
4 The three–body problem and the
Lagrangian solutions

The solution of the two–body problem is provided by Kepler’s laws, which state
that for negative energies a point–mass moves on an ellipse whose focus coincides
with the other point–mass. As shown by Poincaré [149], the dynamics becomes
extremely complicated when you add the gravitational influence of a third body.
In Section 4.1 we shall focus on a particular three–body problem, known as the
restricted three–body problem, where it is assumed that the mass of one of the
three bodies is so small that its influence on the others can be neglected (see,
e.g., [21, 44, 94, 131, 163, 169]). As a consequence the primaries move on Keplerian
ellipses around their common barycenter; a simplified model consists in assuming
that the primaries move on circular orbits and that the motion takes place on
the same plane. Action–angle Delaunay variables are introduced for the restricted
three–body problem and the expansion of the perturbing function is provided.
In the framework of the planar, circular, restricted three–body problem we derive
the special solutions found by Lagrange, which are given by stationary points in the
synodic reference frame (Section 4.2). The existence and stability of such solutions
is also discussed in the framework of a model in which the primaries move on elliptic
orbits (Section 4.3) as well as in the context of the elliptic, unrestricted three–body
problem (Section 4.4).

4.1 The restricted three–body problem

Let P1, P2, P3 be three bodies with masses m1, m2, m3, respectively; throughout
this section the three bodies are assumed to be point–masses. In the restricted
problem one takes m2 much smaller than m1 and m3, so that P2 does not affect
the motion of P1 and P3. As a consequence we can assume that the motion of P1

and P3, to which we refer as the primaries, is Keplerian. Concerning the motion
of P2 around the primaries, the region where the attraction of P1 or that of P3 is
dominant is called the sphere of influence; an estimate of such a domain is provided
in Appendix B.

4.1.1 The planar, circular, restricted three–body problem

The simplest non–trivial three–body model assumes that P1 and P3 move on a cir-
cular orbit around the common barycenter and that the motion of the three bodies
takes place on the same plane. We refer to such a model as the planar, circular,
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restricted three–body problem. In an inertial reference frame whose origin coincides
with the barycenter of the three bodies, let ξ

1
, ξ

2
, ξ

3
∈ R2 be the corresponding

coordinates. From Newton’s gravitational law one obtains that the motion of P1

and P2 is described by the equations
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Next we consider a (heliocentric) reference frame with origin coinciding with P1;
let r2 ≡ ξ

2
− ξ

1
, r3 ≡ ξ

3
− ξ

1
be the relative positions with ρ2 ≡ |r2|, ρ3 ≡ |r3|.

Then, one obtains

d2r2
dt2

= −G(m1 + m2)r2
ρ32

− Gm3r3
ρ33

+
Gm3(r3 − r2)
|r3 − r2|3

.

Setting μ ≡ G(m1 + m2) and ε = Gm3, one has

d2r2
dt2

+
μr2
ρ32

= −ε ∂R
∂r2

,

where the function R takes the form

R =
r2 · r3
ρ33

− 1
|r3 − r2|

. (4.1)

Notice that for ε = 0 the dynamics reduces to the two–body problem of the motion
of P2 around P1. For this reason we shall refer to ε as the perturbing parameter
and to R as the perturbing function of the Keplerian motion. Recalling (3.36) we
can write the three–body Hamiltonian as

H0(L0, G0, �0, g0) = − μ2

2L2
0

+ εR(L0, G0, �0, g0) , (4.2)

where R is given by (4.1) and the functions r2, r3 must be expressed in terms
of the Delaunay variables. Since the motion of P3 around P1 is circular, normal-
izing the time so that the angular velocity of P3 is equal to one, one obtains
r3 = (ρ3 cos t, ρ3 sin t). Denoting by ϑ the longitude of P2 and using r2 · r3 =
ρ2ρ3 cos(ϑ − t), one obtains |r3 − r2| =

√
ρ22 + ρ23 − 2ρ2ρ3 cos(ϑ− t). As a conse-

quence, the perturbing function takes the form

R =
ρ2 cos(ϑ− t)

ρ23
− 1√

ρ22 + ρ23 − 2ρ2ρ3 cos(ϑ− t)
. (4.3)

We immediately remark that R depends upon the difference ϑ − t; being ϑ =
g0 + f , one obtains that R depends on the difference g0 − t. Therefore we perform
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the canonical change of variables from the Delaunay coordinates (L0, G0, �0, g0)
introduced in Chapter 3 to a new set of variables (L,G, �, g) defined as

� = �0 , L = L0 ,

g = g0 − t , G = G0 .

The transformed Hamiltonian takes the form

H(L,G, �, g) = − μ2

2L2
−G

+ ε
ρ2 cos(g + f)

ρ23
− ε√

ρ22 + ρ23 − 2ρ2ρ3 cos(g + f)
,

where ρ2, f are intended to be expressed in terms of the mean anomaly.

