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Abstract. We present an efficient off-line divisible e-cash scheme which
is truly anonymous without a trusted third party. This is the second
scheme in the literature which achieves full unlinkability and anonymity,
after the seminal work proposed by Canard and Gouget. The main trick
of our scheme is the use of a bounded accumulator in combination with
the classical binary tree approach.

The aims of this paper are twofold. Firstly, we analyze Canard and
Gouget’s seminal work on the efficient off-line divisible e-cash. We point
out some subtleties on the parameters generation of their scheme. More-
over, spending a coin of small value requires computation of several
hundreds of multi-based exponentiations, which is very costly. In short,
although this seminal work provides a new approach of achieving a truly
anonymous divisible e-cash, unfortunately it is rather impractical. Sec-
ondly, we present our scheme that uses a novel approach of incorporating
a bounded accumulator. In terms of time and space complexities, our
scheme is 50 to 100 times more efficient than Canard and Gouget’s work
in the spend protocol at the cost of an 10 to 500 (the large range is due
to whether pre-processing is taken into account and the probabilistic na-
ture of our withdrawal protocol) times less efficient withdrawal protocol.
We believe this trade-off between the withdrawal protocol and the spend
protocol is reasonable as the former protocol is to be executed much less
frequent than the latter. Nonetheless, while their scheme provides an af-
firmative answer to whether divisible e-cash can be truly anonymous, our
result puts it a step further and we show that truly anonymous divisible
e-cash can be practical.

1 Introduction

Electronic cash (e-cash) was introduced by Chaum [15] in 1982. In its simplest
form, an e-cash system consists of three parties (the bank B, the user U and the
merchant M) and four main procedures, namely, account establishment, with-
drawal, spending and deposit. The user U first performs an account establish-
ment protocol with the bank B. The currency circulating around is quantized as
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coins. U obtains a coin by performing a withdrawal protocol with B and spends
the coin by participating in a spend protocol with M. To deposit a coin, S
performs a deposit protocol with B.

A practical electronic cash system should be secure, offline and anonymous.
An e-cash system is offline when the spend protocol does not require B’s par-
ticipation. In a secure e-cash system, only B can produce a valid electronic coin
and users who double-spent the same coin should be identified. The problem of
double-spending occurs in the electronic world due to the digital coins ease of
duplication. Additionally, honest spenders cannot be slandered to have double-
spent (exculpability), and when M deposits the money from the payee, B should
not be able to trace who the actual spender is (anonymity). In a truly anony-
mous e-cash, B, even with the help of M, cannot obtain any information about
the identity of the payee. In particular, spending of the same payee cannot be
linked together (sometimes refer to as unlinkability).

High efficiency is also of key importance for practical e-cash systems. For
efficiency, we look at: (1) the time and bandwidth needed for the withdrawal,
spend and deposit protocols; (2) the size of an electronic coin; and (3) the size
of the bank’s database. In particular, it is desirable if several coins can be with-
drawn or spent more efficiently than repeating several times a single withdrawal
or spending protocol.

1.1 Related Results

In a compact e-cash system [9,4], users can withdraw efficiently a wallet W
containing 2L coins. However, these coins must be spent one by one. Users in a
divisible e-cash system can efficiently withdraw a wallet W containing 2L coins
(à la compact e-cash). However, these 2L coins can be spent together efficiently.
In particular, spending 2�, � ≤ L, coins together can be done more efficiently
than repeating the spend protocol for 2� times.

A lot of divisible e-cash schemes exist in the literature [24,25,16,17,23,14,21,12].
Nonetheless, with the exception of [12], none of the above divisible e-cash system is
truly anonymous. For instance, everyone can tell whether the spending in [23,14]
is from the same wallet (i.e., linkable). In [21], there exists a trusted party who
can revoke the identity of every spender (also known as fair e-cash [13]). More-
over, which part of the wallet that is being used is known. That is, if the payee
of transaction one and the payee of transaction two are using the same part of a
wallet, everyone can conclude that these two transactions are indeed performed
with different wallets. We shall investigate the practicality of the only truly anony-
mous divisible e-cash scheme [12] in the next subsection. On the other hand, in
contrast to the divisible e-cash schemes, existing compact e-cash schemes [9,4,3]
are all truly anonymous.

