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Summary. A mathematical model and a high-resolution numerical method for numerical sim-
ulation of turbulent separated flow in convergent–divergent nozzles are presented. A comparison
between numerical calculations and experimental data for plane and axi-symmetric nozzles shows
an efficiency and a reasonable accuracy of a numerical code based on the proposed model. A
detailed computational study of separated nozzle flows has been conducted for nozzles with one
or two circular slots. The possibility for increasing in thrust efficiency is shown under ground
conditions due to decreasing of overexpanded flow zone.

1 Introduction

Increase of efficiency of rocket engines due to gas dynamic control of altitude character-
istics of a nozzle is considered in this paper.

Improving the power of rocket nozzles is very important to increase the payload of
launchers. One of the solutions of this problem which has been obtained consists of in-
creasing the ratio of nozzle areas and controlling the separation flow, in the overexpanded
regime, during the first phase of flight. Separation moves the jet detachment point up-
stream, causing a change in the effective nozzle geometry to one that is shorter and has
a lower expansion ratio. For a given nozzle pressure ratio, this alleviates overexpansion
and improves thrust efficiency.

Several flow control technologies which have been recently proposed offers further
means by which to control and stabilize a separated nozzle flow for performance en-
hancement. In this paper the control technology by means of creation of one or two
circular slots at supersonic part of a nozzle (nozzle with slot) is considered by numerical
simulation.

2 Governing Equations

The two-dimensional Favre averaged Navier-Stokes equations, including the equations
for the turbulent kinetic energy (TKE) k and the solenoidal dissipation rate εs, can be
written in the following form

∂(rQ)

∂t
+
∂(rF)
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where Q = (ρ, ρ ũ, ρ ṽ, e, ρ k, ρ εs)
T
. The overbar denotes the conventional Reynolds aver-

age, while the overtilde is used to denote the Favre mass average. The inviscid fluxes are
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ρ ũ2 + p
ρ ũ ṽ
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where ρ is the density, u and v are the velocity components, and e is the total energy
per unit volume. The fluid pressure is p and the equation of state for the perfect gas is
given by

e = p+
1

2
ρ ũj ũj + ρ k,

where γ, the specific heat ratio, is taken as 1.4. The viscous fluxes are
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and the viscous stress tensor are expressed as

σij = (μ+ μt)

(
2 S̃ij −2

3

∂ ũk

∂xk
δij

)
− 2

3
ρ kδij ,

where δij is the Kronecker delta, Sij is the mean strain rate tensor, μ is the coefficients
of molecular viscosity calculated by the Sutherland formula and μt is the coefficients of
eddy viscosity, respectively. The heat flux is calculated from

qi = −
(
μ
cp
Pr

+ μt
cp
Prt

)
∂ T̃

∂xi
,

so that the linear gradient hypothesis is used for the turbulent heat flux. cp is the specific
heat at constant pressure, Pr and Prt are the laminar and turbulent Prandtl numbers,
respectively, and T is the temperature. A constant turbulent Prandtl number is used.

The eddy viscosity μt is calculated as

μt = cμ ρ k
2/εs.

The source terms H can be written as

H =
(
0, 0, α p /r, 0, Pk − ρ ε, cε1Pk

εs

k
− cε2 ρ

εεs

k

)T
,

where Pk is the TKE production, ε is the total dissipation rate of TKE. In the cartesian
coordinate system r and α are 1 and 0, respectively, and in the cylindrical coordinate
system r and α are y and 1, respectively.

The total dissipation rate is decomposed into the solenoidal dissipation and the di-
latation dissipation

ε = εs + εd.

In the “standard” k − ε model [1] constants are

cμ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1, σε = 1.3.
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3 Turbulence modeling

Compressibility and non-equilibrium of turbulence are two important phenomena for
turbulence modeling in turbulent flow in rocket engine nozzles. Supersonic flow with large
density gradients is realized in diffuser part of nozzle under flight conditions especially
when shock waves are generated inside the nozzle. Such situation is typical for separated
flow in nozzles.

As follows from DNS data the most important compressibility effect is the dilatation
dissipation εd. We compared results of numerical simulation of several separated flows in
plane and conical nozzles obtained with most dilatation dissipation models described in
literature. Overall best results were obtained with models [2] and [3]

εd =
(
α1M̃

2
t + α2M̃

4
t

)
εs, (1)

where M̃t = max (0,Mt −Mt0). Values of constants are α1 = 1, α2 = 0, Mt0 = 0 for the
model [2] and α1 = 1, α2 = 60, Mt0 = 0.1 for the model [3].

Due to gas dynamics discontinuities in flow field essentially non-equilibrium regions
occurs near discontinuities where the production of TKE is considerable larger than the
dissipation. Some non-equilibrium modifications of k − ε model were studied on basis of
numerical simulation of turbulent flows with discontinuities. Special attention was given
to compatibility of non-equilibrium modifications with the dilatation dissipation models.
We shall describe some studied non-equilibrium modifications of k − ε model which will
be used further.

