
Deterministic Encryption:
Definitional Equivalences and Constructions

without Random Oracles

Mihir Bellare1, Marc Fischlin2, Adam O’Neill3, and Thomas Ristenpart1

1 Dept. of Computer Science & Engineering, University of California at San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{mihir,tristenp}@cs.ucsd.edu
http://www-cse.ucsd.edu/~{mihir,tristenp}

2 Dept. of Computer Science, Darmstadt University of Technology
Hochschulstrasse 10, 64289 Darmstadt, Germany

fischlin@informatik.tu-darmstadt.de
http://www.fischlin.de/

3 College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332, USA

amoneill@cc.gatech.edu
http://www.cc.gatech.edu/~amoneill

Abstract. We strengthen the foundations of deterministic public-key
encryption via definitional equivalences and standard-model constructs
based on general assumptions. Specifically we consider seven notions of
privacy for deterministic encryption, including six forms of semantic se-
curity and an indistinguishability notion, and show them all equivalent.
We then present a deterministic scheme for the secure encryption of uni-
formly and independently distributed messages based solely on the exis-
tence of trapdoor one-way permutations. We show a generalization of the
construction that allows secure deterministic encryption of independent
high-entropy messages. Finally we show relations between deterministic
and standard (randomized) encryption.

1 Introduction

The foundations of public-key encryption, as laid by Goldwasser and Micali [23]
and their successors, involve two central threads. The first is definitional equiv-
alences, which aim not only to increase our confidence that we have the “right”
notion of privacy but also to give us definitions that are as easy to use in ap-
plications as possible. (Easy-to-use indistinguishability is equivalent to the more
intuitive, but also more complex, semantic security [21, 23, 24, 28].) The second
(of the two threads) is to obtain schemes achieving the definitions under assump-
tions as minimal as possible. In this paper we pursue these same two threads
for deterministic encryption [3], proving definitional equivalences and providing
constructions based on general assumptions.

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 360–378, 2008.
c© International Association for Cryptologic Research 2008

Deterministic Encryption: Definitional Equivalances and Constructions 361

Deterministic encryption. A public-key encryption scheme is said to be de-
terministic if its encryption algorithm is deterministic. Deterministic encryption
was introduced by Bellare, Boldyreva, and O’Neill [3]. The motivating applica-
tion they gave is efficiently searchable encryption. Deterministic encryption per-
mits logarithmic time search on encrypted data, while randomized encryption
only allows linear time search [13, 27], meaning a search requires scanning the
whole database. This difference is crucial for large outsourced databases which
cannot afford to slow down search. Of course deterministic encryption cannot
achieve the classical notions of security of randomized encryption, but [3] for-
malize a semantic security style notion PRIV that captures the “best possible”
privacy achievable when encryption is deterministic, namely that an adversary
provided with encryptions of plaintexts drawn from a message-space of high
(super-logarithmic) min-entropy should have negligible advantage in computing
any public-key independent partial information function of the plaintexts. The
authors provide some schemes in the random-oracle (RO) model [5] meeting this
definition but leave open the problem of finding standard model schemes.

The PRIV definition captures intuition well but is hard to work with. We
would like to find simpler, alternative definitions of privacy for deterministic
encryption —restricted forms of semantic security as well as an indistinguish-
ablility style definition— that are equivalent to PRIV. We would also like to find
schemes not only in the standard model but based on general assumptions.

Notions considered. We define seven notions of privacy for deterministic
encryption inspired by the work of [3, 19]. These include a notion IND in the
indistinguishability style and six notions —A-CSS, B-CSS, BB-CSS, A-SSS, B-
SSS, BB-SSS— in the semantic-security style. The IND definition —adapted
from [19]— asks that the adversary be unable to distinguish encryptions of
plaintexts drawn from two, adversary-specified, high-entropy message spaces,
and is simple and easy to use. The semantic security notions are organized along
two dimensions. The first dimension is the class of partial information functions
considered, and we look at three choices, namely arbitrary (A), boolean (B),
or balanced boolean (BB). (A boolean function is balanced if the probabilities
that it returns 0 or 1 are nearly the same.) The second dimension is whether
the formalization is simulation (S) based or comparison (C) based.1 The PRIV
notion of [3] is A-CSS in our taxonomy. Low-end notions —think of BB as
the lowest, then B then A and similarly C then S in the other dimension— are
simpler and easier to use in applications, while high end ones are more intuitively
correct. The question is whether the simplifications come at the price of power.

Definitional equivalences. We show that all seven notions discussed above
are equivalent. The results are summarized in Figure 1. These results not only

1 In the first case, A’s success in computing partial information about plaintexts from
ciphertexts is measured relative to that of a simulator, while in the second it is
measured relative to A’s own success when it is given the encryption of plaintexts
independent of the challenge ones. The terminology is from [8] who prove equivalence
between simulation and comparison based notions of non-malleability.

362 M. Bellare et al.

B-CSS

BB-CSS

B-SSS

BB-SSS

IND

Th 3 A-SSSA-CSS

Th 5 Th 4Th 2

Th 1

Fig. 1. Notions of security for deterministic encryption schemes and implications show-
ing that all seven notions are equivalent. An arrow X → Y means that every scheme
secure under X is also secure under Y . Unlabeled implications are trivial.

show that semantic security for boolean functions (predicates) is as powerful as
semantic security for arbitrary functions, but (perhaps surprisingly) that one can
even restrict attention to boolean functions that are balanced, meaning semantic
security for balanced boolean functions is as powerful as semantic security for
arbitrary functions. We note that balance in this context originates with [19]
but they only use it as a tool. We explicitly define and consider the notions BB-
CSS and BB-SSS because they bear a natural and intuitive relation to IND and
because we feel that the use made of balance by [19] indicates it is important.
The proofs of our results rely on new techniques compared to [17, 18, 19].

Definitional framework. We believe that an important and useful contri-
bution of our paper is its definitional framework. Rather than an experiment
per notion, we have a few core experiments and then use the approach of [6],
capturing different notions via different adversary classes. Advantages of this
approach are its easy extendability —for example we can capture the notions of
[12] by simply introducing a couple of new adversary classes— and the ability
to capture many definitional variants in a way that is unified, concise and yet
precise.

