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1 Introduction

The brilliant physicist Wolfgang Pauli was seriously involved with investi-
gations in natural philosophy. Many (often unpublished) manuscripts and
an abundant correspondence with prominent scholars of his time reveal his
thoughts on causality, consciousness, the relationship between physics and
psyche, and the complementarity of mind and matter, among others. His
writings show that he was genuinely interested in the history of human ideas,
from Western scientific thought to Eastern philosophies, to alchemy and oc-
cultism. Regarding the human mind, Pauli’s philosophical investigations were
deeply influenced by the work of the Swiss psychiatrist Carl G. Jung, especially
through Jung’s notions of “archetype” and “collective unconscious”. Pauli’s
philosophical investigations addressed core and fundamental issues, such as
the nature of scientific observation and the ontology of scientific theories. For
the cutting-edge physicist that Pauli was, a natural extension to these ques-
tions would have been: What is mathematics ? What is the nature of such a
precise conceptual apparatus that makes modern physics possible ?

To our knowledge, Pauli did not address these questions directly. He was
more of a user of mathematics rather than a philosopher of mathematics or a
pure mathematician. From his writings, however, it is possible to infer some
aspects of Pauli’s views on the nature of mathematics. Keeping in mind the
focus of the academic meeting that the present volume addresses – Pauli’s
philosophical ideas and contemporary science – in this chapter I intend to
accomplish three things. First, I want to analyze some of Pauli’s views on the
nature of mathematics mainly as seen through his analysis of Kepler’s scientific
theories and in his rich correspondence with Jung between 1932 and 1958. We
will see that, inspired by Jung’s archetypes, some of Pauli’s ideas appear to
be idealistic (or Platonic) in the sense that they seem to take mathematical
ideas to exist somewhat independently of human beings, while others seem to
defend the position that mathematical ideas are man-made. Second, from the
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perspective of contemporary cognitive science, I want to comment on some
methodological and theoretical issues in Pauli’s work, focusing on the method
of introspection used by most thinkers of Pauli’s time, and on the relationships
between the notions of Jungian archetype and of image schema as it is used
in contemporary cognitive linguistics. Finally, I will briefly describe my own
approach to the question of the nature of mathematics, by looking at current
work in the cognitive science of mathematics and the embodied cognition of
human everyday abstraction. I will defend the argument that bodily-grounded
human cognitive mechanisms underlying everyday abstraction, such as image-
schemas and conceptual metaphor, play a crucial role in making mathematics
possible. Mathematics, then, from elementary geometry to transfinite numbers
is a biologically-grounded wonderful human creation.

2 Pauli, a Mathematical Platonist ?

Mathematics is a very peculiar body of knowledge. On the one hand, it is
an extraordinary conceptual system characterized by the fact that the very
entities that constitute it are imaginary, idealized mental abstractions. These
entities cannot be perceived directly through the senses. A Euclidean point,
for instance, has only location but no extension(!), and, as such, it cannot be
found anywhere in the entire universe. A Euclidean point cannot be actually
perceived or observed through any scientific empirical method. Yet, the truth
of many facts in Euclidean geometry depends on this essential imaginary
property and cannot be demonstrated empirically (e.g., “only one line passes
through two points”). And on the other hand, mathematics provides extremely
stable inferential patterns (i.e., theorems) that, once proved, stayed proved
forever. What is then the nature of such a unique body of knowledge ?

Two main schools of thought in the philosophy of mathematics stand out:
Platonism and formalism. The former, following Plato’s doctrine, sees math-
ematical entities, their truths and properties, as atemporal and immutable,
transcending the existence of human beings. The latter views these entities as
reducible to pure formal properties and rule-driven manipulations of meaning-
less symbols. Perhaps because mathematics appears to be so pristine, precise,
objective, and transcendental, many mathematicians and physicists (even to-
day) endorse a Platonic view of mathematics.

The famous logician Kurt Gödel, for instance, was a hard-core Platonist.
Even the shocking results of his “incompleteness theorems” did not change
his views of mathematics. Gödel had formally proved that given an axiomatic
system for arithmetic, there are true arithmetical statements that cannot be
proved within that system. He took this result to solidify his philosophical po-
sition, that the ultimate truth in mathematics lies beyond mundane axiomatic
systems and human mathematical practices.1

1 For a summarized and non-technical analysis of Gödel’s seminal work see Hintikka
(2000).
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One of the presenters in the meeting on which this volume is based –
the French mathematician Alain Connes – holds a very similar position of
mathematical Platonism. Connes believes that, at least in what concerns basic
arithmetic, there is a réalité archäıque (archaic reality) where certain facts
about numbers are true, independently of how humans do mathematics, carry
formal proofs and concoct axiom systems. As Connes puts it (Connes et al.,
2000, p. 14–15, my translation, emphases in the original):

“What logic brings to us, is, above all, a means of showing the limitations
of the formalized axiomatic method, that is, of logical deductions within a
formal system . . . This intrinsic limitation leads to the separation of what is
provable within a given logico-deductive system from what is true, and that
I will call ‘the archaic mathematical reality’. With this term, voluntarily
imprecise but whose intuitive sense must be clear, I mean to encompass at
least the vast continent of arithmetical truths . . . In other words, the formal
system that one uses will never exhaust the archaic mathematical reality.”

And what about Pauli ? Was he a mathematical Platonist ? Certain pas-
sages of his writings suggest that he was close to a Platonic position. In the
opening section of his essay on the influence of archetypal ideas on Kepler’s
scientific theories he writes (Pauli, 1952; translated in Pauli, 1994, p. 220):

“What is the nature of the bridge between the sense perceptions and the con-
cepts ? All logical thinkers have arrived at the conclusion that pure logic is
fundamentally incapable of constructing such a link. It seems most satisfac-
tory to introduce at this point the postulate of a cosmic order independent
of our choice and distinct from the world of phenomena.”

Although Pauli in these passages does not directly refer to mathematics, he
wonders about the nature of concepts and their relation to sense perceptions.
And in order to deal with such questions he dismisses pure logic as a candidate
and postulates a “cosmic order” that is independent of human beings and,
most importantly, distinct from world facts. This is a kind of reality that
has an ontology separate from the “world of phenomena” and transcends the
existence of human beings. He then further explicates this view by referring
to Plato himself, and by citing Kepler as an important figure who endorsed
such a view (Pauli, 1952; translated in Pauli, 1994, p. 221):

“The process of understanding nature as well as the happiness that man
feels in understanding, that is, in the conscious realization of new knowledge,
seems thus to be based on a correspondence, a ‘matching’ of inner images
pre-existent in the human psyche with external objects and their behavior.
This interpretation of scientific knowledge, of course, goes back to Plato,
and is, as we shall see, very clearly advocated by Kepler.”

