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Abstract. We investigate the decidability of the periodicity and the
immortality problems in three models of reversible computation: re-
versible counter machines, reversible Turing machines and reversible one-
dimensional cellular automata. Immortality and periodicity are
properties that describe the behavior of the model starting from ar-
bitrary initial configurations: immortality is the property of having at
least one non-halting orbit, while periodicity is the property of always
eventually returning back to the starting configuration. It turns out that
periodicity and immortality problems are both undecidable in all three
models. We also show that it is undecidable whether a (not-necessarily
reversible) Turing machine with moving tape has a periodic orbit.

Introduction

Reversible computing is the classical counterpart of quantum computing. Re-
versibility refers to the fact that there is an inverse process to retrace the com-
putation back in time, i.e., the system is time invertible and no information is
ever lost. Much of the research on reversible computation is motivated by the
Landauer’s principle which states a strict lower bound on the amount of energy
dissipation which must take place for each bit of information that is erased [1].
Reversible computation can, in principle, avoid this generation of heat.

Reversible Turing machine (RTM) was the earliest proposed reversible com-
putation model [2,3]. Since then, reversibility has been investigated within other
common computation models such as Minsky’s counter machines [4,5] and cel-
lular automata [6]. In particular, reversible cellular automata (RCA) have been
extensively studied due to the other physics-like attributes of cellular automata
such as locality, parallelism and uniformity in space and time of the update rule.

All three reversible computation models are Turing complete: they admit
simulations of universal Turing machines, which naturally leads to various un-
decidability results for reachability problems. In this work we view the systems,
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however, rather differently by investigating their behavior from arbitrary start-
ing configurations. This is more a dynamical systems approach. Each device is
understood as a transformation F : X −→ X acting on its configuration space
X . In all cases studied here (counter machines, two Turing machine models –
with moving head and with moving tape – and cellular automata) space X is
endowed a topology under which F is continuous. In the cases of Turing ma-
chines with moving tape and cellular automata, it is the compact and metrizable
topology obtained as the enumerable infinite product of the discrete topology on
each finite component of a configuration. The action F may be partial, so that
it is undefined for some elements of X . Configurations on which F is undefined
are called halting. We call F immortal if there exists a configuration x ∈ X
that never evolves into a halting configuration, that is, Fn(x) is defined for all
positive integers n. In contrast, a mortal system eventually halts, regardless of
the starting configuration. We call F uniformly mortal if a uniform time bound
n exists such that Fn(x) is not defined for any x ∈ X . If F is continuous, X
compact, and the set of halting configurations open then mortality and uniform
mortality are equivalent concepts. This means that mortal Turing machines and
cellular automata are automatically uniformly mortal. In contrast, a counter
machine may be mortal without being uniformly mortal. (A simple example is
a one-counter machine where the counter value is repeatedly decremented until
it becomes zero and the machine halts.)

Periodicity, on the other hand, is defined for complete systems: systems with-
out halting configurations. We call total F : X −→ X uniformly periodic if there
is a positive integer n such that Fn is the identity map. Periodicity refers to the
property that every configuration is periodic, that is, for every x ∈ X there exists
time n such that Fn(x) = x. Periodicity and uniform periodicity are equivalent
concepts in the cases of cellular automata (Section 3.3) and Turing machines un-
der both modes (Section 2.1), while a counter machine can be periodic without
being uniformly periodic (Example 1 in Section 1.1).

In this work we are mainly concerned with decidability of these concepts. Im-
mortality of unrestricted (that is, not necessarily reversible) Turing machines was
proved undecidable already in 1966 by Hooper [7]. Our main result (Theorem 7)
is a reversible variant of Hooper’s approach where infinite searches during counter
machine simulations by a Turing machine are replaced by recursive calls to the
counter machine simulation itself with empty initial counters. Using reversible
counter machines, the recursive calls can be unwound once the search is com-
plete. In a sense this leads to a simpler construction than in Hooper’s original
article.

Our result also answers an open problem of control theory from [8]. That
paper pointed out that if the immortality problem for reversible Turing machines
is undecidable, then so is observability for continuous rational piecewise-affine
planar homeomorphisms.

