
6 Perturbation theory

Perturbation theory is an efficient tool for investigating the dynamics of nearly–
integrable Hamiltonian systems. The restricted three–body problem is the proto-
type of a nearly–integrable mechanical system (Section 6.1); the integrable part is
given by the two–body approximation, while the perturbation is due to the grav-
itational influence of the other primary. A typical example is represented by the
motion of an asteroid under the gravitational attraction of the Sun and Jupiter.
The mass of the asteroid is so small, that one can assume that the primaries move
on Keplerian orbits. The dynamics of the asteroid is essentially driven by the Sun
and it is perturbed by Jupiter, where the Jupiter–Sun mass–ratio is observed to
be about 10−3. The solution of the restricted three–body problem can be investi-
gated through perturbation theories, which were developed in the 18th and 19th
centuries; they are used nowadays in many contexts of Celestial Mechanics, from
ephemeris computations to astrodynamics.
Perturbation theory in Celestial Mechanics is based on the implementation of a
canonical transformation, which allows us to find the solution of a nearly–integrable
system within a better degree of approximation [66]. We review classical perturba-
tion theory (Section 6.2), as well as in the presence of a resonance relation (Sec-
tion 6.3) and in the context of degenerate systems (Section 6.4). We discuss also
the Birkhoff normal form (Section 6.5) around equilibrium positions and around
closed trajectories; we conclude with some results concerning the averaging theorem
(Section 6.6).

6.1 Nearly–integrable Hamiltonian systems

Let us consider an n–dimensional Hamiltonian system described in terms of a set
of conjugated action–angle variables (I, ϕ) with I ∈ V , V being an open set of Rn,
and ϕ ∈ Tn. A nearly–integrable Hamiltonian function H(I, ϕ) can be written in
the form

H(I, ϕ) = h(I) + εf(I, ϕ) , (6.1)

where h and f are analytic functions called, respectively, the unperturbed (or in-
tegrable) Hamiltonian and the perturbing function, while ε is a small parameter
measuring the strength of the perturbation. Indeed, for ε = 0 the Hamiltonian
function reduces to

H(I, ϕ) = h(I) .

The associated Hamilton’s equations are simply
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İ = 0
ϕ̇ = ω(I) , (6.2)

where we have introduced the frequency vector

ω(I) ≡ ∂h(I)
∂I

.

Equations (6.2) can be trivially integrated as

I(t) = I(0)
ϕ(t) = ω(I(0))t + ϕ(0) ,

thus showing that the actions are constants, while the angle variables vary linearly
with the time. For ε �= 0 the equations of motion

İ = −ε∂f
∂ϕ

(I, ϕ)

ϕ̇ = ω(I) + ε
∂f

∂I
(I, ϕ)

might no longer be integrable and chaotic motions could appear.

6.2 Classical perturbation theory

The aim of classical perturbation theory is to construct a canonical transformation,
which allows us to push the perturbation to higher orders in the perturbing pa-
rameter. With reference to the Hamiltonian (6.1), we introduce a canonical change
of variables C : (I, ϕ) → (I ′, ϕ′), such that (6.1) in the transformed variables takes
the form

H′(I ′, ϕ′) = H ◦ C(I, ϕ) ≡ h′(I ′) + ε2f ′(I ′, ϕ′) , (6.3)

where h′ and f ′ denote, respectively, the new unperturbed Hamiltonian and the
new perturbing function. The result is obtained through the following steps: de-
fine a suitable canonical transformation close to the identity, perform a Taylor
series expansion in the perturbing parameter, require that the change of variables
removes the dependence on the angles up to second–order terms; finally an ex-
pansion in Fourier series allows us to construct the explicit form of the canonical
transformation. Let us describe in detail this procedure.

Define a change of variables through a close–to–identity generating function of
the form I ′ · ϕ + εΦ(I ′, ϕ) providing

I = I ′ + ε
∂Φ(I ′, ϕ)

∂ϕ

ϕ′ = ϕ + ε
∂Φ(I ′, ϕ)

∂I ′
, (6.4)
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where Φ = Φ(I ′, ϕ) is an unknown function, which is determined in order that (6.1)
be transformed to (6.3). Let us split the perturbing function as

f(I, ϕ) = f(I) + f̃(I, ϕ) ,

where f(I) is the average over the angle variables and f̃(I, ϕ) is the remainder
function defined as f̃(I, ϕ) ≡ f(I, ϕ)−f(I). Inserting (6.4) into (6.1) and expanding
in Taylor series around ε = 0 up to the second order, one gets

h

(
I ′ + ε

∂Φ(I ′, ϕ)
∂ϕ

)
+ εf

(
I ′ + ε

∂Φ(I ′, ϕ)
∂ϕ

, ϕ

)

= h(I ′) + ω(I ′) · ε
∂Φ(I ′, ϕ)

∂ϕ
+ εf(I ′) + εf̃(I ′, ϕ) + O(ε2) .

