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Abstract. The goal of the Cluster Editing problem is to make the
fewest changes to the edge set of an input graph such that the resulting
graph is a disjoint union of cliques. This problem is NP-complete but
recently, several parameterized algorithms have been proposed. In this
paper we present a surprisingly simple branching strategy for Cluster
Editing. We generalize the problem assuming that edge insertion and
deletion costs are positive integers. We show that the resulting search
tree has size O(1.82k) for edit cost k, resulting in the currently fastest
parameterized algorithm for this problem. We have implemented and
evaluated our approach, and find that it outperforms other parametrized
algorithms for the problem.

1 Introduction

The Weighted Cluster Editing problem is defined as follows: Let Gw =
(V, E) be an undirected graph. For every vertex pair {u, v} ∈ (

V
2

)
= {{u, v} :

u, v ∈ V, u �= v} we know the cost of deleting {u, v} from Gw in case {u, v} ∈ E,
or inserting {u, v} into Gw in case {u, v} /∈ E. Our task is to transform Gw into
a transitive graph (a disjoint union of cliques) by applying edge modifications
with minimum total cost. For our theoretical analysis we assume that all pairs
have non-zero integer weight. In the unweighted Cluster Editing problem,
insertion or deletion cost are one for each vertex pair.

In application, the above task corresponds to clustering objects, that is, parti-
tioning a set of objects into homogeneous and well-separated subsets. Clustering
data still represents a key step of numerous biological and medical problems,
such as class discovery for tissue identification using gene expression data. Here,
a clustering corresponds to a vertex disjoint union of cliques. The input graph is
corrupted and we have to clean (edit) the graph to reconstruct the clustering [13]
under the parsimony criterion.
Previous work. NP-hardness of the unweighted Cluster Editing problem [13]
was proven by Křivánek and Morávek [10]. Several heuristics were developed for
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the weighted variant or rely on its graph-theoretic intuition, including
CLICK [14] and FORCE [16]. The problem is APX-hard, and has a constant-factor
approximation of 2.5 [15]. To find exact solutions, Grötschel and Wakabayashi [7]
formulated the problem as an Integer Linear Program. The parameterized com-
plexity of unweighted Cluster Editing, using the minimum number of edge
modifications as the parameter k, is well-studied: Until recently, the fastest imple-
mented algorithm had running time O(2.27k+n3) on ann-vertex graph [6,4], while
in theory, the best known algorithm has running time O(1.92k + n3) [5]. Guo [8]
presented a linear problem kernel. In contrast, the fixed-parameter tractability of
Cluster Editing with ”don’t care edges”, that is, edges whose modification cost
is zero, is still an open problem [3].

For Weighted Cluster Editing, the authors presented a problem kernel
in [1] and, in particular, introduced a new data reduction technique of merging
vertices. Furthermore, we provided two branching strategies with search trees
of size O(3k) and O(2.42k), respectively, where parameter k is the minimum
total cost of edge modifications. We found that merging vertices significantly
reduces running times and, in contrast to what theoretical bounds suggest, the
O(3k) strategy consistently outperformed the O(2.42k) strategy. An experimen-
tal evaluation of exact methods for Cluster Editing, including the branching
strategy presented in this paper, can be found in [2].
Our contributions. We concentrate on the case that edge insertion and deletion
costs are positive integers, and sketch how to adopt our results for real-valued
graphs where necessary. We present a new branching strategy that is surprisingly
simple, and show that the resulting search tree is of size O(2k). We then refine
our analysis and show that by accurately choosing edges to branch on, we obtain
running time O(1.82k + n3). Our algorithm is the fastest known for unweighted
Cluster Editing and improves on the O(1.92k + n3) algorithm in [5].

In Sec. 5 we compare running times of our algorithm to the previously best
known results for a parameterized algorithm for Weighted Cluster Edit-
ing [1], and we observe improvements of several orders of magnitude. In our
comparison, we use both simulated graphs and graphs that stem from protein
similarity data and aim at clustering homologous proteins.