As another corollary we obtain the undecidability of the periodicity of Turing
machines (Theorem 8). The related problem of determining if a given Turing
machine has at least one periodic orbit (under the moving tape mode) is proved
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undecidable for reversible, non-complete Turing machines, and for non-reversible,
complete Turing machines. The problem remains open under reversible and com-
plete machines. The existence of periodic orbits in Turing machines and counter
machines have been investigated before in [9,10]. Article [9] formulated a con-
jecture that every complete Turing machine (under the moving tape mode) has
at least one periodic orbit, while [10] refuted the conjecture by providing an
explicit counter example. The counter example followed the general idea of [7]
in that recursive calls were used to prevent unbounded searches. In [10] is was
also shown that it is undecidable if a given complete counter machine has a pe-
riodic orbit. We show that this is the case even under the additional constraint
of reversibility (Theorem 6).

In Theorem 12 we reduce the periodicity problem of reversible Turing ma-
chine into the periodicity problem of one-dimensional cellular automata. The
immortality problem of reversible cellular automata has been proved undecidable
in [11]. Our proofs for the undecidability of immortality (Theorem 1) and pe-
riodicity (Theorem 3) among reversible counter machines follow the techniques
of [5]. Interestingly, the uniform variants of both immortality and periodicity
problems are decidable for counter machines (Theorems 2 and 4).

The paper is organized into three parts dealing with RCM (section 1), with
RTM (section 2) and with RCA (section 3). Each part consists of four subsections
on (1) definitions, (2) the immortality problem, (3) the periodicity problem, and
(4) the existence of periodic orbits. Due to page constraints most proofs are short
sketches of the main idea.

1 Reversible Counter Machines

1.1 Definitions

Following [5], we define special counter machine instructions for a simpler syntac-
tic characterization of local reversibility and forget about initial and accepting
states as we are only interested in dynamical properties.

Let Υ = {0, +} be the set of test values and Φ = {−, 0, +} be the set of counter
operations whose reverse are defined by −−1 = +, 0−1 = 0 and +−1 = −. For
all j ∈ Zk and φ ∈ Φ, testing τ and modifying θj,φ actions are defined for all
k ∈ Z, i ∈ Zk and v ∈ N

k as:

τ(k) =
{

0 if k = 0
+ if k > 0 θj,φ(v)(i) =

⎧⎨
⎩

v(i) − 1 if v(i) > 0, i = j and φ = −
v(i) if i �= j or φ = 0
v(i) + 1 if i = j and φ = +

A k-counter machine M is a triple (S, k, T ) where S is a finite set of states,
k ∈ N is the number of counters, and T ⊆ S × Υ k × Zk × Φ × S is the transition
table of the machine. Instruction (s, u, i, −, t) is not allowed in T if u(i) = 0. A
configuration c of the machine is a pair (s, v) where s ∈ S is a state and v ∈ N

k

is the value of the counters. The machine can transform a configuration c in a
configuration c′ in one step, noted as c � c′, by applying an instruction ι ∈ T .
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An instruction (s, u, i, φ, t) ∈ T can be applied to any configuration (s, v) where
τ(v) = u leading to the configuration (t, θi,φ(v)). The transitive closure of � is
noted as �∗.

A counter machine (S, k, T ) is a deterministic k-counter machine (k-DCM)
if at most one instruction can be applied from any configuration. Formally, the
transition table must satisfy the following condition:

(s, u, i, φ, t) ∈ T ∧ (s, u, i′, φ′, t′) ∈ T ⇒ (i, φ, t) = (i′, φ′, t′).

The transition function of a deterministic counter machine is the function
G : S × N

k → S × N
k which maps a configuration to the unique transformed

configuration, that is for all (s, v) ∈ S × Z
k,

G(s, v) =
{

(t, θi,φ(v)) if (s, u, i, φ, t) ∈ T and τ(v) = u
⊥ otherwise

The set of reverse instructions of an instruction is defined as follows:

(s, u, i, 0, t)−1 ={(t, u, i, 0, s)},
(s, u, i, +, t)−1 ={(t, u′, i, −, s)}, where u′(i) = +, u′(j) = u(j) for j �= i,
(s, u, i,−, t)−1 ={(t, u, i, +, s), (t, u′, i, +, s)},where u′(i)=0, u′(j)=u(j) for j �= i.