Pauli was well aware that the question of the nature of the “matching” between
human pre-existing inner images with objects in the external world had been
at the core of philosophy of mind and scientific psychology for more than a
century. In this passage he presents the issue through Kepler’s eyes, explaining
how he straightforwardly solved the question by invoking God and creation
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dogmas of Christianity (Pauli, 1952; translated in Pauli, 1994, p. 221, emphasis
in the original):

“He [Kepler] speaks in fact of ideas that are pre-existent in the mind of God
and were implanted in the soul, the image of God, at the time of creation.
These primary images which the soul can perceive with the aid of an innate
‘instinct’ are called by Kepler archetypal (‘archetypalis’). Their agreement
with their ‘primordial images’ or archetypes introduced into modern psy-
chology by C.G. Jung and functioning as ‘instincts of imagination’ is very
extensive.”

This passage is quite telling. Although Pauli refers to views that Kepler had
expressed more than three centuries earlier, he manages to introduce the cru-
cial Keplerian notion of “archetypes”, but this time cautiously backed-up with
Jung’s work in “modern psychology”, which at the time of Pauli was consid-
ered to be an expression of cutting-edge empirical investigation of the mind.
Now, supported by Jung’s empirical psychology, and getting away from dog-
matic theological arguments, Pauli moves on to close his opening section by
explaining how human ideas – including scientific ones – evolve (Pauli, 1952;
translated in Pauli, 1994, p. 221):

“As ordering operators and image-formers in this world of symbolical im-
ages, the archetypes thus function as the sought-for-bridge between the
sense perceptions and the ideas and are, accordingly, a necessary presuppo-
sition even for evolving a scientific theory of nature.”

In this opening section, Pauli says nothing about mathematics proper, but
he provides the guidelines for the essential building blocks underlying scientific
discovery, namely, a process that builds on archetypes and serves as the bridge
between sense perceptions and the world of ideas. The semantic content of
archetypes, thus, is seen as somewhat independent of human psychological
activity, that is, they reside outside of the mind. Therefore they seem to be
in line with platonic thought. Such a view shows up in other places in Pauli’s
writings. For example, in a letter of January 7, 1948, to Fierz, Pauli writes
(Meyenn, 1993, pp. 496–497):2

“The ordering and regulating factors must be placed beyond the distinction of
‘physical’ and ‘psychic’ – as Plato’s ‘ideas’ share the notion of a concept and
of a force of nature (they create actions out of themselves). I am very much
in favor of referring to the ‘ordering’ and ‘regulating’ factors in terms of
‘archetypes’; but then it would be inadmissible to define them as contents of
the psyche. The mentioned inner images (‘dominant features of the collective
unconscious’ after Jung) are rather psychic manifestations of the archetypes
which, however, would also have to put forth, create, condition anything
lawlike in the behavior of the corporeal world. The laws of this world would
then be the physical manifestations of the archetypes. . . . Each law of nature
should then have an inner correspondence and vice versa, even though this
is not always directly visible today.”

2 I want to thank Harald Atmanspacher for pointing me to this quote.
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Here Pauli states, in strong terms, that archetypes are not contents of the
psyche but, rather, the inner images are psychic manifestations of them. A
particular and fairly simple area of mathematics, where the relationship be-
tween the physical and the psychical can be studied under the concept of
archetypes, is that of numbers. In a letter of October 24, 1953, to Pauli, Jung
states that the natural numbers are the simplest of all archetypes (translation
in Meier, 2001, p. 127, emphasis in the original):

“These [the natural numbers] seem to be the simplest and most elementary
of all archetypes. That they are archetypes emerges from the psychologi-
cal fact that simple whole numbers, given the chance, amplify themselves
immediately and freely through mythological statements; e.g. 1 = the One,
absolute, nondivisible . . . and thus the unconscious, the beginning, God,
etc. 2 = the division of the One, the pair, the connection, the difference
(agens-patiens, masculine-feminine, etc.), counting, etc. 3 = the renaissance
of the One from the Two, the son, the first masculine number, etc.”

Pauli, who in is early education had been in touch with the Pythagorean
view that man is able to contemplate the numerical proportions of nature
thanks to the inherent sense of harmony and beauty of the soul (Gieser,
2005), seems to have accepted this view. He saw mathematics as based on
the archetype of numbers, and as a genuine symbolic description of reality, to
the point that it can also express mental processes – including dreams – in
detail (Gieser, 2005, pp. 309–310). In his letters to Jung, Pauli often describes
and analyzes his own dreams in terms of archetypes and numbers, sometimes
expressed in quaternarian and trinitarian structures.3 And in other texts,
such as in his “background physics” (Meier, 2001, p. 179–196) he analyzes his
dreams by invoking the well-defined imaginary unit i =

√
−1 as a symbol not

contained in the real numbers. Pauli interprets it as having the function to
unite a pair of opposites and thus produce wholeness. For Pauli, mathematical
representations were indeed symbolic descriptions par excellence (Meier, 2001,
p. 195), but the mathematical entities themselves existed outside the human
mind.

But there is more. Pauli was also aware that, beyond the realm of numbers,
many areas of mathematics seem to be humanly developed. In his essay on
Kepler’s work, for instance, he is very cautious in not blindly embarking in a
fully timeless, idealistic, and absolute view of mathematics. He writes (Pauli,
1952; translated in Pauli, 1994, p. 229):

“When Kepler says, however, that in the Mind of God it has been eternally
true that, for example, the square of the side of a square equals half the
square of its diagonal, we do not, to be sure, begrudge one of the first joy-
ful discoverers of quantitative, mathematically formulated natural laws his
elation but must, as modern men, remark in criticism that the axioms of
Euclidean geometry are not the only possible ones. . . . I entirely share the

3 This is a rich topic whose proper treatment goes beyond the scope of this chapter.
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opinion that man has an instinctive tendency, not rooted merely in exter-
nal experience, to interpret his sensory perceptions in terms of Euclidean
geometry. It took a special intellectual effort to recognize the fact that the
assumptions of Euclidean geometry are not the only possible ones.”

