:Menu) → Action(m) → DialogueMove
lin askAction( )(x) =“Do you want to”++ x ++“?”

4.2 System Wh-Questions

In the grammar, the GoDiS predicates are specified as GF categories, not gram-
mar rules. This means that a wh-question such as ?x.numberToAdd(x) does not
correspond to a GF term, but to the category numberToAdd instead. Fortunately,
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GF has a mechanism for specifying how to linearize unknown terms of a given cat-
egory. For each GF category corresponding to a predicate we define a linearization
default :

lindef numberToCall =“Which number do you want to call?”
lindef numberToAdd =“Which number do you want to add?”

When the GF linearizer comes across an unknown term of the category C, it uses
the linearization default for C. This means that we can translate the dialogue
move ask(?x.numberToAdd(x)) to a GF metavariable of type numberToAdd. GF
then linearizes the metavariable to the utterance “Which number do you want
to add?”.

4.3 Using the GF Resource Grammar

To get more grammatically correct utterances (e.g., for congruence or different
word order) we make use of complex linearization types in the GF grammar. One
way to do this is to specify all grammatical parameters for the target language
ourselves.

Another solution is to use the GF Resource Grammar Library for implement-
ing the concrete syntax. The resource library is a common API for 13 languages,
implemented as a large GF grammar. It can be used for writing grammatically
correct domain grammars without needing perfect knowledge of the target lan-
guage. Instead of writing linearization terms in the right-hand sides, we give a
syntax tree from the resource grammar. As an example, the action for calling by
number can be written:

lin callNumber(x) = mkVP (call Verb)
(variants{x ; mkNP (a Det) (number Noun)})

Here, mkVP and mkNP are operations defined in the resource library, and call Verb,
a Det and number Noun are defined in the lexicon.

Finally, recall that a single abstract GF grammar can map to several concrete
syntaxes. This can be used for writing multilingual dialogue system grammars.
In particular, the GF Resource Grammar Library can be used to write a single
concrete instance covering 13 languages.

5 Discussion

We have described how to give a full specification of an ISU-based dialogue
system, as a GF grammar. The abstract syntax specifies the dialogue manager,
and the concrete syntax specifies a mapping between GoDiS dialogue moves and
natural language utterances.

Related Work. Some earlier attempts have been done on specifying dialogue
systems in a single formalism. Most similar to our solution is [6], from which
this article has borrowed some ideas. The advantage of our approach is that
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by compiling to GoDiS we get all the nice dialogue handling capabilities as
exemplified in section 1.2.

Another inspiration has been [5], where some parts of a GoDiS system can
be specified as an OWL ontology. The difference here is that in our system all
necessary parts of a GoDiS system are specified in the GF grammar.

Future Work. The implementation is still only a prototype, and we plan to
implement a full-scale version in the near future. A real-sized proof-of-concept
dialogue system will also be implemented.

Multimodal dialogue systems as described in [11] are not currently handled,
but we plan to extend the formalism to handle multiple modalities as well.

The abstract syntax of a GF grammar can be implemented as an OWL on-
tology [5]. We plan to explore whether it is fruitful to specify at least parts of a
dialogue system in OWL.
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5. Ljunglöf, P., Amores, G., Burden, H., Manchón, P., Pérez, G., Ranta, A.: Enhanced
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Abstract. This paper describes disambiguation of Farsi homographs in unre-
stricted text using thesaurus and corpus. The proposed method is based on [1] 
with some differences. These differences consist of first using collocational in-
formation to avoid the collection of spurious contexts caused by polysemous 
words in thesaurus categories, and second contribution of all words in the test 
data context, even those not appeared in the collected contexts to the calculation 
of the conceptual classes’ score. Using a Farsi corpus and a Farsi thesaurus, this 
method correctly disambiguated 91.46% of the instances of 15 Farsi homo-
graphs. This method was compared to three supervised corpus based methods 
including Naïve Bayes, Exemplar-based, and Decision List. Unlike supervised 
methods, this method needs no training data, and has a good performance on 
disambiguation of uncommon words. In addition, this method can be used for 
removing some kinds of morphological ambiguities.  

Keywords: Word Sense Disambiguation, Thesaurus, Corpus, Farsi Language.  

1   Introduction 

In every language, there are words whose pronunciation cannot be determined without 
notification of their senses in the contexts they occurred. Theses words are called 
homographs. A text to speech system needs to disambiguate homographs. Respect to 
above definition, a homograph is a word associated with multiple senses. So, homo-
graph disambiguation problem is a word sense disambiguation (WSD) problem. 

Word Sense Disambiguation (WSD) is the problem of assigning the appropriate 
meaning (sense) to a given word in a text or discourse [2]. Resolving the ambiguity of 
words is a central problem for language understanding applications and their associ-
ated tasks including, for instance, machine translation, information retrieval and hy-
pertext navigation, parsing, text to speech, spelling correction, reference resolution, 
automatic text summarization, etc [3]. 

WSD is one of the most important open problems in the Natural Language Proc-
essing (NLP) field. Despite the large number of WSD systems for other languages 
specially English, it is a fact that because of the lack of labeled corpora and knowl-
edge sources, to date no large scale and highly accurate word sense disambiguation 
system has been built for Farsi language. 
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With regard to the approaches or strategies employed, there are three ways to ap-
proach the problem of assigning the correct senses to ambiguous words in context: 

• a knowledge-based approach, which uses an explicit lexicon (MRD: Machine 
Readable Dictionary and thesaurus) or ontology (e.g. WordNet), 

• corpus-based disambiguation, where the relevant information about word senses is 
gathered from training on a large sense-tagged corpus, 

• A hybrid approach combining aspects of both of the aforementioned methodolo-
gies [4]. 

The major difficulty of a corpus-based approach, however, remains the data acqui-
sition bottleneck [5]. So, the use of knowledge sources, including information about 
word senses, besides a corpus is proposed.  

This paper describes disambiguation of Farsi homographs in unrestricted text using 
thesaurus and corpus. The proposed method is based on [1], but we use collocational 
information to avoid the collection of spurious contexts caused by polysemous words 
in thesaurus categories. Moreover, all words in the context of test sample contribute to 
the calculation of the conceptual classes’ scores.  

This paper is organized as follows: Section 2 is devoted to explain the algorithm 
used in this paper. Section 3 introduces the thesaurus and corpus used in our experi-
ments. Section 4 reports the results of the proposed method and compares them with 
the results of three supervised corpus based methods that are implemented and applied 
to the selected homographs. Finally, Section 6 concludes and analyzes obtained results. 

2   The Proposed Method 

The method used in this paper follows the steps of the algorithm described in [1], but 
modifies it in collection of contexts and calculating the scores of conceptual catego-
ries. The basic algorithm, presented in [1], is based on the observation that declares if 
there is a context discriminator for the conceptual categories, we can use it to disam-
biguate the word senses that are members of these categories. So, for word sense 
disambiguation, we should at first determine the conceptual categories that the am-
biguous word is a member of them. Then we can build a context discriminator for 
these categories, and since each sense of the ambiguous word belongs to one of these 
categories, use the discriminator for predicting the correct sense [1]. 

To determine conceptual categories, we can use a thesaurus. A thesaurus is a 
knowledge source that puts words in conceptual categories in a way that words be-
longing to a category are synonyms. Therefore, this knowledge source is proper for 
recognition of conceptual categories related to an ambiguous word. Now that the 
categories are identified, we should construct a discriminator for them. The steps of 
this task are illustrated in [1] as follows. 

1. Collect contexts representative of conceptual categories 
2. Identify salient words in the collective context and weight them 
3. Use the resulting weights to predict the appropriate sense of an ambiguous word in 

new context 

We followed these steps here with a little change in each step. 
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2.1   Identification of Certain Collocations and Collection of Representative 
Contexts 

The goal of this step is to collect a set of contexts representative of conceptual catego-
ries related to the senses of ambiguous word. To do this, we look for occurrences of 
each member of the category in a corpus, and where one is found, extract concor-
dances of k surrounding words. It’s illustrated in [1] that conceptual categories  
extracted from thesaurus may include polysemous words. It’s obvious that all the 
occurrences of this word in the corpus do not mean the same, and the contexts related 
to other categories should not be extracted. We replace the polysemous word in the 
categories with some of its certain collocations that are cues for one sense and related 
category. This avoids the collection of irrelevant contexts. 

For instance, the Farsi word “ رشي ”, belonging to one of the conceptual classes of 
the homograph “ببر” (tiger, cut, take), is a polysemous word. The word “شير” means 
lion, milk, and tap in different sentences. The first sense, lion, relates to one of the 
conceptual categories of the homograph “ببر” (tiger) and the two last senses are re-
lated to other categories. So, instead of extracting the context of each occurrence of 
the word “شير” in the corpus, we extracted each occurrence of the collocations: “ ببر و
“ ,(tiger and lion) ”شير لببر و جنگ ” (tiger and jungle), and etc. In other words, we ex-
tracted the contexts including these collocations or co-occurrence of these words.  

Whereas the homograph is a member of all of its conceptual categories, we also 
used some collocations of it in the categories, and gathered more relevant contexts. 
For instance, the homograph “شکر” has two senses equivalent to sugar and thankful-
ness. Therefore it belongs to two conceptual categories corresponding to these senses. 
We used collocation “خدا را شکر” (thanks God) in the category related to thankfulness 
sense, and “قند و شکر” (sugar cubes) in the other sense. 

To identify these certain collocations which are representative for a particular 
sense, we can extract the most frequent co-occurring words with the polysemous word 
from the corpus and use the knowledge of an expert to select certain collocations and 
assign them to the correct conceptual category. We also can extract a number of 
polysemous word’s samples and label them with correct sense manually, then extract 
the certain collocations from this tagged set. In this way, we need to ensure that a 
collocation is a good representative for a particular sense and related category (sen-
sei). So, we calculated the amount of the following relation and if it was lower than a 
threshold, we ignored it. 

∑
≠

=
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2.2   Weighting All the Words in Collected Contexts 

In the basic algorithm, for each word (w) appeared in the collected contexts of a Ro-
get’s thesaurus category (TCat), the following probability is calculated. Then the words 
with higher probability are selected as the salient words for that category, and the loga-
rithm of their probabilities is considered as their weights [1]. In this paper we used this 
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probability and also its logarithm. The only difference consists of keeping and weight-
ing not only the salient words, but also all the words appeared in the contexts. 

)Pr(

)|Pr(

w

TCatw
 . (2) 

2.3   Calculation of the Scores of Categories and Assigning the Correct Sense 

In the basic algorithm, when the ambiguous word appeared in a novel context, the 
method assigns a score to each of the conceptual categories. This score is calculated 
based on the relation 2 which adds the weight of each of the salient words of a cate-
gory (TCat) appeared in the test context, to the score of that category. 

∑ ×
=
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w

TCatTCatw
TCatScore )
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log()(  . (3) 

Finally the category with highest score is assigned to the ambiguous word as the 
correct sense. We used the same strategy in this paper. The only difference is that all 
the words in test context, even those not observed in the collected contexts of a cate-
gory contribute to the score calculation of that category. It means in score calculation 
of a category, each word in the new context adds its related weight determined in the 
previous step to the score of that category. For the words in test context (w) not ob-
served in the collected contexts of a category (TCat), we added the following prob-
ability to the score of that category. 

)
)(

1
log()|Pr(

TCatN
TCatw =  . (4) 

N(TCat) indicates the frequency of category TCat in the corpus. In other words it 
indicates the number of collected contexts for this category. This probability has a 
reverse relation with the frequency of the category. It is reasonable, because for the 
uncommon conceptual categories which appear less in the corpus, some words have 
little chance to occur in the small number of collected contexts. 

3   The Thesaurus and Corpus Used in This Paper 

In this paper, we used a raw corpus collected and organized by the Research Center 
for Intelligent Signal Processing in Iran (RCISP). This is the most important compre-
hensive corpus for Farsi language, and contains about one hundred million words. 
The texts of this corpus are gathered from different sources like newspapers, maga-
zines, journals, Internet, books, theatre plays, itineraries, diaries, calendars, and  
letters. This corpus includes various domains such as economy, export, culture, sci-
ences, etc. This corpus does not include semantic tags and is a raw corpus for our 
problem (WSD). Ten millions words of this corpus include Part Of Speech (POS) 
Tags [6]. We selected a subset of this corpus containing about 8 million words for our 
experiments and labeled it manually with semantic tags.  
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The thesaurus utilized here is the first one for Farsi words and expressions. It is de-
signed and structured exactly like Roget’s thesaurus with the same number of classes, 
sections, and heads. It also contains an index equal to Roget’s thesaurus [7], [8]. 

4   Experiments 

The described method was applied to 15 Farsi homographs. Conceptual categories  
are extracted from the thesaurus for each homograph and then the corpus is used for  
collection of contexts. So, this method is a hybrid approach. Table 1 shows the  

 
Table 1. Performance of the proposed method in % applied to 15 Farsi ambiguous words 

Word Sense Freq Precision Recall  Total 
Accuracy MFS WS 

Ton
Body 

2892
1457

83.94
90.66

96.71
63.28 85.51 66.50 20 

Sugar
Thankfulness 

267
111

96.62
91.07

96.25
91.89 94.97 70.63 30 

Garlic
Journey 

1184
446

94.99
85.43

94.42
86.77 92.33 72.64 34 

Figures
Defect

264
275

79.06
82.82

82.95
78.91 80.89 51.02 44 

Wisdom
Tiny 

209
198

87.44
92.39

93.30
85.86 89.68 51.35 20 

Lawful
Resolvent

82
27

94.05
88.00

96.34
81.48 92.66 75.23 20 

Breath
Oneself 

204
561

87.91
92.45

78.43
96.08 91.37 73.33 40 

Dominance
Knight, Gentleman 

51
56

83.05
95.83

96.08
82.14 88.78 52.34 22 

Oath
Sort

71
59

89.04
89.65

91.55
88.13 89.31 54.61 20 

Punch
A Solar Month 

Love

238
406
223

83.55
85.31
81.77

81.09
88.67
78.47

83.97 46.83 6 

A Lunar Month 
Intimate 

233
24

97.49
100.00

100.00
75.00 97.29 90.66 20 

Atmosphere
Barley 

329
115

96.41
93.64

97.87
89.56 95.72 74.10 28 

Honor
Soon Expected 

89
47

97.73
93.88

96.63
97.87 96.35 65.44 38 

Cream 
Chromium

Worm
Generosity 

Cream Colored  

16
11
46
12
3

93.75
100.00
95.55
85.71
100.00

93.75
100.00
93.48
100.00
66.66

94.32 52.27 26 

My Head 
Serum 

93
38

97.89
100.00

100.00
94.74 98.47 70.99 34 

Avg. -- 304.03 91.38 89.24 91.44 64.53 26.8  
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performance of this method. The first two columns show the homograph and its 
senses. The frequency of each sense appearing in the corpus is reported in the third 
column. 

Next three columns report the evaluation measures: precision, recall, and total ac-
curacy [9]. The last two columns show the baseline and the best window size. The 
baseline is the lower bound on the performance of word sense disambiguation [10], 
and is the performance of always choosing the most frequent sense. By window size 
we mean the number of words around the ambiguous word which are considered as 
the context words of test sample. The last row shows the average of each column. The 
performance column shows that this method clearly outperforms the baseline method. 

For comparison, we implemented three corpus based methods and applied them to 
the same homographs. There are two possible approaches to corpus based methods: 
supervised and unsupervised. Supervised approaches use annotated training. So, train-
ing and evaluating them presupposes the existence of sense-tagged corpora, but they 
generally outperform unsupervised methods. Supervised methods can be classified 
into probabilistic, exemplar–based, and rule-based approaches [4]. We implemented a 
method from each approach. Then, we chose Naïve Bayes (NB), K nearest Neighbor 
(KNN), and Decision List (DL).  

Space does not permit description of the details of these methods. In KNN imple-
mentation, features contribute to the calculation of the similarity between two samples 
with different weights. Similarly in classifying a new test example, each example of 
the set of nearest neighbors votes for its class with a weight proportional to its close-
ness to the test example [3], [11]. The decision list is implemented based on [12]. We 
also applied the basic algorithm to the homographs. In this experiment, we considered 
3000 salient words for each conceptual category. 

Table 2. Performance of the basic algorithm and corpus based methods in % 

Word Proposed
Method

Basic
Algorithm

Naïve
Bayes 

Exemplar 
Based

Decision 
List

No. of 
Examples 

 85.51 82.02 95.33 92.08 95.05 4349 
 94.97 93.12 94.88 91.46 94.12 378 
 92.33 91.35 95.55 88.63 92.10 1630 
 80.89 77.55 80.92 81.44 83.36 539 

 89.68 85.99 85.59 82.83 86.03 407 
 92.66 87.15 91.42 89.89 89.79 109 
 91.37 85.49 90.35 90.74 91.40 765 
 88.78 82.24 89 86.82 86.41 107 

 89.31 80.15 90.77 92.35 89.4 130 
 83.97 71.86 88.00 85.69 84.55 867 
 97.29 94.96 96.17 96.26 95.86 257 

 95.72 85.81 95.63 90.11 93.06 444 
 96.35 89.05 98.33 98.33 99.65 136 

 94.32 87.50 79.66 79.48 86.12 88 
 98.47 96.18 97.06 89.85 96.19 131 

Average 91.44  86.03 91.24 89.06 90.87 689.13 
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Table 2 shows the performance of the proposed method in comparison with the  
basic algorithm and three corpus based methods. The first two columns show the 
homograph and the proposed method’s performance. The performance of the algo-
rithm presented in [1] by Yarowsky is shown in the third column as basic algorithm. 
Columns 4 to 6 report the results of Naive Bayes, Exemplar-based, and the Rule-
based methods in order, and the last column shows the number of examples existing 
in the corpus for each homograph. We used 10-fold cross validation for performance 
calculation of these methods. The last row shows the average of each column.  

The basic algorithm searches the whole thesaurus for identification of the concep-
tual classes relevant to an ambiguous word, and it is stated that this might increase the 
performance of the algorithm notably. Here, we considered only those categories 
under which the polysemous word is listed. We also performed all the steps of the 
algorithm on the inflectional forms of the words, since there was no reliable stemmer 
available to the authors. 

As the last row of table 2 shows, by considering certain collocations of the homo-
graph and ambiguous words in the conceptual categories, and making all of the words 
in the test context contribute to the score calculation of categories, the performance 
increases by 5.41%.  

We can also use this method for removing the morphological ambiguity. Each NLP 
system needs a morphology module. This module may encounter words whose mor-
phological structure cannot be determined without notification of their senses. For 
example consider the word “سرم”. As stated in table 1, this word has two senses. 
When the word has the first meaning (my head), its morphological structure should be 
“Noun /سر/ + possessive pronoun /م/”, and when it has the second meaning (serum), 
the morphological structure should be just “Noun /سرم/”. We used the proposed 
method for removing this kind of ambiguity. To extract the conceptual categories for 
the first meaning, we used the related categories of the word’s lemma, /سر/.  

Corpus-based methods choose the correct sense of the ambiguous word with the 
highest probability or similarity computed on the basis of the training data. So, their 
performance is very sensitive to the number of training examples. Training examples 
should be a good representative for all the ambiguous word’s samples. Then, the 
training set should contain adequate number of samples from different texts and  
domains.  

For instance, consider the ambiguous word “کرم” with five senses described in ta-
ble 1. This word occurred 88 times in the corpus. It’s obvious that this number of 
training examples can’t be a good representative for five senses. The last sense, 
cream-colored appeared 3 times. Regarding to table 1, Naïve Bayes disambiguates 
this ambiguous word with the accuracy of 79.66%, while the accuracy of the proposed 
method is 94.32%. Table 3 shows the precision and recall of all the applied algo-
rithms for every sense of this ambiguous word. As expected, corpus based methods 
can disambiguate none of the samples of the fifth sense correctly, while the precision 
and recall of the proposed method for this sense are 100% and 66.66%. It means this 
method disambiguates 2 of 3 samples correctly. So, the performance of the proposed 
method is not dependent on the number of training examples, and it can be appropri-
ate for identifying word senses which occur rarely. 
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Table 3. Precision and recall of all the applied algorithms to the ambiguous word “رم  with 5 ”ک
different sense 

Sense of word “آرم” 
No. of 

Samples 
Basic 

Algorithm 
Proposed 
Method 

NB KNN DL 

Precision of Cream 
Recall of Cream 

16 
75.00 
93.75 

93.75 
93.75 

60.00 
37.50 

77.78 
43.75 

66.67 
66.67 

Precision of Chromium 
Recall of Chromium 

11 
84.61 
100.00 

100.00 
100.00 

100.00 
90.91 

100.00 
36.36 

78.57 
100.00 

Precision of Worm 
Recall of Worm 

46 
97.37 
80.43 

95.55 
93.48 

75.44 
93.48 

68.18 
97.83 

97.67 
91.30 

Precision of Generosity 
Recall of Generosity 

12 
80.00 
100.00 

85.71 
100.00 

88.89 
66.67 

100.00 
75.00 

80.00 
100.00 

Precision of Color 
Recall of Color 

3 
100.00 
66.66 

100.00 
66.66 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

 
The average number of senses for Farsi homographs is 2.18 which is lower in 

comparision with English. For example, in the WORDNET, the average number of 
senses per noun for the most frequent 121 nouns in English is 7.8 [13].  

So, It seems that the above applied algorithms should have lower performance on 
disambiguation of English words. But, the average number of senses per word is not 
the only factor that affects the performance of word sense disambiguation algorithms 
in a given language. Comprehensiveness of corpus and the quality of knowledge 
sources like thesaurus also affect the performance of the algorithms. Therefore, re-
garding to table 2, it can be concluded that imperfectness of used corpus and thesau-
rus might be one of the reasons that the average performance of the basic algorithm 
on disambiguation of Farsi homographs is lower than the performance reported in [1] 
for English homographs. 

5   Conclusion 

A method was proposed for word sense disambiguation of Farsi homographs. This 
method needs no sense tagged data. Therefore, we do not have to label the training 
data manually which is very expensive and time consuming. Comparisons show that 
from the point of homograph word sense disambiguation performance, the proposed 
method is comparable to supervised corpus based methods. Considering the lack of 
tagged corpora and knowledge sources for Farsi language and the difficulty of prepar-
ing them, and also considering the good results obtained from the conducted experi-
ments in this paper, the proposed method seems to be well applicable to Farsi word 
sense disambiguation. 

Moreover, the results show the proposed modifications added to the basic algo-
rithm presented in [1], improve the homograph disambiguation performance by 
5.41%. In addition, the proposed method can be used for removing morphological 
ambiguity and for disambiguation of word senses which occur rarely.  
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Abstract. In this article, we present a framework for obtaining rephras-
ings for short text spans. Good candidates include paraphrases, but
also more generally phrases that could help a writer revise a text with
some shifts in meaning. The presented framework uses as its knowledge
source bilingual aligned phrases learnt from parallel corpora. We present
several models for selecting rephrasings, and we evaluate the selection
power of candidate rephrasings on grammaticality, meaning preservation
and authoring value. The approach is then discussed and future work is
described.

1 Introduction

One of the most difficult tasks for a writer, apart from content selection and
planning, is finding the appropriate words. Some paraphrases may appear more
natural to a native speaker, integrate better within the stylistic context of a
discourse, or use terminology that is more adapted to the intended readers of
a document. On the other hand, different rephrasings can introduce shifts in
meaning that better convey what the writer actually wants to express. Therefore,
automatic rephrasing techniques as a whole can be useful for writers, but with
some control over how much meaning can be altered.

Today’s users of word processors, the most commonly used authoring tools, get
suprisingly very little help as regards such a need. Thesauri, dictionaries of syn-
onyms or inverted dictionaries can provide some help at the lexical level by sug-
gesting related words, and it remains the responsibility of the author to accept or
not the changes in meaning. Grammatical checkers bring some help in checking
that a text remains grammatical after it has been altered, but for this type of use
this is mainly restricted to ensuring that correct agreements are enforced.

There has been a recent interest in automatic paraphrasing approaches, which
has been motivated mostly by the needs for identifying paraphrases in informa-
tion extraction tasks and generating text in text-to-text generation applications
such as multi-document summarization. Most of the proposed approaches rely
on the use of comparable monolingual corpora or parallel monolingual corpora.
While comparable monolingual corpora can be easily collected, identifying highly
reusable paraphrasing patterns from them is an active research issue. Parallel

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 324–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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monolingual corpora can be used to extract more reliable alignments, but this
type of resource is extremely scarce and therefore cannot lead to large quantities
of useful paraphrasing data.

In a strict sense, paraphrasing poses the difficult issue of meaning equivalence.
Whereas the acceptability of lexical paraphrasing has started to receive some at-
tention [1,2], assessing the acceptability in terms of meaning change for sentential
paraphrasing is still a real challenge. In fact, systems attempting sentential level
paraphrasings such as [3] use application contexts that are so restrictive that the
chances of meaning alteration are very low.

Although paraphrasing aids would be undoubtedly useful for writers, we argue
that rephrasing aids can assist in more general authoring needs. The current ap-
proaches to Machine Translation, and statistical approaches in particular (SMT),
pay very little attention to modeling transfer of meaning between source and tar-
get languages, but can nonetheless prove quite useful if used appropriately. In
particular, such systems can provide ranked translation completions for trans-
lators who can accept or ignore them, as in the TransType system [4]. There is
nonetheless a recent resurge of interest for modeling source context in Statistical
Machine Translation (e.g. [5,6]).

In this paper, we present an approach inspired from [7,8] which produces
ranked rephrasing candidates for short text spans. Our prototype system is more
specifically intended for integration within word processors to assist writers who
can evaluate in use the appropriateness of the rephrasing candidates, but could
also be used for unsupervised rephrasing of text.1 The system makes use of the
wealth of correspondances that can be extracted from large bilingual parallel
corpora used in SMT systems. As in [7], it uses a pivot translation into a foreign
language to find rephrasings in the same language. We use a log-linear framework
typical of phrase-based SMT systems to integrate various models for features
that may be of interest to a human writer. The relative contribution of each
model is not optimized using an automatic evaluation metrics such as BLEU for
translation [9], but can be tuned dynamically by the writer.

In the following section, we describe our framework for generating rephrasings
of phrases based on translation into a pivot language, and various models that
can be integrated into it. In section 3, we describe evaluation settings and report
on our results on a rephrasing task. We describe related work in section 4, and
finally discuss our approach and future work in section 5.

2 Rephrasing Based on Pivot Translation

2.1 Framework

The phrase-based approach to Statistical Machine Translation [10] relies on au-
tomatic alignments between phrases of words in two languages. Those alignments
1 We have not evaluated our approach for unsupervised rephrasing of text. We believe

that this type of application would only be sensible after some spotting of specific
text spans, such as text spans that are unnatural but still comprehensible by native
speakers, has been performed.
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map contiguous groups of surface forms of words which do not have to corre-
spond to linguistically motivated units.2 Translation is performed on a sentence
basis: a heuristic search attempts to find segmentations of an input sentence into
phrases and the mapping into a target sentence by substituting source phrases
by their possible translations and possibly reordering them. Search is guided by
an evaluation function that combines different models whose relative weights are
optimized on automatic translation evaluation metrics such as BLEU [9] using
corpora not seen during training.

At the heart of this approach is the translation table that associates input
phrases to the set of their possible translations together with their conditional
probabilities and other information. Many approaches to phrase extraction rely
on word-based alignements as a first step. For example, Och and Ney [12] use
1 → N word alignments in both directions between two languages, symmetrize
those alignments, and incrementally grow phrasal alignments by adding source or
target words to the alignments that are only word-alignable to a corresponding
word of the aligned segment. After phrase extraction, conditional probabilities
are estimated, for example using maximum likelihood estimation.

Such N → M alignements can capture lexical translations (e.g. exigeons
→ ask for, call for, demand, expect, request, etc.) and phrasal litteral or id-
iomatic translations (e.g. un bon début → a good approach, a good first move,
a good starting point, a positive initiative, an encouraging start, the right road,
etc.), but can also capture noise depending on the alignment heuristics used
(e.g. les états candidats (candidate countries) → Member States, the candi-
date countries were to, the accession countries have called for, candidate, the,
etc.) Because different target phrases associated with a given source phrase
can either represent paraphrases in all or some contexts or phrases with dif-
ferent meanings, approaches for disambiguating phrases during translation us-
ing source context have been recently proposed [5,6]. Among the main
limitations of this type of phrasal alignments are their inability to model non-
consecutive words in source and target sentences and to generalize the contents
of phrases.

Bannard and Callison Burch [7,8] have used phrasal translation probabilities
between two languages to find phrasal paraphrases by using one of the two
languages as pivot as illustrated in Figure 1. Search of a paraphrase p2 for p1

is defined by equation 1, where the conditional probability is calculated over all
possible pivot phrases:

p̂2 = argmax
p2 �=p1

P (p2|p1) = argmax
p2 �=p1

∑

pivot

P (pivot|p1)P (p2|pivot) (1)

2 While early experiments have shown decreased performance when phrases in
both languages were restricted to syntactic chunks [10], more recent results
show that syntactically-motivated alignments can improve translation performance
(e.g. [11]).



Local Rephrasing Suggestions for Supporing the Work of Writers 327

Fig. 1. Example of rephrasing for a French phrase using English as pivot

Callison-Burch [8] measured the importance of various factors impacting the
quality of the paraphrases obtained.3 Using manually built alignments yields
a significant improvement in paraphrase quality, showing that if appropriate
alignments are available the proposed approach can produce better paraphrases.
Several languages can be used for finding pivot phrases, and using several simula-
teously tend to improve alignment quality and therefore paraphrases themselves.
Using a language model to find the paraphrase that maximizes its score in the
original sentential context leads to improved fluency but to a decrease in mean-
ing preservation. Lastly, restricting pivot phrases to those actually aligned in a
test aligned bilingual corpus improves paraphrase quality, which illustrates the
importance of disambiguating source phrases relatively to the pivot language.

In this work, we propose an integration of automatic rephrasing as an author-
ing aid. We use the log-linear framework traditionally used in SMT systems in
order to integrate various models to score possible rephrasings. However, we do
not use an automatic evaluation of rephrasing quality, as its definition depends
heavily on the subjective appreciation of a writer, which implies that the weight
of models cannot be optimized as done in SMT using metrics such as BLEU.4

Equation 2 presents the formulation of the search for the rephrasing with the
highest score, where M is the set of models used, hm is the score of a model, λm

is its weight and C represents sentential context.

p̂2 = arg max
p2

M∑

m=1

λm log hm(p1, p2, C) (2)

3 In his experiments, Callison-Burch used 46 randomly chosen English phrases in mul-
tiword expressions present in WordNet (e.g. at work, concentrate on, big business),
and 289 original sentences containing an occurrence of one of them and 1,366 unique
sentences obtained through substitution. Evaluation was performed by two judges
who had to assess the adequacy and fluency of paraphrases.

4 As noted by Callison-Burch [8], there is currently no standard methodology for
evaluating paraphrase quality directly, and task-based evaluation (e.g. for Machine
Translation [8]) is often performed. Whereas working towards an automatic evalua-
tion methodology of paraphrasing is a crucial research issue, it seems that applying
such a methodology to rephrasing, which depends a lot on the intention of a writer,
would be too limiting at this point.
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2.2 Models for the Selection of Local Rephrasings

In this section, we describe the models that we have used for assessing several
characteristics of automatic rephrasings. In contrast to most previous work we
are aware of (e.g. [7,13,2]), we are not only interested in meaning preserving para-
phrases, but more generally in rephrasings that may be of interest to a writer.

Model Based on Pivot Translation (Piv). We use the scoring of para-
phrases by the pivot model proposed by Bannard and Callison-Burch [7], using
a single language as pivot.5

Piv(p1, p2, C) =
∑

pivot

P (pivot|p1)P (p2|pivot) (3)

Model Based on Language Fluency (Lm). We use a language model as
a scoring function to measure the fluency of the substitution in context of the
rephrased segment. As noted by Callison-Burch [8], modifying one part of a sen-
tence might require other changes in the sentence for it to remain grammatical,
but this is currently not taken into account by our proposed approach. Also, this
type of model will tend to favor shorter phrases.

Model Based on Dependency Relationship Preservation (Dep). When
substituting a part of a sentence with another phrase and if this substitution does
not require other changes in the sentence, then the dependency relationships
between words outside that phrase should be preserved. Moreover,dependency
relationships crossing a phrase boundaries (i.e., whose governor was outside the
phrase and dependant inside it, or the opposite) could still exist after such a
substitution, possibly with a modified dependency target in the phrase. In fig-
ure 2, the original sentence has a SujL relationship between nous and some
target in the segment, and an Obj relationship between some target in the seg-
ment and voulons. The same relationships are found when substituting faire des
efforts with consentir des efforts. However, when substituting faire des efforts
with leurs efforts, only the first relationship can be found. The ability to mea-
suring this of course depends greatly on the capacity of the parser used to find
dependency relationships, and on its robustness to agrammatical input.

Fig. 2. Example of dependency relationships before and after phrase substitution

5 Making use of context using the approach of [5] is part of our future work.



Local Rephrasing Suggestions for Supporing the Work of Writers 329

The score of our model is based on some proportion of the number of such
dependencies found after substitution over the number of original dependencies:

Dep(p1, p2, C) =
1 + |Dextra

1 ∩ Dextra
2 | + |Dinter

1 ∩ Dinter
2 |

1 + |Dextra
1 | + |Dinter

1 | (4)

where Dextra
1 and Dextra

2 are the sets of dependency relationships of the form
(governor,relationship,dependant) outside the rephrased segment, respectively
before and after substitution, and Dinter

1 and Dinter
2 are respectively the sets of

dependency relationships of the form (target outside phrase,relationship) cross-
ing a rephrased segment boundary, respectively before and after substitution.

Model Based on Common Lemma (Lem). There will be cases when pos-
sible rephrasings will be very close to their original phrase. This model favors
rephrasings that use different words, where words can be restricted to the lemmas
of content words:

Lem(p1, p2, C) =
1 + |L2| − |L1 ∩ L2|

1 + |L1 ∪ L2|
(5)

where L1 and L2 are the sets of full word lemmas respectively in p1 and in p2.

3 Experiments and Evaluation

We have used the recent version of the Europarl corpus [14] to derive phrasal
alignments between French and English. From the 948,507 aligned sentences,
some 42 million aligned phrase pairs of up to 7 tokens were obtained for French
and English using Giza++ [15] and the grow-diag-final-and heuristics described in
[10]. French was initially chosen as the source language as we had an easy access
to native speakers for evaluation and access to a robust dependency parser,
Syntex [16]. We used a 5-gram language model trained on the French part of
the corpus using Kneser-Ney smoothing.

We have manually built a test corpus of 82 sentences from the Europarl corpus
not used for extracting phrase alignments and learning the language model. A
human judge was then asked to select one text span per sentence that would be a
good candidate for rephrasing during text revision. Only phrases that belonged
to the French-English translation table used were accepted (e.g. dans de bonnes
conditions, maintenir le contact, attendent avec impatience, la plus étroite, états
candidats, etc.) Because we did not have automatic evaluation metrics and in
order to be able to reuse our evaluation corpus for further experiments involving
different models without new human annotation, we have built a finite set of
rephrasings for each (sentence, segment to be rephrased) pair. In order to limit
the annotation work, we have kept at most the 20 first rephrasings obtained
using the Piv model only (which introduces a bias in our experiments as not all
possible rephrasings can be considered, but those are the best according to our
baseline model). Two native speaker judges were then asked to evaluate each of
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the 1648 rephrased sentences on three characteristics related to their use in a
revision task with a 5-level scale:

– grammaticality/fluency: is the rephrasing flawless French that can be
used as is (5), does it contain various level of language flaws (4-2), or simply
impossible to reuse (1).

– meaning preservation: does the rephrased sentence carry the same mean-
ing as the original sentence (5), diverge to various levels in terms of informa-
tion removed or added from the original sentence (4-2), or has a completely
different meaning (1).

– authoring value: can the rephrasing be directly reused for revising a text (5),
can the rephrasing be used with a minor change (4), does the rephrasing con-
tain elements that could be used for a good rephrasing (3), does the rephras-
ing contains elements that could suggest a rephrasing (2), or is the rephrasing
useless (1).

After the judges had completed manual annotation, smoothing of the scores
was done by keeping mean scores for each sentence. We measured a value of 0.59
standard deviation for score absolute differences between judges for grammat-
icality, 0.7 for meaning preservation and 0.8 for authoring value. Those values
suggest that judgments on grammaticality and meaning preservation can be
done fairly objectively with reasonable inter-judge agreement, and that judging
authoring value on the proposed scale was more difficult and more dependent
on personal judgment.

Results of mean scores for the first rank solutions with various model com-
binations are reported in figure 3.6 We used uniform model weights, but will
discuss later how weights can be directly tuned by a user.

Piv alone has a relatively good performance in grammaticality, suggesting
that alignments in both directions often associate phrases of syntactically com-
parable natures. Adding Lm or Dep improve its performance, the first result
being consistent with the findings of [8]. Whereas the combination Piv+Lm

performs better in grammaticality than Piv+Dep, it is interesting to note that
Dep alone performs better than Lm alone. Apart from showing the interest of
Dep, this could mean that preferences by Dep and Piv are more similar than
between Lm and Piv. An explanation may lie in the fact that, by nature, lan-
guage models favor texts that are locally more fluent (on a window of 5 words
at most in the case of Lm), but not necessarily texts that capture dependencies
of longer range, which is precisely what accurate grammatical dependency re-
lationships can capture. Combining with Lem, which was not expected to play
a positive role for grammaticality, degrades grammaticality scores in all cases
except when combining it with all other models. This model may select phrases
which are not always correctly aligned or which would require changes in other
parts of the sentence.

6 Due to the limited search space, an exhaustive search can be performed which is
therefore guaranteed to find the optimal solution according to a model combination.
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grammaticality meaning authoring value mean

Piv (baseline) 4.46 4.18 3.62 4.09

Lm 4.28 3.62 3.45 3.78

Dep 4.35 3.68 3.43 3.82

Lem 4.05 3.21 3.28 3.51

Piv+Lm 4.65 4.06 3.82 4.18

Piv+Dep 4.58 4.27 3.66 4.17

Piv+Lem 4.37 4.00 3.76 4.05

Lm+Dep 4.49 3.81 3.68 3.99

Lm+Lem 4.28 3.59 3.56 3.81

Piv+Lm+Dep 4.65 4.05 3.92 4.21

Piv+Lm+Lem 4.61 4.02 3.97 4.20

Piv+Dep+Lem 4.57 4.17 4.02 4.25
Lm+Dep+Lem 4.37 3.69 3.64 3.90

Piv+Lm+Dep+Lem 4.68 4.09 4.05 4.27

Fig. 3. Mean results at first rank for various model combinations (uniform weighting)

Piv also has good performance alone regarding meaning preservation. In fact,
only the combination Piv+Dep has a better performance, while Dep alone has
a performance which is much worse than Piv. The nature of the corpus may
explain in part a bias towards meaning preserving paraphrases with Piv alone:
the parliamentary session transcripts of the Europarl corpus contain more para-
phrases than polysemous phrases. Another explanation would be that phrases
selected by our evaluator tended to have the same meaning as those with highest
Piv scores. The complementary contribution of Dep may be explained by the
fact that it selects rephrasings in which both dependencies outside the rephrased
segment and dependencies connecting the segment with its context are preserved,
and that this may correct cases where Piv would prefer some shifts in meaning.
The degradation of performance observed when combining with Lm is consistent
with [8]. Finally, Lem can sometimes select good lexical synonyms, but segments
containing several full words may more often correspond to different meanings.
The following is an example for which annotators gave good grammaticality
scores, but poor meaning preservation scores:

Original sentence: ce n’ est pas le moment de se montrer hésitant . (this is no
time for the faint-hearted .7)

Rephrased sentence: il est trop tôt pour se montrer hésitant . (it is too early
to be hesitant .)

Lastly, authoring value scores are lower, which can be explained by the fact
that rephrasings with bad fluency and/or meaning preservation scores will be
penalized here as well. The combination of all models yields the best result. Piv

seems to have the most impact, but all other models also contribute, but possibly

7 “Translation” from the Europarl corpus.
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(a) Grammaticality mean scores

(b) Meaning preservation mean scores

(c) Authoring value mean scores

Fig. 4. Mean scores depending on the number of results presented to the user

in different ways. This suggests that which model should be used (or its weight
in our framework) could be chosen by a user. The following example illustrates
a case where the rephrased sentence got an average meaning preservation score
but a good authoring value score:8

8 It is indeed the responsibility of an author to decide whether it is acceptable to
rephrase mesdames et messieurs (ladies and gentlemen) with mes chers collègues
(my dear colleagues).
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Original sentence: mesdames et messieurs , c’ est maintenant l’ heure de la
pause et du d̂ıner (ladies and gentlemen , we shall now stop for a break and
something to eat)

Rephrased sentence: mes chers collègues , c’ est maintenant l’ heure de la
pause et du d̂ıner (my dear colleagues, . . .)

Figure 4 shows mean results when presenting up to 8 rephrasings to a writer.
It can be noted that model ranking for a given characteristics is almost constant.

4 Related Work

Monolingual comparable corpora have been used for automatic paraphrasing.
For example, Barzilay and Lee [3] learned paraphrasing patterns as pairs of
word lattices which are used to produce sentence level paraphrases. The corpus
they used contained news agency articles on the same events, which allows pre-
cise sentence paraphrasing, but on a small sets of phenomena (and for a limited
domain). Taking into account the fact that sentential paraphrasing is more likely
to alter meaning, Quirk et al. [17] approached paraphrasing as monotonous de-
coding by a phrase-based SMT system. Their corpus consisted of monolingual
sentences from a comparable corpus that were automatically aligned so as to al-
low aligned phrase extraction. Pang et al. [18] used parallel monolingual corpora
built from news stories that had been independantly translated several times to
learn lattices from a syntax-based alignment process. Lepage and Denoual [19]
propose an approach in which initial paraphrases are found by translation equiv-
alence in a bilingual corpus and new paraphrases are built by analogy.

Pivot translation as been proposed as an approach for paraphrasing phrases
by Bannard and Callison-Burch [7], but to our knowledge no work has yet used
bilingual corpora and Machine Translation for sentential paraphrasing, as this
is too dependent on the overall quality of automatic translations. At the lexical
level, Connor and Roth [2] used unsupervised learning to learn classifiers that
indicate whether a word can be substituted for another word in a given context.
Fujita [13] proposed a transfer-and-revision framework using linguistic knowledge
for generating paraphrases in Japanese and a model for error detection.

5 Discussion and Future Work

In this article, we have presented a framework for obtaining rephrasings for
short text spans. Good candidates include paraphrases, but also more generally
phrases that could help a writer revise a text with some shifts in meaning.
The presented framework uses as its knowledge source bilingual aligned phrases
derived from parallel corpora. We have described several models for selecting
rephrasings, and have shown in particular the value of models based on the
preservation of dependency relationships.

There are several open issues to the presented work. First, there can be a
strong bias introduced by the bilingual corpus used. Using Europarl with our
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pivot approach yields both generic and domain/genre-specific rephrasings, and
it is important to be able to determine their appropriate context of use. It would
also be interesting to investigate enriching this framework with phrases learnt
from monolingual corpora from a given domain or genre, and to use features
from the current text under revision. More generally, we would need to get some
idea of the degree of possible reuse of a given rephrasing.

As shown by Callison-Burch [8], there is much to be gained by using bet-
ter alignments. While it is unrealistic to rely on manually built aligned phrases
given the broad definition of the notion of phrase, syntax-based alignments tech-
niques (e.g. [11]) can provide more precise alignments that could in turn produce
rephrasings that would be more grammatical and more useful to a writer. In-
formation from the context of alignments could be used to learn classifiers to
disambiguate the source phrase and get only pivot phrases that are compatible
with the context of a given rephrasing, in similar ways as done for SMT [5,6].

Another issue concerns how text spans to be rephrased could be identified. In
our experiments, we asked a writer acting as a revisor to manually select text
spans. It appeared that, possibly due to lack of experience of our users with
such an assistive technology, the choice of boundaries was not always optimal.
In fact, enlarging the phrase spans by a few words on the left and/or on the right
could sometimes yield much better candidates, which is partly due to the fact
that context was not taken into account for selecting pivot phrases. We therefore
intend to implement a search procedure that will attempt enlarging or shrinking
segments up to a certain number of words and propose the new segment for
consideration if it can yield a significantly better score. This also raises the issue
of the automatic spotting of candidate text spans for revision, for example by
using a language model to find very disfluent text spans.

In order to evaluate our framework in concrete use, we have started to develop
an authoring prototype, which lets writers select text spans and obtain lists of
possible rephrasings ordered by decreasing scores. Writers can directly tune the
relative importance of the models used, so they can for example favor rephrasings
that use different words and/or that are more or less fluent. Pivot phrases can be
used for interactively disambiguating the original phrase and therefore restricting
the set of possible rephrasings to those that are actually aligned to it. This feature
might prove useful for writers writing in a second language and of course with
sufficient knowledge of the pivot language.
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Abstract. We present an approach to multilingual web content based
on multilingual grammars and syntax editing for a controlled language.
Content can be edited in any supported language and it is automatically
kept within a controlled language fragment. We have implemented a
web-based syntax editor for Grammatical Framework (GF) grammars
which allows both direct abstract syntax tree manipulation and text
input in any of the languages supported by the grammar. With this
syntax editor and the GF JavaScript API, GF grammars can be used
to build multilingual web applications. As a demonstration, we have
implemented an example application in which users can add, edit and
review restaurants in English, Spanish and Swedish.

1 Introduction

Current multilingual web applications store a separate version of their content
for each language. It is difficult to keep the information consistent and, in some
cases, content available in one language is not provided in another. Adding a new
language to the application requires translation of the available content from one
of the existing languages to the new language.

We suggest a different approach to multilingual web applications, where the
content is defined by a multilingual grammar and is created through syntax
editing or parsing. Content created by a user who uses one language is automat-
ically available in all the other languages supported by the grammar, and the
content is consistent at all times. When the grammar is extended to cover a new
language, all existing content is automatically available in that language.

To demonstrate this approach to multilinguality we implemented “The Restau-
rant Review Wiki”, a web-based multilingual application in which users can add,
edit and review restaurants in English, Spanish and Swedish. It uses GF grammars
and the GF JavaScript API to provide multilinguality.

2 Grammatical Framework

Grammatical Framework (GF) [1] is a type-theoretical grammar formalism. GF
grammars can describe both formal and natural languages and consist of an ab-
stract syntax and at least one concrete syntax. The abstract syntax defines the
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scope of the grammar, i.e. all the expressions that can be built from it. The con-
crete syntax defines how the constructs in the abstract syntax are represented
in a particular language. GF grammars can be multilingual, each language in
the grammar having a separate concrete syntax. For any given grammar, GF
provides parsing (going from a concrete to the abstract syntax) and lineariza-
tion (going from the abstract to a concrete syntax). GF supports dependently
typed and higher-order abstract syntax. These features are used, for example,
to express conditions of semantic well-formedness. However, they are not used
in this article since they are not supported in the implementations described.

GF includes a Resource Grammar Library [2] which defines the basic gram-
mar of (currently) eleven languages. For each language, the Resource Grammar
Library provides the complete morphology, a lexicon of approximately one hun-
dred of the most important structural words, a test lexicon of approximately 300
content words, a list of irregular verbs and a substantial fragment of the syntax.
The Resource Grammar Library has an API (Application Programming Inter-
face) which allows the user to implement grammars for these languages easily.
The API also provides tools to extend the resource grammars, for example, new
words can be added to the lexicon. GF is freely available1 and is distributed
under the GNU General Public License (GPL).

2.1 An Example Grammar

To better explain GF grammars, consider a very small grammar that describes
simple restaurant reviews. The abstract syntax defines what can be said in the
grammar in terms of categories (cat) and functions (fun). In the example gram-
mar, the abstract syntax (Figure 1) has four categories: Phrase (the start cat-
egory), Item, Demonym and Quality. It also has some functions that construct
terms in these categories. For example, the function itemIs takes an Item and a
Quality as arguments and produces a Phrase, and an Item can be either restaurant
or food . Examples of abstract terms produced by this abstract syntax are itemIs
(qualItem mexican food) (very good) and itemIs restaurant expensive.

abstract Restaurant = {
flags startcat = Phrase;
cat Phrase; Item; Demonym; Quality;
fun itemIs : Item → Quality → Phrase;

restaurant , food : Item;
qualItem : Demonym → Item → Item;
italian,mexican : Demonym;
very : Quality → Quality;
good , bad , cheap, expensive : Quality;

}

Fig. 1. Abstract syntax for the example grammar

1 http://digitalgrammars.com/gf/

http://digitalgrammars.com/gf/
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The concrete syntax specifies how the different abstract syntax terms are
expressed in a particular language. There is a linearization type (lincat) for every
category in the abstract syntax. The linearization type is the type of the concrete
syntax terms produced for the abstract syntax terms in a category. Similarly,
there is a linearization definition (lin) for every function in the abstract syntax.
A linearization definition is a function from the linearizations of the arguments
of an abstract syntax function to a concrete syntax term.

