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Abstract. Recently, there has been significant theoretical progress to-
wards fixed-parameter algorithms for the DOMINATING SET problem
of planar graphs. It is known that the problem on a planar graph with n

vertices and dominating number k can be solved in O(c
√

kn) time using
tree/branch-decomposition based algorithms, where c is some constant.
However there has been no computational study report on the practi-
cal performances of the O(c

√
kn) time algorithms. In this paper, we re-

port computational results of Fomin and Thilikos algorithm which uses
the branch-decomposition based approach. The computational results
show that the algorithm can solve the DOMINATING SET problem of
large planar graphs in a practical time for the class of graphs with small
branchwidth. For the class of graphs with large branchwidth, the size
of instances that can be solved by the algorithm in a practical time is
limited to a few hundreds edges. The practical performances of the algo-
rithm coincide with the theoretical analysis of the algorithm. The results
of this paper suggest that the branch-decomposition based algorithms
can be practical for some applications on planar graphs.

Keywords: PLANAR DOMINATING SET, branch-decomposition,
fixed-parameter algorithms, data reduction, computational study.

1 Introduction

Given an undirected graph G(V, E), a k-dominating set D of G is a subset of
k vertices of G such that for every vertex v ∈ V (G), either v ∈ D or v is
adjacent to a vertex u ∈ D. The dominating number of G, denoted by γ(G), is
the minimum k such that G has a k-dominating set. Given G and an integer k,
The DOMINATING SET problem is to decide if γ(G) ≤ k. The optimization
version of the problem is to find a dominating set D with |D| = γ(G). The
DOMINATING SET problem is a core NP-complete problem in combinatorial
optimization and graph theory [17]. It also has wide practical applications such
as resource allocations [21], domination problems in electric networks [19], and
wireless ad hoc networks [33]. The books of Haynes et al. give a survey on
the rich literature of algorithms and complexity of the DOMINATING SET
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problem [20,21]. A recent experimental study on the heuristic algorithms for the
DOMINATING SET problem can be found in [30].

The DOMINATING SET problem is NP-hard. Approximation algorithms
and exact fixed-parameter algorithms have been extensively studied to tackle
the intractability of the problem. A minimization problem P of size n is α-
approximable if there is an algorithm which runs in polynomial time in n and
produces a solution of P with value at most αOPT , where OPT is the value
of the optimal solution of P and α ≥ 1. If P is (1 + ε)-approximable for every
fixed ε > 0, P is polynomial time approximable (i.e., has a PTAS). Problem P
is fixed-parameter tractable if given a parameter k, OPT can be computed in
O(f(k)nO(1)) time, where f(k) may be an exponentially fast (or faster) growing
function in k. For arbitrary undirected graph G of n vertices, the DOMINAT-
ING SET problem is known (1+logn)-approximable [22], but not approximable
within a factor of (1−ε) ln n for any ε > 0 unless NP ⊆ DTIME(nlog log n)) [15].
The problem is also known fixed-parameter intractable unless the parameterized
complexity classes collapse [13,14]. If the problem is restricted to planar graphs,
it is known as the PLANAR DOMINATING SET problem which is still NP-hard
[17]. But the PLANAR DOMINATING SET problem is known polynomial time
approximable [7] and fixed-parameter tractable [13].

In recent years, there have been significant improvements on the fixed-
parameter algorithms for the PLANAR DOMINATING SET problem. Algo-
rithms with running time O(11kn) [13] and O(8kn) [5] are known for graphs with
γ(G) = k. The running time is further reduced and O(c

√
kn) time algorithms are

known for a constant c [4,16,23]. Most of the sublinear exponent algorithms use
a tree-decomposition based approach: First a tree decomposition of the given
graph is computed and then a dynamic programming algorithm based on the
tree-decomposition is used to compute a minimum dominating set. For a planar
graph G with γ(G) = k, a tree decomposition of width b