Here we see that Pauli does not ascribe the same “Platonic” status to Eu-
clidean geometry (with its Platonic solids and so on) and to other forms of
geometry. He clearly states that other geometries are indeed possible, and
specifically points out that they are made possible by human intellectual ef-
fort. From this perspective then, according to Pauli, not all of mathematics
would pre-exist human beings. Some domains of mathematics would be the
result of the activity of the human mind. A view along these lines can also
be seen in the letter of December, 12, 1950, of Pauli to Jung (translated in
Meier, 2001, p. 64) in which he mentions issues regarding the foundations of
mathematics, a domain of basic research in mathematics that was very active
throughout Pauli’s life:

“It should be noted that the specialized field ‘Fundamentals of Mathematics’
is in a state of great confusion at the moment as a result of a large-scale
undertaking to deal with these questions, an endeavor that failed because
it was one-sided and divorced from nature. In this field of research into
the fundamentals of mathematics, the ‘basis of mathematical probability
calculus’ marks a particular low point. . . . A psychological approach would
be both appropriate and very useful here.”

In this passage Pauli is most likely criticizing the excessive meaningless for-
malisms (“divorced from nature”) that drove most efforts for settling the
foundations of mathematics during the 20th century, and calls for an approach
that brings in the richness of the human mind. Pauli’s view is certainly far
from the mainstream set-theoretical approaches that were à la mode at that
time. It was much closer to Poincaré’s views that saw – unlike the analytical
philosophy of Frege or Russell – a strong connection between epistemology
and psychology.

So, was Pauli a mathematical Platonist ? Based on the documents we have,
it appears that there is no straightforward answer to the question. Or at least,
no simple answer that would apply to all of mathematics. Perhaps, Pauli had a
view along the lines of Gödel or Connes, that sees most mathematical practices
as human – creating axiomatic systems and formal definitions, conceiving
symbols and formal proofs – but in what concerns the domain of natural
numbers and simple arithmetic seeing an ultimate realm of mathematical
truths transcending the human mind. Perhaps Pauli, following Jung, did see
something unique in whole numbers. In a letter to Pauli of October 24, 1953
(Meier, 2001, p. 127), Jung wrote that they

“possess that characteristic of the psychoid archetype in classical form –
namely, that they are as much inside as outside. Thus, one can never make
out whether they have been devised or discovered ; as numbers they are
inside and as quantity they are outside.”
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3 Introspection and Archetypes:
A Cognitive Science Perspective

In this section I would like to briefly comment – from the perspective of
contemporary cognitive science – on two aspects of Pauli’s ideas about math-
ematics: (1) the method of introspection that he used, and (2) the notion of
archetype and its relation to image schemas.

3.1 Introspection as a Method of Investigation

In their investigations about the nature of ideas and the properties of the mind,
scholars of the time of Pauli and Jung approached these issues heavily relying
on the method of introspection. They gained insight into the functioning of the
mind through the conscious examination of their own thoughts, perception,
and intuition. Since the time of Greek philosophers, introspection has played a
major role in the study of the human mind. Introspection, after all, is a readily
available method of investigation, practical and instantaneous, that does not
require sophisticated equipment or training. In the philosophy of mathematics,
various influential mathematicians of the late 19th and early 20th centuries,
such as Richard Dedekind, Georg Cantor, David Hilbert, Henri Poincaré, and
Hermann Weyl, developed their philosophical work mainly using introspection
as a method of inquiry. They all considered, in one way or another, human
intuition as a fundamental starting point for their philosophical investigations:
intuitions of small integers, intuitions of collections, intuitions of movement in
space, and so on (see Dedekind, 1888; Dauben, 1979, on Cantor; Kitcher, 1976,
on Hilbert; Poincaré, 1913; Weyl, 1918). They regarded these fundamental
intuitions of the human mind as stable and profound enough to serve as a
basis for mathematics.4 Pauli was aware of their work, and he was especially
tuned into Weyl’s and Poincaré’s philosophical viewpoints (Gieser, 2005).

Pauli’s philosophical insights, as well as those from these mathematicians,
give us many important elements regarding the personal impressions these
scholars had about the nature of mathematics – from the qualitative impres-
sions of having a mathematical insight, to the description of the structure of
basic intuitions, to the organization of dreams. But beyond the philosophical
and historical interest that these insights may have, they present important
limitations when seen from the perspective of nowadays’ scientific standards.
4 However, they did not think of these intuitions and basic ideas as being “rigorous”

enough. This was a major reason why, later, formalism would explicitly eliminate
ideas, and go on to dominate the foundational debates. Unfortunately, at that
time philosophers and mathematicians did not have the scientific and theoretical
tools we have today to see that human intuitions and ideas are indeed very precise
and rigorous, and that therefore the problems they were facing did not have to
do with a lack of rigor of ideas and intuitions. For details see Núñez and Lakoff
(1998) and Lakoff and Núñez (2000).
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• First, mathematicians of the time of Pauli were professionally trained to
do mathematics, not to study ideas and intuitions. And their discipline,
mathematics (as such), does not study ideas or intuitions. Today, the study
of ideas (concepts and intuitions) in itself is a scientific subject matter, and
it is not the vague and elusive philosophical object that it was at the time
of Pauli. We will come back to this point in the next section.

• Second, as pointed out above, the methodology they used was mainly intro-
spection – the subjective investigation of one’s own impressions, feelings,
and thoughts. Now we know from substantial evidence in the scientific
study of intuition and cognition, that there are fundamental aspects of
mental activity that are unconscious in nature and therefore inaccessible
to introspection.

Indeed, thanks to the scientific investigation of the human mind, today
we know that the method of introspection not only is highly unreliable but
also extremely limited in scope. In terms of time scales, introspection as such
requires the integration of many cognitive functions at once – attention, per-
ception, memory, and even language – which occur at the time scale of several
hundred milliseconds, seconds and minutes. This means that introspection is
unable to see anything that occurs below that time scale (e.g., in a few tens of
milliseconds), thus missing essential mental processes that take place within
those short time frames.

