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Abstract. We present 1−ε approximation algorithms for the maximum
matching problem in location aware unit disc graphs and in growth-
bounded graphs. The algorithm for unit disk graph is local in the sense
that whether or not an edge is in the matching depends only on other
vertices which are at most a constant number of hops away from it. The
algorithm for growth-bounded graphs needs at most O (log � log∗ n +
1
ε

O(1) · log∗ n
)

communication rounds during its execution. Using these
matching algorithms we can compute vertex covers of the respective
graph classes whose size are at most twice the optimal.

1 Introduction

Unit Disk Graphs (UDGs) is a widely used concept for modeling ad hoc and
wireless networks. In these graphs, the connectivity of two nodes is established if
and only if their Euclidean distance of these two nodes is at most one. Therefore,
UDGs model the setting of identical wireless devices on a plane without obstacles
that could obscure the wireless signals. There are also other models for wireless
networks, e.g., Quasi-Unit-Disk-Graphs (Q-UDGs) which were first introduced
by Barriere et al. [2]. In Q-UDGs there is a certain radius � such that two nodes
which are closer to each other than � are always connected whereas nodes with
a larger distance than one unit are always disconnected. This and other models
for wireless networks are captured by growth-bounded graphs. These are graphs
in which for any vertex v the size of an independent set of the vertices which are
at most r hops away from v is at most f(r) (for a certain growth-function f).

In the setting of wireless and ad-hoc-networks there is usually no global com-
munication backbone available. So for organizing the network traffic and solving
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problems like matching or vertex cover we need to find a method that does not
rely on global information of the network. So we are interested in local algo-
rithms. These are algorithms for which the result of a computation for a vertex
or an edge depends only on the vertices and edges which are at most a certain
distance away from them (the locality distance). With this constraint we ensure
that we do not need knowledge of the entire network but only information about
the network in a certain neighborhood of a vertex or an edge. It is also of in-
terest in dynamically changing networks since if only small changes occur local
algorithms need to recompute only small parts of the solution.

In our UDG graph model we assume that every node is aware of its geographic
position in the plane. Allowing this positional knowledge we will see that the
locality distance of our algorithms can be bounded by a constant. Note that this
constant does not depend on the overall size of the network or the maximal vertex
degree. Since positioning systems like GPS become more and more common, this
setting seems to be relevant.

For organizing communication in wireless networks matching is a useful con-
cept. In one communication round a node can usually receive data from only
sender (due to interference) and each sender can send only one package at a
time (usually to one receiver). Thus the sender/receiver pairs form a matching
in the underlying network graph. Research has been done on finding matchings
with certain properties [3] in order to deal with interference and noise issues.
Also, in the computation of schedules for allocating bandwidth the matching
problem can arise [12].

1.1 Related Work

The matching problem is in P for general graphs [5]. The first algorithm due
to Edmonds requires a runtime of O

(
n3

)
. For the restricted case of bipartite

graphs there are improvements known, e.g., the Hopcroft-Karp algorithm [7].
The vertex cover problem is NP -hard in general graphs [6], but there are sev-

eral polynomial time approximation algorithms which guarantee an approxima-
tion factor of 2, e.g., in [1]. However, it is NP -hard to approximate the problem
with a factor better than 10

√
5 − 21 ≈ 1, 3607 [4]. Thus there can be no poly-

nomial time approximation scheme (PTAS), unless P = NP . When we restrict
the setting to unit disk graphs, vertex cover remains NP -hard. The same holds
for growth-bounded graphs since this class includes unit graphs. However, for unit
disk graphs PTASs are known. For the case where the embedding of the graph is
known, Hunt III et al. [8] presented the first approximation scheme. The algorithm
for independent set presented in [10] together with the technique in [14] yields a
global PTAS for vertex cover that does not rely on the embedding of the graph.
There is also a local PTAS known for the setting of location aware UDGs [14].