The reverse T−1 of a transition table T is defined as T−1 =
⋃

ι∈T ι−1. The reverse
of counter machine M = (S, T ) is the machine M−1 = (S, T−1). A reversible
k-counter machine (k-RCM) is a deterministic k-counter machine whose reverse
is deterministic.

Example 1. The complete DCM ({l, l′, r, r′} , 2, T ) with the following T is peri-
odic but not uniformly periodic (∗: any value): { (l, (0, ∗), 0, 0, r), (r, (∗, 0), 1, 0, l),
(l, (+, ∗), 0, −, l′), (r, (∗, +), 1, −, r′), (l′, (∗, ∗), 1, +, l), (r′, (∗, ∗), 0, +, r) }. In l, l′

tokens are moved from the first counter to the second, and in states r, r′ back to
the first counter. Its reverse is obtained by swapping l ↔ r and l′ ↔ r′. �


1.2 Undecidability of the Immortality Problem

Theorem 1. It is undecidable whether a given 2-RCM is immortal.

Proof sketch. By [7] the immortality problem is undecidable among 2-CM, while
[5] provides an effective immortality/mortality preserving conversion of an arbi-
trary k-CM into a 2-RCM. �

Remark. The 2-RCM constructed in the proof through Morita’s construction [5]
can be forced to have mortal reverse. This is obtained by adding in the original
CM an extra counter that is being continuously incremented.

Theorem 2. It is decidable whether a given k-CM is uniformly mortal.

Proof sketch. Induction on k: The claim is trivial for k = 0. For the inductive
step, let M be a k-CM, k ≥ 1. For i = 1, 2, . . . , k set counter i to be always
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positive and test whether the so obtained (k − 1)-CM Mi is uniformly mortal.
If all k recursive calls return a positive answer, set n to be a common uniform
mortality time bound for all k machines Mi. Since counters can be decremented
by one at most, we know that configurations of M with some counter value ≥ n
are mortal. Immortality hence occurs only if there is a period within the finite
number of configurations with all counters < n. �

1.3 Undecidability of the Periodicity Problem

Theorem 3. It is undecidable whether a given 2-RCM is periodic.

Proof sketch. Let M = (S, 2, T ) be a given 2-RCM whose reverse is mortal. In
particular, there are no periodic configurations in M . According to the remark
after Theorem 1 it is enough to effectively construct a complete 2-RCM M ′ that
is periodic if and only if M is mortal. Machine M ′ has state set S×{+, −} where
states (s, +) and (s, −) represent M in state s running forwards or backwards
in time, respectively. In a halting configuration the direction is switched. �
Analogously to Theorem 2 one can prove the following result.

Theorem 4. It is decidable whether a given k-CM is uniformly periodic.

1.4 Periodic Orbits

Theorem 5 ([10]). It is undecidable whether a given complete 2-DCM admits
a periodic configuration.

Theorem 6. It is undecidable whether a given complete 3-RCM admits a peri-
odic configuration, and it is undecidable whether a given (not necessarily com-
plete) 2-RCM admits a periodic configuration.

Proof sketch. We first prove the result for complete 3-RCM. The construction
in [5] shows that it is undecidable for a given 2-RCM M = (S, 2, T ) without
periodic configurations and two given states s1 and s2 whether there are counter
values n1, n2, m1 and m2 such that (s1, n1, m1) �∗ (s2, n2, m2). By removing all
transitions from state s2 and all transitions into state s1 we can assume without
loss of generality that all configurations (s1, n1, m1) and (s2, n2, m2) are halting
in M−1 and M , respectively. Using a similar idea as in the proof of Theorem 3
we effectively construct a 3-RCM M ′ = (S × {+, −}, 3, T ′) that simulates M
forwards and backwards in time using states (s, +) and (s, −), respectively, and
counters 1 and 2. The direction is switched at halting configurations. In addition,
counter 3 is incremented at halting configurations, except when the state is
s1 or s2.

Machine M ′ is clearly reversible and complete. Moreover, since M has no
periodic configurations, the only periodic configurations of M ′ are those where
M is simulated back and forth between states s1 and s2. This completes the
proof for 3-RCM.

Using the construction of [5] a three counter RCM can be converted into a
2-RCM and that conversion preserves periodic orbits. �
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The 2-RCM provided by the construction in [5] is not complete. It seems
likely that it can be modified to give a complete 2-RCM, but details remain to
be worked out:

Conjecture 1. It is undecidable whether a given complete 2-RCM admits a pe-
riodic configuration.

