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Abstract. We study sublinear time complexity and algorithm to ap-
proximate the diameter for a sequence S = p1p2 · · · pn of points in a
metric space, in which every pair of two consecutive points pi and pi+1

in the sequence S has the same distance. The diameter of S is the largest
distance between two points pi and pj in S. The approximate diame-
ter problem is investigated under deterministic, zero error randomized,
and bounded error randomized models. We obtain a class of separations
about the sublinear time computations using various versions of the ap-
proximate diameter problem based on the restriction about the format
of input data.

1 Introduction

Sublinear time computation is an active area of computer science in the recent
years. A sublinear time algorithm has a sequence of elements a1, a2, · · · , an as
input and can only access a part of the elements. Many sublinear time algorithms
have been developed in the recent years. We give an incomplete list of sublinear
time algorithms such as approximating matrix product [7], checking the polygon
intersection [2], approximating the average degree in graph [8,14], estimating
the cost of minimum spanning tree [3,5,6], finding the geometric separators [10],
computing the basis of abelian groups [4], property testing [16,13], and facility
location [1]. Initially, the main research of sublinear time algorithms has been in
the property testing with surveys in [9,11,12,15,17]. People tend to believe that
there will be more and more sublinear time algorithms to emerge in the future.
Therefore, it is important to study the power and limitation of sublinear time
computations in both deterministic and randomized computation models.

A sublinear time algorithm usually uses a randomized method to access the
input since it does not have enough time to see the entire input data. Most
of the sublinear time algorithms developed in the recent years are randomized.
A recent interesting derandomization approach by Zimand [19] showed that for
some α > 0, randomized algorithms of time complexity T (n) < nα can be
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simulated by deterministic algorithms of time poly(T (n)) except on at most an
exp(−Ω(T (n) log T (m)) fraction of the instances.

In this paper we study the number of queries about the input sequence. In
order to separate the power of sublinear time computations with different query
complexity bounds, we select the problem to compute the diameter for a se-
quence of points in a metric space. We realized this problem and its connection
to sublinear time computation from our research on the protein backbone align-
ment [18]. From this approximate diameter problem, we show the existence of
sublinear time algorithms at three different models, which are deterministic,
bounded error randomized, and zero-error randomized. We study the complex-
ity of the sublinear time algorithms to approximate the diameter of a sequence
of points. The separations of sublinear time computations under various com-
plexity bounds and models in this paper are based on the several versions of the
diameter problem.

Three sublinear time computing models including deterministic, bounded er-
ror randomized, and zero error randomized models are studied in this paper.
We obtain a class of separations about the power of sublinear time computa-
tions using several versions of the approximate diameter problem. We derive a
dense sublinear time hierarchy for each of the three models. For every 0 < r < 1
and 0 < ε < r, we show that the sublinear time deterministic computation
with O(nr) queries to the input sequence is more powerful than sublinear time
deterministic computation with O(nr−ε) queries and also the sublinear time de-
terministic computation with O(nr) queries to the input sequence cannot be
simulated by sublinear time randomized computation with O(nr−ε) queries. We
show that those separations by the number of queries imply similar dense time
separations among sublinear time computations.

It is an interesting problem to identify what computational problems have
the sublinear time algorithms. Our results show that the existence of sublinear
time algorithms and their computational time depend on the restrictions on the
format of input points in the metric space. We will show how those restrictions
affect the existence of a sublinear time algorithm and its complexity. We identify
the parameters to control the diameter length and the permutation of the input
points, and we also show how the sublinear time model and the time complexity
for computing an approximate diameter depend on those parameters.

We also show that the zero-error randomized sublinear time computation is
more powerful than the deterministic sublinear time algorithm with similar time
complexity and the bounded-error randomized sublinear time computation is
more powerful than the zero-error randomized sublinear time algorithm with
similar time complexity. We show that the bounded error randomized sublinear
time algorithms in time O(nr) cannot be simulated by a zero-error randomized
sublinear time algorithm in o(n) time or queries, where r is an arbitrary parame-
ter in (0, 1). We also show that zero-error randomized sublinear time algorithms
in time O(nr) cannot be simulated by a deterministic sublinear time algorithm
in o(n) time or queries, where r is an arbitrary parameter in (0, 1).
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2 Notations

A metric space S has a distance function dist(., .) that satisfies the following
conditions: 1) dist(p, p) = 0 for every point p ∈ S; 2) dist(p1, p2) = dist(p2, p1)
for any two points p1, p2 ∈ S; and 3) dist(p1, p3) ≤ dist(p1, p2) + dist(p2, p3) for
any three points p1, p2, p3 ∈ S.

