
9 Determination of periodic orbits

Periodic orbits play a very important role in many problems of Celestial Mechanics;
for example, their study provides interesting information on spin–orbit and orbital
resonances (see [96, 136]). From the dynamical point of view periodic orbits can
be used to approximate quasi–periodic trajectories; more precisely, a truncation
of the continued fraction expansion of an irrational frequency yields a sequence of
rational numbers, which correspond to periodic orbits eventually approximating a
quasi–periodic torus.

We present some results on the existence of periodic orbits through a construc-
tive version of the implicit function theorem, both in a conservative and in a dissipa-
tive setting (Section 9.1). Then we review classical methods for computing periodic
orbits, like the Lindstedt–Poincarè (Section 9.2) and the KBM (Section 9.3) tech-
niques. We conclude with a discussion of Lyapunov’s theorem on the determination
of families of periodic orbits (Section 9.4) and an application to the J2–problem.

9.1 Existence of periodic orbits

The existence of periodic orbits can be proved through the implementation of an
implicit function theorem, which yields a constructive algorithm to find suitable
approximations of the solution [29,149]. We discuss the existence of periodic orbits
in the conservative and in the dissipative setting, with concrete reference to the
specific sample provided by the spin–orbit problem (see Section 5.5.1).

9.1.1 Existence of periodic orbits (conservative setting)

Let us write the spin–orbit equation of motion (5.16) in the form

ẍ− εg(x, t) = 0 , (9.1)

where g(x, t) ≡ −(a
r )3 sin(2x− 2f). Equation (9.1) can also be written as

ẋ = y

ẏ = εg(x, t) . (9.2)

Here ε represents the equatorial ellipticity and it can be assumed that ε < 1.
A spin–orbit resonance of order p : q is a periodic solution of (9.2) with period
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T = 2πq (q ∈ Z+), such that

x(t + 2πq) = x(t) + 2πp
y(t + 2πq) = y(t) . (9.3)

From (9.2) one obtains

x(t) = x(0) + y(0)t + ε

∫ t

0

∫ τ

0

g(x(s), s) ds dτ = x(0) +
∫ t

0

y(s) ds

y(t) = y(0) + ε

∫ t

0

g(x(s), s) ds . (9.4)

Using the periodicity conditions (9.3) one gets∫ 2πq

0

y(s)ds− 2πp = 0
∫ 2πq

0

g(x(s), s)ds = 0 . (9.5)

Let us expand the solution in powers of ε as

x(t) ≡ x + yt + εx1(t) + ε2x2(t) + . . .

y(t) ≡ y + εy1(t) + ε2y2(t) + . . . ,

where x(0) = x and y(0) = y are suitable initial conditions, while xj(t), yj(t),
j ≥ 1, are unknown corrections to higher orders in ε. Let us expand also the initial
conditions in powers of ε as

x = x0 + εx1 + ε2x2 + . . .

y = y0 + εy1 + ε2y2 + . . . , (9.6)

for some unknown terms x0, y0, x1, y1, . . . Equating in (9.2) the same orders in ε
and using (9.6), one obtains

y + εẋ1(t) + . . . = y + εy1(t) + . . .

εẏ1(t) + . . . = εg(x + yt, t) + . . . ,

which yield

ẋ1(t) = y1(t)
ẏ1(t) = g(x0 + y0t, t) ,

namely

x1(t) = x1(t;x, y) =
∫ t

0

y1(s) ds

y1(t) = y1(t;x, y) =
∫ t

0

g(x0 + y0s, s) ds . (9.7)
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Notice that x1(t) and y1(t) can be computed explicitly. Concerning the initial data,
using the second of (9.4) and the periodicity conditions (9.5) one obtains∫ 2πq

0

[
y0 + εy1 + ε

∫ t

0

g(x0 + y0s, s) ds
]
dt = 2πp .

Therefore, y0 and y1 are given by

y0 =
p

q

y1 = − 1
2πq

∫ 2πq

0

∫ t

0

g(x0 + y0s, s) ds dt . (9.8)

In a similar way, x0 and x1 are obtained using∫ 2πq

0

g(x0 + y0s + ε(x1 + y1s + x1(s)), s) ds = 0 ;

expanding in series of ε, the quantity x0 is determined as the solution of∫ 2πq

0

g(x0 + y0s, s) ds = 0 , (9.9)

while x1 is given by

x1 = − 1∫ 2πq
0

g0xdt

[
y1

∫ 2πq

0

g0x t dt +
∫ 2πq

0

g0x x1(t) dt
]
, (9.10)

where g0x = gx(x0 + y0t, t).

