$\alpha_1, \beta_1, \beta_2$ - root characteristics of multiply possible theoretical solutions of steady Mach reflections in perfect diatomic gases

J.-J. Liu^1 and T.-I. $Tseng^2$

¹ Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan ROC

² National Center for High-Performance Computing, Hsinchu, Taiwan ROC

Summary. The existence of the jump in $\beta_1=\beta_2$ double roots in the three-shock theoretical solutions of steady Mach reflections on the (θ_1, M_0) plane is determined for the first time, θ_1 is flow deflection behind the incident shock, M_0 is the incident shock Mach number. This jump behavior of $\beta_1=\beta_2$ double roots explains the occurrence of newly found $\alpha_1=\beta_2$ double roots of multiple theoretical solutions of steady MR in perfect diatomic and triatomic gases. The critical condition determining the location of M_0 of this jump, for gas specific heats ratio of 1.4, is obtained to occur at $\alpha_1 = \beta_1 = \beta_2$ triple roots where $M_0=3.41485$. There are two findings closely associated with this jump behavior of $\beta_1=\beta_2$ double roots: 1, the α_1 solutions cease to become physically meaningful for $M_0 > 3.41485$; 2, $\alpha_1=\beta_2$ double roots do not exist for $M_0 < 3.41485$.

1 Introduction

This work is an extension of Liu [1-3] and Liu et al. [4] reporting on multiplicity regimes of three-shock theoretical solutions of steady Mach reflections (MR) in perfect diatomic and triatomic gases. The existence and basic characteristics of newly found $\alpha_1 = \beta_2$ double roots of three-shock solutions of steady MR are verified and analyzed in perfect diatomic and triatomic gases [3.4]. As noted earlier [1], the problem of three-shock confluences of MR phenomena in steady flow is important both theoretically and practically. Academically, the problem of weak pseudo-steady MR has attracted attentions of researchers in areas of physics, mathematics, and engineering for more than half of century. A change of coordinates from laboratory to self-similarly propagating triple-point makes pseudosteady MR equivalent to steady MR in the vicinity of the triple-point. Henderson [5] showed that the equation of motion of a confluence of perfect-gas three-shock waves (i.e. steady MR) could be reduced to a single polynomial equation of tenth degree with the pressure ratio across the Mach stem as the variable. Henderson [5] then gave the maps of the multiplicity of theoretical three-shock solutions on the (θ_1, M_0) plane for $\gamma = 1.1$, 9/7, 7/5 and 5/3 where m = 0, 1, 2 for the former two gases and m = 0, 1, 2, 3 for the latter two (m, the number of physically significant roots). Liu [1,2], on the other hand, pointed out that there exist regimes of m = 3 for $\gamma = 1.1$ and 9/7, and there are erratum in Henderson's multiplicity map for $\gamma = 7/5$. The reason for these mistakes are incorrectness in computed $\beta_1 = \beta_2$ double-root lines. Henderson [5] reported that the $\beta_1 = \beta_2$ double-root line and triple-root (II) curve coincide over the entire M_0 range considered for $\gamma = 1.1$, and they merge for $M_0 > 3$ for $\gamma = 7/5$. Liu [1,2], however, showed that these two lines coincide only at $M_0 = 2.41$ and 3.117 for $\gamma = 9/7$ and 7/5, respectively. We show here that these two lines affect the map of the multiplicity of three-shock theoretical solutions of steady MR significantly. Needless to say, the newly found $\alpha_1 = \beta_2$ double roots not only change the $\beta_1 = \beta_2$ double-root line, but dramatically alter the multiplicity map of steady MR. Liu [3] remarked that the occurrence of $\alpha_1=\beta_2$ roots implies the existence of a possible discontinuity behavior in the $\beta_1=\beta_2$ double-root line. The aim of this work is the determination of the location of the jump in $\beta_1=\beta_2$ double-root line of theoretical solutions of steady MR on the (θ_1, M_0) plane. Another motivation of this work stems from the above-mentioned link between theoretical solutions of a steady MR, where exact solutions are available, and those of a pseudo-steady MR. Henderson's 1987 work [6] on pseudo-steady MR, which was based on his 1964 work [5] on steady MR, is the most frequently referred theoretical analysis for describing the problem of the von Neumann paradox of weak pseudo-steady MR. However, are these two Henderson's works correct?

2 Analysis

The tenth degree polynomial equation of perfect-gas three-shock confluences given by Henderson [5] is of the form: $R_iT_i = 0$ (i=1,2,..9), where R_i and T_i are algebraic polynomials of degree 6. The tenth degree polynomial equation obtained by Liu [1] is of the form $\sum_{n=0}^{10} C_n x^n = 0$, where C_n 's are too lengthy to be given here. For example, the numbers of different terms in coefficients C_3 and C_4 are 748 and 778, respectively. This tenth degree polynomial equation is used for calculating all possible three-shock theoretical solutions for a given condition of a steady MR. An intermediate form of this equation is given in [1].