4.1.2 Expansion of the perturbing function

The perturbing function (4.3) can be written in terms of the Delaunay variables.
Here we compute explicitly the first few coefficients of its Fourier–Taylor series
expansion and we refer to Appendix C (see also [61, 67, 68]) for general formulae
valid at any order.

Let us introduce the Legendre polynomials Pj(x) defined through the recursive
relations

P0(x) = 1
P1(x) = x

Pj+1(x) =
(2j + 1)Pj(x)x− jPj−1(x)

j + 1
for any j ≥ 1 .

Apart from a constant factor, the second term in (4.3) becomes

1√
ρ22 + ρ23 − 2ρ2ρ3 cos(ϑ− t)

=
1
ρ3

∞∑
j=0

Pj(cos(ϑ− t))
(
ρ2
ρ3

)j

,

from which we obtain

R = − 1
ρ3

∞∑
j=2

Pj(cos(ϑ− t))
(
ρ2
ρ3

)j

. (4.4)

The inversion of Kepler’s equation (3.24) up to the second order in the eccentricity
yields

u = � + e sin � +
e2

2
sin(2�) + O(e3) .

Using (3.23) one obtains

f = � + 2e sin � +
5
4

e2 sin 2l + O(e3) ,
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so that
ϑ− t = g + � + 2e sin � +

5
4

e2 sin 2� + O(e3) . (4.5)

In a similar way, from ρ2 = a(1− e cosu) one obtains:

ρ2 = a

(
1 +

1
2

e2 − e cos �− 1
2

e2 cos 2�
)

+ O(e3) . (4.6)

Recall that the ecccentricity is a function of the Delaunay variables through the

relation e =
√

1− G2

L2 . The powers (ρ2
a )j for j = 2, 3, . . . admit the following

expansions:(
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a

)2
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3
2
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2

e2 cos 2� + O(e3)

(
ρ2
a

)3
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(
ρ2
a

)4

= 1 + 5e2 − 4e cos � + e2 cos 2� + O(e3)

(
ρ2
a

)5
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(
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+
5
2
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+ O(e3) . . . .

From (4.4), one gets:

R = − 1
ρ3

[P2(cos(ϑ− t)) (ρ2
a )2( a

ρ3
)2 + P3(cos(ϑ− t)) (ρ2

a )3( a
ρ3

)3

+P4(cos(ϑ− t)) (ρ2
a )4( a

ρ3
)4 + P5(cos(ϑ− t)) (ρ2

a )5( a
ρ3

)5] + . . . .

Casting together (4.5), (4.6) and normalizing the unit of length so that ρ3 = 1, one
obtains the expansion

R = R00(L,G) + R10(L,G) cos � + R11(L,G) cos(� + g)
+ R12(L,G) cos(� + 2g) + R22(L,G) cos(2� + 2g)
+ R32(L,G) cos(3� + 2g) + R33(L,G) cos(3� + 3g)
+ R44(L,G) cos(4� + 4g) + R55(L,G) cos(5� + 5g) + . . . , (4.7)

where the coefficients Rij are given by the following expressions:

R00 = −L4

4

(
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9
16
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3
2
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)

+ . . . , R10 =
L4e
2

(
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9
8
L4
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+ . . .
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8
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5
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)
+ . . . , R12 =

L4e
4

(9 + 5L4) + . . .

R22 = −L4

4

(
3 +

5
4
L4

)
+ . . . , R32 = −3

4
L4e + . . .

R33 = −5
8
L6

(
1 +

7
16

L4

)
+ . . . , R44 = −35

64
L8 + . . .

R55 = − 63
128

L10 + . . . (4.8)
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4.1.3 The planar, elliptic, restricted three–body problem

If we assume that P3 orbits around P1 on an elliptic orbit with eccentricity e′, the
corresponding motion is described by a Hamiltonian function with three degrees of
freedom; if ψ denotes the longitude of P3 and Ψ is the conjugated action variable,
the Hamiltonian of the elliptic case is given by

H(L,G,Ψ, �, g, ψ) = − 1
2L2

+ Ψ + εR(L,G, �, g, ψ; e′) ,

where R(L,G, �, g, ψ; e′) depends parametrically on e′ and, in normalized units, ε
is the primaries mass–ratio. Up to constants, the first few Fourier coefficients of
the series expansion of the perturbing function are the following:
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4
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4.1.4 The inclined, circular, restricted three–body problem

We assume that the motion of P3 around P1 is circular, but we let the planes of
the orbits of P2 and P3 have a non–zero mutual inclination i. Using the spatial
Delaunay variables (L,G,H, �, g, h) introduced in Chapter 3, denoting with ψ the
longitude of P3, the Hamiltonian function takes the form:

H(L,G,H, �, g, h, ψ) = − 1
2L2

−H + εR(L,G,H, �, g, h, ψ) ,

where, setting γ =
√

1
2 −

H
2G , up to constants the first few terms of the Fourier

expansion of the perturbing function are given by
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R(L,G,H, �, g, h, ψ) = −L4
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(
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−35
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4.2 The circular, restricted Lagrangian solutions

In the framework of the restricted, planar, circular three–body problem, Euler
and Lagrange proved that in a rotating reference frame the equations of motion
admit the existence of equilibrium solutions, known as the collinear and triangular
equilibrium points. A concrete example is provided by the Trojan and Greek groups
of asteroids, which (approximately) form an equilateral triangle with Jupiter and
the Sun.