2 Preliminaries

Let V be the set of objects to be clustered, corresponding to the vertices of the
graph. In thiswork,we consider only undirected graphswithout self-loops andmul-
tiple edges. For brevity, we write uv as shorthand for an unordered pair {u, v} ∈(
V
2

)
. Let s :

(
V
2

) → Z be a weight function that encodes the input graph: For
s(uv) > 0 a pair uv is an edge of the graph and has deletion cost s(uv), while for
s(uv) < 0, the pair uv is not an edge of the graph (we call it a non-edge) and has
insertion cost −s(uv). If s(uv) = 0, we call uv a zero-edge. Note that there are
no zero-edges in the input graph, so that each pair of vertices is either an edge or
a non-edge whose edit cost (deletion or insertion cost) is a positive integer. This
is necessary solely to achieve provable running times. Nonetheless, zero-edges can
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appear in the course of computation and require additional attention when ana-
lyzing the algorithm.

When analyzing connected components we regard zero-edges as non-existing.
Throughout this paper we assume that circles and paths do not contain zero-
edges. A circle of length three is also called a triangle. We say that C ⊆ V
is a clique in an integer-weighted graph if all pairs uv ∈ (

C
2

)
are edges. If all

vertex pairs of a connected component are either edges or zero-edges, we call
it a weak clique. If all connected components of a graph are weak cliques, it
is called transitive. Weak cliques in a transitive graph are also called clusters.
An unweighted graph G = (V, E) is transitive if and only if there exists no
conflict triple in G, that is, three vertices vuw such that vu, uw ∈ E but vw /∈
E. Unfortunately, there exists no direct analogue of this statement for integer-
weighted graphs. Vertices vuw form a conflict triple in an integer-weighted graph
Gw if uv and uw are edges of Gw but vw is either a non-edge or a zero-edge.
We distinguish two types of conflict triples vuw: if vw has weight zero then the
conflict triple is called weak, whereas if vw is a non-edge then the conflict triple is
called strong. In case the integer-weighted graph Gw contains no conflict triples
then Gw is transitive. But the converse is obviously not true, as the example of
a single weak conflict triple shows. A graph that does not contain any strong
conflict triple is not necessarily transitive: For V = {u, v, w, x} let uv, vw, wx be
edges, let uw, vx be zero-edges, and let ux be a non-edge. The resulting graph
is connected and contains no strong conflict triple, but is not a weak clique.

To solve Weighted Cluster Editing we first identify all connected compo-
nents of the input graph and calculate the best solutions for all components sep-
arately, because an optimal solution never connects disconnected components.
Furthermore, if the graph is decomposed during the course of the algorithm,
then we recurse and treat each connected component individually. Our fixed-
parameter algorithms often require a cost limit k: In case a solution with cost
≤ k exists, the algorithm finds this solution; otherwise, “no solution” is returned.
To find an optimal solution we call the algorithm repeatedly, increasing k.

An unweighted Cluster Editing instance can be encoded by assigning
weights s(uv) ∈ {+1,−1}. In the resulting graph, all conflict triples are strong.
During data reduction and branching, we may set pairs uv to “forbidden” or
“permanent”, meaning that the status of uv cannot be changed in the future. In
fact, permanent edges can be merged immediately: As introduced in [1], merg-
ing uv means replacing the vertices u and v with a single vertex u′, and, for all
vertices w ∈ V \ {u, v}, replacing pairs uw, vw with a single pair u′w. In this
context, we say that we join vertex pairs uw and vw. The weight of the joined
pair is s(u′w) = s(uw) + s(vw). In case one of the pairs is an edge while the
other is not, the parameter k is reduced by min{|s(uw)| , |s(vw)|}. Note that we
may join any combination of two edges, non-edges, or zero-edges when merging
two vertices. We stress that joined pairs can be zero-edges.

Throughout this paper, let n := |V |. To decrease input size, we introduced
kernelization rules for Weighted Cluster Editing in [1]. For unweighted
Cluster Editing, Guo [8] uses the concept of critical cliques to construct
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a kernel of size 4kopt for unweighted Cluster Editing. Critical cliques are
cliques in the input graph which share the same neighborhood. In unweighted
graphs, all vertices of a critical clique must end up in the same cluster, so we can
always merge critical cliques. This idea does not apply directly to Weighted
Cluster Editing but it is possible to adapt the concept by considering cliques
with similar neighborhood [2]. When given an unweighted instance of cluster
editing, we merge all critical cliques to transform the graph into an integer-
weighted instance. The resulting graph has at most 4kopt vertices. The weighted
graph can be constructed from the critical clique graph that, in turn, can be
easily constructed in O(m + n) time [9] for an n-vertex and m-edge graph. The
weight of any tuple uv is simply the product of the corresponding critical clique
sizes |Cu| · |Cv|.

