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Abstract. Most complete binary prefix codes have a synchronizing
string, that is a string that resynchronizes the decoder regardless of its
previous state. This work presents an upper bound on the length of the
shortest synchronizing string for such codes. Two classes of codes with a
long shortest synchronizing string are presented. It is known that finding
a synchronizing string for a code is equivalent to a finding a synchroniz-
ing string of some finite automaton. The Černý conjecture for this class
of automata is discussed.

1 Introduction

Huffman codes are the most popular variable length codes. In the presence of
channel errors a large part of an encoded message can be destroyed because of
the loss of synchronization between the decoder and the coder. In case of some
Huffman codes, under certain assumptions on the message source, the decoder
will eventually resynchronize, and, from then on, symbols will be decoded cor-
rectly. These codes are called synchronizing. Capocelli et al. [1] proved that codes
are synchronizing if and only if they have a synchronizing string — a string such
that when received by the decoder always puts it into synchronization. Freiling
et al. [2] proved that almost all Huffman codes have a synchronizing string. More
precisely, they proved that the probability of drawing randomly a code without
a synchronizing string decreases to zero with increasing code size.

Shützenberger [3] analyzed possible distribution of codewords’ lengths in a
synchronizing prefix codes. Rudner [4] gave an algorithm for the construction
of a synchronizing Huffman code for a given distribution of codewords’ lengths,
that works under some assumptions on the distribution. His work was further
extended in [5,6]. Capocelli et al. [7] showed how to modify a Huffman code
by adding a little redundancy to create a synchronizing code. Ferguson and
Rabinowitz [8] analyzed codes whose synchronizing string is a codeword.

� The research was partially supported by the grants of the Polish Ministry of Science
and Higher Education N 206 004 32/0806 and N N206 376134.
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The synchronization recovery of a Huffman code can be modeled with a finite
automaton whose states are proper prefixes of codewords (or internal nodes of
the code’s tree). This automaton will be called a Huffman automaton. Such an
automaton was used by Maxted and Robinson [9] to compute for a given code
the average number of symbols lost before resynchronization.

A lot of research has been done in the area of automata synchronization. A
synchronizing string for a finite automaton 〈Q, Σ, δ〉 is a string s that brings all
states to one particular state. That is δ(q1, s) = δ(q2, s) for any states q1, q2 ∈ Q.
An automaton will be called synchronizing if it has a synchronizing string. The
famous Černý conjecture [10] states that a synchronizing finite automaton with
N states has a synchronizing string of length (N − 1)2.

Although there are proofs for certain classes of automata, for instance in
[11,12], the problem remains open. There are some bounds on the length of
the shortest synchronizing string. For instance Pin [13] proved that 1

6 (N3 − N)
is an upper bound. Some research has also been done to find automata with
long shortest synchronizing strings. Černý [10] constructed a series of automata
with the shortest synchronizing string of length (N − 1)2. Ananichev et al. [14]
considered how long a synchronizing string can be if there is a letter that reduces
the number of states by two. Trahtman [15] searched for worst-case automata.

Eppstein [16] gave an algorithm for testing whether an automaton is synchro-
nizing and for the construction of a synchronizing string of length O(N3) for a
synchronizing automaton. His algorithm requires O(N3) operations if the alpha-
bet is of constant size. An overview of the area of automata synchronization is
given in [17].

It is rather clear that a synchronizing string for a Huffman code is also a
synchronizing string for the Huffman automaton of the code, and vice versa.
Nevertheless, it seems that so far both areas of research have not been related.
This paper fills this gap.

First we explain that Huffman code synchronization is equivalent to Huffman
automaton synchronization. Then, we prove an upper bound on the length of
the shortest merging string for a set of two states of a Huffman automaton:
the root of the code’s tree and another internal node of the tree. A merging
string for a set of states is a string that brings all states of the set to the same
state. The proof is constructive and an algorithm for the construction of the
shortest merging string for such nodes is given. The execution of this algorithm
also suffices for answering whether a code is synchronizing. Then we present an
upper bound on the length of the shortest synchronizing string of a Huffman
automaton. For most (but not all) codes the bound is better than the Černý
conjecture. Also an algorithm for the construction of a synchronizing string for
a Huffman automaton is presented. To the author’s best knowledge, this class of
automata has not been studied yet. The bounds presented here are better than
the bounds O(N3) for general automata. Both algorithms are faster than the
one of Eppstein [16].

