

Lecture Notes in Computer Science 5165
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

BotingYang Ding-Zhu Du CaoAnWang (Eds.)

Combinatorial
Optimization
and Applications

Second International Conference, COCOA 2008
St. John’s, NL, Canada, August 21-24, 2008
Proceedings

13

Volume Editors

Boting Yang
University of Regina, Department of Computer Science
Regina, Saskatchewan S4S 0A2, Canada
E-mail: boting@cs.uregina.ca

Ding-Zhu Du
University of Texas at Dallas, Department of Computer Science and Engineering
Richardson, TX 75083, USA
E-mail: dzdu@utdallas.edu

Cao An Wang
Memorial University of Newfoundland, Department of Computer Science
St. John’s, NL, Canada A1B 3X5, Canada
E-mail: wang@cs.mun.ca

Library of Congress Control Number: 2008932558

CR Subject Classification (1998): F.2, C.2, G.2-3, I.3.5, G.1.6, E.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85096-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85096-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12445752 06/3180 5 4 3 2 1 0

Preface

The papers in this volume were presented at the Second International Conference
on Combinatorial Optimization and Applications (COCOA 2008), held August
21–24, 2008, in St. John’s, Newfoundland, Canada. The topics cover most areas
in combinatorial optimization and applications.

A total of 84 papers were submitted, of which 44 were accepted for presenta-
tion at the conference. The selection was based on the papers’ originality, quality
and relevance to combinatorial optimization. The papers were evaluated by an
international Program Committee consisting of Tetsuo Asano, Sergey Bereg,
Binay Bhattacharya, Hans Bodlaender, Leizhen Cai, Bo Chen, Zhixiang Chen,
Francis Chin, Kyung-Yong Chwa, Andreas Dress, Ding-Zhu Du, Michael Fellows,
Fedor Fomin, Gena Hahn, Pavol Hell, Wen-Lian Hsu, Minghui Jiang, Ming-Yang
Kao, Evangelos Kranakis, Michael Langston, Guohui Lin, Rolf H. Möhring, Xue-
hou Tan, Dimitrios M. Thilikos, Adrian Vetta, Cao An Wang, Lusheng Wang,
Todd Wareham, Peter Widmayer, Jinhui Xu, Yinfeng Xu, Boting Yang, Yinyu
Ye, Guochuan Zhang, Xiao Zhou, and Binhai Zhu. It is expected that most of
the accepted papers will appear in a more complete form in scientific journals.

We received papers from Algeria, Austria, Bangladesh, Belgium, Brazil,
Canada, China, Egypt, France, Germany, Hong Kong, India, Indonesia, Iran,
Israel, Italy, Japan, Korea,Norway,Oman, Pakistan,Romania,Russia, Singapore,
South Africa, Spain, Sweden, Switzerland, Taiwan, UK, and USA. Each paper
was evaluated by at least three Program Committee members, assisted in some
cases by external referees. In addition to the selected papers, the conference also
included two invited presentations by Francis Y.L. Chin and Vijay V. Vazirani.

We thank all the people who have made this meeting possible: the authors
for submitting papers, the Program Committee members and external referees
(listed in the proceedings) for their excellent work, and the two invited speakers.
Finally, we thank the Memorial University of Newfoundland for their support
and the local organizers and their colleagues for their assistance.

August 2008 Ding-Zhu Du
Cao An Wang

Boting Yang

Organization

General Chair

Ding-Zhu Du (University of Texas at Dallas, USA)

Program Chairs

Cao An Wang (Memorial University of Newfoundland, Canada)
Boting Yang (University of Regina, Canada)

Program Committee

Tetsuo Asano (Japan Advanced Institute of Science and Technology)
Sergey Bereg (University of Texas at Dallas)
Binay Bhattacharya (Simon Fraser University)
Hans Bodlaender (University of Utrecht)
Leizhen Cai (Chinese University of Hong Kong)
Bo Chen (University of Warwick)
Zhixiang Chen (University of Texas-Pan American)
Francis Chin (Hong Kong University)
Kyung-Yong Chwa (Korea Advanced Institure of Science and Technology)
Andreas Dress (Bielefeld University)
Michael Fellows (The University of Newcastle)
Fedor Fomin (University of Bergen)
Gena Hahn (University of Montreal)
Pavol Hell (Simon Fraser University)
Wen-Lian Hsu (Academia Sinica, Taiwan)
Minghui Jiang (Utah State University)
Ming-Yang Kao (Northwestern University)
Evangelos Kranakis (Carleton University)
Michael Langston (University of Tennessee)
Guohui Lin (University of Alberta)
Rolf H. Möhring (Technische Universität Berlin)
Xuehou Tan (Tokai University)
Dimitrios M. Thilikos (National and Kapodistrian University of Athens)
Adrian Vetta (McGill University)
Lusheng Wang (City University of Hong Kong)
Todd Wareham (Memorial University of Newfoundland)
Peter Widmayer (ETH, Switzerland)
Jinhui Xu (State University of New York at Buffalo)
Yinfeng Xu (Xi’an Jiaotong University)
Yinyu Ye (Stanford University)

VIII Organization

Guochuan Zhang (Zhejiang University)
Xiao Zhou (Tohoku University)
Binhai Zhu (Montana State University)

Organizing Committee

Danny Dyer (Memorial University of Newfoundland, Co-chair)
Cao An Wang (Memorial University of Newfoundland)
Chris Worman (University of Regina)
Boting Yang (University of Regina, Co-chair)

External Referees

Sang Won Bae Jia-Ming Chang Xi Cheng
Gerard Cornuejols Vida Dujmovic Danny Dyer
John Eblen Matthew Follett Jason Gedge
Petr Golovach Alexander Grigoriev Tobias Harks
Wiebke Hoehn Takehiro Ito Jeremy Jay
Molham Kamel Marcin Kaminski Stavros Kolliopoulos
Nicole Megow Daniel Meister Hannes Moser
Nicolas Nisse Peter Noel Neil Olver
Andy Perkins Charles Phillips Stanislaw Radziszowski
Md. Saidur Rahman Gary Rogers Johan van Rooij
Frank Ruskey Saket Saurabh Sebastian Stiller
Mohammed Uddin Yngve Villanger Yulai Xie
Lei Xu Deshi Ye Heping Zhang
Yun Zhang Feifeng Zheng Yongding Zhu

Table of Contents

Going Weighted: Parameterized Algorithms for Cluster Editing 1
Sebastian Böcker, Sebastian Briesemeister, Quang B.A. Bui, and
Anke Truss

Parameterized Graph Editing with Chosen Vertex Degrees 13
Luke Mathieson and Stefan Szeider

Fixed-Parameter Tractability of Anonymizing Data by Suppressing
Entries . 23

Rhonda Chaytor, Patricia A. Evans, and Todd Wareham

Multiple Hypernode Hitting Sets and Smallest Two-Cores with
Targets . 32

Peter Damaschke

Parameterized Complexity of Candidate Control in Elections and
Related Digraph Problems . 43

Nadja Betzler and Johannes Uhlmann

A Parameterized Perspective on Packing Paths of Length Two 54
Henning Fernau and Daniel Raible

New Algorithms for k-Center and Extensions . 64
René Brandenberg and Lucia Roth

Separating Sublinear Time Computations by Approximate Diameter . . . 79
Bin Fu and Zhiyu Zhao

Computational Study on Dominating Set Problem of Planar Graphs 89
Marjan Marzban, Qian-Ping Gu, and Xiaohua Jia

Optimal Movement of Mobile Sensors for Barrier Coverage of a Planar
Region (Extended Abstract) . 103

B. Bhattacharya, B. Burmester, Y. Hu, E. Kranakis, Q. Shi, and
A. Wiese

Parameterized Algorithms for Generalized Domination 116
Venkatesh Raman, Saket Saurabh, and Sriganesh Srihari

Turán Graphs, Stability Number, and Fibonacci Index 127
Véronique Bruyère and Hadrien Mélot

Vertex-Uncertainty in Graph-Problems (Extended Abstract) 139
Cécile Murat and Vangelis Th. Paschos

X Table of Contents

Protean Graphs with a Variety of Ranking Schemes 149
Pawe�l Pra�lat

Simplicial Powers of Graphs . 160
Andreas Brandstädt and Van Bang Le

On k- Versus (k + 1)-Leaf Powers . 171
Andreas Brandstädt and Peter Wagner

Flows with Unit Path Capacities and Related Packing and Covering
Problems . 180

Maren Martens and Martin Skutella

Strong Formulations for 2-Node-Connected Steiner Network
Problems . 190

Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel

Algorithms and Implementation for Interconnection Graph Problem 201
Hongbing Fan, Christian Hundt, Yu-Liang Wu, and Jason Ernst

Algorithms and Experimental Study for the Traveling Salesman
Problem of Second Order . 211

Gerold Jäger and Paul Molitor

Fast Computation of Point-to-Point Paths on Time-Dependent Road
Networks . 225

Giacomo Nannicini, Philippe Baptiste, Daniel Krob, and Leo Liberti

Ant Colony Optimization Metaheuristic for the Traffic Grooming in
WDM Networks . 235

Xiangyong Li, Yash Aneja, and Fazle Baki

Elementary Approximation Algorithms for Prize Collecting Steiner
Tree Problems . 246

Shai Gutner

Polynomial Time Approximation Scheme for Connected Vertex Cover
in Unit Disk Graph . 255

Zhao Zhang, Xiaofeng Gao, and Weili Wu

Improved Primal-Dual Approximation Algorithm for the Connected
Facility Location Problem . 265

Hyunwoo Jung, Mohammad Khairul Hasan, and Kyung-Yong Chwa

Two Constant Approximation Algorithms for Node-Weighted Steiner
Tree in Unit Disk Graphs . 278

Feng Zou, Xianyue Li, Donghyun Kim, and Weili Wu

An Improved Approximation Algorithm for the Capacitated Multicast
Tree Routing Problem . 286

Zhipeng Cai, Zhi-Zhong Chen, Guohui Lin, and Lusheng Wang

Table of Contents XI

Covering Arrays Avoiding Forbidden Edges . 296
Peter Danziger, Eric Mendelsohn, Lucia Moura, and Brett Stevens

The Robot Cleans Up . 309
Margaret-Ellen Messinger and Richard J. Nowakowski

On Recovering Syntenic Blocks from Comparative Maps 319
Zhixiang Chen, Bin Fu, Minghui Jiang, and Binhai Zhu

Automatic Generation of Symmetry-Breaking Constraints 328
Leo Liberti

On the Stable Set Polytope of Claw-Free Graphs . 339
Anna Galluccio, Claudio Gentile, and Paolo Ventura

A Combinatorial Algorithm to Optimally Colour the Edges of the
Graphs That Are Join of Regular Graphs . 351

Caterina De Simone and Anna Galluccio

Magic Labelings on Cycles and Wheels . 361
Andrew Baker and Joe Sawada

Minimum Cost Homomorphism Dichotomy for Locally In-Semicomplete
Digraphs . 374

A. Gupta, M. Karimi, E.J. Kim, and A. Rafiey

The Clique Corona Operation and Greedoids . 384
Vadim E. Levit and Eugen Mandrescu

On the Surface Area of the (n, k)-Star Graph . 393
Zhizhang Shen, Ke Qiu, and Eddie Cheng

Enumerating Isolated Cliques in Synthetic and Financial Networks 405
Falk Hüffner, Christian Komusiewicz, Hannes Moser, and
Rolf Niedermeier

A Risk-Reward Competitive Analysis for the Recoverable Canadian
Traveller Problem . 417

Bing Su, Yinfeng Xu, Peng Xiao, and Lei Tian

Minimizing Total Completion Time in Two-Machine Flow Shops with
Exact Delays . 427

Yumei Huo, Haibing Li, and Hairong Zhao

Efficient Method for Periodic Task Scheduling with Storage
Requirement Minimization . 438

Karine Deschinkel and Sid-Ahmed-Ali Touati

Stochastic Online Scheduling Revisited . 448
Andreas S. Schulz

XII Table of Contents

Delay Management Problem: Complexity Results and Robust
Algorithms . 458

Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano,
Daniele Frigioni, and Alfredo Navarra

Clustered SplitsNetworks . 469
Lichen Bao and Sergey Bereg

Author Index . 479

Going Weighted:

Parameterized Algorithms for Cluster Editing

Sebastian Böcker1, Sebastian Briesemeister2, Quang B. A. Bui1,
and Anke Truss1

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz
2, 07743 Jena, Germany

{boecker,bui,truss}@minet.uni-jena.de
2 Div. for Simulation of Biological Systems, ZBIT/WSI, Eberhard Karls Universität

Tübingen, Germany
briese@informatik.uni-tuebingen.de

Abstract. The goal of the Cluster Editing problem is to make the
fewest changes to the edge set of an input graph such that the resulting
graph is a disjoint union of cliques. This problem is NP-complete but
recently, several parameterized algorithms have been proposed. In this
paper we present a surprisingly simple branching strategy for Cluster

Editing. We generalize the problem assuming that edge insertion and
deletion costs are positive integers. We show that the resulting search
tree has size O(1.82k) for edit cost k, resulting in the currently fastest
parameterized algorithm for this problem. We have implemented and
evaluated our approach, and find that it outperforms other parametrized
algorithms for the problem.

1 Introduction

The Weighted Cluster Editing problem is defined as follows: Let Gw =
(V, E) be an undirected graph. For every vertex pair {u, v} ∈

(
V
2

)
= {{u, v} :

u, v ∈ V, u �= v} we know the cost of deleting {u, v} from Gw in case {u, v} ∈ E,
or inserting {u, v} into Gw in case {u, v} /∈ E. Our task is to transform Gw into
a transitive graph (a disjoint union of cliques) by applying edge modifications
with minimum total cost. For our theoretical analysis we assume that all pairs
have non-zero integer weight. In the unweighted Cluster Editing problem,
insertion or deletion cost are one for each vertex pair.

In application, the above task corresponds to clustering objects, that is, parti-
tioning a set of objects into homogeneous and well-separated subsets. Clustering
data still represents a key step of numerous biological and medical problems,
such as class discovery for tissue identification using gene expression data. Here,
a clustering corresponds to a vertex disjoint union of cliques. The input graph is
corrupted and we have to clean (edit) the graph to reconstruct the clustering [13]
under the parsimony criterion.
Previous work. NP-hardness of the unweighted Cluster Editing problem [13]
was proven by Křivánek and Morávek [10]. Several heuristics were developed for

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{boecker,bui,truss}@minet.uni-jena.de

2 S. Böcker et al.

the weighted variant or rely on its graph-theoretic intuition, including
CLICK [14] and FORCE [16]. The problem is APX-hard, and has a constant-factor
approximation of 2.5 [15]. To find exact solutions, Grötschel and Wakabayashi [7]
formulated the problem as an Integer Linear Program. The parameterized com-
plexity of unweighted Cluster Editing, using the minimum number of edge
modifications as the parameter k, is well-studied: Until recently, the fastest imple-
mented algorithm had running time O(2.27k+n3) on ann-vertex graph [6,4], while
in theory, the best known algorithm has running time O(1.92k + n3) [5]. Guo [8]
presented a linear problem kernel. In contrast, the fixed-parameter tractability of
Cluster Editing with ”don’t care edges”, that is, edges whose modification cost
is zero, is still an open problem [3].

For Weighted Cluster Editing, the authors presented a problem kernel
in [1] and, in particular, introduced a new data reduction technique of merging
vertices. Furthermore, we provided two branching strategies with search trees
of size O(3k) and O(2.42k), respectively, where parameter k is the minimum
total cost of edge modifications. We found that merging vertices significantly
reduces running times and, in contrast to what theoretical bounds suggest, the
O(3k) strategy consistently outperformed the O(2.42k) strategy. An experimen-
tal evaluation of exact methods for Cluster Editing, including the branching
strategy presented in this paper, can be found in [2].
Our contributions. We concentrate on the case that edge insertion and deletion
costs are positive integers, and sketch how to adopt our results for real-valued
graphs where necessary. We present a new branching strategy that is surprisingly
simple, and show that the resulting search tree is of size O(2k). We then refine
our analysis and show that by accurately choosing edges to branch on, we obtain
running time O(1.82k + n3). Our algorithm is the fastest known for unweighted
Cluster Editing and improves on the O(1.92k + n3) algorithm in [5].

In Sec. 5 we compare running times of our algorithm to the previously best
known results for a parameterized algorithm for Weighted Cluster Edit-

ing [1], and we observe improvements of several orders of magnitude. In our
comparison, we use both simulated graphs and graphs that stem from protein
similarity data and aim at clustering homologous proteins.

2 Preliminaries

Let V be the set of objects to be clustered, corresponding to the vertices of the
graph. In thiswork,we consider only undirected graphswithout self-loops andmul-
tiple edges. For brevity, we write uv as shorthand for an unordered pair {u, v} ∈(
V
2

)
. Let s :

(
V
2

)
→ Z be a weight function that encodes the input graph: For

s(uv) > 0 a pair uv is an edge of the graph and has deletion cost s(uv), while for
s(uv) < 0, the pair uv is not an edge of the graph (we call it a non-edge) and has
insertion cost −s(uv). If s(uv) = 0, we call uv a zero-edge. Note that there are
no zero-edges in the input graph, so that each pair of vertices is either an edge or
a non-edge whose edit cost (deletion or insertion cost) is a positive integer. This
is necessary solely to achieve provable running times. Nonetheless, zero-edges can

Going Weighted: Parameterized Algorithms for Cluster Editing 3

appear in the course of computation and require additional attention when ana-
lyzing the algorithm.

When analyzing connected components we regard zero-edges as non-existing.
Throughout this paper we assume that circles and paths do not contain zero-
edges. A circle of length three is also called a triangle. We say that C ⊆ V
is a clique in an integer-weighted graph if all pairs uv ∈

(
C
2

)
are edges. If all

vertex pairs of a connected component are either edges or zero-edges, we call
it a weak clique. If all connected components of a graph are weak cliques, it
is called transitive. Weak cliques in a transitive graph are also called clusters.
An unweighted graph G = (V, E) is transitive if and only if there exists no
conflict triple in G, that is, three vertices vuw such that vu, uw ∈ E but vw /∈
E. Unfortunately, there exists no direct analogue of this statement for integer-
weighted graphs. Vertices vuw form a conflict triple in an integer-weighted graph
Gw if uv and uw are edges of Gw but vw is either a non-edge or a zero-edge.
We distinguish two types of conflict triples vuw: if vw has weight zero then the
conflict triple is called weak, whereas if vw is a non-edge then the conflict triple is
called strong. In case the integer-weighted graph Gw contains no conflict triples
then Gw is transitive. But the converse is obviously not true, as the example of
a single weak conflict triple shows. A graph that does not contain any strong
conflict triple is not necessarily transitive: For V = {u, v, w, x} let uv, vw, wx be
edges, let uw, vx be zero-edges, and let ux be a non-edge. The resulting graph
is connected and contains no strong conflict triple, but is not a weak clique.

To solve Weighted Cluster Editing we first identify all connected compo-
nents of the input graph and calculate the best solutions for all components sep-
arately, because an optimal solution never connects disconnected components.
Furthermore, if the graph is decomposed during the course of the algorithm,
then we recurse and treat each connected component individually. Our fixed-
parameter algorithms often require a cost limit k: In case a solution with cost
≤ k exists, the algorithm finds this solution; otherwise, “no solution” is returned.
To find an optimal solution we call the algorithm repeatedly, increasing k.

An unweighted Cluster Editing instance can be encoded by assigning
weights s(uv) ∈ {+1,−1}. In the resulting graph, all conflict triples are strong.
During data reduction and branching, we may set pairs uv to “forbidden” or
“permanent”, meaning that the status of uv cannot be changed in the future. In
fact, permanent edges can be merged immediately: As introduced in [1], merg-
ing uv means replacing the vertices u and v with a single vertex u′, and, for all
vertices w ∈ V \ {u, v}, replacing pairs uw, vw with a single pair u′w. In this
context, we say that we join vertex pairs uw and vw. The weight of the joined
pair is s(u′w) = s(uw) + s(vw). In case one of the pairs is an edge while the
other is not, the parameter k is reduced by min{|s(uw)| , |s(vw)|}. Note that we
may join any combination of two edges, non-edges, or zero-edges when merging
two vertices. We stress that joined pairs can be zero-edges.

Throughout this paper, let n := |V |. To decrease input size, we introduced
kernelization rules for Weighted Cluster Editing in [1]. For unweighted
Cluster Editing, Guo [8] uses the concept of critical cliques to construct

4 S. Böcker et al.

a kernel of size 4kopt for unweighted Cluster Editing. Critical cliques are
cliques in the input graph which share the same neighborhood. In unweighted
graphs, all vertices of a critical clique must end up in the same cluster, so we can
always merge critical cliques. This idea does not apply directly to Weighted

Cluster Editing but it is possible to adapt the concept by considering cliques
with similar neighborhood [2]. When given an unweighted instance of cluster
editing, we merge all critical cliques to transform the graph into an integer-
weighted instance. The resulting graph has at most 4kopt vertices. The weighted
graph can be constructed from the critical clique graph that, in turn, can be
easily constructed in O(m + n) time [9] for an n-vertex and m-edge graph. The
weight of any tuple uv is simply the product of the corresponding critical clique
sizes |Cu| · |Cv|.

3 Edge Branching

We now describe a recursive algorithm for integer-weighted Cluster Editing,
following the bounded search tree paradigm. In this algorithm, we identify a
conflict triple and then branch into two sub-cases to repair this conflict. By
this, we invoke recursive calls on “simplified” instances of the problem where
parameter k is decreased by some constants a, b. For branching vector (a, b) we
can compute a branching number using the characteristic polynomial, and this
branching number in turn governs the asymptotic size of the search tree, see
e.g. [11] for details.

The edge branching strategy is as follows: Let uv be an edge of a (weak
or strong) conflict triple vuw. Then, (a) set uv to forbidden, or (b) merge uv.

Let us first analyze this very simple strategy. One can easily check that this
recursive procedure will at some point generate an optimal solution, because in
every step we resolve a conflict triple. In the following we will analyze the size of
the search tree. When deleting an edge uv we decrease the parameter by s(uv).
When merging vertices u, v, for each vertex w ∈ V \ {u, v} we join the pairs uw
and vw into a single pair with weight s(uw) + s(vw). If s(uw) �= −s(vw) then
parameter k can be lowered by min{s(uw),−s(vw)}. In case s(uw) = −s(vw) the
new pair is a zero-edge, and this would prevent us from decreasing our parameter
when joining the zero-edge in a later stage of the algorithm. To circumvent this
problem, we assume that joining uw and vw with s(uw) = −s(vw) only reduces
the parameter by min{s(uw),−s(vw)} − 1

2 = |s(uw)| − 1
2 ≥ 1

2 . If at a latter
stage we join this zero-edge with another pair, we decrease our parameter by
the remaining 1

2 . Using this bookkeeping trick, our edge branching strategy has
a branching vector of (1, 1

2) that leads to a search tree of size O(2.62k).
We can easily improve this branching strategy by choosing a “good” edge

uv, as follows: Choose the particular edge uv ∈ E that minimizes the branching
number of the corresponding branching step. The branching number is computed
from branching vector (a, b) where a is the cost of deleting edge uv, while b is
the cost of merging this edge. If one of these costs is zero, we say that the
edge has infinite branching number. Using the bookkeeping trick introduced

Going Weighted: Parameterized Algorithms for Cluster Editing 5

above, an edge uv with finite branching number is not necessarily part of any
conflict triple: joining a zero-edge uw with a vertex pair vw generates cost 1

2
irrespective of whether vw is an edge, non-edge, or zero-edge. So, even the edge
with minimum branching number might not be part of any conflict triple.

The following is a simple observation regarding unweighted graphs:

Lemma 1. Given a connected, unweighted graph G. If every edge of G is part
of at most one conflict triple, then G is either a clique or a clique minus a single
edge.

Proof. If G = (V, E) contains no conflict triple then G is a clique. Assume that
there is at least one conflict triple vuw in G with uv, uw ∈ E and vw /∈ E.
We constructively show that G is a clique minus the edge vw. If another vertex
x ∈ V \ {u, v, w} is adjacent to v then ux ∈ E must hold, too: otherwise, uv is
part of two conflict triples vuw and uvx contrary to our assumptions. Similarly,
ux ∈ E implies vx ∈ E. In conclusion, ux ∈ E if and only if vx ∈ E. The same
holds replacing v by w, and we infer that if some vertex x is adjacent to one of
u, v, or w then it is adjacent to all of u, v, and w.

Next, consider two vertices x, y adjacent to all u, v, w. If xy /∈ E then vxw
and xvy are two conflict triples containing the edge xv which conflicts with our
assumptions, so xy ∈ E must hold. Finally, consider vertices x, z where x is
adjacent to u, v, w while z is not adjacent to u, v, w, and assume xz ∈ E. Now
the edge vx is part of the two conflict triples vxw and vxz, again a contradiction
to our assumptions. So, any vertex x ∈ V \ {v, w} must be adjacent to all other
vertices in G. �	

Lemma 2. For an integer-weighted graph, the edge branching strategy that cho-
oses an edge with minimum branching number has branching vector at least (1, 1).

Proof. Recall that if we create a zero-edge, this reduces k by at least 1
2 ; and

if we join a zero-edge, this reduces k by 1
2 . Let uv be the edge with minimum

branching number. Note that removing uv induces cost s(uv) ≥ 1, and let δ
be the cost of merging uv. If δ ≥ 1 then we are done, so assume δ < 1. This
implies that at most one zero-edge was created or joined. In particular, uv is
part of at most one conflict triple vuw, and there cannot be an edge that is
part of two conflict triples. We transform the input graph into an unweighted
graph G, where zero-edges and non-edges in the input graph are not present
in G. By Lemma 1 above, the connected component containing vuw must be a
clique minus vw in G. Regarding the weighted graph, all vertex pairs are edges
except vw that may be a non-edge or a zero-edge. If vw is a zero-edge then our
branching will stop when merging uv, so assume that vw is a non-edge. We now
show that for this case, we can omit our bookkeeping trick of delayed parameter
decrease.

We now either delete uv with cost s(uv) ≥ 1, or merge uv. We distinguish the
cases s(uw) ≥ −s(vw) and s(uw) < −s(vw). If s(uw) ≥ −s(vw) holds then the
joined pair has weight s(uw) + s(vw) ≥ 0, the resulting connected component
is a clique that can be removed from the graph, and we reduce the parameter

6 S. Böcker et al.

k by min{s(uw),−s(vw)} ≥ 1. For s(uw) < −s(vw) the joined pair has weight
s(uw)+ s(vw) < 0, so we have not generated a zero-edge. We can assume in our
analysis that parameter k is reduced by the full min{s(uw),−s(vw)} ≥ 1. So,
the branching vector is at least (1, 1) as claimed. �	

Hence, edge branching results in a search tree of size O(2k) for integer-weighted
graphs.

4 Refined Edge Branching

We now refine our edge branching and present a sketch of proof showing that
the search tree has size O(1.82k). This results in the fastest known algorithm for
unweighted Cluster Editing: the previously best-known branching strategy
by Gramm et al. [5] results in a search tree of size O(1.92k). This algorithm
uses complicated branching rules (more than 1300 cases) and has never been
implemented. To the best of our knowledge, the fastest implementation for un-
weighted Cluster Editing has running time O(2.27k +n3) using 11 branching
cases [6,4]. In contrast, our branching strategy is both fast and simple using only
two branching cases.

Theorem 1. For an integer weighted graph that contains no zero-edges, the
Weighted Cluster Editing problem can be solved in O(1.82k + n3) time.

We modify the order in which edges are processed by the edge branching strategy,
what allows for a simpler analysis of the running time behavior. We conjecture
that Theorem 1 is also true for edge branching where edges are sorted with
respect to branching number, but this requires many more case distinctions.

Let Gw be an integer-weighted and connected graph. We say that we branch
on an edge uv by setting uv to forbidden and recursing, and merging uv and
recursing. To deal with zero-edges, we use the above bookkeeping trick: Creating
a zero-edge induces cost ≥ 1

2 , and resolving a zero-edge induces the remaining
cost 1

2 . We choose an edge to branch on according to the following order:

(A) If there is an edge with branching vector (1, 3
2) or better then we branch on

this edge.
(B) If there is an edge xy and a vertex z in Gw such that x,y,z form a triangle,

and if there exist two additional vertices v1,v2 such that for both v1,v2 one
of the following conditions holds (where x and y may be exchanged):

(B1) xvi is an edge and yvi is a non-edge
(B2) xvi is a zero-edge and yvi is a zero-edge
(B3) xvi is a zero-edge and yvi is a non-edge, and zvi is an edge or a zero-edge
(B4) xvi is an edge and yvi is a zero-edge, and zvi is a non-edge or a zero-edge

Then branch on xy.

If no such edge exists, we stop the recursion. We will show below that the re-
maining graph must be a clique, a clique minus one edge (where the last edge is
either a zero-edge or a non-edge), a path, a circle, or contains only 4 vertices. We

Going Weighted: Parameterized Algorithms for Cluster Editing 7

will also show how to solve this remaining instance in polynomial time. See Fig. 1
for the four initial cases of condition (B). To be more precise, there are ten differ-
ent subcases of condition (B) which are combinations of (B1),. . . ,(B4), taking into
account that we can exchange x and y. We denote them by (B11) to (B44).

If there exists an edge satisfying condition (A) then branching on this edge
has branching number 1.76. The following lemma corresponds to condition (B)
of edge sorting, and shows how we analyze two branching steps together: The
first branching step can in fact result in a branching vector of (1, 1) but the
next branching steps result in better branching vectors, leading to an overall
branching number as desired.

Lemma 3. Let Gw be an integer-weighted and connected graph, and assume
that there is an edge xy that satisfies condition (B). Then, branching on xy
and performing another branching step where edges to branch on are chosen
according to the edge sorting, results in a branching vector of (2, 5

2 , 2, 3) with
branching number ≤ 1.82.

Proof. Branching on edge xy leads to a branching vector of (1, 1): Deleting xy
induces cost at least 1, and merging xy results in cost at least 2 · 1

2 = 1 since for
each vi a conflict triple or a zero-edge will be resolved. We will now show that
after setting xy to “forbidden” there exists an edge with branching vector (1, 3

2)
and after merging xy there exists an edge with branching vector (1, 2). These
are the worst-case branching vectors for the edge which is chosen in the next
branching step.

First we analyze the case where xy is set to “forbidden”, see Fig. 2: We show
that now one of the edges xz or yz has branching vector (1, 3

2). Setting xz or yz
to forbidden results in cost 1. Merging xz or yz resolves the conflict triple xzy,
resulting in cost 1 since xy is forbidden. If condition (B2), (B3), or (B4) holds
then in addition, a zero-edge is resolved when merging xz or yz. If condition (B1)
holds we distinguish two cases: If v1z is a non-edge or a zero-edge, then we branch
on xz which either resolves an additional zero-edge, or resolves the conflict triple
v1xz. If v1z is an edge then we branch on yz which resolves the conflict triple
v1zy. Hence, either xz or yz have merging costs 3

2 .
Second we consider the case where x, y have been merged, see Fig. 3. Let wxy

be the vertex resulting from merging xy: We show that now, the edge wxyz has
branching vector (1, 2). Deleting wxyz induces cost of 2 as s(wxyz) ≥ 2. Merging

x

y

z

v

x

y

z

v

x

y

z

v

x

y

z

v

≥ 0 ≤ 0

(B1) (B2) (B3) (B4)

Fig. 1. Conditions (B1) to (B4) of edge sorting. Solid lines are edges, dashed lines are
zero-edges, dotted lines are non-edges.

8 S. Böcker et al.

x

y

z

v

x

y

z

v

x

y

z

v

x

y

z

v

≥ 0 ≤ 0

(B1) (B2) (B3) (B4)

−∞ −∞ −∞ −∞

Fig. 2. Branching conditions (B1) to (B4) after xy is set to “forbidden”

wxy z

v

wxy z

v

wxy z

v

wxy z

v

≥ 0 ≤ 0

≥ 2 ≥ 2 ≥ 2 ≥ 2

(B1) (B2) (B3) (B4)

Fig. 3. Conditions (B1) to (B4) after merging xy

wxyz induces cost of 1
2 for each vi: If condition (B1) holds for vi then wxyvi

is a zero-edge. Otherwise, we infer s(xvi) > 1 or s(yvi) < −1, so the initial
branching on xy would have resulted in a branching vector of (1, 3

2). Merging
wxyz resolves this zero-edge. If condition (B2) holds then wxyvi clearly is a zero-
edge. For conditions (B3) and (B4) merging wxyz either resolves a zero-edge viz,
or resolves a conflict triple wxyzv or vwxyz. These observations hold both for v1

and v2, so merging wxyz results in total cost 2
2 .

We cannot guarantee that the edge branching strategy will actually branch on
edges xz or yz (after xy has been set to forbidden) and wxyz (after merging xy)
in the next step of the branching. But we have shown that edges with branching
numbers 1.755 and 1.6191 exist after the first step of the branching. With regards
to the first case, one can easily check that all possible branching vectors with
branching number ≤ 1.755 are of the form (a, b/2) for integers a ≥ 1 and b ≥ 3.
Similarly, all branching vectors with branching number ≤ 1.6191 are of the form
(a, b/2) for integers a ≥ 1 and b ≥ 4, or a ≥ 2 and b ≥ 2. This shows that even if
we pick other edges in the second step of our branching, we still can guarantee
branching vector (2, 5

2 , 2, 3) with branching number 1.82. �	

The following is again an observation regarding unweighted graphs:

Lemma 4. Let G be a connected, unweighted graph. Assume that there is no
edge in G that is part of three conflict triples, and there exists no triangle uvw
in G such that uv is part of two conflict triples. Then G is a clique, a graph with
at most one non-edge, a K1,3, a path, or a circle.

Proof. Assume that G = (V, E) contains at least one edge xy that is part of two
conflict triples: Otherwise, Lemma 1 guarantees that G is a clique or a clique
minus a single edge. Let u and w be two vertices involved in conflict triples for

Going Weighted: Parameterized Algorithms for Cluster Editing 9

xy. This implies that either xu or yu is an edge, and that either xv or yv is an
edge. Assume there exists another vertex z /∈ {x, y, u, v} with xz ∈ E: If yz ∈ E
then xyz is a triangle as excluded by our assumptions, and if yz /∈ E then xy is
part of three conflict triples. So, no such z can exist and neither x nor y can be
connected to any other vertex.

We distinguish two cases: the two conflict triples are either of the form uxy
and uxv (asymmetric case), or uxy and xyv (symmetric case). For the asym-
metric case, we can exchange u and v. Assume there exists another vertex
w /∈ {x, y, u, v} with uw ∈ E. Then the edge xu is part of two conflict triples
yxu and xuw and an additional edge xv exists. If uv /∈ E then xu is part of
three conflict triples. If uv ∈ E then the edge xu is part of a triangle xuv that is
excluded by our assumptions. This implies that no such vertex w can exist, and
the connected graph G is a K1,3.

For the symmetric case, assume that there exists another vertex w /∈ {x, y, u, v}
with uw ∈ E. Now, the edge xu is part of two conflict triples yxu and xuw, again
in symmetric arrangement. If some z /∈ {x, y, u, v, w} exists with uz, we can show
again that xu is part of three conflict triples or part of a triangle excluded by our
assumptions. The same holds true for a vertex w with vw ∈ E. Repeating this
argument we show that all vertices in the connected graph G have degree one or
two, so G is a path or a circle. �	
Let us now assume that there is no edge that satisfies branching conditions (A)
or (B). Again, we transform the integer-weighted graph into an unweighted graph
G where zero-edges of the integer-weighted graph are transformed into non-edges
in G. Clearly, G does not contain an edge that is part of three conflict triples.
Using Lemma 4 we infer that G is either one of the graph structures described
there, or there exists an edge xy that is part of a triangle xyz and that is part
of two conflict triples. In the first case, we have reduced the weighted graph as
claimed: The weighted graph is a clique, a clique minus one edge, a path, a circle,
or contains only four vertices. In the second case there is an edge xy which is
contained in a triangle and two conflict triples for which branching condition
(B) does not apply. It can be shown by rather technical analysis that in all cases
the weighted graph is a weak clique or a graph with exactly one non-edge. We
defer the details to the full paper.

If the remaining graph is a (weak) clique, we are finished. If it is a graph with
one non-edge uv, we can solve it in polynomial time by calculating a minimum
u-v-cut. In case the cost of the cut is higher than −s(uv), we insert uv and
are finished, otherwise we cut the graph according to the minimum u-v-cut and
obtain two (weak) cliques. If the remaining graph is a path or a circle, it can
be solved in polynomial time with dynamic programming. Again, we defer the
details to the full paper. If the graph has at most four vertices, we can easily try
all possibilities of solving it.

Proof (Theorem 1). From the above we infer that our search tree has size
O(1.82k). This results in a total running time of O(1.82k · k8 + n3): Initially,
we run the parameter-dependent data reduction from [1] in time O(n3). This
data reduction results in a problem kernel with O(k2) vertices. For every edge

10 S. Böcker et al.

Table 1. Average running times for artificial data, edge branching and O(3k) branching
strategy from [1]. Ten instances per bucket for sizes 10–50, five instances for sizes 60–
100. For size 70 (80, 90, 100) one (four, all five, all five) instances did not stop after 20
days of computation using the O(3k) strategy. For size 90 (100) two (three) instances
did not stop after 20 days of computation using the edge branching strategy. For average
running times, we ignored these unfinished instances (∗).

Size of instance 10 20 30 40 50 60 70 80 90 100
average # edit 8.3 28.1 66.7 115.5 183.2 263.0 351.6 459.0 594.0 728.6

3k strategy [1] 10 ms 54 ms 1.0 s 29 s 7.6min 27 h 58 h∗ 19 days∗ n/a∗ n/a∗

edge branching 4 ms 16 ms 238 ms 2.5 s 18.2 s 5.5 h 17.7 h 13.8 h 34.8 h∗ 17.1 h∗

with reduction [2] 3 ms 14 ms 163 ms 1.2 s 1.6 s 32 s 43 s 23 s 166 s 36 s

we compute the branching number that results from deleting and merging this
edge in total time O(k6). Similarly, we can check for the substructures for branch-
ing condition (B) in time O(k8). In fact, we can get rid of the polynomial factor:
We use interleaving [12] by performing data reduction repeatedly during the
course of the search tree algorithm whenever possible. This reduces the total
running time to O(1.82k + n3). The remaining structures can be solved in poly-
nomial time. �	

Regarding Weighted Cluster Editing instances with real-valued weights,
the edge branching strategy is also guaranteed to find the optimal solution. Let
k be the cost parameter, we want to decide whether there is a solution of cost
at most k. To estimate the worst-case running time we have to assume that
all vertex pairs have weight at least one [1]. We redo our simple analysis from
Sec. 3: Whenever joining two pairs of vertices results in a pair with absolute
weight smaller than one, we put aside 1

2 using our bookkeeping technique. This
pair may later be part of a conflict triple, and when editing this pair we decrease
k by 1

2 we put aside earlier because the absolute weight of this pair can be
arbitrarily small. A similar analysis to that given in this section, shows that the
worst-case branching vector reduces to (1

2 , 2, 2) and the size of the search tree is
O(2.39k). We defer the details to the full paper.

5 Computational Results

We have implemented the edge branching algorithm with search for the edge
with maximum branching number in C++. We apply our data reduction from [1]
to every instance in advance and when traversing the search tree. The program
accepts nonnegative real values as edge modification costs. All running times
were measured on an AMD Opteron-275 2.2 GHz with 6 GB of memory running
Solaris 10.

We want to explore the performance of our algorithms and compare it to
the previously fastest branching strategy for Weighted Cluster Editing

from [1]. As reported there, branching strategies that do not merge vertices
are clearly and consistently outperformed by those that do so, and unlike what
theoretical running times suggest, the O(2.42k) was consistently outperformed

Going Weighted: Parameterized Algorithms for Cluster Editing 11

by the O(3k) strategy. For our evaluation, we use artificial data. We generate
artificial instances by first constructing a transitive graph with n vertices by
uniformly drawing clique sizes in {1, . . . , n} until all vertices have been used up.
Next, we perturb this graph: for each pair uv we delete or insert an edge uv with
probability 0.15. Running times are reported in Table 1. We also run experiments
on the protein similarity data used in [1] and observed similar results. As one
can see, edge branching is much faster than the previously fastest branching
algorithm, and performance is increased by several orders of magnitude. For
comparison, we also report running times of the FPT algorithm from [2] that
uses the same edge branching strategy but, in addition, employs new parameter-
independent reduction rules to cut down instance sizes before branching, and
further heuristic improvements.

6 Conclusion

We have presented a surprisingly simple branching strategy that lead to the
fastest known parameterized algorithm for (integer-weighted) Cluster Editing

with respect to theoretical running time bounds. We believe that we can prove
even better worst-case running times for this same strategy, using a refined,
automated analysis similar to [5].

We implemented our algorithm and evaluated its performance. Together with
further improvements reported in [2], our algorithm allows to solve weighted
Cluster Editing instances with several hundred edge modifications in a matter
of seconds. This clearly proves the practical usefulness of our approach and
constitutes a huge improvement over [4] where unweighted instances with 50
edge modifications required several hours of computation. Wittkop et al. [16]
recently demonstrated the power of Weighted Cluster Editing for clustering
homologous proteins, so algorithm both fast in theory and efficient in practice
are highly desirable.

Acknowledgments

We thank Svenja Simon and Thilo Muth for helping with the implementation.
S. Briesemeister gratefully acknowledges financial support from LGFG Promo-
tionsverbund “Pflanzliche Sensorhistidinkinasen” at the University of Tübingen.

References

1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach
for weighted cluster editing. In: Proc. of Asia-Pacific Bioinformatics Conference
(APBC 2008). Series on Advances in Bioinformatics and Computational Biology,
vol. 5, pp. 211–220. Imperial College Press (2008)

2. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
Evaluation and experiments. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038,
pp. 289–302. Springer, Heidelberg (2008)

12 S. Böcker et al.

3. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open
problems in parameterized and exact computation — IWPEC 2006. Technical
Report UU-CS-2006-052, Department of Information and Computing Sciences,
Utrecht University (2006)

4. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster edit-
ing problem: Implementations and experiments. In: Bodlaender, H.L., Langston,
M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)

5. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004)

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4),
373–392 (2005)

7. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45, 52–96 (1989)

8. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Pa-
terson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer,
Heidelberg (2007)

9. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and appli-
cations. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60.
Springer, Heidelberg (1991)

10. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta
Inform. 23(3), 311–323 (1986)

11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

12. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Inform. Process. Lett. 73, 125–129 (2000)

13. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144(1–2), 173–182 (2004)

14. Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for
clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799
(2003)

15. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In: Proc. of Workshop on Approxima-
tion and Online Algorithms (WAOA 2007). LNCS, vol. 4927, pp. 260–273. Springer,
Heidelberg (2008)

16. Wittkop, T., Baumbach, J., Lobo, F., Rahmann, S.: Large scale clustering of pro-
tein sequences with FORCE – a layout based heuristic for weighted cluster editing.
BMC Bioinformatics 8(1), 396 (2007)

Parameterized Graph Editing with Chosen Vertex
Degrees

Luke Mathieson and Stefan Szeider

Department of Computer Science
University of Durham, UK

{luke.mathieson,stefan.szeider}@durham.ac.uk

Abstract. We study the parameterized complexity of the following problem: is it
possible to make a given graph r-regular by applying at most k elementary editing
operations; the operations are vertex deletion, edge deletion, and edge addition.
We also consider more general annotated variants of this problem, where vertices
and edges are assigned an integer cost and each vertex v has assigned its own de-
sired degree δ(v) ∈ {0, . . . , r}. We show that both problems are fixed-parameter
tractable when parameterized by (k, r), but W [1]-hard when parameterized by k
alone. These results extend our earlier results on problems that are defined simi-
larly but where edge addition is not available. We also show that if edge addition
and/or deletion are the only available operations, then the problems are solvable
in polynomial time. This completes the classification for all combinations of the
three considered editing operations.

1 Introduction

Deciding whether a given graph has a regular subgraph is a well studied problem.
Chvátal et al. [5] give one of the earliest results, showing that the CUBIC SUBGRAPH

problem is NP-complete. Plesnı́k [17] proves that it remains NP-complete even when
restricted to a planar bipartite graph with maximum degree 4. In the same paper he
also shows that the r-REGULAR SUBGRAPH problem for r ≥ 3 is NP-complete even
on bipartite graphs of degree at most r + 1. Cheah and Corneil [4] show that a similar
result holds for general graphs of degree at most r + 1. A series of results for further
constraints is given by Stewart [18,19,20]. Bodlaender et al. [2] give a polynomial-time
algorithm for producing a Δ-regular supergraph of a graph with maximum degree Δ,
using at most Δ+2 additional vertices. Moser and Thilikos [15] give a series of results
for certain parameterized versions, showing that when parameterized by the size of the
regular subgraph, the problem is W [1]-hard, but when parameterized by both the num-
ber k of vertices to remove to make the graph regular and the regularity r, the problem
is fixed-parameter tractable. In previous work [14] we show that when parameterized
by k alone, the problem is W [1]-hard (a question left open by Moser and Thilikos).
We also introduce a generalized version of the problem where vertices and edges are
weighted, and each vertex has a degree function that specifies the number of edges to
be incident on the vertex, rather than simply a fixed number for all vertices. When
parameterized by the number k of edges and vertices to remove to obtain the regular
graph, the problem is W [1]-hard, but when parameterized by k and the bound r on the

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 13–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 L. Mathieson and S. Szeider

degree function, the problem is fixed-parameter tractable. Interestingly the latter result
improves that of Moser and Thilikos even though it is generalized, and additionally
allows edge deletion.

In this paper we extend the editing operations available to include edge addition
besides vertex and edge deletion (see Section 2.1 for precise definitions), thus giving
the following problems.

EDIT TO REGULAR GRAPH

Instance: A graph G = (V, E), two nonnegative integers k and r.
Question: Is there an r-regular graph H obtainable from G by at most k edit
operations?

WEIGHTED EDIT TO CHOSEN DEGREE GRAPH

Instance: A graph G = (V, E), nonnegative integers k and r, a weight function
ρ : V ∪ E → {1, . . . , k + 1} and a degree function δ : V → {0, . . . , r}.
Question: Is there a graph H obtainable from G by edit operations of total cost
at most k such that

∑
e∈E(v) ρ(e) = δ(v) holds for each vertex in H?

Variants of the above two problems with only one or two of the three editing operations
available are defined similarly.

We previously demonstrated [14] that these two problems are W [1]-hard when pa-
rameterized by k. In this paper we complete the classification and show that they are
both fixed-parameter tractable with parameter (k, r). We also give a simpler proof that
the weighted edit problem is W [1]-hard when parameterized by k alone, via the W [1]-
hardness of the related subproblem EDGE REPLACEMENT SET (see Section 4). We
also prove that EDGE REPLACEMENT SET is NP-complete, giving an indication that
a polynomial-time kernelization of the form previously used for the deletion version
of the problems is unlikely to exist for the edit version. Additionally, we show that
WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH, and the unweighted counter-
part EDGE EDIT TO REGULAR GRAPH, where the edit operations are edge addition
and deletion, both have polynomial-time algorithms. The results are summarized in
Table below.

2 Preliminaries

2.1 Graph Modification

Graph modification or graph editing problems are widespread throughout the literature
appearing in various forms in such areas as bioinformatics [6], electronic commerce [9]
and graph theory [1]. Three fundamental operations for graph editing are edge dele-
tion, vertex deletion and edge addition. For any combination of these three operations
Cai [3] demonstrates fixed-parameter tractability for graph properties with finitely many
obstructions in the induced order.

In this paper we consider simple, undirected graphs (whether weighted or un-
weighted). The edge between two vertices u and v is denoted uv (or equivalently vu).
The degree of a vertex u is denoted d(u).

Parameterized Graph Editing with Chosen Vertex Degrees 15

Problem Operations Parameter
k (k, r)

Uniform

v W [1]-hard† FPT‡†

e+v W [1]-hard† FPT†

v+a W [1]-hard† FPT∗

e+v+a W [1]-hard∗† FPT∗

a P¶∗ P¶∗

e P¶∗ P¶∗

e+a P∗ P∗

Annotated

v W [1]-hard† FPT†

e+v W [1]-hard† FPT†

v+a W [1]-hard† FPT∗

e+v+a W [1]-hard∗† FPT∗

a P¶∗ P¶∗

e P¶∗ P¶∗

e+a P∗ P∗

ERS W [1]-hard∗ FPT∗

Results shown in: ∗ this paper, ‡ [15], † [14],
¶ follows from results on f -factors [13].

The editing operations are codified as ‘e’
- edge deletion, ‘v’ - vertex deletion and ‘a’
- edge addition. The ‘uniform’ version of the
problem is where all vertices and edges have
weight 1 and the desired graph is r-regular.

The final row indicates the complexity of
EDGE REPLACEMENT SET.

The following operations alter a graph G = (V, E) into a new graph G′ = (V ′, E′).
Deleting an edge uv simply removes that edge from the graph (i.e., E′ = E \ {uv},
and V ′ = V). Deleting a vertex u removes that vertex and all incident edges (i.e.,
V ′ = V \ {u}, E′ = E \ { uv | v ∈ V }). Adding an edge uv of course inserts an edge
between u and v (i.e., E′ = E ∪ {uv}, V ′ = V).

In this paper we also consider weighted versions of these operations, which are de-
fined similarly. Given a weighted edge or vertex, the cost of deletion is simply that
weight. Note particularly that the cost of deleting a vertex is the weight of the vertex
alone, not the weight of the vertex plus the weights of the incident edges, even though
they are also removed (this is consistent with the normal definition for unweighted
graphs, where deleting a vertex counts as one step, regardless of any incident edges).
Weighted edge addition works as defined, except where an edge already exists, which in
the unweighted case would prevent addition. In the weighted case however, we simply
increase the weight of the existing edge. Thus, in the presence of edge addition one
needs to consider the weighted and the unweighted variants of a problem separately, as
the former is not just a special case of the latter.

2.2 Basic Parameterized Complexity

Here we introduce some basic, relevant parameterized complexity theory. For a
more in-depth coverage we refer to the books of Downey and Fellows [7], Flum and
Grohe [11] and Niedermeier [16]. When considering the complexity of a problem in a
classical, P vs. NP setting, the only measure available is n, the instance size (or some
function thereof). Parameterized complexity adds a second measure, that of a parame-
ter k, which is given as a special part of the input. If a problem has an algorithm that
runs in time O(f(k)p(n)), where p is a polynomial and f is a computable function of
k, then the problem is fixed-parameter tractable, or in the class FPT. Conversely, the
demonstration of hardness for the class W [t] for some t ≥ 1 gives the intuition that

16 L. Mathieson and S. Szeider

the problem is unlikely to be fixed-parameter tractable. This is analogous to a problem
being NP-hard in the classical set-up. For the sake of clarity any problem is understood
to be a decision problem unless explicitly stated otherwise (and the parameterized com-
plexity classes that are referenced are defined for decision problems).

Demonstration of W [t]-hardness is normally done via an FPT reduction, which is
the parameterized complexity equivalent of a polynomial-time many-one reduction in
classical complexity theory. Given two parameterized problems Π1 and Π2, an FPT
reduction Π1 ≤FPT Π2 is a mapping from Π1 to Π2 that maps an instance (I, k) of
Π1 to an instance (I ′, k′) of Π2 such that (i) k′ = h(k) for some computable function
h, (ii) (I, k) is a YES-instance of Π1 if and only if (I ′, k′) is a YES-instance of Π2 and
(iii) the mapping can be computed in time O(f(k)p(|I|)), where f is some computable
function of the parameter k alone and p is a polynomial.

Then if Π2 is in FPT, so is Π1, and if Π1 is W [t]-hard, so is Π2.
The classes W [t], t = 1, 2, . . ., are defined as the classes of problems that can be

FPT-reduced to certain weighted satisfiability problems. The classes form the chain
FPT ⊆ W [1] ⊆ W [2] ⊆ . . ., where all inclusions are believed to be strict (Flum and
Grohe [11] in particular give detailed coverage of this hierarchy) .

Reduction to a problem kernel, or kernelization, is one of the fundamental techniques
for developing fixed-parameter tractable algorithms, and thus for demonstrating FPT
membership. A problem is kernelizable if, given an instance (I, k) of the problem,
where I is the input and k is the parameter, it is possible to produce in polynomial
time an instance (I ′, k′) where |I ′| ≤ g(k′) and k′ = h(k) for computable functions
g and h, and (I, k) is a YES-instance if and only if (I ′, k′) is a YES-instance. It can
be shown that a problem is kernelizable in this sense if and only if it is fixed-parameter
tractable. Kernelization is normally accomplished by the application of reduction rules
to the instance. Further explanation of the theory can be found in Estivill-Castro et al.’s
paper [10].

3 Easy Cases

Before moving to the general versions of the considered problems, let us examine re-
stricted versions where only edge editing operations are allowed; we may not delete any
vertices.

If only one of the operations is available, then the problems (weighted and uniform)
can easily be seen to correspond the well-known polynomially solvable f -factor prob-
lem [13]. Although the f -factor problem does not explicitly include editing operations,
edge deletions are dealt with implicitly as any f -factor of a graph has the same number
of edges, we need merely then to compare the difference between this number and the
total number of edges with the parameter. When the operation is edge addition, we
simply use the complement of the input graph instead and modify the degree function
appropriately. However it is not immediately apparent that these techniques may be di-
rectly applied to the case where we allow both edge addition and edge deletion. Hence
we shall give a general construction for solving the WEIGHTED EDGE EDIT TO CHO-
SEN DEGREE GRAPH problem by application of Edmond’s minimum weight perfect
matching algorithm [13,8].

Parameterized Graph Editing with Chosen Vertex Degrees 17

Let G, k be an instance of WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH.
By allowing edge weights of 0, we may assume that G is a complete graph. Now solving
the problem is clearly equivalent to finding an edge weight function ρ′ : E(G) →
{0, 1, 2, . . .} of G such that for each v ∈ V (G) we have

∑
vv′∈E(G) ρ′(vv′) = δ(v)

and the cost of ρ′,
∑

vv′∈E(G) |ρ(vv′) − ρ′(vv′)|, is at most k.
We construct a graph H with edge-weight function η as follows: For each vertex v

of G we introduce in H a set V (v) of δ(v) vertices. For each edge vv′ ∈ E(G) we add
the following vertices and edges to H ′.

1. We add two sets Vdel(v, v′) and Vdel(v′, v) of vertices, each of size ρ(vv′).
2. We add two sets Vadd(v, v′) and Vadd(v′, v) of vertices, each of size

min(δ(v), δ(v′)).
3. We add all edges uw for u ∈ V (v) and w ∈ Vdel(v, v′) ∪ Vadd(v, v′), and all edges

uw for u ∈ V (v′) and w ∈ Vdel(v′, v) ∪ Vadd(v′, v).
4. We add edges that form a matching Mvv′ between the sets Vdel(v, v′) and

Vdel(v′, v). We will refer to these edges as deletion edges.
5. We add edges that form a matching M ′

vv′ between the sets Vadd(v, v′) and
Vadd(v′, v) and subdivide the edges of M ′

vv′ twice, that is, we replace xy ∈ M ′
vv′

by a path x, xy , yx, y where xy and yx are new vertices. We will refer to the edges
of the form xyyx as addition edges.

This completes the construction of H . It remains to assign deletion and addition
edges e the weight η(e) = 1, and all other edges the weight 0. It can be verified that
(G, k) a yes-instance of WEIGHTED EDGE EDIT TO CHOSEN DEGREE GRAPH if and
only if H perfect matching of weight at most k, but owing to space restrictions, we
omit the proof. If we remove the addition (deletion) edges from H , then we also have
a construction that can be used to solve the edge deletion (addition) problem. Naturally
this construction allows solutions for the uniform versions of the problems as well, as a
subcase.

4 A Thorn in the Paw

Previously [14] we demonstrated the following result:

Theorem 1. WEIGHTED DELETION TO CHOSEN DEGREE GRAPH is fixed parameter
tractable for parameter (k, r).

This was shown by reduction to problem kernel, with a kernel of size O(kr(k+r)). It is
interesting to note that the result holds not only for DELETION TO REGULAR GRAPH,
but also for WEIGHTED VERTEX DELETION TO CHOSEN DEGREE GRAPH, and that
the generalization gives a smaller kernel than by using a similar method without the
annotation.

Naturally we would like to achieve a similar result for the edit versions of the prob-
lems. However the kernelization for deletion problems heavily relies on the fact that if
we delete a vertex in a clean region (defined below) or an edge incident with a vertex
in a clean region, then we must delete the entire clean region. Consequently, we can

18 L. Mathieson and S. Szeider

shrink large clean regions as their specific structure is not relevant. This reasoning fails
for editing problems where edge addition is allowed.

We prove in Section 5 that the edit version is indeed fixed-parameter tractable for
(k, r), but obtaining a kernel is difficult, at least when approached in a similar manner
to the previous investigation. Note that demonstration of fixed-parameter tractability
guarantees that some kernelization exists, what we show here is that it is unlikely to
take a certain (useful) form.

Firstly it is useful to define the notion of a clean region (first introduced by Moser
and Thilikos [15]). Given a graph G = (V, E), a function δ : V → {0, . . . , r}, and a
function ρ : V ∪E → {1, 2, 3, . . .}, we say a vertex v is clean if

∑
e∈E(v) ρ(e) = δ(v),

where E(v) denotes the set of edges incident on v. Then a clean region is a maximal
connected subgraph of clean vertices. In the case where the graph is unweighted, we
implicitly assume that δ(v) = r for all v ∈ V and ρ(x) = 1 for all x ∈ V ∪ E.

In both EDIT TO REGULAR GRAPH and WEIGHTED EDIT TO CHOSEN DEGREE

GRAPH it may be necessary to delete a set of vertices from clean regions so that the
edges that become available may be used to complete the degree of a vertex of insuffi-
cient degree (indeed there are easily constructable instances where this is the only way
to solve the instance). This gives the following sub-problem:

EDGE REPLACEMENT SET

Instance: A graph G = (V, E), two positive integers k and t.
Question: Does there exist a set X ⊆ V such that |X | ≤ k and there are
exactly t edges between vertices in X and vertices in V \ X?

Unfortunately, EDGE REPLACEMENT SET is NP-complete, thus making the possibility
of obtaining a kernel in polynomial time by somehow identifying all relevant sets in the
clean regions unlikely. The proof is by reduction from the following:

REGULAR CLIQUE

Instance: An r-regular graph G = (V, E), a positive integer k.
Question: Does G contain a clique on k vertices?

REGULAR CLIQUE is NP-complete, and W [1]-complete for parameter k, but fixed-
parameter tractable for parameter (k, r). We refer to previous work [14] for a detailed
proof of these statements.

The proof of the following theorem requires that the regularity r of the input graph in
the REGULAR CLIQUE instance be sufficiently large. It is possible to construct a “fixing
gadget” that allows the degree of each vertex to be increased effectively arbitrarily,
without introducing any non-trivial cliques. We refer again to previous work [14], and
particularly to the proof of Lemma 3.1 contained therein for proof of this claim.

Theorem 2. EDGE REPLACEMENT SET is NP-complete and W [1]-hard for par-
ameter k.

Proof. We shall concentrate on the W [1]-hardness proof; the NP-hardness follows from
the same result.

Let (G = (V, E), k) be an instance of REGULAR CLIQUE where G is r-regular. We
may assume that r is not bounded in terms of k, since REGULAR CLIQUE is fixed-
parameter tractable for parameter (k, r). For a set X ⊆ V let d(X) denote the number

Parameterized Graph Editing with Chosen Vertex Degrees 19

of edges uv ∈ E with u ∈ X and v ∈ V \ X . If X forms a clique in G then
d(X) = k(r − k + 1). Therefore we put t = k(r − k + 1) and consider (G, k, t) as an
instance of EDGE REPLACEMENT SET.

Let X ⊆ V with |X | ≤ k and d(X) = t. We show that X has exactly k elements
and forms a clique in G. Assume for the sake of contradiction that |X | < k. It follows
that d(X) ≤ |X |r and consequently r < r(k − |X |) ≤ k2 − k. This contradicts the
assumption that r is not bounded in terms of k. Hence we conclude |X | = k. Each
vertex x ∈ X has at most k − 1 neighbors in X and at least r − k + 1 neighbors in
V \ X . Therefore, if at least one x ∈ X had fewer than k − 1 neighbors in X , then
d(X) > k(r − k + 1) = t. Since d(X) = t, it follows that X is a clique in G. �

As the weighted edit problem contains EDGE REPLACEMENT SET as a subproblem we
also have the following result:

Corollary 1. WEIGHTED EDIT TO CHOSEN DEGREE GRAPH is W [1]-hard for pa-
rameter k.

This can be observed by considering the following simple construction: an isolated
vertex with ρ(v) = k + 1 and δ(v) = t ≤ r, along with a clique on y vertices inside
a clean region, where each clique vertex has t/y ‘outgoing’ edges, low weight, and
k ≥ y + t. We cannot delete the isolated vertex, but the deleting the clique will give the
requisite number of edges to ‘fix’ the isolated vertex.

Thus this proof demonstrates that a polynomial-time kernelization which relies upon
identifying such candidate sets for deletion is unlikely to exist. Note also that the proof
holds if we also demand in EDIT TO REGULAR GRAPH that the set X is connected.

5 Editing Is Fixed Parameter Tractable for Parameter (k, r)

To demonstrate that EDIT TO REGULAR GRAPH is fixed-parameter tractable we take
a logical approach and apply the following meta-theorem which is due to Frick and
Grohe [12].

Theorem 3 ([12]). Let C be a polynomial-time decidable class of structures of effec-
tively bounded local tree-width. Then the model checking problem for first-order logic
on the class C is fixed-parameter tractable parameterized by the length of the first-order
formula.

More particularly we use their corollary that the parameterized model checking problem
for first-order logic is fixed-parameter tractable for graphs of bounded degree. Stew-
art [21] pointed out that this result also holds if the degree bound is not global but
depends on the parameter. Furthermore he indicated how this can be used to show that
REGULAR SUBGRAPH with parameter (k, r) is fixed-parameter tractable. In the follow-
ing we extend this approach to EDIT TO REGULAR GRAPH and further to WEIGHTED

EDIT TO CHOSEN DEGREE GRAPH.
First we introduce the following reduction rule, used previously [14,15], that reduces

an instance (G, (k, r)) of EDIT TO REGULAR GRAPH to another instance (G′, (k′, r′))
of EDIT TO REGULAR GRAPH with bounded degree:

20 L. Mathieson and S. Szeider

Reduction Rule 1: If there exists a vertex v in G where d(v) > k + r, then G′ =
G[V (G) \ {v}], k′ = k − 1 and r′ = r.

Therefore if we can formulate sentences φk, k ≥ 0, of first-order logic such that φk

is true for a graph G if and only if (G, k) is a YES-instance of EDIT TO REGULAR

GRAPH, then we have established fixed-parameter tractability of EDIT TO REGULAR

GRAPH, since by application of Reduction Rule 1 we have a graph of bounded degree.
Note that the predicates V x, Ey and Ixy mean that x is a vertex, y is an edge, and that
y is incident on x, respectively. Furthermore we write [n] = {1, . . . , n}.

The sentence is defined as

φk =
∨

k′+k′′+k′′′≤k

∃u1, . . . , uk′ , e1, . . . , ek′′ , a1, . . . , ak′′′ , b1, . . . , bk′′′(φ′
k ∧ ∀v φ′′

k)

where φ′
k and φ′′

k are defined below. φ′
k is the conjunction of the following clauses

(1). . . (4) that ensure that u1, . . . , uk′ represent deleted vertices, e1, . . . ek′′ represent
deleted edges, and ai, bi, 1 ≤ i ≤ k′′′ represent ends of added edges. Note that since
added edges are not present in the given structure we need to express them in terms
vertex pairs.

(1)
∧

i∈[k′] V ui ∧
∧

i∈[k′′] Eei “ui is a vertex, ei is an edge;”
(2)
∧

i∈[k′′′] V ai ∧ V bi ∧ ai �= bi ∧
∧

j(uj �= ai ∧ uj �= bi) “ai and bi are distinct
vertices and not deleted;”

(3)
∧

i∈[k′′′] ∀y(¬Iaiy ∨ ¬Ibiy) “ai and bi are not adjacent;”
(4)
∧

1≤i<j≤k′′ (ai �= bj ∨ aj �= bi) ∧ (ai �= aj ∨ bi �= bj) “the pairs of vertices are
mutually distinct.”

The subformula φ′′
k ensures that each vertex v has degree r after editing:

φ′′
k = (V v ∧

∧
i∈[k′]

v �= ui) →
∨

r′, r′′ ∈ [r]
r′ + r′′ = r

∃x1, . . . , xr′ , y1, . . . , yr′′ φ′′′
k

where φ′′′
k is the conjunction of the following clauses:

(5)
∧

i∈[r′] Ivxi “v is incident with r′ edges;”
(6)
∧

1≤i<j≤r′ xi �= xj “the edges are all different;”
(7)
∧

i∈[r′],j∈[k′′] xi �= ej “the edges have not been deleted;”
(8)
∧

i∈[r′],j∈[k′] ¬Iujxi “the ends of the edges have not been deleted;”
(9) ∀x(Ivx →

∨
i∈[r′] x = xi ∨

∨
i∈[k′′] x = ei ∨

∨
i Ixui) “v is not incident with any

further edges except deleted edges;”
(10)

∧
i∈[r′′]

∨
j(yi = aj ∧ v = bj)∨ (yi = bj ∧ v = aj) “v is incident with at least r′′

added edges;”
(11)

∧
j∈[r′′](v = aj →

∨
i yi = bj)∧ (v = bj →

∨
j∈[r′′] yi = aj) “v is incident with

at most r′′ added edges.”

By the above considerations, we have the following.

Parameterized Graph Editing with Chosen Vertex Degrees 21

Theorem 4. EDIT TO REGULAR GRAPH is fixed-parameter tractable for parame-
ter (k, r).

If we force k′′ to be zero, then the same sentence suffices to prove that the variant with
only edge addition and vertex deletion is also fixed-parameter tractable for parameter
(k, r). This variant is W [1]-hard for parameter k by a previous result [14].

WEIGHTED EDIT TO CHOSEN DEGREE GRAPH can be classified by a similar ap-
proach, but first we must demonstrate that we can express the ρ and δ functions in first
order logic. To this aim we introduce a series Wi, 1 ≤ i ≤ k + 1, of weight predicates
such that Wix is true for a vertex x if and only if ρ(x) = i, and a series Dj , 0 ≤ j ≤ r,
of degree predicates such that Djx is true for a vertex x if and only if δ(x) = j. We
represent an edge of weight i by i parallel edges.

Hence we can formulate the following sentence to represent solutions of WEIGHTED

EDIT TO CHOSEN DEGREE GRAPH.

ψk =
∨

k′, k′′, k′′′, l1, . . . , lk′ ∈ [k]
l1 + · · · + lk′ + k′′ + k′′′ ≤ k

∧
i∈[k′]

Wli(ui) ∧

∃u1, . . . , uk′ , e1, . . . ek′′ , a1, . . . , ak′′′ , b1, . . . , bk′′′(ψ′
k ∧ ∀v ψ′′

k)

ψ′′
k =

∨
j∈[r]

[(Djv ∧
∧

i∈[k′]

v �= ui) →
∨

r′, r′′ ∈ [r]
r′ + r′′ = r

∃x1, . . . , xr′∃y1, . . . , yr′′ ψ′′′
k (j)]

The subformula ψ′
k is the conjunction of the above clauses (1) and (2) (we omit (3) and

(4) as we use multiple edges to encode edge weights) and ψ′′′
k (j) is obtained from the

above subformula φ′′′
k by setting r to j. Hence, as above, we conclude:

Theorem 5. WEIGHTED EDIT TO CHOSEN DEGREE GRAPH is fixed-parameter
tractable for parameter (k, r).