Then there is the neural dynamics underlying attention, perception, mem-
ory and so on. These neural dynamics cannot be perceived directly via intro-
spection. We simply cannot say anything about the underlying neural dynam-
ics involved in, say, the recognition of the face of an old friend. We may have
impressions and thoughts about it, but via introspection we are completely
blind to the properties of the neural dynamics that make face recognition pos-
sible. Regarding memory, study after study shows that what we remember is
highly unreliable, and therefore introspection applied to memories is likely to
be biased by the unreliable nature of memory (see Schacter, 1996).

And then, there is the huge amount of phenomena that co-occurs with
mental activity but that is outside of conscious awareness (required for intro-
spection to take place), such as eye saccades and speech-gesture coordination,
which modern cognitive science recognizes as important indicators of human
thinking in real-time (McNeill, 1992; Núñez, 2006).

In sum, philosophical inquiry based mainly on introspection – although
very important – gives, at best, a very limited and often biased picture of
the conceptual structure that makes mathematics possible. If we want to ad-
dress the question of the nature of mathematics, introspection is not the right
method to do so. This applies to Pauli’s (and Jung’s) philosophical work.
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3.2 Archetypes and Image Schemas

Pauli often cited Jung’s archetypes in his writings. The following are examples
of Jung’s views from the 1920s and 1930s:

• “The primordeal image, elsewhere also termed archetype, is always collec-
tive, i.e., it is at least common to entire peoples or epochs . . . [It] is the
precursor of the idea and its matrix.” (Original 1921, translation from
Jung, 1971, §747 and §750.)

• “Archetypes are typical modes of apprehension.” (Original 1919, transla-
tion from Jung, 1969, §280.)

• “The archetypal motifs presumably derive from patterns of the human
mind that are transmitted not only by tradition and migration but also
by heredity. The latter hypothesis is indispensable, since even complicated
archetypal images can be reproduced spontaneously without there being
any possibility of direct tradition.” (Original 1937, translation from Jung,
1958, §88.)

• “I suppose . . . the inherited quality to be something like the formal pos-
sibility of producing the same ideas over and over again. I have called this
the ‘archetype’. Accordingly, the archetype would be a structural qual-
ity or condition peculiar to a psyche that is somehow connected with the
brain.” (Original 1937, translation from Jung, 1958, §165.)

The notion of archetype is deep. It could have had a much greater impact
in the study of the human mind of the 20th century if it had not been so
difficult to investigate it empirically. The psychology of the 1950s and 1960s,
dominated by behaviorism, and that of the 1970s and 1980s, dominated by the
information-processing paradigm, simply did not have room for archetypes
– a notion too difficult to operationalize and to encompass within strictly
individualistic rule-driven views of the human mind. Interestingly, however,
certain important aspects of the notion of archetypes as described by the
above citations resonate in contemporary cognitive semantics, especially in
what concerns the notion of image schemas.

Image schemas constitute an important finding in contemporary cognitive
linguistics, showing that human conceptual systems can be ultimately decom-
posed into primitive concepts of spatial relations. Image schemas are basic
dynamic topological and orientation structures that characterize spatial in-
ferences and link language to visual-motor experience (Johnson, 1987; Lakoff
and Johnson, 1999). Image schemas, like archetypes, have a specific “struc-
tural quality” that, as Jung put it, is “somehow connected with the brain”
since they appear to be realized neurally, using brain mechanisms such as
topographic maps of the visual field, center-surround receptive fields, gating
circuitry, and so on (Regier, 1996). Moreover, they are quite close to Jung’s
original idea of a “primordeal image”, the “precursor” of an idea and its “ma-
trix”, with a “collective” nature.

Image schemas can be studied empirically through language (and sponta-
neous gestures), in particular through the linguistic manifestation of spatial
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relations. Every language has a system of spatial relations, though they dif-
fer radically from language to language. In English, for instance, there are
prepositions like in, on, through, above, and so on. Other languages have sys-
tems that often differ radically from the English system. However, the spatial
relations in a given language decompose into conceptual primitives (image
schemas) that appear to be universal, that is, they are “typical modes of ap-
prehension” that are “common to entire peoples or epochs”, very much like
Jung’s archetypes. For example, the English word “on”, in the sense used in
“the book is on the desk” is a composite of three primitive image schemas:

• the Above Schema (the book is above the desk),
• the Contact Schema (the book is in contact with the desk),
• the Support Schema (the book is supported by the desk).

The Above Schema is orientational: It specifies an orientation in space rel-
ative to the gravitational pull one feels on one’s body. The Contact Schema is
one of a number of topological schemas: It indicates an absence of a gap. The
Support Schema is force-dynamic in nature: It indicates the direction and
nature of a force. In general, static image schemas fall into one of these cate-
gories: orientational, topological, and force-dynamic. In other languages, the
primitives may combine in very different ways. Not all languages have a sin-
gle concept like on in English. For instance, even in a language as close as
German, the on in on the table is rendered as auf, while the on in on the wall
(which does not contain the Above Schema) is translated as an.

A common image schema that is of great importance in mathematics is
the Container Schema (Lakoff and Núñez, 2000), which in everyday cogni-
tion occurs as the central part of the meaning of words like in and out. The
Container Schema has three parts: an Interior, a Boundary, and an Exterior.
This structure forms a Gestalt, in the sense that the parts make no sense
without the whole. There is no Interior without a Boundary and an Exterior,
no Exterior without a Boundary and an Interior, and no Boundary without
sides, in this case an Inside and an Outside. This structure is topological in
the sense that the boundary can be made larger, smaller, or distorted and still
remains the boundary of a Container Schema.

Image schemas have a special cognitive function: they are both perceptual
and conceptual in nature. As such, they provide a bridge between language
and reasoning on the one hand and vision on the other. Image schemas can
fit visual perception, as when we see the milk as being in the glass. They can
also be imposed on visual scenes, as when we see the bees swarming in the
garden, where there is no physical container that the bees are in. Because
terms of spatial relations in a given language name complex image schemas,
image schemas are the link between language and spatial perception, forming,
like Jung’s archetypes, “patterns of the human mind that are transmitted not
only by tradition and migration but also by heredity”.
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As we will see in the next section, an extremely important feature of image
schemas is that their inferential structure is preserved under metaphorical
mappings. This feature will turn out to be a crucial component that helps
bringing mathematical ideas into being.

