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1 Introduction

The idea of complementarity already appears in William James’ (1890a,
p. 206) Principles of Psychology in the chapter on “the relations of minds
to other things”. Later, in 1927, Niels Bohr introduced complementarity as
a fundamental concept in quantum mechanics. It refers to properties (ob-
servables) that a system cannot have simultaneously, and which cannot be
simultaneously measured with arbitrarily high accuracy. Yet, in the context
of classical physics they would both be needed for an exhaustive description
of the system.

In contrast to the concept of a “complement” in mathematics, which refers
to the negation of a proposition,4 complementarity refers to properties that
are not simply negations of each other. A nice example is mentioned by James
(1890b, p. 284): “The true opposites of belief . . . are doubt and inquiry, not
disbelief.” Disbelief would be the complement of belief in the Boolean sense,
while doubt and inquiry are concepts that are complementary to belief. An-
other pertinent example for complementarity may be “learning” and “know-
ing” in data processing systems. In addition to James and Bohr, Wolfgang
Pauli was one of those scientists who always thought that the idea of com-
plementarity is significant far beyond the objectively measurable realms of
physics.

In quantum mechanics, complementarity is mostly used in the context of
observables such as “momentum” and “position” which are, technically speak-
ing, non-commuting observables. Although complementarity soon became an
important ingredient in the so-called Copenhagen interpretation of quantum
theory, there exists no rigorous and unique mathematical definition of comple-
mentarity which all scientists agree upon. There are many definitions which all
4 For instance, the complement of a set in Boolean set theory consist of those

elements which are not elements of that set.
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emphasize the non-commutativity of the corresponding mathematical objects
but which differ with respect to more restrictive conditions.

Several years ago, Atmanspacher et al. (2002, 2006) formulated a math-
ematical framework for dealing with observations and measurements, which
generalizes the framework used in quantum (and classical) mechanics so that
applications in psychology and cognitive science become possible. The Necker-
Zeno model for bistable perception, which will be explained in this contribu-
tion, marks a first success in this direction.

Note that it is not the aim of the generalized quantum theory to explain
mental or cognitive phenomena in terms of quantum physics. The idea is
rather to use elements of the mathematical framework of quantum theory
(in particular those elements which appear when an observation of a system
changes its state) and apply them to non-quantum (i.e. classical) physical
systems, and eventually even to non-physical systems.

Concerning terminology, we will sometimes use the terms “classical” and
“non-classical” in the following sense: The behavior of a system is called clas-
sical if an observation of the system has no (or, at least, negligible) influence
on the state of the observed system. In this limit observations commute and
we obtain a behavior that is typical for systems in classical physics. In those
cases, however, for which an observation of a system has an unavoidable ef-
fect on the state of the observed system, we may encounter non-commutative
observations and thus non-classical behavior. This is the domain for which
the generalized quantum theory is intended. There may be different levels
of non-classical behavior, from simple examples for non-commutative observ-
ables up to non-classical behavior manfesting itself in the violation of Bell’s
inequalities.

Bistable perception is a particularly suited scenario for applying the gen-
eralized formalism of quantum theory. In a first approximation, one has to
distinguish only two different mental states corresponding to the two differ-
ent representations of an ambiguous stimulus (such as, e.g., the Necker cube).
Simple assumptions about the state dynamics between representations lead to
the Necker-Zeno model proposed by Atmanspacher et al. (2004) and refined
by Atmanspacher et al. (2008). This model not only accounts for the feature
that switches of the representation cannot be avoided. It also predicts a quan-
titative relation between three different cognitive time scales: the time scale at
which the sequence of perceived stimuli becomes undecidable, the time scale
at which perceptions of stimuli become consciously accessible, and the time
scale at which mental states in bistable perception switch.

This contribution reviews the basic ideas of the generalized quantum the-
ory and its application to the bistable perception of ambiguous stimuli, the
so-called Necker-Zeno model. In the following Sec. 2 we will describe the phe-
nomenon of bistable perception and some relevant experimental data. Before
we then introduce the Necker-Zeno model in Sec. 4, we will briefly sketch the
main ideas of the generalized quantum theory according to Atmanspacher et
al. (2002, 2006). Finally, in Sec. 5, we will speculate about a new idea to use so-
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called temporal Bell inequalities (see, e.g., Leggett and Garg, 1985; Mahler,
1994) as a test for non-classical behavior (in the sense indicated above) in
mental systems.