For an integer d ≥ 1, Rd is the d-dimensinal Euclidean space, which is clearly
a metric space. Let A = a1, · · · , an be a sequence of n points in a metric space.
We often use |A| = n to represent the number of points in A. Let A = a1, · · · , an

be a sequence of n points in a metric space. If for every pair of two consecutive
points ai and ai+1, dist(ai, ai+1) = t, then the sequence A is called a t-sequence.

Definition 1. – Let A = a1, · · · , an be a sequence of n points in a met-
ric space. For every pair of two consecutive points ai and ai+1, if t1 ≤
dist(ai, ai+1) ≤ t2, then the sequence A is called a (t1, t2)-sequence. De-
fine minInterDist(A) = min1≤i≤n−1(dist(ai, ai+1)) and maxInterDist(A) =
max1≤i≤n−1(dist(ai, ai+1)).

– For a sequence of points A in a metric space, diameter(A) is the largest
distance between two points of A.

– A real number d is (1 − ε)-approximate to the diameter of S of a sequence
of points, if (1 − ε)diameter(S) ≤ d ≤ diameter(S).

– A path of a randomized computation C of r(n) random bits with the input
sequence S is determined by a binary sequence B of length r(n). Its output
in the path B is denoted by C(S, B).

– A deterministic (1− ε)-approximate algorithm C with query complexity q(n)
for the diameter of sequence satisfies that 1) C(S) is a (1− ε) approximation
to diameter(S); and 2) C makes at most q(n) queries to the points in S,
where input S is a sequence of n points. Its query complexity is defined by a
function q(n) that for every input of length n points, the algorithm makes at
most q(n) queries. Its time complexity is defined by a function t(n) that for
every input of length n points, the algorithm stops in t(n) steps.

– A randomized (1−ε)-approximate algorithm C with r(n) random bits for the
diameter of sequence satisfies that 1) C(S, B) is a (1 − ε) approximation to
diameter(S) with probability at least 3

4 ; and 2) each path of C makes at most
q(n) queries to the points in S, where input S is a sequence of n points and
B is a random binary sequence of length r(n). A randomized algorithm can
be also called bounded error randomized algorithm.

– A zero-error randomized (1 − ε)-approximate algorithm C with r(n) random
bits for the diameter of sequence satisfies that 1) C(S, B) is a (1− ε) approx-
imation to diameter(S) with probability at least 3

4 ; 2) no path gives a result
that is not an (1 − ε) approximation to diameter(S).

– A randomized (1−ε)-approximate algorithm C (either bounded error or zero-
error) with r(n) random bits and time complexity t(n) for the diameter of
sequence satisfies that C(S, B) stops in t(n) steps, where input S is an arbi-
trary sequence of n points and B is a random binary sequence of length r(n).
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– A randomized (1−ε)-approximate algorithm C (either bounded error or zero-
error) with r(n) random bits and query complexity q(n) for the diameter of
sequence satisfies that C(S, B) makes at most q(n) queries, where input S
is an arbitrary sequence of n points and B is a random binary sequence of
length r(n).

3 Tight Separations among Sublinear Time Computations

We separate sublinear time computable functions with time complexity nr from
those with time complexity nr−ε for any 0 < r < 1 and any small ε > 0.
The separation is achieved in both deterministic and randomized computation
models.

Definition 2. Let r be an integer ≥ 0 and S = p1p2 · · · pn be a (t1, t2)-sequence.
The sequence S′ = p′1p

′
2 · · · p′n is r-reliable rearrangement of S if S′ is a permu-

tation of p1p2 · · · pn and for each pi, pi = p′i′ for some i′ with 1 ≤ i′ ≤ n and
|i − i′| ≤ r.

Let M be a metric space, r, m, and n be non-negative integers, and c be an
real number at least 1. Define ΦM (c, r, m, n) to be the set of all sequences H =
q1q2 · · · qn of n points in M such that H is an r-reliable rearrangement for a
(t1, t2)-sequence S for some 0 < t1 ≤ t2 with t2

t1
≤ c and diameter(S) ≥ mt1.