1.2 On the Practicality of the Truly Anonymous Divisible E-Cash
in [12]

We analyze the Canard and Gouget’s scheme from [12]. To allow efficeint with-
drawal of 2L coins, the construction in [12] requires a series of L+2 cyclic groups
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(G = 〈g〉, G1 = 〈g1〉, . . . , GL+1 = 〈gL+1〉) such that Gi ⊂ Z∗
|Gi+1| for i = 1 to

L + 1 and G ⊂ Z∗
|G1|

1 and the decisional discrete logarithm assumption (DDH)
holds in all Gi. However, whether such series of groups exists, for moderate L
(say, L = 10), is unknown. The authors suggest using the same setting of groups
in [21] which proposes to set |Gi|, for i = 1 to L+1, to be of prime order and as-
sume |Gi+1| = 2|Gi|+1 for i = 1 to L+1. This implies finding a series of primes
p1, . . . , pL+1 such that pi+1 = 2pi +1. Again, whether such series of primes exist,
for moderate L, is unknown and it is also unknown how these series of primes
can be efficiently generated. The authors in [21] propose using a brute-force ap-
proach. That is, randomly generate an odd number n (equals to order of group
G) and test if p1 := 2n + 1 is a prime. If yes, compute and test if p2 := 2p1 + 1
is prime. Continue until pL+1 := 2pL + 1 is also a prime. A well-known result,
the prime number theory, states that the number of primes not exceeding m
is approximately m

ln(m) . Thus, probability that a k-bit odd number is a prime
is about 2

k ln 2 . For a randomly generated k-bit odd number n, probability that
(p1, . . . , pL+1) are primes such that pi+1 := 2pi + 1 and p1 := 2n + 1 is approx-
imately k!2L

(k+L+1)!(ln(2)L) . Taking k = 170 and L = 10, probability of obtaining
such series of prime numbers on a given k-bit odd number n is about 2−66. In
fact, in [21], n is taken to be an RSA-modulus (which is normally of 1024-bit),
and the corresponding probability is 2−94. Therefore, it is questionable whether
the systems in [21] or [12] are in fact implementable.

The spend protocol in [12] is also quite inefficient. As mentioned in the same
paper, the authors regard spending a single coin as quite an expensive opera-
tion. It is due to the need of L “1-out-of-2 zero-knowledge proof-of-knowledge of
of double discrete logarithm”. For a cheating probability of 2−t, a single zero-
knowledge proof-of-knowledge of double discrete logarithms requires t exponen-
tiations. For a cheating probability of 2−40 and a moderate L (say 10), spending
a single coin requires 2 ∗ 40 ∗ 10 = 800 exponentiations. Moreover, it requires
a commmunication cost of more than 800 group elements (each group element
shall be of size greater than 1kb). Details analysis of the cost of each protocol
can be found in Section 5. Nonetheless, while [12] provides an affirmative answer
to whether divisible e-cash can be truly anonymous, it is fair to say constructing
a practical divisible e-cash which is truly anonymous is not as easy.

1.3 Our Approach

The construction of our divisible e-cash is derived from the classical binary tree
approach [23,21,14,12], in combination with the use of a bounded accumulator
[4]. We make use of the bounded accumulator to make a trade-off between com-
putational cost during the withdrawal protocol and the spend protocol. The cost
(computational and bandwidth) of our withdrawal protocol and spend protocol
is O(L) and O(1), respectively, while the corresponding figures for [12] is O(1)

1 In [12], it was written as G1 ⊂ Z
∗
|G|. However, according to their construction(as it

involves computation of ggs

1 for some s in Z
∗
|G|), G ⊂ Z

∗
|G1| should be the case.
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and O(Lt). Since the spending protocol is executed much more frequently than
the withdrawal protocol, our system is much more desirable in practice.

The trade-off is achieved with the use of accumulators [7,5]. During the with-
drawal protocol, the user computes the accumulation of the binary tree into L+1
accumulator values (V1, . . . , VL+1) and obtains L + 1 signatures. In the spend-
ing protocol, if a node of level � is to be used, the user only needs to compute
a zero-knowledge proof-of-knowledge such that the node he is about to use is
inside the accumulator V�. In this way, our spend protocol achieves a complexity
of O(1).

An obvious way to ensure the user honestly accumulates node values that
form a binary tree, while maintaining anonymity, is to require the user to pro-
duce zero-knowledge proof-of-knowledge such that these set of accumulator val-
ues (V1, . . . , VL+1) is correctly formed. This approach, however, is inefficient.
Another approach is to apply the cut-and-choose method in a straight-forward
manner. Specifically, the user prepares k sets of value, submits them all to the
bank who requires the user to reveal k − 1 of them in random. The bank checks
if these k − 1 sets of value are honestly generated and signs the remaining one
if the check is successful. To ensure that a user cannot cheat, k has to be large.
Thus, this approach is inefficient as well.