3 Edge Branching

We now describe a recursive algorithm for integer-weighted Cluster Editing,
following the bounded search tree paradigm. In this algorithm, we identify a
conflict triple and then branch into two sub-cases to repair this conflict. By
this, we invoke recursive calls on “simplified” instances of the problem where
parameter k is decreased by some constants a, b. For branching vector (a, b) we
can compute a branching number using the characteristic polynomial, and this
branching number in turn governs the asymptotic size of the search tree, see
e.g. [11] for details.

The edge branching strategy is as follows: Let uv be an edge of a (weak
or strong) conflict triple vuw. Then, (a) set uv to forbidden, or (b) merge uv.

Let us first analyze this very simple strategy. One can easily check that this
recursive procedure will at some point generate an optimal solution, because in
every step we resolve a conflict triple. In the following we will analyze the size of
the search tree. When deleting an edge uv we decrease the parameter by s(uv).
When merging vertices u, v, for each vertex w ∈ V \ {u, v} we join the pairs uw
and vw into a single pair with weight s(uw) + s(vw). If s(uw) �= −s(vw) then
parameter k can be lowered by min{s(uw),−s(vw)}. In case s(uw) = −s(vw) the
new pair is a zero-edge, and this would prevent us from decreasing our parameter
when joining the zero-edge in a later stage of the algorithm. To circumvent this
problem, we assume that joining uw and vw with s(uw) = −s(vw) only reduces
the parameter by min{s(uw),−s(vw)} − 1

2 = |s(uw)| − 1
2 ≥ 1

2 . If at a latter
stage we join this zero-edge with another pair, we decrease our parameter by
the remaining 1

2 . Using this bookkeeping trick, our edge branching strategy has
a branching vector of (1, 1

2 ) that leads to a search tree of size O(2.62k).
We can easily improve this branching strategy by choosing a “good” edge

uv, as follows: Choose the particular edge uv ∈ E that minimizes the branching
number of the corresponding branching step. The branching number is computed
from branching vector (a, b) where a is the cost of deleting edge uv, while b is
the cost of merging this edge. If one of these costs is zero, we say that the
edge has infinite branching number. Using the bookkeeping trick introduced
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above, an edge uv with finite branching number is not necessarily part of any
conflict triple: joining a zero-edge uw with a vertex pair vw generates cost 1

2
irrespective of whether vw is an edge, non-edge, or zero-edge. So, even the edge
with minimum branching number might not be part of any conflict triple.

The following is a simple observation regarding unweighted graphs:

Lemma 1. Given a connected, unweighted graph G. If every edge of G is part
of at most one conflict triple, then G is either a clique or a clique minus a single
edge.

Proof. If G = (V, E) contains no conflict triple then G is a clique. Assume that
there is at least one conflict triple vuw in G with uv, uw ∈ E and vw /∈ E.
We constructively show that G is a clique minus the edge vw. If another vertex
x ∈ V \ {u, v, w} is adjacent to v then ux ∈ E must hold, too: otherwise, uv is
part of two conflict triples vuw and uvx contrary to our assumptions. Similarly,
ux ∈ E implies vx ∈ E. In conclusion, ux ∈ E if and only if vx ∈ E. The same
holds replacing v by w, and we infer that if some vertex x is adjacent to one of
u, v, or w then it is adjacent to all of u, v, and w.

Next, consider two vertices x, y adjacent to all u, v, w. If xy /∈ E then vxw
and xvy are two conflict triples containing the edge xv which conflicts with our
assumptions, so xy ∈ E must hold. Finally, consider vertices x, z where x is
adjacent to u, v, w while z is not adjacent to u, v, w, and assume xz ∈ E. Now
the edge vx is part of the two conflict triples vxw and vxz, again a contradiction
to our assumptions. So, any vertex x ∈ V \ {v, w} must be adjacent to all other
vertices in G. �	
Lemma 2. For an integer-weighted graph, the edge branching strategy that cho-
oses an edge with minimum branching number has branching vector at least (1, 1).