By similar reasoning as before, this sentence demonstrates the fixed-parameter tractabil-
ity of the variant without edge deletion for parameter (k, r). Again this variant is W [1]-
hard for parameter k by a previous result [14].

6 Conclusion

We demonstrated that when parameterized by (k, r), the editing problems are fixed
parameter tractable, but when parameterized by k, the problems are W [1]-hard. The
only exceptions are when the editing operations are limited to edge addition and/or
deletion, in which case the problems are solvable in polynomial time, thus completing
the classification for all combinations of the three editing operations.

A change in complexity is also apparent when moving from the deletion only prob-
lems to the edit problems. It seems unlikely that a similar approach as used for the
deletion problems can be used to develop a polynomial-time kernelization for the edit-
ing problems. For a feasible kernelization some new structural insight must be gained.

22 L. Mathieson and S. Szeider

References

1. Bar-Yehuda, R., Rawitz, D.: Approximating element-weighted vertex deletion problems for
the complete k-partite property. Journal of Algorithms 42(1), 20–40 (2002)

2. Bodlaender, H., Tan, R., van Leeuwen, J.: Finding a �-regular supergraph of minimum
order. Discrete Applied Mathematics 131(1), 3–9 (2003)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Information Processing Letters 58(4), 171–176 (1996)

4. Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Applied
Mathematics 27, 59–68 (1990)

5. Chvátal, V., Fleischner, H., Sheehan, J., Thomassen, C.: Three-regular subgraphs of four
regular graphs. Journal of Graph Theory 3, 371–386 (1979)

6. Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing prob-
lem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
8. Edmonds, J.: Paths trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)
9. Elkind, E.: True costs of cheap labor are hard to measure: Edge deletion and VCG payments

in graphs. In: Riedl, J., Kearns, M.J., Reiter, M.K. (eds.) 6th ACM Conference on Electronic
Commerce (EC-2005), pp. 108–116. ACM, New York (2005)

10. Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: FPT is P-TIME extremal struc-
ture I. In: Algorithms and Complexity in Durham 2005 (ACiD 2005), Texts in Algorithmics,
pp. 1–41. College Publications (2005)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
12. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable struc-

tures. Journal of the ACM 48, 1184–1206 (2001)
13. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29.

North-Holland Publishing Co., Amsterdam (1986)
14. Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and

generalizations. In: Harland, J., Manyem, P. (eds.) Fourteenth Computing: The Australasian
Theory Symposium (CATS 2008). CRPIT, vol. 77, pp. 79–86. ACS (2008)

15. Moser, H., Thilikos, D.: Parameterized complexity of finding regular induced subgraphs.
In: Algorithms and Complexity in Durham 2006 (ACiD 2006), Texts in Algorithmics, pp.
107–118. College Publications (2006)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford
(2006)

17. Plesnı́k, J.: A note on the complexity of finding regular subgraphs. Discrete Mathematics 49,
161–167 (1984)

18. Stewart, I.A.: Deciding whether a planar graph has a cubic subgraph is NP-complete. Dis-
crete Mathematics 126(1–3), 349–357 (1994)

19. Stewart, I.A.: Finding regular subgraphs in both arbitrary and planar graph. Discrete Applied
Mathematics 68(3), 223–235 (1996)

20. Stewart, I.A.: On locating cubic subgraphs in bounded-degree connected bipartite graphs.
Discrete Mathematics 163(1–3), 319–324 (1997)

21. Stewart, I.A.: On the fixed-parameter tractability of parameterized model-checking prob-
lems. Information Processing Letters 106, 33–36 (2008)

Fixed-Parameter Tractability of

Anonymizing Data by Suppressing Entries

Rhonda Chaytor1, Patricia A. Evans2, and Todd Wareham3

1 School of Computing Science, Simon Fraser University, Vancouver BC, Canada
2 Faculty of Computer Science, University of New Brunswick

Fredericton NB, Canada
3 Department of Computer Science, Memorial University, St. John’s NL, Canada

rhonda chaytor@cs.sfu.ca, pevans@unb.ca, harold@cs.mun.ca

Abstract. A popular model for protecting privacy when person-specific
data is released is k-anonymity. A dataset is k-anonymous if each record
is identical to at least (k − 1) other records in the dataset. The basic k-
anonymization problem, which minimizes the number of dataset entries
that must be suppressed to achieve k-anonymity, is NP -hard and hence
not solvable both quickly and optimally in general. We apply parame-
terized complexity analysis to explore algorithmic options for restricted
versions of this problem that occur in practice. We present the first fixed-
parameter algorithms for this problem and identify key techniques that
can be applied to this and other k-anonymization problems.

1 Introduction

It is often desirable to make a dataset publicly available for research. One model
of privacy protection which limits the risk of re-identification of individuals whose
data is stored in released datasets is k-Anonymity. A dataset is k-anonymous if
each record is identical to at least (k-1) others in the dataset [8]. k-anonymization
techniques minimize information loss while transforming a collection of records
to be k-anonymous. Information loss must be minimized to make k-anonymized
datasets useful in subsequent analyses; moreover, k-anonymization must be done
efficiently to make it an attractive option for privacy protection software systems.

There are many types of k-anonymization (see [2] for a survey), the most
basic of which suppresses the smallest possible number of dataset entries to
achieve k-anonymity. Recently-derived complexity results [1,2,6] imply that effi-
cient algorithms for optimally or even approximately solving the general version
of this problem (and hence many other types of k-anonymization) probably do
not exist. This has motivated privacy researchers to concentrate on fast heuristic
algorithms that produce good sub-optimal results [3,9]. However, given the need
to minimize information loss, efficient optimal algorithms that solve restricted
versions of k-anonymization that occur in practice would be preferable. Ques-
tions about the existence and derivation of such algorithms are best addressed
using the theory of parameterized complexity [4].

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 23–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 R. Chaytor, P.A. Evans, and T. Wareham

In this paper, we give the first parameterized complexity analysis of a k-
anonymization problem, namely the entry suppression problem. This analy-
sis includes algorithms which demonstrate the fixed-parameter tractability of
this problem under a number of practically-useful restrictions; underlying these
algorithms are three general frameworks that may be applicable to other k-
anonymization problems. This paper is organized as follows: Sections 2 and 3
give background on k-anonymization by entry suppression and parameterized
complexity theory, Section 4 gives parameterized hardness and tractability re-
sults for this problem, and Section 5 discusses these results and directions for
future research.

2 Problem Definition

Consider the following definitions adapted from [6, Section 2]. Represent a data-
base D of n entities described by m attributes as a row-set X = {x1, x2, . . . , xn},
where xi ∈ Σm for some attribute value-set Σ. Let xi[j] be the jth element
of xi. A function f : D → (Σ ∪ {∗})m is a suppressor for D if ∀(xi ∈
D)∀(j ∈ {1, 2, . . . , m}){f(xi[j]) ∈ {xi[j], ∗}}. f thus transforms the database
by replacing some entries by ∗, suppressing their original values. A transformed
dataset f(D) is k-anonymous if ∀(xi ∈ D){∃(i1, i2, . . . , ik−1 ∈ {1, 2, . . . , i, i +
1, . . . , n}) | f(xi1) = f(xi2) = . . . = f(xik−1) = f(xi)}, so that each row is
identical to at least k− 1 other rows. Our problem can now be stated as follows:

Entry Suppression (ESup)
Instance: An n × m dataset D over an alphabet Σ and integers e, k ≥ 0.
Question: Can D be transformed into a k-anonymous dataset f(D) by suppress-
ing at most e entry values in D?

Anumber of complexity results have recently been derived for this problem. Meyer-
son and Williams [6] proved NP -hardness when k ≥ 3 and gave a polynomial-time
O(m log k)-approximation algorithm. Improving upon these results, Aggarwal et
al. proved NP -hardness when k ≥ 3 and |Σ| ≥ 3, and gave a polynomial-time
O(k)-approximatealgorithmusingagraph-basedrepresentation [1].Finally,Chay-
torprovedthatpolynomial-boundedabsoluteapproximationorFPTASalgorithms
do not exist for this problem unless P = NP [2].

3 Parameterized Complexity Analysis

Given intractability results such as those at the end of the previous section
that rule out optimal efficient algorithms for general versions of a problem,
one may still be interested in algorithms whose non-polynomial running time
is phrased purely in terms of an aspect x of that problem that is small in prac-
tice. e.g., O(2xn3 + m2). Parameterized complexity theory [4] directly addresses
such questions by defining parameterized problems, which break instances into
a parameter k and a main part n, and fixed-parameter tractability such that an
algorithm’s running time can only be non-polynomial in the parameter, i.e., the

Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries 25

algorithm runs in O(f(k)p(n)) time, where f and p are arbitrary and polynomial
functions, respectively.

Denote a parameterized problem X with parameter k by 〈k〉-X . Two basic
techniques for deriving fixed-parameter algorithms [7] are bounded search and
kernelization (in which a classical exhaustive search and the candidate solution-
set, respectively, are bounded by a function of the parameter). Fixed-parameter
intractability can be shown via hardness for some class of the W -hierarchy =
{W [1], W [2], . . . , W [P], . . . , XP}, all of which seem (but have not been proven)
to properly contain the class FPT of fixed-parameter tractable problems.

The analyses described above suffice in the case of problem restrictions en-
coded by single aspects; however, it is often of interest to look at restrictions
operating over multiple aspects simultaneously. Such analyses can be simplified
by the following relationships. For a problem of interest X , let S be a set of
aspects for X .

– Given S′ ⊆ S′′ ⊆ S, if 〈S′〉-X ∈ FPT then 〈S′′〉-X ∈ FPT .
– Given S′ ⊆ S′′ ⊆ S, if 〈S′′〉-X �∈ FPT then 〈S′〉-X �∈ FPT .

4 The Parameterized Complexity of Entry Suppression

We investigate the parameterized complexity of Entry Suppression relative
to various subsets of S = {n, m, |Σ|, k, e}. The following relationships between
these aspects will be exploited below:

– As # values in any column cannot exceed # rows, |Σ| ≤ n.
– As # suppressed entries cannot exceed # dataset entries, e ≤ mn,
– As the size of any identical group cannot exceed # rows, k ≤ n.
– If the input dataset is not already k-anonymous, then at least one group must

need suppressed entries, so at least k entries must be suppressed. Thus k ≤ e
unless the input dataset is either k-anonymous or cannot be k-anonymized
with only e suppressed entries.

The last relationship has more general consequences. Checking a dataset to de-
termine if it is k-anonymous can be done by sorting and then grouping the rows,
in O(mn log n) time, so 〈e〉-Entry Suppression reduces to 〈e, k〉-Entry Sup-

pression. Since the reverse reduction also holds, using 〈e〉 as a parameter is
equivalent to using 〈e, k〉 as parameters.

4.1 Hardness Results

Theorem 4.1.1. 〈k, |Σ|〉-ESup�∈ XP unless P = NP .

Proof: For a decision problem Π with aspect-set parameter S, if Π is NP -hard
when all aspects in S are constants then 〈S〉-Π is not in XP unless P = NP
[10, Lemma 2.1.35]. Since ESup is NP -hard when k ≥ 3 and |Σ| ≥ 3 [1], the
result follows. �

26 R. Chaytor, P.A. Evans, and T. Wareham

4.2 Fixed-Parameter Tractability Results

While fixing k and |Σ| is insufficient for fixed-parameter tractability, including
either the number of rows or number of columns as a parameter does, in most
cases, lead to fixed-parameter tractable algorithms. Note that limiting rows and
columns simultaneously effectively fixes input size and hence is trivially in FPT
(check all 2mn entry-suppression combinations in O(2mnmn log n) time). That
being said, this basic exhaustive search algorithm forms part of the more complex
algorithms given below.

Allowing the number of rows to be unlimited yields two cases, depending on
whether or not all rows in the given dataset are distinct. The first case is fairly
easy to deal with if m and |Σ| form the parameter (as n ≤ |Σ|m, it can be
solved in O(2m|Σ|mnm log n) time). Unfortunately, this will not typically hold,
e.g., after all unique-value columns (such as name) have been removed as being
identifying information. The second case, in which one has multiple copies of
certain row, initially seems to be even easier, since the dataset is already some-
what anonymous. However, identical rows are not necessarily grouped together,
and even k identical rows may need to be split up in order to form groups with
other similar rows. For example, we can have a dataset that includes k copies of
one row x, and k groups of k − 1 copies each of other rows ri (1 ≤ i ≤ k), where
each row ri differs from row x in column i only. If the k copies of row x are kept
together, then all other groups (of size k or more) must be formed from rows
that differ in at least two columns, thus requiring the suppression of at least
2k2 − 2k entries. If instead the x rows are broken up, with one x row grouped
with each group of ri rows, then only one entry must be deleted from each row,
suppressing only k2 entries. This example also illustrates some limitations on
trying to kernelize datasets where the number of distinct rows is bounded.

To handle the situation where rows are not distinct, it suffices to add k to the
previously-considered parameter. This is interesting in itself, because though k
and |Σ| do not by themselves yield fixed-parameter tractability, they do suffice
when combined with m.

Theorem 4.2.1. 〈m, |Σ|, k〉-ESup is solvable in O(nm log n+2|Σ|mkm ·|Σ|mkm·
(m log |Σ| + log k)) time.

Proof: There will be at most |Σ|m distinct rows and, as discussed above, we
cannot always group identical rows together. However, the number of groups
needed will not be more than the number of distinct rows, since any row lost
to another group must be needed in order to supplement a group of some other
identical rows. Therefore the number of rows from any identical group that
may be distributed independently to different groups is less than |Σ|m · k. If an
identical group has more row copies than this, the remaining rows can be included
in whichever group (that already includes some copies of them) requires them
to have the least number of suppressions per additional row.

Algorithm 1 (see Figure 1) uses this principle to reduce and bound the number
of rows that need to be partitioned through searching combinations of suppressed
entries. There will be at most 2|Σ|mkm entry combinations, and each combination

Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries 27

Algorithm 1:
sort the rows and group identical rows
for each identical group i

if the number of copies ci > |Σ|m · k
remove these excess copies
xi = ci − |Σ|m · k

for all combinations of entries in the remaining rows
suppress the selected combination of entries
sort the rows and group identical rows
if all groups are of size ≤ k

t = total number of suppressions of grouped rows
for all initial groups i that have excess copies

find the grouped copy that has the fewest suppressions si

if xi < k
t = t + xi · si

if t ≤ e
return true

return false

Fig. 1. Algorithm 1. See Theorem 4.2.1 for details

requires |Σ|mk rows of length m to be sorted and grouped. Arriving at the total
number of suppressions, including the rows that were not partitioned, is done for
each original identical group by multiplying in the suppressions for those rows
that were left out of the partition. Rows that are in groups of k or more should
not be added in, since they are already part of a sufficiently large group. Thus
Algorithm 1 runs in O(nm log n + 2|Σ|mkm · |Σ|mkm · (m log |Σ| + log k)) time.

�
Given the relationships between e and k mentioned earlier, the above also implies
that 〈m, |Σ|, e〉-ESup and 〈m, |Σ|, e, k〉-ESup are in FPT .

Let us now consider limiting the number of rows.

Theorem 4.2.2. 〈n〉-ESup is solvable in O(nm log m + 2nn+1
nn+1 log n) time.

Proof: If two columns produce an identical partitioning of the rows, then they
need to have the same entries suppressed. If two identical columns have different
entries suppressed, then they will partition the rows in different ways. If instead
both columns have the same entries suppressed (choosing whichever had the
fewest suppressed entries), then the partitioning produced by the other column
will be removed from the overall partition (formed by overlaying the different
column partitions). Removing a partitioning cannot decrease the size of the sets
of rows in the overall partition, so making the columns identically suppressed
will not increase the number of suppressions or break the k-anonymity condition.
Thus the columns in the dataset can be restricted to the columns that produce
different partitions of the rows, which is less than |Σ|n. Each set of columns that
produce the same partition can be represented by a single column, weighted by
the size of the set, and there will be no more than |Σ|n such weighted columns.

28 R. Chaytor, P.A. Evans, and T. Wareham

Algorithm 2:
x for all columns j from 1 to m

relabel the entries of column j, starting from 1, in order
sort the columns, and group them into sets of identical columns
for each set j of identical columns

remove all but one representative
weight it by sj , the number of columns in the identical group

for all combinations of entries in the at most n × |Σ|n table
Sum = sum, over all selected entries, of their columns’ weights
if Sum ≤ e

suppress all of these entries
sort the table and group identical rows
if all groups are of size ≥ k

return true
return false

Fig. 2. Algorithm 2. See Theorem 4.2.2 for details

Algorithm 2 (see Figure 2) implements this approach, and runs in O(nm log
m + 2n·|Σ|n · |Σ|nn logn) = O(nm log m + 2nn+1

nn+1 log n) time (as |Σ| ≤ n). �
As the different partitions of the rows can be searched by identifying columns
that partition the rows in the same way as that exploited above by kernelization,
an analogous bounded search algorithm solves 〈n〉-ESup in O(2nnn+1(m+log n))
time (details omitted due to lack of space).

All of the algorithms above limit the number of symbols |Σ|, either directly or
by limiting n. However, if we allow Σ to be arbitrarily large, we can still achieve
fixed-parameter tractability by limiting m and e.

Theorem 4.2.3. 〈m, e〉-ESup is in FPT and is solvable in O(22em(e2(e +
k)2e)e2+emn log n) time.

Proof (Sketch): This result holds courtesy of Algorithm 3 (see Figure 3). In
order to be k-anonymizable, the number of rows in the original dataset that are
in groups of less than k identical copies must be less than e, since each of these
groups must have at least one entry suppressed per row. This produces a sub-
dataset D′′ of at most e rows, so there are at most 2em different combinations
of entries in that subset to consider suppressing and testing to determine if this
suppression combination will work.

Once a suppression combination is to be tested, the other rows (already part
of larger groups, D′ in Algorithm 3) need to be considered to be added to the
rows with suppressed entries. Since the suppression combination has determined
which entries of D′′ are suppressed, we consider rows from D′ that are compatible
with the groups of D′′. We may need to consider more than just their excess
rows; however, we can only suppress e entries, so we only need to consider at
most e rows from each group.

Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries 29

Algorithm 3:
sort and group identical rows
select all rows in groups of size < k
if more than e rows are selected

return false
D′ = dataset − selected rows
D′′ = selected rows
for all entry combinations in the selected rows D′′

where each row has at least one entry included
suppress the combination of entries in D′′

e′ = e − number of entries suppressed
if e′ ≥ 0

sort and group identical rows from D′′

construct D′′′ from D′ by:
for all pairs i1, i2 of groups of identical rows in D′

let d(i1, i2) = Hamming distance between i1 and i2 rows
sort the (i1, i2) pairs by nondecreasing d(i1, i2)
D′′′ = empty
for each pair i1, i2 of groups of identical rows in D′, as sorted

size(i) = number of rows in i
m(i) = set of groups in D′′ whose unsuppressed entries

match group i for all non-suppressed entries
c(i) = number of groups j already in D′′′ with

m(j) = m(i) and (size(j) = size(i) or size(j) ≥ e′)
if c(i1) < e′

move min(e′, size(i1)) rows of group i1 from D′ to D′′′

if c(i2) < e′

move min(e′, size(i2)) rows of group i2 from D′ to D′′′

for each set X of up to e′ groups from D′′′

mark up to e′ rows from D′ that agree with all identical
columns in X

add all marked rows to D′′′

for each selection of e′ rows from D′′′

for all combinations of up to e′ entries in the selected rows
suppress that combination of entries
re-build D by uniting all rows in D′, D′′ and D′′′

if at most e entries in D are suppressed
sort and group identical rows of D
if all groups of D are of size ≥ k

return true
return false

Fig. 3. Algorithm 3. See Theorem 4.2.3 for details

Since |Σ| is not bounded, there may be many groups in D′ that are compatible
with the groups of D′′. However, groups in D′ that are compatible with exactly
the same groups in D′′ are equivalent with respect to filling out the D′′ groups.
If they are also the same size then they are also equivalent with respect to how

30 R. Chaytor, P.A. Evans, and T. Wareham

Table 1. Summary of Parameterized Results for Entry Suppression. For each FPT
result, the numbers of the algorithms implying this result are given in parentheses.

– k e k, e
– NP -hard �∈ XP ??? ???
|Σ| �∈ XP �∈ XP ??? ???
m ??? ??? FPT (3) FPT (3)
n FPT (2) FPT (2) FPT (2) FPT (2)
|Σ|, m ??? FPT (1) FPT (1, 3) FPT (1, 3)
|Σ|, n FPT (2) FPT (2) FPT (2) FPT (2)

many rows will be left, and if a group has at least e + k members then it can be
used instead of a smaller group. We may need to include rows from more than one
group to spread out the rows removed, but the number of groups needed to be
considered is no more than e(e+k)2e, since we will not be able to extend by more
than e rows, and of the equivalent groups (2e possible m(i) sets, (e + k) sizes)
our only concern is how well they fit with each other. This key consideration
is managed by adding first those groups that are the closest together, and thus
will need the fewest entries suppressed to merge. Finally, since these pairs may
need to be merged with other groups that agree with them, sufficient groups
that agree with their common columns are also added.

This boundary dataset (D′′′ in Algorithm 3) will thus initially include at most
e2(e+k)2e rows. It will have no more than (e(e+k)2e)e+1 rows marked, leading
to no more than e2(e + k)2e + (e(e + k)2e)e+1 rows in D′′′. Up to e rows from
D′′′ need to be selected to extend D′′. The remaining rows of D′′′ need to be
added to the groups of D′′, back into their original groups in D′, or put together
to form new groups; trying a suppression pattern of entries from e rows selected
from D′′′ will induce a complete grouping over all the rows. All of the rows then
need to be reassembled and tested to determine if the suppression limit of e has
been respected and the k-anonymity condition is met.

Given the above, Algorithm 3 runs in O(mn log n + 2emmn + 2em(e2(e +
k)2e)e2+ee2emmn logn) = O(22em(e2(e + k)2e)e2+emn log n) time. �

5 Conclusion

Table 1 summarizes the hardness and tractability results presented in this pa-
per, including all results implied by pairwise parameter and parameter subset
relationships. Note that as k ≤ e, unless the dataset is already k-anonymous,
the two rightmost columns are equivalent.

The algorithms underlying these FPT results illustrate techniques that can
be applied to this problem, individually and together, and provide a general
framework for algorithm development. Searching, either using a bounded search
through the entire set or searching through a problem kernel, can consider all
possible entry suppression combinations or all partitions. The results of such
searches are equivalent, since partitioning the dataset into sets of rows will

Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries 31

require any nonidentical columns in a group to have all their entries suppressed;
similarly, an entry suppression combination will induce a partition of the rows
into groups. Also, kernels can be found for problem variants where the number
of rows or columns that differ or need to be considered can be bounded by a
function of the parameters.

The most pressing direction for future research is to improve the running
times of the given FPT algorithms. Though most of these algorithms are not
themselves practical, they do indicate which aspect-combinations allow fixed-
parameter tractability. Past experience has shown that once a problem is shown
to be in FPT , more sophisticated techniques can often be applied to derive
practical algorithms [7], and it is our hope that this will be the case for k-
anonymization. Also, the complexity of some aspect-combinations is open. Of
particular interest here is 〈m, k〉-ESup, since datasets to be anonymized fre-
quently have m ≤ 25 and k ≤ 5 [5].

Acknowledgments. The research described in this paper was supported by an
NSERC PGS-D scholarship (RC) and NSERC research grants 204923 (PE) and
228104 (TW).

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 246–258. Springer, Heidelberg (2004)

2. Chaytor, R.: Utility Preserving k-Anonymity. Technical Report MUN-CS 2006-01,
Dept.Computer Science, Memorial University of Newfoundland (2006)

3. Chaytor, R.: Allowing Privacy Protection Algorithms to Jump out of Local Opti-
mums: An Ordered Greed Framework. In: Bonchi, F., et al. (eds.) PinKDD 2007.
LNCS, vol. 4890, pp. 33–55. Springer, Heidelberg (2008)

4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
5. MacDonald, D.: Personal Communication (2005)
6. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc.

of 23rd ACM Sym. on Principles of Database Systems (PODS 2004), pp. 223–228
(2004)

7. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

8. Sweeney, L.: Achieving k-anonymity privacy protection using generalization
and suppression. Int’l J. on Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10(5), 571–588 (2002)

9. Wang, K., Yu, P., Chakraborty, S.: Bottom-up generalization: a data mining solu-
tion to privacy protection. In: ICDM 2004, pp. 249–256 (2004)

10. Wareham, T.: Systematic Parameterized Complexity Analysis in Computational
Phonology. Ph.D.thesis, Dept.Computer Science, University of Victoria (1999)

Multiple Hypernode Hitting Sets and Smallest

Two-Cores with Targets�

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@cs.chalmers.se

Abstract. The multiple weighted hitting set problem is to find a subset
of nodes in a hypergraph that hits every hyperedge in at least m nodes.
We extend the problem to a notion of hypergraphs with so-called hy-
pernodes and show that it remains fixed-parameter tractable (FPT) for
m = 2, with the number of hyperedges as the parameter. This is accom-
plished by a nontrivial extension of the known dynamic programming
algorithm for usual hypergraphs. The result might be of independent in-
terest for assignment problems, but here we need it as an auxiliary result
to solve a different problem motivated by network analysis: We give an
FPT algorithm that computes a smallest 2-core including a given set of
target vertices in a graph, with the number of targets as the parameter.
(A d-core is a subgraph where every vertex has degree at least d within
the subgraph.) This FPT result is best possible, in the sense that an
FPT algorithm for 3-cores cannot exist, for simple reasons.

1 Introduction and Contributions

Hitting set problems are fundamental in various branches of computer science
and in combinatorial optimization. Since the problems are NP-hard, the com-
plexity of several parameterizations became interesting. We refer to recent pa-
rameterized algorithms for hitting sets in hypergraphs of fixed rank [6] and for
enumerations of all hitting sets [5].

In the Multiple Weighted Hitting Set problem, we are given a family
of hyperedges (a hypergraph) on a set V of nodes with positive real weights, and
an integer m, and we seek a subset of nodes with minimum total weight that
intersects every hyperedge in at least m distinct nodes. (We are using the words
“intersect” and “hit” interchangeably.) The unweighted case with m = 1 is the
Hitting Set problem. We generalize the former problem as follows. Besides the
hyperedges we are given another family of subsets of V that we call hypernodes.
Every hypernode (rather than every node) has a positive weight. We seek a subset
S of hypernodes with minimum total weight so that the union of hypernodes in
S intersects every hyperedge in at least m nodes. We refer to this problem as

� Work supported by the Swedish Research Council (Vetenskapsr̊adet), grant no. 2007-
6437, “Combinatorial inference algorithms – parameterization and clustering”.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 32–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets 33

Multiple Weighted Hypernode Hitting Set. The Multiple Weighted

Hitting Set problem is the special case where the the hypernodes are singleton
sets, one for each node in V . In Multiple Weighted Hypernode Hitting

Set we may assume without loss of generality that all hyperedges are pairwise
disjoint: If they are not, we “disjunctify” them as follows. For each pair v, e
of a node v and hyperedge e � v, replace v with a copy ve of v that appears
exclusively in e. While making the hypernodes larger, this transformation does
not change the problem, and the blow-up is obviously polynomial in the size of
the hypergraph. Disjoint hyperedges will simplify the notations in algorithms
for the problem. Note that, if we apply the above transformation to a usual
weighted hypergraph (an instance of Multiple Weighted Hitting Set), we
also obtain disjoint hypernodes, as they come from single nodes. But we stress
that hypernodes may still overlap in the general case of Multiple Weighted

Hypernode Hitting Set. In the following, k always denotes the number of
hyperedges which we denote V (1), . . . , V (k). For easier orientation we repeat the
definition more formally:

Multiple Weighted Hitting Set

Input: a set V of nodes, k hyperedges, i.e., sets V (1), . . . , V (k) ⊂ V which can be
assumed to be pairwise disjoint, another family of subsets of V called hypernodes,
each with a positive cost, and an integer m.
Output: a set S of hypernodes with minimum total cost, so that at least m
distinct nodes of every hyperedge are contained in some hypernode in S.

We assume that the reader is familiar with the theory of fixed-parameter
tractable (FPT) problems; introductions can be found in [3,9]. Hitting Set is
known to be W [2]-complete (thus probably not in FPT), but Hitting Set is
in FPT in parameter k. (This was observed, e.g., in [7] in dual form, i.e., for the
Set Cover problem). This result can be immediately extended to Multiple

Weighted Hypernode Hitting Set with m = 1: The idea is to use dynamic
programming on the subsets of index set {1, . . . , k}. We process the hypernodes
successively. Every new hypernode is used in the solution or not. We only have
to keep track of the minimum weights of solutions that hit each subfamily of
V (1), . . . , V (k). Thus the time bound is O∗(2k). We withhold the straightforward
details, because we will treat the more general case m = 2 in Section 2.

The difficulty increases dramatically in case m = 2. Already for m = 2 it
is not easy to see an FPT algorithm, even a bad one, let alone combined pa-
rameters (k, m). As opposed to Hitting Set, it does not help much to classify
the hypernodes in 2k types according to which hyperdeges they intersect. Since
we are supposed to hit every hyperedge in at least two distinct nodes, we have
to memorize the nodes already used up, but we cannot afford to do that for
every possible combination of nodes in the already selected hypernodes, as the
|V (i)| are not bounded by any function of parameter k. In Section 2 we develop
an FPT algorithm for Multiple Weigthed Hypernode Hitting Set with
m = 2, by a nontrivial extension of the known dynamic programming scheme
for Hitting Set.

34 P. Damaschke

Hypernode hitting sets may be of independent interest in combinatorial op-
timization, e.g., for assignment problems with multiple demands. However, our
motivation is another graph problem that we treat in the rest of the paper. To
avoid confusion, we use the term vertex in graphs and node in hypergraphs.

For any fixed integer d, a d-core in a graph G = (V, E) is a subset C ⊆ V (or
the induced subgraph) where every vertex v ∈ C has at least d neighbors in C.
Cores are interesting in network design (as robust subnetworks), but mainly in
graph-theoretic approaches to clustering. A recent bioinformatics application of
cores is the prediction of protein complexes in protein interaction networks [2].

A maximal d-core in any graph is uniquely determined and can be trivially
computed by an elimination algorithm: Starting with C = V , any vertex in C
that lacks enough neighbors in C is removed from C. Since the degree of a vertex
in C can only get smaller, we never have to reinsert such vertices. However, the
problem becomes difficult if we are interested in minimum d-cores that contain
a given set of target vertices (similarly as in the Steiner Tree problem that
seeks a minimal connected set containing a set of target vertices). We define:

Minimum d-Core

Input: a graph G = (V, E) and a set T ∈ V of target vertices (or: targets).
Output: a d-core C such that C ⊇ T and |C| is minimized.

We call a d-core C minimal if C does not contain a smaller nonempty d-core.
Likewise, C ⊇ T is a minimal d-core including T if no d-core C′ ⊂ C includes
T . Carefully distinghuish between minimal and minimum which refers to set
inclusion and cardinality, respectively.

Minimum 0-Core is a trivial problem. Minimal 1-cores in a graph are exactly
the pairs of adjacent vertices. In an instance of Minimum 1-Core, only vertices
being isolated in T need another neighbor in C. Thus we may assume without loss
of generality that T is an independent set, therefore Minimum 1-Core becomes
equivalent to the Hitting Set problem for thefamily of hyperedges N(v), v ∈ T ,
where N(v) denotes the neighborhood of vertex v. Since Hitting Set is in FPT,
with the number of hyperedges as the parameter, it follows that Minimum 1-
Core is in FPT with parameter t = |T |, the number of target vertices. In Section
4 we will show that Minimum 2-Core is still in FPT with parameter t, using
the preceding FPT result for Multiple Weigthed Hypernode Hitting Set

with m = 2. Prior to this final contribution, Section 3 provides some preliminary
results on the hardness of Minimum d-Core. In particular, our FPT result for
d = 2 is best possible in the sense that case d = 3 is not in FPT (unconditional).

Here it is worth mentioning another related hardness result: Finding a chord-
less cycle through two target vertices is W[1]-complete [8]. Note that a chordless
cycle is a 2-core, but Minimum 2-Core permits arbitrary 2-cores rather than
only chordless cycles. (Cores are in general not even connected.) The Steiner

Tree problem is known to be in FPT, with the number t target vertices as the
parameter. It can be solved in O∗(3t) time using an old algorithm from [4]. As
recently shown in [1], finding minimum d-cores without specified target vertices
is W[1]-hard for any d ≥ 3, with the size of the solution as parameter.

Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets 35

Our study is exploratory research in problem complexity, not derived from
an immediate application. The use of cores and target (“seed”) vertices in [2] is
very different from the Minimum d-Core problem, however one may use cores
in similar inference tasks. Suppose we have a model of a protein interaction
network with only a sparse set of confirmed interactions, and for some set T of
proteins we know that they belong to the same functional group, moreover, in a
functional group we expect each protein to interact with at least d others. Then
it is sensible to ask what is a smallest possible vertex set including T , with this
property.

2 Weighted Hypernode Hitting Sets with Two Hits

In this section we prove that Multiple Weighted Hypernode Hitting Set

with m = 2 is in FPT, with parameter k. First we outline the algorithm.
Hypernodes are listed in any order. In each step of the algorithm we consider

the next hypernode from list. We also maintain a family F of possible partial
solutions. A partial solution is the union of the hypernodes we have selected so
far. A family F of partial solutions is called promising if at least one member
of F can be extended to an optimal final solution, by adding a suitable subset
of hypernodes from the remainder of the list. Hence, as soon as all hypernodes
have been considered, a promising F contains an optimal solution. The algorithm
starts with F containing only one partial solution, namely the empty set. This
initial F is (trivially) promising.

We use the following conventions to avoid many repetitions of similar defi-
nitions. Remember that V (1), . . . , V (k) are the (disjoint!) hyperedges. For any
symbol X (an upper-case letter, perhaps with further symbols attached) that
denotes a subset of nodes, we denote by X(i) the set X ∩ V (i). If such X(i)
contains only one node, we denote it by x(i) (using the corresponding lower-case
letter). Conversely, by mentioning a node x(i) we implicitly mean that this is
the only node of the corresponding set X(i).

The signature of a partial solution P is the vector s of numbers s(i) =
min{|P (i)|, 2}, for i = 1, . . . , k. Any final solution can be written as P ∪ Q,
where P is the union of hypernodes chosen until the current step of the algo-
rithm, and Q is the set of nodes added later. Note that P ∩Q = ∅ by definition.
In the following we will always split solutions in this way. Given a signature s,
a 1-index is an index i with s(i) = 1, similarly we speak of 0- and 2-indices. Let
seq be any sequence of pairwise distinct indices, possibly the empty sequence. If
index j appears in seq, we denote by seqj the prefix of seq before j.

Let T denote the hypernode to be considered in the current step of the algo-
rithm. We update F by adding all sets P ∪ {T }, P ∈ F , to the old F . Since F
was promising before this step, the new F is promising, too. The tricky part is to
remove some partial solutions from F , in such a way that F remains promising,
but the number of sets in F is kept below some threshold that may only depend
on parameter k:

36 P. Damaschke

Lemma 1. Any promising family F of partial solutions has a promising sub-
family with at most e22kk! different partial solutions. (Here e denotes Euler’s
number.) Such a subfamily can be computed from F in a time polynomial in the
size of F .

Proof. First we consider any fixed signature s, therefore we suppress s in our
notation, for convenience. Let G[] denote the family of members of F with sig-
nature s. Suppose G �= ∅. Let P [] be some partial solution in G[] with minimum
weight. Consider any optimal solution P ∪ Q, P ∈ G[], with the property that
Q(i) \ P [](i) �= ∅ for all 1-indices i. Then P [] ∪ Q is a valid solution, as we
can easily see: For 0-indices i we have |Q(i)| ≥ 2, and for 2-indices i we have
|P [](i)| ≥ 2. For 1-indices i, the above property guarantees |P [](i) ∪ Q(i)| ≥ 2.
Furthermore, since P [] has at most the weight of P , solution P []∪Q is optimal,
too. Hence, partial solutions P ∈ G[] other than P [] are only needed as part of
possible optimal solutions P ∪ Q where Q(i) ⊆ P [](i) holds for some 1-index i.
Note that the latter condition implies q(i) = p[](i) and p(i) �= p[](i).

This gives rise to the following inductive hypothesis, for any sequence seq
of pairwise distinct 1-indices: Partial solutions P ∈ G[seq] other than some
minimum-weight partial solution P [seq] ∈ G[seq] are only needed as part of
possible optimal solutions P ∪ Q where q(j) = p[seqj](j) holds for all j in seq,
and p(i) �= p[seq](i) = q(i) holds for some 1-index i not occuring in seq. (As we
saw above, the hypothesis is true for the empty sequence seq. Note that some
conditions are vacuously true in the base case.)

Accordingly, for each 1-index i not occuring in seq we define G[seq, i] to be
the family of all partial solutions P ∈ G[seq] with p(i) �= p[seq](i). Let P [seq, i]
be a minimu-weight partial solution in G[seq, i]. Now we prove the induction
hypothesis for the sequence seq, i, similarly as in the base case.

Consider any optimal solution P ∪ Q, P ∈ G[seq, i], with the properties that
q(j) = p[seqj](j) for all j in seq, and q(i) = p[seq](i), and Q(j) \P [seq, i](j) �= ∅
for all 1-indices j not occuring in seq, i. Then P [seq, i]∪Q is a valid solution: For
0-indices j we have |Q(j)| ≥ 2, and for 2-indices j we have |P [seq, i](j)| ≥ 2. For
1-indices j not in seq, i, the above properties obviously guarantee |P [seq, i](j)∪
Q(j)| ≥ 2. As for the particular index i, observe that p[seq, i](i) �= p[seq](i) =
q(i), hence |P [seq, i](i) ∪ Q(i)| ≥ 2 as well. For 1-indices j in seq we also
have p[seq, i](j) �= q(j), this because q(j) = p[seqj](j) holds, and P [seq, i] ∈
G[seq, i] ⊂ G[seqj , j] implies p[seq, i](j) �= p[seqj](j) by definition of G[seqj , j].

Furthermore, since P [seq, i] has at most the weight of P , solution P [seq, i]∪Q
is optimal among all solutions with the aforementioned properties. Consequently,
partial solutions P ∈ G[seq, i] other than P [seq, i] are only needed as part of
possible optimal solutions P ∪ Q where q(j) = p[seqj](j) for all j in seq, and
q(i) = p[seq](i), and Q(j) ⊆ P [seq, i](j) for some 1-index j not occuring in seq, i.
The latter condition also implies |Q(j)| = 1, q(j) = p[seq, i](j), and p(j) �=
p[seq, i](j). This concludes the induction step.

Our inductive definition yields families G[seq] and partial solutions P [seq] ∈
G[seq] (unless G[seq] = ∅, in which case seq is not extended further). As soon
as a seq contains all 1-indices i, it suffices to keep only some optimal P [seq] in

Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets 37

G[seq]. Other P ∈ G[seq] cannot be parts of optimal P ∩ Q anymore, since no
1-indices j are left where Q(j) could undesirably be contained in P [seq](j).

Until now, s was any fixed signature. By construction, the family of all P [seq],
now for all sequences seq and all signatures s, is still a promising subfamily of
F . Clearly, each G[seq, i] and P [seq, i] is obtained from G[seq] and P [seq] in
polynomial time, in the size of F . It remains to bound the size of this promising
subfamily. There exist 2k−t

(
k
t

)
signatures with exactly t 1-indices, and for every

such signature we can form
∑t

i=0

(
t
i

)
(t− i)! < et! sequences of distinct 1-indices.

Finally observe
∑k

t=0 2k−t
(
k
t

)
et! < e2k

∑k
t=0

(
k

k−t

)
t! < e22kk!. �	

Perhaps the k! term can be improved by using similarities of partial solutions
for different index sequences. An intriguing question is whether an exponential
bound with constant base is accomplishable. We also conjecture that the scheme
can be extended to any constant m. However, at the moment we get:

Theorem 1. Multiple Weighted Hypernode Hitting Set with m = 2
can be solved in O∗(2kk!) time.

Proof. To summarize the given algorithm: We successively add the given hyper-
nodes to the problem instance, in an arbitrary order, and maintain a promising
family F of partial solutions, i.e., unions of selected hypernodes. Initially, F is
the family with just the empty set. For every new hypernode T we insert all
sets P ∪ {T }, P ∈ F , in F . Then we use the procedure in Lemma 1 to extract a
promising subfamily of F with O(2kk!) sets. When all hypernodes are included,
an optimal solution in F is an optimal solution to the problem. All auxiliary
computations are obviously polynomial. �	

3 Hardness of Minimum Cores Including a Target Set

The following result is quite easy to obtain, however it does not directly follow
from the d = 1 case.

Theorem 2. Minimum d-Core is NP-complete for any constant d.

Proof. (Sketch.) Case d = 1 is equivalent to the NP-complete Hitting Set

problem, see Section 1. Now consider d ≥ 2. Given any instance of Hitting Set

where, without loss of generality, the hyperedges cover the whole set of nodes,
we construct a graph as follows. Every node of the hypergraph is represented by
a vertex of the graph. Furthermore, every hyperedge e is represented by a target
vertex, adjacent to those vertices representing the nodes of e. Finally, we attach
to every vertex v (of both types) a (d+1)-clique of new target vertices, and insert
an edge between v and d − 1 vertices of this (d + 1)-clique. Since every target
vertex not being in an attached clique needs yet another neighbor in the d-core,
we obtain a one-to-one correspondence between d-cores and hitting sets. Note
that every non-target vertex in the d-core is in fact adjacent to d− 1 vertices in
its attached clique, and to another target vertex. �	

38 P. Damaschke

Due to NP-completeness, it is natural to study the parameterized complexity.
As mentioned earlier, case d = 1 is fixed-parameter tractable in the number t of
target vertices, and for d = 2 we show that in the next section. For d ≥ 3 we
cannot get FPT results, as the complexity is not even bounded by any function
of t. Already for d = 3 and t = 1, the following construction gives arbitrarily
large equivalent instances of Hitting Set. We construct a tree with the only
target vertex at the root. The root has three children, and all other inner vertices
have two children. Only the leaves are adjacent to further vertices. Obviously,
any 3-core C that includes the target vertex must also include the whole tree.
Furthermore, every leaf needs two more neighbors in C. Now it is not hard to
construct an instance of Hitting Set that is equivalent to minimizing |C|.

4 Minimum Two-Cores Including a Target Set

In this section we develop an FPT algorithm for Minimum 2-Core, with the
number t of target vertices as the parameter. We use some standard notation:
N(v) is the neighborhood of vertex v. A subgraph spanned by an edge set consists
of this edge set and all involved vertices (ignoring any additional edges between
them!). The length of a path is the number of edges.

Consider a graph G = (V, E) with target set T ⊂ V . Clearly, we may assume
that all vertices in G have degree at least 2. We reduce our graph as follows.
Every vertex v gets valency max{2 − |N(v) ∩ T |, 0}, that is, the valency of v is
the number of non-target neighbors that v demands in a 2-core C, provided that
v ∈ C. Target vertices of valency 0 are removed. Edges between target vertices
are removed as well. For convenience we still use G and T to denote the reduced
graph (with vertices labeled by their valencies) still by G, and the remaining
target set, respectively.

For the moment we fix, simultaneously for every target vertex v ∈ T with
valency i, at least i neighbors of v that shall belong to C, and call these neighbors
ports. Clearly, each port has valency 0 (if it is adjacent to several targets) or
1. Later we will discuss how we actually choose these ports, and this is the
point where we will need the Multiple Weighted Hypernode Hitting Set

algorithm for m = 2.
A path in G is said to be regular if all its inner vertices are non-targets and

have valency 2. (In particular, trivial paths of length 0 or 1 are regular.) A subset
F of edges is called saturating if, for every vertex v in the subgraph spanned by
F , the number of edges of F incident to v is at least the valency of v. Note that
C ⊃ T is a 2-core iff some saturating edge set spans all vertices in C \ T of
valency greater than 0. Hence we can work in the following with saturating edge
sets rather than 2-cores, and take advantage of their special structure:

Lemma 2. Let F be a saturating edge set that spans at least the set of ports of
valency 1 and is minimal with this property. Then the subgraph spanned by F
consists of connected components of the following types:

Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets 39

Star: a vertex called the center is connected to distinct ports by internally vertex-
disjoint regular paths (in particular, a star might consist of a single path to only
one port),
Loop: a regular path (possibly of length 0) with a port v at one end, and a cycle
of vertices of valency 2 attached to the other end. We call this structure a loop
for vertex v.

Proof. In the following, all vertex degrees are meant with respect to F , and
removing a vertex means also to remove all incident edges from F .

Let u0 be a vertex of degree larger than 2, and u1 any of its neighbors (u0u1 ∈
F). Since u0 has valency at most 2, and F is minimal, we have u0u1 ∈ F only
because the degree of u1 equals its valency. Hence u1 cannot have valency 0.
If u1 has valency and degree 1, it must be a port, otherwise we could remove
u1 from the component. If u1 has valency and degree 2, let u2 be its other
neighbor. The degree of u2 equals its valency, otherwise we could remove u1. If
u2 has valency and degree 1, it must be a port, otherwise we could remove u1

and u2. If u2 has valency and degree 2, let u3 be its other neighbor, etc. This
inductive argument gives a path u0, . . . , uk where all ui, 0 < i < k, have valency
2, and either uk is a port or uk = u0 (cycle). If every path starting in u0 ends
in a port, the component is a star. Otherwise, there is at most one cycle in the
component, since vertices of all further cycles (except u0) could be removed, due
to minimality. In this case we get a loop.

If u0 as specified above does not exist, all vertex degrees are 1 or 2, hence
the component is just a path or cycle. No two distinct vertices u, v of degree 2
but with smaller valency can exist, since otherwise we could remove the edge or
subpath between u and v, leaving both u and v with at least one neighbor. Thus,
a cycle component has exactly one port and no other vertices of valency smaller
than 2, which yields a loop (consisting of a cycle and a path of length 0). A path
component cannot end with a subpath of vertices with valency 2, since we could
remove such a (maximal) subpath. We conclude that a path component has to
connect two vertices of valency smaller than 2. Moreover, by similar reasoning
as above, at most one inner vertex has valency smaller than 2. If such an inner
vertex exists, both end vertices must be ports, otherwise we could again remove
a subpath. Thus, we get a star with two paths. If all inner vertices have valency
2, at least one end vertex is a port, and we get a star with one or two paths and
an appropriately chosen center. (If a star is merely a regular path connecting
two ports, we can declare an arbitrary vertex the center. Note that a port may
be the center of a star.) �	

For every port we can efficiently compute several items that we have specified
in Lemma 2:

Lemma 3. For every port u we can compute in polynomial time a shortest
regular path from u to every vertex v, and a minimum-size loop for u (if one
exists).

40 P. Damaschke

Proof. We have to prove this for the loop only. For every v, where either v = u
or v has valency 2, we compute a shortest regular u, v-path, and a shortest cycle
through v where all vertices (except v if v = u) have valency 2. Let us call
it a regular cycle. For computing a shortest regular cycle we may check every
neighbor w of v and determine a shortest regular w, v-path avoiding the edge
vw. We claim that, for some v, combining a shortest regular u, v-path and a
shortest regular cycle through v yields a minimum-size loop for u. To prove the
claim, consider a smallest loop for u, and let v be the vertex where path and
cycle intersect. If there are several smallest loops for u, we choose one where the
u, v-path is as short as possible. Assume that some shortest regular u, v-path and
some shortest regular cycle through v intersect in further vertices other than v.
Then, obviously, there exists either a smaller loop for u, or a loop with the same
vertices and edges, where path and cycle intersect in exactly one vertex v′ �= v at
a smaller distance to u. Both cases contradict the choice of the loop. This proves
the claim for the specified v. It follows that we only need to pick a smallest loop
among the shortest path-cycle combinations, for all v. �	

Now we construct in polynomial time an instance of Multiple Weighted

Hypernode Hitting Set, based on Lemma 3.

Nodes and disjoint hyperedges: A hyperedge is assigned to each target vertex
u, and the nodes in the hyperedge of u are the vertices in N(u), however we
“disjunctify” the neighborhoods of target vertices. That is, if a vertex v of G is
adjacent to several targets u, we put one node for v in the hyperedge of every
such u. Furthermore, if target u has valency 1, we represent each vertex in N(u)
by two nodes in the hyperedge of u.

Hypernodes from single vertices: For every vertex v of G being adjacent to more
than one target, all nodes coming from v build a hypernode of weight 1.

Hypernodes from stars: Next we consider every vertex c of G as the center of sev-
eral possible stars. In the following, the regular distance between two vertices of
G is the length of a shortest regular path connecting them. In the neighborhood
of every target vertex of valency 2, we determine two vertices with the smallest
regular distances to c (ties are broken arbitrarily). Similarly, in the neighbor-
hood of every target of valency 1, we determine one vertex with the smallest
regular distance to c. These distinguished vertices will become ports in several
stars with center c. We select some shortest regular path from c to each of the
(at most 2t) ports. Then we consider the (less than 4t) unions of subsets of these
selected regular paths starting in c. Among these unions we keep only the stars,
i.e., unions of regular paths that are pairwise internally vertex-disjoint. Finally,
for any such star we create a hypernode, consisting of the nodes corresponding to
the ports. (Note that for any port adjacent to a target u of valency 1, we include
both corresponding nodes in the hypernode, so that it hits the hyperedge of u
twice.) The weight of a hypernode is the number of vertices in the corresponding
star in G.

Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets 41

Hypernodes from loops: For each vertex v of G such that a loop for v exists, we
create a hypernode corresponding to some minimum-size loop for v. It consists of
all nodes created from v, and its weight is the number of vertices in the selected
minimum-size loop.

This finishes the reduction. We fix m = 2. Now we establish the relationship
between the problems:

Lemma 4. From any optimal solution to the Multiple Weighted Hyper-

node Hitting Set instance constructed above, we can compute in polynomial
time a minimum 2-core including T in G.

Proof. By construction, every hypernode corresponds to some star in G (with
ports adjacent to targets), or some loop for one port (adjacent to some target
in G), or a single vertex adjacent to more than one target. For convenience we
refer to these single vertices as ports of valency 0. Recall that a port has valency
1 (0) if the port is neighbor of one (at least two) target(s).

Let S be an optimal solution to our instance of Multiple Weighted Hy-

pernode Hitting Set with m = 2. Then the vertices in the corresponding
stars and loops, and the ports of valency 0, extend the target set T to a 2-core.
This follows from the shape of stars and loops, and from the fact that S hits
every hyperedge at least twice. By definition of hypernode weights, the weight of
S is at least the total number of vertices in the stars and loops, plus the number
of ports of valency 0 (in other words, the number of non-target vertices in the
2-core).

We claim that the 2-core defined by S has already minimum cardinality.
Assume for contradiction that a smaller 2-core C including T exists, where C

has minimum cardinality. Ports are in the following the vertices of C adjacent to
any targets. Since C is a 2-core, some saturating edge set F spans the vertices
of C \ T of valency greater than 0. In particular, F spans at least the ports
of valency 1 in C. We may assume that F is minimal with this property, since
otherwise a proper subset of F is saturating and spans the same ports of valency
1, and together with the ports of valency 0 this gives a 2-core no larger than C.
Due to minimality, F has the structure reported in Lemma 2, that is, ports of
valency 1 are connected by stars and loops which are pairwise disjoint.

Consider any loop component of F , say, a loop for port v. We may assume
that this loop has minimum size among all possible loops for v, since otherwise
we may replace the loop with a smaller one for v and get a smaller 2-core, a
contradiction. Hence there exists a hypernode for any loop component of F .
Consider any star component of F , with center c. Let v be some port in this
star, adjacent to target u. Note that v has valency 1 and is adjacent to no other
target. If v is not one of the two closest ports v1, v2 in N(u) selected in the
reduction (those with smallest regular distances to c), we replace the path from
c to v in the star, with a shortest regular path from c to v1 or v2, provided that
one of them is not yet in another star or loop. If both v1 and v2 are already
occupied, u has these two neighbors in C, and we can just remove the path from
c to v. Thus, we either obtain a smaller 2-core (contradiction), or we need only

42 P. Damaschke

those ports selected in the reduction. After these replacements, there exists a
hypernode also for any star component in F .

Since C had already minimum size, F is still a minimal saturating edge set
that spans the (possibly changed) ports of valency 1, thus it complies with
the structure in Lemma 2. But now the connected components of F and the
ports of valency 0 in C correspond to hypernodes, and form another solution
S′ to our Multiple Weighted Hypernode Hitting Set instance. Since
the components are pairwise vertex-disjoint, the weight of S′ is the number
of vertices spanned by F , plus the number of ports of valency 0. This finally
contradicts the minimality of the weight of S. �	

Now we can state our final result:

Theorem 3. Minimum 2-Core with t targets can be solved in O∗(2tt!) time.

Proof. This follows from Theorem 1 and Lemma 4, since in the reduction to
Multiple Weighted Hypernode Hitting Set we needed only O∗(4t) time
to construct the weighted hypernodes. �	

References

1. Amini, O., Sau, I., Saurabh, S.: Parameterized complexity of the smallest degree-
constrained subgraph problem. In: 3rd IWPEC 2008. LNCS, vol. 5018, pp. 13–29
(2008)

2. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics 4(2) (2003)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

4. Dreyfus, S., Wagner, R.: The Steiner problem in graphs. Networks 1, 195–207 (1971)
5. Elbassioni, K., Hagen, M., Rauf, I.: Some fixed-parameter tractable classes of hy-

pergraph duality and related problems. In: 3rd IWPEC 2008. LNCS, vol. 5018, pp.
91–102 (2008)

6. Fernau, H.: Parameterized algorithms for hitting set: The weighted case. In: Cala-
moneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp.
332–343. Springer, Heidelberg (2006)

7. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

8. Haas, R., Hoffmann, M.: Chordless paths through three vertices. Theoretical Com-
puter Science 351, 360–371 (2006)

9. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

Parameterized Complexity of Candidate Control

in Elections and Related Digraph Problems

Nadja Betzler� and Johannes Uhlmann�

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
{betzler,uhlmann}@minet.uni-jena.de

Abstract. There are different ways for an external agent to influence
the outcome of an election. We concentrate on “control” by adding or
deleting candidates of an election. Our main focus is to investigate the
parameterized complexity of various control problems for different vot-
ing systems. To this end, we introduce natural digraph problems that
may be of independent interest. They help in determining the parame-
terized complexity of control for different voting systems including Llull,
Copeland, and plurality votings. Devising several parameterized reduc-
tions, we provide a parameterized complexity overview of the digraph
and control problems with respect to natural parameters.

1 Introduction and Preliminaries

The investigation of voting systems is an important field of interdisciplinary
research. Besides obvious classical applications in political or other elections,
voting systems also play an important role in multi-agent systems or rank ag-
gregation. In addition to work that focuses on the problem to determine the
winner of an election for different voting systems, there is a considerable amount
of work investigating how an external agent or a group of voters can influence the
election in favor or disfavor of a distinguished candidate. The studied scenarios
are manipulation [3], electoral control [1,6,7,8], lobbying [2], and bribery [6]. In
this work, we investigate the parameterized complexity of some variants of elec-
toral control and closely related digraph problems. Before describing our results,
we introduce the considered problems.

Problem statements. An election (V, C) consists of a set V of n votes and a set C
of m candidates. A vote is an ordered preference list containing all candidates.
To control an election, an external agent, traditionally called chair, can change
the voting procedure to reach certain goals. The considered types of control are
adding, deleting, or partitioning candidates or voters [1,8]. Further, one distin-
guishes between constructive control (CC), that is, the chair aims at making a
distinguished candidate the winner, and destructive control (DC), that is, the
chair wants to prevent a distinguished candidate from winning [8]. In this work,

� Supported by the DFG, research projects DARE, GU 1023/1 and PABI, NI 369/7.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 43–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 N. Betzler and J. Uhlmann

we focus on candidate control, that is, either deleting or adding candidates, for
plurality and Copelandα votings. In plurality voting, for every vote the candi-
date that is ranked first in the preference list gets one point. The score of a
candidate is the total number of its points. A candidate with the highest score
wins. Note that we still need the whole preference lists of the voters to see the
effects of deleting or adding candidates. Copelandα voting is based on pairwise
comparisons between candidates: A candidate wins the pairwise head-to-head
contest against another candidate if he is better positioned in more than half of
the votes. The winner of a head-to-head contest is awarded one point and the
loser receives no point. If the candidates are tied, both candidates get α points
for 0 ≤ α ≤ 1. A Copelandα winner is a candidate with the highest score. Fal-
iszewski et al. [6] devote their paper to the two important special cases α = 0,
denoted as Copeland, and α = 1, denoted as Llull. Next, we introduce two di-
graph decision problems which are closely related to constructively controlling
Copeland and Llull by deleting candidates.1

Max-Outdegree Deletion (MOD)
Given: A digraph D = (W, A), a distinguished vertex wc ∈ W , and an
integer k ≥ 1.
Question: Is there a subset W ′ ⊆ W \{wc} of size at most k such that wc

is the only vertex that has maximum outdegree in D[W \ W ′]?

Analogously, we define Min-Indegree Deletion (MID), where one wants to
make a distinguished vertex to be the only vertex with minimum indegree. The
correspondence to elections is based on the fact that the relations between the
candidates can be depicted by a digraph where the candidates are represented
by the vertices and there is an arc from vertex c to vertex d iff the corresponding
candidate c defeats the corresponding candidate d in the head-to-head contest.
Then, the deletion of a vertex one-to-one corresponds to the deletion of a candi-
date in the election. Further, the Copeland score of a candidate c is exactly the
number of the out-neighbors of the corresponding vertex vc and the Llull score
is the total number of vertices minus the number of in-neighbors of vc.

Known results. A series of publications [1,6,7,8] provides a complete pic-
ture of the classical computational complexity for four standard voting sys-
tems (approval, plurality, Condorcet, and Copelandα) for ten basic types of
control.2 Concerning candidate control, plurality and Copeland votings lead to
NP-hardness results whereas all other voting systems are either immune or al-
low for polynomial-time solvability [6,7,8]. Regarding parameterized complex-
ity, Faliszewski et al. [7] obtained some first results. They considered control
of Copelandα voting with respect to the parameters “number of candidates”
and “number of votes”. For candidate control they obtained fixed-parameter

1 The digraph problems that are equivalent to adding candidates are omitted due to
space restrictions.

2 Besides the classification into P and NP-hard, a voting system can be classified as
“immune” against a type of control if a non-winner can never be made a winner.

Parameterized Complexity of Candidate Control 45

Table 1. Parameterized complexity of Max-Outdegree Deletion and Min-

Indegree Deletion

deleted vertices k maximum degree d (k, d)
MOD MID MOD MID MOD MID

general digraphs W[2]-c W[2]-c NP-c for d ≥ 3 FPT FPT FPT
acyclic digraphs W[2]-c P NP-c for d ≥ 3 P FPT P
tournaments W[2]-c W[2]-c - - - -

tractability with respect to the parameter “number of candidates”. The param-
eterized complexity with respect to the parameter “number of votes” was left
open. To the best of our knowledge, there is no previous work dealing with the
newly introduced digraph problems MOD and MID.

Motivation. First, from the “control person’s” point of view, it is interesting
to find efficient strategies to reach his goal. There are legal scenarios as for
example persuading additional players to participate in a sport competition in
order to make the favorite player the winner. Parameterized complexity analysis
is meaningful in this context. Second, the fact that a voting system is susceptible
to control or manipulation can be considered as an undesirable property. Thus,
the goal of most publications is to show that, if control is not impossible, it is at
least computationally hard (often showing NP-hardness). Although NP-hardness
is not a sufficient criterion, as it does not imply hardness on the practically
relevant average case, it is plausible to investigate whether there are any hard
instances at all. However, as also noted by Conitzer et al. [3], such hardness
results lose relevance if there are efficient fixed-parameter algorithms for realistic
settings.

Our contributions. We provide a first study of the two natural digraph problems
MOD and MID and show that they are closely related to the considered control
problems. In Section 2, we investigate the computational complexity of MOD and
MID for several special graph classes and parameters providing a differentiated
picture of their parameterized complexity including algorithms and intractability
(Table 1). The main technical achievement of this part is to show that MOD
and MID are W[2]-complete in tournaments. Some of the considered special
cases and parameterizations of the digraph problems map to realistic voting
scenarios with presumably small parameters. Based on these connections and
by giving further parameterized reductions, in Section 3 we provide an overview
of parameterized hardness results for control problems (Table 2). Regarding
the structural parameter “number of votes”, we answer an open question of
Faliszewski et al. [7] for Llull and Copeland votings by showing that even for a
constant number of voters candidate control remains NP-hard. Due to the lack
of space, we defer many details and proofs to a full version.

Preliminaries. In an election, we can either seek for a winner, that is, if there
are several candidates who are best in the election, then all of them win, or for

46 N. Betzler and J. Uhlmann

a unique winner. Note that a unique winner does not always exist. We only con-
sider the unique winner case, but all our results can be easily modified to work
for the winner case as well. We focus on control by adding candidates (AC) or
deleting candidates (DC). Then, for example, we can define the decision prob-
lems of constructively controlling a Copelandα election as follows:

CC-DC-Copeland
α

Given: A set C of candidates, a set V of votes with preferences over C,
a distinguished candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset C′ ⊆ C of size at most k such that c is
(unique) Copelandα winner in the election (V, C\C′)?

CC-AC-Copeland
α

Given: Two disjoint sets C, D of candidates, a set V of votes with prefer-
ences over C∪D, a distinguished candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset D′ ⊆ D of size at most k such that c is
(unique) Copelandα winner in the election (V, C ∪ D′)?

The other problems are defined analogously (see for example [6,8]). The posi-
tion of a candidate a in a vote v is the number of candidates that are better
than a in v plus one. That is, the leftmost (and best) candidate in v has posi-
tion 1 and the rightmost has position m. Further, within every election we fix
some arbitrary order over the candidates. Specifying a subset C′ of candidates
in a vote means that the candidates of C′ are ordered with respect to that fixed
order. An occurrence of

←−
C′ in a vote means that the candidates of C′ are ordered

in reverse to that fixed order.
For a directed graph (digraph) D = (W, A) and for a vertex w ∈ W , the set

of in-neighbors of w is defined as Nin(w) := {u ∈ W | (u, w) ∈ A} and the set
of out-neighbors of w is given by Nout(w) := {u ∈ W | (w, u) ∈ A}. Moreover,
the indegree (outdegree) of w is defined as indeg(w) := |Nin(w)| (outdeg(w) :=
|Nout(w)|). Further, the degree is defined as deg(w) := indeg(w) + outdeg(w).
In digraphs, we do not allow bidirected arcs and loops. An l-arc coloring C :
A → {1, 2, . . . , l} is called proper if any two distinct arcs of the same color do
not share a common vertex. A tournament is a digraph where, for every pair of
vertices u and v, there is either (u, v) or (v, u) in the arc set.

A problem is called fixed-parameter tractable (FPT) with respect to a param-
eter k if it can be solved in f(k)·nO(1) time, where n denotes the input size, and f
is an arbitrary computable function. The first two levels of (presumable) param-
eterized intractability are captured by the complexity classes W[1] and W[2]. A
parameterized reduction reduces a problem instance (I, k) in f(k) · |I|O(1) time
to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a
yes-instance and k′ only depends on k but not on |I|.

As discussed in the introduction, there are parameterized reductions from
MOD (MID) to CC-DC-Copeland (CC-DC-Llull) with respect to the pa-
rameters number of deleted vertices and candidates, respectively. The reverse

Parameterized Complexity of Candidate Control 47

Subsets
F = {F1, F2, . . . , Fm}
over elements =⇒
S = {s1, s2, . . . , sn},
e.g., F1 = {s1, s3},
F2 = {s2, s3}, ...

...

...

......

... ...

s1 s2 s3 sj sn

wc

d1 d2 dx

iff sj ∈ Fi

e1 e2 ez

z := maxm
i=1 |Fi|

F1 F2 F3 Fi Fm

outdeg(Fi) = outdeg(wc)

dummy vertices such that

Fig. 1. Parameterized reduction from a Hitting Set-instance (left) to an MOD-
instance (right). Deleting an “element-vertex” sj in the digraph has the effect that
for all “subset-vertices” corresponding to the subsets containing sj the outdegree is de-
creased below the outdegree of the distinguished vertex wc, that is, the corresponding
subsets are “hit” in the Hitting Set-instance. Further, assume that there is a solution
for the MOD-instance that contains a subset vertex Fi or one of its dummy neighbors.
Then, instead of this vertex we can delete any subset-neighbor sj of Fi. Based on these
observations one can show that there is a hitting set of size k iff wc can become vertex
with maximum outdegree by deleting k vertices.

parameterized reductions can be obtained by a simple construction of Faliszewski
et al. [6]. Thus, we say that the problems are FPT-equivalent.

2 Parameterized Complexity of MOD and MID

This section is concerned with the parameterized complexity of MOD and MID
with respect to the parameters “number of deleted vertices” k and “maximum
degree” d for different classes of graphs. Our results are summarized in Table 1.
In the following, we only prove W[2]-hardness. Using the machinery of Downey
and Fellows [4], it is not hard to also show containment in W[2].

Theorem 1. Max-Outdegree Deletion is W[2]-complete with respect to the
parameter “number of deleted vertices” in acyclic digraphs and NP-complete in
acyclic digraphs with maximum degree three.

The W[2]-hardness can be shown by a parameterized reduction from the W[2]-
complete Hitting Set (HS) problem [5]. Given a subset family F = {F1, F2, . . . ,
Fm} ⊆ 2S of a base set S = {s1, s2, . . . , sn} and an integer k ≥ 1, the Hitting

Set problem asks to decide whether there exists a subset S′ ⊆ S of size at most k
such that for every 1 ≤ i ≤ m we have S′ ∩ Fi �= ∅. We defer the formal proof
of Theorem 1 to the full version of this paper. Here, we only illustrate the basic
construction (see Fig. 1). The resulting digraph of the MOD-instance is acyclic,
which gives the first part of the theorem. The second part directly follows from

48 N. Betzler and J. Uhlmann

the fact that Hitting Set is NP-complete even if every subset has size two and
every element occurs in exactly three subsets (3X-2-Hitting Set).

Proposition 1. a) Min-Indegree Deletion can be solved in polynomial time
in acyclic digraphs. In general digraphs, it is fixed-parameter tractable with re-
spect to the parameter “indegree of the distinguished vertex wc”.

b) Max-Outdegree Deletion is fixed-parameter tractable with respect to
the combined parameters “outdeg(wc)” and “number of deleted vertices k”.

Proof. (Sketch) a) First part (acyclic graphs): Since in acyclic graphs there al-
ways exists a vertex with indegree zero, wc must have indegree zero to be the
only minimum indegree vertex. Thus, one can iteratively delete all other vertices
with indegree zero.

Second part (parameter indeg(wc)): If one knows for an MID-instance which
in-neighbors of the distinguished vertex wc are part of a minimum solution,
then the problem becomes trivial: One can delete these vertices and extend
the resulting partial solution to a minimum-cardinality solution. For this, one
iteratively adds all vertices of indegree smaller than the (new) indegree of wc to
the solution since all vertices of indegree smaller than the distinguished vertex
must be deleted. Hence, exhaustively trying all subsets of in-neighbors of wc

yields an algorithm with running time O(2indeg(wc) · |W |2).
b) Here, we give a simple branching strategy: Consider a vertex u ∈ W \ {wc}

with outdegree at least outdeg(wc). Furthermore, let N ⊆ Nout(u) with |N | =
outdeg(wc). Then, we have to delete one of the vertices in (N ∪{u})\{wc}, that
is, we can branch into at most outdeg(wc)+1 cases. In each case, we can decrease
the parameter k by one, leading to a search tree of size O((outdeg(wc)+1)k). �	

The following theorem is based on a parameterized reduction from the W[2]-
complete Dominating Set problem [5]. The basic idea is similar to the Hitting

Set reduction (Fig. 1), but the details are quite involved.