2 Bistable Perception

The bistable perception of ambiguous stimuli such as the Necker cube is a
well-known phenomenon in cognitive science (Kruse and Stadler, 1995; Long
and Toppino, 2004). It refers to the effect that the mental state of subjects
perceiving an ambiguous stimulus, e.g. an image which can be interpreted
in two (or more) different ways, switches spontaneously between the two (or
more) possible perceptions, often perspectivally different. The time between
two successive shifts, i.e. the inverse reversal rate, will be called dwell time.
Key predictions of the Necker-Zeno model refer to the functional dependence
of the dwell time on experimentally controllable parameters.

The perception of ambiguous stimuli shares many features with another
scenario called binocular rivalry, where two different unambiguous stimuli are
offered each to one eye of the observer (Blake and Logothetis 2001). However,
there are also important differences, in particular with respect to the issue
of voluntary control over the reversal rate (Meng and Tong, 2004). In this
contribution we we will not address binocular rivalry and restrict ourselves to
the perception of ambiguous stimuli.

A simple and often used example for an ambiguous stimulus leading to
bistable perception is the Necker cube (Fig. 1, left), a projection of the edges
of a three-dimensional cube onto a plane. There are two ways to give this
drawing a three-dimensional interpretation: either the front side is lower left
or it is upper right (Fig. 1, right).

In experimental studies of Necker-cube perception, subjects are asked to
direct their view onto a fixation cross in the center of the image and report, e.g.
by pressing a button, whenever they perceive a “switch” of the perspective.
Fig. 2 shows a typical switching behavior between states 1 and 2 as a func-
tion of time with dwell times in the range between 1 and 5 seconds. Typical
dwell time distributions (over many trials) are similar to gamma distributions
(Brascamp et al., 2005; Atmanspacher et al., 2008) with a mean dwell time T .
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The bistable perception of ambiguous stimuli such as the Necker cube is a
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image which can be interpreted in two (or more) different ways, switches
spontaneously between the two (or more) possible, perspectivally different
perceptions. The time between two successive shifts, i.e. the inverse reversal
rate, will be called dwell time. Key predictions of the Necker-Zeno model refer
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The perception of ambiguous stimuli shares many features with another
scenario called binocular rivalry, where two different unambiguous stimuli are
offered to the two eyes of the observer. However, there are also important
differences, in particular with respect to the issue of voluntary control over
the reversal rate [20]. In this contribution we we will not address binocular
rivalry and restrict ourselves to the perception of ambiguous stimuli.

A simple and often used example for an ambiguous stimulus leading to
bistable perception is the Necker cube (Fig. 1, left), a projection of the edges
of a three-dimensional cube onto a plane. There are two ways to give this
drawing a three-dimensional interpretation: either the front side is lower left
or it is upper right (Fig. 1, right).
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Figure 1: The Necker cube (left) and the two ways how it can be interpreted
(right).

of Necker-cube perception, subjects are asked
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Fig. 1. The Necker cube (left) and the two ways how it can be interpreted (right).
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to direct their view onto a fixation cross in the center of the image and
report, e.g. by pressing a button, whenever they perceive a “switch” of the
perspective. Fig. 2 shows a typical switching behavior between states 1 and 2
as a function of time with dwell times in the range between 1 and 5 seconds.
Typical dwell time distributions (over many trials) are similar to gamma
distributions [8, 3] with a mean dwell time T .
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Figure 2: Schematic representation of the bistable switching between states
1 and 2 as a function of time t.

It should be noted that inter-individual variations of dwell times can
exceed intra-individual variations, sometimes by far. Different from usually
found values of T ≈ 3 seconds, Carter et al. ([9]) reported that particular
types of meditation can lead to dwell times that are increased up to several
hundreds to thousands of seconds.

The Necker-Zeno model gives an account of why the mental state of sub-
jects cannot be kept in one of the two representations of the Necker cube for
an arbitrary long time (see Sec. 4.2). On this basis, it provides a relation
between the mean dwell time T = 〈t〉 and other cognitive time scales. A re-
cently refined version of the model also gives correct predictions of the shape
of the dwell time distribution and the cumulative dwell time probability (see
Sec. 4.3).

3 Complementarity in Generalized Quantum
Theory

The Necker-Zeno model was developed in the context of a generalized quan-
tum theory [6, 4] and its application in cognitive science. In this section, we
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Fig. 2. Schematic representation of the bistable switching between states 1 and 2
as a function of time t.

