
3 Kepler’s problem

The two–body problem is the study of the motion of two material points P1 and
P2, with masses respectively m1 and m2; when the two bodies are subject to the
mutual gravitational attraction one speaks of Kepler’s problem, whose dynamics
is described by the three so–called Kepler’s laws (see, e.g., [157]). In this chapter
we concentrate on the mathematical description of the two–body problem. The
starting point is the gravitational law and Newton’s three laws of dynamics. The
gravitational law states that two bodies attract each other through a force which
is directly proportional to the product of the masses and inversely proportional to
the square of their distance r:

F = −Gm1m2

r2
e12 ,

where G is the gravitational constant, amounting to G = 6.67 · 10−11 m3 kg−1 s−2,
and e12 is the unit vector joining the two bodies. Newton’s laws of dynamics can
be stated as follows:

(i) First law (law of inertia): without external forces every body remains at rest
or moves uniformly on a straight line.

(ii) Second law: the net force experienced by a body is equal to the rate of change
of its momentum.

(iii) Third law (action and reaction principle): for every action, there is an equal
and opposite reaction.

As a consequence of the second law, if the mass of the body is constant, one gets
the fundamental principle of classical mechanics according to which the net force
is equal to the product of the mass of the particle times its acceleration:

F = ma . (3.1)

After the investigation of the motion of the barycenter (Section 3.1), the solution
of the two–body problem (Section 3.2) will be provided in terms of the three Ke-
pler’s laws, whose solution can also be given as a time series (Section 3.3); elliptic
(Section 3.4), parabolic (Section 3.5) and hyperbolic (Section 3.6) motions will be
analyzed and classified according to the value of the total mechanical energy (Sec-
tion 3.7). We briefly remark that the Keplerian solution is also used for mission
design as for the Hohmann transfer maneuvers (Section 3.8). Action–angle vari-
ables for the two–body problem are the so–called Delaunay variables (Section 3.9),
which are also used to formulate Gylden’s problem concerning a two–body model
with variable mass (Section 3.10).
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3.1 The motion of the barycenter

We start by introducing the following notation. In an inertial reference frame
(O, X, Y, Z) with origin in O, let r1 and r2 be the distance vectors of P1 and
P2 from O. Let r = r2 − r1 be the relative distance between P1 and P2. Denote
by B the barycenter of the two bodies and let R be the distance vector of B from
O (Figure 3.1). Let F 1 be the force exerted by P2 on P1 and let F 2 be the force
exerted by P1 on P2.

P1 P2

O

BF1 F2

r1 r2

R

Fig. 3.1. Distance vectors in an inertial reference frame with origin in O.

By the action and reaction principle one has

F 1 = −F 2 , where F 1 = Gm1m2

r2
r

r
.

Using (3.1), the equations of motion are given by the expressions

m1
d2r1
dt2

= Gm1m2

r2
r

r

m2
d2r2
dt2

= −Gm1m2

r2
r

r
. (3.2)

Adding the above equations one obtains

m1
d2r1
dt2

+ m2
d2r2
dt2

= 0 ,

whose integration provides the relations:

m1
dr1
dt

+ m2
dr2
dt

= C1 , m1r1 + m2r2 = C1t + C2 ,

with C1, C2 being constant vectors.
Let M be the total mass, namely M = m1 +m2; the location of the barycenter

is given by
MR = m1r1 + m2r2 .

Therefore we obtain the equations

M
dR

dt
= C1 , MR = C1t + C2 ,

which express that the barycenter moves with constant velocity.
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3.2 The solution of Kepler’s problem

Let us divide the first of (3.2) by m1 and the second by m2; subtracting the two
resulting equations one obtains:

d2

dt2
(r1 − r2) = G(m1 + m2)

r

r3
;

being r = r2 − r1 one finds:
d2r

dt2
+ μ

r

r3
= 0 , (3.3)

where μ ≡ G(m1 + m2). Multiplying (3.3) by the vector r one gets

r ∧ d2r

dt2
= 0 ,

namely

r ∧ dr

dt
= h , (3.4)

where h is a constant vector which represents the total angular momentum; such a
vector turns out to be perpendicular to the orbital plane. From (3.4) one obtains
that the two bodies move at any instant on the same plane.

On such a plane of motion we introduce a reference frame (P1, x, y, z) with axes
parallel to the inertial frame, the z–axis being orthogonal to the plane of motion
and with the origin centered in P1 (Figure 3.2); let us denote by i, j, k the unit
vectors corresponding to the reference axes. Let (r, ϑ) be the polar coordinates of
P2 with respect to P1. Since the coordinates of P2 are (x, y, z) = (r cosϑ, r sinϑ, 0),
one obtains

det
(
r ∧ dr

dt

)
= det

⎛
⎝ i j k

r cosϑ r sinϑ 0
ṙ cosϑ− rϑ̇ sinϑ ṙ sinϑ + rϑ̇ cosϑ 0

⎞
⎠ = r2ϑ̇ k .