1.2 Our Results

We present the first local approximation algorithms for matching in location
aware Unit Disk Graphs. It achieves an approximation ratio of 1−ε for arbitrarily
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small ε. In this setting we can show that the locality distance of our algorithm
(i.e. the radius of the area that needs to be explored in order to compute the
status of one edge) is bounded by a constant. In particular, this constant does
not depend on the size of the entire network or the maximal degree of a vertex.
For growth-bounded graphs we also give a 1 − ε approximation algorithm. For
this setting we lift the assumption of positional information in the nodes and
require only a unique ID in each vertex. The locality distance for this algorithm is
in O

(
log � log∗ n + 1

ε

O(1) log∗ n
)
. All matchings computed by these algorithms

are maximal.
Each matching algorithm yields a local approximation algorithm for the vertex

cover problem. The locality properties of these algorithms are identical to the
respective matching algorithms. The size of the computed vertex covers are at
most twice the size of an optimal vertex cover. As mentioned above, for location
aware unit disk graphs there is a local PTAS known [14]. However, the locality
distance of this PTAS when executed with approximation factor 2 is a lot larger
than the locality of Algorithm 3.

1.3 Organization of the Paper

In Section 2 we present our local 1 − ε approximation algorithm for matching
in location aware unit disk graphs. In Section 3 we show how the ideas of this
algorithm can be used in order to derive a local 1 − ε approximation algorithm
for the same problem in growth-bounded graphs. Our local approximation algo-
rithms for vertex cover with approximation factor 2 are presented in Section 4.
Finally in Section 5 we summarize our results and address open problems.

2 Maximum Matching in Location Aware UDGs

In this section we present a local 1−ε approximation algorithm for the maximum
matching problem in location aware unit disk graphs. First we give some basic
definitions. Then we define a tiling of the plane that we are going to use in our
algorithm. Finally we present the algorithm and prove its correctness.

2.1 Definitions

The graph G = (V, E) considered in this section is a unit disk graph. For two
vertices u and v let d(u, v) be the hop-distance between u and v, that is the
number of edges on a shortest path between these two vertices. Note that the hop-
distance between two vertices does not necessarily equal the geometric distance
between them. Denote by N r(v) = {u ∈ V | d(u, v) ≤ r} the r-th neighborhood
of a vertex v. In Section 3 we will consider growth-bounded graphs.

Definition 1. An undirected graph G = (V, E) is called a f -growth-bounded
graph if there exists a polynomial bounding function f(r) such that for every
v ∈ V and r ≥ 0, the size of the largest independent set in the r-neighborhood
N r(v) is at most f(r).
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Similarly we define families of graphs to be growth-bounded.

Definition 2. Let G be a family of graphs. We call G polynomially growth-
bounded, if there exists a polynomial bounding function f(r) such that for every
graph G ∈ G, every vertex v in G and every r ≥ 0, the size of the largest
independent set in the r-neighborhood N r(v) in G is at most f(r).

In the sequel when refering to growth-bounded we will mean polynomially growth
bounded. In addition, we will implicitly assume that the family and its bounding
function f(r) are known and fixed for the given class G of graphs.

Let M ⊆ E be a set of edges. We call M a matching, if no two edges in M
share an end-vertex. We call M a maximum matching, if for all matchings M ′

it holds that |M ′| ≤ |M |. A maximal matching is a matching which cannot be
extended by adding another edge.

Let M be a matching. We call a path p an M -alternating path, if it contains
alternating matching- and non-matching edges. We call a vertex v an isolated
vertex, is it is not adjacent to an edge from M . We call an M -alternating path
p an M -augmenting path, if it starts from and ends on isolated vertices. Note:
An M -augmenting path has an odd number of edges.

Lemma 1. A matching M is a maximum matching, if and only if there is no
M -augmenting path.

2.2 Tiling of the Plane

Let 1 − ε be the desired approximation ratio for the matching algorithm. We
define k to be the smallest integer such that ε ≥ 2

k+1 . We tile the plane with
an infinitely repeated pattern of rectangles as seen in Figure 1. Each rectangle
is assigned class number 1, 2 or 3. The height of each rectangle is 2k + 2, the
width of each rectangle is 4k + 4.
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Fig. 1. The tiling of the plane
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2.3 The Algorithm

Now we present the algorithm. It has three phases:

1. For each rectangle R we compute a matching that includes only edges that
have both end-vertices in R.

2. For each class 1 rectangle R we check if there are augmenting paths in the
subgraph induced by the vertices which are at most k hops away from R. If
there are such paths, we augmented the matching until no such paths are
left.

3. For each class 2 rectangle R we check if there are augmenting paths in the
subgraph induced by the vertices in R and the vertices in class 3 rectangles
which are at most k hops away from R. As in the step before, we augment
the matching along all these paths.