√
k, b is a constant,

can be computed and the dynamic programming part runs in O(22b
√

kn) time
[4]. One problem with those algorithms is that the constant c = 22b is too large
for solving the PLANAR DOMINATING SET problem in practice. In relation
to treewidth and tree decompositions [27,28], Robertson and Seymour introduce
branchwidth and branch decompositions [29]. Instead of a tree decomposition,
a branch decomposition can be used in the above dynamic programming algo-
rithms for the PLANAR DOMINATING SET problem. Fomin and Thilikos give
such an algorithm (called FT Algorithm in what follows) which reduces the con-
stant c to 215.13 [16]. Dorn proposes an approach of applying the distance prod-
uct of matrices to the dynamic programming step in branch/tree-decomposition
based algorithms for the problem [11]. If the distance product of matrices is
realized by the O(nω) (ω < 2.376) time fast matrix multiplication method [10],
the constant c in is improved to 211.98. However the constant hidden in the Big-
Oh may be huge. Dorn also proposes a tree-decomposition based algorithm for
the problem [12]. Although expressed in terms of treewidth tw of G, the algo-
rithm has time complexity O(3twnO(1)), it has actually the same running time as
that of FT Algorithm. An encouraging fact on branch decomposition is that an
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optimal branch decomposition of a planar graph can be computed in polynomial
time [18,32]. This makes the branch-decomposition based algorithms receiving
increasing attention for the problems on planar graphs.

Another important progress on the algorithmic tractability of the PLANAR
DOMINATING SET problem is that the problem is shown having a linear size
kernel [6]. More specifically, Alber et al. give an O(n3) time algorithm which,
given a planar graph G with γ(G) = k, produces a reduced graph H (kernel)
such that H has O(k) vertices, γ(H) = k′ ≤ k, and a minimum dominating
set of G can be constructed from a minimum dominating set of H in linear
time [6]. In general, H and k′ are smaller than G and k, respectively, since in
the reduction process, a number of vertices in a minimum dominating set of
H have been decided. This reduction process reduces the sublinear exponent
from c

√
k to c

√
k′ and thus improves the running time of the fixed-parameter

algorithms for the PLANAR DOMINATING SET problem. This result is used
in FT Algorithm which has three major steps [16]: Step I computes a kernel H
of G by the data reduction process of [6] in O(n3) time. Step II finds an optimal
branch decomposition of H with width bw(H). This can be done by algorithms
of [9,18] in O(k3) time. Step III computes a minimum dominating set D′ of H
using the dynamic programming method based on the branch decomposition in
O(23 log4 3bw(H)k) time and constructs a minimum dominating set D of G from
D′ in linear time. It is proved in [16] that the branchwidth bw(H) ≤ 3

√
4.5k′

and FT Algorithm has time complexity O(215.13k′
k + n3). Alber et al. report

that the data reduction computes a much smaller kernel in practice for a class
of planar graphs [3,6]. Very recently, Bian et al. report that an optimal branch
decomposition of a planar graph can be computed efficiently in practice [8,9].
These results provide the base for testing the practical efficiency of FT Algorithm
for the PLANAR DOMINATING SET problem.

Although significant theoretical progresses have been made towards the fixed-
parameter algorithms for the PLANAR DOMINATING SET problem, the au-
thors are not aware of any report on the practical performances of these algo-
rithms. In this paper, we report the computational study on FT Algorithm for
the PLANAR DOMINATING SET problem. In our implementation of FT Al-
gorithm, in addition to the data reduction rules of [3,6], we introduce new data
reduction rules and use the recent works on planar branch decompositions. The
new data reduction rules further reduce the kernel size and improve the running
time of FT Algorithm. We have tested our implementation of FT Algorithm on
several classes of planar graphs, including the maximal planar graphs and their
subgraphs from LEDA [2,25], Delaunay triangulations of point sets taken from
TSPLIB [26], triangulations and intersection graphs of segments from LEDA,
Gabriel graphs, and planar graphs from PIGALE library [1]. The computational
results show that the size of instances that can be solved in a practical time
mainly depends on the branchwidth of the kernels. For example, the maximal
planar graphs and their subgraphs have branchwidth at most four. This class of
graphs are used as the test instances for the data reduction in previous stud-
ies [3,6]. Step I reduces the problem size significantly (often finds the solution
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already) and the PLANAR DOMINATING SET problem can be solved effi-
ciently for very large instances in this class. On the other hand, for Delaunay
triangulation and Gabriel graphs, because the branchwidth of kernels increases
fast in instance size, the size of instances that can be solved in a practical time is
limited to a few hundreds edges. For triangulation graphs, intersection graphs,
and graphs from PIGALE library, the branchwidth of kernels increases slowly
or does not grow in instance size, instances of size up to about ten thousands
edges can be solved in a practical time. These results coincide with the theo-
retical analysis of FT Algorithm [16]: it runs exponentially in the branchwidth
of the kernel and k ≥ b(bw(G))2 for some constant b. Because the kernel of G
has O(k) vertices, the analysis suggests that a large branchwidth of the instance
implies a large kernel, Step I may not reduce the problem size much, and the
kernel may have a large branchwidth. For a kernel H with large branchwidth, FT
Algorithm is not practical because Step III of the algorithm runs exponentially
in the branchwidth of H .

