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Summary. We discuss a specific way in which the notion of complementarity can
be based on the dynamics of the system considered. This approach rests on an epis-
temic representation of system states, reflecting our knowledge about a system in
terms of coarse grainings (partitions) of its phase space. Within such an epistemic
quantization of classical systems, compatible, comparable, commensurable, and com-
plementary descriptions can be precisely characterized and distinguished from each
other. Some tentative examples are indicated that, we suppose, would have been of
interest to Pauli.

1 Introduction

In 1949 Pauli delivered a lecture on complementarity to the Philosophical
Society in Zurich, which was then published (in German) under the title “The
Philosophical Significance of the Idea of Complementarity” in the journal
Experientia (Pauli, 1950). His article followed an earlier paper by Bernays
(1948) “On the Extension of the Notion of Complementarity into Philosophy”
(also in German). Pauli (1950) emphasized that the

“situation in regard to complementarity within physics leads naturally be-
yond the narrow field of physics to analogous situations in connection with
the general conditions of human knowledge.”

Pauli’s paper addressed a number of pertinent topics still unresolved today
where the idea of complementarity might be of relevance, such as “the experi-
menter’s free choice between mutually exclusive experimental arrangements”,
“the idea of the cut between observer or instrument of observation and the
system observed” (nowadays dubbed the Heisenberg cut), “considerations of
purposefulness” concerning the actual location of the cut, and eventually the
“paradoxical” relationship between consciousness and the unconscious (Pauli,
1950):
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“On one hand, modern psychology demonstrates a largely objective real-
ity of the unconscious psyche; on the other hand every bringing into con-
sciousness, i.e. observation, constitutes an interference with the unconscious
contents that is in principle uncontrollable; this limits the objective char-
acter of the reality of the unconscious and invests reality with a certain
subjectivity.”

The concept of complementarity was introduced into physics by Bohr
(cf. Bohr, 1948), but he was familiar with it from psychological texts by
William James and from his psychologist friend Arthur Rubin, who stud-
ied the perception of ambiguous stimuli. In simple words, two descriptions of
a situation are complementary if they exclude each other and yet are both
necessary for an exhaustive description of that situation. In quantum theory,
this vague characterization was made much more precise in the mathematical
framework of non-commutative algebras or non-Boolean lattices of quantum
observables. The price to be paid for this precision is the restriction of the
concept of complementarity to quantum physics.

However, there are many more candidates for complementary relationships
in other sciences, e.g. in psychology and philosophy. The present article intends
to reconsider the foundations of the notion of complementarity not only with
respect to quantum systems but with a broader domain of applications.3 It
builds essentially on a recent paper by beim Graben and Atmanspacher (2006)
which describes in technical detail how complementary observables can be
defined in classical physical systems if their dynamics is taken into account
properly. In the present paper we give a simplified exposition for a more
general readership and address some issues that were in the focus of Pauli’s
interest for many years.

Section 2 contains a compact reminder of how complementarity and com-
patibility are defined in quantum theory. Section 3 introduces the concept of
partitions for an epistemic treatment of classical dynamical systems. Section
4 illustrates how complementary observables can be introduced for epistemic
states defined on the basis of particular phase space partitions. Only if such
partitions are generating (or, more specifically, Markov), they define epistemic
states that are stable under the dynamics and provide compatible epistemic
descriptions. Partitions chosen more or less ad hoc generally lead to incom-
patible or complementary descriptions. Section 5 characterizes and delineates
compatible, comparable, and commensurable theories (and their opposites)
from each other. Some examples are outlined in Sect. 6.
3 Compare Atmanspacher et al. (2002) and Primas (2007) for formally rigorous

approaches in this direction.
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2 Compatibility and Complementarity in Quantum
Theory

In quantum theory, measurements of observables A and B with pure point
spectra which produce dispersion-free values as results depend in general on
the sequence in which the measurements are carried out. In this case, the
observables A,B are called incompatible. If, on the other hand, the order
of measuring A and B does not play a role, the observables A,B are called
compatible. Therefore, compatibility can be formally expressed by the equation

AB = BA, (1)

while incompatibility means that A and B do not commute:

AB 6= BA. (2)

In a Hilbert space representation, (1) has the consequence that compatible
observables are simultaneously diagonalizable, i.e. all eigenstates of A are also
eigenstates of B (and vice versa), and these common eigenstates span the
whole Hilbert space of (pure) quantum states. Since Aψ = aψ for eigenstates
ψ with eigenvalue a of A, observable A assumes the sharp, dispersion-free
value a in eigenstate ψ.

