
On Synchronous and Asynchronous Interaction in
Distributed Systems

Rob van Glabbeek1,2, Ursula Goltz3, and Jens-Wolfhard Schicke3,�

1 NICTA, Sydney, Australia
2 School of Computer Sc. and Engineering, University of New South Wales, Sydney, Australia

3 Institute for Programming and Reactive Systems, TU Braunschweig, Germany
rvg@cs.stanford.edu, goltz@ips.cs.tu-bs.de, drahflow@gmx.de

Abstract. When considering distributed systems, it is a central issue how to
deal with interactions between components. In this paper, we investigate the
paradigms of synchronous and asynchronous interaction in the context of dis-
tributed systems. We investigate to what extent or under which conditions syn-
chronous interaction is a valid concept for specification and implementation of
such systems. We choose Petri nets as our system model and consider different
notions of distribution by associating locations to elements of nets. First, we in-
vestigate the concept of simultaneity which is inherent in the semantics of Petri
nets when transitions have multiple input places. We assume that tokens may only
be taken instantaneously by transitions on the same location. We exhibit a hier-
archy of ‘asynchronous’ Petri net classes by different assumptions on possible
distributions. Alternatively, we assume that the synchronisations specified in a
Petri net are crucial system properties. Hence transitions and their preplaces may
no longer placed on separate locations. We then answer the question which sys-
tems may be implemented in a distributed way without restricting concurrency,
assuming that locations are inherently sequential. It turns out that in both settings
we find semi-structural properties of Petri nets describing exactly the problematic
situations for interactions in distributed systems.

1 Introduction

In this paper, we address interaction patterns in distributed systems. By a distributed
system we understand here a system which is executed on spatially distributed locations,
which do not share a common clock (for performance reasons for example). We want
to investigate to what extent or under which conditions synchronous interaction is a
valid concept for specification and implementation of such systems. It is for example
a well-known fact that synchronous communication can be simulated by asynchronous
communication using suitable protocols. However, the question is whether and under
which circumstances these protocols fully retain the original behaviour of a system.
What we are interested in here are precise descriptions of what behaviours can possibly
be preserved and which cannot.

The topic considered here is by no means a new one. We give a short overview on
related approaches in the following.

� Supported by DAAD (Deutscher Akademischer Austauschdienst) while visiting NICTA.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 16–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Synchronous and Asynchronous Interaction in Distributed Systems 17

Already in the 80th, Luc Bougé considered a similar problem in the context of dis-
tributed algorithms. In [5] he considers the problem of implementing symmetric leader
election in the sublanguages of CSP obtained by allowing different forms of communi-
cation, combining input and output guards in guarded choice in different ways. He finds
that the possibility of implementing leader election depends heavily on the structure of
the communication graphs. Truly symmetric schemes are only possible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many languages for system specification
and design, e.g. in statechart-based approaches, in process algebras or the π-calculus. For
process algebras and the π-calculus, language hierarchies have been established which
exhibit the expressive power of different forms of synchronous and asynchronous in-
teraction. In [4] Frank de Boer and Catuscia Palamidessi consider various dialects of
CSP with differing degrees of asynchrony. Similar work is done for the π-calculus in
[15] by Catuscia Palamidessi, in [13] by Uwe Nestmann and in [8] by Dianele Gorla.
A rich hierarchy of asynchronous π-calculi has been mapped out in these papers. Again
mixed-choice, i.e. the ability to combine input and output guards in a single choice, plays
a central rôle in the implementation of truly synchronous behaviour.

In [17], Peter Selinger considers labelled transition systems whose visible actions
are partitioned into input and output actions. He defines asynchronous implementations
of such a system by composing it with in- and output queues, and then characterises
the systems that are behaviourally equivalent to their asynchronous implementations.
The main difference with our approach is that we focus on asynchrony within a sys-
tem, whereas Selinger focusses on the asynchronous nature of the communications of a
system with the outside world.

Also in hardware design it is an intriguing quest to use interaction mechanisms which
do not rely on a global clock, in order to gain performance. Here the simulation of
synchrony by asynchrony can be a crucial issue, see for instance [10] and [11].

In contrast to the approaches based on language constructs like the work on CSP
or the π-calculus, we choose here a very basic system model for our investigations,
namely Petri nets. The main reason for this choice is the detailed way in which a Petri
net represents a concurrent system, including the interaction between the components
it may consist of. In an interleaving based model of concurrency such as labelled tran-
sition systems modulo bisimulation semantics, a system representation as such cannot
be said to contain synchronous or asynchronous interaction; at best these are proper-
ties of composition operators, or communication primitives, defined in terms of such a
model. A Petri net on the other hand displays enough detail of a concurrent system to
make the presence of synchronous communication discernible. This makes it possible
to study synchronous and asynchronous interaction without digressing to the realm of
composition operators.

Also in Petri net theory, the topic which concerns us here has already been tackled.
It has been investigated in [9] and [18] whether and how a Petri net can be implemented
in a distributed way. We will comment on these and other related papers in the area of
Petri net theory in the conclusion.

In a Petri net, a transition interacts with its preplaces by consuming tokens. In Petri
net semantics, taking a token is usually considered as an instantaneous action, hence

18 R. van Glabbeek, U. Goltz, and J.-W. Schicke

a synchronous interaction between a transition and its preplace. In particular when a
transition has several preplaces this becomes a crucial issue. In this paper we investigate
what happens if we consider a Petri net as a specification of a system that is to be
implemented in a distributed way. For this we introduce locations on which all elements
of a Petri net have to be placed upon. The basic assumption is that interaction between
remote components takes time. In our framework this means that the removal of a token
will be considered instantaneous only if the removing transition and the place where the
token is removed from are co-located. Our investigations are now twofold.

In Section 3 of this paper, we consider under which circumstances the synchronous
interaction between a transition and its preplace may be mimicked asynchronously, thus
allowing to put places and their posttransitions on different locations. Following [6], we
model the asynchronous interaction between transitions and their preplaces by inserting
silent (unobservable) transitions between them. We investigate the effect of this trans-
formation by comparing the behaviours of nets before and after insertion of the silent
transitions using a suitable equivalence notion. We believe that most of our results are
independent of the precise choice of this equivalence. However, as explained in Sec-
tion 5, it has to preserve causality, branching time and divergence to some small extent,
and needs to abstract from silent transitions. Therefore we choose one such equiva-
lence, based on its technical convenience in establishing our results. Our choice is step
readiness equivalence. It is a variant of the readiness equivalence of [14], obtained by
collecting the set of steps of multiple actions possible after a certain sequence of ac-
tions, instead of just the set of possible actions. We call a net asynchronous if, for a
suitable placement of its places and transitions, the above-mentioned transformation re-
placing synchronous by asynchronous interaction preserves step readiness equivalence.
Depending on the allowed placements, we obtain a hierarchy of classes of asynchronous
nets: fully asynchronous nets, symmetrically asynchronous nets and asymmetrically
asynchronous nets. We give semi-structural properties that characterise precisely when
a net falls into one of these classes. This puts the results from [6] in a uniform frame-
work and extends them by introducing a simpler notion of asymmetric asynchrony.