In particular, ΦM (c, 0, m, n) is the set of all (t1, t2)-sequence S of length n in
M with t2

t1
≤ c and diameter(S) ≥ mt1. Sequence S is called a ΦM (c, r, m, n)-

sequence if S ∈ ΦM (c, r, m, n).

We first present a deterministic sublinear time approximate algorithm to com-
pute the diameter of a t-sequence in a metric space. Its computational time is
reversely propositional to the length of the diameter. The algorithm is described
in a more generalized format by the following theorem.

Theorem 1. Assume that c is a positive constant, and α, μ and ε are constants
in (0, 1). Assume that M is a metric space with a (1 − μ)-factor approximate
algorithm AppM of time complexity C(k) for the diameter of k points in M for
some nondecreasing function C(k) : N → N . Then there exists a deterministic
algorithm such that given a ΦM (c, ε(1−α)

2c m, m, n)-sequence B, it makes at most
O( n

m ) non-adaptive queries to the points of B and outputs a number x with
(1 − ε)(1 − μ) · diameter(B) ≤ x ≤ diameter(B) in total time O( n

m ) + C(O( n
m )).

Proof. Our algorithm selects an O( n
m ) points set Q from the input sequence B

and uses the diameter of Q to approximate the diameter of B. Select δ = εα
2c

and β = ε(1−α)
2c m. Assume that A = p1p2 · · · pn is a (t1, t2)-sequence such

that B is a β-reliable rearrangement of A with 0 < t1 ≤ t2, t2
t1

≤ c, and
diameter(A) ≥ mt1. By the condition of the theorem, let t1 = minInterDist(A)
and t2 = maxInterDist(A) be two positive real numbers with t1 ≤ t2 and t2

t1
≤ c.

Our algorithm is described as follows:
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Algorithm

Input: B = p′1, p
′
2, · · · , p′n that is β-reliable-rearrangement of a (t1, t2)-sequence

A = p1, p2, · · · , pn.
Output: an approximation x to diameter(A).

let h = �δm�;
select qi = p′h·i for i = 1, · · · , k =

⌈
n
h

⌉
;

let Q be the sequence q1 · · · qk;
output x = AppM (Q);

End of Algorithm

Now we are going to prove that for the sequence Q constructed from B in
the algorithm, (1 − ε)diameter(A) = (1 − ε)diameter(B) ≤ diameter(Q) ≤
diameter(B) = diameter(A). Assume that pi and pj are two points in A such
that dist(pi, pj) = diameter(A). Let i1 be the number 1 ≤ i1 ≤ k such that
|i1h − i| = min1≤i2≤k |i2h − i| and j1 be the number 1 ≤ j1 ≤ k such that
|j1h−j| = min1≤j2≤k |j2h−j|. It is easy to see that |i1h−i| ≤ h and |j1h−j| ≤ h.
Since two consecutive points in A have distance at most t2, we have

dist(pi, pi1h) ≤ h · t2 (1)
dist(pj , pj1h) ≤ h · t2 (2)

For each p′k, it has another ps such that ps = p′k and |s − k| ≤ β since B is a
β-reliable rearrangement of A. Therefore, we have

dist(pk, p′k) = dist(pk, ps) ≤ βt2. (3)

We have the following inequalities:

diameter(A) = diameter(pi, pj) (4)
≤ dist(pi, pi1h) + dist(pi1h, p′i1h) + dist(p′i1h, p′j1h) + dist(p′j1h, pj1h) (5)

+dist(pj1h, pj) (6)
≤ h · t2 + βt2 + dist(p′i1h, p′j1h) + βt2 + h · t2 (7)
≤ h · t2 + βt2 + diameter(Q) + βt2 + h · t2 (8)
≤ 2(h + β)t2 + diameter(Q) (9)

≤ 2(
εα

2c
+

ε(1 − α)
2c

)c · m · t1 + diameter(Q) (10)

≤ ε · mt1 + diameter(Q) (11)
≤ ε · diameter(A) + diameter(Q). (12)

The transition from (4) to (6) is due to the triangle inequality in the metric
space. The transition from (6) to (7) is due to inequalities (1), (2), and (3). The
transition from (7) to (8) is because p′i1h and p′j1h are in Q. By (4)-(12), we have
(1−ε)diameter(A) ≤ diameter(Q). On the other hand, all points in Q are from A.
So, diameter(Q) ≤ diameter(A). Therefore, (1−ε)diameter(A) ≤ diameter(Q) ≤
diameter(A). Since AppM gives factor (1 − μ) approximation for the diameter
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of set Q, the output x satisfies (1 − ε)(1 − μ) · diameter(A) ≤ x ≤ diameter(A).
Since B is a permutation of A, we have diameter(B) = diameter(A). Therefore,
(1 − ε)(1 − μ) · diameter(B) ≤ x ≤ diameter(B).