Now we present the algorithm in detail. For all rectangles R we do the following:
Denote by VR the vertices in R. For the subgraph induced by VR we compute a
maximum matching using a standard matching algorithm. Since all VR for the
different rectangles R are disjoint the order in which we do this does not matter.
Now we come to phase 2: For each class 1 rectangle R we take the set of vertices
which are in R or at most k hops away from a vertex in R. Denote this set by V ′

R.
In the subgraph induced by V ′

R we augment the matching along all augmenting
paths. Since the height of the rectangles is 2k + 2 and their width is 4k + 4,
the order in which the class 1 rectangles are being processed does not matter.
Finally we start phase 3: For each class 2 rectangle R we compute all vertices
which are at most k hops away from R. Denote this set by V ′′

R . For the subgraph
induced by V ′′

R we we augment the matching along all augmenting paths. Denote
by M the resulting matching. We refer to the above as Algorithm 1.

In the following theorem we prove that Algorithm 1 is a local algorithm that
computes a valid matching with a competitive ratio of 1 − ε.

Theorem 1. Algorithm 1 has the following properties:
1. The computed matching M is a maximal matching for G.
2. Let MOPT be an optimal matching for G. It holds that |M | ≥ (1−ε)·|MOPT |.
3. Whether or not an edge e = (u, v) is a matching edge depends only on the

vertices which are at most O
(
1/ε2

)
hops away from u or v, i.e. Algorithm 1

is local.
4. The processing time for an edge e = (u, v) is bounded by a cubic polyno-

mial in the number of vertices which are at most O
(
1/ε2

)
hops away from

u or v.

2.4 Proof of Correctness

We will prove the four parts of this theorem in four steps.

Validity and Maximality. We prove that M is a valid matching for G and
that it is maximal.



6 A. Wiese and E. Kranakis

Algorithm 1. Algorithm for finding a matching in a unit disk graph G =
(V, E)
// Phase 1;
foreach rectangle R do

// denote by VR the vertices in R;
determine a maximum matching MR for the subgraph induced by VR;

end
Define M :=

⋃
R∈T MR;

// Phase 2;
foreach rectangle R with class(R) = 1 do

Denote by VR all vertices in R;
Explore all vertices which are at most k hops away from vertices in VR;
// Denote these vertices by V ′

R;
Augment M along augmenting paths in the subgraph induced by V ′

R;
end
// Phase 3;
foreach rectangle R with class(R) = 2 do

Denote by VR all vertices in R;
Explore all vertices which are at most k hops away from vertices in VR;
// Denote these vertices by V ′′

R ;
Augment M along augmenting paths in the subgraph induced by V ′′

R ;
end

Proof. (of part 1 of Theorem 1): The matchings constructed in phase 1 are clearly
valid. Since in phase 2 and 3, M is only augmented along augmenting paths, the
resulting matching is valid as well.

Now we want to prove that M is maximal. We call an edge that would extend
M an extending edge. Since we augment the matching along augmenting paths a
vertex which is adjacent to a matching edge once will be adjacent to a matching
edge in the final matching as well. We see that after phase 1 all extending
edges must have their adjacent vertices in different rectangles since we compute
maximum matchings for each rectangle. From the construction of the tiling we
see that these rectangles must have different class number (since the length of
an edge is at most 1). After phase 2 there are no extending edges between class 1
and 2 rectangles left since the matching would be augmented along such “paths”.
With the same reasoning we see that after phase 3 there are no extending edges
between class 2 and 3 rectangles left. So for the final matching there are no
extending edges in the graph. This implies that the matching M is maximal.

Approximation Ratio. Let MOPT be an optimal matching for G. We prove
that |M | ≥ (1 − ε) · |MOPT |.

Proof. (of part 2 of Theorem 1): Denote by Mi the matching computed by the
algorithm after phase i for i ∈ {1, 2, 3}. Let Pi be the set of augmenting paths
for Mi with i ∈ {1, 2, 3}. From the construction of M1 it follows that all paths
in P1 must have their start - and endvertices in two different rectangles. From
the algorithm we see that all paths in P2 either
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– do not have their start- and endvertex in a rectangle of class 1 or
– are longer than k,

since all other augmenting paths in P1 are eliminated in phase 2. Similarly, in
P3 all augmenting paths which are left are longer than k edges.