Luckily, bounded accumulator gives us the possibility of a third solution,
which is a modification of the cut-and-choose method. Our approach is statis-
tical, that is, a cheating user might spend more than what he withdraws for a
particular withdrawal protocol but in a long run, the bank is guaranteed that
users cannot spend more than they withdraw on average. The idea is derived
from the following fact: since the accumulator we use is bounded, the user can
only accumulate a predefined number of values regardless of whether they are
cheating or not. Naturally, there is an upper bound for which a cheating user
might gain. In our scheme, the cheating user can get at most a monetary value
of L2L, compared with a value of 2L for an honest user. If the bank inspects
the withdrawal protocol every two withdrawal requests and imposes a fine of
monetary value 2L2L if a user is found cheating, the bank is guaranteed it will
not lost money on average. In Section 3, we will formally define the security
model for divisible e-cash schemes that employ this kind of statistical approach.
In particular, the gain of a cheater cannot be large; since if the gain is large, a
cheater might not be able to pay the fine if he is caught. Secondly, a large gain
gives extra incentive for people to cheat.

Our Contributions. We propose a practical offline divisible e-cash without a
trusted third party which is truly anonymous (unlinkable). We formalize the
security model of divisible e-cash scheme that employs a statistical approach
and prove that our construction is secure under this model. We compare the
efficiency of our construction to that of [12] and shows that our system can be
more than 50 to 100 times more efficient, in terms of time and space, in the
spending protocol.
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Paper Outline. The rest of the paper is organized as follows. In Section 2 we
present preliminary information on the various cryptographic tools and assump-
tions used in our construction. Security model of divisible e-cash is presented in
Section 3. We present our construction in Section 4 and its efficiency analysis in
Section 5. Finally we conclude in Section 6.

2 Preliminaries
2.1 Pairing

A pairing is a bilinear mapping from two group elements to a group element.
Let ê be a bilinear map such that ê : G1 × G2 → G3 and the following holds.

– G1 and G2 are cyclic multiplicative groups of prime order p.
– Each element of G1, G2 and G3 has unique binary representation.
– g, h are generators of G1 and G2 respectively.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Z∗

p, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g, h) 
= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2 and the bilinear mapping
e are all efficiently computable.

2.2 Mathematical Assumptions

Security of our construction depends on the following existing mathematical as-
sumptions, namely,DecisionalDiffie-Hellman,SymmetricExternalDiffie-Hellman
[1], q-Strong Diffie-Hellman [8] and AWSM [4]. Their definitions can be found in the
full version of the paper [2].

2.3 Useful Tools

Zero-Knowledge Proof of Knowledge. In zero-knowledge proof of knowledge [19],
a prover proves to a verifier that a statement is true without revealing anything
other than the veracity of the statement. Our construction involves statements
related to knowledge of discrete logarithms constructed over a cyclic group G of
prime order p. These proofs can also be used non-interactively by using the Fiat-
Shamir heuristic [18]. The non-interactive counter part is referred to as signature
proof of knowledge, or SPK for short. They are secure in the random oracle model
[6]. Following the notation introduced by Camenisch and Stadler [11], PK{(x) :
y = gx} denotes a zero-knowledge proof of knowledge protocol between a prover
and a verifier such that the prover knows some x ∈ Zp such that y = gx ∈ G.
Construction of this proof first appeared in the Schnorr Identification[26]. The
corresponding non-interactive signature proof of knowledge shall be denoted as
SPK{(x) : y = gx}(M).
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ESS+ Signature. Extended special signature (ESS) was introduced in [4]. It
allows signing a block of messages, one of which being an element in a cyclic
group G. The authors also proposed two protocols, namely, signature generation
protocol and signature possession protocol. The signature generation protocol
allows a user to obtain a signature from the signer on message M in G, together
with a block of messages m1, . . . , mL in a commitment. The signer learns nothing
about m1, . . . , mL while he knows M . The signature possession protocol allows a
user to conduct a zero-knowledge proof of knowledge on a message signature pair.
ESS scheme is uf-cma secure[20] under the AWSM assumption. We modify the
signing protocol of ESS so that the signer learns nothing on the block of messages
to be signed as well. We refer this modified signature scheme as ESS+ Signature,
which is outlined in the full version of the paper [2].