The results of this paper give a concrete example on using branch-decomp-
osition based algorithms for solving important hard problems in planar graphs
and show that the PLANAR DOMINATING SET problem can be solved in
practice for some applications. This work may bring the theory of branch de-
composition closer to practice.

The rest of the paper is organized as follows. In the next section, we review FT
Algorithm. We introduce the data reduction rules in Section 3. Computational
results of FT Algorithm are reported in Section 4. The final section concludes
the paper.

2 Fomin and Thilikos Algorithm

We first introduce some definitions and terminology. Readers may refer to a
textbook on graph theory (e.g., the one by West [34]) for basic definitions and
terminology on graphs. In this paper, graphs are undirected unless otherwise
stated. Let G be a graph with vertex set V (G) and edge set E(G). A branch
decomposition of G is a tree TB such that the set of leaves of TB is E(G) and
each internal node of TB has node degree three. For each link e of TB, removing
e separates TB into two subtrees. Let E′ and E′′ be the sets of leaves of the
subtrees. Let Se be the set of vertices of G incident to both an edge of E′ and
an edge of E′′. The width of e is |Se| and the width of TB is the maximum
width of all links of TB. The branchwidth bw(G) of G is the minimum width of
all branch-decompositions. We call a link e = {x, y} a leaf link if one of x and
y is a leaf node of TB, otherwise an internal link. Notice that Se is a set which
separates G into two subgraphs induced by edges of E′ and E′′, respectively.

We say a vertex u is dominated by a vertex v if u and v are adjacent. A
vertex set U is dominated by a vertex set V if for every vertex u ∈ U there is a
vertex v ∈ V such that u and v are adjacent or u ∈ V . Given two graphs G and
H , we say size(H) ≤ size(G) if |V (H)| ≤ |V (G)| and |E(H)| ≤ |E(G)|. In the
rest of the paper, the PLANAR DOMINATING SET problem is used for the
optimization version of the problem unless otherwise stated.
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Now we briefly review FT Algorithm. Readers may refer to [16] for more
details. FT Algorithm solves the PLANAR DOMINATING SET problem of G
in three steps. Step I computes a kernel H of G by the data reduction process
such that size(H) ≤ size(G), γ(H) ≤ γ(G), and a minimum dominating set
D of G can be computed from a minimum dominating set D′ of H in linear
time. Step II finds an optimal branch decomposition TB of H . Step III computes
a minimum dominating set D′ of H using the dynamic programming method
based on TB and constructs a minimum dominating set D of G from D′.

In Step I, the principle of data reduction introduced in [6] is that based on
some rules we check the vertices of G to decide if some vertices can be included
into D or excluded for computing D. More specifically, each vertex v of G is
colored by black or grey as follows. Initially, every vertex v is colored grey,
meaning that whether v should be included in D or not has not been decided.
If v has been decided to be included in D, v is colored black. If v has been
decided to be excluded for computing D in the future, v is removed from G.
After the reduction process, we get a kernel H(B ∪ C, E), where B and C are
the sets of black and grey vertices, respectively. The specific reduction rules will
be introduced in the next section.

To compute an optimal branch decomposition TB of H , either the edge-
contraction algorithms [18,32] or the divide-and-conquer algorithms [9] can be
used. The divide-and-conquer algorithms are faster for large graphs in practice.

In Step III, given a kernel H = (B ∪ C, E), we find a minimum D′ ⊆ (B ∪ C)
such that D′ ⊇ B and D′ dominates all vertices of C. As shown later, a minimum
dominating set D of G can be constructed from D′ in linear time. To compute
D′, first the branch decomposition TB of H is converted into a rooted binary tree
by replacing a link {x, y} of TB by three links {x, z}, {z, y}, and {z, r}, where
z and r are new nodes to TB, r is the root, and {z, r} is an internal link. For
every internal link e of TB, e has two children links incident to e. For every link
e of TB, let Te be the subtree of TB consisting of all descendant links of e. Let
He be the subgraph of H induced by the edges at leave nodes of Te. To compute
a minimum dominating set D′ of H , we find all dominating sets (solutions) of
He from which D′ may be constructed for every link e of TB by a dynamic
programming method: the solutions of He for each leaf link e is computed by
enumeration and the solutions for an internal link e is computed by merging the
solutions for the children links of e. To find a solution of He, each vertex of Se

is colored by one of the following colors.