It should be noted that inter-individual variations of dwell times can exceed
intra-individual variations, sometimes by far. Different from usually found val-
ues of T ≈ 3 seconds, Carter et al. (2005) reported that particular types of
meditation can lead to dwell times that are increased up to several hundreds
or even thousands of seconds.

The Necker-Zeno model explains why the mental state of subjects cannot
be kept in one of the two representations of the Necker cube for an arbitrarily
long time (see Sec. 4.2). On this basis, it provides a relation between the
mean dwell time T = 〈t〉 and other cognitive time scales. A recently refined
version of the model also gives correct predictions of the shape of the dwell
time distribution and the cumulative dwell time probability (see Sec. 4.3).

3 Complementarity in Generalized Quantum Theory

The Necker-Zeno model was developed in the context of a generalized quan-
tum theory (Atmanspacher et al., 2002, 2006) and its application in cognitive
science. In this section, we give a brief summary of the framework of gener-
alized quantum theory with particular emphasis on possible formalizations of
the concept of complementarity.

The developement of quantum theory in the 1920s and 1930s made it ob-
vious that the assumption of a non-intervening or non-invasive measurement
is unsuitable for systems with only a few elementary degrees of freedom. The
concept of “observation” has to include the experimental fact that any ob-
servation may have an intrinsic and unavoidable influence on the state of the
observed system and its associated observables. While in classical physics ob-
servables are mathematically represented as functions on the space of states
(the phase space of a system), in quantum physics observables are represented
as operators acting on the space of states.

Despite the significant differences between classical theory and quantum
theory it turned out that both theories fit into one general algebraic frame-
work – observables form a C*-algebra. In this framework the key distinction
between classical and quantum physics is the distinction between the com-
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mutativity (classical physics) and the non-commutativity (quantum physics)
of the observables. In both cases, a state is a positive, normalized, linear
functional on the algebra of observables, associating to each observable its
expectation value in that state.

Instead of referring to the algebra of all observables, one sometimes uses
the structure of the set of propositions – observables with only 0 or 1 as
a possible outcome of a measurement. Classical propositions form what is
called a distributive lattice (corresponding to commutative observables), while
quantum propositions form a non-distributive lattice (corresponding to non-
commutative observables).

Even though the algebraic framework is general enough to comprise both
classical and quantum physics, it contains some quite restrictive postulates.
For instance, it is assumed that for any two observables A and B, also the sum
A+B is defined to be an observable, even though there exists no operational
rule to derive the experimental protocol for the measurement of A+ B from
the protocols for measuring A and B separately.

The generalized quantum theory provides a scheme for a mathematical
representation of observables which is applicable to any system “which has
enough internal structure to be a possible object of a meaningful study” (At-
manspacher et al., 2002) In this respect, systems of interest in psychology and
cognitive science are a particular challenge.

The complete and detailed axiomatic set-up of the generalized quantum
theory has been published elsewhere (Atmanspacher et al., 2002, 2006). Here
it is sufficient to sketch the main ingredients. The basic elements of the theory
are a set of states {z} and a set of observables {A}. Observables act on the
set of states as mappings, i.e., they can change the states. The main axioms
are:5

• Observables have a spectrum, which is the set of all possible results of
a measurement or an observation. The nature of the possible results of
measurements remains unspecified. In particular, it is not required that
the results can be expressed in terms of real numbers, or that results can
be added or multiplied.

• Observables can be multiplied, which is related to the fact that their mea-
surement can be performed in sequential order, i.e. in temporal succession.
It should be noted, however, that not even in quantum mechanics the tem-
poral succession of two observations is represented by the product of the
corresponding observables (expressed by the operator or matrix product
of linear mappings). The relation is more subtle: In quantum theory we as-
sume that for each measurement of an observable A with duration t1 there
exists a time evolution operator UA(t) which describes the time evolution
of the system (including the measuring device) during the measurement

5 Other axioms, like the existence of an identity observable, a zero observable, and
the existence of a zero state, are relevant for the developement of the mathematical
structure but unimportant for a conceptual discussion.
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process. The later measurement of a second observable B with duration
t2 is represented by a different time evolution operator UB(t). The time
evolution corresponding to the temporal succession of both processes is
represented by UB(t2)UA(t1). These two operators do not commute if the
corresponding operators A and B do not commute. The multiplication of
observables in generalized quantum theory refers to the operators UA(t),
UB(t) rather than to the operators A, B representing the observables in
quantum mechanics.