ESS+ signature is uf-cma secure in the standard model under the AWSM
assumption. We would like to remark that AWSM is a strong assumption, as it
requires bilinear group pair where the SXDH assumption [1] holds.

Bounded Accumulator. The notion, bounded accumulator was introduced in [4]
as an accumulator with a limit q as the maximum number of elements that can
be accumulated. We briefly review their construction here.

Let G1, G2 be a bilinear group pair. Let u0 be a random element in G1 and
v0 be a random element in G2. Let q be the bound of the accumulator. The
generation algorithm randomly selects α ∈ Z

∗
p and computes ui = u0

αi

for
i = 1 . . . , q. Compute v1 = vα

0 . The public parameters is (u0, . . . , uq, v0, v1).
To accumulate a set of q values (e1, . . . , ek), the evaluation algorithm com-

putes the accumulator value V = u
∏k=q

k=1(ek+α)
0 . This operation does not require

knowledge of α since the ui’s are published. A witness wi such that value ei is

accumulated in the accumulator V is computed by wi = u
∏k=q

k=1,k �=i
(ek+α)

0 . The
witness-value pair shall satisfy ê(wi, v1v

ei
0 ) = ê(u0, v0). Construction of Zero-

knowledge proof of knowledge on a value-witness pair can be found in [22].

3 Syntax

A (statistical) divisible e-cash is a tuple (BankSetup, UserSetup, WithdrawalProto-
col, SpendProtocol, DepositProtocol, RevokeDoubleSpender, VerifyGuilt) of seven
polynomial time algorithms/protocols between three entities the bank B, the
merchant M and the user U .

– BankSetup. On input an unary string 1λ, where λ is the security parame-
ter, the algorithm outputs B’s key pair bpk, bsk, which includes wallet size
L, punishment P if a user is found cheating in Inspection Routine(to be dis-
cussed) and frequency of which Inspection Routine is carried out K.

– UserSetup. On input bpk, the algorithm outputs a key pair (pkU , skU ) (resp.
(pkM, skM)) for U (resp. M).

– WithdrawalProtocol. U with input (pkU , skU ) wishes to withdraws a wallet W
of 2L coins from B (with input (bpk, bsk). This protocol consists of two rou-
tines, namely, Withdrawal Routine and Inspection Routine, respectively. These
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two routines share the same steps in the beginning such that the user is not
aware which routine the bank selects. At a particular point in the protocol,
the bank chooses one of these two routines.

• Withdrawal Routine. With probability K−1
K , Withdrawal Routine is exe-

cuted. The user obtains a wallet W after executing the protocol, while
the bank (possibly) retains certain information τw, called the trace in-
formation.

• Inspection Routine. With probability 1
K , Inspection Routine is executed.

Inspection Routine outputs pass/cheat. If the output is cheat, a fine of
P shall be deducted from the user account. If the output is pass, the
user is asked to restart WithdrawalProtocol from the beginning.

– SpendProtocol. This is the protocol when U(with input W , pkM) spends a
divisible coin of value 2� (� ≤ L and is decided by the user) to M. After
the protocol, M obtains a coin serial number S�, a proof of validity πS ,
and possibly some auxiliary information aux, and outputs 0/1, depending
whether the payment is accepted. U ’s output is an updated wallet W ′.

– DepositProtocol. M submits (S�, πS , aux) to B for deposit in this protocol.
B outputs 0/1, indicating whether the deposit is accepted. B computes, from
S�, 2� serial numbers S̃1, . . . , S̃2� . If any of the serial numbers S̃i already be-
longs to L (the database of spent coins), B invokes the RevokeDoubleSpender
algorithm to find out the double-spender. Otherwise, it adds S̃i, S�, πS , aux
to L.

– RevokeDoubleSpender. Formally, on input two spending protocol transcripts
involving the same coin, the algorithm outputs the public key pk of the
double-spender.

– VerifyGuilt. This algorithm allows the public to verify that the user with
public key pk is guilty of double-spending. In particular, when the bank
uses RevokeDoubleSpender and outputs πD and pk of the double-spender,
everyone can check if the bank is honest.

Requirements:

– (Correctness for User.) It is required whenever an honest user obtains W
from the bank who might be dishonest, an honest merchant shall output 1
when the user engage with the merchant in SpendProtocol.

