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Summary. The existence of the jump in β1=β2 double roots in the three-shock theoretical
solutions of steady Mach reflections on the (θ1, M0) plane is determined for the first time, θ1

is flow deflection behind the incident shock, M0 is the incident shock Mach number. This jump
behavior of β1=β2 double roots explains the occurrence of newly found α1=β2 double roots of
multiple theoretical solutions of steady MR in perfect diatomic and triatomic gases. The critical
condition determining the location of M0 of this jump, for gas specific heats ratio of 1.4, is
obtained to occur at α1= β1= β2 triple roots where M0=3.41485. There are two findings closely
associated with this jump behavior of β1=β2 double roots: 1, the α1 solutions cease to become
physically meaningful for M0 > 3.41485; 2, α1=β2 double roots do not exist for M0 < 3.41485.

1 Introduction

This work is an extension of Liu [1-3] and Liu et al. [4] reporting on multiplicity regimes of
three-shock theoretical solutions of steady Mach reflections (MR) in perfect diatomic and
triatomic gases. The existence and basic characteristics of newly found α1= β2 double
roots of three-shock solutions of steady MR are verified and analyzed in perfect diatomic
and triatomic gases [3.4]. As noted earlier [1], the problem of three-shock confluences of
MR phenomena in steady flow is important both theoretically and practically. Academ-
ically, the problem of weak pseudo-steady MR has attracted attentions of researchers in
areas of physics, mathematics, and engineering for more than half of century. A change
of coordinates from laboratory to self-similarly propagating triple-point makes pseudo-
steady MR equivalent to steady MR in the vicinity of the triple-point. Henderson [5]
showed that the equation of motion of a confluence of perfect-gas three-shock waves (i.e.
steady MR) could be reduced to a single polynomial equation of tenth degree with the
pressure ratio across the Mach stem as the variable. Henderson [5] then gave the maps
of the multiplicity of theoretical three-shock solutions on the (θ1, M0) plane for γ = 1.1,
9/7, 7/5 and 5/3 where m = 0, 1, 2 for the former two gases and m = 0, 1, 2, 3 for the
latter two (m, the number of physically significant roots). Liu [1,2], on the other hand,
pointed out that there exist regimes of m = 3 for γ = 1.1 and 9/7, and there are erratum
in Henderson’s multiplicity map for γ = 7/5. The reason for these mistakes are incor-
rectness in computed β1=β2 double-root lines. Henderson [5] reported that the β1=β2

double-root line and triple-root (II) curve coincide over the entire M0 range considered
for γ=1.1, and they merge for M0 > 3 for γ = 7/5. Liu [1,2], however, showed that these
two lines coincide only at M0 = 2.41 and 3.117 for γ = 9/7 and 7/5, respectively. We
show here that these two lines affect the map of the multiplicity of three-shock theoreti-
cal solutions of steady MR significantly. Needless to say, the newly found α1=β2 double
roots not only change the β1=β2 double-root line, but dramatically alter the multiplicity
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map of steady MR. Liu [3] remarked that the occurrence of α1=β2 roots implies the
existence of a possible discontinuity behavior in the β1=β2 double-root line. The aim of
this work is the determination of the location of the jump in β1=β2 double-root line of
theoretical solutions of steady MR on the (θ1, M0) plane. Another motivation of this
work stems from the above-mentioned link between theoretical solutions of a steady MR,
where exact solutions are available, and those of a pseudo-steady MR. Henderson’s 1987
work [6] on pseudo-steady MR, which was based on his 1964 work [5] on steady MR, is
the most frequently referred theoretical analysis for describing the problem of the von
Neumann paradox of weak pseudo-steady MR. However, are these two Henderson’s works
correct?

2 Analysis

The tenth degree polynomial equation of perfect-gas three-shock confluences given by
Henderson [5] is of the form: RiTi = 0 (i=1,2,..9), where Ri and Ti are algebraic polyno-
mials of degree 6. The tenth degree polynomial equation obtained by Liu [1] is of the form
10∑

n=0
Cnx

n = 0, where Cn
′s are too lengthy to be given here. For example, the numbers of

different terms in coefficients C3 and C4 are 748 and 778, respectively. This tenth degree
polynomial equation is used for calculating all possible three-shock theoretical solutions
for a given condition of a steady MR. An intermediate form of this equation is given
in [1].

According to Henderson [5], a physically significant solution of a steady MR requires
that the pressure behind the Mach stem be larger than that behind the incident shock.
There exist double incident Mach line degeneracies, D1, double reflected Mach line de-
generacies,D2, a physically possible α1 solution, a physically impossible α2 solution. This
gives a total of six roots with two pairs of complex roots left. He used symbols β1, β2

to represent a second and third appearances of physically possible solutions when one of
the two pairs becomes real. In the following, we explain nomenclature used in obtaining
multiple three-shock solutions by applying it to a steady MR of M0 = 4.015, P1 = 6.215,
γ = 1.4. Figure 1(a) shows (p - θ) shock polar diagrams illustrating multiply possible
three-shock solutions for this steady MR, where m = 2. There is one regular reflection
solution RR (weak), one backward-facing reflected shock solution β1, one forward-facing
reflected shock solution β2. The α1 root is not physically realizable in this case. The phys-
ical plane corresponding to β1 is shown in Fig. 1(b). The wave configuration is drawn
according to calculated results of the β1 solution, and it agree reasonably well with that
of the actual experiment of this case reported in JFM (2002, 459). Note the vast differ-
ences among β1, β2 and α1 solutions, and not all intersection solutions lead to physically
meaningful results. Liu et al. [4] reported the link between the occurrence of α1=β2 roots
and a possible jump behavior in β1=β2 root-line. More specifically, possible jump behav-
iors of β1=β2 root-line were found to be located in narrow ranges near M0=3.5 and 2.3
for γ = 7/5 and 9/7, respectively. Searching for the exact location of the jump of the
β1=β2 double-root line on the (θ1, M0) plane are carried out by systematically examining
multiply possible solutions at different M0