Figure 2 shows the English concrete syntax for the example grammar. The
linearization type for all categories is {s : Str}, that is, a record with a single
field s of type Str (string). The linearization of the function restaurant is the
concrete syntax term {s = “restaurant”}. The linearization of itemIs makes
use of the linearizations of its argument terms of type Item and Quality. The
linearization of the abstract syntax term itemIs restaurant expensive is the string
“the restaurant is expensive”.

concrete RestaurantEng of Restaurant = {
lincat Phrase, Item, Demonym, Quality = {s : Str};
lin itemIs i q = {s = “the” ++ i .s ++ “is” ++ q .s };

restaurant = {s = “restaurant”};
food = {s = “food”};
qualItem d i = {s = d .s ++ i .s };
italian = {s = “Italian”};
mexican = {s = “Mexican”};
very q = {s = “very” ++ q .s };
good = {s = “good”};
bad = {s = “bad”};
cheap = {s = “cheap”};
expensive = {s = “expensive”};

}

Fig. 2. English concrete syntax for the example grammar

Figure 3 shows the Spanish concrete syntax for the example grammar. This
concrete syntax is more complex because Spanish nouns have an inherent gender
(masculine or feminine). Adjectives are inflected according to the gender of the
noun they modify and the form of the definite article depends on the gender
of the noun it modifies. Thus the category Item has a linearization type {s :
Str; g : Gender}. In addition to the string field s , the record has a field g of
type Gender, either Masc or Fem. The categories Demonym and Quality have a
linearization type {s : Gender ⇒ Str}. The field s is here a function from Gender
to Str. Some helper functions (oper) are also defined. For example, the function
adjective takes a Str and returns a record of type {s : Gender ⇒ Str}. The
abstract syntax term itemIs (qualItem mexican food) (very good) is linearized
to “la comida mexicana es muy buena”. If we replace the feminine noun food
with the masculine noun restaurant the linearization changes to “el restaurante
mexicano es muy bueno”.
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concrete RestaurantSpa of Restaurant = {
lincat Phrase = {s : Str};

Item = {s : Str; g : Gender};
Demonym, Quality = {s : Gender ⇒ Str};

lin itemIs i q = {s = defArt ! i .g ++ i .s ++ “es” ++ q .s ! i .g };
restaurant = {s = “restaurante”; g = Masc};
food = {s = “comida”; g = Fem};
qualItem d i = {s = i .s ++ d .s ! i .g ; g = i .g };
italian = adjective “italiano”;
mexican = adjective “mexicano”;
very qual = {s = \\g ⇒ “muy” ++ qual .s ! g };
good = adjective “bueno”;
bad = adjective “malo”;
cheap = adjective “barato”;
expensive = adjective “caro”;

param Gender = Masc | Fem;
oper defArt : Gender ⇒ Str = table {Masc ⇒ “el”; Fem ⇒ “la”};

adjective : Str → {s : Gender ⇒ Str} =
λx → {s = table {Masc ⇒ x ; Fem ⇒ Predef.tk 1 x + “a”}};

}

Fig. 3. Spanish concrete syntax for the example grammar

To write the Spanish concrete syntax, the grammar writer had to take into
account the morphological and syntactic features of the Spanish language. Even
in this simple example, gender had to be considered; imagine a grammar in which
number plus case is also involved, or polarity, or verb conjugation, or all of them
at once. The larger the scope of the grammar, the harder it gets to properly
handle the features of a language. That is why GF’s Resource Grammar Library
was implemented: to define the low-level morphological and syntactic rules of
languages and allow grammar writers to focus on the domain-specific semantic
and stylistic aspects. The idea is that if a grammar uses the Resource Grammar
Library in a type correct way, it will produce grammatically correct output.
The grammar writer still has to know the target language and the application
domain in order to get the semantics and pragmatics right, since the grammar
library only handles syntax and morphology. Figure 4 shows a Spanish concrete
syntax for the example grammar which uses the Resource Grammar Library. The
categories Phrase, Item, Demonym and Quality have the linearization types Phr
(phrase), CN (common noun), A (one-place adjective) and AP (adjectival phrase),
respectively. All linearizations use functions from the resource grammar, such as
mkN : Str → N, mkA : Str → A and mkNP : Det → N → NP.

3 Syntax Editing

A syntax editor (also known as syntax-directed editor, language-based editor, or
structure editor) lets the user edit documents by manipulating their underlying
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concrete RestaurantSpaRes of Restaurant = open SyntaxSpa, ParadigmsSpa in {
lincat Phrase = Phr; Item = CN; Demonym = A; Quality = AP;
lin itemIs i q = mkPhr (mkCl (mkNP defSgDet i) q);

restaurant = mkCN (mkN “restaurante”);
food = mkCN (mkN “comida”);
qualItem d i = mkCN d i ;
italian = mkA “italiano”;
mexican = mkA “mexicano”;
very qual = mkAP very AdA qual ;
good = mkAP (mkA “bueno”);
bad = mkAP (mkA “malo”);
cheap = mkAP (mkA “barato”);
expensive = mkAP (mkA “caro”);

}

Fig. 4. Spanish concrete syntax using the resource grammar library

structure. Such editors can be constructed for any type of structured document,
for example computer programs [3], or structured text documents [4].

In the context of GF, a syntax editor lets the user manipulate abstract syn-
tax terms for a particular grammar, while displaying its linearization(s). Syntax
editing with GF grammars is described in more detail by Khegai et al. [5].
To explain GF syntax editing we will make use of the grammar described in
Section 2.1. There are two kinds of abstract syntax terms: complete terms,
e.g. itemIs restaurant good and incomplete terms, e.g. itemIs food ?. A question
mark in an incomplete term is a metavariable, i.e. a non-instantiated term. The
metavariable in the incomplete term itemIs food ? is of type Quality. Syntax
editing starts with a single metavariable and it is refined step-by-step until the
desired complete term is constructed.

4 GF JavaScript Syntax Editor

This is a syntax editor written in JavaScript that can be used in any JavaScript
enabled web browser. This allows the syntax editor to be embedded into web
applications. It can also be used as a complete application by itself, for example,
to explore, debug or test GF grammars interactively.

4.1 User Interface

The editor interface contains six panels (Figure 5):

Abstract syntax tree panel. Shows a tree representation of the abstract syn-
tax term being edited. Selecting a node will highlight both the node in this
panel and its corresponding linearization(s) in the linearization panel.

Linearization panel. Shows the linearizations of the current abstract syntax
term in all the available concrete syntaxes. A string representation of the
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Fig. 5. GF JavaScript syntax editor

abstract syntax term is also shown. Clicking on a word in a linearization will
select the corresponding node in the tree shown in the abstract syntax tree
panel. Metavariables are linearized as question marks.

Actions panel. Used to show the actions available for the selected node (see
Section 4.2). Actions not available for the selected node are grayed out.

Refinements panel. Used to show the available refinements or wrappers for
the selected node whenever the “Refine” or “Wrap” action is selected.

GUI languages panel. Used to show and select the different languages avail-
able for the GUI (Graphical User Interface). Currently, three languages are
supported: English, Spanish and Swedish. The goal is to support all the
languages in GF’s Resource Grammar Library. This interface localization is
implemented using the approach described in Section 5.2.

Clipboard panel. Used to show the name and type of the term currently stored
in the clipboard. The clipboard only holds one term at any given time.

4.2 Syntax Editing Actions

There are a number of actions that can be performed on abstract syntax terms.
Some of the actions require no further explanation, among those we find: Undo,
Redo, Cut, Copy and Paste. Some of the actions can be easily explained: Delete
replaces an instantiated term with a metavariable, Replace is equivalent to Delete
followed by Refine, except that it is treated as a single action in the edit history
and Refine the node at random and Refine the tree at random respectively in-
stantiate every metavariable in the subtree rooted at the selected node and the
entire abstract syntax tree with type-correct objects selected at random. Finally,
the following actions deserve a more in depth description:

Refine. Replaces a metavariable with a function of the appropriate type. The
arguments of the function will all be metavariables. To refine a metavariable
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of type Phrase (Figure 6(a)) we need to choose one function from those that
have the return type Phrase. Only the function itemIs : Item → Quality →
Phrase fits this requirement. This refinement will yield a term of the form
itemIs ?? where the metavariables are of type Item and Quality (Figure 6(b)).

? : Phrase

(a)

itemIs : Phrase

? : Item ? : Quality

(b)

Fig. 6. Refining a metavariable of type Phrase

Wrap. Replaces an instantiated term of type T with a function which has at
least one argument of type T and a return type T. The original term is used
as the child corresponding to the first argument of type T ; the remaining
children will be metavariables. In the example grammar, any term of type
Quality can be wrapped with the function very :Quality → Quality. Wrapping
the term good of type Quality, shown in Figure 7(a), with the function very
(Figure 7(b)) results in the term very good of type Quality (Figure 7(c)).
There is one exception: the top level node can be wrapped by any function
which has at least one argument of type T regardless of its return type.

itemIs

restaurant good : Quality

(a)

very : Quality

? : Quality

(b)

itemIs

restaurant very : Quality

good : Quality

(c)

Fig. 7. Wrapping the abstract term good

Parse a string. Prompts the user for a string and tries to generate a type-
correct subtree by parsing it. On success, the node is instantiated with the
resulting subtree. GF grammars can be ambiguous, i.e. two abstract terms
can have the same linearization. When parsing an ambiguous string, GF
returns a list of abstract terms. In the syntax editor, the different trees
produced when parsing an ambiguous string are displayed in the refinements
panel so that the user can select one.

4.3 Implementation

We have implemented a GF JavaScript API that allows parsing, linearization,
type-annotation of meta-variables, and abstract syntax tree serialization and



Interactive Multilingual Web Applications with Grammatical Framework 343

deserialization to be done in JavaScript applications. This code is based on the
existing GF JavaScript linearization implementation, which was originally used
for output generation in GF-generated VoiceXML applications [6]. We have ex-
tended it with parsing functionality, by using the active MCFG parsing algorithm
described by Burden and Ljunglöf [7].

The GF JavaScript API is now essentially an interpreter for PGF (Portable
Grammar Format) [8]. PGF is a low-level format for type-theoretical grammars,
and the main target of the GF grammar compiler. The GF grammar compiler
has been extended to translate the PGF grammars it produces into a JavaScript
representation, which is used by the GF JavaScript API. The JavaScript repre-
sentation, which is isomorphic to the subset of PGF needed for type-checking,
parsing and linearization, is used instead of the standard PGF form in order to
avoid the extra computation needed to read PGF files directly in JavaScript.

On top of this API, the syntax editor implements the syntax editing actions,
and facilities for supporting the editor user interface. One interesting addition
is the support for associating parts of the linearization output with the abstract
syntax sub-terms which generated them. Each node in the abstract syntax tree
is given an identifier which encodes the path from the root of the tree to the
given node. The linearization algorithm has been modified to tag each token that
results from linearizing a node with that node’s identifier. As a consequence, each
token in the sequence of tokens produced by linearizing an abstract syntax tree
will be tagged with the identifier of the node that produced it, and the identifiers
of all its parent nodes. When the user selects a node in the tree, all tokens tagged
with that node’s identifier are highlighted. When a token is selected, the deepest
node (i.e. longest identifier) which it is tagged with is highlighted.

5 Example Application: The Restaurant Review Wiki

The GF JavaScript API and the syntax editor described in Section 4 can be
used together to build a multilingual web application. This section describes the
Restaurant Review Wiki, a small demo application developed using these tools.

5.1 Description

The Restaurant Review Wiki is a restaurant database that allows users to add
restaurants and reviews and view and edit the information in three languages
(English, Swedish and Spanish). It is available online2.

Users can add new restaurants and edit the information about existing restau-
rants. For each restaurant there is some basic information, such as address and
cuisine, entered using standard HTML forms, and reviews which are created
and edited by using the syntax editor as shown in Figure 8. The restaurant re-
view grammar used in this application is an extended version of the grammar
described in Section 2.1.
2 http://csmisc14.cs.chalmers.se/∼meza/restWiki/wiki.cgi/

http://csmisc14.cs.chalmers.se/~meza/restWiki/wiki.cgi/
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Fig. 8. Review editing page

When adding a new review, the abstract syntax term in the syntax editor
is initially a single metavariable of type Paragraph. The user edits a review by
stepwise refining the tree, by parsing a string or by some combination of these.
For example, the user may parse a simple sentence such as “the food is delicious”,
and then use syntax editing commands to elaborate parts of it.

5.2 Implementation

Instead of storing the text in any language, the abstract syntax representation of
the information is stored on the server and it is linearized by the client’s browser
upon request. The algorithms to linearize abstract syntax trees are efficient and
with today’s computing power the user should not be affected by delays caused
by the linearization of the different multilingual elements of a page. Whenever
a page is loaded, a linearizing function is called for every multilingual element
in the page. This function takes the HTML element to linearize, a reference to
the currently selected language and a grammar as arguments. It extracts the
string representation of the abstract syntax term from the element, converts it
into an abstract syntax tree, linearizes the tree using the concrete syntax for the
currently selected language and stores the linearization in the element.

Two GF grammars are used by this application, one that describes the ele-
ments of web pages such as headers, field names, country names, cuisines, etc.,
and another that describes restaurant reviews.
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5.3 Discussion

Advantages. Since the multilingual information is stored as its abstract syntax
representation, all new content created by users is available for all languages
immediately, and it is thereby consistent in all languages. In existing multilingual
applications such as Wikipedia, multilingual content is created in parallel. This
means that there is a different version of the information for each language and
there is no guarantee that the information available for a particular language
will be available in another nor that they will be consistent.

Having all the information in an abstract representation of a controlled lan-
guage makes it possible to perform operations such as querying precisely and
efficiently. For example, it should be easy to implement functionality that would
let the user search for “cheap Thai restaurants close to the university”.

Adding a language to the application means adding a concrete syntax for
that language to the grammar. Once the concrete syntax is added, all existing
information is automatically available in the new language. There is no need to
translate the existing information by hand.

Disadvantages. The content that can be created using this approach is limited
by the coverage of the grammar. This may be too restrictive and it may prevent
users from effectively conveying their ideas through the content they create.

In this version of the application, new content is created by using the syntax
editor, either by stepwise refining the abstract syntax tree or by parsing a string.
The syntax editor has the advantage of generating content within the coverage
of the grammar. The problem is that the editor is not very intuitive and it could
be hard to use without training, a situation that could discourage potential
users. Creating content by parsing is simple, but, if the user is not familiar with
the grammar, producing valid content through parsing might be a difficult task
unless the grammar has a very wide coverage.

Multilingual processing is done in the client rather than on the server. A
JavaScript GF grammar may be larger than 1 MB, which could be a problem
for devices with limited bandwidth or memory, such as PDAs or mobile phones.
Also, devices with limited processing power may experience delays caused by the
linearization of the multilingual elements in pages. Since the current version does
linearization in the client even when viewing existing content, search engines may
not be able to index the page using the linearized content.

If an abstract syntax used in an application is changed and the new version is
not backwards compatible, it may no longer be possible to linearize the stored
abstract syntax terms. If the coverage of the new grammar is a superlanguage
of the old one, this problem can be solved by linearizing each stored term with
the old grammar and parsing it with the new one.

Doing natural language processing client-side tends to stress the web browser
implementations. The current state of web standards compatibility in browsers
may lead to inconsistent behavior or performance in some web browsers.
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6 Related Work

The Grammatical Framework (GF) provided, up until this point, two different
syntax editors. The first provides the full functionality of GF but can only be
used in machines that have the full GF system installed [1]. One use of this editor
is as an integral component of the KeY formal program verification system [9].
The second, Gramlets [10], provides no parsing and no support for dependent
types or higher-order functions but can be run on any machine that has a Java
Virtual Machine (JVM) installed or in web browsers which have a JVM plug-in.
Our syntax editor is more portable than the previous GF syntax editors, can be
more easily integrated into web applications, and compared to Gramlets, it offers
more functionality, most notably parsing. The syntax editor does not support
the full GF language yet, as it only allows grammars which have no dependent
types and no higher-order abstract syntax.

WYSIWYM [11] is a structure editor which displays natural language rep-
resentations during editing. It now also has a JavaScript implementation3. Our
editor is driven by a declarative specification of the language structure and gen-
eration rules. In WYSIWYM these components are built into the editor, which
appears to make it more difficult to use the editor for new applications.

7 Future Work

Dependently Typed and Higher-order Abstract Syntax. For the syntax
editor to support more advanced grammars, the GF JavaScript API should
be extended to implement parsing, type-checking and linearization for gram-
mars with dependently typed and higher-order abstract syntax.

Syntax Editor User Interface. New content is created using the syntax ed-
itor and, as mentioned before, this is too restrictive and could make users
lose interest in the application. There is a need for a more intuitive interface
which still guarantees that the content is within the domain of the grammar.
One way to make the interface more easy to use is to add completion. The
idea is to make the editor display a list of possible ways to complete the
input that the user is typing, as is done in the GF-based WebALT exercise
editor for multilingual mathematical exercises [12].

Server-side Processing. Instead of doing the multilingual processing in the
client, it could be done on the server. This would be beneficial for devices with
limited processing power, memory or bandwidth. Especially linearization of
existing content should be off-loaded to the server, as this will also help
search engines index the content.

8 Conclusions

We have implemented a syntax editor which provides the basic functionality of
the Grammatical Framework (GF) in web browsers. It allows the user to stepwise
3 http://www.itri.brighton.ac.uk/projects/WYSIWYM/javademo.html

http://www.itri.brighton.ac.uk/projects/WYSIWYM/javademo.html
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create the abstract syntax trees described by a GF grammar through the use
of special purpose editing actions, while showing linearizations of the trees in
multiple languages. It can be used to test and debug GF grammars, or as a
component in multilingual web-based applications.

To demonstrate how the syntax editor can be used to implement multilin-
gual web applications, we also implemented “The Restaurant Review Wiki”. It
is a multilingual restaurant database in which users can add, edit and review
restaurants in three different languages. The approach to multilinguality that we
suggest makes all information available simultaneously and consistently for all
the supported languages, and adding a new language is only a matter of adding a
concrete syntax for that language to the application grammar. Additional work
is required to make syntax editing more usable for untrained users, and to ensure
that the technique works well in resource-constrained computing devices.
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Abstract. This study presents new language and treebank independent
graph transformations that improve accuracy in data-driven dependency
parsing. We show that individual generic graph transformations can in-
crease accuracy across treebanks, but especially when they are combined
using established parser combination techniques. The combination ex-
periments also indicate that the presumed best way to combine parsers,
using the highest scoring parsers, is not necessarily the best approach.

1 Introduction

Research in data-driven syntactic parsing in recent years has provided a wealth
of knowledge. One conclusion of this research is that a well-chosen parsing rep-
resentation is very important in order to achieve state-of-the-art accuracy. This
observation holds for both constituency-based parsing and dependency-based
parsing. Some examples with a constituency-based representation are Johnson [1]
and Klein and Manning [2], where a graph transformation for instance can be
deepening or flattening of phrases. For a dependency-based representation, both
McDonald and Pereira [3] and Nilsson et al. [4] apply graph transformations in
various ways, which concretely means moving dependency arcs in the training
data or parser output. The graph transformations of all these studies are often
fairly complex and usually tailored for a specific parsing algorithm, or motivated
on linguistic grounds.

Another observation is that combining the output of various parsers is benefi-
cial, and again this holds for both constituency-based parsing and dependency-
based parsing. For instance, Henderson and Brill [5] report an improved accuracy
when combining constituency-based trees of various parsers with a simple ma-
jority voting strategy, and Sagae and Lavie [6] also report increased accuracy for
both constituency structure and dependency structure for the Penn Treebank.

The focus of this paper is on data-driven dependency parsing and the aim is to
bring these two prominent techniques – graph transformations and parser com-
bination – together. A set of new treebank independent graph transformations
will be proposed here. In contrast to previously proposed graph transformations
in dependency parsing, the transformations here are both simpler and more gen-
eral, and neither linguistically motivated nor tailored for any specific parsing
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algorithm. In general, we will investigate the result when these generic transfor-
mations are applied one at a time for a dependency parser in order to find the
transformations that are the most beneficial. We will also investigate whether the
dependency trees of parsers based on different transformations can be combined
to improve accuracy and how this can be done the most beneficially.

We begin with the necessary background in Sect. 2, followed by an introduc-
tion to the generic transformations in Sect. 3. Thereafter, in Sect. 4, parsing
results for the general graph transformations for a wide range of languages are
presented, both their performance individually and when they are combined
using parsing combination techniques. We end with conclusions in Sect. 5.

2 Background

2.1 Transformations

As mentioned, choosing the right base representation is important for data-
driven syntactic parsers. Graph transformations have been more prominent for
constituency-based parsers, and the impact of individual graph transformations
have been studied in detail by for instance Johnson [1] and Klein and Man-
ning [2]. Another example is Bikel [7], who presents a detailed analysis of all
graph transformations taking place in the Collins parser.

However, several studies have recently shown that accuracy can be improved
for dependency-based parsers as well. The basic idea in dependency parsing is
that the syntactic analysis establishes binary relations between the words of a
sentence. This kind of analysis can be represented by a labeled directed graph,
which is usually constrained to be a tree rooted at an artificial node prefixed
to the sentence. A dependency tree is shown in Fig. 1, showing that the nodes
(words) also are ordered by a linear precedence relation (<).

An arc wl → wj is projective iff, for every word wj and arc wi → wk such
that i < j < k or i > j > k, there is a path from wi to wj (wi → . . . → wj).
A dependency tree is projective iff all its arcs are projective. Figure 1 is there-
fore non-projective, since the arc from believe to What violates the projectivity
constraint.

Non-projectivity is an important phenomenon that many graph transforma-
tions in data-driven dependency parsing are designed to deal with. These graph
transformations are motivated by constraints imposed by the parsing algorithm,
that is, handling non-projectivity with projective parsing algorithms.1 Hall and
Novák [8], McDonald and Pereira [3] and Nilsson et al. [4] are some examples
using projective parsing algorithms, where the two first studies present pure
post-processing approaches. For instance, McDonald and Pereira use Eisner’s
second-order algorithm, which only derives projective trees. The post-processor

1 Non-projective parsing algorithms are usually slower, and the amount of non-
projectivity in existing treebanks is usually low enough to make projective parsing
with pre-processing and post-processing a good choice in practice.
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Fig. 1. Dependency tree derived from the Penn Treebank

then moves arcs in the tree to recover non-projectivity. This process iterates as
long as the graph transformation increases the overall score of the tree and does
not violate any tree constraint.

Nilsson et al. [4], on the other hand, apply a technique for recovering non-
projectivity that complements post-processing with pre-processing. The trans-
formation is known as pseudo-projective transformation, introduced by Nivre
and Nilsson [9]. The preprocessor starts by identifying all non-projective arcs in
the training data. These arcs are then lifted upward in the tree, one step at a
time, until the entire dependency graph is projective. The lifting strategy is guar-
anteed to produce a projective dependency structure, which in practice seldom
requires more than three lifts for a non-projective arc. The dependency labels of
a lifted arc or surrounding arcs are augmented with additional information that
partially encodes the original position the arc in the tree.

Pseudo-projectivity is one type of transformation that focuses on structures
that are impossible for certain parsing algorithms to construct. However, the
study of Nilsson et al. [4] also showed that transforming constructions that are
difficult (although still possible) using a combination of pre-processing and post-
processing can improve accuracy substantially as well. These transformations
were targeting coordination and verb groups. For instance, they conclude that
the annotation style applied by for instance Prague Dependency Treebank for
coordination and verb groups can be more difficult to parse than a dependency
structure inspired by Mel’čuk [10]. Even though their transformations improve
accuracy, one drawback of their approach is that the transformations are not
applicable to all dependency treebanks, but rather to treebanks annotating co-
ordination and verb groups in a certain way.

Before presenting the generic transformations in Sect. 3, we will below discuss
various combination approaches in dependency parsing.

2.2 Combining Dependency Parsers

There are a few papers describing strategies that combine the output of several
dependency parsers into one single dependency graph. One example is Zeman
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and Žabokrtský [11], who present improved results in comparison to the best
single parser for Czech. One observation is that their method can permit cycles
in the combined dependency graph, unless explicitly forbidden.

The combination approach proposed by Sagae and Lavie [6] on the other hand
avoids cycles implicitly, as it is based on the Chu-Liu-Edmonds algorithm for
finding the maximum directed spanning tree given a dense weighted graph. The
algorithm chooses, for each graph node, the incoming arc with highest weight.
In case the resulting graph forms a tree, then it must be the maximum span-
ning tree. It must otherwise contain a cycle. The algorithm then contracts and
replaces each cycle by one single node, and recalculates the weights of ingoing
and outgoing arcs of the cycle. The algorithm recursively calls itself on the new
graph, which is guaranteed to produce the same maximum spanning tree as in
the original graph (Georgiadis [12]).

Chu-Liu-Edmonds algorithm have previously been used as a single depen-
dency parser, where the weights are derived from a treebank directly (McDon-
ald et al. [13]). For the combination approach, the weights are instead estimates
based on the output of several dependency parsers, where the actual weighting
strategy may differ. For instance, all arcs of all parsers can be given the same
weight, or weighed in relation to each parser’s overall accuracy.

Sagae and Lavie [6] also propose a weighting strategy where the weight of
each arc depends on each parser’s accuracy on the part-of-speech of the arc’s
dependent. Formally, given the output dependency graphs Gi (1 ≤ i ≤ m) of m
different parsers for an input sentence x, a new graph is constructed containing all
the dependency arcs proposed by some parser. Each arc a is weighted by a score
s(a) based on its popularity among the m parsers. The score s(a) =

∑m
i=1 wc

i ai,
where wc

i is the average labeled attachment score of parser i for the word class
c of the dependent of a, and ai is 1 if a ∈ Gi and 0 otherwise.

This is the approach applied by Blended Malt (Hall et al. [14]), the top-
scoring system of the CoNLL 2007 shared task [15]. It combines the output of a
number of single parsers in this fashion. Three different parsing algorithms were
applied in two directions, left-to-right and right-to-left, thus combining a total of
six parsers. They report an improved accuracy (+1.4%) in comparison to their
baseline (Single Malt), the best of the six single parsers.

3 The Generic Transformations

The generic transformations presented in this section – as well as the pseudo-
projective transformations – are all instances of the same transformation
methodology:

1. The graph transformation is applied to the training data.
2. A parser is trained on the transformed data.
3. New sentences are parsed.
4. The corresponding inverse transformation is applied to the output of the

parser.
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Fig. 2. ChildSwap and ParentSwap transformations
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Fig. 3. LiftChildren and DescendSiblings transformations

In contrast to the treebank dependent transformations in Nilsson et al. [4], the
generic transformations are not constructed for a particular treebank annotation,
but they are rather defined as general graph theoretic transformations. Four trans-
formations and their corresponding inverse transformation are presented, which
are denotedChildSwap,ParentSwap,LiftChildren andDescendSiblings.
It is worth pointing out that this is just four types of transformations, where each
transformation just as well could have been designed in a slightly different way.
The exact behavior of a transformation is less important for the systematic pars-
ing experiments in Sect. 4; the best transformations will nevertheless be found.

Each graph transformation starts in the same way by finding all tokens with a
particular dependency type to its parent. The tokens are called the focus tokens
(F ). The transformation is then applied to the focus tokens in a bottom-up and
left-to-right order.

3.1 ChildSwap

In the ChildSwap transformation, the general idea is to let the focus token and
one of its left children exchange parents. In case the focus token has two or more
left children, this transformation is defined to always take the leftmost child,
whereas the transformation is not applicable when left children are missing. The
transformation is illustrated in Fig. 2. F is the focus token, P its original parent
and C its original leftmost child, where the picture Pre CS shows the situation
before the swap and Post CS after.

Also, swapped focus tokens are given a new unique dependency label (X∗),
which distinguishes them from unswapped focus tokens. This will facilitate the
inverse transformation.

3.2 ParentSwap

The ParentSwap transformation is essentially the same type of transformation
as ChildSwap, with the difference that the focus token and its parent exchange
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parents instead. That is, the new parent of P is its former grandparent (G), while
F becomes the new parent of P. This is shown in Pre PS and Post PS in Fig. 2. A
distinction between swapped and unswapped focus tokens is not really necessary
here, since it is only tokens with the root as parent that lack a grandparent.

Whereas the transformation is relatively simple, the inverse transformation is
more complicated as any child of the focus token in Post PS is the potential
original parent. This is resolved by collecting a frequency list of all dependency
labels of P (i.e. Y) in Pre PS during transformation. During the inverse trans-
formation, the dependency type of the child with the highest frequency is then
selected as the new parent of the focus token.

These pictures illustrate a potential problem with both swapping types,
ChildSwap and ParentSwap. Depending on the linear order of the tokens
involved in the swap, some arcs may introduce non-projectivity. In the situation
in Pre PS, right siblings (S ) of P entail non-projectivity, and these will thus
be given F as its new parent. Hence, both swapping types are designed not to
introduce additional non-projectivity.

3.3 LiftChildren

Figure 3 depicts the LiftChildren transformation. It simply lifts all children of
the focus word upward one step, making them new siblings of the focus word. In
order to facilitate the inverse transformation, the lifted tokens are distinguished
from original siblings by augmenting their dependency types (Y′ and Z′).

3.4 DescendSiblings

The fourth and final transformation applied in this study is called Descend-

Siblings. If the arc of the focus token points to the left, its left siblings are
turned into children of the focus token. Also, the corresponding right siblings of
right pointing arcs are descended similarly during transformation. An example
is shown in Fig. 3, where the arcs of S2 are descended while the one for S1 is
left unchanged. Descended siblings are distinguished from original children by
augmenting their dependency type (e.g. Z′ for S2). The inverse transformation
is thus fairly simple.

4 Parsing Experiments

The generic transformations introduced in Sect. 3 will be empirically evaluated
in this section. Their impact on the parsing result individually as well as when
they are combined using the parsing approach by Sagae and Lavie [6] will be the
focus of Exp I–III in Sect. 4.2 to Sect. 4.4.

4.1 Setup: Data and Parser

In the experiments, the ten treebanks of the CoNLL 2007 shared task [15] will
be used (Arabic, Basque, Catalan, Chinese, Czech, English, Greek, Hungarian,
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Table 1. Exp I, generic transformations, ∗∗ = (p < 0.01) using McNemar’s test com-
pared to Base

Ara Bas Cat Chi Cze Eng Gre Hun Ita Tur
Base 73.7 74.0 87.3 83.5 75.6 86.3 73.2 77.5 82.5 78.9

Best 75.9∗∗ - 87.0 83.6 76.1 86.3 73.9 77.4 82.5 78.8
Best Trans CS - PS DS DS CS DS CS DS CS

Label Coord - SUBORD DUMMY2 Pnom VC AuxP LOCY det COORD.

Base + 9 75.0∗∗ 74.2 87.3 83.5 76.4∗∗ 86.3 74.5∗∗ 77.5 82.6 78.9

No inv. for Best 72.9 - 85.3 80.4 74.8 82.9 67.6 77.3 74.5 75.2

Italian and Turkish). The official training data sets for all treebanks has been
divided into three parts. Data set T comprises 80% and is the ordinary training
data in all experiments below. 10% is the development test set (D) used for
parsers selection throughout Exp I–III. The remaining 10% (W ) is reserved for
estimating the arc weights of the parser combination. The weights are based on
the labeled precision of the dependency types, which is a weighting strategy not
applied by Sagae and Lavie [6].

All figures presented below are based on the official test data sets of the shared
task with ∼5000 tokens per language. The figures are the labeled attachment
score (i.e. the percentage of tokens that are assigned both the correct head and
the correct dependency label), where the ten parsed data sets for each parser
have been concatenated into one file before evaluation.

We will use the open-source software MaltParser 1.0.42 for the experiments.
The experiments have for simplicity used very similar settings to the Single Malt
system in Hall et al. [14]. However, since a newer version of MaltParser is used,
and since only 80% of the training data is used, the figures presented here will
differ somewhat compared to theirs.

4.2 Exp I: Generic Transformations

We will in Exp I investigate how the accuracy is affected by the generic transfor-
mations and their corresponding inverse transformations. That is, can some of
the transformations – despite their simplicity – increase accuracy (1) individually
and (2) when the output of the individual parsers using one single transformation
each are combined?

As mentioned, four transformations are implemented, all having focus tokens
chosen according to its dependency label. Theoretically, the number of transfor-
mations for a treebank is four times the number of distinct dependency labels.
We assume that the least frequent labels are more unlikely to have an impact
(positive or negative) on accuracy, so we will throughout this paper only select
transformations among the 16 most frequent labels for each treebank. Conse-
quently, at most 65 (4 × 16 + 1) parsers with one transformation each will be
considered, including the parser without any generic transformations. Here in
2 http://w3.msi.vxu.se/users/jha/maltparser/
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Exp I, we will restrict the number of combined parsers to (1) the parser without
any generic transformations, plus (2) the 9 parsers with transformations having
the highest accuracy (on the data sets D).

Table 1 shows the evaluation of Exp I. The first row (Base) contains the
figures without any generic transformations, which is our baseline. Row two
(Best) presents the accuracies for the single best parsers. Selecting the best
parser for the official test sets is not based on parsing the official test sets, but
on both data sets D and W, i.e. the remaining 20% of the official training data
not used for training. The two following rows show which transformation was
applied for Best, and for which dependency label, where a dash means that no
transformation outperformed the baseline on the development set (D+W ).

The impact of the transformations varies much between treebanks. For in-
stance, Arabic has a statistically significant increased accuracy taking place for
the label Coord (+2.2). This is an interesting observation, since this label is
involved in coordination, which is one type of construction that the transfor-
mations in Nilsson et al. [4] target. The figures are not exactly comparable, as
different training and testing sets have been used, but it is still worth noting that
they reported an increased accuracy of (+2.1) for their coordination transforma-
tion on Arabic. As already mentioned, the difference is that the generic trans-
formations presented here are not constructed for a specific type of annotation.
Also Greek, with a similar annotation as Arabic, exhibits increased accuracy for
some transformations involving coordination (e.g. Pred Co for ParentSwap),
but they are all slightly less prominent that the best Greek transformation.

For many other treebanks the baseline is at least as accurate as Best on the
test set. Nevertheless, even though the increases for Best are not statistically
significant for Czech (+0.5) and Greek (+0.7) (partly due the small test sets), the
results indicate that these and other generic transformations can be beneficial.

The row (Base+9) aims to answer question (2) in the beginning of this sec-
tion. It shows the accuracy when the baseline parser and the 9 best parsers
with the highest accuracy (selected using the data sets D) for each treebank are
combined. In comparison to Base, the accuracy increases for all languages. This
again confirms previous studies, concluding that combining various parsers is
beneficial, e.g. Sagae and Lavie [6] and Hall et al. [14], but it is for the first time
shown that simple and generic transformations are beneficial while keeping all
other settings unchanged. However, the situation is not as clear when determin-
ing its relationship to Best. Averaging over all languages, Best has marginally
higher accuracy.

To summarize, treebank dependent and linguistically motivated transforma-
tions are not necessary in order to improve accuracy. Simple general trans-
formations are often sufficient. Of course, the vast majority of these general
transformations decrease accuracy. However, by applying them systematically
like above, we are able to find the transformations that are beneficial. Finally, in
comparison to the combination strategy in Base+9, simply selecting the single
best parser is often at least as good.
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Table 2. Exp II, no inverse transformation, where ∗∗ = (p < 0.01) compared to Base

Base Base+9 Base+9 - No Inv
79.2 79.6∗∗ 79.6∗∗

4.3 Exp II: No Inverse Transformation

All generic transformations in Exp I combine pre-processing and post-processing
according to the list in the beginning of Sect. 3. In this section, we will investigate
the importance of the fourth step, the inverse transformation on the parser
output. More precisely, how is accuracy affected when the output of the various
parsers is not subjected to an inverse transformation?

The last row of table 1 (No inv. for Best) contains the accuracies of the sin-
gle best parsers in column Best without performing the inverse transformation.
These figures are consistently lower than Best, which clearly indicate the impor-
tance of the inverse transformation for the single parsers with transformations.
When comparing these figures with Base, some noticeable observations can be
seen, such as the substantial drops for Greek (−5.6) and Italian (−8.0). The
inverse transformations are for these two and the other treebanks able to restore
the accuracy, and for some treebanks even surpass Base.

When combining parsers without inverse transformations, one could expect
the same behavior. However, this is actually not the case. Table 2 presents the
accuracy for Base and Base+9 for all ten treebanks, showing that Base+9
outperforms Base. But the most interesting result is shown in the third column,
Base+9 - No Inv. Here we have combined the baseline parser with the 9 highest
scoring parsers (again selected using the data sets D) without performing inverse
transformations. It is therefore plausible that the 9 selected parsers are not the
same for these two combination strategies. Base+9 has slightly higher accuracy
but when rounded to one decimal, Base+9 - No Inv is comparable to Base+9.

The result can at a first glance seem somewhat surprising, but it can be
explained by the adopted weighting strategy for the parser combination. The
weights are estimated based on the precision of individual dependency labels.
A transformation modifies the structure close to a certain dependency label. It
is hence likely that the transformation yields a low weight to the dependency
labels that often are involved in this transformation.

This, in turn, results in a low impact for these dependency labels during the
parser combination. However, the remaining dependency structure is kept rela-
tively intact, and is parsed differently compared to other parsers because of the
transformation. This is beneficial irrespectively of whether an inverse transforma-
tion has been applied or not. In other words, the parser diversity is consequently
a very important property, which Exp III below will investigate further.

4.4 Exp III: Selection Strategy

The results presented in Exp II indicate that the need of post-processing is
important for the single parsers, while unnecessary when combining the parsers.
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Fig. 4. Exp III, selection strategy, with the number of parsers at the x-axis

However, it is still unsatisfactory that Best and Base+9 have virtually the
same average accuracy in Exp I. In this final experiment, we will investigate
whether the selection based on high accuracy, applied in Exp I, is the best
strategy. In other words, can the moderate improvement in accuracy for Base+9
in comparison Best (+0.4) be a result of suboptimal parser selection? Before we
turn our attention to this issue, we will study whether ten is an optimal number
of parsers to combine for Base+9 - No Inv and Base+9.

In Fig. 4, Base+9 corresponds to the curve denoted [Inv/Desc], which means
that the selection is based on the output for data set D with the inverse transfor-
mation, which is sorted in descending order, and where the parser combination
uses the output with the inverse transformation. Base+9 - No Inv then cor-
responds to the curve [NoInv/Desc], meaning that the selection is based on the
output for data set D without the inverse transformation, which are sorted in
descending order, and where the parser combination uses the output without
the inverse transformation.

Both these curves in Fig. 4 have very similar behavior, climbing in the begin-
ning up to about 10 parsers. Thereafter, as more parsers with lower accuracies
are added, no further real increase or decrease is recorded. So no more than 8–10
are in practice needed in order to reach the upper limit. The difference between
the curves is negligible, which indicates that the additional complexity that the
inverse transformations impose is not really worth the effort.

The diagram contains two more curves, and we will begin by looking at [NoInv/
Asc]. Just as for [NoInv/Desc], the inverse transformations are not used at all,
but the parsers are instead added in ascending order. That is, the baseline parser
is first combined with the parser having the lowest accuracy without an inverse
transformation, and then with the parser having the second lowest accuracy, and
so on. This curve has a completely different appearance, as it has a much more
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clear peak at 9 parsers. More interestingly, the peak is located well above the two
previous curves, despite (1) the unintuitive order in which new parsers are added,
and (2) no inverse transformations. This result contrasts with the assumption that
the best parsers should be combined first, in descending order.

The results so far should be enough to say that performing inverse transfor-
mations are in vain when combining parsers. However, the fourth and final curve
[Mix/Asc] shows that this is a premature conclusion. The selection of parsers
is here based on the parser outputs without inverse transformation sorted in
ascending order, just like [NoInv/Asc]. The important difference is that it is not
the parser outputs without the inverse transformation that are combined, but
rather each parser’s corresponding output with the inverse transformation. That
is, [NoInv/Asc] and [Mix/Asc] selects the same parsers, but combines the parser
outputs before and after the inverse transformation, respectively. This combi-
nation strategy outperforms the other three, having a peak at 9 parsers. Other
logical combinations for parser selection exist (e.g. [Inv/Asc] and [Mix/Desc]),
but none increases accuracy or our knowledge.

The main conclusion of Exp III is that we can in fact improve accuracy more by
selecting the parsers in a way that seems unintuitive. Also, given an appropriate
selection strategy, the inverse transformation is in fact beneficial.

The results can be compared to the best system of the CoNLL 2007 shared
task, the Blend Malt (Hall et al. [14]), using 6 parsers (three parsing algorithms
and two parsing directions), which reported an improved accuracy of +1.4 com-
pared to their baseline, one single parser. The improvement for [Mix/Asc] com-
pared to our baseline parser is +1.0 (from 79.2% to 80.2%), which is promising
considering that no optimization of features and machine learning parameters
has been performed for any parser besides our baseline parser. It is worth point-
ing out that our baseline has slightly lower accuracy compared to the single
parser of Hall et al. [14], which partly is attributed to less training data (only
80%). Also, we conjecture that new generic transformations modifying the data
even more than the ones proposed here will be even more beneficial.

5 Conclusion

We have shown that generic transformations not motivated linguistically and
not tailored for a specific parsing algorithm can improve accuracy for several
treebanks. We have presented four, and it is certainly possible to construct other
types of generic transformations that also can improve accuracy.

The generic transformations were also combined using the approach presented
by Sagae and Lavie [6], showing that they can be combined with an increased ac-
curacy. We have also shown that the order in which various parsers are combined
has a major influence. Our results indicate that the most apparent combination
strategy – combining the parsers with the highest accuracy – is not the best way.
Rather a more unintuitive strategy is better: use one well-performing parser as
base, and then add the other parsers in ascending order, starting with the worst
parser. This indicates that parser diversity is more important than high accuracy.
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Abstract. Range Concatenation Grammar (RCG) is a formalism with
interesting formal properties (it has a polynomial parsing time while be-
ing more powerful than Linear Context-Free Rewriting Systems). In this
context, we present a constraint-based extension of the state-of-the-art
RCG parsing algorithm of [1], which has been used for the implementa-
tion of an open-source parsing architecture.

1 Introduction

Range Concatenation Grammar (RCG) [2] is a grammar formalism with attrac-
tive properties (e.g. closedness under complementation and intersection). Still,
RCGs are computationally tractable: they can be parsed in polynomial time in
the size of the input string and linear time in the size of the grammar [1]. Fur-
thermore, as shown by [3], RCG can be used to encode different mildly context
sensitive formalisms such as Multi-Component Tree Adjoining Grammar. RCG
offers thus a uniform interface for comparing the properties of formalisms, and
is a candidate pivot formalism for parser implementations.

In this context, we propose an extension of the state-of-the-art RCG pars-
ing algorithm of [1] making use of constraint programming techniques. The ex-
tended algorithm has been implemented in an open-source parsing architecture
for tree-based grammars [4]. Before presenting this extension, we first give a brief
introduction to RCG.

An RCG is a set of clauses of the form : A0(x01, . . . , x0n0) → ε or
A0(x01, . . . , x0n0) → A1(x11, . . . , x1n1) . . . Ak(xk1, . . . , xknk

) where xij is a con-
catenation of constants and/or variables and Am is a predicate with arity nm.1

As an illustration, consider the following RCG clauses:
(a) A(X a Y Z) → B(X, Y ) C(Z) (b) B(ε, ε) → ε

(a) has a left predicate labeled A, whose arity is 1 and whose argument is
made of the concatenation of the variable X , the constant a and the variables

� We are grateful to Laura Kallmeyer and three anonymous reviewers for useful com-
ments on this work.

1 For a formal definition of RCG, please refer to [2].

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 360–365, 2008.
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Y and Z. (b) is a clause whose left predicate is labeled B and whose arity is 2.
Its two arguments are ε. (b)’s right member is empty (ε).

The idea underlying RCG is that the symbols (constants or variables) oc-
curring in the argument of a clause are bound to ranges of the sentence by a
substitution mechanism. Derivation in RCG corresponds to the instantiation of
the clauses whose left predicate is distinguished (axiom of the RCG). In other
terms, for each of the axiom clauses, we search for all the substitutions mapping
symbols of the left predicate to ranges of the sentence. If such a substitution
can be found (successful instantiation), then the left predicate of the clause is
replaced by the right-hand side of the clause (the arguments of the right pred-
icates are now bound to ranges). We then look for clauses whose left-predicate
is one of these instantiated right predicates. These clauses are in turn instanti-
ated. The derivation ends either when ε has been derived (success), or when no
successful clause instantiation has been found (failure). In other terms, an input
string w with |w| = n belongs to L(G) iff ε can be derived wrt w from S(〈0, n〉).

To illustrate this, consider the RCG G = 〈{S, A}, {a, b}, {X, Y }, S, P 〉 with:

P = { S(X Y ) → A(X, Y ) , A(a X, a Y ) → A(X, Y ) ,
A(b X, b Y ) → A(X, Y ) , A(ε, ε) → ε }

which covers the copy language: L(G) = {ww | w ∈ {a, b}∗}. Considering the
string aabbaabb, we have the following derivation (s refers to the substitution
function):

Clauses Instantiations
S(XY ) → A(X, Y ) s(X) = 〈0, 4〉 (aabb) , s(Y ) = 〈4, 8〉 (aabb)
A(aX, aY ) → A(X, Y ) s(X) = 〈1, 4〉 (abb) , s(Y ) = 〈5, 8〉 (abb)
A(aX, aY ) → A(X, Y ) s(X) = 〈2, 4〉 (bb) , s(Y ) = 〈6, 8〉 (bb)
A(bX, bY ) → A(X, Y ) s(X) = 〈3, 4〉 (b) , s(Y ) = 〈7, 8〉 (b)
A(bX, bY ) → A(X, Y ) s(X) = 〈4, 4〉 (ε) , s(Y ) = 〈8, 8〉 (ε)
A(ε, ε) → ε

2 Instantiating Predicates Using Constraints

The state-of-the-art RCG parsing algorithm our work is based on is a top-down
parsing algorithm presented in [1]. The idea of this algorithm is to use the start
predicate to trigger clause instantiations leading to the empty string. A complex
step of this algorithm corresponds to the instantiation of a predicate. Indeed,
when instantiating a predicate, we have to compute all possible substitutions
between range variables and contiguous symbols of the input string.

To illustrate this, consider the predicate A(XY Z) to be instantiated with
respect to the input string abcdef . In this example, the number of possible
instantiations is 28 (there are 3 contiguous range variables, that is to say 2
inner boundaries to be found, the first of these boundaries can occupy one of 7
positions: •abcdef , a • bcdef , etc., the second one has either to be equal or to
follow –immediately or not– the first boundary, so the number of instantiations
is 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28).
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The complexity of the instantiation task depends on the size of the input string
and the number of range variables to instantiate. More precisely [1] has shown
that the maximum parse time complexity associated with a clause instantiation
is O(nd), where n is the length of the input string and d is the number of free
boundaries (also called degree) in that clause: d = max(ki + vi), ki being the
arity of clause i and vi its number of range variables. In other terms, the parsing
time complexity heavily depends on the instantiation time complexity (as shown
in [1], the worst parsing time of a string of length n is O(|G|nd)).

In this context, we propose to encode predicate instantiation as a Constraint
Satisfaction Problem (CSP). Note that [1] proposes to deal with the high time-
complexity of clause instantiation by using some predefined specific predicates
whose role is to decrease the number of free boundaries within ranges.2

In the above example, we had a unary predicate whose argument was made of
3 range variables XY Z. Another common form of argument is a mix of constants
and range variables, such as in aXY dZ. In such a case, the constants can be seen
as constraints (or anchors) on the values the free boundaries can be assigned.
We will elaborate on this after a brief introduction to CSP.3

Constraint Satisfaction Problems. In the constraint satisfaction paradigm,
a problem is described using a set of variables, each taking its value in a given
domain. Constraints are then applied on the values these variables can take
in order to narrow their respective domains. Finally, we search for one (or all)
solution(s) to the problem, that is to say we search for some (or all) assignment(s)
of values to variables respecting the constraints.

