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Abstract. Intrusion detection, area coverage and border surveillance
are important applications of wireless sensor networks today. They can
be (and are being) used to monitor large unprotected areas so as to detect
intruders as they cross a border or as they penetrate a protected area.
We consider the problem of how to optimally move mobile sensors to the
fence (perimeter) of a region delimited by a simple polygon in order to
detect intruders from either entering its interior or exiting from it. We
discuss several related issues and problems, propose two models, provide
algorithms and analyze their optimal mobility behavior.

1 Introduction

Monitoring and surveillance are two of the main applications of wireless sensor
networks today. Typically, one is interested in monitoring a given geographic re-
gion either for measuring and surveying purposes or for reporting various types
of activities and events. Another important application concerns critical security
and safety monitoring systems. One is interested in detecting intruders (or move-
ments thereof) around critical infrastructure facilities and geographic delimiters
(chemical plants, forests, etc). As a matter of fact, since the information security
level of the monitoring system might change rapidly because of hostile attacks
targeted at it, research efforts are currently underway to extend the scalability
of wireless sensor networks so that they can be used to monitor international
borders as well. For example, [11] reports the possibility of using wireless sensor
networks for replacing traditional barriers (more than a kilometer long) at both
the building and estate level. Also, “Project 28” concerns the construction of
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a virtual fence as a way to complement a physical fence that will include 370
miles of pedestrian fencing and 300 miles of vehicle barrier (see [8] which reports
delays in its deployment along the U.S.-Mexico border).

To begin, we say that a point is covered by a sensor if it is within its range. In
this paper we will use the concept of barrier coverage as used in [11] and which
differs from the more traditional concept of full coverage. In the latter case one is
interested in covering the entire region by the deployment of sensors, while in the
former all crossing paths through the region are covered by sensors. Thus, one
is not interested in covering the entire deployment region but rather to detect
potential intruders by guaranteeing that there is no path through this region that
can be traversed undetected by an intruder as it traverses the border. Clearly,
barrier coverage is an appropriate model of movement detection that is more
efficient than full coverage since it requires less sensors for detecting intruders
(this is the case, for example, when the width of the deployment region is three
times the range of the sensors).

In [3] the authors consider the problem of how individual sensors can determine
barrier coverage locally. In particular, they prove that it is possible for individ-
ual sensors to locally determine the existence of barrier coverage, even when the
region of deployment is arbitrarily curved. Although local barrier coverage does
not always guarantee global barrier coverage, they show that for thin belt regions,
local barrier coverage almost always provides global barrier coverage. They also
consider the concept of L-local barrier coverage whereby if the bounding box that
contains the entire trajectory of a crossing path has length at most L then this
crossing path is guaranteed to be detected by at least one sensor.

Motivation, model and problem statement. Motivated from the works of [3] and
[11], in this paper we go beyond by asking a different question not examined by
any of these papers. More precisely, given that the mobile sensors have detected
the existence of a crossing path (e.g., using any of the above algorithms) how
do they reposition themselves most efficiently within a specified region so as to
repair the existing security hole and thereby prevent intruders.

Further, we stipulate the existence of a geometric planar region (the critical
region to be protected) delimited by a simple polygon and mobile sensors are ly-
ing in the interior of this polygon. We consider a set of mobile sensors (or robots)
lying within a region that can move autonomously in the plane. Each sensor has
knowledge of the region to be barrier-covered, of its geographic location and can
move from its starting position p to a new position p′ on the perimeter of this
polygon. For each sensor, we look at the distance d(p, p′) between the starting
and final positions of the sensors, respectively, and investigate how to move the
sensors within this region so as to optimize either the minimum sum or the min-
imum maximum of the distances covered by the respective sensors. In the sequel
we investigate the complexity of this problem for various types of regions and
types of movement of the mobile sensors.

Related work. An interesting research article is by [1] which surveys the different
kinds of holes that can form in geographically correlated problem areas of wireless
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sensor networks.The authors discuss relative strengths and short-comings of exist-
ing solutions for combating different kinds of holes such as coverage holes, routing
holes, jamming holes, sink/black holes, worm holes, etc. [2] looks at critical den-
sity estimates for coverage and connectivity of thin strips (or annuli) of sensors.
In addition, [5] and [6] design a distributed self deployment algorithm for coverage
calculations in mobile sensor networks and consider various performance metrics,
like coverage, uniformity, time and distance traveled till the algorithm converges.
Related is also the research on art gallery theorems (see [14]) which is concerned
with finding the minimal number of positions for guards or cameras so that every
point in a gallery is observed by at least one guard or camera.

