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1 Introduction

Discontinuous Galerkin (DG) schemes are a combination of finite volume (FV) and finite
element (FE) schemes. While the approximate solution is a continuous polynomial in
every grid cell, discontinuities at the grid cell interfaces are allowed which enables the
resolution of strong gradients. How to calculate the fluxes between the grid cells and to
take into account the jumps is well-known from the finite volume community. Due to
their interior grid cell resolution with high order polynomials the DG schemes may use
very coarse grids. In this approach the cumbersome reconstruction step of finite volume
schemes is avoided, but for every degree of freedom a variational equation has to be
solved. The main advantage of DG schemes is that the high order accuracy is preserved
even on distorted and irregular grids. In the following we present a DG scheme based on
a space-time expansion (STE-DG), which was proposed in [4]. Our scheme features time
consistent local time-stepping, where every grid cell runs with its optimal time step.

An open issue for DG schemes in general is an efficient shock-capturing strategy.
The very successful FV shock-capturing consists of a TVD or WENO reconstruction
which is non-oscillatory. In combination with local grid refinement a narrow transition
zone at the shock wave is obtained within ∼ 4 grid cells. This can also be extended to
DG schemes in a way such that the trial function is locally replaced by a reconstructed
polynomial. As the efficiency of our STE-DG scheme relies on the locality of the spatial
discretization, the use of this shock-capturing technique is cumbersome, especially for
high order. Another approach which is more convenient for DG schemes is to keep the
large grid cell and to resolve the shock within the grid cell by a narrow viscous profile by
locally adding some sort of artificial viscosity. This was recently proposed by Persson and
Peraire [5]. Their approach is quite contradictory to FV shock-capturing, since here the
order of accuracy is kept high or is even increased locally. Persson and Peraire showed
that this strategy captures the shock within a transition zone the size of δ = 4h

p+1 where p
denotes the degree of the polynomial approximation. In this case the shock profile can be
sharpened by increasing the degree of the trial function (p-adaptation). While Persson
and Peraire applied this shock-capturing by p-refinement within an implicit scheme, we
combine it with an explicit scheme which leads to an anisotropic time step distribution
due to the stability restriction. But, due to our local time-stepping feature the efficiency
is well preserved.
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2 The STE-DG scheme for the Euler equations

2.1 The equations and the semi-discrete variational formulation

The Euler equations in two space dimensions read as

Ut + F (U)x + G (U)y = 0 (1)

with

U =

⎛⎜⎜⎝
ρ
ρu
ρv
ρe

⎞⎟⎟⎠ , F =

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

ρu(e+ p)

⎞⎟⎟⎠ , G =

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
ρv(e+ p)

⎞⎟⎟⎠ , (2)

where ρ, u, v, p, and e denote the density, x- and y-velocity, pressure, and specific total
energy, respectively. We consider the equation of state of a perfect gas with

p = ρRT = (γ − 1)ρε and e =
p

(γ − 1)ρ
+
u2 + v2

2
, (3)

where ε denotes the specific internal energy, γ is the isentropic exponent, and R is the
gas constant.

The spatial discretization is based on the weak formulation of equation (1). We mul-
tiply the Euler equations with an arbitrary test function Φ(x), integrate over the grid
cell Qi and use integration by parts for the flux terms to get∫

Qi

Ut · Φ dx +

∫
∂Qi

Fn ·Φ ds−
∫
Qi

(F · Φx + G ·Φy) dx = 0, (4)

where ∂Qi denotes the surface of the grid cell and Fn is normal component of the flux.
To get the semi-discrete DG scheme we introduce a piecewise polynomial approxima-

tion Uh(x, t), which is defined as

Ui(x, t) :=

N(p)∑
l=1

Û
i

l(t)ϕl(x) (5)

in every grid cell Qi. Using a trial space of piecewise polynomials with a degree ≤ p, we

can introduce an orthonormal basis {ϕ}N(p)
l=1 , where N(p) = (p+1)(p+2)/2 in two space

dimensions. We choose as test functions the basis functions and get the following N(p)
ordinary differential equations for the N(p) unknowns

(Û i
l )t = −

∫
∂Qi

H · ϕl ds+

∫
Qi

F · (ϕl)x + G · (ϕl)y dx = 0, l = 1, ..., N(p). (6)

As numerical flux we use the HLLC flux (see, e.g., [1]) named H.

2.2 The space-time expansion approach with local time-stepping

For the STE-approach the semi discrete scheme (6) is simply integrated in time. Due to
the local time stepping, we give up the assumption that all grid cells run with the same
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time step and therefore we do not have any longer a common time level. Let us denote

the actual local time level in grid cell Qi by tni . The degrees of freedom Û
i,n

l represent
the solution at tni in this grid cell. Furthermore, each cell may evolve in time with its
local time step Δtni which has to satisfy the local stability restriction, which depends on
the grid cell diameter as well as on the order p+1, see [4]. With Δtni , the next local time
level in Qi is given as

tn+1
i = tni +Δtni . (7)

The evolution equations for the degrees of freedom read as

Û i,n+1
l = Û i,n

l −
∫

∂Qi

H · ϕl ds+

∫
Qi

F · (ϕl)x + G · (ϕl)y dx = 0, l = 1, ..., N(p). (8)

To evaluate the right hand side of the evolution equations the space-time integrals are
approximated by proper Gaussian integration rules. The difficulty is, that the values at
the space-time Gauss points are not known. In the STE-approach a space-time Taylor
expansion of the approximation Ui at the grid cell barycenter xi at time level tn

Ũi(x, t) :=

p∑
l=0

((t− tni ) ∂t + (x − xi)∇)lU(x, t)|xi,tn
(9)

is used to get an high order approximation at every space-time Gauss point. While the
space derivatives are already available within the DG approach, the mixed space-time
derivatives are approximated using the (CK-) Cauchy-Kovalevskaya procedure. To re-
place the time and mixed space-time derivatives the evolution equation is applied several
times, see [4] for more details.