A construction for uniform messages. Constructing a non-RO model de-
terministic encryption scheme meeting our strong notions of security seems like
a very challenging problem. We are however able to make progress on certain
special cases. We present a deterministic encryption scheme DE1 for the secure
encryption of independent, uniformly distributed messages. The scheme is not
only without random oracles but based on general trapdoor one-way permuta-
tions. To encrypt a random message x one iterates a trapdoor permutation f on
x a number of times to get a point y. Let r denote the sequence of Goldreich-
Levin [22] hardcore bits obtained in the process. Then one uses a standard
IND-CPA scheme —which exists assuming trapdoor one-way permutations— to
encrypt y with coins r. The interesting aspect of the scheme, and the source of
the difficulty in analyzing it, is its cyclic nature, namely that the coins used for

Deterministic Encryption: Definitional Equivalances and Constructions 363

the IND-CPA encryption depend on the plaintext y that is IND-CPA encrypted.
The proof manages to show that an adversary who, given y, can distinguish r
from random can recover x even though this adversary may have partial infor-
mation about the underlying seed x. The proof exploits in a crucial way that
the equivalence between A-CSS and B-CSS holds even for uniformly and inde-
pendently distributed messages.

Another perspective. A deterministic encryption scheme is (syntactically)
the same thing as a family of injective trapdoor functions. Our notions can then
be seen as an extension of the usual notion of one-wayness. Our construction is
then a family of injective trapdoor functions which hides all (possible) partial
information about its (randomly chosen) input. We believe this is a natural and
useful strengthening of the usual notion of a trapdoor function that is fully
achieved under standard assumptions in our work.

Efficiency. The general assumption notwithstanding, our scheme admits effi-
cient instantiations. For example with squaring as the trapdoor permutation [9]
and Blum-Goldwasser [10] as the bare IND-CPA scheme, encryption and de-
cryption come in at about double that of Blum-Goldwasser with no increase in
ciphertext size. See Section 5.

A generalization. We generalize our construction to obtain a non-RO model
deterministic scheme DE2 for the encryption of independent, high min-entropy
(but not necessarily uniform) plaintexts. The assumption used is that one has
a trapdoor permutation that is one-way for high min-entropy distributions on
its input. This increase in assumption strength is in some sense necessary, since
deterministic encryption secure for some distribution trivially provides a one-way
injective trapdoor function for that distribution.

From deterministic to randomized encryption. Another central founda-
tional theme is relations between primitives, meaning determining which primi-
tives imply which others. From this perspective we consider how to build
IND-CPA-secure standard (randomized) encryption from PRIV-secure deter-
ministic encryption. The obvious approach would be to use the deterministic
encryption scheme as a trapdoor one-way function within some well-known gen-
eral construction [22]. However, this approach leads to large ciphertexts, and
we would hope to achieve better efficiency when using a primitive that provides
more than one-wayness. We provide a much more efficient construction using a
hybrid encryption-style approach, in which the deterministic scheme encrypts a
fresh session key padded with extra randomness and the session key is used to
encrypt the message. See [4] for the details.

CCA. Lifting our notions and equivalences to the CCA setting is straight-
forward; see [4] . Our above-mentioned construction of a randomized encryp-
tion scheme from a deterministic one works even in the CCA setting. This
means, in particular, that we can generically build witness-recovering IND-
CCA encryption schemes [25] from arbitrary CCA-secure deterministic schemes.

364 M. Bellare et al.

(Witness-recovering encryption allows, during decryption, recovery of all ran-
domness used to generate a ciphertext.) CCA-secure witness-recovering encryp-
tion is of use in further applications [16], and only very recently was a (not very
efficient) standard-model construction produced [25]. Our construction shows
that building CCA-secure deterministic schemes is at least as hard as building
witness-recovering probabilistic encryption.

Related work. Dodis and Smith’s work on entropic security [19] has in com-
mon with ours the consideration of privacy for messages of high min-entropy. But
there are important differences in the settings, namely that theirs is information-
theoretic and symmetric while ours is computational and public-key. Dodis and
Smith [19] introduce definitions that in our framework are IND, B-SSS, and
BB-SSS, to complement the A-SSS-like information-theoretic notion originally
proposed by Russell and Wang [26]. Also, Desrosiers [17] and Desrosiers and
Dupuis [18] subsequently treat quantum entropic security, providing notions sim-
ilar to our framework’s B-CSS and A-CSS. These works provide some relations
between the notions they define. While some of their techniques and implica-
tions lift to our setting, others do not. The salient fact that emerges is that prior
work does not imply equivalence of all seven notions we consider. In particular,
the BB-SSS and BB-CSS notions are not considered in [17, 18] and Dodis and
Smith [19] only provide reductions for BB-SSS implying A-SSS that result in
inefficient or restricted adversaries. See [4] for more information.

Another setting that deals with high min-entropy messages is that of per-
fectly one-way hash functions (POWHF), introduced by Canetti [14] and fur-
ther studied by Canetti, Micciancio, and Reingold [15]. These are randomized
hash functions that produce publically-verifiable outputs. Our definitions and
equivalences can be adapted to the POWHF setting.

Independent work. In concurrent and independent work, Boldyreva, Fehr,
and O’Neill [12] consider a relaxation of PRIV in which message sequences need
to not merely have high entropy but each message must have high entropy even
given the others. They prove some relations between their notions using tech-
niques of [17, 18, 19] but do not consider as many notions as us and in particular
do not consider balance. Their schemes achieve stronger notions of security then
our DE1 but at the cost of specific algebraic assumptions as opposed to our gen-
eral one. Combining their results with ours shows that our DE2 achieves their
notion of security while using a general (even though non-standard) assumption.

2 Preliminaries

Notation and Conventions. If x is a string then |x| denotes its length; if x
is a number then |x| denotes its absolute value; if S is a set then |S| denotes its
size. We denote by λ the empty string. If S is a set then X ←$ S denotes that X
is selected uniformly at random from S. We let x[i . . . j] denote bits i through j
of string x, for 1 ≤ i ≤ j ≤ |x|. By x1 ‖ · · · ‖ xn we denote the concatenation
of x1, . . . , xn. Vectors are denoted in boldface, e.g. x. If x is a vector then |x|

Deterministic Encryption: Definitional Equivalances and Constructions 365

denotes the number of components of x and x[i] denotes its ith component for
1 ≤ i ≤ |x|. If i ≥ 1 is an integer, we use Bi as shorthand for {0, 1}i. By 〈a, b〉
we denote the inner product modulo 2 of equal-length strings a, b.