Compatible observables with pure point spectra are therefore dispersion-
free in their common eigenstates which span the whole Hilbert space. Incom-
patible observables do not share all eigenstates, although they may share some
of them. Complementary observables can be characterized as being maximally
incompatible; they do not have any eigenstate in common (beim Graben and
Atmanspacher, 2006). These results will be used for generalizing the concepts
of complementarity and compatibility to classical systems, i.e. beyond quan-
tum systems, in the next sections.

3 Epistemic Descriptions of Classical Dynamical Systems

Measurements (or observations) require the preparation of a state of the sys-
tem to be measured (or observed), choices of initial and boundary conditions
for this state, and the selection of particular measurement setups. They refer
to operationally defined observables which can be deliberately chosen by the
experimenter (Pauli, 1950; Primas, 2007).

3.1 Observables and Partitions

A classical dynamical system is characterized by the fact that all observables
are compatible with each other. However, in general this holds only for a
so-called ontic description (Atmanspacher, 2000) where the state of a sys-
tem is considered as if it could be characterized precisely as it is (relative to
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Fig. 1. States x, y in a phase space X of a classical system (left) and the real
numbers as the range of a classical observable f : X → R (right). Epistemically
equivalent states x, y ∈ X belong to the same equivalence class A ⊂ X.

a chosen ontology (Quine, 1969; Atmanspacher and Kronz, 1999; Dale and
Spivey, 2005). On such an account, the ontic state of the system is given by
a point x in phase space X. The associated observables are real-valued func-
tions f : X → R, such that a = f(x) is the value of f in state x. By contrast,
epistemic descriptions refer to the “knowledge that can be obtained about an
ontic state” (Atmanspacher, 2000). For the sake of simplicity we shall identify
epistemic states with subsets S ⊂ X in phase space, thus expressing that they
can be specified only with limited accuracy.

Figure 1 displays a situation in which the observable f is not injective,
such that different states x 6= y ∈ A ⊂ X lead to the same measurement
result

f(x) = f(y). (3)

In this case, the states x and y are epistemically indistinguishable by means of
the observable f (Shalizi and Moore, 2003; beim Graben and Atmanspacher,
2006). Measuring f cannot tell us whether the system is in state x or y.
The two states are therefore epistemically equivalent with respect to f (beim
Graben and Atmanspacher, 2006).

In this way, the observable f induces an equivalence relation “∼f” on the
phase space X: x ∼f y if f(x) = f(y). The resulting equivalence classes
of ontic states partition the phase space into mutually exclusive and jointly
exhaustive sets A1, A2, . . . such that Ai ∩Aj = ∅ for all i 6= j and

⋃
iAi = X.

These sets are the epistemic states that are induced by the observable f . The
collection F = {A1, A2, . . . } of epistemic states is a phase space partition.

We call f an epistemic observable if the partition F is not the identity par-
tition I where every cell Ak is a singleton set containing exactly one element
Ak = {xk} (Shalizi and Moore, 2003). In this limiting case, f is injective and
can be called an ontic observable. In the opposite limit, epistemic observables
are constant over the whole phase space: f(x) = const for all x ∈ X. In this
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Ak = {xk} (Shalizi and Moore 2003). In this limiting case, f is injective and
can be called an ontic observable. In the opposite limit, epistemic observables
are constant over the whole phase space: f(x) = const for all x ∈ X. In this
case, all states are epistemically equivalent with each other and belong to the
(same) equivalence class X of the trivial partition T . Most interesting for our
purposes are finite partitions F = {A1, A2, . . . An} (where n is a finite natural
number) which are neither trivial nor identity. Figures 2(a, b) display two
different finite partitions.

(a) (b) (c)

Fig. 2. Examples for finite partitions of the phase space X. (a) “Rectangular”
partition F = {A1, A2, A3, A4}. (b) “Triangular partition” G = {B1, B2, B3, B4}.
(c) Product partition F ∨ G.

