
Pressure waves interference under supersonic flow in

flat channel with relief walls

M.-C. Kwon, V.V. Semenov, and V.A. Volkov

Moscow state Aviation Institute, Dept. of Rocket engines, Volokolomskoe Shosse 4, 125493
Moscow, Russia

Summary. In a number of cases, surfaces of channel walls are distorted in the process of
operation so that periodically reiterative dimples and convexities are formed. Thus, additional
wave drag appears when such relief structures are flowed by the supersonic gas stream. There are
theoretical data on relief surfaces wave drag only for some simplest forms of relief, but there are
practically no experimental data. This work suggests the method which allows obtaining within
the limits of linear approximation the exact formula for wave drag of channel walls with the
arbitrary plate in the first and subsequent interference zones. By the example of sinusoidal relief
it is demonstrated that pressure waves interference can lead to both increasing and decreasing
of wave drag.

1 Formulation of the problem

Consider flat stationary supersonic flows of ideal gas in the channel between walls with
flat relieves are represented schematically on Fig. 1.

Fig. 1. Schema of relief channel and interference zones

Let functions ξ0(x) and ξh(x) to describe relieves in bottom and upside wall.

ywo = ξx(0), x ∈ [0, L0]; ywh = ξh(x), x ∈ [B,B + Lh]. (1)

It is obvious that functions ξ0(x) and ξh(x) should be continuous. As it is shown in
work [1], generally their derivatives of function ξ

′

0(x), ξ
′

h(x), ξ
′′

0 (x), ξ
′′

h (x) are possible to
suppose sectionally continuous.

In addition assume that functions ξ0(x), ξh(x), ξ
′

0(x), ξ
′

h(x) in the range of definition
satisfies the restrictions:
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ξ0(x) � L0, ξh(x) � Lh, |ξ′

0(x)| � 1, |ξ′

h(x)| � 1. (2)

Usually suppose that dimensionless pressure disturbance, density and speed are too
small:

δp

κp
= Ψ � 1;

δρ

ρ
= E � 1;

δU

U
= Φ� 1;

δV

V
= Θ � 1. (3)

If the restrictions (2), (3) are executed, the boundary conditions on walls of the
channel can be set in linearized form:

δV

U
|y=0 = Θ|y=0 = ξ

′

0(x),
δV

U
|y=h = Θ|y=h = ξ

′

h(x). (4)

Thus local and total wave drag coefficients on walls, it is possible to express through
the value of function Ψ :

cpx0 =
2

M2
Ψwo(x)ξ

′

0(x), cpxh
= − 2

M2
Ψwh(x)ξ

′

h(x). (5)

cpL0 =
2

M2L0

∫ L0

0

2

M2
Ψwo(x)ξ

′

0(x)dx, cpLh
= − 2

M2Lh

∫ B+Lh

B

2

M2
Ψwh(x)ξ

′

h(x)dx. (6)

where M is Mach number of uniform flow.
For the decision of assigned task, it is enough to solve the two equations of two

unknown functions Θ, Ψ . If conditions (2), (3) are executed, this system can be written
down according to [5]:

(M2 − 1)
∂Ψ

∂x
+M2 ∂Θ

∂y
, M2 ∂Θ

∂x
+
∂Ψ

∂y
. (7)

These equations were derived by D.E. Blohinzeva [4] . However, direct application
methods in the works [1-3] for decision of the boundary problems (4), (7) appear impos-
sible, so it is difficult to generalize because of intricateness of calculations. Therefore in
the given work instead of the D.E. Blohinzeva’s method [4], the initial boundary problems
(4), (7) are solved by means of the method characteristics [5].