According to Henderson [5], a physically significant solution of a steady MR requires that the pressure behind the Mach stem be larger than that behind the incident shock. There exist double incident Mach line degeneracies, D_1 , double reflected Mach line degeneracies, D_2 , a physically possible α_1 solution, a physically impossible α_2 solution. This gives a total of six roots with two pairs of complex roots left. He used symbols β_1 , β_2 to represent a second and third appearances of physically possible solutions when one of the two pairs becomes real. In the following, we explain nomenclature used in obtaining multiple three-shock solutions by applying it to a steady MR of $M_0 = 4.015$, $P_1 = 6.215$, $\gamma = 1.4$. Figure 1(a) shows (p - θ) shock polar diagrams illustrating multiply possible three-shock solutions for this steady MR, where m = 2. There is one regular reflection solution RR (weak), one backward-facing reflected shock solution β_1 , one forward-facing reflected shock solution β_2 . The α_1 root is not physically realizable in this case. The physical plane corresponding to β_1 is shown in Fig. 1(b). The wave configuration is drawn according to calculated results of the β_1 solution, and it agree reasonably well with that of the actual experiment of this case reported in JFM (2002, 459). Note the vast differences among β_1 , β_2 and α_1 solutions, and not all intersection solutions lead to physically meaningful results. Liu et al. [4] reported the link between the occurrence of $\alpha_1 = \beta_2$ roots and a possible jump behavior in $\beta_1 = \beta_2$ root-line. More specifically, possible jump behaviors of $\beta_1 = \beta_2$ root-line were found to be located in narrow ranges near $M_0 = 3.5$ and 2.3 for $\gamma = 7/5$ and 9/7, respectively. Searching for the exact location of the jump of the $\beta_1 = \beta_2$ double-root line on the (θ_1, M_0) plane are carried out by systematically examining multiply possible solutions at different M_0 's by varying θ_1 from upper forbidden sonic conditions to their minimum incident Mach angle conditions. Three series of sequential solutions of $M_0 = 3.4, 3.41484$ and 3.45 are reported.

3 Locating the jump of $\beta_1 = \beta_2$ double roots line by examining theoretical solutions of steady MR at different M_0 's

Earlier works of one of the authors [1-4] have explained mathematical and physical meanings for the occurrences of possible theoretical α_1 , β_1 , β_2 , D_2 , D_1 and α_2 solutions of perfect-gas steady MR. Owning to the usefulness of (p - θ) shock polar representation of theoretical MR solutions, the results illustrating in Figs. 2-4 are self-explanatory. In particular, solutions of the upper sonic forbidden condition are marked as $M_1=1, D_2=\alpha_1$, marked as Triple-root (I), $D_2 = \beta_1$ as Triple-root (I) or (II), $D_2 = \beta_2$ as Triple-root (II). Solutions of forward- and backward-strong/weak separating, forward- and backward-sonic, forward/backward separating, von Neumann and limiting incident shock Mach angle conditions, $\beta_1 = \beta_2$, $\alpha_1 = \beta_2$ are correspondingly marked. Therefore, only brief descriptions regarding main features of multiply possible solutions are provided for $M_0 = 3.4$ and 3.45. Detailed discussions on behaviors of α_1 , β_1 and β_2 solutions are given for M_0 = 3.41485, where the jump in $\beta_1 = \beta_2$ is located. Figures 2 and 4 give systematic shock polar solutions for $M_0 = 3.4$ and 3.45, respectively. There are similarities and differences in these two series theoretical solutions. Similarities are θ_1 locations of the solutions of triple-root (I) and (II), forward/backward separating, forward- and backward- sonic and von Neumann conditions. However, significant differences are θ_1 locations of $\beta_1 = \beta_2$ double roots. Particularly, $\alpha_1 = \beta_2$ double roots, which occur twice in $M_0 = 3.45$, do not exist in $M_0 = 3.4$. The reason for this apparently large difference in θ_1 location in such a narrow variation of M_0 and the occurrence of $\alpha_1 = \beta_2$ may be understood when one compares calculated solutions of $M_0 = 3.4$ and 3.5 with those of $M_0 = 3.41485$. The critical condition for occurring the jump in $\beta_1 = \beta_2$ double roots is now found to be the $\alpha_1 = \beta_1 = \beta_2$ triple-root condition at $M_0 = 3.41485$, $\theta_1 = 36.4344$, shown in Fig. 3(b). One observes that the α_1 solutions cease to become physically realistic, for they are unable to move above D_2 for $M_0 > 3.41485$. After the occurrence of $\alpha_1 = \beta_1 = \beta_2$, α_1 and β_2 disappear immediately, and the β_1 moves towards the forward-facing, then backward-facing branches of the reflected shock polar. From the incident polar viewpoint, the β_1 moves from the weak to the strong branches. As for the various specific MR solutions, they are marked in Fig. 3. Most interesting cases are $\alpha_1 = \beta_2$ roots whose first appearance is the merge of the α_1 and β_2 roots and their second appearance is the separation of these two roots, when $M_0 > 3.41485$. Finally, this obtained jump behavior of $\beta_1 = \beta_2$ double-root line, occurring at $M_0=3.41485$, $29.8438^\circ \leq \theta_1 \leq 36.4344^\circ$, is added to the map of the multiplicity of theoretical three-shock solutions of steady MR of perfect diatomic gases on the (θ_1, M_0) plane. This is shown in Fig. 5(a). Important locations delineating different regimes of multiplicities of steady MR are marked as points a to k. Their definitions are given accordingly there. Locally enlarged view near the $\beta_1 = \beta_2$ jump of 5(a) illustrating various separating or limiting properties of steady MR solution curves are shown in Fig. 5(b).