In addition to the research on barrier coverage already mentioned there is ex-
tensive literature on detection and tracking in sensor networks. [12] considers the
problem of event tracking and sensor resource management in sensor networks
and transforms the detection problem into finding and tracking the cell that con-
tains the point in an arrangement of lines. [9] addresses the problem of tracking
multiple targets using a network of communicating robots and stationary sensors
by introducing a region-based approach for controlling robot deployment. [16]
considers the problem of accurate mobile robot localization and mapping with
uncertainty using visual landmarks. Finally, related to the problem of detect-
ing a path through a region that can be traversed undetected by an intruder is
the paper [15] which gives necessary and sufficient conditions for the existence
of vertex disjoint simple curves homotopic to certain closed curves in a graph
embedded on a compact surface.

Outline and results of the paper. Section 2 gives the formal model on a circle
and defines the min-max (minimizing the maximum) and min-sum (minimizing
the sum) problems for a set of sensors within a circle or a simple polygon.
Section 3 looks at the simpler one dimensional case and derives simple optimal
algorithms for the case the sensors either all lie on a line or on the perimeter of
circle. Section 4 and Section 5 are the core of the paper and provide algorithms
solving the min-sum and min-max problems, respectively. That is, in Section 4,
an O(n3.5 log n)-time algorithm for the min-max problem on a circle and an
O(mn3.5 log n)-time algorithm for the min-max problem on a simple polygon are
proposed (m is the number of edges of the simple polygon). Our approximation
algorithms for min-sum problems on a circle or a simple polygon are presented
in Section 5. Finally, Section 6 gives the conclusion.

2 Preliminaries and Formal Model

First we describe the formal model on a circle and provide the basic definitions
and preliminary concepts.

2.1 Optimization on a Circle

The simpler scenario we envision concerns n mobile sensors which are located
in the interior of a unit-radius circular region. A set of n sensors are located
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inside the disk. Further, assume that the sensors are location aware (i.e., they
know their geometric coordinates) and also know the location of the center of
the disk. We would like to move all the sensors from their initial positions to
the perimeter of the circle so as to 1) form a regular n-gon, and 2) minimize the
total/maximum distance covered.

The motivation for placing the sensors on the perimeter is because it provides
the most efficient way to protect the disk from intruders. Observe that when all
n sensors lie equidistant on the vertices of a regular n-gon, they each need to
cover a circular arc of size 2π/n so as to be able to monitor the entire perimeter.
Using elementary trigonometry, it follows easily that the transmission range of
each sensor must be equal to r = sin(π/n).

More formally, for n given sensors in positions A1, A2, . . . , An, respectively,
which move to new positions A′

1, A
′
2, . . . , A

′
n at the corners of a regular n-gon

the total distance covered is
∑n

i=1 d(Ai, A
′
i). Every sensor moves from its current

position Ai to a new position A′
i. It is clear that the sum is minimized when each

sensor moves to its new position in a straight line.
The reason for having the sensors at the corners of a regular n-gon is because

this is evidently the optimal final arrangement that will enable them to detect
intruders (i.e., by being equidistant on the perimeter). Thus, since the final posi-
tion A′

1A
′
2 · · · A′

n of the sensors forms a regular n-gon it is clear that all possible
solutions can be parametrized by using a single angle 0 ≤ θ ≤ 2π. However,
a difficulty arises in view of the fact that we must also specify a permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} of the sensors such that the i-th sensor moves
from position Aσ(i) to the new position A′

i.
Let the n sensors have coordinates (ai, bi), for i = 1, 2, . . . , n. Let us parametrize

the regular polygon with respect to the angle of rotation say θ. The n vertices of
the regular n-gon that lie on the perimeter of the disk can be described by

(ai(θ), bi, (θ)) =
(

cos
(

θ +
(i − 1)2π

n

)

, sin
(

θ +
(i − 1)2π

n

))

, (for i = 1, 2, . . . , n),

(1)

respectively, where (ai(θ), bi(θ)) are the vertices of the regular n-gon when the
angle of rotation is θ.