Denoting by h the absolute value of h one has

r2ϑ̇ = h , (3.5)
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#

Fig. 3.2. Geometrical configuration of Kepler’s problem.
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which provides Kepler’s second law, whose physical interpretation is the following:
the areal velocity spanned by the radius vector is constant. In fact, let us evaluate
the area δA spanned by the radius vector r(t) at time t and by the vector r(t+ δt)
at time t + δt:

δA =
1
2
r(t)r(t + δt) sin δϑ ,

where δϑ represents the angle spanned from r(t) to r(t + δt). The variation of A
with respect to the time is given by

δA
δt

=
1
2
r(t)r(t + δt)

sin δϑ
δϑ

δϑ

δt
;

in the limit of δt tending to zero the areal velocity is given by

Ȧ =
1
2
r2ϑ̇ . (3.6)

We next consider the scalar product of (3.3) with ṙ:

ṙ · d
2r

dt2
+ μ

ṙ · r
r3

= 0 ,

which provides
1
2

(dr
dt

)2
− μ

r
= E , (3.7)

where E is a suitable real constant. Equation (3.7) provides the preservation of the
total energy.

In order to solve Kepler’s problem, we need to compute the radial and orthog-
onal components of the acceleration. In cartesian coordinates one finds

ẍ = r̈ cosϑ− 2ṙϑ̇ sinϑ− rϑ̈ sinϑ− rϑ̇2 cosϑ
ÿ = r̈ sinϑ + 2ṙϑ̇ cosϑ + rϑ̈ cosϑ− rϑ̇2 sinϑ
z̈ = 0 . (3.8)

Multiplying the first equation by cosϑ, the second by sinϑ and adding the results,
the radial component of the acceleration is given by

r̈ − rϑ̇2 = − μ

r2
. (3.9)

Moreover, multiplying the second of (3.8) by cosϑ, the first by sinϑ and subtracting
the results, the orthogonal component is equal to

rϑ̈ + 2ṙϑ̇ = 0 .

Such an equation can be written in the form d
dt (r

2ϑ̇) = 0, which provides the
constancy of the angular momentum h as in (3.5).

Let us introduce the quantity ρ ≡ 1
r ; using the constancy of the angular mo-

mentum, the radial component (3.9) can be written in terms of ρ as

d2ρ

dϑ2
+ ρ =

μ

h2
. (3.10)
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In fact, from
dρ

dϑ
=

d(1/r)
dt

r2

h
= − ṙ

h
,

d2ρ

dϑ2
= −r̈ r

2

h2
,

one obtains the equation

r̈ − h2

r3
= − μ

r2
,

while using ϑ̇ = h
r2 one gets (3.9).

The equation (3.10) can be solved to provide the variation of ρ as a function of
ϑ as

ρ(ϑ) =
μ

h2
+ A cos(ϑ− g0) ,

where A, g0 are suitable constants. Recalling that ρ = 1
r and introducing the

quantities p ≡ h2

μ , called the ellipse parameter, and e ≡ Ah2

μ , called the eccentricity,
one obtains the expression providing the radius vector as a function of the angle ϑ:

r =
p

1 + e cos(ϑ− g0)
. (3.11)

The quantity g0, usually called the argument of perihelion, represents the angle
between the x–axis of the reference frame and the direction of the semimajor axis
of the ellipse, called the perihelion axis (compare with Figure 3.3). Introducing the
true anomaly f as

f ≡ ϑ− g0 ,

equation (3.11) can be equivalently written as

r =
p

1 + e cos f
. (3.12)
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Fig. 3.3. The argument of perihelion g0.
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3.3 f̃ and g̃ series

Kepler’s problem admits a solution in the form of a time series, the coefficients of
such a series being functions of the mass parameter μ, of the initial values of the
radius vector r and of its derivative. Inserting in (3.3) the change of time given by

τ =
√
μ t ,

one obtains the equation
d2r

dτ2
+

r

r3
= 0 . (3.13)

For short we denote by r′ = dr
dτ , r′′ = d2r

dτ2 and so on. With this notation, the
equation (3.13) can be written as r′′ = − r

r3 . Differentiating (3.13) we obtain

r′′′ = −
(
r′

r3
− 3r

r4
r′ · r
r

)

r′′′′ = −
{[

2μ
r6

− 3r′ · r′
r5

+
15(r′ · r)2

r7

]
r − 6

r′ · r
r5

r′
}

. . . (3.14)

Expanding r in Taylor series around τ = 0 and setting r0 = r(0) (similarly for the
derivatives) we obtain

r = r0 + r′0τ +
1
2
r′′0τ

2 +
1
3!
r′′′0 τ

3 + . . .

Using (3.14) and rearranging the terms we can write

r = f̃ r0 + g̃r′0 ,

where f̃ and g̃ are the following series in τ :

f̃(τ) = 1− 1
2r30

τ2 +
1

2r30

r′0 · r0
r20

τ3 + . . .

g̃(τ) = τ − 1
6r30

τ3 + . . .

The series f̃ = f̃(τ) and g̃ = g̃(τ) converge if τ is small; they can be efficiently used
to determine the solution as a function of time.