In Sections 4 and 5 we pursue an alternative approach. We assume that the syn-
chronisations specified in a Petri net are crucial system properties. Hence we enforce
co-locality between a transition and all its preplaces while at the same time assum-
ing that concurrent activity is not possible at a single location. We call nets fulfilling
these requirement distributed and investigate which behaviours can be implemented by
distributed nets. Again we compare the behaviours up to step readiness equivalence.
We call a net distributable iff its behaviour can be equivalently produced by a dis-
tributed net. We give a behavioural and a semi-structural characterisation of a class of
non-distributable nets, thereby exhibiting behaviours which cannot be implemented in
a distributed way at all. Finally, we give a lower bound of distributability by providing
a concrete distributed implementation for a wide range of nets.

2 Basic Notions

We consider here 1-safe net systems, i.e. places never carry more than one token, but a
transition can fire even if pre- and postset intersect.

On Synchronous and Asynchronous Interaction in Distributed Systems 19

Definition 1. Let Act be a set of visible actions and τ �∈ Act be an invisible action.
A labelled net (over Act) is a tuple N = (S, T, F, M0, �) where

– S is a set (of places),
– T is a set (of transitions),
– F ⊆ S × T ∪ T × S (the flow relation),
– M0 ⊆ S (the initial marking) and
– � : T → Act

.
∪ {τ} (the labelling function).

Petri nets are depicted by drawing the places as circles, the transitions as boxes con-
taining the respective label, and the flow relation as arrows (arcs) between them. When
a Petri net represents a concurrent system, a global state of such a system is given as a
marking, a set of places, the initial state being M0. A marking is depicted by placing
a dot (token) in each of its places. The dynamic behaviour of the represented system is
defined by describing the possible moves between markings. A marking M may evolve
into a marking M ′ when a nonempty set of transitions G fires. In that case, for each
arc (s, t) ∈ F leading to a transition t in G, a token moves along that arc from s to t.
Naturally, this can happen only if all these tokens are available in M in the first place.
These tokens are consumed by the firing, but also new tokens are created, namely one
for every outgoing arc of a transition in G. These end up in the places at the end of
those arcs. A problem occurs when as a result of firing G multiple tokens end up in
the same place. In that case M ′ would not be a marking as defined above. In this paper
we restrict attention to nets in which this never happens. Such nets are called 1-safe.
Unfortunately, in order to formally define this class of nets, we first need to correctly
define the firing rule without assuming 1-safety. Below we do this by forbidding the
firing of sets of transitions when this might put multiple tokens in the same place.

Definition 2. Let N = (S, T, F, M0, �) be a labelled net. Let M1, M2 ⊆ S.
We denote the preset and postset of a net element x ∈ S ∪ T by •x := {y | (y, x) ∈

F} and x• := {y | (x, y) ∈ F} respectively. These functions are extended to sets in
the usual manner, i.e. •X := {y | y ∈ •x, x ∈ X}.

A nonempty set of transitions G ⊆ T, G �= ∅, is called a step from M1 to M2,
notation M1 [G〉N M2, iff

– all transitions contained in G are enabled, that is

∀t ∈ G. •t ⊆ M1 ∧ (M1 \ •t) ∩ t• = ∅ ,

– all transitions of G are independent, that is not conflicting:

∀t, u ∈ G, t �= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

– in M2 all tokens have been removed from the preplaces of G and new tokens have
been inserted at the postplaces of G:

M2 = (M1 \ •G) ∪ G• .

To simplify statements about possible behaviours of nets, we use some abbreviations.

20 R. van Glabbeek, U. Goltz, and J.-W. Schicke

Definition 3. Let N = (S, T, F, M0, �) be a labelled net.
We extend the labelling function � to (multi)sets elementwise.

−→N ⊆ P(S)× INAct ×P(S) is given by M1
A−→N M2 ⇔ ∃ G ⊆ T. M1 [G〉N M2 ∧

A = �(G)
τ−→N ⊆ P(S)×P(S) is defined by M1

τ−→N M2 ⇔ ∃t∈T. �(t)=τ ∧M1 [{t}〉N M2

=⇒N ⊆ P(S) × Act∗ × P(S) is defined by M1
a1a2···an======⇒NM2 ⇔

M1
τ−→

∗
N

{a1}−→N
τ−→

∗
N

{a2}−→N
τ−→

∗
N · · · τ−→

∗
N

{an}−→N
τ−→

∗
N M2

where
τ−→

∗
N denotes the reflexive and transitive closure of

τ−→N .

We write M1
A−→N for ∃M2. M1

A−→N M2, M1 �

A−→N for �M2. M1
A−→N M2 and

similar for the other two relations. Likewise M1[G〉N abbreviates ∃M2. M1[G〉NM2.
A marking M1 is said to be reachable iff there is a σ ∈ Act∗ such that M0

σ=⇒N M1.
The set of all reachable markings is denoted by [M0〉N .

We omit the subscript N if clear from context.
As said before, here we only want to consider 1-safe nets. Formally, we restrict

ourselves to contact-free nets, where in every reachable marking M1 ∈ [M0〉 for all
t ∈ T with •t ⊆ M1

(M1 \ •t) ∩ t• = ∅ .

For such nets, in Definition 2 we can just as well consider a transition t to be enabled
in M iff •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.

In this paper we furthermore restrict attention to nets for which •t �= ∅, and •t and t•

are finite for all t∈T . We also require the initial marking M0 to be finite. A consequence
of these restrictions is that all reachable markings are finite, and it can never happen
that infinitely many independent transitions are enabled. Henceforth, with net we mean
a labelled net obeying the above restrictions.

In our nets transitions are labelled with actions drawn from a set Act
.
∪ {τ}. This

makes it possible to see these nets as models of reactive systems, that interact with their
environment. A transition t can be thought of as the occurrence of the action �(t). If
�(t) ∈ Act, this occurrence can be observed and influenced by the environment, but if
�(t) = τ , t is an internal or silent transition whose occurrence cannot be observed or
influenced by the environment. Two transitions whose occurrences cannot be distin-
guished by the environment are equipped with the same label. In particular, given that
the environment cannot observe the occurrence of internal transitions at all, all of them
have the same label, namely τ .

