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Preface 

The symposia on Mathematical Foundations of Computer Science, generally known 
under the acronym MFCS, have been organized alternately in Poland, the Czech  
Republic and Slovakia since 1972. They have a well-established tradition and interna-
tional recognition as an event bringing together researchers in all branches of theoreti-
cal computer science. The previous meetings took place in Jabłonna 1972, Štrbské 
Pleso 1973; Jadwisin 1974, Mariánske Lázně, 1975, Gdańsk 1976, Tatranská Lomnica 
1977, Zakopane 1978, Olomouc 1979, Rydzyna 1980, Štrbské Pleso 1981, Prague 1984, 
Bratislava 1986, Karlovy Vary 1988, Porąbka-Kozubnik 1989, Banská Bystrica 1990, 
Kazimierz Dolny 1991, Prague 1992, Gdańsk 1993, Košice 1994, Prague 1995, Kraków 
1996, Bratislava 1997, Brno 1998, Szklarska Poręba 1999, Bratislava 2000, Mariánske 
Lázně 2001, Otwock 2002, Bratislava 2003, Prague 2004, Gdańsk 2005, Stará Lesná 
2006 and Český Krumlov 2007. 

The 33rd Symposium on Mathematical Foundations of Computer Science was organ-
ized during August 25–29, 2008 by the Faculty of Mathematics and Computer Science 
of Nicolaus Copernicus University (Uniwersytet Mikołaja Kopernika, UMK) in Toruń, a 
medieval Polish town, the birthplace of Nicolaus Copernicus. We gratefully acknowl-
edge the support received from UMK. 

This volume contains 5 invited and 45 contributed papers, which were presented at 
the Symposium. We would like to thank the authors of the invited papers; they  
accepted our invitations and delivered lectures, sharing with us their insights on their 
research areas. It should be stressed that all of the invited papers are extensive full 
versions. The 45 accepted papers were selected from 119 submissions. We thank the 
authors for their contributions to the scientific program of the symposium. The papers 
were reviewed by at least three members of the Program Committee (PC) each, with 
the assistance of external reviewers. We would like to thank the members of the PC 
for their excellent work, which contributed to the quality of the meeting, and for the 
friendly atmosphere of our discussions. We are also very grateful to all external  
reviewers that supported us with their expertise. The work of the PC was carried out 
using the EasyChair system, and we would like to take the opportunity to acknowledge 
this contribution. We thank Springer for the professional cooperation in printing this 
volume and all participants of the conference. 

The greatest thanks are due to Barbara Klunder and her organizing team. Without 
them this meeting could not have taken place. 

 
 

June 2008 Edward Ochmański  
Jerzy Tyszkiewicz 
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One Useful Logic

That Defines Its Own Truth

Andreas Blass1 and Yuri Gurevich2

1 Math Dept, University of Michigan, Ann Arbor, MI 48109, USA
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract. Existential fixed point logic (EFPL) is a natural fit for some
applications, and the purpose of this talk is to attract attention to EFPL.
The logic is also interesting in its own right as it has attractive properties.
One of those properties is rather unusual: truth of formulas can be defined
(given appropriate syntactic apparatus) in the logic. We mentioned that
property elsewhere, and we use this opportunity to provide the proof.

Believe those who are seeking the truth. Doubt those who find it.

—André Gide

1 Introduction

First-order logic lacks induction but first-order formulas can be used to define
the steps of an induction. Consider a first-order (also called elementary) formula
ϕ(P, x1, . . . , xj) where a j-ary relation P has only positive occurrences. The for-
mula may contain additional individual variables, relation symbols, and function
symbols. In every structure whose vocabulary is that of ϕ minus the symbol P
and where the additional individual variables are assigned particular values, we
have an operator

Γ (P ) = {x̄ : ϕ(P, x̄)}.
A relation P is a closed point of Γ if Γ (P ) ⊆ P , and P is a fixed point of Γ
if Γ (P ) = P . Since P has only positive occurrences in ϕ(P, x̄), the operator is
monotone: if P ⊆ Q then Γ (P ) ⊆ Γ (Q). By the Knaster-Tarski Theorem, Γ has
a least fixed point P ∗ which is also the least closed point of Γ [20].

There is a standard way to construct P ∗ from the empty set by iterating
the operator Γ . Let P 0 = ∅, Pα+1 = Γ (Pα) and Pλ =

⋃
α<λ P

α if λ is a limit
ordinal. There is an ordinal α such that Pα = Pα+1 = P ∗. The least such ordinal
α is the closure ordinal of the iteration. Such elementary inductions have been
extensively studied in logic [17,1].

Notice that we have not really used the fact that ϕ(P, x̄) is first-order. One
property of ϕ(P, x̄) that we used was that ϕ(P, x̄) is monotone in P , that is
that, in every structure of the appropriate vocabulary with fixed values for the
additional individual variables, Γ is a monotone operator. ϕ(P, x̄) could be e.g.
a second-order formula monotone in P .

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 1–15, 2008.
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2 A. Blass and Y. Gurevich

The least fixed point P ∗ can be denoted LFPP,x̄ϕ(P, x̄) and viewed as a j-ary
relation, so that [LFPP,x̄ϕ(P, x̄)](y1, . . . , yj) functions semantically as a formula.
This observation gives rise to an idea to use LFP as a new formula constructor,
in addition to propositional connectives and quantifiers. Aho and Ullman [2]
indeed suggested to enrich first-order logic with the LFP constructor. The new
logic became known as FOL+LFP.

Model checking is polynomial time for any FOL+LFP formula ψ. In other
words, it can be checked in time polynomial in the size of a finite structure
X of the vocabulary of ψ whether X with some values for the free individual
variables of ψ is a model of ψ. Immerman [16] and Vardi [21] proved that,
over ordered finite structures, the converse is true: every property that model
checks in polynomial time is expressible in FOL+LFP. In that sense, FOL+LFP
captures polynomial time.

Existential fixed point logic (EFPL) is essentially an extension of the exis-
tential fragment of first-order logic with the LFP construct. It does not have
the universal quantifier and lacks means to simulate universal quantification;
see the definition of EFPL in the next section. As far as we know, it was first
introduced — in a different guise — by Chandra and Harel [10] in the context
of database theory where vocabularies are relational, that is, consist of relation
symbols and constants and do not have function symbols of positive arity. Chan-
dra and Harel observed that relational EFPL is equi-expressive with Datalog, a
popular database query language.

Existential fixed point logic (EFPL) was further developed by the present
authors in [7]; see Section 3. The motivation came from program verification.
We noticed that EFPL was appropriate for formulating pre- and post-conditions
in Hoare’s logic of asserted programs [15]. In particular, the heavy expressivity
hypothesis needed for Cook’s completeness theorem [12] in the context of first-
order logic is automatically satisfied in the context of EFPL.

More recent developments include a deductive system for EFPL introduced by
Compton [11] and a normal form for EFPL formulas discovered by Grohe [13],
who also studied connections between EFPL and other logics. One of the present
authors found connections with topos theory and showed that these connections
imply some of the other, previously known, nice properties of EFPL [6,5]. The
other of the present authors, together with Neeman, applied a logic equiva-
lent to EFPL, called liberal Datalog, to develop a powerful authorization lan-
guage [14]; the equivalence between liberal Datalog and EFPL is shown in detail
in [9].

In this note, we recall the definition and known properties of EFPL, and then
we prove that the truth definition of EFPL formulas can be given in EFPL.

Remark 1. Nikolaj Bjørner [4] observed that writing a truth definition for
EFPL in EFPL is related to writing an interpreter for EFPL in EFPL. This
is indeed the case when one views EFPL as a programming language rather
than as a logic. But this interesting issue is outside the scope of this paper, and
will have to be addressed elsewhere.
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2 Existential Fixed-Point Logic: Definition

As indicated in the introduction, existential fixed-point logic differs from first-
order logic in two respects, the absence of the universal quantifier and the pres-
ence of the least-fixed-point operator. Both of these deserve some clarification.

First we define existential logic EL. Notice that mere removal of the universal
quantifier ∀ has no real effect on first-order logic, since ∀xϕ can be expressed
as ¬∃x¬ϕ. To correctly define the existential fragment of first-order logic, one
must prevent such surreptitious reintroduction of the universal quantifier. A
traditional way to do that is to insist that all formulas have the prenex existential
form ∃x1 . . .∃xnϕ(x1, . . . , xn) where ϕ is quantifier-free.

But there is an alternative and more convenient form of the existential frag-
ment proposed in [7]: Allow as propositional connectives only conjunction, dis-
junction, and negation; use only the existential quantifier; and apply negation only
to atomic formulas. It is easy to see that every formula in this alternative fragment
is equivalent to one in prenex existential form, and the other way round.

With an eye on the forthcoming introduction of recursion, we stipulate that
all relation symbols are divided into two categories: negatable and positive. And
we restrict further the use of negation in the alternative existential fragment of
first-order logic: negation can be applied only to atomic formulas with negat-
able relation symbols. The resulting fragment of first-order logic will be called
existential logic and denoted EL.

Now we extend existential logic by adding a new formula constructor. As
usual, formulas are built by induction from atomic formulas by means of for-
mula constructors. In the case of EFPL, the formula constructors are those of
existential logic — the three propositional connectives and the existential quan-
tifier — and one additional LET-THEN constructor that is used to construct
induction assertions. We explain how the new constructor works.

Let F be the collection of formulas constructed so far. A logic rule has the
form P (x1, . . . , xj) ← δ(P, x1, . . . , xj) where P is a positive relation symbol of
arity j, the xi’s are distinct variables and δ is any formula in F . We wrote δ as
δ(P, x1, . . . , xj) to emphasize that it is allowed to contain the relation symbol P
and the individual variables x1, . . . , xj , but it may also contain additional indi-
vidual variables, relation symbols, and function symbols. P is the head symbol of
the rule and δ is its body. Note that the arrow ← in a logic rule is not the (re-
verse) implication connective but a special symbol whose only use, in our syntax,
is in forming logic rules. A logic program is a finite collection of logic rules. (To
write a program as text, one needs to order its rules, but the choice of ordering
will never matter.) To be compatible with [7], we require that different rules have
different head symbols; we could remove this restriction. If Π is a program and ϕ
is a formula in F then

LET Π THEN ϕ

is an EFPL formula, an induction assertion. If P (x1, . . . , xj) ← δ is a rule in Π
then all occurrences of the variables x1, . . . , xj in the rule are bound occurrences
in the induction assertion. And P is a bound relation variable in the induction
assertion.
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In general, an occurrence of an individual variable v in a formula ψ is bound if it
belongs to a subformula of the form ∃v α or to a rule of the form P (. . . , v, . . .) ←
δ; otherwise the occurrence is free. The free individual variables of ψ are those
with free occurrences in ψ. An occurrence of relation symbol P in ψ is bound if
it belongs to subformula LET Π THEN ϕ of ψ and P is a head symbol of Π ;
otherwise the occurrence is free. The vocabulary of ψ consists of all the function
symbols in ψ and all relation symbols with free occurrences in ψ.

It remains to define the semantics of the induction assertion ψ = LET Π
THEN ϕ. To simplify the exposition, we presume that the program Π consists
of two rules, P (x1, . . . , xj) ← α and Q(y1, . . . , yk) ← β. In every structure of
the vocabulary of ψ with fixed values for the free individual variables of ψ, the
program gives rise to an operator

Γ (P,Q) ← ({x̄ : α}, {ȳ : β}).

Since P and Q are positive relation symbols, Γ is monotone and thus has a least
fixed point (P ∗, Q∗). To evaluate ψ, evaluate ϕ using P ∗ and Q∗ as the values
of relations P and Q.

3 EFPL: Some Properties

We describe some properties of EFPL. The default reference is [7].

Capturing Polynomial Time

EFPL captures polynomial time computability over structures of the form {0, 1,
. . . , n} with (at least) the successor relation and names for the endpoints. In
contrast to the corresponding result for FOL+LFP mentioned above, we use the
successor relation here rather than the ordering relation <. In fact, both proofs
depend on the successor relation rather than the order, but in FOL one can
define successor in terms of order (but not vice versa), whereas in EFPL one can
define order in terms of successor (but not vice versa).

Validity Is r.e. Complete

The set of logically valid EFPL formulas is recursively enumerable (in short r.e.).
Furthermore, every r.e. set reduces, by means of a recursive function, to the set of
valid EFPL formulas. Thus the set of valid EFPL formulas is a complete r.e. set.

Satisfiability Is r.e. Complete

The set of satisfiable EFPL formulas is a complete r.e. set.

Finite Validity Is co-r.e. Complete

The set of EFPL formulas that hold in all finite structures is a complete co-r.e.
set. In other words, the set of EFPL formulas ψ such that ψ fails in some finite
structure is a complete r.e. set.
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Finite Model Property
When an EFPL formula ψ is satisfied in a structure X , this fact depends on only
a finite part of the structure X . More precisely, there is a finite subset D of the
elements of X such that ψ is satisfied in every structure X ′ of the vocabulary
of X that coincides with X on D. Note that X ′ can be always chosen to be
finite. If we allow basic functions of a structure to be partial, then the property
in question can be formulated in a particularly simple way: If an EFPL formula
is satisfied in a structure then it is satisfied in a finite substructure.

No Transfinite Induction Is Needed
The closure ordinal of any monotone induction

P �→ {x̄ : ϕ(P, x̄)},

where ϕ is in EFPL is at most ω, the first infinite ordinal. The definition of the
closure ordinal generalizes in a straightforward way to simultaneous monotone
induction. The closure ordinal of the induction given by any logic program is at
most ω.

Truth Is Preserved by Homomorphisms
Truth of EFPL formulas is preserved by homomorphisms. Here a homomorphism
is a function h from one structure to another such that

– h commutes with (the interpretations of) function symbols,
– P (a1, . . . , aj) implies P (ha1, . . . , haj)

for every positive relation symbol P of any arity j, and
– P (a1, . . . , aj) if and only if P (ha1, . . . , haj)

for every negatable relation symbol P of any arity j.

EFPL ∩ FOL ⊆ EL
If an EFPL formula ϕ is expressible in first-order logic then ϕ is equivalent to
an existential formula. Only a limited form of this result survives in finite model
theory. If an EFPL formula ϕ without function symbols and without negations
is equivalent, on finite structures, to a first-order formula, then ϕ is equivalent,
on finite structures, to an existential formula without negations [3,18]. This fails
even if ϕ has no function symbols and only the equality relation is negatable [3,
Section 10].

4 Prerequisites for Truth

Our objective in the rest of the article is to show that EFPL can formalize its
own truth definition. That is, we shall define, in EFPL with suitable vocabulary,
truth of EFPL sentences (that is formulas with no free variables) of the same
vocabulary. We use the term predicate to mean a relation symbol or a relation
depending on the context.
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Since sentences are built from subformulas that may have free variables, we
shall actually define the slightly more general concept of satisfaction of formulas
by assignments of values to the free variables. The need to define the more general
notion of satisfaction of formulas in order to obtain truth for sentences is familiar
from first-order logic.1 A new complication, of the same general nature, arises
in EFPL. The bound predicates of a sentence ϕ are free in some subformulas of
ϕ. We should define satisfaction of ϕ in a structure whose vocabulary does not
include those predicates. But the definition will pass through subformulas of ϕ
whose satisfaction will depend on the interpretations of those predicates. As a
result, we need to define satisfaction of ϕ in a context that includes not only
a structure (for the vocabulary of ϕ) and an assignment of values to the free
variables of ϕ (as in FOL) but also the logic rules that provide the meaning of
all other predicates that occur in ϕ — or that occur in the bodies of those rules.

Let Υ be a vocabulary and X a structure of vocabulary Υ . Any predicate that
does not occur in Υ will be called an extra predicate. We shall define satisfaction
in X for Υ -formulas. Requirements will be imposed shortly on Υ and X , but for
now Υ is just some vocabulary and X some Υ -structure. We intend to define, in
EFPL, a ternary predicate Sat such that, when

– the value of its first argument is a formula ϕ, of vocabulary Υ plus (possibly)
some extra predicates,

– the value of its second argument is a logic program Π whose head predicates
include all extra predicates that occur in ϕ or Π , and

– the value of its third argument is an assignment s of elements of X to (at
least) all individual variables that are free in ϕ or in Π ,

then the truth value of Sat(ϕ,Π, s) in X is the same as the truth value, in X , of ϕ
with values for its variables given by s and with the extra predicates interpreted
by the least fixed point of (the monotone operator defined by) Π .

Furthermore, we do not intend to use any clever tricks in our definition of
Sat. It will be a formalization of the explanation given above (and in [7]) of
the meaning of EFPL formulas. The point of this work is to show that this
formalization can be carried out in EFPL itself.

For all this to make sense, the structure X must contain the formulas ϕ of
EFPL, the logic programs Π , and the assignments s. Furthermore, the vocabu-
lary must be adequate to express the basic syntactic properties of formulas and
to allow basic constructions of assignments, rules, and programs. We do not,
however, wish to specify the exact syntactic nature of formulas — for example,
are they sequences of symbols, or are they parse trees, or are they Gödel num-
bers? Our work is independent of such details. So we shall merely assume that
certain notions (e.g., the operation of forming the conjunction of two formulas)

1 A few authors, notably Shoenfield [19], define truth directly. To do so, they expand
the vocabulary by adding constants for all elements of the structure under consid-
eration, and instead of assigning values to variables they substitute constants for
variables. We could have used this approach for EFPL, but we chose to parallel the
more widely used approach in FOL, via satisfaction.
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are expressible; the details of how they are expressed (and which notions are
primitive and which are derived) are irrelevant.2

In the rest of this section, we list what we require of our vocabulary Υ and
structure X , occasionally adding some comments about the reasons for particular
requirements.

Υ should be finite. The reason is that the definition of satisfaction must, in
the clauses for atomic formulas, use all the relation and function symbols of Υ .

The equality predicate should be negatable. The reason is that the notion of
EFPL formula requires some things to be distinct, for example the variables in
the head of a rule and the head symbols of different rules in a program.

X should contain a copy N of the natural numbers, and Υ should have a
constant symbol for 0 and a unary function symbol S for successor. N itself, as
a unary relation, is definable:

N(x) :≡ LET N(z) ← z = 0 ∨ ∃y (N(y) ∧ z = S(y)) THEN N(x).

We could also define addition and multiplication as ternary relations, and the
ordering, and similarly for other primitive recursive functions and relations.

We need N primarily to index elements of lists, for example the list of terms
that serves as the argument of a relation or function symbol. Since Υ is finite, we
could handle the argument lists of its own relation and function symbols in an
ad hoc manner, without a general notion of natural number or of list. But EFPL
imposes no bound on the arities of the head symbols of logic rules, so atomic
formulas can involve arbitrarily long argument lists, and natural numbers are
needed for treating these.

Although EFPL does not allow universal quantification in general, it can
simulate universal quantification over finite initial segments of N, as shown by
the following lemma from [7].

Lemma 2. For any EFPL formula ϕ(x), there is an EFPL formula ψ(y) equiv-
alent, for all y ∈ N, to (∀x < y)ϕ(x).

Proof. The most natural choice of ψ(y) describes a search from 0 up to y:

LET K(x) ← x = 0 ∨ ∃w
(
x = S(w) ∧ K(w) ∧ ϕ(w)

)
THEN K(y). �

Convention 3. Consider the definition of N exhibited above, and notice that
its essential content is contained in the rule

N(z) ← z = 0 ∨ ∃y (N(y) ∧ z = S(y)),

which makes the bound predicate symbol N denote the set of natural numbers.
The rest of the definition,

N(x) :≡ LET . . . THEN N(x),

2 We shall occasionally indicate how certain notions can be defined from others in
EFPL. Those indications can help to reduce the assumptions needed about Υ .
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merely transfers this denotation to the defined notation N. Instead of introducing
a bound predicate variable N to, in effect, duplicate the desired predicate N, we
could convey the same information by writing

N(z) :← z = 0 ∨ ∃y (N(y) ∧ z = S(y)).

Although this is not an EFPL formula, we adopt the convention that it is to
serve as an abbreviation of the definition of N displayed earlier. In general, when
we write a rule with a colon before the ←, it is to be interpreted as defining a
formula. Thus,

P(x̄) :← δ(P, x̄)

means that P(x̄) is defined as the formula

LET Q(z̄) ← δ(Q, z̄) THEN Q(x̄).

Convention 4. Later, we shall also need to deal with definitions of this sort
in which the body δ is a disjunction of many subformulas. For example, our
ultimate goal, the definition of Sat, will have several disjuncts, covering the
different syntactic constructs of EFPL. In such cases, it is convenient to present
one disjunct (or a small number of them) at a time. Thus, for a small example,
the definition of N above could be broken into two parts:

N(z);← z = 0
N(z);← ∃y (N(y) ∧ z = S(y)).

We use a semicolon before ← (instead of a colon) to indicate that the full def-
inition involves more disjuncts. (This use of a semicolon as a partial colon is
suggested by the word “semicolon.”) In general, if we write several semicolon
definitions P(x̄);← δi for the same P (x̄), then they are to be understood as
meaning P(x̄) :←

∨
i δi.

Returning to the requirements on X and Υ , we require X to contain the
variables and the assignments. The latter are finite partial functions from the
variables into (the universe of) X . Υ should define a predicate Vbl for the set of
variables, a constant symbol ∅ for the empty assignment, and a ternary function
symbol Modify for the function defined as follows: Given an assignment s, a
variable v, and an element a of X , Modify(s, v, a) is the assignment t that sends
v to a and otherwise agrees with s (whether or not a is in the domain of s).

Convention 5. Here and in what follows, we use the terminology “Υ should
define a predicate for” some relation on X to mean that there should be an
EFPL formula in vocabulary Υ whose truth set in X is the desired relation. Of
course, the easiest way to arrange this would be for the given relation to be one
of the basic relations of X , so that the required EFPL formula would be atomic.
But it will never matter whether the formula is atomic or not.

Similarly, when we ask that Υ should have certain function symbols, we could
weaken that to require only some terms, possibly involving nesting of function
symbols, and our proofs would be unchanged.
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We also need to express “s is an assignment,” “v is in the domain of s,” and
“s(v) = a,” but we need not assume these separately, as they are definable from
∅ and Modify. They are given, using our conventions above and the familiar
convention of (existentially) quantifying several variables at once, by

Assgt(s);← s = ∅

Assgt(s);← ∃t, v, a (Assgt(t) ∧ Vbl(v) ∧ s = Modify(t, v, a))
v inDom s :← ∃t, a (s = Modify(t, v, a)).
s(v) = a :← ∃t (s = Modify(t, v, a))

Note that here s(v) = a is defined as a ternary relation, not as an instance of
equality.

We shall also need to have, among the elements of X , the relation and function
symbols of Υ as well as the extra predicates available as head symbols of rules.
Each relation symbol P or function symbol f of Υ , should be denoted by a closed
term Ṗ or ḟ of Υ . (We remain flexible as to what the symbols of Υ should be.
For example, they could be Gödel numbers, and then their names Ṗ and ḟ could
be terms of the form SS . . . S(0). But there are many other options, and all
will work. Note, however, that we cannot take all the ḟ ’s to be simple constant
symbols, as they would then be among the f ’s, and there would not be enough
room in a finite Υ for all of these names to have names.)

The extra predicates available as head symbols of rules should have specified
numbers of arguments. That is, there should be an Υ -definable predicate Arity
such that Arity(a, n) holds in X (for elements a, n ∈ X) if and only if a is one of
these head predicate symbols and n ∈ N is the number of its argument places.

As mentioned earlier, we shall need lists, so we require that X contain all lists
(i.e., finite sequences) of elements of X . The vocabulary Υ should contain at
least the constant Nil, denoting the empty list, and the binary function symbol
Append, for the function that lengthens a list by adding one element at the end.
Thus, for example,

〈a, b, c〉 = Append(Append(Append(Nil, a), b), c).

Other predicates and functions that we shall need for dealing with lists can be
defined in terms of Nil and Append.

List(l);← l = Nil
List(l);← ∃x, a (List(x) ∧ l = Append(x, a))

l hasLength n;← l = Nil ∧ n = 0

l hasLength n;← ∃x, a,m
(
l = Append(x, a) ∧ x hasLength m ∧ n = S(m)

)

(l)i = a;← ∃x
(
x hasLength i ∧ l = Append(x, a)

)

(l)i = a;← ∃x, b
(
(x)i = a ∧ l = Append(x, b)

)

Cat(a, b, l);← b = Nil ∧ l = a

Cat(a, b, l);← ∃c, x,m
(
Cat(a, c,m) ∧

b = Append(c, x) ∧ (l = Append(m,x)
)
.
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Here (l)i = a, though it looks like an equation, is really a defined ternary relation,
whose meaning is that a is the ith component of the list l, where we start counting
with 0, and where the length of l must be at least i + 1 so that there is an ith

term. And “Cat” alludes to “concatenation”. If a, b, l are lists and Cat(a, b, l)
holds, then l is the concatenation a ∗ b of a and b.

We note the following consequence of Lemma 2, allowing universal quantifi-
cation over the elements of a list.

Corollary 6. For any EFPL formula ϕ(x), there is an EFPL formula ψ(y) that
holds, when the value of y is a list, if and only if ϕ holds of all elements of that
list. That is, ψ(y) is the result of universally quantifying ϕ(x) over all elements
x of the list y.

Proof. Use Lemma 2 to express

∃n
(
y hasLength n ∧ (∀i < n)∃z ((y)i = z ∧ ϕ(z))

)
. �

It will be convenient to write (∀x ∈ y)ϕ(x) for the formula ψ given by this
corollary.

Finally, X must contain the syntactic entities relevant to EFPL, such as terms,
logic rules, logic programs, and formulas. The precise nature of these entities
depends on arbitrary choices of how to represent syntax. We require merely
that some representation be present and that Υ be able to describe fundamental
syntactic relationships.

First, Υ should have a binary function symbol Apply, used to form a compound
term f(t1, . . . , tn) from an n-ary function symbol f and a list 〈t1, . . . , tn〉 of n
terms, and also used similarly to form atomic formulas P (t1, . . . , tn). Depending
on how syntax is represented, Apply could, for example, be simply a pairing
function, or it could be the operation of prepending an element to a list, or it
could produce a tree from a root and its immediate subtrees, or it could be an
arithmetical operation on Gödel numbers.

There should also be a unary function symbol Neg and binary function sym-
bols Conj, Disj, Quant, and IndAsrt for the operations of negating a formula,
forming conjunctions, forming disjunctions, forming existential quantifications,
and forming induction assertions LET Π THEN ϕ. The arguments of these op-
erations are intended to be formulas, except that the first argument of Quant is
the variable being quantified and the first argument of IndAsrt is the program
that goes between LET and THEN.

There should also be a binary function symbol Rule for the operation building
a logic rule from its head and its body. We shall take logic programs to be
(certain) lists of rules, so we do not need additional capabilities in Υ to handle
these. (We could have used sets of rules instead, but then Υ would need additional
capabilities.) Finally, there is a ternary relation RenameAway such that, if Π
is a program and ϕ is a formula and RenameAway(ϕ,Π, ϕ′) holds, then ϕ′ is a
formula obtained from ϕ by renaming the bound predicates of ϕ away from the
head predicates of Π , so that the formula ϕ′ is equivalent to ϕ, and no head
predicate of Π is bound in ϕ′.
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This completes our requirements on Υ and X . They can be summarized thus:
EFPL syntax and basic combinatorial ingredients for EFPL semantics (like as-
signments) are available in X and expressible in EFPL in vocabulary Υ .

5 Semantics of Terms

Terms are built, as in FOL, by starting with variables and iteratively applying
function symbols. The definition is formalized as follows.

Term(t);← Vbl(t)

Term(t);← ∃l
(
t = Apply(ḟ , l) ∧ List(l) ∧ l hasLength n̂ ∧ (∀x ∈ l)Term(x)

)
.

Here the second line is to be repeated for each function symbol f of Υ , n is the
arity of f , and n̂ is the numeral for n, namely SS . . . S(0) with n occurrences of S.
Recall that the universal quantification ∀x ∈ l was introduced after Corollary 6
as an abbreviation of an EFPL formula. Recall also that Υ is finite, so there is
no difficulty writing the appropriate line for each f .

Semantically, a term gets a value (in the given structure X) once an assign-
ment provides values for all the variables in t. So the values of terms are given
by a binary function, whose arguments are a term and an assignment. To define
it recursively, we regard this binary function as a ternary relation, and we define
it as follows.

Val(t, s, a);← Vbl(t) ∧ Assgt(s) ∧ s(t) = a

Val(t, s, a);← ∃l, u0, . . . , un−1, b0, . . . , bn−1
(
t = Apply(ḟ , l) ∧ List(l) ∧ l hasLength n̂ ∧ Assgt(s)

∧
∧

i<n

((l)i = ui ∧ Val(ui, s, bi)) ∧ a = f(b1, . . . , bn)
)
.

The explanatory comments after the definition of Term apply here as well.

Remark 7. In principle, we could do without the definition of Term. The defini-
tion of Val assigns values only to terms in any case. But it would do no harm if Val
were defined in some extraneous cases, as long as it worked correctly for terms.

6 Semantics of Formulas

As indicated earlier, the semantics of a formula involves not only the structure
X and an assignment s but also a collection Π of logic rules to determine the
meaning of any extra predicates used in the formula but not bound by LET-
THEN constructions in the formula. Ultimately, when we deal with Υ -formulas,
there will be no such extra predicates, so Π will be irrelevant, but in the recursive
construction of an Υ -formula (and in the recursive definition of its satisfaction),
subformulas can occur that do use extra predicates. So we shall define Sat as a
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ternary predicate, where the intended meaning of Sat(ϕ,Π, s) is that the formula
ϕ is true, in our given structure X , when the extra predicates are interpreted by
the least fixed point of Π and the free variables are assigned values by s.

The definition of Sat will have numerous clauses, according to the last con-
structor used in building ϕ, so we shall make much use of the “;←” convention.
This way, we can present the clauses one (or a few) at a time and insert comments
and even other definitions between them.

We begin with the case of atomic formulas whose predicates are from Υ . The
definition is quite analogous to the earlier definition of the values of terms.

Sat(ϕ,Π, s);← ∃l, u0, . . . , un−1, b0, . . . , bn−1
(
ϕ = Apply(Ṗ , l) ∧ List(l) ∧ l hasLength n̂ ∧ Assgt(s)

∧
∧

i<n

((l)i = ui ∧ Val(ui, s, bi)) ∧ P (b1, . . . , bn)
)
.

(1)

This is to be repeated for all of the (finitely many) predicates P of Υ with n
being the arity of P . As before, n̂ is the numeral for n.

The case of negated atomic formulas is almost the same; of course it is to be
repeated only for negatable P .

Sat(ϕ,Π, s);← ∃l, u0, . . . , un−1, b0, . . . , bn−1
(
ϕ = Neg(Apply(Ṗ , l)) ∧ List(l) ∧ l hasLength n̂ ∧ Assgt(s)

∧
∧

i<n

((l)i = ui ∧ Val(ui, s, bi)) ∧ ¬P (b1, . . . , bn)
)
.

(2)

Rather than continuing with the remaining atomic formulas, those that use ex-
tra predicates, let us first dispose of the remaining “easy” clauses, those not
involving Π .

Sat(ϕ,Π, s);← ∃α, β
(
ϕ = Conj(α, β) ∧ Sat(α,Π, s) ∧ Sat(β,Π, s)

)

Sat(ϕ,Π, s);← ∃α, β
(
ϕ = Disj(α, β) ∧ (Sat(α,Π, s) ∨ Sat(β,Π, s)

)

Sat(ϕ,Π, s);← ∃α, v, a
(
ϕ = Quant(v, α) ∧ Sat(α,Π,Modify(s, v, a))

)
(3)

This completes the easier part of the definition of Sat, the part concerning just
EL. To complete the definition for EFPL, we must deal carefully with programs
in both of their roles — as the second argument of Sat and as a constituent of
induction assertions.

This will require some preliminaries. First, we need the notion of a list with
no repetitions.

1-1-List(l) :≡ ∃n
(
l hasLength n∧

(∀i, j < n)∃x, y ((l)i = x ∧ (l)j = y ∧ (i = j ∨ ¬(x = y)))
)
.

We also need a construction that amounts to applying a unary function to each
element of a list, producing a new list. The situation is complicated by the fact
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that our unary functions are often given as binary relations. We therefore adopt
the following notation. If we have defined a binary relation R, then we write R+

for the relation defined as follows.

R+(l,m) :≡ ∃n
(
l hasLength n ∧ m hasLength n∧

(∀i < n)∃u, v ((l)i = u ∧ (m)i = v ∧ R(u, v))
)
.

For example, let us define HS (abbreviating “head symbol”) by

HS(r, p) :≡ ∃y, z (r = Rule(Apply(p, y), z)).

Then when Π is a list of rules, HS+(Π,m) means that m is the list of their
head symbols. One of the requirements for a program is that this list m be one-
to-one, so there will be a clause ∃m (HS+(Π,m)∧ 1-1-List(m)) in the definition
of program.

We shall also use the plus-notation with a parameter. Specifically, we think
of Val(u, s, b) as the graph of a function u �→ b with s fixed, so the plus-notation
makes Val+(ū, s, b̄) the relation between a list of terms and their values, all for
the same assignment s. We refrain from writing out the definition, since it’s just
like the definition of R+ above, with the extra argument s inserted into both R
and R+.

We need an improved version of the function Modify, to modify an assignment
by mapping all the variables in a list l to the corresponding values in another
list q (of the same length).

Change(s, l, q, r);← l = Nil ∧ q = Nil ∧ s = r

Change(s, l, q, r);← ∃l′, q′, r′, v, a
(
l = Append(l′, v) ∧ q = Append(q′, a)

∧ Change(s, l′, q′, r′) ∧ r = Modify(r′, v, a)
)
.

With these preliminaries, we can write down the definition of satisfaction for
atomic formulas that begin with one of the extra predicates. The idea is to find,
in Π , the rule having that symbol as its head symbol, and to use the body of
that rule as the criterion of truth for our atomic formula. It will be useful later
to make sure that the Π in the second argument place of Sat has no repeated
head symbols, so we include that in the definition.

Sat(ϕ,Π, s);← ∃p, t, k, i,m, l, r, q, δ
(
ϕ = Apply(p, t) ∧ t hasLength k ∧ Arity(p, k) ∧

(∀x ∈ t) Term(x) ∧ HS+(Π,m) ∧ 1-1-List(m) ∧
(Π)i = Rule(Apply(p, l), δ) ∧ 1-1-List(l) ∧
l hasLength k ∧ (∀x ∈ l) Vbl(x) ∧ Val+(t, s, q) ∧
Change(s, l, q, r) ∧ Sat(δ,Π, r)

)
.

(4)

In prose, the essential part of this says that ϕ has the form p(t̄) for an extra
predicate of arity k, with t̄ being a k-tuple of terms; that Π contains a rule
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p(l̄) ← δ with head p, l̄ being a k-tuple of distinct variables; and that δ is satisfied
by the assignment r obtained from s by replacing each of the variables in the
list l̄ by the value of the corresponding element of t̄. This replacement amounts,
intuitively, to taking the definition of p(l̄) as δ(l̄) and applying it to p(t̄), the
terms t̄ replacing the variables l̄. Instead of doing a syntactic substitution of t̄
for l̄ in δ, we have made the corresponding semantic change, assigning to the
variables in l̄ the values of the terms in t̄.

It may seem strange that this clause in the definition of Sat says nothing
about iterating the operator defined by δ. After all, p should be interpreted as
the least fixed point of that operator. But the desired iteration is automatically
accomplished by the iteration involved in the definition of Sat. That is, if p
occurs in δ, then the true instances of p can contribute to the true instances of
δ and can thereby contribute to additional true instances of p.

We must still provide the clause for induction assertions in our definition of
Sat. Fortunately, this is relatively easy, since iteration is already implicitly done
in the preceding clause.

Sat(ϕ,Π, s) ;← ∃ϕ′, Σ, α,Θ
(
RenameAway(ϕ,Π, ϕ′) ∧ ϕ′ = IndAsrt(Σ,α)

∧ Cat(Π,Σ,Θ) ∧ Sat(α,Θ, s)
)
.

(5)

Here ϕ′ is equivalent to ϕ and so Sat(ϕ,Π, s) should be equivalent to Sat(ϕ′, Π, s).
Further, ϕ′ = LET Σ THEN α, and no head predicate of Π is bound in ϕ′. It
follows that the head predicates of Π are disjoint from the head predicates of Σ,
so that the concatenation Θ of Π and Σ is a legitimate program. Accordingly
Sat(ϕ′, Π, s) should be equivalent to Sat(α,Θ, s).

That concludes the definition of Sat(ϕ,Π, s). It is easy to see that it works as
intended. In the case when ϕ is a sentence and when both Π and s are empty,
Sat(ϕ,Π, s) holds in the structure X if and only ϕ does.
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Abstract. When considering distributed systems, it is a central issue how to
deal with interactions between components. In this paper, we investigate the
paradigms of synchronous and asynchronous interaction in the context of dis-
tributed systems. We investigate to what extent or under which conditions syn-
chronous interaction is a valid concept for specification and implementation of
such systems. We choose Petri nets as our system model and consider different
notions of distribution by associating locations to elements of nets. First, we in-
vestigate the concept of simultaneity which is inherent in the semantics of Petri
nets when transitions have multiple input places. We assume that tokens may only
be taken instantaneously by transitions on the same location. We exhibit a hier-
archy of ‘asynchronous’ Petri net classes by different assumptions on possible
distributions. Alternatively, we assume that the synchronisations specified in a
Petri net are crucial system properties. Hence transitions and their preplaces may
no longer placed on separate locations. We then answer the question which sys-
tems may be implemented in a distributed way without restricting concurrency,
assuming that locations are inherently sequential. It turns out that in both settings
we find semi-structural properties of Petri nets describing exactly the problematic
situations for interactions in distributed systems.

1 Introduction

In this paper, we address interaction patterns in distributed systems. By a distributed
system we understand here a system which is executed on spatially distributed locations,
which do not share a common clock (for performance reasons for example). We want
to investigate to what extent or under which conditions synchronous interaction is a
valid concept for specification and implementation of such systems. It is for example
a well-known fact that synchronous communication can be simulated by asynchronous
communication using suitable protocols. However, the question is whether and under
which circumstances these protocols fully retain the original behaviour of a system.
What we are interested in here are precise descriptions of what behaviours can possibly
be preserved and which cannot.

The topic considered here is by no means a new one. We give a short overview on
related approaches in the following.
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Already in the 80th, Luc Bougé considered a similar problem in the context of dis-
tributed algorithms. In [5] he considers the problem of implementing symmetric leader
election in the sublanguages of CSP obtained by allowing different forms of communi-
cation, combining input and output guards in guarded choice in different ways. He finds
that the possibility of implementing leader election depends heavily on the structure of
the communication graphs. Truly symmetric schemes are only possible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many languages for system specification
and design, e.g. in statechart-based approaches, in process algebras or the π-calculus. For
process algebras and the π-calculus, language hierarchies have been established which
exhibit the expressive power of different forms of synchronous and asynchronous in-
teraction. In [4] Frank de Boer and Catuscia Palamidessi consider various dialects of
CSP with differing degrees of asynchrony. Similar work is done for the π-calculus in
[15] by Catuscia Palamidessi, in [13] by Uwe Nestmann and in [8] by Dianele Gorla.
A rich hierarchy of asynchronous π-calculi has been mapped out in these papers. Again
mixed-choice, i.e. the ability to combine input and output guards in a single choice, plays
a central rôle in the implementation of truly synchronous behaviour.

In [17], Peter Selinger considers labelled transition systems whose visible actions
are partitioned into input and output actions. He defines asynchronous implementations
of such a system by composing it with in- and output queues, and then characterises
the systems that are behaviourally equivalent to their asynchronous implementations.
The main difference with our approach is that we focus on asynchrony within a sys-
tem, whereas Selinger focusses on the asynchronous nature of the communications of a
system with the outside world.

Also in hardware design it is an intriguing quest to use interaction mechanisms which
do not rely on a global clock, in order to gain performance. Here the simulation of
synchrony by asynchrony can be a crucial issue, see for instance [10] and [11].

In contrast to the approaches based on language constructs like the work on CSP
or the π-calculus, we choose here a very basic system model for our investigations,
namely Petri nets. The main reason for this choice is the detailed way in which a Petri
net represents a concurrent system, including the interaction between the components
it may consist of. In an interleaving based model of concurrency such as labelled tran-
sition systems modulo bisimulation semantics, a system representation as such cannot
be said to contain synchronous or asynchronous interaction; at best these are proper-
ties of composition operators, or communication primitives, defined in terms of such a
model. A Petri net on the other hand displays enough detail of a concurrent system to
make the presence of synchronous communication discernible. This makes it possible
to study synchronous and asynchronous interaction without digressing to the realm of
composition operators.

Also in Petri net theory, the topic which concerns us here has already been tackled.
It has been investigated in [9] and [18] whether and how a Petri net can be implemented
in a distributed way. We will comment on these and other related papers in the area of
Petri net theory in the conclusion.

In a Petri net, a transition interacts with its preplaces by consuming tokens. In Petri
net semantics, taking a token is usually considered as an instantaneous action, hence
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a synchronous interaction between a transition and its preplace. In particular when a
transition has several preplaces this becomes a crucial issue. In this paper we investigate
what happens if we consider a Petri net as a specification of a system that is to be
implemented in a distributed way. For this we introduce locations on which all elements
of a Petri net have to be placed upon. The basic assumption is that interaction between
remote components takes time. In our framework this means that the removal of a token
will be considered instantaneous only if the removing transition and the place where the
token is removed from are co-located. Our investigations are now twofold.

In Section 3 of this paper, we consider under which circumstances the synchronous
interaction between a transition and its preplace may be mimicked asynchronously, thus
allowing to put places and their posttransitions on different locations. Following [6], we
model the asynchronous interaction between transitions and their preplaces by inserting
silent (unobservable) transitions between them. We investigate the effect of this trans-
formation by comparing the behaviours of nets before and after insertion of the silent
transitions using a suitable equivalence notion. We believe that most of our results are
independent of the precise choice of this equivalence. However, as explained in Sec-
tion 5, it has to preserve causality, branching time and divergence to some small extent,
and needs to abstract from silent transitions. Therefore we choose one such equiva-
lence, based on its technical convenience in establishing our results. Our choice is step
readiness equivalence. It is a variant of the readiness equivalence of [14], obtained by
collecting the set of steps of multiple actions possible after a certain sequence of ac-
tions, instead of just the set of possible actions. We call a net asynchronous if, for a
suitable placement of its places and transitions, the above-mentioned transformation re-
placing synchronous by asynchronous interaction preserves step readiness equivalence.
Depending on the allowed placements, we obtain a hierarchy of classes of asynchronous
nets: fully asynchronous nets, symmetrically asynchronous nets and asymmetrically
asynchronous nets. We give semi-structural properties that characterise precisely when
a net falls into one of these classes. This puts the results from [6] in a uniform frame-
work and extends them by introducing a simpler notion of asymmetric asynchrony.

In Sections 4 and 5 we pursue an alternative approach. We assume that the syn-
chronisations specified in a Petri net are crucial system properties. Hence we enforce
co-locality between a transition and all its preplaces while at the same time assum-
ing that concurrent activity is not possible at a single location. We call nets fulfilling
these requirement distributed and investigate which behaviours can be implemented by
distributed nets. Again we compare the behaviours up to step readiness equivalence.
We call a net distributable iff its behaviour can be equivalently produced by a dis-
tributed net. We give a behavioural and a semi-structural characterisation of a class of
non-distributable nets, thereby exhibiting behaviours which cannot be implemented in
a distributed way at all. Finally, we give a lower bound of distributability by providing
a concrete distributed implementation for a wide range of nets.

2 Basic Notions

We consider here 1-safe net systems, i.e. places never carry more than one token, but a
transition can fire even if pre- and postset intersect.
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Definition 1. Let Act be a set of visible actions and τ �∈ Act be an invisible action.
A labelled net (over Act) is a tuple N = (S, T, F,M0, �) where

– S is a set (of places),
– T is a set (of transitions),
– F ⊆ S × T ∪ T × S (the flow relation),
– M0 ⊆ S (the initial marking) and
– � : T → Act

.
∪ {τ} (the labelling function).

Petri nets are depicted by drawing the places as circles, the transitions as boxes con-
taining the respective label, and the flow relation as arrows (arcs) between them. When
a Petri net represents a concurrent system, a global state of such a system is given as a
marking, a set of places, the initial state being M0. A marking is depicted by placing
a dot (token) in each of its places. The dynamic behaviour of the represented system is
defined by describing the possible moves between markings. A marking M may evolve
into a marking M ′ when a nonempty set of transitions G fires. In that case, for each
arc (s, t) ∈ F leading to a transition t in G, a token moves along that arc from s to t.
Naturally, this can happen only if all these tokens are available in M in the first place.
These tokens are consumed by the firing, but also new tokens are created, namely one
for every outgoing arc of a transition in G. These end up in the places at the end of
those arcs. A problem occurs when as a result of firing G multiple tokens end up in
the same place. In that case M ′ would not be a marking as defined above. In this paper
we restrict attention to nets in which this never happens. Such nets are called 1-safe.
Unfortunately, in order to formally define this class of nets, we first need to correctly
define the firing rule without assuming 1-safety. Below we do this by forbidding the
firing of sets of transitions when this might put multiple tokens in the same place.

Definition 2. Let N = (S, T, F,M0, �) be a labelled net. Let M1,M2 ⊆ S.
We denote the preset and postset of a net element x ∈ S ∪ T by •x := {y | (y, x) ∈

F} and x• := {y | (x, y) ∈ F} respectively. These functions are extended to sets in
the usual manner, i.e. •X := {y | y ∈ •x, x ∈X}.

A nonempty set of transitions G ⊆ T,G �= ∅, is called a step from M1 to M2,
notation M1 [G〉N M2, iff

– all transitions contained in G are enabled, that is

∀t ∈ G. •t ⊆ M1 ∧ (M1 \ •t) ∩ t• = ∅ ,

– all transitions of G are independent, that is not conflicting:

∀t, u ∈ G, t �= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

– in M2 all tokens have been removed from the preplaces of G and new tokens have
been inserted at the postplaces of G:

M2 = (M1 \ •G) ∪G• .

To simplify statements about possible behaviours of nets, we use some abbreviations.
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Definition 3. Let N = (S, T, F,M0, �) be a labelled net.
We extend the labelling function � to (multi)sets elementwise.

−→N ⊆ P(S)× INAct ×P(S) is given by M1
A−→N M2 ⇔ ∃G ⊆ T. M1 [G〉N M2 ∧

A = �(G)
τ−→N ⊆ P(S)×P(S) is defined by M1

τ−→N M2 ⇔ ∃t∈T. �(t)=τ∧M1 [{t}〉N M2

=⇒N ⊆ P(S) × Act∗ × P(S) is defined by M1
a1a2···an======⇒NM2 ⇔

M1
τ−→
∗
N

{a1}−→N
τ−→
∗
N

{a2}−→N
τ−→
∗
N · · · τ−→

∗
N

{an}−→N
τ−→
∗
N M2

where
τ−→
∗
N denotes the reflexive and transitive closure of

τ−→N .

We write M1
A−→N for ∃M2. M1

A−→N M2, M1 �
A−→N for �M2. M1

A−→N M2 and
similar for the other two relations. Likewise M1[G〉N abbreviates ∃M2. M1[G〉NM2.
A marking M1 is said to be reachable iff there is a σ ∈ Act∗ such that M0

σ=⇒N M1.
The set of all reachable markings is denoted by [M0〉N .

We omit the subscript N if clear from context.
As said before, here we only want to consider 1-safe nets. Formally, we restrict

ourselves to contact-free nets, where in every reachable marking M1 ∈ [M0〉 for all
t ∈ T with •t ⊆ M1

(M1 \ •t) ∩ t• = ∅ .

For such nets, in Definition 2 we can just as well consider a transition t to be enabled
in M iff •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.

In this paper we furthermore restrict attention to nets for which •t �= ∅, and •t and t•

are finite for all t∈T . We also require the initial markingM0 to be finite. A consequence
of these restrictions is that all reachable markings are finite, and it can never happen
that infinitely many independent transitions are enabled. Henceforth, with net we mean
a labelled net obeying the above restrictions.

In our nets transitions are labelled with actions drawn from a set Act
.
∪ {τ}. This

makes it possible to see these nets as models of reactive systems, that interact with their
environment. A transition t can be thought of as the occurrence of the action �(t). If
�(t) ∈ Act, this occurrence can be observed and influenced by the environment, but if
�(t) = τ , t is an internal or silent transition whose occurrence cannot be observed or
influenced by the environment. Two transitions whose occurrences cannot be distin-
guished by the environment are equipped with the same label. In particular, given that
the environment cannot observe the occurrence of internal transitions at all, all of them
have the same label, namely τ .

We use the term plain nets for nets where � is injective and no transition has the
label τ , i.e. essentially unlabelled nets. Similarly, we speak of plain τ -nets to describe
nets where �(t) = �(u) �= τ ⇒ t = u, i.e. nets where every observable action is
produced by a unique transition. In this paper we focus on plain nets, and give semi-
structural characterisations of classes of plain nets only. However, in defining whether
a net belongs to one of those classes, we study its implementations, which typically are
plain τ -nets. When proving our impossibility result (Theorem 3 in Section 5) we even
allow arbitrary nets as implementations.

We use the following variation of readiness semantics [14] to compare the behaviour
of nets.
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Definition 4. Let N = (S, T, F,M0, �) be a net, σ ∈ Act∗ and X ⊆ INAct.
<σ,X> is a step ready pair of N iff

∃M. M0
σ=⇒ M ∧M �

τ−→ ∧X = {A ∈ INAct | M A−→}.

We write R(N) for the set of all step ready pairs of N .
Two nets N and N ′ are step readiness equivalent, N ≈R N ′, iff R(N) = R(N ′).

The elements of a set X as above are multisets of actions, but as in all such multisets
that will be mentioned in this paper the multiplicity of each action occurrence is at
most 1, we use set notation to denote them.

3 Asynchronous Petri Net Classes

In Petri nets, an inherent concept of simultaneity is built in, since when a transition has
more than one preplace, it can be crucial that tokens are removed instantaneously. When
using a Petri net to model a system which is intended to be implemented in a distributed
way, this built-in concept of synchronous interaction may be problematic.

In this paper, a given net is regarded as a specification of how a system should behave,
and this specification involves complete synchronisation of the firing of a transition
and the removal of all tokens from its preplaces. In this section, we propose various
definitions of an asynchronous implementation of a net N , in which such synchronous
interaction is wholly or partially ruled out and replaced by asynchronous interaction.
The question to be clarified is whether such an asynchronous implementation faithfully
mimics the dynamic behaviour of N . If this is the case, we call the net N asynchronous
with respect to the chosen interaction pattern.

The above programme, and thus the resulting concept of asynchrony, is parametrised
by the answers to three questions:

1. Which synchronous interactions do we want to rule out exactly?
2. How do we replace synchronous by asynchronous interaction?
3. When does one net faithfully mimic the dynamic behaviour of another?

To answer the first question we associate a location to each place and each transition
in a net. A transition may take a token instantaneously from a preplace (when firing)
iff this preplace is co-located with the transition; if the preplace resides on a different
location than the transition, we have to assume the collection of the token takes time,
and thus the place looses its token before the transition fires.

We model the association of locations to the places and transitions in a net N =
(S, T, F,M0, �) as a function D : S ∪ T → Loc, with Loc a set of possible locations.
We refer to such a function as a distribution of N . Since the identity of the locations is
irrelevant for our purposes, we can just as well abstract from Loc and represent D by
the equivalence relation ≡D on S ∪ T given by x ≡D y iff D(x) = D(y).

In this paper we do not deal with nets that have a distribution built in. We characterise
the interaction patterns we are interested in by imposing particular restrictions on the
allowed distributions. The implementor of a net can choose any distribution that satisfies
the chosen requirements, and we call a net asynchronous for a certain interaction pattern
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if it has a correct asynchronous implementation based on any distribution satisfying the
respective requirements.

The fully asynchronous interaction pattern is obtained by requiring that all places
and all transitions reside on different locations. This makes it necessary to implement
the removal of every token in a time-consuming way. However, this leads to a rather
small class of asynchronous nets, that falls short for many applications. We therefore
propose two ways to loosen this requirement, thereby building a hierarchy of classes
of asynchronous nets. Both require that all places reside on different locations, but a
transition may be co-located with one of its preplaces. The symmetrically asynchronous
interaction pattern allows this only for transitions with a single preplace, whereas in
the asymmetrically asynchronous interaction pattern any transition may be co-located
with one of its preplaces. Since two preplaces can never be co-located, this breaks the
symmetry between the preplaces of a transition; an implementor of a net has to choose at
most one preplace for every transition, and co-locate the transition with it. The removal
of tokens from all other preplaces needs to be implemented in a time-consuming way.
Note that all three interaction patterns break the synchronisation of the token removal
between the various preplaces.

Definition 5. Let D be a distribution on a net N = (S, T, F,M0, �), and let ≡D be the
induced equivalence relation on S ∪ T . We say that D is

– fully distributed, D ∈ QFD, when x ≡D y for x, y ∈ S ∪ T only if x = y,
– symmetrically distributed, D ∈ QSD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if •t = {p} and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u,

– asymmetrically distributed, D ∈ QAD, when

p ≡D q for p, q ∈ S only if p = q,
t ≡D p for t ∈ T, p ∈ S only if p ∈ •t and
t ≡D u for t, u ∈ T only if t = u or ∃p ∈ S. t ≡D p ≡D u.

The second question raised above was: How do we replace synchronous by asyn-
chronous interaction? In this section we assume that if an arc goes from a place s to
a transition t at a different location, a token takes time to move from s to t. Formally,
we describe this by inserting silent (unobservable) transitions between transitions and
their remote preplaces. This leads to the following notion of an asynchronous imple-
mentation of a net with respect to a chosen distribution.

Definition 6. Let N = (S, T, F,M0, �) be a net, and let ≡D be an equivalence rela-
tion on S ∪ T . The D-based asynchronous implementation of N is defined as the net
ID(N) := (S ∪ Sτ , T ∪ T τ , F ′,M0, �

′) with

Sτ := {st | t ∈ T, s ∈ •t, s �≡D t} ,

T τ := {ts | t ∈ T, s ∈ •t, s �≡D t} ,

F ′ := {(t, s) | t ∈ T, s ∈ t•} ∪ {(s, t) | t ∈ T, s ∈ •t, s ≡D t}
∪ {(s, ts), (ts, st), (st, t) | t ∈ T, s ∈ •t, s �≡D t} ,

�′ � T = � and �′(ts) = τ for ts ∈ T τ .
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Proposition 1. For any (contact-free) net N , and any choice of ≡D, the net ID(N) is
contact-free, and satisfies the other requirements imposed on nets, listed in Section 2.

Proof. For D ∈ QFD and D ∈ QSD, this is established in [6]. The proof of the general
case goes likewise. �
The above protocol for replacing synchronous by asynchronous interaction appears to
be one of the simplest ones imaginable. More intricate protocols, involving many asyn-
chronous messages between a transition and its preplaces, could be contemplated, but
we will not study them here. Our protocol involves just one such message, namely from
the preplace to its posttransition. It is illustrated in Fig. 1.

N

p q

a t b u

QFD

p

τ

q

ττ

a t b u

QSD

p q

ττ

a t b u

QAD

p q

τ

a t b u

Fig. 1. Possible results for ID(N) given different requirements

The last question above was: When does one net faithfully mimic the dynamic be-
haviour of another? This asks for a semantic equivalence on Petri nets, telling when
two nets display the same behaviour. Many such equivalences have been studied in the
literature. We believe that most of our results are independent of the precise choice of a
semantic equivalence, as long as it preserves causality and branching time to some de-
gree, and abstracts from silent transitions. Therefore we choose one such equivalence,
based on its technical convenience in establishing our results, and postpone questions
on the effect of varying this equivalence for further research. Our choice is step readi-
ness equivalence, as defined in Section 2. Using this equivalence, we define a notion of
behavioural asynchrony by asking whether the asynchronous implementation of a net
preserves its behaviour. This notion is parametrised by the chosen interaction pattern,
characterised as a requirement on the allowed distributions.

Definition 7. Let Q be a requirement on distributions of nets.
A plain net N is behaviourally Q-asynchronous iff there exists a distribution D of N
meeting the requirement Q such that ID(N) ≈R N .

Intuitively, the only behavioural difference between a net N and its asynchronous im-
plementation ID(N) can occur when in N a place s ∈ •u is marked, whereas in ID(N)
this token is already on its way from s to its posttransition u. In that case, it may occur
that a transition t �= u with s ∈ •t is enabled in N , whereas t is not enabled in the
described state of ID(N). We call the situation in N leading to this state of ID(N) a
distributed conflict; it is in fact the only circumstance in which ID(N) fails to faithfully
mimic the dynamic behaviour of N .
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Definition 8. Let N = (S, T, F,M0, �) be a net and D a distribution of N .
N has a distributed conflict with respect to D iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ p �≡D u ∧ ∃M ∈ [M0〉N . •t ⊆ M .

We wish to call a net N (semi)structurally asynchronous iff the situation outlined above
never occurs, so that the asynchronous implementation does not change the behaviour
of the net. As for behavioural asynchrony, this notion of asynchrony is parametrised by
the set of allowed distributions.

Definition 9. Let Q be a requirement on distributions of nets.
A net N is (semi)structurally Q-asynchronous iff there exists a distribution D of N
meeting the requirement Q such that N has no distributed conflicts with respect to D.

The following theorem shows that distributed conflicts describe exactly the critical situ-
ations: For all plain nets the notions of structural and behavioural asynchrony coincide,
regardless of the choice if Q.

Theorem 1. Let N be a plain net, and Q a requirement on distributions of nets. Then
N is behaviourally Q-asynchronous iff it is structurally Q-asynchronous.

Proof. In the full version of this paper [7]. �

Because of this theorem, we call a plain net Q-asynchronous if it is behaviourally and/or
structurally Q-asynchronous. In this paper we study this concept for plain nets only.
When taking Q = QFD we speak of fully asynchronous nets, when taking Q = QSD

of symmetrically asynchronous nets, and when taking Q = QAD of asymmetrically
asynchronous nets.

Example 1. The net N of Fig. 1 is not fully asynchronous, for its uniqueD-based asyn-
chronous implementation ID(N) with D ∈ QFD (also displayed in Fig. 1) is not step
readiness equivalent to N . In fact 〈ε, ∅〉 ∈ R(ID(N)) \ R(N). This inequivalence
arises because in ID(N) the option to do an a-action can be disabled already before
any visible action takes place; this is not possible in N .

The only way to avoid a distributed conflict in this net is by taking t ≡D p ≡D u.
This is not allowed for any D ∈ QFD or D ∈ QSD, but it is allowed for D ∈ QAD (cf.
the last net in Fig. 1). Hence N is asymmetrically asynchronous, but not symmetrically
asynchronous.

Since QFD ⊆ QSD ⊆ QAD, any fully asynchronous net is symmetrically asynchronous,
and any symmetrically asynchronous net is also asymmetrically asynchronous. Below
we give semi-structural characterisations of these three classes of nets. The first two
stem from [6], where the class of fully asynchronous nets is called FA(B) and the class
of symmetrically asynchronous nets is called SA(B). The class AA(B) in [6] is some-
what larger than our class of asymmetrically asynchronous nets, for it is based on a
slightly more involved protocol for replacing synchronous by asynchronous interaction.
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Definition 10. A plain net N = (S, T, F,M0, �) has a

– partially reachable conflict iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

– partially reachable N iff

∃t, u ∈ T ∃p ∈ •t ∩ •u. t �= u ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ,

– left and right border reachable M iff

∃t, u, v∈T ∃p∈ •t∩ •u ∃q∈ •u∩ •v. t �= u ∧ u �= v ∧ p �= q ∧
∃M1,M2 ∈ [M0〉N . •t ⊆ M1 ∧ •v ⊆ M2 .

Theorem 2. Let N be a plain net.
– N is fully asynchronous iff it has no partially reachable conflict.
– N is symmetrically asynchronous iff it has no partially reachable N.
– N is asymmetrically asynchronous iff it has no left and right border reachable M.

Proof. Straightforward with Theorem 1. �

In the theory of Petri nets, there have been extensive studies on classes of nets with
certain structural properties like free choice nets [3,2] and simple nets [3], as well as
extensions of theses classes. They are closely related to the net classes defined here, but
they are defined without taking reachability into account. For a comprehensive overview
and discussion of the relations between those purely structurally defined net classes and
our net classes see [6]. Restricted to plain nets without dead transitions (meaning that
every transition t satisfies the requirement ∃M ∈ [M0〉. •t ⊆ M ), Theorem 2 says
that a net is fully synchronous iff it is conflict-free in the structural sense (no shared
preplaces), symmetrically asynchronous iff it is a free choice net and asymmetrically
asynchronous iff it is simple.

Our asynchronous net classes are defined for plain nets only. There are two ap-
proaches to lifting them to labelled nets. One is to postulate that whether a net is asyn-
chronous or not has nothing to do with its labelling function, so that after replacing
this labelling by the identity function one can apply the insights above. This way our
structural characterisations (Theorems 1 and 2) apply to labelled nets as well. Another
approach would be to apply the notion of behavioural asynchrony of Definition 7 di-
rectly to labelled nets. This way more nets will be asynchronous, because in some cases
a net happens to be equivalent to its asynchronous implementation in spite of a failure of
structural asynchrony. This happens for instance if all transitions in the original net are
labelled τ . Unlike the situation for plain nets, the resulting notion of behavioural asyn-
chrony will most likely be strongly dependent on the choice of the semantic equivalence
relation between nets.

4 Distributed Systems

The approach of Section 3 makes a difference between a net regarded as a specification,
and an asynchronous implementation of the same net. The latter could be thought of
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as a way to execute the net when a given distribution makes the synchronisations that
are inherent in the specification impossible. In this and the following section, on the
other hand, we drop the difference between a net and its asynchronous implementation.
Instead of adapting our intuition about the firing rule when implementing a net in a
distributed way, we insist that all synchronisations specified in the original net remain
present as synchronisations in a distributed implementation. Yet, at the same time we
stick to the point of view that it is simply not possible for a transition to synchronise
its firing with the removal of tokens from preplaces at remote locations. Thus we only
allow distributions in which each transition is co-located with all of its preplaces. We
call such distributions effectual. For effectual distributionsD, the implementation trans-
formation ID is the identity. As a consequence, if effectuality is part of a requirement
Q imposed on distributions, the question whether a net is Q-asynchronous is no longer
dependent on whether an asynchronous implementation mimics the behaviour of the
given net, but rather on whether the net allows a distribution satisfying Q at all.

The requirement of effectuality does not combine well will the requirements on dis-
tributions proposed in Definition 5. For if Q is the class of distributions that are ef-
fectual and asymmetrically distributed, then only nets without transitions with multiple
preplaces would be Q-asynchronous. This rules out most useful applications of Petri
nets. The requirement of effectuality by itself, on the other hand, would make every net
asynchronous, because we could assign the same location to all places and transitions.

We impose one more fundamental restriction on distributions, namely that when two
visible transitions can occur in one step, they cannot be co-located. This is based on the
assumption that at a given location visible actions can only occur sequentially, whereas
we want to preserve as much concurrency as possible (in order not to loose perfor-
mance). Recall that in Petri nets simultaneity of transitions cannot be enforced: if two
transitions can fire in one step, they can also fire in any order. The standard interpre-
tation of nets postulates that in such a case those transitions are causally independent,
and this idea fits well with the idea that they reside at different locations.

Definition 11. Let N = (S, T, F,M0, �) be a net.
The concurrency relation� ⊆ T 2 is given by t � u ⇔ t �= u∧∃M∈[M0〉. M [{t, u}〉.
N is distributed iff it has a distribution D such that

– ∀s ∈ S, t ∈ T. s ∈ •t ⇒ t ≡D s,
– t � u ∧ l(t), l(u) �= τ ⇒ t �≡D u.

It is straightforward to give a semi-structural characterisation of this class of nets:

Observation 1. A net is distributed iff there is no sequence t0, . . . , tn of transitions
with t0 � tn and •ti−1 ∩ •ti �= ∅ for i = 1, . . . , n.

A structure as in the above characterisation of distributed nets can be considered as a
prolonged M containing two independent transitions that can be simultaneously enabled.

It is not hard to find a plain net that is fully asynchronous, yet not distributed. How-
ever, restricted to plain nets without dead transitions, the class of asymmetrically asyn-
chronous nets is a strict subclass of the class of distributed nets. Namely, if a net is
M-free (where an M is as in Definition 10, but without the reachability condition on the
bottom line), then it surely has no sequence as described above.
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Fig. 2. A fully marked M

5 Distributable Systems

In this section, we will investigate the borderline for distributability of systems. It is a
well known fact that sometimes a global protocol is necessary when concurrent activi-
ties in a system interfere. In particular, this may be necessary for deciding choices in a
coherent way. Consider for example the simple net in Fig. 2. It contains an M-structure,
which was already exhibited as a problematic one in Section 3. Transitions t and v are
supposed to be concurrently executable (if we do not want to restrict performance of
the system), and hence reside on different locations. Thus at least one of them, say t,
cannot be co-located with transition u. However, both transitions are in conflict with u.

As we use nets as models of reactive systems, we allow the environment of a net to
influence decisions at runtime by blocking one of the possibilities. Equivalently we can
say it is the environment that fires transitions, and this can only happen for transitions
that are currently enabled in the net. If the net decides between t and u before the actual
execution of the chosen transition, the environment might change its mind in between,
leading to a state of deadlock. Therefore we work in a branching time semantics, in which
the option to perform t stays open until either t or u occurs. Hence the decision to fire u
can only be taken at the location of u, namely by firing u, and similarly for t. Assuming
that it takes time to propagate any message from one location to another, in no distributed
implementation of this net can t and u be simultaneously enabled, because in that case
we cannot exclude that both of them happen. Thus, the only possible implementation of
the choice between t and u is to alternate the right to fire between t and u, by sending
messages between them (cf. Fig. 3). But if the environment only sporadically tries to
fire t or u it may repeatedly miss the opportunity to do so, leading to an infinite loop of
control messages sent back and forth, without either transition ever firing.

In this section we will formalise this reasoning, and show that under a few mild as-
sumptions this type of structures cannot be implemented in a distributed manner at all,
i.e. even when we allow the implementation to be completely unrelated to the specifica-
tion, except for its behaviour. For this, we apply the notion of a distributed net, as intro-
duced in the previous section. Furthermore, we need an equivalence notion in order to
specify in which way an implementation as a distributed net is required to preserve the
behaviour of the original net. As in Section 3, we choose step readiness equivalence.
We call a plain net distributable if it is step readiness equivalent to a distributed net.
We speak of a truly synchronous net if it is not distributable, thus if it may not be trans-
formed into any distributed net with the same behaviour up to step readiness equiva-
lence, that is if no such net exists. We study the concept “distributable” for plain nets
only, but in order to get the largest class possible we allow non-plain implementations,
where a given transition may be split into multiple transitions carrying the same label.
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Fig. 3. A busy-wait implementation of the net in Fig. 2

Definition 12. A plain net N is truly synchronous iff there exists no distributed net N ′

which is step readiness equivalent to N .

We will show that nets like the one of Fig. 2 are truly synchronous.
Step readiness equivalence is one of the simplest and least discriminating equiv-

alences imaginable that preserves branching time, causality and divergence to some
small extend. Our impossibility result, formalised below as Theorem 3, depends cru-
cially on all three properties, and thus needs to be reconsidered when giving up on any
of them.When working in linear time semantics, every net is equivalent to an infinite net
that starts with a choice between several τ -transitions, each followed by a conflict-free
net modelling a single run. This net is N-free, and hence distributed. It can be argued
that infinite implementations are not acceptable, but when searching for the theoreti-
cal limits to distributed implementability we don’t want to rule them out dogmatically.
When working in interleaving semantics, any net can be converted into an equivalent
distributed net by removing all concurrency between transitions. This can be accom-
plished by adding a new, initially marked place, with an arc to and from every transition
in the net. When fully abstracting from divergence, even when respecting causality and
branching time, the net of Fig. 2 is equivalent to the distributed net of Fig. 3, and in
fact it is not hard to see that this type of implementation is possibly for any given net.
Yet, the implementation is suspect, as the implemented decision of a choice may fail to
terminate. The clause M �

τ−→ in Definition 4 is strong enough to rule out this type of
implementation, even though our step readiness semantics abstracts from other forms
of divergence.

We now characterise the class of nets which we will prove to be truly synchronous.

Definition 13. Let N = (S, T, F,M0, �) be a net. N has a fully reachable visible pure
M iff ∃t, u, v ∈ T. •t ∩ •u �= ∅ ∧ •u ∩ •v �= ∅ ∧ •t ∩ •v = ∅ ∧ �(t), �(u), �(v) �= τ ∧
∃M ∈ [M0〉. •t ∪ •u ∪ •v ⊆ M .

Here a pure M is an M as in Definition 10 that moreover satisfies •t∩•v = ∅, and hence
p �∈ •v, q �∈ •t and t �= v. These requirements follow from the conditions above.

Proposition 2. A net with a fully reachable visible pure M is not distributed.

Proof. Let N = (S, T, F,M0, �) be a net that has a fully reachable visible pure M, so
there exist t, u, v ∈ T and p, q ∈ S such that p ∈ •t ∩ •u ∧ q ∈ •u ∩ •v ∧ •t ∩ •v = ∅
and ∃M ∈ [M0〉. •t ∪ •u ∪ •v ⊆ M . Then t � v. Suppose N is distributed by the
distribution D. Then t ≡D p ≡D u ≡D q ≡D v but t � v implies t �≡D v.� �
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Now we show that fully reachable visible pure M’s that are present in a plain net are
preserved under step readiness equivalence.

Lemma 1. Let N = (S, T, F,M0, �) be a plain net. If N has a fully reachable visible
pure M, there exists <σ,X> ∈ R(N) such that ∃a, b, c ∈ Act. a �= c ∧ {b} ∈ X ∧
{a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X . (It is implied that a �= b �= c.)

Proof. N has a fully reachable visible pure M, so there exist t, u, v ∈ T and M ∈ [M0〉
such that •t∩•u �= ∅∧•u∩•v �= ∅∧•t∩•v = ∅∧�(t), �(u), �(v) �= τ∧•t∪•u∪•v ⊆ M .
Let σ ∈ Act∗ such that M0

σ=⇒ M . Since N is a plain net, M �
τ−→ and �(t) �= �(u) �=

�(v) �= �(t). Hence there exists an X⊆ INAct such that <σ,X>∈R(N)∧{�(u)}∈X∧
{�(t), �(v)} ∈ X ∧ {�(t), �(u)} /∈ X ∧ {�(u), �(v)} /∈ X . �

Lemma 2. Let N = (S, T, F,M0, �) be a net. If there exists <σ,X> ∈ R(N) such
that ∃a, b, c ∈ Act. a �= c∧ {b} ∈ X ∧ {a, c} ∈ X ∧ {a, b} /∈ X ∧ {b, c} /∈ X , then N
has a fully reachable visible pure M.

Proof. Let M ⊆ S be the marking which gave rise to the step ready pair <σ,X>, i.e.

M0
σ=⇒ M and M

{b}−→ ∧M
{a,c}−→ ∧M �

{a,b}−→ ∧M �
{b,c}−→ .

As a �= b �= c �= a there must exist three transitions t, u, v ∈ T with �(t) = a
∧ �(u) = b∧ �(v) = c and M [{u}〉∧M [{t, v}〉∧¬(M [{t, u}〉)∧¬(M [{u, v}〉). From
M [{u}〉 ∧M [{t, v}〉 follows •t ∪ •u ∪ •v ⊆ M . From M [{t, v}〉 follows •t ∩ •v = ∅.
From ¬(M [{t, u}〉) then follows •t ∩ •u �= ∅ and analogously for u and v. Hence N
has a fully reachable visible pure M. �

Note that the lemmas above give a behavioural property that for plain nets is equivalent
to having a fully reachable visible pure M.

Theorem 3. A plain net with a fully reachable visible pure M is truly synchronous.

Proof. Let N be a plain net which has a fully reachable visible pure M. Let N ′ be a
net which is step readiness equivalent to N . By Lemma 1 and Lemma 2, also N ′ has a
fully reachable visible pure M. By Proposition 2, N ′ is not distributed. Thus N is truly
synchronous. �

Theorem 3 gives an upper bound of the class of distributable nets. We conjecture that
this upper bound is tight, and a plain net is distributable iff it has no fully reachable
visible pure M.

Conjecture 1. A plain net is truly synchronous iff it has a fully reachable visible pure M.

In the following, we give a lower bound of distributability by providing a protocol to
implement certain kinds of plain nets distributedly. These implementations do not add
additional labelled transitions, but only provide the existing ones with a communication
protocol in the form of τ -transitions. Hence these implementations pertain to a notion
of distributability in which we restrict implementations to be plain τ -nets. Note that this
does not apply to the impossibility result above.

Definition 14. A plain net N is plain-distributable iff there exists a distributed plain
τ -net N which is step readiness equivalent to N .
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Fig. 4. An example net

Definition 15. Let N = (S, T, F,M0, �) be a net. We define the enabled conflict rela-
tion # ⊆ T 2 as t # u ⇔ ∃M ∈ [M0〉. M [{t}〉 ∧M [{u}〉 ∧ ¬(M [{t, u}〉).

We now propose the following protocol for implementing nets. An example depicting
it can be found in Fig. 5. As locations we take the places in a given net, and the equiva-
lence classes of transitions that are related by the reflexive and transitive closure of the
enabled conflict relation. We locate every transition t in its equivalence class, whereas
every place gets a private location. Every place s will have an embassy s[t] in every lo-
cation [t] where one of its posttransitions t ∈ s• resides. As soon as s receives a token, it
will distribute this information to its posttransitions by placing a token in each of these
embassies. The arc from s to t is now replaced by an arc from s[t] to t, so if t could fire
in the original net it can also fire in the implementation. So far the construction allows
two transitions in different locations that shared the precondition s to fire concurrently,
although they were in conflict in the original net. However, if this situation actually oc-
curs, these transitions would have been in an enabled conflict, and thus assigned to the
same location. The rest of the construction is a matter of garbage collection. If a tran-
sition t fires, for each of its preplaces s, all tokens that are still present in the various
embassies of s in locations [u] need to be removed from there. This is done by a special
internal transition t

[u]
s . Once all these transitions (for the various choices of s and [u])

have fired, an internal transition t′ occurs, which puts tokens in all the postplaces of t.

Definition 16. Let N = (S, T, F,M0, �) be a plain net. Let [t] := {u ∈ T | t #∗ u}.
The transition-controlled-choice implementation of N is defined to be the plain τ -net
N ′ := (S ∪ Sτ , T ∪ T τ , F ′,M0, �

′) with

Sτ := {s[t] | s ∈ S, t ∈ s•} ∪ { t | t ∈ T } ∪

{s[u]
t , s

[u]
t | s ∈ S, t, u ∈ s•, [u] �= [t]}

T τ := { s | s ∈ S} ∪ {t′ | t ∈ T } ∪
{t[u]

s | s ∈ S, t, u ∈ s•, [u] �= [t]}
F ′ := {(s, s ) | s ∈ S} ∪

{( s , s[t]), (s[t], t) | s ∈ S, t ∈ s•} ∪
{(t, t ), ( t , t′) | t ∈ T } ∪
{(t′, s) | t ∈ T, s ∈ t•} ∪

{(t, s[u]
t ), (s[u]

t , t[u]
s ), (t[u]

s , s
[u]
t ), (s[u]

t , t′), (s[u], t[u]
s ) | s ∈ S, t, u ∈ s•, [u] �= [t]}

�′ � T = � and �′(T τ ) = {τ}.
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Fig. 5. A distributed implementation for the net in Fig. 4, partitioning into localities shown by
dashed lines

Theorem 4. A plain net N is plain distributable iff #∗ ∩� = ∅.

Proof (sketch). “⇒”: When implementing a plain net N = (S, T, F,M0, �) by a plain
τ -net N ′ = (S′, T ′, F ′,M ′

0, �
′) that is step readiness equivalent to N , the # and �

relations between the transitions of N also exists between the corresponding visible
transitions ofN ′. This is easiest to see when writing aN , resp. aN ′ , to denote a transition
in N , resp. N ′, with label a, which must be unique since N is a plain net, resp. N ′ a
plain τ -net. Namely if aN # bN , thenN has a step ready pair<σ,X> with {a},{b}∈X
but {a, b} �∈ X . This must also be a step ready pair of N ′, and hence aN ′ # bN ′ .
Likewise, aN � bN implies aN ′ � bN ′ .

Thus if #∗ ∩� �= ∅ holds in N , then the same is the case for N ′, and hence N ′ is
not distributed by Observation 1.

“⇐”: If #∗ ∩� = ∅, N can be implemented as specified in Definition 16. In fact,
the transition-controlled-choice implementation of any net N yields a net that is step
readiness equivalent to N . See the full version of this paper [7] for a formal proof of
this claim. Moreover, if #∗∩� = ∅ it never happens that concurrent visible transitions
are co-located, and hence the implementation will be plain-distributed. �

Our definition of distributed nets only enforces concurrent actions to be on different
locations if they are visible, and our implementation in Definition 16 produces nets
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which actually contain concurrent unobservable activity at the same location. If this is
undesired it can easily be amended by adding a single marked place to every location
and connecting that place to every transition on that location by a self-loop. While this
approach will introduce new causality relations, step readiness equivalence will not
detect this.

6 Conclusion

In this paper, we have characterised different grades of asynchrony in Petri nets in terms
of structural and behavioural properties of nets. Moreover, we have given both an upper
and a lower bound of distributability of behaviours. In particular we have shown that
some branching-time behaviours cannot be exhibited by a distributed system.

We did not consider connections from transitions to their postplaces as relevant to de-
termine asynchrony and distributability. This is because we only discussed contact-free
nets where no synchronisation by postplaces is necessary. In the spirit of Definition 6
we could insert τ -transitions on any or all arcs from transitions to their postplaces, and
the resulting net would always be equivalent to the original.

We have already given a short overview on related work in the introduction of this
paper. Most closely related to our approach are several lines of work using Petri nets as
a model of reactive systems.

As mentioned in Section 3, classes of nets with certain structural properties like
free choice nets [3,2] and simple nets [3], as well as extensions of theses classes, have
been extensively studied in Petri net theory, and are closely related to the classes of
nets defined here. In [3], Eike Best and Mike Shields introduce various transforma-
tions between free choice nets, simple nets and extended variants thereof. They use
“essential equivalence” to compare the behaviour of different nets, which they only
give informally. This equivalence is insensitive to divergence, which is relied upon in
their transformations. It also does not preserve concurrency, which makes it possible
to implement behavioural free choice nets, that may feature a fully reachable visible
M, as free choice nets. They continue to show conditions under which liveness can be
guaranteed for many of these classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jörg Desel introduce two extensions
to extended simple nets, by excluding self-loops from the requirements imposed on ex-
tended simple nets. This however assumes a kind of “atomicity” of self-loops, which we
did not allow in this paper. In particular we do not implicitly assume that a transition will
not change the state of a place it is connected to by a self-loop, since in case of deadlock,
the temporary removal of a token from such a place might not be temporary indeed.

In [16], Wolfgang Reisig introduces a class of systems which communicate using
buffers and where the relative speeds of different components are guaranteed to be ir-
relevant. The resulting nets are simple nets. He then proceeds introducing a decision pro-
cedure for the problem whether a marking exists which makes the complete system live.

Dirk Taubner has in [18] given various protocols by which to implement arbitrary
Petri nets in the OCCAM programming language. Although this programming language
offers synchronous communication he makes no substantial use of that feature in the
protocols, thereby effectively providing an asynchronous implementation of Petri nets.
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a b c

⇒

a b c

Fig. 6. A specification and its Hopkins-implementation which added concurrency

He does not indicate a specific equivalence relation, but is effectively using linear-time
equivalences to compare implementations to the specification.

The work most similar to our approach we have found is the one by Hopkins, [9].
There he already classified nets by whether they are implementable by a net distributed
among different locations. He uses an interleaving equivalence to compare an imple-
mentation to the original net, and while allowing a range of implementations, he does
require them to inherit some of the structure of the original net. The net classes he de-
scribes in his paper are larger than those of Section 3 because he allows more general
interaction patterns, but they are incomparable with those of Section 5. One direction
of this inequality depends on his choice of interleaving semantics, which allows the
implementation in Fig. 6. The step readiness equivalence we use does not tolerate the
added concurrency and the depicted net is not distributable in our sense. The other di-
rection of the inequality stems from the fact that we allow implementations which do
not share structure with the specification but only emulate its behaviour. That way, the
net in Fig. 7 can be implemented in our approach as depicted.

a b c

⇒

a b c

Fig. 7. A distributable net which is not considered distributable in [9], and its implementation

Still many open questions remain. While our impossibility result holds even when
allowing labelled nets as implementations, our characterisation in Theorem 4 only con-
siders unlabelled ones. This begs the question which class of nets can be implemented
using labelled nets. We conjecture that a distributed implementation exists for every net
which has no fully reachable visible pure M. We also conjecture that if we allow linear
time correct implementations, all nets become distributable, even when only allowing
finite implementations of finite nets. We are currently working on both problems.

Just as a distributable net is defined as a net that is behaviourally equivalent to,
or implementable by, a distributed net, one could define an asynchronously imple-
mentable net as one that is implementable by an asynchronous net. This concept is
again parametrised by the choice of an interaction pattern. It would be an interesting
quest to characterise the various classes of asynchronously implementable plain nets.
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Also, extending our work to nets that are not required to be 1-safe will probably
generate interesting results, as conflict resolution protocols must keep track of which
token they are currently resolving the conflict of.

In regard to practical applicability of our results, it would be very interesting to relate
our Petri net based terminology to hardware descriptions in chip design. Especially in
modern multi-core architectures performance reasons often prohibit using global clocks
while a façade of synchrony must still be upheld in the abstract view of the system.

On a higher level of applications, we expect our results to be useful for language
design. To start off, we would like to make a thorough comparison of our results to
those on communication patterns in process algebras, versions of the π-calculus and
I/O-automata [12]. Using a Petri net semantics of a suitable system description lan-
guage, we could compare our net classes to the class of nets expressible in the lan-
guage, especially when restricting the allowed communication patterns in the various
ways considered in [4] or in [12]. Furthermore, we are interested in applying our results
to graphical formalisms for system design like UML sequence diagrams or activity di-
agrams, also by applying their Petri net semantics. Our results become relevant when
such formalisms are used for the design of distributed systems. Certain choice con-
structs become problematic then, as they rely on a global mechanism for consistent
choice resolution; this could be made explicit in our framework.
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Abstract. In this survey paper, we present known results and open
questions on a proper subclass of the class of regular languages. This
class, denoted by W, is especially robust: it is closed under union, inter-
section, product, shuffle, left and right quotients, inverse of morphisms,
length preserving morphisms and commutative closure. It can be defined
as the largest positive variety of languages not containing the language
(ab)∗. It admits a nontrivial algebraic characterization in terms of finite
ordered monoids, which implies that W is decidable: given a regular lan-
guage, one can effectively decide whether or not it belongs to W. We
propose as a challenge to find a constructive description and a logical
characterization of W.

Warning. In this paper, square brackets are used as a substitute to “respec-
tively” to gather several definitions [properties] into a single one.

The search for robust classes of regular languages is an old problem of automata
theory, which occurs in particular in the study of regular model checking [3]. In
this survey paper, we present known results and open questions on a proper sub-
class of the class of regular languages, introduced a few years ago by the authors
in connection with the study of the shuffle product [6,7]. This class, denoted by
W , is especially robust: it is closed under union, intersection, product, shuffle,
left and right quotients, inverse of morphisms, length preserving morphisms and
commutative closure. Furthermore, this class is decidable: there is an algorithm
to decide whether a given regular language belongs to W or not. As such, it
might offer an appropriate framework for modeling certain problems arising in
the verification of concurrent systems.

The class W is also interesting on its own and appears in the study of three
operations on languages: length preserving morphisms, inverse of substitutions
and shuffle product. More specifically, W is the largest proper positive variety
of languages closed under one of these operations. It is also the largest positive
variety of languages not containing the language (ab)∗.
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All these results rely on an algebraic characterization of W in terms of or-
dered monoids (Theorem 5). It gives us the opportunity to review this algebraic
approach and to apply it to a concrete example.

Our paper is organised as follows. In Section 1, we briefly introduce the defi-
nitions needed for this paper, including the notion of ordered automaton, which
might be new to most readers. Section 2 presents the algebraic background.
Again, the less familiar notions are probably those of ordered monoid and of
profinite monoids. Section 3 is devoted to general results derived from the al-
gebraic approach, including specific results on length preserving morphisms and
the shuffle operation. The class W , its algebraic characterization and its main
properties are presented in Section 4. Closure under partial commutation is dis-
cussed in Section 5. Finally, we propose a few open problems on W in the final
section. One of them is to find a logical characterization for W , a problem which
is widely open.

1 Languages and Automata

In this paper, an alphabet is a finite set whose elements are called letters. The
free monoid A∗ is the set of words on the alphabet A. The length of a word
u is denoted by |u|. The empty word, denoted by 1, is the unique word of
length 0.

1.1 Ordered Automata

An ordered automaton is a deterministic automaton equipped with a partial or-
der on its set of states. This order is required to be compatible with the action
of each letter. Formally, we are given an automaton A = (Q,A, · , i, F ) and a
partial order � on Q such that, for all p, q ∈ Q and a ∈ A, p � q implies
p· a � q · a.

If A is a minimal deterministic automaton, there is a canonical way to define
a partial order on Q, called the syntactic order on Q. Define a relation � on Q
by p � q if and only if for each u ∈ A∗,

q ·u ∈ F ⇒ p·u ∈ F

It is clear that � is reflexive and transitive. To see it is a partial order, suppose
that p � q and q � p. Then, for all u ∈ A∗, one gets q ·u ∈ F if and only if
p·u ∈ F , which gives p = q since A is minimal.

Thus every language admits a minimal ordered automaton. In the remainder
of this paper, we consider only regular languages and finite automata.

Example 1. For the minimal automaton of the language (ab)∗ represented in
Figure 1, the order on the set of states is 1 < 0 and 2 < 0.
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1 2

0

a

b

b
a

a, b

Fig. 1. The minimal automaton of (ab)∗

Example 2. For the minimal automaton of the language (ab)∗ ∪ A∗aaA∗ (with
A = {a, b}) represented in Figure 2, the order on the set of states is 0 < 1 < 3
and 0 < 2 < 4 < 3.

1 2

3 4

0

a

b

a

b

a, bb

a

a

Fig. 2. The minimal automaton of (ab)∗ ∪ A∗aaA∗

1.2 Operations on Languages

A number of operations preserve regular languages: Boolean operations, product,
star, shuffle, quotients, morphisms, inverse of morphisms, etc.

Boolean operations comprise union, intersection and complement. Let L1 and
L2 be two languages of A∗. The (concatenation) product of L1 and L2 is the
language

L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}
Their shuffle is the language

L1 X L2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some n � 0 such that
u1 · · ·un ∈ L1, v1 · · · vn ∈ L2}

Given a language L and a word u, the left and right quotients of L by u are the
languages

u−1L = {x ∈ A∗ | ux ∈ L}
Lu−1 = {x ∈ A∗ | xu ∈ L}
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A morphism between two free monoids A∗ and B∗ is a map ϕ : A∗ → B∗ such
that, for all u, v ∈ A∗, ϕ(uv) = ϕ(u)ϕ(v). This condition implies in particular
that ϕ(1) = 1. The morphism ϕ is length preserving if, for all u ∈ A∗, the
condition |ϕ(u)| = |u| is satisfied. This is equivalent to requiring that, for all
a ∈ A, ϕ(a) ∈ B.

The languages of A∗ form a monoid for the concatenation product, called the
monoid of languages of A∗. A substitution from A∗ into B∗ is a monoid morphism
σ from A∗ into the monoid of languages on B∗. In particular, σ(1) = {1}, the
language reduced to the empty word and if u = a1 · · ·an, σ(u) = σ(a1) · · ·σ(an).
Thus a substitution is completely determined by the languages σ(a), for a ∈ A.

The inverse substitution σ−1 maps a language K of B∗ onto the language
σ−1(K) of A∗, defined by

σ−1(K) = {u ∈ A∗ | σ(u) ∩K �= ∅}

1.3 Classes of Languages and Varieties of Languages

A class of languages is a correspondence C which associates with each alphabet A
a set C(A∗) of regular languages of A∗. It is closed under inverse of morphisms
[substitutions] if, for any morphism [substitution] ϕ : A∗ → B∗ and for any
language L ∈ C(B∗), the language ϕ−1(L) belongs to C(A∗). Similarly, it is
closed under length-preserving morphism if, for any length-preserving morphism
ϕ : A∗ → B∗ and for any language L ∈ C(A∗), the language ϕ(L) belongs
to C(B∗). Finally, it is closed under union [intersection, complement, residuals,
product, shuffle, etc.] if, for each alphabet A, the set C(A∗) is closed under union
[intersection, complement, residuals, product, shuffle, etc.]

A class of regular languages is said to be proper if it is not the class of all
regular languages.

A positive variety of languages is a class of regular languages closed under
union, intersection, residuals and inverses of morphisms. A variety of languages
is a positive variety closed under complement.

2 A Bit of Algebra

In this section, we gather the algebraic notions used in this paper: semigroups,
monoids, ordered monoids, power monoids, profinite monoids and varieties.

2.1 Semigroups and Monoids

A semigroup is a set equipped with an associative operation, usually denoted
multiplicatively. A monoid is a semigroup with an identity element, usually
denoted by 1.

An element e of a monoid is idempotent if e2 = e. Given an element s of a
finite semigroup S, sω denotes the unique idempotent of the subsemigroup of
S generated by s. Two elements s and t of a semigroup are mutually inverse if
sts = s and tst = t.
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Let M be a finite monoid. The exponent of M is the least integer ω such that
for all x ∈ M , xω is idempotent. Its period is the least integer p such that for all
x ∈ M , xω+p = xω.

An ideal of a monoid M is a subset I of M such that MIM ⊆ I. An ideal
I is called minimal if, for every J of M , the condition J ⊆ I implies J = ∅ or
J = I. Every finite monoid admits a unique minimal ideal. This minimal ideal
I has a very constrained structure: in particular, if e is an idempotent of I and
x is an element of M , then (exe)ω = e.

Let M and N be two monoids. A morphism of monoids from M into N is a
function ϕ : M → N such that ϕ(1) = 1 and for all x, y ∈ M , ϕ(xy) = ϕ(x)ϕ(y).

A transformation on a set Q is a map from Q to Q. We use the notation q · f
to denote the image of an element q ∈ Q by f , instead of the standard f(q). The
product of two transformations f and g is the transformation fg defined, for all
q ∈ Q, by q · (fg) = (q · f)· g. Note that, in traditional notation, the function fg
would be denoted g ◦ f . Equipped with this product, the set of transformations
on Q form a monoid, denoted by T (Q).

Given a deterministic automaton A = (Q,A, · , i, F ), each word u ∈ A∗ defines
a transformation on Q, which maps the state q onto the state q ·u. The set of all
these transformations form a submonoid of T (Q), called the transition monoid
of A. One can also attach a finite monoid to a nondeterministic automaton. See
[14,16] for more details.

The monoid attached to the minimal automaton of a language is called its
syntactic monoid. It can be defined directly as follows. The syntactic congruence
of a language L of A∗ is the congruence ∼L defined on A∗ by setting u ∼L v if
and only if, for every x, y ∈ A∗,

xvy ∈ L ⇔ xuy ∈ L

The syntactic monoid is the quotient of A∗ by ∼L and the natural morphism
from A∗ onto M is called the syntactic morphism of L.

2.2 Ordered Monoids

An ordered monoid is a monoid M equipped with a partial order � compatible
with the product on M : for all x, y, z ∈ M , if x � y then zx � zy and xz � yz.

Let (M,�) be an ordered monoid. An order ideal of M is a subset I of M
such that if x ∈ I and y � x then y ∈ I. A filter of M is a subset F of M such
that if x ∈ F and x � y then y ∈ F . Note that a subset of M is a filter if and
only if its complement is an order ideal.

Let M and N be two ordered monoids. A morphism of ordered monoids is an
order-preserving monoid morphism from M into N . We say that N is a quotient
of M if there exists a surjective morphism of ordered monoids from M onto N .
An ordered submonoid of M is a submonoid of M , equipped with the restriction
of the order on M .

The product of a family (Mi)i∈I of ordered monoids is the ordered monoid
defined on the set

∏
i∈I Mi. The multiplication and the order relation are defined

componentwise.
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2.3 Monoids and Automata

There are two ways to make use of monoids to describe languages.
The first solution bypasses the notion of automata by defining directly lan-

guages recognized by an [ordered] monoid. We just recall this definition in the
ordered case [14,16]. A language L of A∗ is recognized by an ordered monoid
(M,�) if and only if there exist an order ideal I of M and a monoid morphism
η from A∗ into M such that L = η−1(I).

The second solution relies on the notion of transition monoid. If a deterministic
automaton A = (Q,A, · , i, F ) is partially ordered, then its transition monoid M
can be ordered in a natural way. It suffices to set u � v if and only if, for every
x ∈ M and q ∈ Q,

q · vx ∈ F ⇒ q ·ux ∈ F

If A is the ordered minimal automaton of a language L, we obtain the syntactic
ordered monoid of L. The syntactic order � on M can also be defined directly.
Let η : A∗ → M be the syntactic morphism of L. Then, given u, v ∈ M , one has
u � v if and only if, for all x, y ∈ M ,

xvy ∈ η(L) ⇒ xuy ∈ η(L)

Example 3. The minimal automaton A of the language (ab)∗ is represented in
Figure 1. The transition monoid of A contains six elements which correspond to
the words 1, a, b, ab, ba and aa.

1 a b aa ab ba

1 2 0 0 1 0
2 0 1 0 0 2

Furthermore aa is a zero of this monoid and thus can be denoted 0. Finally, the
syntactic ordered monoid of (ab)∗ is the ordered monoid

B1−
2 = {1, a, b, ab, ba, 0}

ab a b ba

0

1

Fig. 3. The order on B1−
2
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presented by the relations aba = a, bab = b and aa = bb = 0. The syntactic order
is given by 1 � ab, 1 � ba and x � 0 for every x ∈ M . This ordered monoid will
play an important role in this paper.

2.4 Power Monoids

Let M be a monoid and let P(M) be the set of subsets of M . Define the product
of two subsets X and Y of M as the set

XY = {xy | x ∈ X and y ∈ Y }

This operation makes P(M) a monoid, called the power monoid of M .
It is possible to extend this notion to ordered monoids [7,19]. Let (M,�) be

an ordered monoid. Define the product of two filters F and G of M as the filter
generated by the set FG:

↑FG = {z ∈ M | there exist x ∈ F and y ∈ G such that xy � z}

This operation turns the set of filters on M into an ordered monoid, denoted by
P+(M,�), in which the order relation is the reverse inclusion ⊇.

2.5 Profinite Monoids

We briefly recall the definition of a free profinite monoid. More details can be
found in [1,2]. Let A be an alphabet. A monoid M separates two words u and v
of the free monoid A∗ if there exists a morphism ϕ from A∗ onto M such that
ϕ(u) �= ϕ(v). We set

r(u, v) = min
{
|M | M is a monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is an ultrametric on A∗, that is, satisfies the following properties, for all
u, v, w ∈ A∗,

(1) d(u, v) = 0 if and only if u = v,
(2) d(u, v) = d(v, u),
(3) d(u,w) � max{d(u, v), d(v, w)}.

For the metric d, the closer are two words, the larger is the monoid needed to
separate them.

As a metric space, A∗ admits a completion, denoted by Â∗. As A∗ is dense
in Â∗ and since the product on A∗ is uniformly continuous, it can be extended
by continuity to Â∗. The resulting monoid is called the free profinite monoid on
A. This is a topological compact monoid which admits a unique minimal ideal.
The elements of Â∗ are called profinite words.

It can be shown that, for each profinite word x, the sequence (xn!)n�0 is a
Cauchy sequence. It converges to an idempotent element of Â∗, denoted by xω.

Every monoid morphism from A∗ into a finite monoid M (considered as a
discrete metric space), can be extended by continuity to a morphism from Â∗
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into M . In particular, the image of xω under any morphism ϕ : A∗ → M into a
finite monoid M is well defined: it is the unique idempotent of the subsemigroup
of M generated by ϕ(x). This fully justifies the natural formula ϕ(xω) = (ϕ(x))ω ,
in which the ω on the right hand side denotes the exponent of M .

2.6 Varieties of Finite Monoids

A variety of finite monoids is a class of finite monoids closed under taking sub-
monoids, quotients and finite direct products. Varieties of finite ordered monoids
are defined analogously.

Given a variety of finite ordered monoidsV, the variety of finite ordered monoids
P+V is generated by the monoids of the form P+(M,�) where (M,�) ∈ V.

In the same way as varieties in Birkhoff sense, varieties of finite monoids can
be equationally defined, but this description involves profinite equations, which
are formal equalities between two profinite words. More precisely, let u and v
be two profinite words of Â∗. A finite monoid M satisfies the profinite equation
u = v if and only if, for each morphism ϕ : Â∗ → M , ϕ(u) = ϕ(v). Similarly, a
finite ordered monoid M satisfies the profinite equation u � v if and only if, for
each morphism ϕ : Â∗ → M , ϕ(u) � ϕ(v).

Given a set E of profinite equations, the class of finite [ordered] monoids sat-
isfying all the equations of E form a variety of finite [ordered] monoids, denoted
by �E�. Reiterman’s theorem [20] states that every variety of finite monoids can
be defined by a set of profinite equations of the form u = v. As shown in [17],
this result extends to varieties of finite ordered monoids, using equations of the
form u � v.

For instance the variety Com of finite commutative monoids is defined by
the single equation xy = yx. The variety of finite groups is defined by the single
equation xω = 1. The variety of finite ordered monoids P+G is defined by the
single equation xω � 1 [18].

3 The Algebraic Approach

The general idea of the algebraic approach is to classify regular languages through
algebraic properties of their syntactic [ordered] monoid. We recall here two ver-
sions of the variety theorem. Extended versions were also obtained in [23,9] and a
unified version is proposed in [11].

3.1 The Variety Theorem

Denote by V → V the correspondence which associates to a variety of finite
[ordered] monoids the class V of all languages of A∗ whose syntactic [ordered]
monoid belongs to V. One can show that V is a [positive] variety of languages.

Similarly, we denote by V → V the correspondence which associates to a
[positive] variety of languages V the smallest variety of finite [ordered] monoids
V containing the syntactic [ordered] monoids of the languages of V .

The original variety theorem is due to Eilenberg [8]. Its ordered version was
proved by the second author in [15].
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Theorem 1 (Variety theorem). The correspondences V → V and V → V
are mutually inverse one to one correspondences between the varieties of finite
[ordered] monoids and the [positive] varieties of languages.

For instance, the variety of languages corresponding to Com is the variety
Com of all commutative languages. Recall that a language L is commutative
if a1a2 · · · an ∈ L implies aσ(1)aσ(2) · · · aσ(n) ∈ L for each permutation σ of
{1, 2, . . . , n}. Other descriptions of Com can be found in [8,13].

The variety of languages corresponding to G is the variety of group languages.
Recall that a group language is a regular language whose syntactic monoid is
a group, or, equivalently, is recognized by a finite deterministic automaton in
which each letter defines a permutation of the set of states.

The languages of the positive variety corresponding to P+G are the poly-
nomials of group languages. Recall that, given a class C of regular languages,
the polynomial languages of L are the finite unions of languages of the form
L0a1L1 · · · akLk where a1, . . . , ak are letters and L0, . . . , Lk are languages of C.

3.2 Length Preserving Morphisms and Inverse of Substitutions

Power monoids are the appropriate tool to study length preserving morphisms
[12,21,22]. We recall here the ordered version of these results [7,19].

Given a positive variety of languages V , the positive variety of languages Λ+V
is defined as follows. For each alphabet A, Λ+V(A∗) is the lattice of languages
generated by the languages of the form ϕ(L), where L ∈ V(B∗) for some alphabet
B and ϕ is a length preserving morphism from B∗ into A∗.

Proposition 1. Let V be a positive variety of languages and let V be the cor-
responding variety of finite ordered monoids. Then Λ+V is a positive variety of
languages and the corresponding variety of finite ordered monoids is P+V.

There is a similar result for inverse of substitutions. Given a positive variety
of languages V , the positive variety of languages Σ+V is defined as follows.
For every alphabet A, Σ+V(A∗) is the lattice of languages generated by the
languages of the form σ−1(L), where L ∈ V(B∗) for some alphabet B and σ is
a substitution from A∗ into B∗.

Proposition 2. Let V be a variety of finite ordered monoids and V the corre-
sponding positive variety of languages. Then Σ+V is a positive variety of lan-
guages that corresponds to P+V. In particular, Σ+V = Λ+V.

3.3 The Shuffle Operation

Power monoids also make an important tool to study the shuffle product, due
to the following result.

Proposition 3. Let L1 and L2 be two languages of A∗, recognized respectively
by the ordered monoids M1 and M2. Then L1 X L2 is recognized by the ordered
monoid P+(M1 ×M2).
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A [positive] variety of languages V is closed under shuffle if the shuffle product
of two languages of V is also in V . It is closed under length preserving morphisms
if Λ+V = V and it is closed under inverse of substitutions if Σ+V = V . As a
consequence of Propositions 1, 2 and 3, we get the following result.

Proposition 4
(1) If a positive variety of languages is closed under length preserving mor-

phisms, then it is closed under inverse of substitutions and under shuffle.
(2) If a positive variety of languages is closed under inverse of substitutions,

then it is closed under length preserving morphisms and under shuffle.

One may wonder whether a positive variety of languages is closed under length
preserving morphisms if and only if it is closed under shuffle. This result holds
for varieties of languages but depends on the classification of varieties closed
under shuffle. It is still an open problem for positive varieties of languages.

It is easy to see that the variety of all commutative languages is closed under
shuffle. Actually, the commutative varieties of languages closed under shuffle were
characterised by Perrot [12]: they correspond to the varieties of commutative
monoids whose groups belong to a given variety of commutative groups. Perrot
also conjectured that the only non commutative variety of languages closed under
shuffle was the variety of all regular languages, a result that was finally proved
in 1998 by Esik and Simon [10]. Therefore the variety of commutative languages
is the largest proper variety of languages closed under shuffle. This completes
the classification of the varieties of languages closed under shuffle.

Classifying the positive varieties closed under shuffle seems to be a really
challenging problem on which only partial results are known [4,7]. A first question
is to know whether the result of Esik and Simon also holds for positive varieties:
in other words, is there a largest proper positive variety closed under shuffle?
This question was solved positively by the authors in [7].

Theorem 2. There is a largest proper positive variety of languages closed under
shuffle.

This positive variety, denoted by W in the sequel, enjoys a number of interesting
properties which are detailed in the next section.

4 A Robust Class of Languages

We start with a characterization of W in terms of languages, also given in [7]. The
difficult part is to prove the existence of a largest positive variety of languages
satisfying the condition of the theorem.

Theorem 3. The positive variety W is the largest positive variety of languages
such that, for A = {a, b}, the language (ab)∗ does not belong to W(A∗).

Let us denote by W the variety of finite ordered monoids corresponding to W .
Theorem 3 can be translated immediately as follows:
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Theorem 4. The variety of finite ordered monoids W is the largest variety of
finite ordered monoids not containing the ordered monoid B1−

2 .

These characterizations are useful to prove that a language is not in W . For
instance, let A = {a, b}. We claim that the language L = (aab)∗ ∪A∗b(aa)∗abA∗

is not in W(A∗). Assume the contrary and let ϕ : A∗ → A∗ be the morphism
defined by ϕ(a) = aa and ϕ(b) = b. Then since a positive variety of languages
is closed under inverse of morphisms, the language ϕ−1(L) = (ab)∗ belongs to
W(A∗), a contradiction with Theorem 3.

Theorems 3 and 4 are simple to state but they do not provide any algorithm to
decide whether a given regular language belongs to W or, equivalently, whether
a given finite ordered monoid belongs to W. A solution to this problem was
given in [7].

Theorem 5. A finite ordered monoid M belongs to W if and only if, for any
pair (s, t) of mutually inverse elements of M , and any element z of the minimal
ideal of the submonoid of M generated by s and t, (stzst)ω � st.

Other equational descriptions are given in [7]. We now give a new formulation of
Theorem 5 that is closer to automata theory. Before stating this result precisely,
let us introduce some terminology.

Consider a deterministic automaton A = (Q,A, · , i, F ), a state p of Q and
two words u and v of A∗. Let us say that u and v are mutually inverse in A if, for
every state p, p·uvu = p·u and p· vuv = p· v. This is clearly equivalent to saying
that u and v define two mutually inverse transformations in the transformation
monoid of A.

We are interested in the graph G(p, u, v) whose vertices are the states of the
form p· z, where z ∈ {u, v}∗ and the edges are of the form q → q ·u and q → q · v.
As in any directed graph, the states of G(p, u, v) are partially ordered by the
reachability relation. To avoid any confusion with the syntactic order on Q, we
will say that a state q2 is deeper that a state q1 if there is path from q1 to q2.
Our new result can now be formulated as follows.

Theorem 6. Let L be a regular language of A∗, let A = (Q,A, · , i, F ) be its
minimal ordered automaton. Then L does not belong to W(A∗) if and only if
there exist two states p and q of Q, two words u and v of A∗, mutually inverse
in A such that p·u = q, q · v = p, a deepest state p′ of the graph G(p, u, v) and a
word r ∈ {u, v}∗ such that p· r = p′ · r = p′ ·uv = p′ and p′ �� p in the syntactic
order on Q.

Proof. Note that one may have q = p, but the condition p′ �� p implies that p′

is different from p. Let us denote by (M,�) the syntactic ordered monoid of L
and by η : A∗ → M its syntactic morphism. Let ω be the exponent of M .

First assume that L does not belong to W(A∗). According to Theorem 5,
there is a pair (s, t) of mutually inverse elements of M , generating a submonoid
N of M and an element z of the minimal ideal of N such that (stzst)ω �� st.
Let us fix two words u, v ∈ A∗ such that η(u) = s and η(v) = t. Then u and v
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are by construction mutually inverse in A. Since z belongs to N , there is also a
word w ∈ {u, v}∗ such that η(w) = z. The condition (stzst)ω �� st implies that
there exist two words x, y ∈ A∗ such that

xuvy ∈ L and x(uvwuv)ωy /∈ L (1)

Let us set r = (uvwuv)ω , q = i·xu, p = q · v and p′ = p· r. Since s and t are
mutually inverse, the words u and uvu define the same transformation on Q and
in particular, p·u = i·xuvu = i·xu = q. Further p′ · r = p· rr = p· r = p′ and
p′ ·uv = p· (uvwuv)ωuv = p· (uvwuv)ω = p′ since r and uv define idempotent
transformations on Q.

i p q

p′

u

v

x

r

r uv

We claim that p′ is a deepest state of the graph G(p, u, v). Indeed, consider
a state reachable from p′, say q′ = p′ · f for some f ∈ {u, v}∗. Since η(r) is an
idempotent of the minimal ideal of N , one has η((rfr)ω) = η(r). Since p′ · r = p′,
it follows that p′ = p′ · r = p′ · (rfr)ω = q′ · r(rfr)ω−1 and thus p′ is reachable
from q′, which proves the claim.

Finally, it follows from (1) that i·xuvy ∈ F and i·x(uvwuv)ωy /∈ F , whence
p· y ∈ F and p′ · y /∈ F . Therefore p′ �� p and the condition on A is satisfied.

Suppose now that the condition on A is satisfied. Since A is minimal, each
state of Q is accessible and there exists a word x such that i·x = p. Set s = η(u)
and t = η(v). Then s and t are two mutually inverse elements of M which
generate a submonoid N of M . Let I be the minimal ideal of N and let f be a
word of {u, v}∗ such that η(f) belongs to I. Since p′ is a deepest state of G(u, v),
the state p′ can be reached from p′ · f and hence there is a word g ∈ {u, v}∗ such
that p′ · fg = p′. Setting w = rfg, we get p′ ·w = p′ · rfg = p′ · fg = p′. Therefore
p′ = p′ · r = p′ · fg = p′ ·uv and thus we obtain

i·xuv = p and i·x(uvwuv)ω = i·x(uvrfguv)ω = p′ (2)

Now, since p′ �� p, there exists a word y such that p· y ∈ F but p′ · y /∈ F .
Consequently, it follows from (2) that i·xuvy ∈ F but i·x(uvwuv)ωy /∈ F , that
is, xuvy ∈ L but x(uvwuv)ωy /∈ L. Setting z = η(w), we get (uvzuv)ω �� uv.
Further, since η(f) ∈ I and z = η(r)η(f)η(g), z also belongs to I. Thus by
Theorem 5, L does not belong to W(A∗). �
For instance, let us come back to Examples 1 and 2. If A is the minimal automa-
ton of (ab)∗ represented in Figure 1, one can take p = 1, q = 2, p′ = 0, u = a,
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v = b and r = a to verify that A satisfies the conditions of Theorem 6. Thus
(ab)∗ is not in W(A∗).

On the other hand, one can verify that the minimal automaton of (ab)∗ ∪
A∗aaA∗ represented in Figure 2 does not satisfy the conditions of Theorem 6.
Thus (ab)∗ ∪A∗aaA∗ belongs to W(A∗).

Note that the condition that u and v are mutually inverse in A is mandatory.
Consider for instance the minimal automaton of the language (ab)∗∪ (ab)∗bA∗∪
(ab)∗aabA∗ on the alphabet {a, b}, represented in Figure 4. The order on the set
of states is 3 < 1 < 4 < 0 and 3 < 2 < 0.

1 2

3 4

0

a

b

b

a, b

a, b

b a

a

Fig. 4. The minimal automaton of (ab)∗ ∪ (ab)∗bA∗ ∪ (ab)∗aabA∗

Setting p = 1, q = 2, p′ = 0 and r = a3, one has p· a = q, q · b = p, p· r =
p′ · r = p′ ·uv = p′ and p′ �� p. Further, r ∈ {a, b}∗ and p′ is a deepest state in the
graph G(a, b). However, a and b are not mutually inverse and one can actually
verify that A does not satisfy the conditions of Theorem 6. In particular, taking
u = aba and v = b does not work, since there is no word r ∈ {u, v}∗ such that
p· r′ = p′. Thus L belongs to W(A∗).

A key property of W, also proved in [7], is stated in the next theorem

Theorem 7. The equality W = P+W holds.

Propositions 1, 2 and 4 now give immediately:

Corollary 1. The positive variety W is closed under length preserving mor-
phisms, inverse of substitutions and shuffle.

In fact, a stronger property holds [7].

Theorem 8
(1) The positive variety W is the largest proper positive variety of languages

closed under length preserving morphisms.
(2) The positive variety W is the largest proper positive variety of languages

closed under inverse of substitutions.
(3) The positive variety W is the largest proper positive variety of languages

closed under shuffle.

Let us mention another important closure property of W .
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Proposition 5. The positive variety W is closed under product.

Proof. It suffices to use a standard trick to simulate a concatenation product by
a shuffle product. Let L1 and L2 be two languages of W(A∗). Let Ā = {ā | a ∈ A}
be a copy of A and let πA and πĀ be the morphisms from (A ∪ Ā)∗ onto A∗

defined by πA(a) = πĀ(ā) = a and πA(ā) = πĀ(a) = 1 for all ā ∈ A. Consider
the two languages of (A ∪ Ā)∗

K1 = π−1
A (L1) ∩A∗ K2 = π−1

Ā
(L2) ∩ Ā∗

Thus K1 is just the same language as L1, but on a larger alphabet, and K2 is a
copy of L2. Finally, let

K = (K1 X K2) ∩A∗Ā∗

Since W is closed under intersection, inverse of morphisms and shuffle and since
A∗, Ā∗ and A∗Ā∗ are languages of W((A ∪ Ā)∗), one gets K ∈ W((A ∪ Ā)∗).
Finally let π : (A ∪ Ā)∗ → A∗ be the morphism defined by π(ā) = π(a) = a.
Now π(K) = L1L2 and since W is closed under length preserving morphisms,
L1L2 ∈ W(A∗). �
Note, however, that W is not the largest proper positive variety of languages
closed under product. Indeed the variety of star-free languages is closed under
product, but contains (ab)∗.

5 Closure under Commutation and Partial Commutation

The class W also occurs in the study of commutation relations.
Let A be an alphabet and let I be a symmetric and irreflexive relation on A

(often called the independence relation). We denote by ∼I the congruence on
A∗ generated by the set {ab = ba | (a, b) ∈ I}. If L is a language on A∗, we
also denote by [L]I the closure of L under ∼I . When I is the relation {(a, b) ∈
A × A | a �= b}, we simplify the notation to ∼ and [L], respectively. Thus ∼ is
the commutation relation and [L] is the commutative closure of L. A class C of
languages is closed under I-commutation if L ∈ C implies [L]I ∈ C. It is closed
under commutation if L ∈ C implies [L] ∈ C.

Since the commutative closure of the language (ab)∗ is nonregular, a class of
regular languages closed under commutation cannot contain (ab)∗. What hap-
pens for varieties and positive varieties of languages? One can show that there
is a largest variety of languages V such that, for A = {a, b}, the language (ab)∗

does not belong to V(A∗). It is denoted by DS since the corresponding vari-
ety of finite monoids is the variety DS. Recall that a finite monoid belongs to
DS are if each of its regular D-classes form a semigroup. In fact, one can show
that DS is also the largest variety of languages closed under commutation. The
corresponding result for positive varieties states that W is the largest positive
variety of languages closed under commutation. Actually, a stronger result holds
[5]. Define the period (respectively exponent) of a regular language as the period
(respectively exponent) of its syntactic monoid.
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Theorem 9. Let L be a language of W(A∗). Then [L] is regular and commuta-
tive (and hence belongs to W(A∗)) and its period divides that of L.

For partial commutations, a weaker result holds if I is transitive [5]. Recall that
in this case, A∗/∼I is a free product of free commutative monoids.

Theorem 10. Let L be a language of W(A∗) and let I be a transitive indepen-
dence relation. Then [L]I is a regular language.

Although we know that [L]I is regular in this case, we don’t know whether [L]I
necessarily belongs to W(A∗).

6 Conclusion and Open Questions

We have seen that the class W is closed under the following operations: union,
intersection, product, shuffle, left and right quotients, inverse of morphisms,
length preserving morphisms and commutative closure. It is a decidable variety
and the corresponding variety of finite ordered monoids W is precisely known.
The positive variety W can be defined alternatively as the largest proper positive
variety of languages satisfying (1) [(2), (3), (4)]:

(1) not containing the language (ab)∗;
(2) closed under shuffle;
(3) closed under length preserving morphisms;
(4) closed under inverse of substitutions.

Despite these numerous closure properties, we don’t know of any constructive
description of W , similar to the definition of the star-free languages. For instance,
the least positive variety of languages satisfying Conditions (1)-(4) is the variety
of polynomials of group languages, which is strictly contained in W . Is it possible
to find more powerful operators to generate the languages of W? We let this
question as a research problem for the reader.

Another research problem is to find a logical description for W . The fact that
W contains all finite groups and even DS might be a problem, since no logical
description is available for the corresponding subvarieties of W .

Finally, it would be nice to have an evocative name for W and the authors
would appreciate any motivated suggestion.
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10. Ésik, Z., Simon, I.: Modeling Literal Morphisms by Shuffle. Semigroup Forum 56,
225–227 (1998)

11. Gehrke, M., Grigorieff, S., Pin, J.-E.: Duality and equational theory of regular
languages. In: 35th ICALP. Springer, Heidelberg (2008)

12. Perrot, J.-F.: Variétés de langages et operations. Theoret. Comput. Sci. 7, 197–210
(1978)

13. Pin, J.-E.: Varieties of formal languages. North Oxford, London and Plenum, New-
York (1986) (Translation of Variétés de langages formels, Masson, 1984)

14. Pin, J.-E.: Finite semigroups and recognizable languages: an introduction. In: Foun-
tain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and
Groups, pp. 1–32. Kluwer academic publishers, Dordrecht (1995)

15. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics
(Izvestija vuzov.Matematika) 39, 80–90 (1995)

16. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of formal languages, ch. 10, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

17. Pin, J.-E., Weil, P.: A Reiterman theorem for pseudovarieties of of finite first-order
structures. Algebra Universalis 35, 577–595 (1996)

18. Pin, J.-E., Weil, P.: Semidirect products of ordered semigroups. Communications
in Algebra 30, 149–169 (2002)

19. Polák, L.: Operators on classes of regular languages. In: Gomes, G., Pin, J.-E., Silva,
P. (eds.) Semigroups, Algorithms, Automata and Languages (Coimbra, 2001), pp.
407–422. World Scientific Publisher, River Edge, NJ (2002)

20. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14,
1–10 (1982)

21. Reutenauer, C.: Sur les variétés de langages et de monöıdes. In: Theoretical com-
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Abstract. In this paper we survey some results concerning the impact
of faulty environments on the solvability and complexity of communica-
tion tasks. In particular, we focus on deterministic models of faults in
synchronous networks, and show how different variations of the model
influence the performance bounds of broadcasting algorithms.

1 Introduction

One of the main challenges in the design of complex systems such as computers
is the issue of robustness. Indeed, systems comprised of a large number, albeit
highly resilient, components experience the malfunction of some of them with
probability high enough to be taken into account. Computers use e.g. sophisti-
cated error-correcting procedures transparent to the software environment that
maintain integrity of data stored in memory so that it can be viewed as a reliable
storage medium.

Large scale communication networks consist of very high numbers of comput-
ing elements (computers, routers, etc.) and due to this complexity the issue of
fault tolerance plays an important role in their design. Moreover, communication
networks are accessible to a number of people, and are often targets of misuse and
hacker attacks. The aim of the design is to develop the communication protocols
in such a way that the network can serve its purpose (communication, cooper-
ative computation, etc.) even with a number of components being permanently
or temporarily out of operation.

In order to analyze the impact of faulty environments on the performance
of the distributed system, two things must be specified: the model of the dis-
tributed system (network), and the model of the faulty environment. For the
former we use a standard model of point-to-point communication in which the
system is composed of independent entities (processors, processes, etc.) which
can pairwise communicate by exchanging messages. It is natural to model such
system by a graph, where vertices represent the processors, and edges connect
those pairs of processors that can communicate. Having said this, there is still a
number of issues that have to be addressed: e.g. are the vertices synchronous or
asynchronous? Can a vertex send a message to all its neighbors simultaneously?
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Do the vertices know the graph? It turns out that there is a number of param-
eters that significantly influence the results. Indeed, the situation in distributed
computing is such that there is no simple and elegant model that would capture
all the studied properties of communication. Thus, when speaking about the
network model, a number of options must be specified. We briefly discuss these
options in the next section.

Second thing that has to be formally modeled in order to obtain results about
fault tolerance is the (faulty) environment. Standard approach of theoretical
computer science uses the notion of an adversary: an entity that is responsi-
ble for introducing faults into the execution of the algorithm. What we call a
model of faults is basically a set of restrictions that are imposed on the behav-
ior of the adversary. It is always assumed that adversary produces the worst
possible scenario within the limitations given by the model. Of course, without
any restrictions on the adversary it is not possible to solve any non-trivial task.
With some assumptions, certain tasks become solvable, and by restricting the
adversary even further, more efficient solutions may be obtained.

There are two main approaches to the definition of the fault model: random-
ized, in which the behavior of the adversary is a random process (e.g. every
message is lost with a given probability), and deterministic which states some
worst-case bounds on the adversary’s behavior (e.g. at most k messages are lost).
Both approaches have advantages and weak-points, and we shall discuss them
later in more detail.

Finally, one has also to specify the task performed by the network. In this
paper we mostly consider the broadcasting problem (called also one-to-all com-
munication) where the goal is to disseminate a piece of information known to
only one vertex of the distributed system to every other vertex. This simply
formulated task is an important communication primitive in many more com-
plex distributed algorithms. Moreover, broadcasting can be used to solve other
important communication tasks with reasonable efficiency. These tasks include
e.g. the gathering problem (all-to-one communication), where each node knows a
piece of information that has to be delivered to one dedicated sink node, and the
gossipping problem (all-to-all communication), where each node needs to learn
a piece of information from all other nodes. Other communication problems in-
clude, e.g. the leader election problem, where vertices start in identical states1,
and they all have to agree on one distinguished vertex, the wakeup problem etc.

As has just been mentioned, the setting of the research consists of three parts:
the network model, the fault model, and the task. There are at least three
approaches to the study of their relationship:

– Fix the network model (based on current technology), fault model (based on
realistic assumptions), and task, and study the complexity (in terms of time
or amount of communication) of the task.

– Fix the network model, and the task, and find the least restrictive fault
model in which the task is still solvable.

1 Up to some topology knowledge as described by the network model.
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– Fix the fault model and the task and find the weakest possible network model
in which the task is still solvable.

The rest of the paper is organized as follows: in the next two sections we give an
overview of features that must be taken into account in the network model, and
the model of faults, respectively. Then we present a case study to demonstrate the
development of a particular fault model. We focus on the broadcasting problem
and show how subsequent changes to the model influence the results. We finish
by a brief mention of other considered problems, open questions, and possible
future projects.

2 Network Models

In this section we briefly describe some of the properties of the networks that
can fundamentally influence the results. The classification of the models of dis-
tributed systems presented in this section does not cover all models that have
been considered in the literature so far; for information about some such mod-
els, see e.g. survey [27] and references therein. However, most of the models can
be defined by imposing additional constraints on some model presented in this
section.

We consider the point-to-point model of the communication, which is widely
studied in the literature (see [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 18, 19, 20, 21, 25,
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 45, 46, 48, 49, 50, 51, 53, 55, 56, 57, 58] or sur-
veys [27, 37, 38, 52]).2 In this model, the nodes of the distributed system can
communicate only via a set of links, where each link connects exactly two nodes.
Thus the distributed system can be viewed as a graph whose vertices represent
nodes and edges represent links of the distributed system. We call this graph
the communication graph of the distributed system. We assume that all links
are symmetric, hence the communication graph is undirected.

An important aspect of the distributed system is its synchronicity. The cases
most widely considered in the literature (see e.g. [60,47]) are the extreme cases:
the synchronous mode and the asynchronous mode. In the asynchronous mode,
nothing is known about the timing of the computation (this mode is studied
e.g. in [4, 14]). In the synchronous mode, the algorithm runs in time steps that
are synchronized between the nodes. The algorithm can exploit this, since it can
make decisions based on the global clock of the distributed system. For other
modes of synchronicity see e.g. [58].

In this work we consider only the synchronous models. The reason for this is
that it is impossible to design fault tolerant asynchronous algorithms without
any restriction on the timing of the computation3. Indeed, in the asynchronous
computation it is impossible to distinguish between a lost message and a message
that will be delivered later (see [22]).
2 Other considered models include e.g. the radio network model (see [54]), ATM net-

work model (see [6] and references therein), etc.
3 One way to overcome this is to enhance the system with additional devices as e.g.

failure detectors from [9].
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For the synchronous systems the notion of time complexity is naturally defined –
it is the number of time steps needed for the algorithm to terminate. In the constant
mode (which we shall consider in this survey) each message is delivered in one time
step regardless of the length of the message. This mode is the most widely studied
one, e.g. in [2,3,5,8,10,11,12,15,18,19,20,21,25,28,29,33,34,35,46,48,49,54,55,56].
On the other side, in the linear mode, the time of delivery depends on the size of
the message: The message of length L is delivered in β + Lτ time steps, where β
(cost of the start-up) and τ (propagation time of data of unit length) are constants
specified by the model. This mode is studied e.g. in [26], see also the survey [27].

There are several properties of the communication links that must be taken
into consideration. First is the duplexity of the links: In the one-way mode (called
also the half-duplex or the telegraph mode), during a given time step each link can
be used to deliver a message only in one direction. In other words, if some node is
active on some link, it can be active either as a sender or as a receiver, but not both
at once. This is the mode used e.g. in [4,21,30,34]. In the two-way mode (called also
the full-duplex or the telephone mode), each link can be used to deliver message in
both directions in the same time. This means that one node can be active on one
link both as a sender and as a receiver in one time step. This mode is considered
e.g. in [15,25,33,50]. We also distinguish the communication modes based on the
capability of the nodes to use multiple links at once: In the one-port mode (called
also the whispering or the processor-bound mode), in one time step each node can
be active on only one of its adjacent links. This model represents the situation
where the bottleneck of the communication is the performance of the node. It is
used e.g. in [2,3,5,11,12,21,26,29,33,34,35,50,56]. In the multi-port mode (called
also the shouting or the link-bound mode), in one time step each node can be active
on any number of its adjacent links. This mode represents the situation where the
bottleneck is the bandwidth of the links. It is used e.g. in [10,18, 19,20,25,26,28,
31, 46, 48, 49, 55, 56]. In the k-port mode (called also the DMA-bound mode), in
one time step each node can be active on at most k of its adjacent links where k is
a constant specified by the model. This mode is used e.g. in [8]. We focus on the
multi-port mode, unless stated otherwise.

When designing algorithms for communication networks it is important to
know what information about the communication graph of the distributed sys-
tem is available. This topology knowledge can be of two types: Some knowledge
can be given a-priori, in the time when the algorithm is designed. For example,
in some situations we are interested only in some particular class of graphs; the
algorithm does not need to work correctly for other graphs (this is the situation
e.g. in [8, 14, 18, 19, 20, 26, 31, 46, 48, 49, 50, 55, 56]). On the other side, some in-
formation may be available to the algorithm in the run-time and the algorithm
can make decisions based on it. This information can be of any kind. We present
some previously considered types of such information:

– Full knowledge of the topology. In this scenario each node knows the whole
communication graph. It knows its own location and location of all its neigh-
bors in this graph as well. This kind of topology knowledge is exploited
e.g. in [53].
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– Blind map. Each node knows the whole communication graph, but it does
not know its location in the graph. The blind map has been considered
(although not in connection with broadcasting) e.g. in [13].

– Identifiers. Each node knows its own unique identifier. Sometimes the knowl-
edge of the identifiers of neighbors is assumed, too (e.g. in [53,40]). Note that
full topology knowledge implies the knowledge of identifiers. Knowledge of
the identifiers without full topology knowledge is used e.g. in [4, 53,40].

– Sense of direction. Each node has associated some topological information
(label) with each of its adjacent link. The sense of direction is usually de-
fined separately for different topologies (see e.g. [60]). For example, it is the
dimension of the link in case of hypercubes (used e.g. in [23]), orientation
(up, down, left or right) in case of meshes, etc. A sense of direction has been
defined for general graphs in [24].

3 Models of Faults

Similar to the model of the distributed system, the model of faults can be de-
scribed by several independent aspects of the faults; any combination of these
aspects yields a unique model.

There are two main approaches to the modelling of the faulty computations.
In the randomized model, the faults occur with a certain probability, i.e. the fault
model describes the expected behavior of the adversary. The goal is to design
a distributed algorithm that is correct with high probability. In the randomized
models studied in the literature there is usually a fixed probability of failure of
certain node/link. This is the case in e.g. [5, 11, 12, 15, 51, 54]. However, various
variants of randomized models have been considered (e.g. both node and link
failures, both permanent and transient failures, both Byzantine and omission
failures, etc.). The main problem with these approaches is that in real life faults
are usually not independent. Recently, a research direction aimed at analyzing
dependency in randomized fault models has been introduced in [44]. The second
approach is to analyze the worst-case scenario, i.e. the fault model sets rules for
the adversary to obey. To do so, the model of faults usually imposes constraints
on the number of faults that can occur. This approach has been used e.g. in
[2,4,8,10,18,19,20,25,26,28,29,30,31,32,33,34,35,36,39,45,46,48,49,53,55,56].
The main goal is to design such a set of rules that are not too restrictive and
are realistic in the sense that they do not create unwanted special cases the
algorithm can rely upon (e.g. if there is a guarantee that at least one message in
every time step is non-faulty, the algorithm may send important messages one
at a time – a strategy that has little justification in reality).

Each distributed system consists of elements of two types: the nodes and the
links. This implies that there are also two kinds of faults: the faults of the nodes
(considered e.g. in [4, 12, 25, 26, 31, 32, 33, 34, 36, 51, 55, 56]) and the faults of the
links (considered e.g. in [2, 5, 7, 8, 10, 11, 12, 15, 18, 19, 20, 25, 26, 28, 29, 31, 32, 35,
36,46,48,49,51, 55, 56]).

Another aspect is the type of faults that may occur. In the Byzantine faults
model, the adversary can specify the behavior of the faulty entity arbitrarily. In
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case of the node failures this means that the faulty node does not need to follow
the specified algorithm, but the adversary can maliciously choose the behavior
most detrimental to the algorithm. In case of the link failures the adversary can
discard or modify the message transmitted through the faulty link or create any
fake message on it. Obviously, the Byzantine faults represent the most harmful
type of faults, i.e. the type of faults that gives maximal power to the adversary.
This type of faults is studied e.g. in [5, 46, 53, 54]. The crash/omission faults
give less power to the adversary. In this model, the adversary can block the
faulty entity, but it can not alter its behavior in any other way. In case of node
failures this means that the node fails to send some messages or it can crash
entirely. In case of link failures, some or all messages transmitted through the
faulty link can be lost. However, the adversary can not modify the content of
any message nor create any fake message. This type of faults is studied e.g. in
[2,10,11,12,15,18,19,20,25,26,28,29,31,32,33,34,35,39,45,46,48,49,54,55,56]. The
weakest variant of this aspect are detectable faults. In this model, the locations
of faults are known to the nodes, hence it does not make sense to distinguish
Byzantine and omission faults. This type of faults is considered e.g. in [4,8, 31].

Yet another important aspect of the model is the duration of the faults. The
models working with static (or permanent) faults assume that there is a set
of faulty entities of the distributed system which are faulty through the whole
computation. This means that the adversary must choose some fixed location of
the faulty entities before the start of the algorithm. Static faults are considered
e.g. in [2,4,5,8,25,26,31,32,33,34,36,39,45,55]. In the models working with the
dynamic (or transient) faults, entities can recover from faults. This means that
the adversary can choose different location of the faults in every time step of
the computation as long as it satisfies other constraints imposed by the model.
Hence it is obvious that dynamic faults give more power to the adversary than
static faults. Dynamic faults are studied e.g. in [10,15,18,19,20,28,29,35,41,46,
48,49,54].

An important subclass of models with dynamic faults are models with time-
independent dynamic faults. These models impose constraints on the number
and type of failures independently on the history of the computation. The ad-
versary can choose the location of the faults according to these fixed rules and
does not need to consider its previous decisions. In this paper we focus on the
time-independent faults. As opposed to time-independent dynamic faults, some
models define constraints on the number and type of failures depending on the
failures that occurred in the past part of the computation. We call such fault
models as models with time-dependent dynamic faults. Time-dependent dynamic
faults have been analyzed e.g. in [35] which deals with dynamic faults in the con-
stant one-port communication model. In such model, however, even one fault per
time step renders the broadcasting impossible. This has been the main reason
to introduce the linearly bounded model of dynamic faults in [35]: The model
of faults is with omission faults and faulty links. Given a constant 0 < α < 1,
the adversary can block at most αi messages during the first i time steps of the
computation, for every natural number i.
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4 Case Study: Broadcasting

In this section we demonstrate an evolution of a particular deterministic time-
independent model of omission faults on a problem of broadcasting. For the
network model we shall consider synchronous, full-duplex, all-port network. If
there are no faults, then obviously a simple flooding algorithm delivers the mes-
sage to all vertices in d(G) time steps, where d(G) is the diameter of the graph.
The type of faults we are focusing on are omission faults on links.

The simplest model of faults in this setting is when a fixed number of k static
faults is allowed, i.e. at the beginning of the computation the adversary chooses k
links that will remain broken during the whole execution; the algorithm is not a-
priori aware of which links are functional. This model corresponds to a situation
when the faults are long-lasting compared to the execution of the algorithm
(e.g. broken cable). The worst-case broadcasting time on a graph G will be
T (k,G) = maxG′⊆G{d(G′)}, where the maximum is taken over all subgraphs G′

obtainable from G by deleting at most k edges. In [59], Schoone, Bodlaender
and van Leeuwen studied the worst case value of T (k,G) over all graphs G with
given diameter D, and delivered upper bound of the form (k + 1)D and a lower
bound of the form (k+ 1)D−k for even D and (k−1)D−2k+ 2 for odd D ≥ 3.

Sometimes, however, transient faults are more appropriate to model the sit-
uation in the network (e.g. packet loss in wireless networks due to background
noise). A next step in the evolution of the model is thus to allow the faults to
be dynamic: in the constant k-bounded model, the adversary can block at most
k messages in each time step. Since the faults are dynamic, they may occur on
different links during various time steps. This model is one of the oldest mod-
els of dynamic faults. It has been introduced in [57] and analyzed in numerous
papers, e.g. [10, 18, 19,20,28,46,48,49].

It is easy to check that in the considered model, the following greedy non-
adaptive algorithm is optimal: each node v that has received the message, broad-
casts the message to all its neighbors in every time step. Tight bounds on general
graphs are due to Chlebusz, Diks, and Pelc:

Theorem 1. [10] Let Gd,k be the class of graphs with diameter d and edge
connectivity at least k + 1. Let, for some class of graphs G, denote T (G) the
worst case broadcasting time in the constant k-bounded model on graphs from G.

For a fixed constant d the following holds. T (Gd,k) = O(k
d
2−1). Moreover,

there exists a class of graphs G′d,k ⊆ Gd,k such that T (G′d,k) = Ω(k
d
2−1).

For a fixed constant k the following holds. T (Gd,k) = O(dk+1). Moreover, there
exists a class of graphs G′′d,k ⊆ Gd,k such that T (G′′d,k) = Ω(k

d
2−1).

A number of special topologies has been investigated within this model. The
broadcasting in complete graphs in constant k-bounded model is completely
solved (together with the case of Byzantine faults) in [46]:

Theorem 2. Let Kn be a complete graph with n vertices. The following holds
for the broadcasting time in the constant k-bounded model in the graph Kn:
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– The broadcasting time equals to 1 if and only if k = 0.
– The broadcasting time equals to 2 if and only if 1 ≤ k < n

2 .

– The broadcasting time equals to 3 if and only if n
2 ≤ k < n + 1

2 −
√
n + 1

4 .

– The broadcasting time equals to 4 if and only if n+ 1
2 −

√
n + 1

4 ≤ k < n−1.
– The broadcasting is impossible if n− 1 ≤ k.

The broadcasting in the constant k-bounded model in tori is discussed in [48]
and [19]. The results from [48] are strengthened in [19] to the following form:

Theorem 3. (Theorem 1 in [19]) Let d, k be integers such that k is even and
one of the following holds:

– k ≥ 6 and d ≥ k + 4
– k ≥ d and d ≥ 10

The d-dimensional torus of order k, denoted as Cd,k, has the edge connectivity
equal to 2d and diameter dk

2 . The broadcasting time in the constant (2d − 1)-
bounded model in Cd,k is equal to dk

2 + 2.

The broadcasting in the constant k-bounded model in hypercubes is considered
e.g. in [18,20,28] and [49]. The results from these papers are summarized in the
following theorem:

Theorem 4. The d-dimensional hypercube, denoted as Hd, is a graph with both
edge connectivity and diameter equal to d. The broadcasting time T (d, k) in the
constant k-bounded model in the graph Hd satisfies the following:

1. If k = d− 1, then T (d, k) =

⎧
⎨

⎩

1 d = 1
3 d = 2
d + 2 d > 2

.

2. If k = d− 2, then T (d, k) =

⎧
⎨

⎩

1 d = 2
3 d = 3
d + 1 d > 3

.

3. If k ≤ d− 3, then T (d, k) = d.

The above results are optimistic in what they claim: the adversary cannot delay
the progress of the algorithm too much. However, it seems that these positive
results are mainly due to the fact that the constant k has to be relatively small4

compared to the number of edges that the algorithm can use during its compu-
tation. Indeed, the lower bounds are based on isoperimetric inequalities: once a
small constant number of vertices are informed, it can be guaranteed that the
edge-boundary of the set of informed vertices is large enough to allow progress.
This is a somewhat unrealistic behavior of the model, since adding more mes-
sages to the network does not introduce new errors; indeed, flooding the networks
with vast amount of traffic is the best solution in this model, although not so
much in real-life networks.
4 At most the connectivity of the graph, in order to grant non-trivial results.
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Hence, a next step was to introduce a model in which the number of faults
could vary during each time step, with the intuition borrowed from the proba-
bilistic models: if every message has a fixed probability p of failure, and there are
m messages sent in a particular step, the average number of delivered messages
is pm. In the fractional α-bounded model, if there are m messages sent during a
particular time step, at most  αm! of them can be lost.

In [41], the performance of the greedy algorithm is analyzed. Contrary to the
constant k-bounded model, the greedy algorithm is not always optimal in the
α-bounded model. However, this algorithm is appealing due to its simplicity and
uniformity.

The main interest of [41] is the following question: In which graphs is the broad-
casting time of the greedy algorithm5 asymptotically equal to the time of the
broadcasting without faults (i.e. to the diameter of the communication graph)?
It is shown that in complete graphs and complete trees this is not the case, but in
the d-dimensional tori for fixed d it is. More precisely, the time of broadcasting on
complete graph Kn increases from Θ(1) to Θ(log n). The following theorems were
stated for α = 1/2 in [41] and generalized to arbitrary α in [42]:

Theorem 5. Let T (n) be the broadcasting time of the greedy algorithm in the
α-bounded model on the complete graph Kn. The following inequality holds:

⌈
log1/α

(
n(1 − α) + α

)⌉
≤ T (n) ≤

⌊
log1/α(n− 1)

⌋
+ 1

The situation in complete trees is similar; e.g. the broadcasting time of the greedy
algorithm on the complete d-ary tree of height h in presence of fractional 1/2-
bounded faults is Ω

(
(d log d− c)

h
d

)
for fixed d and some constant c as opposed

to Θ(h) in a fault-free scenario. The result stated for arbitrary constant α is:

Theorem 6. Consider a complete d-ary tree T
(d)
n of height n. Let A = "1/α#

and a be integer constants such that a ≥ log(A+1)
log d . Let p= logA (1 + (A− 1)da)!.

The broadcasting time in fractional α-bounded model is at least ap�n/a�−1
(p−1)2 .

Unlike complete graphs and complete trees, the broadcasting in fractional α-
bounded model can not be slowed down asymptotically in multidimensional
tori.

Theorem 7. Let d be a fixed integer. The broadcasting time of the greedy algo-
rithm in the fractional α-bounded model on the d-dimensional torus of order k
for an even integer k and fixed d is Θ(k).

Although the greedy flooding algorithm is not optimal in the fractional α-
bounded model, the model exhibits another undesirable property: If there is only
one message sent in one time step, this message is guaranteed to be delivered. In
some cases, the broadcasting algorithm can gain advantage from this unrealistic
5 In the greedy algorithm an informed vertex sends the message to all its uninformed

neighbors in every step.
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feature: the algorithm may identify some “critical” messages and send each of
them in a time step of its own which would guarantee their delivery. This means
that perfect reliability can be traded for time complexity which is not what was
intended when designing the model.

Hence, a modification of the model has been proposed in [16] to avoid this
property. The α-fractional threshold model uses another motivation from the
randomized models: not only the number of faults is proportional to the number
of messages in transit, but there must be enough messages for the statistics to
work, as well. To model this, if the number of messages m sent by the algorithm
in one step is less than the connectivity of the graph,6 all of them may be lost.
Otherwise, at most a fraction α of them can be lost. It is important to note
that the model provides no fault-detection mechanism. If a node sends some
messages, it can not detect which of them have been delivered. For sure, the
destination node can send an acknowledgement in the next time step, but such
acknowledgement is just an ordinary message and can be lost.

Before proceeding to the analysis of the α-fractional threshold model, let us
first focus on its extreme setting when α is infinitely close to 1, i.e. the case where
the adversary has maximum power. In this simple threshold model, at least c(G)
messages7 have to be sent in one time step to guarantee at least8 one delivery.

The motivation for the study of this model is twofold: first, since it is the ex-
treme setting, any algorithm developed for the simple threshold model will work
also for all other settings of fractional thresholds. Second, with an abundance
of models and parameters, it is always useful to pay attention to the extreme
cases in the hope of better understanding of the interplay among various pa-
rameters. Indeed, the simple threshold model can be viewed as an attempt to
find the weakest restrictions to the adversary which still allow broadcasting to
be performed.

The simple threshold model of faults is extremely harsh for any distributed
algorithm. In fact, it is not easy to see if it is possible to perform the broad-
casting in this model at all. However, several surprisingly positive results have
been presented in [16]: Not only it is always possible to finish the broadcast-
ing, but it is possible to do so fast (i.e. in polynomial time) for many
topologies.

The complete overview of the results proven in [16] can be found in Table 1.
The paper deals with rings, complete graphs, hypercubes and arbitrary com-
munication graphs with various topology knowledge. Presented results prove
that the broadcasting can be performed in polynomial time on any communica-
tion graph with edge-connectivity bounded by O(log n), where n is number of
its vertices. Many interesting topologies, such as hypercubes, butterfly graphs,

6 Or some other chosen threshold.
7 Where c(G) is the connectivity of the graph.
8 Note that the “at least” part is important here. Indeed, if it is known that only

one message is delivered, there are cases in which the algorithm may use this addi-
tional information about the adversary to its advantage (e.g. by using it to break
symmetry).
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Table 1. Results about broadcasting time in simple threshold model from [16]. The
communication graph G has n vertices, m edges and is c(G)-edge-connected.

Topology Condition Time complexity

ring n not necessarily known Θ(n)
complete graph with sense of direction O(n2)9

complete graph unoriented Ω(n2), O(n3)
hypercube oriented O(n2 log n)
hypercube unoriented O(n4 log2 n)

arbitrary network full topology knowledge O(2c(G)nm)

arbitrary network no topology knowledge
except c(G), n, m O(2c(G)m2n)

multidimensional tori with fixed dimension, etc., satisfy this requirement. Fur-
thermore, all presented algorithms provide explicit termination, i.e. when the
algorithm terminates at an entity, it will not process any more messages (and,
in fact, no messages should be arriving anyway).

In order to give a flavor of the techniques used, we present here a sketch of the
algorithm for broadcasting in a ring. Even in this very limited scenario, a trivial
algorithm would not work. The ring is a 2-connected network, i.e. c(G) = 2.
Hence, at least two messages must be sent in a time step to ensure that at
least one of them is delivered. Obviously the initiator has to start by sending 2
messages. At least one of then is delivered, but since there is no implicit acknowl-
edgement the initiator does not know which one. Moreover it must avoid sending
a message to an already informed neighbor since in this case the adversary would
deliver this message, and no progress would be made.

For the ease of presentation let us suppose that the size of the ring, n, is known
to the vertices. At any moment of time, the vertices can be either informed or
uninformed. Since the information is spreading from the single initiator vertex
s, informed vertices form a connected component. The initiator splits this com-
ponent into the left part and the right part. Each informed vertex v can easily
determine whether it is on the left part or on the right part of the informed com-
ponent – this information is delivered in the message that informs the vertex v.

The computation is organized in phases where each phase takes four time
steps. Each informed vertex can be either active or passive. A vertex is active
if and only if it has received, in previous phases, messages from only one of its
neighbors. A passive vertex has received a message from both neighbors. This
implies that, as long as the broadcast has not yet finished, there is at least one
active vertex in both left and right part of the informed component (the left-
most and the right-most informed vertices must be active; note, however, that
also some intermediate vertices might be active).

The computation consists of n−1 phases. The goal of a phase is to ensure that
at least one active vertex becomes passive. Each phase consists of the following
four steps:

9 This result can be improved to O(n log n).
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1 3

42

Fig. 1. A sample phase of the ring broadcasting algorithm. The initially active vertices
are squares. In the first step, the only surviving message is delivered to the white vertex
on the left, which then replies in the next step. At the end of the phase, two white
vertices are sending acknowledgement, so at least one acknowledgement is delivered
during that phase.

1. Each active vertex sends a message to its possibly uninformed neighbor.
2. Each active vertex in the right part sends a message to its possibly unin-

formed neighbor. Each vertex in the left part that received a message in step
1 replies to this message.10

3. Same as step 2, but left and right parts are reversed.
4. Each vertex that received a non-reply message in steps 1–3 replies to that

message.

Initially, there are two active (virtual) vertices (the left- and right- part of the
initiator). During each of the subsequent phases, at least one previously active
vertex becomes passive. Since passive vertices never become active again, it follows
that after at most n − 1 phases, there are n − 1 passive vertices. Once there are
n − 1 passive vertices, the remaining two must be informed (both are neighbors
of a passive vertex), i.e. n− 1 phases are sufficient to complete the broadcast.

The previous results were done in the simple threshold model, i.e. in the extreme
case where α is infinitesimally close to 1. In [43], results summarized in Table 2
have been obtained for complete graphs and hypercubes for arbitrary constant α.

Table 2. Results for the broadcasting in the fractional model with threshold from [43]

Scenario Broadcasting time

Kn, unoriented Ω(log n), O(n3)
Kn, sense of direction Θ(log n)
Kn, α � 0.55 Θ(log n)

Hd (n = 2d) Ω(log n), O(n4 log2 n)

5 Other Problems in Fractional Threshold Model

While trying to solve the broadcasting problem, an interesting feature of the
fractional threshold model was pointed out in [43]: Usually it is quite easy to
inform vast majority of the vertices. But to inform the last remaining ones, all
10 Note that passive vertices reply to such message, too.
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informed vertices have to cooperate very tightly, which is often very hard to
achieve. On the other hand, it is often vital to finish the broadcasting communi-
cation task fast, even subject to some small error. These facts give a motivation
to study a natural relaxation of the broadcasting problem in which we allow a
small constant number11 c of vertices to stay uninformed in the end. We call such
relaxation the almost-complete broadcasting problem. In [43] it was shown that
the almost complete broadcasting can be solved in time O(log n) for complete
graphs and O(log2 n) for hypercubes.

In [17], the problem of leader election on rings has been investigated, and an
O(n log n)-time algorithm was developed in the case when all initiators start at
the same time and there is no spontaneous wakeup, and an O(n2) algorithm in
the general case.

6 Conclusion

This research leaves many open questions for further investigation. The line
of the study is directed at specifying how various aspects of communication
faults influence the performance of networks. One can thus consider a number
of communication problems and study them under different models of faults.
Also of interest is the relationship between the almost complete and complete
broadcasts in various models.

For the fractional threshold model, non-constant values of α have not been
considered. Results for more general classes of graphs would be beneficial. For
the simple threshold model, one interesting question is whether the broadcasting
can be done in polynomial time on all graphs. One can also try to compare the
time complexity in the simple threshold model with the message complexity of
a fault-free execution.

Another obvious question is to ask if it is possible to perform a complete
broadcast in complete graphs also for large values of α in polylogarithmic time.

We finish by noting that there is a lack of any non-trivial lower bounds in the
model of fractional faults with threshold.
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Abstract. The aim of this paper is to survey the results on dynamic
algebraic algorithms, with main interest in matrix functions such as,
determinant, inverse, rank and characteristic polynomial. First of all we
summary the papers that in dynamic setup these problems can be solved
faster than evaluating everything from scratch. The static complexity
of these problem equals the matrix multiplication complexity, whereas
the presented solutions work in subquadratic or quadratic (character-
istic polynomial) time in the worst case. The dynamic matrix compu-
tations can be used to solve the following graphs problems in dynamic
setup: computing transitive closure, computing shortest paths lengths,
computing maximum matching size and computing vertex connectivity.
For all of these problem the dynamic approach lead to the first known
subquadratic algorithms. Astonishingly, the dynamic matrix algorithms
can be used to obtain efficient static algorithms for the perfect matching
problem as well. Using the O(n2) algorithms for the dynamic matrix in-
verse, one can obtain a very simple randomized algorithm for computing
perfect matchings in O(n3) time. When the fast matrix multiplication is
used, the complexity of this algorithm can be improved to O(nω) time,
where ω is the exponent of the best known matrix multiplication algo-
rithm. Since ω < 2.38, this algorithm breaks through the O(n2.5) barrier
for the matching problem. The interplay between algebraic algorithms
and graphs problems can be explored even further in order to obtain
O(Wnω) time algorithms for single source shortest paths problem and
weighted bipartite matching problem.

1 Dynamic Algebraic Algorithms

Let R = (S,+, ·, 0, 1) be a field with elements from set S and appropriately
defined addition + and multiplication ·. Let f : Sn → Sm be an algebraic
function over this ring. A dynamic algebraic algorithm must handle the following
types of requests:

– initialize(x1, x2, . . . , xn): initialization with an input vector (x1, x2, . . . , xn);
– update(k, x′k): change input k to a new value x′k;
– query(k): return the value of output k.

Our goal is to construct algorithms that support updates and queries as fast as
possible. In particular, the updates must be faster than recomputing everything

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 68–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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from scratch. The initialization time is generally not very important. However,
we also try to make the initialization step as fast as possible.

More specifically speaking, here, we consider the following types of dynamic
matrix problems:

– determinant Rn2 → R: The input is interpreted as an n× n matrix. The
output is its determinant.

– adjoint Rn2 → Rn2
: The input is interpreted as an n × n matrix A. The

output is interpreted as n× n adjoint adj(A) of the input matrix.
– inverse Rn2 → Rn2

, where R is a field: This is a function from non-singular
n × n matrices that maps matrix A into the corresponding inverse matrix
A−1.

– linear system of equations Rn2+n → Rn, where R is a field: This is a
function from non-singular n × n matrices and n dimensional vectors that
maps matrix A and vector b into the solution x to the matrix equation
Ax = b.

– matrix rank Rn2+n → N , where R is a field: This is a function from n×n
matrices that maps matrix A into its rank.

– characteristic polynomial Rn2+n → R[x], where R is a field: This is
a function from n × n matrices that maps matrix A into its characteristic
polynomial.

The first paper that studies dynamic algebraic problems is due to Reif and
Tate [59]. They presented an Ω(n) lower bound for some simple dynamic al-
gebraic problems such as multipoint polynomial evaluation, polynomial recip-
rocal, and extended polynomial GCD. They proved two time-space trade-off
theorems applicable to dynamic algorithms for many algebraic functions. More-
over, they provided some general-purpose design techniques of dynamic algebraic
algorithms. With the use of these techniques, they showed an O(

√
n) time per re-

quest algorithm for dynamic DFT and an O(
√
n logn) time per request algorithm

for polynomial multiplication. They also provided a technique for constructing
parallel algorithms with optimal work.

Other lower bounds for dynamic algebraic problems were shown by Frandsen,
Hansen and Miltersen [17]. They proved an almost tight Ω(

√
n) lower bound for

dynamic polynomial multiplication. They were also able to prove an Ω(n) lower
bounds for the problems of computing determinant, adjoint, inverse, and solving
linear system of equations. Till our paper [65] the best solution to these matrix
problems was the so called Sherman-Morrison formula [71,72]. The Sherman-
Morrison formula allows the recomputation of matrix inverse and determinant
in O(n2) time, whereas the paper [65] presents first subquadratic algorithm for
these problems. Table 1 summarizes some of the known results on dynamic
algebraic problems.

In the paper [65] we assume that the matrix remains non-singular through-
out the updates. The question whereas similar algorithm working with singular
matrix exits was left open. However, algorithms supporting only non-singular up-
dates are sufficient for many applications. Moreover, in order to break through
the O(n2) barrier we need to restrict ourself only to simple operations. We show
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Table 1. Upper and lower bounds for some dynamic algebraic problems. The bounds
are with respect to both update and query operations.

Problem Lower Bound Upper Bound

matrix-vector multiplication
matrix multiplication

Ω(n) [17] O(n) [simple multiplication]

polynomial multiplication Ω(
√

n) [17] O(
√

n log n) [59]

polynomial evaluation Ω(n) [59,17] O(n) [Horner’s algorithm]

DFT Ω( log2 n
log log n

) [17] O(
√

n) [59]

two dimensional DFT Ω( log2 n
log log n

) [17] O(
√

n log n) [59]

polynomial reciprocal Ω(n) [59] O(n log n) [59]

extended polynomial GCD Ω(n) [59] O(n log2 n) [59]

prefix sum O(log n) [20]

matrix adjoint
matrix inverse
determinant
linear system of equations

Ω(n) [59,17] O(n1.495) [65]

matrix rank Ω(n) [18]
O(n1.595) [18]
O(n1.495) [70]

characteristic polynomial
– element operations
– column operations

Ω(n) [19]
Ω(n2) [19]

O(n2 log n) [19]

two trade-off algorithms for this problem. Both algorithms maintain the inverse
in a lazy form, what allows to perform updates faster but increases the query
time. The first algorithm uses O(nω(ε)−ε +n1+ε) operations (worst-case) for up-
dates, O(1) operations to query the determinant and the solution of linear system
of equations, and O(nε) operations to query the adjoint matrix and the inverse.
Here, we denote by O(nω(ε)) the time needed to multiply an n × nε matrix by
nε × n matrix. The second algorithm uses O(nω(ε)−ε + n2ε) operations (worst-
case) for updates, O(1) operations to query the determinant and the solution
of linear system of equations, and O(n2ε) operations to query the adjoint ma-
trix and the inverse. Using the best known bounds on ω(ε) [31] and minimizing
the update cost, we get algorithms supporting updates in O(n1.575)/O(n1.495)
operations and queries in O(n0.575)/O(n1.495) operations.

The problem of handling singular matrices was for the first time solved by
Frandsen and Frandsen [18], who have presented an deterministic O(n1.575)
time algorithm. Latter on, we improved slightly this result by presenting an
O(n1.495) time algorithm [70]. The result is based on a black-box approach that
can turn any dynamic algorithm that assumes non-singularity of the matrix into
an algorithm working without this assumption. However, the reduction comes at
the cost of randomization. By presenting, together with G.S.Frandsen, dynamic
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algorithms for computing characteristic polynomial of a matrix we were able we
have generalized these even more, as the rank and determinant can be computed
via characteristic polynomial computation. Another result that extends the dy-
namic matrix problems in another direction is the paper with M.Mucha [51]
where we show that the update time can be improved to O(nω−1) = O(n1.38)
when the algorithm is allowed some lookahead into the future operations. Such
results might be useful in ,e.g., batch processing.

2 Dynamic Graph Algorithms

A dynamic graph algorithm maintains actual information on a given property P
of a graph subject to dynamic change of the graph. Possible changes include edge
insertion, edge deletion or edge weight update. Any dynamic graph algorithm for
property P should process updates and after each update, it should be able to an-
swer queries onP . In case of dynamic graph algorithms, we say that an algorithm is
incremental if it supports insertions only, and decremental if it supports deletions
only. We maintain a graphG = (V,E) under intermixed sequence of insert(e) and
delete(e) operations, which insert or remove edge e from the graph. Updates of
this type are called edge updates throughout this survey. For the sake of concise-
ness we do not consider other types of updates here.

Additionally to the update operations we consider algorithms that support
one of the following queries:

– test-matching(e): test if an edge e is contained in any perfect matching,
i.e., test if e it is allowed, assuming that G has a perfect matching;

– matching-size: compute the size of the maximum matching in G;
– reachability(v,w): test whether there is a path from v to w in G, i.e.,

compute transitive closure;
– shortest-path(v,w): return the distance between v and w in G;
– k-connected: tests if the graph G is k-vertex connected.

2.1 Dynamic Transitive Closure

The problem of dynamic transitive closure has been studied by many researchers.
The first papers on this subject described only incremental and decremental al-
gorithms [32,34,42,78,29]. In the case of incremental updates, the fastest algo-
rithms were presented by Italiano [34], La Poutré and van Leeuwen [42]. Their
algorithms need O(n) amortized time per insertion and O(1) time per query. The
case of decremental algorithms seems to be inherently harder. An O(n) amor-
tized time algorithm is known only in the case of acyclic graphs. In the case of
general graphs only an O(n2) time algorithm [32] was known till the paper of
Henzinger and King who presented the randomized algorithm with query time
O(n/ logn) and amortized update time O(n log2 n).

The first fully dynamic transitive closure algorithm was given by Subrama-
nian [75]. The algorithm was only limited to planar graphs, whereas Henzinger



72 P. Sankowski

and King [29] where the first to present algorithm for general graphs. They de-
vised a Monte Carlo algorithm with one-sided error, Õ(nm0.58) amortized time
per update, and Θ(n/ logn) time per query. Khanna, Motwani and Wilson [38]
showed that when a lookahead of Θ(n0.18) updates is permitted, there exists a
deterministic algorithm with update time Θ(n2.18). Next, King and Sagert [40]
devised an algorithm for general directed graphs supporting queries in O(1) time
and updates in O(n2.26) time. They also showed an algorithm for acyclic graphs
withO(n2) update time. These bounds were improved by King [39], who presented
a deterministic algorithm with O(n2 logn) amortized update time and O(1) query
time. In [8], Demetrescu and Italiano improved these bounds further by presenting
an algorithm with O(n2) amortized update time and O(1) query time for general
digraphs. Slightly improved result was later presented in [61]. In [8], the authors
also gave the first algorithm with subquadratic update time for directed acyclic
graphs. This algorithm can answer queries in O(nε) time and perform updates in
O(nω(ε)−ε + n1+ε) time, for any ε ∈ [0, 1]. The current best bounds on ω(ε) [31]
imply an O(n0.575) query time and O(n1.575) update time. This subquadratic al-
gorithm is randomized with one-sided error. More recently, Roditty and Zwick [62]
presented an algorithm with O(m

√
n) update time and O(

√
n) query time, and

another [63] with O(m + n logn) update time and O(n) query time. The history
of the problem with algorithm complexities is presented in Table 2.

Table 2. The complexity of fully dynamic transitive closure algorithms

Author Update Query

Subramanian ’93 [75]
(planar graphs)

Õ(n
2
3 ) Õ(n

2
3 )

Henzinger and King ’95 [29] Õ(nm0.58) Θ(n/ log n)

Khanna, Motwani and Wilson ’96 [38]
(with lookahead of Θ(n0.18) operations)

Θ(n2.18) O(1)

King and Sagert ’99 [40] O(n2.26) O(1)
(restricted to DAGs) O(n2) O(1)

King ’99 [39] O(n2 log n) O(1)

Demetrescu and Italiano ’00 [8] O(n2) O(1)
(restricted to DAGs) O(n1.575) O(1)

Roditty and Zwick ’02 [62] O(m
√

n) O(
√

n)

Roditty ’03 [61] O(n2) O(1)

Roditty and Zwick ’04 [63] O(m + n log n) O(n)

O(n2) O(1)
Sankowski ’04 [65] O(n1.575) O(n0.575)

O(n1.495) O(n1.495)

Diks and Sankowski ’07 [12]
(plane graphs)

Õ(
√

n) Õ(
√

n)
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Notice that an update may change Ω(n2) entries of the transitive closure
matrix, and assuming that queries are answered in O(1) time, the bound of
O(n2) worst-case time seems to be the best we can hope for. However, in no
such algorithm has been presented in the above mentioned papers. Moreover,
the algorithms in [8,61] have only amortized time bounds. In dynamic setup, we
are often interested in answering each query in a small worst-case time, therefore
devising such algorithms might be very useful.

Most of the algorithms mentioned above contain (except [39,62,63]) a fast ma-
trix multiplication as a subroutine. However, only the algorithm of Demetrescu
and Italiano [8] explores the equivalence between matrix multiplication and tran-
sitive closure. The algorithm uses explicitly the formula for transitive closure

Ac =
i=n∑

i=0

Ai.

Using algorithms for dynamic evaluation of polynomials over matrices for this
formula, the authors obtained dynamic algorithms for transitive closure. In the
paper [65] we actually use a similar technique, that uses the informal observation

(I −A)−1 %
∞∑

i=0

Ai % Ac.

Actually prove, via randomization, that A can be chosen in such a way that (I−
A)−1 encodes transitive closure with high probability. More general observations
have been made in [55,6] for the case of vertex connectivity. Now, the transitive
closure can be computed by inverting an appropriately defined adjacency matrix
of the graph. Thus, algorithms for dynamic matrix inverse can be directly applied
to the problem of dynamic transitive closure. Edge updates of the graph are
translated into element updates of the matrix. The reduction is randomized
with one-sided bounded error and gives the first algorithm with O(n2) worst-case
update time and O(1) query time. We also have shown two algorithms breaking
the O(n2) barrier for general directed graphs. The first one achieves O(n1.575)
update time and O(n0.575) query time, and generalizes the result from [8] for
DAGs. The second one has even faster O(n1.495) update time at the cost of
much higher O(n1.495) query time. Additionally, the results from [51] can be
used in order to obtain faster algorithms when some information about the
future operations is possible. In order to keep the story of the problem complete,
one has to mention that, very recently, the complexity of the dynamic transitive
closure problem in plane graphs has been improved to Õ(

√
n) [12].

2.2 Dynamic Shortest Paths

The study of algorithms for dynamic maintenance of shortest paths was
started more than 35 year ago [44,54,60]. Since then many algorithms with
times comparable to evaluating everything from scratch have been proposed
[15,21,22,57,58,64]. The first decrease-only algorithm was proposed by Ausiello
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et al. [1]. The algorithm worked for graphs with integer weights less than some
integer C and needed O(Cn log n) amortized time per edge insertion.

Next, two dynamic algorithms for planar graphs have been developed. Hen-
ziger et al. [30] developed an O(n

4
3 log(nC)) time algorithm in the case of inte-

ger weights. The second algorithm was proposed by Fakcharoemphol and Rao in
[16] who showed how to support queries and updates in O(n

4
5 log

13
5 n) amortized

time.
The first fully dynamic algorithm for general graphs in the case of inte-

ger weights was presented by King [39]. The running time of the algorithm is
O(n2.5

√
C logn) per update. In the case of real edge weights similar results was

obtained by Demetrescu and Italiano in [9,10]. They assumed that there are at
most S different real edge weights and obtained an algorithm supporting updates
in O(n2.5

√
S log3 n) time and queries in constant time. They also presented two

families of trade-off algorithms that have smaller update time but at the cost of
bigger query time. In the case of unweighted graphs, Baswana, Hariharan and
Sen [2] developed simpler deletion only algorithms. The final step in obtaining
Õ(n2) update time was made by Demetrescu and Italiano in [11]. This result was
generalized to graphs with negative weights by Thorup [76], who additionally
one year latter presented algorithm working in Õ(n2.75) worst-case time [77].
The summary of the results is presented in Table 3.

Table 3. The complexity of fully dynamic shortest paths algorithms

Author Update Query

Henzinger et al. ’97 [30]

(planar graphs) O(n
4
3 log(nC)) O(n

4
3 log(nC))

Fakcharoemphol and Rao ’02 [16]

(plane graphs with positive weights) O(n
2
3 log

7
3 n) O(n

2
3 log

7
3 n)

(plane graphs with negative weights) O(n
4
5 log

13
5 n) O(n

4
5 log

13
5 n)

King ’99 [39] O(n2.5√C log n) O(1)

Demetrescu and Italiano ’00 [9] O(n2.5
√

S log3 n) O(1)

Demetrescu and Italiano ’03 [10] Õ(n2) O(1)

Thorup ’04 [76]

(with negative weights) Õ(n2) O(1)

Thorup ’05 [77] Õ(n2.75) (worst case) O(1)

Sankowski ’05 [68]
(unweighted graphs) O(n1.932) (worst case) O(n1.288)

The shortest paths problem is harder than the transitive closure problem.
Similarly to the transitive closure problem, assuming O(1) queries, the bound of
O(n2) on the worst-case time for updates seems to be the best we can hope for.
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Thus, it is interesting to know if allowing greater query time one can reduce the
update time below O(n2).

In the paper [68], using extension of the algorithm for dynamic matrix in-
verse to rings, we have developed an algorithm for computing lengths of the
shortest paths with at most k edges. This algorithm, combined with the stan-
dard technique of path decomposition, gives an algorithm supporting updates in
O(n1.932) time and queries in O(n1.288) time. This result resolves the open ques-
tion (see e.g. [9,10,11]) whether there exist algorithms with sub-quadratic update
and query times. The problem of dynamic single source shortest distances seems
inherently simpler than dynamic all pair shortest distances, but till that pa-
per the best solution for this problem was evaluating everything again from the
scratch, and this takes O(n2) time. Hence, we have also resolved the question
whether more efficient algorithms for this problem exist. However, our result is
only of theoretical importance, the Õ(n2) algorithm from [11] is surely practically
more efficient.

3 Dynamic Graph Connectivity

In order to obtain the solution to the vertex connectivity, we have to extend
the results from [65] to support so called rank one updates. In the rank one
updates we are given two n dimensional vectors a and b and want to update
the matrix A to A + abT . Using this extension we device new algorithm that
allows to maintain information about determinants of submatrices of the matrix
and then combine it with the ideas from [55] and [6] to obtain dynamic algo-
rithms for k-vertex connectivity. The resulting algorithm supports edge updates
in O(n1.575 +nk2) time. This means that for constant k the graph can be tested
for directed vertex k-connectivity as fast as for strong connectivity (using dy-
namic transitive closure algorithms). The asymptotically fastest algorithms for
static connectivity are summarized in Table 4. Our algorithm for testing con-
nectivity improves in dynamic case substantially over these results even in the
undirected case.

Table 4. The complexity results for the k-vertex connectivity

Author Complexity

Linial, Lovász and Wigderson [55]

(undirected) Õ(nω + nkω)

Cheriyan and Reif [6] Õ(nω + nkω)

Gabow [23] O((k5/2 + n)m)

O((k + n1/4)n3/4m)

(undirected) O((k5/2 + n)kn)

O((k + n1/4)kn7/4)
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4 Matchings in Graphs

The algorithms for maintaining matrix inverse dynamically can be directly ap-
plied to the problems of testing if an edge is allowed in a graph having a perfect
matching. We simply need to use the result of Rabin and Vazirani [56]. They
showed that the inverse matrix of the adjacency matrix encodes allowed edges
in the graph. This allows us to construct two algorithms:

– the first one supporting queries in O(n2) time and updates in O(1) time,
– the second one supporting queries in O(n1.575) time and updates in

O(n0.575) time.

The same idea can be used with the algorithms for computing matrix rank [70]
in order to compute maximum matching size in dynamic graphs in O(n1.575)
time per update.

These algorithms can be used to construct a very simple algorithm for comput-
ing perfect matchings in graphs in O(n3) time, or a more complicated one that
finds perfect matchings in O(n2.575) time. This approach has been explored more
deeply by the author in the papers with Marcin Mucha [49,48], where two algo-
rithms were shown: an O(nω) time algorithm for finding maximum matchings in
general graphs and an O(n

ω
2 ) time algorithm for finding maximum matchings in

planar graphs. In the case of dense graphs, these results improve over the fastest
previously known algorithms of Micali and Vazirani [45], Blum [4], and Gabow
and Tarjan [26], that worked in O(

√
nm) time. In the case of planar graphs

the situation is more complicated as the perfect matchings in planar graphs can
be found in Õ(n) time by combining the result of Miller and Naor [46] with
the result of Fakcharoenphol and Rao [16]. However, in order to find maximum
matchings or matchings in general planar graphs we need to use O(n

3
2 ) time

algorithm of Liption and Tarjan [43] or solve the problem with the same com-
plexity by applying the solutions for general graphs. Latter on, a parallel NC
algorithm that does the some work as the algorithm from [49] was presented by
the author in [66]. One has to note that in the case of general graphs the solution
from [49] is rather complicated and a very interesting and simple algorithm with
the same complexity was presented by Harvey [28].

5 Weighted Problems

The Single Source Shortest Paths (SSSP) problem is one of the most funda-
mental problems in combinatorial optimization. Let us focus on the case when
negative weights are allowed but no negative weight directed cycles. In this case
the first algorithm for SSSP problem was proposed by Shimbel in 1955 [73].
Some years later, the so called, Bellman-Ford method was developed in the pa-
pers [35,3,47]. The Bellman-Ford algorithm is strongly polynomial, i.e., its time
complexity does not depend on the weights in the graph. Thirty years later
three scaling algorithms were developed [24,25,27]. The fastest of them is the
algorithm of Goldberg. It works only in the case of integer edge weights from
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the set {−W, . . . , 0, . . . ,+∞}, and its time complexity depends on logW . This
algorithm works faster than the Bellman-Ford method under the similarity as-
sumption, i.e., when W = O(poly(n)). The complexity results for the SSSP
problem with negative edge weights are summarized in Table 5.

Table 5. The complexity results for the SSSP problem with negative weights. The
bold font indicates an asymptotically best bound in the table.

Complexity Author

O(n4) Shimbel (1955) [73]

O(n2mW ) Ford (1956) [35]

O(nm) Bellman (1958) [3], Moore (1959) [47]

O(n
3
4 m log W ) Gabow (1983) [24]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [25]

O(
√

nm log(W )) Goldberg (1993) [27]

Õ(nωW ) Sankowski [67] and Yuster and Zwick [79]

In the paper [67] we have shown how the matrix multiplication can be used to
obtain algorithm for the SSSP problem in the case of integer edge weights from
the set {−W, . . . , 0, . . . ,+W}. The algorithm works in time Õ(Wnω), where ω
is the matrix multiplication exponent, remember that the best known bound on
omega is ω < 2.376 given by Coppersmith and Winograd [7]. Hence, our result
improves upon the previous fastest algorithms in the case of dense graphs with
small integer weights. The same complexity result for the SSSP problem has
been obtained independently by Yuster and Zwick [79]. Their result is based
on a distance oracle that after Õ(Wnω) preprocessing time can answer distance
queries in O(n) time.

Similar ideas that were used in the case of shortest paths problem can be
applied to solve weighted bipartite maximum matching problem. The first algo-
rithm for this problem was proposed in the fifties of the last century by Kuhn [41].
His result has been improved several times since then, the results are summarized
in the Table 6.

In the above summary there are no algorithms that use matrix multipli-
cation. However, in the papers studying the parallel complexity of the prob-
lem [37,52], such algorithms are implicitly constructed. These results might
lead to O(Wnω+2) sequential time algorithms. In the paper [69] we improve the
complexity by factor of n2. The improvement in the exponent by 1 is achieved
with use of the very recent results of Storjohann [74], who had shown faster
algorithms for computing polynomial matrix determinants. This result was used
in the case of shortest paths as well. Further improvement is achieved by a novel
reduction technique, that allows us to reduce the weighted version of the problem
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Table 6. The complexity results for the bipartite weighted matching problem. The
bold font indicates an asymptotically best bound in the table.

Complexity Author

O(n4) Khun (1955) [41] and Munkers (1957) [53]

O(n2m) Iri (1960) [33]

O(n3) Dinic and Kronrod (1969) [13]

O(nm) Edmonds and Karp (1970) [14]

O(n
3
4 m log W ) Gabow (1983) [24]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [25]

O(
√

nmW ) Kao, Lam, Sung and Ting (1999) [36]

O(nωW ) Sankowski (2006) [69]

to unweighted one. The unweighted problem is then solved with use of the O(nω)
time algorithms developed last year by Mucha and Sankowski [50].

6 Conclusions

The summary of these results might seem as a story of success. It is indeed true that
algebraic approach lead to some new solutions. However, still many open problems
remain unsolved. Some of the more important include the following questions:

– Can one close the complexity gap between dynamic shortest paths and tran-
sitive closure?

– Can we find maximum weighted matchings in general graphs in matrix mul-
tiplication time?

– Can one dynamically compute characteristic polynomial in subquadratic
time?

– Can one find perfect matchings in NC2 on O(nω) processors?
– Is there a way to speed up maximum flow computations using matrix

multiplication?
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Abstract. Question/Answer games[3] (Q/A games) are a generalization
of the game introduced in [1,2]. They are motivated by the classical game
of twenty questions and are a generalization of Rényi-Ulam Game. A k-
round Q/A game, G = (D, (q1, . . . , qk)), is played on a rooted directed
acyclic graph, D = (V, E). In the i-th round, Paul selects a set, Qi ⊆
V , of at most qi non-terminal vertices. Carole responds by choosing an
outgoing edge from each vertex in Qi. At the end of k rounds, Paul
wins if Carole’s answers define a unique path from the root to one of the
terminal vertices in D. Arbitrary Q/A games are known to be PSPACE-
complete[3], and k-round games are known to be Σ2k−2-complete[4]. In
this paper we study Q/A games on two classes of graphs, towers and
pyramids, respectively. We completely solve the problem of determining
the winner for Q/A games on towers. We also solve an open problem
on Q/A games on pyramids from [1,2]. Furthermore, we give some non-
trivial lower and upper bounds for the rest of the cases for Q/A games
on pyramids.

1 Introduction

A Question/Answer game[3] (or Q/A game for short) is a perfect information
game that is played between two persons Paul and Carole. Q/A games can
be considered as a model for resource-bound information extraction in parallel,
where the amount of information that can be probed is limited.

A Q/A game is played on a rooted acyclic digraph. The game consists of
k rounds, and in each round Paul inquires about some vertices; for each such
vertex, v, Carole replies with an out-going edge from v. Paul wins the game if
after k rounds, Carole’s answers form a unique path, starting from the root and
ending at a terminal vertex.

In the next subsections we give the definitions and provide the motivation and
a brief history of the problem. In Section 2 we solve the Q/A games on towers. In
Section 3 we define the notion of reducing one game to another. These reductions
help us in proving some lower bound results. In Section 4 we study Q/A games
on pyramids.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 83–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1.1 Definitions

In this paper all the graphs mentioned will be rooted, directed and acyclic. A
terminal vertex is defined as a vertex with out-degree zero. A vertex that is
not a terminal vertex is called an internal vertex. Let G = (V,E) be a directed
graph, then the out-neighborhood of the vertex v in G is defined as N+

G (v) =
{w| (v, w) ∈ E}. Formal definitions of graph theoretic concepts can be found in
any standard graph theory text; for example [5].

Formally, a Q/A game, G = (D, (q1, . . . , qk)), is defined on a rooted directed
acyclic graph, D = (V,E). The game is played in k rounds and Paul is allowed to
ask at most qi questions in the i-th round. If the maximum number of questions
in each round is the same; that is, q = q1 = q2 = · · · = qk, then we may denote
the game by G = (D, q, k).

In the i-th round, Paul chooses a subset, Qi, of internal vertices such that
|Qi| ≤ qi. If v ∈ Qi, we say that Paul inquires or asks about the vertex v. Carole
chooses an outgoing edge (v, f(v)) for all v ∈ Qi. We say that she responds by
f(v) or Carole points or leads v to f(v). The goal in the game for Paul is to
find a unique path, defined by Carole’s answers, from the root to one of the
terminal vertices. If he is able to identify such a unique path in k rounds, he
wins; otherwise, Carole wins.

Consider a Q/A game in progress. We call a vertex v reachable, if there exists
a path from the root to v that is “consistent” with Carole’s answers. An internal
vertex v is called open, if it is reachable and Paul has not inquired about v. A
vertex v is called the pseudo-root, if v is open and all predecessors of v are not
open. For simplicity, assume that Paul never repeats a question (or equivalently
we can require that Carole, once having chosen an outgoing edge from a vertex
v, consistently chooses the same edge when re-inquired about v).

An n-level, w-tower, Tw
n , consists of n + 1 levels where the vertices on the

first n levels are the internal vertices. Level 0 consists of the root vertex which
is labeled (0, 0). For 1 ≤ i ≤ n, level i has w vertices labeled (i, 0), . . . , (i, w− 1).
Each vertex (i, j) has w outgoing edges to (i + 1, 0), (i + 1, 1), . . . , (i + 1, w − 1)
for all i < n. Note that only the vertices on the n-th level are terminal vertices.
A Q/A game on a tower can be described as Gt = (Tw

n , (q1, . . . , qk)).
Similarly, an n-level pyramid, Pn, consists of n + 1 levels. Level 0 consists of

the root vertex which is labeled (0, 0). The i-th level, for i ≤ n, consists of i + 1

(0,0)

(1,1)

(2,2)(2,1)

(1,0)

(2,0)

(3,1) (3,3)(3,2)(3,0)

(4,0) (4,1) (4.2) (4,3) (4,4)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0) (4,1)

(3,1)

(2,1)

(1,1)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0) (4,1)

(3,1)

(2,1)

(1,1) (1,2)

(2,2)

(3,2)

(4,2)

Fig. 1. Towers T 2
4 and T 3

4 , and pyramid P4
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vertices. The vertices on the i-th level are labeled, (i, 0), . . . , (i, i). Each vertex
(i, a) on the i-th level is connected to two vertices (i + 1, a) and (i + 1, a + 1)
in i+ 1-st level. Note again that only the vertices on the n-th level are terminal
vertices. A Q/A game on pyramid can be described as Gp = (Pn, (q1, . . . , qk)).
In fact, the Q/A games studied in this paper are of the form Gp = (Pn, q, k);
that is, the number of questions are same in each round.

We denote the t-th triangular number by Δt; that is, Δt = t(t+1)
2 . We say

that q = Δt + δ, where t is the largest number such that Δt is smaller than q;
for example, if q = 7 then t = 3 and δ = 1. We define the t-th tree number, Tt,
as 2t − 1.

1.2 Motivation and Previous Work

It is interesting to compare Q/A games with the Rényi-Ulam game[7] and the
classical Twenty Questions. The comparison is discussed in [3,4].

Originally, the Q/A game was defined as Chaudhuri’s game on a mesh, or
pyramid, to study how much information could be extracted in parallel on a
grid. However, an easier version of the game played on complete binary trees
was solved in [1,2]. Almost all the questions regarding the original Q/A game
on the pyramid remained unsolved. By solving the game, we mean that given
a description of a Q/A game, one can tell in polynomial time if Paul wins the
game or not. In [1,2] it was shown that given a Q/A game on an n-level binary
tree, Tn, Paul wins (Tn, (q1, . . . , qk)) if and only if

∑k
i=1 log2(qi + 1)! ≥ n.

Determining the winner of Q/A games on arbitrary graphs and arbitrary num-
ber of rounds, even with 2 questions in each round, is PSPACE-complete[3,4].
Q/A games with fixed number of rounds capture all the even levels of polynomial-
time hierarchy, as it was shown in [4] that determining if Paul wins a k-round
Q/A game is Σ2k−2-complete. Odd levels of polynomial-time hierarchy can also
be captured by an extended version of the game[6].

2 Q/A Games on the Towers

We have defined Q/A games on towers as Gt = (Tw
n , (q1, . . . , qk)). In this section,

we will assume that such a Gt is in progress with w ≥ 2. The proof of the
following theorem follows from Lemma 1 and Lemma 3.

Theorem 1. Paul wins Gt if and only if
∑k

i=1(qi + w − 1) ≥ wn. �

Lemma 1. Let T̂w
n denote a tower in which z < w questions on the last level

of Tw
n are already answered. If

∑k
i=1(qi + w − 1) ≥ wn − z then Paul wins

Ĝt = (T̂w
n , (q1, . . . , qk)).

Proof. We use induction on k. For k = 1, the lemma is easy to verify. For the
induction step, consider the strategy in which Paul always asks the pseudo-root
and asks the remaining questions on the open vertices as deep as possible (see
Fig. 2). We can write q1 − 1 + z = wj + t where t < w. After the first round, the
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number of remaining questions satisfies
∑k

i=2(qi +w−1) ≥ wn−z−q1−w+1 =
w(n−(j+1))− t. We note that in the remaining game j+1 levels have collapsed
and t questions are answered on the last level. Hence the lemma follows by
induction. �

Consider a Q/A game, Gt, on Tw
n , after i rounds. We say that Gt is in a standard

position if for all vertices, (a, b), that are not open, f((a, b)) = (a + 1, b). In
other words, in a standard position, all the answered vertices point directly
downwards. For such vertices (a, b), define λ((a, b)) to be the maximum λ such
that (a, b), (a + 1, b), . . . , (a + λ, b) are all answered. We define the weight of a
standard position to be wm − z, where m is the number of levels in the graph,
counted from the pseudo-root, and z is the number of answered questions.

Lemma 2. Let Gt be in a standard position after i rounds, with weight W .
Suppose Paul asks any q questions in the next round. Carole can answer the
questions in such a way that Gt is in a standard position after the next round.
Furthermore, the weight, W ′, of the new position satisfies W ′ ≥ W − q−w + 1.

Proof. We assume that the vertices of the tower are relabeled so that the pseudo-
root is labeled (0, 0). For q = 1, if Paul inquires about the pseudo-root, Carole
finds a vertex, (1, b), on level one that minimizes λ((1, b)) and points the pseudo-
root to (1, b). It is easy to see that in this case the next position is a standard
position. Furthermore, the new position has weight at least W − z. On the other
hand, if Paul inquires about any other vertex, (a, b), Carole simply points it to
(a + 1, b). In this case, we note that the new position has weight W − 1.

If q > 1, we observe that Paul must have asked at least q − 1 questions that
are not about the pseudo-root. By ordering the questions in such a way that the
question about the pseudo-root is the last question, Carole answers the vertices
one by one using the strategy described above for answering a single question.
Since at least q − 1 questions are not about the pseudo-root, the weight loss is
at most one for these q − 1 questions. The last question can incur a loss of at
most w. This shows that W ′ ≥ W − q − w + 1. �

Lemma 3. If
∑k

i=1(qi + w − 1) < wn then Carole wins Gt.

? ?

????

?

t nodes

s nodes

Fig. 2. A partially played T 4
5 and the strategy given in Lemma 1
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Proof. The initial position has weight wn and is a standard position. If Carole
uses the strategy given in Lemma 2, in each round, the weight of the game after
k rounds is at least nw −

∑k
i=1(qi + w + 1) ≥ 1. The Lemma follows from the

observation that if the game ends in a standard position with positive weight
then Carole wins. �

We apply these results on Q/A games on T 2
n with q questions in each round to

get the following useful theorem.

Corollary 1. Paul wins on G = (T 2
n , q, k) if and only if k ≥ 2n

q+1 . �

3 Reductions

Let D1 = (V1, E1) and D2 = (V2, E2) be two directed graphs with roots s1 and
s2 respectively. In this section we describe how to reduce D1 to D2, such that,
for a given question vector (q1, . . . , qk), Carole can use any strategy devised for
a Q/A game on D2 and use it to obtain a strategy for a game on D1.

We say that (D1, s1) is reducible to (D2, s2) if there is a function λ : V1 �→ V2

such that λ(s1) = s2 and

N+
D1

(v) ∩ λ−1(y) �= ∅ for all y ∈ N+
D2

(λ(v)). (1)

To understand the condition (1) intuitively, consider D1 and D2 from Carole’s
point of view. Suppose Paul presents her with a question v. She has to choose
an answer in N+(v). She maps the question v to λ(v) via the reduction and
pretends that the game is being played on D2. Thus she pretends that Paul has
inquired about λ(v). Any strategy that she can use on D2 will give her an answer
y ∈ N+(λ(v)). In order for her to “pull back” this answer to D2 she must have
a vertex in N+(v) that is mapped to y.