In this framework, a number of significant features of quantum mechanics
are missing: There is not necessarily a Hilbert space of states, there is no
a priori probability interpretation, there is no unitary Schrödinger evolution
describing the time evolution of states, etc. However, despite the small set of
axioms, the conditions required for the observables yield several options to
define complementarity:

1. A most general definition of complementarity refers to the commutativity
of observables: two observables A and B are said to be complementary if
the corresponding mathematical representations of these observables do
not commute, i.e., if the results of temporally successive measurements of
these observables depend on their temporal order.
This definition of complementarity is quite weak: It may happen that two
observables do not commute on a few exceptional states but commute on
the majority of states.

2. More restrictively, we may call two observables A and B complementary
if they do not commute on any state z which is not the zero state:

ABz 6= BAz for all z 6= 0 .

In the framework of conventional quantum mechanics this implies that
there are no states for which the two observables A and B assume definite
values simultaneously. This corrolary is not necessarily equivalent with the
definition according to generalized quantum theory and may, therefore, be
considered as an alternative definition of complementarity.

3. A more restricted version of complementarity would require (apart from
non-commutativity) that the observables A and B generate (by multipli-
cation and any other additional operation which may be defined in special
cases) the complete set of observables.
For instance, this definition is satisfied if we think of position Q and
momentum P for systems with only one degree of freedom in conven-
tional quantum mechanics. It is not satisfied if there are several degrees
of freedom, related to several particles and/or several dimensions and/or
internal degrees of freedom. One can also give meaning to this definition
of complementarity by generalizing the concept of complementarity from
two observables A and B to two sets of observables {Ai} and {Bi}, and
requiring that both {Ai} and {Bi} commute among themselves and that
Ai and Bi do not commute pairwise.



Complementarity in Bistable Perception 141

4. Finally, there are even more restrictive definitions of complementarity in
quantum mechanics. The strongest definition of complementarity requires
that the dispersion-free states6 related to two observables A and B have
a “maximal distance”. While dispersion-free states can be defined in the
context of generalized quantum theory as well, the concept of a “distance
of states” needs more structure than provided by the framework of gen-
eralized quantum theory.

4 The Necker-Zeno Model

The Necker-Zeno model for bistable perception was first proposed by At-
manspacher et al. (2004). It is based on the same idea as the quantum Zeno
effect introduced by Misra and Sudarshan (1977). Therefore we shall first de-
scribe the quantum Zeno effect in the form used for quantum systems proper.
This does not mean that we want to hold a genuine quantum effect responsible
for bistable perception. However, it will be shown that parts of the mathe-
matical framework used for describing the quantum Zeno effect coincide (in
the sense of generalized quantum theory) with the mathematical framework
that is applicable to describe bistable perception.

4.1 The Quantum Zeno Effect

In a simple two-state model, the quantum Zeno effect can be described by the
following ingredients:

1. Observations are represented by the operator

σ3 =
(

1 0
0 −1

)
.

Immediately after an observation the system will be in one of the two
eigenstates

ψ1 = |+〉 =
(

1
0

)
or ψ2 = |−〉 =

(
0
1

)
.

2. Without loss of generality, we may assume that the time evolution of the
unperturbed system is generated by a Hamilton operator

H = gσ1 = g

(
0 1
1 0

)
,

where g is some coupling constant related to the velocity at which the
states change. The corresponding unitary operator of time evolution is
given by

6 A state z is called dispersion-free with respect to an observable A if the possible
results of measurements of A in systems prepared in state z are precisely identical.
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U(t) = eiHt =
(

cos(gt) i sin(gt)
i sin(gt) cos(gt)

)
.

Now, the unperturbed time evolution of the system (without observation)
can be compared with the case where repeated observations are performed at
time intervals ∆T . The probability that the unperturbed system in, say, state
|+〉 at time t = 0 is still found in state |+〉 at time t is given by:

w(t) = |〈+|U(t)|+〉|2 = cos2(gt) . (1)

The time scale t0 = 1/g characterizes the “relaxation” or “decay” of the
unperturbed system into an observation eigenstate.

