
7 Invariant tori

Perturbation theory fails whenever a resonance condition is met; however, even if
the non–resonance condition is fulfilled, there could be linear combinations with
integer coefficients of the frequency vector which become arbitrarily small. These
quantities, which are called the small divisors, appear at the denominator of the
series defining the canonical transformation needed to implement perturbation the-
ory. Small divisors might prevent the convergence of the series and therefore the
application of perturbation theory. To overcome this problem, a breakthrough came
with the work of Kolmogorov [105], later proved in different mathematical settings
by Arnold [3] and Moser [138]. The overall theory is known with the acronym of
KAM theory (Section 7.2) and it allows us to prove the persistence of invariant tori
(Section 7.1) under perturbation (compare with [28,31,117,118]). KAM theory was
applied to several physical models of interest in Celestial Mechanics (Section 7.3).
However, the original versions of the theory gave concrete results very far from
the physical measurements of the parameters involved in the proof. The imple-
mentation of computer–assisted KAM proofs allowed us to obtain realistic results
in simple models of Celestial Mechanics, like the spin–orbit problem or the pla-
nar, circular, restricted three–body problem. The validity of such results is also
attested by numerical methods for the determination of the breakdown threshold,
like the well–known Greene’s method (Section 7.4). KAM theory can also be ex-
tended to encompass the case of lower–dimensional tori (Section 7.5) as well as of
nearly–integrable, dissipative systems (see Section 7.6, [19,32]), like the dissipative
spin–orbit problem introduced in Chapter 5. While KAM theory provides a lower
bound on the persistence of invariant tori, converse KAM theory gives an upper
bound on the non–existence of invariant tori (Section 7.7). Moreover, just above the
critical breakdown threshold the invariant tori transform into cantori, which are
still invariant sets though being graphs of Cantor sets. Their explicit construction
is discussed in a specific example, precisely the sawtooth map where constructive
formulae for the cantori can be given (Section 7.8).

7.1 The existence of KAM tori

Let us start by considering the spin–orbit equations (5.15) that we write in the
form

ẏ = −εfx(x, t)
ẋ = y , (7.1)
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where fx(x, t) ≡ ∂f
∂x = (a

r )3 sin(2x− 2f) with r = r(t), f = f(t) being known peri-
odic functions of the time. Equations (7.1) can be viewed as Hamilton’s equations
associated to the Hamiltonian function

H(y, x, t) = h(y) + εf(x, t) ,

where h(y) = y2

2 is the unperturbed Hamiltonian, ε denotes the perturbing param-
eter, while the perturbation f = f(x, t) is a continuous periodic function whose
explicit expression has been given as in (5.15). The perturbing function can be
expanded in Fourier series as

f(x, t) = −1
2

N2∑
m�=0,m=N1

W

(
m

2
, e
)

cos(2x−mt) (7.2)

for suitable coefficients W (m
2 , e) listed in Table 5.1, which depend on the orbital

eccentricity. For ε = 0 equations (7.1) can be integrated as

y(t) = y(0)
x(t) = x(0) + y(0)t ;

henceforth, the motion takes place on a plane in the phase space T2×R, labeled by
the initial condition y(0). The value y(0) coincides with the frequency (or rotation
number) ω = ω(y) of the motion, which in general is defined as the first derivative
of the unperturbed Hamiltonian: ω(y) = dh(y)

dy . Let us fix an irrational frequency
ω0 = ω(y(0)); the surface {y(0)}×T2 is invariant for the unperturbed system and
we wonder whether for ε �= 0 there still exists an invariant surface for the perturbed
system with the same frequency as the unperturbed case. The answer is provided
by KAM theory, which allows us to prove the persistence of invariant tori provided
some generic conditions are satisfied.

In a general framework, let us consider a nearly–integrable Hamiltonian function
with n degrees of freedom:

H(y, x) = h(y) + εf(y, x) , y ∈ Rn , x ∈ Tn ; (7.3)

let ω ≡ ∂h(y)

∂y ∈ Rn be the frequency vector. The first assumption required by
KAM theory concerns a non–degeneracy of the unperturbed Hamiltonian. More
precisely, let us introduce the following notions.

(i) An n–dimensional Hamiltonian function h = h(y), y ∈ V , being V an open
subset of Rn, is said to be non–degenerate if

det
(
∂2h(y)
∂y2

)
�= 0 for any y ∈ V ⊂ Rn . (7.4)

Condition (7.4) is equivalent to require that the frequencies vary with the actions
as

det
(
∂ω(y)
∂y

)
�= 0 for any y ∈ V .

The non–degeneracy condition guarantees the persistence of invariant tori with
fixed frequency.
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(ii) An n–dimensional Hamiltonian function h = h(y), y ∈ V ⊂ Rn, is said to be
isoenergetically non–degenerate if

det

⎛
⎝ ∂2h(y)

∂y2
∂h(y)

∂y

∂h(y)

∂y 0

⎞
⎠ �= 0 for any y ∈ V ⊂ Rn . (7.5)

This condition can be written as

det

(
∂ω(y)

∂y ω

ω 0

)
�= 0 for any y ∈ V ⊂ Rn .

The isoenergetic non–degeneracy condition, which is independent of the non–
degeneracy condition (7.4), guarantees that the frequency ratio of the invariant
tori varies as one crosses the tori on fixed energy surfaces (see [6]).

(iii) An n–dimensional Hamiltonian function H(y, x) = h(y) + εf(y, x), y ∈ Rn,
x ∈ Tn, is said to be properly degenerate if the unperturbed Hamiltonian h(y) does
not depend explicitly on some action variables. In this case, the perturbation f(y, x)
is said to remove the degeneracy if it can be split as the sum of two functions, say
f(y, x) = f̄(y) + εf1(y, x) with the property that h(y) + εf̄(y) is non–degenerate.

In order to apply KAM theory it will be assumed that the unperturbed Hamil-
tonian satisfies (7.4) or (7.5). Beside non–degeneracy, the second requirement for
the applicability of the KAM theorem is that the frequency ω satisfies a strong irra-
tionality assumption, namely the so–called diophantine condition which is defined
as follows.

Definition. The frequency vector ω satisfies a diophantine condition of type (C, τ)
for some C ∈ R+, τ ≥ 1, if for any integer vector m ∈ Rn\{0}:

|ω ·m| ≥ 1
C|m|τ . (7.6)

Under the non–degeneracy condition, the KAM theorem guarantees the persistence
of invariant tori with diophantine frequency, provided the perturbing parameter is
sufficiently small. More precisely, Kolmogorov [105] stated the following

Theorem (Kolmogorov). Given the Hamiltonian system (7.3) satisfying the
non–degeneracy condition (7.4), having fixed a diophantine frequency ω for the
unperturbed system, if ε is sufficiently small there still exists an invariant torus on
which the motion is quasi–periodic with frequency ω.

The theorem was later proved in different settings by V.I. Arnold [2] and J. Moser
[138] and it is nowadays known by the acronym: the KAM theorem. Qualitatively,
we can state that for low values of the perturbing parameter there exists an invari-
ant surface with diophantine frequency ω; as the perturbing parameter increases the
invariant torus with frequency ω is more and more distorted and displaced, until the
parameter reaches a critical value at which the torus breaks down (compare with
Figure 7.1). The KAM theorem provides a lower bound on the breakdown thresh-
old; effective KAM estimates, together with a computer–assisted implementation,
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Fig. 7.1. The Poincarè section of the spin–orbit problem (5.19) for 20 different initial
conditions and for e = 0.1. Top: ε = 10−3, middle: ε = 10−2, bottom: ε = 10−1.
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can provide, in simple examples, results on the parameters which are consistent
with the physical values.

Section 7.2 will be devoted to the development of explicit estimates for the
specific example of the spin–orbit model given by (7.1) with the perturbing function
as in (7.2). Its unperturbed Hamiltonian satisfies the non–degeneracy condition
(7.4), being ∂2h(y)

∂y2
= 1. To apply the KAM theorem it is required that the frequency

of the motion, say ω, satisfies a diophantine condition of type (C, τ) for some
C ∈ R+, τ ≥ 1; therefore we assume that for any integers p and q, relatively
coprime, with q �= 0, the following inequality is satisfied:∣∣∣∣ω − p

q

∣∣∣∣ ≥ 1
C|q|τ+1

. (7.7)

An example of a diophantine number satisfying (7.7) with τ = 1 is provided by
the golden ratio γ =

√
5−1
2 , for which (7.7) is fulfilled with the best diophantine

constant given by C = 3+
√
5

2 . Being the system described by a one–dimensional,
time–dependent Hamiltonian function, the existence of two invariant tori obtained
through the KAM theorem provides a strong stability property, since the motion
remains confined between such surfaces. We remark that this property is still valid
for a two–dimensional system, since the phase space is four–dimensional and the
two–dimensional KAM tori separate the constant energy surfaces into invariant
regions. On the other hand, the confinement property is no longer valid whenever
the Hamiltonian system has more than two degrees of freedom.

7.2 KAM theory

We present a version of the celebrated KAM theory by providing concrete estimates
in the specific case of the spin–orbit model, following the KAM proof given in [31]
to which we refer for further details (see also [28]). The goodness of the method
strongly depends on the choice of the initial approximation which can be explicitly
computed as a suitable truncation of the Taylor series expansion in the perturbing
parameter. We also discuss how to choose the (irrational) rotation number, among
those satisfying the diophantine condition. In order to obtain optimal results, it
is convenient to use a computer to determine the initial approximation as well as
to check the estimates provided by the theorem. The so–called interval arithmetic
technique allows us to keep control of the numerical errors introduced by the ma-
chine. We also review classical and computer–assisted results of KAM applications
in Celestial Mechanics.

7.2.1 The KAM theorem

The spin–orbit Hamiltonian associated to (7.1) can be written as the nearly–
integrable Hamiltonian function

H(y, x, t) =
y2

2
+ εf(x, t) , (7.8)
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where y ∈ R, (x, t) ∈ T2, the perturbing function f = f(x, t) is assumed to be a
periodic analytic function and the positive real number ε represents the perturbing
parameter. Hamilton’s equations associated to (7.8) can be written as the second–
order differential equation

ẍ + εfx(x, t) = 0 . (7.9)

Definition. A KAM torus for (7.9) with rotation number ω is a two–dimensional
invariant surface, described parametrically by

x = ϑ + u(ϑ, t) , (ϑ, t) ∈ T2 , (7.10)

where u = u(ϑ, t) is a suitable analytic periodic function such that

1 + uϑ(ϑ, t) �= 0 for all (ϑ, t) ∈ T2 (7.11)

and where the flow in the parametric coordinate is linear, namely ϑ̇ = ω.

Notice that the requirement (7.11) ensures that (7.10) is a diffeomorphism. In this
Section we want to prove the following KAM result.

Theorem. Given the spin–orbit Hamiltonian (7.8) and having fixed for the unper-
turbed system a diophantine frequency ω satisfying (7.7), if ε is sufficiently small
there still exists a KAM torus with frequency ω.

D ≡ ω
∂

∂ϑ
+

∂

∂t
. (7.12)

We remark that for any function g = g(ϑ, t) the inversion of the operator D provides

(D−1g)(ϑ, t) =
∑

(n,m)∈Z2\{0}

ĝnm
i(ωn + m)

ei(nϑ+mt) ,

which provokes the appearance of the small divisors ωn+m. Notice that from the
second equation in (7.1) we obtain that

y = ω + Du(ϑ, t) .

Inserting the parametrization (7.10) in (7.9) and using the definition (7.12), one
obtains that the function u must satisfy the differential equation

D2u(ϑ, t) + εfx(ϑ + u(ϑ, t), t) = 0 . (7.13)

To prove the existence of an invariant surface with rotation number ω is equivalent
to find a solution of equation (7.13). This goal is achieved by implementing a
Newton’s method as follows. Let v = v(ϑ, t) be an approximate solution of (7.13)
with an error term η = η(ϑ, t):

D2v(ϑ, t) + εfx(ϑ + v(ϑ, t), t) = η(ϑ, t) . (7.14)

Let us introduce the partial derivative operator D as
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We assume that M ≡ 1 + vϑ(ϑ, t) �= 0 for all (ϑ, t) ∈ T2. We want to determine
a new approximate solution v′ = v′(ϑ, t) which satisfies (7.13) with an error η′ =
η′(ϑ, t) quadratically smaller, namely

D2v′(ϑ, t) + εfx(ϑ + v′(ϑ, t), t) = η′(ϑ, t) , (7.15)

where |η′| = O(|η|2). This task can be accomplished through the following Lemma
(see [26]).