Minimizing the sum. The optimization problem is minθ Sn(θ), where the func-

tion Sn(θ) is defined by Sn(θ) :=
∑n

i=1

√

(ai − ai(θ))
2 + (bi − bi(θ))

2
, as a func-

tion of the angle θ. This of course assumes that the i-th sensor is assigned to
position (cos(θ + (i − 1)2π/n), sin(θ + (i − 1)2π/n)) on the perimeter. In gen-
eral, we have to determine the minimum over all possible permutations σ of
the sensors. If for a given angle θ and permutation σ we define Sn(σ, θ) :=
∑n

i=1

√(
aσ(i) − ai(θ)

)2 +
(
bσ(i) − bi(θ)

)2 then the more general optimization
problem is minσ,θ Sn(σ, θ).

Minimizing the maximum. The previous problem was concerned with minimiz-
ing the sum of the distances of the robots to their final destinations. In view
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of the fact that the robots are moving simultaneously it makes sense to ask
for minimizing the maximum of the distances of the robots to their final des-
tinations max1≤i≤n d(Ai, A

′
i). The optimization problem is minθ Mn(θ), where

Mn(θ) := max1≤i≤n

√

(ai − ai(θ))
2 + (bi − bi(θ))

2, as a function of the angle θ.
This of course assumes that the i-th sensor is assigned to position (cos(θ + (i −
1)2π/n), sin(θ+(i−1)2π/n)) on the perimeter. In general, we have to determine
the minimum over all possible permutations σ. If for a given permutation σ we
define the following maximum Mn(σ, θ) := max1≤i≤n√(

aσ(i) − ai(θ)
)2 +

(
bσ(i) − bi(θ)

)2 then the general optimization problem is
minσ,θ Mn(σ, θ).

2.2 Optimization on a Simple Polygon

We similarly define the problem of minimizing the sum and minimizing the
maximum on a simple polygon as follows.1 Let P be a simple polygon. (From
now on, a polygon is always assumed to be simple.) We denote the boundary of
P by ∂P . We assume that ∂P is oriented in the clockwise (also called positive)
direction. For any two points a, c ∈ ∂P , we write π̂P (a, c) to denote the set of
all points b ∈ ∂P such that when starting after a in positive direction along ∂P ,
b is reached before c. Let p0, p1, . . . , pm−1 denote the vertices on P ordered in
the positive direction. The edges of ∂P are e0, e1, . . . , em−1, where edge ei has
endpoints pi and pi+l, where 0 ≤ i < m (i.e., the indices are computed modulo
m; e.g., p0 = pm). We denote by l(ei) the length of edge ei, 0 ≤ i < m, and by
d̂P (a, b) the length of π̂P (a, b) for any two points a and b on ∂P (called polygonal
distance between a and b). Let L(P ) =

∑m−1
i=0 l(ei).

We are given n mobile sensors which are located in the interior of P . Each
sensor has the knowledge of its geometric coordinates and the simple polygon
(i.e., the geometric coordinates of all vertices pi, 0 ≤ i < n and the clockwise
ordering of these vertices). The objective is to move all the sensors from their
initial positions to ∂P such that 1) the polygonal distance between any two con-
secutive sensors on the polygon is L(P )/n, and 2) minimize the total/maximum
distance covered. We postulate that if n given sensors are located at positions
A1, A2, . . . , An, and the destination positions are A1, A2, . . . , An, respectively,
then d̂P (A′

i, A
′
i+1) = L(P )/n, 0 ≤ i < n.

3 Mobile Sensors in One Dimension

In this section we look at the one dimensional problem and provide efficient algo-
rithmic solutions. In particular, since optimization for the minimum maximum is
similar (and simpler than the two dimensional analogue) we provide algorithms
only for the minimum sum.
1 Although the approach proposed later (parametric search) will also work for arbi-

trary simple curves, we refrain from such a generalization so as to avoid unnecessary
complications.
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3.1 Sensors on a Line Segment

In this model we suppose that the sensors can move on a line segment. Further,
instead of protecting a circular range the sensor can now protect an interval
of a given size centered at the sensor. Consider the minimum sum optimization
problem for the case of n sensors on a line. Without loss of generality assume the
segment has length 1 and let the n sensors be at the initial locations x0 < x1 <
· · · < xn−1, respectively. The destination locations are i

n−1 , for i = 0, 1, . . . , n−1.