The mathematical derivation of such equilibrium solutions is the following. Con-
sider a sidereal reference frame (O, ξ, η, ζ), where O coincides with the barycenter
of the three bodies, the ξ axis lies along the direction joining the bodies with masses
m1 and m3 at time t = 0, η is orthogonal to ξ and belongs to the orbital plane,
while ζ is perpendicular to the orbital plane. Let (ξi, ηi, ζi), i = 1, 3, be the coordi-
nates of the primaries P1 and P3. We normalize the units of measure so that the
distance between the primaries is unity and that G(m1 +m3) = 1. Without loss of
generality we assume that m1 > m3 and let

μ ≡ m3

m1 + m3
,

so that μ1 ≡ Gm1 = 1 − μ, μ3 ≡ Gm3 = μ. The equations of motion of P2 with
coordinates (ξ, η, ζ) can be written as
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ξ̈ = μ1
ξ1 − ξ

r31
+ μ3

ξ3 − ξ

r33

η̈ = μ1
η1 − η

r31
+ μ3

η3 − η

r33

ζ̈ = μ1
ζ1 − ζ

r31
+ μ3

ζ3 − ζ

r33
, (4.9)

where r1 and r3 denote the distances from the primaries:

r1 =
√

(ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2 ,

r3 =
√

(ξ3 − ξ)2 + (η3 − η)2 + (ζ3 − ζ)2 .

Let us introduce a synodic reference frame (O, x, y, z), rotating with the angular
velocity n of the primaries, where n has been normalized to one, due to the choice
of the units of measure. Let us fix the axes so that the coordinates of the primaries
become (x1, y1, z1) = (−μ3, 0, 0), (x3, y3, z3) = (μ1, 0, 0). The link between the
synodic and the sidereal reference frames is

ξ = cos(t)x− sin(t)y
η = sin(t)x + cos(t)y
ζ = z , (4.10)

while the distances of P2 from the primaries are now given by

r1 =
√

(x + μ3)2 + y2 + z2 , r3 =
√

(x− μ1)2 + y2 + z2 . (4.11)

Computing the second derivative of (4.10) with respect to time and inserting the
result in (4.9) one obtains the equations of motion in the synodic frame:

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

z̈ =
∂U

∂z
, (4.12)

where the function U is defined as

U = U(x, y, z) ≡ 1
2

(x2 + y2) +
μ1
r1

+
μ3
r3

. (4.13)

Multiplying (4.12) by ẋ, ẏ, ż and adding the results, one obtains:

ẋẍ + ẏÿ + żz̈ =
∂U

∂x
ẋ +

∂U

∂y
ẏ +

∂U

∂z
ż ; (4.14)

notice that the left–hand side of (4.14) is equal to 1
2

d
dt (ẋ

2 + ẏ2 + ż2), while the
right–hand side is equal to dU

dt . Therefore, integrating with respect to time one gets

ẋ2 + ẏ2 + ż2 = 2U − CJ , (4.15)
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where CJ is a constant of integration, called the Jacobi integral. Using (4.13) one
obtains

CJ = x2 + y2 + 2
μ1
r1

+ 2
μ3
r3
− (ẋ2 + ẏ2 + ż2) . (4.16)

Notice that (4.15) implies 2U − CJ ≥ 0. The curves of zero velocity are defined
through the expression CJ = 2U ; such a relation defines a boundary, called Hill’s
surface, which separates regions where motion is allowed or forbidden. An example
of Hill’s region is given in Figure 4.1.

Fig. 4.1. The triangular and collinear equilibrium points with an example of Hill’s sur-
faces.

Let us now turn to the determination of the position of the equilibrium points
in the planar case with z = 0 [142], since we assumed that the motion of the three
bodies takes place on the same plane. Recalling (4.11) and using μ1 + μ3 = 1 one
has:

μ1r
2
1 + μ3r

2
3 = x2 + y2 + μ1μ3 .

Inserting such an expression in U one has

U = μ1

(
r21
2

+
1
r1

)
+ μ3

(
r23
2

+
1
r3

)
− 1

2
μ1μ3 .