Lemma (New approximation). Let z be a solution of the equation

D(M2Dz) = −Mη . (7.16)

Let
w ≡Mz , v′ ≡ v + w ;

then v′ satisfies (7.15) with
η′ = ηϑz + q1 (7.17)

and
q1 = εfx(ϑ + v + w, t)− εfx(ϑ + v, t)− εfxx(ϑ + v, t)w . (7.18)

Proof. We first remark that taking the derivative of (7.14) with respect to ϑ one
has

D2M+ εfxx(ϑ + v, t)M = ηϑ . (7.19)

By (7.15) and (7.17) one has

D2v + D2(Mz) + εfx(ϑ + v, t) + εfxx(ϑ + v, t)Mz = ηϑz ;

using (7.19) and (7.14), one obtains

D2(Mz)− (D2M) z = −η . (7.20)

Multiplying (7.20) by M one can easily recognize that the function z must solve
(7.16). �
The solution z is obtained from (7.16) in the form

z ≡ D−1
(
M−2[c0 −D−1(Mη)]

)
+ c1 , (7.21)

where c0 and c1 are suitable constants which take the following expressions:

c0 ≡ 〈M−2〉−1 〈M−2D−1(Mη)〉

c1 ≡ −〈M−1〉〈MD−1
(
M−2[c0 −D−1(Mη)]

)
〉 , (7.22)

so that w has zero average. Let us introduce the complex domain

Δξ,ρ ≡ {(ϑ, t, ε) ∈ C3 : |Im(ϑ)| ≤ ξ , |Im(t)| ≤ ξ , |ε| ≤ ρ} ;

then, for a function g = g(ϑ, t; ε) we define the norm

‖g‖ξ,ρ ≡ sup
Δξ,ρ

|g(ϑ, t; ε)| .

Now we need a technical lemma which provides bounds on the derivatives of a
function g = g(ϑ, t; ε), whose Fourier series expansion is given by g(ϑ, t; ε) =∑

(n,m)∈Z2 ĝnme
i(nϑ+mt).
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Lemma (Bounds on derivatives). Let g = g(ϑ, t; ε) be an analytic function on
the domain Δξ,ρ. Then, for any 0 < δ ≤ ξ, one has

‖gϑ‖ξ−δ,ρ ≤ ‖g‖ξ,ρ δ−1 . (7.23)

Moreover, if 〈g〉 = 0 and ∂�
ϑ denotes the derivative of order � with respect to ϑ,

then for � = 0, 1,
‖∂�

ϑD
−1g‖ξ−δ,ρ ≤ σ�(2δ)‖g‖ξ,ρ ,

where

σ�(δ) ≡ 2

⎡
⎣ ∑
(n,m)∈Z2\{0}

(
|n|�

ωn + m

)2

e−δ(|n|+|m|)

⎤
⎦
1/2

. (7.24)

Proof. Given a holomorphic function g = g(ϑ, t; ε) defined on Δξ,ρ, the estimate
(7.23) is obtained through Cauchy’s integral formula, i.e.

‖gϑ‖ξ−δ,ρ = ‖ 1
2πi

∮
|ϑ−γ|=δ

g(γ, t; ε)
(ϑ− γ)2

dγ‖ξ−δ,ρ ≤ ‖g‖ξ,ρ δ−1 .

Under the condition 〈g〉 = 0, from the maximum principle and Schwarz inequality
one obtains

‖∂�
ϑD

−1g‖ξ−δ,ρ =

∥∥∥∥∥∥
∑

(n,m)∈Z2\{0}
ĝnm

n�

ωn + m
ei(nϑ+mt)

∥∥∥∥∥∥
ξ−δ,ρ

≤ sup
|ε|≤ρ

∑
k1,k2∈{−1,1}

∣∣∣∣∣∣
∑

(n,m)∈Z2\{0}
ĝnm

n�

ωn + m
e(k1n+k2m)(ξ−δ)

∣∣∣∣∣∣
≤ sup

|ε|≤ρ

∑
(n,m)∈Z2\{0}

|ĝnm|

⎛
⎝ ∑

k1,k2∈{−1,1}
e2(k1n+k2m)ξ

⎞
⎠

1
2

e−δ(|n|+|m|) |n|�
|ωn + m|

≤ σ�(2δ)‖g‖ξ,ρ ,

with σ�(2δ) defined according to (7.24). �
We introduce the quantities V , V1, M , M̃ , E, s�(δ) as the following upper bounds:

‖v‖ξ,ρ ≤ V , ‖vϑ‖ξ,ρ ≤ V1 , ‖M‖ξ,ρ ≤M ,

‖M−1‖ξ,ρ ≤ M̃ , ‖η‖ξ,ρ ≤ E , ‖σ�(δ)‖ξ,ρ ≤ s�(δ) .

One obtains that

M̃−2 ≤ ‖M2‖ξ,ρ ≤M2 , M−2 ≤ ‖M−2‖ξ,ρ ≤ M̃2 , ‖〈M−2〉−1‖ξ,ρ ≤M2 .

From (7.22), one finds that c0, c1 can be bounded as

‖c0‖ξ,ρ ≤ M3M̃2s0(2ξ)E

‖c1‖ξ,ρ ≤ MM̃3s0(ξ)
[
M3M̃2s0(2ξ)E + Ms0(ξ)E

]
.
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Having introduced the quantities

a ≡ (MM̃s0(δ))2
[

1 + (MM̃)2
s0(2ξ)
s0(δ)

+ MM̃

(
s0(ξ)
s0(δ)

)2(
1 + (MM̃)2

s0(2ξ)
s0(ξ)

)]

b ≡ aV1
M

δ−1 + a
s1(δ)
s0(δ)

,

from the definition of z in (7.21) one finds the following bounds W on w and W1

on the derivative of w with respect to ϑ:

‖w‖ξ−δ,ρ ≤ Ea ≡W

‖wϑ‖ξ−δ,ρ ≤ Eb ≡W1 .

The first inequality follows from ‖w‖ξ−δ,ρ ≤M‖z‖ξ−δ,ρ and from the estimate

‖z‖ξ−δ,ρ ≤ ‖c1‖ξ,ρ + s0(δ)M̃2(‖c0‖ξ,ρ + s0(δ)ME) .

Similar computations hold for ‖wϑ‖ξ−δ,ρ. Finally, from (7.17) and (7.18) one obtains
a bound E1 on the new error term as

‖η′‖ξ−δ,ρ ≤ E2

(
aδ−1

M
+

a2F

2

)
≡ E1 ,

where F ≡ ‖εfxxx‖ξ−δ+V+W,ρ.
Let us assume that we start from a given initial approximation v(0) satisfy-

ing (7.14) with an error term η(0); we construct the solution at the jth step, say
v(j), by an iterative application of the New approximation Lemma starting from
the initial solution v(0). Let M (j), M̃ (j), E(j), W (j), W (j)

1 be the bounds corre-
sponding to the solution v(j). From the previous estimates and definitions, the
bounds for the solution v(j+1) are obtained through the following Lemma which
provides the KAM algorithm needed to construct bounds on the new approximate
solution.

Lemma (KAM algorithm). Let ξ0 > 0, ξj ≡ ξ0
2j and let δj ≡

ξ0
2j+1 . Given the

following quantities referring to the solution v(j) on the domain with parameters
ξj, δj: M (j), M̃ (j), E(j), W (j), W (j)

1 , we define the bounds corresponding to the
solution v(j+1) as follows:
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M (j+1) ≡ M (j) + W
(j)
1

M̃ (j+1) ≡ M̃

(
1− M̃

j∑
i=0

W
(i)
1

)−1
if

j∑
i=0

W
(i)
1 < 1

M̃ (j+1) ≡ ∞ if
j∑

i=0

W
(i)
1 ≥ 1

E(j+1) ≡ (E(j))2
(
a(j)δ−1j

M (j)
+

(a(j))2F
2

)

W (j+1) ≡ E(j+1)a(j+1)

W
(j+1)
1 ≡ E(j+1)b(j+1) .

One can iterate the above algorithm for a finite number of steps; the convergence
to the true solution of equation (7.13) is obtained once a suitable KAM condition is
satisfied. To this end, let us premise the following Lemma which provides a bound
on the quantity σ�(δ) introduced in (7.24).

Lemma (Bound on σ�(δ)). Let 0 < δ ≤ 1
2 ; for � = 0, 1, if k� ≡ τ + � + 1, then

σ�(δ) < K�Cδ
−k� , (7.25)

where K0 ≡ 25
2 (Γ(2τ+1)

π )1/2, K1 ≡ K0

√
(2τ + 2)(2τ + 1), with Γ being the Euler’s

gamma function.

Proof. For t ≥ 1 and 0 < δ ≤ 1
2 , one has∑

n∈Z

|n|te−δ|n| < 2e
1
2 Γ(t + 1)δ−(t+1) .

Being1 C > 2 and τ ≥ 1, one finds

σ�(δ) < 2

⎛
⎝∑

m�=0

e−δ|m|

m2
+ C2

∑
n�=0

|n|2τ+2�e−δ|n|∑
m

e−δ|m|

⎞
⎠

< 2
(

2
δ

+ 2C2(1 +
√
e)
√
e Γ(2(τ + �) + 1) δ−2(τ+�+1)

) 1
2

< 2C(1 + 2(1 +
√
e)
√
e)

1
2 (Γ(2(τ + �) + 1))

1
2 δ−(τ+�+1) ,

which gives (7.25). �
Finally, let v, η satisfy (7.14); for some ξ∗ > 0, ρ > 0, let E ≡ ‖η‖ξ∗,ρ,
M ≡ ‖M‖ξ∗,ρ, M̃ ≡ ‖M−1‖ξ∗,ρ, F ≡ ‖fxxx‖ξ∗+V,ρ. The convergence of the se-
quence of approximate solutions to the solution of (7.13) is obtained through the

frequency ω, provided ε is sufficiently small (compare with (7.28) below).

1 The smallest value of the diophantine constant corresponds to the golden ratio
√

5−1
2

and it amounts to C ≡ 3+
√

5
2

� 2.618.

following result, which gives the persistence of the invariant torus with diophantine
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Proposition (KAM condition). Let ξ∗ > 0, ρ > 0 and let β0, β1, β2, η0, η1, η2
be positive constants defined as follows:

β0 ≡
(
MM̃ K0C

(
4
ξ∗

)k0
)2 [

1 + (MM̃)2
1

8k0
+ MM̃

(
1
4

)2k0(
1 + (MM̃)2

1
2k0

)]

β1 = (MM̃C)224k0+3ξ−2k0−1∗ K1K0

·
[

1 + (MM̃)2
1

8k0
+ MM̃

(
1
4

)2k0(
1 + (MM̃)2

1
2k0

)]

β2 =
4β0
ξ∗

+
β20F

2
η0 = 22k0 , η1 = 22k0+1 , η2 = max(2η0, η20) . (7.26)

Defining
K ≡ 2M̃β1(1 + 2η1β2η2) , (7.27)

if
K E < 1 , (7.28)

then (7.13) has a unique solution u, with 〈u〉 = 〈v〉 and

‖u− v‖ ξ∗
2 ,ρ < KE ξ∗

4

‖uϑ − vϑ‖ ξ∗
2 ,ρ <

KE
2M̃

. (7.29)

Proof. Define the sequences {ξ(j)∗ }, {δj}, j ∈ Z+, as ξ(j)∗ = ξ∗
2 + ξ∗

2j+1 , δj = ξ∗
2j+2 .

Under the assumption (7.28), for a suitable K0 < K one has the following relations,
valid for any j ≥ 0:

E(j) < (K0E)2
j

ξ
(j)
∗ + V (j) ≤ ξ∗ + V

M̃ (j) ≤ 2M̃ , (7.30)

where V (j) is an upper bound on v(j). The first of (7.30) implies that the sequence
of the error terms {E(j)}j∈Z+ converges to zero. Moreover, from the second of
(7.30) we get that the sequence of approximate solutions {v(j)}j∈Z+ tends to a
unique solution u. The third equation in (7.30) is equivalent to

M̃

j−1∑
i=0

W
(i)
1 ≤ 1 . (7.31)

The proof of the validity of (7.30) and (7.31) can be done by induction on j. It
is readily seen that these relations are valid for j = 0. Assume they are true for
1, .., j; we want to prove that (7.30) and (7.31) are valid for j + 1. We first show
that the following inequalities hold:
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E(i+1) ≤ (E(i))2β2ηi2
W (i) ≤ E(i)β0η

i
0

W
(i)
1 ≤ E(i)β1η

i
1 , (7.32)

where the real constants β0, β1, β2, η0, η1, η2 are defined as in (7.26). Let
A(i) ≡ β0η

i
0; we prove the first in (7.32) through the following chain of inequalities:

E(i+1) ≤ (E(i))2
(
A(i) 2i+2

ξ∗
+

(A(i))2F
2

)

≤ (E(i))2
(

4β0(2η0)i

ξ∗
+

β20η
2i
0 F

2

)
≤ (E(i))2β2ηi2 .

Concerning the second relation in (7.32) one has

W (i) ≤ E(i)A(i) = E(i)β0η
i
0 .

Finally, the third inequality in (7.32) is obtained as follows:

W
(i)
1 ≤ E(i)A(i) 2i+2

ξ∗

(
1 +

K1

K0

)
≤ E(i)β1η

i
1 .

The first relation in (7.32) yields the first in (7.30): setting

K0 ≡ β2η2 ,

one has

E(j+1) ≤ E2j+1
j∏

i=0

(β2η
j−i
2 )2

i

= E2j+1
[
β

Pj+1
i=1

1
2i

2 η
Pj+1

i=1
i−1
2i

2

]2j+1

< (K0E)2
j+1

.

Let K satisfy the inequality √
25β0η0ξ−1∗ K0 ≤ K , (7.33)

from the second relation in (7.32) and from (7.28) we obtain

j∑
i=0

W (i) < β0E + β0

∞∑
i=1

ηi0(K0E)2
i

< β0E + β0(K0E)2η0

(
1 +

1
log 1

K0E
√
η0

)

< KE ξ∗
4
< ξ∗

(
1
2
− 1

2j+2

)
, (7.34)
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due to the following estimates:

β0E <
ξ∗
25
K0E , β0(K0E)2η0 ≤

(KE)2ξ∗
25

, K0E
√
η0 <

KE
210

.