We write α ←$ X(x, y, . . .) to denote running X on inputs (x, y, . . .) with fresh
random coins and assigning the result to α. We let [X(x, y, . . .)] denote the set
of possible outputs of X when run on x, y, . . . ∈ {0, 1}∗. An algorithm X is non-
uniform if its first input is 1k and there is a collection {Ck}k∈N of (randomized)
circuits such that Ck computes X(1k, . . .). The running time is the circuit size.
A function f is called negligible if it approaches zero faster than the reciprocal
of any polynomial, that is, for any polynomial p, there exists np ∈ N such that
f(n) ≤ 1/p(n) for all n ≥ np. “PT” stands for polynomial time. We denote by
Λ the algorithm that on any inputs returns λ.

Public-key encryption. A public-key encryption (PKE) scheme Π =
(K, E , D) is a triple of PT algorithms. The key generation algorithm K takes
input 1k, where k ∈ N is the security parameter, and outputs a public-key,
secret-key pair (pk, sk). The encryption algorithm E takes inputs 1k, pk, and
plaintext x ∈ {0, 1}∗ and outputs a ciphertext. The deterministic decryption
algorithm D takes inputs 1k, sk, and ciphertext y and outputs either a plaintext
x or ⊥. We say that Π is deterministic if E is deterministic. If x is a vector of
plaintexts, then we write y ←$ E(1k, pk,x) to denote component-wise encryption
of x, i.e. y[i] ←$ E(1k, pk,x[i]) for all 1 ≤ i ≤ |x|.

3 Security Notions for Deterministic PKE

We first provide formal definitions and then discuss them.

Semantic security. An SS-adversary A = (Ac, Am, Ag) is a tuple of non-
uniform algorithms. Ac takes as input a unary encoding 1k of the security pa-
rameter k ∈ N and returns a string st representing some state information. Am
takes input 1k and st, and returns a vector of challenge messages x together
with a test string t that represents some information about x. Ag takes 1k, a
public key and the component-wise encryption of x under this key, and tries to
compute t. The running time of A is defined as the sum of the running times of
Ac, Am, Ag, so that A is PT if Ac, Am, Ag are all PT.

Let Π = (K, E , D) be a PKE scheme, A = (Ac, Am, Ag) an SS-adversary,
and S a simulator (a non-uniform algorithm). Let k ∈ N. Figure 2 displays the
css (comparison-based semantic security) and sss (simulation-based semantic
security) experiments. We define the css advantage and sss advantage of A by

Advcss
Π,A(k) = 2 · Pr

[
Expcss

Π,A(k) ⇒ true
]
− 1 , and (1)

Advsss
Π,A,S(k) = 2 · Pr

[
Expsss

Π,A,S(k) ⇒ true
]
− 1 . (2)

Our approach to defining the six notions of semantic security of interest to us
is to associate to each a corresponding class of adversaries and ask that the

366 M. Bellare et al.

Expcss
Π,A(k)

b ←$ {0, 1} ; st ←$ Ac(1k)
(x0, t0) ←$ Am(1k, st)
(x1, t1) ←$ Am(1k, st)
(pk, sk) ←$ K(1k)
c ←$ E(1k, pk,xb)
g ←$ Ag(1k, pk, c, st)
If g = t1 then b′ ← 1
Else b′ ← 0
Ret (b′ = b)

Expsss
Π,A,S(k)

b ←$ {0, 1} ; st ←$ Ac(1k)
(x, t) ←$ Am(1k, st)
(pk, sk) ←$ K(1k)
c ←$ E(1k, pk,x)
If b = 1 then

g ←$ Ag(1k, pk, c, st)
Else g ←$ S(1k, pk, st)
If g = t then b′ ← 1
Else b′ ← 0
Ret (b′ = b)

Expind
Π,I(k)

b ←$ {0, 1} ; st ←$ Ic(1k)
xb ←$ Im(1k, b, st)
(pk, sk) ←$ K(1k)
c ←$ E(1k, pk,xb)
b′ ←$ Ig(1k, pk, c, st)
Ret (b′ = b)

Fig. 2. Three experiments for defining security of encryption schemes

advantage of any adversary in this class be negligible. We proceed to define the
relevant classes.

An SS-adversary A = (Ac, Am, Ag) is legitimate if there exists a function v(·),
called the number of messages, and a collection {yk}k∈N of reference message-
vectors such that the following three conditions hold. First, |x| = v(k) for all
(x, t) ∈ [Am(1k, st)] and all st ∈ {0, 1}∗. Second, |x[i]| = |yk[i]| for all (x, t) ∈
[Am(1k, st)], all st ∈ {0, 1}∗, and all 1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[
eq(x,yk) = 0 : st ←$ Ac(1k) ; (x, t) ←$ Am(1k, st)

]

is negligible, where

eq(x,yk) =

{
1 if ∀i, j : x[i] = x[j] iff yk[i] = yk[j]

0 otherwise.
(3)

(The third condition reflects that every deterministic scheme leaks plaintext
equality.) Let ASS be the set of all legitimate, PT SS-adversaries. We say that
A has trivial state function if Ac = Λ. Let Aλ be the set of all SS-adversaries
with trivial state functions.

Without loss of generality (through suitable padding) we can assume there is
a function �(·) such that the output of Ag(1k, ·, ·) and any test string t output
by Am(1k, ·) always have length �(k). We call � the information length of A. An
SS-adversary A = (Ac, Am, Ag) ∈ ASS is boolean if it has information length
�(·) = 1. Let AB ⊆ ASS be the class of all boolean SS-adversaries. A boolean
SS-adversary A = (Ac, Am, Ag) ∈ AB is δ-balanced if for every st we have

∣
∣
∣
∣Pr

[
t = 0 : (x, t) ←$ Am(1k, st)

]
− 1

2

∣
∣
∣
∣ ≤ δ . (4)

When δ = 0 we say that A is perfectly balanced. We say that A is balanced if it is δ-
balanced for some δ < 1/2. Let Aδ

BB ⊆ AB be the class of all δ-balanced boolean
SS-adversaries. An SS-adversary A = (Ac, Am, Ag) ∈ ASS has min-entropy μ if

Pr
[
x[i] = x : (x, t) ←$ Am(1k, st)

]
≤ 2−μ(k)

Deterministic Encryption: Definitional Equivalances and Constructions 367

for all k ∈ N, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and all st ∈ {0, 1}∗. Let
Aμ

ME ⊆ ASS be the class of all SS-adversaries with min-entropy μ. We say that
A has high min-entropy if it is in Aμ

ME for some μ(k) ∈ ω(log k). Let AHE ⊆ ASS
be the class of all SS-adversaries that have high min-entropy.