The equilibrium points are the solutions of the system obtained imposing that the
partial derivatives of (4.13) with respect to x and y are zero:

∂U

∂x
=

∂U

∂r1

∂r1
∂x

+
∂U

∂r3

∂r3
∂x

= μ1

(
r1 −

1
r21

)
x + μ3
r1

+ μ3

(
r3 −

1
r23

)
x− μ1
r3

= 0

∂U

∂y
=

∂U

∂r1

∂r1
∂y

+
∂U

∂r3

∂r3
∂y

= μ1

(
r1 −

1
r21

)
y

r1
+ μ3

(
r3 −

1
r23

)
y

r3
= 0 . (4.17)
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A solution of (4.17) is obtained by solving the equations

r1 −
1
r21

= 0 , r3 −
1
r23

= 0 ,

from which one obtains r1 = r3 = 1, namely

(x + μ3)2 + y2 = 1 , (x− μ1)2 + y2 = 1 .

Solving these equations, one finds the equilibrium solutions(
1
2
− μ3,

√
3

2

)
,

(
1
2
− μ3,−

√
3

2

)
,

which correspond to the triangular Lagrangian solutions, usually denoted as L4

and L5 (see Figure 4.1).
Other solutions are obtained observing that y = 0 solves the second of (4.17);

in particular, there exist three collinear equilibrium solutions usually denoted as
L1, L2, L3, where L1 is located between the primaries, while L2 and L3 are outside
the primaries. We derive in detail the location of L1; the same procedure can be
straightforwardly extended to L2 and L3.

At L1 we have y = 0 and r1 = x + μ3, r3 = −x + μ1, so that r1 + r3 = 1;
moreover, ∂r1

∂x = −∂r3
∂x = 1. Replacing in ∂U

∂x = 0, one obtains

μ1

(
1− r3 −

1
(1− r3)2

)
− μ3

(
r3 −

1
r23

)
= 0 ,

from which one gets

μ3
3μ1

= r33
1− r3 + r23

3

(1 + r3 + r23)(1− r3)3
.

Define α ≡ ( μ3
3μ1

)1/3; developing α in Taylor series, one finds

α = r3 +
1
3
r23 +

1
3
r33 +

53
81

r43 + . . .

Inverting such relation, for example using the Lagrange inversion method [142], one
has

r3 = α− 1
3
α2 − 1

9
α3 − 23

81
α4 + . . . (4.18)

Since r3 represents the distance along the x–axis from the body with mass m3, the
solution (4.18) provides the location of the equilibrium point L1 as a function of the
mass ratio α. Similar computations can be performed for L2 such that r1 = x+μ3
and r3 = x−μ1 with r1−r3 = 1, and for L3 such that r1 = −x−μ3 and r3 = −x+μ1
with r3 − r1 = 1.

To give a concrete example, in the Moon–Earth system the location of the
equilibrium points is the following: L1 lies at 3.26 · 105 km from the Earth, L2 is
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at 4.49 · 105 km, L3 is about 3.82 · 105 km from the Earth, while L4 and L5 are the
triangular positions at 3.84 · 105 km, being located on the Moon’s orbit.

We conclude with a discussion on the linear stability of the equilibrium positions
(see [142]). Let us denote by (x�, y�) one of the five stationary solutions (L1, . . . , L5);
let (δx, δy) be a small displacement from the equilibrium and let (x, y) ≡ (x� +
δx, y� + δy). Let us insert such coordinates in (4.12) and expand the derivatives of
U in a neighborhood of the equilibrium solution. Using the notation

Uxx =
∂2U(x�, y�)

∂x2
, Uxy =

∂2U(x�, y�)
∂x∂y

, Uyy =
∂2U(x�, y�)

∂y2
,

the equations for the variations (δx, δy) can be written as

⎛
⎜⎜⎝

δ̇x
δ̇y
δ̈x
δ̈y

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

δx
δy
δ̇x
δ̇y

⎞
⎟⎟⎠ ,

where

A ≡

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

Uxx Uxy 0 2
Uxy Uyy −2 0

⎞
⎟⎟⎠ .

The eigenvalues of A are the solutions of the secular equation det(A − λI4) = 0
(where I4 is the 4× 4 identity matrix), namely

λ4 + (4− Uxx − Uyy)λ2 + (UxxUyy − U2
xy) = 0 .

This equation admits four roots:

λ1,2 = ±
[

1
2

(Uxx + Uyy − 4)− 1
2

[(4− Uxx − Uyy)2 − 4(UxxUyy − U2
xy)]

1
2

] 1
2

λ3,4 = ±
[

1
2

(Uxx + Uyy − 4) +
1
2

[(4− Uxx − Uyy)2 − 4(UxxUyy − U2
xy)]

1
2

] 1
2

.