Theorem 1. The optimal arrangement is obtained by moving point xi to posi-
tion i

n−1 , for i = 0, 1, . . . , n − 1, respectively.

3.2 Sensors on the Perimeter of a Circle

In this model we suppose that the sensors can move on the perimeter of a circle.
Further, instead of protecting a circular range the sensor can now protect an arc
on the perimeter of a given size centered at the sensor. The same idea as for a
line segment should work for the case of a unit circle when the sensors lie on
the perimeter of the circle. The main difficulty here is that we no longer have a
unique destination. Instead, we can parametrize all possible destinations of the
n points by φ + 2jπ

n , for j = 0, 1, . . . , n − 1, using a fixed angle 0 ≤ φ < 2π
n .

Theorem 2. There is an algorithm that computes an optimal cost arrangement
of the sensors.

When the sensors’ movement is in the interior of the circle. In this
model we suppose that the sensors and their destination positions are located on
the perimeter of a circle and the sensors can move to their destination positions
along a straight line. The following theorem is based on the fact there is an
optimal solution in which one sensor does not move at all.

Theorem 3. There is a linear time algorithm that computes an optimal cost
arrangement of the sensors.

4 Min-Max Problem in 2D

In this section we study the problem of minimizing the maximum (min-max
problem) on a unit circle and a simple polygon, and provide efficient algorithmic
solutions.

4.1 On a Circle

Let λ∗
m,C be the optimal value of the min-max problem on a circle C, i.e., λ∗

m,C =
minσ,θ Mn(σ, θ). It is easy to see that λ∗

m,C is no more than the diameter of
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the circle C, i.e., λ∗
m,C ≤ 2. In this section we propose a parametric-searching

approach [13] to compute λ∗
m,C .

A non-negative value λ is feasible in the min-max problem if all the sensors
can move from their initial positions to the perimeter of the circle such that
the new positions form a regular n-gon and the maximum moving distance is
no more than λ, otherwhise λ is infeasible. Clearly, the min-max problem is to
compute the minimum feasible value, which is equal to λ∗

m,C .
The remaining part of this section is organized as follows. We first show that

a feasibility test of a given value λ(0 ≤ λ ≤ 2) can be performed in time O(n3.5).
Then, a parametric-searching approach for the min-max problem is presented,
which runs in O(n3.5 log n) time.

Algorithm to check the feasibility test of λ. For each i, 1 ≤ i ≤ n, we
construct a circle of radius λ centered at position Ai, denoted by Ci. If a circle
Ci for some i is contained in C, then λ is infeasible since sensor Ai cannot move
to the perimeter of C within distance λ. We therefore assume that for each
i, 1 ≤ i ≤ n, either circle Ci contains C or Ci intersects with C.

For each i, 1 ≤ i ≤ n, we denote by Qi the arc of C that lies in Ci. Let qi(1), qi(2)
be the angles of two endpoints of arc Qi in clockwise order, i = 1, . . . , n. We let
qi(1) = 0 and qi(2) = 2π if Ci contains C.

The following property is important to our algorithm for the feasibility test
of λ. Its proof is omitted here.

Lemma 1. A given non-negative value λ is feasible if and only if there exists
a regular n-gon on the perimeter of C such that one of its corner points is an
endpoint of arc Qi for some i(1 ≤ i ≤ n).

The algorithm (Algorithm Check) to check the feasibility of λ is is formally
described below.

Algorithm Check

1. The first step is to sort the angles of endpoints of arcs Qi, 1 ≤ i ≤ n.
Let q′1, . . . , q

′
2n be the angles in increasing order. These angles partition the

interval [0, 2π] into at most 2n + 1 pairwise disjoint intervals, denoted by
I1, . . . , I2n+1.

2. For each interval Ij , 1 ≤ j ≤ 2n+1, we determine the set of sensors, denoted
by Sj , that lie within distance λ to its corresponding arc on C.

3. In the third step, we do the following for a regular n-gon with rotation
q′j , i = 1, . . . , 2n.
(a) It is easy to see that the angles of corner points of such regular n-gon

are q′j , (q
′
j + 2π

n ) mod 2π, . . . , (q′j + (n − 1)2π
n ) mod 2π. We compute the

intervals where these angles lie. Let Bi, i = 1, 2, . . . , n be the corner
points.