Proof. Recall that if we create a zero-edge, this reduces k by at least 1
2 ; and

if we join a zero-edge, this reduces k by 1
2 . Let uv be the edge with minimum

branching number. Note that removing uv induces cost s(uv) ≥ 1, and let δ
be the cost of merging uv. If δ ≥ 1 then we are done, so assume δ < 1. This
implies that at most one zero-edge was created or joined. In particular, uv is
part of at most one conflict triple vuw, and there cannot be an edge that is
part of two conflict triples. We transform the input graph into an unweighted
graph G, where zero-edges and non-edges in the input graph are not present
in G. By Lemma 1 above, the connected component containing vuw must be a
clique minus vw in G. Regarding the weighted graph, all vertex pairs are edges
except vw that may be a non-edge or a zero-edge. If vw is a zero-edge then our
branching will stop when merging uv, so assume that vw is a non-edge. We now
show that for this case, we can omit our bookkeeping trick of delayed parameter
decrease.

We now either delete uv with cost s(uv) ≥ 1, or merge uv. We distinguish the
cases s(uw) ≥ −s(vw) and s(uw) < −s(vw). If s(uw) ≥ −s(vw) holds then the
joined pair has weight s(uw) + s(vw) ≥ 0, the resulting connected component
is a clique that can be removed from the graph, and we reduce the parameter
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k by min{s(uw),−s(vw)} ≥ 1. For s(uw) < −s(vw) the joined pair has weight
s(uw)+ s(vw) < 0, so we have not generated a zero-edge. We can assume in our
analysis that parameter k is reduced by the full min{s(uw),−s(vw)} ≥ 1. So,
the branching vector is at least (1, 1) as claimed. �	
Hence, edge branching results in a search tree of size O(2k) for integer-weighted
graphs.

4 Refined Edge Branching

We now refine our edge branching and present a sketch of proof showing that
the search tree has size O(1.82k). This results in the fastest known algorithm for
unweighted Cluster Editing: the previously best-known branching strategy
by Gramm et al. [5] results in a search tree of size O(1.92k). This algorithm
uses complicated branching rules (more than 1300 cases) and has never been
implemented. To the best of our knowledge, the fastest implementation for un-
weighted Cluster Editing has running time O(2.27k +n3) using 11 branching
cases [6,4]. In contrast, our branching strategy is both fast and simple using only
two branching cases.

Theorem 1. For an integer weighted graph that contains no zero-edges, the
Weighted Cluster Editing problem can be solved in O(1.82k + n3) time.

We modify the order in which edges are processed by the edge branching strategy,
what allows for a simpler analysis of the running time behavior. We conjecture
that Theorem 1 is also true for edge branching where edges are sorted with
respect to branching number, but this requires many more case distinctions.

Let Gw be an integer-weighted and connected graph. We say that we branch
on an edge uv by setting uv to forbidden and recursing, and merging uv and
recursing. To deal with zero-edges, we use the above bookkeeping trick: Creating
a zero-edge induces cost ≥ 1

2 , and resolving a zero-edge induces the remaining
cost 1

2 . We choose an edge to branch on according to the following order:

(A) If there is an edge with branching vector (1, 3
2 ) or better then we branch on

this edge.
(B) If there is an edge xy and a vertex z in Gw such that x,y,z form a triangle,

and if there exist two additional vertices v1,v2 such that for both v1,v2 one
of the following conditions holds (where x and y may be exchanged):

(B1) xvi is an edge and yvi is a non-edge
(B2) xvi is a zero-edge and yvi is a zero-edge
(B3) xvi is a zero-edge and yvi is a non-edge, and zvi is an edge or a zero-edge
(B4) xvi is an edge and yvi is a zero-edge, and zvi is a non-edge or a zero-edge

Then branch on xy.

If no such edge exists, we stop the recursion. We will show below that the re-
maining graph must be a clique, a clique minus one edge (where the last edge is
either a zero-edge or a non-edge), a path, a circle, or contains only 4 vertices. We
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will also show how to solve this remaining instance in polynomial time. See Fig. 1
for the four initial cases of condition (B). To be more precise, there are ten differ-
ent subcases of condition (B) which are combinations of (B1),. . . ,(B4), taking into
account that we can exchange x and y. We denote them by (B11) to (B44).