The equilibrium solution is stable, if the eigenvalues are purely imaginary.
For the collinear equilibrium position L1, one has y� = 0, r1 = x� + μ3,

r3 = −x� + μ1; defining M ≡ μ1
r31

+ μ3
r33

, the characteristic equation becomes

λ4 + (2−M)λ2 + (1 + M − 2M2) = 0 .

Therefore the product of the four eigenvalues amounts to 1 + M − 2M2, with the
constraints λ1 = −λ2, λ3 = −λ4. The eigenvalues are purely imaginary provided
that λ21 = λ22 < 0 and λ23 = λ24 < 0, which imply that 1 + M − 2M2 > 0, namely
− 1

2 < M < 1. These inequalities would guarantee the stability of the equilibrium
point; however, computing M at the collinear point L1 one finds that M > 1. In
fact, in the case of L1 we know that r1 < 1 and r3 < 1, so that M > μ1 + μ3 = 1.
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We conclude that the collinear point L1 is unstable for any value of the masses.
The same conclusion holds for L2 and L3.

Concerning the triangular equilibrium positions one has x� = 1
2−μ3, y� = ±

√
3
2 ,

r1 = r3 = 1. Computing the derivatives of U at the equilibria, one obtains

Uxx =
3
4
, Uyy =

9
4
, Uxy = ±3

√
3

4
(1− 2μ3) .

The eigenvalues become

λ1,2 = ±

√
−1−

√
1− 27(1− μ3)μ3
√

2
,

λ3,4 = ±

√
−1 +

√
1− 27(1− μ3)μ3
√

2
.

The eigenvalues are purely imaginary provided

1− 27(1− μ3)μ3 ≥ 0 ; (4.19)

recalling that we assumed m1 > m3, so that μ1 > μ3 with μ1 +μ3 = 1, taking into
account the inequality (4.19) one obtains

μ3 ≤
27−

√
621

54

 0.0385 . (4.20)

In conclusion, if the masses verify (4.20), then the triangular equilibrium solutions
are linearly stable.

4.3 The elliptic, restricted Lagrangian solutions

Consider the planar motion of a body P2(x, y) of mass μ2 in the gravitational field of
two primaries, P1(x1, y1) and P3(x3, y3) with masses μ1 and μ3, which are assumed
to move on elliptic orbits around their common center of mass O; let f denote the
true anomaly of the common ellipse and let r = a(1−e2)

1+e cos f be the distance between
P1 and P3. In an inertial barycentric reference frame, the cartesian equations of
the motion of P2 are given by

ẍ = −μ1(x− x1)
r31

− μ3(x− x3)
r33

ÿ = −μ1(y − y1)
r31

− μ3(y − y3)
r33

,

where r1 =
√

(x− x1)2 + (y − y1)2, r3 =
√

(x− x3)2 + (y − y3)2; the above equa-
tions are associated to the Lagrangian function

L(ẋ, ẏ, x, y, r, f) =
1
2

(ẋ2 + ẏ2) +
μ1
r1

+
μ3
r3

,
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where the coordinates of the primaries, (x1, y1) and (x3, y3), depend upon r and f
in the following way:

x1 = −μ3r cos f , x3 = μ1r cos f ,

y1 = −μ3r sin f , y3 = μ1r sin f .

Next we move to a barycentric reference frame (O, ξ, η) rotating with variable
angular velocity, such that at each instant of time the rotation angle is equal to f
with ḟ = h

r2 , h being the angular momentum and having assumed G(m1+m3) = 1.
The transformation equations are given by

x = ξ cos f − η sin f
y = ξ sin f + η cos f .

Thus, the primaries oscillate on the ξ–axis and have coordinates

ξ1 = −μ3r , ξ3 = μ1r ,

η1 = 0 , η3 = 0 .

The new Lagrangian function takes the form:

L(ξ̇, η̇, ξ, η, r, f) =
1
2

(ξ̇2 + η̇2) +
1
2

(ξ2 + η2)ḟ2 + (ξη̇ − ξ̇η)ḟ +
μ1
r1

+
μ3
r3

.

The transformation to the so–called rotating–pulsating coordinates (X,Y ) is
achieved through the further change of variables:

ξ = rX

η = rY ;

the primaries are now in a fixed position with coordinates (X1, Y1) = (−μ3, 0),
(X3, Y3) = (μ1, 0) and the Lagrangian function takes the form

L(Ẋ, Ẏ ,X, Y, r, f) =
r2

2
(Ẋ2 + Ẏ 2) + rṙ(XẊ + Y Ẏ )

+(X2 + Y 2)
(

1 +
ṙ2

2
+

h2

2r2

)
+ h(XẎ − Y Ẋ) +

1
r

(
μ1
r1

+
μ3
r3

)
.

Finally, we change the time taking the true anomaly as independent variable
through the transformation

dt =
1
h
r2 df .