As the evaluation of the fluxes between the grid cells on the right hand side relies on
neighbor data as well, the local time-stepping algorithm is based on the following evolve
condition: The evolution of the DOF are performed, if

tn+1
i ≤ min

{
tn+1
j

}
, ∀j : Qj ∩Qi �= ∅ (10)

is satisfied. This means that an element can only be updated in time, if all neighboring
elements’ j prospective time level is bigger than the one from element i in concern. This
guarantees that the approximate space-time values of the neighbor cells are available.
In this manner, the algorithm continues by searching for elements satisfying the evolve
condition (10). So all elements are evolved in a suitable order by evaluating the different
terms of the right hand side of equation (8) for each element in an effective order. At
each time, the interface fluxes are defined uniquely for both adjacent elements, making
the scheme exactly conservative, for more details see [2].

3 Sub-Cell Shock Capturing for DG methods

The first step is to detect grid cells in which a strong gradient is approximated and which
will lead to spurious oscillations in the approximative piecewise polynomial. In order to
determine a suitable sensor for under-resolved parts, we make use of the fact that the
solution within each element is represented in terms of an orthogonal basis
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Ui(x, tn) =

N(p)∑
l=1

Û
i

lΦl. (11)

If the underlying exact solution is smooth, we expect the coefficients of the approximation
to decay fast. E.g., using the density ρ from the set of conservative variables we apply as
proposed in [5] a smoothness sensor in the form

Si :=

N(p)∑
l=N(p−1)+1

(ρ̂l)
2

N(p)∑
l=1

(ρ̂l)2

. (12)

This expression measures the rate of the decay of the magnitude of the coefficients If
this rate is low then we have identified a strong gradient which is not well resolved by
the local polynomial, e.g. a shock wave. Once the shock has been sensed, we modify the
equation locally in this grid cell by introducing an artificial viscosity of the form

Ut + F (U)x + G (U)y = ∇ · (ε∇U) . (13)

The piecewise constant viscosity ε is chosen as a function of the value Si of the discon-
tinuity sensor and proportional to the available resolution ∼ 4hi

pi+1 within the grid cell,

see [5] for details. The discretization of the viscous terms is based on exact diffusive
Riemann solutions for parabolic equations, see [2] and [3] for details.

4 Results

This section contains results of one- and two-dimensional test cases to show the properties
of the STE-DG scheme with this shock-capturing technique.

4.1 Shock Capturing

To demonstrate the capabilities of the shock capturing method we performed a simple
test using a Mach 10 shock moving through the computational domain. In addition to
our scheme, we performed for comparison the calculation also with a 4th order WENO
reconstructed Finite Volume scheme and a 3rd order DG scheme with HWENO limiting.
The shock profiles in density together with the grid sizes after t = 0.16 are plotted in
figure 1.

The 3rd order DG scheme and the 4th order rec. FV scheme both ran on 100 cells,
while for the O5 STE-DG scheme only 25 cells were used. One notices that all profiles
look rather similar. As expected the DG HWENO and the rec. FV scheme both smeared
the shock over 3 cells as usual for these limiting strategies and schemes, respectively. In
contrast, the artificial viscosity limiter was able to capture the profile within one cell
with almost the same resolution, but using only 1/4 of the HWENO-DG cells.

If this calculation were performed on the same grid, the artificial viscosity method
would produce an even sharper shock profile, and would still be able to resolve the shock
within just one cell.
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Fig. 1. Comparison of shock capturing properties. Plot of a 3rd order DG scheme, a
4th order WENO reconstructed FV scheme and the 5th order STE-DG scheme with artificial
viscosity

4.2 The Double Mach reflection test-case

The Double Mach reflection (DMR) test-case can be considered as a challenging problem
for numerical schemes because of different flow phenomena that are lying side by side:

When a Mach 10 shock hits a wedge, a triple-point is formed consisting of two shocks
and a slightly unstable contact discontinuity that rolls up at the wedge boundary. To
recover the vortex roll-up, the shock capturing has to be performed in a very local way,
not affecting the vortices.

Figure 2 shows a density plot of a 6th order calculation as well as a close-up of the
triple-point region including some gridcells. One can see that both the shock as well as
the vortex are clearly dissolved and - in addition - that the shock profile is captured
within only one cell.

Fig. 2. The double mach reflection problem. Density plot at t = 0.2 of the computational
domain (left) as well as a zoomed cutout including gridcells (right)
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The previously described smoothness sensor and the added viscosity are plotted in
figure 3. One can clearly see that viscosity was added only to the strong Mach 10 shock
and therefore did not affect the rest of the solution in a bad way.

Fig. 3. The double mach reflection problem. Plot of the smoothness sensor (left) and
artificial viscosity distribution (right)

5 Conclusion and Outlook

In this paper we combined an explicit space-time DG scheme with the shock-capturing
approach of Persson and Peraire [5]. The idea to keep a high order approximation and
to add locally artificial viscosity for the subgrid resolution of the shock works also very
well also for unsteady problems. To preserve efficiency in the explicit unsteady approach
it is essential to use the local time stepping framework.
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