One particularly interesting sub-class of CSPs are those that can be stated in
terms of constraints on variables ranging over finite sets of non-negative integers.
For such CSPs, there exist several implementations offering a wide range of
constraints (arithmetic, boolean and linear constraints), and efficient solvers.
Examples of such implementations include the Oz/Mozart environment and the
Gecode library.4

Instantiating predicates as a CSP. As mentioned above, an argument of
a predicate to be instantiated contains range variables and/or constants, the
latter acting like constraints on the boundaries between ranges.5 To illustrate
this, consider the instantiations of the predicate A(aXY dZ) with respect to the
input string abcdef . For this example, we only have 3 solutions, depending on
where to put the boundary between ranges X and Y .

2 The number of range boundaries could be reduced by binarizing the clauses mimick-
ing CFG binarization. The benefit of this is unclear as it would increase the number
of clauses to check for instantiation.

3 For a detailed introduction to CSP, please refer to [5].
4 See http://www.mozart-oz.org and http://www.gecode.org
5 Note that (a) the RCGs we handle in our system are built automatically from lex-

icalized tree-based grammars, thus the arguments of a predicate often contain con-
stants, nonetheless (b) the technique presented here does not depend on the presence
of constants. These only reduce the search space of the CSP.

http://www.mozart-oz.org
http://www.gecode.org
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The idea underlying the interpretation of this instantiation task in terms of a
CSP is to use the natural order of integers to represent the linear order imposed
on ranges, and to define additional constraints reflecting the fact that constants
(if any) are anchors for ranges of the input string. We do the following:

1. we define a model associating boundary constants with non-negative integers,
and boundary variables with finite domains over non-negative integers,

2. we define constraints on these boundary variables,
3. we search for all assignments of values to these boundary variables.

Step 1. Let us define the input string w as follows: w := b0s1b1s2 . . . bn−1snbn

where si (1 ≤ i ≤ n) is a constant symbol of the input string, and bj (0 ≤ j ≤ n)
is a boundary constant. For convenience, we note w[i] = si. Every boundary con-
stant is associated with an integer referring to its position in the string (boundary
constants are ordered by the relation (≤, N)). Thus b0 = 0, b1 = 1, etc.

In the same way, let us define an argument to instantiate arg as follows:
arg := B′

0s
′
1B

′
1s

′
2 . . . B′

m−1s
′
mB′

m where s′i (1 ≤ i ≤ m) is a symbol (range
variable or constant), and B′

j (0 ≤ j ≤ m) is a boundary variable. As before,
we note arg[i] = s′i. Furthermore, each boundary variable is associated with the
finite domain [0..n] (i.e. a boundary variable must match a boundary constant
defined over the input string). Note that here we consider the case where all
constants appearing in the input string and in the argument to instantiate occur
only once (see Nota bene below).
Step 2. Once our model has been defined, we compute a constraint matrix MC

mapping boundary variables to boundary constants. Thus MC is a (m + 1) ×
(n + 1) matrix where:

MC [i, j] =

⎧
⎪⎪⎨

⎪⎪⎩

1 if arg[i] = w[j] or arg[i − 1] = w[j − 1] (2 ≤ i ≤ m, 2 ≤ j ≤ n)
1 if (i, j) = (1, 1) (*)
1 if (i, j) = (m + 1, n + 1) (*)
0 otherwise

The “1” in MC represent boundary positions that are constrained by the input
string. The lines marked (*) represent the fact the lower and upper bounds of the
argument to instantiate must be respectively the lower and upper bounds of the
input string. If we consider the previous example of the predicate A(aXY dZ) to
be instantiated with abcdef , we obtain the following constraint matrix:

MC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 b2 b3 b4 b5 b6

B′
0 1 0 0 0 0 0 0

B′
1 0 1 0 0 0 0 0

B′
2 0 0 0 0 0 0 0

B′
3 0 0 0 1 0 0 0

B′
4 0 0 0 0 1 0 0

B′
5 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 3. We finally search for all assignments of values in [0..n] to the boundary
variables B′

j (0 ≤ j ≤ m). In other terms, we search for all functions f such

that: f : V → [0..n]
B′j (0 ≤ j ≤ m) �−→ bi (0 ≤ i ≤ n)
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This search uses generic constraints reflecting the ordering of the boundary
variables: ∀ (0 ≤ i, j ≤ m) (i ≤ j) ⇒ 0 ≤ (f(B′

i) ≤ f(B′
j)) ≤ n and the specific

constraints encoded in the matrix MC :

∀(1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1) (MC [i, j] = 1) ⇒ (f(B′
i−1) = bj−1)

In the latter formula, the indexes of the boundaries are shifted with respect
to the matrix indexes (i, j) because MC ’s rows and columns indexes start from
1 while the indexes of the boundaries start from 0. Considering our previous
example, all B′

i are constrained by MC , except B′
2, which can take 3 values: 1

(b1), 2 (b2) or 3 (b3), these are the 3 expected range boundaries.

Nota bene. Here, we gave a formal definition of the CSP-encoding. At first
sight, the example we used looks trivial and one may wonder whether we really
need all this formal tool, in other terms whether the complexity of instantiation
has not been overestimated. To illustrate instantiation’s complexity, one may
think of arguments with duplicated constants, such as in the instantiation of
XaY aZ with aaaad. Which constant of the string refers to which constant of the
argument to instantiate ? The approach presented here has to be generalized to
deal with such cases. More precisely, we use a CSP to assign a constraining role to
all potential anchors. For each of these assignments, we compute corresponding
range instantiations using the CSP introduced above.

Finally, it is worth noticing that there doubtlessly exist several ways of instan-
tiating RCG predicates (e.g. unification based solvers). The use of constraints
over finite sets of integers offers a natural framework for handling ranges.

3 Conclusion and Future Work

In this paper, we paid a particular attention to the task of RCG predicate instan-
tiation, on which the time complexity of RCG parsing heavily depends. We pro-
posed to use techniques borrowed from the field of constraint programming to ef-
ficiently perform this task. The ideas presented here have led to the development
of an open-source parsing architecture, which is currently used for designing a core
Multi-Component Tree Adjoining Grammar for German [4].

In a near future,wewould like to build a proof of correctness of theCSP-encoding
and also to evaluate empirically the benefits of using CSP for predicate instantia-
tion compared with existing approaches.
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Abstract. In this short paper, we present the explicative structure as
found in procedural texts. We focus in particular on arguments, and show
how warnings, a type of arguments, can be extracted.

1 Introduction

Procedural texts consist of a sequence of instructions, designed with some ac-
curacy in order to reach a goal (e.g. assemble a computer). Procedural texts
may also include subgoals as well as lists of prerequisites, warnings, etc. Goals
and subgoals are most of the time realized by means of titles and subtitles. The
user must follow step by step the given instructions in order to reach the goal.
Procedural texts are complex structures, they often exhibit a quite complex ra-
tional (the instructions) and ’irrational’ structure which is mainly composed of
advices, conditions, preferences, evaluations, user stimulations, etc. They form
what is called the explanation structure, which motivates the goal-instructions
structure. A number of these elements are forms of argumentation, they provide
motivations and a strong and essential internal coherence to procedural texts.

In our perspective, procedural texts range from apparently simple cooking
recipes to large maintenance manuals. They also include documents as diverse
as medical notices, social behavior recommendations, directions for use, assembly
notices, do-it-yourself notices, etc. The work we report here was carried out on
a corpus in French. It is part of the TextCoop project, dealing with How-To
question-answering.

We have already studied the instructional aspects of procedural texts and imple-
mented a quite efficient prototype in the TextCoop project (Delpech et al. 2008).
In this paper, after a short categorization of objects related to explanation found in
a large corpus of procedural texts (about 8000 Web texts), we focus on the recogni-
tion of the argumentation structure. Argument recognition is a rathernew research
topic, andhasmany application, e.g. opinion analysis. Let usnote somework in lan-
guage processing concerning the recognition of arguments in the juridical domain.

2 Explanation Structure in Procedural Texts

First, in most types of texts, we do not find just sequences of simple instructions
but much more complex compounds composed of clusters of instructions, that

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 366–370, 2008.
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we call instructional compounds. These are organized around a few main in-
structions, to which a number of subordinate instructions, warnings, arguments,
and explanations of various sorts may possibly be adjoined. All these elements
are, in fact, essential in a compound for a good understanding of the procedure
at stake. For example, explanations and arguments help the user understand
why an instruction must be realized and what are the risks or the drawbacks if
he does not do it properly. An example of an instructional compound is:

[instructional compound [Goal To clean leather armchairs,]
[instruction choose specialized products dedicated to furniture,

[advice [instruction and prefer them colorless ],
[arguments they will play a protection role, add beauty, and repair

some small damages.]]]]
Next, from our development corpus, we established a classification of the dif-

ferent forms explanations may take. Basically, the explanation structure is meant
to help the user by making sure that he will effectively realize actions as they
are specified, via e.g. advices and warnings. The main structures are facilitation
and argumentation structures; they are either global (they are adjoined to goals,
and have scope over the whole procedure) or local, included into instructional
compounds, with a scope local to the instructional compound. These structures
are summarized as follows:

– facilitation structures, which are rethorical in essence (Kosseim et al 2000)
(Van der Linden 1993), correspond to How to do X ? questions, these include
two subcategories:
(1) user help, with: hints, evaluations and encouragements and
(2) controls on instructions realization, with two cases: (2.1) controls on

actions: guidance, focussing, expected result and elaboration and (2.2)
controls on user interpretations: definitions, reformulations, illustrations
and also elaborations.

– argumentation structures, corresponding to why do X ? questions. These
have either:
(1) a positive or neutral orientation with the author’s involvement (promises)

or not (advices and justifications) or
(2) a negative orientation with the author involment (threats) or not

(warnings).

In what follows, we will mainly concentrate on this second point, and in par-
ticular on warnings which are the most frequently encountered, besides advices
(since there are rarely involvements from the author).

3 Identifying Arguments in Procedures

3.1 General Structure

Roughly, argumentation is a process that allows speakers to construct statements
for or against another statement called the conclusion. These statements are
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called supports. the general form for arguments is : Conclusion ’because’ Sup-
port (noted as C because S). Arguments may be more or less strong, they are
in general associated with a certain weight. (Anscombre et al. 1981), (Moeschler
1985), (Amgoud et ali. 2001)

In the case of procedural texts, the representation is as follows. Let G be a
goal which is realized via the sequence of instructions Ai, i ∈ [1, n], whatever
their exact temporal structure is. A subset of those instructions are interpreted
as arguments where the conclusion is the instruction (Aj), associated with a
support Sj that stresses the importance of Aj (Carefully plug in your mothercard
vertically, otherwise you will damage the connectors). Their general form is:
Aj because Sj (we use here the term ’because’ which is more vague than the
implication symbol used in formal argumentation, because natural language is
not so radical). Supports S which are negatively oriented are warnings whereas
those which are positively oriented are advices. Similarly to the principles of
argument theory, but within the framework of action theory, if Aj is associated
with a support of type warning Sj then if Aj is not realized correctly, the warning
Sj is ’active’ and attacks the goal G, i.e. it makes its realization more difficult
if not impossible. Conversely, if Sj is an advice, it supports the goal G, making
its full realization easier if Aj is executed.

As can be noted, our definition includes terms which are gradual: ’more diffi-
cult’, ’easier’, because in practice, failing to realize an instruction properly does
not necessarily mean that the goal cannot be reached, but the user will just be
less successful, for various reasons. In the natural language expressions of con-
clusions (the Aj) as well as of supports, there are many modals or classes of
verbs (like risk verbs) that modulate the consequences on G, contrast:
use professional products to clean your leathers, they will give them a brighter
aspect. with:
carefully plug in your mothercard vertically, otherwise you will most likely dam-
age its connectors..
In the latter case, the goal ’mounting your own PC’ is likely to fail, whereas in
the former, the goal ’cleaning your leathers’ will just be less successful.

3.2 Processing Arguments

From the above observations, we have defined a set of patterns that recognize
instructions which are conclusions and their related supports. We defined those
patterns from a development corpus of about 1700 texts of various domains
(cooking, do it yourself, gardening, etc.). Let us focus here on warnings. The
study is made on French, English glosses are given here for ease of reading. The
recognition problem is twofold: identiying propositions as conclusions or supports
by means of specific linguistic marks (sometimes we also found a few typographic
marks), and then delimiting these elements. In general boundaries are either
sentences or, by default, instructional compound boundaries. We have basically a
unique structure composed of an ’avoid expression’ combined with a proposition.
The variations around the ’avoid expressions’ capture the illocutionary force of
the argument via several devices, here ordered by increasing force :
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(1) ’prevention verbs like avoid’ NP / to VP (avoid hot water)
(2) do not / never / ... VP(infinitive) ... (never put this cloth in the sun)
(3) it is essential, vital, ... to never VP(infinitive).

In cases where the conclusion is relatively weak in terms of consequences, it
may not have any specific mark, its recognition is then based on the observation
that it is the instruction that immediately precedes an already identified support.

Supports are propositions which are identified from various marks:

(1) via connectors such as: sinon, car, sous peine de, au risque de (otherwise,
under the risk of), etc. or via verbs expressing consequence,

(2) via negative expressions of the form: in order not to, in order to avoid, etc.
(3) via specific verbs such as risk verbs introducing an event (you risk to break).

In general the embedded verb has a negative polarity.
(4) via the presence of very negative nouns: death, desease, etc.

Some supports have a more neutral formulation: they may be a portion of a
sentence where a conclusion has been identified. For example, a proposition in
the future tense or conditional following a conclusion is identified as a support.
However, as will be seen below, some supports may be empty, because they can
easily be infered by the reader. In that case, the argument is said to be truncated.

Patterns are implemented in Perl and are included into the TextCoop software.
We do not have space here to discuss about algorithms, but so far these are
quite straightforward. From the above observations, with some generalizations
and the construction of lexicons of marks, we have summarized the extraction
process in only 8 patterns for supports and 3 patterns for conclusions. Arguments
are tagged by XML tags. We carried out an indicative evaluation (e.g. to get
improvement directions) on a corpus of 66 texts over various domains, containing
262 arguments. We get the following results:

conclusion reco support reco (3) (4)
89% 86% 84% 81%

(3) conclusions well delimited (4) supports well delimited.
Besides identifying arguments (advices, warnings) in a text and other struc-

ture, a major application of this work is the acquisition of domain know-how
knowledge, which is probably quite basic, but which could be subject to interest-
ing generalizations. Obviously, to make this know-how operational, it is necessary
to analyse it and transform it into a formal representation that supports inference.

3.3 Dealing with Empty Supports

Considering do-it-yourself and gardening texts, we noted that about 2/3 of the
arguments are not supported. This very large number of unsupported argu-
ments, in such typically procedural texts, can be explained by several factors:
(1) procedural texts are more oriented towards action than control, (2) some sup-
ports, possibly complex, could in fact introduce doubts or confusions, (3) some
explanations (supports) may be too complex to understand for a casual user,
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and (4) supports are sometimes sufficiently explicit in the conclusions (do not
scatter seeds by high winds ! = they won’t go where you want them to go).

Considering realized supports, we noted that they correspond to two main
trends: (1) supports that express general requirements such as: efficiency of ac-
tions, security, ease of execution, adequate execution, speed, aesthetics, lower
cost, etc. and (2) supports that cover more precise, domain dependent situations
(avoid pruning trees when temperature drops below zero).

We have little room in this short paper to develop this section, but let us note
here the directions we are investigating, which require different forms of inference.
For empty supports corresponding to general requirements, we infer a generic sup-
port based on those requirements, e.g.: mounting your computer: use a flat and
clean surface. induced support: ’for a better ease of execution’. From our obser-
vations (which need further confirmation and evaluation), generic supports are in
general triggered by adjectives or by general purpose verbs used in the conclusion.

The second situation (empty support in a domain dependent situation) is more
delicate and requires domain or lexical knowledge. We are investigating the use
of principles of the Generative Lexicon (Pustejovsky 1991) for that purpose. Very
briefly, wind has in its telic role several predicates like push, take away, scatter,
disperse, break, damage, ..... When applied e.g. to gardening, such as planting
new flowers, since these are not so mobile when planted, a predicate like break or
damage can be selected (selection principles in the Generative lexicon remain an
open problem). Then from a statement such as: avoid planting flowers by high
winds the support: because wind will damage or break flowers can be infered.
This approach is quite complex but seems to be an interesting application to GL
principles and data.
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Abstract. In this paper, we study how existing natural language pro-
cessing tools for Italian perform on ancient texts. The first goal is to
understand to what extent such tools can be used “as they are” for the
automatic analysis of old literary works. Indeed, while NLP tools for
Italian achieve today good performance, it is not clear if they could be
successfully used for the humanities, to support the critical study of his-
torical works. Our analysis will show how tools’ performance systemati-
cally vary across different time periods, and within literary movements.
As a second goal, we want to verify whether or not simple customization
methods can improve the tools performance over the old works.

1 Introduction

Natural Language Processing (NLP) tools for morphological and syntactic anal-
ysis guarantee today high standards in terms of performance and robustness, so
that they can be successfully used in a wide range of applications. Yet, despite
the large availability of electronic editions of old literary works in the context
of the TEI initiative [1], and despite the potential benefits, few attempts have
been made so far to adapt NLP tools to the field of humanities (e.g. [2,3]),
especially for Italian. For example, researchers in philology mostly use simple
keyword search in context (KWIC) and dictionary query engines working on
human annotated material, where the NLP contribution is minimal. The appli-
cation of deeper automatic linguistic techniques would be valuable to build more
sophisticated and useful tools for philological and literary studies.

A natural question is then why not much effort has been spent so far in
adapting NLP tools to ancient texts. This cannot be only explained by the
skepticism of researchers in the humanities over NLP applications in general.
In our view, the core issue is that the humanistic and NLP research areas have
different objectives. NLP research aims to build language models that cover the
most frequent phenomena of contemporary natural languages. On the contrary,
the goal of humanistic studies is to discover and analyse odd phenomena of
historical natural languages. This makes difficult to adapt existing NLP models
and tools on the humanities, discouraging any effort in that direction.

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 371–382, 2008.
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Yet, a fruitful interaction between the two areas is possible. For example,
researchers in the humanities could easily contribute in NLP whenever an odd
phenomenon for an old grammar/lexicon is covered, by including its model in
an existing NLP architecture. In turn, researchers in NLP could leverage these
models, to customize the architecture to the particular language. In this frame-
work, the first step to be done is to evaluate how far modern NLP machineries
are from achieving good performance over ancient texts.

In this paper, we want to address the above issue, by studying the performance
of basic NLP tools and resources (namely a standard dictionary, a morphological
analyser and a part-of-speech tagger) over an historical language, and across
different time periods and literary movements. Also, we want to verify whether
or not simple customization techniques can help in achieving better performance
over the ancient texts. We focus our attention on the Italian language, which
for its lexical richness and its comparatively old story (the first forms of Italian
date from the 10th century) represents an exemplar test set.

The paper is organised as follows. Section 2 describes work related to our
investigation. In Section 3, we introduce the NLP resources we tested in our
study, namely a syntactic parser and a dictionary of contemporary Italian. Sec-
tion 4 describes the corpus of the ancient Italian texts we adopted as a test set.
Section 5 reports and comments on the results of our experiments. Finally, in
Section 6 we present possible future works to improve resource performance.

2 Related Work

Studies on the portability of NLP tools and resources to historical languages is
still fairly limited. Rocio et al. [3] applied a standard grammar for contemporary
Portuguese to automatically parse Medieval Portuguese, along with a specific
lexical analyser to extend the coverage of the lexicon on ancient words. The
good results demonstrated that partial parsing of ancient Portuguese texts is
feasible by relying on tools for contemporary languages. Britto et al. [4] used a
PoS-tagger similar to the Brill tagger [5], trained on a corpus of 130,000 manually
annotated words, to annotate 25 of the 52 texts (2 million words) contained in
Tycho Brahe corpus for Historical Portuguese. They obtained a precision of
95.45%, four points below standard performance on contemporary languages.
More recently, Moon and Baldridge [2] proposed a semi-automatic approach to
induce a PoS-tagger for Middle English from material taken from Present-Day
English, lavereging bilingual boostrapping techniques [6], achieving an accuracy
on the low 80ies. All these works seem to indicate that, in order to successfully
use NLP tools on ancient texts, major adaptations on the lexicon and at other
levels are needed. We are here interested to verify this hypothesis, in particular
for a Romance language as Italian.

More widely, as regards electronic resources for historical texts, great efforts
have been spent in recent years to create manually annotated corpora with
lemma, morphological and part-of-speech information. Major examples are the
Penn-Helsinki Parsed Corpus of Middle English [7] containing 1.5 million words
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in the period 1100-1500; the Corpus of Early Modern English [8] of 1.8 million
words extracted from text of different type in the period 1500-1710; and the
York-Toronto-Helsinki Parsed Corpus of Old English Prose [9], consisting of 1.5
million words. Resources also exists for other languages, such as Early New High
German and Latin.

As for Italian, the Opera del Vocabolario Italiano1 is manually building TLIO
[10], a dictionary for ancient Italian, from the 9th to the 14th century, currently
containing 18,000 entries, extracted from 1,960 literary works. The dictionary
builds up on a corpus of around 3.5 million lemmatized and morphologically
annotated tokens. The related query software Gattoweb is today one of the most
used automatic tools for Italian philology, allowing to carry out keyword searches
and KWIC over the corpus. Finally, the Corpus Taurinense [11] consists of 21
Italian texts from the 13th century (260,000 tokens), lemmatized, morphologi-
cally annotated and PoS-tagged in the EAGLES/ISLE format.

Unfortunately, so far there have been no significant researches explicitly ded-
icated to the development or customization of NLP tools for historical Italian,
except some exploratory attempts using statistical methods reported in [12],
where machine learning techniques have been used to semantically annotate the
Italian novel “Gli indifferenti”. NLP tools for contemporary Italian, including
the Chaos parser [13] adopted in our study, are instead of great interest for the
Italian NLP community, as demonstrated by Evalita2, an evaluation campaign
of Italian NLP tools.

3 Contemporary Italian Dictionary and Parser for NLP

In this section we describe the two resources that are evaluated on the historical
Italian texts. In Section 3.1 we shortly introduce the dictionary, while in Section
3.2 we describe Chaos, a syntactic parser for Italian.

3.1 Dictionary

The recognition of syntactic and morphological classes of words is one of the most
important tasks in sentence interpretation. Even apparently monolithic syntactic
parsers (e.g., [14,15]) perform part-of-speech tagging with specific models. For
most part-of-speech taggers, one of the main problem is the treatment of un-
known words. Morpho-syntactic lexicons are then one of the most important re-
sources for the overall syntactic analysis. In romance languages morpho-syntactic
lexicons are even more central. Unlike in English, in these languages each lemma
may have a large number of forms. Simple stemming techniques cannot solve the
problem, as forms of the same lemma can be very different. For example, the
Italian form “aiuterebbe” (English: “may help”) and “aiuta” (“helps”) are two
forms of the same lemma “aiutare” (“to help”).

1 http://www.ovi.cnr.it/
2 http://evalita.itc.it/
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In our study we derive the dictionary from two morpho-syntactic lexicons
included in the Chaos architecture: a manually-built generative morphology lex-
icon, and a corpus-induced lexicon.

Table 1. Italian morpho-syntatic lexicons

Generative morphology lexicon
#

roots nouns 10,658
verbs 5,104
adjectives 5,288

forms nouns 16,567
verbs 84,610
adjectives 11,644

Corpus-induced lexicon
#

forms 12,132

Generative morphology lexicon: This manually-built lexicon (see Table 1)
includes ca. 22,000 lemmas: 10,658 nouns, 5,288 adjectives, 5,104 verbs, and
other classes. Dictionary entries are organised as feature structures containing
syntactic information and morphological information, specifying gender, number,
person, tense, and mood. The generative lexicon produces 73,838 different forms,
with an average ambiguity of 1.55. We included all the produced entries in our
dictionary.

Corpus-induced lexicon: This lexicon has been built over a collection of arti-
cles of the Italian financial newspaper Il Sole 24 Ore and contains 12,132 words
with an average ambiguity of 1.06. To find the interpretation of unknown words,
we used a transformational part-of-speech tagger learner [5] producing 181 rules.
Rules consist in a triggering condition and an emitted part-of-speech tag. For
example, the rule hassuf(ato) → VNP, indicates that a word with the suffix
-ato is likely to be a VNP – i.e. a verb in the past particle. Typical interpre-
tations produced by this lexicon are impoverished compared to the generative
morphology lexicon, as they include only the part-of-speech class information.

3.2 The Chaos Parser

Chaos [13] is a robust modular constituent-dependency parser for Italian, pro-
ducing partial and possibly ambiguous syntactic analysis. In our study, we use
the following module cascade: a tokenizer, matching words from character
streams; a yellow page look-up module that matches named entities existing in
catalogues; a morphological analyser that attaches (possibly ambiguous) syntac-
tic categories and morphological interpretations to each word; a named entity
matcher that recognizes complex named entities according to special purpose
grammars; a rule-based part-of-speech tagger ; a PoS disambiguation module that
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resolves potential conflicts among the results of the PoS tagger and the morpho-
logical analyser. Chaos also includes a syntactic parser based on modularisation
and lexicalisation, whose study is not included in this paper.

We hereafter describe more in depth the morphological analyser M and the
part-of-speech tagger POS, and their mutual interactions. Assume that s =
t1 . . . tn is a tokenized sentence where ti is a generic token. As a first step, Chaos
activates the morphological analyser. The analyser is a function that works on
tokens: given t, it produces the set of interpretations M(t) = I that t has in
the dictionary. These interpretations are considered unordered – i.e. the first
interpretation is not necessarily the most plausible. Interpretations correspond
to those described in the previous section. In a second step, the part-of-speech
tagger is applied, by working on the whole sentence. Given a tokenized sentence
s = t1 . . . tn, it produces a sequence of PoS-tags POS(s) = pos1...posn. At the
end, for each token ti there exists a unique interpretation posi. In a last step,
the information from the PoS tagger and from the morphological analyser are
harmonised. Given a token ti in a sentence s, the preferred interpretation is the
l ∈ M(ti) that is compliant with the PoS tag posi.

For example, consider the sentence “the boat sinks”. The morphological anal-
yser produces the following interpretations for the token sinks : M(sinks) =
I3 ={[lemma:sink,type:noun],[lemma:sink,type:verb]}. The PoS tagger, after
analysing the overall sentence, assigns the PoS-tag pos3 = V erb to the token
t3. In the last step, the interpretations in I3 are reduced to those compliant with
pos3, i.e. I ′3 ={[lemma:sink,type:verb]}. However, the PoS tagger is not a word
sense disambiguator. Homograph forms with the same PoS (e.g., the noun bank
as institution or river bank) are not disambiguated at this stage.

4 A Corpus of Historical Italian Texts

Our corpus of historical Italian texts is composed of 14 major Italian literary
works, listed in Table 2.3 We chose texts ranging across different time peri-
ods, literary movements, and genres, so that each of them could be somehow
representative of a specific style. This allows to specifically evaluate the tools
on movements, instead of generally on ancient Italian (though it must be clear
that by studying a single piece it is possible to draw only indicative conclusions
on a movement). The overall time range encompasses almost 700 year, starting
with one of the first examples of written Italian (the Rime by the Scuola Si-
ciliana), to a late work of the 19th century. It is here important to stress that
by choosing such a different range of works, our goal is to give a very coarse-
grained exploratory evaluation of the dictionary and the parser on different time
periods, in order to investigate their applicability across time. However, we do
not aim to draw final conclusions on the issue, which would require a much
larger corpus of works. Also, we will not look in depth into philological expla-
nations, as this should be left to an analysis requiring expertise in romance
philology.
3 All works are available in XML-TEI format at: www.bibliotecaitaliana.it
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Table 2. Corpus of historical Italian texts adopted in the experiments

Author Work Year Genre Movement
Scuola Siciliana Rime 1200 poetry origins
Guido Cavalcanti Rime 1275 poetry Stilnovo
Giovanni Boccaccio Decameron 1300 prose
Dante Alighieri Divina Commedia 1321 poetry
Francesco Petrarca Canzoniere 1348 poetry
Lorenzo De’Medici Canzoniere 1475 poetry Renaissance
Ludovico Ariosto Orlando Furioso 1532 poetry Renaissance
Galileo Galilei Dialogo sopra i due massimi sistemi 1632 prose Baroque
G. Battista Basile Le muse napolitane 1635 poetry Baroque
Giuseppe Parini Odi 1790 poetry Illuminism
Vincenzo Monti Poesie 1800 poetry Neo-Classicism
Ugo Foscolo Ultime lettere di Jacopo Ortis 1802 prose Neo-Classicism
Vittorio Alfieri Vita 1803 prose Illuminism
Giovanni Verga I Malavoglia 1881 prose Verism

5 Resource Evaluation

In this section, we present an empirical evaluation of the dictionary and the
parser on the corpus of ancient Italian works presented in Section 4.

5.1 Experimental Setup

We implement two different evaluation tasks: one to check the dictionary cover-
age; one to evaluate the Chaos morphological analyser and part-of-speech tagger
accuracies. For the first evaluation task, we extract from the XML files all to-
kens – i.e. lists of characters separated by space and punctuation. From the
collected tokens we derive a list of unique words (tokens without repetitions).
Finally, for each word we check if there is an entry in the dictionary. We evaluate
the dictionary coverage as the number of unique words in a literary work which
have at least an entry in the dictionary.

For the second evaluation task we build a gold standard dataset over which
to compute Chaos accuracies. The gold standard consists of a random sample of
42 sentences (3 for each work), manually annotated by two human experts. The
annotators were asked to select for each word in the sentence, the correct mor-
phological and part-of-speech classes. In case of ambiguity, the class that fits the
contexts was chosen. We computed inter-annotator agreement over 3 sentences
randomly extracted from the corpus, in order to assess the reliability of the gold
standard. We obtained a Kappa value agreement of 0.87 for morphology and 0.63
for part-of-speech, corresponding respectively to almost perfect and substantial
agreement. The accuracy of the tools has been computed as the percentage of
correct predictions over the gold standard.

In both tasks we compare the performance of the tools on the ancient texts
with the performance obtained on a contemporary Italian text, namely an
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Table 3. Coverage of the modern dictionary; accuracy of the morphological analyser;
and accuracy of PoS-tagger over different works

Author # Words Dict. coverage morpho accuracy PoS accuracy
Scuola Siciliana 8,751 2,387 27,3% 0.48 0.54
Guido Cavalcanti 1,978 941 47,6% 0.66 0.73
Giovanni Boccaccio 18,785 6,736 35,8% 0.74 0.90
Dante Alighieri 12,610 5,136 40,7% 0.72 0.75
Francesco Petrarca 6,946 3,094 44,5% 0.69 0.71
Lorenzo De’Medici 3,805 2,068 54,3% 0.83 0.81
Ludovico Ariosto 20,120 6,889 34,2% 0.62 0.68
Galileo Galilei 13,027 6,674 51,2% 0.77 0.77
G. Battista Basile 5,411 1,077 19,9% 0.52 0.56
Giuseppe Parini 4,030 2,250 55,8% 0.73 0.79
Vincenzo Monti 5,050 2,625 52,0% 0.74 0.84
Ugo Foscolo 8,567 4,610 53,8% 0.69 0.76
Vittorio Alfieri 13,277 6,627 49,9% 0.72 0.77
Giovanni Verga 8,250 4,019 48,7% 0.68 0.68

La Repubblica 16.520 10.328 62.5% 0.91 0.97

excerpt of the Italian newspaper La Repubblica. Such an evaluation will ac-
count for the portability of the tools – i.e. if there is a performance gap between
historical and contemporary Italian.

5.2 Results

Results are reported in Table 3. Hereafter, we present both a quantitative analysis
and a coarse-grained qualitative study of the results.

Quantitative Analysis. All ancient works show performance significantly
lower than La Repubblica. Specifically, the average dictionary coverage on an-
cient works is 0.44, about 19% less than La Repubblica. The highest ancient work
coverage is 0.56, still 7% less than the newspaper. Similar results are obtained
for the Chaos’ morphological analyser and PoS tagger, for which the average
accuracies on ancient works are respectively 22% and 24% below La Repubblica.

The coverage of the dictionary is in general low. Regarding La Repubblica, this
is due to the fact that the dictionary does not include proper nouns (which are
clearly very common in newspapers) and modern foreign words (which are more
and more present in contemporary Italian). Ancient texts present a much lower
number of proper nouns, and no foreign words: in this case, the low performance
are then completely due to the ancient lexicon.

The accuracy of the parser for La Repubblica is very high, somehow contrasting
the above evidence on the dictionary. This indicates that the morphological
analyser and the PoS-tagger successfully interact to find the correct analysis of
words which are not present in the dictionary, by relying on the Pos-tagging
rules encoded in the parser. For example the word “logo” is not present in the
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dictionary, but is still correctly recognized as a common noun by using contextual
and morpho-derivational rules.

Parser accuracy over the ancient works is by contrast low, confirming the
trend of the dictionary coverage. This suggests that PoS-tagging rules valid
for contemporary Italian, cannot be straightforwardly applied to ancient texts.
For example, given the fragment “...d’amare domandassen pietanza” (English:
“...would ask mercy for loving”) (from Rime della Scuola Siciliana), the parser
wrongly assigns the tag common noun to “domandassen”, because the word is
not present in the dictionary, and then the parser backs-up to a PoS-tagging
rule which states that a word following a transitive verb (“amare”, love) must
be a noun. Unfortunately, while this stands in general for contemporary Italian,
it does not apply to many ancient examples.

Overall results support our initial claim that the dictionary and the Chaos
parser for contemporary Italian are insufficient for the analysis of ancient texts,
as there exists a significant gap in dictionary coverage between contemporary
and ancient texts. PoS taggers cannot easily recover this gap. Default classifica-
tion rules for unknown words learnt for contemporary Italian generally fail when
used for historical Italian. We believe that this claim can be safely extended
in general to all dictionaries and parsers for contemporary Italian. Indeed, our
claim is in line with similar works for other historical languages. For example, Ri-
cio et al. [3] show that the lexicons of Medieval and Contemporary Portuguese
are substantially different, heavily impacting on parsing performance, despite
the fact that the two grammars are quite similar. Also, Moon and Baldridge
[2] prove that a straightforward application of parsers for contemporary En-
glish cannot be effective on Middle English, without applying strong adaptation
strategies.

Diachronic/Synchronic Analysis. We were somehow surprised that there
seem to be no correlation between genres and coverage, suggesting that poetry
is not more complex than prose, at least from a lexicon perspective. Also, there
is no correlation between performance and literary movements (one could expect
that works of the same movement have stylistic similarities and by consequence
similar performance).

Yet, as expected, there is a fairly high correlation between the age of the work
and tools’ performance: ancient works tend to have lower coverage than more
recent ones. An exception to this trend is Le Muse Napolitane, which overall
shows the lowest coverage, 19.9%. This is due to the fact that it is written in a
dialect, whose lexicon contains many words which are not standard Italian.

The most ancient work is the Rime by the Scuola Siciliana, a collection of
poetries of different Sicilian authors from the 13th century. The language of the
Scuola is characterized by a richness in both quality and quantity. Indeed, these
poets used to mix and assimilate different regional dialects, Latin, Langue d’Oc
and Langue d’Oil. The result is a lexicon rich of different influences and forms,
which is very distant from contemporary Italian. The performance of the tools
are in facts very low: the dictionary covers only 27% of words, while the parser
has accuracies close to 50%.
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The following work, the Rime by Guido Cavalcanti, signals an important
change in the Italian language, which in that time was evolving strongly towards
the contemporary form. In the late 13th century the literary movement called
Dolce Stil Nuovo put the basis for modern Italian, by importing substantial
changes in the language phonology and morphology. This is why the performance
of the tools on the Scuola Siciliana are so low if compared to all later works. For
example, in the Scuola Siciliana we still find expressions derived from Latin such
as “flamma”, “plaser” and “dovero”’, which in Cavalcanti are already changed
in the contemporary Italian variants “fiamma”, “piacere”, and “dovro”’.

As for the 14th century, Dante Aligheri, Francesco Petrarca and Giovanni
Boccaccio represent the final achievement of a strong and stable Italian linguistic
system. The performance obtained by our tools are here difficult to explain with
a coarse-grained analysis. Yet, what is interesting to notice is that the dictionary
coverage is lower for Boccaccio, probably because of the extensive use of dialectal
expressions to describe everyday life, that are today disused. The higher coverage
on Petrarca can be justified by the fact that he tended to use a short and stable
lexicon, without any concession to dialectal expressions and neologisms. This
also explains why coverage on Dante is in between the other two authors. Dante,
especially in the Divina Commedia, tended to introduce many neologisms, which
today are in part lost and in part accepted.

The variable performance on the works from the Renaissance period (Orlando
Furioso by Ludovico Ariosto and Canzoniere by Lorenzo de’Medici) reveal that
there is no high consistency in the tools’ performance among works of the same
movement. Both the dictionary and the parser show much better results for the
latter work than for the former. This supports the observation that it is not
possible to draw conclusions on the applicability of tools for automatic analysis
even on works of the same literary movement. A closer look at the two works
reveals that the lexicons used by the two authors are very different. From the one
side, the Orlando Furioso (edition 1532) was mainly written to address the taste
of the overall Italian audience, and its vocabulary is then very tied to the Italian
language of the 16th century, which was highly influenced by the old Latin and
Greek languages. Indeed, the poem contains common content words such “haver”
(contemporary Italian “avere”, English “to have”) and “huom” (contemporary
Italian “uomo”, English “man”) which today are disused, and which are a direct
derivation of Latin (respectively “habeo” and “homo”). On the contrary, the
vocabulary used by Lorenzo De’Medici appears closer to contemporary Italian.
A possible explanation is that one of the goal of Lorenzo was to disseminate the
use of the “Fiorentino” dialect, which is the base of contemporary Italian, and
that was in contrast with the tendency of that period.

A similar observation stands for the Baroque period, where we find two works
(the Dialogo by Galileo and the Muse by Giovan Battista Basile) which highly
differ from a lexical perspective. Indeed, the latter is a collection of dialectal
poetries, which are distant from standard Italian. The former is a prose work
whose main intent was to disseminate a scientific theory to the largest audi-
ence possible. It then sticks to the spoken language of the 17th century, that
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Fig. 1. Incorrect analysis of historical Italian (Sa) and correct analysis of contemporary
Italian (Sm)

had consistently changed from the Italian of the 16th century, toward a form
which is much more similar to contemporary Italian. This also explains why the
performance over the Dialogo are much higher than over the Orlando Furioso.

More difficult is to follow the development of the Italian language in later
periods, as different influences and movements start to merge together. A coher-
ent analysis of the works from the Illuminism on (18th-19th century) would then
require a deeper philological investigation, which is out of the scope of this work.
We here only notice that in average the performance tend to increase with time,
with the only exception of the latest work (“I Malavoglia”), whose performance
are lower, due to the presence of many dialectal dialogs.

Reported results show that the accuracy of the tools is too low on historical
Italian. This would strongly affect the overall syntactic analysis produced by the
parser, because an incorrect PoS tagging has negative effects on the subsequent
phase of the parsing process. For example, Fig. 1 reports the syntactic analysis
for the ancient sentence Sa = “chi ha bone auricchie ’ntenna”, and the corre-
sponding contemporary sentence Sm = “chi ha buone orecchie intenda” (English:
“if you have good ears try to listen”). Sa and Sm have a similar grammatical
structure. Yet, the fact that words are different leads to a completely different
analysis. The analysis for sentence Sa is incorrect, while the analysis for Sm is
more correct. The main problem in the analysis of Sa is the morpho-syntactic
lexicon. Words such as “bone” (English: “good”), “auricchie” (English: “ears”),
and “ntenna” (English: “*try to listen”) are not contained in the contemporary
Italian lexicon. Two of them receive an incorrect part-of-speech tag: common
noun (NC) instead of adjective (AGP) and common noun (NC) instead of verb
(VFI). This is due to the fact that the PoS-tagger gives the noun tag (NC) as
first hypothesis for unknown words. These type of errors completely mislead the
syntactic analysis, as the figure shows.
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6 Enhancing Resources for Ancient Italian

The previous section showed that the dictionary coverage and the accuracy of the
morphological analyser and of the PoS-tagger are too low on historical Italian,
thus strongly affecting the overall analysis produced by the parser. Hereafter,
we propose some possible solutions to this problem, to improve the portability
of the tools to historical Italian.
Manually build a lexicon for each period. This would be the most effective,
but more costly solution, as the annotation should be carried out independently
on every time period or literary movement having a definite lexicon. Previous
similar experiences suggest that the effort is not feasible in a short time: for
example, up to now and after more than 10 years of work, the TLIO dictionary
contains lemmas only for the letters A B C D E, with a projected time to market
of almost 50 years.
Leverage manually annotated corpora. A morpho-syntactically annotated
corpus of historical Italian texts could be used to train reliable corpus-induced
lexicons and PoS-taggers, as done in [4]. This solution is much more feasible
than the previous one. Indeed, previous studies for contemporary and historical
languages indicate that small sized corpora are sufficient to learn reliable NLP
models. In this setting, active learning techniques could be highly valuable, as
they allow to achieve a good compromise between accuracy and annotation effort.
Adapt existing models. A third viable solution consists in adapting current
models for contemporary Italian, without going through a new learning phase
and costly annotations. Rocio et al. [3] show for example that a simple lexical
analyzer can turn a lexicon of contemporary Portuguese into a reliable lexicon
for Medieval Portuguese, by using simple inflection rules. A similar approach
could be used for historical Italian, lavereging adaptation rules for capturing
morphological variations, such as : -are → -ar, to map “amare” and “amar”.
Another adaptation strategy could rely on simple heuristic string matching
functions. In facts, many contemporary words are small variations of ancient
words – e.g. “orecchio” is adapted from “auricchio”. One of the best way of
capturing these type of variations is using the Levensthein edit distance. We
experimented such an approach on a dataset of 200 forms randomly extracted
from the ancient Italian corpus (ca. 20 forms from each text). We obtained a
coverage of 0.478 and an accuracy of 0.345.4 Results indicate that string match-
ing contributes to the task to some extent (it finds a good mapping for almost
half ancient words), but at the cost of introducing potential noise (ancient words
are often mapped to wrong entries in the dictionary).

As a future work, we will explore in particular the second and the third solu-
tions. Also, we will measure the parser and dictionary performance over larger
4 Given an ancient word w, we say that the Levensthein function covers the word if

it finds the correct corresponding word(s) in the contemporary dictionary. Coverage
is then defined as the percentage of ancient words which are covered, over the total
number of words in the dataset. Accuracy is defined as the percentage of correct
corresponding words over the dataset.
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corpora, as the TLIO and the Corpus Taurinense, and investigate the perfor-
mance of the whole parser chain, including a full syntactic analysis. Finally, we
will activate collaborations with philologists, with the further goal of formalizng
grammatical and lexical models for ancient Italian, and for studying a possible
implementation of NLP-based tools for philological studies.

References

1. TEIconsortium: TEI P5: Guidelines for Electronic Text Encoding and Interchange.
TEI Consortium (2005)

2. Moon, T., Baldridge, J.: Part-of-speech tagging for middle English through align-
ment and projection of parallel diachronic texts. In: Proceedings of the 2007 Joint-
Conference on Empirical Methods in Natural Language Processing and Computa-
tionalNatural Language Learning (EMNLP-CoNLL), pp. 390–399 (2007)

3. Rocio, V., Alves, M.A., Lopes, J.G.P., Xavier, M.F., Vicente, G.: Automated cre-
ation of a partially syntactially annotated corpus of medieval portuguese using
contemporary portuguese resources. In: Proceedings of the ATALA workshop on
Treebanks, Paris, France (1999)

4. Britto, H., Finger, M., Galves, C.: Computational and linguistic aspects of the
construction of the Tycho Brahe Parsed Corpus of Historical Portuguese. Gunter
Narr Verlag, Tubingen (2002)

5. Brill, E.: Transformation-based error-driven learning and natural language pro-
cessing: A case study in part of speech tagging. Computational Linguistics 21(4)
(1995)

6. Yarowsky, D., Ngai, G.: Inducing multilingual pos taggers and np bracketers via
robust projection across aligned corpora. In: Proceedings of NAACL 2001: Second
meeting of the North American Chapter of the Association for Computational
Linguistics on Language technologies, Morristown, NJ, pp. 1–8 (2001)

7. Kroch, A., Taylor, A.: Penn-helsinki parsed corpus of middle english (2000)
8. Kroch, A., Santorini, B., Delfs, L.: Penn-helsinki parsed corpus of early modern

english (2004)
9. Taylor, A., Warner, A., Pintzuk, S., Beths, F.: The york-toronto-helsinki parsed

corpus of old english prose (2003)
10. Pollidori, V., Larson, P.: Il Tesoro della Lingua Italiana delle Origini(TLIO): il

progetto lessicograco e i suoi risultati attuali. Franco Cesati Editore, Dordrecht,
Germany (2005)

11. Barbera, Manuel Barbera, C.M., Marello, C.: Corpus Taurinense: italiano antico
annotato in modo nuovo. Bulzoni Editore, Roma, Dordrecht, Germany (2003)

12. Basili, R., Di Stefano, A., Gigliucci, R., Moschitti, A., Pennacchiotti, M.: Auto-
matic analysis and annotation of literary texts. In: Wokshop on Cultural Heritage,
9th AIIA Conference, Milan, Italy (2005)

13. Basili, R., Zanzotto, F.M.: Parsing engineering and empirical robustness. Natural
Language Engineering 8/2-3 (2002)

14. Collins, M.: Head-driven statistical models for natural language parsing. Compu-
tational Linguistics 29(4) (December 2003)

15. Charniak, C.: A maximum-entropy-inspired parser. In: NAACL, Seattle, Washing-
ton (2000)



A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 383–392, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Statistical Surface Realisation of 
Portuguese Referring Expressions 

Daniel Bastos Pereira and Ivandré Paraboni 

Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (EACH / USP) 
Av.Arlindo Bettio, 1000 - 03828-000, São Paulo, Brazil 

{daniel.bastos,ivandre}@usp.br 

Abstract. Natural Language Generation systems usually require substantial 
knowledge about the structure of the target language in order to perform the fi-
nal task in the generation process – the mapping from semantic representation 
to text known as surface realisation. Designing knowledge bases of this kind, 
typically represented as sets of grammar rules, may however become a costly, 
labour-intensive enterprise. In this work we take a statistical approach to sur-
face realisation in which no linguistic knowledge is hard-coded, but rather 
trained automatically from large corpora. Results of a small experiment in the 
generation of referring expressions show significant levels of similarity between 
our (computer-generated) text and those produced by humans, besides the usual 
benefits commonly associated with statistical NLP such as low development 
costs, domain- and language-independency. 

1   Introduction 

Natural Language Generation (NLG) systems – which produce textual descriptions 
from usually non-linguistic input data - come to play when simple, 'canned' text is not 
sufficient, that is, when greater (i.e., closer to human performance) linguistic variation 
is required1. Designing a complete NLG system is a multidisciplinary, large-scale 
enterprise, often borrowing from fields such as Artificial Intelligence, Psycholinguis-
tics and many others. In its simplest form, a typical NLG system can be viewed as a 
three-stage pipelined architecture as in Figure 1 adapted from [8]: 

Starting from a high-level communicative goal of providing a textual description of 
a domain entity identified as ‘john’, the system builds up a plan to represent the input 
data. The plan is successively refined up to the point in which a mapping from seman-
tic representation to text is drawn. This final conversion step, known as surface reali-
sation, is the focus of the present work. 

Surface realisation requires substantial knowledge about the structure of the target 
language, usually represented as a set of grammar rules or other linguistic constraints. 
 