Since

V (j+1) ≡ V +
j∑

i=0

W (i) ,

one obtains the second of (7.30). From the third in (7.32) and from K0E
√
η1 <

KE
29

we get

2M̃
j∑

i=0

W
(i)
1 = 2M̃

j∑
i=0

E(i)β1η
i
1

< 2M̃β1E + 2M̃β1(K0E)2η1

(
1 +

1
log 1

K0E
√
η1

)

< 2M̃β1E + 4M̃β1(K0E)2η1 ; (7.35)

if
2M̃β1 + 4M̃β1η1K0 ≤ K , (7.36)

one obtains (7.31). Notice that K is determined by the inequalities (7.33) and
(7.36); these inequalities are satisfied provided

K ≡ max{
√

25β0η0ξ−1∗ β2η2, 2M̃β1(1 + 2η1β2η2)} ,

which is equivalent to (7.27). Finally, (7.34) and (7.35) imply (7.29). �
Remark. Let us consider the general case of a Hamiltonian function with n degrees
of freedom:

H(y, x) = h(y) + εf(y, x) , y ∈ Rn , x ∈ Tn .

The equations of motion are

ẋ = hy(y) + εfy(y, x)

ẏ = −εfx(y, x) . (7.37)

A KAM torus with rotation vector ω is defined by the parametric equations

x(ϑ) = ϑ + u(ϑ)
y(ϑ) = v(ϑ) , (7.38)

where ϑ ∈ Tn with ϑ̇ = ω and u, v are suitable vector functions. Let us introduce
the operator D ≡ ω ∂

∂ϑ . Inserting (7.38) in (7.37), one finds that u and v must
satisfy the following quasi–linear partial differential equations on Tn:

ω + Du− hy(v)− εfy(v, ϑ + u) = 0

Dv + εfx(v, ϑ + u) = 0 . (7.39)

The KAM proof is obtained by solving (7.39) through a Newton iteration method,
extending the procedure as it was described for finding the solution of (7.13).
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7.2.2 The initial approximation and the estimate of the error term

The initial approximation v ≡ v(0) (see (7.14)) of the KAM theorem can be ob-
tained taking advantage of the analyticity of the KAM surfaces with respect to the
perturbing parameter in a neighborhood of the origin [139–141]). We consider the
parametrization (7.10), where the function u = u(ϑ, t) depends parametrically on
ε and therefore we denote it as u = u(ϑ, t; ε). Let us expand u in power series as

u(ϑ, t; ε) =
∞∑
k=1

uk(ϑ, t) εk . (7.40)

In the case of the spin–orbit problem the coefficients uk can be recursively computed
as follows. Write equation (7.13) with the perturbation given by (7.2) as

D2u + ε

N2∑
m�=0,m=N1

W

(
m

2
, e
)

sin(2ϑ + 2u−mt) = 0 . (7.41)

For u expanded as in (7.40), define the power series

ei(2ϑ+2u) ≡
∞∑

n=0

cn(ϑ, t) εn , (7.42)

for some unknown complex coefficients cn which can be determined as follows.
Differentiating (7.42) with respect to ε and using the series expansion (7.40), one
obtains

2i
∞∑
k=1

kukε
k−1 ·

∞∑
j=0

cjε
j =

∞∑
n=1

ncnε
n−1 .

Equating same powers of ε one obtains:

c0(ϑ, t) ≡ e2iϑ

cn(ϑ, t) ≡ 2i
n

n∑
k=1

kukcn−k . (7.43)

Finally, (7.41) can be written as

D2u = − 1
2i

∞∑
n=1

εn

⎡
⎣ N2∑
m�=0,m=N1

W

(
m

2
, e
)

(e−imtcn−1 − eimtcn−1)

⎤
⎦ ,

where the bar denotes complex conjugacy. A recursive relation defining the func-
tions un is obtained comparing the terms of the same order in ε:

un(ϑ, t) ≡ − 1
2i

D−2

⎡
⎣ N2∑
m�=0,m=N1

W

(
m

2
, e
)

(e−imtcn−1 − eimtcn−1)

⎤
⎦ . (7.44)
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Notice that un depends on the previous functions u1, . . . , un−1. The initial approx-
imation can be obtained as the finite truncation up to a suitable order k0 (for some
positive integer k0) of the series expansion (7.40):

v(0)(ϑ, t; ε) ≡
k0∑
k=1

uk(ϑ, t) εk . (7.45)

To give a concrete example, let us assume that the perturbing function in (7.2) is
given by

f(x, t) ≡ e
4

cos(2x− t)−
(

1
2
− 5

4
e2
)

cos(2x− 2t)

− 7
4

e cos(2x− 3t)− 17
4

e2 cos(2x− 4t) .

Then, the first two approximating functions u1(ϑ, t) and u2(ϑ, t) are given by the
following expressions:

u1(ϑ, t) =
−e

2(2ω − 1)2
sin(2ϑ− t) +

(1− 5
2e2)

(2ω − 2)2
sin(2ϑ− 2t) +

+
7e

2(2ω − 3)2
sin(2ϑ− 3t) +

17e2

2(2ω − 4)2
sin(2ϑ− 4t)

and

u2(ϑ, t) =
[
− e

2(2ω − 1)2
+

4e
(2ω − 2)2

− 7e
2(2ω − 3)2

]
sin t +

+
1
4

[
− 7e2

4(2ω − 1)2
+

17e2

2(2ω − 2)2
+

7e2

4(2ω − 3)2
− 17e2

2(2ω − 4)2

]
sin 2t

+
e2

4(2ω − 1)2
sin(4ϑ− 2t)
(4ω − 2)2

+
[
− e

2(2ω − 2)2
− e

2(2ω − 1)2

]
sin(4ϑ− 3t)
(4ω − 3)2

+

+
[

1− 5e2

(2ω − 2)2
− 7e2

4
(

1
(2ω − 1)2

+
1

(2ω − 3)2
)
]

sin(4ϑ− 4t)
(4ω − 4)2

+

+
[

7e
2(2ω − 2)2

+
7e

2(2ω − 3)2
+
]

sin(4ϑ− 5t)
(4ω − 5)2

+

+
[

17e2

2(2ω − 2)2
+

49e2

4(2ω − 3)2
+

17e2

2(2ω − 4)2

]
sin(4ϑ− 6t)
(4ω − 6)2

.

To implement the KAM algorithm and to check the KAM condition, it is necessary
to provide explicit estimates on some quantities, like the initial approximation, its
derivative, the error term, etc. The most difficult task is the estimate of the error
function |η(0)|ξ,ρ (for some positive parameters ξ, ρ) associated to a given initial
approximation v(0), which can be constructed by means of the recursive formulae
(7.43), (7.44). The estimate of η(0) can be obtained through the following Lemma
(see also [27]).
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Lemma (Estimate of the error term). Let v(0)(ϑ, t; ε) ≡
k0∑
k=1

uk(ϑ, t) εk for

some positive integer k0 and let η ≡ η(0) satisfy (7.14) with v ≡ v(0). For some
positive parameters ξ, ρ, let S(0) ≡ ‖v(0)‖ξ,ρ, Uk ≡ ‖uk‖ξ,ρ and F̄ ≡ ‖fx‖ξ,ρ.
Define recursively the sequences {αj}, {βj} as

α0 = 1

αj =
2
j

j∑
k=1

kUkαj−k , j ≥ 1

and

β0 = 1

βj = −2
j

j∑
k=1

kUkβj−k , j ≥ 1 .

Then, setting

a = e2S
(0) −

k0−1∑
j=1

αjρ
j

b = e−2S
(0) −

k0−1∑
j=1

βjρ
j ,

the error term is estimated as

‖η(0)‖ξ,ρ = F̄

√
a2 + b2

2
.

We remark that in concrete applications the convergence of the KAM algorithm is
improved as the order k0 of the initial approximation (7.45) gets larger. Indeed, let
us denote by ε

(k0)
KAM = ε

(k0)
KAM (ω) the lower bound provided by the KAM theorem

on the persistence of the invariant torus with frequency ω, starting from the initial
approximation (7.45) truncated at the order k0. We report in Table 7.1 some results
associated to (5.19) for the frequency ω = 1+ 1

2+
√
5−1
2

; the results concern the values

Table 7.1. The threshold ε
(k0)
KAM (ω) as a function of the order k0 of the initial approxi-

mation.

k0 ε
(k0)
KAM (ω)

1 2 · 10−5

5 1.5 · 10−3

10 4.1 · 10−3

15 6 · 10−3

20 6.6 · 10−3

25 7.5 · 10−3

30 8.2 · 10−3
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ε
(k0)
KAM (ω) as the order k0 of the initial approximation increases (here we selected
ξ = 0.05). We remark that the relative improvement of the threshold ε

(k0)
KAM (ω) is

higher as k0 is small, while it gets smaller as k0 increases.

7.2.3 Diophantine rotation numbers

One of the assumptions which is required to apply the KAM theorem is that the
frequency of the motion must satisfy the diophantine condition (7.6). Moreover, we
recall that the KAM estimates depend on the value of the diophantine constant
(see, e.g., (7.26), (7.27), (7.28)) and a proper choice of the frequency certainly im-
proves the performances of the theorem. In this section we review some results from
number theory concerning the choice of diophantine numbers and the computation
of the corresponding diophantine constants.

We start by introducing the continued fraction expansion of a positive real
number α defined as the sequence of positive integer numbers a0, a1, a2, . . . , such
that

α ≡ a0 +
1

a1 + 1
a2+

1
a3+...

, aj ∈ Z+ . (7.46)

Using standard notation, we shall write

α ≡ [a0; a1, a2, a3, . . . ] .

A rational number has a finite continued fraction expansion, while irrationals have
an infinite continued fraction expansion. For any irrational number α there exists
an infinite approximant sequence of rational numbers, say {pn

qn
}n∈Z+ , such that pn

qn

converges to α as n goes to infinity. Each pn
qn

can be obtained as the truncation to
the order n of the continued fraction expansion (7.46):

p0
q0

= a0

p1
q1

= a0 +
1
a1

p2
q2

= a0 +
1

a1 + 1
a2

. . .

For the golden number γ =
√
5−1
2 , the rational approximants are given by the ratio

of the Fibonacci’s numbers:

0
1
,

1
1
,

1
2
,

2
3
,

3
5
,

5
8
,

8
13

,
13
21

,
21
34

, . . .

A bound on how close the rational numbers pn
qn

approximate α is given by the
following inequalities:

1
qn(qn + qn+1)

<

∣∣∣∣α − pn
qn

∣∣∣∣ ≤ 1
qnqn+1

.
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Definition. An algebraic number ω is a solution of a polynomial Pn(z) of degree
n with integer coefficients, say c0, . . . , cn:

Pn(z) = cnz
n + cn−1zn−1 + · · ·+ c1z + c0 , (7.47)

provided ω is not a solution of a polynomial of lower degree with integer coefficients.
A quadratic number is an algebraic number of degree 2. An irrational number α
is called a noble number if the terms of its continued fraction expansion (7.46) are
definitely one, namely there exists an integer N such that ak = 1 for all k > N . In
this case we write

α ≡ [a0; a1, . . . , aN , 1∞] ;

the number [a0; a1, . . . , aN ] is called the head of the noble number.

Noble numbers are a subset of the quadratic irrationals, which are in turn a subset
of the algebraic irrationals. By a theorem due to Liouville one can show that an
algebraic number is diophantine [104].

Theorem (Liouville). Let ω be an algebraic number of degree n; then ω satisfies
the diophantine condition (7.7) for some positive constant C and for τ = n− 1.

Proof. Let ω be a root of (7.47) so that we can write

Pn(z) = (z − ω)Pn−1(z) , (7.48)

for a suitable polynomial Pn−1(z) of degree n− 1. It is Pn−1(ω) �= 0, otherwise we
could write Pn(z) = (z − ω)2Pn−2(z) for some polynomial Pn−2(z). In this case
d
dzPn(ω) = 0, in contrast to the assumption that ω is an algebraic number of degree
n, being d

dzPn(z) a polynomial of degree n− 1 with integer coefficients. Therefore
there exists δ > 0 such that Pn−1(z) �= 0 for any |z − ω| ≤ δ. If p, q are integer
numbers such that |ω − p

q | ≤ δ, from (7.48) we can write

p

q
− ω =

Pn(p
q )

Pn−1(p
q )

=
c0q

n + c1pq
n−1 + · · ·+ cnp

n

qnPn−1(p
q )

. (7.49)

The numerator of the last expression in (7.49) is an integer greater or equal than
one; let

M ≡ sup
|z−ω|≤δ

|Pn−1(z)| .

Then we obtain ∣∣∣∣pq − ω

∣∣∣∣ ≥ 1
Mqn

.