(b) Construct a bipartite graph between the set of corner points of the regu-
lar n-gon and the set of sensors. An edge is linked between corner point
Bk and sensor Ai if d(Ai, Bk) ≤ λ (1 ≤ i, k ≤ n). The bipartite graph
can be obtained from the steps 2 and 3(a) .
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(c) Check if there exists a perfect matching. If it is so, terminate the process
and return “Feasible”.

4. Return “Infeasible” .

It is easy to see that the sorting in the first step can be done in O(n log n) and
the computation of Sj , j = 1, . . . , 2n+1 can be done in O(n2). In the third step,
the process might try all O(n) regular n-gons. For each regular n-gon, it takes
O(n2.5) time (see [7]). Therefore, we have the following lemma.

Lemma 2. Whether a given positive value λ is feasible in the min-max problem
can be determined in O(n3.5) time.

A parametric-searching approach. Our approach for the solution to the
min-max problem is to run Algorithm Check parametrically, which has a single
parameter λ, without specifying the value of λ∗

m,C a priori. Note that for a
fixed value of the parameter, the algorithm is executed in O(n3.5) steps. Imagine
that we start the algorithm without specifying a value of the parameter λ. The
parameter is restricted to some interval which is known to contain the optimal
value λ∗

m,C . (Initially, we may start with the interval [0, 2].) As we go along, at
each step of the algorithm we update and shrink the size of the interval, ensuring
that it includes the optimal value λ∗

m,C . The final interval contains λ∗
m,C and

any value in it is feasible. Therefore, the minimum value of the final interval is
the optimal value λ∗

m,C .

Theorem 4. The min-max problem on a circle can be solved in O(n3.5 log n) time.

Note that our algorithm can be easily extended to the model in which all sensors
are arbitrarily located on the plane (not restricted to the interior of the circle C).

4.2 On a Simple Polygon

The parametric-searching approach for a circle (described in section 4.1) should
work for the case of a polygon where the destination positions of all sensors lie
on the perimeter of the polygon. The main difficulty here is that to check the
feasibility of a positive value λ, there might be O(m) isolated polygonal chains of
∂P within the circle Ci (of radius λ centered at position Ai) for each sensor Ai.
In other words, for a given positive value of λ each sensor will contribute O(m)
candidate sets of n destination positions on P instead of at most two candidate
sets on a circle. Hence, whether a given positive value λ is feasible in the min-
max problem on a simple polygon can be determined by solving O(mn) matching
problems of size n. Therefore, the feasibility test of the min-max problem on a
simple polygon can be solved in O(mn3.5) time.

Theorem 5. The min-max problem on a simple polygon can be solved in
O(mn3.5 log n) time where m is the size of the simple polygon.
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5 Approximation Algorithms for the Min-Sum Problem
in 2D

In this section we discuss the problem of minimizing the sum (min-sum problem)
on a circle and a simple polygon, and provide approximation solutions for them.

5.1 On a Circle

Let λ∗
s,C be the optimal value of the min-sum problem on a circle, i.e., λ∗

s,C =
minσ,θ Sn(σ, θ). We present two approximation algorithms for the min-sum prob-
lem. One algorithm (labeled as the first approach) has an approximation ratio
π +1 (section 5.2). The other one (labeled as the second approach) uses the first
approach as a subroutine to obtain lower and upper bounds of λ∗

s,C and has an
approximation ratio 1 + ε, where ε is an arbitrary constant (Section 5.3).

More notations are introduced as follows. Let d̂C(x, y) denote the arc distance
between two points x and y on the boundary if the cycle C and let π̂C(x, y) denote
the arc of length d̂C(x, y) between x and y. For a point x on C, we denote by
Q̂x(r) the arc consisting of all points y on C such that d̂C(x, y) ≤ r.

For each i = 1, . . . , n, let ωi be the smallest distance between Ai and a point
on the cycle C, and we denote by Bi the point on C such that the distance
d(Ai, Bi) = ωi. We note that for each i = 1, . . . , n, Bi is unique if Ai is not
located at the center of C. In the case when Ai is located at the center of C, an
arbitrary point on C is selected to be Bi. Let Ω =

∑n
i=1 ωi. Obviously, we have

the following lemma.

Lemma 3. Ω ≤ λ∗
s,C .