Theorem 2. Max-Outdegree Deletion and Min-Indegree Deletion are
W[2]-complete with respect to the parameter “number of deleted vertices” even in
the case that the input graph is a tournament.

3 Parameterized Complexity of Candidate Control

In this section, we turn our attention to elections. For candidate control in
Llull and Copeland votings we show NP-hardness for a constant number of
votes. Further, we provide parameterized intractability results with respect to
the number of deleted/added candidates for plurality and Copelandα votings.

Number of votes as parameter. In many election scenarios there is only a small
number of votes. For example, consider a human resources department where few
people are deciding which job applicant gets the employment. An open question

Parameterized Complexity of Candidate Control 49

of Faliszewski et al. [7] regards the parameterized complexity of Copelandα elec-
tions with respect to the parameter “number of votes”. We answer this question
for Llull and Copeland.

Theorem 3. CC-DC-Copeland is NP-complete for six votes, CC-AC-Cope-

land is NP-complete for eight votes, CC-DC-Llull is NP-complete for ten
votes, and CC-AC-Llull is NP-complete for six votes.

Proof. (Sketch) For all problems NP-membership is obvious. We only give the
NP-hardness proof for CC-DC-Copeland to demonstrate the basic idea.

The proof consists of two phases. The first phase is a reduction from 3X-2-

Hitting Set to MOD as depicted in Fig. 1. The digraph D of a resulting MOD-
instance (D, wc, k) has maximum degree three and the underlying undirected
graph of D is bipartite. More precisely, one partition consists of the subset-
vertices and wc, and the other partition consists of the element-vertices and the
neighbors of wc. As we reduce from 3X-2-Hitting Set, we do not have any
further dummy vertices. In the second phase we show that D can be encoded by
an election with only six votes by exploiting this special structure of D.

Now, we describe the second phase. Due to König [9] we know that a bipartite
graph is Δ-edge-colorable, where Δ denotes the maximum degree of the graph.
Moreover, a corresponding proper Δ-edge coloring can be computed in polyno-
mial time. Thus, for D there exists a proper 3-arc-coloring C : A → {R,G,B}.
Note that in the underlying undirected graph of D the edges of the same color
class form a matching, that is, two arcs of the same color do not share a common
vertex. Hence, the coloring C partitions the arc set into three classes of indepen-
dent arcs. We next describe how the arcs of graph D can be encoded in an election
with six votes. Let AR = {(r1, r

′
1), . . . , (rl, r

′
l)} denote the arcs colored by R. Fur-

thermore, WR denotes the set of vertices that are not incident to any arc of AR.
To encode AR, we add the two votes r1 > r′1 > r2 > r′2 > · · · > rl > r′l > WR
and

←−−
WR > rl > r′l > · · · > r2 > r′2 > r1 > r′1 to the election. In the same way

we add two votes for the arcs colored by B and G, respectively. The correctness
of the construction follows from two observations. First, since the arcs of the
same color do not share common endpoints, in every vote all vertices occur ex-
actly once and we have a valid election. Second, consider an arc (w′, w′′) ∈ A
with C((w′, w′′)) = X for any color X ∈ {R,B,G}. Then, w′ defeats w′′ in the
votes vX,1 and vX,2 and ties with w′′ in the remaining four votes. Moreover,
since every arc occurs in exactly one color class, all arcs are encoded, and, since
all other candidates are tied in every pair of the votes, we have ties between all
other pairs of candidates.

In summary, in the constructed Copeland election a candidate c can become
the unique winner by deleting k candidates iff in D the corresponding vertex wc

can become the maximum outdegree vertex by deleting k vertices. �	

Number of deleted/added candidates as parameter. To control an election with-
out raising suspicion one may add or delete only a limited number of candidates.
Here, we investigate whether it is possible to obtain fixed-parameter algorithms

50 N. Betzler and J. Uhlmann

Table 2. Results in boldface are new. The results for Copelandα hold for all 0 ≤ α ≤ 1.
The W[2]-hardness results for CC-AC-Plurality and DC-AC-Plurality follow from the
NP-completeness proofs [1,8]. The polynomial-time (P) results are from [6,7].

Copelandα Plurality
CC DC CC DC

Adding Candidates (AC) W[2]-c P W[2]-h W[2]-h
Deleting Candidates (DC) W[2]-c P W[2]-h W[1]-h

under this assumption. More specifically, we consider the parameterized com-
plexity of destructive and constructive control by adding or deleting a fixed
number of candidates. Our results are summarized in Table 2. It turns out that
all NP-complete problems are intractable from this parameterized point of view
as well. This even holds true for plurality voting, which can be considered as the
“easiest” voting system in terms of winner evaluation and for which the Manip-

ulation problem can be solved optimally by a simple greedy strategy [3].

Copeland. For elections without ties in all pairwise head-to-head contests, CC-
DC-Copelandα coincides for all 0 ≤ α ≤ 1, since these problems only differ
in the way ties are evaluated. As discussed in the introduction MOD and CC-
DC-Copelandα are FPT-equivalent. Using the same reductions one can show
that MOD in tournaments is FPT-equivalent to CC-DC-Copelandα without ties.
Thus, the W[2]-hardness of CC-DC-Copelandα without ties follows directly from
Theorem 2.3 For adding candidates we obtain W[2]-hardness using similar ideas.

Plurality. For plurality voting, the W[2]-hardness results for control by adding
candidates follow from the reductions for the NP-hardness [1,8]. In contrast, the
reductions used to show NP-hardness for control by deleting candidates [1,8] do
not imply their parameterized hardness. Thus, we develop new parameterized
reductions to show W[1]/W[2]-hardness.4 For the constructive case we can show
W[2]-hardness by a reduction from MOD. Note that the encoding of a MOD
instance into a plurality election is more demanding than for Copeland voting
and the other direction (encoding a plurality election into MOD) is not obvious.

Theorem 4. Constructive control of plurality voting by deleting candidates is
W[2]-hard with respect to the parameter “number of deleted candidates”.

Proof. (Sketch) We present a parameterized reduction from MOD. Given an
MOD instance (D = (W, A), wc, k) with W = {w1, w2, . . . , wn} and wc = w1,
we construct an election (V, C) as follows: We have one candidate corresponding
to every vertex, that is, C′ := {ci | wi ∈ W}. The set of candidates C then
consists of C′ and an additional set F of “dummy” candidates (only used to “fill”
3 Having no ties in the pairwise head-to-head contests is a realistic scenario. It is

always the case for an odd number of votes and likely for a large number of votes.
In contrast, the NP-hardness proofs of the considered problems rely on ties [6,7].

4 The class containment for all kinds of candidate control in plurality voting is open.

Parameterized Complexity of Candidate Control 51

positions that cannot be taken by other candidates in our construction). The set
of votes V consists of two subsets V1 and V2. In V1, for every ci ∈ C′ we have
outdeg(wi) votes in which ci is at the first position and with dummy candidates in
the positions from 2 to k+1. Then, for every such vote, the remaining candidates
follow in arbitrary order. In V2, for every ci ∈ C′ we have |W | votes in which ci

is at the first position. For all candidates cj �= ci with wj /∈ Nin(wi), we observe
that in exactly one of these |W | votes cj is at the second position. In all other
of these votes, the second position is filled with a dummy candidate. Moreover,
we add dummies to all positions from 3 to k + 1. Concerning the dummies, in
V1 and V2 we ensure that every dummy candidate f ∈ F has a position better
than k + 2 only in one of the votes. This can be done such that the size of F
is less than (k + 1) · |V |. The dummies exclude the possibility of “accidently”
getting candidates in the first position. Note that by deleting k candidates only
a candidate that is at one of the first k +1 positions in a vote has the possibility
to increase his plurality score. Further, by construction, the dummy candidates
fulfill the following two conditions. First, the score of a dummy candidate can
become at most one. Second, it does never make sense to delete a dummy as by
this only other dummies can get into the first position of a vote. Next, we prove
the correctness of the reduction.

Claim: Candidate c1 can become the plurality winner of (V, C) by deleting k
candidates iff w1 can become the only maximum-degree vertex in D by
deleting k vertices.

“⇒”: Denote the set of deleted candidates by R. We show that after deleting
the set of vertices WR := {wi | ci ∈ R} the vertex w1 is the only vertex with
maximum degree. Before deleting any candidates, for every candidate ci we have
score(ci) = score(c1)+ si with si := outdeg(wi)−outdeg(w1). After deleting the
candidates in R, candidate c1 is the winner. Hence, for i = 2, . . . , |W | we must
have either that score(ci) < score(c1) or that ci is deleted. For a non-deleted
candidate ci with i > 1 the difference between score(ci) and score(c1) must
be decreased by at least si + 1. By construction, the only way to decrease the
difference by one is to delete a candidate such that c1 becomes first in one more
vote and ci does not increase its number of first positions. All candidates that can
be deleted to achieve this correspond to vertices in Nin(wi)\Nin(w1). To improve
upon ci we must delete at least si + 1 candidates that fulfill this requirement.
Hence, in D the outdegree of wi is reduced to be less than the outdegree of w1.

“⇐”: Let T ⊆ D denote the solution for MOD. We can show (“reverse” to the
other direction) that by deleting the set of candidates CT := {ci | wi ∈ T }
candidate c1 becomes a plurality winner. �	

In contrast to Copelandα elections, for plurality elections destructive control by
deleting candidates is NP-hard [8]. We show that it is even W[1]-hard by pre-
senting a parameterized reduction from the W[1]-complete Clique problem [5].
Given an undirected graph G = (W, E) and a positive integer k, the Clique

problem asks to decide whether G contains a complete subgraph of size at least k.

52 N. Betzler and J. Uhlmann

Theorem 5. Destructive control of plurality voting by deleting candidates is
W[1]-hard with respect to the parameter “number of deleted candidates”.

Proof. Given a Clique instance (G = (W, E), k), we construct an election as
follows: The set of candidates is C := CW � CE � {c, w} � D with CW := {cu |
u ∈ W}, CE := {cuv | {u, v} ∈ E}, and a set of dummy candidates D. In the
following, the candidates in CW and CE are called vertex candidates and edge
candidates, respectively. Further, we construct the votes in a way such that w is
the candidate that we like to prevent from winning, c is the only candidate that
can beat w, and D contains dummy candidates that can gain a score of at most
one. In the set of votes V we have for every vertex u ∈ W and for each incident
edge {u, v} ∈ E one vote of the type cu > cuv > c > . . . , that is, there are 2 · |E|
votes of this type, two for every edge. Additionally, V contains |W |+ k · (k − 1)
votes in which w is at the first position and |W | + 1 votes in which c is at the
first position. In all votes, the remaining free positions between 2 and k+

(
k
2

)
+1

are filled with dummies such that every dummy occurs in at most one vote at a
position better than k+

(
k
2

)
+2. This can be done using less than |V |·(k+

(
k
2

)
+1)

dummy candidates. In every vote the candidates that do not occur in this vote
at a position less than (k +

(
k
2

)
+ 1) follow in arbitrary order.

Claim: Graph G contains a clique K of size k iff candidate c can become
plurality winner by deleting k′ := k +

(
k
2

)
candidates.

“⇒”: Delete the k +
(
k
2

)
candidates that correspond to the vertices and edges

of K. Then, for every of the
(
k
2

)
deleted edge candidates we also deleted the two

vertex candidates that correspond to the endpoints of this edge. Therefore, for
every of the

(
k
2

)
edges candidate c gets in the first position in two more votes.

Hence, the score of candidate c is increased by 2 ·
(
k
2

)
= k · (k − 1) and the score

of candidate w is not affected. Thus, the total score of w is |W |+ k · (k − 1) and
the total score of c is |W | + k · (k − 1) + 1; therefore, w is defeated by c.

“⇐”: Note that, by construction, we cannot decrease the score of w and we can-
not increase the score of a vertex candidate (which is at most |W |−1). Further, by
the deletion of at most k′ candidates the score of a dummy candidate can become
at most one, and the score of an edge candidate can become at most two. Hence, c
is the only candidate that can prevent w from winning. Furthermore, as the dele-
tion of at most k′ dummies never moves c into a first position, we can assume that
the solution deletes only edge and vertex candidates.

We omit the proof that the only way to increase the score of c by at least k ·
(k − 1) is to choose edge and vertex candidates that correspond to the vertices
and edges of a clique of size k. �	

References

1. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election.
Mathematical and Computer Modelling 16(8-9), 27–40 (1992)

2. Christian, R., Fellows, M.R., Rosamond, F.A., Slinko, A.M.: On complexity of lob-
bying in multiple referenda. Review of Economic Design 11(3), 217–224 (2007)

Parameterized Complexity of Candidate Control 53

3. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? Journal of the ACM 54(3), 1–33 (2007)

4. Downey, R.G., Fellows, M.R.: Threshold dominating sets and an improved version
of W[2]. Theoretical Computer Science 209, 123–140 (1998)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and
Copeland voting broadly resist bribery and control. In: Proc. of 22nd AAAI 2007,
pp. 724–730 (2007)

7. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Copeland voting
fully resists constructive control. In: Proc. of 4th AAIM 2008 (2008)

8. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: The complex-
ity of precluding an alternative. Artificial Intelligence 171, 255–285 (2007)

9. König, D.: Über Graphen und ihre Anwendungen auf Determinantentheorie und
Mengenlehre. Mathematische Annalen 77, 453–465 (1916)

A Parameterized Perspective

on Packing Paths of Length Two

Henning Fernau and Daniel Raible

Universität Trier, FB IV—Abteilung Informatik, 54286 Trier, Germany
{fernau,raible}@informatik.uni-trier.de

Abstract. We study (vertex-disjoint) packings of paths of length two
(i.e., of P2’s) in graphs under a parameterized perspective. Starting from
a maximal P2-packing P of size j we use extremal combinatorial argu-
ments for determining how many vertices of P appear in some P2-packing
of size (j + 1) (if it exists). We prove that one can ’reuse’ 2.5j vertices.
Based on a WIN-WIN approach, we build an algorithm which decides if a
P2-packing of size at least k exists in a given graph in time O∗(2.4823k).

1 Introduction and Definitions

Mathematical Motivation. We consider a natural generalization of the well-
known matching problem in graphs. Recall that a maximum matching is a max-
imum cardinality set of vertex disjoint edges, i.e., a packing with paths of length
one. We are going to study packings by paths of length two (abbreviated as P2).
More formally, we consider the following problem, called P2-packing:

Given: A graph G = (V, E), and the parameter k.
We ask: Is there a set of k vertex-disjoint P2’s in G?

P. Hell and D. Kirkpatrick [11,9] proved NP-completeness for this problem. In
fact, they showed that general Maximum H-Packing is NP-complete. Here, H
is a graph with at least three vertices in some connected component. Notice that
P2-packing attracts attention as it is NP-hard, whereas the classical matching
problem, which is P1-packing, is solvable in polynomial time.

Parameterized interests. H. Fernau and D. F. Manlove [6] discovered a primal-
dual relation to total edge cover. Recall that an edge cover is a set of edges
EC ⊆ E that cover all vertices of a given graph G = (V, E). An edge cover is
called total if every component in G[EC] has at least two edges. This type of
constraint for covering problems is motivated by modelling clustering properties
within cover sets, see [6]. By matching techniques, the problem of finding an edge
cover of size at most k is solvable in polynomial time. However, the following
Gallai-type identity [6] proves that finding total edge covers of size at most k
is NP-hard: The sum of the number of P2’s in a maximum P2-packing and
the size of a minimum total edge cover equals n = |V |. H. Fernau and D. F.
Manlove [6] also showed that total edge cover is fixed-parameter tractable

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 54–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Parameterized Perspective on Packing Paths of Length Two 55

(or: lies in FPT , for short). This is quite interesting since there are few natural,
unrestricted problems where both the primal and the dual variant are known to
lie in FPT .

Applications. There is a strong link to the test cover (TC) problem [1] with
applications ranging from fault testing and diagnosis, pattern recognition to
biological identification. The input to TC is a hypergraph H = (G, E) and one
wishes to identify a subset E′ ⊆ E (the test cover) such that, for any distinct
i, j ∈ V , there is an e′ ∈ E′ with |e′ ∩ {i.j}| = 1. TC models identification
problems: Given a set of individuals and a set of binary attributes we search for
a minimum subset of attributes that identifies each individual distinctly. For the
special yet important case TCP2, where for all e ∈ E we have |e| ≤ 2, K. M. J.
Bontridder et al. [1] could show the following two assertions. (1) If H has a test
cover of size τ , then there is a P2-packing of size n − τ − 1 that leaves at least
one vertex isolated. (2) If H has a maximal P2-packing of size π that leaves at
least one vertex isolated, then there is a test cover of size n − π − 1. This also
establishes a close relation between test cover and total edge cover. So
we can employ our algorithms to solve the TCP2 case of test cover by using
an initial catalytic branch that determines one vertex that should be isolated.

Discussion of Related Work. R. Hassin and S. Rubinstein [8] found a randomized
35
67 -approximation for finding a maximum P2-packing. K. M. J. Bontridder et
al. [1] studied deterministic approximation algorithms, considering a series of
heuristics H�. H� starts from a maximal P2-packing P and tries to improve it
by replacing � P2’s by �+1 P2’s. The corresponding approximation ratios ρ� are
as follows: ρ0 = 1

3 , ρ1 = 1
2 , ρ2 = 5

9 , ρ3 = 7
11 and ρ� = 2

3 for � ≥ 4.
As any P2-packing instance can be transformed into a 3-set packing in-

stance one can use Y. Liu et al. [12] algorithm which needs O∗(4.613k) steps, or
the very recent algorithm of J. Wang and Q. Feng [14] running in time O(3.523k).
This is the culmination point of a sequence of papers subsequently improving
on the running time of this problem. Alternatively, we can use randomized pa-
rameterized algorithms; the best published algorithms yields a running time of
O∗(2.523k), see [3]. Recently, we were informed by I. Koutis1 that he has de-
veloped a randomized parameterized algorithm for this problem that runs in
time O∗(23k). The first paper to individually study P2-packing under a para-
meterized view was E. Prieto and C. Sloper [13]. The authors were able to prove
a 15k-kernel. Via a clever midpoint search on the kernel they could achieve
a deterministic run time of O∗(3.4033k). Another special case of 3-set pack-

ing studied from a parameterized perspective is 3-dimensional matching, see
[12] for a deterministic algorithm of run time O∗(2.773k). Recently, J. Wang et
al. [15] found a kernel of size 7k for P2-packing, resulting in a deterministic
O∗(2.613k)-algorithm for this problem.

Our Contributions. The main achievements of this paper are: (1) We present
an algorithm which solves this problem in time O∗(2.4823k). (2) We exhibit an
1 Personal communication; the corresponding paper will be presented at ICALP 2008.

56 H. Fernau and D. Raible

extremal combinatorial argument to show that, given a P2-packing of size j and
provided that a larger packing exists, we can reuse 2.5j vertices of the known
packing. This improves a similar result for general 3-set packing [12] where
only 2j elements are reusable. (3) Another novelty is that in this algorithm,
the inductive augmentation step is interleaved with kernelization. This pays off
not only heuristically but also asymptotically by a specific form of combinatorial
analysis. Thereby we can completely skip the time consuming color-coding which
was needed in Liu et al. [12] for 3-set packing. (4) We show that WIN-WIN
games can be played with two different brute-force algorithms to finally achieve
the claimed running time. We believe that especially the idea of saving colors by
extremal combinatorial arguments could be applied in other situations, as well.

Some Notations and Definitions. We only consider undirected graphs G =
(V, E). For a subgraph H of G, denote by N(H) the set of vertices that are not
in H but adjacent to at least one vertex on H , i.e., N(H) = (

⋃
v∈H N({v}))\H .

The subgraph H is adjacent to a vertex v if v ∈ N(H). A P2 in G is a path
which consists of three vertices and two edges. For any path p of this kind we
consider the vertices as numbered such that p = p1p2p3 (where the roles of p1

and p3 might be interchanged). For a path p, V (p) (E(p), resp.) denotes the set
of vertices (edges, resp.) on p. Likewise, for a set of paths P , V (P) :=

⋃
p∈P V (p)

(E(P) :=
⋃

p∈P E(p), resp.).

Kernelization. Based on the work [13] of E. Prieto and C. Sloper, Wang et al.
exhibibited the following result [15]:

Theorem 1. P2-packing admits a kernel with at most 7k vertices.

That result was obtained by optimizing the use of fat and double crowns through
local improvements, called Rule 1 and Rule 2.

We mention here that the (more general results) of H. Fernau and D. Manlove
[6] can be improved for the parametric dual (in the sense of the mentioned Gallai-
type identity) total edge cover, parameterized by kd upperbounding the edge
cover size:

Theorem 2. total edge cover admits a kernel with at most 1.5kd vertices.

Proof. Since we aim at a total edge cover, the largest number of vertices that
can be covered by k edges is 1.5k (namely, if the edge cover is a P2-packing).
Hence, if the graph contains more than 1.5k vertices, we can reject. This leaves
us with a kernel with at most 1.5k vertices. �	

This also allows us to state lower bounds for the kernel sizes, based on works of
J. Chen et al. [2]:

Corollary 1. Trivially, P2-packing does not admit a kernel with less than 3k
vertices. total edge cover does not admit a kernel with less than αakd vertices
for any αd < (7/6), unless P = NP.

A Parameterized Perspective on Packing Paths of Length Two 57

Proof. A P2-packing of size k is only possible in a graph with at least 3k vertices.
Due to Theorem 1 and [2, Theorem 3.1], there does not exist a kernel of size αdkd

for total edge cover under the assumption that P = NP if (7−1)(αd−1) < 1.
�	

2 Combinatorial Properties of P2-Packings

This section is devoted to proving the following combinatorial result by extremal
combinatorial arguments. Notice that Q(2) denotes a set of P2-packings of size
(j + 1). The exact definition of Q(2) will be given later.

Theorem 3. Let P be a maximal P2-packing of size j. If there is a P2-packing
of size (j +1), then there is also a packing Q ∈ Q(2) with |V (P)∩V (Q)| ≥ 2.5j.

The combinatorial properties of Q will be used in the next section by the induc-
tive step of our algorithm for P2-packing. Among all maximal P2-packings of
size (j + 1), we will consider those packings Q that maximize∑

p∈P

∑
q∈Q

1[E(p)=E(q)], (1)

where 1[] is the indicator function. We call the set of these packings Q(1). In
Q(1), we find those packings Q that ’reuse’ the maximum number of P2’s from
the packing P . From Liu et al. [12], we know:

Lemma 1. |V (p) ∩ V (Q)| ≥ 2 for any p ∈ P and Q ∈ Q(1).

Proof. If there is p ∈ P with |V (p)∩V (Q)| = 1, then replace the intersecting path
of Q by p . In the case where |V (p)∩V (Q)| = 0, simply replace an arbitrary q ∈
Q\P , that must exist by pigeon-hole, by p. In both cases, we obtain a packing Q′

of the same size as Q, but
∑

p∈P
∑

q∈Q′ 1[E(p)=E(q)] =
∑

p∈P
∑

q∈Q 1[E(p)=E(q)]+
1, contradicting Q ∈ Q(1). �	

A slightly sharper version is the next assertion:

Corollary 2. If Q ∈ Q(1), then for any p ∈ P with p �∈ Q, there are q1, q2 ∈ Q,
q1 �= q2, with |V (p) ∩ V (qi)| ≥ 1 (i = 1, 2).

Proof. Suppose it exists p ∈ P and only one q ∈ Q with |V (p)∩V (q)| ≥ 2. Then
Q \ {q} ∪ {p} improves on priority (1), contradicting Q ∈ Q(1). �	

We sharpen this combinatorial bound by considering from the set Q(1) only those
P2-packings Q′ which maximize the following second property:∑

p∈P

∑
q∈Q′

|E(p) ∩ E(q)|. (2)

The set of the remaining P2-packings will be called Q(2). So, in Q(2) are those
packings from Q(1) which cover the maximum number of edges in E(P).

58 H. Fernau and D. Raible

In contrast to the general situation with 3-set packing, paths are more
concrete objects that can be shifted or folded along the given graph. These
geometric ideas will be used to finally prove our claimed combinatorial theorem.

We define Pi(Q) := {p ∈ P | i = |p ∩ V (Q)|}. A vertex v ∈ V is a Q-endpoint
if there is a unique q = q1 . . . q3 ∈ Q such that v = q1 or v = q3. A vertex v is
called Q-midpoint if there is a q = q1q2q3 ∈ Q with q2 = v.

1. We call q = q1q2q3 ∈ Q foldable on p = p1p2p3 ∈ P if, for q2 ∈ V (p) ∩ V (q),
we have ps = q2, s ∈ {1, 2, 3}, and either ps+1 �∈ V (Q) or ps−1 �∈ V (Q), see
Figure 1(a).

2. If q is foldable on p, then substituting q by q \ {qi} ∪ {ps±1} with i ∈ {1, 3},
will be called (qi, ps±1)-folding, see Figure 1(b).

3. We call q = q1q2q3 ∈ Q shiftable with respect to q1 (q3, resp.) on p =
p1p2p3 ∈ P if the following holds: q1 ∈ V (p)∩V (q) (q3 ∈ V (p)∩V (q), resp.)
and either ps+1 �∈ V (Q) or ps−1 �∈ V (Q) where ps = q1 (ps = q3, resp.) and
s ∈ {1, 2, 3}, see Figure 1(c).

4. If q is shiftable on p with respect to t ∈ {q1, q3}, then substituting q by
q \ {g} ∪ {ps+1} (or by q \ {g} ∪ {ps−1}, resp.), g ∈ {q1, q3} \ {t}, will be
called (g, ps+1)-shifting ((g, ps−1)-shifting, resp.), see Figure 1(d).

q1

p1

(a) q is foldable
on p.

q1

p1

(b) (q1, p1)-
folding.

p1

q3

(c) q is shiftable
on p.

p1

q3

(d) (q3, p1)-
shifting.

Fig. 1. The black vertices and solid edges indicate the P2-packing P . The polygons
contain the P2’s of the packing Q.

Lemma 2. If q = q1q2q3 ∈ Q with Q ∈ Q(2) is shiftable on p ∈ P with respect to
q1 (or q3, resp.), then there is some p′ ∈ P with p′ �= p such that {q3, q2} ∈ E(p′)
(or {q2, q1} ∈ E(p′), resp.).

Proof. We examine the case where V (p) ∩ V (q) = {q1} and, w.l.o.g., ps+1 �∈
V (Q). Now assume the contrary. Then by (q3, ps+1)-shifting, we obtain a P2-
packing Q′. Comparing Q and Q′ with respect to priority 1, Q′ is no worse than
Q. But Q′ improves on priority 2, as we gain {ps, ps+1}. But this contradicts
Q ∈ Q(2). �	

Lemma 3. If Q ∈ Q(2), then no q ∈ Q is foldable.

Proof. Suppose some q ∈ Q is foldable on p and, w.l.o.g., ps+1 �∈ V (Q). Then
by (q1, ps+1)-folding q we could improve on priority 2 (without weakening prior-
ity 1), contradicting Q ∈ Q(2). �	

A Parameterized Perspective on Packing Paths of Length Two 59

Suppose there is a path p with |V (p) ∩ V (Q)| = 2. Then p shares exactly one
vertex pq′ , pq′′ with paths q′, q′′ ∈ Q due to Corollary 2. In the following pq′ and
pq′′ will always refer to the two cut vertices of the paths q′, q′′ ∈ Q which cut a
path p with |V (p) ∩ V (Q)| = 2.

Lemma 4. Let Q ∈ Q(2). Consider p ∈ P with |V (p) ∩ V (Q)| = 2 and neither
pq′ nor pq′′ are Q-endpoints. Then one of q′, q′′ is foldable.

Proof. Let i, j ∈ {1, 2, 3} such that pq′ = pi and pq′′ = pj . Then for f ∈ {1, 2, 3}\
{i, j}, we have pf �∈ V (Q). W.l.o.g., {pi, pf} ∈ E(p). Then q′ is (q′1, pf)-foldable.

�	
Corollary 3. Let Q ∈ Q(2) and p ∈ P with |V (p) ∩ V (Q)| = 2. Then one of
pq′ , pq′′ must be a Q-endpoint.

Proof. Assume the contrary. Then using Lemmas 3 and 4 lead to a contradiction.
�	

Proof. (of Theorem 3) Suppose there is a path p ∈ P with |V (p)∩V (Q)| = 2. By
Corollary 3, w.l.o.g.. pq′ is a Q-endpoint. For pq′′ there are two possibilities: a)
pq′′ is also a Q-endpoint. Let {pf} = V (p)\{pq′, pq′′}. Then, w.l.o.g., {pq′ , pf} ∈
E(p). Therefore pq′ is shiftable. b) pq′′ is a Q-midpoint.

Claim. pq′′ �= p2: Suppose the contrary. Then w.l.o.g., pq′ = p1 and thus q′′ is
foldable on p by a (q′′1 , p3)-folding. This contradicts Lemma 3. The claim follows.
W.l.o.g., we assume pq′′ = p1. Then it follows that pq′ = p2, as otherwise a
(q′′1 , p2)-folding would contradict Lemma 3 again. From pq′ = p2 and p3 �∈ V (Q)
we can derive that also in this case pq′ is shiftable.

We now examine for both cases the implications of the shiftability of pq′ . W.l.o.g.,
we suppose that pq′ = q′1. Due to Lemma 2 there is a p′ ∈ P with {q′3, q′2} ∈
E(p′). From Corollary 2, it follows that there must be a q̄ ∈ Q \ {q′} with
|V (p′) ∩ V (q̄)| = 1. Hence, |V (p′) ∩ V (Q)| = 3. Note that q′ is the only path in
Q with |V (q′) ∩ V (p′)| = 2. Summarizing, we can say that for any p ∈ P with
|V (p)∩V (Q)| = 2 we find a distinct p′ ∈ P (via q′) such that |V (p′)∩V (Q)| = 3.
So, there is a total injection γ from P2(Q) to P3(Q). From |P2(Q)∪P3(Q)| = j
and the existence of γ we derive |P2(Q)| ≤ 0.5j. This implies |V (P) ∩ V (Q)| =
2|P2(Q)| + 3|P3(Q)| ≥ 2.5j. �	

3 The Algorithm

We are going to discuss three main aspects of Algorithm 1: (1) how matching
techniques can be used in the WIN-WIN-approach, (2) why the algorithm is
yielding a correct solution, and (3) how the run time is estimated.

3.1 Used Matching Techniques

We would like to point out the following two facts about P2-packings. First, if a
graph has a P2-packing P = {p1, . . . , pk}, then it suffices to know the set of mid-
points MP = {p1

2, . . . , p
k
2} to construct a P2-packing of size k (which is possibly

60 H. Fernau and D. Raible

Algorithm 1. An Algorithm for finding a P2-packing P with |P| ≥ k if possible.
1: repeat
2: {Apply the crown-based kernelization algorithm exhibited in [15].}
3: Greedily extend P to a maximal packing using Rule 1 and Rule 2.
4: Try to find a double or fat crown.
5: until P is not changed
6: j ← |P|.
7: if j ≥ k then
8: return YES
9: P ′ ← ∅

10: for �=0 to 0.3251j do
11: for all Si ⊆ V (P), So ⊆ V \ V (P) with |Si| = (j + 1) − � and |So| = � do
12: Try to construct a P2-packing P ′ with Si ∪ So as midpoints.
13: for �̄ = 0 to 0.1749j + 3 do
14: for all Bi ⊆ V (P), Bo ⊆ V \ V (P) with |Bi| = 2(j + 1) − �̄ and |Bo| = �̄ do
15: for all possible endpoint pairs (e1

1, e
1
2), . . . , (e

j+1
1 , ej+1

2) from Bi ∪ Bo do
16: Try to construct a P2-packing P ′with (e1

1, e
1
2), . . . , (e

j+1
1 , ej+1

2) as endpoint
pairs.

17: if P ′ �= ∅ then
18: P ← P ′; goto 1.
19: else
20: return NO

P) in polynomial time. This fact was discovered by E. Prieto and C. Sloper [13]
and basically can be achieved by bipartite matching techniques. Secondly, it also
suffices to know the set of endpoint pairs EP = {(p1

1, p
1
3), . . . , (pk

1 , pk
3)} to con-

struct a P2-packing of size k in polynomial time. This is due to Lemma 3.3 of
Jia et al. [10] as any P2-packing instance also can be viewed as a 3-set packing

instance. This is the basic ingredient for the WIN-WIN strategy used in Alg. 1
to finally tune the running time.

Details on the mentioned matching techniques can be found in the following
two propositions.

Proposition 1. Let the vertex set M = {m1, . . . , mj} contain all the midpoints
of some P2-packing P in a graph G(V, E). Then we can construct a P2-packing
P ′ of size j in polynomial time.

Proof. Use the following algorithm:

– Find a maximum matching M in the auxiliary bipartite graph G′ = (V ′, E′),
where V ′ = A ∪ B is the bipartition with A = M× {1, 2} and B = V \ M,
E′ = {{(u, i), w} | 1 ≤ i ≤ 2, u ∈ A, w ∈ B, {u, w} ∈ E}.

– If all elements of A are matched in M , then we have found a packing P ′ of
G as follows: P ′ = {(x, y, z) | {{(y, 1), x}, {(y, 2), z}} ⊆ M}.

Note that MP = {{{(p2, 1), p3}, {(p2, 2), p1}} | p1p2p3 ∈ P} matches A into B
in G′. Thus, P ′ must exist and is of size j. �	

A Parameterized Perspective on Packing Paths of Length Two 61

Proposition 2. Let the tuple set E = {(e1
1, e

1
2), . . . , (e

j
1, e

j
2)} contain all endpoint

pairs of some P2-packing P in G(V, E). Then we can construct a P2-packing P ′

of size j in polynomial time.

Proof. Use the following algorithm:

– Find a maximum matching M in the auxiliary bipartite graph G′ = (V ′, E′),
where V ′ = A ∪ B is the bipartition with A = E and B = V \ {v ∈ V |
∃(eh

1 , eh
2) ∈ E with v = eh

1 or v = eh
2}, E′ = {{(eh

1 , eh
2), u} | (eh

1 , eh
2) ∈ A, u ∈

B, {eh
1 , u} ∈ E and {eh

2 , u} ∈ E}
– If all elements of A are matched in M , then we have found a packing P ′ of

G as follows: P ′ = {(eh
1 , eh

2 , u) | {(eh
1 , eh

2), u} ∈ M}
Note that MP = {{(p1, p3), p2} | p1p2p3 ∈ P} matches A into B in G′. Thus, P ′

must exist and is of size j. �	

3.2 Correctness

The correctness of the kernelization part is shown in [15].
If a P2-packing P ′ with |P ′| = j + 1 exists, we can partition the midpoints

MP′ in a part which lies within V (P) and one which lies outside. We call them
Mi

P′ := MP′∩V (P) and Mo
P′ := MP′∩O, respectively with O := V (P ′)\V (P).

Theorem 3 yields |O| ≤ 0.5j+3 and thus |Mo
P′ | ≤ 0.5j+3. Basically, we can find

an integer � with 0 ≤ � ≤ 0.5j + 3 such that |Mi
P′ | = (j + 1)− � and |Mo

P′ | = �.
In step 10 we run through every such � until we reach 0.3251j. For any choice
of �, in step 11 we cycle through all possibilities of choosing sets Si ⊆ V (P) and
So ⊆ V \ V (P) such that |Si| = (j + 1) − � and |So| = �. Here Si and So are
candidates for Mi

P′ and Mo
P′ , respectively. For any choice of Si and So we try

to construct a P2-packing. If we succeed once we can return the desired larger
P2-packing. Otherwise we reach the point where � = 0.3251j. At this point we
change our strategy. Instead of looking for the midpoints of P ′ we focus on the
endpoints. We do so because this will improve the run time as we will see later.
O is the disjoint union of Mo

P′ and the endpoints of P ′ which do not lie in V (P)
which we call Eo

P′ . At this point we must have |Mo
P′ | > 0.3251j and therefore

|Eo
P′ | < 0.1749j + 3 as O ≤ 0.5j + 3. Now there must be an integer �̄ with

0 ≤ �̄ ≤ 0.1785j + 3 such that |Eo
P′ | = �̄ and the number of endpoints within

V (P) (called Ei
P′) must be 2(j + 1) − �̄. In step 13 we iterate through �̄. In the

next step we cycle through all candidate sets for Eo
P and Ei

P which are called
Bi and Bo in the algorithm.

In step 15 we consider all possibilities (e1
1, e

1
2), . . . , (e

j+1
1 , ej+1

2) of how to pair
the vertices in Bi ∪ Bo. A pair of endpoints (es

r, e
s
r+1) means that both ver-

tices should appear in the same P2 of P ′. Finally, we try to construct P ′ from
(e1

1, e
1
2), . . . , (e

j+1
1 , ej+1

2) by computing a matching according to [10].

3.3 Running Time

The only exponential run time contribution comes from the for-loops in Alg. 1.
For any � we execute step 10 at most

(
3j

(j+1)−�

)(
4j
�

)
∈ O

((
3j

j−�

)(
4j
�

))
times, since

62 H. Fernau and D. Raible

|V (P)| = 3j and |V \ V (P)| ≤ 4j due to Theorem 1. Likewise, O
((

3j
2j−�

)(
4j
�

))
upperbounds step 13.

Lemma 5. For any integer z with 0 ≤ z ≤ 0.5j − 1 the following holds:

1.
(

3j
j−z

)(
4j
z

)
<
(

3j
j−(z+1)

)(
4j

z+1

)
; and 2.

(
3j

2j−z

)(
4j
z

)
<
(

3j
2j−(z+1)

)(
4j

z+1

)
.

Proof. 1. We have
(

3j
j−(z+1)

)(
4j

z+1

)
−
(

3j
j−z

)(
4j
z

)
= (3j)!(4j)!((j−z)(4j−z)−(2j+z+1)(z+1))

(j−z)!(2j+z+1)!(z+1)!(4j−z)! .

Now it is enough to show (j − z)(4j − z) − (2j + z + 1)(z + 1)) > 0 which
evaluates to 4j2 − 7jz − 2j − 2z − 1 > 0. For the given z this always is true.

2. We have
(

3j
2j−(z+1)

)(
4j

z+1

)
−
(

3j
2j−z

)(
4j
z

)
= (3j)!(4j)!((2j−z)(4j−z)−(j+z+1)(z+1))

(2j−z)!(j+z+1)!(z+1)!(4j−z)! .

Then ((2j − z)(4j − z) − (j + z + 1)(z + 1)) = 8j2 − 7jz − j − 2z − 1 which
for the given z is greater than zero. �	

With Lemma 5 step 10 is upperbounded by O
((

3j
(0.6749)j

)(
4j

0.3251j

))
and step 13

by O
((

3j
1.8251j

)(
4j

0.1749j

))
. Both are dominated by O(15.285j). Notice the asymp-

totic speed-up we achieve by changing the strategy (WIN-WIN).

Theorem 4. P2-packing can be solved in time O∗(2.4823k).

4 Future Work

It would be nice to derive smaller kernels than 7k or 1.5k for P2-packing or
total edge cover, resp., in view of the mentioned lower bound results [2].

A closely related problem is Maximum P3-packing for which R. Hassin and
S. Rubinstein [7] found a 3

4 -approximation. We try to apply extremal combi-
natorial methods to save colors for Pd-packings for d ≥ 3. First results seem
to be promising. So, a detailed combinatorial (extremal structure) study of (say
graph) structure under the perspective of a specific combinatorial problem seems
to pay off not only for kernelization (see [5]), but also for iterative approaches.

Developing exact algorithms for maximum P2-packing would be interesting.
Dynamic programming yields an O∗(2n)-algorithm. By Theorem 2, total edge

cover can be solved in time O∗(21.5k) ⊆ O∗(2.829k). Improving on exact al-
gorithmics would also improve on the parameterized algorithm for total edge

cover. Alternatively, find a search-tree algorithm for total edge cover.
We finally mention that H. Fernau, J. Kneis and P. Rossmanith could show

that also the general test cover problem is in FPT , a bit surprising in view
of the fact that the quite similar feature set problem is W[2]-complete [4].
However, the general algorithm is far from practical and needs to be improved.

References

1. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Lenstra, J.K., Ravi,
R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Progr.
Ser. B 98, 477–491 (2003)

A Parameterized Perspective on Packing Paths of Length Two 63

2. Chen, J., Fernau, H., Kanj, Y.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM Journal on Computing 37,
1077–1108 (2007)

3. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Symposium on
Discrete Algorithms SODA, pp. 298–307. SIAM, Philadelphia (2007)

4. Cotta, C., Moscato, P.: On the parameterized complextiy of problems related with
feature identification for gene expression data mining techniques. Bioinformatics 1,
1–8 (2002)

5. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time
extremal structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) Algorithms
and Complexity in Durham ACiD 2005. Texts in Algorithmics, vol. 4, pp. 1–41.
King’s College Publications (2005)

6. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Com-
plexity and algorithms. In: Algorithms and Complexity in Durham ACiD 2006, pp.
69–84. King’s College, London (2006)

7. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum of 3-edge
paths. Information Processing Letters 63, 63–67 (1997)

8. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle
packing. Discrete Applied Mathematics 154, 971–979; 2620 [Erratum] (2006)

9. Hell, P., Kirkpatrick, D.G.: Star factors and star packings. Technical Report 82-
6, Computing Science, Simon Fraser University, Burnaby, B.C. V5A1S6, Canada
(1982)

10. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. Journal of Algorithms 50, 106–117 (2004)

11. Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem.
In: ACM Symposium on Theory of Computing STOC, pp. 240–245 (1978)

12. Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

13. Prieto, E., Sloper, C.: Looking at the stars. In: Downey, R., Fellows, M., Dehne,
F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 138–148. Springer, Heidelberg (2004)

14. Wang, J., Feng, Q.: An O∗(3.523k) parameterized algorithm for 3-set packing. In:
Agrawal, M., et al. (eds.) Theory and Applications of Models of Computation
TAMC. LNCS, vol. 4978, pp. 82–93. Springer, Heidelberg (2008)

15. Wang, J., Ning, D., Feng, Q., Chen, J.: An improved parameterized algorithm for a
generalized matching problem. In: Agrawal, M., Du., D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 212–222. Springer, Heidelberg (2008)

New Algorithms for k-Center and Extensions

René Brandenberg and Lucia Roth�

Zentrum Mathematik, Technische Universität München,
Boltzmannstr. 3, D–85747 Garching b. München, Germany

{brandenb,roth}@ma.tum.de

Abstract. The problem of interest is covering a given point set with
homothetic copies of several convex containers C1, . . . , Ck, while the ob-
jective is to minimize the maximum over the dilatation factors. Such k-
containment problems arise in various applications, e.g. in facility
location, shape fitting, data classification or clustering. So far most at-
tention has been paid to the special case of the Euclidean k-center prob-
lem, where all containers Ci are Euclidean unit balls. New developments
based on so-called core-sets enable not only better theoretical bounds
in the running time of approximation algorithms but also improvements
in practically solvable input sizes. Here, we present some new geomet-
ric inequalities and a Mixed-Integer-Convex-Programming formulation.
Both are used in a very effective branch-and-bound routine which not
only improves on best known running times in the Euclidean case but
also handles general and even different containers among the Ci.

Keywords: approximation algorithms, branch-and-bound, computa-
tional geometry, geometric inequalities, containment, core-sets, k-center,
diameter partition, SOCP, 2-SAT.

1 Introduction

The issue of the following is the k-containment problem, that is covering a given
point set with homothetic copies of several convex containers C1, . . . , Ck, while
the objective is to minimize the maximum over the dilatation factors used in the
covering. k-Containment problems arise in various applications, for instance in
facility location, shape fitting, data classification or clustering (see [2], [18], [31],
and [35] for several examples).

The k-center problem (the k-containment problem with identical containers)
is known to be NP-complete in general dimensions even when k ≥ 2 and all
containers are Euclidean unit balls (the Euclidean k-center problem) or k ≥ 3
and all containers are l∞ unit cubes [29]. Many approximation algorithms have
been suggested for solving k-center problems (see [1] and the surveys [2], [31]).
In many papers, the aim is improving complexity bounds and the presented
algorithms are mostly of theoretical value. For practical purposes many purely

� Supported by the “Deutsche Forschungsgemeinschaft” through the graduate pro-
gram “Angewandte Algorithmische Mathematik”, Technische Universität München.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 64–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{brandenb,roth}@ma.tum.de

New Algorithms for k-Center and Extensions 65

heuristic approaches exist (see e.g. [3], [19], [23], or [35]). Although they behave
well for many inputs, they fail to provide provable guarantees.

So far most attention has been paid to the Euclidean k-center problem. Until
recently it was believed that even in this case there is little hope to solve bigger
instances, i.e. n ≥ 3 or k ≥ 3 (see e.g. [31]). Therefore, the planar Euclidean
2-center problem has been studied separately, for instance in [13], [14], [21],
[24], and [32]. Recent progress is due to so-called core-sets [11], which gain a
polynomial time approximation scheme (PTAS) for Euclidean k-center. However,
the proposed full enumeration of all partitions of possible core-sets quickly causes
non-computability in practice, even for moderate approximation errors. A first
simple branch-and-bound (B&B) algorithm was suggested in [27].

Nevertheless, non-Euclidean containers are of practical interest, too. For in-
stance in data analysis, the goal is in finding “similar” data points. Usually, there
is no inherent reason why the 2-norm should be the better choice to express rela-
tions between data points than e.g. the 1- or ∞-norm. This is noteworthy as the
polytopal norms often simplify calculations, e.g. in pattern recognition [28]. Spe-
cial cases of rectilinear k-center problems have been addressed in [6] and [22]. In
facility location (see e.g. Sect. 6) and shape fitting (see e.g. [9]) even non-symmetric
and/or different container shapes may occur. Our algorithms allow both, general
shapes and different Ci’s within one instance (see Fig. 2 and 3 for examples).

Sections 2 and 3 address the basic definitions and a fundamental B&B pro-
cedure with good practical performance. In Sect. 4, a Mixed Integer Convex
Programming formulation is given and its relaxation is used for further per-
formance improvements. Especially if k = 2, further progress is achieved by
diameter partitioning algorithms. These are described in Sect. 5, also including
a couple of new geometric inequalities guaranteeing good bounds and a 2-SAT

formulation used for the 2-containment problem with different containers. Both
Sects. 2 and 3 are enhanced by some examples and experiments.1 We stress that
the new methods apply to a wider class of problems, therefore state them in full
generality and provide an example in Sect. 6 indicating the use of the extension.

2 Problem Formulation

A container C is a full dimensional, convex, and compact subset of Rn with
0 ∈ int(C). For any container C and any x ∈ Rn let ‖x‖C := minρ≥0{x ∈ ρC}.
Furthermore, for any point set P ⊂ Rn let R(P, C) := minc∈Rn maxp∈P ‖p− c‖C

and d(P, C) := maxp,q∈P R({p, q}, C).
For any container C ⊂ Rn, let sC denote the Minkowski symmetry of C, that

is the maximal dilatation factor ρ such that some translate of −ρC is contained
in C, or for short sC = 1/R(−C, C). Obviously, sC ≤ 1, and we say that C is
symmetric if and only if sC = 1. In the latter case C can be translated such
1 The experiments are restricted to exemplary tests with balls and cubes as containers,

in order to allow valuation of the running times. Note that our results may be more
important for other container shapes, where no specialized methods such as the
core-set results apply.

66 R. Brandenberg and L. Roth

that C = −C, i.e. C is 0-symmetric. Furthermore, sC ≥ 1/n follows from John’s
theorem [25] (and can easily be shown directly).2

If C is 0-symmetric, ‖ · ‖C : Rn → R denotes the Minkowski norm with
unit ball C. In this case, R(P, C) and d(P, C) denote the outer radius and half-
diameter of P with respect to ‖ · ‖C . Furthermore, if P and C are symmetric,
R(P, C) = d(P, C) [16]. However, be aware that ‖x‖C �= ‖ − x‖C for some
x ∈ Rn if C �= −C. Now, the problem of interest can be stated. Let k ∈ N, and
for 1 ≤ i ≤ k, let Cn

i be families of n-dimensional containers and Pn the family
of finite point sets in Rn.

Minimal k-Containment Problem under Homothetics(k-MCPP
Hom)

Input: n ∈ N, m ∈ N, P = {p1, . . . , pm} ⊂ Pn, C1 ∈ Cn
1 , . . . , Ck ∈ Cn

k .
Task: min ρ, s. th. P = {p1, . . . , pm} ⊂

⋃
1≤i≤k(ci + ρCi), c1, . . . , ck ∈ Rn.

The optimal value ρ is denoted by R(P, C1, . . . , Ck). If k = 1, we get the
minimal 1-containment problem under homothetics, which indeed computes the
outer radius R(P, C) of P with respect to the (non-symmetric) norm ‖·‖C . When
solving k-containment problems for general containers C, many and therefore
fast computations of R(P, C) and especially R({p, q}, C) with {p, q} ⊂ P are
needed. An overview on good solution or approximation techniques for different
representations of the container C is given in [10]. k-MCPP

Hom becomes the well
known k-center problem when C = C1 = . . . = Ck:

k-Center Problem

Input: n ∈ N, m ∈ N, P = {p1, . . . , pm} ∈ Pn, C ∈ Cn.
Task: min ρ, s. th. ∀j ∈ {1, . . . , m} ∃i ∈ {1, . . . , k} : ‖pj − ci‖C ≤ ρ,

c1, . . . , ck ∈ Rn.

In this case the optimal radius ρ is denoted by Rk(P, C).

3 A Core-Set Based Branch-and-Bound Scheme

In this section, we describe a basic core-set based B&B algorithm for k-MCPP
Hom.

3.1 Core-Sets

Let S ⊂ P such that all points of S are assigned consistently with an optimal
solution of the full k-MCPP

Hom instance. For each of the k parts Si ⊂ S, let
ci denote a center in an optimal solution of the corresponding 1-containment
problem. Let ρ = maxi R(Si, Ci). If for all p ∈ P an index i exists such that
p ∈ ci + (1 + ε)ρCi, we have

ρ ≤ R(P, C1, . . . , Ck) ≤ (1 + ε)ρ
2 Note that sC of vertex- or facet-presented polytopes C can be computed via linear

programming [17].

New Algorithms for k-Center and Extensions 67

implying an ε-approximate solution of k-MCPP
Hom. Any such S is called an ε-

core-set of P (with respect to C1, . . . , Ck).
In [11] it was shown that if all Ci are Euclidean, the sizes of the core-sets

depend only on ε and neither on n nor m. Helly’s theorem [20] implies the
existence of core-sets whose size is independent of the number of points in P
for all container shapes. However, dimension independence does not hold true
for general (non-symmetric) containers [10].3 Furthermore, one should note that
in l∞-spaces every diametrical pair of points is a 0-core-set (see Sect. 5.1), but
that the algorithm as proposed in [11] may construct a core-set of size depending
on n [10].

3.2 Branch-and-Bound Scheme

At each node in the B&B tree, we regard a core-set S ⊂ P already partitioned
into clusters Si which have to be covered by homothetic copies of the containers
Ci. For the branching, a point p∗ ∈ P \ S not (yet) covered is chosen and
added to each of the sets Si consecutively. We choose the point p maximizing
mini ‖p − ci‖Ci

4, or, in case the maximum is too expensive to compute, any
point p with ‖p − ci‖Ci bigger than the current (1 + ε)maxi ρi. The remaining
points play no further role in this step of the basic B&B procedure. (This will
be improved in Sect. 4.)

For the branching, the clusters are sorted according to the distances ‖p−ci‖Ci

and then p∗ is assigned to the nearest cluster first. With this greedy-like strategy,
good upper bounds are computed at an early stage of the algorithm, resulting
in fast truncation of many branches and shorter overall running time. Solving
the 1-center instances for each Ci and its assigned core-set points generates first
lower bounds on the optimal value for the subtree below the current node.5

The algorithm returns an ε-core-set S ⊂ P consisting of the points chosen
at the nodes of an optimal branch, partitioned into k subsets S1, . . . , Sk, corre-
sponding to the assignment of the points to the containers C1, . . . , Ck.

Algorithm 16

initialize: set Si = ∅, ρi = 0, ci arbitrarily for all i,
and ρ̄ to an upper bound for R(P, C1, . . . , Ck)

k-containment(Si, ρi, ci):
update the global upper bound ρ̄
compute δ = maxp∈P\

⋃
Si

mini(‖p − ci‖Ci)
let p∗ the point where the maximum is attained

3 In case of general symmetric containers the existence of dimension independent ε-
core-sets is open.

4 In [27] p∗ maximizes mini(‖p − ci‖Ci − ρi), but our choice yields better results.
5 It is recommendable to compute the ‖.‖Ci -distances between the new point and the

points already assigned to Si first to prevent unnecessary radius computations.
6 The algorithm is written down recursively for better readability. However, to gain

good running times, recursion in implementations should be avoided.

68 R. Brandenberg and L. Roth

if (1 + ε)maxi ρi ≥ δ: return
else: sort cluster indices descending according to ‖p∗ − ci‖Ci

for j = i1, . . . , ik:
recompute cj and ρj for Sj = Sj ∪ p∗

if maxi ρi ≤ ρ̄(1 + ε):
k-containment(Si, ρi, ci)

return the best Si, ρi, and ci found

Testing the (1 + ε)-containment condition at each node of the tree yields an
approximation algorithm with a running time of O(khnm), where h is the size
of a maximal core-set constructed during the algorithm. It follows from [11]
that for Euclidean k-center this B&B algorithm is a PTAS as h = O(k/ε2) in
this case.

If an upper bound for the optimal radius is known, ρ̄ can be initialized ac-
cordingly. Since the first k steps of Algorithm 1 (i.e. when each cluster contains
exactly one point), match the first k steps of the greedy algorithm in [15] (as-
suming that the distance to an empty cluster is set to zero), in the symmetric
case an approximation factor of at least 2 can be guaranteed at that stage.

According to [27], the implementation reported there is the first to practically
solve huge k-center instances. The experiments in that paper show that the B&B
algorithm used performs much better on practical data sets than the predicted
worst case running times suggest. It is concluded that in dimensions 2 and 3,
Euclidean k-center is practical for ε ≥ 0.01 and k ≤ 4, whereas computations
in 3-space are significantly more expensive than in 2-space. The latter is caused
in the fact, that though the upper bounds on core-set sizes are dimension inde-
pendent, in practical computations the core-set sizes in lower dimensions are far
from the upper bounds and grow noticeably with the dimension (and so do the
running times of the B&B procedure). However, it is also reported that “some
of the data sets [...] solved in 3D [...], ran for almost a week on an Intel Ita-
nium system”. Our implementation allows solving Euclidean k-center instances
with bigger input sizes even in higher dimensions and for greater k values within
some hours (at most) on an Intel Core 2 system7. Our realization of Algorithm
1 already substancially improves the running times as reported in [27] and fur-
ther improvements are obtained by the methods presented in the following. In
addition to that, our methods apply to general k-containment problems.

4 Convex Relaxation

In this section, a version of k-MCPP
Hom with additional information is considered.

It is assumed that the correct clusters are known for some of the points in P .
This is a natural hypothesis in the context of a B&B scheme and enhances the
chances to compute good upper and lower bounds for the optimal solution.

Especially good lower bounds are crucial for the performance of a B&B pro-
cedure. Whereas Algorithm 1 computes local lower bounds by determining the
7 Both implementations use Matlab and comparable SOCP solvers.

New Algorithms for k-Center and Extensions 69

radii of the current clusters, we now propose lower bounds taking both, assigned
and unassigned points, into account. The new bounds are at least as good as the
old ones, but usually much better.

4.1 A Mixed-Integer-Convex Program

Recall that the core-set S = S1 ∪ . . . ∪ Sk denotes the assigned subset of P ,
i.e. Si ⊂ ci + ρCi for some ci ∈ Rn and ρ > 0, i = 1, . . . , k. Now, let S0 ⊂ P \ S
denote some of the unassigned points. Then the k-MCPP

Hom with assigned points
in S1, . . . , Sk �= ∅ can be formulated as a mixed integer convex program with
variables ρ, ci and λij ∈ {0, 1}. For this purpose for each pj ∈ S0 and each
possible cluster Si, a reference point qij ∈ conv(Si) is fixed (see Sect. 4.2 for
strategies for choosing these points).

min ρ
‖pj − ci‖Ci ≤ ρ ∀pj ∈ Si, i = 1, . . . , k

‖λijpj − ci + (1 − λij)qij‖Ci ≤ ρ ∀pj ∈ S0, ∀i = 1, . . . , k
k∑

i=1

λij = 1 ∀pj ∈ S0

λij ∈ {0, 1} ∀pj ∈ S0, ∀i = 1, . . . , k

(1)

So, whenever λij = 0 only the reference point qij has to be covered, a redun-
dant condition. In contrast, pj actually has to be contained in the homothetic
copy of Ci if λij = 1.

4.2 Relaxation

Relaxing the {0, 1}-condition on the multipliers λij yields a convex program,
providing a lower bound for R(P, C1, . . . , Ck). A possible interpretation of the
relaxation is including not the point pj itself but a point on the line section
between pj and qij for all i, whereas the constraint

∑k
i=1 λij = 1 enforces that

not all of these points can be close to the reference points (see Fig. 1).
Picking qij such that the distance between qij and pj is small gives the best

bounds. However, the projection of pj onto the convex hull of Si causes elongation
of overall computing time. Balancing between fast computations and a good
choice of qij , the most successful strategy seems choosing qij as the point in Si

closest to pj .
For polytopal Ci, the relaxation of (1) is a Linear Program; for Euclidean

containers, we get a Second-Order-Cone Program (SOCP). Many other cases
can be cast as SOCPs, too, for instance when the containers are intersections or
Minkowski sums of Euclidean balls and polytopes (compare [10]).

Obviously, the more points from P \S belong to S0, the better the lower bound
on R(P, C1, . . . , Ck) will be. However, as each p ∈ S0 results in at least k − 1
additional variables and constraints, the relaxation of (1) is practical only when
S0 is not too big. Experiments show that even very small sets S0 usually provide
enough potential to reduce the number of nodes in the B&B tree significantly

70 R. Brandenberg and L. Roth

p

S1

S2

q1 q2

λ1p + (1 − λ1)q1

λ2p + (1 − λ2)q2

Fig. 1. The geometric meaning of the relaxed program. Optimal cluster radii with
(black) and without (red resp. blue) considering the unassigned point p.

(compare Table 1, where 5 points have been chosen). There are different possible
strategies to select points for S0, e.g. randomly, maximizing the minimal distance
to a current cluster, maximizing the distance to the latest core-set point, or
maximizing the minimal distance to the unassigned points already chosen (which
is what we do in Table 1). The solution of the convex program provides not only
lower bounds. Upper bounds can easily be obtained by assigning the points
pj ∈ P \ S to the clusters, e.g by mini ‖pj − ci‖Ci or maxi λij if p ∈ S0.

The test results in Table 1 show that the MISOCP-relaxation significantly
reduces the size of the B&B scheme for Euclidean k-center. Since solving the
convex program at each node of the B&B tree is expensive, the improvement in
the running time is still considerable but not as big as in the number of nodes.
Further speedup should be possible by advanced strategies for the MISOCP-
relaxation. In particular, we expect that improvements can be achieved through
more elaborate techniques for determining the nodes at which to solve the convex
program, the accuracy to which it should be solved, and the points in |S0|.
Moreover, practical solutions may be accelerated significantly by replacing the
pure B&B algorithm by some kind of branch-and-cut routine.

5 Diameter Partitioning

Another possibility to improve the performance of Algorithm 1 is to consider
R({p, q}, Ci) for all pairs of points {p, q} ⊂ P , and all i = 1, . . . , k. The distances
between point pairs provide information about optimal partitionings which can
be used to compute bounds for R(P, C1, . . . , Ck). The approach is useful espe-
cially when k = 2 and R({p, q}, Ci) can easily be computed. Surely, computing
all pairwise distances is quadratic in the number of input points, so the approach
is practical mainly for moderate point sets P .

5.1 Identical Containers

The information about the pairwise distances is captured in the ρ-distance graph:

Definition 1. For every ρ > 0 we call the graph G(ρ) = (P, E) with edges for
every pair {p, q} with R({p, q}, C) > ρ the ρ-distance graph of (P, C).

New Algorithms for k-Center and Extensions 71

Table 1. The B&B algorithm with and without SOCP bounds for Euclidean k-center
and an approximation error of 0.01. The 3D geometric model data sets are comparable
to the ones used in [27]. The 5D “rand. box” data sets refer to equally distributed points
within boxes with randomly scaled axes. (We assume that this is more appropriate for
k-center problems than, e.g., equally distributed points within the unit cube.) Sizes
of the B&B tree and running times (in seconds) are listed – in case of the random
data sets, the mean over samples of 20. We use a 2.0 GHz Intel Core 2 system running
Matlab R2006B and SeDuMi [30], [33]. The code for Euclidean distance computations
is provided by [12].

pure B&B B&B with relaxed MISOCP
data set m n k nodes leaves time nodes leaves time

cat 352 3 4 10353 2138 505.6 2380 144 207.7

shark 1744 3 4 649 126 26.1 225 27 13.6

seashell 18033 3 4 12718 2365 925.6 3266 479 371.0

dragon 437645 3 3 341 96 154.9 161 43 89.2

rand. box 1000 5 3 889.3 57.8 44.6 623.9 35.7 45.6
rand. box 1000 5 4 20919.9 3249.8 1272.6 6544.0 238.4 611.2

rand. box 10000 5 3 2595.1 167.6 166.6 1577.7 84.3 139.0
rand. box 10000 5 4 32611.9 3021.6 2273.7 13768.3 808.1 1459.4

The next algorithm computes the maximal ρ such that G(ρ) is k-colorable. Find-
ing a k-coloring of G(ρ) corresponds to partitioning the point set P into k subsets,
where no pair of points with R({p, q}, C) > ρ lies within one set.

Algorithm 2
for all l pairs {p, q} of points in P :

compute ρj = R({p, q}, C), 1 ≤ j ≤ l
label such that ρ1 ≥ . . . ≥ ρl

for j = 1, . . . , l:
if G(ρj) is not k-colorable

break
set ρ = ρj

return ρ

Deciding whether a graph is k-colorable is itself a hard problem if k ≥ 3 and
Algorithm 2 may not be polynomial. Still, good bounds may be obtained from
heuristic coloring algorithms.

If k = 2, Algorithm 2 can be implemented by maintaining a 2-coloring of G(ρ)
while successively inserting new edges. One should note that since G(ρ) may be
not connected, more than two labels (or colors) may be necessary. When an edge
is inserted which is not connected to the subgraph already built, a new pair of
labels is created. When an edge joins two previously disconnected components,
the relevant labels are merged.

Depending on the shape of the container, different approximation qualities for
the underlying k-center problem can be guaranteed.

72 R. Brandenberg and L. Roth

Parallelotopes. If (and only if) C is a parallelotope (e.g. a unit cube, if ‖·‖C =
‖ · ‖∞) the Helly dimension of C is 1; that is, R(P, C) = d(P, C) for all P [8,
14.3]. This implies that P can be packed into k translates of ρC if and only if
G(ρ) is k-colorable [4], [29]. Hence, Algorithm 2 solves the k-center problem for
parallelotopes8 exactly.

Note that solving the 2-center problem in l∞ via diameter partitioning is not
optimal. A faster algorithm is proposed in [5]. It computes a minimal axis-parallel
enclosing box for P and determines the position of the two cubes in this box by
maximizing consecutively in the directions of the n coordinate axes. However,
Algorithm 2 has the advantage of being adaptable to general 2-containment
problems, whereas the algorithm in [5] is limited to two identical parallelotopal
containers.

Euclidean Containers. We get the following for Euclidean containers:

Lemma 1. Algorithm 2 computes a
√

2n
n+1 -approximation of Rk(P, C) for any

point set P and any ellipsoid C.

Proof. Surely, d(Pi, C) ≤ Rk(P, C) for all Pi when P1, . . . , Pk is a partition of P
such that every two points joint by an edge in the final distance-graph of Algo-
rithm 2 are in different Pi. If P ∗

1 , . . . , P ∗
k is an optimal partition, maxi R(Pi, C) ≥

maxi R(P ∗
i , C) = Rk(P, C). Hence, by Jung’s inequality [26],

max
i

d(Pi, C) ≤ Rk(P, C) ≤ max
i

R(Pi, C) ≤ max
i

√
2n

n + 1
d(Pi, C).

In computations, an incomplete partition can be extended in a greedy manner
upon all points in P . Besides the lower bound output ρ of Algorithm 2, an upper
bound ρ̄ = maxi R(Pi, C) is obtained. Surely, this upper bound is often much
smaller than

√
2n/(n + 1)ρ in practice (compare Table 2).

General, Identical Containers. For general containers C, the bounds are
weaker, but only slightly when C is (almost) symmetric.

Lemma 2. Algorithm 2 computes an n
n+1 (1+ 1

sC
)-approximation of the optimal

radius Rk(P, C) for any point set P ⊂ Rn and any container C ⊂ Rn.

Proof. Following the proof of Lemma 1 it suffices to show that R(P, C) ≤
n

n+1 (1 + 1
sC

)d(P, C) for any point set P . Suppose d(P, C) = 1, i.e. every two
points in P can be covered by a translate of C. It easily follows that every two
points of P − P can be covered by C − C, and since both P − P and C − C are
symmetric R(P − P, C − C) = d(P − P, C − C) = 1 [16]. Since (1 + sP)P can
be covered by a translate of P − P and C − C by a translate of (1 + 1

sC
)C, we

conclude with sP ≥ 1
n that P is contained in a translate of n

n+1 (1 + 1
sC

)C.

8 When the parallelotope is given in H-representation C =
⋂

i{x : aT
i x ≤ 1}, and

especially for l∞-containment, R({p, q}, C) = maxi aT
i (p−q) can easily be computed.

New Algorithms for k-Center and Extensions 73

Remark 1. a) If C is symmetric, a well known inequality about the ratio between
the outer radius and the diameter of convex sets (or point sets) in arbitrary
Minkowski spaces [7] can be obtained as a corollary of Lemma 2:

R(P, C)
d(P, C)

≤ 2n

n + 1
.

b) If Cn is a small subset of the set of convex bodies in Rn, like the parallelotopes
or ellipsoids (or – maybe even non-symmetric – sets close to these shapes)
in Sects. 5.1 and 5.1, the approximation error may be much better than
predicted by Lemma 2.

c) If a better guarantee on lower bounds on the Minkowski symmetry of the
input point set P can be given, the bounds in Lemma 2 can be improved.

5.2 Different Containers

Regarding the general k-MCPP
Hom, two points p and q which are far apart in

the (non-symmetric) norm induced by one container may be close in the norm
induced by another. Definition 1 has to be adapted.

Definition 2. Let G = (V, E1, . . . , Ek) be an (edge-colored) multigraph with
vertex set V and edge sets E1, . . . , Ek. A generalized k-coloring of G is a partition
V1, . . . , Vk of the vertices V such that for any {v, w} ∈ Ei it follows {v, w} �⊂ Vi,
i = 1, . . . , k.

Again, we can define the ρ-distance graph:

Definition 3. For every ρ > 0 the ρ-distance graph of (P, C1, . . . , Ck) is the
edge-colored multigraph G(ρ) = (P, E1, . . . , Ek) with edges in Ei for every pair
{p, q} with R({p, q}, Ci) > ρ.

Now a solution of the generalized k-coloring problem for the ρ-distance graph
G(ρ) implies again that ρ is a lower bound for R(P, C1, . . . , Ck).