The number of queries of the algorithm is |Q| = O( n
m ). The time for generating

Q is O( n
m) and the time for computing AppM (Q) is C(O( n

m )). �

Corollary 1. Assume that α is a constant with 0 < α < 1, and ε is a small con-
stant greater than 0. Let t be a positive real number. Then there exists a determin-
istic O( n

m )-time algorithm such that given an ε(1−α)m/2-reliable-rearrangement
sequence B for a t-sequence A of n points in a metric space with diameter at
least m · t, it outputs a number x with 1−ε

2 diameter(B) ≤ x ≤ diameter(B).

Proof. It is known that there exists an O(k) time 1
2 -factor approximation al-

gorithm to compute the diameter of k points in a metric space. The algorithm
selects an arbitrary point and finds the point with the largest distance to the
other points. It is at least half of the diameter. Apply Theorem 1. �

Corollary 2. Assume that α is a constant with 0 < α < 1, and ε is a small con-
stant greater than 0. Let t be a positive real number. Then there exists a determin-
istic O( n

m )-time algorithm such that given an ε(1−α)m/2-reliable-rearrangement
sequence B for a t-sequence A of n points in R1 with diameter at least m · t, it
outputs a number x with (1 − ε)diameter(B) ≤ x ≤ diameter(B).

Proof. In R1, finding the diameter takes O(k) time for an input of k points. �

Corollary 3. Assume that c is a positive constant, d is a fxied dimension num-
ber, α is a constant in (0, 1), and ε is a small constant greater than 0. Let t
be a positive real number. Then there exists a deterministic O( n

m + ( 1
ε2d ))-time

algorithm such that given an ε(1−α)m/2-reliable-rearrangement sequence B for
a t-sequence A of n points in Rd with diameter at least m · t, it outputs a number
x with (1 − ε)diameter(A) ≤ x ≤ diameter(A).

Proof. We just need to prove that for any constant δ ∈ (0, 1), there exists an
O(k + ( 1

δ2d )) time (1 − δ)-factor approximate algorithm AppRd to compute the
diameter of k points set H in Rd. Let d be a fixed dimensional number. Find
a 1

2 -factor approximate diameter D of H (see the proof of Corollary 1). The
approximate diameter D can be found in time O(k) as described in the proof of
Corollary 1. There exists a (4D)d cube region G that contains all points in H .
Partition G into small cubes of size ( δD

2
√

d
)d. For each cube C that contains points

in H , select one point from H∩C and put it into set Q. The number of small cubes
of size ( δD

2
√

d
)d in G is at most O((1

δ )d) since d is fixed. We have |Q| = O((1
δ )d).

Compute the diameter of Q by brute force method in time O(|Q|2). �

Lemma 1. For any even number n and two numbers p1 < p2 in R1, there
exists a dist(p2, p1)-sequence S = p1q1q2 · · · qn−2p2 in R1 such that p1 < qi for
i = 1, · · · , n − 2 and diameter(S) ≥ n·dist(p1,p2)

2 . The sequence S is denoted as
unfoldingR1(p1, p2, n).
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Proof. Let n = 2h and t = dist(p1, p2). We construct a t-sequence of n points as
follows: Let 1)q1 = p1 + t, 2)qs = qs−1 + t for s = 2, · · · , h, and 3)qs = qs−1 − t
for s = h + 1, h + 2, · · · , 2h − 2. It is easy to see that S = p1q1q2 · · · q2h−2p2 is a
t-sequence of n = 2h points in R1 and diameter(S) = ht = nt

2 . �

Theorem 2 gives a lower bound about the randomized sub-linear time algorithms
and matches the upper bound of Theorem 1.

Theorem 2. Assume that ε is a constant in (0, 1) and m = o(n). Then there
is no randomized algorithm such that given a ΦR1(1, 0, m, n)-sequence S, the
algorithm makes at most o( n

m ) adaptive queries and outputs (1− ε)-approximate
diameter for S.