Afterwards, results of experimental search for worst-case codes are shown.
Three classes of Huffman codes are presented. The codes give a lower estimate
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on the possible upper bounds of the length of the shortest synchronizing or
merging string. It is conjectured (but, unfortunately, not proved) that these
classes of codes are the worst-case codes. It is interesting that the length of their
synchronizing or merging strings is much lower than the bound proved.

Due to limited length of the paper, the most difficult proofs are omitted.

2 Definitions and Notation

A word is a string of letters, for instance w = w0w1 . . . wk−1. The empty word is
denoted by ε. The subword of a word w from the position p to q − 1 is denoted
by w[p..q). The length of a word w is denoted by |w|. A sequence of k letters a
is denoted ak. For instance, for w=‘abc’, w[1..2)=‘b’, w[1..3)=‘bc’, w[0..1)=‘a’,
|w| = 3 and 04 = ‘0000’.

A complete binary tree is a tree with each node being either an internal node
with two children, or a leaf with no children. Each left outgoing edge is labeled
with 0 (0-edge). Each right outgoing edge is labeled with 1 (1-edge). The root
of a tree is denoted by ε. Each node n has a unique binary string π(n) that is
formed of labels on the path from the root to n. We have π(ε) = ε. The number
of leaves in a tree is denoted by N . The height of a tree is denoted by h. In this
paper, a code C such that C = {π(n)|n is a leaf of T } for some complete binary
tree T , is called a Huffman code. The tree T is called a Huffman tree. We refer
to a node n of T using the string π(n). For instance, the node 10 is the left son
of the right son of the root.

Let a Huffman Automaton (HA) T be an automaton whose states are internal
nodes of the Huffman tree T . The transition function δ(n, b), b ∈ {0, 1}, brings
an automaton from the node n to its b-edge child, if it is not a leaf, or to the root
otherwise. The function δ∗ is the extension of δ to strings: δ∗(q, b0 . . . bk−1) =
δ(δ∗(q, b0 . . . bk−2), bk−1) and δ∗(q, ε) = q. For a subset S of states of a Huffman
automaton we denote, δ(S, a) := {δ(q, a)|q ∈ S}. The same convention is used
for δ∗.

We say that a word w brings a node n to a node n′ if n′ = δ∗(n, w). Then n′

is the result of applying w to n. In addition, we say that w brings a node n to a
leaf if δ∗(n, w) = ε and w is not empty. This is justified because the construction
of the Huffman automaton T may be seen as merging the leaves of the tree T
with the root of T . We say that w brings a node n to n′ without loops if none of
the nodes δ∗(n, w[0, 1)), δ∗(n, w[0, 2)), . . . , δ∗(n, w[0, |w| − 2)) is the root.

The values T , T , δ, δ∗, N , h, ε, π depend on the code C. We assume that
it is always clear from the context which code (or, equivalently, which Huffman
tree) is being considered.

Definition 1. A synchronizing string for a Huffman code is a string ws such
that wws is a sequence of codewords for any binary word w.

Equivalently, a synchronizing string is a string that brings any node of the Huff-
man automaton to the root.
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Definition 2. Let A = 〈Q, Σ, δ〉 be a finite automaton. A synchronizing string
for A is a word w such that |δ∗(Q, w)| = 1. A merging string for a set of states
R ⊆ Q of the automaton A is a word w such that |δ∗(R, w)| = 1.

Definition 3. Let A = 〈Q, Σ, δ〉 be a finite automaton. The power automaton
for A is the automaton P(A) = (P(Q), Σ, δP), where P(Q) denotes the set of
all subsets of Q and δP(S, a) = δ(S, a) for S ∈ P(Q).

The operation of the power automaton P(A) can be seen as movements of coins
that lie on some states of the automaton A. If the power automaton is in a state
S ⊆ Q, the coins lie on the states q ∈ S. Then, if the power automaton makes
a transition by a letter a, the coins move according to the transition function
δ of the automaton A. If a coin is in the state p then it moves onto the state
δ(p, a). If more than one coin goes to the same state only one of them is kept. It
easy to see that after applying the letter a the set of states with coins is exactly
δP(S, a). This analogy helps to visualize the operation of the power automaton
and gives some intuition. For instance, the string w is synchronizing if and only
if applying w to the automaton A with a coin on each state results in just one
coin left.