Let Π be a PKE scheme. We say that Π is A-CSS secure if Advcss
Π,A(·) is

negligible for all A ∈ AHE ∩ Aλ; Π is B-CSS-secure if Advcss
Π,A(·) is negligible

for all A ∈ AHE ∩Aλ ∩AB; and Π is BB-CSS-secure if there exists δ < 1/2 such
that Advcss

Π,A(·) is negligible for all A ∈ AHE ∩ Aλ ∩ Aδ
BB.

Similarly, we say that Π is A-SSS-secure if for all A ∈ AHE ∩ Aλ there exists
a PT simulator S such that Advsss

Π,A,S(·) is negligible; Π is B-SSS-secure if for
all A ∈ AHE ∩ Aλ ∩ AB there exists a PT simulator S such that Advsss

Π,A,S(·)
is negligible; and Π is BB-SSS-secure if there exists δ < 1/2 such that for all
A ∈ AHE ∩ Aλ ∩ Aδ

BB there exists a PT simulator S such that Advsss
Π,A,S(·) is

negligible.
The message space of an SS-adversary A = (Ac, Am, Ag) is the algorithm Ad

that on input 1k, st lets (x, t) ←$ Am(1k, st) and returns x. An SS-adversary is
said to produce independent messages if the coordinates of x are independently
distributed when x ←$ Ad(1k, st) for all k, st. Let A× be the class of all SS-
adversaries which produce independent messages.

For each d ∈ {0, 1}, we let Expcss-d
Π,A (k) be the same as Expcss

Π,A(k) except that
the first line sets b ← d rather than picking b at random. We similarly define
Expsss-d

Π,A,S(k). A standard argument gives

Advcss
Π,A(k) = Pr

[
Expcss-1

Π,A (k) ⇒ true
]
− Pr

[
Expcss-0

Π,A (k) ⇒ false
]

and (5)

Advsss
Π,A,S(k) = Pr

[
Expsss-1

Π,A,S(k) ⇒ true
]
− Pr

[
Expsss-0

Π,A,S(k) ⇒ false
]

. (6)

Indistinguishability. An IND-adversary I = (Ic, Im, Ig) is a tuple of non-
uniform algorithms. Ic takes as input 1k and returns a string st representing
some state information. Im takes input 1k, a bit b, and st, and returns a vector
of messages x. Ig takes 1k, a public key, the component-wise encryption of x
under this key, and st and tries to compute the bit b. The running time of I is
defined as the sum of the running times of Ic, Im, Ig, so that I is PT if Ic, Im, Ig
are all PT.

Let Π = (K, E , D) be a PKE scheme, I = (Ic, Im, Ig) an IND-adversary and
k ∈ N. Figure 2 displays the ind experiment. We define the ind advantage of I
by

Advind
Π,I(k) = 2 · Pr

[
Expind

Π,I(k) ⇒ true
]

− 1 . (7)

We next define classes of IND-adversaries. An IND-adversary I = (Ic, Im, Ig)
is legitimate if there exists a function v(·), called the number of messages, and
a collection {yk}k∈N of reference message-vectors such that the following three
conditions hold. First, |x| = v(k) for all (x, t) ∈ [Im(1k, b, st)], all b ∈ {0, 1}, and
all st ∈ {0, 1}∗. Second, |x[i]| = |yk[i]| for all (x, t) ∈ [Im(1k, b, st)], all b ∈ {0, 1},
all st ∈ {0, 1}∗, and all 1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[
eq(x,yk) = 0 : st ←$ Ic(1k) ; b ←$ {0, 1} ; (x, t) ←$ Im(1k, b, st)

]

368 M. Bellare et al.

is negligible, where eq(x,yk) was defined by (3). Let I be the set of all legitimate,
polynomial time IND-adversaries. We say that I has trivial state function if
Ic = Λ. Let Iλ ⊆ I be the set of all IND-adversaries with trivial state functions.
An IND-adversary I = (Ic, Im, Ig) ∈ I has min-entropy μ if

Pr
[
x[i] = x : x ←$ Im(1k, b, st)

]
≤ 2−μ(k)

for all k ∈ N, all b ∈ {0, 1}, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and all st ∈ {0, 1}∗.
Let Iμ

ME ⊆ I be the class of all IND-adversaries with min-entropy μ. We say
I has high min-entropy if it is in Iμ

ME for some μ(k) ∈ ω(log k). Let IHE be
the class of all IND-adversaries that have high min-entropy. We say that Π is
IND-secure if Advind

Π,I(·) is negligible for all I ∈ IHE ∩ Iλ.
For each d ∈ {0, 1}, we let Expind-d

Π,I (k) be the same as Expind
Π,I(k) except that

the first line sets b ← d rather than picking b at random. A standard argument
gives

Advind
Π,A(k) = Pr

[
Expind-1

Π,I (k) ⇒ true
]

− Pr
[
Expind-0

Π,I (k) ⇒ false
]

. (8)

Discussion. A-CSS is exactly the PRIV definition of [3]. As discussed in [3], it
is important that Am does not take input the public key, and this carries over
to Im. In the classical setting a standard hybrid argument [2] shows that the
security of encrypting one message implies the security of encrypting multiple
messages. In the deterministic encryption setting this is not true in general,
which is why Am, Im output vectors of messages.

Following [3], message spaces are not explicit but rather implicitly defined by
their PT sampling algorithms Am and Im. As a consequence, message spaces are
PT sampleable.

Following [3], the partial information function is not explicit. Think of t as its
value on x. This is more general because t is allowed to depend on coins under-
lying the generation of x rather than merely on x itself. (This is stronger than
merely allowing the function to be randomized, which is standard.) It allows us
in particular to capture “history.” However, we show in [4] that this formulation
is equivalent to one where the partial information is computed as a function of
the message. Note that the (implicit or explicit) partial information functions
are PT.

Our security definitions quantify only over adversaries with trivial state func-
tions. We do this for compatibility with [3, 19]. So why introduce the common
state function at all? The reason is that it is useful in proofs. Indeed, [19] use
such a function implicitly in many places. We believe making it explicit increases
clarity. In the end we can always hardwire a “best” state and thereby end up
with an adversary in Aλ.

4 Relating the Security Notions

In this section we justify the implications summarized by Figure 1. The impli-
cations given by the unlabeled arrows are trivial and can be justified by the fact
that X → Y whenever the adversary class corresponding to Y is a subset of

Deterministic Encryption: Definitional Equivalances and Constructions 369

the one corresponding to X . We focus on the implications: A-CSS ⇒ A-SSS;
BB-SSS ⇒ IND; IND ⇒ BB-CSS; BB-CSS ⇒ B-CSS; and B-CSS ⇒ A-CSS.