From the partitions F and G shown in Figs. 2(a, b), a product partition,
P = F ∨ G can be constructed. This partition, depicted in Fig. 2(c), contains
all possible intersections of sets in F with sets in G:

P = F ∨ G = {Ai ∩ Bj |Ai ∈ F , Bj ∈ G} . (4)

The product partition P is a refinement of both partitions F and G. The re-
finement relation introduces a partial ordering relation “≺” among partitions.
If G is a refinement of F , G ≺ F , then there is a “factor partition” H such that
G = F ∨H. If neither G is a refinement of F nor vice versa (and G %= F), the
partitions G and F have been called incomparable (Shalizi and Moore 2003).

3.2 Dynamics

A dynamical system evolves as a function of parameter time t. In other words,
any present state (e.g. an initial condition) in phase space, x0 ∈ X, gives rise
to future states xt ∈ X. This evolution is described by a flow map Φ : X → X.
In the simple case of a deterministic dynamics in discrete time, Φ maps any
state xt onto a state xt+1, as illustrated in Fig. 3.

Fig. 2. Examples for finite partitions of the phase space X: (a) “rectangular”
partition F = {A1, A2, A3, A4}, (b) “triangular” partition G = {B1, B2, B3, B4}, (c)
product partition F ∨ G.

case, all states are epistemically equivalent with each other and belong to the
(same) equivalence class X of the trivial partition T .

Most interesting for our purposes are finite partitions F = {A1, A2, . . . An}
(where n is a finite natural number) which are neither trivial nor identity.
Figures 2(a,b) display two different finite partitions. From the partitions F
and G shown in Figs. 2(a,b), a product partition, P = F∨G can be constructed.
This partition, depicted in Fig. 2(c), contains all possible intersections of sets
in F with sets in G:

P = F ∨ G = {Ai ∩Bj |Ai ∈ F , Bj ∈ G}. (4)

The product partition P is a refinement of both partitions F and G. The re-
finement relation introduces a partial ordering relation “≺” among partitions.
If G is a refinement of F , G ≺ F , then there is a “factor partition” H such
that G = F ∨H. If neither G is a refinement of F nor vice versa (and G 6= F),
the partitions G and F have been called incomparable (Shalizi and Moore,
2003).

3.2 Dynamics

A dynamical system evolves as a function of parameter time t. In other words,
any present state (e.g. an initial condition) in phase space, x0 ∈ X, gives rise
to future states xt ∈ X. This evolution is described by a flow map Φ : X → X.
In the simple case of a deterministic dynamics in discrete time, Φ maps any
state xt onto a state xt+1, as illustrated in Fig. 3. Iterating the map Φ, yields
a trajectory of states

xt+1 = Φt+1(x0) = Φ(Φt(x0)) = Φ(xt) (5)

for integer positive times t ∈ N. Likewise, the inverse map Φ−1 can be iter-
ated if the dynamics is invertible: x−(t+1) = Φ−(t+1)(x0) = Φ−1(Φ−t(x0)) =
Φ−1(x−t), again for integer positive times t ∈ N. Therefore, the dynamics of
an invertible discrete-time system is described by the one-parameter group of
integer numbers t ∈ Z.
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Fig. 3. A discrete-time dynamics of a classical system is given by a map Φ : X → X
which assigns to a state xt at time t its successor xt+1 = Φ(xt) at time t + 1.

3.3 Continuous Measurements

In Sect. 3.1, we have described instantaneous measurements by the action of
an observable f : X → R on an ontic state x. Now we are able to describe
continuous measurements4 by combining the action of an observable f with
the dynamics Φ. Let the system be in state x0 ∈ X at time t = 0. Measuring
f(x0) tells us to which class of epistemically equivalent states in the partition
F , associated with f , the state x0 belongs. Suppose that this is the cell Ai0 ∈
F . Suppose further that measuring f in the subsequent state x1 = Φ(x0) ∈ X
reveals that x1 is contained in another cell Ai1 ∈ F .

An alternative way to describe this situation is to say that the initial state
x0 = Φ−1(x1) belongs to the pre-image Φ−1(Ai1) of Ai1 . The information
about x0 that is gained by measuring f(x1) is, then, that the initial state x0

was contained in the intersection Ai0 ∩Φ−1(Ai1). Continuing the observation
of the system over one more instant in time yields that the initial state x0

belonged to the set Ai0 ∩Φ−1(Ai1)∩Φ−2(Ai2) if the third measurement result
was x2 = Φ2(x0) ∈ Ai2 .