– (Correctness for Merchant.) It is required whenever an honest merchant ob-
tains (S�, πS , aux) from some execution of SpendProtocol with some user
who might be dishonest, there is a guarantee that this transaction will be
accepted by the honest bank.2

– (Practicality.) It is required that P should be small enough so that the fine
is payable. For example, if P = (2L)2, it is very likely that even when a
user is found cheating in Inspection Routine, he is unable to pay the fine. In
practice, we suggest P ≤ KL2L.

2 It can be seen that it is the bank’s responsibility to identify the double-spender.
The rationale behind is that a user can always spend the same coin to different
merchants in an offline e-cash system and the merchant have no way to detect such
a double-spending.
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3.1 Security Notions

We describe informally the security requirements of a statistical divisible e-cash
system. A secure statistical divisible e-cash scheme should possess, statistical
balance, IdentificationOfDoubleSpender, anonymity and exculpability, introduced
as follows. The reader may refer to the full version [2] for the formal version of
these definitions.

– Statistical Balance. This is the most important requirement from the bank’s
point of view. Roughly speaking, balance means that no collusion of users
and merchants together can deposit more than they withdraw without being
identified. Statistical Balance means that, in a long run, the balance property
is guaranteed. Statistical Balance is a relaxation of balance since it does not
rule out the possibility that a user might cheat without being detected and
gain a certain advantage within a small number of times. However, in a long
run, no successful strategy would allow collusion of users and merchants to
deposit more than they withdraw without being identified.

In particular, what we wish to model is the following situation. The bank
does not check every withdrawal request. However, if the user cheats during
the withdrawal, at most he can gain a monetary value P . If the bank only
checks once every K transactions and imposes a fine of KP for each caught
cheating, the Statistical Balance property will be achieved. It turns out that
this relaxation greatly increase the efficiency of our system.

– Anonymity. It is required that no collusion of users, merchants and the bank
can ever learn the spending habit of an honest user. In particular, spending
of the same user cannot be linked.

– Exculpability. It is required that an honest user cannot be proven to have
double-spent, even all other users, merchants and the bank collude.

A statistical divisible e-cash is said to be secure if it has Statistical Balance,
Anonymity and Exculpability.

4 Construction

In this section, we describe our cryptographic construction in detail and assess
its security, after giving a high level description.

4.1 High Level Description

Following the terminology of [9,12], spending a single electronic coin consists
of generating a serial number S, which is used to detect double-spending, a
security tag T , which is used to reveal identity of the double-spender should the
underlying coin is being spent twice. The spender has to prove to the merchant
that the pair (S, T ) is well-formed. Nonetheless, we provide an overview of our
system as follows.
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The Setup Procedure. The bank B generates ESS+.pk,ESS+.sk pair of the
ESS+ Signature. The bank also generates the public parameters of the bounded
accumulator as Acc1, . . . ,AccL+1. Let LF , RF be two secure cryptographic
hash functions. Let H be another secure cryptographic hash function. Let G =
〈g〉 be a cyclic group of prime order p such that DDH assumption holds. Let gU ,
h be additional generators of G.

The Account Establishment Procedure. User Alice establishes an account
with the bank B by selecting x ∈ Z∗

p and computes PKAlice := gx
U . She sends

PKAlice to B, along with a zero-knowledge proof-of-knowledge of the correspond-
ing secret key x.

The Withdrawal Procedure. Suppose user Alice, who has already established
an account with the bank, wishes to withdraw a wallet containing 2L coins. She
first randomly chooses a wallet secret w and computes a binary tree of L + 1
level as follows. The root note N0,0 is assigned the node key value k0,0 := w. For
all nodes Ni,j , the left children, Ni+1,2j , is assigned a node key value ki+1,2j :=
LF (gki,j ). Similarly, the right children, Ni+1,2j+1, is assigned a node key value
ki+1,2j+1 := RF (gki,j ). Let Tw be the resulting binary tree computed by Alice.

For i = 0 to L, compute Vi := Acci.Accumulate(ki,0, . . . , ki,2i−1). Alice then
tries to obtain L + 1 ESS+ Signature on block of messages (Vi, x) using the
signature generation protocol of ESS+ Signature.

B flips a fair coin b and if b == 1, B generates signatures σi = ESS+.Sign(Vi, x)
using the signature generation protocol of ESS+ Signature (so that B learns noth-
ing about Vi, x as discussed.) B sends σ := {σ0, . . . , σL} back to Alice. Alice stores
(σ, Tw) as her wallet W .