9.1.2 Computation of the libration in longitude

Applying the results of Section 9.1.1, we can implement the above formulae to
compute the libration in longitude of the Moon, which measures the displacement
from the synchronous resonance corresponding to p = q = 1. The initial data and
the first–order corrections are computed through (9.7), (9.8), (9.9), (9.10):

x0 = 0
y0 = 1

x1(t) = 0.232086 t− 0.218318 sin(t)− 6.36124 · 10−3 sin(2t)
− 3.21314 · 10−4 sin(3t)− 1.89137 · 10−5 sin(4t)
− 1.18628 · 10−6 sin(5t)

y1(t) = 0.232086− 0.218318 cos(t)− 0.0127225 cos(2t)
− 9.63942 · 10−4 cos(3t)− 7.56548 · 10−5 cos(4t)
− 5.93138 · 10−6 cos(5t)

x1 = 0
y1 = −0.232086 ,
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where for the Moon we used e = 0.0549, ε = 3.45 · 10−4. To the first order, the
solution corresponding to the synchronous periodic orbit is given by

x(t) = x0 + y0t + εx1(t) = (1 + 8.00697 · 10−5)t
− 7.53196 · 10−5 sin(t)− 2.19463 · 10−6 sin(2t)
− 1.10853 · 10−7 sin(3t)− 6.52523 · 10−9 sin(4t)
− 4.09265 · 10−10 sin(5t)

y(t) = y0 + εy1(t) = 1− 7.53196 · 10−5 cos(t)− 4.38926 · 10−6 cos(2t)
− 3.3256 · 10−7 cos(3t)− 2.61009 · 10−8 cos(4t)
− 2.04633 · 10−9 cos(5t) . (9.11)

We remark that having set to unity the angular velocity of rotation, the time t
coincides with the Moon’s longitude. For ε = 0, the equations of motion can be
solved as

x(t) = x0 + y0t = x0 + t

y(t) = y0 = 1 ;

since x0 = 0, the difference between x(t) and t is zero and therefore the direction
on the equatorial plane joining the barycenter of the Moon with the Earth does not
vary with time. When adding the perturbation due to the non–spherical structure
of the Moon, the function x(t) varies by a quantity of order ε, which provides a
measure of the libration in longitude. The computation to the first order as in (9.11)
gives a displacement of the quantity x(t)− t of the order of 8 · 10−5 in agreement
with the astronomical data.

9.1.3 Existence of periodic orbits (dissipative setting)

We consider the dissipative spin–orbit problem described in Section 5.5.3, whose
equation of motion (5.21) can be written in compact form as

ż = G(z, t;μ) ,

where z = (x, y), while G is a periodic two–dimensional vector function, depending
parametrically on the dissipative constant μ. Assume that for μ = 0 (conservative
case) we know a T–periodic solution of the form

z(t) = ϕ(t)

with ϕ(T ) = ϕ(0). For μ sufficiently small, there still exists a periodic solution of
the dissipative problem with period T [149]; this result is based on the implicit
function theorem under quite general hypotheses as we are going to describe. For
the dissipative spin–orbit problem we assume for simplicity that the dissipative con-
stant and the perturbing parameter are related by μ = μ0ε for a suitable quantity
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μ0 < 1. Then equation (5.21) becomes

ẋ = y

ẏ = εg(x, y, t) , (9.12)

with g(x, y, t) = −(a
r )3 sin(2x− 2f)− μ0(y − η). We denote by x̄ and ȳ the initial

conditions and by (x(t; x̄, ȳ), y(t; x̄, ȳ)) the solution at time t with initial conditions
(x̄, ȳ). By (9.12) we obtain

x(t) ≡ x(t; x̄, ȳ) = x̄ + ȳt + ε

∫ t

0

∫ τ

0

g(x(s; x̄, ȳ), y(s; x̄, ȳ), s)dsdτ

y(t) ≡ y(t; x̄, ȳ) = ȳ + ε

∫ t

0

g(x(s; x̄, ȳ), y(s; x̄, ȳ), s)ds . (9.13)