Consider M ′ := M3�MOPT = (M3 − MOPT ) ∪ (MOPT − M3) and G′ :=
(V, M ′). All nodes in G′ have a degree of at most two (since M3 and MOPT are
both matchings). Its connected components are

– isolated vertices
– cycles of even length
– paths of three possible types

• Paths starting and ending with an edge from M . This cannot happen
since this would be an augmenting path for MOPT and MOPT is optimal.

• Paths starting with an edge from M and ending with an edge from
MOPT . These paths have the same number of edges from M as from
MOPT .

• Paths starting and ending with an edge from MOPT . These are augment-
ing paths for M . Denote all these paths by P ′

3.

Every augmentation would increase the number of edges in M by one, so |M | +
|P ′

3| = |MOPT |. Since P ′
3 ⊆ P3 all paths in P ′

3 have more than k edges. So every
path in P ′

3 contains at least k+1
2 edges of MOPT . Since the paths are disjoint, it

follows that |P ′
3| ≤ |MOPT | /k+1

2 . We then have

|M | = |MOPT | − |P ′
3|

≥ |MOPT | − 2 |MOPT |
k + 1

≥ (1 − ε) |MOPT |

Locality. We prove that whether or not an edge e = (u, v) belongs to M depends
only on the vertices which are at most O

(
1/ε2

)
hops away from u or v. First we

need to give a technical lemma.

Lemma 2. Let R be a rectangle and G[R] the graph G restricted to R. For each
connected component C in G[R] it holds that diam(C) ≤ 22k2 + 58k + 39. Let
R′ be a rectangle and G[R′] the graph G restricted to the vertices which are at
most k hops away from R′ (including the vertices in R′ itself). Then for each
connected component C′ in G[R′] it holds that diam(C′) ≤ 30k2 + 70k + 31.

Proof. First we derive an upper bound for the maximum size of an independent
set in G[R]. The area of R plus a surrounding belt of width 1/2 around it is (2k+
3) · (4k + 5) =

(
8k2 + 22k + 15

)
. So there can be at most

⌊
8k2+22k+15

π/4

⌋
centers

of non-overlapping discs of radius 1/2 in R. We compute that
⌊

8k2+22k+15
π/4

⌋
≤⌊

32k2

π

⌋
+

⌊88k
π

⌋
+

⌊ 60
π

⌋
≤ 11k2 + 29k + 20. It follows that the cardinality of a
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maximum independent set in G[R] is at most 11k2 + 29k + 20. Now consider a
connected component C in G[R] and two vertices u, v ∈ C such that d(u, v) =
diam(C). Denote by p the shortest path between u and v in C. If we take every
alternating vertex in p we get an independent set in R. As the size of such a set
is bounded by 11k2 + 29k + 20, the length of p is bounded by 22k2 + 58k + 39
and therefore diam(C) ≤ 22k2 + 58k + 39.

Applying the same reasoning to R′ we derive an upper bound of 15k2+35k+16
for an independent set in G[R′] (since

⌊
(2k+3+k)·(4k+4+k)

π/4

⌋
=

⌊
15k2+27k+12

π/4

⌋
≤⌊

60k2

π

⌋
+

⌊108k
π

⌋
+

⌊48
π

⌋
= 15k2 + 35k + 16) and therefore we get diam(C′) ≤

30k2 + 70k + 31 for any connected component C′ in G[R′].
(of part 3 of Theorem 1): Denote by ai the maximum number of hops which

we need to explore around u and v in order to compute whether e ∈ M after
phase i (for i ∈ {1, 2, 3}).

In order to determine the status of an edge e after phase 1, we need to explore
only the connected component of e in its rectangle if u and v are in the same
rectangles or nothing if u and v are in different rectangles. From Lemma 2 it
follows that a1 ≤ 22k2 + 58k + 39. For computing the status of e after phase 2
we need to explore the connected component V ′

R with u ∈ V ′
R and v ∈ V ′

R (if it
exists) and what edges in V ′

R were assigned to M after phase 1. It follows that
a2 ≤ a1 +30k2 +70k+31 (see Lemma 2). Analogously for computing the status
of e after phase 3 we need to explore the connected component V ′′

R such that
u ∈ V ′′

R and v ∈ V ′′
R (if such a component exists) and what edges in V ′

R were
assigned to M after phase 2. This implies that a3 ≤ a2 + 30k2 + 70k + 31. So
altogether we get that a3 ≤ 22k2+58k+39+30k2+70k+31+30k2+70k+31 =
82k2 + 198k + 101 ∈ O

(
k2

)
.