3.4 Elliptic motion

We prove that for eccentricities between 0 and 1 (0 ≤ e < 1) the motion takes
place on an ellipse. We consider a reference frame centered in P1 and with the
abscissa coinciding with the perihelion line. Having denoted by r the size of the
radius vector joining P1 and P2, and by f the angle spanned by the radius vector
with respect to the perihelion axis, the coordinates of P2 are given by

(x, y) = (r cos f, r sin f) .
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Therefore from (3.12) we obtain p = r+ex; taking the square of such equation and
recalling that r =

√
x2 + y2, one obtains

x2(1− e2) + 2pe x + y2 = p2 .

This equation can be written as

(x− x0)2

a2
+

y2

b2
= 1 , (3.15)

where
x0 = − pe

1− e2
, a =

p

1− e2
, b =

p√
1− e2

. (3.16)

Notice that (3.15) describes an ellipse with semimajor axes a and b oriented accord-

ing to the x and y axes. Moreover we find that the quantity e =
√

1− b2

a2 coincides
with the eccentricity of the ellipse.

We have thus proved Kepler’s first law, which states the following: assuming
that P1 coincides with the Sun and P2 with a planet, then the motion of the planet
takes place on an ellipse with the Sun located at one of the two foci.

From the second of (3.16) and from p = h2

μ , one obtains h =
√
μa(1− e2).

From (3.5) and (3.6) the angular momentum h is equal to twice the areal velocity;
denoting by T the period of revolution, being πab the area of the ellipse, one
obtains that h = 2

T πab. Using the relation b = a
√

1− e2 one gets that the period
of revolution and the semimajor axis are linked by the expression:

T 2 =
4π2

μ
a3 . (3.17)

Equation (3.17) provides the content of Kepler’s third law.
We are finally in the position to summarize Kepler’s laws, which were proved

in the present and previous sections.

First law. The orbit of each planet around the Sun is an ellipse with the Sun at
one focus.
Second law. The radius vector sweeps equal areas in equal intervals of time.
Third law. The square of the period of revolution is proportional to the third power
of the semimajor axis.

We remark that, among other consequences, Kepler’s third law allows us to estimate
the mass of a planet, once the orbital elements of one of its satellites are known.
More precisely, let us denote by mSun, mP , mS the masses of the Sun, of the planet
P and of its satellite S. Let aP , aS and TP , TS be, respectively, the semimajor axes
and the periods of the planet around the Sun, and of the satellite around the planet;
we assume that these quantities can be obtained by direct measurements. Applying
Kepler’s third law to the pairs Sun–planet and planet–satellite, one obtains

G(mSun + mP) = 4π2
a3P
T 2
P

, G(mP + mS) = 4π2
a3S
T 2
S
.
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The ratio of the two equations provides

mP + mS
mSun + mP

=
(
aS
aP

)3 (
TP
TS

)2

.

Assuming that the mass of the satellite is negligible with respect to that of the
planet and that the mass of the Sun is known, the previous equation provides an
estimate for the mass of the planet as

mP = mSun

(
aS
aP

)3 (TP
TS

)2
1−

(
aS
aP

)3 (TP
TS

)2 . (3.18)

For example, let us take P as Jupiter and S as its satellite Io; their elements are
aP = 7.78 · 108 km, TP = 4331.87 days, aS = 421 800 km, TS = 1.769 days, while
mSun = 2 · 1030 kg. The expression (3.18) provides an estimate for the mass of
Jupiter equal to 1.9 · 1027 kg in full agreement with the experimental data.

To conclude the description of the elliptic motion, we provide the formula for
the squared velocity which, expressed in terms of the polar coordinates, takes the
form,

v2 = ṙ2 + r2ḟ2 .

From (3.12) and (3.5) one finds

ṙ =
h

p
e sin f , rḟ =

h

p
(1 + e cos f) .

Computing the square, adding the two equations and using h2

μ = p = a(1− e2) one
obtains

v2 = μ

(
2
r
− 1

a

)
.

We remark that at perihelion r = a(1 − e) so that the velocity v2 = μ
a
1+e
1−e is

maximum, while at aphelion r = a(1 + e) so that v2 = μ
a
1−e
1+e and the velocity is

minimum. We also remark that for e = 0 the orbit reduces to a circle.

3.4.1 Mean and eccentric anomaly

If T denotes the period of revolution of P2 around P1, we introduce the mean
motion as

n ≡ 2π
T

. (3.19)

The angular momentum can be expressed in terms of the mean motion as h =
2
T πa

2
√

1− e2 = na2
√

1− e2. Let t0 be the time of passage at perihelion; we define
the mean anomaly �0 as the angle described by the radius vector rotating around
the focus with mean angular velocity n during the interval t− t0:

�0 ≡ n(t− t0) .
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Fig. 3.4. The eccentric anomaly.

We next introduce a quantity u called the eccentric anomaly: draw the circle with
radius equal to the semimajor axis of the ellipse (see Figure 3.4); from the instan-
taneous position of P2 on the ellipse, draw the perpendicular to the semimajor axis
until it meets the circle and let u be the angle QCA formed by the direction to the
center and the direction corresponding to the semimajor axis.