Considering repeated observations after time intervals ∆T , the joint proba-
bility that the system is in state |+〉 at t = 0 and at all subsequent observations
until time t = N ·∆T is given by:

w∆T (t) = [cos(g∆T )]2N = exp (2N ln[cos(g∆T ) ] ) . (2)

For g∆T � 1 or ∆T � t0 we may expand the cosine and the logarithm and
obtain:

w∆T (t) ≈ exp
(
−g2∆T 2 ·N

)
= exp−(t/T ) . (3)

The decay time t0 in the unperturbed case is now replaced by a slower time
scale T for the decay of the system:

T = (g2∆T )−1 = t20/(∆T ) . (4)

For ∆T → 0 we find T →∞, i.e., for continuous observations the mean time
for a change of the system from state |+〉 to state |−〉 tends to infinity: The
system becomes frozen in |+〉 under the influence of the observations. Figure
3 illustrates the three time scales of the quantum Zeno effect.
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Fig. 3. Time scales of the quantum Zeno effect: ∆T is the time interval between
successive observations of the system, t0 is the time scale for the decay of the unper-
turbed (unobserved) system, and T is the mean decay time if the system is observed
at time intervals ∆T .
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4.2 The Necker-Zeno Model for Bistable Perception

The quantum Zeno effect can be related to the perception of ambiguous stimuli
if the following correspondences are assumed:

1. The two states of the quantum Zeno effect correspond to the two possible
representations of the ambiguous Necker cube (Fig. 1).

2. Without updates due to successive observations the mental representation
“decays” with a probability which for small times t is given by

w(t) ≈ 1− g2t2 + O(t4) . (5)

This expression coincides in lowest non-trivial order with the correspond-
ing probability in the quantum Zeno effect (Eq. 1). The higher-order terms
are not needed in the derivation of the quantum Zeno effect, and the os-
cillatory behavior for large t is not to be expected for the dwell time in
bistable perception anyhow.

3. The observation of the stimulus provides “updates” at time intervals ∆T .
After each update the mental state corresponds to one of the two possible
three-dimensional representations of the Necker cube.

In the resulting Necker-Zeno model, two types of processes can be con-
sidered as complementary: (i) the bistable perception dynamics (formalized
by σ1) tends towards a decay of the actualized mental state, while (ii) the
successive updates (formalized by σ3) stabilize this state in one of the two
representations . Let us emphasize again that we do not require the decay
or update dynamics to be a genuine quantum process. Nevertheless, general-
ized quantum theory allows us to speak of complementarity in a well-defined
manner.

The calculations for the Necker-Zeno model are the same as for the quan-
tum Zeno effect, but the interpretation of the time scales is different. The prob-
ability that the mental representation has not changed after a time t = N ·∆T
due to N successive updates of the mental state separated by ∆T is given by

w∆T (t) = exp(−t/T ) , (6)

with a mean dwell time T that satisfies:

T ·∆T = t20 . (7)

We associate the following cognitive time scales with the parameters of the
model (for more details see Atmanspacher et al., 2004):

• ∆T is an internal update time for the mental state during observation of
the Necker cube. We interpret this quantity as the interval between two
successive stimuli that is necessary for a correct assignment of the sequence
of their presentation. This so-called order threshold (Pöppel, 1997) is of
the order of 25 − 70 ms. With smaller time intervals, the stimuli can still
be distinguished but their sequence cannot be correctly determined.
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• t0 is the period of oscillations between the two states under the assumption
that no updating observations take place. It is plausible to assume that
the decay out of one state and the relaxation into the other occur on the
same time scale. It can be related to the so-called P300 component in
event-related potentials and is, thus, assumed to be of the order of 300ms.

• T is the average time between successive switches of the mental state when
the Necker cube is observed. It is usually characterized as roughly T ≈ 3 s
and has large inter-individual differences (Brascamp et al., 2005).

Relation (7) is clearly satisfied for these three cognitive time scales. More-
over, the predictive power of the model has been convincingly demonstrated
with empirical results obtained under discontinuous stimulus presentation if
it is possible to vary one of the time scales (t0) as an independent variable
and measure another one (T ) as a function of t0. Assuming that ∆T remains
constant, Eq. (7) predicts a quadratic dependence for T = T (t0).

Under certain conditions, the time scale t0 can be approximated by the
off-time in discontinuous presentation, so it is indeed possible to test the
model with experimental data. A comparison of observations by Kornmeier et
al. (2007) with the predictions of the Necker-Zeno model is shown in Figure
4. The plotted symbols show observed values of T as a function of off-times.
The solid curve represents a one-parameter fit of the Necker-Zeno prediction
T = t20/∆T where ∆T ≈ 70 ms gives the best results.