Black. denoted by 1, meaning that the vertex is included in the dominating set.
White. denoted by 0, meaning that the vertex is dominated at the current step

of the algorithm and is not in the dominating set.
Grey. denoted by 0̂, meaning that we have not decided to color the vertex into

black or white yet at the current step.

A solution of He subject to a coloring λ ∈ {0, 0̂, 1}|Se| is a minimum set De(λ)
satisfying
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– for u ∈ B ∩ Se, λ(u) is black;
– every vertex of V (He) \ Se is dominated by a vertex of De(λ); and
– for every vertex u ∈ Se if λ(u) is black then u ∈ De(λ), if λ(u) is white then

u 
∈ De(λ) and u is dominated by a vertex of De(λ).

Intuitively, De(λ) is a minimum set to dominate the vertices of He with grey ver-
tices removed, subject to the condition that the vertices of Se are colored by λ.

For a leaf link e, colorings λ and sets De(λ) are computed by enumeration.
An internal link e has children edges e1 and e2 in TB. The colorings λ of Se and
sets De(λ) are computed from the colorings λ1 of Se1 , sets De1(λ1), colorings λ2
of Se2 , and sets De2(λ2). A coloring λ of Se is formed from λ1 and λ2 if:

– For u ∈ Se \ Se2 , λ(u) = λ1(u).
– For u ∈ Se \ Se1 , λ(u) = λ2(u).
– For u ∈ Se ∩ Se1 ∩ Se2 , if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) =

λ2(u) = 0̂ then λ(u) = 0̂; and if λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and
λ2(u) = 0 then λ(u) = 0.

– For u ∈ (Se1 ∪ Se2) \ Se, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or
λ1(u) = 0̂ and λ2(u) = 0.

For a coloring λ of Se formed from λ1 and λ2, the minimum dominating set
De(λ) is the minimum set among the sets of De1(λ1) ∪ De2(λ2). For e = {z, r},
a minimum set De(λ) among all colorings λ of Se is a minimum dominating set
of H .

3 Data Reduction

In this section, we introduce the data reduction rules used in our implementation
of FT Algorithm for Step I. All reduction rules of [3,6] are used. To enhance the
data reduction effect, we also propose some new reduction rules. Following the
convention of FT Algorithm, we color each vertex of G by black or grey, and may
remove some vertices from G by those reduction rules. After the data reduction
step, we get a kernel H(B ∪ C, E), recall that B and C are the sets of black
and grey vertices, respectively. For a vertex v, let N(v) = {u|{u, v} ∈ E(G)},
N [v] = N(v) ∪ {v}, B(v) = B ∩ N(v), and C(v) = C ∩ N(u). For a set U
of vertices, let N(U) = ∪v∈UN(v). For a vertex u, if there is a black vertex
v ∈ N [u], we mark u dominated. Initially, every vertex of G is unmarked. In
the data reduction step, some vertices are marked. Let X be the set of marked
vertices and Y be the set of unmarked vertices. For v ∈ V (G), the following is
introduced in [6]:

N1(v) = B(v) ∪ {u|u ∈ C(v), N(u) \ N [v] 
= ∅},

N2(v) = {u|u ∈ N(v) \ N1(v), N(u) ∩ N1(v) 
= ∅}, and
N3(v) = N(v) \ (N1(v) ∪ N2(v)).

Rule 1 [6]. For v ∈ V (G), if N3(v) ∩ Y 
= ∅ then remove N2(v) and N3(v) from
G, color v black, and mark N [v] dominated.
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For a pair of vertices v, w ∈ V (G), let N(v, w) = N(v) ∪ N(w) \ {v, w},
B(v, w) = B ∩N(v, w), C(v, w) = C ∩N(v, w), and N [v, w] = N [v] ∪N [w]. The
following is introduced in [6]:

N1(v, w) = B(v, w) ∪ {u|u ∈ C(v, w), N(u) \ N [v, w] 
= ∅},

N2(v, w) = {u|u ∈ N(v, w) \ N1(v, w), N(u) ∩ N1(v, w) 
= ∅},

N3(v, w) = N(v, w) \ (N1(v, w) ∪ N2(v, w)).

Rule 2 [6]. For v, w ∈ V (G) with both v and w grey, assume that |N3(v, w) ∩
Y | ≥ 2 and N3(v, w)∩Y can not be dominated by a single vertex of N2(v, w)∪
N3(v, w).
Case 1: N3(v, w) ∩ Y can be dominated by a single vertex of {v, w}.
– (1.1) If N3(v, w) ∩ Y ⊆ N(v) and N3(v, w) ∩ Y ⊆ N(w) then remove

N3(v, w) and N2(v, w)∩N(v)∩N(w) from G and add new gadget vertices
z and z′ with edges {v, z}, {w, z}, {v, z′}, and {w, z′} to G.