4 Mathematics as a Product
of the Embodied Human Mind

As we saw earlier, mathematics is a peculiar body of knowledge, whose ob-
jects are idealized imaginary entities. Beyond the Euclidean point, we can see
the imaginary (but precise nature) of mathematics even clearer if we look at
infinity where, because of the finite nature of our bodies and brains, no direct
experience can exist with the infinite itself. Yet, infinity is at the core of math-
ematics. It lies at the very basis of many fundamental concepts such as limits,
least upper bounds, point-set topology, mathematical induction, infinite sets,
points at infinity in projective geometry, to mention only a few.

If mathematics is the product of human imagination, how can we explain
the nature of mathematics with its unique features such as precision, objec-
tivity, rigor, generalizability, stability, and, of course, applicability to the real
world ? How can we give a cognitive account of what mathematics is, with all
the precision and complexities of its theorems, axioms, formal definitions, and
proofs ? And how can we do this when the subject matter is truly abstract
and apparently detached from anything concrete, as in topics as transfinite
numbers, abstract algebra, and hyperset theory ?

In the realm of Platonically oriented philosophies, like Gödel’s or Connes’,
the question of the nature of mathematics does not pose a real problem, since
the existence of mathematical ideas transcends the world of human ideas. This
view, of course, cannot be tested scientifically and does not provide any link
to current empirical work on human ideas and conceptual systems. In such
Platonic views issues and questions are a matter of faith, not of empirical
investigation. The question of the nature of mathematics does not pose major
problems to purely formalist philosophies either, because in that worldview
mathematics is seen as a manipulation of meaningless symbols. The question
of the origin of the meaning of mathematical ideas does not even emerge in
the formalist world.

In any case, any precise explanatory proposal of the nature of mathematics
should give an account of the unique collection of features that make mathe-
matics so special: precision, objectivity, rigor, generalizability, stability, and,
applicability to the real world. This is what makes the scientific study of the
nature of mathematics so challenging: Mathematical entities (organized ideas
and stable concepts) are abstract and imaginary, yet they are realized through
the biological and social peculiarities of the human animal. The challenge then
is: How can a bodily-grounded view of the mind give an account of an ab-
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stract, idealized, precise, sophisticated and powerful domain of ideas if direct
bodily experience with the subject matter is not possible ?

In our book Where Mathematics Comes From, George Lakoff and I propose
some preliminary answers to such questions (Lakoff and Núñez, 2000). Build-
ing on findings in mathematical cognition and the neuroscience of numerical
cognition, and using mainly methods from cognitive linguistics, a branch of
cognitive science, we asked: Which cognitive mechanisms are used in structur-
ing mathematical ideas ? And more specifically, which cognitive mechanisms
can characterize the inferential organization observed in mathematical ideas
themselves ?

We suggested that most of the idealized abstract technical entities in math-
ematics are created via everyday human cognitive mechanisms that extend
the structure of bodily experience while preserving inferential organization.
Such “natural” mechanisms are, among others, image schemas and conceptual
metaphors (Lakoff and Johnson, 1980; Sweetser, 1990; Lakoff, 1993; Lakoff and
Núñez, 1997; Núñez and Lakoff, 2005), conceptual blends (Fauconnier and
Turner, 1998, 2002; Núñez, 2005), conceptual metonymy (Lakoff and John-
son, 1980), and fictive motion (Talmy, 1988, 2003). Using a technique we called
mathematical idea analysis we studied in detail many mathematical concepts
in several areas of mathematics, from set theory to infinitesimal calculus to
transfinite arithmetic. We showed how, via everyday human embodied mecha-
nisms such as image schemas, conceptual metaphor and conceptual blending,
the inferential patterns drawn from direct bodily experience in the real world
get extended in very specific and precise ways to give rise to a new emergent
inferential organization in purely imaginary domains. In order to see how this
works, let us now take a closer look into the study of everyday conceptual
mappings and inferential organization.

4.1 Conceptual Mappings and Inferential Organization

Consider the following two everyday linguistic expressions: “The spring is
ahead of us” and “the presidential election is now behind us”. Taken literally,
these expressions do not make any sense. “The spring” is not something that
can physically be “ahead” of us in any measurable or observable way, and an
“election” is not something that can be physically “behind” us. Hundreds of
thousands of these expressions, whose meaning is not literal but metaphorical,
can be observed in human everyday language. They are the product of the
human imagination, they convey precise meanings, and allow speakers to make
precise inferences about them.

A branch of cognitive science, cognitive linguistics (and more specifically,
cognitive semantics), has studied this phenomenon in detail and has shown
that the semantics of these hundreds of thousands metaphorical linguistic ex-
pressions can be modeled by a relatively small number of conceptual metaphors
(Lakoff and Johnson, 1980; Lakoff, 1993). These conceptual metaphors, which
are inference-preserving cross-domain mappings, are cognitive mechanisms
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that allow us to project the inferential structure from a source domain, which
usually is grounded in some form of basic bodily experience, into another one,
the target domain, usually more abstract. A crucial component of what is mod-
eled is inferential organization, the network of inferences that is generated via
the mappings.

The above examples use quite different lexical items (i.e., one refers to
a location ahead of us, and the other to a location behind us), but they
are both linguistic manifestations of a single general conceptual metaphor,
namely, Time Events Are Things in Unidimensional Space.5 As in any
conceptual metaphor, the inferential structure of concepts in the target do-
main (time, in this case) is created via a precise mapping drawn from the
source domain (unidimensional space, in this case). In what concerns time
expressions, for instance, cognitive linguists have identified two main forms
of this general conceptual metaphor, namely, Time Passing Is Motion of
an Object (which models the inferential organization of expressions such
as “Chiristmas is coming”) and Time Passing Is Motion Over A Land-
scape (which models the inferential organization of expressions such as “we
are approaching the end of the month”) (Lakoff, 1993).6 The former model
has a fixed canonical observer where times are seen as entities moving with
respect to the observer, while the latter has times as fixed objects where the
observer moves with respect to events in time.