We use the term plain nets for nets where � is injective and no transition has the
label τ , i.e. essentially unlabelled nets. Similarly, we speak of plain τ -nets to describe
nets where �(t) = �(u) �= τ ⇒ t = u, i.e. nets where every observable action is
produced by a unique transition. In this paper we focus on plain nets, and give semi-
structural characterisations of classes of plain nets only. However, in defining whether
a net belongs to one of those classes, we study its implementations, which typically are
plain τ -nets. When proving our impossibility result (Theorem 3 in Section 5) we even
allow arbitrary nets as implementations.

We use the following variation of readiness semantics [14] to compare the behaviour
of nets.

On Synchronous and Asynchronous Interaction in Distributed Systems 21

Definition 4. Let N = (S, T, F, M0, �) be a net, σ ∈ Act∗ and X ⊆ INAct.
<σ, X> is a step ready pair of N iff

∃M. M0
σ=⇒ M ∧ M �

τ−→ ∧X = {A ∈ INAct | M
A−→}.

We write R(N) for the set of all step ready pairs of N .
Two nets N and N ′ are step readiness equivalent, N ≈R N ′, iff R(N) = R(N ′).

The elements of a set X as above are multisets of actions, but as in all such multisets
that will be mentioned in this paper the multiplicity of each action occurrence is at
most 1, we use set notation to denote them.

3 Asynchronous Petri Net Classes

In Petri nets, an inherent concept of simultaneity is built in, since when a transition has
more than one preplace, it can be crucial that tokens are removed instantaneously. When
using a Petri net to model a system which is intended to be implemented in a distributed
way, this built-in concept of synchronous interaction may be problematic.

In this paper, a given net is regarded as a specification of how a system should behave,
and this specification involves complete synchronisation of the firing of a transition
and the removal of all tokens from its preplaces. In this section, we propose various
definitions of an asynchronous implementation of a net N , in which such synchronous
interaction is wholly or partially ruled out and replaced by asynchronous interaction.
The question to be clarified is whether such an asynchronous implementation faithfully
mimics the dynamic behaviour of N . If this is the case, we call the net N asynchronous
with respect to the chosen interaction pattern.

The above programme, and thus the resulting concept of asynchrony, is parametrised
by the answers to three questions:

1. Which synchronous interactions do we want to rule out exactly?
2. How do we replace synchronous by asynchronous interaction?
3. When does one net faithfully mimic the dynamic behaviour of another?

To answer the first question we associate a location to each place and each transition
in a net. A transition may take a token instantaneously from a preplace (when firing)
iff this preplace is co-located with the transition; if the preplace resides on a different
location than the transition, we have to assume the collection of the token takes time,
and thus the place looses its token before the transition fires.

We model the association of locations to the places and transitions in a net N =
(S, T, F, M0, �) as a function D : S ∪ T → Loc, with Loc a set of possible locations.
We refer to such a function as a distribution of N . Since the identity of the locations is
irrelevant for our purposes, we can just as well abstract from Loc and represent D by
the equivalence relation ≡D on S ∪ T given by x ≡D y iff D(x) = D(y).

In this paper we do not deal with nets that have a distribution built in. We characterise
the interaction patterns we are interested in by imposing particular restrictions on the
allowed distributions. The implementor of a net can choose any distribution that satisfies
the chosen requirements, and we call a net asynchronous for a certain interaction pattern

22 R. van Glabbeek, U. Goltz, and J.-W. Schicke

if it has a correct asynchronous implementation based on any distribution satisfying the
respective requirements.

The fully asynchronous interaction pattern is obtained by requiring that all places
and all transitions reside on different locations. This makes it necessary to implement
the removal of every token in a time-consuming way. However, this leads to a rather
small class of asynchronous nets, that falls short for many applications. We therefore
propose two ways to loosen this requirement, thereby building a hierarchy of classes
of asynchronous nets. Both require that all places reside on different locations, but a
transition may be co-located with one of its preplaces. The symmetrically asynchronous
interaction pattern allows this only for transitions with a single preplace, whereas in
the asymmetrically asynchronous interaction pattern any transition may be co-located
with one of its preplaces. Since two preplaces can never be co-located, this breaks the
symmetry between the preplaces of a transition; an implementor of a net has to choose at
most one preplace for every transition, and co-locate the transition with it. The removal
of tokens from all other preplaces needs to be implemented in a time-consuming way.
Note that all three interaction patterns break the synchronisation of the token removal
between the various preplaces.

Definition 5. Let D be a distribution on a net N = (S, T, F, M0, �), and let ≡D be the
induced equivalence relation on S ∪ T . We say that D is

– fully distributed, D ∈ QFD, when x ≡D y for x, y ∈ S ∪ T only if x = y,
– symmetrically distributed, D ∈ QSD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if •t = {p} and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u,

– asymmetrically distributed, D ∈ QAD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if p ∈ •t and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u.

The second question raised above was: How do we replace synchronous by asyn-
chronous interaction? In this section we assume that if an arc goes from a place s to
a transition t at a different location, a token takes time to move from s to t. Formally,
we describe this by inserting silent (unobservable) transitions between transitions and
their remote preplaces. This leads to the following notion of an asynchronous imple-
mentation of a net with respect to a chosen distribution.

Definition 6. Let N = (S, T, F, M0, �) be a net, and let ≡D be an equivalence rela-
tion on S ∪ T . The D-based asynchronous implementation of N is defined as the net
ID(N) := (S ∪ Sτ , T ∪ T τ , F ′, M0, �

′) with

Sτ := {st | t ∈ T, s ∈ •t, s �≡D t} ,

T τ := {ts | t ∈ T, s ∈ •t, s �≡D t} ,

F ′ := {(t, s) | t ∈ T, s ∈ t•} ∪ {(s, t) | t ∈ T, s ∈ •t, s ≡D t}
∪ {(s, ts), (ts, st), (st, t) | t ∈ T, s ∈ •t, s �≡D t} ,

�′ � T = � and �′(ts) = τ for ts ∈ T τ .

On Synchronous and Asynchronous Interaction in Distributed Systems 23

Proposition 1. For any (contact-free) net N , and any choice of ≡D, the net ID(N) is
contact-free, and satisfies the other requirements imposed on nets, listed in Section 2.