– (1.2) If N3(v, w) ∩ Y ⊆ N(v) but N3(v, w) ∩ Y 
⊆ N(w) then remove
N3(v, w) and N2(v, w) ∩ N(v) from G, color v black, and mark N [v]
dominated.

– (1.3) If N3(v, w) ∩ Y ⊆ N(w) but N3(v, w) ∩ Y 
⊆ N(v) then remove
N3(v, w) and N2(v, w) ∩ N(w) from G, color w black, and mark N [w]
dominated.

Case 2: If N3(v, w) ∩ Y can not be dominated by a single vertex of {v, w}
then remove N2(v, w) and N3(v, w) from G, mark v and w black, and mark
N [v, w] dominated.

In Rule 1 and Rule 2 (Cases 1.2, 1.3, and 2) of [6], gadget vertices are used to
guarantee some vertices to be included in the solution set. In [3] the rules are
implemented in a way that the vertices to be included in the solution set are
removed. Our descriptions are slightly different from the previous ones: we do
not use gadget vertices nor remove the vertices to be included to the solution
set but color them black. Our descriptions allow us to have new reduction rules
given below that may further reduce the size of the kernel.

Rule 3
3.1: For v, w ∈ V (G) with v black and w grey, if (N3(v, w) ∩ Y ) \ N(v) 
= ∅
then remove N2(v, w) ∪ N3(v, w), color w black, and mark N [w] dominated;
otherwise remove (N2(v, w) ∪ N3(v, w)) ∩ N(v).
3.2: For v, w ∈ V (G) with v grey and w black, if (N3(v, w) ∩ Y ) \ N(w) 
= ∅
then remove N2(v, w) ∪ N3(v, w), color v black, and mark N [w] dominated;
otherwise remove (N2(v, w) ∪ N3(v, w)) ∩ N(w).
3.3: For v, w ∈ V (G) with both v and w black, remove N2(v, w) ∪ N3(v, w).

Lemma 1. Given a graph G, let G′ be the graph obtained by applying Rule 3
for v, w ∈ V (G). Then size(G′) ≤ size(G), γ(G′) ≤ γ(G), and a minimum
dominating set D′ of G′ that contains all black vertices of G′ is a minimum
dominating set of G that contains all black vertices of G.
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Proof: For v, w ∈ V (G) with v black and w grey, assume that (N3(v, w) ∩
Y ) \ N(v) 
= ∅. For u ∈ (N3(v, w) ∩ Y ) \ N(v) and x which dominates u, x ∈
{w} ∪ N2(v, w) ∪ N3(v, w). Since N(N2(v, w) ∪ N3(v, w)) ⊆ N [v] ∪ N [w], we
should include w into D to dominate (N3(v, w) ∩ Y ) \ N(v). Therefore, we can
remove N2(v, w)∪N3(v, w) from G. Assume that (N3(v, w)∩Y )\N(v) = ∅. For
u ∈ (N2(v, w)∪N3(v, w))∩N(v), u is dominated by v and N(v)∪N(u) ⊆ N(v)∪
N(w). This implies that we can at least include w rather than u to get D. At
this point, we can not decide if we should include w into D or not because there
might be a vertex x with N(w) ⊆ N(x) that should be included in D. But we can
exclude (N2(v, w)∪N3(v, w))∩N(v) from D. Since (N2(v, w)∪N3(v, w))∩N(v)
is dominated by v, we can remove (N2(v, w) ∪ N3(v, w)) ∩ N(v) from G. This
completes the proof for (3.1).

The proof for (3.2) is a symmetric argument of that for (3.1).
For v, w ∈ V (G) with both v and w black, since N(N2(v, w) ∪ N3(v, w)) ⊆

N [v] ∪ N [w], we can remove N2(v, w) ∪ N3(v, w) from G. �

Rule 4 [3]
4.1: Delete edges between vertices of X (vertices marked dominated).
4.2 If u ∈ X has |C(u)| ≤ 1 then remove u.
4.3 For u ∈ X with C(u) ∩ Y = {u1, u2}, if u1 and u2 are connected by a
path of length at most 2 then remove u.
4.4 For u ∈ X with C(u) ∩ Y = {u1, u2, u3}, if {u1, u2}, {u2, u3} ∈ E(G)
then remove u.