Theorem 2. Let (D1, s1) be reducible to (D2, s2). Then for all question se-
quences (q1, . . . , qk), if Carole wins G2 = (D2, (q1, . . . , qk)) then Carole wins
G1 = (D1, (q1, . . . , qk)).

Proof. Let S be a winning strategy for Carole for G2. We define a winning
strategy S′ for Carole for G1. Every time Paul presents a set of questions to
Carole, she maps the vertices of the D1 to those of the D2 via λ. Then she
pretends that she is playing the game on D2 and uses S.

Formally, in each of the i-th round, when Carole is presented with a set of
questions Qi,1, she computes Qi,2 = {λ(v) : v ∈ Qi,1}. Note that |Qi,2| ≤ |Qi,1|
and she can find answers to all the questions in Qi,2 using S.

Fix any v ∈ Qi,1 and let w = λ(v). Let y = f2(w) ∈ N+(w) be the answer
to w obtained by using strategy S. Since N+(v) ∩ λ−1(y) �= ∅ Carole sets f1(v)
to some vertex in N+(v) ∩ λ−1(y) arbitrarily. This describes S′. Now, we have to
show that it is a winning strategy for Carole.

Consider the game after i rounds. We argue that if P is a path from the root
in D2 to any vertex that is consistent with Carole’s answers then there is a path
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P ′ that is consistent with Carole’s answers in D1 such that λ(P ′) = P. To see
this, note that the result is trivial for paths of length 0 since λ(s1) = s2. For the
induction step, let s2 = v1, . . . , vk be a path of length k in D2 that is consistent
with Carole’s answers. By induction on k, there exists a path s1 = w1, . . . , wk−1

that is mapped to s2 = v1, . . . , vk−1. Thus all we have to do is to find a wk ∈ V1

such that λ(wk) = vk and the path s1 = w1, . . . , wk is consistent in D1. However,
condition (1) and the strategy S′ exactly allow us to do this. More precisely, if
wk−1 is inquired about, then we let wk be the vertex where Carole points wk−1 to
when she uses S′. In case wk−1 is not inquired about, then we can let wk be any
vertex in N+(wk−1) ∩ λ−1(vk−1). In both cases it is clear that s1 = w1, . . . , wk

is consistent with Carole’s answers.
The theorem follows from the observation that if P1 and P2 are two distinct

consistent paths in D2, then there exist paths P ′1 and P ′2 that are consistent in
D1. It is easy to see that P ′1 and P ′2 must also be distinct. �

4 Q/A Games on Pyramids

We now discuss the Q/A game on an n-level pyramid, Gp = (Pn, q, k). The game
consists of k rounds with q questions per round. Gp admits a “natural strategy”
for Paul when q is a triangular number, Δt. In each round, Paul asks all the
questions on the topmost t levels (0, . . . , t − 1) of Pn. After getting Carole’s
answers he knows the first t vertices on the path. The game is now reduced to
finding a path in Pn−t. This way he can finish the game in "n

t # rounds.

Theorem 3 (Chaudhuri[1,2]). Paul wins (Pn, Δt, k) if k ≥ n
t . �

Triangular numbers, Δt, seem to behave in similar way as tree numbers, Tt,
behave on a Q/A game on a complete binary tree. There is, however, a clear
difference in the two games as pointed out in [1,2]. In a Q/A game on a complete
binary tree, two questions per round are no better than one question per round,
in both cases Paul gains only two levels in two rounds. However, Paul gains
three levels in two rounds in a Q/A game on a pyramid, as shown in Fig.3. The
optimality of this strategy was questioned in [1,2]. We show that not only is this
strategy optimal for q = 2, natural strategy discussed above is also optimal for
the first two triangular numbers; that is for q = 1 and q = 3.

We show that not only is this strategy optimal for q = 2, natural strategy
discussed above is also optimal for the first two triangular numbers; that is for

Answers to the first round questions

Questions asked in the first round

Questions asked in the second round

Fig. 3. Paul’s strategy for q = 2
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(a) (b)

Fig. 4. Questions asked by Paul in the first round for strategy when q = 5

q = 1 and q = 3. If we play the game where Paul is allowed to ask four questions
per round, the strategy is quite surprising. In the best strategy we are aware
of for q = 4, Paul asks three questions on the first two rows of the pyramid,
and asks the fourth question on the 11-th row. We can show using brute force
analysis that Paul can gain 11 levels in five rounds. However, we are not aware of
a simple description for such strategy. For q = 5, the strategy shown in Fig. 4(a)
looks quite intuitive. If the number of levels, n, in the Pyramid is large, Paul
requires 2

5 rounds to gain a level, as no matter what vertex on the third level
is the pseudo-root after the first round, Paul has enough questions to collapse
three levels in the second round.

However, if in the first round Paul asks the questions shown in Fig. 4(b), he
can ask the fifth question on the 316-th level. As we show later, he can not only
gain five levels after every two rounds, he would gain an extra level in the 126-th
round. In this case, Paul requires 2

5+ 1
63

rounds to gain a level, on the average.
Table 1 shows some best known bounds for Q/A games on pyramids. Some

strategies to obtain these bounds are discussed in the following sections.

4.1 Lower Bounds

In this section we provide a lower bound on the number of rounds that Paul
requires to win a Q/A game. Using the reductions defined in Section 3 we can
show that:

Theorem 4. If Carole wins (T 2
n , q, k) then Carole also wins (Pn, q, k).

Proof. We can “wrap” the pyramid around the tower. Formally, let us define the
reduction function λ : V (Pn) → V (T 2

n) as λ(i, j) = (i, j mod 2). It is not hard to
see that Carole can use her winning strategy for the game on tower to answers
Paul’s questions on the pyramid and win. �

Theorem 4 and Corollary 1 immediately provide us with a lower bound on the
number of rounds that Paul requires to win a game Gp = (Pn, q, k).

Table 1. Paul’s progress with the best known strategies for Q/A games on pyramids

No. of questions per round 1 2 3 4 5 6

No. of levels gained per round 1 3/2 2 11/5 316/126 3
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Theorem 5. Carole wins (Pn, q, k) if k < 2n
q+1 . �

Applying these lower bound for the case q = 1, q = 2 and q = 3, we see that
the strategies discussed earlier are optimal, resolving an open question that was
posed in [1].

Theorem 6. Given a game Gp = (Pn, q, k), for q ∈ {1, 2, 3}, Paul wins Gp if
and only if k ≥ 2n

q+1 . �

4.2 Some Strategies for Paul

When q is a triangular number; that is, q = Δt for some t, the natural strategy
described above appears to be optimal. However the proof of its optimality is
only known for q = Δ1 = 1 and q = Δ2 = 3. This leads to the following open
problem.

Problem 1. Is the bound given in Theorem 3 tight for all q = Δt?

On the other hand, one can ask what happens if k is not a triangular number.
No optimal strategies are known in these cases except for when q = 2, as shown
earlier. Lower bounds for Q/A games on pyramids, Gp = (Pn, q, k), provided by
Theorem 5 do not seem to be tight when q > 3. This leads to another interesting
problem.

Problem 2. Devise optimal strategies for Paul when q = Δt + δ where 0 < δ ≤ t.

Taking Advantage of One Extra Question
Let q = Δt + 1. In this section we devise a strategy (Algorithm 1) for Paul so
that Paul can take advantage of this extra question in the long run.

At the beginning of the algorithm, we consider the B-th row where B =
t(2t+1 − 1) − 1. We divide the B-th row into 2t+1 − 1 blocks of t vertices each;
formally, i-th block ={(p,B) :  p+1

t ! = i}. The algorithm proceeds in t + 1
phases, 1, . . . , t, t + 1. The j-th phase consists of 2t−j+1 rounds.

We now describe Paul’s strategy for the first t phases. In each round, he
asks Δt questions in the top t rows (just like in the natural strategy described
earlier), and asks the extra question on the B-th level. After every round, t
vertices become unreachable at the B-th level so number of reachable blocks is
reduced by one. After every phase he makes sure that in each block, the number
of questions asked is increased by one, so after the completion of t phases, all
the reachable vertices on the B-th level are answered, and he is able to collapse
the graph by one extra level. We will call a block marked for phase j, if Paul
has already asked a question in that block, during the j-th phase.

Note that, after every round, the marked blocks are consecutive. Also, af-
ter every round, t vertices at the edges of B-th level become unreachable.
These vertices are always in the unmarked block, except perhaps in the last
round.
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B := t(2t+1 − 1) − 1;
foreach j = 1 . . . t do

divide the reachable vertices on the B-th row in blocks labeled
1 . . . (2t−j+2 − 1) of t consecutive vertices each;
unmark each block;
foreach round i = 1 . . . (2t−j+1) do

Ask Δt question in the top t rows;
x := block below the pseudo-root. If the pseudo-root lies above the
boundary of two blocks, pick the one on the right as a convention. If the
one on the right is already marked, pick the one on the left;
if x already is marked then

x := unmarked block that is nearest to x;
end
ask the right most question in the block x;
mark x;

end
end

Algorithm 1. Paul’s strategy for the first t phases when q = Δt + 1

Lemma 4. After the j-th phase, in each reachable block there are j answered
questions, in the same pattern.

Proof. The proof is by induction on j. The base case is trivial, because before
the first round, when j = 0, the blocks are identical with no question answered.
Let us assume that after j − 1 phases, the claim holds and all the block have
j − 1 questions asked in the same pattern. In each round of the j-th phase we
ask the right most unasked vertex in the each block that falls either below the
pseudo-root, or is the unmarked block nearest to the block below the pseudo-
root. In this way all the blocks that are being asked in this phase will have the
same pattern of asked vertices in them. Now let us assume that after the phase
ends, the first reachable vertex in the B-th row is b vertices from the left edge
of the block it is contained in. Let a = t− b. When we recreate the blocks before
the next phase, the pattern is simply rotated by b vertices to the right (Fig. 5).

b a ba b

t t t t
new blocks

2t−j+1 blocks

pseudo-root after the jth phase

a b ab a

Fig. 5. Relabeling of the blocks after a phase
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0-th row

phase 1

phase 2

phase 3 · · · t − 1
t(2t−1 − 2) rows

t(2t−1) rows

t(2t) rows

t-th row

phase t 2t rows

1-st block 2t+1 − 1-th blockB-th row

Fig. 6. Q/A game on Pyramid, where q = Δt + 1

The new blocks would contain b vertices from one block followed by a vertices
from the block on its right. �

Note that after the j-th phase of 2t−j+1 rounds, the number of reachable vertices
in B-th level are reduced by 2t−j+1 from t(2t−j+2 − 1) to t(2t−j+1 − 1). Hence,
after j = t phases, t vertices are reachable and they are all answered by Lemma 4.

Theorem 7. Paul wins Gp = (Pn, Δt + 1, k), if k ≥ n
t+ 1

2t+1−1
.

Proof. Applying the algorithm described above, all the vertices in the block
below the pseudo-root are answered after the t-th phase. Paul now has enough
questions to ask them on the t − 1 levels starting from the pseudo-root along
with the other t reachable vertices on the B+1-st level, to gain an extra level as
compared to the natural strategy with Δt questions. We note that the number of
rounds required by Paul to gain B+1 levels is k =

∑t+1
j=1 2t−j+1 = 2t+1−1. Paul

gains t(2t+1 − 1) levels in 2t+1 − 1 rounds, therefore he requires k ≥ n
t+ 1

2t+1−1

rounds to win an n level game. �

It is important to remark here that although this algorithm works when q =
Δt + 1, for all values of t, this does not appear to be the most optimal, as
mentioned earlier for the case when q = 4. Instead of asking the extra questions
at the 14-th row, and gain 15 levels in seven rounds, Paul can asks the extra
question on the 11-th row and gain 11 levels in five rounds, that would give him
a better gain. However, the result of Theorem 7 can be easily generalized for
other values of δ. By asking δ questions in a block per round and reducing the
number of phases from t + 1 to "t/δ# + 1.

Theorem 8. Paul wins G = (Pn, Δt + δ, k), if k ≥ n
t+ 1

2α+1−1
, where α = "t/δ#.

�



Question/Answer Games on Towers and Pyramids 93

An m Round Strategy
We now describe a strategy for Paul that give better bounds than Theorem 8,
when δ is large. First we show the strategy for the simplest case.

Theorem 9. Paul wins (Pn, Δt + δ, k) if k ≥ n
t+ 1

2
and δ ≥ 2t+1

3 in case δ is

odd; and δ ≥ 2t+2
3 if δ is even.

Proof. Paul asks Δt questions on the first t levels, and uses the rest of the δ
questions in such a way that they can combine with the q = Δt + δ questions
in the next round to gain an extra level. Paul asks these δ questions in the first
round on the 2t-th row, placing the questions at the vertices located at the center
of the row. Note that, for any pseudo-root on the t-th level, after the first round,
at least

⌊
δ+1
2

⌋
answered vertices will remain reachable on the 2t-th level (Fig. 7).

Paul gains 2t + 1 levels in two rounds if
⌊

δ+1
2

⌋
+ q ≥ Δt+1, by asking the re-

maining δ open questions in the second round. �

Note that there is an odd number of vertices in the 2t-th row. If δ is even, we can
use one of the questions from the first round at the B-th level that is calculated
using a recursive strategy of Δ2t+1 + 1 questions according to Algorithm 1 and
gain a further level after 2(2t+1)+1 − 1 rounds.

We do not know of any strategy to gain m(t+1) levels in m rounds as δ < t+1.
However, we can generalize the strategy above and gain m(t+ 1)− 1 levels in m
rounds, if δ is large enough.

Theorem 10. Paul wins (Pn, Δt + δ, k) if k ≥ n

t+(1− 1
m )

and δ ≥ 2t+1
2

(
1 − 1

m2−m+1

)
.

Proof. In the first round, Paul asks the Δt questions on the first t levels, and
uses the rest of the δ questions on rows l2, . . . , lm, where li = it + i− 2, in such
a way that they can combine with the q = Δt + δ questions in the next m − 1
rounds to gain t + 1 levels in each round.

Paul splits these δ questions in batches of size p such that he asks (i−1) batches
on each of the li-th row, where p = (2(t − δ) + 1). Let us label the batches on

δ

δ+1
2

2t-th row

Fig. 7. Two round strategy where δ is odd
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l2

l3

l4

Fig. 8. Distribution of the δ questions for m = 4 round strategy

each row, li, as p1, . . . , pi−1. The questions in a batch, pj , are asked on vertices
labeled (li, j(t+ 1)− 1 − t+ δ), . . . , (li, j(t+ 1)− 1), . . . , (li, j(t+ 1)− 1 + t− δ),
for each j (see Fig. 8). Now at start of the i-th round, for i = 2, . . . ,m, any
pseudo-root on row number (i− 1)(t + 1) − 1 will have at most δ open vertices
that are reachable on the level li. In the i-th round, Paul asks Δt questions on
the t levels starting at the pseudo-root, and δ questions on the row li to move
down a total of t+1 levels. Note that δ ≥

∑m
i=2 (i− 1)(2(t− δ) + 1) in this case.

Solving for δ and rearranging the terms give us our desired result.

5 Conclusions

We have seen that for Q/A games on the pyramid, number of rounds required
for Paul to win Q/A games do not depict a clear pattern. Problems 1 and 2 are
very intriguing questions. The following question can probably shed some more
light on the nature of the game on pyramids.

Problem 3. Consider a Q/A game on a pyramid on n levels. Let Lq be the
number of levels gained per round by Paul if he asks q questions in a round,
playing with some optimal strategy. Can we show that Lq+1 > Lq, for all values
of q > 0 as n → ∞?

There are many interesting questions about Q/A games on other classes of graphs
also. The following, for example is another intriguing open problem.

Problem 4. Given an arbitrary tree, T , and a question vector, q = (q1, . . . , qk),
is it possible to determine in polynomial time, if Paul wins (T,q)?
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Which other graph properties are crucial for the complexity of the problem
in the class of planar graphs? Trying to answer this question, we focus on graph
properties that are hereditary in the sense that whenever a graph possesses a
certain property the property is inherited by all induced subgraphs of the graph.
Many important graph classes, such as bipartite graphs, perfect graphs, graphs
of bounded vertex degree, graphs of bounded chordality are hereditary, including
the class of planar graphs itself. Any hereditary property can be described by a
unique set of minimal graphs that do not possess the property – the so-called
forbidden induced subgraphs. We shall denote the class of graphs containing no
induced subgraphs from a set M by Free(M). Any graph in Free(M) will be
called M -free. All our results are expressed in terms of some restrictions on
the set of forbidden induced subgraphs M . In particular, in Section 2 we will
impose a condition on the set M that will imply NP-hardness of the maximum
independent set problem in the class of M -free planar graphs. In Section 3, by
violating this condition we will reveal new polynomially solvable cases of the
problem that generalize some of the previously studied classes.

All graphs in this paper will be finite, undirected, without loops or multiple
edges. For a vertex x, we denote by N(x) the neighborhood of x. The degree
of x, deg(x), is the size of its neighborhood. The independence number of a
graph G is the maximum cardinality of an independent set in G. The girth of
a graph is the length of its shortest cycle, while the chordality is the length of
its longest chordless cycle. The subdivision of an edge uv consists in replacing
the edge with a new vertex adjacent to u and v. The contraction of an edge uv
consists in replacing the two vertices u and v with a single vertex x adjacent to
every vertex in (N(u) ∪N(v)) \ {u, v}. For two graphs G and H , we denote by
G + H the disjoint union of G and H . In particular, nG is the disjoint union of
n copies of G. As usual, Pn, Cn and Kn denote the chordless path, the chordless
cycle and the complete graph on n vertices, respectively. Kn,m is the complete
bipartite graph with parts of size n and m. By Ts we denote the graph obtained
by subdividing each edge of K1,s exactly once. Also, Ak is the graph obtained
by adding to a chordless cycle Ck a new vertex adjacent to exactly one vertex
of the cycle. Following [6] we call this graph an apple of size k. Si,j,k and Hi are
the two graphs shown in Figure 1.
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2 A Hardness Result

From [9] we know that the MIS problem is NP-hard for planar graphs of vertex
degree at most 3. Murphy strengthened this result by showing that the problem
is NP-hard for planar graphs of degree at most 3 and large girth [15]. This
immediately follows from the fact that double subdivision of an edge increases
the independence number of the graph by exactly one. The same argument can be
used to prove the following lemma, which, for the case of general (not necessarily
planar) graphs, was first shown in [1].

Lemma 1. For any k, the maximum independent set problem is NP-hard in
the class of planar (C3, . . . , Ck, H1, . . . , Hk)-free graphs of vertex degree at most 3.

We now generalize this lemma in the following way. Let Sk be the class of
(C3, . . . , Ck, H1, . . . , Hk)-free planar graphs of vertex degree at most 3. To every
graph G we associate the parameter κ(G), which is the maximum k such that
G ∈ Sk. If G belongs to no class Sk, we define κ(G) to be 0, and if G belongs to
all classes Sk, then κ(G) is defined to be ∞. Finally, for a set of graphs M , we
define κ(M) = sup{κ(G) : G ∈ M}.

Theorem 1. Let M be a set of graphs and X the class of M -free planar graphs
of degree at most 3. If κ(M) < ∞, then the maximum independent set prob-
lem is NP-hard in the class X.

Proof. To prove the theorem, we will show that there is a k such that Sk ⊆ X .
Denote k := κ(M) + 1 and let G belong to Sk. Assume that G does not belong
to X . Then G contains a graph A ∈ M as an induced subgraph. From the
choice of G we know that A belongs to Sk, but then k ≤ κ(A) ≤ κ(M) < k, a
contradiction. Therefore, G ∈ X and hence, Sk ⊆ X . By Lemma 1, this implies
NP-hardness of the problem in the class X . �
This negative result significantly reduces the area for polynomial-time algo-
rithms. But still this area contains a variety of unexplored classes. In the next
section, we analyze some of them.

3 Polynomial Results

Unless P = NP, the result of the previous section suggests that the MIS problem
is solvable in polynomial time for graphs in a class of M -free planar graphs only
if κ(M) = ∞. Let us specify a few major ways to push κ(M) to infinity.

One of the possible ways to unbind κ(M) is to include in M a graph G with
κ(G) = ∞. According to the definition, in order for κ(G) to be infinite, G must
belong to every class Sk. It is not difficult to see that this is possible only if every
connected component of G is of the form Si,j,k represented on the left of Figure 1.
Let us denote the class of all such graphs by S. More formally, S :=

⋂

k≥3

Sk. Any

other way to push κ(M) to infinity requires the inclusion in M of infinitely many
graphs. In particular, we will be interested in classes where the set of forbidden
subgraphs M contains graphs with arbitrarily large chordless cycles.
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The literature does not contain many results when M includes a graph from
the class S, that is, a graph G with κ(G) = ∞, and only a few classes of this type
are defined by a single forbidden induced subgraph. Minty [14] and Sbihi [18]
independently of each other found a solution for the problem in the class of
claw-free (i.e., S1,1,1-free) graphs. This result was then generalized to S1,1,2-free
graphs (see [3] for unweighted and [11] for weighted version of the problem) and
to (S1,1,1 + K2)-free graphs [13]. Another important example of this type is the
class of mP2-free graphs (where m is a constant). A solution to the problem
in this class is obtained by combining an algorithm to generate all maximal
independent sets in a graph [20] and a polynomial upper bound on the number
of maximal independent sets in mP2-free graphs [2,8].

Observe that all these results hold for general (not necessarily planar) graphs.
In the case of planar graphs, the result formP2-free graphs can be further extended
to the class of Pk-free graphs (for an arbitrary k) via the notion of tree-width (see
e.g. [5] for several equivalent definitions of this notion). The importance of tree-
width is due to the fact that many algorithmic graph problems, including the MIS
problem, can be solved in polynomial time when restricted to graphs of bounded
tree-width [4]. Clearly, the diameter of connectedPk-free planar graphs is bounded
by a constant. Therefore, since the tree-width of planar graphs is bounded by a
function of their diameter [7], the tree-width of Pk-free planar graphs is bounded
by a constant. As a result, we conclude that the MIS problem is solvable in polyno-
mial time for Pk-free planar graphs. An extension of this conclusion was recently
proposed in [10] where the authors show that the tree-width is bounded in the
class of (Ck, Ck+1, . . .)-free planar graphs (for any fixed k).

Below we report further progress in this direction. In particular, we show that
the MIS problem can be solved in polynomial time in the class of (Ak, Ak+1, . . .)-
free planar graphs. We thus generalize not only the analogous result for (Ck,
Ck+1, Ck+2, . . .)-free planar graphs, but also the results for S1,1,1-free, S1,1,2-free
and (S1,1,1 + K2)-free planar graphs. Observe that, in contrast to planar graphs
of bounded chordality, the tree-width of (Ak, Ak+1, . . .)-free planar graphs is not
bounded, which makes it necessary to employ more techniques for the design
of a polynomial-time algorithm. One of the techniques we use in our solution is
known as decomposition by clique separators [19,21]. It reduces the problem to
connected graphs without separating cliques, i.e., without cliques whose deletion
disconnects the graph. We also use the notion of graph compression defined in the
next section. In addition, in Section 3.2 we prove some auxiliary results related
to the notion of tree-width. Finally, in Section 3.3 we describe the solution.

3.1 Graph Compressions and Planar Ts-Free Graphs

A compression of a graph G = (V,E) is a mapping φ : V → V which maps any
two distinct non-adjacent vertices into non-adjacent vertices and which is not
an automorphism. Thus, a compression maps a graph into its induced subgraph
with the same independence number. Two particular compressions of interest
will be denoted

(
a
b

)
and

(
a b
c d

)
.
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By
(
a
b

)
we mean the compression which maps a to b and leaves all other

vertices fixed. This map is a compression if and only if a is adjacent to b and
N(b) − {a} ⊆ N(a) − {b}.

The compression
(
a b
c d

)
is defined as follows: φ(a) = c, φ(b) = d and the

remaining vertices of the graph are fixed. This map is a compression if

– c �= d,
– ac, bd ∈ E and ab, cd �∈ E,
– every vertex adjacent to c different from a and b is also adjacent to a,
– every vertex adjacent to d different from a and b is also adjacent to b.

A graph which admits neither
(

a
b

)
nor

(
a b
c d

)
will be called incompressible.

Lemma 2. Let G be an incompressible Ts-free planar graph and a, b two vertices
of distance 2 in G. Then |N(a) ∩N(b)| ≤ 4s + 1.

Proof. Let us call a vertex x ∈ N(a) ∩N(b)

– specific if every neighbor of x, other then a and b, belongs to N(a) ∩N(b),
– a-clear (b-clear) if x has a neighbor non-adjacent to a (to b).

Notice that every vertex in N(a) ∩ N(b) is either specific or a-clear or b-clear.
Let us estimate the number of vertices of each type in N(a) ∩N(b).

First, suppose that N(a) ∩ N(b) contains 4 specific vertices. Then, due to
planarity of G, two of these vertices are non-adjacent, say x and y. But then(

a b
x y

)
is a compression. Therefore, N(a)∩N(b) contains at most 3 specific vertices.

Now suppose N(a) ∩N(b) contains 2s a-clear vertices. Consider a plane em-
bedding of G. This embedding defines a cyclic order of the neighbors of each
vertex. Let x1, x2, . . . , x2s be the a-clear vertices listed in the cyclic order with
respect to a. Also, for each i = 1, 2, . . . , 2s, denote by yi a vertex adjacent to
xi and non-adjacent to a. Some of the vertices in the set {y1, y2, . . . , y2s} may
coincide but the vertices {y1, y3, y5 . . . , y2s−1} must be pairwise distinct and non-
adjacent. But then the set {a, x1, x3, x5 . . . , x2s−1, y1, y3, y5 . . . , y2s−1} induces a
Ts. This contradiction shows that there are at most 2s− 1 a-clear vertices. Sim-
ilarly, there are at most 2s− 1 b-clear vertices. �

Lemma 3. Let G be an incompressible Ts-free planar graph. Then the degree of
each vertex in G is at most 16s2 − 1.

Proof. Let a be a vertex in G, A the set of neighbors of a and B the set of
vertices at distance 2 from a. Consider the bipartite subgraph H of G formed
by the sets A and B and all the edges connecting vertices of A to the vertices of
B. Let the size of a maximum matching in H be π and the size of a minimum
vertex cover in H be β. According to the theorem of König, π = β.

Observe that every vertex x ∈ A has a neighbor in B, since otherwise
(

a
x

)
is

a compression. Thus, H contains a set D of deg(a) edges no two of which share
a vertex in A. By Lemma 2, the degree of each vertex of B in the graph H is at
most 4s+ 1. Therefore, to cover the edges of D we need at least deg(a)/(4s+ 1)
vertices, and hence π ≥ deg(a)/(4s + 1).
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In the graph H , consider an arbitrary matching M with π edges. In the graph
G, contract each edge of M into a single vertex obtaining in this way a planar
graph G′, and denote the subgraph of G′ induced by the set of “contracted”
vertices (i.e., those corresponding to the edges of M) by H ′. If deg(a) > (4s +
1)(4s−1), then H ′ contains at least 4s vertices. By the Four Color Theorem [17],
it follows that H ′ contains an independent set of size s. The vertices of this set
correspond to s edges in the graph G that induce an sK2. Together with vertex
a these edges induce a Ts, a contradiction. �

3.2 Tree-Width and Planar Graphs

In this section, we derive several auxiliary results on the tree-width of planar
graphs. More generally, our results are valid for any class of graphs excluding an
apex graph as a minor. An apex graph is a graph that contains a vertex whose
deletion leaves a planar graph. A graph H is said to be a minor of a graph G if
H can be obtained from G by means of vertex deletions, edge deletions and edge
contractions. We say that a class of graphs is minor closed if with every graph
G it contains all minors of G. Both graphs of bounded tree-width and planar
graphs are minor closed.

If H is not a minor of a graph G, we say that G is H-minor-free and call H
a forbidden minor for G. Similarly, if X is a class of H-minor-free graphs, we
call H a forbidden minor for X . By a result of Robertson and Seymour, every
minor-closed graph class can be described by a unique finite set of minimal
forbidden minors. For instance, the class of planar graphs is exactly the class of
(K5,K3,3)-minor-free graphs.

For brevity, let us call a family of graphs apex-free, if it is defined by a single
forbidden minor H , which is an apex graph.

An n×n grid Gn is the graph with the vertex set {1, . . . , n}×{1, . . . , n} such
that (i, j) and (k, l) are adjacent if and only if |i−k|+|j−l| = 1. In [16], Robertson
and Seymour showed that every graph of large tree-width must contain a large
grid as a minor. For apex-free graph families, even more is true. In the following
lemma, an augmented grid is a grid Gn augmented with additional edges (and no
additional vertices). Vertices (i, j) with {i, j} ∩ {1, n} �= ∅ are boundary vertices
of the grid; the other ones are nonboundary.

Lemma 4. [7] Let H be an apex graph. Let r = 14|V (H)|−22. For every integer
k there is an integer gH(k) such that every H-minor-free graph of tree-width at
least gH(k) can be contracted into an k′× k′ augmented grid R such that k′ ≥ k,
and each vertex v ∈ V (R) is adjacent to less than (r + 1)6 nonboundary vertices
of the grid.

With extensive help of this lemma we shall derive the main result of this section,
which we state now.

Lemma 5. For any apex graph H and integers k, s and d, there is an integer
N = N(H, k, s, d) such that for every H-minor-free graph G of tree-width at
least N and every nonempty subset S ⊆ V (G) of at most s vertices, the graph
G contains a chordless cycle C such that:
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– every vertex v ∈ V (G) is non-adjacent to at least k consecutive vertices of C.
– the distance between C and S is at least d.

To prove Lemma 5, we will need a few auxiliary results. First, we recall that in
apex-free graphs, large tree-width forces the presence of arbitrarily long chordless
cycles [10]. More formally:

Lemma 6. For every apex graph H and every integer k there is an integer
fH(k) such that every H-minor-free graph of tree-width at least fH(k) contains
a chordless cycle of order at least k.

Next, we prove two additional lemmas that will be needed in the proof of Lemma 5.

Lemma 7. For every apex graph H and every integer k there is an integer
f(H, k) such that every H-minor-free graph G of tree-width at least f(H, k)
contains a chordless cycle C such that every vertex v ∈ V (G) is non-adjacent to
at least k consecutive vertices of C.

Proof. Let r = 14|V (H)| − 22, let fH be the function given by Lemma 6,
and let gH be the function given by Lemma 4. Furthermore, let f(H, k) =
gH

(
fH

(
(k + 1)(r + 1)6

)
+ 2

)
. We will show that the function f(H, k) satisfies

the claimed property.
Let G be an H-minor-free graph of tree-width at least f(H, k). By Lemma 4,

G can be contracted into an k′×k′ augmented grid R where k′ ≥ fH((k+1)(r+
1)6)+2 and such that each vertex v ∈ V (R) is adjacent to less than (r+1)6 non-
boundary vertices of the grid. For i, j ∈ {1, . . . , k′}, let V (i, j) denote the subset
of V (G) that gets contracted to the vertex (i, j) of the grid. Furthermore, let R0

denote the (k′ − 2) × (k′ − 2) augmented sub-grid, induced by the nonboundary
vertices of R. Since the tree-width of an n×n grid is n, and the tree-width can-
not decrease by adding edges, we conclude that the tree-width of R0 is at least
k′− 2 ≥ fH((k + 1)(r+ 1)6). Moreover, as R0 is H-minor-free, Lemma 6 implies
that R0 contains a chordless cycle C0 of length at least (k + 1)(r + 1)6. By the
above, every vertex v ∈ V (R) is adjacent to less than (r + 1)6 vertices of R0.
Therefore, the neighbors of v on C0 (if any) divide the cycle into less than (r+1)6

disjoint paths whose total length is at least |V (C0)|− (r+1)6. In particular, this
implies every vertex of V (R) is non-adjacent to at least |V (C0)|−(r+1)6

(r+1)6 ≥ k con-
secutive vertices of C0.

Let the cyclic order of vertices of R0 on C0 be given by ((i1, j1), (i2, j2), . . .,
(is, js)). To complete the proof, we have to lift the cycle C0 to a chordless cycle
C in G. Informally, we will replace each pair of adjacent edges (ip−1, jp−1)(ip, jp)
and (ip, jp)(ip+1, jp+1) in C0 with a shortest path connecting vertex (ip−1, jp−1)
to vertex (ip+1, jp+1) in the graph G whose internal vertices all belong to Vip,jp .
Implementation details of this “lifting” procedure are omitted due to the lack of
space. �

Our second preliminary lemma states that the tree-width of apex-free graphs
cannot be substantially decreased by contracting the set of vertices at constant
distance from a set of constantly many vertices. We remark that this fails for
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minor-closed families that exclude no apex graph (to see this, take G in the
statement of the lemma to be the graph obtained from an n× n grid by adding
to it a dominating vertex).

Lemma 8. Let H be an apex graph, and let s, d and m be integers. Then, there
is an integer t = t(H, s, d,m) such that the following holds:

Let G be an H-minor-free graph of tree-width at least t, and let S ⊆ V (G) be
a set of at most s vertices of G. Furthermore, let U be the set of vertices in G
that are at distance less than d from S, and let G′ be the graph obtained from
G by contracting the set U into a single vertex. Then, the tree-width of G′ is at
least m.

Proof. By an easy inductive argument on the number of connected components
of G[S], we may assume that S induces a connected subgraph of G. If d = 0,
then G′ = G, and we have t = m.

Let now d ≥ 1. For i = 1, . . . , d, let G(i) denote the graph obtained from G by
contracting the set V (i) of vertices at distance less than i from S into a single
vertex v(i). Furthermore, let r = 14|V (H)| − 22. Also, let gH be the function
given by Lemma 4.

Consider the following recursively defined function h : {1, . . . , d} → N: h(1) =
m, and h(i+1) = gH(2(r+1)3h(i)), for all i = 1, . . . , d−1. Let t := t(H, s, d,m) :=
h(d) + s.

With the above notation, we have G′ = G(d). So, it suffices to show the
following:

Claim. For all i = 1, . . . , d, the tree-width of G(i) is at least h(d + 1 − i).

We now prove the claim by induction on i. For i = 1, note that G(1) contains
G−S as an induced subgraph, and therefore tw(G(1)) ≥ tw(G−S) ≥ tw(G)−s ≥
t− s = h(d) = h(d− i+ 1) (where tw(K) denotes the tree-width of a graph K).

For the induction hypothesis, assume that the statement holds for some i ≥ 1:
the tree-width of G(i) is at least h(d + 1 − i) = gH(2(r + 1)3h(d − i)). By
Lemma 4, G(i) can be contracted into an k × k augmented grid R such that
k ≥ 2(r+ 1)3h(d− i), and each vertex v ∈ V (R) is adjacent to less than (r+ 1)6

nonboundary vertices of the grid.
Therefore, R must contain a large subgrid R′ such that v(i) ∈ V (G(i)) does

not belong to R′, and has no neighbors in R′. More precisely, R′ can be chosen
to be of size k′× k′, where k′ ≥  k−2√

(r+1)6
! ≥ k

2(r+1)3 ≥ h(d− i) . By definition of

V (i+1) and since v(i) has no neighbors in R′, we conclude that the graph G(i+1)

contains the grid R′ as a minor. Thus, the tree-width of G(i+1) is at least the
tree-width of R′, which is at least h(d − i) = h(d + 1 − (i + 1)). The proof is
complete. �

We conclude this section with a short proof of Lemma 5, based on Lemmas 7 and 8.

Proof. (Lemma 5) Let f(H, k) be given by Lemma 7. We let N := N(H, k, s, d) :=
t(H, s, d + 1, f(H, k)), where t is given by Lemma 8.
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Let G′ be the graph obtained from G by contracting the set of vertices at
distance less than d + 1 form S into a single vertex. Then, by Lemma 7, the
tree-width of G′ is at least f(H, k). By Lemma 7, G′ contains a chordless cycle
C such that every vertex v ∈ V (G′) is non-adjacent to at least k consecutive
vertices of C.

Using the same argument as in the proof of Lemma 7, C′ can be lifted to a
chordless cycle C of G such that every vertex v ∈ V (G) is non-adjacent to at
least k consecutive vertices of C. �

3.3 Solution to the Problem for Planar (Ak, Ak+1, . . .)-Free Graphs

In this section, we prove polynomial-time solvability of the MIS problem in the
class of planar (Ak, Ak+1, . . .)-free graphs, for an arbitrary integer k.

Theorem 2. For any k, the maximum independent set problem can be solved
in the class of planar (Ak, Ak+1, . . .)-free graphs in polynomial time.

Proof. Let k be an integer and G be a planar (Ak, Ak+1, . . .)-free graph. If G
is T11-free, then we reapeteadly perform the two graph compressions until we
obtain an incompressible graph G′. By Lemma 3 the degree of vertices in G′ is
bounded by a constant. It was recently shown in [12] that the MIS problem in the
class of (Ak, Ak+1, . . .)-free graphs of bounded vertex degree is polynomial-time
solvable.

This enables us to assume that G contains a T11 as an induced subgraph.
Moreover, we can assume that G has no clique separators. In the subgraph T11,
we will denote the vertex of degree 11 by a, the vertices of degree 2 by b1, . . . , b11
and the respective vertices of degree 1 by c1, . . . , c11.

Let N = N(K5, 6k+8, 23, k+2) be the constant defined in Lemma 5. We shall
show that the tree-width of G is less than N . Assume by contradiction that the
tree-width of G is at least N . Then by Lemma 5, with S = V (T11), the graph G
contains a chordless cycle C such that

– every vertex of G is non-adjacent to at least 6k+8 consecutive vertices of C,
and

– the distance between C and T11 is at least k + 2.

Fact 1. No vertex of G can have more than 4 neighbors on C. Moreover, if a
vertex v has 3 neighbors on C, then these neighbors appear in C consecutively.
If v has 4 neighbors, they can be split into two pairs of consecutive vertices. If v
has 2 neighbors, they are either adjacent or of distance 2 in C.

Indeed, if v has more then 4 neighbors on C, then a large portion of C con-
taining at least 6k + 8 consecutive vertices together with v and one of its neigh-
bors create a forbidden induced apple. The rest of Fact 1 also follows from
(Ak, Ak+1, . . .)-freeness of G, which can be verified by direct inspection.

Claim. G has a chordless cycle containing vertex a and some vertices of C.
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Proof. Since G has no clique separators, it is 2-connected. Therefore, there exist
two vertex-disjoint paths connecting a to C. Let P = (x1, . . . , xp) and Q =
(y1, . . . , yq) be two such paths, where x1 and y1 are adjacent to a, while xp and
yq have neighbors on C. Without loss of generality, we shall assume that the
total length of P and Q is as small as possible. In particular, this assumption
implies that x1 and y1 are the only neighbors of a on P,Q, and no vertex of P or
Q different from xp and yq has a neighbor on C. Any edge connecting a vertex
of P to a vertex of Q will be called a (P,Q)-chord.

Fact 2. The neighborhood of xp on C consists of two adjacent vertices and the
neighborhood of yq on C consists of two adjacent vertices.

Obviously, to avoid a big induced apple, xp must have at least two neighbors
on C. Consider a longest sub-path P ′ of C such that xp has no neighbors on P ′.
We know that P ′ has at least 6k+ 8 vertices. Moreover, by maximality of P ′, xp

is adjacent to the two (distinct!) vertices u, v on C outside P ′ each of which is
adjacent to an endpoint of P ′. Then, u and v must be adjacent, for otherwise G
would contain a forbidden apple induced by the vertex set P ′ ∪ {u, v, xp, xp−1}.
The same reasoning shows that the neighborhood of yq on C consists of two
adjacent vertices.

Fact 3. The neighborhood of xp on C does not coincide with the neighborhood of
yq on C, and there are no (P,Q)-chords different from x1y1.

For the sake of contradiction, suppose that N(xp) ∩ C = N(yq) ∩ C =
{xp+1, yq+1}. Denote by T 1 the triangle xp, xp+1, yq+1 and by T 2 the triangle
yq, xp+1, yq+1. To avoid a separating clique (one triangle inside the other), we
must conclude that, without loss of generality, xp is inside C while yq is outside
C in the planar embedding of G. If additionally a is inside C, then Q meets the
cycle before it meets yq. This contradiction completes the proof of the first part
of Fact 2.

To prove the second part, suppose that G contains a (P,Q)-chord different
from x1y1. Let xiyj be such a chord with maximum value of i + j. In order to
prevent a large induced apple, xi must be adjacent to yj−1. By symmetry, yj

must be adjacent to xi−1. This implies, in particular, that both i > 1 and j > 1.
Denote by T 1 the triangle xi−1, xi, yj, by T 2 the triangle yj−1, xi, yj and by C′

the cycle formed by vertices xp, xp−1, . . . , xi, yj , . . . , yq and a portion of C. The
rest of the proof of Fact 3 is identical to the above arguments.

From Fact 3 we conclude that if x1y1 is not a chord, then G has a desired cycle,
i.e., a chordless cycle containing a and some vertices of C. From now on, assume
x1 is adjacent to y1. Denote by C∗ a big chordless cycle formed of P , Q and a
portion of C containing at least half of its vertices, i.e., a portion containing at
least 3k + 4 consecutive vertices of C. We will denote this portion by P ∗.

Observe that among vertices b1, . . . , b11 there is a vertex, name it z1, which
is adjacent neither to x1 nor to y1, since otherwise G has a separating clique (a
triangle with a vertex inside it). Let us show that z1 has no neighbors on C∗.
Indeed, z1 cannot have neighbors on P ∗, since the distance between z1 and P ∗

is at least k + 2. If z1 has both a neighbor on P and a neighbor on Q, then
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G contains a big induced apple. If z1 is adjacent to a vertex xi ∈ P and has
no neighbors on Q, then either the pair of paths P,Q is not of minimum total
length (if i > 2) or G has a big induced apple (if i = 2).

Since G has no clique separators, vertex z1 must be connected to the cycle
C∗ by a path avoiding the clique {a, x1, y1}. Let R = (z1, . . . , zr) be a shortest
path of this type. Since z1 has no neighbors on C∗, r must be strictly greater
than 1. According to Fact 1, zr cannot have more than 4 neighbors on P ∗.
Moreover, these neighbors partition P ∗ into at most 3 portions (of consecutive
non-neighbors of zr) the largest of which has at least k vertices. Therefore, zr has
at least k consecutive non-neighbors on the cycle C∗. By analogy with Fact 2,
we conclude that the neighborhood of zr on C∗ consists of two adjacent vertices.
Also, by analogy with Fact 3, we conclude that the only possible chord between
R and the other path connecting z1 to C∗ (i.e. (z1, a)) is the edge az2. Therefore,
G has a chordless cycle containing vertex a and some vertices of C, and the proof
of the claim is completed. �

Denote by Ca = (a, v1, v2, . . . , vs) a chordless cycle containing the vertex a and
a part of C. The vertices of Ca belonging to C will be denoted vi, vi+1, . . . , vj .
Since the distance between T11 and C is at least k + 2, none of the vertices
b1, b2, . . . , b11 is adjacent to any of the vertices vi−k, vi−k+1, . . . , vk+j . Clearly
among vertices b1, b2, . . . , b11 at least 9 do not belong to Ca. Among these 9, at
least 5 vertices are adjacent neither to v1 nor to vs (since otherwise G contains
a separating clique, i.e., a triangle with a vertex inside it). Without loss of
generality, let the vertices b1, b2, . . . , b5 be not in Ca and non-adjacent to v1, vs.
It is not difficult to see that none of these 5 vertices has a neighbor in the set
{v3, v4, . . . , vs−3, vs−2}, since otherwise a big induced apple arises (remember
that none of these 5 vertices is adjacent to any of vi−k, vi−k+1, . . . , vk+j). For the
same reason, none of b1, b2, . . . , b5 can be adjacent simultaneously to v2 and vs−1

and none of them can be non-adjacent simultaneously to v2 and vs−1. Therefore,
we may assume without loss of generality that in a fixed plane embedding of G,
among these 5 vertices there are 2, say bi, bj, such that bi is inside the 4-cycle
a, bj, v2, v1. Due to planarity, vertex ci has no neighbors on the cycle Ca except
possibly v1 and v2. However, regardless of the adjacency ci to v1 or v2, the
reader can easily find a big induced apple in G. This contradiction shows that
if G contains a T11, then the tree-width of G is bounded by a constant, which
completes the proof of the theorem. �
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Abstract. In non-cooperative games played on highly decentralized net-
works the assumption that each player knows the strategy adopted by
any other player may be too optimistic or even unfeasible. In such situ-
ations, the set of players of which each player knows the chosen strategy
can be modeled by means of a social knowledge graph in which nodes
represent players and there is an edge from i to j if i knows j. Fol-
lowing the framework introduced in [3], we study the impact of social
knowledge graphs on the fundamental multicast cost sharing game in
which all the players wants to receive the same communication from a
given source. Such a game in the classical complete information case is
known to be highly inefficient, since its price of anarchy can be as high
as the total number of players ρ. We first show that, under our incom-
plete information setting, pure Nash equilibria always exist only if the
social knowledge graph is directed acyclic (DAG). We then prove that
the price of stability of any DAG is at least 1

2 log ρ and provide a DAG
lowering the classical price of anarchy to a value between 1

2 log ρ and
log2 ρ. If specific instances of the game are concerned, that is if the so-
cial knowledge graph can be selected as a function of the instance, we
show that the price of stability is at least 4ρ

ρ+3 , and that the same bound
holds also for the price of anarchy of any social knowledge graph (not
only DAGs). Moreover, we provide a nearly matching upper bound by
proving that, for any fixed instance, there always exists a DAG yielding
a price of anarchy less than 4. Our results open a new window on how
the performances of non-cooperative systems may benefit from the lack
of total knowledge among players and can be considered, in some sense,
as another evidence of the famous Braess’ paradox.

1 Introduction

The fast and striking affirmation of the Internet has quickly shifted researchers’
attention from traditional centralized networks to unregulated non-cooperative
ones. By introducing the notion of price of anarchy as a measure of the loss
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of optimality in network performances due to the selfish behavior of its users,
Koutsoupias and Papadimitriou [11] definitively started the topic of Algorith-
mic Game Theory. Since then there has been a flourishing of results on several
different models of non-cooperative networks (see [7,13,14] for recent surveys).

As future networking scenarios are predicted to become more and more decen-
tralized and pervasive, new and more stringent constraints need to be introduced
in our models. For instance, the usual assumption that each player knows the
strategy played by all the other ones may be too optimistic or even unfeasible.
Thus, it becomes more realistic to assume that each player is aware only of the
strategies played by a subset of players representing somehow her neighborhood.
An interesting motivating discussion for this assumption in a selfish routing sce-
nario can be found in [9] where oblivious players are introduced which can be
seen as an extreme application of this concept: they cannot feel the consequences
of other players’ choices and hence do not participate actively to the game al-
ways choosing their best strategy regardless of what other players do. More in
general, in [3] a new framework has been presented introducing the notion of
social knowledge graphs, that is, graphs having as node set the set of players in
the game and in which there is an edge from i to j if player i knows player j.
According to a given social knowledge graph, the neighborhood of each node i
models the set of players of which i is aware, that is, whose chosen strategies can
influence i’s payoff and hence her choices. Besides characterizing the convergence
to equilibria with respect to the social graph topology (directed, undirected, di-
rected acyclic), in [3] it has been shown that the performances in load balancing
and congestion games decrease as a consequence of the stricter bounds on the
players knowledge. More precisely, the price of anarchy and stability increase as
the maximum outdegree of the social graph decreases.

The idea of modeling mutual influences among players by means of a graph
was already used in graphical games [10]. However, in such a setting the graph
is constructed in such a way that there is an edge from i to j if the choices
of player i may influence j’s payoff. Therefore, given a particular game, the
graphical representation of [10] is completely induced by the underlying game,
while in the framework of [3] the social knowledge graph is independent and
causes a redefinition of the basic payoffs as a function of the induced mutual
influences. Anyway, for analogy with [10], conventional games equipped with
social graphs are also called graphical.

In this paper we analyze the consequences of the presence of social knowledge
graphs in the fundamental multicast cost sharing game defined in [1], in which
the players are network users interested in receiving the same communication
from a given source and must share the incurred communication cost. The union
of the strategies adopted by each player yields a particular solution graph and
each player’s payment or cost share is computed according to the well-known
Shapley value method [15], which equally splits the cost of each edge in the
solution among all the downstream players using it. The major drawback of this
approach, as well as of the ones yielded by other reasonable methods considered
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in [8], is that the corresponding price of anarchy is equal to ρ, which makes all
such methods excessively poorly performing in practice.

In order to partially cope with this problem, in [6] it is shown that the price
of anarchy induced by the Shapley method in the case in which, starting from
the empty configuration, the players join the network one at time by performing
a best response, is upper bounded by log3 ρ, a best response corresponding to a
strategy selection that minimizes the player’s incurred cost share. Moreover, in
[1] it is shown that the price of stability yielded by Shapley is upper bounded
by Hρ. However, both these approaches require a certain degree of centralized
control on the network in order to let the players to enter the game starting
from the empty configuration and to take their decisions in a perfectly sequential
fashion, or to “suggest” them a best Nash equilibrium. Again, these assumptions
may not be feasible in strongly decentralized systems. On this respect, if the
presence of a social knowledge graph would be able to improve by chance the
price of anarchy of a game (as we show indeed in our case), this might generate
a useful instrument for limiting the bad effects due to the lack of cooperation
among the users without directly interfering in their decisions. Consider for
instance the design of P2P protocols which limit the visibility of the other peers,
or simply, at a more foundational level, the possibility of using social graphs just
as an intermediate methodological tool for defining cost shares and payoffs so as
to induce good overall performances.

1.1 Model and Definitions

In the multicast cost sharing game we are given an undirected network G =
(V,E, c) with c : E → IR

+, a source station s ∈ V , a set of ρ receivers R ⊆ V
and a cost sharing method distributing the cost of a solution among the receivers.
Each receiver ri wants to receive the same communication from the source s,
so that her set of available strategies will be the set of all the 〈s, ri〉-paths in
G. Let πi be the strategy played by ri, π = (π1, . . . , πρ) the strategy profile
induced by the choices of all the receivers in the game, and Π =

⋃ρ
i=1 πi be

the subnetwork of G created by such choices. The cost sharing method divides
the cost c(Π) =

∑
e∈Π c(e) of Π among the receivers. We focus on the case in

which c(Π) is shared according to the Shapley value method. More precisely, if
ne(π) = |{ri ∈ R : e ∈ πi〉}| is the number of receivers using edge e, the cost
share of ri in π is defined as cost(π, ri) =

∑
e∈πi

c(e)
ne(π) , that is, the cost of each

edge in Π is equally shared among all its downstrem users. We denote with I a
generic instance (G,R, s) of the multicast cost sharing game.

We associate with each game a social knowledge directed graph K = (R,A)
defining for each receiver ri the set Ri(K) = {rj ∈ R : (ri, rj) ∈ A} of receivers
of which ri knows the chosen path. Let ne(π,K, ri) = |{rj ∈ Ri(K) : e ∈ πj}|+1
be the number of users using known by ri using edge e, ri included. Then, the
cost share of ri in π becomes cost(π,K, ri) =

∑
e∈πi

c(e)
ne(π,K,ri)

. For the sake of
simplicity, when clear from the context, we remove π and K from the notation
by simply writing cost(ri).
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Notice that, in this new social knowledge framework, in general c(Π) ≤∑
r∈R cost(r), that is the sum of all the cost shares can be strictly greater than the

total cost of the induced network. This can be interpreted in at least two possible
ways. First of all, given the incomplete information, one can assume that users are
not able to exactly establish their cost shares, but just presumed ones estimated
by observing only the strategies played by the known users; such cost shares pro-
vide suitable upper bounds on the actual costs that they will be finally asked to
pay by the network provider. On the other hand, such presumed cost shares might
coincide with the actual final ones, thus not yielding a cost sharing method in the
strict sense, and the arising surplus

∑
r∈R cost(r)−c(Π) translates into a revenue

that the provider enjoys profiting from the users’ incomplete information.
As usual in these settings, we assume that the possible solutions for the game

are all (and only) its pure Nash equilibria, i.e. the solutions in which no agent
can improve her own utility by unilaterally changing her strategy.

In order to measure the loss of optimality due to the selfish behavior of the
receivers, we use the standard notions of price of anarchy [11] and price of sta-
bility [2]. The former is defined as the ratio between the total cost of the worst
Nash equilibrium and the total cost of an optimal solution T ∗, given by any
optimal Steiner tree connecting the subset of vertices R ∪ {s}. More precisely,
let N(I,K) be the set of pure Nash equilibria yielded by the social knowledge
graph K on the instance I. We define PoA(I,K) = maxπ∈N(I,K)

c(π)
c(T ∗) and

PoA(K) = supI=(G,R,s) PoA(I,K) as the price of anarchy of K on the in-
stance I and the universal price of anarchy or simply price of anarchy of K,
respectively. Analogously, the latter measure is defined as the ratio between
the best Nash equilibrium cost and the one of T ∗. More formally, we define
PoS(I,K) = minπ∈N(I,K)

c(π)
c(T ∗) and PoS(K) = supI=(G,R,s) PoS(I,K) as the

price of stability of K on the instance I and the universal price of stability or
simply price of stability of K, respectively.

Finally, given any numbering of the receivers, let K̂ denote the complete DAG,
i.e. the graph such that A = {(ri, rj) : 1 ≤ i < j ≤ ρ}.

1.2 Related Works

Multicast cost sharing games are instances of the well-known class of congestion
games [12], which always converge to pure Nash equilibria. While a price of
anarchy equal to ρ is folklore, in [1], by exploiting the properties of the exact
potential function associated to congestion games, it is shown that the price of
stability of multicast cost sharing games is equal to Hρ when G is directed, while
it is upper bounded by Hρ when G is undirected.

Multicast cost sharing games are also investigated in [8] where, after noting
that for several reasonable cost sharing methods the price of anarchy of the the
game remains equal to ρ, the speed of convergence is estimated, that is the quality
of the solutions reached after a limited number of selfish moves of the receivers.
In [5] it is proved that the problem of computing a Nash equilibrium minimizing
the potential function is NP-hard, while it is solvable in polynomial time if the
receivers are allowed to arbitrarily split their requests among different paths.
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It is also shown that the price of anarchy of a Nash equilibrium reached after
any sequence of best responses in the case in which the receivers enter the game
one at time starting from the empty configuration is between Ω( log ρ

log log ρ) and
O(

√
ρ log2 ρ). These bounds have been significantly improved in [6] to Ω(log ρ)

and log3 ρ, respectively. In [6] it is also shown that the price of anarchy of the
solution obtained after a first round of best responses of the receivers entering
the game one at time starting from the empty configuration is upper bounded
by log2 ρ.

1.3 Our Contribution

When considering the presence of social knowledge graphs, since some receivers
can be hidden to other ones, multicast cost sharing games are no longer a proper
subclass of the congestion games. As a consequence, the existence and conver-
gence to Nash equilibria is no longer guaranteed.

Therefore, on this respect we first provide a complete characterization of the
game. In particular, while the convergence in the case in which K is a directed
acyclic graph (DAG) can be directly inferred by the results in [3], which hold for
every congestion game with a DAG social graph, we show that if K is undirected
or directed cyclic, the existence of pure Nash equilibria is no longer guaranteed.
This also closes the open question raised in [3] of whether in congestion games
equilibria always exist for undirected social graphs. In fact, while such an ex-
istence was proven in case of linear latencies, we show that indeed this is not
the case if the latency functions express the Shapley cost shares. Thus, this also
completes also the general characterization picture of the congestion games with
social knowledge.

As to the impact of social knowledge graphs on the performance of multicast
cost sharing game, we show that the (universal) price of stability PoS(K) of any
DAG K is always at least equal to 1

2 log ρ, that is PoS(I,K) ≥ 1
2 log ρ for at

least one instance I. Moreover, we show that the set of Nash equilibria induced
by any complete DAG K̂ on every instance I coincides with the set of solutions
obtained after a first round of best responses in which, starting from the empty
configuration, the receivers enter sequentially the game I according to the their
topological ordering in K̂. Therefore, by the results given in [6], an induced
upper bound PoA(K̂) ≤ log2 ρ on the price of anarchy (and thus of stability)
for any complete DAG K̂ holds.

Besides the above universal bounds, we show that there exist specific instances
of the game I for which PoS(I,K) ≥ 4ρ

ρ+3 for any DAG K. The same bound
holds also for the price of anarchy of every K (not only for DAGs, but also for
all the other K inducing games admitting at least an equilibrium).

On the other side, we prove that, for any instance I, there always exists a
DAG K(I) such that PoA(I,K(I)) ≤ 4ρ

ρ+3 if ρ = 2, 3 and PoA(I,K(I)) ≤
4(ρ−1)

ρ+1 if ρ ≥ 4, hence obtaining an upper bound on the price of anarchy almost
(surprisingly) matching the lower bound on the price of stability achievable with
DAGs. Unfortunately, this is only an existential result and we do not know how
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to construct efficiently the graph K(I). However, we can prove that given any
r-approximation of T ∗ it is possible to compute in polynomial time, by using
a simple depth first search, a DAG K(I) such that PoA(I,K(I)) ≤ 4ρ

ρ+3r if

ρ = 2, 3 and PoA(I,K(I)) ≤ 4(ρ−1)
ρ+1 r if ρ ≥ 4.

Our achievements are twofold: on one side, we shed some light on how the lack
of knowledge among players can impact on the total cost of the self-emerging
networks created by the interactions of selfish users; on the other side, we show
that the idea of hiding some players to others is a powerful instrument that a
designer of a decentralized application inducing the game can use in order to
obtain solutions whose cost may be not too far from the optimal one without
directly interfering on the choices performed by the players.

As a consequence of our study, we can conclude that the presence of social
knowledge graphs can tremendously improve the performance of multicast cost
sharing games. This situation can be seen as another evidence of the famous
Braess’ paradox [4]: there are cases in which adding fast links in a network
results in a decrease of its performances or, symmetrically, hiding some fast
links to the players can increase the network performances. This is exactly the
final rationale of our analysis: hiding some of the players to other ones can yield
better solutions, that is, the less players know the most they are “cooperative”.

The paper is structured as follows. In the next section we completely charac-
terize the existence of and convergence to Nash equilibria. In Sections 3 and 4
we present our results concerning the prices of anarchy and stability for given
instances and the universal prices of anarchy and stability, respectively. Finally,
in Section 5 we give some conclusive remark and discuss some open questions.

2 Existence of and Convergence to Pure Nash Equilibria

In this section we completely characterize the existence and convergence to pure
Nash equilibria in graphical multicast cost sharing games.

As already proved in [3], if the social knowledge graph is acyclic, each con-
gestion game (and thus each multicast cost sharing game) converges to a pure
Nash equilibrium and one such an equilibrium can be efficiently computed.

Theorem 1 ([3]). Each congestion game converges to a pure Nash equilibrium
when the social knowledge graph is a DAG. Moreover, there always exists a
sequence of at most n best responses which can be computed in polynomial time
ending to a Nash equilibrium.

We now show that if K is directed symmetric (or equivalently undirected) mul-
ticast cost sharing games may not admit pure Nash equilibria.

Theorem 2. Multicast cost sharing games may not posses pure Nash Equilibria
when the social knowledge graph is undirected.

Proof. In order to prove the theorem we give an instance of the multicast cost
sharing game in which each configuration is not a pure Nash equilibrium. Con-
sider the instance presented in Figure 1(a), where ε represents any positive real
number and the undirected social knowledge graph depicted in Figure 1(b).



114 V. Bilò et al.
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Fig. 1. Non-Existence of Nash Equilibrium

We say that a strategy is strictly dominant for a receiver ri if, regardless of
what any other receiver does, the cost of ri is always strictly smaller than the one
obtained by choosing any other strategy. It is not difficult to observe that the
edges (s, r3) and (s, r4) are strictly dominant strategies for r3 and r4 respectively.
This implies that the paths 〈s, r3, r1, ri〉 with 6 ≤ i ≤ 29, and 〈s, r4, r2, r5〉
are strictly dominant strategies for ri and r5 respectively. Specifically, in any
configuration of the game only r1 and r2 may eventually perform a selfish move.

Table 1. A game not admitting a Nash equilibrium

�����r1

r2 〈s, r3, r1, r2〉 〈s, r4, r2〉

〈s, r3, r1〉 (1, 28
26 ) (2, 7

8 )

〈s, r4, r2, r1〉 ( 9
4 , 29

50 ) ( 15
8 , 7

12 )

Considering only the strategies of r1 and r2, the game can be represented in
normal form as illustrated in Table 1. The theorem follows by observing that
none of the resulting four configurations is a pure Nash equilibrium. �

It is important to note that, since each undirected graph is also a cyclic directed
one (by replacing each undirected edge {i, j} with the pairwise opposite arcs
(i, j) and (j, i)), we have that also for directed cyclic graphs the existence of
pure Nash equilibria in the multicast cost sharing game is not guaranteed.

In the following sections we restrict to direct acyclic social graphs, since by
Theorem 1 this is the only case of guaranteed convergence to equilibria.

3 Prices of Anarchy and Stability for Specific Instances

We first prove a lower bound holding for the price of stability of DAGs as well
as for the price of anarchy of any social graph admitting equilibria.
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Theorem 3. There exists an instance I such that PoS(I,K) ≥ 4ρ
ρ+3 for any

DAG K. Moreover, PoA(I,K) ≥ 4ρ
ρ+3 for any graph K (not only DAGs) admit-

ting equilibria.

Proof. Consider the instance depicted in Figure 2 where c(T ∗) = ρ(1 + ε) + 3.
It is not difficult to see that for any possible social knowledge graph K the
solution in which each receiver ri uses the edge (s, ri) is a Nash equilibrium.
Hence, by the arbitrariness of ε, we have PoA(I,K) ≥ 4ρ

ρ+3 . In order to prove
the same bound for the price of stability of DAGs, we show that the solution in
which each receiver ri uses the edge (s, ri) is the only Nash equilibrium. To this
aim, fix a Nash equilibrium π and let ri be the receiver with maximum index i
according to the topological ordering induced by K among the ones not using
the edge (s, ri) in π. Since all the receivers rj ∈ Ri(K) are using edge (s, rj),
ri’s best strategy is to choose the edge (s, ri) thus creating a contradiction. It
follows, that if K is a DAG PoS(I,K) ≥ 4ρ

ρ+3 , by the arbitrariness of ε. �

�

q

�
s

r1 r2 rρ

4 4 4

1+ε
1+ε

1+ε

3

Fig. 2. An instance yielding PoA(K) ≥ 4ρ
ρ+3 ∀K and PoS(K) ≥ 4ρ

ρ+3 ∀K directed
acyclic

We now show that for each instance I of the multicast cost sharing game there
exists a complete DAG K̂(I) such that PoA(I, K̂(I)) almost matches the above
lower bound.

Theorem 4. For any instance I of the multicast cost sharing game there ex-
ists a complete DAG K̂(I) such that PoA(I, K̂(I)) ≤ 4(ρ−1)

ρ+1 if ρ ≥ 3 and

PoA(I, K̂(I)) ≤ 8
5 if ρ = 2.

Notice that the proven upper bounds on the price of anarchy exactly match the
lower bounds holding for any social knowledge graph when ρ = 2, 3. Moreover,
for ρ > 3 the upper bounds on the price of anarchy of K̂(I) almost match the
lower bounds on the price of stability achievable by any DAG, which is quite
a surprising result. Unfortunately, in order to compute K̂(I) we need do know
an optimal solution T ∗ for instance I. Since it is NP-hard to compute T ∗, we
can resort to approximation algorithms for the Minimum Weighted Steiner Tree
problem in order to compute in polynomial time a complete DAG K̂(I) yielding
a slightly worse price of anarchy.

Theorem 5. For any instance I of the multicast cost sharing game it is possible
to compute in polynomial time a complete DAG K̂(I) such that PoA(I, K̂(I))
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≤ 4(ρ−1)
ρ+1 r if ρ ≥ 3 and PoA(I, K̂(I)) ≤ 8

5r if ρ = 2, where r is the approximation
ratio of the best algorithm for the Minimum Weighted Steiner Tree problem.

4 Universal Prices of Anarchy and Stability

From the analysis performed in the previous section it results that directed
acyclic complete graphs are among the ones yielding the lowest possible price
of anarchy for the multicast cost sharing game when the instance of the game
is known in advance. We now show that such graphs achieve a good perfor-
mance also when used as universal social knowledge graphs, that is without any
assumption on the given instance. We obtain such a result by exploiting the
strong similarity of the Nash equilibria induced by such graphs and the solu-
tions obtained after a first round of best responses performed sequentially by
the receivers starting from the empty space. For any instance I, let FR(I) de-
note the set of all possible solutions which can be obtained, starting from the
empty state, after a first round of best responses performed sequentially by the
receivers (from rρ down to r1).

Theorem 6. N(I, K̂) = FR(I) for any instance I of the multicast cost sharing
game.

Proof. Consider a Nash equilibrium π ∈ N(I, K̂). Since the strategy adopted by
any receiver ri is a best response strategy given the choices of all the receivers rj

such that j > i, we have that π ∈ FR(I). On the other hand, consider a solution
π ∈ FR(I). Since each ri enters the game by performing a best response given
the strategies played by all the receivers rj with j > i and the choices performed
by all the other receivers rj with j < i do not affect ri’s cost share, we have that
π ∈ N(I, K̂). �

By the above theorem and the results of [6] on the social performance achieved
after one round of best response moves from empty state, the following corollary
holds.

Corollary 1. PoA(K̂) ≤ log2 ρ.

We now provide a close lower bound on the price of stability achievable by any
DAG.

Theorem 7. PoS(K) ≥ 	log ρ

2 for any DAG K.

Proof. Let ρ = 2 −1. Once fixed a DAG K number the ρ receivers according to
the topological order induced by K and consider an instance I = (G,R, s) defined
as follows. Let s be the origin of a unit length segment, we locate ri at position
1+2(i−2�log i�)

2�log(i+1)� on the segment. We call the set {ri ∈ R : "log(i+1)# = j} the set of
receivers of level j. For any pair of consecutive receivers along the segment there
exists a straight edge in G (the one ideally belonging to the segment) of cost 1

2� .
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Fig. 3. An instance yielding PoS(K) ≥ 1
2 log ρ for any DAG K. Only receivers of level

≤ 3 are shown.

Moreover, for each receiver ri belonging to level j let left(i, q) and right(i, q) be
the nearest receiver of level q lying respectively on the left and on the right of ri

along the segment. For each q > j there exist two curve edges (ri, left(i, q)) and
(ri, right(i, q)) both having cost 1

2q − εq. Finally, for each level j ∈ [�], letting
nearest(j) be the receiver of level j closest to s, there exists the curve edge
(s, nearest(j)) of cost 1

2j − εj. A picture of I is depicted in Figure 3 where � = 3.
We define the values εj for j ∈ [�] in such a way that εj > 2εj+1.

We claim that in any π ∈ N(I,K) each receiver ri of level j must use a curve
edge starting at ri and having cost equal to 1

2j −εj thus yielding a price of stability

PoS(K) ≥
∑

j=1

∑2j−1

i=1

(
1
2j − εj

)
≥
∑	log ρ


j=1

(
1
2 − 2j−1ε1

)
≥
(

1
2 − ρε1

)
"log ρ# ≈

	log ρ

2 for the arbitrariness of ε1.
We show by induction on i that if ri is of level j, ri chooses only curve edges

of level not greater than j. For j = 1 this reduces to show that the curve edge
(s, r1) is the unique shortest (s, r1)-path. This easily follows by construction of
the εjs. Consider now a receiver ri of level j > 1. Because of the non-intersecting
structure of the curve edges, each (s, ri)-path in G must pass through either
left(i, j − 1) or right(i, j − 1). Since the only receivers of which ri is aware are
those belonging to levels which are not greater than j and they are only using
curve edges of level not greater than j, the shortest path from ri to one of the
two receivers left(i, j − 1) and right(i, j − 1) is part of a best response for ri.
By construction, a curve edge starting at ri and directly reaching left(i, j − 1)
or right(i, j − 1) and having cost equal to 1

2j − εj is the unique desired shortest
path. �

5 Conclusions and Open Problems

Following the framework introduced in [3], we have analyzed the impact of social
knowledge graphs on the price of anarchy and stability of multicast cost sharing
games. In particular, we have shown that any complete DAG K̂ lowers the price
of anarchy from ρ to log2 ρ and that, when a particular instance of the game is
fixed, there exists a complete DAG K̂ (among the possible ρ! ones which can
be obtained by considering all permutations of the receivers) yielding a price of
anarchy less than 4. Moreover, we can compute in polynomial time one complete
DAG yielding a price of anarchy at most 4r (with r ≤ 1.55). Interestingly, the
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presence of social knowledge graphs tremendously narrows the gap between the
prices of anarchy and stability, as we have proved close or almost matching lower
bounds, that is PoS(K) ≥ 1

2 log ρ for every DAG K and there exist instances I
such that PoS(I,K) ≥ 4ρ

ρ+3 for every DAG K.
We stress that complete DAGs reflects the situation in which players enter

sequentially the game: when player ri joins a non-cooperative system she can
get knowledge of only the i − 1 players already involved in the game and will
not be aware of those who may eventually join the system in the future. Thus,
other than assuring good performances, such graphs also have a theoretical and
technical motivation.

Possible applications of our results include the design of protocols and P2P
systems which limit the visibility of the other peers, or simply, at a more foun-
dational level, the possibility of using social graphs as an intermediate method-
ological tool for defining cost shares and payoffs so as to induce good overall
performances without directly interfering in users decisions.

Several open problems arise from our approach.
Besides closing the gaps between upper and lower bounds on the prices of

anarchy and stability, like the Ω(log ρ) ÷ log3 ρ one on the price of anarchy in
the universal case, it would be interesting to extend our study to other graphical
games, like cost sharing congestion games.

Moreover, since
∑ρ

i=1 cost(π, ri) can be greater than c(Π), it would be inter-
esting to study the surplus (defined as

∑ρ
i=1 cost(π, ri)−c(Π)) created by social

knowledge graphs.
Finally, what about the effect of social graphs on the speed of convergence,

that is on the number of selfish moves needed to reach equilibria or on the
performances achieved after a limited number of steps?
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Abstract. Most complete binary prefix codes have a synchronizing
string, that is a string that resynchronizes the decoder regardless of its
previous state. This work presents an upper bound on the length of the
shortest synchronizing string for such codes. Two classes of codes with a
long shortest synchronizing string are presented. It is known that finding
a synchronizing string for a code is equivalent to a finding a synchroniz-
ing string of some finite automaton. The Černý conjecture for this class
of automata is discussed.

1 Introduction

Huffman codes are the most popular variable length codes. In the presence of
channel errors a large part of an encoded message can be destroyed because of
the loss of synchronization between the decoder and the coder. In case of some
Huffman codes, under certain assumptions on the message source, the decoder
will eventually resynchronize, and, from then on, symbols will be decoded cor-
rectly. These codes are called synchronizing. Capocelli et al. [1] proved that codes
are synchronizing if and only if they have a synchronizing string — a string such
that when received by the decoder always puts it into synchronization. Freiling
et al. [2] proved that almost all Huffman codes have a synchronizing string. More
precisely, they proved that the probability of drawing randomly a code without
a synchronizing string decreases to zero with increasing code size.

Shützenberger [3] analyzed possible distribution of codewords’ lengths in a
synchronizing prefix codes. Rudner [4] gave an algorithm for the construction
of a synchronizing Huffman code for a given distribution of codewords’ lengths,
that works under some assumptions on the distribution. His work was further
extended in [5,6]. Capocelli et al. [7] showed how to modify a Huffman code
by adding a little redundancy to create a synchronizing code. Ferguson and
Rabinowitz [8] analyzed codes whose synchronizing string is a codeword.
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E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 120–131, 2008.
© Springer-Verlag Berlin Heidelberg 2008



Shortest Synchronizing Strings for Huffman Codes 121

The synchronization recovery of a Huffman code can be modeled with a finite
automaton whose states are proper prefixes of codewords (or internal nodes of
the code’s tree). This automaton will be called a Huffman automaton. Such an
automaton was used by Maxted and Robinson [9] to compute for a given code
the average number of symbols lost before resynchronization.

A lot of research has been done in the area of automata synchronization. A
synchronizing string for a finite automaton 〈Q,Σ, δ〉 is a string s that brings all
states to one particular state. That is δ(q1, s) = δ(q2, s) for any states q1, q2 ∈ Q.
An automaton will be called synchronizing if it has a synchronizing string. The
famous Černý conjecture [10] states that a synchronizing finite automaton with
N states has a synchronizing string of length (N − 1)2.

Although there are proofs for certain classes of automata, for instance in
[11,12], the problem remains open. There are some bounds on the length of
the shortest synchronizing string. For instance Pin [13] proved that 1

6 (N3 −N)
is an upper bound. Some research has also been done to find automata with
long shortest synchronizing strings. Černý [10] constructed a series of automata
with the shortest synchronizing string of length (N − 1)2. Ananichev et al. [14]
considered how long a synchronizing string can be if there is a letter that reduces
the number of states by two. Trahtman [15] searched for worst-case automata.

Eppstein [16] gave an algorithm for testing whether an automaton is synchro-
nizing and for the construction of a synchronizing string of length O(N3) for a
synchronizing automaton. His algorithm requires O(N3) operations if the alpha-
bet is of constant size. An overview of the area of automata synchronization is
given in [17].

It is rather clear that a synchronizing string for a Huffman code is also a
synchronizing string for the Huffman automaton of the code, and vice versa.
Nevertheless, it seems that so far both areas of research have not been related.
This paper fills this gap.

First we explain that Huffman code synchronization is equivalent to Huffman
automaton synchronization. Then, we prove an upper bound on the length of
the shortest merging string for a set of two states of a Huffman automaton:
the root of the code’s tree and another internal node of the tree. A merging
string for a set of states is a string that brings all states of the set to the same
state. The proof is constructive and an algorithm for the construction of the
shortest merging string for such nodes is given. The execution of this algorithm
also suffices for answering whether a code is synchronizing. Then we present an
upper bound on the length of the shortest synchronizing string of a Huffman
automaton. For most (but not all) codes the bound is better than the Černý
conjecture. Also an algorithm for the construction of a synchronizing string for
a Huffman automaton is presented. To the author’s best knowledge, this class of
automata has not been studied yet. The bounds presented here are better than
the bounds O(N3) for general automata. Both algorithms are faster than the
one of Eppstein [16].

Afterwards, results of experimental search for worst-case codes are shown.
Three classes of Huffman codes are presented. The codes give a lower estimate
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on the possible upper bounds of the length of the shortest synchronizing or
merging string. It is conjectured (but, unfortunately, not proved) that these
classes of codes are the worst-case codes. It is interesting that the length of their
synchronizing or merging strings is much lower than the bound proved.

Due to limited length of the paper, the most difficult proofs are omitted.

2 Definitions and Notation

A word is a string of letters, for instance w = w0w1 . . . wk−1. The empty word is
denoted by ε. The subword of a word w from the position p to q − 1 is denoted
by w[p..q). The length of a word w is denoted by |w|. A sequence of k letters a
is denoted ak. For instance, for w=‘abc’, w[1..2)=‘b’, w[1..3)=‘bc’, w[0..1)=‘a’,
|w| = 3 and 04 = ‘0000’.

A complete binary tree is a tree with each node being either an internal node
with two children, or a leaf with no children. Each left outgoing edge is labeled
with 0 (0-edge). Each right outgoing edge is labeled with 1 (1-edge). The root
of a tree is denoted by ε. Each node n has a unique binary string π(n) that is
formed of labels on the path from the root to n. We have π(ε) = ε. The number
of leaves in a tree is denoted by N . The height of a tree is denoted by h. In this
paper, a code C such that C = {π(n)|n is a leaf of T } for some complete binary
tree T , is called a Huffman code. The tree T is called a Huffman tree. We refer
to a node n of T using the string π(n). For instance, the node 10 is the left son
of the right son of the root.

Let a Huffman Automaton (HA) T be an automaton whose states are internal
nodes of the Huffman tree T . The transition function δ(n, b), b ∈ {0, 1}, brings
an automaton from the node n to its b-edge child, if it is not a leaf, or to the root
otherwise. The function δ∗ is the extension of δ to strings: δ∗(q, b0 . . . bk−1) =
δ(δ∗(q, b0 . . . bk−2), bk−1) and δ∗(q, ε) = q. For a subset S of states of a Huffman
automaton we denote, δ(S, a) := {δ(q, a)|q ∈ S}. The same convention is used
for δ∗.

We say that a word w brings a node n to a node n′ if n′ = δ∗(n,w). Then n′

is the result of applying w to n. In addition, we say that w brings a node n to a
leaf if δ∗(n,w) = ε and w is not empty. This is justified because the construction
of the Huffman automaton T may be seen as merging the leaves of the tree T
with the root of T . We say that w brings a node n to n′ without loops if none of
the nodes δ∗(n,w[0, 1)), δ∗(n,w[0, 2)), . . . , δ∗(n,w[0, |w| − 2)) is the root.

The values T , T , δ, δ∗, N , h, ε, π depend on the code C. We assume that
it is always clear from the context which code (or, equivalently, which Huffman
tree) is being considered.

Definition 1. A synchronizing string for a Huffman code is a string ws such
that wws is a sequence of codewords for any binary word w.

Equivalently, a synchronizing string is a string that brings any node of the Huff-
man automaton to the root.
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Definition 2. Let A = 〈Q,Σ, δ〉 be a finite automaton. A synchronizing string
for A is a word w such that |δ∗(Q,w)| = 1. A merging string for a set of states
R ⊆ Q of the automaton A is a word w such that |δ∗(R,w)| = 1.

Definition 3. Let A = 〈Q,Σ, δ〉 be a finite automaton. The power automaton
for A is the automaton P(A) = (P(Q), Σ, δP), where P(Q) denotes the set of
all subsets of Q and δP(S, a) = δ(S, a) for S ∈ P(Q).

The operation of the power automaton P(A) can be seen as movements of coins
that lie on some states of the automaton A. If the power automaton is in a state
S ⊆ Q, the coins lie on the states q ∈ S. Then, if the power automaton makes
a transition by a letter a, the coins move according to the transition function
δ of the automaton A. If a coin is in the state p then it moves onto the state
δ(p, a). If more than one coin goes to the same state only one of them is kept. It
easy to see that after applying the letter a the set of states with coins is exactly
δP(S, a). This analogy helps to visualize the operation of the power automaton
and gives some intuition. For instance, the string w is synchronizing if and only
if applying w to the automaton A with a coin on each state results in just one
coin left.

An automaton is synchronizing if it has a synchronizing string. A Huffman
code is synchronizing if it has a synchronizing string.

Theorem 4. A synchronizing string for a Huffman code C is a synchronizing
string for the Huffman automaton T of the code. A synchronizing string s for the
Huffman automaton T , such that s brings all nodes to the root, is a synchronizing
string for the Huffman code.

Thus a Huffman code is synchronizing if and only if its Huffman automaton is
synchronizing.

3 Merging String for a Pair of States

Theorem 5. Let C be a synchronizing Huffman code of size N , let T be the
Huffman tree for C, let T be the Huffman automaton of the code C. For any
node n of T there is a merging string sn for the set {n, ε}, with

|sn| ≤
∑

p∈Q(T )\{ε}
hp, (1)

where Q(T ) is the set of the internal nodes of T and hp is the height of the subtree
of T rooted at p.

Proof. Let us consider a merging string sn for {n, ε} of minimal length (it exists
because C is synchronizing, but it need not be unique). The string sn brings
both nodes to the root, because otherwise we could remove the last letter of sn

and the result would still merge n and ε.
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Let {ni,mi} be the unordered pairs of nodes that appear when consecutive
prefixes of sn are applied to the initial set {n, ε}, i.e.

{ni,mi} = δ∗ ({n, ε}, sn[0..i)) , i = 0, . . . , |sn|. (2)

We have {n0,m0} = {n, ε} and {n|sn|,m|sn|} = {ε} (a singleton is also consid-
ered a pair).

Let us look at the subsequence {nik
, ε}, k = 0, . . . , l, of this sequence formed

of pairs containing the root. Each node p, appears in this subsequence as the
partner of ε at most once, because pairs do not repeat in {ni,mi} (otherwise
we could shorten the string sn). The string sn[ik, ik+1), that brings {nik

, ε} to
{nik+1 , ε}, is a string that either brings the node nik

to a leaf without loops or
that brings ε to a leaf without loops. In either case the length of sn[ik, ik+1) is
at most hnik

(note that in the second case the node nik+1 is in the subtree of
nik

). We get

|sn| =
l−1∑

k=0

|sn[ik, ik+1)| ≤
l−1∑

k=0

hnik
≤

∑

p∈Q(T )\{ε}
hp. (3)

The value of hε is not counted because the set {ε} appears only as the last
element of the sequence {nik

, ε}. �
Let HT be the value of the bound in Theorem 5. HT is the sum of heights of
all the nontrivial subtrees of T apart from the whole tree. We will compare HT

with ΠT — the sum of depths of all the internal nodes, and with WT — the
sum of depths of all the leaves of T (that is the sum of codewords’ lengths).

Lemma 6. Let T be a complete binary tree, let Q(T ) be the set of internal nodes
of T , let L(T ) be the set of leaves of T , let hn and Nn be, respectively, the height
and the number of leaves of the subtree rooted at the node n of T , let |π(n)| be the
distance from the root to n and let NT be the number of leaves of T . Let us define

HT =
∑

n∈Q(T )\{ε}
hn, ΠT =

∑

n∈Q(T )

|π(n)|, (4)

WT =
∑

n∈L(T )

|π(n)|, ST =
∑

n∈Q(T )

Nn. (5)

Then the following holds:

HT ≤ ΠT = WT − 2NT + 2 ≤ WT = ST −NT . (6)

Corollary 7. Let wi be codewords of a Huffman code. Then

|sn| ≤
∑

i

|wi| and |sn| ≤ (N − 2)(h− 1). (7)

The result of Theorem 5 can be improved if we notice that the sequence {nik
, ε},

defined in the proof of Theorem 5, cannot contain two nodes nik
and nik′ that

are roots of identical subtrees of T . Indeed, otherwise we could shorten the string
sn in the same way as before. This gives the following result.
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Corollary 8. The bound of Theorem 5 can be improved to:

|sn| ≤
∑

t∈T (T )\{T}
ht (8)

where T (T ) is the set all distinct subtrees of T .

The idea of identifying common subtrees can be formalized by introducing a min-
imized Huffman automaton. Although this does not give here a better estimate
on the length of the shortest merging string for the set {n, ε}, it is interesting
in itself.

Definition 9. A minimized Huffman automaton for a Huffman code C is an
automaton made of the Huffman automaton for C by merging the states that are
roots of identical subtrees of the Huffman tree T for C.

It is easy to see that minimized Huffman automata have exactly two edges,
labeled with 0 and 1, going out of each node. An example of a minimized Huffman
automaton is presented in Fig. 1.

(a) Huffman tree

ε

0

00

000

1

11

0 1

0,1

0,1

0,1
1

0

0

1

(b) Minimized Huffman automaton

Fig. 1. A Huffman tree and its minimized Huffman automaton

We will say that a set V of states of T corresponds to the set Vm of states
of the minimized Huffman automaton Tm if Vm is the smallest set satisfying: if
q ∈ V and q is merged to a state q′ of Tm then q′ ∈ Vm.

Theorem 10. Let C be a synchronizing Huffman code, let T be the Huffman
automaton for C and let Tm be the minimized Huffman automaton for C. Let
V be a set of states of T and Vm the corresponding set of states of Tm. If s is a
merging string for V then s is a merging string for Vm. If s′ is a merging string
for Vm that brings all nodes of Vm to the root then s′ is a merging string for V .
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Note that the minimized Huffman automaton is implicitly used in Corollary 8,
where we consider all non-identical subtrees of a Huffman tree. The roots of such
subtrees are the states of the minimized Huffman automaton.

Theorem 5 leads to an algorithm for finding the shortest merging string for a
set {n0, ε}, where n0 is any state of T . First a graph G = (V,E) is created. The
vertices of G are unordered pairs {n, ε}, where n is a state of T . The edges of
G are weighted; {n1, ε} → {n2, ε} is an edge if there is a string w that brings
{n1, ε} to {n2, ε} without passing through any other pair {n, ε}. The weight of
the edge is the length of the shortest such string w (note that the string w need
not be unique).

Such a string w will be the label of the edge {n1, ε} → {n2, ε}, although it
will not be stored explicitly. Instead, for retrieving the label w, we will store a
mark M . The mark will depend on the target pair of the edge. If the target is a
pair {n2, ε} with n2 �= ε, the mark is equal to either n1 if n2 = δ(n1, w), or to ε
if n2 = δ(ε, w). We always have n2 = δ(M,w). The node n2 is in the subtree of
the node M and w is formed of labels on the path from M to n2. If the target
of an edge is a singleton {ε}, that is n2 = ε, the mark M is the leaf δ(ε, w). In
this case the word w is formed of labels on the path from ε to M . In either case
the label w can be recovered in O(|w|).

The construction of the graph requires DFS-traversing the Huffman tree with
a pair of nodes {n1, n2}, starting at {n, ε} and applying transitions of the Huff-
man automaton to both nodes of the pair. The traversing goes forward until
a set {n′,m} is reached, with m being a leaf. Then the edge {n, ε} → {n′, ε}
is added to the graph with the number of steps from {n, ε} to {n′,m} as its
weight. If such an edge has been added before, only the weight is updated to be
the minimum of the previous weight and the new one. Finally, the mark M of
the edge is set appropriately.

The cost of processing each pair {n, ε} during the construction of the graph
G is proportional to the size of the subtree rooted at n, because the DFS search
is limited to the subtree of n. It follows that the construction of G uses the
time proportional to the sum of sizes of the subtrees of T . By Lemma 6 this
is O(

∑
|wi|), where wi are the codewords given by the tree T . The number of

vertices in the graph is |V | = N − 1. The number of edges is bounded by the
sum of sizes of all the subtrees of the tree, that is |E| = O(

∑
|wi|).

The shortest merging string for a set {n, ε} is given by the lightest path
from {n, ε} to {ε}. The tree of the lightest paths from any node to {ε} can be
constructed using the Dijkstra’s algorithm in O(|E| + |V | log |V |). Since |V | =
O(N), |E| = O(

∑
|wi|) and

∑
|wi| ≥ N logN , the lightest paths’ tree can be

computed in O(
∑

|wi|).

Theorem 11. Let T be a Huffman automaton. The algorithm for computing
the shortest merging string for a set {n, ε}, where n is any state of T , requires
preprocessing time O(

∑
i |wi|). Then the shortest merging string for each pair

{n, ε} can be found in the time proportional to the length of the merging string.
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4 Length of a Synchronizing String

In this section we give an upper bound on the length of the shortest synchronizing
string for any synchronizing Huffman code. We begin with a lemma that helps
to prove the main theorem of this section (Theorem 13).

Lemma 12. Let T be a complete binary tree with N leaves. There exists a string
w of length at most "logN# such that for each node n of T some prefix of w labels
a path from n to a leaf.

Theorem 13. For any synchronizing Huffman code of size N the length of the
shortest synchronizing string s is at most

|s| ≤ "logN# + ("logN# − 1)X = O(Nh logN) (9)

where h is the length of the longest codeword,

X =
∑

t∈T (T )\{T}
ht, (10)

T (T ) is the set all different subtrees of T and ht is the height of the subtree t.

Proof (sketch). We first find a string w given by Lemma 12 and apply it to coins
on all states of T . It reduces the number of coins to at most "logN#, because
the final position of each coin is determined by some proper suffix of w. We
may assume that one of the coins is on the root of T (otherwise w could be
shortened). Then, we pick a node n with a coin and we construct the shortest
string sn that merges n and the root (to get shorter synchronizing strings it is
better to pick a node n with the shortest merging string for {n, ε} among the
nodes with a coin). By Corollary 8, |sn| ≤ X . This string applied the current set
reduces the number of coins by at least one. Repeating this procedure additional
("logN#−2) times leaves us with just one coin. The length of the merging string
does not exceed "logN#+("logN#−1)X . Finally, X < Nh gives the asymptotic
bound O(Nh logN). �

The proof of Theorem 13 is constructive and gives an algorithm for the construc-
tion of a synchronizing string for a Huffman code. The algorithm works as follows.

First a string w from Lemma 12 is found. It is done by checking all the O(N)
strings of length less or equal "logN# in the following way. From each node n
of T we traverse the subtree of n with DFS. Each time we are in a node m that
is l ≤ "logN# steps below n, we mark the string w on the path from n to m as
bad. This means that no prefix of w brings n to a leaf.

After the traversal, the strings that have not been marked as bad bring any
node through a leaf. By Lemma 12, there is at least one such a string of length
"logN# or less. The cost of this algorithm is proportional to the sum of sizes of
all subtrees of T , which is O(

∑
i |wi|).

After finding the string w we may apply it to the set of all internal nodes of T .
This will take O(N logN) time. Then, at most logN merging strings for {n, ε},
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(a) A tree Ck (b) N=9, s=0410104 (c) N=10, s=05105

Fig. 2. The class of trees with the longest synchronizing string for a given number of
nodes n. s denotes the synchronizing string for each tree. The triangle denotes a code
{1, 01, 001, . . . , 0i1, 0i0}, i ≥ 0.

with some n, suffice to build a synchronizing string. Computing the merging
strings require preprocessing time O(

∑
i |wi|) and then any string can be read in

the time proportional to its length. The length of each merging string is bounded
by X and there are at most logN vertices that have to be moved using each
such string. Thus the total cost of the algorithm is O(X log2 N +

∑
i |wi|).

5 Experimental Tests

Tests were performed to find the worst-case trees for the length of the shortest
synchronizing string and the worst-case trees for the length of the shortest merg-
ing strings for a pair {n, ε}, where n is an internal node of the tree. All trees of
sizes, N , from 3 to 20 were analyzed first. Then the procedure was repeated for
all trees of heights, h, from 2 to 5.

5.1 Long Synchronizing String

In most of the tested cases the worst-case trees for fixed size, N , were unique up
to the reflection across the y axis (relabeling 0-edges to 1-edges and 1-edges to 0-
edges). The exceptions were the trees with 7 nodes — three nonequivalent trees,
10 nodes — 5 trees, and 12 nodes — 2 trees. For trees with 9, 11 and 13-20 nodes
the unique worst-case tree corresponds to one of the codes Ck, given below. The
codes Ck also form one of the worst-case trees with 7, 10 and 12 nodes.

Ck = {00, 010, 011, 110, 111}∪ {10i1|i = 1, 2, . . . , k − 1} ∪ {10k}, k ≥ 1. (11)

The size of the code Ck is k+5. The structure of these trees is shown in Fig. 2(a)
and examples can be found in Figs. 2(b) and 2(c).

Theorem 14. The shortest synchronizing string for the tree Ck, k ≥ 1, is s0 =
0k10k for odd k (even number of codewords) and s1 = 0k1010k or s2 = 0k1110k

for even k (odd number of codewords). The length of the shortest synchronizing
string is 2N − 9 for even code size, N , and 2N − 7 for odd code size.

The worst-case trees for fixed height h, with h = 2, 3, 4 and 5, are the trees given
by the set of codewords

Dh =
(
{0, 1}h \ {1h−11, 1h−10}

)
∪ {1h−1}, h ≥ 2. (12)
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�

(a) h=3 , s=120312

���

(b) h=4 , s=1304130413

Fig. 3. Trees with the worst-case length of a synchronizing and merging string among
trees of fixed height h, for h = 2, 3, 4, 5 and a scheme of these trees. The nodes n with
the longest merging string for {n, ε} are marked with a star.

These are full binary trees with two edges in the lower-right corner removed.
The number of codewords in the code Dh is 2h − 1. They are unique worst-case
trees up to the reflection across the y axis. The trees D3 and D4 are shown in
Fig. 3(a) and Fig. 3(b).

Theorem 15. The shortest synchronizing string for the tree Dh, h ≥ 2, is s =
(1h−10h)h−21h−1 with |s| = 2h2 − 4h + 1 (however, the shortest synchronizing
string is not unique).

The minimized Huffman automaton for Dh has K = 2(h−1) nodes. Even though
it contains a letter that reduces the number of coins by h− 2 = K

2 − 1 (a letter of
deficiency K

2 −1), its shortest synchronizing string is of length 2h2−4h+1 = K2

2 −
1, which is quadratic in K. This makes the automataDh interesting in themselves.

The results of the search allow us to state the following conjecture.

Conjecture 16. The length of the shortest synchronizing string s for a code of N
codewords, N ≥ 9, with h being the length of the longest codeword, is at most:

|s| ≤ min(2N − a, 2h2 − 4h + 1), (13)

where a is 7 for odd N and 9 for even N .

5.2 Long Merging String

For trees of fixed size N the length of the shortest merging string in the worst
case is equal N − 2, for N = 3, . . . , 20, apart from N = 6. For N = 6 the worst-
case length is equal N−1 = 5. Two families of trees have the worst-case shortest
merging strings. The first one corresponds to the code

Gk = {0, 10k} ∪ {10i1|i < k}, k ≥ 1, (14)

and gives the worst-case trees for N from 3 to 20, apart from N = 6. The size of
the tree Gk is N = k+ 2. The merging string of the set {1, ε} is of length N − 2.
The structure of these trees is shown in Fig. 4(a) and the tree G4 is shown in
Fig. 4(b). The latter figure also shows the node whose merging string with ε is
the longest.
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�

(a) A tree Gk

�

(b) G4, s = 04

�

(c) C4, s = 11104 or s = 10104

Fig. 4. The nodes with the longest merging string for the two families Ck and Gk

The other family of trees is the family Ck (see (11) and Fig. 2(a)) with even k
(odd number of codewords). The merging string for {0, ε} is of length N −2 and
this is the worst case for N = 7, 9, 11, . . .19. The node with the longest merging
string and the merging string itself for the tree C4 are shown in Fig. 4(c).

There were also additional worst-case trees found for N = 5, 6, 7, 9, 10, 12.
These do not correspond to neither the trees Ck nor Gk.

The worst-case trees among trees of fixed height are the trees Dh (Equation
(12) and Fig. 3).

Theorem 17. The upper bound on the length of the shortest merging string for
any pair {n, ε}, where n is a state of Dh, is "h2 − 3

2h#. For odd h it is achieved
by the pair {0(h−1)/2, ε}. For even h it is achieved by pairs {x, ε}, where x is
any binary string of length h

2 containing at least one 0.

The results of the search allow us to state the following conjecture.

Conjecture 18. For any Huffman automaton T corresponding to a code with N
codewords, with h being the length of the longest codeword, the length of the
shortest merging string sn for a set {n, ε}, where n is any state of T is at most:

|s| ≤ min(2N − 2, "h2 − 3
2h#), (15)

if N �= 6, and |s| ≤ 5 for N = 6.

6 Summary

We presented a constructive upper bound on the length of the shortest merging
string and the shortest synchronizing string for a Huffman code.

We tested the lengths of the shortest merging and synchronizing string on all
codes of size from 3 to 20 and on all codes with the length of the longest codeword
from 2 to 5. Three classes of worst-case codes were found. The length of the short-
est synchronizing strings for these classes of codes is far from the bound proven
before. This allowed us to formulate conjectures, which remain open.
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Optimizing Conjunctive Queries over Trees

Using Schema Information�

Henrik Björklund, Wim Martens��, and Thomas Schwentick
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Abstract. We study the containment, satisfiability, and validity prob-
lems for conjunctive queries over trees with respect to a schema. We
show that conjunctive query containment and validity are 2EXPTIME-
complete w.r.t. a schema (DTD or Relax NG). Furthermore, we show
that satisfiability for conjunctive queries w.r.t. a schema can be decided
in NP. The problem is NP-hard already for queries using only one kind of
axis. Finally, we consider conjunctive queries that can test for equalities
and inequalities of data values. Here, satisfiability and validity are decid-
able, but containment is undecidable, even without schema information.
On the other hand, containment w.r.t. a schema becomes decidable again
if the “larger” query is not allowed to use both equalities and inequalities.

1 Introduction

In the context of relational databases, select-project-join queries are the ones
most commonly used in practice. These queries are also known in database
theory as conjunctive queries. The containment problem for conjunctive queries
P and Q asks whether Q returns (at least) all answers of P . Ever since the
seminal paper of Chandra and Merlin [5], conjunctive query containment has
been a pivotal research topic; it is the most intensely researched form of query
optimization in database theory. Moreover, the conjunctive query containment
problem is essentially the same as the conjunctive query evaluation problem [5],
and the Constraint Satisfaction Problem (CSP) in Artificial Intelligence [13].

The more recent rise of semi-structured data and XML initiated the investiga-
tion of conjunctive queries over trees [11]. As in the relational case, conjunctive
queries over trees provide a very clean and natural querying formalism. XPath
and (non-recursive) XQuery queries can both be naturally translated into con-
junctive queries. However, as pointed out by Gottlob et al. [11], their applica-
tions are not at all limited to XML; they are also used for Web information
extraction, as queries in computational linguistics, dominance constraints, and
in higher-order unification.

As a matter of fact, containment for queries on tree-structured data was pre-
viously mainly studied for fragments of XPath 1.0. The investigations therefore
concentrated on acyclic conjunctive queries (see, e.g., [16,17]).
� This work was supported by the DFG Grant SCHW678/3-1.
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In contrast to the relational setting, for conjunctive queries over trees, evalu-
ation is not the same problem as containment. In relational databases, contain-
ment P ⊆ Q holds if an only if there is a homomorphism from the canonical
database of Q to the canonical database of P . Over trees, the existence of such a
homomorphism is a sufficient, but not a necessary condition for containment [2].

Conjunctive query containment over trees is therefore investigated directly
in [2], but was also treated more implicitly in the form of XPath 2.0 static
analysis in, e.g., [12,14,19]. We elaborate on the relation with these papers below.
The results in [2] were encouraging, as the complexities (compared with acyclic
queries) did not increase too much: they remained inside ΠP

2 .
The present paper extends our previous work [2] in the sense that we now take

schema information into account, and that we consider queries that can test for
equality and inequality of data values. In this framework, we study the com-
plexities of the validity, satisfiability, and containment problems. Whereas our
previous work outlined a quite complete picture of conjunctive query contain-
ment without schemas, one has to admit that, in practice, schema information
is highly relevant. In XML, schema information is available for most documents,
and the chances of being able to optimize queries are much better when it is
taken into account. On the other hand, as we will see in this paper, there is also
a tradeoff: the complexity of conjunctive query containment over trees is much
higher with schema information than without.

Our work can be summarized as follows. First, we study conjunctive queries
that cannot compare data values. Our main technical result here is that the prac-
tically most relevant problem, conjunctive query containment w.r.t. a DTD, is
already 2EXPTIME-hard for queries using only the Child and Child+ axes.1 This
result is quite surprising when one compares it to the known results for XPath
1.0 containment. For XPath 1.0, adding DTD information to the problem usually
“only” increases the complexity from coNP [16] to (at most) EXPTIME [17,15].
Here, however, the complexity immediately jumps from ΠP

2 to 2EXPTIME when
DTDs are taken into consideration. In particular, the problem can provably not
be solved in polynomial space in general. On the other hand, it remains in
2EXPTIME even when conjunctive queries can use all axes and the much more
expressive Relax NG schemas are considered. In contrast, the satisfiability prob-
lem for even the most general conjunctive queries w.r.t. Relax NG schemas is
in NP. Unfortunately the satisfiability problem is also already NP-hard for very
simple cases using only DTD information.

Finally, we turn to the containment problem for queries that can compare
data values for equality (∼) and inequality (�∼). When data values are in-
volved, static analysis problems are generally known to become undecidable
very quickly. We show that conjunctive query containment is no exception: al-
ready without schema information, it is undecidable. However, the good news
is that even very slight restrictions of this most general case become decid-
able, even without increasing the complexity over the setting without data
values.

1 Actually, we show hardness already for the validity problem.
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Boolean versus n-ary queries. The conjunctive queries in our paper are boolean
queries, i.e., they evaluate either to true or false on a tree. Our complexity
results also carry over to containment for conjunctive queries that return an
n-ary relation when evaluated on a tree.

Related work. We discuss the relation of our paper to some of the above men-
tioned work. Most relevant to us are the papers by ten Cate and Lutz [19],
by David [8] (which evolved independently from ours), and by Lakshmanan et
al. [14]. The connection with Hidders’ work [12] is explained more elaborately
in [2]. Hidders considers XPath 2.0 satisfiability, but does not take schema infor-
mation into account. Ten Cate and Lutz study query containment for expressive
fragments of XPath 2.0, which is closely related to our conjunctive queries. They
also take schema information into account (at least for DTDs and XML Schema
Definitions) and get 2EXPTIME-completeness, but their queries have negation,
disjunction, and union while conjunctive queries do not.

The precise relation between our conjunctive queries and XPath 2.0 is not
entirely obvious. Conjunctive queries are at least as expressive as the XPath 2.0
fragment that consists of Core XPath 1.0 without union, disjunction or negation,
but augmented with the XPath 2.0 path intersection operator (see [19]). This
implies that our upper bound proofs also apply to this XPath 2.0 fragment. On
the other hand, such XPath expressions are syntactically constrained and cannot
use path intersection arbitrarily. Our lower bound proofs can, however, also be
adapted to these XPath 2.0 expressions. In this light, our results significantly
strengthen the lower bound proof of Theorem 20 in [19] when DTD information
is considered, since we do not make use of negation or disjunction.2

David studies the complexity of satisfiability for Boolean combinations of data
tree patterns with respect to DTDs [8]. Different fragments are investigated, and
the complexity results range from NP to undecidable. This formalism is on the
surface quite similar to CQs with data value predicates, but there are some
decisive differences. First, the data tree patterns are always tree-shaped, like
XPath queries without path intersection. Second, the semantics used in [8] is
injective, i.e., two variables cannot be assigned the same node, unlike the one for
CQs. This means that boolean combinations of data tree patterns are in general
more expressive but exponentially less succinct than CQs.

Lakshmanan et al. study satisfiability, with and without schema information,
of tree pattern queries, where the tree patterns are also equipped with a node
identity operator and can compare data values. In particular, they claim (The-
orem 3.2 in [14]) that query satisfiability for queries with structural constraints,
Value Based Constraints (VBCs) and no wildcards is in PTIME. However, it is
NP-complete.3 The results of the paper do not really overlap with our results on
satisfiability, since they only consider a limited, non-recursive, form of DTDs.
2 Without DTD information, ten Cate and Lutz still have 2EXPTIME-completeness

due to the presence of negation, but conjunctive query containment is ΠP
2 -complete.

3 Here, structural constraints include node identities and VBCs allow comparison of
data values to constants. One of our NP-hardness proofs can be easily adapted to
this case. However, we do not conclude PTIME = NP.
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Furthermore, there is a large amount of work on static analysis for XPath 1.0
(see, e.g., [1,10,15,16,17,20]). XPath 1.0 relates to our conjunctive queries in a
similar way as XPath 2.0, except that XPath 1.0 does not have a path intersection
operator. In other words, complexity lower bounds for XPath 1.0 sometimes carry
over to conjunctive queries. We indicate this in the paper whenever relevant.

Due to space constraints, most proofs have been omitted and will appear in
the full version of the paper.

2 Preliminaries

2.1 Trees

By Σ we always denote a finite alphabet. The trees we consider are rooted,
ordered, finite, labeled, unranked trees, which are directed from the root down-
wards. That is, we consider finite trees in which nodes can have arbitrarily many
children, which are ordered from left to right. We view a tree t as a relational
structure over a finite number of unary labeling relations a(·), for a ∈ Σ, and
binary relations Child(·, ·) and NextSibling(·, ·). Here, a(u) expresses that u is a
node with label a, and Child(u, v) (respectively, NextSibling(u, v)) expresses that
v is a child (respectively, the right sibling) of u.

The reason that we can restrict ourselves to a finite set of labels is that an
XML schema defines the set of labels allowed in a tree. In the rare cases where we
consider trees without schema information, we also consider the set of possible
labels to be infinite.

In addition to Child and NextSibling, we use their transitive closures (denoted
Child+ and NextSibling+) and their transitive and reflexive closures (denoted
Child∗ and NextSibling∗). We also use the Following-relation, which is inspired
by XPath [6] and defined as

Following(u, v) = ∃x∃yChild∗(x, u) ∧ NextSibling+(x, y) ∧ Child∗(y, v).

We refer to the binary relations above as axes. We denote the set of nodes of a
tree t by Nodes(t). For a node u, we denote by labt(u) the unique a such that
a(u) holds in t. We often omit t from this notation when t is clear from the
context. By root(t) we denote the root node of t.

2.2 Conjunctive Queries

Let X = {x, y, z, . . .} be a set of variables. A conjunctive query (CQ) over
alphabet Σ is a positive existential first-order formula without disjunction over
a finite set of unary predicates a(x) where each a ∈ Σ, and the binary predicates
Child , Child+, Child∗, NextSibling, NextSibling+, NextSibling∗, and Following. In
this paper, we will mainly focus on Boolean satisfaction of conjunctive queries.
We will therefore consider conjunctive queries without free variables, and we
also consider the constants true and false to be CQs. As our conjunctive queries
do not contain free variables, we sometimes omit the existential quantifiers to
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simplify notation. For a conjunctive query Q, we denote the set of variables
appearing in Q by Var(Q). We use CQ(R1, . . . , Rk) or CQ(R) (where R =
{R1, . . . , Rk}) to denote the fragment of CQs that uses only the unary alphabet
predicates and the binary predicates R1, . . . , Rk. We use the terminology on
valuations of a query from Gottlob et al. [11]. That is, let Q be a CQ, and t a
tree. A valuation of Q on t is a total function θ : Var(Q) → Nodes(t). A valuation
is a satisfaction if it satisfies the query, that is, if every atom of Q is satisfied
by the assignment. A tree t models Q (t |= Q) if there is a satisfaction of Q on
t. The language L(Q) of Q is the set of all trees that model Q.4 We denote the
complement of L(Q) by L(Q).

We sometimes refer to a query as confluent. Intuitively, this means that the
atoms of the query, interpreted as directed edges, merge at some point, i.e., the
graph they form is not a directed forest. More formally, query Q is confluent if
there are three distinct variables x, y, z ∈ Var(Q) and binary predicates R1 and
R2 such that R1(x, z) and R2(y, z) are both atoms of Q.

2.3 Schemas

We abstract from Document Type Definitions (DTDs) as follows:

Definition 1. A Document Type Definition (DTD) over Σ is a triple D =
(Alpha(D),Rules(D), start(D)) where Alpha(D) = Σ, start(D) ∈ Σ is the start
symbol and Rules(D) is a set of rules of the form a → R, where a ∈ Σ and R is
a regular expression over Σ. Here, no two rules have the same left-hand-side.

A tree t satisfies D if (i) labt(root(t)) = start(D) and, (ii) for every u ∈ Nodes(t)
with label a and n children u1, . . . , un from left to right, there is a rule a → R
in Rules(D) such that labt(u1) · · · labt(un) ∈ L(R). By L(D) we denote the set
of trees satisfying D.

We abstract from Relax NG schemas [7] by unranked tree automata, which
are formally defined as follows:

Definition 2. A nondeterministic (unranked) tree automaton (NTA) over Σ is
a quadruple A = (States(A),Alpha(A),Rules(A),Final(A)), where Alpha(A) =
Σ, States(A) is a finite set of states, Final(A) ⊆ States(A) is the set of final
states, and Rules(A) is a set of transition rules of the form (q, a) → L, where
q ∈ States(A), a ∈ Alpha(A), and L is a regular string language over States(A).

For simplicity, we denote the regular languages L in A’s rules by regular expres-
sions. For our complexity results, it doesn’t matter whether the languages L are
represented by regular expressions or nondeterministic string automata.

A run of A on a tree t is a labeling r : Nodes(t) → States(A) such that, for
every u ∈ Nodes(t) with label a and children u1, . . . , un from left to right, there

4 Notice that, as stated in the introduction, we assume that trees only take labels
from a finite alphabet Σ. Hence, for a conjunctive query Q, L(Q) also consists of
trees over alphabet Σ. In the rare cases where we consider trees without schema
information, we state this explicitly.
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exists a rule (q, a) → L such that r(u) = q and r(u1) · · · r(un) ∈ L. Note that,
when u has no children, the criterion reduces to ε ∈ L, where ε denotes the
empty string. A run is accepting if the root is labeled with an accepting state,
that is, r(root(t)) ∈ Final(A). A tree t is accepted if there is an accepting run of
A on t. The set of all accepted trees is denoted by L(A) and is called a regular
tree language. We denote the complement of L(A) by L(A). In the remainder of
the paper, we sometimes view the run r of an NTA on t as a tree over States(A),
obtained from t by relabeling each node u with the state r(u).

From now on, we use the word “schema” to refer to DTDs or NTAs.

2.4 Our Problems of Interest

Definition 3. – Containment w.r.t. a schema: Given two CQs P and Q, and
a schema S, is L(P ) ∩ L(S) ⊆ L(Q)?

– Validity w.r.t. a schema: Given a CQ Q and a schema S, is L(S) ⊆ L(Q)?
– Satisfiability w.r.t. a schema: Given CQ Q and schema S, is L(Q)∩L(S) �= ∅?

All of the above problems are in a sense instances of the containment problem.
That is, validity of Q is testing whether L(true) ⊆ L(Q) w.r.t. S, and satisfia-
bility for Q is testing whether L(Q) �⊆ L(false) w.r.t. S.

3 Validity and Containment

3.1 Complexity Upper Bounds

We start the technical part of the paper by settling the upper bound for the
containment problem. This is achieved through a standard translation of CQs
into NTAs.

Lemma 4. Let Q be a CQ. There exists an NTA A such that L(A) = L(Q) and
A can be computed from Q in exponential time.

It is now easy to derive the following theorem. We note that Theorem 5 is not
new. The 2EXPTIME upper bound is obtained by composing the exponential
translation of [11] from CQs to Core XPath and the polynomial time translation
of [19] from Core XPath expressions to two-way alternating tree automata. The
result now follows as emptiness testing of two-way alternating tree automata is
in EXPTIME.

Theorem 5. Containment of CQs w.r.t. an NTA is in 2EXPTIME.

3.2 Complexity Lower Bounds

In this section, we prove the following result.

Theorem 6. Validity of CQ(Child,Child+) w.r.t. a tree automaton is
2EXPTIME-complete.
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The proof of the above theorem is long and rather technical. We sketch it’s most
interesting parts below.

The upper bound in Theorem 6 follows from Theorem 5. We show the cor-
responding lower bound by reduction from the word problem for alternating
exponential space bounded Turing machines, which is 2EXPTIME-hard [4].

An alternating Turing machine (ATM) [4] is a tuple M = (Q,Σ, Γ, δ, q0)
where Q = Q∀&Q∃&{qa}&{qr} is a finite set of states partitioned into universal
states from Q∀, existential states from Q∃, an accepting state qa, and a rejecting
state qr. The (finite) input and tape alphabets are Σ and Γ , respectively. We
assume that the tape alphabet contains a special blank symbol “ ”. The initial
state of M is q0 ∈ Q. The transition relation δ is a subset of (Q×Γ )× (Q×Γ ×
{L,R, S}). The letters L, R, and S denote the directions left, right, and stay in
which the tape head is moved.

A computation tree for an ATM M is a tree labelled by configurations (tape
content, reading head position, and internal state) of M such that (1) if node
v is labelled by an existential configuration, then v has one child, labelled by
one of the possible successor configurations, (2) if v is labelled by a universal
configuration, then v has one child for each possible successor configuration, (3)
the root is labelled by an initial configuration, and (4) all leaves are labelled
by accepting or rejecting configurations. A computation tree is accepting if it is
finite and all leaves are labelled by accepting configurations.

The overall idea of our proof is as follows. Given ATM M and a word w of
length n we construct, in polynomial time, (1) an ATM Mw which accepts the
empty word if and only if M accepts w and (2) an NTA ACT that checks most
important properties of (suitably encoded) computation trees of Mw, except their
consistency w.r.t. the transition relation of Mw. The consistency is tested by the
query QCT that we define. To be precise, QCT is satisfied by a tree t in L(ACT )
if and only if the transition relation of Mw is not respected by t. This means
that QCT is valid w.r.t. ACT , iff there does not exist a consistent, accepting
computation tree for Mw. Since 2EXPTIME is closed under complementation,
we conclude that validity of CQs with respect to NTAs is 2EXPTIME-hard.

Encoding Computation Trees. The encoding enc(t) of a possible computation
tree t of Mw is illustrated in Fig. 1(a) and obtained from t by replacing each
node u of t with a tree tu, where

– root(tu) is labeled CT ;
– the leftmost child of root(tu) is labeled r (and is the root of the tree encoding

the actual configuration at u); and
– for each child ui of u, root(tu) has a subtree enc(t/ui) where t/ui denotes

the subtree of t rooted at ui.

Encoding configurations. The most crucial part of the reduction is to use the
query to detect when the transition relation of Mw is violated. To be able to do
this, the query must be able to navigate from a node representing tape cell i in
one configuration tree to the node representing cell i in a successor configuration.
To this end, we encode configurations as follows.
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(a) A part of an encoded configuration tree. The CT -
labeled nodes define the structure of the actual config-
uration tree of Mw, while the subtrees with root label r
encode the actual configurations of Mw .

s
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1

s

(b) A skeleton node
which is the left child
of its parent, with its
two skeleton node chil-
dren and its navigation
gadget.

Fig. 1. The encoded computation tree

As we can assume w.l.o.g. that Mw never uses more than 2n tape cells, we can
encode configurations into the leaves of binary trees of height n, where each leaf
represents a tape cell. A configuration tree is obtained from a full binary tree b
of height n as follows. The root gets label r and the other nodes label s. The
s-labeled nodes are called skeleton nodes. To each skeleton node v we attach a
little gadget indicating whether v is a left or a right child in b. More precisely,
we attach a path of length 3 labeled with p, 0, 1, respectively, to left children and
a path labeled with p, 1, 0 to right children. Each leaf skeleton node (one that
has no skeleton node children) is further provided with the relevant information
about the tape cell it represents.

Thus, left and right children can be distinguished by the distance (1 or 2) of
their 1-labelled gadget node from their p-labelled gadget node. More precisely, a
skeleton node v at level i of a configuration tree and a skeleton node u at level i
of a successor configuration tree are both left or both right children, if the nodes
v1 and u1 with label 1 in their respective gadgets have a common ancestor which
has distance i + 4 from v1 and i + 5 from u1.

Comparing configurations. Below, we construct a query SameCell(t1, tt) which
is true for two leaf skeleton nodes if and only if they belong to successive config-
uration trees and represent the same tape cell. In order to do this, we first define
successively more complicated subqueries. The first one states that two nodes
r1 and r2 are roots of two successive configuration trees, i.e., configuration trees
such that the second encodes a successor configuration of the first.

Succ(r1, r2) ≡ ∃s1, s2 : r(r1) ∧ r(r2) ∧ CT (s1) ∧ CT (s2)
∧ Child(s1, r1) ∧ Child(s2, r2) ∧ Child(s1, s2)

Next, we define a query Φi(x, y) to state that x and y belong to successive
encoded configuration trees and are both at level i > 0 of their respective encoded
configuration tree. Here, Childi(x, y) abbreviates the query stating that y can
be reached from x by following the Child -axis i times.



140 H. Björklund, W. Martens, and T. Schwentick

Φi(x, y) ≡ ∃r1, r2 : s(x) ∧ s(y) ∧ Succ(r1, r2) ∧ Childi(r1, x) ∧ Childi(r2, y)

Now we can express that x and y fulfil Φi and, additionally, that they are either
both left children of their parents, or both right children.

Ψi(x, y) ≡ ∃px, py, tx, ty, z : Φi(x, y) ∧ p(px) ∧ p(py) ∧ 1(tx) ∧ 1(ty)
∧Child(x, px) ∧ Child(y, py) ∧ Child+(px, tx) ∧ Child+(py, ty)
∧Childi+4(z, tx) ∧ Childi+5(z, ty)

Using the above queries, we can now express that s1 and s2 are leaf skeleton
nodes in successive configuration trees representing the same tape cell. Recall
that n is the depth of the encoded configuration trees.

SameCell(s1, s2) ≡

∃x1, . . . , xn−1, y1, . . . , yn−1 :
∧

1≤i<n−1

(Child(xi, xi+1) ∧ Child(yi, yi+1))

∧ Child(xn−1, s1) ∧ Child(yn−1, s2) ∧ Ψn(s1, s2) ∧
∧

1≤i≤n−1

Ψi(xi, yi)

DTDs. Actually, the 2EXPTIME lower bound from Theorem 6 can even be
strengthened to the case where the schema is just a DTD instead of a tree
automaton.

4 Satisfiability

4.1 Complexity Upper Bounds

In this section, we show that testing satisfiability for CQs with respect to a
nondeterministic tree automaton is in NP. The idea is a kind of small model
property for such queries. We start with the following lemma. The proof is by a
standard pumping argument.

Lemma 7. There is a polynomial p such that if a CQ Q is satisfiable with respect
to an NTA A, then there is a tree t ∈ L(Q)∩L(A) and a satisfaction θ of Q on
t such that for any variables x, y ∈ Var(Q), the length of the path from θ(x) to
θ(y) is at most p(|A|, |Q|).
Lemma 7 gives us the main machinery to prove the general NP upper bound on
satisfiability:

Theorem 8. Satisfiability of CQs with respect to an NTA is in NP.

4.2 Complexity Lower Bounds

We show that our upper bound for satisfiability w.r.t. a schema is tight, in quite
a strong sense. In particular, when considering a DTD as schema, satisfiability
is NP-hard for queries using only a single axis, no matter which axis this is.
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For the NP lower bounds, we will reduce from the Shortest Common Su-

persequence problem; or the Shortest Common Superstring problem,
both of which are known to be NP-complete [18,9]. The Shortest Common Su-

persequence (respectively, Shortest Common Superstring) problem asks,
given a set of strings S, and an integer k, whether there exists a string of length
at most k which is a supersequence (respectively, superstring) of each string in
S. Here, s is a supersequence of s0 if s0 can by obtained by deleting symbols
from s, and s is a superstring of s0 if s0 can be obtained by deleting a prefix
and a suffix of s.

Theorem 9. Let Axis be an any element of {Child, Child+, Child∗, NextSibling,
NextSibling+, NextSibling∗, Following}. Then Satisfiability of CQ(Axis) w.r.t. a
DTD is NP-hard.

5 Queries with Data Values

A data tree is a tree in which each node u, in addition to its label lab(u), carries
a data value from a countably infinite data domain Δ (see also [3]).5 We write
u ∼ v if two nodes in a data tree have the same data value. Conjunctive queries
over data trees can, in addition to the usual predicates, use the binary predicates
∼ and �∼ with the obvious interpretation. We adopt our notation to denote CQ
fragments for data values as follows: CQ(∼), CQ(�∼), and CQ(∼, �∼) denote the
CQs that use only data equality, only data inequality, and both, respectively,
and in which all axes are allowed. For Q ∈ CQ(∼, �∼), L(Q) is the set of all data
trees t such that there exists a satisfaction of Q on t. Schemas do not constrain
data values in any way, i.e., the set of data trees L(A) defined by an NTA A is
defined precisely as in Section 2.3, but with “tree” replaced by “data tree”.

Our problems of interest for queries with data values are the same problems
as defined in Section 2.4, but with the new definition of L(Q). We first show
that data values do not change the complexity of the satisfiability and validity
problems.

Theorem 10. Satisfiability of CQs(∼, �∼) w.r.t. an NTA is NP-complete.

The proofs of Theorems 8 and 9 straightforwardly carry over to data trees.
The following result follows from Theorem 12, which is strictly stronger.

Theorem 11. Validity of CQ(∼, �∼) w.r.t. an NTA is 2EXPTIME-complete.

Next, we consider containment w.r.t. a schema. We write QC(X |Y ) for the prob-
lem of determining whether L(P ) ∩ L(A) ⊆ L(Q) for a query P ∈ CQ(X), a
query Q ∈ CQ(Y ) and an NTA A. E.g., QC(∼ | ∼, �∼) is about containment of
queries with data equalities in queries with data equalities and inequalities.

It turns out that the consideration of data values does not change the com-
plexity of the query containment problem for queries P,Q, unless P is allowed
to use data inequalities and Q to use equalities and inequalities. In the latter
5 We assume Δ to contain all the data values we use in our proofs and examples.
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Table 1. Decidability for QC(X|Y )

X \ Y ∼ �∼ ∼, �∼
∼ 2EXPTIME 2EXPTIME 2EXPTIME

�∼ 2EXPTIME 2EXPTIME undecidable

∼, �∼ 2EXPTIME 2EXPTIME undecidable

case the problem is undecidable (Theorem 15). We summarize our results for
QC(X |Y ) in Table 1.

Theorem 12. Each of QC(∼, �∼ | ∼), QC(∼, �∼ | �∼), QC(∼ | ∼, �∼), w.r.t. an
NTA is 2EXPTIME-complete.

Hence, ∼ and �∼ do no increase the complexity of query containment as long as
they do not co-occur in Q. We show next, that the picture changes dramatically
if they do co-occur and P uses �∼.

Theorem 13. Validity of a disjunction of CQ(∼, �∼) w.r.t. an NTA is undecidable.

With a little extra work, Theorem 13 can be extended to the following.

Theorem 14. QC(�∼ | ∼, �∼) is undecidable.

Actually, it turns out that if both queries can use ∼ and �∼, the schema automa-
ton from Theorem 14 can be avoided.

Theorem 15. QC(∼, �∼ | ∼, �∼) is undecidable, even without a schema.

6 Conclusion

We studied the query containment and the validity problem for conjunctive
queries over trees (1) relative to a schema and (2) taking into account data
values. It turned out that in the presence of a schema the complexity of the
problem drastically increases. Thus, even though the query language does not
have neither negation nor disjunction, it shares the bad complexity (2EXPTIME)
of the language in [19].

Not surprisingly, with equalities and inequalities on data values the contain-
ment problem even becomes undecidable. Nevertheless, a slight restriction on
the occurrence of inequalities yields a decidable problem.

Although conjunctive queries are a very natural query language, future re-
search should identify tractable fragments, in particular with other restrictions
than acyclicity. We found it interesting to observe that, from the lower bound
proof of Theorem 6, we can conclude that there does not exist an exponential-
size tree automaton recognizing the complement language of a conjunctive query.

Corollary 16. In general, there does not exist an exponential-size nondeter-
ministic tree automaton recognizing L(Q), where Q is a CQ(Child,Child+).
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Abstract. The Correlation Clustering problem, also known as the
Cluster Editing problem, seeks to edit a given graph by adding and
deleting edges to obtain a collection of vertex-disjoint cliques, such that
the editing cost is minimized. The Edge Clique Partitioning problem
seeks to partition the edges of a given graph into edge-disjoint cliques,
such that the number of cliques is minimized. Both problems are known
to be NP-hard, and they have been previously studied with respect to
approximation and fixed parameter tractability. In this paper we study
these two problems in a more general setting that we term fuzzy graphs,
where the input graphs may have missing information, meaning that
whether or not there is an edge between some pairs of vertices of the
input graph can be undecided.

For fuzzy graphs the Correlation Clustering and Edge Clique

Partitioning problems have previously been studied only with respect
to approximation. Here we give parameterized algorithms based on ker-
nelization for both problems. We prove that the Correlation Clus-

tering problem is fixed-parameter tractable on fuzzy graphs when pa-
rameterized by (k, r), where k is the editing cost and r is the minimum
number of vertices required to cover the undecided edges. In particular
we show that it has a polynomial-time reduction to a problem kernel
on O(k2 + r) vertices. We provide an analogous result for the Edge

Clique Partitioning problem on fuzzy graphs. Using (k, r) as param-
eters, where k bounds the size of the partition, and r is the minimum
number of vertices required to cover the undecided edges, we describe a
polynomial-time kernelization to a problem kernel on O(k4 · 3r) vertices.
This implies fixed-parameter tractability for this parameterization. Fur-
thermore we also show that parameterizing only by the number of cliques
k, is not enough to obtain fixed-parameter tractability. The problem re-
mains, in fact, NP-hard for each fixed k > 2.
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1 Introduction

The Correlation Clustering problem for general (ordinary) graphs was in-
troduced and proved NP-hard by Bansal et al. [2,3]. Given a complete graph
with labels 〈+〉 or 〈−〉 on each edge, the problem is to partition the vertices into
clusters so that the number of 〈−〉 edges inside each cluster plus the number of
〈+〉 edges between the clusters, is minimized. Taking 〈+〉 edges as edges and 〈−〉
edges as non-edges, this problem is equivalent to the Cluster Editing prob-
lem, where we are given an ordinary graph graph and asked to add and delete
the total minimum number of edges so that the resulting graph is a collection
of disconnected (i.e., vertex-disjoint) cliques. The Correlation Clustering

problem has been proven NP-hard several times, as it has been discovered and
rediscovered in various applications areas, such as hierarchical tree clustering
[23], computational biology [4,30], and phylogenetic trees [9]. General versions
of the Correlation Clustering problem have been defined and studied from
the point of view of approximation [8,11,12,14]. The second problem that we
study in this paper is the Edge Clique Partitioning problem, which asks to
partition the edges of a given graph into the minimum number of edge-disjoint
cliques. This problem is NP-hard [28] for general graphs, but also for K4-free
and even chordal graphs [24].

In a general way, one can view the problems we consider here, the Corre-

lation Clustering (equivalent to Cluster Editing) problem and the Edge

Clique Partitioning problem, as belonging to a loose class of problems, hav-
ing to do with “clique-structuring” of graphs by means of editing or covering
operations. For rhetorical convenience, we will refer to this loose class of prob-
lems as GRAPH CLUSTERING PROBLEMS. This class of problems, in which
we would also include Vertex Cover, Clique Cover, and many others, has
proved to be a highly productive source of practical applications for parameter-
ized algorithms [1,10,20].

A key point of what we offer here is to expand the investigation of GRAPH
CLUSTERING PROBLEMS to inputs consisting of fuzzy graphs, where some
pairs of vertices of the input may have an undetermined, unknown, or undecided
relation. For many applications, this clearly adds to the realism of the modeling
in an important way. To mention one application area where a similar idea
has been considered before, in bioinformatics the notion of “sandwich graph
problems” has played a useful role [18].

NP-hard problems remain hard also on fuzzy graphs, as they are a general-
ization of ordinary graphs. Hence we investigate their tractability from a param-
eterized complexity point of view, and we try to understand which structural
parameters are more suitable to attack problems on fuzzy graphs.

A problem is fixed parameter tractable (FPT) if its input can be partitioned
into a main part of size n and a parameter (usually an integer) k so that there is
an algorithm that solves the problem in time O(nc·f(k)), where f is a computable
function and c is a fixed constant [13]. A kernel is an instance of the problem
smaller than the input, such that the problem has a solution on the input if and
only if it has a solution on the kernel. It is well known that a problem is FPT if
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and only if a kernel of size g(k) can be computed from the input in polynomial
time, for a computable function g [13,27].

The fixed parameter tractability of the Cluster Editing problem (for or-
dinary non-fuzzy graphs) has been shown, with a series of improvements in
[7,19,29], when using the editing cost k as parameter. The problem has also
been shown to admit a linear kernelization [16,21]. On fuzzy graphs, it is not
known whether using only k as parameter ensures fixed parameter tractability.
Here we introduce a new parameter r, that represents the minimum number of
vertices required to cover the undecided edges. By parameterizing the Cluster

Editing problem by (k, r), we show that the problem admits a quadratic ker-
nel, specifically on O(k2 + r) vertices, and therefore FPT also for fuzzy graphs.
Furthermore the results hold also when the fuzzy graph is weighted.

The Edge Clique Partitioning problem has been recently shown to be
FPT in [26], when parameterized by the number k of cliques that the edges can
be partitioned into. In their work the authors give a quadratic kernel for it. The
corresponding parameterization on fuzzy graphs asks, given a fixed k, whether
the fuzzy edges can be turned into edges and non-edges so that the resulting
set of edges can be partitioned into at most k edge-disjoint cliques. We prove
that the problem becomes hard when the input is a fuzzy graphs, namely NP-
complete for any fixed k ≥ 3. Parameterizing only by k is thus not enough to
ensure fixed parameter tractability. However, if we parameterize by (k, r), where
r is again the minimum number of vertices required to cover the undecided edges
of the fuzzy graph, then the problem becomes FPT, and admits a polynomial
time kernelization to a kernel on O(k4 · 3r) vertices.

Most proofs and figures have been removed due to page limitations, but they
can be found in a full version of this paper [5].

2 Notation and Definitions

For an undirected graph G = (V,E), we denote its vertex set by V (G) = V
and edge set by E(G) = E with n = |V |. The set of neighbors of v ∈ V is
NG(v) = {u | uv ∈ E}, and the degree of v is dG(v) = |NG(v)|. In addition,
NG[v] = NG(v) ∪ {v}. Analogously, for a set S ⊆ V , NG[S] = ∪x∈SNG[x] and
NG(S) = NG[S]\S. We omit subscripts when there is no ambiguity. An induced
subgraph of G by U ⊆ V is the graph G[U ] = (U,EU ), where EU = {xv ∈ E |
x, v ∈ U}. Given a vertex x of G, we denote the graph G[V \ {x}] by G− x. In
addition, for a set of edges M ⊂ E, we define G(M) = ({x | ∃u, xu ∈ M}, M).

A graph is complete if every pair of vertices are adjacent. If a subgraph is
complete then it is called a clique. If G[K] is a clique for K ⊂ V , we also say
that K is a clique. If G(M) is a clique for M ⊂ E, we also say that M is a
clique. A vertex subset S ⊆ V is a vertex cover if every edge of G has at least
one endpoint in S. A connected component is a maximal connected subgraph.

We define a fuzzy graph G = (V,E, F ) to be a graph with two types of edges:
E is the set of real edges, and F is the set of fuzzy edges. Between all other pairs
of vertices in the graph we say that we have non-edges. When we decide for each
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fuzzy edge whether it should become a real edge or a non-edge, we say that we
realize the fuzzy edges. The resulting graph is called a normalization of the fuzzy
graph. Formally we say that (R+, R−) with F = R+∪R− is a realization of F into
real edges R+ and non-edges R− such that G′ = (V, E∪R+) is the corresponding
normalization of G = (V,E, F ). When we speak about the connected components
of a fuzzy graph, we mean the connected components of the graph obtained by
turning all fuzzy edges into non-edges. So a connected fuzzy graph is a fuzzy graph
where between any two vertices there is a path of real edges.

3 Parameterized Cluster Editing with Partial Information

A cluster graph is a graph where each connected component is a clique. In this
section we study the problem of editing a weighted fuzzy graph G = (V,E, F )
to obtain a cluster graph. Editing means turning some real edges into non-edges
(deleting), turning some non-edges into real edges (adding), and turning all fuzzy
edges into either real edges or non-edges. Each edge and non-edge is associated
with a positive weight, whereas each fuzzy edge has weight 0. The cost of an
edit is the sum of the weights of the deleted and added edges, and the goal is to
minimize the cost. The problem is formally defined as follows.

Weighted Fuzzy Cluster Editing (WFCE)

Instance: A fuzzy graph G = (V,E, F ), a weight function w : V × V → N such
that w(uv) = 0 if uv ∈ F and w(uv) > 0 if uv /∈ F , and an integer k ≥ 0.
Question: Is there a set M ⊆ V × V such that: G′ = (V, (E \M) ∪ (M \ E)) is
a cluster graph and

∑
uv∈M w(uv) ≤ k?

First we characterize the fuzzy graphs that can be turned into a cluster graph
just by realizing the fuzzy edges, that is, without any editing cost. We show that
they can be defined by a family of forbidden induced (fuzzy) subgraphs. The
result was already noted in [14], but we restate it in a form more suitable for
our framework.

We define a fuzzy path P f
l = {v1, v2, ..., vl} to be a fuzzy graph where for every

1 ≤ i ≤ l − 1 we have that vivi+1 is a real edge, v1vl is a non-edge, and all the
other pairs of vertices are joined by fuzzy edges.

Theorem 1. Let G be a fuzzy graph. Then there exists a realization of the fuzzy
edges that results in a cluster graph without editing any real edge or non-edge if
and only if G does not contain any induced subgraph isomorphic to P f

l for l ≥ 3.

The k-Weighted Fuzzy Cluster Editing problem (k-WFCE) is the WFCE
problem where we choose k of the problem instance to be the parameter. The
complexity of k-WFCE is open even for the unweighted case. The characteriza-
tion given in Theorem 1 is through an infinite set of forbidden induced subgraphs,
and hence an FPT algorithm for k-WFCE does not follow from the results of
Cai [7].

In order to give an FPT algorithm, we introduce an additional parameter. We
define a fuzzy vertex cover of a fuzzy graph to be a vertex subset S such that
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each fuzzy edge has an endpoint in S. The new parameter is r = |S| where S is
a smallest fuzzy vertex cover of G. We call the corresponding new problem the
(k, r)-Weighted Fuzzy Cluster Editing, or (k, r)-WFCE, problem. Observe
that checking whether G has a fuzzy vertex cover of size at most r is FPT when
parameterized by r. To do this we create a non-fuzzy graph G′ from G(F ) by
turning all real edges of G(F ) into non-edges and all fuzzy edges into real edges.
It is easy to see that G has a fuzzy vertex cover with at most r vertices if and
only if G′ has a vertex cover of at most r vertices. Since the r-Vertex Cover

problem is well known to be FPT, our claim follows.

3.1 Kernel for the (k, r)-Weighted Fuzzy Cluster Editing Problem

We show fixed parameter tractability by giving a set of rules that either enable us
to answer no, or produce a kernel of size O(k2 + r) in polynomial time, for the
(k, r)-WFCE problem. First we give a general result to simplify some later proofs.

Observation 1. Let G be a weighted fuzzy graph with connected components
C1, . . . , Cl. Then G can be made into a cluster graph with editing cost at most
k if and only if each connected component Ci can be made into a cluster graph
with editing cost at most ki, such that

∑
1≤i≤l ki ≤ k.

Now we start presenting the rules, that are mostly self-explanatory. We will
not give sharp bounds on the running time of each rule, but we will limit the
explanation to why they can be executed in polynomial time.

Rule 1. If there is a connected component C with no non-edges, remove C.

Lemma 1. Rule 1 is correct and can be applied in linear time.

Rule 2. If Rule 1 does not apply and there are more than k + 1 connected
components, then answer no.

Lemma 2. Rule 2 is correct and can be applied in linear time.

For the following rule, note that a minimum cut between two vertices u and v is
the minimum total weight of a collection of real edges that must be deleted so
that u and v have no real paths between them. The idea is that, if two vertices
cannot be disconnected deleting edges of total weight at most k, then they must
belong to the same cluster in every solution, if any exists. For this rule we also
need some new definitions. When we contract two vertices u and v into one new
vertex x, then u and v are deleted from the graph, x is added to the graph, and
each previous pair of real edge, fuzzy edge, or non-edge uz and vz, appears now
as two parallel edges between x and z.

Rule 3. If there are vertices u and v such that the value of a minimum cut
between them is at least k + 1, then contract u and v into one vertex x, and do
all of the following:



Clustering with Partial Information 149

1. If uv was a non-edge then let k = k − w(uv).
2. If there are parallel edges with endpoint x and at least one of them is fuzzy,

remove the fuzzy edge.
3. If there are parallel real edges (resp. non-edges) with endpoint x, replace

them with one real edge (resp. non-edge) with weight equal to the sum of the
weights of the parallel real edges (resp. non-edges).

4. If there is a real edge e = ax in parallel with a non-edge f = ax then:
(a) If w(e) > w(f), then let k = k − w(f) and replace e and f with a real

edge e′ such that w(e′) = w(e) − w(f).
(b) If w(e) < w(f), then let k = k−w(e) and replace e and f with a non-edge

f ′ such that w(f ′) = w(f) − w(e).
(c) If w(e) = w(f), then let k = k − w(e) and replace e and f with a fuzzy

edge g.

If now k < 0, answer no.

Lemma 3. Rule 3 is correct and can be applied in polynomial time.

Theorem 2. If Rules 1, 2 and 3 do not apply, and we have not answered no yet,
then either the current graph has at most k2 +3k+ r vertices, or the answer is no.

Proof. If Rule 1 and Rule 2 do not apply, it means that the graph has at most
k connected components, and each of them must be edited. If Rule 3 does not
apply, then there cannot be cliques of size greater than k + 1.

Let us now consider a connected fuzzy graph G = (V,E, F ) with no clique
of size greater than k + 1 and that can be made into a cluster graph by editing
a set of real edges and non-edges M of total weight at least 1 and at most k.
Then we show that G cannot have more than k2 + 3k+ r vertices. Let us define:
S ⊆ V the set of vertices that are incident to some edited edge or non-edge in
M ; R a minimum fuzzy vertex cover of G; and X = V \ R, so that G[X ] does
not contain any fuzzy edge. We define also X ′ = S ∩ X . It is easy to see that
|X ′| ≤ |S| ≤ 2k. Let us focus on the graph G[X \X ′]. It does not contain fuzzy
edges, and none of its vertices is incident to an edited real edge or non-edge.
We can conclude that it must be a union of disjoint cliques. In particular we
show that it must be the union of at most k + 1 disjoint cliques, and that each
of them has specific neighbors in the rest of the graph. Since no vertex of these
cliques is incident to an edited edge, and there are no fuzzy edges in between
them, each of them must belong to a different cluster in the solution. However,
to create more than k + 1 connected components from a connected graph, we
need to remove at least k + 1 edges. Hence the first part of the claim is proved.
From the previous argument, it also follows that all vertices in X ′ connected to
a clique in G[X \ X ′], must end up in the same cluster of the solution as the
clique they are adjacent to. Assume they do not, then we should delete an edge
incident to a vertex in G[X \X ′], getting a contradiction. Therefore every vertex
in X ′ can be connected to at most one clique in G[X \X ′], and furthermore it
must be adjacent to all vertices of this clique. This means that every clique in
G[X \X ′] has either some neighbors in X ′ and size at most k, or it has neighbors
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only in R and size at most k+ 1. Going back to G, if we define N as the number
of cliques in G[X \X ′] that have neighbors only in R, we can give the following
bound: |V | ≤ (k + 1) ·N + k · (k + 1 −N) + (2k −N) + |R| = k2 + 3k + r. The
first two terms give a bound on the number of vertices in G[X \ X ′] according
to the previous discussion, while the term (2k −N) represents a tighter bound
on |X ′|. In fact, for every clique with neighbors only in R, there must be at
least one distinct vertex in R incident to an edited edge. This because we need
to disconnect the clique from the rest of the graph, but we cannot touch edges
incident to its vertices. Besides at least one endpoint of the edge we have to
remove will belong to the same cluster as the clique.

Consider now a fuzzy graph G with l connected components C1, . . . , Cl, where
1 ≤ l ≤ k. By Observation 1 we know that there is a solution for G that edits
at most k edges if and only if there is a solution for each G[Ci] that edits
at most ki edges, such that

∑l
i=1 ki ≤ k. This means that, by what we just

proved for connected fuzzy graphs, if there is a solution for G then |V (G[Ci])| ≤
k2

i +3ki+ri for 1 ≤ i ≤ l, where ri is the size of a minimum vertex cover of G[Ci].
Hence |V (G)| =

∑l
i=1 k

2
i + 3ki + ri, that is

∑l
i=1 k

2
i + 3

∑l
i=1 ki +

∑l
i=1 ri ≤

(
∑l

i=1 ki)2 + 3k + r = k2 + 3k + r, completing the proof. �

It is easy to construct examples where we have (k + 1) ·N + k · (k + 1 −N) +
(k + 1 −N) + r = k2 + 2k + 1 + r vertices in a yes instance for any given k (see
[5]). Hence Theorem 2 gives a quite tight bound on the size of the kernel, that
is in any case O(k2 + r).

We have thus proved that the (k, r)-WFCE problem has a kernel of size O(k2+
r). We can now conclude the following.

Theorem 3. The (k, r)-Weighted Fuzzy Cluster Editing problem can be
solved in time nO(1) + O((k2 + r)2k).

4 Parameterized Edge Clique Partition with Partial
Information

In this section, we study the problem of partitioning the edges of a fuzzy graph
G = (V,E, F ) into edge-disjoint cliques. In this problem, no editing of the edges
or non-edges of G is involved, but we have to decide for each fuzzy edge whether
or not it should become a real edge or a non-edge. Below is a formal definition
of the problem.

Fuzzy Edge Clique Partitioning (FECP)

Instance: A fuzzy graph G = (V,E, F ) and an integer k ≥ 0.
Question: Is there a realization (R+, R−) of the fuzzy edges such that the edges
of G′ = (V,E ∪R+) can be partitioned into at most k edge-disjoint cliques?

Naturally, being a more general version of the problem on non-fuzzy graphs,
the Fuzzy Edge Clique Partitioning problem is NP-hard as well. Interest-
ingly, we show that it remains NP-hard also when k is a fixed constant and not
a part of the input, for every k ≥ 3. Recall that, in contrast, the Edge Clique
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Partitioning problem is FPT when parameterized by k. We show the FECP
problem parameterized by both k and r, where r is again the size of a minimum
fuzzy vertex cover, is FPT. We call this version of the problem (k, r)-FECP.

4.1 The k-Fuzzy Edge Clique Partitioning Problem Is NP-Complete

Here we prove that is it NP-complete for every fixed k ≥ 3 to decide whether
the edges of a fuzzy graph can be partitioned into k edge-disjoint cliques. The
problem we reduce from, is the classical k-Coloring problem. In this problem, the
input is a graph G = (V,E), and the problem is to decide whether the vertices
of G can be colored with at most k colors, such that no two adjacent vertices
have the same color. Since it is well known that this problem is NP-complete for
every fixed k ≥ 3, the result follows. We omit the proof of the reduction, but we
give an example in Figure 1.

Theorem 4. For every fixed k ≥ 3 the k-Fuzzy Edge Clique Partitioning

problem is NP-complete.
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Fig. 1. An example of the reduction. The graph G′ is obtained from a graph G by
adding a pendant vertex to each original vertex of G, replacing the edges of G with
non-edges and letting all remaining edges of G′ be fuzzy edges. We show also the
equivalence of a solution of the 3-Coloring problem on G with a solution of the 3-
Clique Partition problem on G′. In G′ the fuzzy edges are not drawn to keep the figure
clean, while in the corresponding clique partition the non edges are not drawn.

For all values of k smaller than 3, it is possible to show that the problem is
solvable in polynomial time, by careful but not too complicated arguments [5].

4.2 The (k, r)-Fuzzy Edge Clique Partitioning Problem Is FPT

To obtain a kernel for (k, r)-FECP, we first give some observations that apply to
any valid solution of the problem on non-fuzzy graphs, i.e., the k-Edge Clique

Partitioning problem.
For a non-fuzzy graph G = (V,E), and a fixed k ≥ 0, we call a feasible solution

a partition K = {K1,K2, ...,Kl} of E such that G(Ki) is a clique for each i, and
l ≤ k. For Ki ∈ K, we define V (Ki) as the union of the endpoints of the edges
in Ki, i.e. V (G[Ki]). We call gateways the vertices that are in the intersection of
some cliques defined by elements of K, while the vertices contained only in one
clique are called normal. Two normal vertices in the same clique are said to be
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co-normal. We define a set V ′ ⊆ V to be a type if there is at least one vertex v
such that N [v] = V ′. So we say that two vertices are of the same type if their
closed neighborhood is identical, and that they are of different type otherwise.
Finally notice that the intersection of two cliques in any solution cannot consist
of more than one vertex, or there would be one edge covered by two cliques.

Theorem 5 ([6]). Every edge clique partition of a complete graph on n vertices,
except the trivial one of a single clique, contains at least n cliques.

Lemma 4. If the answer to the k-Edge Clique Partitioning problem on a
graph G = (V,E) is yes, then the answer is yes also on each induced subgraph
of G.

Lemma 4 implies that if there is even only one induced subgraph of G for which
the answer is no, then G itself is a no instance. We will use this observation often.

Observation 2. In any solution of k-Edge Clique Partitioning, there can-
not be more than

(
k
2

)
gateway vertices.

Proof. Every two cliques can intersect in at most one vertex, or they would cover
the same edge. Since there are at most

(
k
2

)
possible intersection among k cliques,

the result follows. �

Examples exist to show that the bound given above is tight. For the next result,
remember that the closed neighborhood of a vertex is the union of the cliques it
belongs to in a feasible solution.

Observation 3. If two vertices have the same type, then in any feasible solution
either they are co-normal or they are both gateways.

Observation 4. If there are more than k +
(
k
2

)
vertices of pairwise different

type, then the answer to k-Edge Clique Partitioning is no.

Now we show that a simple generalization of the observations given until now,
can be used as rules to give a polynomial time kernelization for the (k, r)-FECP
problem. From now on we assume a fuzzy input graph G = (V,E, F ).

First we need to introduce a generalization of the type of a vertex for fuzzy
graphs. The fuzzy neighborhood of a vertex v is the set of the vertices w such
that vw ∈ F . We say that two vertices are of the same absolute type if their
closed and fuzzy neighborhoods are equal.

Consider a fuzzy graph G = (V,E, F ), and let S ⊂ V be a minimum fuzzy
vertex cover of G, such that |S| ≤ r. Then for each vertex in X = V \ S, there
can be at most 3r possible ways to have adjacencies in S. So we can classify
the vertices of X into 3r categories, so that the vertices in the same category
have the same absolute type with respect to the vertices in S. Since G[X ] is a
non-fuzzy graph, if there is no solution to k-Edge Clique Partitioning for
G[X ], then there is no solution to (k, r)-FECP on G no matter how we realize
the fuzzy edges, due to Lemma 4.
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Rule 4. If there are more than (k +
(
k
2

)
) · 3r vertices of different absolute types

in X, then the answer is no.

Lemma 5. Rule 4 is correct and can be executed in polynomial time.

Proof. If there are more than (k+
(
k
2

)
) · 3r absolute types of vertices, then G[X ]

must have more than (k+
(
k
2

)
) vertices of different types. Hence by Observation 4,

there is no solution for G[X ]. By Lemma 4, this implies that there is no solution
for G as well, proving the first part of the statement.

The rule can be easily executed in polynomial time by listing the absolute
closed neighborhoods of the vertices of G, and checking whether there are more
than (k +

(
k
2

)
) · 3r different ones. Since k and r are constants, the result follows.

�

Rule 5. If Rule 4 does not apply and there are more than
(

k
2

)
+ 1 vertices of the

same absolute type in X, then remove one.

Lemma 6. Rule 5 is correct and can be executed in polynomial time.

Lemma 7. If Rules 4 and 5 do not apply, then the graph has at most (
(
k
2

)
+ 1) ·

((k +
(
k
2

)
) · 3r) + r vertices.

Theorem 6. (k, r)-Fuzzy Edge Clique Partitioning is FPT with a kernel
of size O(k4 · 3r).

5 Concluding Remarks

In this paper we have studied the parameterized complexity of two important
examples of GRAPH CLUSTERING PROBLEMS on inputs consisting of fuzzy
graphs: graphs that represent incomplete information about relationships. We
believe that the investigation of “problems on fuzzy graphs” is extremely well-
motivated by applications, particularly in areas such as machine learning and
bioinformatics, where complete information about the graphs modeling various
computational objectives is often not available. In this general context, much
more remains to be done.

We have described two FPT algorithms, respectively, for the Weighted

Fuzzy Cluster Editing problem, and the Fuzzy Edge Clique Partition-

ing problem, where both are parameterized by the compound parameter (k, r),
and where k is a cost parameter: respectively, the total cost of the editing in the
case of Weighted Fuzzy Cluster Editing, and the number of cliques in the
partition in the case of Fuzzy Edge Clique Partitioning; and where r is a
structural parameter: the minimum number of vertices required to cover the un-
decided edges of the fuzzy graph taken as input. This structural parameter could
be well-motivated by applications where only a small number of “trouble-maker”
vertices are the “cause” of the uncertain information about the input.

We have also shown that in the case of Fuzzy Edge Clique Partitioning,
it is not possible to extend the above positive outcome to a parameterization
only by k.
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In the case of the Fuzzy Cluster Editing problem, the analogous question
remains open, and this is in fact a prominent concrete open problem in param-
eterized complexity. Apart from the important machine learning applications
noted in [2,3], it has recently been shown that for the special case where all
weights are 1, the Fuzzy Cluster Editing problem (parameterized only by
k) is FPT-equivalent [17,14], to the Minimum Terminal Edge Separation

problem left open by Marx in [25].
Another area of open problems concerning this work is that of improving ker-

nelization bounds. Because FPT kernelization is of great practical significance
due to the general connection to efficient pre-processing (see [15,22,27] for back-
ground and discussion of this point), it is an outstanding open problem as to
whether Fuzzy Edge Clique Partitioning admits a poly(k, r) kernelization.
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Abstract. The reoptimization version of an optimization problem deals
with the following scenario: Given an input instance together with an
optimal solution for it, the objective is to find a high-quality solution for
a locally modified instance.

In this paper, we investigate several reoptimization variants of the
traveling salesman problem with deadlines in metric graphs (Δ-DlTSP).
The objective in the Δ-DlTSP is to find a minimum-cost Hamiltonian
cycle in a complete undirected graph with a metric edge cost function
which visits some of its vertices before some prespecified deadlines. As
types of local modifications, we consider insertions and deletions of a
vertex as well as of a deadline.

We prove the hardness of all of these reoptimization variants and give
lower and upper bounds on the achievable approximation ratio which are
tight in most cases.

1 Introduction

The traditional approach for dealing with optimization problems is to find good
feasible solutions to input instances nothing about which is known in advance.
Unfortunately, most of the practically relevant problems are computationally
hard, and so we use different approaches such as approximation algorithms or
heuristics for computing good (but not necessarily optimal) solutions. In many
applications, however, we might have some prior knowledge about our input
instance at hand. For instance, if we want to maintain a timetable for a railway
system or a routing scheme for a communications network, small changes to the
railway system or the network require a new timetable or routing scheme, but
we might be able to profit from the information about the old solution.

These considerations lead to the concept of reoptimization problems: Given
an instance of an optimization problem together with an optimal solution for
it, the objective is to compute an optimal solution for a locally modified input
instance. For a graph problem, we might for instance consider the deletion or
insertion of a vertex or an edge or the change of the cost of a single edge as a local
modification. For an optimization problem U and a type of local modification lm,
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we denote the resulting reoptimization problem by lm-U . Obviously, lm-U may
be easier than U because we have the optimal solution for the original problem
instance as additional knowledge for free. But there also exist examples where
the concept of reoptimization does not help since the reoptimization version is
exactly as hard as the standard version of the problem [4].

The concept of reoptimization was already successfully applied to several vari-
ants of the TSP [1,2,4,5,13] and the Steiner tree problem [3,8,11]. A survey of
reoptimization problems can also be found in [9].

A related question was also considered in operations research [12,14,15,16,17],
where it was studied how much a given instance of an optimization problem may
be changed without destroying the optimality of solutions. In contrast to this
so called “postoptimality analysis”, we are also interested in local modifications
causing the loss of optimality for solutions to the old instance.

In this paper, we will apply the concept of reoptimization to the Deadline TSP.
In the well-known traveling salesman problem (TSP), the objective is to find a
minimum-cost Hamiltonian cycle in a complete graph with edge costs. The Dead-
line TSP (DlTSP) is a generalization of the TSP, where additionally a subset of
the vertices is given which have deadlines imposed on them. Any feasible Hamil-
tonian tour, starting from a prespecified start vertex s, has to visit every deadline
vertex v before v’s deadline is expired, i.e., the partial tour from s to v has to have
a total cost of at most the deadline value of v. The DlTSP is an important special
case of the TSP with time windows which is one of the most prominent optimiza-
tion problems in operations research occurring in a number of applications like for
instance vehicle routing, for a survey, see [10].

We deal with the metric version of the problem only, that is, we assume that
the cost function c satisfies the triangle inequality, i.e., c({u, v}) ≤ c({u,w}) +
c({w, v}) for all vertices u, v and w. The approximation hardness of the metric
Deadline TSP, or Δ-DlTSP for short, has been shown in [6,7]. Some reoptimiza-
tion versions of DlTSP, where the local modifications consisted of changing the
value of one deadline or the cost of one edge, have been investigated in [4]. As
local modifications, we will here consider the insertion or deletion of a vertex
with or without a deadline, and the insertion or deletion of a deadline (without
changing the vertex set). For our results, we have to distinguish two cases de-
pending on the number of deadline vertices. If the number of deadline vertices is
bounded by a constant, the reoptimization problems are approximable within a
constant, but APX-hard. If the number of deadline vertices is unbounded, most
of the considered variants are approximable with a linear approximation ratio,
and this bound is tight for adding or deleting deadlines or deadline vertices. For
adding a vertex without a deadline, the problem is still approximable within a
factor of 2. A complete overview of the results is shown in Table 1.

The paper is organized as follows: In Section 2, we formally define the reopti-
mization problems under consideration. In Section 3, we prove the lower bounds
for the case of a constant number of deadline vertices; Section 4 is devoted to the
lower bounds for an unbounded number of deadlines. In Section 5, we present
the upper bounds on the approximation ratio.
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Table 1. Lower and upper bounds on the approximability of different reoptimization
variants of Δ-DlTSP

local modification bounded # deadlines unbounded # deadlines

lower bound upper bound lower bound upper bound

add vertex without deadline 2 − ε 2 2 − ε 2
delete vertex without deadline 2 − ε 2.5 2 − ε 0.5n
add deadline to existing vertex 2 − ε 2.5 (0.5 − ε)n 0.5n

delete deadline from vertex 2 − ε 2.5 (0.5 − ε)n 0.5n
add vertex with deadline 2 − ε 2.5 (0.5 − ε)n 0.5n

delete vertex with deadline 2 − ε 2.5 (0.5 − ε)n 0.5n

2 Preliminaries

We start with formally defining the DlTSP. Consider a complete graph G =
(V,E) and a cost function c : E → Q+. A deadline triple for (G, c) is a triple
D = (s,D, d) where s ∈ V , D ⊆ V \ {s}, and d : D → Q+. We call D the set
of deadline vertices of G. A Hamiltonian path P = (w1, w2, . . . wn) satisfies the
deadlines according to D, if s = w1 and, for all wi ∈ D, the following holds:

i∑

j=2

c({wj−1, wj}) ≤ d(wi).

A Hamiltonian cycle C = (w1, w2, . . . , wn, w1) satisfies the deadlines according to
D if it contains a path (w1, w2, . . . , wn) satisfying the deadlines according to D.

Definition 1 (DLTSP). The TSP with deadlines (DlTSP) is the following
optimization problem. The input consists of a complete graph G = (V,E), an
edge cost function c : E → Q+, a deadline triple D = (s,D, d), and a Hamil-
tonian cycle (of arbitrary cost) in G satisfying the deadlines according to D.
The objective is to find a minimum-cost Hamiltonian cycle of G satisfying the
deadlines according to D.

By Δ-DlTSP we denote the restriction of DlTSP where the edge cost func-
tion c satisfies the triangle inequality, and k-Δ-DlTSP is the subproblem of
Δ-DlTSP where the number of deadlines of any input instance is bounded by
some constant k (i.e., |D| = k).

Note that, for a DlTSP instance, already finding a feasible solution might be
a hard problem. Since we are not interested in this aspect of hardness, we have
defined the problem as to contain an (arbitrarily bad) feasible solution as part
of the input. In this way, it is easy to see that DlTSP is contained in NPO.

Obviously, any instance of TSP can be regarded as an instance of DlTSP

with D = ∅. Thus, all lower bounds for TSP directly carry over to DlTSP.
We are now ready to define the reoptimization variants of Δ-DlTSP.

Definition 2. Let GO = (VO, EO) and GN = (VN , EN ) be two complete undi-
rected graphs with metric edge cost functions cO : EO → Q+ and cN : EN → Q+,
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let DO = (s,DO, dO) be a deadline triple for GO and let DN = (s,DN , dN )
be a deadline triple for GN such that (GN , cN ,DN ) can be constructed from
(GO, cO,DO) by a local modification. We will consider the following six local
modifications:

lm(D−): Deletion of a deadline: In this case, we have (GO, cO) = (GN , cN ),
DN = DO \ {x} for some x ∈ DO, and dN = dO

∣
∣
DN

.
lm(D+): Addition of a deadline to an already existing vertex: In this case, we

have (GO, cO) = (GN , cN), DO = DN \ {x} for some x ∈ DN , and dO =
dN

∣
∣
DO

.
lm(V −): Deletion of a vertex without deadline: In this case, we have VN =

VO \ {x} for some x ∈ VO \ DO, EN and cN are the canonical restrictions
of EO and cO to the vertices of VN , and DO = DN .

lm(V +): Addition of a vertex without deadline: In this case, we have VO =
VN \ {x} for some x ∈ VN \ DN , EO and cO are the canonical restrictions
of EN and cN to the vertices of VO, and DO = DN .

lm((D ∧ V )−): Deletion of a deadline vertex: In this case, we have DN = DO \
{x} for some x ∈ DO, dN = dO

∣
∣
DN

, VN = VO \ {x}, and EN and cN are
the canonical restrictions of EO and cO to the vertices of VN .

lm((D ∧ V )+): Addition of a deadline vertex: In this case, we have DO = DN \
{x} for some x ∈ DN , dO = dN

∣
∣
DO

, VO = VN \ {x}, and EO and cO are the
canonical restrictions of EN and cN to the vertices of VO.

ForX ∈ {D−, D+, V −, V +, (D∧V )−, (D∧V )+}, we define the problem lm(X)-Δ-

DlTSP as to find an optimum solution for the Δ-DlTSP instance (GN , cN ,DN ),
given the Δ-DlTSP instance (GO, cO,DO) together with an optimal solution C

for it and an arbitrary feasible solution C̃ for (GN , cN ,DN ).
Moreover, for any constant k, let lm(X)-k-Δ-DlTSP denote the subproblem

of lm(X)-Δ-DlTSP where |DN | = k.

3 Lower Bounds for a Bounded Number of Deadlines

In this section, we will give lower bounds of (2−ε) for any ε > 0 for all reoptimiza-
tion variants of Δ-DlTSP as defined above. For the reductions we will employ the
following decision problem rHP (Restricted Hamiltonian Path Problem).

Definition 3 (RHP). Let G = (V,E) be a graph where |V | = n+1. Let s, t ∈ V
be two distinct vertices and let P ′ = (s, . . . , t) be a Hamiltonian path in G from
s to t. The objective is to decide whether there exists a second Hamiltonian path
P in G from s to some vertex vi �= t.

The problem rHP is known to be NP-complete (for a proof, see [4]). We will
now show that any approximation algorithm with a ratio better than (2− ε) for
any of the reoptimization variants of Δ-DlTSP from Definition 2 could be used
to decide rHP in polynomial time which contradicts NP �= P .

We start with a proof for lm(D+
)-k-Δ-DlTSP.
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Theorem 1. Let ε > 0, let k ≥ 4. There is no polynomial-time approximation
algorithm for lm(D+

)-k-Δ-DlTSP with a ratio of (2 − ε), unless P = NP.

Proof. Given an instance (G′, P ′) of rHP where |V (G′)| = n + 1 and P ′ =
(s′, . . . , t′), we will construct a complete graph KG′ where V (KG′) = V (G′),
with an edge cost function c defined by

c(e) =

{
1, if e ∈ E(G′)
2, otherwise

for all e ∈ E(KG′). Note that there exists a Hamiltonian path P from s′ to
vi �= t′ of cost n in KG′ if and only if P is a Hamiltonian path in G′.

As a second step, we extend KG′ to a complete, weighted graph G which
will be part of an instance of lm(D+

)-k-Δ-DlTSP. The deadline triples are
DO = (s,DO, dO) and DN = (s,DN , dN ) where DO = {D2, D3, D4} and DN =
{D1, D2, D3, D4}. The deadline function dO is shown in Figure 1 and dN is
shown in Figure 2. Observe that DN = DO ∪ {D1}. For any given ε > 0,
let γ := γ(ε) > 9n

2ε . All edge costs and deadlines are as depicted in Figure 1.
Edges which are not shown have the largest cost possible (respecting the triangle
inequality).

Fig. 1. (G, DO) before the local modification is applied and the optimal tour C

An optimal solution for (G,DO), which will serve as part of the input, is C =
(s,D2, D1,

←−
P ′, D3, D4, s) which uses the known Hamiltonian path P ′ backwards.

The costs are n + n + γ + n + n + γ + 2n = 2γ + 6n.
To prove that C indeed is an optimal solution, we will show that any other

solution will be at least as expensive as C, independent of the existence of a
second Hamiltonian path P of cost n in KG′ . Note that it is only possible to
start with (s,D2) or (s,D1, D2). Any other path would immediately violate
D2’s deadline of 2n. After that there are several options. If the path starts
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with (s,D1, D2), it cannot visit D4 before D3, because it would then violate the
deadline at D3. However, it is possible to visit all vertices in KG′ before D3 if
there exists a Hamiltonian path P of cost n in KG′ from s′ to vi �= t′. (Note that
c(s′, D2) = γ + 1.) The path will then visit D3 just in time. After that, this tour
will have to be completed by visiting D4 and returning to s. Hence, this solution
will be (s,D1, D2,

←−
P ,D3, D4, s) with cost n+ n + γ + n+ n+ γ + 2n = 2γ + 6n

which is as expensive as C.
On the other hand, if the path starts with (s,D2), it can go on to D3 via D4.

It will arrive at D3 at cost γ + 4n, and it will then have to visit D1 and KG′ .
No matter in which order it does so, this path will at least cost another γ + 3n.
Obviously, visiting D3 before D4 will not improve this.

Observe, that the subgraph KG′ ∪ {D3} is connected to the rest of G only
with edges that cost at least γ. Therefore, any possible solution that does not
visit the vertices in KG′ ∪ {D3} consecutively, will cost more than 4γ. Thus, we
have shown that C is indeed an optimal solution for (G,DO).

Now we apply the local modification by adding a deadline of n to D1. The
new instance (G,DN ) is shown in Figure 2. If there exists a Hamiltonian path
P from s′ to vi �= t′ in G′, and thus a second Hamiltonian path of cost n in KG′ ,
we claim that (s,D1, D2,

←−
P ,D3, D4, s), which contains P backwards (w.l.o.g. let

P = (s′, . . . , v1)), is an optimal solution for (G,DN ). Again, the costs are 2γ+6n.

Fig. 2. (G, DN ) and an optimal solution using P = (s′, . . . , v1) backwards

To prove the claim, we note that any feasible solution has to start with the
path (s,D1, D2) now. If there is no Hamiltonian path P = (s′, . . . , vi) with
vi �= t′ of cost n in KG′, it is impossible to visit all vertices in KG′ between
D2 and D3. After visiting D3, the path must immediately visit D4. Overall,
this will cost more than 2γ + 3n. (Note that c(D2, s

′) = c(D2, t
′) = γ + 1 and

c(t′, D3) = c(s′, D3) = n + 1.) After that, all deadline vertices are visited and
the path can visit those vertices it left out in KG′ . This will cost at least another
2γ, adding up to a total cost of at least 4γ + 3n.
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As an alternative, the path could start with (s,D1, D2, D3, D4) which costs
more than 2γ + 2n. Continuing by visiting the vertices in KG′ , the rest of the
path costs at least another 2γ + n. Thus, without a Hamiltonian path from s′

to vi �= t′, no Hamiltonian cycle in G will be cheaper than 4γ + 3n.
Since we chose γ = 9n

2ε , an easy calculation shows 4γ + 3n > (2 − ε)(2γ + 6n).
Thus, for any ε > 0, an approximation algorithm for lm(D+

)-k-Δ-DlTSP with
a ratio of (2 − ε) could be used to decide rHP which contradicts NP �= P . �

Theorem 2. Let ε > 0, let k ≥ 4. There is no polynomial-time approximation
algorithm for any of the problems lm(D−)-k-Δ-DlTSP, lm(V +

)-k-Δ-DlTSP,
lm(V −)-k-Δ-DlTSP, lm((D ∧ V )+)-k-Δ-DlTSP, and lm((D ∧ V )−)-k-Δ-

DlTSP with a ratio of (2 − ε), unless P = NP.

Due to space constraints, the proof of Theorem 2 is omitted here.

4 Lower Bounds for an Unbounded Number of Deadlines

For proving lower bounds of (0.5 − ε)n for an unbounded number of deadline
vertices we need the following lemma which is a simplified version of the Zigzag
Lemma from [4].

Lemma 1 (Zigzag Lemma). Let k, γ ∈ N+ such that k is even and γ ≥
n. Let G∗ = (V ∗, E∗, c∗) be a complete, weighted graph with a deadline triple
(s∗, D∗, d∗) such that any Hamiltonian path in G∗ respecting the deadlines (which
implies starting at s∗) ends in the same vertex t∗. Then, we can construct a
complete, weighted graph G ⊃ G∗ and a deadline triple (s,D, d) such that D ⊃
D∗, d

∣
∣
D∗ = d∗, and any path that reaches t in time 7n can be extended to a

Hamiltonian cycle which costs at most

(k + 7)n + 2γ, (1)

while any path that reaches t after 8n, but before 9n, can only be extended to a
Hamiltonian cycle which costs at least

(

9 +
k − 3

2

)

n + kγ. (2)

Proof sketch. Figure 3 shows the idea of the zigzag construction as presented in
[4]. Note that, for clarity of exposition, only some edges of the complete graph
G are shown, and only the expensive edges of cost γ are labeled in Figure 3. All
shown edges without labels have cost of at most n and all edges not depicted
have the maximum possible cost as to satisfy the triangle inequality. If a path
arrives at t∗ without having spent too much yet (i.e., at 7n in the special case we
are looking at), it can directly go to Ek−1 and traverse the zigzag construction
by using the path (Ek−1, Ek−3, . . . , E1, E2, E4, . . . , Ek) and finally return to s∗

avoiding the expensive γ-edges connecting consecutive vertices Ej and Ej+1. On
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Fig. 3. The zigzag construction

the other hand, if a path arrives at t∗ with too high cost (i.e., more than 8n)
it is forced to visit E1 right after t∗ and then to traverse G \ G∗ via the path
(E1, E2, . . . , Ek−1). Doing so, this path uses k expensive edges of cost γ. �
For a formal proof of a generalized version of Lemma 1, see [4]. Furthermore, we
need to prove the hardness of a modified version of rHP (Modified Restricted
Hamiltonian Path Problem) for the reductions.

Definition 4 (MRHP). Let G = (V,E) be a graph where |V | = n + 1. Let
s, t ∈ V be two distinct vertices and let P ′ = (s, v1, . . . , vn−1, t) be a Hamiltonian
path in G from s to t. The objective is to decide whether a Hamiltonian path P
from vi to t exists in G \ {s} for some vertex vi ∈ V \ {s, t, v1}.

Note that, if we would not require vi �= v1, this problem would be trivial since,
by knowing P ′, we also know a Hamiltonian path (v1, . . . , vn−1, t) in G \ {s}.

Lemma 2. mrHP is NP-hard.

Proof. We give a reduction from rHP. Let (G′, P ′′) be an instance of rHP where
P ′′ = (s′, . . . , t′). We construct an instance (G,P ′) of mrHP where G = G′ ∪
{s}, P ′ = (s,

←−
P ′′), t = s′. The given Hamiltonian path is therefore P ′ = (s, v1, . . . ,

vn−1, t) where v1 = t′. Obviously, this construction can be done in polynomial
time. Then, in both problems we want to decide the existence of the same path
P (namely (vi, . . . , t) in G \ {s} and (vi, . . . , s

′) in G′). �

Theorem 3. Let ε > 0. There is no polynomial-time approximation algorithm
for lm(D−)-Δ-DlTSP with a ratio of (0.5 − ε)n.

Proof. In the following, we construct a graph G∗ as described in the Zigzag
Lemma (Lemma 1). We will then be able to apply this lemma to show a linear
lower bound.
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Consider an instance (G′, P ′) of mrHP. Again, we construct a complete,
weighted graph KG′ as described before in the proof of Theorem 1. We then
extend KG′ to a complete, weighted graph G∗ (which is a subgraph of G) as
shown in Figure 4. Again, all costs not shown in the figure are chosen as large
as possible, such that the triangle inequality is still satisfied. All vertices in
KG′ (except for s′) get a deadline of 3n + 1. The deadline vertices DO and the
deadlines dO are also shown in Figure 4.

Every Hamiltonian path in G∗ starting at s∗ has to begin with the edge
(s∗, s′). After that, all vertices in KG′ have to be visited before continuing.
One best way to traverse KG′ is the known Hamiltonian path P ′ = (s′, . . . , t′).
This path arrives at t′ at cost 2n + 1. Due to deadline constraints, there is no
other way but ending this path by (D1, D2, D3, D4) where D4 = t∗. An optimal
Hamiltonian path in G∗ is therefore P = (s∗, P ′, D1, D2, D3, t

∗). The costs are
8n + 1.

Fig. 4. The graph G∗ before the local modification is applied and an optimal Hamil-
tonian path from s∗ to t∗

We then apply the local modification by taking away the deadline from s′. Now
things change in G∗ as it is not necessary anymore to visit s′ before reaching t∗. If
there exists a Hamiltonian path P from vi �= v1 to t′ with cost (n−1) in KG′\{s′},
an optimal Hamiltonian path in G∗\{s′} is the path (s∗, P,D1, D3, D2, D4). The
costs are (n + 1) + (n − 1) + 2n + n + n + n = 7n. This path is then able to
“cheaply” traverse G’s zigzag construction and visit s′ before returning to s∗.

On the other hand, if there is no such path from vi �= v1 to t′ with cost (n−1)
in KG′ \ {s′}, P stays the best Hamiltonian path in G∗ from s∗ to t∗ respecting
the deadlines. Furthermore, due to c(s∗, v1) = n + 2, a best solution cannot use
any Hamiltonian path from v1 to t′ of costs n − 1 in KG′. Similar arguments
hold for any other path.

The path therefore arrives at t∗ at time 7n if and only if the given mrHP-
instance is a yes-instance, and not before time 8n+1 if it is a no-instance. When
extending G∗ by the zigzag construction (see Figure 3) we will set c(Ek, s

′) =
γ − (n + 1) and the path therefore needs to spend (γ − (n + 1)) + (n + 1) = γ
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when going from Ek to s∗ via s′. The Zigzag Lemma then allows us to choose γ
in a way such that every (0.5 − ε)n-approximation algorithm could be used to
decide mrHP which contradicts NP �= P . �

Theorem 4. Let ε > 0. There is no polynomial-time approximation algorithm
for any of the problems lm(D+

)-Δ-DlTSP, lm((D ∧ V )+)-Δ-DlTSP, and
lm((D ∧ V )−)-Δ-DlTSPwith a ratio of (0.5 − ε)n, unless P = NP.

Again, due to space contraints we have to omit the proof of Theorem 4.

5 Upper Bounds

Since we know a 2.5-approximation algorithm for Δ-DlTSP with a bounded
number of deadline vertices (see [6,7]), we can directly apply this upper bound
to any reoptimization version. Considering the results from Section 3, there is a
gap between the lower and upper bounds.

In Section 4, we proved a lower bound of (0.5 − ε)n for the general case (i.e.,
for an unbounded number of deadline vertices) for several local modifications. It
is easy to see that this bound is tight: Remember that a feasible solution is part
of the input for any of the considered reoptimization versions of Δ-DlTSP. No
matter how bad this solution is, it is a 0.5n-approximation, since any edge of
this Hamiltonian cycle cannot be more expensive than 0.5 times the cost of an
optimal solution (due to the triangle inequality) and there are exactly n edges
in this cycle.

In one case, however, we are able to improve the upper bound by giving a
2-approximation for the reoptimization version in which we add a vertex to G,
even for an unbounded number of deadline vertices.

Theorem 5. There is a 2-approximation algorithm for lm(V +
)-Δ-DlTSP.

Proof. Let (GO, c,D) be the given old instance. We will give a simple algorithm A
for lm(V +

)-Δ-DlTSP that has an approximation ratio of 2. Let C = (s, v1, . . . ,
vn−1, s) be the given optimal solution with cost OptO for the old instance. For
the local modification, a vertex v is inserted into G (i.e., GN = GO ∪ {v}). The
algorithm A will simply output CA = (s, v1, . . . , vn−1, v, s).

Since there is no deadline at v and C is feasible for the old instance, CA is
also feasible for the new instance. For proving an approximation ratio of 2 we
will need to look at some estimations: Let CN be an optimal solution for the
modified instance with cost OptN and let vi and vj be the neighbours of v in
CN . We claim that

OptN ≥ OptO + c(vi, v) + c(v, vj) − c(vi, vj). (3)

For the proof of Equation (3), suppose OptN < OptO + c(vi, v) + c(v, vj) −
c(vi, vj). Then CN − {{vi, v}, {v, vj}} + {vi, vj} is feasible for (GO, c,D) due to
c(vi, vj) ≤ c(vi, v) + c(v, vj) and costs strictly less then OptO. This contradicts
the optimality of OptO for (GO, c,D).
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(a) First case (b) Second case

Fig. 5. The two cases of possible locations of vi and vj in C

The costs of A’s output are CA = OptO + c(vn−1, v) + c(v, s)− c(vn−1, s). We
have to distinguish two locations of vi and vj in C (see Figure 5). In the first
case, we have c(vn−1, vi) + c(vj , s) ≤ OptO − c(vi, vj)− c(vn−1, s). In the second
case, we have c(vn−1, vi) + c(vj , s) ≤ OptO − c(vi, vj) + c(vn−1, s).

It suffices to take the second (weaker) estimation into consideration. Together
with Equation (3), we get

costA = OptO + c(vn−1, v) + c(v, s) − c(vn−1, s)
≤ OptO + c(vn−1, vi) + c(vi, v) + c(v, vj) + c(vj , s) − c(vn−1, s)
≤ OptO + OptO + c(vn−1, s) + c(vi, v) + c(v, vj) − c(vn−1, s) − c(vi, vj)
= OptO + OptO + c(vi, v) + c(v, vj) − c(vi, vj)
≤ OptO + OptN

≤ OptN + OptN = 2 ·OptN .

The algorithm A is therefore a 2-approximation for lm(V +
)-Δ-DlTSP. �
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Abstract. We study the complexity of the Shortest Linear Program
(SLP) problem, which is to minimize the number of linear operations
necessary to compute a set of linear forms. SLP is shown to be NP-
hard. Furthermore, a special case of the corresponding decision problem
is shown to be Max SNP-Complete.

Algorithms producing cancellation-free straight-line programs, those
in which there is never any cancellation of variables in GF(2), have been
proposed for circuit minimization for various cryptographic applications.
We show that such algorithms have approximation ratios of at least 3/2
and therefore cannot be expected to yield optimal solutions to non-trivial
inputs.

1 Introduction

Let F be an arbitrary field and let

α1,1x1 + α1,2x2 + . . . + α1,nxn

α2,1x1 + α2,2x2 + . . . + α2,nxn

. . .

αm,1x1 + αm,2x2 + . . . + αm,nxn

be linear forms where the αi,j ’s are constants from F and the xi’s are variables
over F. We would like to design an algorithm for computing the linear forms given
the xi’s as input. We consider this question in the model of computation known
as linear straight-line programs. A linear straight-line program is a variation on
a straight-line program which does not allow multiplication of variables. That
is, every line of the program is of the form u := λv+μw; where λ, μ are in F and
v, w are variables. Some of the lines are output lines; these are the lines where
the linear forms in the set are produced. For brevity, we will use the terms linear
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programs or simply programs to refer to linear straight-line programs. The length
of the program is the number of lines it contains. A program is optimal if it is
of minimum length.

The linear straight-line program model (see [7] for a discussion of linear com-
plexity) has the advantage of being very structured, but is nevertheless optimal
to within a constant factor as compared with arbitrary straight-line programs
when the computation is over an infinite field. Over finite fields the optimality of
linear straight-line programs is unknown1, but we restrict our attention to this
form and consider minimizing the length of the program.

The standard algorithm for computing the linear forms Ax where A is an
m × n matrix requires m(n − 1) operations. Savage [9], however, showed that
O(mn/ logr m)2 is sufficient in many cases, including computations over GF (2) if
m ≥ 4. Williams [11] improved this to O(n2/ log2 n) on a RAM with word length
Θ(n) for n by n matrices over finite semirings. In contrast, Winograd [12] has
shown that most sets of linear forms have a non-linear complexity in the straight-
line program model; in fact, for a “random” m× n matrix A the probability is
high that its complexity is Ω(mn) (for infinite fields). However, there are non-
trivial matrices which can be computed considerably faster than this.

Over GF (2), finding the shortest linear straight-line program is equivalent
to finding a circuit with only XOR gates and minimizing the number used.
Linear forms have many applications, especially to problems in scientific compu-
tation, and there has been considerable success in finding efficient algorithms for
computing them in special cases. The best known example is the Fast Fourier
Transform, an O(n log n) algorithm, discovered by Cooley and Tukey in 1965 [5].

In section 2 we show that finding the shortest linear straight-line program is
NP-hard. This can be seen in relation to H̊astad’s result [6] showing that tensor
rank is NP-hard and thus finding the minimum bilinear program for computing
bilinear forms is NP-hard.

In section 2.2 the NP-hardness result is used to prove a special case of the
problem Max SNP-Complete [8] (and also APX-Complete), which means that
there is no ε-approximation algorithm for the problem unless P=NP [1].

A linear straight-line program over GF(2) is said to be a cancellation-free
straight-line program if, for every line of the program u := v+w, none of variables
in the expression for v are also present in the expression for w, i.e., there is no
cancellation of variables in the computation. A small example showing that the
optimal linear program is not always cancellation-free over GF (2) is:

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4.

It is not hard to see that the optimum cancellation-free straight-line program
has length 5. A solution of length 4 which allows cancellations is

v1 = x1 + x2; v2 = v1 + x3; v3 = v2 + x4; v4 = v3 + x1.

1 It is not known if multiplication of variables can ever be used to reduce program
length when the program outputs only linear functions.

2 The base r is the size of the set containing the coefficients.
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In section 3 we show that the approximation ratio for cancellation-free techniques
is at least 3/2.

2 Hardness of Finding Short Linear Straight-Line
Programs

The problem SHORTEST LINEAR PROGRAM (SLP) is as follows: Given a set
of linear forms E over a field F , find a shortest linear program to compute E.

2.1 NP-Hardness

In order to prove NP-hardness, we consider the corresponding decision problem,
SLPd: Given a set of linear forms E over a field F and a positive integer k,
determine if there exists a straight-line linear program with at most k lines
which computes E.

We will prove SLPd NP–hard, even if the constants in the set of linear forms
to be computed are only zeros and ones. Furthermore, if the field F is finite,
then SLPd is easily seen to be in NP, so SLPd is NP–complete over finite fields.3

The interest of this section is not just in the final result that SLP is NP–hard,
but also in the method used to prove it. In particular, most of this section is
devoted to the proof of Lemma 1, which gives the exact complexity for sets of
linear forms of a certain simple type. This proof is algorithmic in form, and its
algorithmic nature can be exploited to prove a further result in subsection 2.2.

In order to show NP-hardness, we reduce from VERTEX COVER. A vertex
cover of a graph G = (V,E) is a subset V ′ of V such that every edge of E is
incident with at least one vertex of V ′. VERTEX COVER is defined as follows:
Given a graph G = (V,E) and an integer k, determine if there exists a vertex
cover of size at most k.

The following polynomial-time reduction f transforms an arbitrary graph
G = (V,E) and a bound k to a set of linear forms with another bound k̄. The
input variables are X = V ∪{z}, where z is a distinguished variable not occurring
in V . The linear forms are Ē = { z+ a+ b | (a, b) ∈ E }, and the program length
we ask about is k̄ = k + |Ē|. This is an instance of SLPd, and it is clear that
f(G, k) = (Ē,X, k̄) can be produced in polynomial time. We call a set of linear
expressions in this restricted form, z + xi + xj , a set of z-expressions.

Before we proceed, we illustrate with an example: The graph, G, in Figure 1
has a vertex cover of size k = 3: {a, c, e}. The corresponding instance of SLPd,
f(G, 3) is Ē = {z + a + b, z + b + c, z + c + d, z + d + e, z + e + f, z + a + f, z +
c + g, z + e + g}, X = {z, a, b, c, d, e, f, g}, and k̄ = 3 + 8. A linear program for
this of size 11 is

3 We avoid the discussion of models for dealing with infinite fields, such as in [10] or
[2], by proving NP-hardness when the constants in the forms are only zeros and ones
and showing that a shortest linear straight-line program for the forms considered can
be created with only zeros and ones as constants.
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Fig. 1. Graph with 8 edges and cover size 3

v1 := z + a; v2 := z + c; v3 := z + e; v4 := v1 + b;
v5 := v2 + b; v6 := v2 + d; v7 := v3 + d; v8 := v3 + f ;
v9 := v1 + f ; v10 := v2 + g; v11 := v3 + g;

where the computation of v1, v2, and v3 correspond to the vertex cover in the
graph G, and the remaining operations produce the eight forms in Ē.

A cover for a set Ē of z-expressions is a subset W of X−{z} such that every ex-
pression in Ē contains at least one variable in W . Note that if (Ē,X, k̄) = f(G, k),
a cover for Ē trivially defines a vertex cover for the graph G and vice versa.

Lemma 1. Let (Ē,X) be a set of z-expressions without repetitions; that is, Ē is
a set of expressions of the form z+xi +xj, where xi, xj are distinct variables in
X, z is a distinguished variable in X, and no two of these z-expressions contain
exactly the same variables. There is a cover of Ē of size k if and only if there is
a linear straight-line program P for Ē of length k̄ = k + |Ē|. In addition, given
a linear straight-line program P for Ē, a cover for Ē of size |P | − |Ē| can be
computed in polynomial time.

Proof. We will refer to the elements of X −{z} as “the variables” and z as “the
symbol”, though as an element of a linear program, z is also an input variable.

Given a cover W of size k for Ē, a (cancellation-free) linear straight-line
program for Ē can be created consisting of z +wi for each wi ∈ W , followed by
linear expressions computing each output, created by adding a second variable
to the appropriate z + wi. This program has length k + |Ē|.

It remains to be shown that, given a linear straight-line program P for Ē, we
can efficiently find a cover, W , for Ē of size no more than |P |− |Ē|. This cover is
computed by associating elements of X −{z} with some non-output lines of the
program—W will then be the union of all those variables so associated. Since
we will assign at most one element of X−{z} to each non-output line, the cover
is of size at most |P | − |Ē|.

Let F (i) be the linear function computed at line i. It will be convenient to
use the notation F (i) to refer both to the function and to the minimal formal
expression

∑
j βi,jxj where the xj ’s are distinct and the βi,j ’s are non-zero field

elements. The association of variables with lines of the program will be denoted
by a mapping m : IN → X∪{∅}. Initially, we set m(i) = ∅ for all lines i. At



172 J. Boyar, P. Matthews, and R. Peralta

any point in time, the current partial cover W is the set of all variables that are
assigned to some m(i).