On the other hand, if |pq − ω| > δ, then |pq − ω| > δ
qn , so that (7.7) is satisfied by

defining

C ≡
(

min
(
δ,

1
M

))−1
. �
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We stress that there exist diophantine numbers which are not algebraic numbers.
The set of diophantine numbers with constant C and exponent τ , say D(C, τ),
has measure one as C tends to zero. For example, the measure μ(D(C, τ)c) of the
complement D(C, τ)c of the set D(C, τ) in the interval [0, 1] can be computed as
follows. For any coprime integers m, n, one has

μ(D(C, τ)c) =
∞∑

n=1

n∑
m=1

C

nτ+1
= C

∞∑
n=1

φ(n)
nτ+1

= C
ζ(τ)

ζ(τ + 1)
,

where φ(n) is the Euler function and ζ(τ) is the Riemann zeta function. In con-
clusion, μ(D(C, τ)c) tends to zero as C tends to zero for any τ ≥ 1. The set of
diophantine numbers is the union of the sets D(C, τ) for any positive C and τ .

7.2.4 Trapping diophantine numbers

For Hamiltonian systems like the spin–orbit problem, the KAM tori separate the
phase space into invariant regions. One can make use of this property to trap
periodic orbits between two KAM tori with suitable rotation numbers bounding
the frequency of the periodic orbit from above and below. In this section we address
the question concerning the choice of the bounding rotation numbers. In particular,
the stability of the resonance of order p : q (for some integers p, q with q �= 0) can
be inferred by proving the existence of a pair of invariant tori with frequency
bounding the p : q resonance from above and below. Having in mind an application
of KAM theorem to the spin–orbit problem, we focus our attention on the 1:1 and
3:2 resonances. Let the golden ratio be γ =

√
5−1
2 ; a possible choice of trapping

diophantine numbers for p = q = 1 is given by the sequences of noble numbers
defined as

Γk ≡ [0; 1, k − 1, 1∞] ≡ 1 − 1
k + γ

,

Δk ≡ [1; k, 1∞] ≡ 1 +
1

k + γ
, k ≥ 2 . (7.50)

Both Γk and Δk converge to one from below and above, respectively, and have the
property that for all k, |Γk − 1| = |Δk − 1|. Notice that Γk and Δk are noble
algebraic numbers of degree two, since they are roots of the polynomials

PΓk
(x) ≡ 4(k4 − 2k3 − k2 + 2k + 1)x2 − 4(2k4 − 6k3 + k2 + 5k + 1)x +

+ 4k4 − 16k3 + 12k2 + 8k − 4

and

PΔk
(x) ≡ 4(k4 − 2k3 − k2 + 2k + 1)x2 − 4(2k4 − 2k3 − 5k2 + 3k + 3)x +

+ 4k4 − 12k2 + 4 .

We remark that noble tori are conjectured to be the last surfaces to disappear in any
interval of rotation numbers ([124, 125, 148], see also [62]). Numerical experiments
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on the standard and quadratic maps [124] show that noble tori are locally the most
robust in the sense that

(i) for any critical (i.e., close to breakdown) noble surface of rotation number ω,
there exists an interval around ω containing no other invariant tori;

(ii) let Tε(α) be a critical non–noble torus; then in any interval around α there
always exists a non–critical noble.

Concerning the 3:2 resonance we can consider the trapping rotation numbers

Γ′k ≡ 3
2
− 1

k + γ
,

Δ′k ≡ 3
2

+
1

k + γ
, k ≥ 2 , (7.51)

converging to 3
2 from below and above, respectively, and with |Γ′k − 3

2 | = |Δ′k − 3
2 |

for any k. Notice that Γ′k and Δ′k are not necessarily noble numbers, but they are
second–order algebraic numbers, since they are roots of the polynomials

PΓ′
k
(x) ≡ 4(k4 − 2k3 − k2 + 2k + 1)x2 − 4(3k4 − 8k3 + 7k + 2)x

+ 9k4 − 30k3 + 13k2 + 20k − 1

and

PΔ′
k
(x) ≡ 4(k4 − 2k3 − k2 + 2k + 1)x2 − 4(3k4 − 4k3 − 6k2 + 5k + 4)x

+ 9k4 − 6k3 − 23k2 + 8k + 11 .

The computation of the diophantine constant C for the numbers Γk, Δk, Γ′k, Δ′k
can be performed as follows.

Proposition. Let Γk, Δk, Γ′k, Δ′k be as in (7.50), (7.51); then for any k ≥ 2 the
corresponding diophantine constants are, respectively,

k + γ, k + γ, 4(k + γ), 4(k + γ) .

Proof. Let us provide the details for the derivation of the diophantine constant
associated to Δk; the computations for the other numbers follow easily. We want
to show that∣∣∣∣

(
1 +

1
k + γ

)
− p

q

∣∣∣∣ ≥ 1
(k + γ)q2

for all p, q ∈ Z, q �= 0 ,

which is equivalent to require that∣∣∣∣ 1
k + γ

− p

q

∣∣∣∣ ≥ 1
(k + γ)q2

for all p, q ∈ Z , q �= 0 . (7.52)
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The rational approximants to 1
k+γ are given by

{
pj
qj

}
j≥0

≡
{

αj

αjk + αj−1

}
j≥0

,

j

α0 = 1, α1 = 1, . . . , αj+1 = αj + αj−1 for all j ≥ 1 ;

then, it is sufficient to show (7.52) with p
q replaced by the approximant αj

αjk+αj−1
,

namely∣∣∣∣ 1
k + γ

− αj

αjk + αj−1

∣∣∣∣ ≥ 1
(k + γ)(αjk + αj−1)2

for all k ≥ 2 . (7.53)

From (7.53) one gets the inequality∣∣∣∣1 − αj(k + γ)
αjk + αj−1

∣∣∣∣ ≥ 1
(αjk + αj−1)2

,

which is equivalent to ∣∣∣∣γ − αj−1
αj

∣∣∣∣ ≥ 1
α2
j (k + αj−1

αj
)
.

Since
k +

αj−1
αj

≥ 2 +
αj−1
αj

,

it is sufficient to show that∣∣∣∣γ − αj−1
αj

∣∣∣∣ ≥ 1
α2
j (2 + αj−1

αj
)
.

Defining Aj by the equality ∣∣∣∣γ − αj−1
αj

∣∣∣∣ ≡ 1
Ajα2

j

,

it is readily seen that
Aj = γ + 1 +

αj−1
αj

; (7.54)

therefore we get that∣∣∣∣γ − αj−1
αj

∣∣∣∣ =
1

α2
j (γ + 1 + αj−1

αj
)
≥ 1

α2
j (2 + αj−1

αj
)
,

since
2 +

αj−1
αj

≥ γ + 1 +
αj−1
αj

.

where the α ’s are the Fibonacci’s numbers defined via the recursive relation
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Applying the same procedure one proves that∣∣∣∣Γk − p

q

∣∣∣∣ ≥ 1
(k + γ)q2

for all p, q ∈ Z , q �= 0 , k ≥ 2 ,

where the sequence of rational approximants to Γk is given by{
αj(k − 1) + αj−1

αjk + αj−1

}
.

Analogous considerations hold for Γ′k and Δ′k. �
We remark that for the golden ratio equation (7.54) implies that the diophantine
constant is equal to C = 3+

√
5

2 .

7.2.5 Computer–assisted proofs

The computation of the initial approximation and the control of the KAM algo-
rithm usually require the use of a computer, due to the high number of operations
involved. However, the computer introduces rounding–off and propagation errors.
In order to leave unaltered the rigorous character of the result, one can keep track of
the computer rounding–off errors through the application of the so–called interval
arithmetic technique [60,106], whose implementation is briefly explained as follows.
The computer stores real numbers using a sign–exponent–fraction representation;
the number of digits in the fraction and the exponent varies with the machine. The
result of any elementary operation, i.e. sum, subtraction, multiplication and divi-
sion, usually produces an approximation of the true result; other calculations, like
exponent, square root, logarithm, etc., can be reduced to a sequence of elementary
operations through a Taylor series expansion. The idea of the interval arithmetic
technique is to represent any real number as an interval and to perform elemen-
tary operations on intervals, rather than on real numbers. For example, suppose
we perform the sum of two numbers a and b, which are contained, respectively,
within the intervals [a1, a2] and [b1, b2]. Adding these two intervals one obtains
[c1, c2] ≡ [a1 + b1, a2 + b2]. However, we have to consider that the end–points c1,
c2 of the new interval are themselves produced by an elementary operation and
therefore they are affected by rounding errors. Henceforth one needs to construct a
new interval which gets rid of the fact that c1 and c2 are rounded. This can be done
as follows. Let δ be the limiting precision of the machine (see, e.g., [159]). Then,
multiply c1 by 1∓ δ according to whether c1 is positive or negative and let us call
the final result c− ≡ down(c1). Similarly, to get an upper bound of c2 multiply it
by 1± δ according to whether c2 is positive or negative; let us call the final result
c+ ≡ up(c2). We finally get that a + b ∈ [c−, c+]. The subtraction can be treated
in a similar way.

Concerning the multiplication (as well as the division), one needs to consider
different cases according to the signs of the factors. More precisely, suppose we com-
pute the multiplication a · b, where a and b are represented by the intervals [a1, a2]
and [b1, b2], while the result will be contained in [c−, c+]. We must distinguish the
following cases:
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(1) a1 ≥ 0 and b1 ≥ 0, then c− = down(a1b1), c+ = up(a2b2);
(2) a1 ≥ 0 and b2 ≤ 0, then c− = down(a2b1), c+ = up(a1b2);
(3) a1 ≥ 0 and b1 < 0, b2 > 0, then c− = down(a2b1), c+ = up(a2b2);
(4) a2 ≤ 0 and b1 ≥ 0, then c− = down(a1b2), c+ = up(a2b1);
(5) a2 ≤ 0 and b2 ≤ 0, then c− = down(a2b2), c+ = up(a1b1);
(6) a2 ≤ 0 and b1 < 0, b2 > 0, then c− = down(a1b2), c+ = up(a1b1);
(7) a1 < 0, a2 > 0 and b1 ≥ 0, then c− = down(a1b2), c+ = up(a2b2);
(8) a1 < 0, a2 > 0 and b2 ≤ 0, then c− = down(a2b1), c+ = up(a1b1);
(9) a1 < 0, a2 > 0 and b1 < 0, b2 > 0, then
(9a) let �− = down(a1b2), r− = down(a2b1); if r− < �− then �− = r−;
(9b) let �+ = up(a1b1), r+ = up(a2b2); if r+ > �+ then �+ = r+;

set b1 = �−, b2 = �+.

A similar approach is used to deal with the division. Casting together the ele-
mentary operations on intervals one obtains the implementation of the interval
arithmetic technique, where complex operations are reduced to a sequence of ele-
mentary operations by using their series expansion.

7.3 A survey of KAM results in Celestial Mechanics

7.3.1 Rotational tori in the spin–orbit problem

We consider the spin–orbit problem widely discussed in the previous sections and
we aim to prove the existence of rotational invariant tori, trapping the synchronous
resonance from above and below, thus providing a confinement property of the dy-
namics in the phase space. As a specific example we consider the Earth–Moon
system. In writing the model (7.1)–(7.2) we have neglected all perturbations due
to other celestial bodies as well as dissipative effects. Among the discarded con-
tributions the most important term is due to the tidal torque generated by the
non–rigidity of the satellite. For consistency, we expand the perturbing function in
Fourier–Taylor series, neglecting all terms which are of the same order or less than
the neglected tidal torque. Taking into account that the eccentricity of the Moon
amounts to e = 0.0549, one is led to consider the perturbing function (7.2) with
N1 = 1 and N2 = 7. The corresponding Hamiltonian function reads as

H(y, x, t) ≡ y2

2
− ε

[(
− e

4
+

e3

32

)
cos(2x− t) +

+
(

1
2
− 5

4
e2 +

13
32

e4
)

cos(2x− 2t) +
(

7
4

e− 123
32

e3
)

cos(2x− 3t) +

+
(

17
4

e2 − 115
12

e4
)

cos(2x− 4t) +
(

845
96

e3 − 32 525
1536

e5
)

cos(2x− 5t) +

+
533
32

e4 cos(2x− 6t) +
228 347

7680
e5 cos(2x− 7t)

]
, (7.55)
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where the physical value of the perturbing parameter amounts for the Moon to
ε 
 3.45 · 10−4. The existence of two bounding tori with frequencies Γ40 and Δ40

(see (7.50)) has been proven in [23] by performing the following steps. Compute the
initial approximation (7.45) up to the order k0 = 15; apply the KAM theorem pre-
sented in Section 7.2; implement the interval arithmetic technique. Then, one gets
[23] that the synchronous motion of the Moon is trapped in the region enclosed by
the tori T (Γ40) and T (Δ40), which is shown to be a subset of {(y, x, t) : (x, t) ∈ T2,
0.97 ≤ y ≤ 1.03}.

In a similar way one can prove the stability of the Mercury–Sun system. However,
due to the bigger eccentricity of Mercury, being e = 0.2056, the perturbing function
contains a larger number of terms, so that the corresponding Hamiltonian is given
by

H(y, x, t) ≡ y2

2
− ε

2

3∑
m�=0,m=−11

W

(
m

2
, e
)

cos(2x−mt) ,

with the coefficients W (m
2 , e) truncated to O(e7). The stability of the observed

3:2 resonance is obtained for the true value of the perturbing parameter, i.e. ε =
1.5 · 10−4, by proving the existence of the tori with frequencies Γ′70 and Δ′70 (see
(7.51)); the corresponding trapping region is contained in {(y, x, t) : (x, t) ∈ T2,
1.48 ≤ y ≤ 1.52}.