To perform the data reduction, we first apply Rule 1 for every vertex of G.
Next for every pair of vertices v and w of G, we apply either Rule 2 or Rule 3
depending on the colors of v and w. Then we apply Rule 4. We repeat the above
until Rules 1-4 do not change the graph. From the results of [6,3] on Rules 1,2,
and 4, and Lemma 1, we have the following result.

Theorem 1. Given a planar graph G, let H(B ∪ C, E) be the kernel obtained
by applying the reduction rules described above and D′ be a minimum vertex
set of H(B ∪ C, E) such that D′ ⊇ B and D′ dominates C. Then a minimum
dominating set D of G can be constructed from D′ in linear time.

Given a planar graph G, let H(B ∪ C, E) be the kernel obtained from Step
I, TB be an optimal branch decomposition of H , and l(H) = max{|C ∩ Se|, e ∈
E(TB)}. It is shown in [6] that H(B ∪ C, E) can be computed in O(n3) time.
TB can be computed by either the edge-contraction algorithm [18] or a divide-
and-conquer algorithm [9] in O(|E(H)|3) time. It is shown in [16] that Step
III has time complexity O(23 log4 3l(H)|E(H)|). Therefore, FT Algorithm takes
O(23 log4 3l(H)|E(H)| + n3) time to solve the PLANAR DOMINATING SET
problem. In what follows, we use l(H) for the branchwidth of kernel H .

4 Computational Results

We implemented FT Algorithm and tested our implementation on six classes of
planar graphs from some libraries including LEDA [2,25] and PIGALE [1]. LEDA
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generates two types of planar graphs. One type of graphs are the random maxi-
mal planar graphs and their subgraphs and the other type of graphs are the planar
graphs based on some geometric properties, including the Delaunay triangulations
and triangulations of points, and the intersection graphs of segments, uniformly
distributed in a two-dimensional plane. Instances of Class (1) are the random max-
imal graphs and their subgraphs generated by LEDA. This class of instances have
been used by Alber et al. in their study on the data reduction rules used in Step I
[3,6]. Instances of Class (2) are Delaunay triangulations of point sets taken from
TSPLIB [26]. Instances of Classes (3) and (4) are the triangulations and intersec-
tion graphs generated by LEDA, respectively. Instances of Class (5) are Gabriel
graphs of the points uniformly distributed in a two-dimensional plane. Instances
of Classes (2)-(5) are graphs based some geometric properties. The DOMINAT-
ING SET problem on those graphs has important applications such as the virtual
backbone design of wireless networks [24]. Instances of Class (6) are random planar
graphs generated by the PIGALE library [1]. PIGALE provides a number of pla-
nar graph generators. We used a function in the PIGALE library that randomly
generates one of all possible 2-connected planar graphs with a given number of
edges based on the algorithms of [31].

Step I of FT Algorithm is implemented as described in the previous section.
To compute an optimal branch decomposition TB, we use the divide-and-conquer
algorithm [9]. In Step III, to save memory, we compute the colorings λ and sets
De(λ) for each link e of TB in the postorder. Once the colorings λ and sets De(λ)
are computed for a link e, the solutions for the children links of e are discarded.
We sort the tables for the colorings to have an efficient implementation of Step
III. The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core
Processor 4600+ (2.4GHz) and 4Gbyte memory. The operating system is SUSE
Linux 10.2 and the programming language used is C++.

We report the computational results of FT Algorithm in Table 1. For Step
I, we give the number |B| of vertices of an optimal dominating set decided in
the data reduction and the running time of the step. For Step II, we give the
size |E(H)| and branchwidth l(H) = max{|C ∩ Se|, e ∈ E(TB)} of kernel H ,
and the running time of the step. For Step III, we give the dominating number
γ(G) obtained by FT Algorithm and the running time of the step. The running
time is in seconds, and Steps I, II, and III have time complexities O(|E(G)|3),
O(|E(H)|3), and O(23 log4 3l(H)|E(H)|), respectively. We use the number of edges
to express the size of an instance or a kernel.