Theorem 1. [B-CSS ⇒ A-CSS] Let Π = (K, E , D) be a PKE scheme. Let
A = (Ac, Am, Ag) ∈ Aμ

ME∩Aλ be an SS-adversary having information length �(·).
Then there exists a boolean SS-adversary A′ = (A′

c, A
′
m, A′

g) ∈ Aμ
ME ∩ Aλ ∩ AB

such that for all k ∈ N

Advcss
Π,A(k) ≤ 2 · Advcss

Π,A′(k) . (9)

A′ has the same message space as A and its running time is that of A plus O(�). �

Proof. The proof is from [19] and repeated here in order to provide intuition for
Theorem 2. Below we write � for �(k). Then let

alg. A∗
c(1

k):
r ←$ {0, 1}�

s ←$ {0, 1}
Ret (r, s)

alg. A∗
m(1k, (r, s)):

(x, t) ←$ Am(1k, λ)
Ret (x, 〈r, t〉 ⊕ s))

alg. A∗
g(1

k, pk, c, (r, s)):

g ←$ Ag(1k, pk, c, λ)
Ret 〈r, g〉 ⊕ s

Then A∗ = (A∗
c , A

∗
m, A∗

g) is certainly boolean, and

PA∗(k) = PA(k) +
1
2

[1 − PA(k)]

QA∗(k) = QA(k) +
1
2

[1 − QA(k)]

where PX(k)= Pr
[
Expcss-1

Π,X (k) ⇒ true
]

and QX(k)= Pr
[
Expcss-0

Π,X (k) ⇒ false
]
.

Subtracting, we get Advcss
Π,A∗(k) = 1

2 ·Advcss
Π,A(k). We are not done yet because

A∗ does not have trivial state function. Let A′ be obtained from A∗ by hardwiring
in a “best” choice of r, s and we are done.

Now we wish to show that BB-CSS ⇒ B-CSS. Note that if the adversary A′

constructed in the proof of Theorem 1 were balanced, we would be done. But,
A′ need not be balanced. Dodis and Smith [19] give a partial solution to this
problem, showing that it is in fact possible to find an r that, when hardwired
into A∗, results in a balanced adversary, as long as p ≤ ε2/4, where p is the
maximum probability of any t being output by Am and ε = Advcss

Π,A(·).
We will remove this restriction by proceeding as follows. Let A be a given

SS-adversary, which from Theorem 1 we can assume is boolean (but not bal-
anced). We again construct an A∗ with non-trivial state, but this will consist
of n independently chosen keys K[1], . . . ,K[n] for a family of pairwise indepen-
dent hash functions H . Then A∗

m(1k,K) first runs (x, t) ←$ Am(1k, λ) and then
returns (x, H(K[i], t)) for random i ∈ {1, . . . , n}, while A∗

g(1
k, pk, c,K) picks its

own independent random j and returns H(K[j], Ag(1k, pk, c, λ)). Our analysis
will show that for a suitable choice of n there exists a choice of the vector K
which, when hardwired into A∗, yields an adversary A′ having all the claimed
properties. The theorem is below and the proof is in the full version [4].

370 M. Bellare et al.

Theorem 2. [BB-CSS ⇒ B-CSS] Let Π = (K, E , D) be a PKE scheme. Let
A = (Ac, Am, Ag) ∈ Aμ

ME ∩ Aλ ∩ AB be a boolean SS-adversary. Let ε(·) =
Advcss

Π,A(·) > 0 and let δ = 1/4. Then there exists an SS-adversary A′ =
(A′

c, A
′
m, A′

g) ∈ Aμ
ME ∩ Aλ ∩ Aδ

BB such that for all k ∈ N

Advcss
Π,A(k) ≤ 4n(k) · Advcss

Π,A′(k) ,

where n(k) = max {485 , �64 · ln (1/ε(k)) + 64 ln 4�}. A′ has the same message
space as A and its running time is that of A plus O(log(1/ε(k)) + k). �

Below are theorem statements for the other three implications. Proofs are given
in the full version [4].

Theorem 3. [A-CSS ⇒ A-SSS] Let Π = (K, E , D) be a PKE scheme. Let A =
(Ac, Am, Ag) ∈ Aμ

ME ∩ Aλ be an SS-adversary outputting at most v messages.
Then there exists a simulator S such that for all k ∈ N

Advsss
Π,A,S(k) ≤ Advcss

Π,A(k) .

The running time of S is that of A plus the time to perform v encryptions. �

Theorem 4. [BB-SSS ⇒ IND] Let Π = (K, E , D) be a PKE scheme. Let I =
(Ic, Im, Ig) ∈ Iμ

ME ∩ Iλ be an IND-adversary. Let δ = 0. Then there exists an
SS-adversary A = (Ac, Am, Ag) ∈ Aμ

ME ∩ Aλ ∩ Aδ
BB such that for any simulator

S and all k ∈ N

Advind
Π,I(k) ≤ 2 · Advsss

Π,A,S(k) .

The running time of A is that of I. �

Theorem 5. [IND ⇒ BB-CSS] Let Π = (K, E , D) be a PKE scheme. Let 0 ≤
δ < 1/2 and let A = (Ac, Am, Ag) ∈ Aμ

ME ∩ Aλ ∩ Aδ
BB be an SS-adversary. Then

there exists an ind-adversary I = (Ic, Im, Ig) ∈ Iν
ME ∩ Iλ such that for all k ∈ N

Advcss
Π,A(k) ≤ 2 ·Advind

Π,I(k) + 2−k .

I has min-entropy ν(k) = μ(k) − 1 + log(1 − 2δ) and its running time is that
of A plus the time for �−(log(2/(1 + 2δ)))−1�(k + 3) + 1 executions of Am. �

5 Deterministic Encryption from Trapdoor Permutations

We construct a deterministic encryption scheme, without ROs, that meets our
definitions in the case that the messages being encrypted are uniformly and inde-
pendently distributed. It is based on the existence of trapdoor permutations. In
[4] we generalize the construction to independently distributed messages of high
min-entropy μ, but under the (stronger and non-standard) assumption of the ex-
istence of trapdoor permutations that are one-way under all input distributions
of min entropy μ.