These two forms share some fundamental features: both map (preserving
transitivity) spatial locations in front of ego onto temporal events in the future,
co-locations with ego onto events in the present, and locations behind ego (also
preserving transitivity) onto events in the past. Spatial construals of time are,
of course, much more complex, but this is basically all what we need to know
here. For the purposes of this chapter, there are two very important morals
to keep in mind:

a) Truth, when imaginary entities are concerned, is always relative to the
inferential organization of the mappings involved in the underlying concep-
tual metaphors. For instance, “last summer” can be conceptualized as being
behind us as long as we operate with the general conceptual metaphor Time
Events Are Things in Unidimensional Space, which determines a spe-
cific bodily orientation with respect to metaphorically conceived events in
time, namely, the future as being “in front of” us, and the past as being “be-
hind” us. Núñez and Sweetser (2006), however, have shown that the details
of that mapping are not universal. Through ethnographic field work, as well
as cross-linguistic gestural and lexical analysis of the Aymara language of the
5 Following a convention in cognitive linguistics, capitals here serve to denote the

name of the conceptual mapping as such. Particular instances of these mappings,
called metaphorical expressions (e.g., “she has a great future in front of her”),
are not written with capitals.

6 For a different and more recent taxonomy based on linguistic data, as well as on
gestural and psychological experimental evidence, see Núñez and Sweetser (2006)
and Núñez et al. (2006).
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Andes’ highlands, they provided the first well-documented case violating the
postulated universality of the metaphorical orientation future-in-front-of-ego
and past-behind-ego. In Aymara, for instance, “last summer” is conceptu-
alized as being in front of ego, not behind of ego, and “next year” is not
conceptualized as being in front of ego, but behind ego. Moreover, Aymara
speakers not only utter these words when referring to time, but also produce
co-timed corresponding gestures, strongly suggesting that these metaphori-
cal spatial construals of time are not merely about words, but about deeper
conceptual phenomena. The moral is that there is no ultimate truth regard-
ing these imaginative structures. In this case, there is no ultimate truth about
where, really, is the ultimate metaphorical location of the future (or the past).
Truth will depend on the details of the mappings of the underlying conceptual
metaphor. As we will see, this is of paramount importance when mathematical
concepts are concerned: Their ultimate truth is not hidden in the structure
of the universe, but it will be relative to the underlying conceptual mappings
(e.g., metaphors) used to create them.

b) It is crucial to keep in mind that the abstract conceptual systems we
develop are possible because we are biological beings with specific morpholog-
ical and anatomical features. In this sense, human abstraction is embodied in
nature. It is because we are living creatures with a salient and unambiguous
front and a back, that we can build on these properties and the related bodily
experiences to bring forth stable and solid concepts such as “the future in
front of us”. This would be impossible if we had the body of a jellyfish or of
an amoeba. Moreover, abstract conceptual systems are not “simply” socially
constructed, as a matter of convention. Biological properties and specificities
of human bodily-grounded experience impose very strong constraints on what
concepts can be created. While social conventions usually have a huge number
of degrees of freedom, many human abstract concepts do not. For example,
the color pattern of the Euro bills was socially constructed via convention
(and so were the design patterns they have). But virtually any color ordering
would have done the job. Metaphorical construals of time, on the contrary, are
only based on a spatial source domain. This is an empirical observation, not
an arbitrary or speculative statement: As far as we know, there is no language
or culture on earth where time is conceived in terms of thermic or chromatic
source domains. And there is more: not just any spatial domain does the job.
Spatial construals of time are, as far as we know, always based on unidimen-
sional space.7 Human abstraction is thus not merely “socially constructed”.
It is constructed through strong non-arbitrary biological and cognitive con-
straints that play an essential role in constituting what human abstraction is.
Human cognition is embodied, shaped by species-specific non-arbitrary con-
7 Although they can, of course, be more complicated, e.g. in the case of cyclic or

helix-like conceptions. But even in those cases the building blocks – a segment
of a circle or a helix – preserve the topological properties of the uni-dimensional
segment.
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straints. This property is of key importance when mathematical concepts are
concerned.

We are now in a position to analyze how the inferential structure of image
schemas (for example, the Container Schema) is preserved under metaphorical
mappings like the ones just described to generate more abstract concepts (such
as the concept of Boolean class). We shall see exactly how image schemas pro-
vide the inferential structure to the source domain of the conceptual metaphor
which, via the mapping, is projected onto the target domain of the metaphor
to generate sophisticated mathematical concepts, in this case, Boolean-class
inferences.

4.2 Structure of Image Schemas and Metaphorical Projections

When we draw illustrations of Container Schemas, we find that they look
like Venn diagrams for Boolean classes. This is by no means an accident.
The reason is that classes are normally conceptualized in terms of Container
Schemas. For instance, we think (and speak) of elements as being in or out
of a class. Venn diagrams are visual instantiations of Container Schemas. The
reason that Venn diagrams work as symbolizations of classes is that classes
are usually metaphorically conceptualized as containers – that is, as bounded
regions in space.

Container Schemas have a logic that appears to arise from the structure
of our visual and imaging system, adapted for more general use. More specif-
ically, Container Schemas appear to be realized neurally using such brain
mechanisms as topographic maps of the visual field, center-surround recep-
tive fields, and gating circuitry (Regier, 1996). The inferential structure of
these schemas can be used both for structuring space and for more abstract
reason, and is projected onto our everyday conceptual system by a partic-
ular conceptual metaphor, the Classes Are Containers metaphor. This
accounts for part (by no means all!) of our reasoning about conceptual cat-
egories. Boolean logic also arises from our capacity to perceive the world in
terms of Container Schemas and to form mental images using them.

So, how do we normally conceptualize the intuitive pre-mathematical no-
tion of classes ? From the perspective of mathematical idea analysis the answer
is in terms of Container Schemas. In other words, we normally conceptualize
a class of entities in terms of a bounded region of space, with members of the
class all inside the bounded region and non-members outside of the bounded
region. From a cognitive perspective, intuitive classes are thus metaphorical
conceptual containers, characterized cognitively by a metaphorical mapping –
the Classes Are Containers metaphor. Table 1 shows the corresponding
mappings. This is our natural, everyday unconscious conceptual metaphor for
what a class is. It grounds our concept of a class in our concept of a bounded
region in space, via the conceptual apparatus of the image schema for con-
tainment. This is the way we conceptualize classes in everyday life.