Algorithm 3
for all l combinations of pairs {p, q} of points in P and i ∈ {1, . . . , k}:

compute ρj = R({p, q}, Ci), 1 ≤ j ≤ l
label such that ρ1 ≥ . . . ≥ ρl

for j = 1, . . . , l:
if G(ρj) has no valid generalized k-coloring

break
set ρ = ρj

return ρ

Respecting the edge colors seems to make generalized k-coloring more difficult
than usual coloring. Yet, if k = 2, the problem can still be solved efficiently:

Lemma 3. The generalized 2-coloring problem can be reduced to 2-SAT.

74 R. Brandenberg and L. Roth

Proof. By assigning boolean variables zi, where zi ⇔ (vi ∈ Vi), the generalized
2-coloring instance (V, E1, E2) is equivalent to the following instance of 2-SAT:∧

(pi,pj)

E1-edges

(¬zi ∨ ¬zj) ∧
∧

(pi,pj)

E2-edges

(zi ∨ zj).

A valid assignment of a 2-SAT instance (or evidence that no valid assignment
exists) can be found in linear time (in the size of G(ρ)), see, e.g., [34].

Any valid assignment of the variables zi in the corresponding 2-SAT for-
mula yields a partition into two sets P1 and P2 with the following property:
R({p, q}, Ci) ≤ ρ, i = 1, 2 for any pair of points p, q ∈ Si.

Lemma 4. Algorithm 3 computes

a) an n
n+1 (max1≤i≤k(1

sCi
) + 1)-approximation for the general k-MCPP

Hom.
b) a 2n

n+1 -approximation for k-MCPP
Hom if all containers are 0-symmetric.

c) a
√

2n
n+1 -approximation for k-MCPP

Hom if all containers are ellipsoids or par-
allelotopes.

d) an exact solution of k-MCPP
Hom if all containers are parallelotopes (compare

Fig. 2).

Proof. This follows directly from Lemma 3 and Sect. 5.1.

Fig. 2. An example of an optimal containment with two boxes as containers and the
corresponding edges in the final ρ-distance graph. For parallelotopal containers, Algo-
rithm 3 computes the exact solution.

5.3 Partitioning Procedures

Algorithms 2 and 3 approximate the 2-containment problem within the bounds
given in Lemmas 1, 2, and 4.9 For better approximations, we rely on the B&B
procedure. If |P | is not too big, the super-quadratic10 running time of the
diameter partitioning is not too expensive and it is even possible to combine
Algorithms 1 and 2 (resp. 3) to compute an (almost) exact solution of the un-
derlying 2-center problem (compare Table 2).
9 E.g., the error is at most 0.225 if both Ci are parallelotopes or ellipsoids and d ≤ 3.

10 Since the edges have to be sorted.

New Algorithms for k-Center and Extensions 75

Table 2. Test results for diameter partitioning where the containers are either two
Euclidean balls or two arbitrarily, independently rotated unit cubes. The “rand. box”
data sets refer to 100 equally distributed points within boxes with randomly scaled axes.
The “norm. dist.” data sets refer to 100 (0, 1)-normally distributed points. Due to the
page limit, we report only the mean running times (in seconds) and the approximation
quality after the diameter partitioning step (DP) over samples of 20 here. The accuracy
is ε = 0.01 for all tests. See Table 1 for details on the environment used.

pure B&B B&B with diameter partitioning
containers data set n time DP error DP time B&B time overall time

Euclidean rand. box 10 7.2 0.06 0.5 2.6 3.1
Euclidean rand. box 20 26.2 0.11 0.5 14.1 14.6
Euclidean rand. box 30 88.3 0.15 0.8 67.3 68.2

Euclidean norm. dist. 10 10.9 0.12 0.5 7.1 7.6
Euclidean norm. dist. 20 56.1 0.15 0.6 32.5 33.1
Euclidean norm. dist. 30 135.5 0.17 0.8 89.0 89.9

rot. cubes rand. box 10 12.8 < ε 2.1 - 2.1
rot. cubes rand. box 20 103.2 < ε 2.4 - 2.4
rot. cubes rand. box 30 639.9 < ε 3.1 - 3.1

rot. cubes norm. dist. 10 21.5 < ε 1.1 - 1.1
rot. cubes norm. dist. 20 210.9 < ε 2.1 - 2.1
rot. cubes norm. dist. 30 1153.1 < ε 2.7 - 2.7

Combining the two algorithms is accomplished as follows. First, consider
identical containers. A good upper bound obtained by Algorithm 2 decreases
the running time as many branches need not be considered. Secondly, it pro-
vides a-priori information about point pairs not fitting in the same container:
If R({p, q}, C) > ρ̄ for two points in P , assigning one of them to P1 forces the
other one into P2. Since all pairwise distances have been computed and sorted,
all such pairs of points can easily be identified and assigned to different partition
sets. This is equivalent to building the distance graph G(ρ̄) and 2-coloring it. As
all possible 2-colorings have to be considered and the resulting bipartite graph
is not connected in general, this leads to (usually several) disjoint subset pairs
of P . During the B&B routine, each of those subset pairs can be considered as
a whole and requires only one node in the B&B tree. For instance, when we
choose such a point as first core-set point, we can assign all the points from
the corresponding pair of colored subsets to the right cluster – even before the
branching has started. The same can be done for 2-containment problems with
different containers using Algorithm 3. Yet, here, each color yields a distinct set
of subset pairs which has to be taken into account in the B&B procedure.

As one can conclude from the experiments in Table 2, Euclidean 2-center
problems can be approximated to a good level of accuracy even in higher dimen-
sions. One should especially recognize the quality of the bounds computed by
the diameter partitioning before starting the B&B. Of course, the approximation
quality achieved by the diameter partitioning is even better for some classes of
non-Euclidean containers where nothing is known about the existence of small
core-sets or even fast algorithms to compute those. This becomes clear when

76 R. Brandenberg and L. Roth

looking at the results in Table 2 for applying an implementation of Algorithm 3
on 2-containment problems with rotated cubes.

Algorithms 2 and 3 get slow on large point sets. However, it is not necessary to
abandon their advantages. We restrict the algorithms to small subsets (e.g. ran-
dom samples) of the input data, perform the diameter partitioning, compute
an upper bound ρ̄ (for the complete point set) and apply the pre-partitioning
only to the sample. Any time the B&B algorithm picks a new core-set point,
we test whether this point supplies additional information and if applicable add
more points from the sample to the core-set. Surely, there is no guarantee for
the quality of the computed bounds. But even this simple strategy improves the
running times in experiments. Further reductions should be possible by more
advanced strategies to avoid the evaluation of the complete graph over P .

6 An Application of Non-euclidean Container Shapes

In the case of non-Euclidean containers, a typical setting for instance in facility
location is covering a 2D (point) set with several objects. However, different
from the problems addressed before, rotations of the containers in addition to
homothetics are of interest.

Fig. 3. Solution of a 4-containment problem with 18512 data points allowing rotations
of the containers (accuracy 2%)

Figure 3 depicts the solution of such a 4-containment problem with identi-
cal 2-dimensional containers being conical sections of circles. These ‘pie slice’
shapes arise in applications when points should be within the sight of cameras,
in the transmission range of oriented senders, or reachable by robot arms with
joint limits [18]. A discretization of the possible space of rotations is consid-
ered, and included in the B&B algorithm. Note that the computational effort
increases severely since the rotations of the four containers have to be addressed
independently of each other. Still, the full computation takes less than 5 hours.

New Algorithms for k-Center and Extensions 77

References

1. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for cluster-
ing. In: Proc. 9th ACM-SIAM Symp. Discrete Alg., pp. 658–667 (1998)

2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. 30(4), 412–458 (1998)

3. Anderberg, M.R.: Cluster analysis for applications. Probability and mathematical
statistics. Academic Press, London (1973)

4. Avis, D.: Diameter partitioning. Discrete Comput. Geom. 1, 265–276 (1986)
5. Bespamyatnikh, S., Kirkpatrick, D.: Rectilinear 2-center problems. In: Proc. 11th

Canad. Conf. Comp. Geom., pp. 68–71 (1999)
6. Bespamyatnikh, S., Segal, M.: Covering a set of points by two axis-parallel boxes.

Inf. Process. Lett. 75(3), 95–100 (2000)
7. Bohnenblust, H.F.: Convex regions and projections in Minkowski spaces. Ann.

Math. 39, 301–308 (1938)
8. Boltyanski, V., Martini, H., Soltan, P.S.: Excursions into Combinatorial Geometry.

Springer, Heidelberg (1997)
9. Brandenberg, R., Gerken, T., Gritzmann, P., Roth, L.: Modeling and optimization

of correction measures for human extremities. In: Jäger, W., Krebs, H.-J. (eds.)
Mathematics – Key Technology for the Future. Joint Projects between Universities
and Industry 2004-2007, pp. 131–148. Springer, Heidelberg (2008)

10. Brandenberg, R., Roth, L.: Optimal containment under homothetics, a practical
approach (submitted, 2007)

11. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proc. 34th Annu. ACM Symp. Theor. Comput., pp. 250–257 (2002)

12. Bunschoten, R.: A fully vectorized function that computes the Euclidean dis-
tance matrix between two sets of vectors (1999), http://www.mathworks.com/

matlabcentral/fileexchange/loadFile.do?objectId=71

13. Chan, T.M.: More planar two-center algorithms. Comp. Geom. Theor. Appl.
13(3), 189–198 (1999)

14. Eppstein, D.: Faster construction of planar two-centers. In: Proc. 8th ACM-SIAM
Symp. Discrete Alg., pp. 131–138 (1997)

15. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

16. Gritzmann, P., Klee, V.: Inner and outer j-radii of convex bodies in finite-
dimensional normed spaces. Discrete Comput. Geom. 7, 255–280 (1992)

17. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computa-
tional convexity I: Containment problems. Discrete Math. 136, 129–174 (1994)

18. Halperin, D., Sharir, M., Goldberg, K.: The 2-center problem with obstacles.
J. Alg. 42(1), 109–134 (2002)

19. Hartigan, J.A.: Clustering algorithms. Wiley series in probability and mathematical
statistics. John Wiley and Sons, New York (1975)

20. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
bericht Deutsch. Math. Verein 32, 175–176 (1923)

21. Hershberger, J.: A faster algorithm for the two-center decision problem. Inf. Pro-
cess. Lett. 47(1), 23–29 (1993)

22. Hoffmann, M.: A simple linear algorithm for computing rectilinear 3-centers. Com-
put. Geom. Theor. Appl. 31(3), 150–165 (2005)

23. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall, Englewood
Cliffs (1988)

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=71
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=71

78 R. Brandenberg and L. Roth

24. Jaromczyk, J.W., Kowaluk, M.: An efficient algorithm for the Euclidean two-center
problem. In: Symp. Comp. Geom, pp. 303–311 (1994)

25. John, F.: Extremum problems with inequalities as subsidiary conditions. In:
Courant Anniversary Volume, pp. 187–204. Interscience (1948)

26. Jung, H.W.E.: Über die kleinste Kugel, die eine räumliche Figur einschließt.
J. Reine Angew. Math. 123, 241–257 (1901)

27. Kumar, P.: Clustering and reconstructing large data sets. PhD thesis, Department
of Computer Science, Stony Brook University (2004)

28. Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern recognition via linear
programming: theory and application to medical diagnosis. In: Coleman, T.F.,
Li, Y. (eds.) Large-Scale Numerical Optimization, pp. 22–31. SIAM, Philadelphia
(1990); Computer Sciences TR 878 (1989)

29. Megiddo, N.: On the complexity of some geometric problems in unbounded dimen-
sion. J. Symb. Comput. 10(3/4), 327–334 (1990)

30. Pólik, I.: Addendum to the sedumi user guide version 1.1. Technical report, Ad-
vanced Optimization Laboratory, McMaster University (2005)

31. Procopiuc, C.M.: Clustering problems and their applications: A survey. Depart-
ment of Computer Science, Duke University (1997)

32. Sharir, M.: A near-linear algorithm for the planar 2-center problem. In: Proc.
Symp. Comp. Geom., pp. 106–112 (1996)

33. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over sym-
metric cones. Optim. Method. Softw. 11-12, 625–653 (1999)

34. del Val, A.: On 2-SAT and renamable Horn. In: Proc. 17th Nat. Conf. on Artif. In-
tel. AAAI / MIT Press (2000)

35. Wei, H., Murray, A.T., Xiao, N.: Solving the continuous space p-centre problem:
planning application issues. IMA J. Management Math. 17, 413–425 (2006)

Separating Sublinear Time Computations by

Approximate Diameter

Bin Fu1 and Zhiyu Zhao2

1 Dept. of Computer Science, University of Texas - Pan American
TX 78539, USA

binfu@cs.panam.edu
2 Department of Computer Science, University of New Orleans, New Orleans, LA

70148, USA
zzha2@cs.uno.edu

Abstract. We study sublinear time complexity and algorithm to ap-
proximate the diameter for a sequence S = p1p2 · · · pn of points in a
metric space, in which every pair of two consecutive points pi and pi+1

in the sequence S has the same distance. The diameter of S is the largest
distance between two points pi and pj in S. The approximate diame-
ter problem is investigated under deterministic, zero error randomized,
and bounded error randomized models. We obtain a class of separations
about the sublinear time computations using various versions of the ap-
proximate diameter problem based on the restriction about the format
of input data.

1 Introduction

Sublinear time computation is an active area of computer science in the recent
years. A sublinear time algorithm has a sequence of elements a1, a2, · · · , an as
input and can only access a part of the elements. Many sublinear time algorithms
have been developed in the recent years. We give an incomplete list of sublinear
time algorithms such as approximating matrix product [7], checking the polygon
intersection [2], approximating the average degree in graph [8,14], estimating
the cost of minimum spanning tree [3,5,6], finding the geometric separators [10],
computing the basis of abelian groups [4], property testing [16,13], and facility
location [1]. Initially, the main research of sublinear time algorithms has been in
the property testing with surveys in [9,11,12,15,17]. People tend to believe that
there will be more and more sublinear time algorithms to emerge in the future.
Therefore, it is important to study the power and limitation of sublinear time
computations in both deterministic and randomized computation models.

A sublinear time algorithm usually uses a randomized method to access the
input since it does not have enough time to see the entire input data. Most
of the sublinear time algorithms developed in the recent years are randomized.
A recent interesting derandomization approach by Zimand [19] showed that for
some α > 0, randomized algorithms of time complexity T (n) < nα can be

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 79–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 B. Fu and Z. Zhao

simulated by deterministic algorithms of time poly(T (n)) except on at most an
exp(−Ω(T (n) log T (m)) fraction of the instances.

In this paper we study the number of queries about the input sequence. In
order to separate the power of sublinear time computations with different query
complexity bounds, we select the problem to compute the diameter for a se-
quence of points in a metric space. We realized this problem and its connection
to sublinear time computation from our research on the protein backbone align-
ment [18]. From this approximate diameter problem, we show the existence of
sublinear time algorithms at three different models, which are deterministic,
bounded error randomized, and zero-error randomized. We study the complex-
ity of the sublinear time algorithms to approximate the diameter of a sequence
of points. The separations of sublinear time computations under various com-
plexity bounds and models in this paper are based on the several versions of the
diameter problem.

Three sublinear time computing models including deterministic, bounded er-
ror randomized, and zero error randomized models are studied in this paper.
We obtain a class of separations about the power of sublinear time computa-
tions using several versions of the approximate diameter problem. We derive a
dense sublinear time hierarchy for each of the three models. For every 0 < r < 1
and 0 < ε < r, we show that the sublinear time deterministic computation
with O(nr) queries to the input sequence is more powerful than sublinear time
deterministic computation with O(nr−ε) queries and also the sublinear time de-
terministic computation with O(nr) queries to the input sequence cannot be
simulated by sublinear time randomized computation with O(nr−ε) queries. We
show that those separations by the number of queries imply similar dense time
separations among sublinear time computations.

It is an interesting problem to identify what computational problems have
the sublinear time algorithms. Our results show that the existence of sublinear
time algorithms and their computational time depend on the restrictions on the
format of input points in the metric space. We will show how those restrictions
affect the existence of a sublinear time algorithm and its complexity. We identify
the parameters to control the diameter length and the permutation of the input
points, and we also show how the sublinear time model and the time complexity
for computing an approximate diameter depend on those parameters.

We also show that the zero-error randomized sublinear time computation is
more powerful than the deterministic sublinear time algorithm with similar time
complexity and the bounded-error randomized sublinear time computation is
more powerful than the zero-error randomized sublinear time algorithm with
similar time complexity. We show that the bounded error randomized sublinear
time algorithms in time O(nr) cannot be simulated by a zero-error randomized
sublinear time algorithm in o(n) time or queries, where r is an arbitrary parame-
ter in (0, 1). We also show that zero-error randomized sublinear time algorithms
in time O(nr) cannot be simulated by a deterministic sublinear time algorithm
in o(n) time or queries, where r is an arbitrary parameter in (0, 1).

Separating Sublinear Time Computations by Approximate Diameter 81

2 Notations

A metric space S has a distance function dist(., .) that satisfies the following
conditions: 1) dist(p, p) = 0 for every point p ∈ S; 2) dist(p1, p2) = dist(p2, p1)
for any two points p1, p2 ∈ S; and 3) dist(p1, p3) ≤ dist(p1, p2) + dist(p2, p3) for
any three points p1, p2, p3 ∈ S.

For an integer d ≥ 1, Rd is the d-dimensinal Euclidean space, which is clearly
a metric space. Let A = a1, · · · , an be a sequence of n points in a metric space.
We often use |A| = n to represent the number of points in A. Let A = a1, · · · , an

be a sequence of n points in a metric space. If for every pair of two consecutive
points ai and ai+1, dist(ai, ai+1) = t, then the sequence A is called a t-sequence.

Definition 1. – Let A = a1, · · · , an be a sequence of n points in a met-
ric space. For every pair of two consecutive points ai and ai+1, if t1 ≤
dist(ai, ai+1) ≤ t2, then the sequence A is called a (t1, t2)-sequence. De-
fine minInterDist(A) = min1≤i≤n−1(dist(ai, ai+1)) and maxInterDist(A) =
max1≤i≤n−1(dist(ai, ai+1)).

– For a sequence of points A in a metric space, diameter(A) is the largest
distance between two points of A.

– A real number d is (1 − ε)-approximate to the diameter of S of a sequence
of points, if (1 − ε)diameter(S) ≤ d ≤ diameter(S).

– A path of a randomized computation C of r(n) random bits with the input
sequence S is determined by a binary sequence B of length r(n). Its output
in the path B is denoted by C(S, B).

– A deterministic (1− ε)-approximate algorithm C with query complexity q(n)
for the diameter of sequence satisfies that 1) C(S) is a (1− ε) approximation
to diameter(S); and 2) C makes at most q(n) queries to the points in S,
where input S is a sequence of n points. Its query complexity is defined by a
function q(n) that for every input of length n points, the algorithm makes at
most q(n) queries. Its time complexity is defined by a function t(n) that for
every input of length n points, the algorithm stops in t(n) steps.

– A randomized (1−ε)-approximate algorithm C with r(n) random bits for the
diameter of sequence satisfies that 1) C(S, B) is a (1 − ε) approximation to
diameter(S) with probability at least 3

4 ; and 2) each path of C makes at most
q(n) queries to the points in S, where input S is a sequence of n points and
B is a random binary sequence of length r(n). A randomized algorithm can
be also called bounded error randomized algorithm.

– A zero-error randomized (1− ε)-approximate algorithm C with r(n) random
bits for the diameter of sequence satisfies that 1) C(S, B) is a (1− ε) approx-
imation to diameter(S) with probability at least 3

4 ; 2) no path gives a result
that is not an (1 − ε) approximation to diameter(S).

– A randomized (1−ε)-approximate algorithm C (either bounded error or zero-
error) with r(n) random bits and time complexity t(n) for the diameter of
sequence satisfies that C(S, B) stops in t(n) steps, where input S is an arbi-
trary sequence of n points and B is a random binary sequence of length r(n).

82 B. Fu and Z. Zhao

– A randomized (1−ε)-approximate algorithm C (either bounded error or zero-
error) with r(n) random bits and query complexity q(n) for the diameter of
sequence satisfies that C(S, B) makes at most q(n) queries, where input S
is an arbitrary sequence of n points and B is a random binary sequence of
length r(n).

3 Tight Separations among Sublinear Time Computations

We separate sublinear time computable functions with time complexity nr from
those with time complexity nr−ε for any 0 < r < 1 and any small ε > 0.
The separation is achieved in both deterministic and randomized computation
models.

Definition 2. Let r be an integer ≥ 0 and S = p1p2 · · · pn be a (t1, t2)-sequence.
The sequence S′ = p′1p

′
2 · · · p′n is r-reliable rearrangement of S if S′ is a permu-

tation of p1p2 · · · pn and for each pi, pi = p′i′ for some i′ with 1 ≤ i′ ≤ n and
|i − i′| ≤ r.

Let M be a metric space, r, m, and n be non-negative integers, and c be an
real number at least 1. Define ΦM (c, r, m, n) to be the set of all sequences H =
q1q2 · · · qn of n points in M such that H is an r-reliable rearrangement for a
(t1, t2)-sequence S for some 0 < t1 ≤ t2 with t2

t1
≤ c and diameter(S) ≥ mt1.

In particular, ΦM (c, 0, m, n) is the set of all (t1, t2)-sequence S of length n in
M with t2

t1
≤ c and diameter(S) ≥ mt1. Sequence S is called a ΦM (c, r, m, n)-

sequence if S ∈ ΦM (c, r, m, n).

We first present a deterministic sublinear time approximate algorithm to com-
pute the diameter of a t-sequence in a metric space. Its computational time is
reversely propositional to the length of the diameter. The algorithm is described
in a more generalized format by the following theorem.

Theorem 1. Assume that c is a positive constant, and α, μ and ε are constants
in (0, 1). Assume that M is a metric space with a (1 − μ)-factor approximate
algorithm AppM of time complexity C(k) for the diameter of k points in M for
some nondecreasing function C(k) : N → N . Then there exists a deterministic
algorithm such that given a ΦM (c, ε(1−α)

2c m, m, n)-sequence B, it makes at most
O(n

m) non-adaptive queries to the points of B and outputs a number x with
(1− ε)(1−μ) · diameter(B) ≤ x ≤ diameter(B) in total time O(n

m) + C(O(n
m)).

Proof. Our algorithm selects an O(n
m) points set Q from the input sequence B

and uses the diameter of Q to approximate the diameter of B. Select δ = εα
2c

and β = ε(1−α)
2c m. Assume that A = p1p2 · · · pn is a (t1, t2)-sequence such

that B is a β-reliable rearrangement of A with 0 < t1 ≤ t2, t2
t1

≤ c, and
diameter(A) ≥ mt1. By the condition of the theorem, let t1 = minInterDist(A)
and t2 = maxInterDist(A) be two positive real numbers with t1 ≤ t2 and t2

t1
≤ c.

Our algorithm is described as follows:

Separating Sublinear Time Computations by Approximate Diameter 83

Algorithm

Input: B = p′1, p
′
2, · · · , p′n that is β-reliable-rearrangement of a (t1, t2)-sequence

A = p1, p2, · · · , pn.
Output: an approximation x to diameter(A).

let h = �δm ;
select qi = p′h·i for i = 1, · · · , k =

⌈
n
h

⌉
;

let Q be the sequence q1 · · · qk;
output x = AppM (Q);

End of Algorithm

Now we are going to prove that for the sequence Q constructed from B in
the algorithm, (1 − ε)diameter(A) = (1 − ε)diameter(B) ≤ diameter(Q) ≤
diameter(B) = diameter(A). Assume that pi and pj are two points in A such
that dist(pi, pj) = diameter(A). Let i1 be the number 1 ≤ i1 ≤ k such that
|i1h − i| = min1≤i2≤k |i2h − i| and j1 be the number 1 ≤ j1 ≤ k such that
|j1h−j| = min1≤j2≤k |j2h−j|. It is easy to see that |i1h−i| ≤ h and |j1h−j| ≤ h.
Since two consecutive points in A have distance at most t2, we have

dist(pi, pi1h) ≤ h · t2 (1)
dist(pj , pj1h) ≤ h · t2 (2)

For each p′k, it has another ps such that ps = p′k and |s − k| ≤ β since B is a
β-reliable rearrangement of A. Therefore, we have

dist(pk, p′k) = dist(pk, ps) ≤ βt2. (3)

We have the following inequalities:

diameter(A) = diameter(pi, pj) (4)
≤ dist(pi, pi1h) + dist(pi1h, p′i1h) + dist(p′i1h, p′j1h) + dist(p′j1h, pj1h) (5)

+dist(pj1h, pj) (6)
≤ h · t2 + βt2 + dist(p′i1h, p′j1h) + βt2 + h · t2 (7)
≤ h · t2 + βt2 + diameter(Q) + βt2 + h · t2 (8)
≤ 2(h + β)t2 + diameter(Q) (9)

≤ 2(
εα

2c
+

ε(1 − α)
2c

)c · m · t1 + diameter(Q) (10)

≤ ε · mt1 + diameter(Q) (11)
≤ ε · diameter(A) + diameter(Q). (12)

The transition from (4) to (6) is due to the triangle inequality in the metric
space. The transition from (6) to (7) is due to inequalities (1), (2), and (3). The
transition from (7) to (8) is because p′i1h and p′j1h are in Q. By (4)-(12), we have
(1−ε)diameter(A) ≤ diameter(Q). On the other hand, all points in Q are from A.
So, diameter(Q) ≤ diameter(A). Therefore, (1−ε)diameter(A) ≤ diameter(Q) ≤
diameter(A). Since AppM gives factor (1 − μ) approximation for the diameter

84 B. Fu and Z. Zhao

of set Q, the output x satisfies (1 − ε)(1 − μ) · diameter(A) ≤ x ≤ diameter(A).
Since B is a permutation of A, we have diameter(B) = diameter(A). Therefore,
(1 − ε)(1 − μ) · diameter(B) ≤ x ≤ diameter(B).

The number of queries of the algorithm is |Q| = O(n
m). The time for generating

Q is O(n
m) and the time for computing AppM (Q) is C(O(n

m)). �

Corollary 1. Assume that α is a constant with 0 < α < 1, and ε is a small con-
stant greater than 0. Let t be a positive real number. Then there exists a determin-
istic O(n

m)-time algorithm such that given an ε(1−α)m/2-reliable-rearrangement
sequence B for a t-sequence A of n points in a metric space with diameter at
least m · t, it outputs a number x with 1−ε

2 diameter(B) ≤ x ≤ diameter(B).

Proof. It is known that there exists an O(k) time 1
2 -factor approximation al-

gorithm to compute the diameter of k points in a metric space. The algorithm
selects an arbitrary point and finds the point with the largest distance to the
other points. It is at least half of the diameter. Apply Theorem 1. �

Corollary 2. Assume that α is a constant with 0 < α < 1, and ε is a small con-
stant greater than 0. Let t be a positive real number. Then there exists a determin-
istic O(n

m)-time algorithm such that given an ε(1−α)m/2-reliable-rearrangement
sequence B for a t-sequence A of n points in R1 with diameter at least m · t, it
outputs a number x with (1 − ε)diameter(B) ≤ x ≤ diameter(B).

Proof. In R1, finding the diameter takes O(k) time for an input of k points. �

Corollary 3. Assume that c is a positive constant, d is a fxied dimension num-
ber, α is a constant in (0, 1), and ε is a small constant greater than 0. Let t
be a positive real number. Then there exists a deterministic O(n

m + (1
ε2d))-time

algorithm such that given an ε(1−α)m/2-reliable-rearrangement sequence B for
a t-sequence A of n points in Rd with diameter at least m · t, it outputs a number
x with (1 − ε)diameter(A) ≤ x ≤ diameter(A).

Proof. We just need to prove that for any constant δ ∈ (0, 1), there exists an
O(k + (1

δ2d)) time (1 − δ)-factor approximate algorithm AppRd to compute the
diameter of k points set H in Rd. Let d be a fixed dimensional number. Find
a 1

2 -factor approximate diameter D of H (see the proof of Corollary 1). The
approximate diameter D can be found in time O(k) as described in the proof of
Corollary 1. There exists a (4D)d cube region G that contains all points in H .
Partition G into small cubes of size (δD

2
√

d
)d. For each cube C that contains points

in H , select one point from H∩C and put it into set Q. The number of small cubes
of size (δD

2
√

d
)d in G is at most O((1

δ)d) since d is fixed. We have |Q| = O((1
δ)d).

Compute the diameter of Q by brute force method in time O(|Q|2). �

Lemma 1. For any even number n and two numbers p1 < p2 in R1, there
exists a dist(p2, p1)-sequence S = p1q1q2 · · · qn−2p2 in R1 such that p1 < qi for
i = 1, · · · , n − 2 and diameter(S) ≥ n·dist(p1,p2)

2 . The sequence S is denoted as
unfoldingR1(p1, p2, n).

Separating Sublinear Time Computations by Approximate Diameter 85

Proof. Let n = 2h and t = dist(p1, p2). We construct a t-sequence of n points as
follows: Let 1)q1 = p1 + t, 2)qs = qs−1 + t for s = 2, · · · , h, and 3)qs = qs−1 − t
for s = h + 1, h + 2, · · · , 2h − 2. It is easy to see that S = p1q1q2 · · · q2h−2p2 is a
t-sequence of n = 2h points in R1 and diameter(S) = ht = nt

2 . �

Theorem 2 gives a lower bound about the randomized sub-linear time algorithms
and matches the upper bound of Theorem 1.

Theorem 2. Assume that ε is a constant in (0, 1) and m = o(n). Then there
is no randomized algorithm such that given a ΦR1(1, 0, m, n)-sequence S, the
algorithm makes at most o(n

m) adaptive queries and outputs (1− ε)-approximate
diameter for S.

Proof. Assume that C is a randomized (1 − ε) approximate algorithm with
o(n

m) adaptive queries for computing the approximate diameter for all of the t-

sequences of diameter at least m·t. Let h = 2(
⌈

εm
1−ε

⌉
+2), g = 2h and n = m+kg,

where k is a parameter that is flexible. Since m = o(n), we always assume that
1 ≤ m < n

2 . We have k = n−m
g = n−m

4(! εm
1−ε"+2)

≤ n
4(
εm�) . On the other hand, k ≥

(n−m)

4(! εm
1−ε"+2)

> (n−m)
4(εm

1−ε +3) ≥ (n−m)

4(εm+3(1−ε)
1−ε)

≥ (1−ε)(n−m)
4(ε+3(1−ε))m ≥ (1−ε)(n−m)

4(3−2ε)m ≥ (1−ε)n
8(3−2ε)m .

Let constant c0 = 0.09 · (1−ε)
8(3−2ε) . Let t be a constant greater than 0.

Since each path queries o(n
m) points, we assume that every path of C queries

at most c0n
m points in every t-sequence A. Let A be the t-sequence of points

q1, q2, · · · , qm+1, p1, p2, · · · , pn−m, where qi = (i − 1)t for i = 1, 2, · · · , m + 1,
pi = (m − 1)t for odd number i = 1, 3, · · ·, and pi = mt for even number
i = 2, 4, · · ·. Clearly, A is a t-sequence in one dimensional axis of diameter m · t.

Partition the points p1p2 · · · pn−m sequentially into P1P2 · · ·Pk with |Pi| = g.
In the next phase, we will show that there exists some Pi such that no more than
10%G paths of C query the points in Pi, where G is the number of total paths
in C. Assume that for every Pi, there are at least 10%G paths of C to query
the points in Pi. Thus, the total number of queries is at least k · 10%G > c0n

m G
among all paths. On the other hand, since every path of C queries at most c0n

m
points, the total number of queries by all paths of C is at most c0n

m G. This is a
contradiction. Therefore, we have a Pi that no more than 10% paths of C query
the points in Pi.

We can arrange the points in Pi so that it has greatly different diameters.
Since Pi has at least 2h points, we can make diameter(Pi) as large as ht and as
small as t without changing the positions of first and last points of Pi. Formally,
assume that Pi has the sequence of points pu, pu+1, · · · , pu+g−1.

Clearly, dist(pu, pu+g−1) = t and pu < pu+g−1 by the definition of A. We re-
place pu+1, · · · , pu+g−2 by p′u+1, · · · , p′u+g−2, where unfoldingR1(pu, pu+g−1, g) =
pup′u+1p

′
u+2 · · · , p′u+g−2pu+g−1.

If the sequence A′ is derived from A that Pi is replaced by P ′
i =pup′u+1p

′
u+2 · · · ,

p′u+g−2pu+g−1. C(A, B) and C(A′, B) will be the same at 90% paths B. On
the other hand, the diameter of A is m · t and the diameter of A′ is at least
mt + ht − t > 1

(1−ε)mt by Lemma 1. Thus, C is not an (1 − ε)-approximation

86 B. Fu and Z. Zhao

to the diameter of a t-sequence of n points in R1 with diameter at least mt. A
contradiction. �

Corollary 2 and Theorem 2 imply the following dense separation for the sublinear
time computations.

Corollary 4. Assume that ε is a constant in (0, 1). Then for every constant r in
(0, 1) and constant δ in (0, r), there is a function that can be (1−ε)-approximated
by nr sublinear time deterministic algorithm, but there is no nr−δ sublinear time
(1 − ε)-approximate randomized algorithm.

4 Randomized and Deterministic Computations

In this section, we show that randomized algorithms are more powerful than
deterministic algorithms with the same computational time. We first present a
randomized algorithm, then show that similar computation cannot be done in
the deterministic algorithm with the similar complexity.

Theorem 3. Assume that c is a positive constant, and α, μ and ε are constants
in (0, 1). Assume that M is a metric space with a (1 − μ)-factor approximate
algorithm AppM of complexity C(k) for the diameter of k points in M for some
nondecreasing function C(k) : N → N . Then there exists a randomized algorithm
such that given a ΦM (c, ∞, m, n)-sequence B, it makes at most O(n

εm) non-
adaptive queries to the points of B and outputs a number x with (1 − ε)(1 − μ) ·
diameter(B) ≤ x ≤ diameter(B) in total time O(n

εm)+C(n
εm), where m = o(n).

Corollary 5. Assume that c is a positive constant, α, μ and ε are constants in
(0, 1). Then there exists a randomized algorithm such that given a ΦR1(c, ∞, m, n)-
sequence B, it makes at most O(n

εm) non-adaptive queries to the points of B and out-
puts a number x with (1−ε)·diameter(B) ≤ x ≤ diameter(B) in total time O(n

εm).

Theroem 4 gives a lower bound for the deterministic algorithms for computing
the approximate diameter problem. Corollary 5 and Theroem 4 give the separa-
tion between randomized and deterministic computations.

Theorem 4. Let ε be a constant in (0, 1) and m = o(n). Then there is no
deterministic algorithm that given a ΦR1(1, 8(!εm" + 2), m, n) sequence B, it
makes no more than (n − m − 1)/2 adaptive queries to the input points and
outputs a (1 − ε)-approximation to the diameter of B.

5 Zero-Error Randomized Algorithm and Its Complexity

In this section, we show a zero-error randomized algorithm. We also derive a
lower bound for the deterministic algorithms. This shows that zero-error ran-
domized algorithms are more powerful than deterministic algorithms.

Separating Sublinear Time Computations by Approximate Diameter 87

Definition 3. Let M be a metric space.

– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =
p1p2, · · · , pn. A point qi is called a still point if qi = pi.

– A function f(x) → N can be c-approximated by a FZ[nr] computation algo-
rithm if the algorithm makes at most nr queries, gives output with probability
at least 2

3 , and each output y has cf(x) ≤ y ≤ f(x).
– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =

p1p2, · · · , pn. A point qi in S′ is called v-stable if qi = pj with |i − j| ≤ v.
– Let S′ = q1, q2, · · · , qn be a rearrangement of a sequence of points S =

p1p2, · · · , pn. S′ is called (u, v, α)-stable if for every u consecutive points set
Q from S′, Q has at least αu v-stable points.

– For a sequence S = q1q2 · · · qn of points in M , the sequence S∗ = (q′1, i1)(q
′
2, i2)

· · · (q′n, in) is called a marked sequence of S, where (q′1, i1)(q
′
2, i2) · · · (q′n, in) is

a permutation of (q1, 1)(q2, 2) · · · (qn, n). Define E(S∗) = S.
– Let ΛM (c, m1, m2, r, m, n) be the set of all marked sequences (q1, a1)(q2, a2) · · ·

(qn, an) such that 1) S′ = q1q2 · · · qn is a permutation of a (t1, t2)-sequence
S = p1p2 · · · pn of n points in M for some 0 < t1 < t2 with t2

t1
≤ c; 2) every m1

consecutive points in S′ have at least m2 points qi which are r-stable between S′

and S; 3) the diameter of S is at least m · t1. and 4)(q1, a1)(q2, a1) · · · (qn, an)
is a permutation of (p1, 1)(p2, 2) · · · (pn, n)

– Let Γ be a class of marked sequences. A zero-error randomized (1 − ε)-
approximate algorithm C with r(n) random bits for the diameter of sequence
in Gamma if for every input S ∈ Γ , we have 1) at least 3

4 paths of C has
non-empty output; and 2) each non-empty output in a path is a (1 − ε) ap-
proximation to diameter(S). Its time complexity and query complexity are
defined similarly as that in Definition 1.

Theorem 5 shows a zero-error randomized algorithm to approximate the diam-
eter of a marked sequence.

Theorem 5. Assume that M is a metric space with a (1−μ)-factor approximate
algorithm AppM of time complexity C(k) for the diameter of k points in M for
some nondecreasing function C(k) : N → N . Then for every constant ε ∈ (0, 1),
there exist positive constants β1, β2, and α < β1, and a zero-error randomized
(1 − ε)-approximate algorithm such that given a ΛM (c, β1m, αm, β2m, m, n)-
sequence S′ = (q1, a1) · · · (qn, an), the algorithm makes at most O(n

m log n
m)

non-adaptive queries to the items of S′ and outputs a number x with (1− ε)(1−
μ) · diameter(E(S′)) ≤ x ≤ diameter(E(S′)) in total time O(n

m) + C(O(n
m)),

where m = o(n).

We have the following theorem to separate the sublinear time zero-error ran-
domized computations from sublinear time deterministic computations.

Theorem 6. Assume that c is a positive constant, ε is a constant in (0, 1), β is
a constant in (0, c), and m = o(n). Then there is no deterministic algorithm such
that given a ΛR1(1, cm, βm, 0, m, n)-sequence S′ it makes o(n) adaptive queries
to the input and outputs a (1 − ε) approximation to the diameter of E(S′).

88 B. Fu and Z. Zhao

References

1. Badoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.
In: Proceedings of 32nd Annual International Colloquium on Automata, Languages
and Programming, pp. 866–877 (2005)

2. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM Journal
on Computing 35, 627–646 (2005)

3. Chazelle, B., Rubfinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on computing 34, 1370–1379 (2005)

4. Chen, L., Fu, B.: Linear and sublinear time algorithms for the basis of abelian
groups. Electronic Colloquium on Computational Complexity, TR07-052 (2007)

5. Czumaj, A., Ergun, F., Fortnow, L., Magen, I.N.A., Rubinfeld, R., Sohler, C.:
Sublinear approximation of euclidean minimum spanning tree. SIAM Journal on
Computing 35, 91–109 (2005)

6. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear-time. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 175–183 (2004)

7. Drineas, P., Kannan, R.: Fast monte-carlo algorithms for approximate matrix mul-
tiplication. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pp. 452–459 (2001)

8. Feige, U.: On sumes of independent random variables with unbounded variance
and estimating the average degree in a graph. SIAM Journal on Computing 35,
964–984 (2006)

9. Fischer, E.: The art of uninformed decision: A primer to property testing. Bulletin
of the EATCS 75, 97–126 (2001)

10. Fu, B., Chen, Z.: Sublinear-time algorithms for width-bounded geometric sepa-
rators and their applications to protein side-chain packing problems. Journal of
Combinatorial Optimization 15, 387–407 (2008)

11. Goldreich, O.: Combinatorial proterty testing (a survey). In: Pardalos, P., Ra-
jasekaran, S., Rolim, J. (eds.) Proceedings of the DIMACS workshop on radnomzi-
ation methods in algorithm design, vol. 43, pp. 45–59 (1997)

12. Goldreich, O.: Property testing in massive graphs. In: Abello, J., Pardalos, P.M.,
Resende, M. (eds.) Handbook of massive data sets, pp. 123–147 (2002)

13. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs.
Technical Report 00-20, Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/ (2000)

14. Goldreich, O., Ron, D.: Approximating average parameters of graphs. Techni-
cal Report 05-73, Electronic Colloquium on Computational Complexity (2005),
http://www.eccc.uni-trier.de/eccc/

15. Kumar, R., Rubinfeld, R.: Sublinear time algorithms. SIGACT News 34, 57–67
(2003)

16. Goldreich, S.G.O., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45, 653–750 (1998)

17. Ron, D.: Handbook of randomzied algorithm. Bulletin of the EATCS II, 597–649
(2001)

18. Zhao, Z., Fu, B.: A flexible algorithm for pairwise protein structure alignment.
In: Proceedings International Conference on Bioinformatics and Computational
Biology 2007 (2007)

19. Zimand, M.: On derandomizing probabilistic sublinear-time algorithms. In: Pro-
ceedings of the 22nd IEEE conference on computational complexity, pp. 1–9 (2007)

http://www.eccc.uni-trier.de/eccc/
http://www.eccc.uni-trier.de/eccc/

Computational Study on Dominating Set

Problem of Planar Graphs

Marjan Marzban1, Qian-Ping Gu1, and Xiaohua Jia2

1 School of Computing Science, Simon Fraser University, Burnaby BC Canada
{mmarzban,qgu}@cs.sfu.ca

2 Department of Computer Science, City University of Hong Kong
csjia@cityu.edu.hk

Abstract. Recently, there has been significant theoretical progress to-
wards fixed-parameter algorithms for the DOMINATING SET problem
of planar graphs. It is known that the problem on a planar graph with n

vertices and dominating number k can be solved in O(c
√

kn) time using
tree/branch-decomposition based algorithms, where c is some constant.
However there has been no computational study report on the practi-

cal performances of the O(c
√

kn) time algorithms. In this paper, we re-
port computational results of Fomin and Thilikos algorithm which uses
the branch-decomposition based approach. The computational results
show that the algorithm can solve the DOMINATING SET problem of
large planar graphs in a practical time for the class of graphs with small
branchwidth. For the class of graphs with large branchwidth, the size
of instances that can be solved by the algorithm in a practical time is
limited to a few hundreds edges. The practical performances of the algo-
rithm coincide with the theoretical analysis of the algorithm. The results
of this paper suggest that the branch-decomposition based algorithms
can be practical for some applications on planar graphs.

Keywords: PLANAR DOMINATING SET, branch-decomposition,
fixed-parameter algorithms, data reduction, computational study.

1 Introduction

Given an undirected graph G(V, E), a k-dominating set D of G is a subset of
k vertices of G such that for every vertex v ∈ V (G), either v ∈ D or v is
adjacent to a vertex u ∈ D. The dominating number of G, denoted by γ(G), is
the minimum k such that G has a k-dominating set. Given G and an integer k,
The DOMINATING SET problem is to decide if γ(G) ≤ k. The optimization
version of the problem is to find a dominating set D with |D| = γ(G). The
DOMINATING SET problem is a core NP-complete problem in combinatorial
optimization and graph theory [17]. It also has wide practical applications such
as resource allocations [21], domination problems in electric networks [19], and
wireless ad hoc networks [33]. The books of Haynes et al. give a survey on
the rich literature of algorithms and complexity of the DOMINATING SET

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 89–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 M. Marzban, Q.-P. Gu, and X. Jia

problem [20,21]. A recent experimental study on the heuristic algorithms for the
DOMINATING SET problem can be found in [30].

The DOMINATING SET problem is NP-hard. Approximation algorithms
and exact fixed-parameter algorithms have been extensively studied to tackle
the intractability of the problem. A minimization problem P of size n is α-
approximable if there is an algorithm which runs in polynomial time in n and
produces a solution of P with value at most αOPT , where OPT is the value
of the optimal solution of P and α ≥ 1. If P is (1 + ε)-approximable for every
fixed ε > 0, P is polynomial time approximable (i.e., has a PTAS). Problem P
is fixed-parameter tractable if given a parameter k, OPT can be computed in
O(f(k)nO(1)) time, where f(k) may be an exponentially fast (or faster) growing
function in k. For arbitrary undirected graph G of n vertices, the DOMINAT-
ING SET problem is known (1+logn)-approximable [22], but not approximable
within a factor of (1−ε) ln n for any ε > 0 unless NP ⊆ DTIME(nlog log n)) [15].
The problem is also known fixed-parameter intractable unless the parameterized
complexity classes collapse [13,14]. If the problem is restricted to planar graphs,
it is known as the PLANAR DOMINATING SET problem which is still NP-hard
[17]. But the PLANAR DOMINATING SET problem is known polynomial time
approximable [7] and fixed-parameter tractable [13].

In recent years, there have been significant improvements on the fixed-
parameter algorithms for the PLANAR DOMINATING SET problem. Algo-
rithms with running time O(11kn) [13] and O(8kn) [5] are known for graphs with
γ(G) = k. The running time is further reduced and O(c

√
kn) time algorithms are

known for a constant c [4,16,23]. Most of the sublinear exponent algorithms use
a tree-decomposition based approach: First a tree decomposition of the given
graph is computed and then a dynamic programming algorithm based on the
tree-decomposition is used to compute a minimum dominating set. For a planar
graph G with γ(G) = k, a tree decomposition of width b

√
k, b is a constant,

can be computed and the dynamic programming part runs in O(22b
√

kn) time
[4]. One problem with those algorithms is that the constant c = 22b is too large
for solving the PLANAR DOMINATING SET problem in practice. In relation
to treewidth and tree decompositions [27,28], Robertson and Seymour introduce
branchwidth and branch decompositions [29]. Instead of a tree decomposition,
a branch decomposition can be used in the above dynamic programming algo-
rithms for the PLANAR DOMINATING SET problem. Fomin and Thilikos give
such an algorithm (called FT Algorithm in what follows) which reduces the con-
stant c to 215.13 [16]. Dorn proposes an approach of applying the distance prod-
uct of matrices to the dynamic programming step in branch/tree-decomposition
based algorithms for the problem [11]. If the distance product of matrices is
realized by the O(nω) (ω < 2.376) time fast matrix multiplication method [10],
the constant c in is improved to 211.98. However the constant hidden in the Big-
Oh may be huge. Dorn also proposes a tree-decomposition based algorithm for
the problem [12]. Although expressed in terms of treewidth tw of G, the algo-
rithm has time complexity O(3twnO(1)), it has actually the same running time as
that of FT Algorithm. An encouraging fact on branch decomposition is that an

Computational Study on Dominating Set Problem of Planar Graphs 91

optimal branch decomposition of a planar graph can be computed in polynomial
time [18,32]. This makes the branch-decomposition based algorithms receiving
increasing attention for the problems on planar graphs.

Another important progress on the algorithmic tractability of the PLANAR
DOMINATING SET problem is that the problem is shown having a linear size
kernel [6]. More specifically, Alber et al. give an O(n3) time algorithm which,
given a planar graph G with γ(G) = k, produces a reduced graph H (kernel)
such that H has O(k) vertices, γ(H) = k′ ≤ k, and a minimum dominating
set of G can be constructed from a minimum dominating set of H in linear
time [6]. In general, H and k′ are smaller than G and k, respectively, since in
the reduction process, a number of vertices in a minimum dominating set of
H have been decided. This reduction process reduces the sublinear exponent
from c

√
k to c

√
k′ and thus improves the running time of the fixed-parameter

algorithms for the PLANAR DOMINATING SET problem. This result is used
in FT Algorithm which has three major steps [16]: Step I computes a kernel H
of G by the data reduction process of [6] in O(n3) time. Step II finds an optimal
branch decomposition of H with width bw(H). This can be done by algorithms
of [9,18] in O(k3) time. Step III computes a minimum dominating set D′ of H
using the dynamic programming method based on the branch decomposition in
O(23 log4 3bw(H)k) time and constructs a minimum dominating set D of G from
D′ in linear time. It is proved in [16] that the branchwidth bw(H) ≤ 3

√
4.5k′

and FT Algorithm has time complexity O(215.13k′
k + n3). Alber et al. report

that the data reduction computes a much smaller kernel in practice for a class
of planar graphs [3,6]. Very recently, Bian et al. report that an optimal branch
decomposition of a planar graph can be computed efficiently in practice [8,9].
These results provide the base for testing the practical efficiency of FT Algorithm
for the PLANAR DOMINATING SET problem.

Although significant theoretical progresses have been made towards the fixed-
parameter algorithms for the PLANAR DOMINATING SET problem, the au-
thors are not aware of any report on the practical performances of these algo-
rithms. In this paper, we report the computational study on FT Algorithm for
the PLANAR DOMINATING SET problem. In our implementation of FT Al-
gorithm, in addition to the data reduction rules of [3,6], we introduce new data
reduction rules and use the recent works on planar branch decompositions. The
new data reduction rules further reduce the kernel size and improve the running
time of FT Algorithm. We have tested our implementation of FT Algorithm on
several classes of planar graphs, including the maximal planar graphs and their
subgraphs from LEDA [2,25], Delaunay triangulations of point sets taken from
TSPLIB [26], triangulations and intersection graphs of segments from LEDA,
Gabriel graphs, and planar graphs from PIGALE library [1]. The computational
results show that the size of instances that can be solved in a practical time
mainly depends on the branchwidth of the kernels. For example, the maximal
planar graphs and their subgraphs have branchwidth at most four. This class of
graphs are used as the test instances for the data reduction in previous stud-
ies [3,6]. Step I reduces the problem size significantly (often finds the solution

92 M. Marzban, Q.-P. Gu, and X. Jia

already) and the PLANAR DOMINATING SET problem can be solved effi-
ciently for very large instances in this class. On the other hand, for Delaunay
triangulation and Gabriel graphs, because the branchwidth of kernels increases
fast in instance size, the size of instances that can be solved in a practical time is
limited to a few hundreds edges. For triangulation graphs, intersection graphs,
and graphs from PIGALE library, the branchwidth of kernels increases slowly
or does not grow in instance size, instances of size up to about ten thousands
edges can be solved in a practical time. These results coincide with the theo-
retical analysis of FT Algorithm [16]: it runs exponentially in the branchwidth
of the kernel and k ≥ b(bw(G))2 for some constant b. Because the kernel of G
has O(k) vertices, the analysis suggests that a large branchwidth of the instance
implies a large kernel, Step I may not reduce the problem size much, and the
kernel may have a large branchwidth. For a kernel H with large branchwidth, FT
Algorithm is not practical because Step III of the algorithm runs exponentially
in the branchwidth of H .

The results of this paper give a concrete example on using branch-decomp-
osition based algorithms for solving important hard problems in planar graphs
and show that the PLANAR DOMINATING SET problem can be solved in
practice for some applications. This work may bring the theory of branch de-
composition closer to practice.

The rest of the paper is organized as follows. In the next section, we review FT
Algorithm. We introduce the data reduction rules in Section 3. Computational
results of FT Algorithm are reported in Section 4. The final section concludes
the paper.

2 Fomin and Thilikos Algorithm

We first introduce some definitions and terminology. Readers may refer to a
textbook on graph theory (e.g., the one by West [34]) for basic definitions and
terminology on graphs. In this paper, graphs are undirected unless otherwise
stated. Let G be a graph with vertex set V (G) and edge set E(G). A branch
decomposition of G is a tree TB such that the set of leaves of TB is E(G) and
each internal node of TB has node degree three. For each link e of TB, removing
e separates TB into two subtrees. Let E′ and E′′ be the sets of leaves of the
subtrees. Let Se be the set of vertices of G incident to both an edge of E′ and
an edge of E′′. The width of e is |Se| and the width of TB is the maximum
width of all links of TB. The branchwidth bw(G) of G is the minimum width of
all branch-decompositions. We call a link e = {x, y} a leaf link if one of x and
y is a leaf node of TB, otherwise an internal link. Notice that Se is a set which
separates G into two subgraphs induced by edges of E′ and E′′, respectively.

We say a vertex u is dominated by a vertex v if u and v are adjacent. A
vertex set U is dominated by a vertex set V if for every vertex u ∈ U there is a
vertex v ∈ V such that u and v are adjacent or u ∈ V . Given two graphs G and
H , we say size(H) ≤ size(G) if |V (H)| ≤ |V (G)| and |E(H)| ≤ |E(G)|. In the
rest of the paper, the PLANAR DOMINATING SET problem is used for the
optimization version of the problem unless otherwise stated.

Computational Study on Dominating Set Problem of Planar Graphs 93

Now we briefly review FT Algorithm. Readers may refer to [16] for more
details. FT Algorithm solves the PLANAR DOMINATING SET problem of G
in three steps. Step I computes a kernel H of G by the data reduction process
such that size(H) ≤ size(G), γ(H) ≤ γ(G), and a minimum dominating set
D of G can be computed from a minimum dominating set D′ of H in linear
time. Step II finds an optimal branch decomposition TB of H . Step III computes
a minimum dominating set D′ of H using the dynamic programming method
based on TB and constructs a minimum dominating set D of G from D′.

In Step I, the principle of data reduction introduced in [6] is that based on
some rules we check the vertices of G to decide if some vertices can be included
into D or excluded for computing D. More specifically, each vertex v of G is
colored by black or grey as follows. Initially, every vertex v is colored grey,
meaning that whether v should be included in D or not has not been decided.
If v has been decided to be included in D, v is colored black. If v has been
decided to be excluded for computing D in the future, v is removed from G.
After the reduction process, we get a kernel H(B ∪ C, E), where B and C are
the sets of black and grey vertices, respectively. The specific reduction rules will
be introduced in the next section.

To compute an optimal branch decomposition TB of H , either the edge-
contraction algorithms [18,32] or the divide-and-conquer algorithms [9] can be
used. The divide-and-conquer algorithms are faster for large graphs in practice.

In Step III, given a kernel H = (B ∪C, E), we find a minimum D′ ⊆ (B ∪C)
such that D′ ⊇ B and D′ dominates all vertices of C. As shown later, a minimum
dominating set D of G can be constructed from D′ in linear time. To compute
D′, first the branch decomposition TB of H is converted into a rooted binary tree
by replacing a link {x, y} of TB by three links {x, z}, {z, y}, and {z, r}, where
z and r are new nodes to TB, r is the root, and {z, r} is an internal link. For
every internal link e of TB, e has two children links incident to e. For every link
e of TB, let Te be the subtree of TB consisting of all descendant links of e. Let
He be the subgraph of H induced by the edges at leave nodes of Te. To compute
a minimum dominating set D′ of H , we find all dominating sets (solutions) of
He from which D′ may be constructed for every link e of TB by a dynamic
programming method: the solutions of He for each leaf link e is computed by
enumeration and the solutions for an internal link e is computed by merging the
solutions for the children links of e. To find a solution of He, each vertex of Se

is colored by one of the following colors.

Black. denoted by 1, meaning that the vertex is included in the dominating set.
White. denoted by 0, meaning that the vertex is dominated at the current step

of the algorithm and is not in the dominating set.
Grey. denoted by 0̂, meaning that we have not decided to color the vertex into

black or white yet at the current step.

A solution of He subject to a coloring λ ∈ {0, 0̂, 1}|Se| is a minimum set De(λ)
satisfying

94 M. Marzban, Q.-P. Gu, and X. Jia

– for u ∈ B ∩ Se, λ(u) is black;
– every vertex of V (He) \ Se is dominated by a vertex of De(λ); and
– for every vertex u ∈ Se if λ(u) is black then u ∈ De(λ), if λ(u) is white then

u �∈ De(λ) and u is dominated by a vertex of De(λ).

Intuitively, De(λ) is a minimum set to dominate the vertices of He with grey ver-
tices removed, subject to the condition that the vertices of Se are colored by λ.

For a leaf link e, colorings λ and sets De(λ) are computed by enumeration.
An internal link e has children edges e1 and e2 in TB. The colorings λ of Se and
sets De(λ) are computed from the colorings λ1 of Se1 , sets De1(λ1), colorings λ2

of Se2 , and sets De2(λ2). A coloring λ of Se is formed from λ1 and λ2 if:

– For u ∈ Se \ Se2 , λ(u) = λ1(u).
– For u ∈ Se \ Se1 , λ(u) = λ2(u).
– For u ∈ Se ∩ Se1 ∩ Se2 , if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) =

λ2(u) = 0̂ then λ(u) = 0̂; and if λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and
λ2(u) = 0 then λ(u) = 0.

– For u ∈ (Se1 ∪ Se2) \ Se, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or
λ1(u) = 0̂ and λ2(u) = 0.

For a coloring λ of Se formed from λ1 and λ2, the minimum dominating set
De(λ) is the minimum set among the sets of De1(λ1) ∪ De2(λ2). For e = {z, r},
a minimum set De(λ) among all colorings λ of Se is a minimum dominating set
of H .

3 Data Reduction

In this section, we introduce the data reduction rules used in our implementation
of FT Algorithm for Step I. All reduction rules of [3,6] are used. To enhance the
data reduction effect, we also propose some new reduction rules. Following the
convention of FT Algorithm, we color each vertex of G by black or grey, and may
remove some vertices from G by those reduction rules. After the data reduction
step, we get a kernel H(B ∪ C, E), recall that B and C are the sets of black
and grey vertices, respectively. For a vertex v, let N(v) = {u|{u, v} ∈ E(G)},
N [v] = N(v) ∪ {v}, B(v) = B ∩ N(v), and C(v) = C ∩ N(u). For a set U
of vertices, let N(U) = ∪v∈UN(v). For a vertex u, if there is a black vertex
v ∈ N [u], we mark u dominated. Initially, every vertex of G is unmarked. In
the data reduction step, some vertices are marked. Let X be the set of marked
vertices and Y be the set of unmarked vertices. For v ∈ V (G), the following is
introduced in [6]:

N1(v) = B(v) ∪ {u|u ∈ C(v), N(u) \ N [v] �= ∅},
N2(v) = {u|u ∈ N(v) \ N1(v), N(u) ∩ N1(v) �= ∅}, and
N3(v) = N(v) \ (N1(v) ∪ N2(v)).

Rule 1 [6]. For v ∈ V (G), if N3(v)∩ Y �= ∅ then remove N2(v) and N3(v) from
G, color v black, and mark N [v] dominated.

Computational Study on Dominating Set Problem of Planar Graphs 95

For a pair of vertices v, w ∈ V (G), let N(v, w) = N(v) ∪ N(w) \ {v, w},
B(v, w) = B ∩N(v, w), C(v, w) = C ∩N(v, w), and N [v, w] = N [v]∪N [w]. The
following is introduced in [6]:

N1(v, w) = B(v, w) ∪ {u|u ∈ C(v, w), N(u) \ N [v, w] �= ∅},
N2(v, w) = {u|u ∈ N(v, w) \ N1(v, w), N(u) ∩ N1(v, w) �= ∅},
N3(v, w) = N(v, w) \ (N1(v, w) ∪ N2(v, w)).

Rule 2 [6]. For v, w ∈ V (G) with both v and w grey, assume that |N3(v, w) ∩
Y | ≥ 2 and N3(v, w)∩Y can not be dominated by a single vertex of N2(v, w)∪
N3(v, w).
Case 1: N3(v, w) ∩ Y can be dominated by a single vertex of {v, w}.
– (1.1) If N3(v, w) ∩ Y ⊆ N(v) and N3(v, w) ∩ Y ⊆ N(w) then remove

N3(v, w) and N2(v, w)∩N(v)∩N(w) from G and add new gadget vertices
z and z′ with edges {v, z}, {w, z}, {v, z′}, and {w, z′} to G.

– (1.2) If N3(v, w) ∩ Y ⊆ N(v) but N3(v, w) ∩ Y �⊆ N(w) then remove
N3(v, w) and N2(v, w) ∩ N(v) from G, color v black, and mark N [v]
dominated.

– (1.3) If N3(v, w) ∩ Y ⊆ N(w) but N3(v, w) ∩ Y �⊆ N(v) then remove
N3(v, w) and N2(v, w) ∩ N(w) from G, color w black, and mark N [w]
dominated.

Case 2: If N3(v, w) ∩ Y can not be dominated by a single vertex of {v, w}
then remove N2(v, w) and N3(v, w) from G, mark v and w black, and mark
N [v, w] dominated.

In Rule 1 and Rule 2 (Cases 1.2, 1.3, and 2) of [6], gadget vertices are used to
guarantee some vertices to be included in the solution set. In [3] the rules are
implemented in a way that the vertices to be included in the solution set are
removed. Our descriptions are slightly different from the previous ones: we do
not use gadget vertices nor remove the vertices to be included to the solution
set but color them black. Our descriptions allow us to have new reduction rules
given below that may further reduce the size of the kernel.

Rule 3
3.1: For v, w ∈ V (G) with v black and w grey, if (N3(v, w) ∩ Y) \ N(v) �= ∅
then remove N2(v, w)∪N3(v, w), color w black, and mark N [w] dominated;
otherwise remove (N2(v, w) ∪ N3(v, w)) ∩ N(v).
3.2: For v, w ∈ V (G) with v grey and w black, if (N3(v, w) ∩ Y) \N(w) �= ∅
then remove N2(v, w) ∪ N3(v, w), color v black, and mark N [w] dominated;
otherwise remove (N2(v, w) ∪ N3(v, w)) ∩ N(w).
3.3: For v, w ∈ V (G) with both v and w black, remove N2(v, w) ∪N3(v, w).

Lemma 1. Given a graph G, let G′ be the graph obtained by applying Rule 3
for v, w ∈ V (G). Then size(G′) ≤ size(G), γ(G′) ≤ γ(G), and a minimum
dominating set D′ of G′ that contains all black vertices of G′ is a minimum
dominating set of G that contains all black vertices of G.

96 M. Marzban, Q.-P. Gu, and X. Jia

Proof: For v, w ∈ V (G) with v black and w grey, assume that (N3(v, w) ∩
Y) \ N(v) �= ∅. For u ∈ (N3(v, w) ∩ Y) \ N(v) and x which dominates u, x ∈
{w} ∪ N2(v, w) ∪ N3(v, w). Since N(N2(v, w) ∪ N3(v, w)) ⊆ N [v] ∪ N [w], we
should include w into D to dominate (N3(v, w) ∩ Y) \ N(v). Therefore, we can
remove N2(v, w)∪N3(v, w) from G. Assume that (N3(v, w)∩Y)\N(v) = ∅. For
u ∈ (N2(v, w)∪N3(v, w))∩N(v), u is dominated by v and N(v)∪N(u) ⊆ N(v)∪
N(w). This implies that we can at least include w rather than u to get D. At
this point, we can not decide if we should include w into D or not because there
might be a vertex x with N(w) ⊆ N(x) that should be included in D. But we can
exclude (N2(v, w)∪N3(v, w))∩N(v) from D. Since (N2(v, w)∪N3(v, w))∩N(v)
is dominated by v, we can remove (N2(v, w) ∪ N3(v, w)) ∩ N(v) from G. This
completes the proof for (3.1).

The proof for (3.2) is a symmetric argument of that for (3.1).
For v, w ∈ V (G) with both v and w black, since N(N2(v, w) ∪ N3(v, w)) ⊆

N [v] ∪ N [w], we can remove N2(v, w) ∪ N3(v, w) from G. �

Rule 4 [3]
4.1: Delete edges between vertices of X (vertices marked dominated).
4.2 If u ∈ X has |C(u)| ≤ 1 then remove u.
4.3 For u ∈ X with C(u) ∩ Y = {u1, u2}, if u1 and u2 are connected by a
path of length at most 2 then remove u.
4.4 For u ∈ X with C(u) ∩ Y = {u1, u2, u3}, if {u1, u2}, {u2, u3} ∈ E(G)
then remove u.

To perform the data reduction, we first apply Rule 1 for every vertex of G.
Next for every pair of vertices v and w of G, we apply either Rule 2 or Rule 3
depending on the colors of v and w. Then we apply Rule 4. We repeat the above
until Rules 1-4 do not change the graph. From the results of [6,3] on Rules 1,2,
and 4, and Lemma 1, we have the following result.

Theorem 1. Given a planar graph G, let H(B ∪ C, E) be the kernel obtained
by applying the reduction rules described above and D′ be a minimum vertex
set of H(B ∪ C, E) such that D′ ⊇ B and D′ dominates C. Then a minimum
dominating set D of G can be constructed from D′ in linear time.

Given a planar graph G, let H(B ∪ C, E) be the kernel obtained from Step
I, TB be an optimal branch decomposition of H , and l(H) = max{|C ∩ Se|, e ∈
E(TB)}. It is shown in [6] that H(B ∪ C, E) can be computed in O(n3) time.
TB can be computed by either the edge-contraction algorithm [18] or a divide-
and-conquer algorithm [9] in O(|E(H)|3) time. It is shown in [16] that Step
III has time complexity O(23 log4 3l(H)|E(H)|). Therefore, FT Algorithm takes
O(23 log4 3l(H)|E(H)| + n3) time to solve the PLANAR DOMINATING SET
problem. In what follows, we use l(H) for the branchwidth of kernel H .

4 Computational Results

We implemented FT Algorithm and tested our implementation on six classes of
planar graphs from some libraries including LEDA [2,25] and PIGALE [1]. LEDA

Computational Study on Dominating Set Problem of Planar Graphs 97

generates two types of planar graphs. One type of graphs are the random maxi-
mal planar graphs and their subgraphs and the other type of graphs are the planar
graphs based on some geometric properties, including the Delaunay triangulations
and triangulations of points, and the intersection graphs of segments, uniformly
distributed in a two-dimensional plane. Instances of Class (1) are the random max-
imal graphs and their subgraphs generated by LEDA. This class of instances have
been used by Alber et al. in their study on the data reduction rules used in Step I
[3,6]. Instances of Class (2) are Delaunay triangulations of point sets taken from
TSPLIB [26]. Instances of Classes (3) and (4) are the triangulations and intersec-
tion graphs generated by LEDA, respectively. Instances of Class (5) are Gabriel
graphs of the points uniformly distributed in a two-dimensional plane. Instances
of Classes (2)-(5) are graphs based some geometric properties. The DOMINAT-
ING SET problem on those graphs has important applications such as the virtual
backbone design of wirelessnetworks [24]. Instances of Class (6) are random planar
graphs generated by the PIGALE library [1]. PIGALE provides a number of pla-
nar graph generators. We used a function in the PIGALE library that randomly
generates one of all possible 2-connected planar graphs with a given number of
edges based on the algorithms of [31].

Step I of FT Algorithm is implemented as described in the previous section.
To compute an optimal branch decomposition TB, we use the divide-and-conquer
algorithm [9]. In Step III, to save memory, we compute the colorings λ and sets
De(λ) for each link e of TB in the postorder. Once the colorings λ and sets De(λ)
are computed for a link e, the solutions for the children links of e are discarded.
We sort the tables for the colorings to have an efficient implementation of Step
III. The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core
Processor 4600+ (2.4GHz) and 4Gbyte memory. The operating system is SUSE
Linux 10.2 and the programming language used is C++.

We report the computational results of FT Algorithm in Table 1. For Step
I, we give the number |B| of vertices of an optimal dominating set decided in
the data reduction and the running time of the step. For Step II, we give the
size |E(H)| and branchwidth l(H) = max{|C ∩ Se|, e ∈ E(TB)} of kernel H ,
and the running time of the step. For Step III, we give the dominating number
γ(G) obtained by FT Algorithm and the running time of the step. The running
time is in seconds, and Steps I, II, and III have time complexities O(|E(G)|3),
O(|E(H)|3), and O(23 log4 3l(H)|E(H)|), respectively. We use the number of edges
to express the size of an instance or a kernel.

It is easy to show that the instances of Class (1) have branchwidth at most
four. These instances have small kernels and Step I is very effective. For the
instances included in the table, |B| is very close to γ(G) (i.e., Step I finds most
vertices in an optimal dominating set) and the kernels are much smaller than
the original instances. For some smaller instances not reported in the table, Step
I already finds optimal dominating sets. Because the kernels have small size
and branchwidth, FT Algorithm is efficient for the instances in this class, for
example, an optimal dominating set can be computed for large instances of size
up to about 40,000 edges in about 20 minutes.