The algorithm works as follows. Starting at the first line of P , the algorithm
associates with each non-output line i a variable in X − {z} which occurs in
the formal expression computed at line i and which is currently unassociated
(if there is no such variable, the line is assigned the null symbol, ∅). When an
output is reached, the algorithm checks if the set W of all variables currently
assigned covers that output, i.e. if there is some variable in W which occurs
in the formal expression computed at that output line. If this is not the case,
then a fix-up procedure is invoked. This fix-up procedure changes some of the
associations until all the output expressions up to that point are covered. After
the algorithm has terminated, all the output expressions will be covered, so W is
the desired cover, and |P | ≥ |W |+ |Ē|. Note that if the straight-line program P
had been restricted to be cancellation-free,the fix-up procedure would never be
necessary; it is only called if an output line was produced as a linear combination
of two lines, where at one of those lines a cancelled variable was added to the
cover, W .

We define the two properties that the algorithm seeks to establish for each
line l of the program.

Property 1. If line l is not an output, either all variables in F (l) are in W , or
some variable in both W and F (l) is associated uniquely with line l.

Property 2. There is at most one variable in F (l) which is not in W .

In terms of these two properties, the algorithm in Figure 2 can be described
as follows. Given that Properties 1 and 2 hold for lines 1 to i − 1, establish
Property 1 for line i and check if Property 2 holds for line i. If not, call the
fix-up procedure.

Claim. If Properties 1 and 2 hold for lines 1 through l−1, after line l is processed,
if F (l) is not an output, then Properties 1 and 2 hold for line l.

W ← ∅
for i = 1 to |P | do

m(i) ← ∅
if F (i) is not an output then

if ∃ a variable x in F (i), but not in W then
choose x
m(i) ← x

else { F (i) is an output}
if F (i) contains more than one variable not in W then

Fix-up(i, i)

Fig. 2. Computing the cover W



On the Shortest Linear Straight-Line Program for Computing Linear Forms 173

Proof. This holds by induction. Line 1 of P contains at most two variables, and
one of them is assigned to m(1) and W , so it holds initially. Suppose line i has the
form vi := λ · vi′ +μ · vi′′ .4 By assumption, Property 2 holds for F (i′) and F (i′′),
so there are at most two variables in F (i) but not in W before line i is processed.
If there is at most one such variable, we are done. If there are exactly two such
variables, then m(i) is assigned some variable not in W . Thus, Property 1 holds.
Since that variable is also set in W , F (i) has at most one variable that does not
occur in W and Property 2 also holds. �

Suppose the Fix-up procedure is called for line i:

vi := λ · vi′ + μ · vi′′ ,

which produces the output expression z + a + b. If both a and b are present in
the expression for line i′ or both are in the expression for line i′′, then at least
one of a or b is in W . Since neither is there, we may assume, without loss of
generality, that a is not present in line i′ and b is not present in i′′. All other
variables present in line i′ must also be present in line i′′. In addition, at least
one of those two lines is not an output, since exactly one contains the symbol
z. Assume that line i′ is not an output. Since it contains b, which is not in W ,
m(i′) �= ∅. Suppose m(i′) = c.

Fix-up(i, l)
{ i is the current line being fixed; l is original line being fixed }
{ line i, vi := λvi′ + μvi′′ , produces the expression z + a + b,

a is not present in line i′ and b is not present in i′′}
{ line i′ is not an output and m(i′) = c}
set m(i′) ← b
W ← (W∪{b}) \ {c}
for j ← 1 to l do

if F (j) is not an output then
if m(j) = ∅ and c ∈ F (j) then

m(j) ← c
W ← W∪{c}
break { exit for loop }

for j ← 1 to l do
if F (j) is an output then

if |F (j) \ W | > 1 then Fix-up(j, l)

Fig. 3. The Fix-up procedure

The fix-up procedure, as defined in Figure 3, backs up to line i′, changes the
mapping m to put b into W instead of c, and then scans to ensure, first, that
Property 1 still holds, and then that Property 2 still holds. Since this change in
4 So that all program lines can expressed in this way, we let v0 = z and v−i = xi for

each variable xi.
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the mapping may upset lines that were previously okay, this adjustment of the
mapping may occur more than once.

Since b /∈ W , it is okay to set m(i′) to b. The only way this can cause Property 1
to fail is that a line j might have m(j) = ∅, even though the expression there
involved a c and c is no longer in W . The first “for” loop in “Fix-up” corrects this.

The removal of c from W may also cause Property 2 to fail. Note that this can
only happen for an output line; the above claim still holds. Some of the failures
at outputs may be rectified by the adjustment fixing Property 1. “Fix-up” is
called recursively to fix the others.

We turn to the proof of termination.
Let k1, k2, . . . be the sequence of line numbers for output lines which require

a call to the fix-up procedure, and let W1,W2, . . . be the corresponding values of
W , the covers just before the fix-up procedure is called for the corresponding lines.
Let k0 = i and define W0 to be the value of the cover when the fix-up procedure
is first called. Note that no two adjacent members of k0, k1, k2, . . . are equal.

Let j be an index for which kj < kj+1. We claim that |Wj | < |Wj+1|. The
size of the cover never decreases as the only operations done to change it are
swaps and additions, so the claim follows if we show that a variable is added to
the cover by the fix-up procedure when going from line kj to kj+1.

Consider how the fix-up procedure operates between the calls at lines kj and
kj+1. Suppose that line kj is

vkj := λ · vk′
j

+ μ · vk′′
j

We know that k′j < k′′j < kj < kj+1. Suppose the formal expressions computed
at these lines are

F (k′
j) = (b − c− V )/λ; F (k′′

j ) = z + a + c + V ;
F (kj) = z + a + b; F (kj+1) = . . . ,

where V is a sum of some variables (not including z, a, b, c). For line kj to have
caused a call to “Fix-up”, neither a nor b could have been in the cover Wj . Thus
the algorithm first visited line k′j and changed the mapping m(k′j) from c to b,
then executed the first “for” loop, correcting lines not satisfying Property 1, and
finally moved down the program, checking each line for Property 2, until reaching
line kj+1. But this means that Property 2 held at line k′′j and this could only
have happened if a or c was in the cover (if line k′′j is not an output, it might
have been added there). Since neither of them were in the cover immediately
after the swap of b for c at line k′j , one of them must have been added by the
fix-up procedure at one of the lines in between. Thus |Wj | < |Wj+1|.

Hence for each j where kj < kj+1, the size of the cover increases. Moreover,
since k is always positive, there can be at most n2 lines visited between these
increases in the cover size (where n is the length of the program). And since
|W | < |X | < n, it follows that the whole algorithm requires at most O(n3) time
(The fact that the execution time is polynomial is irrelevant for the purposes of
showing NP-hardness, but will be important later.). This completes the proof of
Lemma 1. �
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The following theorem follows immediately, since we have given a polynomial
time reduction from VERTEX COVER, which is NP-complete.

Theorem 1. For any field F, SHORTEST LINEAR PROGRAM is NP-hard.

For finite fields, it is easy to see that SLPd ∈ NP. Thus we have

Theorem 2. For any finite field F, the decision version of SHORTEST LIN-
EAR PROGRAM is NP-Complete.

Note that in the proof of Lemma 1, if the straight-line program P had been re-
stricted to be cancellation-free, the proof would have been easier, because the fix-up
procedure would never be necessary; it is only called if an output line was produced
as a linear combination of two lines, where at one of those lines a cancelled variable
was added to the cover, W . This immediately gives us the following:

Theorem 3. For any finite field F, SHORTEST LINEAR PROGRAM is NP-
Complete even if the programs produced are restricted to being cancellation-free.

2.2 Limits to Approximation

The major result of the previous section is that it is NP–hard to find an opti-
mal linear program for computing a set of linear forms. Thus it is natural to
turn our attention to approximation algorithms for this problem. In this sec-
tion, we show that SHORTEST LINEAR PROGRAM has no ε–approximation
scheme unless P=NP. Recall that these are families of algorithms, one for each
ε > 0, which are polynomial time and achieve an approximation ratio of 1 + ε.
We use a concept called Max SNP–completeness, which was introduced by
Papadimitriou and Yannakakis [8]. Arora et.al. [1] have shown that no Max

SNP–complete problem has an ε–approximation scheme unless P=NP. We show
that BOUNDED Z-EXPN (defined below), is Max SNP–complete, showing that
there is no ε–approximation scheme for the generalization, SHORTEST LINEAR
PROGRAM, unless P=NP.

Max SNP is a complexity class of optimization problems. It is contained
within NP in the sense that the decision versions of the problems are all in
NP. Papadimitriou and Yannakakis [8] proved that many problems are Max

SNP–complete, including the following: BOUNDED VERTEX COVER: Given
a graph with maximum vertex degree bounded by a constant b, find the smallest
vertex cover.

To talk about completeness for this class, we need a notion of reduction.
The reductions Papadimitriou and Yannakakis defined, called L-reductions,
preserve the existence of ε-approximation schemes. The following definitions and
propositions are taken directly from the original paper.

Let Π and Π ′ be two optimization (maximization or minimization) problems,
and let f be a polynomial-time transformation from problem Π to problem Π ′.
We say that f is an L-reduction if there are constants α, β > 0 such that for
each instance I of Π , the following two properties are satisfied:
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(a) The optima of I and f(I), written OPT(I) and OPT(f(I)) respectively,
satisfy the relation OPT(f(I)) ≤ αOPT(I).

(b) For any solution of f(I) with cost c′, we can find in polynomial time a
solution of I with cost c such that |c− OPT(I)| ≤ β|c′ − OPT(f(I))|.

The constant β will usually be 1. The following two propositions, stated in
[8], follow easily from the definition.

Proposition 1. L-reductions compose.

Proposition 2. If Π L-reduces to Π ′ and if there is a polynomial-time approxi-
mation algorithm for Π ′ with worst-case error ε, then there is a polynomial-time
approximation algorithm for Π with worse-case error αβε.

BOUNDED Z-EXPN is the following problem: Given a set of z-expressions (as
defined in Theorem 1) in which each non-z variable appears at most b times
(b is a fixed constant), generate an optimal linear program for computing the
expressions (over some fixed field F ).

Theorem 4. BOUNDED Z-EXPN is Max SNP–complete.

Proof. First, we will show that BOUNDED Z-EXPN is in Max SNP. To show
membership in Max SNP, we will exhibit an L-reduction of BOUNDED Z-EXPN
to Bounded Vertex Cover, a problem in Max SNP.

For every non-z variable xi, we associate a vertex x̄i. The L-reduction f maps
z-expressions to edges as follows: f(“z + xi + xj”) = “edge (i, j)”. Since vari-
able occurrences are bounded by b in BOUNDED Z-EXPN, the vertex degrees
will by bounded by b in the graph.

We proved in the previous section that a set of z-expressions can be optimally
computed by first computing z+xi for those xi which are in the minimum vertex
cover, and then using these intermediate results to compute the z-expressions.
Thus OPT(f(I)) + |E| = OPT(I) where |E| is both the number of z-expressions
and the number of edges in the graph.

We claim that this reduction is an L-reduction. Property (a) is satisfied be-
cause the equation above implies that OPT(f(I)) ≤ OPT(I). Property (b) is
satisfied because, from a vertex cover, we can build a linear program which
computes the z-expressions in the manner described above. This gives c =
OPT(I) + [c′ − OPT(f(I))].

To show that the problem is Max SNP–hard we reverse the reduction so that
it goes from Bounded Vertex Cover to Bounded Z-EXPN. The function f now
maps “edge (i, j)” into “z + xi + xj”.

Proof of Property (a): By Lemma 1 we have that OPT(I)+ |E| = OPT(f(I)).
Since the maximum degree in the graph is bounded by b and every edge must
be adjacent to at least one vertex of the cover, there can be at most b · OPT(I)
edges, of the cover. Thus OPT(f(I)) ≤ (b + 1)OPT(I).

Proof of Property (b): The proof of Lemma 1 gave a polynomial-time proce-
dure for converting any linear program computing a set of z-expressions into a
vertex cover for the corresponding graph. By inspecting this procedure, one sees
that c = OPT(I) + [c′ − OPT(f(I))]. �
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The fact that BOUNDED Z-EXPN is complete for the class Max SNP implies
that there is no ε-approximation scheme for it unless P=NP. In fact, Clementi
and Trevisan [4] have shown that BOUNDED VERTEX COVER is not approx-
imable within 16/15−ε for sufficiently large maximum degree. By Proposition 2,
this means that there is no 1+(1/15−ε)/αβ = 1+(1/15−ε)/(1+b)-approximation
algorithm for SLP unless P=NP. The fact that BOUNDED Z-EXPN is in the
class Max SNP means that there is an approximation algorithm for it with a
constant approximation ratio. In fact, it is obvious that Z-EXPN, even without
the boundedness constraint, has an approximation algorithm with a constant
approximation. The straight-forward linear straight-line program for computing
the |E| forms only requires 2|E| lines, and every straight-line program for E
must contain at least |E| lines (assuming no repetitions within the set E). Thus,
the straight-forward algorithm comes within a factor of 2 of optimal. Moreover,
since there is an approximation algorithm for vertex cover which comes within a
factor of two of optimal, we can do even better for Z-EXPN. Since the optimal
linear program contains |W |+ |E| steps, where W is the minimum vertex cover,
by Lemma 1, there is an algorithm which takes 2|W |+|E| steps. Since |W | < |E|,
the ratio (2|W |+|E|)/(|W |+|E|) is at most 3/2, so there is a (3/2)-approximation
algorithm for Z-EXPN. There are, however, no known approximation algorithms
which obtain a constant ratio for the general SHORTEST LINEAR PROGRAM
problem.

3 A Lower Bound on the Approximation Ratio for
Cancellation-Free Techniques

As mentioned in the introduction, restricting the search for optimal straight-
line programs for computing linear forms over GF(2) to cancellation-free pro-
grams can lead to sub-optimal solutions. In our counter-example, the optimal
cancellation-free program has length 5

4 that of the true shortest program. It is
natural to ask how close to optimal cancellation-free programs can get as the
number of variables increases. In this section we show that the best cancellation-
free straight-line programs are not guaranteed to even have length within a factor
3/2 that of the shortest straight-line linear program.

The following construction uses two integer parameters k and n, which can be
made large to make the 3/2 inapproximability result hold asymptotically. The
parameter k is the number of variables in a block, and n is the number of distinct
blocks. Blocks have disjoint sets of variables: Block i, where 0 ≤ i ≤ n − 1, is
the linear form bi = xik+1 + xik+2 + ... + x(i+1)k. The construction produces
a linear straight-line program which is not cancellation-free. All intermediate
linear forms (the linear forms produced at each line of the program) computed
by this straight-line linear program will belong to the set of required outputs.
The first part of the linear straight-line program will produce sums of consecutive
pairs of blocks si = bi + bi+1, for 0 ≤ i ≤ n − 2, mixing the variables in the
two blocks in such a way that also producing a single block alone would require
extra additions compared to the program here. Then, pairs of these consecutive
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sums are computed, pi = si + si+1, for 0 ≤ i ≤ n− 3. Each pi is computed with
only one further addition, but the two si’s added share a common block which
is cancelled, so pi = bi + bi+2. We express this linear program, denoted P , using
for loops in Figure 4, but for any fixed k and n it is a straight-line program of
length k(n− 1) + (k − 1)(n− 1) + n− 2 = 2kn− 2k − 1.

for i = 1 to k(n − 1) do
ui := xi + xi+k

for i = 0 to n − 2 do
si := uik+1 + uik+2

for j = 1 to k − 2 do
si := si + uik+j+2

for i = 0 to n − 3 do
pi := si + si+1

Fig. 4. Straight-line program with cancellations

We claim that an optimal cancellation-free program (for computing all the
linear forms which are the result of some line in this program) does at least
enough additional operations to compute each of the blocks, and this would
require at least n(k − 1) additional lines. Let F denote the set consisting of the
first (2k − 1)(n − 1) lines of P , and let L denote the set of the last n− 2 lines.
All of the 2kn−2k−1 lines output by the above straight-line program are linear
forms which must be output. The lines in L are the only ones with cancellations.
None of the results from the lines in F can be used to compute the lines in P ,
because, for any two lines f ∈ F and l ∈ L, f contains at least one variable
which is not present in the form calculated by l. It is conceivable that some of
the non-output results computed in the process of producing the outputs in L
could be used in computing those in F , but, since they are all outputs, at least
one extra operation is needed to produce each output from F . Thus, we can
consider computing the outputs in L independently from those in F .

Blocks b2 through bn−3 each appear in two of the outputs from L, but there
is no other overlap between the outputs in L. Thus, the only reuse of forms
computed which is possible is within the blocks. An optimal way to compute the
forms in L is to first compute each of the n blocks, using k−1 additions for each.
After this, each form in L can be created by adding two blocks together, using
one addition for each, as in P . The computation of the blocks gives n(k − 1)
extra additions, for a total of 3kn − 2k − n − 1 additions. Asymptotically, the
ratio 3kn−2k−n−1

2kn−2k−1 is 3/2 for large n and k.

Theorem 5. Any algorithm for computing short straight-line linear programs,
which only produces cancellation-free straight-line programs, has an approxima-
tion ratio of at least 3/2.
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4 Conclusions and Open Problems

The result that SHORTEST LINEAR PROGRAM is NP-hard indicates that
using heuristic techniques, is more realistic than expecting to find the smallest
subcircuits for linear parts of a Boolean circuit. The result that a special case of
SHORTEST LINEAR PROGRAM is Max SNP-Complete indicates that there
is a limit to how well these heuristic techniques can be guaranteed to do.

Since cancellation-free techniques cannot produce linear straight-line pro-
grams which are within a factor 3/2 of being optimal, new heuristics which are
not restricted to cancellation-free operations are being developed [3]. It would
still be interesting to determine how well cancellation-free techniques can do. We
expect that the lower bound of 3/2 can be raised somewhat.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the Association for Computing
Machinery 45, 501–555 (1998)

2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. 21, 1–46 (1989)

3. Boyar, J., Peralta, R.: On building small circuits (2008) (manuscript in preparation)
4. Clementi, A.E.F., Trevisan, L.: Improved non-approximability results for vertex

cover with density constraints. In: Computing and Combinatorics, pp. 333–342
(1996)

5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comp. 19, 297–301 (1965)

6. H̊astad, J.: Tensor rank is NP-Complete. J. Algorithms 11(4), 644–654 (1990)
7. S̃hokrollahi, M.A., B̃ürgisser, P., Clausen, M.: Algebraic Complexity Theory, ch.

13. Springer, Heidelberg (1997)
8. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity

classes. Journal of Computer and System Sciences 43, 425–440 (1991)
9. Savage, J.E.: An algorithm for the computation of linear forms. SICOMP 3(2),

150–158 (1974)
10. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the 11th Annual

ACM Symposium on the Theory of Computing, pp. 249–261 (1979)
11. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocess-

ing required). In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 995–1001 (2007)

12. Winograd, S.: On the number of multiplications necessary to compute certain func-
tions. Comm. Pure and Applied Math. 23, 165–179 (1970)



Flip Algorithm for Segment Triangulations

Mathieu Brévilliers, Nicolas Chevallier, and Dominique Schmitt

Laboratoire LMIA, Université de Haute-Alsace
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Abstract. Given a set S of disjoint line segments in the plane, which we
call sites, a segment triangulation of S is a partition of the convex hull of
S into sites, edges, and faces. The set of faces is a maximal set of disjoint
triangles such that the vertices of each triangle are on three distinct sites.
The segment Delaunay triangulation of S is the segment triangulation of
S whose faces are inscribable in circles whose interiors do not intersect
S. It is dual to the segment Voronoi diagram. The aim of this paper
is to show that any given segment triangulation can be transformed by
a finite sequence of local improvements in a segment triangulation that
has the same topology as the segment Delaunay triangulation. The main
difference with the classical flip algorithm for point set triangulations is
that local improvements have to be computed on non convex regions. We
overcome this difficulty by using locally convex functions.

1 Introduction

In 1977, Lawson [16] has shown that any given triangulation of a planar point
set can be transformed in a Delaunay triangulation (one whose triangles’ cir-
cumcircles are empty of sites) by a sequence of local improvements. Every local
improvement consisted in flipping a diagonal of a convex quadrilateral to the
other diagonal. Since then, several extensions of flip algorithms have been pro-
posed. On the one hand, they have been investigated in higher dimensions. The
algorithm does not work as such in dimensions higher than two because flips
should be applied to non convex polyhedrons, leading to geometrically unrealiz-
able tetrahedrizations [13]. However, Joe [14] has shown that, once the Delaunay
tetrahedrization of a point set in three dimensions is given, it can be updated by
a sequence of flips, after the insertion of a new point. Cheng and Dey [7] have
also proven that a surface triangulation that closely approximates a smooth sur-
face with uniform density can be transformed to a Delaunay triangulation by
a flip algorithm. On the other hand, flips have been studied for different types
of triangulations such as constrained triangulations [9], weighted triangulations
[10], pseudo-triangulations [2], pre-triangulations [1], ...

Independently of their efficiency when applied to a “not too bad” initial trian-
gulation, flip algorithms have been implemented as subroutines for randomized
algorithms [11]. They also enable to prove important properties of the manipu-
lated triangulations. For example, they have been used for proving that, among
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all triangulations of a point set in the plane, the Delaunay triangulation maxi-
mizes the minimum angle [16]. They also enable to structure and to enumerate
triangulations as vertices of a graph in which two vertices are adjacent if they
differ from each other by a flip [12], [5].

In this work we address the question of flip algorithm for the segment triangula-
tions that have been introduced in [4]. Given a finite set S of disjoint line segments
in the plane, a segment triangulation of S is a maximal set of disjoint triangles,
each of them having its vertices on three distinct sites of S (see Figure 1). Seg-
ment triangulations form a very natural family of diagrams containing the dual
of the segment Voronoi diagram. This dual diagram, called the segment Delaunay
triangulation (or edge Delaunay triangulation), has been introduced much earlier
by Chew and Kedem [8]. A topological dual of the segment Voronoi diagram has
also been used to implement efficiently the construction of the segment Voronoi
diagram in the CGAL Library [15]. In [4], we have given a local characterization
of the segment Delaunay triangulation among the family of all segment triangu-
lations of S as well as a local characterization of its topology.

An obstacle arises when trying to transform a segment triangulation into the
segment Delaunay triangulation by a sequence of local improvements: As for
three dimensional point sets, local transformations must be performed on non
convex regions. We overcome this difficulty by allowing local improvements that
not necessarily imply changes in the topology, as flips do. In order to character-
ize these local improvements and to prove that the constructed triangulations
tend toward the segment Delaunay triangulation, we use a lifting on the three-
dimensional paraboloid together with locally convex functions. The usefulness
of locally convex functions in the context of flip algorithms has been already
noticed by several authors (see [2], [3], ...).

Another difficulty comes out of segment triangulations: There are infinitely
many segment triangulations of a given set of sites, while the number of triangu-
lations usually handled by flip algorithms is finite. So, a flip algorithm that aims
to construct a segment Delaunay triangulation explicitly, might need infinitely
many steps. Fortunately, this drawback can be circumvented by stopping the
algorithm when it reaches a segment triangulation that has the same topology
as the segment Delaunay triangulation. We shall show that such a triangula-
tion is obtained in finitely many steps, thanks to geometrical estimates about
the angles of the triangles arising during the algorithm. The segment Delaunay
triangulation can then be deduced from this triangulation in linear time.

2 Segment Triangulations

In this section, we recall the main results about segment triangulations given in
[4]. They generalize the concept of triangulation to a set of disjoint segments in
the plane. Afterwards, we slightly extend these results.

Throughout this paper, S is a finite set of n ≥ 2 disjoint closed segments in
the plane, which we call sites. A closed segment may possibly be reduced to a
single point. We shall denote by S the set of points of the segments of S. We say
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that a circle is tangent to a site s if s meets the circle but not its interior. The
sites of S are supposed to be in general position, that is, we suppose that no
three segment endpoints are collinear and that no circle is tangent to four sites.

Definition 1. A segment triangulation T of S is a partition of the convex hull
conv(S) of S in disjoint sites, edges, and faces such that:
1. Every face of T is an open triangle whose vertices are in three distinct sites
of S and whose open edges do not intersect S,
2. No face can be added without intersecting another one,
3. The edges of T are the (possibly two-dimensional) connected components of
conv(S) \ (F ∪ S), where F is the union of faces of T .

In the following, the word “triangle” will only be used for faces and never for
edges, even if they have the shape of a triangle.

(a) (b)

Fig. 1. A segment triangulation (a) (the sites appear in black, the faces in white, and
the edges in gray) and its topology (b)

Using the fact that no triangle can be added to T , it has been shown that
the closure of an edge of a segment triangulation meets exactly two sites (see
Figure 1). Thus, a planar combinatorial map M can be associated with T in the
following way:

– the vertices of M are the sites of S,
– the arcs connecting two sites s and t in M are the edges of T whose closures

intersect s and t,
– for every vertex s of M , the cyclic ordering of the arcs out of s agrees with

the counter-clockwise ordering of the associated edges around the site s in T .

M represents the topology of T . Using this topology, it has been shown that the
number of faces of a segment triangulation of S depends only on S and is linear
with the number of sites of S.

Definition 2. A segment triangulation of S is Delaunay if the circumcircle of
each face does not contain any point of S in its interior.
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If all the sites are points, a segment Delaunay triangulation is a usual point set
Delaunay triangulation. It has been shown that the segment Delaunay triangu-
lation exists for any set S, is unique if S is in general position, and is dual to
the segment Voronoi diagram.

As for point sets, the legal edge property has been defined for segment trian-
gulations in [4]. A more intuitive formulation is:

Definition 3. Let e be an edge adjacent to two triangles T1 and T2 in a segment
triangulation and let r, t, u, v be the sites adjacent to T1 and T2. The edge e
is legal if there exists a segment triangulation T of {r, t, u, v} with the same
topology as the segment Delaunay triangulation of {r, t, u, v} and such that T1

and T2 are two triangles of T .
An edge adjacent to zero or one triangle is legal.

This led to a local characterization of the segment Delaunay triangulation:

Theorem 1. A segment triangulation of S whose all edges are legal has the same
topology as the Delaunay one.

Since the segment Delaunay triangulation of four sites contains at most four
triangles, it can be checked in constant time whether an edge is legal or not.

Note that the segment Delaunay triangulation can be easily computed once
its topology is known. It suffices to put each triangle in its tangency position,
which means that the interior of its circumcircle does not meet the three sites that
contain its vertices. Thus, computing the segment Delaunay triangulation comes
down to compute its topology. Therefore, the goal of our flip algorithm is to lead
in finitely many “local” steps to a segment triangulation whose edges are all legal.
To this aim, we shall need to constrain the segment triangulations in some subsets
of the convex hull of S. So, we need to extend slightly the above results.

Definition 4. A subset U of conv(S) is S-polygonal if U is closed and if the
boundary of U is a finite union of disjoint segments of two kinds:

– closed segments included in S,
– open segments ]p, q[ such that S ∩ [p, q] = {p, q}.

Throughout this paper, U denotes an S-polygonal subset of conv(S). Now, the
definition of segment triangulations extends to U by replacing, in Definition 1,
conv(S) by U and S by U ∩ S. Here again we can show that:

Theorem 2. The number of faces of a segment triangulation of U depends only
on the couple (U, S).

We say that a point q in U is visible from a point p in U if ]p, q[ is included in
U \ S.

Definition 5. 1. A triangle t included in U with vertices in S is a Delaunay
triangle of U if there exists a point p in the interior of t such that the interior
of the circumcircle of t contains no point of S visible from p.

2. A segment triangulation of U is Delaunay if all its triangles are Delaunay.
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Theorem 3. Every S-polygonal subset U admits a segment Delaunay
triangulation.

This result is a consequence of Theorem 7 of section 4. However, a segment De-
launay triangulation is not necessarily unique since four connected components
of U ∩ S may be cocircular even if S is in general position.

3 Description of the Flip Algorithm

The algorithm starts with a segment triangulation of S. The edges of the trian-
gulation are stored in a queue.

One basic step of the algorithm goes as follows. The edge e at the head
of the queue is popped. Let P be the closure of the union of e and of its at
most two adjacent triangles: This region is called the input polygon of e (see
Figure 2 (b) and (f)). Then, the algorithm computes a segment Delaunay trian-
gulation of P . Since P meets at most four sites, the Delaunay triangles of P can
be computed in constant time. The triangles adjacent to e are replaced with the
Delaunay triangles of P . This gives rise to a new segment triangulation of S (it
is a consequence of Theorems 2 and 3). Finally, the edge replacing e is pushed
at the tail of the queue.

Beside this queue, the algorithm maintains the number of illegal edges in the
current triangulation. The algorithm ends when all edges are legal.

If a basic step changes the topology of the current triangulation, we say that
the processed edge is flipped.

In case of point set triangulations, when an illegal edge is processed by the flip
algorithm, it is flipped, it becomes legal, and it will never reappear. Since there
are finitely many edges, the flip algorithm reaches the Delaunay triangulation
after a finite number of steps. Our flip algorithm looks very close to this classical
flip algorithm, but we can not use the same idea to prove its convergence because
of some important differences (see Figure 2):

– even if an edge is not flipped, its geometry may change,
– some illegal edges cannot be flipped,
– a new constructed edge is not necessarily legal.

For point set triangulations, another way to prove the convergence of the flip
algorithm to the Delaunay triangulation, is to lift the point set on the three-
dimensional paraboloid z = x2 + y2. It is well known that the downward projec-
tion of the lower convex hull of the lifting is the Delaunay triangulation of the
point set. Conversely, every other triangulation lifts to a non convex polyhedral
surface above the lower convex hull. Now, it is enough to notice that an edge
flip brings down the polyhedral surface.

In the next two sections, we use the same approach to prove that our flip algo-
rithm constructs a segment triangulation that has the same topology as the seg-
ment Delaunay triangulation. At first, for every S-polygonal subset U , the lower
convex hull of the lifting ofU∩S on the paraboloid is defined with the help of locally
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convex functions and we show that it projects down to the segment Delaunay tri-
angulation ofU (Theorem 7). Then, we define the lifting of any segment triangula-
tion that is not Delaunay (Definition 7) and we show that the lifting of the segment
Delaunay triangulation is lower than or equal to the lifting of any other segment
triangulation (Theorem 8). In order to show the correctness of the algorithm, we
prove that, after a basic step, the lifting of the resulting segment triangulation is
lower than or equal to the lifting of the segment triangulation before the basic step
(Theorem 9). This leads to prove that the sequence of basic steps builds a sequence
of segment triangulations that converges to the segment Delaunay triangulation
(Theorem 9). It remains to see that, after a finite number of basic steps, the seg-
ment triangulation constructed by the flip algorithm has the same topology as the
segment Delaunay triangulation (Corollary 2). From Theorem 1, there is no more
illegal edge in this triangulation and the algorithm stops.

(a)

e1

e2

e3

(g)(e)

e1

e2

e3

(f)

(c)

e3

(d)

e1

e2

e3

(b)

e3

(i)(h)

e1

e2

e3

e1
e1

Fig. 2. The flip algorithm transforms the given segment triangulation (a) in a segment
triangulation (h) that has the same topology as the segment Delaunay triangulation (i).
The topology in (a) and the topology in (h) differ only by the flip of e1, which is the only
illegal edge of (a). However, the edge e1 of (a) cannot be immediately flipped because
its input polygon is not convex. So, the legal edges e3 and e2 have to be processed
before e1 becomes flippable. In (b), the algorithm considers the input polygon of the
edge e3. Then, in (c), it computes the segment Delaunay triangulation of the input
polygon and this gives rise to a new segment triangulation in (d). In the same way, the
processing of the edge e2 leads to (e). Finally, the edge e1 can be flipped (f, g), which
leads to (h).
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4 Locally Convex Functions and Segment Triangulations

Recall that, if V is a subset of R2, a function φ : V → R is locally convex if the
restriction of φ to each segment included in V is convex.

We define now the lower convex hull of a function, which we shall use instead
of the usual lower convex hull of a subset in R3. Note that it corresponds to this
usual lower convex hull when the domain V is convex.

Definition 6. Let L(V ) be the set of functions φ : V → R that are locally
convex on V . Given a real-valued function f defined on V ∩S, the lower convex
hull of f on (V,S) is the function fV,S defined on V by

fV,S(x) = sup{φ(x) : φ ∈ L(V ), ∀y ∈ V ∩ S, φ(y) ≤ f(y)}.

In the following, the above definition will be used on an S-polygonal domain U
with the function f : R2 → R defined by f(x, y) = x2 + y2. The convexity of f
implies that fU,S = f on U ∩S. Using the geometrical assumptions on U , it can
also be proven that fU,S is continuous.

The main aim of this section is to explain that the function fU,S determines
a segment Delaunay triangulation of U (see Figure 3). Next theorem gives in-
formation about the value of the function fU,S at a point p. For every point p in
U \ S, denote Sp the closure of the set of points in S visible from p and Vp its
convex hull (in general, Vp is not contained in U).

U

Fig. 3. An S-polygon U and the graph of fU,S. U is decomposed into two triangles and
infinitely many line segments where fU,S is affine. The triangles are Delaunay triangles
of U and the union of the segments forms the five edges of the segment Delaunay
triangulation of U .

Theorem 4. Every point p of U belongs to a closed convex subset C of U whose
extreme points are in S and such that the function fU,S is affine on C. Moreover
fU,S(p) = fVp,Sp(p).
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Proof. (1) We begin with the case U = conv(S). In this case, the graph of fU,S

is the classical lower convex hull E of the lifting of S on the paraboloid. Every
(0-, 1-, or 2-dimensional) face of E is contained in a non vertical supporting
hyperplane of E, which implies that fU,S is affine on the downward projection C
of each face of E in the plane z = 0. Every point p of the plane belongs to such
a set C. Moreover the extreme points of C are the projections of the extreme
points of a face and thus they belong to S.

(2) We consider now a general S-polygonal subset U . The Theorem is more
difficult to prove and we only give the steps of its proof.

If p is in S or in the boundary of U , the Theorem is very easy to prove. So
we may suppose that p is in the interior of U and not in S. In this case, since U
is S-polygonal, it can be shown that p is also in the interior of Vp. We use the
the result of (1) with Vp and Sp instead of conv(S) and S: There exists a convex
set C containing p, included in Vp whose extreme points are in Sp and such that
fVp,Sp is affine on the convex set C. Since U is an S-polygonal subset, we can
see that for every point in U \ S there is a ball centered at this point whose
intersection with U is convex. This property enables to prove that the convex C
is entirely contained in U .

We know that the function fVp,Sp is affine on the convex set C. Since p is
in the interior of Vp and since fVp,Sp is convex there exists an affine function
h : R2 → R equal to fVp,Sp on the convex set C and lower than or equal to
fVp,Sp on Vp. This implies h ≤ f on Sp.

The main idea of the proof is to construct a locally convex function g : U → R
which is equal to h on the convex set C and such that g ≤ f on S. Indeed,
fU,S ≥ g by definition of the lower convex hull of a function and since fU,S is
convex on C, the function fU,S must be lower than or equal to the function h
on C. Therefore fU,S = h on C.

The function g is defined as follows. Consider the open disk A = {q ∈ R2 :
f(q) < h(q)} and let W be the connected component of A ∩ U containing p.
The function g : U → R is defined by g(q) = h(q) if q ∈ W and g(q) = f(q)
otherwise. One can check that g is convex on each segment included in U , hence
g is locally convex. Moreover, it is not difficult to see that C is included in
W ∪ {q ∈ R2 : h(q) = f(q)}. The last and most difficult thing to check is
that g ≤ f on S. It is enough to prove that W contains no point of S. Since
the function h is lower than or equal to f on all the points of S visible from
p and since h < f on W , we know that W contains no point of S visible from
p. Suppose that there exists a point q in W ∩ S. Since W is connected, we can
join the point p to the point q by a path γ in W and we can suppose that the
lenght of γ is finite. The distance δ = d(γ, ∂A) from γ to the boundary of A is
positive. It is not difficult to show that Wδ = W ∩ {x ∈ A : d(x, ∂A) ≥ δ} is a
closed set. It follows that there exists a shortest path from p to q in Wδ. Now,
we know that for every point in U \S there is a ball centered at this point whose
intersection with U is convex. This shows that this shortest path from p to q is
straight unless it meets some point in S. Therefore, either q is visible from p or
the shortest path contains a point of S visible from p, which is impossible. �
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Corollary 1. Let t be a triangle included in U with vertices in S. fU,S is affine
on t if and only if t is a Delaunay triangle of U .

Proof. Suppose that fU,S is affine on t. Let p be any point in the interior of t and
q ∈ Sp. Denote h : R2 → R the affine function equal to fU,S on t. The function
fU,S is convex on [p, q] and is equal to h on a neighborhood of p. Therefore
fU,S ≥ h on [p, q]. Since fU,S = f on S, f(q) = fU,S(q) ≥ h(q). Hence q is not in
the region of R2 where f < h, which is precisely the interior of the circumcircle
of the triangle t.

Conversely, suppose that t is a Delaunay triangle. We begin by the case U =
conv(S). There exists a point p in the interior of t such that the interior of
the circumcircle of t contains no point of S visible from p. Consider the affine
function ht : R2 → R which is equal to f on the vertices of the triangle t. Since
U is convex, the interior of the circumcircle contains no point of S. Therefore
ht ≤ f on S. It follows that fU,S ≥ ht on the entire set U . On the other hand,
fU,S = f = ht on the vertices of t. Thus, by convexity, fU,S ≤ ht on t. It follows
that fU,S = ht on t.

In the general case, if t is a Delaunay triangle of U then, by definition, it is
also a Delaunay triangle of (Vp, Sp). Hence, by the convex case, fVp,Sp is affine on
t. By the previous Theorem, we have fU,S(p) = fVp,Sp(p). Since fU,S is locally
convex, we have fU,S ≤ fVp,Sp on t. Now, p is in the interior of t, therefore
fU,S = fVp,Sp on t. �

The next step consists in showing that U can be partitioned into maximal convex
subsets where the function fU,S is affine. We are not going to prove this result,
nevertheless we can explain why it is natural. On the one hand, the relative
interiors of the faces of a closed convex set form a partition of this convex set (see
[6]). In the case U = conv(S), it follows that U is partionned by the downward
projections of the relative interiors of the lower faces of the convex hull of the
lifting of S on the paraboloid {z = x2 + y2}. On the other hand, in the case
of an S-polygonal subset U , the maximal subsets of U where fU,S is affine are
intended to replace these downward projections. This leads to the Theorem:

Theorem 5. For each point p in U \ S consider the set of all relatively open
convex subsets of U containing p where fU,S is affine. This set of convex subsets
contains a maximal element Cp (maximal for the inclusion). Moreover, the ex-
treme points of Cp are in S and, if q is another point of U \S, either Cp∩Cq = ∅,
or Cp = Cq.

The last statement of Theorem 5 means that the subsets Cp form a partition of
U \S. Now we have to establish that the two-dimensional convex subsets among
the Cp induce the triangles of a segment triangulation.

Theorem 6. By decomposing the two-dimensional (Cp)p∈U\S into triangles we
get the triangles of a segment triangulation of U , which we call a triangulation
induced by fU,S.
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Proof. As before, by lack of place, we can only give some hints about the proof
of this Theorem. Denote by CS1,S2 the set of all one-dimensional Cp with one
endpoint in the site S1 and the other in the site S2. Denote by US1,S2 the union
of all the segments of CS1,S2 . The continuity of fU,S and the strict convexity of
f allow to show that a point in S \ (S1 ∪ S2) cannot be too close to a point in
a segment Cp ∈ CS1,S2 . It follows that US1,S2 is open in V = U \ (S ∪ {the two-
dimensional Cp}). Now, by definition, a connected component A of V cannot
meet more than one set US1,S2 , S1 ∈ S, S2 ∈ S. Then, it is not difficult to prove
that the closure of A meets exactly two sites. Therefore, it is impossible to add
a triangle to the two-dimensional Cp without intersecting them. Thus we have a
segment triangulation of U . �

From Corollary 1 and Theorem 6 we deduce:

Theorem 7. For any S-polygonal subset U , a segment triangulation of U is
induced by fU,S if and only if it is Delaunay.

Using locally convex functions, we are able to lift any segment triangulation in
the following way:

Definition 7. Let T be a segment triangulation of U . The function fU,S,T :
U → R is equal to f on S, to fe,S on every edge e of T , and to ft,S on the
interior of every triangle t of T .

The lifting of T to R3 is the graph of the function fU,S,T .
Since fe,S ≥ fU,S on e and ft,S ≥ fU,S on t, we get:

Theorem 8. If T is a segment triangulation of U , then fU,S ≤ fU,S,T .

5 Convergence of the Flip Algorithm

In case of point set triangulations, it is well known that a flip increases the
smallest angle of the triangles. A weaker result holds for segment triangulations.

Given a segment triangulation T of U , let the slope of T be:

σ(T ) = sup{fU,S,T (p) − fU,S,T (q)
|p− q| : p ∈ U \ S, q ∈ U ∩ S, [p, q] ⊂ U}

Denoting by θ(T ) the minimum angle of the triangles of T , we can prove:

Proposition 1. There exists a positive constant c depending only on f , S, and
U such that, for every segment triangulation T of U , θ(T ) ≥ c/(max(1, σ(T ))).

It is not difficult to prove that σ(T ) < +∞. Moreover, it is obvious that if T ′ is
a segment triangulation of U such that fU,S,T ≤ fU,S,T ′ , then σ(T ) ≤ σ(T ′).

Consider now our algorithm: It starts with a segment triangulation T0 of
conv(S) and computes a sequence T1, T2, ..., Tn, ... of triangulations.
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Theorem 9. The sequence (fn = fconv(S),S,Tn
)n∈N decreases to fconv(S),S as n

goes to infinity.

Proof. At every stage n, we compute a Delaunay triangulation of the input
polygon Pn of the edge at the head of the queue. Applying Theorem 8 to the
S-polygonal subset U composed of Pn and of all the edges of Tn adjacent to Pn,
we get that fn+1 ≤ fn on U , which implies that fn+1 ≤ fn on conv(S).

It follows that the sequence of functions (fn)n∈N decreases to a function
g : conv(S) → R. The only thing to show is that g is (locally) convex. Since
g = f on S and g ≥ f on conv(S), we are reduced to show that g is convex on any
open segment ]p0, p1[ included in the interior of conv(S) \ S. By Proposition 1
and since the sequence fn decreases, the angles of the triangles generated by the
algorithm are not too sharp. It allows to show that, for every point p in ]p0, p1[,
there exists ε > 0 such that the neighborhood Ip,ε of p of radius ε in ]p0, p1[ is
included either in a triangle of Tn or in the input polygon Pn treated at stage
n, for infinitely many integers n. Thus, for these integers n, either fn or fPn,S is
convex on Ip,ε, and since fn+1 ≤ fPn,S ≤ fn on Pn, the function g is a limit of a
sequence of convex functions on Ip,ε, hence g is convex. Finally, since fn ≥ fU,S

for all n, we get g ≥ fU,S. Moreover, g = fn = f on S and g is convex, therefore
g ≤ fU,S. �

Corollary 2. There exists an integer N such that, for all integers n ≥ N , the
triangulation Tn has the same topology as the segment Delaunay triangulation
of conv(S).

Proof. Since the set of topologies of all the segment triangulations of S is finite,
if the corollary were false, then a non Delaunay topology would appear infinitely
many times. Therefore, it is enough to prove that, if for an increasing sequence
of integers (kn)n∈N, the triangulations Tkn have the same topology, then it is
the topology of the segment Delaunay triangulation.

We can always suppose that, given a topological triangle t, its geometrical
representation tkn in Tkn converges to a triangle t∞ when n goes to infinity (take
subsequences of Tkn). Therefore, the function fconv(S),S = limn→∞ fconv(S),S,Tkn

must be affine on each of these triangles t∞. Together with Theorem 7, this
shows that the set of all triangles t∞ defines the segment Delaunay triangulation
of S and that all the segment triangulations Tkn have the same topology as the
Delaunay one. �

6 Conclusion

In this paper, we have shown that the segment Delaunay triangulation can be
constructed by a flip algorithm in a finite number of steps.

The complexity of the flip algorithm seems difficult to estimate since the same
edge is processed several times. Nevertheless, as for point set triangulations, we
can expect that the practical complexity of the algorithm will be efficient if the
input segment triangulation is not too bad. This practical complexity may be
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improved by a better handling of the queue: It is not necessary to systematically
insert all the edges in the queue and we could establish an ordering of these
edges.

The proof of the convergence of the flip algorithm uses the control of the angles
of the triangles during the algorithm. Moreover, as for point set triangulations,
the segment Delaunay triangulation is the only segment triangulation whose
three-dimensional lifting is convex. These are two strong hints that make us
believe that the segment Delaunay triangulations should have some optimality
properties.

At last, possible extensions of segment triangulations should be mentioned:
Extension to three-dimensional space, to more general sites, to more general
distance functions, ... The three-dimensional extension is certainly a difficult
problem; it will be easier to consider first more general convex sites in the plane.
We believe that some of the results given in this paper can be extended to this
more general setting.
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Abstract. In a recently submitted paper we obtained an upper bound for the
minimum number of components of a 2-factor in a claw-free graph. This bound
is sharp in the sense that there exist infinitely many claw-free graphs for which the
bound is tight. In this paper we extend these results by presenting a polynomial
algorithm that constructs a 2-factor of a claw-free graph with minimum degree
at least four whose number of components meets this bound. As a byproduct we
show that the problem of obtaining a minimum 2-factor (if it exists) is polynomi-
ally solvable for a subclass of claw-free graphs. As another byproduct we give a
short constructive proof for a result of Ryjáček, Saito & Schelp.

1 Introduction

In this paper we consider 2-factors of claw-free graphs. Graph factors are well-studied.
See [16] for a survey. Our motivation to study 2-factors goes back to the well-known
NP-complete decision problem H-CYCLE (cf. [9]) in which the problem is to decide
whether a given graph has a hamiltonian cycle, i.e., a connected 2-regular spanning sub-
graph. In the related problem 2-FACTOR the connectivity condition is dropped, hence
the problem is to decide whether a given graph admits a 2-factor, i.e., a 2-regular span-
ning subgraph. This makes the problem considerably easier in the algorithmic sense:
it is well-known that 2-FACTOR can be solved in polynomial time by matching tech-
niques, and a 2-factor can be constructed in polynomial time if the answer is YES
(cf [14]). Clearly, a hamiltonian cycle is a 2-factor consisting of one component, and
the minimum number of components of a 2-factor can be seen as a measure for how far
a graph is from being hamiltonian. So, from an algorithmic viewpoint a natural question
is to consider the problem of determining a 2-factor of a given graph with a minimum
number of components. Obviously, this is an NP-hard problem. Hence it makes sense
to search for 2-factors with a reasonably small number of components if we aim for
polynomial time algorithms. For this research we have restricted ourselves to the class
of claw-free graphs. This is a rich class containing, e.g., the class of line graphs and the
class of complements of triangle-free graphs. It is also a very well-studied graph class,
both within structural graph theory and within algorithmic graph theory; see [7] for
a survey. Furthermore, computing a 2-factor with a minimum number of components
remains NP-hard for the class of claw-free graphs.

In a recently submitted paper [1] we already obtained an upper bound for the min-
imum number of components of a 2-factor in a claw-free graph. This bound is sharp
in the sense that there exist infinitely many claw-free graphs for which the bound is
tight; we will specify this later. When considering the related complexity problems, we
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soon realized that the proof methods used in [1] need to be extended in order to obtain
a polynomial algorithm that constructs a corresponding 2-factor, e.g., a 2-factor whose
number of components is at most our upper bound. In the present paper we present this
polynomial time algorithm.

2 Terminology and Background

We consider graphs that are finite, undirected and simple, i.e., without multiple edges
and loops. For notation and terminology not defined in this paper we refer to [4].

Let G = (VG, EG) be a graph of order |G| = |VG| = n and of size eG = |EG|.
The neighbor set of a vertex x in G is denoted by NG(x) = {y ∈ VG | xy ∈ EG},
and its cardinality by dG(x). We denote the minimum (vertex) degree of G by δG =
min{dG(x) | x ∈ VG}. If no confusion can arise we often omit the subscripts.

Let Kn denote the complete graph on n vertices. A graph F is called a 2-factor
of a graph G if F is a 2-regular spanning subgraph of G, i.e., if F is a subgraph
of G with VF = VG and dF (x) = 2 for all x ∈ VF . A claw-free graph is a graph
that does not contain an induced subgraph isomorphic to the four-vertex star K1,3 =
({u, a, b, c}, {ua, ub, uc}).

2.1 Known Results

Several interesting problems are still open for claw-free graphs such as the conjecture
of Matthews and Sumner [15] that every 4-connected claw-free graph is hamiltonian.
However, there is quite a lot known on 2-factors in claw-free graphs, including some
very recent results. Results of both Choudum & Paulraj [3] and Egawa & Ota [5] imply
that every claw-free graph with δ ≥ 4 contains a 2-factor.

Theorem 1 ([3,5]). A claw-free graph with δ ≥ 4 has a 2-factor.

We observe that every 4-connected claw-free graph has minimum degree at least four,
and hence has a 2-factor. A 2-connected claw-free graph already has a 2-factor if δ =
3 [20]. However, in general a claw-free graph with δ ≤ 3 does not have to contain a
2-factor. Examples are easily obtained.

Faudree et al. [6] showed that every claw-free graph with δ ≥ 4 has a 2-factor with
at most 6n/(δ + 2) − 1 components. Gould & Jacobson [11] proved that, for every
integer k ≥ 2, every claw-free graph of order n ≥ 16k3 with δ ≥ n/k has a 2-factor
with at most k components. Fronček, Ryjáček & Skupień [8] showed that, for every
integer k ≥ 4, every claw-free graph G of order n ≥ 3k2 − 3 with δ ≥ 3k − 4 and
σk > n + k2 − 4k + 7 has a 2-factor with at most k − 1 components. Here σk denotes
the minimum degree sum of any k mutually nonadjacent vertices.

If a graph G is claw-free, 2-connected and has δ ≥ 4, then G has a 2-factor with at
most (n+ 1)/4 components [13]. If a graph G is claw-free, 3-connected and has δ ≥ 4,
then G has a 2-factor with at most 2n/15 components [13].

In [1] we considered claw-free graphs with δ ≥ 4. Our motivation for this is as
follows. We first note that the number of components of a 2-factor in any graph on
n vertices is obviously at most n/3. For claw-free graphs with δ = 2 that have a 2-
factor we cannot do better than this trivial upper bound. This is clear from considering
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a disjoint set of triangles (cycles on three vertices). For claw-free graphs with δ = 3
that have a 2-factor, the upper bound n/3 on its number of components is also tight, as
shown in [1]. Hence, in order to get a nontrivial result it is natural to consider claw-free
graphs with δ ≥ 4.

Our two main results in [1] provide answers to two open questions posed in [20].

Theorem 2 ([1]). A claw-free graph G on n vertices with δ ≥ 5 has a 2-factor with at
most (n− 3)/(δ − 1) components unless G is isomorphic to Kn.

Theorem 3 ([1]). A claw-free graph G on n vertices with δ = 4 has a 2-factor with
at most (5n − 14)/18 components, unless G belongs to a finite class of exceptional
graphs.

Both results are tight in the following sense. Let f2(G) denote the minimum number of
components in a 2-factor of G. Then in [20], for every integer d ≥ 4, an infinite family
{F d

i } of claw-free graphs with δ(F d
i ) ≥ d is given such that f2(F d

i ) > |F d
i |/d ≥

|F d
i |/δ(F d

i ). This shows we cannot replace δ − 1 by δ in Theorem 2. The bound in
Theorem 3 is tight in the following sense. There exists an infinite family {Hi} of claw-
free graphs with δ(Hi) = 4 such that

lim
|Hi|→∞

f2(Hi)
|Hi|

=
5
18

.

This family can be found in [20] as well.
The exceptional graphs of Theorem 3 have at most seventeen vertices. They are de-

scribed in [1], and we will not specify them here. In [1] we also explain that Theorem 2
and 3 together improve the previously mentioned result of Faudree et al. [6] and that
Theorem 2 also improves the previously mentioned result of Gould & Jacobson [11].

2.2 Results of This Paper

The proofs in [1] do not yield algorithms for constructing 2-factors that satisfy the upper
bounds in Theorems 2 and 3. In the remainder of this paper we will develop a new
approach to these problems in order to establish polynomial algorithms that construct
2-factors of claw-free graphs with minimum degree at least four. Using our results in [1]
we show that the number of components in these 2-factors are guaranteed to satisfy the
upper bounds of Theorems 2 and 3. We will illustrate our approach by concentrating
on Theorem 2, but the same approach works for Theorem 3 in exactly the same way.
As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists)
is polynomially solvable for a subclass of claw-free graphs which we describe later on.
As another byproduct we give a short constructive proof for a result of Ryjáček, Saito
& Schelp [19].

3 The Algorithm for Constructing 2-Factors of Claw-Free Graphs

We split the proof into six different parts. For the first two parts we do not have to
develop any new theory or algorithms, but can rely on the beautiful existing machinery
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from the literature. The first part of this says that claw-free graphs behave the same with
respect to our problem as line graphs obtained from them by performing some closure
operation which will be explained shortly. The second part then describes the known
equivalence of our problem with an analogous problem based on concepts and results in
the preimage graphs of line graphs. Our new contributions are described and explained
in the third, fourth, fifth and sixth part. In the third part we consider preimage graphs
that are trees and in the fourth part we consider preimage graphs that are triangle-free.
Finally, in the fifth and sixth part we translate the results back to the original domain
of claw-free graphs and mention some special class for which our algorithm finds a
2-factor with a minimum number of components.

Step 1: Restrict to Line Graphs of Triangle-Free Graphs
The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with vertices
u1, . . . , up such that there is an edge between any two vertices ui and uj if and only
if ei and ej share one end vertex in H . It is easy to verify and well-known (see e.g.
[12]) that line graphs are claw-free graphs, but that the class of claw-free graph is much
richer (in fact, line graphs have been characterized by a set of nine forbidden induced
subgraphs). We show that we can restrict ourselves to an even smaller subclass of claw-
free graphs, namely the class of line graphs of triangle-free graphs. For this purpose we
use the closure concept as defined in [18].

The closure of a claw-free graph is defined as follows. Let G be a claw-free graph.
Then, for each vertex x of G, the set of neighbors of x in G induces a subgraph with
at most two components. If this subgraph has two components, both of them must be
cliques. If the subgraph induced by N(x) is connected, we add edges joining all pairs
of nonadjacent vertices in N(x). This operation is called the local completion of G at
x. The closure cl(G) of G is a graph we can obtain by recursively repeating the local
completion operation, as long as this is possible. Ryjáček [18] showed that the closure
of G is uniquely determined, i.e., that the ordering in which one performs the local
completions does not matter. Ryjáček [18] also showed that G is hamiltonian if and
only if cl(G) is hamiltonian. This result was later extended to 2-factors [19].

Theorem 4 ([19]). Let G be a claw-free graph. Then G has a 2-factor with at most k
components if and only if cl(G) has a 2-factor with at most k components.

The following relationship between claw-free graphs and triangle-free graphs exists.

Theorem 5 ([18]). If G is a claw-free graph, then there is a triangle-free graph H such
that L(H) = cl(G).

It is well-known that apart from K3 which is L(K3) and L(K1,3), every connected line
graph F has a unique H with F = L(H) (see e.g. [12]). We call H the preimage graph
of F . For K3 we let K1,3 be its preimage graph. For disconnected graphs we define the
preimage graphs according to their components.

Recall that f2(G) denotes the minimum number of components in a 2-factor of a
graph G. By Theorem 4 and Theorem 5, we deduce that for a claw-free graph G,
f2(G) = f2(cl(G)) = f2(L(H)), where H is the (triangle-free) preimage graph of
cl(G). Recall that the closure of a claw-free graph can be obtained in polynomial time.
Since it is known that the preimage graph of a line graph can be obtained in polynomial
(linear) time (see e.g. [17]) we can efficiently compute H .
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Step 2: Translate the Problem into Finding Dominating Systems
An even graph is a graph in which every vertex has a nonzero even degree. A connected
even graph is called a circuit. For q ≥ 2, a star K1,q is a complete bipartite graph with
independent sets A = {c} and B with |B| = q; the vertex c is called the center and the
vertices in B are called the leaves of K1,q.

Let H be a graph that contains a set S consisting of stars with at least three edges and
circuits, all (stars and circuits) mutually edge-disjoint. We call S a system that dominates
H or simply a dominating system if for every edge e of H the following holds:

– e is contained in one of the stars of S, or
– e is contained in one of the circuits of S, or
– e shares an end vertex with an edge of at least one of the circuits in S.

Gould & Hynds [10] proved the following result.

Theorem 6 ([10]). The line graph L(H) of a graph H has a 2-factor with k compo-
nents if and only if H has a dominating system with k elements.

Combining Theorem 4 and Theorem 5 with Theorem 6 yields the following result.

Theorem 7. Let G be a claw-free graph. Then G has a 2-factor with k components
if and only if the (triangle-free) preimage graph of G has a dominating system with k
elements.

The edge degree of an edge xy in a graph H is defined as dH(x) + dH(y) − 2. We
denote the minimum edge degree of H by δe = δe(H). Due to the previous discussions
it is clear that Theorem 2 is equivalent to the following theorem.

Theorem 8. A triangle-free graph H with δe(H) ≥ 5 has a dominating system with at
most (e(H) − 3)/(δe(H) − 1) elements unless H is isomorphic to K1,e(H).

We will now concentrate on determining (in polynomial time) a sharp dominating sys-
tem, i.e., one that satisfies the upper bound of Theorem 8. We first deal with the case
that H is a tree. In this case we can even determine a minimum dominating system in
polynomial time.

Step 3: Compute Minimum Dominating Systems for Trees

Here we present a polynomial time algorithm for computing the number of elements in a
minimum dominating system of any given tree. We use the following new terminology.
A minimum dominating system, or shortly, an m-system of a graph H is a dominating
system of H with the smallest number of elements. We denote such a system by M(H),
and its number of elements bym(H). IfH does not allow a dominating system we write
m(H) = ∞.

A vertex with degree 1 in a graph F is called an end vertex or leaf of F . An edge
which is incident with a leaf is called a pendant edge. We say that we add a pendant
edge to F if we add a new vertex to F and join it to precisely one of the vertices of F .
Two edges are called independent if they do not share any end vertices. A matching is
a set of mutually independent edges.
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We write Hq(w) to denote a tree H that contains a vertex w to which we added q
new pendant edges. Note that H0(w) = H . Let H1, . . . , Hp be a set of p mutually
vertex-disjoint trees, where each Hi contains a vertex wi. We say that we have joined
trees H1, . . . , Hp in w1, . . . , wp by u if we add a new vertex u with edges uwi for
i = 1, . . . , p. If p = 0, then the resulting tree H(u) is the single vertex u, which has
a dominating system of 0 elements by definition. Before we present our algorithm we
first deduce a number of equations. Note that m(H1(w)) = ∞ if H = ({w}, ∅).

Lemma 1. Let w1, . . . , wp be a set of p vertices belonging to mutually disjoint trees
H1, . . . , Hp, respectively. Let H(u) be the tree obtained after joining H1, . . . , Hp in
w1, . . . , wp by u. Then m(H(u)) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p = 0
p∑

i=1

m(H1(wi)) if p ∈ {1, 2}

min
{ p∑

i=1

m(H1(wi)),

1 + min
i1<i2<i3

{ 3∑

j=1

m(Hij ) +
∑

i/∈{i1,i2,i3}
min{m(Hi),m(H1(wi)}

}
}

if p ≥ 3.

Proof. We prove each case separately.

• Let p = 0. Then H(u) = ({u}, ∅). So, m(H(u)) = 0 by definition of a dominating
system.

• Let 1 ≤ p ≤ 2. Then, in any dominating system of H(u), u is not a star center, and
consequently, each wi is the center of a star containing the edge uwi. Note that in
each tree H1(wi), wi is a star center (because the new pendant edge to wi needs
to be covered by a star). Hence, we can combine any m-systems M1(wi) of each
H1(wi) to obtain an m-system M(H(u)) with

∑p
i=1 m(H1(wi)) elements.

• Let p ≥ 3. First consider the set of dominating systems of H(u) in which u is not a
star center. In all these dominating systems, eachwi is the center of a star containing
the edge uwi. Similar to the previous case, we can combine any m-systems of
each H1(wi) to obtain a dominating system S of H(u) with

∑p
i=1 m(H1(wi))

elements. We note that S has the minimum number of elements over all dominating
systems of H(u) in which u is not a star center.

Secondly, consider the set of dominating systems of H(u) in which u is a star
center. In all these dominating systems, the star with center u contains at least three
edges, say uwi1 , uwi2 , and uwi3 , by definition of a dominating system. For the
remaining edges uwi we act as follows. In each dominating system of H(u) that
has a star with center u, such an edge uwi either belongs to the star with center u, or
else to the star with center wi. We compute an m-system M(Hi) and an m-system
M(H1(wi)). Then we choose the one with the smallest number of elements, which
we denote by M∗

i . So, |M∗
i | = min{m(Hi),m(H1(w1)}. We now combine the

m-systems of Hij for j = 1, 2, 3, together with the dominating systems M∗
i and

a star that contains the edges uwij for j = 1, 2, 3 plus possibly some more edges
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depending on our choice for each M∗
i . We try all possible triples (i1, i2, i3), and

choose the combination with the smallest total number of elements. This way we
obtain a dominating system S′ of H(u) that has

1 + min
i1<i2<i3

{ 3∑

j=1

m(Hij ) +
∑

i/∈{i1,i2,i3}
min{m(Hi),m(H1(wi)}

}

elements. We note that S′ has the minimum number of elements over all dominating
systems of H(u) in which u is a star center.

Finally, we compare the numbers of elements of S and S′, and we choose (the)
one with the smallest number of elements. This yields an m-system M(H(u)). �

Using Lemma 1 we can prove the following theorem.

Theorem 9. The problem of finding a minimum dominating system is polynomially
solvable for the class of trees.

Proof. Let H be a tree with a designated vertex v0. We partition V (H) into L0 ∪ L1 ∪
. . . ∪ Lr such that for i = 0, . . . , r, Li is the set of vertices at distance i from v0.
Note that L0 = {v0}. For v ∈ V (H)\{v0}, we let v+ ∈ N(v) be the first vertex on
the (unique) path from v to v0 in H , and we let the subtree Hv be the component of
H − vv+ that contains v.

Now let v ∈ V (H). Suppose v has neighbors w1, . . . , wp in Hv . Then Hv is ob-
tained after joining the p mutually disjoint trees Hw1 , . . . , Hwp in w1, . . . , wp by v.
Suppose we have already computed the values m(Hwi) and m(H1

wi
(wi)). Then, using

Lemma 1, we can easily computem(Hv). We observe that the treeH1
v (v) is obtained af-

ter joining the trees Hwi , . . . , Hwp together with a new single vertex tree ({wp+1}, ∅) in
w1, . . . , wp+1 by v. Hence, we can use Lemma 1 to computem(H1

v (v)) as well. So, our
strategy is to recursively compute the values m(Hv) and m(H1

v (v)): for i = 1, . . . , r,
we first compute the values m(Hvi) and m(H1

vi(vi)) for all vi ∈ Li, and use them to
compute m(Hvi−1) and m(H1

vi−1(vi−1)) for all vi−1 ∈ Li−1 according to Lemma 1.
Clearly, computing m(H) this way can be done in polynomial time.

In order to find an m-system M(H), we keep track of the stars as follows. Firstly, for
each v ∈ V (H), we remember whether v is a star center in an m-system of Hv when
we compute m(Hv). In case v is the center of a star Sv , we keep track of the edges in
Sv as well. Secondly, we check whether v becomes the center of a star Sv (and which
edges belong to Sv if Sv exists) both when we computem(Hv+) and when we compute
m(H1

v+(v+)). Note that we can do this in polynomial time when we use the formula in
Lemma 1. With the above information we can efficiently compute an m-system M(H),
as the following claim shows.

Claim. For all v in each Li we can compute in polynomial time whether v is the center
of a star Sv of an m-system M(H) and, if so, which edges of H belong to Sv.

We prove this claim by induction on i. Let i = 0. When we computed the value for
m(Hv0) = m(H) by using Lemma 1, we checked whether v0 is the center of a star
in an m-system of H . In case v0 is the center of such a star Sv0 , we also remembered
which edges belong to Sv0 .
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Now suppose i ≥ 1. Let v ∈ Li. By the induction hypothesis, we know whether v+

is the center of a star in an m-system M(H) or not. First suppose v+ is not the center
of a star in an m-system M(H). Then v is the center of a star Sv in M(H), and Sv is
a star in an m-system M(H1

v (v)) as well. So, we kept track of Sv. Now suppose v+ is
the center of a star Sv+ in an m-system M(H). By the induction hypothesis, we know
which edges Sv+ has. Then there are two cases: either vv+ belongs to Sv+ , or it does
not. If vv+ belongs to Sv+ , then v is the center of a star Sv in M(H) if and only if Sv

is a star in M(Hv). If vv+ does not belong to Sv+ , then v is the center of a star Sv in
M(H), and Sv is a star in an m-system M(H1

v (v)). In both cases we kept track of all
the edges of Sv. �

Step 4: Compute Sharp Dominating Systems for General Triangle-Free Graphs
Suppose G is a claw-free graph. Let H be the preimage of cl(G), i.e., the triangle-free
graph with L(H) = cl(G). We now assume that H is not a tree.

The key idea behind our approach in this case is to start with an even subgraph X
of H , then to “break” the circuits in X by removing a number of edges, such that
we obtain a new graph H∗ that is a forest. Then we can apply our approach from the
previous section to each component of H∗ if we first add sufficiently many pendant
edges to ensure that each component has minimum edge-degree at least δe(H). In this
procedure we have to add more edges than we remove. However, we will have the
following advantage. The added pendant edges have to be dominated by (extra) stars
in any dominating system of H∗, and these stars can be merged together into fewer
elements of a dominating system in the original graph H . In other words, the larger
number of stars we get by applying the upper bounds to H∗ will provide the necessary
compensation for the larger number of edges that we created. This way we are able to
establish our upper bound for H . In [1] we gave a nonconstructive proof to show that
this approach works. This proof in [1] was based on a number of assumptions on the
choice of the even subgraph X of H . Here we follow an alternative approach which
enables a constructive proof.

Let X be an even subgraph of H with set of components C. Let C4 ⊂ C be the set of
components of order 4. For each C in C we choose an edge eC of C and for each C in C4

we choose two independent edges eC , e
′
C of C. We call the set of all chosen edges the

X-set and denote it byM . Note thatM is a matching ofH . LetH∗ = (H−E(X))∪M .
We call H∗ the X-graph.

Lemma 2. We can compute an even subgraph X of H such that H∗ is a forest in
polynomial time.

Proof. We use an algorithm based on the following arguments:

Phase 1. We first construct an even subgraph X ′ of H . We can do this in polynomial
time by adding mutually edge-disjoint cycles to X ′ until this is not possible anymore.

Phase 2. We choose an X ′-set M ′ and check (in polynomial time) whether its X ′-graph
H ′ is a forest. If it is a forest, then we are done.

Suppose H ′ is not a forest. Let D be a cycle in H ′. Consider the graph X ′ ∪D. For
each e in E(X ′ ∩D) we do as follows. Let e belong to a circuit C of X . Then C shares
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at most two edges with D. If C only shares e with D then we remove e from X ′ ∪D.
In the other case C belongs to C4 and we remove the two edges of C that are not on D.
This way we obtain an even subgraph Y ′ of H in polynomial time. We go to Phase 2
with Y ′ instead of X ′.

We show that either e(Y ′) > e(X ′) or else, if e(Y ′) = e(X ′), then Y ′ contains
fewer components than X ′. This means that the algorithm will terminate at a certain
moment with our desired graph X .

The above can be verified as follows. Note that we removed exactly e(X ′∩D) edges
and we added e(D \X ′) edges. So we are done if e(D \X ′) > e(X ′∩D). Since M ′ is
a matching, we find that e(X ′ ∩D) ≤ e(D)/2, so e(D) = e(X ′ ∩D) + e(D \X ′) ≤
e(D)/2 + e(D \ X ′), so e(D \ X ′) ≥ e(D)/2 ≥ e(X ′ ∩ D). We are done unless
e(D \X ′) = e(X ′ ∩D) = e(D)/2.

Suppose the latter is the case. Then we are done if Y ′ contains fewer components
than X ′. Suppose Y ′ and X ′ have the same number of components. Then X ′ ∩ D
belongs to exactly one circuit ofX ′. We already deduced that e(X ′∩D) = e(D)/2 ≥ 2.
Hence D is a four-cycle, but then the triangle-free graph H contains an induced K4.
With this contradiction we have completed the proof of this claim. �

The remainder of the constructive proof is exactly the same as the corresponding parts
in our nonconstructive proof in [1]. We do not include it here due to the page restriction.

Step 5: Translate the Dominating Systems Back into 2-Factors
Once we have obtained a dominating system S for the preimage graph H with cl(G) =
L(H), it is easy to translate this back into a 2-factor of cl(G) in polynomial time:

– the stars in S correspond to complete graphs in cl(G) on at least three vertices; a
hamiltonian cycle can clearly be constructed in polynomial time;

– the circuits in S and the edges they dominate correspond to hamiltonian subgraphs
in cl(G); one can construct a hamiltonian cycle by traversing the circuit, picking
up the edges (vertices in cl(G)) one by one and inserting dominated edges at the
first instance an end vertex of a dominated edge is encountered. For traversing
the circuits we use the polynomial algorithm that finds a eulerian tour in an even
connected graph (cf. [4]).

Step 6: Translate 2-Factors in cl(G) to 2-Factors in G

We first introduce some notations. Let C = v1v2 . . . vpv1 be a cycle with a fixed orien-
tation. The successor vi+1 of vi is denoted by v+C

i = v+
i and its predecessor vi−1 by

v−C
i = v−i . The segment vivi+1 . . . vj is denoted by vi

−→
Cvj , where the subscripts are

to be taken modulo |C|. The converse segment vjvj−1 . . . vi is denoted by vj
←−
Cvi. We

use similar notations for paths.
We assume we are given a 2-factor F ′ of cl(G) of a claw-free graph G. Let k be

the number of components of F ′. Here, we show how to obtain in polynomial time
a 2-factor F of G such that F has at most k components. We base our translation of
the following new theorem, which generalizes a similar result for hamiltonicity [2] in
algorithmic sense.
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Theorem 10. Let G be a graph and let {u, v, x, y} be a subset of four vertices of VG

such that uv �∈ EG and {x, y} ⊆ N(u) ∩ N(v). Let N(x) ⊆ N(u) ∪ N(v) ∪ {u, v}
and let N(y) \ (N(x) ∪ {x}) induce a complete graph (or be empty). Then we can find
a 2-factor of G with at most k components in polynomial time, if G+ uv has a 2-factor
with k components.

Proof. Suppose G+ uv has a 2-factor F ′ with at most k components. Below we give a
number of polynomial time transformations of F ′ such that we obtain a 2-factor F of G
with at most k components. If uv /∈ EF ′ then F ′ is a 2-factor of G. Suppose uv ∈ ED

for some (cycle) component D of F ′, say v = u−. Let P = u
−→
Dv. We distinguish the

following three cases.
First suppose x /∈ VD . Let x ∈ VD′ for some (cycle) component D′ of F . By our

assumptions, we may without loss of generality assume that x+D′
u ∈ EG. Then we

replace D and D′ by a new cycle ux+D′−→
D′xv

←−
P u, and we are done.

Second suppose x ∈ VD but y /∈ VD . Let y ∈ VD∗ for some (cycle) component D∗

of F . Let y′ = y+D∗
and y′′ = y−D∗

be the neighbors of y on D∗. Suppose y′y′′ ∈
EG. Then we replace D∗ by y′

−→
D∗y′′y′ and D by uyv

←−
P u, and we are done. Suppose

y′y′′ /∈ EG. Since N(y)\(N(x) ∪ {x}) induces a complete graph, we find that one of
the edges xy′, xy′′, say xy′, must exist in G. By our assumptions, we then find that y′u
or y′v belongs to EG, and we are done by the same argument as in the previous case.

Third suppose {x, y} ⊂ VD . Say x is on u
−→
P y. First suppose xy ∈ ED . We re-

place D by u
−→
P xv

←−
P yu, and we are done. Now suppose xy /∈ ED. Then x+ �= y.

By our assumptions, x+ ∈ N(u) ∪ N(v). Suppose ux+ ∈ EG. We replace D by

ux+−→
P vx

←−
P u. Hence we may assume vx+ ∈ EG. Suppose y− = x+. Then we re-

place D by uy
−→
P vy−

←−
P u. Hence we may assume y− �= x+. Suppose y−x ∈ EG. Then

we replace D by u
−→
P xy−

←−
P x+v

←−
P yu. Hence we may assume y−x /∈ EG. Suppose

y+ = v. Then we replace D by u
−→
P xvx+−→

P yu. Hence we may assume y+ �= v. Sup-
pose y+x ∈ EG. Then we replace D by u

−→
P xy+−→

P vx+−→
P yu. Hence we may assume

y+x /∈ EG. As y−x /∈ EG, we then find y−y+ ∈ EG due to our assumptions. Then we
replace D by u

−→
P y−y+−→

P vyu. This proves Theorem 10. �

Note that in Theorem 10, x and y can be nonadjacent, and G does not have to be claw-
free. However, the following observation is easy to see.

Observation 1 ([2]). If G is claw-free, then the conditions of Theorem 10 are satisfied
if x and y are adjacent.

Then, by the following observation, we can indeed transform a 2-factor of cl(G) that
has k components to a 2-factor of G that has at most k components. This means we have
proven our main result. For convenience we include the proof of the next observation.

Observation 2 ([2]). Let x be a vertex of a claw-free graph G with G[N(x)] connected
and non-complete. Then the local completion of G at x can be obtained by iteratively
joining pairs {u, v} ⊆ N(x) that satisfy the conditions in Theorem 10 for some y ∈
N(u) ∩N(v).
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Proof. Consider the subgraph Hx of G induced by N(x) ∪ {a ∈ VG | ab ∈ EG

for some b ∈ N(x)}. Note that x is a vertex of Hx and that Hx is claw-free. Hence,
by Observation 1, x and y satisfy the conditions of Theorem 10 (in Hx) for every
y ∈ N(x). Since we only join nonadjacent pairs in N(x), N(x) and N(y) will keep
these properties for all y ∈ N(x). �

Note that the above approach gives a short constructive proof for Theorem 4 (the result
of Ryjáček, Saito & Schelp in [19]).

We note that Theorem 9 has the following consequence as a byproduct. We need a
few definitions before we can state the result. A cut vertex of a graphG is a vertex whose
removal increases the number of components. A block of G is a maximal subgraph of
G without cut vertices (of itself). Hence if G has no isolated vertices, its blocks are
either K2s or (maximal) 2-connected subgraphs. For the purpose of our next result we
call a block B of a claw-free graph G a semiclique if B becomes a complete subgraph
of cl(G). Since a claw-free graph in which every block is a semiclique has a forest as
its preimage, we obtain the following consequence of Theorem 9.

Corollary 1. Let G be a claw-free graph in which all blocks are semicliques. If G has
a 2-factor, then we can construct a minimum 2-factor of G in polynomial time.

4 Conclusions

In a recently submitted paper we obtained sharp upper bounds for the minimum number
of components of a 2-factor in a claw-free graph. Here we extended these results by
presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with
minimum degree at least four whose number of components meets this bound. As a
byproduct we showed that the problem of obtaining a minimum 2-factor (if it exists)
is polynomially solvable for a subclass of claw-free graphs in which all blocks are
semicliques. As another byproduct we gave a short constructive proof for a result of
Ryjáček, Saito & Schelp.

Our polynomial time algorithm yields a 2-factor with a number of components below
a guaranteed upper bound. This upper bound is completely determined by an upper
bound we find for the number of elements of a dominating system of a certain tree (that
is obtained from he corresponding triangle-free graph in Theorem 8). As this upper
bound is sharp (cf. [20]), our next goal will be to determine the extremal tree cases and
try to exclude these from happening. This refined analysis may lead to a better upper
bound for claw-free graphs for which the current upper bound is not sharp. Another
way to improve our algorithm is trying to refine the algorithm that constructs the tree
H∗ in Lemma 2 such that we have more information on the number of circuits in the
even subgraph X of H .

Finally, Corollary 1 shows that our algorithm yields a 2-factor with a minimum num-
ber of components for claw-free graphs with arbitrary minimum degree in which all
blocks are semicliques. In future research we aim to generalize this result, i.e, to find
a larger class of claw-free graphs for which our (possibly modified) algorithm solves
the problem of finding a minimum 2-factor. We will also analyze the class of claw-free
graphs with minimum degree 3 that have a 2-factor more carefully.
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Abstract. In the maximum cover problem, we are given a collection of
sets over a ground set of elements and a positive integer w, and we are
asked to compute a collection of at most w sets whose union contains the
maximum number of elements from the ground set. This is a fundamental
combinatorial optimization problem with applications to resource allo-
cation. We study the simplest APX-hard variant of the problem where
all sets are of size at most 3 and we present a 6/5-approximation algo-
rithm, improving the previously best known approximation guarantee.
Our algorithm is based on the idea of first computing a large packing of
disjoint sets of size 3 and then augmenting it by performing simple local
improvements.

1 Introduction

In the maximum cover problem, we are given a collection of sets over a ground
set of elements V and a positive integer w, and we are asked to compute a col-
lection of at most w sets of maximum benefit, i.e., so that their union contains
the maximum number of elements from the ground set. This is a fundamental
combinatorial optimization problem with applications to the resource allocation
scenario with w available resources, users wishing to access one of the resources,
and compatibility constraints defined as sets of users that can simultaneously
access the same resource. The problem of computing an assignment of the max-
imum number of users to the resources so that the compatibility constraints are
satisfied is equivalent to the maximum cover problem.

The natural greedy algorithm which starts with an empty solution and iter-
atively includes in the solution a set of maximum size that consists of elements
that have not been covered before until w sets are selected has approximation
ratio e

e−1 . In general, this result is tight due to an inapproximability result due
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to Feige [4]. An interesting special case of the problem where this inapproxima-
bility result does not hold is when the size of the sets in S is small. In maximum
k-cover, k denotes the maximum size of each set in S. Without loss of generality,
we assume that S is closed under subsets.

When applied to maximum k-cover, the greedy algorithm essentially belongs
to the following class of iterative algorithms. An iterative algorithm for the
maximum k-cover problem starts with an empty solution and works in phases,
one phase for each i = k, k− 1, .... In the phase associated with i, the algorithm
includes a maximal collection of disjoint sets each consisting of exactly i elements
that have not been included in previous phases. Maximality implies that any set
of size i (henceforth called i-set) intersects at least one of the selected sets. The
algorithm terminates when w sets have been selected in total. Intuitively, a large
number of disjoint sets in the early phases is desirable in order to obtain good
solutions. So, the problem that has to be solved in each phase is known as k-set
packing. In k-set packing, we are given a collection of sets of size exactly k over
a ground set of elements V and the objective is to select the maximum number
of disjoint sets among the collection. This problem is known to be APX-hard
for k ≥ 3 [10] (see also [8]) while it is equivalent to maximum matching for
k = 2 and trivial for k = 1. For k ≥ 3, a well-known local search heuristic has
an approximation ratio very close to k/2. An analysis technique for the class
of iterative algorithms is presented in [2]. In that paper, an upper bound of the
benefit of an iterative algorithm follows by the solution of a linear program whose
constraints capture the approximation guarantee of the i-set packing algorithm
used in phase i. Algorithms for k-set packing have also been used recently in [1]
in order to improve the known approximation guarantees for the related k-set
cover problem [3,11].

In this work, we study the maximum 3-cover problem. This is the simplest
variant of maximum cover which is still APX-hard while the maximum 2-cover
problem can be solved in polynomial time. Both statements follow by similar
statements for 3-set packing [10] and 2-set packing, respectively. The analysis
of [2] yields an approximation ratio of 18/13-approximation for the greedy algo-
rithm while the best result that can be obtained using the techniques of [2] is a
9/7-approximation algorithm that first computes a maximal 3-set packing of any
size and then completes the solution by including the maximum possible num-
ber of elements outside the selected 3-sets into 2-sets and (if necessary) 1-sets so
that exactly w sets are used. In general, the upper bounds on the approximation
ratio of these algorithms cannot be improved as we observe in the next section,
and new algorithmic ideas are required in order to obtain better results.

Local search seems to be a promising approach since it has been proved to
be efficient for the related 3-set cover and 3-set packing problems [3,5,6,7,9,11].
For example, such an algorithm could start with any solution consisting of w
sets and repeatedly follow a better solution that is produced by the previous
one by changing (inserting and/or removing) a constant number of 3-sets and
updating the 2-sets and 1-sets. Unfortunately, such pure local search algorithms
seem to be complicated to analyze. In this paper, we present a more structured
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algorithm which combines the idea of starting with a large packing of disjoint
3-sets and then augments this solution by 2-sets and 1-sets by performing ap-
propriate simple local improvements while this is possible. The analysis of our
algorithm distinguishes between several cases depending on the structure of the
covering obtained. The algorithm is proved to have an approximation ratio of
6/5 by a series of combinatorial arguments applied on the covering produced.

The rest of the paper is structured as follows. In Section 2, we discuss the lim-
itations of iterative algorithms and outline the main ideas behind our algorithm
which is presented in detail in Section 3. The statement of our main result and its
proof then follow in Section 4. Due to lack of space, some proofs of intermediate
lemmas have been omitted.

2 Limitations of Iterative Algorithms

In this section, we briefly discuss the limitations of iterative algorithms when
applied to maximum 3-cover and give the intuition behind our algorithm in four
different examples presented in Figure 1. In the first (upper left) example, a
solution produced by the greedy algorithm is depicted. The vertical 3-sets form
the optimal solution with w = 12. The greedy algorithm first selects 4 3-sets that
intersect each optimal 3-set in exactly one element. Then, it selects 6 2-sets again
intersecting each optimal 3-set in exactly one element. So, in order to complete
the solution, the algorithm can select only 2 additional elements (1-sets) for a
total benefit of 26. The optimal benefit is 36 and this is an example where the
greedy algorithm has approximation ratio 18/13. Of course, the algorithm could

Fig. 1. Four examples of coverings with approximation ratios 18/13, 9/7, 9/7, and 6/5

do better when selecting 2-sets since the maximum number of disjoint 2-sets
corresponds to a maximum matching computation in the graph whose nodes
correspond to the elements not covered by 3-sets and whose edges correspond to
2-sets among these elements. Since exactly one element from each optimal 3-set
has been included in the 3-sets selected by the algorithm, there are 12 disjoint
2-sets among the uncovered elements, one 2-set including the two uncovered
elements of each optimal 3-set. Even in this case (see the second example at the
upper right part of Figure 1), at most 8 additional 2-sets can be selected for a
total benefit of 28. The algorithm of this example has approximation ratio 9/7.
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One attempt to improve the benefit could be to use a better 3-set packing
algorithm when selecting the disjoint 3-sets. The best known such algorithm is
based on local search [9] and works as follows. It uses a constant parameter t.
Starting with an empty solution, it repeatedly searches for a neighbor solution
which results from the current one by removing p− 1 3-sets and inserting p new
3-sets for some p ≤ t (so that the 3-sets are disjoint). If such a neighbor solution
is found, this is set as the current solution. The algorithm terminates when a
locally maximum solution is reached, i.e., a solution with no neighbor solutions.
The following result has been proved in [9].

Theorem 1 (Hurkens and Schrijver [9]). The local search algorithm that
computes a 3-set packing by performing at most t local improvements at each
step has approximation ratio at most 3

2 + 3
2(2·2r−3) when t = 2r− 1, and at most

3
2 + 1

2·2r−2 when t = 2r.

For any constant value of t, this algorithm may result to a locally maximum
solution with 2 of the elements of each optimal 3-set covered. So, at most 4
additional elements (1-sets) can be used to complete the solution. The approx-
imation ratio is again 9/7. See the third example in Figure 1 where the 3-sets
form a locally maximum solution for the local search 3-set packing algorithm
that performs at most 2 local improvements per step.

We point out that another approach could be to consider the problem as
an instance of 3-set cover, attempt to minimize the number of sets required in
order to cover all elements, and then, simply keep the elements in the first w
sets. Using the semi-local optimization algorithm of Duh and Furer [3], we would
have ended up with a solution similar to the one in the second example above.
Similar attempts through semi-local optimization algorithms for the partial set
cover problem with sets of maximum size 3 [5] would have led to the same
situation with approximation ratio 9/7.

Instead, if we could force the 3-sets to intersect half of the 3-sets in two
elements and half of them in one element, the selection of 2-sets would result in
at least 6 additional sets; this would give a 6/5-approximate solution (see the
fourth example in Figure 1). This is what our algorithm is trying to achieve.
Starting with a good 3-set packing completed with optimally selected 2-sets, it
further considers improving the solution according to simple local improvement
steps in order to achieve some balance between the number of 3-sets and 2-sets
and avoid the situations in the second and third examples of Figure 1. Of course,
the instances of the problem may be much different than those in Figure 1 and
this should be taken into account in our analysis.

3 The Algorithm

Our algorithm receives as input an integer w, a set of elements V , a collection S
of subsets of V each containing at most 3 elements (S is closed under subsets),
and it produces as output w sets of S covering some of the elements of V . It
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works in three steps. Step A computes a covering that consists of a large 3-
set packing and optimally selected 2-sets (i.e., using the maximum matching
computation mentioned in the second example of the previous section). Phase B
performs two simple local improvement steps while this is possible. Step C simply
completes the solution with 1-sets if this is necessary. A detailed description of
the algorithm follows.

A. Compute a maximal set of disjoint 3-sets using the local search heuristic
for 3-set packing with parameter t = 2 and complete the solution optimally
with 2-sets. Denote by α2 and α3 the number of 2-sets and 3-sets computed,
respectively.

B. Set Stuck = FALSE
While α2 + α3 < w and Stuck = FALSE do:

Try to perform a good local change, otherwise set Stuck = TRUE.
C. If α2 + α3 < w then

Include w−α2 −α3 elements of V that have not been included in 2-sets
and 3-sets yet into 1-sets.

A good local change can be performed in the following two cases:

– A replacement means to remove one 3-set from the current solution and
include another one that does not intersect with the remaining 3-sets and to
complete the solution optimally with 2-sets. A replacement is performed only
if it is good. A replacement is good if α2 + α3 ≤ w − 1 at its beginning and
the number of 2-sets increases after it. If the new number of 2-sets exceeds
w − α3, the algorithm arbitrarily keeps only w − α3 of them and discards
the rest. After performing a good replacement, the algorithm updates the
numbers α2 and α3 of 2-sets and 3-sets in the current solution.

– A removal means to remove a 3-set from the current solution and complete
optimally with 2-sets. A removal is performed only if it is good. A removal is
good if α2 + α3 ≤ w− 2 at its beginning and the number of 2-sets increases
by 3. After performing a good removal, the algorithm updates the numbers
α2 and α3 of 2-sets and 3-sets in the current solution.

4 Analysis of the Algorithm

In the analysis of the algorithm, we denote by b3, b2 and b1 the number of
3-sets, 2-sets and 1-sets in the optimal solution, respectively. We will show
that the algorithm computes a solution of benefit at least 5

2 b3 + 7
4b2 + b1 − 1

2
while the optimal benefit is 3b3 + 2b2 + b1. Due to the integrality of b3, b2,
and b1, the only case in which the algorithm above may fail to produce a 6/5-
approximate solution is when b3 is odd and b2 = b1 = 0. In order to avoid this
situation, we may run the algorithm O(|V |3) times and pick the best solution,
each time guessing one of the optimal 3-sets and run our algorithm to the re-
maining instance. The total number of elements covered will then be at least
3 + 5

2 (b3 − 1) + 7
4b2 + b1 − 1

2 = 5
2b3 + 7

4b2 + b1 ≥ 5
6 (3b3 + 2b2 + b1). In this way,

we obtain our main result.
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Theorem 2. There exists a polynomial-time 6/5-approximation algorithm for
the maximum 3-cover problem.

The proof of the lower bound on the benefit of our algorithm has been divided
into four parts. In Section 4.1, we consider the two simple cases where the algo-
rithm finishes step B having used w sets (Lemma 2) or w − 1 sets (Lemma 3).
In Section 4.2, in order to handle the remaining cases where the algorithm fin-
ishes step B by having produced a covering on which no good local change is
possible, we define a graph based on the structure of this covering compared to
the optimal solution. Then, we distinguish between two cases which are studied
in Sections 4.3 and 4.4, respectively. The results for the benefit of the algorithm
in these cases are stated in Lemmas 6 and 9, respectively.

4.1 Some Easy Cases

We start with an important property maintained after step A of the algorithm.

Lemma 1. At each step after step A of the algorithm, it always holds

α2 + 3α3 ≥ b2 + 2b3.

Proof. We first consider the case where the algorithm uses at least b2 + b3 2-sets
and 3-sets at step A, i.e., α2 + α3 ≥ b2 + b3. Note that the maximum number
of disjoint 3-sets in the instance of 3-set packing solved at step A is at least b3.
The local search 3-set packing algorithm with parameter t = 2 guarantees a 2-
approximate solution and, hence, 2α3 ≥ b3. The lemma then follows by summing
the two inequalities.

If after step A it is α2+α3 < b2+b3, denote by Ti for i = 1, 2, 3, the number of
optimal 3-sets from which the algorithm has included i elements in 3-sets. Denote
by Di for i = 1, 2, the number of optimal 2-sets from which the algorithm has
included i elements in 3-sets. Since there are T1 optimal 3-sets from which the
algorithm does not include two elements in 3-sets and b2 − D2 − D1 optimal
2-sets from which the algorithm has not included any elements in 3-sets, it will
also use α2 ≥ T1 + b2 −D2 −D1 2-sets, otherwise the selection of 2-sets would
not be optimal. Also, 3α3 ≥ 3T3 + 2T2 + T1 + 2D2 + D1 since three elements in
T3 optimal 3-sets, two elements in T2 optimal 3-sets and D2 optimal 2-sets, and
one element in T1 optimal 3-sets and D1 optimal 2-sets have been included in
3-sets by the algorithm. So, we have that

α2 + 3α3 ≥ T1 + b2 −D2 −D1 + 3T3 + 2T2 + T1 + 2D2 + D1

= 2T1 + 2T2 + 3T3 + D2 + b2

≥ 2(T1 + T2 + T3) + b2

= b2 + 2b3,

where the second equality holds due to the maximality of the collection of 3-sets
computed during step A.

So far, we have proved that the inequality holds just after step A. In order to
prove that it holds at all steps of the algorithm we observe that neither removals
nor replacements decrease α2 + 3α3. �
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Next, we consider two easy cases.

Lemma 2. If the algorithm finishes step B with Stuck = FALSE then its
benefit is at least 5

2 b3 + 2b2 + 3
2b1.

Proof. Since the algorithm exits at step B with Stuck = FALSE it must be
that α2 + α3 = w ≥ b1 + b2 + b3. Using Lemma 1, we have that the benefit of
the algorithm after exiting step B is

2α2 + 3α3 =
3
2

(α2 + α3) +
1
2

(α2 + 3α3)

≥ 3
2

(b1 + b2 + b3) +
1
2

(b2 + 2b3)

≥ 5
2
b3 + 2b2 +

3
2
b1. �

Lemma 3. If the algorithm finishes step B with Stuck = TRUE and α2 +α3 =
w − 1, then its benefit is at least 5

2b3 + 2b2 + 3
2b1 − 1

2 .

Proof. The proof is the same as the proof of lemma 2 by considering the extra
1-set the algorithm will include at step C. �

4.2 Non-improving Coverings

In the following we consider the case when the algorithm finishes step B with
Stuck = TRUE and α2 + α3 ≤ w − 2. In this case, we say that the algorithm
has computed a non-improving covering i.e., a collection of 3-sets and optimally
selected 2-sets in which no good removal or good replacement is possible. The
algorithm will then enter step C and include w − α2 − α3 additional single
elements in the solution for a total benefit of

benefit = 2α2 + 3α3 + w − α2 − α3 ≥ α2 + 2α3 + b1 + b2 + b3. (1)

We introduce the following notation. Given a non-improving covering, we say
that an optimal 3-set is of type:

– 333 if all its elements are included in 3-sets by the algorithm.
– 332 if two of its elements are included in 3-sets and one element in a 2-set.
– 33∗ if two of its elements are included in 3-sets and one is not covered.
– 322 if one of its elements is included in a 3-set and two elements in 2-sets.
– 32∗ if one of its elements is included in a 3-set, one element in a 2-set and

one element is not covered.
– 222 if all its elements are included in 2-sets.
– 22∗ if two of its elements are included in 2-sets and one is not covered.

We say that an optimal 2-set is of type:

– 33 if all its elements are included in 3-sets.
– 32 if one of its elements is included in a 3-set and one element in a 2-set.
– 3∗ if one of its elements is included in a 3-set and one is not covered.



212 I. Caragiannis and G. Monaco

– 22 if all its elements are included in 2-sets.
– 2∗ if one of its elements is included in a 2-set, and one element is not covered.

We say that an element that does not belong in optimal 2-sets or 3-sets is
of type:

– 3 if the element is included in a 3-set.
– 2 if the element is included in a 2-set.
– ∗ if the element is not covered.

We remark that we use the term optimal sets to refer to these elements as well.
Now, we will define a graph associated with a non-improving covering as follows.

Given an optimal solution and the 3-sets and 2-sets in a non improving covering,
we define the graph G that has one node for each 3-set and 2-set of the optimal
solution, one node for each element not included in 3-sets and 2-sets in the opti-
mal solution, and an edge connecting two nodes if the algorithm has included an
element from each corresponding set in the same 2-set. The graph may have self-
loops (for example, when two of the elements of an optimal set of type 322 have
been included in the same 2-set by the algorithm), or parallel edges. The degree
of a node is the number of 2’s in its type. We call nodes corresponding to optimal
sets of type 33∗, 32∗, 3∗, 22∗, 2∗, or ∗ faulty nodes. We also call faulty a connected
component of G if it contains at least one faulty node. The next lemma states an
important property of faulty connected components of G.

Lemma 4. Each faulty connected component of G contains exactly one faulty
node.

We distinguish between two cases depending on whether the graph of the non-
improving covering has a faulty connected component that contains a cycle or
not. In the former, we say that the non-improving covering is cyclic; in the latter,
we say that the non-improving covering is acyclic.

4.3 The Case of Cyclic Non-improving Covering

We first consider the case where the non-improving covering computed by the
algorithm after step B is cyclic. In this case, we can show the following property
of the cyclic covering. The proof is omitted.

Lemma 5. If the algorithm finishes step B by computing a cyclic non-improving
covering, then (a) there are no optimal sets of type 33∗ or 3∗ and (b) the number
of optimal sets of type 32∗ is at most the number of optimal sets of type 222.

We are now ready to prove the next statement using Lemmas 1 and 5 and the
lower bound on the benefit of the algorithm from inequality (1).

Lemma 6. If the algorithm finishes step B by computing a cyclic non-improving
covering, then its benefit at the end is at least 5

2b3 + 7
4b2 + b1.

Proof. We use the notation TX to denote the number of optimal sets or elements
out of optimal sets of type X . Taking into account that T33∗ = T3∗ = 0 (by
Lemma 5), this definition immediately yields
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b2 = T33 + T32 + T22 + T2∗ (2)
b3 = T333 + T332 + T322 + T32∗ + T222 + T22∗ (3)

Since the three elements in optimal sets of type 222, two of the elements in optimal
sets of type 322, 22∗, and 22, and one of the elements in optimal sets of type 332,
32∗, 32, 2∗, and 2 are included in 2-sets by the algorithm, we have that

α2 ≥ 1
2
T332 + T322 +

1
2
T32∗ +

3
2
T222 + T22∗ +

1
2
T32 + T22 +

1
2
T2∗ +

1
2
T2 (4)

Similarly, since the three elements in optimal sets of type 333, two of the elements
in optimal sets of type 332 and 33, and one of the elements in optimal sets of
type 322, 32∗, 32, and 3 are included in 3-sets by the algorithm we have that

α3 ≥ T333 +
2
3
T332 +

1
3
T322 +

1
3
T32∗ +

2
3
T33 +

1
3
T32 +

1
3
T3 (5)

We use inequality (1) and inequalities (2)-(5) to obtain

benefit ≥ 2α3 + α2 + b3 + b2 + b1

≥ 3T333 +
17
6
T332 +

8
3
T322 +

13
6
T32∗ +

5
2
T222 + 2T22∗

+
7
3
T33 +

13
6
T32 + 2T22 +

3
2
T2∗ +

2
3
T3 +

1
2
T2 + b1 (6)

By Lemma 5, we have T32∗ ≤ T222 which we express as

0 ≥ 1
12

(T32∗ − T222) (7)

By Lemma 1 and using inequalities (2)-(5), we obtain

T333 +
1
2
T332 + T33 +

1
2
T32 + T3 +

1
2
T2 ≥ 1

2
T32∗ +

1
2
T222 + T22∗ +

1
2
T2∗

and, equivalently,

0 ≥ 1
2

(−T333−
1
2
T332−T33−

1
2
T32−T3−

1
2
T2+

1
2
T32∗+

1
2
T222+T22∗+

1
2
T2∗) (8)

Summing (6), (7), (8) we obtain that

benefit ≥ 5
2
T333 +

31
12

T332 +
8
3
T322 +

5
2
T32∗ +

8
3
T222 +

5
2
T22∗

+
11
6
T33 +

23
12

T32 + 2T22 +
7
4
T2∗ +

1
6
T3 +

1
4
T2 + b1

≥ 5
2

(T333 + T332 + T322 + T32∗ + T222 + T22∗)

+
7
4

(T33 + T32 + T22 + T2∗) + b1

=
5
2
b3 +

7
4
b2 + b1

which completes the proof of the lemma. �
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4.4 The Case of Acyclic Non-improving Covering

The only case that remains to be considered is when the algorithm finishes step
B by computing an acyclic non-improving covering. In the analysis of this case,
we will use non-improving coverings of a particular type.

Definition 1. An acyclic non-improving covering is called canonical if each
faulty connected component is singleton (i.e. of type ∗, 3∗ or 33∗).

Lemma 7. For each acyclic non-improving covering there is a connected non-
improving covering with the same 3-sets and the same number of 2-sets.

Proof. We will construct a new covering by replacing the 2-sets corresponding
to some of the edges in a faulty connected component F of the corresponding
graph containing a faulty node v0 of type 32∗, 22∗, or 2∗ with an equal number
of 2-sets so that the connected components induced by the nodes of F in the
graph corresponding to the new covering belong either to non-faulty connected
components or to a connected component of type 33∗, 3∗, or ∗.

Since F is acyclic, there is a non-faulty node of degree 1 in F ; this node
corresponds to an optimal set of type 332, 32, or 2. Let p = 〈v0, v1, ..., vt〉 be
the path from v0 to such a node vt. Let s0 be the element of the optimal set
corresponding to node v0 which has not been included in 3-sets and 2-sets by
the algorithm, and for i = 0, 1, ..., t− 1 let s2i+1 and s2(i+1) be the elements of
the optimal sets vi and vi+1, respectively, which have been included in the same
2-set by the algorithm that corresponds to the edge (vi, vi+1) of p. By replacing
the t 2-sets {s2i+1, s2(i+1)} for i = 0, 1, ..., t− 1 with the t 2-sets {s2i, s2i+1} for
i = 0, 1, ..., t− 1 (and leaving element s2t uncovered), we obtain a new covering
whose subgraph replaces the edges of p with self-loops in each of the nodes v0,
v1, ..., vt−1, while node vt now corresponds to an optimal set of type 33∗, 3∗,
or ∗ (depending on whether it was originally of type 332, 32, or 2, respectively)
and defines a singleton connected component. �

An important property of a canonical non-improving covering is given by the
next lemma.

Lemma 8. Any 3-set in a canonical non-improving covering produced by applying
Lemma 7 to the acyclic non-improving covering computed when algorithm finishes
step B intersects at least one optimal set that corresponds to a non-faulty node.

We are now ready to prove the following lemma.

Lemma 9. If the algorithm finishes step B by computing an acyclic non-
improving covering, then its benefit at the end is at least 5

2b3 + 7
4b2 + b1.

Proof. Consider the acyclic non-improving covering computed by the algorithm
and the canonical non-improving covering obtained by it with the same 3-sets
and the same number of 2-sets. By Lemma 7, in order to account for the number
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of elements covered in the non-improving covering, it suffices to account for the
number of elements covered in the canonical non-improving covering. We use
the notation TX to denote the number of optimal 3-sets and 2-sets or nodes out
of optimal 3-sets and 2-sets of type X in the canonical non-improving covering.
Taking into account that T32∗ = T22∗ = T2∗ = 0 (by the definition of the
canonical non-improving covering), this definition immediately yields

b2 = T33 + T32 + T3∗ + T22 (9)
b3 = T333 + T332 + T33∗ + T322 + T222 (10)

Since the three elements in optimal sets of type 222, two of the elements in
optimal sets of type 322 and 22, and one element in optimal sets of type 332,
32, and 2 are included in 2-sets by the algorithm, we have that

α2 ≥ 1
2
T332 + T322 +

3
2
T222 +

1
2
T32 + T22 +

1
2
T2 (11)

Since the three elements in optimal sets of type 333, two of the elements in
optimal sets of type 332, 33∗, and 33, and one element in optimal sets of type
322, 32, 3∗, and 3 are included in 3-sets by the algorithm, we have that

α3 ≥ T333 +
2
3
T332 +

1
3
T322 +

2
3
T33∗ +

2
3
T33 +

1
3
T32 +

1
3
T3∗ +

1
3
T3 (12)

We use inequality (1) and inequalities (9)-(12)to obtain

benefit ≥ 2α3 + α2 + b3 + b2 + b1

≥ 3T333 +
17
6
T332 +

7
3
T33∗ +

8
3
T322 +

5
2
T222 +

7
3
T33

+
13
6
T32 +

5
3
T3∗ + 2T22 +

2
3
T3 +

1
2
T2 + b1 (13)

By Lemma 8, each 3-set of the canonical non-improving covering has at least
one of its elements in optimal sets of type 333, 332, 322, 33, 32, 3, and at most
two of its elements in optimal sets of type 33∗ and 3∗. So,

α3 ≤ 3T333 + 2T332 + 2T33 + T322 + T32 + T3 (14)

and

2α3 ≥ T3∗ + 2T33∗. (15)

By multiplying all the terms in inequalities (14) and (15) with − 1
6 and 1

12 ,
respectively, and summing them, we obtain

0 ≥ 1
12

(T3∗ + 2T33∗ − 6T333 − 4T332 − 4T33 − 2T322 − 2T32 − 2T3) (16)
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Summing (13) and (16), we obtain

benefit ≥ 5
2
T333 +

5
2
T332 +

5
2
T33∗ +

5
2
T322 +

5
2
T222 + 2T33 + 2T32 +

7
4
T3∗

+2T22 +
1
2
T3 +

1
2
T2 + b1

≥ 5
2

(T333 + T332 + T33∗ + T322 + T222) +
7
4

(T33 + T32 + T3∗ + T22) + b1

=
5
2
b3 +

7
4
b2 + b1

which completes the proof of the lemma. �
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Abstract. Higher-order pushdown systems generalize pushdown sys-
tems by using higher-order stacks, which are nested stacks of stacks. In
this article, we consider parity games defined by higher-order pushdown
systems and provide a k-Exptime algorithm to compute finite represen-
tations of positional winning strategies for both players for games defined
by level-k higher-order pushdown automata. Our result is based on au-
tomata theoretic techniques exploiting the tree structure corresponding
to higher-order stacks and their associated operations.

1 Introduction

Two player games of infinite duration over possibly infinite game graphs (also
called arenas) play an important role in computer science and in particular in
the domain of automatic verification of infinite-state systems (see [14,19] for
surveys). In such games, the vertices of the game graph are partitioned into two
sets, one for each player. A play consists in moving a token following the edges
of the game graph. The player owning the vertex where the token lies, moves the
token. If at some point a player cannot move the token he loses, otherwise the
play is infinite. The winning condition of the game describes the set of winning
plays for one of the players.

We consider the parity winning condition which plays an important role in the
context of verification. In a parity game, each vertex is assigned an integer from
a finite range and the winning condition is based on the parity of the smallest
integer appearing infinitely often during the play. These games are determined
(i.e. from any node, one of the players has a winning strategy) and can be won
using positional strategies (i.e. strategies that only depend on the current vertex
and not on the whole history of the play) [20]. For these games to be accessible
to automatic treatment, we assume that the arena, though infinite, has a finite
representation. In this article, the arenas will be given by transition graphs of
an extension of pushdown automata. The main algorithmic problems, given the
finite description of such an arena, are to determine who is winning from a
given vertex and to give finite descriptions of the winning regions as well as of
the winning strategies for each player. In the context of automatic verification,
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these problems correspond respectively to deciding if the behavior of a system
satisfies a property expressed in modal μ-calculus, to giving a finite description
of the set of states of the system satisfying the property and to synthesizing a
controller for the system against a modal μ-calculus formula [16].

The first class of infinite arenas for which parity games have been studied are
the ones defined by pushdown automata. In [18], Walukiewicz gives an Exptime

algorithm to compute the winner from a given configuration as well as a finite
description of a winning strategy for one player. In [3,12] the winning region
is shown to be regular when a configuration (q, w) is represented by the word
qw. Furthermore, a finite representation of a positional winning strategy for one
player can easily be derived from [17].

In this article, we consider parity games defined by an extention of push-
down automata called higher-order pushdown automata. Whereas an ordinary
(i.e. level-1) pushdown automaton works with a stack of symbols (i.e. a level-1
stack), a pushdown automaton of level 2 works with a stack of (level-1) stacks.
In addition to pushing a symbol onto and popping a symbol from the top-most
level-1 stack, a level-2 pushdown automaton can duplicate or remove the en-
tire top-most (level-1) stack. Pushdown automata of higher levels are defined
in a similar way. Recently, the infinite structures defined by these automata
have received a lot of attention. In [11], the families of infinite terms defined by
higher-order pushdown automata were shown to correspond to the solutions of
safe higher-order recursion schemes. Subsequently, in [9,8], the ε-closure of their
configuration graphs were shown to be exactly those constructible from finite
graphs using natural graph transformations (see [15] for a survey).

We consider these infinite structures as arenas for parity games. In [4], Cachat
showed that the winner of a parity game defined by a level-k pushdown automa-
ton starting from a given node can be decided in k-Exptime. We provide for
each player a finite description of the winning region and of a positional winning
strategy. These finite descriptions are based on a notion of regularity for higher-
order stacks introduced independently in [6] and in [10]. A set of level-k stacks is
said to be regular (for operations) if it can be constructed by applying a regular
set of sequences of level-k operations to the empty level-k stack. For usual (level-
1) stacks, this notion corresponds to the regularity for words. For higher levels
it enjoys most of the good properties of the regular sets of words. In particular
these sets form a Boolean algebra and are accepted by a natural model of finite
automata. The finite description obtained in this article is expressed in terms
of this model of finite acceptors. Our construction is based on tree automata
techniques introduced in [17] and already used in [4] to solve these games.

The fact that the notion of regularity by operations can be used to describe
the winning regions and the positional winning strategies was already known
from [6] and [10] respectively. These results are based on the definability in
monadic second-order logic which, though effective, only provide a ck-Exptime

complexity for some constant c ≥ 2.

Outline. Section 2 introduces the necessary notions. The main theorem is stated
in Section 3 with an outline of its proof (developed in Section 4 and 5).
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2 Preliminaries

Higher-order pushdown systems. A level-1 stack over a finite alphabet Γ can
be seen as a word of Γ ∗. The empty stack (corresponding to ε) is written [ ]1. We
write Stacks1(Γ ) := Γ ∗ for the set of all level-1 stacks over Γ . A level-(k+1) stack
for k ≥ 1 is a non-empty sequence of level-k stacks. The empty stack of level k+1
(written [ ]k+1) is the level-(k+1) stack containing only the empty stack of level
k. The set of all level-(k+1) stacks is defined by Stacksk+1(Γ ) := (Stacksk(Γ ))+.
A level-(k+1) stack s corresponding to the sequence s1, . . . , sn of level-k stacks
will be written [s1, . . . , sn]k+1 and by convention sn is the top-most level-k stack
of s. We write topk(s) = sn.

We define the following partial functions on higher-order stacks called opera-
tions. The level-1 operations are for each symbol x ∈ Γ the operations pushx and
popx which are respectively defined on level-1 stacks by pushx([s0, . . . , sn]1) =
[s0, . . . , sn, x]1) and popx([s0, . . . , sn, x]1) = [s0, . . . , sn]1.

For each level k+1 ≥ 2, we consider the level-(k+1) operations copyk which
copies the top-most level-k stack and its symmetric operation copyk which re-
moves the top-most level-k stack if it is equal to its predecessor. Formally, these op-
erations are respectively defined on level-(k+1) stacks by copyk([s0, . . . , sn]k+1) =
[s0, . . . , sn, sn]k+1 and copyk([s0, . . . , sn, sn]k+1) = [s0, . . . , sn]k+1. In addition,
for each level k, we define a level-k operation written T[ ]k allowing to test empti-
ness at level k. Formally T[ ]k(s) is equal to s if s = [ ]k and is undefined otherwise.

An operation ψ of level k is extended to stacks of level � > k using the equation
ψ([s0, . . . , sn]) = [s0, . . . , ψ(sn)].

The set of symmetric operations1 of level k over Γ is defined inductively by
Ops1 ={pushx, popx |x ∈ Γ}∪{T[ ]1} and Opsk+1 =Opsk∪{copyk, copyk, T[ ]k+1}.
Moreover, we denote by Ops∗k the monoid for the composition of partial functions
generated by Opsk.

To obtain a symbolic representation of the operations, we associate to each
operation a symbol called an instruction. At level 1, we define the set of instruc-
tions as Γ1 = Γ ∪ Γ ∪ {⊥1} where Γ is a set disjoint from Γ but in bijection
with Γ and at level k + 1, we take Γk+1 = Γk ∪ {k, k,⊥k+1}. Furthermore, we
define Γ T

k = {⊥ | � ∈ [1, k]} and ΓO
k = Γk \ Γ T

k . We extend the bar notation to
all symbols in ΓO

k by taking x = x. Consider the mapping ϕ from Γk to Opsk

defined by x → pushx, x → popx, k → copyk, k → copyk and ⊥k → T[ ]k for all
x ∈ Γ, k ∈ N. The mapping ϕ induces a monoid morphism from Γ ∗k to Ops∗k. In
the following, we will not distinguish between the two monoids and omit ϕ.

Definition 1. A higher-order pushdown system P of level k (k-HOPDS for
short) is defined as a tuple (Q,Σ, Γ,Δ) where Q is the finite set of states, Σ is
the input alphabet, Γ is the stack symbol alphabet and Δ ⊆ Q×Σ × Γk ×Q is
the transition relation.

1 The usual definition of higher-order pushdown automata [11] considers the uncon-
ditional destruction of level-k stacks written popk. The choice of the symmetric
operations and its consequences are discussed in the conclusion.
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A configuration is a tuple (p, s) ∈ Q × Stacksk(Γ ). We write (p, s) α→ (q, s′)
if there exists a transition (p, α, ρ, q) ∈ Δ such that s′ = ρ(s). A k-HOPDS is
deterministic if for all α ∈ Σ and all configurations c, c′ and c′′, c α→c′ and c

α→c′′

implies c′ = c′′.

Regular sets of higher-order pushdown stacks. The natural notion of reg-
ularity for sets of level-1 stacks is the regularity for words. Indeed the set of
reachable stack contents of a pushdown automaton is regular [2].

Starting from level 2, two notions of regularity have been introduced: regularity
for words and regularity for (symmetric) operations. We will use the second
notion and discuss this choice in the conclusion.

The notion of regularity for words was introduced in [1]. A level-k stack is rep-
resented by a well-bracketed word of depth k (e.g. the level-2 stack [[aa]1[abb]1]2
is represented by the word [[aa][aab]]). A set of level-k stacks is regular for words
if the set of words representing it is a regular set of words. For example the set
of level-2 stacks {[[an]1[bm]1]2 | n,m ≥ 0} is regular for words.

The notion of regularity for (symmetric) operations was introduced indepen-
dently in [6] and [10]. A set of level-k stacks is regular for operations if it can be
obtained by applying a regular subset of Ops∗k to the empty level-k stack [ ]k.
Formally, we define the set of all level-k stacks which are regular for operations
as follows: ORegk(Γ ) = Reg(Ops∗k(Γ ))([ ]k) = Reg(Γ ∗k )([ ]k) (i.e. S ∈ ORegk(Γ )
if there exists R ∈ Reg(Γ ∗k ) and S = {ρ([ ]k) | ρ ∈ R}). At level 1, the notion of
regularity for operations coincides with notion of regularity for words. For level
k > 2, every set regular for words is also regular for operations but the converse
does not hold. For instance, the set of level-2 stacks S = {[[an][an]]2 | n ≥ 0} is
regular for operations as S = push∗acopy1([ ]2) = a∗1([ ]2) but it is not regular
for words.

For every level k ≥ 1, the set ORegk(Γ ) is a Boolean algebra. These closure
properties are due to the fact that a level-k stack s can be uniquely represented
by the smallest sequence of instructions ρ ∈ Γ ∗k such that s = ρ([ ]k). This
unique sequence, called the reduced sequence of s, will be written ρs. For instance
the reduce sequence of the level-2 stack [[aab][ab]]2 is aab1b̄āb. Note that the
reduced sequence of a level-1 stack is simply the stack itself. For a stack of level
k + 1 ≥ 2, its reduced sequence cannot contain xx̄, ⊥ nor k̄ for any x ∈ ΓO

k

and � ∈ [1, k+ 1]. In fact, the reduced sequence of a level-k stack s is the unique
sequence ρ ∈ Γ ∗k such that s = ρ([ ]k) which does not contain such factors.

The sets in ORegk(Γ ) can be characterized by a model of finite automata
tightly linked to the notion of reduced sequences. A reduced automaton of level
1 is simply a finite automaton over Γ . A reduced automaton A of level k+1 ≥ 2
is given by a tuple (Q, I, F,Δ) together with a finite set of tests R ⊂ ORegk(Γ )
where Q is the finite set of states, I ⊆ Q and F ⊆ Q are respectively the set of
initial and final states, and Δ is the finite set of transitions of the form p

γ−→ q, T
with γ ∈ ΓO

k \ {k̄} and T ⊆ R. Intuitively, the automaton in state p on a stack s
can apply the transition to go to state q on the stack γ(s) if the top-most level-k
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stack of γ(s) belongs to T . Furthermore, we impose that the automaton only

follows reduced sequences: if p
γ−→ p′, T ∈ Δ and p′

γ′

−→ p′′, T ∈ Δ then γ′ �= γ̄.
A run of A is a sequence (q0, s0), . . . , (qn, sn) ∈ (Q × Stacksk+1(Γ ))+ where

q0 ∈ I, s0 = [ ]k+1 and for all i ∈ [0, n − 1], there exists a transition qi
γi+1−→

qi+1, Ti+1 with si+1 = γi+1(si) and the top-most level k stack of si+1 belongs to
T for all T ∈ Ti+1. A run of A accepts a stack s if qn ∈ F and s = sn. Note that
in this case, the reduce sequence of s is γ1 . . . γn.

We will always consider reduced automata whose tests are given by reduced
automata of one level below. The size of the automaton is the size of the tran-
sition relation together with the sum of the reduced automata accepting the set
of tests.

Theorem 1 ([6,10]). For all k ≥ 1, the sets of level-k stacks regular for op-
erations are exactly those sets accepted by reduced level-k automata. Moreover
ORegk(Γ ) forms a Boolean algebra.

Parity games defined by higher-order pushdown systems. A parity game
G played between Player 0 and Player 1 is given by a tuple (V0, V1, E), where Vi

is the set of nodes of Player i for i ∈ {0, 1} and E ⊆ (V0 ∪ V1) × (V0 ∪ V1) is the
edge relation, and Ω : (V0 ∪ V1) → [1, n] is the coloring mapping for some fixed
n ∈ N.

Player 0 and Player 1 play in G by moving a token between vertices. A play
from some initial vertex v0 proceeds as follows: the player owning v0 moves the
token to a vertex v1 such that (v0, v1) ∈ E. Then the player owning v1 chooses
a successor v2 and so on. If at some point one of the players cannot move, he
loses the play. Otherwise, the play is an infinite word π ∈ (V0 ∪ V1)ω and is won
by Player 0 if the smallest color that is seen infinitely often in π is even.

A strategy for Player i is a partial function ϕi assigning to a partial play
ending in some vertex v ∈ Vi a vertex v′ such that (v, v′) ∈ E. Player i respects
a strategy ϕi during some play π = v0v1v2 · · · if vi+1 = ϕi(v0 · · · vi), for all i ≥ 0
such that vi ∈ Vi. A strategy ϕi for Player i is winning from some position
v ∈ V0 ∪ V1 if every play starting from v where Player i respects ϕi is won by
him. A positional strategy for Player i is a strategy that only depends on the
last vertex of the partial play (i.e. it is a partial function from Vi to V0 ∪ V1).
Finally, a vertex v ∈ V0 ∪ V1 is winning for Player i if he has a winning strategy
from v, and the winning region Wi consists of all winning vertices for Player i.

The positional determinacy theorem for parity games [20] states that from
every vertex either Player 0 or Player 1 has a positional winning strategy. This
assertion can be strengthened by saying that Player i has a global positional
winning strategy ϕi such that ϕi is winning for Player i from all vertices in
Dom(ϕi) and Dom(ϕi) = Wi ∩ Vi (see [13]).

Definition 2. A higher-order pushdown parity game G of level k is given by a
deterministic k-HOPDS P = (Q,Σ, Γ, δ) together with a partition of the states
Q0 & Q1 and a coloring mapping ΩP : Q → N and is the game (V0, V1, E,Ω)
where: V0 = Q0×Stacksk(Γ ), V1 = Q1×Stacksk(Γ ), E is the Σ-labeled transition
relation of P and Ω is defined for (p, s) ∈ Q× Stacksk(Γ ) by Ω(p, s) := ΩP (p).
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The labels in Σ on the transitions do not play any role in the game but to-
gether with the hypothesis of determinism of P , they permit to give a simpler
description of positional strategies. In fact a positional strategy ϕ for Player i
can be described by a partial function from Vi to Σ, or equivalently by a family
(Fα)α∈Σ of subsets of Vi (i.e. Fα := {(p, s) ∈ Vi | ϕ((p, s)) = α}). We say that
a positional strategy defined by a family (Fα)α∈Σ is regular if all these sets are
regular2 for operations.

Tree automata models. Let Σ and W be two finite alphabets which are
respectively a labeling alphabet and a set of directions. A Σ-labeled W -tree t is
a partial function from W ∗ to Σ such that Dom(t) is a non-empty prefix-closed
subset of W ∗. An element of Dom(t) is a node and ε is called the root of t. For
d ∈ W , a node wd ∈ Dom(t) is a d-son of w ∈ Dom(t) and w is the parent of
wd. Let Ξ be a finite alphabet, a Ξ-labeling of a Σ-labeled W -tree t is a Σ×Ξ-
labeled W -tree t′ such that Dom(t) = Dom(t′) and such that for w ∈ Dom(t′),
t′(w) = (t(w), σ) for some σ ∈ Ξ.

We consider two-way alternating parity tree automata which can from a node
of an input tree send several copies to sons of this node but also to its parent. To
navigate through the tree, we consider an extended set of directions ext(W ) :=
W & {ε, ↑}. The symbol ↑ means “go to the parent node” and ε means “stay on
the present node”. We take ∀u ∈ W ∗, d ∈ W,u.ε = u and ud ↑= u. The node ε ↑
is not defined. As we consider non-complete W -trees (i.e. Dom(t) �= W ∗), we
assume that the labeling of a tree provides the directions to all sons of a node
in the tree: the automaton runs on P(W ) × Σ-labeled W -trees t where for all
w ∈ Dom(t), t(w) = (θw, σw) where θw = {d ∈ W | wd ∈ Dom(t)}.

Definition 3. A two-way alternating parity tree automaton (2-PTA for short)
running over P(W ) ×Σ-labeled W -trees is a tuple A = (Q,Δ, I,Ω) where Q is
the finite set of states, Δ ⊆ Q× (P(W ) ×Σ)×P(ext(W ) ×Q) is the transition
relation, I is set of initial states and Ω : Q → N the coloring mapping.

A transition (q, (θ, σ), {(d1, q1), . . . , (dn, qn)}) ∈ Δ will be written q, (θ, σ) →
(d1, q1) ∧ . . . ∧ (dn, qn). We will always assume that {d1, . . . , dn} is a subset of
θ∪{↑, ε}. The behavior of a 2-PTA A = (Q,Δ, I,ΩA) over a P(W )×Σ-labeled
W -tree t is given by the parity game GA,t = (V0, V1, E) played between two
players called Automaton and Pathfinder. The set V0 of vertices of Automaton
is Dom(t) × Q and the set V1 of vertices of Pathfinder is Dom(t) × Δ. For all
w ∈ Dom(t) and q ∈ Q, there is an edge ((w, q), (w, δ)) ∈ E for all transitions
δ ∈ Δ of the form q, t(w) → P . Conversely for every transition δ = q, t(w) →
P ∈ Δ, there is an edge ((w, δ), (wdi, qi)) for all (di, qi) ∈ P . The automaton A
accepts the tree t if Automaton wins GA,t from some vertex in {ε} × I.

The classical notion of (one-way) non-deterministic parity tree automata (PTA)
coincide with 2-PTAs with transitions of the form q, (θ, σ) → (d1, q1)∧. . .∧(dn, qn)
where for all i, j ∈ [1, n], di ∈ W and di = dj implies i = j.

2 We represent a configuration (p, s) by the stack pushp(s).
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3 Main Theorem and Outline of the Proof

Theorem 2. Given a pushdown parity game of level k, we can construct in k-
Exptime reduced level-k automata describing the winning region and a global
positional winning strategy for each player.

In Section 4, we define for every level k, a tree tk (see e.g. Fig. 1) associated to the
stacks of level k. The branches of tk correspond to the reduced sequences of the
level-k stacks. Starting with a parity game G described by a level-k pushdown
automaton P , we construct a 2-PTA AP running on tk which captures the
game G and whose size is polynomial in the size of P . More precisely, we can
reduce the computation of regular representations of a global positional winning
strategy and of the winning region for each player to the computation of a
regular representation of a global positional winning strategy for the automaton
AP running on tk. Intuitively such a strategy consists for every node u of the
tree and every state q of the automaton to either provide a transition of the
automaton starting with state q which can be applied at node u or a set of
directions and states which refute any transitions of the automaton that can be
applied at node u in state q.

In Section 5, we show how to compute regular global positional winning strate-
gies for a 2-PTA running on the trees tk. The proof proceeds by induction on the
level of the tree. First based on a construction from [17], we construct for any
two-way alternating parity tree automaton A a non-deterministic one-way parity
tree automaton B accepting the labelings of tk corresponding to global positional
winning strategies of A (see Proposition 3). Second for any non-deterministic
one-way parity tree automaton B running on tk, we construct a two-way alter-
nating parity tree automaton C running on tk−1 (see Proposition 4) such that
from a global positional strategy of C over tk−1 defined by regular sets of level-
(k − 1) stacks, we can construct a strategy (for A) accepted by B defined by
regular sets of level-k stacks.

4 From Games to Trees

In this section, we introduce the infinite tree tk associated to the stacks of level
k and based on the reduced sequences of these stacks. We show that the problem
of computing a global positional winning strategy of a level-k pushdown parity
game can be reduced in polynomial time to the problem of computing a global
positional winning strategy for an alternating two-way parity tree automaton
running on the tree tk.

As we have seen in Section 2, a level-k stack s is uniquely characterized by
its reduced sequence ρs. Hence the set of reduced sequences of all level-k stacks
is a ΓO

k -tree in which each node corresponds to one and only one level-k stack.
In order to increase the expressivity of tree automata running on these trees,
we label each node by a finite information about the surrounding of the stack
corresponding to this node. The surrounding of a stack s ∈ Stacksk(Γ ) is a triple
�(s) = (d,D, e) where:
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– d ∈ ΓO
k ∪ {*} is the last symbol of ρs if ρs �= ε and is equal to * otherwise,

– D is the set {γ ∈ ΓO
k | ∃s′ ∈ Stacksk(Γ ), ρs′ = ρsγ},

– e ∈ [0, k] is the maximum of {n ∈ [1, k] | ⊥n(s) = s} ∪ {0}.

Formally, the tree tk is defined for all s ∈ Stacksk(Γ ) by tk(ρs) = �(s). When
referring to the nodes of tk, we do not distinguish between the stack and its
reduced sequence. In particular, we said that a Ξ-labeling t of tk is regular if for
all x ∈ Ξ, the set of level-k stacks Sx = {s ∈ Stacksk(Γ ) | t(ρs) = (tk(ρs), x)}
is regular for operations. A finite representation of t is then given by a family of
reduced level-k automata (Ax)x∈Ξ . For Γ = {a, b}, the tree t1 is essentially the
full binary tree. The tree t2 (depicted in Figure 1) is not complete nor regular.

[[a][b]]2 [[a][ ]2]2 [[b][a]]2 [[b][ ]2]2

[[a][aa]]2 [[a][ ]]2 [[a][ab]]2 [[a]3]2 [[b][ba]]2 [[b][bb]]2 [[b][ ]]2 [[b]3]2

[[aa]]2 [[a][a]]2 [[ab]]2 [[ba]]2 [[bb]]2 [[b][b]]2 [[ ][a]]2 [[ ][b]]2 [[ ]3]2

[[a]]2 [[b]]2 [[ ][ ]]2

[ ]2

(b,{a,b,1},0) (1,{a,b,1},1) (a,{a,b,1},0) (1,{a,b,1},1)

(a,{a,b,1},0)(ā,{b,1},1)(b,{a,b,1},0)(1,{a,ā,b,1},0) (a,{a,b,1},0)(b,{a,b,1},0)(b̄,{a,1},1)(1,{a,b,b̄,1},0)

(a,{a,b,1},0)(1,{a,ā,b,1},0)(b,{a,b,1},0) (a,{a,b,1},0)(b,{a,b,1},0)(1,{a,b,b̄,1},0) (a,{a,b,1},0)(b,{a,b,1},0) (1,{a,b,1},1)

(a,{a,b,1},0) (b,{a,b,1},0) (1,{a,b,1},1)

(�,{a,b,1},2)

�� �� �� ��

��� ��
����

���
���

����

���
���

���
���

���
���

���������
���������

Fig. 1. The tree t2 for Γ = {a, b} where the labels appear in parenthesis below the
corresponding node

As it was done for (level-1) pushdown parity games in [17], we reduce the deci-
sion problem for level-k parity games to the acceptance problem for alternating
two-way parity tree automata running over tk. Intuitively, the non-determinism
of the automaton is used to reflect the choices of Player 0 and the alternation is
used to reflect the choices of Player 1.

Proposition 1. Given a pushdown parity game G of level k, we can construct
a 2-PTA A running on tk such that Player 0 wins G from (q, [ ]k) if and only if
A has an accepting run on tk starting from state q. Furthermore the size of A
is polynomial in the size of the level-k pushdown automaton defining G.

Proof (Sketch). Let G be a parity game defined by a level-k pushdown automaton
P = (QP , Σ, Γ,ΔP ) with QP = Q0 & Q1 and a coloring mapping ΩP . We
construct the 2-PTA A = (QA, ΔA, ΩA) with QA = QP , ΩA = ΩP . To define
ΔA, we introduce for a surrounding τ = (d,D, e) and an instruction γ ∈ Γk

the direction [[γ]]τ on tk. It is defined by [[γ]]τ = γ if γ ∈ D, [[γ]]τ =↑ if γ = d,
[[γ]]τ = ε if γ = ⊥j and e ≥ j and [[γ]]τ is undefined otherwise.

For p ∈ Q0, (p, α, γ, q) ∈ ΔP and surrounding τ = (d,D, e) such that [[γ]]τ is
defined, we have: (p, τ) → ([[γ]]τ , q) ∈ ΔA.
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For p ∈ Q1, let δ1, . . . , δn be the set of all transitions in ΔP starting in p, i.e.
having the form δi = (p, αi, γi, qi) for all i ∈ [1, n]. For all labelings τ = (d,D, e),
we take: (p, τ) →

∧
i∈[1,n]∧[[γi]]τ def.([[γi]]τ , qi) ∈ ΔA.

Note that the size of A is exponential in the size of Γk. �
The relation between the game G and the 2-PTA A constructed in Proposition 1
can be lifted to strategies. Before stating this correspondence, we show how
to represent a pair of global positional winning strategies ϕaut and ϕpath in
G(A, tk) for Automaton and Pathfinder respectively as a labeling of tk by a
finite amount of information. The labeling set is F0 ×F1 where F0 is the set of
all partial functions from Q to Δ and F1 is the set of all partial functions from
Q to P(ext(W ) ×Q).

The strategy ϕaut of Automaton at a node w ∈ Dom(t) is given by a partial
function νw

0 from Q to Δ which when defined on a state q gives the transition
to apply in the configuration (w, q). Formally, for all q ∈ Q, νw

0 (q) = δ iff
ϕaut(w, q) = (w, δ).

The strategy ϕpath of Pathfinder can be given by a partial function νw
1 from Q

to P(ext(W ) ×Q). For all q ∈ Q, we have two cases depending on who wins the
game from (w, q). If Automaton wins from (w, q) (i.e. there exists a transition
δ = (q, t(w)) → P such that ϕpath(w, δ) is undefined) then νw

1 (q) is undefined.
If Pathfinder wins from (w, q) then for all transitions δ1, . . . , δn starting with
(q, t(w)) (i.e. δj = q, t(w) → Pj), we have ϕpath(w, δj) = (wdji , qji) for some
(dji , pji) ∈ Pj for all j ∈ [1, n]. In this case, νw

1 (q) is equal to {(dji , qji) | j ∈
[1, n]}. Intuitively νw

1 (q) is defined if Pathfinder wins from (w, q) and in this case
it corresponds to a set of directions and states that can refute any transitions of
the automaton that can be applied in this configuration. Note that for any node
w ∈ Dom(t), Dom(νw

0 ) and Dom(νw
1 ) form a partition of Q.

Conversely we say that a F0 × F1-labeling of tk is a global winning strategy
for A on tk if it induces a pair of global winning strategies for each player.

Proposition 2. Let G be a pushdown parity game of level k and A the alternat-
ing two-way parity tree automaton given by Proposition 1. Given a regular global
positional winning strategy Φ for A on tk, we can compute, for each player,
a regular global positional winning strategy and a regular representation of the
winning region.

5 Computing Strategies over tk

In this section, we show how to compute a regular global positional strategy for
a 2-PTA A running on tk. For this we proceed by induction on the level k.

The first step is based on [17] and consists in showing that for any 2-PTA A
running on tk, one can construct a PTA B accepting the F0 × F1-labelling of
tk representing a global winning strategy for A on tk. In [17], a PTA B is con-
structed that accepts the trees representing a positional strategy for Automaton
winning from a given state of A (see [3] for a detailed presentation of the con-
struction). The following proposition simply adapts the construction to make it
symmetric between Automaton and Pathfinder.
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Proposition 3. Given a 2-PTA A running on tk, we can construct a PTA B
accepting the trees representing global positional winning strategies of A. Fur-
thermore, the size of B is exponential in the size of A but the number of colors
of A is linear in the number of colors of B.

Using Proposition 3, we have reduced our initial problem to computing a regular
Ξ-labeling of tk+1 accepted by a given PTA B. In the next step, we reduce this
problem to the computation of a global winning strategy for a 2-PTA C running
on tk.

The construction is based on the fact that B does not use the ↑ direction and
hence when running on tk+1 only take directions in ΓO

k ∪ {k}. From the point
of view of the operations on the stacks, B does not perform the copyk operation
and hence can only access the top-most level-k stack. Intuitively, we can simulate
the same behavior at one level below by replacing the direction k by ε: we use
alternation instead of performing the copyk operation. The construction is a bit
more technical as we need to relate the surroundings in tk+1 which belong to
a node corresponding to a level-(k+1) stack s to the surroundings in tk of the
node corresponding to the level-k stack topk(s).

Proposition 4. Given a PTA B accepting at least one Ξ-labeling of tk+1, we
can construct a 2-PTA C running on tk such that given a regular global positional
strategy for C on tk, we can construct a regular Ξ-labeling of tk+1 accepted by
B. Furthermore, the size of C is polynomial in the size of B.

Proof (Sketch). Let B = (QB, ΔB, IB , ΩB) be a PTA accepting Ξ-labelings of
tk+1. We can assume w.l.o.g that B runs on tk+1 and guesses the Ξ-labeling (i.e.
QB = Q′B × Ξ). Furthermore, we can assume that the surroundings appearing
in transitions of B really occur in tk+1.

We define the 2-PTA C = (QC , ΔC , IC , ΩC) with QC = QB × ΓO
k ∪ {k, *},

IC = IB ×{*} and ΩC(p, d) = ΩB(p) for all d ∈ ΓO
k ∪{k, *}. For each transition

δ := q, (d,D, e) → (γ1, q1) ∧ . . . ∧ (γn, qn) ∈ ΔB and for each d′ ∈ ΓO
k ∪ {*}, we

add the following transition to ΔC :

δ↓d′ := (q, d), (d′, D′, e′) → (γ′1, (q1, γ1)) ∧ . . . ∧ (γ′n, (qn, γn))

when
1. d = * ⇒ d′ = * and d′ �= *∧ d′ �= d ⇒ d′ ∈ D D′ = (D ∪ {d}) \ {k, d′, k} and

e′ = min{e, k}
2. for all i ∈ [1, n], γ′i is equal to ε if γi = k, to ↑ if γi = d′ and to γi otherwise.

Intuitively, the automaton C simulates the actions of B on the top-most level-k
stack. This is enough to capture the whole behavior of B as B never performs
the copyk operation. Condition 1 relates the surroundings (d,D, e) in tk+1 of a
node correspond to a level-(k+1) stack s to the surroundings (d′, D′, e′) in tk

of the node corresponding to the level-k stack topk(s). Condition 2 reflects the
fact that the copyk operation does not modify the top-most level-k stack (i.e the
direction k is replace by ε).

An important property for the transitions of the 2-PTA C is that for every
δ ∈ ΔC , there exists a unique transition δ↑ ∈ ΔB and a unique d′ ∈ ΓO

k ∪{*} such
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that δ = (δ↑)↓d′ . Moreover, if the labels of δ and δ↑ are respectively (d′, D′, e′)
and (d,D, e), we have D = (D′ ∪ {d′, k}) \ {d}. This property allows us to
lift a regular positional strategy for C on tk to a regular positional strategy of
B on tk+1. Consequently, we can compute a regular Ξ-labeling accepted by B
following the regular global positional strategy for B. �
By an induction on the levels combining Proposition 3 and Proposition 4, we
reduce the initial problem to the problem of computing a winning strategy in a
finite parity game which is k-fold exponential in the size of original automaton.
Indeed only the first step provides an exponential blow-up in the number of
states but the number of colors remains linear. The computation of a winning
strategy on finite parity games is only exponential in the number of colors [20].
Hence, we obtain a k-Exptime procedure.
Theorem 3. Given a 2-PTA A running on tk+1, we can compute in k-Exptime

a regular global positional strategy for A on tk+1.

6 Conclusion

We have presented a k-Exptime algorithm to provide a finite representation
of the winning regions and global positional winning strategies in higher-order
pushdown parity games of level k. Note that deciding the winner of these games
is already k-Exptime hard [5]. Our results can be extended to richer graph
structures based on higher-order pushdown automata such as for example rooted
higher-order pushdown parity games (where the game graph is restricted to the
configurations reachable from a given configuration) and their ε-closure (see [8]).

One of the key feature of our approach is the use of the symmetric destruction
of level-k stacks copyk instead of the usual unconditional destruction popk. This
choice is motivated by the closure properties of the notion of regularity induced
by the set of symmetric operations as well as the tree structure it induces. The
game graphs obtained when considering popk instead of copyk can be obtained
as ε-closure of rooted higher-order pushdown parity games (see [6]) and hence
can be treated in our framework.

In [7], it was shown that when considering higher-order pushdown parity games
defined using the unconditional destruction popk instead of the symmetric de-
struction copyk considered in this article, the winning region is regular by words.
This result is stronger than the one obtainable by our approach as we can only
prove that the winning region is regular for operations. It is important to note
that when considering the symmetric version this result no longer holds. The
proof of [7] also provides a finite description of a winning strategy from a given
vertex for one of the players based on a higher-order pushdown automaton read-
ing the moves of the play and outputting the next move. It is unknown if the
notion of regularity by words can be used to describe positional winning strate-
gies for higher-order pushdown parity games.

Acknowledgments. The authors thank Olivier Serre, Wolfgang Thomas and
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Abstract. We study some problems solvable in deterministic polynomial
time given oracle access to the promise version of the Arthur-Merlin class
AM. The main result is that BPPNP

|| ⊆ PprAM
|| . An important property of

the class PprAM
|| is that it can be derandomized as PprAM

|| = PNP
|| , under

a natural hardness hypothesis used for derandomizing the class AM; this
directly follows from a result due to Miltersen and Vinodchandran [10]. As
a consequence, we get that BPPNP

|| = PNP
|| , under the above hypothesis.

This gives an alternative (and perhaps, a simpler) proof of the same result
obtained by Shaltiel and Umans [16], using different techniques.

Next, we present an FPprAM algorithm for finding near-optimal strate-
gies of a succinctly presented zero-sum game. For the same problem,
Fortnow et al. [7] described a ZPPNP algorithm. As a by product of our
algorithm, we also get an alternative proof of the result by Fortnow et.
al. One advantage with an FPprAM algorithm is that it can be directly
derandomized using the Miltersen-Vinodchandran construction [10]. As
a consequence, we get an FPNP algorithm for the above problem, under
the hardness hypothesis used for derandomizing AM.

1 Introduction

We study some problems solvable in deterministic polynomial time given oracle
access to the (promise version of) Arthur-Merlin classes, namely the class PprAM

and its variants, such as PprAM
|| . These classes are interesting from a derandom-

ization perspective.
Starting with the classical hardness-randomness tradeoff due to Nisan and

Wigderson [13], several complexity classes have been derandomized, under var-
ious hardness hypotheses. Working under this framework, Miltersen and Vin-
odchandran [10] derandomized the class AM as AM = NP, under a suitable
hardness hypothesis. As a direct consequence of their work, we get that PprAM =
PNP and PprAM

|| = PNP
|| , under similar hardness hypotheses. Thus, the advantage

with a result of the form C ⊆ PprAM (resp. C ⊆ PprAM
|| ) is that we get C ⊆ PNP

(resp. C ⊆ PNP
|| ), under a hypothesis similar to the one used for derandomizing

AM. Motivated by such considerations, we prove two results involving PprAM and
its variants. The two results are concerned with BPPNP

|| and succinct zero-sum
games, discussed in detail in the following sections.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 229–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1.1 BPPNP
||

Working under the above derandomization framework, Klivans and van Melke-
beek [8] showed that BPPNP

|| = PNP
|| , under a hardness hypothesis naturally

associated with the class BPPNP
|| , which we shall refer to as BPPNP

|| -hypothesis1.
Subsequently, Shaltiel and Umans [16] obtained an improvement by showing
BPPNP

|| = PNP
|| , under the hypothesis naturally associated with the class AM;

we shall refer to this hypothesis as the AM-hypothesis2. This is a surprising re-
sult, since they derandomize BPPNP

|| , under a weaker hypothesis associated with
the smaller class AM ⊆ BPPNP

|| .
Our main result here is that BPPNP

|| ⊆ PprAM
|| . As discussed before, it follows

from the construction of Miltersen and Vinodchandran [10] that PprAM
|| = PNP

|| ,

under the AM-hypothesis; this immediately implies that BPPNP
|| = PNP

|| , under
the same hypothesis. Thus our main result yields an alternative proof and a
different explanation for why the surprising result by Shaltiel and Umans is true.
The Shaltiel-Umans approach involved proving a more fundamental result that
the AM-hypothesis and the BPPNP

|| -hypothesis are, in fact, equivalent. For this
they utilize sophisticated arithmetization tools and derandomization constructs.
In contrast, our alternative proof shows how to derandomize BPPNP

|| using the
Miltersen-Vinodchandran construction as a black-box.

The main result, in fact, yields the equivalence BPPNP
|| = PprAM

|| , since a

simple argument shows that PprAM
|| ⊆ BPPNP

|| . Furthermore, it can easily be

shown that BPPprAM
|| = BPPNP

|| . Thus, we get that BPPprAM
|| = PprAM

|| ; this is

an unconditional derandomization of the class BPPprAM
|| .

By extending the proof of AM ⊆ Πp
2 [2], it is easy to show that PprAM

|| ⊆ PΣp
2

|| .

It follows that BPPNP
|| ⊆ PΣp

2
|| , or equivalently BPPNP[log] ⊆ PΣp

2 [log]. This can be
seen as a baby-step towards resolving the much larger open problem of whether
BPPNP is contained in PΣp

2 .
We now present a brief outline of the proof of the main result. Following the

work of Sipser [17] and Stockmeyer [18], it is known that the cardinality of a set
X ⊆ {0, 1}m can be approximately estimated in PprAM

|| , when the membership
testing for X can be performed via a nondeterministic polynomial time compu-
tation. More precisely, given a non-deterministic circuit accepting X , we can ap-
proximately estimate the cardinality of X in PprAM

|| . Fix a language L ∈ BPPNP
||

and consider an input string x. Denote byW the set of all random strings that lead
to acceptance on input x. So, testing whether x ∈ L or not, reduces to a question
of distinguishing between the two cases of W being “large” (say, W has measure
≥ 3/4) andW being “small” (say,W has measure≤ 1/4). However, notice that the
membership testing forW requires a PNP

|| computation. Nevertheless, we show how

1 BPPNP
|| -hypothesis: ENP

|| requires exponential size non-adaptive SAT-oracle circuits.
2 AM-hypothesis: ENP

|| requires exponential size SV-nondeterministic circuits.
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to test whether W is large or small , using a black-box for approximate-counting
of non-deterministic circuits.

1.2 Succinct Zero-Sum Games

A two-player zero-sum 0-1 game is specified by a 2n ×2m Boolean payoff matrix
M . The rows and the columns correspond to the pure strategies of the row-player
and the column-player, respectively. The row-player chooses a row y ∈ {0, 1}n

and the column-player chooses a column z ∈ {0, 1}m, simultaneously. The row-
player then pays M [y, z] to the column-player. The goal of the row-player is to
minimize its loss, while the goal of the column-player is to maximize its gain.

A mixed strategy (or simply, a strategy) for the row-player is a probability
distribution P over the rows; similarly, a strategy for the column-player is a
probability distribution Q over the columns. The expected payoff is defined as:

M(P,Q) =
∑

y,z

P (y)M [y, z]Q(z).

The classical Minmax theorem of von Neumann [11] says that even if the strate-
gies are chosen sequentially, who plays first does not matter:

min
P

max
Q

M(P,Q) = max
Q

min
P

M(P,Q) = v∗,

where v∗ is called the value of the game. This means that there exist strategies
P ∗ and Q∗ such that

maxQ M(P ∗, Q) ≤ v∗ and minP M(P,Q∗) ≥ v∗.

Such strategies P ∗ and Q∗ are called optimal strategies.
In some scenarios, it is sufficient to compute approximately optimal strategies.

We shall be mainly concerned with additive errors. A row-player strategy P̃ is
said to be ε-optimal, if

max
Q

M(P̃ , Q) ≤ v∗ + ε,

and similarly, a column-player strategy Q̃ is said to be ε-optimal, if

min
P

M(P, Q̃) ≥ v∗ − ε,

Zero-sum games have been well explored, due to their diverse applications. The
problem of finding the value, as well as optimal and near-optimal strategies of
a given game have been well-studied. In particular, it is known that the value
and optimal strategies can be computed in polynomial time (see [14]). Moreover,
efficient parallel algorithms have been devised for finding near-optimal strategies.
We refer to [7] for a brief account of these results and the applications of zero-sum
games in computational complexity and learning theory.

This paper deals with computing near-optimal strategies when the payoff ma-
trix M is presented succinctly in the form of a circuit C. We say that a boolean
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circuit C : {0, 1}n × {0, 1}m → {0, 1} succinctly encodes the matrix M , if for
every y and z, C(y, z) = M [y, z]. Notice that the circuit C can be much smaller
than the matrix M (for instance, while M is of size 2n × 2m, the size of C can
be polynomial in n and m). In the succinct zero-sum game problem, the payoff
matrix M would be presented implicitly by the circuit C and the running time
of an algorithm is computed with respect to |C|.

It is known that computing the exact value of a succinctly presented zero-sum
game is EXP-complete (see [6]) and that approximating the value within multi-
plicative factors is Πp

2 -hard [7]. We study the problem of approximating the value
and finding near-optimal strategies, within additive errors. The above problem
generalizes the problem of learning circuits for SAT (assuming such circuits exist)
and the problems in the symmetric alternation class Sp

2. We refer the reader to the
paper by Fortnow et. al [7] for a detailed account on these aspects.

Lipton and Young [9] showed that ε-optimal strategies of a succinctly presented
zero-sum game can be computed in Σp

2 . Fortnow et. al [7] presented a ZPPNP algo-
rithm for the same problem; their algorithm also finds an estimate of the value of the
game within additive errors. Our main result is an FPprAM algorithm for the same
problems (i.e., the algorithm runs in deterministic polynomial time, given oracle
access to a promise language in the promise version of the Arthur-Merlin class).

In the proof, we show that the problem of finding ε-optimal strategies reduces
to the problem of finding “strong collectively irrefutable certificates (strong CIC)”
of a given S2-type matrix. Cai [3] presented a ZPPNP algorithm for the latter
problem of finding strong CICs. In [4], an FPprAM algorithm for finding a “weak”
CIC was described. By borrowing and extending components from these two algo-
rithms, we devise an FPprAM algorithm for computing strong CICs. Put together,
we get the required FPprAM algorithm for computing ε-optimal strategies.

The proof of the main result yields the following as by-products. We notice
that by composing the above-mentioned reduction and Cai’s algorithm, we get a
ZPPNP algorithm for finding ε-optimal strategies. This gives an alternative proof
of the result by Fortnow et al. The details of this proof will be included in the
full version of the paper. We also obtain a FPprSp

2 algorithm for approximating
the value of a succinctly presented zero-sum game. However, we do not know
whether ε-optimal strategies can be computed in FPprSp

2 ; we consider this to be
an interesting open problem.

As discussed earlier, the Miltersen-Vinodchandran construction can be directly
used to derandomize the FPprAM algorithm. Thus, under the AM- hypothesis, we
get an FPNP algorithm for finding ε-optimal strategies. It is not clear whether such
a derandomization can be achieved for the ZPPNP algorithm by Fortnow et al. [7].

2 Preliminaries

In this section, we present relevant definitions and notation.

Complexity classes. We use standard definitions for complexity classes such as
P, NP, AM, ZPPNP and BPPNP [5,15]. Below, we present definitions for promise
and function classes, that are central to our paper.
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Promise languages. A promise language Π is a pair (Π1, Π2), where Π1, Π2 ⊆
Σ∗, such that Π1 ∩Π2 = ∅. The elements of Π1 are called the positive instances
and those of Π2 are called the negative instances. If Π1 ∪Π2 = Σ∗, then Π is a
language in the usual sense.

Symmetric Alternation. A promise language Π = (Π1, Π2) is said to be in the
promise class prSp

2, if there exists a polynomial time computable Boolean pred-
icate V (·, ·, ·) and polynomials p(·) and q(·) such that for any x, we have

x ∈ Π1 =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[V (x, y, z) = 1], and
x ∈ Π2 =⇒ (∃z ∈ {0, 1}m)(∀y ∈ {0, 1}n)[V (x, y, z) = 0],

where n = p(|x|) and m = q(|x|). We refer to the y’s and z’s above as certifi-
cates. The predicate V is called the verifier. The complexity class Sp

2 consists of
languages in prSp

2.
Promise AM (prAM). A promise language Π = (Π1, Π2) is said to be in

the promise class prAM, if there exists a polynomial time computable Boolean
predicate A(·, ·, ·) and polynomials p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∀y ∈ {0, 1}n)(∃z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ Pr
y∈{0,1}n

[(∃z ∈ {0, 1}m)A(x, y, z) = 1] ≤ 1
2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
BPPNP

|| : A language L is said to be in the class BPPNP
|| , if there exists a PNP

||
machine M and a polynomial p(·) such that for any input x,

x ∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≥ 3
4
, and

x �∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≤ 1
4
,

where m = p(|x|).
Succinct encoding of matrices and sets. A Boolean circuit C : {0, 1}n×{0, 1}m →
{0, 1} is said to succinctly encode a Boolean 2n × 2m matrix M , if for all y ∈
{0, 1}n and z ∈ {0, 1}m, we have C(y, z) = M [y, z]. A Boolean circuit C :
{0, 1}m → {0, 1} is said to succinctly encode a set X ⊆ {0, 1}m, if for all x ∈
{0, 1}m, x ∈ X ⇐⇒ C(x) = 1.

Oracle access to promise languages. Let A be an algorithm and Π = (Π1, Π2)
be a promise language. When the algorithm A asks a query q, the oracle behaves
as follows: if q ∈ Π1, the oracle replies “yes”; if q ∈ Π2, the oracle replies “no”;
if q is neither in Π1 nor in Π2, the oracle may reply “yes” or “no”. We allow the
algorithm to ask queries of the third type. The requirement is that the algorithm
should be able to produce the correct answer, regardless of the answers given by
the oracle to the queries of the third type.

Function classes. For a promise language Π , the notation FPΠ refers to the
class that are computable by a polynomial time machine, given oracle access
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to Π . For a promise class C, we denote by FPC , the union of FPΠ , for all
Π ∈ C. Regarding ZPPNP, we slightly abuse the notation and use this to mean
both the standard complexity class and the function class. The function class
ZPPNP contains functions computable by a zero-error probabilistic polynomial
time algorithm given oracle to NP; the algorithm either outputs a correct value
of the function or “?”, the latter with a small probability.

3 BPPNP
|| ⊆ PprAM

||

In this section, we prove that BPPNP
|| ⊆ PprAM

|| . The proof goes via approximate

counting for non-deterministic circuits, a problem known to be solvable in PprAM
|| .

A non-deterministic circuit C is a boolean circuit that takes an m-bit string
as input and an s-bit string z as auxiliary input and outputs 1 or 0, i.e., C :
{0, 1}m×{0, 1}s → {0, 1}. For a string y ∈ {0, 1}m, C is said to accept y, if there
exists a z ∈ {0, 1}s such that C(y, z) = 1; C is said to reject y, otherwise. Let
Count(C) denote the number of strings from {0, 1}m accepted by C.

The following result is implicit in the work of Sipser [17] and Stockmeyer [18]
and it deals with the problem of approximately counting the number of strings
accepted by a given non-deterministic circuit.

Theorem 1. [17][18] There exists an FPprAM
|| algorithm that takes as input a non-

deterministic circuit C, and a parameter δ > 0 and outputs a number e such that

(1 − δ)Count(C) ≤ e ≤ (1 + δ)Count(C).

The running time is polynomial in |C| and 1/δ.

The first step of the proof involves reducing the error probability of a given
BPPNP

|| machine. This is achieved via the standard method of repeated trials
and taking majority.

Proposition 1. Let L be a language in BPPNP
|| . Then there exists a PNP

|| ma-
chine M and a polynomial p(·) such that for any input x,

x ∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≥ 1 − 1
8K

, and

x �∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≤ 1
8K

,

where m = p(|x|) and K ≤ p(|x|) is the maximum number of queries asked by
M on input x for any string y ∈ {0, 1}m.

Theorem 2. BPPNP
|| ⊆ PprAM

|| .

Proof. Let L be a language in BPPNP
|| and let M be a BPPNP

|| machine for
deciding L given by Proposition 1. Fix an input string x and let m be the
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number of random bits used by M . Without loss of generality, assume that M
uses SAT as its oracle and that the number of queries is exactly K on all random
strings y ∈ {0, 1}m, with K ≥ 1.

Partition the set {0, 1}m into the set of good strings G and the set of bad
strings B, where G = {y : M(x, y) = χL(x)} and B = {0, 1}m − G, where
χL(·) is the characteristic function3. For a set X ⊆ {0, 1}m, let μ(X) = |X |/2m

denote its measure. Thus, μ(G) ≥ 1 − 1/(8K) and μ(B) ≤ 1/(8K).
Consider a string y ∈ {0, 1}m. Let Φ(y) = 〈ϕy

1 , ϕ
y
2 , . . . , ϕ

y
K〉, be the K SAT

queries asked by M on the string y. Let ay = 〈ay
1 , a

y
2 , . . . , a

y
K〉 be the correct an-

swers to these queries, namely the bit ay
j = 1, if ϕy

j ∈ SAT and ay
j = 0, otherwise.

We shall consider simulating the machine M with arbitrary answer strings. For a
bit string b = 〈b1b2 . . . bK〉, let M(x, y,b) denote the outcome of the machine, if
b is provided as the answer to its K queries. Thus, M(x, y) = M(x, y,ay). When
an arbitrary bit-string b is provided as the answer, the outcome M(x, y,b) can
be different from M(x, y).

Let N(y) denote the number of satisfiable formulas in Φ(y), i.e., N(y) = |{1 ≤
i ≤ K : ϕy

i ∈ SAT}|. Partition the set G into K + 1 parts based the value N(·):
for 0 ≤ r ≤ K, let Sr = {y : y ∈ G and N(y) = r}.

For each 0 ≤ r ≤ K, define two sets C1
r and C0

r as below. The set C1
r consists

of all strings y ∈ {0, 1}m satisfying the following property: there exists an answer
string b = 〈b1b2 . . . bK〉 such that (i) if bj = 1 then ϕy

j ∈ SAT; (ii) b has at least
r ones in it; and (iii) M(x, y,b) = 1. The set C0

r is defined similarly. The set C0
r

consists of all strings y ∈ {0, 1}m satisfying the following property: there exists
an answer string b = 〈b1b2 . . . bK〉 such that (i) if bj = 1 then ϕy

j ∈ SAT; (ii) b
has at least r ones in it; and (iii) M(x, y,b) = 0. Notice that the sets C1

r and
C0

r need not be disjoint and that there may be strings y ∈ {0, 1}m that belong
to neither C1

r nor C0
r .

Claim 1
(i) If x ∈ L, then there exits an 0 ≤ � ≤ K such that μ(C1

 ) − μ(C0
 ) ≥ 1

4K .
(ii) If x �∈ L, then for all 0 ≤ r ≤ K, μ(C1

r ) − μ(C0
r ) ≤ 1

8K .

Proof of claim: We first make an observation regarding the concerned sets C1
r and

C0
r . Fix any 0 ≤ r ≤ K. Notice that for any j < r, Sj ∩C1

r = ∅ and Sj ∩C0
r = ∅.

This is becuase, for any y ∈ Sj , with j < r, Φ(y) has only j satisfying formulas
and so, it does not meet the requirement for either C1

r or C0
r .

Suppose x ∈ L. Consider any 0 ≤ r ≤ K. We first derive a lowerbound on
|C1

r |. Consider any string y ∈ Sj , with r ≤ j ≤ K. Notice that ay has j ≥ r
satisfying formulas and M(x, y,ay) = 1. So, y ∈ C1

r . Thus, for r ≤ j ≤ K,
Sj ⊆ C1

r . It follows that |C1
r | ≥

∑K
j=r |Sj |. We next derive an upperbound on

C0
r . We observed that Sj ∩C0

r = ∅, for all j < r. Let us now consider the set Sr.
Pick any string y ∈ Sr. Notice that Φ(y) has exactly r satisfiable formulas. So,
the only answer string satisfying the first two requirements of C0

r is ay. Since
M(x, y,ay) = 1, we have that y �∈ C0

r . Thus, Sr ∩ C0
r = ∅. Hence, for j ≤ r,

3 χL(x) = 1, if x ∈ L and χL(x) = 0, if x �∈ L.



236 V.T. Chakaravarthy and S. Roy

Sj ∩ C0
r = ∅. It follows that |C0

r | ≤ |B| +
∑K

j=r+1 |Sj |. As a consequence, we
get that |C1

r | − |C0
r | ≥ |Sr| − |B|. Since μ(G) ≥ 1 − 1/(8K), by an averaging

argument, there exists an 0 ≤ � ≤ K such that

μ(S) ≥
(
1 − 1

8K

)

K + 1
≥ 3

8K
.

Such an � satisfies μ(C1
 ) − μ(C0

 ) ≥ 1/(4K). We have proved the first part of
the claim.

Suppose x �∈ L. The argument is similar to the first part. Fix any 0 ≤ r ≤ K.
Observe that for j ≤ r, Sj ∩ C1

r = ∅. Hence, |C1
r | ≤ |B| +

∑K
j=r+1 |Sj |. On

the other hand, for any j ≥ r, Sj ⊆ C0
r . So, |C0

r | ≥
∑K

j=r |Sj |. It follows that
|C1

r | − |C0
r | ≤ |B|. Since μ(B) ≤ 1/(8K), we get the second part of the claim.

This completes the proof of Claim 1.
Notice that the membership testing for the sets C1

j and C0
j can be performed in

non-deterministic polynomial time. Thus, for 0 ≤ j ≤ K, we can construct a non-
deterministic circuit accepting C1

j (similarly, C0
j ) such that the size of the circuit

is polynomial in |x|. Setting δ = 1/(80K), we invoke the algorithm given by
Theorem 1 to get estimates e1

j and e0
j such that (1−δ)μ(C1

j ) ≤ e1
j ≤ (1+δ)μ(C1

j )
and (1 − δ)μ(C0

j ) ≤ e0
j ≤ (1 + δ)μ(C0

j ), for all 0 ≤ j ≤ K. We output “x ∈ L”,
if there exists an � such that e1

 − e0
 ≥ 9/(40K). If no such � exists, then we

output “x �∈ L”. The correctness follows from Claim 1 and the simple fact that
μ(X) ≤ 1, for any X ⊆ {0, 1}m. �

4 Succinct Zero-Sum Games

In this section, we present an FPprAM algorithm for finding the near-optimal
strategies of a zero-sum game presented succinctly in the form of a circuit.

The first task is to approximately find the value of the given game. This is
treated in the next section.

4.1 Approximately Finding the Value

We shall first discuss an FPprSp
2 algorithm for approximating the value. The al-

gorithm uses the following promise language as the oracle. Fortnow et. al showed
that this promise language lies in prSp

2.

Succinct Game Value (SGV): The input consists of a circuit C succinctly
encoding a 0-1 zero-sum game and parameters v and ε.
Positive instances: v∗ ≥ v + ε.
Negative instances: v∗ ≤ v − ε.
Here, v∗ refers to the value of the given game.

Theorem 3. [7] The promise language SGV belongs to prSp
2.

Using SGV as an oracle, we can perform a linear search in the interval [0, 1] and
approximately find the value of a given game.
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Theorem 4. There exists an FPprSp
2 algorithm that takes as input a circuit C

succinctly encoding a 0-1 zero-sum game and a parameter ε and outputs a number
v such that v − ε ≤ v∗ ≤ v + ε, where v∗ is the value of the given game. The
running time of the algorithm is polynomial in |C| and 1/ε.

Proof. We shall use SGV as the prSp
2 oracle. Set ε′=ε/2. For j=0,1,2, . . . , "n/ε′#,

ask the query 〈C, jε′, ε′〉. Let ĵ be the first index such that the oracle answers
“no”. Set v′ = ĵε′. Return(v′). Notice that v′ has the required property. �
Fortnow et. al [7] presented a ZPPNP algorithm for the problem of approximating
the value of a succinct zero-sum game. By extending Cai’s result [3] that Sp

2 ⊆
ZPPNP, it can be shown that FPprSp

2 ⊆ ZPPNP. Thus, Theorem 4 provides a
mild improvement over the previously best known result for the problem under
consideration.

It is known that Sp
2 ⊆ PprAM [4]. An easy extension of this result shows that

FPprSp
2 ⊆ FPprAM. Combining with Theorem 4, we get an FPprAM algorithm for

approximating the value of succinct zero-sum game.

Theorem 5. There exists an FPprAM algorithm that takes as input a circuit
C succinctly encoding a 0-1 zero-sum game and a parameter ε and outputs a
number v such that v − ε ≤ v∗ ≤ v + ε, where v∗ is the value of the given game.
The running time of the algorithm is polynomial in |C| and 1/ε.

4.2 Finding Near-Optimal Strategies

In this section, we present an FPprAM algorithm for finding near-optimal strate-
gies of a succinctly presented zero-sum game. The following small support lemma
is useful in designing our algorithms.

A mixed strategy of a player is said to be k-uniform, if it chooses uniformly
from a multi-set of k pure strategies. Such a strategy can simply be specified by
the multi-set of size k. The following lemma asserts the existence of k-uniform
ε-optimal, for a small value of k.

Lemma 1 ([1][12][9]). Let M be a 0−1 2n×2m payoff matrix. Then there are
k-uniform ε-optimal strategies for both the row and the column-players, where
k = O(n+m

ε2 ).

The algorithm for finding near-optimal strategies goes via a reduction to the
problem of finding strong collectively irrefutable certificates of a given S2-type
matrix. Such matrices and associated concepts are discussed next.

Definition 1 (S2-type matrices and CIC’s). Let M be a 2n × 2m boolean ma-
trix. We view the matrix as specifying a bipartite tournament. For a row y ∈ {0, 1}n

and a column z ∈ {0, 1}m, we say that y beats z, if M [y, z] = 1; z is said to beat
y, if M [y, z] = 0. A row y is said to be a row-side irrefutable certificate (short-
ened, IC), if y beats every column z ∈ {0, 1}m. Similarly, a column z is said to
be a column-side IC, if z beats every row y ∈ {0, 1}n. The matrix M is called a
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S2-type matrix, if it has either a row-side IC or a column-side IC. In the former
case, M is called a row-side S2-type matrix and in the latter case, it is called a
column-side S2-type matrix. A set of rows Y ⊆ {0, 1}n is called a row-side weak
collectively irrefutable certificate (shortened, CIC), if for any column z ∈ {0, 1}m,
at least one row in Y beats z. For 0 ≤ α ≤ 1, a set of rows Y ⊆ {0, 1}n is called a
row-side α-strong CIC, if for any column z, at least α fraction of rows from Y beat
z, i.e., |{y ∈ Y : y beats z}| ≥ α|Y |. The notion of column-side weak CIC and
column-side α-strong CIC are defined analogously.

A ZPPNP algorithm for finding α-strong CIC of a given S2-type matrix is implicit
in the work of Cai ([3], Section 5). In [4], a FPprAM algorithm is presented
for finding a weak CIC of a given S2-type matrix. By combining and extending
arguments from these two algorithms, we obtain an FPprAM algorithm for finding
α-strong CIC for S2-type matrices. The claim is encapsulated in the following
theorem. Its proof will be included in the full version of the paper.

Theorem 6. There exists an FPprAM algorithm that takes as input a circuit C
succinctly encoding a row-side (resp. column side) S2-type matrix M of dimen-
sion 2n×2m and a parameter α < 1, and outputs an α-strong row-side CIC (resp.
a column-side α-strong CIC) of size polynomial in 1/α, n and m. The running
time is polynomial in |C| and 1/α.

We now present the FPprAM algorithm for finding near-optimal strategies of a
succinctly presented zero-sum game.

Theorem 7. There exists an FPprAM algorithm that takes as input a circuit C
succinctly encoding a 2n × 2m payoff matrix M of a 0-1 zero-sum game and a
parameter ε and outputs a pair of ε-optimal mixed strategies (P̃ , Q̃). The running
time of the algorithm is polynomial in |C| and 1/ε.

Proof. Let v∗ be the value of the game given by M . Our algorithm finds the re-
quired strategies P̃ and Q̃ in two phases. Here, we discuss the first phase of the
algorithm that finds P̃ . The second phase for finding Q̃ works in a similar manner.

The algorithm uses a parameter ε′ = ε/2. Invoke the algorithm given in
Theorem 5 with error parameter ε′/2 and obtain an estimate v. Set v+ = v+ε′/2.
Notice that v+ is an upperbound on v∗ satisfying v∗ ≤ v+ ≤ v∗ + ε′. Invoking
Lemma 1 with error parameter ε′ we get a number k = k(ε′) such that M has
k-uniform ε′-optimal strategies (Pε′ , Qε′).

Construct a matrix M as follows. Each row y of M corresponds to a sequence
〈y1, y2, . . . , yk〉, where yi is a row in M ; each column of M corresponds to a
single column of M . Thus, M is a 2n × 2m matrix, where n = nk. Its entries
are defined as follows. Consider a row y = 〈y1, y2, . . . , yk〉 and a column z. The
entry M [y, z] is defined as:

M [y, z] =

{
1 if 1

k

(∑k
i=1 M [yi, z]

)
≤ v+

0 otherwise
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Let y be a row corresponding to Pε′ . For any strategy Q of the column-player the
expected payoff M(Pε′ , Q) ≤ v+. In particular, this is true for all pure strategies
z of the column-player. Therefore, we see that y is a row full of 1’s. In other
words, M is a row-side S2-type matrix.

Our next task is to find an α-strong row-side CIC of the matrix M , where α
is a parameter suitably fixed as α = (1− ε/2). For this, we invoke the algorithm
given in Theorem 6 on M and obtain a row-side α-strong CIC Y . Let the size
of Y be t. Notice that each element y of Y is a sequence of k pure row-player
strategies. Consider the collection S obtained by including all the pure strategies
found in each y ∈ Y ; thus, S is a multiset of size kt. Let P̃ be the (kt)-uniform
strategy over the multiset S. We next prove that P̃ is an ε-optimal row-player
strategy. The following easy claim is useful for this purpose.

Claim 1: Let P be a k-uniform row-player strategy. Let v ≤ 1 be such that for
any pure column-player strategy z, Σy∈PM [y, z] ≤ v. Then, maxQ M(P,Q) ≤ v,
where Q ranges over all mixed strategies of the column-player.

Claim 2: P̃ is an ε-optimal row-player strategy.

Proof. Consider any pure strategy of the column-player z ∈ {0, 1}m. Since Y is
an α-strong CIC, at least an α fraction of the rows in Y beat z. A row y ∈ Y
beating z means that y = {y1, y2, . . . , yk} satisfies

∑
yi∈y M [yi, z] ≤ kv+. Recall

that v+ ≤ v∗ + ε′. We now want to estimate the sum
∑

y∈S M [y, z], which can
be written as:

∑

y∈S

M [y, z] =
∑

y∈Y

∑

yi∈y

M [yi, z].

To estimate the sum on the RHS, we partition Y into two disjoint sets Y good

and Y bad: place all the y ∈ Y that beat z in Y good and the rest in Y bad. Notice
that |Y good| ≥ αt.

∑

y∈S

M [y, z] =
∑

y∈Y

∑

yi∈y

M [yi, z]

=
∑

y∈Y good

∑

yi∈y

M [yi, z] +
∑

y∈Y bad

∑

yi∈y

M [yi, z]

≤
∑

y∈Y good

kv+ +
∑

y∈Y bad

k

≤ |Y good|kv+ + |Y bad|k
≤ tk(v∗ + ε′) + (1 − α)tk ≤ tk(v∗ + ε)

The last inequality follows from the choice of α and ε′. Now, Claim 2 follows
from Claim 1.

The second phase of the algorithm that finds Q̃ works in a similar manner.
The details will be included in the full version of the paper. �
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5 Conclusions and Open Problems

We showed that BPPNP
|| ⊆ PprAM

|| . A challenging open problem asks whether

BPPNP is contained in PprAM. An affirmative answer would have two interesting
implications. First, this would show that BPPNP ⊆ PΣp

2 . The second implication
is that BPPNP can be derandomized under the hardness hypothesis used for
derandomizing AM. We presented a FPprSp

2 algorithm for approximating the
value of a succinct zero-sum game. It is open whether near-optimal strategies
can be found in FPprSp

2 .

Acknowledgments. We thank Eric Allender for his useful comments and Di-
eter van Melkebeek for his insightful suggestions and for sharing with us his
alternative proof of Theorem 2.
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Abstract. Consider a non-standard numeration system like the one
built over the Fibonacci sequence where nonnegative integers are rep-
resented by words over {0, 1} without two consecutive 1. Given a set X
of integers such that the language of their greedy representations in this
system is accepted by a finite automaton, we consider the problem of de-
ciding whether or not X is a finite union of arithmetic progressions. We
obtain a decision procedure under some hypothesis about the considered
numeration system. In a second part, we obtain an analogous decision
result for a particular class of abstract numeration systems built on an
infinite regular language.

1 Introduction

Definition 1. A positional numeration system is given by a (strictly) increasing
sequence U = (Ui)i≥0 of integers such that U0 = 1 and CU := supi≥0"Ui+1/Ui#
is finite. Let AU = {0, . . . , CU − 1}. The greedy U -representation of a positive
integer n is the unique finite word repU (n) = w · · ·w0 over AU satisfying

n =
∑

i=0

wi Ui, w �= 0 and
t∑

i=0

wi Ui < Ut+1, ∀t = 0, . . . , �.

We set repU (0) to be the empty word ε. A set X ⊆ N of integers is U -recognizable
if the language repU (X) over AU is regular (i.e., accepted by a deterministic finite
automaton, DFA). If x = x · · ·x0 is a word over a finite alphabet of integers,
then the U -numerical value of x is

valU (x) =
∑

i=0

xi Ui.

Remark 1. Let x, y be two words over AU . As a consequence of the greediness
of the representation, if xy is a greedy U -representation and if the first letter of
y is not 0, then y is also a greedy U -representation. Notice that for m,n ∈ N, we
have m < n if and only if repU (m) <gen repU (n) where <gen is the genealogical
ordering over A∗U : words are ordered by increasing length and for words of same
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c© Springer-Verlag Berlin Heidelberg 2008



242 E. Charlier and M. Rigo

length, one uses the lexicographical ordering induced by the natural ordering
of the digits in the alphabet AU . Recall that for two words x, y ∈ A∗U of same
length, x is lexicographically smaller than y if there exist w, x′, y′ ∈ A∗U and
a, b ∈ AU such that x = wax′, y = wby′ and a < b.

For a positional numeration system U , it is natural to expect that N is U -
recognizable. A necessary condition is that the sequence U satisfies a linear
recurrence relation [12].

Definition 2. A positional numeration system U = (Ui)i≥0 is said to be linear,
if the sequence U satisfies a homogenous linear recurrence relation. For all i ≥ 0,
we have

Ui+k = a1Ui+k−1 + · · · + akUi (1)

for some k ≥ 1, a1, . . . , ak ∈ Z and ak �= 0.

Example 1. Consider the sequence defined by F0 = 1, F1 = 2 and for all
n ≥ 0, Fn+2 = Fn+1 + Fn. The Fibonacci (linear numeration) system is given
by F = (Fi)i≥0 = (1, 2, 3, 5, 8, 13, . . .). For instance, repF (15) = 100010 and
valF (101001) = 13 + 5 + 1 = 19.

In this paper, we address the following decidability question.

Problem 1. Given a linear numeration system U and a set X ⊆ N such that
repU (X) is recognized by a (deterministic) finite automaton. Is it decidable
whether or not X is ultimately periodic, i.e., whether or not X is a finite union
of arithmetic progressions ?

Ultimately periodic sets of integers play a special role. On the one hand such
infinite sets are coded thanks to a finite amount of information. On the other
hand the celebrated Cobham’s theorem asserts that these sets are the only sets
that are recognizable in all integer base systems [3]. It is the reason why they are
also referred in the literature as recognizable sets of integers (the recognizability
being in that case independent of the base). Moreover, Cobham’s theorem has
been extended to various situations and in particular, to numeration systems
given by substitutions [4].

J. Honkala showed in [8] that Problem 1 turns out to be decidable for the
usual integer base b ≥ 2 numeration system defined by Un = b Un−1 for n ≥ 1.
Let us also mention [1] where the number of states of the minimal automaton
accepting numbers written in base b and divisible by d is given explicitly.

The question under inspection in this paper was raised by J. Sakarovitch
during the “Journées de Numération” in Graz, May 2007. The question was
initially asked for a larger class of systems that the one treated here, namely for
any abstract numeration systems defined on an infinite regular language [9].

The structure of this paper is the same as [8]. First we give an upper bound on
the admissible periods of a U -recognizable set X when it is assumed to be ulti-
mately periodic, then an upper bound on the admissible preperiods is obtained.
These bounds depend essentially on the number of states of the (minimal) au-
tomaton recognizing repU (X). Finally, finitely many such periods and preperiods
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have to be checked. Even if the structure is the same, our arguments and tech-
niques are quite different from [8]. Actually they cannot be applied to integer
base systems (see Remark 5).

In the next section, Theorem 1 gives a decision procedure for Problem 1
whenever U is a linear numeration system such that N is U -recognizable and
satisfying a relation like (1) with ak = ±1 (the main reason for this assumption
is that 1 and −1 are the only two integers invertible modulo n for all n ≥ 2).
In the last section, we consider the same decision problem but restated in the
framework of abstract numeration systems [9]. We apply successfully the same
kind of techniques to a large class of abstract numeration systems (for instance,
an example consisting of two copies of the Fibonacci system is considered). The
corresponding decision procedure is given by Theorem 2. All along the paper,
we try whenever it is possible to state results in their most general form, even
if later on we have to restrict ourselves to particular cases. For instance, results
about the admissible preperiods do not require any extra assumption.

2 Decision Procedure for Linear Systems with ak = ±1

We will often consider positional numeration systems U = (Ui)i≥0 satisfying the
following condition:

lim
i→+∞

Ui+1 − Ui = +∞. (2)

Lemma 1. Let U = (Ui)i≥0 be a positional numeration system satisfying (2).
Then for all j, there exists L such that for all � ≥ L,

10−| repU (t)| repU (t), t = 0, . . . , Uj − 1

are greedy U -representations. Otherwise stated, if w is a greedy U -representation,
then for r large enough, 10rw is also a greedy U -representation.

Proof. Notice that repU (Uj − 1) is the greatest word of length j in repU (N),
since repU (Uj) = 10j. By hypothesis, there exists L such that for all � ≥ L,
U+1 − U > Uj − 1. Therefore, for all � ≥ L,

10−j repU (Uj − 1)

is the greedy U -representation of U +Uj −1 < U+1 and the conclusion follows.

Remark 2. Bertrand numeration systems associated with a real number β > 1
are defined as follows. Let Aβ = {0, . . . , "β#− 1}. Any x ∈ [0, 1] can be written as

x =
+∞∑

i=1

ci β
−i, with ci ∈ Aβ

and the sequence (ci)i≥1 is said to be a β-representation of x. The maximal β-
representation of x for the lexicographical order is denoted dβ(x) and is called the
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β-development of x (for details see [10, Chap. 8]). We say that a β-development
(ci)i≥1 is finite if there exists N such that ci = 0 for all i ≥ N . If there exists m ≥
1 such that dβ(1) = t1 · · · tm with tm �= 0, we set d∗β(1) := (t1 · · · tm−1(tm −1))ω,
otherwise dβ(1) is infinite and we set d∗β(1) := dβ(1).

We can now define a positional numeration system Uβ = (Ui)i≥0 associated
with β (see [2]). If d∗β(1) = (ti)i≥1, then

U0 = 1 and ∀i ≥ 1, Ui = t1Ui−1 + · · · + tiU0 + 1. (3)

If β is a Parry number (i.e., dβ(1) is finite or ultimately periodic) then d∗β(1) is
ultimately periodic and one can derive from (3) that the sequence Uβ satisfies a
linear recurrence relation and as a consequence of Bertrand’s theorem [2] linking
greedy Uβ-representations and finite factors occurring in β-developments, the
language repUβ

(N) of the greedy Uβ-representations is regular. The automaton
accepting these representations is well-known [6] and has a special form (all
states — except for a sink — are final and from all these states, an edge of label
0 goes back to the initial state). We therefore have the following property being
much stronger than the previous lemma. If x and y are greedy Uβ-representations
then x0y is also a greedy Uβ-representation.

Example 2. The Fibonacci system is the Bertrand system associated with the
golden ratio (1 +

√
5)/2. Since greedy representations in the Fibonacci system

are the words not containing two consecutive ones [13], then for x, y ∈ repF (N),
we have x0y ∈ repF (N).

Definition 3. Let X ⊆ N be a set of integers. The characteristic word of X is
an infinite word x0x1x2 · · · over {0, 1} defined by xi = 1 if and only if i ∈ X.

Consider for now X ⊆ N to be an ultimately periodic set. The characteristic
word of X is therefore an infinite word over {0, 1} of the form

x0x1x2 · · · = uvω

where u and v are chosen of minimal length. We say that the length |u| of u
(resp. the length |v| of v) is the preperiod (resp. period) of X. Hence, for all
n ≥ |u|, n ∈ X if and only if n + |v| ∈ X.

The following lemma is a simple consequence of the minimality of the period
chosen to represent an ultimately periodic set.

Lemma 2. Let X ⊆ N be an ultimately periodic set of period pX and preperiod
aX . Let i, j ≥ aX . If i �≡ j mod pX then there exists t < pX such that either
i + t ∈ X and j + t �∈ X or i + t �∈ X and j + t ∈ X.

We assume that the reader is familiar with automata theory (see for instance
[11]) but let us recall some classical results. Let L ⊆ Σ∗ be a language over a
finite alphabet Σ and x be a finite word over Σ. We set

x−1L = {z ∈ Σ∗ | xz ∈ L}.
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We can now define the Myhill-Nerode congruence. Let x, y ∈ Σ∗. We have x ∼L y
if and only if x−1L = y−1L. Moreover L is regular if and only if ∼L has a finite
index being the number of states of the minimal automaton of L.

For a sequence (Ui)i≥0 of integers, NU (m) ∈ {1, . . . ,m} denotes the number
of values that are taken infinitely often by the sequence (Ui mod m)i≥0.

Proposition 1. Let U = (Ui)i≥0 be a positional numeration system satisfying
(2). If X ⊆ N is an ultimately periodic U -recognizable set of period pX , then any
deterministic finite automaton accepting repU (X) has at least NU (pX) states.

Proof. Let aX be the preperiod of X . By Lemma 1, there exists L such that for
any h ≥ L, the words

10h−| repU (t)| repU (t), t = 0, . . . , pX − 1

are greedy U -representations. The sequence (Ui mod pX)i≥0 takes infinitely of-
ten NU (pX) =: N different values. Let h1, . . . , hN ≥ L be such that

i �= j ⇒ Uhi �≡ Uhj mod pX

and h1, . . . , hN can be chosen such that Uhi > aX for all i ∈ {1, . . . , N}.
By Lemma 2, for all i, j ∈ {1, . . . , N} such that i �= j, there exists ti,j < pX

such that either Uhi + ti,j ∈ X and Uhj + ti,j �∈ X , or Uhi + ti,j �∈ X and
Uhj + ti,j ∈ X . Therefore,

wi,j = 0| repU (pX−1)|−| repU (ti,j)| repU (ti,j)

is a word such that either

10hi−| repU (pX−1)|wi,j ∈ repU (X) and 10hj−| repU (pX−1)|wi,j �∈ repU (X),

or

10hi−| repU (pX−1)|wi,j �∈ repU (X) and 10hj−| repU (pX−1)|wi,j ∈ repU (X).

Therefore the words 10h1−| repU (pX−1)|, . . . , 10hN−| repU (pX−1)| are pairwise non-
equivalent for the relation ∼repU (X) and the minimal automaton of repU (X) has
at least N = NU (pX) states.

The previous proposition has an immediate consequence.

Corollary 1. Let U = (Ui)i≥0 be a positional numeration system satisfying (2).
Assume that

lim
m→+∞

NU (m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repU (X) is ac-
cepted by a DFA with d states is bounded by the smallest integer s0 such that for
all m ≥ s0, NU (m) > d.
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For a sequence (Ui)i≥0 of integers, if (Ui mod m)i≥0 is ultimately periodic,
we denote its (minimal) preperiod by ιU (m) (we choose notation ι to remind
the word index which is equally used as preperiod) and its (minimal) period by
πU (m). The next lemma provides a special case where assumption about NU (m)
in Corollary 1 is satisfied.

Lemma 3. If U = (Ui)i≥0 is a linear numeration system satisfying a recurrence
relation of order k of the kind (1) with ak = ±1, then limm→+∞NU (m) = +∞.

Proof. For all m ≥ 2, since U is a linear numeration system, the sequence (Ui

mod m)i≥0 is ultimately periodic but here it is even purely periodic. Indeed,
for all i ≥ 0, Ui+k is determined by the k previous terms Ui+k−1, . . . , Ui. But
since ak = ±1, for all i ≥ 0, Ui is also determined by the k following terms
Ui+1, . . . , Ui+k. So, by definition of NU (m), the sequence (Ui mod m)i≥0 takes
exactly NU (m) different values because any term appears infinitely often.

Since U is increasing, the function α mapping m onto the smallest index
α(m) such that Uα(m) ≥ m is nondecreasing and limm→+∞ α(m) = +∞. The
conclusion follows, as NU (m) ≥ α(m). Indeed, U0, . . . , Uα(m)−1 are distinct. So
(Ui mod m)i≥0 takes infinitely often at least α(m) values.

Remark 3. Let U = (Ui)i≥0 be a positional numeration system satisfying hy-
pothesis of Lemma 3 and let X be a U -recognizable set of integers. If repU (X)
is accepted by a DFA with d states, then the constant s0 (depending on d) given
in the statement of Corollary 1 can be estimated as follows.

By Lemma 3, limm→+∞NU (m) = +∞. Define t0 to be the smallest integer
such that α(t0) > d, where α is defined as in the proof of Lemma 3. This integer
can be effectively computed by considering the first terms of the linear sequence
(Ui)i≥0. Notice that NU (t0) ≥ α(t0) > d. Consequently s0 ≤ t0.

Moreover, if U satisfies (2) and if X is an ultimately periodic set, then, by
Corollary 1, the period of X is bounded by t0. So t0 can be used as an upper
bound for the period and it can be effectively computed.

A result similar to the previous corollary (in the sense that it permits to give
an upper bound on the period) can be stated as follows. One has to notice that
ak = ±1 implies that 1 occurs infinitely often in (Ui mod m)i≥0 for all m ≥ 2.

Proposition 2. Let U = (Ui)i≥0 be a positional numeration system satisfying
(2) and X ⊆ N be an ultimately periodic U -recognizable set of period pX . If 1
occurs infinitely many times in (Ui mod pX)i≥0 then any deterministic finite
automaton accepting repU (X) has at least pX states.