By definition k is the smallest integer such that ε ≥ 2
k+1 . This implies that

k ≥ 2
ε − 1 and thus k ∈ O (1/ε). It follows that a3 ∈ O

(
1/ε2

)
.

Processing time. We want to show that the processing time of Algorithm 1
for a single edge e is in O

(
n̄(e)3

)
where n̄(e) is the number of vertices within the

locality distance of e (i.e. the number of vertices which we really need to explore
in order to compute the status of e).

Proof. (of part 4 of Theorem 1): In phase 1 we need to compute a maximum
matching for edges in a single rectangle. This can be done in O

(
n̄(e)3

)
using any

algorithm for computing a maximum matching (e.g. Edmonds algorithm [5]). In
phase 2 we need to find augmenting paths in the subgraph induced by V ′

R for
several class 1 rectangles R. Since in the locality distance of e there can be only a
constant number of class 1 rectangles this requires O

(
n̄(e)3

)
time (note that the

number of such class 1 rectangles does not depend on the desired approximation
ratio). Applying the same reasoning in phase 3 we need a processing time of
O

(
n̄(e)3

)
. This leads to an overall processing time of O

(
n̄(e)3

)
.
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3 Maximum Matching without Location Awareness

In this section we present a local algorithm which computes a 1−ε approximation
for the maximum matching problem in growth-bounded graphs. In contrast to
the algorithm presented in Section 2 we assume a graph model in which the
embedding of the graph is unknown. We will specify this in the following section.

3.1 Graph Model

Let G = (V, E) be a growth-bounded graph. We assume that every node has
a unique identifier (ID). Apart from that there is no information available to
distinguish the nodes from each other.

3.2 The Algorithm

Let 1 − ε be the desired approximation ratio. The algorithm uses the same
methodology as Algorithm 1 for ensuring the approximation ratio: We will com-
pute a maximal matching M such that the length of each of the augmenting
paths that could turn M into a maximum matching is at least a certain con-
stant k. At the beginning of the algorithm we choose k according to ε.

The role of the rectangle classes in the algorithm above will be taken by a
maximal independent set which is also a dominating set. In order to organize
the computation distributively we use the same methods which were originally
presented in [10].

Similarly as in Algorithm 1 we define k to be the smallest even integer such
that ε ≥ 2

k+1 . We compute a maximal independent set I in G. This can be
done locally using the distributed algorithm [5]. Then we define the clustergraph
Ḡ = (V̄ , Ē) with radius 2k + 2 by V̄ := I and

(u, v) ∈ Ē ⇔ dG(u, v) ≤ 2k + 2

Since G is a growth-bounded graph, the maximum degree �Ḡ of Ḡ is bounded by
a constant. This allows us to use the algorithm in [11] for coloring the vertices of
Ḡ with at most O

(
�2

Ḡ

)
colors. We initialize our matching M with M := ∅. Then

we iterate over the different colors of Ḡ. For each color c we do the following: For
each vertex vc which was colored with color c we compute the subgraph induced
by Nk+1 (vc). Denote by Gc (vc) such a subgraph around a vertex vc. From the
definition of Ḡ we see that the subgraphs are all disjoint. In each subgraph
Gc (vc) we augment our matching M along augmenting paths until we cannot
find any more augmenting paths. This can be done using a standard matching
algorithm, e.g., the algorithm by Edmonds [5]. Since the subgraphs are disjoint
this can be done distributively. After having iterated over all colors, we output
M . We refer to this as Algorithm 2.

Theorem 2. Algorithm 1 has the following properties:

1. The computed matching M is a maximal matching for G.
2. Let MOPT be an optimal matching for G. It holds that |M | ≥ (1−ε)·|MOPT |.
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Algorithm 2. Algorithm for finding a matching in a unit disk graph G =
(V, E)
// Let 1 − ε be the desired approximation ratio;
Define k to be the smallest integer such that k+1

k+3 ≥ 1 − ε;
Compute a maximal independent set I for G;
Construct cluster graph Ḡ with radius 2k + 2;
Color Ḡ with γ = O

(
�2

Ḡ

)
colors;

M := ∅;
for i := 1 to γ do

foreach vertex vc with color c do do
compute subgraph Nk+1 (vc);
augment M along augmenting in Nk+1 (vc);

end
end

3. The algorithm requires at most O
(
log � log∗ n + 1

ε

O(1) · log∗ n
)

communi-
cation rounds.