The transformed Hamiltonian is integrable up to the second order in ε provided
that the function Φ satisfies:

ω(I ′) ·
∂Φ(I ′, ϕ)

∂ϕ
+ f̃(I ′, ϕ) = 0 . (6.5)

The new unperturbed Hamiltonian becomes

h′(I ′) = h(I ′) + εf(I ′) ,

which provides a better integrable approximation with respect to that associated
to (6.1). An explicit expression of the generating function is obtained solving (6.5).
To this end, let us expand Φ and f̃ in Fourier series as

Φ(I ′, ϕ) =
∑

m∈Zn\{0}
Φ̂m(I ′) eim·ϕ ,

f̃(I ′, ϕ) =
∑
m∈I

f̂m(I ′) eim·ϕ , (6.6)

where I denotes a suitable set of integer vectors defining the Fourier indexes of f̃ .
Inserting (6.6) in (6.5) one obtains

i
∑

m∈Zn\{0}
ω(I ′) ·m Φ̂m(I ′) eim·ϕ = −

∑
m∈I

f̂m(I ′) eim·ϕ ,

which provides

Φ̂m(I ′) = − f̂m(I ′)
i ω(I ′) ·m . (6.7)

Using (6.6) and (6.7), the generating function is given by

Φ(I ′, ϕ) = i
∑
m∈I

f̂m(I ′)
ω(I ′) ·m eim·ϕ . (6.8)
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The algorithm described above is constructive in the sense that it provides an
explicit expression for the generating function and for the transformed Hamiltonian.
We stress that (6.8) is well defined unless there exists an integer vector m ∈ I such
that

ω(I ′) ·m = 0 . (6.9)

On the other hand if, for a given value of the actions, ω = ω(I) is rationally
independent (which means that (6.9) is satisfied only for m = 0), then there do
not appear zero divisors in (6.8), though the divisors can become arbitrarily small
with a proper choice of the vector m. For this reason, terms of the form ω(I ′) ·m
are called small divisors and they can prevent the implementation of perturbation
theory.

6.2.1 An example

We apply classical perturbation theory to the two–dimensional Hamiltonian func-
tion

H(I1, I2, ϕ1, ϕ2) =
I21
2

+
I22
2

+ ε
[

cos(ϕ1 + ϕ2) + 2 cos(ϕ1 − ϕ2)
]
,

which can be shortly written as

H(I1, I2, ϕ1, ϕ2) = h(I1, I2) + εf(ϕ1, ϕ2), (6.10)

where

h(I1, I2) =
I21
2

+
I22
2

and
f(ϕ1, ϕ2) = cos(ϕ1 + ϕ2) + 2 cos(ϕ1 − ϕ2).

Let us perform the change of coordinates

I1 = I ′1 + ε
∂Φ
∂ϕ1

(I ′1, I
′
2, ϕ1, ϕ2)

I2 = I ′2 + ε
∂Φ
∂ϕ2

(I ′1, I
′
2, ϕ1, ϕ2)

ϕ′1 = ϕ1 + ε
∂Φ
∂I ′1

(I ′1, I
′
2, ϕ1, ϕ2)

ϕ′2 = ϕ2 + ε
∂Φ
∂I ′2

(I ′1, I
′
2, ϕ1, ϕ2) .

Expanding the Hamiltonian (6.10) in Taylor series up to the second order, one
obtains:

h

(
I ′1 + ε

∂Φ
∂ϕ1

, I ′2 + ε
∂Φ
∂ϕ2

)
+ εf(ϕ1, ϕ2)

= h(I ′1, I
′
2) + ε

∂h

∂I1
(I ′1, I

′
2)

∂Φ
∂ϕ1

+ ε
∂h

∂I2
(I ′1, I

′
2)

∂Φ
∂ϕ2

+ εf(ϕ1, ϕ2) + O(ε2) ,
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where
∂h

∂I1
(I ′1, I

′
2) = I ′1 ≡ ω1 ,

∂h

∂I2
(I ′1, I

′
2) = I ′2 ≡ ω2.

The first–order terms in ε must be zero; this yields the generating function as the
solution of the equation

ω1
∂Φ
∂ϕ1

+ ω2
∂Φ
∂ϕ2

= −f(ϕ1, ϕ2) .

Expanding in Fourier series and taking into account the explicit form of the per-
turbation, one obtains∑
m,n

i(ω1m + ω2n)Φm,n(I ′1, I
′
2)ei(mϕ1+nϕ2) = −

[
cos(ϕ1 + ϕ2) + 2 cos(ϕ1 − ϕ2)

]
.

Using the relations cos(k1ϕ1 + k2ϕ2) = 1
2 (ei(k1ϕ1+k2ϕ2) + e−i(k1ϕ1+k2ϕ2)) for some

integers k1, k2, and equating the coefficients with the same Fourier indexes, one
gets:

Φ1,1 = − 1
2i(ω1 + ω2)

, Φ−1,−1 =
1

2i(ω1 + ω2)
,

Φ1,−1 = − 1
i(ω1 − ω2)

, Φ−1,1 = − 1
i(−ω1 + ω2)

.

Casting together the above terms, the generating function is given by

Φ(I ′1, I
′
2, ϕ1, ϕ2) = − 1

ω1 + ω2

(
ei(ϕ1+ϕ2) − e−i(ϕ1+ϕ2)

2i

)

− 2
ω1 − ω2

(
ei(ϕ1−ϕ2) − e−i(ϕ1−ϕ2)

2i

)
,

namely

Φ(I ′1, I
′
2, ϕ1, ϕ2) = − 1

ω1 + ω2
sin(ϕ1 + ϕ2)− 2

ω1 − ω2
sin(ϕ1 − ϕ2) .

Notice that the generating function is not defined when there appear the following
zero divisors:

ω1 ± ω2 = 0 , namely I ′1 = ±I ′2 .