It is easy to show that the instances of Class (1) have branchwidth at most
four. These instances have small kernels and Step I is very effective. For the
instances included in the table, |B| is very close to γ(G) (i.e., Step I finds most
vertices in an optimal dominating set) and the kernels are much smaller than
the original instances. For some smaller instances not reported in the table, Step
I already finds optimal dominating sets. Because the kernels have small size
and branchwidth, FT Algorithm is efficient for the instances in this class, for
example, an optimal dominating set can be computed for large instances of size
up to about 40,000 edges in about 20 minutes.
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Table 1. Computational results of FT Algorithm for instances of Classes (1)-(6)

Class Graph |E(G)| bw(G) Step I Step II Step III total
G |B| time |E(H)| l(H) time γ(G) time time

(1) max1500 4047 4 209 4 23 2 < 1 211 < 1 4
max6000 7480 4 2214 55 32 2 < 1 2219 < 1 55
max8000 13395 4 2186 336 194 3 < 1 2211 < 1 337
max11000 28537 4 1679 815 208 4 1 1695 < 1 816
max13500 38067 4 1758 1203 302 3 1 1779 < 1 1204

(2) pr144 393 9 2 < 1 291 6 1 20 1 3
ch130 377 10 0 < 1 377 10 1 21 12734 12735

kroB150 436 10 0 < 1 436 10 1 23 43094 43095
pr226 586 7 12 1 126 6 < 1 21 < 1 2
pr299 864 11 1 1 824 11 1 47 392931 392933

(3) tri1000 2980 7 69 10 1657 7 4 163 26 40
tri2000 5977 8 136 56 3192 7 146 321 120 322
tri3000 8976 8 209 87 4805 7 379 489 190 656
tri4000 11969 9 252 251 6888 7 1667 653 413 2331
tri5000 14969 8 384 285 7271 8 1547 804 915 2747

(4) rand2000 3247 8 371 8 1219 7 1 548 14 23
rand3000 4943 10 514 19 2093 8 3 806 173 195
rand4000 6676 11 678 35 2956 8 4 1068 217 256
rand5000 8451 11 755 57 4177 8 13 1315 363 433
rand6000 10293 11 839 93 5598 9 25 1563 2933 3051

(5) Gab100 182 7 3 < 1 162 7 < 1 24 5 6
Gab200 366 8 3 < 1 344 8 1 47 192 193
Gab300 552 10 5 < 1 516 10 32 70 28014 28046

(6) p1277 2128 9 116 8 1353 9 14 323 1953 1975
p2518 4266 9 329 31 1876 5 26 621 3 60
p4206 7101 6 596 75 2901 5 7 1039 2 84
p5995 10092 7 708 181 5142 5 20 1504 6 207
p7595 12691 6 998 259 5702 5 16 1893 7 272

For Class (2) and (5), the branchwidth of instance increases fast in instance
size (e.g., Class (2) instances rd400 of 1,183 edges and u2152 of 6,312 edges have
branchwidth 17 and 31, respectively, Class (5) instances Gab500 of 932 edges
and Gab2000 of 3,911 edges have branchwidth 12 and 26, respectively). For the
instances tested, the kernel H of an instance G has the same branchwidth as that
of G (l(H) = bw(G)) and has the same size as or only slightly smaller than that
of G. The size of those instances for which the PLANAR DOMINATING SET
problem can be solved in a practical time is limited to a few instances of size up to
only a few hundreds edges. The computation time for Instances ch130, kroB150,
and pr299 in Class (2) is significantly larger than that for Instances pr144 and
pr226 in the same class. As shown in the table, this huge difference comes from
the difference between the branchwidthes of kernels (Step III), the kernels of
Instances ch130 and kro150 have branchwidth 10 while those of pr144 and pr226
have branchwidth 6. This coincides with the theoretical time complexity of FT
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Algorithm which runs exponentially in l(H). Similar difference is observed for
Instances Gab100 and Gab300 of Class (5) as well.

For Classes (3), (4), and (6), the branchwidth of instance increases slowly or
does not grow in instance size. The data reduction is effective for instances in
these classes. For most instances, the kernel size is at most half of the instance
size and the branchwidth of the kernel is usually smaller than that of the instance
as well. Our data show that the PLANAR DOMINATING SET problem can be
solved for instances in these classes of size up to about 10,000 edges in a practical
time. For large instances, the size |E(H)| of kernel H is also important to the
running time of Step III. For example, FT Algorithm takes more time to solve
Instance rand6000 than that for rand2000. The time difference comes from the
differences of both l(H) and |E(H)|.

Due to the page limit, Table 1 only contains the instances well scaled within
some size ranges. We have tested FT Algorithm on more instances. The results
are similar to those in Table 1, the running time mainly depends on l(H) and
then |E(H)|. For a kernel H with large l(H), Step III is time consuming, because
this step runs exponentially in l(H). Our computational results suggest that it
may not be practical to use FT Algorithm to solve the PLANAR DOMINATING
SET problem of instances with l(H) > 10 on a PC with a CPU of about 3GHz
(e.g., it takes more than 100 hours to solve the instance pr299 with 864 edges
and l(H) = 11).