The mathematical relations within the true, mean and eccentric anomalies can
be easily derived from the geometry of the problem. With reference to Figure 3.4
one has: P1B = CB −CP1 = a cosu− ae and, since P1B = r cos f , it follows that

r cos f = a(cosu− e) . (3.20)

By elementary properties of the ellipse one has P2B
QB = b

a , namely r sin f
a sinu = b

a ; by
this relation one has:

r sin f = a
√

1− e2 sinu . (3.21)

Computing the square of (3.20), (3.21) and adding the two equations one obtains

r2 = a2 + a2e2 cos2 u− 2a2e cosu ,

from which it follows that
r = a(1− e cosu) ; (3.22)

this relation provides the radius vector as a function of the eccentric anomaly.
Taking into account that 2r sin2 f

2 = r(1 − cos f) and using (3.20), (3.21), one
obtains

2r sin2
f

2
= a(1 + e)(1− cosu)

2r cos2
f

2
= a(1− e)(1 + cosu) ;
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computing the ratio of the two equations one gets

tan
f

2
=

√
1 + e
1− e

tan
u

2
, (3.23)

which provides the true anomaly as a function of the eccentric anomaly.
Let us now derive the relation between the eccentric and mean anomalies; this

formula is known as Kepler’s equation.
From Kepler’s second law we can state that the ratio bewteen the area of the

region defined by P1P2A and the area of the ellipse amounts to t−t0
T ; recalling the

definition of the mean anomaly one has that

area(P1P2A) =
1
2
ab�0 .

On the other hand this area can be obtained as the sum of the area P1P2B and
of the area BP2A, where the area BP2A is equal to b

a times the area of QBA;
therefore one has the sequence of relations:

area(P1P2A) = area(P1P2B) +
b

a
area(QBA)

= area(P1P2B) +
b

a
(area(QCA)− area(QCB))

=
1
2
r2 sin f cos f +

b

a

(
1
2
a2u− 1

2
a2 sinu cosu

)

=
1
2
ab(u− e sinu) .

One thus obtains that the relation between �0 and u is given by

�0 = u− e sinu , (3.24)

which is known as Kepler’s equation. It is now necessary to solve this equation
to get u as a function of the time, being �0 = n(t − t0). Once such equation is
solved, and therefore u = u(t) is obtained, one inserts the resulting expression in
(3.22) and (3.23) to obtain the variation with time of the radius vector and the
true anomaly, thus providing the solution of the equation of motion.

3.4.2 Solution of Kepler’s equation

In order to find the eccentric anomaly as a function of the time, it is necessary
to solve the implicit Kepler’s equation (3.24). An approximate solution can be
computed as long as the eccentricity e is small. Indeed, the inversion of (3.24)
provides u as a function of �0 as a series in the eccentricity:

u = �0 + e sinu
= �0 + e sin(�0 + e sinu)
= �0 + e sin(�0 + e sin(�0 + e sinu))

= �0 +
(

e− e3

8

)
sin �0 +

1
2

e2 sin(2�0) +
3
8

e3 sin(3�0) + O(e4) ,
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where O(e4) denotes a quantity of order e4. The complete solution can be expressed
as

u = �0 + e
∞∑
k=1

1
k

[
Jk−1(ke) + Jk+1(ke)

]
sin(k�0) , (3.25)

where Jk(x) are the Bessel’s functions of order k and argument x; they are defined
by the relation

Jk(x) ≡ 1
2π

∫ 2π

0

cos(kt− x sin t)dt .

The functions Jk(x) can be developed as follows:

J0(x) ≡
∞∑

m=0

(−1)m

(m!)2
(x

2

)2m

Jk(x) ≡ (
x

2

)k 1
k!

∞∑
m=0

(−1)m

m!
∏m

j=1(k + j)

(x
2

)2m
. (3.26)

Notice that equations (3.25), (3.26) provide the solution of Kepler’s equation with
arbitrary precision.

3.5 Parabolic motion

When e = 1 one gets the open trajectory described by the equation

r =
p

1 + cos f
. (3.27)

From (3.27) it follows that r + r cos f = p, namely r + x = p; using r =
√
x2 + y2

one obtains y2 = −2px + p2, namely

x = −y2

2p
+

p

2
,

which describes a parabola in the plane (y, x) with vertex coinciding with (p
2 , 0)

(see Figure 3.5).
Notice that equation (3.27) can be written in the form

r =
p

2

(
1 + tan2

f

2

)
.

Using (3.5), (3.27), one has: (p
2

)2 1
cos4 f

2

ḟ =
√
pμ ,

whose integration yields

2
(
μ

p3

)1/2

(t− t0) = tan
f

2
+

1
3

tan3
f

2
, (3.28)
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y
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p

Fig. 3.5. The parabolic solution of Kepler’s problem.

where t0 is the time of passage at perihelion. The solution of equation (3.28), known
as Barker’s equation, provides the variation of the true anomaly as a function of
time in the case of a parabolic orbit.