Denoting by X ′ ≡ dX
df and Y ′ ≡ dY

df , the new Lagrangian function is given by

L(X ′, Y ′, X, Y, r, f) =
1
2

(X ′2+Y ′2)+XY ′−Y X ′+ r

2h2
(X2+Y 2)+

r

h2

(
μ1
r21

+
μ3
r23

)
.
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The corresponding equations of motion take a form similar to that of the circular
case (see (4.12)), being

X ′′ − 2Y ′ = ΩX

Y ′′ + 2X ′ = ΩY , (4.21)

where we define Ω = Ω(X,Y, f) as

Ω =
1

1 + e cos f

[
1
2

(X2 + Y 2) +
μ1
r1

+
μ3
r3

+
1
2
μ1μ3

]

and ΩX , ΩY denote the derivatives with respect to X, Y , respectively. Let Ω0 be
defined through the relation

Ω0 ≡ (1 + e cos f)Ω .

The equivalent of the Jacobi integral is obtained from (4.21) multiplying the first
equation by X ′ and the second by Y ′; adding the results one obtains:(

dX

df

)2

+
(
dY

df

)2

= 2
∫

(ΩXdX + ΩY dY ) . (4.22)

Let us write the derivative of Ω with respect to the true anomaly as

Ωf =
e sin f

(1 + e cos f)2
Ω0 .

Then, (4.22) becomes:(
dX

df

)2

+
(
dY

df

)2

= 2
∫

(dΩ− Ωfdf)

= 2Ω− 2e
∫

Ω0 sin f
(1 + e cos f)2

df − Ce ,

where Ce is a constant which reduces to the Jacobi integral in the circular case
e = 0.

The stationary solutions of (4.21) are given by

∂Ω
∂X

= 0 ,
∂Ω
∂Y

= 0

or equivalently by
∂Ω0

∂X
= 0 ,

∂Ω0

∂Y
= 0 ,

which imply that the solutions of the elliptic problem coincide with those of the
circular case. In particular, the triangular solutions are located at (12 − μ3,±

√
3
2 ),

which pulsate as the coordinates. In order to analyze the stability, one starts by
introducing a displacement (δX , δY ) from the libration points, say X ≡ X� + δX ,
Y ≡ Y� + δY , where (X�, Y�) coincides with one of the five stationary solutions; the
linearized equations can be written as
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δ′′X − 2δ′Y =
1

1 + e cos f
[Ω(�)

0,XXδX + Ω(�)
0,XY δY ]

δ′′Y + 2δ′X =
1

1 + e cos f
[Ω(�)

0,Y XδX + Ω(�)
0,Y Y δY ] ,

where Ω(�)
0,XX denotes the second derivative of Ω0 with respect to X computed at

the stationary solution (X�, Y�) (similarly for the other derivatives). A numerical
procedure based on Floquet theory (see Appendix D) and on the computation of
the characteristic exponents (see [52]) provides the domain of the linear stability
in the parameter plane (μ, e).

Figure 4.2 shows the regions of linear stability of the triangular solutions (com-
pare with [52]): at μ 
 0.028 one has linear instability for any value of the eccen-
tricity; at μ 
 0.038 one has instability also for e = 0, while the eccentricity can
have a stabilizing effect up to μ 
 0.047 (notice that the point D in Figure 4.2 has
coordinates D(0.047, 0.314)). The collinear points are always unstable, as in the
circular case, for any value of the eccentricity and of the mass parameter.

Fig. 4.2. The shaded area denotes a region of equilibrium of the elliptic, restricted trian-
gular solutions as the parameters μ and e are varied (after [52]; reproduced by permission
of the AAS).

4.4 The elliptic, unrestricted triangular solutions

Let P1, P2, P3 be three bodies of masses m1, m2, m3 which are subject to the
mutual gravitational attraction; we assume that the three bodies move in the same
plane and we denote the position vectors in an inertial reference frame by means
of the two–dimensional vectors q

1
, q

2
, q

3
. The equations of motion can be written

as
miq̈i =

∂U

∂q
i

, i = 1, 2, 3 , (4.23)

where
U(q) =

∑
1≤i<j≤3

mimj

‖q
j
− q

i
‖ .
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Following [154] (see also [134]) the generalization of the Lagrangian solutions of
the restricted case is obtained by looking for a periodic homographic1 solution of
the form

q
i
(t) = ψ(t)zi , i = 1, 2, 3, (4.24)

where zi are constant vectors and ψ(t) is an unknown function, which can be found
as follows. Inserting (4.24) in (4.23) one obtains

miziψ̈(t) =
∑

1≤j≤3,j �=i

mimjψ(t)(zj − zi)
|ψ(t)|3‖zj − zi‖3

, i = 1, 2, 3,

which can be split as

ψ̈(t) = −ν ψ(t)
|ψ(t)3|∑

1≤j≤3,j �=i

mimj(zj − zi)
‖zj − zi‖3

+ νmizi = 0 , (4.25)

where ν is a real constant. From the first equation we recognize that ψ(t) is a
solution of a Keplerian motion; summing the second equation in (4.25) over i =
1, 2, 3, one obtains