3.3 Proof of Correctness

We will prove the four parts of this theorem in four steps.

Validity and Maximality. We want to prove that M is a matching and that
it is maximal.

Proof. (of part 1 of Theorem 2): For the correctness of the subroutines for com-
puting the maximal independent set and the vertex coloring we refer to their
respective articles [9,11]. In each iteration the matching is augmented along aug-
menting paths. This clearly constructs a valid matching. Now we want to prove
that M is maximal. Assume on the contrary that there is an edge e = (u, v)
with e /∈ M but such that M ∪ {e} is a valid matching. Since I is a maximal
independent set it is also a dominating set. So there is a vertex u′ ∈ I which is
adjacent to u. Let c be the color of u′. There is an iteration in which u′ was con-
sidered. Since we always augment our matching along augmenting paths, both
u and v were unmatched in this iteration (in Gc (u)). Since e is in Gc (u) and
we augment M along all augmenting paths in Gc (u), the edge e is added to M .
In all future iterations u and v will always be matched (adjacent to a matching
edge). This is contradiction.

Approximation Ratio. We want to prove that for a maximum matching
MOPT for G it holds that |M | ≥ (1 − ε) · |MOPT |.

Proof. (of part 2 of Theorem 2): Like in the proof of Theorem 1 we show that
there are no augmenting paths for M whose length is shorter or equal to k.
Denote by Ii ⊆ I all vertices in I which were colored with color i. Denote by
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Pi all vertices which are either in Ii or adjacent to a vertex in Ii and denote
by Mi the computed matching after the ith iteration. In the ith iteration of
the algorithm we check for augmenting paths in the subgraphs Gc (v) (for each
v ∈ Ii). Thus after the ith iteration there are no more augmenting paths which
start with an isolated vertex in Pi and whose length is at most k.

Now consider M ′
i := Mi�MOPT . The edges in M ′

i form either circles of even
length or augmenting paths. When we compare M ′

i with M ′
j for j > i we see that in

Mj the paths from Mi are either unchanged, eliminated (because we augmented
the matching along them), or two paths are connected (because we augmented
along a path that connected these two paths). In both cases it still holds that all
augmenting paths starting with an isolated vertex in Pi are longer than k edges.

Since I is a dominating set for G it holds that
⋃

Pi = V . Thus after all
iterations there are no augmenting paths left which have at most k edges. So
with the same argumentation as in part 2 of Theorem 1 we can show that
|M | ≥ (1 − ε) · |MOPT |.

Locality. We show that we need at most O
(
log � log∗ n + 1

ε

O(1) · log∗ n
)

com-
munication rounds.

Proof. (of part 3 of Theorem 2): Computing the maximal independent set I can
be done in O(log � log∗ n) communication rounds [9]. The coloring of the cluster
graph takes O (k · log∗ n) rounds [11]. The computation of the matchings needs
O

(
k · �2

Ḡ

)
communication rounds since we have O

(
�2

Ḡ

)
different colors and we

explore the vertices which are at most k + 1 hops away from each vertex v ∈ I.
The maximum degree of the cluster graph Ḡ is bounded by O (f (2k + 2)) where
f(n) is the growth-bounding-function of G. By definition k is the smallest integer
such that ε ≥ 2

k+1 . This implies that k ≥ 2
ε − 1 and thus k ∈ O (1/ε).

Altogether this implies that Algorithm 2 needs at most O
(
TMIS + 1

ε (log∗ n +

f
( 2

ε + 2
)2

))
communication rounds where TMIS are the communication rounds

needed for computing a maximal independent set. Using the algorithm in [9] for
this task we need O

(
log � log∗ n + 1

ε

O(1) · log∗ n
)

communication rounds in total.

4 Vertex Cover

In this section we present local approximation algorithms for the minimum vertex
cover problem. We use the local matching algorithms presented in Sections 2
and 3 respectively as subroutines. First we compute a maximum matching. Then
we assign all vertices which are adjacent to matched edges to the vertex cover.
Using a well-known reasoning we prove that this gives a factor 2 approximation
for vertex cover.