                                                           
1 For example, the STOP system [7] produces tailor-made smoking-cessation letters based on 

an input questionnaire filled out by the smoker, including her habits, concerns, previous at-
tempts to quit, health problems etc. 
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Fig. 1. The pipelined NLG architecture proposed in [8] 

Designing a knowledge base of this kind may however be a costly, labour-intensive 
enterprise, which may be even harder for relatively (NLP-wise) resource-poor lan-
guages such as Brazilian Portuguese. Difficulties become even greater if we consider 
the case of multilingual applications, in which the resources for each of the languages 
involved would have to be built from scratch using expertise knowledge, and yet 
requiring periodical revisions as language use evolves. 

As an alternative to this more traditional approach, we intend to develop a surface 
realisation component solely based on n-gram statistics, i.e., with no hard-coded lin-
guistic knowledge. In doing so, we shall limit ourselves to the task of referring ex-
pressions surface realisation in the form of noun phrases (NPs.) Although it may look 
as if we were addressing a somewhat smaller or ‘toy’ problem if compared to e.g., the 
surface realisation of complete sentences in the form subject-NP + verb + object-NP, 
we will argue that this is not the case. 

The remainder of this paper is structured as follows. Section 2 discusses the prob-
lem at hand, namely, the realisation of referring expressions as Portuguese text. Sec-
tion 3 proposes a simple mapping from semantic properties to text units. Section 4 
describes the statistical approach used in our work. Section 5 presents the results of a 
small evaluation experiment, and Section 6 summarizes our efforts so far. 

2   Background 

The generation of referring expressions is a critical subtasks in the NLG system, 
comprising content determination (choice between pronouns, definite descriptions etc, 
and in the latter the choice of semantic properties to be realised as text) and surface 
realisation proper. In this work we focus on the surface realisation of definite and 
indefinite descriptions, taking as input a semantic representation of the description to 
be generated, and producing output text in a target language.  

As our input data, we use instances of descriptions taken from the TUNA corpus 
[4,9], a database of situations of reference collected primarily for the study of refer-
ence phenomena and referring expressions generation algorithms. Each of these  
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situations consists of a target object (i.e., the intended referent), a number of distrac-
tors with their corresponding semantic properties (represented as attribute-value 
pairs), and a description of the target object. The descriptions were produced by 45 
native or fluent speakers of English, participants of a controlled experiment with the 
sole purpose of identifying each intended referent2. 

We will initially focus on a small subset of TUNA descriptions originally distrib-
uted as training data for the GRE-2007 challenge3, consisting of a collection of 239 
descriptions in the Furniture domain4. The referents in this domain are pieces of furni-
ture (sofas, desks etc.) of different sizes and colours, presented in a 3 x 5 grid so that 
their position within the grid was a likely referable attribute as well. The following 
Table 1 summarizes the existing attributes and their possible values. 

Table 1. Attributes and their possible values in TUNA Furniture domain [9] 

Attributes Values 
Type chair, sofa, desk, fan 
Colour blue, red, green gray 
Orientation forward, backward, leftward, rightward 
Size small, large 
x-dimension 1-5 (columns) 
y-dimension 1-3 (rows) 

 
TUNA descriptions are represented as uniquely identifying sets containing from 1 

to 6 semantic properties (on average 3.03 properties per descriptions in our data set.) 
although most cases (95% in our data set) ranged from 2 to 4 properties. The follow-
ing Table 2 shows the distribution of descriptions in the GRE-2007 training data ac-
cording to the number of properties that they conveyed. 

Table 2. Distribution of descriptions according to the number of properties in the Furniture 
domain 

Properties % of descriptions 
1 3 % 
2 21 % 
3 48 % 
4 26 % 
5 1 % 
6 1 % 

 
Each individual property is an attribute-value pair as in <NAME="type" 

VALUE="chair">. The following is an example of one such description, which could 
be realised as “the large red chair, in the second column on the top”. 

                                                           
2 As opposed to, e.g., generating descriptions to achieve intentional goals [11]. 
3 http://www.csd.abdn.ac.uk/research/evaluation/ 
4 We are currently extending our work to cover instances of reference in the People domain 

(representing descriptions of photographs of people) also included in the TUNA corpus. 
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Example 1. Semantic representation of a description in TUNA [9] 

<DESCRIPTION> 
  <ATTRIBUTE ID="a295" NAME="size" VALUE="large" />  
  <ATTRIBUTE ID="a296" NAME="colour" VALUE="red" />  
  <ATTRIBUTE ID="a297" NAME="type" VALUE="chair" />  
  <ATTRIBUTE ID="a299" NAME="y-dimension" VALUE="1" />  
  <ATTRIBUTE ID="a301" NAME="x-dimension" VALUE="2" />  
</DESCRIPTION> 

 
Our goal is to produce a textual description (in Portuguese) from the above seman-

tic representation that should ideally be as close as possible to human performance. 
Additionally, we intend to do so without having to write – at least in this initial stage - 
linguistically-motivated rules or natural language grammars.  

Given that the attribute sets are the only portion of the TUNA corpus that is rele-
vant to the present discussion (i.e., we disregard both target and distractors informa-
tion entirely), one may ask why we use TUNA descriptions at all, as opposed to e.g., 
random sets of semantic properties. The reason is twofold: first, TUNA descriptions 
are produced by humans, conveying valid combinations of properties that tend to co-
occur in real language use. Second, in a more recent version of the GRE challenge 
data, descriptions are accompanied by the corresponding strings originally uttered (in 
English) by the participants of each trial. In our view this data set may be useful for 
evaluation purposes as we will discuss in Section 5. 

3   Mapping Attribute-Value Pairs into Phrases 

Our surface realisation approach requires evidence of the possible phrases that each 
semantic property may relate to. For example, the property <NAME="size" VALUE= 
"large"> may be realised as “big”, “large” and so on, or, more dramatically, it may 
for example change in gender and number in a Romance language. Since presently we 
do not intend to write grammar rules, we are not interested in how this mapping is 
actually done - this will be left to be decided by an underlying statistical language 
model. Thus, our initial task is simply to compile a list of possible text realisations 
represented as phrases for each semantic property in the corpus. 

Two independent annotators started by producing individual lists of the most likely 
phrases that could possibly be associated with every attribute–value pair in the corpus. 
To prevent combinatory explosion (discussed in the next Section) we limited the word 
choices when there was no structural difference among the alternatives. For example, 
the property <NAME="orientation" VALUE="left"> would be mapped to both 
“facing left” and “turned to the left”, but it would be irrelevant for the present pur-
poses to include an additional mapping to, say, “orientated to the left”5. 

Since at this initial stage we are only considering 1-to-n relations, the mapping an-
notation was straightforward. More complex (m-to-n) cases – those in which two or 
more properties may combine to form a single text unit (e.g., the properties of being 
human, young and male may be realised simply as “a young man” or even as “a boy”) 
- are rare in the Furniture domain and will be discussed elsewhere. 
                                                           
5 The examples were kept in English for presentation purposes and do not correspond to literal 

translations of the original Portuguese phrases that we have annotated. 
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Once the annotation task was accomplished, both lists were compared against each 
other and merged for completeness. The resulting list consisted of the set of 22 possi-
ble properties mapped into 41 phrases, including mainly prepositional (e.g., “facing 
backwards”), adjectival (e.g., “red”) and noun phrases (e.g., “chair”) with their possi-
ble gender and number variations. This data set - a valuable and potentially reusable 
output of this work in its own right - is the closest we intend to get to explicit knowl-
edge representation at this stage. 

The next step was to decide which and how phrases should be combined to form an 
output string. Since we do not intend to encode this kind of (linguistic) knowledge, we 
take an over-generation approach as follows. Given a non-linguistic input description 
represented as a list of semantic properties, we compute all possible (unordered) sets of 
phrases in which the description could be realised. For example, a description compris-
ing two semantic properties <NAME="colour" VALUE="red"> and <NAME="type" 
VALUE="chair"> would be associated with two phrase sets: s1={vermelho, cadeira} 
and s2={vermelha, cadeira} to allow for the gender variation of the ‘red’ value in 
Portuguese. Next, we compute all possible permutations of each phrase set (s1 and s2 
in the above example) that matched a pre-defined description template suitable to Por-
tuguese phrase order6, in the form  

<determiner + type + colour + size + orientation + x-dimension + y-dimension>  

once again with gender variation. Thus, the above semantic input would have the 
following four possible realisations, in which only (1) is well-formed. 

Example 2. Possible surface realisations of <NAME="colour" VALUE="red"> <NAME="type" 
VALUE="chair"> as a Portuguese definite description. 

1. A cadeira vermelha. 
2. A cadeira vermelho. 
3. O cadeira vermelha. 
4. O cadeira vermelho. 

It is important to notice that we use phrases – and not words - as our smallest text 
unit, and that even fairly long phrases such as “in the middle column” are to be treated 
as single units. In other words, given that our phrases are pieces of natural language 
provided directly by human annotators and that they should represent ideal word 
sequences, we do not consider permutations within phrases themselves. In fact, any 
attempt to do so would not only be unnecessary, but also prone to undesirable combi-
natory explosion. 

The final step in our surface realisation process is to decide which of these (e.g.,  
1-4 above) alternatives is the most likely output string for the given set of properties. 
As we shall discuss, the selection procedure turns out to be trivially implemented with 
the aid of a statistical language model of Portuguese. 

                                                           
6 Limiting the alternatives to those that match the template is only partially required in our 

approach, and indeed any robust language model should be able to find the most likely phrase 
ordering even without this simple heuristics, which is mainly intended to reduce the number 
of alternatives under consideration.  
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4   Statistical Surface Realisation 

The simple idea that some word sequences are more frequent than others has lead to 
the concept of language modelling that is now widely used in NLP research, from 
parsing to Machine Translation (e.g., [1].) For example, we are more likely to read 
“he bough that book on Chemistry” than “that book on Chemistry he bought”. Thus, a 
statistical language model (which in this example would be a model of the English 
language) can tell us that the first sentence is closer to well-formed English than the 
second, and that the second is still better than some random string, e.g., “bought on 
Chemistry that book he”. 

A statistical language model is a probability distribution P(s) over a set of possible 
sentences s representing how often each individual sentence occurs in the modelled 
language. The most widely-used language models are those based on n-grams, in 
which the probability of a given word in a sentence is determined by the n-1 previous 
words. In a simplified form, we may compute probabilities based on a maximum 
likelihood (ML) estimate with some allowance for unseen instances. For example, in 
a trigram-based model, the maximum likelihood conditional probability PML of a 
word wi given its two predecessors wi-2 and wi-1 in the text is defined as the counting 
(c) of occurrences of the trigram divided by the number of occurrences of its bigram 
constituent: 

PML (wi | wi-2 wi-1 ) =  c (wi-2 wi-1 wi ) 
                              __________________________________ 

                     c (wi-2 wi-1) 
 

This estimator is of course useless if a given instance has not been observed in the 
training data. In order to reserve some probability mass for unseen events (and also to 
improve the model accuracy), a wide variety of smoothing techniques have been pro-
posed. Possibly the oldest of all, the Additive smoothing proposed by Lidstone in 
1920 based on Laplace’s Law [2] simply adds one unit to the observed counts, which 
effectively deals with the problem of data sparseness but generally presents a poor 
performance for allowing too much of the probability space to unseen events [6]. 
More effective estimators include the Good-Turing estimator (GT) [3], usually com-
bining multiple-order models as the Jelinek-Mercer smoothing [5].  

Probability values will be represented as the related measure of cross-entropy, 
which attempts to describe the uncertainty of the model (and hence lower cross-
entropy values are better.) Cross-entropy values can be easily derived from probabil-
ity estimates as follows. Given the probability p(T) of a test set T containing w words, 
the cross-entropy Hp(T) of a particular model on data T is 

Hp (T) = (-1 / w) * log 2 p(T) 

For a thorough review of statistical language models and smoothing techniques we 
report to [2]. Our own work is a straightforward application of these techniques. Given 
a set of all valid strings produced from a non-linguistic description as in Example 2 in 
the previous section, we simply evaluate each string against a statistical language 
model, selecting the most likely output string for the given input. For this purpose, we 
trained a simple bigram language model from the 40-million words in the NILC corpus 
[10] of Brazilian Portuguese using the tool described in [12]. Interestingly, although 
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very representative of Brazilian Portuguese language use, the corpus mainly consists of 
newspaper articles whose descriptions are highly unlikely to resemble those rather 
schematic instances that we expect to produce from the TUNA data (e.g., “the green 
fan facing backwards” etc.). 

5   Results and Evaluation 

For each of the 319 instances of Portuguese descriptions in our data, we followed an 
over-generation strategy to produce the most likely surface realisations according to 
the NILC bigram language model described in the previous section. The resulting set 
of word strings comprises our System descriptions. 

Evaluation proper was carried out by comparing each of the System descriptions to 
their human-produced counterparts, hereby called Reference descriptions. In order to 
build a Reference set, we take advantage of the training data made available with the 
REG-2008 Challenge, which include the actual English descriptions uttered by the 
participants in 319 TUNA trials. More specifically, two independent annotators 
manually produced a Portuguese translation of each of the 319 descriptions and, to 
facilitate agreement,  the translations were also normalized, removing much of the 
noise that naturally occurs in raw data. This included a number of likely errors (e.g., 
“red chair in center red”), meta-attributes (e.g., “first picture on third row”), illegal 
attributes (e.g.., “the grey desk with drawers”), differences in specificity (e.g., “shown 
from the side” as a less specific alternative to both “facing left” and “facing right” 
values) and synonymy (e.g., “facing the viewer” as an alternative to “facing for-
ward”.) Moreover, given that definiteness cannot be worked out from the attribute set 
alone, all indefinite descriptions were changed to definite references. 

Regarding the usefulness of this reference set, there are a number of due observa-
tions: firstly, given the differences between languages, our reference data set is not to 
be viewed as a resource for investigating language use as the original TUNA data set 
is intended to be, but rather as a standard of acceptable performance for a practical 
Portuguese NLG system. Moreover, since the translated descriptions were not pro-
duced in real situations of reference, we are aware that our results are  not directly 
comparable to, e.g., the work carried out in the REG-2008 challenge in the evaluation 
of English descriptions, and that would remain the case even without normalization as 
we discuss later.  

On the other hand, although the result of both translation and normalization tasks is 
a somewhat simplified set of Portuguese descriptions, this is not to say that these de-
scriptions are tailored to match those that we intend to generate. In fact, one of the 
goals in the normalization task was to retain the most appropriate instances of refer-
ence, which included a large number of cases that we are not presently able to produce, 
e.g., those combining the x-dimension and y-dimension attributes in single references 
to corners, as in “in the upper right corner”. We found that referring to a corner in these 
cases was far more appropriate - and indeed much more frequent in the data - than 
what our system will currently produce (e.g., “in the 5th column in the top row”.) 
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Provided our System’s output and the Reference set, we followed the evaluation 
procedure applied in the more recent Referring Expressions Generation Challenge7 
(now called REG-2008) to compute Accuracy and String-edit distance scores for each 
System-Reference pair. Briefly, Accuracy is taken to be the proportion of generated 
string words that appeared in the Reference set, and String-edit distance is the tradi-
tional Levenshtein’s metrics that takes into account the cost of insert, delete and  
substitute operations required to make the generated System string identical to the 
corresponding Reference (a zero distance value indicates a perfect match.) The results 
below were obtained using the teval tool provided by the REG-2008 team8.  

Table 4. Summary of the results of the evaluation experiment 

Evaluation Criteria All 
Accuracy 0.24 

String-edit distance 2.69 

 
Overall, 103 instances (32.3%) of descriptions were incorrectly generated for lack 

of complete gender agreement caused by the fact that our simple bigram-based model 
cannot handle long-distance dependencies appropriately, as in “o sofá grande 
vermelha”, in which the gender agreement between “sofá” and “vermelha” could not 
be established. Although we were presently unable to collect a sufficient large corpus 
of Brazilian Portuguese to improve these results, we believe that this could be easily 
fixed had we used a more expressive language model instead. 

The above Accuracy scores are obviously low, but it should be pointed out that this 
measure, whilst useful in the context of a referring expressions generation competi-
tion, merely counts the number of system descriptions that match the reference set 
word by word. As for the String-edit distance, the present results seem reasonable 
given that our reference set contains descriptions of up to 12 words in length (5.62 on 
average.) More importantly, we found that these low scores were, to a great extent, 
due to a simple difference in word choice: for example, whenever the system chooses 
the word “line” but the reference set happens to use, e.g., “row”, the simple String-
edit measure – which does not account for synonymy – will penalize the system. In 
addition to that, it should be pointed out that this data set included 27 trials conveying 
illegal attributes or values represented in the corpus by the value ‘others’, which 
stands for any property expressed by the participant outside the scope of the experi-
ment and which could not be expected to be realised by our system.  

One striking difference between the system descriptions set and the reference set 
was the word order of (Brazilian) Portuguese adjectives. To our surprise, it is not 
clear in which order attributes such as colour and size should be realised in Brazilian 
Portuguese. For example, “a large red table” could be realised either as type + colour 
+ size (e.g., “a mesa vermelha, grande” ) or as type + size + colour (e.g., “a mesa 
grande, vermelha”.) As both alternatives seem equally acceptable, the choice may 

                                                           
7 http://www.nltg.brighton.ac.uk/research/reg08 
8 At the time of writing we are carrying out a similar evaluation procedure using the REG-2008 

development data set for the generation of definite descriptions in both Furniture and People 
domains, whose results will be discussed elsewhere.  
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depend on which property contrasts each of the distractors in the situation of refer-
ence. Whilst the present ambiguity probably reveals a weakness in our artificially-
built reference set, it may also suggest that a much more sophisticated approach to 
Portuguese realisation is called-for, especially if compared to the generation of Eng-
lish descriptions, whose word order seems fairly standard. Further investigation on 
this issue is clearly required. 

Finally, we would like to briefly return to the point made in Section 1 about the 
computational challenge of generating definite descriptions as opposed to whole sen-
tences. We randomly selected a small subset of descriptions from the 2007 training 
data (22 instances, or about 10% of the total amount) and added a common subject 
and verb to each of them. Next, all possible permutations of each string were re-
generated to produce whole sentences to be evaluated against the NILC bigram lan-
guage model, the underlying assumption being that well-formed sentences following a 
subject + verb + definite description pattern as in “John bought a green table” should 
obtain the lowest cross-entropy values of all.  

By manually examining the most likely output for each example, we found that in 
all (100%) cases the subject was followed by the verb (i.e., “John bought”), and that 
in only 5 cases  (22.7%) the entire output string did not correspond to a well-formed 
sentence. Despite the small scale of this analysis, the results indeed suggest that, once 
a suitable sentence template has been somehow chosen, producing whole sentences 
may add little to the computational challenge of generating definite descriptions, and 
that a more expressive language model may enable the generation of unrestricted text 
in a similar fashion. 

6   Final Remarks 

In this paper we have described a simple application of statistical language models in 
the surface realisations of Portuguese referring expressions. Although at this stage we 
have arguably focused on the simplest cases (1-to-n mappings), results of a small 
evaluation experiment suggest that descriptions produced in this way are comparable 
to a human-produced reference set. Moreover, being a purely statistical approach, our 
work did not require the labour-intensive task of modelling grammar rules or linguis-
tic knowledge of any kind, which may seem particularly attractive to NLP research in 
relatively resource-poor languages such as Brazilian Portuguese. 

As future work we intend to expand our current approach to cover more complex 
cases of realisation, and possibly a more complex domain, ultimately leading to the 
design of a fully capable surface realisation component that could be embedded in a 
Portuguese Natural Language Generation system. 
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Abstract. Manual construction of a wordnet can be facilitated by a
system that suggests semantic relations acquired from corpora. Such sys-
tems tend to produce many wrong suggestions. We propose a method of
filtering a raw list of noun pairs potentially linked by hypernymy, and
test it on Polish. The method aims for good recall and sufficient preci-
sion. The classifiers work with complex features that give clues on the
relation between the nouns. We apply a corpus-based measure of seman-
tic relatedness enhanced with a Rank Weight Function. The evaluation
is based on the data in Polish WordNet. The results compare favourably
with similar methods applied to English, despite the small size of Polish
WordNet.

Keywords: lexical-semantic relations, measures of semantic relatedness,
wordnet construction, Polish WordNet, nouns, hypernymy extraction, su-
pervised Machine Learning, classifiers, Rank Weight Function, filtering.

1 Introduction

Linguists who work on the manual construction of a wordnet or semantic lexicon
would appreciate a tool that suggests, for a given word w, a set of words linked to
w by lexical semantic relations. Among such relations, hypernymy is particularly
important – it is, after all, the centrepiece of a wordnet hierarchy. Systems that
make such suggestion seem to overwhelm linguists, though only few of the related
words shown are of any interest. That is to say, it is not hard to extract many
words that are somehow semantically related to w, but nuggets are rare in such
plenitude. We seek a way of filtering raw suggestions that would strengthen the
potentially most interesting elements.
Two main approaches to the automatic extraction of lexical semantic relations

from corpora [1] are based on patterns and on clustering. For English, an almost
fixed word-order language with limited inflection, manually constructed lexico-
syntactic patterns were applied to the extraction of hypernymy; they gave good

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 393–404, 2008.
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precision but low recall – see, for example, [2]. Mediocre recall can be an obstacle
for linguists for whom the interesting cases are those of which they had not
thought. The situation differs for an almost free word-order language with rich
inflection, such as Polish. The preliminary experiments have shown that even
achieving good precision in hypernymy extraction is a very demanding task for
lexico-syntactic patterns. The patterns often extract indirect hypernyms.
Methods based on automatic learning of patterns from corpus, such as [1],

can achieve much higher recall, with reasonable precision. The application of
the patterns, however, is limited only to pairs of lexical units (LUs) that occur
near each other in the same sentence in a specific lexico-syntactic structure. It is
also still necessary to filter the final list, and additional knowledge is necessary
to identify incorrect pairs.
Measures of Semantic Relatedness (MRSs) based on distributional semantics

give high recall, theoretically limited only by the vocabulary of the corpus used.
The main problem, however, is precision – or, to be exact, the lack of relation
labels for identified pairs of semantically related LUs. On the list of LUs most
related to a given unit one can find many semantic relations: synonymy and
antonymy (with very similar distributional patterns), hypernymy, meronymy,
metonymy, semantic linking by some situation type, and so on. For Polish, one
can expect that, on average, in about 40% of cases the relation between nouns
will be either close hypo/hypernymy or near-synonymy [3]. A linguist evaluated
a sample of Polish adjectives and verbs [4]. Among 20 LUs deemed most similar
to the given LU u – a majority of them in some wordnet relation to u – about a
half were marked as very useful or useful. The other half were neutral or useless,
and it is such suggestions that conceal the important results of applying an MSR.
Our main objective is to construct a function that gives the linguist a list

of likely hypernyms of the given LU. We assume that the precision should be
around 50% in order to make the user interested. MSRs achieved a good level
of development for Polish – see the results in [5,4] – so we want to construct
the function by filtering the result of an MSR for Polish nouns. A filter would
remove from the lists all LUs except those considered close hyper/hyponyms
of the given LU. We have set out to construct a classifier which assigns pairs
of LU to two classes: close hypernymy plus near-synonymy pairs and other. A
more fine-grained division into near-synonyms and close hypernyms seems to be
extremely difficult on the basis of information extracted from corpora.
A supervised Machine Learning method of extracting hypernymy instances

was proposed in [6,7]. Several modified versions of this method were analysed
in [8]. A similar approach but using a different type of classifier was proposed
in [9]. All these approaches, however, used lexico-syntactic relations directly as
classifier attributes.

2 Classification Based on Condensed Information

In most methods of extracting hypernymy pairs, lexico-syntactic features are
used directly to build a classifier. Typically, however, there may be tens of
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thousands of features that carry very sparse information. Moreover, in any such
approach most of the information delivered to a classifier describes various as-
pects of semantic relatedness; only relatively few features express clues that may
help identify particular types of semantic relation. Near-synonyms and close hy-
per/hyponyms of a LU u would be expected close to the top of the list of LUs
most similar to u, generated by a good MSR.
Thus, we propose to extract hypernymy pairs in two phases:

1. extract the generic relation of semantic relatedness, modelled by some MSR,
2. identify hypernymy instances – pairs of LUs – on the basis of the results
produced by the MSR.

The first phase uses all kinds of information that describes the semantics
of LUs. The second phase concentrates on groups of semantically related LUs
and applies specialised tests that distinguish specific lexical-semantic relations
as subtypes of semantic relatedness.
An MSR of good accuracy can (by way of its high values) associate LUs that

extremely rarely occur close by in the corpus at hand. Note that such occurrences
are the precondition on any pattern-based method. MSRs condense information
otherwise distributed among many lexico-syntactic patterns; in phase 2 we can
concentrate on the most promising pairs.
The only assumption is the availability of a highly accurate MSR. Because

we intended to experiment with Polish, we decided to use an MSR based on the
Rank Weight Function applied to feature frequencies – henceforth MSR(RWF) –
whose accuracy on Polish data surpasses various algorithms of MSRs generation
[5,4]. Lacking a competent syntactic parser for Polish, we based MSR(RWF) on
frequencies of lexico-morphosyntactic patterns implemented in a formal language
of morphosyntactic Boolean constraints. Each type of constraint tests certain
possible morphological and structural dependencies in the occurrence context,
and is parameterised by a list of LUs. As an example, a constraint may test the
presence of a specific noun (a constraint parameter) and a conjunction as parts of
a coordinate noun phrase which includes the LU being described. A coincidence
matrix M is created. Its rows correspond to nouns, columns to instances of
constraint; cellM[n, a] stores the frequency of the occurrences of noun n, which
meet the constraint instantiated by the LU a.
The constructed matrix of feature frequencies is filtered in order to eliminate

features with high entropy and low information. Next, for each row vector a set
of significant features is selected and transformed to rank value by RWF.
The second phase begins with the extraction, for the given LU u, of a set S of

LUs most semantically related to u. Next, we need a classifier to select a subset
of S that includes near-synonyms and close hypernyms of u.

3 Classifier Attributes

Instead of using frequencies of lexico-syntactic features collected from a corpus
directly as attributes in learning the classifier, we wanted to identify a set of
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complex features that can give clues on the relation between two LUs. For a pair
of LUs, the values of attributes are calculated prior to training or testing. This
is done via co-occurrence matrices constructed on the basis of large corpora.
In search for attributes, we drew on information about the specificity of com-

pared nouns, the extent to which they mutually share features, topic contexts
in which they occur together and, last but not least, their semantic relatedness.
We now present the complete list of attributes used; a and b are noun LUs.

1. semantic relatedness MSR(a, b) – the value returned by an MSR,
2. co-ordination – the frequency of a’s and b’s co-occurrence in the same coor-
dinate noun phrase,

3. modification by genitive – the frequency of a’s modification by b in the gen-
itive form,

4. genitive modifier – the frequency of b’s modification by a in the genitive
form,

5. precision of adjectival features – the precision of repeating b’s adjectival
features by the set of a’s features (for the calculation method, see formula 1
below),

6. recall of adjectival features – the recall of repeating b’s adjectival features by
the set of a’s features (for details, see formula 2),

7. precision of modification by genitive – the precision of repeating b’s features,
which express modification by a specific noun in genitive, by the similar
features of a (the calculation method is similar to that in formula 1),

8. recall of modification by genitive – the recall of repeating b’s features, which
express modification by a specific noun in genitive, by the similar features
of a ,

9. global frequency of a – the total frequency of a in the corpus,
10. global frequency of b – the total frequency of b in the corpus,
11. number of significant adjectival features of a – the number of adjectival fea-
tures whose co-occurrence with a is statistically significant, e.g., according
to the t-score measure,

12. number of significant adjectival features of b – the number of adjectival fea-
tures whose co-occurrence with b is statistically significant,

13. co-occurrence in text window of a and b – the frequency of a and b co-
occurring in the same text window, e.g., of the size ±50 tokens,

14. significance of co-occurrence in text window of a and b – the statistical sig-
nificance of a and b co-occurring in the same text window, e.g., on the basis
of the t-score measure,

15. adjectival specificity of a – after [10], calculated here (see formula 3) as the
average number of adjectival features for a single occurrence of a in the
corpus,

16. adjectival specificity of b – calculated according to formula 3 ,
17. adjectival specificity ratio – the ratio of a’s adjectival specificity to b’s adjec-
tival specificity.

In subsequent discussion, we use the term relevant LUs jointly for near-
synonyms and close hyper/hyponyms that occur on the list of LUs most similar
to the given LU a.
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We pass to the classifier only those LUs whose value of semantic relatedness
is higher in comparison to other pairs of LUs, but the exact value of MSR is
still important. It is more likely that a relevant LU b will have a higher value of
MSR(a, b) – the attribute 1 – than non-relevant LUs.
The next group of attributes is meant to give the classifier information con-

cerning directly the possible hypernymy and co-hyponymy relation between a
and b. The co-ordination attribute (2) is based on a constraint that looks for
syntactic co-ordination of a and b as constituents of the same composite noun
phrase (NP). Only a limited set of conjunctions was manually selected: ani (nei-
ther, nor), albo (or), czy (whether), i (and), lub (or) and oraz (and). The value
of (2) is the frequency with which the constraint is met for a and b co-occurring
in the same sentence.1 We also assumed that co-ordination is more frequent for
potential co-hyponyms and hypernyms in some patterns.
A manual investigation of instance pairs of hypernyms in the IPI PAN Corpus

of Polish [11] showed that, surprisingly, they often occur as the NP head and its
noun modifier in the genitive case. Even more often there occurs meronymy ex-
pressed by the genitive modification. Thus, the classifier receives information on
the frequency of this syntactic relation in both directions, when a is modified (3)
and is the modifier (4). Both attributes are based on the same morphosyntactic
constraint analysing the case of nouns and their positions; as no morphological
agreement is required, the precision of the constraint is lower in relation to the
constraints based on agreement.
The idea of the precision of repeating b’s features by a’s features, used in

attributes: 5 and 7, is modelled after the MSR in [12]. We want to analyse the
additive precision with which by using a’s features we refer to (“retrieve”) b’s
features. The precision is defined as follows:

P add(a, b) =

∑
i∈F (a)∩F (b) M[a, i]
∑

j∈F (a) M[a, j]
(1)

where

– F (x) is the set of features occurring frequently enough with x, according to
a test of statistical significance, e.g., a t-score test, s
– M is a co-occurrence matrix that represents the given set of features; for
attribute 5 the matrix of adjectives and adjectival participles Madj is used,
while for attribute 7 it is the matrix MNg of modification by nouns in the
genitive case.

The additive recall of repeating b’s features a’s features, used in 6 and 8, is
calculated similarly to P add [12]:

Radd(a, b) =

∑
i∈F (a)∩F (b) M[b, i]
∑

j∈F (b) M[b, j]
, (2)

1 The corpus is processed with the granularity of sentences – identified by a simple
sentencer.
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Additive precision and recall are calculated for each type of descriptive fea-
tures separately, but the four attributes together are intended to show to what
extent the description of a is included in the description of b. We assume that
the possible descriptions of a hyponym are covered by the possible descriptions
of its hypernym. Precision and recall allow us to test this dependency in both
ways and measure its strength.
During the preliminary experiments, we noticed that nouns semantically re-

lated by situation type are difficult to distinguish from relevant nouns. In order
to capture the difference, we added two attributes intended to signal a kind of
topic similarity – the two nouns would be used in the description of the same
topics. That is why the value of attribute 13 is the frequency of co-occurrence
of a and b in a quite large context of ±50. Moreover, there are no restrictions
on these contexts. We want to record any co-occurrence. In attribute 14 this
information is filtered and emphasised by the t-score test. However, we tested
both versions as elements of a training/test vector.
With the next group of features we try to describe how specific both nouns

are, and to get some information on the relation of hypernymy levels of a and b.
First, the global frequency of a noun can say something about its generality –
the attributes 9 and 10. Second, we also test the number of different significant
adjectival features of both nouns – the attributes 11 and 12. Finally we apply
to the description of both nouns a measure of adjectival specificity (15 and 16)
following the proposal in [10] (a similar measure was proposed in [13]):

spec(a) =
∑

i Madj[a, i]
globalT f(a)

(3)

where Madj is the matrix of co-occurrence with adjectives and adjectival par-
ticiples, and globalT f(a) is the total frequency of a in the corpus, that is to say,
attribute 9
Some machine learning methods (C4.5, for example) would find it difficult to

get the ratio of both specificity measures, so we explicitly added this ratio (17)
to the attribute set.

4 Evaluation

The MSR for the experiments and the values of all attributes were generated
from two corpora combined. One was the IPI PAN Corpus with about 254 million
token. The other was a 116-million token Korpus Rzeczypospolitej (texts from a
Polish daily) [14].
The MSR was the same as that proposed in [5], which uses a Rank Weight

Function to transform frequencies into rank-based feature values. It was con-
structed on the basis of two types of lexico-morphosyntactic constraints:

– modification by a specific adjective or adjectival participle,
– co-ordination with a a specific noun.
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All nouns, adjectives and adjectival participles from the combined corpora
were used accordingly as the lexical elements of constraint instances. MSR(RWF)
achieved the accuracy of almost 91% in WordNet-Based Synonymy Test working
on the Polish WordNet (plWordNet) [3].
We used plWordNet as the main source of training/test examples. Following

the general experimental paradigm of [6], we generated from plWordNet two sets
of LU pairs: Known Hypernyms (KH) and Known Non-Hypernyms (NH). Our
goal is to support linguists by presenting relevant pairs of LUs, so we were less
strict than [6], and we included not only direct hypernyms in the set of Known
Hypernyms. Two different divisions of the two groups, based on hypernymy path
length, were used in the tests. Here are the data sets generated from plWordNet:

– H in results, the set of pairs: direct hypernym/hyponym, in all experiments
included in KH – 2967 pairs in total,
– P2, pairs of LUs connected by a path of 2 hypernymy arcs included in KH
– 2060 pairs,
– P3, pairs of LUs connected by a path of 3 or more hypernymy arcs, NH –
1176 pairs,
– R pairs of words randomly selected from plWordNet in such way that no
direct hypernymy path connects them, NH – 55366 pairs.

After the first experiments, we noticed that the border space between typical
elements of KH and NH is not populated well enough, especially considering its
importance for Machine Learning. We manually annotated randomly selected
pairs of LUs which occurred on the lists of the 20 LUs most similar to a given LU.
From this selection, 1159 pairs of words classified as non-relevant were col-

lected into a set called E. In some experiments, we added E to NK, see below.
We experimented with two training sets combined from different data sets

we have presented. Test sets were excluded randomly from training sets during
ten-fold cross-validation. Training sets are named in Table 1 according to the
following scheme: KH, NH. The first training set, named H+P2,P3+R includes
only pairs extracted from plWordNet. It consists of 5027 KH pairs (H+P2) and
56531 NH pairs (P3+R) — 61558 pairs in total. Thus, in the case of this set,
the test were done only on data already collected in plWordNet.
As plWordNet is rather small yet, the second training set was extended with the

set E of manually classified pairs. We added only negative pairs, as we assumed
that positive examples are well represented by pairs from plWordNet, while more
difficult negative examples are hidden in the huge number of negative examples
automatically extracted from plWordNet. The second training set consists of 5027
KH (H+P2) and 57690 NH (P3+R+E) — 62717 LU pairs in total.
In the experiments, we used Näıve Bayes and two types of decision trees,

C4.5 and LMT. Näıve Bayes classifiers are probabilistic, C4.5 is in fact rule-
based, and LMT combines rule-based structure of a decision tree with logistic
regression in leaves. In order to facilitate a comparison of classifiers, we performed
all experiments on the same training-test data set. Because we selected C4.5 as
our primary classifier, and we generated examples from the same corpus, we did
not introduce any data normalisation or discretisation. The range of data variety
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was also limited by the corpus used. The application of the same data to the
training of a Näıve Bayes classifier resulted in a bias towards its more memory-
based-like behaviour. According to the clear distinctions in the main group of
the applied data sets, however, the achieved result was positive, see Table1.
All experiments were run in the Weka environment [15]. In each case, we

applied tenfold cross-validation; the average results appear in Table1.
Because some classifiers, for example C4.5, are known to be sensitive to the

biased proportion of training examples for different classes (here, only two), we
also tested the application of random subsampling of the negative examples (NH)
in the training data. The ratio KH:NH in the original sets is around 1:10. In some
experiments the ratio was randomly reduced to 1:1 (the uniform distribution of
probability was applied in drawing a new subset NH).

Table 1. Evaluation for both sets using tenfold cross-validation

P R F1 P R F1

ratio 1:1 1:10

Näıve Bayes
H+P2,P3+R 89.80 47.10 61.79 46.30 45.80 46.05
H+P2,P3+R+E 84.70 59.10 69.62 34.60 53.50 42.02

C4.5
H+P2,P3+R 82.10 77.50 79.73 66.90 43.10 52.43
H+P2,P3+R+E 81.70 78.40 80.02 60.70 39.90 48.15

LMT
H+P2,P3+R 81.80 80.60 81.20 72.80 39.40 51.13
H+P2,P3+R+E 81.00 78.20 79.58 65.40 34.50 45.17

Precision and recall are calculated in Table 1 according to the description of
examples extracted from plWordNet (H, P2, P3, R) or defined manually (E). The
results achieved by both decision trees are very similar, and high according to all
three measures. However, the inclusion of the set E decreases the result signifi-
cantly in comparison to the high ratio |R| : |E|, that is to say, a small number of
more difficult examples negatively influence the result. The R set includes more
obvious and more closely semantically related pairs of LUs and is generated ran-
domly from plWordNet, but E includes only tricky examples. That is why we ran
additional tests on a separate set of LU pairs selected randomly from a set of lists
of the 20 LUs most similar to the given LU generated by MSR(RWF). The set was
annotated manually, and will be referred to as the manual tesset (M). The best
classifiers according to Table 1 appeared to be biased towards positive decision,
contrary to the classifiers trained on the 1:10 version of the learning data.
Below we present sample results of the classification selected from one of the

folds of the tenfold cross-validation (classifier C4.5, ratio KH to NK 1:10, E
included in NK).2

2 Many words in these pairs are polysemous in both languages. The English transla-
tions “select” the intended meaning.
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true positives: akt (act) – ustawa (bill), bank (bank) – firma (firm), emocja
(emotion) – smutek (sadness), intelekt (intellect) – przymiot (attribute),
licencja (licence) – zezwolenie (permission), pragnienie (desire) – ochota
(willingness), terytorium (territory) – kolonia (colony), warzywo (vegetable)
– kartofel (potato),

false positives: celnik (customs officer) – policja (police), czynsz (rent) – opro-
centowanie (interest), dochód (income) – dotacja (donation), nonszalancja
(nonchalance) – rozrzutność (profligacy), odpad (waste) – produkt (prod-
uct), problem (problem) – rodzina (family), temat (topic) – dostarczyciel
(provider), zachwyt (admiration) – zdumienie (astonishment),

true negatives: człowieczeństwo (humanity) – prorok (prophet), licencja (li-
cence) – zarządzenie (regulation), opis (description) – hipoteza (hypothesis),
ślub (wedding) – kochanek (lover), tempo (speed) – sport (sport), trybunał
(tribune) – sejm (diet (parliament)),

false negatives: linia (line) – ogonek (queue), konstrukcja (construction) –
twierdza (fortress), nieprzychylność (unfriendly attitude) – emocja (emo-
tion), podpora (support) – kula (sphere), zakochanie (infatuation) – emocja
(emotion).

We prepared the M set in order to go outside plWordNet with the tests and
to look into the work of the classifiers from the point of view of their potential
application in linguistic practice. As we wrote earlier, the set M was selected
randomly from pairs of LUs with the highest value of semantic relatedness ac-
cording to MSR(RWF). M consists of 2300 LU pairs with 1984 negative and 316
positive examples.
The C4.5 classifier trained on the sets KH=H+P2 and NH=P3+R+Ewith the

ratio 1:10 achieved a 21.69% precision, a 50.32% recall and a 30.31% F-score.
The percentage of false positives is still significantly below the level of 50%,
which is a ratio that seems to be acceptable for a tool supporting linguists. The
number of LU pairs presented to a linguists decreased drastically in comparison
to MSR(RWF) alone, from 2300 to 733 – 31.87% of the initial list.
The results achieved on M for all classifiers were much poorer than the results

on sets selected from plWordNet. We tried SVM as well, hoping for its usually
good performance on numerical features without discretisation, but we have not
achieved any valuable result.
Below we present examples of classifier decisions (classifier C4.5, ratio KH to

NK 1:10, E included in NK).

true positives: akredytacja (accreditation) – zezwolenie (permission), aneg-
dota (anecdote) – opowieść (tale), dwója (bad (lowest) mark) – dwójka (dyad,
pair), forteca (fortress) – budowla (edifice), forteca (fortress) – zamek (cas-
tle), incydent (incident) – zajście (incident), instrument (instrument) –
przyrząd (example), owca (sheep) – jagnię (lamb),

false positives: abonent (subscriber)–odbiornik(receiver), cmentarz (cemetary)
– zakwaterowanie (quarters), chwilka (fleeting moment) – berbeć (toddler),
gniew (anger) – strach (fear), jesion (ash tree) – konar (bough), owoc
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(fruit) – grzyb (mushroom), palec (finger, digit) – nos (nose), paliwo (fuel) –
odpad (waste),

true negatives: aktyw (activists) – przychód (income), kompletność (complete-
ness) – zgodność (consistence, concordance), oś (axle) – kierunek (direc-
tion), otyłość (obesity) – nowotwór (cancer), ożywienie (animation) – postęp
(progress),

false negatives: agenda (agenda) – przedstawicielstwo ((diplomatic) agency),
alergia (allergy) – patologia (pathology), ankieta (survey) – badanie (inves-
tigation), komisariat (police station) – urząd (office), lądowanie (loading) –
manewr (maneuver).

A manual inspection of false positives in the results of classifier on the M set
shows that many of them are co-hyponyms. They can be treated as positive
answer from a linguists’s point of view, but we tried to train the classifier not to
select co-hyponyms as relevant pairs.

5 Conclusions and Further Research

The results achieved on the data extracted from plWordNet are very promising,
especially when we compare them to the results of similar experiments in [6],
where the highest value of F-score was 0.348. A direct comparison, however, is
not possible, because we used examples of KH and NH generated directly from
plWordNet, not from sentences in the corpora. Randomly generated pairs can
include a larger percentage of obvious cases. On the other hand, plWordNet is
much smaller than the Princeton WordNet [16] applied in [6], so a percentage
of NH pairs are in fact relevant pairs not yet added to plWordNet. That pro-
duces substantial noise during training. The results achieved on the manually
annotated set M and manually inspected show that the performance of the clas-
sifiers on ‘real’ data is lower. They have problems with distinguishing pairs of
co-hyponyms from relevant pairs, produce higher percentage of errors for less
obvious cases. Still, if we consider a task of delivering valuable suggestions to
the linguists, we have achieved an enormous improvement in comparison with
the lists of k most semantically related LUs. That is to say, a majority of the
list elements are eliminated, but the error of elimination is small.
Because of the small size of plWordNet, it will be a laborious process to

prepare a more difficult training set. In the case of each LU pair we can suspect
that it is not yet described in plWordNet – building the set means extending the
wordnet. Nonetheless, we plan to do it and to apply a bootstrapping approach
in improving the classifier and extending the wordnet. We plan to derive several
disjoint training sets – hyper/hyponyms at different distances, close and remote
co-hyponyms, meronyms and so on – in order to construct decision classes with
the increased precision. We want also to investigate ways of normalising and
discretising attributes. Finally, our lack of success with SVM suggests search
for additional attributes that could better discriminate among various types of
lexical relations.
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In contrast with [6], who use directly lexico-syntactic features, we propose a
two-step approach. It is intrinsically based on MSR, on whose quality it depends
to some extent. On the other hand, a good MSR can introduce a general de-
scription of relations among LUs and deliver knowledge derived from a very large
number of contexts, not only direct LU co-occurrences. The complex attributes
designed for the classifiers are a form of pre-processing. They express condensed
information that facilitates the classifiers’ decision processes. In order to com-
pare our approach and that of [6], it would be necessary to re-implement the
former with the same corpus and wordnet. The results achieved on the manual
test set M shows that the present set of attributes does not give enough evidence
for distinguishing near-synonyms and close hypernyms from co-hyponyms. More
research is necessary on other possible sources of knowledge.

Acknowledgement. Work financed by the Polish Ministry of Education and
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A., Csendes, D., Vincze, V., Fellbaum, C., Vossen, P. (eds.) Proc. Global Word-
Net Conference, Seged, Hungary, January 22-25 2008, pp. 162–177. University of
Szeged (2008)

4. Broda, B., Derwojedowa, M., Piasecki, M., Szpakowicz, S.: Corpus-based Seman-
tic Relatedness for the Construction of Polish WordNet. In: Proc. 6th Language
Resources and Evaluation Conference (LREC 2008) (to appear,2008)

5. Piasecki, M., Szpakowicz, S., Broda, B.: Extended Similarity Test for the Evalua-
tion of Semantic Similarity Functions. In: Vetulani, Z. (ed.) Proc. 3rd Language and
Technology Conference, Poznań, Poland, Pozna, October 5-7, 2007, pp. 104–108.
Wydawnictwo Poznańskie Sp. z o.o. (2007)

6. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hy-
pernym discovery. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems 17, Cambridge, MA, pp. 1297–1304. MIT Press,
Cambridge (2005)

7. Snow, R., Jurafsky, D., Ng., A.Y.: Semantic taxonomy induction from heterogenous
evidence. In: [19]

8. Kennedy, A.: Analysis and Construction of Noun Hypernym Hierarchies to En-
hance Roget’s Thesaurus. Master’s thesis, School of Information Technology and
Engineering, University of Ottawa (2006)

9. Zhang, M., Zhang, J., Su, J.: Exploring syntactic features for relation extraction
using a convolution tree kernel. In: Proc. Human Language Technology Conference
of the NAACL, Main Conference, ACL, pp. 288–295 (2006)

10. Caraballo, S., Charniak, E.: Determining the specificity of nouns from text. In:
Proc. Joint SIGDAT conference on empirical methods in natural language process-
ing (EMNLP) and very large corpora (VLC), pp. 63–70 (1999)



404 M. Piasecki et al.

11. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Institute of Com-
puter Science PAS (2004)

12. Weeds, J., Weir, D.: Co-occurrence retrieval: A flexible framework for lexical dis-
tributional similarity. Computational Linguistics 31(4), 439–475 (2005)

13. Ryu, P.M., Choi, K.S.: Taxonomy learning using term specificity and similarity.
In: Proc. 2nd Workshop on Ontology Learning and Population ACL, Sydney, pp.
41–48 (2006)

14. Weiss, D.: Korpus Rzeczpospolitej. Corpus of text from the online edtion of Rzeczy-
pospolita (2008), http://www.cs.put.poznan.pl/dweiss/rzeczpospolita

15. Weka: Weka 3: Data Mining Software in Java (2008),
http://www.cs.waikato.ac.nz/ml/weka/ .

16. Fellbaum, C. (ed.): WordNet – An Electronic Lexical Database. MIT Press,
Cambridge (1998)

17. Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation: Algorithms and Ap-
plications. Springer, Heidelberg (2006)
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Abstract. Any cross-language processing application has to first tackle the 
problem of transliteration when facing a language using another script. The first 
solution consists of using existing transliteration tools, but these tools are not 
usually suitable for all purposes. For some specific script pairs they do not even 
exist. Our aim is to discriminate transliterations across different scripts in a uni-
fied way using a learning method that builds a transliteration model out of a set 
of transliterated proper names. We compare two strings using an algorithm that 
builds a Levenshtein edit distance using n-grams costs. The evaluations carried 
out show that our similarity measure is accurate.  

Keywords. Transliteration, string similarity. 

1   Introduction 

String comparison is a known research area and has several applications: searching by 
similar string (allowing the words of the query to be slightly different from the one in 
the returned document), merging of database records, cognate identification and 
alignment (in the context of parallel or comparable corpora).  

Our aim is to learn a discriminative transliteration model requiring no knowledge of 
the target language. In our project NewsExplorer [16], we identify an average of 450 
new person names per day in different languages (including currently Russian, Bulgar-
ian and Arabic). Evaluation has shown that about 11% of these (50 out of 450) are vari-
ants of names already stored in the database. In our setting, we thus need to decide for 
each of the new names, whether it is a variant of a known name (even when written in 
different scripts). Our approach is thus discriminative. We are not currently aiming at 
guessing the transliteration of a name (generative approach). In our work, we focus on 
the Levenshtein edit distance, and more precisely on a cost-based edit distance where 
the difference between two letters is not binary but depends on the distance between 
these two letters. This distance is the result of a statistical learning method. 