The new unperturbed Hamiltonian coincides with the old unperturbed Hamiltonian
(expressed in the new set of variables), since the average of the perturbing function
is zero:

h′(I ′1, I
′
2) =

I ′21
2

+
I ′22
2

.
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6.2.2 Computation of the precession of the perihelion

A straightforward application of classical perturbation theory allows us to com-
pute the amount of the precession of the perihelion. A first–order computation is
obtained starting with the restricted, planar, circular three–body model. In par-
ticular, we identify the three bodies P0, P1 and P2 with the Sun, Mercury and
Jupiter. In terms of the Delaunay action–angle variables, the perturbing function
can be expanded as in (4.7). The perturbing parameter ε represents the Jupiter–
Sun mass ratio. We implement a first–order perturbation theory, which provides a
new integrable Hamiltonian function of the form

h′(L′, G′) = − 1
2L′2

− G′ + ε R00(L′, G′) ,

where R00(L,G) = −L4

4 (1 + 9
16L

4 + 3
2e2) + O(e3). Hamilton’s equations yield

ġ′ =
∂h′(L′, G′)

∂G′
= −1 + ε

∂R00(L′, G′)
∂G′

.

Recall that g = g0 − t, being g0 the argument of the perihelion. Neglecting terms
of order O(e3) in R00, one gets that to the lowest order the argument of perihelion
g0 varies as

ġ0 = ε
∂R00(L′, G′)

∂G′
=

3
4
εL′2G′ .

Notice that up to the first order in ε one has L′ = L, G′ = G. Taking ε = 9.54 ·10−4

(the actual value of the Jupiter–Sun mass ratio), a = 0.0744 (setting to one the
Jupiter–Sun distance) and e = 0.2056, one obtains

ġ0 = 155.25
arcsecond
century

,

which represents the contribution due to Jupiter to the precession of the perihelion
of Mercury. A more refined value is obtained taking into account higher–order
terms in the eccentricity.

6.3 Resonant perturbation theory

Consider the following Hamiltonian system with n degrees of freedom

H(I, ϕ) = h(I) + εf(I, ϕ) , I ∈ Rn , ϕ ∈ Tn

and let ω(I) = ∂h(I)
∂I be the frequency vector of the motion. We assume that the

frequencies satisfy � resonance relations, with � < n, of the form

ω ·mk = 0 for k = 1, . . . , � ,

for some vectors m1, . . . , m� ∈ Zn. A resonant perturbation theory can be imple-
mented to eliminate the non–resonant terms. More precisely, the aim is to construct
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a change of variables C : (I, ϕ) → (I ′, ϕ′) such that the new Hamiltonian takes the
form

H′(I ′, ϕ′) = h′(I ′,m1 · ϕ′, . . . ,m� · ϕ′) + ε2f ′(I ′, ϕ′) , (6.11)

where h′ depends on ϕ′ only through the combinations mk · ϕ′ with k = 1, . . . , �.
To this end, let us first define the angles

ϑj = mj · ϕ , j = 1, . . . , �
ϑj′ = mj′ · ϕ , j′ = � + 1, . . . , n ,

where the first � angle variables are the resonant angles, while the latter n − �
angles are defined as arbitrary linear combinations with integer coefficients mj′ .
The corresponding actions are defined as

Ij = mj · J , j = 1, . . . , �
Ij′ = mj′ · J , j′ = � + 1, . . . , n .

Next we construct a canonical transformation which removes (to higher orders)
the dependence on the short–period angles (ϑ�+1, . . . , ϑn), while the lowest–order
Hamiltonian will necessarily depend upon the resonant angles. To this end, let us
first decompose the perturbation, expressed in terms of the variables (J, ϑ), as

f(J, ϑ) = f(J) + fr(J, ϑ1, . . . , ϑ�) + fn(J, ϑ) , (6.12)

where f(J) is the average of the perturbation over the angles, fr(J, ϑ1, . . . , ϑ�) is
the part depending on the resonant angles and fn(J, ϑ) is the non–resonant part.
By analogy with classical perturbation theory, we implement a canonical transfor-
mation of the form (6.4), such that the new Hamiltonian takes the form (6.11).
Using (6.12) and expanding up to the second order in the perturbing parameter,
one obtains:

h

(
J ′ + ε

∂Φ
∂ϑ

)
+ εf(J ′, ϑ) + O(ε2) = h(J ′) + ε

n∑
k=1

∂h

∂J ′k

∂Φ
∂ϑk

+εf(J ′) + εfr(J ′, ϑ1, . . . , ϑ�) + εfn(J ′, ϑ) + O(ε2) .

Recalling (6.11) and equating terms of the same orders is ε, one gets that

h′(J ′, ϑ1, . . . , ϑ�) = h(J ′) + εf(J ′) + εfr(J ′, ϑ1, . . . , ϑ�) , (6.13)

provided
n∑

k=1

ω′k
∂Φ
∂ϑk

= −fn(J ′, ϑ) , (6.14)

where ω′k = ω′k(J ′) ≡ ∂h(J ′)
∂Jk

. The solution of (6.14) provides the generating function
allowing us to reduce the Hamiltonian to the required form (6.11); moreover, the
conjugated action variables, say J ′�+1, . . . , J ′n, are constants of the motion up to
the second order in ε. We remark that using the new frequencies ω′k, the resonant
relations take the form ω′k = 0 for k = 1, . . . , �.
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6.3.1 Three–body resonance

As an example of the application of resonant perturbation theory we consider the
three–body Hamiltonian (4.2) with the perturbing function expanded as in (4.7).
Let ω ≡ (ω�, ωg) be the frequency of motion; we assume that the following resonance
relation is satisfied:

ω� + 2ωg = 0 .