Proof. Let aX be the preperiod of X . Applying several times Lemma 1, there
exist n1, . . . , npX such that

10npX 10npX−1 · · · 10n10| repU (pX−1)|−| repU (t)| repU (t), t = 0, . . . , pX − 1

are greedy U -representations. Moreover, since 1 occurs infinitely many times
in the sequence (Ui mod pX)i≥0, n1, . . . , npX can be chosen such that, for all
j = 1, . . . , pX ,
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valU (10nj · · · 10n1+| repU (pX−1)|) ≡ j mod pX

and
valU (10n1+| repU (pX−1)|) > aX .

For i, j ∈ {1, . . . , pX}, i �= j, by Lemma 2 the words

10ni · · · 10n1 and 10nj · · · 10n1

are nonequivalent for ∼repU (X). This can be shown by concatenating some word
of the kind 0| repU (pX−1)|−| repU (t)| repU (t) with t < pX , as in the proof of Propo-
sition 1. This concludes the proof.

Now we want to obtain an upper bound on the preperiod of any ultimately
periodic U -recognizable set.

Proposition 3. Let U = (Ui)i≥0 be a linear numeration system. Let X ⊆ N be
an ultimately periodic U -recognizable set of period pX and preperiod aX . Then
any deterministic finite automaton accepting repU (X) has at least | repU (aX −
1)| − ιU (pX) states.

The arguments of the following proof are similar to the one found in [8].

Proof. W.l.o.g. we can assume that | repU (aX − 1)| − ιU (pX) > 0. The se-
quence (Ui mod pX)i≥0 is ultimately periodic with preperiod ιU (pX) and period
πU (pX). Proceed by contradiction and assume that A is a deterministic finite
automaton with less than | repU (aX − 1)| − ιU (pX) states accepting repU (X).
There exist words w,w4 such that the greedy U -representation of aX − 1 can be
factorized as

repU (aX − 1) = ww4

with |w| = | repU (aX − 1)| − ιU (pX). By the pumping lemma, w can be written
w1w2w3 with w2 �= ε and for all i ≥ 0,

w1w
i
2w3w4 ∈ repU (X) ⇔ w1w2w3w4 ∈ repU (X).

By minimality of aX and pX , either aX −1 ∈ X and for all n ≥ 1, aX +npX −1 �∈
X , or aX − 1 �∈ X and for all n ≥ 1, aX + npX − 1 ∈ X . Using the ultimate peri-
odicity of (Ui mod pX)i≥0, we observe that repeating a factor of length multiple
of πU (pX) exactly pX times does not change the value mod pX and we get

valU (w1w
pX πU (pX )
2 w2w3w4) ≡ valU (w1w2w3w4) mod pX ,

leading to a contradiction.

For the sake of completeness, we restate some well-known property of ultimately
periodic sets (see for instance [11] for a prologue on the Pascal’s machine for
integer base systems).
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Lemma 4. Let a, b be nonnegative integers and U = (Ui)i≥0 be a linear numer-
ation system. The language

val−1
U (aN + b) = {w ∈ A∗U | valU (w) ∈ aN + b} ⊂ A∗U

is regular. In particular, if N is U -recognizable then a DFA accepting repU (aN+b)
can be obtained efficiently and any ultimately periodic set is U -recognizable.

Remark 4. In the previous statement, the assumption about the U -recogniza-
bility of N is of particular interest. Indeed, it is well-known that for an ar-
bitrary linear numeration system, N is in general not U -recognizable. If N is
U -recognizable, then U satisfies a linear recurrence relation [12], but the converse
does not hold. Sufficient conditions on the recurrence relation that U satisfies
for N to be U -recognizable are given in [7].

Theorem 1. Let U = (Ui)i≥0 be a linear numeration system such that N is U -
recognizable and satisfying a recurrence relation of order k of the kind (1) with
ak = ±1 and condition (2). It is decidable whether or not a U -recognizable set
is ultimately periodic.

Proof. Let X be a U -recognizable set and d be the number of states of the
minimal automaton of repU (X).

As discussed in Remark 3, if X is ultimately periodic, then the admissible
periods are bounded by the constant t0, which is effectively computable (an alter-
native and easier argument is provided by Proposition 2). Then, using Proposi-
tion 3, the admissible preperiods are also bounded by a constant. Indeed, assume
that X is ultimately periodic with period pX ≤ t0 and preperiod aX . We have
ιU (pX) = 0 and any DFA accepting repU (X) must have at least | repU (aX − 1)|
states. Therefore, the only values that aX can take satisfy | repU (aX − 1)| ≤ d.

Consequently the sets of admissible preperiods and periods that we have to
check are finite. For each pair (a, p) of admissible preperiods and periods, there
are at most 2a2p distinct ultimately periodic sets. Thanks to Lemma 4, one can
build an automaton for each of them and then compare the language L accepted
by this automaton with repU (X). (Recall that testing whether L \ repU (X) = ∅
and repU (X) \ L = ∅ is decidable algorithmically).

Remark 5. We have thus obtained a decision procedure for our Problem 1 when
the coefficient ak occurring in (1) is equal to ±1. On the other hand, whenever
gcd(a1, . . . , ak) = g ≥ 2, for all n ≥ 1 and for all i large enough, we have Ui ≡ 0
mod gn and assumption about NU (m) in Corollary 1 does not hold [5]. Indeed,
the only value taken infinitely often by the sequence (Ui mod gn)i≥0 is 0, so
NU (m) equals 1 for infinitely many values of m. Notice in particular, that the
same observation can be made for the usual integer base b ≥ 2 numeration system
where the only value taken infinitely often by the sequence (bi mod bn)i≥0 is 0,
for all n ≥ 1.
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3 A Decision Procedure for a Class of Abstract
Numeration Systems

An abstract numeration system S = (L,Σ,<) is given by an infinite regular
language L over a totally ordered alphabet (Σ,<) [9]. By enumerating the words
of L in genealogical order, we get a one-to-one correspondence denoted repS

between N and L. In particular, 0 is represented by the first word in L. The
reciprocal map associating a word w ∈ L to its index in the genealogically
ordered language L is denoted valS . A set X ⊆ N of integers is S-recognizable if
the language repS(X) over Σ is regular (i.e., accepted by a finite automaton).

Let S = (L,Σ,<) be an abstract numeration system built over an infinite
regular language L having ML = (QL, q0,L, Σ, δL, FL) as minimal automaton.
The transition function δL : QL ×Σ → QL is extended on QL ×Σ∗. We denote
by uj(q) (resp. vj(q)) the number of words of length j (resp. ≤ j) accepted
from q ∈ QL in ML. By classical arguments, the sequences (uj(q))j≥0 (resp.
(vj(q))j≥0) satisfy the same homogenous linear recurrence relation for all q ∈ QL

(for details, see Remark 6).
In this section, we consider, with some extra hypothesis on the abstract nu-

meration system, the following decidability question analogous to Problem 1.

Problem 2. Given an abstract numeration system S and a set X ⊆ N such
that repS(X) is recognized by a (deterministic) finite automaton, is it decidable
whether or not X is ultimately periodic, i.e., whether or not X is a finite union
of arithmetic progressions ?

Abstract numeration systems are a generalization of positional numeration sys-
tems U = (Ui)i≥0 for which N is U -recognizable.

Example 3. Take the language L = {ε} ∪ 1{0, 01}∗ and assume 0 < 1. Ordering
the words of L in genealogical order: ε, 1, 10, 100, 101, 1000, 1001, . . . gives back
the Fibonacci system.

Example 4. Consider the language L = {ε}∪{a, ab}∗∪{c, cd}∗ and the ordering
a < b < c < d of the alphabet. If we order the first words in L we get

0 ε 5 cc 10 ccc 15 aaba 20 ccdc
1 a 6 cd 11 ccd 16 abaa 21 cdcc
2 c 7 aaa 12 cdc 17 abab 22 cdcd
3 aa 8 aab 13 aaaa 18 cccc 23 aaaaa
4 ab 9 aba 14 aaab 19 cccd 24 aaaab

Notice that there is no bijection between {a, b, c, d} and a set of integers lead-
ing to a positional linear numeration system. Otherwise stated, a, b, c, d cannot
be identified with usual “digits”. For all n ≥ 1, we have un(q0,L) = 2Fn and
u0(q0,L) = 1. Consequently, for n ≥ 1,

vn(q0,L) = 1 +
n∑

i=1

ui(q0,L) = 1 + 2
n∑

i=1

Fi.
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d c a b
c aac

Fig. 1. A DFA accepting L

Notice that for n ≥ 1, vn(q0,L) − vn−1(q0,L) = un(q0,L) = 2Fn. Consequently,
by definition of the Fibonacci sequence, we get for all n ≥ 3,

vn(q0,L) − vn−1(q0,L) = (vn−1(q0,L) − vn−2(q0,L)) + (vn−2(q0,L) − vn−3(q0,L))

and vn(q0,L) = 2vn−1(q0,L) − vn−3(q0,L), with v0(q0,L) = 1, v1(q0,L) = 3,
v2(q0,L) = 7.

Remark 6. The computation given in the previous example to obtain a homoge-
nous linear recurrence relation for the sequence (vj(q0,L))j≥0 can be carried on
in general. Let q ∈ QL. The sequence (uj(q))j≥0 satisfies a homogenous linear
recurrence relation of order t whose characteristic polynomial is the characteris-
tic polynomial of the adjacency matrix of ML. There exist a1, . . . , at ∈ Z such
that for all j ≥ 0, uj+t(q) = a1uj+t−1(q) + · · ·+ atuj(q). Consequently, we have
for all j ≥ 0, vj+t+1(q)−vj+t(q) = uj+t+1(q) = a1(vj+t(q)−vj+t−1(q)) + · · ·+
at(vj+1(q) − vj(q)). Therefore the sequence (vj(q))j≥0 satisfies a homogenous
linear recurrence relation of order t + 1.

As shown by the following lemma, in an abstract numeration system, the different
sequences (uj(q))j≥0, for q ∈ QL, are replacing the single sequence (Uj)j≥0

defining a positional numeration system as in Definition 1.

Lemma 5. [9] Let w = σ1 · · ·σn ∈ L. We have

valS(w) =
∑

q∈QL

|w|∑

i=1

βq,i(w) u|w|−i(q) (4)

where
βq,i(w) := #{σ < σi | δL(q0,L, σ1 · · ·σi−1σ) = q} + 1q,q0,L (5)

for i = 1, . . . , |w|.

Recall that 1q,q′ is equal to 1 if q = q′ and it is equal to 0 otherwise.

Proposition 4. [9] Let S = (L,Σ,<) be an abstract numeration system built
over an infinite regular language L over Σ. Any ultimately periodic set X is
S-recognizable and a DFA accepting repS(X) can be effectively obtained.

Recall that an automaton is trim if it is accessible and coaccessible (each state can
be reached from the initial state and from each state, one can reach a final state).
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Proposition 5. Let S = (L,Σ,<) be an abstract numeration system such that
for all states q of the trim minimal automaton ML = (QL, q0,L, Σ, δL, FL) of L,

lim
j→+∞

uj(q) = +∞

and uj(q0,L) > 0 for all j ≥ 0. If X ⊆ N is an ultimately periodic set of
period pX , then any deterministic finite automaton accepting repS(X) has at
least "Nv(pX)/#QL# states where v = (vj(q0,L))j≥0.

To prove this result one has to adapt the arguments given in the proof of Propo-
sition 1 to the framework of abstract numeration systems.

Corollary 2. Let S = (L,Σ,<) be an abstract numeration system having the
same properties as in Proposition 5. Assume that the sequence v = (vj(q0,L))j≥0

is such that
lim

m→+∞
Nv(m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repS(X) is ac-
cepted by a DFA with d states is bounded by the smallest integer s0 such that for
all m ≥ s0, Nv(m) > d#QL, where QL is the set of states of the (trim) minimal
automaton of L.

Proposition 6. Let S = (L,Σ,<) be an abstract numeration system. If X ⊆ N
is an ultimately periodic set of period pX such that repS(X) is accepted by a DFA
with d states, then the preperiod aX of X is bounded by a constant C depending
only on d and pX .

To prove this result one has to adapt the arguments given in the proof of Propo-
sition 3 to the framework of abstract numeration systems.

Remark 7. The constant C of the previous result can be effectively computed.
Using notation of the previous proof, one has to choose a constant C such that
aX > C implies | repS(aX −1)|−d#QL > I(pX). Since the abstract numeration
system S, the period pX and the number d of states are given, I(pX) and repS(n)
for all n ≥ 0 can be effectively computed.

Theorem 2. Let S = (L,Σ,<) be an abstract numeration system such that for
all states q of the trim minimal automaton ML = (QL, q0,L, Σ, δL, FL) of L

lim
j→∞

uj(q) = +∞

and uj(q0,L) > 0 for all j ≥ 0. Assume moreover that v = (vi(q0,L))i≥0 satisfies
a linear recurrence relation of the form (1) with ak = ±1. It is decidable whether
or not a S-recognizable set is ultimately periodic.

Proof. The proof is essentially the same as the one of Theorem 1. Let X be a
S-recognizable set and d be the number of states of the minimal automaton of
repS(X). With the same reasoning as in the proof of Lemma 3, limm→+∞
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Nv(m) = +∞. IfX is ultimately periodic, then its period is bounded by a constant
t0 that can be effectively estimated.

If X is ultimately periodic with period pX ≤ t0, then using Proposition 6,
its preperiod is bounded by a constant (which can also be computed effectively
thanks to Remark 7).

Consequently, the sets of admissible periods and preperiods we have to check
are finite. Thanks to Proposition 4, one has to build an automaton for each
ultimately periodic set corresponding to a pair of admissible preperiods and
periods and then compare the accepted language with repS(X).

Example 5. The abstract numeration system given in Example 4 satisfies all the
assumptions of the previous theorem.
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Abstract. Several classical models of picture grammars based on array rewriting
rules can be unified and extended by a tiling based approach. The right part of
a rewriting rule is formalized by a finite set of permitted tiles. We focus on a
simple type of tiling, named regional, and define the corresponding regional tile
grammars. They include both Siromoney’s (or Matz’s) Kolam grammars, and
their generalization by Průša. Regionally defined pictures can be recognized with
polynomial time complexity by an algorithm extending the CKY one for strings.
Regional tile grammars and languages are strictly included into the tile grammars
and languages, and are incomparable with Giammarresi-Restivo tiling systems
(or Wang’s tilings).

Keywords: Picture language, tiling, picture grammar, 2D language, CKY algo-
rithm, syntactic pattern recognition.

1 Introduction

Several classical models of picture grammars based on array rewriting rules can be
unified by a tiling based approach. The right part of a rewriting rule can be specified by
a finite set of permitted two by two tiles. We focus on a simple type of tiling, named
regional and define the corresponding regional tile grammars. The new class generalizes
some classical models, yet it permits efficient, polynomial-time recognition of pictures
by an approach extending the classical CKY algorithm [12] of context-free (CF) string
languages.

Regional tile grammars can be viewed from the standpoint of less, or of more pow-
erful models. First, regional tile grammars are a generalization of the classical Kolam
grammars of Siromoney [11] (which are equivalent to the grammars of Matz [7]), where
the right parts of grammar rules are tiled in ways than cannot be obtained by 2D regular
expressions.

From the standpoint of more powerful grammar models, regional tile grammars cor-
respond to a natural restriction of the recently introduced tile (rewriting) grammars
(TG). Such grammars have rewriting rules that replace a homogeneous non-terminal
rectangular area with a picture belonging to a local language defined by tiles. It is known
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that the TG family dominates the family of languages defined by the Tiling Systems of
Giammarresi and Restivo [4] (which are equivalent to Wang’s tilings [1]), and that the
latter are NP-complete with respect to picture recognition time complexity.

The new model can be conveniently defined starting from TG grammars, by impos-
ing the constraint that the local language used in a rule is made by assembling a finite
number of homogeneous rectangular pictures. Such tiling is related to Simplot’s [9]
interesting closure operation on pictures.

The presentation continues in Sect. 2 with preliminary definitions, and in Sect. 3 with
the definition of regional tile grammars and relevant examples. In Sect. 4 we present
the parsing algorithm and prove its correctness and complexity. In Sect. 5 we compare
regional tile grammars and languages with other picture language families.

2 Basic Definitions and Regional Local Languages

The following notation and definitions are mostly from [5] and [2].

Definition 1. Let Σ be a finite alphabet. A two-dimensional array of elements of Σ is
a picture over Σ. The set of all pictures over Σ is Σ++. A picture language is a subset
of Σ++.

For h, k ≥ 1, Σ(h,k) denotes the set of pictures of size (h, k) (we will use the notation
|p| = (h, k), |p|row = h, |p|col = k). # /∈ Σ is used when needed as a boundary symbol;
p̂ refers to the bordered version of picture p. That is, for p ∈ Σ(h,k), it is

p =

p(1, 1) . . . p(1, k)
...

. . .
...

p(h, 1) . . . p(h, k)
p̂ =

# # . . . # #
# p(1, 1) . . . p(1, k) #
...

...
. . .

...
...

# p(h, 1) . . . p(h, k) #
# # . . . # #

A pixel is an element p(i, j) of p. If all pixels are identical to C ∈ Σ the picture is
called C-homogeneous or C-picture.

The domain of a picture p is the set dom(p) = {1, . . . , |p|row} × {1, . . . , |p|col}.
Row and column concatenations are denoted + and �, respectively. p + q is de-

fined iff p and q have the same number of columns; the resulting picture is the vertical
juxtaposition of p over q. pk� is the vertical juxtaposition of k copies of p; p∗� is the
corresponding closure. �,k� ,∗� are the column analogous.

Definition 2. Let p be a picture over Σ. A subdomain of dom(p) is a set d of the form
{x, . . . , x′} × {y, . . . , y′} where 1 ≤ x ≤ x′ ≤ |p|row, 1 ≤ y ≤ y′ ≤ |p|col. We
will often denote a subdomain by using its top-left and bottom-right coordinates, in the
previous case the quadruple (x, y;x′, y′).

The set of subdomains of p is denoted D(p). Let d = {x, . . . , x′} × {y, . . . , y′} ∈
D(p), the subpicture spic(p, d) associated to d is the picture of size (x′−x+1, y′−y+
1) such that ∀i ∈ {1, . . . , x′ − x + 1} and ∀j ∈ {1, . . . , y′ − y + 1} spic(p, d)(i, j) =
p(x + i− 1, y + j − 1).



Regional Languages and Tiling: A Unifying Approach to Picture Grammars 255

A subdomain is calledC-homogeneous when its associated subpicture is a C-picture.
C is called the label of the subdomain.

Two subdomains da = (ia, ja; ka, la) and db = (ib, jb; kb, lb) are horizontally adja-
cent (resp. vertically adjacent) iff jb = la + 1, and kb ≥ ia, ka ≥ ib (resp. ib = ka + 1,
and lb ≥ ja, la ≥ jb).

The translation of a subdomain d = (x, y;x′, y′) by displacement (a, b) ∈ Z2 is the
subdomain d = (x + a, y + b;x′ + a, y′ + b).

We now introduce the central concepts of regional language, tile, and local language.
The adjective “regional” is a metaphor of geographical political maps, such that differ-
ent regions are filled with different colors.

Definition 3. A homogeneous partition of a picture p is any partition π of dom(p) into
homogeneous subdomains such that adjacent subdomains have different labels.

A homogeneous partition is regional (HR) iff distinct subdomains have distinct la-
bels. We will call a picture p regional if it admits a HR partition.

A language is regional if all its pictures are so.

We observe that if a picture p admits a homogeneous partition of dom(p) into subdo-
mains, then the partition is unique and will be denoted by Π(p).

Definition 4. We call tile a square picture of size (2,2). We denote by �p� the set of all
tiles contained in a picture p.

Let Σ be a finite alphabet. A (two-dimensional) language L ⊆ Σ++ is local if there
exists a finite set θ of tiles over the alphabetΣ∪{#} such that L = {p ∈ Σ++ | �p̂� ⊆
θ}. We will refer to such language as LOC(θ).

The right parts of the rules presented in Sect. 3.1 are examples of regional local lan-
guages. Next, we characterize the form of tiles occurring in a regional local language.

Consider a tile set θ over the alphabet Σ ∪{#}. For a tile t =
(
x y
z w

)

we define the

horizontal and vertical adjacency relations Ht,Vt ⊆ (Σ ∪ {#})2 as

xHty, zHtw, xVtz, yVtw

The adjacency relation is At = Ht ∪ Vt.
The relations can be extended to a tile set θ: xHθy iff ∃t ∈ θ : xHty; and similarly

for Vθ and Aθ .

Proposition 1. The local language defined by a tile set θ is regional if

1. the (finite) language θ ∩Σ(2,2) is regional, and
2. the incidence graph of

(
Aθ ∩Σ2

)
\ I, where I is the identity relation, is acyclic.

3 Regional Tile Grammars

We are going to introduce and study a grammar model specified by a set of rewriting
rules. A typical rule has a left and a right part, both pictures of unspecified but equal size
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(isometric). The left part is an A-homogeneous picture, where A is a nonterminal sym-
bol. The right part is a picture of a regional local language over nonterminal symbols.
Thus a rule is a scheme defining a possibly unbounded number of isometric pairs: left
picture, right picture. In addition there are rules whose right part is a single terminal.

Notice that regional tile grammars may be viewed as extending CF grammars from
one to two dimensions: see [2] for the argument that such grammars in one dimension
are essentially CF grammars allowing a local regular expression in right parts of rules.

The derivation process of a picture starts from a S(axiom)-homogeneous picture. At
each step, an A-homogeneous subpicture is replaced with an isometric picture of the
regional language, defined by the right part of a rule A → . . .. The process terminates
when all nonterminals have been eliminated from the current picture.1

Definition 5. A regional tile grammar (RTG) is a tuple (Σ,N, S,R), where Σ is the
terminal alphabet, N is a set of nonterminal symbols, S ∈ N is the starting symbol, R
is a set of rules.
Let A ∈ N . There are two kinds of rules:

Fixed size: A → t, where t ∈ Σ; (1)

Variable size: A → ω, ω is a set of tiles over N ∪ {#}, (2)

LOC(ω) is a regional language. (3)

Picture derivation is defined as a relation between partitioned pictures.

Definition 6. Consider a grammar G = (Σ,N, S,R), let p, p′ ∈ (Σ ∪ N)(h,k) be
pictures of identical size. Let π, π′ be homogeneous partitions of dom(p), with π =
{d1, . . . , dn}. We say that (p′, π′) derives in one step from (p, π), written

(p, π) ⇒G (p′, π′)

iff, for some A ∈ N and for some rule ρ ∈ R with left part A, there exists in π an
A-homogeneous subdomain di = (x, y;x′, y′), called application area, such that:

– p′ is obtained substituting spic(p, di) in p with a picture s, defined as follows:

• if ρ is of type (1), then s = t;
• if ρ is of type (2), then s ∈ LOC(ω).

– π′ is a homogeneous partition of dom(p) into the subdomains

(π \ {di}) ∪ transldi(Π(s))

where transldi(Π(s)) is the translation by displacement (x− 1, y − 1) (intuitively the
position of di in p) of the subdomains of Π(s), the homogeneous partition of s.

1 For brevity, this presentation focuses on nonterminal rules, thus excluding for instance that
both terminal and nonterminal symbols are in the same right part. More concise and readable
forms of rules should be used in applications.
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We say that (q, π′) derives from (p, π) in n steps, written (p, π) n⇒G (q, π′), iff
p = q and π = π′, when n = 0, or there are a picture r and a homogeneous partition

π′′ such that (p, π) n−1=⇒G (r, π′′) and (r, π′′) ⇒G (q, π′). We use the abbreviation
(p, π) ∗⇒G (q, π′) for a derivation with a finite number of steps.

Definition 7. The picture language defined by a grammar G (written L(G)) is the set
of p ∈ Σ++ such that (

S|p|, dom(p)
)
∗⇒G (p, I)

where I denotes the partition of dom(p) defined by single pixels. For short we also
write S

∗⇒G p.

If we drop the constraint (3), we obtain the more general model of tile grammars [2].

Definition 8. A tile grammar (TG) is a tuple (Σ,N, S,R) as in Definition 5, but con-
dition (3) is omitted.

Clearly, the picture derivation process for TG and RTG is the same. Notice that a deriva-
tion is defined iff the picture admits a homogeneous partition (see [2] for details). What
makes the difference between Definition 5 and Definition 8 is that in the former the
homogeneous partition is regional.

To illustrate, we now list some examples that will be reconsidered in Sect. 5 to sep-
arate the family RTG from other ones.

3.1 Regional Tile Grammars Examples

Example 1. One row and one column of b’s.
The set of all pictures such that there is one row and one column (both not at the

border) that hold b’s, and the remainder of the picture is filled with a’s.

S →

�
���������

# # # # # # #
# A1 A1 V1 A2 A2 #
# A1 A1 V1 A2 A2 #
# H1 H1 V1 H2 H2 #
# A3 A3 V2 A4 A4 #
# A3 A3 V2 A4 A4 #
# # # # # # #

�
���������

; Ai →

�
�����

# # # #
# X X #
# Ai Ai #
# Ai Ai #
# # # #

�
�����

|

�
�

# # # #
# X X #
# # # #

�
� , for 1 ≤ i ≤ 4

X →

�
�

# # # # #
# A X X #
# # # # #

�
� | a; Hi →

�
�

# # # # #
# B Hi Hi #
# # # # #

�
� | b, for 1 ≤ i ≤ 2

A → a; B → b; Vi →

�
�����

# # #
# B #
# Vi #
# Vi #
# # #

�
�����

| b, for 1 ≤ i ≤ 2.
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We recall that � � denotes the set of tiles contained in the argument picture. This notation
is more readable and concise than listing every tile:

S →
{

# #
# A1

,
# #
A1 A1

, . . . ,
A1 V1

H1 V1
,
V1 A2

V1 H2
, . . . ,

A4 A4

# # ,
A4 #
# #

}

.

Here is an example of derivation, with partitions outlined for better readability:

S S S S S
S S S S S
S S S S S
S S S S S

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A3 A3 V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

X X V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A X V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A A V2 A4 A4

A3 A3 V2 A4 A4

2⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

a a V2 A4 A4

A3 A3 V2 A4 A4

+⇒

a a b a a

b b b b b

a a b a a

a a b a a

Example 2. Picture with palindromic rows. Each row is an even palindrome over {a, b}.

SP →

�
�����

# # # #
# R R #
# SP SP #
# SP SP #
# # # #

�
�����

|

�
�

# # # #
# R R #
# # # #

�
�

R →

�
�

# # # # # #
# A R R A′ #
# # # # # #

�
� |

�
�

# # # # # #
# B R R B′ #
# # # # # #

�
� |

�
�

# # # #
# A A′ #
# # # #

�
� |

�
�

# # # #
# B B′ #
# # # #

�
�

A → a; B → b; A′ → a; B′ → b.

Example 3. Misaligned palindromes.
A picture is a “ribbon” of two rows, divided into four fields: at the top-left and at the

bottom right of the picture are palindromes as in Example 2 (where Sp is defined). The
other two fields are filled with c’s and must not be adjacent.

S →

�
���

# # # # # # # #
# P1 P1 P1 P1 C1 C1 #
# C2 C2 P2 P2 P2 P2 #
# # # # # # # #

�
��� ; P1 → SP ; P2 → SP

Ci →

�
�

# # # # #
# C Ci Ci #
# # # # #

�
� | c, for 1 ≤ i ≤ 2; C → c.
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Procedure ComputeD(i, j; k, l):
for each size (v, h) ∈ {1, . . . , k − i + 1} × {1, . . . , l − j + 1}:

for each coordinate (i′, j′) ∈ {i, . . . , k} × {j, . . . , l}:
for each nonterminal A ∈ M(i′, j′; i′ + v − 1, j′ + h − 1):

put (i′, j′; i′ + v − 1, j′ + h − 1) into the set D(i, j; k, l)|A;

for each nonterminal A ∈ N :

if D(i, j; k, l)|A = ∅ then put (0, 0; 0, 0) into the set D(i, j; k, l)|A.

Fig. 1. ComputeD

4 Parsing for Regional Tile Grammars

To present our version of the CKY algorithm, we have to generalize from substrings to
subpictures. As a substring is identified by the positions of its first and last characters,
a subpicture is conveniently identified by its subdomain.

Let p be a picture, of size (m,n), to be parsed with a grammar G = (Σ,N,R, S).

Definition 9. A recognition matrix M is a 4-dimensional m × n × m × n matrix,
whose generic element M(i, j;h, k) is a set of non-terminals. The meaning of A ∈
M(i, j;h, k) is that A can derive the subpicture spic(p, (i, j;h, k)) of p.

In fact, only cells (i, j;h, k), with h ≥ i, k ≥ j, are used: these cells are the four-
dimensional counterpart of the upper triangular matrix used in classical CKY.

Definition 10. Consider a recognition matrix M, and a subdomain d = (i, j; k, l). Let
us order the nonterminal set N : A1, A2, . . . , A|N |. The subdomains vector D(d,M) is
the cartesian productD1×D2× . . .×D|N |, where every Dt is the set of subdomains d′

such that Nt ∈ M(d′) and d′ is a subdomain of d; if such set is empty, then Dt contains
the rectangle (0, 0; 0, 0).

For any nonterminalA, we will use the notation D(d,M)|A to denote the component
of the vector corresponding to A.

To simplify the notation, we shall write D(d) instead of D(d,M) at no risk of confu-
sion, because the algorithm refers to a unique recognition matrix M. Figure 1 shows
the procedure used to compute D.

Figure 2 shows the procedure to check if a rule ρ of the grammar can be applied to a
given rectangle (i, j; k, l).

The Main procedure, presented in Figure 3, is structured as a straightforward gen-
eralization to two dimensions of the CKY parsing algorithm. The input picture p is in
L(G) iff S ∈ M(1, 1;m,n).

4.1 Correctness and Complexity of Parsing

We start with a technical lemma, used to prove the correctness of the CheckRule
procedure.
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Procedure CheckRule (ω, (i, j; k, l)) :
ComputeD(i, j; k, l);
for each (d1, d2, . . . , d|N|) ∈ D(i, j; k, l) :

f := True;
for each (Na, Nb) ∈ Hω:

if da = (ia, ja; ka, la) and db = (ib, jb; kb, lb) are not such that
jb = la + 1, and kb ≥ ia, ka ≥ ib,
then f := False;

for each (Na, Nb) ∈ Vω:
if da = (ia, ja; ka, la) and db = (ib, jb; kb, lb) are not such that
ib = ka + 1, and lb ≥ ja, la ≥ jb,
then f := False;

for each (#, Na) ∈ Hω:
if da = (ia, ja; ka, la) and ja �= j then f := False;

for each (Na, #) ∈ Hω:
if da = (ia, ja; ka, la) and la �= l then f := False;

for each (#, Na) ∈ Vω:
if da = (ia, ja; ka, la) and ia �= i then f := False;

for each (Na, #) ∈ Vω:
if da = (ia, ja; ka, la) and ka �= k then f := False;

if f = True then return True;

return False.

Fig. 2. CheckRule

Procedure Main:
Every set in M is empty;
for each pixel p(i, j) = t,

if there exists a fixed size rule A → t ∈ R,
then put A into the set M(i, j; i, j);

for each size (v, h) ∈ {1, . . . , m} × {1, . . . , n}:

for each coordinate (i, j) ∈ {1, . . . , m} × {1, . . . , n}:
for each variable size rule rule (A → ω) ∈ R:

if CheckRule(ω, (i, j; i + v − 1, j + h − 1)),
then put A into the set M(i, j; i + v − 1, j + h − 1).

Fig. 3. Main

Lemma 1. Let ω be a regional set of tiles and d a subdomain. CheckRule(ω, d) returns
true iff there exists a rule C → ω, such that (p0, π0) ⇒G (p1, π1), where d ∈ π0, and
spic(p0, d) is a C-picture.

Proof. By construction, a true output of CheckRule(ω, d) is equivalent to the fact
that there exists a partition of d in the subdomains d1, d2, . . . , dr, and q ∈ LOC(ω),
such that:
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1. every spic(q, dj) is an A-picture, for some nonterminal A ∈ M(dj);
2. if spic(q, dj) is an A-picture, then for no dk �= dj the subpicture spic(q, dk) is an

A-picture.

This means that transld(Π(q)) is the HR partition {d1, d2, . . . , dr}. Moreover, starting
from (p0, π0), where spic(p0, d) is a C-picture, it is possible to apply a rule C → ω in
a derivation step (p0, π0) ⇒G (p1, π1), where π0 = {d, d′1, d′2, . . . , d′n}, π1 = {d′1, d′2,
. . . , d′n}∪ {d1, d2, . . . , dr}, and q = spic(p1, d) ∈ LOC(ω). �

After this, the correctness is easy to prove, analogously to the 1D case [12].

Theorem 1. M(d) = {A ∈ N | A ∗⇒G spic(p, d)}.

Proof. The proof is by induction over derivation steps.
Base: d = (i, j; i, j). This means that |spic(p, d)| = (1, 1). Hence, A

∗⇒G spic(p, d)
iff A → spic(p, d) ∈ R. This case is handled by the first loop of procedure Main, the
one over each pixel p(i, j). If spic(p, d) = t, and there exists a rule A → t, then the
algorithm puts A into M(d). Vice versa, A ∈ M(d) means that the algorithm has put
A in the set, therefore there must exist a rule A → spic(p, d).

Induction: let us consider d = (i, j; i+v−1, j+h−1), v > 1, or h > 1, or both. We
prove that A

∗⇒G spic(p, d) implies A ∈ M(d). In this case, the size of the subpicture
is not (1, 1), therefore the first rule used in the derivation A

∗⇒G spic(p, d) is a variable
size rule A → ω. Thanks to the two nested loops with control variables u and v, when
the algorithm considersd, it has already considered all its subdomainsd1, d2, . . . , dk. By
the induction hypothesis, for every 1 ≤ j ≤ k, B

∗⇒G spic(p, dj) implies B ∈ M(dj).
Hence (Lemma 1), CheckRule(ω, d) must be true, and the algorithm puts A in M(d).

Next, we prove that A ∈ M(d) implies A
∗⇒G spic(p, d). A ∈ M(d) means that

procedure Main has put A in the set. Therefore, CheckRule(ω, d) must be true. Thanks
to Lemma 1, this is equivalent to the existence of an applicable variable size rule A → ω

for the first step of the derivation A
∗⇒G spic(p, d). The rest of the derivation holds by

induction hypotesis. �

Theorem 2. The parsing problem for RTG has polynomial time complexity.

Proof. First, it is straightforward to see the time complexity of procedure ComputeD:
TComputeD = O(|N | · m2n2). Let us now consider the CheckRule procedure. After
computing D, the procedure performs a loop for each element of the subdomains vec-
tor, and nested loops on Hω and Vω. Therefore, TCheckRule(m,n) = O(|N | · m2n2 ·

max
A→ω∈R

{|Hω|, |Vω|}).

Coming finally to the Main procedure, we note that its core part consists of five
nested loops, two on sets of m elements, two on sets of n elements, and the last
one on |R| elements. The body is a call to CheckRule. Therefore, TMain(m,n) =
O
(
|R| ·m2n2 · TCheckRule(m,n)

)
, i.e.

TMain(m,n) = O

(

|R||N | · max
A→ω∈R

{|Hω|, |Vω|} ·m4n4

)

. �
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For the special case of CF Kolam grammars in Chomsky Normal form (CNF), we note
that the parsing time complexity is O(m2n2(m + n)) [3]. Some of the reasons of this
significant difference are the following. Kolam grammars in CNF are much simpler,
because in the right part of a rule there are at most two distinct nonterminals (see [7] for
details). So, checking if a rule is applicable has complexity which is linear with respect
to the picture width or height. Moreover, we think that there is room for improvement
e.g. in the CheckRule procedure, by using more complex data structures.

The next section will show that CF Kolam grammars are less expressive than RTG.

5 Comparison with Other Language Families

The property of having polynomial time complexity for picture recognition, united with
the rather simple and intuitively pleasing form of RTG rules, should make them a worth
addition to the series of array rewriting grammar models conceived in past years. In
this section we prove or recall some inclusion relations between grammar models and
corresponding language families. To this end we rely on the examples of Sect. 3, and
on the separation of complexity classes.

Starting with the family of highest generative capacity, we focus on tile grammars.

Proposition 2. The family of RTG languages is a proper subset of the family of TG
languages.

Proof. We have seen in Sect. 3 that RTG rules are a restricted form of TG rules, charac-
terized by the constraint of regional tiling. To show that inclusion is strict, we observe
that the picture recognition problem for tile grammars is NP-complete. This follows
from the (strict) inclusion [2] of the tiling systems (or Wang’s tiling) [4] family within
the TG language family, and the fact that the recognition problem is NP-complete in
time for the former [6]. �

We proceed by comparing RTG’s and tiling systems.

Proposition 3. The family of tiling system languages (i.e. Wang’s tiling) and the family
of RTG languages are incomparable.

Proof. On one hand, it is easy to see that the language of palindromic columns, used
in [2] to prove that tiling systems are strictly included in tile grammars, is also a
RTG language, obtained by a 90◦ rotation of Example 2. On the other hand, we know
that parsing tiling systems is NP-complete, and parsing RTG’s has polynomial time
complexity. �

The remaining models are weaker than RTG, and will be taken in historical order.

Proposition 4. The family of CF Kolam array grammar [11] (i.e. also [7]) languages
is strictly included in the family of RTG languages.

Proof. In [2] a construction is given to prove that a CF Kolam grammar (in the form
defined by Matz [7]) can be transformed into a TG. It is easy to see that the construction
used in the proof actually produces rules which satisfy the restriction of RTG’s.
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More directly, CF Kolam grammars in CNF can be seen as RTG’s such that the tile-
sets used in the right parts of rules must have one of the following forms:

Either

�
���

# # # # # #
# A A B B #
# A A B B #
# # # # # #

�
���, or

�
�������

# # # #
# A A #
# A A #
# B B #
# B B #
# # # #

�
�������

, or

�
���

# # # #
# A A #
# A A #
# # # #

�
���, with A �= B.

The inclusion is strict, because the language of Example 1 was shown by Matz [7]
to trespass the generative capacity of his grammars. �

The fact that the picture recognition problem for CF Kolam grammars has been recently
proved [3] to be polynomial in time of course follows from the above inclusion property
and from Theorem 2.

In the quest for generality, D. Průša [8] has recently defined a grammar model that
extends CF Kolam rules, gaining some generative capacity. The model is for instance
able to generate the language of Example 1.

Essentially, this kind of grammars can be seen as RTG’s with the additional con-
straint that tiles used in the right parts of rules must not have one of these forms:(

A B
C C

)

,

(
A C
B C

)

,

(
C C
A B

)

,

(
C A
C B

)

, with A,B,C all different. Therefore the follow-

ing inclusion holds.

Proposition 5. A Průša’s grammar “with productions in CF form” (PG) [8] is a re-
stricted kind of RTG. The corresponding family of languages is strictly included in the
family of RTG languages.

The inclusion of the language families is strict, because the language of Example 3
cannot be defined by PG’s. This fact can be sketchily proved as follows.

Proof. First, an obvious application of CF pumping lemma for strings (over the alpha-
bet {a + a, a + b, a + c, b + a, . . .}) excludes that the language can be obtained by
horizontal concatenation only. Therefore, it is necessary to generate the pictures either
as vertical concatenations of strings of equal length, or using a grid-like rule, such as�
���

# # # # # #
# A A B B #
# C C D D #
# # # # # #

�
���. By definition of the language, the two palindromes must span at least

one common column, therefore we cannot use a simple vertical concatenation. The fact
that {uuR | u ∈ {a, b}+} cannot be factorized as a concatenation of CF languages is
another simple corollary of the pumping lemma for CF languages. This means that each
misaligned palindrome must be generated starting from a single nonterminal. But it is
impossible for PG’s to define a grid-like rule with single nonterminals partially over-
lapping on common columns. �

TG

Tiling systems RTG

PG

CF Kolam grammars

CF Matrix grammars
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We finish with a synopsis of the previous language family inclusions. The early
model of CF Matrix grammars [10] is a very limited kind of CF Kolam grammars.

6 Conclusions

The generalization of array rewriting grammars offered by the new and simple regional
tile model is a convenient accomplishment of a series of generalizations, stemming
from the early models of Rosenfeld up to the models of Siromoney, Matz and Průša.
To our knowledge (but we may be missing something because the literature of picture
grammars is rather fragmented), this is the most general family of polynomial time rec-
ognizable picture languages based on rewriting rules, which in one dimension collapse
to CF string grammars.

Acknowledgement. We thank the anonymous referees for helpful suggestions.
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8. Průša, D.: Two-dimensional languages (PhD Thesis) (2004)
9. Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets.

TCS: Theoretical Computer Science 218 (1999)
10. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture

languages. Computer Graphics and Image Processing 1 (1972)
11. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewriting rules.

Information and Control 23(5), 447–470 (1973)
12. Younger, D.H.: Recognition of context-free languages in time n3. Information and Con-

trol 10(2), 189–208 (1967)



On a Special Class of Primitive Words

Elena Czeizler, Lila Kari, and Shinnosuke Seki

Department of Computer Science, University of Western Ontario,
London, Ontario, Canada, N6A 5B7
{elenac,lila,sseki}@csd.uwo.ca

Abstract. When representing DNA molecules as words, it is necessary
to take into account the fact that a word u encodes basically the same
information as its Watson-Crick complement θ(u), where θ denotes the
Watson-Crick complementarity function. Thus, an expression which in-
volves only a word u and its complement can be still considered as a
repeating sequence. In this context, we define and investigate the prop-
erties of a special class of primitive words, called θ-primitive, which can-
not be expressed as such repeating sequences. For instance, we prove the
existence of a unique θ-primitive root of a given word, and we give some
constraints forcing two distinct words to share their θ-primitive root.
Also, we present an extension of the well-known Fine and Wilf Theorem,
for which we give an optimal bound.

1 Introduction

Encoding information as DNA strands as in, e.g., DNA Computing, brings up for
investigation new features based on the specific biochemical properties of DNA
molecules. Recall that single-stranded DNA molecules can be viewed as words
over the quaternary alphabet of bases {A, T,C,G}. Moreover, one of the main
properties of DNA molecules is the Watson-Crick complementarity of the bases
A and T and respectively G and C. Because of this property two Watson-Crick
complementary single DNA strands with opposite orientation bind together to
form a DNA double strand, in a process called base-pairing. Recently, there were
several approaches to generalize notions from classical combinatorics on words
in order to incorporate this major characteristic of DNA molecules, see, e.g., [6],
[7], and [9]. Following these lines, in this paper, we generalize the concept of
primitivity and define θ-primitive words.

The notion of primitivity plays an important role in various fields of theoret-
ical computer science, such as algebraic coding theory, [11], and combinatorics
on words, [8]. A word is called primitive if it cannot be decomposed as a power
of another word. Thus, investigating the primitivity of a word is often the first
step when analyzing its properties. Moreover, how a word can be decomposed
and whether two words are powers of a common word are two questions which
were widely investigated in language theory, see, e.g., [2], [8], and [12]. While, in
classical combinatorics on words we look for repetitions of the form ui for some
word u and some i ≥ 2, when dealing with DNA molecules (i.e., their abstract
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representation as words) we should exploit the fact that a word u encodes the
same information as its complement θ(u), where θ denotes the Watson-Crick
complementarity function, or its mathematical formalization as an arbitrary an-
timorphic involution. In other words, we should look for expressions involving
a word u and its complement θ(u). In this context, we define θ-primitive words
as strings which cannot be decomposed using only some word u and its comple-
ment. Also, we define the θ-primitive root of a word w as the shortest word u
such that w can be decomposed using only u and its complement. In classical
combinatorics on words, there exist two equivalent definitions for the primitive
root of a word w: the shortest word u such that w = ui for some i ≥ 1, or
the unique primitive word u such that w = ui for some i ≥ 1. In our search
for such equivalent definitions for the θ-primitive root of a word, we succeed to
prove an extension of the well-known Fine and Wilf Theorem, one of the most
widely used results on words. Although it was initially proved in connection with
real functions, [5], the Fine and Wilf Theorem can be naturally interpreted also
as a result on words, see, e.g., [2] and [8]. Moreover, several extensions of this
theorem were proved so far, see, e.g., [1], [3], [4], and [10]. In this paper, we look
at the case when a word w has two decompositions: one using a word u and its
complement θ(u), and the other using some other word v and its complement
θ(v). If w is longer than a given bound, then we prove that u and v share their
θ-primitive root t and, thus w will have a refined decomposition depending on
t and its complement. Moreover, we show that our bound is optimal, i.e., twice
the length of the longer word (u or v) plus the length of the other word minus
the greatest common divisor of the lengths of u and v.

The paper is organized as follows. In Section 2, we fix our terminology and recall
some basic results. In Section 3 we investigate some basic properties of θ-primitive
words. In particular, we give an extension of the Fine and Wilf Theorem which im-
plies immediately that we can define the θ-primitive root of a word in two equiva-
lent ways. In Section 4, we present several constraints forcing two words to share
their θ-primitive root. In Section 5, we investigate some connections between the θ-
primitive words that we introduced here and the θ-palindrome words, which were
proposed and investigated in [7] and [9]. In Section 6, we present the optimal bound
for our extension of the Fine and Wilf Theorem.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ,
by ε the empty word, and Σ+ = Σ∗ \ {ε}. The length of a word w, denoted by
|w|, is the number of letters occurring in it, i.e., if w = a1 . . . an with ai ∈ Σ,
1 ≤ i ≤ n, then |w| = n. We say that u is a prefix (resp. a suffix ) of v if v = ut
(resp. v = tu) for some t ∈ Σ∗. For any 0 ≤ k ≤ |v|, we use the notation prefk(v)
(resp. sufk(v)) for the prefix (resp. suffix) of length k of a word v and Pref(v)
(resp. Suff(v)) for the set of all prefixes (resp. all suffixes) of v. In particular
pref0(v) = ε for any word v ∈ Σ∗. An integer p ≥ 1 is a period of a word
w = a1 . . . an, with ai ∈ Σ for all 1 ≤ i ≤ n, if ai = ai+p for all 1 ≤ i ≤ n− p.
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A word w ∈ Σ+ is called primitive if it cannot be written as a power of
another word; that is, w = un implies n = 1 and w = u. For a word w ∈ Σ+, the
shortest u ∈ Σ+ such that w = un for some n ≥ 1 is called the primitive root
of the word w and is denoted by ρ(w). The following result gives an alternative,
equivalent way for defining the primitive root of a word.

Theorem 1. For a word w ∈ Σ∗, there exists a unique primitive word t ∈ Σ+

such that ρ(w) = t, i.e., w = tn for some n ≥ 1.

The next result illustrates another useful property of primitive words.

Proposition 1. Let u ∈ Σ+ be a primitive word. Then, u cannot be a factor of
u2 in a nontrivial way, i.e., if u2 = xuy, then necessarily either x = ε or y = ε.

We say that two words u and v commute if uv = vu. The following result
characterizes the commutation of two words in terms of primitive roots.

Theorem 2. For u, v ∈ Σ∗, the following conditions are equivalent: i) u and v
commute; ii) u and v satisfy a non-trivial relation, i.e., an equation where the
two sides are not graphically identical; iii) u and v have the same primitive root.

Two words u and v are said to be conjugate if there exist words x and y such that
u = xy and v = yx. In other words, v can be obtained via a cyclic permutation
of u. The next result characterizes the conjugacy of two words.

Theorem 3. Let u, v ∈ Σ+. Then, the following conditions are equivalent: i) u
and v are conjugate; ii) there exists a word z such that uz = zv; moreover, this
holds if and only if u = pq, v = qp, and z = (pq)ip, for some p, q ∈ Σ∗ and
i ≥ 0; iii) the primitive roots of u and v are conjugate.

Note that conjugacy is an equivalence relation, the conjugacy class of a word w
consisting of all conjugates of w. The following is a well-known result.

Proposition 2. If w is a primitive word, then its conjugacy class contains |w|
distinct primitive words.

The following result, known as the Fine and Wilf theorem in its form for words,
cf. [2] and [8], illustrates a fundamental periodicity property of words. As usual,
gcd(n,m) denotes the greatest common divisor of n and m.

Theorem 4. Let u, v ∈ Σ∗, n = |u|, m = |v|, and d = gcd(n,m). If two powers
ui and vj of u and v have a common prefix of length at least n + m− d, then u
and v are powers of a common word. Moreover, the bound n+m− d is optimal.

A mapping θ : Σ∗ → Σ∗ is called a morphism (resp. an antimorphism) if for
any words u, v ∈ Σ∗, θ(uv) = θ(u)θ(v) (resp. θ(uv) = θ(v)θ(u)). Moreover, a
mapping θ : Σ∗ → Σ∗ is called an involution if, for all words u ∈ Σ∗, θ(θ(u)) = u.

For a mapping θ : Σ∗ → Σ∗, a word w ∈ Σ∗ is called θ-palindrome if w =
θ(w), see [7] and [9]. Now we say that a word w ∈ Σ+ has a θ-decomposition
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if there exist a positive integer k ≥ 2 and some words t, w1, . . . , wk ∈ Σ+ such
that w = w1 . . . wk and wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k. In this case, we say that
w is θ-periodic, with θ-period |t|. We call a word w ∈ Σ+ θ-primitive if it has no
θ-decompositions, i.e., its least θ-period is |w|. We define the θ-primitive root of
w, denoted by ρθ(w), as the shortest word t such that w = w1 . . . wk for some
k ≥ 2, wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k, and w1 = t. Note that if w is θ-primitive,
then we can fix ρθ(w) = w.

3 Properties of θ-Primitive Words

In this section, we consider θ : Σ∗ → Σ∗ to be either a morphic or antimorphic
involution, other than the identity function. We start by looking at some basic
properties of θ-primitive words.

Proposition 3. If a word w ∈ Σ+ is θ-primitive, then it is also primitive.
Moreover, the converse is not always true.

Proof. Suppose that w is a θ-primitive word but not primitive. Then, there exists
some t ∈ Σ+ such that w = tn with n ≥ 2. But then we can θ-decompose w as
w = w1 . . . wn, where w1 = . . . = wn = t, which contradicts the θ-primitivity of
w. For the converse, since θ is not the identity function, there exists a letter a
such that θ(a) �= a. Then, if we take w = aθ(a), it is obvious that w is primitive,
but not θ-primitive. �

primitive words

θ-primitive words

Fig. 1. The sets of primitive and θ-primitive words

Thus, the class of θ-primitive words is strictly included in the set of primitive
ones, as illustrated in Fig. 1.

Proposition 4. The θ-primitive root of a word is θ-primitive.

Proof. Let w ∈ Σ+ and t = ρθ(w) be its θ-primitive root. We can suppose, with-
out loss of generality, that w is not θ-primitive; otherwise, ρθ(w) = w and thus
the θ-primitive root is obviously θ-primitive. Then, we can write w = w1 . . . wn,
where n ≥ 2 and wi ∈ {t, θ(t)} for all 1 ≤ i ≤ n. Suppose, now that t is not
θ-primitive. Then, there exist a word s ∈ Σ+ with |s| < |t| and a positive integer
k ≥ 2, such that t has the θ-decomposition t = t1 . . . tk, where for all 1 ≤ i ≤ k,
ti ∈ {s, θ(s)}. Thus, we obtain another θ-decomposition of w, i.e., w = v1 . . . vkn,
where all vi ∈ {s, θ(s)} and |s| < |t|. But this contradicts the fact that t is the
θ-primitive root of w. �
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We also obtain the following result as an immediate consequence.

Corollary 1. The θ-primitive root of a word is primitive.

Contrary to the case of primitive words, a conjugate of a θ-primitive word need
not be θ-primitive, as shown by the following two examples.

Example 1. Let θ : {A, T,C,G}∗ → {A, T,C,G}∗ be the Watson-Crick antimor-
phic involution defined by θ(A) = T , θ(T ) = A, θ(G) = C, and θ(C) = G.
Then, the word w = GCTA is θ-primitive, while its conjugate w′ = AGCT =
AGθ(AG) is not.

Example 2. Let θ : {a, b, c, d}∗ → {a, b, c, d}∗ be a morphic involution defined
by θ(a) = c, θ(c) = a, θ(b) = d, and θ(d) = b. Then, the word w = abadcb is
θ-primitive, while its conjugate w′ = babadc = (ba)2θ(ba) is not.

So, we can formulate the following result.

Proposition 5. The class of θ-primitive words is not necessarily closed under
circular permutations.

Fine and Wilf’s result on words, i.e., Theorem 4, constitutes one of the funda-
mental periodicity properties of words. Thus, a natural question is whether we
can obtain an extension of this result when, instead of taking powers of two words
un and vm, we look at expressions over {u, θ(u)} and {v, θ(v)}, respectively. In
particular, since the mapping θ is an involution, we can suppose without loss of
generality that the two expressions start with u and v, respectively. First, we
analyze the case when θ is a morphic involution; it turns out that in this case
we can obtain the same bound as in Theorem 4. However, since the proof of this
result is analogous to the one for Theorem 4, see for instance [8], we will not
include it here due to space limitations.

Theorem 5. Let θ : Σ∗ → Σ∗ be a morphic involution, u, v ∈ Σ+ with n =
|u|, m = |v|, and d = gcd(n,m), α(u, θ(u)) ∈ u{u, θ(u)}∗, and β(v, θ(v)) ∈
v{v, θ(v)}∗. If the two expressions α(u, θ(u)) and β(v, θ(v)) have a common prefix
of length at least n + m − d, then there exists a word t ∈ Σ+ such that u, v ∈
t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v). Moreover, the bound n + m− d is optimal.

However, as illustrated by the following example, if the mapping θ is an anti-
morphic involution, then the bound given by Theorem 5 is not enough anymore.

Example 3. Let θ : {a, b}∗ → {a, b}∗ be the mirror mapping defined as follows:
θ(a) = a, θ(b) = b, and θ(w1 . . . wn) = wn . . . w1, where wi ∈ {a, b} for all
1 ≤ i ≤ n. Obviously, θ is an antimorphic involution on {a, b}∗. Let now u =
(ab)kb and v = ab. Then, u2 and vkθ(v)k+1 have a common prefix of length
2|u| − 1 > |u| + |v| − gcd(|u|, |v|). However, ρθ(u) �= ρθ(v).

The next result gives a lower bound for the antimorphic case, for which we
employ similar techniques as in [4], so we omit the proof here. As usual, lcm(n,m)
denotes the least common multiple of n and m.
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Theorem 6. Let θ : Σ∗ → Σ∗ be an antimorphic involution, u, v ∈ Σ+, and
α(u, θ(u)) ∈ u{u, θ(u)}∗, β(v, θ(v)) ∈ v{v, θ(v)}∗ be two expressions sharing a
common prefix of length at least lcm(|u|, |v|). Then, there exists a word t ∈ Σ+

such that u, v ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v). In particular, if α(u, θ(u)) =
β(v, θ(v)), then ρθ(u) = ρθ(v).

Note that, in many cases there is a big gap between the bounds given in Theorems
5 and 6. Moreover, Theorem 6 does not give the optimal bound for the general
case when θ is an antimorphic involution. In Section 6, we show that this optimal
bound for the general case is 2|u| + |v| − gcd(|u|, |v|), where |u| > |v|, while for
some particular cases we obtain bounds as low as |u| + |v| − gcd(|u|, |v|). As an
immediate consequence of Theorems 5 and 6, we obtain the following result.

Corollary 2. For any word w ∈ Σ+ there exists a unique θ-primitive word
t ∈ Σ+ such that w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

Let us note now that, maybe even more importantly, just as in the case of
primitive words, this result provides us with an alternative, equivalent way for
defining the θ-primitive root of a word w, i.e., the θ-primitive word t such that
w ∈ t{t, θ(t)}∗. This proves to be a very useful tool in our future considerations.

Moreover, we also obtain the following two results as immediate consequences
of Theorems 5 and 6.

Corollary 3. Let u, v ∈ Σ+ be two words such that ρ(u) = ρ(v) = t. Then,
ρθ(u) = ρθ(v) = ρθ(t).

Corollary 4. If we have two words u, v ∈ Σ+ such that u ∈ v{v, θ(v)}∗, then
ρθ(u) = ρθ(v).

4 Relations Imposing θ-Periodicity

It is well-known, due to Theorem 2, that any non-trivial equation over two
distinct words forces them to be powers of a common word, i.e., to share a
common period. Thus, a natural question is whether this would be the case
also when we want two distinct words to have θ-decompositions depending on
the same u and θ(u), i.e., to share a common θ-period. From [6], we already
know that the equation uv = θ(v)u imposes ρθ(u) = ρθ(v) only when θ is a
morphic involution. In this section, we give several examples of equations over
{u, θ(u), v, θ(v)} forcing ρθ(u) = ρθ(v) in the case when θ : Σ∗ → Σ∗ is an
antimorphic involution.

The first equation we look at is very similar to the commutation equation of
two words, but it involves also the mapping θ.

Theorem 7. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and u, v ∈ Σ+. If uvθ(v) = vθ(v)u, then ρθ(u) = ρθ(v).
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Proof. Since uvθ(v) = vθ(v)u, we already know, due to Theorem 2, that there
exists a primitive word t ∈ Σ+ such that u = ti and vθ(v) = tj , for some i, j ≥ 0.
If j = 2k for some k ≥ 0, then we obtain immediately that v = θ(v) = tk, i.e.,
ρ(u) = ρ(v) = t. Thus, ρθ(u) = ρθ(t) = ρθ(v). Otherwise, i.e., j = 2k+ 1, we can
write v = tkt1 and θ(v) = t2t

k, where t = t1t2 and |t1| = |t2| > 0. Hence, θ(v) =
θ(t1)θ(t)k = t2t

k, which implies t2 = θ(t1). In conclusion, u, v ∈ t1{t1, θ(t1)}∗,
for some word t1 ∈ Σ+, i.e., ρθ(u) = ρθ(t1) = ρθ(v). �

Next, we modify a little bit the previous equation, such that on one side, instead
of vθ(v), we take its conjugate θ(v)v.

Theorem 8. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and u, v ∈ Σ+. If vθ(v)u = uθ(v)v, then ρθ(u) = ρθ(v).

Proof. If we concatenate the word θ(v) to the right on both sides of the equa-
tion vθ(v)u = uθ(v)v, then we obtain (vθ(v))(uθ(v)) = (uθ(v))(vθ(v)). Due to
Theorem 2, this means that there exists a primitive word t ∈ Σ+ such that
vθ(v) = ti and uθ(v) = tj , for some i, j ≥ 0, j ≥ "i/2#. If i = 2k for some
k ≥ 0, then θ(v) = v = tk and thus also u = tj−k, i.e., ρ(u) = ρ(v) = t. Hence-
forth, ρθ(u) = ρθ(t) = ρθ(v). Otherwise, i.e., j = 2k + 1, we can write v = tkt1
and θ(v) = t2t

k, where t = t1t2 and |t1| = |t2| > 0. Hence, we achieve again
t2 = θ(t1), which implies that v ∈ t1{t1, θ(t1)}∗. Moreover, since uθ(v) = tj , we
also obtain u = tj−k−1t1 ∈ t1{t1, θ(t1)}∗. Thus, ρθ(u) = ρθ(t1) = ρθ(v). �

Next, we look at the case when both uv and vu are θ-palindrome words, which
also proves to be enough to impose that u, v ∈ {t, θ(t)}∗ for some t ∈ Σ+.

Theorem 9. Let u, v ∈ Σ∗ be two words such that both uv and vu are θ-
palindrome words and let t = ρ(uv). Then, t = θ(t) and either ρ(u) = ρ(v) = t
or u = (t1θ(t1))it1 and v = θ(t1)(t1θ(t1))j , where t = t1θ(t1) and i, j ≥ 0.

Proof. The equality uv = θ(uv) immediately implies that t = θ(t). Moreover,
if u and v commute, then ρ(u) = ρ(v) = ρ(uv) = t. Assume now that u and
v do not commute. Since ρ(u) �= ρ(v) and uv = tn for some n ≥ 1, we can
write u = tit1 and v = t2t

n−i−1 for some i ≥ 0 and t1, t2 ∈ Σ+ such that
t = t1t2. Thus, vu = t2t

n−1t1 = (t2t1)n and since vu = θ(vu) we obtain that
also t2t1 is θ-palindrome, i.e., t2t1 = θ(t2t1) = θ(t1)θ(t2). Now, if |t1| = |t2|,
then t2 = θ(t1) and thus t = t1θ(t1), u = tit1, and v = θ(t1)tn−i−1. Otherwise,
either |t1| > |t2| or |t1| < |t2|. We consider next only the case |t1| > |t2|, the
other one being similar. Since t2t1 = θ(t1)θ(t2), we can write θ(t1) = t2x and
t1 = xθ(t2) for some word x ∈ Σ+ with x = θ(x). Then, since t = θ(t) we
have that t = t1t2 = xθ(t2)t2 = θ(xθ(t2)t2) = θ(t2)t2x. Hence, x and θ(t2)t2
commute, which contradicts the primitivity of t. �

As an immediate consequence we obtain the following result.

Corollary 5. For u, v ∈ Σ∗, if uv = θ(uv) and vu = θ(vu), then ρθ(u) =
ρθ(θ(v)). In particular, there exists some t ∈ Σ+ such that u, v ∈ {t, θ(t)}∗.
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5 On θ-Primitive and θ-Palindrome Words

In this section, we investigate two word equations under which a θ-primitive
word must be θ-palindrome. Throughout this section we consider θ : Σ∗ → Σ∗

to be an antimorphic involution over the alphabet Σ.

Theorem 10. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and v ∈ Σ+ be a θ-primitive word. If θ(v)vx = yvθ(v) for some words x, y ∈
Σ∗ with |x|, |y| < |v|, then v is θ-palindrome and x = y = ε.

Proof. Assume there exist some words x, y ∈ Σ∗ with |x|, |y| < |v|, such that
θ(v)vx = yvθ(v), as illustrated in Fig. 2.

Then, we can write v = v1v2 = v2v3, with v1, v2, v3 ∈ Σ∗, y = θ(v2) = x,
v1 = θ(v1), v3 = θ(v3). Since v1v2 = v2v3, we can write v1 = pq, v3 = qp,
v2 = (pq)ip, and v = (pq)i+1p for some words p, q ∈ Σ∗ and some i ≥ 0.
Thus, pq = θ(pq) and qp = θ(qp), which, due to Theorem 9, leads to one of
the following two cases. First, if p = tkt1 and q = θ(t1)tj , where k, j ≥ 0 and
t = t1θ(t1) is the primitive root of pq, then we obtain that v = t(k+j+1)(i+1)+kt1
with (k + j + 1)(i+ 1) + k ≥ 1, which contradicts the θ-primitivity of v. Second,
if ρ(p) = ρ(q) = t, then also v ∈ {t}∗ where t = θ(t). Thus, v = θ(v), and

y v θ(v)

θ(v) v x

θ(v2) θ(v1) v2 v3

v1 v2 θ(v3) θ(v2)

Fig. 2. The equation θ(v)vx = yvθ(v)

the initial identity becomes v2x = yv2. But, since v is θ-primitive and thus also
primitive, we immediately obtain, due to Proposition 1, that x = y = ε. �

In other words, the previous result states that if v is a θ-primitive word, then
θ(v)v cannot overlap with vθ(v) in a nontrivial way. However, the following
example shows that this is not the case anymore if we look at the overlaps
between θ(v)v and v2, or between vθ(v) and v2, respectively, even if we consider
the larger class of primitive words.

Example 4. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ,
p, q ∈ Σ+ such that ρ(p) �= ρ(q), p = θ(p), and q = θ(q), and let v = p2q2p and
u = pq2p2. It is easy to see that u and v are primitive words. In addition, if we
take Σ = {a, b}, the mapping θ to be the mirror image, p = a, and q = b, then
u and v are actually θ-primitive words. Since θ(v) = pq2p2 and θ(u) = p2q2p,
we can write xv2 = vθ(v)y and yθ(u)u = u2z where x = p2q2, y = pq2p, and
z = q2p2. Thus, for primitive (resp. θ-primitive) words u and v, vθ(v) can overlap
with v2 and θ(u)u with u2 in a nontrivial way.
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Maybe even more surprisingly, the situation changes again if we try to fit v2

inside vθ(v)v, as shown by the following result.

Theorem 11. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and v ∈ Σ+ be a primitive word. If vθ(v)v = xv2y for some words x, y ∈ Σ∗,
then v is θ-palindrome and either x = ε and y = v or x = v and y = ε.

Proof. Suppose that vθ(v)v = xv2y for some words x, y ∈ Σ∗, as illustrated in
Fig. 3. If we look at this identity from left to right, then we can write v = xv1 =
v1v2, with v1, v2 ∈ Σ∗ such that |x| = |v2| and θ(v) = θ(v2)θ(v1). Now, if we look
at the right sides of this identity, then we immediately obtain that x = v2 and
v1 = y. Thus, v = xy = yx, implying that x, y ∈ {t}∗, for some primitive word t.
However, since v is primitive, this means that either x = ε and y = v or x = v
and y = ε. Moreover, in both cases we also obtain v = θ(v). �

x v v y

v θ(v) v

x v1 θ(v2) θ(v1) x v1

v1 v2 v1 v2

Fig. 3. The equation vθ(v)v = xv2y

6 An Optimal Bound for the Antimorphic Extension of
the Fine and Wilf Theorem

Throughout this section we take θ : Σ∗ → Σ∗ to be an antimorphic invo-
lution, u, v ∈ Σ+ with |u| > |v|, α(u, θ(u)) ∈ {u, θ(u)}+, and β(v, θ(v)) ∈
{v, θ(v)}+. Since θ is an involution, we can suppose, without loss of general-
ity, that α(u, θ(u)) and β(v, θ(v)) start with u and v, respectively. We start our
analysis with the case when v is θ-palindrome.

Theorem 12. Let u and v be two words with |u| > |v| and v = θ(v). If there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having
a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v).

Proof. First, we can suppose, without loss of generality that gcd(|u|, |v|) = 1.
Otherwise, i.e., gcd(|u|, |v|) = d ≥ 2, we consider a new alphabet Σ′ = Σd, where
the new letters are words of length d in the original alphabet, and we look at
the words u and v as elements of (Σ′)+. In the larger alphabet gcd(|u|, |v|) = 1,
and if we can prove the theorem there it immediately gives the general proof.

Since v = θ(v), β(v, θ(v)) = vn for some n ≥ 2. Moreover, if v ∈ Σ, then
trivially u ∈ v{v, θ(v)}∗, i.e., ρθ(u) = ρθ(v). So, suppose next that |v| ≥ 2 and,
since gcd(|u|, |v|) = 1, u = viv1, where i ≥ 1 and v = v1v2 with v1, v2 ∈ Σ+.
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If α(u, θ(u)) = u2α′(u, θ(u)), then u2 and vn have a common prefix of length
at least |u| + |v| − gcd(|u|, |v|), which, due to Theorem 4, implies that ρ(u) =
ρ(v) = t, for some primitive word t ∈ Σ+, and thus ρθ(u) = ρθ(t) = ρθ(v).

Otherwise, α(u, θ(u)) = uθ(u)α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}∗.
Now, we have two cases depending on |v1| and |v2|. We present here only the
case when |v1| ≤ |v2|, see Fig. 4, the other one being symmetric. Now, since θ is
an antimorphism, θ(suf|v|−1(u)) = pref|v|−1(θ(u)). So, we can write v2 = θ(v1)z
for some z ∈ Σ∗, since |v1| ≤ |v2| ≤ |v| − 1 = |v| − gcd(|u|, |v|). Now, to the

. . .v v v

u θ(u)

θ(v2) θ(v1)

|v| − 1

v1 v2 v1 v2

z

Fig. 4. The common prefix of uθ(u) and vn of length |u| + |v| − 1

left of the border-crossing v there is at least one occurrence of another v, so
we immediately obtain z = θ(z), as v2 = θ(v1)z and θ(v2) = θ(z)v1. Then,
v = v1θ(v1)z = zv1θ(v1) = θ(v) implying, due to Theorem 7, ρθ(v1) = ρθ(z). So,
since v = v1θ(v1)z and u = viv1 = (v1θ(v1)z)iv1, we obtain ρθ(u) = ρθ(v). �
Let us look next at the case when u is θ-palindrome.

Theorem 13. Let u and v be two words with |u| > |v| and u = θ(u). If there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having
a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v).

Proof. As before, we can suppose without loss of generality that gcd(|u|, |v|) = 1.
Also, since u = θ(u), we actually have α(u, θ(u)) = un for some n ≥ 2. Moreover,
since u starts with v and u = θ(u), we also know that u ends with θ(v). Now, if
v ∈ Σ, then trivially u ∈ v{v, θ(v)}∗, i.e., ρθ(u) = ρθ(v). So, we can suppose next
that |v| ≥ 2 and thus, since gcd(|u|, |v|) = 1, we have u = β′(v, θ(v))v′, where
β′(v, θ(v)) is a prefix of β(v, θ(v)) and v′ ∈ Σ+, v′ ∈ Pref(v) ∪ Pref(θ(v)).

Case 1: We begin our analysis with the case when the border between the first
two u’s falls inside a v, as illustrated in Fig. 5. Then, we can write v = v1v2 = v2v3

where v1, v2, v3 ∈ Σ+, implying that v1 = xy, v3 = yx, and v2 = (xy)jx for some
j ≥ 0 and x, y ∈ Σ∗. Moreover, since u ends with θ(v), we also have v1 = θ(v1),
i.e., xy = θ(y)θ(x). If x = ε, then v1, v2, v3, v ∈ {y}∗, which implies that also
u ∈ y{y, θ(y)}∗, i.e., ρθ(u) = ρθ(v) = ρθ(y); moreover, since gcd(|u|, |v|) = 1 we
actually must have y ∈ Σ. Similarly, we also obtain ρθ(u) = ρθ(v) when y = ε.
So, from now on we can suppose that x, y ∈ Σ+.

Let us consider next the case when, before the border-crossing v we have an
occurrence of another v, as illustrated in Fig. 5. Then, we have that v2 = θ(v2),
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. . . . . .v vv

θ(v) v

v1 v2

v2 v3θ(v2)

v2v1

u u
|v| − 1

Fig. 5. The common prefix of u2 and β(v, θ(v)) of length |u| + |v| − 1

i.e., (xy)jx = (θ(x)θ(y))jθ(x). If j ≥ 1, then this means that x = θ(x) and
y = θ(y). Then, the equality xy = θ(y)θ(x) becomes xy = yx. So, there exists a
word t ∈ Σ+ such that x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗,
i.e., ρθ(u) = ρθ(v). Otherwise, j = 0 and we have x = θ(x). But then, the
equality xy = θ(y)θ(x) becomes xy = θ(y)x, implying that x = p(qp)n and
y = (qp)m for some m ≥ 1, n ≥ 0, and some words p and q with p = θ(p) and
q = θ(q), see [6]. Since u2 and β(v, θ(v)) share a common prefix of length at least
|u|+|v|−gcd(|u|, |v|) = |u|+|v|−1, v3 and some β′(v, θ(v)) share a prefix of length
|v3| − 1. Furthermore, as v3 = yx = (qp)mp(qp)n, v = v1v2 = p(qp)m+np(qp)n,
and θ(v) = (pq)np(pq)m+np, this means that independently of what follows to
the right the border-crossing v, either v or θ(v), we have two expressions over p
and q sharing a common prefix of length at least |p|+ |q|. Thus, from [2], we can
conclude that p, q ∈ {t}∗ for some t ∈ Σ+, which implies that also x, y, v ∈ {t}+

and u ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v).
Now, suppose that before the border-crossing v we have an occurrence of θ(v).

If |u| < 2|v|+ |v1|, then, since β(v, θ(v)) starts with v, we must have v = θ(v), in
which case we can use Theorem 12 to conclude that ρθ(u) = ρθ(v). Otherwise,
|u| ≥ 2|v| + |v1| and since u = θ(u), u ends either with vθ(v) or with θ(v)θ(v).
In the first case, we obtain v3 = θ(v3), i.e., yx = θ(yx), which together with
xy = θ(xy) imply, due to Corollary 5, that x, y ∈ {t, θ(t)}∗, for some t ∈ Σ+

and thus, ρθ(u) = ρθ(v). In the second case, we obtain v1 = v3, i.e., xy = yx.
So, x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v).
Case 2: The case when the border between the first two u’s falls inside θ(v) is
similar to the one above. So, due to page limitations, we omit it here. �

Although the previous two results give a very short bound, i.e., |u| + |v| −
gcd(|u|, |v|), this is not enough in the general case, as illustrated also in Exam-
ple 3. However, we can prove that, independently of how the expression α(u, θ(u))
starts, 2|u|+ |v| − gcd(|u|, |v|) is enough to impose θ-periodicity of u and v. The
first case we consider is when α(u, θ(u)) starts with u2. The proofs of Theorems
14 and 16 are rather complex and necessitate the analysis of many cases. Their
inclusion would double the length of this paper and we therefore omit them here.

Theorem 14. Given two distinct words u, v ∈ Σ+ with |u| > |v|, if there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ hav-
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ing a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|) and, moreover,
α(u, θ(u)) = u2α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}+, then ρθ(u) = ρθ(v).

The next result considers the case when α(u, θ(u)) starts with uθ(u)u, which is
an immediate consequence of Theorem 13.

Theorem 15. Given two distinct words u, v ∈ Σ+ with |u| > |v|, if there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ hav-
ing a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|) and, moreover,
α(u, θ(u)) = uθ(u)uα′(u, θ(u)) with α′(u, θ(u)) ∈ {u, θ(u)}∗, then ρθ(u) = ρθ(v).

The only case left is when α(u, θ(u)) starts with uθ(u)θ(u).

Theorem 16. Let u, v ∈ Σ+ be two words with |u| > |v|. If there exist two
expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having a com-
mon prefix of length at least 2|u|+ |v|−gcd(|u|, |v|), and, moreover, α(u, θ(u)) =
uθ(u)θ(u)α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}∗, then ρθ(u) = ρθ(v).

To conclude, in this section we proved that if θ is an antimorphic involution, then
we only need two expressions α(u, θ(u)) and β(v, θ(v)) to share a common prefix
of length 2|u|+|v|−gcd(|u|, |v|), where |u| > |v|, in order to impose ρθ(u) = ρθ(v).
Moreover, the following examples show that this bound is optimal.

Example 5. Let θ : {a, b}∗ → {a, b}∗ be the mirror involution, u1 = a2ba3b,
v1 = a2ba, with gcd(|u1|, |v1|) = 1, and u2 = ba2baba, v2 = ba2ba, with
gcd(|u2|, |v2|) = 1. Then, u3

1 and v2
1θ(v1)2v1 have a common prefix of length

2|u1| + |v1| − 2, but ρθ(u1) �= ρθ(v1). Also, u2θ(u2)2 and v4
2 have a common

prefix of length 2|u2| + |v2| − 2, but ρθ(u2) �= ρθ(v2).
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Abstract. We consider Boolean combinations of data tree patterns as a
specification and query language for XML documents. Data tree patterns
are tree patterns plus variable (in)equalities which express joins between
attribute values. Data tree patterns are a simple and natural formalism
for expressing properties of XML documents. We consider first the model
checking problem (query evaluation), we show that it is DP-complete1 in
general and already NP-complete when we consider a single pattern. We
then consider the satisfiability problem in the presence of a DTD. We
show that it is in general undecidable and we identify several decidable
fragments.

1 Introduction

The relational model and its popular query language SQL are widely used in
database systems. However, it does not fit well in the ever changing Internet
environment, since its structure is fixed by an initially specified schema which is
difficult to modify. When exchanging and manipulating large amounts of data
from different sources, a less structured and more flexible data model is prefer-
able. This was the initial motivation for the Extensible Markup Language (XML)
model which is now the standard for data exchange.

An XML document is structured as an unranked, labelled tree. The main dif-
ference with the relational model is that in XML, data is also extracted because
of its position in the tree and not only because of its value. Consequently, all
the tools manipulating XML data, like XML query languages and XML schema,
combine navigational features with classical data extraction ones. XPath2 is a
typical example. It has a navigational core, known as Core-XPath and studied
in [16], which is essentially a modal language that walks around in the tree.
XPath also allows restricted tests on data attributes. It is the building block of
most XML query languages (XQuery, XSLT...). Similarly, in order to specify in-
tegrity constraints in XML Schema, XML languages have navigational features
for description of walks in the tree and selection of nodes. The nodes are for
instance chosen according to a key or a foreign key [15].

1 A problem DP is the intersection of a NP problem and a co-NP problem.
2 In all the paper, XPath refers to XPath1.0.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 278–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this paper, we study an alternative formalism as a building block for query-
ing and specifying XML data. It is based on Boolean combinations of data tree
patterns. A data tree pattern is essentially a tree with child or descendant edges,
labelled nodes and (in)equality constraints on data values. Intuitively, a document
satisfies a data tree pattern if there exists an injective mapping from the tree pat-
tern into the tree that respects edges, node labels and data value constraints. Us-
ing patterns, one can express properties on trees in a natural, visual and intuitive
way. These properties can express queries, as well as some integrity constraints.

At first glance, the injectivity requirement does not seem important; however,
it has some consequences in terms of expressive power. As we do not consider
horizontal order between siblings, without injectivity data tree patterns are in-
variant by bisimulation. Data tree patterns with injective semantics are strictly
more expressive than with non-injective semantics. For example, it is not pos-
sible to express desirable properties such as a node has two a-labelled children
without injectivity. Another consequence of injectivity appears when considering
conjunctions of data tree patterns. With non-injective semantics, the conjunction
of two patterns would be equivalent to a new pattern obtained by merging the
two patterns at the root. With injectivity this no longer works and we have to
consider conjunctions of tree patterns. This difference appears when we study the
complexity of the satisfiability problem: for one pattern the problem is PTime

while it is untractable for a conjunction of patterns.
XPath and data tree patterns are incomparable in terms of expressiveness.

Without data value, XPath queries are closed under bisimulation while data
tree patterns are not. On the other hand, XPath allows negation of subformulas
while we only allow negation of a full data tree pattern. For example XPath can
check whether a node has a-labelled children but no b-labelled child. This is not
possible with Boolean combinations of tree pattern. In terms of data comparison,
Xpath allows very limited joins because XPath queries cannot compare more
than two elements at a time, while a single pattern can compare simultaneously
an arbitrary number of elements.

In this paper, to continue this comparison, we study the complexity of two
questions related to data tree patterns: the model checking problem (query eval-
uation) and the satisfiability problem in the presence of schema.

The evaluation of XPath queries has been extensively studied (see [6] for a
detailed survey). The evaluation problem is PTime for general XPath queries.
In our case, this problem is more difficult: the combined complexity of the model
checking problem for Boolean combinations of data tree patterns is untractable.
We prove that it is DP-complete in general and already NP-complete when
considering only one tree pattern.

The satisfiability problem for XPath is undecidable in general [5]. However for
many fragments the problem is decidable with a complexity ranging from NP to
NExpTime. Similarly, for Boolean combinations of data tree patterns the satisfi-
ability problem is undecidable in general. We identify several decidable fragments
by restraining the expressivity of tree patterns or by bounding the depth of the
documents. The corresponding complexities range from NP to 2ExpTime.
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Related Work: Tree patterns have already been investigated in a database
context, often without data values [22,3,20]. The focus is usually optimisation
techniques for efficient navigation [1,12,7]. In this work, we focus on the difficulty
raised by data values and we are not interested in optimisation but in the worst
case complexity for the model checking and satisfiability problems.

Several papers considered the non injective semantics of tree pattern with
data constraints. First, [19] considered the satisfiability problem for one posi-
tive pattern while we consider Boolean combinations of tree pattern. Then, the
authors of [2] consider the type checking problem which is more powerful that
unsatisfiability but incomparable to the satisfiability problem.

Data tree patterns are used in [4] to specify data exchange settings. They study
two problems: the first one is consistency of data exchange settings, the second
one is query answering under data exchange settings. Given a conjunction of data
tree patterns and a DTD, we can construct a data exchange setting such that the
consistency of this setting is equivalent to the satisfiability of the conjunction
of patterns in the presence of the DTD. However the data tree patterns they
consider are less expressive than ours, in that they can not express inequality
constraints on data values nor Boolean combinations of data tree patterns. The
other problem considered in this paper is query answering. This problem seems
related to our model checking problem. However it does not seem possible to use
their result or their proof techniques.
Fragment of XPath: In [14], the authors consider an XPath fragment (simple
XPath) allowing only vertical navigation but augmented with data comparisons.
Negation is disallowed, both in the navigation part and in the comparison part.
A simple XPath expression can be viewed as a pattern with non-injective seman-
tics and only data equality. They study the inclusion problem of such expres-
sions wrt special schemes (SXIC) containing integrity constraints like inclusion
dependency. We cannot simulate inclusion dependency even with Boolean com-
binations of data tree patterns. Hence, their framework is incomparable to ours.
Conjunctive queries on trees: Conjunctive queries on trees can be expressed by
tree patterns. They were considered in [17,8] without data values. Very recently
[9], an extension by schema constraints is proposed and in very few cases they
allow data comparison. Notice that, without sibling predicate, those conjunc-
tive queries are strictly less expressive than our framework because they do
not allow negation and do not have an injective semantic. It is shown that the
query satisfiability problem is NP-complete, whereas the query validity problem
is 2ExpTime-complete. Moreover, the validity of a disjunction of conjunctive
queries is shown to be undecidable. This last result corresponds to our undecid-
ability result but the proof is different.
Logics over infinite alphabets : Another related approach is to consider logic for
trees over an infinite alphabet. In [10,11], the authors study an extension of First
Order Logic with two variables. In [13,18], the focus is on temporal logic and
μ-calculus. These works are very elegant, but the corresponding complexities
are non primitive recursive. Our work can be seen as a continuation of this work
aiming for lower complexities.
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Structure: Section 2 contains the necessary definitions. In Section 3, we consider
the model-checking problem. In Section 4, we consider the satisfiability problem
in general and the restricted cases. Section 5 contains a summary of our results
and a discussion. Omitted proofs can be found in the appendix available at
http://www.liafa.jussieu.fr/∼cdavid/publi/mfcs08.pdf.

2 Preliminary

In this paper, we consider XML documents that are modeled as unordered,
unranked data trees, as considered e.g. in [10].

Definition 1. A data tree over a finite alphabet Σ is an unranked, unordered,
labelled tree with data values. Every node v has a label v.l ∈ Σ and a data value
v.d ∈ D, where D is an infinite domain.

We only consider equality tests between data values. The data part of a tree can
thus be seen as an equivalence relation ∼ on its nodes. In the following, we write
u ∼ v for two nodes u, v, if u.d = v.d and we use the term class without more
precision to denote an equivalence class for the relation ∼.

The data erasure of a data tree t over Σ is the tree obtained from t by
ignoring the data value v.d of each node v of t.
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Fig. 1. Examples

Data tree patterns are a natural way to express properties of data trees, or to
query such trees. They describe a set of nodes through their relative positions
in the tree, and (in)equalities between their data values.

Definition 2. A data tree pattern P = (p, C∼, C�) consists of:

– an unordered, unranked tree p, with nodes labelled either by Σ or by the
wildcard symbol ∗, and edges labelled either by | (child edges) or by ‖ (de-
scendant edge), and

– two binary relations C∼ and C� on the set of nodes of p.

http://www.liafa.jussieu.fr/~cdavid/publi/mfcs08.pdf
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A data tree t satisfies a pattern P = (p, C∼, C�), and we write t |= P , if there
exists an injective mapping f from the nodes of p to the nodes of t that is consis-
tent with the labelling, the relative positions of nodes, the branching structure
and the data constraints. Formally, we require the following:

– for every node v from p with v.l ∈ Σ, we have v.l = f(v).l,
– for every pair of nodes (u,v) from p, if (u, v) ∈ C∼ (resp. (u, v) ∈ C�) then

f(u) ∼ f(v) (resp. f(u) � f(v)),
– for every pair of nodes (u,v) from p, if (u, v) is an edge of p labelled by |

(resp. by ‖), then f(v) is a child (resp. a descendant) of f(u),
– for any nodes u,v,z from p, if (u, v) and (u, z) are both edges of p labelled

by ‖, then f(v) and f(z) are not related by the descendant relation in t.

A mapping f as above is called a witness of the pattern P in the data tree t.
Notice that the semantic does not preserve the least common ancestor and asks

for an injective mapping between the nodes of a pattern and those of the tree.
This enables patterns to express integrity constraints. We will discuss the impact
of those choices in Section 5. Data tree patterns can describe properties that
XPath cannot, see e.g. the pattern in Fig 1 (XPath cannot talk simultaneously
about the two r-nodes and the two b-nodes).

We denote by Ptn(∼, |, ‖) the set of data tree patterns and by BC(∼, |, ‖)
the set of Boolean combinations of data tree patterns. We will also consider
restricted patterns, that do not use child relations or do not use descendant
relations (denoted respectively by Ptn(∼, ‖), Ptn(∼, |)). From these, we derive
the corresponding classes of Boolean combinations. Finally, BC+ (resp. BC−)
denotes conjunctions of patterns (resp. negations of patterns).

In proofs, we consider the parse tree of a Boolean formula ϕ over patterns,
denoted by T (ϕ). The leaves of this tree are labelled by (possibly negation of)
patterns and inner nodes are labelled by conjunctions or disjunctions. Such trees
are of linear size in the size of the formula and can be computed in PTime.

Given a pattern formula from BC(∼, |, ‖), the main problems we are interested
in are the model-checking on a data tree (evaluation), the satisfiability problem,
in the general case as well as for interesting fragments. Because the general
structure of XML documents is usually constrained, we may consider DTDs as
additional inputs. DTDs are essentially regular constraints on the finite structure
of the tree. Since we work on unordered, unranked trees, we use as DTDs an
unordered version of hedge automata. A DTD is a bottom-up automaton A
where the transition to a state q′ with label a is given by a Boolean combination
of clauses of the form #q ≤ k where q is a state and k a constant (unary encoded).
A clause #q ≤ k is satisfied if there are at most k children in state q. Adding a
DTD constraint does not change the complexity results for the model-checking,
since checking whether the data erasure of a tree satisfies a DTD is PTime.
Therefore, we do not mention DTDs in the model-checking part. We consider
the following problems:

Problem 1. Given a data tree t and a pattern formula ϕ, the model-checking
problem asks whether t satisfies ϕ.
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Problem 2. Given a pattern formula ϕ and a DTD L, the satisfiability problem
in the presence of a DTD asks whether ϕ is satisfied by some data tree whose
data erasure belongs to L.

3 Model Checking

Patterns provide a formalism for expressing properties. In this section, we see
how efficiently we can evaluate them. Our main result is the exact complexity
of the model-checking problem for pattern formulas from BC(∼, |, ‖).

Theorem 3. The model-checking problem for BC(∼, |, ‖) is DP-complete.

The class of complexity DP is defined as the class of problems that are the
conjunction of a NP problem and a co-NP problem [21]. In particular, DP
includes both NP and co-NP. A typical DP-complete problem is SAT/UNSAT:
given two propositional formulas ϕ1, ϕ2, it asks whether ϕ1 is satisfiable, and ϕ2

is unsatisfiable.
The key to the proof of Theorem 3 is the case where only one pattern is

present. This problem is already NP-complete.

Proposition 4. The model-checking problem for a single pattern from
Ptn(∼, |, ‖) is NP-complete.

Proof. The upper bound is obtained by an algorithm guessing a witness for the
pattern in the data tree and checking in PTime whether the witness is correct.
The lower bound is more difficult. It is obtained by a reduction of 3SAT.

Given a propositional formula ϕ in 3-CNF, we build a data tree tϕ and a
pattern Pϕ of polynomial size, such that tϕ � Pϕ iff ϕ is satisfiable. Because we
consider the model-checking problem, the data tree is fixed in the input. Thus,
it must contain all possible valuations of the variables and at least all possible
true valuations of each variable. Moreover, one positive data tree pattern should
identify a true valuation of the formula and check its consistency. Hence, it does
not seem possible to use previously published encodings of 3SAT into trees.

The pattern selects one valuation per variable and per clause. Its structure
ensures that only one valuation per variable and per literal is selected. The
constraints on data ensure the consistency of the selection. The data tree and
the tree of the pattern depend only on the number of variables and clauses of the
formula. Only the constraints on data of the pattern are specific to the formula.
They encode the link between variables and clauses.

Let Σ = {r, r,X, Y, Z,#, $} be the finite alphabet. Assume that ϕ has k
variables and n clauses. The data tree tϕ is composed of k copies of the tree tv
and n copies of the tree tc as depicted in Figure 2. Even if we consider unordered
trees, each copy of tv corresponds to a variable of the formula and each copy of
tc to a clause. The tree tϕ involves exactly three classes, denoted as 0,-,⊥.

Each subtree tv, see Figure 2(b), contains the two possible values for a variable.
The left (right) branch of the tree represents true (resp. false).
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Fig. 2. The data tree tϕ

A clause is viewed here as the disjunction of three literals, say X , Y , and
Z. Each subtree tc, see Figure 2(c), is formed by three subtrees. Each of them
represents one of the three disjoint possibilities for a clause to be true: (1) X is
true, or (2) X is false and Y is true, or (3) X and Y are false and Z is true.

We now turn to the definition of the tree pattern Pϕ = (tpϕ, C∼, C�), depicted
in Figure 3. Similarly to tϕ, the tree tpϕ is formed by k copies of tpv (each of
them implicitly corresponding to a variable) and n copies of tpc (each of them
implicitly corresponding to a clause).

#

tpv · · · tpv tpc · · · tpc

(a) The tree tpϕ

$

r

r

$

$

X Y Z

(b) Subtrees tpv and tpc

Fig. 3. The tree tpϕ

The form of the data erasures of tϕ and tpϕ ensures that any witness of Pϕ in
tϕ selects exactly one value per variable and one (satisfying) valuation for each
clause. Note that this is ensured by the definition of witness, since the witness
mapping is injective.

It remains to define the data constraints C∼ and C� in order to guarantee
that each clause is satisfied. Assume that the first literal of clause c is a positive
variable x (resp. the negation of x). Then we add in C∼ the r-position (resp. the
r-position) of the subtree tpv corresponding to the variable x together with the
X-position of the subtree tpc corresponding to the clause c. The same can be
done with the literals Y and Z. Figure 4 gives the example of the pattern for
the formula ϕ with only the clause a ∨ ¬b ∨ c.
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Fig. 4. Pattern for ϕ = a ∨ ¬b ∨ c

We now prove that tϕ � Pϕ iff ϕ is satisfiable. Assume that the formula ϕ
is satisfiable. From any satisfying assignment of ϕ we derive a mapping of Pϕ

into tϕ: the subtree pv corresponding to the variable v is mapped on the left
branch of the corresponding tv if the value of v is true, and on the right branch
otherwise. Since each clause is satisfied, one of the three cases represented by
the subtree tc happens, and we can map the tpc corresponding to the clause on
the branch of the corresponding tc. The converse is similar. �
In the proofs of Proposition 4 and Theorem 3, the patterns use only the child
predicate. We can do the same with similar patterns using only the descendant
predicate. As a consequence, we have:

Theorem 5. The model-checking problem for both fragments BC(∼, ‖), BC(∼, |)
is DP-complete.

Corollary 6. The model-checking problem for BC+(∼, ‖), BC+(∼, |) and for
BC+(∼, |, ‖) is NP-complete.

Similarly, we can see that the model-checking problem of a (conjunction of)
negated pattern(s) is co-NP-complete. Notice that in the proof of Theorem 3,
the pattern formula of the lower bound is a conjunction of one pattern and
the negation of one pattern. Thus, the model-checking problem is already DP-
complete for a conjunction of one pattern and one negated pattern.

The model checking problem for conjunctive queries is also exponential (NP)
in relational databases. However, the algorithms work very well in practice, when
models or queries are simple. In particular, when the query is acyclic, the problem
becomes polynomial. The worst cases that lead to exponential behaviors do not
appear often. It would be interesting to know how the algorithms following from
our proofs behave on practical cases, and whether we can find some restriction
on the patterns that would lead to efficient evaluation in practice.

4 Satisfiability

In this section, we study the satifiability problem in the presence of DTDs.
Checking satisfiability of a query is useful for optimization of query evaluation
or minimization techniques. In terms of schema design, satisfiability corresponds
to checking the consistency of the specification.
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We show that the satisfiability problem is undecidable in general. However the
reduction needs the combination of negation, child and descendant operations.
Indeed, removing any one of these features yields decidability, and we give the
corresponding precise complexities.

4.1 Undecidability

Theorem 7. The satisfiability problem for BC(∼, |, ‖) in the presence of DTD
is undecidable.

Proof sketch. We prove the undecidability by a reduction from the acceptance
problem of two-counter machines (or Minsky machines). Our reduction builds a
DTD and a pattern formula of size polynomial in the size of the machine whose
models are exactly the encodings of the accepting runs.

The encoding of a run can be split in three parts:

1. The general structure of the tree, which depends only on the data erasure,
and is controlled by the DTD.

2. The internal consistency of a configuration.
3. The evolution of counter values between two successive configurations.

The global structure contains a branch that is labelled by the sequence of tran-
sitions. Ensuring that a tree is of this shape is done by the DTD. It recognizes
the data erasure of sequences of configurations. In particular it checks that a
counter is zero when this is required by the transition. It also ensures that the
sequence of transitions respects the machine’s rules (succession of control states,
initial and final configurations).

The data values allow us to control the evolution of the counters between
two consecutive configurations. In order to do so, we need to guarantee a certain
degree of structure and continuity of the values through a run. The data structure
and the evolution of counters are ensured by the pattern formula. �
The proof uses only conjunctions of negated patterns. Thus, the satisfiability
problem is already undecidable for the BC−(∼, |, ‖) fragment in the presence of
a DTD. Alternatively, the DTD can be replaced by a pattern formula. To do so,
we need a few positive patterns to constrain initial and final configurations in
the coding. Thus, the satisfiability problem is undecidable for BC(∼, |, ‖) without
DTDs. It is interesting to notice that the satisfiability problem of BC(∼, |, ‖) is
undecidable on word models. We will discuss this in Section 5.

4.2 Decidable Restrictions

We can obtain decidability by restraining either the expressive power of pattern
formulas or the data trees considered. For the first part, using only one kind of
edge predicate (| or ‖) leads to decidability. For the second part, restricting the
trees to bounded depth leads to decidability. We provide the exact complexities.

Restricted Fragments: The proof of undecidability uses both ‖ and | in the
pattern to count unbounded values of the counters. If we restrict expressivity of
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patterns to use either ‖ or |, we can’t do this anymore and the problem becomes
decidable. The key to both lower bounds is that patterns can still count up to a
polynomial value and thus compare positions of a tree of polynomial depth. We
use this idea to encode exponential size configurations of a Turing machine into
the leaves of polynomial depth subtrees.

Theorem 8. The satisfiability problem of BC(∼, |) in the presence of a DTD is
2ExpTime-complete.

Proof sketch. The upper bound is obtained by a small model property. We can
prove that a pattern formula ϕ of BC(∼, |) is satisfiable in the presence of a given
DTD iff it has a model with a number of classes that is doubly exponential in
the size of the formula. We can recognize the data erasure of such small models
with an automaton of size doubly exponential in the size of the formula. Because
emptiness of such automata is PTime, we have the 2ExpTime upper bound.

The lower bound is obtained by a coding of accepting runs of AExpSpace

Turing machines. We can build a DTD and a pattern formula from BC(∼, |)
such that a data tree is a model on the pattern formula and respects the DTD
iff it is the encoding of an accepting run of the machine. �

Theorem 9. The satisfiability problem of BC(∼, ‖) in the presence of a DTD
is NExpTime-complete.

Bounded Depth restrictions: In the context of XML documents, looking at
the satisfiability problem restricted to data trees of bounded depth is a crucial
restriction. This restriction leads to decidability for BC(∼, <,+1).

Problem 3. Consider a pattern formula ϕ, an integer d and a DTD L. The prob-
lem of bounded depth satisfiability in the presence of a DTD asks
whether ϕ is satisfiable by a data tree of depth smaller than d whose data era-
sure belongs to L.

Theorem 10. If d is fixed, the bounded depth satisfiability problem in the pres-
ence of a DTD for BC(∼, ‖, |) is Σ2-complete.

Theorem 11. If d is part of the input, the bounded depth satisfiability problem
in the presence of a DTD for BC(∼, ‖, |) is NExpTime-complete.

Other remarks: All the lower bound results of this section only use conjunc-
tions of negated patterns. Thus these results hold for the BC− fragments.

Proposition 12. The satisfiability problem of a single pattern is PTime.

Proposition 13. The satisfiability problem for BC+(∼, |, ‖) is NP-complete in
the presence of DTD.
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5 Conclusion

The table below summarizes our results. bnd (resp. bndf ) Sat stands for Bounded
depth Satisfiability when the bound is part of the input (resp. fixed). The gray
parts of the table gives complexity results for data words models. Data words
are the linear model corresponding to data trees. This model is studied in the
verification area [11,13]. Data patterns can also be considered for data words.
The proofs are more complex and will be available in a longer version.

Fragments Model-Checking Satisfiability bnd Sat bndf Sat

BC(∼, ‖, |) DP-complete Undecidable NExpTime-complete Σ2-complete

BC(∼, |) DP-complete 2ExpTime-complete NExpTime-complete Σ2-complete
Data Word PTime PSpace-complete

BC(∼, ‖) DP-complete NExpTime-complete NExpTime-complete Σ2-complete
Data Word DP-complete Σ2-complete

BC−(∼, ‖, |) coNP-complete Undecidable NExpTime-complete Σ2-complete
Data Word coNP-complete undecidable

BC+(∼, ‖, |) NP-complete NP-complete NP-complete NP-complete
Data Word NP-complete NP-complete

Discussion:

– In our framework we use the unordered version of trees. If we consider the
next-sibling predicate, the situation is different. For the model checking prob-
lem all results hold with similar proofs. However, the complexity of the sat-
isfiability problem can increase when negation is allowed. In particular the
satisfiability problem for bounded depth tree becomes undecidable since we
can encode data words.

– Recall that our pattern formalism does not preserve the least common an-
cestor. All results hold if we add the least common ancestor.

– An important issue of semi-structured databases is the containment prob-
lem. Given a DTD and two pattern formulas we want to know whether every
tree satisfying the DTD and the first formula also satisfies the second one.
When the set of formulas we consider is closed under negation, we can de-
cide whether a formula ϕ1 is more constraining than ϕ2 by checking the
satisfiability of ϕ2 ∧ ¬ϕ1. In Boolean combinations, we have closure under
negation, hence the inclusion problem reduces to the satisfiability problem.
For the positive fragment, the precise complexity seems harder to state and
the question is left open.

– In terms of expressiveness, our pattern formalism is incomparable to XPath.
In terms of tractability, evaluation of XPath queries is PTime whereas
model-checking of one data tree pattern is already NP-hard. A question is to
find good notions of constraints in order to isolate interesting fragments with
lower complexity. Considering the complexity of the satisfiability problem,
XPath and our pattern formalism behave similarly.

– In this paper, we only consider patterns as filters in order to define properties
on the data trees. Defining a query language would be a natural extension
of this work. To do this, some of the variables of the patterns can be chosen
as output variables.
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Abstract. A t-spanner of a graph G is a spanning subgraph S in which
the distance between every pair of vertices is at most t times their dis-
tance in G. The sparsest t-spanner problem asks to find, for a given
graph G and an integer t, a t-spanner of G with the minimum number of
edges. On general n-vertex graphs, the problem is known to be NP-hard
for all t ≥ 2, and, even more, it is NP-hard to approximate it with ratio
O(log n) for every t ≥ 2. For t ≥ 5, the problem remains NP-hard for
planar graphs, and up to now the approximability status of the problem
on planar graphs considered to be open. In this note, we resolve this
open issue by showing that the sparsest t-spanner problem admits a
polynomial time approximation scheme (PTAS) for every t ≥ 1. Actu-
ally, our results hold for a much wider class of graphs, namely, on the
class of apex-minor-free graphs which contains the classes of planar and
bounded genus graphs.

1 Introduction

The concept of sparse graph spanners was introduced in [28] and [29] and has
been studied since then in a number of papers, in the context of wired or wireless
communication networks, distributed computing, robotics, computational geom-
etry and biology [2,3,11,12,13,15,28,29]. A t-spanner of a graph G is a spanning
subgraph S in which the distance between every pair of vertices is at most t
times their distance in G. One is interested in finding a sparsest t-spanner for a
graph G, i.e., a t-spanner with the minimum number of edges.

The original application of spanners was in the efficient simulation of synchro-
nized protocols in unsynchronized networks [5,29]. Thereafter spanners were used
in the design of low-stretch routing schemes using small routing tables (see [6,30]
and the references therein), computing almost shortest paths in graphs [18], and
in approximation algorithms for geometric spaces [27]. A recent application of
spanners is in the design of approximate distance oracles and labeling schemes
for arbitrary metrics; see [30,31] for further references. In all the applications
cited above the quality of the solution is directly related to the quality of the
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underlying spanners. For example, in [29], close relationships were established
between the quality of spanners (in terms of stretch factor t and the number of
spanner edges), and the time and communication complexities of any synchro-
nizer for the network based on this spanner.

Unfortunately, as it was shown in [28], the problem of determining, for a given
graph G and integers t and m, whether G has a t-spanner with at most m edges
is NP-complete. This indicates that it is unlikely to find in polynomial time an
exact solution for the sparsest t-spanner problem in general graphs even for small
values of t and m. Later, [24] showed that for every t ≥ 2 there is a constant
c < 1 such that it is NP-hard to approximate the sparsest t-spanner with the
ratio c · logn, where n is the number of vertices in the graph. On the other
hand, the problem admits a O(log n)-ratio approximation for t = 2 [25,24] and a
O(n2/(t+1))-ratio approximation for t > 2 [21]. For some other inapproximability
and approximability results for the sparsest t-spanner problem on general graphs
we refer the reader to [19,20,21] and papers cited therein.

In this note, we consider the sparsest t-spanner problem on so-called apex-
minor-free graphs which is a large class of graphs including all planar graphs
and all graphs with bounded genus. Spanners for these graph classes were con-
sidered in [16]. Particularly, it was shown that for any fixed positive integer t
and nonnegative integer r, it is possible to decide in a polynomial time whether
a graph G has a t-spanner with at most n− 1 + r edges. From another side, it is
known that, on planar graphs, the problem of determining, for a given graph G
and integers m and t, if G has a t-spanner with at most m edges is NP -complete
for every fixed t ≥ 5 (the case 2 ≤ t ≤ 4 is open) [10]. This indicates that it is
unlikely to find in polynomial time an exact solution for the sparsest t-spanner
problem in planar graphs, too, and, consequently, a possible remaining course
of action for investigating the problem is devising approximation algorithms
for it.

Here, we show that the sparsest t-spanner problem admits a polynomial time
approximation scheme (PTAS) on the class of apex-minor-free graphs for every
t ≥ 1 (and, hence, for the planar graphs and for the graphs with bounded
genus). For NP-hard optimization problems, a PTAS is one of the best types of
algorithm one can hope for. In proving our result, we employ the well known
technique for solving NP-hard problems on planar graphs proposed by Baker [7]
and generalized by Eppstein [22,23] (see also [14]) to graphs with bounded local
treewidth (alias, apex-minor-free graphs). Previously, a PTAS was known only
for the sparsest 2-spanner problem on 4-connected planar triangulations [17].

Our result also answers the following questions explicitly mentioned in in [10]
and [17]:

– What is the approximability status of the sparsest t-spanner problem for
planar graphs?

– Does a PTAS exist for the sparsest t-spanner problem for 4-connected planar
triangulations and t > 2, or even for all planar graphs?
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2 Preliminaries

In this section we present necessary definitions, notations and some auxiliary
results.

Let G = (V,E) be an undirected graph with the vertex set V and edge set
E. We often will use notations V (G) = V and E(G) = E. For U ⊆ V by G[U ]
is denoted the subgraph of G induced by U . The distance distG(u, v) between
vertices u and v of a connected graph G is the length (the number of edges) of
a shortest u, v-path in G.

Let t be a positive integer. A subgraph S of G, such that V (S) = V (G), is
called a (multiplicative) t-spanner of G, if distS(u, v) ≤ t · distG(u, v) for every
pair of vertices u and v. The parameter t is called the stretch factor of S. It is
easy to see that the t-spanners can equivalently be defined as follows.

Proposition 1. Let G be a connected graph, and t be a positive integer. A span-
ning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of
G distS(x, y) ≤ t.

Let A ⊆ E(G). We call a subgraph S of G, such that for every edge (x, y) ∈ A
distS(x, y) ≤ t, a partial t-spanner for A. Clearly, if A = E(G) then a partial
t-spanner for this set is a t-spanner for G.

The sparsest t-spanner problem asks to find, for a given graph G and an
integer t, a t-spanner of G with the minimum number of edges. Correspondingly,
the sparsest partial t-spanner problem asks to find a partial t-spanner with
the minimum number of edges for a given graph G, an integer t and a set
A ⊂ E(G).

A tree decomposition of a graph G is a pair (X,U) where U is a tree whose
vertices we call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets of
V (G) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge (v, w) ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals max
i∈V (U)

{|Xi|−1}.

The treewidth of a graph G is the minimum width over all tree decompositions
of G. We use notation tw(G) to denote the treewidth of a graph G.

It is said that a graph class G has bounded local treewidth if there is a function
f(r) (which depends only on r) such that for any graph G in G, the treewidth
of the subgraph of G induced by the set of vertices at distance at most r from
any vertex is bounded above by f(r). A graph class G has linear local treewidth
if f(r) = O(r). For example, it is known [9,1] that, for every planar graph G,
f(r) ≤ 3r − 1, and a corresponding tree decomposition of width at most 3r − 1
of the subgraph induced by the set of vertices at distance at most r from any
vertex can be found in time O(rn).

Given an edge e = (x, y) of a graph G, the graph G/e is obtained from G
by contracting the edge e; that is, to get G/e we identify the vertices x and y
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and remove all loops and replace all multiple edges by simple edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of G.
H is a minor of G if H is a subgraph of a contraction of G. A graph class G is
minor-closed if for every graph G ∈ G all minors of G are in G, too.

We say that a graph G is H-minor-free when it does not contain H as a minor.
We also say that a graph class G is H-minor-free (or, excludes H as a minor)
when all its members are H-minor-free. Clearly, all minor-free graph classes are
minor-closed.

An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some vertices of G. A graph class is apex-minor-
free if it does not contain any graph with some fixed apex graph as a minor. For
example, planar graphs (and bounded-genus graphs) are apex-minor-free graphs.

Eppstein [22,23] characterized all minor-closed graph classes that have
bounded local treewidth. It was proved that they are exactly apex-minor-free
graphs. These results were improved by Demaine and Hajiaghayi [14]. They
proved that all apex-minor-free graphs have linear local treewidth.

3 Main Result

Many optimization problems can be solved efficiently for graphs of bounded
treewidth by formulating the problem in a logical language, called Monadic Sec-
ond Order Logic (abbr. MSOL). It is known that problems which can be expressed
in this way can be solved in linear time for graphs with bounded treewidth [4]. We
need such a result for the sparsest partial t-spanner problem.

Lemma 1. Let k and t be positive integers. Let also G be a graph of treewidth
at most k, and let A ⊆ E(G). The sparsest partial t-spanner problem can
be solved by a linear-time algorithm (the constant which is used in the bound of
the running time depends only on k and t) if a corresponding tree decomposition
of G is given.

Proof. The sparsest partial t-spanner problem can formulated in MSOL as
follows. We ask for a a subgraph S of G (i.e. a subset of edges) with the fol-
lowing property: for every edge (x, y) ∈ A distS(x, y) ≤ t. This property
is expressible in MSOL because distS(x, y) ≤ t means that there are edges
(v0, v1), (v1, v2), . . . , (vl−1, vl) ∈ E(S) for some l ≤ t such that x = v0 and y = vl.
Then the claim follows from the well known results of Arnborg et al.[4]. �

It should be noted also that the dynamic-programming algorithm for the caseA =
E(G) was given by Makowsky and Rotics [26]. The algorithm of Makowsky and
Rotics can be easily adapted to solve the problem for arbitrarily choice of A.

Let u be a vertex of a graph G. For i ≥ 0 we denote by Li the i-th level
of breadth first search, i.e. the set of vertices at distance i from u. We call
the partition of the vertex set V (G) L(G, u) = {L0, L1, . . . , Lr} breadth first
search (BFS) decomposition of G. We assume for convenience that for BFS
decomposition L(G, u) Li = ∅ for i < 0 or i > r, and we use further negative
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indices and indices that are more than r. It can be easily seen that the BFS
decomposition can be constructed by the breadth first search in a linear time.

Let G be a graph with BFS decomposition L(G, u) = (L0, L1, . . . , Lr), and t
be a positive integer. Suppose that i ≤ j are integers. For i ≤ j we define

Gij = G[
j⋃

k=i

Lk].

Graph Gij is shown on Fig. 1.

u

Li−�t/2�

Li

Lj

Lj+�t/2�
A

 t/2!

 t/2!

Fig. 1. Graphs Gij and G′
ij

The following result is due to Demaine and Hajiaghayi [14] (see also the work
of Eppstein [23]),

Lemma 2 ([14]). Let G be an apex-minor-free graph. Then tw(Gij) = O(j−i).

Denote by G′ij = Gi−�t/2�,j+�t/2� (see Fig. 1), and let A = E(Gij). Let S be a
t-spanner of G and S′ be the subgraph of S induced by V (G′ij). We need the
following claim.

Lemma 3. S′ is a partial t-spanner for A in G′ij .

Proof. Let (x, y) ∈ A. Note that x, y ∈ V (Gij). Since S is a t-spanner for G, we
have that there is a x, y-path P in S of length at most t. Suppose that some
vertex v of this path does not belong to G′. Then v ∈ Ll for some l < i− t/2! or
l > j+ t/2!. By the definition of the BFS decomposition distG(x, v) >  t/2! and
distG(y, v) >  t/2!. But then P has length at least distG(x, v) + distG(v, y) ≥
2 t/2! + 2 > t. So, all vertices of P are vertices of G′ij , and this path is a path
in S′. �
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Now we are ready to describe our algorithm. Let t, k be positive integers,
t < k. For a given apex-minor-free graph G the BFS decomposition L(G, u) =
(L0, L1, . . . , Lr) is constructed for some vertex u.

If r ≤ k then a t-spanner S of G is constructed directly. We use the fact that
tw(G) = O(k) and, for example, use Bodlaender’s Algorithm [8] to construct in
linear time a suitable tree decomposition of G. Then, by Lemma 1, a sparsest
t-spanner of G can be found in linear time.

u
i k − 1 k − 1

G′i

Fig. 2. Graphs G′
j

Suppose now that r > k. We consequently construct t-spanners Si of G for
i = 1, 2, . . . , k − 1 as follows. Let

Ji = {j ∈ {2 − k, 3 − k, . . . , r − 1} : j ≡ i ( mod k − 1)}.

For every j ∈ Ji we consider graph G′j = Gj−�t/2�,j+k+�t/2�−1 and set of
edges Aj = E(Gj,j+k−1). In other words, we ”cover” graph G by graphs
G′i−(k−1), G

′
i, G

′
i+(k−1), . . . , and two consecutive graphs ”overlap” by 2 t/2! + 1

levels in the BFS decomposition (see Fig. 2). The union of all sets Aj is the set
E(G). By Lemma 2, tw(G′j) = O(k+ t). For every graph G′j we construct a spars-
est partial t-spanner Sij for Aj in G′j by making use of Lemma 1. We define

Si =
⋃

j∈Ji

Sij .

Finally, we choose among graphs S1, S2, . . . , Sk−1 the graph with the minimum
number of edges and denote it by S.

The following theorem describes properties of the graph S.

Theorem 1. Let S be the subgraph of an apex-minor-free graph G, obtained by
the algorithm described above. Then the following holds
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1. S is a t-spanner of G.
2. For every t and k > t, S can be constructed by a linear-time algorithm.
3. S has at most (1 + t+1

k−1 )OPT(G) edges, where OPT(G) is the number of
edges in the solution of the sparsest t-spanner problem on G.

Proof. 1. Every Si is a t-spanner of G. Indeed, for every (x, y) ∈ E(G), there is
j ∈ Ji such that (x, y) ∈ Aj , and distSi(x, y) ≤ distSij (x, y) ≤ t.

2. The second claim yields by Lemmata 1 and 2.
3. If k ≥ r then the claim is obvious. Let k < r and let T be a t-spanner of

G with the minimum number of edges, m = |E(T )| = OPT(G). Assume that
i ∈ {1, 2, . . . , k− 1} and j ∈ Ji. Let Tj = T [V (G′j)]. By Lemma 3, Tj is a partial
t-spanner for the set Aj in Tj. Then

|E(Tj)| ≥ |E(Sij)|,

and

|E(Si)| ≤
∑

j∈Ji

|E(Tj)|

= m +
∑

j∈Ji

|E(T ) ∩ E(Gj−�t/2�,j+�t/2�)|.

We have only to note that

|E(S)| = min
1≤i≤k−1

|E(Si)|

≤ m + min
1≤i≤k−1

∑

j∈Ji

|E(T ) ∩ E(Gj−�t/2�,j+�t/2�)|

≤ m + min
1≤i≤k−1

∑

j∈Ji

|E(Gj−�t/2�,j+�t/2�)|

≤ (1 +
t + 1
k − 1

)m. �

Finally, we have the following corollary.

Corollary 1. For every t ≥ 1, the sparsest t-spanner problem admits a
PTAS with linear running time for the class of apex-minor-free graphs (and,
hence, for the planar graphs and for the graphs with bounded genus).

Note that, since the proof of Lemma 1 was not constructive, we can not claim
that we have a very efficient algorithm. It would be interesting to find a more
efficient solution to the problem at least for the class of planar graphs by utilizing
the dynamic programming technique, the planarity of the graph and the specifics
of the problem. For the planar graphs, the initial problem on G will be reduced
to a subproblem of constructing a sparsest partial t-spanner for a subgraph of
G with bounded outerplanarity.
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Abstract. Haplotyping, also known as haplotype phase prediction, is
the problem of predicting likely haplotypes based on genotype data. This
problem, which has strong practical applications, can be approached us-
ing both statistical as well as combinatorial methods. While the most di-
rect combinatorial approach, maximum parsimony, leads to NP-complete
problems, the perfect phylogeny model proposed by Gusfield yields a
problem, called pph, that can be solved in polynomial (even linear) time.
Even this may not be fast enough when the whole genome is studied,
leading to the question of whether parallel algorithms can be used to
solve the pph problem. In the present paper we answer this question af-
firmatively, but we also give lower complexity bounds on its complexity.
In detail, we show that the problem lies in Mod2L, a subclass of the
circuit complexity class NC2, and is hard for logarithmic space and thus
presumably not in NC1. We also investigate variants of the pph problem
that have been studied in the literature, like the perfect path phylogeny
haplotyping problem and the combined problem where a perfect phy-
logeny of maximal parsimony is sought, and show that some of these
variants are TC0-complete or lie in AC0.

Keywords: bioinformatics, haplotyping, computational complexity,
circuit classes, perfect phylogenies.

1 Introduction

We investigate the computational complexity of haplotype phase prediction
problems. Haplotype phase prediction is an important preprocessing step in ge-
nomic disease and medical condition association studies. In these studies two
groups of people are identified, where one group has a certain disease or medical
condition while the other has not, and one tries to find correlations between
group membership and the genomic data of the individuals in the groups. The
genomic data typically consists of information about which bases are present
in an individual’s dna at so-called snp sites (single nucleotide polymorphism
sites). While the dna sequences of different individuals are mostly identical, at
snp sites there may be variations. Low-priced methods for large-scale inference
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of genomic data can read out, separately for each snp site, the bases present, of
which there can be two since we inherit one chromosome from our father and
one from our mother. However, since the bases at different sites are determined
independently, we have no information on which chromosome a base belongs to.
For homozygous sites, where the same base is present on both chromosomes, this
is not a problem, but for heterozygous sites this information, called the phase of
an snp site, is needed for accurate correlations. The idea behind haplotype phase
prediction or just haplotyping is to computationally predict likely phases based
on the laboratory data (which misses this information). For an individual, the
genomic input data without phase information is called the genotype while the
two predicted chromosomes are called haplotypes.

There are both statistical [11,12,18] as well as combinatorial approaches to
haplotyping. The present paper will treat only combinatorial approaches, of
which there are two main ones: Given a set of observed genotypes, the maxi-
mum parsimony approach [5,6,13,16,19] tries to minimize the number of different
haplotypes needed to explain the genotypes. The rationale behind this approach
is that mutations producing new haplotypes are rare and, thus, genotypes can
typically be explained by a small set of distinct haplotypes. Unfortunately, the
computational problem resulting from the maximum parsimony approach, called
mh for maximum parsimony haplotyping, is NP-complete [26]. This is remedied
by Gusfield’s perfect-phylogeny-based approach [17]. Here the rationale is that
mutation events producing new haplotypes can typically be arranged in a per-
fect phylogeny (a sort of “optimal” evolutionary tree). The resulting problem,
called pph for perfect phylogeny haplotyping, can be solved in polynomial time
as shown in Gusfield’s seminal paper [17]. It is also possible to combine these
two approaches, that is, to look for a minimal set of haplotypes whose muta-
tion events form a perfect phylogeny, but the resulting problems are – not very
surprisingly – NP-complete once more [1,27].

Due to the great practical importance of solving the pph problem efficiently,
a lot of research has been invested into finding quick algorithms for it and also
for different variants. These efforts have culminated in the recent linear-time
algorithms [8,23,24] for pph. On the other hand, for a number of variants, in
particular when missing data is involved, NP-completeness results can be ob-
tained. (In the present paper we only consider the case where complete data is
available.) These results have sparked our interest in, ideally, determining the ex-
act computational complexity of these problems in complexity-theoretic terms.
For instance, by Gusfield’s result, pph ∈ P, but is it also hard for this class?
Note that this question is closely linked to the question of whether we can find
an efficient parallel algorithm.

Before we list the results obtained in the present paper, let us first describe
the problems that we investigate (detailed definitions are given in the next sec-
tion). The input is always a genotype matrix, whose rows represent individuals
and whose columns represent snp sites. An entry in this matrix encodes the
measurement made for the given individual and the given snp site. The question
is always whether there exists a haplotype matrix with certain properties that
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explains the genotype matrix. A haplotype matrix explaining a genotype matrix
has twice as many rows, namely two haplotypes for each individual, one from the
father and one from the mother, and these two haplotypes taken together must
explain exactly the observed genotype in the input matrix for this individual.

The perfect phylogeny model is an evolutionary model according to which
mutations at a specific site can happen only once, in other words, there cannot
be any “back-mutations.” For haplotype matrices this means that there must
exist an (evolutionary) tree whose nodes can be labeled with the haplotypes in
the matrix in such a way that all haplotypes sharing a base at a given site form
a connected subtree. In the perfect path phylogeny model [15] the phylogeny is
restricted to be a very special kind of tree, namely a path. In the directed version
of the perfect phylogeny model the tree is rooted and the root label is part of
the input.

Problem Question: Given a genotype matrix, an integer d (where applicable),
and a root label (where applicable), does there exist an explaining
haplotype matrix . . .

mh . . . that has at most d different haplotypes?

pph . . . that admits a perfect phylogeny?
dpph . . . that admits a perfect phylogeny with the given root label?
mpph . . . that admits a perfect phylogeny and has at most d different

haplotypes?

ppph . . . that admits a perfect path phylogeny?
dppph . . . that admits a perfect path phylogeny with the given root label?
mppph . . . that admits a perfect path phylogeny and has at most d

different haplotypes?

Our Results. In this paper we show that pph is hard for logarithmic space
under first-order reductions. This is the first lower bound on the complexity of
this problem. We also show pph ∈ Mod2L, which is a close (but not matching)
upper bound on the complexity of this central problem.

We show that the ppph problem, where the tree topology of the perfect phy-
logeny is restricted to a path, is (provably) easier: This problem lies in FO, which
is the same as the uniform circuit class AC0 (constant depth, unbounded fan-in,
polynomial-size circuits). This implies, in particular, that ppph cannot be hard
for logarithmic space – unlike pph. To obtain this results we extend the partial
order method introduced by Gramm et al. [15] for directed perfect path phyloge-
nies to the undirected case. We also show that mppph is complete for the uniform
threshold circuit complexity class TC0, which is the same as FO(COUNT).

Restricting the tree topology to a path is one way of simplifying the pph

problem. Another approach that has also been studied in the literature is to
restrict the number of heterozygous entries in the genotype matrices. We show
that pph is in FO when genotype matrices are restricted to contain at most two
heterozygous entries per row or at most one heterozygous entry per column. In
contrast, if we allow at most three heterozygous entries per row, pph is still
L-hard.



302 M. Elberfeld and T. Tantau

Related Work. Perfect phylogeny haplotyping was suggested by Gusfield [17].
The computational complexity of the pph problem is quite intriguing since, at
first sight, it is not even clear whether this problem is solvable in polynomial
time. Gusfield showed that this is, indeed, the case and different authors soon
proposed simplified algorithms with easier implementations [2,10]. A few years
later three groups independently devised linear time algorithms for the problem
[8,23,24]. All these papers are concerned with the time complexity of pph and
all these algorithms have at least linear space complexity.

Haplotyping with perfect path phylogenies was introduced by Gramm et al.
[15] in an attempt to find faster algorithms for restricted versions of pph. For
instance, Gramm et al. present a simple and fast linear-time algorithm for dppph

and they show that the version with incomplete data is fixed parameter tractable
with respect to the number of missing entries per site. These results all suggested
(but did not prove) that the ppph problem is somehow “easier” than pph. The
results of the present paper, namely that ppph ∈ FO while pph is L-hard, settle
this point.

Our result that mppph is TC0-complete contrasts sharply with the NP- com-
pleteness of mpph proved in [1,27]. One might try to explain these contrasting
complexities by arguing that “considering perfect path phylogenies rather than
perfect phylogenies makes the problems trivial anyway, so this is no surprise,”
but this is not the case: For instance, the incomplete perfect path phylogeny
problem, ippph, is known to be NP-complete [15] just like ipph.

Van Iersel et al. [27] have studied the complexity of mpph for inputs with a
bounded number of heterozygous entries and they show that for certain bounds
the problem is still NP-complete while for other bounds it lies in P. These results
are closely mirrored by the results of the present paper, only the classes we
consider are much smaller: The basic pph problem is L-hard and so are some
restricted versions, while other restricted versions lie in FO. It turns out that,
despite the different proof techniques, the restrictions that make mpph lie in
P generally also make pph lie in FO, while restrictions that cause mpph to be
NP-hard also cause pph to be L-hard.

Organization of This Paper. After the following preliminaries section, Section 3
presents our results on pph, including the variants of pph with restricted inputs
matrices. In Section 4 we present the results on ppph and the maximum parsi-
mony variant mppph. Due to lack of space, most proofs are omitted; the missing
proofs can be found in the technical report version [9].

2 Basic Notations and Definitions

2.1 Haplotypes, Genotypes, Perfect Phylogenies, Induced Sets

Conceptually, a haplotype describes genetic information from a single chromo-
some. When snp sites are used for this purpose, a haplotype is a sequence of the
bases A, C, G and T. In the human genome, at any given snp site at most two
different bases can be observed in almost all cases (namely an original base and
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a mutated version). Since these two bases are known and fixed for a given site,
we can encode one base with 0 and the other with 1 (for this particular site). For
example, the haplotypes AAGC and TATC might be encoded by 0110 and 1100.
A genotype combines two haplotypes by joining their entries. For example, the
haplotypes AAGC and TATC lead to the genotype {A,T}{A}{G,T}{C} and so
do the two haplotypes AATC and TAGC. Given a genotype, we call sites with
only one observed base homozygous and sites with two bases heterozygous. It is
customary to simplify the representation of genotypes by encoding a homozy-
gous entry by 0 or 1 (depending on the single base present) and heterozygous
entries with the number 2. Thus, we encode the above genotype by 2120.

Formally, a haplotype is a vector of 0’s and 1’s. A genotype is a vector of 0’s,
1’s and 2’s. Given a vector c, let c[i] denote the ith component. Two haplotypes
h1, h2 ∈ {0, 1}n explain a genotype g ∈ {0, 1, 2}n if for each i ∈ {1, . . . , n}
we have g[i] = h1[i] = h2[i] whenever g[i] ∈ {0, 1} and h1[i] �= h2[i] whenever
g[i] = 2. To examine multiple genotypes or haplotypes, we arrange them in
matrices. The rows of a haplotype matrix are haplotypes and the rows of a
genotype matrix are genotypes. We call a column of a matrix polymorphic if it
contains both 0-entries and 1-entries or a 2-entry. We say that a 2n×m haplotype
matrix B explains an n × m genotype matrix A if for each i ∈ {1, . . . , n} the
rows 2i− 1 and 2i of B explain the row i of A.

Perfect phylogenies for haplotype and genotype matrices are defined as
follows:

Definition 1. A haplotype matrix B admits a perfect phylogeny if there exists
a rooted tree TB, called a perfect phylogeny for B, such that:

1. Each row of B labels exactly one node of TB.
2. Each column of B labels exactly one edge of TB.
3. Each edge of TB is labeled by at least one column of B.
4. For every two rows h1 and h2 of B and every column i, we have h1[i] �= h2[i]

if, and only if, i lies on the path from h1 to h2 in TB.

A genotype matrix A admits a perfect phylogeny if there exists a haplotype ma-
trix B that explains A and admits a perfect phylogeny.

We say that TB is a perfect path phylogeny if the topology of TB is a path, that
is, TB consists of at most two disjoint branches emanating from the root. If the
root of TB is labelled with a haplotype given beforehand, we call TB directed.
Since the roles of 0’s and 1’s can be exchanged individually for each column,
we will always require the given haplotype to be the all-0-haplotype. Formally,
we say that a haplotype matrix B admits a directed perfect (path) phylogeny if
there exists a perfect (path) phylogeny as in Definition 1 with the root label 0n.

The four gamete property is a well-known alternative characterization of per-
fect phylogenies: A haplotype matrix admits a perfect phylogeny if, and only

if, no column pair contains the submatrix
[

0 0
0 1
1 0
1 1

]

. By the four gamete prop-

erty it is important to know for each pair of columns which combinations of
0’s and 1’s are (or must be) present in the pair. Following Eskin, Halperin,
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and Karp [10] we call these combinations the induced set of the columns. For-
mally, given a haplotype matrix B and a pair of columns (c, c′) the induced
set indB(c, c′) ⊆ {00, 01, 10, 11} contains all bitstrings ab ∈ {00, 01, 10, 11} for
which there is a row r in B such that the entry in column c is a and the entry
in column c′ is b. For a genotype matrix A and two columns, the induced set
indA(c, c′) ⊆ {00, 01, 10, 11} is the intersection of all indB(c, c′) where B is any
haplotype matrix that explains A. This means, for instance, that the induce of
the two columns of the genotype matrix [ 0 1

2 0 ] is {01, 00, 10}, the induce of [ 2 0
1 2 ]

is {00, 10, 11}, and the induce of [ 0 0
2 2 ] is {00}.

For a genotype with at least two heterozygous entries there exist multiple
pairs of explaining haplotypes. If a genotype g contains [ 2 2 ] in columns c and
c′, then two explaining haplotypes for g contain either [ 0 0

1 1 ] or [ 0 1
1 0 ] in c and c′.

In the first case we say that g is resolved equally in (c, c′) and in the second case
we say that g is resolved unequally in (c, c′). By the four gamete property, when a
genotype matrix admits a perfect phylogeny, for each column pair all genotypes
are resolved either equally or unequally. The resolution of a column pair is often,
but not always, determined by the induce: In order to obtain a perfect phylogeny,
a column pair that induces 00 and 11 must be resolved equally and a column
pair that induces 01 and 10 must be resolved unequally.

2.2 Complexity Classes, Circuit Classes, Descriptive Complexity
Theory

The classes L, P, and NP denote logarithmic space, polynomial time, and non-
deterministic polynomial time, respectively. The class Mod2L contains all lan-
guages L for which there exists a nondeterministic logspace Turing machine
such that x ∈ L if, and only if, the number of accepting computation paths on
input x is odd. The circuit classes AC0, TC0, NC1, and NC2, all of which are as-
sumed to be uniform in the present paper, are defined as follows: AC0 is the class
of problems that can be decided by a logspace-uniform family of constant-depth
and polynomial-size circuits over and-, or- and not-gates with an unbounded
fan-in. For TC0 we may additionally use threshold gates. The class NC1 contains
all languages that can be decided by a logspace-uniform family of polynomial-
size, O(log n)-depth circuits over and-, or- and not-gates with bounded fan-in.
For the class NC2 the depth only needs to be O(log2 n).

We use several notions from descriptive complexity theory, which provides
equivalent characterizations of the classes AC0 and TC0. In descriptive com-
plexity theory inputs are encoded as logical structures. A genotype matrix is
described by the logical structure A = (IA, AA0 , A

A
1 , A

A
2 , n

A
r , n

A
c ) as follows: IA

is a finite set of indices, which are used both for rows and columns, and nAr
and nAc are elements from IA that are the maximum row and column indices,
respectively. The relation AA0 ⊆ IA × IA indicates 0-entries, that is, (r, c) ∈ AA0
holds exactly if the row r has a 0-entry in column c. The relations AA1 and AA2
are defined similarly, only for 1- and 2-entries. We assume that the universe IA

is ordered (we always have free access to a predicate <), but will not need the
bit-predicate (see [20] for a discussion of its importance).
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Given a formula, the set of all finite logical structures satisfying the formula
(that are models of the formula) can be regarded as a language. If the formula
is a first-order formula, the described language is called first-order definable.
The class of all such languages is denoted FO and equals AC0. For example, the
formula (∃r, c)[r ≤ nr ∧ c ≤ nc ∧ A2(r, c)] is true for genotype matrices that
contain a row with a heterozygous entry and, therefore, defines the set of geno-
type matrices with at least one heterozygous entry. The computational power of
first-order logic can be increased by adding an additional number domain and
counting quantifiers. This class, which is called FO(COUNT), equals TC0.

To describe mappings between logical structures, one can use first-order queries,
which are tuples of defining formulas for the relations of the image structure. Since
L is closed under reductions that can be described by first-order queries, we use
these first-order reductions to prove L-hardness.

The inclusion structure between the described classes is known to be the
following:

FO = AC0 � FO(COUNT) = TC0 ⊆ NC1 ⊆ L ⊆ Mod2L ⊆ NC2 ⊆ P ⊆ NP .

3 Complexity of Haplotyping Via Perfect Phylogenies

In the present section we study the complexity of pph as well as the variants
where the number of heterozygous entries in the input is restricted. In Section 3.1
we show that pph and its directed variant are L-hard and in Mod2L. Thus, both
problems are in NC2 by the inclusion Mod2L ⊆ NC2 shown in [3], but not in NC1,
unless L = NC1. In Section 3.2 we additionally take restrictions into account
and show that the hardness result still holds when we restrict the input to
genotype matrices with at most three heterozygous entries per row. In contrast,
we show that pph is first-order definable for genotype matrices with at most two
heterozygous entries per row or at most one heterozygous entry per column.

We will focus on the directed version dpph rather than pph since Eskin,
Halperin and Karp [10] have shown that pph reduces to dpph via an easy con-
struction: In each column, search downward for the first homozygous entry and
if it equals 1, exchange the roles of 0 and 1 in this column. Indeed, this construc-
tion is so simple that it can be implemented using a first-order query: for each
homozygous entry we have to decide whether it is inverted and this depends on
the value of the first homozygous entry in the same column, which in turn is easy
to determine for an ordered universe (recall that we always have access to an
ordering of the universe). Note that dpph trivially reduces to pph by adding a
row with only 0-entries to the matrix. Interestingly, the path variants ppph and
dppph are also equivalent via first-order reductions, which is shown in Section 4,
but this is harder to prove.

3.1 Complexity of the PPH Problem

In the present section we prove two theorems on the complexity of pph. The
first gives a lower bound, namely that pph is hard for logarithmic space under
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first-order reductions. The second gives an upper bound, namely pph ∈ Mod2L.
Since dpph is first-order equivalent to pph, the same results hold for the di-
rected version, also. The bounds show that both problems are in NC2, but not
in NC1 under common assumptions from complexity theory. We thank Arfst
Nickelsen for hinting at the basic idea of the proof of Theorem 1 in a personal
communication.

Theorem 1. pph is hard for L under first-order reductions.

Proof (sketch). We show that there is a first-order reduction from the reachabil-
ity problem for undirected graphs to the complement of pph. Given a graph G
and a start node s and a target node t we first modify the graph such that any
path from s to t must have even length. Then we construct a genotype matrix
such that the resolutions of certain column pairs are predetermined by induces.
The matrix is setup in such a way that an edge joining two nodes enforces that
two specific columns in the matrix are resolved unequally. This can be used to
enforce that columns corresponding to s and to nodes at an even distance from
s must be resolved equally. By adding further restrictions that enforce that the
columns of s and t must be resolved unequally, we can ensure that (a) if s and
t lie in different components there exists an explaining haplotype matrix that
admits a perfect phylogeny and (b) otherwise every explaining haplotype matrix
violates the four gamete property. �

Theorem 2. pph is in Mod2L.

Proof (sketch). pph can be logspace-many-one reduced to solving systems of
linear equations over Z/2Z. This reduction is implicit in the construction of
Theorem 1 of the paper by Eskin, Halperin, and Karp [10]. Solving systems
of linear equations over Z/2Z is in Mod2L as shown in [3] and since Mod2L is
closed under logspace-many-one reductions, we get the claim. �

3.2 Complexity of PPH for Restricted Instances

How do restrictions on the number of heterozygous sites influence the complexity
of pph? This question will be addressed in the present section. Following Sharan,
Halldórsson, and Istrail [26] we say that a genotype matrix is (k, l)-bounded if each
row contains at most k and each column at most l heterozygous entries. We use
a star to indicate that a parameter is not bounded. We parametrize problems in
the same way, so pph(3, ∗) denotes the set of all genotype matrices with at most
three heterozygous entries per row that admit a perfect phylogeny.

In the literature (k, l)-bounded variants were first studied for the NP-complete
problem mh. The hope was to find restrictions that hold in practice and that make
the problem tractable. In different papers parameters k and l have been deter-
mined such that mh(k, l) is either efficiently solvable or NP- complete
[4,21,22,26,27]. Bounded variants of mpph have also been studied and the main
results are the same as for the corresponding variants of mh.

We study the complexity of (k, l)-bounded variants of pph. Our results, summa-
rized in Theorem 3, show strong similarities to the complexity of bounded variants
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of mh and mpph, but one complexity level further down. We show that pph(3, ∗)
is L-hard; and it is known [27] that mh(3, ∗) and mpph(3, ∗) are NP-complete.
We show pph(2, ∗) ∈ FO and pph(∗, 1) ∈ FO; and it is known [4,22,27] that
mh(2, ∗),mpph(2, ∗) ∈ P and mh(∗, 1),mpph(∗, 1) ∈ P. We do not know the com-
plexity of pph(∗, 2); and the complexity mh(∗, 2) and mpph(∗, 2) are also open.

Theorem 3

1. pph(3, ∗) is L-hard.
2. pph(2, ∗) is first-order definable.
3. pph(∗, 1) is first-order definable.

4 Complexity of Haplotyping Via Perfect Path
Phylogenies

In the present section we consider perfect path phylogenies, a problem variant
first advocated in Gramm et al. [15] and later studied in [14]. In the first of
these papers it is shown that ppph is solvable in linear time. We show that it is
first-order definable and, therefore, in AC0. To obtain this result, we first prove
dppph ∈ FO and then reduce ppph to dppph by a first-order reduction. While
this reduction is similar to the reduction from pph to dpph in Section 3, the
correctness proof for the path variant differs. Bafna et al. [1] have shown the
NP-completeness of mpph. For the path variant mppph we show that it can be
described by a first-order formula with counting quantifiers and is, therefore,
in TC0. In addition, we prove that mppph is hard for TC0.

4.1 Complexity of the Basic Decision Problem

In the present section we show that the set of all genotype matrices admitting
a perfect path phylogeny can be described using a first-order formula; in other
words, we show ppph ∈ FO, see Theorem 6. In order to prove this, we first show
that the simpler problem dppph lies in FO and then show that ppph can be
first-order reduced to its directed version.

We start with some notations and a characterization for dppph from the lit-
erature. Then we present an alternative characterization that can be formalized
with first-order logic and a first-order reduction from ppph to dppph. While the
construction of this reduction is easy, its correctness proof is not. Finally, we
conclude that ppph is first-order definable since the class of first-order definable
problems is closed under first-order reduction.

We define a partial order on the columns of a genotype matrix as follows:
Let 1 . 2 . 0. For two columns c and c′ we have c / c′ if c[i] / c′[i] for each
row i. We say that two columns c and c′ are comparable if c / c′ or c′ / c.
If c / c′ and c �= c′, then we say that c dominates c′. In the following let C
be a set of columns. A subset of C is called an (anti)chain if its elements are
pairwise (in)comparable. An antichain C′ ⊆ C is maximal if it is not properly
contained in any other antichain. A maximal antichain C′ of size i is the highest
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maximal antichain of size i if there is no other antichain of size (exactly) i
with an element that dominates an element from C′. For a set C of columns
there exists at most one highest maximal antichain of size i, which we denote by
hmai(C). Let hmai(C) = ∅ if there is no such set.

We call two columns separable if each column has a 0-entry in the rows where
the other has a 1-entry. Following [15] we say that a column set C has the ppp-
property if there exist two (possibly empty) chains C1 and C2 that cover C, so
that their maximal elements (if they exist) are separable. We call (C1, C2) a
ppp-cover of C. The following fact characterizes dppph.

Fact 4 (Gramm et al. [15]). A genotype matrix A admits a directed perfect
path phylogeny if, and only if, the set of columns of A has the ppp-property.

The above characterization does not readily yield a first-order description of
dppph since we cannot quantify over chains (a second-order quantifier would
be needed, lifting the complexity up to the polynomial hierarchy). What we
need is a more “element-oriented” characterization such as the one given by the
following lemma.

Lemma 1. A column set C has the ppp-property if, and only if, the width of C
is at most 2 and one of the following statements is true:

1. hma1(C) = {c∗} and hma2(C) = ∅.
2. hma1(C) = ∅, hma2(C) = {c1, c2}, and c1 and c2 are separable.
3. hma1(C) = {c∗}, hma2(C) = {c1, c2}, and c∗ and c1 are separable or c∗ and

c2 are separable.

Theorem 5. dppph is first-order definable.

Theorem 6. ppph is first-order definable.

To prove Theorem 5, it suffices to show that the characterization given in
Lemma 1 can be tested using a first-order formula. Theorem 6 can be proved by
a first-order reduction from ppph to dppph.

4.2 Combining Perfect Path Phylogenies and Maximum Parsimony

In the present section we prove that mppph is TC0-complete, in stark contrast
to the fact that mpph is NP-complete.

Theorem 7. mppph is TC0-complete under AC0-reductions.

Proof (sketch). First, we show that (A, d) ∈ mppph if, and only if, A ∈ ppph

and d is greater than the number of distinct polymorphic columns in A. Due
to this characterization, mppph has nearly the same complexity as ppph, we
only need to add counting quantifiers, which are used to count the number of
distinct polymorphic columns in an input matrix. This implies mppph ∈ TC0. To
prove the TC0-hardness of mppph, we present an AC0-reduction from majority,
where a binary string is given and the question is whether at least half of the
input bits are 1.We construct unique genotypes for bits that equal 0 and use an
mppph oracle gate with an appropriate budget value to count them. �
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5 Conclusion

The three main results of the present paper are that (a) the complexity of pph lies
between L and Mod2L, (b) while ppph lies in AC0 and mppph is TC0-complete,
and (c) restricted variants of pph are either L-hard or they lie in AC0. Concerning
the latter results, the complexity of a few restricted variants is still open. In
particular, what is the complexity of pph(3, 2)?

A much broader, still largely open research field is the complexity of these
problems when data may be missing. Typically, the resulting problems are NP-
complete, so we need to look for approximation algorithms, fixed-parameter
algorithms, or moderately exponential time algorithms. Specialized results are
known in this context, but there are still only few precise complexity-theoretic
results in this setting.
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26. Sharan, R., Halldórsson, B.V., Istrail, S.: Islands of tractability for parsimony hap-
lotyping. IEEE/ACM T. Comput. Biol. and Bioinfor. 3(3), 303–311 (2006)

27. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability:
Algorithms for parsimony and minimum perfect phylogeny haplotyping problems.
IEEE/ACM T. Comput. Biol. and Bioinfor. 5(2), 301–312 (2008)



Sincere-Strategy Preference-Based Approval Voting
Broadly Resists Control%
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Abstract. We study sincere-strategy preference-based approval voting (SP-AV),
a system proposed by Brams and Sanver [8], with respect to procedural con-
trol. In such control scenarios, an external agent seeks to change the outcome
of an election via actions such as adding/deleting/partitioning either candidates
or voters. SP-AV combines the voters’ preference rankings with their approvals
of candidates, and we adapt it here so as to keep its useful features with respect
to approval strategies even in the presence of control actions. We prove that this
system is computationally resistant (i.e., the corresponding control problems are
NP-hard) to at least 16 out of 20 types of constructive and destructive control.
Thus, for the 20 control types studied here, SP-AV has more resistances to con-
trol, by at least two, than is currently known for any other natural voting system
with a polynomial-time winner problem.

Keywords: Complexity theory, artificial intelligence, approval voting,complexity
of procedural control.

1 Introduction

Voting provides a particularly useful method for preference aggregation and collective
decision-making. While voting systems were originally used in political science, eco-
nomics, and operations research, they are now also of central importance in various
areas of computer science, such as artificial intelligence (in particular, within multi-
agent systems). In automated, large-scale computer settings, voting systems have been
applied, e.g., for planning [11] and similarity search [14], and have also been used
in the design of recommender systems [19] and ranking algorithms [10] (where they
help to lessen the spam in meta-search web-page rankings). For such applications, it is
crucial to explore the computational properties of voting systems and, in particular, to
study the complexity of problems related to voting (see, e.g., the survey by Faliszewski
et al. [15]).

The study of voting systems from a complexity-theoretic perspective was initiated by
Bartholdi, Tovey, and Trick’s series of seminal papers about the complexity of winner
determination [2], manipulation [1] and procedural control [3] in elections. This pa-
per contributes to the study of electoral control, where an external agent—traditionally
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E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 311–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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called the chair—seeks to influence the outcome of an election via procedural changes
to the election’s structure, namely via adding/deleting/partitioning either candidates or
voters (see Section 2.2 and the full version [12] for the formal definitions of our con-
trol problems). We consider both constructive control (introduced by Bartholdi, Tovey,
and Trick [3]), where the chair’s goal is to make a given candidate the unique winner,
and destructive control (introduced by Hemaspaandra, Hemaspaandra, and Rothe [22]),
where the chair’s goal is to prevent a given candidate from being a unique winner.

We investigate the same twenty types of constructive and destructive control that
were studied for approval voting [22], and we do so for a voting system that was
proposed by Brams and Sanver [8] as a combination of preference-based and approval
voting. Approval voting was introduced by Brams and Fishburn ([4,5], see also [6]) as
follows: Every voter either approves or disapproves of each candidate, and every candi-
date with the largest number of approvals is a winner. One of the simplest preference-
based voting systems is plurality: All voters report their preference rankings of the
candidates, and the winners are the candidates that are ranked first-place by the largest
number of voters. The purpose of this paper is to show that Brams and Sanver’s com-
bined system (adapted here so as to keep its useful features even in the presence of
control actions) combines the strengths, in terms of computational resistance to control,
of plurality and approval voting.

Some voting systems are immune to certain types of control in the sense that it is
never possible for the chair to reach his or her goal via the corresponding control ac-
tion. Of course, immunity to any type of control is most desirable, as it unconditionally
shields the voting system against this particular control type. Unfortunately, like most
voting systems approval voting is susceptible (i.e., not immune) to many types of con-
trol, and plurality voting is susceptible to all types of control.1 However, and this was
Bartholdi, Tovey, and Trick’s brilliant insight [3], even for systems susceptible to con-
trol, the chair’s task of controlling a given election may be too hard computationally
(namely, NP-hard) for him or her to succeed. The voting system is then said to be resis-
tant to this control type. If a voting system is susceptible to some type of control, but
the chair’s task can be solved in polynomial time, the system is said to be vulnerable to
this control type.

The quest for a natural voting system with an easy winner-determination procedure
that is universally resistant to control lasts for more than 15 years now. Among the vot-
ing systems that have been studied with respect to control are plurality, Condorcet, ap-
proval, cumulative, Llull, and (variants of) Copeland voting [3,22,23,24,16,17]. Among
these systems, plurality and Copeland voting (denoted Copeland0.5 in [17]) display
the broadest resistance to control, yet even they are not universally control-resistant.
The only system currently known to be fully resistant—to the 20 types of construc-
tive and destructive control studied in [22,23] and here—is a highly artificial system
constructed via hybridization [23]. (We mention that this system was not designed for

1 A related line of research has shown that, in principle, all natural voting systems can be ma-
nipulated by strategic voters. Most notable among such results is the classical work of Gib-
bard [20] and Satterthwaite [25]. The study of strategy-proofness is still an extremely active
and interesting area in social choice theory (see, e.g., Duggan and Schwartz [9]) and in artificial
intelligence (see, e.g., Everaere et al. [13]).
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Table 1. Number of resistances, immunities, and vulnerabilities to our 20 control types

Number of Condorcet Approval Llull Plurality Copeland SP-AV

resistances 3 4 13 14 14 ≥ 16
immunities 4 8 0 0 0 0
vulnerabilities 7 8 7 6 6 ≤ 4

direct, real-world use as a “natural” system but rather was intended to rule out the exis-
tence of a certain impossibility theorem [23].)

While approval voting nicely distinguishes between each voter’s acceptable and in-
acceptable candidates, it ignores the preference rankings the voters may have about
their approved (or disapproved) candidates. This shortcoming motivated Brams and
Sanver [8] to introduce a voting system that combines approval and preference-based
voting, and they defined the related notions of sincere and admissible approval strate-
gies, which are quite natural requirements. We adapt their sincere-strategy preference-
based approval voting system in a natural way such that, for elections with at least two
candidates, admissibility of approval strategies (see Definition 1) can be ensured even in
the presence of control actions such as deleting candidates and partitioning candidates
or voters. Note that in control by partition of voters (see Section 2.2) the run-off may
have a reduced number of candidates.

The purpose of this paper is to study if, and to what extent, this hybrid system (where
“hybrid” is not meant in the sense of [23]) inherits the control resistances of plurality
(which is perhaps the simplest preference-based system) and approval voting. Denoting
this system by SP-AV, we show that SP-AV does combine the resistances of plurality
and approval voting (see also the full version [12] of this paper).

More specifically, we prove here that sincere-strategy preference-based approval vot-
ing is resistant to at least 16 and vulnerable to at most four of the 20 types of control
considered here and in [22].2 For comparison, Table 1 shows the number of resistances,
immunities, and vulnerabilities to our 20 control types that are known for each of Con-
dorcet,3 approval, Llull, plurality, and Copeland voting (see [3,22,16,17]), and for SP-
AV (see Theorem 1 and Table 2 in Section 3.1).

This paper is organized as follows. In Section 2, we define sincere-strategy preference-
based approval voting, the types of control studied in this paper, and the notions of

2 Note added in final revision: We state in this paper only those results that have been submitted
to and peer-reviewed for MFCS-08. Note, however, that the full version [12] of this paper
contains more results than are stated here. In particular, the two partition-of-voters cases left
open in Table 2 have been resolved meanwhile: SP-AV is resistant to this control type in the
constructive case and is vulnerable in the destructive case [12]. Thus, SP-AV is now known
to have 17 resistances and three vulnerabilities to the 20 control types considered here, which
gives a larger number of results for SP-AV than stated in Tables 1 and 2.

3 As in [22], we consider two types of control by partition of candidates (namely, with and
without run-off) and one type of control by partition of voters, and for each partition case we
use the rules TE (“ties eliminate”) and TP (“ties promote”) for handling ties that may occur
in the corresponding subelections (see the full version [12] of this paper). However, since
Condorcet winners are always unique when they exist, the distinction between TE and TP is
not made for Condorcet voting, which thus has only 14 instead of 20 types of control.
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immunity, susceptibility, vulnerability, and resistance [3]. In Section 3, we provide our
results on SP-AV and some proofs. Some other proofs are omitted due to space limita-
tions, but can be found in the full and expanded version [12] of this paper. Finally, in
Section 4 we give our conclusions.

2 Preliminaries

2.1 Preference-Based Approval Voting

An election E = (C,V ) is specified by a finite set C of candidates and a finite collec-
tion V of voters who express their preferences over the candidates in C, where distinct
voters may of course have the same preferences. How the voter preferences are rep-
resented depends on the voting system used. In approval voting (AV, for short), every
voter draws a line between his or her acceptable and inacceptable candidates (by speci-
fying a 0-1 approval vector, where 0 represents disapproval and 1 represents approval),
yet does not rank them. In contrast, many other important voting systems (e.g., Con-
dorcet voting, Copeland voting, all scoring protocols including plurality, Borda count,
veto, etc.) are based on voter preferences that are specified as tie-free linear orderings
of the candidates.

Brams and Sanver [8] introduced a voting system that combines approval and
preference-based voting. To distinguish this system from other systems that these au-
thors introduced with the same purpose of combining approval and preference-based
voting [7], we call the variant considered here (including the conventions and rules to be
explained below) sincere-strategy preference-based approval voting (SP-AV, for short).

Definition 1 ([8]). Let (C,V ) be an election, where the voters both indicate approvals/
disapprovals of the candidates and provide a tie-free linear ordering of all candidates.
For each voter v ∈ V, an AV strategy of v is a subset Sv ⊆ C such that v approves of all
candidates in Sv and disapproves of all candidates in C − Sv. The list of AV strategies
for all voters in V is called an AV strategy profile for (C,V ). (We sometimes also speak
of V ’s AV strategy profile for C.) For each c ∈C, let score(C,V )(c) = ‖{v ∈ V |c ∈ Sv}‖
denote the number of c’s approvals. Every candidate c with the largest score(C,V )(c) is
a winner of election (C,V ).

An AV strategy Sv of a voter v ∈ V is said to be admissible if Sv contains v’s most
preferred candidate and does not contain v’s least preferred candidate. Sv is said to
be sincere if for each c ∈ C, if v approves of c then v also approves of each candidate
ranked higher than c (i.e., there are no gaps allowed in sincere approval strategies). An
AV strategy profile for (C,V ) is admissible (respectively, sincere) if the AV strategies of
all voters in V are admissible (respectively, sincere).

Admissibility and sincerity are quite natural requirements. In particular, requiring the vot-
ers to be sincere ensures that their preference rankings and their approvals/disapprovals
are not contradictory. Note further that admissible AV strategies are not dominated in a
game-theoretic sense [4], and that sincere strategies for at least two candidates are al-
ways admissible if voters are neither allowed to approve of everybody nor to disapprove
of everybody (i.e., if we require voters v to have only AV strategies Sv with /0 �= Sv �= C), a
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convention adopted by Brams and Sanver [8] and also adopted here.4 Henceforth, we will
tacitly assume that only sincere AV strategy profiles are considered (which by the above
convention, whenever there are at least two candidates,5 necessarily are admissible), i.e.,
a vote with an insincere strategy will be considered void.

Preferences are represented by a left-to-right ranking (separated by a space) of the
candidates (e.g., a b c), with the leftmost candidate being the most preferred one, and
approval strategies are denoted by inserting a straight line into such a ranking, where
all candidates left of this line are approved and all candidates right of this line are
disapproved (e.g., “a | b c” means that a is approved, while both b and c are dis-
approved). In our constructions, we sometimes also insert a subset B ⊆ C into such
approval rankings, where we assume some arbitrary, fixed order of the candidates in B
(e.g., “a | B c” means that a is approved, while all b ∈ B and c are disapproved).

2.2 Control Problems for Preference-Based Approval Voting

The control problems considered here were introduced by Bartholdi et al. [3] for con-
structive control and by Hemaspaandra et al. [22] for destructive control. In constructive
control scenarios the chair’s goal is to make a favorite candidate win, and in destructive
control scenarios the chair’s goal is to ensure that a despised candidate does not win. As
is common, the chair is assumed to have complete knowledge of the voters’ preference
rankings and approval strategies (see [22] for a detailed discussion of this assumption),
and as in most papers on electoral control (exceptions are, e.g., [24,17]) we define the
control problems in the unique-winner model.

To achieve his or her goal, the chair modifies the structure of a given election via
adding/deleting/partitioning either candidates or voters. Such control actions— specif-
ically, those with respect to control via deleting or partitioning candidates or via parti-
tioning voters—may have an undesirable impact on the resulting election in that they
might violate our conventions about admissible AV strategies. That is why we define the
following rules that preserve (or re-enforce) our conventions under such control actions:

1. Whenever during or after a control action (such as deletion or partition of can-
didates or partition of voters) it happens that we obtain an election (C,V ) with
‖C‖ = 1, then each voter v ∈ V approves of the candidate in C (even if v originally
did not approve of this candidate).

2. Whenever during or after a control action it happens that we obtain an election
(C,V ) with ‖C‖ ≥ 2 and for some voter v ∈V we have Sv = /0 or Sv = C, then each
such voter’s AV strategy is changed to approve of his or her top candidate and to
disapprove of his or her bottom candidate. This rule re-enforces /0 �= Sv �=C for each
v ∈ V , as desired.

We now formally define our control problems, where each problem is defined by stating
the problem instance together with two questions, one for the constructive and one for

4 Brams and Sanver [8] actually preclude only the case Sv = C for voters v. However, an AV
strategy that disapproves of all candidates obviously is sincere, yet not admissible, which is
why we also exclude the case of Sv = /0.

5 Note that an AV strategy is never admissible for less than two candidates. For elections with
one candidate, we by convention require each voter to approve of this candidate.
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the destructive case. These control problems are tailored to sincere-strategy preference-
based approval voting by requiring every election occuring in these control problems
(be it before, during, or after a control action—so, in particular, this also applies to the
subelections in the partitioning cases) to have a sincere AV strategy profile and to satisfy
the above conventions and rules. In particular, this means that when the number of
candidates is reduced (due to deleting candidates or partitioning candidates or voters),
approval lines may have to be moved in accordance with the above rules.

Due to space, we confine ourselves to defining, as an example, only control by delet-
ing candidates. The remaining definitions of control problems can be found in, e.g.,
[3,16,22], and also in the full version [12] of this paper.

Control by Deleting Candidates: In this control scenario, the chair seeks to reach his
or her goal by deleting (up to a given number of) candidates. Here it may happen that
our conventions are violated by the control action, but will be re-enforced by the above
rules (namely, by moving the line between some voter’s acceptable and inacceptable
candidates to behind the top candidate or to before the bottom candidate whenever
necessary).

Name: Control by Deleting Candidates.
Instance: An election (C,V ), a designated candidate c∈C, and a nonnegative integer �.
Question (constructive): Is it possible to delete up to � candidates from C such that c

is the unique winner of the resulting election?
Question (destructive): Is it possible to delete up to � candidates (other than c) from

C such that c is not a unique winner of the resulting election?

2.3 Immunity, Susceptibility, Vulnerability, and Resistance

The following notions—which are due to Bartholdi, Tovey, and Trick [3]—will be cen-
tral to our complexity analysis of the control problems for preference-based approval
voting.

Definition 2 ([3]). Let E be an election system and let Φ be some given type of control.
E is said to be immune to Φ-control if (a) Φ is a constructive control type and it is never
possible for the chair to turn a designated candidate from being not a unique winner
into being the unique winner via exerting Φ-control, or (b) Φ is a destructive control
type and it is never possible for the chair to turn a designated candidate from being the
unique winner into being not a unique winner via exerting Φ-control. E is said to be
susceptible to Φ-control if it is not immune to Φ-control. E is said to be vulnerable to
Φ-control if E is susceptible to Φ-control and the control problem associated with Φ
is solvable in polynomial time. E is said to be resistant to Φ-control if E is susceptible
to Φ-control and the control problem associated with Φ is NP-hard.

For example, approval voting is known to be immune to eight of the twelve types of
candidate control considered here and in [22]. The proofs of these results crucially em-
ploy the links between immunity/susceptibility for various control types shown in [22]
and the fact that approval voting satisfies the unique version of the Weak Axiom of Re-
vealed Preference (denoted by Unique-WARP, see [22,3]): If a candidate c is the unique
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Table 2. Overview of results. Key: I means immune, S means susceptible, R means resistant (i.e.,
R = S + NP-hard), V means vulnerable (i.e., V = S + P-membership), TE means ties-eliminate,
and TP means ties-promote. Results for SP-AV are new. Results for AV, stated here to allow
comparison, are due to Hemaspaandra, Hemaspaandra, and Rothe [22].

SP-AV AV
Control by Constr. Destr. Constr. Destr.

Adding Candidates R R I V
Deleting Candidates R R V I
Partition TE: R TE: R TE: V TE: I
of Candidates TP: R TP: R TP: I TP: I
Run-off Partition TE: R TE: R TE: V TE: I
of Candidates TP: R TP: R TP: I TP: I
Adding Voters R V R V
Deleting Voters R V R V
Partition TE: S TE: S TE: R TE: V
of Voters TP: R TP: R TP: R TP: V

winner in a set C of candidates, then c is the unique winner in every subset of C that
includes c. In contrast with approval voting, sincere-strategy preference-based approval
voting does not satisfy Unique-WARP, and we will see later in Section 3.2 that it indeed
is susceptible to each type of control considered here. See the full version [12] for the
proof of Proposition 1.

Proposition 1. Sincere-strategy preference-based approval voting does not satisfy
Unique-WARP.

3 Results for Sincere-Strategy Preference-Based Approval Voting

3.1 Overview

Theorem 1 below (see also Table 2) shows the complexity results regarding control of
elections for SP-AV. As mentioned in the introduction, with at least 16 resistances and at
most four vulnerabilities (note, however, Footnote 2), this system has more resistances
and fewer vulnerabilities to control (for our 20 control types) than is currently known
for any other natural voting system with a polynomial-time winner problem.

Theorem 1. Sincere-strategy preference-based approval voting is susceptible, resis-
tant, and vulnerable to the twenty types of control considered here as shown in Table 2.

3.2 Susceptibility

By definition, all resistance and vulnerability results in particular require susceptibil-
ity. The following two lemmas (the proofs of which can be found in the full ver-
sion [12] of this paper) show that SP-AV is susceptible to the twenty types of control
considered here.



318 G. Erdélyi, M. Nowak, and J. Rothe

Lemma 1. SP-AV is susceptible to constructive and destructive control by adding can-
didates, by deleting candidates, and by partition of candidates (with or without run-off
and for each in both tie-handling models, TE and TP).

Lemma 2. SP-AV is susceptible to constructive and destructive control by adding vot-
ers, by deleting voters, and by partition of voters in both tie-handling models, TE
and TP.

3.3 Candidate Control

Theorems 2 and 3 below show that sincere-strategy preference-based approval voting is
fully resistant to candidate control. This result should be contrasted with that of Hema-
spaandra, Hemaspaandra, and Rothe [22], who proved immunity and vulnerability for
all cases of candidate control within approval voting (see Table 2). In fact, SP-AV has
the same resistances to candidate control as plurality, and we will show that the con-
struction presented in [22] to prove plurality resistant also works for sincere-strategy
preference-based approval voting in all cases of candidate control except one—namely,
except for constructive control by deleting candidates. In the proof of Theorem 3, we
will provide a novel construction that works for this one missing case.

All resistance results in this section follow via a reduction from the NP-complete
problem Hitting Set (see, e.g., Garey and Johnson [18]): Given a set B = {b1,b2, . . . ,bm},
a collection S = {S1,S2, . . . ,Sn} of subsets Si ⊆ B, and a positive integer k ≤ m, does
S have a hitting set of size at most k, i.e., is there a set B′ ⊆ B with ‖B′‖ ≤ k such that
for each i, Si ∩B′ �= /0?

Some of our proofs use constructions and arguments for SP-AV that are straightfor-
ward modifications of the constructions and arguments of the corresponding results for
approval voting or plurality from [22], and we thus attribute them to Hemaspaandra et
al. [22] (such as Theorem 2 below). Some other of our results require new insights to
make the proof work for SP-AV (such as Theorem 3 below). Due to space limitations,
we present here only the results on candidate control, and for voter control and other
details omitted here we refer the interested reader to the full version [12] of this paper.

Theorem 2 ([22]). SP-AV is resistant to all types of constructive and destructive can-
didate control considered here, except for constructive control by deleting candidates.

The proof of Theorem 2 is similar to the corresponding proof for plurality in [22], ex-
cept that only the arguments for destructive candidate control are given there (simply
because plurality was shown resistant to all cases of constructive candidate control al-
ready by Bartholdi, Tovey, and Trick [3] via a different construction). We now provide
a short proof sketch of Theorem 2 and the construction from [22] (slightly modified so
as to be formally conform with the SP-AV voter representation) in order to (a) show
that the same construction can be used to establish all but one resistances of SP-AV
to constructive candidate control, and (b) explain why the one missing case (namely,
constructive control by deleting candidates) does not follow from this construction.

Proof Sketch of Theorem 2. Susceptibility holds by Lemma 1 in each case. The
resistance proofs are based on a reduction from Hitting Set and employ Construc-
tion 1 below, slightly modified so as to be formally conform with the SP-AV voter
representation.
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Construction 1 ([22]). Let (B,S ,k) be a given instance of Hitting Set, where B =
{b1,b2, . . . ,bm} is a set, S = {S1,S2, . . . ,Sn} is a collection of subsets Si ⊆ B, and
k ≤ m is a positive integer. Define the election (C,V ), where C = B ∪ {c,w} is the
candidate set and where V consists of the following voters:

1. There are 2(m− k) + 2n(k + 1) + 4 voters of the form: c | w B.
2. There are 2n(k + 1) + 5 voters of the form: w | c B.
3. For each i, 1 ≤ i ≤ n, there are 2(k + 1) voters of the form: Si | c w (B−Si).
4. For each j, 1 ≤ j ≤ m, there are two voters of the form: b j | w c (B−{b j}).

Since score({c,w},V )(c)− score({c,w},V )(w) = 2k(n−1) + 2n−1 is positive (because
of n ≥ 1), c is the unique winner of election ({c,w},V ). The key observation is the
following proposition, which can be proven as in [22].

Proposition 2 ([22])

1. If S has a hitting set B′ of size k, then w is the unique SP-AV winner of election
(B′ ∪ {c,w},V).

2. Let D ⊆ B∪{w}. If c is not the unique SP-AV winner of election (D∪{c},V), then
there exists a set B′ ⊆ B such that
(a) D = B′ ∪ {w},
(b) w is the unique SP-AV winner of election (B′ ∪ {c,w},V), and
(c) B′ is a hitting set of S of size less than or equal to k.

As an example, the resistance of SP-AV to constructive and destructive control by
adding candidates now follows immediately from Proposition 2, via mapping the Hit-
ting Set instance (B,S ) to the set {c,w} of qualified candidates and the set B of spoiler
candidates, to the voter collection V , and by having c be the designated candidate in the
destructive case and by having w be the designated candidate in the constructive case.

The other cases of Theorem 2 can be proven similarly. �
Turning now to the one missing case mentioned above: Why does Construction 1 not

work for constructive control by deleting candidates? Informally put, the reason is that
c is the only serious rival of w in the election (C,V ) of Construction 1, so by simply
deleting c the chair could make w the unique SP-AV winner, regardless of whether S
has a hitting set of size k. However, via a different construction, we can prove resistance
also in this case.

Theorem 3. SP-AV is resistant to constructive control by deleting candidates.

Proof. Susceptibility holds by Lemma 1. To prove resistance, we provide a reduc-
tion from Hitting Set. Let (B,S ,k) be a given instance of Hitting Set, where B =
{b1,b2, . . . ,bm} is a set, S = {S1,S2, . . . ,Sn} is a collection of subsets Si ⊆ B, and
k < m is a positive integer.6

Define the election (C,V ), where C = B ∪ {w} is the candidate set and where V
consists of the following 4n(k + 1) + 4m−2k + 3 voters:

6 Note that if k = m then B is always a hitting set of size at most k (provided that S contains
only nonempty sets—a requirement that doesn’t affect the NP-completeness of the problem),
and we thus may require that k < m.



320 G. Erdélyi, M. Nowak, and J. Rothe

1. For each i, 1 ≤ i ≤ n, there are 2(k + 1) voters of the form: Si | (B−Si) w.
2. For each i, 1 ≤ i ≤ n, there are 2(k + 1) voters of the form: (B−Si) w | Si.
3. For each j, 1 ≤ j ≤ m, there are two voters of the form: b j | w (B−{b j}).
4. There are 2(m− k) voters of the form: B | w.
5. There are three voters of the form: w | B.

Since for each b j ∈ B, the difference

score(C,V )(w)− score(C,V )(b j)=2n(k + 1) + 3−(2n(k+1)+2+2(m−k))=1−2(m− k)

is negative (due to k < m), w loses to each member of B and so does not win election
(C,V ).

We claim that S has a hitting set B′ of size k if and only if w can be made the unique
SP-AV winner by deleting at most m− k candidates.

From left to right: Suppose S has a hitting set B′ of size k. Then, for each b j ∈ B′,

score(B′∪{w},V )(w)− score(B′∪{w},V )(b j)
= 2n(k + 1) + 2(m− k) + 3− (2n(k + 1)+ 2 + 2(m− k))
= 1,

since the approval line is moved for 2(m−k) voters of the third group, thus transferring
their approvals from members of B − B′ to w. So w is the unique SP-AV winner of
election (B′ ∪ {w},V ). Since B′ ∪ {w} = C − (B − B′), it follows from ‖B‖ = m and
‖B′‖ = k that deleting m− k candidates from C makes w the unique SP-AV winner.

From right to left: Let D ⊆ B be any set such that ‖D‖ ≤ m− k and w is the unique
SP-AV winner of election (C − D,V). Let B′ = (C − D)−{w}. Note that B′ ⊆ B and
that we have the following scores in (B′ ∪ {w},V ):

score(B′∪{w},V)(w) = 2(n− �)(k + 1) + 2(m−‖B′‖) + 3,

score(B′∪{w},V )(b j) ≤ 2n(k + 1) + 2(k + 1)�+ 2 + 2(m− k) for each b j ∈ B′,

where � is the number of sets Si ∈ S that are not hit by B′, i.e., B′ ∩Si = /0. Since w is
the unique SP-AV winner of (B′ ∪{w},V), w has more approvals than any candidate b j

in B′:

score(B′∪{w},V )(w)− score(B′∪{w},V )(b j)

≥ 2(n− �)(k + 1) + 2(m−‖B′‖) + 3−2n(k + 1)−2�(k + 1)−2−2(m− k)
= 1 + 2(k−‖B′‖)−4�(k + 1) > 0.

Solving this inequality for �, we obtain

0 ≤ � <
1 + 2(k−‖B′‖)

4(k + 1)
<

4 + 4k
4(k + 1)

= 1.

Thus �= 0. It follows that 1+2(k−‖B′‖)> 0, which implies ‖B′‖ ≤ k. Thus, B′ is a hit-
ting set of size at most k. ❑
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4 Conclusions

We have shown that Brams and Sanver’s sincere-strategy preference-based approval
voting system [8] combines the resistances of approval and plurality voting to procedu-
ral control: SP-AV is here shown to be resistant to at least 16 of the 20 types of control
studied here and in [22] (note, however, Footnote 2). Thus, for these 20 types of control,
SP-AV has more resistances and fewer vulnerabilities to control than is currently known
for any other natural voting system with a polynomial-time winner problem.

Acknowledgments. We thank the anonymous MFCS referees for their helpful com-
ments on a preliminary version of this paper.
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322 G. Erdélyi, M. Nowak, and J. Rothe

16. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting
broadly resist bribery and control. In: Proc.AAAI 2007, pp. 724–730. AAAI Press, Menlo
Park (2007)

17. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Copeland voting fully re-
sists constructive control. In: Proc. AAIM 2008, June 2008, pp. 165–176. Springer, Heidel-
berg (to appear, 2008)

18. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

19. Ghosh, S., Mundhe, M., Hernandez, K., Sen, S.: Voting for movies: The anatomy of rec-
ommender systems. In: Proc.3rd Annual Conference on Autonomous Agents, pp. 434–435.
ACM Press, New York (1999)

20. Gibbard, A.: Manipulation of voting schemes. Econometrica 41(4), 587–601 (1973)
21. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity of pre-

cluding an alternative. In: Proc. AAAI 2005, pp. 95–101. AAAI Press, Menlo Park (2005)
22. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity of pre-

cluding an alternative. Artificial Intelligence 171(5–6), 255–285 (2007)
23. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Hybrid elections broaden complexity-

theoretic resistance to control. In: Proc. IJCAI 2007, pp. 1308–1314. AAAI Press, Menlo
Park (2007)

24. Procaccia, A., Rosenschein, J., Zohar, A.: Multi-winner elections: Complexity of manipula-
tion, control, and winner-determination. In: Proc. IJCAI 2007, pp. 1476–1481. AAAI Press,
Menlo Park (2007)

25. Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic The-
ory 10(2), 187–217 (1975)



Reversal-Bounded Counter Machines Revisited�

Alain Finkel1 and Arnaud Sangnier1,2

1 LSV, ENS Cachan, CNRS
2 EDF R&D

61 av. du pdt Wilson 94230 Cachan, France
{finkel,sangnier}@lsv.ens-cachan.fr

Abstract. We extend the class of reversal-bounded counter machines by autho-
rizing a finite number of alternations between increasing and decreasing mode
over a given bound. We prove that extended reversal-bounded counter machines
also have effective semi-linear reachability sets. We also prove that the property
of being reversal-bounded is undecidable in general even when we fix the bound,
whereas this problem becomes decidable when considering Vector Addition Sys-
tem with States.

1 Introduction

The verification of infinite state systems has shown in the last years to be an efficient
technique to model and verify computer systems. Various models of infinite-state sys-
tems have also been proposed as for instance counter systems, lossy channel systems,
pushdown automata, timed automata, etc, in order to obtain an automatic verification
procedure. Among them, counter systems which consist in finite automata extended
with operations on integer variables enjoy a central position for both theoretical results
and maturity of tools like FAST [3], LASH [16] and TREX [1].

Reachability problem for counter systems. It has been proved in [20] that Minsky ma-
chines, which correspond to counter systems where each counter can be incremented,
decremented or tested to zero, have an undecidable reachability problem, even when
they manipulate only two counter variables. Because of that, different restrictions over
counter systems have been proposed in order to obtain the decidability. For instance,
Vector Addition Systems with States (or Petri nets) are a special class of counter sys-
tems, in which it is not possible to perform equality tests (equivalent to zero-tests), and
for which the reachability problem is decidable [14,19].

Counter systems with semi-linear reachability sets. In many verification problems,
it is convenient not only to have an algorithm for the reachability problem, but also to
be able to compute effectively the reachability set. In the past, many classes of counter
systems with a semi-linear reachability set have been found. Among the VASS (or Petri
nets), we distinguish the BPP-nets [5], the cyclic Petri nets [2], the persistent Petri nets
[15,18], the regular Petri nets [21], the 2-dimensional VASS [9]. In [10], the class of
reversal-bounded counter machines is introduced as follows: each counter can only per-
form a bounded number of alternations between increasing and decreasing mode. The
author shows that reversal-bounded counter machines have a semi-linear reachability
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set and these results have been extended in [11] authorizing more complex guards and
restricting the way the alternations are counted. In [17], it has been shown that most of
the counter systems with a semi-linear reachability set are in fact flattable, which means
that their control graph can be replaced equivalently w.r.t. reachability, by another one
with no nested loops. In fact, it has been proved in [6], that counter machines with no
nested loops in their control structure have a semi-linear reachability set.

Our contribution. In this paper, we first propose an extension of the definition of
reversal-bounded machines saying that a counter machine is k-reversal-b-bounded if
each counter does at most k alternations between increasing and decreasing mode above
a given bound b. We show that these new reversal-bounded counter machines do also
have a semilinear reachability set, which can be effectively computed. We study the
decidability of the reversal-boundedness of a given counter machine, proving that the
only case, which is decidable, is the one when the two parameters b and k are provided.
Finally, we study reversal-bounded VASS, showing that one can decide using the cov-
erability graph whether a VASS is reversal-bounded or not. Doing so, we propose a
new recursive class of VASS with semi-linear reachability sets which contains all the
bounded VASS. Furthermore, to the best of our knowledge, it is not known whether one
can or cannot decide if a VASS has a semi-linear reachability set or if it is flattable.

Due to lack of space, some details are omitted and can be found in [7].

2 Preliminaries

2.1 Useful Notions

Let N (resp. Z) denotes the set of nonnegative integers (resp. integers). The usual total
order over Z is written ≤. By Nω, we denote the set N ∪ {ω} where ω is a new symbol
such that ω /∈ N and for all k ∈ Nω, k ≤ ω. We extend the binary operation + and −
to Nω as follows: for all k ∈ N, k + ω = ω and ω − k = ω. For k, l ∈ Nω with k ≤ l,
we write [k..l] for the interval of integers {i ∈ N | k ≤ i ≤ l}.

Given a set X and n ∈ N, Xn is the set of n-dim vectors with values in X . For any
index i ∈ [1..n], we denote by v(i) the ith component of a n-dim vector v. We write 0
the vector such that 0(i) = 0 for all i ∈ [1..n]. The classical order on Zn is also denoted
≤ and is defined by v ≤ w if and only if for all i ∈ [1..n], we have v(i) ≤ w(i). We
also define the operation + over n-dim vectors of integers in the classical way (ie for v,
v′ ∈ Zn, v + v′ is defined by (v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]).

Let n ∈ N. A subset S ⊆ Nn is linear if there exist k + 1 vectors v0, v1, . . . , vk in
Nn such that S = {v | v = v0 + λ1.v1 + . . .+ λk.vk with λi ∈ N for all i ∈ [1..k]}. A
semi-linear set is any finite union of linear sets. We extend the notion of semi-linearity
to subsets of Q× Nn where Q is a finite (non-empty) set.

For an alphabet Σ, we denote by Σ∗ the set of finite words over Σ and ε represents
the empty word.

2.2 Counter Machines

A Minsky machine is a finite control state automaton which manipulates integer vari-
ables, called counters. From each control state, the machine can do the following op-
erations: 1) Increment a counter and go to another control state, 2) Test the value of
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a counter, if it is 0, it passes to a control state, and if not, it decrements the counter
and goes to another control state. There is also a control state called the final state (or
halting state) from which the machine cannot do anything. The Minsky machine is said
to halt when it reaches this control state. We define here a slight extension of Minsky
machines.

We call a n-dim guarded translation (shortly a translation) any function t : Nn →
Nn such that there exist # ∈ {=,≤}n, μ ∈ Nn and δ ∈ Zn with 0 ≤ μ + δ and
dom(t) = {v ∈ Nn | μ#v} and for all v ∈ dom(t), t(v) = v + δ. We will sometimes
use the encoding (#, μ, δ) to represent a translation. In the following, Tn will denote
the set of the n-dim guarded translations. Let t = (#, μ, δ) be a guarded translation in
Tn. We define the vector Dt ∈ Zn as follows, ∀i ∈ [1..n], Dt(i) = δ(i). We extend
this definition to words of guarded translations, recursively as follows, if σ ∈ T ∗n and
t ∈ Tn, we have Dtσ = Dt + Dσ and by convention, Dε = 0.

Definition 1. A n-dim counter machine (shortly counter machine) is a finite valuated
graph S = 〈Q,E〉 where Q is a finite set of control states and E is a finite relation
E ⊆ Q× Tn ×Q.

The semantics of a counter machine S = 〈Q,E〉 is given by its associated transition
system TS(S) = 〈Q×Nn,→〉 where →⊆ Q×Nn×Tn×Q×Nn is a relation defined
as follows:

(q, v) t→ (q′, v′) iff ∃ (q, t, q′) ∈ E such that v ∈ dom(t) and v′ = t(v)

We write (q, v) → (q′, v′) if there exists t ∈ Tn such that (q, v) t→ (q′, v′). The relation
→∗ represents the reflexive and transitive closure of →. Given a configuration (q, v) of
TS(S), Reach(S, (q, v)) = {(q′, v′) | (q, v) →∗ (q′, v′)}. Furthermore, we extend the
relation → to words in T ∗n . We have then (q, v) ε→ (q, v) and if t ∈ Tn and σ ∈ T ∗n ,

(q, v) tσ→ (q′′, v′′) if (q, v) t→ (q′, v′) σ→ (q′′, v′′).
Given a counter machine S = 〈Q,E〉 and an initial configuration c ∈ Q × Nn,

the pair (S, c) is an intialized counter machine. Since, the notations are explicit, in the
following we shall write counter machine for both (S, c) and S.

It is true that any counter machine can be easily encoded into a Minsky machine.
For instance to encode a test of the form xi = c, the Minsky machine can decrement
c times the counter, test to 0 and increment again c times the counter. Note that this
encoding modifies the number of alternations between increasing and decreasing mode
for the counters, which is the factor we are interested in when considering reversal-
boundedness. That is the reason why we propose this extension of Minsky machine.
We do not go further for instance extending the guards, because in [11], it is proved that
the reachability problem for reversal-bounded counter machines with linear guards (of
the form x = y where x, y are two counters variables) is undecidable.

3 New Reversal-Bounded Counter Machines

3.1 Reversal-Bounded Counter Machines

We would like to extend the notion of reversal-bounded to capture and verify a larger
class of counter machines. In fact, if we consider the counter machine represented by
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q1 q2

x′ = x + 2

x′ = x − 2

Fig. 1. A simple not reversal-bounded counter machine

the figure 1 with the initial configuration (q1, 0). Its reachability set is finite equal to
{(q1, 0), (q2, 2)} and consequently semi-linear but the counter machine is not reversal-
bounded. We propose here an extension of the notion of reversal-bounded, which allows
us to handle such cases and more generally every bounded counter machines.

Given an integer b ∈ N, we now consider the number of alternations between in-
creasing and decreasing mode when the value of a counter goes above the bound b. Let
S = 〈Q,E〉 be a n-dim counter machine and TS(S) = 〈Q× Nn,→〉. From it, we de-
fine another transition system TSb(S) = 〈Q×{↓, ↑}n×Nn ×Nn,→b〉. Intuitively for
a configuration (q,m, v, r) ∈ Q×{↓, ↑}n ×Nn ×Nn, the vector m is used to store the
current mode of each counter -increasing (↑) or decreasing (↓)-, the vector v contains
the values and the vector r the numbers of alternations performed over b. Formally, we

have (q,m, v, r) t→b (q′,m′, v′, r′) if and only if the following conditions hold:

1. (q, v) t→ (q′, v′)
2. for each i ∈ [1..n], the relation expresses by the following array is verified:

v(i) − v′(i) m(i) m′(i) v(i) r(i)
> 0 ↓ ↓ − r(i)
> 0 ↑ ↓ ≤ b r(i)
> 0 ↑ ↓ > b r(i) + 1
< 0 ↑ ↑ − r(i)
< 0 ↓ ↑ ≤ b r(i)
< 0 ↓ ↑ > b r(i) + 1
= 0 ↓ ↓ − r(i)
= 0 ↑ ↑ − r(i)

We denote by →∗
b the reflexive and transitive closure of →b. Given a configuration

(q,m, v, r) of TSb(S), Reachb(S, (q,m, v, r)) = {(q′,m′, v′, r′) | (q,m, v, r, ) →∗
b

(q′,m′, v′, r′)}. We extend this last notation to the configurations of TS(S), saying
that if (q, v) ∈ Q × Nn is a configuration of TS(S), then Reachb(S, (q, v)) is equal
to the set Reachb(S, (q, ↑, v, 0)) where ↑ denotes here the vector with all components
equal to ↑.

Definition 2. Let b, k ∈ N. A counter machine (S, c) is k-reversal-b-bounded if and
only if for all (q,m, v, r) ∈ Reachb(S, c) and for all i ∈ [1..n], we have r(i) ≤ k.

We then say that:

1. A counter machine is reversal-bounded if there exist k, b ∈ N such that it is k-
reversal-b-bounded,
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2. For a given k ∈ N, a counter machine is k-reversal-bounded, if there exists b ∈ N
such that it is k-reversal-b-bounded,

3. For a given b ∈ N, a counter machine is reversal-b-bounded, if there exists k ∈ N
such that it is k-reversal-b-bounded.

We remark that this definition includes the definition of reversal-bounded given in [10],
which corresponds to reversal-0-bounded. In comparison to what is presented in [10],
there is a slight difference because we do not have here accepting states and conse-
quently we consider all the possible runs of the counter machine as accepted runs. We
will see in section 4 that this difference can change some decidability results. Note that
in later works [11], the counter machines are also defined without any accepting state.

3.2 Reachability Set

In [10], it has been proved that the reversal-0-bounded counter machines have an ef-
fectively computable semi-linear reachability set. We extend here this result to all the
reversal-bounded counter machines. The idea consists in building from a k-reversal-b-

q1 q2

x′
1 = x1 + 1

x′
2 = x2 + 1

x′
1 = x1 − 1

x′
2 = x2 + 1

q3
x2 ≥ 5 ?

x′
2 = x2 − 2

Fig. 2. A 1-reversal-1-bounded counter machine

bounded counter machine (S, c) a k-reversal-0-bounded counter machine (S′, c′) as it is
done for the counter machine of the figure 2 (with the initial configuration (q1, (0, 0)))
from which we obtain the counter machine represented in the figure 3 (with the ini-
tial configuration ((q1, 0, 0), (0, 0))). We assume S = 〈Q,E〉 and S′ = 〈Q′, E′〉.
First we introduce two symbols ⊥ and ωb which are not integers. ωb represents a
counter value strictly greater than b and ⊥ a counter value for which it is not known
whether it is greater or not than b. The location set Q′ is then equal to Q × Bn where
B = {0, . . . , b} ∪ {ωb,⊥}. Intuitively, the counter machine S′ encodes the run of S
and when a counter value in S is under the bound b, its value is stored into the con-
trol state of S′ and the corresponding value of the counter in S′ is 0, but when the
value goes above b in S then it is restored in the counter in S′. Furthermore (S′, c′)
being k-reversal-0-bounded, we use the results of [10] to compute the reachability set
Reach(S′, c′) from which we deduce Reach(S, c).

Theorem 3. Given a reversal-bounded counter machine, its reachability set is an ef-
fectively computable semi-linear set.
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q3, 1, ωb

x2 ≥ 5 ?

q3, 1, ⊥

x′
2 = x2 − 2
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Fig. 3. A 1-reversal-0-bounded counter machine obtained from the counter machine of Fig. 2

4 Deciding Reversal-Boundedness

In this section, we will study the decidabilty of reversal-boundedness.