In the course of years, we have compiled a list of person names across languages 
and scripts. We now make use of this list (compiled semi-automatically and con-
stantly updated) to build a training set of name variants for a pre-selected language 



406 B. Pouliquen 

pair (example: Greek-English). Person names across scripts have the particularity to 
be transliterated and not translated (with some exceptions)1. Therefore they offer a 
good training set which we can use to learn transliteration models. 

2   Related Work 

Our work is situated between two disciplines: string similarity and transliteration. 
A lot of work has been done on string matching (see [8], [5], [6], [2], [14], [17]). 

We will not focus on these techniques as our main goal here is to concentrate on simi-
larity across scripts. We decided to use the most common measure: the Levenshtein 
edit distance. Other similarity measures include: Jaro [22], q-grams [20], longest 
common substrings (as used in [15]) and others. However, each of these metrics 
would require additional work to make them work on cross-script string comparison. 
We currently keep this for future work. Brill and Moore [4] have already worked on a 
very similar problem when building string-to-string edits (learned from examples) to 
improve a noisy channel spelling correction. 

Transliteration is also a research area which has recently been focused on. Various 
work has been carried out on the transliteration of proper names: Knight & Grael [10] 
use phonetic information for Japanese to English transliterations, while AbdulJaleel & 
Larkey [1] make use of n-grams for transliteration from Arabic to English. Sherif & 
Kondrak [18] use a transducer on learned substring transliterations. While some applica-
tions focus on one specific language pair (using often phonetic dictionaries to get the 
right transliteration), in our context we want to match transliterations using only direct 
orthographical mapping and no phonetic representation. One reason for this is that we 
would have to build a string-to-phoneme mapping tool for several languages. The sec-
ond reason is that phonetics are highly dependent on the origin of a name. The third rea-
son is that it is usually not so accurate.  Other work, like that of [12] and [3], trains the 
model on examples; they applied it to English-Chinese and Japanese Katakana-English, 
respectively, and achieved good results. However, they use a romanisation tool before 
comparing with English strings, which makes their approach difficult to generalise. 

Most of the above-mentioned papers (except [3]) use the generative approach: creat-
ing the most probable transliteration for a name (i.e. what is the transliteration of 
“Εντίθ”?). We have chosen the discriminative approach: compute the similarity between 
two strings (i.e. is “Εντίθ” a transliteration of “Εdith”?). In our approach, if a letter is 
similar to two different letters in the target script, we do not have to make a decision as 
we just want to look if one of the target letters is a part of the compared string. 

Concerning string similarity and transliterations, we must mention the following 
papers: Freeman et al. [7] present the use of Editex [23], a variant of edit distance us-
ing groups of similar letters (character equivalence classes) and applied it to translit-
eration similarity from English to Arabic. The Arabic string is first romanised and the 
result is compared to English names using Editex. They use handwritten rules to nor-
malise the English and Arabic names. One special case (the English ‘ch’) generates 
two different transliterations. This work is a nice attempt to overcome the same-script 
                                                           
1 Entities others than person names are likely to be partially or entirely translated. i.e. Univer-

sity of Oxford is translated into Russian as Оксфордский университет /Oxfordski univer-
sity/, and into Greek as Πανεπιστήμιο της Οξφόρδης /Panepistemio tis Oksfordis/.  
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limit of usual string metrics, but character groups of letters are not a real answer, as 
we have to pre-process both strings and even produce different paths. 

In previous work (see [19]), we used a set of edit distances on different representa-
tions of the two names in order to automatically merge name variants as part of the 
NewsExplorer process. The names can be compared across scripts using a set of  
simple hand-written rules. 

The main limit when comparing two strings in different scripts is specifically the 
letter-to-letter comparison. One alternative is to use phonemes and compare the two 
phonetic representations, as mentioned above. This solution is not applicable in our 
case (the name Arthur Japin has different phonetic representations when pronounced 
according to English, French, or Dutch pronunciation rules). 

Another alternative consists of using trigrams or bigrams for transliterating and to 
compute character equivalence classes using n-grams instead of letters.  

Klementiev et al. [9] use characters and bigrams as a feature representation for 
strings and learn correspondences between them in an active-unsupervised learning 
model to get new transliterations out of a comparable corpus of news. Li et al. [13] 
did similar work (applied to Chinese to English transliteration). They try to learn n-gram 
alignment probabilities out of a set of training pairs. Their n-gram transliteration pairs 
are learned by an Expectation Maximisation algorithm. They then use a Joint-Source 
Channel model to compare two strings, which outperforms the Noisy Channel Model. 

Brill et al. [3] use trainable edit distance (as defined in [4]) to align Katakana and 
English term pairs. They first align Romanised Katakana strings with English strings 
using the standard edit distance. Then they learn common string-to-string probabilities 
in order to compute similarities between two transliterations. This work is very simi-
lar to ours, but they require a romanisation of the original Katakana pair, whereas we 
aim at being able to handle any script without relying on any transliteration tool.  

3   The Name Transliteration Data 

As part of the NewsExplorer system (see http://press.jrc.it/NewsExplorer, [16]), each 
day 450 new person names are recognised and inserted into the knowledge base. A 
name variant matching algorithm computes a distance between two names (even 
when they are not written in the same script) and out of the 450 new names recog-
nised every day we automatically recognise about 50 names as being a variant of an 
existing person. The database contains now about 650,000 names. Some of these are 
available in different scripts: Arabic, Russian, etc. Some other name variants have 
been automatically gathered from the online encyclopaedia Wikipedia (for a complete 
description of the process see [19]).  

Our material for training transliteration is taken from variants of person names col-
lected out of NewsExplorer. Various transliterations are available: from non-Latin 
scripts (Russian, Arabic, Greek, Hebrew etc.) to Latin (English, French, German, 
Slavic languages, etc.). This data contains several variants of transliterations and not 
only one single standard form (both casual and regular transliterations, see [11]). 
While [21] identifies 32 variants for Libyan leader Muammar Gaddafi, NewsExplorer 
contains about 100 variants.2 
                                                           
2 See http://press.jrc.it/NewsExplorer/entities/en/262.html  
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In comparison with other sources like Wikipedia, we can be sure that our material 
contains only person names that are most likely real transliterations and do not con-
tain translations (see footnote 1). 

Out of this database, we export a list of variants of the same person in two given 
languages. We can launch experiments for various language pairs such as English, 
French, Slovene, etc. to Russian, Arabic, Greek, Hindi, Japanese, etc. 

NewsExplorer is compiling information in currently 19 languages including Rus-
sian and Bulgarian. The Cyrillic versions of person names are likely to have been  
collected by NewsExplorer, while other scripts like Japanese are usually from a 
Wikipedia page. This is the reason why in our experiments we focus on Latin-Cyrillic 
language pairs. As most readers are probably more familiar with Greek letters, we 
will present examples of transliterations in that language. 

Our training set is a collection of transliterated names. It is important to notice that this 
set is ‘noisy’ in the sense that we may have examples that are not exact transliterations 
(like Μουαμάρ αλ Καντάφι /muamar al kadafi/ with Muammar Abu Minyar al-Gaddafi). 
The training set contains only full names of persons (i.e. both first and family name). 

4   Method 

Our aim is to compare names across scripts relying exclusively on the n-gram corre-
spondence automatically learned out of a set of existing transliterated names. As the 
training set may contain non-exact transliterations, we decided to use the following 
algorithm: 

(a) bootstrapping: initialise the similarity measure (see section 4.1) 
(b) Select example pairs that are very similar (see section 4.2) 
(c) Learn new n-grams out of these pairs (see section 4.3) 
(d) Compute a new similarity measure (see section 4.4) 
(e) Until convergence, go back to point (a) (see section 4.5) 

 

Fig 1. Cost-based edit distance 

4.1   Cost-Based Edit Distance (Bootstrapping) 

The core of our tool relies on the basic Levenshtein edit distance. To be exact, it is an 
adaptation of Editex [23], which makes use of a cost calculation. The dynamic pro-
gramming approach computes the edit distance filling an array for each letter-
alignment. Each cell of the array contains the minimum score of the three upper-left 
adjacent cells (we add to the score the cost of omission, insertion or replacement).  
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The basic edit distance algorithm can be written as follows: 

dist(0,0)=0;  
foreach i (0..length(s)) { 
  foreach j (0..length(t)) { 
    dist(i,j)=min( 
         dist(i-1,j) + cost(s(i), ‘−’), // insertion 
         dist(i, j-1) + cost(‘−’, t(j)), // omission 
         dist(i-1,j-1) + cost(s(i) ,s(j)) // replace 
     ); 
   } 
} 
Where cost(a,b) returns a distance between the two characters (the value usually 

lies between 0 and 1). If character a or b is empty (‘−’), then it represents the cost of 
omission or insertion of the other character. When computing the matrix, we can also 
build the path that best aligns the two strings (see example in Fig. 1). 

4.2   First Alignment of Characters 

We want to select translation pairs that are very similar. For each pair, we try to align 
the strings at character level. When nothing allows us to compare two strings (they are 
usually not in the same alphabet) we launch a shallow 1-1 character alignment. In or-
der to reduce noise, we only make use of the strings that have the same length and 
where the first space is at the same position, such as the first alignment example  
in Fig. 2. 

It should be highlighted that this first initialisation process works for language 
pairs which are likely to align one letter to another one (English-Russian, Arabic-
English, Russian-Greek, etc.), but it is unlikely to work in other cases (Japanese Kata-
kana to English for example). An alternative consists of bootstrapping the alignment 
with a matrix valorising empty alignments for vowels (some preliminary results indi-
cate that the learning succeeds; see one example in Fig. 4). 

Once all pairs have been aligned, we can compute the probability of alignment of 
each character pair. Each character pair probability is converted to a distance between 
0 and 1. A character pair gets a distance of 0 if they always appear at the same posi-
tion and a distance closer to one when they are rarely aligned. This distance matrix is 
then exported in order to be used in the next step. 

This first shallow alignment produces a first distance matrix that we will now use 
in our edit distance for all our examples. For each translation pair, we compute the 
edit distance, converted into a similarity score (dividing the distance by the length of 
the longest string). If the similarity is not high enough (using an adequate threshold: 
by default 0.9) we skip this pair. Otherwise our edit distance algorithm outputs the 
path that minimises the distance. This path is a set of aligned characters. Non-
corresponding characters are aligned with nothing (‘−‘). See Fig. 2 for some examples 
of alignments. 

We sum all aligned character pairs and compute the distance between two charac-
ters as being the log of its frequency divided by the log of the maximum frequency 
found. This new distance matrix contains implicitly the cost of omission of characters. 

Once we have computed this first distance matrix, we can re-run the process.  
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4.3   Significant N-Gram Calculation 

Most pairs of foreign scripts do not have a one-to-one transliteration (in Greek the ‘θ’ 
character corresponds to ‘th’ in Latin languages. Inversely, the Latin ‘d’ is often writ-
ten in Greek using two letters: ‘ντ’). We build a tool to try to ‘guess’ common 1-2 or 
2-1 correspondences out of the path computed when using the ‘cost’ edit distance re-
sulting of the previous process.  

When focusing on empty alignments, the algorithm tries to compute its probability 
to be the result of a correspondence between a bigram and the previous letter or the 
following letter. If one of the bigrams appears often in the corpus, we replace it and 
re-run the process on the result. If computed bigrams do not have high probability to 
appear, we keep this empty alignment (some letters, like the letter ‘ъ’ in Russian are 
often not transliterated, so the alignment ъ  − is correct). 

To illustrate the process: having the four alignments listed in Fig. 2 with an edit 
distance containing substitution/omission costs of single characters, the algorithm 
tries to build all possible bigrams where an empty alignment was found (here: ί ie, 
Ντ D, το o, θ th, Λο L, ού u, θ th, ε he, γκ g). In these examples the best 
candidate is ‘θ th’ as it appears twice. We then replace the most common bigram 
and run the program on the result. Not only bigrams can be computed, but also more 
complex transliterations (like Τζ /tj/  G learned out of alignments with George). 

 

Fig 2. Examples of alignments on 4 translation pairs 

We rerun the n-gram learning phase. Further recursive loops are likely to compute 
further n-grams. For example, when learning examples of Russian-German translit-
erations, after a few steps the algorithm ‘learns’ that the Russian letter ‘ч’ is likely to 
be aligned with the German 4-gram ‘tsch’ (as the Russian example in Fig. 4).  

To avoid over-learning, we set a default threshold of 3 for the length difference be-
tween two n-grams, which allows the alignments 1-0,1-1,2-1,2-2,3-1,3-2,3-3,4-1,4-2,…, 
5-2, etc. 

4.4   Edit Distance Algorithm Using N-Gram Costs 

A basic cost-edit distance when aligning Εντίθ with Εdith based on the correspon-
dences [Ε Ε, ν d, τ −, ί I, θ t, − h] will compute a distance of 2 between the 
two strings. The new algorithm compares potentially all the upper-left cells. The 
comparisons are not limited to characters, but to n-grams (like the one described in 
[4]). Now the use of n-grams allows us to improve the similarity as shown in Fig. 3. 
The new algorithm can be written as follows: 
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dist(0,0)=0;  
foreach i (0..length(s)) { 
  foreach j (0..length(t)) { 
     min=MAXNUMBER; 
     foreach a (alignments(s(i),t(j))) { 
        cost=dist(i - a.i, j - a.j) 
             + cost(substring(s, i - a.i, i), 
                    substring(t, j - a.j, j)); 
        if (cost < min) {min=cost}; 
     } 
     dist(i,j)=min; 
  } 
} 

Performance: This new way to compute edit distance has a higher complexity. In the-
ory, edit distance has a complexity of O(n m). In practice, if we count the number of 
comparisons, the complexity is O(3 n m). Our new distance has a theoretical complex-
ity of O(n2 m2). In practice, all alignments do not have to be tested for each cell. The 
simple improvement consists of computing all alignments of n-grams ending with the 
two characters of the current cell and try comparisons only with these alignments. The 
function alignment(si,tj) in the previous algorithm returns all possible n-gram align-
ments ending with the two letters si and tj. The complexity is  now O(n m a) with a 
being the average number of possible alignments for the current cell In our experi-
ments with English to Russian, a=3.35. When adding name parts in the training (see 
section 5), a= 4.14. 

 

Fig 3. N-gram based edit distance and alignment 

4.5   Iteration of the Process 

Once we have learned new n-gram costs, we compute again the new distance matrix. 
All the training transliterations are again compared with the same technique. It must 
be noted that few more examples can have a similarity higher than the threshold and 
that the alignments can be different than during the previous step.  

After a few iterations the system does not learn new n-grams. The model becomes 
stable (in our Russian to English experiments the system stopped after 5 iterations). 

5   Improvements 

We made the choice to train our model on full names (containing both first and last 
names). This choice is questionable as most of other transliteration systems work on 
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name parts only. The main advantage is that the method will still work for languages 
that do not use space (Chinese, Thai, etc.). Moreover it allows the system to learn 
some typical additional spacing in names. For example, the common prefix ‘al-‘ (with 
different versions ‘Al ‘, ‘al ‘, ‘El’ etc.) in Latin versions of Arabic names is written 
without space in Arabic (i.e. the third example in Fig. 4). Other languages (like Farsi) 
may have variants with or without space or hyphens (for example: Abdelaziz, Abdel-
Aziz, Abdel Aziz refer to the same first name).  

When computing the distance between two n-grams, we face a basic problem: given 
the frequency of the alignment in our training corpus, what will be the distance? The 
basic idea is just to compute the ratio of this alignment given all other alignments for the 
same n-gram. Another parameter is the frequency of each n-gram. However, our goal is 
here to minimise the distance between two transliterations. If we keep the basic ratio, 
two known transliterations cannot have a distance of 0 because each source n-gram has 
very often several other possible transliterations. We decided to apply a weighting algo-
rithm that artificially assigns a distance of 0 for the most common transliteration. 

As observed by [18], the performance of a transliteration model can only improve 
when we add full name parts in the model (i.e. adding known transliterations of full 
words instead of relying only on the substrings or character correspondence). Our 
model is based on n-grams so we can directly add name part correspondences in the 
matrix. Without taking any external source, this can be done using our training set by 
looking at recurrent word alignments. We decided to automatically add first names 
(i.e. Дэвид David) and also common last names (i.e. Смит Smith). As for the 
learning of n-grams we first check that the two names are close enough to avoid add-
ing some noise. Adding new n-grams leads to more computations when calculating 
the edit distance, so we also discard the name alignments that have an edit distance of 
0 as this new n-gram-pair is identical to its corresponding sub-alignments. The unex-
pected result is that these new n-gram-pairs can also be recognised in the middle of a 
name, like in ‘Дэвидсон ↔ Davidson’ where the n-gram pair Дэвид David brings 
better results than the combinations of Д D, э a, в v, и i, д d). As shown in 
next section adding name parts does improve the performances. 

6   Evaluation 

We want to evaluate a similarity measure, not a transliteration method, so our evalua-
tion will focus on comparing a set of source names (not part of the training set) to a 
set of target names. We suppose that the size of the target set is big enough to contain 
possible other similar names. We then evaluate if the top-scoring similar name (and 
having a similarity higher than a threshold) is really the expected transliteration. 

Our training set is an export of the NewsExplorer data. We took all variants of per-
son names in the Latin alphabet and build all alignments with all variants of the same 
person in the Cyrillic alphabet. This training set contains currently 33224 alignments 
out of 2374 different person names (These names are persons mentioned in the news 
over the past 3 years. Names are from various origins: European, Russian, East-
European, Arabic, African. The transliteration alignment set is the result of a Carte-
sian product of all different variants of the same person). 

To simplify the evaluation, we had to set a threshold to decide if a name is a trans-
literation of another. Using our trained similarity measure we computed the similarity 



 Similarity of Names Across Scripts: Edit Distance Using Learned Costs of N-Grams 413 

between all transliteration pairs (from the same training set) and look for a minimum 
similarity that was able to recognise 95% of transliterations. The result is a threshold 
of 0.8.  

We compiled four different test sets. The idea is to mix different sets: some contain 
Russian names in their Latin script, others Western European names in their Cyrillic 
script. Cross-matching sets allows to look for names that are supposed to be there or 
to look for names which are not supposed to be there. 

[NewNames]: A list of 855 Russian-English transliteration pairs that where found 
in NewsExplorer later than the training of the Russian-English model. This list was 
manually validated to avoid wrong transliterations. It contains 515 unique Russian 
names and 774 unique English names. This test set is quite representative for our 
NewsExplorer-specific task (we want our model to be able to work equally in the fu-
ture) as these names appeared in the news after the training. 

[Lenta1k]: A list of 1299 transliterations that we compiled out of the Lenta news-
paper articles (in news from 2006, validated manually). We excluded from this list 
several transliteration pairs that were already part of the training set. These translitera-
tions contain usually non-Russian names. 

[NExp3K]: A list of 3037 transliteration pairs taken from NewsExplorer data. 
[Leaders] A list of Latin-script person names belonging to a government of any 

country of the world, compiled out of the “world leaders” page of the CIA Fact Book. 
This test set contains 5126 names and we decided to concentrate on 2 sub-tests: [lead-
ers-fsoviet] and [leaders-4]. The first one contains 150 leaders of some of the former 
Soviet Bloc countries: Byelorussia, Bulgaria, Ukraine, Georgia and Russia. The sec-
ond contains the first four persons of each country (as they appear in the document). 
In total, there are 772 names. 

Our evaluation concentrates on trying to match one name against a list of other names. 
If there is a match which is more than the threshold (0.8), we decide that the two names 
are identical (transliterations of each other). An expert validated the automatic judgement 
and we summarise the results using standard precision/recall/F-measure in Table 1. 

Table 1. Evaluation results 

Source Target Matrix Algorithm Precision Recall F-Measure 
NewNames NewNames ru-Lat Basic 1 0.75 0.86 
NewNames NewNames ru-Lat n-gram 0.99 0.92 0.95 
NewNames NewNames ru-Lat n-gram+name parts 0.99 1 0.99 
NExp3k Lenta1k ru-Lat n-gram+name parts 0.74 0.91 0.82 
Lenta1k Lenta1k Lat-ru n-gram+name parts 1 0.98 0.99 
leaders4 NExp3k Lat-ru n-gram+name parts 0.93 0.89 0.91 
Leaders-fsoviet NExp3k Lat-ru n-gram+name parts 0.8 0.98 0.88 

 
The first line is a baseline result to evaluate the improvement due to our n-gram 

based edit distance compared with an edit distance based on a one-to-one character 
transliteration (We romanise Russian names using a standard conversion3). With the 

                                                           
3 United Nations-recommended romanisation systems for Russian geographical names, avail-

able at http://www.eki.ee/wgrs/rom1_ru.pdf, (last visited 13/06/2008), with only two changes 
(Ё E and Щ Sh instead of the less common Ё Ye and Щ Shch). 
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basic algorithm the precision is actually very high but the recall very low, while our 
n-gram edit distance improves a lot the recall, adding a single error: Питер Брук 
aligned equally with Peter Brock (wrong) and Peter Brook (correct). Adding the name 
parts (see Section 5) outperforms previous algorithms. We kept this settings for all 
other evaluations. 

Apart from the baseline, the recall is good except when we try to look up translit-
erations of international ‘leaders’. The reason is that the CIA Fact Book writes full 
names (including middle names), while in NewsExplorer they have mainly usual 
names (CIA Fact Book contains Muammar Abu Minyar al-Qadhafi while NExp3K 
contains Муаммар аль-Каддафи /muammar al kaddafi/). The distance is then too 
high and makes the overall recall lower. 

The precision is also good, except when we look up NewsExplorer names in the 
Lenta set. The reason is that our distance does not give any weight for last and first 
names and the distance between Александр Стин /aleksandr stin/ and Alexander Vik 
is quite small, mainly because they share the first name. The precision is not really 
high when matching former-soviet country leaders against NewsExplorer. Some of 
the Belarusian leaders have names which are similar to Russian names (examples: 
Belarusian Minister of Trade Aleksandr Ivankov and Russian painter Aleksandr 
Ivanov; Belarusian Minister of Statistics Vladimir Zinovskiy and Russian politician 
Vladimir Zhirinovsky). We can notice that precision is almost perfect when matching 
transliterations from the same set. This is expected. However, it also means that no 
other name comes as more similar than its own transliteration. 

Another interesting mismatch is when the writing is quite different to the pronun-
ciation. For example, the Korean name Roh Moo-hyun has a pronunciation closer to 
/no mu hjʌn/ and is transliterated in Russian as Но Му Хён (respecting the original 
pronunciation). 

 

Fig 4. Examples of alignments using different trained transliteration models 

7   Conclusion and Future Work 

We have shown that our approach is able to learn transliteration models automatically 
relying exclusively on examples. The evaluation shows that our method outperforms 
standard edit distance. The result of such process can then compute similarities be-
tween names with quite high accuracy. However there are several improvements we 
will try to address in the future:  

The way we learn n-grams is rather simple (we try to replace 0-1 alignments with 
2-1). Other techniques have to be explored in order to guess further n-gram align-
ments (2-2 should be implemented). The current method is extremely fast to learn 
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from examples. We could think of using this dynamic learning for some specific ap-
plications (i.e. learn the transliteration rules for German places in Russian). We have 
not tried the method on the Chinese script, which is an interesting challenge. It would 
also be interesting to compare our learning method with the one done by Brill & 
Moore [4] on the same test set. 

Further techniques can improve the string similarity. For example, our evaluation 
suggests that we should give more weight to family names than to given names, and 
even less weight to middle names. 

Our algorithm currently keeps the cases as we observed that the first letter of a 
name can be transliterated differently when it is placed at the beginning of a name or 
in the middle, as it has been highlighted for Arabic in [1]. Further experiments have to 
be launched to verify if ignoring the case improves the performance. Another option 
consists of adding the information whether the letter is at the beginning, in the middle 
or at the end of a name, like [4] who condition the probability on the position. 

This work produced a promising tool that we can use for various applications like 
cognate identification, transliteration discovery (over the web or comparable corpora), 
or produce automatically transliterations, using different training corpora (which 
could produce different results if we trained transliteration to English, French, Italian 
or German). An interesting area of research is to learn on Latin script variants. This 
could help us to recognise declensions of names (Toniego Blaira referring to Tony 
Blair in Polish), or common variations of names (i.e. François Chérèque becoming 
Francois Chereque in English). Comparisons should then be done on a test set similar 
to the one in [15].  
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Abstract. In this paper, we propose a set of language resources for building 
Turkish language processing applications. Specifically, we present a finite-state 
implementation of a morphological parser, an averaged perceptron-based mor-
phological disambiguator, and compilation of a web corpus. Turkish is an  
agglutinative language with a highly productive inflectional and derivational 
morphology. We present an implementation of a morphological parser based on 
two-level morphology. This parser is one of the most complete parsers for 
Turkish and it runs independent of any other external system such as PC-
KIMMO in contrast to existing parsers. Due to complex phonology and mor-
phology of Turkish, parsing introduces some ambiguous parses. We developed 
a morphological disambiguator with accuracy of about 98% using averaged 
perceptron algorithm. We also present our efforts to build a Turkish web corpus 
of about 423 million words. 

Keywords: Morphological parsing, Morphological disambiguation, Turkish, 
Web corpus. 

1   Finite-State Morphological Parser 

Morphological parsing is the problem of breaking a word such as çocuklar (children) 
into the constituent morphemes, çocuk (child) and -lar (plural suffix). To build a mor-
phological parser, we need three components: a lexicon listing the stem words anno-
tated with some information such as part-of-speech of the words to determine which 
morphological rules apply to them, a morphotactics component (morphosyntax) that 
describes the word formation by specifying the ordering of morphemes, and a mor-
phophonemics component that describes the phonological alternations occurring in 
the morphemes during word formation. In finite-state morphology, all these compo-
nents can be implemented using finite-state transducers. 

To implement phonological rules, we used the two-level morphology formalism of 
Koskenniemi [5]. Two-level morphology is a formalism for describing morphological 
alternations. In this formalism, the phonological rules denote regular relations that can 
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be represented by finite-state transducers. Two-level rules are applied in parallel or 
when implemented as finite-state transducers they can be intersected to a single mor-
phophonemics transducer. 

To show how two-level phonology is used to model phonological phenomena, we 
give an example for vowel harmony in Turkish [6]. In Turkish, the /a/ vowel in suf-
fixes is realized as /a/ or /e/ in surface form depending on the word they are attached 
to. According to vowel harmony, the /a/ vowel changes its form to agree in backness 
with the preceding stem vowel. A two-level rule that describes this phenomena in the 
case of front vowels is given below. 

A:e ⇒ @:FV [@:CONS | @:ε]* _ 

In this rule, “A” symbol is used for lexical representation of /a/ vowel in suffixes. 
“FV” symbol represents the front vowels /e/, /i/, /ö/, and /ü/. “CONS” symbol repre-
sents the set of consonants. “@” symbol means any symbol in the alphabet. This rule 
states that /a/ vowel (/A/ in lexical form) may be converted to /e/ vowel only if it is 
preceded with a surface front vowel followed possibly by a number of symbols hav-
ing consonants and epsilon realizations in the surface form. The finite-state transducer 
realization for this rule is shown in Figure 1. 

 

Fig. 1. Transducer for Turkish vowel harmony: “@:@” symbol represents any feasible lexi-
cal/surface pair absent in the transducer. “@” symbol represents any other symbol that is not 
used on any arc. 

The lexicon and morphotactics can also be encoded into a single finite-state trans-
ducer as shown in Figure 2. This FST implements a simple nominal inflection for 
Turkish. The input side of this transducer encodes the morphological features to be 
returned as the morphological parse of the words. The output side is meant to be input 
to the phonological rules transducer, therefore it needs to be expanded to letter se-
quences. As you can see the output morphemes are marked with special symbols to 
encode phonological alternations in the rules transducer. 
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Fig. 2. A transducer for a simple Turkish nominal inflection 

Given the morphophonemics and lexicon/morphotactics transducers, it is quite easy 
to build a transducer that implements a morphological parser. Simply, we compose the 
lexicon/morphotactics transducer with the morphophonemics transducer, then invert 
the resulting transducer to do morphological analysis rather than generation. 

In this implementation, we aimed to build a morphological parser that is not de-
pendent on any external system for running. We wanted to construct a finite-state 
transducer that implements a Turkish morphological parser and that can be embedded 
in other NLP applications. Therefore in this implementation, we did not use external 
systems such as PC-KIMMO and Xerox finite-state tools. For finite-state operations 
we used AT&T FSM tools [8], but these tools are not required for the parser to run. 

We compiled a new lexicon of 54,267 root words. To compile this lexicon and to 
ensure the correct spelling of the words we used the Turkish Language Institution 
(TDK) dictionary. 

An example output from the morphological parser for the word alın is given below: 
 
alın[Noun]+[A3sg]+[Pnon]+[Nom] 
al[Noun]+[A3sg]+Hn[P2sg]+[Nom] 
al[Adj]-[Noun]+[A3sg]+Hn[P2sg]+[Nom] 
al[Noun]+[A3sg]+[Pnon]+NHn[Gen] 
al[Adj]-[Noun]+[A3sg]+[Pnon]+NHn[Gen] 
alın[Verb]+[Pos]+[Imp]+[A2sg] 
al[Verb]+[Pos]+[Imp]+YHn[A2pl] 
al[Verb]-Hn[Verb+Pass]+[Pos]+[Imp]+[A2sg] 
 
In the morphological parse output the first part is always the root word. Then the 

part-of-speech tag for the stem is given in brackets. These are followed by a set of 
lexical morphemes with the associated morphological features. The inflectional mor-
phemes start with a + sign, and the derivational morphemes start with a - sign. The 
morphological features are given in brackets. If the morpheme is a derivational one, 
then the morphological features for that morpheme start with the part-of-speech of the 
derived word form. It is also possible that morphological features can be assigned in 
the absence of morphemes. 

2   Morphological Disambiguation 

A morphological parser for a language with complex morphology may return more than 
one possible analysis of a word. The ambiguous parses of an example word alın were 
shown in the previous section. As can be seen in that example, some of the parses have 
different root words and have unrelated morphological features due to the productive 
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morphology of Turkish. This morphological ambiguity needs to be resolved for further 
language processing. Several approaches have been proposed for morphosyntactic tag-
ging in inflective and agglutinative languages, e.g. [2,3,4,7,9,10,13]. 

An application of the averaged perceptron algorithm to the morphological disam-
biguation of Turkish text is described in [10]. In that study, a baseline trigram-based 
model of [2] is used to enumerate n-best candidates of alternative morphological 
parses of a sentence. Then the averaged perceptron algorithm is applied to re-rank the 
n-best candidate list using a set of features. In this study, we do not use a baseline 
model to generate n-best candidates. Instead, we do a Viterbi decoding of the best 
path in the network of ambiguous morphological parses of the words in a sentence 
using the averaged perceptron algorithm to train model parameters as explained in the 
next section. 

The set of features that we included in the model are the same as in [10]. This fea-
ture set takes into account the current morphosyntactic tag (parse) and the history of 
the previous two tags. Therefore, we can do a left to right Viterbi decoding for the 
best morphological parse sequence for a sentence. 

2.1   Perceptron Algorithm 

A variant of the perceptron algorithm that can be applied to problems such as tagging 
and parsing is given in Figure 3. The algorithm estimates a parameter vector α  that 
can be used for mapping from inputs x ∈ X  to outputs y ∈ Y  using a set of training 
examples (xi , yi) . In our setting, X  is a set of sentences and Y  is a set of possible 
morphological parse sequences. The algorithm makes multiple passes (denoted by T ) 
over the training examples. For each example, it finds the highest scoring candidate 
among all candidates using the current parameter values. If the highest scoring candi-
date is not the correct one, it updates the parameter vector α  by the difference of the 
feature vector representation of the correct candidate and the highest scoring candi-
date. This way of parameter update increases the parameter values for features in the 
correct candidate and decreases parameter values for features in the competitor. 

This algorithm can be set up for the morphological disambiguation problem as  
follows: 

- The training examples are the sentence xi = w 1:ni[ ]
i  and the morphological 

parse sequence yi = t 1:ni[ ]
i  pairs for i = 1,..,n , where n  is the number of train-

ing sentences and ni  is the length of the i 'th sentence. 
 
Inputs: Training examples xi , yi( ) 

Initialization: Set α = 0 
Algorithm: 

For t = 1,..,T ,  i = 1,..,n  
Calculate zi = arg max z∈GEN (xi ) Φ(xi ,z) ⋅α  
If zi ≠ yi( ) then α = α + Φ(xi , yi) − Φ(xi ,zi)  

Output: Parameters α  
Fig. 3. A variant of the perceptron algorithm 
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- The function GEN (xi)  maps the input sentence to the candidate parse  
sequences. 

- The representation Φ(x, y) ∈ ℜd  is a feature vector, the components of which 

are defined as Φs w 1:n[ ], t 1:n[ ]( )= φs ti−2 , ti−1, ti( )i=1
n∑ , where φs ti−2, ti−1, ti( ) is 

an indicator function for a feature that depends on the current morphosyntactic 
tag (morphological parse) and the history of the previous two tags. Then the 

feature vector components Φs w 1:ni[ ] , t 1:ni[ ]( ) are just the counts of the local 

features φs ti−2, ti−1, ti( ). For example one feature might be: 

φ100 ti−2, ti−1, ti( )=
1 if current parse t i is al + Verb + Pos + Imp + A2pl

and previous parse t i-1 is a pronoun                 

0 otherwise                                                              

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

- The expression Φ(x, y) ⋅α  is the inner product αsΦ s(x, y)
s∑ . 

- The function arg max z∈GEN (xi ) Φ(xi ,z) ⋅α  can be efficiently calculated using 

dynamic programming since the features that we use depend on only the cur-
rent tag and the previous two tags. 

For the application of the model to the test examples, we use the “averaged pa-
rameters” since they are more robust to noisy or unseparable data [1]. The averaged 
parameters γ  are calculated by summing the parameter values for each feature after 
each training example and dividing this sum by the total number of examples used to 
update the parameters. With this setting, the perceptron algorithm learns an averaged 
parameter vector γ  that can be used to choose the most likely morphological parse 
sequence of a test sentence x  using the following function: 

F (x) = arg max y∈GEN(x) Φ(x, y) ⋅γ  

                = arg max y∈GEN (x) Φ s(x, y) ⋅γ s
s=1

d

∑  

2.2   Experiments 

We used a morphologically disambiguated Turkish corpus of about 950,000 tokens 
(including markers such as begin and end of sentence markers). Alternative ambigu-
ous parses of the words are also available in the corpus as output from a morphologi-
cal analyzer. This data set was divided into a training, development, and test set. The 
training set size is about 750,000 tokens or 45,000 sentences. The development set 
size is about 40,000 tokens or 2,500 sentences. The test set size is also about 40,000 
tokens or 2,500 sentences. The training set is used for parameter estimation and the 
development set is used to tune some of the parameters in the perceptron algorithm. 
The final tests were done on the test set. 

The accuracy of the perceptron algorithm on the test set is 97.81%. For a compari-
son of accuracy of the Viterbi decoding with averaged perceptron with the trigram-
based model of [2] and trigram-based model plus perceptron re-ranking as described 
in [10], see Table 1. 
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Table 1. Comparative Results on Test Set (40K tokens) 

Method Accuracy (%) 
Trigram-based model [2] 93.61 
Trigram-based + Perceptron [10] 96.76 
Perceptron (this study) 97.81 

3   Web Corpus 

In the domain of language processing, we need large corpora for the application and 
evaluation of statistical methods. Such corpora are also important for empirical meth-
ods that the linguists and lexicographers use to infer information about language. 
There have been very few efforts to build a Turkish text corpus [11,12] and they were 
quite limited in terms of size and coverage to be successfully used in statistical natural 
language applications. 

In this research, a large corpus for Turkish was built and cleaned using some heu-
ristics and the morphological parser. The corpus is composed of four sub corpora. 
Three of these corpora (referred as NewsCor) are from three major newspapers in 
Turkish. The other corpus (referred as GenCor) is a general sampling of Turkish web 
pages. The combined corpus of these two corpora will be referred as BOUN Corpus. 

For data collection from the web, we implemented a web crawler - an automated 
script to browse the web as used by the search engines. Since the collected data from 
the web is very noisy, we employed some automatic normalization and filtering 
methods to clean the corpus. We followed a multi step process to clean the corpus as 
described below: 

1. Decode HTML entities 
2. Trim white spaces at the start and end of the lines 
3. Estimate letter sequence counts from a Turkish text and use these counts to fil-

ter documents 
4. Remove duplicate lines to get rid of repetitions in web pages, such as text in 

navigation menus 
5. Remove documents with less than 1,000 characters 
6. Parse the documents using the morphological parser and remove those for 

which more than 25% of the words cannot be parsed 

The normalization and filtering step removes about 60% of the text collected for 
NewsCor and 90% of the text collected for GenCor. This difference is expected since 
the web corpus data is very noisy when compared to the newspaper data. 

The tokenization and segmentation of the corpus is often needed in language appli-
cations. Since the corpus is very large for manual operation, we employed automatic 
methods to tokenize and segment the corpus to sentences. The morphological parser 
that we have developed was very useful in this process. We used the parser as a com-
putational lexicon to look for the words in the corpus. 

For the encoding of the web corpus, we used the XML Corpus Encoding Standard, 
XCES (see http://xces.org) as used in [12]. We encode the corpus in paragraph and sen-
tence level. We also plan to annotate the corpus linguistically in morphosyntactic level. 
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3.1   Contents of the Corpus 

As stated before, Turkish web corpus is formed of four sub corpora. Three of these 
are from three major newspapers in Turkish and the other one is a general sampling of 
Turkish web pages. The statistics about the number of words (all words in the cor-
pus), number of tokens (words and lexical units such as punctuation marks), and types 
(distinct tokens) are shown in Table 2. The percentages of tokens and types that can 
be successfully parsed by the morphological parser are also indicated. We can inter-
pret the figures on the table from different points of view. 

First, we observe that, due to the agglutinative nature of the language, the number 
of types is quite large. Turkish dictionaries on general domain have a typical size of 
50,000-100,000 words. The number of types in the corpus being about 50-60 times 
larger than the typical number of (mostly) stems indicates that derived words are used 
commonly in written language. 

Table 2. Web Corpus Size 

Corpus Words Tokens Types 
Tokens 
parsed (%) 

Types 
parsed (%) 

Milliyet 59M 68M 1.1M 96.7 63.5 
Ntvmsbnc 75M 86M 1.2M 96.4 55.8 
Radikal 50M 58M 1.0M 97.0 65.7 
NewsCor 184M 212M 2.2M 96.7 52.2 
GenCor 239M 279M 3.0M 94.6 39.5 
BOUN Corpus 423M 491M 4.1M 95.5 38.4 

 
Second, a significant difference exists between the percentages of tokens and types 

successfully parsed. This is an expected result, since most of the tokens in the corpus 
are grammatical words and there is a relatively small amount of other kinds of tokens 
(punctuation symbols, proper nouns, etc.) that cannot be parsed. On the other hand, 
each distinct token is treated equally in the last column of the table, without taking 
frequencies into consideration. We see that the parser can return an analysis only for 
38.4% of the types; the rest cannot be parsed. However, this percentage of types in 
fact constitutes 95.5% of the corpus. The main reasons for the unparsed types are the 
proper nouns that do not exist in the lexicon and the spelling errors in the corpus. 

Another observation is about the cleanness of the corpus. When we compare Gen-
Cor with NewsCor, we notice a decrease in the number of words that can be parsed. 
The difference is about 2% in the case of tokens while it is much higher (12.7%) in 
the case of types. These figures indicate that NewsCor is much cleaner than GenCor, 
as might be expected. Also the analysis of the number of words, tokens, and types in 
the two subcorpora shows that GenCor includes more types that are not actually 
words and there are also some unparsed tokens with high frequencies on this subcor-
pus. These observations signal that the words used by general web users are more 
diverse than those used in news portals and some of these words seem to be accepted 
(due to their high frequencies) by the web community. 
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Finally, the performance ratios for the morphological parser are quite satisfactory. 
The success is 96.7% on NewsCor and it is slightly lower for GenCor due to special 
characteristics of the written text on the web. 

3.2   Corpus Statistics 

In this section, we will present statistical results about the corpus in order to get an 
idea about the coverage of a corpus of this size for an agglutinative language and also 
to observe the morphological characteristics of Turkish language. Figure 4 shows 
statistics about the types relative to the corpus size (number of tokens). As can be 
seen, the number of types is increasing continuously for both corpora and for the 
combined corpus. It seems that if corpus size is increased beyond the current size of 
491M tokens, new types will still continue to emerge. This is supported by the evi-
dence that when the corpus size was increased from 490M to 491M, 5,539 new types 
(of which 1,009 can be parsed successfully) have been added to the corpus. This is 
partly due to the productive morphological structure of Turkish and partly to the rich 
web environment. These facts indicate that the size of the current corpus does not 
cover all language usage. It should be extended until at least the number of types that 
can be parsed becomes stable, corresponding to the situation that nearly all possible 
derived forms are represented in the corpus. Adding more data beyond this limit will 
just cause an increase in the number of special tokens (e.g. proper nouns) and mis-
spelled words. 

Figure 5 shows coverage statistics with respect to the vocabulary size (number of 
types). The figure was obtained by first sorting the types in decreasing order of fre-
quencies and then summing up the frequencies beginning from the topmost entry for 
the indicated vocabulary sizes. 50% of the corpus is formed of only about 1,000 dis-
tinct words. We observe that about 300K types are necessary in order to attain an ac-
ceptable coverage ratio (97-98%). The agglutinative nature of the language and the 
diversity of the web contents are the basic reasons of this result. The analysis of a 
similar statistic for the percentages of infrequent types shows that almost half of the 
types (about 2.0M) occur only once in the corpus. The number of types occurring less 
than 10 times is 3.4M and they represent 7.5M tokens in the corpus. Thus, the major-
ity of types in the corpus are very infrequent and 98.4% of the corpus is formed of 
only 15.9% of the types. 

To understand the source of the large number of types in the corpus, we give statis-
tics for the stems and lexical endings (tokens stripped of their stems in lexical form 
such as +lAr+Hn) of the tokens that can be parsed in Figure 6. As the number of  
tokens considered reaches to the size of the corpus, the number of unique stems ap-
proaches to the size of our lexicon (54,267 root words). However, as can be expected, 
all the words in the lexicon do not appear in the corpus and even a corpus of this size 
does not contain any occurrence of 5,630 words. On the other hand, the number of 
unique endings increases steadily as new data are added. Note that the figure consid-
ers only the tokens that can be successfully parsed. Hence, this increase means that 
people freely derive new word forms by making use of suffix combinations not used 
before. This is an interesting result. Although we know that theoretically there is no 
limit on the number of derivations in Turkish, we might expect that in practice a 
(large) subset of all possible derived forms will cover the daily use of the language. 
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However, this expectation does not hold even for a set of nearly 500M tokens and 
about 9,000 new words, 40 stems, and 60 lexical endings emerge per 10M tokens at 
this size. When the whole corpus is considered, about 30 different words can be ob-
tained from a single root form, which is an indication of the productive morphological 
structure of the language. 

 

Fig. 4. Type statistics for subcorpora and combined corpus 

 

Fig. 5. Coverage statistics for subcorpora and combined corpus 
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Fig. 6. Stem and ending statistics for subcorpora and combined corpus 

4   Conclusions 

In this paper, we presented some language resources and tools for Turkish that can be 
used to build Turkish NLP applications. We already used the morphological parser as 
a computational lexicon to implement a spell checker for Mac OS X. Our primary 
motivation in compiling these resources is to develop a large vocabulary speech rec-
ognition system for Turkish. 

The language resources obtained as output of this research are: (i) A highly efficient 
finite-state morphological parser that does not depend on any other environment to run. 
It is one of the most complete parsers in terms of lexicon coverage, morphotactics, and 
morphophonemics; (ii) An efficient averaged perceptron-based morphological disam-
biguator that uses Viterbi decoding. The disambiguation accuracy of 97.81% is the 
highest accuracy reported so far for Turkish; (iii) A web corpus containing about 500 
million tokens. The corpus has been cleaned using some heuristics and the morpho-
logical parser developed in this work and then converted to XCES XML format. 

We believe that the methodologies described here for Turkish can be applied to 
other languages with complex morphology to build high-quality language resources. 
The resources obtained have the potential of being used as building blocks in large-
scale language applications. As a future work, we plan to use the morphological 
parser and the disambiguator for linguistic annotation of the web corpus. 
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Abstract. This paper presents a method for Entity Disambiguation in Informa-
tion Extraction from different sources in the web. Once entities and relations be-
tween them are extracted, it is needed to determine which ones are referring to the
same real-world entity. We model the problem as a graph partitioning problem in
order to combine the available information more accurately than a pairwise clas-
sifier. Moreover, our method handle uncertain information which turns out to be
quite helpful. Two algorithms are trained and compared, one probabilistic and
the other deterministic. Both are tuned using genetic algorithms to find the best
weights for the set of constraints. Experiments show that graph-based modeling
yields better results using uncertain information.

1 Introduction and Motivation

Entity disambiguation resolves the many-to-many correspondence between mentions of
entities in natural language and real-world entities. A real-world entity can be expressed
using different aliases due to multiple reasons: use of abbreviations, different naming
conventions (e.g. “Name Surname” and “Surname, N.”), misspellings or naming varia-
tions over time (e.g. “Leningrad” and “Saint Petersburg”). Furthermore, some different
real-world entities may have the same name or share some aliases. For instance, two
citations of “J. Smith” in different documents may refer to different authors. In order to
keep coherence in data extracted from text for further analysis, information integration
is mandatory. This means, to determine when different mentions refer to the same real
entity and when same mentions refer to different ones.

This problem arises in many applications that integrate data from multiple sources.
Concretely, many tasks related to natural language processing have been involved in the
problem, such as question answering, summarization, information extraction, among
others. The entity disambiguation problem is also known as identity uncertainty, record
linkage, deduplication, mention matching and many others.

Many techniques have been explored the Entity Disambiguation problem. Some of
them use rules [1] while some others use string similarity functions [2,3]. In most works,
the knowledge is manually defined, such as rules or weights [1,2], and only some works
rely on the use of machine learning approaches [3,4]. Some techniques take advantage of
an ontology structure, like clustering template elements [5], or exploiting relations [6,7].

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 428–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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id Name or alias Relations with clubs

A Tomasz Waldoch Schalke (2001 - 2002)
B Tomasz Waldoch Bochum (1993 - 1999)

Schalke 04 (1999 - 2006)
C Waldoch Bochum (1996 - 1998)

For example, we have three football players candidates to be the same real person
with their relations with clubs in the table. A and B have exactly the same name but
they are extracted from different sources so we are not sure if they are the same person.
C is an alias of them, extracted from another document. A pairwise classifier would
easily determine that A and B are the same person and also B and C, because they
have played in the same clubs at the same time. However, determining if A and C are
the same real entity may fail because a lack of information between them. If it happens,
there will be a contradiction at the end of the process.

We also have that the element A has a relation with the club “Schalke” (element
X) while element B has a relation with “Schalke 04” (element Y ). These two clubs
are also entities to disambiguate. We call this uncertain information because we can
not ensure that they play in the same club, neither the opposite. If the classifier tries to
determine if X and Y are the same club, it would need to know if A and B are the
same person. However, if it tries first to disambiguate A and B it would need to know if
X and Y are the same club. An iterative process seems to be more appropriate for this
kind of information.

Fig. 1. Examples of pairwise classifier lacks

More recent works take advantage of some domain knowledge at the semantic level
to improve the results. For example, [8] shows how semantic rules, either automatically
learned or specified by a domain expert, can improve the results. [9] use probabilistic
domain constraints in a more general model using a relaxation labeling algorithm to
perform matching.

Most of these works face the problem as a pairwise binary classifier, where a pair of
mentions of entities are classified as referring to the same entity or not. However, this
point of view does not always take advantage of all the available information mainly
due to two reasons:

– A classifier by pairs uses attributes of both elements, their relations and the con-
straints applied to them. This situation can cause misclassifying of some pairs of
elements simply because of a lack of information. Consequently, this may lead the
process to finish with contradictions in the results.

– In a binary classifier, it is not possible to use uncertain relations during the disam-
biguation process because the order of the pairs to classify may change the final
result. Also, that uncertainty might make the process fail.