A systematic investigation of continuous measurements relies on the defi-
nition of the pre-image of a partition,

Φ−1(F) = {Φ−1(Ai)|Ai ∈ F}, (6)

which consists of all pre-images of the cells Ai of the partition F . Then, a con-
tinuous measurement over two successive time steps is defined by the product
partition F ∨Φ−1(F), containing all intersections of cells of the original par-
tition F with cells of its pre-image Φ−1(F). The result of the measurement
of f over two time steps is x0 ∈ Ai0 ∩Φ−1(Ai1) ⊂ F ∨Φ−1(F). This product
partition is called the dynamic refinement of F , illustrated in Fig. 4.
4 The notion of a continuous measurement does not refer to continuous time t ∈ R

but characterizes that a measurement extends over time. This can also be the
case for discrete time t ∈ Z.
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belonged to the set Ai0 ∩Φ−1(Ai1)∩Φ−2(Ai2) if the third measurement result
was x2 = Φ2(x0) ∈ Ai2 .

A systematic investigation of continuous measurements relies on the defi-
nition of the pre-image of a partition,

Φ−1(F) = {Φ−1(Ai)|Ai ∈ F} , (6)

which consists of all pre-images of the cells Ai of the partition F . Then, a con-
tinuous measurement over two successive time steps is defined by the product
partition F ∨ Φ−1(F), containing all intersections of cells of the original par-
tition F with cells of its pre-image Φ−1(F). The result of the measurement
of f over two time steps is x0 ∈ Ai0 ∩ Φ−1(Ai1) ⊂ F ∨ Φ−1(F). This product
partition is called the dynamic refinement of F illustrated in Fig. 4.

(a) (b)

Fig. 4. Dynamic refinement of a partition. (a) For each cell Ai of the partition F
the pre-image Φ−1(Ai) under the dynamics is determined. The bold arrow indicates
that the shaded region in phase space is mapped onto cell A1. (b) The shaded region
in the product partition F ∨Φ−1(F) is the element A2∩Φ−1(A1) of the dynamically
refined partition.

Most information about the state of a system can be gained by an ideal,
“ever-lasting” continuous measurement that began in the infinite past and
terminates in the infinite future. This leads to the finest dynamic refinement

RF =
∞∨

t=−∞
Φt(F) , (7)

expressed by the action of the “finest-refinement operator” R upon a parti-
tion F . It would be desirable that such an ever-lasting measurement yields
complete information about the initial condition x0 in phase space. This is
achieved if the refinement (7) entails the identity partition,

Fig. 4. Dynamic refinement of a partition. (a) For each cell Ai of the partition F
the pre-image Φ−1(Ai) under the dynamics is determined. The bold arrow indicates
that the shaded region in phase space is mapped onto cell A1. (b) The shaded region
in the product partition F∨Φ−1(F) is the element A2∩Φ−1(A1) of the dynamically
refined partition.

Most information about the state of a system can be gained by an ideal,
“ever-lasting” continuous measurement that began in the infinite past and
terminates in the infinite future. This leads to the finest dynamic refinement

RF =
∞∨

t=−∞
Φt(F), (7)

expressed by the action of the “finest-refinement operator” R upon a parti-
tion F . It would be desirable that such an ever-lasting measurement yields
complete information about the initial condition x0 in phase space. This is
achieved if the refinement (7) entails the identity partition,

RF = I. (8)

A partition F obeying (8) is called generating.
Given the ideal finest refinement RF = P of a (generating or non-

generating) partition F that is induced by an epistemic observable f , we
are able to regain a description of continuous measurements of arbitrary finite
duration by joining subsets of P which are visited by the system’s trajec-
tory during measurement. Supplementing the “join” operation by the other
Boolean set operations over P leads to a partition algebra A(P) of P. Then,
every set in A(P) is an epistemic state measurable by f .

Note that the concept of a generating partition in the ergodic theory of
deterministic systems is related to the concept of a Markov chain in the theory
of stochastic systems. Every deterministic system of first order gives rise to a
Markov chain which is generally neither ergodic nor irreducible. Such Markov
chains can be obtained by so-called Markov partitions that exist for expanding
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or hyperbolic dynamical systems (Sinai, 1968; Bowen, 1970; Ruelle, 1989).
For non-hyperbolic systems no corresponding existence theorem is available,
and the construction can be even more tedious than for hyperbolic systems
(Viana et al. , 2003). For instance, both Markov and generating partitions for
nonlinear systems are generally non-homogeneous. In contrast to Figure 2,
their cells are typically of different size and form.