4 Conclusions

The existence of the jump in $\beta_1 = \beta_2$ double roots in the three-shock theoretical solutions of steady Mach reflections on the (θ_1, M_0) plane is determined for the first time, θ_1 is flow reflection behind the incident shock, M_0 is the incident shock Mach number. This jump behavior of $\beta_1 = \beta_2$ double roots explains the occurrence of newly found $\alpha_1 = \beta_2$ double roots of multiple three-shock theoretical solutions of steady MR in perfect diatomic and triatomic gases. The critical condition determining the location of M_0 of this jump, for gas specific heats ratio of 1.4, is obtained to occur at $\alpha_1 = \beta_1 = \beta_2$ triple roots where $M_0=3.41485$. There are two findings closely associated with this jump behavior of $\beta_1=\beta_2$ double rots: 1, the α_1 solutions cease to become physically meaningful for $M_0 > 3.41485$; 2, $\alpha_1=\beta_2$ double roots do not exist for $M_0 < 3.41485$.

References

- Liu J. J. : A map of multiplicity of perfect-gas three-shock theoretical solutions of steady Mach reflection in diatomic gases, The 5th Int'l Workshop on Shock/Vortex Interactions. Kaohsiung, Taiwan, 120-127, 2003
- Liu J. J. : Multiply possible three-shock theoretical solution of steady Mach reflections in triatomic perfect-gases, The 5th Int'l Workshop on Shock/Vortex Interactions. Kaohsiung, Taiwan, 105-111, 2003
- 3. Liu J. J. : A new kind of double roots of three-shock theoretical solutions of steady Mach reflections in perfect triatomic gases, The 28th National Conference on Theoretical and Applied Mechanics, 659-666, 2004
- Liu J. J., Lin C. C., Chou C. A. : The existence of α₁=β₂ double roots in the three-shock theoretical solutions of steady Mach reflections in perfect diatomic gases, AASRC/CCAS Joint Conference, 2005
- Henderson L. F. : On the confluence of three shock waves in a perfect gas, Aeronautical Quarterly, vol. 15, 181-197, 1964
- Henderson L. F. : Regions and boundaries for diffracting shock wave systems, ZAMM, vol. 67, 2, 1987

Fig. 1. Steady MR shock polar diagram (a) showing multiple solutions and the physical plane of the β_1 solution for $M_0 = 4.015$, $\theta_1 = 22.75^\circ$, $\gamma = 1.4$, where i, incident shock; r, reflected shock; m, Mach stem; s, slipstream. (0), (1), (2), (3), respectively, are flow regions as defined, ϕ_n , wave angles, θ_n , deflection angles, T, triple-point, χ , triple-point angle, M_s , incident shock Mach number, θ_w , wedge angle, M_n , flow Mach number.

Fig. 2. Sequential $(p-\theta)$ shock polar solutions of steady MR of $M_0 = 3.4$

Fig. 3. Sequential (p- θ) shock polar solutions of steady MR of $M_0 = 3.41485$

Fig. 4. Sequential (p- θ) shock polar solutions of steady MR of $M_0 = 3.45$

Fig. 5. The map of multiplicity of theoretical three-shock solutions of steady MR in perfect diatomic gases on the (θ_1, M_0) plane. (b) Locally enlarged view (not in proportional to actual curves) near the $\beta_1 = \beta_2$ jump showing solution curves of $\beta_1 = \beta_2$ jump and various separating and limiting conditions of different resimes of (a).