3.6 Hyperbolic motion

For e > 1, we write the polar equation as

r =
a(e2 − 1)
1 + e cos f

. (3.29)

Using the relations

x = r cos f , r =
√
x2 + y2 , b = a

√
e2 − 1 ,

we obtain
x2(e2 − 1)− y2 + a2(e2 − 1)2 − 2ae(e2 − 1)x = 0 ; (3.30)

since b = a
√

e2 − 1, the equation (3.30) becomes

(x− x0)2

a2
− y2

b2
= 1 ,

where we have introduced x0 = ae. From the angular momentum integral the
velocity can be written as

v2 = μ

(
2
r

+
1
a

)
.

Notice that r tends to infinity with a non–zero velocity given by v2 = μ
a .

From (3.29) one has

cos f =
a(e2 − 1)

er
− 1

e
. (3.31)
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From (3.17) and (3.19) one has n2a3 = μ; computing the derivative of (3.31) with
respect to r and using the angular momentum integral in the form h =

√
μp = r2ḟ

as well as p = a(e2 − 1), one finds

n
dt

dr
=

r

a
√

(a + r)2 − a2e2
.

Introducing the hyperbolic eccentric anomaly uh such that

r ≡ a(e coshuh − 1) , (3.32)

one obtains
n
dt

du
= e coshuh − 1

whose integration provides the hyperbolic Kepler’s equation

�0 = e sinhuh − uh ,

where �0 is the mean anomaly. Notice that such equation is not periodic and that
the solution tends quickly to infinity. From (3.29) and (3.32) one gets

e2 − 1
1 + e cos f

= e coshuh − 1 ;

using the formulae

cos f =
1− tan2 f

2

1 + tan2 f
2

, coshuh =
1 + tanh2 uh

2

1− tanh2 uh

2

,

one obtains the relation between the true and eccentric anomaly in the case of
hyperbolic motion:

tan
f

2
=

√
e + 1
e− 1

tanh
uh

2
.

Numerical methods for solving Kepler’s equation in the hyperbolic case were de-
veloped for example in [72,135].

3.7 Classification of the orbits

According to the value of the parameter e (the eccentricity) the trajectory coincides
with the following conic sections:

(i) e = 0: the trajectory is a circle;
(ii) 0 < e < 1: the trajectory is an ellipse;
(iii) e = 1: the trajectory is a parabola;
(iv) e > 1: the trajectory is a hyperbola.
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The same classification of the orbits can be inferred as a function of the energy.
In polar coordinates the energy is given by (see (3.7))

E =
1
2

(ṙ2 + r2ϑ̇2)− μ

r
,

where μ ≡ G(m1 + m2); using the angular momentum integral we can write

E =
1
2
ṙ2 + Ve(r) ,

where Ve(r) is the effective potential given by

Ve(r) =
h2

2r2
− μ

r
.

Then, we obtain
dr

dt
=
√

2(E − Ve(r)) .

Through the angular momentum integral one gets

ϑ− ϑ0 = h

∫
dr

r2
√

2(E − Ve(r))
= arccos

r0
r − 1√
1− E

E0

,

where r0 is such that Ve(r0) is minimum and E0 = E(r0), namely

r0 =
h2

μ
, E0 = − μ2

2h2
.

Recalling (3.11) we find

p = r0 , e =
√

1− E

E0
, ϑ0 = g0 .

In summary we obtain that the parameter e is related to the energy E by

e =

√
1 +

2h2E
μ2

.

According to the classification of the orbits in terms of the eccentricity we obtain
the following classification of the trajectories in terms of the energy:

(i) E = − μ2

2h2 (i.e. e = 0): the trajectory is a circle;
(ii) E < 0 (i.e. 0 < e < 1): the trajectory is an ellipse;
(iii) E = 0 (i.e. e = 1): the trajectory is a parabola;
(iv) E > 0 (i.e. e > 1): the trajectory is a hyperbola.
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3.8 Spacecraft transfers

As a practical implementation of Keplerian orbits, we consider the problem of
spacecraft transfers. The transfer of a spacecraft from one orbit to another is ob-
tained by implementing proper orbital maneuvers (see, e.g., [51]). The classical
ones are the so–called Hohmann transfer and bi–elliptic Hohmann transfer maneu-
vers, which are based on a careful combination of suitable Keplerian elliptic orbits.
Impulse maneuvers require a short firing of the on–board engines, so to allow for
a change of sign and direction of the velocity vector. A Hohmann transfer requires
two impulse maneuvers for transferring the spacecraft from one circular orbit of
radius rA to another coplanar circular orbit of radius rB , through an elliptic orbit
which is tangent to both circles at their periapses (see Figure 3.6(a)). The changes
of velocities required at the periapses can be easily computed using the angular
momentum integral. Bi–elliptic Hohmann transfers between the circles of radii rA
and rB are constructed using two semi–ellipses as in Figure 3.6(b). The first semi–
ellipse allows us to reach a point C outside the external circle (see Figure 3.6(b)),
while the second semi–ellipse joins with the target point B on the external circle.