Next, we perform the canonical change of variables

ϑ1 = � + 2g , J1 =
1
2
G ,

ϑ2 = 2� , J2 =
1
2
L− 1

4
G .

In the new coordinates the unperturbed Hamiltonian takes the form

h(J) ≡ − μ2

2(J1 + 2J2)2
− 2J1 ,

while the perturbing function is given by

R(J1, J2, ϑ1, ϑ2) ≡ R00(J) + R10(J) cos
(

1
2
ϑ2

)
+ R11(J) cos

(
1
2
ϑ1 +

1
4
ϑ2

)

+ R12(J) cos(ϑ1) + R22(J) cos
(
ϑ1 +

1
2
ϑ2

)

+ R32(J) cos(ϑ1 + ϑ2) + R33(J) cos
(

3
2
ϑ1 +

3
4
ϑ2

)

+ R44(J) cos(2ϑ1 + ϑ2) + R55(J) cos
(

5
2
ϑ1 +

5
4
ϑ2

)
+ . . .

with the coefficients Rij as in (4.8). Let us split the perturbation as R =
R(J)+Rr(J, ϑ1)+Rn(J, ϑ), where R(J) is the average over the angles, Rr(J, ϑ1) =
R12(J) cos(ϑ1) is the resonant part, while Rn contains all the remaining non–
resonant terms. We look for a change of coordinates close to the identity with
generating function Φ = Φ(J ′, ϑ) such that

ω′(J ′) · ∂Φ(J ′, ϑ)
∂ϑ

= −Rn(J ′, ϑ) ,

being ω′(J ′) ≡ ∂h(J ′)
∂J . The above expression is well defined since ω′ is non–resonant

for the Fourier components appearing in Rn. Finally, according to (6.13) the new
unperturbed Hamiltonian is given by

h′(J ′, ϑ1) ≡ h(J ′) + εR00(J ′) + εR12(J ′) cos(ϑ1) .
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6.4 Degenerate perturbation theory

Consider the Hamiltonian function with n degrees of freedom

H(I, ϕ) = h(I1, . . . , Id) + εf(I, ϕ) , d < n , (6.15)

where the unperturbed Hamiltonian depends on a subset of the action variables,
being degenerate in Id+1, . . . , In. As in the resonant perturbation theory, we look
for a canonical transformation C : (I, ϕ) → (I ′, ϕ′) such that the new Hamiltonian
becomes

H′(I ′, ϕ′) = h′(I ′) + εh′1(I ′, ϕ′d+1, . . . , ϕ
′
n) + ε2f ′(I ′, ϕ′) , (6.16)

where the term h′ + εh′1 admits d integrals of motion. Let us split the perturbing
function in (6.15) as

f(I, ϕ) = f(I) + fd(I, ϕd+1, .., ϕn) + fn(I, ϕ) , (6.17)

where f is the average over the angle variables, fd is independent of ϕ1, . . . , ϕd

and fn is the remainder, namely fn = f − f − fd. We want to determine a near–
to–identity change of variables of the form (6.4), such that in view of (6.17) the
Hamiltonian (6.15) is transformed into (6.16), namely

h

(
I ′1 + ε

∂Φ
∂ϕ1

, . . . , I ′d + ε
∂Φ
∂ϕd

)
+ εf

(
I ′ + ε

∂Φ
∂ϕ

, ϕ

)

= h(I ′1, . . . , I
′
d) + ε

d∑
k=1

∂h

∂Ik

∂Φ
∂ϕk

+ εf(I ′) + εfd(I ′, ϕd+1, . . . , ϕn)

+ εfn(I ′, ϕ) + O(ε2)

≡ h′(I ′) + εh′1(I ′, ϕd+1, . . . , ϕn) + O(ε2) ,

where

h′(I ′) ≡ h(I ′1, . . . , I
′
d) + εf(I ′)

h′1(I ′, ϕd+1, . . . , ϕn) ≡ fd(I ′, ϕd+1, . . . , ϕn) ,

provided Φ is determined so that

d∑
k=1

∂h

∂Ik

∂Φ
∂ϕk

+ fn(I ′, ϕ) = 0 . (6.18)

As in the previous sections, let us expand Φ and fn in Fourier series as

Φ(I ′, ϕ) =
∑

m∈Zn\{0}
Φ̂m(I ′) eim·ϕ

fn(I ′, ϕ) =
∑

m∈In
f̂n,m(I ′) eim·ϕ ,
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where In denotes a suitable set of integer vectors defining the Fourier indexes of
fn. From (6.18) and setting ωk ≡ ∂h

∂Ik
, one obtains

i
∑

m∈Zn\{0}
Φ̂m(I ′)

d∑
k=1

mkωk eim·ϕ = −
∑

m∈In
f̂n,m(I ′) eim·ϕ . (6.19)

Due to the fact that ωk = 0 for k = d + 1, . . . , n, we obtain that

ω ·m =
d∑

k=1

mkωk . (6.20)

Equation (6.19) yields that the generating function takes the form

Φ(I ′, ϕ) = i
∑

m∈In

f̂n,m(I ′)
ω ·m eim·ϕ .

The generating function is well defined provided that ω ·m �= 0 for any m ∈ In,
which in view of (6.20) is equivalent to requiring that

d∑
k=1

mkωk �= 0 for m ∈ In .