′s by varying θ1 from upper forbidden sonic
conditions to their minimum incident Mach angle conditions. Three series of sequential
solutions of M0 = 3.4, 3.41484 and 3.45 are reported.
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3 Locating the jump of β1=β2 double roots line by examining
theoretical solutions of steady MR at different M0

′s

Earlier works of one of the authors [1-4] have explained mathematical and physical mean-
ings for the occurrences of possible theoretical α1, β1, β2, D2, D1 and α2 solutions of
perfect-gas steady MR. Owning to the usefulness of (p - θ) shock polar representation
of theoretical MR solutions, the results illustrating in Figs. 2-4 are self-explanatory. In
particular, solutions of the upper sonic forbidden condition are marked asM1=1, D2=α1,
marked as Triple-root (I), D2=β1 as Triple-root (I) or (II), D2=β2 as Triple-root (II). So-
lutions of forward- and backward-strong/weak separating, forward- and backward-sonic,
forward/backward separating, von Neumann and limiting incident shock Mach angle
conditions, β1=β2, α1=β2 are correspondingly marked. Therefore, only brief descrip-
tions regarding main features of multiply possible solutions are provided for M0 = 3.4
and 3.45. Detailed discussions on behaviors of α1, β1 and β2 solutions are given for M0

= 3.41485, where the jump in β1=β2 is located. Figures 2 and 4 give systematic shock
polar solutions for M0 = 3.4 and 3.45, respectively. There are similarities and differences
in these two series theoretical solutions. Similarities are θ1 locations of the solutions
of triple-root (I) and (II), forward/backward separating, forward- and backward- sonic
and von Neumann conditions. However, significant differences are θ1 locations of β1=β2

double roots. Particularly, α1=β2 double roots, which occur twice in M0 = 3.45, do not
exist in M0 = 3.4. The reason for this apparently large difference in θ1 location in such
a narrow variation of M0 and the occurrence of α1=β2 may be understood when one
compares calculated solutions of M0 = 3.4 and 3.5 with those of M0 = 3.41485. The
critical condition for occurring the jump in β1=β2 double roots is now found to be the
α1=β1=β2 triple-root condition at M0=3.41485, θ1=36.4344, shown in Fig. 3(b). One
observes that the α1 solutions cease to become physically realistic, for they are unable
to move above D2 for M0 > 3.41485. After the occurrence of α1=β1=β2, α1 and β2 dis-
appear immediately, and the β1 moves towards the forward-facing, then backward-facing
branches of the reflected shock polar. From the incident polar viewpoint, the β1 moves
from the weak to the strong branches. As for the various specific MR solutions, they are
marked in Fig. 3. Most interesting cases are α1=β2 roots whose first appearance is the
merge of the α1 and β2 roots and their second appearance is the separation of these two
roots, when M0 > 3.41485. Finally, this obtained jump behavior of β1=β2 double-root
line, occurring at M0=3.41485, 29.8438◦ ≤ θ1 ≤ 36.4344◦, is added to the map of the
multiplicity of theoretical three-shock solutions of steady MR of perfect diatomic gases
on the (θ1, M0) plane. This is shown in Fig. 5(a). Important locations delineating differ-
ent regimes of multiplicities of steady MR are marked as points a to k. Their definitions
are given accordingly there. Locally enlarged view near the β1=β2 jump of 5(a) illustrat-
ing various separating or limiting properties of steady MR solution curves are shown in
Fig. 5(b).

4 Conclusions

The existence of the jump in β1=β2 double roots in the three-shock theoretical solutions
of steady Mach reflections on the (θ1, M0) plane is determined for the first time, θ1 is flow
reflection behind the incident shock, M0 is the incident shock Mach number. This jump
behavior of β1=β2 double roots explains the occurrence of newly found α1=β2 double
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roots of multiple three-shock theoretical solutions of steady MR in perfect diatomic and
triatomic gases. The critical condition determining the location of M0 of this jump, for
gas specific heats ratio of 1.4, is obtained to occur at α1= β1= β2 triple roots where
M0=3.41485. There are two findings closely associated with this jump behavior of β1=β2

double rots: 1, the α1 solutions cease to become physically meaningful for M0 > 3.41485;
2, α1=β2 double roots do not exist for M0 < 3.41485.
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Fig. 1. Steady MR shock polar diagram (a) showing multiple solutions and the physical plane
of the β1 solution for M0 =4.015, θ1=22.75◦, γ=1.4, where i, incident shock; r, reflected shock;
m, Mach stem; s, slipstream. (0), (1), (2), (3), respectively, are flow regions as defined, φn, wave
angles, θn, deflection angles, T, triple-point, χ, triple-point angle, Ms, incident shock Mach
number, θw, wedge angle, Mn, flow Mach number.
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Fig. 2. Sequential (p-θ) shock polar solutions of steady MR of M0 = 3.4

Fig. 3. Sequential (p-θ) shock polar solutions of steady MR of M0 = 3.41485
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Fig. 4. Sequential (p-θ) shock polar solutions of steady MR of M0 = 3.45

Fig. 5. The map of multiplicity of theoretical three-shock solutions of steady MR in perfect
diatomic gases on the (θ1, M0) plane. (b) Locally enlarged view (not in proportional to actual
curves) near the β1=β2 jump showing solution curves of β1= β2 jump and various separating
and limiting conditions of different resimes of (a).