(a)

B

B

A A

O
rArA

rB
rB

C(b)

Fig. 3.6. (a) A Hohmann transfer from the circular orbit of radius rA to the circular
orbit of radius rB . (b) A bi–elliptic Hohmann transfer from the point A on the circle of
radius rA to the point B on the circle of radius rB .

3.9 Delaunay variables

Classical action–angle variables (see [73] and Appendix A) for the two–body prob-
lem are known as Delaunay variables [18,169]. We present their detailed derivation
for the planar motion and we provide the results for the spatial case. Let (r, ϑ) be
the polar coordinates as in Figure 3.2 and let (pr, pϑ) be the conjugated momenta;
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it is readily seen that pϑ = h. The Hamiltonian function1 governing the two–body
motion is given by

H(pr, pϑ, r, ϑ) =
1
2

(
p2r +

p2ϑ
r2

)
− μ

r
.

Being ϑ a cyclic variable, we introduce the effective potential (see Figure 3.7) as

Ve(r) =
p2ϑ
2r2

− μ

r
, (3.33)

so that the Hamiltonian can be written as a one–dimensional Hamiltonian of the
form

H(pr, r) =
p2r
2

+ Ve(r) . (3.34)

For a fixed value E of the energy, let r± = r±(E) be the roots of Ve(r) = E, so
that

E − Ve(r) = −E

r2
(r+ − r)(r − r−) with r±(E) =

μ±
√
μ2 + 2Ep2ϑ
−2E

.

The period of the motion can be expressed as

T (E) = 2
∫ r+(E)

r−(E)

dr√
2(E − Ve(r))

= 2πμ
(

1
−2E

)3/2

.

By Kepler’s third law (3.17) one obtains the following relation between the semi-
major axis and the energy:

a = − μ

2E
. (3.35)

Let us define the action variable L0 as

L0 ≡
√
− μ2

2E

which in view of (3.35) provides

L0 =
√
μa .

On the other hand, since (3.34) does not depend on ϑ, we can define another action
variable as

G0 ≡ pϑ ;

using the expression for the angular momentum h =
√
μa(1− e2) and being pϑ = h,

one gets
G0 = L0

√
1− e2 .

1 See Appendix A for a basic introduction to Hamiltonian dynamics.
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Notice that one can express the elliptic elements, namely semimajor axis and ec-
centricity, in terms of the Delaunay action variables as

a =
L2
0

μ
, e =

√
1− G2

0

L2
0

.

The Hamiltonian function expressed in terms of the action variables becomes

H = H(L0) = − μ2

2L2
0

. (3.36)

As for the angle variables, we proceed as follows. Using the relations

pr = pr(L0, G0, r) =

√
−μ2

L2
0

+
2μ
r
− G2

0

r2
, pϑ = G0 ,

we introduce the generating function defining the Delaunay variables as

Φ(L0, G0, r, ϑ) =
∫

prdr +
∫

pϑdϑ =
∫ √

−μ2

L2
0

+
2μ
r
− G2

0

r2
dr + G0ϑ .

The angle variable conjugated to L0 is defined as

�0 =
∂Φ
∂L0

=
∫

μ2

L3
0

√
− μ2

L2
0

+ 2μ
r − G2

0
r2

dr .

Using (3.22) it follows that �0 coincides with the mean anomaly, namely

�0 = u− e sinu .

The angle variable conjugated to G0 is computed as

g0 =
∂Φ
∂G0

= ϑ−
∫

G0

r2
√
− μ2

L2
0

+ 2μ
r − G2

0
r2

dr .

Using (3.22) one finds that g0 = ϑ − f , which coincides with the argument of
perihelion.

In the spatial case, namely when the three bodies are not constrained to move
on the same plane, one needs to add a third pair of action–angle variables. Indeed,
in polar coordinates (r, ϑ, ϕ) the spatial two–body Hamiltonian is given by

H(pr, pϑ, pϕ, r, ϑ, ϕ) =
1
2

(
p2r +

p2ϑ
r2

+
p2ϕ

r2 sin2 ϑ

)
− μ

r
,

where (pr, pϑ, pϕ) are conjugated to (r, ϑ, ϕ). Define

G0 =

√
p2ϑ +

p2ϕ

sin2 ϑ
, H0 = pϕ
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and let the energy be

E =
1
2

(
p2r +

G2
0

r2

)
− μ

r
.

One easily finds that

pϑ = ±

√
G2
0 −

H2
0

sin2 ϑ
, pr = ±

√
2
(
E +

μ

r

)
− G2

0

r2
.

Having set

ϑ− = arcsin
H0

G0
, ϑ+ = 2π − ϑ−

and

r± = − 1
2E

(
μ±

√
μ2 + 2EG2

0

)
,

the action variables can be defined as

A1 ≡ 1
2π

∫ 2π

0

pϕdϕ = H0

A2 ≡ 1
2π

∫ ϑ+

ϑ−
pϑdϑ = G0 − |H0|

A3 ≡ 1
2π

∫ r+

r−
prdr = −G0 + L0 .

Being L2
0 = − μ2

2E , the new Hamiltonian is given by

H(A1, A2, A3) = − μ2

2(A1 + A2 + A3)2
.