Otherwise if b == 0, B asks Alice to reveal her binary tree. B tests if the
Vi’s are honestly generated (that is, checks whether Vi is the accumulation of
ki,0, . . . , ki,2i−1). If yes, B asks Alice to restart the withdrawal procedure. Oth-
erwise, a fine of 2L2L is deducted from Alice’s account.

The Spending Procedure. Suppose user Alice with wallet W wishes to spend
to merchant Bob 2� dollar where � ≤ L. Alice and Bob agree on certain trans-
action information I which contains identity of Bob and the monetary value 2�.
Bob also sends Alice a random challenge R.

She first chooses a node from the binary tree Tw at level L − � which has not
been marked as used. Let Ni,j be the node chosen (that is, i = L − �). Compute
serial number S = gki,j . Compute security tag T = gx

Uhki,jR.
Alice sends to Bob S, T together with a proof π which is a non-interactive

zero-knowledge proof-of-knowledge of the following statement:
Alice is in possession of quantities Vi, ki,j , x, σi which satisfy the following

relationship:

1. ESS+.Verify(σi, Vi, x) = 1 (using the signature possession algorithm of
ESS+ Signature.)

2. ki,j is a value inside the accumulator Vi
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3. S = gki,j

4. T = gx
Uhki,jR

Bob verifies if π is a valid proof. It accepts the payment if the proof is valid.
If Bob accepts the payment, Alice marked down Ni,j and all its children, as well
as ancestors, from Tw as used node.

The Deposit Procedure. Bob sends (S, T, π, R, �) to the bank for deposit.
The bank checks if R is fresh (that is, if R has been used before by Bob). If the
check is successful, then credit Bob’s account.

The bank then tries to detect if the coin S has been double-spent. Let S be
the serial number of a coin of monetary value 2�. Let Ni,j be the correspond-
ing node of the binary tree. From S, the bank computes the 2� serial numbers
corresponding to the leaves of subtree of node Ni,j by repeatedly applying the
functions LF (·), RF (·) and g(·).

For each serial number Si, the bank checks if it exists in the database. If not,
it stores (Si, S, T, R, π) in its database. Suppose there exists another entry in
the database (S′

i, S
′, T ′, R′, π′), the bank runs the identify procedure discussed

in the following subsection.

The Identify (Double-Spender) Procedure. On input two entries (Si, S,
T , R, π) and (S′

i, S′, T ′, R′, π′), the bank computes the identity of the double-

spender as follows. If S and S′ are the same, compute PKcheater := (T R′

T ′R )
1

R′−R .
On the other hand, if S and S′ are different, S and S′ must be of different

monetary value. Without loss of generality, assume the monetary value of coin
with serial number S is greater than that of S′. The bank can compute the node
key ki,j such that S′ = gki,j from S by repeatedly applying the LF (·), RF (·), g(·)

in suitable order. From ki,j , the bank computes pkcheater = T ′

hR′ki,j
and obtains

identity of the double-spender.
This completes the high-level description of our system.

4.2 System Construction

Bank’s Setup. Let 2L be the size of a wallet in the system. Let λ be a security
parameter. On input λ, generate a λ-bit prime p. Generate a bilinear group pair
of order p. That is, ê : G1 × G2 → G3 is a bilinear map such that |G1| = |G2| =
|G3| = p. Let g, gA, gB, g0, g1, g2, g3, g4, u0, gU , gS , gT be random elements in G1,
h, h1, h2, h3, v be random elements in G2. Since G1, G2 are of prime orders, all
the above random elements are generators. Let H : {0, 1}∗ → Z

∗
p be a secure

cryptographic hash function. Let H0 : {0, 1}∗ → Z∗
p, H1 : {0, 1}∗ → Z∗

p be two
other secure cryptographic hash function.

The bank randomly chooses X ∈ G1, y, α0, . . . , αL ∈ Z∗
p. Compute Y = hy

and Z = ê(X, h). For i = 0 to L and for j = 1 to 2i, compute ui,j = u
αj

i
0 .

Compute vi = vαi for i = 0 to L.
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The public key of the bank is bpk :=
(
λ, ê, G1, G2, G3, p, H , H1, L , g, gA,

gB, g0, g1, g2, g3, g4, u0, gU , gT , [ui,1, . . ., ui,2i ]i=L
i=0 ∈ G1, Y , h, h1, h2, h3, v, v0,

. . ., vL ∈ G2, Z ∈ G3
)
. The private key of the bank is bsk :=

(
X ∈ G1, y ∈ G2

)
.