If there exists an edge satisfying condition (A) then branching on this edge
has branching number 1.76. The following lemma corresponds to condition (B)
of edge sorting, and shows how we analyze two branching steps together: The
first branching step can in fact result in a branching vector of (1, 1) but the
next branching steps result in better branching vectors, leading to an overall
branching number as desired.

Lemma 3. Let Gw be an integer-weighted and connected graph, and assume
that there is an edge xy that satisfies condition (B). Then, branching on xy
and performing another branching step where edges to branch on are chosen
according to the edge sorting, results in a branching vector of (2, 5

2 , 2, 3) with
branching number ≤ 1.82.

Proof. Branching on edge xy leads to a branching vector of (1, 1): Deleting xy
induces cost at least 1, and merging xy results in cost at least 2 · 1

2 = 1 since for
each vi a conflict triple or a zero-edge will be resolved. We will now show that
after setting xy to “forbidden” there exists an edge with branching vector (1, 3

2 )
and after merging xy there exists an edge with branching vector (1, 2). These
are the worst-case branching vectors for the edge which is chosen in the next
branching step.

First we analyze the case where xy is set to “forbidden”, see Fig. 2: We show
that now one of the edges xz or yz has branching vector (1, 3

2 ). Setting xz or yz
to forbidden results in cost 1. Merging xz or yz resolves the conflict triple xzy,
resulting in cost 1 since xy is forbidden. If condition (B2), (B3), or (B4) holds
then in addition, a zero-edge is resolved when merging xz or yz. If condition (B1)
holds we distinguish two cases: If v1z is a non-edge or a zero-edge, then we branch
on xz which either resolves an additional zero-edge, or resolves the conflict triple
v1xz. If v1z is an edge then we branch on yz which resolves the conflict triple
v1zy. Hence, either xz or yz have merging costs 3

2 .
Second we consider the case where x, y have been merged, see Fig. 3. Let wxy

be the vertex resulting from merging xy: We show that now, the edge wxyz has
branching vector (1, 2). Deleting wxyz induces cost of 2 as s(wxyz) ≥ 2. Merging

x

y

z

v

x

y

z

v

x

y

z

v

x

y

z

v

≥ 0 ≤ 0

(B1) (B2) (B3) (B4)

Fig. 1. Conditions (B1) to (B4) of edge sorting. Solid lines are edges, dashed lines are
zero-edges, dotted lines are non-edges.
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y

z

v

x
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z

v

x

y

z

v

≥ 0 ≤ 0

(B1) (B2) (B3) (B4)

−∞ −∞ −∞ −∞

Fig. 2. Branching conditions (B1) to (B4) after xy is set to “forbidden”

wxy z

v

wxy z

v

wxy z

v

wxy z

v

≥ 0 ≤ 0

≥ 2 ≥ 2 ≥ 2 ≥ 2

(B1) (B2) (B3) (B4)

Fig. 3. Conditions (B1) to (B4) after merging xy

wxyz induces cost of 1
2 for each vi: If condition (B1) holds for vi then wxyvi

is a zero-edge. Otherwise, we infer s(xvi) > 1 or s(yvi) < −1, so the initial
branching on xy would have resulted in a branching vector of (1, 3

2 ). Merging
wxyz resolves this zero-edge. If condition (B2) holds then wxyvi clearly is a zero-
edge. For conditions (B3) and (B4) merging wxyz either resolves a zero-edge viz,
or resolves a conflict triple wxyzv or vwxyz. These observations hold both for v1

and v2, so merging wxyz results in total cost 2
2 .

We cannot guarantee that the edge branching strategy will actually branch on
edges xz or yz (after xy has been set to forbidden) and wxyz (after merging xy)
in the next step of the branching. But we have shown that edges with branching
numbers 1.755 and 1.6191 exist after the first step of the branching. With regards
to the first case, one can easily check that all possible branching vectors with
branching number ≤ 1.755 are of the form (a, b/2) for integers a ≥ 1 and b ≥ 3.
Similarly, all branching vectors with branching number ≤ 1.6191 are of the form
(a, b/2) for integers a ≥ 1 and b ≥ 4, or a ≥ 2 and b ≥ 2. This shows that even if
we pick other edges in the second step of our branching, we still can guarantee
branching vector (2, 5

2 , 2, 3) with branching number 1.82. �	
The following is again an observation regarding unweighted graphs:

Lemma 4. Let G be a connected, unweighted graph. Assume that there is no
edge in G that is part of three conflict triples, and there exists no triangle uvw
in G such that uv is part of two conflict triples. Then G is a clique, a graph with
at most one non-edge, a K1,3, a path, or a circle.