An automaton is synchronizing if it has a synchronizing string. A Huffman
code is synchronizing if it has a synchronizing string.

Theorem 4. A synchronizing string for a Huffman code C is a synchronizing
string for the Huffman automaton T of the code. A synchronizing string s for the
Huffman automaton T , such that s brings all nodes to the root, is a synchronizing
string for the Huffman code.

Thus a Huffman code is synchronizing if and only if its Huffman automaton is
synchronizing.

3 Merging String for a Pair of States

Theorem 5. Let C be a synchronizing Huffman code of size N , let T be the
Huffman tree for C, let T be the Huffman automaton of the code C. For any
node n of T there is a merging string sn for the set {n, ε}, with

|sn| ≤
∑

p∈Q(T )\{ε}
hp, (1)

where Q(T ) is the set of the internal nodes of T and hp is the height of the subtree
of T rooted at p.

Proof. Let us consider a merging string sn for {n, ε} of minimal length (it exists
because C is synchronizing, but it need not be unique). The string sn brings
both nodes to the root, because otherwise we could remove the last letter of sn

and the result would still merge n and ε.
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Let {ni, mi} be the unordered pairs of nodes that appear when consecutive
prefixes of sn are applied to the initial set {n, ε}, i.e.

{ni, mi} = δ∗ ({n, ε}, sn[0..i)) , i = 0, . . . , |sn|. (2)

We have {n0, m0} = {n, ε} and {n|sn|, m|sn|} = {ε} (a singleton is also consid-
ered a pair).

Let us look at the subsequence {nik
, ε}, k = 0, . . . , l, of this sequence formed

of pairs containing the root. Each node p, appears in this subsequence as the
partner of ε at most once, because pairs do not repeat in {ni, mi} (otherwise
we could shorten the string sn). The string sn[ik, ik+1), that brings {nik

, ε} to
{nik+1 , ε}, is a string that either brings the node nik

to a leaf without loops or
that brings ε to a leaf without loops. In either case the length of sn[ik, ik+1) is
at most hnik

(note that in the second case the node nik+1 is in the subtree of
nik

). We get

|sn| =
l−1∑

k=0

|sn[ik, ik+1)| ≤
l−1∑

k=0

hnik
≤

∑

p∈Q(T )\{ε}
hp. (3)

The value of hε is not counted because the set {ε} appears only as the last
element of the sequence {nik

, ε}. ��
Let HT be the value of the bound in Theorem 5. HT is the sum of heights of
all the nontrivial subtrees of T apart from the whole tree. We will compare HT

with ΠT — the sum of depths of all the internal nodes, and with WT — the
sum of depths of all the leaves of T (that is the sum of codewords’ lengths).

Lemma 6. Let T be a complete binary tree, let Q(T ) be the set of internal nodes
of T , let L(T ) be the set of leaves of T , let hn and Nn be, respectively, the height
and the number of leaves of the subtree rooted at the node n of T , let |π(n)| be the
distance from the root to n and let NT be the number of leaves of T . Let us define

HT =
∑

n∈Q(T )\{ε}
hn, ΠT =

∑

n∈Q(T )

|π(n)|, (4)

WT =
∑

n∈L(T )

|π(n)|, ST =
∑

n∈Q(T )

Nn. (5)

Then the following holds:

HT ≤ ΠT = WT − 2NT + 2 ≤ WT = ST − NT . (6)

Corollary 7. Let wi be codewords of a Huffman code. Then

|sn| ≤
∑

i

|wi| and |sn| ≤ (N − 2)(h − 1). (7)

The result of Theorem 5 can be improved if we notice that the sequence {nik
, ε},

defined in the proof of Theorem 5, cannot contain two nodes nik
and nik′ that

are roots of identical subtrees of T . Indeed, otherwise we could shorten the string
sn in the same way as before. This gives the following result.
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Corollary 8. The bound of Theorem 5 can be improved to:

|sn| ≤
∑

t∈T (T )\{T}
ht (8)

where T (T ) is the set all distinct subtrees of T .

The idea of identifying common subtrees can be formalized by introducing a min-
imized Huffman automaton. Although this does not give here a better estimate
on the length of the shortest merging string for the set {n, ε}, it is interesting
in itself.

Definition 9. A minimized Huffman automaton for a Huffman code C is an
automaton made of the Huffman automaton for C by merging the states that are
roots of identical subtrees of the Huffman tree T for C.