2 Reversible Turing Machines

2.1 Definitions

The classical model of Turing machines consider machines with a moving head
(a configuration is a triple (s, z, c) ∈ S × Z × ΣZ). Following Kůrka [9], we
consider machines with a moving tape as our base model to endow the space
of configurations with a compact topology. Following [5], we define two kinds of
instructions for a simpler syntactic characterization of local reversibility.

Let Δ = {←, →} be the set of directions with inverses (←)−1 =→ and (→
)−1 =←. For all δ ∈ Δ and a ∈ Σ, moving σδ and writing μa actions are defined
for all c ∈ ΣZ and z ∈ Z as:

σδ(c)(z) =
{

c(z + 1) if δ =→
c(z − 1) if δ =← μa(c)(z) =

{
a if z = 0
c(z) if z �= 0

A Turing machine M is a triple (S, Σ, T ) where S is a finite set of states, Σ is a
finite set of symbols, and T ⊆ (S×Δ×S)∪(S×Σ×S×Σ) is the transition table of
the machine. A configuration c of the machine is a pair (s, c) where s ∈ S is a state
and c ∈ ΣZ is the content of the tape. The machine can transform a configuration
c in a configuration c′ in one step, noted as c � c′, by applying an instruction ι ∈ T .
An instruction (s, δ, t) ∈ T ∩ (S × Δ × S) is a move instruction of the machine, it
can be applied to any configuration (s, c), leading to the configuration (t, σδ(c)).
An instruction (s, a, t, b) ∈ T ∩ (S × Σ × S × Σ) is a matching instruction of the
machine, it can be applied to any configuration (s, c) where c(0) = a, leading to
the configuration (t, μb(c)).

A Turing machine (S, Σ, T ) is a deterministic Turing machine (DTM) if at
most one instruction can be applied from any configuration. Formally, the tran-
sition table must satisfy the following conditions:

(s, δ, t) ∈ T ∧ (s′, a′, t′, b′) ∈ T ⇒ s �= s′

(s, δ, t) ∈ T ∧ (s, δ′, t′) ∈ T ⇒ δ = δ′ ∧ t = t′

(s, a, t, b) ∈ T ∧ (s, a, t′, b′) ∈ T ⇒ t = t′ ∧ b = b′

The local transition function of a DTM is the function f : S × Σ → S × Δ ∪
S×Σ∪{⊥} defined for all (s, a) ∈ S×Σ as follows. The associated partial global
transition function G : S × ΣZ → S × ΣZ maps a configuration to the unique
transformed configuration, that is for all (s, c) ∈ S × ΣZ,

f(s, a) =

⎧⎨
⎩

(t, δ) if (s, δ, t) ∈ T
(t, b) if (s, a, t, b) ∈ T
⊥ otherwise

G(s, c) =
{

(t, σδ(c)) if f(s, c(0)) = (t, δ)
(t, μb(c)) if f(s, c(0)) = (t, b)
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Lemma 1. If all configurations of a DTM are periodic or mortal then there
is a uniform bound n such that for all configurations (s, c) either Gn(s, c) is
undefined or Gt(s, c) = (s, c) for some 0 < t < n. In particular, a periodic DTM
is uniformly periodic and a mortal DTM is uniformly mortal.

Proof. For every n > 0 let Un = {(s, c) | Gn(s, c) = (s, c) or Gn(s, c) undef} be
the set of configurations that are mortal or periodic at time n. Sets Un are open
so U1, U2, . . . is an open cover of the compact set of all configurations. It has a
finite subcover. �

One might think that periodicity characterizes a different set of machines if one
considers Turing machines with a moving head instead of a moving tape but it is
not the case. The global transition function with moving head H : S ×Z×ΣZ →
S×Z×ΣZ is defined so that for each (s, z, c) ∈ S×Z×ΣZ, H(s, z, c) = (s′, z′, c′)
where G(s, σz

→(c)) = (s′, σz′

→(c′)). A DTM is periodic with moving head if for
each configuration c, there exists t ∈ N such that Ht(c) = c or equivalently if
there exists some t ∈ N such that Ht = Id.

Lemma 2. A DTM is periodic if and only if it is periodic with moving head.

