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1 Introduction

The discontinuous Galerkin methods [1] (DGM) have recently become popular for the
solution of systems of conservation laws to arbitrary order of accuracy. The DGM com-
bine two advantageous features commonly associated to finite element and finite volume
methods. As in classical finite element methods, accuracy is obtained by means of high-
order polynomial approximation within an element rather than by wide stencils as in the
case of finite volume methods. The physics of wave propagation is, however, accounted
for by solving the Riemann problems that arise from the discontinuous representation of
the solution at element interfaces.

In the traditional DG methods either standard Lagrange or hierarchical node-based
finite element basis functions are used to represent numerical polynomial solutions in
each element. As a result, the unknowns to be solved are the variables at the nodes
and the polynomial solutions are dependent on the shape of elements. In this work, a
DG formulation based a Taylor basis is presented for the solution of the compressible
Euler equations on arbitrary grids, where the numerical polynomial solutions are repre-
sented using a Taylor series expansion at the centroid of the cell. The unknown variables
to be solved in this formulation are the cell-averaged variables and their derivatives at
the center of the cells, regardless of element shapes. Consequently, this formulation is
able to offer the insight why the DG methods are a better approach than the finite vol-
ume methods based on either TVD/MUSCL reconstruction or essentially non-oscillatory
(ENO)/weighted essentially non-oscillatory (WENO) reconstruction, and has a number
of distinct, desirable, and attractive features. The developed method is used to compute
a variety of shock wave problems on arbitrary grids. The numerical results obtained
demonstrated the superior accuracy of this DG method in comparison with a second
order finite volume method and a third order WENO method, indicating its promise and
potential to become not just a competitive but simply a superior approach than its finite
volume and ENO/WENO counterparts for computing shock waves of of scientific and
industrial interest.

2 Numerical Method

The Euler equations governing unsteady compressible inviscid flows can be expressed in
conservative form as

∂U(x, t)

∂t
+
∂Fj(U(x, t))

∂xj
= 0, in Ω (1)
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where, Ω is a bounded connected domain in Rd, d is the number of spatial dimension,
and conservative state vector U and inviscid flux vectors F are defined by

U =

⎛⎝ ρ
ρui

ρe

⎞⎠ ,Fj =

⎛⎝ ρuj

ρuiuj + pδij

uj(ρe+ p)

⎞⎠ , (2)

where the summation convention has been used and ρ, p, and e denote the density, pres-
sure, and specific total energy of the fluid, respectively, and ui is the velocity of the flow
in the coordinate direction xi. To formulate the DG method, we first introduce the fol-
lowing weak formulation of (1), which is obtained by multiplying (1) by a test function
W, integrating over the domain Ω, and performing an integration by parts:∫

Ω

∂U

∂t
WdΩ +

∫
Γ

FjnjWdΓ −
∫

Ω

Fj
∂W

∂xj
dΩ = 0, (3)

where Γ (= ∂Ω) denotes the boundary ofΩ, and nj the unit outward normal vector to the
boundary. Assume that the domain Ω is subdivided into a collection of non-overlapping
elements Ωe, which can be triangles, quadrilaterals, polygons, or their combinations in
2D and tetrahedral, prism, pyramid, and hexahedral or their combinations in 3D. We
introduce the following broken Sobolev space V p

h

V p
h = {vh ∈ [L2(Ω)]m : vh |Ωe

∈ [V m
p ]∀Ωe ∈ Ω}, (4)

which consists of discontinuous vector-valued polynomial functions of degree p ≤ 0, and
where m is the dimension of conservative state vector and

V m
p = span

{
d∏

i=1

xαi

i : 0 ≤ αi ≤ p, 0 ≤ i ≤ d

}
, (5)

where α denotes a multi-index. Then, we can obtain the following semi-discrete form by
applying weak formulation on each element Ωe{

find Uh ∈ V p
h such as

d
dt

∫
Ωe

UhWhdΩ +
∫

Γe
Fj(Uh)njWhdΓ − ∫

Ωe
Fj(Uh)∂Wh

∂xj
dΩ = 0 ∀Wh ∈ V p

h ,
(6)

where Γe(= ∂Ωe) denotes the boundary of Ωe, Uh and Wh represent the finite element
approximations to the analytical solution U and the test function W, respectively, and
both belong to the finite element space V p

h . Assume that Bi is the basis of polynomial
function of degrees p, this is then equivalent to the following system of N equations,

d

dt

∫
Ωe

UhBidΩ +

∫
Γe

Fj(Uh)njBidΓ −
∫

Ωe

Fj(Uh)
∂Bi

∂xj
dΩ = 0 1 ≤ i ≤ N, (7)

where N is the dimension of the polynomial space. In the traditional DGM, numerical
polynomial solutions U in each element are represented using either standard Lagrange
finite element or hierarchical node-based basis as following