Primitives. A family of trapdoor permutations T P = (G, F, F) is a triple of
PT algorithms, with the last two being deterministic. On input 1k, the key

Deterministic Encryption: Definitional Equivalances and Constructions 371

alg. K(1k):

(φ, τ) ←$ G(1k)
s ←$ {0, 1}k

(pk, sk) ←$ K(1k)
pk ← (φ, pk, s)
sk ← (τ, sk)
Ret (pk, sk)

alg. E(1k, pk, x):

(φ, pk, s) ← pk
y ← F

n(k)
φ (x)

ω ← G(1k, 1n(k), φ, x, s)
c ← E(1k, pk, y ; ω)
Ret c

alg. D(1k, sk, c):

(τ, sk) ← sk
y ← D(1k, sk, c)
x ← F

n(k)
τ (y)

Ret x

Fig. 3. Algorithms defining our deterministic encryption scheme Π = (K, E , D)

generation algorithm G returns a pair (φ, τ) of strings such that Fφ(·) = F (φ, ·)
is a permutation on {0, 1}k and F τ (·) = F (τ, ·) is its inverse. If f : {0, 1}k →
{0, 1}k then f i : {0, 1}k → {0, 1}k is defined inductively by f0(x) = x and
f i+1(x) = f(f i(x)) for i ≥ 0 and x ∈ {0, 1}k. The Blum-Micali-Yao [11, 28],
Goldreich-Levin [22] generator GT P takes input 1k, 1n, φ and x, s ∈ Bk and
returns

〈
F 0

φ(x), s
〉

‖
〈
F 1

φ(x), s
〉

‖ · · · ‖ 〈Fn−1
φ (x), s〉 .

To discuss the security of our scheme, we say that an SS-adversary is uniform
if for every k and every st the components of x are uniformly and indepen-
dently distributed over {0, 1}k when (x, t) ←$ Am(1k, st). We let AUN be the
class of all uniform SS-adversaries. If f : Bk → Bk then f(x) denotes the vector
whose ith component is f(x[i]). We let GT P(1k, 1n, φ,x, s) be the vector whose
ith component is GT P(1k, 1n, φ,x[i], s).

The construction. We fix a (randomized) encryption scheme Π = (K, E , D).
Assume that E(1k, ·, ·) draws its coins from {0, 1}n(k), and write E(1k, pk, x ; ω)
for the execution of E on inputs 1k, pk, x and coins ω. Let T P = (G, F, F)
be a family of trapdoor permutations and GT P the associated generator. Our
deterministic encryption scheme Π = (K, E , D) is defined as shown in Figure 3.
We refer to it as DE1.

Intuition. A weird aspect of our scheme is that one is encrypting, under the
standard scheme E , a message y under coins ω that are related to y. The challenge
is to show that this works assuming T P is one-way and Π is IND-CPA. So let
A = (Ac, Am, Ag) ∈ AUN ∩ Aλ be an adversary with associated information
length �(·) and number of messages v(·) that is successful in violating the A-CSS
security of Π . It is not hard to see that the assumed security of Π allows us
to reduce our task to showing that it is hard for a PT adversary D to have
a non-negligible advantage in computing the challenge bit b in the following
distinguishing game. The game generates φ, τ, pk, sk, s as done by K(1k) and
lets (x, t) ←$ Am(1k, λ). It lets

ω1 ← GT P(1k, 1n(k), φ,x, s) and ω0 ←$ B
v(k)
n(k) ,

372 M. Bellare et al.

picks a random challenge bit b, and provides the adversary D with φ, s, F
n(k)
φ (x),

ωb, and t. Now, D’s task would be merely the standard (and known to be hard)
one of breaking the pseudorandomness of GT P (meaning, we would be done)
but for one catch, namely that D has “help” information t about the seed(s) x.
If we could somehow remove it we would be done, but this seems hard to do
directly. Instead, we first produce from D an adversary I ′ that solves (although
still with help) a computational (rather than decision) problem, namely that of
inverting Fφ: given φ, Fφ(x), and �(·) bits of information about x, our adversary
computes x. This is obtained by noting that the Goldreich-Levin [22] and Blum-
Micali-Yao [11, 28] proof of pseudorandomness of GT P based on the one-wayness
of T P generalizes to say that GT P remains pseudorandom in the presence of
�(·) bits of help information about the seed assuming T P is one-way in the
presence of �(·) bits of help information about the input. Now we need to turn
I ′ into an adversary succeeding at the same task, but without help. We appeal
to Theorem 1, which allows us to assume our starting adversary A was boolean,
meaning �(·) = 1. In this case it is easy to dispense with the help provided to
I because we can try both values of it and lower our success probability by at
most a factor of 2.

We remark that we have made crucial use of the fact that the adversary
constructed by Theorem 1 has the same message space as the original one. This
means that if the latter is in AUN then so is the former, so that B-CSS for
uniform adversaries implies A-CSS for uniform adversaries. We now proceed to
the full proof.

OWPs and PRGs with help. For our proof, we will need to extend the usual
frameworks of one-wayness and pseudorandomness to adversaries with “help.”
An inversion adversary J = (Jc, Jp, Js) is a triple of non-uniform algorithms. If
T P = (G, F, F) is a family of trapdoor permutations we let

Advowf
T P,J(k) = Pr

[
Expowf

T P,J(k) ⇒ true
]

where the experiment is shown in Figure 4. The running time of J is defined as
the sum of the running times of Jc and Js, so that J is PT if Jc, Js are PT. (Jp
is not required to be PT.) We say that J has help-length �(·) if the output of
Jp(1k, ·, ·, ·) is always of length �(k). We say that J is unaided if it has help length
�(·) = 0. We let J� denote the class of all PT inversion adversaries with help
length �(·). We say T P is one-way for help-length �(·) if Advowf

T P,J(·) is negligible
for all J ∈ J�. We say that T P is one-way if it is one-way for help-length �(·) = 0.
The following, although trivial, will be very useful.

Proposition 1. Let T P be a family of trapdoor permutations and J an inver-
sion adversary with help-length �(·). Then there is an inversion adversary J ′

with help-length 0 such that

Advowf
T P,J(k) ≤ 2�(k) · Advowf

T P,J′(k)

for all k, and the running time of J ′ is that of J plus O(�). �

Deterministic Encryption: Definitional Equivalances and Constructions 373

Expowf
T P,J(k)

(φ, τ) ←$ G(1k) ; st ←$ Jc(1k, φ)
x ←$ {0, 1}k ; t ←$ Jp(1k, x, φ, st)
y ← Fφ(x) ; x′ ←$ Js(1k, φ, st, y, t)
Ret (x = x′)

Expprg-v
T P,D,n(k)

(φ, τ) ←$ G(1k) ; st ←$ Dc(1k, φ)
x ←$ B

v(k)
k ; s ←$ {0, 1}k ; d ←$ {0, 1}

t ←$ Dp(1k,x, φ, st)
ω1 ← GT P(1k, 1n(k), φ,x, s)
ω0 ←$ B

v(k)
n(k)

d′ ←$ Dg(1k, φ, st, F
n(k)
φ (x), ωd, s, t)

Ret (d = d′)

Fig. 4. (Left) Experiment defining one-wayness of T P = (G, F, F). (Right) Experi-
ment defining pseudorandomness of GT P .