Proof. Assume that G = (V, E) contains at least one edge xy that is part of two
conflict triples: Otherwise, Lemma 1 guarantees that G is a clique or a clique
minus a single edge. Let u and w be two vertices involved in conflict triples for
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xy. This implies that either xu or yu is an edge, and that either xv or yv is an
edge. Assume there exists another vertex z /∈ {x, y, u, v} with xz ∈ E: If yz ∈ E
then xyz is a triangle as excluded by our assumptions, and if yz /∈ E then xy is
part of three conflict triples. So, no such z can exist and neither x nor y can be
connected to any other vertex.

We distinguish two cases: the two conflict triples are either of the form uxy
and uxv (asymmetric case), or uxy and xyv (symmetric case). For the asym-
metric case, we can exchange u and v. Assume there exists another vertex
w /∈ {x, y, u, v} with uw ∈ E. Then the edge xu is part of two conflict triples
yxu and xuw and an additional edge xv exists. If uv /∈ E then xu is part of
three conflict triples. If uv ∈ E then the edge xu is part of a triangle xuv that is
excluded by our assumptions. This implies that no such vertex w can exist, and
the connected graph G is a K1,3.

For the symmetric case, assume that there exists another vertex w /∈ {x, y, u, v}
with uw ∈ E. Now, the edge xu is part of two conflict triples yxu and xuw, again
in symmetric arrangement. If some z /∈ {x, y, u, v, w} exists with uz, we can show
again that xu is part of three conflict triples or part of a triangle excluded by our
assumptions. The same holds true for a vertex w with vw ∈ E. Repeating this
argument we show that all vertices in the connected graph G have degree one or
two, so G is a path or a circle. �	
Let us now assume that there is no edge that satisfies branching conditions (A)
or (B). Again, we transform the integer-weighted graph into an unweighted graph
G where zero-edges of the integer-weighted graph are transformed into non-edges
in G. Clearly, G does not contain an edge that is part of three conflict triples.
Using Lemma 4 we infer that G is either one of the graph structures described
there, or there exists an edge xy that is part of a triangle xyz and that is part
of two conflict triples. In the first case, we have reduced the weighted graph as
claimed: The weighted graph is a clique, a clique minus one edge, a path, a circle,
or contains only four vertices. In the second case there is an edge xy which is
contained in a triangle and two conflict triples for which branching condition
(B) does not apply. It can be shown by rather technical analysis that in all cases
the weighted graph is a weak clique or a graph with exactly one non-edge. We
defer the details to the full paper.

If the remaining graph is a (weak) clique, we are finished. If it is a graph with
one non-edge uv, we can solve it in polynomial time by calculating a minimum
u-v-cut. In case the cost of the cut is higher than −s(uv), we insert uv and
are finished, otherwise we cut the graph according to the minimum u-v-cut and
obtain two (weak) cliques. If the remaining graph is a path or a circle, it can
be solved in polynomial time with dynamic programming. Again, we defer the
details to the full paper. If the graph has at most four vertices, we can easily try
all possibilities of solving it.

Proof (Theorem 1). From the above we infer that our search tree has size
O(1.82k). This results in a total running time of O(1.82k · k8 + n3): Initially,
we run the parameter-dependent data reduction from [1] in time O(n3). This
data reduction results in a problem kernel with O(k2) vertices. For every edge
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Table 1. Average running times for artificial data, edge branching and O(3k) branching
strategy from [1]. Ten instances per bucket for sizes 10–50, five instances for sizes 60–
100. For size 70 (80, 90, 100) one (four, all five, all five) instances did not stop after 20
days of computation using the O(3k) strategy. For size 90 (100) two (three) instances
did not stop after 20 days of computation using the edge branching strategy. For average
running times, we ignored these unfinished instances (∗).