A spin–orbit resonance of order p : q satisfies the periodicity conditions (9.3) which,
together with (9.13), are equivalent to find solutions of the equations

F1(x̄, ȳ) = 0
F2(x̄, ȳ) = 0 , (9.14)

where

F1(x̄, ȳ) ≡ 2π(qȳ − p) + ε

∫ 2πq

0

∫ τ

0

g(x(s; x̄, ȳ), y(s; x̄, ȳ), s)dsdτ

F2(x̄, ȳ) ≡
∫ 2πq

0

g(y(s; x̄, ȳ), x(s; x̄, ȳ), s)ds . (9.15)

Expanding (9.15) to the first order in ε, one obtains

F1(x̄, ȳ) = 2π(qȳ − p) + εΦ1(x̄, ȳ)

F2(x̄, ȳ) =
∫ 2πq

0

g(x̄ + ȳs, ȳ, s)ds + εΦ2(x̄, ȳ) (9.16)

for suitable functions Φ1(x̄, ȳ), Φ2(x̄, ȳ). Let us expand the initial conditions as
x̄ = x̄0 + εx̄1 + ε2x̄2 + . . . , ȳ = ȳ0 + εȳ1 + ε2ȳ2 + . . . Then we find ȳ0 = p

q , while
x̄0 is determined as a non–degenerate critical point of the function

Ψp,q(x) ≡ 1
2

∫ 2πq

0

(
a

r(t)

)3

cos(2x + 2
p

q
t− 2f(t)) dt ,

so that using (9.16) one obtains

F1(x̄0, ȳ0) = εΦ1(x̄0, ȳ0)

F2(x̄0, ȳ0) = −2πqμ0

(
p

q
− η

)
+ εΦ2(x̄0, ȳ0) .

Let us evaluate the Jacobian J of (9.16) at (x̄0, ȳ0) and let us denote the result by
J0 + εJ1; then J0 is non–degenerate, since
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J0 =
(

2πq 0
Φp,q(x̄0, ȳ0;μ0) d2

dx2 Ψp,q(x̄0)

)

for a suitable function Φp,q = Φp,q(x̄0, ȳ0;μ0). Let M be the inverse of the Jacobian
J evaluated at (x̄0, ȳ0); let ρ > 0 and denote by B̄ρ(x̄0, ȳ0) the closed ball of radius
ρ around (x̄0, ȳ0). Let A be a compact subset of R and let 0 < α < 1, R > 0 be real
parameters. The implicit function theorem can be applied provided the following
conditions are satisfied (I2 is the 2× 2 identity matrix):

sup
B̄ρ(x̄0,ȳ0)×A

‖I2 −M J‖ ≤ α

sup
A
|F (x̄0, ȳ0)| · sup

A
‖M‖ ≤ (1− α) R ;

the above inequalities turn out to be smallness conditions on the parameters. Under
these conditions the implicit function theorem guarantees that for ε sufficiently
small there exists a solution (x(ε), y(ε)) ∈ B̄ρ(x̄0, ȳ0) of the system

F1(x(ε), y(ε)) = 0
F2(x(ε), y(ε)) = 0 ,

providing a fixed point of (9.14) with the required periodicity conditions.

9.1.4 Normal form around a periodic orbit

The dynamics in a neighborhood of the periodic orbits determined as in Sec-
tion 9.1.1 can be studied through the development of a suitable normal form, which
turns out to be useful in a number of samples in Celestial Mechanics. We briefly
sketch the procedure referring to equations (9.2), whose associated Hamiltonian
function takes the form

H1(y, x, t) =
y2

2
− εV (x, t) , y ∈ R , (x, t) ∈ T ,

where y = ẋ is the variable conjugated to x and Vx(x, t) = g(x, t). Let (x̃(t), ỹ(t))
be a periodic orbit of order p : q with periodicity conditions (9.3). We assume
to know the periodic orbit for example through its series expansion as explained
in Section 9.1.1. In the proximity of the periodic orbit, let γ be a positive, small
parameter, measuring the distance from the periodic orbit and let (γξ(t), γη(t)) be
a small displacement such that we can write the solution in the form

x(t) = x̃(t) + γξ(t)
y(t) = ỹ(t) + γη(t) . (9.17)

Inserting (9.17) in (9.2), one obtains

ẋ(t) = ˙̃x(t) + γξ̇(t) = ỹ(t) + γη(t)
ẏ(t) = ˙̃y(t) + γη̇(t) = εg(x̃(t) + γξ(t), t) ,
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where we can expand g in Taylor series around γ = 0 as

g(x̃(t) + γξ(t), t) = g(x̃(t), t) + γgx(x̃(t), t)ξ +
1
2
γ2gxx(x̃(t), t)ξ2 + . . .