Let α1, α2, α3 be the conjugated angle variables. The relation with the Delaunay
variables is obtained through the symplectic change of coordinates

L0 = |A1|+ A2 + A3 �0 = α3

G0 = |A1|+ A2 g0 = α2 − α3

H0 = |A1| h0 = α1 − α2 ,

where it can be shown (see, e.g., [53]) that H0 is related to G0 by

H0 = G0 cos i ,

being i the inclination of the orbital plane with respect to a fixed inertial reference
frame. The angle variable h0 conjugated to H0 coincides with the longitude of the
ascending node, namely the angle formed by the x–axis of the reference frame with
the line of nodes given by the intersection of the orbital plane with the xy–reference
plane. The Hamiltonian function of the spatial case becomes

H = H(L0) = − μ2

2L2
0

.
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We remark that if the eccentricity is zero, then G0 = L0 and the argument of
perihelion is not defined; similarly, when the inclination is zero, then H0 = G0 and
the longitude of the ascending node is not defined. In these cases it is convenient
to introduce the modified Delaunay variables defined as

Λ = L0 λ = �0 + g0 + h0

Γ = L0 −G0 = L0

(
1−

√
1− e2

)
γ = −g0 − h0

Φ = G0 −H0 = 2G0 sin2
i

2
ϕ = −h0 .

The singularities are now represented by Γ = 0 and Φ = 0, for which γ and ϕ are not
defined. We remark that for small values of the eccentricity and of the inclination,
it is often convenient to introduce the so–called Poincaré variables defined as

p1 =
√

2Γ cos γ p2 =
√

2Φ cosϕ
q1 =

√
2Γ sin γ q2 =

√
2Φ sinϕ .
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Fig. 3.7. Graph of the effective potential Ve(r) given in (3.33) for pϑ = 0.4025 and μ = 1.

3.10 The two–body problem with variable mass

3.10.1 The rocket equation

In this section we study the two–body problem formed by a planet and a satellite
and we assume that the mass of the satellite is not constant, but varies with time.
For example, we can imagine dealing with an artificial satellite, whose mass vari-
ation is due to the loss of fuel. We assume that the decrease of the mass of the



58 3 Kepler’s problem

rocket is constant, namely
dm

dt
= −b (3.37)

for some positive constant b. Let us denote by vp the exhaust velocity of the expelled
particles with respect to the spacecraft; let Δt = t−t0 with t0 being the initial time
and let Δv = v(t)−v(t0) be the variation of the velocity. Let mv be the momentum
at time t, and let (m − bΔt)(v + Δv) be the momentum at time t + Δt. Without
external forces acting on the rocket (as in the case of high–thrust engines), the
total change of linear momentum is given by (see [152])

(m− bΔt)(v + Δv) + bΔt(v + vp)−mv = 0 .

In the limit for Δt tending to zero, one gets the rocket equation (see, e.g., [152]):

m
dv

dt
= −bvp . (3.38)

Recalling (3.37) and assuming vp constant, the solution of (3.38) is given by

Δv = −vp log
m(t0)
m

,

where m(t0) is the initial mass. Notice that the quantity Δv is the velocity needed
for the maneuver, which depends on the rate of mass loss.

3.10.2 Gylden’s problem

A physical sample described by a two–body problem with variable mass is composed
by a planet orbiting around a central star which varies its mass [58, 88, 90, 116].
Following classical results by Jeans [98] one can assume a mass variation according
to the law

dm

dt
= −αmj , (3.39)

where α is usually small and j varies in the interval [1.4, 4.4]. For example, in the
case of the Sun, the decrease of mass by radiation implies that α is of the order of
10−12 or 10−13, where the units of measure have been assumed as the solar mass,
the astronomical unit and the year; a bigger α must be adopted in the case of
corpuscolar emission.

Denoting by vC the velocity of the center of mass and by F the sum of all
external forces, the equation of motion is given by

d

dt
(mvC) = F .

For a point within the body let v be its velocity and let vm be the relative velocity
of the escaping or incident mass with respect to the center of mass [91]; then, we
can write the equation of motion as

m(t)
dv

dt
= F + vm

dm(t)
dt

. (3.40)
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When the mass is ejected isotropically, for example as for the solar wind, the sum
of the contributions of the second term of the right–hand side of (3.40) cancels out
and the equation of motion reduces to the so–called Gylden’s equation

m(t)
dv

dt
= F . (3.41)

If the body travels within a stationary cloud and accumulates mass, then it is
vm = −v and the equation of motion (3.40) reduces to the so–called Levi–Civita’s
equation

d

dt
(m(t)v) = F .