Under certain conditions, the time scale t0 can be approximated by the
off-time in discontinuous presentation, so it is indeed possible to test the
model with experimental data. A comparison of observations by Kornmeier
et al. [14] with the predictions of the Necker-Zeno model is shown in Figure
4. The curve shows observed values of T as a function of off-times. The solid
curve represents a one-parameter fit of the Necker-Zeno prediction T = t20/∆t
where ∆t ≈ 70 ms gives the best results.
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Figure 4: Mean dwell time T as a function of the off-time t0 in discontinuous
presentation. The solid curve is a one-parameter fit (leading to ∆t = 70 ms)
from the prediction of the Necker-Zeno model under the assumption that the
off-time can be identified with the decay time t0 of the unperturbed system.
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Fig. 4. Mean dwell time T as a function of the off-time t0 in discontinuous pre-
sentation. The solid curve is a one-parameter fit (leading to ∆T = 70ms) from the
prediction of the Necker-Zeno model under the assumption that the off-time can be
identified with the decay time t0 of the unperturbed system.
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4.3 The Refined Necker-Zeno Model

While the Necker-Zeno model in the form just presented gives good predictions
for the relation of the mean dwell time T to the other cognitive time scales ∆T
and t0, the predicted probability distribution of T differs significantly from
experimental data. The cumulative probability that a change of the mental
state has occurred up to time t is given by:

W (t) = 1− w∆T (t) = 1− e−t/T , T = t20/∆T . (8)

From this we obtain the probability density P (t) that a switch of the mental
state occurs at time t:

P (t) =
dW (t)

dt
=

e−t/T

T
. (9)

This probability density as well as the cumulative probability W (t) are shown
in Fig. 5.

A comparison with experimental data published by Brascamp et al. (2005)
shows good agreement for times t > 2 s, but it reveals a completely different
behavior for small t. The experimental probability density resembles a gamma
distribution

P (t) ∝ tb e−γt ,

with an exponent of b ≈ 5, while the Necker-Zeno model according to Sec.
4.2 predicts a simple exponential decay. Similarly, the prediction for the cu-
mulative probability from the Necker-Zeno model leads to linear behavior for
small t while the experimental data rather exhibit power-law behavior with a
large exponent.

Although the Necker-Zeno model in its original version was not intended
to be valid for small values of t, it is nevertheless tempting to refine the
model such that it provides the experimentally observed probability func-
tions. The mathematical details of this refined version are published elsewhere
(Atmanspacher et al., 2008). We sketch the main results briefly.

the mental state has occurred up to time t is given by:

W (t) = 1 − w∆t(t) = 1 − exp(−t/T ) T =
t20
∆t

. (8)

From this we obtain the probability density P (t) that a switch of the mental
state occurs at time t:

P (t) =
dW (t)

dt
=

1

T
exp(−t/T ) . (9)

This probability density as well as the cumulative probability W (t) are shown
in Fig. 5.
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Figure 5: The probability density P (t) (left) for a switch of the mental state
at time t and the cumulative probability W (t) (right) that a switch occurred
up to time t.

A comparison with experimental data published by Brascamp et al. [8]
shows good agreement for times t > 2 s, but it reveals a completely differ-
ent behavior for small t. The experimental probability density resembles a
gamma distribution

P (t) ∝ tb exp(−γt)

with an exponent of b ≈ 5, while the Necker-Zeno model predicts a simple
exponential decay. Similarly, the prediction for the cumulativ probability
from the Necker-Zeno model leads to linear behavior for small t while the
experimental data rather exhibit power-law behavior with a large exponent.

Although the Necker-Zeno model in its original version was not intended
to be valid for small values of t, it is nevertheless tempting to refine the model
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Fig. 5. The probability density P (t) (left) for a switch of the mental state at time
t and the cumulative probability W (t) (right) that a switch occurred up to time t.
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There are basically two possibilities to refine the original Necker-Zeno
model for small values of t:

1. The parameter g, which determines the “decay velocity” of a mental state
after the stimulus is turned off, is time dependent: g → f(t) · g.