Note further that every Markov partition is generating, but the converse
is not necessarily true (Crutchfield, 1983; Crutchfield and Packard, 1983). For
the construction of “optimal” partitions from empirical data it is often more
convenient to approximate them by Markov partitions (Froyland, 2001).

4 Compatibility and Complementarity in Classical
Dynamical Systems

If a partition F is not generating, its finest refinement is not the identity
partition. In this case, the refinement operator produces a partition P = RF
with some residual coarse grain. Moreover, the cells of a non-generating par-
tition are not stable under the dynamics Φ, so that they become dynamically
ill-defined – a disaster for any attempt to formulate a properly robust coarse-
grained description (Atmanspacher and beim Graben, 2007).

Let P ∈ P be an epistemic state of the finest refinement of F . Because F
is induced by an observable f whose epistemic equivalence classes are the cells
of F , all cells of P can be accessed by continuous measurements of f . However,
as P is not the identity partition I, the singleton sets {x} representing ontic
states in X are not accessible by measuring f . An arbitrary epistemic state
S ⊂ X induced by an observable g is called epistemically accessible with respect
to f (beim Graben and Atmanspacher, 2006) if S belongs to the partition
algebra A(P) produced by the finest refinement of F .

Measuring the observable f in all ontic states x ∈ P belonging to an
epistemic state P ∈ P always yields the same result a = f(x) since f is
by construction constant over P . Therefore, the variance of f(x) across P
vanishes such that f is dispersion-free in the epistemic state P . In other words,
P is an eigenstate of f . One can now easily construct another observable g
that is not dispersion-free in P such that P is not a common eigenstate of f
and g. According to Sect. 2, the observables f and g are, thus, incompatible as
they do not share all (epistemically accessible) eigenstates. Beim Graben and
Atmanspacher (2006) refer to this construction as an epistemic quantization
of a classical dynamical system.

In an ontic description of a classical system, ontic states are common eigen-
states of all observables. Therefore, classical observables associated with ontic
states are always compatible. By contrast, if the ontic states are not epis-
temically accessible by continuous measurements, the smallest epistemically
accessible states are cells in the finest refinement of a partition F induced by
an epistemic observable f . These epistemic states are not eigenstates of every
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observable, such that observables associated with them are incompatible. As
in quantum theory, two observables f and g are complementary if they do
not have any (epistemically accessible) eigenstate in common, i.e. if they are
maximally incompatible.

Nevertheless, even in an epistemic description, classical observables f and
g can be compatible with each other. This is the case if all ontic states x ∈
X are epistemically accessible with respect to both f and g. The necessary
and sufficient condition for this is that the partitions F , G be generating
(Eq. 8). This leads to a generalization of the concepts of compatibility and
complementarity: Two partitions F ,G are called compatible if and only if they
are both generating: RF = RG = I. They are incompatible if RF 6= RG,
which is always the case if at least one partition is not generating. They are
complementary if their finest refinements are disjoint: RF ∩RG = ∅.5

These definitions give rise to three main corrolaries. (1) For compatible
partitions, every ontic state x is epistemically accessible with respect to ob-
servables f, g inducing the partitions F , G. Hence, every ontic state is a com-
mon eigenstate of f and g and all ontic states span the whole phase space
X =

⋃
x{x}. (2) For incompatible partitions, epistemically accessible eigen-

states of one observable are not necessarily epistemically accessible eigenstates
of another observable. (3) For complementary partitions, the observables do
not have any eigenstates in common and are therefore maximally incompati-
ble.

5 Compatible, Comparable, and Commensurable
Theories

A proposition such as “the observable f assumes the value a in state x ∈ X”,
or briefly “a = f(x)”, induces a binary partition of the phase space X of a
classical dynamical system into two subsets,

F = {S, X \ S}, (9)

where S = {x ∈ X|a = f(x)}. Because propositions can be combined by
the logical connectives “and”, “or”, and “not”, the structure of a classical
theory is that of a Boolean algebra of subsets of the phase space (Primas,
1977; Westmoreland and Schumacher, 1993; Primas, 2007). In the following
we shall elucidate such theories with respect to the epistemic quantization
discussed in Sect. 4.