Proof. For D ∈ QFD and D ∈ QSD, this is established in [6]. The proof of the general
case goes likewise. ��
The above protocol for replacing synchronous by asynchronous interaction appears to
be one of the simplest ones imaginable. More intricate protocols, involving many asyn-
chronous messages between a transition and its preplaces, could be contemplated, but
we will not study them here. Our protocol involves just one such message, namely from
the preplace to its posttransition. It is illustrated in Fig. 1.

N

p q

a t b u

QFD

p

τ

q

ττ

a t b u

QSD

p q

ττ

a t b u

QAD

p q

τ

a t b u

Fig. 1. Possible results for ID(N) given different requirements

The last question above was: When does one net faithfully mimic the dynamic be-
haviour of another? This asks for a semantic equivalence on Petri nets, telling when
two nets display the same behaviour. Many such equivalences have been studied in the
literature. We believe that most of our results are independent of the precise choice of a
semantic equivalence, as long as it preserves causality and branching time to some de-
gree, and abstracts from silent transitions. Therefore we choose one such equivalence,
based on its technical convenience in establishing our results, and postpone questions
on the effect of varying this equivalence for further research. Our choice is step readi-
ness equivalence, as defined in Section 2. Using this equivalence, we define a notion of
behavioural asynchrony by asking whether the asynchronous implementation of a net
preserves its behaviour. This notion is parametrised by the chosen interaction pattern,
characterised as a requirement on the allowed distributions.

Definition 7. Let Q be a requirement on distributions of nets.
A plain net N is behaviourally Q-asynchronous iff there exists a distribution D of N
meeting the requirement Q such that ID(N) ≈R N .

Intuitively, the only behavioural difference between a net N and its asynchronous im-
plementation ID(N) can occur when in N a place s ∈ •u is marked, whereas in ID(N)
this token is already on its way from s to its posttransition u. In that case, it may occur
that a transition t �= u with s ∈ •t is enabled in N , whereas t is not enabled in the
described state of ID(N). We call the situation in N leading to this state of ID(N) a
distributed conflict; it is in fact the only circumstance in which ID(N) fails to faithfully
mimic the dynamic behaviour of N .

24 R. van Glabbeek, U. Goltz, and J.-W. Schicke

Definition 8. Let N = (S, T, F, M0, �) be a net and D a distribution of N .
N has a distributed conflict with respect to D iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ p �≡D u ∧ ∃M ∈ [M0〉N . •t ⊆ M .

We wish to call a net N (semi)structurally asynchronous iff the situation outlined above
never occurs, so that the asynchronous implementation does not change the behaviour
of the net. As for behavioural asynchrony, this notion of asynchrony is parametrised by
the set of allowed distributions.

Definition 9. Let Q be a requirement on distributions of nets.
A net N is (semi)structurally Q-asynchronous iff there exists a distribution D of N
meeting the requirement Q such that N has no distributed conflicts with respect to D.

The following theorem shows that distributed conflicts describe exactly the critical situ-
ations: For all plain nets the notions of structural and behavioural asynchrony coincide,
regardless of the choice if Q.

Theorem 1. Let N be a plain net, and Q a requirement on distributions of nets. Then
N is behaviourally Q-asynchronous iff it is structurally Q-asynchronous.

Proof. In the full version of this paper [7]. ��

Because of this theorem, we call a plain net Q-asynchronous if it is behaviourally and/or
structurally Q-asynchronous. In this paper we study this concept for plain nets only.
When taking Q = QFD we speak of fully asynchronous nets, when taking Q = QSD

of symmetrically asynchronous nets, and when taking Q = QAD of asymmetrically
asynchronous nets.

Example 1. The net N of Fig. 1 is not fully asynchronous, for its unique D-based asyn-
chronous implementation ID(N) with D ∈ QFD (also displayed in Fig. 1) is not step
readiness equivalent to N . In fact 〈ε, ∅〉 ∈ R(ID(N)) \ R(N). This inequivalence
arises because in ID(N) the option to do an a-action can be disabled already before
any visible action takes place; this is not possible in N .

The only way to avoid a distributed conflict in this net is by taking t ≡D p ≡D u.
This is not allowed for any D ∈ QFD or D ∈ QSD, but it is allowed for D ∈ QAD (cf.
the last net in Fig. 1). Hence N is asymmetrically asynchronous, but not symmetrically
asynchronous.

Since QFD ⊆ QSD ⊆ QAD, any fully asynchronous net is symmetrically asynchronous,
and any symmetrically asynchronous net is also asymmetrically asynchronous. Below
we give semi-structural characterisations of these three classes of nets. The first two
stem from [6], where the class of fully asynchronous nets is called FA(B) and the class
of symmetrically asynchronous nets is called SA(B). The class AA(B) in [6] is some-
what larger than our class of asymmetrically asynchronous nets, for it is based on a
slightly more involved protocol for replacing synchronous by asynchronous interaction.

On Synchronous and Asynchronous Interaction in Distributed Systems 25

Definition 10. A plain net N = (S, T, F, M0, �) has a

– partially reachable conflict iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

– partially reachable N iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

– left and right border reachable M iff

∃t, u, v ∈T ∃p∈ •t∩ •u ∃q ∈ •u∩ •v.
t �= u ∧ u �= v ∧ p �= q ∧
∃M1, M2 ∈ [M0〉N . •t ⊆ M1 ∧ •v ⊆ M2 .

Theorem 2. Let N be a plain net.
– N is fully asynchronous iff it has no partially reachable conflict.
– N is symmetrically asynchronous iff it has no partially reachable N.
– N is asymmetrically asynchronous iff it has no left and right border reachable M.

Proof. Straightforward with Theorem 1. ��

In the theory of Petri nets, there have been extensive studies on classes of nets with
certain structural properties like free choice nets [3,2] and simple nets [3], as well as
extensions of theses classes. They are closely related to the net classes defined here, but
they are defined without taking reachability into account. For a comprehensive overview
and discussion of the relations between those purely structurally defined net classes and
our net classes see [6]. Restricted to plain nets without dead transitions (meaning that
every transition t satisfies the requirement ∃M ∈ [M0〉. •t ⊆ M), Theorem 2 says
that a net is fully synchronous iff it is conflict-free in the structural sense (no shared
preplaces), symmetrically asynchronous iff it is a free choice net and asymmetrically
asynchronous iff it is simple.