It is easy to see that minimized Huffman automata have exactly two edges,
labeled with 0 and 1, going out of each node. An example of a minimized Huffman
automaton is presented in Fig. 1.

(a) Huffman tree

ε

0

00

000

1

11

0 1

0,1

0,1

0,1
10

0

1

(b) Minimized Huffman automaton

Fig. 1. A Huffman tree and its minimized Huffman automaton

We will say that a set V of states of T corresponds to the set Vm of states
of the minimized Huffman automaton Tm if Vm is the smallest set satisfying: if
q ∈ V and q is merged to a state q′ of Tm then q′ ∈ Vm.

Theorem 10. Let C be a synchronizing Huffman code, let T be the Huffman
automaton for C and let Tm be the minimized Huffman automaton for C. Let
V be a set of states of T and Vm the corresponding set of states of Tm. If s is a
merging string for V then s is a merging string for Vm. If s′ is a merging string
for Vm that brings all nodes of Vm to the root then s′ is a merging string for V .
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Note that the minimized Huffman automaton is implicitly used in Corollary 8,
where we consider all non-identical subtrees of a Huffman tree. The roots of such
subtrees are the states of the minimized Huffman automaton.

Theorem 5 leads to an algorithm for finding the shortest merging string for a
set {n0, ε}, where n0 is any state of T . First a graph G = (V, E) is created. The
vertices of G are unordered pairs {n, ε}, where n is a state of T . The edges of
G are weighted; {n1, ε} → {n2, ε} is an edge if there is a string w that brings
{n1, ε} to {n2, ε} without passing through any other pair {n, ε}. The weight of
the edge is the length of the shortest such string w (note that the string w need
not be unique).

Such a string w will be the label of the edge {n1, ε} → {n2, ε}, although it
will not be stored explicitly. Instead, for retrieving the label w, we will store a
mark M . The mark will depend on the target pair of the edge. If the target is a
pair {n2, ε} with n2 
= ε, the mark is equal to either n1 if n2 = δ(n1, w), or to ε
if n2 = δ(ε, w). We always have n2 = δ(M, w). The node n2 is in the subtree of
the node M and w is formed of labels on the path from M to n2. If the target
of an edge is a singleton {ε}, that is n2 = ε, the mark M is the leaf δ(ε, w). In
this case the word w is formed of labels on the path from ε to M . In either case
the label w can be recovered in O(|w|).

The construction of the graph requires DFS-traversing the Huffman tree with
a pair of nodes {n1, n2}, starting at {n, ε} and applying transitions of the Huff-
man automaton to both nodes of the pair. The traversing goes forward until
a set {n′, m} is reached, with m being a leaf. Then the edge {n, ε} → {n′, ε}
is added to the graph with the number of steps from {n, ε} to {n′, m} as its
weight. If such an edge has been added before, only the weight is updated to be
the minimum of the previous weight and the new one. Finally, the mark M of
the edge is set appropriately.

The cost of processing each pair {n, ε} during the construction of the graph
G is proportional to the size of the subtree rooted at n, because the DFS search
is limited to the subtree of n. It follows that the construction of G uses the
time proportional to the sum of sizes of the subtrees of T . By Lemma 6 this
is O(

∑
|wi|), where wi are the codewords given by the tree T . The number of

vertices in the graph is |V | = N − 1. The number of edges is bounded by the
sum of sizes of all the subtrees of the tree, that is |E| = O(

∑
|wi|).

The shortest merging string for a set {n, ε} is given by the lightest path
from {n, ε} to {ε}. The tree of the lightest paths from any node to {ε} can be
constructed using the Dijkstra’s algorithm in O(|E| + |V | log |V |). Since |V | =
O(N), |E| = O(

∑
|wi|) and

∑
|wi| ≥ N log N , the lightest paths’ tree can be

computed in O(
∑

|wi|).

Theorem 11. Let T be a Huffman automaton. The algorithm for computing
the shortest merging string for a set {n, ε}, where n is any state of T , requires
preprocessing time O(

∑
i |wi|). Then the shortest merging string for each pair

{n, ε} can be found in the time proportional to the length of the merging string.
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4 Length of a Synchronizing String

In this section we give an upper bound on the length of the shortest synchronizing
string for any synchronizing Huffman code. We begin with a lemma that helps
to prove the main theorem of this section (Theorem 13).