Since (x̃(t), ỹ(t)) is a solution of the equations of motion, one gets

ξ̇ = η

η̇ = εgx(x̃(t), t)ξ +
ε

2
γgxx(x̃(t), t)ξ2 + . . . , (9.18)

whose associated Hamiltonian is

H2(η, ξ, t) =
η2

2
− ε

2
g(x̃(t), t)ξ2 − ε

6
gx(x̃(t), t)γξ3 + . . .

Defining

u ≡
(
ξ
η

)
, Q(t) ≡

(
0 1

εgx(x̃(t), t) 0

)
, R2(u, t) ≡

(
0

ε
2gxx(x̃(t), t)ξ2 + . . .

)
,

we can write (9.18) in the form

u̇ = Q(t)u + γR2(u, t) . (9.19)

Floquet theory (see Appendix D) can be implemented to eliminate the time–
dependence in the linear part. Through a symplectic, periodic change of variables
one can reduce (9.19) to the form

v̇ = Av + γS2(v(t), t) , (9.20)

where v ≡ (v1, v2) ∈ R2, A is a constant matrix and S2 is a suitable function. We
can assume that A takes the form

A ≡
(

0 ω
−ω 0

)
,

so that the linear part reduces to

v̇1 = ωv2

v̇2 = −ωv1 ,

whose associated Hamiltonian corresponds to that of a harmonic oscillator, namely
H3(v1, v2) = ω

2 (v21 +v22)+ . . . . Using action–angle variables (I, ϕ) for the harmonic
oscillator, we can write the Hamiltonian function corresponding to (9.20) in the
form

H4(I, ϕ, t) = ωI + γF (I, ϕ, t) ,

for a suitable function F = F (I, ϕ, t). A Birkhoff normal form can now be imple-
mented in the style of Section 6.5 to reduce the perturbation and to get a better
approximation in the neighborhood of the periodic orbit.
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9.2 The Lindstedt–Poincaré technique

Convergent series approximations of periodic solutions can be found through the
Lindstedt–Poincaré technique, also known as the continuation method. Consider a
dynamical system described by the second–order differential equation

ẍ + ω2
0x = εf(x, ẋ) , x ∈ R , (9.21)

where ε ≥ 0 is a small real parameter and f : R2 → R is a regular function. For
ε = 0 the system reduces to a harmonic oscillator, which has periodic solutions
with period T0 = 2π

ω0
. The Lindstedt–Poincaré technique allows us to find periodic

solutions for ε different from zero by taking into account that the frequency of the
motion can change due to the non–linear terms. In fact, when ε is different from
zero the period T is equal to T0 only up to terms of order ε. Basically one expands
the solution x(t) and the (unknown) frequency ω of the periodic orbit as a function
of ε:

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . .

ω = ω0 + εω1 + ε2ω2 + . . . , (9.22)

where we impose that xj(T ) = xj(0), being the quantities xj(t), ωj , j ≥ 0, un-
known. Under the change of variables s = ωt, the equation (9.21) becomes

ω2x′′ + ω2
0x = εf(x, ωx′) , (9.23)

where x′ and x′′ denote the first and second derivatives with respect to s. Let us
expand the perturbation in powers of ε as

f(x, ωx′) = f(x0, ω0x′0) + ε

[
x1

∂f(x0, ω0x′0)
∂x

+ x′1
∂f(x0, ω0x′0)

∂x′

+ ω1
∂f(x0, ω0x′0)

∂ω

]
+ O(ε2) .

Inserting the series expansion (9.22) in (9.23) and equating terms of the same order
in ε, one obtains

ω2
0x
′′
0 + ω2

0x0 = 0
ω2
0x
′′
1 + ω2

0x1 = f(x0, ω0x′0)− 2ω0ω1x′′0
. . .