Remarks: The αi’s are no longer needed and the bank shall delete them. Later
we shall see knowledge of αi helps breaking the balance property of the scheme,
while, it does not help breaking anonymity or exculpability. Thus, we shall be-
lieve the bank to delete those values since keeping them is exactly against its
interest.

User Account Establishment. User Alice chooses x as her private key and
computes PKAlice = {gx

U}. She sends PKAlice to the bank, along with the proof
of correctness. The bank stores PKAlice as the identity of Alice in its database.
Alice stores (PKAlice, x) as her key pair.

Withdrawal Protocol. To withdraw a wallet W from the bank, Alice first
prepares a binary tree Tw as follows. Randomly chooses w ∈ Z

∗
p. Set k0,0 := w

and obtain all node key ki,j of the binary tree Tw. The algorithm, denoted as
ComputeAllNodeKey, can be found in the full version of the paper[2]. Then, she
computes the accumulation of the node keys of each levels as follows. For i = 0

to L, she computes Vw,i = u
∏2i−1

j=0 (αi+ki,j)
0

3. She computes the commitment of
the binary tree Tw and her private key x. This is done by randomly choosing
ai, b

′
i ∈ Z∗

p, computes Cw,i = Vw,ig
ai

A , Dw,i = g
b′

i
0 gai

B . She sends
[
Cw,i, Dw,i

]i=L

i=0
to the bank.

With probability 1/2, the bank will ask Alice to execute Inspection Routine.
Alice has to reveal Tw, ai, b′i for i = 0, . . . , L to the bank. The bank checks
if Alice computes the values Vw,i’s honestly. If Alice is found dishonest, a fine
of 2L2L is deducted from Alice account. Otherwise, the withdrawal protocol is
repeated from the beginning.

If Inspection Routine is not chosen to be carried out, Alice is required to send
a proof of knowledge of representation of Dw,i to the bank. The bank veri-
fies the proof, randomly chooses b′′i , ci ∈ Z∗

p for i = 0 to L and computes

Ai = X(Cw,i)ci , Bi = (gg
b′′

i
0 PKAliceDw,i)

1
y+ci , Ci = hci . Then bank sends

[
(Ai, Bi, Ci, ai, b

′′
i , )

]i=L

i=0 to Alice.
Alice computes bi = b′i + b′′i for i = 0 to L, checks, for i = 0 to L, if

ê(Ai, h) ?= Ziê(Vw,igA
ai , Ci),

ê(Bi, CiY ) ?= ê(g, h)ê(gB, h)ai ê(g0, h)bi ê(gU , h)x,

and set W :=
(

Tw,
[
(Ai, Bi, Ci, ai, bi)

]i=L

i=0

)

.

3 This computation does not require knowledge of αi. It can be computed using

uαi
0 , . . . , u

α2i

i
0 .
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Spend Protocol. Alice with wallet W wishes to pay merchant Bob with 2�

(� < L) dollar in the spend protocol. Alice and Bob first agree on the transaction
information I which includes � and Bob’s identity. Alice chooses an unused node
key of level i := L − �. Let ki,j be the node key being chosen.

1. Bob sends to Alice a random challenge m.
2. Alice computes M = H(I, m). She computes serial number of the coin S =

g
ki,j

S and security tag T = PKAliceg
Mki,j

T . She also computes a proof of
correctness ΠS such that S, T are correctly formed as follows:

SPKSpend

{

(Ai, Bi, Ci, ai, bi, x, ki,j , Vw,i, Wi,j) :

ê(Ai, h) = Ziê(Vw,ig
ai

A , Ci) ∧ ê(Bi, CiY ) = ê(ggai

B gbi
0 gx

U , h) ∧

S = g
ki,j

S ∧ T = gx
Ug

Mki,j

T ∧ ê(Wi,j , viv
ki,j ) = ê(Vw,i, v)

}

(M),

where Wi,j = u
∏k=2i−1

k=0,k �=j(αi+ki,k)
0 . She sends $ := (S, T, ΠS, I, m) to Bob.

3. Bob accepts the payment $ if ΠS is a valid proof statement.
4. Alice marks the node Ni,j , its ancestors and all its children in Tw as used

nodes.

Remarks: Instantiation of SPK ΠS is shown in the full version[2].

Deposit Protocol. Bob with $ from Alice approaches the bank in the deposit
protocol. He submits $ to the bank, who checks if I matches the merchant
identity and checks if m has been used before. The bank credits Bob if both
checks passes.