Our asynchronous net classes are defined for plain nets only. There are two ap-
proaches to lifting them to labelled nets. One is to postulate that whether a net is asyn-
chronous or not has nothing to do with its labelling function, so that after replacing
this labelling by the identity function one can apply the insights above. This way our
structural characterisations (Theorems 1 and 2) apply to labelled nets as well. Another
approach would be to apply the notion of behavioural asynchrony of Definition 7 di-
rectly to labelled nets. This way more nets will be asynchronous, because in some cases
a net happens to be equivalent to its asynchronous implementation in spite of a failure of
structural asynchrony. This happens for instance if all transitions in the original net are
labelled τ . Unlike the situation for plain nets, the resulting notion of behavioural asyn-
chrony will most likely be strongly dependent on the choice of the semantic equivalence
relation between nets.

4 Distributed Systems

The approach of Section 3 makes a difference between a net regarded as a specification,
and an asynchronous implementation of the same net. The latter could be thought of

26 R. van Glabbeek, U. Goltz, and J.-W. Schicke

as a way to execute the net when a given distribution makes the synchronisations that
are inherent in the specification impossible. In this and the following section, on the
other hand, we drop the difference between a net and its asynchronous implementation.
Instead of adapting our intuition about the firing rule when implementing a net in a
distributed way, we insist that all synchronisations specified in the original net remain
present as synchronisations in a distributed implementation. Yet, at the same time we
stick to the point of view that it is simply not possible for a transition to synchronise
its firing with the removal of tokens from preplaces at remote locations. Thus we only
allow distributions in which each transition is co-located with all of its preplaces. We
call such distributions effectual. For effectual distributions D, the implementation trans-
formation ID is the identity. As a consequence, if effectuality is part of a requirement
Q imposed on distributions, the question whether a net is Q-asynchronous is no longer
dependent on whether an asynchronous implementation mimics the behaviour of the
given net, but rather on whether the net allows a distribution satisfying Q at all.

The requirement of effectuality does not combine well will the requirements on dis-
tributions proposed in Definition 5. For if Q is the class of distributions that are ef-
fectual and asymmetrically distributed, then only nets without transitions with multiple
preplaces would be Q-asynchronous. This rules out most useful applications of Petri
nets. The requirement of effectuality by itself, on the other hand, would make every net
asynchronous, because we could assign the same location to all places and transitions.

We impose one more fundamental restriction on distributions, namely that when two
visible transitions can occur in one step, they cannot be co-located. This is based on the
assumption that at a given location visible actions can only occur sequentially, whereas
we want to preserve as much concurrency as possible (in order not to loose perfor-
mance). Recall that in Petri nets simultaneity of transitions cannot be enforced: if two
transitions can fire in one step, they can also fire in any order. The standard interpre-
tation of nets postulates that in such a case those transitions are causally independent,
and this idea fits well with the idea that they reside at different locations.

Definition 11. Let N = (S, T, F, M0, �) be a net.
The concurrency relation � ⊆ T 2 is given by t � u ⇔ t �= u∧∃M∈[M0〉. M [{t, u}〉.
N is distributed iff it has a distribution D such that

– ∀s ∈ S, t ∈ T. s ∈ •t ⇒ t ≡D s,
– t � u ∧ l(t), l(u) �= τ ⇒ t �≡D u.

It is straightforward to give a semi-structural characterisation of this class of nets:

Observation 1. A net is distributed iff there is no sequence t0, . . . , tn of transitions
with t0 � tn and •ti−1 ∩ •ti �= ∅ for i = 1, . . . , n.

A structure as in the above characterisation of distributed nets can be considered as a
prolonged M containing two independent transitions that can be simultaneously enabled.

It is not hard to find a plain net that is fully asynchronous, yet not distributed. How-
ever, restricted to plain nets without dead transitions, the class of asymmetrically asyn-
chronous nets is a strict subclass of the class of distributed nets. Namely, if a net is
M-free (where an M is as in Definition 10, but without the reachability condition on the
bottom line), then it surely has no sequence as described above.

On Synchronous and Asynchronous Interaction in Distributed Systems 27

p q

a t b u c v

Fig. 2. A fully marked M

5 Distributable Systems

In this section, we will investigate the borderline for distributability of systems. It is a
well known fact that sometimes a global protocol is necessary when concurrent activi-
ties in a system interfere. In particular, this may be necessary for deciding choices in a
coherent way. Consider for example the simple net in Fig. 2. It contains an M-structure,
which was already exhibited as a problematic one in Section 3. Transitions t and v are
supposed to be concurrently executable (if we do not want to restrict performance of
the system), and hence reside on different locations. Thus at least one of them, say t,
cannot be co-located with transition u. However, both transitions are in conflict with u.

As we use nets as models of reactive systems, we allow the environment of a net to
influence decisions at runtime by blocking one of the possibilities. Equivalently we can
say it is the environment that fires transitions, and this can only happen for transitions
that are currently enabled in the net. If the net decides between t and u before the actual
execution of the chosen transition, the environment might change its mind in between,
leading to a state of deadlock. Therefore we work in a branching time semantics, in which
the option to perform t stays open until either t or u occurs. Hence the decision to fire u
can only be taken at the location of u, namely by firing u, and similarly for t. Assuming
that it takes time to propagate any message from one location to another, in no distributed
implementation of this net can t and u be simultaneously enabled, because in that case
we cannot exclude that both of them happen. Thus, the only possible implementation of
the choice between t and u is to alternate the right to fire between t and u, by sending
messages between them (cf. Fig. 3). But if the environment only sporadically tries to
fire t or u it may repeatedly miss the opportunity to do so, leading to an infinite loop of
control messages sent back and forth, without either transition ever firing.

In this section we will formalise this reasoning, and show that under a few mild as-
sumptions this type of structures cannot be implemented in a distributed manner at all,
i.e. even when we allow the implementation to be completely unrelated to the specifica-
tion, except for its behaviour. For this, we apply the notion of a distributed net, as intro-
duced in the previous section. Furthermore, we need an equivalence notion in order to
specify in which way an implementation as a distributed net is required to preserve the
behaviour of the original net. As in Section 3, we choose step readiness equivalence.
We call a plain net distributable if it is step readiness equivalent to a distributed net.
We speak of a truly synchronous net if it is not distributable, thus if it may not be trans-
formed into any distributed net with the same behaviour up to step readiness equiva-
lence, that is if no such net exists. We study the concept “distributable” for plain nets
only, but in order to get the largest class possible we allow non-plain implementations,
where a given transition may be split into multiple transitions carrying the same label.