These equations can be solved recursively and the quantities ωj can be found by
imposing the periodicity conditions xj(s + 2π) = xj(s), j = 0, 1, 2, . . .

As a concrete example we consider the Duffing equation [146]

ẍ + ω2
0x = −εω2

0x
3 .

Changing time as s = ωt, one gets

ω2x′′(s) + ω2
0x(s) = −εω2

0x(s)3 .
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Let us expand the solution x(s) and the unknown frequency ω as in (9.22) and
assume that x′j(0) = 0 for any j ≥ 0. To the zeroth order in ε one obtains the
equation

x′′0 + x0 = 0

and, taking into account the initial conditions, one finds x0(s) = A cos s for some
real constant A. To the first order in ε one obtains the equation

x′′1 + x1 = A

(
2
ω1
ω0

− 3
4
A2

)
cos s− 1

4
A3 cos 3s ;

secular terms are avoided provided ω1
ω0

= 3
8A

2, thus yielding the first–order solu-
tion x1(s) = 1

32A
3 cos 3s. The solution at all subsequent orders can be obtained

implementing iteratively the above procedure.

9.3 The KBM method

The Krylov–Bogoliubov–Mitropolsky (KBM) method allows us to find periodic
solutions for systems of the form (9.21); for ε = 0 such systems admit the solution

x(t) = A cos ξ(t) with ξ(t) ≡ ω0t + ϕ ,

for some constants A, ϕ depending on the initial conditions. For ε different from
zero, one can write the solution as

x(t) = A cos ξ + εx1(A, ξ) + ε2x2(A, ξ) + . . . , (9.24)

where xj(A, ξ) are 2π–periodic functions. The quantities A, ξ satisfy the equations

Ȧ = εα1(A) + ε2α2(A) + . . .

ξ̇ = ω0 + εβ1(A) + ε2β2(A) + . . . (9.25)

for some unknown functions αj(A), βj(A). Inserting (9.24) and (9.25) in the left
hand side of (9.21), one obtains

ẍ + ω2
0x = ε

[
− 2ω0α1 sin ξ − 2ω0Aβ1 cos ξ + ω2

0

(
∂2x1
∂ξ2

+ x1

)]
+ O(ε2) .

Concerning the right–hand side of (9.21) one has

εf(x, ẋ) = εf(x0, ẋ0) + O(ε2) ,

where x0 = A cos ξ, ẋ0 = −Aω0 sin ξ, being x0 the lowest–order approximation in
which A and ξ̇ are constant. Equating same powers of ε, the first order is given by

ω2
0

(
∂2x1
∂ξ2

+ x1

)
= f(x0, ẋ0) + 2ω0α1 sin ξ + 2ω0Aβ1 cos ξ (9.26)
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and similarly for higher orders which can be solved recursively. For the first order,
let us expand x1 and f in Fourier series as

f(A, ξ) = f0(A) +
∞∑
j=1

[
f
(c)
j (A) cos jξ + f

(s)
j (A) sin jξ

]

x1(A, ξ) = x
(1)
0 (A) +

∞∑
j=2

[
x
(1c)
j (A) cos jξ + x

(1s)
j (A) sin jξ

]
, (9.27)

for suitable functions f0(A), f (c)j (A), f (s)j (A), x(1)0 (A), x(1c)j (A), x(1s)j (A). To avoid
secular terms we impose that∫ 2π

0

x1(A, ξ) cos ξdξ = 0 ,

∫ 2π

0

x1(A, ξ) sin ξdξ = 0 ,

which yield x
(1c)
1 (A) = x

(1s)
1 (A) = 0. Inserting (9.27) in (9.26) and equating Fourier

coefficients of the same order, one obtains

f
(c)
1 (A) + 2ω0Aβ1(A) = 0 , f

(s)
1 (A) + 2ω0α1(A) = 0 ,

which provide explicit expressions for α1(A) and β1(A). Moreover, one has

x
(1)
0 (A) =

f0(A)
ω2
0

, x
(1c)
j (A) =

f
(c)
j (A)

ω2
0(1− j2)

, x
(1s)
j (A) =

f
(s)
j (A)

ω2
0(1− j2)

, j ≥ 2 ,

which provide the Fourier coefficients appearing in (9.27). Similar computations
can be performed to determine iteratively the solution to higher orders.