3∑
i=1

mizi = 0 , (4.26)

showing that the center of mass is located at the origin of the reference frame. Let
d be the length of the sides of the triangular solution; the scaling factor ν can be set
to one by a proper choice of d. In fact, the first component of the second equation
in (4.25) is given by

νz1 =
1
d3
[
m2(z1 − z2) + m3(z1 − z3)

]
=

M

d3
z1 ,

where M = m1 + m2 + m3 denotes the total mass. Setting

d = M
1
3 , (4.27)

we obtain ν = 1.
If p

i
(i = 1, 2, 3) denote the momenta conjugated to q

i
, the Hamiltonian gov-

erning the three–body problem can be written as

H1(p
1
, p

2
, p

3
, q

1
, q

2
, q

3
) =

‖p
1
‖2

2m1
+
‖p

2
‖2

2m2
+
‖p

3
‖2

2m3

− m1m2

‖q
2
− q

1
‖ −

m1m3

‖q
3
− q

1
‖ −

m2m3

‖q
3
− q

2
‖ . (4.28)

1 A homographic solution is a configuration which remains similar to itself all times.
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The center of mass and the total linear momentum can be eliminated through a
transformation to Jacobi coordinates:

u1 = q
2
− q

1
v1 = − m2

m1 + m2
p
1

u2 = q
3
− 1

m1 + m2
(m1q1 + m2q2) v2 = −m3

M
(p

1
+ p

2
+ p

3
) + p

3

u3 =
1
M

(m1q1 + m2q2 + m3q3) v3 = p
1

+ p
2

+ p
3
. (4.29)

An alternative reduction is obtained through the transformation to heliocentric
coordinates as in Appendix E. Recalling (4.24) and (4.26), we obtain

3∑
i=1

miqi = ψ(t)
3∑

i=1

mizi = 0 ,

3∑
i=1

p
i

= ψ̇(t)
3∑

i=1

mizi = 0 ,

which imply the elimination of the center of mass and of the total linear momentum,
since the above equations yield that u3 = 0 and v3 = 0. Under the transformation
(4.29) the Hamiltonian (4.28) becomes:

H2(v1, v2, u1, u2) =
‖v1‖2
2M1

+
‖v2‖2
2M2

− m1m2

‖u1‖
− m1m3

‖u2 + M3u1‖
− m2m3

‖u2 + M4u1‖
,

(4.30)
where M1 ≡ m1m2

m1+m2
, M2 ≡ m3(m1+m2)

M , M3 ≡ m2
m1+m2

, M4 ≡ − m1
m1+m2

. Transform-
ing to polar coordinates and making use of the constancy of the angular momentum
allows us to reduce to three degrees of freedom. More precisely, we start by per-
forming a coordinate change from (ui, vi) ∈ R4 to (ri, ϑi, Ri,Θi) ∈ R4, defined
as

ui =
(
ri cosϑi

ri sinϑi

)
, vi =

(
Ri cosϑi − Θi

ri
sinϑi

Ri sinϑi + Θi

ri
cosϑi

)
, i = 1, 2 .

The Hamiltonian (4.30) becomes

H3(R1, R2,Θ1,Θ2, r1, r2, ϑ1, ϑ2) =
1

2M1

(
R2
1 +

Θ2
1

r21

)
+

1
2M2

(
R2
2 +

Θ2
2

r22

)

− m1m2

r1
− m1m3

ρ1
− m2m3

ρ2
, (4.31)

where

ρ1 ≡
√
r22 + M2

3 r
2
1 + 2M3r1r2 cos(ϑ2 − ϑ1) ,

ρ2 ≡
√
r22 + M2

4 r
2
1 + 2M4r1r2 cos(ϑ2 − ϑ1) .

Since (4.31) depends on ϑ1, ϑ2 through the difference ϑ2 − ϑ1, we can perform the
canonical change of variables

ξ = ϑ1 Ξ = Θ1 + Θ2

λ = ϑ2 − ϑ1 Λ = Θ2 ,
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which makes the Hamiltonian (4.31) independent of ξ. Therefore, setting Ξ = h,
where h denotes the constant angular momentum, the transformed Hamiltonian
becomes:

H4(R1, R2, Λ, r1, r2, λ) =
1

2M1

(
R2
1 +

(h− Λ)2

r21

)
+

1
2M2

(
R2
2 +

Λ2

r22

)

− m1m2

r1
− m1m3

δ1
− m2m3

δ2
, (4.32)

where

δ1 ≡
√
r22 + M2

3 r
2
1 + 2M3r1r2 cosλ , δ2 ≡

√
r22 + M2

4 r
2
1 + 2M4r1r2 cosλ .