Uh =

N∑
i=1

Ui(t)Bi(x). (8)
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Fig. 1. Representation of polynomial solutions using finite element shape functions (two on the
left) and a Taylor series expansion (one on the right)

As a result, the unknowns to be solved are the variables at the nodes Ui, as illustrated in
Fig. 1 for linear and quadratic polynomial approximations. On each cell, a system of NxN
has to be solved, where polynomial solutions are dependent on the shape of elements.
For example, for a linear polynomial approximation in 2D as shown in Fig.1, a linear
polynomial is used for triangular elements and the unknowns to be solved are the variables
at the three vertices and a bi-linear polynomial is used for quadrilateral elements and
the unknowns to be solved are the variables at the four vertices. However, the numerical
polynomial solutions U can be expressed in other forms as well. In the present work,
the numerical polynomial solutions are represented using a Taylor series expansion at
the centroid of the cell, where the quadratic polynomial solutions, for example, can be
expressed as following

Uh = Uc +
∂U

∂x
|c (x− xc) +

∂U

∂y
|c (y − yc)

+
∂2U

∂x2
|c (x− xc)

2

2
+
∂2U

∂y2
|c (y − yc)

2

2
+

∂2U

∂x∂y
|c (x− xc)(y − yc), (9)

which can be further expressed as cell-averaged values and their derivatives at the centroid
of the cell:

Uh = Ũ +
∂U

∂x
|c (x− xc) +

∂U

∂y
|c (y − yc)

+
∂2U

∂x2
|c (

(x − xc)
2

2
− 1

Ωe

∫
Ωe

(x− xc)
2

2
dΩ)

+
∂2U

∂y2
|c (

(y − yc)
2

2
− 1

Ωe

∫
Ωe

(y − yc)
2

2
dΩ)

+
∂2U

∂x∂y
|c ((x − xc)(y − yc) − 1

Ωe

∫
Ωe

(x− xc)(y − yc)dΩ) (10)

where Ũ is the mean value of U in this cell. The unknowns to be solved in this formulation
are the cell-averaged variables and their derivatives at the center of the cells, regardless
of element shapes, as shown in Fig. 1. In this case, the dimension of the polynomial space
is six and the six basis functions are

B1 = 1, B2 = x− xc, B3 = y − yc, B4 =
(x − xc)

2

2
− 1

Ωe

∫
Ωe

(x− xc)
2

2
dΩ

B5 =
(y − yc)

2

2
− 1

Ωe

∫
Ωe

(y − yc)
2

2
dΩ,



1008 Luo et al.

B6 = (x− xc)(y − yc) − 1

Ωe

∫
Ωe

(x− xc)(y − yc)dΩ (11)

and the discontinuous Galerkin formulation (7) then leads to the following six equations

d

dt

∫
Ωe

ŨdΩ +

∫
Γe

Fj(Uh)njdΓ = 0 i = 1, (12)

6∑
j=2

∫
Ωe

BiBjdΩ
d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂U

∂x |c
∂U

∂y |c
∂2

U

∂x2 |c
∂2

U

∂y2 |c
∂2

U

∂x∂y |c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

∫
Γe

Fj(Uh)njBidΓ−
∫

Ωe

Fj(Uh)
∂Bi

∂xj
dΩ = 0 2 ≤ i ≤ 6,

(13)
Note that in this formulation, the cell-averaged variable equations are decoupled from
the equations of their derivatives due to our judicial choice of the basis functions in our
formulation and the fact ∫

Ωe

B1BidΩ = 0, 2 ≤ i ≤ 6. (14)