4.1 Undecidability

In [10], the author shows that it is not possible to decide whether a counter machine is
reversal-0-bounded or not. We prove here that this theorem is still true when considering
reversal-boundedness.

Theorem 4. Verifying if a counter machine is reversal-bounded is undecidable.

Proof. We reduce the halting problem for 2-counters deterministic Minsky Machines.
We consider a deterministic Minsky MachineS with the initial configuration (q0, (0, 0))
working over two counter variables x1 and x2. “Deterministic” here means that there is
a unique possible run starting on (q0, (0, 0)). From S, we build a counter machine S′

working over three counter variables x1,x2 and x3, such that for each (q, t, q′) ∈ E, we
add two control states q1 and q2 and the transitions (q, t1, q1), (q1, t2, q2) and (q2, t, q′)
where t1 and t2 only change the counter variable x3 doing x′3 = x3 + 2 for t1 and
x′3 = x3 − 1 for t2. Note that S′ starting on (q0, (0, 0, 0)) is also deterministic. Fur-
thermore (S′, (q0, (0, 0, 0))) is reversal-bounded if and only if its unique run is finite,
which is equivalent to halting. Since S′ starting with (q0, (0, 0, 0)) halts if and only if S
starting from (q0, (0, 0)) halts and since this last problem is undecidable, we conclude
the theorem. �

4.2 Fixing One Parameter

We will see here that fixing one of the parameters is not enough to obtain decidability
for the reversal-boundedness.
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Theorem 5. Given b ∈ N, verifying if a counter machine is reversal-b-bounded is un-
decidable.

Sketch of Proof, For each b in N, we can reuse the same proof as for the theorem 4, we
can show that the 3-counter machine (S′, (q0, (0, 0, 0))) is reversal-b-bounded if and
only if the deterministic Minsky machine (S, c) from which it is built halts. �

Theorem 6. Given k ∈ N, verifying if a counter machine is k-reversal-bounded is
undecidable.

Sketch of Proof. To prove this result we again use the 3-counter machine S′ with the
initial configuration (q0, (0, 0, 0)) that we complete so that each run can begin with doing
at least k alternations between increasing and decreasing mode over any bound. �

4.3 Fixing the Two Parameters

We will now prove that if the two parameters b and k are fixed, it is possible to decide if a
counter machine is k-reversal-b-bounded. Let b, k ∈ N and (S, c) be a counter machine.
The idea consists in building a counter machine (S′, c′) which will be (k + 1)-reversal-
b-bounded and which will reach a special control state qerr if and only if (S, c) is not
k-reversal-b-bounded. Note that since (S′, c′) is reversal-bounded, it is possible to de-
cide whether the control state qerr is reachable or not. In the control state of (S′, c′), we
store the mode -increasing (↑) or decreasing (↓)- for each counter and also the number of
alternations already performed over b. We also add some control states to test at each step
if each counter value is strictly greater (denoted by b>) or smaller than b (denoted by b≤).
The figure 4 gives an example of the counter machine we build to decide if the counter
machine from figure 1 with the initial configuration (q1, 0) is 1-reversal-1-bounded.

Theorem 7. Given b, k ∈ N, verifying if a counter machine is k-reversal-b-bounded is
decidable.

This result contrasts with the one given in [10], which says that given k ∈ N, verifying
if a counter machine is k-reversal-0-bounded is undecidable. This is due to the fact
that in [10], the considered counter machines have accepting control states, whereas
our definition is equivalent to have all the control states as accepting. In fact, when we
define the reversal-bounded counter machines, we consider all the possible runs and not
only the one ending in an accepting state.

4.4 Computing the Parameters

When a counter machine is reversal-bounded, it could be useful to characterize the pairs
(k, b) for which it is k-reversal-b-bounded, first because it gives us information on the
behavior of the counter machine but also because these parameters are involved in the
way the reachability set is built as one can see in the proof of theorem 3 and in [10].

Let (S, c) be a counter machine. We define the following set to talk about the param-
eters of reversal-bounded counter machines:

RB(S, c) = {(k, b) ∈ N × N | (S, c) is k-reversal-b-bounded}
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Fig. 4. A 2-reversal-1-bounded counter machine to decide if the counter machine of Fig. 2 is
1-reversal-1-bounded

Then RB(S, c) = ∅ if and only if (S, c) is not reversal-bounded, hence the non-
emptiness problem for RB(S, c) is in general not decidable, but this set is recursive
(cf. theorem 7). Furthermore, if there exist (k, b) in RB(S, c) and (k′, b′) ∈ N × N
such that (k, b) ≤ (k′, b′) then we know, by definition of reversal-boundedness that
(S, c) is also k′-reversal-b′-bounded, ie (k′, b′) ∈ RB(S, c). Since the order relation ≤
on N × N is a well-ordering we can deduce:

Lemma 8. Let (S, c) be a reversal-bounded counter machine. The set RB(S, c) is
upward-closed, it has a finite number of minimal elements, which can effectively be
computed.

Sketch of proof.The facts that RB(S, c) is upward closed is a direct consequence of
reversal-boundedness. And since (N × N,≤) is a well-ordering, each of its upward-
closed set has a finite number of minimal elements [8]. To compute the minimal ele-
ments, we add “reversal-bounded” counters either to count the number of alternations
between increasing and decreasing mode over a bound b or to store the value of a counter
each time it changes mode over a given b. �

5 Analysis of VASS

In this section, we recall the definition of Vector Addition System with States and show
that the notion of reversal-boundedness we newly introduce is well-suited for the veri-
fication of these systems.
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5.1 VASS and Their Coverability Graphs

Definition 9. A n-dim counter machine 〈Q,E〉 is a Vector Addition System with States
(shortly VASS) if and only if for all transitions (q, t, q′) ∈ E, t is a guarded translation
(#, μ, δ) such that # = (≤, . . . ,≤),

Hence in VASS, it is not possible to test if a counter value is equal to a constant but
only if it is greater than a constant.

In [13], the authors provide an algorithm to build from a VASS a labeled tree, the
Karp and Miller tree (the algorithm is provided in [7]). The main idea of this construc-
tion is to cover in a finite way the reachable configurations using the symbol ω, when a
counter is not bounded. They have shown that their algorithm always terminates and that
it enjoys some good properties. In particular, this tree can be used to decide the bound-
edness of a VASS. In [21], the authors have proposed a further construction based on
the Karp and Miller tree in order to test the regularity of the language of the unlabeled
traces of a VASS. This last construction is known as the coverability graph. To obtain
it, the nodes of the Karp and Miller tree with the same labels are grouped together.
Formally if (S, c) is a n-dim initialized VASS, we denote by CG(S, c) its coverability
graph defined as follows, CG(S, c) = 〈N,Δ〉 where:

– N ⊆ Q× Nn
ω is a finite set of nodes,

– Δ ⊆ N × Tn ×N is a finite set of edges labeled with guarded transitions.

We call a circuit in the coverability graph a path ending in the starting node and a
circuit will be said to be elementary if all nodes are different with the exception of
the starting and ending nodes. For a vector w ∈ Nn

ω, we denote by Inf(w) the set
{i ∈ [1..n] | w(i) = ω} and Fin(w) = [1..n] \ Inf(w). Using these notions, it has
been proved that the coverability graph verifies the following properties.

Let (S, c) be a n-dim initialized VASS with S = 〈Q,E〉, TS(S) = 〈Q×Nn,→〉 its
associated transition system and G = 〈N,Δ〉 its coverability graph.

Theorem 10. [13,21]

1. If (q,w) is a node in G, then for all k ∈ N, there exists (q, v) ∈ Reach(S, c) such
that for all i ∈ Inf(w), k ≤ v(i) and for all i ∈ Fin(w), w(i) = v(i).

2. For σ ∈ T ∗n , if c
σ→ (q, v) then there is a unique path in G labeled by σ and leading

from c to a node (q,w) and for all i ∈ Fin(w), v(i) = w(i).
3. If σ ∈ T ∗n is a word labeling a circuit in G and (q,w) is the initial node of this

circuit, then there exist (q, v) ∈ Reach(S, c) and (q′, v′) such that (q, v) σ→ (q, v′)
and for all i ∈ Fin(w), w(i) = v(i) = v′(i).

From this theorem, we deduce the following lemma, we will then use to decide the
reversal-boundedness of a VASS:

Lemma 11. If there exists an elementary circuit ((q1,w1) t1→ (q2,w2) t2→ . . .
tf→

(q1,w1)) in G, then for all k, l ∈ N, there exist v1, . . . , vl ∈ Nn such that:

(i) c →∗ (q1, v1) σ→ (q1, v2) σ→ . . .
σ→ (q1, vl) in TS(S) with σ = t1 . . . tf , and,

(ii) for all j ∈ [1..l], for all i ∈ Inf(w1), k ≤ vj(i) and for all i ∈ Fin(w1),
w1(i) = vj(i).
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5.2 Deciding If a VASS Is Reversal-b-Bounded

In this section, we show that its possible to decide if a VASS is reversal-b-bounded
using a characterization over its coverability graph.

Let S = 〈Q,E〉 be a n-dim counter machine. We build a 2n-dim counter ma-
chine S̃ = 〈Q′, E′〉 adding for each counter another counter, whose role is to count
the alternation of the first counter between increasing and decreasing mode. Formally,
Q′ = Q × {↑, ↓}n and T ′ is built as follows, for each (q, (#, μ, δ), q′) ∈ E and
m,m′ ∈ {↑, ↓}n, we have ((q,m), (#′, μ′, δ′), (q′,m′)) ∈ E′ if and only if:

– for all i ∈ [1..n], #′(i) = #(i), μ′(i) = μi and δ′(i) = δ(i);
– for all i ∈ [n + 1..2n], #′(i) ∈ {≤} and μ′(i) = 0;
– δ, m, m′ and δ′ satisfy for all i ∈ [1..n] the conditions described in the following

array:
δ(i) m(i) m′(i) δ′(n + i)
= 0 ↑ ↑ 0
= 0 ↓ ↓ 0
> 0 ↑ ↑ 0
> 0 ↓ ↑ 1
< 0 ↓ ↓ 0
< 0 ↑ ↓ 1

By construction, we remark that if S is a VASS then S̃ is a VASS too. We define then the
relation ∼∈ (Q×{↑, ↓}n×Nn×Nn)×(Q×{↑, ↓}n×N2n) between the configurations
of TS0(S) and the ones of TS(S̃) saying that (q,m, v, r) ∼ (q′,m′, v′) if and only if:

– q = q′,
– m = m′,
– for all i ∈ [1..n], v(i) = v′(i) and r(i) = v′(n + i).

The relation ∼ is a bisimulation between TS0(S) and TS(S̃). Given an initial config-
uration c = (q, v), we have (q, ↑, v, 0) ∼ (q, ↑, (v, 0)). Hence, if we denote by c̃ the
triple (q, ↑, (v, 0)), we can deduce that the VASS (S, c) is reversal-0-bounded if and
only if there exists k ∈ N such that for all (q,m, v) ∈ Reach(S̃, c̃), for all i ∈ [1..n],
v(n+ i) ≤ k. Using the coverability graph of (S̃, c̃), this last property is decidable for a
VASS. Generalizing this method for any b ∈ N, counting only the alternations that are
done above b, we can deduce that:

Theorem 12. Given b ∈ N, verifying if a VASS is reversal-b-bounded is decidable.

5.3 Deciding If a VASS Is Reversal-Bounded

We will now show that the analysis of the coverabilty graph of (S̃, c̃) allows us to
decide if a VASS is reversal-bounded (without a fixed bound). Note that this is not a
direct consequence of the previous theorem, because it is not possible to enumerate the
different bounds b and test if the VASS is reversal-b-bounded, since this method never
terminates when the VASS is not reversal-bounded.
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Lemma 13. A n-dim VASS (S, c) is reversal-b-bounded if and only if for all i ∈ [1..n],
all nodes (q,w) belonging to an elementary circuit labeled by σ ∈ T ∗n of CG(S̃, c̃) with
Dσ(n + i) > 0 verify w(i) ≤ b.

In other words, this last lemma states that (S, c) is reversal-b-bounded if and only if for
all i ∈ [1..n], there is no elementary circuit in the coverability graph CG(S̃, c̃) which
strictly increases the (n+ i)-th counter and which has a node, whose i-th component is
strictly greater than b or equal to ω. In fact, applying the lemma 11, we deduce that if
such an elementary circuit exists, we can build a run of the VASS (S, c) which does not
respect the definition of reversal-b-boundedness. The details of the proof can be found
in [7].

For a VASS (S, c), the lemma 13 gives us a necessary and sufficient condition over
the coverability graph of (S̃, c̃), and this condition can effectively be tested. This allows
us to deduce the following decidability result.

Theorem 14. Verifying if a VASS is reversal-bounded is decidable.

Unfortunately, the decision algorithm we propose here builds entirely the coverability
graph of a VASS, and this building is known to be non-primitive-recursive in space
(some details can be found in [12]).

6 Perspectives

In [4], the authors have proved that some liveness problems are decidable for reversal-0-
bounded counter machines and others not. For instance, it is decidable to verify if a run
of a reversal-bounded counter machine passes infinitely often through a semilinear set
of possible configurations; but the same problem becomes undecidable when all the runs
are considered. It seems that this result can easily be extended to the class of reversal-
bounded counter machines, we have introduced. It would then pave the way to verify
more complex properties than reachability over reversal-bounded counter machines. It
could also be interesting to look at these liveness problems in the particular case of
reversal-bounded VASS.

An other perspective for our work would be to use reversal-bounded counter ma-
chines to analyze counter machines which are not necessarily reversal-bounded. In
fact, we have seen with the proof of theorem 7, that for any k, b ∈ N and from any
counter machine, it is possible to build another counter machine, which is k-reversal-
b-bounded and whose runs represent an under-approximation of the set of runs of the
first one. We could consequently build a tool which given a counter machine would
build successively, incrementing the parameters k and b, the corresponding k-reversal-
b-bounded counter machines, and would test at each step if the reachability set of the
initial counter machine has been built (this can be easily done, since this set is a fixpoint
of the transition relation). This algorithm might never terminate, if the reachability set
is not semilinear for instance, but it will refine at each step the under-approximation of
the reachability set.
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Abstract. Iterative Compression has recently led to a number of break-
throughs in parameterized complexity. The main purpose of this paper is
to show that iterative compression can also be used in the design of exact
exponential time algorithms. We exemplify our findings with algorithms
for the Maximum Independent Set problem, a counting version of k-
Hitting Set and the Maximum Induced Cluster Subgraph problem.

1 Introduction

Iterative Compression is a tool that has recently been used successfully in solving
a number of problems in the area of Parameterized Complexity. This technique
was first introduced by Reed et al. to solve the Odd Cycle Transversal

problem, where one is interested in finding a set of at most k vertices whose
deletion makes the graph bipartite [20]. Iterative compression was used in obtain-
ing faster FPT algorithms for Feedback Vertex Set, Edge Bipartization

and Cluster Vertex Deletion on undirected graphs [6,12,14]. Recently this
technique has led to an FPT algorithm for the Directed Feedback Vertex

Set problem [4], one of the longest open problems in the area of parameterized
complexity.

The main idea behind iterative compression for parameterized algorithms is an
algorithm which, given a solution of size k+1 for a problem, either compresses it
to a solution of size k or proves that there is no solution of size k. This is known as
the compression step of the algorithm. Based on this compression step, iterative
(and incremental) algorithms for minimization problems are obtained. The most
technical part of an FPT algorithm based on iterative compression is to show
that the compression step can be carried out in time f(k) · nO(1), where f is an
arbitrary computable function, k is a parameter and n is the length of the input.

The presence of a solution of size k + 1 can provide important structural
information about the problem. This is one of the reasons why the technique of
iterative compression has become so powerful. Structures are useful in designing
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algorithms in most paradigms. By seeing so much success of iterative compression
in designing fixed parameter tractable algorithms, it is natural and tempting to
study its applicability in designing exact exponential time algorithms.

The goal of the design of moderately exponential time algorithms for NP-
complete problems is to establish algorithms for which the worst-case running
time is provably faster than the one of enumerating all prospective solutions, or
loosely speaking, algorithms better than brute-force enumeration. For example,
for NP-complete problems on graphs on n vertices and m edges whose solutions
are either subsets of vertices or edges, the brute-force or trivial algorithms basi-
cally enumerate all subsets of vertices or edges. This mostly leads to algorithms
of time complexity 2n or 2m, modulo some polynomial factors, based on whether
we are enumerating vertices or edges. Almost all the iterative compression based
FPT algorithms with parameter k have a factor of 2k+1 in the running time, as
they all branch on all partitions (A,D) of a k+ 1 sized solution S and look for a
solution of size k with a restriction that it should contain all elements of A and
none of D. This is why, at first thought, iterative compression is a quite useless
technique for solving optimization problems because for k = Ω(n), we end up
with an algorithm having a factor 2n or 2m in the worst-case running time, while
a running time of 2n or 2m (up to a polynomial factor) often can be achieved by
(trivial) brute force enumeration. Luckily, our intuition here appears to be wrong
and with some additional arguments, iterative compression can become a useful
tool in the design of moderately exponential time algorithms as well. We find
it interesting because despite of several exceptions (like the works of Björklund
et al. [1,2,16]), the area of exact algorithms is heavily dominated by branching
algorithms, in particular, for subset problems. It is very often that an (incre-
mental) improvement in the running time of branching algorithm requires an
extensive case analysis, which becomes very technical and tedious. The analysis
of such algorithms can also be very complicated and even computer based.

The main advantage of iterative compression is that it provides combinatorial
algorithms based on problem structures. While the improvement in the run-
ning time compared to (complicated) branching algorithms is not so impressive,
the simplicity and elegance of the arguments allow them to be used in a basic
algorithm course.

To our knowledge, this paper is the first attempt to use iterative compres-
sion outside the domain of FPT algorithms. We exemplify this approach by the
following results:

1. We show how to solve Maximum Independent Set for a graph on n ver-
tices in time O(1.3196n). While the running time of our iterative compression
algorithm is slower than the running times of modern branching algorithms
[10,21], this simple algorithm serves as an introductory example to more
complicated applications of the method.

2. We obtain algorithms counting the number of minimum hitting sets of a
family of sets of an n-element ground set in time O(1.7198n), when the
size of each set is at most 3 (#Minimum 3-Hitting Set). For #Minimum

4-Hitting Set we obtain an algorithm of running time O(1.8997n). For
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Minimum 4-Hitting Set similar ideas lead to an algorithm of running time
O(1.8704n). These algorithms are faster than the best algorithms known for
these problems so far [9,19].

3. We provide an algorithm to solve the Maximum Induced Cluster Sub-

graph problem in time O(1.6181n). The only algorithm for this problem we
were aware of before is the use of a very complicated branching algorithm
of Wahlström [23] for solving 3-Hitting Set (let us note that Maximum

Induced Cluster Subgraph is a special case of 3-Hitting Set, where
every subset is a set of vertices inducing a path of length 3), which results
in time O(1.6278n).

2 Maximum Independent Set

Maximum Independent Set (MIS) is one of the well studied problems in the
area of exact exponential time algorithms and many papers have been written
on this problem [10,21,22]. It is customary that if we develop a new method then
we first apply it to well known problems in the area. Here, as an introductory
example, we consider the NP-complete problem MIS.

Maximum Independent Set (MIS): Given a graph G = (V,E) on n
vertices, find a maximum independent set of G. An independent set of G
is a set of vertices I ⊆ V such that no two vertices of I are adjacent in G.
A maximum independent set is an independent set of maximum size.

It is well-known that I is an independent set of a graph G iff V \ I is a vertex
cover of G, i.e. every edge of G has at least one end point in V \ I. Therefore
Minimum Vertex Cover (MVC) is the complement of MIS in the sense that
I is a maximum independent set of G iff V \ I is a minimum vertex cover of
G. This fact implies that when designing exponential time algorithms we may
equivalently consider MVC. We proceed by defining a compression version of
the MVC problem.

Comp-MVC: Given a graph G = (V,E) with a vertex cover S ⊆ V , find
a vertex cover of G of size at most |S| − 1 if one exists.

Note that if we can solveComp-MVC efficiently then we can solveMVC efficiently
by repeatedly applying an algorithm for Comp-MVC as follows. Given a graph
G = (V,E) on n vertices with V = {v1, v2, ..., vn}, let Gi = G[{v1, v2, ..., vi}] and
let Ci be a minimum vertex cover ofGi. By Vi we denote the set {v1, v2, ..., vi}. We
start with G1 and put C1 = ∅. Suppose that we already have computed Ci for the
graph Gi for some i ≥ 1. We form an instance of Comp-MVC with input graph
Gi+1 and S = Ci ∪ {vi+1}. In this stage we either compress the solution S which
means that we find a vertex cover S′ of Gi+1 of size |S| − 1 and put Ci+1 = S′, or
(if there is no S′) we put Ci+1 = S.

Our algorithm is based on the following lemma.
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Lemma 1. [%]1 Let Gi+1 and S be given as above. If there exists a vertex cover
Ci+1 of Gi+1 of size |S| − 1, then it can be partitioned into two sets A and B
such that
(a) A ⊂ S, |A| ≤ |S| − 1 and A is a minimal vertex cover of Gi+1[S].
(b) B ⊆ (Vi+1\A) is a minimum vertex cover of the bipartite graph Gi+1[Vi+1\A].

Lemma 1 implies that the following algorithm solves Comp-MVC correctly.

Step 1: Enumerate all minimal vertex covers of size at most |S| − 1 of Gi+1[S]
as a possible candidate for A.

Step 2: For each minimal vertex cover A find a minimum vertex cover B of the
bipartite graph Gi+1[Vi+1 \A] (via the computation of a maximum matching
in this bipartite graph [13]).

Step 3: If the algorithm finds a vertex cover A ∪ B of size |S| − 1 in this way,
set Ci+1 = A ∪B, else set Ci+1 = S.

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the
running time of Step 1, which is exponential, dominates the running time of
the algorithm. To enumerate all maximal independent sets or equivalently all
minimal vertex covers of a graph in Step 1, one can use the polynomial-delay
algorithm of Johnson et al. [15].

Proposition 1 ([15]). All maximal independent sets of a graph can be enumer-
ated with polynomial delay.

For the running time analysis of the algorithm we need the following bounds on
the number of maximal independent sets or minimal vertex covers due to Moon
and Moser [17] and Byskov [3].

Proposition 2 ([17]). A graph on n vertices has at most 3n/3 maximal inde-
pendent sets.

Proposition 3 ([3]). The maximum number of maximal independent sets of
size at most k in any graph on n vertices for k ≤ n/3 is

N [n, k] =  n/k!(�n/k�+1)k−n( n/k! + 1)n−�n/k�k.

Moreover, all such sets can be enumerated in time O∗(N [n, k]).2

Since

max
{

max
0≤α≤3/4

(3αn/3), max
3/4<α≤1

(N [αn, (1 − α)n])
}

= O∗(22n/5),

1 Proofs of results labeled with [�] will appear in the long version of the paper.
2 Throughout this paper we use a modified big-Oh notation that suppresses all

polynomially bounded factors. For functions f and g we write f(n) = O∗(g(n))
if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial. Furthermore, since
cn · poly(n) = O((c + ε)n) for any ε > 0, we omit polynomial factors in the big-
Oh notation every time we round the base of the exponent.
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we have that by Propositions 1, 2, and 3, all minimal vertex covers of Gi+1[S]
of size at most |S| − 1 can be listed in time O∗(22n/5) = O(1.3196n).

Thus, the overall running time of the algorithm solving Comp-MVC is
O(1.3196n). Since the rounding of the base of the exponent dominates the poly-
nomial factor of the other steps of the iterative compression, we obtain the
following theorem.

Theorem 1. Maximum Independent Set and Minimum Vertex Cover

can be solved in time O(1.3196n) on graphs of n vertices by a compression based
algorithm.

3 #k-Hitting Set

The Hitting Set problem is a generalization of Vertex Cover. Here, given
a family of sets over a ground set of n elements, the objective is to hit every
set of the family with as few elements of the ground set as possible. We study
a version of the hitting set problem where every set in the family has at most k
elements.

Minimum k-Hitting Set (MHSk ): Given a universe V of n elements
and a collection C of subsets of V of size at most k, find a minimum hitting
set of C. A hitting set of C is a subset V ′ ⊆ V such that every subset of C
contains at least one element of V ′.

A counting version of the problem is #Minimum k-Hitting Set (#MHSk)
that asks for the number of different minimum hitting sets. We denote an in-
stance of #MHSk by (V, C). Furthermore we assume that for every v ∈ V , there
exists at least one set in C containing it.

We show how to obtain an algorithm to solve #MHSk using iterative com-
pression which uses an algorithm for #MHSk−1 as a subroutine. First we define
the compression version of the #MHSk problem.

Comp-#k-Hitting Set: Given a universe V of n elements, a collection
C of subsets of V of size at most k, and a (not necessarily minimum)
hitting set H ′ ⊆ V of C, find a minimum hitting set Ĥ of C and compute
the number of all minimum hitting sets of C.

Lemma 2. Let O∗(an
k−1) be the running time of an algorithm solving #MHSk−1,

where ak−1 > 1 is some constant. Then Comp-#k-Hitting Set can be solved in
time

O∗
(

2|H
′|a
|V |−|H′|
k−1

)
.

Moreover, if |H ′| is greater than 2|V |/3 and the minimum size of a hitting set in C
is at least |H ′| − 1, then Comp-#k-Hitting Set can be solved in time

O∗
((

|H ′|
2|H ′| − |V |

)

a
|V |−|H′|
k−1

)

.
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Proof. To prove the lemma, we give an algorithm that, for each possible partition
(N, N̄) of H ′, computes a minimum hitting set HN and the number hN of
minimum hitting sets subject to the constraint that these hitting sets contain
all the elements of N and none of the elements of N̄ .

For every partition (N, N̄ ) of H ′, we either reject it as invalid or we reduce
the instance (V, C) to an instance (V ′, C′) by applying the following two rules in
the given order.

(H) If there exists a set Ci ∈ C such that Ci ⊆ N̄ then we refer to such a
partition as invalid and reject it.

(R) For all sets Ci with Ci ∩N �= ∅ put C = C \ Ci. In other words, all sets of
C, which are already hit by N , are removed.

If the partition (N, N̄) of H ′ is not invalid based on rule (R) the instance
(V, C) can be reduced to the instance I ′ = (V ′, C′), where V ′ = V \ H ′ and
C′ = {X ∩ V ′ | X ∈ C and X ∩N = ∅}.

Summarizing, the instance I ′ is obtained by removing all the elements of V
for which it has already been decided if they are part of HN or not and all the
sets that are hit by the elements in N . To complete HN , it is sufficient to find a
minimum hitting set of I ′ and to count the number of minimum hitting sets of
I ′. The crucial observation here is that I ′ is an instance of #MHSk−1. Indeed,
H ′ is a hitting set of (V, C) and by removing it we decrease the size of every set
at least by one. Therefore, we can use an algorithm for #MHSk−1 to complete
this step. When checking all partitions (N, N̄) of H ′ it is straightforward to keep
the accounting information necessary to compute a minimum hitting set Ĥ and
to count all minimum hitting sets.

Thus for every partition (N, N̄) of H ′ the algorithm solving #MHSk−1 is
called for the instance I ′. There are 2|H

′| partitions (N, N̄) of the vertex set H ′.
For each such partition, the number of elements of the instance I ′ is |V ′| = |V \
H ′| = |V |− |H ′|. Thus, the running time of the algorithm is O∗

(
2|H

′|a
|V |−|H′|
k−1

)
.

If |H ′| > 2|V |/3 and the minimum size of a hitting set in C is at least |H ′|−1,
then it is not necessary to check all partitions (N, N̄) of H ′ and in this case we
can speed up the algorithm. Indeed, since

– |H ′| ≥ |Ĥ | ≥ |H ′| − 1, and
– |Ĥ ∩ (V \H ′)| ≤ |V | − |H ′|,

it is sufficient to consider only those partitions (N, N̄ ) of H ′ such that

|N | ≥ |H ′| − 1 − (|V | − |H ′|) = 2|H ′| − |V | − 1.

In this case, the running time of the algorithm is O∗
(( |H′|

2|H′|−|V |
)
a
|V |−|H′|
k−1

)
. �

Now we are ready to use iterative compression to prove the following theorem.

Theorem 2. Suppose there exists an algorithm to solve #MHSk−1 in time
O∗(an

k−1), 1 < ak−1 ≤ 2. Then #MHSk can be solved in time

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)

an−j
k−1

})

.
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Proof. Let (V, C) be an instance of #MHSk, where V = {v1, v2, · · · , vn}. For
i = 1, 2, . . . , n, let Vi = {v1, v2, · · · , vi} and Ci = {X ∈ C | X ⊆ Vi}. Then
Ii = (Vi, Ci) constitutes an instance for the ith stage of the iteration. We denote
by Hi and hi, a minimum hitting set of an instance Ii and the number of different
minimum hitting sets of Ii respectively.

If {v1} ∈ C, then H1 = {v1} and h1 = 1 ; otherwise H1 = ∅ and h1 = 0.
Consider the ith stage of the iteration. We have that |Hi−1| ≤ |Hi| ≤ |Hi−1|+1

because at least |Hi−1| elements are needed to hit all the sets of Ii except those
containing element vi and Hi−1 ∪ {vi} is a hitting set of Ii. Now, use Lemma 2
with H ′ = Hi−1∪{vi} to compute a minimum hitting set of Ii. If |H ′| ≤ 2i/3, its
running time is O∗

(
max0≤j≤2i/3

{
2jai−j

k−1

})
= O∗

(
22i/3a

i/3
k−1

)
(for ak−1 ≤ 2).

If |H ′| > 2i/3, the running time is O∗
(

max2i/3<j≤i

{(
j

2j−i

)
ai−j

k−1

})
. Since for

every fixed j > 2i/3, and 1 ≤ i ≤ n,
(

j

2j − i

)

ai−j
k−1 ≤

(
j

2j − n

)

an−j
k−1 ,

the worst case running time of the algorithm is

O∗
(

max
{

max
1≤i≤n

22i/3a
i/3
k−1, max

2n/3≤j≤n

{(
j

2j − n

)

an−j
k−1

}})

.

Finally,
(2n/3

n/3

)
= 22n/3 up to a polynomial factor, and thus the running time is

O∗
(

max2n/3≤j≤n

{(
j

2j−n

)
an−j

k−1

})
. �

Based on the O(1.2377n) algorithm for #MHS2 [23], the worst-case running
time of the algorithm of Theorem 2 is obtained for 0.7049n < j < 0.7050n.

Corollary 1. #MHS3 can be solved in time O(1.7198n).

The same approach can be used design an algorithm for the optimization version
MHSk, assuming that an algorithm for MHSk−1 is available. Based on the
O(1.6278n) algorithm for MHS3 [23] this leads to an O(1.8704n) time algorithm
for solving MHS4 (in that case, the maximum is obtained for 0.6824n < j <
0.6825n).

Corollary 2. MHS4 can be solved in time O(1.8704n).

In the following theorem we provide an alternative approach to solve #MHSk.
This is a combination of brute force enumeration (for sufficiently large hitting
sets) with one application of the compression algorithm of Lemma 2. For large
values of ak−1, more precisely for ak−1 ≥ 1.6553, this new approach gives faster
algorithms than the one obtained by Theorem 2.

Theorem 3. Suppose there exists an algorithm with running time O∗(an
k−1),

1 < ak−1 ≤ 2, solving #MHSk−1. Then #MHSk can be solved in time

min
0.5≤α≤1

max
{

O∗
((

n

αn

))

,O∗
(
2αnan−αn

k−1

)
}

.
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k #MHSk MHSk

2 O(1.2377n) [23] O(1.2108n) [21]

3 O(1.7198n) O(1.6278n) [23]

4 O(1.8997n) O(1.8704n)

5 O(1.9594n) O(1.9489n)

6 O(1.9824n) O(1.9781n)

7 O(1.9920n) O(1.9902n)

Fig. 1. Running times of the algorithms for #MHSk and MHSk

Proof. First the algorithm tries all subsets of V of size  αn! and identifies those
that are a hitting set of I.

Now there are two cases. In the first case, there is no hitting set of this size.
Then the algorithm verifies all sets of larger size whether they are hitting sets
of I. It is straightforward to keep some accounting information to determine the
number of hitting sets of the smallest size found during this enumeration phase.
The running time of this phase is O∗

(∑n
i=�αn�

(
n
i

))
= O∗

((
n

αn

))
.

In the second case, there exists a hitting set of size  αn!. Then count all
minimum hitting sets using the compression algorithm of Lemma 2 with H ′

being a hitting set of size  αn! found by the enumeration phase. By Lemma 2,
this phase of the algorithm has running time O∗

(
2αnan−αn

k−1

)
. �

The best running times of algorithms solving #MHSk and MHSk are summa-
rized in Figure 1. For #MHS≥4 and MHS≥5, we use the algorithm of Theorem 3.
Note that the MHS2 problem is equivalent to MVC and MIS.

4 Maximum Induced Cluster Subgraph

Clustering objects according to given similarity or distance values is an im-
portant problem in computational biology with diverse applications, e.g., in
defining families of orthologous genes, or in the analysis of microarray exper-
iments [5,8,11,14,18]. A graph theoretic formulation of the clustering problem is
called Cluster Editing. To define this problem we need to introduce the no-
tion of a cluster graph . A graph is called a cluster graph if it is a disjoint union of
cliques. In the most common parameterized version of Cluster Editing, given
an input graph G = (V,E) and a positive integer k, the question is whether the
input graph G can be transformed into a cluster graph by adding or deleting
at most k edges in time f(k) · nO(1), where f is an arbitrary computable func-
tion. This problem has been extensively studied in the realm of parameterized
complexity [5,8,11,18]. In this section, we study a vertex version of Cluster

Editing. We study the following optimization version of the problem.

Maximum Induced Cluster Subgraph (MICS): Given a graph G =
(V,E) on n vertices, find a maximum size subset C ⊆ V such that G[C],
the subgraph of G induced by C, is a cluster graph.
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Due to the following well-known observation, the MICS problem is also known
as Maximum Induced P3-free Subgraph.

Observation 1. A graph is a disjoint union of cliques if and only if it contains
no induced subgraph isomorphic to the graph P3, the path on 3 vertices.

Clearly, C ⊆ V induces a cluster graph in G = (V,E) (that is G[C] is a disjoint
union of cliques of G) iff S = V \ C hits all induced paths on 3 vertices of G.
Thus solving the MICS problem is equivalent to finding a minimum size set of
vertices whose removal produces a maximum induced cluster subgraph of G. By
Observation 1, this reduces to finding a minimum hitting set S of the collection
of vertex sets of (induced) P3’s of G. Such a hitting set S is called a P3-HS.

As customary when using iterative compression, we first define a compression
version of the MICS problem.

Comp-MICS: Given a graph G = (V,E) on n vertices and a P3-HS

S ⊆ V , find a P3-HS of G of size at most |S| − 1 if one exists.

Lemma 3. Comp-MICS can be solved in time O(1.6181n).

Proof. For the proof we distinguish two cases based on the size of S.

Case 1: If |S| ≤ 2n/3 then the following algorithm which uses matching tech-
niques is applied.

Step 1: Enumerate all partitions of (N, N̄) of S.
Step 2: For each partition, compute a maximum set C ⊆ V such that G[C] is

a cluster graph, subject to the constraints that N ⊆ C and N̄ ∩ C = ∅, if
such a set C exists.

In Step 2, we reduce the problem of finding a maximum sized C to the problem
of finding a maximum weight matching in an auxiliary bipartite graph. Indepen-
dent of our work, Hüffner et al. [14] also use this natural idea of reduction to
weighted bipartite matching to obatin FPT algorithm for the vertex weighted
version of Cluster Vertex Deletion using iterative compression. For com-
pleteness, we present the details of Step 2.

If G[N ] contains an induced P3 then there is obviously no C ⊆ V inducing a
cluster graph that respects the partition (N, N̄). We call such a partition invalid.

Otherwise, G[N ] is a cluster graph, and thus the goal is to find a maximum
size subset C′ of S = V \ S such that G[C′ ∪N ] is a cluster graph. Fortunately,
such a set C′ can be computed in polynomial time by reducing the problem to
finding a maximum weight matching in an auxiliary bipartite graph.

First we describe the construction of the bipartite graph. Consider the graph
G[N ∪ S] and note that G[N ] and G[S] are cluster graphs. Now the following
reduction rule is applied to the graph G[N ∪ S].

(R) Remove every vertex b ∈ S for which G[N ∪ {b}] contains an induced P3.

Clearly all vertices removed by (R) cannot belong to any C′ inducing a cluster
subgraph of G. Let Ŝ be the subset of vertices of S which are not removed by
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(R). Hence the current graph is G[N ∪ Ŝ]. Clearly G[Ŝ] is a cluster graph since
G[S] is one. Further, note that no vertex of Ŝ has neighbors in two different
maximal cliques of G[N ] and if a vertex of Ŝ has a neighbor in one maximal
clique of G[N ] then it is adjacent to each vertex of this maximal clique. Thus,
every vertex in Ŝ has either no neighbor in N or it is adjacent to all the vertices
of exactly one maximal clique of G[N ].

Now we are ready to define the auxiliary bipartite graph G′ = (A,B,E′).
Let {C1, C2, · · · , Cr} be the maximal cliques of the cluster graph G[N ]. Let
{C′1, C′2, · · · , C′s} be the maximal cliques of the cluster graph G[Ŝ]. Let A =
{a1, a2, . . . , ar, a

′
1, a

′
2, . . . , a

′
s} and B = {b1, b2, . . . , bs}. Here, for all i∈ {1, . . . , r},

each maximal clique Ci of G[N ] is represented by ai ∈ A; and for all j ∈
{1, 2, . . . , s}, each maximal clique C′j of G[Ŝ] is represented by a′j ∈ A and by
bj ∈ B.

Now there are two types of edges in G′: ajbk ∈ E′ if there is a vertex u ∈ C′k
such that u has a neighbor in Cj , and a′jbj ∈ E′ if there is a vertex u ∈ C′j such
that u has no neighbor in N . Finally we define the weights for both types of
eges in the bipartite graph G′. For an edge ajbk ∈ E′, its weight w(ajbk) is the
number of vertices in C′k being adjacent to all vertices of the maximal clique Cj .
For an edge a′jbj , its weight w(a′jbj) is the number of vertices in C′j without any
neighbor in N .

This transformation is of interest due to the following claim that uses the
above notation.

Claim. [%] The maximum size of a subset C′ of Ŝ such that G[N ∪C′] is a cluster
subgraph of the graph G∗ = G[N ∪ Ŝ] is equal to the maximum total weight of
a matching in the bipartite graph G′ = (A,B,E′).

Note that the construction of the bipartite graph G′, including the application
of (R) and the computation of a maximum weighted matching of G′ can be
performed in time O(n3) [7]. Thus, the running time of the algorithm in Case
1 is the time needed to enumerate all subsets of S (whose size is bounded by
2n/3) and this time is O∗(22n/3) = O(1.5875n).

Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of size
|S| − 1, or show that none exists.

The algorithm proceeds as in the first case. Note that at most n−|S| vertices
of V \S can be added to N . Therefore, the algorithm verifies only those partitions
(N, N̄) of S satisfying |N | ≥ |S| − 1 − (n − |S|) = 2|S| − n − 1. In this second
case, the worst-case running time is obtained for 0.7236 < α < 0.7237, and it is

O∗
(

max
2/3<α≤1

{(
αn

(2α− 1)n

)})

= O(1.6181n). �

Now we are ready to prove the following theorem using iterative compression.

Theorem 4. MICS can be solved in time O(1.6181n) on a graph on n vertices.

Proof. Given a graphG = (V,E) with V = {v1, . . . , vn}. Let Gi = G[{v1, . . . , vi}]
and let Ci be a maximum induced cluster subgraph of Gi. Let Si = Vi \ Ci.
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The algorithm starts with G1, C1 = {v1} and S1 = ∅. At the ith iteration of
the algorithm, 1 ≤ i ≤ n, we maintain the invariant that we have at our disposal
Ci−1 a maximum set inducing a cluster subgraph of Gi−1 and Si−1 a minimum
P3-HS of Gi−1. Note that Si−1 ∪ {vi} is a P3-HS of Gi and that no P3-HS

of Gi has size smaller than |Si−1|. Now use the algorithm of Lemma 3 to solve
Comp-MICS on Gi with S = Si−1 ∪ {vi}. Then the worst-case running time is
attained at the nth stage of the iteration and the run time is O(1.6181n). �

5 Conclusion

Iterative compression is a technique which is succesfully used in the design of
FPT algorithms. In this paper we show that this technique can also be used
to design exact exponential time algorithms. This suggests that it might be
used in other areas of algorithms as well. For example, how useful can iterative
compression be in the design of approximation algorithms?

Carrying over techniques from the design of FPT algorithms to the design
of exact exponential time algorithms and vice-versa is a natural and tempting
idea. A challenging question in this regard is whether Measure and Conquer, a
method that has been succesfully used to improve the time analysis of simple
exponential-time branching algorithms, can be adapted for the analysis of FPT
branching algorithms.
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literals. Our interest for this system stems from its relation to intuitionistic logic
[1,2] and from its relative simplicity, although not all boolean functions can be
obtained in this system: The set of functions that can be obtained in this system
is the Post class S0, i.e. the set of functions that we can write as x∨g for suitable
boolean variable x and function g.

Consider the ratio of the number of formulas of size n that compute a fixed
boolean function f , among all formulas of size n, and let the size grow to infinity.
It is possible to show that the limit of this ratio exists for a wide variety of logical
systems [3], and that we can thus define a probability distribution on the set of
boolean functions.

Some of us have shown in a former paper [4] that the tautologies in the im-
plication system have the simple shape (..., a, ...) → a with high probability, and
that, if the number k of boolean variables grows large enough, the probability
of a tautology is asymptotically 1/k. The next natural step is then to try and
compute the probability that a random expression computes a literal, a func-
tion xi ∨ xj , etc., and to check if the “average” expression computing, e.g., a
literal, has a simple form. When studying the random expressions that compute
a given boolean function f , one major parameter is the complexity L(f), i.e. the
size of the smallest expressions that represent f . We shall prove in the present
paper that the probability of any given function f depends exponentially on its
complexity; in passing we are also able to characterize the shape of a random
expression computing f , and to show that these expressions are obtained quite
simply from minimal trees.

The efforts to define non-uniform probability distributions, induced by random
boolean expressions, or formulae, on the set of boolean functions, date back sev-
eral years. The starting point is generally the description of formulae as trees of
a suitable shape and suitably labelled. The first efforts in this direction were by
Paris et al. [5] on And/Or trees (i.e. expressions built on the two connectors ∧ and
∨); the underlying model was that of binary Catalan trees, suitably labelled. The
study of these trees was further pursued by Lefman and Savický [6], who proved by
a pruning argument the existence of a probability distribution induced by random
expressions, and established important lower and upper bounds for the probabil-
ity of any boolean function in terms of its complexity. At the same time, Woods [7]
proved independently the existence of a limiting distribution for general formulae.
Some of the authors of the present paper then gave an alternative construction of
the probability distribution for And/Or trees, together with an improvement on
the upper bound [8]. The survey paper [3] presents an overview of the probability
distributions induced by random boolean expressions on boolean functions, and of
the way we can obtain them using the tools of analytic combinatorics: enumeration
of formulae/trees by generating functions, the Drmota-Lalley-Woods theorem for
solving an algebraic system of equations and asymptotics.

We should also mention that several researchers have concentrated on the
probability of tautologies, i.e. on the probability of the single constant function
True. Let us mention the Polish school around Zaionc, who began a system-
atic investigation of the probability of a tautology in various logical frameworks
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[9,10,11,12]; see also [13,14] for the expressions built on the single equivalence
connector. For And/Or trees, we refer the reader to Woods’s result that the
tautologies have asymptotic probability 3/4k, and that almost all of them have
the simple form l ∨ l̄ ∨ ... [15], and to Kozik [16] for a different, later proof.

Significant results have also been established for a different family of formu-
lae/trees, namely balanced trees obtained by iteration of a single connector.
The first result in this area is due to Valiant [17], whose aim was to compute a
boolean expression for the function Majority with high enough probability. Then
Boppana [18] and Gupta-Mahajan [19] improved Valiant’s result for majority;
Boppana went on to prove that iteration by a single, well-chosen connector gives
a uniform distribution on the set of threshold functions. Savický [20] showed
that iterating a non-linear balanced connector leads to the uniform distribution
on the set of all boolean functions. Finally, Brodsky and Pippenger [21] present
a systematic study of different classes of connectors and of the distributions in-
duced on boolean functions; these distributions are either uniform on subsets of
boolean functions, or concentrated on a single function.

The present paper is organized as follows. We show in Section 2 how all the
trees computing a specific boolean function can be derived from a finite set of
minimal trees by a few simple operations. Our main results are also given in
this section, namely the asymptotic expression of the probability of the boolean
function in terms of its complexity, and the (relatively) simple form of a random
expression computing a boolean function. The rest of the paper is devoted to the
proof of these results. We first recall in Section 3 basic facts and former results
on tautologies, i.e. on the trees that compute the simplest boolean function in
our system: the constant True. Next we give technical results on expansions and
on the inverse operation of pruning in Section 4, before considering irreducible
trees in Section 5. Finally we present possible extensions in Section 6.

2 Results: Limiting Ratio of Trees Computing a Given
Function

We begin by a brief presentation of the formulas we consider, then give a couple
of definitions in order to state the main result concerning the limiting ratio of
trees computing a given function.

Trees over implication. We consider in this paper formulas built with the sin-
gle connector of implication (denoted by →) and k positive literals {x1, . . . , xk}.
These formulas can be represented by full binary trees whose internal nodes
are all labelled by → and leaves by some literals. We denote by Fk this set of
formulas. Each formula, or tree, is associated to a specific boolean function; we
say that a tree is computing a specific boolean function. The boolean function
computed by a tree A is denoted by [A]. Every tree A of Fk can be written in a
unique way as

A = A1 → (A2 → (. . . → (Ap → r(A)) . . .))
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→

A1 →

A2 →

Ap r(A)

Fig. 1. The canonical decomposition of a tree

where Ai ∈ Fk and r(A) ∈ {x1, . . . , xk}. We refer to this as the canonical
decomposition of a tree A – see Figure 1. The subtrees A1, . . . , Ap are called the
premises of A, and the rightmost leaf r(A) is called the goal of A. Analogously,
premises and goal of any subtree of A is defined.

Limiting ratio. We define the size |A| of a tree A as the number of its leaves.
The limiting ratio of a subset A of trees is defined as

μk(A) = lim
n→∞

|{A ∈ A, |A| = n}|
|{A ∈ Fk, |A| = n}|

if this limit exists. We now define the limiting ratio of a function f as the
limiting ratio of all trees computing f ; that is, μk(f) = μk({A ∈ Fk | [A] = f}).
Introducing the generating functions

∑
n |{A ∈ A, |A| = n, [A] = f}|zn, the

results of Drmota [22], Lalley [23] and Woods [7] give us an easy way to prove
that the limiting ratio of each boolean function is defined in the system Fk – i.e.
for all boolean functions f , the limit defining μk(f) exists. These theorems are
nicely described in Flajolet and Sedgewick [24,25].

Valid expansions of a tree. We now define three rules, called expansion rules,
that allow, starting from a tree A, to obtain larger trees computing the same
function as A. Let A be a tree and B one of its subtrees and let the root of B
be denoted by ν.

The first expansion of A is called valid expansion by a tautology. We say that
the tree A′ obtained by replacing the subtree B with the subtree C → B in A,
where C is a tautology, is a valid expansion of A by a tautology at node ν. Of
course A′ computes the same function as A since [C → B] = [B].

The second expansion of A is called valid expansion by goal α. If substituting
B with C → B yields a tree A′ computing the same function as A for any tree
C with goal α, we say that any of these trees A′ is obtained from A by a valid
expansion of type “goal α” at node ν.

The third expansion of A is called valid expansion by premise α. If substituting
B with C → B yields a tree A′ computing the same function as A for any tree
C with a premise equal to α, we say that any of these trees A′ is obtained from
A by a valid expansion of type “premise α” at node ν.

Figure 2 represents the shape of the tree obtained after a valid expansion at
the root of B. Given a tree A, we define E(A) to be the set of all trees obtained
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→

B

→

→

C B

Fig. 2. Valid expansion with the subtree C in the root of B

from A by a single valid expansion of any of the three types defined above. Note
that all trees in E(A) compute the same function as A. We naturally extend E
to any set of trees A ⊆ Fk by letting E(A) =

⋃
A∈AE(A). In the same way we

define E0(A) = A, Ei(A) = E(Ei−1(A)) and E∗(A) =
⋃

i∈N
Ei(A).

Given a tree A, we define λ(A) as the number of types of valid expansions
of A; more precisely, this is the number of pairs (ν, α), where ν is a node of A
(either an internal node or a leaf) and α ∈ {x1, . . . , xk}, such that an expansion
of type “goal α” is valid in the node ν, plus the number of couples (ν, α) such
that an expansion of type “premise α” is valid in the node ν, plus 2|A| − 1 (this
is counting the tautology expansions in every of the 2|A| − 1 nodes of A).

For a boolean function f depending on a finite number of variables of {xi | i >
0}, we define its complexity L(f) to be the size of the smallest trees (over impli-
cation) computing f . Trees of size L(f) computing f are called minimal trees of
f ; their set is denoted by M(f). Given a boolean function f , we define λ(f) as
the sum of all λ(M) when M runs over all minimal trees computing f . It will
be proved that λ(f) does not depend on the number k of ambient variables. We
can now state the main result of this paper.

Theorem 1. Let f be a boolean function different from True. Almost all trees
computing f are obtained by a single expansion of a minimal tree of f :

μk(f) ∼ μk(E(M(f))).

As a consequence, the limiting ratio of f is asymptotically (as k → ∞) equal to:

μk(f) =
λ(f)

4L(f) kL(f)+1
+ O

(
1

kL(f)+2

)

.

A proof of this theorem is given at the end of Section 5, where bounds on λ(f)
are also provided – see Proposition 1.

3 Limiting Ratio and Structure of Tautologies

In this section, we recall some results from [4] on trees computing the constant
function True (tautologies). Some of us proved there that the limiting ratio of all
tautologies is equivalent to the limiting ratio of the family of simple tautologies :
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formulas such that one premise is equal to the goal of the formula. The limiting
ratio of the set Gk of simple tautologies is equal to:

μk(Gk) =
4k + 1

(2k + 1)2
=

1
k

− 3
4k2

+ O

(
1
k3

)

.

Moreover, the following bounds on the limiting ratio of all tautologies (denoted
by Clk) were given for k tending to infinity:

1
k

− 47
64k2

+ O

(
1
k3

)

� μk(Clk) � 1
k

+
17
4k2

+ O

(
1
k3

)

.

Finally we recall two facts on the structure of tautologies. For a node ν of
a tree A, we define the left depth of the node ν as the number of left branches
needed to reach ν from the root of A. We define in the same way the left depth
of a subtree B of A as the left depth of its root. Let A be a tree and B one
of its subtrees; B is called a left subtree of A if the root of B is the left son
of its first ancestor. Let A be a tree which is a tautology: then the goal of A
has a second occurrence at left depth 1 in A. Moreover, if A is a non-simple
tautology, there exist in A either three occurrences of the same variable or two
times two occurrences of two distinct variables among the leaves of left depth at
most 3.

4 Expansion and Pruning

We now study some of the properties of the expansion rules defined in Section 2.
Given a tree A and a left subtree B of A, we denote by A \B the tree obtained
by removing B from A. More precisely, since B is a left subtree of A, it is the left
son of a tree of the form B → C in A; the tree A \B is obtained by substituting
the subtree B → C by C in A – see Figure 3. The following three lemmas give
(necessary and) sufficient conditions for a tree to be a single expansion of a
certain type of a smaller tree.

→

Bi →

B →

Bi+1

→

Bi →

Bi+1

Fig. 3. Removing a left subtree B
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Lemma 1. Let A be a tree and B be a left subtree of A. If B is a tautology,
then A is obtained by a single valid expansion of type “tautology” of A \B.

Proof. This is obvious from the definition of expansions by tautologies. �

Lemma 2. Let A be a tree and B be a left subtree of A. Let β be the goal of B.
If substituting B by 1 or β in A yields a tree computing [A] in both cases, then
A is obtained by a single valid expansion of type “goal β” of A \B.

Proof. Let A1 be the tree A where B is replaced with β, and A2 be the tree
A where B is replaced with 1. Let B′ be any tree with goal β, and A′ be the
tree obtained from A by replacing B with B′. Of course β � [B′] � 1. Then by
induction on the size of the formula, we obtain [A] = [A1] � [A′] � [A2] = [A]
or [A] = [A1] � [A′] � [A2] = [A], depending whether the left depth of the
root of B is even or odd. In any case, [A′] = [A]. Moreover, [A \ B] = [A] since
[A \B] = [A2]. �

Lemma 3. Let A be a tree and B be a left subtree of A. Suppose that B has a
premise of size one β. If substituting B with 1 or β̄ in A gives a tree computing
[A] in both cases, then A is obtained by a single valid expansion of type “premise
β” of A \B.

Proof. The proof is similar to the previous one. �

When going from A to A \ B with one of the three lemmas above, we shall
say A \ B is obtained by pruning the left subtree B in A. Note the difference
between pruning a subtree and cutting a subtree: if A is a tree and B one of
its left subtrees, we will use the term “cutting the subtree B” when we remove
B from A without any condition on B, and the term “pruning the subtree B”
when we remove B from A while A is a valid expansion of A \B. However, both
final trees are denoted by A \B.

A tree which cannot be pruned is called an irreducible tree. Of course all
minimal trees computing a function f are irreducible. However, the converse is
not true; indeed consider the function f = x1 ∨ (x̄2 ∧ x̄3) ∨ (x̄2 ∧ x4). It can be
checked that (x4 → x2) → (((x2 → x3) → x3) → x1) computes f , is irreducible,
but not minimal since ((x3 → x4) → x2) → x1 is smaller and also computes f .
We also remark that the system of pruning rules is not confluent.

We now define a new way of getting large trees from a smaller one. But this
time, it does not preserve the function computed by the initial tree; its purpose
is to establish some upper bounds on the limiting ratio of expansions. This new
mapping X is called extension (it is different from expansion). The mapping X
is defined recursively as follows: for a tree T consists of a single leaf α, X(α) is
the set of all trees whose goal is labelled by α. If T = L → R, we let

X(L→R)=
{
A1→

(
. . .→

(
Ap→

(
L̃→R̃

))
. . .
)
|A1, . . . , Ap∈Fk, L̃∈X(L), R̃∈X(R)

}
.

See Figure 4 for a graphical representation of the recursive definition of this
mapping, and Figure 5 for the general shape of extensions of a given tree: the
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→

L R

X(L) X(R)

Fig. 4. The recursive definition of the extension mapping

Fig. 5. A tree A on the left and the set X(A) it defines, on the right

left sons of the combs are arbitrary trees (not represented not to overload the
picture). We naturally extend X to a set of trees A ⊆ Fk by letting X(A) =⋃

A∈AX(A). Notice that X(X(A)) = X(A) for any A ⊆ Fk. The relationship
between extensions and expansions is given below.

Lemma 4. Let A be a tree. Then E∗(A) ⊆ X(A).

Proof. Let A be a tree. Since X(X(A)) = X(A), all is needed is to prove that
E(A) ⊆ X(A). Recall that any tree A′ ∈ E(A) is obtained by substituting a
subtree B of A with a tree of the form C → B. It is clear from the definition of
extensions that C → B ∈ X(B), and it follows that A′ ∈ X(A). �

Let V be a fixed finite subset of the variables {xi | i > 0}, independent of the
number of variables k we consider. Let p and q be two integers. Let Bp

q(V) the set
of trees B ⊆ Fk such that p � |B| � pq + 1 and which contain at least p leaves
labelled in V . Note that Bp

q(V) implicitly depends on the number k of variables
considered in our system.

Lemma 5. The limiting ratio of X(Bp
q(V)) satisfies the next equation:

μk

(
X
(
Bp

q (V)
))

= O

(
1
kp

)

.

Proof of this lemma is omitted in this short abstract. Let Ap
q(V) be the set of

trees of Fk which contain p leaves labelled in V , all of them being of left depth
at most q. Notice that Ap

q(V) is infinite – as opposed to Bp
q(V).

Lemma 6. Ap
q(V) ⊆ X(Bp

q(V)) and consequently E∗(Ap
q(V)) ⊆ X(Bp

q(V)).
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Proof. Let A ∈ Ap
q(V). Let ν1, . . . , νp be p leaves of A labelled with variables

from V , all with left depth at most q. Let C1, . . . , Cr be the set of maximal (w.r.t.
inclusion) left subtrees of A not containing any of the nodes νi. Let B be the
tree obtained from A by removing all Ci, i.e. B = A \ {C1, . . . , Cr}. Of course
A ∈ X(B), and it can be checked that B ∈ Bp

q(V): indeed the largest tree B that
can be obtained is when all nodes νi have a left depth q and belong to distinct
premises of A, and |B| = pq + 1 in this case. Thus A ∈ X(Bp

q(V)). The second
part of the lemma follows from Lemma 4 and the fact that X(X(Bp

q (V))) =
X(Bp

q(V)). �

Using Lemma 5 and 6 we obtain:

Corollary 1. It holds that:

μk

(
E∗
(
Ap

q(V)
))

= O

(
1
kp

)

.

5 Irreducible Trees and Their Expansions

Let f be a boolean function different from True. The variable x is called an
essential variable of f if the two functions obtained by evaluating x to 0 and
to 1 are two distinct functions. Otherwise, x is called an inessential variable
of f .

Let A be a tree and ν one of its nodes of positive left depth (either an internal
node or a leaf). We define Δ(ν) to be the smallest left subtree of A containing ν.
In the same way, for a node ν of left depth at least 2, we define Δ2(ν) to be the
smallest left subtree strictly containing Δ(ν) – see Figure 6. We shall also write
Δ(B) for a subtree B as a shortcut for Δ(ν), where ν is the root of B (and in
the same way Δ2(B) for Δ2(ν)).

Δ(ν)

ν

Δ2(ν)

Fig. 6. The left subtrees Δ(ν) and Δ2(ν) associated to a node ν of a tree
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Lemma 7. Any tree A computing a function f �= True contains at least L(f)
occurrences of essential variables of f .

Proof. Let A be a tree computing f �= True. First remark that the goal of A
is an essential variable; otherwise A would compute the constant True function.
So Δ(ν) is well defined for any leaf labelled with an inessential variable. Let
{Δ1, . . . , Δp} be the set of maximal Δ(ν) (with respect to inclusion) when ν
runs over all the leaves of A labelled with inessential variables. Of course all Δi

are disjoint. If we assign the value 1 to all inessential variables, all Δi evaluate
to 1, because their goals are inessential variables. Thus A′ = A \ {Δ1, . . . , Δp}
computes f . Since A′ only contains essential variables and |A| � |A′| � L(f), it
follows that there are at least L(f) essential variables. �

The size of a tree A computing f �= True can be written |A| = L(f) + e + i,
where L(f) + e is the number of leaves labelled with essential variables and i
is the number of leaves labelled with inessential variables; notice that e � 0
by Lemma 7. Given a function f different from True, we decompose the set of
irreducible trees computing f into the following disjoint sets:

– M(f) is the set of all minimal trees, i.e. trees of size L(f) (case e = i = 0);
– P1(f) is the set of irreducible trees of size greater than L(f), with exactly

L(f) occurrences of essential variables and at least one occurrence of an
inessential variable (case e = 0, i > 0);

– P2(f) is the set of irreducible trees of size L(f) + 1, without any occurrence
of inessential variables (case e = 1, i = 0);

– P3(f) is the set of irreducible trees of size greater than L(f)+1, with exactly
L(f)+1 occurrences of essential variables and i > 0 occurrences of all distinct
inessential variables (case e = 1, i > 0, first part);

– P4(f) is the set of irreducible trees of size greater than L(f)+2, with exactly
L(f)+1 occurrences of essential variables and i > 0 occurrences of inessential
variables such that at least one inessential variable is repeated (case e = 1,
i > 0, second part);

– P5(f) is the set of irreducible trees containing at least L(f) + 2 occurrences
of essential variables (case e � 2, i � 0).

Of course any tree computing f falls in an iterated expansion of an irreducible
tree computing f (obtained by repeated pruning). Theorem 1 relies on evaluating
the limiting ratios of E∗(C) for each of the classes C defined above. We first prove
that the two sets P1(f) and P3(f) are empty.

Lemma 8. For any boolean function f different from True, the set P1(f) is empty.

Proof. Suppose that P1(f) is not empty, and let A ∈ P1(f). The size A is L(f)+i,
with exactly L(f) occurrences of essential variables and i > 0 occurrences of
inessential ones. Let {Δ1, . . . , Δp} be the set of maximal Δ(ν) (with respect to
inclusion) when ν runs over all the leaves of A labelled by an inessential variable.
If we assign the value 1 to all inessential variables, all Δi evaluate to 1, because
their goals are inessential variables. Moreover, since they are left subtrees, the
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tree A′ := A \ {Δ1, . . . , Δp} computes f . Since A contains L(f) occurrences of
essential variables, no Δi contains an essential variable.

Suppose now that there does not exist any assignment of the inessential vari-
ables such that Δ1 evaluates to 0: then Δ1 is a tautology and A is reducible, this
is absurd. Hence there exists an assignement a of all inessential variables such
that Δ1 evaluates to 0 under a. Notice that Δ1 cannot be a premise of A because
f �= True, so Δ2

1 := Δ2(Δ1) is well defined and evaluates to 1 under a (because
its premise Δ1 evaluates to 0). Let S = {Δi | [Δi|a] = 1} ∪ {Δ2

i | [Δi|a] = 0}
– where [C|a] denotes the function computed by the subtree C under the as-
signement a. The set S is composed of left subtrees, all evaluating to 1 under a.
Moreover S contains Δ2

1 which contains at least one essential variable (its goal)
– otherwise Δ1 would not be maximal. Thus A′′ := A \ S is of size at most
L(f) − 1 and computes f , this is absurd. �

Using similar ideas, we obtain the following:

Lemma 9. For any boolean function f different from True, the set P3(f) is empty.

Proof is not given in this short abstract. It is easy to check that both P4(f) and
P5(f) are non empty for any function f �= True. On the other hand, P2(f) may be
empty or not, depending on f : P2(f) is empty for f = x1 while P2(g) is not empty
for g = x1 ∨ (x̄2 ∧ x3 ∧ x4) ∨ (x̄2 ∧ x̄5). Indeed, it can be checked that L(g) = 6
and (x3 → (x4 → x2)) → (((x5 → x2) → x2) → x1) belongs to P2(g). Our
next step is to prove that iterated expansions of P2(f) yields a family with small
limiting ratio. Thus we can assume that f is such that P2(f) �= ∅ – otherwise the
limiting ratio of E∗(P2(f)) is obviously 0. The following lemma establishes some
restrictions on the possible types of expansions in M(f) and P2(f).

Lemma 10. Let f be a boolean function different from True, and A ∈ M(f) ∪
P2(f). No valid expansion of type goal or premise with respect to an inessential
variable is possible in A.

Proof. We develop here a proof by contradiction. Let A ∈ M(f) ∪ P2(f). Let ν
be one of its nodes where we are able to perform a valid expansion of type goal
or premise with respect to an inessential variable α. Notice that the left depth
of ν is at least 1; otherwise f would be equal to True. Thus Δ(ν) is well defined.
We shall first prove that |Δ(ν)| = 1.

Suppose the valid expansion in ν is of type goal α. Let A′ be the tree obtained
by expanding A in ν with the left subtree reduced to α. Then we have [A′|α=0] =
[A \Δ(ν)] = f and we conclude that |Δ(ν)| = 1 and |A| = L(f) + 1 (otherwise
we would have a tree smaller than L(f) computing f). Suppose now the valid
expansion in ν is of type premise α. Let x be the goal of A, and let A′ be the
tree obtained by expanding A in ν with the left subtree α → x. Then we have
[A′|α=1, x=0] = [A \Δ(ν)|x=0] = f|x=0 and of course [A \Δ(ν)|x=1] = 1 = f|x=1.
Again we conclude that [A \ Δ(ν)] = f ; it follows that |Δ(ν)| = 1 and |A| =
L(f) + 1 in this case too.

So no matter the type of the valid expansion, we know that Δ(ν) is a leaf. Let y
be the label ofΔ(ν). In the tree A, the left subtree Δ(ν) computes y. Moreover, for
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both types of expansion, we have shown that A \Δ(ν) still computes f ; to put it
otherwise, substitutingΔ(ν) with 1 or its goal y inA does not change the computed
function. It follows by Lemma 2 that A is reducible, which is absurd. �

Notice that Lemma 10 shows that λ(f) defined in Section 2 does not depend on
the number of variables k we consider. We are now ready to bound the limiting
ratio of E∗(P2(f)).

Lemma 11. For any boolean function f different from True,

μk(E∗(P2(f))) = O

(
1

kL(f)+2

)

.

Proof. Since P2(f) is finite, μk(P2(f)) = 0 and all we have to show is that
μk(E∗(E(P2(f)))) = O(1/kL(f)+2). Let A ∈ E(P2(f)); we have A ∈ E(I) for
an irreducible tree I ∈ P2(f). We will prove that A satisfies one of the following
conditions:

– A contains at least L(f)+2 occurrences of essential variables with left depth
at most L(f) + 2;

– A contains L(f) + 1 occurrences of essential variables and two occurrences
of the same inessential variable, all with a left depth at most L(f) + 2.

If A is obtained from I by an expansion of type goal or premise, then it must
be with respect to an essential variable by Lemma 10. Now remark that I is of
size L(f) + 1, so all its node are of left depth at most L(f) (there is at least a
node per left depth). Since expansions preserve left depth of nodes present in
the initial tree, we conclude that A satisfies the first condition above.

Suppose now that A is obtained from I by an expansion of type tautology.
From the results recalled in Section 3, we know that this tautology contains two
occurrences of some variable x in its nodes of left depth at most 1. If x is an
essential variable of f , then A satisfies the first condition above. Otherwise, if x
is an inessential variable of f , then A satisfies the second condition above.

Let us denote by Γ the set of essential variables of f . Let N1 = AL(f)+2
L(f)+2(Γ )

and
N2 =

⋃

α∈{x1,...,xk}
AL(f)+3

L(f)+2(Γ ∪ {α}).

We have just proved that E(P2(f)) ⊆ N1 ∪N2. It follows that E∗(E(P2(f))) ⊆
E∗(N1) ∪ E∗(N2). Corollary 1 yields

μk(E∗(N1)) = O

(
1

kL(f)+2

)

.

Moreover, still with Corollary 1 we obtain that for any variable α:

μk(E∗(AL(f)+3
L(f)+2(Γ ∪ {α}))) = O

(
1

kL(f)+3

)

.
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It follows that

μk(E∗(N2)) = O

(
1

kL(f)+2

)

.

Thus, we have proved that μk(E∗(P2(f))) = O(1/kL(f)+2). �

We now turn our attention towards P4(f) and P5(f). In the same way as for the
limiting ratio of iterated expansions of P2(f), we can show the following:

Lemma 12. For any boolean function f different from True, it holds that:

μk(E∗(P4(f) ∪ P5(f))) = O

(
1

kL(f)+2

)

.

Proof is omitted in this short abstract. The last step towards the proof of The-
orem 1 is to study limiting ratio of expansions of the minimal trees computing
a given function. We show the following:

Lemma 13. Let f be a boolean function different from True. Using a single
expansion of the minimal trees, we get:

μk(E(M(f))) =
λ(f)

4L(f)kL(f)+1
+ O

(
1

kL(f)+2

)

.

Moreover,

μk (E∗ (M(f)) \ E(M(f))) = O

(
1

kL(f)+2

)

.

The proof is not given in this short abstract. The first part relies on simple
calculations of limiting ratio using generating functions and the results on tau-
tologies recalled in Section 3; the second part, in the spirit of Lemma 11, is more
technical and relies on a case study with regard to the location of the second
expansion with respect to the first one. Theorem 1 is now obtained easily.

Proof of Theorem 1. Of course each tree computing f falls in a set obtained
by an arbitrary number of expansions of an irreducible tree computing f . That
is, the set of trees computing f is exactly A(f) = E∗(M(f) ∪ P1(f) ∪ P2(f) ∪
P3(f) ∪ P4(f) ∪ P5(f)). Now of course

E(M(f)) ⊆ A(f) ⊆ E(M(f)) ∪ (E∗(M(f)) \ E(M(f))) ∪
⋃

i∈{1,...,5}
E∗(Pi(f)).

The result follows from Lemmas 8, 9, 11, 12 and 13. �
Let us now provide some bounds on the integer λ(f).

Proposition 1. Let f be a boolean function different from True, and let n be
its number of essential variables. It holds that

2 · (2L(f) − 1) · |M(f)| � λ(f) � (1 + 2n) · (2L(f) − 1) · |M(f)|.
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Proof. Let M be a minimal tree computing f and let ν be a node of M . Since
M is of size L(f), the tree M has 2L(f) − 1 nodes in total. Thus all we have
to show is that the number λν of types of valid expansions in the node ν of M
satisfies 2 � λν � 1 + 2n.

The upper bound is simply obtained by counting all possible types of expan-
sions: 1 for the tautology type, n of goal type, and n of premise type – recall
from Lemma 10 that no expansion of type goal or premise with respect to an
inessential variable is valid in M .

The lower bound is obtained by remarking that, besides the tautology type
of expansion which is of course valid in ν, the expansion of type premise x is
also valid in ν, where x is the goal of M . Indeed, let A be the tree obtained
from M by replacing the subtree B rooted in ν by C → B, where C is any tree
with a premise equal to x. Of course [A|x=0] = [M |x=0] because [C|x=0] = 1.
Moreover, [A|x=1] = [M |x=1] = 1 because x is the goal of M . Thus [A] = [M ]
and we conclude that the expansion of type “goal x” is valid in ν. �

When building the tree underlying the formula, we assumed that it is chosen
uniformly among the trees of a given (large) size. Assume now that it is obtained
by a critical branching process, so that its size itself is random (see [8] for the
definition of this process in the case of And/Or trees). This gives a different
probability distribution on the set of boolean functions; let us denote it by π.
Then we can obtain a similar result for this new distribution.

Proposition 2. Let f be a boolean function different from True; then

π(f) =
|M(f)|

22L(f)−1 kL(f)
+ O

(
1

kL(f)+1

)

.

6 Conclusion

When considering the limiting ratio of a boolean function, e.g., in the system
of implication, it may not be enough to know that the limiting ratio exists,
and one may naturally wish for some numerical information. For a fixed, (very)
small number of boolean variables, explicit computation of the limiting ratios
is feasible by writing, then solving, an algebraic system; see [3] for an overview
of the mathematical technology involved and [8] for the application to And/Or
trees. However, the fact that size of the system grows exponentially in k severely
restricts hand-made evaluation. For a moderate number of variables, very recent
results on explicit solving of algebraic systems [26] give us hope to extend the
numerical computations a little bit farther. But exact computation will even-
tually fail, even for a “reasonable” number of boolean variables. Then we turn
to asymptotic analysis; this is where our result comes in. Although it is likely
that no general, easy-to-use expression of the constant factor λ(f) holds for
all boolean functions, we can still hope to obtain results for well-defined classes.
Consider for example read-once functions, i.e., functions with L(f) essential vari-
ables. An alternative definition is as functions whose minimal trees contain no
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repetition of variables. We can prove that the average number of expansions of
read-once functions of complexity c is

λ̄r.o.(c) ∼
√
π

2
√

2
c3/2

(
4
e

)c

.

We should also mention that Theorem 1 requires us to specify the boolean function,
and does not hold uniformly over all boolean functions; hence we are still unable
to compute the average complexity of a boolean function chosen according to this
probability distribution. Further work is required before we can either verify or
invalidate the Shannon effect for this non-uniform probability distribution.

Acknowledgements. We are grateful to Jakub Kozik for fruitful discussions
about this problem.
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Abstract. Studying the impact of operations, such as intersection and
interleaving, on the succinctness of regular expressions has recently re-
ceived renewed attention [12,13,14]. In this paper, we study the succinct-
ness of regular expressions (REs) extended with interleaving, intersection
and counting operators. We show that in a translation from REs with
interleaving to standard regular expressions a double exponential size
increase can not be avoided. We also consider the complexity of trans-
lations to finite automata. We give a tight exponential lower bound on
the translation of REs with intersection to NFAs, and, for each of the
three classes of REs, we show that in a translation to a DFA a dou-
ble exponential size increase can not be avoided. Together with known
results, this gives a complete picture of the complexity of translating
REs extended with interleaving, intersection or counting into (standard)
regular expressions, NFAs, and DFAs.

1 Introduction

Regular expressions are used in many applications such as text processors, pro-
gramming languages [30], and XML schema languages [5,28]. These applications,
however, usually do not restrict themselves to the standard regular expression
using disjunction (+), concatenation (·) and star (∗), but also allow the use of
additional operators. Although these operators mostly do not increase the ex-
pressive power of the regular expressions, they can have a drastic impact on
succinctness, thus making them harder to handle. For instance, it is well known
that expressions extended with the complement operator can describe certain
languages non-elementary more succinct than standard regular expressions or
finite automata [29].

In this paper, we study the succinctness of regular expressions extended with
counting (RE(#)), intersection (RE(∩)), and interleaving (RE(&)) operators.
The counting operator allows for expressions such as a[2,5], specifying that there
must occur at least two and at most 5 a’s. These RE(#)s are used in egrep [16]
and Perl [30] patterns and in the XML schema language XML Schema [28]. The
class RE(∩) is a well studied extension of the regular expressions, and is often
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referred to as the semi-extended regular expressions. The interleaving operator
allows for expressions such as a& b& c, specifying that a, b, and c may occur in
any order, and is used, for instance, in the XML schema language Relax NG [5].

A problem we consider, is the translation of extended regular expressions
into (standard) regular expressions. For RE(#) and RE(∩) the complexity of
this translation has already been settled and is exponential [18] and double
exponential [12], respectively. We show that also in constructing an expression
for the interleaving of a set of expressions (an hence also for an RE(&)) a double
exponential size increase can not be avoided. This is the main technical result
of the paper. Apart from a pure mathematical interest, the latter result has two
important consequences. First, it prohibits an efficient translation from Relax
NG (which allows interleaving) to XML Schema Definitions (which does not).
However, as XML Schema is the widespread W3C standard, and Relax NG is
a more flexible alternative, such a translation would be more than desirable.
A second consequence concerns the automatic discovery of regular expression
describing a set of given strings. The latter problem occurs in the learning of
XML schema languages [1,2,3]. At present these algorithms do not take into
account the interleaving operator, but for Relax NG this would be wise as this
would allow to learn significantly smaller expressions.

We recently learned that Gruber and Holzer independently obtained a similar
result [Personal communication]. They show that any regular expression defining
the language (a1b1)∗& · · ·&(anbn)∗ must be of size at least double exponential in
n. Compared to the result in this paper, this gives a tighter bound (22Ω(n)

instead
of 22Ω(

√
n)

), and shows that the double exponential size increase already occurs
for very simple expressions. On the other, the alphabet of the counterexamples
grows linear with n, whereas the alphabet size is constant for the languages in
this paper. Hence, the two results nicely complement each other.

We also consider the translation of extended regular expressions to NFAs. For
the standard regular expressions, it is well known that such a translation can
be done efficiently [4]. Therefore, when considering problems such as member-
ship, equivalence, and inclusion testing for regular expressions the first step is
almost invariantly a translation to a finite automaton. For extended regular ex-
pressions, such an approach is less fruitful. We show that an RE(&,∩,#) can be
translated in exponential time into an NFA. However, it has already been shown
by Kilpelainen and Tuhkanen [18] and Mayer and Stockmeyer [20] that such an
exponential size increase can not be avoided for RE(#) and RE(&), respectively.
For the translation from RE(∩) to NFAs, a 2Ω(

√
n) lower bound is reported in

[25], which we here improve to 2Ω(n).
As the translation of extended regular expressions to NFAs already involves

an exponential size increase, it is natural to ask what the size increase for DFAs
is. Of course, we can translate any NFA into a DFA in exponential time, thus
giving a double exponential translation, but can we do better? For instance,
from the results in [12] we can conclude that given a set of regular expressions,
constructing an NFA for their intersection can not avoid an exponential size
increase. However, it is not too hard to see that also a DFA of exponential size
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accepting their intersection can be constructed. In the present paper, we show
that this is not possible for the classes RE(#), RE(∩), and RE(&). For each
class we show that in a translation to a DFA, a double exponential size increase
can not be avoided. An overview of all results is given in Figure 1(a).

NFA DFA RE

RE(#) 2Ω(n) [18] 22Ω(n)
(Th. 3) 2θ(n) [18]

RE(∩) 2Ω(n) (Pr. 2) 22Ω(n)
(Th. 4) 22Ω(

√
n)

[12]

RE(&) 2Ω(n) [20] 22Ω(
√

n)
(Th. 5) 22Ω(

√
n)

(Th. 6)

RE(&,∩, #) 2O(n) (Pr. 1) 22O(n)
(Pr. 3) 22O(n)

(Pr. 4)

(a)

RE

RE ∩ RE 2Ω(n) [13]
⋂

RE 22Ω(
√

n)
[12]

RE & RE 2Ω(n) [13]

(b)

Fig. 1. Table (a) gives the complexity of translating extended regular expressions into
NFAs, DFAs, and regular expressions. Proposition and theorem numbers are given in
brackets. Table (b) lists some related results obtained in [12] and [13].

Related work. The different classes of regular expressions considered here have
been well studied. In particular, the RE(∩) and its membership [17,19,25] and
equivalence and emptiness [10,24,26] problems, but also the classes RE(#) [18,23]
and RE(&) [11,20] have received interest. Succinctness of regular expressions
has been studied by Ehrenfeucht and Zeiger [8] and, more recently, by Ellul
et. al [9], Gelade and Neven [12], Gruber and Holzer [13,14], and Gruber and
Johannsen [15]. Some relevant results of these papers are listed in Figure 1(b).
Schott and Spehner give lower bounds for the translation of the interleaving of
words to DFAs [27]. Also related, but different in nature, are the results on state
complexity [32], in which the impact of the application of different operations
on finite automata is studied.

Outline. In Section 2 we give the necessary definitions and present some basic
results. In Sections 3, 4, and 5 we study the translation of extended regular
expressions to NFAs, DFAs, and regular expressions, respectively. A version of
this paper containing all proofs is available from the webpage of the author.

2 Definitions and Basic Results

2.1 Regular Expressions

By N we denote the natural numbers without zero. For the rest of the paper,
Σ always denotes a finite alphabet. A Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by |w|,
to be n. We denote the empty string by ε. The set of positions of w is {1, . . . , n}
and the symbol of w at position i is ai. By w1 ·w2 we denote the concatenation of
two strings w1 and w2. As usual, for readability, we denote the concatenation of
w1 and w2 by w1w2. The set of all strings is denoted by Σ∗. A string language is a
subset of Σ∗. For two string languages L,L′ ⊆ Σ∗, we define their concatenation
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L · L′ to be the set {ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times)
by Li. By w1 & w2 we denote the set of strings that is obtained by interleaving
w1 and w2 in every possible way. That is, for w ∈ Σ∗, w & ε = ε & w = {w},
and aw1 & bw2 = ({a}(w1 & bw2)) ∪ ({b}(aw1 & w2)). The operator & is then
extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ∅, ε, and every Σ-symbol is a regular expression; and when r1 and r2 are
regular expressions, then r1 · r2, r1 + r2, and r∗1 are also regular expressions.
By RE(&,∩,#) we denote the class of extended regular expressions, that is, REs
extended with interleaving, intersection and counting operators. So, when r1 and
r2 are RE(&,∩,#)-expressions then so are r1 & r2, r1 ∩ r2, and r

[k,]
1 for k, � ∈ N

with k ≤ �. By RE(&), RE(∩), and RE(#), we denote RE extended solely with
the interleaving, intersection and counting operator, respectively.

The language defined by an extended regular expression r, denoted by L(r),
is inductively defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) =
L(r1) ·L(r2); L(r1 + r2) = L(r1)∪L(r2); L(r∗) = {ε}∪

⋃∞
i=1 L(r)i; L(r1 & r2) =

L(r1) & L(r2); L(r1 ∩ r2) = L(r1) ∩ L(r2); and L(r[k,]) =
⋃

i=k L(r)i.
By r+,

⋃k
i=1 ri, and rk, with k ∈ N, we abbreviate the expression rr∗, r1 +

· · · + rk, and rr · · · r (k-times), respectively. For a set S = {a1, . . . , an} ⊆ Σ, we
abbreviate by S the regular expression a1 + · · · + an. When r[k,l] is used in a
standard regular expression, this is an abbreviation for rk(r + ε)l−k.

We define the size of an extended regular expression r over Σ, denoted by |r|,
as the number of Σ-symbols and operators occurring in r plus the sizes of the
binary representations of the integers. Formally, |∅| = |ε| = |a| = 1, for a ∈ Σ,
|r1r2| = |r1 ∩ r2| = |r1 + r2| = |r1 & r2| = |r1| + |r2| + 1, |r∗| = |r| + 1, and
|r[k,]| = |r| + "log k# + "log �#.

Intuitively, the star height of a regular expression r, denoted by sh(r) equals
the number of nested stars in r. Formally, sh(∅) = sh(ε) = sh(a) = 0, for a ∈ Σ,
sh(r1r2) = sh(r1 + r2) = max {sh(r1), sh(r2)}, and sh(r∗) = sh(r) + 1. The star
height of a regular language L, denoted by sh(L), is the minimal star height
among all regular expressions defining L.

The latter two concepts are related through the following theorem due to
Gruber and Holzer [13], which will allow us to reduce our questions about the
size of regular expressions to questions about the star height of regular languages.

Theorem 1 ([13]). Let L be a regular language. Then any regular expression
defining L is of size at least 2

1
3 (sh(L)−1) − 1.

2.2 Finite Automata and Graphs

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F ) where
Q is the set of states, q0 is the initial state, F is the set of final states and
δ ⊆ Q×Σ×Q is the transition relation. As usual, we denote by δ∗ ⊆ Q×Σ∗×Q
the reflexive-transitive closure of δ. Then, w is accepted by A if (q0, w, qf ) ∈ δ∗

for some qf ∈ F . The set of strings accepted by A is denoted by L(A). The size



Succinctness of Regular Expressions 367

of an NFA is |Q|+|δ|. An NFA is deterministic (or a DFA) if for all a ∈ Σ, q ∈ Q,
|{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

A state q ∈ Q is useful if there exist strings w,w′ ∈ Σ∗ such that (q0, w, q) ∈
δ∗, and (q, w′, qf ) ∈ δ∗, for some qf ∈ F . An NFA is trim if it only contains
useful states. For q ∈ Q, let symbols(q) = {a | ∃p ∈ Q, (p, a, q) ∈ δ}. Then,
A is state-labeled if for any q ∈ Q, |symbols(q)| ≤ 1, i.e., all transitions to a
single state are labeled with the same symbol. In this case, we also denote this
symbol by symbol(q). Further, A is non-returning if symbols(q0) = ∅, i.e., q0 has
no incoming transitions. A language L is bideterministic if there exists a DFA
A, accepting L, such that the inverse of A is again deterministic. That is, A
may have at most one final state and the automaton obtained by inverting every
transition in A, and exchanging the initial and final state, is again deterministic.

A (directed) graph G is a tuple (V,E), where V is the set of vertices and
E ⊆ V × V is the set of edges. A graph (U,F ) is a subgraph of G if U ⊆ V and
F ⊆ E. For a set of vertices U ⊆ V , the subgraph of G induced by U , denoted
by G[U ], is the graph (U,F ), where F = {(u, v) | u, v ∈ U ∧ (u, v) ∈ E}.

A graph G = (V,E) is strongly connected if for every pair of vertices u, v ∈ V ,
both u is reachable from v, and v is reachable from u. A set of edges V ′ ⊆ V is
a strongly connected component (SCC) of G if G[V ′] is strongly connected and
for every set V ′′, with V ′ � V ′′, G[V ′′] is not strongly connected.

We now introduce the cycle rank of a graph G = (V,E), denoted by cr(G),
which is a measure for the structural complexity of G. It is inductively defined
as follows: (1) if G is acyclic or empty, then cr(G) = 0, otherwise (2) if G is
strongly connected, then cr(G) = minv∈V cr(G[V \ {v}]) + 1, and otherwise (3)
cr(G) = maxV ′ SCC of G cr(G[V ′]).

Let A = (Q, q0, δ, F ) be an NFA. The underlying graph G of A is the graph
obtained by removing the labels from the transition edges of A, or more formally
G = (Q,E), with E = {(q, q′) | ∃a ∈ Σ, (q, a, q′) ∈ δ}. In the following, we often
abuse notation and for instance say the cycle rank of A, referring to the cycle
rank of its underlying graph.

There is a strong connection between the star height of a regular language, and
the cycle rank of the NFAs accepting it, as witnessed by the following theorem.
Theorem 2(1) is known as Eggan’s Theorem [7] and proved in its present form
by Cohen [6]. Theorem 2(3) is due to McNaughton [21].

Theorem 2. For any regular language L,

1. sh(L) = min {cr(A) | A is an NFA accepting L}. [7,6].
2. sh(L)·|Σ| ≥ min {cr(A) |Ais a non-returning state-labeled NFA accepting L}.
3. if L is bideterministic, then sh(L) = cr(A), where A is the minimal trim

DFA accepting L. [21]

3 Succinctness w.r.t. NFAs

In this section, we study the complexity of translating extended regular expres-
sions into NFAs. We show that such a translation can be done in exponential
time, by constructing the NFA by induction on the structure of the expression.
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Proposition 1. Let r be a RE(&,∩,#). An NFA A with at most 2|r| states,
such that L(r) = L(A), can be constructed in time 2O(|r|).

This exponential size increase can not be avoided for any of the classes. For
RE(#) this is witnessed by the expression a[2n,2n] and for RE(&) by the expres-
sion a1 & · · · & an, as already observed by Kilpelainen and Tuhkanen [18] and
Mayer and Stockmeyer [20], respectively. For RE(∩), a 2Ω(

√
n) lower bound has

already been reported in [25]. The present tighter statement, however, will follow
from Theorem 4 and the fact that any NFA with n states can be translated into
a DFA with 2n states [31].

Proposition 2. For any n ∈ N, there exist an RE(#) r#, an RE(∩) r∩, and
an RE(&) r&, each of size O(n), such that any NFA accepting r#, r∩, or r&

contains at least 2n states.

4 Succinctness w.r.t. DFAs

In this section, we study the complexity of translating extended regular expres-
sions into DFAs. First, from Proposition 1 and the fact that any NFA with n
states can be translated into a DFA with 2n states in exponential time [31], we
can immediately conclude the following.

Proposition 3. Let r be a RE(&,∩,#). A DFA A with at most 22|r|
states,

such that L(r) = L(A), can be constructed in time 22O(|r|)
.

We show that, for each of the classes RE(#), RE(∩), or RE(&), this double
exponential size increase can not be avoided. For RE(#), this is witnessed by
the expression (a + b)∗a(a + b)[2

n,2n] which is of size O(n), but for which any
DFA accepting it must contain at least 22n

states.

Theorem 3. For any n ∈ N there exists an RE(#) rn of size O(n) such that
any DFA accepting L(rn) contains at least 22n

states.

We now move to regular expressions extended with the intersection operator. The
succinctness of RE(∩) with respect to DFAs can be obtained along the same lines
as the simulation of exponential space turing machines by RE(∩) in [10].

Theorem 4. For any n ∈ N there exists an RE(∩) r∩n of size O(n) such that
any DFA accepting L(r∩n ) contains at least 22n

states.

Proof. Let n ∈ N. We start by describing the language Gn which will be used
to establish the lower bound. This will be a variation of the following language
over the alphabet {a, b}: {ww | |w| = 2n}. It is well known that this language is
hard to describe by a DFA. However, to define it very succinct by an RE(∩), we
need to add some additional information to it.

Thereto, we first define a marked number as a string over the alphabet {0, 1, 0̄, 1̄}
defined by the regular expression (0 + 1)∗1̄0̄∗ + 0̄∗, i.e., a binary number in which
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the rightmost 1 and all following 0’s are marked. Then, for any i ∈ [0, 2n − 1] let
enc(i) denote the n-bit marked number encoding i. These marked numbers were
introduced by Fürer in [10], where the following is observed: if i, j ∈ [0, 2n − 1]
are such that j = i + 1(mod 2n), then the bits of i and j which are different are
exactly the marked bits of j. For instance, for n = 2, enc(1) = 01̄ and enc(2) = 1̄0̄
and they differ in both bits as both bits of enc(2) are marked. Further, let encR(i)
denote the reversal of enc(i).

Now, for a string w = a0a1 . . . a2n−1 define

enc(w) = encR(0)a0enc(0)$encR(1)a1enc(1)$ · · · encR(2n − 1)a2n−1enc(2n − 1)

and, finally, define

Gn = {#enc(w)#enc(w) | w ∈ L((a + b)∗) ∧ |w| = 2n}

For instance, for n = 2, and w = abba, enc(w) = 0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄
and hence #0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄#0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄ ∈ G2.

It can be shown that any DFA accepting Gn, the complement of Gn, must
contain at least 22n

states. Furthermore, we can construct an expression r∩n of
size O(n) defining Gn. Here, r∩n is the disjunction of many expressions, each
describing some mistake a string can make in order not to be in Gn. �

We can now extend the results for RE(∩) to RE(&). We do this by using a
technique of Mayer and Stockmeyer [20] which allows, in some sense, to simulate
an RE(∩) by an RE(&). To formally define this, we need some notation. Let
w = a0 · · · an be a string over an alphabet Σ, and let c be a symbol not in Σ.
Then, for any i ∈ N, define pumpi(w) = ai

0c
iai

1c
i · · ·ai

kc
i. Now, they proved the

following:

Lemma 1 ([20]). Let r be an RE(∩) containing k ∩-operators. Then, there
exists an RE(&) s of size at most |r|2 such that for any w ∈ Σ∗, w ∈ L(r) iff
pumpk(w) ∈ L(s).

That is, the expression s constructed in this lemma may define additional strings,
but the set of valid pumped string it defines, corresponds exactly to L(r). Using
this lemma, we can now prove the following theorem.

Theorem 5. For any n ∈ N there exists an RE(&) r&
n of size O(n2) such that

any DFA accepting L(r&
n ) contains at least 22n

states.

5 Succinctness w.r.t. Regular Expressions

In this section, we study the translation of extended regular expressions to (stan-
dard) regular expressions. First, for the class RE(#) it has already been shown
by Kilpelainen and Tuhkanen [18] that this translation can be done in exponen-
tial time, and that an exponential size increase can not be avoided. Furthermore,
from Proposition 1 and the fact that any NFA with n states can be translated
into a regular expression in time 2O(n) [9] it immediately follows that:
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Proposition 4. Let r be a RE(&,∩,#). A regular expression s equivalent to r

can be constructed in time 22O(|r|)
.

Furthermore, from the results in [12] (see also Figure 1(b)) it follows that in a
translation from RE(∩) to standard regular expressions, a double exponential
size increase can not be avoided.

Hence, it only remains to show a double exponential lower bound on the
translation from RE(&) to standard regular expressions, which is exactly what
we will do in the rest of this section. Thereto, we proceed in several steps and
define several families of languages. First, we introduce the family of languages
(Kn)n∈N, on which all following languages will be based, and establish its star
height. The star height of languages will be our tool for proving lower bounds
on the size of regular expressions defining these languages. Then, we define the
family (Ln)n∈N which is a binary encoding of (Kn)n∈N and show that these
languages can be defined as the intersection of small regular expressions.

Finally, we define the family (Mn)n∈N which is obtained by simulating the
intersection of the previously obtained regular expressions by the interleaving of
related expressions, similar to the simulation of RE(∩) by RE(&) in Section 4.
Bringing everything together, this then leads to the desired result: a double
exponential lower bound on the translation of RE(&) to RE.

As an intermediate corollary of this proof, we also obtain a double exponential
lower bound on the translation of RE(∩) to RE, similar to a result in [12]. We
note, however, that the succinctness results for RE(&) can not be obtained by
using the results in [12], and that, hence, the different lemmas which prove the
succinctness of RE(∩) are necessary to obtain the subsequent results on RE(&).

5.1 Kn: The Basic Language

We first introduce the family (Kn)n∈N defined by Ehrenfeucht and Zeiger over
an alphabet whose size grows quadratically with the parameter n [8]:

Definition 1. Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n− 1}. Then, Kn contains
exactly all strings of the form a0,i1ai1,i2 · · ·aik,n−1 where k ∈ N ∪ {0}.

An alternative definition of Kn is through the minimal DFA accepting it. Thereto,
let AKn = (Q, q0, δ, F ) be defined as Q = {q0, . . . , qn−1}, F = {qn−1}, and for all
i, j ∈ [0, n − 1], (qi, ai,j , qj) ∈ δ. That is, AKn is the complete DFA on n states
where the transition from state i to j is labeled by ai,j .

We now determine the star height of Kn. This is done by observing that Kn is
bideterministic, such that, by Theorem 2(3), sh(Kn) = cr(AKn ), and subsequently
showing that cr(AKn ) = n.

Lemma 2. For any n ∈ N, sh(Kn) = n.

5.2 Ln: Succinctness of RE(∩)

In this section we want to construct a set of small regular expressions such that
any expression defining their intersection must be large (that is, of double expo-
nential size). Ideally, we would like to use the family of languages (Kn)n∈N for
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this as we have shown in the previous section that they have a large star height,
and thus by Theorem 1 can not be defined by small expressions. Unfortunately,
this is not possible as the alphabet of (Kn)n∈N grows quadratically with n.

Therefore, we will introduce in this section the family of languages (Ln)n∈N

which is a binary encoding of (Kn)n∈N over a fixed alphabet. Thereto, let n ∈ N
and recall that Kn is defined over the alphabet Σn = {ai,j | i, j ∈ [0, n − 1]}.
Now, for ai,j ∈ Σn, define the function ρn as

ρn(ai,j) = #enc(j)$enc(i)2enc(i + 1)2· · ·2enc(n− 1)2,

where enc(k), for k ∈ N, denotes the "log(n)#-bit marked number encoding k as
defined in the proof of Theorem 4. So, the encoding starts by the encoding of
the second index, followed by an ascending sequence of encodings of all numbers
from the first index to n − 1. We extend the definition of ρn to strings in the
usual way: ρn(a0,i1 · · · aik−1,n−1) = ρn(a0,i1) · · · ρn(aik,n−1).

We are now ready to define Ln.

Definition 2. Let Σ = {0, 1, 0̄, 1̄, $,#,2}. For n ∈ N, Ln = {ρn(w) | w ∈ Kn}.

For instance, for n = 3, a0,1a1,2 ∈ K3 and hence ρ3(a0,1a1,2)= #01̄$0̄0̄201̄21̄0̄2
#1̄0̄$01̄21̄0̄2 ∈ L3. We now show that this encoding does not affect the star
height. This is done by observing that, due to the specific encoding of Kn, Ln is
still bideterministic. Then, we obtain the star height of Ln by determining the
cycle rank of the minimal DFA accepting it.

Lemma 3. For any n ∈ N, sh(Ln) = n.

Further, it can be shown that Ln can be described as the intersection of a set of
small regular expressions.

Lemma 4. For every n ∈ N, there are regular expressions r1, . . . , rm, with m =
4n + 3, each of size O(n), such that

⋂
i≤m L(ri) = L2n .

Although it is not our main interest, we can now obtain the following by com-
bining Theorem 1, and Lemmas 3 and 4.

Corollary 1. For any n ∈ N, there exists an RE(∩) r of size O(n2) such that
any (standard) regular expression defining L(r) is of size at least 2

1
3 (2n−1) − 1.

5.3 Mn: Succinctness of RE(&)

In this section we will finally show that RE(&) are double exponentially more
succinct than standard regular expressions. We do this by simulating the in-
tersection of the regular expressions obtained in the previous section, by the
interleaving of related expressions, similar to the simulation of RE(∩) by RE(&)
in Section 4. This approach will partly yield the following family of languages.
For any n ∈ N, define

Mn = {pump4	log n
+3(w) | w ∈ Ln}

As Mn is very similar to Ln, we can easily extend the result on the star height
of Ln (Lemma 3) to Mn:
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Lemma 5. For any n ∈ N, sh(Mn) = n.

However, the language we will eventually define will not be exactly Mn. There-
fore, we need an additional lemma, for which we first introduce some notation.
For k ∈ N, and an alphabet Σ, we define Σ(k) to be the language defined by
the expression (

⋃
σ∈Σ σk)∗, i.e., all strings which consist of a sequence of blocks

of identical symbols of length k. Further, for a language L, define index(L) =
max {i | i ∈ N ∧ ∃w,w′ ∈ Σ∗, a ∈ Σ such that waiw′ ∈ L}. Notice that index(L)
can be infinite. However, we will only be interested in languages for which it is
finite, as in the following lemma.

Lemma 6. Let L be a regular language, and k ∈ N, such that index(L) ≤ k.
Then, sh(L) · |Σ| ≥ sh(L ∩Σ(k)).

This lemma is proved by combining Theorem 2(2) with an algorithm that trans-
forms any non-returning state-labeled NFA A, with index(L(A)) ≤ k, into an
NFA accepting L(A) ∩Σ(k), without increasing its cycle rank.

Now, we are finally ready to prove the desired theorem:

Theorem 6. For every n ∈ N, there are regular expressions s1, . . . , sm, with
m = 4n+3, each of size O(n), such that any regular expression defining L(s1)&
L(s2) & · · · & L(sm) is of size at least 2

1
24 (2n−8) − 1.

Proof. Let n ∈ N, and let r1, . . . , rm, with m = 4n+3, be the regular expressions
obtained in Lemma 4 such that

⋂
i≤m L(ri) = L2n .

Now, it is shown in [20], that given r1, . . . , rm, it is possible to construct
regular expressions s1, . . . , sm such that (1) for all i ∈ [1,m], |si| ≤ 2|ri|, and
if we define N2n = L(s1) & · · · & L(sm), then (2) index(N2n ) ≤ m, and (3) for
every w ∈ Σ∗, w ∈

⋂
i≤m L(ri) iff pumpm(w) ∈ N2n . Furthermore, it follows

immediately from the construction in [20] that any string in N2n ∩ Σ(m) is of
the form am

1 cmam
2 cm · · · am

l cm, i.e., pumpm(w) for some w ∈ Σ∗.
Since

⋂
i≤m L(ri) = L2n , and M2n = {pumpm(w) | w ∈ L2n}, it hence

follows that M2n = N2n ∩ Σ(m). As furthermore, by Lemma 5, sh(M2n) = 2n

and index(N2n) ≤ m, it follows from Lemma 6 that sh(N2n) ≥ sh(M2n )
|Σ| = 2n

8 .
So, N2n can be described by the interleaving of the expressions s1 to sm, each
of size O(n), but any regular expression defining N2n must, by Theorem 1, be
of size at least 2

1
24 (2n−8) − 1. This completes the proof. �

Corollary 2. For any n ∈ N, there exists an RE(&) rn of size O(n2) such that
any regular expression defining L(rn) must be of size at least 2

1
24 (2n−8) − 1.

This completes our paper. As a final remark, we note that all lower bounds
in this paper make use of a constant size alphabet and can furthermore easily
be extended to a 2-letter alphabet. For any language over an alphabet Σ =
{a1, . . . , ak}, we obtain a new language by replacing, for any i ∈ [1, k], every
symbol ai by bick−i+1. Obviously, the size of a regular expression for this new
language is at most k+ 1 times the size of the original expression, and the lower
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bounds on the number of states of DFAs trivially carry over. Furthermore, it is
shown in [22] that this transformation does not affect the star height, and hence
the lower bounds on the sizes of the regular expression also carry over.

Acknowledgement. I thank Frank Neven and the anonymous referees for help-
ful suggestions, and Hermann Gruber for informing me about their results on
the succinctness of the interleaving operator.
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Abstract. A one-dimensional cellular automaton is a dynamical system
which consisting in a juxtaposition of cells whose state changes over
discrete time according to that of their neighbors. One of its simplest
behaviors is nilpotency: all configurations of cells are mapped after a
finite time into a given “null” configuration. Our main result is that
nilpotency is equivalent to the condition that all configurations converge
towards the null configuration for the Cantor topology, or, equivalently,
that all cells of all configurations asymptotically reach a given state.

Keywords: cellular automata,nilpotency,dynamical systems, attractors.

1 Introduction

Discrete dynamical systems aim at representing evolutions of objects in astron-
omy, chemistry, cellular biology, zoology, computing networks. . . Evolutions of
these objects can often be described by iterations of a continuous function. The
sequence of values obtained is called orbit.

A long-standing issue in dynamical systems is the distinction between limit
behavior and finitely-reached behavior: in which case does convergence of orbits
imply reaching the limit in finite time? Of course, there are obvious examples in
which all orbits converge towards the same limit without ever reaching it, such
as the division by 2 on segment [0, 1].

Here, we limit our study to some particular systems: cellular automata (CA).
A CA consists in an infinite number of identical cells arranged on a regular
lattice. All cells evolve synchronously according to their own state and those of
their neighbors. It is thus a dynamical system on the set of configurations (which
map each cell of the lattice to some state).

Endowing the set of configurations with the product topology allows the fol-
lowing restatement of the above-mentioned issue: in which case can local behav-
ior (evolution of a particular cell) be uniformed into global behavior (evolution

� This work has been supported by the ANR Blanc “Projet Sycomore”.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 375–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of the whole configuration)? This question can also be seen as a comparison
between the limit set (configurations that can be reached arbitrarily late) and
the ultimate set (adjacent values of orbits).

In this article, we study in detail the nilpotency of CA, in which all configura-
tions eventually reach a given uniform configuration. Even though it represents
the simplest behavior a dynamical system can have, its relevance grew in the
CA field when Jarkko Kari made it the prototype of the undecidable problem
on dynamics of CA [1], which has been widely used in reductions since then.
This paper is dedicated to the equivalence between nilpotency and convergence
toward a given configuration, or nilpotency of the trace subshift, which is a
dynamical system linked to the CA, studied in [2,3], and which represents the
observation of the evolution of a cell by a fixed observer. In other words, in that
case, the local behavior can be uniformed.

The restriction to the case of CA with a spreading state is simpler and was
already useful in some reductions (see for instance [3]). Here, we extend the
result to all one-dimensional CA.

Section 2 is devoted to definitions and preliminary results. In Sect. 3, we recall
some results about the nilpotency, and prove that uniform configurations are
isolated in the limit set only if the CA is nilpotent. Sect. 4 is devoted to proving
our new characterization of nilpotency and Sect. 5 gives some new tracks of
generalization.

2 Preliminaries

Let N∗ = N \ {0}. For i, j ∈ N with i ≤ j, [i, j] (resp. ]i, j[) denotes the set of
integers between i and j inclusive (resp. exclusive). For any function F from AZ

into itself, Fn denotes the n-fold composition of F with itself.

Words. Let A be a finite alphabet with at least two letters. A word is a finite
sequence of letters w = w0 . . . w|w|−1 ∈ A∗, where |w| is the length of w. A factor
of a word w = w0 . . . w|w|−1 ∈ A∗ is a word w[i,j] = wi . . . wj , for 0 ≤ i ≤ j < |w|.

2.1 Dynamical Systems

A (discrete) dynamical system (DS for short) is a couple (X,F ), where X is
a compact metric space, and F is a continuous function. When no confusion
is possible (especially when X = AZ), X will be omitted. The orbit of initial
point x ∈ X is the sequence of points F j(x) when generation j ∈ N grows
(where F j denotes the j-fold composition of F with itself). We note OF (x) ={
F j(x)

∣
∣ j ∈ N

}
. We say that Y ⊂ X is F -stable and that (Y, F ) is a subsystem

of (X,F ) if F (Y ) ⊂ Y .
Asymptotic behavior of orbits is represented by two particular sets:

– the (Ω-) limit set of a DS (X,F ) is the set ΩF =
⋂

j∈N
F j(X) of all config-

urations that can appear arbitrarily late in orbits.
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– The ultimate set is the set ωF =
⋃

x∈X

⋂
J∈N

OF (F J (x)) of all adhering
values of orbits.

One can notice that both are F -stable sets, and that, by definition, ωF ⊂ ΩF ,
whereas the converse is generally false. Moreover, compactness implies the non-
emptiness of those two sets, and that the limit and ultimate sets of any DS F
are equal to those of any of its iterated F k for k ∈ N∗.

2.2 Space AZ

Let A be a finite alphabet. The set AZ (resp. AN) is the set of bi-infinite (resp.
infinite) sequences over alphabet A. An element x ∈ AZ is called configuration
(see Fig. 1a). A factor of x is a word x[i,j] = xi . . . xj , for i ≤ j. This notion of
factor can be extended to infinite intervals (such as ] − ∞, j] or [i,+∞[). The
notation x<i> stands for the central factor x[−i,i].

Topology. AZ is endowed with the product (or Cantor) topology, corresponding
to the distance

d :
AZ ×AZ → R+

(x, y) �→ 2−minxi 
=yi
|i| ,

which makes it compact, perfect, totally disconnected. A similar distance can be
defined on AN. An example of two configuration at distance 2−2 is depicted in
Fig. 1b.

(a) Configuration c ∈ AZ and c[−2,5] (b) Two configurations at distance 2−i

Fig. 1. Elements of AZ

Cylinders. For j, k ∈ N and a finite set W of words of length j, we note [W ]k
the set

{
x ∈ AZ

∣
∣ x[k,k+j[ ∈ W

}
. Such a set is called a cylinder. Cylinders form

a countable base of clopen sets.
We note [W ]k

C the complement of the cylinder [W ]k, [W ] the center cylinder
[W ] j

2!, if K ⊂ AN, [W ]kK =
{
x ∈ AZ

∣
∣ x[k,k+j[ ∈ W and x[k+j,∞[ ∈ K

}
, and,

if K ⊂ A−N, K[W ]k =
{
x ∈ AZ

∣
∣ x[k,k+j[ ∈ W and x]−∞,k[ ∈ K

}
. Similarly to

what is done for languages, we will assimilate a singleton with its unique element;
for instance, z[u]iz′ will denote the configuration x ∈ AZ such that x]−∞,i[ = z,
x[i,i+|u|[ = u and x]i+|u|,∞[ = z′. Finally, note that notations such as z[]z′ will
be used for the configuration x ∈ AZ such that x]−∞,0[ = z and x[0,∞[ = z′.

Finite configurations. If q ∈ A, then qω is the infinite word of AN consisting
in periodic repetitions of q, ωqω is the (spatially) periodic configuration of AZ

consisting in repetitions of q, ωqω is the q-uniform configuration, and any con-
figuration ωq[u]qω, where u ∈ A∗, is a q-finite configuration. A q-semi-finite
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configuration is a configuration x = ωqz for some z ∈ AN\{qω}. Note that the
set of q-finite configurations is dense, since any finite word u can be extended as
ωquqω ∈ [u].

2.3 Cellular Automata

A (one-dimensional two-sided) cellular automaton (CA for short) is a discrete
dynamical system consisting in cells distributed over the regular lattice Z. Each
cell i ∈ Z of the configuration x ∈ AZ has a state xi in the finite alphabet A. That
state evolves according to the state of their neighbors: F (x)i = f(x[i−r,i+r[)),
where f : A2r+1 → A is the local rule and r ∈ N the radius of the CA. By abuse
of notation, we assimilate the CA to its global function F : AZ → AZ, which is a
DS on the configurations space. Usually, an orbit is graphically represented by
a two-dimensional space-time diagram, such as in Figure 2.

Example 1. A simple example of CA is the min CA, defined on alphabet A =
{0, 1} by radius 1 and local rule

f :
A3 → A

(x−1, x0, x1) �→
∣
∣
∣
∣
1 if x−1 = x0 = x1 = 1
0 otherwise

.

The typical evolution makes all finite bunches of 1s disappear progressively; only
the infinite configuration ω1ω will not lose any 1 and nearly all configurations
tend towards ω0ω. The ultimate set is ωF = {ω0ω, ω1ω} and the limit set ΩF is
the set of configurations that do not contain patterns of the form 10k1 for any
k ∈ N∗.

Fig. 2. A space-time diagram of the min CA with highlighted r-blocking word

Quiescent states. A state 0 ∈ A is said to be quiescent for the CA F with local
rule f if f(0, . . . , 0) = 0. Equivalently, F (ω0ω) = ω0ω, which is called a quiescent
uniform configuration. For instance, both 0 and 1 are quiescent states for the
min CA.

We can see that the set of uniform configurations form a finite, hence ul-
timately periodic, subsystem of the cellular automaton; hence ∀a ∈ A, ∃j <
|A| , F |A|(ωaω) = F |A|−j−1(ωaω), which gives the following remark:

Remark 1. For any CA F , F j admits a quiescent state for some j ∈ [1, |A|].
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It can also easily be seen that the ultimate set of any CA contains all quiescent
configurations. Since ωF j = ωF , the previous remark gives, in particular, that
for any CA F , there is at list one uniform configuration in ωF (and therefore
ΩF ).

Blocking words. A word w ∈ A∗ is (i, k)-blocking (or simply k-blocking) for
CA F : AZ → AZ if ∀x, y ∈ [w]−i, ∀j ∈ N, F j(x)[0,k[ = F j(y)[0,k[. If r is
the radius of F , note that if a word w is (i, r)-blocking, and x ∈ [w]−i, then
for all configurations y ∈ AZ such that y[−i,∞[ = x[−i,∞[ (resp. y]−∞,|w|−i[ =
x]−∞,|w|−i[), and for all generation j ∈ N, we have F j(y)[0,∞[ = F j(x)[0,∞[

(resp. F j(y)]−∞,r[ = F j(x)]−∞,r[), i.e. information cannot pass through an r-
blocking word. For instance, in the min CA, the word 0 is (0, 1)-blocking, since
∀x ∈ [0], ∀j ∈ N, F j(x)0 = 0 (see Fig.2), hence space-time diagrams containing
one 0 can be separated into two independent evolutions.

2.4 Symbolic Dynamics

The shift map σ : AZ → AZ is a particular CA defined by σ(x)i = xi+1 for every
x ∈ AZ and i ∈ Z which shifts configurations to the left. Hedlund [4] has shown
that cellular automata are exactly the DS on AZ which commute with the shift.

This characterization leads us to study shift-invariant subsets of AZ, among
which, for instance, the image or limit sets of any CA. With the help of topology,
we shall give some useful properties on those sets.

Subshifts. The one-sided shift (or simply shift when no confusion is possible),
also noted σ by abuse of notation, is the self-map of AN such that σ(z)i = zi+1,
for every z ∈ AN and i ∈ N. A one-sided subshift Σ ⊂ AN is a σ-stable closed
set of infinite words. The following statements concern a two-sided version of
subshifts.

Proposition 1. The only closed shift-stable subset of AZ of nonempty interior
is AZ.

Proof. Let Σ be such a set. Having nonempty interior, it must contain some
cylinder [u]i with u ∈ A∗ and i ∈ Z. Being closed and shift-stable, it must also
contain

⋃
j≤i σ

j([u]i) = AZ. �

Corollary 1. If AZ =
⋃

j∈N
Σj where the Σj are closed and shift-stable, then

AZ is equal to some Σj0 .

Proof. AZ being complete, and of nonempty interior, the Baire Theorem states
for some j0 ∈ N, Σj0 has nonempty interior too. By Proposition 1, Σj0 = AZ.

�
2.5 Trace

Rather than observing the whole configuration, trace consists in observing a
specific portion of configuration during evolution of a cellular automaton. This
notion establishes a link between the theory of cellular automata and symbolic
dynamics.
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Definition 1 (Trace). Given a CA F , the trace of F with initial condition
x ∈ AZ is TF (x) = (F j(x)0)j∈N. In other words, it is the central column of the
space-time diagram of initial configuration x (see Figure 3). The trace subshift
of F is the image set τF = TF (AZ). Similarly, we define T k

F (x) = (F j(x)[0,k[)j∈N,
the sequence of the words at positions in [0, k[ in the space-time diagram of initial
configuration x, and τk

F = T k
F (AZ).

For instance, if A = {0, 1}, then the trace subshift is (0+1)ω for the shift, 0ω +1ω

for the identity and (0 + 1)0ω for the CA that maps every cell to 0 (see [2] for
more examples).

Note that TFF = σTF and, as TF is continuous, we say it is a factorization
between the CA and the subshift (τF , σ) which means that their two dynamics
are very closely related. For more about factorizations, see [5]. In the following,
τF and τk

F may stand for the dynamical systems (τF , σ) and (τk
F , σ).

Fig. 3. Trace seen on the space-time diagram

In this paper, we try to obtain links between the set of possible traces and
the global behavior of the cellular automaton. That is try to “globalize” a local
observation of the behavior.

3 Nilpotent Cellular Automata

In this section, we recall the definition and characterizations of cellular automata
nilpotency, and its known link with the limit set. We present a short proof empha-
sizing on the fact that a CA is nilpotent as soon as some uniform configuration
is isolated in its limit set.

Definition 2. A DS (X,F ) is weakly nilpotent if there is a particular “null”
configuration z ∈ X such that for every point x ∈ X, there is a generation J ∈ N
such that ∀j > J, F j(x) = z. The system is said nilpotent if the generation J
does not depend on the point, i.e. ∃J ∈ N, ∀x ∈ X, ∀j > J, F j(x) = z.

Let us now consider the specific case of cellular automata. If a CA F is weakly
nilpotent, then, from the definition, the null configuration must be F -invariant.
Moreover, for any z ∈ AZ, there is some j for which, on the one handF j(σ(z))=z,
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and on the other hand, F j(σ(z)) = σ(F j(z)) = σ(z). Hence z = σ(z) is a uniform
quiescent configuration, i.e. z = ω0ω for some quiescent state 0. One can also
make the following easy remarks:

Remark 2

– Suppose F is a CA and j ∈ N a generation such that for all configurations x ∈
AZ, F j(x)0 = 0. Then shift-invariance of AZ gives AZ =

⋂
k∈Z

σkF−j([0]),
and by commuting F and the shift, we obtain AZ = F−j(ω0ω). Hence F is
nilpotent.

– On the other hand, if F is not nilpotent, then F−j([0C ]) is a nonempty
open set; in particular, it contains some q-finite configurations, for any state
q ∈ A.

– Note that if F is a non-nilpotent CA, from Remark 1, there is some J ∈ N
such that some 0 ∈ A is quiescent for F J . We can see that the set of 0-finite
configurations is F J -stable. Hence, from the previous point, for all j ∈ N,
F j(AZ) contains some non-uniform 0-finite configuration z = ω0[u]0ω with
u ∈ A∗ and z0 �= 0.

Here is a precise characterization of the limit set of nilpotent CA.

Theorem 1 (Čulik, Pachl, Yu [6]). A CA whose limit set is a singleton is
nilpotent.

Proof. If F is a CA such that ΩF ∩[0C ] = ∅, the intersection
⋂

j∈N
(F j(AZ)∩[0C ])

of closed sets is empty. By compactness, F j(AZ)∩ [0C ] is empty for some j ∈ N.
F j(AZ) being a subshift, we conclude that F j(AZ)∩ (

⋃
i∈Z

[0C ]i) = F j(AZ)\ω0ω

is empty. �

With this characterization and the fact that ΩF = ΩF j , we have the following
corollary.

Corollary 2. A CA F is nilpotent if and only if so is some (so are all) of its
iterated CA Fn, for n ∈ N. �

The next allows to prove the well-known equivalence between nilpotency and
weak nilpotency.

Proposition 2. If for every configuration x ∈ AZ, there is a generation j ∈ N
and a cell i ∈ Z such that F j(x)[i,∞[ = 0ω (resp. F j(x)]−∞,i] = ω0), then F is
nilpotent.

Proof. Assume AZ =
⋃

j∈Ni∈Z
σi(F−j(ωA[0ω)) (the other case is symmetric).

From Corollary 1, AZ = σi(F−j(ωA[0ω)) for some generation j ∈ N and some
i ∈ Z. In particular, σi(AZ) = F−j([0]), and Remark 2 allows to conclude
the claim. �

Corollary 3. A weakly nilpotent CA is nilpotent. �
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There is indeed some “gap” between the possible evolutions of nilpotent and
non-nilpotent CA. This is also stressed by the following result on limit set: it is
sufficient that the it admits an isolated uniform configuration for the CA to be
nilpotent.

Proposition 3. If F is a non-nilpotent CA, then ΩF contains some semi-finite
configuration ω0[]z, for some 0 ∈ A and some z ∈ AN\{0ω}.

Proof. Let F be a non-nilpotent CA. Should we iterate it, we can suppose it has
a quiescent state 0 ∈ A, thanks to Remark 1 and Corollary 2. By Remark 2,
for every generation j ∈ N, F j(AZ) ∩ ω0[0C ] �= ∅, and compactness gives that
ΩF ∩ ω0[0C ] �= ∅. �

Theorem 2. The limit set of any non-nilpotent CA does not have any isolated
uniform configurations.

Proof. Let F a non-nilpotent CA, 0 ∈ A, k ∈ N and x ∈ ω0[] ∩ ΩF \{ω0ω} as
in Proposition 3. Then, for any k ∈ N, σ−k(x) is a configuration of ΩF distinct
from ω0ω, and which is in the cylinder [02k+1] around ω0ω. �

Remark that, on the contrary, ωF can have isolated uniform configurations
even in the non-nilpotent case. For instance, the ultimate set of the min CA
is {ω0ω, ω1ω}.

The previous result allows state that limit sets are either a singleton or infinite.

Corollary 4 (Čulik, Pachl, Yu [6]). The limit set of any non-nilpotent CA
is infinite. �

Note that the limit set can be numerable, as for the min CA, or innumerable, as
for the shift CA.

To sum up, the limit set of a CA has a very precise structure, and, as will
be seen more deeply in the following section, constraining a little can make it
collapse to a singleton, i.e. make the CA nilpotent.

4 Nilpotent Traces

We have seen in the previous section that there is a “gap” between nilpotent
and non-nilpotent CA in terms of the limit set. The aim of this section is to
prove that it is also the case for the ultimate set, or, equivalently, for the trace
subshift: a constraint such as the ultimate set being a singleton is restrictive
enough to imply nilpotency. We first give a directly proved characterization of
that notion for trace subshifts.

Remark 3. Similarly to the case of CA, we can notice that a subshift Σ ∈ AN

is weakly nilpotent if and only if there is some state 0 ∈ A such that for every
infinite word w ∈ Σ, there is some j ∈ N such that w[j,∞[ = 0ω.
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The previous remark will justify the concept of 0-nilpotency, where 0 is a
quiescent state. We also say that some configuration x is 0-mortal for the CA F
if there exists j ∈ N such that F j(x) = 0ω.

Proposition 4. Let F a CA. The following statements are equivalent:

1. τF is weakly 0-nilpotent.
2. τk

F is weakly 0k-nilpotent, for any integer k ∈ N∗.
3. For every configuration x ∈ AZ, Fn(x) tends, as n → ∞, to the same “null”

configuration ω0ω.
4. ωF = {ω0ω}. �

Let us prove now that, in the same way as weakly nilpotent CA are nilpotent,
weakly nilpotent traces are nilpotent, i.e. the corresponding CA is nilpotent (at
least in dimension 1).

The proof is organized the following way: we first prove that a CA with weakly
nilpotent trace has an r-blocking word, and then that there exists a bound
on the converging time for mortal finite configurations. At last, we exhibit a
contradiction with a non-nilpotency hypothesis.

Lemma 1. Let F a CA whose trace is weakly 0-nilpotent; then for every k ∈ N,
there is a generation J ∈ N such that for every configuration x ∈ AZ, ∃j ≤
J, F j(x) ∈ [0k].

Proof. Let F a CA such that τF is weakly nilpotent and k ∈ N. By Point 2 of
Proposition 4 and Remark 3, we have AZ =

⋃
j∈N

F−j([0k]). By compactness,
we can extract a finite covering AZ =

⋃
j≤J F−j([0k]) for some J ∈ N. �

Lemma 2. If F is a CA with a nilpotent trace, then it admits an r-blocking
word.

Proof. Let F such a CA. By Point 2 of Proposition 4, AZ =
⋃

J∈N

⋂
j>J F−j([0r])

has nonempty interior, for some 0 ∈ A; hence the Baire Theorem states that
there is some J ∈ N for which

⋂
j>J F−j([0r]) has nonempty interior; it contains

a cylinder [u]−i for some u ∈ A∗ and i ∈ N. We can assume without loss of
generality that i ≥ Jr and |u| ≥ (J + 1)r + i, which gives ∀x, y ∈ [u]−i, ∀j ≤
J, F j(x)[0,r[ = F j(y)[0,r[, and we already have by construction that ∀x, y ∈
[u]−i, ∀j > J, F j(x)[0,r[ = 0r = F j(y)[0,r[. Hence, u is an (i, r)-
blocking word. �

Lemma 3. Let F a CA whose trace is weakly 0-nilpotent; then there is a gen-
eration j for which any 0-finite 0-mortal configuration x satisfies F j(x) = ω0ω.

Proof. Consider F a CA such that τF is weakly nilpotent, and for all j ∈ N,
there is a finite mortal configuration y such that F j(y) �= ω0ω. Should it be
shifted, we can suppose F j(y)0 �= 0.

Claim. For every k ∈ N, there is a 0-finite 0-mortal configuration y ∈ [02k+1]
and a generation j ≥ k such that F j(y)0 �= 0.
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Proof. Let k ∈ N. From Lemma 1, ∃J ∈ N, ∀y ∈ AZ, ∃j ≤ J, F j(y) ∈ [02k+1]. By
hypothesis, there exists a finite mortal configuration x for which F J(x)0 �= 0.
Hence, ∃j ≤ J, F j(x) ∈ [02k+1]. Just take the configuration y = F j(x); we have
F J−j(y)0 = F J(x)0 �= 0. Of course, ∀j < k, F j(y)0 = 0. �

Claim. Let x a 0-finite 0-mortal configuration and k ∈ N. Then, there is a 0-finite
0-mortal configuration y ∈ [x<rk>] and

{
j ∈ N

∣
∣F j(y)0 �= 0

}
�
{
j ∈ N

∣
∣F j(x)0 �= 0

}
.

Proof. Let x a finite configuration and n ∈ N such that Fn(x) = ω0ω. Should
we take a larger k, we can assume that x ∈ ω0[A2r(k−2n)]0ω. In particular,
note that k ≥ 2n. By the previous claim, there exists a finite mortal con-
figuration x′ ∈ [02k+1] and a generation j ≥ k such that F j(x)0 �= 0. Let
y = x′]−∞,−rk[[x<rk>]x′]rk,∞[. We can easily see by induction on j ≤ n that
F j(y) ∈ F j(x′)]−∞,−r(k−2n+j)[[A2rjF j(x)<r(k−j)>A

2rj ]F j(x′)]r(k−2n+j),∞[. In
particular, on the one hand,

{
j ∈ N

∣
∣F j(y)0 �= 0

}
∩ [0, n]=

{
j ∈ N

∣
∣F j(x)0 �= 0

}
∩

[0, n]=
{
j ∈ N

∣
∣F j(x)0 �= 0

}
. On the other hand, since Fn(x)<r(k−n)> =02r(k−n) =

Fn(x′)<r(k−n)>, we get Fn(y) = Fn(x′). By construction, there is a generation
j ≥ k > n such that F j(y)0 = F j(x′)0 �= 0. To sum up,

{
j ∈ N

∣
∣F j(y)0 �= 0

}
�{

j ∈ N
∣
∣F j(x)0 �= 0

}
. �

We can now build by induction a sequence (yk)k∈N of finite mortal configu-
rations, with x0 = ω0ω, and such that for k ∈ N, xk+1 ∈ [xk

<r(k+1)>] and
{
j ∈ N

∣
∣F j(xk+1)0 �= 0

}
�

{
j ∈ N

∣
∣F j(xk)0 �= 0

}
. That Cauchy-Bolzano

sequence of finite mortal configurations tends to some configuration x ∈ AZ

such that
{
j ∈ N

∣
∣F j(x)0 �= 0

}
is infinite (by continuity of the trace), i.e. τF is

not nilpotent. �

Lemma 4. Let F a one-dimensional non-nilpotent CA admitting a weakly 0-
nilpotent trace and an r-blocking word. Then for every generation j ∈ N, there
exists some 0-finite 0-mortal configuration y such that F j(y) �= ω0ω.

Proof. Let F such a CA, u a (i, r)-blocking word and j ∈ N. By blockingness
and Point 2 of Proposition 4, there is a generation k ∈ N such that ∀n ≥ k, ∀z ∈
[u]−i, F

n(z) ∈ [0r]0. Should we take a strict superword for u, we can assume
|u| = 2i+ 1. Remark 2 states that there is some finite configuration x such that
F j+k(x)0 �= 0. Consider the configuration x′ = ω0[ux<r(j+k)>u]0ω, and the con-
figuration y = ω0[F k(x′)<r(j+k)+i>]0ω. By construction, F j(y)0 = F j+k(x)0 �=
0. By induction on the generation n ∈ N, Fn+k(x′) ∈ [0rA2r(j+k)+2i+10r], and
thus Fn(y) ∈ ω0[A2r(j+k)+2i+1]0ω. By hypothesis and Point 2 of Proposition 4,
there is some generation l ∈ N such that F l(y) ∈ [02r(j+k)+2i+1], which gives
F l(y) = ω0ω. �

Theorem 3. Any one-dimensional CA whose trace is weakly nilpotent is
nilpotent.
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Fig. 4. Construction of mortal finite configurations with arbitrary slow convergence

Proof. Suppose there is a non-nilpotent CA F such that τF is nilpotent. Then,
by Lemma 2, we know that there exists an r-blocking word. Lemmas 4 and 3
give a contradiction. �

Corollary 5. The subshift (ε + 0∗1)0ω is not the trace of any one-
dimensional CA. �

5 Conclusion

To sum up, for a one-dimensional CA F , the following statements are equivalent:

F is nilpotent ⇔ F is weakly nilpotent
⇔ τk

F is nilpotent ⇔ τk
F is weakly nilpotent

⇔ ΩF is finite ⇔ ΩF has some isolated uniform configuration
⇔ ΩF is a singleton ⇔ ωF is a singleton

We can remark that the nilpotency of a CA associated to a local rule does
not depend on the anchor. Hence, all characterizations work up to a shift of the
rule.

The main open question is of course the generalization of these result to CA
in upper dimensions (configurations in AZ

d

, d > 1). Juxtaposing blocking words
(Lemma 4) is the crucial part which is difficult to transpose in dimension 2.

Another one is whether it is sufficient to take as a hypothesis that all orbits
have ω0ω as an adhering value, instead of a limit - i.e. all space-time diagrams
walk through cylinders [0k] for any k ∈ N - to conclude the CA is nilpotent.

A natural question is whether the characterization of nilpotency in terms of
trace can be generalized, for instance to preperiodicity (i.e. ultimate periodicity),
in the same way as the finite-time characterization of nilpotency (Corollary 3;
see for instance [5]). This is untrue; some CA F may have all the infinite words
of its trace preperiodic (i.e. ∀z ∈ τF , ∃p, q ∈ N, σp+q(z) = σq(z)), but with an
unbounded preperiod, such as the min CA, whose trace subshift 1ω + 1∗0ω has
only preperiodic words, but with an arbitrarily high preperiod.

Note that our result can be seen as a constraint on the structure of limit
sets of non-nilpotent CA. In that idea, Proposition 3 allows to state that a CA
is nilpotent as soon as its limit set contains only periodic configurations. Note
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that this is untrue for ωF : for instance, the min CA has only spatially periodic
configurations in its ultimate set. We can also mention another misleadingly
simple issue, which concerns the presence of infinite configurations.

Conjecture 1. If F is a CA and 0 ∈ A such that ΩF contains only 0-finite
configurations, then F is 0-nilpotent.
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(2003)
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Abstract. We present a polynomial-time algorithm determining whether or not,
for a fixed k, a P5-free graph can be k-colored. If such a coloring exists, the
algorithm will produce one.
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1 Introduction

Graph coloring is among the most important and applicable graph problems. The
k-colorability problem is the question of whether or not the vertices of a graph can be
colored with one of k colors so that no two adjacent vertices are assigned the same color.
In general, the k-colorability problem is NP-complete [10]. Even for planar graphs
with no vertex degree exceeding 4, the problem is NP-complete [5]. However, for other
classes of graphs, like perfect graphs [8], the problem is polynomial-time solvable. For
the following special class of perfect graphs, there are efficient polynomial time algo-
rithms for finding optimal colorings: chordal graphs [6], weakly chordal graphs [9], and
comparability graphs [4]. For more information on perfect graphs, see [1], [3], and [7].

Another interesting class of graphs are those that are Pt-free, that is, graphs with no
chordless paths v1, v2, . . . , vt of length t−1 as induced subgraph for some fixed t. If t =
3 or t = 4, then there exists efficient algorithms to answer the k-colorability question
(see [3]). However, it is known that CHROMATIC NUMBER for P5-free graphs is
NP-complete [11]. Thus, it is of some interest to consider the problem of k-coloring
a Pt-free graph for some fixed k ≥ 3 and t ≥ 5. Taking this parameterization into
account, a snapshot of the known complexities for the k-colorability problem of Pt-
free graphs is given in Table 1. From this chart we can see that there is a polynomial
algorithm for the 3-colorability of P6-free graphs [13].

In this paper we focus on P5-free graphs. Notice that when k = 3, the colorability
question for P5-free graphs can be answered in polynomial time (see [14]). The authors
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Table 1. Known complexities for k-colorability of Pt-free graphs

k\t 3 4 5 6 7 8 . . . 12 . . .
3 O(m) O(m) O(nα) O(mnα) ? ? ? ? . . .
4 O(m) O(m) ?? ? ? ? ? NPc . . .
5 O(m) O(m) ?? ? ? NPc NPc NPc . . .
6 O(m) O(m) ?? ? ? NPc NPc NPc . . .
7 O(m) O(m) ?? ? ? NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of [12] proved that the 4-colorability of (P5, C5)-free graphs can be decided in polyno-
mial time. We obtain a theorem (Theorem 2) on the structure of P5-free graphs and use
it to design a polynomial-time algorithm that determines whether a P5-free graph can
be k-colored. If such a coloring exists, then the algorithm will yield a valid k-coloring.

The remainder of the paper is presented as follows. In Section 2 we present rele-
vant definitions, concepts, and notations. Then in Section 3, we present our recursive
polynomial-time algorithm that answers the k-colorability question for P5-free graphs.

2 Background and Definitions

In this section we provide the necessary background and definitions used in the rest of
the paper. For starters, we assume that G = (V,E) is a simple undirected graph where
|V | = n and |E| = m. If A is a subset of V , then we let G(A) denote the subgraph of
G induced by A.

Definition 1. A set of vertices A is said to dominate another set B, if every vertex in B
is adjacent to at least one vertex in A.

The following structural result about P5-free graphs is from Bacsó and Tuza [2]:

Theorem 1. Every connected P5-free graph has either a dominating clique or a domi-
nating P3.

Definition 2. Given a graph G, an integer k and for each vertex v, a list l(v) of k
colors, the k-list coloring problem asks whether or not there is a coloring of the vertices
of G such that each vertex receives a color from its list.

Definition 3. The restricted k-list coloring problem is the k-list coloring problem in
which the lists l(v) of colors are subsets of {1, 2, . . . , k}.

Our general approach is to take an instance of a specific coloring problem Φ for a given
graph and replace it with a polynomial number of instances φ1, φ2, φ3, . . . such that the
answer to Φ is “yes” if and only if there is some instance φk that also answers “yes”.

For example, consider a graph with a dominating vertex u where each vertex has
color list {1, 2, 3, 4, 5}. This listing corresponds to our initial instance Φ. Now, by con-
sidering different ways to color u, the following set of four instances will be equivalent
to Φ:
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φ1: l(u) = {1} and the remaining vertices have color lists {2, 3, 4, 5},
φ2: l(u) = {2} and the remaining vertices have color lists {1, 3, 4, 5},
φ3: l(u) = {3} and the remaining vertices have color lists {1, 2, 4, 5},
φ4: l(u) = {4, 5} and the remaining vertices have color lists {1, 2, 3, 4, 5}.

In general, if we recursively apply such an approach we would end up with an expo-
nential number of equivalent coloring instances to Φ.

3 The Algorithm

LetG be a connectedP5-free graph. This section describes a polynomial time algorithm
that decides whether or not G is k-colorable. The algorithm is outlined in 3 steps. Step
2 requires some extra structural analysis and is presented in more detail in the following
subsection.

S134

S14

S124

S24

S4

S34

S234

2 3

1

Fig. 1. The fixed sets in a P5-free graph with a dominating K3 where k = 4

1. Identify and color a maximal dominating clique or a P3 if no such clique exists
(Theorem 1). This partitions the vertices into fixed sets indexed by available col-
ors. For example, if a P5-free graph has a dominating K3 (and no dominating
K4) colored with {1, 2, 3} and k = 4, then the fixed sets would be given by:
S124, S134, S234, S14, S24, S34. For an illustration, see Figure 1. Note that all the
vertices in S124 are adjacent to the vertex colored 3 and thus have color lists
{1, 2, 4}. This gives rise to our original restricted list-coloring instanceΦ. Although
the illustration in Figure 1 does not show it, it is possible for there to be edges be-
tween any two fixed sets.
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2. Two vertices are dependent if there is an edge between them and the intersection
of their color lists is non-empty. In this step, we remove all dependencies between
each pair of fixed sets. This process, detailed in the following subsection, will create
a polynomial number of coloring instances {φ1, φ2, φ3, . . .} equivalent to Φ.

3. For each instance φi from Step 2 the dependencies between each pair of fixed sets
has been removed which means that the vertices within each fixed set can be colored
independently. Thus, for each instance φi we recursively see if each fixed set can
be colored with the corresponding restricted color lists (the base case is when the
color lists are a single color). If one such instance provides a valid k-coloring then
return the coloring. Otherwise, the graph is not k-colorable.

As mentioned, the difficult part is reducing the dependencies between each pair of fixed
sets (Step 2).

3.1 Removing the Dependencies between Two Fixed Sets

Let Slist denote a fixed set of vertices with color list given by list. We partition each
such fixed set into dynamic sets that each represent a unique subset of the colors in list.
For example:S123 = P123∪P12∪P13∪P23∪P1∪P2∪P3. Initially, S123 = P123 and the
remaining sets in the partition are empty. However, as we start removing dependencies,
these sets will dynamically change. For example, if a vertex u is initially in P123 and
one of its neighbors gets colored 2, then u will be removed from P123 and added to P13.

Recall that our goal is to remove the dependencies between two fixed sets Sp and Sq .
To do this, we remove the dependencies between each pair (P,Q) where P is a dynamic
subset of Sp and Q is a dynamic subset of Sq. Let col(P ) and col(Q) denote the color
lists for the vertices in P andQ respectively. By visiting these pairs in order from largest
to smallest with respect to |col(P )| and then |col(Q)|, we ensure that we only need to
consider each pair once. Applying this approach, the crux of the reduction process is
to remove the dependencies between a pair (P,Q) by creating at most a polynomial
number of equivalent colorings.

Now, observe that there exists a vertex v from the dominating set found in Step 1 of
the algorithm that dominates every vertex in one set, but is not adjacent to any vertex
in the other. This is because P and Q are subsets of different fixed sets. WLOG assume
that v dominates Q.

Theorem 2. Let H be a P5-free graph partitioned into three sets P , Q and {v} where
v is adjacent to every vertex in Q but not adjacent to any vertex in P . If we let Q′ denote
all components of H(Q) that are adjacent to some vertex in P then one of the following
must hold.

1. There exists exactly one special component C in G(P ) that contains two vertices a
and b such that a is adjacent to some component Y1 ∈ G(Q) but not adjacent to
another component Y2 ∈ G(Q) while b is adjacent to Y2 but not Y1.

2. There is a vertex x ∈ P that dominates every component in Q′, except at most one
(call it T ).

PROOF: Suppose that there are two unique componentsX1, X2 ∈ G(P ) with a, b ∈ X1

and c, d ∈ X2 and components Y1 �= Y2 and Y3 �= Y4 from G(Q) such that:
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– a is adjacent to Y1 but not adjacent to Y2,
– b is adjacent to Y2 but not adjacent to Y1,
– c is adjacent to Y3 but not adjacent to Y4,
– d is adjacent to Y4 but not adjacent to Y3.

Let y1 (respectively, y2, y3, y4) be a vertex in Y1 (respectively, Y2, Y3, Y4) that is adja-
cent to a (respectively, b, c, d) and not b (respectively, a, d, c). Since H is P5-free, there
must be edges (a, b) and (c, d), otherwise a, y1, v, y2, b or c, y3, v, y4, d would be P5s.
An illustration of these vertices and components is given in Figure 2.

Y4

Y3

Y2

Y1

QP

y
1

y
2

y
4

y
3

v

a

c

d

b

Fig. 2. Illustration for proof of Theorem 2

Suppose Y2 = Y3. Then b is not adjacent to y3, for otherwise there exists a P5

induced by vertices a, b, y3, c, d. Now, there exists a P5 y1, a, b, y2, y3 (if y2 is adjacent
to y3) or a P5 a, b, y2, v, y3 (if y2 is not adjacent to y3). Thus, Y2 and Y3 must be unique
components. Similarly, we have Y2 �= Y4. Now since b, y2, v, y3, c cannot be a P5,
either b is adjacent to y3 or c must be adjacent to y2. WLOG, suppose the latter. Now
a, b, y2, v, y4 implies that either a or b is adjacent to y4. If y4 is adjacent to b but not a,
then a, b, y4, d, c would be a P5 which implies that a must be adjacent to y4 anyway.
Thus, we end up with a P5 a, y4, v, y2, c which is a contradiction to the graph being
P5-free. Thus there must be at most one special component C.

Now suppose that there is no special component C. Let Q′ denote all components
in Q that are adjacent to some vertex in P . Let x be a vertex in P that is adjacent to
the largest number of components in Q′. Suppose that x is not adjacent to a component
T of Q′ . Thus there is some other vertex x′ ∈ P adjacent to T . The maximality of x
implies there is a component S of Q such that x is adjacent to S but x′ is not. If x is
not adjacent to x′, then there is a P5 with x, s, v, r, x′ with some vertices s ∈ S, r ∈ T .
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Thus x and x′ belongs to a special component C of P - a contradiction. Thus, x must
be adjacent to all components of Q′.

If there are two components A,B of Q′ that are not dominated by x, then there are
adjacent vertices a, b ∈ A, adjacent vertices c, d ∈ B such that x is adjacent to a, c but
not to b, d; but now the five vertices b, a, x, c, d form a P5. �

Given a list-coloring instance φ of a P5-free graph, we will at some points need
to reduce the color lists for a given connected component C. This can be done by
considering all possible ways to color C’s dominating clique or P3 (Theorem 1). Since
there are a constant number of vertices in such a dominating set, we obtain a constant
number of new instances that together are equivalent to φ. For future reference, we call
this function that returns this set of equivalent instances ReduceComponent(C, φ). If
C is empty, the function simply returns φ.

Procedure RemoveDependencies(P ′, Q, ϕ)

if no dependencies between P ′ and Q
then output ϕ
else find x, T from Theorem 2

for each c ∈ col(P ) ∩ col(Q) do
output ReduceComponent(T , ϕ with x colored c)

RemoveDependencies(P ′−{x}, Q, ϕ with l(x) = col(P )−col(Q))

Fig. 3. Algorithm to remove dependencies between two dynamic sets P ′ and Q (with no special
component C) by creating an equivalent set of coloring instances with the dependences removed

Using this procedure along with Theorem 2, we can remove the dependencies be-
tween two dynamic sets P and Q for a given list-coloring instance φ. First, we find the
special component C if it exists, and set C = ∅ otherwise. Then we call ReduceCom-
ponent(C, φ) which will effectively remove all vertices in C from P as their color
lists change. Then, for each resulting coloring instance ϕ we remove the remaining
dependencies between P ′ = P−C and Q by applying procedure RemoveDepencen-
cies(P ′, Q, ϕ) shown in Figure 3. In this procedure we find a vertex x and component
T from Theorem 2, since we know that the special component C has already been
handled. If T does not exist, then we set T = ∅. Now by considering each color in
col(P ′) ∩ col(Q) along with the list col(P ′)−col(Q) we can create a set of equivalent
instances to ϕ (as described in Section 2). If we modify ϕ by assigning x a color from
col(P ′) ∩ col(Q), then all vertices in Q adjacent to x will have their color list reduced
by the color of x. Thus, only the vertices in T may still have dependencies with the
original set P - but these dependencies can be removed by a single call to Reduce-
Component. In the single remaining instance where we modify ϕ by assigning x the
color list col(P )−col(Q), we simply repeat this process (at most |P | times) by setting
P ′ = P ′−{x} until there are no remaining dependencies between P and Q. Thus, each
iteration of RemoveDependencies produces a constant number of instances with no
dependencies between P and Q and one instance in which the size of P ′ is reduced by
at least one.

The output of this step is O(n) list-coloring instances (that are obtained in polyno-
mial time), with no dependencies between P and Q, that together are equivalent to the
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original instance φ. Since there are a constant number of pairs of dynamic sets for each
pair of fixed sets, and since there are a constant number of pairs of fixed sets, this proves
the following theorem:

Theorem 3. Determining whether or not a P5-free graph can be colored with k-colors
can be decided in polynomial time.

4 Summary

In this paper, we obtain a theorem (Theorem 2) on the structure of P5-free graphs and
use it to design a polynomial-time algorithm that determines whether a P5-free graph
can be k-colored. The algorithm recursively uses list coloring techniques and thus its
complexity is high even though it is polynomial, as is the case with all list coloring
algorithms. In a related paper (in preparation), we will give a slightly faster algorithm
also based on list coloring techniques, however this algorithm provides less insight
into the structure of P5-free graphs. It would be of interest to find a polynomial-time
algorithm to k-color a P5-free graph without using list coloring techniques.

Continuing with this vein of research, the following open problems are perhaps the
next interesting avenues for future research:

– Does there exist a polynomial time algorithm to determine whether or not a P7-free
graph can 3-colored?

– Does there exist a polynomial time algorithm to determine whether or not a P6-free
graph can 4-colored?

– Is the problem of k-coloring a P7-free graph NP-complete for any k ≥ 3?

Two other related open problems are to determine the complexities of the MAXIMUM

INDEPENDENT SET and MINIMUM INDEPENDENT DOMINATING SET problems on P5-
free graphs.
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liskiewi@tcs.uni-luebeck.de

Abstract. Image matching is an important problem in image processing
and arises in such diverse fields as video compression, optical character
recognition, medical imaging, watermarking etc. Given two images, im-
age matching determines a transformation that changes the first image
such that it most closely resembles the second. Common approaches re-
quire either exponential time, or find only an approximate solution, even
when only rotations and scalings are allowed. This paper provides the
first general polynomial time algorithm to find the exact solution to the
image matching problem under projective, affine or linear transforma-
tions. Subsequently, nontrivial lower bounds on the number of different
transformed images are given which roughly induce the complexity of
image matching under the three classes of transformations.

1 Introduction

Image matching research is strongly motivated by various practical applications.
In computer vision, e.g., image matching searches digital camera images for dis-
torted versions of objects with known shape, like latin letters [15] or human
silhouettes [21]. In mpeg video compression image matching can be used to re-
duce redundancy by computing the similarity between successive video frames
(see e.g. [22] and the references therein). One challenge in medical imaging is to
match images of one object taken in different times, from different perspectives
or using different medical image devices (see e.g. [5,19]). Finally, image matching
can be applied to digital watermarking robust against some geometrical distor-
tions, like e.g. the print-and-scan-process [6,23].

Informally, matching two given digital images A and B is the optimization
problem of computing an admissible distortion f which changes A closest to B.
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For admissibility we require f to be contained in a given set F of injective func-
tions f : �2 → �

2 that we call transformations. The Image Matching Prob-

lem (IMP, for short) is intractable for elastic transformations [16] and remains
hard for other, more complex transformation classes. On the other hand research
in combinatorial pattern matching has succeeded in showing the tractability of
the problem under very small subsets of elastic transformations like rotation
and scaling (see e.g. [3,4]). However, there has been very little progress in under-
standing the discrete algorithmic aspects of image matching for the numerous
interesting classes of transformations between the both extreme cases.

Let, as usually, f(A) denote the image which results from transforming an
image A according to f . We denote by D(A,F) the set of images f(A) for all f
in F . In this paper we present a new discretization technique to reduce certain
uncountable sets of transformations F to finite subsets {f1, f2, . . . , ft} such that
the union ∪t

i=1{fi(A)} coincides with D(A,F). Thus, we provide a finite (and
comparatively small) subset of F sufficient to generate all images that can be
obtained by transforming A according to F . Consequently, the transformation of
A which is closest to B can be found in f1(A) to ft(A). We apply our discretiza-
tion approach to projective transformations Fp, affine transformations Fa, and
linear transformations Fl. Through the rest of the paper we will use the place-
holder % to indicate that any symbol p, a or l is allowed instead of repeatedly
enumerating the three cases.

Using the discretization approach we show first non-trivial lower and upper
polynomial bounds on the cardinalities of transformations {f1, f2, . . . , ft} needed
and sufficient to generate the complete sets D(A,F�). Moreover, we provide a
general polynomial time image matching algorithm for the classes Fp, Fa and
Fl and thus, narrow the gap between known tractable and intractable cases.

Through the rest of this section we give a short overview on previous work
and an informal discussion of our results and techniques.

Previous Work. Image matching has been studied both experimentally and
theoretically by using different approaches ranging from techniques based on con-
tinuous analysis to discrete methods. For an overview we refer to [6,5,15,19,18,2]
and the references therein.

The most common approach in continuous analysis is to look at the images A
and B in an analogue way and interpret them as mappings over the real plane
�

2. Then the function Δ(f,A,B) =
∫

x,y∈� |A(f(x, y)) − B(x, y)| dx dy gives
for any transformation f the difference between the f -transformed version of A
and image B. The image match is found by minimizing Δ over the (typically
uncountable) set of transformations. Such approaches are mostly considered in
medical imaging (see e.g. [20]). The disadvantage is the high complexity to find
the global optimum due to the continuous nature of the considered objects.

The feature based matching approach is another technique to solve IMP (see
e.g. [1,17]). In this setting, one extracts salient features like points, lines, regions,
etc. from images A and B and subsequently, one tries to transform the geomet-
rical objects from A closest to the ones from B. This approach relies heavily on
the quality of feature extraction and feature matching, two highly non-trivial
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tasks even for simple points (for this well studied case, called optimized point
matching or geometric point set matching, see [14] for a survey). Moreover, due
to the underlying continuous problem setting, known algorithms using this ap-
proach give again only approximate solutions. Remarkably, to reduce the trouble
with continuous object spaces Hagedoorn [11] introduced a similar discretization
method, like proposed in this paper for IMP. Still, his approach does not provide
efficient algorithms even for very small subclasses of affine transformations.

Using purely discrete approaches the matchings between images are mostly
required to be exact and globally optimal. In fact, the few known exact polyno-
mial time matching algorithms were developed in combinatorial pattern match-
ing (CPM, for short) [18,9,10,2,4,3]. The problem statement of CPM and IMP
are such similar that most techniques can be easily transferred in both directions.
Thus, CPM research provides efficient algorithms for image matching under ro-
tations Fr or scalings Fs. After a series of improving results, the best known
algorithm for image matching on rotations is derived from a result of Amir et al.
[4] and can solve IMP in time O(n4), for images of size n × n. The best algo-
rithm for image matching with scaling can immediately be derived from a result
of Amir and Chencinski [3] running in time O(n3). However, the combination
of both algorithms does not solve the image matching on Fsr, the set of trans-
formations combining rotation and scaling. In this setting the discrete nature of
digital images makes their transformations neither commutative nor transitive.
Recently, we have presented the first efficient CPM algorithm for Fsr which al-
lows to solve the image matching under Fsr in O(n6) time [13]. On the other
hand no efficient image matching algorithms are known for more general classes
of transformations. Their complexity limitations are well understood for elastic
transformations, where Keysers and Unger [16] have shown NP-hardness results.
A systematic study of the inherent complexity of IMP for functions inside elastic
transformations was launched in [12].

Our Contributions. In this paper we present a new technique to select finite
subsets {f1, f2, . . . , ft} of F� which completely render the sets D(A,F�) of all
images gained by transforming A with transformations in F�. Due to our dis-
cretization method only a polynomial sized subset of uncountable F� is sufficient
to compute all images in D(A,F�). Enumerating them solves the IMP under F�

in polynomial time with respect to the image size for any % ∈ {p, a, l}.
In our setting, each transformation f in F� can be represented by an ap-

propriate point p in a parameter space �d. Thus, considering an image A one
can imagine a natural correspondence between the point p and the image f(A)
obtained from transforming A according to f . The proposed discretization es-
sentially arises from an appropriate partition of the parameter space into a finite
number of convex subspaces ϕ1, ϕ2 . . . , ϕt. The crucial property of the partition
is that for any subspace ϕi all points of ϕi correspond to the same transformed
image. Hence, if two transformations f and f ′ are represented by points p and
p′ that belong to the same subspace ϕi then the transformations are not distin-
guished by the images f(A) and f ′(A) (meaning f(A) = f ′(A)).
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The partition of the parameter space is determined by a hyperplane arrange-
ment of a specific set H of hyperplanes. Thus, we get that the corresponding
subspaces ϕ1, ϕ2 . . . , ϕt are exactly the faces of a hyperplane arrangement. To
enumerate the set of transformations {f1, f2, . . . , ft} we traverse the faces ϕi

choosing for each one a point pi ∈ ϕi that determines a transformation fi. Due
to the equivalence between all points in ϕi we get that, whatever selection strat-
egy is used, fi is a correct representative for all images f(A) with f described by
a point p ∈ ϕi. However, in our setting transformations are injective. To choose
a point pi inside the face ϕi which really represents an (injective) transformation
in F� emerges to a technical difficulty. Additionally, the point should be encoded
by rational numbers of length O(log n).

To argue the polynomial running time of our proposed matching method we
need to estimate for any F� the number of transformations in {f1, f2, . . . , ft}.
The geometrical properties of hyperplane arrangements allows us to obtain upper
and lower bounds on the cardinalities of these sets which in turn indicate upper
and lower worst case bounds on |D(A,F�)|. In fact, we get that |D(A,Fp)| is
bounded from above by O(n24) and from below by Ω(n12). Analogously, we
can show bounds O(n18) and Ω(n12) for |D(A,Fa)| and O(n12) and Ω(n10) for
|D(A,Fl)|. Our results incorporate into a general polynomial time algorithm for
image matching under F� which enumerates the set {f1, f2, . . . , ft} by traversing
the faces of the hyperplane arrangement. Computing the similarities between B
and succeeding fi(A) we finally test all images in D(A,F�) against B. To improve
efficiency, we traverse the faces in an order implied by their geometrical incidence.
This effects in minimal updates between successively tested images. In turn the
worst-case running time of the presented algorithm for the Image Matching

Problem under F� meets the announced upper bounds on the cardinalities of
D(A,F�). Moreover the algorithm needs only integer arithmetic which avoids
technical problems due to the use of floating point arithmetic.

2 Preliminaries

In this paper a digital image A is a two dimensional array of pixels, i.e, of unit
squares covering a certain area of the real plane �2. The pixels are indexed over
the set N = {(i, j) | i, j ∈ � with −n ≤ i, j ≤ n} and we assume that the pixel
with index (i, j) ∈ N has its geometric center point at coordinates (i, j). We
call n the size and N the support of the image A. Each pixel (i, j) has a color
A〈i, j〉 from a finite set Σ = {0, 1, . . . , σ} of colors. For the sake of simplicity we
let A〈i, j〉 = 0 if (i, j) �∈ N . For two images A and B of the same support the
distortion Δ(A,B) between A and B is measured by

∑
δ(A〈i, j〉, B〈i, j〉) where

δ(a, b) is a function charging mismatches, for example, δ(a, b) = |a− b|.
Throughout this paper transformations are injective functions f : �2 → �

2.
Applying a transformation f : �2 → �

2 to an image A we get the image f(A)
which has the same support as A. Define for g = f−1 the mapping γg : N → �

2

which determines for any pixel (i, j) in f(A) the corresponding pixel (i′, j′) in
A. We let γg(i, j) = [g(i, j)], where [(x, y)] := ([x], [y]) denotes rounding all
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Fig. 1. The image A is distorted by a continuous transformation f : �2 → �
2. However

image f(A) can represent transformed color values only at integer coordinates. Thus,
the mapping γ determines by nearest neighbor interpolation the discrete version of f .

components of a vector (x, y) ∈ �2. Then the color value of pixel (i, j) in f(A)
is defined as the color value of the pixel (i′, j′) = γg(i, j) in A. Hence, we choose
the pixel which geometrically contains the point f−1(i, j) in its square area. For
an example see Fig. 1.

For given image A and a prescribed F we define the set of transformed images
D(A,F) = {f(A) | f ∈ F}. Then we call the following optimization problem the
Image Matching Problem for F :

Problem: For a given reference image A and a distorted image B, both of the same
size n, find in the search space D(A,F) an image A′ minimizing the distortion
Δ(A′, B) and return f ∈ F with f(A) = A′.

For the analysis of complexity aspects we will apply the unit cost model for
arithmetic operations. Therefore, we assume that mathematical basic operations
can be done in constant time disregarding the length of input numbers.

In this paper we are interested in Fp the set of projective transformations. Any
transformation f in Fp can be uniquely described by f(x, y) = (a

c ,
b
c )T where

(
a
b
c

)
=
( p1 p2 p3

p4 p5 p6
p7 p8 1

)
·
( x

y
1

)
(1)

for some p1, . . . , p8 ∈ �. For the set Fp all transformations can be characterized
by the parameters p1 to p8. Hence, each such transformation f can be charac-
terized by a vector (p1, . . . , p8)T in �8. However, there are some points in �8

which belong to non-injective transformations.
In addition to Fp we will also regard its subsets of affine transformations

Fa and linear transformations Fl. The transformations in Fa are exactly the
projective transformations with p7 = p8 = 0 and in turn Fl is the subset of Fa

containing transformations with p3 = p6 = 0. Due to this restrictions every affine
transformation can be characterized by a point in �6 and every linear transfor-
mation by a point in �4. According to our definition all considered classes of
transformations are closed under inversion, i.e., for all % ∈ {p, a, l} it is true, if
f ∈ F� then f−1 ∈ F�.

For our approach being connected to combinatorial geometry we need some
further definitions: We denote by H a set of linear equations h of the form
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h : c1p1 + . . . + c8p8 = c9. Let p = (p1, . . . , p8) ∈ �8. Then we define for each
h ∈ H the value h(p) = c1p1 + . . . + c8p8 − c9. Each equation h describes a
hyperplane � = {p | h(p) = 0} in �8. Notice the difference: h is a mathematical
expression whereas � is a subspace of �8. Denote by H the set of all hyperplanes
defined by the equations in H . Now define for all h ∈ H the following additional
subspaces of �8:

�+ = {p | h(p) > 0}, and �− = {p | h(p) < 0}.

For a finite set of equations H = {h1, . . . , ht} consider the following partition of
�

8 into subspaces:

A(H) =

{

ϕ ⊆ �8 | ϕ =
t⋂

w=1

�sw
w for some s1, . . . , st ∈ {+,−, 0}

}

,

where �w is the line corresponding to hw and �0w denotes just �w. In literature
the set A(H) is called the hyperplane arrangement given by the hyperplanes H.
See [7] for detailed information on hyperplane arrangements.

We call the elements of A(H) faces. We say that a face ϕ is a d-face if its
dimension is d for d ∈ {0, . . . , 8}. In particular, a 0-face is a point, a 1-face is a
line, half-line or line segment, a 2-face is a convex region on a plane, etc. A face
ϕ′ is a subface of another face ϕ if the dimension of ϕ′ is one less than of ϕ and
ϕ′ is contained in the boundary of ϕ. We also say that ϕ and ϕ′ are incident and
that ϕ is a superface of ϕ′.

The incidence graph I(H) of A(H) contains a node v(ϕ) for each face ϕ and
v(ϕ) and v(ϕ′) are connected by an edge if the faces ϕ and ϕ′ are incident. The
incidence graph is described in detail in [8] (see also [7]).

3 Structural Properties of the Search Spaces

In this section we first present the structure of the sets D(A,Fp), D(A,Fa) and
D(A,Fl). Afterwards we will show how to estimate the worst case number of
images in the sets. For the three cases of % ∈ {l, a, p} we define the following
sets H�,n of equations

∀(i, j) ∈ N and ∀k ∈ {−n, . . . , n + 1}:

Xijk : ip1 + jp2 + p3 + (0.5i− ik)p7 + (0.5j − jk)p8 + (0.5 − k) = 0 ∈ Hp,n

Yijk : ip4 + jp5 + p6 + (0.5i− ik)p7 + (0.5j − jk)p8 + (0.5 − k) = 0 ∈ Hp,n

Xijk : ip1 + jp2 + p3 + 0.5 − k = 0 ∈ Ha,n

Yijk : ip4 + jp5 + p6 + 0.5 − k = 0 ∈ Ha,n

Xijk : ip1 + jp2 + 0.5 − k = 0 ∈ Hl,n if (i, j) �= (0, 0)
Yijk : ip4 + jp5 + 0.5 − k = 0 ∈ Hl,n if (i, j) �= (0, 0)

Each of these equations h ∈ H�,n describes a hyperplane � which partitions the
parameter space into three parts �+, � and �−. Then any point p representing a
transformation g is in exactly one of the three subspaces for all equations in H�,n.
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The specific location of p within the subspaces determines how A is transformed
to f(A) by f = g−1. Particularly, for Fl and Fa the following holds:

Lemma 1. Let % ∈ {l, a}. Assume f ∈ F�, g = f−1, and p is the point repre-
senting g. Then for all (i, j) ∈ N and k ∈ {−n, . . . , n+ 1}, for any hyperplane �
described by Xijk ∈ H�,n, and for the coordinates (i′, j′) in A which correspond
to (i, j) in f(A), i.e. (i′, j′) = γg(i, j), it is true that i′ < k if p ∈ �− and i′ ≥ k
if p ∈ �+∪�. Analogously, for any hyperplane � described by Yijk ∈ H�,n, it holds
that j′ < k if p ∈ �− and j′ ≥ k if p ∈ �+ ∪ �.

In case of projective transformations a more involved relationship is true:

Lemma 2. Assume g = f−1 for f ∈ Fp and let p be the point representing g.
Furthermore let (i, j) ∈ N and k1, k2 ∈ {−n, . . . , n + 1} such that k1 < k2 and
denote by �1 and �2 the hyperplanes described by Hp,n-equations Xijk1 and Xijk2 ,
respectively. Consider γg(i, j) = (i′, j′). Then k1 ≤ i′ < k2 iff p ∈ (�1 ∪ �+1 ) ∩ �−2
or p ∈ (�−1 ∪ �1) ∩ �+2 .

Analogously, if we consider Yijk1 and Yijk2 in Hp,n to describe the hyperplanes
�1 and �2, then k1 ≤ j′ < k2 iff p ∈ ((�+1 ∪ �1) ∩ �−2 ) ∪ ((�−1 ∪ �1) ∩ �+2 ).

With the help of the equations H�,n and by the use of the above lemmas we are
now ready to provide for all % ∈ {l, a, p} the relation between the set D(A,F�)
and the set A(H�,n) of faces.

Theorem 1. For all % ∈ {l, a, p} and all digital images A of size n there exist
surjective mappings Γ�,n : A(H�,n) → D(A,F�).

By the theorem it suffices to estimate the number of faces in A(H�,n) to get a
bound on the cardinality of D(A,F�). Due to the surjective mapping Γ�,n we know
that D(A,F�) cannot contain a larger number of images than the number of faces
in A(H�,n). Furthermore, the surjective mappings Γ�,n enable a simple method to
enumerate the images in D(A,F�). One simply has to construct A(H�,n), traverse
its elements ϕ in an appropriate way and each time compute Γ�,n(ϕ) to obtain
another transformed image of D(A,F�). Since Γ�,n is not bijective it may happen
for certain images A that D(A,F�) is smaller than A(H�,n). However, it is hard to
identify such images and thus, our algorithm will search the whole set A(H�,n). An
important task is to determine tight lower and upper bounds on the cardinalities
|A(H�,n)| that can provide good estimation of the running time of our algorithm.

Theorem 2. 1. |A(Hp,n)| ∈ Ω(n12)∩O(n24), 2. |A(Ha,n)| ∈ Ω(n12)∩O(n18),
3. |A(Hl,n)| ∈ Ω(n10) ∩O(n12).

4 Computing Representatives

Theorem 1 of the previous section presents the main structural property used
in our image matching algorithm. However, the possibility of enumerating the
images of D(A,F�) by traversing the faces of A(H�,n) does not solve entirely IMP
as defined in this paper. For the solution the algorithm has to return not only
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the image A′ ∈ D(A,F�) minimizing the distance to B but also a transformation
f ∈ F� such that A′ = f(A). Therefore, we compute for all faces ϕ a point p(ϕ)
contained in ϕ. To this aim we proceed as follows: If ϕ is a 0-face, then p(ϕ)
is the only contained point. Otherwise, if ϕ1, . . . , ϕt are the subfaces of ϕ then
p(ϕ) := 1

t

∑t
w=1 p(ϕw). Accordingly, we get the transformation g(ϕ) which is

associated to p(ϕ). Thus, for a face ϕopt, associated to the optimum image A′,
we are able to get the solution f = g(ϕopt)−1. The issue with this approach is
the existence of transformations g represented by points of the parameter space
which are not invertible and hence not included in F�. In fact, certain faces do
not represent invertible transformations at all.

In this section we show for % ∈ {p, a, l} how to detect faces ϕ which either miss
invertible transformations or which are associated to the same image as some other
face. These faces will be marked as ”irrelevant” in a preprocessing phase, before
the main searching algorithm starts. Moreover, we introduce how to correct g(ϕ)
to an invertible transformation for the remaining relevant faces.

Generally, projective transformations are invertible iff the matrix defined by
the parameters p1 to p8 is regular. The points of parameter space which violate
regularity can be described by the following non-linear surface:

Zp : p1p5 + p2p6p7 + p3p4p8 − p1p6p8 − p2p4 − p3p5p7 = 0,

that is, by those parameters p1 to p8 which represent a matrix with determinant
zero. A structural rewarding property of Zp is its limited degree of freedom. In
particular, to describe any point p in Zp, it is sufficient to fix any combination of
only seven parameters from p1 to p8. However, in every 8-face of A(Hp,n) there
are infinitely many points which are equal on parameters p1 to p7 and distinguish
only in p8. At most one of them can be part of Zp. It follows that every 8-face in
A(Hp,n) has at least one point p which represents an invertible transformation
and thus, can represent the face. For affine and linear transformations the surface
of non-invertible transformations becomes less complex:

Za, Zl : p1p5 − p2p4 = 0.

Still, any combination of five or respectively three parameters suffices to determine
a point in Za or Zl. Hence, every 6-face in A(Ha,n) and every 4-face in A(Hl,n)
has at least one point p to represent the face.

The following lemma provides properties of the faces in A(H�,n) which enable
the computation of representative points by the use of the above characterization:
Lemma 3
1. For every q-face ϕ′ in A(Hp,n) with q < 8 there is an 8-face ϕ in A(Hp,n)

such that the images Γp(ϕ′) and Γp(ϕ) are equal.
2. For every q-face ϕ′ in A(Ha,n) with q < 6 there is a 6-face ϕ in A(Ha,n)

such that the images Γa(ϕ′) and Γa(ϕ) are equal.
3. Every q-face ϕ in A(Hl,n) with 0 < q ≤ 4 contains at least one point which

is not in Zl.

By the lemma all q-faces with q < 8 may be marked “irrelevant” for projective
transformations. This has the convenient side effect that faces are marked “irrel-
evant”, if they are contained in one of the subspaces described by the equations:
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Zij : ip7 + jp8 + 1 = 0 for all (i, j) ∈ N , with (i, j) �= (0, 0),

that characterize transformations for which equation (1) results with c = 0. Such
faces do not represent invertible transformations because neither of them maps
the pixel (i, j). Again, since these subspaces are seven-dimensional only q-faces
with q < 8 can be properly contained in them.

For affine transformations we have to mark exactly all q-faces with q < 6
”irrelevant”. However, for linear transformations it is not that easy to exclude
faces from the search. Nevertheless, Lemma 3 states at least that all but 0-faces
contain points associated to invertible transformations. Hence, in this case a face
ϕ should be marked ”irrelevant” if (1) it is a 0-face and (2) the only contained
point p(ϕ) is in Zl, which is easy to detect.

It remains to check, and if necessary to correct, for all relevant faces whether
the point p(ϕ) represents an invertible transformation g(ϕ). If predefined p(ϕ) is
not contained in the surface Z� then we are done. Otherwise, let dZ�(p(ϕ)) be
the gradient of Z� at p(ϕ). Then we add to p(ϕ) the vector p(ϕ) + ε · dZ�(p(ϕ)),
where ε > 0 is a constant chosen such that p(ϕ) (1) remains in ϕ and (2) can be
stored byO(log n) bits. Therewith we move p(ϕ) out ofZp and obtain an invertible
transformation g(ϕ). The existence of ε is straightforward for the projective and
affine case. For the linear one it may however happen that the construction leads
to p(ϕ) outside ϕ, if ϕ is not a 4-face. Still, in this case ϕ is a proper subspace of
some hyperplanes �1 to �t. To ensure that p(ϕ) remains in ϕ we project dZl(p(ϕ))
onto the intersection of �1 to �t. Then the approach works again.

5 The Algorithm

To solve IMP under F� we use the mapping Γ�,n introduced in Theorem 1 to
enumerate D(A,F�). For the implementation of the mapping we search A(H�,n)
and choose for each encountered face ϕ the representative transformation g(ϕ).
Then, the image A′ associated to ϕ can be computed using γg(ϕ). Theorem 1
guarantees that in this way all images in D(A,F�) will be tested.

This straightforward approach of visiting all faces ϕ, computing
A′ by g(ϕ) and estimating its distortion against B, has at least a time complex-
ity of |A(H�,n)| times O(n2), where the last term describes the cost of distortion
estimation. Using our approach we can improve this complexity by computing A′

incrementally. It turns out that incident faces correspond to very similar images.
In fact, Lemmas 1 and 2 and Theorem 1 imply the following:

Corollary 1. Let ϕ,ϕ′ ∈ A(H�,n) be two incident faces and (i, j) ∈ N a pixel.
Then the two images Γ�,n(ϕ) and Γ�,n(ϕ′) can differ at the pixel (i, j), only if
there exists k in {−n, . . . , n+ 1} such that the hyperplane � described by Xijk or
Yijk contains as a subspace the face ϕ or the face ϕ′.

Thus, it is profitable to enumerate faces in the order implied by geometrical
incidence to guarantee minimal changes in A′ when going from one face to the
next one. Our algorithm achieves linear running time with respect to |A(H�,n)|
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Algorithm. ImageMatching /* Image Matching for F� with � ∈ {l, a, p} */
Input: Images A and B of size n; � ∈ {l, a, p}.
Output: f = arg minf ′∈F


{Δ(f ′(A),B)}.

1. Procedure SEARCH(v(ϕ)); /* Depth first searching */
2. begin
3. mark node v(ϕ) as seen;
4. for all unseen neighbors v(ϕ′) of v(ϕ) do begin
5. for all (i, j) in Update(ϕ) ∪ Update(ϕ′) do begin
6. Δ = Δ−δ(A′〈i, j〉, B〈i, j〉); A′〈i, j〉 = A〈γg(ϕ′)(i, j)〉; Δ = Δ+δ(A′〈i, j〉, B〈i, j〉);
7. end;
8. if (ϕ′ is not irrelevant) and (Δ < Δopt) then
9. begin Δopt = Δ; ϕopt = ϕ′; end;

10. call SEARCH(ϕ′);
11. for all (i, j) in Update(ϕ) ∪ Update(ϕ′) do begin
12. Δ = Δ−δ(A′〈i, j〉, B〈i, j〉); A′〈i, j〉 = A〈γg(ϕ)(i, j)〉; Δ = Δ+δ(A′〈i, j〉, B〈i, j〉);
13. end;
14. end;
15. end;

16. begin /* ImageMatching */
17. construct the incidence graph I(H�,n);
18. PREPROCESS(I(H�,n));
19. let ϕid be the face of A(H�,n) which corresponds to the identity mapping;
20. ϕopt = ϕid; Δopt = Δ = Δ(A, B); A′ = A;
21. call SEARCH(v(ϕid)); /* find ϕopt */
22. return f = g−1(ϕopt);
23. end.

Fig. 2. The image matching algorithm. The main procedure prepares the DFS-search
of I(H�,n). The search itself is realized recursively by the SEARCH procedure. With
each call one face ϕ becomes seen. Then the neighborhood of ϕ is processed by updating
the pixels which have possibly changed and estimating the new distortion.

because it enumerates A(H�,n) according to the geometrical incidence by DFS-
traversing the incidence graph I(H�,n).

In the following we introduce our image matching algorithm, which works for
all three classes Fp, Fa and Fl. Furthermore, we present its running times.

The algorithm starts with the construction of I(H�,n). Then I(H�,n) is passed
to PREPROCESS which (1) marks all nodes v(ϕ) ”irrelevant”, if ϕ should not
become the solution ϕopt and (2) labels all nodes v(ϕ) with auxiliary informa-
tion like (a) a set Update(ϕ) of pixel coordinates, (b) the point p(ϕ), and (c)
a representative transformation g(ϕ). The node labels p(ϕ) and g(ϕ) as well
as the attribute ”irrelevant” are computed according to the discussion of Sec-
tion 4. Notice that in case of an ”irrelevant” node v(ϕ) the transformation g(ϕ)
may not be invertible. However, by g(ϕ) we can still compute γg(ϕ) and in turn
the image A′, which is associated to all points of the face ϕ. Because v(ϕ) is



Combinatorial Bounds and Algorithmic Aspects 405

“irrelevant” it cannot become the solution ϕopt and we will never attempt to
invert g(ϕ). Subsequently, PREPROCESS computes for all nodes Update(ϕ),
sets used to keep the number of incremental pixels updated as small as possible
during the DFS-traversal of I(H�,n). For all d-faces ϕ we let Update(ϕ) := ∅. If
ϕ is a (d− 1)-face, i.e., a subspace of one hyperplane � ∈ H�,n, then

Update(ϕ) := {(i, j) | ∃k ∈ {−n, . . . , n + 1} : Xijk or Yijk describes �}.
Finally, if ϕ1, . . . , ϕt are the superfaces of a q-face ϕ with q < d− 1, we let

Update(ϕ) :=
t⋃

w=1

Update(ϕw).

The definition of d depends on %. For % = p we have d = 8, for % = a it is d = 6
and we set d = 4 for % = l.

After PREPROCESS our algorithm performs DFS on the graph I(H�,n).
Visiting a node v(ϕ) the algorithm stores the current distortion between A′,
the image determined by γg(ϕ), and B. Next, when traversing from ϕ to an
incident (sub or super)face ϕ′ the algorithm has to compute from A′ the image
A′′, determined by γg(ϕ′). According to Corollary 1 it suffices to update only the
pixel values, coordinates of which are elements in Update(ϕ) or Update(ϕ′). For
input images A and B we use the algorithm ImageMatching listed in Figure 2.

As a conclusion of this section we give a bound on the running time of the
image matching algorithm listed in Figure 2.
Theorem 3. For given A and B of size n, the Image Matching Problem

can be solved by the algorithm listed in Figure 2 in time
1. O(n12) for Fl,
2. O(n18) for Fa, and
3. O(n24) for Fp.

6 Conclusions and Future Work

In this work we analyzed the Image Matching Problem with respect to projec-
tive, affine and linear transformations. We introduced a general polynomial time
searching strategy which takes advantage of the search space structure common
among the covered classes of transformations.

To provide precise bounds for the running time of the searching algorithm we
examined the complexity of the search space structure for each class of transfor-
mations. We showed narrow bounds for linear transformations Ω(n10) ∩O(n12)
and gave non trivial bounds for affine transformations Ω(n12)∩O(n18) and pro-
jective transformations Ω(n12) ∩O(n24). A challenging task is to close the gaps
between the corresponding lower and upper bounds.
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Abstract. It is shown that any weakly-skew circuit can be converted
into a skew circuit with constant factor overhead, while preserving either
syntactic or semantic multilinearity. This leads to considering syntacti-
cally multilinear algebraic branching programs (ABPs), which are de-
fined by a natural read-once property. A 2n/4 size lower bound is proven
for ordered syntactically multilinear ABPs computing an explicitly con-
structed multilinear polynomial in 2n variables. Without the ordering
restriction a lower bound of level Ω(n3/2/ log n) is observed, by consid-
ering a generalization of a hypercube covering problem by Galvin [1].

Keywords. Computational complexity, arithmetical circuits, lower
bounds, multilinear polynomials, algebraic branching programs.

1 Introduction

It is not known whether polynomial size arithmetical circuits (VP) are com-
putationally more powerful than polynomial size arithmetical formulas (VPe).
For the former, we have a surprising construction by Valiant, Skyum, Berkowitz
and Rackoff, which shows that VP = VNC2 [2]. For the latter, we know by a
result of Brent that VPe = VNC1 [3]. Recently, Raz made a breakthrough by
showing that polynomial size multilinear circuits are strictly more powerful than
polynomial size multilinear formulas. Raz proved that

Theorem 1 ([4]). s-mlin-VNC1 �= s-mlin-VNC2.

Here “s-mlin-” denotes syntactic multilinearity. Technically, multilinearity comes
in two flavors: syntactic and semantic (See Section 2). For formulas these two
notions are equivalent, but this is not known to be true for circuits.

Intermediate between circuits and formulas we have so-called weakly-skew
circuits (See [5]). Letting VPs and VPws stand for the classes of p-families of
polynomials that have skew circuits or weakly-skew circuits of polynomial size,
respectively, Malod and Portier prove that VPs = VPws. The situation can be
summarized as follows:

Theorem 2 ([5,2]). VNC1 ⊆ VPs = VPws ⊆ VNC2 = VP.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 407–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A priori it is not clear whether the equality VPs = VPws holds up when passing
to the multilinear variants of these classes, as the proofs in [5] appeal to the
completeness of the determinant or trace of iterated matrix multiplication for
the class VPws. For the determinant, currently no polynomial size multilinear
circuits are known. Furthermore, multilinearity is not necessarily preserved under
Valiant projections.

1.1 Results

It will be demonstrated one can convert any weakly-skew circuit into a skew-
circuit with constant factor overhead, while maintaining either syntactic or se-
mantic multilinearity. Further, it will be observed that the conversion without
multilinearity restrictions can be done with constant factor overhead as well1,
which improves [5]. There an appeal is made to either polynomial size skew cir-
cuits for the determinant [6], or for the trace of iterated matrix multiplication.
Both families are shown to be complete for VPws. One obtains that

Theorem 3

s-mlin-VNC1 ⊆ s-mlin-VPs = s-mlin-VPws ⊆ s-mlin-VNC2 = s-mlin-VP.

In the above, the rightmost equality was proven in [7]. Looking at Theorem 3, the
question is raised whether perhaps the techniques used to prove Theorem 1 can
be strengthened to show that s-mlin-VPs �= s-mlin-VNC2, or that we can prove
s-mlin-VNC1 �= s-mlin-VPs, by showing, in the terminology of [7,8], some full rank
polynomial has polynomial size skew circuits.

Without multilinearity, V Ps �= V NC2 iff the determinant is not complete for
V P under poly-size Valiant projections, due to [5]. Also, VNC1 �= VPs iff the de-
terminant does not have poly-size formulas. Both statements are major outstand-
ing problems in algebraic complexity theory.

A skew circuit can be transformed into an algebraic branching program (ABP,
See [9]) with relatively little overhead. If the initial skew circuit is syntactically
multilinear, this results in an ABP B which is syntactically multilinear in the
following natural sense: on any directed path in B, any variable can appear at
most once. This can be thought of as the algebraic analog of a Boolean read-once
branching program. In the latter model we know of tight exponential lower bounds
[10]. Also exponential lower bounds are known for ABPs in the non-commutative
case [9]. Bryant introduced so-called ordered binary decision diagrams (OBDDs),
for which he proved exponential lower bounds [11]. These are read-once Boolean
branching programs in which variables are restricted to appear in the same order
on all directed paths. This restriction can naturally also be considered for ABPs,
leading to the following result:

Theorem 4. Let X be a set of 2n variables. For any field F , there exists an ex-
tension field G of F and explicitly constructed multilinear polynomial f ∈ G[X ],
1 This observation has simultaneously been made by Kaltofen and Koiran in a so far

unpublished paper, which was unknown to the author at the time of this research.
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such that any ordered algebraic branching program over X and G computing f
has at least 2n/4 nodes.

Finally, the problem of proving lower bounds for unrestricted ABPs and (un-
ordered) multilinear ABPs is explored. For any fixed constant 0 < α < 1, it
will be shown that any unrestricted ABP requires size Ω(n3/2α

√
1 − α) to com-

pute the elementary symmetric polynomial of degree  αn! in n variables. Next
a relation between proving lower bounds for multilinear ABPs and the general-
ization of a hypercube covering problem by Galvin will be established [1]. By
straightforward counting this yields a lower bound for multilinear ABPs of level
Ω( n3/2

log n ), for computing any full rank polynomial. Potentially however, this tech-
nique yields up to quadratic lower bounds, provided linear lower bounds can be
proven for certain generalizations of Galvin’s Problem.

2 Preliminaries

For non-negative integer n, [n] denotes the set {1, 2, . . . , n}. Let F be a field and
X = {x1, x2, . . . , xn} be a set of variables. An arithmetical circuit Φ over F and
X is a directed acyclic graph with nodes of in-degree zero or two. Nodes with in-
degree zero are called inputs and are labeled by variables or field elements. Nodes
with in-degree two are called gates and have labels ∈ {×,+}. For each gate g in Φ,
one has associated the polynomial computed by g, denoted by Φg, which is defined
in the obvious manner. Also let Φg stand for the subcircuit rooted at gate g. It will
be made clear from the context which meaning is intended. Denote by Xg the set
of variables used by the subcircuit Φg. The size of Φ, denoted by |Φ|, is taken to
be the number gates. If the underlying graph of Φ is a tree, Φ is called a formula.
For a polynomial f , C(f) and L(f) denote the smallest size of a circuit or formula,
respectively, computing f .

An arithmetical circuit Φ is called weakly-skew if at every multiplication gate g
with inputs g1 and g2, one of Φg1 and Φg2 is disjoint from the rest of Φ. Φ is called
skew if for each multiplication gate at least one g1 and g2 is an input gate (See [5]).
For a polynomial f , Cws(f) and Cs(f) denote the smallest size of a weakly-skew
or skew circuit computing f , respectively.

A polynomial f is called multilinear if for any monomial of f , every variable
has degree at most one. A circuit Φ is semantically multilinear if every polyno-
mial computed at any gate of Φ is multilinear. Φ is called syntactically multi-
linear if for each multiplication gate g with inputs g1 and g2, Xg1 and Xg2 are
disjoint. For a polynomial f , Csyn(f) and Csem(f) denote syntactic and seman-
tic multilinear circuit size, respectively. Similarly, Lsyn(f) and Lsem(f) denote
syntactic and semantic multilinear formula size. These definitions will be com-
bined in the obvious manner. For example, Csyn,ws(f) denotes the smallest size
of a syntactically multilinear weakly-skew circuit computing f . Standard nota-
tion for arithmetical circuit classes will be followed (See e.g. [12]). For any class
C ∈ {VNC1,VNC2,VPs,VPws,VP}, let syn-mlin-C and mlin-C stand for the class
of p-families of polynomials that have C-circuits which additionally are required
to be syntactically or semantically multilinear, respectively.
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Definition 1 (See [9]). An algebraic branching program (ABP) over a field F
and a set of variables X is a 4-tuple B = (G,w, s, t), where G = (V,E) is a
directed acyclic graph for which V can be partitioned into levels L0, L1, . . . , Ld,
where L0 = {s} and Ld = {t}. Vertices s and t are called the source and sink of
B, respectively. Edges may only go between consecutive levels Li and Li+1. The
weight function w : E → F [X ] assigns homogeneous linear forms to the edges of
G. For a path p in G, we extend the weight function by w(p) =

∏
e∈p w(e). For

i, j ∈ V , let Pi,j be the collection of all path in G from i to j. The program B
computes the polynomial

∑
p∈Ps,t

w(p). The size of B is taken to be |V |.

For a linear form L(x) =
∑n

i=1 cixi, define coef[L, xi] = ci. An ABP B is called
syntactically multilinear, if for any directed path p in B, for all i, there is at most
one edge e on p with coef[w(e), xi] �= 0. B(f) denotes the smallest size of an ABP
computing f , and Bsyn(f) denotes such size with the additional restriction of
syntactic multilinearity.

3 Circuit Transformations

It is convenient to work with the following data structure: a skew schedule is a
directed acyclic graph G with weights on the edges ∈ F ∪ X , where the out-
degree of a vertex is either zero, one or two, and where for any vertex v with
distinct edges e1 = (v, w) and e2 = (v, u), the labels of e1 and e2 equal to 1. For
a directed acyclic graph G with node s ∈ V [G], a path p in G is called a maximal
path with starting point s, if the first vertex of p is s and the last vertex of p has
no outgoing edges.

Lemma 1. For any polynomial f , Csyn,s(f) ≤ 5Csyn,ws(f).

Proof. First process Φ so that any addition gate has its input coming in from
different gates by inserting dummy addition gates. This at most doubles the size.
Let e′ be the new size. Let g1, g2, . . . , ge′ be a topological sort of the gates of Φ,
where wlog. we assume Φge′ = f , and that ge′ is the only gate with out-degree
zero. Let g−m+1, g−m+2, . . . , g0 be the set of inputs of Φ. Sequentially for stages
k = 1, 2, . . . , e′, we construct a skew schedule Gk from Gk−1. To initialize, let G0

consists of m distinct directed edges. For each input g of Φ, we select a unique
edge among E[G0] and put the label of g on it. Let B be the set of vertices in G0

with out-degree zero. The set B will remain as a subset of vertices in each Gk.
We will never change the in-degree of vertices in B. At the beginning of stage
k, the skew schedule Gk−1 will satisfy:

1. Each node g = gk′ with k′ < k will correspond one-to-one with a vertex
vg ∈ V [Gk−1]\B.

2. Let Gk−1 be the set of nodes gk′ with k′ < k, that are used by gates gk′′

for some k′′ ≥ k. For any g ∈ Gk−1,
∑

p∈P
∏

e∈p w(e) = Φg, where P is the
collection of all maximal paths with starting point vg in Gk−1,

3. On any directed path in Gk−1 no variable appears more than once,
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4. For any node g = gk′ with k′ < k, the set of nodes not in B reachable in
Gk−1 from vg, is precisely {vg′ : g′ ∈ Φg}.