7.3.2 Librational invariant surfaces in the spin–orbit problem

The confinement of the motion associated to periodic orbits of the spin–orbit prob-
lem can also be obtained by constructing librational invariant surfaces. In the fol-
lowing we provide some details of the proof concerning the case of the 1:1 resonance
(see [24]), whose outline is the following. The first task is to center the Hamilto-
nian on the 1:1 periodic orbit and to expand in Taylor series around the new origin.
Next, diagonalize the quadratic terms to obtain a harmonic oscillator, perturbed
by higher degree (time–dependent) terms. After introducing the action–angle vari-
ables associated to the harmonic oscillator, implement a Birkhoff normal form to
reduce the size of the perturbation and then apply the KAM theorem to prove the
existence of trapping librational tori.

According to the above strategy, we start by writing the Hamiltonian function
as

H0(y, x, t) =
y2

2
−εa cos(2x−2t)− ε

2

N2∑
m�=0,2, m=N1

W

(
m

2
, e
)

cos(2x−mt) , (7.56)

where a ≡ 1
2W (1, e). Perform the coordinate change x′ = 2x − 2t, y′ = 1

2 (y − 1),
expand in Taylor series around the origin and diagonalize the time–independent
quadratic terms by means of the symplectic transformation

p = α y′

q = β x′ ,
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with α =
√
2

(εa)1/4
, β = (εa)1/4√

2
. After these steps the Hamiltonian function becomes

H1(p, q, t) =
ω

2
(p2 + q2) − εa

(
q4

4!β4
− q6

6!β6
+ . . .

)

− μ

2

∑
m�=0,−2

W̃

(
m + 2

2
, e
) [

cos(mt)
(

1− q2

2β2
+

q4

4!β4
+ . . .

)

+ sin(mt)
(
q

β
− q3

3!β3
+

q5

5!β5
+ . . .

)]
,

where ω = 2
√
εa is the frequency of the harmonic oscillation, μ ≡ εe, while the

coefficients W have been rescaled as W̃ (m+2
2 , e) = 1

eW (m+2
2 , e). Introduce action–

angle variables (I, ϕ) as

p =
√

2I cosϕ
q =

√
2I sinϕ ;

the resulting Hamiltonian is given by

H2(I, ϕ, t) = ωI − εa

(
I2

16β4
− 5I3

2 · 6!β6
+ . . .

)

− εa

[
− I2

12β4
cos 2ϕ +

I2

48β4
cos 4ϕ +

I3

4 · 6!β6
·

· (15 cos 2ϕ− 6 cos 4ϕ + cos 6ϕ) + . . .

]

− εe
2

∑
m�=0,−2

W̃ (
m + 2

2
, e)

{
cos(mt)

[
1− I

2!β2
(1− cos 2ϕ) +

I2

8 · 3!β4
·

· (3− 4 cos 2ϕ + cos 4ϕ)− I3

4 · 6!β6
(10− 15 cos 2ϕ + 6 cos 4ϕ− cos 6ϕ) + . . .

]

+ sin(mt)

[√
2I
β

sinϕ−
√

2 I3/2

12β3
(3 sinϕ− sin 3ϕ)

+
√

2I5/2

4 · 5!β5
(10 sinϕ− 5 sin 3ϕ + sin 5ϕ) + . . .

]}
,

which can be written in compact form as

H2(I, ϕ, t) = ωI + εh(I) + εh̃(I, ϕ) + εef(I, ϕ, t)

with the obvious identification of the functions h, h and f . A Birkhoff normal form
can be implemented to reduce the size of the perturbation R(I, ϕ, t) ≡ h̃(I, ϕ) +
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ef(I, ϕ, t). After such reduction we write the Hamiltonian in the form

Hk(I ′, ϕ′, t) = hk(I ′; ε) + εk+1Rk(I ′, ϕ′, t; ε) ,

where the functions hk and Rk can be explicitly determined. The application of
(computer–assisted) KAM estimates [25] allows us to establish the existence of a
librational invariant torus, which confines the synchronous resonance in the phase
space.

As an example, we report the results for the Rhea–Saturn system, which is observed
to move in a synchronous spin–orbit resonance; for this example the stability of the
synchronous resonance can be established for the realistic values of the parameters.

Theorem [24]. Consider the system described by the Hamiltonian (7.56) with
N1 = −1, N2 = 5 and let e = 0.00098. If εRhea = 3.45 · 10−4 is the physical value
of the perturbing parameter, then there exists an invariant torus corresponding to
a libration of 1.95o for any ε ≤ εRhea.

7.3.3 The spatial planetary three–body problem

The planetary problem concerns the study of two point–masses, say P1 and P2

with masses m1 and m2 of the same order of magnitude, orbiting around a central
body, say P with mass M . It is therefore necessary to take into account the mutual
interaction between P1 and P2, besides that with the central body. In order to
write the Hamiltonian function, let us introduce the heliocentric positions of the
planets, r1, r2 ∈ R3, and the conjugated momenta referred to the center of mass,
v1, v2 ∈ R3. The Hamiltonian describing the motion of P1 and P2 can be decom-
posed as

H = H0 +H1 , (7.57)

where H0 is due to the decoupled Keplerian motions of the planets and H1 repre-
sents the interaction between P1 and P2. More precisely, one has

H0 =
2∑

j=1

mj + M

2mjM
‖vj‖2 − G Mmj

‖rj‖
, (7.58)

while the perturbation is given by

H1 =
v1 · v2
M

− G m1m2

‖r1 − r2‖
. (7.59)

The preservation of the angular momentum allows us to state that the ascending
nodes of the planets lie on the invariant plane perpendicular to the angular momen-
tum and passing through the central body. The existence of invariant tori in the
framework of the properly degenerate Hamiltonian (7.57), (7.58), (7.59) has been
investigated in [3] under the assumption of planar motion and assuming that the
ratio of the semimajor axes tends to zero. Invariant tori are shown to exist, provided
that the planetary masses and the eccentricities are sufficiently small. The assump-
tion that the ratio of the semimajor axes tends to zero has been removed in [155],
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where quantitative estimates have been worked out. The proper degeneracy of the
Hamiltonian has been eliminated by a suitable normal form; after performing the
reduction of the angular momentum, the perturbing function has been expanded
using an adapted algebraic manipulator (see [110]). The result presented in [155]
provides that, for sufficiently small planetary masses and eccentricities, one can
apply Arnold’s theorem on the existence of invariant tori, provided that the ratio
α between the planetary semimajor axes satisfies 10−8 ≤ α ≤ 0.8 and that the
mass ratio satisfies 0.01 ≤ m1

m2
≤ 100.

The specific case of the Sun–Jupiter–Saturn planetary problem has been stud-
ied in [120]. After the Jacobi reduction of the nodes [120], the problem turns out
to be described by a Hamiltonian function with four degrees of freedom, which is
expanded up to the second order in the masses and averaged over the fast angles.
The resulting two–degrees–of–freedom Hamiltonian describes the slow motion of
the orbital parameters, and precisely of the eccentricities. The existence of invari-
ant tori in a suitable neighborhood of an elliptic point is obtained as follows. After
expressing the perturbing function in Poincaré variables, an expansion up to the
order 6 in the eccentricities is performed. The computation of the Birkhoff normal
form and a computer–assisted KAM theorem yield the existence of two invariant
surfaces trapping the secular motions of Jupiter and Saturn for the astronomical
values of the parameters. This approach was later extended [121] to include the
description of the fast variables, like the semimajor axes and the mean longitudes
of the planets. A preliminary average over the fast angles was performed with-
out eliminating the terms with degree greater or equal than 2 with respect to the
fast actions. The canonical transformations involving the secular coordinates can
be adapted to produce a good initial approximation of an invariant torus for the
reduced Hamiltonian of the planetary three–body problem. Afterwards the Kol-
mogorov normal form was constructed (so that the Hamiltonian is reduced to a
harmonic oscillator plus higher–order terms) and it was numerically shown to be
convergent. The numerical results on the convergence of the Kolmogorov normal
form have been obtained for a planetary solar system composed by two planets
with masses equal to those of Jupiter and Saturn.

7.3.4 The circular, planar, restricted three–body problem

We consider the motion of a small body (P2), say an asteroid, under the influence of
two primaries, say the Sun (P1) and Jupiter (P3) in the framework of the circular,
planar, restricted three–body problem (see Section 4.1). The Sun–Jupiter–asteroid
problem was selected in [31] as a test–bench for KAM theory, which provided
estimates on the mass–ratio very far from the astronomical observations; in partic-
ular, the existence of invariant tori was obtained for mass–ratios less than 10−333

by applying Arnold’s theorem and 10−48 using Moser’s theorem. We recall that
the perturbative parameter ε coincides with the Jupiter–Sun mass ratio, which
amounts to about ε = εJ ≡ 0.954 ·10−3. The small body was chosen as the asteroid
12 Victoria, whose orbital elements are:

aV 
 2.335 AU , eV 
 0.220 , iV 
 8.362o ,
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Fig. 7.2. Orbital elements of the numbered asteroids. Top: semimajor axis versus eccen-
tricity. Bottom: semimajor axis versus inclination. The internal lines locate the position
of the asteroid 12 Victoria (reprinted from [30]).

where aV is the semimajor axis of the asteroid, eV is the eccentricity, iV is the
inclination with respect to the ecliptic plane. Figure 7.2 shows that 12 Victoria is
a typical object of the asteroidal belt2, since the semimajor axes of most asteroids
lie within the interval 1.8 ≤ a ≤ 3.5 AU , while the eccentricity is usually within
0 ≤ e ≤ 0.35.

The model presented above does not include many effects, most notably the
eccentricity of Jupiter, the mutual inclinations, the influence of other planets, as
well as dissipative effects. For consistency, the perturbing function, representing
2 The elements of the numbered asteroids are provided by the JPL’s DASTCOM database
at http://ssd.jpl.nasa.gov/?sb elem
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the influence of Jupiter on the asteroid, has been expanded in the eccentricity and
semimajor axes ratio, and truncated to discard all terms which are of the same
order of magnitude or less than the maximum contribution due to the effects we
have neglected. Indeed, in the Sun–Jupiter–Victoria model the biggest neglected
contribution is due to the eccentricity of the orbit of Jupiter, which has been
assumed to be zero in the present model. According to this criterion we obtain the
following Hamiltonian:

H(L,G, �, g) = − 1
2L2

−G− εR(L,G, �, g) , (7.60)

where (L,G) are the Delaunay action variables, � is the mean anomaly, g is the
difference between the argument of perihelion and the true anomaly of Jupiter (see
Chapter 4) and the perturbing function is given by

R(L,G, �, g) ≡ 1 +
L4

4
+

9
64

L8 +
3
8
L4e2 −

(
1
2

+
9
16

L4

)
L4e cos �

+
(

3
8
L6 +

15
64

L10

)
cos(� + g)−

(
9
4

+
5
4
L4

)
L4e cos(� + 2g)

+
(

3
4
L4 +

5
16

L8

)
cos(2 � + 2 g) +

3
4
L4e cos(3 � + 2 g)

+
(

5
8
L6 +

35
128

L10

)
cos(3 � + 3 g) +

35
64

L8 cos(4 � + 4 g)

+
63
128

L10 cos(5� + 5g) ,

where e =
√

1− G2

L2 . Let us write (7.60) as

H(L,G, �, g; ε) = H0(L,G) + εR(L,G, �, g) ,

where H0(L,G) ≡ − 1
2L2 −G. The KAM theorem described in Section 7.2 cannot be

applied, since the integrable part H0 is degenerate. However, it is possible to apply
a different version of the theorem, which requires the isoenergetic non–degeneracy
condition due to Arnold [6]:

CE(L,G) ≡ det
(
H′′0 H′0
H′0 0

)
�= 0 for all 0 < G < L ,

where H′0 and H′′0 denote, respectively, the Jacobian vector and the Hessian matrix
associated to H0. A straightforward computation shows that CE(L,G) = 3

L4 . To
fix the energy level we proceed as follows (see [31]). From the physical value of the
asteroid 12 Victoria, using normalized units one gets that LV 
 0.670, GV 
 0.654.
Let

E
(0)
V = − 1

2L2
V

−GV 
 −1.768 , E
(1)
V ≡

〈
R(LV, GV, �, g)

〉

 −1.060 .
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We define the energy level through the expression

E∗V = E
(0)
V + εJE

(1)
V 
 −1.769 ,

where εJ denotes the observed Jupiter–Sun mass–ratio. The existence of two invari-
ant tori, bounding from above and below the observed values LV and GV, is proven
on the level set H−1

(
E∗V). Setting L̃± = LV ± 0.001, the bounding frequencies are

computed as

ω̃± =
(

1
L̃3±

,−1
)
≡ (α̃±,−1) .

Since we need diophantine numbers, we proceed to compute the continued fraction
expansion of α̃± up to the order 5 and then we add a tail of ones to obtain the
following diophantine numbers:

α− ≡ [3; 3, 4, 2, 1∞] = 3.30976937631389 . . . ,
α+ ≡ [3; 2, 1, 17, 5, 1∞] = 3.33955990647860 . . . .