28 R. van Glabbeek, U. Goltz, and J.-W. Schicke

a t b u c v

τ

τ

τ

τ

Fig. 3. A busy-wait implementation of the net in Fig. 2

Definition 12. A plain net N is truly synchronous iff there exists no distributed net N ′

which is step readiness equivalent to N .

We will show that nets like the one of Fig. 2 are truly synchronous.
Step readiness equivalence is one of the simplest and least discriminating equiv-

alences imaginable that preserves branching time, causality and divergence to some
small extend. Our impossibility result, formalised below as Theorem 3, depends cru-
cially on all three properties, and thus needs to be reconsidered when giving up on any
of them.When working in linear time semantics, every net is equivalent to an infinite net
that starts with a choice between several τ -transitions, each followed by a conflict-free
net modelling a single run. This net is N-free, and hence distributed. It can be argued
that infinite implementations are not acceptable, but when searching for the theoreti-
cal limits to distributed implementability we don’t want to rule them out dogmatically.
When working in interleaving semantics, any net can be converted into an equivalent
distributed net by removing all concurrency between transitions. This can be accom-
plished by adding a new, initially marked place, with an arc to and from every transition
in the net. When fully abstracting from divergence, even when respecting causality and
branching time, the net of Fig. 2 is equivalent to the distributed net of Fig. 3, and in
fact it is not hard to see that this type of implementation is possibly for any given net.
Yet, the implementation is suspect, as the implemented decision of a choice may fail to
terminate. The clause M �

τ−→ in Definition 4 is strong enough to rule out this type of
implementation, even though our step readiness semantics abstracts from other forms
of divergence.

We now characterise the class of nets which we will prove to be truly synchronous.

Definition 13. Let N = (S, T, F, M0, �) be a net. N has a fully reachable visible pure
M iff ∃t, u, v ∈ T. •t ∩ •u �= ∅ ∧ •u ∩ •v �= ∅ ∧ •t ∩ •v = ∅ ∧ �(t), �(u), �(v) �= τ ∧
∃M ∈ [M0〉. •t ∪ •u ∪ •v ⊆ M .

Here a pure M is an M as in Definition 10 that moreover satisfies •t∩•v = ∅, and hence
p �∈ •v, q �∈ •t and t �= v. These requirements follow from the conditions above.

Proposition 2. A net with a fully reachable visible pure M is not distributed.

Proof. Let N = (S, T, F, M0, �) be a net that has a fully reachable visible pure M, so
there exist t, u, v ∈ T and p, q ∈ S such that p ∈ •t ∩ •u ∧ q ∈ •u ∩ •v ∧ •t ∩ •v = ∅
and ∃M ∈ [M0〉. •t ∪ •u ∪ •v ⊆ M . Then t � v. Suppose N is distributed by the
distribution D. Then t ≡D p ≡D u ≡D q ≡D v but t � v implies t �≡D v. � ��

On Synchronous and Asynchronous Interaction in Distributed Systems 29

Now we show that fully reachable visible pure M’s that are present in a plain net are
preserved under step readiness equivalence.

Lemma 1. Let N = (S, T, F, M0, �) be a plain net. If N has a fully reachable visible
pure M, there exists <σ, X> ∈ R(N) such that ∃a, b, c ∈ Act. a �= c ∧ {b} ∈ X ∧
{a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X . (It is implied that a �= b �= c.)

Proof. N has a fully reachable visible pure M, so there exist t, u, v ∈ T and M ∈ [M0〉
such that •t∩•u �= ∅∧•u∩•v �= ∅∧•t∩•v = ∅∧�(t), �(u), �(v) �= τ∧•t∪•u∪•v ⊆ M .
Let σ ∈ Act∗ such that M0

σ=⇒ M . Since N is a plain net, M �

τ−→ and �(t) �= �(u) �=
�(v) �= �(t). Hence there exists an X ⊆ INAct such that <σ, X>∈R(N)∧{�(u)}∈X∧
{�(t), �(v)} ∈ X ∧ {�(t), �(u)} /∈ X ∧ {�(u), �(v)} /∈ X . ��

Lemma 2. Let N = (S, T, F, M0, �) be a net. If there exists <σ, X> ∈ R(N) such
that ∃a, b, c ∈ Act. a �= c ∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X , then N
has a fully reachable visible pure M.

Proof. Let M ⊆ S be the marking which gave rise to the step ready pair <σ, X>, i.e.

M0
σ=⇒ M and M

{b}−→ ∧M
{a,c}−→ ∧M �

{a,b}−→ ∧M �

{b,c}−→ .
As a �= b �= c �= a there must exist three transitions t, u, v ∈ T with �(t) = a

∧ �(u) = b∧ �(v) = c and M [{u}〉∧M [{t, v}〉∧¬(M [{t, u}〉)∧¬(M [{u, v}〉). From
M [{u}〉 ∧ M [{t, v}〉 follows •t ∪ •u ∪ •v ⊆ M . From M [{t, v}〉 follows •t ∩ •v = ∅.
From ¬(M [{t, u}〉) then follows •t ∩ •u �= ∅ and analogously for u and v. Hence N
has a fully reachable visible pure M. ��

Note that the lemmas above give a behavioural property that for plain nets is equivalent
to having a fully reachable visible pure M.

Theorem 3. A plain net with a fully reachable visible pure M is truly synchronous.

Proof. Let N be a plain net which has a fully reachable visible pure M. Let N ′ be a
net which is step readiness equivalent to N . By Lemma 1 and Lemma 2, also N ′ has a
fully reachable visible pure M. By Proposition 2, N ′ is not distributed. Thus N is truly
synchronous. ��

Theorem 3 gives an upper bound of the class of distributable nets. We conjecture that
this upper bound is tight, and a plain net is distributable iff it has no fully reachable
visible pure M.

Conjecture 1. A plain net is truly synchronous iff it has a fully reachable visible pure M.

In the following, we give a lower bound of distributability by providing a protocol to
implement certain kinds of plain nets distributedly. These implementations do not add
additional labelled transitions, but only provide the existing ones with a communication
protocol in the form of τ -transitions. Hence these implementations pertain to a notion
of distributability in which we restrict implementations to be plain τ -nets. Note that this
does not apply to the impossibility result above.

Definition 14. A plain net N is plain-distributable iff there exists a distributed plain
τ -net N which is step readiness equivalent to N .

30 R. van Glabbeek, U. Goltz, and J.-W. Schicke

r p q

a

b

c

Fig. 4. An example net

Definition 15. Let N = (S, T, F, M0, �) be a net. We define the enabled conflict rela-
tion # ⊆ T 2 as t # u ⇔ ∃M ∈ [M0〉. M [{t}〉 ∧ M [{u}〉 ∧ ¬(M [{t, u}〉).