5.2 The First Approach

The first approach (called Algorithm 1) consists of three steps.

Step 1. For each sensor Ai, 1 ≤ i ≤ n, compute Bi.
Step 2. Compute a destination regular n-gon for the set of n points B1, . . . , Bn,

and find the optimal arrangement of the n points to the vertices of the n-gon,
by using the algorithm for sensors on the perimeter of a circle described in
Section 3.2. Let B′

i be the destination vertex of Bi, 1 ≤ i ≤ n.
Step 3. Move Ai to B′

i, 1 ≤ i ≤ n, and compute S1
n =

∑n
i=1 d(Ai, B

′
i).

In section 3.2 we showed that step 2 of Algorithm 1 can be implemented in O(n2)
time. Thus the above algorithm can be solved in O(n2) time.

Approximation bound of Algorithm 1. In this section, we show that S1
n

computed by the first approach is bounded by (π + 1) × λ∗
s,C . Suppose that

A′
i is the destination of sensor Ai, i = 1, . . . , n, in an optimal solution. Clearly,

A′
1, . . . , A

′
n lie on C and form a regular n-gon. Obviously,

∑n
i=1 d̂C(Bi, B

′
i) ≤

∑n
i=1 d̂C(Bi, A

′
i) since {B′

1, . . . , B
′
n} is an optimal solution for the one dimen-

sional min-sum problem with the input {B1, . . . , Bn}. The following lemma is
easy to show.
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Lemma 4. For any two points x, y on C, d̂C(x, y) ≤ π
2 × d(x, y).

Theorem 6. Algorithm 1 can be implemented in O(n2) time and its approxi-
mation ratio is no more than π + 1.

5.3 The Second Approach

The second approach designs a PTAS pproximation algorithm whic is described
below.

Algorithm 2

Step 1. Using Algorithm 1, compute S1
n defined above.

Step 2. For each i = 1, . . . , n, find the arc Q̂Bi(
π
2 × S1

n

n ) and compute a set
of points that partitions the arc into � 1

ε′ � pieces of equal length where ε′ =
2ε

π(π+1) .
Step 3. Clearly, there are n × (� 1

ε′ � + 1) points in total. For each point x,
construct a regular n-gon Px such that one of the corners of Px is located
at x, and find the optimal arrangement of the n sensors (A1, . . . , An) to the
vertices of the n-gon by solving a weighted bipartite matching problem. (The
Hungarian method to solve the weighted matching problem in a complete
bipartite graph of size n takes O(n3) time (see [10])).

Step 4. Among all n × (� 1
ε′ � + 1) regular n-gons thus constructed, find the one

with the minimum cost (denoted by S2
n) and output the optimal arrangement

of the n sensors to the vertices of the n-gon.

The following lemma is crucial for the second approach.

Lemma 5. In an optimal solution, there exists at least one sensor Ai(1 ≤ i ≤ n)
such that its destination A′

i on C is on the arc Q̂Bi(
π
2 × S1

n

n ).

Proof. It is clear that S1
n ≥ λ∗

s,C . Let A′
i be the destination of sensor Ai in an

optimal solution, i = 1, . . . , n. Then there is at least one sensor, say Ak(1 ≤ k ≤
n), such that the distance d(Ak, A′

k) is no more than S1
n

n . According to Lemma

4, all points on C with the distance to Ak of no more than S1
n

n lie on the arc
ˆQBk

(π
2 × S1

n

n ) (recall that Bk is the point on C closest to Ak), which completes
the proof of Lemma 5.

Analysis of the second approach. First, it is evident that the running time of
the second approach is determined by the time needed for solving n×(� 1

ε′ �+1) ∈
O(n

ε ) bipartite matching problems.
According to Lemma 5, there exists an optimal solution in which one of the

corners of the corresponding regular n-gon is located at a point on the arc
ˆQBk

(π
2 × S1

n

n ) for some k, 1 ≤ k ≤ n. In Step 2, the arc ˆQBk
(π

2 × S1
n

n ) is partitioned

into � 1
ε′ � pieces, and therefore, the length of each piece is no more than πS1

nε′

n
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(note that the length of ˆQBk
(π

2 × S1
n

n ) is πS1
n

n ). Since all possible values of k are
considered, the difference between S2

n (computed by the second approach) and
λ∗

s,C (the optimal cost) is no more than n × 1
2 × πS1

nε′

n = πS1
nε′

2 = S1
nε

π+1 ≤ ελ∗
s,C ,

by Theorem 6). Therefore, we have the following theorem.