At the beginning of stage k = 1, we have that G0 is the set of all input gates.
For each input gate g, vg is defined to be the starting vertex of the unique edge
we have selected for it. Properties (1)-(4) can now be verified to hold. At stage
k we do the following:

Case I: gk = +(gi, gj). We have that gi, gj ∈ Gk−1. We construct Gk from
Gk−1 by adding one new vertex w with edges of weight 1 from w to vgi and vgj .
No parallel edges are created since i �= j. Let us verify the needed properties.
Property (3) is clear. It is also clear that if we let P be the collection of all
maximal paths starting in w that

∑
p∈P

∏
e∈p w(e) = Φgk

. If we are at the last
iteration, i.e. k = e′, then this is all we are required to verify. Otherwise, gk

will be used later on, i.e. gk ∈ Gk. Observe that Gk = Gk−1 ∪ {gk} − S, where
S ⊆ {gi, gj}. We define vgk

= w. By our above observation for the vertex w, and
the fact that we do not modify connectivity for the other vertices, Property (2)
holds. Property (4) is clear.

Case II: gk = ×(gi, gj). Wlog. assume Φgj is disjoint from the rest of Φ. We
have that gi, gj ∈ Gk−1. For s ∈ {i, j}, let Ws be the set of vertices in Gk−1

reachable from vgs . Wi and Wj are disjoint. Namely, suppose w ∈ Wi ∩ Wj . If
w /∈ B then Property (4) implies there exists a shared node in Φgi and Φgj ,
which is a contradiction. In case w ∈ B, then since we do not add edges into w,
we have a vertex w′ = vg′ for some input gate g′ with w′ ∈ Wi ∩Wj . Hence we
again have a contradiction.

Let E ⊆ Wj be the set of vertices reachable from vgj with out-degree zero. We
define Gk to be the graph Gk−1 modified by adding an edge (v, vgi ) of weight 1
for each v ∈ E. We add2 a new vertex w and edge (w, vgj ) with weight 1, and let
vgk

= w. Since Wi ∩Wj = ∅, no vertex from E is reachable from vgi . Hence Gk is
an acyclic graph. Observe Gk is a skew schedule. We will now verify Properties
(1)-(4).

Let P be the set of maximal paths starting in vgk
in Gk. Let Ps be the set of

maximal paths in Gk−1 starting in vgs , for s ∈ {i, j}. For p ∈ Pi and q ∈ Pj , let
q#p denote the path in Gk that is (vgk

, vgj ), followed by q, followed by the edge
with weight 1 into vgi , followed by p. We have that P = {q#p : q ∈ Pj , p ∈ Pi}.
This means

∑
r∈P

∏
e∈r w(e) =

∑
p∈Pi

∏
e∈p w(e) ·

∑
q∈Pj

∏
e∈q w(e) = Φgi ·

Φgj = Φgk
. In case this was the last iteration, i.e. k = e′, this is all we need

together with Property (3) to be verified below. Otherwise, since gk will be used
later again, gk ∈ Gk. Observe that Gk = Gk−1 − S ∪ {gk}, where S is the set of
nodes in Φgj .

By what we observed above, Property (2) holds for gk. For g �= gk in Gk, the
only way Property (2) can be disturbed is if some vertex w ∈ E is reachable
from vg in Gk−1. This means some w′ /∈ B is reachable from both vg and vgj in

2 This is not strictly necessary, but we do so to simplify the proof.
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Gk−1, but then Φg and Φgj share a vertex by ’previous’ Property (4). Since Φ is
weakly-skew, g must be a node in Φgj , but that is a contradiction since g ∈ Gk.

To check Property (3), we note that the only edges with variables are of the form
(v, b) with b ∈ B and v = vg, for some input g ∈ Φ. Property (3) can be violated
only, if in Gk−1 we have for such (v, b) that some vertex in E can be reached from
b, and that in Gk−1 there exists a path starting in vgi going over an edge (v′, b′)
with b′ ∈ B and v′ = vg′ , for some input gate g′, that has the same variable label
as (v, b). This means that g′ ∈ Φgi . Similar as above, by Property (4), it must
be that g ∈ Φvgj

. By syntactic multilinearity, we conclude the labels of (v, b) and
(v′, b′) must be different. Property (4) clearly holds.

This completes the description the graphs G1, G2, . . . , Ge′ . Ge′ is a skew sched-
ule of size at most 2m+ e′ ≤ 5e′. We can evaluate it node by node in a bottom-up
fashion. This yields a syntactically multilinear skew circuit computing f of size at
most 5e′ ≤ 10e gates. To optimize the constant to be 5 instead of 10, we observe
adding dummy addition gates is not required. �
Lemma 2. For any polynomial f , Csem,s(f) ≤ 5Csem,ws(f).

Proof. Modify the multiplication case in the proof of Lemma 1 as follows. For each
variable xi appearing in the polynomial Φgi , replace any edge weight xi in the in-
duced subgraphGk−1[Wj ] by zero. This does not alter the polynomial represented
at vertex vgj , since it cannot contain variable xi. Polynomials represented at other
vertices in Gk[Wj ] can have changed, but cannot be used at later stages. The sub-
stitution has forced all these polynomials to be multilinear. �
Removing Property (3) in the proof of Lemma 1 immediately yields a proof that
for any polynomial f , Cs(f) ≤ 5Cws(f). This reproves VPws = VPs, but without
an underlying cubic blow-up in size as in [5]. Let us put the basic facts together
about the measures that are considered. The proof is left to the reader.

Lemma 3. For a homogeneous polynomial of degree d,

1. C(f) ≤ Cws(f) ≤ L(f) and Csyn(f) ≤ Csyn,ws(f) ≤ Lsyn(f).
2. Cws(f) ≤ Cs(f) ≤ 5Cws(f) and Csyn,ws(f) ≤ Csyn,s(f) ≤ 5Csyn,ws(f).
3. B(f) ≤ d · (4Cs(f) + 2) and Bsyn(f) ≤ d · (4Csyn,s(f) + 2).
4. α

√
Cs(f)/n ≤ B(f) and α

√
Csyn,s(f)/n ≤ Bsyn(f), for some constant

α > 0.

Note that the above lemma implies Item 1 of Lemma 1 in [9], modulo constants.
Also note that proving super-polynomial lower bounds on Bsyn(f) for some
homogeneous f ∈ s-mlin-VP is equivalent to showing s-mlin-VPws �= s-mlin-VP.

4 Ordered ABPs

Definition 2. Let B = (G,w, s, t) be an ABP over a field F and set of vari-
ables X = {x1, x2, . . . , xn}. Say a directed path p from s to t respects a permu-
tation π : [n] → [n], if whenever an edge e1 appears before an edge e2 on p and
coef[w(e1), xπ(i)] �= 0 and coef[w(e2), xπ(j)] �= 0, one has that i < j. B is called
ordered, if there exists a permutation π that is respected by all directed s, t-paths.
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For a polynomial f , we denote ordered ABP size by Bord(f). Note an or-
dered ABP is syntactically multilinear. We observe that lower bounds for non-
commutative algebraic branching programs of Nisan [9] can be transferred to
the ordered model.

Theorem 5. Any ordered algebraic branching program B = (G,w, s, t) comput-
ing the permanent or determinant of an n × n matrix of variables has size at
least 2n.

Proof. (sketch) First suppose that the branching program B respects a row-by-
row ordering of the variables, i.e. if xij comes before xkl on a directed s, t-path in
B, then i < k. Interpreting B as defining an ABP over non-commuting variables,
we have that B computes the ’ordered’ permanent or determinant as defined in
Definition 3 in [9], which is shown to require 2n nodes to be computed. In case
B respects some arbitrary permutation π, it can be observed that evaluating
B non-commutatively yields a polynomial, which, in Nisan’s terms, is weakly
equivalent to the permanent or determinant, and thus also requires size 2n. �

The above bound for the permanent and determinant is of level 2Ω(
√

N), where
N is the number of variables. In [9] a bound of 2Ω(N) is proven for the non-
commutative model, but this is for a polynomial that is not multilinear. In order
to obtain a bound of level 2Ω(N), we now turn to the aforementioned full rank
polynomials [4,7,8].

4.1 Full Rank Polynomials

Let X = {x1, x2, . . . , x2n}, Y = {y1, y2, . . . , yn} and Z = {z1, z2, . . . , zn} be sets
of indeterminates and let F be a field. Following [4,7,8], for a multilinear polyno-
mial g ∈ F [Y, Z], we define the 2n×2n partial derivatives matrix Mg with entries
from F by taking Mg(m1,m2) = coefficient of monomial m1m2 in g, where m1

and m2 range over all multilinear monic monomials in Y and Z variables, re-
spectively. A partition of X into Y and Z is any bijection A : X → Y ∪Z. For a
partition A and a polynomial f ∈ F [X ] denote by fA the polynomial obtained
from f by substitution of xi by A(xi), for all i ∈ [2n]. The polynomial f is said
to be of full rank if for every partition A, rank MfA = 2n. For a multilinear poly-
nomial g ∈ F [Y, Z], let Yg and Zg be the sets of Y and Z variables appearing
in g with exponent one. The rank of the partial derivatives matrix enjoys the
following elementary properties:

Proposition 1 ([8]). Let g, g1, g2 ∈ F [Y, Z] be multilinear polynomials. Then

1. rank Mg ≤ 2min(|Yg|,|Zg|),
2. rank Mg1+g2 ≤ rank Mg1 + rank Mg2 , and
3. rank Mg1·g2 = rank Mg1 ·rank Mg2 , provided Yg1∩Yg2 = ∅ and Zg1∩Zg2 = ∅.

4.2 Lower Bound

Theorem 6. Let X be a set of 2n variables, and let F be a field. For any full
rank homogeneous polynomial f of degree n over X and F , Bord(f) ≥ 2n/4.
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Proof. Let B = (G,w, s, t) be an ordered ABP computing f . Let L0, L1, . . . , Ln

be the levels of B. For v, w ∈ V [G] such that v is on a lower level than w, let
fv,w denote the polynomial computed by the subprogram of B with source v
and sink w. Let Xv,w denote the set of all variables appearing on directed paths
from v to w.

Suppose that B respects the permutation π : [2n] → [2n]. Consider any
partition A that assign all n y-variables to {xπ(1), xπ(2), . . . , xπ(n)} and all n
z-variables to {xπ(n+1), xπ(n+2), . . . , xπ(2n)}. Let 0 < i < n, then we can write

f = fs,t =
∑

v∈Li

fs,vfv,t. (1)

Consider a node v ∈ Li.

Case I: Xs,v contains a variable xπ(k) with k > n. In this case, since B respects
π, each variable in Xv,t is assigned a z-variable by A. Hence rank MfA

v,t
≤ 1.

Paths from v to t are of length n− i, so |Xv,t| ≥ n− i. None of the variables in
Xv,t can appear on paths from s to v, so |Xs,v| ≤ 2n− |Xv,t| ≤ n + i. By Item
1 of Proposition 1, we get

rank MfA
s,t

≤ 2|Xs,v|/2 ≤ 2(n+i)/2.

Using multiplicativity (Proposition 1, Item 3), we conclude that rank MfA
s,vfA

v,t

is at most 2(n+i)/2.
Case II: Xs,v does not contain a variable xπ(k) with k > n. In this case all of
Xs,v is assigned y-variables. Note |Xs,v| ≥ i. Hence |Xv,t| ≤ 2n− i. Arguing as
above, we obtain that rank MfA

s,vfA
v,t

≤ 2n−i/2.
Combining both cases, we conclude that for any v ∈ Li, for i ≤ n/2, rank

MfA
s,vfA

v,t
≤ 2max(n−i/2,(n+i)/2) ≤ 2n−i/2. Using subadditivity (Proposition 1,

Item 2) and Equation (1) we get that that for i ≤ n/2, rank MfA ≤ |Li|2n−i/2.
Since f is of full rank, rank MfA = 2n. Hence, for even n, |Ln/2| ≥ 2n/4. For
odd n, one can observe similarly that |L(n−1)/2| + |L(n+1)/2| ≥ 2n/4. �

If the construction of a full rank polynomial from [7] can be modified to yield
a homogeneous full rank polynomial, we can apply Theorem 6 to obtain lower
bounds. We next verify this can be done, provided we work over a suitable
extension field of the underlying field F .

4.3 Constructing a Homogeneous Full Rank Polynomial

Let W = {ωi,l,j}i,l,j∈[2n] be sets of variables. For each interval [i, j] ⊆ [2n] of
even length, we define a polynomial fi,j ∈ F [X,W ] inductively as follows: if
|[i, j]| = 0, then define fi,j = 1. If |[i, j]| > 0, define fi,j = (xi + xj)fi+1,j−1 +∑

l ωi,l,jfi,lfl+1,j , where we sum over all l such that |[i, l]| is even. Finally, f is
defined to be f1,2n. It can be verified inductively that fi,j is homogeneous of
degree |[i, j]|/2 in the X-variables. Our definition differs from [7] in that we have
the term (xi + xj)fi+1,j−1 instead of (1 + xixj)fi+1,j−1. So we also immediately
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know each fi,j is multilinear. Call a partition A balanced on an interval [i, j],
if |{A(xk) : k ∈ [i, j]} ∩ Y | = |{A(xk) : k ∈ [i, j]} ∩ Z|. We have the following
adaption of Lemma 4.3 in [7]:

Lemma 4. Let A : X → Y ∪ Z be a partition. Let G = F (W) be the field of
rational functions over the field F and set of variables W. Then for any interval
[i, j] of length 2m that is balanced on A, we have that rank MfA

i,j
= 2m, where

the rank is measured over the field G.

Proof. The proof of Lemma 4.3 of [7] goes through for the modified polynomial
fi,j after noting that for the case Di,i = 1 and Dj,j = −1 of their proof, one still
has rank MA(xi)+A(xj) = 2. Namely, in this case A(xi) ∈ Y and A(xj) ∈ Z, and
rank Mys+zt = 2, for any s and t. �

Since the interval [1, 2n] is balanced on any partition A, one concludes Theorem 4
follows from Lemma 4 and Theorem 6.

5 Unrestricted and Multilinear ABPs

Consider the following observation by Kristoffer Arnsfelt Hansen: if for a homoge-
neous algebraic branching program with linear forms on the edges, the number of
edges between any two consecutive levels Ld and Ld+1 is at most K < n, then the
polynomial f(x1, x2, . . . , xn) computed by the branching program vanishes on a
linear space of dimension at least n − K. Provided this is a contradiction for f ,
one concludes max(|Ld|, |Ld+1|) ≥

√
K.

For example, working this out for the elementary symmetric polynomial of de-
gree d in n variables defined by

∑
S⊂[n],|S|=d

∏
i∈S xi, it is known that if Sd

n van-
ishes on an affine linear space A, then dim(A) < (n + d)/2 (See Theorem 1.1
in [13]). Applying above reasoning yields the following lower bound:

Theorem 7. Let α be a constant with 0 < α < 1 and assume αn is integer.
Over fields of characteristic zero, for the elementary symmetric polynomial Sαn

n

of degree αn in n variables, it holds that B(Sαn
n ) = Ω(n3/2α

√
1 − α).

For above argument to work, K must be smaller than n. Thus lower bounds
obtained this way will be no stronger than Ω(n3/2), for polynomials of degree
Θ(n) in n variables. In order to overcome this limitation, we turn to a hypercube
covering problem.

Consider the 2n-dimensional hypercubes H2n = {−1, 1}2n and B2n = {0, 1}2n

over the real numbers. Let x · y denote the standard inner product defined by
x·y =

∑2n
i=1 xiyi. Let 1 denote the vector 12n. Let He

2n = {x ∈ H2n : x·1 = 0}. Of
interest are minimal size coverings of He

2n by hyperplanes, where coefficients for
the defining equations are taken from particular subsets of B2n. More precisely,
for W ⊂ [2n], define BW

2n = {b ∈ B2n : wt(b) ∈ W}, where wt(b) = b · 1. Define

Q(n,W, d) = min{|E| : E ⊆ BW
2n, (∀x ∈ He

2n), (∃e ∈ E), |x · e| ≤ d}.
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Finding the value of Q(n,W, d) becomes interesting only for certain weight
sets W . For example, if 2n ∈ W , then E = {1} trivially covers all of He

2n.
The discrepancy parameter d should also be small w.r.t. min(W ), e.g. trivially
Q(n,W,min(W )) = 1. Also, in case W does not contain an even number and
d = 0, we have that Q(n,W, d) is ill-defined. In all other cases Q(n,W, d) is well-
defined. Namely, say 2� ∈ W . By taking E to be all 2n cyclic shifts of 1202n−2,
we have that for each x ∈ He

2n, there must exist some e ∈ E, x · e = 0. Similarly,
this set E works, in case W contains no even numbers, but d ≥ 1. The crucial
question is whether for cases that avoid trivialities, one can do significantly better
than |E| being linear in n.

The special case of finding m(k) := Q(2k, {2k}, 0) is a problem posed origi-
nally by Galvin (See [14]). For an upper bound, note one requires only half of
all 4k cyclic shifts, i.e. m(k) ≤ 2k. For odd k, Frankl and Rödl proved the linear
lower bound m(k) > εk, for fixed ε > 0 [1]. The proof relies on a strong result in
extremal set theory they proved, which resolved a $250 problem of Erdős. Later
the bound was improved to m(k) ≥ 2k, for odd k [15].

Consider Q(n, [ε0n, (1 + ε1)n], 2 logn), for fixed 0 < ε0 < ε1 < 1. From Theo-
rem 8 below it will follow, that proving an Ω̃(n) lower bounds on this quantity
would yield an Ω̃(n2) multilinear ABP lower bound. In light of the result by
Frankl and Rödl such a linear lower bound appears plausible. Also note the lin-
ear lower bound by Alon et al. for covering the entire hypercube, in case the
defining equations have coefficients in {−1, 1} instead of in {0, 1} [14]. They
define for n ≡ d (mod 2),

K(n, d) = min{|E| : E ⊆ Hn, (∀x ∈ Hn), (∃e ∈ E), |x · e| ≤ d},

and prove K(n, d) = "n/(d+1)#. The relation between Q(n,W, d) and multilinear
ABPs is expressed in the following theorem:

Theorem 8. Let X be a set of 2n variables, and let F be a field. For any full
rank homogeneous polynomial f of degree n over X and F ,

Bsyn(f) = Ω

(
n−1∑

r=1

min(n,Q(n, [r, n + r], 2 log n))

)

.

Proof. Let B = (G,w, s, t) be a multilinear ABP computing f . Let L0, L1, . . . , Ln

be the levels of B. For v, w ∈ V [G], let fv,w denote the polynomial computed
by the subprogram of B with source v and sink w. Let Xv,w denote the set
of all variables appearing on directed paths from v to w. Consider r such that
0 < r < n. Write f = fs,t =

∑
v∈Lr

fs,vfv,t.
By syntactic multilinearity, we have that |Xs,v| ≥ r and |Xv,t| ≥ n − r. The

latter implies |Xs,v| ≤ n + r, again by syntactic multilinearity. Let χ(Xs,v) ∈
B

[r,n+r]
2n denote the characteristic vector of Xs,v.
Suppose that |Lr| < Q(n, [r, n + r], 2 logn). Then there exists γ ∈ He

2n such
that for every b ∈ {χ(Xs,v) : v ∈ Lr}, |γ · b| > 2 logn. Let A : X → Y ∪Z be any
partition that assigns a Y variable to xi, if γi = 1, and a Z variable otherwise,
for all i ∈ [2n].
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Let B′ be the branching program obtained from B by substituting according
to A. For nodes v and w, we let Yv,w and Zv,w denote the sets of y and z
variables, respectively, appearing on paths from v to w in B′. Then for any
v ∈ Lr, min(Ys,v, Zs,v) ≤ (Ys,v + Zs,v)/2 − logn ≤ |Xs,v|/2 − log n. Hence, by
Item 1 of Proposition 1, we have that rank MfA

s,v
≤ 2|Xs,v|/2−log n. By syntactic

multilinearity, none of the variables appearing on paths from s to v can appear
on paths from v to t. So |Xv,t| ≤ 2n − |Xs,v|. By Item 1 of Proposition 1 we
get rank MfA

v,t
≤ 2n−|Xs,v|/2. Using multiplicativity (Proposition 1, Item 3), we

conclude rank MfA
s,vfA

v,t
≤ 2n−log n, and thus using subadditivity (Proposition 1,

Item 2) and since f =
∑

v∈Lr
fs,vfv,t that rank MfA ≤ |Lr|2n−log n. Since f is

of full rank, rank MfA = 2n. We conclude that |Lr| ≥ n. �

One derives a lower bound as follows: assuming for simplicity � is even, for an
individual vector e ∈ B2n of weight �, with r ≤ � ≤ n+ r, the number of vectors
x ∈ He

2n with |x · e| ≤ d, is given by

d∑

i=−d

i even

(
�

�/2 − i/2

)(
2n− �

n− �/2 + i/2

)

. (2)

One can bound (2) by O( (d+1)22n√
(2n−)

) = O( (d+1)22n√
r(n−r)

). This is an O((d+1)
√

2n
r(n−r))

fraction of He
2n. Hence Q(n, [r, n + r], d) = Ω((d + 1)−1

√
r(n−r)

2n ). Applying
Theorem 8 and Lemma 4 and summing for r in the range [ε0n, ε1n], for fixed
0 < ε0 < ε1 < 1 yields the following theorem:

Theorem 9. Let X be a set of 2n variables. For any field F , there exists an ex-
tension field G of F and explicitly constructed multilinear polynomial f ∈ G[X ],
such that any multilinear algebraic branching program over X and G computing
f has Ω( n

√
n

log n ) nodes.

6 Conclusions

The author believes that full rank polynomials cannot be computed by polyno-
mial size multilinear ABPs. If true, this unfortunately would rule out
separating s-mlin-VNC1 and s-mlin-VPs by means of “merely” supplying an
algorithm. Hence the attention has been on using full rank polynomials to prove
lower bounds for multilinear ABPs. As the constructions in this paper show,
proving super-polynomial lower bounds on the size of a syntactically multilin-
ear ABP computing a polynomial f ∈ s-mlin-VNC2 is equivalent to separating
s-mlin-VPws and s-mlin-VP.

It should be noted the ABP-model can be quite powerful. It is possible for
certain polynomials to have branching program size sublinear in the number of
input variables. The prime example being that, given two n × n matrices X
and Y of variables, one can compute f =

∑
i,j∈[n](XY )ij with a syntactically
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multilinear ABP with O(
√
N) many nodes, where N = 2n2 is the number of

input variables. This is an example of a polynomial, for which the multilinear
ABP-model is at least “quadratically more efficient” than the syntactic multilin-
ear circuit model. In the latter model, the currently best know lower bound for
an explicit function is of level Ω( n4/3

log2 n
) [8]. Theorem 8 supplies a lower bound

strategy, which yielded an Ω( n3/2

log n ) lower bound for multilinear ABPs. By re-
solving a certain generalization of Galvin’s Problem this method can yield an
Ω̃(n2) lower bound for syntactically multilinear ABPs.

Acknowledgments. I thank Peter Bro Miltersen, Kristoffer Arnsfelt Hansen
and Oded Lachish for helpful discussions.
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Abstract. We investigate the decidability of the periodicity and the
immortality problems in three models of reversible computation: re-
versible counter machines, reversible Turing machines and reversible one-
dimensional cellular automata. Immortality and periodicity are
properties that describe the behavior of the model starting from ar-
bitrary initial configurations: immortality is the property of having at
least one non-halting orbit, while periodicity is the property of always
eventually returning back to the starting configuration. It turns out that
periodicity and immortality problems are both undecidable in all three
models. We also show that it is undecidable whether a (not-necessarily
reversible) Turing machine with moving tape has a periodic orbit.

Introduction

Reversible computing is the classical counterpart of quantum computing. Re-
versibility refers to the fact that there is an inverse process to retrace the com-
putation back in time, i.e., the system is time invertible and no information is
ever lost. Much of the research on reversible computation is motivated by the
Landauer’s principle which states a strict lower bound on the amount of energy
dissipation which must take place for each bit of information that is erased [1].
Reversible computation can, in principle, avoid this generation of heat.

Reversible Turing machine (RTM) was the earliest proposed reversible com-
putation model [2,3]. Since then, reversibility has been investigated within other
common computation models such as Minsky’s counter machines [4,5] and cel-
lular automata [6]. In particular, reversible cellular automata (RCA) have been
extensively studied due to the other physics-like attributes of cellular automata
such as locality, parallelism and uniformity in space and time of the update rule.

All three reversible computation models are Turing complete: they admit
simulations of universal Turing machines, which naturally leads to various un-
decidability results for reachability problems. In this work we view the systems,
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however, rather differently by investigating their behavior from arbitrary start-
ing configurations. This is more a dynamical systems approach. Each device is
understood as a transformation F : X −→ X acting on its configuration space
X . In all cases studied here (counter machines, two Turing machine models –
with moving head and with moving tape – and cellular automata) space X is
endowed a topology under which F is continuous. In the cases of Turing ma-
chines with moving tape and cellular automata, it is the compact and metrizable
topology obtained as the enumerable infinite product of the discrete topology on
each finite component of a configuration. The action F may be partial, so that
it is undefined for some elements of X . Configurations on which F is undefined
are called halting. We call F immortal if there exists a configuration x ∈ X
that never evolves into a halting configuration, that is, Fn(x) is defined for all
positive integers n. In contrast, a mortal system eventually halts, regardless of
the starting configuration. We call F uniformly mortal if a uniform time bound
n exists such that Fn(x) is not defined for any x ∈ X . If F is continuous, X
compact, and the set of halting configurations open then mortality and uniform
mortality are equivalent concepts. This means that mortal Turing machines and
cellular automata are automatically uniformly mortal. In contrast, a counter
machine may be mortal without being uniformly mortal. (A simple example is
a one-counter machine where the counter value is repeatedly decremented until
it becomes zero and the machine halts.)

Periodicity, on the other hand, is defined for complete systems: systems with-
out halting configurations. We call total F : X −→ X uniformly periodic if there
is a positive integer n such that Fn is the identity map. Periodicity refers to the
property that every configuration is periodic, that is, for every x ∈ X there exists
time n such that Fn(x) = x. Periodicity and uniform periodicity are equivalent
concepts in the cases of cellular automata (Section 3.3) and Turing machines un-
der both modes (Section 2.1), while a counter machine can be periodic without
being uniformly periodic (Example 1 in Section 1.1).

In this work we are mainly concerned with decidability of these concepts. Im-
mortality of unrestricted (that is, not necessarily reversible) Turing machines was
proved undecidable already in 1966 by Hooper [7]. Our main result (Theorem 7)
is a reversible variant of Hooper’s approach where infinite searches during counter
machine simulations by a Turing machine are replaced by recursive calls to the
counter machine simulation itself with empty initial counters. Using reversible
counter machines, the recursive calls can be unwound once the search is com-
plete. In a sense this leads to a simpler construction than in Hooper’s original
article.

Our result also answers an open problem of control theory from [8]. That
paper pointed out that if the immortality problem for reversible Turing machines
is undecidable, then so is observability for continuous rational piecewise-affine
planar homeomorphisms.

As another corollary we obtain the undecidability of the periodicity of Turing
machines (Theorem 8). The related problem of determining if a given Turing
machine has at least one periodic orbit (under the moving tape mode) is proved
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undecidable for reversible, non-complete Turing machines, and for non-reversible,
complete Turing machines. The problem remains open under reversible and com-
plete machines. The existence of periodic orbits in Turing machines and counter
machines have been investigated before in [9,10]. Article [9] formulated a con-
jecture that every complete Turing machine (under the moving tape mode) has
at least one periodic orbit, while [10] refuted the conjecture by providing an
explicit counter example. The counter example followed the general idea of [7]
in that recursive calls were used to prevent unbounded searches. In [10] is was
also shown that it is undecidable if a given complete counter machine has a pe-
riodic orbit. We show that this is the case even under the additional constraint
of reversibility (Theorem 6).

In Theorem 12 we reduce the periodicity problem of reversible Turing ma-
chine into the periodicity problem of one-dimensional cellular automata. The
immortality problem of reversible cellular automata has been proved undecidable
in [11]. Our proofs for the undecidability of immortality (Theorem 1) and pe-
riodicity (Theorem 3) among reversible counter machines follow the techniques
of [5]. Interestingly, the uniform variants of both immortality and periodicity
problems are decidable for counter machines (Theorems 2 and 4).

The paper is organized into three parts dealing with RCM (section 1), with
RTM (section 2) and with RCA (section 3). Each part consists of four subsections
on (1) definitions, (2) the immortality problem, (3) the periodicity problem, and
(4) the existence of periodic orbits. Due to page constraints most proofs are short
sketches of the main idea.

1 Reversible Counter Machines

1.1 Definitions

Following [5], we define special counter machine instructions for a simpler syntac-
tic characterization of local reversibility and forget about initial and accepting
states as we are only interested in dynamical properties.

Let Υ = {0,+} be the set of test values and Φ = {−, 0,+} be the set of counter
operations whose reverse are defined by −−1 = +, 0−1 = 0 and +−1 = −. For
all j ∈ Zk and φ ∈ Φ, testing τ and modifying θj,φ actions are defined for all
k ∈ Z, i ∈ Zk and v ∈ Nk as:

τ(k) =
{

0 if k = 0
+ if k > 0 θj,φ(v)(i) =

⎧
⎨

⎩

v(i) − 1 if v(i) > 0, i = j and φ = −
v(i) if i �= j or φ = 0
v(i) + 1 if i = j and φ = +

A k-counter machine M is a triple (S, k, T ) where S is a finite set of states,
k ∈ N is the number of counters, and T ⊆ S × Υ k ×Zk ×Φ× S is the transition
table of the machine. Instruction (s, u, i,−, t) is not allowed in T if u(i) = 0. A
configuration c of the machine is a pair (s, v) where s ∈ S is a state and v ∈ Nk

is the value of the counters. The machine can transform a configuration c in a
configuration c′ in one step, noted as c 3 c′, by applying an instruction ι ∈ T .
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An instruction (s, u, i, φ, t) ∈ T can be applied to any configuration (s, v) where
τ(v) = u leading to the configuration (t, θi,φ(v)). The transitive closure of 3 is
noted as 3∗.

A counter machine (S, k, T ) is a deterministic k-counter machine (k-DCM)
if at most one instruction can be applied from any configuration. Formally, the
transition table must satisfy the following condition:

(s, u, i, φ, t) ∈ T ∧ (s, u, i′, φ′, t′) ∈ T ⇒ (i, φ, t) = (i′, φ′, t′).

The transition function of a deterministic counter machine is the function
G : S × Nk → S × Nk which maps a configuration to the unique transformed
configuration, that is for all (s, v) ∈ S × Zk,

G(s, v) =
{

(t, θi,φ(v)) if (s, u, i, φ, t) ∈ T and τ(v) = u
⊥ otherwise

The set of reverse instructions of an instruction is defined as follows:

(s, u, i, 0, t)−1 ={(t, u, i, 0, s)},
(s, u, i,+, t)−1 ={(t, u′, i,−, s)}, where u′(i) = +, u′(j) = u(j) for j �= i,
(s, u, i,−, t)−1 ={(t, u, i,+, s), (t, u′, i,+, s)},where u′(i)=0, u′(j)=u(j) for j �= i.

The reverse T−1 of a transition table T is defined as T−1 =
⋃

ι∈T ι−1. The reverse
of counter machine M = (S, T ) is the machine M−1 = (S, T−1). A reversible
k-counter machine (k-RCM) is a deterministic k-counter machine whose reverse
is deterministic.

Example 1. The complete DCM ({l, l′, r, r′} , 2, T ) with the following T is peri-
odic but not uniformly periodic (∗: any value): { (l, (0, ∗), 0, 0, r), (r, (∗, 0), 1, 0, l),
(l, (+, ∗), 0,−, l′), (r, (∗,+), 1,−, r′), (l′, (∗, ∗), 1,+, l), (r′, (∗, ∗), 0,+, r) }. In l, l′

tokens are moved from the first counter to the second, and in states r, r′ back to
the first counter. Its reverse is obtained by swapping l ↔ r and l′ ↔ r′. �

1.2 Undecidability of the Immortality Problem

Theorem 1. It is undecidable whether a given 2-RCM is immortal.

Proof sketch. By [7] the immortality problem is undecidable among 2-CM, while
[5] provides an effective immortality/mortality preserving conversion of an arbi-
trary k-CM into a 2-RCM. 	

Remark. The 2-RCM constructed in the proof through Morita’s construction [5]
can be forced to have mortal reverse. This is obtained by adding in the original
CM an extra counter that is being continuously incremented.

Theorem 2. It is decidable whether a given k-CM is uniformly mortal.

Proof sketch. Induction on k: The claim is trivial for k = 0. For the inductive
step, let M be a k-CM, k ≥ 1. For i = 1, 2, . . . , k set counter i to be always
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positive and test whether the so obtained (k − 1)-CM Mi is uniformly mortal.
If all k recursive calls return a positive answer, set n to be a common uniform
mortality time bound for all k machines Mi. Since counters can be decremented
by one at most, we know that configurations of M with some counter value ≥ n
are mortal. Immortality hence occurs only if there is a period within the finite
number of configurations with all counters < n. 	

1.3 Undecidability of the Periodicity Problem

Theorem 3. It is undecidable whether a given 2-RCM is periodic.

Proof sketch. Let M = (S, 2, T ) be a given 2-RCM whose reverse is mortal. In
particular, there are no periodic configurations in M . According to the remark
after Theorem 1 it is enough to effectively construct a complete 2-RCM M ′ that
is periodic if and only if M is mortal. Machine M ′ has state set S×{+,−} where
states (s,+) and (s,−) represent M in state s running forwards or backwards
in time, respectively. In a halting configuration the direction is switched. 	
Analogously to Theorem 2 one can prove the following result.

Theorem 4. It is decidable whether a given k-CM is uniformly periodic.

1.4 Periodic Orbits

Theorem 5 ([10]). It is undecidable whether a given complete 2-DCM admits
a periodic configuration.

Theorem 6. It is undecidable whether a given complete 3-RCM admits a peri-
odic configuration, and it is undecidable whether a given (not necessarily com-
plete) 2-RCM admits a periodic configuration.

Proof sketch. We first prove the result for complete 3-RCM. The construction
in [5] shows that it is undecidable for a given 2-RCM M = (S, 2, T ) without
periodic configurations and two given states s1 and s2 whether there are counter
values n1, n2, m1 and m2 such that (s1, n1,m1) 3∗ (s2, n2,m2). By removing all
transitions from state s2 and all transitions into state s1 we can assume without
loss of generality that all configurations (s1, n1,m1) and (s2, n2,m2) are halting
in M−1 and M , respectively. Using a similar idea as in the proof of Theorem 3
we effectively construct a 3-RCM M ′ = (S × {+,−}, 3, T ′) that simulates M
forwards and backwards in time using states (s,+) and (s,−), respectively, and
counters 1 and 2. The direction is switched at halting configurations. In addition,
counter 3 is incremented at halting configurations, except when the state is
s1 or s2.

Machine M ′ is clearly reversible and complete. Moreover, since M has no
periodic configurations, the only periodic configurations of M ′ are those where
M is simulated back and forth between states s1 and s2. This completes the
proof for 3-RCM.

Using the construction of [5] a three counter RCM can be converted into a
2-RCM and that conversion preserves periodic orbits. 	
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The 2-RCM provided by the construction in [5] is not complete. It seems
likely that it can be modified to give a complete 2-RCM, but details remain to
be worked out:

Conjecture 1. It is undecidable whether a given complete 2-RCM admits a pe-
riodic configuration.

2 Reversible Turing Machines

2.1 Definitions

The classical model of Turing machines consider machines with a moving head
(a configuration is a triple (s, z, c) ∈ S × Z × ΣZ). Following Kůrka [9], we
consider machines with a moving tape as our base model to endow the space
of configurations with a compact topology. Following [5], we define two kinds of
instructions for a simpler syntactic characterization of local reversibility.

Let Δ = {←,→} be the set of directions with inverses (←)−1 =→ and (→
)−1 =←. For all δ ∈ Δ and a ∈ Σ, moving σδ and writing μa actions are defined
for all c ∈ ΣZ and z ∈ Z as:

σδ(c)(z) =
{
c(z + 1) if δ =→
c(z − 1) if δ =← μa(c)(z) =

{
a if z = 0
c(z) if z �= 0

A Turing machine M is a triple (S,Σ, T ) where S is a finite set of states, Σ is a
finite set of symbols, and T ⊆ (S×Δ×S)∪(S×Σ×S×Σ) is the transition table of
the machine. A configuration c of the machine is a pair (s, c) where s ∈ S is a state
and c ∈ ΣZ is the content of the tape. The machine can transform a configuration
c in a configuration c′ in one step, noted as c 3 c′, by applying an instruction ι ∈ T .
An instruction (s, δ, t) ∈ T ∩ (S ×Δ×S) is a move instruction of the machine, it
can be applied to any configuration (s, c), leading to the configuration (t, σδ(c)).
An instruction (s, a, t, b) ∈ T ∩ (S ×Σ × S ×Σ) is a matching instruction of the
machine, it can be applied to any configuration (s, c) where c(0) = a, leading to
the configuration (t, μb(c)).

A Turing machine (S,Σ, T ) is a deterministic Turing machine (DTM) if at
most one instruction can be applied from any configuration. Formally, the tran-
sition table must satisfy the following conditions:

(s, δ, t) ∈ T ∧ (s′, a′, t′, b′) ∈ T ⇒ s �= s′

(s, δ, t) ∈ T ∧ (s, δ′, t′) ∈ T ⇒ δ = δ′ ∧ t = t′

(s, a, t, b) ∈ T ∧ (s, a, t′, b′) ∈ T ⇒ t = t′ ∧ b = b′

The local transition function of a DTM is the function f : S ×Σ → S ×Δ ∪
S×Σ∪{⊥} defined for all (s, a) ∈ S×Σ as follows. The associated partial global
transition function G : S × ΣZ → S × ΣZ maps a configuration to the unique
transformed configuration, that is for all (s, c) ∈ S ×ΣZ,

f(s, a) =

⎧
⎨

⎩

(t, δ) if (s, δ, t) ∈ T
(t, b) if (s, a, t, b) ∈ T
⊥ otherwise

G(s, c) =
{

(t, σδ(c)) if f(s, c(0)) = (t, δ)
(t, μb(c)) if f(s, c(0)) = (t, b)
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Lemma 1. If all configurations of a DTM are periodic or mortal then there
is a uniform bound n such that for all configurations (s, c) either Gn(s, c) is
undefined or Gt(s, c) = (s, c) for some 0 < t < n. In particular, a periodic DTM
is uniformly periodic and a mortal DTM is uniformly mortal.

Proof. For every n > 0 let Un = {(s, c) | Gn(s, c) = (s, c) or Gn(s, c) undef} be
the set of configurations that are mortal or periodic at time n. Sets Un are open
so U1, U2, . . . is an open cover of the compact set of all configurations. It has a
finite subcover. 	

One might think that periodicity characterizes a different set of machines if one
considers Turing machines with a moving head instead of a moving tape but it is
not the case. The global transition function with moving head H : S×Z×ΣZ →
S×Z×ΣZ is defined so that for each (s, z, c) ∈ S×Z×ΣZ, H(s, z, c) = (s′, z′, c′)
where G(s, σz

→(c)) = (s′, σz′

→(c′)). A DTM is periodic with moving head if for
each configuration c, there exists t ∈ N such that Ht(c) = c or equivalently if
there exists some t ∈ N such that Ht = Id.

Lemma 2. A DTM is periodic if and only if it is periodic with moving head.

Proof. Assume that Σ has at least two elements. For each t ∈ N and (s, z, c) ∈
S × Z × ΣZ, Ht(s, z, c) = (s′, z′, c′) where Gt(s, σz

→(c)) = (s′, σz′

→(c′)). Thus,
if Ht = Id then Gt = Id. Conversely, let Gt = Id. By definition, Ht(s, z, c) =
(s, z′, c′) for some z′ such that σz

→(c) = σz′

→(c′). Moreover, as the machine acts
locally, for all d and k such that c|[z−t,z+t] = d|[k−t,k+t], Ht(s, k, d) = (s, k +
z′ − z, d′) where d′ = σz′−z

→ (d′). If z′ − z �= 0, one might choose d such that
d(k + t(z′ − z)) �= d(k + (t + 1)(z′ − z)), contradicting the hypothesis. Thus,
Ht = Id. 	

The reverse of an instruction is defined as follows: (s, δ, t)−1 = (t, δ−1, s) and
(s, a, t, b)−1 = (t, b, s, a). The reverse T−1 of a transition table T is defined as
T−1 =

{
ι−1
∣
∣ι ∈ T

}
. The reverse of Turing machine M = (S,Σ, T ) is the ma-

chine M−1 = (S,Σ, T−1). A reversible Turing machine (RTM) is a deterministic
Turing machine whose reverse is deterministic.

Lemma 3. It is decidable whether a given Turing machine is reversible.

Proof. It is sufficient to syntactically check the transition table. 	

Lemma 4. The reverse of a mortal RTM is mortal.

Proof. The uniform bound is valid for both the mortal RTM and its reverse. 	

Lemma 5. The reverse of a complete RTM is a complete RTM. In particular,
a complete RTM is surjective.

Proof. A DTM is complete if and only if n|Σ| + m = |S||Σ| where n and m are
the numbers of move and matching instructions, respectively. The claim follows
from the fact that M and M−1 always have the same numbers of move and
matching instructions. 	
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2.2 Undecidability of the Immortality Problem

Theorem 7. It is undecidable whether a given RTM is immortal.

Proof sketch. For a given 2-RCM without periodic configurations, and given
initial state s0, we effectively construct a reversible Turing machine that is mor-
tal if and only if the 2-RCM halts from the initial configuration (s0, 0, 0). The
Theorem then follows from [5], where it was shown that the halting problem is
undecidable for 2-RCM. Note that our additional constraint that the 2-RCM has
no periodic configurations can be easily established by having an extra counter
that is incremented on each step of the counter machine. This counter can then
be incorporated in the existing two counters with the methods of [5].

As a first step we do a fairly standard simulation of a 2-CM by a TM. Configu-
ration (s, a, b) where s is a state and a, b ∈ N is represented as a block ”@1ax2by”
of length a + b + 3, and the Turing machine is positioned on the symbol ”@” in
state s. A simulation of one move of the CM consists of (1) finding delimiters
”x” and ”y” on the right to check if either of the two counters is zero, and (2)
incrementing or decrementing the counters as determined by the CM. The TM
is then returned to the beginning of the block in the new state of the CM. If the
CM halts then also the TM halts. All this can be done reversibly if the simulated
CM is reversible.

The TM constructed as outline above has the problem that it has immortal
configurations even if the CM halts. These are due to the unbounded searches
for delimiter symbols ”@”, ”x” or ”y”. Searches are needed when testing whether
the second counter is zero, as well as whenever either counter is incremented or
decremented.

Unbounded searches lead to infinite searches if the symbol is not present in
the configuration. (For example, searching to the right for symbol ”x” when the
tape contains ”@111. . . ”.) To prevent such infinite searches we follow the idea
of [7], also employed in [10]. Instead of a straightforward search using a loop,
the search is done by performing a recursive call to the counter machine from
its initial configuration (s0, 0, 0). More precisely, we first make a bounded search
of length three to see if the delimiter is found within next three symbols. If the
delimiter is not found, we start a recursive simulation of the CM by writing
”@xy” over the next three symbols, step on the new delimiter symbol ”@”, and
enter the initial state s0. This begins a nested simulation of the CM.

In order to be able to continue the higher level execution after returning from
the recursive search, the present state of the TM needs to be written on the tape
when starting the recursive call. For this purpose we increase the tape alphabet
by introducing several variants ”@α” of the start delimiter ”@”. Here α is the
Turing machine state at the time the search was begun. When returning from a
successful recursive search, the higher level computation can pick up from where
it left off by reading the state α from the delimiter ”@α”.

If the recursive search procedure finds the delimiter this is signalled by revers-
ing the search. Once returned to the beginning, the three symbol initial segment
”@xy” is moved three positions to the right and the process is repeated. The re-
peated applications of recursive searches, always starting the next search three
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positions further right, will eventually bring the machine on the delimiter it was
looking for, and the search is completed.

On the other hand, if the CM halts during a recursive search then the TM
halts. This always happens when a sufficiently long search is performed using a
CM that halts from its initial configuration.

With some additional tricks one can make the TM outlined above reversible,
provided the CM is reversible. Now we reason as follows: If the initial configura-
tion (s0, 0, 0) is immortal in the CM then the TM has a non-halting simulation
of the CM. So the TM is not mortal. Conversely, suppose that the CM halts in k
steps but the TM has an immortal configuration. The only way for the TM not
to halt is to properly simulate the CM from some configuration (s, a, b), where
the possibilities a = ∞ and b = ∞ have to be taken into account. Since the
CM has no periodic configurations, one of the two counters necessarily obtains
arbitrarily large values during the computation. But this leads to arbitrarily long
recursive searches, which is not possible since each such search halts within k
steps. 	

Remarks. (1) The RTM constructed in the proof has no periodic configurations.
So the undecidability of the immortality problem holds among RTM without any
periodic configurations. (2) Add to the 2-RCM a new looping state s1 in which
the first counter is incremented indefinitely. We can also assume without loss of
generality that the 2-RCM halts only in state s2. Then the RTM constructed in
the proof has computation (s1, c1) 3∗ (s2, c2) for some c1, c2 ∈ ΣZ if and only if
the 2-RCM halts from the initial configuration (s0, 0, 0).

These detailed observations about the proof will be used later in the proofs
of Theorems 8 and 9.

2.3 Undecidability of the Periodicity Problem

Theorem 8. It is undecidable whether a given complete RTM is periodic.

Proof sketch. For a given RTM A = (S,Σ, T ) without periodic configurations we
effectively construct a complete RTM A′ = (S × {+,−}, Σ, T ′) that is periodic
if and only if every configuration of A is mortal. States (s,+) and (s,−) of
A′ are used to represent A in state s running forwards or backwards in time,
respectively. In a halting configuration the direction is switched. The result now
follows from Theorem 7 and the first remark after its proof. 	

2.4 Periodic Orbits

Theorem 9. It is undecidable whether a given (non-complete) RTM admits a
periodic configuration.

Proof. Remark (2) after the proof of Theorem 7 pointed out that it is unde-
cidable for a given RTM A = (S,Σ, T ) without periodic configurations, and
two given states s1, s2 ∈ S whether there are configurations (s1, c1) and (s2, c2)
such that (s1, c1) 3∗ (s2, c2). By removing all transitions from state s2 and
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all transitions into state s1 we can assume without loss of generality that all
configurations (s1, c1) and (s2, c2) are halting in A−1 and A, respectively. Us-
ing a similar idea as in the proof of Theorem 8 we effectively construct an RTM
A′ = (S×{+,−}, Σ, T ′) in which A is simulated forwards and backwards in time
using states (s,+) and (s,−), respectively. But now the direction is swapped from
”-” to ”+” only in state s1, and from ”+” to ”-” in state s2. In other halting
situations of A, also A′ halts. Clearly ((s1,+), c1) is periodic in A′ if and only if
(s1, c1) 3∗ (s2, c2) for some c2 ∈ ΣZ. No other periodic orbits exist in A′. 	

Theorem 10. It is undecidable whether a given complete DTM admits a peri-
odic configuration.

Proof. In [10] a complete DTM over the binary tape alphabet was provided that
does not have any periodic configurations. This easily gives an analogous DTM
for any bigger tape alphabet. For a given RTM A = (S,Σ, T ) we effectively
construct a complete DTM that has a periodic configuration if and only if A
has a periodic configuration. The result then follows from Theorem 9. Let B =
(S′, Σ, T ′) be the fixed complete DTM without periodic configurations from [10],
S∩S′ = ∅. The complete DTM we construct has state set S∪S′ and its transitions
includes T ∪ T ′, and in addition a transition into a state s′ ∈ S′ whenever A
halts. It is clear that the only periodic configurations are those that are periodic
already in A. 	

Conjecture 2. A complete RTM without a periodic point exists. Moreover, it is
undecidable whether a given complete RTM admits a periodic configuration.

3 Reversible Cellular Automata

3.1 Definitions

A one-dimensional cellular automaton A is a triple (S, r, f) where S is a finite
state set, r ∈ N is the neighborhood radius and f : S2r+1 −→ S is the local update
rule of A. Elements of Z are called cells, and a configuration of A is an element of
SZ that assigns a state to each cell. Configuration c is turned into configuration
c′ in one time step by a simultaneous application of the local update rule f in
the radius r neighborhood of each cell:

c′(i) = f(c(i− r), c(i − r + 1), . . . , c(i + r − 1), c(i + r)) for all i ∈ Z.

Transformation G : c �→ c′ is the global transition function of A. The Curtis-
Hedlund-Lyndom -theorem states that a function SZ −→ SZ is a global transi-
tion function of some CA if and only if it is continuous and commutes with the
shift σ, defined by σ(c)i = ci+1 for all c ∈ SZ and i ∈ Z.

Cellular automaton A is called reversible if the global function G is bijective
and its inverse G−1 is a CA function. We call A injective, surjective and bi-
jective if G is injective, surjective and bijective, respectively. Injectivity implies
surjectivity, and bijectivity implies reversibility. See [6] for more details on these
classical results.
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3.2 Undecidability of the Immortality Problem

Let some states of a CA be identified as halting. Let us call a configuration c
halting if c(i) is a halting state for some i. We call c locally halting if c(0) is a
halting state. These two definitions reflect two different ways that one may use
to define an accepting computation in CA: either acceptance happens when a
halting state appears somewhere, in an unspecified cell, or one waits until a halt-
ing state shows up in a fixed, predetermined cell. A configuration c is immortal
(locally immortal) for G if Gn(c) is not halting (locally halting, respectively)
for any n ≥ 0. CA function G is immortal (locally immortal) if there exists an
immortal (locally immortal) configuration.

Theorem 11 ([11]). It is undecidable whether a given reversible one-
dimensional CA is immortal (locally immortal).

3.3 Undecidability of the Periodicity Problem

In cellular automata periodicity and uniform periodicity are equivalent. Indeed,
suppose that a period n that is common to all configurations does not exist.
Then for every n ≥ 1 there is cn ∈ SZ such that Gn(cn) �= cn. Each cn has a
finite segment pn of length 2rn+ 1 that is mapped in n steps into a state that is
different from the state in the center of pn. Configuration c that contains a copy
of pn for all n, satisfies Gn(c) �= c for all n, and hence such c is not periodic.

Theorem 12. It is undecidable whether a given one-dimensional CA is periodic.

Proof sketch. For a given complete reversible Turing machine M = (S,Σ, T )
we effectively construct a one-dimensional reversible CA A = (Q, 2, f) that is
periodic if and only if M is periodic. The result then follows from Theorem 8.
The state set

Q = Σ × ((S × {+,−}) ∪ {←,→})

consists of two tracks: The first track stores elements of the tape alphabet Σ
and it is used to simulate the content of the tape of the Turing machine, while
the second track stores the current state of the simulated machine at its present
location, and arrows ← and → in other positions pointing towards the position
of the Turing machine on the tape. The arrows are needed to prevent several
Turing machine heads accessing the same tape location and interfering with
each other’s computation. The state is associated a symbol ’+’ or ’-’ indicating
whether the reversible Turing machine is being simulated forwards or backwards
in time. The direction is switched if the Turing machine sees a local error, i.e.,
an arrow pointing away from the machine.

It follows from the reversibility of M that A is a reversible CA. If M has
a non-periodic configuration c then A has a non-periodic configuration which
simulates the computation from c. Conversely, if M is periodic it is uniformly
periodic under the moving head mode. It easily follows that all configurations of
A are periodic. 	
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A one-dimensional RCA is equicontinuous if and only if it is periodic, so we have

Corollary 1. It is undecidable whether a given one-dimensional reversible CA
is equicontinuous.

3.4 Periodic Orbits

Every cellular automaton has periodic orbits so the existence of periodic orbits
is trivial among cellular automata.
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Abstract. We propose a version of ring signatures for which the set of
potential signers may be reduced: the real signer can prove that he or
she has created the signature, while every other member of the ring can
prove not to be the signer. Possibility to run these protocols is triggered
by publishing certain secret information. The proposed scheme is an
intermediate solution between the classical ring and group signatures,
and can be used for instance for e-auction schemes.

1 Introduction

Recent development of ring and group signatures provide tools for authenticating
digital data so that the signer remains anonymous within a set of users - members
of a group or a ring.

A ring signature scheme [1] enables a signer to sign a message and remain
hidden within an arbitrary group of people, called a ring. The real signer uses
his secret key and the public keys of other ring members. So once the public keys
are published, one can be included in a ring even against her or his will. Moreover,
one is unable to prove that he was not the actual signer of a particular message.
Group signatures [2] allow any group member to sign anonymously on behalf of
the group: a verifier can check that a group member has signed the message, but
he cannot indicate who. However, identity of the signer of a particular message
can be revealed. Depending on a particular scheme, it can be done only by a
group manager (e.g. [2]) or by group members (e.g. [3]).

The primary goal of ring signatures is to prove that a message comes from
a member of a certain group of people without revealing from whom exactly.
However, this is not the only functionality of ring signatures. Ring signatures
has been expanded to deniable ring authentication [4,5]. Linkable ring signa-
ture schemes allow to link signatures, if they were signed by the same person.
Short versions of linkable ring signatures were proposed in [6,7]. There are iden-
tity based ring signature schemes, which allow ring construction across different
identity-based master domains [8,9,10,11,12,13]. For a confessible threshold ring
signature [14] the actual signer can prove that he has created the signature.

In this paper we introduce step-out ring signature scheme that serves as an
intermediate solution between ring and group signatures. We make it possible to
change the anonymity status of the creator of a signature in the following way:
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Confession procedure: the signer can reveal himself and prove that he has
created the signature.

Step-out procedure: a member of a ring that has not created the signature
can prove that he is not the signer. Depending on a version of the scheme,
it can be possible only if some requirements are fulfilled.

So the anonymity set of a signer can be reduced to just one element by the
signer himself -as for confessible ring signatures. However, the potential signers
can leave the ring one by one. Additionally, step-out procedure cannot be started,
unless some triggering event has occurred (revealing certain secret material).

Let us mention that similar functionality of signatures have been concerned in
[15,16].However, thesepapers focusonpossibilityof confirmingtobethereal signer.

Applications. We mention just two examples. The first one is an electronic
auction scheme where the ID’s of the participants are known – this kind of auc-
tion is used by authorities in some countries for selling. Every auction participant
is obliged to pay a deposit, which is returned except for the winner. The deposit
paid by the winner is assumed to be a part of the price paid. If the winner does
not sign the contract then the deposit is retained by the seller as a compensation.

In the scenario described step-out ring signatures can be used to sign the
bids. The bid with the highest value is kept by the organizer of the auction.
If somebody wishes to leave the auction, then he or she executes the step-out
procedure and the deposit can be returned immediately. When the auction is
closed, the winner can reveal its identity to the seller. When the winner fails to
do it, the other participants prove that they are not the winners for returning
their deposits, and the effect is finally the same.

The second case is a joint bank account run for two joint owners, say Alice
and Bob. Each of their orders can be signed by a step-out ring signature with
ring of Alice and Bob. As long as everything is fine, neither bank nor anybody
else should know details about who of the joint owners is communicating with
the bank. However, in some situations revealing the signer becomes necessary -
it might be a divorce case or dissolving a common enterprise. Last not least, due
to inheritance procedures a court has to determine if the decendent conducted
certain operations.

2 Scheme Description

Preliminaries. Let p, q be prime, q|p − 1, and G = 〈g〉 be a cyclic subgroup
of Z∗p. For the sake of simplicity we shall skip “mod p” if it follows from the
context. We shall consider rings with n participants, which will be denoted by
U1, . . . , Un. We assume that user Ui holds a private key xi; the corresponding
public key is yi = gxi . The key yi is known to all other participants.

We assume that the following assumptions are fulfilled in G:

Definition 1 (Decisional Diffie-Hellman Assumption). Let G be a cyclic
group generated by g of order q. Let ADDH be an algorithm that has to distinguish
c0 = (g, ga, gb, gab) from c1 = (g, ga, gb, gc) for randomly chosen a, b, c ∈ Zq. Let
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Advddh
A = Pr[A(cd) = d] be called the advantage of A in breaking the DDH

problem.
The DDH assumption holds for G, if advantage Advddh

A is negligible for each
probabilistic polynomial-time algorithm A, i.e. Advddh

A < εddh where εddh is
negligible.

Definition 2 (Discrete Logarithm (DL) Assumption). Let G be a cyclic
group generated by g of order q. Let A be an algorithm such that on input ga,
where a ∈ Zq, A should output a. Let Advdl

A = Pr[A(ga) = a] be the advantage
of A in breaking the DL problem.

The DL assumption holds in G, if for each probabilistic polynomial-time algo-
rithm A advantage Advdl

A is negligible, i.e. Advdl
A < εdl where εdl is negligible.

Our scheme is based upon a scheme SEQDL
[

n
1

]
(ĝ, g, ŷ, y1, . . . , yn,m) briefly de-

scribed in [17]. It is a signature of knowledge and equality of discrete logarithms
logĝ ŷ and logg yi, where yi is some element from the list {y1, . . . , yn} (with i
unrevealed to the prover), for a message m. We use here a slightly modified
version of this scheme:

Definition 3. Signature of knowledge SEQDL
[

n
1

]
(ĝ, g, xj, rj , ŷw, y1, . . . , yn, w1,

. . . , wn,m) (with public parameters ĝ, g, ŷw, y1, . . . , yn, w1, . . . , wn,m) is a tuple
(c1, . . . , cn, s1, . . . , sn) such that
∑n

i=1 ci = H(ĝ||g||ŷw||y1|| . . . (1)
. . . ||yn||w1|| . . . ||wn||ĝs1 ŷc1

w ||gs1(y1w1)c1 || . . . ||ĝsn ŷcn
w ||gsn(ynwn)cn ||m) ,

where H denotes a secure hash function. It is a signature of knowledge and
equality of discrete logarithms of group element ŷw with respect to ĝ and discrete
logarithm of one element out of the list {y1w1, . . . , ynwn} with respect to g, for
message m.

The main difference with the original scheme is that we use factors w1, . . . , wn

that play an important blinding role in our ring signature scheme.

SEQDL Proof of Knowledge. Now we present a construction of a signature
of knowledge and equality of discrete logarithms:

SEQDL
[

n
1

]
(ĝ, g, xj , rj , ŷw, y1, . . . , yn, w1, . . . , wn,m) = (c1, . . . , cn, s1, . . . , sn)

where yj = gxj , wj = grj , and ĝxj+rj = ŷw, that is, signature SEQDL
[

n
1

]
proves

that logĝ ŷw = logg (yiwi). The signature is created as follows:

1. User Uj generates at random the elements r ∈ Zq and ci, si ∈ Zq for i ∈
{1, . . . , n} \ {j}.

2. For all i ∈ {1, . . . , n} \ {j} user Uj computes:

ti ← ĝsi ŷci
w , ui ← gsi(yiwi)

ci , tj ← ĝr , uj ← gr . (2)
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3. User Uj computes:

cj ← H(ĝ||g||ŷw||y1|| . . . (3)
. . . ||yn||w1|| . . . ||wn||t1||u1|| . . . ||tn||un||m) −

∑
i<n,i�=j ci ,

sj ← r − (xj + rj)cj mod q . (4)

Such a signature is verified positively, since

gsj (wjyj)cj = gr−(xj+rj)cj (grjgxj )cj = gr = uj ,

ĝsj (ŷw)cj = ĝr−(xj+rj)cj (ĝrj ĝxj )cj = ĝr = tj

and so the condition (1) and equality of the discrete log are fulfilled.
Note that knowledge of the private key xj as well as discrete logarithm rj of

wj are necessary to split the exponent r from chosen values tj = ĝr and uj = gr,
so that tj = ĝsj ŷ

cj
w , and uj = gsj (yjwj)cj . Since cj is fixed by expression (3), sj

is determined uniquely, and its appropriate value is given by (4).

2.1 Scheme Description

Outline. Let us assume that Uj is the real signer and U1, . . . ,Un are all ring
members. Let the private and public key of user Ui be, respectively, xi and
yi = gxi . For Step-out Ring Signatures (SRS) we have the following procedures:

Signing procedure. SSRS is a randomized algorithm that takes generator g
and a random element ĝ ∈ 〈g〉, ĝ �= 1, the secret key xj , the set of public
keys {y1, . . . , yn} ⊂ 〈g〉 and a message m. It returns a signature σ.

Verification procedure. VSRS is a deterministic algorithm that takes a mes-
sage m, and a signature σ for m. It returns a bit: 1 or 0 to indicate whether
σ is valid, i.e. someone having a public key in a set Y indicated by σ has
signed m.

Confession procedure. CSRS is a deterministic algorithm executed by signer
Uj of a signature σ for m: it yields σ′ - another SRS signature for the message
m. It returns a bit 1 or 0 to indicate, if Uj is really the signer.

Step-out procedure. DSRS is a deterministic algorithm that takes from a user
Ui SRS signatures σ′′ and σ′′′ for a message m̃ =“I have not signed m” and a
signature σ for m. It returns a bit 1 or 0 to confirm that Ui has not created σ.

Details. In order to sign, first an element ĝ �= 1 is chosen at random from G.
Since the order q of G is prime, ĝ is a generator of G as well. The signature has
a form of a non–interactive zero knowledge proof that the exponent hidden in
ŷŵ equals one of the exponents hidden in y1w1, . . . , ynwn.

Algorithm SSRS(g, ĝ, xj , y1, . . . , yn,m)
repeat

r1, . . . , rn ←R Z∗p
wi ← gri, for each i = 1, . . . , n

until (yiwi �= yjwj for each i �= j)



Step-Out Ring Signatures 435

ŵ ← ĝrj, ŷ ← ĝxj, ŷw ← ŷŵ
(c1, . . . cn, s1, . . . , sn) ←SEQDL

[
n
1

]
(ĝ, g, xj , rj , ŷw, y1, ...

..., yn, w1, ..., wn,m)
Y ← {y1, . . . , yn}
W ← {w1, . . . , wn}
σ ← (g, ĝ, ŷ, ŵ, Y,W, c1, . . . , cn, s1, . . . , sn)
return (m,σ)

In order to verify a signature (m,σ) a verifier computes ŷw = ŷŵ and simply
checks validity of SEQDL

[
n
1

]
(ĝ, g, xj, rj , ŷw, y1, . . . , yn, w1, . . . , wn,m).

Algorithm VSRS(σ,m)
ŷw ← ŷŵ
d ← VSEQDL[ n

1 ](ĝ, g, ŷw, y1, . . . , yn, w1, . . . , wn, c1, . . . , cn, s1, . . . , sn,m)
if d = 1 then return 1 else return 0

Note that, if Uj is the real signer of σ and still holds rj , he can create
σ′ = (g, ĝ, ŷ, ŵ, Y ′,W, SEQDL

[
n
1

]
(ĝ, g, xj , rj , ŷ · ŵ, y′1, . . . , y′n, w1, . . . , wn,m)), a

new signature for the same m, with the same parameters g, ĝ, the same set W
and some new set of potential signers Y ′ such that Y ∩ Y ′ = {yj}. Moreover, yj

stands on the same position in both sequences: yj = y′j . Additionally, the signer
chooses new ring members so that for i1 �= i2, we have yi1wi1 �= y′i2wi2 .

Algorithm CSRS(σ, σ′, yj,m)
if(the same g, ĝ, ŷ, ŵ,W were used in σ and σ′) then
d1 ← VSRS(σ,m), d2 ← VSRS(σ′,m)
if (d1 = d2 = 1 and {yj} = Y ∩ Y ′

and yj stands on position j in Y ′ ) then
return 1 else return 0

else return 0

Using m, σ and σ′, a verifier can check, if Uj has really created σ: the verifier
checks whether appropriate parameters used in σ and σ′ are the same, whether
verification for SRS signatures σ and σ′ gives a positive answer and {yj} = Y ∩Y ′,
i.e. Uj was the only potential signer of both σ and σ′. In Sect. 3 (Proposition 1)
we shall see that nobody but the real signer can present such a proof.

When the secret ri is given to the user Ui, he can prove that he has not created
signature σ. Namely, in such a situation he can create two control signatures:

1. σ′′ = (g, ĝ, ŷ′′, ŵ′′, Y ′′,W, SEQDL
[

n
1

]
(ĝ, g, xi, ri, ŷ

′′ · ŵ′′, y′′1 , . . . , y′′n, w1, . . . ,
wn, m̃)) - a SRS signature with the same parameters g, ĝ,W as in σ and
ŷ′′ = ĝxi, ŵ′′ = ĝri, some new set of potential signers Y ′′, for the control
message m̃ = “I have not signed m”.

2. σ′′′ = (g, ĝ, ŷ′′, ŵ′′, Y ′′′,W, SEQDL
[

n
1

]
(ĝ, g, xi, ri, ŷ

′′ · ŵ′′, y′′′1 , . . . , y′′′n , w1,
. . . , wn, m̃)) - a SRS signature for the same the control message m̃ with the
same g, ĝ, ŷ′′ŵ′′,W and Y ′′′ such that Y ′′ ∩ Y ′′′ = {yi} and yi stands on the
same position in Y ′′ and Y ′′′. Moreover, y′′i1wi1 �= y′′′i2wi2 for i1 �= i2.
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To verify that Ui was not a real signer, the verifier checks a few conditions:

Algorithm DSRS(σ,m, σ′′, σ′′′, yi, m̃)
if(the same g, ĝ,W were used in σ, σ′′, σ′′′

and the same ŷ′′, ŵ′′ were used in σ′′, σ′′′) then
d1 ← VSRS(σ,m), d2 ← VSRS(σ′′, m̃), d3 ← VSRS(σ′′′, m̃)
if (d1 = d2 = d3 = 1 and {yi} = Y ′′ ∩ Y ′′′,

and yi stands at the same position in Y ′′ and Y ′′′,
and ŷŵ �= ŷ′′ŵ′′) then

return 1 else return 0
else return 0

We shall see in Section 3 that the real signer cannot create signatures σ′ and σ′′

so that ŷŵ �= ŷ′′ŵ′′.

Parameters ri. During construction of SEQDL signature of knowledge (as a
part of signing, confession and step-out procedures) the signer has to know ri

corresponding to the factor wi used. Depending on the application aimed, we
can apply different scenarios:

– The numbers ri are created by the signer at random. They are kept secret
unless the signer enables a member of a ring to step out.

– The numbers ri are given together with the signature. In this case the ring
participants can immediately step out.

– Ui generates ri herself and publishes wi. Moreover, each wi can be a kind
of time stamp - a signature generated with wi has to be created no earlier
than at the time of creating wi.

In the first case the signer would have to remember all numbers ri, which
might be inconvenient. A simple solution to this problem is to set ri as an
output from a pseudorandom function of other elements of the signature. For
instance, we can put ri = H ′(wzj

i−1), where zj is a secret exponent used for this
purpose only and H ′ is a hash function with the range [0, q − 1].

3 Algorithm Analysis

Throughout this section we shall use the following notation and parameters:

1. g and ĝ are generators used for constructing SRS signatures;
2. x1, . . . , xn, x

′
1, . . . , x

′
n, x

′′
1 , . . . , x′′n, x

′′′
1 , . . . , x′′′n denote private keys; the cor-

responding public keys are y1 = gx1 ,. . . , yn = gxn , y′1 = gx′
1 , . . . , y′n =

gx′
n , y′′1 = gx′′

1 , . . . , y′′n = gx′′
n , y′′′1 = gx′′′

1 , . . . , y′′′n = gx′′′
n ; we shall consider

the sets of keys such that {y1, . . . , yn} ∩ {y′1, . . . , y′n} = {yj} = {y′j} and
{y′′1 , . . . , y′′n} ∩ {y′′′1 , . . . , y′′′n } = {yi}, where yi = y′′i = y′′′i ,

3. m ∈ {0, 1}∗ is a message, m̃ is a message “I have not signed m”,
4. σ = (g, ĝ, ŷ, ŵ, y1, . . . , yn, w1, . . . , wn, c1, . . . , cn, s1, . . . , sn) where σ =

SSRS(g, ĝ, xj , y1, . . . , yn,m),
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5. σ′ = (g, ĝ, ŷ, ŵ, y′1, . . . , y′n, w1, . . . , wn, SEQDL
[

n
1

]
(ĝ, g, xj , rj , ŷŵ, y

′
1, . . . ,

y′n, w1, . . . ,wn,m)),
6. for xi �= xj , ŷ′′ �= ŷ, ŵ′′ �= ŵ:
σ′′ = (g, ĝ, ŷ′′, ŵ′′, y′′1 , . . . , y′′n, w1, . . . , wn, SEQDL

[
n
1

]
(ĝ, g, xi, ri, ŷ

′′ŵ′′, y′′1 ,
. . . , y′′n, w1, . . . , wn, m̃)),

σ′′′ = (g, ĝ, ŷ′′, ŵ′′, y′′′1 , . . . , y′′′n , w1, . . . , wn, SEQDL
[

n
1

]
(ĝ, g, xi, ri, ŷ

′′ŵ′′, y′′′1 ,
. . . , y′′′n , w1, . . . , wn, m̃)) .

Correctness. It follows directly from the construction that the signatures cre-
ated according to the described procedures are verified positively.

Proposition 1. If the confession procedure is executed by Uj according to the
protocol, then the outcome of the procedure is positive and this is an evidence
that Uj is the signer.

Proof. Since VSEQDL[ n
1 ](ĝ, g, ŷŵ, y1, . . . , yn, w1, . . . , wn, c1, . . . cn, s1, . . . sn,m)→

1, there exist α such that gα ∈ {y1w1, . . . , ynwn} and ĝα = ŷŵ. Moreover, if σ′

was created like in point 5 and VSRS(σ′,m) → 1, then gα ∈ {y′1w1, . . . , y
′
nwn}

as well. So gα ∈ {y1w1, . . . , ynwn} ∩ {y′1w1, . . . , y
′
nwn}. Since {y1, . . . , yn} ∩

{y′1, . . . , y′n} = {yj}, and yi1wi1 �= y′i2wi2 for i1 �= i2, we know that gα = yjwj ,
so in this case user Uj was a creator of σ and CSRS(σ, σ′, yj,m) → 1. �

Proposition 2. If the step-out procedure is executed by a non-signer Ui accord-
ing to the protocol, then the outcome of the step-out procedure is positive.

Proof. Let us assume that DSRS(σ,m, σ′′, σ′′′, yi, m̃) → 0. It happens if ŷŵ =
ŷ′′ŵ′′. As in the proof of Proposition 1, we can see that the signatures σ′′ and
σ′′′ guarantee that there exists α′ such that gα′

= yiwi and ĝα′
= ŷ′′ŵ′′. So

α′ = logg (yiwi) = logĝ (ŷ′′ŵ′′) = logĝ (ŷŵ) = logg (yjwj), where Uj is the signer
of σ. We have got that yiwi = yjwj , but this contradicts the assumption about
generating secrets ri and computing wi during the signing procedure SSRS. �

Proposition 3. If a signer Uj of σ executes the step-out procedure, then the
outcome is negative.

Proof. When performing the step-out procedure and generating signatures σ′, σ′′,
the user Uj has to generate y′′ · w′′ = ĝxj+rj . However, this product is the same
as in σ, so this would lead to a failure of the test of the steps-out procedure. �

Unforgeability. It is based on Discrete Logarithm Assumption and the Forking
Lemma (see [18]). Recall that the Forking Lemma can be applied to a signature
that takes the form of a tuple (σ1, h, σ2), where σ1 depends only on values chosen
at random, h is a hash value that depends on the message m to be signed and
σ1, and σ2 depends only on σ1, m, and h.

We consider a chosen-message scenario for a forger FSRS that is given only pub-
lic parameters of the scheme. The forger can query, up to qmax times, some real
signers for valid signatures of messages of his choice. Messages can be asked for be-
ing signed more than once in an adaptive manner, i.e. FSRS can adapt his queries
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according to previous message-signature pairs. Forger’s goal is to produce a sig-
nature σ over a document m - not previously signed in the query stage - such that
VSRS(m,σ) = 1, the set of potential signers in σ equals {y1, . . . , yn}, but m did
not come from any of users Ui having public key yi. We say that FSRS succeeds,
if FSRS can forge a message in this way with a non-negligible probability.

In order to take advantage from the Forking Lemma for attacks in adaptive
chosen-message scenario we show that the proposed SRS signature is of the form
(σ1, h, σ2) and can be simulated without the knowledge of the corresponding
secret signing key and with indistinguishable distribution probability.

Lemma 1. SRS signatures can be simulated in the random oracle model and
under DDH assumption without knowing the corresponding secret signing key
and with distribution probability indistinguishable from SRS signatures produced
by a legitimate signer.

Proof. First, let us consider the simulation algorithm S0 that requires knowledge
of the secret signing key xj :

Algorithm S0(g, ĝ,m, xj , y1, . . . , yn)
r1, . . . , rn ←R Z∗p
wi = gri for all i ∈ {1, . . . , n}
ŷ ← ĝxj, ŵ ← ĝrj

ci ←R Z∗p, for all i ∈ {1, . . . , n}
si ←R Z∗p, for all i ∈ {1, . . . , n}
H(ĝ||g||ŷŵ||y1|| . . . ||yn||w1|| . . . ||wn||ĝs1(ŷŵ)c1 ||gs1(y1w1)c1 || . . .

. . . ||ĝsn(ŷŵ)cn ||gsn(ynwn)cn ||m) ←
∑n

i=1 ci

return σS0 = (m, g, ĝ, ŷ, ŵ, y1, . . . , yn, w1, . . . , wn, c1, . . . , cn, s1, . . . , sn)

Note that the simulator S0 can take the value of H to be equal to
∑n

i=1 ci in
the random oracle model. Apart from that, S0 mimics the signature creation
procedure. Therefore, the returned tuple σs0 is indeed a valid signature of the
message m signed by the user Uj in the random oracle model.

Now, let us consider a slightly modified simulation algorithm S1 creating
signatures with no knowledge on the corresponding secret signing key:

Algorithm S1(g, ĝ,m, y1, . . . , yn)
α, β, r1, . . . , rn ←R Z∗p
wi = gri for all i ∈ {1, . . . , n}
ŷ ← ĝα, ŵ ← ĝβ

ci ←R Z∗p, for all i ∈ {1, . . . , n}
si ←R Z∗p, for all i ∈ {1, . . . , n}
H(ĝ||g||ŷŵ||y1|| . . . ||yn||w1|| . . . ||wn||ĝs1(ŷŵ)c1 ||gs1(y1w1)c1 || . . .

. . . ||ĝsn(ŷŵ)cn ||gsn(ynwn)cn ||m) ←
∑n

i=1 ci

return σS1 = (m, g, ĝ, ŷ, ŵ, y1, . . . , yn, w1, . . . , wn, c1, . . . , cn, s1, . . . , sn)

We claim that the outputs of S1 are indistinguishable from the outputs of S0.
Conversely, assume that there exists an algorithm DistS that for a simulated
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signature σSb
returns a bit b that indicates (with a fair probability) the type

of the input (S0 or S1). Then we use DistS(Sb) to construct another algorithm
DistDDH(t) that solves an instance of the DDH problem t = (g, ga, gb, gc). The
idea is that the only difference between the simulations is that in the second case
the parameter ŷŵ is set at random, while in the first case it has the value ĝx1+r1

related to gx1+r1 , which is another parameter of the simulation. The algorithm
solving DDH first creates a simulated signature σSb

such that: ĝ ← ga, ŷŵ ← gc,
y1w1 ← gb. Note here that if c = ab, then ŷŵ = ĝx1+r1 and σSb

is indeed a
simulation of type S0 for the user y1:

Algorithm Sb(g, ĝ = ga,m, y1, . . . , yn, g, g
b, gc)

r1, r2, . . . , rn ←R Z∗p
wi = gri for all i ∈ {2, . . . , n}
w1 ← gb/y1

ŵ ← ĝr1, ŷ ← gc/ŵ
ci ←R Z∗p, for all i ∈ {1, . . . , n}
si ←R Z∗p, for all i ∈ {1, . . . , n}
H(ĝ||g||ŷŵ||y1|| . . . ||yn||w1|| . . . ||wn||ĝs1(ŷŵ)c1 ||gs1(y1w1)c1 || . . .

. . . ||ĝsn(ŷŵ)cn ||gsn(ynwn)cn ||m) ←
∑n

i=1 ci

return σSb
= (m, g, ĝ, ŷ, ŵ, y1, . . . , yn, w1, . . . , wn, c1, . . . , cn, s1, . . . , sn)

Then it inputs σSb
to DistS(σSb

):

Algorithm DistDDH((g, ga, gb, gc))
σSb

← Sb(g, ĝ = ga,m, y1, . . . , yn, g, g
b, gc)

if DistS(σSb
) = 0 then c = ab

if DistS(σSb
) = 1 then c �= ab

Hence σs2 is indistinguishable from σs1 and σs1 is indistinguishable from a reg-
ular signature σ, thus σs2 is also is indistinguishable from a regular signature σ.

Now we formalize the attacks of a forger FSRS in the chosen-message scenario.

Definition 4. We consider the following experiment of running a forger FSRS:

Experiment ExpFSRS

for k = 1 to qmax

query for (mk, σk), such that VSRS(σk,mk) = 1
let (m,σ) ← FSRS(g, ĝ, y1, . . . , yn,m, (m1, σ1), . . . , (mk, σk))
if VSRS(σ,m) = 1 return 1
else return 0

Then we define the advantage AdvFSRS of the forger FSRS as the probability
Pr[ExpFSRS

= 1].

Theorem 1. Step-out Ring Signatures (SRS) are secure against forgery, i.e.
AdvFSRS is negligibly small.

Proof. In order to prove the theorem we show that an adversary algorithm A
that runs a forger FSRS as a subroutine can be used to break DL assumption.

To utilize the Forking Lemma we abbreviate a signature σ of a message m
from the signing algorithm as σ = (σ1, h, σ2) with the following parameters:
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– σ1 = (ĝ, ŷ, ŵ, w1, . . . , wn, u1, . . . , un, t1, . . . , tn), where ui, ti are constructed
like in (2),

– h = H(ĝ||g||ŷŵ||y1|| . . . ||yn||w1|| . . . ||wn||u1||t1|| . . . ||un||tn||m) ,
– σ2 = (c1, . . . , cn, s1, . . . , sn) .

In order to break DL assumption A runs twice the forger algorithm, yielding
two signatures of a message m. For both cases the “random” parts are the
same - the random oracle inserts the same value for ŷŵ, which is the element
for which we seek its discrete logarithm. As seen in Lemma 1, for running the
forger A does not really need to involve the real signers, the first signatures
can be simulated as well. After acquiring two valid signatures (σ1, h, σ2) and
(σ1, h

′, σ′2), such that h �= h′ and σ2 �= σ′2, adversary A can compute the secret
α = logĝ ŷŵ. Namely A computes αj = (s′j−sj)/(cj−c′j) for j = 1, . . . , n. For one
of these j the adversary gets ĝαj = ŷŵ. Since we assume that the DL assumption
holds, the above algorithm must have negligible probability of success, therefore
AdvFSRS must be negligible, too. �

Anonymity. Another fundamental issue regarding security of our scheme is
anonymity of the real signer. We need to ensure that a ring signature leaks no
information about who has signed the message. More formally, we need to show
that the signatures for a message m created by the owner of a key x0 are indis-
tinguishable from the signatures for m created by using x1 provided that both
corresponding public keys y0 and y1 belong to the ring of the signatures con-
cerned. That is, we need to prove that the signature scheme meets the conditions
from the following definition:

Definition 5. Let ADIST be a probabilistic polynomial time algorithm that can
distinguish betweenσ0 = SSRS(g, ĝ, x0, y0, y1,m) andσ1 = SSRS(g, ĝ, x1, y0, y1,m)
for an arbitrary message m.

Let advantage of ADIST be defined as AdvADIST = Pr[A(σb) = b]. We say
that the scheme provides anonymity, if for any efficient algorithm ADIST the
value of AdvADIST is at most negligibly greater than 1

2 .

We show that breaking anonymity of our scheme is not easier than break-
ing DDH problem. Namely, we construct an algorithm Addh for breaking in-
stances of DDH problem built on the top of any ADIST . Moreover, we show
that Addh calls ADIST as a subprocedure a limited number T of times and
AdvAddh = 1 − 1/e > 1

2 .
Let us describe the algorithm Addh. For an instance of DDH problem (g, ga,

gb, gc) we will construct simulated signatures σi, by the means of simulator Sb

described above, and treat this simulations as inputs for algorithm ADIST . As
assumed this algorithm gives 1 for the input of the form (g, ga, gb, gc) for c = ab
with probability AdvADIST = ε > 1

2 . Moreover, we assume that it gives 0 for
input of the form (g, ga, gb, gc) for c �= ab with probability 1

2 .

Algorithm Addh(g, ga, gb, gc)
p1, . . . , pT ←r Z∗p
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d1, . . . , dT ←r {0, 1}
m, y0, y1 ←r Z∗p
For i = 1 to T {

if (di = 1) σi ← Sb(m, y0, y1, g, g
api , gbpi , gcpi)

else σi ← Sb(m, y0, y1, g, g
bpi , gapi , gcpi)

d′i ← ADIST (σi)
}
X = {i ≤ T |di = d′i}
if (X <

(
ε
2 + 1

4

)
T) return 0

else return 1

We can consider the above algorithm as T independent Bernoulli trials, where
T = 2

(ε−1/2)2 , and with probability of success in each trial equal to 1
2 if c �= ab,

or equal to ε > 1
2 if c = ab. Therefore X ∼ B(T, ε) or X ∼ B(T, 1

2 ).
Let us recall the following well-known variant of Chernoff inequality:

Lemma 2. Let X ∼ B(T, p) be a random variable with the binomial distribu-
tion. Then Pr(X > EX + t) ≤ exp

(
− 2t2

T

)
and Pr(X ≤ EX − t) ≤ exp

(
− 2t2

T

)

for any t > 0.

Let us analyze probability that the algorithm gives correct answer, if c �= ab.
In this case we can treat X as a random variable with binomial distribution
B(T, 1

2 ). That probability of failure equals

Pr
(
X >

(
ε
2 + 1

4

)
T
)

= Pr
(
X > 1

2T + ε−1/2
2 T

)
.

Since EX = 1
2T and T = 2

(ε−1/2)2 , using Lemma 2 this probability equals

Pr
(
X > EX + ε−1/2

2 T
)

≤ 1
e . Using exactly the same reasoning we can show

that if c = ab, then Pr
(
X ≤

(
ε
2 + 1

4

)
T
)
≤ 1

e . Indeed, it is enough to remember
that EX = εT and apply the second inequality in Lemma 2.

We can see that for each input Addh gives the correct answer with probability
exceeding 1−1/e > 1

2 . The runtime of Addh is polynomial provided that ε−1/2 =
1

poly(n) . We have constructed an appropriate algorithm for a basic case of a
distinguishing two signers, however such an approach can be easily generalized
to the case of several potential users. Let us also note that in this analysis
only some parameters of the signature were taken into account. One can easily
see that rest of them cannot be used for recognizing the real signer since their
distribution does not depend on the signer identity and therefore cannot reveal
any information on the signer.
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Abstract. We show that for every homomorphism from A+ to a finite
semigroup S there exists a factorization forest of height at most 3 |S|−1.
Furthermore, we show that for every non-trivial group, this bound is
tight. For aperiodic semigroups, we give an improved upper bound of 2 |S|
and we show that for every n ≥ 2 there exists an aperiodic semigroup S
with n elements which reaches this bound.

1 Introduction

Factorization forests where introduced by Simon [8,10]. An important property of
finite semigroups is that they admit factorization forests of finite height. This fact
is called the Factorization Forest Theorem. It can be considered as a Ramsey-
type property of finite semigroups. There exist different proofs of this fact of
different difficulty and with different bounds on the height. The first proof of
the Factorization Forest Theorem is due to Simon [10]. He showed that for every
finite semigroup S there exists a factorization forest of height ≤ 9 |S|. The proof
relies on several different techniques. It uses graph colorings, Green’s relations,
and a decomposition technique inspired by the Rees-Suschkewitsch Theorem on
completely 0-simple semigroups. In [11] Simon gave a simplified proof relying on
the Krohn-Rhodes decomposition. The bound shown is 2|S|+1−2. A concise proof
has been given by Chalopin and Leung [2]. The proof relies on Green’s relations
and yields the bound 7 |S| on the height. Independently of this work, Colcombet
has also shown a bound of 3 |S| for the height of factorization forests [4]. He
uses a generalization of the Factorization Forest Theorem in terms of Ramseyan
splits. The proof also relies on Green’s relations. A variant of our proof for the
special case of aperiodic monoids has been shown in [5] with a bound of 3 |S|. The
benefit of that proof on the one hand is its little machinery, on the other hand it
is strong enough for application in first-order logic. The proof in this paper can
be seen as a refinement of that proof. Again, the main tool are Green’s relations.
We only require basic results from the theory of finite semigroups which can be
found in standard textbooks such as [6].

A lower bound of |S| was shown for rectangular bands in [9] and also in [2].
The same bound has been shown for every finite group [2]. In the same paper, a
lower bound of |S| + 1 has been shown for an infinite class of semilattices S.

There exist many different applications of the Factorization Forest Theorem,
see e.g. [1,7,12]. In addition, Colcombet presented extensions of the Factorization
Forest Theorem to trees [3] and to infinite words [4].

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 443–454, 2008.
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The paper is structured as follows. In Section 2, we introduce some notation
as well as some basic properties. In particular, a generalization of factorization
forests involving Green’s relations is presented. Section 3 describes algorithms
for constructing factorization forests for Green’s relations. In Section 4 we show
that every finite semigroup S admits factorization forests of height at most
3 |S| − 1. Furthermore, we show that this bound is tight for every non-trivial
group. Section 5 contains an upper bound of 2 |S| for aperiodic semigroups.
Furthermore, for every n ≥ 2 we give a semilattice S with n elements which
reaches this bound. Therefore, the bound 2 |S| is tight for aperiodic semigroups.

2 Preliminaries

A word over some finite alphabet A is a finite sequence w = a1 · · ·an of letters
ai ∈ A. The set of all words over the alphabet A is denoted by A∗. It is the free
monoid over the set A. The empty word is its neutral element and it is denoted
by ε. The set of non-empty words A+ = A∗ \ {ε} is the free semigroup over A.
A word u is a factor of a word w if there exist x, y ∈ A∗ such that xuy = w.

For a semigroup S we let S1 = S ∪ {1} where S1 = S if S has a neutral
element 1. The multiplication of S1 extends the multiplication of S by defining
x · 1 = 1 · x = x for all x ∈ S1. With this multiplication, S1 is a monoid with
1 as the neutral element. Let u, v ∈ S. Those of Green’s relations which play a
role here are defined by:

u J v ⇔ S1uS1 = S1vS1, u ≤J v ⇔ S1uS1 ⊆ S1vS1,

u R v ⇔ uS1 = vS1, u ≤R v ⇔ uS1 ⊆ vS1,

u L v ⇔ S1u = S1v, u ≤L v ⇔ S1u ⊆ S1v,

u H v ⇔ u R v and u L v.

Let G ∈ {J ,R,L} be one of Green’s relations. We write u <G v if u ≤G v but
not u G v. We use the notation Gu = {v ∈ S | v G u} for the G-class of u. A
semigroup S is aperiodic if for all u ∈ S there exists some n ∈ N such that
un = un+1. An element u ∈ S is idempotent if u2 = u. A semilattice S is a
commutative semigroup such that all elements in S are idempotent.

Lemma 1. Let S be a finite semigroup. The R-class of u ∈ S is uniquely de-
termined by some arbitrary prefix x of u such that u J x, i.e., u = xy and
u J x implies u R x. A left-right symmetric statement (involving L-classes and
suffixes) also holds.

Proof. By definition, we have u ≤R x. Now, u J x implies u R x, see e.g. [5,
Lemma 7]. �

Let S be a finite semigroup. A factorization forest of a homomorphism ϕ :
A+ → S is a function d which maps every word w ∈ A+ with length |w| ≥ 2 to
a factorization d(w) = (w1, . . . , wn) of w = w1 · · ·wn with n ≥ 2 and |wi| < |w|
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for all 1 ≤ i ≤ n. Moreover, n ≥ 3 implies ϕ(w1) = · · · = ϕ(wn) is idempotent
in S. The height hd of a word w is defined as

hd(w) =

{
0 if |w| = 1,
1 + max {hd(w1), . . . , hd(wn)} if d(w) = (w1, . . . , wn).

The height of a factorization forest is the supremum over the heights of all words.
We call the tree defined by the “branching” d for the word w the factorization
tree of w. The height hd(w) is the height of this tree.

Let G ∈ {J ,R,L,H,=} be one of Green’s relations or equality and let w ∈
A+. A G-factorization tree of a factorization w = w1 . . . wn is an ordered tree
satisfying the following conditions:

(a) The root of the tree is w.
(b) Only factors of w of the form wi · · ·wk with i ≤ k occur as vertices.
(c) The children u1, . . . , un of every inner node u satisfy u = u1 · · ·un.
(d) If a node u has more than two children u1, . . . , un (i.e., u has degree more

than two), then ϕ(u) G ϕ(u1) G · · · G ϕ(un) in S.
(e) Only words wi occur as leafs.

An =-factorization tree is simply called a factorization tree. If we omit the fac-
torization of w, then we usually use the trivial factorization w = a1 · · · an into
letters ai ∈ A. Suppose for every word w ∈ A+ there exists a factorization tree,
then we can construct a factorization forest d by choosing an optimal tree for
every word w (by minimizing over all occurrences of w as the root or as an inner
node of some tree). For every word w we define hϕ(w) as the minimal height of
some tree with the above properties. Now, instead of showing that there exists
a factorization forest d such that for every word w we have hd(w) ≤ n for some
bound n ∈ N, it suffices to show hϕ(w) ≤ n, i.e., for every word w there exists a
factorization tree of height at most n. Replacing the quantification “there exists
d such that for every word w” by “for every word w there exists a tree” simpli-
fies the proofs. Note that these two points of view are equivalent since for every
factorization forest d, we have hϕ(w) ≤ hd(w). On the other hand, for every
homomorphism ϕ there exists a factorization forest d such that hd(w) = hϕ(w).

We will need the following graph-theoretic terminology. We say that a node x
is the left neighbor of the node y in a tree, if the parent z of y has two children
such that its left child is x and its right child is y. A branch is a simple path
from the root to some leaf.

3 Factorization Trees and Green’s Relations

Let ϕ : A+ → S be a homomorphism to a finite semigroup S.

Lemma 2. Let w ∈ A+ and let j be the number of J -classes in S. Consider
an arbitrary factorization w = w1 · · ·wn. There exists a J -factorization tree for
w = w1 · · ·wn of height at most 2j. Moreover, every J -class of S occurs at most
once per branch at some node of degree more than two.
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Proof. Let j(w) be the number of J -classes which are ≤J -below ϕ(w), i.e.,
j(w) = |{Ju | u ≤J ϕ(w)}|. By induction on j(w), we show that there exists
a J -factorization tree for w = w1 · · ·wn of height at most 2 · j(w) − 1 with at
most j(w) nodes per branch of degree more than two. During the induction, we
preserve the following invariant: The left neighbor of every vertex to which we
are applying the induction hypothesis is a leaf. In order to establish the invariant,
the very first factorization of height 1 is

w

w1 w2 · · ·wn

From now on, we can assume that the invariant holds and we continue with
w2 · · ·wn for which we reuse the name w. The J -factorization of w = w1 · · ·wn

is w = v0u1 · · ·um where ui = wjivi and vi = wji+1 · · ·wji+1−1 (with j0 = 0)
such that

– vi ∈ {ε} ∪ {v ∈ A+ | ϕ(w) <J ϕ(v)} for all 0 ≤ i ≤ m, and
– ϕ(w) J ϕ(ui) for all 1 ≤ i ≤ m.

The J -factorization of w = w1 · · ·wn is unique. It can be obtained by reading the
word w from right to left, and as soon as the word one has read is J -equivalent
to w (under the homomorphism ϕ), then this word is the next ui. Therefore, the
words vi are <J -above w (under ϕ). By definition of ≤J , we have ϕ(w) ≤J ϕ(u)
for every factor u of w. Note that m ≥ 1.

First, suppose that some of the vi are nonempty. W.l.o.g. we can assume that
all vi are nonempty, since vi = ε implies that ui is a leaf. The construction of
a factorization tree for w consists of three phases. In the first phase, we use the
invariant for ‘rotating’ v0 to the left (if v0 = ε then this phase can be omitted).
The second phase is the factorization into the ui which might yield a degree
more than two. This is possible since ϕ(w) J ϕ(u1 · · ·um) J ϕ(ui). Finally, the
third phase is the factorization of the ui into the leaf wji and the word vi. To
summarize, we replace the tree

•

∗ v0u1 · · ·um

by
•

∗ v0

∗ v0

u1 · · ·um

u1

wj1 v1

· · · um

wjm vm

In the above pictures, • is the parent of w and ∗ is a leaf. In the resulting tree,
the left neighbor of every vi is a leaf. By induction hypothesis, every vi admits
a J -factorization tree of height at most 2j(vi) − 1 with at most j(vi) nodes per
branch of degree more than two. Only phase two and phase three each add +1
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to the height of the trees for vi and since only phase two might yield a branching
of degree more than two, the resulting tree for u1 · · ·um is of height at most
max {2j(vi) − 1 | 0 ≤ i ≤ m} + 2 ≤ 2j(w) − 1. Moreover, vertex u1 · · ·um is the
only vertex of degree more than two which is J -equivalent to ϕ(w). The first
phase does not cost any additional resources. Hence, the resulting tree for w has
the desired properties.

Let now all vi be empty (which includes the case where j(w) = 1). This is
how the induction stops. We have ui = wi for all 1 ≤ i ≤ m = n and we can use
the following tree of height 1:

w

w1 w2 · · · wn

This tree trivially satisfies the desired constraints on the height and the number
of J -classes at branchings of degree more than two.

Together with the (additional) very first factorization in which we established
the invariant, the above induction proves the lemma. �

Lemma 3. Consider a factorization of a word w = w1 · · ·wn such that ϕ(w)
and all ϕ(wi) belong to the same J -class J . Let � be the number of L-classes in
J . There exists an L-factorization tree for w = w1 · · ·wn of height at most 2�−1
such that there are at most � nodes per branch of degree more than two.

Proof. Let �(w) be the number of L-classes of prefixes of w under ϕ, i.e., �(w) =
|{Lwi | 1 ≤ i ≤ n}|. By Lemma 1, we have ϕ(w1 · · ·wi) L ϕ(wi) L ϕ(wj · · ·wi)
for every j ≤ i. Using induction on �(w), we show that there exists an L-
factorization tree for w = w1 · · ·wn of height at most 2 · �(w) − 1 with at most
�(w) nodes per branch of degree more than two. The lemma then follows from
this induction.

If �(w) = 1, then we can use the following tree of height 1:

w

w1 w2 · · · wn

This tree trivially satisfies the desired constraints on the height and the number
of branchings of degree more than two.

Let now �(w) > 1 and let j1 < · · · < jm be the sequence of all indices such
that ϕ(wji ) L ϕ(wn). In particular, jm = n. We can apply the following tree of
height 2:

w

w1 · · ·wj1

v1 wj1

wj1+1 · · ·wj2

v2 wj2

· · · wjm−1+1 · · ·wjm

vm wjm



448 M. Kufleitner

in which we used the abbreviation vi = wji−1+1 · · ·wji−1 for 1 ≤ i ≤ m (where
j0 = 0). First, we factorized after every wji and second, we chopped of the wji .
In the remaining words vi, the L-class of ϕ(w) has been eliminated and hence,
�(vi) < �(w) for all 1 ≤ i ≤ m. Note that ϕ(w) L ϕ(wji−1 · · ·wji) L ϕ(wn).
By induction, there exists an L-factorization tree for every vi of height at most
2�(vi)−1 with at most �(vi) nodes per branch of degree more than two. Therefore,
the resulting tree for w is of height max {2�(vi) − 1 | 1 ≤ i ≤ m}+2 ≤ 2�(w)−1
and on every branch there are at most max {�(vi) | 1 ≤ i ≤ m}+1 ≤ �(w) nodes
of degree more than two. �

Lemma 4. Consider a factorization of a word w = w1 · · ·wn such that ϕ(w)
and all ϕ(wi) belong to the same J -class J . Let r be the number of R-classes
in J . There exists an R-factorization tree for w = w1 · · ·wn of height at most
2r − 1 such that there are at most r nodes per branch of degree more than two.

Proof. The lemma and its proof are left-right symmetric to Lemma 3. �
Lemma 5. Consider a factorization of a word w = w1 · · ·wn such that ϕ(w)
and all ϕ(wi) belong to the same J -class J . Let h be the number of H-classes
in J . There exists an H-factorization tree for w = w1 · · ·wn of height at most
2h− 1 such that there are at most h nodes per branch of degree more than two.

Proof. We now combine Lemma 3 and Lemma 4 in order to construct H-
factorization trees. First, by Lemma 3 there exists an L-factorization tree for
w = w1 · · ·wn. In this tree we can substitute to any of its nodes v with more
than two children v1, . . . , vm the R-factorization tree given by Lemma 4 for
v = v1 · · · vm. The resulting tree is an H-factorization tree for w = w1 · · ·wn.

Let us compute its height. Let � be the number of L-classes and let r be the
number of R-classes in J . We have �r = h: see e.g. [5, Lemma 6] for a proof of the
fact that the intersection of an R-class and an L-class within the same J -class is
nonempty; a simple reflection shows that an H-class is uniquely determined by
its L-class and its R-class. Consider a branch in the constructed tree. Its length
is at most (2�− 1) − � + �(2r − 1) = 2�r − 1 = 2h− 1. An upper bound for the
number of nodes of degree more than two per branch is �r = h. �
Lemma 6. Consider a factorization of a word w = w1 · · ·wn such that ϕ(w)
and all ϕ(wi) belong to the same H-class H. There exists a factorization tree for
w = w1 · · ·wn of height at most 3 |H | − 1 such that there are at most |H | nodes
per branch of degree more than two.

Proof. By Lemma 1, we see that ϕ(w1)ϕ(w2) H ϕ(w). From ϕ(w) H ϕ(w1) H
ϕ(w2) it follows that H is a group, see e.g. [6, Corollary 1.7, p.49]. Let P (w) =
{ϕ(w1 · · ·wi) | 1 ≤ i ≤ m} be the set of prefixes of w under ϕ. By induction on
|P (w)|, we show that there is a factorization tree for w of height 3 |P (w)|−1 with
at most |P (w)| nodes per branch of degree more than two. Since P (w) ⊆ H , the
lemma then follows.

If |P (w)| = 1, then we have that ϕ(wi · · ·wj) = ϕ(w2 · · ·wn) = ϕ(w1)−1ϕ(w),
2 ≤ i ≤ j ≤ n, is the neutral element of the group H . Hence, we can use the
following tree of height 2:
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w

w1 w2 · · ·wn

w2 w3 · · · wn

Let now |P (w)| > 1 and let j1 < · · · < jk be the sequence of all occurrences
of the prefix ϕ(w) ∈ P (w), i.e., all indices ji such that ϕ(w) = ϕ(w1 · · ·wji). In
particular, jk = n. As before, we see that ϕ(wjs+1 · · ·wjt ), 1 ≤ s ≤ t ≤ k, is the
neutral element of H . This gives the following tree of height 3:

w

v1wj1

v1 wj1

wj1+1 · · ·wjk

v2wj2

v2 wj2

v3wj3

v3 wj3

· · · vkwjk

vk wjk

where vi = wji−1+1 · · ·wji−1 with j0 = 0. We have P (v1) ⊆ P (w) \ {ϕ(w)}. For
i ≥ 2 we have ϕ(w1 · · ·wji−1 )·P (vi) ⊆ P (w)\{ϕ(w)}. Therefore, for all 1 ≤ i ≤ k
we have |P (vi)| < |P (w)|. By induction, there exists a factorization tree for vi =
wji−1+1 · · ·wji−1 of height at most 3 |P (vi)|−1 such that there are at most |P (vi)|
nodes per branch of degree more than two. We compose those trees with the
above tree for w. The height of the resulting tree is 3·max {|P (vi)| | 1 ≤ i ≤ k}−
1+3 ≤ 3 |P (w)|−1. It has at most max {|P (vi)| | 1 ≤ i ≤ k}+1 ≤ |P (w)| nodes
per branch of degree more than two. �

Lemma 7. Consider a factorization of a word w = w1 · · ·wn such that ϕ(w)
and all ϕ(wi) belong to the same J -class J . There exists a factorization tree for
w = w1 · · ·wn of height at most 3 |J | − 1 such that there are at most |J | nodes
per branch of degree more than two.

Proof. The proof uses the same substitution principle as the proof of Lemma 5.
By Lemma 5 there exists an H-factorization tree for w = w1 · · ·wn. If we consider
a node v of this tree with more than two children v1, . . . , vm, then ϕ(v) and
all ϕ(vi) are H-equivalent. Hence, we can apply Lemma 6 to the factorization
v = v1 · · · vn. We substitute every branching with more than two children by the
respective tree given by Lemma 6. The resulting tree is a factorization tree for
w = w1 · · ·wn.

We compute its height. Let h be the number of H-classes in J . All H-classes
H within J have the same cardinality |H |, see e.g. [6, Green’s Lemma]. Hence,
h · |H | = |J |. Consider a branch in the constructed tree. Its length is at most
(2h− 1) − h + h(3 |H | − 1) = 3h · |H | − 1 = 3 |J | − 1. An upper bound for the
number of nodes of degree more than two per branch is h · |H | = |J |. �
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4 Arbitrary Semigroups

In this section, we show that, in general, 3 |S| − 1 is the optimal height of a
factorization forest. First, we combine Lemma 2 and Lemma 7 in order to show
that 3 |S| − 1 is an upper bound and second, we show that every factorization
forest for every non-trivial group S reaches this bound. This closes the gap
between the upper and the lower bound.

Theorem 1. Let S be a finite semigroup. For every homomorphism ϕ : A+ → S
we have hϕ(w) ≤ 3 |S| − 1 for all w ∈ A+.

Proof. For simplicity, we only show the slightly weaker bound hϕ(w) ≤ 3 |S|.
The improved bound 3 |S| − 1 can be obtained from the current proof by some
additional rotation technique as in the proof of Lemma 2. We postpone this
proof to a forthcoming journal version of this article.
By Lemma 2 there exists a J -factorization tree for w. If we consider a node v
of this tree with more than two children v1, . . . , vm, then ϕ(v) and all ϕ(vi) are
J -equivalent. Hence, we can apply Lemma 7 to the factorization v = v1 · · · vn.
We substitute every branching with more than two children by the respective
tree given by Lemma 7. The resulting tree is a factorization tree for w.

We compute its height. Let J1, . . . , Jj be the (j-many) J -classes of S. Since
every element of S is contained in exactly one J -class, we have |J1|+ · · ·+ |Jj | =
|S|. The length of a branch in the constructed tree is at most 2j − j +

(
(3 |J1| −

1) + · · · + (3 |Jj | − 1)
)

= 3(|J1| + · · · + |Jj |) = 3 |S|. �

Theorem 2. For every non-trivial finite group G there exists a word w ∈ G+

such that hϕ(w) ≥ 3 |G|−1 where ϕ : G+ → G is the evaluation homomorphism.

Proof. By 1 we denote the neutral element of G. For a word w = g1 · · · gn ∈ Gn

of length n we let

ω = g1 ϕ(g1g2) · · ·ϕ(g1 · · · gn) ∈ Gn

be the sequence of all prefixes. Given a prefix sequence ω = h1 · · ·hn ∈ Gn

one can reconstruct w by w = h1 ϕ(h−1
1 h2) · · ·ϕ(h−1

n−1hn) ∈ Gn. Two prefix
sequences g1 · · · gn, h1 · · ·hn ∈ Gn are similar if for all 1 ≤ i ≤ j ≤ n we have
gi = gj if and only if hi = hj . Two words w, v ∈ Gn are similar if their respective
prefix sequences ω, ν ∈ Gn are similar. Similarity forms an equivalence relation
on the set of words in Gn. The concept of similarity has been introduced by
[2, Section 6.1]. Its purpose is to ensure large factors in factorizations of degree
more than two. We will construct words w1, . . . , w|G| ∈ G+ such that for all
words x, y, vi ∈ G∗ where vi is similar to wi we have

hϕ(xviy) ≥ 3i− 2.

Let G =
{
a1, . . . , a|G|

}
. The prefix sequence ωi of the word wi will be a word

over the alphabet {a1, . . . , ai}. By ω
[j]
i−1 we denote the prefix sequence obtained
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from ωi−1 by replacing all occurrence of the letter aj by the new letter ai. Hence,
ω

[i]
i−1 = ωi−1. The words wi are given by the prefix sequences

ω1 = a12
1 ,

ωi =
((
ω

[1]
i−1

)12 · · ·
(
ω

[i−1]
i−1

)12(
ω

[i]
i−1

)12
)12

for i > 1.

The factor
(
ω

[j]
i−1

)12, 1 ≤ j ≤ i, does not contain the letter aj . Hence, every prefix
sequence νi which is similar to ωi can be obtained by the very same construction
using some other enumeration of the group elements. Therefore, it is sufficient
to show hϕ(xwiy) ≥ 3i− 2. For i = 1 this is trivially true. Note that this lower
bound is also the upper bound if and only if a1 = 1. Let now i > 1. For technical
reasons we need additional words w′i and w′′i defined by prefix sequences

ω′i =
((
ω

[1]
i−1

)12 · · ·
(
ω

[i−1]
i−1

)12(
ω

[i]
i−1

)12
)6

,

ω′′i =
((
ω

[1]
i−1

)12 · · ·
(
ω

[i−1]
i−1

)12(
ω

[i]
i−1

)12
)3

.

We will show hϕ(xv′iy) ≥ 3i− 3 and hϕ(xv′′i y) ≥ 3i− 4 for all x, y, v′i, v
′′
i ∈ G∗

such that v′i is similar to w′i and v′′i is similar to w′′i . Again, it is sufficient to
show hϕ(xw′iy) ≥ 3i− 3 and hϕ(xw′′i y) ≥ 3i− 4.

We start with w′′i . If d(xw′′i y) = (u1, u2) then u1 or u2 contains a factor
vi−1 which is similar to wi−1. W.l.o.g. let vi−1 be a factor of u1. By induction,
hϕ(u1) ≥ 3(i−1)−2 = 3i−5, and hence, the height of this factorization tree for
w′′i is at least 3i−4. If d(xw′′i y) = (u1, . . . , um) with ϕ(ui) = 1 in G, then w.l.o.g.
we can assume |u1| > |x|. Let g = ϕ(x)−1ϕ(u1) = ϕ(x)−1. If g �∈ {a1, . . . , ai}
then, by construction of ω′′i , we see that w′′i is a factor of u1. Since some word
vi−1 which is similar to wi−1 is a factor of w′′i , we conclude that the height of this
factorization tree for xw′′i y is at least 3i−4. If g = aj for some j ∈ {1, . . . , i}, then
the factor of w′′i which corresponds to ω

[j]
i−1 is a factor of some u, and therefore,

u contains a factor vi−1 which is similar to wi−1. By induction, hϕ(u) ≥ 3i−5.
Again, we conclude that the height of this factorization tree for xw′′i y is at least
3i− 4. This shows hϕ(xw′′i y) ≥ 3i− 4.

Next, we consider w′i. If d(xw′iy) = (u1, u2) then u1 or u2 contains a factor
v′′i which is similar to w′′i . Hence, the height of this tree for xw′iy is at least
3i − 3. If d(xw′iy) = (u1, . . . , um) with ϕ(uj) = 1 in G, then w.l.o.g. we can
assume |u1| > |x|. Let g = ϕ(x)−1. If g �∈ {a1, . . . , ai} then, by construction of
ω′i, we see that w′i – and hence w′′i – is a factor of u1. We conclude that the
height of this factorization tree for xw′iy is at least 3i − 3. If g = aj for some
j ∈ {1, . . . , i}, then the factor of w′i which corresponds to

(
ω

[j]
i−1

)12 is a factor of
some u. If d(u) = (u′1, u

′
2) then u′1 or u′2 contains a factor which is similar to

wi−1. Therefore, the height of this factorization tree for xw′iy is at least 3i− 3.
If d(u) = (u′1, . . . , u′k) with ϕ(u′j) = 1, then we could replace the factorization
of uw′ix by d(uw′ix) = (u1, . . . , u−1, u

′
1, . . . , u

′
k, u+1, . . . , um). Therefore, this

last case is not possible in an optimal factorization tree for xw′iy. This shows
hϕ(xw′iy) ≥ 3i− 3.
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Finally, we consider wi. If d(xwiy) = (u1, u2) then u1 or u2 contains a factor
v′i which is similar to w′i. Hence, the height of this tree for xwiy is at least 3i−2.
If d(xwiy) = (u1, . . . , um) with ϕ(uj) = 1 in G, then w.l.o.g. we can assume
|u1| > |x|. Let g = ϕ(x)−1. If g �∈ {a1, . . . , ai} then, by construction of ωi, we see
that wi – and hence w′i – is a factor of u1. We conclude that the height of this
factorization tree for xwiy is at least 3i−2. If g = aj for some j ∈ {1, . . . , i}, then
the factor of wi which corresponds to

(
ω

[j]
i−1

)12 is a factor of some u. As before,
we do not need to consider the case d(u) = (u′1, . . . , u′k) with ϕ(u′j) = 1, since
it is not optimal. Let d(u) = (u′1, u

′
2). The factorization d(u′1) = (u′′1 , . . . , u

′′
k)

with ϕ(u′′j ) = 1 is also not optimal, since this implies ϕ(u′1) = 1 and ϕ(u′2) = 1.
Similarly, d(u′2) = (u′′1 , . . . , u′′k) with ϕ(u′′j ) = 1 does not yield an optimal tree.
Hence, we can assume that d(u′1) = (u′′1 , u

′′
2) and d(u′2) = (u′′3 , u

′′
4). It follows that

some u′′j contains a factor which is similar to wi−1. Therefore, the height of this
factorization tree for xwiy is at least 3i− 2.

Let w = w|G|w|G|a ∈ G+ where a ∈ G is chosen such that ϕ(w) �= 1. This
is possible since G is non-trivial. Every factorization tree for w starts with a
factorization d(w) = (u1, u2). Now, u1 or u2 contains a factor w|G|. It follows
that hϕ(w) ≥ 3 |G| − 1. �

5 Aperiodic Semigroups

In this section we show that the height 2 |S| is optimal for factorization forests
over aperiodic semigroups S. In Theorem 3, we are using Lemma 2 and Lemma 5
in order to show that 2 |S| is an upper bound and in Theorem 4 we show that
there exists an infinite family of semilattices S for which 2 |S| is also a lower
bound. The factor 2 is surprising, since it is natural to try to find factoriza-
tions w = xu1 · · ·uny such that u1, . . . , un are mapped to the same idempotent
element of S. This yields the following tree of height 3:

w

x u1 · · ·uny

u1 · · ·un

u1 · · · un

y

Theorem 3. For every homomorphism ϕ : A+ → S where S is a finite aperiodic
semigroup we have hϕ(w) ≤ 2 |S| for all w ∈ A+.

Proof. By Lemma 2 there exists a J -factorization tree for w. If we consider
a node v of this tree with more than two children v1, . . . , vm, then ϕ(v) and
all ϕ(vi) are J -equivalent. Hence, we can apply Lemma 5 to the factorization
v = v1 · · · vn. We substitute every branching with more than two children by
the respective tree given by Lemma 5. The resulting tree is an H-factorization
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tree for w. Since S is aperiodic, it is H-trivial (see e.g. [5, Lemma 1]), and hence
every H-factorization tree is a factorization tree.

We compute the height of the resulting tree for w. Let J1, . . . , Jj be the (j-
many) J -classes of S. Since every element of S is contained in exactly one J -class,
we have |J1| + · · · + |Jj | = |S|. The length of a branch in the constructed tree is
at most 2j− j +

(
(2 |J1|− 1) + · · ·+ (2 |Jj |− 1)

)
= 2(|J1|+ · · ·+ |Jj |) = 2 |S|. �

Theorem 4. For every n ≥ 2 there exists a semilattice M with n elements and
a word w ∈ M+ such that hϕ(w) ≥ 2 |M | where ϕ : M+ → M is the evaluation
homomorphism.

Proof. Let M = {a1, . . . , an} equipped with the composition aiaj = amax(i,j)

for ai, aj ∈ M . These monoids have also been used in [2] in order to show a
lower bound of |M | + 1. Note that a1 is the neutral element of M . The monoid
M has the following property. If ai occurs in the alphabet of w ∈ M+ and if
w = u1 · · ·un such that ϕ(u1) = · · · = ϕ(un) = aj , then j ≥ i. We construct
words wi ∈ {a1, . . . , ai}+ such that hϕ(xwiy) ≥ 2i− 1 for all x, y ∈ M∗ . Let

w1 = a12
1 ,

wi = (w12
i−1 ai)12 for i > 1.

The intuition is that if one wants to eliminate the letter ai+1 from wi+1, one first
has to use an idempotent factorization and then a simple factorization in order
to cut off the letter ai+1. For i = 1, we trivially have hϕ(xw1y) ≥ 2 − 1 = 1. Let
now i > 1. We have to distinguish several cases.

First, suppose d(xwiy) = (u1, u2). W.l.o.g. we can assume that u1 contains
a factor w12

i−1ai. If d(u1) = (u′1, . . . , u
′
m) then some u′ contains a factor wi−1: if

m > 2, then ϕ(u′) = aj with j ≥ i for all 1 ≤ � ≤ m. By induction, we see that
the height of this factorization tree is at least 2(i− 1) − 1 + 2 = 2i− 1.

Now, suppose d(xwiy) = (u1, . . . , um) with ϕ(u1) = · · · = ϕ(um) = aj . We
have j ≥ i since ϕ(xwiy) = aj with j ≥ i. Therefore, some u contains a factor
w6

i−1ai or a factor aiw
6
i−1. In any case, if d(u) = (u′1, . . . , u′k), then some u′t

contains a factor wi−1 (in both cases k = 2 and k > 2, since k > 2 implies
ϕ(u′1) = · · · = ϕ(u′k) = aj′ where j′ ≥ i). By induction, the height of this
factorization tree is at least 2i− 1. This shows that hϕ(xwiy) ≥ 2i− 1.

Let w = w12
n−1

(
anw

12
n−1

)24. If d(w) = (u1, u2), then u1 or u2 contains wn as
a factor and hence, the height of this factorization tree for w is at least 2n. If
d(w) = (u1, . . . , um) with ϕ(u1) = · · · = ϕ(um) = an then some uj contains
a factor w6

n−1anw
6
n−1. If ϕ(uj) = (u′1, . . . , u

′
k) then some u′ contains a factor

w3
n−1an or a factor anw

3
n−1. In any case, if d(u′) = (u′′1 , . . . , u

′′
t ), then some u′′s

contains a factor wi−1 and hence, the height of this factorization tree for w is at
least 2n. �
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of Finite Automata and Applications: LITP Spring School on Theoretical Com-
puter Science. LNCS, vol. 386, pp. 65–72. Springer, Heidelberg (1988)

10. Simon, I.: Factorization forests of finite height. Theoretical Computer Science
72(1), 65–94 (1990)

11. Simon, I.: A short proof of the factorization forest theorem. In: Nivat, M., Podelski,
A. (eds.) Tree Automata and Languages, pp. 433–438. Elsevier, Amsterdam (1992)

12. Simon, I.: On semigroups of matrices over the tropical semiring. RAIRO – Infor-
matique Theorique et Applications 28(3-4), 277–294 (1994)



Arithmetic Circuits, Syntactic Multilinearity,
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Abstract. Functions in arithmetic NC1 are known to have equivalent
constant width polynomial degree circuits, but the converse containment
is unknown. In a partial answer to this question, we show that syntac-
tic multilinear circuits of constant width and polynomial degree can be
depth-reduced, though the resulting circuits need not be syntactic multi-
linear. We then focus specifically on polynomial-size syntactic multilinear
circuits, and study relationships between classes of functions obtained by
imposing various resource (width, depth, degree) restrictions on these
circuits. Along the way, we obtain a characterisation of NC1 (and its
arithmetic counterparts) in terms of log width restricted planar branch-
ing programs. We also study the power of skew formulae, and show that
even exponential sums of these are unlikely to suffice to express the de-
terminant function.

1 Introduction

Among the parallel complexity classes, the class NC1 of boolean functions com-
puted by logarithmic depth polynomial size circuits has several equivalent char-
acterisations, in the form of bounded width branching programs, polynomial
size formulae and bounded width circuits of polynomial size. Its subclass AC0,
consisting of polynomial size constant depth unbounded fan-in circuits, has also
been characterised via restricted branching programs.

However, when we consider the counting and arithmetic versions of those
classes which are equivalent to NC1, they seem to represent different classes of
functions. In [10], it was shown that if inputs take values from {0, 1}, and only
the constants −1, 0, 1 are allowed, then counting the total weights of paths in
a bounded width branching program is equivalent to the functions computable
by log depth polynomial size arithmetic circuits, i.e. GapBWBP = GapNC1. In
[12], this study was extended to bounded width circuits of polynomial degree
and size, sSC0, showing that GapNC1 ⊆ GapsSC0, but it left open the question
of equality of these classes.

The question of whether GapsSC0 is in GapNC1 can be seen as a depth re-
duction problem for bounded width circuits. We do not have an answer for this
general question. So it is natural to ask if there are any restrictions on the circuit
so that depth reduction is possible.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 455–466, 2008.
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Syntactic multilinearity is a restriction which has been studied in the litera-
ture. Syntactic multilinear circuits are those in which every multiplication gate
operates on disjoint set of variables. The syntactic multilinear restriction is very
fruitful in the sense that there are known unconditional separations and lower
bounds for these classes (see [13,14,15]).

We show that depth reduction for small width circuits is possible if the circuit
is syntactic multilinear; however, the depth-reduced circuit may not be syntactic
multilinear or even multilinear. The setting we consider is more general than that
of [10] and [12]; here the input variables are allowed to take arbitrary values from
the underlying ring K. The main result (Theorem 1) is that polynomial size,
constant width syntactic multilinear circuits can be simulated (non-uniformly)
by log depth bounded fan-in circuits of polynomial size, but this construction
need not preserve the syntactic multilinearity property.

Once we take up the restriction of syntactic multilinearity for these arith-
metic circuits, it is worthwhile to explore the relationships among the syntactic
multilinear arithmetic circuit classes close to arithmetic NC1.

In the model of branching programs, syntactic multilinearity is a well-studied
notion, referred to as read-once branching programs (see e.g. [6]). There are
several known lower bounds for syntactic multilinear branching programs.

For formulae, syntactic multilinearity is defined exactly as for circuits. A care-
ful observation of the depth reduction for poly size arithmetic formula as given
in [7] shows that it preserves syntactic multilinearity. Also some of the construc-
tions in [10,11,12], relating branching programs and formulae, can be shown to
preserve syntactic multilinearity.

In [3], the class of bounded depth arithmetic circuits is characterised in terms
of a restricted version of grid programs, rGP, of bounded width BWrGP. We
observe that this construction can be extended to show a new (non-uniform)
characterisation of (arithmetic) NC1 in terms of restricted planar branching pro-
grams of log width LWrGP. In addition, this can be shown to preserve syntactic
multilinearity, for arithmetic NC1 as well as arithmetic AC0.

We also study the class of polynomial size skew formulas, denoted SkewF. The
motivation for this study arises from Valiant’s characterisations of the classes VP
and VNP (see [18]; also, for more exposure on algebraic complexity theory, the
reader is referred to [8,9]). Valiant proved that every polynomial p(X) ∈ VNPK
(where K is an arbitrary ring), and in particular every polynomial in VPK, can be
written as p(X) =

∑
e∈{0,1}m φ(X, e), where the polynomial φ has an arithmetic

formula of polynomial size. So we ask if we can prove a similar equivalence
in the case of skew circuits. That is, can we write polynomials computed by
skew circuits as an exponential sum of polynomials computed by skew formulae?
We show that this is highly unlikely, by showing that any polynomial which is
expressible as an exponential sum of skew formulae belongs to the class VNC1.

The existing and new relationships amongst the arithmetic classes (prefix a-)
can be seen in Figure 1; Figure 2 shows the corresponding picture for the syntac-
tic multilinear classes (prefix sma-). Our main depth-reduction result straddles
the two figures, and along with [12] gives sma-sSC0 ⊆ a-NC1 ⊆ a-sSC0.
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a-SkewF �� a-AC0=a-BWrGP

��

a-sSC0 ��

Over Z ,Q
��

��

�����
��

a-sSC1 �� a-SAC1

a-SAC0

��

a-LWrGP=
a-BWBP=a-NC1

��

������������

a-LWBP ��

�������������
a-BP

�������������

Fig. 1. Arithmetic classes around NC1

sma-BWBP ��

��������������������
sma-LWrGP
= sma-NC1

�� sma-LWBP ��

��

sma-BP

��
sma-BWrGP=sma-AC0

��

sma-sSC0 �� sma-sSC1 �� sma-SAC1

Fig. 2. Relationship among syntactic multilinear classes

The rest of the paper is organised as follows. Section 2 introduces basic def-
initions. In Section 3 we prove that small-width syntactic multilinear circuits
can be depth-reduced. In Section 4, we establish the containments among the
syntactic multilinear classes and obtain a new characterisation for NC1 in terms
of a restricted class of grid branching programs. In Section 5 we describe our
results concerning skew formulae.

2 Preliminaries

We use standard notation for Boolean circuits and their size, width, depth and de-
gree; see e.g. [12],[21].Unlessotherwise stated, fan-in is assumedtobebounded.NC1

denotes the class of boolean functions which can be computed by boolean circuits
of depth O(log n) and size poly(n). SCi denotes the class of boolean functions com-
putedbypoly(n)sizecircuitsofwidthO(logi n).sSCi istheclassofboolean functions
computed by poly(n) degree, poly(n) size circuits of width O(logi n). SACi denotes
the class of boolean functions computed by polynomial circuits of size poly(n) and
depth O(logi n), where ∨ gates can have unbounded fan-in. AC0 denotes the class
of boolean functions which can be computed by unbounded fan-in constant depth
boolean circuits of size poly(n).

A formula is a circuit where every non-input gate has fan-out bounded by one. F
and LWF denote the set of boolean functions which can be computed by polynomial
size formulae of unbounded and log width respectively. Without loss of generality,
NC1, AC0 and SAC0 circuits can be assumed to be formulae.

A branching program (BP) is a directed acyclic layered graph with edges labelled
from {x1, . . . , xn,¬x1, . . . ,¬xn, 0, 1}, and with two designated nodes s and t. A BP
is said to accept its input if and only if there exists an s-t path, in which every edge
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label evaluates to 1. A BP can also be viewed as a skew-circuit, i.e. a circuit where
every ∧ gate has at most one non-circuit input.

Let BWBP and LWBP denote the functions computed by constant width and
log width branching programs of polynomial size respectively.

G-graphs are the graphs that have planar embeddings where vertices are em-
bedded on a rectangular grid, and all edges are between adjacent columns from
left to right. Let BWGP denote the class of boolean functions accepted by con-
stant width polynomial size branching
programs which are G-graphs. In these
graphs, the node s is fixed as the left-
most bottom node and t is the rightmost
top node. In [3], a restriction of G-graphs
is considered where the width of the grid
is a constant, and only certain kinds of
connections are allowed between any two
layers. Namely, for width 2k + 2, the
connecting pattern at any layer is one
of the graphs Gk,i shown alongside for
0 ≤ i ≤ 2k + 2. Let BWrGP denote the
class of boolean functions accepted by
constant width polynomial size branch-

G0,1(c)G0,0
G0,2

Gk−1,i

Gk,i Gk,2k+1 Gk,2k+2

c

ing programs that are restricted G-graphs, and LWrGP the class corresponding
to log width polynomial size programs that are restricted G-graphs. (see [3]).

Thefollowingpropositionsummariestheknownrelationshipsamongtheboolean
complexity classes defined above; see for instance [21].

Proposition 1 ([20,4,16,11,3]). SAC1 = Circuit Size, Deg(poly(n), poly(n));

NC1 = BWBP = SC0 = sSC0 = F = LWF; AC0 = BWrGP

An arithmetic circuit over a ring 〈K,+,−,×, 0, 1〉 is a circuit with internal nodes
labelled from {×,+}, and leaves labelled by input variables x1, . . . , xn that take
values in K or by one of the constants from {−1, 0, 1}.

The arithmetic circuit classes corresponding to the above defined boolean
classes consist of functions f : K∗ → K, and are defined as follows.

BWBP[K] = {f : K∗ → K | f = sum of weights of all s � t paths in a BWBP}
Here the weight of a path is the product of the labels of edges along the path.

NC1[K] = {f | f has a poly size, O(log n) depth, fan-in 2 circuit.}
sSCi[K] =

{
f | f has a poly size, O(logi n) width, poly(n) degree circuit.

}

For notational convenience we drop the K where understood from context to be
any (or a specific) ring. To distinguish from the boolean case, we write C[K] as
a-C. The following proposition summarises the known relationships among the
arithmetic classes.

Proposition 2 ([3,10,12]). a-BWrGP = a-AC0 ⊆ a-BWBP = a-NC1 ⊆ a-sSC0
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Multilinear and syntactic multilinear circuits are as defined in [14]. Let C be
an arithmetic circuit over the ring K. For a gate g in C, let Pg ∈ K[X ] be the
polynomial represented at g. Let Xg ⊆ X denote the set of variables that occur
in the sub-circuit rooted at g. We call C multilinear if for every gate g ∈ C, Pg

is a multilinear polynomial, and syntactic multilinear if for every multiplication
gate g = h× f in C, Xh ∩Xf = ∅.

In the case of formulae, the notion of multilinearity and syntactic multilinear-
ity are (non-uniformly) equivalent. Viewing branching programs as skew-circuits,
a multilinear branching program P is one which computes multilinear polynomi-
als at every node, and P is syntactic multilinear if in every path of the program
(not just s-to-t paths), no variable appears more than once; i.e. the branching
program is syntactic read-once.

For any arithmetic complexity class a-C, we denote by ma-C and sma-C respec-
tively the functions computed by multilinear and syntactic multilinear versions
of the corresponding circuits.

In [15] it is shown that the depth reduction of [19] preserves syntactic multi-
linearity; thus

Proposition 3 ([15]). Any function computed by a syntactic multilinear poly-
nomial size polynomial degree arithmetic circuit is in sma-SAC1.

3 Depth Reduction in Small Width Sm-Circuits

This entire section is devoted to a proof of Theorem 1 below, which says that
a circuit width bound can be translated to a circuit depth bound, provided the
given small-width circuit is syntactic multilinear.

Theorem 1. Let C be a syntactic multilinear circuit of length l and width w
and circuit degree d, with X = {x1, . . . , xn} as the input variables, and con-
stants {−1, 0, 1} from the ring K. Then there is an equivalent circuit E of depth
O(w2 log l + log d) and size O(2w2+3wl25w + 4lwd).

Corollary 1. sma-sSC0 ⊆ a-NC1.

Corollary 2. sma-Size,Width,Deg(2poly(log), poly(log), 2poly(log))
⊆ a-Size,Depth(2poly(log), poly(log))

We first give a brief outline of the technique used. The main idea is to first
cut the circuit C at length " l

2#, to obtain circuits A (the upper part) and B

(the lower part). Let M = {h1, . . . , hw} be the output gates of C at level " l
2#.

(Note that output gates are at the topmost layer of the circuit.) A is obtained
from C by replacing the gates in M by a set Z = {z1, . . . , zw} of new variables.
Each gate g of A (or B) represents a polynomial pg ∈ K[X,Z], and can also be
viewed as a polynomial in K[Z], where K = K[X ]. Since A and B are circuits of
length bounded by " l

2#, if we can prove inductively that the coefficients of the
polynomials at the output gates of A and B can be computed by small depth
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circuits (say O(w log(l/2)), then, since pg has at most 2w monomials in variables
from Z, we can substitute for the zi’s by the value at the output gate gi of B
(i .e. polynomials in K[X ]). This requires an additional depth of O(w).

The first difficulty in the above argument can be seen even when w = O(1).
Though C is syntactic multilinear, the circuit A need not be multilinear in the
new dummy variables from Z. This is because there can be gates which com-
pute large constants from K (i .e. without involving any of the variables), and
hence have large degree (bounded by the degree of the circuit). This means
that the polynomials in the new variables Z at the output gates of A can have
non-constant degree, and the number of monomials can be large. Thus the addi-
tional depth needed to compute the monomials will be non-constant; hence the
argument fails.

To overcome this difficulty, we first transform the circuit C into a new circuit
C′, where no gates compute “large” constants in K. Assume without loss of
generality that every gate in C has a maximum fan-out of 2. Let G = {g ∈ C |
leaf(g) ∩X = ∅}, where for a gate g ∈ C, we define

leaf(g) = {h ∈ C | h is a leaf node in C, and g is reachable from h in C}

Thus G is exactly the nodes that syntactically compute constants. Now define C′

as a new circuit which is the same as C except that for all g ∈ G, we replace the
ith (i = 1, 2) outgoing wire of g by a new variable ygi . Note that the number of
such new variables introduced is at most 4lw. Let Y = {ygi | g ∈ G, 1 ≤ i ≤ 2}.
We show that C′ is syntactic multilinear in the variables X ∪ Y .

Lemma 1. The circuit C′ constructed above is syntactic multilinear in the vari-
ables X ∪ Y . Further, C′ does not have any constants.

Next we show, in Lemma 2, how to achieve depth reduction for syntactic mul-
tilinear bounded width circuits which have no constants. Then we complete the
proof of Theorem 1 by explicitly computing the constants (i .e. the actual values
represented by variables in Y ) computed by the circuit C.

Lemma 2. Let C′ be a width w, length l syntactic multilinear arithmetic circuit
with leaves labelled from X∪Y (no constants). Then there is an equivalent arith-
metic circuit C′′ of size O(2w2+3wl25w) and depth O(w2 log l) which computes
the same function as C′.

To establish lemma 2, we use the intuitive idea sketched in the beginning of the
section; namely, slice the circuit horizontally, introduce dummy variables along
the slice, and proceed inductively on each part.

Now the top part has three types of variables: circuit inputs X , variables
representing constants Y as introduced in Lemma 1, and variables along the
slice Z. The variables Z appear only at the lowest level of this circuit. Note that
this circuit for the top part is syntactic multilinear in Z as well (because there
are no constants at the leaves).

To complete an inductive proof for Lemma 2, we need to show depth reduction
for such circuits. We use Lemma 3 below, which tells us that viewing each gate
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as computing a polynomial in Z, with coefficients from K = K[X,Y ], there are
small-depth circuits representing each of the coefficients. We then combine these
circuits to evaluate the original circuit.

Formally, let D be a width w, length l, syntactic multilinear circuit, with leaves
labelled from X ∪ Y ∪ Z (no constants), where variables from Z = {z1, . . . zw}
appear only at the lowest level of the circuit. Let h1, . . . , hw be the set of output
gates of D. Let phi ∈ K[X,Y, Z] denote the multilinear polynomial computed at
hi. Note that phi can also be viewed as a polynomial in K[Z], i .e. a multilinear
polynomial with variables from Z and polynomials from K[X,Y ] as its coeffi-
cients; we use this viewpoint below. For T ⊆ {1, . . . , w}, let [phi , T ] ∈ K[X,Y ]
denote the coefficient of the monomial mT =

∏
j∈T zj in phi . The following

lemma tells us how to evaluate these coefficients [phi , T ].

Lemma 3. With circuit D as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w},
there is a bounded fan-in arithmetic circuit Dh,T of size bounded by 2w2+2wl25w

and depth O(w2 log l), with leaves labelled from X ∪ Y ∪ {0, 1}, such that the
value computed at its output gate is exactly the value of [ph, T ] evaluated at the
input setting to X ∪ Y .

Proof Sketch. We proceed by induction on the length l of the circuit D. The
base case, when l = 1, can be handled appropriately. Assume that the lemma
holds for all circuits D′ of length l′ < l and width w.
Now let D be the given circuit of length l, syntactic multilinear in X ∪ Y ∪ Z,
where variables from Z appear only at the lowest level. Let {h1, . . . , hw} be
the output gates of D. Let {g1, . . . , gw} be the gates of D at level l′ = " l

2#.
Denote by A the circuit resulting from replacing gates gi with new variables z′i
for 1 ≤ i ≤ w, and removing all the gates below level l′, and denote by B the
circuit with {g1, . . . , gw} as output gates, i .e. gates above the gi’s are removed.
We rename the output gates of A as {f1, . . . , fw}. Both A and B are syntactic
multilinear circuits of length bounded by l′ and width w, and of a form where
the inductive hypothesis is applicable. For i ∈ {1, . . . , w}, pfi is a polynomial in
K[Z ′] and pgi is a polynomial in K[Z], where K = K[X,Y ].

Applying induction on A and B, for all S,Q ⊆ {1, . . . , w}, [pfi , S] and [pgi , Q]
have circuits Afi,S and Bgi,Q. Note that phi(Z) = pfi(pg1(Z), . . . , pgw (Z)). But
due to multilinearity,

pfi(Z
′) =

∑

S⊆[w]

⎛

⎝[pfi , S]
∏

j∈S

z′j

⎞

⎠ pgj (Z) =
∑

Q⊆[w]

⎛

⎝[pgj , Q]
∏

s∈Q

zs

⎞

⎠

Using this expression for pfi in the formulation for phi , we have

phi(Z) =
∑

S⊆[w]

⎛

⎝[pfi , S]
∏

j∈S

pgj (Z)

⎞

⎠

Hence, we can extract coefficients of phi as follows. The coefficient of the mono-
mial mT , for any T ⊆ [w] in phi is given by
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[phi , T ] =
∑

S⊆[w]

[pfi , S]
(

coefficient of mT in
∏

j∈S pgj (Z)
)

If S has t elements, then the monomial mT is built up in t disjoint parts (not
necessarily non-empty), where the kth part is contributed by the kth polynomial
of the form pg in the above expression. So the coefficient of mT is the product
of the corresponding coefficients. Hence

[phi , T ] =
∑

S={ji,...,jt}⊆[w]

⎛

⎜
⎜
⎜
⎜
⎝

[pfi , S]
∑

Q1, . . . , Qt :
partition of T

t∏

k=1

[pgjk
, Qk]

⎞

⎟
⎟
⎟
⎟
⎠

We use this expression to compute [phi , T ]. We first compute [pfi , S] and
[pgj , Q] for all i, j ∈ [w] and all S,Q ⊆ [w] using the inductively constructed
sub-circuits. Then a circuit on top of these does the required combination. Since
the number of partitions of T is bounded by ww , while the number of sets S is
2w, this additional circuitry has size at most 2w2

(for w ≥ 2 ) and depth O(w2).
We can show that this construction satisfies the required bounds. �

Using Lemma 3, we can establish Lemma 2 and hence Theorem 1.

4 Relationships among Syntactic Multilinear Classes

This section explores the relationships among the syntactic multilinear versions
of the arithmetic classes which are related to NC1.

A classical result from [7] shows that for every arithmetic formula F of size
s, there is an equivalent arithmetic formula F ′ which has depth O(log s) and
size poly(s). A careful observation of this proof shows that if we start with
a syntactic multilinear formula F , then the depth-reduced formula F ′ is also
syntactic multilinear.

Theorem 2. Every syntactic multilinear formula with n leaves has an equiva-
lent syntactic multilinear circuit of depth O(log n) and size O(n).

In particular, sma-F ⊆ sma-NC1.

It is easy to see that the path-preserving simulation of a constant width branch-
ing program by a log depth circuit preserves syntactic multilinearity:

Lemma 4. For any syntactic multilinear branching program P of width w and
size s over ring K, there is an equivalent syntactic multilinear circuit C of depth
O(log s) and size O(s) with fan-in of + gate bounded by w (or alternatively,
depth O(logw log s) and bounded fan-in).

In particular, sma-BWBP ⊆ sma-NC1 and sma-BP ⊆ sma-SAC1.

It is also easy to see that the construction of [11], staggering a small-depth
formula into a small-width one, preserves syntactic multilinearity. Thus
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Lemma 5. Let Φ be any sm-formula with depth d and size s. Then there is an
equivalent syntactic multilinear formula Φ′ of length 2s and width d.
In particular, sma-NC1 ⊆ sma-LWF.

From Lemma 5 and Theorem 2, we have the following equivalence.

Corollary 3. Over any ring K,
sma-F= sma-LWF= sma-NC1= sma-Formula-Depth,Size(log, poly).

A straightforward inductive construction of a branching program from a log
depth formula results in a log width BP and preserves syntactic multilinearity.
But the reverse containment may not hold. However, by restricting the branch-
ing program as in [3], we can obtain a characterisation for a-NC1 which also
preserves syntactic multilinearity. In [3] a characterisation for bounded depth
arithmetic circuits in terms of counting number of paths in a restricted version
of bounded width grid graphs is presented. We note that the characterisation
given in [3] works for bounded depth arithmetic circuits over arbitrary rings,
showing that a-BWrGP = a-AC0. By closely examining the parameters in [3],
we obtain a characterisation for a-NC1 in terms of the restricted version of log
width grid branching programs. We also note that these constructions preserve
syntactic multilinearity. In the statements and proofs below, we use the notion
of alternation-depth: a circuit C has alternation depth a if on every root-to-leaf
path, the number of maximal segments of gates of the same type is at most a.
Also, for an rGP (and in fact any branching program) P , we denote by Var(P )
the set of variables that appear on some s-to-t path in P . For a formula F ,
Var(F ) denotes the variables appearing anywhere in the formula F ; if h is the
root of F , then without loss of generality Var(F ) = Xh.

Lemma 6. Let Φ be an arithmetic formula of size s (i .e. number of wires) and
alternation-depth 2d over K and with input variables X ∈ Kn. Then there is a
restricted grid program P of length s2 + 2s (i .e. the number of edge layers) and
width max{2, 2d}, where the edges are labelled from Var(Φ) ∪ K, such that the
weighted sum of s-to-t paths in P is equal to the function computed by Φ.
Further, if Φ is syntactic multilinear, then so is P .

Lemma 7. Let P be an arithmetic rGP of length l (number of edge layers)
and of width 2w + 2 with variables from X ∈ K. Then there exists an equivalent
arithmetic formula Φ over K, with alternation depth at most 2w+2, size (number
of wires) at most 2l, and Var(Φ) = Var(P ).
Further, if P is syntactic multilinear, then so is Φ.

Corollary 4. sma-AC0 = sma-BWrGP.
sma-NC1 = sma-LWrGP; a-NC1 = a-LWrGP.

The above construction also holds in the case of boolean circuits, giving

Corollary 5. NC1 = LWrGP.

Thus we get a characterisation for NC1 and a-NC1 in terms of a restricted class
of log width polynomial size planar branching programs.
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In [5] it is shown that any O(log n) depth polynomial size formula has an
equivalent 3-register straight line program. This proves that a-NC1 ⊆ a-BWBP.
Can the same be stated for sma-NC1 and sma-BWBP? It turns out that applying
the construction of [5] does not preserve syntactic multilinearity; in fact the
resulting program need not even be multilinear.

5 Skew Formulae

In this section, we consider a question motivated by the setting of Valiant’s
algebraic complexity classes defined in [18]. VP is the class of polynomials of
polynomial degree, computable by polynomial-sized circuits. Similarly one can
define VF, VNC1, and so on. VNP is the class of polynomials expressible as
p(x1, . . . , xn) =

∑
e∈{0,1}m g(X, e) where m ∈ O(poly(n)) and the polynomial g

is in VP. Thus, loosely speaking, VNP equals
∑

·VP. See [8,9] for more details.
It is well known that the complexity class NP is equivalent to ∃ ·P and in fact

even to ∃ · F. A similar result holds in the case of Valiant’s algebraic complexity
classes too. Valiant has shown that VNP =

∑
·VF, and thus the polynomial

g in the expression above can be assumed to be computable by a formula of
polynomial size and polynomial degree.

Noting that VNP is the class of polynomials which are projection equivalent
to the “permanent” polynomial, a natural question arises about the polynomials
which are equivalent to determinant. Since the determinant exactly characterises
the class of polynomials which are computable by skew arithmetic circuits ([17]),
the question one could ask is: can the determinant be written as an exponential
sum of partial instantiations of a polynomial that can be computed by skew
formula of poly size, SkewF? Recall that a circuit is said to be skew if every ×
(or ∧) gate has at most one child that is not a circuit input. Skew circuits are
essentially equivalent to branching programs. Thus one could ask the related
question: since VP ⊆

∑
·VP =

∑
·VF, can we show that VSkew ⊆

∑
·VSkewF?

We show that this is highly unlikely. We first give a characterisation of poly-
nomials computed by skew formulae (Lemma 8) in terms of their degree and
number of monomials. (As a corollary, this places a-SkewF inside a-AC0.) We
then use this to show that

∑
·VSkewF is in fact contained in VNC1 (Theorem 3).

Thus placing VSkew in
∑

·VSkewF is analogous to the statement that GapL
equals GapNC1, which we believe is quite unlikely.1

Lemma 8. Let f ∈ Z[X ] have degree d, where m monomials have non-zero
coefficients. Then f can be computed by a skew formula Φ of size O(md). Further,
if all coefficients in f are bounded by c, then f can be computed by a skew formula
Φ′ that uses as constants only −1, 0, 1 and has size O(md + mc). Conversely,
let f ∈ Z[X ] be computed by a skew formula Φ of size s. Then the degree and
number of monomials in f are bounded by s. Further, if −1, 0, 1 are the only
constants in Φ, then the absolute values of coefficients in f are bounded by s.

Corollary 6. a-SAC0 ⊂ a-SkewF ⊂ a-AC0.

1 For C ∈ {SkewF, NC1, BP}, a-C is essentially the same as VC except that VC allows
arbitrary constants from K.
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Theorem 3. Let f ∈ Z[X ] be expressible as f(X) =
∑

e∈{0,1}m φ(X, e), where
φ has a poly size skew formula. Then f ∈ VNC1. (i .e. ,

∑
·VSkewF ⊆ VNC1.)

Proof Sketch. Since φ(X,Y ) has a poly size skew formula, by Lemma 8 we
know that the number of non-zero monomials in φ is bounded by some polynomial
q(n,m). Hence the number of non-zero monomials in φ(X,Y )|X , is also bounded
by q(n,m).

For any α ∈ Nn, consider the monomial Xα =
∏

αi
Xαi

i . Define the set Sα

as Sα = {β ∈ {0, 1}m | XαY β has a non-zero coefficient aα,β in φ}. Clearly, for
each α, |Sα| ≤ q(n,m). Since φ(X,Y ) is evaluated only at Boolean settings of Y ,
we can assume, w.l.o.g., that it is multilinear in Y . Hence

φ(X,Y ) =
∑

α∈Nn

∑

β∈{0,1}m

aα,βX
αY β

Hence we can show that

f(X) =
∑

α∈Nn

⎛

⎝Xα
∑

β∈Sα

aα,β2m−lβ

⎞

⎠

where lβ = number of 1’s in the bit vector β ∈ {0, 1}m.

Now it is easy to see that the above expression can be computed in VNC1. �
Thus, if the Determinant polynomial is expressible as

∑
.VSkewF then it belongs

to VNC1.
We briefly consider (syntactic) multilinear versions of these classes. From

Lemma 8, we know that a-SkewF is characterised by polynomials with polyno-
mially many coefficients. The construction yields, for any multilinear polynomial
computed by a skew formula, an equivalent skew formula which is syntactic mul-
tilinear. Hence the notion of multilinearity and syntactic multilinearity are the
same for skew formulae. Since any multilinear polynomial that can be computed
by an a-SAC0 circuit has a small number of monomials, the containments of corol-
lary 6 hold in the syntactic multilinear case too. Also, note that the polynomial∏

i(xi + yi) is multilinear, and can be computed by a sma-AC0 circuit.
Corollary 7. sma-SAC0 ⊂ sma-SkewF = ma-SkewF ⊂ sma-AC0.

6 Conclusion

This work came out of an attempt to close the gap in a-NC1 ⊆ a-sSC0. We
have not been able to do this; we can only show that sma-sSC0 ⊆ a-NC1. Can
the depth-reduction be pushed to all of a-sSC0? At least ma-sSC0? Alternatively,
can the depth-reduced circuit be made multilinear?

Another unsettled question is to better understand the Boolean containments
NC1 = LWrGP ⊆ LWGP ⊆ LWBP ⊆ sSC1 ⊆ SC1 = L. Where exactly does the
power of the classes actually jump from NC1 to L?

Making the constructions described here uniform would also be of interest.

Acknowledgements. The referees’ comments are gratefully acknowledged.
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Abstract. Binary search trees are a fundamental data structure and
their height plays a key role in the analysis of divide-and-conquer algo-
rithms like quicksort. We analyze their smoothed height under additive
uniform noise: An adversary chooses a sequence of n real numbers in
the range [0, 1], each number is individually perturbed by adding a value
drawn uniformly at random from an interval of size d, and the resulting
numbers are inserted into a search tree. An analysis of the smoothed tree
height subject to n and d lies at the heart of our paper: We prove that the
smoothed height of binary search trees is Θ(

√
n/d+log n), where d ≥ 1/n

may depend on n. Our analysis starts with the simpler problem of de-
termining the smoothed number of left-to-right maxima in a sequence.
We establish matching bounds, namely once more Θ(

√
n/d + log n). We

also apply our findings to the performance of the quicksort algorithm
and prove that the smoothed number of comparisons made by quicksort
is Θ( n

d+1

√
n/d + n log n).

1 Introduction

To explain the discrepancy between average-case and worst-case behavior of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed anal-
ysis [14]. Smoothed analysis interpolates between average-case and worst-case
analysis: Instead of taking a worst-case instance or, as in average-case analy-
sis, choosing an instance completely at random, we analyze the complexity of
(possibly worst-case) objects subject to slight random perturbations. On the one
hand, perturbations model that nature is not (or not always) adversarial. On the
other hand, perturbations reflect the fact that data is often subject to measure-
ment or rounding errors; even if the instance at hand was initially a worst-case
instance, due to such errors we would probably get a less difficult instance in
practice. Spielman and Teng [15] give a comprehensive survey on results and
open problems in smoothed analysis.
� Work done at the Department of Computer Science at Yale University, supported
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Binary search trees are one of the most fundamental data structures in com-
puter science and they are the building blocks for a large variety of data struc-
tures. One of the most important parameter of binary search trees is their height.
The worst-case height of a binary tree for n numbers is n. The average-case
behavior has been the subject of a considerable amount of research, culminat-
ing in the result that the average-case height is α lnn− β ln lnn + O(1), where
α ≈ 4.311 is the larger root of α ln(2e/α) = 1 and β = 3/(2 ln(α/2)) ≈ 1.953 [12].
Furthermore, the variance of the height is bounded by a constant, as was proved
independently by Drmota [6] and Reed [12], and also all higher moments are
bounded by constants [6]. Drmota [7] gives a recent survey.

Beyond being an important data structure, binary search trees play a cen-
tral role in the analysis of divide-and-conquer algorithms like quicksort [9, Sec-
tion 5.2.2]. While quicksort needs Θ(n2) comparisons in the worst case, the
average number of comparisons is 2n logn−Θ(n) with a variance of (7 − 2

3π
2) ·

n2 − 2n logn +O(n) as mentioned by Fill and Janson [8]. Quicksort and binary
search trees are closely related: The height of the tree T (σ) obtained from a
sequence σ is equal to the number of levels of recursion required by quicksort to
sort σ. The number of comparisons, which corresponds to the total path length
of T (σ), is at most n times the height of T (σ).

Binary search trees are also related to the number of left-to-right maxima of
a sequence, which is the number of new maxima seen while scanning a sequence
from left to right. The number of left-to-right maxima of σ is equal to the
length of the rightmost path of the tree T (σ), which means that left-to-right
maxima provide an easy-to-analyze lower bound for the height of binary search
trees. In the worst-case, the number of left-to-right maxima is n, while it is∑n

i=1 1/i ∈ Θ(log n) on average. The study of left-to-right maxima is also of
independent interest. For instance, the number of times a data structure for
keeping track of a bounding box of moving object needs to be updated is closely
related to the number of left-to-right maxima (and minima) of the coordinate
components of the objects. (See Basch et al. [2] for an introduction to data
structures for mobile data.) Left-to-right maxima also play a role in the analysis
of quicksort [13].

Given the discrepancies between average-case and worst-case behavior of bi-
nary search trees, quicksort, and the number of left-to-right maxima, the question
arises of what happens in between when the randomness is limited.

Our results. We continue the smoothed analysis of binary search trees and quick-
sort begun by Banderier et al. [1] and Manthey and Reischuk [10]. However,
we return to the original idea of smoothed analysis that input numbers are
perturbed by adding random numbers. The perturbation model introduced by
Spielman and Teng for the smoothed analysis of continuous problems like lin-
ear programming is appropriate for algorithms that process real numbers. In
their model, each of the real numbers in the adversarial input is perturbed by
adding a small Gaussian noise. This model of perturbation favors instances in
the neighborhood of the adversarial input for a fairly natural and realistic notion
of “neighborhood.”
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In our model the adversarial input sequence consists of n real numbers in the
interval [0, 1]. Then, each of the real numbers is individually perturbed by adding
a random number drawn uniformly from an interval of size d, where d = d(n)
may depend on n. If d < 1/n, then the sorted sequence (1/n, 2/n, 3/n, . . . , n/n)
stays a sorted sequence and the smoothed height of binary search trees (as well
as the performance of quicksort and the number of left-to-right maxima) is the
same as in the worst-case. We always assume d ≥ 1/n in the following.

We study the smoothed height of binary search trees, the smoothed number of
comparisons made by quicksort, and the smoothed number of left-to-right max-
ima under additive noise. In each case we prove tight upper and lower bounds:

1. The smoothed number of left-to-right maxima is Θ(
√
n/d+ logn) as shown

in Section 3. This result will be exploited in the subsequent sections.
2. The smoothed height of binary search trees is Θ(

√
n/d+ logn) as shown in

Section 4.
3. The smoothed number of comparisons made by quicksort is Θ( n

d+1

√
n/d +

n logn) as shown in Section 5. Thus, the perturbation effect of d ∈ ω(1) is
stronger than for d ∈ o(1).

Already for d ∈ ω(1/n), we obtain bounds that are asymptotically better than
the worst-case bounds. For constant values of d, which correspond to a pertur-
bation by a constant percentage like 1%, the height of binary search trees drops
from the worst-case height of n to O(

√
n), and quicksort needs only O(n3/2)

comparisons.
It is tempting to assume that results such as the above will hold in the same

way for other distributions, such as the Gaussian distribution, with d replaced
by the standard deviation. We contribute a surprising result in Section 6: We
present a well-behaved probability distribution (symmetric, monotone on the
positive reals, smooth) for which sorting sequences can decrease the expected
number of left-to-right maxima. This effect is quite counter-intuitive and the
literature contains the claim that one can restrict attention to sorted sequences
since they are the worst-case sequences also in the smoothed setting [4,3]. Our
distribution refutes this claim.

Related work. The first smoothed analysis of quicksort, due to Banderier, Beier,
and Mehlhorn [1], uses a perturbation model different from the one used in the
present paper, namely a discrete perturbation model. Such models take discrete
objects like permutations as input and again yield discrete objects like another
permutation. Banderier et al. used p-partial permutations, which work as follows:
An adversary chooses a permutation of the numbers {1, . . . , n} as sequence, ev-
ery element of the sequence is marked independently with a probability of p, and
then the marked elements are randomly permuted. Banderier et al. showed that
the number of comparisons subject to p-partial permutations is O(n

p · logn). Fur-
thermore, they proved bounds on the smoothed number of left-to-right maxima
subject to this model.

Manthey and Reischuk [10] analyzed the height of binary search trees under
p-partial permutations. They proved a lower bound of 0.8 · (1−p) ·

√
n/p and an
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asymptotically matching upper bound of 6.7 · (1 − p) ·
√
n/p for the smoothed

tree height. For the number of left-to-right maxima, they showed a lower bound
of 0.6 · (1 − p) ·

√
n/p and an upper bound of 3.6 · (1 − p) ·

√
n/p.

Special care must be taken when defining perturbation models for discrete
inputs: The perturbation should favor instances in the neighborhood of the ad-
versarial instance, which requires a suitable definition of neighborhood in the
first place, and the perturbation should preserve the global structure of the ad-
versarial instance. Partial permutations have the first feature [10, Lemma 3.2],
but destroy much of the global order of the adversarial sequence.

The smoothed number of left-to-right maxima for the additive noise model
of the present paper was already considered by Damerow et al. [4,5,3]. They
considered so-called kinetic data structures, which keep track of properties of a
set of moving points like a bounding box for them or a convex hull, and they
introduced the notion of smoothed motion complexity. They also considered left-
to-right maxima since left-to-right maxima provide upper and lower bounds on
the number of times a bounding box needs to be updated for moving points. For
left-to-right maxima, Damerow et al. show an upper bound of O(

√
n logn/d +

logn) and a lower bound of Ω(
√
n/d). In the present paper, we show that the

exact bound is Θ(
√
n/d + logn).

2 Preliminaries

Intervals are denoted by [a, b] = {x ∈ R | a ≤ x ≤ b}. To denote an interval that
does not include an endpoint, we replace the square bracket next to the endpoint
by a parenthesis. We denote sequences of real numbers by σ = (σ1, . . . , σn),
where σi ∈ R. For U = {i1, . . . , i} ⊆ {1, . . . , n} with i1 < i2 < · · · < i let
σU = (σi1 , σi2 , . . . , σi�

) denote the subsequence of σ of the elements at positions
in U . We denote probabilities by P and expected values by E.

Throughout the paper, we will assume for the sake of clarity that numbers like√
d are integers and we do not write down the tedious floor and ceiling functions

that are actually necessary. Since we are interested in asymptotic bounds, this
does not affect the validity of the proofs.

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [11].

2.1 Binary Search Trees, Left-to-Right Maxima, and Quicksort

Let σ be a sequence of length n consisting of pairwise distinct elements. For the
following definitions, let G = {i ∈ {1, . . . , n} | σi > σ1} be the set of positions
of elements greater than σ1, and let S = {i ∈ {1, . . . , n} | σi < σ1} be the set of
positions of elements smaller than σ1.

From σ, we obtain a binary search tree T (σ) by iteratively inserting the ele-
ments σ1, . . . , σn into the initially empty tree as follows: The root of T (σ) is σ1.
The left subtree of the root σ1 is T (σS), and the right subtree of σ1 is T (σG).
The height of T (σ) is the maximum number of nodes on any root-to-leaf path of
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T (σ): Let height(σ) = 1 + max{height(σS), height(σG)}, and let height(σ) = 0
when σ is the empty sequence.

The number of left-to-right maxima of σ is the number of maxima seen when
scanning σ from left to right: let ltrm(σ) = 1 + ltrm(σG), and let ltrm(σ) = 0
when σ is the empty sequence. The number of left-to-right maxima of σ is equal
to the length of the rightmost path of T (σ), so ltrm(σ) ≤ height(σ).

Quicksort is the following sorting algorithm: Given σ, we construct σS and
σG. To do this, all elements of (σ2, . . . , σn) have to be compared to σ1, which
is called the pivot element. Then we sort σS and σG recursively to obtain τS

and τG, respectively. Finally, we output τ = (τS , σ1, τG). The number qs(σ) of
comparisons needed to sort σ is thus qs(σ) = (n− 1) + qs(σS) + qs(σG) if σ has
a length of n ≥ 1, and qs(σ) = 0 when σ is the empty sequence.

2.2 Perturbation Model

The perturbation model of additive noise is defined as follows: Let d = d(n) ≥ 0
be the perturbation parameter (d may depend on n). Given a sequence σ of
n numbers chosen by an adversary from the interval [0, 1], we draw a noise νi

for each i ∈ {1, . . . , n} uniformly and independently from each other at random
from the interval [0, d]. Then we obtain the perturbed sequence σ = (σ1, . . . , σn)
by adding νi to σi, that is, σi = σi + νi. Note that σi need no longer be an
element of [0, 1], but σi ∈ [0, d+ 1]. For d > 0 all elements of σ are distinct with
a probability of 1.

For this model, we define the random variables heightd(σ), qsd(σ), as well as
ltrmd(σ), which denote the smoothed search tree height, smoothed number of
quicksort comparisons, and smoothed number of left-to-right maxima, respec-
tively, when the sequence σ is perturbed by d-noise. Since the adversary chooses
σ, our goal are bounds for maxσ∈[0,1]n E

(
heightd(σ)

)
, maxσ∈[0,1]n E

(
qsd(σ)

)
, and

maxσ∈[0,1]n E
(
ltrmd(σ)

)
. In the following, we will sometimes write height(σ) in-

stead of heightd(σ) if d is clear from the context. Since σ is random, height(σ)
is also a random variable. Similarly, we will use ltrm(σ) and qs(σ).

The choice of the interval sizes is arbitrary since the model is invariant under
scaling if we scale the perturbation parameter accordingly. This is summarized
in the following lemma, which we will exploit a couple of times in the following.

Lemma 1. Let b > a and d > 0 be arbitrary real numbers, and let d′ = d/(b−a).
Then maxσ∈[a,b]n E

(
heightd(σ)

)
= maxσ∈[0,1]n E

(
heightd′(σ)

)
. For quicksort and

the number of left-to-right maxima, we have analogous equalities.

As argued earlier, if d < 1/n, the adversary can specify σ = (1/n, . . . , n/n) and
adding the noise terms does not affect the order of the elements. This means that
we get the worst-case height, number of comparisons, and number of left-to-right
maxima. Because of this observation we will restrict our attention to d ≥ 1/n.

If d is large, the noise will swamp out the original instance, and the order of
the elements of σ will depend only on the noise rather than the original instance.
For intermediate d, additive noise interpolates between average and worst case.
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3 Smoothed Number of Left-to-Right Maxima

We start our analyses with the smoothed number of left-to-right maxima, which
provides us with a lower bound on the height of binary search trees as well. Our
aim for the present section is to prove the following theorem.

Theorem 1. For d ≥ 1/n, we have

max
σ∈[0,1]n

E
(
ltrmd(σ)

)
∈ Θ

(√
n/d + logn

)
.

The lower bound of Ω
(√

n/d+ logn
)

is already stated without proof in [4] and
a proof can be found in [3], so we prove only the upper bound. The following
notations will be helpful: For j ≤ 0, let σj = νj = 0. This allows us to define
δi = σi−σi−

√
nd for all i ∈ {1, . . . , n}. We define Ii = {j ∈ {1, . . . , n} | i−

√
nd ≤

j < i} to be the set of the |Ii| = min{i− 1,
√
nd} positions that precede i.

To prove the upper bound for the smoothed number of left-to-right maxima,
we proceed in two steps: First, a “bubble-sorting argument” is used to show that
the adversary should choose a sorted sequence. Note that this is not as obvious
as it may seem since in Section 6 we show that this bubble-sorting argument
does not apply to all distributions. Second, we prove that the expected number
of left-to-right maxima of sorted sequences is O(

√
n/d+ logn), which improves

the bound of O(
√
n logn/d + logn) [3,4].

Lemma 2. For every σ and its sorted version τ , E
(
ltrmd(σ)

)
≤ E

(
ltrmd(τ)

)
.

Lemma 3. For all σ of length n and all d ≥ 1/n, we have E
(
ltrmd(σ)

)
∈

O
(√

n/d + logn
)
.

Proof. By Lemma 2 we can restrict ourselves to proving the lemma for sorted
sequences σ. We estimate the probability that a given σi for i ∈ {1, . . . , n} is a
left-to-right maximum. Then the bound follows by the linearity of expectation.
To bound the probability that σi is a left-to-right maximum (ltrm), consider the
following computation:

P
(
σi is an ltrm

)
≤ P

(
∀j ∈ Ii : νj < σi − σi−

√
nd

)
(1)

≤ P
(
d < σi − σi−

√
nd

)
+
∫ d−δi

0 P
(
∀j ∈ Ii : νj < σi + x− σi−

√
nd

)
· 1

d dx (2)

≤ δi

d +
∫ d

0
P
(
∀j ∈ Ii : νj < x

)
· 1

d dx (3)

≤ δi

d + P
(
∀j ∈ Ii : νj < νi

)
= δi

d + 1
|Ii|+1 . (4)

To see that (1) holds, assume that σi is a left-to-right maximum. Then σi−σi−
√

nd

must be larger than the noises of all the elements in the index range Ii, for if the
noise νj of some element σj were larger than σi − σi−

√
nd, then σj = σj + νj

would be larger than σj +σi −σi−
√

nd. Since the sequence is sorted, we would get
σj + σi − σi−

√
nd ≥ σi, and σi would not be a left-to-right maximum.
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For (2), first observe that νj < σi−σi−
√

nd is surely the case for all j ∈ Ii if d <
σi −σi−

√
nd. So, consider the case d ≥ σi −σi−

√
nd = δi +νi. Then νi ∈ [0, d−δi]

and we can rewrite P(∀j ∈ Ii : νj < δi +νi) as
∫ d−δi

0 P(∀j ∈ Ii : νj < δi+x)· 1
d dx,

where 1/d is the density of νi. For (3) observe that d < σi −σi−
√

nd is equivalent
to d− δi < νi and the probability of this is δi/d. Furthermore, we performed an
index shift in the integral. In (4), we replaced the integral by a probability once
more and get the final result.

We have
∑n

i=1 δi =
∑n

i=1(σi − σi−
√

nd) =
∑n

i=n−
√

nd+1 σi ≤
√
nd. The sec-

ond equality holds since most σi cancel themselves out and σi = 0 for i ≤ 0.
The inequality holds since there are

√
nd summands. We bound 1/(|Ii| + 1) =

1/min{i,
√
nd+1} by 1/i+1/

√
nd and sum over all i: E

(
ltrmd(σ)

)
≤
∑n

i=1

(
δi

d +
1

|Ii|+1

)
≤
√

nd
d +

∑n
i=1

1
i + n√

nd
∈ O(

√
n/d + log n). �

4 Smoothed Height of Binary Search Trees

In this section we prove our first main result, an exact bound on the smoothed
height of binary search trees under additive noise. The bound is the same as for
left-to-right maxima, as stated in the following theorem.

Theorem 2. For d ≥ 1/n, we have

maxσ∈[0,1]n E
(
heightd(σ)

)
∈ Θ

(√
n/d + logn

)
.

In the rest of this section, we prove this theorem. We have to prove an upper
and a lower bound, but the lower bound follows directly from the lower bound of
Ω(
√
n/d+ logn) for the smoothed number of left-to-right maxima (the number

of left-to-right maxima in a sequence is the length of the rightmost path of the
sequence’s search tree). Thus, we only need to focus on the upper bound. To
prove the upper bound of O(

√
n/d + log n) on the smoothed height of binary

search trees, we need some preparations. In the next subsection we introduce
the concept of increasing and decreasing runs and show how they are related
to binary search tree height. As we will see, bounding the length of these runs
implicitly bounds the height of binary search trees. This allows us to prove the
upper bound on the smoothed height of binary search trees in the main part of
this section.

4.1 Increasing and Decreasing Runs

In order to analyze the smoothed height of binary search trees, we introduce a
related measure for which an upper bound is easier to obtain. Given a sequence σ,
consider a root-to-leaf path of the tree T (σ). We extract two subsequences α =
(α1, . . . , αk) and β = (β1, . . . , β) from this path according to the following
algorithm: We start at the root. When we are at an element σi of the path, we
look at the direction in which the path continues from σi. If it continues with
the right child of σi, we append σi to α; if it continues with the left child, we
append σi to β; and if σi is a leaf (has no children), then we append σi to both α
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Fig. 1. The tree T (σ) obtained from the sequence σ = (7, 8, 13, 3, 2, 10, 9, 6, 4, 12, 14, 1,
5, 11). We have height(σ) = 6. The root-to-leaf path ending at 11 yields the increasing
run α = (7, 8, 10, 11) and the decreasing run β = (13, 12, 11).

and β. This construction ensures α1 < · · · < αk = β < · · · < β1 and the length
of σ is k + �− 1. Figure 1 shows an example of how α and β are constructed.

A crucial property of the sequence α is the following: Let αi = σji for all
i ∈ {1, . . . , k} with j1 < j2 < · · · < jk. Then none of σ1, . . . , σji−1 lies in the
interval (αi, αi+1), for otherwise αi and αi+1 cannot be on the same root-to-leaf
path. A similar property holds for the sequence β: No element of σ prior to βi

lies in the interval (βi+1, βi). We introduce a special name for sequences with
this property.

Definition 1. An increasing run of a sequence σ is a subsequence (σi1 , . . . , σik
)

with the following property: For every j ∈ {1, . . . , k − 1}, no element of σ prior
to σij lies in the interval (σij , σij+1 ). Analogously, a decreasing run of σ is a
subsequence (σi1 , . . . , σi�

) with σi1 > · · · > σi�
such no element prior to σij lies

in the interval (σij+1 , σij ).

Let inc(σ) and dec(σ) denote the length of the longest increasing and decreasing
run of σ, respectively. Furthermore, let decd(σ) and incd(σ) denote the length
of the longest runs under d-noise. In Figure 1, we have inc(σ) = 4 because of
(7, 8, 10, 12) or (7, 8, 13, 14) and dec(σ) = 4 because of (7, 3, 2, 1).

Since every root-to-leaf path can be divided into an increasing and a decreas-
ing run, we immediately obtain the following lemma.

Lemma 4. For every sequence σ and all d we have

height(σ) ≤ dec(σ) + inc(σ),

E
(
heightd(σ)

)
≤ E

(
decd(σ) + incd(σ)

)
.

In terms of upper bounds, dec(σ) and inc(σ) as well as decd(σ) and incd(σ)
behave equally. The reason is that given a sequence σ, the sequence τ with
τi = 1 − σi has the properties dec(σ) = inc(τ) and E

(
decd(σ)

)
= E

(
incd(τ)

)
.

This observation together with Lemma 4 proves the next lemma.

Lemma 5. For all d, we have

max
σ∈[0,1]n

E
(
heightd(σ)

)
≤ 2 · max

σ∈[0,1]n
E
(
incd(σ)

)
.
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The lemma states that in order to bound the smoothed height of search trees
from above we can instead bound the smoothed length of increasing or decreasing
runs. To simplify the analysis even further, we show that we can once more
restrict our attention to sorted sequences.

Lemma 6. For every σ and its sorted version τ , E
(
incd(σ)

)
≤ E

(
incd(τ)

)
.

4.2 Upper Bound on the Smoothed Height of Binary Search Trees

We are now ready to prove the upper bound for binary search trees by proving an
upper bound on the smoothed length of increasing runs of sorted sequences. For
this, we prove four lemmas, the last of which claims exactly the desired upper
bound. Lemma 7 deals with d = 1 and states that E

(
height1(σ)

)
∈ O(

√
n)

for every sequence σ. Lemma 8 states that in order to bound tree heights, we
can divide sequences into (possibly overlapping) parts and consider the height
of the trees induced by the subsequences individually. A less general form of
the lemma has already been shown by Manthey and Reischuk [10, Lemma 4.1].
Lemma 9 establishes that if d = n/ log2 n, a perturbed sequence behaves the
same way as a completely random sequence with respect to the smoothed length
of its longest increasing run. The core idea is to partition the sequence into a
set of “completely random” elements, which behave as expected, and two sets
of more bothersome elements lying in a small range. As we will see, the number
of bothersome elements is roughly log2 n and since the range of values of these
elements is small, we can use the result E

(
height1(σ)

)
∈ O(

√
n) to show that

their contribution to the length on an increasing run is just O(log n). Finally, in
Lemma 10 we allow general d ≥ 1/n. This case turns out to be reducible to the
case d = n/ log2 n by scaling the numbers according to Lemma 1.

For the proofs of the lemmas, two technical terms will be helpful: For a given
real interval I = [a, b], we say that a position i of σ is eligible for I if σi can
assume any value in I. In other words, i is eligible for [a, b] if σi ≤ a and σi+d ≥ b.
Furthermore, we say that i is regular if σi actually lies inside I.

Lemma 7. For all σ, we have E
(
inc1(σ)

)
∈ O(

√
n).

Lemma 8. For every sequence σ, all d, and every covering U1, U2, . . . , Uk of
{1, . . . , n} (which means

⋃k
i=1 Ui = {1, . . . , n}), we have

height(σ) ≤
∑k

i=1 height(σUi),

E
(
heightd(σ)

)
≤
∑k

i=1 E
(
heightd(σUi)

)
.

Lemma 9. For all sequences σ, and d = n/ log2 n, we have E
(
heightd(σ)

)
∈

O(log n).

Lemma 10. For every sequence σ and all d ≥ 1/n we have E
(
heightd(σ)

)
∈

O
(√

n/d + logn
)
.

Proof. If d ∈ Ω
(
n/ log2 n

)
, then E

(
heightd(σ)

)
∈ O(log n) by Lemma 9.
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To prove the theorem for smaller values of d, we divide the sequence into
subsequences. Let N be the largest real root of the equation N2/ log2 N = nd.
Then logN ∈ Θ(log(nd)), and thus N = c ·

√
nd · log(nd) for some c ∈ Θ(1).

Let nj be the number of elements of σ with σi ∈ [(j − 1) ·N/n, j ·N/n]. Choose
kj ∈ N such that (kj − 1) · N < nj ≤ kjN . We divide the nj elements of the
interval [(j − 1) ·N/n, j ·N/n] into kj subsequences σj,1, . . . , σj,kj such that no
subsequence contains more than N elements. Since

∑n/N
j=1 kj ≤

∑n/N
j=1

nj+N
N ≤ 2n/N,

we obtain at most 2n/N such subsequences. Each subsequence spans at most an
interval of length N/n and contains at most N elements. Thus, by Lemma 9, we
have E

(
heightd(σj,)

)
∈ O(log(N)). Finally, Lemma 8 yields

E
(
heightd(σ)

)
≤
∑n/N

j=1

∑kj

=1 E
(
heightd(σj,)

)
∈ O

(
n log N

N

)
= O

(√
n/d

)
. �

5 Smoothed Number of Quicksort Comparisons

In this section, we apply our results on binary search trees and left-to-right
maxima to the performance of the quicksort algorithm. The following theorem
summarizes the findings.

Theorem 3. For d ≥ 1/n we have

max
σ∈[0,1]n

E
(
qsd(σ)

)
∈ Θ

(
n

d+1

√
n/d + n logn

)
.

In other words, for d ∈ O(1), we have at most O(n
√
n/d) comparisons, while

for d ∈ Ω(1), we have at most O(n
d

√
n/d) comparisons. This means that d has

a stronger influence for d ∈ Ω(1).
To prove the upper bound, we first need a lemma similar to Lemma 8 that

allows us to estimate the number of comparisons of subsequences.

Lemma 11. For every sequence σ, all d, and every covering U1, U2, . . . , Uk of
{1, . . . , n}, we have

qs(σ) ≤
∑k

i=1 qs(σUi) + Q,

E
(
qsd(σ)

)
= E

(
qs(σ)

)
≤
∑k

i=1 E
(
qs(σUi)

)
+ E(Q),

where Q is the number of comparisons of elements of σUi with elements of
σ{1,...,n}\Ui

for any i and the random variable Q is defined analogously for σ.

Lemma 12. For every sequence σ and all d ≥ 1/n, we have E
(
qsd(σ)

)
∈

O
(

n
d+1

√
n/d + n logn

)
.

Our upper bound is tight. The standard sorted sequence provides a worst case,
but we use a sequence that is slightly easier to handle technically.

Lemma 13. For σ = (1/n, 2/n, . . . , n
2 /n, 1, 1, . . . , 1) and all d ≥ 1/n, we have

E
(
qsd(σ)

)
∈ Ω

(
n

d+1

√
n/d + n logn

)
.
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6 Sorting Decreases the Number of Left-to-Right
Maxima

Lemma 2 states that sorting a sequence can never decrease the expected number
of left-to-right maxima – at least when the noise is drawn uniformly from a single
interval. Intuitively, this should not only hold for this kind of noise, but for any
kind of noise – at least if the noise distribution is reasonably well-behaved. We
demonstrate that this intuition is wrong and there exist a simple distribution
and a sequence for which the sorted version has a lower expected number of
left-to-right maxima than the original sequence.

Theorem 4. The exist a sequence σ and a symmetric probability distribution
f : R → R that is monotonically decreasing on R+ such that sorting σ to obtain
τ decreases the expected number of left-to-right maxima after perturbation.

To prove the theorem, we use the sequence σ = (0, . . . , 0, 1 + 1
ε ,

1
ε ). The proba-

bility distribution has most of its mass in the interval [−1, 1] with tails of length
1/ε to either side: f(x) = 1−2ε for x ∈ [−1, 1] and f(x) = ε2 for |x| ∈ [1, 1+1/ε].
This distribution can easily be made smooth without changing the claim of the
theorem.

7 Conclusion

The smoothed height of binary search trees and also the smoothed number of
left-to-right maxima are Θ(

√
n/d + logn); the smoothed number of quicksort

comparisons is Θ( n
d+1

√
n/d+ n logn). While we obtain the average-case height

of Θ(log n) for binary search trees only for d ∈ Ω(n/ log2 n) – which is large
compared to the interval size [0, 1] from which the numbers are drawn –, for
the quicksort algorithm d ∈ Ω

(
3
√
n/ log2 n

)
suffices so that the expected num-

ber of comparisons equals the average-case number of Θ(n log n). On the other
hand, the recursion depth of quicksort, which is equal to the tree height, can
be as large as Ω

(√
n/d

)
. Thus, although the average number of comparisons is

already reached at d ∈ Ω
(

3
√
n/ log2 n

)
, the recursion depth remains asymptoti-

cally larger than its average value for d ∈ o
(
n/(logn)2

)
.

A natural question arising from our results is, what happens when the noise
is drawn according to distributions other than the uniform distribution? As we
have demonstrated, we cannot expect all distributions to behave in the same
way as the uniform distribution. A natural candidate for closer examination
is the normal distribution, for which first results on left-to-right maxima have
already been obtained [4]. We conjecture that if maxx∈R f(x) = φ, where f is
the noise distribution, then the expected tree height and the expected number of
left-to-right maxima are O(

√
nφ+logn) while the expected number of quicksort

comparisons is O
(

φn
φ+1

√
nφ+n logn

)
. These bounds would be in compliance with

our bounds for uniformly distributed noise, where φ = 1/d.
In our study of the quicksort algorithm we used the first element as the pivot

element. This choice simplifies the analysis but one would often use the median
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of the first, middle, and last element. Nevertheless, we conjecture that the same
bounds as for the simple pivot strategy also hold for this pivot strategy.
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2 Dip. Informatica, Università Ca’Foscari di Venezia

Abstract. We generalize to universal algebra concepts originating from
λ-calculus and programming to prove a new result on the lattice λT of
λ-theories, and a general theorem of pure universal algebra which can be
seen as a meta version of the Stone Representation Theorem. In this pa-
per we introduce the class of Church algebras (which includes all Boolean
algebras, combinatory algebras, rings with unit and the term algebras of
all λ-theories) to model the “if-then-else” instruction of programming.
The interest of Church algebras is that each has a Boolean algebra of
central elements, which play the role of the idempotent elements in rings.
Central elements are the key tool to represent any Church algebra as a
weak Boolean product of indecomposable Church algebras and to prove
the meta representation theorem mentioned above. We generalize the
notion of easy λ-term of lambda calculus to prove that any Church al-
gebra with an “easy set” of cardinality n admits (at the top) a lattice
interval of congruences isomorphic to the free Boolean algebra with n
generators. This theorem has the following consequence for the lattice of
λ-theories: for every recursively enumerable λ-theory φ and each n, there
is a λ-theory φn ⊇ φ such that {ψ : ψ ⊇ φn} “is” the Boolean lattice
with 2n elements.

Keywords: Lambda calculus, Universal Algebra, Church Algebras,
Stone Representation Theorem, Lambda Theories.

1 Introduction

Lambda theories are equational extensions of the untyped λ-calculus closed un-
der derivation. They arise by syntactical or semantic considerations. Indeed, a
λ-theory may correspond to some operational semantics of λ-calculus, as well
as it may be induced by a λ-model, which is a particular combinatory algebra
(CA, for short) [1, Sec. 5.2]. The set of λ-theories is naturally equipped with a
structure of complete lattice (see [1, Ch. 4]), whose bottom element is the least
λ-theory λβ, and whose top element is the inconsistent λ-theory. The lattice λT
of λ-theories is a very rich and complex structure of cardinality 2ℵ0 [1,10,11,2].

The interest of a systematic study of the lattice λT of λ-theories grows out of
several open problems on λ-calculus. For example, Selinger’s order-incompleteness
problem asks for the existence of a λ-theory not arising as the equational theory of
a non-trivially partially ordered model of λ-calculus. This problem can be proved
equivalent to that of the existence of a recursively enumerable (r.e., for short) λ-
theory φ whose term algebra generates an n-permutable variety of algebras for
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some n ≥ 2 (see [15] and the remark after [16, Thm. 3.4]). Lipparini [9] has found
out interesting non-trivial lattice identities that hold in the congruence lattices
of all algebras living in an n-permutable variety. The failure of some Lipparini’s
lattice identities in λT would imply that Selinger’s problem has a negative answer.

Techniques of universal algebra were applied in [14,10,3] to study the structure
of λT . In this paper we validate the inverse slogan: λ-calculus can be fruitfully
applied to universal algebra. By generalizing to universal algebra concepts origi-
nating from λ-calculus and programming, we create a zigzag path from λ-calculus
to universal algebra and back. All the algebraic properties we have shown in [11]
for CAs, hold for a wider class of algebras, that we call Church algebras. Church
algebras include, beside CAs, all BAs (Boolean algebras) and all rings with unit,
and model the “if-then-else” instruction by two constants 0, 1 and a ternary term
q(x, y, z) satisfying the following identities:

q(1, x, y) = x; q(0, x, y) = y.

The interest of Church algebras is that each has a BA of central elements,
which can be used to represent the Church algebra as a weak Boolean product
of directly indecomposable algebras (i.e., algebras which cannot be decomposed
as the Cartesian product of two other non-trivial algebras).

We generalize the notion of easy λ-term from λ-calculus and use central ele-
ments to prove that: (i) any Church algebra with an “easy set” of cardinality κ
admits a congruence φ such that (the lattice reduct of) the free BA with κ gen-
erators embeds into the lattice interval [φ) of all congruences greater than φ; (ii)
If κ is a finite cardinal, this embedding is an isomorphism. This theorem applies
directly to all BAs and rings with units. For λT it has the following consequence:
for every r.e. λ-theory φ and each natural number n, there is a λ-theory φn ⊇ φ
such that the lattice interval [φn) is the finite Boolean lattice with 2n elements.
It is the first time that it is found an interval of λT whose cardinality is not 1, 2
or 2ℵ0 .

Our contribution to general Universal Algebra is the following: using Church
algebras we prove a meta version of the Stone Representation Theorem that
applies to all varieties of algebras and not only to the classic ones. Indeed, we
show that any variety of algebras can be decomposed as a weak Boolean product
of directly indecomposable subvarieties. This means that, given a variety V , there
exists a family of “indecomposable” subvarieties Vi (i ∈ I) of V for which every
algebra of V is isomorphic to a weak Boolean product of algebras of Vi (i ∈ I).

2 Preliminaries

We will use the notation of Barendregt’s classic work [1] for λ-calculus and
combinatory logic, and the notation of McKenzie et al. [12] for universal algebra.

A lattice L is bounded if it has a top element 1 and a bottom element 0. An
element x ∈ L is an atom (coatom) if it is a minimal element in L−{0} (maximal
element in L − {1}). For x ∈ L, we set Lx = {y ∈ L − {0} : x ∧ y = 0}. L is
called: lower semicomplemented if Lx �= ∅ for all x �= 1; pseudocomplemented
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if each Lx ∪ {0} has a greatest element (called the pseudocomplement of x);
complemented if, for every x ∈ L, there exists y such that x∧ y = 0 and x∨ y =
1; atomic if, for every x ∈ L, there exists an atom y ≤ x; coatomic if, for
every x ∈ L, there exists a coatom y ≥ x; Boolean if it is distributive and
complemented.

An element x of a complete lattice L is completely join-prime if, for every
X ⊆ L, x ≤

∨
X implies x ≤ y for some y ∈ X .

We write [x) for {y : x ≤ y ≤ 1}.
An algebraic similarity type Σ is constituted by a non-empty set of operator

symbols together with a function assigning to each operator f ∈ Σ a finite arity.
A Σ-algebra A is determined by a non-empty set A together with an operation

fA : An → A for every f ∈ Σ of arity n. A is trivial if |A| = 1, where |A| denotes
the cardinality of A.

A compatible equivalence relation φ on a Σ-algebra A is called a congruence.
We often write xφy for (x, y) ∈ φ. The set {y : xφy} is denoted by [x]φ.

If φ ⊆ ψ are congruences on A, then ψ/φ = {([x]φ, [y]φ) : xψy} is a congruence
on the quotient A/φ.

If X ⊆ A× A, then we write θ(X) for the least congruence including X . We
write θ(x, y) for θ({(x, y)}). If x ∈ A and Y ⊆ A, then we write θ(x, Y ) for
θ({(x, y) : y ∈ Y }).

We denote by Con(A) the algebraic complete lattice of all congruences of A,
and by ∇ = {(x, y) : x, y ∈ A} and Δ = {(x, x) : x ∈ A} the top and the bottom
element of Con(A). We recall that the join of two congruences φ and ψ is the
least equivalence relation containing the union φ ∪ ψ. A congruence φ on A is
called: trivial if it is equal to ∇ or Δ; consistent if φ �= ∇; compact if φ = θ(X)
for some finite set X ⊆ A × A. Two congruences φ and ψ are compatible if
φ ∨ ψ �= ∇; otherwise, they are incompatible.

An algebra A is directly decomposable if there exist two non-trivial algebras
B,C such that A ∼= B × C, otherwise it is called directly indecomposable.

An algebra A is a subdirect product of the algebras (Bi)i∈I , written A ≤
Πi∈IBi, if there exists an embedding f of A into the direct product Πi∈IBi

such that the projection πi ◦ f : A → Bi is onto for every i ∈ I.
A non-empty class V of algebras is a variety if it is closed under subalgebras,

homomorphic images and direct products or, equivalently, if it is axiomatizable
by a set of equations. A variety V ′ is a subvariety of the variety V if V ′ ⊆ V . We
will denote by V(A) the variety generated by an algebra A, i.e., B ∈ V(A) if
every equation satisfied by A is also satisfied by B.