We now propose the following protocol for implementing nets. An example depicting
it can be found in Fig. 5. As locations we take the places in a given net, and the equiva-
lence classes of transitions that are related by the reflexive and transitive closure of the
enabled conflict relation. We locate every transition t in its equivalence class, whereas
every place gets a private location. Every place s will have an embassy s[t] in every lo-
cation [t] where one of its posttransitions t ∈ s• resides. As soon as s receives a token, it
will distribute this information to its posttransitions by placing a token in each of these
embassies. The arc from s to t is now replaced by an arc from s[t] to t, so if t could fire
in the original net it can also fire in the implementation. So far the construction allows
two transitions in different locations that shared the precondition s to fire concurrently,
although they were in conflict in the original net. However, if this situation actually oc-
curs, these transitions would have been in an enabled conflict, and thus assigned to the
same location. The rest of the construction is a matter of garbage collection. If a tran-
sition t fires, for each of its preplaces s, all tokens that are still present in the various
embassies of s in locations [u] need to be removed from there. This is done by a special
internal transition t

[u]
s . Once all these transitions (for the various choices of s and [u])

have fired, an internal transition t′ occurs, which puts tokens in all the postplaces of t.

Definition 16. Let N = (S, T, F, M0, �) be a plain net. Let [t] := {u ∈ T | t #∗ u}.
The transition-controlled-choice implementation of N is defined to be the plain τ -net
N ′ := (S ∪ Sτ , T ∪ T τ , F ′, M0, �

′) with

Sτ := {s[t] | s ∈ S, t ∈ s•} ∪ { t | t ∈ T } ∪

{s
[u]
t , s

[u]
t | s ∈ S, t, u ∈ s•, [u] �= [t]}

T τ := { s | s ∈ S} ∪ {t′ | t ∈ T } ∪
{t[u]

s | s ∈ S, t, u ∈ s•, [u] �= [t]}
F ′ := {(s, s) | s ∈ S} ∪

{(s , s[t]), (s[t], t) | s ∈ S, t ∈ s•} ∪
{(t, t), (t , t′) | t ∈ T } ∪
{(t′, s) | t ∈ T, s ∈ t•} ∪

{(t, s[u]
t), (s[u]

t , t[u]
s), (t[u]

s , s
[u]
t), (s[u]

t , t′), (s[u], t[u]
s) | s ∈ S, t, u ∈ s•, [u] �= [t]}

�′ � T = � and �′(T τ) = {τ}.

On Synchronous and Asynchronous Interaction in Distributed Systems 31

r

τ r

r[a]

a

a

τ a′

p

τ p

p[a] p[b]

q

τ q

q[b]

b

b

τ b′

c

c

τ c′

τ b
[a]
p

p
[a]
b

p[b]
a

τ a
[b]
p

p
[b]
a

p
[a]
b

Fig. 5. A distributed implementation for the net in Fig. 4, partitioning into localities shown by
dashed lines

Theorem 4. A plain net N is plain distributable iff #∗ ∩ � = ∅.

Proof (sketch). “⇒”: When implementing a plain net N = (S, T, F, M0, �) by a plain
τ -net N ′ = (S′, T ′, F ′, M ′

0, �
′) that is step readiness equivalent to N , the # and �

relations between the transitions of N also exists between the corresponding visible
transitions of N ′. This is easiest to see when writing aN , resp. aN ′ , to denote a transition
in N , resp. N ′, with label a, which must be unique since N is a plain net, resp. N ′ a
plain τ -net. Namely if aN # bN , then N has a step ready pair <σ, X> with {a},{b}∈X
but {a, b} �∈ X . This must also be a step ready pair of N ′, and hence aN ′ # bN ′ .
Likewise, aN � bN implies aN ′ � bN ′ .

Thus if #∗ ∩ � �= ∅ holds in N , then the same is the case for N ′, and hence N ′ is
not distributed by Observation 1.

“⇐”: If #∗ ∩ � = ∅, N can be implemented as specified in Definition 16. In fact,
the transition-controlled-choice implementation of any net N yields a net that is step
readiness equivalent to N . See the full version of this paper [7] for a formal proof of
this claim. Moreover, if #∗∩� = ∅ it never happens that concurrent visible transitions
are co-located, and hence the implementation will be plain-distributed. ��

Our definition of distributed nets only enforces concurrent actions to be on different
locations if they are visible, and our implementation in Definition 16 produces nets

32 R. van Glabbeek, U. Goltz, and J.-W. Schicke

which actually contain concurrent unobservable activity at the same location. If this is
undesired it can easily be amended by adding a single marked place to every location
and connecting that place to every transition on that location by a self-loop. While this
approach will introduce new causality relations, step readiness equivalence will not
detect this.

6 Conclusion

In this paper, we have characterised different grades of asynchrony in Petri nets in terms
of structural and behavioural properties of nets. Moreover, we have given both an upper
and a lower bound of distributability of behaviours. In particular we have shown that
some branching-time behaviours cannot be exhibited by a distributed system.

We did not consider connections from transitions to their postplaces as relevant to de-
termine asynchrony and distributability. This is because we only discussed contact-free
nets where no synchronisation by postplaces is necessary. In the spirit of Definition 6
we could insert τ -transitions on any or all arcs from transitions to their postplaces, and
the resulting net would always be equivalent to the original.

We have already given a short overview on related work in the introduction of this
paper. Most closely related to our approach are several lines of work using Petri nets as
a model of reactive systems.

As mentioned in Section 3, classes of nets with certain structural properties like
free choice nets [3,2] and simple nets [3], as well as extensions of theses classes, have
been extensively studied in Petri net theory, and are closely related to the classes of
nets defined here. In [3], Eike Best and Mike Shields introduce various transforma-
tions between free choice nets, simple nets and extended variants thereof. They use
“essential equivalence” to compare the behaviour of different nets, which they only
give informally. This equivalence is insensitive to divergence, which is relied upon in
their transformations. It also does not preserve concurrency, which makes it possible
to implement behavioural free choice nets, that may feature a fully reachable visible
M, as free choice nets. They continue to show conditions under which liveness can be
guaranteed for many of these classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jörg Desel introduce two extensions
to extended simple nets, by excluding self-loops from the requirements imposed on ex-
tended simple nets. This however assumes a kind of “atomicity” of self-loops, which we
did not allow in this paper. In particular we do not implicitly assume that a transition will
not change the state of a place it is connected to by a self-loop, since in case of deadlock,
the temporary removal of a token from such a place might not be temporary indeed.