There is an example in figure 1. We call uncertain information or uncertain relations
to the relations referring to an alias. In a data set where different entity types are related
and each type has uncertainty (possible duplicates), we have to deal with uncertain
relations.
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As far as we know, three approaches in the state of the art deal with these problems.
The first one consists in an iterative execution of the classification process like in the
work of [6]. The second approach [10] defines the task with Markov logic networks
and solve it doing logic inference with a MaxSAT solver. Third approach represents the
problem as a graph for a subsequent partitioning [11,12]. We centered our work in the
graph-based approach.

In this paper we propose a graph representation of the Entity Disambiguation prob-
lem taking advantage of already extracted uncertain information. We also propose the
use of two iterative algorithms for resolution. On one hand, this point of view can over-
come the difficulties of the pairwise classifiers because results do not fall in contradic-
tions at the end of the process. On the other hand, using algorithms that work iteratively
solving graph partitioning, one may use the information of uncertain relations in a more
natural way.

The rest of the document is structured as follows. Section 2 presents an overview of
related work. Section 3 formally defines the problem. The methodology employed is
explained in section 4, and the algorithms are detailed in section 5. The last sections
describes our experiments, results and conclusions.

2 Related Work

To the best of our knowledge, there are few works approaching multi-type entity dis-
ambiguation as a graph using uncertain information.

[11] defines a conditional model to disambiguate different entity types using, among
others, the information offered by their relations. In this way, they propose a relational
graph partitioning algorithm that ensures consistency in the decisions taken and also
take advantage of uncertain relations. There is no previous purge in the data in order to
reduce the execution costs. Other recent works [13,14] are based on the same idea.

[15] system and learning process is adaptive to any dataset. They deal with uncertain
information using a structural connection strength measure, separately of feature func-
tions. It can not have semantic constraints over relations such as time, kind of relation,
and so on.

The algorithms used in these works are based in a greedy decision where, as in any
greedy algorithm, wrong decisions at the beginning may unleash a bad performance. In
our work we use two different algorithms that work iteratively and only take definitive
decisions at the end of the execution. Other improvements presented here are a candi-
date selection system in order to reduce the execution costs and an homogeneous way
to use attributes and relations between elements in any feature function.

3 Problem Definition and Representation

Entity Disambiguation problem consists of a set of references to entities (elements)
that have to be mapped to the minimal collection of individual entities. Representing
the problem in a graph we are reducing Entity Disambiguation to a graph partitioning
problem given a set of constraints. At the end of the process, every partition will be a
group of elements representing a real entity.
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Let G = G(V, E) be an undirected graph where V is a set of vertices and E a set of
edges. Each element in our data is represented as a vertex v ∈ V in the graph and an
edge e ∈ E is added to the graph for every pair of vertices representing elements which
can potentially be the same entity.

The set of constraints between two elements is used to compute a variable weight
value in each edge, which indicates how sure we are that the elements represented by
the two adjacent vertices may be the same real entity. There are two kinds of constraints:

– Fixed constraints. Constraints that depend on static data. These constraints are
comparisons about template elements attributes, relations, and other semantic rules.
For example, two organizations having the same year of foundation or two people
related with the same organization.

– Variable constraints. Constraints obtained from uncertain relations. These con-
straints may change their influence during the disambiguation process depending
on the current state of the elements involved in the uncertain relation. For example,
two people may be the same real person when the organizations related to them
may be the same organization. If, during the disambiguation process, both organi-
zations in the example tend to be the same real entity, both people will tend also
to be the same person, and the other way round. Variable constraints are evaluated
at each iteration during the disambiguation process and their weights are obtained
depending on the involved elements state.

Finally, the edge weight used by the algorithms is the sum of the weight produced by
the fixed constraints and the weight obtained evaluating the variable constraints. Neg-
ative weights indicates that the involved elements should not be in the same partition.

Let x = (x1, ...xn) be the set of elements to disambiguate. For each xi, a vertex vi

is added to the graph. The elements may have some attributes and we write them as
xi = (xi.a1, xi.a2, xi.a3, ...) where, for instance, when xi is an element of the type
organization, xi.a1 is the attribute foundation year. The set of relations between two
elements (xi and xj ), even direct or indirect, are represented as rij . Additionally, we
have a vector s(t) = (s1, ...sn) containing the state of each vertex at iteration t. The
state of a vertex vi is si, a value indicating the partition where it is assigned.

Generally, edges weight for the graph partitioning is obtained before resolution like
follows:

eij .weight =
∑

k

λkfk(xi, xj , rij) (1)

where fk(·) is a feature function that evaluates constraint k. It may use the information
of the elements xi and xj , some of their attributes and their relations. And λk is the
weight applied to the feature function. However, in our proposal we also utilize variable
constraints that need to know the state of other vertices to be evaluated. Consequently,
we call fixed weight to the weight contribution obtained in equation 1:

eij .wfix =
∑

k

λkfk(xi, xj , rij) (2)
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and we define the variable weight as:

eij .wvar(t) =
∑

k

λkfk(xi, xj , rij , s(t)) (3)

where t is the iteration number when the process is running. Adding s(t), we are pro-
viding new information to the feature function which is used to evaluate variable con-
straints. Finally, in each iteration, definitive weight is obtained as follows:

eij .weight(t) = eij .wfix + eij .wvar(t) (4)

This implies that algorithms used to resolve graph partitioning need to deal with
dynamic weight values.

4 Methodology

The methodology used in our work for the Entity Disambiguation problem consists of
four steps. First, to select the candidates. Second, to find the constraints between them
to generate the graph. Once we have the problem represented in a graph, third step is to
find the optimal weight combination for the feature functions that evaluate constraints.
Finally, the graph partitioning problem is solved. The input of the process is a set of
elements extracted from different sources that might be duplicated and the output is this
set of elements grouped by the real entities they refer. Following subsections describe
each one of these steps.

4.1 Candidate Selection

In order to avoid a graph where each vertex is adjacent to all the others, we generate a
graph selecting elements candidates to be the same real entity. We select as candidates
pairs of elements where one is an alias of the other. To do that we use the method of
Alias Assignment developed by [16]. The method consists in training a Support Vector
Machines pairwise classifier where each pair of elements is represented as a vector of
features. These features are obtained using similarity functions such as string matching,
edit distance and acronyms similarity. Also world-knowledge is used like city names
in different languages for organizations or tipical nicknames for people. Depending on
the kind of elements and their domain such as organization or people, we use different
features.

Not all of the candidates have an edge between them because not all of them share
an alias. For example, we have three elements of people named a) “Jason”, b) “Jason
Smith” and c) “Smith”. Elements a and b will be adjacent vertices in the graph because
“Jason” is an alias of “Jason Smith”. The same happens with elements b and c. The
vertices representing a and c won’t be connected by any edge, however, they will be in
the same subgraph so they may be, at the end, the same entity.

Then, we also link candidates that we are pretty sure that they are not the same entity,
given that they already are in the same subgraph. These edges will have a negative
weight which may help the algorithm. Following the same example, if “Jason” and
“Smith” have different birth dates, they are also linked.
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In this way, the whole problem representation as a graph consists of a set of sub-
graphs each of which is an entity disambiguation subproblem. Candidate selection is
not a strictly necessary stage but helps reducing computational costs.

4.2 Constraints Evaluation

In the second step we generate the constraints applicable to the pairs of candidates.
Using the ontology and the knowledge of the domain, an expert manually writes a set
of rules that, when applied to a pair of elements, help to know whether they are the
same entity or not. These constraints can be seen as soft rules and their influence or
weight will be determined with Genetic Algorithms using training data in the next step.
Constraints can be of any order, that is, any number of elements or pairs of elements
may be involved in a constraint. Table 1 shows some examples of constraints.

Table 1. Example of constraints

Constraint Kind of entity Description Kind of
affected constraint

c1 Organization Orgi and Orgj are likely to match Fixed
if foundation dates are equal

c2 Organization Orgi and Orgj are likely to match Variable
if Perl and Perk are also likely to match
and Perl belongsTo Orgi and Perk belongsTo Orgj

c3 Person Peri and Perj are likely to match Fixed
if they are related to the same organization

c4 Person Peri and Perj are unlikely to match Fixed
if they are doing different events at the same time

4.3 Finding Optimal Weights

The performance of the algorithms depend on the edge weights which, at the same time,
depend on the constraint weights. In order to achieve good performance, it is mandatory
to find a good constraint weight combination. Searching the space of constraint weight
combinations is intractable here by an exhaustive search. Therefore, we use Genetic
Algorithms for this task [17]. Other works have also used evolutionary algorithms to
train similar processes successfully [18]. This step is only done for training, and it
needs an annotated dataset. The graph is solved using different weight combinations
and an evolutionary process is done evaluating each time the graph partitioning results.
Once training is done, constraint weights are saved for further executions.

4.4 Solving Graph Partitioning Problem

Graph partitioning task determines the best partition assignment for the vertices, given
a set of conditions. In this case, the conditions are the edge weights, which represent
how strong are the involved constraints. Positive weights indicate that both adjacent ver-
tices should be in the same partition, while negative weights indicate the opposite. The
higher the weight, the harder the condition. The algorithms used (detailed in Section 5)
iteratively look for combinations of partitions according to indications of edge weights.



434 E. Sapena, L. Padró, and J. Turmo

5 Algorithms

We propose the use of two algorithms to entity disambiguation. The reason to compare a
deterministic algorithm (Relax) with a probabilistic one (Ant) is the scalability. While a
deterministic algorithm can ensure that the result is the best possible, for larger datasets
it needs more resources and might be intractable. On the contrary, a probabilistic algo-
rithm like Ants can achieve good performance (not the optimal) besides computational
cost issues.

5.1 Relaxation Labeling Algorithm

Relaxation is a generic name for a family of iterative algorithms which perform function
optimization, based on local information. They are closely related to neural nets and
gradient step.

The algorithm has been widely used to solve AI problems [19] and also NLP prob-
lems such as from PoS-tagging [20], chunking, knowledge integration, and Semantic
Parsing [21].

Relaxation labeling (Relax) solves our weighted constraint satisfaction problem deal-
ing with variable compatibility coefficients. Each vertex is assigned to a partition satis-
fying as many constraints as possible.

5.2 Ants Algorithm

The ants algorithm is a multiagent system based on the idea of parallel search. A generic
version of the algorithm was proposed in [22]. The algorithm faces the problem as a
graph coloring problem, optimizing a global fitness function. In theoretical computer
science, “graph coloring” usually refers to a very specific constraint satisfaction prob-
lem: assigning colors to vertices such that no two adjacent vertices have the same color.
However, this algorithm is more general and optimizes a global fitness function using
colors as a vertex state, and using local fitness function to decide the color of each ver-
tex. Playing with local and global fitness functions one can adapt the algorithm to solve
almost any problem of constraint satisfaction.

The algorithm works as follows. Initially, all vertices are randomly colored and a
given number of agents (ants) is placed on the vertices, also at random. Then the ants
move around the graph and change the coloring according to a local optimization crite-
rion. The local and global fitness functions depend on the problem to solve and are the
only part that normally needs adaption.

Each movement or decision taken by an ant has a probability of error, which prevents
the algorithm falling in local minima.

The adaption of the algorithm to our entity disambiguation task is done by finding
correct global and local fitness functions. Local fitness function is defined as:

Fit(v) =

∑m−1
i=0 ei.weight −

∑l−1
j=m ej.weight

∑l−1
i=0 |ei.weight|

(5)

where vertex v has l adjacent vertices and e.weight are the values of edge weights. From
0 to m − 1 are the edge weights corresponding to the adjacent vertices with the same
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color and from m to l − 1 are the ones corresponding to adjacent vertices with different
color. Note that the values of the edge weights can be negative and their value is obtained
as explained in section 3. If the obtained value is negative, Fit(v) returns zero.

The global fitness function is then the sum of all the vertices fitness:

GlobalF itness =
∑n−1

i=0 Fit(vi)
n

(6)

where n is the total number of vertices. At the end of execution, vertices sharing a color
are elements that refer to the same entity.

6 Evaluation Framework

We evaluated our approach to entity disambiguation using two datasets Football and
Cora.

6.1 Football Dataset

We use data automatically extracted from different websites about football1 (soccer).
The entities to disambiguate are people (players, coaches, referees and presidents), or-
ganizations (clubs and federations) and teams. There are also other entities extracted
like competitions, awards and matches that does not need disambiguation. Also rela-
tions (some of them, temporal relations) and events have been extracted from these
websites (for example, players belong to clubs, teams play matches). Many players,
clubs and teams have similar or identical names. In this situation, and when the infor-
mation is extracted from different sources, one can not integrate the information only
using similarities or name comparisons.

The whole data extracted consists of a high number of elements and relations as is
summarized in Table 2. A representative part of the data has been manually labeled
(last two columns in Table 2). We generated about 750.000 fixed constraints and 25.000
variable constraints of 33 different types (some examples in table 1). Each algorithm is
trained and tested doing a five-fold cross-validation over the manually labeled data.

The reason to evaluate the system with this dataset is the existence of uncertain re-
lations. During the information extraction process, some relations point to an alias that,
at that moment, it is not possible to know which real entity is referring to (for exem-
ple, “Robert” belongsTo “Manchester”. One does not know which Robert neither which
Manchester). We save this relation as uncertain to use it in the subsequent disambigua-
tion process. We have extracted different kinds of entities with relations between them
what let us a good scenario to test our proposal.

6.2 Cora

In order to evaluate our methodology and algorithms in a dataset widely used, we
choose Cora2. It contains about 1800 citations, with 600 different papers. We

1 http://www.lsi.upc.edu/˜esapena/data/footballdb.tar.gz
2 http://www.cs.umass.edu/˜mccallum/data/cora-refs.tar.gz
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Table 2. Data used in the experiments

Kind of # extracted # Ambiguous # Candidate # Elements # Real entities
entity elements elements pairs labeled labeled

Person 22,828 17,721 207,275 888 326
Club 1,929 811 1,334 54 18
Team 1,830 682 1,049 53 21

disambiguate papers, authors and venues, but only papers are used for training and
test because only papers are labeled. It is splitted in three non-overlapped parts (fahl,
kibl and utgo) that we use for cross-validation.

7 Experiments

Three experiments have been done to evaluate our methodology and the algorithms
proposed:

– Comparing pair classification with graph partitioning. The goal is to prove that
the graph point of view and the use of uncertain relations achieve better results
than pair classification. We train Support Vector Machines (SVM) to disambiguate
entities as a binary classifier. Each pair of candidate elements is evaluated using the
information of fixed constraints. We compare the results of SVM with the results
obtained with Relax and Ants.

– Comparing algorithms with and without using uncertain relations. In this sec-
ond experiment, the goal is to know how helpful is the use of uncertain information
when disambiguating. We compare both algorithms Relax and Ants with and with-
out using variable constraints.

– Comparing Relax and Ants algorithms with Greedy Agglomerative Cluster-
ing. The goal of this third experiment is to compare iterative algorithms with greedy
and also corroborate that our proposed algorithms achieve state-of-the-art perfor-
mance using a widely used corpus.

To evaluate the results we choose Purity and Inverse Purity measures and their har-
monic mean F1. In the Entity Disambiguation problem, the input is a set of elements
and we are expecting a concrete association of them in the output. That is, we have
to evaluate how correct are the groups of elements obtained. Purity (Pur) and Inverse
Purity (IPur) are standard clustering measures that helps us to evaluate this kind of
results. The precision of a cluster P ∈ P for a given category L ∈ L is given by
Prec(P, L) := |P∩L|

|P | . The overall value for purity is computed by taking the weighted
average of maximal precision values:

Pur(P, L) =
∑

P∈P

|P |
|D|maxL∈LPrec(P, L) (7)
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IPur(P, L) =
∑

L∈L

|L|
|D|maxP∈PPrec(L, P ) (8)

F1 =
2 ∗ Pur(P, L) ∗ IPur(P, L)
Pur(P, L) + IPur(P, L)

(9)

Pairwise precision and recall measures are not fully adequate for a partitioning prob-
lem. A good explanation of why Purity and Inverse Purity is more appropriate for this
kind of evaluation can be found in [15]. In the results we only show the final F1.

We use two baselines to compare the algorithms. Baseline Join groups all the el-
ements of each subgraph. That is, all directly or indirectly connected candidates are
considered to be the same real entity. It produces an Inverse Purity of almost 100%,
depending on the goodness of the candidate selection process. Baseline Disjoin does
the opposite, it separates all the elements as if each one was a different real entity. It
obtains 100% Purity.

Also a Greedy Agglomerative Clustering (GAC) algorithm has been implemented in
order to compare it with the performance of our proposed algorithms using the same
information.

8 Results

The results obtained in the first experiment are shown in Table 3. As expected, if we
evaluate the accuracy achieved by SVM, we obtain a performance that seems quite
good: 85.8%. However, once pairs are classified, the final result has to determine which
elements refer to the same real entity. We join all the pairs of elements classified as
positive to obtain a set of groups (single-link). This last step generates large groups of
elements because any missclassification causes merging of two groups. A few of these
missclassifications cause this bad performance. Consequently, final results of SVM tend
to be similar to the baseline Join. Both algorithms based in graphs outperform SVM
thanks to the graph-based approach.

Table 3. Results of the first and second experiments in Football dataset. +UR means: using
Uncertain Relations.

Algorithm Join Disjoin SVM Ants Ants + UR Relax Relax + UR
F1 8.2 12.3 53.6 75.6 79.2 81.5 83.7

The results obtained in the second experiment (Table 3) show that in both algorithms,
Relax and Ants, the performance is better when uncertain information is used. Note that
variable constraints represent only a 3% of the constraints in the Football dataset but
they help the algorithms contributing with more information.

The third experiment (Table 4) shows how iterative algorithm Ants performs slightly
better than Greedy Agglomerative Clustering (GAC) using the same information in
Cora dataset. However, Relax does not achieve GAC performance and all three results
are in an interval about 1.3%, which is not significant. A possible reason is because in
Cora the most informative constraints are strings comparisions.
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Table 4. Results of the third experiment in Cora dataset

Cora GAC Ants Relax

fahl 86.6 88.7 88.0
kibl 96.8 97.0 95.7
utgo 94.7 94.2 92.4

Average 92.7 93.3 92.0

9 Conclusions

We have proposed two algorithms to the Entity Disambiguation problem and a graph-
based modeling using uncertain information. Our hypothesis is that graph-based point
of view can solve some of the troubles of pairwise classifiers. Experiments show that
our modeling yields better results since combines more accurately the available infor-
mation. Also, it is able to use uncertain information which turns out to be quite helpful.

Finally, we have seen that the proposed iterative algorithms achieve performance
comparable to the state-of-the-art ones in a widely used corpus when no useful uncertain
information is available.
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Abstract. Name identification has been worked on quite intensively for the past 
few years, and has been incorporated into several products. Many researchers 
have attacked this problem in a variety of languages but only a few limited re-
searches have focused on Named Entity Recognition (NER) for Arabic text due 
to the lack of resources for Arabic named entities and the limited amount of 
progress made in Arabic natural language processing in general. In this paper, 
we present the results of our attempt at the recognition and extraction of 10 
most important named entities in Arabic script; the person name, location, com-
pany, date, time, price, measurement, phone number, ISBN and file name. We 
developed the system, Name Entity Recognition for Arabic (NERA), using a 
rule-based approach. The system consists of a whitelist representing a diction-
ary of names, and a grammar, in the form of regular expressions, which are re-
sponsible for recognizing the named entities. NERA is evaluated using our own 
corpora that are tagged in a semi-automated way, and the performance results 
achieved were satisfactory in terms of precision, recall, and f-measure. 

Keywords: Information extraction; Named entity recognition; Arabic natural 
language processing. 

1   Introduction 

NER system is a significant tool in NLP research since it allows identification of 
proper nouns in open-domain texts. Larkey have conducted a study that showed the 
importance of the proper names component in language tasks involving searching, 
tracking, retrieving, or extracting information [9]. Another study by Crestan & de 
Loupy showed that named entity extraction helps users to browse large document 
collections more quickly and efficiently [2]. This seems plausible as, according to 
Gey 30% of the content-bearing words in news are proper names [5]. Abuleil [12] and 
Chinchor [11] stated that the valuable information in text is usually located around 
proper names, to collect this information it should be found first.  

We have adopted the rule-based approach using linguistic grammar-based tech-
niques to develop NERA. The approach is motivated by the characteristics and pecu-
liarities of Arabic language. The recognition process takes two cycles, using the 
whitelist component and then applying the grammar rules. This open architecture 
approach provides flexibility and adaptability features in our system and it can be 



 Arabic Named Entity Recognition from Diverse Text Types 441 

easily configured to work with different languages, NLP applications, and domains. 
We present the results of our attempt at the recognition and extraction of 10 most 
important named entities in Arabic script that is, the person name, location, company, 
date, time, price, measurement, phone number, ISBN and file name. The NERA sys-
tem is evaluated using a reference corpus that is tagged with names in a semi-
automated way. The achieved system performance results were satisfactory when 
evaluated against the standard measures; precision, recall, and f-measure.  

The rest of this paper is structured as follows. Section 2 presents previous related 
work in Arabic NER. Section 3 describes the data collection methods used. Section 4 
explains in detail our approach to NER in terms of system architecture. Section 5 is 
dedicated to show the reference corpora we built to carry out our experimental work. 
In Section 6 we present the results of our experiments, whereas in the Section 7 we 
highlight how our system NERA, provides solutions to challenges posed by Arabic 
language. Finally, in Section 8, we draw some conclusions and discuss future works. 

2   Related Work 

Name identification has been worked on quite intensively for the past few years, and 
has been incorporated into several products. Many researchers have attacked this 
problem in a variety of languages but only a few limited researches have focused on 
NER for Arabic text. This is due to the lack of resources for Arabic NE and the lim-
ited amount of progress made in Arabic NLP in general. 

Maloney and Niv developed TAGARAB an Arabic name recognizer that uses a 
pattern-recognition engine integrated with morphological analysis. The role of the 
morphological analyzer is to decide where a name ends and the non-name context 
begins. The decision depends on the part-of-speech of the Arabic word and/or its 
inflections. The performance achieved for the Person NE recognition was 86.2%, 
76.2% and 80.9% whereas for the Location NE it was 94.5%, 85.3% and 89.7% for 
precision, recall and f-measure respectively [7]. 

Abuleil presented a technique to extract proper names from text to build a database 
of names along with their classification that can be used in question-answering sys-
tems. This work was done in three main stages: 1) marking the phrases that might 
include names, 2) building up graphs to represent the words in these phrases and the 
relationships between them, and 3) applying rules to generate the names, classify each 
of them, and saves them in a database. The NE recognition accuracy was estimated in 
terms of precision by the author; People (90%), Location (93%) and Organization 
(92%) [12]. 

Samy has used parallel corpora in Spanish, and Arabic and an NE tagger in Span-
ish to tag the names in the Arabic corpus. For each sentence pair aligned together, 
they use a simple mapping scheme to transliterate all the words in the Arabic sentence 
and return those matching with NEs in the Spanish sentence as the NEs in Arabic. 
While they report high precision (84%) and recall (97.5%), it should be noted that 
their approach is applicable only when a parallel corpus is available [3]. 

Zitouni has adopted a statistical approach for the entity detection and recognition 
(EDR). In this work, a mention can be either named (e.g. John Mayor), nominal (the 
president) or pronominal (she, it). All are referring to one conceptual entity. The  
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performance of this mention detection system is given by the author in terms of preci-
sion (64.4%), recall (55.7%) and f-measure (59.7%) [6]. 

3   Data Collection 

For training and testing purposes, we have compiled corpora containing texts which 
are diverse in terms of domain, format, style and genre. This aims to ensure that the 
system can cope adequately with any kind of text, and that its future use is not limited 
to any particular text type. Techniques used for acquiring such data include: 

• Automatic collection of named entities instances and indicators from anno-
tated corpora: The Automatic Content Extraction (ACE1) and Arabic Treebank 
(ATB2) are some great resources that facilitate corpus based studies of many inter-
esting linguistic phenomena in Modern Standard Arabic (MSA). These corpora 
were exploited for the data collection task. These corpora, which are tagged with 
great linguistic details, were first analyzed and the commonly occurring patterns 
were studied. These identified patterns were then used to extract useful data. 

• Name Database provided by government organization: The person and com-
pany name dictionaries were also build from names collected from some organiza-
tions including Immigration Departments, Educational bodies, and Brokerage 
companies.  

• Internet Resources3: Names were retrieved further from various websites4 con-
taining lists of Arabic names, company names and locations. Some of these names 
are Romanized (written using the Latin alphabet) and had to be transliterated from 
English to Arabic. 

The NEs compiled by processing corpora, internet resources and various organiza-
tions, had to be further processed to ensure that the compiled data is clean. The raw 
data received had to be further processed to make it suitable for incorporation into the 
system. 

4   The Architecture for NERA System 

The NERA system was implemented through incorporation into the FAST ESP 
framework, [5]. Figure 1 shows the abstract architecture of the NERA system. The 
system requires two main processing resources: a whitelist (gazetteer) and a finite 
state transduction grammar. A filtration mechanism is also employed that enables 
revision capabilities in the system.  

                                                           
1 ACE reference: http://projects.ldc.upenn.edu/ace/ 
2 Treebank Corpus reference: http://www.ircs.upenn.edu/arabic/ 
3 Web sites include: http://en.wikipedia.org/wiki/List_of_Arabic_names,  
 http://www.islam4you.info/contents/names/fa.php, and  
 http://www.mybabynamessite.com/list.php?letter=a 
4 Web sites include: http://en.wikipedia.org/wiki/List_of_Arabic_names,  
 http://www.islam4you.info/contents/names/fa.php, and  
 http://www.mybabynamessite.com/list.php?letter=a 
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Fig. 1. Architecture of the System 

4.1   Whitelist 

The whitelist plays the role of fixed static dictionaries of various named entities. It is 
a mechanism that accepts matches which are reported as a result of an intersection 
between the dictionary and the input text. A Whitelist is a list of strings that must be 
recognized independent of the rules. It contains entries in the format:  

 Abdulrahman Qasim Mohammed Alshirawi|عبدالرحمن قاسم الشيراوى           

The English transliterations of the Arabic names are included in the dictionary as 
meta-data in order to allow for incorporation with various applications. 

4.2   Grammar 

The grammar performs recognition and extraction of Arabic named entities from the 
input text based on derived rules. It describes patterns to match NEs, thereby annota-
tions being created as a result. Due to the peculiarities and complexities in the Arabic 
language, grammar rules are a vital processing resource for the recognition system. 
For instance the lack of capitalization for proper nouns can be very well compensated 
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by using NE indicators to formulate recognition rules. These NE indicators were ob-
tained as a result of the deep contextual analysis of various Arabic scripts that were 
performed during the data collection phase. The indicators are referred to as trigger 
words within our system, forming a window around a named entity, which helps in 
identifying a NE within text but does not get recognized itself. 

• Person Title: السيدة (Mrs.), السيد (Mrs.) 
• Job title: الدآتورة (the doctor), أستاذ العلوم (the sciences professor) 
• Company indicator: ذات مسئوليه محدودة (LLC) 
• Country Post-indicators: الاتحادية (the federal), الديمقراطية (the democracy) 
• City Post-indicators: ةعاصمة المالي  (the finance capital) 
• Measurement: ملليجرامات (miligrams),آيلوا مترات (kilometers) 
• Price: جنيه مصري (Egyptian Pound),  (dirham Emirati)  درهم إماراتي

Moreover inflections within Arabic language can be well dealt with using hand-
crafted rules, which enables stripping off of the prefixes and suffixes from the stem 
word, prior recognition. Thus ensuring the recognition of the actual NE instance 
alone. For each type of named entity several rules were built and each one was ap-
plied in a particular order to ensure that the most comprehensive recognition result 
was achieved. 

 
Example rule for Person name recognition 
((honorfic+ws(location(ي|ية)+ws)?)+firsts_v 
(ws+lasts_v)?ws+(number)?) 

The above rule recognizes a person name composed of a first name followed by 
optional last name based on a preceding person indicator pattern, or the trigger words. 
The following name would be recognized by this rule: 

 [The king Abdullah]   الملك عبد  االله 

 [The Jordanian king Abdullah]   عبد  االله الأردنيالملك 

 [The Jordanian king Abdullah II]   عبد  االله الثانيالأردنيالملك 

 [The Jordanian queen Rania]   الملكة الأردنية رانيا

Apart from contextual cues, the typical Arabic naming elements were used to for-
mulate rules such as nasab, kunya, etc. Thereby the rules resulted in a good control 
over critical instances by recognizing complex entities. 
 
Example rule for Location recognition 
( )مدينة  | Administrative division) + ws)? + city name  
+ws + direction 

The rule above recognizes a city name (existing in the dictionary of city names). 
The following name would be recognized by this rule: 

... مدينة اغادير جنوب  [Agadir City south of …] 
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4.3   Filter 

A filtration mechanism is used in the form of a Blacklist (rejecter) within the gram-
mar configuration to filter matches, returned by rules, which appear after named en-
tity indicators but are invalid entities.  Consider the following example: 

 ‘ امالامين الع وزير الخارجية العراقي ’ [The Iraqi Foreign Minister the Secretary-General] 

In this example, the words following the person indicator (‘وزير الخارجية العراقي’ [The 
Iraqi Foreign Minister]) that is, ‘الامين العام’ (the Secretary-General) is not a valid person 
name. The role of the blacklist, another set of rules, is rejecting such incorrect matches. 

Apart from the Blacklist component certain heuristic Filter rules are used for post-
processing the system’s extraction results in order to disambiguate extracted named 
entities. When applying a set of single-slot extraction rules to the input text i.e. sets of 
rules which extract particular types of named entity one after the other, one cannot 
exclude the possibility of identical or overlapping textual matches within the docu-
ment, among different rules for different named entities. For instance, different sets of 
rules for extracting instances of both the named entities person and location names 
may overlap or exactly match in certain text fragments, resulting in ambiguous named 
entities. Among these named entities, the correct choice must be made. The filter rule 
is an intelligent way of specifying how to get the correct choice, with respect to the 
context in which the ambiguous situation may arise. 

The following example illustrates an ambiguous situation in Arabic script: 

  لديه اهتمام بالغ بالفلسفةاباد احمد
(Ahmed Abad has a keen interest in philosophy) 

In this example the bold text fragment represents both a person name and a loca-
tion.  Hence when NERA is applied here, both the Person and Location Extractors 
will return matches as ‘احمد اباد’ (Ahmed Abad). The developer can tune the system to 
resolve some kinds of ambiguous situations by the virtue of filter rules. One solution 
to disambiguate this situation is to use the following filter rule:  

If a possible match M1 for a location entity intersects 
with a match M2 that was previously reported by the 
person extractor, then the match as a location name 
will be discarded. 

Thus in case of an intersection, the match for person names is preferred over loca-
tion names. The filter rules defined within the system play a significant role to handle 
such situations and resolve ambiguity. However, it should be built upon careful analy-
sis of the ambiguous situations in order to get accurate results. 

5   Resources Build for Arabic NER within NERA 

To develop the Arabic NER, we had to build our own corpora due to the unavailability 
of free Arabic corpora for research purposes. Moreover, the commercially available 
Arabic corpora are oriented towards newswire which we found lacks the coverage of 
the 10 named entities involved in our research. Further, we have also built the whitelist 
(gazetteer) component, which is a vital processing resource for many NLP tasks. Fol-
lowing, we present the main characteristics of the developed resources for Arabic. 
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5.1   Corpora for Person, Location, Date, Time, Price and Measurement NE 

ACE (Automatic Content extraction, version 5.3.3 2005.05.31) and ATB (Arabic 
Treebank, version 2.0, LDC catalog number LDC2003T06) corpora by LDC are some 
great Arabic NLP resources. These corpora contain text taken from newswire docu-
ments and broadcast news which was used to create the entity tagged reference cor-
pora for evaluating Person, Location, Date, Time, Price, and Measurement extractors 
within NERA. 

For efficiency purpose the reference corpus build was divided into sets of test cor-
pora, each being approximately 100KB in size. The total number of test sets for these 
named entities is 34, with 24 created from ACE corpus and 10 created from ATB 
corpus. The total size of the reference corpus is around 4MB composed of 300000 
words. The size and content of the corpus is such that it contains a representative 
amount of occurrences of the following NE: Person name includes 500+ entities, 
location includes 500+ entities, date includes 394 entities, time includes 110 entities, 
price includes 400 entities, and measurement includes 386 entities. 

5.2   Corpus for Company Named Entity  

The ACE and ATB corpora do not include representative number of entities for com-
pany names. We sought another corpus, that is, Corpus of Contemporary Arabic 
(CCA5) [8]. We used CCA to create of the reference corpus for evaluating the com-
pany extractor. For building up the company test corpus we created two reference 
corpus set (each 100 KB in size) from randomly selected text from the CCA corpus. 
Both the two sets were hand tagged to mark company names within it. A total of 226 
company name instances have been hand tagged. 

5.3   Corpus for Phone Number, ISBN and File Name Named Entities 

Arabic available corpus resources are quite limited and restrained to coverage of the 
most important NEs such as person, location etc. Hence various Arabic websites (e.g. 
Real Estate, Newspaper etc) were analyzed to collect Phone number, ISBN and file 
name entities. The corpus build was hand tagged with 191 Phone number entities, 100 
entities for ISBN, and 139 entities for File name. 

5.4   Whitelists 

NERA gathers three different manually built gazetteers or whitelist: 
1. Person Whitelist: This contains a list of 263,598 complete names of people col-

lected from DNRD (Dubai Naturalization & Residency Department), Brokerage 
companies, and existing Arabic corpora and internet resources. Further the names 
were split into dictionaries of first names with 175,502 names and last names with 
33,517 names; 

2. Location Whitelist: This consists of 4,900 names of continents, countries, cities, 
states, political regions, towns and villages found in the Arabic version of Wikipe-
dia and other websites; 

                                                           
5 CCA is freely downloaded online http://www.comp.leeds.ac.uk/eric/latifa/research.htm 
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3. Organizations Whitelist: This consists of a list of 273,491 names of companies 
including areas such as media and newspaper, construction, banks & insurance, air-
lines, telecommunications and many more. 

6   Experiment 

The evaluation of the NERA extractors was performed using our own reference cor-
pora which highlight the Arabic resources built during this project work. Since the 
corpora were tagged in a semi-automated way, certain named entities were left 
untagged. In the recognition results these NEs were recognized correctly by the sys-
tem, but since they were not tagged in the test corpora the evaluation tool marked 
these as false positives when in reality they were true positives. To overcome this 
issue, the entities marked as false positives by evaluation tool were extracted and re-
tagged in the reference corpora. This iterative tagging of the corpus ensured quality. 
Moreover this tool can perform evaluation on a corpus with size limited to 100 KB. 
Hence the 5MB of evaluation corpora composed of 397,069 words was divided into 
46 sets of corpus files.  

6.1   Evaluation Method 

We have adopted the standard evaluation measures in the IE community [1] (i.e. pre-
cision, recall and F-measures), to evaluate and compare the results. It was introduced 
to provide a single figure to compare different systems’ performances.  

6.2   Results 

Table 1 summarizes the accumulative recognition accuracy, in terms of precision & 
recall, achieved by all the 10 extractors within NERA, against the reference corpora. 

With respect to the extractors’ person, location and company some of the entries 
within the whitelist component built were extracted from the same corpus used also for 
creating the reference corpora for evaluation. However, the evaluation results achieved 
are accurate since they indicated recognition of named entities not included in the whitel-
ist but being recognized by the grammar rules within the pattern matching component.  

Table 1. Accumulated accuracy of the 10 named entities 

No NE Precision Recall f-measure 
1 Person 86.3% 89.2% 87.7% 
2 Location  77.4% 96.8% 85.9% 
3 Company 81.45% 84.95% 83.15% 
4 Date  91.2% 92.3% 91.6% 
5 Time 97.25% 94.5% 95.4% 
6 Price 100% 99.45% 98.6% 
7 Measurement 97.8% 97.3% 97.2% 
8 Phone Number 94.9% 87.9% 91.3% 
9 ISBN 94.8% 95.8% 95.3% 
10 File name 95.7% 97.1% 96.4% 
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One important factor that has greatly influenced the above achieved results is the 
non-standardization of written Arabic text. Majority of them are unstructured loaded 
with inconsistencies due to the lack of control over written forms of Arabic script. 
Standard practices in publishing written Arabic resources can help achieve far better 
accuracy results 

7   Solutions to Challenges in NERA 

7.1   Inflections 

Arabic is a highly inflected language. So, within the handcrafted rules, we added the 
possibilities of breaking down the inflected form into a stem (or numeric figure) and 
affixes in order to recognize the stem as a name entity. Table 2 shows some inflected 
named entity examples which have been dealt with in the grammar file for the respec-
tive entity type. 

7.2   Non-casing Language 

Due to the lack of capital letters in Arabic script, we used keywords or indicator 
words to guide us to the place where one could find them in the text. The method 
adopted is to derive a set of heuristic rules that parse the phrases to extract the name 
entities. Some examples of keywords used for identifying the names are: 

o Personal names (title): Mr. John Adams   جون آدامزالسّيّد   
o Personal names (job title): President John Adams  رئيسال  جون آدامز  

Table 2. Examples of inflections in Arabic text 

Arabic Ex. English Trans. Entity Type Affix (clitics) 
 For $20,266 Price ‘ ’ (baa)

 The 2925 meter Measurement ‘ ’(al)
 For the United States Location ‘ ’ (baa, alif, laam) 

 And Egypt Location  ‘ ’ (Waw) 

"”
for the British 
Broadcasting 
Corporation "BBC" 

Company  ‘ ’ (laam) 

 

7.3   Spelling Variants 

Spelling of translated and transliterated proper names in general tends to be inconsis-
tent in Arabic text. Table 3 shows some examples of the inconsistency, although some 
can be considered as typos. 

The extractor can handle, to some extent the above mentioned spelling variants. 
Such issues were dealt with within the context sensitive rules and dictionary build 
within the NERA system.  
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Table 3. Examples of variations in Arabic text 

Arabic Ex. English Trans. Entity Type 
 Indonesia Location أندونيسية / أندونيسيا
 Guilder Price (currency) جلدر/ جيلد /غلدر/غيلدر
لوس انجيليس /لوس انجيلس/لوس انجلوس/لوس انجليس Los Angeles Location 

٥٧٥٦٤٥٣: الجوال ٥٧٥٦٤٥٣: بيلرقم المو /   Mobile no: 3546575 Phone number 
جوهانسورغ /جوهانسوبورغ/جوهانسبرغ/ جوهانسبورغ Johannesburg Location 

7.4   Typographic Variants 

The extractor is capable of recognizing variations in written Arabic text for the vari-
ous named entities being recognized. Table 4 contains some example NE indicating 
typographic variations. 

7.5   Ambiguity 

This commonly found problem in Arabic script is encountered within NERA when 
ambiguous matches are returned by different extractors. Table 5 shows some of the 
ambiguous situations that the system can handle. These situations can be handled by 
specifying a filter rule that gives preference on one extractor over the other. 

Table 4. Examples of typographic variations in Arabic text 

Arabic Ex. English Trans. Entity Type Typographic variation  
 ,Australia Location drop hamza (initially, medially أستراليا/استراليا

or finally) 
 Saudi Arabia Location two dots removed from taa السعوديه/السعودية

marbouta 
 Lira Price Two dots inserted on final haa ليرة/ليره
يااس  Asia Location Drop of the madda from aleph آسيا/
 4th Date (day) Hamza (below or above aleph) إلاربع/ألاربع

Table 5. Ambiguous examples 

Ambiguous Ex. English Trans. Incorrect  Correct  
1.6985   1.6985 Swiss Franc Person Price 

 15th of Ramadan Al karim 
2005 

Person Date 

Jussim united for real estate 
and general maintenance 

Person Company 

 1.5 billion Singapore dollar Location Price 
 Saudi Aramco Location Company  

 In the evening Elizabeth II Time Person 
…

 … 
…a turning point in 
September 1954 Martin 
presented… 

Measurement Date  
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8   Conclusion 

The work done in this project is an attempt to broaden the coverage for entity extrac-
tion by incorporating the Arabic language, thereby paving the path towards enabling 
search solutions to the Arabian market. Various data collection techniques were used 
for acquiring dictionary name lists. The rule-based approach employed with great 
linguistic expertise provided a successful implementation of the NERA system by 
accomplishing challenges posed by Arabic language. Rules are capable of recognizing 
inflected forms by breaking them down into stems and affixes. A filtration mechanism 
is employed in the form of a rejecter within the grammar configuration that helps in 
deciding where a name ends and the non-name context begins. Further the intelligent 
use of filter rules helps in dealing with ambiguity between named entities. We have 
evaluated our system performance using a reference corpus that is tagged in a semi-
automated way. The average Precision and Recall achieved by NERA extractors for 
each named entity type, against the reference corpora were satisfactory.  
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Abstract. The method outlined in this paper demonstrates that the information-
theoretic similarity measure and noun-predicate bigrams are effective methods 
for creating lists of semantically-related words for lexical database work. Our 
experiments revealed that instead of serious syntactic analysis, bigrams and 
morpho-syntactic information sufficed for the feature-based similarity measure. 
We contend that our method would be even more appreciated if it applied to a 
raw newswire corpus in which unlisted words in existing dictionaries, such as 
recently-created words, proper nouns, and syllabic abbreviations, are prevailing.  

Keywords: Semantically-related words, similarity measure, lexical relations, 
noun-predicate bigrams. 

1   Introduction 

In large scale lexical database work like WordNet, building word relations such as 
synonymy, hypernymy, and antonymy lies in the core part of the work. Most work 
usually takes advantage of existing resources such as lexicons, and thesauri, or starts 
from scratch, which inevitably demands a lot of human effort and time to develop. 
Manually compiled lexicons or thesauri include very infrequent usages in a particular 
corpus[1], and are prone to be dependent on theoretical considerations and human 
judgment.  

There has been much research on the automatic clustering of related words for 
lexical database and thesaurus constructions. Especially, many approaches to auto-
matic detection of similar words have been widely pursued. One of the similarity 
measures is based on the distributional hypothesis or the distributional pattern of 
words, in which words that occur in the same contexts tend to have similar meanings. 
This approach links the semantics of words with their syntactical behaviors. Similar to 
[2], [1] adopted a syntactic parser and extracted dependency triples from the text cor-
pus. The dependency triples extracted from a corpus can be features of the heads and 
modifiers in the triples. Then the similarity between two words was calculated with 
the information-theoretic similarity measure [1] suggested. This similarity measure 
can be used in a number of different domains, but requires a large-scale parsed corpus 
and dependency triples as features.  
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On the basis of the similarity measure, we designed a new method of retrieving 
lists of semantically-related words. Even though the similarity measure was originally 
intended for similar words, due to the consideration of syntactical structures as fea-
tures, the measure also comes up with lists of various lexical relations including 
synonyms, antonyms, hypernyms and hyponyms. The similarity measure we devel-
oped, takes into account distributions of words with features from grammatical  
relations, thus syntactic commonality between two words are likely to affect various 
lexical relations. 

Unlike [1] and [3], we did not take advantage of a parsed corpus for feature extrac-
tion. We only considered noun-predicate bigrams with simple morphological features. 
This is because in our Korean data, only a small syntactically annotated corpus was 
available and no reliable syntactic parsers were available at the moment. Instead of 
using a parsed corpus, we focused only on morphologically tagged corpus in which 
morphological features and language-specific features were annotated. In an aggluti-
native language or a morphologically rich language like Korean, morphemes carry 
various grammatical relations such as subject, object, and oblique arguments as well 
as basic morphological information. We assumed that in SOV languages, window of a 
predicate and its single left element would suffice for a similarity measurement. 
Unlike English in SVO pattern, -1 window word of a predicate can vary from a sub-
ject of an intransitive verb, an object of a transitive verb to other oblique arguments 
such as a postpositional phrase, John-eykey (to John as in English counterpart). Predi-
cate modifiers like adverbials and even connective verbs for compound verbs can 
occur at the -1 position. We took into account only nouns with or without case mark-
ers at the position as features and incorporated them into the similarity measure.  

In this paper, we compare the syntactic contexts-based similarity and the simple 
bigram-based approach. We, then, demonstrate that the latter takes advantage of small 
numbers of features coming from a simple morphological analysis and produces sig-
nificant lists of semantically-related words in the case of Korean. We also contend 
that the method, suggested here can deal with newly created words and special forms 
of words such as syllabic abbreviations that largely occur in newspaper articles and 
are hardly captured by manual work. Thus this approach can be used for domain-
specific vocabulary or ontology constructions as well as general lexicon work such as 
automatic thesaurus and WorldNet constructions. 

2   Related Work 

Similarity is widely used in natural language processing. Many similarity measures 
have been proposed, such as the dice coefficient [4], the cosine coefficient [4], the 
distance-based measurements [5], the feature contrast model [6] , and the information-
theoretic measurement[1] and [3] 1 . We only investigate two syntactic contexts  
approaches based on feature calculations.  

                                                           
1 [7] discussed two kinds of similarity, relational similarity and attributional similarity. We only 

focus on word similarity. Other similarity measures have also been widely pursed.  
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2.1   The Information-Theoretic Measurement  

[1] reviewed various kinds of similarity measures and suggested the information-
theoretic measures, which made use of a parser to extract dependency triples from the 
text corpus and regarded the dependency triples as features of the heads and modifiers 
in the triples. For example, (avert obj duty) is a dependency triple which means that 
duty is an object of avert. Table 1 shows a subset of the features of duty and sanction. 
An ‘x’ in the duty or sanction column means that the word possesses that feature [1]. 

Table 1. Features of duty and sanction from [1] 

Feature duty sanction I(fi) 
f1: subj-of(include) x x 3.15 
f2: obj-of(assume) x  5.43 
f3: obj-of(avert) x x 5.88 
f4: obj-of(ease)  x 4.99 
f5: obj-of(impose) x x 4.97 
f6: adj-mod(fiduciary) x  7.76 
f7: adj-mod(punitive) x x 7.10 
f8: adj-mod(economic)  x 3.70 

 
Here F(w) is the set of features possessed by w, and the commonalities between 

two words w1, w2 is F(w1) ∩ F(w2). And the similarity between two words is calcu-
lated as follows: 

sim(w1, w2) = 
))(())((

))(()((2

21

21

wFIwFI

wFwFI

+
× ∩

 (1)

I(F) is the amount of information contained in a set of features F. Assuming that fea-

tures are independent of one another, I(F) = ∑ ∈
−

Ff
fP )(log , where P(f) is the 

probability of features. When two words have identical sets of features, the similarity 
reaches the maximum value of 1, and when two words do not have any common fea-
ture, the minimum similarity 0 is reached.  

According to the result from the work, [1] argued that the output showed good per-
formance and revealed quite reasonable pairs of respective nearest neighbors. For 
example, the pair captive and westerner was very useful since it was very unlikely 
that any manually created thesaurus would list them as near-synonyms. 

Despite the result, the syntactic dependency-based method has drawbacks. First, it 
is not easy to get reliable dependency triple sets from a large corpus. As a corpus gets 
larger, a lot of computing time and resources are required for feature extractions. 
Next, it is not certain what kind of syntactic information will function as discrimina-
tors to detect distributional similarities. In this approach, grammatical information 
such as subject, object, adjective modifiers were used to measure distribution-based 
similarity. Also the probability estimators for features have two problems. First Eng-
lish NPs that are syntactic subjects are much more likely to be pronouns, while NPs 
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that are syntactic objects are much more likely to be non-pronominal. According to 
[8] based on the Switchboard corpus, 91% of English subjects are pronouns and 9% 
are non-pronouns. Likewise 34% of objects are pronouns, and 66% of objects, non-
pronouns. Thus ‘subj-of’, and ‘obj-of” may not be good candidates for features since 
pronouns at the positions are likely to diminish distinctive functions of the features. 

2.2   Syntactic Contexts with the Weighted Jaccard Measurement 

[9] suggested the notion of syntactic context and presented how syntactic information 
could be used to extract semantic regularities of word sequences. Following [10] ‘at-
tributes’ which are the syntactic contexts of a word, they extracted syntactic informa-
tion and made syntactic context more elaborate than [1] and [3]. They applied various 
semantic extraction techniques to the Brazilian Portuguese corpus from NILC (Inter-
institutional Center of Computational Linguistics-USP/Sao Carlos/Brazil). Similarity 
was computed by measuring the syntactic information shared by 12,359 different 
nouns on the basis of 32,293 different attributes. 