General solutions of linearized system

In case of M > 1 , we can define the reduced transverse coordinate ỹ and the reduced
function of pressure Ψ̃ , such that:

ỹ = y
√
M2 − 1, Ψ̃ = Ψ

√
M2 − 1/M2. (8)

Substituting (8) into (7), we have:

∂Ψ̃

∂x
+
∂Θ

∂ỹ
= 0,

∂Θ

∂x
+
∂Ψ̃

∂ỹ
= 0. (9)

The general solutions of system (9) agree to [5], such that:

Θ = I+(c+) + I−(c−), Ψ̃ = I+(c+) − I−(c−), c± = x∓ ỹ. (10)

Functions I+(c+) and I−(c−) are the Riemann intervals, and it’s lines agree to c± =
const, where c± are characteristics. When we solve the boundary problems, concrete view
of functions I+(c+) and I−(c−) are defined by the method of characteristics [5] on the
given boundary conditions (4).
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Linearized models of discontinuous characteristics According to definition of shock as
gas dynamics parameters, discontinuous characteristics for any function f(c+, c−) can be
written as:

[f ]c+=a = lim
c+→a+0

f(c+, c−) − lim
c+→a−0

f(c+, c−) ,

[f ]c−=b = lim
c−→b+0

f(c+, c−) − lim
C−→b−0

f(c+, c−). (11)

Substituting the general solution (10) into definitions (11), we have:

[I−]c+=a = 0 ⇒ [Θ]c+=a = [I+]c+=a, [Ψ̃ ]c+=a = [I+]c+=a ,

[I+]c−=b = 0 ⇒ [Θ]c−=b = [I−]c−=b, [Ψ̃ ]c−=b = −[I−]c−=b. (12)

From (12) only one of invariants has break in discontinuous characteristic, namely
the sign coincides with a sign on this characteristic.

2 Wave drag and interference in channel

Wave drag in channel walls depends not only on their relief, but also on initial disturbance
entering into the channel. In our study, it is supposed that the interference of waves is
caused only by relief wall and that initial disturbance into the channel is equal to zero.
This assumption makes the boundary problems (4), (9) explicitly same as [1]. When slope
angles of leading edges in both upside and bottom wall are distinct from zero, also as well
as in break point, oblique shock wave or expansion wave is appeared. It is modeled by
“discontinuous” characteristics [1] within the limits of linear approximation. Therefore
it can be supposed that disturbance from the bottom wall is extended from its leading
edge to downward stream along the characteristic c+ = 0 , and from upside wall- along
the characteristic c− = B + h̃. All flow areas are designated on Fig. 1.

According to the characteristics method and boundary problems, we can obtain pres-
sure distributions in each wall of channel:

Ψ̃w0 = ξ
′

0(x), 0 < x < B + h̃ ,

Ψ̃w0 = ξ
′

0(x) − 2ξ
′

h(x − h̃), B + h̃ < x < 2h̃. (13)

Ψ̃wh = −ξ′

h(x), B < x < h̃ ,

Ψ̃wh = −ξ′

h(x) + 2ξ
′

0(x− h̃), h̃ < x < B + 2h̃. (14)

Substituting (13), (14) into (6), we can receive the coefficients of wave drag on walls:

cpL0 =
2

L0

√
M2 − 1

{∫ B+h̃

0

[ξ
′

0(x)]
2dx+

∫ L0

B+h̃

ξ
′

0(x)[ξ
′

0(x) − 2ξ
′

h(x− h̃)]dx

}
,

h̃ ≤ L0 ≤ 2h̃ ,

cpLh
=

2

Lh

√
M2 − 1

{∫ h̃

B

[ξ
′

h(x)]2dx+

∫ B+Lh

h̃

ξ
′

h(x)[ξ
′

h(x) − 2ξ
′

0(x− h̃)]dx

}
,

h̃ ≤ Lh ≤ 2h̃ .

(15)
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In each of formulas (15), the first term- it is the contribution of region where dis-
turbance does not come from other wall, and the second - the contribution of the first
interference zone on the given wall.

Interference of wave drags in channel As an example, we consider the particular case
that leading edges are not displaced relatively to each walls and both lengths and relieve
of them are identical.

B = 0, L0 = Lh = L, ξ0(x) = ξh(x) = ξ(x) ⇒ ξ
′

0(x) = ξ
′

h(x) = ξ
′

(x). (16)

Then we can obtain the coefficient of total wave drag of channel:

cpLΣ
=

4

L0

√
M2 − 1

{∫ h̃

0

[ξ
′

(x)]2dx+

∫ L

h̃

ξ
′

(x)[ξ
′

(x) − 2ξ
′

(x− h̃)]dx

}
, h̃ ≤ L ≤ 2h̃.