Given a classical dynamical system with phase space X, dynamics Φ, and
a family of appropriately chosen epistemic observables f1, f2, . . . fn, these ob-
servables induce partitions F1,F2, . . . ,Fn whose product F =

∨n
i=1 Fi charac-

terizes one particular setup for possible measurements. The partition algebra
5 These concepts can also be defined by means of σ-algebras in measure theory

(beim Graben and Atmanspacher, 2006). For the present simplified exposition,
which captures very much the same idea, set-theoretical concepts are sufficient.
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A(F), comprising all subsets of X that can be formed by the Boolean set
operations “join”, “intersection”, and “difference”, can be identified with a
classical theory of propositions corresponding to instantaneous measurements
of one of the observables f1, f2, . . . fn on X.

For continuous measurements, the dynamic refinement according to (7)
has to be taken into account. In this case we have to consider the partition
algebra A(RF) in order to form propositions about continuous measurements
of arbitrary duration. Hence, a classical theory T (F) refers to the Boolean set
algebra A(RF) over the finest refinement RF .

Using the results of Sect. 4, two theories T (F) and T (G) are called com-
patible if their partitions F and G are compatible (i.e. if F and G are both
generating). They are called incompatible if their partitions are incompatible,
and they are called complementary if their partitions are complementary. The
“experimenter’s free choice between mutually exclusive experimental arrange-
ments” (Pauli, 1950; Primas, 2007) corresponds to the choice of incompatible
or complementary theories that are based upon non-generating partitions as-
sociated to epistemic observables. Insofar as classical ontic observables always
induce the identity partition I on the phase space, ontic theories are always
compatible with each other.

Following Shalizi and Moore (2003), we call two theories T (F) and T (G)
comparable with each other if either RF is a refinement of RG, or RG is
a refinement of RF , or RF = RG. Two theories are incomparable if they
are not comparable. It is easy to realize that compatible theories are also
comparable, as RF = RG = I. However, even incompatible theories might
be comparable, e.g. if one of them is based on a generating partition.

Another notion related to compatibility and comparability is that of com-
mensurability (Kuhn, 1983; Hoyningen-Huene, 1990), which has gained some
popularity in relativist accounts within the philosophy of science. Two theo-
ries are said to be commensurable if there is a common theoretical language
that can be used to compare them. Following Primas (1977), this can be re-
formulated by saying that two theories T (F), T (G) are commensurable if they
can be embedded into one universal theory T (U) such that T (F), T (G) are
sub-theories of T (U).

More specifically, we call two theories T (F), T (G) commensurable if a the-
ory T (U) exists such that RU is a refinement of RF and RG. If F and G are
both generating partitions, RF = RG = I. Then T (I) is a common refine-
ment of T (F) and T (G), entailing that compatible theories are always com-
mensurable. Comparable theories, whose partitions are refinements of each
other, are trivially commensurable.
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6 Examples

Let us finally give some selected examples for how the notions of compatibility,
comparability, and complementarity can be useful for the discussion of topics
within Pauli’s lifelong interest.

A first illustrative example refers back to where Bohr became familiar with
the notion of complementarity: the bistable perception of ambiguous stimuli.
The involved processes can be described as (i) an oscillation between the
two possible representations of the stimulus, and (ii) a projection into one of
them, mimicking its observation. These two processes can indeed be shown to
be complementary (Atmanspacher et al., 2008) in basically the same sense as
complementarity in quantum physics is due to non-commuting observables.

Along a different vein, beim Graben (2004) discussed three examples of
implementations of symbol processors that are generically incompatible with
respect to different partitions. This is due to the fact that, in these examples,
the partitions are not generating. As an important consequence of this result,
symbolic and subsymbolic (e.g. neural) descriptions of cognitive processes
are incompatible in general. This confirms – though on different grounds – an
assertion by Smolensky (1988, 2006) that an integrated connectionist/symbolic
architecture is mandatory for cognitive science, where (Smolensky, 2006)

“higher cognition must be formally characterized on two levels of descrip-
tion. At the microlevel, parallel distributed processing (PDP) characterizes
mental processing; this PDP system has special organization in virtue of
which it can be characterized at the macrolevel as a kind of symbolic com-
putational system.”

However, the apparent algorithmic behavior at the symbolic macrolevel is
not implemented by algorithms performed at the microlevel. The microlevel
dynamics only “approximates” the symbolic computations at the macrolevel,
thus making both levels incompatible with each other (Smolensky, 1988). This
shows any discomfort about the lack of a coherent unified framework for cog-
nitive science to be misplaced. Incompatible descriptions are unavoidable and
not an obstacle that one may hope to overcome some day. This applies also
to incompatibilities and incommensurabilities in psychological theories (Yan-
char and Slife, 1997; Slife, 2000; Dale and Spivey, 2005) as discussed by At-
manspacher and beim Graben (2007).