Let V be a variety. We say that A is the free V-algebra over the set X of
generators iff A ∈ V , A is generated by X and for every g : X → B ∈ V , there is
a unique homomorphism f : A → B that extends g (i.e., f(x) = g(x) for every
x ∈ X). A free algebra in the class of all Σ-algebras is called absolutely free.

Given two congruences σ and τ on A, we can form their relative product:
τ ◦ σ = {(x, z) : ∃y ∈ A xσyτz}. We have τ ∪ σ ⊆ τ ◦ σ ⊆ τ ∨ σ; in general τ ◦ σ
is not a congruence.
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Definition 1. A congruence φ on an algebra A is a factor congruence if there
exists another congruence ψ such that φ∩ψ = Δ and φ ◦ψ = ∇. In this case we
call (φ, ψ) a pair of complementary factor congruences or cfc-pair, for short.

If (φ, ψ) is a cfc-pair, then, for all x and y, there is just one element u satisfying
x φ u ψ y.

Under the hypotheses of the above definition the homomorphism f : A →
A/φ× A/ψ defined by f(x) = ([x]φ, [x]ψ) is an isomorphism. So, the existence
of factor congruences is just another way of saying “this algebra is a direct
product of simpler algebras”.

The set of factor congruences of A is not, in general, a sublattice of Con(A).
Δ and ∇ are the trivial factor congruences, corresponding to A ∼= A×B, where
B is a trivial algebra. An algebra A is directly indecomposable if, and only if,
A has no non-trivial factor congruences.

It is possible to characterize cfc-pairs in terms of certain algebra homomor-
phisms called decomposition operators (see [12, Def. 4.32] for more details).

Definition 2. A decomposition operator for an algebra A is an algebra homo-
morphism f : A × A → A such that f(x, x) = x and f(f(x, y), z) = f(x, z) =
f(x, f(y, z)).

There exists a bijection between cfc-pairs and decomposition operators, and thus,
between decomposition operators and factorizations like A ∼= B × C.

Proposition 1. [12, Thm. 4.33] Given a decomposition operator f , the rela-
tions φ, ψ defined by x φ y iff f(x, y) = y; and x ψ y iff f(x, y) = x, form
a cfc-pair. Conversely, given a cfc-pair (φ, ψ), the map f defined by f(x, y) =
u iff x φ u ψ y, is a decomposition operator.

The Boolean product construction allows us to transfer numerous fascinating
properties of BAs into other varieties of algebras (see [5, Ch. IV]). We recall that
a Boolean space is a compact, Hausdorff and totally disconnected topological
space, and that clopen means “open and closed”.

Definition 3. A weak Boolean product of a family (Ai)i∈I of algebras is a
subdirect product A ≤ Πi∈IAi, where I can be endowed with a Boolean space
topology such that: (i) the set {i ∈ I : xi = yi} is open for all x, y ∈ A, and
(ii) if x, y ∈ A and N is a clopen subset of I, then the element z, defined by
zi = xi for every i ∈ N and zi = yi for every i ∈ I−N , belongs to A. A Boolean
product is a weak Boolean product such that the set {i ∈ I : xi = yi} is clopen
for all x, y ∈ A.

A λ-theory is any congruence (w.r.t. the binary operator of application and the
lambda abstractions) on the set of λ-terms including (α)- and (β)-conversion
(see [1, Ch. 2]). We use for λ-theories the same notational convention as for
congruences. The set of all λ-theories, ordered by inclusion, is naturally equipped
with a structure of complete lattice, denoted by λT , with intersection as meet.
The least element of λT is denoted by λβ, while the top element of λT is the
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inconsistent λ-theory ∇. The term algebra of a λ-theory φ, denoted by Λφ, has
the equivalence classes of λ-terms modulo φ as elements, and is equipped with
the natural operations induced by application and λ-abstraction. The lattice λT
is isomorphic to the congruence lattice Con(Λλβ), while its interval sublattice
[φ) is isomorphic to Con(Λφ).

As a matter of notation, Ω denotes the λ-term (λx.xx)(λx.xx).
The variety CA of combinatory algebras [1, Sec. 5.1] consists of algebras C =

(C, ·,k, s), where · is a binary operation and k, s are constants, satisfying kxy = x
and sxyz = xz(yz) (as usual, the symbol “·” is omitted and association is made
on the left).

3 Church Algebras

Our key observation is that many algebraic structures, such as CAs, BAs etc.,
have in common the fact that all are Church algebras. In this section we study the
algebraic properties of this class of algebras. Applications are given in Section 5
and in Section 6.

Definition 4. An algebra A is called a Church algebra if there are two constants
0, 1 ∈ A and a ternary term q(e, x, y) such that q(1, x, y) = x and q(0, x, y) = y.
A variety V is called a Church variety if every algebra in V is a Church algebra
with respect to the same term q(e, x, y) and constants 0, 1.

Note that the top element ∇ of the congruence lattice Con(A) of a Church
algebra A is a compact element because obviously ∇ = θ(0, 1).

Example 1. The following are easily checked to be Church algebras:
1. Combinatory algebras: q(e, x, y) ≡ (e · x) · y; 1 ≡ k; 0 ≡ sk
2. Boolean algebras: q(e, x, y) ≡ (e ∨ y) ∧ (e− ∨ x)
3. Heyting algebras: q(e, x, y) ≡ (e ∨ y) ∧ ((e → 0) ∨ x)
4. Rings with unit: q(e, x, y) ≡ (y + e− ey)(1 − e + ex)

Let A = (A,+, ·, 0, 1) be a commutative ring with unit. Every idempotent ele-
ment e ∈ A (i.e., satisfying e · e = e) induces a cfc-pair (θ(1, e), θ(e, 0)). In other
words, the ring A can be decomposed as A ∼= A/θ(1, e)×A/θ(e, 0). A is directly
indecomposable iff 0 and 1 are the unique idempotent elements. Vaggione [18]
generalized the notion of idempotent to any universal algebra whose top congru-
ence ∇ is compact, and called them central elements. Central elements were used
to investigate the closure of varieties of algebras under Boolean products. Here
we give a new characterization based on decomposition operators (see Def.2).
Hereafter, we set θe ≡ θ(1, e) and θe ≡ θ(e, 0).

Definition 5. We say that an element e of a Church algebra A is central, and
we write e ∈ Ce(A), if (θe, θe) is a cfc-pair. A central element e is called non-
trivial if e �= 0, 1.

We now show that, in a Church algebra, factor congruences can be internally
represented by central elements. The following lemma is easy to check.



484 G. Manzonetto and A. Salibra

Lemma 1. Let A be a Church algebra and e ∈ A. Then we have, for all x, y ∈ A:
(a) x θe q(e, x, y) θe y.
(b) xθey iff q(e, x, y) (θe ∩ θe) y.
(c) xθey iff q(e, x, y) (θe ∩ θe) x.
(d) θe ◦ θe = θe ◦ θe = ∇.

Proposition 2. Let A be a Church Σ-algebra and e ∈ A. Then the following
conditions are equivalent:

(i) e is central;
(ii) θe ∩ θe = Δ;
(iii) For all x and y, q(e, x, y) is the unique element such that xθe q(e, x, y) θey;
(iv) e satisfies the following identities:

1. q(e, x, x) = x.
2. q(e, q(e, x, y), z) = q(e, x, z) = q(e, x, q(e, y, z)).
3. q(e, f(x), f(y)) = f(q(e, x1, y1), . . . , q(e, xn, yn)), for every f ∈ Σ.
4. e = q(e, 1, 0).

(v) The function fe defined by fe(x, y) = q(e, x, y) is a decomposition oper-
ator such that fe(1, 0) = e.

Thus a Church algebra A is directly indecomposable iff Ce(A) = {0, 1} iff θe ∩
θe �= Δ for all e �= 0, 1.

Example 2. (i) All elements of a BA are central by Prop. 2(iv) and Example 1.
(ii) An element is central in a commutative ring with unit iff it is idempotent.

This characterization does not hold for non-commutative rings with unit.
(iii) Let Ω ≡ (λx.xx)(λx.xx) be the usual looping term of λ-calculus. It is well-

known that the λ-theories θΩ = θ(Ω, λxy.x) and θΩ = θ(Ω, λxy.y) are
consistent (see [1, Prop. 15.3.9]). Then by Lemma 5 below the term Ω is a
non-trivial central element in the term algebra of θΩ ∩ θΩ.

We now show that the partial ordering on Ce(A), defined by:

e ≤ d if, and only if, θe ⊆ θd

is a Boolean ordering and that the meet, join and complementation operations
are internally representable. 0 and 1 are respectively the bottom and top element
of this ordering.

Theorem 1. Let A be a Church algebra. The algebra (Ce(A),∧,∨,− , 0, 1), with
operations defined by e ∧ d = q(e, d, 0), e ∨ d = q(e, 1, d), e− = q(e, 0, 1), is a
BA, which is isomorphic to the BA of factor congruences of A.

Next we turn to the Stone representation theorem for Church algebras. It is a
corollary of Thm. 1 and of theorems by Comer [6] and by Vaggione [18].

Let A be a Church algebra. If I is an ideal of the Boolean algebra Ce(A),
then φI = ∪e∈Iθe is a congruence. In the next theorem S is the Boolean space
of maximal ideals of Ce(A).
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Theorem 2. (The Stone Representation Theorem) Let A be a Church algebra.
Then, for all I ∈ S the quotient algebra A/φI is directly indecomposable and
the map f : A → ΠI∈S(A/φI), defined by f(x) = ([x]φI : I ∈ S), gives a weak
Boolean product representation of A.

Note that, in general, Thm. 2 does not give a (non-weak) Boolean product
representation. This was shown in [11] for combinatory algebras.

4 The Main Theorem

In λ-calculus there are easy λ-terms, i.e., terms, like Ω, that can be consistently
equated with any other closed λ-term. In this section we generalize the notion
of easiness to Church algebras and show that any Church algebra with an easy
set of cardinality n admits a congruence φ such that the lattice interval of all
congruences greater than φ is isomorphic to the free BA with n generators.

Let A be a Church algebra and a ⊆ A. As a matter of notation, for every
b ⊆ a, we define

δb ≡ θ(1, b) ∨ θ(0, a− b). (1)

By definition θ(1, ∅) = θ(0, ∅) = Δ.

Definition 6. Let A be a Church algebra. We say that a ⊆ A is an easy set if
δb �= ∇ for every b ⊆ a.

Note that, if a is an easy set, then the set of all δb (b ⊆ a) consists of 2|a| pairwise
incompatible congruences.

We say that an element x is easy if {x} is an easy set. Thus, x is easy iff the
congruences θx and θx are both different from ∇.

Example 3. A finite subset a of a BA is an easy set if it holds: (i)
∨
a �= 1; (ii)∧

a �= 0; (iii) for all b ⊂ a,
∨
b �≥

∧
(a− b). Thus, for example, {{1, 2}, {2, 3}} is

an easy set in the powerset of {1, 2, 3, 4}.

The following lemmas are used in the proof of the main theorem.

Lemma 2. The congruences of a Church algebra permute with its factor con-
gruences, i.e., φ ◦ ψ = ψ ◦ φ for every congruence φ and factor congruence ψ.

Proof. Let ψ = θe for a central e and let a φ b θe c for some b. We get the
conclusion if a θe q(e, a, c) φ c. First a θe q(e, a, c) by Lemma 1(a). From a φ b
we have q(e, a, c) φ q(e, b, c). Finally, q(e, b, c) = c by b θe c and by Prop. 2(iii).

Definition 7. A bounded lattice L with top 1 and bottom 0 satisfies the Zipper
condition if, for every set I and for every xi, y, z ∈ L (i ∈ I), we have:

∨

i∈I

xi = 1, xi ∧ y = z (i ∈ I) =⇒ y = z.

Lemma 3. If A is a Church algebra, then Con(A) satisfies the Zipper condition.
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Proof. By [8] the congruence lattice of every algebra having a binary term with
a right unit and a right zero satisfies the Zipper condition.

Lemma 4. Let A be a Church algebra and φ ∈ Con(A). Then, A/φ is also a
Church algebra and the map cφ : Ce(A) → Ce(A/φ), defined by cφ(x) = [x]φ is
a homomorphism of BAs.

Lemma 5. Let A be a Church algebra, e ∈ A and φ ∈ Con(A). Then,
(i) [e]φ is central in A/φ iff φ ⊇ θe ∩ θe.
(ii) [e]θe∩θe

is a non-trivial central element in A/θe ∩ θe iff θe �= ∇, Δ.

Theorem 3. Let A be a Church algebra, a ⊆ A be an easy set and B(a) be the
free Boolean algebra over the set a of generators. Then there exists a congruence
φa satisfying the following conditions:

1. The lattice reduct of B(a) can be embedded into the interval sublattice [φa)
of Con(A);

2. If a has finite cardinality n, then the above embedding is an isomorphism
and, hence, [φa) has cardinality 22n

.

Proof. Let η = ∩b⊆a δb (see (1) above for the definition of δb). We define φa as
any maximal element of the set of all congruences φ which contain η and are
compatible with each δb (i.e., φ∨ δb �= ∇). Note that φa exists by Zorn Lemma.

Claim 1. [x]φa is central in A/φa for every x ∈ a.

Proof. If we prove that [x]η is central in A/η, then by η ⊆ φa and by Lemma 4
we get the conclusion of the claim. Since x ∈ a is equivalent either to 1 or to 0
in each congruence δb, then [x]δb

is a trivial central element in A/δb, so that [x]η
is central in A/η by Lemma 5(i) and by η = ∩b⊆a δb.

Let now fa : B(a) → Ce(A/φa) be the unique Boolean homomorphism satisfying
fa(x) = [x]φa (x ∈ a).

Claim 2. fa is an embedding.

Proof. Let b ⊆ a. Recall that φa∨δb �= ∇. By Lemma 4 there exists a Boolean ho-
momorphism (denoted by hb in this proof) from Ce(A/φa) into Ce(A/φa ∨ δb).
Since (x, 1) ∈ φa ∨ δb for every x ∈ b, and (y, 0) ∈ φa ∨ δb for every y ∈ a − b,
then the kernel of hb ◦ fa is an ultrafilter of B(a). By the arbitrariness of b ⊆ a,
every ultrafilter of B(a) can be the kernel of a suitable hb ◦ fa. This is possible
only if fa is an embedding.

This concludes the proof of (1) of Thm. 3.
Hereafter, we assume that a is finite and we let n = |a|. Then B(a) is finite,

atomic, has n generators, 2n atoms, 2n coatoms, and |B(a)| = 22n

. Recall that
Con(A/φa) is isomorphic to [φa).

Let Ata be the set of atoms of Con(A/φa).

Claim 3.
∨
{β ∈ Ata : β is a factor congruence} = ∇.
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Proof. Let v ∈ Ce(A/φa) such that v = fa(u) for some atom u ∈ B(a). Consider
τ ∈ Con(A) such that τ/φa = θ(v, 0) ∈ Con(A/φa). We claim that τ/φa ∈ Ata.
By the way of contradiction, let σ ∈ Con(A) such that φa ⊂ σ ⊂ τ . By Lemma 4
we have a sequence of Boolean homomorphisms:

B(a)
fa−→ Ce(A/φa) cσ−→ Ce(A/σ)

cτ/σ−−−→ Ce(A/τ)

and a Boolean homomorphism cτ : Ce(A/φa) cτ−→ Ce(A/τ) such that cτ = cτ/σ ◦
cσ. Since u is an atom of B(a), then the set {0, u} is the Boolean ideal associated
with the kernel of cτ ◦ fa. If cσ(v) = 0, then σ/φa contains the pair (v, 0), i.e.,
σ = τ . It follows that cσ(v) �= 0 and the map cσ ◦ fa : B(a) → Ce(A/σ) is an
embedding. Since B(a) is free over a, for every b ⊆ a there exists an atom w ∈
B(a) such that w = (

∧
b) ∧ (

∧
{x− : x ∈ a− b}). Let w′ = cσ(fa(w)) ∈ A/σ the

corresponding nontrivial central element. By definition of w, the non-triviality
of the factor congruence θ(w′, 1) ∈ Con(A/σ) is equivalent to σ ∨ δb �= ∇. The
arbitrariness of b and the strict inclusion φa ⊂ σ contradict the maximality of
φa. In conclusion τ/φa ∈ Ata. Finally, the claim follows because the join of all
atoms of B(a) is the top element.

Let Coa be the set of coatoms of Con(A/φa). We say that the coatoms form a
finite irredundant decomposition of Δ if Coa is finite, ∩Coa = Δ, and ∩(Coa −
{ψ}) �= Δ for every ψ ∈ Coa.

Claim 4. Con(A/φa) is pseudocomplemented, complemented, atomic, and the
coatoms form a finite irredundant decomposition of Δ.

Proof. Con(A/φa) satisfies the Zipper condition (by Lemma 3) and
∨
Ata = ∇

(by Claim 3). Then by [7, Prop. 2] Con(A/φa) is complemented, atomic and
every coatom has a complement which is an atom. It is also pseudocomplemented
by [7, Prop. 1]. Since the top element ∇ is compact, by [7, Prop. 3] we get that
the coatoms form a finite irredundant decomposition of Δ.

Claim 5. Let ξ ∈ Con(A/φa) be a non-trivial congruence and γ =
∨
{δ ∈ Ata :

δ ⊆ ξ}. If β ∈ Ata is a factor congruence and β �⊆ ξ, then ξ ∩ (β ∨ γ) = γ.

Proof. We always have γ ⊆ ξ ∩ (β ∨ γ). We show the opposite direction. Let
(x, y) ∈ ξ ∩ (β ∨ γ), i.e., x ξ y and x(β ∨ γ)y. We have to show that x γ y. Since
β is a factor congruence, by Lemma 2 we have β ∨ γ = β ◦ γ. Then x β z γ y
for some z. Since γ ⊆ ξ and z γ y then z ξ y, that together with x ξ y implies
x ξ z. Then x(ξ ∩ β)z. Since β is an atom and β �⊆ ξ, then ξ ∩ β = Δ, so that
x = z. This last equality and z γ y imply x γ y. In other words, ξ ∩ (β ∨ γ) = γ.

Claim 6. Every ξ ∈ Con(A/φa) is a join of atoms.

Proof. Let Atξ be the set of atoms included in ξ. We will show that ξ =
∨
Atξ

by applying the Zipper condition of Def. 7. Let γ =
∨
Atξ. By Claim 5 we have:∨

{ν : ξ ∩ ν = γ} ⊇
∨
{β ∨γ : β ∈ Ata, β �⊆ ξ, β is a factor congruence} ⊇

∨
{β :

β ∈ Ata is a factor congruence}. By Claim 3 this last element is equal to ∇, so
that

∨
{ν : ξ ∩ ν = γ} = ∇. By the Zipper condition this entails ξ = γ.
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Claim 7. Con(A/φa), and hence [φa), is isomorphic to the power set of Ata.

Proof. Con(A/φa) is atomic and pseudocomplemented (by Claim 4), so that
each atom is completely join-prime. By this and by Claim 6 every element is
univocally represented as a join of atoms. The conclusion follows because every
join of atoms exists by completeness.

Claim 8. Con(A/φa), and hence [φa), has 2n coatoms and 2n atoms.

Proof. Since φa ∨ δb �= ∇ for every b ⊆ a, [φa) has at least 2n coatoms. For
every b ⊆ a, let cb be a coatom including φa ∨ δb. Assume now that there is
a coatom ξ distinct from each cb for every b ⊆ a. Consider the intersection
∩(Coa − {ξ}), where Coa denotes the set of coatoms of [φa). By Claim 4 we
have that ∩(Coa −{ξ}) �= φa. This contradicts the maximality of φa among the
congruences which contains ∩b⊆a δb and are compatible with δb. In conclusion,
we have 2n coatoms, and hence 2n atoms.

This concludes the proof of the main theorem.

The next proposition, which follows from [7, Prop. 4], says that the main theorem
cannot be improved.

Proposition 3. Let A be a Church algebra. Then there exists no congruence φ
such that the interval sublattice [φ) is isomorphic to an infinite Boolean lattice.

5 The Lattice of λ-Theories

The term algebra of a λ-theory φ is a Church algebra. This easy remark has the
interesting consequence that the lattice λT of all λ-theories admits (at the top)
Boolean lattice intervals of cardinality 2k for every k.

Lemma 6. For every r.e. λ-theory φ, the term algebra of φ admits an infinite
easy set.

Proof. The set consisting of all λ-terms Ωn̂, where n̂ is the n-th Church numeral,
is an easy set in the term algebra of λβ. This follows from the easiness of Ω and a
compactness argument, and appears as [1, Ex. 15.4.3]. More generally, the term
algebra of each r.e. λ-theory has an easy element [1, Prop. 17.1.9], and hence it
has an infinite easy set, by the same compactness argument.

Theorem 4. For every r.e. λ-theory φ and each natural number k, there is a
λ-theory φk ⊇ φ such that the lattice interval [φk) is isomorphic to the finite
Boolean lattice with 2k elements.

Proof. By Lemma 6 and by Thm. 3 there exists a congruence ψk such that
ψk ⊇ φ and [ψk) is isomorphic to the free Boolean algebra with 22k

elements.
The congruence φk of the theorem can be defined by using ψk and the following
facts: (a) Every filter of a finite Boolean algebra is a Boolean lattice; (b) The free
Boolean algebra with 22k

elements has filters of arbitrary cardinality 2i (i ≤ 2k).

Note that the λ-theory φk of Thm. 4 is not r.e. because otherwise the lattice
interval [φk) would have a continuum of elements by [1, Cor. 17.1.11].
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6 Lattices of Equational Theories

We say that L is a lattice of equational theories iff L is isomorphic to the lattice
L(T ) of all equational theories containing some equational theory T (or dually,
the lattices of all subvarieties of some variety of algebras). Such lattice is algebraic
and coatomic, possessing a compact top element; but no stronger property was
known before Lampe’s discovery [8] that any lattice of equational theories obeys
the Zipper condition (see Def. 7).

In this section we show the existence of Boolean lattice intervals in the lattices
of equational theories as well as a meta version of the Stone representation
theorem that holds for all varieties of algebras.

It is well known that any lattice of equational theories is isomorphic to a con-
gruence lattice (see [5,12]). Indeed, the lattice L(T ) of all equational theories con-
taining T is isomorphic to the congruence lattice of the algebra (FT , f)f∈End(FT ),
where FT is the free algebra over a countable set of generators in the variety
axiomatized by T , and End(FT ) is the set of its endomorphisms.

We expand the algebra (FT , f)f∈End(FT ) (without changing the congruence
lattice) by the operation q defined as follows (x1, x0 are two fixed variables)
q(t, s1, s0) = t[s1/x1, s0/x0], where t[s1/x1, s0/x0] is the term obtained by substi-
tuting the term si for the variable xi (i = 0, 1) within t. The algebra
(FT , f, q)f∈End(FT ) was defined by Lampe in the proof of McKenzie Lemma
in [8].

If we define 1 ≡ x1 and 0 ≡ x0, from the identities q(x1, s1, s0) = s1 and
q(x0, s1, s0) = s0 we get that (FT , f, q)f∈End(FT ) is a Church algebra. It will be
denoted by CT and called hereafter the Church algebra of T .

In the following lemma we characterize the central elements of CT .

Lemma 7. Let T be an equational theory and V be the variety of Σ-algebras
axiomatized by T . Then the following conditions are equivalent, for every e ∈ CT

and term t(x1, x0) ∈ e:

(i) e is a central element.
(ii) T contains the identities t(x, x) = x; t(x, t(y, z)) = t(x, z) = t(t(x, y), z)

and t(f(x), f(y)) = f(t(x1, y1), . . . , t(xn, yn)), for f ∈ Σ.
(iii) For every A ∈ V, the function tA : A×A → A is a decomposition operator.
(iv) T = T1 ∩ T0, where Ti is the theory axiomatized (over T ) by t(x1, x0) = xi

(i = 0, 1).

If e and t satisfy the above conditions and e is nontrivial as central element, then
by Lemma 7(iii)-(iv) every algebra A ∈ V can be decomposed as A ∼= A/φ ×
A/φ, where (φ, φ) is the cfc-pair associated with the decomposition operator tA;
moreover, the algebras A/φ and A/φ satisfy respectively the equational theories
T1 and T0. In this case, we say that V is decomposable as a product of the two
subvarieties axiomatized respectively by T1 and T0 (see [17]); otherwise, we say
that V is indecomposable.

Proposition 4. Let T be an equational theory. Assume there exist n binary
terms t0, . . . , tn−1 such that, for every function k : n → {0, 1}, the theory ax-
iomatized (over T ) by ti(x1, x0) = xk(i) (i = 0, . . . , n − 1) is consistent. Then
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there exists a theory T ′ ⊇ T such that L(T ′) is isomorphic to the free Boolean
lattice with 22n

elements.

The set of all factor congruences of an algebra A does not constitute in general a
sublattice of the congruence lattice of A. We now show that in every algebra there
is a subset of factor congruences which always constitutes a Boolean sublattice
of the congruence lattice.

We say that a variety V is decomposable as a weak Boolean product of directly
indecomposable subvarieties if there exists a family 〈Vi : i ∈ X〉 of indecompos-
able subvarieties Vi of V such that every algebra A ∈ V is isomorphic to a weak
Boolean product Πi∈XBi of algebras Bi ∈ Vi.

Theorem 5. (Meta-Representation Theorem) Every variety V of algebras is
decomposable as a weak Boolean product of directly indecomposable subvarieties.
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Abstract. The process-based Spatial Logics are multi-modal logics de-
veloped for semantics on Process Algebras and designed to specify concur-
rent properties of dynamic systems. On the syntactic level, they combine
modal operators similar to operators of Hennessy-Milner logic, dynamic
logic, arrow logic, relevant logic, or linear logic. This combination gener-
ates expressive logics, sometimes undecidable, for which a wide range of
applications have been proposed.

In the literature, there exist some sound proof systems for spatial log-
ics, but the problem of completeness against process-algebraic semantics
is still open. The main goal of this paper is to identify a sound-complete
axiomatization for such a logic. We focus on a particular spatial logic
that combines the basic spatial operators with dynamic and classical
operators. The semantics is based on a fragment of CCS calculus that
embodies the core features of concurrent behaviors. We prove the logic
decidable both for satisfiability/validity and mode-checking, and we pro-
pose a sound-complete Hilbert-style axiomatic system for it.

1 Introduction

Process algebras [2] are calculi designed for modelling complex systems of pro-
cesses1 organised in a modular way, which run in a decentralised manner and
are able to interact, collaborate and communicate. Starting with Robin Mil-
ner’s classical work on a Calculus of Communicating Systems [17], a plethora
of process calculi have been developed and successfully applied to a multitude
of issues in concurrent computing, e.g. modelling computer networks, cellu-
lar/molecular/chemical networks, and a wide class of problems related to them.
This success raises the necessity to define query languages able to express com-
plex properties of systems and, eventually, to develop model-verification tech-
niques. The dual nature of these calculi - algebraical/equational syntax versus
coalgebraical operational semantics, makes them appropriate for a modal logic-
based approach.

1 In this paradigm, the processes are understood as spatially localised and indepen-
dently observable units of behaviour and computation (e.g. programs or processors
running in parallel).
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In this context were proposed the process semantics for modal logics, that
can be considered as a special case of Kripke semantics: it involves structuring a
class of processes as a Kripke model, by endowing it with accessibility relations
and then using the standard clauses of Kripke semantics. The most obvious
accessibility relations on processes are the ones induced by action transitions
α.P

α−→ P , and thus the corresponding (Hennessy-Milner) logic [13] was the
first process-based modal logic to be developed. Later, temporal [21], mobile or
concurrent features were added [10,18]. A relatively new type of process logics
are spatial logics [8,3], which are particularly tailored for capturing spatial and
concurrent properties of processes. Among the various spatial operators we men-
tion: the parallel operator2 φ|ψ and its adjoint - the guarantee operator φ'ψ; the
location operators characterize ambient logic3 [8]; for semantics based on calculi
with name passing and name restrictions other specific operators have been pro-
posed, e.g. placement, revelation and hiding operators etc [3]. In addition, most
of these logics include transition-based modalities and quantifiers.

The modal operators of spatial logics are similar to modal operators studied
in other contexts. The parallel operator, for instance, is just a modal operator
of arity 3 that satisfies the axioms of associativity, commutativity and modal
distribution, as will be proved latter. Operators such as this have been studied,
e.g., in the context of Arrow Logic [1] where it entails undecidability for Kripke
semantics, as proved in [11]. The parallel operator and the guarantee operator
of spatial logics are similar to two operators used in Relevant and Substructural
Logics [22] - the intentional conjunction and relevant implication respectively.
But, as in the case of Arrow Logic, Relevant Logic has a semantics in terms of
Kripke structures. Consequently, not many known results can be projected over
the process semantics. Some spatial logics are using dynamic operators [12] for
expressing the transitions. There are also other relations between spatial logics
and well studied modal logics4.

On the other hand, there are many peculiarities of spatial logics that make
them interesting from a modal perspective. For example, the spatial logic we
study in this paper allows us to define characteristic formulas for processes. Such
a formula identifies a process up to structural congruence, i.e. we have formulas
fP that names a particular state P of the system, thus giving to the logic the
expressivity of Hybrid Logics [19]. Another peculiarity is that we can define a
universal modality ◦φ and thus, we can express syntactically meta properties
such as validity and satisfiability of a formula. The guarantee operator can be
used to translate any satisfiability/validity problem of spatial logic into a model
checking problem for the null process, as |= φ can be proved equivalent with
0 |= - ' φ, [9]. In this way, decidability of satisfiability and validity is directly
related with the decidability of model checking. All these peculiarities of spatial

2 A process P has the property φ|ψ, if it can be split into two disjoint parts P ≡ Q|R
s.t. Q satisfies φ and R satisfies ψ.

3 Ambient logic is a spatial logic defined over ambient calculus.
4 See e.g. [8] for a detailed description of the connection between Ambient logic and

Linear Logic.
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logics emerge mainly from the structure of their models, which are not just
labelled graphs, but processes with a structure bound by the rigid rules of the
operational semantics of process calculi.

The challenge we take in this paper is to find a sound and complete Hilbert-
style axiomatic system for spatial logic that will reveal the nature of the spatial
operators, as well as the interrelation between them and the dynamic or classical
operators. The axioms we propose are sometimes similar with the axioms of
the related modal logics and these similarities are useful in placing the spatial
logics in the general context of modal logics. To the best of our knowledge, the
problem of completeness for this class of logics has not been approached in the
literature, even if the problem of defining sound sequence calculi for them has
been considered [6,8,4]. Related to static ambient logic, for instance, there exists
a sound-complete sequent calculus [6], but its syntax differs from the syntax of
ambient logics. It is done for atomic construction of type P : φ for a process P and
a logic formula φ, that encodes the satisfiability relation P |= φ of ambient logic;
the sequent rules just rewrite the semantics of ambient logic. In this context, the
soundness and completeness are proved as P |= φ iff 3 P : φ, result that does
not clarify the axiomatics of spatial logics, the syntactic behavior of the spatial
operators, or the relation with other logics. Our previous work [14,15] present
some completeness results from a modal perspective, but for only for epistemic
versions of spatial logics without the guarantee operator.

A second achievement of the paper is a decidability result that is essential in
the completeness proof. The particular spatial logic studied in this paper (that
extends the Hennessy-Milner logic with the parallel and guarantee operators)
is proved decidable for both satisfiability/validity and model checking against a
fragment of CCS calculus that embodies the core features of finite concurrent
behaviors. The decidability proof goes on the lines of decidability proofs in [7,6]
and consist in proving the bound model property for the logic. As for the se-
mantics, the same fragment of CCS yields undecidability for other spatial logics,
e.g. with a modality encoding communication-based transitions [5].

2 Preliminaries on Process Algebra

In this section we recall a number of basic notions of process algebra, mainly
to establish some basic terminology and notations for this paper. We introduce
a fragment of CCS calculus that will be latter used as semantics for the logic.
The novelty of the section is the structural bisimulation, a special relation on
processes that will be latter used for proving the bounded model property for
the spatial logic.

Definition 1 (CCS processes). Let Σ be a denumerable set of elements called
actions and 0 �∈ Σ a special object called the null process. The class of CCS
processes is introduced inductively, for arbitrary α ∈ Σ, as follows.

P := 0 | α.P | P |P

We denote by P the class of CCS processes.
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Definition 2 (Structural congruence). The structural congruence is the
smallest congruence relation ≡⊆ P × P such that (P, |, 0) is an abelian monoid
with respect to ≡, i.e.

1. (P |Q)|R ≡ P |(Q|R) 2. P |0 ≡ 0|P ≡ P 3. P |Q ≡ Q|P
Definition 3 (Operational semantics). Let τ �∈ Σ ∪ P and consider a func-
tion on Σ that associates to each α ∈ Σ its complementary action α, such
that α = α. The operational semantics on P defines a labeled transition system
T : P → (Σ ∪ {τ}) × P by means of the rules in Table 1, where T(P ) = (α,Q) is
denoted by P

α−→ Q for any α ∈ Σ, T(P ) = (τ,Q) is denoted by P
τ−→ Q, and

μ is used to denote arbitrary elements in Σ ∪ {τ}.

Table 1. The transition system

α.P
α−→ P , α ∈ Σ α.P |α.Q

τ−→ P |Q , α ∈ Σ

P ≡ Q P
μ−→ P ′

Q
μ−→ P ′

, μ ∈ Σ ∪ {τ} P
μ−→ P ′

P |Q μ−→ P ′|Q
, μ ∈ Σ ∪ {τ}

Hereafter, we call a process P guarded if P ≡ α.Q for some α ∈ Σ and we use
the notation P k def

= P |...|P
︸ ︷︷ ︸

k

for k ≤ 1.

Definition 4. The set of actions Act(P ) ⊂ Σ of an arbitrary process P ∈ P is
defined, inductively, as follows.
1.Act(0) def= ∅ 2.Act(α.P ) def= {α} ∪Act(P ) 3.Act(P |Q) def= Act(P ) ∪Act(Q).

For a set Ω ⊆ Σ and a pair h,w of nonnegative integers we define the class
PΩ

(h,w) of processes having the actions from Ω and the syntactic trees bound by
two dimensions - the depth h of the tree and the width w that represents the
maximum number of congruent processes that can be found in a node of the
tree. PΩ

(h,w) is introduced inductively on h.
PΩ

(0,w) = {0};
PΩ

(h+1,w) = {(α1.P1)k1 |...|(αi.Pi)ki , for kj ≤ w,αj ∈ Ω,Pj ∈ PΩ
(h,w), ∀j = 1..i}.

Lemma 1. If Ω ⊆ Σ is a finite set, then PΩ
(h,w) is a finite set of processes.

2.1 Structural Bisimulations

In this subsection we introduce the structural bisimulation, a relation on pro-
cesses indexed by a subclass Ω ⊆ Σ of actions and by two nonnegative integers
h,w. This relation is similar to the pruning relation proposed for trees (static
ambients) in [6]. Intuitively, two processes are Ω-structural bisimilar on size
(h,w) if they look indistinguishable for an external observer that sees only the
actions in Ω, does not following a process for more than h transition steps and
cannot distinguish more than w cloned subprocesses of a process.
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Definition 5 (Ω-Structural Bisimulation). Let Ω ⊆ Σ and h,w two non-
negative integers. The Ω-structural bisimulation on P is denoted by ≈Ω

(h,w) and
is defined inductively as follows.
If P ≡ Q ≡ 0, then P ≈Ω

(h,w) Q;
If P �≡ 0 and Q �≡ 0, then

P ≈Ω
(0,w) Q always.

P ≈Ω
(h+1,w) Q iff for any i ∈ 1..w and any α ∈ Ω:

– P ≡ α.P1|...|α.Pi|P ′ implies Q ≡ α.Q1|...|α.Qi|Q′, Pj ≈Ω
(h,w) Qj, j = 1..i;

– Q ≡ α.Q1|...|α.Qi|Q′ implies P ≡ α.P1|...|α.Pi|P ′, Qj ≈Ω
(h,w) Pj, j = 1..i.

Hereafter we present some results about Ω-structural bisimulation.

Lemma 2 (Equivalence). For a set Ω ⊆ Σ and nonnegative integers h,w,
≈Ω

(h,w) is an equivalence relations on P.

Lemma 3 (Congruence). Let Ω ⊆ Σ be a set of actions.
1. If P ≈Ω

(h,w) Q, then α.P ≈Ω
(h+1,w) α.Q.

2. If P ≈Ω
(h,w) P

′ and Q ≈Ω
(h,w) Q

′, then P |Q ≈Ω
(h,w) P

′|Q′.

For nonnegative integers h, h′, w, w′ we convey to write (h′, w′) ≤ (h,w) iff h′ ≤ h
and w′ ≤ w.

Lemma 4. Let Ω′ ⊆ Ω ⊆ Σ and (h′, w′) ≤ (h,w). If P ≈Ω
(h,w) Q, then

P ≈Ω′

(h′,w′) Q.

Lemma 5 (Split). If P ′|P ′′ ≈Ω
(h,w1+w2)

Q for some Ω ⊆ Σ, then there exists
Q,Q′ ∈ P such that Q ≡ Q′|Q′′ and P ′ ≈Ω

(h,w1)
Q′, P ′′ ≈Ω

(h,w2)
Q′′.

Lemma 6 (Step-wise propagation). If P ≈Ω
(h,w) Q and P

α−→ P ′ for some

α ∈ Ω ⊆ Σ, then there exists a transition Q
α−→ Q′ such that P ′ ≈Ω

(h−1,w−1) Q
′.

As Σ is a denumerable set, assume a lexicographic order 6⊆ Σ × Σ on it.
Then, any element α ∈ Σ has a successor denoted by succ(α) and any finite
subset Ω ⊂ Σ has a maximum element denoted by sup(Ω). We define Ω+ =
Ω ∪ {succ(sup(Ω))}.

All the previous results can be used to prove the next theorem. It states that
for any finite set Ω of actions and any nonnegative integers h,w, the equiva-
lence relation ≈Ω

(h,w) divides P in equivalence classes such that each equivalence

class has a representative in the set PΩ+

(h,w). This set, by Lemma1, is finite. This
observation will be the key for proving, latter, the bounded model property.

Lemma 7 (Pruning Theorem). For any finite set Ω ⊆ Σ, any nonnegative
integers h,w and any process P ∈ P, there exists a process Q ∈ PΩ+

(h,w) such that
P ≈Ω

(h,w) Q.
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3 Spatial Logic

In this section we introduce the spatial logic SL that contains only one atomic
proposition5 0, a class of dynamic operators 〈α〉 indexed by a denumerable set
Σ 7 α, the parallel operator and its adjoint together with the Boolean operators.

Definition 6 (Syntax of Spatial Logics). Let Σ be a denumerable alphabet.
The class L of well formed formulas of SL is introduced inductively as follows.

φ := 0 | ¬φ | φ ∧ φ | 〈α〉φ | φ|φ | φ ' φ.

Definition 7 (Semantics of SL). The semantics of SL is given by the satis-
fiability operator, P |= φ that relates a process P ∈ P with the formula φ ∈ L,
inductively by.

P |= 0 iff P ≡ 0.
P |= ¬φ iff P �|= φ.
P |= φ ∧ ψ iff P |= φ and P |= ψ.
P |= 〈α〉φ iff there exists a transition P

α−→ P ′ and P ′ |= φ.
P |= φ|ψ iff P ≡ Q|R, Q |= φ and R |= ψ.
P |= φ ' ψ iff for any Q, Q |= φ implies P |Q |= ψ.

For arbitrary φ, ψ ∈ L and α ∈ Σ we introduce some derived operators6.

- def
= 0 ∨ ¬0 ⊥ def

= ¬- φ ‖ ψ def
= ¬(¬φ|¬ψ)

◦φ def
= (¬φ) '⊥ 1

def
= ¬0 ∧ (0 ‖ 0) α.φ

def
= 1 ∧ 〈α〉φ

•φ def
= ¬(◦¬φ)

The derived operators can be characterized semantically by:
P |= - always.
P |= ⊥ never.
P |= φ ‖ ψ iff P ≡ P1|P2, then either Pi, v |= φ or Pj , v |= ψ, {i, j} = {1, 2}.
P |= ◦φ iff for any process Q, Q |= φ.
P |= •φ iff there exists a process Q, Q |= φ.
P |= 1 iff there exists α ∈ Σ and P ≡ α.Q.
P |= α.φ iff there exists α ∈ Σ s.t. P ≡ α.P ′ and P ′ |= φ.

Notice, from the semantics, that ◦ is a universal modality as the satisfiability of
◦φ is equivalent with the validity of φ, while • is its dual.

Definition 8. A formula φ ∈ L is satisfiable if there exists a process P ∈ P
such that P |= φ. A formula φ ∈ L is valid (a validity), denoted by |= φ, if for
any process P ∈ P, P |= φ.

5 In spatial logics the symbol 0 it is used both in syntax for representing the atomic
proposition and in semantics to represent the null process in CCS.

6 We also assume all the boolean operators.
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4 Decidability of SL

In what follows we show that satisfiability, validity and model checking are decid-
able for SL against process semantics. The proof is based on the bounded model
property technique which consists in showing that, given a formula φ ∈ L, we
can identify a finite class of processes bound by the dimension of the formula, Pφ

such that if φ has a model in P, then it has a model in Pφ. Thus, the satisfiability
problem in P is equivalent with the satisfiability in Pφ. This result can be further
used to prove the decidability of satisfiability. Indeed, as Pφ is finite, checking
the satisfiability of a formula can be done by investigating, one by one, all the
processes in Pφ.

Definition 9 (Size of a formula). The sizes of a formula of L, denoted by
�φ� = (h,w), is defined inductively on the structure of a formula. In what follows,
suppose that �φ� = (h,w) and �ψ� = (h′, w′).

1. �0�
def
= (1, 1). 2. �¬φ� def

= �φ�.

3. �φ ∧ ψ�
def
= (max(h, h′),max(w,w′)). 4. �〈α〉φ� def

= (h + 1, w + 1).

5. �φ ' ψ�
def
= (max(h, h′), w + w′). 6. �φ|ψ� def

= (max(h, h′), w + w′).

Definition 10. The set of actions of a formula φ, act(φ) ⊆ Σ is given by:

1. act(0)
def
= ∅ 2. act(¬φ) = act(φ)

3. act(φ ∧ ψ)
def
= act(φ) ∪ act(ψ) 4. act(〈α〉φ)

def
= {α} ∪ act(φ)

5. act(φ ' ψ)
def
= act(φ) ∪ act(ψ) 6. act(φ|ψ)

def
= act(φ) ∪ act(ψ)

The next Lemma states that a formula φ ∈ L expresses a property of a process
P up to ≈act(φ)

�φ� . This means that φ expresses a property that involves only its
actions and is bounded by its size.

Lemma 8. If P ≈act(φ)
�φ� Q, then P |= φ iff Q |= φ.

This result guarantees the bounded model property.

Theorem 1 (Bound model property). If P |= φ, then there exists Q ∈
Pact(φ)+

�φ� such that Q |= φ.

Proof. The result is a direct consequence of Lemma 7 and Lemma 8.

Theorem 2 (Decidability). For SL validity, satisfiability and model checking
are decidable against process semantics.

Proof. The decidability of satisfiability derives from the bounded model prop-
erty. Indeed, if φ has a model, by Lemma1, it has a model in Pact(φ)+

�φ� . As act(φ) is

finite, by Lemma 1, Pact(φ)+

�φ� is finite, hence checking for membership is decidable.
The decidability of validity derives from the fact that φ is valid iff ¬φ is not

satisfiable.
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5 Characteristic Formulas

In this section we use the peculiarities of L to define characteristic formulas for
processes. Consider the subclass F ⊆ L of well formed formulas of SL given, for
arbitrary α ∈ Σ by f := 0 | α.f | f |f. Let ∗ : F → F be the function defined by:
0∗ = 0; (α.f)∗ = α.f∗; (f |0)∗ = f∗; (f1|f2)∗ = f∗1 |f∗2 , for f1 �= 0 �= f2.
Denote by F ⊆ F the set of fixed points of function ∗ called proper formulas,
i.e., the set of formulas f ∈ F s.t. f∗ = f . For arbitrary positive integers h,w
and arbitrary S ⊆ Σ, let

FS
(h,w) = {f ∈ F | �f� ≤ (h,w), act(f) ⊆ S}.

Observe that F ⊆ L and for a finite set S ⊆ Σ, FS
(h,w) is finite. In what follows,

we use Greek letters (sometime with indexes) φ, ψ, φ1, etc. to denote arbitrary
formulas of L and f, f ′, f ′′, f1, f2, etc. to denote arbitrary proper formulas of F .

The next Lemma proves that the ≡-equivalence classes of P can be charac-
terized by formulas of F . For this reason, in what follows, we will use sometime
the notation fP to denote a proper formula f ∈ F that characterizes the ≡-
equivalence class of P ∈ P.

Lemma 9. 1. Let f ∈ F , P,Q ∈ P. Then P |= f and Q |= f , iff P ≡ Q.
2. For any P ∈ P there exists f ∈ F such that P |= f .
3. For any f ∈ F there exists P ∈ P such that P |= f .

Proof. The function [ ] : F → P given by the next rules defines the relation
between the formulas in F and the ≡-equivalence classes in P .

[0] = 0; [α.f ] = α.[f ]; [f1|f2] = [f1]|[f2].

6 A Hilbert-Style Axiomatic System of SL

In table 2 is proposed a Hilbert-style axiomatic system for SL. We assume the
axioms and the rules of propositional logic. In addition we have axioms and rules
that characterize the spatial and dynamic operators and their interrelations.
Recall that we use Greek letters to specify arbitrary formulas of L and f, f1, f2

to specify arbitrary proper formulas (of F).
Due to the way the proper formulas are defined, the axioms (S1) − (S4)

guarantees that for any formula f ∈ F the set {(f ′, f ′′) ∈ F ×F | 3 f ↔ f ′|f ′′}
is finite. This proves that the disjunction in axiom (S6) is finitary.

Observe that the rules (GR1) and (GR2) depicts the adjunction between the
two spatial operators | and '.

The condition α.f, f |f ′ ∈ Fact(φ)+

�φ� reflects the finite model property and guar-
antees that (Ind) can be based on a finite number of premises.

Definition 11. A formula φ ∈ L is provable in SL, denoted by 3 φ if φ is an
axiom or it can be derived, as a theorem, from the axioms of SL using the rules
of SL. A formula φ ∈ L is consistent in SL if ¬φ is not provable in SL.
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Table 2. The axiomatic system of SL

Spatial axioms Spatial rules
(S1): � (φ|ψ)|ρ → φ|(ψ|ρ)
(S2): � φ|0 ↔ φ
(S3): � φ|ψ → ψ|φ
(S4): � �|⊥ → ⊥
(S5): � φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)
(S6): � (f ∧ φ|ψ) →

∨
f↔f ′|f ′′(f

′ ∧ φ)|(f ′′ ∧ ψ)

(SR1): If � φ → ψ then � φ|ρ → ψ|ρ

Dynamic axioms Dynamic rules
(D1): � 〈α〉φ|ψ → 〈α〉(φ|ψ)
(D2): � [α](φ → ψ) → ([α]φ → [α]ψ)
(D3): � 0 ∨ α.� → [β]⊥, for α �= β
(D4): � α.φ → [α]φ

(DR1): If � φ then � [α]φ
(DR2): If � φ1 → [α]φ′

1 and � φ2 → [α]φ′
2

then � φ1|φ2 → [α](φ′
1|φ2 ∨ φ1|φ′

2)

Guarantee axiom Guarantee rules

(G1): � ◦(f → φ) → •φ
(GR1): � φ1 → (φ2 � ψ) iff � φ1|φ2 → ψ
(GR2): � φ1 → ¬(φ2 � ψ) iff � •(φ1|φ2 ∧ ¬ψ)

Induction rule

(Ind): If for any α.f, f |f ′ ∈ Fact(φ)+

�φ�

� 0 → φ
� ◦(f → φ) → ◦(α.f → φ)
� (◦(f → φ) ∧ ◦(f ′ → φ)) → ◦(f |f ′ → φ)
then � φ

All the axioms and the rules of our axiomatic system depict true facts about
processes. This is proved by the next soundness theorem.

Theorem 3 (Soundness). The axiomatic system of SL is sound with respect
to the process semantics, i.e. if 3 φ then |= φ.

Before continuing with the completeness proof, we list some theorems of SL that
will be useful further. Recall that, in what follows, we denote by fP ∈ F any
proper formula that characterizes the process P .

Lemma 10 (Spatial corollaries). The next assertions are theorems of SL.
1. 3 φ|(ψ ∧ ρ) → (φ|ψ) ∧ (φ|ρ)
2. If 3 φ → ρ and 3 ψ → θ, then 3 φ|ψ → ρ|θ.
3. If P �≡ Q, then 3 fP → ¬fQ.
4. If for any Q,R s.t. P ≡ Q|R, 3 fQ → ¬φ or 3 fR → ¬ψ, then 3 fP → ¬(φ|ψ).

Lemma 11 (Dynamic corollaries). The next assertions are theorems of SL.
1. If 3 φ → ψ, then 3 〈α〉φ → 〈α〉ψ.
2. If 3 φ → ψ, then 3 [α]¬ψ → [α]¬φ.
3. 3 fP → [α]

∨
{fQ | P α−→ Q}.

4. If 3
∨
{fQ | P α−→ Q} → φ, then 3 fP → [α]φ.
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Lemma 12 (Guarantee corollary). The next assertions are SL-theorems.
1. If 3

∨

f∈Fact(φ)+

�φ	
f → φ, then 3 φ.

2. If 3 φ, then 3 ◦φ.

Now we approach the completeness problem. We begin with the next lemma
stating that a process P satisfies a property φ iff its characteristic formula fP

implies the property φ and this implication is a theorem in SL system.

Lemma 13. If P ∈ P and fP ∈ F characterizes P , then P |= φ iff 3 fP → φ.

Proof. (=⇒:) If P |= φ, then 3 fP → φ. We prove it by induction on the
syntactical structure of φ. We show here only the cases that require a more
complex analysis.
The case φ = φ1|φ2: P |= φ iff P ≡ Q|R, Q |= φ1 and R |= φ2. Using the
inductive hypothesis, 3 fQ → φ1 and 3 fR → φ2. The case 2 of Lemma 10
implies further 3 fQ|fR → φ1|φ2), i.e. 3 fP → φ.
The case φ = ψ'ρ: P |= ψ'ρ iff for any process Q, Q |= ψ implies P |Q |= ρ. The
inductive hypothesis gives that for any Q, 3 fQ → ψ implies 3 fP |fQ → ρ. But
Rule (GR1) gives the equivalence of 3 fP |fQ → ρ and 3 fQ → (fP ' ρ). Hence,

for any Q, 3 fQ → (φ → fP ' ρ). Then, for any Q with fQ ∈ Fact(φ→fP �ρ)+

�φ→fP �ρ� ,
3 fQ → (φ → fP ' ρ). Hence, 3

∨

f∈Fact(φ→fP ρ)+

�φ→fP ρ	
f → (φ → fP ' ρ) where from,

using Lemma 12, 3 φ → fP ' ρ that is equivalent with 3 fP → φ ' ρ.
The case φ = ¬(ψ1|ψ2): P |= ¬(ψ1|ψ2) means that for any parallel decompo-
sition of P ≡ Q|R, Q |= ¬ψ1 or R |= ¬ψ2, i.e., 3 fQ → ¬ψ1 or 3 fR → ¬ψ2.
Then, the case 4 of Lemma10 gives 3 fP → ¬ψ.
The case ψ = ¬(φ1 ' φ2): P |= ¬(φ1 ' φ2) is equivalent with P �|= φ1 ' φ2.
Hence, there exists Q |= φ1 such that P |Q |= ¬φ2, i.e., 3 fQ → φ1 and 3
fP |fQ → ¬φ2. Hence, 3 fP |fQ → (fP |φ1 ∧ ¬φ2). Further, Lemma 12 implies
3 ◦(fP |fQ → (fP |φ1 ∧ ¬φ2)), Axiom (G1), 3 •(fP |φ1 ∧ ¬φ2) and Rule (GR2),
3 fP → ¬(φ1 ' φ2).

(⇐=) Let 3 fP → φ. Suppose that P �|= φ. Then, P |= ¬φ. Using the reversed
implication we obtain 3 fP → ¬φ, thus, 3 fP → ⊥. But P |= fP which, using
the soundness, gives P |= ⊥ impossible! Hence, P |= φ.

Using the result of the previous lemma we can prove that consistency implies
satisfiability, as stated in the next lemma.

Lemma 14. If φ is SL-consistent then there exists a process P ∈ P such that
P |= φ.

Proof. Suppose that for any process P we do not have P |= φ, i.e., P |= ¬φ.
Using Lemma 13, we obtain 3 fP → ¬φ, i.e. 3 ◦(fP → ¬φ). as this is happening
for all processes, implies that for any f ∈ F we have 3 f → ¬φ, i.e. 3 f → ¬φ.
But then 3 0 → ¬φ, 3 ◦(f → ¬φ) → ◦(α.f → ¬φ) and 3 (◦(f → ¬φ) ∧ ◦(f ′ →
¬φ)) → ◦(f |f ′ → ¬φ). Further, the rule (Ind) gives 3 ¬φ wich contradicts the
consistency of φ.
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At this point we have all the results needed to prove the completeness of our
axiomatic system.

Theorem 4 (Completeness). The axiomatic system of SL is complete with
respect to process semantics, i.e. if |= φ then 3 φ.

Proof. Suppose that φ is a valid formula with respect to our semantics, but
φ is not provable from our the axiomatic system. Then neither is ¬¬φ, so, by
definition, ¬φ is SL-consistent. It follows, from Lemma 14, that ¬φ is satisfiable
with respect to process semantics, contradicting the validity of φ.

Consequently, the axiomatic system of SL proposed in Table2 is sound and
complete with respect to process semantics. This means that any fact about
CCS processes that can be expressed in L has the properties:

– if it is true, then either it is stated in the axioms or it can be proved from
the axioms;

– if it is stated in the axioms or if it can be proved from the axioms, then it
true about processes.

These two characteristics of the axiomatic system, the soundness and complete-
ness, present SL as a powerful tool for expressing and analysing properties of
CCS processes.

7 Conclusion and Future Works

The achievements of this paper can be summarized as follows. We identified an
interesting multi-modal logic, SL, with semantics on CCS calculus able to ex-
press dynamic and concurrent properties of distributed systems. The language
of SL is expressive enough to characterize the CCS processes up to structural
congruence, quality that reveal for SL an expressivity comparable with the ex-
pressivity of hybrid logics. In SL we can also define universal modalities that
allow us to express meta properties such as validity and satisfiability. In spite of
this level of expressivity, we proved the bounded model property for SL against
a fragment of CCS for which other spatial logics are undecidable. The bounded
model property entails decidability for satisfiability, validity, and model checking.

The main result of the paper is the sound-complete axiomatic system that
we propose for SL. Some of the axioms and rules are similar with axioms and
rules known from other modal logics, and this peculiarity can help in better
understanding the modal face of the concurrency and in placing spatial logics in
the general context of modal logics.
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Abstract. In a Voronoi game, each of a finite number of players chooses
a point in some metric space. The utility of a player is the total measure
of all points that are closer to him than to any other player, where
points equidistant to several players are split up evenly among the closest
players. In a recent paper, Dürr and Thang (2007) considered discrete
Voronoi games on graphs, with a particular focus on pure Nash equilibria.
They also looked at Voronoi games on cycle graphs with n nodes and
k players. In this paper, we prove a new characterization of all Nash
equilibria for these games. We then use this result to establish that Nash
equilibria exist if and only if k ≤ 2n

3 or k ≥ n. Finally, we give exact
bounds of 9

4 and 1 for the prices of anarchy and stability, respectively.

1 Introduction

1.1 Motivation and Framework

In a Voronoi game, there is a finite number of players and an associated metric
measurable space. Each player has to choose a point in the space, and all choices
are made simultaneously. The utility of a player is the measure of all points
that are closer to him than to any other player, plus an even share of the points
that are equidistant (and closest) to him and others. Voronoi games belong to
the huge class of competitive location games, which provide models of rivaling
sellers seeking to maximize their market share by strategic positioning in the
market.

The foundations of competitive location were laid by a seminal paper of
Hotelling [6]; he studied two competing merchants in a linear market with con-
sumers spread evenly along the line (also known as the ice-cream vendor prob-
lem). Since the unique Nash equilibrium of this duopoly is reached when both
merchants are located at the center, Hotelling’s results were later described as
the “principle of minimum differentiation” [2]. Recall here that Nash equilibria
� This work was partially supported by the IST Program of the European Union under

contract number IST-15964 (AEOLUS).

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 503–514, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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are the stable states of the game in which no player can improve his utility by
unilaterally switching to a different strategy.

In subsequent works, Hotelling’s model was shown to be very sensitive to his
original assumptions; in fact, the principle of minimum differentiation cannot
even be maintained if just a third player enters the market (see, e.g., [4]). Par-
ticularly since the 1970’s, a myriad of different competitive location models have
been studied. An extensive taxonomy with over 100 bibliographic references can
be found in [5]; the authors classify the various models according to (i) the un-
derlying metric measurable space, (ii) the number of players, (iii) the pricing
policy (if any), (iv) the equilibrium concept, and (v) customers’ behavior. They
point out that competitive location “has become one of the truly interdisciplinary
fields of study” with interest stemming from economists and geographers, as well
as “operations researchers, political scientists and many others” [5].

1.2 Related Work

Eaton and Lipsey [4] studied Voronoi games on a (continuous) circle and observed
that its Nash equilibria allow for a very easy characterization (“no firm’s whole
market is smaller than any other firm’s half market”). They defined social cost
as the total transport cost, i.e., the average distance, over all points of the circle,
to the nearest player (i.e., firm). Using this measure, they pointed out that
there is always an equilibrium configuration with optimal social cost, whereas
the cost-maximizing equilibrium (all n firms are paired, n is even, all pairs are
equidistantly located) incurs twice the optimum social cost.

Extending Hotelling’s model to graphs has been suggested by Wendell and
McKelvey [8]. Yet, to the best of our knowledge, Dürr and Thang [3] were the
first to study Nash equilibria of Voronoi games on (undirected) graphs with more
than just two players. They established several fundamental results: There is a
relatively simple graph that does not allow for a Nash equilibrium even if there
are only two players. Even more, deciding the existence of a Nash equilibrium
for general graphs and arbitrary many players is NP-hard. Dürr and Thang [3]
also introduced the social cost discrepancy as the maximum ratio between the
social costs of any two Nash equilibria. For connected graphs, they showed an
upper bound on the social cost discrepancy of O(

√
kn), and gave a construction

scheme for graphs with social cost discrepancy of at least Ω(
√
n/k). Finally, they

considered Voronoi games on cycle graphs and gave a characterization of all Nash
equilibria. However, it turns out that their characterization is not correct and
requires some non-trivial modifications.

1.3 Contribution and Significance

The contribution of this paper and its structure are as follows:

– In Section 2, we prove for Voronoi games on cycle graphs that a strategy
profile is a Nash equilibrium if and only if no more than two players have
the same strategy, the distance between two strategies is at most twice the
minimum utility of any player, and three other technical conditions hold.
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We remark that an algebraic characterization of Nash equilibria on cycle
graphs was already given in [3, Lemma 2]. However, their result contains
mistakes. Fixing these is non-trivial and leads to a different set of conditions.

– In Section 3, we show that a Voronoi game on a cycle graph with n nodes
and k ≤ n players has a Nash equilibrium if and only if k ≤ 2n

3 or k = n. If
that condition is fulfilled, then any strategy profile that locates all players
equidistantly on the cycle (up to rounding) is a Nash equilibrium.

– In Section 4, we prove that profiles with (almost) equidistantly located play-
ers have optimal social cost. Furthermore, no Nash equilibrium has social
cost greater than 9

4 times the optimal cost. If 1
2 ·  2n

k ! is not an odd integer,
then the upper bound improves to 2. To obtain these results, we devise and
employ carefully constructed optimization problems so that best and worst
Nash equilibria coincide with global minima or maxima, respectively. We
give families of Voronoi games on cycle graphs where the aforementioned
ratios are attained exactly. Hence, these factors are also exact bounds on the
price of anarchy. Clearly, the price of stability is 1.

We believe that our combinatorial constructions and techniques will spawn fur-
ther interest; we hope they will be applicable to other Voronoi games on graphs.
Note that, due to lack of space, we had to omit some of the smaller proofs.

1.4 The Model

Notation. For n ∈ N0, let [n] := {1, . . . , n} and [n]0 := [n]∪{0}. Given a vector
v, we denote its components by v = (v1, v2, . . . ). We write (v−i, v

′
i) to denote

the vector equal to v but with the i-th component replaced by v′i.

Definition 1. A Voronoi game on a connected undirected graph is specified by
a graph G = (V,E) and the number of players k ∈ N. The strategic game is
completed as follows:

– The strategy set of each player is V , the set of strategy profiles is S := V k.
– The utility, ui : S → R, of a player i ∈ [k] is defined as follows: Let the

distance, dist : V × V → N0, be defined such that dist(v, w) is the length
of a shortest path connecting v, w in G. Moreover, for any node v ∈ V , the
function Fv : S → 2[k], Fv(s) := arg mini∈[k]{dist(v, si)}, maps a strategy
profile to the set of players closest to v. Then, ui(s) :=

∑
v∈V :i∈Fv(s)

1
|Fv(s)| .

The “quality” of a strategy profile s ∈ S is measured by the social cost, SC(s) :=∑
v∈V mini∈[k]{dist(v, si)}. The optimum social cost (or just the optimum) as-

sociated to a game is OPT := infs∈S {SC(s)}.
We are interested in profiles called Nash equilibria, where no player has an

incentive to unilaterally deviate. That is, s ∈ S is a Nash equilibrium if and only
if for all i ∈ [k] and all s′i ∈ V it holds that ui(s−i, s

′
i) ≤ ui(s). If such a profile

exists in a game, to what degree can social cost deteriorate due to player’s selfish
behavior? Several metrics have been proposed to capture this question: The
price of anarchy [7] is the worst-case ratio between a Nash equilibrium and the
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optimum, i.e., PoA = sups is NE
SC(s)
OPT . The price of stability [1] is the best-case

ratio between a Nash equilibrium and the optimum, i.e., PoS = infs is NE
SC(s)
OPT .

Finally, the social cost discrepancy [3] measures the maximum ratio between
worst and best Nash equilibria, i.e., SCD = sups,s′ are NE

SC(s)
SC(s′) . For these ratios,

0
0 is defined as 1 and, for any x > 0, x

0 is defined as ∞.
In this paper, we consider Voronoi games on cycle graphs. A cycle graph is a

graph G = (V,E) where V = Zn is the set of congruence classes modulo n, for
some n ∈ N, and E := {(x, x + 1) : x ∈ Zn}. Clearly, a Voronoi game on a cycle
graph is thus fully specified by the number of nodes n and the number of players
k. As an abbreviation we use C(n, k). We will assume k ≤ n throughout the
rest of this paper as otherwise the games have a trivial structure. (In particular,
whenever all nodes are used and the difference in the number of players on any
two nodes is at most 1, this profile is a Nash equilibrium with zero social cost.)

We use a representation of strategy profiles that is convenient in the context
of cycle graphs and which was also used in [3]. Define the support of a strategy
profile s ∈ S as the set of all chosen strategies, i.e., supp : S → 2V , supp(s) :=
{s1, . . . , sk}. Now fix a profile s. Then, define � := | supp(s)| and θ0 < · · · < θ−1

such that {θi}i∈Z�
= supp(s). Now, for i ∈ Z:

– Let di := (n + θi+1 − θi) mod n; so, di is the distance from θi to θi+1.
– Let ci be the number of players on node θi.
– Denote by vi the utility of each player with strategy θi.
– Similar to [3], we define ai ∈ N0, bi ∈ {0, 1} by di − 1 = 2 · ai + bi.

Up to rotation and renumbering of the players, s is uniquely determined by �,
d = (di)i∈Z�

, and c = (ci)i∈Z�
. With the above definitions, the utility of a player

with strategy θi is obviously

vi =
bi−1

ci−1 + ci
+

ai−1 + 1 + ai

ci
+

bi

ci + ci+1
.

Throughout, we use Z for indexing; i.e., ci = ci+ and di = di+ for all i ∈ Z. For
better readability, we do not reflect the dependency between s and �,d, c,a, b
in our notation. This should be always clear from the context.

Example 1. Figure 1 shows a flattened segment of a cycle graph to illustrate our
notation: On node θ1, there are c1 = 2 players, the distance from node θ0 to θ1

is d0 = 6. Hence, a0 = 2 and b0 = 1, i.e., there is a middle node between θ0 and
θ1. The players on node θ1 share the shaded Voronoi area, i.e., v1 = 1

2 · 4 2
3 = 7

3 .

d0 = 6
… …

θ2θ1θ0

Fig. 1. Illustration of our notation
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2 Characterization of Nash Equilibria

In this section, we prove an exact characterization of all Nash equilibria for
Voronoi games on a cycle graph with n ∈ N nodes and k ∈ [n] players.

Theorem 1 (Strong characterization). Consider C(n, k) where n ∈ N, k ∈
[n]. A strategy profile s ∈ S with minimum utility γ := mini∈Z�

{vi} is a Nash
equilibrium if and only if the following holds for all i ∈ Z:

S1. ci ≤ 2
S2. di ≤ 2γ
S3. ci �= ci+1 =⇒  2γ! odd
S4. ci = 1, di−1 = di = 2γ =⇒ 2γ odd
S5. ci = ci+1 = 1, di−1 + di = di+1 = 2γ =⇒ 2γ odd

ci = ci−1 = 1, di−1 = di + di+1 = 2γ =⇒ 2γ odd

Condition (S1) requires that no node may be shared by more than two players.
Otherwise, by definition of γ, the neighboring strategies would be “far away”.
However, by condition (S2), the distance between two used nodes must not
be too large because any player moving in between them could then achieve a
utility larger than γ. Conditions (S3)–(S5) deal with strategies whose neighboring
strategies are played by a different number of players. The necessity of these
conditions is illustrated in Figure 2 for the case when γ = 1. Here, a double
outline indicates the new (shared) Voronoi area after the respective player moves.

We need the following lemma, the proof of which is given in the full version:

Lemma 1. If property (S2) of Theorem 1 is fulfilled then ∀i ∈ Z, ci = 2 :
di−1 = di =  2γ!. If additionally (S1) and (S3) are fulfilled then also 2γ =  2γ!
and ∀i ∈ Z, ci = 2 : vi = γ.

Proof (of Theorem 1). We start with a weak characterization that essentially
states the definition of a Nash equilibrium in the context of Voronoi games on
cycle graphs. In order to deal with parity issues, we find it convenient to mix
in Boolean arithmetic and identify 1 ≡ true and 0 ≡ false. For instance, if
b, b′ ∈ {0, 1}, then b ↔ b′ = 1 if b = b′, and 0 otherwise. Similarly, b ∨ b′ = 1 if
b = 1 or b′ = 1, and 0 otherwise.

… …

(a) Violation of (S3), case ci+2 = 1

… …

(b) Violation of (S3), case ci+2 = 2

… …

(c) Violation of (S4)

… …

(d) Violation of (S5)

Fig. 2. Illustration of violations to conditions (S3)–(S5) when γ = 1
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Claim 1 (Weak characterization). The strategy profile s is a Nash equilibrium
if and only if the following holds:

W1. No player alone on a node can improve by moving to a neighboring node not
in the support (which would swap parities of the distances to neighboring
strategies), i.e., ∀i ∈ Z, ci = 1 : (bi−1 = bi = 1 =⇒ ci−1 = ci+1 = 1) ∧
(bi−1 = 1, bi = 0 =⇒ ci−1 ≤ ci+1) ∧ (bi−1 = 0, bi = 1 =⇒ ci−1 ≥ ci+1).

W2. No player can improve by moving to a node that is not in the support (for
the cases not covered by (W1)), i.e., ∀i, j ∈ Z : vi ≥ aj + ¬bj

min{cj−1,cj}+1 +bj.

W3. No player can improve to an arbitrary non-neighboring strategy, i.e., ∀i, j ∈
Z, j /∈ {i− 1, i + 1} : vi ≥ bj−1

cj−1+cj+1 + aj−1+1+aj

cj+1 + bj

cj+cj+1+1 .

W4. No player sharing a node can improve to a neighboring strategy, i.e., ∀i ∈
Z, ci ≥ 2 : vi ≥ bi

ci+ci+1
+ ai+1+ai+1

ci+1+1 + bi+1
ci+1+ci+2+1 , with a corresponding

inequality for moving to θi−1 instead of θi+1.
W5. No player alone on a node can improve to a neighboring strategy, i.e.,

∀i ∈ Z, ci = 1 : vi ≥ bi−1↔bi

ci−1+1+ci+1
+ ai−1+ai+ai+1+bi−1∨bi+1

ci+1+1 + bi+1
ci+1+ci+2+1 ,

with a corresponding inequality for moving to θi−1 instead of θi+1.

Proof (of claim). Conditions (W1)–(W5) are exhaustive.

We now continue by proving necessity (“=⇒”). Note that (S1) and (S2) have
also been stated in [3, Lemma 2 (i), (ii)]. For completeness and since their proof
contained mistakes, we reestablish the claims here.

(S1) Assume by way of contradiction that there is some i ∈ Z with ci ≥ 3.
W.l.o.g., assume di ≥ di−1, i.e., also ai ≥ ai−1 and (bi−1 > bi =⇒ ai−1 <
ai). Since vi ≥ 1, it must hold that ai ≥ 1. Consider now the move by some
player with strategy θi to node θi + 1.

Since bi−1
ci−1+ci

+ ai−1
ci

≤ bi

ci−1+ci
+ ai

ci
and 2ai + 1 ≤ ciai, his old utility

is at most vi = bi−1
ci−1+ci

+ ai−1+1+ai

ci
+ bi

ci+ci+1
≤ ai + bi

2 , whereas his new
utility is v′ = ai + bi + ¬bi

1+ci+1
> vi. This is a contradiction to the profile

being a Nash equilibrium.
(S2) We first show that di ≤  2γ!+ 1: Otherwise, if di ≥  2γ!+ 2, then a player

with utility γ could move to node θi + 1 and thus improve his utility to at
least

⌊
di

2

⌋
≥
⌊
�2γ�

2

⌋
+ 1 =  γ! + 1 > γ.

Now assume di =  2γ! + 1. Then, ci = 2 because otherwise, if ci = 1,
a player with utility γ could change his strategy to θi+1 − 1 and thus
achieve a new utility of di

2 = �2γ�
2 + 1

2 > γ. The argument can be repeated
correspondingly to obtain ci+1 = 2. Now note that vi+1 ≥ di

2 because this is
what a player with strategy θi+1 could otherwise improve to, when moving
to θi + 1. It follows that di+1 =  2γ! + 1 = di. Inductively, we get for all
j ∈ Z that dj = di and cj = ci. Then, n has to be a multiple of di, and
for all j ∈ Z it holds that vj = dj

2 > γ. Clearly, a contradiction.
(S3) W.l.o.g., assume that ci = 2,  2γ! even, and ci+1 = 1. By Lemma 1, we

have that di =  2γ!, so bi = 1. We get a contradiction to condition (W1)
of Claim 1 both when ci+2 = 1 and ci+2 = 2 (in which case also bi+1 = 1).
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(S4) Assume, by way of contradiction, that ci = 1 and di−1 = di = 2γ even.
Due to (S3) and Lemma 1, it then follows that ci−1 = ci+1 = 1. Moreover,
ai−1 = ai = γ − 1. Hence, a player with utility γ could move to node θi

and so improve his utility to (at least) 1
3 + ai−1+ai+1

2 + 1
3 = γ + 1

6 .
(S5) We only show the first implication as the second one is symmetric. Assume,

by way of contradiction, that ci = ci+1 = 1 and di−1 +di = di+1 = 2γ even,
i.e., bi−1 = bi and bi+1 = 1. Due to (S3) and Lemma 1, it then follows that
ci−1 = ci+2 = 1 and vi = di−1+di

2 = γ. Moreover, ai−1 + ai = γ − (bi−1 ∨
bi) − 1 and ai+1 = γ − 1. Hence, the player with strategy θi could move to
θi+1 and so improve his utility to 1

3 + ai−1+ai+ai+1+bi−1∨bi+1
2 + 1

3 = γ + 1
6 .

In the remainder of the proof, we establish that (S1)–(S5) are indeed sufficient
(“⇐=”): Clearly, we have to verify all conditions of Claim 1.

(W1) Assume ci = 1. If di−1 and di are even, it holds by condition (S3) that
ci−1 = ci+1 = 1. Now, if di−1 is even and di odd, then (S3) implies ci−1 =
1 ≤ ci+1. Correspondingly, di−1 odd and di even implies ci−1 ≥ ci+1.

(W2) Condition (S2) implies that if a player moves to a node that is not in the
support, then his new utility is at most 2γ

2 = γ.
(W3) Due to Lemma 1, a player can only improve to a non-neighboring strategy

θj if cj = 1 and dj−1 = dj = 2γ. Then 2γ is odd by (S4), hence v′ = γ.
(W4) The same argument as for (W3) applies.
(W5) Let i ∈ Z and consider the unique player p ∈ [n] with strategy sp = θi.

Let v′ be his new utility if he moved to θi+1. Assume for the moment that
ci+1 = 1. Then, vi = ai−1 + ai + bi−1

ci−1+1 + bi

2 + 1 and

v′ =
ai−1 + ai

2
+

ai+1

2
+

bi−1 ↔ bi

ci−1 + 2
+

bi−1 ∨ bi

2
+

bi+1

2 + ci+2
+

1
2
.

We now argue that it is sufficient to show the claim for ci+1 = 1. Other-
wise, if ci+1 = 2, the old utility of player p would be vi − bi

2 + bi

3 and his
new utility (after moving to θi+1) would be at most v′− 1

2 + 1
3 ; hence, the

gain in utility cannot be larger than in the case ci+1 = 1.
Since ci = 1, we have ci−1 = 1 or bi−1 = 0 due to (S3) and Lemma 1.

Now, it is sufficient to consider the case bi−1 = 0. Otherwise, if bi−1 = 1,
then ci−1 = 1 and the utility of player p would remain vi when moving
him to θi − 1 (to change parity). We have now vi = ai−1 + ai + bi

2 + 1 and

v′ =
ai−1 + ai

2
+

ai+1

2
+

¬bi

ci−1 + 2
+

bi

2
+

bi+1

2 + ci+2
+

1
2
. (1)

Since bi−1 = 0 and ci = ci+1 = 1, it holds that di−1 + di = 2vi ≥ 2γ.
Consequently, there are two cases:
– di−1 + di = 2γ

Due to Lemma 1, the move could only improve p’s utility if di−1+di =
di+1 = 2γ. Then 2γ is odd due to condition (S5), so v′ = γ = vi.
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– di−1 + di > 2γ
Since bi−1 = 0 and ci+1 = 1, we have vi = di−1+di

2 ≥ 2γ+1
2 , i.e.,

2γ ≤ 2vi − 1 . Now condition (S2) implies di+1 = 2ai+1 + bi+1 + 1 ≤
2γ ≤ 2vi − 1 = 2(ai−1 + ai + bi

2 + 1
2 ), so ai+1

2 ≤ ai−1+ai

2 + bi

4 − bi+1
4 .

Inserting into (1) yields

v′ ≤ ai−1 + ai +
bi

4
− bi+1

4
+

¬bi

ci−1 + 2
+

bi

2
+

bi+1

2 + ci+2
+

1
2

≤ ai−1 + ai +
3bi

4
+

¬bi

3
+

7
12

.

Hence v′ ≤ ai−1 + ai + 11
12 < vi if bi = 0 and v′ ≤ ai−1 + ai + 4

3 < vi

if bi = 1.
Due to symmetry, we have hence shown that no player using a node alone
may improve by moving to a neighboring strategy. �

3 Existence of Nash Equilibria

In this section, we give a condition for the existence of Nash equilibria in cycle
graphs that is both necessary and sufficient. This condition only depends on the
ratio between the number of players and the number of nodes in the cycle graph.

Theorem 2. C(n, k) does not have a Nash equilibrium if 2n
3 < k < n.

Proof. By way of contradiction, let 2n
3 < k < n and assume there is a Nash

equilibrium with minimum utility γ := mini∈Z�
{vi}. Note that n ≥ 4 and k ≥ 3.

Clearly, 1 ≤ γ ≤ n
k < 3

2 , so Lemma 1 implies γ = 1. Hence, no two players may
have the same strategy as otherwise, by (S3) and Lemma 1, it holds for all i ∈ Z

that ci = 2 and di = 2. This implies k = n (and n even). A contradiction.
Consequently, we have that � = k and for all i ∈ Z that ci = 1. Since

k > 2n
3 , there has to be some i ∈ Z with di−1 = di = 1 and di+1 = 2. This

is a contradiction to (S5), as 2γ is even. Specifically, the player on node θi has
utility vi = 1, but by switching to strategy θi+1 he could improve to a utility of
at least 1

3 + 1
2 + 1

3 = 7
6 > 1. See Figure 2 (d). �

Definition 2. A strategy profile with distances (di)i∈Z�
is called standard if

� = k and ∀i ∈ Zk : di ∈ { n
k !, "

n
k #}.

Theorem 3. If k ≤ 2n
3 or k = n, then C(n, k) has a standard strategy profile

that is a Nash equilibrium.

Proof. If k = n, then s = (0, 1, . . . , n − 1), i.e., � = n, (ci)i∈[n] = (di)i∈[n] =
(1, . . . , 1) is trivially a standard Nash equilibrium.

Consider now the case k < 2n
3 . Define p ∈ N0, q ∈ [k − 1]0 by n = p ·

k + q. Moreover, define a strategy profile by � = k, (ci)i∈Z�
= (1, . . . , 1), and if
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q ≤ k
2 then (di)i∈Z�

= (p, p + 1, p, p + 1, . . . , p, p + 1
︸ ︷︷ ︸

2q elements

, p, p, . . . , p) and otherwise

(di)i∈Z�
= (p, p + 1, p, p + 1, . . . , p, p + 1

︸ ︷︷ ︸
2(k−q) elements

, p + 1, p + 1, . . . , p + 1). Clearly, both

are valid profiles because
∑

i∈Z�
di = p · k + q = n. Moreover, let again γ :=

mini∈Z�
{vi} be the minimum utility of any player. Then 1 ≤ p ≤ γ < p + 1 ≤

2p ≤ 2γ, so conditions (S1)–(S3) of Theorem 1 are fulfilled. In order to verify
also conditions (S4) and (S5), we show that p + 1 < 2γ: If n

2 < k ≤ 2n
3 then

p = 1 and q ≥ k
2 ; so γ = 3

2 . Hence, p + 1 = 2 < 3 = 2γ. Otherwise, if k ≤ n
2 ,

then p ≥ 2 and so p + 1 < 2p ≤ 2γ. �

4 Social Cost and the Prices of Anarchy and Stability

In this section, we first show that standard profiles are optimal; hence, if k ≤ 2n
3

or k = n, then the price of stability is 1. We then continue by proving that the
price of anarchy is at most 9

4 . Furthermore, we give families of Voronoi games
on cycle graphs where these ratios are attained exactly.

Consider the following optimization problem on a vector λ ∈ Nn:

Minimize
∑n

i=1 i · xi (2)
subject to

∑n
i=1 xi = n

0 ≤ xi ≤ λi ∀i ∈ [n]
where xi ∈ N0 ∀i ∈ [n]

Lemma 2. Let λ ∈ Nn and r := min{i ∈ [n] :
∑i

j=1 λj ≥ n}. Then, the unique
optimal solution of (2) is x∗ := (λ1, . . . , λr−1, n−

∑r−1
i=0 λi, 0, . . . , 0) ∈ Nn

0 .

Theorem 4. A standard strategy profile has optimal social cost.

Proof. Consider the Voronoi game C(n, k). We first observe the following rela-
tionship between the optimization problem (2) on λ := (k, 2k, 2k, . . . , 2k) ∈ Nn

and profiles with optimal social cost. For any strategy profile s ∈ S define
x(s) ∈ Nn

0 by xi(s) := |{u ∈ V : minj∈[k]{dist(sj , u)} = i− 1}|. It is easy to see
that, for all s ∈ S , x(s) is a feasible solution to optimization problem (2) on
vector λ and SC(s) =

∑n
i=1 i ·xi(s). Hence, if x(s) is an optimal solution to (2)

then s is a profile with optimal social cost.
Now let s ∈ S be a standard profile. By definition, � = k, and for all i ∈ [k]

it holds that ci = 1 and di ∈ { n
k !, "

n
k #}. Hence, since 1

2 · "n
k # ≤ " n

2k #, we
have for all u ∈ V that minj∈[k]{dist(sj , u)} ≤  1

2 · ("n
k # + 1)! ≤  " n

2k # + 1
2! ≤

 n
2k! + 1. Moreover, x1(s) = k, and for all i ∈ {2, . . . ,  n

2k !} we have xi(s) = 2k.
Hence, according to Lemma 2, x(s) is the optimal solution to (2). By the above
observation, it then follows that s has optimal social cost. �
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We will now determine tight upper bounds for the social cost of worst Nash
equilibria. Therefore, consider the following optimization problem on a tuple
(n, μ, f) where n ∈ N, μ ∈ N, and f : R → R is a function.

Maximize
∑

i=1 f(di) (3)

subject to
∑

i=1 di = n

1 ≤ di ≤ μ ∀i ∈ [�]
where �, di ∈ N ∀i ∈ [�]

Recall that a function f is superadditive if it satisfies f(x+ y) ≥ f(x) + f(y) for
all of its domain. We need:

Lemma 3. Let n ∈ N, μ ∈ [n] \ {1}, and f be a superadditive function. Then,
(�∗,d∗) with �∗ = "n

μ# ∈ N and d∗ = (μ, . . . , μ, n − (�∗ − 1) · μ) ∈ N∗
is an

optimal solution of (3).

In the following, let f : R≥0 → R≥0 be an auxiliary function that associates
the distance between two strategies to the social cost corresponding to such a
segment; define f by

f(x) :=

{
x2

4 if x ∈ N0 and x is even
x2−1

4 if x ∈ N and x is odd,

and by linear interpolation for all other points. That is, if x ∈ R>0 \ N, then
f(x) := ("x# − x) · f( x!) + (x−  x!) · f("x#). By definition, the social cost of a
strategy profile is

∑
i=1 f(di). It is straightforward (and omitted here) to verify

that f is superadditive. Note also that

f(2x) =

⎧
⎪⎨

⎪⎩

x2 = 4f(x) if x ∈ N is even
x2 = 4f(x) + 1 if x ∈ N is odd
x2 − 1

4 = 2f(x− 1
2 ) + 2f(x + 1

2 ) = 4f(x) if 2x ∈ N is odd .

Theorem 5. Consider an arbitrary Voronoi game C(n, k) where k ≤ n
2 and let

s ∈ S be a Nash equilibrium. Define γ := 1
2 ·  2n

k !. The following holds:

1. If γ is an odd integer, then SC(s) ≤ 9
4 OPT.

2. Otherwise, SC(s) ≤ 2 OPT.

Proof. Theorem 1 and Lemma 1 imply that, in any Nash equilibrium, the mini-
mum utility of all players can be no more than γ. Hence, the maximum distance
between two strategies is 2γ. Now let s be a strategy profile with � = " n

2γ # and
d = (2γ, . . . , 2γ, n − (� − 1) · 2γ). Due to Lemma 3 (with μ := 2γ), no Nash
equilibrium can have social cost larger than SC(s).

Let p ∈ N0, q ∈ [k − 1]0 be defined by n = p · k + q. Similarly, let t ∈ N0, u ∈
[2γ − 1]0 be defined by n = t · 2γ + u. Clearly, SC(s) ≤ t · f(2γ) + f(u).

Finally, in order to compare SC(s) with OPT, define v ∈ N0, w ∈ [0, 2γ): If
γ ∈ N, then by q = v·2γ+w and otherwise (if 2γ ∈ N is odd) by (q−k

2 ) = v·2γ+w.
Note here that 2w ∈ N0 and (2γ odd ⇐⇒ q ≥ k

2 ⇐⇒ γ = p + 1
2 ).
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Claim 2. SC(s) ≤
(

k
2 + v

)
· f(2γ) + w · γ

2 .

The proof of the claim is omitted here. We now examine the optimal cost. Note
first that if γ ∈ N, then OPT = k ·f(γ)+q ·

⌊
γ+1
2

⌋
. Consider the following cases:

– γ is even
Since q ·

⌊
γ+1

2

⌋
= v · γ2 + w · γ

2 = v · f(2γ) + w · γ
2 , we have

OPT = k · f(γ) + v · f(2γ) + w · γ
2

=
(
k

4
+ v

)

· f(2γ) + w · γ
2

≥ 1
2
· SC(s) .

– γ is odd
Since now q ·

⌊
γ+1

2

⌋
= v · γ2 + w · γ

2 + q
2 = v · f(2γ) + w · γ

2 + q
2 , we have

OPT =
(
k

4
+ v

)

· f(2γ) − k

4
+ w · γ

2
+

q

2
≥ 1

2
· SC(s) − k

4
.

Now, a trivial bound is always OPT ≥ n − k. Since n ≥ γk, as otherwise
γ = 1

2 ·  2n
k ! > n

k , this implies OPT ≥ (γ − 1) · k. Finally, due to k ≤ n
2 and

since γ is odd, we have γ ≥ 3; so OPT ≥ 2k and SC(s) ≤ 9
4 OPT .

– 2γ ∈ N is odd
Since f(2γ) = γ2 − 1

4 , it follows that

SC(s) ≤ k

2
· f(2γ) + v ·

(

γ2 − 1
4

)

+ w · γ
2

=
k

2
· f(2γ) +

(

q − k

2

)

· γ
2
− v

4
.

Note that n = γ ·k+(q− k
2 ) and OPT = k ·f(γ)+(2q−k)·(f(p + 1) − f(γ)) .

If p =  γ! is even, then 2 · (f(p + 1) − f(γ)) = (p+1)2−1−p2

4 = p
2 = γ

2 − 1
4 , so

OPT =
k

4
· f(2γ) +

(

q − k

2

)

·
(
γ

2
− 1

4

)

.

Since γ
2 ≤ γ − 1

2 , we get SC(s) ≤ 2 OPT.
If p =  γ! is odd, then OPT = k

4 · f(2γ) +
(
q − k

2

)
·
(

γ
2 + 1

4

)
, Clearly, we

again have SC(s) ≤ 2 OPT. �
Theorem 6. The bounds in Theorem 5 are tight.

Proof. Let k ∈ N even and n = γ · k, where 2γ ∈ N. Consider a profile s with
� = k

2 and d1 = · · · = d = 2γ. Clearly, a standard (and thus optimal) profile s′

has �′ = k and d′1 = · · · = d′k = γ. Then SC(s′) = OPT = k · f(γ).
If γ is even or γ /∈ N, then SC(s) = � · f(2γ) = � · 4f(γ) = 2k · f(γ) = 2 OPT.

On the other hand, if γ is odd, then SC(s) = � · f(2γ) = � · (4f(γ) + 1) =
2k ·(f(γ)+ 1

4 ) = (2+ 1
2·f(γ)) ·OPT. To see the last equality, recall that k

2 = OPT
2f(γ) .

For the case γ = 3 this means SC(s) = 9
4 · OPT. �

Theorem 7. Consider C(n, k). Up to rotation, the following holds:
1. If n

2 < k ≤ 2
3n, then the best Nash equilibrium has social cost OPT = n− k,

whereas the worst Nash equilibrium has social cost  2n
3 ! ≤ 2 OPT.

2. If k = n, then the best Nash equilibrium has social cost 0. If n is even, then
the only other Nash equilibrium has social cost n

2 . Otherwise, there is no
other Nash equilibrium.
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5 Conclusion

Hotelling’s famous “Stability in Competition” [6] from 1929 has attracted an im-
mense but also belated interest in competitive location games, from researchers
in various disciplines [5]. While the Voronoi games on graphs studied here imply
several idealistic assumptions, they still provide first steps for predicting sellers’
positions in discrete markets; e.g., locations of competitive service providers in
a computer network. In this work, we looked at Voronoi games from the stability
angle by a comprehensive examination of their Nash equilibria. As a starting
point, we assumed that the network is merely a cycle graph. Even for these
very simple graphs, the analysis turned out to be non-trivial and much more
complex than for the continuous case [4]; with much of the complexity owed to
the discrete nature of graphs and parity issues. While we consider now Voronoi
games on cycle graphs to be fully understood—by giving an exact characteriza-
tion of all Nash equilibria, an existence criterion and exact prices of anarchy and
stability—a generalization to less restrictive classes of graphs remains open.

Acknowledgment. We thank Martin Gairing, Tobias Tscheuschner, and the
anonymous referees for helpful comments.
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Abstract. We study the empire colouring problem (as defined by Percy
Heawood in 1890) for maps whose dual planar graph is a tree, with
empires formed by exactly r countries. We first notice that 2r colours
are necessary and sufficient to solve the problem in the worst-case. Then
we define the notion of a random r-empire tree and, applying a method
for enumerating spanning trees in a particular class of graphs, we find
exact and asymptotic expressions for all central moments of the number
of (balanced) s-colourings of such graphs. Such result in turns enables us
to prove that, for each r ≥ 1, there exists a positive integer sr < r such
that, for large n, almost all n country r-empire trees need more than sr

colours, and then to give lower bounds on the proportion of such maps
that are colourable with s > sr colours.

1 Introduction

The question of whether four distinct colours suffice to colour all maps so that no
two countries sharing a border receive the same colour has a long history dating
back to Francis Guthrie (circa 1852). After a number of failing attempts (the
interested reader may consult [6]), the first convincing solution was obtained by
Appel and Haken (see for instance [2]) in the seventies and, eventually, simplified
and improved in several ways by Robertson et al. [18] almost 20 years later.

Although these results settle the original question, several related issues re-
main open. For our convenience from now on we switch to the dual graph-
theoretic representation. Countries will be vertices of a graph G and vertices
corresponding to neighbouring countries will be adjacent in G. In this setting,
even though Appel and Haken’s theorem guarantees that four colours always suf-
fice, it is not clear how many of the resulting planar graphs cannot be coloured
with less than four colours. Clearly two colours are enough if and only if G is
bipartite. Other important classes of planar graphs are 3-colourable including
graphs not containing triangles [8] or cycles of a certain size (see [19] and ref-
erences therein) and some classes of triangulated or nearly-triangulated planar
graphs. However no satisfactory characterization is known and the problem of
deciding whether the chromatic number of a planar graph is three is NP-complete
[7]. Note that several issues related to the chromatic number of planar graphs
are also difficult from the probabilistic point of view as models or random planar
graphs are not easy to work with [4,5,15].

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 515–526, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A linked (but less famous) problem concerns the colourability of planar graphs
with the additional constraint that groups of vertices (or empires) must receive
the same colour. The problem has some practical interest as several countries
in the world (e.g. the United States, China, and Azerbaijan) are formed by a
number of non-contiguous regions. This empire colouring problem (or ECP), was
first defined by Heawood [9] who also proved that if at most r countries belong to
any given empire then 6r colours are enough (viz. a simple linear time algorithm
returns a 6r-colouring of any such map) and 12 colours are necessary when r = 2.
Later on other authors showed that 6r colours are also necessary when r > 2
[12,21]. In all cases the graphs requiring a large number of colours have a rather
special structure. Hence such results do not really say much about the number
of colours sufficient for the “typical” empire graph.

As a first step in the direction of settling this question, in this paper we
investigate the chromatic properties of empire maps whose dual planar graph
is a tree, with empires formed by exactly r countries. After obtaining some
preliminary, worst case, results, our analysis is mostly probabilistic. We define
the notion of a random r-empire tree and investigate the chance that a certain
number of colours is sufficient to solve the ECP in such graphs. Our analysis
stems from the study of all central moments of the relevant random variables.
A lower bound on the number of colours needed to solve the ECP (at least
with overwhelming probability) is then proved using the first moment method.
Finally, as for other types of random graphs [1], the second moment method
gives estimates on the proportion of r-empire trees that are colourable with a
certain number of colours.

Understandably the reader may question the motivations behind our work.
First the ECP is a variant of the classical graph colouring problem that has
received less attention and, nevertheless, has a number of interesting features. As
it will become apparent very soon the ECP reduces to classical graph colouring
but the two problems are not equivalent. Also, the ECP is related to the colouring
of graphs of given thickness [10]. Second, we contend that even in the simplified,
and perhaps artificial, setting considered in this paper, the ECP has a rich
combinatorial structure that is worth looking at. Apart from shedding some light
on an interesting type of graph colouring, we believe that our analysis uses several
techniques that may be of independent interest, notably two different ways of
counting the number of spanning trees in a graph, and a way of approximating
the moments of the relevant random variables by multivariate normal integrals.
Last but not least our combinatorial investigation was motivated by the empirical
evidence that simple list colouring strategies to solve the ECP often outperform
Heawood colouring strategy on randomly generated empire graphs.

The rest of the paper is organised as follows. After describing some elementary
worst-case results, we end this section defining our probabilistic model and stat-
ing our main results. In Section 2 we look at the expected number of colourings
of a random empire tree and prove that, as their size grows, the proportion of
such structures that can be coloured with only few (say two) colours is vanish-
ingly small. Generalizing on this, in Section 3 we compute the higher moments
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of the relevant random variables. Finally, in Section 4 we derive asymptotic ap-
proximations for all moments considered and, as a consequence, lower bounds
on the probability that a certain number of colours is enough to solve the ECP
in a random empire tree.

Preliminaries and worst-case results. Given a planar graph G = (V,E) whose
vertex set is partitioned in empires V1, V2, . . . (a.k.a. empire graph), the empire
colouring problem (or ECP) asks for a colouring of the vertices of G that never
assigns the same colour to adjacent vertices in different empires and, conversely,
assigns the same colour to all vertices in the same empire, disregarding adjacen-
cies. For any integer s ≥ 1, an s-(empire) colouring is one such colouring using
s distinct colours. For any integer r ≥ 1, an r-empire graph is an empire graph
whose empires contain exactly r vertices. The reduced graph of an empire graph
G has one vertex for each empire, and an edge between two vertices x and y if
and only if at least two vertices of G (one belonging to empire x one to y) are
adjacent. The reduced graph of an r-empire graph on e empires (or r-reduced
graph) has e vertices and at most 3re − 6 edges. Therefore its average degree
is less than 6r, and this property is true for any of its subgraphs. It is obvious
that each instance of the ECP reduces to an instance of the classical colouring
problem on a reduced graph. Heawood’s 6r-colouring algorithm [9] repeatedly
finds a vertex v of degree at most 6r − 1 in the reduced graph of G. Removing
v leaves a graph on e− 1 vertices, which can be coloured recursively. Once this
is done no more than 6r − 1 colours will be in the neighbourhood of v. Hence
v can be given a (spare) colour from a palette of 6r colours. In this paper we
look at the colourability of r-empire trees (i.e. collections of empires whose ad-
jacencies define a tree). Of course the simplified topology reduces the number
of colours that are sufficient to solve the ECP. The following Theorem gives the
best possible worst-case results in this setting.

Theorem 1. Let G = (V,E) be an r-empire tree on n vertices. Then its reduced
graph can be coloured using 2r colours. Furthermore there is a family of r-empire
trees (Tr)r≥1 whose reduced graph cannot be coloured with less than 2r colours.

Proof. The upper bound follows from Heawood’s argument as trees have average
degree less than two. We define a family of trees (Tr)r≥1 such that, for all integers
r ≥ 1, the reduced graph of Tr is K2r, the complete graph on 2r vertices. The tree
Tr will have 2r2 vertices r2 − r + 2 of which have degree one. Furthermore, if C1

and C2 are two special vertices called the centres of Tr then there will be exactly
r vertices of degree one, belonging to empires 1, 3, . . . , 2r− 1 at distance 2(r− 1)
from C1 and r vertices of degree one, belonging to empires 2, 4, . . . , 2r at distance
2(r − 1) from C2. These sets of vertices are called Far1 and Far2 respectively.

The empire tree T1 ≡ K2. Assume that Tr−1 is given consisting of empires of
size r−1, labelled from one to 2(r−1), which satisfies all properties above. Add
r − 1 new vertices belonging to empire 2r − 1 and r − 1 vertices belonging to
empire 2r. Connect each of the new vertices in empire 2r − 1 (resp. 2r) with a
distinct element of Far1 (resp. Far2). By adding one more vertex to each empire
we can change this so that any two empires are adjacent. Choose one vertex from
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Table 1. A.a.s. lower bounds on the chromatic number of Gr,n for different values of r

r 2 3 4 5 6 7 8 9 10 . . . 20 . . . 50

sr 2 3 3 4 4 4 5 5 6 . . . 9 . . . 17

empire 2r − 1 (resp. 2r). Attach r new leaves belonging to empires 2, 4, . . . , 2r
(resp. 1, 3, . . . , 2r−1) to such vertex. The resulting tree is an r-empire tree. It has
l(r) = l(r−1)+2(r−1) vertices of degree one and v(r) = v(r−1)+2(r−1)+2r
vertices in total and reduces to K2r. �
Notice that there are 2-empire trees that need four colours but whose reduced
graphs do not have K4 as a subgraph (e.g. a wheel with five spokes). However
we believe that r-empire trees requiring 2r colours are the exception rather than
the norm. In the rest of the paper we provide partial support to our claim by
showing that, for each r, at least a constant fraction of all r-empire trees can be
coloured with less than 2r colours.

Average-case analysis, setting and results. To study the distribution of the s-
colourable r-empire trees we first define the notion of a random r-empire tree.
Let Tn be a random tree on n labelled vertices (see for instance [16, Chap. 7]).
Formally Tn denotes a probability space obtained by associating the uniform
probability measure to the set of all nn−2 labelled trees on n vertices, but we
will often hide the distinction between the whole space and its typical element. A
random r-empire tree Gr,n is obtained from Tn by assuming that the ith empire,
for i ∈ {1, . . . , n

r } is formed by vertices labelled (i− 1)r+ 1, . . . , ir (from now on
we assume w.l.o.g. that r divides n). Using Gr,n we investigate the density of s-
colourable r-empire trees over the whole population. In what follows we say that
a result holds asymptotically almost surely (a.a.s.) if it is true with probability
approaching one as n tends to infinity.

The obvious starting point is the question of whether Heawood algorithm is
really all that good on Gr,n. A first consequence of our probabilistic setting is
that families of r-empire trees requiring few colours have a vanishing effect on
the typical chromatic properties of Gr,n. In the following statement, for any fixed
integer r ≥ 2, sr is the largest integer s such that cs,r = s

1
r−1(s− 1) < 1.

Theorem 2. For any fixed integer r ≥ 2 a random r-empire tree admits a.a.s.
no s-colouring for any s ∈ {1, . . . , sr}. Furthermore for large r, sr = " r

log r #(1 +
O( 1

log log r )).

Table 1 gives the values of sr for the first few values of r. This result implies
that, in a sense, Heawood algorithm is not too bad. Furthermore, one may be
lead to believe that Theorem 2 may be strengthened to prove that, in fact, very
few r-empire trees are colourable with less than 2r colours. However, the main
contribution of this paper shows that this is not the case. Many r-empire trees
can be coloured with a few as sr + 1 colours. The statement is formalised.

Theorem 3. For any fixed integers r ≥ 2 and s > sr a random r-empire tree
is s-colourable with (at least) constant positive probability.
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Table 2 shows the lower bounds on the proportions of s-colourable r-empire trees
derived in the proof of Theorem 3 for various values of r and s. At least almost
50% of all 3-empire trees can be coloured with only five colours, at least almost
20% only need four colours. Thus the guarantees of Heawood’s algorithm are
often not very good.

The results stem from the use of tight estimates for the expected value of the
random variable Ys,r, counting (up to colour class relabelling) s-colourings of
Gr,n and precise asymptotics for all central moments of its close relative Zs,r,
counting balanced colourings, in the sense that each colour class has size n

sr (from
now on we assume that n

sr is a positive integer).

2 Proof of Theorem 2: First Moment of Ys,r

The first part of Theorem 2 is a consequence of the first moment method. By
Markov’s inequality the probability that Ys,r > 0 is at most EYs,r. Thus if we
can prove that if s ≤ sr, EYs,r tends to zero as n tends to infinity we have that
Ys,r = 0 a.a.s. An s-colouring of Gr,n is a partition of {1, . . . , n} into s blocks
such that

P1 no empire is split between two or more blocks and
P2 all edges of Tn connect vertices in different blocks or in a same empire.

By linearity of expectation, EYs,r can be computed as a sum of terms, one for
each such partition, representing the probability that the given partition corre-
sponds to an s-colouring of Gr,n. Such probability is simply the ratio of the num-
ber of trees that satisfy P1 and P2 for the given partition over nn−2. Let Hs,r be
a graph whose vertex set is partitioned into s blocks of size rn1, rn2, . . . , rns. For
i ∈ {1, . . . , s}, the ith block is further partitioned in ni groups of vertices each
of size r. Each vertex of Hs,r is adjacent to all vertices in the same group or in
different blocks. The blocks represent the colour classes of a possible s-colouring
of Gr,n, the groups correspond to the empires, the edges describe the allowed
adjacencies. The spanning trees of Hs,r define precisely those r-empire trees for
which the given set of s blocks represent a valid s-colouring. We denote by κ(G)
the number of spanning trees of graph G. The next result uses classical algebraic
methods (and elementary linear algebra) to find κ(Hs,r).

Table 2. Lower bounds on the proportion of s-colourable r-empire trees for various
values of r and s ∈ {sr + 1, . . . , 2r − 1}, and large n

r \s 3 4 5 6 7 8 9 10 11 12 13

2 0.1045 —– —– —– —– —– —– —– —– —– —–
3 —– 0.1955 0.4947 —– —– —– —– —– —– —– —–
4 —– 0.011 0.2336 0.4479 0.5935 —– —– —– —– —– —–
5 —– —– 0.07 0.2568 0.4237 0.549 0.6407 —– —– —– —–
6 —– —– 0.0095 0.1194 0.2729 0.4094 0.5183 0.6029 0.6686 —– —–
7 —– —– 0.0002 0.0421 0.1558 0.2848 0.4003 0.4961 0.5738 0.6364 0.6870
8 —– —– —– 0.0101 0.0771 0.1832 0.294 0.394 0.4794 0.5508 0.61
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It is worth pointing out that in Section 3 we will generalize considerably the
construction of Hs,r, Lemma 1 is a special case (for k = 1) of Lemma 6 proved
there, and, in fact, Lemma 3 can be improved to a result similar to Theorem 4.
However the current presentation is simple, relatively self-contained and provides
a gentle introduction to the rest of the paper.

Lemma 1. For any fixed integers r ≥ 2 and s ≥ 2, let Hs,r be defined on a
partition of {1, . . . , n} with blocks of size rni, for i ∈ {1, . . . , s}. Then

κ(Hs,r) = ns−2
∏s

i=1(n− r(ni − 1))(r−1)ni (n− rni)ni−1.

Proof. By a result of Temperley [20] n2κ(Hs,r) = det(Onen + L(Hs,r)) where
L(G) = D(G) − A(G) is the Laplacian of graph G, defined in terms of a diag-
onal matrix D(G) whose ith row entry is the degree of vertex i in G and A(G)
the adjacency matrix of G, and Onen is an n × n matrix whose entries are all
ones. Note that Onen + L(Hs,r) = D(Hs,r) + In + A((Hs,r)c). Here In is the
n×n identity matrix and (Hs,r)c is the complement of Hs,r. From this we have
that n2κ(Hs,r) = det(nIn − L((Hs,r)c)). The graph (Hs,r)c is formed by s dis-
joint connected components (Hs,r)c

1, . . . , (Hs,r)c
s. Hence det(nI − L((Hs,r)c)) =∏s

i=1 det(nI − L((Hs,r)c
i )). For each i ∈ {1, . . . , s}, (Hs,r)c

i is a circulant graph
on rni vertices and it is regular of degree r(ni − 1). Thus [3, Chap. 3] for each i,
the characteristic polynomial of A((Hs,r)c

i ) is (λ−r(ni−1)) λ(r−1)ni (λ+r)ni−1.
Putting all this together we have that

n2κ(Hs,r) = (−1)n
∏s

i=1 det((r(ni − 1) − n)I − A((Hs,r)c
i ))

=
∏s

i=1 n (n− r(ni − 1))(r−1)ni (n− rni)ni−1.

In the first equality we’ve used the fact [3, Chap. 6] that for any μ, det(μI −
L(G)) = (−1)n det((d− μ)I −A(G)), for any n-vertex d-regular graph G. �
The next result now follows almost immediately from Lemma 1 and the earlier
argument.

Lemma 2. For each integer r ≥ 2 and s ≥ 2,

EYs,r = 1
s!

∑
n1,...,ns

( n
r

n1,...,ns

)∏s
i=1(1 − r(ni−1)

n )(r−1)ni (1 − rni

n )ni−1,

where the sum is over all sequences of s positive integers adding up to n
r .

Proof. First notice that EY1,r = 0 for any positive integer r. For s ≥ 2, expres-
sion nn−2EYs,r may be computed as a sum of terms κ(Hs,r) over all possible
ways to partition the n

r empires into blocks B1, . . . , Bs. Hence, by Lemma 1

EYs,r = ns−n

s!

∑
B1,...,Bs

∏s
i=1(n− r(|Bi| − 1))(r−1)|Bi| (n− r|Bi|)|Bi|−1.

The result follows by noticing that κ(Hs,r) only depends on the sizes of the
blocks. �

Lemma 3. limn→+∞(EYs,r)
1
n = cs,r, for each integer r ≥ 2 and s ≥ 2.



Colouring Random Empire Trees 521

Proof. We claim that for each integer r ≥ 2 and s ≥ 2

e
s(r−1)

s−1 s
3s
2

s! (s−1)s ( r
2πn )

s−1
2 (cs,r)n(1 − o(1)) ≤ EYs,r ≤ e

s(r−1)
s−1 ss

s! (s−1)s (cs,r)n(1 + o(1)).

Note that EYs,r is always at least
( n

r
n
rs ,..., n

rs

)
1
s!

∏s
i=1(1− 1

s + r
n )

r−1
r

n
s (1− 1

s )
n
rs−1.

Rewriting (1 − 1
s + r

n ) as (1 − 1
s )(1 + rs

(s−1)n ) the expression above becomes
( n

r
n
rs ,..., n

rs

)
1
s! (

s
s−1 )s( s−1

s )n(1 + rs
(s−1)n )

r−1
r n. The stated lower bound on EYs,r fol-

lows using Stirling’s approximations for the various factorials and replacing the
term (1 + rs

(s−1)n )
r−1

r n with exp{ s(r−1)
s−1 }(1 − o(1)).

For the upper bound, s! × EYs,r is at most
∑

n1,...,ns

( n
r

n1,...,ns

)
maxn1,...,ns

∏s
i=1(1 − r

n (ni − 1))(r−1)ni (1 − rni

n )ni−1,

and the sought maximum is achieved when n1 = . . . = ns = n
rs . Therefore EYs,r

is at most (1 + rs
(s−1)n )

(r−1)n
r ( s−1

s )n−s × s
n
r

s! . �

It follows immediately from Lemma 3 that EYs,r tends to zero as n tends to
infinity if s ≤ sr. To complete the proof of Theorem 2 we need the following
statement about sr.

Lemma 4. For large integers r, sr = " r
log r #(1 + O( 1

log log r )).

Proof. Let s′ = r
log r and s′′ = (1 + 1

log log r ) r
log r . The result follows since, for

large r, cs′,r < 1, and cs′′,r > 1. �

3 A Detour in Enumerative Combinatorics

The approach used in Section 2 could be followed to study the higher moments
of Ys,r. However a slightly different method leads to exact expressions for all
moments of Ys,r and Zs,r and to the proof of Theorem 3. As before, the idea is
to reduce the computation of the moments of the random variables under inves-
tigation to the enumeration of the spanning trees of particular classes of graphs.
Colourings of a graph G can be seen as homomorphisms from G to another graph
whose vertices correspond to the colour classes [11]. This correspondence can be
extended to k-tuples of colourings. For any integer s ≥ 2 and k ≥ 1, let a vertex
of graph Bs,k be labelled by a sequence ı ≡ (i1, . . . , ik) where ij ∈ {1, . . . , s} for
each j ∈ {1, . . . , k}. When lists of such sequences are needed we will assume they
are produced in lexicographic order and we’ll denote the elements of such lists
by ı(1), ı(2), . . .. If E is an expression involving ı(j) for some j ∈ {1, . . . , sk},
then

∑
ı E(ı) (or

∏
ı E(ı)) is a shorthand for

∑sk

j=1 E(ı(j)) (or
∏sk

j=1 E(ı(j))).
Two vertices, labelled ı and ı’, are adjacent if and only if ij �= i′j for all j’s. Thus,
Bs,k is an (s − 1)k-regular graph on sk vertices. Any k-tuple of s-colourings in
G defines a homomorphism from G to Bs,k. If v ∈ V (G) is mapped to ı the se-
quence (i1, . . . , ik) gives the colour of vertex v in each of the k given colourings.
Thus we call Bs,k the constraint graph on the class of all k-tuples of s-colourings.
The following result will be used in the asymptotic results of Section 4.
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Fig. 1. The graph B3,2 (left, with vertex labels represented by pairs of colours), one
possible H3,2,2 (centre) with n(i,j) = 1 for all i, j ∈ {1, 2, 3}, and a tree legally coloured
by the two colourings (right, in red)

Lemma 5. skκ(Bs,k) =
∏k

i=1((s − 1)k − (−1)i(s − 1)k−i)(
k
i)(s−1)i

, for each
integer s ≥ 2 and k ≥ 1.

Proof. (Sketch) It is easy to verify that, for i ∈ {0, . . . , k}, (−1)i(s − 1)k−i is
an eigenvalue of A(Bs,k) of multiplicity

(
k
i

)
(s− 1)i. The result follows from the

relationship between the spectrum of A(Bs,k), and that of L(Bs,k) and the fact
that the number of spanning trees of Bs,k multiplied by sk is the product of the
Laplacian’s non-zero eigenvalues. �
The graph Bs,k can be “inflated” to describe the set of admissible edges for an
r-empire tree admitting k given s-colourings. First replace the node labelled ı
by nı pseudo-nodes and connect two pseudo-nodes by an edge if and only if the
two original nodes were adjacent in Bs,k. Call the resulting multipartite graph
B = B(nı(1), nı(2), . . . , nı(sk)). Then replace each pseudo-node by a copy of Kr

whose vertices are labelled by the elements of one of the empires of Gr,n. Two
vertices in different cliques are connected if and only if the pseudo-nodes they
replaced were adjacent in B. Call the resulting graph Hs,r,k (note that Hs,r

of Section 2 is Hs,r,1). Obviously an r-empire tree is coloured by a given k-
tuple of s-colourings if and only if it is a spanning tree of Hs,r,k (Fig. 1 gives
an example). Note that the construction of both B and Hs,r,k follows a simple
pattern. In each case each of the vertices of a given base graph (Bs,k in the case
of B, and B itself in the case of Hs,r,k) is replaced by another graph (an empty
graph on nı vertices for ı ∈ V (Bs,k) in the case of B, a copy of Kr in the case
of Hs,r,k). The adjacencies on the resulting set of vertices are defined in terms
of the adjacencies in the base graph and the replacement graphs. An old result
of Knuth [14], rediscovered by Pak and Postnikov [17] gives a formula for the
enumeration of the spanning trees of any graph built in this way. The following
lemma is a simple consequence of such result. Denote by d(ı) =

∑
j(A(Bs,k))ı,jnj

the degree, in B, of each pseudo-node replacing ı ∈ V (Bs,k).

Lemma 6. For each integer r ≥ 2, s ≥ 2, and k ≥ 1,

κ(Hs,r,k) = rn−2
∏n

r

l=1(degB(l) + 1)r−1
∏

ı d(ı)nı−1
∑

T

∏
j n

degT (j)−1
j ,

where the sum is over all spanning trees of Bs,k.

Proof. Since Kr has r vertices, it follows from the main result in [17] that the
number of spanning trees of Hs,r,k is r

n
r−2

∏n
r

l=1

(∑r
i=1 fl(i)d(l)i−1

)
κ(B), where
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the term fl(i) counts the number of spanning forests consisting of i rooted
trees in each copy of Kr. Since the i roots can be chosen in

(
r
i

)
ways it fol-

lows that fl(i) =
(
r
i

)
irr−i−1. Also, d(l) = r degB(l), for each vertex l of B.

Hence κ(Hs,r,k) = r
n
r−2

∏n
r

l=1

(∑r
i=1

(
r
i

)
irr−i−1ri−1 degB(l)i−1

)
κ(B). Grouping

together all r’s gives an r(1− 1
r )n−2 term which can be moved out of the sum.

The result now follows since
∑r

i=1

(
r
i

)
i(degB(l))i−1 = r(1 + degB(l))r−1 and

κ(B) =
∏

ı d(ı)nı−1
∑

T

∏
j n

degT (j)−1
j (the sum being over all spanning trees T

of Bs,k), by Corollary 4 in [17]. �
Lemma 6 enables us to derive an exact expression for all moments of Ys,r and Zs,r.
Its proof is conceptually identical to that of Lemma 2, using Lemma 6 instead of
Lemma 1 for the enumeration of the spanning trees in the appropriate graph.

Lemma 7. For each integer r ≥ 2, s ≥ 2, and k ≥ 1. Let Xs,r be either Ys,r or
Zs,r. Then (s!)kEX k

s,r is equal to
∑

nı(1),...,nı(sk)

( n
r

nı(1),...,nı(sk)

)
rn−2(

∏
ı(

d(ı)+1
n )(r−1)nı(d(ı)

n )nı−1)
∑

T

∏
j n

degT (ı)−1
j

nsk−2 ,
where the first sum is over all sequences of positive integers nı(1), . . . , nı(sk) adding
up to n

r if Xs,r = Ys,r (whereas only those sequences corresponding to balanced
colourings define EZk

s,r), and the second one over all spanning trees of Bs,k.

4 Proof of Theorem 3

For each integer r ≥ 2, and s ≥ 2 let an = n−
s−1
2 (cs,r)n. The main result of this

section is the following:

Theorem 4. For each integer r ≥ 2, s ≥ 2, and k ≥ 1, there exists a positive
real number Cs,r,k, independent of n, such that

EZk
s,r ∼ Cs,r,k × (an)k.

Furthermore, for fixed integers r ≥ 2, and s ≥ 2,

Cs,r,2 = e

s2(r−1)
(s−1)2 ss2+s+1(s−2)(s−1)2

(s!)2 (s−1)2(r−2r(s−1)2+(s−1)4)
(s−1)2

2

( r
2π )s−1.

Proof. The result on EZs,r follows from Lemma 3 as EZs,r is just the cen-
tral term of EYs,r. For k ≥ 2 we argue that the main component of the sum
defining EZk

s,r consists of all terms close to the one having nı(j) = n
skr for all

j ∈ {1, . . . , sk} (see Lemma 10 below). This expression, for large n, can be ap-
proximated by a multivariate Gaussian integral (see Lemma 9). For each integer
r ≥ 2 and s ≥ 2 let Xs,r = s2r( r−2r(s−1)2+(s−1)4

(s−1)4 ). For k = 2 the matrix As,r,2

has eigenvalues Xs,r with multiplicity (s− 2)2, sXs,r with multiplicity 2(s− 2)
and s2Xs,r. If A is a non-singular real symmetric matrix, for each positive m,

∫

IRm

e− 1
2 yAyT

dy =
m∏

i=1

1√
λi

∫

IRm

e− ||z||2
2 dz.
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Hence for k = 2 the integral in Lemma 9 is asymptotically equal to
∏(s−1)2

i=1
2π√
λi

,
where λ1, λ2, . . . are the eigenvalues of As,r,2. The result on Cs,r,2 follows, using
Lemma 5. �
Theorem 4 implies Theorem 3, through the use of the following refined version
of Chebyshev’s inequality:

Lemma 8. (see for instance [13, Chap. 3]) Let X be a non-negative integer
valued random variable. Then Pr[X > 0] ≥ (EX)2/EX2.

The remainder of this paper gives a few more details on our approximations.

Approximating EZk
s,r. For each integer k ≥ 2 each colouring in a k-tuple of

balanced s-colourings splits each of the other colourings’ colour classes into s sub-
classes. The sizes of the classes in the resulting partition of the n

r empires satisfy∑
ni1,...,ik

= n
r and, furthermore, for each j ∈ {1, . . . , k} and each fixed value

ι for ij,
∑

ni1,...,ij−1,ι,ij+1,...,ik
= n

sr . It will be convenient, in the forthcoming
treatment, to define each partition in terms of the one having all parts equal to

n
sk r . Thus the block whose vertices are coloured i1 in the first colouring, i2 in the
second one and so on has size nı = n

skr
+xı, where the xı are integers adding up

to zero, and the sum of xi1,...,ij−1,ι,ij+1,...,ik
over all possible choices of i1, . . . , ik

with ij = ι fixed is also zero, for each j ∈ {1, . . . , k}. To prove Theorem 4 we
will focus on sequences of xı with |xı| = O(

√
n logn). We call these sequences

and the corresponding partitions nice. We denote by Hs,r,k(xı(1), . . . , xı(sk)) the
instance of Hs,r,k associated with k s-colourings defining colour blocks of size
nı(1), . . . , nı(sk). Define f(x′) and g(x′) by

(( n
skr )!)sk

f(x′) =
∏

ı(
n

skr + xı)! and κ(Hs,r,k(0′))g(x′) = κ(Hs,r,k(x′)),
where x′ stands for the sequence of all xı except those of the form xs,...,ij ,...,s

for each j and each value of ij.

Lemma 9. For fixed integer r ≥ 2, s ≥ 2, and k ≥ 2, let m = sk − k(s− 1)− 1.
Then there exists a non-singular real symmetric matrix As,r,k such that

∑
g(x′)f(x′) ∼ n

m
2
∫
IRm e−

1
2 yAs,r,kyT

dy.
where the sum is over all sequences corresponding to nice partitions of n

r .

Proof. Using simple properties of exponentials and logarithms we prove that
there are two m ×m symmetric matrices F and G such that f(x′) ∼ e−

1
2 zFzT

and g(x′) ∼ e−
1
2 zGzT

, where zı = xı/
√
n. Finally, the approximation of the sum

by the integral is obvious. We give all details about f(x′). The proof about g(x′)
will be sketched. Let N = n

skr . First note that, for each positive integer S,

(N !)S

∏
S
i=1(N+xi)!

∼ e−
1

2N xISxT

(here we assume w.l.o.g. that there exists i0 ∈ {1, . . . , S} such that xi > 0 iff
i ≤ i0 and

∑
i≤i0

xi =
∑

i>i0
|xi|). To believe this notice that
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(N !)S

∏S
i=1(N+xi)!

= N ·N ·...·N
∏ i0

i=1
∏xi−1

k=0 (N+xi−k)
×

∏S
i=i0+1

∏ |xi|−1
k=0 (N−k)

N ·N ·...·N =

=
∏i0

i=1

∏xi−1
k=0 (1 − xi−k

N+xi−k ) ×
∏S

i=i0+1

∏|xi|−1
k=0 (1 − k

N ),

and then that, for instance, using elementary properties of logarithms and ex-
ponentials, one can prove that

∏S
i=i0+1

∏|xi|−1
k=0 (1 − k

N )

is asymptotic to exp
{
− 1

N

∑
i=i0+1(

∑
j≤i xj)xi

}
, provided the xi are not too

large. We then get the result for f(x′), by noticing that it is defined by
∏s

i=1
(N !)sk−1

∏
sk−1
j=1 (N+xi,ı(j))!

,

replacing all xı whose index contains at least s− 1 values equal to s by a com-
bination of the remaining variables. For k-tuples ı and j let bı,j be the number
of index values shared by ı and j, sı be the number of values equal to s in ı and
sı,j the number of corresponding indices in ı and j having value s. The m × m
matrix F is defined by (here δa,b = 1 if a = b, and zero otherwise)

Fı,j = (bı,j − sı,j) + (k − 1 − sı)(k − 1 − sj) + δbı,j,k.

As to g, using log(1 + y) = y− y2

2 +O(y3), valid if |y| is sufficiently smaller than
one, one can prove that

g(x′) ∼ exp
{

r
(s−1)kN

∑
ı xı[

∑
{j:ı∩j=∅} xj − 1

2(s−1)k (
∑
{j:ı∩j=∅} xj)2]

}

.

Substitutions identical to those used for f lead to the definition of the required
m×m matrix G. �
For k ≥ 2, we can write (s!)kEZk

s,r as
∑

T (xı(1), . . . , xı(sk)), where the sum is
over all admissible tuples of xı’s and
T (y1, . . . , ysk) =

( n
r

n

skr
+y1,..., n

skr
+y

sk

)
rn−2×

×(
∏sk

l=1(d(l)+1
n )(r−1)( n

skr
+yl)(d(l)

n )
n

skr
+yl−1)

∑
T

∏sk

i=1(
n

skr
+yi)

degT (i)−1

nsk−2
.

The following result states that the T (xı(1), . . . , xı(sk)) corresponding to not nice
partitions add up to a negligible portion of EZk

s,r.
Lemma 10. For fixed integers r ≥ 2, s ≥ 2, and k ≥ 2

(s!)kEZk
s,r = T (0, . . . , 0) ×

∑
g(x′)f(x′) + o((an)k).

where the sum is over all sequences corresponding to nice partitions of n
r .

Finally, the next result estimates the “central” term T (0, . . . , 0).
Lemma 11. For fixed integers r ≥ 2, s ≥ 2, and k ≥ 2

T (0, . . . , 0) ∼ e
sk(r−1)
(s−1)k s

ksk

2 +2k(s− 1)−ksk

κ(Bs,k)( r
2πn )

sk−1
2 (cs,r)kn.

Proof. (Sketch) Note that T (0, . . . , 0) = n2−n
( n

r
n

skr
,..., n

skr

)
κ(Hs,r,k(0, . . . , 0)). Ap-

proximate the multinomial using Stirling’s approximation to the factorial. Fi-
nally, since all blocks have the same size,

∑
T

∏
j n

degT (j)−1
j = κ(Bs,k)( n

skr
)sk−2

and d(ı) = (s−1)kn
skr . �
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A Random Oracle Does Not Help Extract the

Mutual Information
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Abstract. Assume a tuple of words x̄ = 〈x1, . . . , xn〉 has negligible mu-
tual information with another word y. Does this mean that properties of
Kolmogorov complexity for x̄ do not change significantly if we relativize
them conditional to y ? This question becomes very nontrivial when we
try to formalize it. We investigate this question for a very particular kind
of properties: we show that a random (conditional to x̄) oracle y cannot
help extract the mutual information from xi’s.

1 Introduction

Kolmogorov complexity K(x) of a word x is the length of a minimal description of
this word for an optimal algorithmic description method (see [1,4]). Respectively,
conditional Kolmogorov complexity K(x|y) is the length of a minimal description
of x when y is known. In other words, K(x|y) is Kolmogorov complexity of x
with the oracle y.

The difference between plain and conditional complexities

I(x : y) = K(y) −K(y|x)

is called information in x on y. The basic result of the algorithmic information
theory is the fact that I(x : y) is symmetric up to a small additive term:

Theorem 1 (Kolmogorov–Levin, [1])

I(x : y) = I(y : x) + O(logK(x, y)) = K(x) + K(y) −K(x, y) + O(logN)

If the value I(x : y) is negligible (logarithmic in K(x, y)), the words x and y are
often called independent.

Intuitively it seems that if x and y are ‘independent’ then ‘reasonable’ algo-
rithmic properties of x (expressible in terms of Kolmogorov complexity) should
not change significantly when we relativize them conditional to y.

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 527–538, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



528 A. Muchnik and A. Romashchenko

Let us find a formal statement corresponding to this intuition. Let us take a
tuple x̄ = 〈x1, x2, . . . , xn〉 instead of a single word1 x. Suppose that the mutual
information between x̄ and some y is negligible. Then it is easy to see that the
basic properties of Kolmogorov complexity for x̄ do not really change when we
relativize them conditional to y:

K(xi) ≈ K(xi|y), K(xi, xj) ≈ K(xi, xj |y), . . . ,

for all i, j, etc. (the approximative equations hold up to I(y : x̄) + O(logK(x̄)),
which is negligible by the assumption).

Further we deal with less trivial properties of Kolmogorov complexity. Proba-
bly the simplest appropriate example is the property of extractability of common
information. Let x̄ = 〈x1, x2〉 be a pair of binary words. We say that α bits of the
common information can be extracted from this pair for a precision threshold k if

∃z such that for i = 1, 2 K(z|xi) < k and K(z) ≥ α

Straightforward arguments imply that for such a word z

K(z) ≤ I(x1 : x2) + O(k + logK(x1, x2))

This is a very natural fact: it means that for a small threshold k we cannot
extract from x1, x2 much more than I(x1 : x2) bits of information.

The question on extracting common information cannot be reduced to the val-
ues of complexities K(x1), K(x2), K(x1, x2). For example, given that K(x1) =
K(x2) = 2n and K(x1, x2) = 3n we cannot say anything nontrivial about ex-
tracting common information. On one hand, there exist pairs 〈x1, x2〉 with the
given complexities, such that n bits of common information can be extracted
from these words for a very small threshold k = O(1). On the other hand, there
exist pairs with the same complexities such that only negligible amount of in-
formation can be extracted for pretty large k. See detailed discussions on this
topic in [2,3,6,11]. A similar property of extracting common information can be
investigated not only for pairs but also for all finite tuples 〈x1, . . . , xn〉. For the
sake of simplicity in the sequel we restrict ourselves to the case n = 2 (though
our technique is suitable for all n).

Once again, our intuition says that negligible mutual information between
〈x1, . . . , xn〉 and y actually means that the relativization conditional to y should
not change properties of x1, . . . , xn. Let us formalize this intuitive idea for the
problem of extracting common information:

Assume the mutual information between x̄ = 〈x1, x2〉 and y is negligible. Then α
bits of common information between x1 and x2 can be extracted for a precision
1 More formally, we fix a computable bijection between the set of binary words and

the set of all finite tuples of binary words. Now every tuple has a code. When we talk
about Kolmogorov complexity of pairs, triples, etc., we mean Kolmogorov complexity
of codes of these tuples.There is no natural canonical encoding of all tuples. However
the choice of a particular code is not essential. Changing this encoding we change
Kolmogorov complexity of tuples by only O(1) additive term.
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threshold k iff the same is true given y as an oracle (for possibly a little different
precision threshold).

The ‘if’ part of the equivalence above is trivial (if some information can be
extracted without any oracle, the same can be done also given an oracle). The
interesting part is the ‘only if’ statement. Let us formulate it in the most natural
way, with logarithmic thresholds:

Conjecture 1. For every integer C1 > 0 there exists an integer C2 > 0 such that
for all x̄ = 〈x1, x2〉 and y, if I(y : x̄) ≤ C1 logN and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ C1 logN (i = 1, 2),

where N = K(x̄, y), (i.e., α bits of information can be extracted from x1, x2 for
the precision threshold C1 logN , assuming y is given as an oracle) then

∃z : K(z) ≥ α, K(z|xi) ≤ C2 logN (i = 1, 2),

i.e., the same α bits of common information can be extracted without oracles
(for another threshold C2 logN).

This natural statement is surprisingly hard to prove. In [7] this conjecture was
proven for α = I(x1 : x2). The general case is still an open problem.

In this paper we prove a version of this conjecture for o(N) thresholds instead
of logarithmic ones.

Theorem 2. For every function f(N), f(N) = o(N) there exists a function
g(N) (also g(N) = o(N)) such that for every x̄ = 〈x1, x2〉 and y if I(y : x̄) ≤
f(N) and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ f(N) (i = 1, 2),

where N = K(x̄, y), (i.e., α bits of information can be extracted from x1, x2 for
the precision threshold f(N), assuming y is given as an oracle) then

∃z : K(z) ≥ α, K(z|xi) ≤ g(N) (i = 1, 2),

i.e., the same α bits of common information can be extracted without oracles
(for another threshold g(N)).

It is rather uncommon for algorithmic information theory that a natural state-
ment is proven with o(·)-precision but not up to logarithmic terms. Thus, the
challenge is to prove Theorem 2 for g(N) = O(f(N)), or at least to show that
Conjecture 1 is true.

In the rest of the paper we prove Theorem 2, and in Conclusion discuss some
variant of Conjecture 1 that is known to be true.

2 Preliminaries and Technical Tools

The main proof of this article is based on two technical tools: typization of
words with a given profile, and extracting the common information from bunches
of words.
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2.1 Complexity Profiles

For an n-tuple of words x̄ = 〈x1, . . . , xn〉 and a set of indexes V = {i1, . . . , ik} ⊆
{1, . . . , n} (i1 < i2 < . . . < ik) we denote by x̄V the tuple of words xj for j ∈ V :

x̄V = 〈xi1 , . . . , xik
〉.

Thus, K(x̄V ) := K(xi1 , . . . , xik
). We let K(x̄∅) := K(λ) (where λ is the empty

word). We use similar notations for conditional complexities: if V= {i1, . . . , ik} ⊆
{1, . . . , n} and W = {j1, . . . , jl} ⊆ {1, . . . , n} we denote

K(x̄V |x̄W ) := K(xi1 , . . . , xik
|xj1 , . . . , xjl

).

We also let K(x̄V |x̄∅) := K(x̄V |λ) (which is equal to K(x̄) up to an additive
constant).

Definition 1. We call by complexity profile K of an n-tuple x1, . . . , xn the
vector of integers that consists of all complexity quantities K(x̄V |x̄W ), where
V,W ⊆ {1, . . . , n}, V ∩W = ∅ and V �= ∅. Note that complexity profile implicitly
contains unconditional complexity quantities: if W = ∅ we have K(x̄V |x̄∅) =
K(x̄V )+O(1). We need to fix somehow the order of components in the complexity
profile. Let us suppose that all pairs (V,W ) are arranged in the lexicographical
order, i.e.,

K(x1, . . . , xn) = (K(x1),K(x1|x2), . . . ,K(x2|x1),K(x2|x3), . . .).

Similarly we define the conditional complexity profile of x1, . . . , xn conditional
to some y. It is the vector of all complexity quantities K(x̄V |x̄W , y):

K(x1, . . . , xn|y) = (K(x1|y),K(x1|x2, y), . . . ,K(x2|x1, y),K(x2|x3, y), . . .).

We say that a profile ᾱ is not greater than another profile β̄ (notation: ᾱ ≤ β̄)
if every component of the first vector is not greater than the corresponding
component of the second vector.

Denote by ρ(α, β) the l∞-norm of the difference between the vectors α and β.

2.2 Typization

The method if typization was proposed in [8,10,9].

Definition 2. Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 be tuples of words.
The typization of x̄ conditional to ȳ is the following set of n-tuples:

T (x̄|ȳ) := {x̄′ = 〈x′1, . . . , x′n〉 | K(x̄′, ȳ) ≤ K(x̄, ȳ)}.

Further, the k-strong typization of x̄ conditional to ȳ is the following set:

STk(x̄|ȳ) := T (x̄|ȳ) ∩ {x̄′ = 〈x′1, . . . , x′n〉 | ρ(K(x̄′, ȳ),K(x̄, ȳ)) ≤ k}.



A Random Oracle Does Not Help Extract the Mutual Information 531

Obviously there exists an algorithm that enumerates the list of all elements of
T (x̄|ȳ) given as an input the tuple ȳ and the profile K(x̄, ȳ).

The following Lemmas are proven in [8,9]:

Lemma 1. For every x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym)

log |T (x̄|ȳ)| = K(x̄|ȳ) + O(logN),

where N = K(x̄, ȳ). The constant in O(·)-notation depends on n and m.

Lemma 2. There exists a computable function C = C(n,m) such that for every
n-tuple x̄ = 〈x1, . . . , xn〉 and for every m-tuple ȳ = 〈y1, . . . , ym〉 it holds

|STC(n,m) log N (x̄|ȳ)| > 1
2
|T (x̄|ȳ)|,

where N = K(x̄, ȳ).

For brevity we denote by ST (x̄|ȳ) the set STC log N (x̄|ȳ), where C is the value
from Lemma 2.

2.3 Bunches

The following definition of a bunch was given in [12]:

Definition 3. A set X ⊂ {0, 1}∗ is called an (α, β, γ)-bunch if

1. |X | = 2α,
2. K(x1|x2) < β for every x1, x2 ∈ X,
3. K(x) < γ for all x ∈ X.

The usage of this definition is based on the following combinatorial lemma:

Lemma 3 ([12]). There exists an algorithm that takes (α, β, γ) as an input and
prints a list of standard (α, β, γ)-branches U0, . . . , Uq such that:

– for every (α, β, γ)-bunch U there exists a number i ≤ q such that |U ∩Ui| ≥
2β−ε, ε = 2(β − α) + O(1),

– q < 2β+γ−2α+O(1).

Here is a typical usage of Lemma 3: Assume we are given 2n words ai of com-
plexity 2n, and for every pair ai, aj it holds K(ai|aj) ≤ n. Then the given family
of words is an (n, n, 2n)-bunch. From the lemma it follows that some Us from
the list of ‘standard bunches’ (here s < 2n) contains at least Ω(2n) of the words
ai. It is not hard to show that for all given ai

K(ai|s) ≤ n + O(log n) and K(s|ai) = O(logn).

Thus, the ordinal number s of a standard bunch Us is an n-bit ‘kernel’ of the
given family of ai’s; it is a materialization of the mutual information of all these
words. See a more detailed discussion and corollaries of these arguments in [12].

We need to modify the definition of a bunch:
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Definition 4. A set X ⊂ {0, 1}∗ is called an (α, β, γ)-semi-bunch if

1. |X | = 2α,
2. for every x1 ∈ X, for the majority of all words x2 ∈ X it holds K(x1|x2) < β
3. K(x) < γ for all x ∈ X.

The following statement generalizes Lemma 3:

Lemma 4. There exists an algorithm that takes (α, β, γ) as an input and prints
a list of (α, β, γ)-semi-bunches U0, . . . , Uq such that:

– for every (α, β, γ)-semi-bunch U there exists a number i ≤ q such that |U ∩
Ui| ≥ 2β−ε, where ε = 2(β − α) + O(1),

– q < 2β+γ−2α+O(1).

The proof of Lemma 4 is almost the same as the proof of Lemma 3 in [12]. We
prove this lemma in Appendix. Let us call the semi-bunches U0, . . . , Uq from
Lemma 4 standard semi-bunches (i.e., for each triple of parameters α, β, γ we fix
a canonical list of standard semi-bunches).

3 Proof of Theorem 2

Let us define some notations and make several assumptions. W.l.o.g. we may
suppose that f(N) > logN , and f(N) does not decrease (f(N + 1) ≥ f(N) for
all N).

We chose g(N) and δ(N) that are not ‘too large’ and not ‘too small’, so that
the construction of the proof works. Let δ(N) = N/

√
log N

f(N) and

g(N) = C(3D
√

log N
f(N) · f(N) + δ(N))

(we will fix the constants C and D later). For brevity we will write just δ if the
value of N is clear from the context.

The main construction
Informal idea
The main trick of the proof is typization of y and w conditional to x̄. We take
the set of all ‘clones’ of the pair 〈y, w〉, which have approximately the same
complexity profile (conditional to x̄). The two cases are possible:

The good case: Assume this set of ‘clones’ is well consolidated in the sense that
most clones have large enough mutual information. Then we apply Lemma 4 and
extract from the class of clones some common kernel z. This word z contains
about α bits of information, and it is rather simple conditional to each of xi.
Thus we extract from the words xi about α bits of common information without
any oracle, and we are done.

The bad case: Assume the set of ‘clones’ is not well consolidated. Then there
exist pairs of different clones that have rather small mutual information. At this
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stage we cannot extract from xi’s their common information. Instead we change
the word y to some y1 such that conditional to y1 at least α1 bits of common
information (where α1 is greater than α) can be extracted from the words x1, x2.
Thus, we come back to the assumption of the theorem, but with a greater value
α1 instead of α and a new oracle y1 instead of y. The price for this modification
is some loss of precision: instead of the term f(N) we get some greater threshold
f1(N).

The technical question is how to get such a word y1. The answer is based on
the fact that the set of ‘clones’ is not well consolidated. If we take two of them
at random (denote them 〈y′, w′〉 and 〈y′′, w′′〉) then the pair 〈y′, y′′〉 can play
the role of y1. Indeed, with the new oracle we can extract from xi’s both w′ and
w′′, which make up α1 bits of common information (α1 > α; technically, we will
get α1 ≥ α + δ/2).

Then we iterate the trick above again and again, until at some stage we get a
well consolidated set of clones...

The formal arguments
We are given a w such that K(w|xi, y) ≤ f(N) (for i = 1, 2). W.l.o.g. we assume
that α = K(w|y) (if K(w|y) > α, we increase the value of α; this makes the
statement only stronger). Denote m = K(y). The aim is to construct z such that
K(z|xi) ≤ g(n) and K(z) ≥ α− g(N).

We take the strong typization of 〈y, w〉 conditional to x: A = ST (y, w|x̄).
From Lemma 1 it follows |A| = 2K(y,w|x̄)−O(f(N)). We have

K(y, w|x̄) = K(y|x̄) + K(w|y, x̄) + O(logN),

K(y|x̄) ≥ K(y) − f(N) (the mutual information between y and x̄ is negligible)
and K(w|y, x̄) ≤ f(N) (w can be easily extracted from any xi given y as an
oracle). Hence, |A| = 2m−O(f(N)). Note that for every 〈y′, w′〉 ∈ A it holds

K(y′, w′) = K(y′) + K(w′|y) + O(logN) = m + α + O(f(N)).

Two cases are possible:
Case 10: For every 〈y′, w′〉 ∈ A for the majority of 〈y′′, w′′〉 ∈ A

I(y′w′ : y′′w′′) ≥ α− δ.

This inequality implies that

K(y′w′|y′′w′′) = K(y′, w′) − I(y′w′ : y′′w′′) ≤ m + δ + O(f(N)).

In this case the set A is a semi-bunch with the parameters

(m−O(f(N)),m + δ + O(f(N)),m + α + O(f(N)).

We apply Lemma 4: it follows that there exists a standard semi-bunch Uj (with
the same parameters) such that

|A ∩ Uj| ≥ 2m−δ+O(f(N)),
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and j is an integer less than 2α+δ+O(f(N)). So Kolmogorov complexity of j is
not greater than α + δ + O(f(N)).

Further, the words xi (i = 1, 2) have two properties:

– for every pairs v̄ ∈ A ∩ Uj it holds K(xi|v̄) ≤ K(xi|y, w) (by the definition
of A = ST (y, w|x̄));

– for every pair v̄ ∈ A ∩ Uj it holds K(v̄|j) ≤ log |Uj | + O(logN) ≤ m (given
the number j, the elements of a standard semi-bunch Uj can be enumerated
algorithmically).

This means that xi belong to the set

X(i) = {x̂ | there exists at least 2m−δ+O(f(N)) words v̄
s.t. K(x̂|v̄) ≤ K(xi|y, w) ≤ K(xi) − α + f(N) and K(v̄|j) ≤ m}.

The set X(i) is enumerable given j and additional O(logN) bits of information
(we need these additional bits to specify the parameters of the semi-bunch).
Also we can bound the size of X(i). Indeed, for each fixed j there exist at most
2m+1 different tuple v̄ such that K(v̄|j) ≤ m; for every v̄ there exist at most
2K(xi)−α+f(N) different x̂ such that K(x̂|v̄) ≤ K(xi)−α+ f(N). Since for every
x̂ ∈ X(i) there is at least 2m−δ+O(f(N)) different v̄, we get

log |X(i)| ≤ log
2m · 2K(xi)−α+f(N)

2m−δ+O(f(N))
≤ K(xi) − α + δ + O(f(N)).

It follows that K(xi|j) ≤ K(xi) − α + δ + O(f(N)) (in a word, the mutual
information between j and xi is at least α − δ − O(f(N))). From symmetry of
the mutual information we have

K(j|xi) = K(xi|j) + K(j) −K(xi) + O(logN) ≤ 2δ + O(f(N)).

We set z = j. Since K(z) ≥ I(z : xi) ≥ α − δ − O(f(N)), we get K(z) ≥
α− g(N).

Thus for the function g(n) defined above it holds K(z) ≥ α − g(N) and
K(z|xi) ≤ g(N), and we are done.

Case 20. For some pair 〈y′, w′〉 ∈ A and for the majority of 〈y′′, w′′〉 ∈ A it
holds

I(y′w′ : y′′w′′) < α− δ.

This means that

K(y′y′′w′w′′) ≥ 2m + α + δ −O(logN) (1)

Since this inequality holds for the majority of pairs 〈y′′, w′′〉 ∈ A, we can choose
one of them such that 〈y′, w′〉 and 〈y′′, w′′〉 are independent conditional to x̄.
In particular, the words y′ and y′′ are also independent conditional to x̄ (i.e.,
I(y′ : y′′|x̄) = O(logN)). Further, for all x̄, y′, y′′ the following inequality holds:

I(y′y′′ : x̄) ≤ I(y′ : x̄) + I(y′′ : x̄) + I(y′ : y′′|x̄) + O(logN)
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(in fact this inequality is equivalent to the sum of two trivial ones:

K(y′y′′) ≤ K(y′) + K(y′′) + O(logN),
K(y′|x) + K(y′′|x) = K(y′y′′|x) + I(y′ : y′′|x) + O(logN),

which follow immediately from the Kolmogorov–Levin theorem [1]). For the given
words, the quantities I(y′ : x̄) and I(y′′ : x̄) are bounded by f(N) (x̄ and y are
independent), and I(y′ : y′′|x̄) = O(logN) 6 f(N). Thus, we have

I(y′y′′ : x̄) ≤ 3f(N) (2)

Also we have K(y′y′′) ≤ 2K(y) + 3f(N) ≤ 3N (a very rough bound).
From (1) and (2) it follows that for y1 = 〈y′, y′′〉 and w1 = 〈w′, w′′〉 it holds

K(w1|y1) ≥ α + δ − 3f(N) −O(logN) ≥ α + δ/2.

Thus, we have constructed a word y1 such that I(y1 : x̄) ≤ 3f(N) and

∃w1 : K(w1|y1) ≥ α + δ/2, K(w1|xi, y
1) ≤ 3f(N) (i = 1, 2).

We have got a new pair 〈y1, w1〉 instead of the original one 〈y, w〉. By the
construction, the word y1 is independent from x̄ (though the precision of ‘inde-
pendence’ becomes three times worse: I(y1 : x̄) ≤ 3f(N)). Given y1 as an oracle,
the word w1 is simple conditional to each xi (the precision of ‘simplicity’ also
becomes 3f(N)). Complexity of w1 conditional to y1 is not less than α + δ/2.
Thus, α+δ/2 bits of common information can be extracted from the words x1, x2

with the precision threshold 3f(N) given y1 as an oracle. Note that complexities
of the words w1, y1 are not greater than 3N .

Further we iterate the arguments above. We repeat the same procedure with
the pair w1, y1. Denote α1 = α + δ/2, m1 = K(y1), and f1(N) = 3f(N). We
take the strong typization of the pair 〈y1, w1〉 conditional to x̄:

A1 = ST (y1, w1|x̄).

Once again, we consider two cases.
Case 11. For every 〈y′, w′〉 ∈ A1 for the majority 〈y′′, w′′〉 ∈ A1

I(y′w′ : y′′w′′) ≥ α1 − δ.

In this case A1 is a semi-bunch with the following parameters:

(m1 −O(f1(N)),m1 + δ + O(f1(N)),m1 + α1 + O(f1(N)).

From Lemma 4 we get a number j such that for i = 1, 2

K(j|xi) ≤ 2δ + O(f1(N)), I(j : xi) ≥ α1 − δ + O(f1(N)).

Similarly to Case 10, we define z := j, and we are done.
Case 21. Assume that for some 〈y′, w′〉 ∈ A1 and for the majority of 〈y′′, w′〉 ∈

A1 it holds I(y′w′ : y′′w′′) < α1 − δ. Then there exists a pair 〈y2, w2〉 such that
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1. K(y2) = m2 < 3m1,
2. I(y2 : x̄) ≤ f2(N) := 3f1(N),
3. K(w2|y2, xi) ≤ f2(N),
4. K(w2|y2) = α2 ≥ α1 + δ/2.

Iterating these arguments again and again, at stage s we get some words ws, ys

such that

1. K(ys) = ms = 3ms−1,
2. I(ys : x̄) ≤ fs(N) := 3fs−1(N) = 3sf(N),
3. K(ws|ys, xi) ≤ fs(N),
4. K(ws|ys) = αs > αs−1 + δ/2 = α + sδ/2.

We are iterating the same construction for the ‘bad’ cases 21, 22, 23 . . . , 2j, . . .
until at some step smax we come to the ‘good’ case 1jmax .

This iteration process cannot be too long. Indeed, after s = D
√

log N
f(N) steps

of the iteration (for large enough D) we get a contradiction with the inequality

K(ws|ys) ≤ K(ws|x1, y
s) + K(ws|x2, y

s) + I(x1 : x2|ys) + O(logN)

(it is easy to check that this inequality holds for all words, see e.g., the proof of
inequality (6) in [8]): the value on the left-hand side of the inequality is at least
DN/2, and the right-hand side is only

2fs(N) + I(x1 : x2|ys) + O(logN) 6 N.

Remark: In all the arguments above we ignore additive terms of the order
O(logK(ys, ws)) because logK(ys, ws) 6 f(N). This bound is valid since K(ys),
K(ws) < N2 for s 6 logN .

Thus, after several iterations of Case 2s, for some smax < D
√

log N
f(N) we get

Case 1smax . We obtain some word z such that

K(z) ≥ α + smaxδ/2 −O(fsmax(N)) > α− g(N)

and

K(z|xi) ≤ 2δ + fsmax < 2δ + 3D
√

log N
f(N) f(N) < g(N) (i = 1, 2).

In other words, at least α bits of common information can be extracted from the
words xi for the precision threshold g(N).

4 Conclusion

We cannot prove Conjecture 1 in the general case. However we know that it is
true for stochastic pairs 〈x1, x2〉.
Definition 5. A tuple x̄ is called (α, β)-stochastic if there exists a finite set
A 7 x̄ such that (a) complexity of the list of all elements of A (in lexicographical
order) is at most α, and (b) K(x̄|[list of all elements of A]) ≥ log |A| − β (c.f.
the definition of (α, β)-stochastic sequences [4]).



A Random Oracle Does Not Help Extract the Mutual Information 537

In most applications of Kolmogorov complexity all tuples under consideration
are (α, β)-stochastic with logarithmic α, β. For stochastic tuples Conjecture 1 is
true:

Theorem 3. For every integer C1 > 0 there exists an integer C2 > 0 such that
for all y and all (C1 logN,C1 logN)-stochastic x̄ = 〈x1, x2〉 if I(y : x̄) ≤ C1 logN
and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ C1 logN (i = 1, 2), where N = K(x̄, y),

then ∃z : K(z) ≥ α, K(z|xi) ≤ C2 logN (i = 1, 2).

(We skip the proof due to the lack of space).
Thus, Conjecture 1 is still an open problem. Also there is another interesting

question: Does any counterpart of the results above hold for infinite oracles ?
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Appendix

Proof of Lemma 4: First of all, let us fix an algorithm that gets integers α, β, γ
as an input, and enumerates the list of all (α, β, γ)-semi-bunches. We call this
algorithm the complete enumerator. Though the number of semi-bunches (for
given parameters) is finite, the complete enumerator never stops. We cannot
decide effectively if it has already found all semi-bunches. We only guarantee
that each semi-bunch must be enumerated in the list, soon or late.

Now we describe another enumerator, which chooses some subsequence from
the complete enumeration of all semi-bunches as follows. The complete enumera-
tor prints semi-bunches one by one, and we need to select some of them. Assume
some semi-bunches U0, . . . , Us are already selected, and the complete enumer-
ator finds a new semi-bunch V . If |V ∩ Ui| < 2β−ε for all i = 0, . . . , s, where
ε = 2(β − α + 2), then we select this semi-bunch and let Us+1 = V . Otherwise
we skip V and wait for the next item from the complete enumeration.

Let U0, . . . , Uq be the list of all selected semi-bunches for given α, β, γ. From
the construction it is evident that for every semi-bunch V either V = Ui or at
least |V ∩ Ui| ≥ 2β−ε for some i ≤ q. Also it follows from the construction that
|Ui ∩Uj| < 2β−ε for every two different selected semi-bunches Ui, Uj . It remains
to prove that q is not too large.

In fact it is enough to prove that every x belongs to less than 2β−α+2 selected
semi-bunches. Indeed, there are less than 2γ words x such that K(x) < γ. If ev-
ery x belongs to at most 2β−α+2 selected semi-bunches, and every semi-bunch Ui

contains 2α words then the number of all selected semi-bunches is bounded by

2γ · 2β−α+2

2α
= 2β+γ−2α+2

Thus, it remains to bound the number of selected semi-bunches that contain one
fixed word x.

Assume that there exist N = 2β−α+2 different selected semi-bunches Ui that
contain the same word x. Denote

U ′i = Ui ∩ {y | K(y|x) < β}
for all these semi-bunches Ui. From the definition of a semi-bunch it follows that
U ′i contains at least 2α−1 elements.

On one hand, we have

‖
⋃

U ′i‖ ≤ ‖{y | K(y|x) < β}‖ < 2β

On the other hand,

‖
⋃

U ′i‖ ≥
∑

i

‖U ′i‖ −
∑

i<j

‖U ′i ∩ U ′j‖

As ‖U ′i‖ ≥ 2α−1 and ‖U ′i ∩ U ′j‖ ≤ ‖Ui ∩ Uj‖ ≤ 2β−ε, it follows that

‖
⋃

U ′i‖ ≥ N · 2α−1 −N2 · 2β−ε = 2β

and we get a contradiction. The lemma is proven.
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Abstract. We consider the problems Independent Set and Coloring in
uniform hypergraphs with n vertices. If NP �⊆ ZPP , there are no poly-
nomial worst case running time approximation algorithms with approx-
imation guarantee n1−ε for any ε > 0. We show that the problems are
easier to approximate in polynomial expected running time for random
hypergraphs. For d ≥ 2, we use the Hd(n, p) model of random d-uniform
hypergraphs on n vertices, choosing the edges independently with prob-
ability p. We give deterministic algorithms with polynomial expected
running time for random inputs from Hd(n, p), and approximation guar-
antee O(n1/2 · p−(d−3)/(2d−2)/(ln n)1/(d−1)).

1 Introduction

A hypergraph H = (V,E) consists of a finite set V of vertices (in the following, n
always denotes |V |) and a set E of edges, which are subsets of V . For an integer
d, H is d-uniform if all edges have cardinality d. Hence, a graph (without loops)
is a 2-uniform hypergraph. For uniform hypergraphs H = (V,E) as inputs, we
consider two problems which we define next. The problem Independent Set (IS)
is to compute a set I ⊆ V with maximum cardinality such that I is independent,
i. e., it spans no edges of E. The size of a largest independent set in H is its inde-
pendence number α(H). A coloring with k colors is a partition C = {C1, . . . , Ck}
of V into k color classes such that all classes are independent. For a coloring
C, we denote by big(C) its largest class (break ties arbitrarily). The problem
Coloring (COL) is to compute a coloring with as few as possible colors, the
smallest possible number of colors being H ’s chromatic number χ(H). Notice
that different generalizations of independence from graphs to hypergraphs have
been studied. Ours results in the so called weak chromatic number, where in a
coloring no edge may be monochromatic. For the strong chromatic number, the
vertices of every edge must have pairwise different colors.

Our problems are well-studied with respect to their computational complex-
ity. IS and COL are NP-hard for graphs as inputs (see Karp [7]). Since for
such problems it is unlikely that there are efficient, i. e., polynomial worst case
running time algorithms which always compute optimal solutions, one considers
approximation algorithms (for a survey, see e. g. Vazirani [11]). In this context,
for the problem IS, we let the approximation ratio of an independent set I in
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a hypergraph H be α(H)/|I|. For COL, a coloring with k colors has approxi-
mation ratio k/χ(H). Since optimal solutions have approximation ratio 1 and
larger approximation ratios correspond to worse solutions, we seek for solutions
with small approximation ratios. For a function f = f(n), we say that an ap-
proximation algorithm has approximation guarantee f(n) if for every uniform
hypergraph with n vertices, it outputs a solution with approximation ratio at
most f(n). For IS (see Feige [1]) and COL (see Halldórsson [4]) in graphs, the
best efficient approximation algorithms known have approximation guarantee
O(n · (log logn)2/(logn)3). For both problems, Hofmeister and Lefmann [6] pre-
sented efficient algorithms for d-uniform hypergraphs, d ≥ 2 fixed, with approx-
imation guarantee O(n/(log(d−1) n)2), where log(d−1) denotes the (d − 1)-fold
iterated logarithm (later, Halldórsson [3] showed that the approximation guar-
antee can be shown to be O(n/ logn) for all d ≥ 3). For fixed d ≥ 3, Krivelevich
and Sudakov [9] gave an efficient algorithm for COL in d-uniform hypergraphs
with approximation guarantee O(n · (log logn)2/(logn)2).

Unfortunately, it seems that no considerably better approximation guarantee
is achievable for our problems by efficient algorithms: For graphs as inputs,
H̊astad [5] showed for IS, and Feige and Kilian [2] for COL, that there is no
efficient algorithm with approximation guarantee n1−ε for any ε > 0, assuming
NP �⊆ ZPP. For fixed d ≥ 3, Hofmeister and Lefmann [6] extended these results
to IS and COL in d-uniform hypergraphs, and Krivelevich and Sudakov [9] did
the same for COL. A recent result of Zuckerman [12] shows that the above
inapproximability results for graphs also hold under the weaker assumption P �=
NP . Often, inapproximability results as above are due to “a small fraction of
difficult inputs”. Then, it may be possible to devise algorithms which perform
considerably better on the average (which in this paper means for random inputs)
than in the worst case. In the following, we use the Hd(n, p) model of random
hypergraphs. For an integer d ≥ 2, n ∈ IN, and a probability p ∈ [0, 1], the
model Hd(n, p) creates a random d-uniform hypergraph on n labeled vertices
by inserting every possible edge of cardinality d independently of the others
with probability p. This model extends the well-known G(n, p) model of random
graphs, and H2(n, p) = G(n, p). In [8], Krivelevich and Vu proved the following
interesting lemma regarding the independence number and a certain matrix of
a random graph from G(n, p).

Lemma 1. For a graph H = (V = {v1, . . . , vn}, E) and a probability p ∈ (0, 1),
define the n× n-matrix M(H, p) = (mij) by

mij :=
{

1 if {vi, vj} /∈ E
−(1 − p)/p otherwise ,

and let λ1(M) denote its largest eigenvalue. Then, for every graph H and ev-
ery probability p ∈ (0, 1), we have α(H) ≤ λ1(M(H, p)). Furthermore, for
p = p(n) = ω(n−1), p < 1, and a random graph H from G(n, p), it holds that
Pr[λ1(M(H, p)) ≥ 4 · (n/p)1/2] ≤ 2−np/8.

Given p and a random graph H from G(n, p), one can compute λ1(M(H, p)) in
polynomial time, since this can be done for real symmetric matrices in general
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(see e. g. Ralston [10]). Thus, one can efficiently compute an upper bound of
λ1(M(H, p)) on α(H), and Lemma 1 yields that this bound is less than 4·(n/p)1/2

with high probability (at least 1 − 2−np/8). Krivelevich and Vu used this tool to
devise deterministic algorithms for IS and COL with the following properties:
For random inputs from G(n, p), with p = p(n) in the range n−1/2+ε ≤ p ≤ 3/4
with ε > 0 fixed, the expected running time is polynomial and the approxi-
mation guarantee is O((np)1/2/ logn), which is considerably better than what
is possible in polynomial worst case running time due to the above inapproxi-
mability results. The general idea of the algorithms is as follows. Consider the
problem IS. Given a random graph H = (V,E) from G(n, p), one computes an
independent set I of H using a simple greedy algorithm and checks for a certain
function f1(n, p), whether |I| ≥ f1(n, p). If this holds, one continues and tries to
prove that α(H) ≤ f2(n, p) for another function f2(n, p). The basis of this step
is the technique using Lemma 1 explained above. In case both steps succeed, I is
output, achieving an approximation ratio of α(H)/|I| ≤ f2(n, p)/f1(n, p), where
the latter is the approximation guarantee one claims for the algorithm. In case
one of the steps fails, one performs an exhaustive search over all possible subsets
of V , finding an optimal solution in exponential time. A polynomial expected
running time is achieved since the probability that the exhaustive search with its
exponential running time is performed is exponentially small. In this paper, we
show how the algorithms of Krivelevich and Vu can be generalized to the case of
d-uniform hypergraphs, d ≥ 2. We present algorithms for IS and COL which for
fixed d ≥ 2 have approximation guarantee O(n1/2 · p−(d−3)/(2d−2)/(lnn)1/(d−1))
and polynomial expected running time for random inputs from Hd(n, p). For
a constant c(d) > 0, the edge probability p = p(n) must be in the range
c(d) · (lnn)/n1−1/d ≤ p ≤ 3/4, except that for COL in case d = 2, it is re-
quired that n−1/2+ε ≤ p ≤ 3/4 for fixed ε > 0. Throughout the rest of this
paper, we implicitly assume n large enough if necessary.

2 Results

We analyze a simple greedy algorithm Color(H = (V,E)) for hypergraphs H .
Later, it is used as a subroutine in our algorithms. Denote the vertices by V =
{v1, . . . , vn}. The algorithm computes a coloring C of the vertices of H with
classes Ci, greedily assigning to each vertex the smallest possible color.

Algorithm Color(H = (V, E))
1. Set C ← {C1 ← {v1}}.
2. For v = v2, . . . , vn: If for some class Ci ∈ C, Ci ∪ {v} is independent, set

Ci ← Ci ∪ {v} for the smallest such i. Otherwise, create a new class by
setting C ← C ∪ {C|C|+1 ← {v}}.

3. Output C.

Lemma 2. Fix an integer d ≥ 2 and 0 < ε ≤ 1. There is a constant c(d, ε) > 0
such that for probability p = p(n) with c(d, ε) · (lnn)d/nd−1−ε ≤ p ≤ 3/4, the
following holds. Let C be the coloring computed by algorithm Color(H) for a
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random hypergraph H = (V,E) from Hd(n, p). Then, Pr[|big(C)| ≤ ((d− 2)! · ε ·
(lnn)/(2 · p))1/(d−1)] ≤ e−n ln n.

Proof. For the constant c(d, ε), we set c(d, ε) := (d−2)! ·8d−1 ·ε/2. Furthermore,
we set s := ((d−2)!·ε·(lnn)/(2·p))1/(d−1) and t := n/(2s). Let E denote the event
“the size of big(C) is at most s”. Then, the lemma states that Pr[E ] ≤ e−n ln n.
If E happens, there are at least n/s > t color classes in the coloring C. In this
case, let C∗ := {C1, . . . , Ct}, i. e., C∗ contains the first t color classes of C. We
call a set D = {D1, . . . , Dt} of pairwise disjoint classes Di ⊆ V with |Di| ≤ s
for i = 1, . . . , t a partial vertex coloring. Furthermore, D is bad if every vertex
v ∈ V \ (D1 ∪ . . . ∪ Dt) is bad, i. e., for every class Di, i = 1, . . . , t, there is an
edge e ∈ E with v ∈ e and e \ {v} ⊆ Di.

Consider the set C∗ in case that E happens. All classes in C∗ are of size at
most s. Furthermore, every vertex v ∈ V \ (C1 ∪ . . .∪Ct) is not assigned to any
of the classes in C∗ by the algorithm. Thus, for every vertex v outside of C∗

and every class Ci ∈ C∗, adding v to Ci violates the independence of Ci, so for
every such vertex v and class Ci, there has to be an edge e ∈ E with v ∈ e and
e \ {v} ⊆ Ci. Thus, we can conclude that if E happens, then C∗ is a bad partial
vertex coloring, so Pr[E ] ≤ Pr[there is a bad partial vertex coloring].

We estimate the probability that a given partial vertex coloring D = {D1, . . . ,
Dt} is bad. The probability that a fixed vertex v ∈ V \ (D1 ∪ . . . ∪ Dt) is bad

equals
∏t

i=1

(
1 − (1 − p)(

|Di|
d−1)

)
, as (1 − p)(

|Di|
d−1) is the probability that there is

no edge e ∈ E with v ∈ e and e \ {v} ⊆ Di. Since for i = 1, . . . , t, it holds that
|Di| ≤ s, we obtain |V \ (D1 ∪ . . . ∪Dt)| ≥ n− t · s = n/2. With 1 + x ≤ ex for
x ∈ IR and

(
a
b

)
≤ ab/b! for a, b ∈ IN, we infer that

Pr[D is bad] =
∏

v∈V \(D1∪...∪Dt)

Pr[v is bad] ≤
(

t∏

i=1

(
1 − (1 − p)(

|Di|
d−1)

)
)n/2

≤ e
−
(
∑ t

i=1(1−p)(
|Di|
d−1)

)

·n/2

≤ e−(n/2)·
∑ t

i=1(1−p)|Di|d−1/((d−1)!)

≤ e−(tn/2)·(1−p)sd−1/((d−1)!)
≤ e−(tn/2)·n−ε/(d−1)

, (1)

again using |Di| ≤ s for i = 1, . . . , t. With 1 − x ≥ e−2x for 0 ≤ x ≤ 3/4 and
p ≤ 3/4, (1) follows from

(1 − p)sd−1/((d−1)!) ≥ n−ε/(d−1) ⇐ e−2psd−1/((d−1)!) ≥ n−ε/(d−1)

⇔ s ≤ ((d − 2)! · ε · (lnn)/(2 · p))1/(d−1),

which holds by choice of s. Now, let D̂ be the set of all partial vertex colorings.
Since there are at most

∑s
i=1

(
n
i

)
possible choices for each of the t color classes

of a partial vertex coloring D ∈ D̂, (1) yields

Pr[E ] ≤ Pr[∃D ∈ D̂: D is bad] ≤
∑

D∈D̂ Pr[D is bad]

≤
(∑s

i=1

(
n
i

))t · e−(tn/2)·n−ε/(d−1) ≤
(

n
s+1

)t · e−(tn/2)·n−ε/(d−1)
, (2)
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where we used that
∑s

i=1

(
n
i

)
≤
(

n
s+1

)
for s+1 ≤ n/3, where the latter holds since

p ≥ c(d, ε)·(lnn)d/nd−1−ε. Now, observe that
(

n
s+1

)t ≤ n(s+1)·t = n(s+1)·n/(2s) ≤
nn = en ln n. Furthermore, by choice of p, we have (tn/2) · n−ε/(d−1) ≥ 2 ·
n lnn. Thus, with (2), we finally get that Pr[|big(C)| ≤ s] = Pr[E ] ≤

(
n

s+1

)t ·
e−(tn/2)·n−ε/(d−1) ≤ en ln n−2·n lnn = e−n ln n as claimed. �

Lemma 3. Fix an integer d ≥ 2 and 0 < ε < 1/2. Let p = p(n) be a probabil-
ity with 2(d−1)/2 · (lnn)(d+1)/2/n(d−1)/2−ε/((d−2)!) ≤ p ≤ 3/4, and let C be the
coloring computed by algorithm Color(H) for a random hypergraph H = (V,E)
from Hd(n, p). Then, for the number |C| of classes in C, it holds that Pr[|C| ≥
2n · (p/(ε · lnn))1/(d−1)] < e−n lnn.

Proof. Let k0 := n · (p/(ε · lnn))1/(d−1). We prove that Pr[|C| ≥ 2k0] < e−n ln n.
Denote the vertices by V = {v1, . . . , vn}. For (k − 1)(d− 1) + 1 ≤ j ≤ n, let Bk

j

denote the event that vertex vj gets color k, i. e., it is assigned to class Ck (a
vertex vj with j ≤ (k − 1)(d− 1) cannot get color k, since there are not enough
sufficiently large color classes at the time of coloring vj), and let Ak

j denote the
event that for coloring the first j vertices, the algorithm uses at least k colors.
Finally, let Ak be the event |C| ≥ k. We estimate the conditional probability
Pr[Ak+1|Ak]. Since Ak+1 =

⋃n
j=k(d−1)+1 Bk+1

j , we infer that Pr[Ak+1|Ak] ≤
∑n

j=k(d−1)+1 Pr[Bk+1
j |Ak]. Furthermore, since Bk+1

j ⊆ Ak
j−1 ⊆ Ak, it follows

that Pr[Bk+1
j |Ak] ≤ Pr[Bk+1

j |Ak
j−1], and hence,

Pr[Ak+1|Ak] ≤
∑n

j=k(d−1)+1 Pr[Bk+1
j |Ak

j−1] . (3)

We estimate Pr[Bk+1
j |Ak

j−1] for a fixed vertex vj . The vertex vj gets color k + 1
only if for all classes Ci, 1 ≤ i ≤ k, which exist at the time of coloring vj since
Ak

j−1 occurs, there is an edge connecting vj with d− 1 vertices in Ci. Therefore,

Pr[Bk+1
j |Ak

j−1] ≤
∏k

i=1(1 − (1 − p)(
|Ci|
d−1)) ≤ e−

∑k
i=1(1−p)(

|Ci|
d−1)

≤ e−
∑k

i=1(1−p)|Ci|d−1/((d−1)!) ≤ e−k·(1−p)(n/k)d−1/((d−1)!)
(4)

≤ e−k·e−2p·(n/k)d−1/((d−1)!)
. (5)

In (4), we used that for s :=
∑k

i=1 |Ci|, it follows with s ≤ n that
∑k

i=1(1 −
p)|Ci|d−1/((d−1)!) ≥ k · (1 − p)(s/k)d−1/((d−1)!) ≥ k · (1 − p)(n/k)d−1/((d−1)!). To
get (5), we used that 1−x ≥ e−2x for 0 ≤ x ≤ 3/4 and p ≤ 3/4. In the following,
we assume k ≥ k0. With k0 = n · (p/(ε · lnn))1/(d−1), (3), and (5) we infer

Pr[Ak+1|Ak] ≤
∑n

j=k(d−1)+1 Pr[Bk+1
j |Ak

j−1] ≤ ne−k·e−2p·(n/k)d−1/((d−1)!)

≤ ne−k0·e−2p·(n/k0)d−1/((d−1)!)
= eln n−k0·n−2ε/((d−1)!) ≤ e−k0·n−2ε/((d−1)!)/2 . (6)

In (6), we used that since p ≥ 2(d−1)/2 ·(lnn)(d+1)/2/n(d−1)/2−ε/((d−2)!), it follows
that k0 · n−2ε/((d−1)!) = n · (p/(ε · lnn))1/(d−1) · n−2ε/((d−1)!) ≥ (21/2/ε1/(d−1)) ·
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n1/2−ε/((d−1)!) · (lnn)1/2. Furthermore, since ε < 1/2 and d ≥ 2, it holds that
n1/2−ε/((d−1)!) = nΩ(1) = ω(lnn), yielding k0 · n−2ε/((d−1)!) ≥ 2 lnn. Now,
with (6) we get

Pr
[
|C| ≥ 2n · (p/(ε · lnn))1/(d−1)

]
= Pr[A2k0 ] ≤

∏2k0−1
k=k0

Pr[Ak+1|Ak]
≤ e−k2

0·n−2ε/((d−1)!)/2 = e−n2·(p/(ε·ln n))2/(d−1)·n−2ε/((d−1)!)/2

≤ e−n2·(2·(ln n)/n1−2ε/((d−1)!)/ε2/(d−1))·n−2ε/((d−1)!)/2

= e−n2−1+2ε/((d−1)!)−2ε/((d−1)!) ·(lnn)/ε2/(d−1)
= e−n·(ln n)/ε2/(d−1)

< e−n lnn . �

2.1 Algorithms for Independent Set

Lemma 2 immediately yields the following approximation algorithm for IS with
approximation guarantee O(n·(p/ lnn)1/(d−1)) and polynomial expected running
time for random inputs from Hd(n, p). Notice that in addition to the random
hypergraph H from Hd(n, p), it is given the edge probability p used to create H ,
and a parameter ε ∈ (0, 1] which is used to adapt the algorithm to different lower
bounds for the possible edge probabilities p. All following algorithms perform a
sequence of steps. If a step outputs a solution, it also terminates. If it does not
(but could have done so in general), we say that the step fails.

Algorithm IndepSet1(H = (V, E), p, ε)
1. C ← Color(H). If |big(C)| > ((d−2)! ·ε ·(lnn)/(2 ·p))1/(d−1), output big(C).
2. Test all subsets of V for independence and output a largest independent

subset found.

Theorem 1. Fix an integer d ≥ 2 and 0 < ε ≤ 1. There is a constant c(d, ε) > 0
such that for probability p = p(n) with c(d, ε) · (lnn)d/nd−1−ε ≤ p ≤ 3/4, algo-
rithm IndepSet1(H, p, ε) has approximation guarantee O(n · (p/ lnn)1/(d−1)) and
polynomial expected running time for random inputs H = (V,E) from Hd(n, p).

Proof. We start with the expected running time of the algorithm, which is the
sum of the expected running times of the algorithm’s steps. A step’s expected
running time is the product of its effort, i. e., the time spent if it is executed,
and the probability that it is executed. Step 1 has polynomial effort and hence
also polynomial expected running time, since algorithm Color has polynomial
worst case running time: For n−1 vertices v, it checks for at most n color classes
Ci whether there is an edge among the O(nd) edges of H which consists of v
and d − 1 vertices in Ci. Thus, Color performs a total of O(nd+2) polynomial
time tests. Step 2’s effort is O(q(n) · 2n) for a polynomial q(n) (in the following,
q(n) always denotes a suitably chosen polynomial), since it tests 2n subsets of
V , each of which can be tested in polynomial time. Since it is executed only
if |big(C)| ≤ ((d − 2)! · ε · (lnn)/(2 · p))1/(d−1), Lemma 2 yields an execution
probability of at most e−n lnn ≤ 2−n, and thus its expected running time is
O(q(n) · 2n · 2−n) = O(q(n)), which is polynomial. Lemma 2 is applicable, since
its interval of legal edge probabilities p coincides with the one in our theorem.

We turn to the approximation guarantee of the algorithm and show that each
step achieves the approximation ratio claimed in the theorem. Step 2 achieves an
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approximation ratio of 1, since it computes an optimal solution. If Step 1 outputs
big(C), we have |big(C)| > ((d−2)!·ε·(ln n)/(2·p))1/(d−1) = Ω(((lnn)/p)1/(d−1)).
Trivially, α(H) ≤ n. Therefore, the approximation ratio achieved in Step 1 is
α(H)/|big(C)| = n/Ω(((lnn)/p)1/(d−1)) = O(n · (p/ lnn)1/(d−1)). �

In the following, we improve the approximation guarantee of algorithm IndepSet1
by adding some steps which try to upper bound α(H) by O((n/p)1/2). Then,
we can use O((n/p)1/2) instead of the trivial upper bound n on α(H) in the
analysis. By choice of p in the following, (n/p)1/2 = o(n), so this improves the
approximation guarantee. The resulting algorithm IndepSet2 is very similar to
the corresponding one in [8]. We start with some definitions and lemmas. For
an integer d ≥ 2, a d-uniform hypergraph H = (V,E), and a set S ⊆ V with
|S| = d−2, the projection graph of H on S is the graph Gp(H,S) := (V \S,E′),
such that {u,w} ∈ E′ iff (S ∪ {u,w}) ∈ E.

Lemma 4. Let d ≥ 2 be a fixed integer. For every d-uniform hypergraph H =
(V,E), we have α(H) ≤ maxS⊆V, |S|=d−2α(Gp(H,S)) + d− 2.

Proof. First, we prove that, given H , for every subset S ⊆ V with |S| = d−2, the
size of a largest independent set I ⊆ V such that S ⊆ I is at most α(Gp(H,S))+
d−2. To prove this, fix S and let I be such a set. We show that I\S is independent
in the projection graph Gp(H,S), yielding α(Gp(H,S)) ≥ |I \S|, or equivalently,
|I| ≤ α(Gp(H,S))+d−2 as claimed. For contradiction, assume that in Gp(H,S),
there is an edge {u,w} with u,w ∈ I \ S. Then, by definition of Gp(H,S), H
contains the edge (S ∪ {u,w}) ⊆ I, a contradiction to the independence of I.
Now, the lemma is an easy consequence of the above observation. �

For a hypergraph H = (V,E) and S ⊆ V , let the non-neighborhood of S be
N(S) := {v ∈ V \ S: there is no edge ({v} ∪ T ) in E with T ⊆ S}, i. e., the non-
neighborhood of S is the set of all vertices v outside of S such that there is no
edge in E connecting v and some vertices in S.

Lemma 5. For every hypergraph H = (V,E) and all a, b ∈ IN, the following
holds: If for all sets S ⊆ V with |S| = a, we have |N(S)| ≤ b, then α(H) ≤ a+b.

Proof. Fix a hypergraph H and a, b ∈ IN, and assume that α(H) > a+b. Choose
I ⊆ V independent with |I| > a + b, and S ⊆ I with |S| = a. Clearly, for each
vertex v ∈ I \ S, there is no edge connecting v and some vertices in S, since I
is independent. Thus, |N(S)| ≥ |I \ S| > (a + b) − a = b. Therefore, not for all
subsets S with |S| = a, we have |N(S)| ≤ b. �

Algorithm IndepSet2(H = (V, E), p)
1. C ← Color(H). If |big(C)| ≤ ((d− 2)! · (lnn)/(6 · p))1/(d−1), go to Step 5.
2. Set m ← maxS⊆V, |S|=d−2 λ1(M(Gp(H,S), p)) by computing the

(
n

d−2

)
nec-

essary eigenvalues. If m ≤ 4 · (n/p)1/2, output big(C).
3. For s′ := (d − 1) · (4 · (lnn)/p)1/(d−1), compute |N(S′)| for all sets S′ ⊆ V

with |S′| = s′. If |N(S′)| ≤ (n/p)1/2 for all the subsets S′, output big(C).
4. Check all subsets S′′ ⊆ V with |S′′| = 2 · (n/p)1/2. If none of them is

independent, output big(C).
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5. Test all subsets of V for independence and output a largest independent
subset found.

Theorem 2. Let d ≥ 2 be a fixed integer. There is a constant c(d) > 0 such
that for probability p = p(n) with c(d) · (lnn)/n1−1/d ≤ p ≤ 3/4, algorithm
IndepSet2(H, p) achieves an approximation guarantee of O(n1/2 ·p−(d−3)/(2d−2)/
(lnn)1/(d−1)) and has polynomial expected running time for random inputs H =
(V,E) from Hd(n, p).

Proof. We start with the approximation guarantee. Step 5 achieves approxi-
mation ratio 1. If big(C) is output in any other step, its size is |big(C)| >
((d − 2)! · (lnn)/(6 · p))1/(d−1) = Ω(((lnn)/p)1/(d−1)). In case Step 2 outputs
big(C), maxS⊆V, |S|=d−2 λ1(M(Gp(H,S), p)) ≤ 4 · (n/p)1/2. Lemmas 1 and 4
yield that α(H) ≤ 4 · (n/p)1/2 + d − 2 = O((n/p)1/2). Thus, if the algo-
rithm outputs big(C) in Step 2, its approximation ratio is α(H)/|big(C)| =
O((n/p)1/2/((lnn)/p)1/(d−1)) = O(n1/2 · p−(d−3)/(2d−2)/(lnn)1/(d−1)). If the al-
gorithm outputs big(C) in Step 3, all subsets S′ ⊆ V with |S′| = (d − 1) ·
(4 · (lnn)/p)1/(d−1) have a non-neighborhood with at most (n/p)1/2 vertices.
Lemma 5 yields that in this case, α(H) ≤ (d−1)·(4·(ln n)/p)1/(d−1)+(n/p)1/2 =
O((n/p)1/2), the same upper bound on α(H) as in Step 2, so again approxima-
tion ratio O(n1/2 ·p−(d−3)/(2d−2)/(lnn)1/(d−1)) follows. Finally, if Step 4 outputs
big(C), clearly α(H) ≤ (n/p)1/2. Again, the same approximation ratio follows.

It remains to prove that the expected running time of the algorithm is poly-
nomial. Steps 1 and 2 have polynomial effort. Step 3 is executed only if among
the

(
n

d−2

)
sets S considered in Step 2, there is one with λ1(M(Gp(H,S), p)) >

4 · (n/p)1/2. Since in H , the edges of cardinality d are chosen independently with
probability p, the graphs Gp(H,S) are random graphs according to H2(n− (d−
2), p) = G(n− (d− 2), p). Thus, Lemma 1 yields that Pr[λ1(M(Gp(H,S), p)) >
4 · (n/p)1/2] ≤ 2−(n−(d−2))p/8 for a fixed set S. Therefore, Step 3’s execution
probability is at most

Pr[∃S ⊆ V, |S| = d− 2:λ1(M(Gp(H,S), p)) > 4 · (n/p)1/2]
≤
(

n
d−2

)
· 2−(n−(d−2))p/8 ≤ nd−2 · 2−np/9 .

(7)

The effort of Step 3 is O(q(n) ·
(

n
s′

)
), since it tests

(
n
s′

)
subsets, each of which is

tested in time O(q(n)). Since
(

n
s′

)
≤ ns′

= 2s′·log n, its expected running time is

O(q(n) ·
(

n
s′

)
· nd−2 · 2−np/9) = O(q(n) · nd−2 · 2s′·log n−np/9)

= O(q(n) · nd−2 · 2(d−1)·(4·(lnn)/p)1/(d−1)·log n−np/9) . (8)

For the constant c(d) in the theorem, we set c(d) := (9(d−1)·41/(d−1)/ ln 2)1−1/d.
Then, by choice of p, (d− 1) · (4 · (lnn)/p)1/(d−1) · logn−np/9 ≤ 0 in (8), which
yields that the expected running time of Step 3 is O(q(n) · nd−2), and hence
polynomial. We turn to Step 4’s execution probability. For a fixed set S′ of
size s′ considered by Step 3, we have Pr[|N(S′)| > (n/p)1/2] ≤

(
n

(n/p)1/2

)
· (1 −

p)(
s′

d−1)·(n/p)1/2
, since the number of potential non-neighborhoods with a size of
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(n/p)1/2 is
(

n
(n/p)1/2

)
, and the probability that there is no edge connecting any

of the (n/p)1/2 vertices of such a set with some d − 1 vertices in the set S′ is

(1 − p)(
s′

d−1)·(n/p)1/2
. Since there are

(
n
s′

)
subsets of size s′, with 1 − x ≤ e−x

for x ∈ IR and
(

s′

d−1

)
≥ (s′/(d − 1))d−1, we conclude that the probability that

Step 4 is executed since Step 3 fails is at most Pr[∃S′ ⊆ V, |S′| = s′: |N(S′)| >
(n/p)1/2] ≤

(
n
s′

)
·
(

n
(n/p)1/2

)
· (1 − p)(

s′
d−1)·(n/p)1/2

, which is at most

es′·lnn+(n/p)1/2·lnn−p·(s′/(d−1))d−1·(n/p)1/2
. (9)

Observe that by choice of s′ = (d− 1) · (4 · (lnn)/p)1/(d−1), we have p · (s′/(d−
1))d−1 · (n/p)1/2 = 4 · (lnn) · (n/p)1/2. Furthermore, s′ = o((n/p)1/2) (for d ≥ 3,
this is trivial, and for d = 2, s′ = o((n/p)1/2) ⇔ p = ω((lnn)2/n), which holds by
choice of p ≥ c(d) · (lnn)/n1−1/d = Ω((lnn)/n1/2)). Now, (9) yields that Step 4
is executed with probability at most es′·ln n+(n/p)1/2·ln n−p·(s′/(d−1))d−1·(n/p)1/2

=
eo((n/p)1/2)·lnn−3·(n/p)1/2·ln n, which is at most e−(lnn)·2·(n/p)1/2

. With Step 4’s
effort of O(q(n) ·

(
n

2·(n/p)1/2

)
) = O(q(n) · e(lnn)·2·(n/p)1/2

), an expected running

time of O(q(n) · e(lnn)·2·(n/p)1/2 · e−(ln n)·2·(n/p)1/2
) = O(q(n)) follows for Step 4,

which is polynomial. Its failure probability is

Pr[∃S′′ ⊆ V, |S′′| = 2 · (n/p)1/2:S′′ is independent]

≤
(

n
2·(n/p)1/2

)
· (1 − p)(

2·(n/p)1/2

d ) ≤ e(ln n)·2·(n/p)1/2−p·(2·(n/p)1/2/d)d

,

since the probability that a subset of size 2 · (n/p)1/2 is independent is (1 −
p)(

2·(n/p)1/2

d ). It can be easily seen that for all d ≥ 2, we have p·(2·(n/p)1/2/d)d ≥
n. Furthermore, by choice of p ≥ c(d) · (lnn)/n1−1/d, it follows that (lnn) ·
2 · (n/p)1/2 ≤ 2 · ((lnn)/c(d))1/2 · n1−1/(2d) = o(n), so (lnn) · 2 · (n/p)1/2 =
o(p · (2 · (n/p)1/2/d)d), and hence

e(ln n)·2·(n/p)1/2−p·(2·(n/p)1/2/d)d

= e−(1−o(1))·p·(2·(n/p)1/2/d)d

(10)
≤ e−(ln 2)·n = 2−n . (11)

Therefore, the probability that Step 4 fails, and consequently Step 5 is executed,
is at most 2−n. The only other way that Step 5 can be executed is that Step 1
finds that |big(C)| ≤ ((d − 2)! · (lnn)/(6 · p))1/(d−1). Using ε = 1/3, Lemma 2
yields that the probability of this event is at most e−n ln n ≤ 2−n. The lemma is
applicable, since p ∈ [c(d) · (lnn)/n1−1/d, 3/4] and d ≥ 2 in our theorem implies
that p is in the lemma’s legal range [c(d, ε) · (lnn)d/nd−1−ε, 3/4] of edge prob-
abilities. Since both events leading to the execution of Step 5 have probability
at most 2−n, and Step 5’s effort is O(q(n) · 2n), the expected running time of
Step 5 is O(q(n) ·2n ·2−n) = O(q(n)). Altogether, we conclude that the expected
running time of algorithm IndepSet2 is polynomial. �

2.2 Algorithms for Coloring

Analogously to Lemma 2, Lemma 3 yields the following algorithm for COL.
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Algorithm Coloring1(H = (V, E), p, ε)
1. C ← Color(H). If |C| < 2n · (p/(ε · lnn))1/(d−1), output C.
2. For all possible partitions C′ of V into nonempty subsets, test whether C′

is a coloring. Output a coloring with the smallest number of colors found.