6.4.1 The precession of the equinoxes

An application of the degenerate perturbation theory to Celestial Mechanics is of-
fered by the computation of the precession of the equinoxes, namely the constant
retrograde precession of the spin–axis provoked by gravitational interactions. In
particular, we compute the Earth’s equinox precession due to the influence of the
Sun and of the Moon. Assume that the Earth E is an oblate rigid body moving
around the (point–mass) Sun S on a Keplerian orbit with semimajor axis a and
eccentricity e; recalling (5.8) and (5.10), in the gyroscopic case I1 = I2 the Hamil-
tonian describing the motion of E around S is given by

H(L,G,H, �, g, h, t) =
G2

2I1
+

I1 − I3
2I1I3

L2 + Ṽ (L,G,H, �, g, h, t) ,

where I1, I2, I3 are the principal moments of inertia and where the perturbation
is implicitly defined by

Ṽ ≡ −
∫
E

GmSmE
|rE + x|

dx

|E| ,

being rE the orbital radius of the Earth and |E| the volume of E . Setting rE = |rE |
and x = |x|, we can expand Ṽ using the Legendre polynomials as

Ṽ = −GmSmE
rE

∫
E

dx

|E|

[
1− x · rE

r2E
+

1
2r2E

(
3

(x · rE)2

r2E
− x2

)]
+ O

[(
x

rE

)3]
.
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Assume that the Earth rotates around a principal axis, namely that the non–
principal rotation angle J is zero or, equivalently, that the actions G and L are
equal. Let Ḡ and H̄ be the initial values of G and H at t = 0 and let α denotes the
angle between rE and k (k being the vertical axis of the body frame). Retaining
only the second order of the development of the perturbing function in terms of
the Legendre polynomials, one obtains

Ṽ = εω̄
Ḡ2

H̄

(1− e cosλE)3

(1− e2)3
cos2 α

with ε = 3
2
I3−I1

I3
, ω̄ = GmS

a3 I3
H̄
Ḡ2 and where λE is the longitude of the Earth.

Elementary computations show that

cosα = sin(λE − h)

√
1− H2

G2
.

Neglecting first–order terms in the orbital eccentricity, we have that
(1−e cosλE)3

(1−e2)3 
 1. A first–order degenerate perturbation theory provides the new
unperturbed Hamiltonian in the form (we omit the primes to denote new vari-
ables):

H1(G,H) =
G2

2I3
+ εω̄

Ḡ2

H̄

G2 −H2

2G2
.

Finally, the average angular velocity of precession is given by

ḣ =
∂H1(G,H)

∂H
= −εω̄ Ḡ2

H̄

H

G2
.

At t = 0 it is
ḣ = −εω̄ = −εω2

yω
−1
d cosK , (6.21)

where we used ω̄ = ω2
yω
−1
d cosK with ωy being the frequency of revolution and ωd

the frequency of rotation, while K denotes the obliquity.
Astronomical measurements show that I3−I1

I3

 1

298.25 , K 
 23.45o. The con-
tribution ḣ(S) due to the Sun is thus obtained inserting ωy = 1 year, ωd = 1 day
in (6.21), yielding ḣ(S) = −2.51857 · 10−12 rad/sec, which corresponds to a retro-
grade precessional period of 79 107.9 years. A similar computation shows that the
contribution ḣ(M) of the Moon amounts to ḣ(M) = −5.49028 · 10−12 rad/sec, cor-
responding to a precessional period of 36 289.3 years. The total precessional period
is obtained as the sum of ḣ(S) and ḣ(M), providing an overall retrograde preces-
sional period of 24 877.3 years, in good agreement with the value corresponding to
astronomical observations and amounting to 25 700 years for the precession of the
equinoxes.
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6.5 Birkhoff’s normal form

6.5.1 Normal form around an equilibrium position

Assume that the Hamiltonian H = H(p, q), (p, q) ∈ R2n, admits the origin as a
stable equilibrium position; as a consequence, the eigenvalues of the quadratic part
are all distinct and purely imaginary. In a neighborhood of the equilibrium position,
after a series expansion and eventual diagonalization of the quadratic terms, we can
write the Hamiltonian in the form

H(p, q) =
1
2

n∑
j=1

ωj(p2j + q2j ) +H3(p, q) +H4(p, q) + . . . , (6.22)

where ωj ∈ R for j = 1, . . . , n are called the frequencies of the motion and the terms
Hk are polynomials of degree k in p and q. The following definitions introduce the
resonant relations and the Birkhoff normal form associated to the Hamiltonian
(6.22).

Definition. The frequencies ω1, . . . , ωn are said to satisfy a resonance relation
of order K > 0, if there exists a non–zero integer vector (k1, . . . , kn) such that
k1ω1 + · · ·+ knωn = 0 and |k1|+ · · ·+ |kn| = K.

Definition. Let K be a positive number; a Birkhoff normal form for the Hamil-
tonian (6.22) is a polynomial of degree K in a set of variables P , Q, such that it is
a polynomial of degree [K2 ] in the quantity I ′j = 1

2 (P 2
j + Q2

j ) for j = 1, . . . , n.

The construction of the Birkhoff normal form is the content of the following theo-
rem.

Theorem. Let K be a positive integer; assume that the frequencies ω1, . . . , ωn

do not satisfy any resonance relation of order less than or equal to K. Then, there
exists a canonical transformation from (p, q) to (P ,Q) such that the Hamiltonian
(6.22) reduces to a Birkhoff normal form of degree K.