Lemma 12. Let T be a complete binary tree with N leaves. There exists a string
w of length at most �log N such that for each node n of T some prefix of w labels
a path from n to a leaf.

Theorem 13. For any synchronizing Huffman code of size N the length of the
shortest synchronizing string s is at most

|s| ≤ �log N + (�log N − 1)X = O(Nh log N) (9)

where h is the length of the longest codeword,

X =
∑

t∈T (T )\{T}
ht, (10)

T (T ) is the set all different subtrees of T and ht is the height of the subtree t.

Proof (sketch). We first find a string w given by Lemma 12 and apply it to coins
on all states of T . It reduces the number of coins to at most �log N, because
the final position of each coin is determined by some proper suffix of w. We
may assume that one of the coins is on the root of T (otherwise w could be
shortened). Then, we pick a node n with a coin and we construct the shortest
string sn that merges n and the root (to get shorter synchronizing strings it is
better to pick a node n with the shortest merging string for {n, ε} among the
nodes with a coin). By Corollary 8, |sn| ≤ X . This string applied the current set
reduces the number of coins by at least one. Repeating this procedure additional
(�log N−2) times leaves us with just one coin. The length of the merging string
does not exceed �log N+(�logN−1)X . Finally, X < Nh gives the asymptotic
bound O(Nh log N). ��

The proof of Theorem 13 is constructive and gives an algorithm for the construc-
tion of a synchronizing string for a Huffman code. The algorithm works as follows.

First a string w from Lemma 12 is found. It is done by checking all the O(N)
strings of length less or equal �log N in the following way. From each node n
of T we traverse the subtree of n with DFS. Each time we are in a node m that
is l ≤ �log N steps below n, we mark the string w on the path from n to m as
bad. This means that no prefix of w brings n to a leaf.

After the traversal, the strings that have not been marked as bad bring any
node through a leaf. By Lemma 12, there is at least one such a string of length
�log N or less. The cost of this algorithm is proportional to the sum of sizes of
all subtrees of T , which is O(

∑
i |wi|).

After finding the string w we may apply it to the set of all internal nodes of T .
This will take O(N log N) time. Then, at most log N merging strings for {n, ε},
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(a) A tree Ck (b) N=9, s=0410104 (c) N=10, s=05105

Fig. 2. The class of trees with the longest synchronizing string for a given number of
nodes n. s denotes the synchronizing string for each tree. The triangle denotes a code
{1, 01, 001, . . . , 0i1, 0i0}, i ≥ 0.

with some n, suffice to build a synchronizing string. Computing the merging
strings require preprocessing time O(

∑
i |wi|) and then any string can be read in

the time proportional to its length. The length of each merging string is bounded
by X and there are at most log N vertices that have to be moved using each
such string. Thus the total cost of the algorithm is O(X log2 N +

∑
i |wi|).

5 Experimental Tests

Tests were performed to find the worst-case trees for the length of the shortest
synchronizing string and the worst-case trees for the length of the shortest merg-
ing strings for a pair {n, ε}, where n is an internal node of the tree. All trees of
sizes, N , from 3 to 20 were analyzed first. Then the procedure was repeated for
all trees of heights, h, from 2 to 5.

5.1 Long Synchronizing String

In most of the tested cases the worst-case trees for fixed size, N , were unique up
to the reflection across the y axis (relabeling 0-edges to 1-edges and 1-edges to 0-
edges). The exceptions were the trees with 7 nodes — three nonequivalent trees,
10 nodes — 5 trees, and 12 nodes — 2 trees. For trees with 9, 11 and 13-20 nodes
the unique worst-case tree corresponds to one of the codes Ck, given below. The
codes Ck also form one of the worst-case trees with 7, 10 and 12 nodes.

Ck = {00, 010, 011, 110, 111}∪ {10i1|i = 1, 2, . . . , k − 1} ∪ {10k}, k ≥ 1. (11)

The size of the code Ck is k+5. The structure of these trees is shown in Fig. 2(a)
and examples can be found in Figs. 2(b) and 2(c).

Theorem 14. The shortest synchronizing string for the tree Ck, k ≥ 1, is s0 =
0k10k for odd k (even number of codewords) and s1 = 0k1010k or s2 = 0k1110k

for even k (odd number of codewords). The length of the shortest synchronizing
string is 2N − 9 for even code size, N , and 2N − 7 for odd code size.