9.4 Lyapunov’s theorem

A remarkable result due to Lyapunov allows us to determine a family of periodic
solutions around an equilibrium position. We sketch the proof of the theorem,
referring to [162] for complete details. As an illustrative example, we consider the
J2–problem introduced in Section 5.6.

9.4.1 Families of periodic orbits

We consider an n–dimensional Hamiltonian system described by the Hamiltonian
function H = H(w), w ∈ R2n, which is assumed to be regular in a suitable neigh-
borhood of the origin. We assume that the origin is an equilibrium position; let
±λ1, . . . , ±λn be distinct eigenvalues of the linearized matrix L associated to the
Hamiltonian H around the origin.

Lyapunov’s Theorem. Let λ1 be purely imaginary, not identically zero, and as-
sume that the ratios λ2

λ1
, . . . , λn

λ1
are not integers; then, there exists a family of

periodic solutions around the equilibrium position, depending analytically on a real
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parameter ρ, such that ρ = 0 corresponds to the equilibrium solution and that the
period T (ρ) is analytic in ρ with T (0) = 2π

|λ1| .

Proof. We look for a solution w = w(ξ, η) as a power series of some unknown
functions ξ = ξ(t), η = η(t). Then, Hamilton’s equations ẇ = JHw(w) become

wξ ξ̇ + wη η̇ = JHw(w) . (9.28)

We assume that ξ, η satisfy the relations

ξ̇ = αξ , η̇ = βη (9.29)

with α, β being suitable power series in ξ, η. We next perform a linear canonical
transformation, say w = Cz, for some constant matrix C, such that the linearized
matrix is transformed into CTJLC = Λ, where Λ is the diagonal matrix with
non–zero elements λ1, . . . , λn, −λ1, . . . , −λn. Moreover, the matrix C is chosen
to be symplectic and such that its components are suitably normalized according
to [162]. With this transformation, equation (9.28) takes the form

zξξα + zηηβ − Λz = g(z) , (9.30)

where
g(z) ≡ C−1J(C−1)T Hz(Cz)− Λz .

In order to determine uniquely the power series zk(ξ, η) (k = 1, . . . , 2n), α(ξ, η),
β(ξ, η), by comparison of the coefficients in (9.30), one needs to impose the following
compatibility conditions:

(C1) z1 − ξ, z2 − η, z3, . . . , z2n start with quadratic terms;
(C2) there are no terms of the form ξ(ξη)� in z1−ξ and no terms of the form η(ξη)�

in z2 − η;
(C3) the series for α and β depend only on the quantity ω ≡ ξη.

By induction, one easily proves that equation (9.29) can be effectively solved
and that the coefficients are uniquely determined. The constant terms of α and β
are, respectively, λ1 and −λ1. Moreover, it can be shown (see [162]) that α and β
satisfy the relation

α + β = 0 (9.31)

and that the Hamiltonian H becomes a series of ω = ξη. Referring to [162] for the
proof of the convergence of the series zk(ξ, η) (k = 1, . . . , 2n), α, β for sufficiently
small values of |ξ|, |η|, by (9.31) one finds that

dω

dt
= ξ̇η + ξη̇ = (α + β)ξη = (α + β)ω = 0 ;

therefore ω, α, β do not depend on the time and consequently from (9.29) one
obtains

ξ = ξ0e
αt , η = η0e

βt , (9.32)
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where ξ0, η0 are the initial conditions. The value |ξ0| should be taken sufficiently
small, say |ξ0| ≤ ρ for some positive real parameter ρ, to ensure the convergence.
By (9.32) one obtains a family of periodic orbits with periods T (ρ) = 2π

|α| ; since
to the lowest order α coincides with λ1, the period of the equilibrium position is
T (0) = 2π

|λ1| . �

9.4.2 An example: the J2–problem

As an application of Lyapunov’s theorem, we consider the motion of a homogeneous
rigid body S moving around an oblate planet P. Assuming that the central planet
is axially symmetric, using spherical coordinates the potential function governing
the motion of the satellite is provided in Section 5.6. The J2–problem consists in
retaining only the lowest–order term in the series expansion of the potential as a
series of the Legendre’s polynomials (see equation (5.27)):