Remark. In the planetary case one assumes that one mass is much larger than
the others, say m1 = μ1, m2 = εμ2, m3 = εμ3, where ε is a small quantity and μi

(i = 1, 2, 3) is of the order of unity. Then, applying the change of variables

R̃i =
Ri

ε
, r̃i = ri , Λ̃ =

Λ

ε
, λ̃ = λ , h̃ =

h

ε
,

one obtains the Hamiltonian

H5

(
R̃1, R̃2, Λ̃, r̃1, r̃2, λ̃

)
=

ε

2M1

(
R̃2
1 +

(h̃− Λ̃)2

r̃21

)
+

ε

2M2

(
R̃2
2 +

Λ̃2

r̃22

)

− μ1μ2
r̃1

− μ1μ3

δ̃1
− ε

μ2μ3

δ̃2
, (4.33)

where δ̃i are the quantities δi with ri, λ replaced by r̃i, λ̃. Observing that

ε

M1
=

1
μ2

+ O(ε) ,
ε

M2
=

1
μ3

+ O(ε) ,

one finds that the Hamiltonian (4.33) can be written as

H6(R̃1, R̃2, Λ̃, r̃1, r̃2, λ̃) =
1

2μ2

(
R̃2
1 +

(h̃− Λ̃)2

r̃21

)
+

1
2μ3

(
R̃2
2 +

Λ̃2

r̃22

)

− μ1μ2
r̃1

− μ1μ3

δ̃1
+ εF

(
R̃1, R̃2, Λ̃, r̃1, r̃2, λ̃

)
, (4.34)

for a suitable function F = F (R̃1, R̃2, Λ̃, r̃1, r̃2, λ̃). The Hamiltonian (4.34) is equal
to the sum of two decoupled Kepler’s motions, perturbed by a function of order ε,
which can be considered as a small parameter. This model fits the planetary case
where one mass (corresponding to the Sun) is much larger than those of the other
bodies (the planets), which can be assumed to be of the same order of magnitude.

Coming back to the Lagrangian positions, let us denote by γ = γ(t) the periodic or-
bit corresponding to the triangular configuration with sides of length d as in (4.27).
Following [154] the stability of such configurations is investigated by linearizing the
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equations of motion associated to the Hamiltonian function (4.32) around the peri-
odic solution. One obtains a time–dependent, periodic, linear system in the overall
set of variables z ∈ R6 of the form:

ż = JD2H4(γ(t))z , (4.35)

where J is the 6 × 6–dimensional matrix J =
(

0 I3
−I3 0

)
(being In with n ∈ Z+

the n × n identity matrix) and D2H4(γ(t)) denotes the Hessian of H4 computed
along the periodic orbit. Let T be its period; the linear stability analysis involves
the determination of the monodromy matrix C = Z(T ), where Z is the 6 × 6–
dimensional matrix, solution of (4.35) with initial data Z(0) = I6. The eigenvalues
of C are the so–called characteristic multipliers, which are symmetric about the
unit circle, due to the Hamiltonian character of the dynamics. The system is linearly
stable if all multipliers have modulus one. In particular, two multipliers are unity:
one of them is associated to the periodic orbit and the other to the Hamiltonian.
Therefore, the linear stability is determined by the remaining four eigenvalues.
Indeed, a suitable change of variables allows us to decouple the system: one part
is associated to the unitary eigenvalues and a second part is a 4 × 4–dimensional
system associated to the other eigenvalues (see [154]). In the latter case, the secular
equation of order 4 depends on two parameters: the eccentricity and the mass
parameter β defined as

β ≡ 27
m1m2 + m1m3 + m2m3

(m1 + m2 + m3)2
.

In the circular case the characteristic multipliers can be analytically computed and
it is shown that they are purely imaginary if 0 ≤ β < 1; this is a classical result,
already obtained by E.J. Gascheau in the 19th century ([74], see also [156]).

In the elliptic case the characteristic multipliers are obtained through a numeri-
cal integration; the results show that the triangular configuration becomes unstable
as the eccentricity increases (see [154]). In particular, the stability is lost through
a period–doubling bifurcation (namely two multipliers collide at −1 and move off
along the real axis). For β = 3

4 the system becomes unstable for any value of the
eccentricity; afterwards there is an interval where the stability is maintained locally
for non–zero values of the eccentricity, even though the circular solution is unsta-
ble. Finally the stability is lost through a Krein bifurcation, according to which
two multipliers collide on the unitary circle and move off in the complex plane (see
Figure 4.3).



Fig. 4.3. The linear stability of the elliptic, unrestricted, triangular solutions within the
plane (β,e). The meaning of the labels is the following: S denotes a linear stability region,
pd is the period doubling curve ending at β = 3

4
, kc is the Krein collision curve starting

at β = 1 (reprinted from [154] with permission from Elsevier).
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