2. The update intervals ∆T are time dependent: ∆T → f(t) ·∆T .

For large values of t the function f(t) in both options approaches the con-
stant value 1, such that the orignial Necker-Zeno model is recovered in this
regime. For small values, however, f(t) starts from zero with some power-law
as shown in Fig. 6. Both a shorter update time for small t (case 2) as well as a
slower decay for small t (case 1) can be interpreted as a form of increased at-
tention. For more details concerning possible interpretations and applications
see Atmanspacher et al. (2008) and Franck and Atmanspacher (2008).

such that it provides the experimentally observed probability functions. The
mathematical details of this refined version are published elsewhere [3]. We
sketch the main results briefly.

There are basically two possibilities to refine the original Necker-Zeno
model for small values of t:

1. The parameter g, which determines the “velocity of the decay” of a
mental state after the stimulus is turned off, is time dependent: g →
f(t) · g.

2. The update intervals ∆t are time dependent: ∆t → f(t) · ∆t.

For large values of t the function f(t) in both options approaches the value
1, such that the orignial Necker-Zeno model is recovered in this regime. For
small values, however, f(t) starts from zero with some power-law as shown
in Fig. 6. Both a shorter update time for small t (case 2) as well as a slower
decay for small t (case 1) can be interpreted as a form of increased attention.
For more details concerning the possible interpretations and applications see
[3, 11].
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Figure 6: The function f(t) which determines the small t-behavior of either
the parameter g or the update time ∆t in the modified Necker-Zeno model.

Despite the fact that in the probability distribution according to (2) only
the product g ·∆t enters, the physical interpretation of ∆t as a time interval
leads to a different behavior of the probability distributions considered as a
function of time. If for small values of t the function f(t) starts with tk, the
behavior of W (t) for small t is given by either tk (for case 2, ∆t → f(t) ·∆t)
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Fig. 6. The function f(t) which determines the small-t behavior of either the
parameter g or the update time ∆T in the refined Necker-Zeno model.

Despite the fact that in the probability distribution according to (2) only
the product g ·∆T enters, the physical interpretation of ∆T as a time interval
leads to a different behavior of the probability distributions considered as a
function of time. If for small values of t the function f(t) starts with tk, the
behavior of W (t) for small t is given by either tk (for case 2, ∆T → f(t) ·∆T )
or by t2k (case 1, g → f(t) · g). Hence, the observed large values for the power
law in the probabilities for small t are explained more naturally if g rather
than ∆T is considered as time-dependent.

5 Temporal Bell Inequalities

In 1964, John Bell derived a set of inequalities which the expectation values
of observables have to satisfy in any theory (i) that is local (i.e., any causal
dependence respects the constraints given by Einstein’s theory of relativity)
and (ii) for which the results of a measurement are (at least in principle)
already determined before the measurement is actually performed (Bell, 1966).
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This second requirement was used by Einstein et al. (1935) in their famous
EPR-argument as a definition of “elements of reality”.

Experimental tests provided clear evidence that quantum mechanics vio-
lates Bell’s inequalities (Aspect et al., 1982a, 1982b). In particular, this implies
that the statistical aspects of quantum mechanics cannot be explained by the
introduction of local hidden variables. In general, it is assumed that in quan-
tum mechanics the outcome of a measurement is not predetermined, even in
principle, but rather the result of the measuring process itself.

Let Q1, Q2, Q3, Q4 be four different observables for which the result of a
measurement can only assume one of the two values +1 or −1. In quantum
mechanics, observables of this type are typically realized by measurements of
polarizations of photons or by spin orientations of electrons. Let Eij = 〈QiQj〉
be the expectation value for the (simultaneous) correlation function of Qi and
Qj for the same system. One form of Bell’s inequalities for this situation would
be:

−2 ≤ E12 + E23 + E34 − E41 ≤ +2 . (10)

This inequality can be violated in quantum mechanics.
Bell’s inequalities are expressed in terms of expectation values of two (or

more) observables. The violation of Bell’s inequalities in quantum mechan-
ics involves the expectation values of (pairwise) non-commuting observables.
Such observables cannot be measured simultaneously with arbitrarily high ac-
curacy. In order to test the violation of Bell’s inequalities in quantum mechan-
ics, one makes use of particular correlations between two spatially separated
systems which, however, are in an entangled state. Only under the assumption
that “elements of reality” exist can one interpret the results as simultaneous
correlation functions for one of the systems.