98 M. Marzban, Q.-P. Gu, and X. Jia

Table 1. Computational results of FT Algorithm for instances of Classes (1)-(6)

Class Graph |E(G)| bw(G) Step I Step II Step III total
G |B| time |E(H)| l(H) time γ(G) time time

(1) max1500 4047 4 209 4 23 2 < 1 211 < 1 4
max6000 7480 4 2214 55 32 2 < 1 2219 < 1 55
max8000 13395 4 2186 336 194 3 < 1 2211 < 1 337
max11000 28537 4 1679 815 208 4 1 1695 < 1 816
max13500 38067 4 1758 1203 302 3 1 1779 < 1 1204

(2) pr144 393 9 2 < 1 291 6 1 20 1 3
ch130 377 10 0 < 1 377 10 1 21 12734 12735

kroB150 436 10 0 < 1 436 10 1 23 43094 43095
pr226 586 7 12 1 126 6 < 1 21 < 1 2
pr299 864 11 1 1 824 11 1 47 392931 392933

(3) tri1000 2980 7 69 10 1657 7 4 163 26 40
tri2000 5977 8 136 56 3192 7 146 321 120 322
tri3000 8976 8 209 87 4805 7 379 489 190 656
tri4000 11969 9 252 251 6888 7 1667 653 413 2331
tri5000 14969 8 384 285 7271 8 1547 804 915 2747

(4) rand2000 3247 8 371 8 1219 7 1 548 14 23
rand3000 4943 10 514 19 2093 8 3 806 173 195
rand4000 6676 11 678 35 2956 8 4 1068 217 256
rand5000 8451 11 755 57 4177 8 13 1315 363 433
rand6000 10293 11 839 93 5598 9 25 1563 2933 3051

(5) Gab100 182 7 3 < 1 162 7 < 1 24 5 6
Gab200 366 8 3 < 1 344 8 1 47 192 193
Gab300 552 10 5 < 1 516 10 32 70 28014 28046

(6) p1277 2128 9 116 8 1353 9 14 323 1953 1975
p2518 4266 9 329 31 1876 5 26 621 3 60
p4206 7101 6 596 75 2901 5 7 1039 2 84
p5995 10092 7 708 181 5142 5 20 1504 6 207
p7595 12691 6 998 259 5702 5 16 1893 7 272

For Class (2) and (5), the branchwidth of instance increases fast in instance
size (e.g., Class (2) instances rd400 of 1,183 edges and u2152 of 6,312 edges have
branchwidth 17 and 31, respectively, Class (5) instances Gab500 of 932 edges
and Gab2000 of 3,911 edges have branchwidth 12 and 26, respectively). For the
instances tested, the kernel H of an instance G has the same branchwidth as that
of G (l(H) = bw(G)) and has the same size as or only slightly smaller than that
of G. The size of those instances for which the PLANAR DOMINATING SET
problem can be solved in a practical time is limited to a few instances of size up to
only a few hundreds edges. The computation time for Instances ch130, kroB150,
and pr299 in Class (2) is significantly larger than that for Instances pr144 and
pr226 in the same class. As shown in the table, this huge difference comes from
the difference between the branchwidthes of kernels (Step III), the kernels of
Instances ch130 and kro150 have branchwidth 10 while those of pr144 and pr226
have branchwidth 6. This coincides with the theoretical time complexity of FT

Computational Study on Dominating Set Problem of Planar Graphs 99

Algorithm which runs exponentially in l(H). Similar difference is observed for
Instances Gab100 and Gab300 of Class (5) as well.

For Classes (3), (4), and (6), the branchwidth of instance increases slowly or
does not grow in instance size. The data reduction is effective for instances in
these classes. For most instances, the kernel size is at most half of the instance
size and the branchwidth of the kernel is usually smaller than that of the instance
as well. Our data show that the PLANAR DOMINATING SET problem can be
solved for instances in these classes of size up to about 10,000 edges in a practical
time. For large instances, the size |E(H)| of kernel H is also important to the
running time of Step III. For example, FT Algorithm takes more time to solve
Instance rand6000 than that for rand2000. The time difference comes from the
differences of both l(H) and |E(H)|.

Due to the page limit, Table 1 only contains the instances well scaled within
some size ranges. We have tested FT Algorithm on more instances. The results
are similar to those in Table 1, the running time mainly depends on l(H) and
then |E(H)|. For a kernel H with large l(H), Step III is time consuming, because
this step runs exponentially in l(H). Our computational results suggest that it
may not be practical to use FT Algorithm to solve the PLANAR DOMINATING
SET problem of instances with l(H) > 10 on a PC with a CPU of about 3GHz
(e.g., it takes more than 100 hours to solve the instance pr299 with 864 edges
and l(H) = 11).

Both the theoretical analysis and computational study suggest that computing
a kernel H with smaller l(H) and |E(H)| is a most effective way to improve the
efficiency of FT Algorithm. For this purpose, we proposed new reduction rules
(Rule 3). Recall that H is the kernel obtained by new reduction rules (Rules 1,2,3,
and 4) and let H ′ be the kernel obtained by applying only the previous known
reduction rules (Rules 1,2, and 4). Since all nodes colored black (resp. nodes
deleted) by previous rules are also colored (resp. deleted) by new rules, l(H) ≤
l(H ′) and |E(H)| ≤ |E(H ′)|. For Classes (2) and (5), l(H) = l(H ′) = bw(G)
for all instances testes and |E(H)| = |E(H ′)| = |E(G)| for most instances, that
is, the effect of data reduction is very limited. However, for instances in other
classes, data reduction is effective and our new rules improve the efficiency of
FT Algorithm. For instances of Classes (1),(3),(4), and (6), Table 2 shows the
computational results of FT Algorithm when previous rules and new rules are
used. In the table, told and tnew (resp. |B′| and |B|) are the total running times
(resp. the numbers of vertices in an optimal dominating set decided in Step I)
when previous rules and new rules are used, respectively. The data show that
l(H) = l(H ′) and |E(H)| < |E(H ′)| for most instances. The total running time is
improved when new rules are used: tnew < told for all instances in the table. The
improvement is instance dependent and tnew/told varies from 48% to 97%. The
average of tnew/told over the five instances of Class (1) is about 90%. Similarly,
the averages of tnew/told for Classes (3),(4), and (6) are about 70%, 85%, and
90%, respectively. The improvement of the total running time is obtained mainly
from Step III. The running time of Step I when new rules are used is about the

100 M. Marzban, Q.-P. Gu, and X. Jia

Table 2. The results of using new data reduction rules and without using the new
rules in Step I

Class Graph |E(G)| bw(G) Results without new rules Results with new rules
G |B′| |E(H ′)| l(H ′) time |B| |E(H)| l(H) time

(1) max1500 4047 4 209 23 2 5 209 23 2 4
max6000 7480 4 2212 41 2 58 2214 32 2 55
max8000 13395 4 2183 218 3 357 2186 194 3 337
max11000 28537 4 1671 287 4 893 1679 208 4 816
max13500 38067 4 1752 362 4 1294 1758 302 3 1204

(3) tri1000 2980 7 63 1752 7 84 69 1657 7 40
tri2000 5977 8 102 3787 7 490 136 3192 7 322
tri3000 8976 8 175 5442 7 877 209 4805 7 656
tri4000 11969 9 214 7541 7 2499 252 6888 7 2331
tri5000 14969 8 333 8201 8 4118 384 7271 8 2747

(4) rand2000 3247 8 361 1293 7 25 371 1219 7 23
rand3000 4943 10 512 2120 8 216 514 2093 8 195
rand4000 6676 11 669 3043 8 263 678 2956 8 256
rand5000 8451 11 748 4254 8 474 755 4177 8 433
rand6000 10293 11 832 5675 9 5586 839 5598 9 3051

(6) p1277 2128 9 112 1371 9 2134 116 1353 9 1975
p2518 4266 9 291 2139 5 67 329 1876 5 60
p4206 7101 6 555 3189 5 91 596 2901 5 84
p5995 10092 7 652 5508 5 297 708 5142 5 207
p7595 12691 6 925 6159 5 281 998 5702 5 272

same as that when previous rules are used (instance dependent) and we omit
the details here due to the page limit.

5 Concluding Remarks

We tested the practical performances of FT Algorithm on a wide range of pla-
nar graphs. The computational results coincide with the theoretical analysis of
the algorithm, it is efficient for graphs with small branchwidth but may not be
practical for graphs with large branchwidth. By a PC with a CPU of about
3GHz, it is possible to solve the PLANAR DOMINATING SET problem for
graphs with the branchwidth of their kernels at most 10 in a few hours. Since
FT Algorithm runs exponentially in the branchwidth l(H) of a kernel H for a
given graph, it is worth to develop more powerful data reduction rules to re-
duce l(H). Another research direction is to develop heuristics to reduce l(H) to
compute approximate solutions for the PLANAR DOMINATING SET problem
by branch-decomposition based algorithms. Those heuristics should provide so-
lutions very close to the optima but runs faster than FT Algorithm for graphs
with large branchwidth. It is also interesting to find heuristics which are effi-
cient in practice and have guaranteed performance for the Planar Dominating
Set problem.

Computational Study on Dominating Set Problem of Planar Graphs 101

Acknowledgement

The authors thank anonymous reviewers for constructive comments. The work
was partially supported by NSERC Research Grant of Canada and Research
Grant Council of Hong Kong (Project No. CityU 114307).

References

1. Public Implementation of a Graph Algorithm Library and Editor (2008),
http://pigale.sourceforge.net/

2. The LEDA User Manual, Algorithmic Solutions, Version 4.2.1 (2008),
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

3. Alber, J., Betzler, N., Niedermeier, R.: Experiments on data reduction for opti-
mal domination in networks. In: Proc. of the International Network Optimization
Conference (INOC 2003), pp. 1–6 (2003)

4. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmca 33, 461–493 (2002)

5. Alber, J., Fan, H., Fellows, M., Fernau, H., Niedermeier, R.: Refined search tree
technique for dominating set on planar graphs. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, pp. 111–122. Springer, Heidelberg (2001)

6. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data reduction for dom-
inating set. Journal of the ACM 51(3), 363–384 (2004)

7. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
Journal of ACM 41, 153–180 (1994)

8. Bian, Z., Gu, Q., Marzban, M., Tamaki, H., Yoshitake, Y.: Empirical study on
branchwidth and branch decomposition of planar graphs. In: Proc. of the 9th SIAM
Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 152–
165 (2008)

9. Bian, Z., Gu, Q.-P.: Computing branch decomposition of large planar graphs. Tech-
nical report, SFU-CMPT-TR 2008-04, School of Computing Science, Simon Fraser
University (2008)

10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9, 251–280 (1990)

11. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

12. Dorn, F.: How to use planarity efficiently: new tree-decomposition based algo-
rithms. In: Proc. of the 33rd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2007). LNCS, vol. 4769, pp. 280–291 (2007)

13. Downey, R.G., Fellow, M.R.: Parameterized complexity. In: Monographs in Com-
puter Science. Springer, Heidelberg (1999)

14. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness.
Cong. Num. 87, 161–187 (1992)

15. Fiege, U.: A threshold of ln n for approximating set cover. Journal of ACM 45,
634–652 (1998)

16. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and
exponential speed-up. SIAM Journal on Computing 36(2), 281–309 (2006)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

http://pigale.sourceforge.net/
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

102 M. Marzban, Q.-P. Gu, and X. Jia

18. Gu, Q.P., Tamaki, H.: Optimal branch decomposition of planar graphs in O(n3)
time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

19. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination
in graphs applied to electronic power networks. SIAM J. on Discrete Mathemat-
ics 15(4), 519–529 (2002)

20. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs. In: Mono-
graphs and Textbooks in Pure and Applied Mathematics, vol. 209. Marcel Dekker,
New York (1998)

21. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in
graphs. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker, New York (1998)

22. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

23. Kanj, I.A., Perkovic, L.: Improved parameterized algorithms for planar dominating
set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410.
Springer, Heidelberg (2002)

24. Li, X.-Y.: Algorithmic, geometric and graphs issues in wireless networks. Journal of
Wireless Communications and Mobile Computing (WCMC) 6(2), 119–140 (2003)

25. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, New York (1999)

26. Reinelt, G.: TSPLIB-A traveling salesman library. ORSA J. on Computing 3, 376–
384 (1991)

27. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. Journal of
Combinatorial Theory Series B 35, 39–61 (1983)

28. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

29. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposi-
tion. J. of Combinatorial Theory Series B 52, 153–190 (1991)

30. Sanchis, L.A.: Experimental analysis of heuristic algorithms for the dominating set
problem. Algorithmica 33, 3–18 (2002)

31. Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In:
Proc. of the 31st Annual ACM Symposium on the Theory of Computing (STOC
1999), pp. 760–769 (1999)

32. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

33. Wan, P.J., Alzoubi, K.M., Frieder, O.: A simple heuristic for minimum connected
dominating set in graphs. International Journal of Found. Comput. Sci. 14(2),
323–333 (2003)

34. West, D.B.: Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River
(1996)

Optimal Movement of Mobile Sensors for

Barrier Coverage of a Planar Region

(Extended Abstract)

B. Bhattacharya1,�, B. Burmester2, Y. Hu1, E. Kranakis3,∗,
Q. Shi1, and A. Wiese4

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
{binay,yhu1,qshi1}@cs.sfu.ca

2 Department of Computer Science, Florida State University,
Talahassee, Florida, USA
burmester@cs.fsu.edu

3 School of Computer Science, Carleton University, Ottawa, Ontario, Canada
kranakis@scs.carleton.ca

4 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
hopeneverdies@web.de

Abstract. Intrusion detection, area coverage and border surveillance
are important applications of wireless sensor networks today. They can
be (and are being) used to monitor large unprotected areas so as to detect
intruders as they cross a border or as they penetrate a protected area.
We consider the problem of how to optimally move mobile sensors to the
fence (perimeter) of a region delimited by a simple polygon in order to
detect intruders from either entering its interior or exiting from it. We
discuss several related issues and problems, propose two models, provide
algorithms and analyze their optimal mobility behavior.

1 Introduction

Monitoring and surveillance are two of the main applications of wireless sensor
networks today. Typically, one is interested in monitoring a given geographic re-
gion either for measuring and surveying purposes or for reporting various types
of activities and events. Another important application concerns critical security
and safety monitoring systems. One is interested in detecting intruders (or move-
ments thereof) around critical infrastructure facilities and geographic delimiters
(chemical plants, forests, etc). As a matter of fact, since the information security
level of the monitoring system might change rapidly because of hostile attacks
targeted at it, research efforts are currently underway to extend the scalability
of wireless sensor networks so that they can be used to monitor international
borders as well. For example, [11] reports the possibility of using wireless sensor
networks for replacing traditional barriers (more than a kilometer long) at both
the building and estate level. Also, “Project 28” concerns the construction of
� Research was partially supported by MITACS and NSERC.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 103–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

104 B. Bhattacharya et al.

a virtual fence as a way to complement a physical fence that will include 370
miles of pedestrian fencing and 300 miles of vehicle barrier (see [8] which reports
delays in its deployment along the U.S.-Mexico border).

To begin, we say that a point is covered by a sensor if it is within its range. In
this paper we will use the concept of barrier coverage as used in [11] and which
differs from the more traditional concept of full coverage. In the latter case one is
interested in covering the entire region by the deployment of sensors, while in the
former all crossing paths through the region are covered by sensors. Thus, one
is not interested in covering the entire deployment region but rather to detect
potential intruders by guaranteeing that there is no path through this region that
can be traversed undetected by an intruder as it traverses the border. Clearly,
barrier coverage is an appropriate model of movement detection that is more
efficient than full coverage since it requires less sensors for detecting intruders
(this is the case, for example, when the width of the deployment region is three
times the range of the sensors).

In [3] the authors consider the problem of how individual sensors can determine
barrier coverage locally. In particular, they prove that it is possible for individ-
ual sensors to locally determine the existence of barrier coverage, even when the
region of deployment is arbitrarily curved. Although local barrier coverage does
not always guarantee global barrier coverage, they show that for thin belt regions,
local barrier coverage almost always provides global barrier coverage. They also
consider the concept of L-local barrier coverage whereby if the bounding box that
contains the entire trajectory of a crossing path has length at most L then this
crossing path is guaranteed to be detected by at least one sensor.

Motivation, model and problem statement. Motivated from the works of [3] and
[11], in this paper we go beyond by asking a different question not examined by
any of these papers. More precisely, given that the mobile sensors have detected
the existence of a crossing path (e.g., using any of the above algorithms) how
do they reposition themselves most efficiently within a specified region so as to
repair the existing security hole and thereby prevent intruders.

Further, we stipulate the existence of a geometric planar region (the critical
region to be protected) delimited by a simple polygon and mobile sensors are ly-
ing in the interior of this polygon. We consider a set of mobile sensors (or robots)
lying within a region that can move autonomously in the plane. Each sensor has
knowledge of the region to be barrier-covered, of its geographic location and can
move from its starting position p to a new position p′ on the perimeter of this
polygon. For each sensor, we look at the distance d(p, p′) between the starting
and final positions of the sensors, respectively, and investigate how to move the
sensors within this region so as to optimize either the minimum sum or the min-
imum maximum of the distances covered by the respective sensors. In the sequel
we investigate the complexity of this problem for various types of regions and
types of movement of the mobile sensors.

Related work. An interesting research article is by [1] which surveys the different
kinds of holes that can form in geographically correlated problem areas of wireless

Optimal Movement of Mobile Sensors for Barrier Coverage 105

sensornetworks. The authors discuss relative strengths and short-comings of exist-
ing solutions for combating different kinds of holes such as coverage holes, routing
holes, jamming holes, sink/black holes, worm holes, etc. [2] looks at critical den-
sity estimates for coverage and connectivity of thin strips (or annuli) of sensors.
In addition, [5] and [6] design a distributed self deployment algorithm for coverage
calculations in mobile sensor networks and consider various performance metrics,
like coverage, uniformity, time and distance traveled till the algorithm converges.
Related is also the research on art gallery theorems (see [14]) which is concerned
with finding the minimal number of positions for guards or cameras so that every
point in a gallery is observed by at least one guard or camera.

In addition to the research on barrier coverage already mentioned there is ex-
tensive literature on detection and tracking in sensor networks. [12] considers the
problem of event tracking and sensor resource management in sensor networks
and transforms the detection problem into finding and tracking the cell that con-
tains the point in an arrangement of lines. [9] addresses the problem of tracking
multiple targets using a network of communicating robots and stationary sensors
by introducing a region-based approach for controlling robot deployment. [16]
considers the problem of accurate mobile robot localization and mapping with
uncertainty using visual landmarks. Finally, related to the problem of detect-
ing a path through a region that can be traversed undetected by an intruder is
the paper [15] which gives necessary and sufficient conditions for the existence
of vertex disjoint simple curves homotopic to certain closed curves in a graph
embedded on a compact surface.

Outline and results of the paper. Section 2 gives the formal model on a circle
and defines the min-max (minimizing the maximum) and min-sum (minimizing
the sum) problems for a set of sensors within a circle or a simple polygon.
Section 3 looks at the simpler one dimensional case and derives simple optimal
algorithms for the case the sensors either all lie on a line or on the perimeter of
circle. Section 4 and Section 5 are the core of the paper and provide algorithms
solving the min-sum and min-max problems, respectively. That is, in Section 4,
an O(n3.5 log n)-time algorithm for the min-max problem on a circle and an
O(mn3.5 log n)-time algorithm for the min-max problem on a simple polygon are
proposed (m is the number of edges of the simple polygon). Our approximation
algorithms for min-sum problems on a circle or a simple polygon are presented
in Section 5. Finally, Section 6 gives the conclusion.

2 Preliminaries and Formal Model

First we describe the formal model on a circle and provide the basic definitions
and preliminary concepts.

2.1 Optimization on a Circle

The simpler scenario we envision concerns n mobile sensors which are located
in the interior of a unit-radius circular region. A set of n sensors are located

106 B. Bhattacharya et al.

inside the disk. Further, assume that the sensors are location aware (i.e., they
know their geometric coordinates) and also know the location of the center of
the disk. We would like to move all the sensors from their initial positions to
the perimeter of the circle so as to 1) form a regular n-gon, and 2) minimize the
total/maximum distance covered.

The motivation for placing the sensors on the perimeter is because it provides
the most efficient way to protect the disk from intruders. Observe that when all
n sensors lie equidistant on the vertices of a regular n-gon, they each need to
cover a circular arc of size 2π/n so as to be able to monitor the entire perimeter.
Using elementary trigonometry, it follows easily that the transmission range of
each sensor must be equal to r = sin(π/n).

More formally, for n given sensors in positions A1, A2, . . . , An, respectively,
which move to new positions A′

1, A
′
2, . . . , A

′
n at the corners of a regular n-gon

the total distance covered is
∑n

i=1 d(Ai, A
′
i). Every sensor moves from its current

position Ai to a new position A′
i. It is clear that the sum is minimized when each

sensor moves to its new position in a straight line.
The reason for having the sensors at the corners of a regular n-gon is because

this is evidently the optimal final arrangement that will enable them to detect
intruders (i.e., by being equidistant on the perimeter). Thus, since the final posi-
tion A′

1A
′
2 · · ·A′

n of the sensors forms a regular n-gon it is clear that all possible
solutions can be parametrized by using a single angle 0 ≤ θ ≤ 2π. However,
a difficulty arises in view of the fact that we must also specify a permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} of the sensors such that the i-th sensor moves
from position Aσ(i) to the new position A′

i.
Let the n sensors have coordinates (ai, bi), for i = 1, 2, . . . , n. Let us parametrize

the regular polygon with respect to the angle of rotation say θ. The n vertices of
the regular n-gon that lie on the perimeter of the disk can be described by

(ai(θ), bi, (θ)) =

(
cos

(
θ +

(i − 1)2π

n

)
, sin

(
θ +

(i − 1)2π

n

))
, (for i = 1, 2, . . . , n),

(1)

respectively, where (ai(θ), bi(θ)) are the vertices of the regular n-gon when the
angle of rotation is θ.

Minimizing the sum. The optimization problem is minθ Sn(θ), where the func-

tion Sn(θ) is defined by Sn(θ) :=
∑n

i=1

√
(ai − ai(θ))

2 + (bi − bi(θ))
2
, as a func-

tion of the angle θ. This of course assumes that the i-th sensor is assigned to
position (cos(θ + (i − 1)2π/n), sin(θ + (i − 1)2π/n)) on the perimeter. In gen-
eral, we have to determine the minimum over all possible permutations σ of
the sensors. If for a given angle θ and permutation σ we define Sn(σ, θ) :=∑n

i=1

√(
aσ(i) − ai(θ)

)2 +
(
bσ(i) − bi(θ)

)2 then the more general optimization
problem is minσ,θ Sn(σ, θ).

Minimizing the maximum. The previous problem was concerned with minimiz-
ing the sum of the distances of the robots to their final destinations. In view

Optimal Movement of Mobile Sensors for Barrier Coverage 107

of the fact that the robots are moving simultaneously it makes sense to ask
for minimizing the maximum of the distances of the robots to their final des-
tinations max1≤i≤n d(Ai, A

′
i). The optimization problem is minθ Mn(θ), where

Mn(θ) := max1≤i≤n

√
(ai − ai(θ))

2 + (bi − bi(θ))
2, as a function of the angle θ.

This of course assumes that the i-th sensor is assigned to position (cos(θ + (i −
1)2π/n), sin(θ+(i−1)2π/n)) on the perimeter. In general, we have to determine
the minimum over all possible permutations σ. If for a given permutation σ we
define the following maximum Mn(σ, θ) := max1≤i≤n√(

aσ(i) − ai(θ)
)2 +

(
bσ(i) − bi(θ)

)2 then the general optimization problem is
minσ,θ Mn(σ, θ).

2.2 Optimization on a Simple Polygon

We similarly define the problem of minimizing the sum and minimizing the
maximum on a simple polygon as follows.1 Let P be a simple polygon. (From
now on, a polygon is always assumed to be simple.) We denote the boundary of
P by ∂P . We assume that ∂P is oriented in the clockwise (also called positive)
direction. For any two points a, c ∈ ∂P , we write π̂P (a, c) to denote the set of
all points b ∈ ∂P such that when starting after a in positive direction along ∂P ,
b is reached before c. Let p0, p1, . . . , pm−1 denote the vertices on P ordered in
the positive direction. The edges of ∂P are e0, e1, . . . , em−1, where edge ei has
endpoints pi and pi+l, where 0 ≤ i < m (i.e., the indices are computed modulo
m; e.g., p0 = pm). We denote by l(ei) the length of edge ei, 0 ≤ i < m, and by
d̂P (a, b) the length of π̂P (a, b) for any two points a and b on ∂P (called polygonal
distance between a and b). Let L(P) =

∑m−1
i=0 l(ei).

We are given n mobile sensors which are located in the interior of P . Each
sensor has the knowledge of its geometric coordinates and the simple polygon
(i.e., the geometric coordinates of all vertices pi, 0 ≤ i < n and the clockwise
ordering of these vertices). The objective is to move all the sensors from their
initial positions to ∂P such that 1) the polygonal distance between any two con-
secutive sensors on the polygon is L(P)/n, and 2) minimize the total/maximum
distance covered. We postulate that if n given sensors are located at positions
A1, A2, . . . , An, and the destination positions are A1, A2, . . . , An, respectively,
then d̂P (A′

i, A
′
i+1) = L(P)/n, 0 ≤ i < n.

3 Mobile Sensors in One Dimension

In this section we look at the one dimensional problem and provide efficient algo-
rithmic solutions. In particular, since optimization for the minimum maximum is
similar (and simpler than the two dimensional analogue) we provide algorithms
only for the minimum sum.
1 Although the approach proposed later (parametric search) will also work for arbi-

trary simple curves, we refrain from such a generalization so as to avoid unnecessary
complications.

108 B. Bhattacharya et al.

3.1 Sensors on a Line Segment

In this model we suppose that the sensors can move on a line segment. Further,
instead of protecting a circular range the sensor can now protect an interval
of a given size centered at the sensor. Consider the minimum sum optimization
problem for the case of n sensors on a line. Without loss of generality assume the
segment has length 1 and let the n sensors be at the initial locations x0 < x1 <
· · · < xn−1, respectively. The destination locations are i

n−1 , for i = 0, 1, . . . , n−1.

Theorem 1. The optimal arrangement is obtained by moving point xi to posi-
tion i

n−1 , for i = 0, 1, . . . , n − 1, respectively.

3.2 Sensors on the Perimeter of a Circle

In this model we suppose that the sensors can move on the perimeter of a circle.
Further, instead of protecting a circular range the sensor can now protect an arc
on the perimeter of a given size centered at the sensor. The same idea as for a
line segment should work for the case of a unit circle when the sensors lie on
the perimeter of the circle. The main difficulty here is that we no longer have a
unique destination. Instead, we can parametrize all possible destinations of the
n points by φ + 2jπ

n , for j = 0, 1, . . . , n − 1, using a fixed angle 0 ≤ φ < 2π
n .

Theorem 2. There is an algorithm that computes an optimal cost arrangement
of the sensors.

When the sensors’ movement is in the interior of the circle. In this
model we suppose that the sensors and their destination positions are located on
the perimeter of a circle and the sensors can move to their destination positions
along a straight line. The following theorem is based on the fact there is an
optimal solution in which one sensor does not move at all.

Theorem 3. There is a linear time algorithm that computes an optimal cost
arrangement of the sensors.

4 Min-Max Problem in 2D

In this section we study the problem of minimizing the maximum (min-max
problem) on a unit circle and a simple polygon, and provide efficient algorithmic
solutions.

4.1 On a Circle

Let λ∗
m,C be the optimal value of the min-max problem on a circle C, i.e., λ∗

m,C =
minσ,θ Mn(σ, θ). It is easy to see that λ∗

m,C is no more than the diameter of

Optimal Movement of Mobile Sensors for Barrier Coverage 109

the circle C, i.e., λ∗
m,C ≤ 2. In this section we propose a parametric-searching

approach [13] to compute λ∗
m,C .

A non-negative value λ is feasible in the min-max problem if all the sensors
can move from their initial positions to the perimeter of the circle such that
the new positions form a regular n-gon and the maximum moving distance is
no more than λ, otherwhise λ is infeasible. Clearly, the min-max problem is to
compute the minimum feasible value, which is equal to λ∗

m,C .
The remaining part of this section is organized as follows. We first show that

a feasibility test of a given value λ(0 ≤ λ ≤ 2) can be performed in time O(n3.5).
Then, a parametric-searching approach for the min-max problem is presented,
which runs in O(n3.5 log n) time.

Algorithm to check the feasibility test of λ. For each i, 1 ≤ i ≤ n, we
construct a circle of radius λ centered at position Ai, denoted by Ci. If a circle
Ci for some i is contained in C, then λ is infeasible since sensor Ai cannot move
to the perimeter of C within distance λ. We therefore assume that for each
i, 1 ≤ i ≤ n, either circle Ci contains C or Ci intersects with C.

For each i, 1 ≤ i ≤ n, we denote by Qi the arc of C that lies in Ci. Let qi(1), qi(2)

be the angles of two endpoints of arc Qi in clockwise order, i = 1, . . . , n. We let
qi(1) = 0 and qi(2) = 2π if Ci contains C.

The following property is important to our algorithm for the feasibility test
of λ. Its proof is omitted here.

Lemma 1. A given non-negative value λ is feasible if and only if there exists
a regular n-gon on the perimeter of C such that one of its corner points is an
endpoint of arc Qi for some i(1 ≤ i ≤ n).

The algorithm (Algorithm Check) to check the feasibility of λ is is formally
described below.

Algorithm Check

1. The first step is to sort the angles of endpoints of arcs Qi, 1 ≤ i ≤ n.
Let q′1, . . . , q

′
2n be the angles in increasing order. These angles partition the

interval [0, 2π] into at most 2n + 1 pairwise disjoint intervals, denoted by
I1, . . . , I2n+1.

2. For each interval Ij , 1 ≤ j ≤ 2n+1, we determine the set of sensors, denoted
by Sj , that lie within distance λ to its corresponding arc on C.

3. In the third step, we do the following for a regular n-gon with rotation
q′j , i = 1, . . . , 2n.
(a) It is easy to see that the angles of corner points of such regular n-gon

are q′j , (q
′
j + 2π

n) mod 2π, . . . , (q′j + (n − 1)2π
n) mod 2π. We compute the

intervals where these angles lie. Let Bi, i = 1, 2, . . . , n be the corner
points.

(b) Construct a bipartite graph between the set of corner points of the regu-
lar n-gon and the set of sensors. An edge is linked between corner point
Bk and sensor Ai if d(Ai, Bk) ≤ λ (1 ≤ i, k ≤ n). The bipartite graph
can be obtained from the steps 2 and 3(a) .

110 B. Bhattacharya et al.

(c) Check if there exists a perfect matching. If it is so, terminate the process
and return “Feasible”.

4. Return “Infeasible” .

It is easy to see that the sorting in the first step can be done in O(n log n) and
the computation of Sj , j = 1, . . . , 2n+1 can be done in O(n2). In the third step,
the process might try all O(n) regular n-gons. For each regular n-gon, it takes
O(n2.5) time (see [7]). Therefore, we have the following lemma.

Lemma 2. Whether a given positive value λ is feasible in the min-max problem
can be determined in O(n3.5) time.

A parametric-searching approach. Our approach for the solution to the
min-max problem is to run Algorithm Check parametrically, which has a single
parameter λ, without specifying the value of λ∗

m,C a priori. Note that for a
fixed value of the parameter, the algorithm is executed in O(n3.5) steps. Imagine
that we start the algorithm without specifying a value of the parameter λ. The
parameter is restricted to some interval which is known to contain the optimal
value λ∗

m,C . (Initially, we may start with the interval [0, 2].) As we go along, at
each step of the algorithm we update and shrink the size of the interval, ensuring
that it includes the optimal value λ∗

m,C . The final interval contains λ∗
m,C and

any value in it is feasible. Therefore, the minimum value of the final interval is
the optimal value λ∗

m,C .

Theorem 4. The min-max problem on a circle can be solved in O(n3.5 log n) time.

Note that our algorithm can be easily extended to the model in which all sensors
are arbitrarily located on the plane (not restricted to the interior of the circle C).

4.2 On a Simple Polygon

The parametric-searching approach for a circle (described in section 4.1) should
work for the case of a polygon where the destination positions of all sensors lie
on the perimeter of the polygon. The main difficulty here is that to check the
feasibility of a positive value λ, there might be O(m) isolated polygonal chains of
∂P within the circle Ci (of radius λ centered at position Ai) for each sensor Ai.
In other words, for a given positive value of λ each sensor will contribute O(m)
candidate sets of n destination positions on P instead of at most two candidate
sets on a circle. Hence, whether a given positive value λ is feasible in the min-
max problem on a simple polygon can be determined by solving O(mn) matching
problems of size n. Therefore, the feasibility test of the min-max problem on a
simple polygon can be solved in O(mn3.5) time.

Theorem 5. The min-max problem on a simple polygon can be solved in
O(mn3.5 log n) time where m is the size of the simple polygon.

Optimal Movement of Mobile Sensors for Barrier Coverage 111

5 Approximation Algorithms for the Min-Sum Problem
in 2D

In this section we discuss the problem of minimizing the sum (min-sum problem)
on a circle and a simple polygon, and provide approximation solutions for them.

5.1 On a Circle

Let λ∗
s,C be the optimal value of the min-sum problem on a circle, i.e., λ∗

s,C =
minσ,θ Sn(σ, θ). We present two approximation algorithms for the min-sum prob-
lem. One algorithm (labeled as the first approach) has an approximation ratio
π +1 (section 5.2). The other one (labeled as the second approach) uses the first
approach as a subroutine to obtain lower and upper bounds of λ∗

s,C and has an
approximation ratio 1 + ε, where ε is an arbitrary constant (Section 5.3).

More notations are introduced as follows. Let d̂C(x, y) denote the arc distance
between two points x and y on the boundary if the cycle C and let π̂C(x, y) denote
the arc of length d̂C(x, y) between x and y. For a point x on C, we denote by
Q̂x(r) the arc consisting of all points y on C such that d̂C(x, y) ≤ r.

For each i = 1, . . . , n, let ωi be the smallest distance between Ai and a point
on the cycle C, and we denote by Bi the point on C such that the distance
d(Ai, Bi) = ωi. We note that for each i = 1, . . . , n, Bi is unique if Ai is not
located at the center of C. In the case when Ai is located at the center of C, an
arbitrary point on C is selected to be Bi. Let Ω =

∑n
i=1 ωi. Obviously, we have

the following lemma.

Lemma 3. Ω ≤ λ∗
s,C .

5.2 The First Approach

The first approach (called Algorithm 1) consists of three steps.

Step 1. For each sensor Ai, 1 ≤ i ≤ n, compute Bi.
Step 2. Compute a destination regular n-gon for the set of n points B1, . . . , Bn,

and find the optimal arrangement of the n points to the vertices of the n-gon,
by using the algorithm for sensors on the perimeter of a circle described in
Section 3.2. Let B′

i be the destination vertex of Bi, 1 ≤ i ≤ n.
Step 3. Move Ai to B′

i, 1 ≤ i ≤ n, and compute S1
n =

∑n
i=1 d(Ai, B

′
i).

In section 3.2 we showed that step 2 of Algorithm 1 can be implemented in O(n2)
time. Thus the above algorithm can be solved in O(n2) time.

Approximation bound of Algorithm 1. In this section, we show that S1
n

computed by the first approach is bounded by (π + 1) × λ∗
s,C . Suppose that

A′
i is the destination of sensor Ai, i = 1, . . . , n, in an optimal solution. Clearly,

A′
1, . . . , A

′
n lie on C and form a regular n-gon. Obviously,

∑n
i=1 d̂C(Bi, B

′
i) ≤∑n

i=1 d̂C(Bi, A
′
i) since {B′

1, . . . , B
′
n} is an optimal solution for the one dimen-

sional min-sum problem with the input {B1, . . . , Bn}. The following lemma is
easy to show.

112 B. Bhattacharya et al.

Lemma 4. For any two points x, y on C, d̂C(x, y) ≤ π
2 × d(x, y).

Theorem 6. Algorithm 1 can be implemented in O(n2) time and its approxi-
mation ratio is no more than π + 1.

5.3 The Second Approach

The second approach designs a PTAS pproximation algorithm whic is described
below.

Algorithm 2

Step 1. Using Algorithm 1, compute S1
n defined above.

Step 2. For each i = 1, . . . , n, find the arc Q̂Bi(
π
2 × S1

n

n) and compute a set
of points that partitions the arc into ! 1

ε′ " pieces of equal length where ε′ =
2ε

π(π+1) .
Step 3. Clearly, there are n × (! 1

ε′ " + 1) points in total. For each point x,
construct a regular n-gon Px such that one of the corners of Px is located
at x, and find the optimal arrangement of the n sensors (A1, . . . , An) to the
vertices of the n-gon by solving a weighted bipartite matching problem. (The
Hungarian method to solve the weighted matching problem in a complete
bipartite graph of size n takes O(n3) time (see [10])).

Step 4. Among all n × (! 1
ε′ " + 1) regular n-gons thus constructed, find the one

with the minimum cost (denoted by S2
n) and output the optimal arrangement

of the n sensors to the vertices of the n-gon.

The following lemma is crucial for the second approach.

Lemma 5. In an optimal solution, there exists at least one sensor Ai(1 ≤ i ≤ n)
such that its destination A′

i on C is on the arc Q̂Bi(
π
2 × S1

n

n).

Proof. It is clear that S1
n ≥ λ∗

s,C . Let A′
i be the destination of sensor Ai in an

optimal solution, i = 1, . . . , n. Then there is at least one sensor, say Ak(1 ≤ k ≤
n), such that the distance d(Ak, A′

k) is no more than S1
n

n . According to Lemma

4, all points on C with the distance to Ak of no more than S1
n

n lie on the arc
ˆQBk

(π
2 × S1

n

n) (recall that Bk is the point on C closest to Ak), which completes
the proof of Lemma 5.

Analysis of the second approach. First, it is evident that the running time of
the second approach is determined by the time needed for solving n×(! 1

ε′ "+1) ∈
O(n

ε) bipartite matching problems.
According to Lemma 5, there exists an optimal solution in which one of the

corners of the corresponding regular n-gon is located at a point on the arc
ˆQBk

(π
2 × S1

n

n) for some k, 1 ≤ k ≤ n. In Step 2, the arc ˆQBk
(π

2 ×
S1

n

n) is partitioned

into ! 1
ε′ " pieces, and therefore, the length of each piece is no more than πS1

nε′

n

Optimal Movement of Mobile Sensors for Barrier Coverage 113

(note that the length of ˆQBk
(π

2 × S1
n

n) is πS1
n

n). Since all possible values of k are
considered, the difference between S2

n (computed by the second approach) and
λ∗

s,C (the optimal cost) is no more than n × 1
2 × πS1

nε′

n = πS1
nε′

2 = S1
nε

π+1 ≤ ελ∗
s,C ,

by Theorem 6). Therefore, we have the following theorem.

Theorem 7. The approximation ratio of Algorithm 2 is no more than 1 + ε for
a given constant ε, and the running time of the second approach is O(1

ε n4).

5.4 On a Simple Polygon

Let λ∗
s,P be the optimal value of the min-sum problem on a polygon P . In this

subsection we present an approximation algorithm for the min-sum problem on
P , which has an approximation ratio 1 + ε (ε is an arbitrary constant).

Our algorithm for a simple polygon is very similar to the second approach for
a circle. In the second approach for a circle, we use Algorithm 1 as a subroutine
to obtain lower and upper bounds of λ∗

s,C . However, our approximation algo-
rithm for a simple polygon will use the solution for the min-max problem on the
polygon to obtain lower and upper bounds of λ∗

s,P . Let λ∗
m,P be the optimal value

of the min-max problem on P . It is easy to see that λ∗
m,P ≤ λ∗

s,P ≤ n × λ∗
m,P .

Our algorithm for a simple polygon P is described below.

Min-Sum Algorithm on a Simple Polygon

Step 1. Using the approach for the min-max problem on P , compute λ∗
m,P

described above.
Step 2. For each i, j where 1 ≤ i ≤ n and 0 ≤ j < n, find the sub-edge e′i,j of

edge ej that is within the circle of radius λ∗
m,P centered at position Ai, and

compute a set of points that partitions the the sub-edge into !n
ε " pieces of

equal length.
Step 3. Clearly, there are mn × (!n

ε " + 1) ∈ O(mn2

ε) points in total. For each
point x, construct a set of n positions on P such that one of them is located
at x and the polygonal distance between any two consecutive positions is
L(P)/n, and find the optimal arrangement of the n sensors (A1, . . . , An) to
the set of n positions by using the algorithm [10].

Step 4. Among all O(mn2

ε) candidate sets of n positions thus constructed, find
the one with the minimum cost.

Theorem 8. The approximation ratio of the approach for a simple polygon is
no more than 1 + ε for a given constant ε, and the running time of the second
approach is O(1

ε mn5).

Proof. (Theorem 8) The reason why the approximation ratio of the above
approach is bounded by 1 + ε, is as follows. Since λ∗

s,P ≤ n × λ∗
m,P , there is at

least one sensor whose moving distance to its destination is no more than λ∗
m,P

in an optimal solution. Let Ai be one such sensor and its destination position lies
on edge ej in that optimal solution. In Step 2, the sub-edge e′i,j is partitioned into

114 B. Bhattacharya et al.

!n
ε " pieces, and therefore, the length of each piece is no more than 2ελ∗

m,P

n . Since
all possible values of i and j are considered, the difference between the value
computed by the above approach and λ∗

s,P (the optimal cost) is no more than

n × 1
2
×

2λ∗
m,P

n
= ελ∗

m,P ≤ ελ∗
s,P .

It is evident that the running time of the above approach is determined by
the time needed for solving O(mn2

ε) weighted bipartite matching problems.

6 Conclusion and Open Problems

In this paper we gave an algorithm for solving the min-max problem and a PTAS
(Polynomial Time Approximation Scheme) for the min-sum problem in both one
and two dimensions. Although it is unknown whether the min-sum problem is
NP -hard, we conjecture that it can be solved in polynomial time. Evidence for
this also comes from experimental results on finding the number of different
counter-clockwise orderings of n sensors on the perimeter of a circle when we
sweep a regular n-gon along the perimeter (shown in the full version of this
paper.). In addition, several other variants of the problem on simple polygons
and regions are of interest for further investigation, including k-barrier cover-
age, regions with holes, and various types of sensor placements and motions.
Thus, in Subsection 2.2, in order to minimize the number of sensors used when
scanning the perimeter one should take into account sections already scanned.
For example, this is the case if the polygon is a narrow rectangle of height less
than the range of a sensor; this in itself is an interesting optimization problem
which is worth of further investigation. Also of interest is to refine the sensor
motion model, the network model, and the communication model in order to
enable effective intrusion detection and barrier coverage. For example, the com-
munication model becomes crucial when assuming the sensors either do not have
knowledge of the region or do not know their coordinates.

References

1. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wireless sensor networks: a
survey. ACM SIGMOBILE Mobile Computing and Communications Review 9(2),
4–18 (2005)

2. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for
coverage and connectivity in thin strips of finite length. In: Proceedings of the
13th annual ACM international conference on Mobile computing and networking,
pp. 75–86 (2007)

3. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier cover-
age. In: Proceedings of the 13th annual ACM international conference on Mobile
computing and networking, pp. 63–74 (2007)

4. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM (JACM) 34(1), 200–208 (1987)

Optimal Movement of Mobile Sensors for Barrier Coverage 115

5. Heo, N., Varshney, P.K.: A distributed self spreading algorithm for mobile wireless
sensor networks. In: Wireless Communications and Networking, 2003. WCNC 2003.
2003 IEEE, vol. 3 (2003)

6. Heo, N., Varshney, P.K.: Energy-efficient deployment of Intelligent Mobile sensor
networks. Systems, Man and Cybernetics, Part A, IEEE Transactions on 35(1),
78–92 (2005)

7. Hopcroft, J.E., Karp, R.M.: An n2.5 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

8. Hu, S.S.: ’Virtual Fence’ along border to be delayed. Washington Post, Thursday
(February 28, 2008)

9. Jung, B., Sukhatme, G.S.: Tracking Targets Using Multiple Robots: The Effect of
Environment Occlusion. Autonomous Robots 13(3), 191–205 (2002)

10. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

11. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. Wireless
Networks 13(6), 817–834 (2007)

12. Liu, J., Cheung, P., Zhao, F., Guibas, L.: A dual-space approach to tracking and
sensor management in wireless sensor networks. In: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, pp. 131–139
(2002)

13. Megiddo, N.: Applying Parallel Computation Algorithms in the Design of Serial
Algorithms. Journal of the ACM (JACM) 30(4), 852–865 (1983)

14. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc.,
New York (1987)

15. Schrijver, A.: Disjoint circuits of prescribed homotopies in a graph on a compact
surface. Journal of Combinatorial Theory Series B 51(1), 127–159 (1991)

16. Se, S., Lowe, D., Little, J.: Mobile Robot Localization and Mapping with Un-
certainty using Scale-Invariant Visual Landmarks. The International Journal of
Robotics Research 21(8), 735 (2002)

Parameterized Algorithms for Generalized

Domination�

Venkatesh Raman1, Saket Saurabh2, and Sriganesh Srihari3

1 The Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113
vraman@imsc.res.in

2 Department of Informatics, University of Bergen, Bergen, Norway
saket.saurabh@ii.uib.no

3 School of Computing, National University of Singapore, Singapore 117590
srigsri@comp.nus.edu.sg

Abstract. We study the parameterized complexity of a generalization of
Dominating Set problem, namely, the Vector Dominating Set prob-
lem. Here, given an undirected graph G = (V, E), with V = {v1, · · · , vn},
a vector l = (l(v1), · · · , l(vn)) and an integer parameter k, the goal is to
determine whether there exists a subset D of at most k vertices such
that for every vertex v ∈ V \ D, at least l(v) of its neighbors are in D.
This problem encompasses the well studied problems – Vertex Cover

(when l(v) = d(v) for all v ∈ V , where d(v) is the degree of vertex v) and
Dominating Set (when l(v) = 1 for all v ∈ V). While Vertex Cover

is known to be fixed parameter tractable, Dominating Set is known
to be W [2]-complete. In this paper, we identify vectors based on several
measures for which this generalized problem is fixed parameter tractable
and W-hard. We also show that the Vector Dominating Set is fixed
parameter tractable for graphs of bounded degeneracy and for graphs
excluding cycles of length four.

1 Introduction

Dominating Set is among the most fundamental problems in graph theory,
algorithms and combinatorial optimization. Dominating Set asks for a min-
imum set of vertices such that every vertex of the graph not in this set has a
neighbor in it. This is a classical NP-hard problem and is well-studied from the
point of view of approximation algorithms [8,10,14] and parameterized complex-
ity [7,11,15,16]. Dominating Set is a “hard” problem, in the sense that it is
known to be W[2]-complete in parameterized complexity [7] and (1 − o(1)) ln n
is a threshold below which it can not be approximated efficiently (unless NP has
slightly super-polynomial time algorithm [10]).

In [16], the authors identified “easy” instances for Dominating Set by giving
fixed parameter tractable algorithms (FPT) for it in graphs with no short cy-
cles. Here, instead of making any assumptions about the input graph, we study
� The work was done when the second and the third authors were at The Institute of

Mathematical Sciences.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 116–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parameterized Algorithms for Generalized Domination 117

variations of Dominating Set which are FPT in general graphs. The Vector

Dominating Set problem [13] generalizes the Dominating Set problem and
encompasses many fixed parameter tractable (FPT) variations of it. In partic-
ular, this includes Vertex Cover, which asks for a minimum set of vertices
that covers all the edges of the graph. Let G = (V, E) be a graph on vertex set
V = {v1, · · · , vn} and let d(vi) be the degree of a vertex vi (the number of edges
incident on the vertex vi). Given an integral vector l = (l(v1), · · · , l(vn)) with
1 ≤ l(vi) ≤ d(vi), for 1 ≤ i ≤ n, a set D ⊆ V is called l-dominating if for all
v ∈ V \ D, |N(v) ∩ D| ≥ l(v), where N(v) is the set of neighbors of v. We also
call D as vector dominating set. Now we define the problem formally.

Vector Dominating Set (VDS): Given an undirected graph G =
(V, E), an integral vector l = (l(v1), · · · , l(vn)) with 1 ≤ l(vi) ≤ d(vi) for
1 ≤ i ≤ n and a positive integer k, does there exist an l-dominating set
D with |D| ≤ k?

When l(v) = 1 for all v ∈ V , the VDS problem is the well known Dominating

Set problem, while l(v) = d(v) for all v ∈ V corresponds to the well known
Vertex Cover problem. Since both these problems are NP-complete [12], it
follows that the VDS problem is NP-complete.

The VDS problem was first introduced in [13] and two NP-Completeness
classification results were given. The authors show that (a) the VDS problem
remains NP-complete for bipartite graphs even when !cn" coordinates of the
input vector l is greater than 1 for any 0 < c < 1/2, and (b) the VDS problem is
polynomial time solvable for bipartite graphs when the number of edges in the
graph induced by vertices with l(v) < d(v) is at most c log n for some 0 < c < 1.

Unlike classical complexity where Vertex Cover, Independent Set and
Dominating Set are just NP-complete, parameterized complexity does a finer
classification. While Independent Set and Dominating Set are hard for dif-
ferent levels of W-hierarchy, Vertex Cover is a celebrated fixed parameter
tractable problem where the problem is well solved for parameter size up to
100 [7]. Thus we observe different complexities at both ends of the ‘vector hier-
archy’ for the VDS problem from the view point of parameterized complexity.
This makes one curious about the complexities of VDS for other vectors. Hence,
apart from generalizing the results of [13], our purpose is two fold:

(a) to study the parameterized complexity of the generalized version of Dom-

inating Set, under various scenarios set by the vectors; this would help
address the parameterized complexity of problems that can be modeled as
these generalized dominating sets;

(b) explain the differences between the parameterized complexity of Vertex

Cover and Dominating Set.

In this paper, we identify vectors based on several measures for which VDS
is fixed parameter tractable and W-hard. We also show that the VDS is fixed
parameter tractable for graphs of bounded degeneracy and for graphs excluding
cycles of length four.

118 V. Raman, S. Saurabh, and S. Srihari

Organization of the rest of the Paper. In section 2, we set up notations
used in the paper, define FPT and state a result which is used extensively to
argue the running time of our algorithms. In section 3 we show that VDS remains
W[2]-complete even for some restricted l vectors. In section 4, we identify certain
(a) vectors and (b) graph classes for which the VDS problem is FPT. Finally,
we conclude with some remarks and discussions in Section 5.

2 Preliminaries

We assume that all our graphs are simple and undirected. Given a graph G =
(V, E), n represents the number of vertices, and m represents the number of
edges. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced on
V ′. By N(u) we mean all vertices that are adjacent to u, and by N [u], we refer
to N(u)∪ {u}. Similarly, for a subset D ⊆ V , we define N(D) = ∪v∈DN(v) \ D
and N [D] = ∪v∈DN [v]. A vertex is said to dominate all its neighbors.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [7,11,15]. One dimension is the input
size n and the other one is parameter k. A problem is called fixed-parameter
tractable (FPT) if it can be solved in time f(k) ·nO(1), where f is a computable
function depending only on k. We refer to [7,11,15] for definition of W[t] and
the notion of parameterized reduction. Next, we give a lemma which is used
extensively in the later sections to show that certain variations of VDS are fixed
parameter tractable.

Lemma 1 ([2]). For every f(n) ∈ no(1) there exists a function g(k) such that
for all n and k, (f(n))k is O(g(k)nO(1)). In other words if a parameterized
problem, say A, can be solved in time O((no(1))knO(1)) then A is FPT.

3 VDS Is W[2]-Complete

In this section we show that VDS is W[2] complete. VDS is W[2]-hard (in general)
follows from the fact that when l(v) = 1 for all v, it corresponds to W[2]-
complete Dominating Set problem [7]. Here we show that it remains W[2]-hard
even when we slightly “relax” the condition of l(v) = 1 for all v. We call this
relaxed problem where at most a constant number of the l-vector coordinates
are unbounded while the rest are bounded by a fixed constant c as Almost

c-BVDS.

Theorem 1. [�]1 Almost c-BVDS is W[2]-complete for bipartite graphs.

Finally, we show that VDS is W[2]-complete by showing it to be in W[2]. Before
we prove our result, we state a simple but useful lemma.

Lemma 2. Let G = (V, E) be an undirected graph and l be an l-vector. If G has
a vector dominating set of size at most k then every vertex v such that l(v) > k
is part of every vector dominating set of size at most k.
1 Proofs of results labeled with [
] will appear in the long version of the paper.

Parameterized Algorithms for Generalized Domination 119

Theorem 2. VDS is W[2]-complete.

Proof. Let (G, l, k) be an instance of VDS. Lemma 2 allows us to assume that for
every vertex v, we have 1 ≤ l(v) ≤ k. (Otherwise, v has to be in the solution).
For v ∈ V , let xv be a boolean variable associated with it. Now consider the
following boolean formula∧

v∈V

(
xv

∨
S∈Y

(∧
u∈S xu

))
,

where Y is the collection of all subsets of size l(v) of N(v). Hence |Y | is
(|N(v)|

l(v)

)
.

Suppose this formula has a satisfying assignment with weight at most k (where
the weight is the number of true variables in the assignment). Then the subset
Z of V defined by Z = {u ∈ V |xu = 1} is of cardinality k and forms a vector
dominating set of size at most k for G. For the other direction, let D be a vector
dominating set of size at most k for G. A satisfying assignment of weight at
most k for the above boolean formula is formed by taking xu = 1 for u ∈ D
and 0 otherwise. In the above boolean formula, we have two levels of alterations
of unbounded fan-in and and one level of alteration of at most k fan-in (since
l(v) ≤ k for all v ∈ V). This implies that VDS is in W ∗[2] = W [2] [6,11]. �	

4 FPT Algorithms for Some Natural Instances of VDS

In this section we give FPT algorithms for some natural special instances of VDS
problem by (a) looking at the vector values and (b) by looking at the structure
of the input graph.

We need a (generalized) “colored” version of VDS problem as an intermediate
problem for some of our FPT algorithms. In order to define the problem we
introduce the notion of colored graph. A graph G = (V, E) is called a colored
graph if its vertices are either colored Black or White. Let B and W be the
disjoint set of vertices colored black and white respectively and V = B∪W . The
problem is defined as follows.

Colored Vector Dominating Set (CVDS): Let G = (V, E) be a
colored graph, together with an integral vector l = (l(v1), · · · , l(vn)) with
1 ≤ l(v) ≤ d(v) for each v ∈ B while l(v) = 0 for each v ∈ W and a
positive integer k. Does G have a set D of at most k vertices such that
for every v ∈ B, either v is in D or |N(v) ∩ D| ≥ l(v)?

To solve the general VDS problem, simply color all vertices black and solve the
resulting CVDS problem.

4.1 Vectors for Which VDS Is FPT

Bounded Differential Slack. We first introduce a term differential slack vec-
tor and define it as follows: Let G = (V, E) be a given graph, l = (l(v1), · · · , l(vn))
be an l-vector corresponding to the VDS problem and D(G) = (d(v1), · · · , d(vn)).

120 V. Raman, S. Saurabh, and S. Srihari

Then S = D(G) − l = (d(v1) − l(v1), · · · , d(vn) − l(vn)) = (s(v1), · · · , s(vn)) is
defined as the differential slack vector and s(vi) is the differential slack corre-
sponding to the vertex vi. As discussed in the introduction, the Vertex Cover

problem, for which the maximum differential slack value is 0, is known to be
FPT. Generalizing this, we show

Theorem 3. Let G = (V, E) be a graph, l be an l-vector and S be the corre-
sponding differential slack vector. If M = maxv∈V {s(v)} then VDS problem can
be solved in time O((M + 2)knO(1)). In particular, if M ≤ no(1), then the VDS
problem is FPT.

Proof. Our algorithm is based on the following observation: If D is a l-dominating
set of G, then for any vertex v ∈ V \ D, at least l(v) neighbors are in D and at
most s(v) = d(v) − l(v) of its neighbors are outside D. Hence if we select a set of
s(v) + 1 neighbors of v, then it must intersect D or v must be in D.

Now we design an algorithm based on the above observation as follows. Start
with B = V and D = W = ∅ and the parameter k. At any stage of the algorithm
we choose a vertex v in the set B and select a set X of s(v) + 1 neighbors of
v and then recursively solve the problem by selecting a vertex u ∈ (X ∪ {v})
in D. If any of the recursive branches returns Yes, we say Yes and return the
corresponding vector dominating set D else we return No (meaning there does
not exist any vector dominating set of size at most k). When we select a vertex
u ∈ (X ∪ {v}) in D, we update the information as follows:

• D := D ∪ {u}; For every vertex w ∈ B do: If |N(w) ∩ D| ≥ l(w) recolor
w to white, i. e. W := W ∪ {w} and B := B \ {w}, and set l(w) = 0 else
set l(w) := l(w) − |N(w) ∩ D|; (Here N(w) refers to the neighborhood of w in
the current graph and hence |N(w) ∩ D| is either u or ∅.) set k := k − 1 and
G := G \ {u}.

If at any recursive step k = 0 and the current B is non-empty then we return
No. Else, if k ≥ 0 and B is empty, we return Yes and the set D.

The correctness of the algorithm is clear from the description. For the time
complexity, observe that the depth of recursion tree is at most k and number
of recursive calls made at any stage (number of children of any node in the
recursion tree) is at most maxv∈V s(v) + 2 ≤ M + 2. Hence the total number
of nodes in the recursive tree is bounded by (M + 2)k. Since at each node of
the recursion tree, we spend polynomial time, the overall time complexity of our
algorithm is bounded by O((M + 2)knO(1)). Now by Lemma 1, if M is at most
no(1) the problem is FPT. This completes the proof. �	

Now we show that the problem becomes FPT if there are only a few vertices
with non zero slack (even if the slack values are unbounded).

Theorem 4. Let G = (V, E) be a graph, l be an l-vector, S be the corresponding
slack vector and S be the set of vertices with non-zero slack. Then the VDS can
be solved in time O((|S|k +1.2738k)nO(1)). In particular, if |S| ≤ no(1), then the
VDS problem is FPT.

Parameterized Algorithms for Generalized Domination 121

Proof. We first introduce a notion of valid partition for the set S ⊆ V . A parti-
tion of the set S as (S1, S2) is called valid if the following holds: (a) |S1| ≤ k; (b)
let X = (S1 ∪N(S2)); |X | ≤ k (here N(S2) is in G, not in S); (c) for all v ∈ S2,
|N(v) ∩ X | ≥ l(v). The motivation is that S1 denotes the intersection of S with
the desired vector dominating set. Hence all the neighbors of S2 = S \S1 in V \S
must be in D. This is because for all v ∈ V \S, either v ∈ D or N(v) ⊆ D as the
slack value of these vertices is zero. For our algorithm, we proceed as follows:

– We enumerate all the valid partitions (S1, S2) of S. If there is no valid partition
then return No.
– For each of the valid partitions check whether G[V \ (X ∪ S)] has a vertex
cover of size at most k− |X |. If there is a vertex cover V ′ of size at most k− |X |
then return D = X ∪ V ′ as the desired vector dominating set else return No.

The correctness of the algorithm follows from the fact that D ∩ (V \ S) is a
vertex cover of G[V \ S], as all vertices of V \ S have slack value zero.

For the time complexity, we first note that a vertex cover of size at most k
in G can be found in time O(1.2738k + kn) [3]. Hence, the time complexity of
our algorithm is bounded by O

(((|S|
k

)
+ 1.2738k

)
nO(1)

)
. If |S| ≤ no(1) then the

time complexity is bounded by O(((no(1))k + 1.2738k)nO(1)), which makes the
problem FPT, by Lemma 1. �	

In Theorems 3 and 4 , we needed an upper bound of no(1) for the maximum
slack value or the number of l-values with non-zero slack. We can show that this
bound is asymptotically tight.

Theorem 5. [�] Given an 0 < ε < 1, a constant, the VDS problem is W[2]-
complete when at least !nε" vertices have non zero slack. VDS problem also
remains W[2]-complete if the maximum of differential slack is at least !nε". Here
n is the number of vertices of the input graph.

Bounded Fractional Slack. In the last subsection we gave FPT algorithms
for the VDS problem with respect to bounds related to differential slack. In this
section we study the VDS problem in terms of fractional slack of vertices. For a
graph G and a vector l, the fractional slack of a vertex v is defined as d(v)/l(v).

Theorem 6. Let G = (V, E) be a graph, l be an l-vector and k be a posi-
tive integer. If p = maxv∈V {d(v)/l(v)} then we can solve the VDS problem in
O
((

k3p2+2k2p+k
k

)
nO(1)

)
time. If p ≤ no(1) then the VDS problem is FPT.

Proof. Let S = {v ∈ V : l(v) > k}. By Lemma 2, we know that every vertex of
the set S is part of every vector dominating set of size at most k. If |S| > k then
G does not have any vector dominating set of size at most k and we return No.
So we assume that |S| ≤ k. Thus, we obtain an equivalent instance for CVDS in
the following way:

122 V. Raman, S. Saurabh, and S. Srihari

• For every vertex w ∈ (V \S) do: If |N(w)∩S| ≥ l(w) color w to white, i. e. W :=
W ∪ {w} and B := B \ {w}, and set l(w) = 0 else set l(w) := l(w) − |N(w) ∩ S|
and color w black; set k′ := k − |S| and G := G \ S.

Let B and W be the set of black and white vertices of V \ S respectively.
Now we need a set S′ ⊆ (B ∪ W) of at most k′ vertices, such that every vertex
v ∈ (B \ S′) has at least l(v) neighbors in S′. But for vertices in B ∪ W , k ≥
l(vi) ≥ d(vi)/p which implies that d(vi) ≤ kp. So the degree of every vertex
in B ∪ W is bounded by kp. Since a vector dominating set S′, of the above
defined instance, is also a dominating set for B with vertex degree bounded by
kp, it can only dominate (|S′|kp) vertices outside S′. Note that |S′| ≤ k′. So if
|B| > k′(kp + 1) then we return No.

Now we bound |W | as follows: If there is a vertex v ∈ W such that it has no
neighbor in B then remove this vertex from the graph as this can not be part
of any minimal S′. So the remaining vertices of W have at least one neighbor
in B. But then B is a dominating set for W and hence |W | is bounded by
|B| × (max degree of the vertex in B) ≤ (kp)(k′) (kp + 1) ≤ k3p2 + k2p.

So now we can solve the problem by enumerating all subsets of size at most k′

as the required S′ from the vertices of B ∪W . Since |B ∪W | ≤ k3p2 + 2k2p + k,
this takes O

((
k3p2+2k2p+k

k′

)
nO(1)

)
≤ O

((
k3p2+2k2p+k

k

)
nO(1)

)
time. Notice that

if p ≤ no(1) then by Lemma 1, VDS problem is FPT. This completes the proof
of the theorem. �	

We can prove the following theorem for fractional slack, analogous to Theorem 5.
We call an instance of VDS as p-ratio-VDS, if p ≥ maxv∈V d(v)/l(v).

Theorem 7. [�] Given an 0 < ε < 1, the nε-ratio-VDS is W[2]-complete.

Restriction on vector values. Finally we show that if the number of values in
the l-vector that are unbounded is at least some function of n then the problem
becomes FPT, complementing Theorem 1.

Theorem 8. Let G = (V, E) be a graph, l be an l-vector and k be a positive
integer. Furthermore let f(n) be increasing function of n (that is, for all x < y,
x, y ∈ R+, f(x) < f(y)) and let |S = {v | l(v) ≥ f(n)}| ≥ g(n), for some
increasing function g(n). In addition if f and g are invertible functions then the
VDS problem is FPT.

Proof. Given an instance of VDS, our algorithm will either show that the given
instance is a No instance or bound the size of G as a function of k. Once the size
of G is bounded as a function of k, we can find the desired vector dominating
set of size at most k by enumerating all subsets D of size at most k of V and
then checking whether D is a vector dominating set.

If k ≥ g(n) then n ≤ g−1(k) and the number of vertices is bounded by g−1(k).
Else, k < g(n) and hence not all vertices of S can be in a vector dominating set
D of size at most k. However each vertex of S, not in D requires at least f(n)
neighbors in D. Hence f(n) ≤ k as otherwise the answer is No. Thus n ≤ f−1(k)

Parameterized Algorithms for Generalized Domination 123

and again we have bounded the number vertices of G as a function of k. This
completes the proof of the theorem. �	

4.2 Graphs with Some Special Structures

FPT algorithm for VDS for Graphs Excluding 4-Cycles. In [16], the
authors initiated a parameterized classification of Dominating Set problem
based on the girth (length of the shortest cycle) of the graph and showed that
the Dominating Set problem is FPT for graphs with girth at least 5. Our
Theorem 1 implies that the VDS problem is W[2]-hard for bipartite graphs and
hence for triangle free graphs. We complement this theorem by showing that if
the input graph excludes four cycles (it may contain triangles) then the VDS
problem is FPT.

Our algorithm is based on the following observation which is formulated in
the next lemma.

Lemma 3. Let G = (V, E) be a graph which does not contain cycles of length
four, l be an l-vector and k be a positive integer. Then any vector dominating
set of size at most k, if there exists one, contains all the vertices v of G such
that d(v) > 2k.

Proof. If we do not include a vertex v of degree > 2k in D then we can not have
any dominating set of size at most k. This is because any neighbor u of v can
dominate at most one another neighbor w of v and hence just to dominate all
the neighbors of v, we require more than k vertices. �	

Theorem 9. [�] Let G = (V, E) be a graph, l be an l-vector and k be a positive
integer. If G excludes cycles of length 4 then the VDS problem is FPT.

Sparse Graphs – Graphs of Bounded Degeneracy. The results of this
section are motivated by a result of Alon and Gutner [1] for Dominating Set

in graphs of bounded degeneracy. A graph G is d-degenerated if every induced
subgraph of G has a vertex of degree at most d. A d-degenerated graph with n
vertices has less than dn edges and therefore its average degree is less than 2d. A
d-degenerated graph with every vertex being colored black or white is a colored
d-degenerated graph and that B and W respectively are the vertices with color
black and white.

Our result is based on the following key lemma from [1].

Lemma 4 ([1]). Let G = (V = B ∪ W, E) be a colored d-degenerated graph. If
|B| > (4d + 2)k, then there are at most (4d + 2)k vertices in G that dominate at
least |B|/k vertices of B.

Theorem 10. Let G = (V, E) be a d-degenerated graph, l be an l-vector and k

be a positive integer. Then VDS problem can be solved in time kO(dk2)nO(1).

Proof. We solve the CVDS starting with B = V and D = W = ∅ and the
parameter k. Our algorithm solves the CVDS problem either by branching on

124 V. Raman, S. Saurabh, and S. Srihari

vertices of set S = {v | v ∈ (B∪W), |N(v)∩B| ≥ |B|/k} or solving some f(d, k)
number of instances of “matching problem”. The branching step is performed
when |B| > (4d + 2)k. In this case Lemma 4 bounds the size of S by (4d + 2)k.
Note that every l-dominating set D′ of size at most k contains a vertex which
dominates at least |B|/k black vertices and hence D′ ∩ S is nonempty for any k
sized l-dominating set for black vertices. Hence, when the size of S is bounded,
we solve the problem by including every v ∈ S in the desired dominating set D
of size at most k and recursively solving following instance:

• D := D ∪ {v}; For u ∈ (N(v) ∩ B) do: If l(u) = 1, color u white, i. e.
W := W ∪ {u} and B := B \ {u}, and set l(u) = 0 else l(u) = l(u) − 1; set
k := k − 1 and G := G − {v}.