Proof. Let J = (Jc, Jp, Js) and J ′ = (Jc, Λ, J ′
s) where J ′

s(1
k, φ, st, y, λ) lets

t ←$ {0, 1}�(k) and returns Js(1k, φ, st, y, t).

A PRG adversary D = (Dc, Dp, Dg) is a triple of non-uniform algorithms. If
T P = (G, F, F) is a family of trapdoor permutations and GT P is the corre-
sponding generator we let

Advprg-v
T P,D,n(k) = 2 · Pr

[
Expprg-v

T P,D,n(k) ⇒ true
]

− 1

where the experiment is shown in Figure 4 and v(·), n(·) : N → N. The running
time of D is defined as the sum of the running times of Dc and Dg, so that
D is PT if Dc, Dg are PT. (Dp is not required to be PT.) We say that D has
help-length �(·) if the output of Dp(1k, ·, ·, ·) is always of length �(k). We let D�

denote the class of all PT PRG-adversaries with help length �(·). We say GT P is
pseudorandom for help-length �(·) if Advprg-v

T P,D,n(·) is negligible for all D ∈ D�

and all polynomials v, n. We say that GT P is pseudorandom if it is pseudorandom
for help-length �(·) = 0. We remark that it is important that Dp does not get
s as input, meaning the help information is only about x. The following says
that if T P is one-way for help-length �(·) then GT P is pseudorandom for help-
length �(·). The case �(·) = 0 is the standard result [11, 22, 28] saying that
GT P is pseudorandom if T P is one-way. The proof of the following is in the full
version [4].

Lemma 1. Let T P = (G, F, F) be a family of trapdoor permutations. Let v(·),
n(·) be polynomials. Let D be a PRG-adversary with help-length �(·) and let
ε(·) = Advprg-v

T P,D,n(·) > 0. Then there is an inversion adversary J with help-
length �(·) such that

ε(k) ≤ 4n(k)v(k) · Advowf
T P,J(k)

and the running time of J is

TJ = O(k3n4v4ε−4) + O(TD + nvTF)k2n2v2ε−2 ,

where TX is the running time of X. �

374 M. Bellare et al.

IND-CPA. Associate to (randomized) encryption scheme Π = (K, E , D) and
adversary B the experiment Expind-cpa

Π,B
(k) defined by

b ←$ {0, 1} ; (pk, sk) ←$ K(1k) ; b′ ←$ BEpk(LR(·,·,b))(pk) ; Ret (b = b′)

where LR(M0, M1, b) = Mb. B is an IND-CPA adversary if all its oracle queries
consist of equal length strings. Let

Advind-cpa
Π,B

(k) = 2 · Pr
[
Expind-cpa

Π,B
(k) ⇒ true

]
− 1 .

We say that Π is IND-CPA secure if Advind-cpa
Π,B

(·) is negligible for all PT IND-
CPA adversaries B.

Security of our scheme. The following says that our scheme is B-CSS secure
for uniform adversaries assuming T P is one-way and Π is IND-CPA secure. By
Theorem 1 it is A-CSS secure for uniform adversaries under the same assump-
tions and a constant factor loss in security. Since the existence of one-way trap-
door permutations implies the existence of IND-CPA secure encryption schemes
we obtain the results under the sole assumption of the existence of one-way
trapdoor permutations.

Theorem 6. Let T P = (G, F, F) be a family of trapdoor permutations and Π =
(K, E , D) an encryption scheme. Let Π = (K, E , D) be the associated determin-
istic encryption scheme as per our construction above. Let A = (Ac, Am, Ac) ∈
AB∩Aλ∩AUN be an SS-adversary against Π with advantage ε(·) = Advcss

Π,A(·) >
0 and number of messages v(·). Then there is an unaided inversion adversary J
and an IND-CPA adversary B such that for all k ∈ N

ε(k) ≤ 2 · Advind-cpa
Π,B

(k) + 16n(k)v(k) · Advowf
T P,J(k) . (10)

The running time of B is that of A plus O(nTF + TG) and it makes v(k) oracle
queries. The running time of J is

O(k3n4v4ε−4) + O(TA + TE + TK + nvTF) ·k2n2v2ε−2 (11)

where TX is the running time of X. �

Proof. Consider the experiments of Figure 5. There E(1k, pk,y ; ω) is the vector
whose ith component is E(1k, pk,y[i] ; ω[i]). Let

Pa = Pr
[
Expd-a

Π,A(k) ⇒ true
]

for a ∈ {0, 1}. Then

Advcss
Π,A(k) = 2P1 − 1 = 2(P1 − P0) + (2P0 − 1) .

Adversary B is shown in Figure 5, and we omit the (easy) analysis establishing
that

2P0 − 1 ≤ Advind-cpa
Π,B

(k) .

Deterministic Encryption: Definitional Equivalances and Constructions 375

Expd-1
Π,A(k) / Expd-0

Π,A(k)

b ←$ {0, 1}
(x0, t0), (x1, t1) ←$ Am(1k, λ)
(φ, τ) ←$ G(1k) ; s ←$ {0, 1}k

(pk, sk) ←$ K(1k) ; pk ← (φ, pk, s)
ω ← GT P (1k, 1n(k), φ,xb, s)

ω ←$ B
v(k)
n(k)

y ← F
n(k)
φ (xb) ; c ← E(1k, pk,y ; ω)

g ←$ Ag(1k, pk, c, λ)
If g = t1 then b′ ← 1 else b′ ← 0
Ret (b = b′)

adversary B
Epk(LR(·,·,b))(pk):

(x0, t0), (x1, t1) ←$ Am(1k, λ)
(φ, τ) ←$ G(1k) ; s ←$ {0, 1}k

pk ← (φ, pk, s)
y0 ← F

n(k)
φ (x0) ; y1 ← F

n(k)
φ (x1)

For i = 1, . . . , v(k) do
c[i] ←$ Epk(LR(y0[i], y1[i], b))

g ←$ Ag(1k, pk, c, λ)
If g = t1 then Ret 1 else Ret 0

Fig. 5. (Left) Experiments used in the proof of Theorem 6. The experiment d-0 in-
cludes the boxed statement while d-1 does not. (Right) IND-CPA adversary for proof
of Theorem 6.