In the rest of this section we will concentrate on the analysis of Gylden’s equation
(3.41). Let us denote by x ∈ R3 the two–body relative position vector and by
X ∈ R3 the conjugated momentum vector. In suitable units of measure let us
write the Hamiltonian function associated to (3.41) as

H0(X,x, t) =
1
2
X ·X − k(t)

‖x‖ , (3.42)

where in (3.41) we assumed F = − k(t)
‖x‖3x (‖ · ‖ denotes the Euclidean norm in R3)

with k(t) taking into account the mass variation (eventually one can assume that
the dependence upon time is due to a time variation of the gravitational constant).
According to [56] we assume that

k(t) ≡ k0
ε(t)

, (3.43)

where ε(t0) = 1 for some initial time t0; we also assume that at any time ε(t) is
positive and that ε̇(t) �= 0. From (3.42) the equations of motion read as

ẋ = X

Ẋ = −k(t)
x

‖x‖3 ,

from which we obtain that the angular momentum vector h = x ∧ X is constant
(as it follows from ḣ = ẋ∧X + x∧ Ẋ). Let us show that a suitable coordinate and
time transformation gives (3.42) in the form of a perturbed Kepler’s problem. Let
(y, Y ) denote a new set of variables obtained through the generating function

Φ1(X, y, t) ≡ εy

(
X − 1

2
ε̇y

)
,

which provides the change of coordinates:

x = εy , X =
1
ε
Y + ε̇y .

Denoting by δ(t) ≡ ε3ε̈, the Hamiltonian in the new variables takes the form

H1(Y , y, t) =
1
ε2

(1
2
Y · Y − k0

‖y‖ +
1
2
δ(t)‖y‖2

)
.
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Next we perform a change of time according to

dt = ε2dτ ; (3.44)

setting δ(τ) = δ(t(τ)) through the transformation (3.44), the new Hamiltonian
becomes

H2(Y , y, τ) =
1
2
Y · Y − k0

‖y‖ +
1
2
δ(τ)‖y‖2 , (3.45)

with associated Hamilton’s equations

dy

dτ
=

∂H2

∂Y
,

dY

dτ
= −∂H2

∂y
.

From (3.43) and (3.44) we obtain

k̇

k
= − ε̇

ε
,

τ̈

τ̇
= −2ε̇

ε
,

which yield
τ̈

τ̇
=

2k̇
k

,

usually referred to as the law of marginal acceleration in ephemeris time [56].
Let us express the Hamiltonian (3.45) in terms of the Delaunay variables in-

troduced in Section 3.9. To this end, we set y = (r cosϑ, r sinϑ), Y = (pr cosϑ −
pϑ
r sinϑ, pr sinϑ+ pϑ

r cosϑ) and we perform a change of variables from (pr, pϑ, r, ϑ)
to Delaunay variables (L0, G0, �0, g0) through the generating function

Φ2(L0, G0, r, ϑ, t) =
∫ r

r0

√
− k2

L2
0

+
2k
r
− G2

0

r2
dr + G0ϑ ,

where r0 is a root of the function A(L0, G0, r) ≡ − k2

L2
0

+ 2k
r −

G2
0

r2 . With the present
notation the semimajor axis and the eccentricity of the osculating Keplerian orbit
are related to the action Delaunay variables by

a =
L2
0

k
, e =

√
1− G2

0

L2
0

.

The time derivative of the generating function is given by

∂Φ2

∂t
=

k̇

k

[
k

∫ r

r0

dr

r
√
A(L0, G0, r)

− k

a

∫ r

r0

dr√
A(L0, G0, r)

]

=
k̇

k

[
L3
0

k2
k

a
u− L3

0

k2
k

a
(u− e sinu)

]

=
k̇

k
L0e sinu .
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Finally, the one–dimensional, time–dependent Hamiltonian function describing
Gylden’s problem is given by

H3(L0, �0, t;G0) = H2 +
∂Φ2

∂t
= − k2

2L2
0

+
k̇

k
L0e sinu ,

where u is related to �0 by Kepler’s equation �0 = u−e sinu, which can be inverted
to provide sinu = sin �0 + e

2 sin 2�0 − e2

8 (sin �0 − 3 sin 3�0) +O(e3). Here L0, G0, �0
should be interpreted as the osculating elements of the Keplerian motion having
k = k(t) constant.

In the following example we choose j = 3 in (3.39), so that the variation of
the mass is given by the equation ṁ = −αm3, whose integration provides m(t) =

1√
2αt

. We assume that the gravitational constant does not vary with time and we
normalize it to one, so that k(t) coincides with m(t). The Hamiltonian function
of Gylden’s problem, depending parametrically on the eccentricity e and on the
perturbing parameter α, turns out to be:

HG(L0, �0, t; e, α) = −m(t)2

2L2
0

− αm(t)2L0e
(

sin �0 +
e
2

sin 2�0

− e2

8
(sin �0 − 3 sin 3�0)

)
.


	3 Kepler’s problem
	3.1 The motion of the barycenter
	3.2 The solution of Kepler’s problem
	3.3 ˜ f and ˜g series
	3.4 Elliptic motion
	3.4.1 Mean and eccentric anomaly
	3.4.2 Solution of Kepler’s equation

	3.5 Parabolic motion
	3.6 Hyperbolic motion
	3.7 Classification of the orbits
	3.8 Spacecraft transfers
	3.9 Delaunay variables
	3.10 The two–body problem with variable mass
	3.10.1 The rocket equation
	3.10.2 Gylden’s problem