Let 2� be the value of the coin and i := L − �. The bank compute all serial
numbers accompanying S and obtains SL,0, . . . , SL,2� . The algorithm, denoted
as ComputeAllSerials, can be found in the full version of the paper[2]. The bank
then checks if SL,0, SL,2� is in its database of spent-coin serial numbers. If yes,
it runs the RevokeDoubleSpender algorithm described below. Otherwise, it stores
SL,0, SL,2� , together with $ in its database of spent-coin serial numbers.

RevokeDoubleSpender. Let $ :=(S, T, ΠS , I, m) and $′ := (S′, T ′, ΠS′ , I ′, m′)
be two coins such that one of the output from algorithm ComputeAllSerials is the
same. Denote M := H(I, m) and M ′ = H(I ′, M ′). If both coins are of the same
value, compute PK := (T M′

T ′M )
1

M′−M and output PK as the identity of the double-
spender.

Without loss of generality, assume value of coin $ is 2� and value of coin $′ is 2�′

such that � > �′. Let SL,α, 0 ≤ α ≤ 2� − 1, be the output from ComputeAllSerials
on (S, L, �) such that SL,α equals to one of the output serial numbers from
ComputeAllSerials on (S′, L, �′). Compute K by applying H0 or H1 suitably such
that S = gK

S . The algorithm, denoted as GetNodeKey can be found in the full
version of the paper[2]. Compute PK := T ′

hM′k and output PK as the identity
of the double-spender.
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Table 1. Time and Space Complexities of this paper and [12]

Time Complexities
This paper Canard et. al.[12]

WithdrawalProtocol
User

Bank User Bank
w/o Preproc. w/ Preproc.

multi-EXP 2L+1 + 9L + 5 2L + 2 2L+1 + 8L + 6 2 3
Pairing 2L + 2 2L + 2 0 0 0

SpendProtocol User
Merchant User Merchant

(coin of value 2L−i) w/o Preproc. w/ Preproc.
multi-EXP 21 1 13 6 + 2ti + i 2ti + i + t + 7

Pairing 6 0 8 0 0
Space Complexities

WithdrawalProtocol Total Bandwidth Required Total Bandwidth Required
G element 7L + 7 3

Z
∗
|G| element 7L + 8 2

SpendProtocol Total Bandwidth Required Total Bandwidth Required
(coin of value 2L−i)

G element 9 2(i + 1) + 6
Z

∗
|G| element 21 2ti + 4t + i + 11

VerifyGuilt. The algorithm RevokeDoubleSpender can be executed by the pub-
lic. Thus, a proof that the bank is outputting the double-spender honestly is to
publish two double-spent transcript.

4.3 Security Analysis

Regarding the security of our construction, we have the follow theorem whose
proof can be found in the full version of the paper[2].

Theorem 1. Our construction is secure under the q-SDH assumption and the
AWSM assumption in the random oracle model.

5 Efficiency Analysis

Table 1 summarizes the complexities of different protocols of our scheme and
the scheme in [12]. The cost of the protocol with pre-processing of our scheme is
listed as a reference. It is somehow hard to quantify the exact cost of the spend
protocol in [12] as the instantiation of the SPK is very complex. Furthermore, it
involves L + 1 cyclic groups of different orders. We simplify the comparison by
stating the total number of group elements needed. If the Strong RSA-based CL
signature [10] is used, as stated in [12], the group G in the paper would be the
group of quadratic residue modulus a safe-prime product n, which would be of
1024-bit. t is the security parameter controlling the cheating probability of the
proof-of-knowledge of double-discrete logarithm. For example, t = 80 would give
the protocol a cheating probability of 2−80.
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For a moderate value L = 10 and t = 40, spending a coin of monetary value
1 in [12] requires 816 and 857 multi-based exponentiations from the user and
the merchant respectively, and a total bandwidth of 981 elements in Z∗

|G| and
28 elements in G. If the base group is of order n which is 1024-bit, each of the
above elements is at least 1024-bit in size. On a contrary, spending a coin of
any monetary value in our scheme requires a constant cost of 21 and 13 multi-
based exponentiations from the user and the merchant respectively. And a total
bandwidth of 9 elements in G and 21 elements in Z∗

|G| is needed.

6 Conclusion

We presented an efficient off-line divisible e-cash scheme which is truly anony-
mous. While [12] shows that truly anonymous off-line divisible e-cash can be
constructed, in this paper, we provided one step further by providing an affir-
mative answer whether a practical and efficient off-line divisible e-cash can be
constructed. Our scheme is very efficient and practical (c.f. [12]).
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