Both the theoretical analysis and computational study suggest that computing
a kernel H with smaller l(H) and |E(H)| is a most effective way to improve the
efficiency of FT Algorithm. For this purpose, we proposed new reduction rules
(Rule 3). Recall that H is the kernel obtained by new reduction rules (Rules 1,2,3,
and 4) and let H ′ be the kernel obtained by applying only the previous known
reduction rules (Rules 1,2, and 4). Since all nodes colored black (resp. nodes
deleted) by previous rules are also colored (resp. deleted) by new rules, l(H) ≤
l(H ′) and |E(H)| ≤ |E(H ′)|. For Classes (2) and (5), l(H) = l(H ′) = bw(G)
for all instances testes and |E(H)| = |E(H ′)| = |E(G)| for most instances, that
is, the effect of data reduction is very limited. However, for instances in other
classes, data reduction is effective and our new rules improve the efficiency of
FT Algorithm. For instances of Classes (1),(3),(4), and (6), Table 2 shows the
computational results of FT Algorithm when previous rules and new rules are
used. In the table, told and tnew (resp. |B′| and |B|) are the total running times
(resp. the numbers of vertices in an optimal dominating set decided in Step I)
when previous rules and new rules are used, respectively. The data show that
l(H) = l(H ′) and |E(H)| < |E(H ′)| for most instances. The total running time is
improved when new rules are used: tnew < told for all instances in the table. The
improvement is instance dependent and tnew/told varies from 48% to 97%. The
average of tnew/told over the five instances of Class (1) is about 90%. Similarly,
the averages of tnew/told for Classes (3),(4), and (6) are about 70%, 85%, and
90%, respectively. The improvement of the total running time is obtained mainly
from Step III. The running time of Step I when new rules are used is about the
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Table 2. The results of using new data reduction rules and without using the new
rules in Step I

Class Graph |E(G)| bw(G) Results without new rules Results with new rules
G |B′| |E(H ′)| l(H ′) time |B| |E(H)| l(H) time

(1) max1500 4047 4 209 23 2 5 209 23 2 4
max6000 7480 4 2212 41 2 58 2214 32 2 55
max8000 13395 4 2183 218 3 357 2186 194 3 337
max11000 28537 4 1671 287 4 893 1679 208 4 816
max13500 38067 4 1752 362 4 1294 1758 302 3 1204

(3) tri1000 2980 7 63 1752 7 84 69 1657 7 40
tri2000 5977 8 102 3787 7 490 136 3192 7 322
tri3000 8976 8 175 5442 7 877 209 4805 7 656
tri4000 11969 9 214 7541 7 2499 252 6888 7 2331
tri5000 14969 8 333 8201 8 4118 384 7271 8 2747

(4) rand2000 3247 8 361 1293 7 25 371 1219 7 23
rand3000 4943 10 512 2120 8 216 514 2093 8 195
rand4000 6676 11 669 3043 8 263 678 2956 8 256
rand5000 8451 11 748 4254 8 474 755 4177 8 433
rand6000 10293 11 832 5675 9 5586 839 5598 9 3051

(6) p1277 2128 9 112 1371 9 2134 116 1353 9 1975
p2518 4266 9 291 2139 5 67 329 1876 5 60
p4206 7101 6 555 3189 5 91 596 2901 5 84
p5995 10092 7 652 5508 5 297 708 5142 5 207
p7595 12691 6 925 6159 5 281 998 5702 5 272

same as that when previous rules are used (instance dependent) and we omit
the details here due to the page limit.

5 Concluding Remarks

We tested the practical performances of FT Algorithm on a wide range of pla-
nar graphs. The computational results coincide with the theoretical analysis of
the algorithm, it is efficient for graphs with small branchwidth but may not be
practical for graphs with large branchwidth. By a PC with a CPU of about
3GHz, it is possible to solve the PLANAR DOMINATING SET problem for
graphs with the branchwidth of their kernels at most 10 in a few hours. Since
FT Algorithm runs exponentially in the branchwidth l(H) of a kernel H for a
given graph, it is worth to develop more powerful data reduction rules to re-
duce l(H). Another research direction is to develop heuristics to reduce l(H) to
compute approximate solutions for the PLANAR DOMINATING SET problem
by branch-decomposition based algorithms. Those heuristics should provide so-
lutions very close to the optima but runs faster than FT Algorithm for graphs
with large branchwidth. It is also interesting to find heuristics which are effi-
cient in practice and have guaranteed performance for the Planar Dominating
Set problem.
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