Proof. Let us introduce action–angle variables I = (I1, . . . , In) ∈ Rn, ϕ =
(ϕ1, . . . , ϕn) ∈ Tn, such that

pj =
√

2Ij cosϕj

qj =
√

2Ij sinϕj , j = 1, . . . , n . (6.23)

Then, the Hamiltonian (6.22) can be written as

H1(I, ϕ) =
n∑

j=1

ωjIj +H1,3(I, ϕ) +H1,4(I, ϕ) + . . . , (6.24)
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where the terms H1,k are polynomials of degree [k/2] in I1,. . . ,In. Let I ′·ϕ+Φ(I ′, ϕ)
be the generating function of a canonical transformation close to the identity from
(I, ϕ) to (I ′, ϕ′):

I = I ′ +
∂Φ
∂ϕ

ϕ′ = ϕ +
∂Φ
∂I ′

. (6.25)

Let us decompose Φ as the sum of polynomials

Φ = Φ3 + Φ4 + · · ·+ ΦK ,

where Φk, k = 3, . . . ,K, is a polynomial of order [k2 ] in I1,. . . ,In. Inserting the first
of (6.25) in the Hamiltonian (6.24), one obtains the transformed Hamiltonian

H2(I ′, ϕ) = ω · I ′ + ω · ∂Φ
∂ϕ

+H1,3

(
I ′ +

∂Φ
∂ϕ

, ϕ

)
+H1,4

(
I ′ +

∂Φ
∂ϕ

, ϕ

)
+ . . . (6.26)

Let us determine Φ3 such that the Hamiltonian (6.26) reduces to the Birkhoff
normal form up to degree 3. To this end, split H3 as

H1,3(I ′, ϕ) = H̄1,3(I ′) + H̃1,3(I ′, ϕ) ,

where H̄1,3(I ′) is the average of H1,3 over the angles and H̃1,3(I ′, ϕ) is the remain-
der. Using (6.26) we obtain

H2(I ′, ϕ) = ω·I ′+H̄1,3(I ′)+
[
ω·∂Φ3

∂ϕ
+H̃1,3(I ′, ϕ)

]
+ω·∂Φ4

∂ϕ
+H1,4

(
I ′+

∂Φ
∂ϕ

, ϕ

)
+. . .

Expanding Φ3 and H̃1,3 in Fourier series as

Φ3(I ′, ϕ) =
∑

m∈Zn

Φ̂3,m(I ′) eim·ϕ

H̃1,3(I ′, ϕ) =
∑

m∈Zn\{0}
Ĥ1,3,m(I ′) eim·ϕ , (6.27)

one obtains

i
∑

m∈Zn

ω ·m Φ̂3,m(I ′)eim·ϕ +
∑

m∈Zn\{0}
Ĥ1,3,m(I ′) eim·ϕ = 0 .

Therefore the unknown Fourier coefficients of Φ3 are given by

Φ̂3,m(I ′) = −Ĥ1,3,m(I ′)
i ω ·m . (6.28)
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Casting together (6.27) and (6.28), one obtains

Φ3(I ′, ϕ) = −
∑

m∈Zn\{0}

Ĥ1,3,m(I ′)
i ω ·m eim·ϕ .

Therefore the transformed Hamiltonian depends only on the actions I ′ up to terms
of the fourth order, thus yielding a Birkhoff normal form of degree 3; the normalized
terms define an integrable system in the set of action–angle variables (I ′, ϕ′) which

provide the set of variables (P ,Q) through the transformation Pj =
√

2I ′j cosϕ′j ,

Qj =
√

2I ′j sinϕ′j , j = 1, . . . , n. The same procedure applied to higher orders leads
to the determination of the generating function associated to the Birkhoff normal
form of degree K. �
The Birkhoff normal form can be applied to the resonant case (see [6]) as the
classical perturbation theory extends to the resonant perturbation theory. More
precisely, recalling the action–angle variables introduced in (6.23), one has the
following definition.

Definition. Let K be a sublattice of Zn; a resonant Birkhoff normal form of
degree K for resonances in K is a polynomial of degree [K2 ] in I1, . . . , In, depending
on the angles only through combinations of the form k · ϕ for k ∈ K.

The extension of the Birkhoff normal form to the resonant case is the content of
the following theorem.

Theorem. Let K be a positive integer and let K be a sublattice of Zn; assume
that the frequencies ω1, . . . , ωn do not satisfy any resonance relation of order less
than or equal to K, except for combinations of the form k · ϕ for k ∈ K. Then,
there exists a canonical transformation such that the Hamiltonian (6.22) reduces to
a resonant Birkhoff normal form of degree K for resonances in K.

Remark. The above results extend straightforwardly to mapping systems having
the origin as an elliptic stable fixed point, so that all eigenvalues lie on the unitary
circle of the complex plane. We briefly quote here the main result, referring to [162]
for further details. Let (p′, q′) = M(p, q) be a two–dimensional area preserving map
with (p, q) ∈ R2.

Definition. Let K be a positive number; close to an elliptic fixed point, a Birkhoff
normal form of degree K for M is a polynomial in a set of variables P , Q, which
is a polynomial of degree [K2 ]− 1 in the quantity I ′ = 1

2 (P 2 + Q2).

The Birkhoff normal form for mappings is the content of the following theorem.