One of the most salient attributes in [9] experiments must be the specific preposi-
tions to measure word similarity. In a Portuguese example autorização à empresa 
(permission to the company), empresa (company) was extracted as the attribute of 
autorização (permission). Information about prepositions was taken into account 
since they convey important syntactic and semantic information. This observation is a 
language-specific condition in syntactic contexts, which was not taken into account in 
[1]’s approach. Along the same line, we incorporate postpositional structures (prepo-
sitional phrases in English counterparts) into our experiments. 

Even though [9] and [1] are common in the syntactic-based approach, they used 
different similarity measures. Unlike [1], [9] introduced the weighted Jaccard meas-
ure. The measure considers a global and a local weight for each attribute. The global 
weight considers how many different words are associated with a given attribute, and 
the local weight is based on the frequency of the attribute with a given word. The 
whole weight is the multiplication of both weights. The following is the weighted 
Jaccard measure between two words m and n.  

WJ(wm, wn) = 
∑
∑

j jnjm

j jnjm

attwattw
attwattw

WW

WW

)),(),,(max(

)),(),,(min(  
(2)

The similarity, based on the weighted Jaccard measure of two words in Korean, 
haksaying (student) and emeni (mother) is calculated as follows. 

WJ(wm, wn) = 3868.0
47707.030094.0

30099.00 ≈
+

+
 (3)

[9] insisted that a syntactic-based approach opened up a much wider range of more 
precise contexts than does a simple windows strategy. Nonetheless, we should point 
out that to get very elaborate syntactic contexts, we also need much more specific and 
complicated linguistic information. The syntactic-based strategy requires a part-of-
speech tagger for morpho-syntactic categories and a parser for basic phrasal groups or 
chunks. Like [1], this approach requires very reliable syntactic analysis, which seems 
not to be available in some languages.  
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Table 2. The weighted Jaacard between two Korean words student and mother 

student (wm), total attributes 100 
word 

Verb(reln):f freq gw(f) W(wm,f) 

set of features 
find-of(sub) 

comeout(mod)
2 
2 

0.99970 
0.99989

0.30094 
0.30099

mother (wn), total attributes 113 
word 

Verb(reln):f freq gw(f) W(wn,f) 

set of features 
find-of(sub) 

comeout(mod)
1 
3 

0.99970 
0.99989

0 
0.47707

3   Word Similarity between Syntactic Contexts and Noun-
Predicate Bigrams 

As pointed out in the previous section, there have been many approaches to automatic 
discoveries of word senses. Following the distributional hypothesis that words that 
occur in the same contexts tend to be similar, syntactic contexts for feature vectors 
combine with similarity measures. [1], [3] and [9] showed various syntactic contexts 
and elaborate feature sets from the context. Our approach, however, makes use of 
simple noun-predicate bigram contexts and small numbers of feature sets originating 
from morphological analysis.  

To validate our method, we compared the two approaches in Korean. We set up 
two contexts for our experiments. In the first context, following [1], [3], and [9], we 
considered syntactic contexts for feature extractions in Korean texts. We adopted the 
Sejong Korean corpus, which was an output of the national corpus project initiated by 
the Korean government for 10 years. The second context made use of only morpho-
logical information, and the experiment did not take advantage of syntactic analysis at 
all. Only predicates and -1 window words as arguments were considered. We describe 
two experiments in the following sections.  

3.1   Syntactic Contexts-Based Experiment in Korean 

We took the parsed Sejong Korean corpus for syntactic context experiment, which con-
sists of 150,000 words. We converted the parsed trees into dependency structures, then 
we extracted grammatical relation sets from nouns and their dependent structures. We 
considered nouns occurring more than 10 times and we got only 6,686 nouns. Among 
the grammatical relation sets, we considered only subject, object, and modifiers as  
features following [1] and [3]. We excluded some predicates such as ha- (do), toy- (be-
come), iss- (be), eps- (be not), kath- (be like), etc. from feature sets, because the predi-
cates can combine with many kinds of nouns, thus diminish similarity values. Table 3 
shows the similarity values of ekkay (shoulder) and respective nearest neighbors on the 
basis of [1]’s information-theoretic similarity measure described in (1). 

Although this example shows some related words like leg, head, neck with lower 
probabilities, the general output turned out to be poor. According to our manual 
evaluation, most words produced lists of words in which relations are hard to find. 
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Table 3. Similarity value of ekkay (shoulder) based on the information-theroretic similarity 

Word 
Similarity 
value 

Respective 
nearest 
neighbors 

Features 

0.179791 Leg 
mod-of (father), 
obj-of (expose) 

0.139527 Head obj-of (shake) 
0.110426 Neck obj-of (expose) 
0.102633 New obj-of (take) 

shoulder 

0.102408 Friend obj-of (take) 

Table 4. Similarity value of ekkay (shoulder) based on the weighted Jaccard measure 

Word Similarity 
value 

Retrieved 
word 

Features 

0.14478 Neck obj-of  
(expose) 

shoulder 

0.136577 Head obj-of (shake) 

 
We also checked the syntactic context approach with another similarity measure, 

the weighted Jaccard similarity measure by [9]. The following table shows the simi-
larity values from the measure.  

The result from the weighted Jaccard measure produced only two related words. 
With this result, we cannot judge which similarity measure is better. The average 
number of predicate types of nouns is only 7.97, which is too small to have distinctive 
features. With the corpus of 150,000 words, we could not make sure that the syntactic 
context-based approach could really contribute to word similarity in the case of Ko-
rean. A larger parsed corpus or more reliable parsers are not currently available. 

Also we should point out that some grammatical features such as oblique phrases 
or postpositional phrases which are usually realized as prepositional phrases in Eng-
lish should be considered in Korean. The oblique phrases, however, were unlikely to 
be included in dependent structures because many of them are not arguments, but 
adjuncts, and the adjunct phrases are likely to be ignored in the dependency triples. 
This weakens the syntactic contexts-based approach in Korean.  

3.2   Noun-Predicate Bigram-Based Experiment in Korean 

Instead of the parsed corpus, we used the morphologically tagged Sejong corpus 
which consists of about 8,800,000 running words. First we searched words with V 
and E tags for predicates and inflectional endings respectively. Following [11] for the 
validity of web counts for a range of predicate-argument bigrams and [12] for the 
asymmetry between a verb and its object for collocations, we investigated noun-
predicate bigrams in Korean. We chose one previous word of the predicate (-1 win-
dow word) and the -1 window word varies from noun phrases with or without case 
markers to verbs with compounding endings. Table 5 shows categories of -1 window 
words and their frequencies. 
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Table 5. -1 window categories and their frequencies  

-1 word category with markers frequency 
nouns with obj-marker 294,864 
nouns with oblique-marker 192,441 
Adverbials 161,134 
nouns with subj-marker 125,556 
verbs with adnominal inflection 96,932 
bound nouns2 without markers 68,349 
nouns with non-grammatical markers 59,139 
nouns without markers 52,727 
adjectives with adnominal inflection 31,766 
nouns with subj-complement marker 20,036 

 
The most frequent element occurring right before a predicate is a noun with the ob-

ject marker ul/lul, which shows an example of transitive verbs. The oblique elements 
occupy the second highest frequencies, but were totally ignored in the syntactic con-
text approaches.  

Considering the frequencies above, features were extracted from noun phrases 
with/without grammatical case makers for the experiment. Other noun phrases with 
non-grammatical markers were excluded, because those noun phrases can combine 
with almost all the predicates. Noun phrases without case markers are ambiguous in 
that they can be realized as various grammatical relations. We specified the phrases as 
NullRelations. A total of 80 features were set up for our experiment. Table 6 shows 
some of the features with frequencies. 

Table 6. Features for the morphology-based experiment and frequencies 

Features Freq 
JKS: subj-of (predicate) 3,245
JKO: obj-of (predicate) 4,746
JKB-kathi: prepositional phrase ‘like-‘ in English 248 
JKB-eykey: prepositional phrase ‘to-‘ in English 45 
JKB-wa: prepositional phrase ‘with-‘ in English 2,338
JKB-ulose: prepositional phrase ‘as-‘ in English 20 
NullRelation: no case markers 5.653

 
Following [1]’s similarity measure, a total of 6,600 noun-predicate bigrams were 

calculated. The result showed much more coherent word lists than those from syntac-
tic contexts in the table 3. For example, the top 10 related words with respect to ekkay 
(shoulder) are listed in (4) in English counterparts. 

 

                                                           
2 Bound nouns, also called dependent nouns, cannot stand alone. They always form a noun 

phrase with a preceding modifying element such as a pronominal modifier. 
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 (4) 

back (0.2077), waist (0.1650), neck (0.1620), head 
(0.156232), leg (0.146328), chest (0.144231), forehead 
(0.143842), body (0.137493), knee (0.129336), arms 
(0.125568) 

The notable thing from this experiment is that the bigram approach produced vari-
ous lexical relations or respective nearest neighbors according to [1]’s terminology. 
Also sister words which can be hyponyms of certain word were widely detected. In 
the above example (4), all the words except body have sister relations in terms of 
shoulder and the words can be hyponyms of the hypernym, body-part. 

4   Evaluation 

4.1   Evaluation for Recall 

To evaluate the bigram context method, similar work using the same corpus is neces-
sary. Unfortunately there has been no such kind work in Korean as of yet. Instead we 
compared our word lists with synonym or near-synonym lists from a Korean diction-
ary and English-Korean dictionaries such as ‘Yonsei Korean dictionary, Gumseong 
English-Korean dictionary, and Minjung English-Korean dictionary’. 4,877 entries 
from three dictionaries were chosen and the total number of synonym lists of the en-
tries was about 4,000,000 with the average 8.14 synonyms per word. Out of 4 million 
related words, 40% of words matched with our lists. Since our lists contain not only 
synonyms but also antonyms, sister words, and hypernyms, 40% recall for synonyms 
is promising. The following table shows recalls according to the frequencies of syno-
nyms from the three dictionaries. 

Words occurring over 80 times showed more than 90% recall. This suggests that 
higher frequency words would have more types of predicates, thus features from 
predicates would also be increased.  

Table 7. Recalls related to the frequencies in synonyms from three dictionaries 

freq Word pairs in 3 dictionaries extracted pairs recall 
20 13,629 10,607 0.778267 
40 7,551 6.365 0.842935 
60 5,192 4,575 0.881163 
80 3,820 3,441 0.900785 
100 2,993 2,738 0.914801 
120 2,211 2,066 0.934419 
140 1,828 1,723 0.94256 
160 1,539 1,450 0.94217 
180 1,249 1,190 0.952762 
200 1,083 1,030 0.951062 
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4.2   Manual Evaluation 

We also manually evaluated about 22% random samples (1,488 words) from the test 
data consisting of 6,686 words. We chose the top-15 pairs of each word and manually 
checked lexical relations. Table 8 is an example of cilpyeng (disease) with top-15 
retrieved words and similarity values. 

Table 8. The top-15 words pairs of disease 

word Retrieved words with English translations 
Sim. 
value 

Manual  
checking 

cilhwan (disease) 0.38 Syn 
wuycangpyeng (gastroenterological ailment) 0.29 Hypo 
pokthong (stomachache) 0.27 Hypo 
hwuyucung (sequela) 0.25 Hypo 
cungsey (symptom) 0.24 Rel 
am (cancer) 0.22 Hypo 
paykhyelpyeng (leukemia) 0.21 Hypo 
allergy 0.21 Hypo 
pwucakyong (side effect) 0.21 Rel 
chensik (asthma) 0.20 Hypo 
ceonyembyeng (epidemic) 0.20 Hypo 
tangnyopyeng (diabetes) 0.20 Hypo 
pwunyel (cleavage) 0.18 Not 
noilosey (neurosis) 0.19 Hypo 

cilpyeong 
 (disease) 

pyenhyek (revolution) 0.19 Not 

 
Among manually checked relations, ‘rel’ means another kind of relation other than 

7 word relations adopted here. ‘Not’ specifies unrelated words. Even though manual 
evaluation is a notorious task due to discrepancies among human annotators, the ex-
ample above reveals that retrieved words from the similarity measure are quite rea-
sonable. Only two words have nothing to do with disease and many of them belong to 
the category of ‘hyponymy’. 
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Fig. 1. Distributions of 7 relations 
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In our manual evaluation, 290 lexical items out of 1,488 do not have any lexical re-
lations; all marked as ‘not’. And the average number of relations per word is 3.70766 
(24,7177%) in top-15 candidates. We set up 7 word relations including synonyms, 
antonyms, hypernyms, related words, near synonyms, sister words, and hyponyms. 
The distribution of the relation from manual checking is in Figure 1. Here, sister 
words are tentative candidates for hyponyms of a certain word. For example, the word 
white retrieves some color-based words like green, red, and black. Those words can 
be hyponyms of color. The sister words occupy the majority of lexical relations fol-
lowed by near synonyms. This implies that our method can benefit hierarchical lexical 
work by linking sister words to the hypernym. 

5   Discussion 

Our experiment was based on the balanced corpus, called the Sejong Korean corpus. 
To validate our method and to check whether or not the method is corpus-sensitive, 
we conducted an experiment on the raw Korean newswire corpus, ‘Hankyelye’. The 
corpus consists of newspaper articles over three years from 2001 to 2003. As a testbed 
we select some portions of the corpus, so 47,084,285 words and 4,316,876 bigrams 
were extracted, which was almost 6 times bigger than the Sejong corpus in size 
(8,800,000 words) and about 4.5 times bigger in the numbers of bigrams. The total 
number of extracted features is 43,313, which is about 1/100 size of the whole words. 
Since it is a raw corpus, we performed morphological analysis and repeated the same 
procedure for the experiment. 

The result seemed to retrieve even more interesting lists of words than using the 
Sejong corpus. Instead of specifying detailed evaluations, we point out some notable 
facts from the experiment. Due to the properties of the newswire, retrieved lists of 
words contain lots of recently-created words, compound nouns, proper nouns, organi-
zations, and syllabic abbreviations, which are unlikely to be listed in the existing lexi-
con. For example, sonposa is a syllabic abbreviation of sonhaypohemsa (property 
insurance company). This word widely appears in newspaper articles, but not in the 
dictionaries. Our method retrieved the following lists of words with similarity values. 

(5) sonposa: sayngposa (0.14, life insurance company), 
sicwungunhayng (0.10,general bank), pohemsa (0.10,  
insurance company), yenlyengday (0.09, age) 

Here sayngposa is also a syllabic abbreviation of sayngmyengpohemsa(life insur-
ance company). This method enables us to reinforce many unlisted words and their 
relations in lexicon work. Also the wide coverage of lexicon can contribute to ad-
vanced NLP systems such as word sense disambiguation, information retrieval or 
search systems using lexical relations. 

The final thing we need to mention is the size of the corpus and the numbers of 
features for this method. The features in this approach are extracted from a predicate 
and its noun arguments. We generally expect that the bigger corpus would have more 
predicates and arguments, thus more distinctive features would appear. Although our 
experiments with 8,800,000 and 47,084,285 words turned out to be a good size, the 
lower bound of the size for quality considerations should be carefully investigated. 
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The table 7 in 4.1 shows proportional frequencies to recalls. According to the table, 
words occurring over 80 times show more than 90% recalls. This implies that infre-
quent words are less likely to be captured as lexical relations. We should think about 
the threshold of the corpus size and frequencies of words. 

6   Future Work and Conclusions 

The method outlined in this paper demonstrates that the information-theoretic similar-
ity measure and noun-predicate bigrams are effective methods for creating lists of 
semantically-related words for lexical database work. Our experiments revealed that 
instead of serious syntactic analysis, bigrams and morpho-syntactic information suf-
ficed for the feature-based similarity measure. We contend that our method would be 
even more appreciated if it applied to a raw and a large-scale corpus such as newswire 
data. As seen in previous sections, various relations of unlisted lexical items were 
well captured.  

The lists of semantically-related words, however, do not identify the relation of the 
included items. The lists still contain uncommon words as well as related words. At 
present, we manually validate retrieved words, thus automatic word clustering is re-
quired. There have been many approaches to word clustering, but most of them bene-
fit from existing resources such as Roget‘s thesaurus, and WordNet[13], which ham-
pers further research when the resources are not available. We are developing ways to 
significantly improve automatic word clustering within the semantically-related lists 
without largely resorting to the resources. 
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Abstract. An empirical method for splitting German compounds is ex-
plored by varying it in a number of ways to investigate the consequences
for factored statistical machine translation between English and German
in both directions. Compound splitting is incorporated into translation in
a preprocessing step, performed on training data and on German trans-
lation input. For translation into German, compounds are merged based
on part-of-speech in a postprocessing step. Compound parts are marked,
to separate them from ordinary words. Translation quality is improved in
both translation directions and the number of untranslated words in the
English output is reduced. Different versions of the splitting algorithm
performs best in the two different translation directions.

1 Introduction

Compounding in German is productive and very common. Compounds are writ-
ten without spaces or word boundaries. In statistical machine translation com-
pounds lead to sparse data problems, increasing the number of unseen words.
For translation into German it is a problem since several English words can be
translated as distinct words rather than as a compound. To deal with these is-
sues, compounds can be split into their component parts prior to training and
translation, and for translation into German merged back together.

This study investigates how different compound splitting strategies influence
factored phrase-based statistical machine translation (PBSMT). Translation be-
tween German and English is explored in both directions. An empirical method
for compound splitting is used, which only requires a mono-lingual corpus and a
part-of-speech (POS) tagger. Compound splitting and merging are performed as
pre and postprocessing steps of the factored PBSMT system. Contrary to pre-
vious studies, parts of the split compounds are marked as such, to distinguish
them from other words, since the semantics of compounds are not always compo-
sitional. Compounds are merged using a novel strategy based on part-of-speech.

Compound splitting is evaluated both on one-to-one correspondence with En-
glish and on translation quality. The main aims are to explore marked compound
splitting and to find out which versions of an empirical compound splitting
method give best results for translation of sentences in both directions between
English and German in a factored PBSMT system.

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 464–475, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Compounding

German compounds are formed by joining words without spaces or word bound-
aries. In addition, so called filler letters can occur between words, letters can
be removed at the end of all but the last part of a compound, umlaut can be
used, and there might be combinations of these. The term compound suffixes
(Kompositionssuffixen) is used to describe these changes in [1], that also gives
an overview of compound forms that occur in German noun compounds, based
on a corpus study, summarized in Table 1.

Table 1. Compound suffixes in German

Type Suffixes Example
None Risikokapital

(Risiko + Kapital)
risk capital

Additions -s -n -en -nen
-e -es -er -ien

Arbeitsplatz
(Arbeit + Platz)
Place of employment

Truncations -e -en -n Südwesten
(Süden + Westen)
south-west

Combinations -us/-en -um/-en -um/-a
-a/-en -on/-en -on/-a
-e/-i

Museenverwaltung
(Museum + Verwaltung)
Museum management

Umlaut umlaut + -er Völkermord
(Volk + Mord)
genocide

3 Related Work

German compounds in SMT have been addressed in a number of papers, (see
e.g. [2,3,4]).

Translation into English is explored in [2], that use an empirical method where
words are split in all possible parts, and for each part a check is performed
against a monolingual corpus if it exists as an individual word. Additions of -s
and -es are allowed to occur at all split points. A number of versions of the
algorithm are tested in order to choose the correct splitting options, based on
word frequencies, POS or bilingual alignment information. They find that an
eager splitting method, choosing the splitting option with the highest number of
splits, gives best translation results for PBSMT, despite having low precision and
recall on one-to-one correspondence. A frequency-based ranking method based
on the geometric mean of word frequencies gives similar results for PBSMT.
Compound splitting also improves the translation quality of a word-based SMT
system. In this case using the geometric mean gives the best result, and the eager
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method gives worse result than no splitting at all. The systems are evaluated on
NP/PPs, not on full sentences.

The same algorithm and in addition a rule-based method is used in [3]. In
addition splitting is used only to improve word alignments. Both methods lead
to improved translation quality. Both [2] and [3] integrate compound splitting
by preprocessing training data and the text to be translated. No marking of
compounds is used; the parts are treated as normal words.

In [3], compound splitting is also used for translation into German. They use
the frequency-based version of the algorithm of [2] as in the other translation
direction, and then merge compounds in a postprocessing step. The merging is
based on two lists compiled from the German training corpus, a list of compounds
and a list of compound components. If a word in the output is a compound
component, they check if this word merged with the next is in the compound
list, if it is, it is merged. A drawback of this method is that it only merges known
compounds.

In addition [3] experiments with joining of English compounds based on POS
or alignment data. All these methods lead to improved translation quality.

In [4], marking of split compounds is used in a factored PBSMT system with
morphologically enriched POS-tags for German. A modified version of the split-
ting algorithm of [2] is used, which improved translation quality.

4 Processing of German Compound Words

German compounds are split in a preprocessing step and merged in a postpro-
cessing step of translation.

4.1 Splitting Compounds

The splitting algorithm used in this study is the algorithm presented in [2], with
a few modifications. Words are split in all possible places and a splitting option is
chosen based on word frequencies from a monolingual corpus. The monolingual
corpus is German Europarl text [5], with 1,467,291 sentences. It is POS-tagged
and lemmatized using TreeTagger [6]. For the default algorithm the following
changes from [2] have been made:

– The arithmetic mean of frequencies is used as default, rather than the geo-
metric mean, in order to get more splits.

– Compound parts have to be of minimum three letters length.
– Words to be split are limited to content words: nouns, adjectives, adverbs

and verbs. Proper names are, however, not split, since translating them in
parts generally would give rise to errors.

– The last part of the compound must have the same POS as the full com-
pound.

– The full list of compound suffixes in Table 1, except umlaut, is used
– In addition to surface form, lemmas are also used to calculate word frequen-

cies. The reason for this is that compound parts often have the base form.
– Hyphenated words can only be split at hyphens.
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The algorithm is varied by changing a number of parameters:

– The minimum length of words to be split and of compound parts is changed
to 8 and 4 respectively.

– The scoring method is changed. In place of the arithmetic mean, the geo-
metric mean of word frequencies is used or an eager method which choose
the maximum number of parts. (These two methods are similar to the eager
and frequency-based methods of [2])

– The number of parts per compound are restricted to maximum two and
maximum two for all POS except nouns.

– All compound suffixes listed in Table 1, except umlaut are used, or only the
4 most common in the corpus study of [1], addition of -s, -n, -en or -nen.

– The restriction that the POS of the last part has to match the POS of the
full compound is not used.

The splitting methods are summarized in Table 2. The methods differ in how
many compounds they split, and in how many parts they split words, as is shown
in Table 3, for the test text with a total of 55,580 words. The differences are
large, with more than three times as many splits for the eager system as for the
system with only common compound suffixes.

Table 2. Summary of the splitting options. The default method is shown with all
settings, the other methods only show what differs from the default method.

Splitting Word length Part length Scoring No. of parts Suffixes POS match
default 6 3 arithm. unlimited all yes

l8-s3 8

l8-s4 8 4

geom geom.

eager eager

nn2+ noun > 2

max2 max 2

common common

anypos no

As pointed out in [2], parts of compounds do not always have the same mean-
ing as when they stand alone. As an example they mention Grundrechte (’basic
rights’), where the first part, Grund, usually translates as foundation, which is
wrong in this compound.

To address this issue all compound parts but the last are marked with the
symbol ’#’. They are thus handled as separate words. Marking of parts also
means that they can keep their compound form, since they are not treated as
normal words. If marking were not used it would be desirable to remove or add
compound suffixes, as is done to a certain extent in [7].

Parts of split words also receive a special POS-tag, based on the POS of the
last word of the compound, and the last part receives the same POS as the full
word. (1) shows an example of a split word.
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Table 3. Number of compounds found in the test text for the different methods,
showing both total, and number of parts per split compound

Method Total 2 3 4 5+
default 4862 3642 971 211 38

l8-s3 4624 3404 971 211 38

l8-s4 2985 2674 294 17 –

geom 3689 3063 534 74 18

eager 7729 4539 2050 788 352

nn2+ 4693 3776 709 171 37

max2 4383 4383 – – –

common 2542 2303 228 11 –

anypos 6739 4691 1606 356 86

(1) Regierungskonferenz NN (intergovernmental conference) ⇒
Regierungs# NN-FL + Konferenz NN

4.2 Merging Compounds

For translation into German a postprocessing step is performed where com-
pounds are merged. Since a factored translation system is used, merging can be
based on POS. If a word has a compound-POS, and the following word has a
matching POS, they are merged. If the next POS is a conjunction, a hyphen is
added to the word, allowing for coordinated compounds as in (2). Else the com-
pound markup is simply removed. The POS-based algorithm has the advantage
that it can merge unseen compounds and handle coordinated compounds.

(2) Wasser- und Bodenqualität
water and soil quality

4.3 Integration with Translation

The MT system used is a factored PBSMT system. In a factored system transla-
tion is not only based on surface form, but other features such as POS or lemma
can be used in addition in different phases of translation (see [8]). The current
system uses POS as an output factor, and two sequence models, a 5-gram lan-
guage model and a 7-gram POS-model, see Fig. 1. The Moses toolkit [9] is used
for decoding and training, SRILM [10] for sequence models and Giza++ [11] for
creating word alignments. Minimum error rate training [12] is used for tuning
of feature weights. In addition German contracted prepositions and determiners
are split in a preprocessing step, and for translation into German merged in
connection with true casing by running a second Moses instance.

AllcorporaareEuropeanParliament texts [5].Thesizeof thecorporaare439,513
sentences for training, 600 sentences for tuning and 2000 sentences for testing1.
1 The test set is test2007 from the ACL 2008 Workshop on Statistical Machine Transla-

tion, http://www.statmt.org/wmt08/shared-task.html

http://www.statmt.org/wmt08/shared-task.html
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Fig. 1. Architecture of the factored system

Compound splitting is integrated in a preprocessing step for training and
for translation from German. Compounds are split using the different versions
of the splitting algorithm described in Sec. 4.1. For translation into German,
compounds are merged in a postprocessing step.

5 Evaluation

The nine splitting methods described in Sec. 4.1 are compared to each other and
to a baseline without splitting (raw) for one-to-one correspondence with English
and for translation quality.

5.1 One-to-One Correspondence

To measure one-to-one correspondence I followed the evaluation method de-
scribed in [2]. One-to-one correspondence occurs when the words in a German
compound are translated as separate content words in English. In addition there

Table 4. One-to-one correspondence of split compounds compared to a manually an-
notated gold standard for the different splitting methods

Method Correct Wrong Metrics
split not not faulty split prec. recall acc.

raw 0 5000 174 0 0 – 0.0% 96.6%
default 99 4504 22 52 323 20.9% 57.2% 92.1%

l8-s3 99 4530 22 52 297 22.1% 57.2% 92.6%

l8-s4 120 4692 36 17 135 44.1% 69.3% 96.2%

geom 109 4614 33 31 213 30.9% 63.0% 94.5%

eager 43 4243 18 112 584 5.8% 24.9% 85.7%

nn2+ 99 4521 24 50 306 21.8% 57.2% 92.4%

max2 133 4546 29 11 281 31.3% 76.9% 93.6%

common 99 4714 58 16 113 43.4% 57.2% 96.3%
anypos 99 4310 10 64 517 14.6% 57.2% 88.2%
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can be inserted function words. As an example Medienfreiheit is in one-to-one
correspondence with freedom of the media, since the two German parts Medien
and Freiheit corresponds to two separate words, media and freedom. The lack of
correspondence of the two function words, of the, is not considered.

A gold standard was created by manually annotating the first 5000 words of the
test text for one-to-one correspondence with the English reference text. Out of the
5000 words, 174 were compounds in one-to-one correspondence with English.

The results of the one-to-one evaluation is shown in Table 4. The same cate-
gories and metrics as in [2] are used:

correct split: words that were correctly split
correct not: words that should not be split and were not
wrong not: words that should be split but were not
wrong faulty: words that were split but in an incorrect way
wrong split: words that should not be split but were
precision: (correct split) / (correct split + wrong faulty + wrong split)
recall: (correct split) / (correct split + wrong faulty + wrong not)
accuracy: (correct) / (correct + wrong)

The splitting options have their strengths on different metrics, with three
different methods having the best results for the three metrics used.

Compared to the default method it can be seen that both imposing length
restrictions and using the geometric mean increases the results on all three met-
rics. Limiting the number of parts makes a minor difference when nouns are ex-
cluded, but gives the highest recall when used for all POS. Using only common
compound suffixes gives higher precision, whereas not using the POS restriction
on the last word gives lower precision. No splitting actually gives the highest
accuracy.

The largest error category is wrong splits. The splits in this category are
reasonable, in the sense that all parts are meaningful German words, even if they
are not in one-to-one correspondence with English. As an example, of the 323
wrong splits for the default system, 234 (72,5%) are reasonable. The erroneous
splits often have parts that are common words such as ich (’I’) and ist (’is’).

Compared to [2], the two similar systems, eager and geom, have lower results
on all metrics. This might in part be due to other changes made to the algo-
rithm, such as allowing more compound suffixes, but can also be because these
algorithms make more mistakes on full sentences than on NP/PPs.

5.2 Translation Quality

Translation quality is measured against one reference translation, using three
metrics, BLEU [13], NIST [14] and METEOR [15].2

2 The evaluation is case-sensitive. %BLEU and %METEOR notation is used. ME-
TEOR is used with the ”exact” and ”porter stem” modules, the WordNet-based
modules for English are not used.
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German ⇒ English

The results for translation from German into English can be seen in Table 53.
All systems with compound splitting get higher NIST and METEOR scores than
the raw system, but only the geom system has a higher BLEU score than the raw
system. The geom system, which is similar to the frequency-based system, that
performed well in [2], has the highest score for all metrics. The eager system,
however, performs poorly. This is probably because it makes more mistakes when
used on full sentences than on only NP/PPs.

Table 5. Translation results for German ⇒ English

Method BLEU NIST METEOR

raw 26.29 6.888 52.27

default 26.12 6.915 52.62

l8-s3 26.13 6.920 52.61

l8-s4 26.20 6.935 52.61

geom 26.35 6.945 52.79
eager 25.88 6.898 52.45

nn2+ 26.10 6.923 52.61

max2 26.23 6.934 52.67

common 26.22 6.944 52.54

anypos 26.12 6.920 52.59

Two other systems that perform reasonably well are the systems with common
compound suffixes and maximum 2 splits. Of these the common system has high
precision and accuracy on the one-to-one evaluation and the max2 has high
recall. Limiting the length of both words to be split and compound parts gives
rise to small improvements in BLEU and NIST.

One improvement that can be seen in the systems with split compounds is that
the number of untranslated words is reduced by more than half. The raw system
has 733 untranslated words (1.25%), compared to 360 words (0.61%) in the geom
system. Of the untranslated words in the geom system 45 (12.5%) are marked
compound parts, which could possibly have been translated if marking were not
used. Among the other untranslated words there are many proper names and
unsplit compounds. The translation example in Table 6 shows an example of a
sentence where the systems that split compounds, exemplified by geom, manages
to translate a compound that is untranslated by the raw system.

English ⇒ German

The result for translation from German into English can be seen in Table 7. In
this direction the systems with splitting had higher scores than the raw system

3 As [3] note, only a small percentage of words are affected by compound splitting so
significant changes in error measures can not be expected.
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Table 6. Sample translation for German ⇒ English with and without compound
splitting

Sentence type Example

De original . . . der Koordinierung der Außen- und Sicherheitspoli-
tiken. . .

De preprocessed . . . der koordinierung der außen- und sicherheits# poli-
tiken. . .

En with splitting . . . the coordination of the foreign and security poli-
cies. . .

En without splitting . . . the coordination of the foreign and sicherheitspoli-
tiken. . .

En reference . . . to coordinate the common foreign and security poli-
cies. . .

for all metrics and systems, except the eager system for BLEU. The eager sys-
tem had the worst performance of the systems with splitting in this translation
direction as well.

The best scoring systems in this direction are not the same as in the op-
posite direction. The default system and nn2+ had the highest scores. These
systems have lower precision, just over 20%, on the one-to-one evaluation, than
the systems that performed best in the opposite direction.

In this direction, imposing length limits on words to be split and compound
parts led to worse translation results, as opposed to the other direction where it
improved the results.

An example where the systems that split compounds handle compounds better
can be seen in Table 8, exemplified by the default system. The default system
manages to produce the desired compound, whereas the raw system produces
two nouns instead.

Table 7. Translation results for English ⇒ German

Method BLEU NIST METEOR
raw 19.31 5.727 26.53

default 19.73 5.854 27.05

l8-s3 19.63 5.833 27.02

l8-s4 19.56 5.821 26.96

geom 19.64 5.818 26.95

eager 19.16 5.788 26.75

nn2+ 19.71 5.850 27.07
max2 19.66 5.837 26.98

common 19.67 5.824 27.03

anypos 19.62 5.853 27.01
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Table 8. Sample translation for German ⇒ English with and without compound
splitting

Sentence type Example
En original . . . of the national states than to represent genuine

progress. . .

De with splitting . . . der|art national#|nn-fl staaten|nn als|kokom
echte|adja fortschritte|nn zu|ptkzu machen|vvfin. . .

De with splitting,
postprocessed

. . . der Nationalstaaten als echte Fortschritte zu
vertreten. . .

De without splitting . . . von den Nationalen Staaten als echte Fortschritte
zu machen. . .

De reference . . . der Nationalstaaten zu bekräftigen, als dass sie einen
wirklichen Fortschritt darstellt. . .

5.3 Discussion

The methods that improved translation quality most were different in the two
translation directions. A method using the geometric mean of word frequencies
performs best for translation into English, and limiting the number of splits
to two and only using common compound suffixes also performs well. Methods
using the arithmetic mean of word frequencies, and limiting the number of splits
to two for all words but nouns worked best for translation into German. Limiting
the number of compound suffixes gives good results in both directions.

Generally systems with more total splits performbetter for translation into Ger-
man, and systems with fewer splits perform better for translation into English.

One-to-one correspondence does not seem to be a good indicator for judging
if a splitting method will improve PBSMT. In part this could be explained by
the fact that the PBSMT system aligns word sequences, and thus can rejoin split
words in the translation model. Another reason can be that a larger number of
splits increases the chance of splitting unseen compounds into known parts at
translation time.

Since compounds only make up a small proportion of all words the differences
found between systems were small in many cases. Human analysis of translation
output will be needed to shed further light on these small improvements. A
small qualitative study of compound translation for a system using a similar
splitting method indicates that translation of compounds is improved by splitting
compounds [4].

6 Conclusion

A number of versions of an empirical compound splitting method have been
explored for translation between German and English in both directions. In-
corporating them into a factored translation system and marking compounds
did give a small improvement of translation quality. Particularly the number of
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untranslated words are reduced by approximately half for translation into En-
glish. However, marking does lead to a small number of untranslated compound
parts.

As in previous work, methods with high scores on metrics for one-to-one
correspondence with English did not give the best translation results for German
to English. This study shows that the same holds for translation in the opposite
direction.

This study has also indicated that to achieve good translation results splitting
should not necessarily be performed using the same method for translation in
different directions.

Some of the methods that worked well have not yet been tried in combination,
which would be interesting in future work. The methods can also be expected
to work well for other compounding languages, such as Swedish or Italian.
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Abstract. This paper presents a new method for reordering in phrase
based statistical machine translation (PBSMT). Our method is based on
previous chunk-level reordering methods for PBSMT. Our method is a
global reordering. First, we parse the source language sentence to a chunk
tree, according to the method developed by [1]. Second, we apply a series
of transformation rules, which are learnt automatically from the parallel
corpus to the chunk tree over chunk level. Finally, we solve phenomena for
the overlapping of phrases and chunks, and integrate a global reordering
model directly in a decoder as a graph of phrases. The experimental
results with English-Vietnamese and English-French pairs show that our
method outperforms the baseline PBSMT in both accuracy and speed.

Keywords: Natural Language Processing, Machine Translation, Phrase-
based Statistical Machine Translation.

1 Introduction

In machine translation, the reordering problem (global reordering) is one of the
major problems, since different languages have different word order requirements.
The statistical machine translation task can be viewed as consisting of two sub-
tasks: predicting the collection of words in a translation, and deciding the order
of the predicted words (reordering problem). Currently, phrase-based statistical
machine translation [2,3] is the state-of-the-art of SMT, and uses widely distance-
based reordering constraints such as IBM constraints [4], ITG constraints [5,4]
and distortion limit [2]. With these models, PBSMT usually is powerful in word
reordering within a short distance, however, long distance reordering is still prob-
lematic. A main criticism of PBSMT is that it does not make use of any linguistic
information, while in linguistic theory, reorderings between linguistic phrases in
different language pairs are well described.

In order to tackle the long distance reordering problem, in recent years, huge
research efforts have been conducted using syntactic information. [6] shows sig-
nificant improvement by keeping the strengths of phrases, while incorporating
syntax into PBSMT. Some approaches have been applied at the word level [7].
They are particularly useful for language with rich morphology, for reducing
data sparseness. Other kinds of syntax reordering methods require parsed trees,

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 476–487, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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such as the work in [8,7,9]. The parsed tree is more powerful in capturing the
sentence structure. However, it is expensive to create tree structure, and building
a good quality parser is also a hard task. All the above approaches require much
decoding time, which is expensive.

With PBSMT, the decoder takes much computation time because the re-
ordering of phrases (many possible reorderings) is implemented in the decoding
process. Therefore, the approach we are interested in here is to balance quality
of translation and decoding time. Consequently, we use an intermediate syntax
between POS tag and parse tree: chunks and phrases, as the basic units for
reordering. An advantage of chunks is closer to phrases in PBSMT.

In this paper, we also focus on researching the ordering problem, and aim
to improve both the quality of translation and computation time for decoding.
Our method is a global reordering, and based on previous chunk-level reordering
methods for PBSMT. First, we parse the source language sentence to a chunk
tree. Second, we apply a series of transformation rules which are learnt auto-
matically from the parallel corpus to the chunk tree over chunk level. Third, we
solve phenomena for the overlapping phrases and chunks and integrate a global
reordering model directly in the decoder, as a graph of phrases. Finally, we find
the best translation sentence in this graph.

The rest of this paper is structured as follows. Section 2 reviews related works.
Section 3 briefly introduces PBSMT. Section 4 introduces how to apply transfor-
mation rules to chunks, and how to deal with overlapping phrases and chunks.
Section 5 briefly introduces the steps for generating a reordering graph of phrases.
Section 6 describes and discusses the experimental results. Finally, conclusions
are given in Section 7.

2 Related Work

To solve the reordering problem, [10] used a lexicalized reordering model as a
feature in the log linear model of PBMT. However, their experiment showed that
the lexicalized reordering model is not sufficient powerful to correctly guide long
distance movements.

[7] presented a reordering model based on clause restructuring. They used this
model in the preprocessing step of the PBSMT system. The weakness of this
approach is that rewriting the input sentence, whether using syntactic rules or
heuristics makes hard decisions that can not be undone by the decoder, because
this model just applies to the preprocessing step. Hence, reordering is better
handled during the search algorithm, and as part of the optimization function.

[11,12] applied Maximum Entropy (ME) model for phrase reordering. They
used ME for estimating distortion probability. However, estimation is local, be-
cause the next phrase only depends on the current phrase. So, as a result, their
systems are not robust to unseen phrases.

Several methods proposed use syntactic information to handle the reordering
problem. Methods by [8,9], include tree-to-string translation rules extracted from
parallel corpus with linguistic annotations. However, there are some problems
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with syntax-based models. The first one is the expense of computational time
for decoding, because the source sentence or target sentence must be parsed
to a tree. The second problem is that tree-to-string rules fail for non-syntactic
phrase pairs (phrase pairs that are not subsumed by any syntax tree fragments
(subtree)) because they require a syntax tree fragment over the phrase to be
parsed. For example: a phrase pair for English - Japanese: “the teacher is“
and “sensei wa“ is a non-syntactic phrase pair, because “the teacher is“ and
“sensei wa“ are not subsumed by syntax subtree.

Note that these models have radically different structures and parameteriza-
tions than phrase-based models for PBSMT.

[13] proposed a strategy to reorder a source sentence using rules based on
syntactic chunks. This strategy demonstrated promising results when compared
with the state of the art phrase-based system [2], in particular regarding compu-
tational time. Nguyen’s strategy only reordered the phrases within each chunk of
sentence, however. In other words, the chunks of a sentence were not reordered.

3 Brief Description of the Baseline Phrase-Based SMT

In this section, we will describe the phrase-based SMT system which was used
for our experiments.

Phrase-based SMT, as described by [2], translates a source sentence into a
target sentence by decomposing the source sentence into a sequence of source
phrases, which can be any contiguous sequences of words (or tokens treated as
words) in the source sentence. For each source phrase, a target phrase translation
is selected, and the target phrases are arranged in some order to produce the
target sentence. A set of possible translation candidates created in this way is
scored according to a weighted linear combination of feature values, and the
highest scoring translation candidate is selected as the translation of the source
sentence. Symbolically,

t̂ = arg max
t,a

n∑

i=1

λifj(s, t, a) (1)

where s is the input sentence, t is a possible output sentence, and a is a phrasal
alignment that specifies how t is constructed from s, and t̂ is the selected output
sentence. The weights λi associated with each feature fi are tuned to maximize
the quality of the translation hypothesis selected by the decoding procedure that
computes the argmax.

The log-linear model is a natural framework to integrate many features. The
baseline system uses the following features:

– the probability of each source phrase in the hypothesis given the correspond-
ing target phrase.

– the probability of each target phrase in the hypothesis given the correspond-
ing source phrase.

– the lexical score for each target phrase given the corresponding source phrase.
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– the lexical score for each source phrase given the corresponding target phrase.
– the target language model probability for the sequence of target phrase in

the hypothesis.
– the word and phrase penalty score, which allow to ensure that the translation

do not get too long or too short.
– the distortion model allows for reordering of the source sentence.

The probabilities of source phrase given target phrases, and target phrases
given source phrases, are estimated from the bilingual corpus. [2] used the dis-
tortion model (reordering model), which simply penalizes non-monotonic phrase
alignment based on the word distance of successively translated source phrases.

4 Reordering over Chunks

4.1 The Approach

We will extend the strategy of [13] to our new model. We will solve a reordering
over chunks in PBSMT as a global reordering. First, we parse the source language
sentence to a chunk tree. Second, we apply a series of transformation rules which
were learnt automatically from the parallel corpus to the chunk tree over chunk
level. Finally, we integrate a global reordering model directly in the decoder
using a graph of phrases, and find the best translation sentence in this graph.
When we integrate a global reordering model in the decoder to create a phrase
graph, we must solve the overlapping phrase and chunk problem.

Our approach is similar to [14] except for the following important differences:
first, we parse the source language sentence to a chunk tree, while they parse the
source using chunking. Second, we use transformation rules with a hierarchial
structure, so we will reorder over chunks more generally, while they use the rules
without hierarchical structure. Finally, we solve phenomena for the overlapping
phrases and chunks, while they do not mention this problem.

4.2 The Algorithm for Solving the Overlapping Phrases and
Chunks

In this section, we will describe the heuristic algorithm for solving phenomena
of overlapping phrases and chunks, generating a graph of phrases. With a given
source sentence f , phrase pij of f from position i to position j and chunk ckl

of f from position k to position l, we state that phrase pij overlaps chunk ckl if
(i ≤ k and l �= j) or (l ≤ j and k �= i).

We conduct error analysis of the translation output of the “Over Chunks”
system (the system which only implements reordering at chunk level) and observe
that phrases which overlap chunks (those chunks are reordered) can be omitted
in the decoding process. With the example in Section 4.2, the phrase “what
characteristics does” can be omitted because this phrase overlaps two chunks:
[what characteristics WHNP] and [does AUX] (an ordering of those chunks in
a target sentence is [does AUX][what characteristics WHNP]). So, we need to
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find a solution to cover as many phrases as possible in the decoding process with
reordering over chunk level. We use a simple idea: phrase is so close to chunk,
we reorder approximately phrases based on chunks (a reordering of chunks is a
reordering of phrases).

The algorithm to solve the phenomenon of overlapping phrases and chunks
first implements reordering over all chunks, and then reorders k phrases sepa-
rately based on reordering of chunks (the algorithm is described by k = 2 because
the algorithm takes an expensive time with k > 2), and generates all possible
paths in a graph of phrases. The efficiency of this algorithm is represented in
Section 6.3. The algorithm is presented in Figure 1 as Algorithm 1.

Algorithm 1
Input: set of chunks (Δ = {ckl})

set of phrases (Γ = {pij})
1: Reorder(Δ)
2: for (i = 0 → n − 1)
3: for (pij ∈ Γ )
4: for (ckl ∈ pij)
5: if (k′ /∈ [i, j] or l′ /∈ [i, j]) then
6: Θ = Θ ∪ pij

7: for(pxy ∈ Θ)
8: Reorder(pxy, ckl /∈ pxy)
9: for (pxy ∈ Θ)
10: for (i = y + 1 → n − 1)
11: for (pij ∈ Γ )
12: for (ckl ∈ pij)
13: if (k′ /∈ [i, j] or l′ /∈ [i, j]) then
14: Ω = Ω ∪ pij

15: if (px1y1 ∈ Ω) then
16: Reorder(pxy, px1y1 , ckl /∈ pxy and ckl /∈ px1y1)

Fig. 1. Algorithm for solving the overlapping chunks and phrases and generating a
graph of phrases

Input: A set of chunks (Δ), and a set of phrases for an input sentence (Γ ).
We assume that an input sentence is represented as w0 . . . wn where wi is

the i-th word in the input sentence. We denote pij to be phrase with a start
position i and an end position j in an input sentence; ckl be the chunk with a
start position k and an end position l; c′k′l′ be a reordered chunk of a chunk ckl

in a reordered sentence.
In line 1 in Algorithm 1, we implement a reordering over all chunks according

to transformation rules to generate a possible reordered sentence. From line 2
to line 6, from left to right, we find all phrases pij (0 ≤ i < j ≤ n) in an input
sentence which satisfy the conditions: at least a chunk clk which a chunk c′l′k′

does not belong to [l, k] in a reordered sentence. We consider a reordered position
of clk as the reordered position of the phrase pij in a reordered sentence. We
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store those found phrases in a set Θ. In line 7 and line 8, we reorder each phrase
pxy of the set Θ and remaining chunks (the chunks which do not belong to pxy)
to generate a possible reordered sentence.

From line 9 to line 14 in Algorithm 1, with each phrase pxy belonging to a set
Θ, from left to right, we find all phrases pij (y < i < j ≤ n in an input sentence
which satisfy the conditions: at least a chunk clk which a chunk c′l′k′ does not be-
long to [i, j] in a reordered sentence. We consider a reordered position of clk as the
reordered position of the phrase pij in a reordered sentence. Line 15 and line 16,
we reorder each phrase pxy of a set Θ and each phrase px1y1 and remaining chunks
(the chunks which do not belong to pxy) to generate a possible reordered sentence.

For example
Input sentence: what characteristics does the smart student have ?
Chunks and tags: [what characteristics WHNP][does AUX][the smart student
NP][have VP] [? .]
Positions of chunks: 0 1 2 3 4
Syntax tree: (SBARQ (WHNP (WP what NN characteristics)) (SQ (AUX does)
(NP (DT the JJ smart NN student)) (VP (VB have))) (. ?))
(1) Position of the reordering over chunks: 23104 (using two transformation rules
of English-Vietnamese: (SBARQ → WHNP SQ ?, 1 0 2) and (SQ → AUX NP
VP, 1 2 0))

If we do not consider the phrases of an input sentence that overlap the chunks,
we implement the reordering over chunks from an input sentence to a reordered
sentence as in Figure 2a. So, two phrases can be omitted in the decoding process:
“what characteristics does” and “does the”.

[the smart student NP] [have VP] [does AUX][what characteristics WHNP]
[? .] (according to (1))

Words and Phrases: “what”, “characteristics”, “does”, “the”, “smart”, “stu-
dent”, “have”, “?”, “what characteristics does”, “does the”, “smart student”,
“student have”.

Therefore, we need to solve the overlapping phrase and chunk problem. The
algorithm for overlapping phrases and chunks is demonstrated in Figure 2. We
use a black line to denote a chunk and a dotted black line to denote a phrase.
We begin with the phrase “what characteristics does” because this phrase over-
laps two chunks: [what characteristics WHNP][does AUX], where chunk [what
characteristics WHNP] satisfies a reordered position do not belong to an inter-
val [0, 2] in the reordered sentence. Consequently, we consider the reordering of
chunk [what characteristics WP] as the reordering of the phrase “what charac-
teristics does”. We implement similarly reordering of a phrase “does the” and
“student have”. We implement reorderings of the phrase “what characteristics
does” and chunks [the smart student NP], [have VP], and [? .]. We have a pos-
sible reordered sentence shown in Figure 2b: [the smart student] [have] “what
characteristics does” [?].