Next we introduce the frequencies

ω± ≡ (α±,−1) ,

which satisfy the diophantine condition (7.7) with τ = 1 and with diophantine
constants respectively equal to

C− = 138.42 , C+ = 30.09 .

The stability of the asteroid 12 Victoria is finally obtained by proving the per-
sistence of the unperturbed KAM tori T ±0 ≡ {(L±, G±)} × T2 for a value of the
perturbing parameter ε greater or equal than the Jupiter–Sun mass ratio.

Theorem [31]. For |ε| ≤ 10−3 the unperturbed tori T ±0 can be analytically con-
tinued into invariant KAM tori T ±ε for the perturbed system on the energy level
H−1

(
E∗V) keeping fixed the ratio of the frequencies.

Since the orbital elements are related to the Delaunay action variables, the
theorem guarantees that the semimajor axis and the eccentricity stay close to the
unperturbed values within an interval of order ε (see [31] for full details on the
KAM isoenergetic, computer–assisted proof).

7.4 Greene’s method for the breakdown threshold

There exist different techniques which allow us to evaluate numerically the break-
down threshold of an invariant surface (see, e.g., [82, 109, 145]). One of the most
accepted methods, which has been partially rigorously proved [54, 63, 127], was
developed by J. Greene in [82]. His method is based on the conjecture that the
breakdown of an invariant surface is closely related to the stability character of the
approximating periodic orbits [92]. The key role of the periodic orbits had already
been stressed by H. Poincarè in [149], who formulated the following conjecture:
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“ . . . here is a fact that I have not been able to prove rigorously, but that seems to
me very reasonable. Given equations of the form (13) [Hamilton’s equations] and
a particular solution of these equations, one can always find a periodic solution
(whose period, it is true, can be very long) such that the difference between the two
solutions may be as small as one wishes for as long as one wishes”.

Greene’s algorithm for computing the breakdown threshold was originally formu-
lated for the standard mapping, but we present it here for the spin–orbit problem,
which has been assumed as a model problem throughout this chapter. Let us reduce
the analysis of the differential equation (7.1) to the study of the discrete mapping
obtained integrating (7.1) through an area–preserving leapfrog method:

yj+1 = yj − εfx(xj , tj)h
xj+1 = xj + yj+1h , (7.61)

where tj+1 = tj +h and h ≥ 0 denotes the integration step, yj ∈ R, xj ∈ T, tj ∈ T.
We say that a periodic orbit has length q (for some positive integer q), if it closes
after q iterations. We shall consider the periodic orbits which exist for all values of
the parameter ε down to ε = 0. Analogously, we consider rotational KAM tori with
the same property. In the integrable limit the rotation number is given by ω ≡ y0;
if the frequency of motion is rational, say ω = p

q for some positive integers p and q

with q �= 0, then the second of (7.61) implies that

p =
q∑

j=1

yj =
q∑

j=1

xj − xj−1
h

=
xq − x0

h
.

If the frequency ω is irrational, the periodic orbits with frequency equal to its
rational approximants pj

qj
are those which nearly approach the torus with rotation

number ω (see Figure 7.3).

In order to determine the linear stability of a periodic orbit, we compute the tangent
space trajectory (∂yj , ∂xj) at (yj , xj), which is related to the initial conditions
(∂y0, ∂x0) at (y0, x0) by (

∂yj
∂xj

)
= M

(
∂y0
∂x0

)
,

where the matrix M is the product of the Jacobian of (7.61) along a full cycle of
the periodic orbit:

M =
q∏

i=1

(
1 −εfxx(xj , tj)h
h 1− εfxx(xj , tj)h2

)
.

The eigenvalues of M are the associated Floquet multipliers (compare with Ap-
pendix D); by the area–preservation of the mapping it is det(M) = 1 and denoting
by tr(M) the trace of M , the eigenvalues are the solutions of the equation

λ2 − tr(M)λ + 1 = 0 .
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Fig. 7.3. Periodic orbits corresponding to the equations of motion associated to (7.55)
approaching the torus with rotation number ω = 1 + 1

2+
√
5−1
2

for ε = 0.03 on a Poincaré

section at times 2π. The graph shows the periodic orbits with frequencies 4/3 +, 7/5 ×,
18/13 ∗, 29/21 �, 76/55 �, 123/89 ◦.

Let us introduce a quantity, called the residue, by means of the relation (see [82]):

R ≡ 1
4

(2− tr(M)) ,

where the factors 2 and 4 are introduced for convenience. The eigenvalues of M are
related to the residue R by

λ = 1− 2R± 2
√
R2 −R .

When 0 < R < 1 the eigenvalues are complex conjugates with modulus one and
the orbit is stable, otherwise when R < 0 or R > 1 the periodic orbit is unstable.
Due to a theorem by Poincaré, for each rational frequency the number of orbits
with positive or negative residue is the same. The positive residue orbits are stable
for low values of ε. The residue gets larger as the perturbing parameter increases,
until it becomes greater than one, thus showing the instability of the associated
periodic orbit.

According to [82], we define the mean residue of a periodic orbit of period p/q
as the quantity

f

(
p

q
; ε
)

≡ (4|R|)1/q .

The definition of the mean residue for irrational frequencies ω is obtained as follows:
if ω ≡ [a0; a1, . . . , aN , . . . ], then

f(ω; ε) = lim
N→∞

f(ωN ; ε) ,

where ωN ≡ [a0; a1, . . . , aN ]. If ω is a noble number, say ω ≡ [a0; a1, . . . ,
aN , 1, 1, 1, . . . ], let ε = εc(ω) be such that
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f(ω, εc(ω)) = 1 ;

then the corresponding residue converges to

R ≡ R(ω; εc(ω)) =
1
4

(this assertion justifies the factor 4 introduced in the definition of the mean residue).
Greene’s method is based on the conjecture that a KAM rotational torus with
frequency ω exists if and only if

f(ω; ε) < 1

(see [63] for a partial proof of this statement). In Table 7.2 we consider the first
few frequencies of the periodic orbits approaching the torus with frequency equal
to the golden ratio. For each periodic orbit of period p

q we report the value of
the perturbing parameter ε = εc(p

q ) at which the corresponding residue becomes
bigger than 1

4 . As p
q increases, the limit of the values εc(p

q ) provides the breakdown
threshold εc(ω) of the torus with frequency ω.

Table 7.2. Critical values εc(
p
q
) of the perturbing parameter for some periodic orbits

approaching the torus with frequency equal to the golden ratio.

p
q

εc

`
p
q

´
p
q

εc

`
p
q

´

1
2

0.103 13
21

0.144

2
3

0.124 21
34

0.139

3
5

0.158 34
55

0.146

5
8

0.112 55
89

0.145

8
13

0.151 89
144

0.144

The efficiency of Greene’s method strongly depends on the computational speed
for the determination of the periodic orbits approaching the invariant surface. In the
particular case of the spin–orbit discretized system (7.61), one can get advantage
from the fact that the mapping (7.61) including the time variation tj+1 = tj + h,
herewith denoted as S, can be decomposed as the product of two involutions:

S = I2 I1 ,

where I21 = I22 = 1. In particular I1 is given by

yj+1 = yj − εfx(xj , tj)h
xj+1 = −xj

tj+1 = −tj ,
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while I2 takes the form

yj+1 = yj

xj+1 = −xj + hyj

tj+1 = −tj + h .

The periodic orbits can be found as fixed points of one of these involutions. This
decomposition of the original mapping significantly reduces the computational time
for the determination of the periodic orbits, thus making easier the implementation
of Greene’s method.

7.5 Low–dimensional tori

For a nearly–integrable system with m+n degrees of freedom, we consider the case
when the unperturbed Hamiltonian is not integrable in the whole phase space,
but rather on some surface foliated by invariant tori whose dimension is less than
m+n. The proof of the existence of low–dimensional tori is based on Kolmogorov’s
approach under the requirement that the system satisfies two conditions, namely
that it is isotropic and reducible. The theory of low–dimensional tori is very wide
and heavily depends on the properties of the main frequencies of motion. Here, we
just aim to give an idea of the problem, referring to [101,119] for complete details.
We start by providing the definitions of isotropic and reducible systems.

Definition. Consider an n–dimensional manifold W endowed with a symplectic
non–degenerate 2–form; a submanifold U of W is called isotropic if the 2–form
restricted to U vanishes.

Definition. Consider a nearly–integrable Hamiltonian H = H0 + εH1 with m+ n
degrees of freedom. An invariant torus for H with frequency ω is called reducible,
if in its neighborhood there exists a set of coordinates (I, ϕ, z) ∈ Rn ×Tn ×R2m,
such that the unperturbed Hamiltonian takes the form

H0(I, ϕ, z) = h(I) +
1
2
A(I)z · z +R3(I, ϕ, z) , (7.62)

where h is a function only of I, A(I) is a 2m×2m symmetric matrix and R3(I, ϕ, z)
is O(|z|3).

Hamilton’s equations associated to (7.62) are given by

ż = Ω(I)z + O(|z|2)
İ = O(|z|3)
ϕ̇ = ω(I) + O(|z|2) ,

where Ω(I) ≡ JA(I), J being the standard symplectic matrix, and ω(I) ≡ ∂h(I)
∂I .

The KAM theorem for low–dimensional tori states that, under suitable condi-
tions on Ω(I) and on ω(I), one can prove the existence of isotropic, reducible,
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n–dimensional invariant tori on which a quasi–periodic motion takes place. The
invariant tori are elliptic if the eigenvalues of Ω(I) are purely imaginary, while they
are hyperbolic if Ω(I) has no purely imaginary eigenvalues. As already mentioned,
the proofs of the existence of low–dimensional tori may vary according to the as-
sumptions on the frequencies Ω, ω and we refer to the specialized literature for
further details (see, e.g., [2]). Here we just mention how a parametrization in the
style of (7.10) can be found for lower–dimensional tori. To see how it works, let
us consider a concrete example, and precisely the four–dimensional standard map
described by the equations

yn+1 = yn + εf1(xn, zn, λ)
xn+1 = xn + yn+1

wn+1 = wn + εf2(xn, zn, λ)
zn+1 = zn + wn+1 , (7.63)

where (yn, wn) ∈ R2, (xn, zn) ∈ T2, ε > 0 is the perturbing parameter and λ > 0
is the coupling parameter. From (7.63) it follows that

xn+1 − 2xn + xn−1 = εf1(xn, zn, λ)
zn+1 − 2zn + zn−1 = εf2(xn, zn, λ) .

Let us parametrize a one–dimensional invariant torus with frequency ω by means
of the equations

xn = ϑ + u1(ϑ; ε, λ)
zn = ϑ + u2(ϑ; ε, λ) ,

where ϑn+1 = ϑn+ω. One finds that the unknown functions u1 and u2 must satisfy
the equations

u1(ϑ + ω)− 2u1(ϑ) + u1(ϑ− ω) = εf1(ϑ + u1(ϑ; ε, λ), ϑ + u2(ϑ; ε, λ), λ)

u2(ϑ + ω)− 2u2(ϑ) + u2(ϑ− ω) = εf2(ϑ + u1(ϑ; ε, λ), ϑ + u2(ϑ; ε, λ), λ) ,

whose solution describes the low–dimensional torus with frequency ω (see [100]).
Within the spatial three–body problem the existence of low–dimensional tori

has been investigated in [99]. In particular, the three–body model studied in [99]
admits four degrees of freedom after having performed the reduction of the nodes.
Solutions with two or three rationally independent frequencies have been proved,
provided the mutual inclinations ii, i2 satisfy the condition (see [99])

cos2(i1 + i2) <
3
5
.

The existence of quasi–periodic motions with a number of frequencies less than
the number of degrees of freedom has been studied also in [113]; in particular,
the solutions of the planar three–body problem such that the mean value of the
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difference of the perihelia is zero have been investigated. The planetary planar
(N + 1)–body problem has been analyzed in [16] and [17], where the existence of
N–dimensional elliptic (i.e. linearly stable) tori is shown. Around the elliptic tori
there exists a set of positive measure of maximal tori. The proof is based on an
elliptic KAM theorem under suitable non–degeneracy conditions (i.e., the so–called
Melnikov conditions).