Proof. Assume that C is a randomized (1 − ε) approximate algorithm with
o( n

m ) adaptive queries for computing the approximate diameter for all of the t-

sequences of diameter at least m·t. Let h = 2(
⌈

εm
1−ε

⌉
+2), g = 2h and n = m+kg,

where k is a parameter that is flexible. Since m = o(n), we always assume that
1 ≤ m < n

2 . We have k = n−m
g = n−m

4(	 εm
1−ε
+2)

≤ n
4(�εm�) . On the other hand, k ≥

(n−m)
4(	 εm

1−ε
+2)
> (n−m)

4( εm
1−ε +3) ≥ (n−m)

4( εm+3(1−ε)
1−ε )

≥ (1−ε)(n−m)
4(ε+3(1−ε))m ≥ (1−ε)(n−m)

4(3−2ε)m ≥ (1−ε)n
8(3−2ε)m .

Let constant c0 = 0.09 · (1−ε)
8(3−2ε) . Let t be a constant greater than 0.

Since each path queries o( n
m ) points, we assume that every path of C queries

at most c0n
m points in every t-sequence A. Let A be the t-sequence of points

q1, q2, · · · , qm+1, p1, p2, · · · , pn−m, where qi = (i − 1)t for i = 1, 2, · · · , m + 1,
pi = (m − 1)t for odd number i = 1, 3, · · ·, and pi = mt for even number
i = 2, 4, · · ·. Clearly, A is a t-sequence in one dimensional axis of diameter m · t.

Partition the points p1p2 · · · pn−m sequentially into P1P2 · · · Pk with |Pi| = g.
In the next phase, we will show that there exists some Pi such that no more than
10%G paths of C query the points in Pi, where G is the number of total paths
in C. Assume that for every Pi, there are at least 10%G paths of C to query
the points in Pi. Thus, the total number of queries is at least k · 10%G > c0n

m G
among all paths. On the other hand, since every path of C queries at most c0n

m
points, the total number of queries by all paths of C is at most c0n

m G. This is a
contradiction. Therefore, we have a Pi that no more than 10% paths of C query
the points in Pi.

We can arrange the points in Pi so that it has greatly different diameters.
Since Pi has at least 2h points, we can make diameter(Pi) as large as ht and as
small as t without changing the positions of first and last points of Pi. Formally,
assume that Pi has the sequence of points pu, pu+1, · · · , pu+g−1.

Clearly, dist(pu, pu+g−1) = t and pu < pu+g−1 by the definition of A. We re-
place pu+1, · · · , pu+g−2 by p′u+1, · · · , p′u+g−2, where unfoldingR1(pu, pu+g−1, g) =
pup′u+1p

′
u+2 · · · , p′u+g−2pu+g−1.

If the sequence A′ is derived from A that Pi is replaced by P ′
i =pup′u+1p

′
u+2 · · · ,

p′u+g−2pu+g−1. C(A, B) and C(A′, B) will be the same at 90% paths B. On
the other hand, the diameter of A is m · t and the diameter of A′ is at least
mt + ht − t > 1

(1−ε)mt by Lemma 1. Thus, C is not an (1 − ε)-approximation
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to the diameter of a t-sequence of n points in R1 with diameter at least mt. A
contradiction. �

Corollary 2 and Theorem 2 imply the following dense separation for the sublinear
time computations.

Corollary 4. Assume that ε is a constant in (0, 1). Then for every constant r in
(0, 1) and constant δ in (0, r), there is a function that can be (1−ε)-approximated
by nr sublinear time deterministic algorithm, but there is no nr−δ sublinear time
(1 − ε)-approximate randomized algorithm.

4 Randomized and Deterministic Computations

In this section, we show that randomized algorithms are more powerful than
deterministic algorithms with the same computational time. We first present a
randomized algorithm, then show that similar computation cannot be done in
the deterministic algorithm with the similar complexity.

Theorem 3. Assume that c is a positive constant, and α, μ and ε are constants
in (0, 1). Assume that M is a metric space with a (1 − μ)-factor approximate
algorithm AppM of complexity C(k) for the diameter of k points in M for some
nondecreasing function C(k) : N → N . Then there exists a randomized algorithm
such that given a ΦM (c, ∞, m, n)-sequence B, it makes at most O( n

εm) non-
adaptive queries to the points of B and outputs a number x with (1 − ε)(1 − μ) ·
diameter(B) ≤ x ≤ diameter(B) in total time O( n

εm )+C( n
εm), where m = o(n).