Proof. Assume that Σ has at least two elements. For each t ∈ N and (s, z, c) ∈
S × Z × ΣZ, Ht(s, z, c) = (s′, z′, c′) where Gt(s, σz

→(c)) = (s′, σz′

→(c′)). Thus,
if Ht = Id then Gt = Id. Conversely, let Gt = Id. By definition, Ht(s, z, c) =
(s, z′, c′) for some z′ such that σz

→(c) = σz′

→(c′). Moreover, as the machine acts
locally, for all d and k such that c|[z−t,z+t] = d|[k−t,k+t], Ht(s, k, d) = (s, k +
z′ − z, d′) where d′ = σz′−z

→ (d′). If z′ − z �= 0, one might choose d such that
d(k + t(z′ − z)) �= d(k + (t + 1)(z′ − z)), contradicting the hypothesis. Thus,
Ht = Id. �

The reverse of an instruction is defined as follows: (s, δ, t)−1 = (t, δ−1, s) and
(s, a, t, b)−1 = (t, b, s, a). The reverse T−1 of a transition table T is defined as
T−1 =

{
ι−1

∣∣ι ∈ T
}
. The reverse of Turing machine M = (S, Σ, T ) is the ma-

chine M−1 = (S, Σ, T−1). A reversible Turing machine (RTM) is a deterministic
Turing machine whose reverse is deterministic.

Lemma 3. It is decidable whether a given Turing machine is reversible.

Proof. It is sufficient to syntactically check the transition table. �

Lemma 4. The reverse of a mortal RTM is mortal.

Proof. The uniform bound is valid for both the mortal RTM and its reverse. �

Lemma 5. The reverse of a complete RTM is a complete RTM. In particular,
a complete RTM is surjective.

Proof. A DTM is complete if and only if n|Σ| + m = |S||Σ| where n and m are
the numbers of move and matching instructions, respectively. The claim follows
from the fact that M and M−1 always have the same numbers of move and
matching instructions. �
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2.2 Undecidability of the Immortality Problem

Theorem 7. It is undecidable whether a given RTM is immortal.

Proof sketch. For a given 2-RCM without periodic configurations, and given
initial state s0, we effectively construct a reversible Turing machine that is mor-
tal if and only if the 2-RCM halts from the initial configuration (s0, 0, 0). The
Theorem then follows from [5], where it was shown that the halting problem is
undecidable for 2-RCM. Note that our additional constraint that the 2-RCM has
no periodic configurations can be easily established by having an extra counter
that is incremented on each step of the counter machine. This counter can then
be incorporated in the existing two counters with the methods of [5].

As a first step we do a fairly standard simulation of a 2-CM by a TM. Configu-
ration (s, a, b) where s is a state and a, b ∈ N is represented as a block ”@1ax2by”
of length a + b + 3, and the Turing machine is positioned on the symbol ”@” in
state s. A simulation of one move of the CM consists of (1) finding delimiters
”x” and ”y” on the right to check if either of the two counters is zero, and (2)
incrementing or decrementing the counters as determined by the CM. The TM
is then returned to the beginning of the block in the new state of the CM. If the
CM halts then also the TM halts. All this can be done reversibly if the simulated
CM is reversible.

The TM constructed as outline above has the problem that it has immortal
configurations even if the CM halts. These are due to the unbounded searches
for delimiter symbols ”@”, ”x” or ”y”. Searches are needed when testing whether
the second counter is zero, as well as whenever either counter is incremented or
decremented.

Unbounded searches lead to infinite searches if the symbol is not present in
the configuration. (For example, searching to the right for symbol ”x” when the
tape contains ”@111. . . ”.) To prevent such infinite searches we follow the idea
of [7], also employed in [10]. Instead of a straightforward search using a loop,
the search is done by performing a recursive call to the counter machine from
its initial configuration (s0, 0, 0). More precisely, we first make a bounded search
of length three to see if the delimiter is found within next three symbols. If the
delimiter is not found, we start a recursive simulation of the CM by writing
”@xy” over the next three symbols, step on the new delimiter symbol ”@”, and
enter the initial state s0. This begins a nested simulation of the CM.

In order to be able to continue the higher level execution after returning from
the recursive search, the present state of the TM needs to be written on the tape
when starting the recursive call. For this purpose we increase the tape alphabet
by introducing several variants ”@α” of the start delimiter ”@”. Here α is the
Turing machine state at the time the search was begun. When returning from a
successful recursive search, the higher level computation can pick up from where
it left off by reading the state α from the delimiter ”@α”.