In the other case when the size of B is bounded by (4d + 2)k, we find the
desired vector dominating set for black vertices as follows. Here we assume that
for all v ∈ B, l(v) ≤ k otherwise we include v ∈ D deterministically and re-color
the vertices of graph appropriately. We make a multiset M from B by having
l(u) copies for each vertex u ∈ B. Clearly the size of |M | is bounded above by
(4d + 2)k2. A partition P = {P1, P2, · · · , Pα} of M is called valid if (a) there
exists a subset S ⊆ B ∪ W forming a system of distinct representatives; that is
for all 1 ≤ i ≤ α, there exists a distinct ui ∈ S such that Pi ⊆ N(ui) and (b)
each Pi contains at most one copy of any vertex of B. The set S is a witness set.
So to find the desired vector dominating set in B∪W we proceed as follows. For
all partitions P of M in at most k parts, say P = {P1, P2, · · · , Pα}, 1 ≤ α ≤ k,
we check whether P is a valid partition. If any partition P is valid then return
Yes with the corresponding witness set else return No.

For a fixed partition P = {P1, P2, · · · , Pα}, we can do the validity testing
and find a corresponding witness set in polynomial time as follows. Testing
for duplicate copies in Pi’s are easy. For the other part we first define the set
Ii = {u ∈ (B ∪ W) | Pi ⊆ N(u)}. Now we make the bipartite incidence graph
for the sets {I1, · · · , Iα}, that is a bipartite graph G∗ = (X ∪ Y, E′′), where X
has a vertex xi for every set Ii and Y = ∪α

l=1Il and there is an edge between
(xi, u) if u ∈ Ii. Now finding a valid system of distinct representatives reduces
to finding a maximum bipartite matching in G∗ saturating X , for which there
is a classical polynomial time algorithm of Edmonds [9].

The total number of partitions P considered for our case is upper bounded by∑k
i=1 i(4d+2)k2 ≤ k((4d+2)k2)+1. Also the search tree obtained in the branching

step of the algorithm can be of size at most at most (4d + 2)kk!. This together
with the bounds on the number of partition gives the desired time bound of the
algorithm. �	

There exists a constant c such that, for every h, every graph with no Kh minor
is ch

√
log h-degenerated [5]. Hence Theorem 10 implies the following result.

Corollary 1. VDS problem is FPT on graphs excluding a fixed graph H as a
minor. In particular VDS is FPT on planar graphs and graphs of bounded genus.

Parameterized Algorithms for Generalized Domination 125

We remark that one can obtain sub-exponential time algorithm for VDS in H-
minor free graphs using bidimensionality [4], though those results do not carry
over to d-degenerated graphs.

5 Conclusions and Discussions

In this paper we initiated the study of the VDS problem, a generalization en-
compassing important problems like Vertex Cover and Dominating Set,
from the view point of parameterized complexity. We identified several mea-
sures and studied the VDS problem in terms of these measures in the realm of
parameterized complexity. Some of these results can also be generalized to the
connected or independent versions of the VDS problem, where one is looking
for a l-dominating set which is connected or independent respectively. It would
be interesting to know whether there are specific natural problems apart from
Dominating Set, Vertex Cover and Threshold Dominating Set in the
middle of the vector hierarchy. Finally, it would be interesting to investigate
whether there are some vectors for which VDS problem is W[1]-hard.

References

1. Alon, N., Gutner, S.: Linear Time Algorithms for Finding a Dominating Set of
Fixed Size in Degenerated Graphs. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598,
pp. 394–405. Springer, Heidelberg (2007)

2. Cai, L., Juedes, D.: On the Existence of Subexponential Algorithms. Journal of
Computer and System Sciences 67(4), 789–807 (2003)

3. Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex
Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal
of ACM 52(6), 866–893 (2005)

5. Diestel, R.: Graph Theory. Springer, Heidelberg (1997)

6. Downey, R.G., Fellows, M.R.: Threshold Dominating Sets and an Improved Char-
acterization of W[2]. Theoretical Computer Science 209(1-2), 123–140 (1998)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

8. Duh, R., Fürer, M.: Approximation of k-set cover by semi-local optimization. In:
The Proceedings of STOC, pp. 256–264 (1997)

9. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–
467 (1965)

10. Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of ACM 45(4),
634–652 (1998)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

126 V. Raman, S. Saurabh, and S. Srihari

13. Gerlach, T., Harant, J.: A Note on Domination in Bipartite Graphs. Discuss. Math.
Graph Theory 22, 229–231 (2002)

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

16. Raman, V., Saurabh, S.: Short Cycles make W-hard problems hard: FPT algo-
rithms for W-hard Problems in Graphs with no short Cycles (to appear in Algo-
rithmica)

Turán Graphs, Stability Number,

and Fibonacci Index

Véronique Bruyère and Hadrien Mélot�

Department of Theoretical Computer Science, Université de Mons-Hainaut,
Avenue du Champ de Mars 6, B-7000 Mons, Belgium
{veronique.bruyere,hadrien.melot}@umh.ac.be

Abstract. The Fibonacci index of a graph is the number of its stable
sets. This parameter is widely studied and has applications in chem-
ical graph theory. In this paper, we establish tight upper bounds for
the Fibonacci index in terms of the stability number and the order of
general graphs and connected graphs. Turán graphs frequently appear
in extremal graph theory. We show that Turán graphs and a connected
variant of them are also extremal for these particular problems.

1 Introduction

The Fibonacci index F (G) of a graph G was introduced in 1982 by Prodinger
and Tichy [20] as the number of stable sets in G. In 1989, Merrifield and Sim-
mons [16] introduced independently this parameter in the chemistry literature1.
They showed that there exist correlations between the boiling point and the Fi-
bonacci index of a molecular graph. Since, the Fibonacci index has been widely
studied, especially during the last few years. The majority of these recent results
appeared in chemical graph theory [12,13,21,23,24,25] and in extremal graph the-
ory [9,11,17,18,19].

In this literature, several results are bounds for F (G) among graphs in par-
ticular classes. Lower and upper bounds inside the classes of general graphs,
connected graphs, and trees are well known (see Sect. 2). Several authors give a
characterization of trees with maximum Fibonacci index inside the class T (n, k)
of trees with order n and a fixed parameter k. For example, Li et al. [13] de-
termine such trees when k is the diameter; Heuberger and Wagner [9] when k
is the maximum degree; and Wang et al. [25] when k is the number of pending
vertices. Unicyclic graphs are also investigated in similar ways [17,18,24].

The Fibonacci index and the stability number of a graph are both related to
stable sets. Hence, it is natural to use the stability number as a parameter to
determine bounds for F (G). Let G(n, α) and C(n, α) be the classes of – respec-
tively general and connected – graphs with order n and stability number α. The
lower bound for the Fibonacci index is known for graphs in these classes. Indeed,
� Chargé de Recherches F.R.S.-FNRS.
1 The Fibonacci index is called the Fibonacci number in [20]. Merrifield and Simmons

introduced it as the σ-index [16], also known as the Merrifield-Simmons index.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 127–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 V. Bruyère and H. Mélot

Pedersen and Vestergaard [18] give a simple proof to show that if G ∈ G(n, α)
or G ∈ C(n, α), then F (G) ≥ 2α + n − α. Equality occurs if and only if G is a
complete split graph (see Sect. 2). In this article, we determine upper bounds
for F (G) in the classes G(n, α) and C(n, α). In both cases, the bound is tight for
every possible value of α and n and the extremal graphs are characterized.

A Turán graph is the union of disjoint balanced cliques. Turán graphs fre-
quently appear in extremal graph theory. For example, the well-known Theorem
of Turán [22] states that these graphs have minimum size inside G(n, α). We show
in Sect. 3 that Turán graphs have also maximum Fibonacci index inside G(n, α).
Observe that removing an edge in a graph strictly increases its Fibonacci index.
Indeed, all existing stable sets remain and there is at least one more new stable
set: the two vertices incident to the deleted edge. Therefore, we might have the
intuition that the upper bound for F (G) is a simple consequence of the Theorem
of Turán. However, we show that it is not true (see Sects. 2 and 5). The proof
uses structural properties of α-critical graphs.

Graphs in C(n, α) which maximize F (G) are characterized in Sect. 4. We
call them Turán-connected graphs since they are a connected variant of Turán
graphs. It is interesting to note that these graphs again minimize the size inside
C(n, α). Hence, our results lead to questions about the relations between the
Fibonacci index, the stability number, the size and the order of graphs. These
questions are summarized in Sect. 5.

2 Basic Properties

In this section, we suppose that the reader is familiar with usual notions of graph
theory (we refer to Berge [1] for more details). First, we fix our terminology and
notation. We then recall the notion of α-critical graphs and give properties of
such graphs. We end with some basic properties of the Fibonacci index.

2.1 Notations

Let G = (V, E) be a simple and undirected graph order n(G) = |V | and size
m(G) = |E|. For a vertex v ∈ V (G), we denote by N(v) the neighborhood of v;
its closed neighborhood is defined as N [v] = N(v) ∪ {v}. The degree of a vertex
v is denoted by d(v) and the maximum degree of G by Δ(G). We use notation
G $ H when G and H are isomorphic graphs. The complement of G is denoted
by G. The stability number α(G) of a graph G is the number of vertices of a
maximum stable set of G. Clearly, 1 ≤ α(G) ≤ n(G), and 1 ≤ α(G) ≤ n(G) − 1
when G is connected.

Definition 1. We denote by Gv the induced subgraph obtained by removing a
vertex v from a graph G. Similarly, the graph GN [v] is the induced subgraph
obtained by removing the closed neighborhood of v. Finally, the graph obtained
by removing an edge e from G is denoted by Ge.

Turán Graphs, Stability Number, and Fibonacci Index 129

Classical graphs of order n are used in this article: the complete graph Kn,
the path Pn, the cycle Cn, the star Sn (composed by one vertex adjacent to n−1
vertices of degree 1) and the complete split graph CSn,α (composed of a stable
set of α vertices, a clique of n − α vertices and each vertex of the stable set is
adjacent to each vertex of the clique). The graph CS7,3 is depicted in Fig. 1.

We also deeply study the two classes of Turán graphs and Turán-connected
graphs. A Turán graph Tn,α is a graph of order n and a stability number α such
that 1 ≤ α ≤ n, that is defined as follows. It is the union of α disjoint balanced
cliques (that is, such that their orders differ from at most one) [22]. These cliques
have thus !n

α" or �n
α vertices. We now define a Turán-connected graph TCn,α

with n vertices and a stability number α where 1 ≤ α ≤ n − 1. It is constructed
from the Turán graph Tn,α with α− 1 additional edges. Let v be a vertex of one
clique of size !n

α", the additional edges link v and one vertex of each remaining
cliques. Note that, for each of the two classes of graphs defined above, there is
only one graph with given values of n and α, up to isomorphism.

Example 2. Figure 1 shows the Turán graph T7,3 and the Turán-connected graph
TC7,3. When α = 1, we observe that Tn,1 $ TCn,1 $ CSn,1 $ Kn. When α = n,
we get Tn,n $ CSn,n $ Kn, and when α = n−1, we get TCn,n−1 $ CSn,n−1 $ Sn.

Fig. 1. The graphs CS7,3, T7,3 and TC7,3

2.2 α-Critical Graphs

We recall the notion of α-critical graphs [6,10,14]. An edge e of a graph G is
α-critical if α(Ge) > α(G), otherwise it is α-safe. A graph is α-critical if all
its edges are α-critical. By convention, a graph with no edge is α-critical. These
graphs play an important role in extremal graph theory [10], and in our proofs.

Example 3. Simple examples of α-critical graphs are complete graphs and odd
cycles. Turán graphs are also α-critical. On the contrary, Turán-connected graph
are not α-critical, except when α = 1.

Lemma 4. Let G be an α-critical graph. If G is connected, then the graph Gv

is connected for all vertices v of G.

Proof. We use two known results on α-critical graphs (see, e.g., [14, Chap. 12]).
If a vertex v of an α-critical graph has degree 1, then v and its neighbor w form
a connected component of the graph. Every vertex of degree at least 2 in an
α-critical graph is contained in a cycle. Hence, by the first result, the minimum
degree of G equals 2, except if G $ K2. Clearly Gv is connected by the second
result or when G $ K2. �	

130 V. Bruyère and H. Mélot

Lemma 5. Let G be an α-critical graph. Let v be any vertex of G which is not
isolated. Then, α(G) = α(Gv) = α(GN [v]) + 1.

Proof. Let e = vw be an edge of G containing v. Then, there exist in G two
maximum stable sets S and S′, such that S contains v, but not w, and S′

contains w, but not v (see, e.g., [14, Chap. 12]). Thus, α(G) = α(Gv) due to the
existence of S′. The set S avoids each vertex of N(v). Hence, S \ {v} is a stable
set of the graph GN [v] of size α(G)−1. Note that this stable set is maximum. �	

2.3 Fibonacci Index

Let us now recall the Fibonacci index [16,20]. The Fibonacci index F (G) of a
graph G is the number of all the stable sets in G, including the empty set. The
following lemma is well-known (see [8,13,20]).

Lemma 6. Let G be a graph.

– Let e be an edge of G, then F (G) < F (Ge).
– Let v be a vertex of G, then F (G) = F (Gv) + F (GN [v]).
– If G is the union of k disjoint graphs Gi, 1 ≤ i ≤ k, then F (G)=

∏k
i=1 F (Gi).

Example 7. We have F (Kn) = n + 1, F (Kn) = 2n, F (Sn) = 2n−1 + 1 and
F (Pn) = fn+2 (recall that the sequence of Fibonacci numbers fn is f0 = 0, f1 = 1
and fn = fn−1 + fn−2 for n > 1).

Prodinger and Tichy [20] give simple lower and upper bounds for the Fibonacci
index. We recall these bounds in the next lemma.

Lemma 8. Let G be a graph of order n.

– Then n + 1 ≤ F (G) ≤ 2n with equality if and only if G $ Kn (lower bound)
and G $ Kn (upper bound).

– If G is connected, then n + 1 ≤ F (G) ≤ 2n−1 + 1 with equality if and only if
G $ Kn (lower bound) and G $ Sn (upper bound).

– If G is a tree, then fn+2 ≤ F (G) ≤ 2n−1 + 1 with equality if and only if
G $ Pn (lower bound) and G $ Sn (upper bound).

We denote by G(n, α) the class of general graphs with order n and stability
number α; and by C(n, α) the class of connected graphs with order n and stability
number α. Pedersen and Vestergaard [18] characterize graphs with minimum
Fibonacci index as indicated in the following theorem.

Theorem 9. Let G be a graph inside G(n, α) or C(n, α), then F (G) ≥ 2α+n−α,
with equality if and only if G $ CSn,α.

The aim of this article is the study of graphs with maximum Fibonacci index
inside the two classes G(n, α) and C(n, α). The system GraPHedron [15] allows
a formal framework to conjecture optimal relations among a set of graph invari-
ants. Thanks to this system, graphs with maximum Fibonacci index inside each

Turán Graphs, Stability Number, and Fibonacci Index 131

of the two previous classes have been computed for small values of n [7]. We
observe that these graphs are isomorphic to Turán graphs for the class G(n, α),
and to Turán-connected graphs for the class C(n, α). For the class C(n, α), there
is one exception when n = 5 and α = 2: both the cycle C5 and the graph TC5,2

have maximum Fibonacci index.
Recall that the classical Theorem of Turán [22] states that Turán graphs

Tn,α have minimum size inside G(n, α). We might think that Turán graphs have
maximum Fibonacci index inside G(n, α) as a direct corollary of the Theorem
of Turán and Lemma 6. This argument is not correct since removing an α-
critical edge increases the stability number. Therefore, Lemma 6 only implies
that graphs with maximum Fibonacci index inside G(n, α) are α-critical graphs.
In Sect. 5, we make further observations on the relations between the size and
the Fibonacci index inside the classes G(n, α) and C(n, α).

There is another interesting property of Turán graphs related to stable sets.
Byskov [4] establish that Turán graphs have maximum number of maximal stable
sets inside G(n, α). The Fibonacci index counts not only the maximal stable sets
but all the stable sets. Hence, the fact that Turán graphs maximize F (G) cannot
be simply derived from the result of Byskov.

3 General Graphs

In this section, we study graphs with maximum Fibonacci index inside the class
G(n, α). These graphs are said to be extremal. For fixed values of n and α, we
show that there is one extremal graph up to isomorphism, the Turán graph Tn,α

(see Theorem 12).
Before establishing this result, we need some auxiliary results. We denote by

fT(n, α) the Fibonacci index of the Turán graph Tn,α. By Lemma 6,

fT(n, α) =
(⌈n

α

⌉
+ 1
)p (⌊n

α

⌋
+ 1
)α−p

,

where p = (n mod α). We have also the following inductive formula.

Lemma 10. Let n and α be integers such that 1 ≤ α ≤ n. Then

fT(n, α) =

⎧⎨⎩
n + 1 if α = 1,
2n if α = n,
fT(n − 1, α) + fT(n −

⌈
n
α

⌉
, α − 1) if 2 ≤ α ≤ n − 1 .

Proof. The cases α = 1 and α = n are trivial (see Example 7). Suppose 2 ≤ α ≤
n−1. Let v be a vertex of Tn,α with maximum degree. Thus v is in a

⌈
n
α

⌉
-clique.

As α < n, the vertex v is not isolated. Therefore Tv
n,α $ Tn−1,α. As α ≥ 2, the

graph TN [v]
n,α has at least one vertex, and TN [v]

n,α $ Tn−!n
α",α−1. By Lemma 6, we

obtain the inductive formula. �	

A consequence of Lemma 10 is that fT(n − 1, α) < fT(n, α). Indeed, the cases
α = 1 and α = n are trivial, and the term fT(n −

⌈
n
α

⌉
, α − 1) is always strictly

positive when 2 ≤ α ≤ n − 1.

132 V. Bruyère and H. Mélot

Corollary 11. The function fT(n, α) is strictly increasing in n when α is fixed.

We now state the upper bound on F (G) inside the class G(n, α).

Theorem 12. Let G be a graph of order n with a stability number α, then
F (G) ≤ fT(n, α), with equality if and only if G $ Tn,α.

Proof. The cases α = 1 and α = n are straightforward. Indeed G $ Tn,1 when
α = 1, and G $ Tn,n when α = n. We can assume that 2 ≤ α ≤ n − 1, and
thus n ≥ 3. We now prove by induction on n that if G is extremal, then it is
isomorphic to Tn,α.

The graph G is α-critical. Otherwise, there exists an edge e ∈ E(G) such that
α(G) = α(Ge), and by Lemma 6, F (G) < F (Ge). This is a contradiction with
G being extremal.

Let us compute F (G) thanks to Lemma 6. Let v ∈ V (G) of maximum degree
Δ. The vertex v is not isolated since α < n. Thus by Lemma 5, α(Gv) = α
and α(GN [v]) = α − 1. On the other hand, If χ is the chromatic number of G,
it is well-known that n ≤ χ . α (see, e.g., Berge [1]), and that χ ≤ Δ + 1 (see
Brooks [3]). It follows that

n(GN [v]) = n − Δ − 1 ≤ n −
⌈n

α

⌉
. (1)

Note that n(GN [v]) ≥ 1 since α ≥ 2.
We can apply the induction hypothesis on the graphs Gv and GN [v]. We obtain

fT(n, α) ≤ F (G) as G is extremal,

= F (Gv) + F (GN[v]), by Lemma 6,

≤ fT(n(Gv), α(Gv)) + fT(n(GN[v]), α(GN[v])), by induction,
= fT(n − 1, α) + fT(n − Δ − 1, α − 1),
≤ fT(n − 1, α) + fT(n −

⌈
n
α

⌉
, α − 1), by (1) and Corollary 11,

= fT(n, α) by Lemma 10 .

Hence equality holds everywhere. In particular, by induction, the graphs Gv,
GN [v] are extremal, and Gv $ Tn−1,α, GN [v] $ Tn−!n

α",α−1. Coming back to

G from Gv and GN [v] and recalling that v has maximum degree, it follows that
G $ Tn,α. �	

Corollary 11 states that fT(n, α) is increasing in n. It was an easy consequence
of Lemma 10. The function fT(n, α) is also increasing in α. Theorem 12 can be
used to prove this fact easily as shown now.

Corollary 13. The function fT(n, α) is strictly increasing in α when n is fixed.

Proof. Suppose 2 ≤ α ≤ n−1. By Lemma 8 it is clear that fT(n, 1) < fT(n, α) <
fT(n, n). Now, let e be an edge of Tn,α. Clearly α(Te

n,α) = α + 1. Moreover,
by Lemma 6 and Theorem 12, F (Tn,α) < F (Te

n,α) < F (Tn,α+1). Therefore,
fT(n, α) < fT(n, α + 1). �	

Turán Graphs, Stability Number, and Fibonacci Index 133

4 Connected Graphs

We now consider graphs with maximum Fibonacci index inside the class C(n, α).
Such graphs are called extremal. If G is connected, the bound of Theorem 12 is
clearly not tight, except when α = 1, that is, when G is a complete graph. We are
going to prove that there is one extremal graph up to isomorphism, the Turán-
connected graph TCn,α, with the exception of the cycle C5 (see Theorem 17).
First, we need preliminary results and definitions to prove this theorem.

We denote by fTC(n, α) the Fibonacci index of the Turán-connected graph
TCn,α. An inductive formula for its value is given in the next lemma.

Lemma 14. Let n and α be integers such that 1 ≤ α ≤ n − 1. Then

fTC(n, α) =

⎧⎨⎩
n + 1 if α = 1,
2n−1 + 1 if α = n − 1,
fT(n − 1, α) + fT(n′, α′) if 2 ≤ α ≤ n − 2,

where n′ = n −
⌈

n
α

⌉
− α + 1 and α′ = min(n′, α − 1).

Proof. The cases α = 1 and α = n − 1 are trivial by Lemma 8. Suppose now
that 2 ≤ α ≤ n − 2. Let v be a vertex of maximum degree in TCn,α. We apply
Lemma 6 to compute F (TCn,α). Observe that the graphs TCv

n,α and TCN [v]
n,α are

both Turán graphs when 2 ≤ α ≤ n − 2.
The graph TCv

n,α is isomorphic to Tn−1,α. Let us show that TCN [v]
n,α is iso-

morphic to Tn′,α′ . By definition of a Turán-connected graph, d(v) is equal to⌈
n
α

⌉
+ α − 2. Thus n(TCN [v]

n,α) = n − d(v) − 1 = n′.
If α < n

2 , then TCn,α has a clique of order at least 3 and α(TCN [v]
n,α) = α −

1 ≤ n′. Otherwise, TCN [v]
n,α $ Kn′ and α(TCN [v]

n,α) = n′ ≤ α − 1. Therefore
α(TCN [v]

n,α) = min(n′, α−1) in both cases. By Lemma 6, these observations leads
to the inductive formula. �	

Definition 15. A bridge in a connected graph G is an edge e ∈ E(G) such that
the graph Ge is no more connected. To a bridge e = v1v2 of G which is α-safe, we
associate a decomposition D(G1, v1, G2, v2) such that v1 ∈ V (G1), v2 ∈ V (G2),
and G1, G2 are the two connected components of Ge. A decomposition is said to
be α-critical if G1 is α-critical.

Lemma 16. Let G be a connected graph. If G is extremal, then either G is
α-critical or G has an α-critical decomposition.

Proof. We suppose that G is not α-critical and we show that it must contain
an α-critical decomposition. Let e be an α-safe edge of G. Then e must be a
bridge. Otherwise, the graph Ge is connected, has the same order and stability
number as G and satisfies F (Ge) > F (G) by Lemma 6. This is a contradiction
with G being extremal. Therefore G contains at least one α-safe bridge defining
a decomposition of G.

134 V. Bruyère and H. Mélot

Let us choose a decomposition D(G1, v1, G2, v2) such that G1 is of minimum
order. Then, G1 is α-critical. Otherwise, G1 contains an α-safe bridge e′ = w1w2,
since the edges of G are α-critical or α-safe bridges by the first part of the proof.
Let D(H1, w1, H2, w2) be the decomposition of G defined by e′, such that v1 ∈
V (H2). Then n(H1) < n(G1), which is a contradiction. Hence the decomposition
D(G1, v1, G2, v2) is α-critical. �	

Theorem 17. Let G be a connected graph of order n with a stability number α,
then F (G) ≤ fTC(n, α), with equality if and only if G $ TCn,α when (n, α) �=
(5, 2), and G $ TC5,2 or G $ C5 when (n, α) = (5, 2).

Proof. We prove by induction on n that if G is extremal, then it is isomorphic
to TCn,α or C5. To handle more easily the general case of the induction (in a
way to avoid the extremal graph C5), we consider all connected graphs with up
to 6 vertices as the basis of the induction. For these basic cases, we refer to the
report of an exhaustive automated verification [7]. We thus suppose that n ≥ 7.

We know by Lemma 16 that either G has an α-critical decomposition or G is
α-critical. We consider now these two situations.

1) G has an α-critical decomposition. We prove in three steps that G $ TCn,α:
(i) We establish that for every decomposition D(G1, v1, G2, v2), the graph Gi is
extremal and is isomorphic to a Turán-connected graph such that d(vi) = Δ(Gi),
for i = 1, 2. (ii) We show that if such a decomposition is α-critical, then G1 is a
clique. (iii) We prove that G is itself isomorphic to a Turán-connected graph.

(i) For the first step, let D(G1, v1, G2, v2) be a decomposition of G, n1 be
the order of G1, and α1 its stability number. We prove that G1 $ TCn1,α1 such
that d(v1) = Δ(G1). The argument is identical for G2. By Lemma 6, we have
F (G) = F (G1)F (Gv2

2) + F (Gv1
1)F (GN [v2]

2).
By the induction hypothesis, F (G1) ≤ fTC(n1, α1). The graph Gv1

1 has an
order n1−1 and a stability number ≤ α1. Hence by Theorem 12 and Corollary 13,
F (Gv1

1) ≤ fT(n1 − 1, α1). It follows that

F (G) ≤ fTC(n1, α1)F (Gv2
2) + fT(n1 − 1, α1)F (GN [v2]

2) . (2)

As G is supposed to be extremal, equality occurs. It means that Gv1
1 $ Tn1−1,α1

and G1 is extremal. If G1 is isomorphic to C5, then n1 = 5, α1 = 2 and
F (G1) = fTC(5, 2). However, F (Gv1

1) = F (P4) < fT(4, 2). By (2), this leads to a
contradiction with G being extremal. Thus, G1 must be isomorphic to TCn1,α1 .
Moreover, v1 is a vertex of maximum degree of G1. Otherwise, Gv1

1 cannot be
isomorphic to the graph Tn1−1,α1 .

(ii) The second step is easy. Let D(G1, v1, G2, v2) be an α-critical decomposi-
tion of G, that is, G1 is α-critical. By (i), G1 is isomorphic to a Turán-connected
graph. The complete graph is the only Turán-connected graph which is α-critical.
Therefore, G1 is a clique.

(iii) We now suppose that G has an α-critical decomposition D(G1, v1, G2, v2)
and we show that G $ TCn,α. Let n1 be the order of G1 and α1 its stability
number. As v1v2 is an α-safe bridge, it is clear that n(G2) = n−n1 and α(G2) =

Turán Graphs, Stability Number, and Fibonacci Index 135

α−α1. By (i) and (ii), G1 is a clique (and thus α1 = 1), G2 $ TCn−n1,α−1, and
v2 is a vertex of maximum degree in G2. If α = 2, then G2 is also a clique in G.
By Lemma 6 and the fact that F (Kn) = n + 1 we have,

F (G) = F (Gv1) + F (GN [v1]) = n1(n − n1 + 1) + (n − n1) = n + n n1 − n2
1 .

When n is fixed, this function is maximized when n1 = n
2 . That is, when G1 and

G2 are balanced cliques. This appears if and only if G $ TCn,2.
Thus we suppose that α ≥ 3. In other words, G contains at least three cliques:

the clique G1 of order n1; the clique H containing v2 and a clique H ′ in G2 linked
to H by an α-safe bridge v2v3. Let k = n−n1

α−1 , then the order of H is !k" and
the order of H ′ is !k" or �k (recall that G2 $ TCn−n1,α−1). These cliques are
represented in Fig. 2.

v1

G1

v2

H

v3

H ′

Fig. 2. Cliques in the graph G

To prove that G is isomorphic to a Turán-connected graph, it remains to
show that the clique G1 is balanced with the cliques H and H ′. We consider
the decomposition defined by the α-safe bridge v2v3. By (i), G1 and H are
cliques of a Turán-connected graph, and H is a clique with maximum order
in this graph (recall that v2 is a vertex of maximum degree in G2). Therefore
!k" − 1 ≤ n1 ≤ !k", showing that G1 is balanced with H and H ′.

2) G is α-critical. Under this hypothesis, we prove that G is a complete graph,
and thus is isomorphic to a Turán-connected graph. Suppose that G is not com-
plete. Let v be a vertex of G with a maximum degree d(v) = Δ. As G is connected
and α-critical, the graph Gv is connected by Lemma 4. By Lemma 5, α(Gv) = α
and α(GN [v]) = α − 1. Moreover, n(Gv) = n − 1 and n(GN [v]) = n − Δ − 1.

By the induction hypothesis and Theorem 12, we get

F (G) = F (Gv) + F (GN [v]) ≤ fTC(n − 1, α) + fT(n − Δ − 1, α − 1) .

Therefore, G is extremal if and only if GN [v] $ Tn−Δ−1,α−1 and Gv is extremal.
However, Gv is not isomorphic to C5 as n ≥ 7. Thus Gv $ TCn−1,α.

So, the graph G is composed by the graph Gv $ TCn−1,α and an additional
vertex v connected to TCn−1,α by Δ edges. There must be an edge between v
and a vertex v′ of maximum degree in Gv, otherwise GN [v] is not isomorphic to
a Turán graph. The vertex v′ is adjacent to

⌈
n−1

α

⌉
+ α − 2 vertices in Gv and it

136 V. Bruyère and H. Mélot

is adjacent to v, that is, d(v′) =
⌈

n−1
α

⌉
+α−1. Since G is not a complete graph,

we have

Δ ≥ d(v′) >

⌈
n − 1

α

⌉
, (3)

On the other hand, v is adjacent to each vertex of some clique H of Gv since
GN [v] has a stability number α − 1. As this clique has order at most

⌈
n−1

α

⌉
,

v must be adjacent to a vertex w /∈ H by (3). We observe that the edge vw is
α-safe. This is impossible as G is α-critical. It follows that G is a complete graph
and the proof is completed. �	

The study of the maximum Fibonacci index inside the class T (n, α) of trees
with order n and stability number α is strongly related to the study done in
this section for the class C(n, α). Indeed, due to the fact that trees are bipartite,
a tree in T (n, α) has always a stability number α ≥ n

2 . Moreover, the Turán-
connected graph TCn,α is a tree when α ≥ n

2 . Therefore, the upper bound on
the Fibonacci index for connected graphs is also valid for trees. We thus get the
next corollary with in addition the exact value of fTC(n, α).

Corollary 18. Let G be a tree of order n with a stability number α, then

F (G) ≤ 3n−α−122α−n+1 + 2n−α−1,

with equality if and only if G $ TCn,α.

Proof. It remains to compute the exact value of fTC(n, α). When α ≥ n
2 , the

graph TCn,α is composed by one central vertex v of degree α and α pending
paths of length 1 or 2 attached to v. An extremity of a pending path of length
2 is a vertex w such that w /∈ N [v]. Thus there are x = n−α− 1 pending paths
of length 2 since N [v] has size α + 1, and y = α− x = 2α−n + 1 pending paths
of length 1. We apply Lemma 6 on v to get fTC(n, α) = 3x2y + 2x. �	

5 Observations

Turán graphsTn,α haveminimum size inside G(n, α) by the Theorem of Turán [22].
Christophe et al. [5] give a tight lower bound for the connected case of this theorem,
and Bougard and Joret [2] characterized the extremal graphs, which happen to
contain the TCn,α graphs as a subclass.

By these results and Theorems 12 and 17, we can observe the following rela-
tions between graphs with minimum size and maximum Fibonacci index. The
graphs inside G(n, α) minimizing m(G) are exactly those which maximize F (G).
This is also true for the graphs inside C(n, α), except that there exist other
graphs with minimum size than the Turán-connected graphs.

However, these observations are not a trivial consequence of the fact that
F (G) < F (Ge) where e is any edge of a graph G. As shown in our proofs, the
latter property only implies that a graph maximizing F (G) contains only α-
critical edges (and α-safe bridges for the connected case). Our proofs use a deep
study of the structure of the extremal graphs to get Theorems 12 and 17.

Turán Graphs, Stability Number, and Fibonacci Index 137

We now give additional examples showing that the intuition that more edges
imply fewer stable sets is wrong. Pedersen and Vestergaard [18] give the following
example. Let r be an integer such that r ≥ 3, G1 be the Turán graph T2r,r and G2

be the star S2r. The graphs G1 and G2 have the same order but G1 has less edges
(r) than G2 (2r−1). Nevertheless, observe that F (G1) = 3r < F (G2) = 22r−1+1.
However, we note that α(G1) < α(G2).

We propose a similar example of pairs of graphs with the same order and the
same stability number (see the graphs G3 and G4 on Fig. 3). These two graphs
are inside the class G(6, 4), however m(G3) < m(G4) and F (G3) < F (G4).
Notice that we can get such examples inside G(n, α) with n arbitrarily large, by
considering the union of several disjoint copies of G3 and G4.

These remarks and our results suggest some questions about the relations
between the size, the stability number and the Fibonacci index of graphs. What
are the lower and upper bounds for the Fibonacci index inside the class G(n, m)
of graphs order n and size m; or inside the class G(n, m, α) of graphs order n,
size m and stability number α? Are there classes of graphs for which more edges
always imply fewer stable sets? We think that these questions deserve to be
studied.

G3 : G4 :

Fig. 3. Graphs with same order and stability number

Acknowledgments

The authors thank Gwenaël Joret for helpful suggestions.

References

1. Berge, C.: The Theory of Graphs. Dover Publications, New York (2001)
2. Bougard, N., Joret, G.: Turán Theorem and k-connected graphs. J. Graph The-

ory 58, 1–13 (2008)
3. Brooks, R.-L.: On colouring the nodes of a network. Proc. Cambridge Philos.

Soc. 37, 194–197 (1941)
4. Byskov, J.M.: Enumerating maximal independent sets with applications to graph

colouring. Oper. Res. Lett. 32, 547–556 (2004)
5. Christophe, J., Dewez, S., Doignon, J.-P., Elloumi, S., Fasbender, G., Grégoire, P.,

Huygens, D., Labbé, M., Mélot, H., Yaman, H.: Linear inequalities among graph
invariants: using GraPHedron to uncover optimal relationships, 24 pages (Accepted
for publication in Networks, 2008)

6. Erdös, P., Gallai, T.: On the minimal number of vertices representing the edges of
a graph. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 181–203 (1961)

7. GraPHedron: Reports on the study of the Fibonacci index and the stability number
of graphs and connected graphs,
www.graphedron.net/index.php?page=viewBib\&bib=7

www.graphedron.net/index.php?page=viewBib&bib=7

138 V. Bruyère and H. Mélot

8. Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry.
Springer, Berlin (1986)

9. Heuberger, C., Wagner, S.: Maximizing the number of independent subsets over
trees with bounded degree. J. Graph Theory 58, 49–68 (2008)

10. Joret, G.: Entropy and Stability in Graphs. PhD thesis, Université Libre de Brux-
elles, Belgium (2007)

11. Knopfmacher, A., Tichy, R.F., Wagner, S., Ziegler, V.: Graphs, partitions and
Fibonacci numbers. Discrete Appl. Math. 155, 1175–1187 (2007)

12. Li, X., Li, Z., Wang, L.: The Inverse Problems for Some Topological Indices in
Combinatorial Chemistry. J. Comput. Biol. 10(1), 47–55 (2003)

13. Li, X., Zhao, H., Gutman, I.: On the Merrifield-Simmons Index of Trees. MATCH
Comm. Math. Comp. Chem. 54, 389–402 (2005)

14. Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó. North-Holland,
Budapest (1986)

15. Mélot, H.: Facet defining inequalities among graph invariants: the system GraPHe-
dron. Discrete Appl. Math., 17 pages (Accepted for publication, 2007)

16. Merrifield, R.E., Simmons, H.E.: Topological Methods in Chemistry. Wiley, New
York (1989)

17. Pedersen, A.S., Vestergaard, P.D.: The number of independent sets in unicyclic
graphs. Discrete Appl. Math. 152, 246–256 (2005)

18. Pedersen, A.S., Vestergaard, P.D.: Bounds on the Number of Vertex Independent
Sets in a Graph. Taiwanese J. Math. 10(6), 1575–1587 (2006)

19. Pedersen, A.S., Vestergaard, P.D.: An Upper Bound on the Number of Independent
Sets in a Tree. Ars Combin. 84, 85–96 (2007)

20. Prodinger, H., Tichy, R.F.: Fibonacci numbers of graphs. Fibonacci Quart. 20(1),
16–21 (1982)

21. Tichy, R.F., Wagner, S.: Extremal Problems for Topological Indices in Combina-
torial Chemistry. J. Comput. Biol. 12(7), 1004–1013 (2005)

22. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48,
436–452 (1941)

23. Wagner, S.: Extremal trees with respect to Hosoya Index and Merrifield-Simmons
Index. MATCH Comm. Math. Comp. Chem. 57, 221–233 (2007)

24. Wang, H., Hua, H.: Unicycle graphs with extremal Merrifield-Simmons Index. J.
Math. Chem. 43(1), 202–209 (2008)

25. Wang, M., Hua, H., Wang, D.: The first and second largest Merrifield-Simmons
indices of trees with prescribed pendent vertices. J. Math. Chem. 43(2), 727–736
(2008)

Vertex-Uncertainty in Graph-Problems
(Extended Abstract)

Cécile Murat and Vangelis Th. Paschos

LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

{murat,paschos}@lamsade.dauphine.fr

Abstract. We study a probabilistic model for graph-problems under
vertex-uncertainty. We assume that any vertex vi of the input-graph G
has only a probability pi to be present in the final graph to be optimized
(i.e., the final instance for the problem tackled will be only a sub-graph of
the initial graph). Under this model, the original “deterministic” problem
gives rise to a new (deterministic) problem on the same input-graph G,
having the same set of feasible solutions as the former one, but its ob-
jective function can be very different from the original one, the set of
its optimal solutions too. Moreover, this objective function is a sum
of 2|V | terms, where V is the vertex-set of G; hence, its computation
is not immediately polynomial. We give sufficient conditions for large
classes of graph-problems under which objective functions of the proba-
bilistic counterparts are polynomially computable and optimal solutions
are well-characterized.

1 Introduction

Very often people has to make decisions under several degrees of uncertainty,
i.e., when only probabilistic information about the future is available. We deal
with the following probabilistic model under data uncertainty. Consider a generic
instance I of a combinatorial optimization problem Π . Assume that Π is not to
be necessarily solved on the whole I, but rather on a (unknown a priori) sub-
instance I ′ ⊂ I. Suppose that any datum di in the data-set describing I has a
probability pi, indicating how di is likely to be present in the final sub-instance I ′.
Consider finally that once I ′ is specified, the solver has no opportunity to solve it
directly (for example she/he has to react quasi-immediately, so no sufficient time
is given her/him). Concrete examples of such situations dealing with satellite
shots planning or with timetabling are given in [1,2].

What can the solver do in this case? A natural way to proceed is to compute
an anticipatory solution S for Π , i.e., a solution for the entire instance I, and
once I ′ becomes known, to modify S in order to get a solution S′ fitting I ′.
The objective is to determine an initial solution S for I such that, for any sub-
instance I ′ ⊆ I presented for optimization, the solution S′ respects some pre-
defined quality criterion (for example, optimal for I ′, or achieving, say, constant
approximation ratio, or . . .).

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 139–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 C. Murat and V.Th. Paschos

In what follows we restrict ourselves in graph-problems and consider the fol-
lowing very simple and quick modification1 of S: take the restriction of S in the
present sub-instance of G. Consider a graph-problem Π , a graph G(V, E) of or-
der n, instance of Π , and an n-vector Pr = (p1, . . . , pn) of vertex-probabilities
any of them, say pi, measuring how likely is for vertex vi ∈ V , i = 1, . . . , n to be
present in the final subgraph G′ ⊆ G, on which the problem will be really solved.
For any solution S for Π in G and for any V ′ ⊆ V , denote by S′ the restriction
of S in V ′, i.e., the set resulting from S after removal of the vertices that do not
belong to V ′. As we have mentioned, S′, can or cannot (depending of the defi-
nition of Π) be a feasible solution of Π in the subgraph G′ of G induced by V ′.
Whenever S′ is feasible, denote by m(G′, S′) the objective value of S′ in G′. Then,
the value of S for G, denoted by E(G, S) (and frequently called functional), is
the expectation of m(G′, S′), over all the possible G′ ⊆ G. Formally, given S, the
functional E(G, S) of S is defined by: E(G, S) =

∑
V ′⊆V Pr[V ′]m(G′, S′), where

Pr[V ′] is the probability thatV ′ will be finally the real instance to be optimized and
is defined by: Pr[V ′] =

∏
vi∈V ′ pi

∏
vi∈V \V ′(1 − pi). Obviously, E(G, S) depends

also on Pr but, for simplicity, this dependency will be omitted. Quantity, E(G, S)
can be seen as the objective function of a new combinatorial problem, derived
from Π and denoted by probabilistic Π in what follows, where we are given
an instance G of Π and a probability vector Pr on the vertices of G and the objec-
tive is to determine a solution S∗ in G optimizing E(G, S) (optimal anticipatory
solution). The optimization goal of probabilistic Π is the same as the one of Π .

This way to tackle uncertainty in combinatorial optimization is sometimes
called a priori optimization (this term has been introduced by [3]). In a priori
optimization, the combinatorial problem to be solved, being subject to haz-
ards or to inaccuracies, is not defined on a static and clearly specified instance,
since the instance to be effectively optimized is not known with absolute cer-
tainty from the beginning. Probabilistic requirements are due to the fact that
uncertainty in the presence of data makes that it is not possible to assign
unique values to some parameters of the problems. In such an approach, the
goal is to compute solutions that behave “well” under any assignment of val-
ues to these parameters. Under this model, restrictive versions of routing and
network-design probabilistic minimization problems (in complete graphs) have
been studied in [4,5,6,7,3,8,9,10,11]. Recently, in [12], the analysis of the proba-
bilistic minimum travelling salesman problem, originally performed in [5,8], has
been revisited and refined. In [13,1,14] the minimum vertex covering and the
minimum coloring are tackled, while in [15,16] probabilistic maximization prob-
lems, namely, the longest path and the maximum independent set, are studied.
Finally, in [17], the Steiner forest problem (a generalization of the well-known
Steiner tree problem) is tackled. An early survey about a priori optimization can
be found in [18] while, a more recent one appears in [19].

Our goal is to go beyond study of probabilistic versions of particular com-
binatorial problems and to propose a structural study of uncertainty for the

1 As we will see later such a modification strategy does not always produce feasible
solutions; in such a case some more work is needed.

Vertex-Uncertainty in Graph-Problems 141

a priori optimization paradigm. Here, the main mathematical issues (assuming
that, given an anticipatory solution S, its restriction to G[V ′], the subgraph of G
induced by V ′, is feasible) are: (i) the complexity of the computation of E(G, S)
which, carrying over 2n additive terms, is non-trivially polynomial; (ii) compact
combinatorial characterization (based upon the form of E(G, S)) of S∗ as opti-
mal solution of probabilistic Π ; (iii) the complexity of computing S∗, at least
for particular classes of subproblems of the initial problem.

Notice that, for any problem Π , its combinatorial counterpart probabilis-
tic Π contains Π as subproblem (just consider probability vector (1, . . . , 1)
for Π). Hence, from a complexity point of view, probabilistic Π is at least as
hard as Π , that is, if Π is NP-hard, then probabilistic Π is also NP-hard,
while if Π is polynomial, then no immediate indication can be provided for the
complexity of probabilistic Π , until this latter problem is explicitly studied.

In what follows, we tackle four categories of graph-problems exhausting a very
large part of the most known ones. For any of these categories, we give sufficient
conditions under which functionals are analytically expressible and polynomially
computable and anticipatory solutions are well-characterized. These structural
results immediately apply to several well-known problems producing so particu-
lar results interesting per se. Furthermore, the scope of our results is even larger
than for graph-problems, as problems not originally defined on graphs (e.g., max
set packing or min set cover), are also captured. So, this work can provide
a framework for a systematic classification of a great number of probabilistic
derivatives of well-known graph-problems.

Given a combinatorial problem Π ∈ NPO, we denote by probabilistic Π ,
its probabilistic counterpart defined as described previously and assume that the
vertex-probabilities are independent.

The results in this extended abstract are given without detailed proofs which
can be found in [20]. Also, definitions of the particular optimization problems
discussed can be found in [21].

2 Solutions Are Subsets of the Initial Vertex-Set

In this section, we deal with graph-problems whose solutions are subsets of the
vertex-set of the input-graph and where, given such a solution S and a set
V ′ ⊆ V , the restriction of S in V ′, i.e., the set S′ = S ∩ V ′ is feasible for G[V ′].
The main result of this section is stated in Theorem 1.

Theorem 1. Consider a graph-problem Π verifying the following assumptions:
(i) an instance of Π is a vertex-weighted graph G(V, E, w); (ii) solutions of Π
are subsets of V ; (iii) for any solution S and any subset V ′ ⊆ V , S′ = S ∩ V ′

is feasible for G′ = G[V ′]; (iv) the value of any solution S ⊆ V is defined by:
m(G, S) = w(S) =

∑
vi∈S wi, where wi is the weight of vi ∈ V . Then, the func-

tional of probabilistic Π is expressed as: E(G, S) =
∑

vi∈S wipi and can be
computed in polynomial time. Furthermore, the complexity of probabilistic Π
is the same as the one of Π.

142 C. Murat and V.Th. Paschos

Although computation of the functional is, as we have mentioned, a priori ex-
ponential (since it carries over 2n subgraphs of G), assumptions (i) through (iv)
in Theorem 1 allow polynomial computation of its value. This is due to the
fact that, under these assumptions, given a subgraph G′ induced by a subset
V ′ ⊆ V , the value of the solution for G′ is the sum of the weights of the vertices
in S ∩ V ′. Furthermore, a vertex not in S will never make part of any solution
in any sub-graph of G. Consequently, computation of the functional amounts to
determining, for any G′, which vertices make part of S ∩ V ′. This is equivalent
with the specification, for any vi ∈ S, of all the subgraphs to which vi belongs
and with a summation of the presence-probabilities of these subgraphs. This sum
is equal to pi (the probability of vi). This simplification is the main reason that
renders functional’s computation polynomial, despite of the exponential number
of terms in its generic expression.

Notice that Theorem 1 can also be used for getting generic approximation
results for probabilistic Π . Indeed, since this problem is a particular weighted
version of Π , one immediately concludes that if Π is approximable within ap-
proximation ratio ρ, so is probabilistic Π .

Corollary 1. Under the hypotheses of Theorem 1, whenever Π and proba-
bilistic Π are NP-hard, they are equi-approximable.

Theorem 1 has also the following immediate corollary dealing with the case of
probabilistic versions of unweighted combinatorial optimization problems.

Corollary 2. Consider a probabilistic combinatorial optimization problem pro-
babilistic Π verifying assumptions (i) to (iv) of Theorem 1 with w = 1. Then,
the functional of probabilistic Π, is expressed as: E(G, S) =

∑
vi∈S pi and

can be computed in polynomial time. Furthermore, probabilistic Π is equiva-
lent to a weighted version of Π where vertex-weights are the vertex-probabilities.

Corollary 2 is somewhat weaker than Theorem 1 since it does not establish the
equivalence between Π and probabilistic Π but rather a kind of reduction
from Π to probabilistic Π stating that the latter is a priori harder than the
former one. As a consequence, whenever Π is NP-hard, so is probabilistic Π
whereas if Π is polynomial, the status of probabilistic Π remains unclear by
Corollary 2.

Let us note that Theorem 1 can be applied to a broad class of problems
that fit its four conditions, as probabilistic max independent set ([16]),
probabilistic min vertex covering ([13]), probabilistic max induced
subgraph with property π and probabilistic min feedback vertex-
set ([20]), etc.

Theorem 1 can be used to capture problems that are not originally defined
on graphs as probabilistic max set packing and probabilistic min set
cover. The probabilistic versions dealt for both of them consist of considering
presence probabilities p1, . . . , pn for the corresponding elements of the ground
set C. A set Si ∈ S (the set-system defined on C) is present if at least one of
its elements is present. So, denoting by Pr[Si] the presence probability of the
set Si = {ci1 , ci2 , . . . , cik

}, we get: Pr[Si] = 1 −
∏k

j=1(1 − pij). probabilistic

Vertex-Uncertainty in Graph-Problems 143

max set packing can be transformed into a kind of probabilistic max in-
dependent set on a particular graph derived from the initial instance where
sets in S are transformed into vertices. probabilistic min set cover can
be transformed into a particular kind of probabilistic dominating set on
a graph where, once more sets in S are transformed into vertices. Both of the
derived problems fit the assumptions of Theorem 1 considering that a vertex vi

representing Si ∈ S has occurrence probability Pr[Si] (detailed proofs are given
in [20]).

3 Solutions Are Collections of Subsets of the Initial
Vertex-Set

We now deal with problems the feasible solutions of which are collections of
subsets of the initial vertex-set. Consider a graph G(V, E) and a combinatorial
optimization graph-problem Π whose solutions are collections of subsets of V
verifying some specified non-trivial hereditary property2 (e.g., independent set,
clique, etc.). The following theorem characterizes functionals and optimal antic-
ipatory solutions for such problems.

Theorem 2. Consider a graph- problem Π verifying the following assumptions:
(i) an instance of Π is a graph G(V, E); (ii) a solution of Π on an instance G is
a collection S = (V1, . . . , Vk) of subsets of V any of them satisfying some specified
non-trivial hereditary property; (iii) for any solution S and any subset V ′ ⊆ V ,
the restriction S′ of S in V ′, i.e., S′ = (V1 ∩ V ′, . . . , Vk ∩ V ′), is feasible for
G′ = G[V ′]; (iv) the value of any solution S ⊆ V of Π is defined by: m(G, S) =
|S| = k. Then, E(G, S) =

∑k
j=1(1 −

∏
vi∈Vj

(1 − pi)) and can be computed in
polynomial time. probabilistic Π amounts to a particular weighted version
of Π, where the weight of any vertex vi ∈ V is 1 − pi, the weight w(Vj) of a
subset Vj ⊆ V is defined by w(Vj) = 1−

∏
vi∈Vj

(1−pi) and the objective function
to be optimized is equal to

∑
Vj∈C w(Vj).

What does play a central role for yielding result of Theorem 2, is the fact that
property satisfied by the sets of the collection is hereditary. This allows to pre-
serve sets V1, . . . , Vk in the solution returned by S ∩ Vi, i = 1, . . . , k, unless they
are empty.

Assume that pi = 1, for any vi ∈ V . Then, E(G, S) = k and probabilistic Π
coincides in this case with Π .

Corollary 3. If Π is NP-hard, then probabilistic Π is also NP-hard.

As for Corollary 2, Corollary 3 settles complexity only for the case where Π is
NP-hard, leaving unclear the status of probabilistic Π when Π ∈ P.

Theorem 2 has also application for numerous combinatorial optimization prob-
lems, as probabilistic min coloring ([1]) probabilistic min complete
bipartite subgraph cover, probabilistic min cut cover ([20]), etc.
2 A property π is hereditary if, whenever is satisfied by a graph G, it is satisfied by

any subgraph of G.

144 C. Murat and V.Th. Paschos

As in Section 2, application of Theorem 2 can go beyond graphs. In fact,
Theorem 2 provides an equivalent way for analyzing min set cover always
assuming that uncertainty carries over ground elements and a set is present if at
least one of its element is so. Then, an instance (S, C) of min set cover can
be transformed into a particular graph whose nodes correspond to the elements
of C. A solution for min set cover is a particular vertex cover by cliques. Seen
in such terms, min set cover perfectly fits conditions of Theorem 2 ([20]).

We now extend an approximation result of [1] to capture the whole of prob-
lems meeting the conditions of Theorem 2. Consider such a problem Π , an in-
stance G(V, E) of Π , set n = |V | and consider a solution S = (V1, . . . , Vk) of Π
on G. Denote by pmin and pmax the minimum and maximum vertex-probabilities,
respectively. Then, the following bounds hold for E(G, S) ([20]):

max

⎧⎨⎩
n∑

i=1

pi −
n∑

i=1

n∑
j=i+1

pipj , kpmin

⎫⎬⎭ � E(G, S) � min

{
n∑

i=1

pi � npmax, k

}

Fix a vertex-probability p′, assume that there exists a ρ-approximation polyno-
mial time algorithm A for Π , and run the following algorithm RA for proba-
bilistic Π : (i) partition the vertices of G into three subsets: V1 including the
vertices with probabilities at most 1/n, V2, including the vertices with proba-
bilities in the interval [1/n, p′] and V3, including the vertices with probabilities
greater than p′; (ii) feasibly solve Π in G[V1] and G[V2] separately, run A in G[V3]
and take the union of the solutions computed as solution for G.

Theorem 3. If A achieves approximation ratio ρ for Π, then RA approximately
solves in polynomial time the probabilistic version of Π within ratio O(

√
ρn).

4 Solutions Are Subsets of the Initial Edge-Set

We deal in this section with problems for which solutions are sets of edges.
Notice that whenever a vertex is absent from some subset V ′ ⊆ V , the edges
incident to it are also absent from G[V ′]. So, our assumption is that, given a
solution (in terms of a set of edges) S, and a set V ′ ⊆ V inducing a subgraph
G[V ′] = G′(V ′, E′) of G, the set S ∩ E′ is feasible for Π in G′. The main result
for this case, is the following theorem.

Theorem 4. Consider a graph-problem Π verifying the following assumptions:
(1) an instance of Π is an edge- (or arc-) valued graph G(V, E, �); (2) any so-
lution of Π on any instance G is a subset of E; (3) for any solution S and
any subset V ′ ⊆ V , denoting by G′(V ′, E′) the subgraph of G induced by V ′,
the set S ∩ E′ is feasible; (4) the value of any solution S ⊆ E of Π is defined
by: m(G, S) = w(S) =

∑
(vi,vj)∈S �(vi, vj), where �(vi, vj) is the valuation of

the edge (or arc) (vi, vj) of G. Then, the functional of probabilistic Π is
expressed as: E(G, S) =

∑
(vi,vj)∈S �(vi, vj)pipj and can be computed in polyno-

mial time. Furthermore, dealing with their respective computational complexities,
probabilistic Π and Π are equivalent.

Vertex-Uncertainty in Graph-Problems 145

The reasons for which the functional derived in Theorem 4 becomes polynomial
are quite analogous to the ones in Theorem 1.

Let us note that, as in Section 2, Theorem 4 can be used for getting generic
approximation results for probabilistic Π . Since this problem is a particular
weighted version of Π , one immediately concludes that if Π is approximable
within approximation ratio ρ, so is probabilistic Π .

Corollary 4. Under the hypotheses of Theorem 4, whenever Π and proba-
bilistic Π are NP-hard, they are equi-approximable.

Corollary 5. Consider a probabilistic combinatorial optimization problem Π
verifying assumptions (1) through (4) of Theorem 4 with � = 1. Then, the func-
tional of probabilistic Π is expressed as: E(G, S) =

∑
(vi,vj)∈S pipj and can

be computed in polynomial time and probabilistic Π is equivalent to an edge-
(or arc-) valued version of Π where the values of an edge is the product of the
probabilities of its endpoints.

Theorem 4 has immediate applications to the study of probabilistic versions of
many well-known combinatorial optimization problems like probabilistic max
matching, probabilistic max cut ([20]), etc.

5 When Things Become Complicated

In this section we tackle edge-weighted graph-problems where feasible solutions
are connected sets of edges (for example, paths, trees, cycles, etc.) but we assume
that, given a solution S and a set V ′ ⊆ V inducing a subgraph G[V ′] = G′(V ′, E′)
of G, the set S ∩ E′ is not always feasible for G′.

Formally, consider a problem Π where a feasible solution is a connected set S
of edges. Consider also that vertices in S are ordered in some appropriate order.
Assume that S ∩ E′ is a set of k = k(G′) (in other words, k depends on the
present graph G′) connected subsets C1, C2, . . . , Ck of S but that S′′ = ∪k

i=1Ci

is not connected (i.e., S′′ does not constitute a feasible solution for Π). Assume
also that connected subsets C1, C2, . . . , Ck are also ranged in this order (always
following some appropriate ordering implied by the one of S).

We consider a kind of “completion” of S′′ by additional edges linking, for i =
1, . . . , k−1, the last vertex (in the ordering considered for S) of Ci with the first
vertex of Ci+1. In other words, given S (representing a connected set of edges), we
apply the following algorithm, denoted by A in the sequel: (1) range the vertices
of S following some appropriate order; (2) compute S∩E′; let C1, C2, . . . , Ck be
the resulting connected components of S ∩ E′; (3) for i = 1, . . . , k − 1, use an
edge to link the last vertex of Ci with the first vertex of Ci+1; (4) output S′ the
solution so computed.

Obviously, in order that step (3) of A is able to link components Ci and Ci+1,
an edge must exist between the vertices implied; otherwise, A is definitely unfea-
sible. So, in order to assure feasibility, we make, for the rest of the section the
basic assumption that the input graph for the problems tackled is complete.

146 C. Murat and V.Th. Paschos

3

4

1

2

13

6

5

8

7
9

10

11

12

14

(a) The ordering of the nodes of an an-
ticipatory solution T

3

4

1

6 8

7
9

10
12

14

(b) The solution T ′ derived from ap-
plication of Algorithm A on T

Fig. 1. When anticipatory solution is a tree

In what follows, denote by V [S′] the set of vertices in S′ and by G′′(V [S′], E′′)
the graph G[V [S′]]. Also, denote by [vi, vj] the set {vi+1, vi+2, . . . , vj−1} (i < j
in the ordering assumed for S) such that: (a) for any � = i, i + 1, . . . , j − 1,
(v, v+1) ∈ S (i.e., [vi, vj] is the set of vertices in the path linking vi to vj in S,
where vi and vj themselves are not encountered3) and (b) vi and vj belong to
consecutive4 connected subsets Cm and Cm+1, for some m < k. By symme-
try, always for i < j in the ordering assumed for S, we denote by [vj , vi] the
set {vj+1, vj+2, . . . , vn, v1, . . . , vi−1}. Obviously, [vi, vj] and [vj , vi] are both non-
empty if S is, say, a cycle, or more generally, it verifies some cyclic property. On
the other hand, if S is, say, a path or a tree, then [vj , vi] is empty.

Theorem 5. Consider a probabilistic combinatorial optimization problem pro-
babilistic Π verifying the following assumptions: (i) instances of Π are edge-
valued complete graphs (Kn, �) = G(V, E, �); furthermore, in the probabilistic
version of Π any vertex vi ∈ V has a presence-probability pi; (ii) a solution of Π
is a subset S of E verifying some connectivity property; (iii) given an anticipa-
tory solution S (the vertices of which are ranged in some appropriate order),
Algorithm A computes a feasible solution S′, for any subgraph G′(V ′, E′, �) =
G[V ′] of G (obviously, G′ is complete); (iv) m(G, S) =

∑
(vi,vj)∈S �(vi, vj).

Then, E(G, S) is computable in polynomial time and is expressed by:

E (G, S) =
∑

(vi,vj)∈S

� (vi, vj) pipj +
∑

(vi,vj)∈E′′\S

� (vi, vj) pipj

∏
vl∈[vi,vj]

(1 − pl)

+
∑

(vi,vj)∈E′′\S

� (vi, vj) pipj

∏
vl∈[vj ,vi]

(1 − pl)

3 It is assumed that if [vi, vj] = ∅, then
∏

vl∈[vi,vj](1 − pl) = 0.
4 With respect to the order C1, . . . , Ck.

Vertex-Uncertainty in Graph-Problems 147

Unfortunately, in the opposite of Theorems 1 and 4, Theorem 5 does not
derive a “good” characterization for the optimal anticipatory solutions of the
problems meeting the assumptions (i) to (iv). In particular, the form of the
functional does not imply solution of some well-defined weighted version of Π
(the deterministic support of probabilistic Π). Indeed due to the second term
of the expression for E(G, S) in Theorem 5, the “costs” assigned to the edges
depend on the structure of the anticipatory solution chosen.

Consider probabilistic min spanning tree. Starting from a tree T we
first number its vertices following a kind of depth-first-search. For instance, for
the tree of Figure 1(a) starting from the leftmost leaf (numbered by 1), the
numbering of the rest of its vertices is as shown in the figure. Assuming that
vertices 2, 5, 11 and 13 are absent, the tree T ′, derived from application of
Algorithm A on T is shown in Figure 1(b), where slotted edges represent edges
added during execution of step (3) of A.

6 Final Remarks

We have drawn a framework for the classification of probabilistic problems under
the a priori optimization paradigm. What seems to be of interest in this classi-
fication is that when restriction of the initial solution to the “present” subgraph
is feasible, then the complexity of determining the optimal anticipatory solution
for the problems tackled, amounts to the complexity of solving some weighted
version of the deterministic problem, where the weights depend on the vertex-
probabilities. These weights do not depend on particular characteristics of the
anticipatory solution considered, thing that allows a compact characterization
of optimal anticipatory solution. On the contrary, when more-than-one-stage
algorithms are needed for building solutions, then the observation above is no
more valid. In this case, one also recovers some weighted version of the original
problem, but the weights on the data cannot be assigned independently of the
structure of a particular anticipatory solution.

References

1. Murat, C., Paschos, V.T.: On the probabilistic minimum coloring and minimum
k-coloring. Discrete Appl. Math. 154, 564–586 (2006)

2. Murat, C., Paschos, V.T.: Probabilistic combinatorial optimization on graphs.
ISTE and Hermès Science Publishing, London (2006)

3. Bertsimas, D.J., Jaillet, P., Odoni, A.: A priori optimization. Oper. Res. 38, 1019–
1033 (1990)

4. Averbakh, I., Berman, O., Simchi-Levi, D.: Probabilistic a priori routing-location
problems. Naval Res. Logistics 41, 973–989 (1994)

5. Bertsimas, D.J.: Probabilistic combinatorial optimization problems. Phd thesis,
Operations Research Center. MIT, Cambridge Mass., USA (1988)

6. Bertsimas, D.J.: On probabilistic traveling salesman facility location problems.
Transportation Sci. 3, 184–191 (1989)

148 C. Murat and V.Th. Paschos

7. Bertsimas, D.J.: The probabilistic minimum spanning tree problem. Networks 20,
245–275 (1990)

8. Jaillet, P.: Probabilistic traveling salesman problem. Technical Report 185, Oper-
ations Research Center. MIT, Cambridge Mass., USA (1985)

9. Jaillet, P.: A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Oper. Res. 36, 929–936 (1988)

10. Jaillet, P.: Shortest path problems with node failures. Networks 22, 589–605 (1992)
11. Jaillet, P., Odoni, A.: The probabilistic vehicle routing problem. In: Golden, B.L.,

Assad, A.A. (eds.) Vehicle routing: methods and studies. North Holland, Amster-
dam (1988)

12. Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic travel-
ing salesman problem: correction to the 2-p-opt and 1-shift algorithms. European
J. Oper. Res. 161, 206–219 (2005)

13. Murat, C., Paschos, V.T.: The probabilistic minimum vertex-covering problem.
Int. Trans. Opl Res. 9, 19–32 (2002), Preliminary version,
http://www.lamsade.dauphine.fr/~paschos/documents/c170.pdf

14. Bourgeois, N., Della Croce, F., Escoffier, B., Murat, C., Paschos, V.T.: Probabilistic
coloring of bipartite and split graphs. J. Comb. Optimization (to appear)

15. Murat, C., Paschos, V.T.: The probabilistic longest path problem. Networks 33,
207–219 (1999)

16. Murat, C., Paschos, V.T.: A priori optimization for the probabilistic maxi-
mum independent set problem. Theoret. Comput. Sci. 270, 561–590 (2002),
http://www.lamsade.dauphine.fr/~paschos/documents/c166.pdf

17. Paschos, V.T., Telelis, O.A., Zissimopoulos, V.: Steiner forests on stochastic metric
graphs. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 112–
123. Springer, Heidelberg (2007)

18. Bellalouna, M., Murat, C., Paschos, V.T.: Probabilistic combinatorial optimization
problems: a new domain in operational research. European J. Oper. Res. 87, 693–
706 (1995)

19. Murat, C., Paschos, V.T.: L’optimisation combinatoire probabiliste. In: Paschos,
V.T. (ed.) Optimisation combinatoire : concepts avancés, pp. 221–247. Hermès
Science, Paris (2005)

20. Murat, C., Paschos, V.T.: What about future? Robustness under vertex-
uncertainty in graph-problems. Cahier du LAMSADE 236, LAMSADE, Université
Paris-Dauphine (2006),
http://www.lamsade.dauphine.fr/~paschos/documents/pcopclassifcah.pdf

21. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and approximation. In: Combinatorial optimization problems
and their approximability properties. Springer, Berlin (1999)

http://www.lamsade.dauphine.fr/~paschos/documents/c170.pdf
http://www.lamsade.dauphine.fr/~paschos/documents/c166.pdf
http://www.lamsade.dauphine.fr/~paschos/documents/pcopclassifcah.pdf

Protean Graphs with a Variety of Ranking

Schemes

Pawe�l Pra�lat�

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS,
Canada B3H 3J5

pralat@mathstat.dal.ca

Abstract. The World Wide Web may be viewed as a graph each of
whose vertices corresponds to a static HTML web page, and each of
whose edges corresponds to a hyperlink from one web page to another.
Recently there has been considerable interest in using random graphs to
model complex real-world networks to gain an insight into their proper-
ties. In this paper, we propose a generalized version of the protean graph
(a random model of the web graph) in which the degree of a vertex de-
pends on its age. Classic protean graphs can be seen as a special case
of the rank-based approach where vertices are ranked according to age.
Here, we investigate graph generation models based on other ranking
schemes and show that these models lead to graphs with a power law
degree distribution.

1 Introduction

Recently many new random graphs models have been introduced and analyzed
by certain common features observed in many large-scale real-world networks
such as the ‘web graph’ (see, for instance, the survey [1]). The web may be
viewed as a directed graph whose nodes correspond to static pages on the web,
and whose arcs correspond to links between these pages.

One of the most characteristic features of this graph is its degree sequence.
Broder et al. [2] noticed that the distribution of degrees follows a power law: the
fraction of vertices with degree k is proportional to k−γ , where γ is a constant
independent of the size of the network (more precisely, γ ≈ 2.1 for in-degrees,
γ ≈ 2.7 for out-degrees). These observations suggest that the web is not well
modeled by traditional random graph models such as Gn,p (see, for instance [4]).

�Luczak and the author of this paper introduced in [6] another random graph
model of the undirected ‘web graphs’, the protean graph Pn(d, η), which is con-
trolled by two additional parameters (d ∈ N and 0 < η < 1). The major feature
of this model is that older vertices are preferred when joining a new vertex into
the graph. In [6] it is proved that the degrees of the Pn(d, η) are distributed
according to the power law and the behaviour near the connectivity threshold
� The author is supported by MITACS and NSERC. This work is part of the MITACS

project Modelling and Mining of Networked Information Spaces (MoMiNIS).

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 149–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 P. Pra�lat

is studied. The author of this paper showed also in [8] that the protean graph
Pn(d, η) asymptotically almost surely (a.a.s.) has one giant component, contain-
ing a positive fraction of all vertices, whose diameter is equal to Θ(log n). (See
also [9] where the growing protean graphs are studied.)