Theorem 3. Fix an integer d ≥ 2 and 0 < ε < 1/2. Then, for probability
p = p(n) with 2(d−1)/2 · (lnn)(d+1)/2/n(d−1)/2−ε/((d−2)!) ≤ p ≤ 3/4, algorithm
Coloring1(H, p, ε) has approximation guarantee O(n · (p/ lnn)1/(d−1)) and poly-
nomial expected running time for random inputs H = (V,E) from Hd(n, p).

We omit the simple proof of this theorem, which is analogous to the one of
Theorem 1. Again, we can improve the algorithm’s approximation guarantee
for the range of edge probabilities p in Theorem 2. A difference is the case
d = 2, where the range of p is slightly smaller. The reason for this is that
instead of Lemma 2, we use Lemma 3 in the analysis, which in case d = 2
has a larger lower bound on p of p ≥ 21/2 · (lnn)3/2/n1/2−ε. Hence, the lower
bound p ≥ c(2) · (lnn)/n1/2 of Theorem 2 does not suffice anymore. Notice
Step 4a, which is introduced for d = 2 to have execution probability O(e−n ln n)
for Step 5.

Algorithm Coloring2(H = (V, E), p, ε)
1. C ← Color(H). If |C| ≥ 2n · (p/(ε · lnn))1/(d−1), go to Step 5.
2. Set m ← maxS⊆V, |S|=d−2 λ1(M(Gp(H,S), p)) by computing the

(
n

d−2

)
nec-

essary eigenvalues. If m ≤ 4 · (n/p)1/2, output C.
3. For s′ := (d − 1) · (4 · (lnn)/p)1/(d−1), compute |N(S′)| for all sets S′ ⊆ V

with |S′| = s′. If |N(S′)| ≤ (n/p)1/2 for all the subsets S′, output C.
4. Check all subsets S′′ ⊆ V with |S′′| = 2 · (n/p)1/2. If none of them is

independent, output C.
4a. If d = 2: For all sets D = {D1, . . . , D8 ln n} of 8 lnn pairwise disjoint classes

Di ⊆ V with size |Di| = (n/p)1/2, check whether all classes in D are inde-
pendent. If for no D, all classes are independent, output C.

5. For all possible partitions C′ of V into nonempty subsets, test whether C′

is a coloring. Output a coloring with the smallest number of colors found.

Theorem 4. Let d ≥ 3 be a fixed integer. There is a constant c(d) > 0 such
that for probability p = p(n) with c(d) · (lnn)/n1−1/d ≤ p ≤ 3/4, algorithm
Coloring2(H, p, ε) with ε := 1/(2d) achieves an approximation guarantee of
O(n1/2 · p−(d−3)/(2d−2)/(lnn)1/(d−1)) and polynomial expected running time for
random inputs H = (V,E) from Hd(n, p).

Proof. We start with the expected running time of the algorithm. Since Steps 1–4
are essentially the same as in algorithm IndepSet2 and hence have the same ef-
forts and execution probabilities, a polynomial expected running time follows
for these steps from the proof of Theorem 2. Next, we upper bound the exe-
cution probability of Step 5, which is only executed if Step 4 fails or if Step 1
finds that |C| ≥ 2n · (p/(ε · lnn))1/(d−1). Equation (10) upper bounds the failure



Approximating Independent Set and COL in Random Uniform Hypergraphs 549

probability of Step 4 by e−(1−o(1))·p·(2·(n/p)1/2/d)d

. Thus, for d ≥ 3, Step 4 fails
with probability at most

e−(1−o(1))·p·(2·(n/p)1/2/d)d

= e−Ω(p·(n/p)d/2) = e−Ω(nd/2) ≤ e−n ln n . (12)

Lemma 3 yields that the probability that Step 1 finds that |C| ≥ 2n · (p/(ε ·
lnn))1/(d−1) is less than e−n ln n. Together with (12), we conclude that Step 5 is
executed with probability O(e−n ln n). The step has an effort of O(q(n) · en ln n),
since it checks at most nn = en ln n partitions, each of which is tested in time
O(q(n)). Therefore, the expected running time of Step 5 is O(q(n) · en ln n ·
e−n ln n) = O(q(n)), which is polynomial. It remains to show that p is legal
with respect to Lemma 3, i. e., p ≥ 2(d−1)/2 · (lnn)(d+1)/2/n(d−1)/2−ε/((d−2)!).
This holds, since p ≥ c(d) · (lnn)/n1−1/d, ε = 1/(2d), and d ≥ 3, and hence
p ≥ c(d)·(ln n)/n1−1/d ≥ 1/n1−1/d ≥ 2(d−1)/2·(lnn)(d+1)/2/n1−1/(2d) ≥ 2(d−1)/2·
(lnn)(d+1)/2/n(d−1)/2−ε/((d−2)!). We turn to the approximation guarantee of the
algorithm. First, observe that for every hypergraph H , it holds that χ(H) ≥
n/α(H), since in every coloring, all color classes are independent and there-
fore of size at most α(H). The proof of Theorem 2 shows that if one of the
Steps 2–4 outputs C, it holds that α(H) = O((n/p)1/2). Thus, in this case
we have χ(H) = Ω(n/(n/p)1/2) = Ω((np)1/2). Furthermore, if C is output in
Steps 2–4, we have |C| < 2n · (p/(ε · lnn))1/(d−1) = O(n · (p/ lnn)1/(d−1)).
It follows that the approximation ratio |C|/χ(H) achieved by Steps 2–4 is
O(n · (p/ lnn)1/(d−1)/(np)1/2) = O(n1/2 · p−(d−3)/(2d−2)/(lnn)1/(d−1)). Finally,
Step 5 outputs an optimal solution achieving approximation ratio 1. �

Theorem 5. Fix d = 2 and 0 < ε < 1/2. For probability p = p(n) with
21/2 ·(lnn)3/2/n1/2−ε ≤ p ≤ 3/4, algorithm Coloring2(H, p, ε) has approximation
guarantee O((np)1/2/ lnn) and polynomial expected running time for random in-
puts H = (V,E) from Hd(n, p).

The proof is basically the same as for Theorem 4. We sketch additional details. To
begin, we show that like in Steps 2–4, χ(H) = Ω((np)1/2) if Step 4a outputs C.
If the step outputs C, there is no set of 8 lnn pairwise disjoint and independent
classes Di ⊆ V of size (n/p)1/2. Thus, in the optimal coloring C∗, there are less
than 8 lnn color classes of size at least (n/p)1/2 (large classes), and furthermore,
the largest color class has a size of less than (8 lnn) · (n/p)1/2. It follows that the
large classes together contain less than 64·(lnn)2 ·(n/p)1/2 vertices, which is o(n)
since p ≥ 21/2 · (lnn)3/2/n1/2−ε. We conclude that n− o(n) ≥ n/2 vertices must
be contained in color classes smaller than (n/p)1/2 in C∗, yielding more than
(n/2)/(n/p)1/2 = Ω((np)1/2) such color classes in C∗, so χ(H) = Ω((np)1/2).
The proof of Theorem 4 yields a polynomial expected running time for Steps 1–4.
Step 4a tests at most

(
n

(n/p)1/2

)8 ln n sets, each in time O(q(n)). Its execution
probability is at most 2−n due to (11). By choice of p, a polynomial expected
running time follows for this step. If it fails, a set of 8 lnn pairwise disjoint,
independent classes of size (n/p)1/2 exists. With the number of tested sets given

above and the probability of (1 − p)(
(n/p)1/2

2 ) that a class is independent, it
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follows that the probability that Step 5 is reached from Step 4a is at most
(

n
(n/p)1/2

)8 ln n · (1 − p)(8 ln n)·((n/p)1/2

2 ) ≤ e−n ln n.

3 Conclusions

We have shown, how the algorithms for IS and COL of Krivelevich and Vu in [8]
can be generalized to not only handle random graphs from G(n, p) but random
d-uniform hypergraphs from Hd(n, p), d ≥ 2, as inputs. Also, we achieved some
improvements for d = 2: Firstly, we improved the lower bound on p of the
algorithm for IS in [8] from p ≥ 1/n1/2−ε, ε > 0 fixed, to p ≥ c · (lnn)/n1/2,
c > 0 constant, an improvement of factor Θ(nε/ lnn). This is achieved since
Lemma 2’s lower bound on p is smaller than the one of a corresponding Lemma
in [8] by the above factor. Secondly, for d = 2, Lemma 3 states that Pr[|C| ≥
2np/(ε · lnn)] < e−n ln n. Notice that the upper bound e−n ln n improves on the
larger bound 2−2np/ ln n of a corresponding lemma in [8]. Due to this, algorithm
Coloring2 is a bit simpler than the corresponding one in [8], i. e., two steps are
missing for d ≥ 3 and one for d = 2.
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Abstract. In MaxSat, we ask for an assignment which satisfies the
maximum number of clauses for a boolean formula in CNF. We present

an algorithm yielding a run time upper bound of O∗(2
K

6.2158 ) for Max-

2-Sat (each clause contains at most 2 literals), where K is the number
of clauses. The run time has been achieved by using heuristic priorities
on the choice of the variable on which we branch. The implementation of
these heuristic priorities is rather simple, though they have a significant
effect on the run time. Also the analysis uses a non-standard measure.

1 Introduction

Our Problem. MaxSat is an optimization version of the well-known deci-
sion problem SAT: given a boolean formula in CNF, we ask for an assignment
which satisfies the maximum number of clauses. The applications for MaxSat

range over such fields as combinatorial optimization, artificial intelligence and
database-systems as mentioned in [5]. We put our focus on Max-2-Sat, where
every formula is constrained to have at most two literals per clause, to which
problems as Maximum Cut and Maximum Independent Set are reducible.
Therefore Max-2-Sat is NP-complete.

Results So Far. The best published upper bound of O∗(2 K
5.88 ) has been achieved

by Kulikov and Kutzov in [6] consuming only polynomial space. They build up
their algorithm on the one of Kojevnikov and Kulikov [5] who were the first
who used a non-standard measure yielding a run time of O∗(2 K

5.5 ). If we mea-
sure the complexity in the number n of variables the current fastest algorithm
is the one of R. Williams [10] having run time O∗(2 ω

3 n), where ω < 2.376 is the
matrix-multiplication exponent. A drawback of this algorithm is its requirement
of exponential space. Scott and Sorkin [9] presented a O∗(21− 1

d+1 n)-algorithm
consuming polynomial space, where d is the average degree of the variable graph.
Max-2-Sat has also been studied with respect to approximation [3,7] and pa-
rameterized algorithms [1,2].

Our Results. The major result we present is an algorithm solving Max-2-Sat

in time O∗(2 K
6.2158 ). Basically it is a refinement of the algorithm in [5], which

also in turn builds up on the results of [1]. The run time improvement is twofold.
In [5] an upper bound of O∗(1.1225n) is obtained if the variable graph is cubic.
Here n denotes the number of variables. We could improve this to O∗(1.11199n)

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 551–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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by a more accurate analysis. Secondly, in the case where the maximum degree
of the variable graph is four, we choose a variable for branching according to
some heuristic priorities. These two improvements already give a run time of
O∗(2 K

6.1489 ). Moreover we like to point out that these heuristic priorities can be
implemented such that they only consume O(n) time. The authors of [6] improve
the algorithm of [5] by having a new branching strategy when the variable graph
has maximum degree five. Now combining our improvements with the ones from
[6] gives the claimed run time.

Basic Definitions and Terminology. Let V (F ) be the set of variables of a
given boolean formula F . For v ∈ V (F ) by v̄ we denote the negation of v. If v is
set, then it will be assigned the values true or false. By the word literal, we refer
to a variable or its negation. A clause is a disjunction of literals. We consider
formulas in conjunctive normal form (CNF), that is a conjunction of clauses. We
allow only 1- and 2-clauses, i.e., clauses with at most two literals. The weight of
v, written #2(v), refers to the number of 2-clauses in which v or v̄ occurs. For a
set U ⊆ V (F ) we define #2(U) :=

∑
u∈U #2(u). If v or v̄ occurs in some clause

C we write v ∈ C. A set A of literals is called assignment if for every v ∈ A it
holds that v̄ �∈ A. Loosely speaking if l ∈ A for a literal l, than l receives the
value true. We allow the formula to contain truth-clauses of the form {T } that
are always satisfied. Furthermore, we consider a Max-2-Sat instance as multiset
of clauses. A x ∈ V (F ) is a neighbor of v, written x ∈ N(v), if they occur in
a common 2-clause. Let N [v] := N(v) ∪ {v}. The variable graph Gvar(V,E) is
defined as follows: V = V (F ) and E = {{u, v} | u, v ∈ V (F ), u ∈ N(v)}. Observe
that Gvar is a undirected multigraph and that it neglects clauses of size one. We
will not distinguish between the words “variable” and “vertex”. Every variable
in a formula corresponds to a vertex in Gvar and vice versa. By writing F [v], we
mean the formula which emerges from F by setting v to true the following way:
First, substitute all clauses containing v by {T }, then delete all occurrences of
v̄ from any clause and finally delete all empty clauses from F . F [v̄] is defined
analogously: we set x to false.

2 Reduction Rules and Basic Observations

We state well-known reduction rules from previous work [1,5]:

RR-1. Replace any 2-clause C with l, l̄ ∈ C, for a literal l, with {T }.
RR-2. If for two clauses C,D and a literal l we have C \ {l} = D \ {l̄}, then

substitute C and D by C \ {l} and {T }.
RR-3. A literal l occurring only positively (negatively, resp.) is set to true

(false).
RR-4. If l̄ does not occur in more 2-clauses than l in 1-clauses, such that l is

a literal, then set l to true.
RR-5. Let x1 and x2 be two variables, such that x1 appears at most once in

another clause without x2. In this case, we call x2 the companion of x1. RR-3
or RR-4 will set x1 in F [x2] to α and in F [x̄2] to β, where α, β ∈ {true, false}.
Depending on α and β, the following actions will be carried out:
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If α = false, β = false, set x1 to false.
If α = true, β = true, set x1 to true.
If α = true, β = false, substitute every occurrence of x1 by x2.
If α = false, β = true, substitute every occurrence of x1 by x̄2.

From now on we will only consider reduced formulas F . This means that to a
given formula F we apply the following procedure: RR-i is always applied before
RR-i+1, each reduction rule is carried out exhaustively and after
RR-5 we start again with RR-1 if the formula changed. A formula for which
this procedure does not apply will be called reduced. Concerning the reduction
rules we have the following lemma [5]:

Lemma 1. 1. If #2(v) = 1, then v will be set.
2. For any u ∈ V (F ) in a reduced formula with #2(u) = 3 we have |N(v)| = 3.
3. If the variables a and x are neighbors and #2(a) = 3, then in at least one of

the formulas F [x] and F [x̄], the reduction rules set a.

We need some auxiliary notions: A sequence of distinct vertices a1, v1, . . . , vj , a2

(j ≥ 0) is called lasso if #2(vi) = 2 for 1 ≤ i ≤ j, a1 = a2, #2(a1) ≥ 3 and
Gvar[a1, v1, . . . , vj , a2] is a cycle. A quasi-lasso is a lasso with the difference that
#2(vj) = 3. A lasso is called 3-lasso (resp. 4-lasso) if #2(a1) = 3 (#2(a1) = 4,
resp.). 3-quasi-lasso and 4-quasi-lasso are defined analogously.

Lemma 2. 1. Let v, u, z ∈ V (F ) be pairwise distinct with #2(v) = 3 such that
there are clauses C1, C2, C3 with u, v ∈ C1, C2 and v, z ∈ C3. Then either v
is set or the two common edges of u and v will be contracted in Gvar.

2. The reduction rules delete the variables v1, . . . , vj of a lasso (quasi-lasso,
resp.) and the weight of a1 drops by at least two (one, resp.).

Proof. 1. If v is not set it will be substituted by u or ū due to RR-5. The
emerging clauses C1, C2 will be reduced either by RR-1 or become 1-clauses.
Also we have an edge between u and z in Gvar as now u, z ∈ C3.

2. We give the proof by induction on j. In the lasso case for j = 0, there
must be a 2-clause C = {a1, ā1}, which will be deleted by RR-1, so that
the initial step is shown. So now j > 0. Then on any vi, 1 ≤ i ≤ j, we
can apply RR-5 with any neighbor as companion, so, w.l.o.g., it is ap-
plied to v1 with a1 as companion. RR-5 either sets v1, then we are done
with Lemma 1.1, or v1 will be substituted by a1. By applying RR-1, this
leads to the lasso a1, v2, . . . , vj , a2 in Gvar and the claim follows by induc-
tion. In the quasi-lasso case for j = 0, the arguments from above hold. For
j = 1, item 1. is sufficient. For j > 1, the induction step from above also
applies here. �

3 The Algorithm

We set di(F ) := |{x ∈ V (F ) | #2(x) = i}|. To measure the run time, we choose
a non standard measure approach with the measure γ defined as follows:

γ(F ) =
∑n

i=3 ωi · di(F ) with ω3 = 0.94165, ω4 = 1.80315, ωi = i
2 for i ≥ 5.
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Clearly, γ(F ) never exceeds the number of clauses K in the corresponding
formula. So, by showing an upper bound of cγ(F ) we can infer an upper bound
cK . We set Δ3 := ω3, Δi := ωi − ωi−1 for i ≥ 4. Concerning the ωi’s we
have Δi ≥ Δi+1 for i ≥ 3 and ω4 ≥ 2 · Δ4. The algorithm presented in this
paper proceeds as follows: After applying the above-mentioned reduction rules
exhaustively, it will branch on a variable v. That is, we will reduce the problem to
the two formulas F [v] and F [v̄]. In each of the two branches, we must determine
by how much the original formula F will be reduced in terms of γ(F ). Reduction
in γ(F ) can be due to branching on a variable or to the subsequent application of
reduction rules. By an (a1, . . . , a)-branch, we mean that in the i-th branch γ(F )
is reduced by at least ai. The i-th component of a branch refers to the search tree
evolving from the i-th branch (i.e., ai). By writing ({a1}i1 , . . . , {a}i�)-branch
we mean a (a1

1, . . . , a
i1
1 , . . . , a

1
 , . . . , a

i�

 )-branch where as
j = aj with 1 ≤ s ≤ ij .

A (a1, . . . , a)-branch dominates a (b1, . . . , b)-branch if ai ≥ bi for 1 ≤ i ≤ �.

Heuristic Priorities. If the maximum degree of Gvar is four, variables v with
#2(v) = 4 will be called limited if there is another variable u appearing with
v in two 2-clauses (i.e., we have two edges between v and u in Gvar). We call
such u, v a limited pair. Note that also u is limited and that at this point by
RR-5 no two weight 4 variables can appear in more than two clauses together.
We call u1, . . . u a limited sequence if � ≥ 3 and ui, ui+1 with 1 ≤ i ≤ �− 1 are
limited pairs. A limited cycle is a limited sequence with u1 = u. To obtain an
asymptotically fast algorithmic behavior we introduce heuristic priorities (HP),
concerning the choice of the variable used for branching.

1. Choose any v with #2(v) ≥ 7.
2. Choose any v with #2(v) = 6, preferably with #2(N(v)) < 36.
3. Choose any v with #2(v) = 5, preferably with #2(N(v)) < 25.
4. Choose any unlimited v with #2(v) = 4 and a limited neighbor.
5. Choose the vertex u1 in a limited sequence or cycle.
6. Pick a limited pair u1, u2. Let c ∈ N(u1) \ {u2} with s(c) := |(N(c) ∩

(N(u1)) \ {c, u1})| maximal. If s(c) > 1, then choose the unique vertex in
N(u1) \ {u2, c}, else choose u1.

7. From Y := {v ∈ V (F ) | #2(v) = 4, ∃z ∈ N(v) : #2(z) = 3 ∧N(z) �⊆ N(v)}
choose v, preferably such that #2(N(v)) is maximal.

8. Choose any v, with #2(v) = 4, preferably with #2(N(v)) < 16.
9. Choose any v, with #2(v) = 3, such that there is a ∈ N(v), which forms a

triangle a, b, c and b, c �∈ N [v] (we say v has pending triangle a, b, c).
10. Choose any v, such that we have a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch.

From now on v denotes the variable picked according to HP.
Key Ideas. The main idea is to have some priorities on the choice of a weight
4 variable such that the branching behavior is beneficial. For example limited
variables tend to be unstable in the following sense: If their weight is decreased
due to branching they will be reduced due to Lemma 2.1. This means we can
get an amount of ω4 instead of Δ4. In a graph lacking limited vertices we want
a variable v with a weight 3 neighbor u such that N(u) �⊆ N(v). In the branch
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Algorithm 1. An algorithm for solving Max-2-Sat

Procedure: SolMax2Sat(F )

1: Apply SolMax2Sat on every component of Gvar separately.
2: Apply the reduction rules exhaustively to F .
3: Search exhaustively on any sub-formula being a component of at most 9 variables.
4: if F = {T }. . .{T } then
5: return |F |
6: else
7: Choose a variable v according to HP.
8: return max{SolMax2SAT(F [v]), SolMax2Sat(F [v̄])}.

on v where u is set (Lemma 1.3) we can gain some extra reduction (at least
Δ4) from N(u) \N(v). If we fail to find a variable according to priorities 5-7 we
show that either v as four weight 4 variables and that the graph is 4-regular, or
otherwise we have two distinct situations which can be handled quite efficiently.
Further, the most critical branches are when we have to choose v such that all
variables in N [v] have weight ωi. Then the reduction in γ(F ) is minimal (i.e.,
ωi + i ·Δi). We analyze this regular case together with its immediate preceding
branch. Thereby we prove a better branching behavior compared to a separate
analysis. In [9] similar ideas were used for Max-2-CSP. We are now ready to
present our algorithm, see Alg. 1. Reaching step 7 we can rely on the fact that
Gvar has at least 10 vertices. We call this the small component property (scp)
which is crucial for some cases of the analysis.

4 The Analysis

In this section we investigate the cases when we branch on vertices picked ac-
cording to items 1-10 of HP. For each item we will derive a branching vector
which upper bounds this case in terms of K. In the rest of this section we show:

Theorem 1. Algorithm 1 has a run time of O∗(2 K
6.1489 ).

4.1 Gvar Has Minimum Degree Four

Priority 1. If #2(v) ≥ 7, we first obtain a reduction of ω7 because v will be
deleted. Secondly, we get an amount of at least 7 · Δ7 as the weights of v’s
neighbors each drops by at least one and we have Δi ≥ Δi+1. Thus, γ is reduced
by at least 7 in either of the two branches (i.e., we have a ({7}2)-branch).
Regular Branches. We call a branch h-regular if we branch on a variable v such
that for all u ∈ N [v] we have #2(u) = h. We will handle those in a separate part.
During our considerations a 4-regular branch will have exactly four neighbors as
otherwise this situation is handled by priority 4 of HP. The following subsections
handle non-regular branches, which means that we can find a u ∈ N(v) with
#2(u) < #2(v). Note that we already handled h-regular branches for h ≥ 7.
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Priorities 2 and 3. Choosing v ∈ V (F ) with #2(v) = 6 there is a u ∈ N(v)
with #2(u) ≤ 5 due to non-regularity. Then by deletion of v, there is a reduction
by ω6 and another of at least 5Δ6 + Δ5, resulting from the dropping weights
of the neighbors. Especially, the weight of u must drop by at least Δ5. This
leads to a ({6.19685}2)-branch. If #2(v) = 5, the same observations as in the
last choice lead to a reduction of at least ω5 + 4 · Δ5 + Δ4. Thus we have a
({6.1489}2)-branch.

Priority 4. Let u1 ∈ N(v) be the limited variable. u1 forms a limited pair with
some u2. After branching on v, the variable u1 has weight at most 3. At this
point, u1 appears only with one other variable z in a 2-clause. Then, RR-5 is
applicable to u1 with u2 as its companion. According to Lemma 2.1, either u1 is
set or the two edges of u1 and u2 will be contracted. In the first case, we receive
a total reduction of at least 3ω4 +2Δ4, in the second of at least 2ω4 +4Δ4. Thus,
a proper estimate is a ({2ω4 + 4Δ4}2)-branch, i.e., a ({7.0523}2)-branch.

Priority 5. If u1, . . . , u is a limited cycle, then � ≥ 10 due to scp. By RR-5
this yields a (10w4, 10w4)-branch. If u1, . . . , u is a limited sequence, then due to
priority 4 the neighbors of u1, u lying outside the sequence have weight 3. By
RR-5 the branch on u1 is a ({3ω4 + 2ω3}2)-branch, i.e, a ({7.29275}2)-branch.

Priority 6. At this point every limited variable u1 has two neighboring variables
y, z with weight 3 and a limited neighbor u2 with the same properties (due to
priorities 4 and 5). We now examine the local structures arising from this fact
and by the values of |N(y) \N(u1)| and |N(z) \N(u1)|.

1. We rule out |N(y) \N(u1)| = |N(z) \N(u1)| = 0 due to scp.
2. |N(y) \N(u1)| = 0, |N(z) \N(u1)| = 1: Then, N(y) = {u2, z, u1}, N(u2) =

{u1, y, s1} and N(z) = {u1, y, s2}, see Figure 1(a). In this case we branch on
z as s(y) > 0 and s(y) > s(z). Then due to RR-5 y and u1 disappear; either
by being set or replaced. Thereafter due to RR-1 and Lemma 1.1 u2 will
be set. Additionally we get an amount of min{2Δ4, ω4, ω3 +Δ4} from s1, s2.
This depends on whether s1 �= s2 or s1 = s2 and in the second case on the
weight of s1. If #2(s1) = 3 we get a reduction of ω3 + Δ4 due to setting s1.
In total we have at least a ({2ω4 + 2ω3 + 2Δ4}2)-branch. Analogous is the
case |N(y) \N(u1)| = 1, |N(z) \N(u1)| = 0.

3. |N(y) \N(u1)| = 1, |N(z) \N(u1)| = 1: Here two possibilities occur:
(a) N(y) = {u1, u2, s1}, N(z) = {u1, u2, s2}, N(u2) = {u1, y, z}, see Fig-
ure 1(b): Then w.l.o.g., we branch on z. Similarly to item 2. we obtain a
({2ω4 + 2ω3 + 2Δ4}2)-branch.
(b) N(y) = {u1, z, s1}, N(z) = {u1, y, s2}, see Figure 1(c): W.l.o.g., we
branch on z. Basically we get a total reduction of ω4 + 2ω3 + 2Δ4. That is
2ω3 from y and z, ω4 from u1 and 2Δ4 from s2 and u2. In the branch where
y is set (Lemma 1.3) we additionally get Δ4 from s1 and ω4 from u2 as it will
disappear (Lemma 1.2). This is a (2ω4 +2ω3 +2Δ4, ω4 +2ω3 +2Δ4)-branch.

4. |N(y) \ N(u1)| = 1, |N(z) \ N(u1)| = 2, see Figure 1(d): We branch on
z yielding a ({2ω4 + 2ω3 + 2Δ4}2)-branch. Analogous is the case |N(y) \
N(u1)| = 2, |N(z) \N(u1)| = 1.
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5. |N(y)\N(u1)| = 2, |N(z)\N(u1)| = 2: In this case we chose u1 for branching.
Essentially we get a reduction of 2ω4+2ω3. In the branch setting z we receive
an extra amount of 2Δ4 from z’s two neighbors outside N(u1). Hence we
have a (2ω4 + 2ω3 + 2Δ4, 2ω4 + 2ω3)-branch.

We have at least a (2ω4 + 2ω3 + 2Δ4, ω4 + 2ω3 + 2Δ4)-branch, i.e., a (7.2126,
5.40945)-branch.

Priority 7. We need further auxiliary notions: A 3-path (4-path, resp.) for an
unlimited weight 4 vertex v is a sequence of vertices u0u1 . . . ulul+1 (u0u1 . . . ul,
resp.) forming a path, such that 1 ≤ l ≤ 4 (2 ≤ l ≤ 4, resp.), ui ∈ N(v) for
1 ≤ i ≤ l, #2(ui) = 3 for 1 ≤ i ≤ l (#2(ui) = 3 for 1 ≤ i ≤ l − 1,#2(ul) = 4,
resp.) and u0, ul+1 �∈ N(v) (u0 �∈ N(v), resp.). Due to the absence of limited
vertices, every vertex v, chosen due to priority 7, must have a 3- or 4-path.

3-path. If u0 �= ul+1 we basically get a reduction of ω4 + lω3 + (4 − l)Δ4.
In the branch where u1 is set, u2 . . . ul will be also set due to Lemma 1.1.
Therefore, we gain an extra amount of at least 2Δ4 from u0 and ul+1, leading
to a (ω4 + l · ω3 + (6 − l)Δ4, ω4 + l · ω3 + (4 − l)Δ4)-branch.

If u0 = ul+1 then in F [v] and in F [v̄], u0u1 . . . ulul+1 is a lasso. So by
Lemma 2.2, u1, . . . , ul are deleted and the weight of u0 drops by 2. If #2(u0)
= 4 this yields a reduction of l · ω3 + ω4. If #2(u0) = 3 the reduction is
(l + 1) · ω3 but then u0 is set. It is not hard to see that this yields a bonus
reduction of Δ4. Thus, we have a ({ω4 + (l + 1) · ω3 + (5 − l)Δ4}2)-branch.

4-path. We get an amount of ω4 + (l − 1)ω3 + (5 − l)Δ4 by deleting v. In the
branch where u1 is set we get a bonus of Δ4 from u0. Further ul will be
deleted completely. Hence we have a (2ω4 + (l − 1)ω3 + (5 − l)Δ4, ω4 + (l −
1)ω3 + (5 − l)Δ4)-branch.

The first branch is worst for l = 1, the second and third for l = 2 (as l = 1
is impossible). Thus, we have ({7.2126}2)-branch for the second and a (7.0523,
5.3293)-branch for the first and third case which is sharp.
Priority 8. If we have chosen a variable v with #2(v) = 4 according to priority
8, such that #2(N(v)) < 16, then we have two distinct situations. By branching
on v, we get at least a ({2ω4 + 2ω3 + 2Δ4}2)-branch.

The 4- 5- and 6-regular case. The part of the algorithm when we branch on
variables of weight h �= 4 will be called h-phase. Branching according to priorities
4-8 is the 4-phase, according to priorities 9 and 10 the 3-phase.

u1 u2

s1
s2

y

z

(a)

u1 u2

s1

s2

y

z

(b)

u1 u2

s1

s2

y

z

(c)

u1 u2

s1

s2

y

z

(d)

v

ab

c

d

f
yz

(e)

v

a

b

c

y

z

(f)

Fig. 1.



558 D. Raible and H. Fernau

In the following we have 4 ≤ h ≤ 6. Any h-regular branch which was preceded
by a branch from the (h + 1)-phase can be neglected. This situation can only
occur once on each path from the root to a leaf in the search tree. Hence, the run
time is only affected by a constant multiple. We now classify h-regular branches:
An internal h-regular branch is a h-regular branch such that another h-regular
branch immediately follows in the search tree in at least one component. A final
h-regular branch is a h-regular branch such that no h-regular branch immediately
succeeds in either of the components. When we are forced to do an h-regular
branch, then according to HP the whole graph must be h-regular at this point.

Observation 2. If a branch is followed by a h-regular branch in one component,
say in F [v], then in F [v] any u ∈ V (F ) with #2(u) < h will be reduced.

Due to Observation 2 every vertex in N(v) must be completely deleted in F [v].

Proposition 1. O∗(1.1088K) upper bounds any internal h-regular branch.

Proof. By Observation 2 for h = 4 this yields at least a (5ω4, ω4 + 4Δ4)-branch
as v must have 4 different weight 4 neighbors due to HP. If both components are
followed by an h-regular branch we get a total reduction of 5ω4 in both cases.
The same way we can analyze internal 5- and 6-regular branches. This yields
(3ω5, ω5 + 5Δ5)-, ({3ω5}2)-, (3ω6, ω6 + 6Δ6)- and ({3ω6}2)-branches as for any
v ∈ V (F ) we have |N(v)| ≥ 2. �

We now analyze a final h-regular ({b}2)-branch with its preceding (a1, a2)-
branch. The final h-regular branch might follow in the first, the second or
both components of the (a1, a2)-branch. So, the combined analysis would be
a ({a1 + b}2, a2), a (a1, {a2 + b}2)- and a ({a1 + b}2, {a2 + b}2)-branch.

Proposition 2. Any final h-regular branch (h ∈ {5, 6}) considered together with
its preceding branch can be upper bounded by O∗(1.1172K).

Proof. We will apply a combined analysis for both branches. Due to Observa-
tion 2 N(v) will be deleted in the corresponding component of the preceding
branch. The least amount we can get by deleting N(v) is ω5 + ω4 in case h = 5
and ω6 +ω4 in case h = 6. Hence, we get four different branches: A ({3ω5 +ω4 +
5Δ5}2, ω5 + 5Δ)-, a ({3ω6 +ω4 + 6Δ6}2, ω6 + 6Δ)-, a ({3ω5 +ω4 + 5Δ5}4)- and
a ({3ω6 + ω4 + 6Δ6}4)-branch, respectively. �

Proposition 3. Any final 4-regular branch considered with its preceding branch
can be upper bounded by O∗(2 K

6.1489 ) ≈ O∗(1.11933K).

Proof. We must analyze a final 4-regular branch together with any possible
predecessor. These are all branches derived from priorities 4-8.
Internal 4-regular branch. The two corresponding branches are a ({6ω4 +
4Δ4}2, ω4 + 4Δ4)-branch and a ({6ω4 + 4Δ4}4)-branch.
Priorities 4, 5 and 8 are all dominated by a ({2ω4+4Δ4}2)-branch. Analyzing
these cases together with a succeeding final 4-regular branch gives a ({3ω4 +
8Δ4}2, 2ω4 + 4Δ4)-branch and a ({3ω4 + 8Δ4}4)-branch.
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Priority 7. Let o be the number of weight 4 vertices from N(v) and the 3- or
4-path, respectively. If in one component a final 4-regular branch follows then
the worst case is when o = 0 as any weight 4 vertex would be deleted completely
and ω4 > ω3. On the other hand if there is a component without an immediate
4-regular branch succeeding then the worst case appears when o is maximal as
ω3 ≥ Δ4. So in the analysis we will consider for each case the particular worst
case even though both together never appear.
3-path with u0 �= ul+1: First if there is a weight 4 variable in N(u) we have at
least the following branches: a) ({3ω4 + 5ω3 + 4Δ4}2, ω4 + ω3 + 3Δ4), b) (ω4 +
ω3 +5Δ4, {3ω4 +3ω3 +4Δ4}2) and c) ({3ω4 +5ω3 +4Δ4}2, {3ω4 +3ω3 +4Δ4}2).
Any of those is upper bounded by O∗(2 K

6.1489 ). Now suppose for all y ∈ N(v) we
have #2(y) = 3. Table 1 captures the derived branches for certain combinations.
Here we will also consider the weights of u0 and ul. Any entry is upper bounded

Table 1.

#2(u0), #2(ul+1) left component right component both components

#2(u0) = 3 ({2ω4 + 6ω3 + 4Δ4}2, (ω4 + 6ω3, ({2ω4 + 6ω3 + 4Δ4}2,
#2(ul+1) = 3 ω4 + 4ω3) {2ω4 + 6ω3 + 4Δ4}2) {2ω4 + 6ω3 + 4Δ4}2)

#2(u0) = 3 ({3ω4 + 5ω3 + 4Δ4}2, (ω4 + 5ω3 + Δ4, ({3ω4 + 5ω3 + 4Δ4}2,
#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 5ω3 + 4Δ4}2) {2ω4 + 5ω3 + 4Δ4}2)

#2(u0) = 4 ({4ω4 + 4ω3 + 4Δ4}2, (ω4 + 4ω3 + 2Δ4, ({4ω4 + 4ω3 + 4Δ4}2,
#2(ul+1) = 4 , ω4 + 4ω3) {2ω4 + 4ω3 + 4Δ4}2) {2ω4 + 4ω3 + 4Δ4}2)

by O∗(2 K
6.1489 ) except α) ({2ω4 + 6ω3 + 4Δ4}2, ω4 + 4ω3) the left upper entry

and β) (ω4 + 4ω3 + 2Δ4, {2ω4 + 4ω3 + 4Δ4}2) the middle entry of the last row.
For U ⊆ V (F ) we define E3(U) := {{u, v} | u ∈ U,#2(u) = 3, v �∈ U}.

Claim. 1. Suppose for all y ∈ Q := N(v)∪{u0, ul+1} we have #2(y) = 3. Then
there must be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y′) = 3.

2. Suppose for all y ∈ N(v) we have #2(y) = 3 and #2(u0) = #2(ul+1) = 4.
Then there must be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y′) = 3.

Proof. 1. Assume the contrary. For any 1 ≤ l ≤ 4 we have |E3(Q ∪ {v})| ≤ 10.
Due to scp there is a weight 4 vertex r adjacent to some vertex in Q. Observe
that we must have r ∈ Y as either there is u ∈ N(v) with u ∈ N(r) and v �∈
N(r) or w.l.o.g. u0 ∈ N(r) but u1 �∈ N(r). Hence, r has 4 weight 3 neighbors
from Q due to the choice of v. Hence we must have |E3(Q∪{v, r})| ≤ 6. Using
the same arguments again we find some r′ ∈ Y with |E3(Q∪ {v, r, r′})| ≤ 2.
Again, due to scp we find a r′′ ∈ Y with 4 weight 3 neighbors where at most
two are from Q, a contradiction.

2. Assume the contrary. Observe that u0, ul+1 ∈ Y and due to the choice of v
both have 4 weight 3 neighbors which must be from N(v). From |E3(N [v])| ≤
8 follows that |E3(N [v] ∪ {u0, ul+1})| = 0 which contradicts scp. �

Due to the last claim and Observation 2 we have a ({2ω4+7ω3+4Δ4}2, ω4+4ω3)-
branch for case α) and a (ω4 + 4ω3 + 2Δ4, {2ω4 + 5ω3 + 4Δ4}2)-branch for case
β). Both are upper bounded by O∗(2 K

6.1489 ). �
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4.2 The Cubic Case

Priority 9. Observe that when we have arrived at this point, the graph Gvar

must be 3-regular and each variable has three different neighbors, due to Gvar

being reduced and due to Lemma 1.2. Also, any 3-regular graph has an even
number of vertices, because we have 3n = 2m. Thus any branching must be of
the form (2i · ω3, 2j · ω3) for some 1 ≤ i, j. Also, branching on any variable will
at least result in a (4ω3, 4ω3)-branch (see Lemma 1.2). Note that any u ∈ N(v)
will be either set in F [v] or in F [v̄], due to Lemma 1.3.

Lemma 3. Let v have a pending triangle a, b, c and N(v) = {a, p, q}. Then by
branching on v, we have an (8ω3, 6ω3)-branch.

Proof. In F [v] and F [v̄], the variables a, b, c form a 3-quasi-lasso. Hence, due
to Lemma 2.2 w.l.o.g., only b remains in the reduced formula with #2(b) = 2
(Lemma 2 2). Also, in both branches, q and p are of weight two and therefore
deleted. Note that N({q, p}) ∪ {q, p} ⊆ {v, a, b, c, q, p}, contradicts scp. There-
fore, w.l.o.g., there is a variable z ∈ N(q) such that z �∈ {v, a, b, c, q, p}. So, in
the branch where q is set, also z will be deleted. Thus, seven variables will be
deleted. �

Priority 10. From now on, due to HP, Gvar is triangle-free and cubic. We show
that if we are forced to choose a vertex v to which none of the priorities 1-9 fits,
we can choose v such that we obtain either a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch.

Lemma 4. Let v be a vertex in Gvar and N(v) = {a, b, c}. Suppose that, w.l.o.g.,
in F [v] a, b and in F [v̄] c will be set. Then we have a (6ω3, 8ω3)-branch.

Proof. If |(N(a)∩N(b))\{v}| ≤ 1, then by setting a and b in F [v], five variables
will be reduced. Together with v and c, this is a total of seven. If |(N(a)∩N(b))\
{v}| = 2, then situation 1(e) must occur (note the absence of triangles). If z = y
then also z �= c due to scp. Then in F [v] due to Lemma 1.1 v, a, b, c, d, f, z will be
deleted. If z �= y then v, a, b, d, f, z, y will be deleted. Together with F [v̄] where
c is set, we have a (6ω3, 8ω3)-branch. �
Lemma 5. If for any v ∈ V (F ) all its neighbors are set in one branch (say, in
F [v]), we can perform a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch due to cubicity.

Proof. If |N(a, b, c) \ {v}| ≥ 5, then in F [v], 9 variables are deleted, so that we
have a (4ω3, 10ω3)-branch. Otherwise, either one of the two following situations
must occur: a) There is a variable y �= v, such that N(y) = {a, b, c}, see Fig-
ure 1(f). Then branch on b. In F [b̄], v, y, a, c, z will disappear (due to RR-5 and
Lemma 2.1). In F [b], due to setting z, additionally a neighbor f �∈ {a, b, c, v, y}
of z will be deleted due to scp. This is a total of seven variables.
b) There are variables p, q, such that |N(p) ∩ {a, b, c}| = |N(q) ∩ {a, b, c}| = 2.
The last part of Theorem 4.2 of [5] handles b). �

Due to the last three lemmas, branchings according to priorities 9 and 10 are
upper bounded by O∗(2 K

6.1489 ). Especially, the (4ω3, 10ω3)-branch is sharp.
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5 Combining Two Approaches

Kulikov and Kutzov [6] achieved a run time of O∗(2 K
5.88 ). This was obtained by

speeding up the 5-phase by a concept called ’clause learning’. As in our approach
the 3- and 4-phase was improved we will show that if we use both strategies we
can even beat our previous time bound. This means that in HP we substitute
priority 3 by their strategy with one exception: we prefer variables v with a non
weight 5 neighbor. Forced to violate this preference we do a simple branching
of the form F [v] and F [v̄]. For the analysis we redefine the measure γ(F ): we
set ω3 = 0.9521, ω4 = 1.8320, ω5 = 2.488 and keep the other weights. We call
this measure γ̃(F ). We will reproduce the analysis of [6] briefly with respect to
γ̃(F ) to show that their derived branches for the 5-phase are upper bounded by
O∗(2 K

6.2158 ). It also can be checked that this is also true for the branches derived
for the other phases by measuring them in terms of γ̃(F ). Let kij denote the
number of weight j variables occurring i times in a 2-clause with some v ∈ V (F )
chosen for branching. Then we must have: k13+k14+k15+2k24+2k25+3k35 = 5.
If F ′ is the the formula obtained by assigning a value to v and by applying the
reduction rules afterwards we have:

γ̃(F )− γ̃(F ′) ≥ 5Δ5 +ω5 +(ω3 −Δ5)k13 +(Δ4 −Δ5)k14 +(ω4
2 −Δ5)2k24 +(Δ4−

Δ5)k25+(ω5
2 − 3

2Δ5)2k35 = 5.768+0.2961k13+0.2239(k14+k25)+0.26·2(k24+k35)

Basically we reduce γ̃(F ) by at least ω5 + 5Δ5. Now the coefficients of the kij

in the above equation express how the reduction grows if kij > 0. If k13 + k14 +
2k24 + k25 + 2k35 ≥ 2 we are done as γ̃(F ) − γ̃(F ′) ≥ 6.2158.

If k13 = 1 and k15 = 4 then [6] stated a (5Δ5+ω5+(ω3−Δ5), 5Δ5+ω5+(ω3−
Δ5) + 2Δ5)-branch and for k25 = 1 and k15 = 3 a (5Δ5 +ω5 + (Δ4 −Δ5), 5Δ5 +
ω5 + (Δ4 − Δ5) + ω3)-branch. If k14 = 1 and k15 = 4 a branching of the kind
F [v], F [v̄, v1], F [v̄, v̄1, v2, v3, v4, v5] is applied, where {v1, . . . , v5} = N(v). From
this follow a (5Δ5 +ω5 + (Δ4 −Δ5), 4Δ5 +ω5 +Δ4 +ω4 + 3Δ4 +Δ5, 5ω5 +ω4)-
and a (ω5 + 4Δ5 +Δ4, ω5 + 4Δ5 +Δ4 +ω4 + 4Δ5, 5ω5 +ω4 + 3ω3)-branch. This
depends on whether v1 has at least three neighbors of weight less than 5 in F [v̄]
or not. We observed that we can get a additional reduction of Δ5 in the third
component of the first branch as N [v] cannot be a component in V (F ) after step
3 of Alg. 1 yielding a (4Δ5+ω5+Δ4, 5Δ5+ω5+4Δ4+ω4, 5ω5+ω4+Δ5)-branch.
The analysis of the 5-regular branch (i.e. k15 = 5) proceeds the same way as in
the simple version of the algorithm except that we have to take into account the
newly introduced branches.

Theorem 3. Max-2-SAT can be solved in time O∗(2 K
6.2158 ) ≈ O∗(1.118K).

6 Conclusion

We presented an algorithm solving Max-2-Sat in O∗(2 K
6.2158 ), with K the num-

ber of clauses of the input formula. This is currently the end of a sequence of
polynomial-space algorithms each improving on the run time: beginning with
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O∗(2 K
2.88 ) which was achieved by [8], it was subsequently improved to O∗(2 K

3.742 )
by [2], to O∗(2 K

5 ) by [1], to O∗(2 K
5.217 ) by [4], to O∗(2 K

5.5 ) by [5] and finally to
the hitherto fastest upper bound of O∗(2 K

5.88 ) by [6]. Our improvement has been
achieved due to heuristic priorities concerning the choice of variable for branch-
ing in case of a maximum degree four variable graph. As [6] improved the case
where the variable graph has maximum degree five, it seems that the only way
to speed up the generic branching algorithm is to improve the maximum degree
six case. Our analysis also implies that the situation when the variable graph
is regular is not that harmful. The reason for this that the preceding branch
must have reduced the problem size more than expected. Thus considered to-
gether these two branches balance each other. Though the analysis is to some
extent sophisticated and quite detailed the algorithm has a clear structure. The
implementation of the heuristic priorities for the weight 4 variables should be a
straightforward task. Actually, we have already an implementation of Alg. 1. It
is still in an early phase but nevertheless the performance is promising. We are
looking forward to report on these results on another occasion.
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Abstract. Cellular automata are both seen as a model of computation
and as tools to model real life systems. Historically they were studied
under synchronous dynamics where all the cells of the system are up-
dated at each time step. Meanwhile the question of probabilistic dy-
namics emerges: on the one hand, to develop cellular automata which
are capable of reliable computation even when some random errors oc-
cur [24,14,13]; on the other hand, because synchronous dynamics is not
a reasonable assumption to simulate real life systems.

Among cellular automata a specific class was largely studied in syn-
chronous dynamics : the elementary cellular automata (ECA). These
are the "simplest" cellular automata. Nevertheless they exhibit complex
behaviors and even Turing universality. Several studies [20,7,8,5] have
focused on this class under α-asynchronous dynamics where each cell
has a probability α to be updated independently. It has been shown
that some of these cellular automata exhibit interesting behavior such as
phase transition when the asynchronicity rate α varies.

Due to their richness of behavior, probabilistic cellular automata are
also very hard to study. Almost nothing is known of their behavior [20].
Understanding these "simple" rules is a key step to analyze more com-
plex systems. We present here a coupling between oriented percolation
and ECA 178 and confirms observations made in [5] that percolation
may arise in cellular automata. As a consequence this coupling shows
that there is a positive probability that the ECA 178 does not reach a
stable configuration as soon as the initial configuration is not a stable
configuration and α > 0.996. Experimentally, this result seems to stay
true as soon as α > αc ≈ 0.5.

1 Introduction

A cellular automaton is a process where several cells, characterized by a state,
evolve according to the states of their neighboring cells. Cellular automata can
both model parallel computing and real life systems [22] .

Historically they have been studied under synchronous dynamics where all
the cells update at the same time. Meanwhile models of probabilistic cellular
automata have emerged. Several studies focus on a model of cellular automata
evolving synchronously but where some random errors can occur. In [24], Toom
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gives a 2D cellular automata capable of remembering one bit of information
in presence of random error. This result is used in [14] to develop a 3D cellular
automaton capable of reliable computation. Later on Gács proves the existence of
a 1D cellular automaton exhibiting the same reliability [13]. In [1] the authors try
to apply the mean field approach on a probabilistic model of cellular automata
and show that complex behaviors cannot be explained by this method.

Several empirical studies have shown that the behavior of cellular automata
changes drastically under asynchronous dynamics [2,3,6,17,23]. Only few theo-
retical results are known. Mainly, either they concern specific cellular automata
or show that it is difficult to describe the global behavior of cellular automata
under probabilistic updates [1,12,13,10,11,20,7,8,21].

Percolation theory was introduced to model the fact that a liquid or a gas
can flow through a solid due to porosity. Other applications were found for this
model and it has been extensively studied in the last decades on which proba-
bility theory made a lot of progress. A good introduction to percolation theory
can be found in [15]. Ising models, Potts models and percolation were unified
into the random cluster model [9,16]. We define here a coupling between ori-
ented percolation and a “simple” probabilistic cellular automaton. This coupling
shows that “simple” rules may embed very complex phenomena. The link be-
tween elementary cellular automata and percolation theory was already observed
in experiments in [5] but it is the first time that a correlation is proved.

The probabilistic dynamics we study here is the α-asynchronous dynamics
where each cell has an independent probability α to be updated and a prob-
ability 1 − α to stay in its current state at each time step. A particular class
of cellular automata is the 256 elementary cellular automata (ECA). This class
gathers the “simplest” cellular automata : cells are placed on a line, they are char-
acterized by a state which is 0 (white) or 1 (black) and they can communicate
only with their two closest neighbors. Nevertheless, studies have shown that this
class exhibits a wide range of behavior including Turing universality [4]. Even if
this class seems simple, questions remain open in the deterministic synchronous
case such as the intrinsic universality of ECA 110 [18]. Current works study this
class under α-asynchronous dynamics [20,7,8], in particular the 64 cellular au-
tomata for which the two configurations all black and all white are stable. The
understanding of these “simple” rules is a key step to understand more complex
phenomena. First in [7] it was shown that when only one cell is updated at each
time step (which may be under certain circumstances the limit as α → 0) the
behavior of these cellular automata are similar to behavior of coupon collec-
tors or random walks. In [8], the behavior of some of these cellular automata
has been determined under α-asynchronous dynamics, and the authors have iso-
lated some cellular automata exhibiting rich behavior such as phase transitions.
The elementary cellular automaton studied here ECA 178, FLIP-IF-NOT-ALL-
EQUAL is one of these complex automata. These automata are hard to study
and only few results are known yet. Here we present a new result on the ECA
178 and show that there exists a positive probability that the process will never
reach a stable configuration when α > 0.996 even when the initial configuration
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contains only one black cell. This is the first result proved for this automaton.
Moreover ongoing work shows that ECA 178 arises naturally in the study of
2D Minority [21] which is a model of anti-ferromagnetism in physics [19] and
also one of the simplest non-monotonic gene network model in biology. Since the
proof of this result is based on a coupling between the space-time diagram of
ECA 178 and oriented percolation on a graph, it tends to support the fact that
the behavior of this automaton is indeed complex since very little is known on
directed percolation yet.

2 Asynchronous Cellular Automata

2.1 Definition

We give here a formal definition of ECA 178. The next part presents informally
its behavior and the underlying difficulties of its analysis.

Definition 1 (Configuration). We denote by Z the set of cells and Q = {0, 1}
the set of states (0 stands for white and 1 for black in the figures). The neigh-
borhood of a cell i consists of the cells i− 1, i and i + 1. A configuration c is a
function c : Z → Q; ci is the state of the cell i in configuration c.

Definition 2 (ECA 178: FLIP-IF-NOT-ALL-EQUAL). The rule of a cel-
lular automaton is a function which associates a state to a neighborhood. The
rule δ of the ECA 178 is defined as follows:

δ(ci−1, ci, ci+1) =

{
ci if ci−1 = ci = ci+1

1 − ci otherwise

Time is discrete and in the classic deterministic synchronous dynamics all the
cells of a configuration are updated at each time step according to the transi-
tion rule of the cellular automaton (see figure 1). Here we consider a stochastic
asynchronous dynamics where only a random subset of cells is updated at each
time step.

Definition 3 (Asynchronous dynamics). Given 0 < α � 1, we call α-
asynchronous dynamics the following process : time is discrete and ct denotes
the random variable for the configuration at time t. The configuration c0 is the
initial configuration. The configuration at time t + 1 is the random variable de-
fined by the following process : each cell has independently a probability α to
be updated according to the rule δ (we say that the cell fires at time t) and a
probability 1 − α to remain in its current state. A cell is said active if its state
changes when fired.

Figure 1 presents different space-time diagrams of ECA 178 for different values
of α. The initial configuration consists in one single black cell and is displayed
horizontally at the bottom of the diagram (time flows upwards).
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α = 0 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9 synchronous dynamics

Fig. 1. ECA 178 under different dynamics (α = 0 stands for fully asynchronous dy-
namics, for this diagram only one every 50 time step is displayed)

Definition 4 (Stable configuration). A configuration c is a stable if for all
i ∈ Z, δ(ci−1, ci, ci+1) = ci.

ECA 178 (FLIP-IF-NOT-ALL-EQUAL) admits only two stable configurations :
the configurations all white and all black.

Definition 5 (Convergence). We say that a random sequence (ct)t�0 defined
by ECA 178 converges under α-asynchronous dynamics if there exists t < ∞
such that ct is a stable configuration. We denote by Pα(c0) the probability that
such a t exists.

From the definition of stable configuration, it follows that if there exists t such
that ct is a stable configuration then for all t′ � t the configuration ct′

is the
same stable configuration. Note that since the configuration is infinite, only
specific initial configurations may converge with positive probability. Here we
will consider only a particular initial configuration which is very "close" to a
stable configuration and show that when α is large enough, being this close is
not enough to guarantee convergence almost surely.

Definition 6 (Initial configuration). We define cinit as the configuration
where cinit

0 = 1 and for all i �= 0, cinit
i = 0.

From now on, we will consider that the initial configuration is always cinit.
The configuration cinit differs from the configuration all white by only one cell.
Nevertheless we show the following result :

Theorem 1 (Main result). If α � 3
√

80/81 ≈ 0.996 then Pα(cinit) < 1.

Section 4 is dedicated to the proof of this result. This is the first result on ECA
178. This result shows that this rule can exhibit very complex behavior and
shows how simple rules may turn out to be hard to analyze. Before the proof,
the following section exposes experimental results on the behavior of ECA 178.

2.2 Discussion

In [8] it was conjectured that ECA 178 admits a phase transition which occurs
experimentally at α = αc ≈ 0.5. Figure 1 illustrates the changes in the space
time diagrams of ECA 178 when α varies. In [7] it was proven that this au-
tomaton behaves as a non-biased random walk on a finite configuration with
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periodic boundary condition under the fully asynchronous dynamics (when only
one random cell fires at each time step). This proof can easily be extended to
infinite configurations when c0 = cinit to prove that its converges in polynomial
time to all white almost surely under the fully asynchronous dynamics.

When 0 < α < αc, despite of the fact that some small "errors" may occur, the
global behavior seems to be similar to the fully asynchronous dynamics. When
α > αc the behavior changes drastically : an alternating background pattern
(0101010) appears and extends quickly in expense of the black and white regions
preventing the configuration from ever reaching a fixed point. Cells inside a big
white or black region are inactive whereas cells of a 010101 region are all active.
When α is very small, regions of 010101 are highly unstable and the presence
of patterns 010101 is marginal. Nevertheless this pattern does not exist in the
fully asynchronous case and since the study of this dynamics relies on a perfect
symmetry between black and white regions, the emergence of a third kind of
region, which behave drastically differently, prevents us from deriving a lower
bound from the fully asynchronous dynamics. We believe that any lower bound
on αc would be a huge achievement.

We prove next that when α > 0.996 there is a strictly positive probability
that the process will not reach the stable configuration all white even if only one
cell is black in the initial configuration. The global behavior here is thus no more
related to a unbiased random walk. Since rule 178 acts symmetrically on black
and white states the same result holds when the initial configuration has only one
white cells. Big white regions and big black regions tends to disappear in favor
of 0101 patterns and our result confirms the fact that the pattern 0101 ends up
dominating in the configuration when α > 0.996. Finally our proof is based on a
coupling between cellular automaton and oriented percolation. This correlation
was already spotted in [5] but it is the first time that it is theoretically proved
and the emergence of oriented percolation in ECA 178 is also a strong evidence
of the richness of its behavior.

3 Oriented Percolation on (Z+)2

Definition 7 (Oriented bond percolation). Consider a probability p and the
randomly labeled graph L(p) = ((Z+)2,E) where (Z+)2 is called the set of sites
and E the set of bonds. For all i, j ∈ Z+, there are oriented bonds between site
(i, j) and sites (i+ 1, j) and (i, j+ 1). Each bond has independently a probability
p to be labeled open and a probability 1 − p to be labeled closed.

Figure 2 illustrates several examples of oriented percolation for different values
of p. Only open bonds are shown in the figure. The main question of percolation
theory is the size of the open cluster.

Definition 8 (Open cluster). We denote by C the open cluster of site (0, 0):
a site (i, j) is in C if and only if there is an oriented path from site (0, 0) to
site (i, j) only made of open bonds. We call θ(p) the propability that C is infinite
( i.e. that there exists an infinite open path from cell (0, 0)).
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p = 0.3 p = 0.5 p = 0.75

Fig. 2. Oriented percolation with different probability of open bonds

It is easy to show that θ(p) is an increasing function of p. Moreover there exists
a critical value pc such that θ(p) > 0 for p > pc. Bounds on this critical value
can be found in [15].

Theorem 2 (Critical value [15]). There exists a critical value pc such that
if p < pc then θ(p) = 0, and if p > pc then θ(p) > 0. Moreover, 0.6298 < pc < 2/3.

4 Coupling Cellular Automaton 178 with Percolation

There is no notion of time in percolation but the height will stand for it in our
coupling. Indeed in order to know if a site of height t+1 is in the open cluster or
not, we only need information about sites of height t. In a cellular automata in
order to know the state of a cell at time t + 1, we only need to know the states
of cells at time t.

Definition 9 (Height). The height of a percolation site (i, j) is the length of
any path from (0, 0) to (i, j) in L(p), that is to say i + j. We denote by Ct the
sites of height t which are in the open cluster C. The height of a bond is the
height of its origin.

Definition 10 (Candidate). A site is a candidate of height t+1 if and only if
at least one of its predecessors is in Ct. We denote by Ĉt+1 the set of candidates
of height of t + 1.

Clearly for all t > 0 we have Ct ⊂ Ĉt. Figure 4 illustrates the notion of height
and candidate.

In this part, (ct)t�0 denotes the random sequence of configurations updated
according to rule 178 under α-asynchronous dynamics where c0 = cinit.

Site of height 8 which is C

Candidate of height 9 

Site which is not in C

Fig. 3. An example of sites and candidates of height 8 and 9. All bonds (indifferently
open or closed) are represented.
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Definition 11 (Mapping). We define the set of cells Tt of configuration ct

as follows : cell ct
i is in Tt if and only if −t � i � t and i ≡ t mod 2. Let T =

∪∞t=0Tt. We define g : (Z+)2 → T as the bijection which associates the percolation
site (i, j) to the cell 2i − " i+j

2 # of configuration ci+j. From these definitions, it
follows that the image of the sites of height t in L(p) by g are the cells Tt in
configuration ct.

Figure 4 shows the mapping of L(p) on a space-time diagram. We can notice that
the cells of T correspond exactly to the black cells of the space-time diagram of
figure 1 under synchronous dynamics. Our aim is to define a coupling such that
the corresponding cells of sites in C will always be active. The following criterion
formulates this property.

time / height

Fig. 4. Mapping of the graph L(p) on the space-time of a cellular automaton; the cells
of T are colored in black

Definition 12 (Correspondence criterion). We say that a space-time dia-
gram (ct)t>0 and a labelled directed graph L(p) satisfy the correspondence crite-
rion at time t if and only if the cells of g(Ct) are all active. We say that they
satisfy the correspondence criterion if and only if they satisfy the correspondence
criterion for all t � 0( i.e. the cells of g(C) are all active).

Since in cinit
0 site (0, 0) ∈ C is active, the configuration c0 = cinit and any

randomly labeled directed graph L(p) always satisfy the correspondence criterion
at time 0. Moreover if they satisfy the correspondence criterion and the open
cluster is infinite in L(p) then for all t, ct admits at least one active cell and thus
the sequence (ct) does not converge. Figure 5 gives a configuration which satisfies
the correspondence criterion with the directed graph of figure 4 at time 8.

Consider a configuration ct such that the correspondence criterion is true at
time t. We want in our coupling that the correspondence criterion stays true at
time t + 1. Consider a site in Ĉt+1, this site may be in C. If it is the case, the
cell ct+1

i corresponding to this site has to be active. Thus, we have to focus on
cell ct

i at time t and design a coupling such that this cell is active at time t + 1
if the corresponding site is in the open cluster. We say that there is a constraint
on this cell.

Definition 13 (Constrained cells). A cell ct
i is constrained at time t if and

only if ct+1
i ∈ T and g−1(ct+1

i ) is in Ĉt+1.
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Time and Height 9

Time and Height 8}
Fig. 5. Cells of T8 and T9 are gray-colored. Active cells of c8 are marked by a dot.
Arrows link the sites of C8 to their corresponding cells in c8. In this example, these
cells are active in c8. Thus the correspondence criterion is verified at time 8.

We may have to force a constrained cell to be active at time t+1 in our coupling.
This turn out to be possible because a constrained cell always has an active cell
in its neighborhood when the correspondence criterion is verified (Lemma 1).
It follows that one can associate to each constrained cell a partner which is an
active cell in its neighborhood (Definition 14). Firing these two cells makes the
constrained cell active at time t + 1 (Lemma 2) which can be coupled with the
opening of the bonds when α is large enough (Theorem 3).

Lemma 1. If (ct)t�0 and L(p) verify the correspondence criterion at time t′

each constrained cell of configuration ct′
has an active neighbor.

Proof. Suppose that cell ct
i is constrained at time t. Then site (k, l) = g−1(ct+1

i )
is in Ĉt+1. Thus at least one of the two sites (k, l − 1) and (k − 1, l) is in Ct.
Since the correspondence criterion is verified at time t, at least one of the two
cells g(k, l − 1) = ct

i+1 and g(k − 1, l) = ct
i−1 is active. �

Definition 14 (Partner). The partner of a constrained cell ct
i is defined as

follows:

– if ct
i is the pointed cell in the neighborhood or then its

partner is ct
i−1.

– if ct
i is the pointed cell in the neighborhood or then

its partner is ct
i+1.

Figure 6 illustrates the constrained cells of Figure 4 and their partners. Since
two cells of T cannot be neighbors, two constrained cells cannot be neighbors.
Moreover since the partner of a constrained cell is a neighbor of this cell then
a cell cannot be at the same time constrained and the partner of an other cell.
Note that however a cell may be the partner of two constrained cells.

Lemma 2. For all t′ > 0, if (ct)t�0 and L(p) verify the correspondence criterion
at time t′, each constrained cell at time t′ has a partner and if these two cells
fire at time t′ then the constrained cell is active at time t′ + 1.

Proof. Suppose that cell ct
i is constrained at time t. Then w.l.o.g. we suppose

that the state of ct
i is 1 (the other case is symmetric). We do a case study on the
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Height 9

Height 8

ct at time 8

Fig. 6. Arrows map the sites of Ĉ9 to their corresponding constrained cells. These
constrained cells are marked by a cross. Rounds surround a constrained cell and its
partner.

A constrained cell always has 
an active neighbor (lemma 1)

If both cells fire

If both cells fire

If both cells fire

If both cells fire

ci-1=0

ci-1=1

ci+1=0

ci+1=1

ci-2=0

ci-2=1

ci+2=0

ci+2=1

: the constrained cell is active at time t+1

Fig. 7. Proof of lemma 2

states of its neighboring cells and show that in every cases, if ct
i and its partner

fire then ct+1
i is active. This case study is done in figure 7. �

Theorem 3. If α � 3
√

1 − (1 − pc)4 then Pα(cinit) < 1.

Proof. Consider a random sequence (ct)t�0 of configurations updated according
to rule 178 under α-asynchronous dynamics where c0 = cinit and a randomly
labeled graph L(p). Assume α � 3

√
1 − (1 − p)4. We design a coupling between

these two processes.
The coupling is defined recursively for all t between ct and bonds of height t

in L(p). At time t we have to label the edges of height t of L such that each edge
is open with independent probability p. We have to chose which cells fire such
that each cell fires with independent probability α. We also design our coupling
such that if at least one of the two bonds which ends to a site of Ĉt+1 is open
then the corresponding cell ct+1

i is active. In order to do so, we use Lemma 2
and assuming that the correspondence criterion is true at time t, we force the
constrained cell ct

i and its partner to fire. Since the correspondence criterion is
true at time 0, it will recursively stay true for all t.

To achieve this, we partition the cells of ct and the bonds of height t into
buckets. Each bucket consists in:
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– type 1 : a unique cell ct
i if it is neither constrained nor the partner of any

other cell.
– type 2 : a unique bond b if it does not end to a site of Ĉt+1.
– type 3 : two cells ct

i and ct
i+ε with ε = 1 or −1 and the two bonds of height t

pointing to the site corresponding to cell ct+1
i+ε if ct

i is the partner of only one
constrained cell ct

i+ε.
– type 4 : three cells ct

i−1, ct
i and ct

i+1 and the four bonds of height t pointing
to the sites corresponding to cells ct+1

i−1 and ct+1
i+1 if ct

i is the partner of the
two constrained cells ct

i−1 and ct
i+1.

One can easily verify that each bond of height t and each cell of ct belongs to
exactly one bucket. We assign to each bucket k an independent random vari-
able Xt

k uniformly distributed in [0, 1]. Now we define the coupling within each
bucket:

– type 1 : if Xt
k < α then ct

i fires and if Xt
k > α then ct

i does not fire.
– type 2 : if Xt

k < p then b is open and if Xt
k > p then b does is closed.

– type 3 : bounds are open and cells fires according to this diagram :

p(1-p)p2

c    firest
i-1

0
1

Xk

p(1-p) (1- ) (1- ) (1- )22-2p+p2

p

2p-p2

2

2 - 2

At least one bond is open

Both cells fire

the edge is open

the edge is closed

the cell fires

the cell does not fire

the cell is active at time t+1
with probability 1

t

t

t+1

ci-1 ci-1 ci-1 ci-1 ci-1 ci-1 ci-1
t t t t t t t

ci-1
t the constrained cell ci-1

t

b is open

b' is open
b' is 
open

c  fires

c    firest
i-1

t
i

Each bond is open with probability p. Bonds b and b′ are opened with prob-
ability p2, b is open and b′ is closed with probability p(1 − p) and b is closed
and b′ is open with probability p(1 − p). Thus each bond is open indepen-
dently of the other. Same thing holds for the cells. Since α � 3

√
1 − (1 − p)4,

we have α2 − 2p+ p2 > 0 and the probability that at least one bond is open
is less than the probability that both cells fire.
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– type 4: As in the previous case we define a coupling which respect the distri-
bution of probability and the independence of updates/labeling such that:

At least one bound is open

All cells fire

0
1

Xk

3-1+(1-p)4

3

1-(1-p)4

t

The probability that all cells fire is α3 and the probability that at least one
bound is open is 1−(1−p)4. Since α � 3

√
1 − (1 − p)4, the three cells always

fire when at least one bond is open in this coupling.

Thus as soon as one edge ending to site of Ĉt+1 is open, the corresponding cell
at time t+1 is active. Thus the correspondence criterion stays true at time t+1.
Since the correspondence criterion is true at time 0, it will recursively stay true
for all t. If p > pc then θ(p) > 0 which means that for all t � 0 there exists
a cell of height t which is in the open cluster with positive probability. Thus
there exists an active cell in ct for all t � 0, with positive probability. Then
if α � 3

√
1 − (1 − pc)4 then Pα(cinit) < 1. �

Theorem 2 and theorem 3 yields the theorem 1.

Acknowledgements. Thanks to Nicolas Schabanel and Éric Thierry for their
useful remarks that helped to improve the writing of the paper.
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Abstract. We demonstrate that the Cutting Plane (CP) rank of a poly-
tope defined by a system of inequalities derived from a set of unsatisfi-
able clauses can be arbitrarily larger than the Resolution width of the
clauses, thus demonstrating the two measures are incomparable. More
specifically, we show there exists an infinite family of unsatisfiable clauses
defined over n ∈ N, which have constant Resolution width, but, yield
polytopes which have CP rank Ω(log2 n).

Keywords: Propositional Proof Complexity, Cutting Plane Proofs, Rank
Lower Bounds, Resolution Width.

1 Introduction

The problem of satisfiability of propositional CNF formulae (SAT) is perhaps the
most well studied in theoretical computer science. Resolution provides the logical
basis for almost all the most widely used SAT solvers (cf. [16]) and is also the
most intensively studied and well understood proof system in the area of proof
complexity. One interesting complexity measure for Resolution is the required
width of a proof, which under certain conditions is known to be closely related
to the size of the Resolution proof as well as its minimum space complexity (see
[2] and [1] respectively).

Since Linear Programming (LP) has been shown to be solvable in polynomial
time, by Khachain in [11], there has been an increasing interest in using Integer
Linear Programming (ILP) algorithms as a means of solving SAT instances. One
of the oldest and most commonly used methods for solving ILP is Cutting Planes
(CP) (also known as Gomory Cuts), which was first introduced in [9] and first
considered as a proof system in [5]. An interesting measure of complexity of CP
proofs, conceived in [4] and put forward for study in proof complexity in [3], is
the rank of a bounded polyhedron (polytope), namely the minimum number of
rounds cuts required to reach its integer hull. Whilst it is clear that CP can p-
simulate Resolution with respect to the size of proofs [5], it is not clear where the
measures of Resolution width and CP rank are related. Currently the only CP
rank bounds for polytopes derived from unsatisfiable SAT instances are those
given in [3]. These show that the CP rank of a polytope can be arbitrarily smaller

E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 575–587, 2008.
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than the Resolution width, however, it is unknown whether an upper bound for
the Resolution width of an unsatisfiable SAT instance implies an upper bound
on the CP rank of its corresponding polytope. We show that this is not true
by demonstrating that there is an infinite family of tautologies which require
constant Resolution width, yet at least logarithmic CP rank. Our proof uses a
novel technique based on a simple card game, since the method used in [3] is
ineffective on the tautologies we consider.

2 Preliminaries

Resolution is perhaps the most simplistic of all proof systems. A Resolution
proof of a CNF formula F , can be considered to be an ordered list of clauses
C1, . . . , Cs, where each Cs is the empty clause, and each Ci is either a clause in
F or is derived from two other clauses Ci′ and Ci′′ where i′, i′′ < i, using the
following rule, known as the Resolution rule:

A ∨ l B ∨ ¬l
A ∨B.

The measure of the width of a Resolution refutation was introduced in [2] and
is defined to be the size of the largest clause in the refutation. The Resolution
width of a given set of clauses is the minimum possible width of any Resolution
refutation of these clauses. One problem with this definition is that instances with
large clauses, must have high width, even though it maybe possible to reduce
the width simply by rewriting the clauses as a 3-CNF formula. We consider
a more robust definition of the Resolution width, introduced in [8], which is
the minimum value k, such that the clauses have a width k narrow Resolution
refutation. A width k narrow Resolution refutation of a CNF formula F is a
sequence of clauses C1 . . . Cs where Cs is the empty clause and each Ci is either
a clause in F or is derived using one of the following three rules:

1. From B we can derive B ∨ x, or B ∨ ¬x (weakening);
2. From A ∨ x and B ∨ ¬x we can derive A ∨B (Resolution);
3. From x1 ∨ · · · ∨ xm (where m can be ≥ k) in F , and B ∨ ¬x1, . . . , B ∨ ¬xm

we can derive B (Resolution by cases);

crucially all clauses derived from any of the three rules must have ≤ k literals.
In [8], they show how the narrow Resolution proof system is related to normal
Resolution, later we use these relations to show that our result holds for both
definitions of Resolution width.

The CP proof system, can be considered as a refutation proof system operating
on linear inequalities (i.e. it derives the contradiction 1 ≤ 0) which has the axioms
xi ≤ 1 and xi ≥ 0 for any variable xi and the following inference rule, which we
will call the cut rule:

a11x1 + · · · + a1nxn ≥ b1
. . .

an1x1 + · · · + annxn ≥ bn

(
∑n

i=1 λiai1)x1 + · · · + (
∑n

i=1 λiain)xn ≥ c
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where c is an integer such that "
∑n

i=1 λibi# ≥ c and the λi’s are non-negative
rational coefficients satisfying

∑n
i=1 λiaij ∈ Z for all 1 ≤ j ≤ n.

We translate the clauses of the original CNF formula into inequalities as
follows, the clause

xi1 ∨ · · · ∨ xit ∨ ¬xj1 ∨ · · · ∨ ¬xjf

becomes the inequality

xi1 + · · · + xit + (1 − xj1) + · · · + (1 − xjf
) ≥ 1.

In [5], it is shown that under this translation, CP p-simulates Resolution.
The rank of a polytope is the minimum number of rounds of applications of the

cut rule required to reach its integer hull. If the converted CNF is contradictory
as a linear program, then its CP rank is 0, if one round of the cut rule is enough
to reach a contradiction, its CP rank is 1 and so on. We refer to the polytope de-
fined by the converted CNF as P 0 and the polytope containing only points that
can not be removed form P 0 after i rounds of cuts as P i. When studying CP rank
it is often useful to consider the following definition of the polytope remaining
after a round of cuts, presented in [3]. In the definition P refers to the current
polytope and P ′ is the one remaining after a round of applications of the cut rule.

P ′ = {x ∈ P ′ : 〈a, x〉 ≥ "b# whenever a ∈ Z, b ∈ R, and 〈a, y〉 ≥ b for all y ∈ P}.

The family of unsatisfiable CNF formulae that we shall consider we will call
RHSP2 n, which stands for the Relativized House Sitting Principle with 2 sets.
This is the family of CNF formulae generated by taking the normal House Sit-
ting Principle (HSP), which is defined in first-order logic as the constraints:
∀x∃y((y ≥ x) ∧ W (x, y)), ¬W (0, 0), ∀x, y((x < y) ∧ W (y, y) → ¬W (x, y)), rel-
ativising it twice (see [6]) and converting it to a purely propositional sentence
over n variables (see [14]). The reason we consider the relativised version of HSP
is that the original version has CP rank 0, so would not be appropriate. The
reason we consider the version with two sets instead of one is simply that the
method we employ fails on the later version.

The formula RHSP2 n can informally be considered to represent the contra-
dictory scenario where there there is a street with n houses on it, and the higher
the house number, the better it is. House one is a run-down shack and house n
is a luxurious mansion. The residents living on the street decide to play a game
in which they can go to each other’s houses, under a number of conditions. Since
no-one wants a bad deal there agree only to go into a house at least as good as
their own. The residents of house one, obviously don’t like their own house and
so don’t want to stay there and belong to two groups, the neighborhood watch
(q) and a risky pyramid scheme (r). The residents of the street decide that if
people who are in both these groups go into their house, they should join these
groups as well. They also decide that if the owners of a house are in both these
groups and stay their own homes, then no-one belonging to both the groups is
allowed to visit their house. We represent the proposition “some of the owners of
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house i go to house j” with the variable Wi,j and the proposition “the owners of
house i belong to q (r)” using the variable Si,q (Si,r). We consider the formula
RHSP2 n, where n ≥ 2, as being defined by the following inequalities (clauses):∑n

j=i Wi,j ≥ 1 (
∨n

j=i Wi,j), for all 1 ≤ i ≤ n, which we shall call the
witnessing inequalities and can be considered to state that the residents of
house i must go to a house at least as good as there own.

2 + Sj,t ≥ Wi,j + Si,q + Si,r (Sj,t ∨ ¬Wi,j ∨ ¬Si,q ∨ ¬Si,r) for all t ∈ {q, r},
i ≤ n − 1 and all j ≥ i + 1, j ≤ n. We refer to this set of inequalities as the
inductive ones and they can be thought of as stating that if residents of house
i are in both groups and they go to house j, then j must be in the set t.

Wi,j + Wj,j + Si,q + Si,r + Sj,q + Sj,r ≤ 5 (¬Wi,j ∨ ¬Wj,j ∨ ¬Si,q ∨ ¬Si,r ∨
¬Sj,q ∨ ¬Sj,r), for all 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n which we will refer to as the
fullhouse inequalities. These can be considered as stating that if the residents
of houses i and j are in both groups, and j goes into their own house then i
can’t go to j’s house.

A set of single clause inequalities, W1,1 ≤ 0 (¬W1,1) which states that the
residents of house one don’t stay in their own house, S1,1 ≥ 1 (S1,1)and S1,2 ≥ 1
(S1,2), which state that residents of house one are in both sets.

3 Results

To get our upper bound on the narrow Resolution width of RHSP2 n we use the
following witnessing pebbling game, introduced in [8].

Let F be a CNF formula. The witnessing pebble game in F is played between a
Prover and a Delayer on a set of literals arising from the variables in F . A pebble
can never appear on both the positive and negative literals of any variable. In
each round, one of three things can happen.

1. The Prover lifts a pebble from the board; Delayer makes no response.
2. (Querying a Variable.) The Prover gives a pebble to the Delayer and names

an empty variable x (i.e. neither x nor ¬x is pebbled already). The Delayer
then places the pebble on x or ¬x.

3. (Querying a Clause.) The Prover give the Delayer a pebble and names a
clause C from F . The Delayer must then place it one of the literals of C,
without contradicting a pebble already on the board. If this is impossible
then Prover wins the game.

When the game is limited to a given number of pebbles k, then we call this the
k-pebble witnessing game. Notice that Prover can only win if the pebbles on the
board falsify some of the clauses of F and Prover has at least one pebble left.
From [8], we also get the following lemma, linking the witnessing pebble game
with the narrow Resolution width of a proof.

Lemma 1. ([8], Proposition 4)
Let F be an CNF formula. If there is a winning strategy for Prover in the k-
pebble witnessing game for F then there is a narrow Resolution proof of width k
of F .
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We can now prove our constant upper bound on the Resolution width of RHSP2 n,
by demonstrating that the value of n does not affect the number of pebbles re-
quired for Prover to win the witnessing pebble game on the clauses of RHSP2 n.

Theorem 1. For every n ≥ 3, RHSP2n has a narrow Resolution proof of
width ≤ 6.

Proof. At the start of the game Prover queries the single literal clauses S1,q, S2,r

and ¬W1,1.
If there are pebbles on Si,q, Si,r, ¬Wi,i, then Prover can use only 3 more

pebbles to force Delayer to placed pebbles on Sj,q, Sj,r, ¬Wj,j where 1 ≤ i, j ≤ n
and i < j. Prover first queries the witnessing clause

∨n
q=1 Wi,q, Delayer must

put a pebble on some Wi,j . Prover then queries the variables Sj,q and Sj,r,
Delayer must play on the positive literals of both of these variables or Prover
could then query the one of the inductive clauses Sj,t ∨¬Wi,j ∨¬Si,q ∨¬Si,r for
each t ∈ {q, r}. Prover then queries the fullhouse clause ¬Wj,j ∨¬Si,q ∨¬Si,r ∨
¬Sj,q ∨ ¬Sj,r; in response Delayer must place a pebble on ¬Wj,j .

Note that is Prover plays in this manner, he can pick up the pebbles on Si,q,
Si,r and Wi,j , so never needs to put more than 6 pebbles down at any time. If
Player continually uses this strategy, then eventually j = n, then Prover can win
by querying the single literal clause Wn,n. �

To prove our lower bound for the rank of cutting planes on RHSP2 n, we use the
following protection lemma presented in [3]. The name protection comes from
the fact that it ensures a certain point is protected from being removed in the
next round by the cut rule provided that a number of other points are present
in the current round. Throughout the rest of this paper, E(x) denotes the set of
all variables in which the point x is not an integer. Recall that P ′ is defined to
be the polytope remaining after applying a round of cuts to P .

Lemma 2. ([3], Lemma 3.1) Let P be a bounded polytope in Rn. Let x ∈ 1
2Zn

and let E = E(x) be partitioned into sets E1, E2, . . . , Et. Suppose for every
j ∈ 1, 2, . . . , t we can represent x as an average of vectors in P that are 0− 1 on
Ej but agree with x elsewhere. Then x ∈ P ′.

The proof of our lower bound involves showing that a point, which we will from
here on refer to as x, defined as having the variables set to the following values,
must be present in P log2(n)−2.

Wn,n, S1,q, S1,r = 1.
Wi,i+1, Wi,i+2 = 1

2 for all odd i, where 1 ≤ i ≤ n− 3.
Wi,i+2, Wi,i+3 = 1

2 for all even i where 2 ≤ i ≤ n− 4.
Si,q, Si,r = 1

2 for all 2 ≤ i ≤ n.
Wn−2,n−2, Wn−2,n−1, Wn−1,n−1, Wn−1,n = 1

2 .
All other variables are set to 0.

Note that by substituting the values given in x, each inequality of RHSP2 n is
satisfied and therefore x ∈ P 0.
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Theorem 2. The CP rank of RHSP2n > log2(n)− 2, where n ≥ 8 and a power
of 2.

Proof. We demonstrate the P log2(n)−2 is non-empty by demonstrating that it
contains x.

We consider a card game played between two players Dealer and Player, which
runs over a number of rounds. In each round Player is at some point y in the
space and in the first round y = x. It is his job to try and find a point y /∈ P 0. At
the start of the game, Dealer has a pack of unique cards each one representing a
single variable in E = E(x). When we talk of a card we are really talking about
the variable the card represents. At the beginning of each round he deals all the
cards he has out on to a table and arranges them into sets. These sets are are
a partitioning of the variables of E, as in lemma 2. For each set of cards Dealer
decides on two possible assignments of 0/1 values to these cards, where each card
is assigned 0 in one assignment and 1 in the other. Player then picks up one of
these sets and chooses one of the two possible assignments. Player updates their
position y by setting these variables to their chosen values. We call a position
reached in this manner a child of y. Note that if the Player is at a point p, the
average of all the possible children of p is the point p. The round ends when
Dealer picks up all the remaining cards and the next round starts when he deals
them out again.

Since the inequalities of RHSP2 n are unsatisfiable, it is clear that Player will
eventually win the game (i.e. if he picked up all the cards, he would have set all
the variables to 0/1 values and must then have reached a point y /∈ P 0). The
link between the card game and the CP rank is that if Dealer can play so that
the game lasts until the end of round i, by lemma 2, the CP rank of the polytope
is at least i+ 1. We therefore demonstrate a strategy for Dealer that allows him
to ensure the game lasts until the end of round log2(n) − 2.

Figures 1 to 6, define the possible sets of cards into which Dealer will partition
E together with their associated 0/1 values which define the child points of a
given current point. An edge uv in these figures represents the variable Wu,v if v
is not labeled q or r otherwise it represented the variable Su,v. The two possible
sets of 0/1 values associated with each possible set of cards are defined as having
all the dashed edges set to 0, and the solid edges 1 and vice-versa.

Figures 1 and 2 show how specific elements of E are partitioned into subsets,
however figures 3 to 6 give a template defining how elements of E can be parti-
tioned according to some parameter i. We call the set matching template Ta having
i = p, Ea,p and we say Ea,p has ‘i’ value p.

Note that Estart and Tleft are constructed so that if someone goes into some
house h, the residents of h are always in both q and r. By comparison, the other
sets are constructed as to prevent the residents of a particular house belonging
to both q and r.

Intuition. There are distinct numbers, (1) the biggest number so that the res-
idents of house h are in both q and r and (2) the lowest number so that the
residents of house are not in one of q or r. Only the segment between (1) and



Resolution Width and Cutting Plane Rank Are Incomparable 581

1 2 3

q r q r

Fig. 1. The set Estart, and associated 0/1 values

n−2 n−1 n

q r q r q r

Fig. 2. The set Eend, and associated 0/1 values

i i+1 i+2 i+3

q r q r

Fig. 3. The template Tleft, and associated 0/1 values

(2) is inconsistent so Player tries to narrow the size of this segment, whilst Dealer
makes sure it can only be halved in each round, hence the Ω(log2 n) lower bound.
A valid, although ineffective move for Player is to play in the consistant region
to the left of (1), or in the consistant region to the right of (2).

Before describing Dealer’s strategy we need a few definitions. r is the number of
the current round, and at the start r = 1.m is the ‘i’ value of the set matching Tmid

in the current round (there is exactly one such set in each deal). rmin and lmax
represent the smallest ‘i’ value of a set matching Tright and the largest ‘i’ value of a
set matching Tleft respectively, that can be chosen by Player so that Dealer plays
in the same way as the previous round. Initially rmin = n− 4 and lmax = 2.

In round 1, Dealer partitions the cards into the sets Estart, Eend, Emid, n
2

,
Eleft,i for each 2 ≤ i ≤ n

2 −2, where i is even, and Eright,j for each even j where
n
2 + 2 ≤ j ≤ n − 4. It is an easy exercise to see that this constitutes a valid
partitioning of E (i.e. each element of E appears in exactly one of these sets).
In subsequent rounds, Dealer does one of the following three things, depending
on the actions of Player:

1. If Player picks any of the sets of cards Estart, Eleft,i for 2 ≤ i ≤ lmax,
Eright,j , where rmin ≤ j ≤ n − 4, Eend or any set matching Tother, Dealer
simply deals in the same fashion as he did in the previous round. Intuitively
this case represents the situation where Player plays in either of the consis-
tent regions or on one the the very edges of the inconsistent region.

2. If Player picks a set Eleft,l where l > lmax, then Dealer moves the “mid
point” to the right by setting the ‘i’ value of the middle set (i.e. the one
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i i+1 i+2 i+3

q r q r

Fig. 4. The template Tright, and associated 0/1 values

i i+1 i+2 i+3

Fig. 5. The template Tmid, and associated 0/1 values

i i+1

q r q r

Fig. 6. The template Tother, and associated 0/1 values

matching Tmid) to m′ = m + n
2r+1 . Any remaining cards “to the left of

this set” are partitioned as many of Estart and Eleft,j for each even j where
2 ≤ j ≤ m′−2 as can be made with the cards Dealer has left. The remaining
cards (i.e. those representing Si,q, Si,r and Wi,j where m′ + 2 ≤ i, j ≤ n),
are dealt into the same sets as they appeared in the previous round. Dealer
then increases lmax to m + 2. Intuitively this case represents the situation
where Player plays in the inconsistent region to the left of the “mid point”.

3. If Player removes a set Eright,i, where i < rmin, then Dealer moves the “mid
point” to the left by setting the ‘i’ value of the middle set to m′ = m− n

2r+1 .
He then makes as many of the sets Estart, Eleft,j where 2 ≤ j ≤ m′−2 and j
is even, as he can with the remaining cards “on the left of the new mid point”.
The cards between the new “mid point” and the previous one (Si,q, Si,r and
Wi,j where m′+2 ≤ i ≤ m and j is any number) are partitioned into the sets
Eright,k for each even k where m′ + 2 ≤ k ≤ m. The remaining cards (those
to the right of the previous “mid point”) are dealt into the same sets as in
the previous round. Dealer then decreases rmin to m − 2. Intuitively this
case represents the situation where Player plays in the inconsistent region
to the right of the “mid point”.

4. If Player picks the exact “mid point” by selecting the set Emid,m, then Dealer
moves the “mid point” to the left by setting the ‘i’ value of the middle set
to m′ = m − n

2r+1 . In this case Dealer lays down the set Eother,m which
deals with the “left over” cards Sm,q, Sm,r, Sm+1,q and Sm+1,r. The cards
between the new “mid point” and the previous one (Si,q, Si,r and Wi,j where
m′+2 ≤ i ≤ m−2 and j is any number) are partitioned into the sets Eright,k

for each even k where m′ + 2 ≤ k ≤ m − 2. The remaining cards (those to
the right of the previous “mid point”) are dealt into the same sets as in the
previous round. Dealer then decreases rmin to m− 2.
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Observation 1. The maximum possible difference between m and m′ (the value
of m in the next round) decreases by 1

2 each round. Since after round 1 it can
be at most n

4 , and there are only log2(n) − 2 rounds then the maximum range
of m is 4 ≤ m ≤ n− 4.

Observation 2. Dealer never deals a set Eleft,i, where i > m− 2 on the table.

Observation 3. Dealer never deals a set matching Tother, Tright or Tmid, with an
‘i’ value < m on the table.

Observation 4. Dealer always deals his remaining cards Si,q,Si,r and Wj,j′ where
1 ≤ i ≤ m + 1, 1 ≤ j ≤ m − 1 and j′ is any number, into either Estart or sets
matching Tleft. All other cards are put into sets not matching Tleft nor being
Estart.

To prove that this strategy allows Dealer to play up until the end of round
log2(n) − 2, we will show that it satisfies two properties, namely that it always
provides a valid partitioning of the cards into sets matching the templates, Estart

or Eend and y remains in P 0. To demonstrate these properties hold, we use the
following claim, where a refers to the highest ‘i’ value of a set picked up by Player
matching Tleft and b is the smallest ‘i’ value of a set held by Player matching
any of the other templates and initially where no such sets have yet been picked,
we consider a = 0 and b = n:

Claim 1. At the start of round r, where r ≤ log2(n) − 2, a + 2 ≤ lmax ≤ m ≤
rmin ≤ b− 2.

Key to showing this claim is true is observation 1. This observation implies
that if Dealer ever increases (decreases) the value of m, then no matter how
Player decides to play in any future rounds, it is never the case that we can
arrive at a point where m is less than (more than) what it was before Dealer
increased (decreased) it plus (minus) four.

To show that lmax ≤ m while r ≤ log2(n) − 2, we use induction on r. It is
trivially true for r = 1, as m = n

2 and lmax = 4. It remains true throughout as
we only increase lmax when we increase m. This only occurs when Dealer plays
option 2, where lmax is set to the value of m in the previous round plus two,
yet the new value for m, m′, is ≥ m + 4 due to observation 1.

The first part of claim 1, namely that a+2 ≤ lmax, is trivially true at the start
of the game and it remains true throughout as if a set Eleft,j , where j > lmax,
is picked up by Player, then dealer increases the value of lmax to m + 2, and
m ≥ j by observation 2.

The final part of claim 1, stating that rmin ≤ b − 2, is clearly true at the
start of the game. To see that it remains true, note that if ever a set matching,
Tright or Tmid with an ‘i’ value < rmin is selected by Player, Dealer reduces the
value of rmin to m− 2. Due to observation 3, this is sufficient.

To see that the strategy always ensures that at the start of any round m ≤
rmin, we again use induction. When r = 1, it trivially holds as rmin = n and
m = n

2 . It remains true as rmin only decreases when m decreases (when Dealer
plays options 3 or 4). When this occurs, rmin is set to the value m was in the
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previous round minus two, yet the new value for m, m′ is at most m − 4 by
observation 1. This completes the proof of claim 1.

Claim 2. The strategy always gives a valid partition of all the remaining cards
into sets matching one of the templates, Estart or Eend, while r ≤ log2(n) − 2.

We will show this claim to be true by induction or r. When r = 1, it trivially
holds since we know exactly how Dealer plays and one can check this is a valid
partitioning. The inductive case has four subcases, depending on which of the
plays Dealer makes. Assume claim 2 holds for round r − 1. The trivial case for
round r is when Dealer plays using option 1, since he will clearly deal all the
remaining cards into valid sets by the inductive hypothesis. Notice that even
if Player was able to pick all the sets in the consistant region to the left, they
could set each of them to either of the two possible 0/1 values to create a single
consistant chain beginning from house one to house lmax in which the residents
of each house go into another house and the residents of every occupied house
are in both sets.

If Dealer plays using option 2, then Player selected a set Eleft,j , where j >
lmax. By observation 4, we know all remaining cards Si,q,Si,r and Wg,g′ where
1 ≤ i ≤ m + 1, 1 ≤ g ≤ m − 1 and g′ is any number, were partitioned into set
matching Tleft or Estart. By the inductive hypothesis, it is valid for Dealer to put
these cards down in the same sets in round r (without the set Eleft,j removed by
Player). The cards Si,q,Si,r and Wg,g′ where m+2 ≤ i ≤ m′+1, m ≤ g ≤ m′+1,
m′ is the new value of m in the next round, and g′ is any value, must still be in
the pack available to Dealer, because by claim 1 and the fact that b is unchanged
during this round, m′ ≤ b− 2. This enables Dealer is deal out the sets Eleft,q for
all m + 2 ≤ q ≤ m′, and Emid,m′ next time, as described in option 2. The rest of
the cards can be partitioned precisely as they were in the previous round, these
are Si,q, Si,r or Wi,i′ where m + 2 ≤ i ≤ n that are aren’t in Player’s hand. By
observation 4 these could not have been in Estart or a set matching Tleft in round
r − 1. Therefore, none of the possible sets these cards could have been in require
a card Wi,i′ , where i < m′+ 2 and i′ is any number. Therefore, Dealer has not yet
dealt any of the cards required to construct these sets.

When Dealer plays using option 3, we know that Player picked a set matching
Tright with an ‘i’ value < rmin. In this case, all the cards left from Si,q, Si,r and
Wi,i′ where m + 2 ≤ i ≤ n and i′ is any number, are placed in the same sets
they appeared in the last round. This is acceptable because from observation 4
these cards could not have been in sets matching Tleft or Estart and therefore
as previously mentioned can not contain any variable Sg,q, Sg,r or Wg,i′ for any
g < m + 2. All the cards for Si,q,Si,r and Wg,g′ where m′ + 2 ≤ i ≤ m + 1,
m′ ≤ g ≤ m + 1, m′ represents the new value of m at the end of round r and
g′ is any value, must still be in the pack available to Dealer, because by claim 1,
a+ 2 ≤ m. Therefore, as detailed in option 3, Dealer can partition all these cards
into the setsEmid,m′ andEright,j , wherem′+2 ≤ j ≤ m, without causing conflict.

If however Dealer plays using option 4, (i.e. Player selected Emid,m), by the
same reasoning as in the previous case, we know that Dealer has all the cards
Si,q,Si,r and Wg,g′ where m′ + 2 ≤ i ≤ m + 1, m′ ≤ g ≤ m + 1, m′ represents
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the new value of m at the end of round r and g′ is any value, except the cards
for Wm,m+2, Wm,m+3, Wm+1,m+2 and Wm+1,m+3. Therefore, he is able to deal
all these cards into the sets Eother,m, Emid,m′ and Eright,j , where j is even
and m′ + 2 ≤ j ≤ m − 2, as detailed in option 4. One should note that the
template Tother is only used when Dealer plays option 4; it is simply a way of
dealing with the left over variables Sm,q, Sm,r, Sm+1,q and Sm+1,r. In option
4, the rest of the cards are dealt into as many of the sets Estart and Eleft,j ,
where 2 ≤ j ≤ m′ − 2 and j is even, as is possible. By observation 4, in the
previous (successful) deal these cards must have been allocated into these sets
and therefore, can be partitioned likewise in this round.

Since we know the strategy of Dealer creates a valid partitioning all the cards
by following the four possible options, the inductive step holds and the proof of
claim 2 is complete.

Claim 3. The strategy ensures Player’s position y, is in P 0 at the end of round
r = log2(n) − 2.

Note that the only inconsistent situations are (1) when the residents of a house
don’t go anyway, (2) the residents of a house are in both sets and go to another
house in which the residents are not in both sets and (3) the residents of a house
in both sets occupy their own house and other people also in both sets go into
that house.

From claim 1, it is clear that there are two distinct non-intersecting regions
from which Player has selected sets: the left of the middle and the right of the
middle. From the way in which the sets are constructed, one can see that the
residents of a house on the right of the middle are never in both sets whilst the
residents of any house j on the left of the middle that has people go into it (i.e.
Wi,j = 1 for some i), are in both sets (i.e. Sj,q, Sj,r = 1), for this reason situation
(2) can not arise in the position defined by y.

It is also clear that in any position defined by y, situation (3) never occurs
since only residents of houses n− 3 to n have the option of going into their own
houses and by claim 1 they must always be on the right of the middle. Finally,
situation (1) can not occur in y since whenever Player sets one variable Wi,j to
zero, they set another variable Wi,j′ to one. This concludes the proof of claim 3.

Since we have shown that y ∈ P 0, at the end of round log2(n)−2 and that the
strategy always creates a valid partitioning of the set E, our proof of theorem 2
is complete. �

From theorems 1 and 2, we get the following corollary.

Corollary 1. Narrow Resolution width is incomparable to CP rank.

As in the proof of theorem 2 all variables Wi,j = 0 where j > i + 3 in x, it is
clear that we could get precisely the same CP rank lower bound for the polytope
defined by all the inequalities in RHSP2 n, except having all these variables
removed. This would give us an instance which had a maximum clause length
of six, i.e. a 6-CNF. In [8], they prove the following lemma.
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Lemma 3. ([8], Proposition 2) If a r-CNF, F , has a width k narrow Reso-
lution refutation, the F has a width r + k − 2 “normal” Resolution refutation.

Since the narrow Resolution width of a set of clauses can not increase if variables
are removed, this lemma allows us to see that our altered version of RHSP2 n

has a “normal” Resolution refutation of width ten. This implies the following
corollary.

Corollary 2. Resolution width, defined in terms of the maximum size of any
clause in the proof, is incomparable to CP rank.

4 Further Work

Our result fills in a gap in our knowledge about whether CP rank and Resolution
width are related. There are similar other gaps about the rank of proofs in
other systems such as the well known Lovásv-Schrijver proof systems and the
Sherali-Adams (SA) proof system (see [12] and [15] respectively). For instance
it is unknown whether CP and LS rank are incomparable. For the SA operator,
before this result, the same was true (see [13]), however corollary 2 combined
with proposition 1 from [7], tells us that the SA rank of a polytope is also
incomparable to its CP rank.

We conjecture that the narrow Resolution width is exactly the SA rank of any
unsatisfiable CNF and that the SA rank maybe arbitrarily smaller than the LS
rank of a polytope, although never larger. A proof of the first conjecture (linking
SA rank and narrow Resolution width) would be particularly interesting since it
is likely to involve developing a means of assigning values to consistent partial
assignments of a arbitrary instance.

One direct open question is whether Ω(log2(n)) is a tight lower bound on the
CP rank of RHSP2 n, since it is possible that it could require linear CP rank.
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Abstract. We give a new and conceptually different proof for the de-
cidability of k-valuedness of transducers (a result due to Gurari and
Ibarra), without resorting to any other kind of machines than transduc-
ers. In contrast with the previous proof, our algorithm takes into account
the structure of the analysed transducers and yields better complexity
bounds. With the same techniques, we also present a new proof, hopefully
more easily understandable, for the decidability of bounded valuedness
(a result due to Weber).

1 Introduction

This communication is part of a complete reworking of the theory of k-valued
rational relations and transducers which makes it appear as a natural gener-
alisation of the theory of rational functions (the 1-valued ones) and functional
transducers, not only at the level of results but also at the level of proofs.

In one word, it is decidable whether a finite transducer is functional (Schützen-
berger [1]), the equivalence of functional transducers is decidable (consequence
of the previous result), and every functional transducer is equivalent to an un-
ambiguous one (Eilenberg [2]). These results generalise in a remarkable way to
bounded valued transducers: it is decidable whether the cardinality of the image
of every word by a given transducer is bounded (Weber [3]) and whether it is
bounded by a given integer k (Gurari and Ibarra [4], by reduction to the empti-
ness problem for a class of multi-counter automata); the equivalence of k-valued
transducers is decidable (Culik and Karhumäki [5] in the context of the study
of Ehrenfeucht’s conjecture, and Weber [6]), and every k-valued transducer is
equivalent to the sum of k functional and unambiguous ones (Weber [7]).

In [8], we have given a new and shorter proof for this last result, with a gain
of one exponential in the size of the result with respect to the original proof. It
is based on a construction that we call the lag separation covering (of real-time
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transducers). This construction itself uses the Lead or Delay Action (LDA for
short) introduced in [9] to describe an efficient construction for the decidability
of the functionality of transducers.

In this communication we present a new proof for the following result:

Theorem 1 (Gurari-Ibarra [4]). Let T be a transducer and k a positive in-
teger. It is decidable in polynomial time whether T is k-valued.

We also present here a new proof for the decidability of the bounded valuedness,
which comes very naturally together with the proof of Theorem 1:

Theorem 2 (Weber [3]). Let T be a transducer. It is decidable in polynomial
time whether there exists an integer k such that T is k-valued.

In a third part [10], we tackle the decidability of the equivalence of k-valued
transducers by using together the methods we present here and in [8].

In the original proof of Theorem 1 by Gurari and Ibarra, a nondeterministic
k(k + 1)-counter 1-turn automaton A (see [11] for definitions) is built. A com-
putation in A corresponds to k + 1 computations of T with the same input,
and each pair of these computations of T is associated with two counters. The
counters are incremented by the lengths of the outputs until a position, guessed
nondeterministically, where these outputs become different, and a computation
of A is successful iff the outputs of its k+1 projections are pairwise distinct. The-
orem 1 follows then from the decidability, in polynomial time, of the emptiness
of a finite turn r-counter automaton, another result due to Ibarra [11].

If this theoretical scheme is clear, the actual complexity of the correspond-
ing procedure is difficult to estimate beyond the fact that “it is polynomial”.
This is particularly true for the procedure which decides of the emptiness of
a multi-counter automaton, for it is based on general arguments of complexity
theory: if the r-counter automaton accepts some input, then there exists a con-
stant c such that it accepts an input of length bounded by (rm)cr (where m is
the number of transitions); it is possible to test these bounded inputs with a
nondeterministic Turing machine working in space proportional to cr log(rm);
for each nondeterministic Turing machine working in space f(n) there exists an
equivalent deterministic one working in time df(n), for some constant d (cf. [12]).
It is not clear how these two constants c and d can be effectively computed and
if their actual values have any relationship with the transducer under inspection.

Our proof of Theorem 1 (Section 3) stems from a generalisation of the char-
acterisation of functional transducers with the Lead or Delay Action (LDA) G
in [9]. Roughly speaking, a computation in the product T ×T = T 2 projects on
two computations with equal inputs in T , thus T is functional iff every successful
computation in T 2 outputs a pair of equal words. Differences between words are
witnessed by the LDA G, and T is functional iff the product T 2×G is isomorph
to T 2 (being hence finite) and assigns the empty word to the final states of T 2.

At first we generalise the LDA to an action Gk+1 which measures the dif-
ferences between the outputs in the (k + 1)-tuples of computations of T . It is
not difficult to get a necessary and sufficient condition on T k+1 × Gk+1 for T
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be k-valued (Proposition 1). The problem is that this condition is not effective
anymore for T k+1 × Gk+1 may be infinite for k > 1 even if T is k-valued. The
core of our method – and this is of course more complicated – is the proof that it
is possible to attach to every state of T k+1 a finite set of information, effectively
computable from T , which retains all the useful information from T k+1×Gk+1

to decide whether T is k-valued (Theorem 3). These sets are what we call the
Lead or Delay Valuation of T k+1 (LDV). We explain in Section 3.4 how the
LDV can be constructed in O(�nk+1mk+1), where n and m are the numbers of
states and transitions of T and � is the maximal length of outputs of transitions.
By comparison with the complexity of the procedure to decide the functionality
in [9], this is probably the best that can be hoped for. On the other hand it
is to be acknowledged that the constant hidden in the “big O” is handed by a
function which grows exponentially fast with the valuedness k, namely, 25(k+1)4 .

Weber’s proof of Theorem 2 is somewhat similar to the classical characteri-
sation of bounded N-automata of Mandel and Simon [13] (made more explicit
in [14]): T is bounded valued iff T does not contain certain forbidden computa-
tions (Theorem 4). Weber gives in [3] an algorithm to detect these computations.

We give another proof for Theorem 2, which uses a construct, the lag sepa-
ration covering, that we have defined in [8] in order to establish the decompo-
sition resulted quoted above. We first describe the forbidden computations in a
slightly different way (Theorem 5). With the help of the lag separation covering,
the proof that the absence of these computations implies the bounded valued-
ness is straightforward: if this holds for T , then the covering has an equivalent
subtransducer whose underlying input automaton is finitely ambiguous; in other
words, every input word can be read by a bounded number of computations in
T , thus T is bounded valued. We explain in Section 4.2 how this characterisation
can be tested in a certain subtransducer of the product of T 3 by the LDA in
complexity O(�n3(n3 +m3)). To some extent the complexity claimed in [3] is of
the same order as it is in O(�2n9) but the proof is indeed difficult to follow.

Due to space constraints most of the proofs have not been included, but
they can be found in [15] and hopefully in a forthcoming paper which is in
preparation. We have tried our best to give here the ideas underlying the proofs.
This is anyway a highly technical matter of which it would be futile to disguise
the intrinsic complexity.

2 Preliminaries

We follow the definitions and notation in [16,2,17]. The set of words over a finite
alphabet A (the free monoid over A) is denoted by A∗, and the empty word by
1A∗ , or simply 1 in figures. The length of a word u in A∗ is denoted by |u|.

Let M be a monoid. An automaton A = (Q,M,E, I, T ) is a directed graph
given by sets Q of states, I, T ⊆ Q of initial and final states, respectively, and
E ⊆ Q×M ×Q of transitions labelled by M . It is finite if Q and E are finite.

A computation in A is a sequence of transitions c : p0
m1−−→ p1

m2−−→ . . .
ml−−→ pl,

also denoted by c : p0
m1...ml−−−−−→ pl. Its label is the element m1 . . .ml of M and
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p

q
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a |1
b |1

b |1

a |1
a |1

b |a

p q ra |1
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a |1

a |1

b |a

ppp pqp prp

ppq prq

ppr pqr

a |(1, 1, 1)
b |(1, 1, 1)

b |(1, 1, 1)

b |(1, 1, 1)

a |(1, 1, 1)

a |(1, 1, 1)

b |(1, 1, a)

a |(1, 1, 1)

a |(1, 1, 1)

b |(1, a, 1)

b |(1, 1, a)

b |(1, a, 1)

a |(1, 1, 1)
a |(1, 1, 1)

Fig. 1. A transducer T1 (drawn on the left and above), and the part of T 3
1 accessible

from (p, p, p) and co-accessible to (p, q, r). All states are final.

its length is |c| = l. It is successful if p0 ∈ I and pl ∈ T . The behaviour of A
is the set |||A||| ⊆ M of labels of successful computations. The behaviour of finite
automata over M coincide with the family RatM of rational subsets of M [2].

If M is a free monoid A∗ and the labels of transitions are letters, then A is a
(boolean) automaton over A. If M is a product A∗×B∗, then every transition is
labelled by an input word u ∈ A∗ and an output one x ∈ B∗ — this is denoted
by u|x — and A is a transducer realising a rational relation from A∗ to B∗.

The image of a word u by a transducer T is the set of outputs of the successful
computations reading u; T is called k-valued (for an integer k > 0) if the cardina-
lities of these images are at most k, and bounded valued if there exists such k.

We shall only consider real-time transducers: their labels are pairs a|K formed
by a letter a and a set K ∈ RatB∗, and I and T are functions from Q to
RatB∗. By using classical constructions on automata, every transducer can be
transformed into a real-time one. For bounded valued relations we may suppose
that the transitions output a single word, and in order to avoid inessential details
we can also suppose that the image of every initial or final state is the empty
word.1 In this case, the transducer is denoted rather as T = (Q,A,B∗, E, I, T ).

We shall make systematic use of product of automata. For real-time transduc-
ers, this operation is defined in the same way as for boolean automata, with the
difference that the outputs have to be taken into account. Formally, the square of
T = (Q,A,B∗, E, I, T ) is the transducer T 2 = (Q2, A,B∗2, E(2), I2, T 2) where

(p, q)
a|(u,v)−−−−→ (p′, q′) is in E(2) iff both p

a|u−−→ p′ and q
a|v−−→ q′ are in E (see [9]

for details). We define likewise the product of T by itself l times: a transducer
T l labelled by A×B∗l whose state set is Ql, and the set of transitions is E(l).

1 Such transducers are also called nondeterministic generalised sequential machines.
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A last, and useful, convention: all automata (or transducers) considered or built
by the various algorithms described here are implicitly assumed to be accessible.
In particular, we write that Ql is the set of states of T l, but indeed when we say
that q is a state2 of T l, we mean that q is accessible in T l.

3 Deciding k-Valuedness

Our proof for Theorem 1 consists in testing the k-valuedness of a transducer T
in the cartesian product T k+1 in the same way as the functionality may be
witnessed in the product of T 2 by the Lead or Delay Action (LDA) G [9].

At first, the road to the generalisation seems easy: (k + 1)-tuples of distinct
computations in T with the same input are seen as computations in T k+1 and T
is k-valued if in such computations at least two of the outputs are equal. To that
end, the LDA is generalised to a Pairwise Lead or Delay Action, denoted Gk+1,
and the wanted property is expressed in T k+1×Gk+1 (Proposition 1).

The difficulty arises with the fact that T k+1×Gk+1 may be infinite for k > 1,
even if T is k-valued (as in Figure 2). Here comes the crux of the proof: with the
definition of partially defined pairwise differences, or PDPD (Section 3.3), we are
able to attach to every state q of T k+1 a finite set m(q) of PDPDs. This m(q)
subsumes the essential information contained in the states of T k+1×Gk+1 that
map onto q and makes it possible to characterise the k-valuedness within a finite
object, the Lead or Delay Valuation (LDV) of T k+1 (Theorem 3). As we explain
in Section 3.4, the LDV can be built in polynomial time with a traversal of T k+1.

3.1 The Lead or Delay Action

Let B be an alphabet and B a disjoint copy of B. The underlying structure
of the LDA is the free group F (B) generated by B, that is, the quotient of
(B ∪ B)∗ by the relations xx = xx = 1B∗ , for every x in B. The inverse of
an element u in F (B) is denoted by u (for example, xxy = y xx). We write
Δ = B∗ ∪ B

∗ ∪ {0}, where 0 is a new element, a zero, not in F (B), and define
a function ρ : F (B) ∪ {0} → Δ by wρ = w , if w ∈ Δ, and wρ = 0 otherwise.3

Definition 1 ([9,17]). The Lead or Delay Action (LDA) of B∗×B∗ on Δ,
denoted by G, is defined as follows: for every w ∈ Δ and (u, v) ∈ B∗×B∗,
w · (u, v) = (uwv)ρ (where the product is taken with the rules 0u = u0 = 0).

Intuitively, 1B∗ · (u, v) represents the “difference” of the words u and v, being
a positive word if u is a prefix of v (the lead of v with respect to u), a negative
word if v is a prefix of u (the delay of v with respect to u), and 0 if u and v
are not prefixes of a common word. In [9], an effective characterisation of the
functionality is made with the product T 2×G (cf. Definition 3), which shows the
differences between pairs of computations of T : T is functional iff T 2×G assigns
an unique value of Δ−{0} to every useful state of T 2 and 1B∗ to the final ones.
2 We write tuples of states, or of words, with bold letters.
3 We use a postfix notation for relations: xτ is the image of x by the relation τ .
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3.2 The Pairwise Lead or Delay Action

In order to deal with the differences between the outputs of an arbitrary number
l (l > 1) of computations in parallel, we generalise the LDA as follows. Let us
write Dl = {(i, j) | 1 ≤ i < j ≤ l}. We write Δl for ΔDl , that is, the set of
vectors of dimension Dl with entries in Δ, which we call pairwise differences or
PD for short. The entry at the coordinate (i, j) of a PD δ is denoted by δi,j . The
PD with all entries equal to the empty word is denoted by η.

Definition 2. For every integer l > 1, the Pairwise Lead or Delay Action of
B∗l on Δl is the function Gl : Δl×B∗l → Δl which maps every (δ,u) in Δl×B∗l

to the PD γ in Δl such that, for every (i, j) in Dl, γi,j = δi,j · (ui,uj).

(Gl is indeed an action for the LDA is applied independently to each coordinate.)

Definition 3. For every integer l > 1, the product of T l by Gl is the (accessible)

transducer T l×Gl = (Ql×Δl, A,B
∗l, F, I l×{η}, T l×Δl) where (p, δ)

a|u−−→ (q, δ′)

is a transition in F iff p
a|u−−→ q is a transition in E(l) and δ′ = δ · u.

The k-valuedness of T is witnessed by the final states of T k+1×Gk+1:

Proposition 1. A transducer T is k-valued iff for every final state (q, δ) of
T k+1×Gk+1, δ has at least one entry equal to 1B∗ . �
This condition is not however effective. For every state q of T k+1, let us write
X(q) for the set of PDs in the states of T k+1×Gk+1 projecting on q: X(q) =
{δ ∈ Δk+1 | (q, δ) state of T k+1×Gk+1}. Contrary to the characterisation of the
functionality in [9], X(q) may be infinite, even if T is k-valued (as in Figure 2).

3.3 A Finite Characterisation of k-Valuedness

The main concept for the definition of the Lead or Delay Valuation is that of
traverse of a set of PDs. Intuitively, a traverse for X ⊆ Δl is a PD γ in Δl such
that for every δ in X , there exists a coordinate (i, j) satisfying δi,j �= 0 and
γi,j = δi,j . In other words, each PD in X has a non null “intersection” with γ.

It may well exists some (i, j) in which no intersection arises. Such coor-
dinates are not really useful. For this reason, we embed Δl in a larger set
Hl = [Δ ∪ {⊥}]Dl of partially defined pairwise differences (PDPD), where ⊥
fills undefined entries. Now, we say that a traverse for a set X ⊆ Hl of PDPDs is
a PDPD γ ∈ Hl satisfying: for every δ ∈ X , there exists a coordinate (i, j) such
that δi,j �= 0, δi,j �= ⊥, and γi,j = δi,j ; for every (i, j) such that γi,j �= ⊥, there
exists at least one δ in X such that δi,j �= 0 and γi,j = δi,j . A traverse has at
least one defined entry, and has no entry equal to 0. We denote by tv (X) the
set of traverses for X . As before, tv (X) may be infinite or empty.

The set Hl is naturally ordered by β 8 γ iff γ coincides with β on the defined
entries of β. We denote by m(X) = min(tv (X)) the set of minimal traverses for
X , and for a state q of T k+1 we write m(q) = m(X(q)). The set m(q) is what we
call the value of q, the family of these sets is the Lead or Delay Valuation (LDV)
of T k+1. It is not difficult to restate Proposition 1 in terms of this concept:
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ā2

a3 1
ā3
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Fig. 2. The product by G3 of the part of T 3
1 in Figure 1. Gray regions gather states

which project on a same state of T 3. The output of the dotted transitions is (1, 1, 1).

Theorem 3. A transducer T is k-valued iff for every final state q of T k+1 there
exists at least one γ in m(q) whose defined entries are all equal to 1B∗. �
Theorem 3 is the finite characterisation of the k-valuedness we are aiming at
because the sets m(q) are finite and computable. The finiteness holds indeed for
the set of minimal traverses of every set of PDs:

Proposition 2. For every l > 1, for every X ⊆ Δl, card(m(X)) ≤ 2l4 . �

3.4 Making the Characterisation Effective

The effective construction of the LDV is based on two properties. The first one
is a stability property in the strongly connected components (SCCs) of T k+1.
The second one states that every m(q) depends uniquely on the values of the
states which precede the SCC of q.

We say that a PDPD γ is stable in q if for every circuit q
f |u−−→ q, γ · u = γ.

Proposition 3. Every γ ∈ m(q) is stable in q. Thus, for every p in the same

SCC as q and every computation q
f |u−−→ p, m(p) = m(q) · u. �
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(Here Gl is extended to sets of PDPDs: for every X ⊆ Hl and every l-tuple of
words u, X ·u = {δ ·u | δ ∈ X}, where undefined entries of δ remains undefined
in δ · u). For X ⊆ Hk+1, we denote stq (X) = {γ ∈ X | γ stable in q}.

In order to explain the second property, we define a commutative and as-
sociative operation between sets of PDPDs. Given β and γ in (the partially
ordered set) Hl, let β ∨∨∨ γ be their least upper bound (which exists iff β
and γ are compatible on the defined coordinates). For X,Y ⊆ Hl, we define
X ⊕ Y = min({β ∨∨∨ γ | β ∈ X, γ ∈ Y }). If X and Y are finite, then X ⊕ Y is
clearly finite. Let us also fix a notation. For every SCC C of T k+1, let I(C) be

the set of transitions incoming in C: I(C) = {p a|u−−→ r | p �∈ C, r ∈ C}. For

every e : p
a|u−−→ r in I(C) and every state q in C, let ve,q be the output of an

arbitrary but fixed computation from r to q, and Xe,q = stq (m(p) · (uve,q)).

Proposition 4. For every q (in the SCC C of T k+1), m(q) = ⊕e∈I(C)Xe,q. �

Propositions 3 and 4 yield a construction of the LDV of T k+1 with a topological
traversal of the SCCs of T k+1. It starts at a hidden initial state i with outgoing
transitions labelled by 1B∗ ending in the initial states of T k+1; m(i) is the set of
PDPDs having exactly one defined entry which is equal to 1B∗ .

We express the complexity of the algorithm on the following parameters of T :
n (number of states), m (number of transitions) and � (maximal length of the
outputs of transitions)4. The analysis depends on the following:

Proposition 5. For every γ ∈ m(q), if γi,j is defined, then5 |γi,j | ≤ �nk+1. �

Testing whether a PDPD is stable in a SCC with s transitions can be made
in time O(k2�nk+1s). By Proposition 2, the cardinality of every m(q) is finite
and does not depend on the transducer T . Therefore, the construction of each
set Xe,q can be made in O(k2�nk+1s) and each operation ⊕ in O(k2�nk+1).
It follows that the overall complexity of our algorithm is O(�nk+1mk+1). The
multiplicative constant hidden in the “big O” comes from the bound established
in Proposition 2 and is thus at most 2(k+1)4 .

Example 1. In this example and in the figures, PDs are represented as upper
triangular matrices indexed by {p, q}×{q, r} (in this order).

Let q = (p, q, r) be a state of T 3
1 (Figure 1). The set of PDs in T 3

1 ×G3 attached
to q is X(q) =

{(
1 at

at

)
| t > 0

}
∪
{(

at 1
at

)
| t > 0

}
(see Figure 2). The set of

traverses of X(q) is tv (X(q)) =
{(

1 1
at

)
| t > 0

}
∪
{(

1 1
at

)
| t > 0

}
∪
{(

1 1
⊥
)}

.
There is only one minimal one: m(q) =

{(
1 1
⊥
)}

. This is the value of q, also
obtained by applying the operation ⊕ to the PDPDs

(
1 ⊥
⊥
)

and
(⊥ 1

⊥
)

incoming
in the SCC of q (see Figure 3).

4 Recall that the valuedness k is considered as a constant.
5 Recall that γi,j , if defined, is a word in B∗ ∪ B

∗
; |γi,j | is as usual the length of it.
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4 Deciding Finite Valuedness

Weber’s proof for Theorem 2 [3] is in two steps: first, the bounded valuedness
is characterised by three conditions on the computations of the transducer T
(Theorem 4); next, it is shown that these conditions can be tested by means of a
construction with the underlying graph of T . The proof is difficult due in part to
the fact that besides the decidability it gives an upper bound for the valuedness.

Our proof is akin to Weber’s one, but on the other hand is different in both
steps. We first describe other conditions, C1 and C2 (Theorem 5), and prove
that they characterise the bounded valuedness. That stating these new condi-
tions is useful comes from the fact that they are well-fitted with the use of a
construction for transducers which we defined in [8], the lag separation cover-
ing. This construction together with the characterisation of bounded ambiguity
for N-automata due to Mandel and Simon (Theorem 7) yields a straightforward
proof that C1 and C2 imply the bounded valuedness of T : if T satisfies C1 and
C2, then with the construction of a lag separation covering on T we obtain a
transducer which is equivalent to T , and whose underlying input automaton,
say A, satisfies the conditions S1 and S2 in Theorem 7; thus, A realises a series
which is bounded by some integer k; as the number of outputs in T for every
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Fig. 3. The values m(q) for the states of T 3
1 (filled regions) accessible from (p, p, p)

and co-accessible to (p, q, r). Dashed transitions have output equal to (1B∗ , 1B∗ , 1B∗ ).
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input word u is at most the number of successful computations in A labelled
by u, the valuedness of T is at most k. The condition C1 is easily testable. In
order to test C2, the LDA will be useful again, and we describe in Section 4.2 a
condition on T 3×G equivalent to C2 which can be tested in polynomial time. It
turns out that the product T 3×G captures the technicalities of the constructions
underlying Weber’s algorithm (Section 3 of [3]).

4.1 A Characterisation of Bounded Valuedness

Weber’s conditions for bounded valuedness are better described with the help of
Figure 4. Let us call a computation p −→ p −→ q −→ q with p �= q a dumbbell-
computation, and a computation such as on the right of Figure 4 a W-computation.

p q

i t

u |x1
u |x2

u |x3

i tp1

p2

p3

q1 q2

u |x1

v |x2

w |x3

u |y1

v |y2

w |y3

u |z1

v |z2

w |z3

Fig. 4. A dumbbell-computation and a W-computation

Theorem 4 (Weber [3]). A trim transducer T is bounded valued iff:6 W1)
T does not contain co-terminal7 circuits with same input and distinct outputs;

W2) T does not contain a dumbbell-computation p
u|x1−−−→ p

u|x2−−−→ q
u|x3−−−→ q with

x1x2 �= x2x3; W3) T does not contain a W-computation with |x1| �= |y2|. �

It is not so difficult to see that these three conditions are necessary for the
bounded valuedness. The substance of the theorem is that they are sufficient.

The idea of our new conditions is to adjoin a restriction on the lag between
the computations which allows to capture W2 and W3 on a single statement.8

Theorem 5. A trim transducer T with n states and output lengths bounded by �
is bounded valued iff: C1) T does not contain a circuit which contain co-terminal

transitions p
a|u−−→ q and p

a|v−−→ q such that u �= v; C2) T does not contain a

dumbbell-computation c1 : p
u|x1−−−→ p, c2 : p

u|x2−−−→ q, c3 : q
u|x3−−−→ q where either

x1x2 �= x2x3 or x1x2 = x2x3 and 〈c1c2, c2c3〉 > �n3.

6 Weber’s conditions are slightly different (but equivalent), for W1 and W2 are stated
together. We chose other presentation in order to make clear the comparison with
the statements to come.

7 With same origin and same end.
8 The notation 〈c, d〉 in this statement stands for the lag between two computations

c and d and is defined in [8].
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If the valuedness of T is bounded, clearly the condition C1 must hold, and
every c1c2c3 in C2 must satisfy x1x2 = x2x3. The proof that every dumbbell-
computation must satisfy 〈c1c2, c2c3〉 ≤ �n3 is a pumping argument showing
that such a lag would imply a W-computation which does not satisfies W3.

The proof of the sufficiency of the conditions C1 and C2 is straightforward
with the use of two tools. The first one is the lag separation covering of T , a
construction parametrised by an integer N > 0 of a new and larger transducer
UN with a morphism from UN to T inducing a bijection between their successful
computations.9 This covering allows to avoid pairs of computations such that
the differences of lengths of outputs along them (their “lag”) are bounded by N :

Theorem 6 ([8]). For every N > 0, the lag separation covering UN contains
a subtransducer VN equivalent to T where distinct successful computations with
same label have lag larger than N . �
The second tool is a classical characterisation of boundedness of N-automata:

Theorem 7 (Mandel-Simon [13], Seidl-Weber [14]). A trim N-automaton
A realises a bounded N-series iff:10 S1) A does not contain a circuit which
contains a transition with multiplicity greater than 1; S2) A does not contain a
dumbbell-computation. �
The idea is to show, starting from Theorem 6, that if T satisfies C1 and C2,
then the underlying input automaton A of VN (with N = �n3) satisfies S1 and
S2. Now, by Theorem 7, A is of bounded ambiguity, and thus the valuedness of
VN (and that of T , for VN is equivalent to it) is bounded.

4.2 Testing the Characterisation in T 3×G
The condition C1 in Theorem 5 is easily testable. The substance of our algorithm
is a characterisation of C2 within the product of T 3 by the LDA G. In Section 3.2,
we defined T 3×G3, the LDA applied to every pair of projections of T 3. The
product T 3×G is defined likewise but in this case G acts on a single pair of
projections, the first and the second one. Let W be the part of T 3×G consisting
of states accessible from some state of form ((p, p, q), 1B∗) and co-accessible to
some state of form ((p, q, q), v) (where p and q are distinct states of T ).

Lemma 1. The transducer T (with n states and lengths of outputs bounded by
�) satisfies C2 iff for every state ((r, s, t), w) of W, w �= 0 and |w| ≤ �n3. �
Thus, W allows to test C2. But this subtransducer seems to be very large, for
there are exponentially many words of length at most �n3. In order to obtain a
polynomial time complexity, the idea is to consider only the harder part of W ,
the subtransducer W ′ consisting of states which are co-accessible to some circuit
whose output (x, y, z) is such that either x �= 1B∗ or y �= 1B∗ :
9 For the definition of covering of automata see [18].

10 The original statement in [13] reads instead of S1 that S1’: A contains neither a
circuit with multiplicity greater than 1 nor distinct co-terminal circuits with the
same input. In the presence of S2 both formulations are equivalent.
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Lemma 2. If all the states of W ′ satisfy the conditions in Lemma 1, then the
same is true for the states of W. �

It turns out that this part is not so large due to the following lemma11:

Lemma 3. In states of W ′ projecting on a same state of T 3 the words in the
second component must be prefix of a common word or C2 is not satisfied. �

Thus, in order to construct W ′ we can maintain for every state (r, s, t) of T 3 only
two words of length at most �n3, a positive and a negative one, whose prefixes
represent the states of W ′ already constructed. Each prefix implies a traversal
of T 3, thus the complexity of our algorithm to test the bounded valuedness of
T is O(�n3(n3 + m3)) (where m is the number of transitions of T ).
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Abstract. We show that all problems of the following form can be
solved in polynomial time for graphs of bounded treewidth: Given a
graph G and for each vertex v of G a set α(v) of non-negative integers.
Is there a set S of vertices or edges of G such that S satisfies a fixed
property expressible in monadic second order logic, and for each vertex
v of G the number of vertices/edges in S adjacent/incident with v be-
longs to the set α(v)? A wide range of problems can be formulated in
this way, for example Lovász’s General Factor Problem.

1 Introduction

Treewidth is a graph invariant that indicates the tree-likeness of a graph. It was
introduced independently by several authors in different context and terminol-
ogy (see, e.g., [4]). Many combinatorial graph problems that are hard in general
become easy for graphs of small treewidth, for example 3-Colorability and
Hamiltonicity can be decided in linear time for graphs of treewidth bounded
by a constant k (albeit with a running time containing a constant factor that
is exponential in k). Such algorithms are usually obtained by means of dynamic
programming applied via a bottom-up traversal of a decomposition tree asso-
ciated with the given graph. Courcelle’s famous theorem [7,8] provides a uni-
fied framework for establishing linear-time algorithms for problems on graphs
of bounded treewidth. It covers all decision problems that can be expressed
in the formalism of Monadic Second Order (MSO) logic (3-Colorability and
Hamiltonicity are such problems). Arnborg, Lagergren, and Seese [1] establish
an extension of Courcelle’s Theorem that allows to solve MSO-expressible opti-
mization problems in linear time for graphs of bounded treewidth. This covers
problems that ask for a set S of vertices or edges of a given graph that satisfies
an MSO-expressible property and minimizes a linear cost function associated
with vertices and edges of the given graph. Dozens of classical NP-hard prob-
lems such as Vertex Cover and Dominating Set are of this type [1]. The
mentioned theorems provide a powerful toolkit for a quick complexity classifica-
tion of problems. However, the provided algorithms are usually not feasible in
practice. Once a problem is classified as being easy in principle, one can develop
more practical problem-specific algorithms.
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In this paper we prove an extension to the known MSO theorems. We consider
problems of the following form: Given a graph G and for each vertex v of G a
set α(v) of non-negative integers. The question is whether there exists a set S
of vertices or edges of G that (i) satisfies a fixed MSO-expressible property and
(ii) for each vertex v of G, the number of vertices in S adjacent to v plus the
number of edges in S incident with v belongs to the set α(v). We call such a
problem an MSO problem for graphs with local cardinality constraints, or MSO-
LCC problem, for short.

For example, the General Factor problem introduced by Lovász [14,15] is
an MSO-LCC problem where the MSO property simply states that S is a set of
edges. In Section 4 we discuss further examples of MSO-LCC problems.

Our main result is the following:

Theorem 1. Every MSO-LCC problem can be solved in polynomial time for
graphs of bounded treewidth.

We establish Theorem 1 in two steps. Consider an MSO formula ϕ(X) with free
set variable X and a constant k ≥ 1. Assume we are given a graph G with n
vertices and treewidth k, and local cardinality constraints α. In the first step
we use Bodlaender’s Theorem [3] and the tree automata approach of Arnborg
et al. [1] to construct in time O(n) a certain auxiliary structure, a solution tree,
which is a tree decomposition of G equipped with additional labels. The solution
tree is a succinct representation of all solutions, that is, of all sets S of vertices
and edges for which ϕ(S) is true in G. We think that the concept of solution
trees can be useful for other extensions or generalizations of the known MSO
theorems. In a second step we perform dynamic programming on the solution
tree. This second step is carried out in time O(n2k+3). It is easy to modify the
algorithm so that it actually produces a solution (if one exists) within the same
asymptotic running time.

The running time of the algorithm is polynomial since the treewidth bound k
is considered constant; however, the order of the polynomial depends on k. One
might wonder if this dependency is necessary. In Section 5 we explain that, sub-
ject to a complexity theoretic assumption, this dependency cannot be eliminated.

2 Preliminaries

2.1 Graphs and Local Cardinality Constraints

All considered graphs are finite, simple, and undirected. V (G) and E(G) denote
the vertex set and the edge set of a graph G, respectively. The order of a graph
is the number of its vertices. We denote an edge between vertices u and v by uv
(or equivalently by vu). The degree of a vertex v in G is denoted by dG(v). In
addition we assume each vertex or edge x is labeled with an element of some fixed
finite set. The labels allow us to consider graphs with different “sorts” of vertices
and edges. For a vertex v ∈ V (G) we denote by NG(v) the set of neighbors of v
in G (that is, the set of vertices u ∈ V (G) such that uv ∈ E(G)) and by IG(v)
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the set of edges of G incident with v (that is, the set of edges uv ∈ E(G)). We
denote the subgraph of a graph G induced by a set S ⊆ V (G) by G[S] (that is,
V (G[S]) = S, E(G[S]) = { uv ∈ E(G) | u, v ∈ S }).

A graph with local cardinality constraints is a pair (G,α) where G is a graph
and α is a mapping that assigns to each vertex v ∈ V (G) a set α(v) of non-
negative integers. For a set S ⊆ V (G) ∪E(G), a subgraph H of G, and a vertex
v ∈ V (H), we write

touch(H,S, v) = |NH(v) ∩ S| + |IH(v) ∩ S|.
We say that a set S ⊆ V (G)∪E(G) satisfies α if touch(G,S, v) ∈ α(v) holds for
all v ∈ V (G). Since touch(G,S, v) ≤ |V (G)| − 1 + |E(G)|, we can always assume
that α(v) ⊆ {0, . . . , |V (G)| + |E(G)| − 1}.

2.2 Tree Decompositions

A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ is a
mapping that assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G) such that the
following conditions hold (we refer to the vertices of T as “nodes” to make the
distinction between T and G clearer).

1. V (G) =
⋃

t∈V (T ) χ(t) and E(G) ⊆
⋃

t∈V (T ){ uv | u, v ∈ χ(t) }.
2. The sets χ(t1)\χ(t) and χ(t2)\χ(t) are disjoint for any three nodes t, t1, t2 ∈

V (T ) such that t lies on a path from t1 to t2 in T .

The width of (T, χ) is maxt∈V (T ) |χ(t)| − 1. The treewidth tw(G) of a graph G
is the smallest integer k such that G has a tree decomposition of width k. For a
node t ∈ V (T ) we write χ∗(t) = χ(t) ∪ E(G[χ(t)]).

For fixed k ≥ 1, one can decide for a given graph G of order n in time O(n)
whether tw(G) ≤ k, and if so, compute a tree decomposition of G of width ≤ k
and with O(n) nodes (Bodlaender’s Theorem [3]).

A class C of graphs is of bounded treewidth if there exists a constant k such
that all graphs in C have treewidth k or less. A graph of treewidth k and order n
has at most kn− k(k + 1)/2 edges [18]. Hence for graphs of bounded treewidth,
the number of edges is linear in the number of vertices. Thus linear running
times for algorithms on graphs of bounded treewidth can be expressed as O(n).

For our purposes it is convenient to consider tree decompositions in a certain
normal form. A triple (T, r, χ) is a nice tree decomposition if (T, χ) is a tree
decomposition, and considering T as a rooted tree with root r, each node t ∈
V (T ) is of one of the following four types: (1) t is a leaf. (2) t has exactly one
child t′ and |χ(t) \ χ(t′)| = 1 (we call t an introduce node). (3) t has exactly
one child t′ and |χ(t′) \ χ(t)| = 1 (we call t a forget node). (4) t has exactly two
children t′, t′′ and χ(t) = χ(t′) = χ(t′′) (we call t a join node). We assume an
arbitrary but fixed order of the two children of a join node, so that we can speak
of the right child and the left child.

It is easy to see that one can transform efficiently a tree decomposition into a
nice tree decomposition of the same width. In fact, if the width is bounded by a
constant, then this transformation can be carried out in linear time [11]. Thus
Bodlaender’s Theorem can be strengthened to provide nice tree decompositions.
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2.3 Monadic Second Order Logic

We consider Monadic Second Order (MSO) logic on (labeled) graphs in terms
of their incidence structure whose universe contains vertices and edges. We as-
sume an infinite supply of individual variables x, x1, x2, . . . and of set variables
X,X1, X2, . . . The atomic formulas are E(x) (“x is an edge”), V (x) (“x is a ver-
tex”), I(x, y) (“vertex x is incident with edge y”), E(x, y) (“vertices x and y are
adjacent”; actually this predicate can be defined in terms of predicate I), x = y
(equality), Pa(x) (“vertex x has label a”), and X(y) (“vertex y is element of set
X). MSO formulas are built up from atomic formulas using the usual Boolean
connectives (¬,∧,∨,→,↔), quantification over individual variables (∀x, ∃x),
and quantification over set variables (∀X , ∃X).

We write ϕ(X) to denote an MSO formula with free set variable X . Let G
be a graph, S ⊆ V (G) ∪ E(G), and let ϕ(X) be an MSO formula. We write
G |= ϕ(S) to indicate that ϕ is true for G if X is interpreted as S. For a graph
with local cardinality constraints (G,α) we write (G,α) |= ϕ(S) if G |= ϕ(S)
and S satisfies α.

2.4 Tree Automata

Let Σ be finite set. A Σ-tree T is a rooted binary tree whose nodes are labeled
with elements of Σ. We assume that the tree is ordered in the sense that the
children of a node are given in some arbitrary but fixed order; that allows us to
speak of a left or right child of a node. We shall indicate the ordering by using
the subscripts l and r or 1 and 2, respectively.

A (deterministic, bottom-up) tree automaton for Σ-trees is a tuple M =
(Q,Σ, δ, q0, Qacc), consisting of a finite set Q of states disjoint from Σ, a tran-
sition function δ : Q×Q×Σ → Q, an initial state q0 ∈ Q, and a set Qacc ⊆ Q
of accepting states. Given a Σ-tree T , the automaton assigns deterministically
states to the nodes of T , traversing the tree in a bottom-up ordering: leaves with
label a ∈ Σ are assigned state δ(q0, q0, a); if the two children of a node v with
label a have been assigned states ql and qr, respectively, then v is assigned state
δ(ql, qr, a). M accepts T if it assigns the root an accepting state q ∈ Qacc.

MSO logic on Σ-trees can be defined in the obvious way, using unary predi-
cates Pa(v) (“node v has label a ∈ Σ”) and binary predicates L(u, vl) (“vl is the
left child of u”) and R(u, vr) (“vr is the right child of u”).

By a classical result of Thatcher and Wright [20], one can, given a closed
MSO formula ϕ for Σ-trees, effectively construct a Σ-tree automaton M such
that M accepts a Σ-tree T if and only if T |= ϕ. This result carries over to
open formulas by the following considerations. For a Σ-tree T and S ⊆ V (T ),
let TS denote the Σ × {0, 1}-tree obtained from T by extending the labels of
T with one bit that indicates whether the labeled node belongs to S or not.
Now, it is easy to generalize the above result as follows (see, e.g., [1]): Given an
MSO formula ϕ(X) for Σ-trees, one can effectively construct a Σ × {0, 1}-tree
automaton Mϕ(X) = (Q,Σ × {0, 1}, δ, q0, Qacc) such that for each Σ-tree T and
S ⊆ V (T ), T |= ϕ(S) if and only if Mϕ(X) accepts TS .
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2.5 Tree Interpretations

Let ϕ(X) be an MSO formula on (labeled) graphs and k a positive integer.
Arnborg et al. [1] show that, given a graph G and a tree decomposition of G of
width k, one can construct in linear time

– a Σ-tree T I where Σ = {0, 1}k′
for k′ ∈ O(k2),

– an MSO formula ϕI(X) for Σ-trees, and
– a surjective mapping π from the set L(T I) of leaves of T I to V (G) ∪ E(G)

such that for each set SI ⊆ V (T I), T I |= ϕI(SI) if and only if

1. SI ⊆ L(T I),
2. for any t, t′ ∈ L(T I) with π(t) = π(t′), t ∈ SI if and only if t′ ∈ SI , and
3. G |= ϕ(π(SI)).

We call the tuple (Σ, T I , ϕI(X), π) a tree interpretation of (G,ϕ(X)).
The tree T I and the mapping π are obtained from a rooted tree decomposition

(T, r, χ) by adding to each vertex t ∈ V (T ) new children, each representing a
vertex v ∈ χ(t) (indicated by π(t) = v) or an edge uv with u, v ∈ χ(t) (indicated
by π(t) = uv). Thereafter additional nodes are inserted to make the tree binary.
For our purposes it is convenient to start this construction with a nice tree
decomposition. After the addition of new leaves each non-leaf has at least two
children. As long as there is a node t with more than two children t1, . . . , tj , j > 2,
we delete the edges tt2, . . . , ttj, add a new node t′ and edges tt1, tt′, t′t2, . . . , t′tj .
We distinguish in T I between old nodes (nodes that also belong to T ) and new
nodes (nodes newly introduced). It is easy to see that one can always carry out
the above construction such that each old node t has in T I exactly two children
tl and tr and one of the following three cases prevails.

1. tl and tr are both new nodes (this happens exactly when t is a leaf of T );
2. tl is a new node and tr is an old node, all nodes below tl are new nodes

(t has one child in T );
3. tl is a new node and tr is an old node, the left child of tl is a new node, the

right child of tl is an old node (t has two children in T ).

3 Proof of Main Result

Let ϕ(X) be an MSO formula on (labeled) graphs, let Q be a finite set, and let
G be a graph. The tuple S = (T , Q, σ, λ) is a solution tree for G if the following
conditions hold.

1. T = (T, r, χ) is a nice tree decomposition of G.
2. σ is a labeling that assigns to each node t ∈ V (T ) a set σ(t) of pairs

P = (q, U) where q ∈ Q and U ⊆ χ∗(t) (recall the definition of χ∗(t) in
Section 2.2).

The purpose of a pair (q, U) is to indicate that there is a solution S for
ϕ(X) that, projected to G[χ(t)] yields the set U ; the element q represents
properties of S regarding vertices and edges that appeared in sets χ(t′)
below t.
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3. λ is a mapping that assigns to each node t ∈ V (T ) and each element P ∈ σ(t)
a set λ(t, P ) with the following properties.
(a) If t is a leaf then λ(t, P ) = ∅.
(b) If t has exactly one child t′ then λ(t1, P ) ⊆ σ(t1).
(c) If t has exactly two children t1 and t2, then λ(t, P ) ⊆ σ(t1) × σ(t2).
The purpose of the mapping λ is to indicate direct dependencies of elements
P ∈ σ(t) from elements P ′ ∈ σ(t′) of children t′ of t.

The width of S is the width of the underlying tree decomposition T . We say that
S accepts a set S ⊆ V (G) ∪ E(G) if for each tree node t ∈ V (T ) we can pick a
pair Pt = (qt, Ut) ∈ σ(t) such that Ut = S ∩ χ∗(t) and the following conditions
hold:

1. If t has exactly one child t1 then Pt1 ∈ λ(t, Pt).
2. If t has exactly two children t1 and t2 then (Pt1 , Pt2) ∈ λ(t, Pt).

Furthermore we say that S accepts S ⊆ V (G) ∪ E(G) with (q, U) at t if the
above holds such that (q, U) = Pt. A solution tree S for G characterizes ϕ(X)
if for each S ⊆ V (G) ∪ E(G), S accepts S if and only if G |= ϕ(S).

Lemma 1. Let ϕ(X) be a fixed MSO formula on (labeled) graphs and let k be a
fixed positive integer. Given a graph G of order n and treewidth k, we can compute
in time O(n) a solution tree S = (T , Q, σ, λ) for G of width k that characterizes
ϕ(X) where |V (T )| = O(n) and the set Q depends on ϕ(X) and k only.

Proof. Step 1. We compute a nice tree decomposition T = (T, r, χ) ofGwith O(n)
nodes and of width k. This can be accomplished in time O(n) (see Section 2.2).

Step 2. We compute a tree interpretation (Σ, T I , ϕI(X), π) of (G,ϕ(X)) in
time O(n) (see Section 2.5). Thus, T I is a Σ-tree, Σ = {0, 1}k′

, k′ ∈ O(k2), and
ϕI(X) is an MSO formula on Σ-trees.

Step 3. We compute a tree automaton MϕI(X) = (Q,Σ × {0, 1}, δ, q0, Qacc)
for Σ×{0, 1}-trees that accepts ϕI(X) (see Section 2.4). This step depends only
on ϕ(X) and k and can therefore be carried out in constant time.

Extended States. Before proceeding with the algorithm we make some con-
siderations. Let SI ⊆ V (T I), S = π(SI) ⊆ E(G) ∪ V (G) and let T I

S be the
Σ × {0, 1}-tree that corresponds to T I and SI (see the end of Section 2.4). As-
sume MϕI(X) accepts T I

SI . By definition of tree interpretations it follows that
non-leaf nodes are labeled with pairs (a, 0) since SI contains leaves only. Also,
any two leaves t1, t2 with π(t1) = π(t2) have the same label. When executing
MϕI(X) on T I

SI we can maintain additional information on the status of edges and
vertices of G regarding membership in S. For that purpose we use extended states
which are pairs (q, U) where q ∈ Q and U ⊆ V (G) ∪E(G). Let t be a node with
label (a, b). If t is a leaf then we assign it the extended state (δ(q0, q0, (a, b)), U)
where U = {π(t)} if b = 1 and U = ∅ otherwise. If t is a non-leaf whose children
are assigned the extended states Pl = (ql, Ul) and Pr = (qr, Ur), respectively, we
assign t the extended state P = (δ(ql, qr, (a, 0)), U) as follows (recall the defi-
nition of old and new nodes from Section 2.5). If t is a new node then we put
U = Ul ∪ Ur; if t is an old node then we put U = (Ul ∪ Ur) ∩ χ∗(t).
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We write δext(t, Pl, Pr) = P to indicate that the extended state P is computed
from Pl and Pr at node t. Observe that each old node t is assigned an extended
state (q, U) with U = S ∩ χ∗(t).

Step 4. We simulate in parallel the execution of MϕI(X) on trees T I
SI for all

possible sets SI ⊆ V (T I) by guessing the missing bit in the labels of leaves, and
by applying the standard power set construction for converting a nondeterminis-
tic automaton into a deterministic one (see [1]). The standard conversion assigns
each node a set of states. However, we apply the transformation with respect to
extended states as considered above and assign each node t of T I a set Z(t) of
extended states.

Step 5. We traverse the nodes of T I in a top-down ordering and compute sets
Z ′(t) ⊆ Z(t) by removing “useless” elements from the sets Z(t). That is, for the
root r, we remove from Z(r) those extended states (q, U) where q /∈ Qacc; for a
node t with parent t′, we remove from Z(t) those extended states that have not
been used in Step 4 to produce an extended state in Z ′(t′).

Observe that each set Z(t) (and so each set Z ′(t)) is of constant size. Since
|V (T )| = O(n), all the Z ′ sets can be computed in time O(n).

Step 6. Finally we compute the labelings σ and λ. For each node t of T we
simply put σ(t) = Z ′(t). Let t be a node of T with two children t1 and t2 in T
(the case where t has only one child is similar). In view of the case distinction
we made at the end of Section 2.5, we may assume that t, t1, t2 are embedded as
old nodes in T I as follows: t has as left child a new node t′ and as right child t2;
t′ has as left child a new node t′′ and as right child t1. Let P ∈ Z ′(t), P1 ∈ Z ′(t1)
and P2 ∈ Z ′(t2). We add (P1, P2) to λ(t, P ) if and only if there exist P ′′ ∈ Z ′(t′′)
and P ′ ∈ Z ′(t′) such that δext(t′, P ′′, P1) = P ′ and δext(t, P ′, P2) = P .

Note that for computing λ(t, P ) we only need to consider the elements of Z ′(t′)
for a constant number of nodes t′. Since the size of each set Z ′(t) is constant as
well, Step 6 takes time O(n). �

Proof of Theorem 1. Let ϕ(X) be a fixed MSO formula on (labeled) graphs
and let k be a fixed integer. We show that, given a graph (G,α) with local
cardinality constraints, where G is of order n and treewidth k, we can decide in
time O(n2k+3) whether there is some S ⊆ V (G) such that (G,α) |= ϕ(S).

First we use Lemma 1 to compute a solution tree S = (T , Q, σ, λ), T =
(T, r, χ), of width k that characterizes ϕ(X). We may assume that χ(r) is a
singleton (if it is not then we can simply extend the tree putting at most k − 2
forget nodes on top of the root). We assume an arbitrary total ordering of the
vertices of G that allows us to associate with each set χ(t) a vector χ̄(t) that
lists the elements of χ(t) strictly increasing according to the chosen ordering.

For a node t ∈ V (T ) let F (t) denote the set of vertices of G that are already
“forgotten” at t; that is, F (t) =

⋃
t′≤t χ(t′) \ χ(t) where t′ ≤ t means that t′

belongs to the subtree of T that is rooted at t.
Let N = max

⋃
v∈V (G) α(v); observe that N ∈ O(n) since |E(G)| ∈ O(n).

For each t ∈ V (T ) and each pair P ∈ σ(t) we define a set W (t, P ) ⊆
{0, 1 . . . , N}|χ(t)| of vectors. Let χ̄(t) = (x1, . . . , xj). Then (n1, . . . , nj) ∈ W (t, P )
if and only if there exists a set S ⊆ V (G) ∪E(G) such that
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1. G |= ϕ(S);
2. S accepts S with P at t;
3. touch(G,S, v) ∈ α(v) holds for all v ∈ F (t);
4. touch(G[F (t) ∪ {xi}], S, xi) = ni for 1 ≤ i ≤ j.

If we know the sets W (r, P ) for P ∈ σ(r), then we can decide immediately
whether (G,α) |= ϕ(S) for some S ⊆ V (G): Let χ(r) = {x1}; the answer is yes
if and only if there is some (n1) ∈

⋃
P∈σ(r) W (r, P ) such that n1 ∈ α(x1).

The W sets can be computed by a bottom-up traversal of T according to
the following four cases. Let t be a node of T with χ̄(t) = (x1, . . . , xj) and let
P ∈ σ(t).

Case 1: t is a leaf node. Then W (t, P ) = {(0, . . . , 0)} since F (t) = ∅.
Case 2: t is an introduce node with child t′; w.l.o.g., assume χ(t) \ χ(t′) =

{xj}. Now W (t, P ) contains all vectors (n1, . . . , nj−1, 0) with (n1, . . . , nj−1) ∈
W (t′, P ′) for P ′ ∈ λ(t, P ), since F (t) = F (t′) and xj is not adjacent with a ver-
tex in F (t) by the first property in the definition of a tree decomposition.

Case 3: t is a forget node with child t′; w.l.o.g., assume χ(t′) \ χ(t) = {xj}.
W (t, P ) is the set of all vectors (n1, . . . , nj−1) with (n′1, . . . , n

′
j−1, n

′
j) ∈ W (t′, P ′)

for P ′ = (q′, U ′) ∈ λ(t, P ) where,

n′j + touch(G[χ(t′)], U ′, xj) ∈ α(xj),

and
ni = n′i + touch(G[{xi, xj}], U ′, xi) (1 ≤ i ≤ j − 1).

Case 4: t is a join node with children t′ and t′′. Now W (t, Pt) contains all vec-
tors (n′1 + n′′1 , . . . , n

′
j + n′′j ) with (n′1, . . . , n

′
j) ∈ W (t′, P ′) and (n′′1 , . . . , n

′′
j ) ∈

W (t′′, P ′′) for (P ′, P ′′) ∈ λ(t, P ). The correctness of the computation of W (t, P )
follows from the disjointness of F (t′) and F (t′′), a consequence of the second prop-
erty in the definition of a tree decomposition.

Let us review the running time. By Lemma 1, the solution tree S can be com-
puted in time O(n). It has O(n) nodes, and for each node t the set σ(t) is of con-
stant size. Also the sets λ(t, P ) for P ∈ σ(t) are of constant size. Hence we need
to compute O(n) many sets W (t, P ). For each one we have to process, in the worst
case (that is, when t is a join node), (N + 1)k+1 · (N + 1)k+1 many pairs of vec-
tors. Since N = O(n) and T has O(n) nodes, this gives in total a running time of
O(n2k+3). �

4 Applications

4.1 General Factors

Lovász [14,15] introduced the following problem.

General Factor

Instance: A graph G and a mapping α that assigns to each vertex v ∈
V (G) a set α(v) ⊆ {0, . . . , dG(v)}.
Question: Is there a subset F ⊆ E(G) such that for each vertex v ∈ V (G)
the number of edges in F incident with v is an element of α(v)?
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This problem clearly generalizes the polynomial-time solvable r-Factor

problem where α(v) = {r} for all v ∈ V (G). However, General Factor is
easily seen to be NP-hard (say, by reduction from 3-Dimensional matching).
Cornuéjols [6] gives a full classification of the complexity of General Fac-

tor when the assigned sets are restricted to some fixed class. If the number
m = max

⋃
v∈V (G) α(v) is bounded by a constant, then one can use Courcelle’s

Theorem to show that the problem is linear-time decidable for graphs of bounded
treewidth [19]. For unbounded m, however, we can apply Theorem 1 with the
formula ϕ(X) = ∀x(X(x) → E(x)) that just states that X is a set of edges.
Hence we have the following result.

Corollary 1. General Factor can be solved in polynomial time for graphs
of bounded treewidth.

Theorem 1 applies also to problems that are already NP-hard without cardinality
constraints. For example ϕ(X) could express that X is a color class of a proper
3-coloring of G; with cardinality constraints α(v) we can require for each vertex
v certain numbers of neighbors to be colored with color X . In addition, we can
restrict the size of X to certain numbers: we add an additional vertex v0 labeled
a to G and connect it to all other vertices (the treewidth increases at most by
1). To ϕ(X) we add the clause that X does not contain vertices labeled a (thus
v0 /∈ X). With α(v0) we can now apply restrictions on the size of X .

4.2 Equitable Problems

The following problem was introduced by Meyer [16] and has received a lot of
attention, see Lih’s survey [13].

Equitable r-Coloring

Instance: A graph G.
Question: Is there a proper coloring of G using colors from {1, . . . , r}
such that the sizes of any two color classes differ at most by one?

Let G be the given graph. We construct a new graph H from G by adding r
new vertices c1, . . . , cr and all edges civ for i ∈ {1, . . . , r} and v ∈ V (G). Note
that tw(H) ≤ tw(G) + r. Let |V (G)| = n. We put α(ci) = { n/r!, "n/r#},
1 ≤ i ≤ r; for all other vertices v we put α(v) = {1}. It is easy to construct an
MSO formula ϕ(X) that states: “X is a set of edges such that (1) each edge in
X is incident with some vertex in c1, . . . , cr, and (2) any two adjacent vertices
u, v /∈ {c1, . . . , cr} are not adjacent to the same vertex ci, 1 ≤ i ≤ r, via edges
in X .” Hence, from Theorem 1 we get the following result.

Theorem 2. Equitable r-Coloring can be solved in polynomial time for
graphs of bounded treewidth.

One can generalize this construction to (appropriately defined) “equitable MSO
problems” where, instead of a proper r-coloring, one asks for other MSO-
expressible properties of sets of vertices.
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Bodlaender and Fomin [5] show a stronger result than Theorem 2. They show
that Equitable r-Coloring is polynomially solvable for graphs of bounded
treewidth when the number r of colors is part of the input and not con-
stant. Their algorithm uses a combinatorial result of Kostochka, Nakprasit, and
Pemmaraju [12].

4.3 Problems with Edge Weights

An edge weighting of a graph G is a mapping w that assigns each edge a positive
integer. An orientation of G is a mapping Λ : E(G) → V (G)×V (G) with Λ(uv) ∈
{(u, v), (v, u)} for each uv ∈ E(G). The weighted outdegree of a vertex v ∈ V (G)
with respect to an edge weighting w and an orientation Λ is defined as

d+
G,w,Λ(v) =

∑

vu∈E(G) such that Λ(vu)=(v,u)

w(vu).

Asahiro, Miyano, and Ono [2] consider the following problem and discuss appli-
cations and related problems.

Minimum Maximum Outdegree

Instance: A graph G, an edge weighting w of G given in unary, and a
positive integer r.
Question: Is there an orientation Λ of G such that d+

G,w,Λ(v) ≤ r for all
v ∈ V (G)?

We assume that the edge weighting w is given in unary since otherwise the prob-
lem is already NP-complete for graphs of treewidth 2, by a simple reduction from
Partition [2]. Asahiro et al. [2] show that Minimum Maximum Outdegree

can be solved in polynomial time for graphs of treewidth 2. As an application of
Theorem 1 we extend this result to arbitrary treewidth bounds.

Given a graph G with edge weighting w we construct a new graph H with
three sorts of vertices (say, red, green, and blue vertices). The vertices of G
correspond to the red vertices of H . For each edge e = uv ∈ E(G) we introduce
in H green vertices ge,i, g

′
e,i for 1 ≤ i ≤ w(e), and blue vertices be, b

′
e; we add

the edges uge,i, bege,i, vg′e,i, b
′
eg
′
e,i and g′e,ige,i for i = 1, . . . , w(e). Clearly H can

be constructed in polynomial time as we assume the edge weights are given in
unary. Also it is easy to see that tw(H) is bounded in terms of tw(G) since we
can form a tree decomposition of H by patching together tree decompositions of
G and of the graphs H [{u, v, buv, b

′
uv}∪

⋃w(uv)
i=1 {guv,i, g

′
uv,i}] for uv ∈ E(G). The

Minimum Maximum Outdegree problem can now be formulated as an MSO-
LCC problem for H . For each red vertex v ∈ V (H) we define α(v) = {0, . . . , r},
and for each green vertex v ∈ V (H) we define α(v) = {0}, and for each blue
vertex v ∈ V (H) we define α(v) = {0, dH(v)}. The MSO formula ϕ(X) expresses
the property “X is a set of green vertices containing one from any two adjacent
green vertices.” Hence, from Theorem 1 we get the following result.

Theorem 3. Minimum Maximum Outdegree is solvable in polynomial time
for graphs of bounded treewidth.
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5 Fixed-Parameter Intractability

The polynomial-time algorithm developed in the proof of Theorem 1 runs in
time O(n2k+3) for graphs of order n and constant treewidth k. Thus, the order
of the polynomial depends on k. The question rises whether there is a better
algorithm with a running time of, say, O(nc) where c is a constant indepen-
dent of k (constant factors suppressed by the O-notation can be exponential
in k). We give a negative answer subject to the complexity theoretic assump-
tion W[1] �= FPT from the area of Parameterized Complexity. Let us first re-
view some basic concepts of Parameterized Complexity; for more information
see [9,10,17]. An instance of a parameterized problem is a pair (x, k), where
x is the main part and k (usually a non-negative integer) is the parameter. A
parameterized problem is fixed-parameter tractable if it can be solved in time
O(f(k)|x|c) where f is a computable function and c is a constant independent
of k. FPT denotes the class of all fixed-parameter tractable decision problems.
Parameterized Complexity offers a completeness theory similar to the theory of
NP-completeness for non-parameterized problems. A parameterized problem P
fpt-reduces to a parameterized problem Q if we can transform an instance (x, k)
of P into an instance (x′, g(k)) of Q in time O(f(k)|x|c) (f, g are arbitrary com-
putable functions, c is a constant) such that (x, k) is a yes-instance of P if and
only if (x′, g(k)) is a yes-instance of Q. A parameterized complexity class is the
class of parameterized decision problems fpt-reducible to a certain parameterized
decision problem Q (the notions of Q-hardness and Q-completeness are defined
in the obvious way). Of particular interest is the class W[1] that is considered as
the parameterized analog to NP. It is believed that FPT �= W[1], and there is
strong theoretical evidence that supports this belief, for example, FPT = W[1]
would imply that the Exponential Time Hypothesis fails (cf. [10]). However,
as recently shown, General Factor is W[1]-hard when parameterized by the
treewidth of the instance graph [19] (this even holds if the instance graph is
bipartite and all vertices of one side are assigned the set {1}). Since General

Factor can be expressed as an MSO-LCC problem, we can answer the above
question negatively, subject to the assumption FPT �= W[1].
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8. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook
of theoretical computer science, vol. B, pp. 193–242. Elsevier Science Publishers,
North-Holland, Amsterdam (1990)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
11. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg

(1994)
12. Kostochka, A.V., Nakprasit, K., Pemmaraju, S.V.: On equitable coloring of d-

degenerate graphs. SIAM J. Discrete Math. 19(1), 83–95 (2005)
13. Lih, K.-W.: The equitable coloring of graphs. In: Handbook of combinatorial opti-

mization, vol. 3, pp. 543–566. Kluwer Academic Publishers, Dordrecht (1998)
14. Lovász, L.: The factorization of graphs. In: Combinatorial Structures and their

Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pp. 243–246.
Gordon and Breach, New York (1970)

15. Lovász, L.: The factorization of graphs. II. Acta Math. Acad. Sci. Hungar. 23,
223–246 (1972)

16. Meyer, W.: Equitable coloring. Amer. Math. Monthly 80, 920–922 (1973)
17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)
18. Rose, D.J.: On simple characterizations of k-trees. Discrete Math. 7, 317–322 (1974)
19. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality con-

straint. In: Proceedings of CATS 2008, Computing: The Australasian Theory Sym-
posium. Conferences in Research and Practice in Information Technology, vol. 77,
pp. 67–74. Australian Computer Society (2008)

20. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Systems Theory 2, 57–81
(1968)



Short Proofs of Strong Normalization

Aleksander Wojdyga

1 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Toruń
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Abstract. This paper presents simple, syntactic strong normalization
proofs for the simply-typed λ-calculus and the polymorphic λ-calculus
(system F) with the full set of logical connectives, and all the permutative
reductions. The normalization proofs use translations of terms and types
of λ→,∧,∨,⊥ to terms and types of λ→ and from F∀,∃,→,∧,∨,⊥ to F∀,→.

Keywords: strong normalization, CPS-translation, permutative reduc-
tions, lambda calculus, system F.

1 Introduction

In this paper we consider the simply-typed and polymorphic lambda-calculus
extended by type constructors corresponding to the usual logical connectives,
namely conjunction, disjunction, absurdity and implication. In the polymorphic
case we include both universal and existential quantification. In addition, we
assume all the permutative conversions.

Different proofs of strong normalization of several variants of these calculi
occur in the literature cf. [1,5,6,8,9,11]. It is however surprising that it is quite
hard to find one covering the full set of connectives, applying to all the permu-
tative conversions (in the polymorphic case none of the cited works does so) and
given by a simple and straightforward argument. We can only repeat after J.Y.
Girard: I didn’t find a proof really nice, and taking little space [4, p. 130]. For
instance, many proofs, like these in [6,8,9,11] are based on the computability
method, or (in the polymorphic case) candidates of reducibility. This requires
re-doing each time the same argument, but in a more complex way, due to the
increased complexity of the language. There are sometimes difficulties with par-
ticular connective or quantifier, see the deliberation on ∃ in [11].

An alternative approach is to reduce the question of SN for a larger system
to a known SN result for a weaker system. There are two advantages of this
method. Firstly, it is simpler and thus methodologically more adequate than just
reproving the whole result. Secondly, it can give some additional information
on the relative complexity of normalization (the number of β-reduction steps
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and permutative conversions) in the two systems. For instance, our reduction
from F∀,∃,→,∧,∨,⊥ to F∀,→ is arithmetical, i.e., provable in PA. Therefore, the
difference betweeen the complexity of normalization in F∀,∃,→,∧,∨,⊥ and in F∀,→
is bounded by a function provably total in PA. Given that the two compared
measures are not provably total in PA2, this is a tight connection.

The first proof reduces the calculus λ→,∧,∨,⊥ with connectives ∧,∨,→,⊥ to
the calculus λ→. Here we use the strong normalization of λ→ with beta-eta-
reductions. The proof is based on composing the ordinary reduction of classi-
cal connectives to implication and absurdity with Ong’s translation of the λμ-
calculus to the ordinary λη-calculus, as described e.g. in [7, Chapter 6]. To our
knowledge this is the most direct way of showing SN for system λ→,∧,∨,⊥.

The above method does not however extend to the polymorphic case. Indeed,
the translation is strictly type-driven and requires an a priori knowledge of all
types a given expression can obtain by polymorphic instantiation. Also the well
known definition of logical connectives in system F:

∧τ ≡ ∀t.(σ → τ → t) → t σ ∨ τ ≡ ∀t.(σ → t) → (τ → t) → t

is not adequate. The translation preserves beta-conversion, but not the permu-
tations. The solution, first used by de Groote ([2], [3]), for first-order logic, is
a CPS-translation. Our proof is similar to de Groote’s but the version of CPS
we use is based on Nakazawa and Tatsuta [10].

1.1 Definitions

We consider the calculi λ→,∧,∨,⊥ and F∀,∃,→,∧,∨,⊥ in Church’s style. The type τ
of a term M is written informally in upper index as M τ . However, if it is clear
from the context, types will be omitted for the sake of brevity and readability–
most right-hand sides of equations and reduction rules are written without types.

The Full Simply-Typed λ-Calculus. Types of λ→,∧,∨,⊥ are built from mul-
tiple type constants; lowercase Greek letters are used to denote types.

Definition 1. Types of λ→,∧,∨,⊥

σ, τ, . . . ::= p, q, . . . , σ → τ, σ ∧ τ, σ ∨ τ,⊥
Syntax of terms of λ→,∧,∨,⊥ can be divided in two groups: constructor terms and
eliminator terms. Lowercase Latin letters denote variables, uppercase – terms.

Definition 2. Terms of λ→,∧,∨,⊥

M,N, . . . ::= Variables
xσ, yτ , . . . ,

Introduction
(λxσ.N τ )σ→τ , 〈Mσ, N τ 〉σ∧τ , (in1A

σ)σ∨τ , (in2B
τ )σ∨τ

Elimination
(Mσ→τNσ)τ , (P σ∧τπ1)σ, (P σ∧τπ2)τ , (W σ∨τ [xσ .Sδ, yτ .T δ])δ,

(A⊥ετ )τ
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In the above, the notation in1A and in2A represents the left and right injection
for the sum type, π1 and π2 are projections and W σ∨τ [x.Sδ, y.T δ] stands for
a case statement. The epsilon represents the ex falso.

Reductions. The beta-reductions are written as →β and commutative reduc-
tions are denoted by 
. For any reduction → transitive closure of this relation
will be denoted as →+ and transitive, reflexive closure as �.

Definition 3. β-reductions in λ→,∧,∨,⊥

(λxτ .M δ)Aτ →β M [x := A]δ

〈Mσ, N τ 〉π1 →β Mσ

〈Mσ, N τ 〉π2 →β N τ

(in1A)σ∨τ [xσ.Sδ, yτ .T δ] →β S[xσ := Aσ]δ

(in2B)σ∨τ [xσ.Sδ, yτ .T δ] →β S[yτ := Bτ ]δ

Definition 4. Commutative reductions in λ→,∧,∨,⊥

(A⊥εσ→τ )Nσ 
 A⊥ετ

(A⊥εσ∧τ )π1 
 A⊥εσ

(A⊥εσ∧τ )π2 
 A⊥ετ

(A⊥εσ∨τ )[xσ .Sδ, yτ .T δ] 
 A⊥εδ

(A⊥ε⊥)εσ 
 A⊥εσ

((W σ∨τ [x.Sα→β , y.Tα→β])Nα)β 
 W σ∨τ [x.(SN)β , y.(TN)β]

((W σ∨τ [x.Sα∧β , y.Tα∧β])π1)α 
 W σ∨τ [x.(Sπ1)α, y.(Tπ1)α]

((W σ∨τ [x.Sα∧β , y.Tα∧β])π2)β 
 W σ∨τ [x.(Sπ2)β , y.(Tπ2)β ]

(W σ∨τ [x.Sα∨β , y.Tα∨β])[aα.Aδ, bβ .Bδ] 

W σ∨τ [x.S[a.Aδ, b.Bδ], y.T [a.Aδ, b.Bδ]]

(W σ∨τ [x.S⊥, y.T⊥])εα 
 W σ∨τ [x.Sεα, y.T εα]

Note that the above commutative reductions follow these two patterns:

(W [x.S, y.T ])E 
 W [x.SE, y.TE], (1)
(Aε)E 
 Aε, (2)

where E is an arbitrary eliminator. That is, E is either a term N or a projection,
or epsilon, or it has the form [x.S, y.T ].

The Full Polymorphic λ-Calculus. The full polymorphic λ-calculus extends
the system of the previous section by existential and universal polymorphism.
Terms of the calculus are all the terms of simply-typed λ calculus plus universal
and existential introduction and elimination.
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Definition 5. Types of F∀,∃,→,∧,∨,⊥

σ, τ, . . . ::= p, q, . . . , σ → τ, σ ∧ τ, σ ∨ τ, ∀p τ, ∃p τ,⊥

In the definition below, notation [M τ [p:=σ], σ] stands for introduction of type
∃p τ and [xτ .N δ] is a eliminator for that type.

Definition 6. Terms of F∀,∃,→,∧,∨,⊥

M,N, . . . ::=Variables
xσ, yτ , . . .

Introductions
(λxσ .N τ )σ→τ , 〈Mσ, N τ 〉σ∧τ , (in1A

σ)σ∨τ , (in2B
τ )σ∨τ ,

[M τ [p:=σ], σ]∃p τ , (ΛpM τ )∀p τ

Eliminations

(Mσ→τNσ)τ , (P σ∧τπ1)σ, (P σ∧τπ2)τ , (W σ∨τ [xσ.Sδ, yτ .T δ])δ,

(M∃p τ [xτ .N δ])δ, (M∀p τσ)τ [p:=σ]

(A⊥ετ )τ

The β-reductions and commutative reductions in this system are as follows.

Definition 7. The β-reductions in F∀,∃,→,∧,∨,⊥ are as in Definition 3 and in
addition

[M τ [p:=σ], σ][xτ .N δ] →β (N [p := σ][x := M ])δ (3)
(ΛpM τ )σ →β M [p := σ] (4)

The total number of commutative reductions reaches 21. The patterns mentioned
in Rules (1) and (2) are extended by the additional one:

(M [x.P ])E 
 M [x.PE], (5)

where E can also be of the form of existential ([y.R]) or universal (σ) eliminator.

Definition 8. Additional commutative reductions in F∀,∃,→,∧,∨,⊥.
Let δ abbreviate ∀pα in rules below.

(W σ∨τ [xσ .Sδ, yτ .T δ])γ 
W [x.(Sγ)α[p:=γ], y.(Tγ)α[p:=γ]] (6)

(A⊥εδ)γ 
A⊥εα[p:=γ] (7)

(M∃p τ [xτ .P δ])γ 
M∃p τ [x.(Pγ)α[p:=γ]] (8)

In the following rules, δ abbreviates ∃pα.

(W σ∨τ [xσ.Sδ, yτ .T δ])[aα.N ξ] 
W σ∨τ [x.(S[a.N ])ξ, y.(T [a.N ])ξ] (9)

(A⊥εδ)[aα.N ξ] 
A⊥εξ (10)
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(M∃p τ [yτ .P δ])[aα.N ξ] 
M∃p τ [y.(P [a.N ])ξ] (11)

Aδ[xα.Nσ→τ ]P σ 
A[x.(NP )τ ] (12)

Aδ[xα.Nσ∧τ ]π1 
A[x.(Nπ1)σ] (13)

Aδ[xα.Nσ∧τ ]π2 
A[x.(Nπ2)τ ] (14)

Aδ[xα.Nσ∨τ ][yσ.Sδ, zτ .T δ] 
A[x.(N [y.S, z.T ])δ] (15)

Aδ[xα.N⊥]εσ 
A[x.(Nεσ)σ] (16)

2 The Translation for Simple Types

A type τ of the λ→,∧,∨,⊥ calculus is translated to a type |τ | of λ→ calculus,
a term M is translated to a term |M |.

Definition 9. Translation of types.

|α| = ⊥, for all type constants α = ⊥, p, q, . . .

|σ → τ | = |σ| → |τ |
|σ ∧ τ | = (|σ| → |τ | → ⊥) → ⊥
|σ ∨ τ | = (|σ| → ⊥) → (|τ | → ⊥) → ⊥

Example 1. Let τ = p → q → (p ∧ q). Then
|τ | = ⊥ → ⊥ → (⊥ → ⊥ → ⊥) → ⊥.

Definition 10. (Translation of terms) It is assumed below that types |σ|, |τ |
and |δ| are as follows: |σ| = σ1 → · · · → σn → ⊥, |τ | = τ1 → · · · → τm → ⊥ and
|δ| = δ1 → · · · → δk → ⊥.

|xσ| = x|σ| (17)

|λxτ .Mσ| = λx|τ |.|M ||σ| (18)

|〈M,N〉σ∧τ | = λz|σ|→|τ |→⊥.z|M ||σ||N ||τ | (19)
∣
∣(in1A)σ∨τ ∣∣ = λx|σ|→⊥.λy|τ |→⊥.x|A||σ| (20)
∣
∣(in2B)σ∨τ ∣∣ = λx|σ|→⊥.λy|τ |→⊥.y|B||τ | (21)

|(Mσ→τNσ)| = (|M ||σ|→|τ ||N ||σ|) (22)

|(P σ∧τ )π1| = λxσ1
1 . . . λxσn

n .|P ||σ∧τ |

(λx|σ|.λy|τ |.(xx1 . . . xn)⊥) (23)

|(P σ∧τ )π2| = λxτ1
1 . . . λxτm

m .|P ||σ∧τ |

(λx|σ|.λy|τ |.(yx1 . . . xm)⊥) (24)
∣
∣Aσ∨τ [x.Sδ, y.T δ]

∣
∣ = λxδ1

1 . . . λxδk

k .|A|(|σ|→⊥)→(|τ |→⊥)→⊥

(λx|σ|.|S||δ|x1 . . . xk)(λy|τ |.|T ||δ|x1 . . . xk) (25)
∣
∣M⊥εσ

∣
∣ = λxσ1

1 . . . λxσn
n .|M |⊥ (26)
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Lemma 1 (Soundness). If a term M has type δ, then |M | has type |δ|.

Proof. Obvious. �

Lemma 2. If R → R′, then |R| →+
βη |R′|.

Proof. The proof proceeds by cases on the definition of →β and 
. Two example
reductions will be elaborated here.
(23) Let R = 〈Mσ, N τ 〉π1 and R →β R′ = M , where |σ| = σ1 → · · · → σn → ⊥.

|R| = |〈M,N〉σ∧τπ1|

= λaσ1
1 . . . λaσn

n .|〈M,N〉||σ∧τ |(λx|σ|.λy|τ |.(xa1 . . . an)⊥)

= λa.(λz|σ|→|τ |→⊥.z|M ||N |)(λx|σ|λy|τ |.(xa)⊥)

→β λa.((λx|σ|λy|τ |.(xa)⊥)|M ||N |)
→β λa.(λy|τ |.|M |a)|N | →β λa.|M |a →+

η |M |
= |R′|

(25) Let R = (W σ∨τ [x.Sα→β , y.Tα→β])Nα and let R′ = W σ∨τ [x.(SN)β , y.
(TN)β]. Then R 
 R′, according to (25). Assuming |β| = β1 → · · · → βn → ⊥,
we have

|R| = (λa|α|bβ1
1 . . . bβn

n .|W |(λx|σ|.|S||α|→|β|ab)(λy|τ |.|T ||α|→|β|ab))|N ||α|

→β λb1 . . . bn.|W |(λx|σ|.|S||N |b)(λy|τ |.|T ||N |b))
= |R′|

Other cases are similar. �

Theorem 1. The calculus λ→,∧,∨,⊥ is strongly normalizing.

Proof. Suppose, by contradiction, that M τ admits an infinite β-reduction

M τ = M τ
0 →β M τ

1 →β M τ
2 →β · · ·

By Theorem 2 we have an infinite reduction in λ→

|M τ | = |M0| �+
βη |M1| �+

βη |M2| �+
βη · · ·

This contradicts the SN property of λ→ �

3 Translation for Polymorphic Types

As we mentioned in the introduction, the translations in Section 3 are not ad-
equate for the polymorphic case and therefore we apply a call-by-name CPS
translation. In general, a type τ is translated to τ = (τ∗ → ⊥) → ⊥. This
translation, unlike the one for simple types, does not unify type constants. The
helper translation ∗ is given below.
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Definition 11. Helper translation ∗.

α∗ = α, for all type constants α = ⊥, p, q, . . .

(α → β)∗ = α → β

(α ∧ β)∗ = (α → β → ⊥) → ⊥
(α ∨ β)∗ = (α → ⊥) → (β → ⊥) → ⊥

(∀p τ)∗ = ∀p τ
(∃p τ)∗ = (∀p(τ → ⊥)) → ⊥

A term M τ is translated to the term M = λkτ∗→⊥.(M *k). To achieve that, two
helper translations are needed: * and @ . The term K in the definition below is
of type τ∗ → ⊥. The term M *K is always of type ⊥.

Definition 12. Helper translation *

xτ *K = xK (27)
λxσ.Nρ *K = K(λxσ.N) (28)

〈N τ1
1 , N τ2

2 〉 *K = K(λp τ1→τ2→⊥.pN1 N2) (29)

(in1A)τ1∨τ2 *K = K(λa τ1→⊥b τ2→⊥.aA) (30)

(in2B)τ1∨τ2 *K = K(λa τ1→⊥b τ2→⊥.bB) (31)
ΛpNρ *K = K(Λp.N) (32)

[Nρ[p:=σ], σ] *K = K(λu∀p(ρ→⊥).u σ N) (33)
NE *K = N * (E @K) (34)

In (34) the symbol E stands for an arbitrary eliminator. That is, E is one of
the expressions {Rσ, π1, π2, [xτ1 .Sδ, yτ2 .T δ], σ, [xρ.Sδ], εα} and the omitted type
of term N is appropriate for every eliminator E.

Definition 13. Helper translation @

R@K = λmσ→ρ.mRK

π1 @K = λm(τ1→τ2→⊥)→⊥.m(λa τ1 b τ2 .aK)

π2 @K = λm(τ1→τ2→⊥)→⊥.m(λa τ1 b τ2 .bK)

[xτ1 .Sδ, yτ2 .T δ] @K = λm(τ1→⊥)→(τ2→⊥)→⊥.

m(λx τ1 .(S *K))(λy τ2 .(T *K))

σ @K = λm∀pρ.mσK

[xρ.Sδ] @K = λm(∀p(ρ→⊥))→⊥.m(Λpλx ρ.(S *K))

εα @K = λm⊥.m

Lemma 3. [Soundness] If a term M has type δ, then M has type δ.

Proof. Easy. �
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Lemma 4. [Properties of substitution] For a term R and any term K and for
any types τ and ρ the following holds:

R[xδ := N δ] =α R[x := N ]; (35)

(R *K)[xδ := N δ] =α R[x := N ] *K[x := N ]; (36)

(R@K)[xδ := N δ] =α R[x := N ] @K[x := N ] if R is an eliminator; (37)
τ [p := ρ] =α τ [p := ρ]; (38)

(R *K)[p := ρ] =α R[p := ρ] *K[p := ρ]; (39)

(R@K)[p := ρ] =α R[p := ρ] @K[p := ρ] if R is an eliminator. (40)

Proof. This lemma is proved by simultaneous induction on the definition of
substitution. �
Lemma 5. If R →β R′, then R →+

β R′.

Proof. Using induction on the definition of →β we have 7 cases. For example,
consider (3), where R = [M τ [p:=σ], σ][xτ .N δ] and R′ = (N [p := σ][x := M ])δ.

(3) R = λk.(λm(∃pτ)∗
.m(Λpλxτ .(N * k)))(λu∀p(τ→⊥).uσM)

→β λk.(λu.uσM)(Λpλx.(N * k))
→β λk.(Λpλx.(N * k))σM
→β λk.(λx.(N * k))[p := σ]M
→β λk.(λx.(N [p := σ] * k))M (from (39))
→β λk.(N [p := σ] * k)[x := M ]
=α λk.(N [p := σ][x := M ] * k) (from (36))
= R′ �

Lemma 6. If R 
 R′, then R =α R′.

Proof. The complete proof consists of 21 cases. Here, two interesting commuta-
tions will be elaborated. The other cases are similar and left to the reader.

From (11) we get

LHS =λk.(M [y.P ] * ([x.N ] @ k)) = λk.(M * ([y.P ] @ ([x.N ] @ k)))
=λk.(M * (λm.m(Λpλy.(P * [x.N ] @ k))))

RHS =λk.(M * ([y.P [x.N ]] @ k)) = λk.(M * (λm.m(Λpλy.(P [x.N ] * k))))
=λk.(M * (λm.m(Λpλy.(P * [x.N ] @ k))))

From (16) we get

LHS =λk.(A[x.N ] * (εσ @ k)) = λk.(A[x.N ] * (εσ @ k))
=λk.(A * ([x.N ] @ (εσ @ k)))
=λk.(A * (λm.m(Λpλx.(N * (εσ @ k)))))

RHS =λk.(A * ([x.Nεσ] @ k)) = λk.(A * (λm.m(Λpλx.(Nεσ * k))))
=λk.(A * (λm.m(Λpλx.(N * (εσ @ k))))) �
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Lemma 7. Every sequence of commutative reductions in F∀,∃,→,∧,∨,⊥ must ter-
minate.

Proof. To prove this lemma we define such a measure χ(M) > 0, that for any
commutation M 
 M ′, we have χ(M) > χ(M ′). Please note, that we have
3 patterns of commutative reductions in Rules (1), (2) and (5). We use those
patters to define appropriate conditions for measure χ:

χ ((W [x.S, y.T ])E) > χ (W [x.SE, y.TE]) (41)
χ ((Aε)E) > χ (Aε) (42)

χ ((N [x.P ])E) > χ (N [x.PE]) (43)
χ(M) ≥ 1

Now we give the definition of the function χ(M); it is similar to de Groote’s
norm | · | from [2] but simpler:

χ(x) = 1
χ(λx.N) = χ(in1N) = χ(in2N) = χ(N), χ(〈M1,M2〉) = χ(M1) + χ(M2)

χ(FA) = χ(F )2χ(A), χ(Pπ1) = χ(Pπ2) = χ(P )2, χ(Nσ) = χ(N)2

χ(W [x.S, y.T ]) = χ(W )2(χ(S) + χ(T )) + 1 χ(N [x.P ]) = χ(N)2χ(P ) + 1

χ(Aε) = χ(A)2 + 1

There are 21 easy cases, one for each permutation from Definitions 4 and 8. We
will show here one example case for each pattern mentioned above.

(41)Let l=χ((W [x.S, y.T ])[a.A, b.B]) and r=χ(W [x.S[a.A, b.B], y.T [a.A, b.B]]).

l = χ(W [x.S, y.T ])2(χ(A) + χ(B)) + 1

=
(
χ(W )2(χ(S) + χ(T )) + 1

)2
(χ(A) + χ(B)) + 1

>
(
χ(W )2(χ(S) + χ(T ))

)2
(χ(A) + χ(B)) + 1

= χ(W )4
(
(χ(S)2 + χ(T )2)(χ(A) + χ(B)) + 2(χ(S)χ(T ))(χ(A) + χ(B))

)
+ 1

> χ(W )4((χ(S)2 + χ(T )2)(χ(A) + χ(B)) + 2) + 1

r = χ(W )2(χ(S[a.A, b.B]) + χ(T [a.A, b.B])) + 1

= χ(W )2(χ(S)2(χ(A) + χ(B)) + 1 + χ(T )2(χ(A) + χ(B)) + 1) + 1

= χ(W )2((χ(S)2 + χ(T )2)(χ(A) + χ(B)) + 2) + 1
l > r

(42) Let l = χ((Aε⊥)εσ) and r = χ(Aεσ).

l = χ(Aε⊥)2 + 1 = (χ(A)2 + 1)2 + 1 = χ(A)4 + 2χ(A)2 + 2

r = χ(A)2 + 1
l > r
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(43) Let l = χ((N [x.P ])[a.A, b.B]) and r = χ(N [x.P [a.A, b.B]]).

l = χ(N [x.P ])2(χ(A) + χ(B)) + 1

=
(
χ(N)2χ(P ) + 1

)2
(χ(A) + χ(B)) + 1

= (χ(N)4χ(P )2 + 2χ(N)2χ(P ) + 1)(χ(A) + χ(B)) + 1

= χ(N)4χ(P )2(χ(A) + χ(B)) + χ(N)2(2χ(P )(χ(A) + χ(B)))
+ χ(A) + χ(B) + 1

r = χ(N)2χ(P [a.A, b.B]) + 1

= χ(N)2(χ(P )2(χ(A) + χ(B)) + 1) + 1

= χ(N)2χ(P )2(χ(A) + χ(B)) + χ(N)2 + 1
l > r �

Theorem 2. The calculus F∀,∃,→,∧,∨,⊥ is strongly normalizing.

Proof. Suppose that

M τ = M τ
0 → M τ

1 → M τ
2 → · · ·

If there is infinitely many β-reductions in the sequence above then we have an
infinite reduction in F∀,→. If almost all reduction steps are of type 
 then we
use Lemma 7. In both cases we reach contradiction. �

4 Summary

We have presented short proofs of strong normalization for simply-typed and
polymorphic λ-calculus with all connectives. Syntax-driven translations used in
those proofs allow to reduce the SN property problem to calculi with smaller
number of connectives.

The CPS-translation used here for polymorphic lambda calculus may be help-
ful dealing with higher level λ-calculus such as Fω. This is our next research
problem.
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Gómez, Antonio Cano 36

Guillon, Pierre 375
Gurevich, Yuri 1

Heggernes, Pinar 144
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