If the recursive search procedure finds the delimiter this is signalled by revers-
ing the search. Once returned to the beginning, the three symbol initial segment
”@xy” is moved three positions to the right and the process is repeated. The re-
peated applications of recursive searches, always starting the next search three
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positions further right, will eventually bring the machine on the delimiter it was
looking for, and the search is completed.

On the other hand, if the CM halts during a recursive search then the TM
halts. This always happens when a sufficiently long search is performed using a
CM that halts from its initial configuration.

With some additional tricks one can make the TM outlined above reversible,
provided the CM is reversible. Now we reason as follows: If the initial configura-
tion (s0, 0, 0) is immortal in the CM then the TM has a non-halting simulation
of the CM. So the TM is not mortal. Conversely, suppose that the CM halts in k
steps but the TM has an immortal configuration. The only way for the TM not
to halt is to properly simulate the CM from some configuration (s, a, b), where
the possibilities a = ∞ and b = ∞ have to be taken into account. Since the
CM has no periodic configurations, one of the two counters necessarily obtains
arbitrarily large values during the computation. But this leads to arbitrarily long
recursive searches, which is not possible since each such search halts within k
steps. �

Remarks. (1) The RTM constructed in the proof has no periodic configurations.
So the undecidability of the immortality problem holds among RTM without any
periodic configurations. (2) Add to the 2-RCM a new looping state s1 in which
the first counter is incremented indefinitely. We can also assume without loss of
generality that the 2-RCM halts only in state s2. Then the RTM constructed in
the proof has computation (s1, c1) �∗ (s2, c2) for some c1, c2 ∈ ΣZ if and only if
the 2-RCM halts from the initial configuration (s0, 0, 0).

These detailed observations about the proof will be used later in the proofs
of Theorems 8 and 9.

2.3 Undecidability of the Periodicity Problem

Theorem 8. It is undecidable whether a given complete RTM is periodic.

Proof sketch. For a given RTM A = (S, Σ, T ) without periodic configurations we
effectively construct a complete RTM A′ = (S × {+, −}, Σ, T ′) that is periodic
if and only if every configuration of A is mortal. States (s, +) and (s, −) of
A′ are used to represent A in state s running forwards or backwards in time,
respectively. In a halting configuration the direction is switched. The result now
follows from Theorem 7 and the first remark after its proof. �

2.4 Periodic Orbits

Theorem 9. It is undecidable whether a given (non-complete) RTM admits a
periodic configuration.

Proof. Remark (2) after the proof of Theorem 7 pointed out that it is unde-
cidable for a given RTM A = (S, Σ, T ) without periodic configurations, and
two given states s1, s2 ∈ S whether there are configurations (s1, c1) and (s2, c2)
such that (s1, c1) �∗ (s2, c2). By removing all transitions from state s2 and
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all transitions into state s1 we can assume without loss of generality that all
configurations (s1, c1) and (s2, c2) are halting in A−1 and A, respectively. Us-
ing a similar idea as in the proof of Theorem 8 we effectively construct an RTM
A′ = (S×{+, −}, Σ, T ′) in which A is simulated forwards and backwards in time
using states (s, +) and (s, −), respectively. But now the direction is swapped from
”-” to ”+” only in state s1, and from ”+” to ”-” in state s2. In other halting
situations of A, also A′ halts. Clearly ((s1, +), c1) is periodic in A′ if and only if
(s1, c1) �∗ (s2, c2) for some c2 ∈ ΣZ. No other periodic orbits exist in A′. �

Theorem 10. It is undecidable whether a given complete DTM admits a peri-
odic configuration.

Proof. In [10] a complete DTM over the binary tape alphabet was provided that
does not have any periodic configurations. This easily gives an analogous DTM
for any bigger tape alphabet. For a given RTM A = (S, Σ, T ) we effectively
construct a complete DTM that has a periodic configuration if and only if A
has a periodic configuration. The result then follows from Theorem 9. Let B =
(S′, Σ, T ′) be the fixed complete DTM without periodic configurations from [10],
S∩S′ = ∅. The complete DTM we construct has state set S∪S′ and its transitions
includes T ∪ T ′, and in addition a transition into a state s′ ∈ S′ whenever A
halts. It is clear that the only periodic configurations are those that are periodic
already in A. �

Conjecture 2. A complete RTM without a periodic point exists. Moreover, it is
undecidable whether a given complete RTM admits a periodic configuration.