Classic protean graphs can be viewed as a special case of the rank-based
approach where vertices are ranked according to age. The general approach was
first proposed by Fortunato, Flammini and Menczer in [3], and the occurrence of
a power law was postulated based on simulations (Janssen and the author of this
paper provided rigorous proofs in [5]). In this approach, the vertices are ranked
from 1 to n according to some ranking scheme (so the vertex with highest degree
has rank 1, etc.), and the link probability of a given vertex is proportional to
its rank, raised to the power −η for some η ∈ (0, 1); we will refer to η as the
attachment strength. (Negative powers are chosen since a low value for rank
should result in a higher link probability.)

As we will show, protean graphs with rank-based attachment leads to power
law graphs for a variety of different ranking schemes. One obvious ranking scheme
is to rank vertices by age (the old get richer); as we already mentioned, this
model was studied in [6,8] and this leads to a power law with the exponent
1 + 1/η. In this paper, we study a ranking scheme where an external prestige
label for each vertex is given and vertices are ranked according to their prestige
label. In order to allow for a different distribution of “prestige” over the vertices,
we considered also a random ranking scheme. Here, each vertex is assigned an
initial rank according to a given distribution. We consider distributions of the
following form. Let Ri be the initial rank of a vertex born at time i. Then
P(Ri ≤ k) = (k/n)s. First we show that, if s = 1, then the situation is similar to
the one described previously, and vertices with initial rank Ri exhibit behaviour
as if they had received fitness Ri/n. We also consider the case where s > 1, so
the rank of new vertices is biased towards the higher ranks.

These results suggest an explanation for the power law degree distribution
often observed in real-life networks such as the web graph, protein interaction
networks, and social networks. The growth of such networks can be seen as
governed by a rank-based attachment scheme, based on a ranking scheme that
can be derived from a number of different factors such as age, degree, or fitness.
The exponent of the power law is independent of these factors, but is rather
a consequence of the attachment strength. In addition, rank-based attachment
accentuates the difference between higher ranked vertices: the difference in link
probability between the vertices ranked 1 and 2 is much larger than that between
the vertices ranked 100 and 101. This again corresponds to our intuition of what
constitutes a credible mechanism for link attachment.

In order to establish the right attachment strength to model a given real-life
network we should consider the following. In a graph in which the number of
vertices of degree k decreases roughly as k−γ the fraction of vertices of degree at
least k changes roughly as

∑
�≥k O(�−γ) = O(k1−γ) . Thus, in order to imitate

this distribution the attachment strength η should be set to η ∼ 1/(γ − 1).

Protean Graphs with a Variety of Ranking Schemes 151

2 Definitions

In this section, we formally define the graph generation model based on rank-
based attachment. The model produces a sequence {Gt}∞t=0 = {(Vt, Et)}∞t=0

of undirected graphs on n vertices, where t denotes time. Our model has two
fixed parameters: initial degree d ∈ N , and attachment strength η ∈ (0, 1). At
each time t, each vertex v ∈ Vt has rank r(v, t) ∈ [n] (we use [n] to denote
the set {1, 2, . . . , n}). In order to obtain a proper ranking, the rank function
r(·, t) : Vt → [n] is a bijection for all t, so every vertex has a unique rank. In
agreement with the common use of the word “rank”, high rank refers to a vertex
v for which r(v, t) is small: the highest ranked vertex is ranked number one, so
has rank equal to 1; the lowest ranked vertex has rank n. The initialization and
update of the ranking is done according to a ranking scheme. Various ranking
schemes can be considered; we first give the general model, and then list the
ranking schemes.

Let G0 = (V0, E0) be any graph on n vertices and r0 = r(·, 0) : V0 → [n]
any initial rank function. (For random labeling scheme we take any function
l : V0 → (0, 1) and the initial rank function is a function of l; for degree scheme
r0 = r0(G0).) For t ≥ 1 we form Gt from Gt−1 according to the following rules:

– Choose uniformly at random a vertex u ∈ Vt−1, delete u together with all
edges incident to it.

– Add a new vertex vt together with d edges from vt to existing vertices chosen
randomly with weighted probabilities. The edges are added in d substeps. In
each substep, one edge is added, and the probability that v is chosen as its
endpoint (the link probability), equals

r(v, t − 1)−η∑n
i=1 i−η

=
1 − η

n1−η + O(1)
r(v, t − 1)−η.

– Update the ranking function r(·, t) : Vt → [n] according to the ranking
scheme.

Our model allows for loops and multiple edges; there seems no reason to
exclude them. However, there will not in general be very many of these, so
excluding them can be shown not to affect our conclusions in any significant way.

We now define the different ranking schemes.

– Ranking by age: The vertex added at time t obtains an initial rank n; its
rank decreases by one each time a vertex with smaller rank is removed.

– Ranking by inverse age: The vertex added at time t obtains an initial
rank 1; its rank increases by one each time a vertex with higher rank is
removed.

– Ranking by random labeling: The vertex added at time t obtains a label
l(vt) ∈ (0, 1) chosen uniformly at random. Vertices are ranked according to
their labels: if l(vi) < l(vj), then r(vi, t) < r(vj , t).

152 P. Pra�lat

– Random ranking: The vertex added at time t obtains an initial rank Rt

which is randomly chosen from [n] according to a prescribed distribution.
Formally, let F : [0, 1] → [0, 1] be any cumulative distribution function.
Then for all k ∈ [t], P(Rt ≤ k) = F (k/t).

– Ranking by degree: After each time step t, vertices are ranked according
to their degrees in Gt, and ties are broken by age. Precisely, if deg(vi, t) <
deg(vj , t) then r(vi, t) < r(vj , t), and if deg(vi, t) = deg(vj , t) then r(vi, t) <
r(vj , t) if i < j.

In this paper, due to the space limitations, we focus on ranking by random la-
beling and random ranking with F (x) = xs for s ≥ 1. The other ranking schemes
will be studied in a journal version of this paper. In particular, it is interesting
and non-trivial task to investigate the ranking by degree scheme; in this case, it
is not even clear how long we have to wait to obtain a stationary distribution.
For the other schemes (except the random labeling case), it is enough to wait L
steps for all vertices to be ‘renewed’ (for the random labeling case we have to
wait two times longer: the first round is needed to have labels distributed uni-
formly at random, during the second one the process ‘forgets’ about the initial
graph) and from that time the protean process is the Markov chain that is in
the stationary distribution (that is, the distribution determined by Gt on the set
of all ordered graphs on n vertices is identical for all t.) By the coupon collector
problem, a.a.s. L = n(log n + O(ω(n))) where ω(n) is any function tending to
infinity with n (for random labeling scheme, clearly L = 2n(log n + O(ω(n)))
a.a.s.). Furthermore, this distribution does not depend on the choice of G0 and
r0. The random graph GL corresponding to this distribution is called a protean
graph Pn(d, η).

In the rest of the paper, {Gt}∞t=1 is assumed to be a graph sequence gener-
ated by the rank-based attachment model, with ranking scheme as defined in
each particular section, and d and η are assumed to be the initial degree and
attachment strength parameters of the model as defined above. The results are
generally about the degree distribution in GL, where the asymptotics are based
on n tending to infinity.

We will use the stronger notion of wep in favour of the more commonly used
a.a.s., since it simplifies some of our proofs. We say that an event holds with
extreme probability (wep), if it holds with probability at least 1−exp(−Θ(log2 n))
as n → ∞. Thus, if we consider a polynomial number of events that each holds
wep, then wep all events hold. To combine this notion with asymptotic notations
such as O() and o(), we follow the conventions in [10].

3 Ranking by Random Labeling

In this scheme, each new vertex vt obtains a label l(vt) ∈ (0, 1) chosen uniformly
at random. (Note that the probability that two vertices receive the same label is
zero.) Vertices are ranked by their labels: if l(vi) < l(vj), then r(vi, t) < r(vj , t).

First we note that the process of choosing a label uar from (0, 1) does not
imply loss of generality. Namely, suppose that the labels are chosen from R

Protean Graphs with a Variety of Ranking Schemes 153

according to any probability distribution with a strictly increasing cumulative
distribution function F . Since F is an increasing function, labels F (l(vi)) lead
to exactly the same ranking as labels l(vi). But P(F (l(vi)) ≤ x) = P(l(vi) ≤
F−1(x)) = F (F−1(x)) = x, so the values of labels F (l(vi)) are chosen from (0, 1)
according to the uniform distribution.

First we investigate the expected degree of a vertex v at time L with a given
age-rank and a label. We use a(·, t) for a ranking by age and stay with r(·, t) for
a ranking by random labeling.

Theorem 1. Let 0 < η < 1, d ∈ N, i = i(n) ∈ [n], and 0 < l(vi) = l(vi)(n) < 1.
If n · l(vi) > log3 n, then the expected degree of a vertex vi with an age-rank
a(vi, L) = i that obtained a label l(vi), is given by

E deg(vi, L) = d
i − 1
n − 1

+ (1 + O(log−1/2 n))d(1 − η)l(vi)−η(1 − i/n) ,

and wep
deg(vi, L) = E deg(vi, L) + O(

√
E deg(vi, L) log n) .

Proof. It is clear that the expected rank of vi is equal to l(vi)n at each step of
the process. Moreover, we can use the fact that a sum of independent random
variables with large enough expected value is not too far from its mean (see,
for example, Theorem 2.8 in [4]). From this it follows that, if ε ≤ 3/2, then the
following inequality, known as a Chernoff bound, holds

P (|r(vi, t) − Er(vi, t)| ≥ εEr(vi, t)) ≤ 2 exp
(
−ε2

3
Er(vi, t)

)
.

Therefore, wep r(vi, t) = l(vi)n(1+O(log−1/2 n)) during the whole period (since
L = O(n log n)).

Let X(t, j) be a random indicator variable for an event that vertex vt (for
which a(vt, L) = t) joins vi at substep j of step when vt was born (i < t ≤ n,
j ∈ [d]). It is clear that

P(X(t, j) = 1) = 1 − P(X(t, j) = 0) =

(
l(vi)n(1 + O(log−1/2 n))

)−η

n1−η/(1 − η) + O(1)

= (1 + O(log−1/2 n))(1 − η)l(vi)−η/n.

The number of neighbours vt of vi such that t > i is a random variable and can
be expressed as a sum

∑n
t=i+1

∑d
j=1 X(t, j) of independent random variables.

Note also that vertex vi generated exactly d edges at the time it was born but
only i vertices (including vi) have not been ‘renewed’ since then. Thus,

E deg(vi, L) = d
i − 1
n − 1

+ d(n − i)EX(t, j)

= d
i − 1
n − 1

+ (1 + O(log−1/2 n))d(1 − η)l(vi)−η(1 − i/n) .

Finally, since deg(vi, L) is expressed as a sum of independent random vari-
ables, we can use the Chernoff bound to show the concentration result.

154 P. Pra�lat

Let Zk = Zk(n, d, η) denote the number of vertices of degree k and Z≥k =∑
l≥k Zl. The following theorem shows that the Z≥k’s follow a power law with

exponent 1/η. Since the Z≥k’s represent the cumulative degree distribution, this
implies that the degree distribution follows a power law with exponent 1 + 1/η.

Theorem 2. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/ log4η n. Then wep

Z≥k =
(
1 − O(log−1/3 n)

) η

1 + η

(
d(1 − η)

k

)1/η

n.

Proof. This theorem is a simple consequence of Theorem 1. One can show that

wep each vertex vi such that l(vi) ≥
(
1 + log−1/3 n

) (d(1−η)(1−i/n)
k

)1/η

has

fewer than k neighbours, and each vertex vi for which l(vi) ≤
(
1 − log−1/3 n

)(
d(1−η)(1−i/n)

k

)1/η

has more than k neighbours. Thus,

EZ≥k =
n∑

i=1

(
1 − O(log−1/3 n)

)(d(1 − η)(1 − i/n)
k

)1/η

=
(
1 − O(log−1/3 n)

)(d(1 − η)
k

)1/η

n

∫ 1

0

(1 − x)1/η

=
(
1 − O(log−1/3 n)

) η

1 + η

(
d(1 − η)

k

)1/η

n

and the assertion follows from the Chernoff bound since EZ≥k = Ω(log4 n).

4 Randomly Chosen Initial Rank

Next, we consider the case where the rank of the new vertex vi, Ri = r(vi, i), is
chosen at random from [n]. As described earlier, the ranks of existing vertices
are adjusted accordingly. In contrast to the previous scheme, in this case it does
matter according to which distribution Ri is chosen. We make the assumption
that all initial ranks are chosen according to a similar distribution. In particular,
we fix a continuous bijective function F : [0, 1] → [0, 1], and for all integers
1 ≤ k ≤ n, we let P(Ri ≤ k) = F

(
k
n

)
.

Thus, F represents the limit, for n going to infinity, of the cumulative distri-
bution functions of the variables Ri. To simplify the calculations while exploring
a wide array of possibilities for F , we assume F to be of the form F (x) = xs,
where s ≥ 1. (The case 0 < s < 1 will be studied in the journal version of
this paper.)

We start from a special case s = 1, where the distribution of each Ri is
uniform. We will show that this case is similar to the random labeling case
with a label equal to Ri/n. Hence, our aim is to show that the random variable
r(vi, t) is sharply concentrated around Ri. In fact, r(vi, t) − r(vi, i) is the sum
of the differences r(vi, j)− r(vi, j − 1) = Xj , i + 1 ≤ j ≤ t. If the differences are

Protean Graphs with a Variety of Ranking Schemes 155

independent, then the Chernoff bounds are very useful. When the differences are
not independent but there is a large degree of independence, results can be often
obtained by using large deviation inequalities for corresponding martingales. It
is exactly the case here.

Our proofs use the supermartingale method of Pittel et al. [7], as described
in [11, Corollary 4.1]. We need the following lemma.

Lemma 1. Let G0, G1, . . . , Gn be a random process and Xt a random variable
determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and
constants γt, E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β and |Xt −Xt−1 −β| ≤ γt for
1 ≤ t ≤ n. Then for all α > 0,

P
(
For some t with 0 ≤ t ≤ n : Xt − X0 ≥ tβ + α

)
≤ exp

(
− α2

2
∑n

j=1 γ2
t

)
.

Lemma 2. Suppose that vertex v obtained an initial rank R ≥
√

n log2 n. Then,
wep r(v, t) = R(1 + O(log−1/2 n)) to the end of its life.

Proof. Note that r(v, t + 1) − r(v, t) = −1 (conditionally on the fact that v is
not deleted at time t +1) with probability (r(v, t)− 1)(n− r(v, t))/(n− 1)n and
r(v, t + 1) − r(v, t) = 1 with probability (n − r(v, t))r(v, t)/(n − 1)n. Thus,

β = E(r(v, t + 1) − r(v, t) | r(v, t)) = O(1/n).

Clearly, the rank can change by at most one (γt = 1) so we can use Lemma 1
with α =

√
n log3/2 n to get that wep r(v, t) = R(1 + O(log−1/2 n)) during the

whole life of that vertex (note that wep v will be deleted after O(n log n) steps
and R ≥

√
n log2 n).

From the previous lemma it follows that the random ranking case for s = 1 is
very similar to the random labeling case. The proof of the following theorem is
the same as the proof of the Theorem 1 so it is omitted. (Note that the range
for k is slightly different due to the stronger condition for the initial rank.)

Theorem 3. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/2/ log3η n. Then wep

Z≥k =
(
1 − O(log−1/3 n)

) η

1 + η

(
d(1 − η)

k

)1/η

n.

Next, we consider the case where s > 1, but before we move to investigating
the rank of vertex v after t steps of the process, we study its age-rank. In other
words, we would like to know how many vertices have not been ‘renewed’ after
t steps of the process. For this, we use the differential equations method [11].
Without loss of generality, we can assume that the vertex was born at time 0. It
is clear that a(v, 0) = n and a(v, t), t > 0, is a random variable, which in time
step t + 1 decreases by one precisely when vertex u for which a(u, t) < a(v, t) is
deleted. So, working in the conditional space under consideration, we obtain

E(a(v, t + 1) − a(v, t) | Gt) =
a(v, t) − 1

n − 1
.

156 P. Pra�lat

Defining a real function z(x) to model the behaviour of a(v, xn)/n, the above
relation implies the following differential equation

z′(x) = −z(x) (1)

with the initial condition z(0) = 1.
The general solution is z(x) = exp(−x+C), C ∈ R and the particular solution

is z(x) = exp(−x). This suggests that a random variable a(v, t) should be close
to a deterministic function n exp(−t/n). We will show that it represents the
“shape” of a typical process.

Theorem 4. Let a(v, t) be defined as above. Then wep, for every t in the range
0 ≤ t ≤ tf = 1

2n log n − 2n log log n, we have

a(v, t) = n exp(−t/n)(1 + O(log−1/2 n)) (2)

conditional upon the vertex v surviving until time tf .

Proof. We transform a(v, t) into something close to a martingale. Consider the
following real-valued function

H(a(v, t), t) = log a(v, t) + t/n (3)

and the stopping time

T = min{t ≥ 0 : a(v, t) <
√

n log2 n/2 ∨ t = tf} .

(A stopping time is any random variable T with values in {0, 1, . . .} ∪ {∞} for
which it is determined whether T = t̂ for any time t̂ from knowledge of the
process up to and including time t̂.)

Let wt = (a(v, t), t), and consider the sequence of random variables (H(wt) :
0 ≤ t ≤ tf). Note that the second-order partial derivatives of H with respect to
a(v, t) and t are O(1/a(v, t)2) = O(1/n log4 n), provided T > t. Therefore, with
i ∧ T denoting min{i, T}, we have

H(w(t+1)∧T) − H(wt∧T)

= (w(t+1)∧T − wt∧T) · grad H(wt∧T) + O(1/n log4 n) . (4)

Observe also that,

E(wt+1 − wt | Gt) · grad H(wt)

=
(
−a(v, t) − 1

n − 1
, 1
)

· grad H(wt) = O(1/a(v, t)n) = O(1/n3/2 log2 n),

provided T > t, since H was chosen so that H(w) is close to a constant along
every trajectory w of the differential equation (1).

Taking the expectation of (4) conditional on Gt∧T , we obtain that

E(H(w(t+1)∧T) − H(wt∧T)|Gt∧T) = O(1/n log4 n) .

Protean Graphs with a Variety of Ranking Schemes 157

From (4), noting that grad H(wt) = (O(1/a(v, t)), 1/n), and using the fact that
the rank changes by at most one in each step,

|H(w(t+1)∧T)−H(wt∧T)|=O(1/a(v, t∧T))+O(1/n)+O(1/n log4 n)=O(1/
√

n log2 n).

Now we may apply Lemma 1 to the sequence (H(wt∧T) : 0 ≤ t ≤ tf),
and symmetrically to (−H(wt∧T) : 0 ≤ t ≤ tf), with α = 1/ log1/2 n, β =
O(1/n log4 n), and γt = O(1/

√
n log2 n) to show that wep

|H(wt∧T) − H(wt0)| = O(log−1/2 n).

As H(w0) = log n, this implies from the definition (3) of the function H , that
wep equation (2) holds for every 0 ≤ t ≤ T .

To complete the proof we need to show that wep, T = tf . The events asserted
by (2) hold with this probability up until time T , as shown above. Thus, in
particular, wep a(v, T) = (1 + o(1))n exp(−T/n) > (1 + o(1))

√
n log2 n which

implies that T = tf wep.

Exactly the same approach can be used to study the rank of vertex after t
steps of the process, given that its initial rank is equal to R. We present a sketch
of the proof only.

Theorem 5. Suppose that a vertex v obtained an initial rank r(v, 0) = R <
(1 − 1/

√
n log2 n)n at time 0. Then wep, for every t > 0 conditional upon the

vertex v surviving until time t

r(v, t) = n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 + O(log−1/2 n))

provided

n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

≥
√

n log2 n .

Proof. Defining a real function z(x) to model the behaviour of r(v, xn)/n, we
get z′(x) = −z(x) + z(x)s with the initial condition z(0) = R/n. The general
solution is z(x) = (Ce(s−1)x + 1)1/(1−s), C ∈ R and the particular solution is

z(x) =

(((
R

n

)1−s

− 1

)
e(s−1)x + 1

) 1
1−s

.

Now we are ready to state the main theorem in this section. The proof is
rather straightforward but again we omit the details in this extended abstract.

Theorem 6. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/2/ log3η n. Then wep

Z≥k = (1 + o(1))
(

d(1 − η)
k(1 + η)

)1/η

n.

158 P. Pra�lat

Proof. Consider vertices vi (i = xn) and vj (j = yn) with the age-ranks a(vi, L) =
i and a(vj , L) = j, respectively. Suppose that vi obtained an initial rank of R. By
Theorem 4, wep vertices vi and vj were born (1+o(1))n log(1/x) and, respectively,
(1+o(1))n log(1/y) steps ago. By Theorem 5, wep vi had the following rank at that
time

n

(((
R

n

)1−s

− 1

)(y

x

)s−1

+ 1

) 1
1−s

(1 + O(log−1/2 n)).

Thus,

E deg(vi, L)=O(d)+(1+O(log−1/2 n))d(1−η)

� 1

x

���
R

n

�1−s

− 1

��y

x

�s−1

+1

� −η
1−s

dy.

If x + R/n = Ω(1), then the expected degree is a constant and the degree is
smaller than log n wep. Otherwise it simplifies to

E deg(vi, L) = (1 + O(log−1/2 n))d(1 − η)

((
R

n

)1−s

− 1

) −η
1−s

x−η

∫ 1

x

yηdy

= (1 + O(log−1/2 n))
d(1 − η)
1 + η

((
R

n

)1−s

− 1

) −η
1−s (

x−η − x
)
.

Therefore, we get a threshold R0 = R0(k, x) on the initial rank for heaving
degree at least k ≥ log4 n, namely,

R0(k, x) = n

(
d(1 − η)
k(1 + η)

(
x−η − x

) 1−s
η + 1

) 1
1−s

.

Finally, one can show that the expected number of vertices of degree at least k
is asymptotic to

n∑
i=1

(
R0(k, i/n)

n

)s

= (1 + o(1))n
∫ 1

0

(
d(1 − η)
k(1 + η)

(
x−η − x

) 1−s
η + 1

) s
1−s

dx

= (1 + o(1))
(

d(1 − η)
k(1 + η)

)1/η

n

∫ ∞

0

(
xs−1 + 1

) s
1−s dx

= (1 + o(1))
(

d(1 − η)
k(1 + η)

)1/η

n.

(The antiderivative of (xs−1 + 1)
s

1−s is x(xs−1 + 1)
1

1−s .) The assertion follows
from the Chernoff bound.

Protean Graphs with a Variety of Ranking Schemes 159

References

1. Bonato, A.: A survey of web graph models. In: Proceedings of Combinatorial and
Algorithm Aspects of Networking (2004)

2. Broder, A., Kumar, R., Maghoul, F., Rahaghavan, P., Rajagopalan, S., State, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. In: Proc. 9th International
World-Wide Web Conference (WWW), pp. 309–320 (2000)

3. Fortunato, S., Flammini, A., Menczer, F.: Scale-free network growth by ranking.
Phys. Rev. Lett. 96(21), 218701 (2006)

4. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)
5. Janssen, J., Pra�lat, P.: Rank-based attachment leads to power law graphs (preprint)
6. �Luczak, T., Pra�lat, P.: Protean graphs. Internet Mathematics 3, 21–40 (2006)
7. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a

random graph. J. Combinatorial Theory Series B 67, 111–151 (1996)
8. Pra�lat, P.: A note on the diameter of protean graphs. Discrete Mathematics 308,

3399–3406 (2008)
9. Pra�lat, P., Wormald, N.: Growing protean graphs. Internet Mathematics, 13 (ac-

cepted)
10. Wormald, N.C.: Random graphs and asymptotics. Section 8.2. In: Gross, J.L.,

Yellen, J. (eds.) Handbook of Graph Theory, pp. 817–836. CRC, Boca Raton (2004)
11. Wormald, N.: The differential equation method for random graph processes and

greedy algorithms. In: Karoński, M., Prömel, H.J. (eds.) Lectures on Approxima-
tion and Randomized Algorithms, pp. 73–155. PWN, Warsaw (1999)

Simplicial Powers of Graphs

Andreas Brandstädt and Van Bang Le

Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany
{ab,le}@informatik.uni-rostock.de

Abstract. In a finite simple undirected graph, a vertex is simplicial if its
neighborhood is a clique. We say that, for k ≥ 2, a graph G = (VG, EG)
is the k-simplicial power of a graph H = (VH , EH) (H a root graph of G)
if VG is the set of all simplicial vertices of H , and for all distinct vertices
x and y in VG, xy ∈ EG if and only if the distance in H between x
and y is at most k. This concept generalizes k-leaf powers introduced by
Nishimura, Ragde and Thilikos which were motivated by the search for
underlying phylogenetic trees; k-leaf powers are the k-simplicial powers
of trees. Recently, a lot of work has been done on k-leaf powers and their
roots as well as on their variants phylogenetic roots and Steiner roots.
For k ∈ {3, 4, 5}, k-leaf powers can be recognized in linear time, and
for k ∈ {3, 4}, structural characterizations are known. For all other k,
recognition and structural characterization of k-leaf powers is open.

Since trees and block graphs (i.e., connected graphs whose blocks are
cliques) have very similar metric properties, it is natural to study k-
simplicial powers of block graphs. We show that leaf powers of trees and
simplicial powers of block graphs are closely related, and we study simpli-
cial powers of other graph classes containing all trees such as ptolemaic
graphs and strongly chordal graphs.

Keywords: Graph powers, leaf powers, simplicial powers, forbidden in-
duced subgraph characterization, chordal graphs, block graphs, ptole-
maic graphs, strongly chordal graphs.

1 Introduction

Motivated by background from phylogenetic trees [3,16,35], Nishimura, Ragde
and Thilikos [33] introduced the following notions: For an integer k ≥ 2, a finite
undirected graph G = (VG, EG) is a k-leaf power if there is a tree T with VG as
its set of leaves such that for all distinct x, y ∈ VG, xy ∈ EG if and only if the
distance between x and y in T is at most k. Then T is called a k-leaf root of G.
In general, G is a leaf power if G is a k-leaf power for some k ≥ 2.

Obviously, a graph is a 2-leaf power if and only if it is a disjoint union of
cliques or, equivalently, it contains no induced path P3 with three vertices and
two edges. In [33], a (very complicated) O(n3) time algorithm for recognizing
3-leaf powers and 4-leaf powers, respectively, and constructing 3-leaf roots and 4-
leaf roots, respectively, if they exist, was described. Recently, Chang and Ko [15]
gave a linear time recognition algorithm for 5-leaf powers. Despite considerable

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 160–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simplicial Powers of Graphs 161

effort, for k ≥ 6, no characterization and no efficient recognition of k-leaf powers
is known. See [6,7,9,11,12,19,34] for more information on leaf powers and in
particular, for new characterizations of 3- and 4-leaf powers as well as of distance-
hereditary 5-leaf powers and related classes.

It is known that for every k ≥ 2, k-leaf powers are strongly chordal [7] (for the
definition of strongly chordal graphs see section 2). In [4], Bibelnieks and Dearing
introduced and studied so-called NeST graphs (i.e., neighborhood subtree tol-
erance graphs); for constant tolerances these are exactly the induced subgraphs
of powers of trees [8,23] which are closely related to k-leaf powers (see Propo-
sition 1). In [4], an example of a graph is given which is strongly chordal but
no fixed tolerance NeST graph (i.e., no k-leaf power for any k), and in [23] this
is slightly generalized; [23] mentions the open problem of characterizing fixed
tolerance NeST graphs.

Definition 1 gives the key notion of this paper, namely k-simplicial powers
of graphs which generalizes the notion of k-leaf powers of trees in a very nat-
ural way and which is also of independent interest. A vertex is simplicial if its
neighborhood is a clique. Simplicial vertices of degree one are called leaves.

Definition 1. For any integer k ≥ 1, graph G = (VG, EG) is the k-simplicial
power of graph H = (VH , EH) if VG ⊆ VH is the set of all simplicial vertices in H
and for all distinct vertices x, y ∈ VG, xy ∈ EG if and only if the distance in H
between x and y is at most k. Such a graph H is a k-simplicial root of G. If G is
the k-simplicial power of H and if, in addition, VG consists of exactly the degree 1
vertices, i.e., leaves of H, then we also say that G is the k-leaf power of H.

Since trees and block graphs (i.e., those graphs whose 2-connected components
are cliques) have very similar metric properties (see Theorem 2), it is natural
to study k-simplicial powers of block graphs. In particular, the main motivation
of this paper comes from Theorem 6 which claims that for any k ≥ 2, a graph
is the k-leaf power of a tree if and only if it is the (k − 1)-simplicial power of
a claw-free block graph. Thus, our focus is on simplicial powers of block graphs
but we also consider simplicial powers of other graph classes containing all trees
such as ptolemaic graphs and strongly chordal graphs. Due to space limitations
in this extended abstract, proofs are omitted.

2 Basic Notions and Results

Throughout this paper, let G = (VG, EG) denote a finite undirected graph with-
out loops and multiple edges, with vertex set VG and edge set EG. Moreover, we
assume connectedness unless stated otherwise. For a vertex v ∈ VG, let NG(v) =
{u | uv ∈ EG} denote the neighborhood of v in G, and let NG[v] = {v} ∪ NG(v)
denote the closed neighborhood of v in G. The degree degG(v) of a vertex v is the
number of its neighbors, i.e., degG(v) = |NG(v)|. The complement graph of G is
denoted by G. A clique is a set of mutually adjacent vertices. A stable set is a
set of mutually non-adjacent vertices.

162 A. Brandstädt and V.B. Le

A cut vertex is a vertex whose removal increases the number of connected
components. A connected graph is 2-connected if it has no cut vertex. As usual,
the maximal induced 2-connected subgraphs of G are the blocks (or 2-connected
components) of G. A block of G which contains at most one cut vertex is an
endblock. For U ⊆ V , let G[U] denote the subgraph of G induced by U . For a
set F of graphs, a graph is F-free if none of its induced subgraphs is in F .

Two vertices x, y ∈ V are true twins if NG[x] = NG[y]. A vertex set U ⊆ VG is
a module of G if U ⊆ NG(v) or U ∩NG(v) = ∅ for all v ∈ VG \U . A homogeneous
set of G is a module which consists of at least two, but not all vertices of G. A
clique module in G is a module which is a clique in G. Obviously, true twins form
a clique module. Replacing a vertex v in a graph G by a graph H (or substituting
H into v) results in the graph obtained from G[VG \{v}]∪H by adding all edges
between vertices in NG(v) and vertices in VH .

For a positive integer k ≥ 1, let Pk denote the chordless path with k vertices
and k − 1 edges, and for k ≥ 3, let Ck denote the chordless cycle with k vertices
and k edges. A complete bipartite graph with r vertices in one color class and
s vertices in the other color class is denoted by Kr,s; the K1,3 is also called the
claw. For k ≥ 3, let Sk denote the (complete) sun with 2k vertices u1, . . . , uk

and w1, . . . , wk such that u1, . . . , uk is a clique, w1, . . . , wk is a stable set and for
i ∈ {1, . . . , k}, wi is adjacent to exactly ui and ui+1 (index arithmetic modulo
k). A graph is sun-free if it contains no induced Sk for any k ≥ 3.

A graph is chordal if it contains no induced Ck for any k ≥ 4. A graph is
strongly chordal if it is chordal and sun-free. It is known that leaf powers are
strongly chordal (cf. [7], Proposition 3). A graph is a split graph if its vertex set
can be partitioned into a clique and a stable set. It is well known that G is a
split graph if and only if G and its complement graph G are chordal. A graph is
ptolemaic if it is chordal and gem-free (see Figure 1 for the gem).

A connected graph is a block graph if each of its blocks is a clique. Clearly,
block graphs are ptolemaic but not vice versa. As block graphs will play a crucial
role in this paper, we give here some well-known characterizations of them; the
equivalence (i) ⇔ (ii) in Theorem 1 is Theorem 3.5 in [24], and the equivalence
(i) ⇔ (iii) can be easily seen, e.g., by [11, Observation 3].

Theorem 1. For every graph G, the following statements are equivalent:
(i) G is a block graph.
(ii) G is the intersection graph of the blocks of some graph.
(iii) G is chordal and diamond-free.

Let dG(x, y) denote the distance in G between x and y (i.e., the minimum number
of edges of a path in G connecting x and y). A graph G is distance hereditary if
in every connected induced subgraph H of G, the distance function is the same
as in G, i.e., dH = dG|VH . In [25] it was shown that a chordal graph is distance
hereditary if and only if it is gem-free. In particular, distance-hereditary and
chordal graphs, i.e., ptolemaic graphs, are strongly chordal but not vice versa.

Let Gk = (VG, Ek
G) with xy ∈ Ek

G if and only if dG(x, y) ≤ k denote the k-th
power of G. See [1,2,5,10,18,20,21,31,32] for basic properties of powers of strongly
chordal graphs (chordal graphs, distance-hereditary graphs, respectively).

Simplicial Powers of Graphs 163

���� ����	
� ���� �� ����

Fig. 1. The bull, diamond, dart, gem, and 3-sun

Buneman’s four-point condition (∗) for distances in graphs requires that for
every four vertices u, v, x, y, the following inequality holds:

(∗) dG(u, v) + dG(x, y) ≤ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}.

The following well-known results show that trees and block graphs have very
similar metric properties.

Theorem 2. Let G be a connected graph.

(i) [13] G is a tree if and only if G is triangle-free and fulfills the four-point
condition (∗).

(ii) [26] G is a block graph if and only if G satisfies (∗).

Finally, we mention some fundamental but simple properties, among them the
following result characterizing 3-leaf powers:

Theorem 3 ([7,19,34]). For every graph G, the following are equivalent:

(i) G is a 3-leaf power.
(ii) G is (bull, dart, gem)-free chordal.
(iii) G results from substituting cliques into the vertices of a tree.

In [30], the following notion for k ≥ 1 is defined: A tree T = (VT , ET) is a k-th
Steiner root of the graph G = (VG, EG) if VG ⊆ VT and xy ∈ EG if and only if
dT (x, y) ≤ k. In this case, G is a k-th Steiner power.

In [11], we say that a graph G is a basic k-leaf power if G has a k-leaf root
T such that no two leaves of T are attached to the same parent vertex in T (a
so-called basic k-leaf root). Obviously, for k ≥ 2, the set of leaves having the
same parent node in T form a clique, and G is a k-leaf power if and only if G
results from a basic k-leaf power by substituting cliques into its vertices. If T is
a basic k-leaf root of G then T minus its leaves is a (k − 2)-th Steiner root of G.
Summarising, the following obvious equivalences hold:

Proposition 1. For a graph G, the following are equivalent for all k ≥ 2 :

(i) G has a k-th Steiner root.
(ii) G is an induced subgraph of the k-th power of a tree.
(iii) G is a basic (k + 2)-leaf power.

164 A. Brandstädt and V.B. Le

3 Simplicial Powers Versus Leaf Powers

Recall that the notion of k-simplicial powers (see Definition 1) is the key notion
of this paper. It is easy to see that a graph is the 1-simplicial power of some graph
if and only if it is a disjoint union of cliques, i.e., it is P3-free. As Proposition
2 shows, every graph is the 2-simplicial power of some split graph. Thus, the
notion of k-simplicial power is only interesting for some very restricted classes
of root graphs.

Proposition 2. Every graph is

(i) the 2-simplicial power of a split graph, and
(ii) the 4-leaf power of a bipartite graph.

Since in the proof of Proposition 2 (i), for given graph G a split graph G′ is con-
structed which might be exponentially larger than G, Proposition 2 (i) suggests
the following problem:

2-simplicial split graph root

Instance: A graph G = (VG, EG) and an integer N .
Question: Does there exist a split graph H = (VH , EH) with |VH | ≤ N such

that G is the 2-simplicial power of H?

By reducing the problem intersection graph basis ([22, GT59]) to our prob-
lem, we obtain:

Theorem 4. 2-simplicial split graph root is NP-complete.

Let G = (VG, EG) be a graph. Its line graph L(G) has EG as its vertices, and
two edges e, e′ are adjacent in L(G) if and only if e ∩ e′ �= ∅.

Theorem 5 ([24], Theorem 8.5). A graph is the line graph of a tree if and
only if it is a claw-free block graph.

The subsequent Theorem 6 was the main motivation for this paper.

Theorem 6. For k ≥ 2, a graph is the k-leaf power of a tree if and only if it is
the (k − 1)-simplicial power of a claw-free block graph.

Corollary 1. The class of k-simplicial powers of block graphs contains all t-leaf
powers for t ≤ k + 1.

4 2-Simplicial Powers of Some Subclasses of Chordal
Graphs

By Theorem 6, every 3-leaf power is the 2-simplicial power of a claw-free block
graph. Theorem 7 characterizes the larger class of 2-simplicial powers of block
graphs as the (dart,gem)-free chordal graphs. Note that this graph class appears
in other contexts as well:

Simplicial Powers of Graphs 165

– In [14], in connection with convexity of graphs, the notion of contour vertices
is defined, and it is shown that a connected graph G has the property that for
all convex sets S in G, the contour vertices of S coincide with the eccentric
vertices of S if and only if G is (dart, gem)-free chordal.

– In [28], so-called strictly chordal graphs are introduced via rather complicated
hypergraph properties, and it is shown that these graphs are leaf powers. It
turns out that a graph is strictly chordal if and only if it is (dart,gem)-free
chordal [27].

– In [12], the notion of k-leaf root and k-leaf power is modified in the following
way: For k ≥ 2 and � > k, a tree T is a (k, �)-leaf root of a graph G = (VG, EG)
if VG is the set of leaves of T , for all edges xy ∈ EG, dT (x, y) ≤ k and, for all
non-edges xy �∈ EG, dT (x, y) ≥ �. A graph G is a (k, �)-leaf power if it has a
(k, �)-leaf root. Thus, every k-leaf power is a (k, k+1)-leaf power. Then, it is
shown in [12]: Every block graph is a (4, 6)-leaf power, and a (4, 6)-leaf root
of it can be determined in linear time. Moreover, G is a (4, 6)-leaf power if
and only if G is (dart,gem)-free chordal.

Recall that Theorem 3 characterizes 3-leaf powers (of trees) as the (bull,dart,gem)-
free chordal graphs. Comparing Theorem 7 with Theorem 3 shows how natural the
concept of simplicial powers of block graphs fits within the world of leaf powers.

Theorem 7. For every graph G, the following statements are equivalent:
(i) G is the 2-simplicial power of a block graph.
(ii) G is (dart,gem)-free chordal.
(iii) G results from substituting cliques into the vertices of a block graph.
(iv) G is a (4, 6)-leaf power.

Theorem 8. For every graph G, the following statements are equivalent:
(i) G is the 2-simplicial power of a ptolemaic graph.
(ii) G is the 2-simplicial power of a ptolemaic split graph.
(iii) G is ptolemaic.

An analogous equivalence holds if in Theorem 8, “ptolemaic” is replaced by
“strongly chordal” in all three statements.

5 Simplicial Powers of Block Graphs

Theorem 6 indicates the close relationship between leaf powers (of trees) and sim-
plicial powers of (claw-free) block graphs. However, the larger class of simplicial
powers of (not necessarily claw-free) block graphs is of independent interest. As
already mentioned (see [11] and Proposition 1), leaf powers of trees are exactly
those graphs obtainable from an induced subgraph of a tree power by replacing
vertices by cliques. A similar statement is true for simplicial powers of block
graphs; it is based on the following notion.

Definition 2. A graph G is a basic k-simplicial power of a block graph if G
admits a k-simplicial block graph root R in which each block contains at most
one simplicial vertex.

166 A. Brandstädt and V.B. Le

Examples of basic k-simplicial powers of block graphs include block graphs and
k-leaf powers. Obviously, every simplicial power of a block graph is obtained
from a basic simplicial power of a block graph by replacing vertices by cliques.
Moreover, if G = (VG, EG) is a basic k-simplicial power, then any (connected)
induced subgraph of G is also a basic k-simplicial power of a block graph: If
R = (VR, ER) is a basic k-simplicial block graph root of G and G′ is a subgraph
of G induced by S ⊆ VG, then it can be easily seen that the smallest connected
subgraph of R containing S is a basic k-simplicial block graph root of G′.

Theorem 9. Let k ≥ 2 be an integer. A graph is a basic k-simplicial power of
a block graph if and only if it is an induced subgraph of the (k − 1)-th power of
a block graph.

The proof of Theorem 9 shows directly:

Corollary 2. Let k ≥ 2 be an integer. A basic k-simplicial power of a block
graph is the (k − 1)-th power of a block graph if and only if it admits a basic
k-simplicial block graph root in which each block contains exactly one simplicial
vertex.

In the rest of this section we will describe the basic 3-simplicial powers of block
graphs in more detail.

Definition 3. A maximal clique Q in a graph G = (VG, EG) is special if for
all x, y ∈ VG − Q having a common neighbor in Q, N(x) ∩ Q = N(y) ∩ Q or
|N(x)∩Q| = 1 or |N(y)∩Q| = 1. A vertex v of G is special if N [v] is a special
clique in G.

Note that a special vertex is in particular simplicial. It turns out that special ver-
tices play an important role in recognizing 2-connected basic 3-simplicial powers
of block graphs.

For a description of 2-connected basic 3-simplicial powers of block graphs, we
need the following notion. A split of a graph G = (VG, EG) is a partition into
two disjoint sets V1 and V2 such that |V1| ≥ 2, |V2| ≥ 2 and the set of edges of
G between V1 and V2 forms a complete bipartite graph. Graphs without split
are called prime. A simple split decomposition of G by the split (V1, V2) is the
decomposition of G into two graph G1 and G2 where Gi is obtained from the
subgraph of G induced by Vi and an additional vertex (a so-called marker) v
by adding all edges between v and those vertices in Vi which have a neighbor in
G − Vi. Split decomposition can be computed in linear time [17].

We characterize 2-connected basic 3-simplicial powers of block graphs by re-
ducing to smaller ones as follows.

Theorem 10. A 2-connected graph G = (VG, EG) is a basic 3-simplicial power
of a block graph if and only if

Simplicial Powers of Graphs 167

(i) G is the square of a block graph, or
(ii) G has a special vertex v such that NG(v) = NG(x) ∩ NG(y) for some non-

adjacent vertices x and y, and G − v is a 2-connected basic 3-simplicial
power of a block graph, or

(iii) G admits a split (V1, V2) such that G1 and G2 are 2-connected basic 3-
simplicial powers of block graphs and the marked vertex is special in both
G1 and G2.

Theorem 10 gives a recursive procedure that checks in time O(n3) whether a
2-connected chordal graph G with n vertices is a basic 3-simplicial power of a
block graph: Checking whether G is the square of a block graph can be done
in linear time by a result in [29]. If G is not the square of a block graph then
check whether G satisfies (ii) or (iii). If yes, recursively check the corresponding
2-connected graphs G − v, and G1 and G2, respectively. Whether a maximal
clique is special can be easily checked in time O(n2), the at most n maximal
cliques in a chordal graph can be found in linear time, and checking (ii) and (iii)
can be done in time O(n3).

Observation 1 Every 2-connected basic 3-simplicial power of a block graph G =
(VG, EG) admits a basic 3-simplicial block graph root R such that, for all special
vertices c of G and all x ∈ VG − c, dR(c, x) ≥ 3.

Theorem 11. For every graph G, the following statements are equivalent:
(i) G is a basic 3-simplicial power of a block graph.
(ii) G is an induced subgraph of the square of a block graph.
(iii) Each block of G is a basic 3-simplicial power of a block graph, and each cut

vertex v of G is non-special in at most one block containing v.

Corollary 3. 3-simplicial powers of block graphs can be recognized efficiently.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 2. Forbidden subgraphs G1, . . . , G9 characterize induced subgraphs of squares of
block graphs

In the full version of [12], induced subgraphs of squares of block graphs (see The-
orem 11 (ii)) are also characterized in terms of forbidden subgraphs (see Figure 2),
and similarly as for k = 2 in Theorem 7, 3-simplicial powers of a block graph are
closely related to (6,8)-leaf powers as described in Theorems 11 and 12.

168 A. Brandstädt and V.B. Le

Theorem 12 ([12]). For every graph G, the following are equivalent:

(i) G is a basic (6, 8)-leaf power.
(ii) G is an induced subgraph of the square of a block graph.
(iii) G is (G1, G2, . . . , G9)-free chordal.

This characterization is inspired by the corresponding results for 4-leaf pow-
ers in [11,34]. The graphs G1, G2, G4, G5, G6, G7 express separator properties of
induced subgraphs of squares of block graphs which are 2-connected, and the
graphs G3, G8, G9 express the gluing conditions for the 2-connected components
of such graphs.

6 Conclusion

Simplicial powers of block graphs (ptolemaic graphs, strongly chordal graphs,
respectively) are a natural generalization of leaf powers. There are close connec-
tions between k-leaf powers, (k, k+2)-leaf powers and simplicial powers of block
graphs such as described in Theorems 6, 7, 11 and 12.

While every graph is the 2-simplicial power of a split graph and the 4-leaf
power of a bipartite graph, 2-simplicial powers of ptolemaic graphs (strongly
chordal graphs, respectively) are ptolemaic (strongly chordal, respectively). Since
leaf powers are strongly chordal (but not vice versa), our results on simplicial
powers of block graphs and of ptolemaic graphs might shed new light on the
open problem of characterizing k-leaf powers for k ≥ 5 and of characterizing leaf
powers in general.

We gave various characterizations of classes defined as simplicial powers of
certain graph classes. In particular, we obtained the following hierarchy:

- 3-leaf powers (which are exactly the (bull,dart,gem)-free chordal graphs) are
a proper subclass of

- 2-simplicial powers of block graphs (which are exactly the (dart,gem)-free
chordal graphs), and these are in turn a proper subclass of

- 2-simplicial powers of ptolemaic graphs (which are exactly the gem-free
chordal graphs).

The class of 3-simplicial powers of block graphs is an interesting generalization
of 4-leaf powers and is characterized in Theorems 11 and 12. We hope that our
approach will lead to new insights about the structure of k-leaf powers for k ≥ 5.

References

1. Bandelt, H.-J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs.
Discrete Math. 145, 37–60 (1995)

2. Bandelt, H.-J., Prisner, E.: Clique graphs and Helly graphs. J. Combin. Th. (B)
51, 34–45 (1991)

3. Barthélémy, J.P., Guénoche, A.: Trees and proximity representations. Wiley &
Sons, Chichester (1991)

Simplicial Powers of Graphs 169

4. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete
Applied Math. 43, 13–26 (1993)

5. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

6. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers;
extended abstract. In: Proceedings of LATIN 2008. LNCS, vol. 4957, pp. 479–491
(2008)

7. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Information Processing Letters 98, 133–138 (2006)

8. Brandstädt, A., Le, V.B., Rautenbach, D.: Exact leaf powers (submitted)
9. Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-leaf powers (sub-

mitted)
10. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM Mono-

graphs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia
(1999)

11. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of
4-leaf powers. ACM Transactions on Algorithms(accepted)

12. Brandstädt, A., Wagner, P.: On (k,)-leaf powers; extended abstract. In: Kučera,
L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 525–535. Springer, Heidel-
berg (2007) (Full version submitted)

13. Buneman, P.: A note on the metric properties of trees. J. Combin. Th. (B) 1,
48–50 (1974)

14. Cáceres, J., Márquez, A., Oellermann, O.R., Puertas, M.L.: Rebuilding convex sets
in graphs. Discrete Math. 293, 26–37 (2005)

15. Chang, M.-S., Ko, T.: The 3-Steiner Root Problem; extended abstract. In: Pro-
ceedings 33rd International Workshop on Graph-Theoretic Concepts in Computer
Science WG 2007. LNCS, vol. 4769, pp. 109–120 (2007)

16. Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded de-
grees and errors. SIAM J. Computing 32, 864–879 (2003)

17. Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition. In:
Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer,
Heidelberg (1994)

18. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24B,
23–30 (1987)

19. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root
problems; extended abstract. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 389–401. Springer, Heidelberg (2004); Algorithmica 44, 363–
381 (2006)

20. Duchet, P.: Classical perfect graphs. Annals of Discrete Math. 21, 67–96 (1984)
21. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–

189 (1983)
22. Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory

of NP-Completeness. Freeman, New York (1979) (twenty-third printing 2002)
23. Hayward, R.B., Kearney, P.E., Malton, A.: NeST graphs. Discrete Applied

Math. 121, 139–153 (2002)
24. Harary, F.: Graph Theory. Addison-Wesley, Massachusetts (1972)
25. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math.

Oxford, Ser. 2(28), 417–420 (1977)
26. Howorka, E.: On metric properties of certain clique graphs. J. Combin. Th. (B) 27,

67–74 (1979)

170 A. Brandstädt and V.B. Le

27. Kennedy, W.: Strictly chordal graphs and phylogenetic roots, Master Thesis, Uni-
versity of Alberta (2005)

28. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. Journal of
Discrete Algorithms 4, 511–525 (2006)

29. Le, V.B., Tuy, N.N.: A good characterization of squares of block graphs
(manuscript, 2008)

30. Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In:
Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer,
Heidelberg (2000)

31. Lubiw, A.: Γ -free matrices, Master of Science Thesis, Dept. of Combin. and Optim.,
University of Waterloo (1982)

32. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Computing 16, 854–879
(1987)

33. Nishimura, N., Ragde, P., Thilikos, D.: On graph powers for leaf-labeled trees. J.
Algorithms 42, 69–108 (2002)

34. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306, 1456–1461
(2006)

35. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

On k- Versus (k + 1)-Leaf Powers

Andreas Brandstädt and Peter Wagner�

Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany
{ab,peter.wagner}@informatik.uni-rostock.de

Abstract. For k ≥ 2 and a finite simple undirected graph G = (V, E),
a tree T is a k-leaf root of G if V is the set of leaves of T and, for any
two distinct x, y ∈ V , xy ∈ E if and only if the distance between x and
y in T is at most k. G is a k-leaf power if G has a k-leaf root. Motivated
by the search for underlying phylogenetic trees, the concept of k-leaf
power was introduced and studied by Nishimura, Ragde and Thilikos
and analysed further in many subsequent papers. It is easy to see that
for all k ≥ 2, every k-leaf power is a (k + 2)-leaf power. However, it was
unknown whether every k-leaf power is a (k + 1)-leaf power. Recently,
Fellows, Meister, Rosamond, Sritharan and Telle settled this question
by giving an example of a 4-leaf power which is not a 5-leaf power.
Motivated by this result, we analyse the inclusion-comparability of k-
leaf power classes and show that, for all k ≥ 4, the k- and (k + 1)-leaf
power classes are incomparable. We also characterise those graphs which
are simultaneously 4- and 5-leaf powers.

In the forthcoming full version of this paper, we will show that for
all k ≥ 6 and odd l with 3 ≤ l ≤ k − 3, the k- and (k + l)-leaf power
classes are incomparable. This settles all remaining cases and thus gives
the complete inclusion-comparability of k-leaf power classes.

Keywords: k-leaf powers, intersection of leaf power classes, compara-
bility of leaf power classes.

1 Introduction

Nishimura, Ragde and Thilikos [14] introduced the notion of k-leaf power and
k-leaf root, motivated by the following: “. . . a fundamental problem in compu-
tational biology is the reconstruction of the phylogeny, or evolutionary history,
of a set of species or genes, typically represented as a phylogenetic tree . . .”.
The species occur as leaves of the phylogenetic tree. Let k ≥ 2 be an integer
and G = (V, E) be a finite simple graph. A tree T is a k-leaf root of G, if V
is the set of leaves of T and, for any two distinct x, y ∈ V , the distance be-
tween x and y in T is at most k if and only if x and y are adjacent in G, i.e.,
dT (x, y) ≤ k ⇐⇒ xy ∈ E. We say that G is a k-leaf power if G has a k-leaf
root. Let L(k) denote the class of all k-leaf powers.

In [5], we introduce the following notion: Let k ≥ 2 and � > k be integers and
G = (V, E) be a finite simple graph. A tree T is a (k, �)-leaf root of G, if V is
� Supported by DFG research grant BR 2479/7-1.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 171–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 A. Brandstädt and P. Wagner

the set of leaves of T and, for any two distinct x, y ∈ V , we have xy ∈ E =⇒
dT (x, y) ≤ k and xy �∈ E =⇒ dT (x, y) ≥ �. We say that G is a (k, �)-leaf power
if G has a (k, �)-leaf root.

Obviously, a graph is a 2-leaf power if and only if it is the disjoint union of
cliques, i.e., it contains no induced path P3 with three vertices. See [10] for the
related notions of phylogenetic root and Steiner root and [1,2,3,4,7,8,11,12,13,15]
for recent work on leaf powers (including linear time recognition of 3-, 4- and
5-leaf powers and various characterisations). For k ≥ 6, no characterisation of
k-leaf powers and no efficient recognition is known.

By subdividing all edges containing a leaf (i.e., external edges) in a k-leaf
root, it is easy to see that, for any k ≥ 2, we have L(k) ⊂ L(k + 2). It is known
[1,4,15] that L(2) ⊂ L(3) and L(3) ⊂ L(4), but it was unknown whether, for
at least some k ≥ 4, we have L(k) ⊂ L(k + 1). Fellows, Meister, Rosamond,
Sritharan and Telle [9] gave an example of a 4-leaf power on 13 vertices which
is not a 5-leaf power, which means that L(4) �⊂ L(5). Motivated by this result,
we analyse the inclusion-comparability of k-leaf power classes and show that,
for all k ≥ 4, L(k) and L(k + 1) are incomparable. We also give a structural
characterisation for L(4) ∩ L(5), thereby showing that the example in [9] is not
minimal (see Corollary 2).

By subdividing all edges not containing a leaf (i.e., internal edges) in a k-leaf
root, it is easy to see that, for any k ≥ 2, every k-leaf power is a (2k− 2, 2k)-leaf
power (see [5]) and hence a k′-leaf power, for all k′ ≥ 2k − 2. Note that this
already implies that, for all k′ ≥ 3, we have L(2) ⊂ L(k′) and, for all k′ ≥ 4, we
have L(3) ⊂ L(k′). For k = 4 and k = 5, we now know, for all k′ > k, whether
L(k) ⊂ L(k′). For k ≥ 6, the only left open cases are given by all pairs (k, k + l),
where l is an odd integer with 3 ≤ l ≤ k − 3. In Theorem 7, we settle all these
remaining cases by showing that, for all k ≥ 6 and odd l with 3 ≤ l ≤ k − 3,
L(k) and L(k + l) are incomparable.

In Theorem 2, we show that for all 2 ≤ k < k′, L(k′) �⊂ L(k), which might have
been expected but certainly requires a formal proof. We have thus obtained com-
plete information about the inclusion-comparability of all k-leaf power classes,
which can, roughly speaking, be summarised as follows: For all 2 ≤ k < k′,
the k- and k′-leaf power classes are inclusion-comparable, if and only if every
k-leaf root can be transformed into a k′-leaf root by the two simple operations
of first possibly subdividing all internal edges exactly once and then possibly
subdividing all external edges a fixed number of times.

Due to space limitations, most of the proofs are omitted.

2 Basic Notions and Results

Proposition 1 summarises the immediate inclusions discussed in the previous
section.

Proposition 1. Let 2 ≤ k < k′. If k′ − k is even or k′ ≥ 2k − 2, then
L(k) ⊂ L(k′).

On k- Versus (k + 1)-Leaf Powers 173

Let dG(x, y) (or d(x, y) for short if G is understood) be the length, i.e., number
of edges, of a shortest path in G between x and y. For k ≥ 1, let Gk = (V, Ek)
with xy ∈ Ek if and only if dG(x, y) ≤ k denote the k-th power of G.

A tree is called basic if no two of its leaves have the same parent vertex. A
k-leaf power is called basic if it has a basic k-leaf root.

Two vertices, say x and y, of a graph G = (V, E) are called true twins if they
have the same set of neighbours in V \ {x, y} and xy ∈ E.

For k ≥ 2, let Pk be the chordless path with k vertices v0, v1, . . . , vk−1 and
k − 1 edges v0v1, . . . , vk−2vk−1.

Definition 1. Let T be a tree. The first derivative T (1) of T is the tree obtained
from T by deleting its leaves. If T has at most two vertices, then its first derivative
is empty. For k ≥ 2, the kth derivative T (k) of T is the first derivative of T (k−1).

A well-known fact for distances in trees found by Buneman [6] is the following
characterisation in terms of a four-point condition:

Theorem 1. Let G = (V, E) be a connected graph. G is a tree if and only if G
contains no triangles and G satisfies the following four-point condition: For all
u, v, x, y ∈ V ,

(∗) dG(u, v) + dG(x, y) ≤ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}.

3 k- and (k + 1)-Leaf Powers Are Inclusion-Incomparable

Lemma 1 is of central importance in this paper. It is concerned with powers of
paths that are subgraphs of powers of trees and states that, roughly speaking,
pairs of path vertices that are sufficiently far away from the endvertices (repre-
sented in the lemma by the set X) retain a certain path distance property in
the tree.

Lemma 1. Let p ≥ l ≥ 2, let P be the path P2p+3−l and let X = {vp+1−l,
vp+2−l, . . . , vp+1}. Suppose that P p is an induced subgraph of T k, for some tree
T and k ≥ 1. Then, among all unordered pairs of vertices in X, their T -distance
is maximal only for {vp+1−l, vp+1}.

Proof. Let a, b ∈ X be two vertices with maximal T -distance; that is, dT (a, b) =
maxx,y∈X dT (x, y). Suppose that {a, b} �= {vp+1−l, vp+1}. By symmetry (revers-
ing the vertex labelling swaps vp+1−l and vp+1), we may assume that vp+1−l �∈
{a, b}. Let x = vp+1−l and y = v2p+2−l. Then, by Theorem 1, we have dT (a, b) +
dT (x, y) ≤ max{dT (a, x) + dT (b, y), dT (a, y) + dT (b, x)}. Since x ∈ X , we have
dT (a, x) ≤ dT (a, b) and dT (b, x) ≤ dT (a, b). And since dP (a, y) ≤ p and dP (b, y) ≤
p, we have dT (a, y) ≤ k and dT (b, y) ≤ k, respectively. The maximum in the in-
equality is thus bounded above by dT (a, b) + k, implying dT (x, y) ≤ k and hence
dP (x, y) ≤ p, which contradicts dP (x, y) = p + 1. �	

Corollary 1. Let p ≥ 2, and let P be the path P2p+1. Suppose that P p is an
induced subgraph of T k, for some tree T and k ≥ 1. Then, for all 1 ≤ m ≤ p,
we have dT (vp−1, vp−1+m) ≤ k − p + m.

174 A. Brandstädt and P. Wagner

Theorem 2, implying that L(k) ⊂ L(k′) can only hold if k ≤ k′, is an immediate
consequence of Corollary 1.

Theorem 2. For every k ≥ 3, P k−2
2k−3 is a k-leaf power which is not a k′-leaf

power, for any 2 ≤ k′ < k.

Proof. For k = 3, the path P3 with two edges is an appropriate example. For k ≥ 4,
let P be the path P2k−3. Note that P k−2 is a k-leaf power without true twins.
Suppose that P k−2 is a k′-leaf power, for some 2 ≤ k′ < k. Clearly, k′ = 2 cannot
hold, so that we may assume 3 ≤ k′ < k. Then there must be a (k′ − 2)-Steiner
root T for P k−2; that is, P k−2 ≤ T k′−2. By Corollary 1 (with m = 1), we must
have dT (vk−3, vk−2) ≤ (k′ − 2) − (k − 2) + 1 ≤ 0, a contradiction. �	

Let k ≥ 4. In this section, we are mainly concerned with a special case of Lemma
1 and Corollary 1, as the two involved graph power exponents differ by exactly
1. Roughly speaking, Lemma 2 provides us with valuable structural information
about the centre of path powers, which can be used to derive Theorem 3, since
trees are spanned by many long paths.

Lemma 2. Let k ≥ 4, and let P be the path P2k−3. Suppose that the k-leaf
power P k−2 without true twins is a (k + 1)-leaf power, and let T be a (k − 1)-
Steiner root of P k−2. Then the subtree T ′ of T spanned by the three real vertices
corresponding to vk−3, vk−2 and vk−1, is obtained from the subpath vk−3vk−2vk−1

of P by a subdivision of at most one of its edges by exactly one vertex.

Theorem 3. Let k ≥ 4, and let S be a tree with at least two vertices, such that
Sk−2 has no true twins. Suppose that the k-leaf power Sk−2 is a (k + 1)-leaf
power, and let T be a (k − 1)-Steiner root of Sk−2; that is, Sk−2 ≤ T k−1. Let S′

be the (k−3)rd derivative of S. Then the subtree T [VS′] of T spanned by the real
vertices corresponding to the vertices of S′ is obtained from S′ by a subdivision
of some of its edges by exactly one vertex.

The structural information in Theorem 3 is crucial for Theorem 4.

Theorem 4. For all k ≥ 4, there is a k-leaf power, which is not a (k + 1)-
leaf power.

See Figures 1, 2 and 3 for examples. The term k − 3 in Figure 3 represents a
path with precisely k − 3 edges.

��

� �

� �
� ��

	

� �

�

Fig. 1. Trees Sl (left) and Sr (right) with S2
l ∈ L(4) \ L(5) and S3

r ∈ L(5) \ L(6)

On k- Versus (k + 1)-Leaf Powers 175

�

� � �

� �

Fig. 2. A tree S with S4 being a 6-, but not a 7-leaf power

���

��� ���

���

���

���

���

���

� �

Fig. 3. For k ≥ 7, a tree S with Sk−2 being a k-, but not a (k + 1)-leaf power

4 The Intersection of 4- and 5-Leaf Powers

We first give a characterisation of 2-connected basic 4-leaf powers that are 5-leaf
powers. By [4,15], 2-connected basic 4-leaf powers are precisely squares of basic
trees. The square of a tree does not have a pair of true twins (i.e., it is basic) if
and only if the tree does not have a pair of leaves with the same parent vertex
(i.e., the tree is basic). What we need to do is to find those basic trees whose
squares are also 5-leaf powers.

Let S be a basic tree with at least two vertices. Suppose that S2 is a 5-leaf
power, and let T be a 3-Steiner root of S2. Let S′ be the first derivative of S. By
Theorem 3, the subtree T [VS′] of T spanned by the real vertices corresponding
to the vertices of S′ is obtained from S′ by a subdivision of some of its edges by
exactly one vertex.

This provides useful information about the relationship between S and T . In
our special case, we can say more.

Lemma 3. Let S be a basic tree with at least two vertices. Suppose that S2 is
a 5-leaf power, and let T be a 3-Steiner root of S2. Let v be a branching vertex
of S (i.e., of degree exceeding 2), and let a, b and c be adjacent to v in S. Let C
be the claw with vertices a, b, c and v in S. Then the subtree T [VC] of T spanned

176 A. Brandstädt and P. Wagner

by the real vertices corresponding to the vertices of C is obtained from C by a
subdivision of some (or possibly none) of its edges by exactly one vertex.

Lemma 3 suggests that branching vertices are helpful when trying to deduce
information about T . The following result highlights the consequence of two
branching vertices being adjacent in S.

Lemma 4. Let S be a basic tree with at least two vertices. Suppose that S2 is
a 5-leaf power, and let T be a 3-Steiner root of S2. Let v and w be two adjacent
branching vertices of S, and let a, b, c, d, x and y be six further vertices, such that
a and b are adjacent to v, c and d are adjacent to w, x is adjacent to a, and y is
adjacent to c in S. Let B be the subtree of S spanned by a, b, c, d, v and w. Then
the subtree T [VB] of T spanned by the real vertices corresponding to the vertices
of B is obtained from B by subdividing vw exactly once.

Corollary 2. Let S be a basic tree with three consecutive branching vertices.
Then S2 is not a 5-leaf power.

Note that Corollary 2 improves the example in Figure 1. Simply delete the three
leaves adjacent to f, g and h to obtain a tree on ten vertices whose square is a
4-, but not a 5-leaf power. Note further that the obtained tree is a subtree of
the tree on 13 vertices given in [9].

Lemma 4 suggests that adjacent pairs of branching vertices in S have, roughly
speaking, a significant impact on their neighbourhood. Let a subpath of S be
called a degree-2 path, if its internal vertices are of degree 2 in S and its endver-
tices are branching vertices or leaves. It will be important to distinguish between
two classes of degree-2 paths, those of lengths 1, 2 and 4 and those of lengths 3, 5
and larger. The following result is a simple consequence of Theorem 3, Lemma 3
and Lemma 4.

Corollary 3. Let S be a basic tree with at least two pairs of adjacent branching
vertices and whose degree-2 paths are exclusively of length 1, 2 or 4. Then S2 is
not a 5-leaf power.

Conversely, the following holds:

Lemma 5. Let S be a basic tree with at most one pair of adjacent branching
vertices and whose degree-2 paths are exclusively of length 1, 2 or 4. Then there
is a 3-Steiner root for S2, which is obtained by subdividing some of the edges of
S exactly once, leaving edges between leaves and branching vertices unaltered.

The general case with some degree-2 paths of length 3, 5 or larger occurring can
be treated by induction on the number of those paths.

Theorem 5. Let S be a basic tree, for which every subtree with degree-2 paths
of length 1, 2 or 4 only contains at most one pair of adjacent branching vertices.
Then there is a 3-Steiner root for S2, which is obtained by subdividing some of
the edges of S exactly once, leaving edges between leaves and branching vertices
unaltered.

On k- Versus (k + 1)-Leaf Powers 177

	

�

�

�

	

�

�

�

Fig. 4. A yellow vertex y, a green vertex g and a possible 3-Steiner root

Theorem 6 follows immediately from Corollary 3 and Theorem 5.

Theorem 6. Let the 2-connected basic 4-leaf power G be the square of the basic
tree S. Then G is a 5-leaf power if and only if every subtree of S with degree-2
paths of length 1, 2 or 4 only contains at most one pair of adjacent branching
vertices.

In order to treat the general connected case, we need to give a description for
how the blocks, i.e. the 2-connected components, can be glued together.

As we are dealing with 4-leaf powers, by [4,15], no two non-clique blocks can
share a cutvertex. Furthermore, it is clear that any two clique blocks can share
a cutvertex and that a trivial clique block (of only two vertices) can be glued to
any other block. It remains to discuss the possible gluings of non-clique blocks
and non-trivial clique blocks, and, for convenience, we will refer to them as blocks
and cliques. Each block B is the square of a tree S. Suppose the block has a pair
of true twins. Then, unless S has diameter 3, they arise from being leaves with
the same parent node in S. If S has diameter 3, then there is a 3-Steiner root
T for it with all distances between real nodes exceeding 1, and B can be glued
to any clique. Otherwise, consider one representative for each set of true twins
(and temporarily delete the rest) to obtain a new S, and we can apply the above
information from the 2-connected case.

In S, mark all vertices of its second derivative with red. Furthermore, for each
leaf, determine the length of the degree-2 path it lies on. If it has length 1, then
mark the leaf yellow. If it has length 2 or 4, then mark the leaf green and its
neighbour yellow. If it has length 3, 5 or greater, then mark the leaf and its
neighbour green. Finally, if a yellow vertex is a vertex of a subtree of S, whose
degree-2 paths are of length 1, 2 or 4 only, and which has a pair of adjacent
branching vertices, then recolour the yellow vertex red.

Now the block can be glued to any clique at green vertices. When gluing blocks
and cliques together we must only prevent an alternating sequence of blocks and
cliques from appearing, where we start and end at red vertices in blocks and the
intermediate blocks are such that we joined them with cliques at yellow vertices
belonging to the same subtree, whose degree-2 paths are of length 1, 2 or 4 only.

A 3-Steiner root realisation for a degree-2 path ending in the yellow vertex y
and the green vertex g (a leaf) with a distance of at least 2 from both g and y
to every other real vertex is given in Figure 4.

178 A. Brandstädt and P. Wagner

5 The Complete Comparability

So far, we have been comparing L(k) and L(k + 1), for every k ≥ 2. We have
recently shown the following theorem, settling all remaining cases.