Corollary 5. Assume that c is a positive constant, α, μ and ε are constants in
(0, 1). Then there exists a randomized algorithm such that given a ΦR1(c, ∞, m, n)-
sequenceB, it makes atmostO( n

εm)non-adaptive queries to the points of B and out-
puts a number x with (1−ε)·diameter(B) ≤ x ≤ diameter(B) in total time O( n

εm ).

Theroem 4 gives a lower bound for the deterministic algorithms for computing
the approximate diameter problem. Corollary 5 and Theroem 4 give the separa-
tion between randomized and deterministic computations.

Theorem 4. Let ε be a constant in (0, 1) and m = o(n). Then there is no
deterministic algorithm that given a ΦR1(1, 8(	εm
 + 2), m, n) sequence B, it
makes no more than (n − m − 1)/2 adaptive queries to the input points and
outputs a (1 − ε)-approximation to the diameter of B.

5 Zero-Error Randomized Algorithm and Its Complexity

In this section, we show a zero-error randomized algorithm. We also derive a
lower bound for the deterministic algorithms. This shows that zero-error ran-
domized algorithms are more powerful than deterministic algorithms.
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Definition 3. Let M be a metric space.

– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =
p1p2, · · · , pn. A point qi is called a still point if qi = pi.

– A function f(x) → N can be c-approximated by a FZ[nr] computation algo-
rithm if the algorithm makes at most nr queries, gives output with probability
at least 2

3 , and each output y has cf(x) ≤ y ≤ f(x).
– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =

p1p2, · · · , pn. A point qi in S′ is called v-stable if qi = pj with |i − j| ≤ v.
– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =

p1p2, · · · , pn. S′ is called (u, v, α)-stable if for every u consecutive points set
Q from S′, Q has at least αu v-stable points.

– For a sequence S = q1q2 · · · qn of points in M , the sequence S∗ = (q′1, i1)(q
′
2, i2)

· · · (q′n, in) is called a marked sequence of S, where (q′1, i1)(q
′
2, i2) · · · (q′n, in) is

a permutation of (q1, 1)(q2, 2) · · · (qn, n). Define E(S∗) = S.
– Let ΛM (c, m1, m2, r, m, n) be the set of all marked sequences (q1, a1)(q2, a2) · · ·

(qn, an) such that 1) S′ = q1q2 · · · qn is a permutation of a (t1, t2)-sequence
S = p1p2 · · · pn of n points in M for some 0 < t1 < t2 with t2

t1
≤ c; 2) every m1

consecutive points in S′ have at least m2 points qi which are r-stable between S′

and S; 3) the diameter of S is at least m · t1. and 4)(q1, a1)(q2, a1) · · · (qn, an)
is a permutation of (p1, 1)(p2, 2) · · · (pn, n)

– Let Γ be a class of marked sequences. A zero-error randomized (1 − ε)-
approximate algorithm C with r(n) random bits for the diameter of sequence
in Gamma if for every input S ∈ Γ , we have 1) at least 3

4 paths of C has
non-empty output; and 2) each non-empty output in a path is a (1 − ε) ap-
proximation to diameter(S). Its time complexity and query complexity are
defined similarly as that in Definition 1.

Theorem 5 shows a zero-error randomized algorithm to approximate the diam-
eter of a marked sequence.

Theorem 5. Assume that M is a metric space with a (1−μ)-factor approximate
algorithm AppM of time complexity C(k) for the diameter of k points in M for
some nondecreasing function C(k) : N → N . Then for every constant ε ∈ (0, 1),
there exist positive constants β1, β2, and α < β1, and a zero-error randomized
(1 − ε)-approximate algorithm such that given a ΛM (c, β1m, αm, β2m, m, n)-
sequence S′ = (q1, a1) · · · (qn, an), the algorithm makes at most O( n

m log n
m)

non-adaptive queries to the items of S′ and outputs a number x with (1 − ε)(1 −
μ) · diameter(E(S′)) ≤ x ≤ diameter(E(S′)) in total time O( n

m) + C(O( n
m )),

where m = o(n).

We have the following theorem to separate the sublinear time zero-error ran-
domized computations from sublinear time deterministic computations.

Theorem 6. Assume that c is a positive constant, ε is a constant in (0, 1), β is
a constant in (0, c), and m = o(n). Then there is no deterministic algorithm such
that given a ΛR1(1, cm, βm, 0, m, n)-sequence S′ it makes o(n) adaptive queries
to the input and outputs a (1 − ε) approximation to the diameter of E(S′).
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