In [16], Wolfgang Reisig introduces a class of systems which communicate using
buffers and where the relative speeds of different components are guaranteed to be ir-
relevant. The resulting nets are simple nets. He then proceeds introducing a decision pro-
cedure for the problem whether a marking exists which makes the complete system live.

Dirk Taubner has in [18] given various protocols by which to implement arbitrary
Petri nets in the OCCAM programming language. Although this programming language
offers synchronous communication he makes no substantial use of that feature in the
protocols, thereby effectively providing an asynchronous implementation of Petri nets.

On Synchronous and Asynchronous Interaction in Distributed Systems 33

a b c

⇒

a b c

Fig. 6. A specification and its Hopkins-implementation which added concurrency

He does not indicate a specific equivalence relation, but is effectively using linear-time
equivalences to compare implementations to the specification.

The work most similar to our approach we have found is the one by Hopkins, [9].
There he already classified nets by whether they are implementable by a net distributed
among different locations. He uses an interleaving equivalence to compare an imple-
mentation to the original net, and while allowing a range of implementations, he does
require them to inherit some of the structure of the original net. The net classes he de-
scribes in his paper are larger than those of Section 3 because he allows more general
interaction patterns, but they are incomparable with those of Section 5. One direction
of this inequality depends on his choice of interleaving semantics, which allows the
implementation in Fig. 6. The step readiness equivalence we use does not tolerate the
added concurrency and the depicted net is not distributable in our sense. The other di-
rection of the inequality stems from the fact that we allow implementations which do
not share structure with the specification but only emulate its behaviour. That way, the
net in Fig. 7 can be implemented in our approach as depicted.

a b c

⇒

a b c

Fig. 7. A distributable net which is not considered distributable in [9], and its implementation

Still many open questions remain. While our impossibility result holds even when
allowing labelled nets as implementations, our characterisation in Theorem 4 only con-
siders unlabelled ones. This begs the question which class of nets can be implemented
using labelled nets. We conjecture that a distributed implementation exists for every net
which has no fully reachable visible pure M. We also conjecture that if we allow linear
time correct implementations, all nets become distributable, even when only allowing
finite implementations of finite nets. We are currently working on both problems.

Just as a distributable net is defined as a net that is behaviourally equivalent to,
or implementable by, a distributed net, one could define an asynchronously imple-
mentable net as one that is implementable by an asynchronous net. This concept is
again parametrised by the choice of an interaction pattern. It would be an interesting
quest to characterise the various classes of asynchronously implementable plain nets.

34 R. van Glabbeek, U. Goltz, and J.-W. Schicke

Also, extending our work to nets that are not required to be 1-safe will probably
generate interesting results, as conflict resolution protocols must keep track of which
token they are currently resolving the conflict of.

In regard to practical applicability of our results, it would be very interesting to relate
our Petri net based terminology to hardware descriptions in chip design. Especially in
modern multi-core architectures performance reasons often prohibit using global clocks
while a façade of synchrony must still be upheld in the abstract view of the system.

On a higher level of applications, we expect our results to be useful for language
design. To start off, we would like to make a thorough comparison of our results to
those on communication patterns in process algebras, versions of the π-calculus and
I/O-automata [12]. Using a Petri net semantics of a suitable system description lan-
guage, we could compare our net classes to the class of nets expressible in the lan-
guage, especially when restricting the allowed communication patterns in the various
ways considered in [4] or in [12]. Furthermore, we are interested in applying our results
to graphical formalisms for system design like UML sequence diagrams or activity di-
agrams, also by applying their Petri net semantics. Our results become relevant when
such formalisms are used for the design of distributed systems. Certain choice con-
structs become problematic then, as they rely on a global mechanism for consistent
choice resolution; this could be made explicit in our framework.

References

1. van der Aalst, W.M.P., Kindler, E., Desel, J.: Beyond asymmetric choice: A note on some
extensions. Petri Net Newsletter 55, 3–13 (1998)

2. Best, E.: Structure theory of Petri nets: The free choice hiatus. In: Brauer, W., Reisig, W.,
Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 168–206. Springer, Heidelberg (1987)

3. Best, E., Shields, M.W.: Some equivalence results for free choice nets and simple nets and
on the periodicity of live free choice nets. In: Ausiello, G., Protasi, M. (eds.) CAAP 1983.
LNCS, vol. 159, pp. 141–154. Springer, Heidelberg (1983)

4. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison: On the CSP
hierarchy. In: Baeten, J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 127–
141. Springer, Heidelberg (1991)

5. Bougé, L.: On the existence of symmetric algorithms to find leaders in networks of commu-
nicating sequential processes. Acta Informatica 25(2), 179–201 (1988)

6. van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: Symmetric and asymmetric asynchronous in-
teraction. Technical Report 2008-03, TU Braunschweig. Extended abstract in Proceedings
1st Interaction and Concurrency Experience (ICE 2008) on Synchronous and Asynchronous
Interactions in Concurrent Distributed Systems, to appear in Electronic Notes in Theoretical
Computer Science. Elsevier, Amsterdam (2008)

7. van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: On synchronous and asynchronous interaction
in distributed systems. Technical Report 2008-04, TU Braunschweig (2008)

8. Gorla, D.: On the Relative Expressive Power of Asynchronous Communication Primitives.
In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 47–62. Springer,
Heidelberg (2006)

9. Hopkins, R.P.: Distributable nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp.
161–187. Springer, Heidelberg (1991)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

On Synchronous and Asynchronous Interaction in Distributed Systems 35

11. Lamport, L.: Arbitration-free synchronization. Distributed Computing 16(2-3), 219–237
(2003)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)
13. Nestmann, U.: What is a ‘good’ encoding of guarded choice? Information and Computa-

tion 156, 287–319 (2000)
14. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating pro-

cesses. Acta Informatica 23, 9–66 (1986)
15. Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous

pi-calculus. In: Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 1997), pp. 256–265. ACM Press, New York
(1997)

16. Reisig, W.: Deterministic buffer synchronization of sequential processes. Acta Informat-
ica 18, 115–134 (1982)

17. Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 376–390. Springer, Heidelberg (1997)

18. Taubner, D.: Zur verteilten Implementierung von Petrinetzen. Informationstechnik 30(5),
357–370 (1988); Technical report, TUM-I 8805, TU München

	On Synchronous and Asynchronous Interaction in Distributed Systems
	Introduction
	Basic Notions
	Asynchronous Petri Net Classes
	Distributed Systems
	Distributable Systems
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