266 Rafael Núñez

Source Domain
Container Schemas

Target Domain
Classes

interiors of container schemas → classes

objects in interiors → class members

being an object in an interior → the membership relation

an interior of one container
schema within a larger one → a subclass in a larger class

the overlap of the interiors
of two container schemas → the intersection of two classes

the totality of the interiors
of two container schemas → the union of two classes

the exterior of a container
schemas → the complement of a class

Tab. 1. The metaphor Classes are Containers

We can now analyze how conceptual image schemas (in this case, Container
Schemas) are the source of four fundamental inferential laws of logic. The
structural constraints on Container Schemas mentioned earlier (i.e., brain
mechanisms such as topographic maps of the visual field, center-surround
receptive fields, gating circuitry, etc.) give them an inferential structure, which
Lakoff and I called “Laws of Container Schemas” (Lakoff and Núñez, 2000).
These so-called “laws” are conceptual in nature and are reflections at the
cognitive level of brain structures at the neural level (see Figure 1). The four
inferential laws are Container Schema versions of classical logical laws:

• Excluded Middle. Every object X is either in Container Schema A or
outside of Container Schema A.

• Modus Ponens: Given two Container Schemas A and B and an object X,
if A is in B and X is in A, then X is in B.

• Hypothetical Syllogism: Given three Container Schemas A, B and C, if A
is in B and B is in C, then A is in C.

• Modus Tollens: Given two Container Schemas A and B and an object Y ,
if A is in B and Y is outside of B, then Y is outside of A.

Now, recall that conceptual metaphors allow the inferential structure of the
source domain to be used to structure the target domain. So, the Classes
Are Containers metaphor maps the inferential laws given above for em-
bodied Container Schemas (source domain) onto conceptual classes (target
domain). These include both everyday classes and Boolean classes, which are
metaphorical extensions of everyday classes. The entailment of such concep-
tual mapping is the following:
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• Excluded Middle. Every element X is either a member of class A or not a
member of class A.

• Modus Ponens: Given two classes A and B and an element X, if A is a
subclass of B and X is a member of A, then X is a member of B.

• Hypothetical Syllogism: Given three classes A, B, and C, if A is a subclass
of B and B is a subclass of C, then A is a subclass of C.

• Modus Tollens: Given two classes A and B and an element Y , if A is a
subclass of B and Y is not a member of B, then Y is not a member of A.

The moral is that these traditional laws of logic are in fact cognitive entities
and, as such, grounded in the neural structures that characterize Container
Schemas. In other words, these laws are part of our bodies. Since they do
not transcend our bodies, they are not laws of any transcendent reason. The
truths of these traditional laws of logic are thus not dogmatic. They are true
by virtue of what they mean.

4.3 Are Hypersets Sets ?

Let us close this chapter by asking the following question in modern mathe-
matics: Are hypersets sets ? If not, what are they ? We will see that the answer
to these questions shows that mathematics is made possible by the embodied
mechanisms of human imagination, such as image schemas and conceptual
metaphor. Let us begin with the question: What are sets ? On the formalist

Fig. 1. The “laws” of cognitive Container Schemas. The figure shows one cognitive
Container Schema, A, occurring inside another, B. By inspection, one can see that,
if X is in A, then X is in B, and that, if Y is outside of B, then Y is outside of
A. We conceptualize physical containers in terms of cognitive containers. Cognitive
Container Schemas are used not only in perception and imagination but also in con-
ceptualization, as when we conceptualize bees as swarming in the garden. Container
Schemas are the cognitive structures that allow us to make sense of familiar Venn
diagrams.
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view of the axiomatic method, a “set” is any mathematical structure that “sat-
isfies” the axioms of set theory as written in symbols. The traditional axioms
for set theory (the Zermelo-Fraenkel axioms) are often taught as being about
sets conceptualized as containers. Many writers speak of sets as “containing”
their members, and most students think of them that way. Even the choice of
the word “member” suggests such a reading, as do the Venn diagrams used
to introduce the subject. But if you look carefully through those axioms, you
will find nothing in them that characterizes a container. The terms “set” and
“member of” are both taken as undefined primitives. In formal mathematics,
that means that they can be anything that fits the axioms. Here are the classic
Zermelo-Fraenkel axioms including the axiom of choice, commonly called the
ZFC axioms.

• The axiom of extension: Two sets are equal if and only if they have the
same members. In other words, a set is uniquely determined by its mem-
bers.

• The axiom of specification: Given a set A and a one-place predicate P (x)
that is either true or false for each member of A, there exists a subset of
A whose members are exactly those members of A for which P (x) is true.

• The axiom of pairing: For any two sets, there exists a set that they are
both members of.

• The axiom of union: For every collection of sets, there is a set whose
members are exactly the members of the sets of that collection.

• The axiom of powers: For each set A, there is a set P (A) whose members
are exactly the subsets of set A.

• The axiom of infinity: There exists a set A such that (i) the empty set is
a member of A, and (ii) if x is a member of A, then the successor of x is
a member of A.

• The axiom of choice: Given a disjointed set S whose members are nonempty
sets, there exists a set C which has as its members one and only one ele-
ment from each member of S.

We can see that there is absolutely nothing in these axioms that explicitly
requires sets to be containers. What these axioms do, collectively, is to create
entities called “sets”, first from elements and then from previously created
sets. The axioms do not say explicitly how sets are to be conceptualized.

The point here is that, within formal mathematics, where all mathematical
concepts are mapped onto set-theoretical structures, the “sets” used in these
structures are not technically conceptualized as the Container Schemas we
described above. They do not have container-schema structure with an inte-
rior, boundary, and exterior at all. Indeed, within formal mathematics, there
are no concepts at all, and hence sets are not conceptualized as anything in
particular. They are undefined entities whose only constraints are that they
must “fit” the axioms. For formal logicians and model theorists, sets are those
entities that fit the axioms and are used in the modeling of other branches of
mathematics.
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Of course, most of us do conceptualize sets in terms of Container Schemas,
and that is perfectly consistent with the axioms given above. However, when
we conceptualize sets as Container Schemas, a particular entailment follows
automatically: Sets cannot be members of themselves, since containers can-
not be inside themselves. Strictly speaking, this entailment does not follow
from the axioms, but rather from our metaphorical understanding of sets in
terms of containers. The above axioms do not rule out sets that contain them-
selves. Indeed, an extra axiom was proposed by von Neumann to rule out this
possibility:

• The axiom of foundation: There are no infinite descending sequences of
sets under the membership relation. That is, · · · ∈ Si+1 ∈ Si ∈ · · · ∈ S is
ruled out.

Since allowing sets to be members of themselves would result in such a se-
quence, this axiom has the indirect effect of ruling out self-membership.