Using this formulation, the similarity and difference between DG and FV methods be-
come clear, and the advantage of the DGM is especially evident in comparison with
the FV methods. In fact, the discretized governing equations for cell-averaged variables
(12) and the assumption of polynomial solutions on each cell (10) are exactly the same
for both methods. The DG(p0) method, i.e., the DG method using piecewise constant
polynomials, exactly corresponds to the first order cell-centered finite volume scheme.
The only difference between them is the way how they obtain the high-order polynomial
solutions (> 1). In the finite volume methods, the polynomial solutions of degree p are
reconstructed using cell-averaged variables from neighboring cells, which can be obtained
using either TVD/MUSCL or ENO/WENO reconstruction schemes. Unfortunately, the
multi-dimensional TVD/MUSCL reconstruction schemes of arbitrary order based on the
extension of one-dimensional MUSCL approach, which are praised to achieve high-order
accuracy for multi-dimensional problems, suffer from two shortcomings in the context of
unstructured grids: 1) uncertainty and arbitrariness in choosing the stencils and meth-
ods to compute the gradients; This explains why a nominally second-order finite volume
scheme is hardly able to deliver a formal solution of second order accuracy in practice for
unstructured grids, 2) extended stencils required for the reconstruction of higher-order
(> 1st) polynomial solutions. This is exactly the reason why the current finite-volume
methods using the TVD/MUSCL reconstruction are not practical at higher order and
have remained second-order on unstructured grids. When the ENO/WENO reconstruc-
tion schemes are used for the construction of a polynomial of degree p on unstructured
grids, the dimension of the polynomial space, N = N(p, d) depends on the degree of the
polynomials of the expansion p, and the number of spatial dimensions d. One must have
three, six, and ten cells in 2D and four, ten, and twenty cells in 3D for the construction
of a linear, quadratic, and cubic Lagrange polynomial, respectively. Undoubtedly, it is
an overwhelmingly challenging, if not practically impossible, task to judiciously choose a
set of admissible and proper stencils that have such a large number of cells on unstruc-
tured grids especially for higher order polynomials and higher dimensions. This explains
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why the application of higher-order ENO/WENO methods hardly exist on unstructured
grids, in spite of their tremendous success on structured grids and their superior perfor-
mance over the MUSCL/TVD methods. Unlike the FV methods, where the derivatives
are reconstructed using the mean values of the neighboring cells, the present DG method
computes the derivatives in a manner similar to the mean variables. which is natural,
unique, compact, rigorous, and elegant mathematically in contrast with arbitrariness
characterizing the reconstruction schemes used in the FV methods with respect how to
compute the derivatives and how to choose the stencils. This formulation has a number
of distinct, desirable, and attractive features and advantages in the context of DG meth-
ods. First, the same numerical polynomial solutions are used for any shapes of elements,
which can be triangle, quadrilateral, and polygon in 2D, and tetrahedron, pyramid, prism,
and hexahedron in 3D. Using this formulation, DG method can be easily implemented
on arbitrary meshes. The numerical method based on this formulation has the ability to
compute 1D, 2D, and 3D problems using the very same code, which greatly alleviates the
need and pain for code maintenance and upgrade. Secondly, cell-averaged variables and
their derivatives are handily available in this formulation. This makes implementation of
WENO limiter straightforward and efficient [2], which is required to eliminate nonphysical
oscillations in the vicinity of discontinuities. Thirdly, the basis functions are hierarchic.
This greatly facilitates implementation of p-multigrid methods [3, 4] and p-refinement.
Last, cell-averaged variable equations are decoupled from their derivatives equations in
this formulation. This makes development of fast, low-storage implicit methods possible.

3 Numerical examples

Due to page limitation, only a few illustrative examples are presented in this section
to demonstrate the accuracy, robustness, and versatility of this DG method. Hancock
scheme is used to advance the solution in time in order to achieve the efficiency for time
accurate problems and a p-multigrid method [4] is used to accelerate the convergence
of the Euler equations to a steady state solution. A WENO-based limiter [2] is used to
eliminate nonphysical oscillations in the vicinity of discontinuities.

Example 1: Subsonic flow past a cylinder
This test case is chosen to numerically compare accuracy between DG and FV meth-

ods, where a grid convergence study has been conducted for subsonic flow past a circular
cylinder at a Mach number of 0.38, and the numerical results are presented in Fig. 2.
One can see that the second order DG(P1) solutions on an given meshes are more accu-
rate than the second order finite volume solutions FV(P1) on the globally refine meshes,
clearly demonstrating the high accuracy of the DG method.

Example 2: A Mach 3 wind tunnel with a Step
The test case is a classical example for testing the accuracy of numerical schemes for

computing unsteady shock waves. The problem under consideration is a Mach 3 flow in
a wind tunnel with a step. Fig. 3 shows the computed density contours obtained by the
DG method and a third order WENO method, respectively. Note that the same mesh
resolution is used for both computations. One can see that the shock resolution of the
3rd order WENO scheme is slightly more diffusive than the present second DG scheme,
and the slip line coming from the lambda shock is also more visible in the 2nd DG
solution than 3rd order WENO solution, qualitatively demonstrating that the present
second order DG solution is as accurate as, if not more accurate than, the third order
WENO solution.
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Fig. 2. Computed Mach number contours in the flow field obtained using FV(P1) solution on
the 126x33 grid (left), and DG(P1) solution on the 64x17 grid (middle), and the behavior of
the error norms with grid refinement for FV(P1), DG(P1), and DG(P2) for subsonic flow past
a circular cylinder.

Fig. 3. Computed density contours in the flow field obtained using the 3rd WENO solution
(left) and 2nd DG(P1) solution (right)

4 Conclusion

A DG method based a Taylor basis has been presented for the solution of the compress-
ible Euler equations on arbitrary grids. The developed method has been used to compute
a variety of time-accurate flow problems on arbitrary grids. The numerical results demon-
strated the superior accuracy of this DG method in comparison with a second order finite
volume method and a third order WENO method, indicating its promise and potential to
become not just a competitive but simply a superior approach than its finite volume and
ENO/WENO counterparts for solving flow problems of scientific and industrial interest.
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