7.6 A dissipative KAM theorem

Let us consider the dissipative spin–orbit equation that we write in compact form
as (compare with (5.21))

ẍ + η(ẋ− ν) + εfx(x, t) = 0 , (7.64)

where fx(x, t) ≡ ε(a
r )3 sin(2x−2f), η ≡ KdL̄(e), ν ≡ N̄(e)

L̄(e)
. We immediately remark

that for η �= 0 and ε = 0 the torus T0 ≡ {y = ν}×{(ϑ, τ) ∈ T2} is a global attractor
and the flow on T0 is given by (ϑ, τ) → (ϑ+ νt, τ + t). This is easily seen from the
fact that the solution of (7.64) for ε = 0 is given by

x(t) = x0 + ν(t− t0) +
1− e−η(t−t0)

η
(v0 − ν) ,

where x0 ≡ x(t0) and v0 ≡ ẋ(t0). An invariant attractor with frequency ω is
parametrized by

x(t) = ϑ + u(ϑ, t) , (7.65)

where u = u(ϑ, t) is a real analytic function for (ϑ, t) ∈ T2 and ϑ̇ = ω. The existence
of the invariant attractor with frequency ω for (7.64) is provided by the following

Theorem [32]. Assume that ω is diophantine; then, there exists ε0 > 0 such that
for 0 ≤ ε ≤ ε0 and for any 0 ≤ η < 1, there exists a function u = u(ϑ, t) with
〈u〉 = 0 and 1 + uϑ �= 0, such that (7.65) is a solution of (7.64) provided

ν = ω (1 + 〈(uϑ)2〉) . (7.66)

The proof of the theorem is based on the following ideas (we refer to [32] for full
details). Let us start by introducing the operator ∂ω ≡ ω ∂

∂ϑ+ ∂
∂t , so that ẋ = ω+∂ωu

and ẍ = ∂2ωu. The solution (7.65) is quasi–periodic if the function u satisfies

∂2ωu + η∂ωu + εfx(ϑ + u, t) + γ = 0 , γ ≡ η(ω − ν) . (7.67)

The unknowns u, γ must satisfy the compatibility condition

ηω 〈(uϑ)2〉+ γ = 0 , (7.68)

which is equivalent to (7.66). The proof of the existence of the quasi–periodic attrac-
tor is perturbative in ε, but uniform in η; the conservative KAM torus bifurcates
in the attractor as far as η �= 0. For the spin–orbit problem, one has to keep in
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mind that in place of η and ν one should consider the dissipative constant Kd and
the eccentricity e. As a consequence, the theorem is stated for any 0 ≤ Kd < 1
and besides the existence of a function u = u(ϑ, t), one needs to find a function
e = e(Kd, ω, ε) = ν−1e (ω) + O(ε2) to satisfy the compatibility condition (7.66).

Coming back to equation (7.67), let us introduce the operators

Dηu ≡ ∂ωu + ηu , Δηu ≡ Dη∂ωu = ∂ωDηu .

Then, (7.67) becomes

Fη(u; γ) ≡ Δηu + εfx(ϑ + u, t) + γ = 0 .

In particular, if u =
∑

(n,m)∈Z2 ûn,me
i(nϑ+mt), then

∂ωu =
∑

(n,m)∈Z2

i(ωn + m)ûn,me
i(nϑ+mt)

Dηu =
∑

(n,m)∈Z2

[i(ωn + m) + η]ûn,me
i(nϑ+mt) ;

being |i(ωn + m) + η| ≥ |η| > 0, then Dη is invertible with

D−1η u =
∑

(n,m)∈Z2

ûn,me
i(nϑ+mt)

i(ωn + m) + η
.

Having introduced the norm ‖u‖ξ ≡
∑

(n,m)∈Z2 |ûn,m|e(|n|+|m|)ξ, one can state the
following

Theorem. Let 0 < ξ < ξ̄ ≤ 1, 0 ≤ η < 1; let ω be diophantine and define M such
that

‖εfxxx‖ξ̄ ≤M .

Assume that there exists an approximate solution v = v(ϑ, t; η), β = β(η) such that
vϑ is bounded and invertible; let the error function χ = χ(ϑ, t; η) ≡ Fη(v;β) satisfy
a smallness requirement of the form

D ‖χ‖ξ ≤ 1 ,

where D depends upon ξ, M , as well as upon the norms of v and of its deriva-
tives. Then, there exist u = u(ϑ, t; η) ∈ C∞ and γ = γ(η) ∈ C∞, which solve
Fη(u; γ) = 0.

The proof is constructive and the solution is obtained as the limit of a sequence of
approximate solutions (vj , βj), quadratically converging to the solution (u, γ). We
sketch here the proof as a sequence of five main steps, referring to [32] for complete
details.
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Step 1. Establish some properties of the operators Dη, Δη as well as of their
derivatives and inverse functions, providing formulae of the form

‖D−s
η ∂p

ϑu‖ξ−δ ≤ σp,s(δ) ‖u‖ξ ,

for some 0 < δ < ξ and for p, s ∈ Z+, where

σp,s(δ) ≡ sup
(n,m)∈Z2\{0}

(
|i(ωn + m) + η|−s|n|pe−δ(|n|+|m|)

)
,

which can be bounded as

σp,s(δ) ≤
(
sτ + p

e

)sτ+p

Csδ−(sτ+p) .

It turns out that 〈(1 + uϑ)Fη(u; γ)〉 = ηω〈(uϑ)2〉+ γ; if Fη(u; γ) = 0 one finds the
compatibility condition (7.68).

Step 2. Given an approximate solution (v, β) of Fη(u; γ) = 0, a quadratically
smaller approximation (v′, β′) is found by a Newton iteration scheme. More pre-
cisely, starting from

χ ≡ Fη(v;β) = Δηv + εfx(ϑ + v, t) + β ,

one looks for a solution

v′ = v + ṽ , β′ = β + β̃ ,

such that ṽ, β̃ = O(‖χ‖), Fη(v′;β′) = O(‖χ‖2). In order to find ṽ and β̃, setting
V ≡ 1 + vϑ let us introduce the quantities

Q1 ≡ ε[fx(ϑ + v + ṽ, t)− fx(ϑ + v, t)− fxx(ϑ + v, t)ṽ] , Q2 ≡ V −1χϑ ṽ ;

it follows that

Fη(v′;β′) ≡ Fη(v + ṽ;β + β̃) = χ + β̃ + Aη,v ṽ + Q1 + Q2

with Aη,v ṽ ≡ V −1 Dη

(
V 2D0(V −1ṽ)

)
. One can find explicit expressions for ṽ, β̃,

such that they satisfy the relation

χ + β̃ + Aη,v ṽ = 0 ;

the latter equation provides χ′ ≡ Fη(v+ ṽ, β+ β̃) = Q1 +Q2, so that the new error
term is quadratically smaller.

Step 3. Given the estimates on the norms of vθ, ṽ, ṽθ, β̃, a KAM algorithm is
implemented to compute an estimate on the norm of the error function χ′ of the
form

‖χ′‖ξ−δ ≤ C1δ
−s‖χ‖2ξ ,

for some C1, s > 0.
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Step 4. Implement a KAM algorithm which provides that under smallness condi-
tions on the parameters there exists a sequence (vj , βj) of approximate solutions,
which converges to the true solution:

(u, γ) ≡ lim
j→∞

(vj , βj) ,

where (u, γ) satisfy Fη(u; γ) = 0.

Step 5. A local uniqueness is shown by proving that if there exists a solution
ξ(t) = ϑ + w(ϑ, t) with ϑ̇ = ω and 〈w〉 = 0, then w ≡ u, while ν coincides with
(7.66).

7.7 Converse KAM

Converse KAM theory provides upper bounds on the perturbing parameter en-
suring the non–existence of invariant tori. Following [126, 128, 129] (see also [6])
we adopt the Lagrangian formulation as follows. As in the previous sections, we
are concerned with applications to the spin–orbit model; therefore we introduce a
one–dimensional, time–dependent Lagrangian function of the form L = L(x, y, t),
where x ∈ T, y ∈ R. We assume that the Lagrangian function satisfies the so–
called Legendre condition, which requires that ∂2L

∂ẋ2 is everywhere positive. A func-
tion x = x(t) is an orbit for L if for any t0 < t1 and for any variation δx = δx(t)
such that δx(t0) = δx(t1) = 0, the variation δA of the action is zero, where

A(x) ≡
∫ t1

t0

L(x(t), ẋ(t), t) dt . (7.69)

A trajectory x = x(t) has minimal action if for any t0 < t1 and x̃(t) such that
x̃(t0) = x(t0), x̃(t1) = x(t1), then A(x) ≤ A(x̃). The minimal action is non–
degenerate if for any t0 < t1, then δ2A is positive definite for any variation δx such
that δx(t0) = δx(t1) = 0.
The Legendre transformation allows us to introduce the Hamiltonian function H =
H(y, x, t) associated to L, where y ∈ R is the momentum associated to x. A
Lagrangian graph is described by a C1–generating function S = S(x, t) such that
y = Sx(x, t), T = St(x, t), where T is the the variable conjugated to the time in the
extended phase space. We now give a characterization of Lagrangian graphs and
rotational tori.

Proposition [129]. An invariant rotational two–dimensional torus for H1(y, x, T, t)
≡ H(y, x, t) + T with Hyy positive definite is a Lagrangian graph.

Moreover, we have the following

Lemma [129]. If Σ is an invariant surface for the Hamiltonian H1(y, x, T, t) ≡
H(y, x, t) + T such that locally y = Sx(x, t), then Σ is a Lagrangian graph.

In order to introduce a converse KAM criterion, we need the following theorem due
to K. Weierstrass (see [129]).
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Theorem. If Σ is an invariant Lagrangian graph for a Lagrangian system satis-
fying the Legendre condition, then any orbit on Σ has a non–degenerate minimal
action.

From the Weierstrass theorem it follows that if the orbit segment x = x(t) for
t ∈ [t0, t1] is not a non–degenerate minimum for A, then it is not contained in any
invariant Lagrangian graph. In practice, one should compute the quantity δ2A for
some variation δx with δx(t0) = δx(t1) = 0 and check whether it fails to be positive
definite. This method allows us to give an elementary analytical estimate, which
can be explicitly computed. Following [40], let us consider the spin–orbit equation
(5.18) that we write as

ẍ + ε

N∑
m=1

αm(e) sin(2x−mt) = 0 (7.70)

for some N > 0; the coefficients αm(e) are trivially related to the coefficients
W (m

2 , e) in (5.18). We apply the criterion based on the Weierstrass theorem to the
model described by (7.70). The Lagrangian function associated to (7.70) has the
form

L(x, ẋ, t) =
1
2
ẋ2 +

ε

2

N∑
m=1

αm(e) cos(2x−mt) .

The second variation of the action is given by

δ2A =
∫ t1

t0

[
δẋ2 − 2ε

N∑
m=1

αm(e) cos(2x−mt)δx2
]
dt .

Consider the deviation δx(t) = cos t
4τ such that δx(±2πτ) = 0; notice that∫ 2πτ

0
δx2 = πτ ,

∫ 2πτ
0

δẋ2 = π
16τ . Writing (7.70) as

ẍ = g(x, t) ≡ −ε
N∑

m=1

αm(e) sin(2x−mt)

and assuming the initial conditions x(0) = 0, ẋ(0) = v0, the solution of (7.70) can
be written in integral form as

x(t) = v0t +
∫ t

0

(t− s)g(x(s), s) ds .

Let G be a bound on g(x, t), i.e. |g(x, t)| ≤ ε
∑N

m=1 |αm(e)| ≡ G; as a first approx-
imation we can use the inequality

|x(t)− v0t| ≤
G

2
t2 .

Since cosϑ ≥ 1− 1
2ϑ

2, we obtain

cos(2x−mt) ≥ 1− 1
2

(|m− 2v0|t + Gt2)2 .
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Therefore the second variation of the action for the variation δx(t) = cos t
4τ ,

−2πτ ≤ t ≤ 2πτ , is bounded by

δ2A ≤ π

8τ
− 4ε

N∑
m=1

|αm(e)|
∫ 2πτ

0

[
1− 1

2
(|m− 2v0|t + Gt2)2

]
δx2 dt

≤ π

8τ
− 4Gπτ + 2ε

N∑
m=1

|αm(e)|
∫ π

2

0

[
|m− 2v0|2(4τ)3ϑ2 cos2 ϑ

+G2(4τ)5ϑ4 cos2 ϑ + 2|m− 2v0|G(4τ)4ϑ3 cos2 ϑ
]
dϑ .

Let us define the quantity

In ≡ 2
∫ π

2

0

ϑn cos2 ϑ dϑ ;

then, one obtains

δ2A
τ

≤ π

8τ2
− 4Gπ +

ε

τ

N∑
m=1

|αm(e)| ·
[
|m− 2v0|2(4τ)3I2

+2|m− 2v0|G(4τ)4I3 + G2(4τ)5I4
]
≡ Φ(ε, v0, τ) . (7.71)

The non–existence criterion is fulfilled whenever one can find τ > 0 such that
Φ(ε, v0, τ) < 0, so that δ2A < 0. Denote by εNE the value of the perturbing
parameter at which this condition first occurs. As concrete examples we consider
the orbital eccentricity of the Moon (e = 0.0549) and of Mercury (e = 0.2056);
moreover we consider v0 = 1 and v0 = 1.5, corresponding, respectively, to the 1:1
and 3:2 resonance. The results of the implementation of the Weierstrass criterion
based on the estimate (7.71) are provided in Table 7.3, where N = 7 has been
taken in (7.70) (see [40]). Though the estimates are rather crude and could be
further refined, they show how to find by simple explicit computations the regions
of non–existence of rotational invariant tori.

Table 7.3. The non–existence criterion based on the Weierstrass theorem provides the
following values associated to the Moon with eccentricity e = 0.0549 and to Mercury with
eccentricity e = 0.2056 (reprinted, with permission, from [40], Copyright 2007, American
Institute of Physics).

Moon Mercury

v0 = 1 εNE � 0.15 εNE � 0.82
v0 = 1.5 εNE � 0.77 εNE � 0.58
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7.7.1 Conjugate points criterion

A method of investigating the non–existence of invariant tori has been formulated
in [129] for conservative systems, based on the following

Definition. Let (x, y) : [t0, t1] → T × R be an orbit; the times t0 and t1 are
said to be conjugate, if there exists a non–zero tangent orbit (δx, δy), such that
δx(t0) = δx(t1) = 0.