Theorem. If the eigenvalue of the linear part of M at the elliptic fixed point is
not a root of unity of degree less than or equal to K, then there exists a canonical
change of variables which reduces the map to a Birkhoff normal form of degree K.
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6.5.2 Normal form around closed trajectories

Let us consider a non–autonomous Hamiltonian system of the form

H = H(p, q, t) ,

where (p, q) ∈ R2n and H is a 2π–periodic function of the time. Closed trajectories
for H are generally not isolated, but they rather form families. In a neighborhood
of a closed trajectory one can reduce the Hamiltonian to the form

H(p, q, t) =
1
2

n∑
j=1

ωj(p2j + q2j ) +H3(p, q, t) +H4(p, q, t) + . . . , (6.29)

where ω = (ω1, . . . , ωn) is the so–called frequency vector. Referring the reader to
[6], we introduce the notion of resonance relation and a result on the construction
of the Birkhoff normal form for the Hamiltonian (6.29).

Definition. The frequencies ω1, . . . , ωn are said to satisfy a resonance relation of
order K, with K > 0, if there exists a non–zero integer vector (k0, k1, . . . , kn) such
that k0 + k1ω1 + · · ·+ knωn = 0 and |k1|+ · · ·+ |kn| = K.

Theorem. Assume that K is a positive integer and that the frequencies ω1, . . . , ωn

do not satisfy any resonance relation of order less than or equal to K. Then, there
exists a canonical transformation 2π–periodic in time, such that (6.29) is reduced to
an autonomous Birkhoff normal form of degree K with a time–dependent remainder
of order K + 1.

The extension of such result to the resonant case is formulated as follows (see [6]).

Definition. Let K be a sublattice of Zn+1; a resonant Birkhoff normal form of
degree K for resonances in K is a polynomial of degree [K2 ] in the actions I1, . . . , In,
depending on the angles and on the time only through combinations of the form
k0t + k · ϕ for (k0, k) ∈ K.

Theorem. Let K be a positive integer and let K be a sublattice of Zn+1; assume that
the frequencies ω1, . . . , ωn do not satisfy any resonance relation of order less than
or equal to K, except for combinations of the form k0 +k ·ϕ for (k0, k) ∈ K. Then,
there exists a canonical transformation reducing the Hamiltonian to a resonant
Birkhoff normal form of degree K in K up to terms of order K + 1.

6.6 The averaging theorem

Consider the n–dimensional nearly–integrable Hamiltonian system

H(I, ϕ) = h(I) + εf(I, ϕ) , I ∈ Rn , ϕ ∈ Tn ,

with associated Hamilton’s equations

İ = εF (I, ϕ)
ϕ̇ = ω(I) + εG(I, ϕ) , (6.30)
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where F (I, ϕ) ≡ −∂f(I,ϕ)

∂ϕ , ω(I) ≡ ∂h(I)
∂I , G(I, ϕ) =

∂f(I,ϕ)

∂I . Let us decompose F as

its average plus an oscillating part, say F (I, ϕ) = F (I) + F̃ (I, ϕ), so that we can
write (6.30) as

İ = εF (I) + εF̃ (I, ϕ)
ϕ̇ = ω(I) + εG(I, ϕ) . (6.31)

Averaging (6.31) with respect to the angles, we obtain the following differential
equations in a new set of coordinates J :

J̇ = εF (J) . (6.32)

Denoting by Iε(t) the solution of (6.31) with initial data Iε(0) and by Jε(t) the
solution of (6.32) with initial data Jε(0) = Iε(0), we want to investigate the con-
ditions for which the averaged system is a good approximation of the full system
(see for example [83] for applications to Celestial Mechanics). More precisely, we
aim to study the conditions for which

lim
ε→0

|Iε(t)− Jε(t)| = 0 for t ∈
[
0,

1
ε

]
. (6.33)

We prove such statement in some particular cases. Let us consider first the one–
dimensional case described by the Hamiltonian function

H(I, ϕ) = ωI + εf(ϕ) ,

where ω is a non–zero real number and where the perturbation does not depend
on the action. Setting F (ϕ) = −df(ϕ)

dϕ , the equations of motion are given by

İ = εF (ϕ)
ϕ̇ = ω . (6.34)

In this case (6.33) is guaranteed by the following result.

Proposition. Let Iε(t) and Jε(t) denote, respectively, the solutions at time t of
(6.34) and of the averaged equation with initial conditions, respectively, Iε(0) and
Jε(0) = Iε(0). Then, for any 0 ≤ t ≤ 1

ε , one has

lim
ε→0

|Iε(t)− Jε(t)| = 0 . (6.35)

Proof. Let c be the average of F (ϕ); then Jε(t) = Iε(0) + εct. Defining
F̃ (ϕ) ≡ F (ϕ)− c, we have

Iε(t)− Jε(t) = Iε(0) +
∫ t

0

İε(τ)dτ − (Iε(0) + εct)

= ε

∫ t

0

F̃ (ϕ(0) + ωτ)dτ =
ε

ω

∫ ϕ(0)+ωt

ϕ(0)

F̃ (ψ)dψ .
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If M denotes an upper bound on
∫ ϕ(0)+ωt

ϕ(0)
F̃ (ψ)dψ for 0 ≤ t ≤ 1

ε , then

|Iε(t)− Jε(t)| ≤
ε

ω
M ,

which yields (6.35). �
For higher–dimensional systems, let us consider the Hamiltonian function with
n > 1 degrees of freedom:

H(I, ϕ) = ω · I + εf(ϕ) ,

where I ∈ Rn, ϕ ∈ Tn, ω ∈ Rn\{0}. The equations of motion are

İ = εF (ϕ)
ϕ̇ = ω , (6.36)

with F (ϕ) ≡ −∂f(ϕ)

∂ϕ . Let c be the average of F (ϕ); more precisely, for a suitable
sublattice K of Zn\{0}, let

F (ϕ) = c +
∑
k∈K

F̂ ke
ik·ϕ .