3 Reversible Cellular Automata

3.1 Definitions

A one-dimensional cellular automaton A is a triple (S, r, f) where S is a finite
state set, r ∈ N is the neighborhood radius and f : S2r+1 −→ S is the local update
rule of A. Elements of Z are called cells, and a configuration of A is an element of
SZ that assigns a state to each cell. Configuration c is turned into configuration
c′ in one time step by a simultaneous application of the local update rule f in
the radius r neighborhood of each cell:

c′(i) = f(c(i − r), c(i − r + 1), . . . , c(i + r − 1), c(i + r)) for all i ∈ Z.

Transformation G : c �→ c′ is the global transition function of A. The Curtis-
Hedlund-Lyndom -theorem states that a function SZ −→ SZ is a global transi-
tion function of some CA if and only if it is continuous and commutes with the
shift σ, defined by σ(c)i = ci+1 for all c ∈ SZ and i ∈ Z.

Cellular automaton A is called reversible if the global function G is bijective
and its inverse G−1 is a CA function. We call A injective, surjective and bi-
jective if G is injective, surjective and bijective, respectively. Injectivity implies
surjectivity, and bijectivity implies reversibility. See [6] for more details on these
classical results.
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3.2 Undecidability of the Immortality Problem

Let some states of a CA be identified as halting. Let us call a configuration c
halting if c(i) is a halting state for some i. We call c locally halting if c(0) is a
halting state. These two definitions reflect two different ways that one may use
to define an accepting computation in CA: either acceptance happens when a
halting state appears somewhere, in an unspecified cell, or one waits until a halt-
ing state shows up in a fixed, predetermined cell. A configuration c is immortal
(locally immortal) for G if Gn(c) is not halting (locally halting, respectively)
for any n ≥ 0. CA function G is immortal (locally immortal) if there exists an
immortal (locally immortal) configuration.

Theorem 11 ([11]). It is undecidable whether a given reversible one-
dimensional CA is immortal (locally immortal).

3.3 Undecidability of the Periodicity Problem

In cellular automata periodicity and uniform periodicity are equivalent. Indeed,
suppose that a period n that is common to all configurations does not exist.
Then for every n ≥ 1 there is cn ∈ SZ such that Gn(cn) �= cn. Each cn has a
finite segment pn of length 2rn+1 that is mapped in n steps into a state that is
different from the state in the center of pn. Configuration c that contains a copy
of pn for all n, satisfies Gn(c) �= c for all n, and hence such c is not periodic.

Theorem 12. It is undecidable whether a given one-dimensional CA is periodic.

Proof sketch. For a given complete reversible Turing machine M = (S, Σ, T )
we effectively construct a one-dimensional reversible CA A = (Q, 2, f) that is
periodic if and only if M is periodic. The result then follows from Theorem 8.
The state set

Q = Σ × ((S × {+, −}) ∪ {←, →})

consists of two tracks: The first track stores elements of the tape alphabet Σ
and it is used to simulate the content of the tape of the Turing machine, while
the second track stores the current state of the simulated machine at its present
location, and arrows ← and → in other positions pointing towards the position
of the Turing machine on the tape. The arrows are needed to prevent several
Turing machine heads accessing the same tape location and interfering with
each other’s computation. The state is associated a symbol ’+’ or ’-’ indicating
whether the reversible Turing machine is being simulated forwards or backwards
in time. The direction is switched if the Turing machine sees a local error, i.e.,
an arrow pointing away from the machine.

It follows from the reversibility of M that A is a reversible CA. If M has
a non-periodic configuration c then A has a non-periodic configuration which
simulates the computation from c. Conversely, if M is periodic it is uniformly
periodic under the moving head mode. It easily follows that all configurations of
A are periodic. �
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A one-dimensional RCA is equicontinuous if and only if it is periodic, so we have

Corollary 1. It is undecidable whether a given one-dimensional reversible CA
is equicontinuous.

3.4 Periodic Orbits

Every cellular automaton has periodic orbits so the existence of periodic orbits
is trivial among cellular automata.
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