U(r, ϕ) =
μ

r
+

μJ2R
2
e

r3

(
1
2
− 3

2
sin2 θ

)
,

where J2 is constant, μ = GM , M being the mass of P, Re is the equatorial radius
of P, while r and θ are, respectively, the radius and the latitude of the satellite
S with respect to the central body P. The Hamiltonian function describing the
J2–problem is derived as follows. In a reference frame with the origin coinciding
with the barycenter O of P, the spherical coordinates of S are:

xS = r cosφ cos θ
yS = r sinφ cos θ
zS = r sin θ ,

where r ≥ 0, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π. Assuming that the mass of S is normalized
to one, the Lagrangian function is given by:

L(ṙ, φ̇, θ̇, r, φ, θ, ) =
1
2

(ṙ2 + r2φ̇2cos2θ + r2θ̇2) + U(r, θ) . (9.33)

Due to the cylindrical symmetry of the problem, the variable φ is cyclic; therefore
the vertical component of the angular momentum (coinciding with the momentum
pφ conjugated to φ) is constant, say equal to g, providing

pφ = r2φ̇ cos2θ ≡ g .

Since the Lagrangian (9.33) does not depend explicitly on the time, another con-
stant of the motion is given by the total energy. Using the first integral g, the
energy E becomes:

E =
1
2

(
ṙ2 + r2θ̇2

)
+

g2

2r2
(1 + tan2θ)− μ

r
+

μJ2R
2
e

r3

(
3
2

sin2 θ − 1
2

)
.
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We introduce a new pair of coordinates (ρ, z) defined as

ρ = r cos θ
z = r sin θ .

Adopting the units of measure so that μ = 1 and Re = 1, the Lagrangian becomes

L(ρ̇, ż, ρ, z) =
1
2

(ρ̇2 + ż2)− g2

2ρ2
+ U(ρ, z) (9.34)

with

U(ρ, z) = (ρ2 + z2)−
1
2 − J2

2
(ρ2 + z2)−

5
2 (2z2 − ρ2) .

Let pρ = ρ̇, pz = ż; the Hamiltonian associated to the Lagrangian (9.34) is given
by:

H(pρ, pz, ρ, z) =
1
2

(pρ2 + pz
2) +

g2

2ρ2
− U(ρ, z) .

The corresponding equations of motion are:

ρ̇ = pρ
ż = pz

ṗρ = g2

ρ3 + Uρ(ρ, z)
ṗz = Uz(ρ, z) ,

(9.35)

where Uρ(ρ, z) and Uz(ρ, z) denote the derivatives of U with respect to ρ and z:

Uρ(ρ, z) = −ρ(ρ2 + z2)−
3
2 +

5
2
J2ρ(ρ2 + z2)−

7
2 (2z2 − ρ2) + J2ρ(ρ2 + z2)−

5
2 ,

Uz(ρ, z) = −z(ρ2 + z2)−
3
2 +

5
2
J2z(ρ2 + z2)−

7
2 (2z2 − ρ2)− 2J2z(ρ2 + z2)−

5
2 .

In order to compute the equilibrium points, we set equal to zero the right–hand
side of (9.35). Selecting the solution with z = 0, one easily obtains that ρ must
be a root of the equation 2ρ2 − 2g2ρ + 3J2 = 0. Therefore, two equilibrium points

of (9.35) are given by P0 ≡ (ρ0, z0, pρ0 , pz0) = ( g2+
√

g4−6J2
2 , 0, 0, 0) and P1 =

( g2−
√

g4−6J2
2 , 0, 0, 0) provided g4 > 6J2 so as to have real positive values of ρ. In

the following sections we focus our attention on the equilibrium position P0.

9.4.3 Linearization of the Hamiltonian around the equilibrium point

We proceed to linearize the equations of motion in a neighborhood of the equilib-
rium point P0. First of all, through the transformation z̃ = z, ρ̃ = ρ − ρ0 (which
shifts P0 to the origin of the reference frame), we get the Hamiltonian function
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H̃(pρ̃, pz̃, ρ̃, z̃) =
1
2

(pρ̃2 + pz̃
2) +

g2

2(ρ̃ + ρ0)2
− [(ρ̃ + ρ0)2 + z̃2]−

1
2

+
J2
2

[(ρ̃ + ρ0)2 + z̃2]−
5
2 (2z̃2 − (ρ̃ + ρ0)2) ,

where pρ̃, pz̃ are the momenta conjugated to ρ̃, z̃; the corresponding equations of
motion are:

˙̃ρ = pρ̃
˙̃z = pz̃

ṗρ̃ = g2

(ρ̃+ρ0)3
+ Uρ̃(ρ̃ + ρ0, z̃)

ṗz̃ = Uz̃(ρ̃ + ρ0, z̃) .