The worst-case trees for fixed height h, with h = 2, 3, 4 and 5, are the trees given
by the set of codewords

Dh =
(
{0, 1}h \ {1h−11, 1h−10}

)
∪ {1h−1}, h ≥ 2. (12)
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�

(a) h=3 , s=120312

���

(b) h=4 , s=1304130413

Fig. 3. Trees with the worst-case length of a synchronizing and merging string among
trees of fixed height h, for h = 2, 3, 4, 5 and a scheme of these trees. The nodes n with
the longest merging string for {n, ε} are marked with a star.

These are full binary trees with two edges in the lower-right corner removed.
The number of codewords in the code Dh is 2h − 1. They are unique worst-case
trees up to the reflection across the y axis. The trees D3 and D4 are shown in
Fig. 3(a) and Fig. 3(b).

Theorem 15. The shortest synchronizing string for the tree Dh, h ≥ 2, is s =
(1h−10h)h−21h−1 with |s| = 2h2 − 4h + 1 (however, the shortest synchronizing
string is not unique).

The minimized Huffman automaton for Dh has K = 2(h−1) nodes. Even though
it contains a letter that reduces the number of coins by h − 2 = K

2 − 1 (a letter of
deficiency K

2 −1), its shortest synchronizing string is of length 2h2−4h+1 = K2

2 −
1, which is quadratic in K. This makes the automata Dh interesting in themselves.

The results of the search allow us to state the following conjecture.

Conjecture 16. The length of the shortest synchronizing string s for a code of N
codewords, N ≥ 9, with h being the length of the longest codeword, is at most:

|s| ≤ min(2N − a, 2h2 − 4h + 1), (13)

where a is 7 for odd N and 9 for even N .

5.2 Long Merging String

For trees of fixed size N the length of the shortest merging string in the worst
case is equal N − 2, for N = 3, . . . , 20, apart from N = 6. For N = 6 the worst-
case length is equal N −1 = 5. Two families of trees have the worst-case shortest
merging strings. The first one corresponds to the code

Gk = {0, 10k} ∪ {10i1|i < k}, k ≥ 1, (14)

and gives the worst-case trees for N from 3 to 20, apart from N = 6. The size of
the tree Gk is N = k +2. The merging string of the set {1, ε} is of length N − 2.
The structure of these trees is shown in Fig. 4(a) and the tree G4 is shown in
Fig. 4(b). The latter figure also shows the node whose merging string with ε is
the longest.
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�

(a) A tree Gk

�

(b) G4, s = 04

�

(c) C4, s = 11104 or s = 10104

Fig. 4. The nodes with the longest merging string for the two families Ck and Gk

The other family of trees is the family Ck (see (11) and Fig. 2(a)) with even k
(odd number of codewords). The merging string for {0, ε} is of length N −2 and
this is the worst case for N = 7, 9, 11, . . .19. The node with the longest merging
string and the merging string itself for the tree C4 are shown in Fig. 4(c).

There were also additional worst-case trees found for N = 5, 6, 7, 9, 10, 12.
These do not correspond to neither the trees Ck nor Gk.

The worst-case trees among trees of fixed height are the trees Dh (Equation
(12) and Fig. 3).

Theorem 17. The upper bound on the length of the shortest merging string for
any pair {n, ε}, where n is a state of Dh, is �h2 − 3

2h. For odd h it is achieved
by the pair {0(h−1)/2, ε}. For even h it is achieved by pairs {x, ε}, where x is
any binary string of length h

2 containing at least one 0.

The results of the search allow us to state the following conjecture.

Conjecture 18. For any Huffman automaton T corresponding to a code with N
codewords, with h being the length of the longest codeword, the length of the
shortest merging string sn for a set {n, ε}, where n is any state of T is at most:

|s| ≤ min(2N − 2, �h2 − 3
2h), (15)

if N 
= 6, and |s| ≤ 5 for N = 6.

6 Summary

We presented a constructive upper bound on the length of the shortest merging
string and the shortest synchronizing string for a Huffman code.

We tested the lengths of the shortest merging and synchronizing string on all
codes of size from 3 to 20 and on all codes with the length of the longest codeword
from 2 to 5. Three classes of worst-case codes were found. The length of the short-
est synchronizing strings for these classes of codes is far from the bound proven
before. This allowed us to formulate conjectures, which remain open.
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