The Figure 4 shows a part of the graph of phrases after reordering of the
above example.
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what characteristics does the smart student have  ?

Chunking

01234 0 1 2 3

Reorder over chunks

23104

4

The smart student have does what characteristics  ?

2 3 1 0 4

Solving an overlapping phrase and chunk 

with phrase “what characteristics does”’ (b)

what characteristics does the smart student have  ?Input

Reorder only over chunks 

(a) 

0 1 2 3 4

   what characteristics does the smart student have  ?

0 2 4

   what characteristics does the smart student have  ?

0 4

3

   the smart student have  what characteristics does ?

03 4

3
(SBARQ (WHNP (WP what NN characteristics)) (SQ (AUX does) 

(NP (DT the JJ smart NN student)) (VP (VB have))) (. ?))

Syntax tree:

(SBARQ             WHNP SQ ?, 1 0 2)

       (SQ              AUX NP VP, 1 2 0)

Transformation rules:

2

2

Fig. 2. Example for solving phenomena of overlapping Phrases and Chunks

5 Reordering Graph Generation

5.1 Parsing the Source Sentence

First, a POS tagger is usually used for chunk parsing. In our experiments, we used
the tagger tool based on CRFs [15], then we used chunkparser-1.0 [1] to parse an
English sentence to a tree. The main advantage of this method is not only fast
computation time but also accuracy, which was about 85% with F1 score.

5.2 Transformation Rules

Suppose that Ts is a given lexicalized tree of the source language (whose nodes
are augmented to include a word and a POS label). Ts contains n applications of
lexicalized CFG rules LHSi → RHSi (i ∈ 1, n). We want to transform Ts into
the target language word order by applying transformational rules to the CFG
rules. A transformational rule is represented as (LHS → RHS, RS), which is
a pair consisting of an unlexicalized CFG rule and a reordering sequence (RS).
For example, the rule (NP → JJ NN, 1 0) implies that the CFG rule (NP→
JJ NN) in the source language can be transformed into the rule (NP→NN JJ)
in the target language. Since the possible transformational rule for each CFG
rule is not unique, there can be many transformed trees. The problem is how to
choose the best one (we can see [16] for a description in more detail).

We use the method described in [16] to extract the transformation rules from
the parallel corpus, and induce the best sequence of transformational rules for a
source tree.

5.3 Applying Transformation Rules

First, we apply a series of transformation rules to the source tree for reorder-
ing over chunks. Next, we use the method described in Section 4.2 for solving
phenomena of overlapping phrases and chunks. Finally, we generate a reordered
graph of phrases, and find the best translation sentence in this graph.
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What

What characteristics does

characteristics does the smart student have ?

does the

smart student

student have

Fig. 3. A graph of phrases before reordering

What characteristics does

What characteristicsdoesthe smart student have ?

smart student

the smart student have

Fig. 4. A part of a graph of phrases after reordering

5.4 Graph Generation

For example, given a source sentence “what characteristics does the smart stu-
dent have ?” in the above example in Section 4.2, we have a possible graph of
phrases before reordering as shown in Fig 3.

After we apply a series of transformation rules (two rules: (SBARQ → WHNP
SQ ?, 1 0 2); (SQ → AUX NP VP, 1 2 0)) and solve phenomena of overlapping
phrases and chunks in the above example, we have a part of a possible phrase
graph after reordering as shown in Figure 4.

All reorderings of an input sentence are encoded and stored in a graph of
phrases. Each path is a possible reordering S′, and given a reordering proba-
bility P . In this paper, the probability is computed using the transformation
probability of the syntactic transformation model [16].

6 Experiment

6.1 Implementation

– We used chunkparser-1.0 [1] to parse a source sentence (English sentence)
to a chunk tree.

– The rules are learnt from English-Vietnamese parallel corpus and Penntree
Bank Corpus. We used the CFG transformation rules (chunk levels) for ex-
traction from [16]’s method for reordering over chunks of an input sentence.

– Design of decoding is adapted from Moses [17]. In decoding, integration of
an input sentence is handled as a graph of phrases.



484 V.V. Nguyen et al.

Table 1. Corpora and data sets (sentences)

Corpus Sentence pairs Training set Dev set Test set

Conversation 16809 15734 403 672

General 55341 54642 200 499

Europarl 1288074 81920 480 1000

Table 2. Statistical information of reordering sentences in English sentences

Corpus Sent Sent with reordering

Conversation 672 215 (31.99%)

General 499 149 (29.86%)

Europarl 1000 244 (24.4%)

6.2 Data Sets

We conducted the experiments with English-Vietnamese pairs and English-
French pairs. We used two English-Vietnamese corpora, one was collected from
some grammar books (named “Conversation”) and other one collected from daily
newspapers (named “General”). These corpora, which include 16809 sentences
and 55341 sentences for “Conversation” and “General”, respectively, are split
into training sets, development test sets, the test sets. For English-French pairs,
we used a random part of the Europarl corpus [18] which is used in the WMT
07 shared task. This corpus contains over 1288074 sentences. The statistical
information in detail about three corpora is shown in Table 1.

We tested 672 English sentences (test set of Conversation Corpus English-
Vietnamese), 499 English sentences (test set of General Corpus English-
Vietnamese), and 1000 English sentences (test set of Europerl corpus) for using
CFG transformation rules (level over chunk). The statistics are shown in Table
2. The numbers of sentences which really were reordered over chunk level are 215
by 31.99 %, and 149 by 29.86 %, and 244 by 24.4 % “Conversation”, “General”,
and “Europarl”, respectively. Those results also showed that the problem of re-
ordering over chunk levels is important with the language pairs for translation.

6.3 BLEU Score and Computational Time

We carried out the experiments on a PC with Pentium IV processor 2Gz, RAM
memory 1GB. We ran GIZA++ [19] on the training corpus in both directions
using its default setting, and applied the refinement rule “grow-diag-final” [2]
to obtain a single many-to-many word alignment for each sentence pair. For
learning language models, we used the SRILM toolkit [20]. For MT evaluation,
we used the BLEU measure [21] calculated by the NIST script version 11b.

The translation results are presented in Table 3. The baseline system is a non-
monotone translation system, in which the decoder does reordering on the target
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Table 3. Translation performance for the English-Vietnamese and English-French
tasks

Corpus Method BLEU score
Conversation Baseline 35.66

Over Chunks 36.12

Over Chunks + Overlapping (OOC) 36.73

Over Chunks + Overlapping + In Chunks 37.81

General Baseline 34.07

Over Chunks 34.69

Over Chunks + Overlapping (OOC) 35.22

Over Chunks + Overlapping + In Chunks 36.18

Europarl Baseline 26.22

Over Chunks 26.67

Over Chunks + Overlapping (OOC) 27.16

Over Chunks + Overlapping + In Chunks 28.01

language side (we adapted the beam search decoding algorithm [17]). The “Over
Chunks” system is a translation system, which only implements reordering over
chunk level. The “Over Chunks + Overlapping” system which combines reorder-
ing over chunk levels and solving the overlapping phenomena. The BLEU score of
“Over Chunks” and “Over Chunks + Overlapping” systems are 36.12 and 36.73
absolute, which improved by 0.46 points and 1.07 points compared with the base-
line of Conversation corpus. The BLEU scores of “Over Chunks” and “Over
Chunks + Overlapping” systems are 34.69 and 35.22 absolute, which improved
by 0.62 points and 1.15 points compared with the baseline of General corpus. The
BLEU scores of “Over Chunks” and “Over Chunks + Overlapping” systems are
26.59 and 27.12 absolute, which improved by 0.45 points and 0.94 points compared
with the baseline of Europarl corpus. Table 3 also shows the effect of a overlap-
ping phrases and chunks. The “Over Chunks + Overlapping” systems improved
by 0.61 points and 0.53 points and 0.49 points compared with “Over Chunks” sys-
tems of Conversation and General and Europarl, respectively. An improvement of
“Overlapping” is well worthwhile. Those values showed that: (1) the improvement
is higher with language pairs which are more different in word order; (2) PBSMT
captures reordering quite well if there is a large amount of training.

After we implemented the reordering phrase over chunks, we used the method
described in [13] to reorder in each chunk of our system, named “Over Chunks
+ Overlapping + In Chunks”. The results are also shown in Table 3 which
outperform that of OOC by 0.96 points and 1.08 points and 0.85 points absolute
with “General” and “Conversation” and Europarl, respectively.

The computation time of OOC system is faster than that of baseline. We
conducted the experiment with General and Europarl corpora. The results with
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Table 4. Translation time for the English-Vietnamese “General“ test set

Method Computation time Sec per sen

Baseline (decoding) 1489 sec 2.2 sec

OOC (pre-processing + decoding) 597 sec 0.88 sec

General corpus are shown in Table 4. The baseline system took 2.2 seconds per
sentence and OOC system took 0.88 seconds per sentence. In short, the decoding
time of our method is faster than that of baseline, by the approximate factor of
3 with the General corpus. With Europarl corpus, the baseline system took 4.91
seconds per sentence and the OOC system took 3.12 seconds per sentence.

7 Conclusion

In this paper, we have presented a new method for reordering in PBSMT. The
experimental results with English-Vietnamese and English-French pairs show
that our method outperforms the baseline PBSMT in both accuracy and speed.
In future, we will solve the overlapping phrase and chunk problem generally, and
more effectively.
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Abstract. The use of dialogue systems in vehicles raises the problem
of making sure that the dialogue does not distract the driver from the
primary task of driving. Earlier studies have indicated that humans are
very apt at adapting the dialogue to the traffic situation and the cog-
nitive load of the driver. The goal of this paper is to investigate strate-
gies for interrupting and resuming in, as well as changing topic domain
of, spoken human-human in-vehicle dialogue. The results show a large
variety of strategies being used, and indicate that the choice of resump-
tion and domain-switching strategy depends partly on the topic domain
being resumed, and partly on the role of the speaker (driver or pas-
senger). These results will be used as a basis for the development of
dialogue strategies for interruption, resumption and domain-switching
in the DICO in-vehicle dialogue system.

1 Introduction

The study reported on in this paper is part of the DICO project, the overall pur-
pose of which is to demonstrate how state-of-the-art spoken language technology
can enable access to communication, entertainment and information services as
well as to environment control in vehicles1. The project group intends to demon-
strate this primarily by means of working prototypes which promote safety in
driving while at the same time delivering ease-of-use in access to commercially
viable sets of on-line as well as in-vehicle services. To this end, the project has
developed a working prototype of a speech-based and multimodal dialogue sys-
tem, which has previously been tested on real users both in simulator tests and
while driving in real traffic.

One specific question, which has arisen during these trials with the system
prototype, concerns how to deal with and even generate interruptions and topic

� The authors wish to thank Johan Jarlengrip, Volvo Technology AB.
1 DICO is funded by Vinnova, project 2006-00844.

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 488–499, 2008.
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shifts in the spoken dialogue between man and machine, e.g. in order to adapt
to the current traffic situation in a timely fashion.

As can be expected, in human-human communication, this type of regulation
is common and constitutes an integrated part of spoken communication. There
are studies indicating that vehicle drivers are in fact very good at adapting their
interaction to accommodate the cognitive demands of the combined tasks of
driving and interacting through spoken language [1].

Researchers within the fields of vehicle safety and ergonomics have also pro-
posed that in-vehicle spoken dialogue systems should adapt to the workload of
the driver and suspend and resume dialogue accordingly [2] or even that the dia-
logue behaviour should be designed in such a way that a ”neutral, small talk-like
interaction results” [3].

The CHAT project [4] focused on robust, wide-coverage, and cognitive load-
sensitive spoken dialogue interface, addressing issues related to dynamic and
attention-demanding environments such as driving. Even if several of the dia-
logue and presentation strategies of CHAT are based on corpus data, it would
not seem as if topic shifting, and strategies for suspending and resuming topic
threads, has been studied in any detail. A limited set of implicit strategies for
topic switching were investigated but not included in the final system. The CHAT
system was not designed to monitor the driver’s cognitive load; rather, general
methods such as robust interpretation were designed to decrease cognitive load
more generally.

It is the goal of this paper to investigate the strategies employed in human-
human in-vehicle interaction for interrupting and resuming spoken dialogue, as
well as strategies for changing the topic domain of the conversation. For this
purpose, dialogues between driver and passenger in real traffic were recorded
and videotaped under controlled conditions, where the driver’s cognitive load
was simultaneously measured by use of an indirect method.

We will first briefly describe the dialogue system which is begin further de-
veloped in the project, and describe some shortcomings which motivate the re-
search presented here. We will then describe the experimental setup, as well as
the transcription and annotation methods used. Finally, we will point to some
future research directions motivated by our results.

2 The DICO Dialogue System

The dialogue manager in the DICO system is based on [5]. It enables flexible
spoken human-machine dialogue by providing general solutions to several general
dialogue management problems:
– Grounding: making sure that the system and the user are able to hear and

understand each other
– Accommodation, enabling the user to

• give information in any order
• provide information without explicitly stating the task
• clarify by responding to system clarification questions if there is some

problem
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– Mixed initiative: user can take initiative at any time
– Multitasking: switching between multiple simultaneous tasks
– Multimodality: Use speech and/or GUI or to interact

In addition, since DICO uses a domain independent dialogue manager, knowl-
edge of dialogue is kept separate from domain-specific knowledge, which enables
rapid prototyping of new applications.

The current version of the dialogue manager will prompt the user for answers
to system questions until the user answers. This is clearly not a good strategy in
the in-vehicle environment, since it risks increasing the cognitive load on the user
by endlessly repeating e.g. a question when the driver is devoting her attention
to the traffic:

USR> Call Lisa please
SYS> OK, Lisa. Do you want to use the home number of the mobile
phone number?
User enters roundabout and focuses all attention on the traffic
SYS> Do you want to use the home number or the mobile phone number?
SYS> Do you want to use the home number or the mobile phone number?
SYS> Do you want to use the home number or the mobile phone number?
. . .

One common way of dealing with this problem in in-vehicle speech systems is
to repeat a message once, then wait for a fixed amount of time, and then give up.
That this is not ideal either can be seen from the following (made-up) example:

USR> Call Lisa please
SYS> OK, Lisa. Do you want to use the home number or the mobile phone
number?
User enters roundabout and focuses all attention on the traffic
SYS> Do you want to use the home number of the mobile phone number?
Driver exits roundabout, and after a while the driver is ready to talk again
USR> Um, the mobile number please.
SYS> Sorry, I don’t understand. What do you want to do?

In addition to lacking strategies for dealing with interruptions and resump-
tions, the dialogue manager offers rather restricted methods for switching be-
tween different topic domains. For example, to switch from the “telephone”
application to the “audio system” application, the user has to provide explicit
requests such as “go to the audio system”. In cases where the system initiates a
topic domain switch , this is also done in a rather stereotypical way (“returning
to the telephone.”).

It would clearly be useful to (1) add strategies for dialogue interruption and
resumption, and (2) provide more convenient and natural means for switch-
ing between domains. In the context of the DICO project, the main point of
smoothly managing dialogue interruptions, resumptions and domain switchings
is to minimize the cognitive load of the driver.



Interruption, Resumption and Domain Switching 491

3 Method

The goal of the test setup was to elicit driver–passenger dialogue which would
feature a substantial and measurable number of instances of the different types
of human speech-communicative strategies and linguistic devices known to be
employed under cognitive load and other forms of driving-induced stress. One
specific challenge was therefore how to make driver and passenger engage in
natural dialogue and conversation of sufficient intensity that any additional
distractions or increase in the cognitive load, due to driving or the surrounding
traffic situation, would immediately compel the subjects to adapt their spoken
language in ways which would be detectable from subsequent transcription of
the conversation.

3.1 Subjects and Tasks

Eight subjects (two female and six male) between the ages of 25 and 36 were
recruited internally with one of the partners, and were divided into driver-
passenger pairs. The subjects had no previous experience from using speech
technology or dialogue systems.

To meet the requirements mentioned above, the subjects were given two
separate tasks, one navigation task and one memory task. In the navigation
task the passenger simply had to instruct the driver on where to drive. The
memory task was constructed so that the driver and passenger were to interview
each other regarding personal background and interests during the drive, after
which their individual ability to recall this information was scored using a fill-
out form. Subjects were informed that their joint score would be the basis
for a competition, to further encourage interaction, collaboration and thereby
conversation. All tests were performed under real and challenging conditions, in
relatively dense city traffic in central Gothenburg.

A previously unknown driving route was given to the passenger at the start,
together with the interview sheet. The passenger was told only to give verbal
driving instructions, spanning no more than one intersection ahead. Should the
team lose track while navigating, they were instructed to find their way back
to the pre-determined route and continue. The driver was told to focus on the
main tasks and on driving for safety reasons, but was told also to perform the
best he or she could in a so-called Tactile Detection Task (TDT), requiring the
driver to press a button at irregular intervals. Each team was free to manage
and solve the interview task in any way they saw fit. However, they were not
allowed to take notes or use any other memory aids. Within the teams, each
subject acted both driver and passenger, since the subjects were instructed to
switch roles halfway into the test, which lasted for 60 minutes in total.

3.2 Test Environment and Data

The test car, a Volvo XC 90 (model year 2004), was equipped with a dual head-
set microphone setup, enabling recording of driver and passenger on separate
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channels. Two digital video cameras were mounted inside the vehicle, one cap-
turing a close-up of the driver’s face, and the other capturing a wide-screen
view of the road ahead. To measure driver workload, a system for performing a
Tactile Detection Task was utilized in the test. The system consists of a buzzer
attached to the driver’s forearm and a response button attached to the index
finger. At random intervals, the TDT issues a tactile stimulus to the driver
and the driver is supposed to react as quickly as possible on each stimulus by
pressing the response button. Driver distraction can then be measured dynam-
ically in terms of user hit-rate and reaction latency, according to the method
developed by e.g [6]. TDT furthermore enables capturing of driving-unrelated
cognitive load, caused by other cognitive processes generated by the dialogue
itself or by memory processing, even when car was not moving, e.g. at stoplights
etc.

3.3 Transcription and Coding

For the transcriptions, the transcription tool ELAN2 was used. ELAN is able to
handle both audio- and video resources, and it allows annotation along multiple
tiers (i.e. an utterance can be annotated with several independent annotation
schema), both important features for this study. The annotation schema was
designed to enable analysis of utterances related to interruption and resump-
tion. The schema uses some notions from the MUMIN schema [7]. The notion
of “utterance” we are using here is approximately “maximal syntactic phrase
not interrupted by a long silence”; what counts as a “long silence” varies with
context and has not been further operationalized.

The domain-switch tier is used for annotating utterances where the domain
of the conversation changes. We distinguish three main domains of conversation
in this task: navigation, traffic and interview. The following labels are used in
the domain-switch tier:

– navi: A phrase which introduces or resumes talk about the navigation do-
main

– traffic: traffic (other than navigation)
– interview: interview
– other

Also, rather than marking whole segments with the domain tier, we only
mark the first phrase in each domain segment.

The sequencing schema marks formal aspects of domain-switching utter-
ances. The term “sequencing” refers to the mechanisms whereby a dialog is
structured into sequences corresponding to different domains of conversation,
and topics within these domains [7]. (Note that we do not currently annotate for
topic switches within domains, as these are less well-defined than the domains.)

– std-phrase (sequencing function, standard phrase): A standardized, domain
independent domain-switching phrase, e.g. “Let’s see”, “Where were we”

2 http://www.lat-mpi.eu/tools/elan/
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– dom-spec (sequencing function, domain-specific phrase): A domain-specific
domain-switching utterance, e.g. “Turn right”, “Wolfmother”, “How was I
supposed to drive, again?”

– unsure (sequencing function, phrase type not clear): A domain-switching
phrase where it is unclear whether the phrase is a standard, domain inde-
pendent phrase or a domain-specific phrase.

In addition to domain-switching and sequencing, utterances with feedback
function were annotated with respect to form. Feedback utterances provide in-
formation regarding the perception, understanding and acceptance of an utter-
ance. Three labels were used to distinguish forms of feedback utterances:

– std-phrase (feedback function, standard phrase): A standardized, domain
independent phrase with feedback function, e.g. “Let’s see”, “mhm”, “Okay”,
“Huh?”, “What do you mean?”, “Got it”

– dom-spec (feedback function, domain-specific phrase): A domain-specific
utterance with feedback function, e.g. “To the left” (in response to “Turn
to the left”). Typically contains a repetition or reformulation of the latest
preceding utterance.

– unsure (feedback function, , phrase type not clear): A phrase with feed-
back function where it is unclear whether the phrase is a standard, domain
independent phrase or a domain-specific phrase.

Note that “sequencing” and “feedback” are independent tiers; an utterance
can thus be coded for both functions. For example, “Okay” can have both a
feedback and a sequencing function.

The annotation schema has not been tested for inter-coder reliability, due
to limited resources. Instead, annotators have discussed problematic examples
and agreed on consensus decisions, sometimes altering the definitions in the an-
notation schema and altering previous annotations correspondingly. While full
reliability testing would have further strengthened the results presented here,
we believe that our results are still useful as a basis for future implementation
and experimental work.

4 Results

As far as the authors are aware, this is the first investigation into the form of
sequencing moves in in-vehicle dialogue. Although this was a fairly small-scale
experiment, we believe that some tentative conclusions may be drawn from the
transcribed data.

All in all 3590 driver utterances and 4382 passenger utterances were tran-
scribed and coded. The drivers made 171 sequencing utterances, the passengers
made 246.

Table 1 and 2 show the most common standard (i.e. domain-independent)
phrases which were used utterance-initially when switching to a new domain.
The data has been normalized for variations in pronunciation and in some cases
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Table 1. Standard phrases for driver sequencing utterances

InterviewNavigation TrafficOther

oops (oj ) 0 1 8 3
alright3 (jaha) 6 4 0 0
let’s see (ska vi se) 2 5 0 0

Table 2. Standard phrases for passenger sequencing utterances

InterviewNavigation TrafficOther

let’s see (ska vi se) 7 9 0 0
alright (jaha) 6 1 0 2
okay 4 1 0 0

for variations in exact wording (the phrase “let’s see”(Sw. “d̊a ska vi se”) has a
number of variants, roughly paraphraseable as “now let’s see”, “let’s see now”
etc.). Table 1 shows that “oops”(Sw. “oj”) is the most common sequencing
phrase for the driver, and it is used as a single utterance to comment something
in the traffic domain. It is however never used for switching to interview or
navigation issues. ”Let’s see” is the most common phrase used by passengers.
It is used for switching to the interview and navi domains (e.g. “Now let’s see,
sailing...”(Sw. “Nu ska vi se, segling...”) or “Let’s see here, keep right at the
bridge”(Sw. “Ska vi se här, h̊all till höger vid bron”)), but never for traffic or
other domains.

Sequencing phrases that are domain specific, i.e. that can only be understood
within a certain domain, are classified based on grammatical category according
to the following schema4:

– DEC: declarative sentence
– INT: interrogative sentence
– IMP: imperative sentence
– ANS: “yes” or “no” answer
– NP: bare noun phrase
– ADVP: bare adverbial phrase
– INC: inomplete phrase

Figure 1 shows the frequencies of different kinds of domain-specific sequencing
moves within the interview domain. Most common for both driver and passen-
ger are declarative utterances, e.g. ”Enemy of the enemy was the last I read”
(re-raising earlier discussion about books). Second most common for drivers
are incomplete phrases, e.g. ”That was also favorite”. For passengers noun
phrases are second most common. For example, one passenger re-raises an earlier
4 This schema was put together ad-hoc based on corpus observations and standard

taxonomies of sentence types and grammatical categories.
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Fig. 1. Domain specific phrases for domain Interview

discussion about favorite music by simply saying ”Wolfmother”, which is the
name of a previously discussed favorite band of the drivers’.

Figure 2 shows the kinds of domain specific phrases that are used within
the navigation domain. Interrogative phrases are most common for drivers, e.g.
“Should I go straight ahead here”, while declarative phrases are most common
for passengers, e.g. “Now you should turn left in the next crossing5”.

Fig. 2. Domain specific phrases for domain Navi

Figure 3 shows categories for domain specific phrases in the traffic domain.
As can be seen the distribution is the same for both drivers and passengers.
Declarative phrases are by far the most common, e.g. “And there you come and
5 Note that this sentence has declarative form even though it is pragmatically a

request.
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Fig. 3. Domain specific phrases for domain Traffic

Fig. 4. Domain specific phrases for domain Other

I don’t know who is driving”(Sw. “Och där kommer du och jag vet inte vem
som kor”) (driver talking to a fellow driver).

Figure 4 shows categories for all other domains. The distribution is similar to
the traffic domain, and is also the same for both driver and passenger. Declara-
tive phrases are most common here too, e.g. ”It feels like I’m forgetting to press
the button” (driver commenting the TDT button).

In addition to the phrases and words explicitly tagged as having a sequencing
function, as shown above, it was also noted that in many cases, topic and do-
main shifts were also audibly distinguishable by virtue of prosodic cues and/or
extra-linguistic sounds, such as lip smacks, inhalation noise etc. Two authentic
examples from the corpus are shown below.
[inhales] så nu är vi som tillbaks här igen
so now we are sort of back here again
[lipsmack] jaa det var fyra stycken där
yes you had four there
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A search across all driver and passenger transcriptions for the extra-linguistic
sound categories lip smack, breathing, sighing, coughing and throat clearing
immediately preceded a domain shift was performed. Matches were found in
9% (10 instances out of a total of 166 domain shifts) of the driver transcriptions
and 16% (18 instances out of a total of 244 domain shifts) of the passenger
transcriptions. (It should perhaps be noted that sub-domain or topic shifts are
not as yet explicitly coded, and consequently could not be included as contexts
of the search.) Regardless of whether these sounds are produced at will or sub-
consciously, a system which were able to detect them could use them as potential
cues of an upcoming topic or domain shift.

5 Discussion

There some differences between the tables for driver and passenger standard
phrases; for example, “oops”(Sw. “oj”) is the most common standard phrase
used for domain switching and dialogue resumption by the driver. It seems clear,
since the phrase is mostly used when switching to the traffic domain, that this
signal is motivated by real-time events in the environment, rather than planned
ahead. We can perhaps make a conceptual distinction between “improvised”
and “planned” sequencing moves. In addition, we can see that the improvised
sequencing moves are motivated by the navigation task (since this is the domain
that the dialogue switches to). ”Let’s see”, on the other hand, is a good example
of a ”planned” sequencing move. It is frequently used by the passenger in both
the interview- and the navi-domain, as well as the navi domain for the driver.
This phrase seems to be used when the speaker a) believes that it is necessary
to change domain (the driver do not know where to go or the passenger realizes
that the driver has not got enough instructions) or b) believes that it is suitable
to change domain (the driver knows where to go and the traffic situation is
not too heavy, or the passenger believes that the driver should be capable of
concentrating on something else but the driving task). “Alright”(Sw. “jaha”)
seems to have more of an eliciting function, declaring that the speaker is ready
to change domain and encourages the hearer to make the first move.

As noted, passengers frequently used bare noun phrases when resuming a
previous domain topic. Our hypothesis is that these NP re-raisings allude to a
previously discussed topic, e.g. a question from the interviewers questionnaire
which was interrupted by navigation- or traffic-domain dialogue. This is similar
to the account of reduced “second-mention” forms for re-raising questions in
dialogue put forward in [8]. Passengers usually use declarative phrases in all
domains, which can be explained by the fact that it is the passenger who has
access to information. In the interview and the navi domains the passenger have
all the information about what questions to ask and which way to go. The driver
also usually uses declarative phrases, in all domains but the navi domain where
interrogative phrases are more common, since the driver frequently has to ask
for information about where to go.
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6 Future Work

We plan to add dialogue management strategies to the DICO dialogue manager
to enable it to deal with phenomena like the ones described in this paper, and
to evaluate the effect of these strategies on driver cognitive load in in-vehicle
dialogue. The frequency lists are expected to be useful when deciding what to
listen for from the user, how to react to sequencing signals from the user, and
for generating natural-sounding sequencing moves from the system6.

To fully adapt the dialogue to the driver’s cognitive load, it would be very
useful to get an estimate of this based on available information sources in the in-
vehicle environment. We are working on using existing technologies for this, with
the aim of connecting these technologies to the dialogue system and using it for
optimizing system, behavior. A very interesting future research topic would be
the detection of cognitive load from the speech signal, and for weighing together
evidence from multiple sources. We envision the following kind of behavior:

USR> Call Lisa please
SYS> OK, Lisa. Do you want to use the home number of the mobile phone
number?
User enters roundabout and focuses all attention on the traffic
USR> um... uh...
Driver exists roundabout, and after a while the cognitive load is sufficiently low
to allow resuming the dialogue
SYS> Let’s see. Lisa. Do you want to use the home number of the mobile
phone number?

A relevant question in this context is whether user initiative should always
override the system’s estimation of the user’s cognitive load. That is, if the
speaker resumes the dialogue, should the system respond regardless of cognitive
load? If so, how should it respond? Should it also take own initiatives or only
do what’s needed to complete the user’s requests? These are questions which
we hope to answer in future experiments.
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Abstract. This paper investigates the effect of a set of verbal features in data-
driven dependency parsing of Swedish. Following an error analysis of a baseline
parser, we show that the addition of information on verbal features such as tense
and voice can give significant improvements over this baseline and, in particular,
in the analysis of syntactic arguments. We furthermore show the importance of the
binary property of finiteness for the parsing of Scandinavian and demonstrate that
highly similar effects may be achieved with automatically acquired information.

1 Introduction

With the development of syntactic treebanks for a range of languages other than En-
glish, there is now considerable efforts in data-driven parsing and studies which high-
light the effect of different linguistic properties of these languages are important for
further improvements. In recent work on syntactic parsing of German, for instance,
it has been debated whether certain structural properties of the language call for dif-
ferent parsing strategies or representational frameworks than the parsing of English
(Dubey and Keller, 2003; Kübler et al., 2006). The Scandinavian languages share with
German certain syntactic properties, such as a rigid verb placement in combination
with word order variation, which make these languages interestingly different from
English. In particular, the so-called V2-constraint requires that the finite verb be the
second constituent of declarative main clauses and finiteness has been claimed to
be a defining property of Scandinavian syntax in more theoretically oriented work
(Holmberg and Platzack, 1995; Eide, 2008).

In strictly data-driven approaches to syntactic parsing, a grammar, whether hand-
crafted or induced, does not figure at all. The parser is trained on a treebank containing
the correct analyses with respect to some representational framework, e.g, constituent
analysis or dependency analysis and without a formal grammar to guide parsing, data-
driven models typically condition on a rich linguistic context in the search for the most
probable analysis.

In this paper we address the effect of a set of verbal features on the data-driven depen-
dency parsing of Swedish, and in particular on the parsing of core grammatical functions
such as subjects and objects. The parsing framework is deterministic classifier-based
dependency parsing, more precisely the MaltParser system (Joakim Nivre and Nilsson,
2006), which achieved the highest parsing accuracy for Swedish in the CoNLL-X shared
task on dependency parsing (Buchholz and Marsi, 2006).
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The paper is organized as follows. In section 2, we start out by briefly outlining
some relevant syntactic properties of Scandinavian and we present the treebank and
parser employed in section 3. Section 4 presents an in-depth error analysis of the re-
sults from a baseline parser, focusing on errors for syntactic dependents of verbs, like
arguments and adverbials. The experiments presented in section 5 investigate the effect
of additional information on the morphosyntactic properties of verbs, employing gold
standard annotation. We evaluate the results both in terms of overall parse performance,
as well as more detailed evaluation for individual dependency relations. We go on to as-
sess the scalability of these results by employing automatically acquired verbal features.
Finally, section 6 concludes and provides some suggestions for future research.

2 Scandinavian Morphosyntax

Before we turn to a description of the treebank and the parser used in the experiments,
we want to point to a few grammatical properties of Swedish that will be important in
the following. Like the majority of Germanic languages, but unlike English, the Scan-
dinavian languages are verb second (V2); the finite verb is the second constituent in
declarative main clauses. Pretty much any constituent may occupy the sentence-initial
position, as illustrated by (1)-(3).

(1) Statsministern
primeminister-DEF

håller
holds

ett
a

tal
speech

i
in

morgon
tomorrow

‘The primeminister gives a speech tomorrow’
(2) Ett

a
tal
speech

håller
holds

statsministern
primeminister-DEF

i
in

morgon
tomorrow

‘A speech, the primeminister gives tomorrow’
(3) I

in
morgon
tomorrow

håller
holds

statsministern
primeminister-DEF

ett
a

tal
speech

‘Tomorrow, the primeminister gives a speech’

In (1) sentence-initial position is occupied by the subject, in (2) by the direct object,
whereas we in (3) find an adverbial in sentence-initially. Word order in subordinate
clauses, however, are not restricted by this constraint:

(4) . . . eftersom
since

statsministern
primeminister

nog
enough

inte
not

håller
holds

ett
a

tal
speech

i
in

morgon
tomorrow

‘. . . since the prime minister probably will not give a speech tomorrow’

Non-finite verbs follow the finite verb, but precede their complements and the presence
of a non-finite verb introduces a greater rigidity in terms of interpretation of the clausal
constituents.1 With respect to core arguments, only subjects may intervene between a
finite and non-finite verb, as in (6), and only objects may follow the non-finite verb,
as in (5):

1 In this respect Scandinavian differs from German, which positions non-finite verbs in clause
final position.
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(5) Statsministern
primeminister-DEF

ska hålla
shall

ett
hold

tal
a speech

‘The primeminister will give a speech’
(6) Ett

a
tal
speech

ska
shall

statsministern
primeminister

hålla
hold

‘A speech, the primeminister will give’

Main clauses consisting of a finite, transitive verb along with its arguments are thus
structurally ambiguous, see (7), whereas the placement of a non-finite verb in the same
clause clearly indicates syntactic functions, cf. (8) and (9):

(7) Vem
who

såg
saw

Ida?
Ida

‘Who saw Ida / Who did Ida see?’
(8) Vem

who
SUBJ

har
has

sett
seen
OBJ

Ida?
Ida

‘Who has seen Ida?’
(9) Vem

who
OBJ

har
has

Ida
Ida
SUBJ

sett?
seen

‘Who has Ida seen?’

3 Data and Parser

Talbanken05 is a Swedish treebank in dependency format and contains both written and
spoken language (Nivre et al., 2006a). The written sections of the treebank consist of
professional prose and student essays and amount to 197,123 running tokens, spread
over 11,431 sentences. Figure 1 illustrates the treebank annotation for the example sen-
tence in 10.

(10) Därefter
thereafter

betalar
pays

patienten
patient-DEF

avgift
fee

med
with

10
10

kronor
krona-PL

‘Thereafter, the patient pays a fee of 10 kronas’

For each token, Talbanken05 contains information on word form, part of speech,
head and dependency relation, as well as various morphosyntactic features. For verbs,
the treebank distinguishes the categories of tense and voice, illustrated by the active,
present tense verb betalar ‘pays’ in (10).

In the parse experiments, we employ the freely available MaltParser,2 which is a
language-independent system for data-driven dependency parsing. It is based on a deter-
ministic parsing strategy, in combination with treebank-induced classifiers for predict-
ing parse transitions (Nivre, 2006). The MaltParser system allows for explicit
formulation of features employed during parsing by means of a feature model. As

2 http://w3.msi.vxu.se/users/nivre/research/MaltParser.html
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_
_
_
_

Darefter
AB
AB
DA

betalar
V

VV
PS

patienten
N

NN
DD|HH

avgift
N

NN
_

med
PR
PR
_

10
R

RO
_

kronor
N

NN
_

om
PR
PR
_

dagen
N

NN
DD

ROOTTA SS OO ET PADT ET PA

Fig. 1. Example (10) from Talbanken05 with dependency annotation

our baseline, we use the settings optimized for Swedish in the CoNLL-X shared task
Nivre et al. (2006b) where the MaltParser system was the best performing parser for
Swedish. The only parameter that will be varied in the later experiments is the infor-
mation contained in the features used for the prediction of the next parsing action. The
baseline parser employs information on part-of-speech, lexical form and previously as-
signed dependency relations.

4 Error Analysis of Baseline Parser

The written part of Talbanken05 was parsed employing the baseline parser described
above, using 10-fold cross validation for training and testing. The overall result for
unlabeled and labeled dependency accuracy is 89.87 and 84.92 respectively.3

Table 1. 10 most frequent error types in baseline experiment, where SS=subject, OO=object,
AA=other adverbial, OA=object adverbial, ET=nominal post-modifier, RA=spatial adverbial,
TA=time adverbial

Gold System Count
ET OA 450
ss oo 446
OA ET 410
AA RA 404
AA OA 398
TA AA 372
RA AA 311
oo ss 309
RA OA 308
AA TA 290

In an error analysis of the baseline parser we try to locate consistent patterns of
errors. As Table 1 shows, the overall most frequent errors in terms of dependency rela-
tions involve either various adverbial relations or the core argument relations of subject

3 Note that these results are slightly better than the official CoNLL-X shared task scores
(89.50/84.58), which were obtained using a single training-test split, not cross-validation. Note
also that, in both cases, the parser input contained gold standard part-of-speech tags.
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Table 2. Position relative to verb for confused subjects and objects

Gold Sys before after Total
SS OO 103 (23.1%) 343 (76.9%) 446 (100%)
OO SS 103 (33.3%) 206 (66.7%) 309 (100%)

(SS) and direct object (OO). The errors in assignment of adverbial relations contain a
fair number of PP-attachment errors (ET, OA). Furthermore, Talbanken05 makes nu-
merous and fine-grained distinctions in adverbial functions (spatial, temporal, modal,
comparative etc.), which clearly prove difficult for the parser to replicate.

The confusion of subjects and objects follows from lack of sufficient formal dis-
ambiguation, i.e., simple clues such as word order, part-of-speech and word form do
not clearly indicate syntactic function. This is a direct consequence of the word order
variation mentioned initially. As we saw in section 2, subjects and objects may both
precede or follow their verbal head. These realizations are not, however, equally likely.
Subjects, however, are more likely to occur preverbally (77%), whereas objects typi-
cally occupy a postverbal position (94%). Based on word order alone we would expect
postverbal subjects and preverbal objects to be more dominant among the errors than
in the treebank as a whole (23% and 6% respectively), since they display word order
variants that depart from the canonical ordering of arguments. Table 2 shows a break-
down of the errors for confused subjects and objects and their position with respect to
the verbal head. We find that postverbal subjects (after) are in clear majority among the
subjects erroneously assigned the object relation. Due to the aforementioned V2 prop-
erty of Swedish, the subject must reside in the position directly following the finite verb
whenever another constituent occupies the preverbal position, as in examples (2)-(3)
and the authentic error example in (10) above.

Following the error analysis, we may hypothesize that additional information regard-
ing properties of the verb may contribute to the resolution of these types of ambigui-
ties. As we saw in section 2, the V2-constraint is a categorical constraint in Swedish.
The property of being data-driven entails that there is no grammar available for pars-
ing where such a constraint may be stated explicitly. Rather, analyses produced by the
parser are patterned on properties found in the treebank employed for training and these
are the properties which we will be manipulating in the following experiments.

5 Experiments

Part-of-speech tag sets commonly make reference to the feature of tense, a category
which is marked morphologically in Scandinavian, as in many other languages. In these
experiments we will investigate the effect of verbal properties on the analysis of syn-
tactic arguments, such as subjects and objects in a purely data-driven parser.

5.1 Experimental Methodology

All parsing experiments are performed using 10-fold cross-validation for training and
testing on the entire written part of Talbanken05. Overall parsing accuracy will be re-
ported using the standard metrics of labeled attachment score (LAS) and unlabeled
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attachment score (UAS), i.e., the percentage of tokens that are assigned the correct
head with (labeled) or without (unlabeled) the correct dependency label, calculated us-
ing eval.pl with default settings.4 Statistical significance is checked using Dan Bikel’s
randomized parsing evaluation comparator.5

We furthermore report accuracy for specific dependency relations, measured as a
balanced F-score. In order to summarize improvement with respect to dependency rela-
tion assignment when comparing two parsers, we rank the relations by their frequency-
weighted difference of F-scores.6

5.2 Gold Standard Features

The Talbanken05 treebank distinguishes the morphosyntactic properties of tense
(present, past, imperative, subjunctive, infinitive and supine) and voice (active or pas-
sive) for all verbs. In order to investigate the influence of these various verbal features
we performed a set of experiments testing the effect of this information. Three experi-
ments were performed with different feature sets: only voice information (Voice), only
tense information (Tense) and a final experiment where the categories in the tense feature
were mapped to a binary distinction between finite and non-finite verb forms (Finite).
The last experiment was performed in order to test explicitly for the effect of the finite-
ness of the verb.

Table 3. Overall results for experiments with gold standard verbal features, expressed as average
unlabeled and labeled attachment scores

Unlabeled Labeled
NoFeats 89.87 84.92
Voice 89.81 84.97
Tense 90.15 85.27
Finite 90.24 85.33
Tense+Voice 90.15 85.28
Finite+Voice 90.24 85.38

Voice. A property of the verb which clearly influences the assignment of core argument
functions is the voice of the verb, i.e., whether it is passive or active. As we see in
Table 3, the addition of information on voice has little effect on the results and the
overall difference from the baseline is not statistically significant. This is somewhat
surprising as voice alternations have such confounding effects on the argument structure
and argument realization of a verb. A closer look at the results, however, reveal that we
do find an improved assignment for subjects and objects, as well as the passive agent
relation following from the added information.

4 http://nextens.uvt.nl/∼conll/software.html
5 http://www.cis.upenn.edu/∼dbikel/software.html
6 For each dependency relation, the difference in F-scores is weighted by its relative frequency,

Deprel∑
i Depreli

, in the treebank.
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The improvement in analysis of the SS and OO relation is clearly linked to verbal
argument structure; a passive transitive verb does not take an object whereas its active
version does.

Tense. An experiment (Tense) was performed where we included information on verbal
tense. The results in Table 3 show a significant improvement from the baseline (p <
.0001). The added information has a positive effect on the verbal dependency relations –
ROOT, MS, VG, as well as an overall effect on the assignment of the SS and OO argument
relations.

The most common error types indicate that the addition of information on tense
improves on the confusion of the main argument types – SS, OO mentioned in the initial
error analysis. We also find that head attachment of subjects in particular improves. The
subject is always attached to the finite verb in the Talbanken05 analysis, so this is not
surprising.

Finiteness. In order to ascertain the influence of finiteness, an additional experiment
was performed where the various tense features were mapped to their corresponding
class of ‘finite’ or ‘non-finite’.7 We see the results in Table 3 and find a significant
improvement from the baseline (p < .0001).

It is clear that the simple property of finiteness makes the relevant distinctions shown
by the tense features. In fact, the mapping to a binary dimension of finiteness causes a
further improvement (p < .03) compared to the use of the total set of tense features.
This supports the central role of finiteness in Scandinavian syntax, and V2-languages
in general. As we recall, the finite verb provides a fixed position in the positioning and
ordering of clausal elements. As Table 4 shows, the addition of finiteness information
causes improved analysis for verbal relations, the core argument relations (SS, OO), as
well as non-argument, adverbial relations (TA, AA, NA). These are all relations whose
positioning is influenced by the finiteness of the verb.

Table 4. 10 most improved dependency relations with added information on finiteness, ranked by
their weighted difference of balanced F-scores

Dependency relation Freq NoFeats Finite
ROOT root .0649 86.71 88.03
SS subject .1105 90.25 90.91
VG verb group .0302 94.65 96.42
OO direct object .0632 84.53 85.31
+F coordinated clause .0099 52.07 55.45
MS coordinated clause .0096 63.35 66.63
TA time adverbial .0249 70.29 71.20
AA other adverbial .0537 68.70 69.04
++ conjunction .0422 90.33 90.67
NA negation adverbial .0422 92.46 93.56

7 Note that we are not equating tense and finiteness, since there are untensed forms which are
still finite, e.g. the imperative (Holmberg and Platzack, 1995). Rather we map the present and
past tenses, as well as the imperative to the class ‘finite’ and the rest to the ‘non-finite’ class.
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In the initial error analysis we noted that errors which confused subjects for ob-
jects and vice versa were frequent and that these were typically caused by word order
variation. We find that the addition of information on finiteness results in the correct
assignment of 24.4% of the subjects which were initially confused for objects by the
baseline parser. These are predominantly postverbal subjects (89.9%) which directly
follow a finite verb. We furthermore find that 31.4% of the objects initially confused
for subjects by the baseline parser and a fair number of these (45.3%) have a non-finite
head verb.

Combined Features. The combination of the verbal features (Tense+Voice, Finite+
Voice) causes a slight, but not significant improvement over the best of the individual
features (Tense, Finite).

5.3 Automatic Features

In order to assess the scalability of the results detailed above, we performed an ex-
periment where information on voice and finiteness was assigned automatically. For
part-of-speech tagging, we employ the freely available MaltTagger – a HMM part-of-
speech tagger for Swedish (Hall, 2003). The pretrained model for Swedish employs the
SUC tagset (Gustafson-Capková and Hartmann, 2006). The SUC part-of-speech tag set
distinguishes tense and voice for verbs.

The experiments with the gold standard verbal features described above clearly
showed the benefit of mapping the tense values to a binary set of finiteness-features
and this mapping was performed directly for the acquired features.8 We find that the
automatically assigned verbal features of finiteness and voice are very reliable, with ac-
curacies of 97.6 and 96.9, respectively. However, the passive feature is infrequent and
shows a quite low precision (74.0) due to syncretism in the s-suffix which is employed
for both passives and deponent verbs. Deponent verbs are characterized by a passive s-
suffix, but have an agentive semantics. Examples include hoppas ‘hope’, trivas ‘enjoy’.

Table 5. Overall results for experiments with automatic features

Gold standard Automatic
Unlabeled Labeled Unlabeled Labeled

NoFeats 89.87 84.92 89.87 84.92
Voice 89.81 84.97 89.83 85.00
Finite 90.24 85.33 90.15 85.23
Finite+Voice 90.24 85.38 90.12 85.26

It is interesting to note that the addition of the automatically acquired information on
voice actually causes a small, but significant improvement in overall results (p<.03),
in contrast to the gold standard experiment. Clearly, the overgeneration indicated by

8 Present, past, imperative and subjunctive forms are mapped to the finite feature (FV), all other
forms are mapped to the non-finite feature (Ø).
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the low precision actually captures generalizations which benefit the parse results. In
parallel with the gold standard results, we find that the feature of finiteness causes a
significant improvement in results (p<.0001). The results are somewhat lower, as is to
be expected, but we find that it influences the analysis of the argument relations, as well
as the verbal relations.

6 Conclusion

The above experiments have shown how properties of the verb are important in syntactic
parsing of Swedish. An error analysis revealed consistent errors in the assignment of
syntactic relations by the baseline parser. These errors were partly caused by structural
properties of the language, and, in particular, word order variation.

The fact that the Scandinavian languages are V2-languages, which position the finite
verb in second position, led us to design a set of experiments where we investigated
the addition of information on the verbal properties of voice and tense. We found that
the addition of tense, in particular, caused a significant improvement of overall results
(p<.0001). In order to further test the extent to which tense may be reduced to finiteness,
we performed an experiment where we mapped the tense features to features expressing
the binary category of finiteness (finite/non-finite). We observed a further improvement
of results (p<.03), supporting the central role of the property of finiteness in syntac-
tic analysis of Scandinavian. We found an improved analysis for verbal dependency
relations, as well as arguments and adverbials with verbal attachment. Corresponding
experiments with automatically acquired features showed slightly lower, but similar
effects, highlighting the scalability of the results.

It is clear that there are other linguistic properties which influence the assignment
of syntactic relations in Swedish, such as the animacy and definiteness of arguments
(Øvrelid and Nivre, 2007). The placement of adverbials are also characterized by vari-
ation in Scandinavian and in terms of future research, we would like to examine the
analysis of adverbials and their interaction with verbal features as well as different fea-
tures of syntactic arguments. Scalability continues to be a main concern and additions
in terms of linguistic features should be acquired automatically instead of relying on
gold standard annotation.
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Kettunen, Kimmo 222
Klapaftis, Ioannis P. 248
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Marcińczuk, Micha�l 393
Matsuo, Yutaka 77
Max, Aurélien 324
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