Next, we expand the equations of motion by means of a Taylor power series around
the equilibrium point up to the second order. The linearized system becomes⎛

⎜⎜⎝
˙̃ρ
˙̃z
ṗρ̃
ṗz̃

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

ρ̃
z̃
pρ̃
pz̃

⎞
⎟⎟⎠ ,

where

L =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
γ 0 0 0
0 δ 0 0

⎞
⎟⎟⎠

is the matrix corresponding to the linearization and

γ =
1
ρ03

(
− 3g2

ρ0
+ 2 +

6J2
ρ02

)

δ =
1

2ρ05
(−2ρ02 − 9J2) .

Notice that δ is negative for any initial condition. Up to constant terms, the lin-
earized Hamiltonian in a neighborhood of P̃0 = (0, 0, 0, 0) is given by

HL(pρ̃, pz̃, ρ̃, z̃) =
1
2

(pρ̃2 + pz̃
2 − γρ̃2 − δz̃2) + H3(pρ̃, pz̃, ρ̃, z̃) , (9.36)

where H3(pρ̃, pz̃, ρ̃, z̃) denotes terms of order higher than three.

9.4.4 Application of Lyapunov’s theorem

In this section we apply Lyapunov’s theorem to the existence of families of periodic
orbits starting from the Hamiltonian (9.36). To this end the following conditions
must be satisfied by the linearized system associated to (9.36):

(i) the eigenvalues λ1, λ2,−λ1,−λ2 of the matrix L must be distinct;
(ii) let λ1 be purely imaginary; then the ratio λ2

λ1
must not be an integer.
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The eigenvalues associated to (9.36) are obtained as follows. Let

w ≡

⎛
⎜⎜⎝

ρ̃
z̃
pρ̃
pz̃

⎞
⎟⎟⎠ , J ≡

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

and let wT be the transposed of w. Then, (9.36) can be written as HL(w) =
− 1

2w
T · JLw + H3(w) and the eigenvalues of the linearization L are λ1 =

√
δ,

λ2 =
√
γ, λ3 = −

√
δ, λ4 = −√γ. Excluding degenerate cases (see the remarks

below), conditions (i)–(ii) above are satisfied, so that Lyapunov’s theorem applies.

Remarks.
(1) Since δ < 0 for each initial condition, λ1, λ3 are always purely imaginary.
Moreover if 3J2 < g2ρ0, then λ2, λ4 are also purely imaginary. Therefore, if we
assume that 3J2 < g2ρ0, then the four eigenvalues are equal to λ1,3 = ±i

√
|δ|,

λ2,4 = ±i
√
|γ|; using the relation 2ρ02 = 2g2ρ0 − 3J2, we obtain

γ =
1

2ρ05
(−2g2ρ0 + 6J2) ,

δ =
1

2ρ05
(−2g2ρ0 − 6J2) .

Their ratio is given by

γ

δ
=

−2g2ρ0 + 6J2
−2g2ρ0 − 6J2

.

(2) If J2 �= 0, g �= 0, ρ0 �= 0 and 3J2 < g2ρ0, then λj (j = 1, . . . , 4) are purely
imaginary and γ

δ is not an integer. Therefore, by Lyapunov’s theorem there exist
two families of periodic orbits with periods 2π√

|γ| and 2π√
|δ| .

(3) If g = 0, then γ
δ = −1 and Lyapunov’s theorem cannot be applied.

(4) If J2 = 0, then γ = δ and Lyapunov’s theorem cannot be applied. Notice that
in this case the system is integrable.

(5) The main condition for the applicability of Lyapunov’s theorem is 6J2 < g4,
which guarantees that ρ0 is real. One can easily see that this condition implies the
inequality 3J2 < g2ρ0, which ensures that γ is negative.
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