(17)
Consider the particular case of sine wave relieves:

ξ(x) = A cos(2π/λ) ⇒ ξ
′

(x) = −2πA/λ sin(2π/λ). (18)

And define two dimensionless parameters and the total wave drag of channel in case of
periodic relieves depends on these parameters:

Λ =
L

h
√
M2 − 1

=
L

h̃
, K =

L

λ
. (19)

ParameterΛ is the interference number, K is the wave number. It fully characterizes
modes of interference. Actually, when Λ < 1, any disturbances are generated by one wall
can not reach to the other walls so that interference zones on both walls are absent. In
this case the total coefficient of wave drag of the channel can be written:

Λ ≤ 1 ⇒ cpLΣ
=

16π2

L
√
M2 − 1

∫ L

0

[ξ
′

(x)]2dx. (20)

Substituting profile (18) into (20), we have:

Λ ≤ 1, cpLΣ
=

16π2(A
λ )2

L
√
M2 − 1

∫ L

0

sin2(2π
x

λ
)2dx =

8π2

√
M2 − 1

(
A

λ
)2[1 − sin(4πK)

4πK
]. (21)

When 1 < Λ ≤ 2, each region of walls has the first interference zone so the char-
acteristics are appeared in these regions. Substituting profile (18) into (17), and using
replacement of integration variable, we have:

cpLΣ
=

16π2(A
λ )2

L
√
M2 − 1

{
∫ 1

0

sin2(2πKη)dη − 2

∫ 1

1/λ

sin(2πKη) sin[2πK(η − 1

λ
)]dη}. (22)

Both integrals in curly bracket in (22) are expressed through elementary functions.
This final result can be presented as:

1 < Λ ≤ 2, cpLΣ
=

16π2

M2 − 1

(
A

λ

)2

N(K,Λ) ,

N(K,Λ) =
1

2

(
1 − sin(4πK)

4πK

)
−
(
1 − 1

Λ

)
cos(2π

K

Λ
) +

cos (2πK)

2πK
sin

[
2πK

(
1 − 1

Λ

)]
.

(23)
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Function N(K,Λ) is enough complex. Flow satisfies the value Λ = 2 when the char-
acteristics beginning on leading edges, after reflection precisely reach on edge assignment
of the same wall. In this case the first interference zone is closed, consequently resonance
effects take place. In fig. [2], [3], [4], we reduce some graphics illustrating behavior of
function N(K,Λ) in regions 1 < Λ ≤ 2.

Fig. 2. Value of wave drag at odd wave number(K = 5.0) has maximum value that is equal to
unit. It is exceeding twice as much as total wave drag value in same two plates. (at Λ = 2.0)

Fig. 3. Value of wave drag at even wave number(K = 6.0) has minimum value that is equal to
zero. (at Λ = 2.0)

In Fig. [4], it is shown that the minimum value of wave drag is equal to zero at all
even values of wave number, when interference number is Λ = 2. Also we can see that
the overall maximum value of wave drags is approximately equal to 1.06, it is realized at
K ≈ 0.8. Consequently, the local maximum value of wave drags little bit exceeding unit
and monotonously tends it with growth K, when wave number is odd natural numbers.
As we said, in the plane of parameters Λ and K, there are set of numerable points Kn ≈ n
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Fig. 4. Interference number (Λ) = 2.0

at Λ = 2, and resonant effects are shown as that wave drags have the local maximum
and minimum values.

3 Conclusion

Flow regimes with interference number are formulated in the range Λ ≤ 2. It is possi-
ble to calculate analytically or numerically the factors of wave drag in rectilinear flat
channels with any relief walls, which have finite number of break points. In our study,
theories are based on linearized equations of gas dynamics. Its predictive ability now is
not doubted, because it was successfully applied to the decision of many problems of
applied aerodynamics [3], [4], [5]. It is necessary to proof the results of his study; not for
confirmation of the theory, and for definition of the boundary area which was considered
in this work.
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