Within formal mathematics, model theory has nothing to do with everyday
understanding. Model theorists do not depend upon our ordinary container-
based concept of a set. Indeed, certain model theorists have found that our
ordinary grounding metaphor that Sets8 Are Containers gets in the way
of modeling kinds of phenomena they want to model, especially recursive
phenomena. For example, take expressions like

x = 1 +
1

1 +
1

1 + · · ·

.

If we observe carefully, we can see that the denominator of the main fraction
has in fact the value defined for x itself. In other words, the above expression
is equivalent to

x = 1 +
1
x

.

Such recursive expressions are common in mathematics and computer science.
The possibilities for modeling such expressions using “sets” are ruled out if the
only kind of “sets” used in the modeling cannot have themselves as members.
Set theorists have realized that a new non-container metaphor is needed for
thinking about sets, and have explicitly constructed one (see Barwise and
Moss, 1991).

The idea is to use graphs, not containers, for characterizing sets. The kinds
of graphs used are accessible pointed graphs, or APGs. “Pointed” indicates
an asymmetric relation between nodes in the graph, indicated visually by an
arrow pointing from one node to another – or from one node back to that node
itself (see Figure 2). “Accessible” indicates that there is a single node which
is linked to all other nodes in the graph, and can therefore be “accessed” from
any other node.
8 There are technical differences between classes and sets whose analysis goes be-

yond the scope of this text. For a discussion see Lakoff and Núñez (2000).
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Fig. 2. Hypersets: Sets conceptualized as graphs, with the empty set as the graph
with no arrows leading from it. The set containing the empty set is a graph whose
root has one arrow leading to the empty set (a). Illustration (b) depicts a graph of a
set that is a “member” of itself, under the Sets Are Graphs metaphor. Illustration
(c) depicts an infinitely long chain of nodes in an infinite graph, which is equivalent
to (b).

From the axiomatic perspective, the axiom of foundation has been replaced
by another axiom that implies its negation, the “anti-foundation axiom”. From
the perspective of mathematical idea analysis, the creators of hypersets im-
plicitly used a conceptual metaphor which has the mapping shown in Table
2. The effect of this metaphor is to eliminate the notion of containment from
the concept of a “set”. The graphs have no notion of containment built into
them at all. And containment is not modeled by the graphs.

Graphs that have no loops satisfy the ZFC axioms and the axiom of foun-
dation. They thus work just like sets conceptualized as containers. But graphs
that do have loops model sets that can “have themselves as members”. They
do not work like sets that are conceptualized as containers, and they do not
satisfy the axiom of foundation.

Source Domain
Accessible Pointed Graphs

Target Domain
Sets

an AGP → the membership structure of a set

an arrow → the membership relation

nodes that are tails of arrows → sets

decorations on nodes that
are heads of arrows → members

AGP’s with no loops → classical sets with
the foundation axiom

AGP’s with or without loops → hypersets with the
the anti-foundation axiom

Tab. 2. The metaphor Sets Are Graphs
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A “hyperset” is an APG that may or may not contain loops. Hypersets
thus do not fit the axiom of foundation, but rather another axiom with the
opposite intent:

• The anti-foundation axiom: Every APG pictures a unique set.

The fact that hypersets satisfy the Zermelo-Fraenkel axioms confirms what we
said above: The Zermelo-Fraenkel axioms for set theory – generally accepted
in mathematics – do not define our ordinary concept of a set as a container.
That is, the axioms of “set theory” are not, and were never meant to be,
about what we ordinarily call “sets” as conceptualized in terms of Container
Schemas.

So what are sets, really ? The answer to this question allows us to see the
power of conceptual metaphor in mathematics. Sets, conceptualized in every-
day terms as containers, do not have the right properties to model everything
needed. So we can now metaphorically reconceptualize “sets” to exclude con-
tainment by using certain kinds of graphs. The only confusing thing is that
this special case of graph theory is still called “set theory” for historical rea-
sons.

Because of this misleading terminology, it is sometimes said that the theory
of hypersets is “a set theory in which sets can contain themselves.” From a
cognitive point of view this is completely misleading because it is not a theory
of “sets” as we ordinarily understand them in terms of containment. The
reason that these graph theoretical objects are called “sets” is a functional
one: They play the role in modeling axioms that classical sets with the axiom
of foundation used to play.

The moral is that mathematics has (at least) two internally consistent, but
mutually inconsistent metaphorical conceptions of sets: one in terms of Con-
tainer Schemas and one in terms of graphs. Is one of these conceptions right
and the other wrong ? A Platonist might want to think that there must be
only one literally correct notion of a “set” transcending the human mind. But
from the perspective of mathematical idea analysis these two distinct notions
of a “set” define different and mutually inconsistent subject matters, concep-
tualized via radically different human conceptual metaphors. Mathematics is
full of cases like this one.

As we mentioned at the beginning, Wolfgang Pauli in his essay on Kepler,
made very clear, for the case of geometry, that “it took a special intellectual
effort to recognize the fact that the assumptions of Euclidean geometry are not
the only possible ones”. Perhaps we will never know what exactly Pauli meant
by “intellectual effort”. Was it an effort for discovering other forms of truth
in some Platonic realm ? Or was it an effort in the sense of conceiving entirely
new ideas thanks to cognitive mechanisms that sustain human imagination ?
Our work in the cognitive science of mathematics endorses the latter, which
sees mathematics, from Euclidean points to transfinite numbers and hypersets,
as a bodily-grounded wonderful human creation.
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Poincaré, H. (1913): Dernières pensées. Flammarion, Paris. English translation as
Mathematics and Science: Last Essays, Dover, New York, 1963.

Regier, T. (1996): The Human Semantic Potential. MIT Press, Cambridge, MA.
Schacter, D. (1996): Searching for Memory: The Brain, the Mind, and the Past.

Basic Books, New York.
Sweetser, E. (1990): From Etymology to Pragmatics: Metaphorical and Cultural As-

pects of Semantic Structure. Cambridge University Press, New York.
Talmy, L. (1988): Force dynamics in language and cognition. Cognitive Science 12,

49–100.
Talmy, L. (2003): Toward a Cognitive Semantics. Volume 1: Concept Structuring

Systems. MIT Press, Cambridge, MA.
Weyl, H. (1918): Das Kontinuum. Kritische Untersuchungen über die Grundlagen

der Analysis. Veit, Leipzig. English translation as The Continuum. A Critical
Examination of the Foundation of Analysis, Dover, New York, 1994.