This relates to an issue raised by Pauli (1950) in terms of “considerations of
purposefulness” for choosing between incompatible descriptions. An example
is the notion of an intended partition for the dynamical systems approach to
cognition (beim Graben, 2004). Among the many possible (and presumably
incompatible) partitions of a dynamical system only a few, either explicitly
constructed or evolutionarily optimized, give rise to a high-level interpretation
of the system’s low-level behavior in terms of symbol processing or cognitive
computation. Such intended partitions are able to shed light onto the symbol
grounding problem (Harnad, 1990; Atmanspacher and beim Graben, 2007).
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Yet another incompatibility, maybe even complementarity, was proposed
by Pauli between conscious and unconscious mental states (see Sect. 1 and
Pauli, 1950). In an afterword to his essay “On the Nature of the Psyche”,
Jung (1969, §439, footnote 130) quotes Pauli with the statement that

“the epistemological situation with regard to the concepts ‘conscious’ and
‘unconscious’ seems to offer a pretty close analogy to the . . . situation in
physics. . . . From the standpoint of the psychologist, the ‘observed sys-
tem’ would consist not of physical objects only, but would also include the
unconscious, while consciousness would be assigned the role of ‘observing
medium’.”

In other words: mental objects and their mental environments are con-
ceived to be generated by the transformation of elements of the unconscious
into consciously and, thus, epistemically accessible categories. As long as el-
ements of the unconscious are not yet transformed into conscious categories,
they remain unconscious, and whenever a category is generated and becomes
consciously accessible, it leaves the domain of the unconscious. In this sense,
conscious and unconscious domains are mutually disjoint, yet they are both
together necessary to characterize the mental as a whole.

In such a framework of thinking, the unconscious is explicitly conceived
as part of the mental. This is in contrast to many modern accounts, in which
ongoing brain activity, i.e. the dynamics of subsystems of the material brain,
is referred to by the notion of the unconscious. This brings us to the rela-
tion between mental and material states, or the mind-matter problem as the
most general topic mentioned in this section. Among the many proposals that
have been made to address this problem, Pauli (1952) emphasized the idea
of an ontically monistic and epistemically dualistic, namely complementary,
relationship between mind and matter:

“The general problem of the relationship between psyche and physis, be-
tween inside and outside, will hardly be solved with the notion of a ‘psy-
chophysical parallelism’, put forward in the past century. However, modern
science has perhaps brought us closer to a more satisfying conception of
this relationship insofar as it introduced the concept of complementarity
within physics. It would be most satisfactory if physis and psyche could be
conceived as complementary aspects of the same reality.”

Recent publications (Walach and Römer, 2000; Atmanspacher, 2003; Römer,
2004; Primas, 2008) have tried to popularize this idea and elaborate on it.

The controversy of what constitutes the most basic aspects of reality ac-
companies the development of Western philosophy since its beginning. Coun-
tervailing positions favoring either stasis, and thus being (e.g. Parmenides),
or change, and thus becoming (e.g. Heraclitus) followed and responded to
each other time and again. It was recently shown by Römer (2006) that the
corresponding distinction of substance and process can be considered as com-
plementary in a formally anchored way.
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The general scheme of thinking which such approaches follow is today
called a dual-aspect or double-aspect framework, as discussed in more detail
by Seager (2008). Chalmers (1995) advocated such a framework when he in-
troduced the notion of the “hard problem of consciousness” as the problem
of how to relate the first-person, phenomenal experience of a mental state to
the third-person perspective characterizing the scientific (neural, cognitive, or
otherwise) study of such a state. Velmans (2002, 2008) suggested to regard
first-person and third-person accounts as incompatible or complementary.

Atmanspacher and beim Graben (2007) demonstrated how the phenome-
nal families introduced by Chalmers (2000), which partition the mental space
of phenomenal experiences, induce a partition of the neural phase space. If
this induced partition is not generating, the resulting description in terms of
mental states will be incompatible with any other description. However, care-
fully constructed Markov partitions of the neural phase space of macroscopic
brain activity, e.g. by means of EEG signals, can lead to descriptions that are
compatible with mental (symbolic) descriptions.
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