Proposition. Let Iε(t) and Jε(t) denote, respectively, the solutions at time t of
(6.36) and of the averaged equations with initial conditions, respectively, Iε(0) and
Jε(0) = Iε(0). If the set K0 ≡ {k ∈ K : k ·ω = 0} is empty, then for any 0 ≤ t ≤ 1

ε ,
one has

lim
ε→0

|Iε(t)− Jε(t)| = 0 .

Proof. We can write

İ = εc + ε
∑
k∈K

F̂ke
ik·ϕ(0) eik·ωt

= εc + ε
∑
k∈K0

F̂ke
ik·ϕ(0) + ε

∑
k∈K\K0

F̂ke
ik·ϕ(0)eik·ωt ,

whose integration yields

Iε(t)− Iε(0) = εct + tε
∑
k∈K0

F̂ke
ik·ϕ(0) + ε

∑
k∈K\K0

F̂ke
ik·ϕ(0) eik·ωt − 1

ik · ω .

The sum over K0 generates secular terms; nevertheless, by assumption the set K0 is
empty. As a consequence, the distance between the complete and averaged solutions
becomes:

Iε(t)− Jε(t) = ε
∑

k∈K\K0

F̂ke
ik·ϕ(0) eik·ωt − 1

ik · ω ,

which vanishes as ε tends to zero. �
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6.6.1 An example

Let us consider the Hamiltonian function with two degrees of freedom:

H(L,G, �, g) = L2 −G + εR(L,G, �, g)

= L2 −G + ε
(
R00(L,G) + R10(L,G) cos 2�

+ R12(L,G) cos(� + 2g)
)
,

for some real functions R00(L,G), R10(L,G), R12(L,G). The frequency vector is
(ω�, ωg) = (2L,−1); assume that the following resonance condition holds:

ω� + 2ωg = 0 .

We perform the symplectic change of variables from (L,G, �, g) to (I1, I2, ϑ1, ϑ2)
defined as

ϑ1 = � + 2g , I1 =
1
2
G ,

ϑ2 = 2� , I2 =
1
2
L− 1

4
G ; (6.37)

due to the resonance, ϑ1 is a slow variable, while ϑ2 is a fast variable. The new
Hamiltonian becomes

H(I1, I2, ϑ1, ϑ2) = (I1 + 2I2)2 − 2I1 + εR(I1, I2, ϑ1, ϑ2)

= (I1 + 2I2)2 − 2I1 + ε
(
R00(I1, I2)

+ R10(I1, I2) cosϑ2 + R12(I1, I2) cosϑ1
)
, (6.38)

where R(I1, I2, ϑ1, ϑ2) (and its coefficients) is the transformed function of R(L,G, �, g)
(and of its coefficients). Hamilton’s equations are

İ1 = εR12(I1, I2) sinϑ1
İ2 = εR10(I1, I2) sinϑ2

ϑ̇1 = 2(I1 + 2I2)− 2 + ε
∂R(I1, I2, ϑ1, ϑ2)

∂I1

ϑ̇2 = 4(I1 + 2I2) + ε
∂R(I1, I2, ϑ1, ϑ2)

∂I2
.

Averaging over the fast variable ϑ2 and denoting by (J1, J2, ϕ1, ϕ2) the averaged
variables, one obtains the Hamiltonian

H(J1, J2, ϕ1, ϕ2) = (J1 + 2J2)2 − 2J1 + ε
(
R00(J1, J2) + R12(J1, J2) cosϕ1

)
= (J1 + 2J2)2 − 2J1 + εR̄(J1, J2, ϕ1) ,
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where R̄(J1, J2, ϕ1) ≡ R00(J1, J2) + R12(J1, J2) cosϕ1. The associated Hamilton’s
equations are

J̇1 = εR12(J1, J2) sinϕ1

J̇2 = 0

ϕ̇1 = 2(J1 + 2J2)− 2 + ε
∂R̄(J1, J2, ϕ1)

∂J1

ϕ̇2 = 4(J1 + 2J2) + ε
∂R̄(J1, J2, ϕ1)

∂J2
.

As a special case we set R00(L,G) = L, R12(L,G) = L2G, R10(L,G) = LG2; taking
ε = 0.01 and setting the initial conditions in the transformed variables (6.37) as
I1(0) = 0.9, I2(0) = 0.5, ϑ1(0) = 0, ϑ2(0) = 0, one obtains that the difference
between the complete and averaged solutions (see Figure 6.1) is |I1(t) − J1(t)| <
0.076 for any 0 ≤ t ≤ 100 in agreement with the averaging results discussed in
Section 6.6.
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Fig. 6.1. The difference between the complete and averaged solutions associated to (6.38)
for the special case R00(L,G) = L, R12(L,G) = L2G, R10(L,G) = LG2 with ε = 0.01
and with initial conditions I1(0) = 0.9, I2(0) = 0.5, ϑ1(0) = 0, ϑ2(0) = 0.
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