The renormalization group (RNG) k − ε model [4] can be considered as the non-
equilibrium modification of k − ε model

cε1 = 1.42
(
1 − η (1 − η/η0)

(
1 + βη3

))
, (2)

where

η =
√
λ/cμ, η0 = 4.38, β = 0.012.

The ratio of the production of TKE to the dissipation is denoted as λ = Pk/ (ρ ε). The
ratio can be considered as the non-equilibrium parameter. Other coefficients of the model
are

cε2 = 1.68, σk = 0.7179, σε = 0.7179, cμ = 0.084.

The second non-equilibrium modification is the model [5] which is close to “extended”
k − ε model [6] and is more robust than [6]

cε1 = 1.44 + 0.3 (λ′ − 1) / (λ′ + 1) . (3)

The modified non-equilibrium parameter λ′ is used in the model which depends on
“shear” part of the TKE production

P ′
k = μt

((
∂ ũ

∂y

)2

+

(
∂ ṽ

∂x

)2
)
.

The third modification was proposed in [7] to improve prediction of decaying turbu-
lence at low Reynolds numbers

cε1 = 1.5, cε2 = 1.9
(
1 − 0.11 exp

(−R2
t/36
))
. (4)
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4 Numerical method

To solve Navier-Stokes and k−εmodel equations we use a second order of accuracy in time
and space Godunov-type method (see [8]). The second order of accuracy is obtained with
the application of the MUSCL (monotonic upstream-centered scheme for conservation
laws)-Runge-Kutta scheme with essentially two-dimensional reconstruction.

For near wall region the non-equilibrium wall function approach is used. TKE pro-
duction limiter is used to provide proper dependence of the turbulent energy production
term on the mean strain in regions of high velocity gradient.

5 Results and discussion

At first we validated our numerical code by means of comparison of our computed results
of separated nozzle flows with experimental results by different authors. The first nozzle
is an 11.01◦ half angle plane convergent–divergent nozzle [9] with a throat width of
27.5 mm and an exit width of 42.2 mm corresponding to an expansion ratio of 1.797,
for a total length of 115.6 mm. The inlet temperature is 293◦K, the ambient pressure
is pa = 102387.14 Pa, the ambient temperature is 293◦K. The nozzle pressure ratio
n = p0/pa was varied in the experiment from 1.8 to 8.95.
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Fig. 1. Wall pressure data for plane nozzle [9]
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Fig. 2. Wall pressure data for conical nozzle [10]
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Fig. 3. Numerical Schlieren images of the flow field in the conical nozzle

Fig. 4. Numerical Schlieren images of the flow field in the conical nozzle with one slot

Fig. 5. Numerical Schlieren images of the flow field in the conical nozzle with two slots

Fig. 1 shows computed and measured [9] wall pressure distributions for different
nozzle pressure ratios n. The solid, dashed and dash–doted lines correspond to the non-
equilibrium modifications (3), (4) and (2), respectively. The dilatation model (1) is used.
It can be seen that all three models allow to obtain a separation point position and a
recovery pressure level in a recirculation zone after separation point with reasonable ac-
curacy. We might observe in passing that the solution for n = 1.255 is unsteady regardless
of used model and the shown curve corresponds to arbitrary time.

It is well known that k − ε model predicts plane flows considerably better than axi-
symmetric. Therefore the second nozzle used for the validation is an 22.5◦ half angle
conical convergent–divergent nozzle [10] with a throat radius of 5 mm and an exit radius
of 16 mm corresponding to an expansion ratio of 10.24, for a conical part length of
26.52 mm. The inlet temperature is 293◦K, the inlet pressure is p0 = 36 atm, the ambient
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temperature is 293◦K. Three nozzle pressure ratios n were used in the experiment: 4.4,
5.88 and 8.74.

Fig. 2 shows computed and measured [10] wall pressure distributions for different
nozzle pressure ratios n. The solid, dashed and dash–doted lines correspond to the non-
equilibrium modifications (3), (4) and (2), respectively. The dilatation model (1) is used.
As in the plane case accuracy of separation point and pressure recovery prediction is rea-
sonable. Some discrepancy between measured and computed pressure before separation
point can be explained by insufficient nozzle description in [10].

Results of numerical simulation of turbulent nozzle flow are shown on Fig. 3 for a
smooth conical nozzle, on Fig. 4 for the same nozzle with one slot, and on Fig. 5 for the
same nozzle with two slots. An half-angle of the conical nozzle supersonic part is 20◦,
a throat diameter is 10 mm, a slot width is 1 mm. The inlet temperature is 293◦K, the
ambient pressure is 101250 Pa, the ambient temperature is 293◦K. The nozzle pressure
ratio n is 40. The overexpanded flow regime with separation is realized under such con-
ditions in the smooth nozzle (see Fig. 3). In the nozzle with single slot the separation
occurs earlier (for smaller x) than in the smooth nozzle Fig. 4. The overexpanded flow
zone decreases providing an increase in static thrust efficiency. In the nozzle with two
slots the earliest separation occurs 5 and the overexpanded flow zone is smallest. Further
numerical simulation shows that under high–altitude conditions the impulse loss due to
a working fluid leakage through the circular slot is small and does not have a pronounced
effect on thrust efficiency.
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