alg. Dp(1k,x, φ, λ):
Repeat

(x′, t′) ←$ Am(1k, λ)
Until (x′ = x)
t ← t′

Ret t

alg. Dg(1k, φ, λ,y, ω, s, t):
c ←$ {0, 1} ; y1 ← y ; t1 ← t ; ω1 ← ω

(x0, t0) ←$ Am(1k, λ)
(pk, sk) ←$ K(1k) ; pk ← (φ, pk, s)
ω0 ← GT P(1k, 1n(k), φ,x0, s) ; y0 ← F

n(k)
φ (x0)

c ← E(1k, pk,yc ; ωc)
g ←$ Ag(1k, pk, c, λ)
If (g = tc) then c′ ← 1 else c′ ← 0
Ret c ⊕ c′ ⊕ 1

Fig. 6. PRG adversary for proof of Theorem 6

Next we define PRG-adversary D = (Λ, Dp, Dg) with help length �(·) as shown
in Figure 6 and claim that

P1 − P0 ≤ 2 · Advprg-v
T P,D,n(k) . (12)

Let J ′ be the inversion adversary obtained from D by Lemma 1. It also has
help-length �(·). Now apply Proposition 1 to get inversion adversary J with
help-length 0. In [4] we justify (12), (10) and (11) to conclude the proof.

Instantiations. DE1 admits quite efficient instantiations. Say we want to en-
crypt a 1024 bit (random) message. Let the trapdoor one-way permutation be
squaring modulo a 1024-bit composite number N [9] that is part of the pub-
lic key. Then the PRG requires n squarings, where n is the number of bits of
randomness required by the (randomized) encryption scheme Π . Let Π be the

376 M. Bellare et al.

Blum-Goldwasser scheme [10], also using a 1024-bit modulus. (This modulus,
also part of the public key, must be different from N .) Then encryption cost of
DE1 is that of Blum-Goldwasser (1024 squarings) plus n = 1024 squarings for
the PRG to get coins for Π. (We assume here, and below, an efficient mapping
from bits to group elements, otherwise n increases by a small amount.) Decryp-
tion time also doubles, coming in at about 4 exponentiations modulo 512 bit
numbers (less than one 1024 bit exponentiation!) using Chinese remainders. The
ciphertext size is that of Blum-Goldwasser, namely 2048 bits, and security rests
solely on factoring. Alternatively, let Π be El Gamal hybrid encryption using a
160-bit group. (A universal hash of the DH key is used to one-time symmetri-
cally encrypt the data.) Encryption time for DE1 is that of hybrid El Gamal plus
the time for n = 320 squarings modulo N , decryption time is 2 exponentiations
modulo 512 bit numbers plus one 160-bit exponentiation. and the ciphertext size
is only 1344 bits. The security assumption is now factoring + DDH.

Discussion. One might ask why we did not work with IND rather than with
CSS notions. The reason is that it is unclear how to meaningfully capture the
case of uniformly and independently distributed messages with IND. We could
certainly say that an IND-adversary I = (Ic, Im, Ig) is uniform if for every k
and every st, b the components of x are uniformly distributed over {0, 1}k when
x ←$ Im(1k, b, st). But such an adversary would always have zero advantage.

Acknowledgments

Mihir Bellare was supported in part by NSF grants CNS 0524765 and CNS
0627779 and a gift from Intel Corporation. Marc Fischlin was supported in part
by the Emmy Noether Program Fi 940/2-1 of the German Research Foundation
(DFG). Adam O’Neill was supported in part by Alexandra Boldyreva’s NSF
CAREER award 0545659. Thomas Ristenpart was supported in part by the
above-mentioned grants of the first author.

References

1. Bellare, M.: The Goldreich-Levin Theorem (manuscript),
http://www-cse.ucsd.edu/users/mihir/papers/gl.pdf

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption:
Definitional Equivalences and Constructions without Random Oracles. Full version
of this paper. IACR ePrint archive (2008) http://eprint.iacr.org/

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Conference on Computer and Communications Security –
CCS 1993, pp. 62–73. ACM, New York (1993)

http://www-cse.ucsd.edu/users/mihir/papers/gl.pdf
http://eprint.iacr.org/

Deterministic Encryption: Definitional Equivalances and Constructions 377

6. Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: Conference on Computer and Commu-
nications Security – CCS 2007, pp. 172–184. ACM, New York (2007)

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

8. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

9. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15, 364–383 (1986)

10. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme
which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 289–302. Springer, Heidelberg (1984)

11. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing 13, 850–864 (1984)

12. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

14. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

15. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (Preliminary version). In: Symposium on the Theory of Computation –
STOC 1998, pp. 131–141 (1998)

16. Damgaard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with
non-interactive opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
239–255. Springer, Heidelberg (2008)

17. Desrosiers, S.: Entropic security in quantum cryptography. arXiv e-Print quant-
ph/0703046 (2007), http://arxiv.org/abs/quant-ph/0703046

18. Desrosiers, S., Dupuis, F.: Quantum entropic security and approximate quantum
encryption. arXiv e-Print quant-ph/0707.0691 (2007),
http://arxiv.org/abs/0707.0691

19. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

20. El Gamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

21. Goldreich, O.: A uniform complexity treatment of encryption and zero-knowledge.
Journal of Cryptology 6, 21–53 (1993)

22. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Sym-
posium on the Theory of Computation – STOC 1989, pp. 25–32. ACM, New York
(1989)

23. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tems Sciences 28(2), 412–426 (1984)

24. Micali, S., Rackoff, C., Sloan, R.: The notion of security for probabilistic cryptosys-
tems. SIAM Journal on Computing 17(2), 412–426 (1988)

http://arxiv.org/abs/quant-ph/0703046
http://arxiv.org/abs/0707.0691

378 M. Bellare et al.

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Sym-
posium on the Theory of Computing – STOC 2008, pp. 187–196. ACM, New York
(2008)

26. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002)

27. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Symposium on Security and Privacy, pp. 44–55. IEEE, Los Alamitos
(2000)

28. Yao, A.: Theory and applications of trapdoor functions. In: Symposium on Foun-
dations of Computer Science – FOCS 1982, pp. 80–91. IEEE, Los Alamitos (1982)

	Deterministic Encryption:Definitional Equivalences and Constructionswithout Random Oracles
	Introduction
	Preliminaries
	Security Notions for Deterministic PKE
	Relating the Security Notions
	Deterministic Encryption from Trapdoor Permutations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