Theorem 7. The approximation ratio of Algorithm 2 is no more than 1 + ε for
a given constant ε, and the running time of the second approach is O(1

ε n4).

5.4 On a Simple Polygon

Let λ∗
s,P be the optimal value of the min-sum problem on a polygon P . In this

subsection we present an approximation algorithm for the min-sum problem on
P , which has an approximation ratio 1 + ε (ε is an arbitrary constant).

Our algorithm for a simple polygon is very similar to the second approach for
a circle. In the second approach for a circle, we use Algorithm 1 as a subroutine
to obtain lower and upper bounds of λ∗

s,C . However, our approximation algo-
rithm for a simple polygon will use the solution for the min-max problem on the
polygon to obtain lower and upper bounds of λ∗

s,P . Let λ∗
m,P be the optimal value

of the min-max problem on P . It is easy to see that λ∗
m,P ≤ λ∗

s,P ≤ n × λ∗
m,P .

Our algorithm for a simple polygon P is described below.

Min-Sum Algorithm on a Simple Polygon

Step 1. Using the approach for the min-max problem on P , compute λ∗
m,P

described above.
Step 2. For each i, j where 1 ≤ i ≤ n and 0 ≤ j < n, find the sub-edge e′i,j of

edge ej that is within the circle of radius λ∗
m,P centered at position Ai, and

compute a set of points that partitions the the sub-edge into �n
ε � pieces of

equal length.
Step 3. Clearly, there are mn × (�n

ε � + 1) ∈ O(mn2

ε ) points in total. For each
point x, construct a set of n positions on P such that one of them is located
at x and the polygonal distance between any two consecutive positions is
L(P )/n, and find the optimal arrangement of the n sensors (A1, . . . , An) to
the set of n positions by using the algorithm [10].

Step 4. Among all O(mn2

ε ) candidate sets of n positions thus constructed, find
the one with the minimum cost.

Theorem 8. The approximation ratio of the approach for a simple polygon is
no more than 1 + ε for a given constant ε, and the running time of the second
approach is O(1

ε mn5).

Proof. (Theorem 8) The reason why the approximation ratio of the above
approach is bounded by 1 + ε, is as follows. Since λ∗

s,P ≤ n × λ∗
m,P , there is at

least one sensor whose moving distance to its destination is no more than λ∗
m,P

in an optimal solution. Let Ai be one such sensor and its destination position lies
on edge ej in that optimal solution. In Step 2, the sub-edge e′i,j is partitioned into
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�n
ε � pieces, and therefore, the length of each piece is no more than 2ελ∗

m,P

n . Since
all possible values of i and j are considered, the difference between the value
computed by the above approach and λ∗

s,P (the optimal cost) is no more than

n × 1
2

×
2λ∗

m,P

n
= ελ∗

m,P ≤ ελ∗
s,P .

It is evident that the running time of the above approach is determined by
the time needed for solving O(mn2

ε ) weighted bipartite matching problems.

6 Conclusion and Open Problems

In this paper we gave an algorithm for solving the min-max problem and a PTAS
(Polynomial Time Approximation Scheme) for the min-sum problem in both one
and two dimensions. Although it is unknown whether the min-sum problem is
NP -hard, we conjecture that it can be solved in polynomial time. Evidence for
this also comes from experimental results on finding the number of different
counter-clockwise orderings of n sensors on the perimeter of a circle when we
sweep a regular n-gon along the perimeter (shown in the full version of this
paper.). In addition, several other variants of the problem on simple polygons
and regions are of interest for further investigation, including k-barrier cover-
age, regions with holes, and various types of sensor placements and motions.
Thus, in Subsection 2.2, in order to minimize the number of sensors used when
scanning the perimeter one should take into account sections already scanned.
For example, this is the case if the polygon is a narrow rectangle of height less
than the range of a sensor; this in itself is an interesting optimization problem
which is worth of further investigation. Also of interest is to refine the sensor
motion model, the network model, and the communication model in order to
enable effective intrusion detection and barrier coverage. For example, the com-
munication model becomes crucial when assuming the sensors either do not have
knowledge of the region or do not know their coordinates.
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