Size of instance 10 20 30 40 50 60 70 80 90 100
average # edit 8.3 28.1 66.7 115.5 183.2 263.0 351.6 459.0 594.0 728.6

3k strategy [1] 10 ms 54 ms 1.0 s 29 s 7.6min 27 h 58 h∗ 19 days∗ n/a∗ n/a∗

edge branching 4 ms 16 ms 238 ms 2.5 s 18.2 s 5.5 h 17.7 h 13.8 h 34.8 h∗ 17.1 h∗

with reduction [2] 3 ms 14 ms 163 ms 1.2 s 1.6 s 32 s 43 s 23 s 166 s 36 s

we compute the branching number that results from deleting and merging this
edge in total time O(k6). Similarly, we can check for the substructures for branch-
ing condition (B) in time O(k8). In fact, we can get rid of the polynomial factor:
We use interleaving [12] by performing data reduction repeatedly during the
course of the search tree algorithm whenever possible. This reduces the total
running time to O(1.82k + n3). The remaining structures can be solved in poly-
nomial time. �	
Regarding Weighted Cluster Editing instances with real-valued weights,
the edge branching strategy is also guaranteed to find the optimal solution. Let
k be the cost parameter, we want to decide whether there is a solution of cost
at most k. To estimate the worst-case running time we have to assume that
all vertex pairs have weight at least one [1]. We redo our simple analysis from
Sec. 3: Whenever joining two pairs of vertices results in a pair with absolute
weight smaller than one, we put aside 1

2 using our bookkeeping technique. This
pair may later be part of a conflict triple, and when editing this pair we decrease
k by 1

2 we put aside earlier because the absolute weight of this pair can be
arbitrarily small. A similar analysis to that given in this section, shows that the
worst-case branching vector reduces to (1

2 , 2, 2) and the size of the search tree is
O(2.39k). We defer the details to the full paper.

5 Computational Results

We have implemented the edge branching algorithm with search for the edge
with maximum branching number in C++. We apply our data reduction from [1]
to every instance in advance and when traversing the search tree. The program
accepts nonnegative real values as edge modification costs. All running times
were measured on an AMD Opteron-275 2.2 GHz with 6 GB of memory running
Solaris 10.

We want to explore the performance of our algorithms and compare it to
the previously fastest branching strategy for Weighted Cluster Editing
from [1]. As reported there, branching strategies that do not merge vertices
are clearly and consistently outperformed by those that do so, and unlike what
theoretical running times suggest, the O(2.42k) was consistently outperformed
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by the O(3k) strategy. For our evaluation, we use artificial data. We generate
artificial instances by first constructing a transitive graph with n vertices by
uniformly drawing clique sizes in {1, . . . , n} until all vertices have been used up.
Next, we perturb this graph: for each pair uv we delete or insert an edge uv with
probability 0.15. Running times are reported in Table 1. We also run experiments
on the protein similarity data used in [1] and observed similar results. As one
can see, edge branching is much faster than the previously fastest branching
algorithm, and performance is increased by several orders of magnitude. For
comparison, we also report running times of the FPT algorithm from [2] that
uses the same edge branching strategy but, in addition, employs new parameter-
independent reduction rules to cut down instance sizes before branching, and
further heuristic improvements.

6 Conclusion

We have presented a surprisingly simple branching strategy that lead to the
fastest known parameterized algorithm for (integer-weighted) Cluster Editing
with respect to theoretical running time bounds. We believe that we can prove
even better worst-case running times for this same strategy, using a refined,
automated analysis similar to [5].

We implemented our algorithm and evaluated its performance. Together with
further improvements reported in [2], our algorithm allows to solve weighted
Cluster Editing instances with several hundred edge modifications in a matter
of seconds. This clearly proves the practical usefulness of our approach and
constitutes a huge improvement over [4] where unweighted instances with 50
edge modifications required several hours of computation. Wittkop et al. [16]
recently demonstrated the power of Weighted Cluster Editing for clustering
homologous proteins, so algorithm both fast in theory and efficient in practice
are highly desirable.
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1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach
for weighted cluster editing. In: Proc. of Asia-Pacific Bioinformatics Conference
(APBC 2008). Series on Advances in Bioinformatics and Computational Biology,
vol. 5, pp. 211–220. Imperial College Press (2008)
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6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4),
373–392 (2005)

7. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45, 52–96 (1989)

8. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Pa-
terson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer,
Heidelberg (2007)

9. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and appli-
cations. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60.
Springer, Heidelberg (1991)
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