4.1 The Algorithm

Let G = (V, E) be a unit disk graph. First we use Algorithm 1 or Algorithm 2 in
order to compute a maximal matching M . We modify the algorithm as follows:
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Since we are not interested in a good approximation for the matching problem we
choose k := 1. In order to improve the runtime of the algorithm, we consider only
augmenting paths of length 1 in each phase (this is effectively a greedy-algorithm
for the matching problem). Then we define our vertex cover V C as follows: V C :=
{u, v| (u, v) ∈ M}.

Using Algorithms 1 and 2 we cannot only compute maximal matchings, but
also maximal matchings which are not much smaller that maximum matchings.
However, for this algorithm, we could not prove a better performance ratio if
we computed a matching with a certain performance guarantee. So in order to
achieve a small locality distance we just compute a maximal matching.

Algorithm 3. Algorithm for finding a vertex cover in a unit disk graph
G = (V, E)
Define k := 1;
Compute a maximum matching M using Algorithm 1 or Algorithm 2 and only
augmenting along paths of length 1;
Define V C := {u, v| (u, v) ∈ M};
Output V C;

Depending an which algorithm we use for computing the matching we get a
different algorithm for vertex cover. Theorem 3 represents the algorithm that we
get by using Algorithm 1, Theorem 3 the algorithm which is the result of using
Algorithm 2 as a subroutine.

Theorem 3. There is an algorithm for location aware unit disk graphs which
computes a set V C with the following properties:

1. The computed set V C is a vertex cover for G.
2. Let V COPT be an optimal vertex cover for G. It holds that |V C| ≤ 2 ·

|V COPT |.
3. If a vertex v is in V C depends only on the vertices which are at most 381

hops away from v, i.e. Algorithm 3 is local.
4. The processing time for a vertex v is bounded by a linear polynomial in the

number of edges whose adjacent vertices are both at most 381 hops away
from v.

There is an algorithm for growth-bounded graphs with unique vertex-IDs which
computes a set V C with the following properties:

1. The computed set V C is a vertex cover for G.
2. Let V COPT be an optimal vertex cover for G. It holds that |V C| ≤ 2 ·

|V COPT |.
3. The algorithm requires at most O

(
log � log∗ n + 1

ε

O(1) log∗ n
)

communication rounds.
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4.2 Proof of Correctness

Here we only prove Theorem 3. The proof of Theorem 3 can be done similarly.
Proof. (of Theorem 3): From Theorem 1 we know that M is a maximal matching.
Thus V \M = V C is a vertex cover. The cardinality of any matching in a graph
forms a lower bound for the cardinality of a minimum vertex cover. This holds
since every vertex of an optimal vertex cover can cover at most one edge of the
matching. As we assign two vertices to V C for each edge in M we conclude
that |V C| ≤ 2 · |M | ≤ 2 · |V COPT |. The other properties of the algorithm follow
immediately from the respective properties of the matching subroutine.

5 Conclusion

We presented local 1− ε approximation algorithms for matching in the setting of
location aware unit disk graphs and growth-bounded graphs without positional
information. They are the first local approximation algorithms for matching in
their respective settings. Since a local algorithm cannot perform optimally in
all graph instances our approximation factors are the best possible. It remains
open to find local algorithms which achieve the same approximation ratios but
which need lower locality distances. For real applications low localities are always
desirable since they reduce the size of the area that needs to be explored when
computing the status of an edge. For Algorithm 2 the locality distance needed for
computing a maximal independent set plays an important role. A local algorithm
for this task with a lower locality would immediately lead to a lower locality
distance of our algorithm. Also of interest would be lower bounds for the best
possible approximation ratio of local algorithms for matching in these settings
(depending on their locality distance).

In Section 4 we used the two matching algorithms for getting factor 2 approx-
imation algorithms for vertex cover in the respective settings. Our algorithms
achieve the best known locality distances for this approximation factor. For the
setting of growth-bounded graphs without positional information, our algorithm
is even the first non-trivial local algorithm for vertex cover. It remains open
to fully analyze the price for good approximation ratios in terms of required
locality distance. The first lower bounds on this are [13]. All improvements for
the matching algorithms regarding locality distance would immediately lead to
better locality distances for the vertex cover algorithms.
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