We also introduce the twist property as follows. Let us write (7.70) as

ẋ = y

ẏ = −ε
N∑

m=1

αm(e) sin(2x−mt) . (7.72)

We say that (7.72) satisfies the twist property if there exists a constant A > 0 such
that

∂ẋ

∂y
≥ A

(in our case A = 1). A result due to K. Jacobi shows that minimizing orbits (with
respect to the action (7.69)) have no conjugate points. This leads to the following
non–existence criterion, which can be formulated to encompass also the dissipative
context [40].

Conjugate points criterion: The existence of conjugate points implies that the or-
bit does not belong to any rotational invariant torus, otherwise the forward orbit
starting from the initial vertical vector (0, 1) at t = t0 is prevented from crossing
the tangent to the torus and the twist property implies that δx(t) > 0 for all t > t0.

For the conservative case with time–reversal symmetry and initial conditions on the
symmetry line x = 0, the backward trajectory and the backward tangent orbit are
determined by reflecting the forward ones. We can conclude that the times ±t are
conjugate whenever the tangent orbit of the horizontal vector (δx(0), δy(0)) = (1, 0)
satisfies δx(t) = 0. This remark considerably decreases the computational time, also
due to the fact that close to a suitable symmetry line the rotation of the tangent
orbits is strongest and it is convenient to select orbit segments which straddle it
symmetrically.

The dissipative case does not admit time–reversal symmetry and it is necessary
to integrate backward and forward orbits. However, one can choose t0 = 0 and
avoid backward integration, thus integrating just forwards from the vertical vector
(δx(0), δy(0)) = (0, 1) and then looking for a change of sign of δx(t). We report
in Figure 7.4 an application of the conjugate points criterion for the dissipative
spin–orbit problem and for different values of the eccentricity. A grid of 500× 500
points over y(0) ∈ [0.2, 2] and ε ∈ [0, 0.1] has been computed.
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Fig. 7.4. The black region denotes the non–existence of rotational invariant tori for
Kd = 10

−3. (a) e = 0.001, (b) e = 0.0549, (c) e = 0.1, (d) e = 0.2056.

7.7.2 Cone-crossing criterion

Without using time–reversal symmetry and without taking initial conditions on
a symmetry line, the conjugate points criterion with t0 = −t1 can be applied,
provided one computes the slope of an initial tangent vector, say (δx(0), δy(0)),
such that δx(±t1) = 0 simultaneously. To this end one can compute the monodromy
matrix M at times ±t by integrating the equations

Ṁ = F (x, y, t)M ,

where M(0) equals the identity matrix and F (x, y, t) denotes the Jacobian of the
vector field. Then, the initial condition (δx(0), δy(0)) ≡ (ξ, η) satisfies the relations
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M11(t)ξ + M12(t)η = 0 ,

M11(−t)ξ + M12(−t)η = 0 .

There exists a non–zero solution if and only if

C(t) ≡M11(t)M12(−t)−M12(t)M11(−t) = 0 .

Therefore we conclude that the times ±t, t > 0, are conjugate if and only if C(t) =
0. A result by Birkhoff states that a rotational invariant torus is a graph of a
Lipschitz function.

If the initial condition is on a rotational invariant torus, one can determine
upper and lower bounds on the slope of the initial tangent vector, providing the
so–called local Lipschitz cone [165]. The condition C(t) = 0 corresponds to the
equality of the upper and lower bounds; for larger t the upper bound becomes less
than the lower bound. However, this is in contrast with the existence of a rotational
invariant torus through that initial point, thus yielding the so–called cone–crossing
criterion [128] as a method to establish the non–existence of rotational invariant
tori.

The practical implementation of the criterion is the following. First we remark
that it is more convenient to integrate the equation for the inverse monodromy
matrix N(t) = M(t)−1. Starting from (x(0), y(0)), let (x(±t), y(±t)) be the cor-
responding forward and backward trajectories; then integrate the equations back-
wards and forwards in time

Ṅ(t) = −N(t) F (x(t), y(t), t)

with N(0) being the identity matrix. For any t > 0, let

w±(t) = N(∓t)
(

0
±1

)
=
(
±N12(∓t)
±N22(∓t)

)

be tangent vectors at (x(0), y(0)), which give a local Lipschitz cone through the
initial condition. Let C(t) = w−(t) ∧ w+(t); then C(0) = 0 and Ċ(0) > 0. Finally,
if there exists a time t′ > 0 such that C(t′) ≤ 0, then the orbit starting from
(x(0), y(0)) does not belong to an invariant rotational torus.

7.7.3 Tangent orbit indicator

Based on the conjugate points criterion, we introduce an indicator of chaos, which
can be used as a complementary tool to Lyapunov exponents, frequency analy-
sis, FLIs, etc. (see Chapter 2). We start by remarking that through the change of
sign of δx(t) we can distinguish between rotational tori, librational tori and chaos.
Starting from a horizontal tangent vector, for a librational torus the δx–component
oscillates around zero (a linear increase is observed when starting from the vertical
tangent vector). The results are shown in Figure 7.5(a,b), obtained by integrating
(7.70) through a fourth–order symplectic Yoshida’s method [175] shortly recalled
in Appendix F. Notice that the first crossing occurs at t = 3.39. A similar behav-
ior is observed for the chain of islands of Figure 7.5(c,d). Oscillations with large
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Fig. 7.5. Analysis of (7.70) with ε = 0.1, e = 0.0549 (after [40]). The left column shows
the Poincaré section on the plane t = 0; the right column shows the implementation of
the conjugate points method from the horizontal tangent vector. (a, b) refer to an example
of a librational invariant torus for the initial conditions x = 0, y = 1.1. (c, d) refer to an
example with a chain of islands for the initial conditions x = 0, y = 1.24. (e, f) refer to
an example of chaotic motion for the initial conditions x = 0, y = 1.3. (g, h) refer to an
example of a rotational invariant torus for the initial conditions x = 0, y = 1.8 (reprinted,
with permission, from [40], Copyright 2007, American Institute of Physics).

amplitudes are observed for chaotic motions as shown in Figure 7.5(e,f). Finally,
rotational invariant tori are characterized by positive oscillations of δx far from
zero (see Figure 7.5(g,h)).

This scenario leads to the introduction of the so–called tangent orbit indicator
by computing the average of δx(t) over a finite interval of time. The resulting value
characterizes the dynamics as follows: a zero value denotes a librational regime, a
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Fig. 7.5. (continued).

moderate value is associated to rotational tori, high values correspond to chaotic
motions.

As an example we report in Figure 7.6 (top panels) the computation of the
tangent orbit indicators with horizontal initial tangent vector over a grid of 500×500
initial conditions in x and y for the equation (7.70). Figure 7.6 (bottom panels)
provides the tangent orbit indicator in the plane y–ε for a fixed x0. A black color
denotes tangent orbit indicators close to zero, grey stands for moderate values,
while white corresponds to large values. The results are in full agreement with those
obtained implementing other techniques, like frequency analysis or the computation
of the FLIs introduced in Chapter 2 (see [37]).
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Fig. 7.6. Tangent orbit indicator associated to (7.70) for ε = 0.1 from the initial horizontal
tangent vector. Top left: graph in the plane x–y with e = 0.0549; top right: graph in the
plane x–y with e = 0.2056; bottom left: graph in the plane ε–y with e = 0.0549; bottom
right: graph in the plane ε–y with e = 0.2056. (Reprinted, with permission, from [40],
Copyright 2007, American Institute of Physics.)

7.8 Cantori

Let L = L(x,X) be a Lagrangian function with x ∈ Tn and X ≡ ẋ ∈ Rn. For
a function v = v(ϑ), let Dω be the operator defined as Dωv = ω · ∂v

∂ϑ . An n–
dimensional torus is described by the equations x = x(ϑ), X = Dωx(ϑ); let a
variation be described as x(ϑ) + δx(ϑ), Dωx(ϑ) + Dωδx(ϑ). Let us introduce the
functional

Aω ≡
1

(2π)n

∫
Tn

L(x(ϑ), Dωx(ϑ)) dϑ .

A variational principle can be stated as follows
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Theorem [6]. A smooth surface is an invariant torus with frequency ω if and only
if it is a stationary point of the functional Aω.

A solution of the variational problem is a so–called cantorus, which is defined as
follows (see [43]). Let us consider the case n = 2. We introduce the following
definition (see [7, 132]).

Definition. An Aubry–Mather set is an invariant set, which is obtained embedding
a Cantor subset in the phase space of the standard two–dimensional torus.

Let us consider a one–dimensional, time–dependent Hamiltonian of the form H =
H(y, x, t). Assume it admits two invariant tori described by y = y0, y = y1 with
y0 < y1. Denote by Φ = Φ(y, x) ≡ (Φ1(y, x),Φ2(y, x)) the Poincaré map associated
to H at times 2π, which we assume to satisfy the so–called twist condition namely
∂Φ2(y,x)

∂y > 0; the mapping Φ is area preserving and it leaves invariant the circles
y = y0, y = y1 as well as the annulus between them. Let ω0 ≡ ω(y0) and ω1 ≡ ω(y1)
be the frequencies corresponding to y0 and y1. By the twist condition one has that
ω0 < ω1. The Aubry–Mather theorem can be stated as follows.

Theorem [6]. For any irrational ω ∈ (ω0, ω1), there exists an Aubry–Mather
set with rotation number ω, which is a subset of a closed curve parametrized by
x = ϑ + u(ϑ), y = v(ϑ), where ϑ ∈ T is such that ϑ′ = ϑ + ω, u is monotone and
u, v are 2π–periodic.

If the functions u and v are continuous, then the original Hamiltonian system
admits a two–dimensional invariant torus with frequency ω. On the other hand, if
u and v are discontinuous, then the original Hamiltonian system admits a cantorus,
whose gaps coincide with the discontinuities of u and v. We remark that a Cantor
set does not divide the phase space into invariant regions, since the orbits can
diffuse through the gaps of the Cantor set. However, the leakage cannot be easy
and the cantorus can still act as a barrier over long time scales [153].

The numerical detection of cantori is rather difficult and they are often approxi-
mated by high–order periodic orbits [49,85]. In very peculiar examples, an analytic
expression of the cantori can be given. This is the case of the conservative sawtooth
map, which is described by the equations

yn+1 = yn + λf(xn)
xn+1 = xn + yn+1 , (7.73)

where xn ∈ T, yn ∈ R, λ ∈ R+ denotes the perturbing parameter and the pertur-
bation f on the covering R of T is defined as

f(x) ≡ mod(x, 1)− 1
2

if 0 < mod(x, 1) < 1

f(x) ≡ 0 if x ∈ Z . (7.74)

The mapping (7.73) is area–preserving; for λ > 0 there do not exist invariant circles
and the phase space is filled by cantori and periodic orbits. Since xn+1−xn = yn+1,
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xn − xn−1 = yn, one obtains

xn+1 − 2xn + xn−1 = λf(xn) .

Let us parametrize a solution with frequency ω ∈ R as

x(ϑ) = ϑ + u(ϑ) , ϑ ∈ T , (7.75)

where ϑ′ = ϑ + ω. Then, the function u must satisfy the equation

u(ϑ + ω)− 2u(ϑ) + u(ϑ− ω) = λ f(ϑ + u(ϑ)) .

We can determine u(ϑ) by expanding it as

u(ϑ) =
∞∑

n=−∞
anf(ϑ + nω) (7.76)

for some coefficients an which are given by

an = −α ρ−|n| ,

with

α ≡
(

1 +
4
λ

)−1/2
, ρ = 1 +

λ

2
+
(
λ +

λ2

4

)1/2

.

In fact, inserting the series expansion (7.76) in (7.73) we obtain∑
j

(aj−1 − 2aj + aj+1)f(ϑ + jω) = λf(ϑ + u(ϑ)) .

Being f(ϑ + u(ϑ)) = ϑ + u(ϑ)− 1
2 = f(ϑ) + u(ϑ), one finds the following recursive

relations

a−1 − 2a0 + a1 = λ(1 + a0) j = 0
aj−1 − 2aj + aj+1 = λaj j �= 0 . (7.77)

Let us write aj = −αρ−|j|; from the first of (7.77) for j = 0 one has −αρ−1 + 2α−
αρ−1 = λ(1− α), namely

α =
λρ

2ρ− 2 + λρ
. (7.78)

Equation (7.77) for j �= 0 implies that −αρ−|j−1|+ 2αρ−|j|−αρ−|j+1| = −λαρ−|j|,
namely ρ2 − (2 + λ)ρ + 1 = 0 with solution

ρ = 1 +
λ

2
+
(
λ +

λ2

4

)1/2

.

Replacing this expression for ρ in (7.78) one obtains α = (1 + 4
λ )−1/2.

Taking advantage of the solution parametrized as in (7.75) with u given by
(7.76), one can prove the existence of cantori for the sawtooth map through the
following proposition as stated in [42].
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Proposition. Let ω be irrational, let

M̃ω ≡ {(x(ϑ), x(ϑ + ω)) : ϑ ∈ R}

and let Mω ≡ M̃ω/Z. Then, Mω is a Cantor set.

A proof of the existence of cantori in the dissipative sawtooth map, defined by the
equations

yn+1 = byn + c + λf(xn)
xn+1 = xn + yn+1 ,

for b ∈ R, c ∈ R and f(x) as in (7.74) is provided in [39].
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