Obviously, the requirements for measuring a violation of Bell’s inequalities
as the key criterion for non-classical behavior are quite high. For a possible
application to mental systems, the preparation of entangled states may be a
particularly difficult problem. In addition, despite the fact that the quantum
Zeno model provides the necessary non-commuting observables, the Necker-
Zeno model for bistable perception has only one observable (σ3) that serves to
describe an “observation” of one of the two perspectives of the Necker cube. It
is not clear if any of the other observables of the quantum Zeno model makes
sense as an additional observable for the Necker-Zeno model. From this point
of view it seems almost hopeless to test Bell’s inequalities in the context of
bistable perception.

But there may be an alternative option. In 1985, Leggett and Garg derived
a set of inequalities which involve the expectation values of correlations of one
observable measured at different time instants (Leggett and Garg, 1985). These
so-called temporal Bell inequalities can be formulated in generalized quantum
theory if the dynamics of a system does not commute with the observable
(i.e., if the observable is not a constant of motion).
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This is precisely the case for the Necker-Zeno model. Let K(ti, tj) =
〈σ3(ti)σ3(tj)〉 be the expectation value for a first “observation” of one of the
two perspectives on the Necker cube at time tj and a second one at time ti.
Then the following inequality should hold, if the mental state follows a “classi-
cal trajectory” (like the one shown in Fig. 2) with respect to the representation
of the Necker cube:

|K(t1, t2) +K(t2, t3) +K(t3, t4)−K(t1, t4)| ≤ 2 . (11)

If, on the other hand, during the periods of non-observation the mental state
cannot always be described in terms of one of the two perspectives, this in-
equality can be violated. This might, for instance, be the case if the mental
state is in a kind of superposition with respect to the two perspectives.7

For spin models, the largest violation of inequality (10) has been found to
occur for measurements of the spin orientation along the angles 0◦, 45◦, 90◦

and 135◦. Similarly, one would expect the largest violation of temporal Bell
inequalities in the framework of the Necker-Zeno model to occur at times t
determined by the conditions gt = 0, π/4, π/2, 3π/4. For t0 = 300 ms this
would correspond to measurements at t = 0, 236, 471 and 707ms. In order
to avoid effects of observational updates, these values should be the off-times
between brief stimulus presentations and observations.

This option to detect non-classical behavior in mental systems is as
thrilling as challenging, but there is an important caveat to it. In the deriva-
tion of inequality (11) it is assumed that observations made on the same
system do not influence each other. This is necessary for the determination
of K(ti, tj): The first measurement at tj should have no effect on the result
of the second measurement at ti.8 Such a requirement of “non-invasive mea-
surements” might be difficult to realize for temporal Bell inequalities. On the
other hand, it might be possible to estimate the degree of how much an obser-
vation of a mental state at time t1 influences the observation of a mental state
at time t2. If this influence is smaller than the effect by which temporal Bell
inequalities are violated, this could provide a terrific route toward evidence
for non-classical behavior in mental systems.
7 This gives an interesting twist to a question posed by Sudarshan (1983, p. 465):

“Can we perceive a quantum system directly?” He speculates about a mode of
awareness in which (p. 466) “sensations, feelings, and insights are not neatly cat-
egorized into chains of thoughts, nor is there a step-by-step development of a
logical-legal argument-to-conclusion. Instead, patterns appear, interweave, coex-
ist; and sequencing is made inoperative. Conclusion, premises, feelings, and in-
sights coexist in a manner defying temporal order.”

8 This requirement corresponds to the locality requirement for the expectation
values Eij when the measurements are performed on different (but entangled)
parts of a system: A measurement of Qi at one part should have no influence on
the measurement of Qj at the other part.
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6 Summary

The concept of complementarity has been defined in an axiomatic framework
generalizing the quantum mechanical axioms for states and observables to
systems involving invasive and thus, in general, non-commutative operations.
In this framework, a novel approach to understand the bistable perception
of ambiguous stimuli has been achieved, where the dynamics of the switch
between different representations of a stimulus (e.g., the Necker cube) is com-
plementary to the process of observation of these representations.

The corresponding Necker-Zeno model, referring to mental states and ob-
servables as well as their dynamics, is in agreement with experimental data for
(1) the dwell time distributions (inverse reversal rates) in bistable perception
and (2) the dependence of dwell times on off-times if stimuli are presented
discontinuously. Finally, we have speculated about the possibility to formu-
late temporal Bell inequalities for this scenario. Their violation would imply
evidence for fundamentally “non-classical” behavior in mental systems.
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