Theorem 7. For all pairs (k, l) of integers 2 ≤ k < l, such that 3 ≤ l−k ≤ k−3
and l − k is not a multiple of 2, we have L(k) �⊂ L(l).

For proving the non-emptiness of the various sets L(k)\L(l), the following notion
is needed.

Fig. 5. The tree C3,2

Definition 2. Let C1 be a claw; that is, a star with three edges. For i > 1, let
Ci be the tree obtained from Ci−1 by adding precisely two leaves at every leaf of
Ci−1. For every j ≥ 1, let Ci,j be the tree obtained from Ci by subdividing every
external edge of Ci exactly j times.

See Figure 5 for an example. Note that, for all i ≥ 1, every non-leaf of Ci has
degree 3. Note further that, for all 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j, the tree Ci′,j′

is a subtree of Ci,j . The next two theorems follow immediately from forthcom-
ing work.

Theorem 8. The 6-leaf power C4
36,3 is not a 9-leaf power.

Theorem 9. The 7-leaf power C5
49,4 is not a 10-leaf power.

6 Conclusion

In this paper, we compare the classes of k- and l-leaf powers, for all 2 ≤ k < l, in
particular, for l = k+1. We show that the classes of k- and (k+1)-leaf powers are
inclusion-incomparable, for all k ≥ 4. We give a structural characterisation for
the intersection of the 4- and 5-leaf powers, extending and improving a result of
Fellows, Meister, Rosamond, Sritharan and Telle [9] about an example of a 4-leaf
power which is not a 5-leaf power. Finally, by Proposition 1 and Theorem 4, we
discuss the remaining interesting case of odd l−k with 3 ≤ l−k ≤ k−3. We have
recently shown inclusion-incomparability in that case, the proof of which is to
appear in the forthcoming full version of this paper. Characterisations for other
interesting intersections, such as the intersection of the 5- and 6-leaf powers, are
still open problems.

On k- Versus (k + 1)-Leaf Powers 179

References

1. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Information Processing Letters 98, 133–138 (2006)

2. Brandstädt, A., Le, V.B., Rautenbach, D.: Exact leaf powers (manuscript) (sub-
mitted, 2006)

3. Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-leaf powers
(manuscript) (submitted, 2006)

4. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of
4-leaf powers. ACM Transactions on Algorithms (manuscript) (accepted, 2006)

5. Brandstädt, A., Wagner, P.: On (k,)-leaf powers, extended abstract. In: Kučera,
L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 525–535. Springer, Heidel-
berg (2007)

6. Buneman, P.: A note on the metric properties of trees. J. Combin. Th. (B) 1, 48–50
(1974)

7. Chang, M.-S., Ko, T.: The 3-Steiner Root Problem, extended abstract. In: Pro-
ceedings WG 2007. LNCS, vol. 4769, pp. 109–120 (2007)

8. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root
problems, extended abstract. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 389–401. Springer, Heidelberg (2004); Algorithmica 44(4),
363-381 (2006)

9. Fellows, M., Meister, D., Rosamond, F., Sritharan, R., Telle, J.A.: On graphs that
are k-leaf powers (manuscript, 2007)

10. Jiang, T., Kearney, P.E., Lin, G.-H.: Phylogenetic k-root and Steiner k-root, Ex-
tended abstract. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969,
pp. 539–551. Springer, Heidelberg (2000)

11. Kennedy, W.: Strictly chordal graphs and phylogenetic roots, Master Thesis, Uni-
versity of Alberta (2005)

12. Kennedy, W., Lin, G.-H.: 5-th phylogenetic root construction for strictly chordal
graphs, extended abstract. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS,
vol. 3827, pp. 738–747. Springer, Heidelberg (2005)

13. Kennedy, W., Lin, G.-H., Yan, G.: Strictly chordal graphs are leaf powers. J. Dis-
crete Algorithms 4, 511–525 (2006)

14. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees.
J. Algorithms 42, 69–108 (2002)

15. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461
(2006)

Flows with Unit Path Capacities
and Related Packing and Covering Problems�

Maren Martens1 and Martin Skutella2

1 University of British Columbia, Sauder School of Business,
2053 Main Mall, Vancouver, BC V6T 1Z2, Canada

maren.martens@sauder.ubc.ca
2 TU Berlin, Institut für Mathematik, MA 5–2, Str. des 17. Juni 136, 10623 Berlin, Germany

skutella@math.tu-berlin.de

Abstract. Since the seminal work of Ford and Fulkerson in the 1950s, network
flow theory is one of the most important and most active areas of research in
combinatorial optimization. Coming from the classical maximum flow problem,
we introduce and study an apparently basic but new flow problem that features
a couple of interesting peculiarities. We derive several results on the complexity
and approximability of the new problem. On the way we also discover two closely
related basic covering and packing problems that are of independent interest.

Starting from an LP formulation of the maximum s-t-flow problem in path
variables, we introduce unit upper bounds on the amount of flow being sent along
each path. The resulting (fractional) flow problem is NP-hard; its integral version
is strongly NP-hard already on very simple classes of graphs. For the fractional
problem we present an FPTAS that is based on solving the k shortest paths prob-
lem iteratively. We show that the integral problem is hard to approximate and give
an interesting O(log m)-approximation algorithm, where m is the number of arcs
in the considered graph. For the multicommodity version of the problem there is
an O(

√
m)-approximation algorithm. We argue that this performance guarantee

is best possible, unless P=NP.

1 Introduction

Problem Definition and Notation. The classical maximum s-t-flow problem has been
studied from many different points of view. Numerous algorithms are known to solve
the problem in polynomial time. Ford and Fulkerson [2] proved already in the 1950s
that there always exists an integral optimal solution to the maximum s-t-flow problem
provided that all arc capacities are integral. It is also well known that any s-t-flow can
be decomposed into flow along paths and cycles. Omitting flow along cycles (which
does not contribute to the flow value) yields an alternative LP formulation of the prob-
lem in path variables. In this paper we study a new network flow problem in which
the flow on any path is bounded by 1, i.e., we add box constraints to the LP formu-
lation of the maximum flow problem in path variables. We call the resulting problem
the maximum one-flow problem. Our motivation for studying it is mainly academic,

� This work was partially supported by the DFG Research Center Matheon in Berlin, by the
Graduate School of Production Engineering and Logistics, North Rhine-Westphalia, by the
DFG Focus Program 1126 and the DFG grants SK 58/4-1 and SK 58/5-3, and by an NSERC
Operating Grant. Part of this work was done while the authors were at Universität Dortmund.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 180–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Flows with Unit Path Capacities and Related Packing and Covering Problems 181

but the problem is also well motivated when we think of applications in transporta-
tion/communication networks where every single path might be unreliable. In such sit-
uations it is reasonable to diversify a commodity/information among several different
paths. This can be accomplished by forbidding to send more than a fixed amount of
flow along a single path. A more formal definition of the problem is as follows: We
are given a network (digraph) D = (V, A) with arc capacities u : A → R+ and two
distinguished nodes s, t ∈ V . We assume that u(a) ≥ 1, for all a ∈ A. If not stated
otherwise, m := |A| denotes the number of arcs in the network. Let P be the set of
simple directed s-t-paths in D. Then the maximum one-flow problem (max-1FP) and its
dual can be formulated as follows, where the path variable xP denotes the amount of
flow sent along path P ∈ P :

max
∑
P∈P

xP min
∑
a∈A

u(a)ya +
∑
P∈P

zP

s.t.
∑
P�a

xP ≤ u(a) ∀a ∈ A (1) s.t. zP +
∑
a∈P

ya ≥ 1 ∀P ∈ P

0 ≤ xP ≤ 1 ∀P ∈ P (2) zP , ya ≥ 0 ∀a ∈ A, P ∈ P

Notice that omitting the constraints xP ≤ 1 yields the classical maximum s-t-flow
problem. An s-t-flow fulfilling (1) and (2) is called a one-flow. In an integral one-flow
each s-t-path sends either 0 or 1 unit of flow. To emphasize that a certain one-flow is not
necessarily integral, we sometimes call it fractional. Note that in general the encoding
size of a maximum one-flow is not polynomial in the input size of the problem since
one might want to send flow along exponentially many s-t-paths. Therefore, the best
one can expect in terms of complexity are algorithms with running time polynomially
bounded in the input plus output size.

The integer version of the dual can be interpreted as a special minimum cut problem,
where each s-t-path must be destroyed and this can be done by deleting either a single
arc on the path or the path itself. The deletion of an arc a is in general more expensive
than that of a whole path (u(a) instead of 1), but can also destroy more than one path si-
multaneously. The dual separation problem of the classical maximum s-t-flow problem
is a shortest path problem. It is not difficult to observe that the dual separation problem
of the max-1FP can be solved by computing the k shortest s-t-paths with respect to the
dual arc lengths ya, where k is the number of paths P ∈ P with zP > 0 plus 1.

Related Results from the Literature. To the best of our knowledge, the one-flow problem
(1FP) is studied for the first time here. However, there is some literature dealing with
problems related to it. The problem to compute the number of different (simple) s-
t-paths in a network is a special case of the max-1FP. (Consider the case when all
arc capacities are infinite.) Valiant [10] shows that this problem is #P-complete under
polynomial-time reductions. Similar to the problem of counting paths in a graph is the
edge-disjoint paths problem (EDP) that is the same as the integral multicommodity 1FP
when we fix all capacities in the considered network to 1. Overviews on the EDP can,
e.g., be found in [3,4,5]. For more general packing problems also many results have
been obtained. One that is of particular interest for the present paper is obtained by
Plotkin, Shmoys, and Tardos [8] and will be introduced later on. In [7] the authors have

182 M. Martens and M. Skutella

already considered a certain network flow problem with path capacities, where the flow
of any commodity is restricted to at most k paths whose flow values may not exceed
given bounds (capacities). The general k shortest paths problem (for a single source and
a single sink) is of great interest for the problem considered in this paper. To solve the
Lagrange relaxation of the max-1FP that is obtained by penalizing the violation of arc
capacities in the objective function, we make use of a result by Lawler [6] who shows
how to compute k shortest (simple) paths in a digraph in O(kn3) time.

Contribution of this Paper. As mentioned above, the problem of computing the number
of different simple s-t-paths in a network is #P-complete and a special case of the max-
1FP. It therefore follows immediately that computing the maximum one-flow value is
NP-hard. This holds for the fractional as well as for the integral 1FP. We prove that the
integral max-1FP is strongly NP-hard already on very simple acyclic networks consist-
ing of a chain of parallel arcs. Even worse, the integral max-1FP is APX-hard, even
in networks where the number of s-t-paths is polynomially bounded in the size of the
network. One interesting consequence of these hardness results is the following: It is
NP-hard to decide whether a given integral s-t-flow has an integral path decomposition
such that each path carries at most one unit of flow. In Section 2 we establish a close
relation between two interesting new combinatorial problems and the special case of
the max-1FP on networks consisting of a chain of parallel arcs. The first problem is to
cover the edges of a complete graph by cuts of bounded size where the size of a cut is
the cardinality of the smaller of the two vertex subsets. The second problem is a pack-
ing problem: Consider a set where each element has a given integral weight and find
a pre-specified number of different subsets such that the number of subsets containing
an element is bounded by the element’s weight. The two problems are equivalent and,
maybe surprisingly, strongly NP-hard. This also yields the strong NP-hardness of the
integral max-1FP on chains of parallel arcs. Moreover, we show that already on a chain
of parallel arcs of length 3 the max-1FP has an integrality gap. We also prove that it
might happen that each arc in a network carries an integral amount of flow in a max-
imum one-flow but no maximum one-flow is integral. In Section 3 we show that the
approach of Plotkin et al. [8] yields an FPTAS for the fractional max-1FP. The core
of the algorithm consists of iteratively solving k shortest paths problems on the given
network with varying arc lengths. In Section 4 we derive several approximation algo-
rithms for the integral max-1FP. Our main result is a randomized approximation algo-
rithm with performance ratio O(log m). Finally, in Section 5 we study multicommodity
versions of the 1FP. We show that the FPTAS from Section 3 can be generalized to the
fractional multicommodity 1FP. For the integral maximum multicommodity 1FP we
present a randomized O(

√
m)-approximation algorithm and show that, unless P=NP,

no better approximation is possible. Moreover, we present an O(log m)-approximation
algorithm for the problem to find an integral multicommodity one-flow with minimum
congestion. This extended abstract leaves out most proofs.

2 Interesting Related Problems

In this section we study the max-1FP on a restricted class of networks that are given
by chains of parallel arcs. In order to obtain a better understanding of the max-1FP on

Flows with Unit Path Capacities and Related Packing and Covering Problems 183

this particular class of networks we consider two equivalent combinatorial optimization
problems, one of which is a covering and the other a packing problem. Although these
two problems are easy to formulate and seem quite natural, they have not appeared in
the literature before to the best of our knowledge.

We consider networks that consist of n + 1 vertices v0, v1, . . . , vn and 2n arcs (n ∈
N) such that there are two parallel arcs from vi−1 to vi, for i = 1, . . . , n. Vertex v0 is
the source and vn is the sink. We call one arc of each pair of parallel arcs the upper and
the other one the lower arc. All lower arcs have infinite capacity. The capacity of the
ith upper arc is ci ∈ N, for i = 1, . . . , n. We call such a capacitated network a chain
of parallel arcs. An integral one-flow is given by a set of s-t-paths that are pairwise
distinct. Notice that two s-t-paths in the considered network are different if and only
if there is a pair of arcs where one path uses the upper arc and the other path uses the
lower arc. In particular, the ith pair of arcs can distinguish a subset of at most ci paths
from all other paths. This motivates the following problem.

Bounded Cut Cover Problem
GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ N.
TASK: Find k subsets M1, . . . , Mk ⊆ {1, . . . , q} with |Mi| ≤ ci, for i =
1, . . . , k, such that for any pair j, � ∈ {1, . . . , q} with j �= � there is some
i ∈ {1, . . . , k} with |Mi ∩ {j, �}| = 1; or decide that no such family of sub-
sets exists.

The name that we choose for this problem stems from the following graph-theoretic
interpretation: Consider a complete undirected graph with vertex set {1, . . . , q}. The
question is whether the edges of the complete graph can be covered by k cuts where,
for i = 1, . . . , k, the ith cut partitions the vertex set into two subsets the smaller of
which has cardinality at most ci.

Lemma 1. The bounded cut cover problem has a solution if and only if there exists an
integral one-flow of value q in a chain of parallel arcs of length k where the capacities
of the upper arcs are c1, . . . , ck.

Fractional Bounded Cut Cover Problem
GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ R+.
TASK: For some r ≥ q, find weights x1, . . . , xr ∈ [0, 1] with

∑r
j=1 xj = q

and determine k subsets M1, . . . , Mk ⊆ {1, . . . , r} with
∑

j∈Mi
xj ≤ ci,

for i = 1, . . . , k, such that for any pair j, � ∈ {1, . . . , r} with j �= � there is
some i ∈ {1, . . . , k} with |Mi ∩ {j, �}| = 1; or decide that this is not possible.

There is again a graph-theoretic interpretation of the problem. The task is to find a
complete graph with weights on the vertices such that the weight xi of every vertex i
is between 0 and 1 and the weights sum up to q. Moreover, the edges of the complete
graph must be covered by k cuts such that the ith cut partitions the vertex set into two
subsets the lighter of which has total weight at most ci. Associating the weighted nodes
of the complete graph with s-t-paths of corresponding flow value yields the following
observation.

184 M. Martens and M. Skutella

Lemma 2. The fractional bounded cut cover problem has a solution if and only if there
exists a (fractional) one-flow of value q in a chain of parallel arcs of length k where the
capacities of the upper arcs are c1, . . . , ck.

It is natural to ask whether the fractional bounded cut cover problem allows for larger
values of q with feasible solutions than the non-fractional version. By Lemmas 1 and 2,
this is equivalent to the question whether for chains of parallel arcs there always exists
a maximum one-flow that is integral. In the fractional bounded cut cover problem the
price of the additional degree of freedom given by the possibility to assign fractional
weights to the nodes is an increase in the number of nodes (since the node weights
still have to sum up to q). On the one hand, a larger number of nodes makes it more
difficult to cover all edges of the complete graph. On the other hand, fractional weights
on the vertices allow for more balanced cuts that contain more edges. We show below
that there exist instances with a larger feasible value of q in the fractional version of
the problem than in the integral version. Before we discuss this issue in more detail, we
present another equivalent packing problem.

In a chain of parallel arcs, every s-t-path is uniquely determined by the subset of
upper arcs contained in the path. Therefore, computing an integral one-flow of value q
corresponds to finding a family of q pairwise distinct subsets of {1, . . . , k} such that i ∈
{1, . . . , k} is contained in at most ci of these subsets.

Capacitated Set Packing Problem
GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ N.
TASK: Find q pairwise distinct subsets of {1, . . . , k} such that element i ∈
{1, . . . , k} is contained in at most ci of these subsets, for i = 1, . . . , k; or
decide that no such family of subsets exists.

Fractional Capacitated Set Packing Problem
GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ R+.
TASK: For some r ≥ q, find pairwise distinct subsets N1, . . . , Nr of {1, . . . , k}
with weights x1, . . . , xr ∈ [0, 1] such that

∑r
j=1 xj = q and

∑
j:i∈Nj

xj ≤ ci,
for i = 1, . . . , k; or decide that this is not possible.

Lemma 3. The (fractional) capacitated set packing problem has a solution if and only
if there exists an integral (fractional) one-flow of value q in a chain of parallel arcs
of length k where the capacities of the upper arcs are c1, . . . , ck. In particular, the
(fractional) capacitated set packing problem is equivalent to the (fractional) bounded
cut cover problem.

The following instance shows that the fractional capacitated set packing problem in gen-
eral allows for strictly larger values of q with feasible solutions than the non-fractional
version. Due to Lemma 3, the same holds for the bounded cut cover problem. Let k = 3
and c1 = c2 = c3 = 2. It is not difficult to check that q = 5 is the largest value of q with
a feasible solution to the non-fractional version of the problem: Choose for example the
subsets ∅, {1}, {2}, {3}, and {1, 2, 3}. But there is a solution to the fractional version
of the problem with q = 5.5: Choose subsets ∅, {1}, {2}, and {3} all with weight 1. In
addition choose subsets {1, 2}, {1, 3}, and {2, 3} all with weight 1/2.

Flows with Unit Path Capacities and Related Packing and Covering Problems 185

We can also show that in general there is no integral optimal solution to the dual prob-
lem of the max-1FP. Consider the chain of parallel arcs corresponding to the instance
of the capacitated set packing problem introduced above. An optimal dual solution de-
stroys the path using all lower arcs and half of each path that uses exactly one upper
arc; further, one half of each upper arc is deleted. The following result underlines the
discrepancy between the fractional and the integral one-flow problem even more.

Proposition 1. The existence of a maximum one-flow where the flow value on each arc
is integral does in general not imply the existence of an integral path decomposition
where each path carries at most one unit of flow.

In contrast to the classical set packing problem and many similar problems known from
the literature, the capacitated set packing problem allows to choose arbitrary subsets
that do not have to belong to a given family of subsets. This might make the problem
seem to be easier. However, we can prove the following somewhat surprising theorem.

Theorem 1. The capacitated set packing problem is strongly NP-hard. If q is polyno-
mially bounded in k, the problem is strongly NP-complete.

One can reduce the strongly NP-hard 3-PARTITION problem to the capacitated set
packing problem. Let A with |A| = 3� =: k be the ground set of a given 3-PARTITION
instance. The weights of elements in A sum up to �B for some B ∈ N. The main idea
of the reduction is to identify A with the set {1, . . . , k} and define c1, . . . , ck and q
such that all subsets of A with total weight less than B and the subsets of a 3-Partition
of A must be chosen to end up with the desired q subsets of A. The following is an
immediate implication of this reduction.

Corollary 1. For an integral one-flow given in arc variables, it is NP-hard to compute
an integral path decomposition.

A reduction to 3-SAT proves that the situation is even worse: The integral max-1FP is
APX-hard, even in networks where the number of s-t-paths is polynomially bounded in
the size of the network. As an immediate consequence of Theorem 1 we can state the
following hardness results.

Theorem 2. (i) The bounded cut cover problem is strongly NP-hard. If q is polynomi-
ally bounded in k, then the problem is strongly NP-complete. (ii) The problem of finding
an integral one-flow of maximum value for a chain of parallel arcs is strongly NP-hard,
even if the maximum flow value is polynomially bounded in the size of the network (i.e.,
number of vertices).

It follows that, in contrast to the problem to count the number of s-t-paths in a di-
graph, the integral max-1FP is already strongly NP-hard in acyclic networks. Further,
the strong NP-hardness of the capacitated set packing problem immediately implies that
it is even strongly NP-hard to compute only the value of a maximum integral one-flow in
those networks. Note that in the integral 1FP the flow value bounds the number of paths
that are used to route a flow. Thus, we can derive the following from Theorem 2 (ii).

186 M. Martens and M. Skutella

Corollary 2. Unless P = NP, there is no algorithm for the integral max-1FP on chains
of parallel arcs whose runtime is pseudo-polynomial in input plus output size.

Theorem 3. It is NP-hard to decide whether a given (integral) s-t-flow can be decom-
posed into integral flows along paths and cycles such that no path carries more than
one unit of flow.

3 An FPTAS for the Fractional Max-1Fp

Theorem 4. For any ε > 0 and any instance of the max-1FP with maximum flow value
F ∗, it is possible to compute a maximum one-flow of value (1−ε)F ∗ in time polynomial
in the input size, ε−1, and F ∗.

First we show how to compute a one-flow of a given value F that does not violate
arc capacities by more than a factor (1 + ε), for some ε > 0, or decide that no valid
flow of value F exists. A flow violating all arc capacities by at most a factor (1 + ε) is
called (1 + ε)-approximate. Plotkin, Shmoys, and Tardos [8] developed an appropriate
algorithm for the general fractional set packing problem. In that problem sets of capac-
itated elements are given and the task is to search for a packing, i.e., a selection of sets
such that each element is contained in at most as many sets as its capacity permits. To
compute (1 + ε)-approximate packings of a given size, Plotkin et al. use a Lagrange re-
laxation that penalizes the violation of the capacity constraints in the objective function.
Iteratively, they choose reasonable Lagrange multipliers, compute a solution to the re-
laxed problem, and combine this with the current solution. This algorithm runs in time
polynomial in the input size and ε−1. It can be adapted to the fractional 1FP. For given
Lagrange multipliers λ : A → R+ and λP :=

∑
a∈P λ(a) for all s-t-paths P ∈ P , the

Lagrange relaxation is min{
∑

P∈P λP xP |
∑

P∈P xP ≥ F, 0 ≤ xP ≤ 1 ∀ P ∈ P}.
It can be solved in time polynomial in the input size and !F " by computing the !F "
shortest paths according to the length function λ (see, e.g., [6]). The �F shortest paths
must carry one unit of flow (xP = 1) and the (�F + 1)-shortest path gets a flow value
of F − �F . To obtain a one-flow that obeys all arc capacities and approximates the
maximum flow value F ∗ within a factor (1 − ε), we embed the algorithm by Plotkin et
al. in a binary search. That binary search can be implemented to run in time polynomial
in the input size, ε−1, and F ∗.

4 Approximating the Integral Max-1FP

We assume that all arc capacities are integral and start with the observation that, for
the integral max-1FP, the additive integrality gap is at most m. This result follows from
basic linear programming theory. With the FPTAS from the previous section we obtain
Corollary 3 and Theorem 5 as immediate consequences.

Proposition 2. The difference of the value F ∗
F of a maximum fractional one-flow and

the value F ∗
I of a maximum integral one-flow is less than m.

Corollary 3. For any ε > 0, an integral one-flow of value at least (1 − ε)F ∗
F − m can

be computed in time polynomial in the input size and F ∗
I .

Flows with Unit Path Capacities and Related Packing and Covering Problems 187

Theorem 5. There exists a constant factor approximation algorithm for the integral
max-1FP whose runtime is polynomial in input plus output size if we restrict to in-
stances whose maximum fractional flow value is larger than some constant c > 1 times
its number of arcs.

Subsequently we develop a randomized O(log m)-approximation algorithm for the in-
tegral max-1FP that works for arbitrary instances. We start with a simple observation.

Lemma 4. Applying Raghavan and Thompson’s [9] randomized rounding method to a
fractional solution computed by the FPTAS from Section 3, we obtain a constant factor
approximation algorithm for the integral max-1FP if the minimum arc capacity is at
least Ω(log m).

In order to obtain a randomized O(log m)-approximation algorithm for arbitrary in-
stances of the integral max-1FP, we compute an approximate maximum integral one-
flow in a modified network by giving a special treatment to arcs whose capacity is less
than log m. We call such arcs thin, whereas an arc with capacity at least log m is called
thick. A path is called thick if all its arcs are thick; otherwise it is called thin.

For a given instance of the max-1FP, we compute an approximate solution to the
fractional problem using the FPTAS from Section 3 for some constant ε > 0. If the
total flow value along thick paths is at least half of the total flow value (and thus at least
a constant fraction of the maximum integral flow value), we can use randomized round-
ing as explained above in order to obtain a constant factor approximation. Otherwise
we can use the algorithm described in the following which computes an O(log m)-
approximation from the flow that is routed along thin paths.

The algorithm works as follows. First we delete the flow routed along thick paths.
From now on we consider only the part of the underlying graph which is used by
thin paths. For each thin arc (v, w) insert a new node ṽ, delete the arc (v, w), insert
the arcs (v, ṽ) and (ṽ, w) and assign the capacity of (v, w) to them. (The flow is ad-
justed adequately using arcs (v, ṽ) and (ṽ, w) instead of (v, w).) The resulting network
is denoted by D = (V, A), the set of newly inserted nodes by U . Next, we make a
copy D′ = (V ′, A′) of D. From each node in U we insert an arc to its copy in D′. The
resulting graph is denoted by D̄ = (V̄ , Ā). We define v′ to be the clone of v ∈ V in
V ′ and a′ to be the clone of a ∈ A in A′. An arc connecting a node u ∈ U with u′ is
denoted by au. For u ∈ U that was inserted to divide an arc a of the original digraph,
the capacity of au is the same as that of a. We modify the considered fractional flow
by rerouting all its paths from D to D′ along the last thin arc at which a rerouting is
possible. More precisely, this works as follows. Consider any path P that is used in the
original fractional flow and let (v, w) ∈ P be the last thin arc on P . (This arc does not
exist in D.) Then the analogon to P in D̄ uses the adjusted path P in D until it reaches
v, then uses (v, ṽ) and is rerouted to D′ along aṽ. In D′ the new path uses the arc from
ṽ′ to w′ and then the arcs corresponding to the ones P used in D after (v, w). Let the re-
sulting s-t′-flow be denoted by x̄. Note that the value |x̄| of x̄ is still only some constant
factor smaller than the value of a maximum one-flow in the original network. We choose
integral capacities u(a) and u(a′) for a thick arc a ∈ A and its clone a′ as follows. If
!x̄(a)" + !x̄(a′)" is not larger than the original capacity of a, we set u(a) = !x̄(a)"
and u(a′) = !x̄(a′)". Otherwise, we choose the capacities by rounding the smaller flow

188 M. Martens and M. Skutella

value up and the larger one down. (The sum of the resulting values is not larger than the
original capacity of a, because this was assumed to be integral.) For all thin arcs a ∈ Ā,
the capacity u(a) is set to 1. It is easy to prove that u(a) > x̄(a)/ logm, for all a ∈ Ā.
It follows immediately that a (usual) maximum s-t′-flow in D̄ with capacities u has
flow value at least |x̄|/ logm, because x̄/ logm is a feasible s-t′-flow in that network.
By network flow theory, an integral maximum s-t′-flow can be computed in polynomial
time. Since the value of this flow is at least |x̄|/ logm, it is only by a factor O(log m)
smaller than the value of a maximum one-flow in the original network. If we reroute
this flow to D, i.e., do not let it pass over from D to D′ and let it use the corresponding
arcs in D instead, it is still feasible, because the sum of arc capacities u(a) and u(a′) is
at most the original capacity of a ∈ A. Further, the resulting flow does not send more
than one unit of flow along each path, because each path uses at least one thin arc (oth-
erwise it would not have been able to get from D to D′) whose capacity is now 1. This
gives us the result in Theorem 6. It also follows immediately from our analysis that the
(multiplicative) integrality gap of the max-1FP is O(log m).

Theorem 6. There exists a randomized O(log m)-approximation algorithm for the in-
tegral max-1FP whose runtime is polynomial in input plus output size.

5 Multicommodity One-Flows

In this section we consider the multicommodity version of the 1FP in that we have
several source-sink-pairs. We still have a digraph D = (V, A) with arc capacities
u : A → R+. Instead of a single source-sink-pair we now have requests (si, ti) ∈ V ×V
for i = 1, . . . , K , where K ∈ N denotes the total number of such pairs. Different op-
timization problems for multicommodity flows have been considered in the literature.
Among them are maximization of the total flow sent through a network and minimiza-
tion of the congestion of a flow that satisfies a given demand for each request. (The con-
gestion measures the relative overload on an arc—a detailed definition follows later.)
We consider both such optimization problems in the context of one-flows. We use Pi to
denote the set of si-ti-paths in D, for all i = 1, . . . , K , and P :=

⋃K
i=1 Pi.

Maximum Multicommodity One-Flows. With the previous definitions we can describe
the maximum multicommodity one-flow problem (max-mc-1FP) by the linear program
in Section 1. Since solving the min-cost LP from Section 3 can easily be adjusted to the
new situation, we can use the given FPTAS for the max-mc-1FP without any changes.

Theorem 7. For any ε > 0 and any instance of the max-mc-1FP with maximum flow
value F ∗, it is possible to compute a maximum multicommodity one-flow of value (1 −
ε)F ∗ in time polynomial in the input size, ε−1, and F ∗.

Proposition 2 still holds in the multicommodity case giving us a result similar to the
one stated in Theorem 5. A result by Guruswami et al. [3] shows that, in general, it
is NP-hard to approximate the integral max-mc-1FP within a factor O(m1/2−ε), for
any ε > 0. However, randomized rounding yields an O(

√
m)-approximation algorithm

for this problem. This can be proven using a more detailed analysis of the randomized
rounding method given in [1].

Flows with Unit Path Capacities and Related Packing and Covering Problems 189

Theorem 8. There exists a randomized O(
√

m)-approximation algorithm for the inte-
gral max-mc-1FP whose runtime is polynomial in input plus output size.

Minimizing Congestion. Here, each request (si, ti) (i = 1, . . . , K) has a correspond-
ing positive demand di which has to be satisfied by a one-flow. We look for a solution
of minimum congestion. The congestion of a flow (xP)P∈P is the minimum μ such
that
∑

P�a xP ≤ μu(a), for all a ∈ A. The FPTAS from Section 3 can be adapted with
the following result.

Theorem 9. For any ε > 0 and any instance of the min-cong-1FP with minimum con-
gestion μ∗, it is possible to compute a multicommodity one-flow of congestion at most
(1 + ε)μ∗ in time polynomial in the input size, ε−1, and dmax := maxi di.

Using Raghavan and Thompson’s [9] randomized rounding method for the integral min-
cong-1FP we obtain an O(log m)-approximation algorithm. Since the congestion ver-
sion of the considered problem does not give any strict restrictions on the arc capacities,
the algorithm can be derandomized by the method of conditional probabilities.

Theorem 10. Applying randomized rounding to a nearly optimal fractional one-flow
yields an O(log m)-approximation to the integral min-cong-1FP.

References

1. Baveja, A., Srinivasan, A.: Approximation algorithms for disjoint paths and related routing
and packing problems. Mathematics of Operations Research 25, 255–280 (2000)

2. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. of Math. 8, 399–
404 (1956)

3. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems.
In: Proc. 31st Annual ACM Symposium on Theory of Computing, pp. 19–28 (1999)

4. Kleinberg, J.M.: Approximation Algorithms for Disjoint Path Problems. PhD thesis. MIT
(May 1996)

5. Kolliopoulos, S.G.: Edge-disjoint paths and unsplittable flow. In: Gonzalez, T.F. (ed.) Hand-
book of Approximation Algorithms and Metaheuristics, ch. 57. Chapman-Hall/CRC Press
(2007)

6. Lawler, E.L.: A procedure for computing the K best solutions to discrete optimization prob-
lems and its application to the shortest path problem. Management Science 18, 401–405
(1972)

7. Martens, M., Skutella, M.: Flows on few paths: Algorithms and lower bounds. Net-
works 48(2), 68–76 (2006)

8. Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for fractional pack-
ing and covering problems. Mathematics of Operations Research 20, 257–301 (1995)

9. Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algo-
rithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

10. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. on Comput-
ing 8(3), 410–421 (1979)

Strong Formulations for 2-Node-Connected

Steiner Network Problems

Markus Chimani1, Maria Kandyba1,�, Ivana Ljubić2,��, and Petra Mutzel1

1 Faculty of Computer Science, Dortmund University of Technology, Germany
{markus.chimani,maria.kandyba,petra.mutzel}@cs.uni-dortmund.de

2 Faculty of Business, Economics and Statistics, University of Vienna, Austria
ivana.ljubic@univie.ac.at

Abstract. We consider a survivable network design problem known as
the 2-Node-Connected Steiner Network Problem (2NCON): we are given
a weighted undirected graph with a node partition into two sets of cus-
tomer nodes and one set of Steiner nodes. We ask for the minimum weight
connected subgraph containing all customer nodes, in which the nodes
of the second customer set are nodewise 2-connected. This problem class
has received lively attention in the past, especially with regard to exact
ILP formulations and their polyhedral properties.

In thispaper,wepresent a transformationof 2NCONintoa relatedprob-
lemondirected graphs anduse this to establish twonovel ILP formulations,
basedonmulti-commodityflowandondirectedcuts, respectively.Weprove
the strength of our formulations over the known formulations, and compare
our ILPs theoretically and experimentally. This paper thereby consitutes
the first experimental study of exact 2NCON algorithms considering more
than∼100nodes,andshowsthatgraphswithupto4900nodescanbesolved
to provable optimality.

1 Introduction

Various survivable network design problems occur prominently in real-world
fiber-optic networks and telecommunication applications, see, e.g., [13,24] for
general surveys. We concentrate on the following NP-hard problem class: Given
an undirected graph G = (V, E), a cost function c : E → R+ and a vector of
connectivity requirements � ∈ {0, 1, . . . , k}|V | for some constant k > 0. A so-
lution of the k-Node-Connected Steiner Network problem (kNCON)1 [21] is a
subgraph N = (VN , EN) of G which contains all nodes v ∈ V with �v > 0,
minimizes

∑
e∈EN

ce and satisfies the following connectivity property: for every

� Supported by the German Research Foundation (DFG) through the Collaborative
Research Center “Computational Intelligence” (SFB 531).

�� Supported by the Hertha-Firnberg Fellowship of the Austrian Science Founda-
tion (FWF).

1 In the literature there are various names for this problem, with sometimes slightly
differing definitions. kNCON is also known as {0,. . . ,k}-(N)SND (Node Survivable
Network Design) and Generalized Steiner Network problem.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 190–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Strong Formulations for 2-Node-Connected Steiner Network Problems 191

pair of nodes s, t ∈ VN , N contains �st := min{�s, �t} node-disjoint paths con-
necting them. We can relax the problem by replacing the node-disjointness with
edge-disjointness, and obtain the k-Edge-Connected Steiner Network Problem
(kECON). For simplicity, we define Ri := {v ∈ V | �v = i} for all 0 ≤ i ≤ k, and
call the set R :=

⋃
i>0 Ri the customer nodes. We can assume that |R2| ≥ 2,

since otherwise we obtain the traditional Steiner tree problem.
A lot of research has been conducted on this problem, both in the fields of

effective heuristics and approximation algorithms, see [13] for an overview. How-
ever, these are beyond the scope of this paper, as we will concentrate on the
exact ILP formulations. This is based on the fact that recent advances in com-
putational power and ILP solvers, when used in conjunction with strong models,
allow to solve real-world instances for other network problems to provable op-
timality within reasonable time bounds; see, e.g., [1,4,18]. Furthermore, ILP
formulations also often form the basis of approximation schemata. For kECON
and kNCON, Grötschel, Monma and Stoer [9] described cut-based integer lin-
ear programs (ILP). Apart from such formulations, the problem can also be
formulated in terms of multi-commodity flow, as done by Raghavan [19].

Regarding 2ECON, it has been shown that for both concepts formulations
based on oriented graphs are stronger than undirected formulations: an orien-
tation of an undirected graph G′ is a directed graph Ĝ′, which is obtained by
transforming each edge of G′ into a directed arc. Robbins [20] showed that a
graph G′ is 2-edge-connected if and only if there exists an orientation Ĝ′ with
directed paths (v → w) and (w → v) for every pair of nodes v, w. This fact
has been exploited by Chopra [6] for solving 2ECON via directed graphs, who
proved his formulation to be polytope-wise superior to the undirected formu-
lation mentioned above. Goemans [8] and Stoer [21, pp. 31–32] extended this
formulation to kECON for the case that all connectivity requirements are 0, 1
or even; later Magnanti and Raghavan [17] extended it for general k.

Yet, it was not possible to extend such orientation techniques to kNCON,
since Robbins’ theorem is not strong enough to exploit it for node-connectivity
constraints. It has been an open problem [19, p. 183],[21, pp. 32,134] whether
a similar orientation technique can at all be used for kNCON-type problems.
As a first step, Chimani, Kandyba, and Mutzel [5] showed recently that this
is indeed possible for the 2-Root-Connected Steiner Network Problem (2RSN)
and its prize-collecting variant (2RPCSN), where the nodewise 2-connectedness
is required only with a special root node r ∈ V ; i.e., each node v ∈ R has
to have �v node-disjoint paths with r. A certain orientability property for the
feasible networks of this problem was shown, and was used to obtain a novel ILP
formulation based on directed cuts for this problem.

In this paper, we present how the orientability for the more prominent 2NCON
can be established (Section 2) and derive two new ILP formulations based on
different concepts: one based on multi-commodity flow (Section 3) and one based
on directed cuts, only requiring easily separable constraints (Section 4). We show
the theoretical advantages of both new formulations compared to the previously
known ILPs. Furthermore, we prove that our approaches are equivalent from the

192 M. Chimani et al.

polyhedral point of view (Section 5). Nonetheless, the cut formulation is much
stronger in practice, as we show in an experimental study (Section 6). This study
is the first time that instances with more than ∼100 nodes are considered and
solved to provable optimality.

2 Directed 2NCON

The main problem with node-disjointness is that Robbins’ theorem can only be
exploited for 2ECON. Furthermore, it is in general not possible to orient an
undirected 2-connected graph such that for every pair of nodes v, w ∈ R2, there
are two node-disjoint directed paths, one from v to w and one from w to v.
Up until now, this was the main hindrance why there were no orientation-based
formulations for 2NCON.

We require the following theorem, shown in [5], as a foundation to show the
validity of the formulations below. We rephrase it such that it is more useful in
the following:

Theorem 1 ([5]). Let G′ = (V ′, E′) be a graph with some root node r ∈ V ′ and
the property that each non-trivial (i.e., larger than a single edge) 2-connected
component contains r. Then there exists an orientation Ĝ′ such that:

– For each node v ∈ V ′ \ {r} which does not share a common non-trivial
2-connected component (block) with r, Ĝ′ contains a directed path (r → v).

– For each node v ∈ V ′ \ {r} which shares a common non-trivial block with r,
Ĝ′ contains a directed path (r → v) and a directed path (v → r), which are
node-disjoint except for r and v.

The proof of this theorem allows an insight which will be of particular use for
our problem:

Lemma 1. Let the graph G′ be defined as in Theorem 1, and let there be only a
single non-trivial block. There exists an orientation with the properties of Theo-
rem 1 where the root has in-degree 1.

Proof. The idea of the proof for Theorem 1 works as follows: we first direct all
the edges of the trivial blocks from the node nearer to r to the node farther away.
We then consider the non-trivial blocks separately and orient them as follows:
We start with a directed cycle through r and label the contained nodes in an
increasing fashion. Thereby, the root r obtains the smallest label. Hence there is
only a single edge ê which is directed from a larger label number to the smaller
number, i.e., the root. Then the proof proceeds by incrementally choosing a non-
oriented path between two labeled nodes: we orient these paths and label their
nodes uniquely in such a way that the property of increasing labels remains true.
Hence we require only a single edge ê per block to be directed towards r. If G′

only contains a single non-trivial block, we get the lemma’s claim. �	

Definition 1. Let (G′, U) be a tuple of an undirected graph G′ = (V ′, E′) and
U ⊆ V ′. G′ is {1, 2}-node-connected, if it is connected and all nodes U lie in the
same biconnected component.

Strong Formulations for 2-Node-Connected Steiner Network Problems 193

Let N be any solution of the 2NCON problem. We can observe that (N,R2) is
{1, 2}-node-connected. This leads to our generalization of Robbins’ theorem in
the context of 2-node-connectedness:

Theorem 2. Let (G′, U) be a tuple of an undirected graph G′ = (V ′, E′) and
U ⊆ V ′. G′ is {1, 2}-connected if and only if for any arbitrarily chosen r ∈ U
there exists an orientation of G′ with in-deg(r) = 1 such that there is a directed
path (r → v) for each v ∈ V ′; if v ∈ U , there furthermore is a directed path
(v → r) which is node-disjoint from (r → v) except for r and v.

Hence we can reformulate 2NCON as the directed problem D2NCON : Let Ḡ =
(V, A) be the bidirected graph obtained from G by replacing every undirected
edge {u, v} ∈ E by two directed arcs (u, v), (v, u) ∈ A with costs cuv = cvu =
c{u,v}. We seek a weight-minimal oriented subgraph N̂ = (VN , AN) in Ḡ with
R ⊆ VN which satisfies Theorem 2 w.r.t. (N̂ ,R2)2.

Corollary 1. Given an undirected graph G = (V, E), a cost function c : E → R+,
and a vector of connectivity requirements � ∈ {0, 1, 2}|V |. Choose r ∈ V with �r = 2
arbitrarily. For this input, any solution of D2NCON can be transformed into an
equivalent solution of 2NCON with the same objective value, and vice versa.

In the following sections, the problem input will always be defined as above. Let
R′

i := Ri \ {r}, for 0 ≤ i ≤ 2, and R′ := R \ {r}.

3 Multi-commodity Flow for D2NCON

We start with presenting a novel ILP formulation (DFlow) based on multi-
commodity flow for D2NCON, and therefore for 2NCON. As there has been
much research on flow-based formulations for the latter problem, we compare
our formulation to the currently strongest one, by Raghavan [19, pp. 180–181]3,
and show that our formulation is beneficial.

The idea is to consider Ḡ and send exactly one unit of flow from the root to
each R′ node. Furthermore, we send one unit of flow from each R′

2 customer
back to the root. Thereby it has to be ensured that the pairs of forward- and
backward-flows do not use common nodes and edges except for v and r. We
define the set of commodities C = {(r, v) | v ∈ R′} ∪ {(v, r) | v ∈ R′

2}; a flow of
commodity χ ∈ C on the arc (i, j) ∈ A is modeled by the variable fχ

ij . Finally,

2 Remark. One may try to model node-connectivity by only computing edge-
connectivity in a modified underlying graph, by replacing each node by a directed
arc. This is not valid in our case as the orientability theorems require bidirectedness
of the underlying graphs.

3 Various aspects of the considered problems were studied in papers by Stoer and
Raghavan (with coauthors) [9,10,11,17]. For simplicity and common notations we
reference their theses [19,21], including page numbers when suitable.

194 M. Chimani et al.

we introduce the variables xij which are 1, if the solution network contains the
arc (i, j) ∈ A.

DFlow : min
∑

(i,j)∈A

cij · xij (1)

∑
(i,v)∈A

fχ
iv −

∑
(v,i)∈A

fχ
vi =

⎧⎨⎩
−1, if v = s

1, if v = t
0, else

∀χ = (s, t) ∈ C, ∀v ∈ V (2)

∑
(i,w)∈A

(
f

(v,r)
iw + f

(r,v)
iw

)
≤ 1 ∀v ∈ R′

2, ∀w ∈ V \ {r, v} (3)

0 ≤ fχ
ij ≤ xij ∀(i, j) ∈ A, ∀χ ∈ C (4)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (5)∑
(i,r)∈A xir = 1 (6)

xvw ∈ {0, 1} ∀(v, w) ∈ A (7)

Clearly, the flow- and capacity constraints (2) and (4) guarantee the directed
paths from r to all customer nodes, and for each R′

2 customer we also have
a directed path backwards to r. Due to Robbins’ theorem [20] this—together
with (5)—ensures that every R′

2 customer belongs to the same edge-biconnected
component as r. Theorem 2, (3) and (6) guarantee that this component is 2-node-
connected. Hence we obtain:

Theorem 3. An optimal solution for DFlow gives an optimal solution for the
corresponding 2NCON problem.

Raghavan presented the currently strongest formulation for the 2NCON by com-
puting two multi-commodity flows g and h simultaneously [19, p. 180–181]: g
represents directed flow for the induced 2ECON problem, h represents an non-
oriented flow with node-disjointness constraints.4 The two flows are bound to
each other only by their common use of the ze variables, for e ∈ E, which define
whether the given undirected edge e is contained in the solution network or not.
We denote Raghavan’s formulation as MFlow (mixed flow) and show that our
new formulation is superior.

Let PDF and PMF be the polyhedra of the feasible solutions of the LP relax-
ations for DFlow and MFlow, respectively. We then consider their projections
into the space of z variables, i.e., projz(PDF) = {z ∈ [0, 1]|E| | (x, f) ∈ PDF , zij =
xij + xji ∀{i, j} ∈ E} and projz(PMF) = {z ∈ [0, 1]|E| | (z, g, h) ∈ PMF }. We
also consider extended projections including the flow variables f ∈ [0, 1]|A|·|C|,
i.e., variables not in the objective function. Let projz,f (PDF) = {(z, f) | (x, f) ∈
PDF , ze = xij + xji ∀e = {i, j} ∈ E} be the projection of PDF into the vari-
able space of z and retaining the flow f . Let projz,f (PMF) = {(z, f) | (z, g, h) ∈
PMF , f = g} be the projection of PMF ignoring the h flow. In other words, we
identify the flows f and g.
4 Note that this formulation has been developed for general k, where it is called im-

proved undirected flow formulation with node-disjointness constraints.

Strong Formulations for 2-Node-Connected Steiner Network Problems 195

We show that the lower bounds obtained by the LP relaxations of our new
formulation are at least as tight as those of the mixed flow formulation. Therefore
note that the flow f is a kind of natural fusion of the flow g and the node-
disjointness properties of h. Please refer to [3] for the proof.

Theorem 4. DFlow is at least as strong as MFlow, i.e., projz(PDF) ⊆
projz(PMF). Furthermore we even have projz,f (PDF) ⊂ projz,f (PMF).

DFlow requires less variables and constraints than MFlow, hence:

Observation 1. DFlow is more compact than MFlow.

Our formulation answers the question by Raghavan [19, p. 183] whether his
flow variables g, h can be bounded together more tightly. Note that Theorem 2
is crucial for the validity of our approach, which explains why this compact
formulation could not be used legitimately before.

4 Directed-Cut for D2NCON

We now present an ILP formulation (DCut) based on directed cuts. Its number
of variables is independent of R as it only requires variables xe for all e ∈ A. On
the other hand, it has an exponential number of constraints. We will see that
these are of traditional cut type and therefore easily and polynomially separable
within a Branch-and-Cut approach. A main motivation for DCut is that cut
formulations often outperform flow formulations in practice, as e.g. in [5,14].

Let S ⊂ V , then δ+
G(S) := {(s, t) ∈ A | s ∈ S, t ∈ V \S} and δ−G(S) := {(s, t) ∈

A | s ∈ V \ S, t ∈ S} denote the arcs leaving and entering S, respectively. If G
is clear from the context, we will omit the subscript. Furthermore, we use the
shorthands Gw := G \ {w}, for some w ∈ V , and x(B) :=

∑
e∈B xe for some

B ⊆ A.

DCut : min
∑

(i,j)∈A

cij · xij (8)

xvw + xwv ≤ 1 ∀{v, w} ∈ E (9)
x(δ−(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′ �= ∅ (10)
x(δ+(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R′

2 �= ∅ (11)

x(δ−
Ḡw

(S1)) + x(δ+
Ḡw

(S2)) ≥ 1
∀w ∈ V \ {r}, ∀S1, S2 ⊆ V \ {r, w},
S1 ∩ S2 ∩R′

2 �= ∅ (12)∑
(i,r)∈A xir = 1 (13)

xvw ∈ {0, 1} ∀(v, w) ∈ A (14)

As before, (9) guarantees the unique orientation of chosen edges. The constraints
(10) and (11) ensure the existence of the required paths, and (12) assures the
node-disjointness of these paths. Finally, (13) requires exactly one edge being
directed towards the root, in order to guarantee a single non-trivial block in the
solution network. Based on this description and Corollary 1 we obtain:

196 M. Chimani et al.

Theorem 5. An optimal solution for DCut gives an optimal solution for the
corresponding 2NCON problem.

We can compare this formulation with the currently best known cut-formulation
presented in [21, p. 14], denoted by UCut: it is based on undirected cuts in the
original (undirected) graph, and uses variables ze for all e ∈ E which are set
to 1 if the corresponding edge is selected into N . For each pair of Ri (i = {1, 2})
customers it requires all their cuts to be at least i. For all pairs of R2 it further
requires all cuts to be at least 1, considering all graphs resulting from removing
a single node, in order to ensure node-2-connectedness.

We can show that our (rooted, directed) DCut formulation is stronger than
the (unrooted, undirected) UCut formulation. Let PDC and PUC be the polyhe-
dra of the feasible solutions of the LP relaxations for DCut and UCut, respec-
tively. We can use the natural projection xvw +xwv = ze′ for all e′ = {v, w} ∈ E
in order to obtain projz(PDC). See [3] for the formal proof.

Theorem 6. DCut is strictly stronger than UCut, i.e., projz(PDC) ⊂ PUC .

5 Analysis of D2NCON Formulations

Let projx(PDF) be the natural projection obtained from PDF by only considering
its x variables.

Theorem 7. DFlow and DCut are equally strong, i.e., projx(PDF) = PDC .

We omit the rather long proof of the theorem due to space limitation. It can
straight-forwardly be shown that the projection of any fractional feasible DFlow

solution corresponds to a fractional feasible DCut solution; anyhow, the reverse
requires some deeper investigation of the solution structure, see [3] for details.

By dropping the constraints (12) and (13) from DCut, we obtain the directed
cut formulation for 2ECON. For this formulation, we know that it inherently in-
cludes the partition inequalities [6], the (polynomially separable) Prodon inequal-
ities [21, pp. 130–134], and the odd-hole inequalities and combinatorial-design
inequalities [19, pp. 165–180]. Hence we can conclude Proposition 1. In contrast
to this, we can show Proposition 2, cf. [3].

Proposition 1. DCut and DFlow inherently ensure the validity of the parti-
tion, Prodon, odd-hole, and combinatorial-design inequalities.

Proposition 2. None of the above formulations induces the undirected node-
partition inequalities [21, pp. 91–94], i.e., undirected partition inequalities where
one node is removed from the graph. This result constitutes a negative an-
swer for the open question [19, p. 183] whether MFlow would induce this con-
straint class.

Algorithmical Remarks. From the point of formulation strength, using DFlow

instead of DCut might seem like a reasonable choice in general, as both the

Strong Formulations for 2-Node-Connected Steiner Network Problems 197

number of variables and constraints are bound by a polynomial. But in practice,
the latter has certain advantages: it requires much less variables, especially when
R is large. Furthermore, its drawback of an exponential number of constraints
can turn out to be beneficial, as the actual computation of an optimal solution
will in general not require all of these constraints. Therefore, traditional Branch-
and-Cut techniques can be expected to be highly efficient, since all constraints in
DCut can be easily separated using simple polynomial max-flow algorithms, see,
e.g., [25]. The latter property make it possible to solve not only the LP-relaxation
of DFlow but also the (equivalent) LP-relaxation of DCut in polynomial time.

6 Experiments

The main purpose of our experimental studies is to obtain an unskewed com-
parison between our two formulations DCut and DFlow. Therefore, we imple-
mented both formulations using CPLEX 9.0’s Branch-and-Bound framework,
without any preprocessing or primal heuristics. We turned off all automatic
cut-generation etc., usually performed by CPLEX, to be able to compare our
formulations in a pure manner. The additionally necessary separation routines
for DCut are implemented in C++ using LEDA 5.1.1 and the efficient max-flow
algorithm of [2]. All the tests were performed on an Intel Xeon 2.33Ghz CPU
with 2GB of RAM per process, and a time limit of 2 hours per problem instance.
As a basis for our experiments we took three different benchmark sets, which
have, e.g., also been used and thoroughly described in [5]:

ClgS instances. This benchmark set contains 25 instances based on real-world
map data of the city district Cologne-Ossendorf. The underlying graph has 190
nodes and 377 edges. The instances differ in the customer nodes, and have 3–6
R1, and 2–3 R2 customers. However, such small number of customers is quite
unusual in practice. Therefore, we also generated modified instances ClgS+, with
20% (10 % R1 and 10% R2) customer nodes.
Grid instances. We consider the artificial instances of [23] based on grid graphs
with 100, 400, 900,. . . , 4900 nodes. For each graph size there are 2×15 instances,
using two different cost functions, respectively. They have 5–13 R1 and 3–8 R2

customers. As for ClgS we also generated the additional set Grid+, where 20%
of all nodes are customers.
PCSTLib+ instances. The PCSTLib benchmark [12], was used in several stud-
ies, e.g., [15,16], and contains graphs divided into two groups K and P, where
15%–27% and 34%–50% of the nodes are customers, respectively. The former are
similar to street map layouts. We also consider the augmented PCSTLib+ [5,23]
benchmark, where roughly 1/3 of the customer nodes are selected to be in R2.
In each group the underlying graphs have 100 and 400 nodes. Note that some
of these instances are infeasible for 2NCON as the underlying graph does not
allow two node-disjoint paths between certain customers. Hence we report only
on the feasible instances.

Comparison of DFlow and DCut. Our experiments show that DCut outper-
forms DFlow in terms of the running time and computational power on all

198 M. Chimani et al.

Table 1. Average CPU time in seconds. (*) DFlow solves 67% of the instances. None
of the other tested instances could be solved by DFlow within 2 hours.

ClgS ClgS+ G 100 G 400 G 900 G 1600* G+ 100 K 100 P 100
DFlow 0.3 446.3 7.0 226.0 1505 (6209) 22.4 19.9 1500
DCut 0.1 0.6 0.2 2.0 22.9 74.2 0.3 0.7 0.5

Table 2. Computed via DCut, times in seconds. G denotes the Grid instances. (left)
Average CPU time for large grids (without branching) (*) 73.3% solved. (right) Qual-
ity of the LP-relaxation, times in seconds. (**) 50% solved (left column); the right
column gives the statistics of the unsolved instances after 2h, using a heuristic upper
bound to estimate the gap.

Grid tILP ClgS+ G+ 100 K 100 P 100 G+ 400 K 400** P 400
2500 334.3 gap 0.12% 0.16% 0.06% 0.18% 0.35% 0.12% (0.53%) 0.37%
3600 930.4 tLP 0.4 0.2 0.6 1.1 21.0 32.3 22.5 23.4
4900* (3216) tILP 0.6 0.3 0.7 0.5 170 38.1 — 260.4

req.br. 42.1% 16.7% 22.2% 100% 100% 33.3% 100% 100%
#BB 1.0 2.0 1.9 17.8 101.3 5.33 (641.3) 382.4

instance sets. See Table 1 for the overview of the corresponding running times.
Thereby we only report on instances which could— at least in part—be solved
to optimality by both DCut and DFlow.

We observe that all Grid and Grid+ instances with 100 nodes and all ClgS and
ClgS+ instances are solved to optimality by DCut in less than 2 seconds on aver-
age. The only instance set where both algorithms perform comparablywell is ClgS,
which is due to the fact that the underlying LPs ofDFlow are rather small for this
small number of customers, and the overhead of DCut’s cut separation routines
is comparably expensive. Note that neither approach requires any branching for
ClgS and small Grid instances. Already a slight increase of the customer count is
sufficient for DCut to outperform DFLow, see, e.g., the results for Grid instances
of size 100. This effect is further amplified by the larger underlying graphs, as this
results in an even larger increase of variables for DFlow. While the cut approach
is able to solve all Grid instances up to 3600 nodes to optimality within 2 hours, the
largest instances which can be completely solved by DFlow contains 900 nodes.
For the PCSTLib+ instances, DCut is on average 100 times faster for the K group
and 3000 times faster for the P group.

LP-relaxations. A common measure to assess and compare ILP formulations is
to look at the lower bounds resulting from their LP-relaxations, i.e., the solution
at the root node of the branch-and-bound tree (LPr). In our case, these values
are identical as the corresponding polytopes are equivalent, cf. Theorem 7.

We observe that the LP-relaxation of our ILPs usually gives a strong lower
bound. For many instances—i.p. all Grid and ClgS instances—the relaxation
already gives an integer, and thus optimal, solution. In Table 2 we report on the
quality and time (tLP) of the solutions at the root node, i.e., the LP-relaxation,
for the instance sets where DCut requires branching. For each set we compute
the average relative gap := (OPT−LPr)

OPT in percent, whereby OPT denotes the
optimal objective value of the ILP. Additionally, we give the average total run-

Strong Formulations for 2-Node-Connected Steiner Network Problems 199

time tILP, the number of instances which require branching (req.br.), and the
average average number of Branch-and-Bound nodes (#BB).

DCut also outperforms DFlow in terms of running times needed to solve the
(equivalent) LP-relaxation. When DFlow is not able to solve the given instance
to optimality within 2 hours, it is due to a large size of the LP and the most
part of the computation time is needed to solve the root relaxation. By contrast,
when branching is required, DCut uses only a comparably small percentage of
the total running time to solve the root relaxation. For the Grid+ instances with
400 nodes, DFlow cannot even solve the LP-relaxation within the given time
bound. DCut, on the other hand, requires only 170 seconds on average to solve
the ILP, whereby the LP-relaxation is solved within 10–30 seconds. Analogous
observations sustain for the other instances like PCSTLib+.

Further investigation of DCut. The comparison of our formulations shows
DCut to be the clear winner for all practical purposes. We briefly report on
further experiments which shows the applicability of DCut to larger instances
in real-world settings, and summarize our findings thereto.

Primal Heuristic. In many large instances, the size of the branch-and-bound
tree becomes the bottleneck. We developed an LP-based primal heuristic to
obtain strong upper bounds early in our algorithm. Interestingly, although the
heuristic often finds the optimal solution very soon, it only rarely leads to pruning
B&B-nodes and therefore only seldomly reduces the running time.

Further instances. We furthermore used the TSPLib-based instances [22]
which are euclidian Delauney-triangulations on varying graph sizes with 25%
(10%) R1 (R2) customers. The findings are analogous to the ones reported be-
fore, as only DCut was able to solve instances. It solved all but one instance
with up to 300 nodes, and 43% of the larger graphs with up to 700 nodes. Due to
a lack of other instance sets, other papers often consider complete graphs, even-
though most real-world applications seem to be based on rather sparse graphs.
We considered the complete graphs presented in [7] for a hybrid meta-heuristic
to solve 2NCON problems without R1 customers. While their algorithm finds
heuristic solutions requiring 160–200 iterations (using 32–40 seconds per iter-
ation on a presumably old machine), DCut solves all instances to optimality
within an average of 0.29 seconds.

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

2. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the
maximum flow problem. Algorithmica 19, 390–410 (1997)

3. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for the 2-
node-connected steiner network problems (tr). Technical Report TR07-1-008, Chair
for Algorithm Engineering, TU Dortmund (November 2007)

4. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal k-cardinality
trees fast. In: Proc. Siam ALENEX 2008 (2008)

200 M. Chimani et al.

5. Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for 2-root-
connected prize-collecting Steiner networks. In: Arge, L., Hoffmann, M., Welzl,
E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 681–692. Springer, Heidelberg (2007)

6. Chopra, S.: Polyhedra of the equivalent subgraph problem and some edge connec-
tivity problems. SIAM J. Discrete Math. 5(3), 321–337 (1992)

7. Ghashghai, E., Rardin, R.L.: Using a hybrid of exact and genetic algorithms to
design survivable networks. Computers & OR 29(1), 53–66 (2002)

8. Goemans, M.X.: Analysis of linear programming relaxations for a class of connec-
tivity problems. PhD thesis. MIT, Cambridge (1990)

9. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral Approaches to Network Surviv-
ability. In: Reliability of Computer and Communication Networks, Proc. Workshop
1989. Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141.
American Mathematical Society (1991)

10. Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints.
Operatios Research 40(2), 309–330 (1992)

11. Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design
of communication networks with low-connectivity constraints. SIAM Journal on
Optimization 2(3), 474–504 (1992)

12. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting steiner tree problem:
Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Distcrete
Algorithms, San Fransisco, CA, pp. 760–769 (2000)

13. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: A survey. Net-
works 46(1), 1–21 (2005)

14. Ljubić, I.: Exact and Memetic Algorithms for Two Network Design Problems. PhD
thesis, TU Vienna (2004)

15. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An
algorithmic framework for the exact solution of the prize-collecting steiner tree
problem. Math. Prog. Ser. B 105(2–3), 427–449 (2006)

16. Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize-collecting steiner
problem in graphs. Discrete Applied Mathematics 141(1-3), 277–294 (2003)

17. Magnanti, T.L., Raghavan, S.: Strong formulations for network design problems
with connectivity requirements. Networks 45(2), 61–79 (2005)

18. Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in
networks. Discrete Applied Mathematics 112(1-3), 263–300 (2001)

19. Raghavan, S.: Formulations and Algorithms for the Network Design Problems with
Connectivity Requirements. PhD thesis. MIT, Cambridge(1995)

20. Robbins, H.E.: A theorem on graphs with an application to a problem of traffic
control. American Mathematical Monthly 46, 281–283 (1939)

21. Stoer, M.: Design of Survivable Networks. LNM, vol. 1531. Springer, Heidelberg
(1992)

22. Wagner, D.: Generierung und Adaptierung von Testinstanzen für das OPT und
SST Problem. Technical Report 03/2007, Carinthia Tech Institute, Klagenfurt,
Austria (2007) (in German)

23. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-
commodity flow approach for the design of the last mile in real-world fiber optic
networks. In: Proc. OR 2006, pp. 197–202. Springer, Heidelberg (2006)

24. Winter, P.: Steiner problem in networks: A survey. Networks 17(2), 129–167 (1987)
25. Wolsey, L.A.: Integer Programming. Wiley-Interscience, Chichester (1998)

Algorithms and Implementation for

Interconnection Graph Problem

Hongbing Fan1,�, Christian Hundt2, Yu-Liang Wu3,��, and Jason Ernst4

1 Wilfrid Laurier University, Waterloo, ON Canada N2L3C5
hfan@wlu.ca

2 University of Rostock, Germany
Christian.Hundt@uni-rostock.de

3 The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
ylw@cse.cuhk.edu.hk

4 University of Guelph, Guelph, ON Canada N1G2W1

Abstract. The Interconnection Graph Problem (IGP) is to compute for
a given hypergraph H = (V, R) a graph G = (V, E) with the minimum
number of edges |E| such that for all hyperedges N ∈ R the subgraph
of G induced by N is connected. Computing feasible interconnection
graphs is basically motivated by the design of reconfigurable intercon-
nection networks. This paper proves that IGP is NP-complete and hard
to approximate even when all hyperedges of H have at most three ver-
tices. Afterwards it presents a search tree based parameterized algorithm
showing that the problem is fixed-parameter tractable when the hyper-
edge size of H is bounded. Moreover, the paper gives a reduction based
greedy algorithm and closes with its experimental justification.

1 Introduction

A Reconfigurable Interconnection Network (RIN, for short) consists of terminals
and switches. A switch joins a pair of terminals, and when the switch is set to
ON (OFF), the two terminals of the switch are connected (disconnected). In the
problem of designing a customized RIN, a set of terminals and a set of routing
requirements over the terminals are given, where a routing requirement consists
of a group of disjoint subsets of the terminals. The RIN design aims at finding a
minimal RIN (of the minimum number of switches) satisfying that the network
can be reconfigured to fulfill every one of the given routing requirements. That is,
for each of the given routing requirements, there is a valid routing: an ON/OFF
assignment to all switches, such that only the terminals in the same subset of
the routing requirement are connected.

The customized RIN design problem arises from the design of reconfigurable
Systems-on-a-Chips (SoC) for multiple applications, where different intercon-
nections of terminals (or ports) of functional modules are required for different
� Research partially supported by the NSERC, Canada.

�� Research partially supported by RGC Earmarked Grant 2150500 and ITSP Grant
6902308, Hong Kong.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 201–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 H. Fan et al.

(d) Routing for R3(b) Routing for R1 (c) Routing for R2 (e) Routing for R4

t3

t42t

t 1

t3

t42t

t 1

t3

t42t

t 1

t3

t42t

t 1

t3

t42t

t 1

(a) A RIN

s
s

s1

2
3 s

s

s1

2
3 s

s

s1

2
3 s

s

s1

2
3 s

s

s1

2
3

Fig. 1. An example of reconfigurable interconnection network with valid routings

applications. The general RIN structures such as mesh and trees in Field Pro-
grammable Gate Arrays (FPGA) [2,3] tend to use much more resources than
necessary for the routing requirements imposed by applications. The goal of
the customized RIN design is to minimize the resource usage (the number of
switches) of RIN subject to the routing requirement specifications.

Figure 1(a) shows for example four terminals t1 to t4. A set of the given
routing requirements are represented by sets of disjoint terminal subsets, R1 =
{{t1, t2}, {t3, t4}}, R2={{t1, t2, t3, t4}}, R3 = {{t1, t2, t3}, {t4}} and R4 = {{t1},
{t2, t3, t4}}. A RIN design tries to minimize the number of switches needed to
route all the given routing requirements. For that, Figure 1(a) shows by dashed
lines a minimum set E = {s1, s2, s3} of switches. Then the Figures 1(b) to (e)
present valid routings according to R1, . . . , R4, where solid switches represent
ON and dashed switches represent OFF, respectively.

Hence, RINs can be modeled as graphs G = (V, E) with terminals as vertices
V and switches as edges E. The challenge to design a RIN G from a set V
of terminals and a number of routing requirements Ri = {Ni,1, . . . , Ni,ri}, i =
1, . . . , r, where Ni,j ⊆ V, j ∈ {1, . . . , ri} and Ni,1, . . . , Ni,ri are mutually disjoint
for every i ∈ {1, . . . , r}, can be formulated as the following hypergraph problem.

Let R denote the subsumption of all given routing requirements, i.e., R =
∪r

i=1Ri = ∪r
i=1{Ni,1, . . . , Ni,ri}. Then H = (V, R) forms a hypergraph. Given

a hypergraph H = (V, R), a graph G = (V, E) is said to be an interconnection
graph of H if the induced subgraphs G[N] of all hyperedge N ∈ R are connected.
We search for a minimal interconnection graph, namely an interconnection graph
G = (V, E) of H with the number of edges |E| minimized. Minimal intercon-
nection graph models minimum-switch RIN meeting the given requirements. In
particular, for every Ri = {Ni,1, . . . , Ni,ri} the routing can be established by
computing a spanning tree Ti,j for every subgraph G[Ni,j], j ∈ {1, . . . , ri} and
turning on only those switches represented by edges in the trees Ti,j.

For example, Figure 2(a) shows a hypergraph H = (V, R) of eight vertices t1
to t8. We call N ∈ R am m-hyperedge iff |N | = m. The 2-hyperedges N1 to N7

are illustrated as solid lines. In turn, the vertices of every triangle made up by
one solid and two dashed lines give one of the 3-hyperedges N7 to N16. For an
interconnection graph G of H select a subset of lines such that in every hyperedge
all vertices become connected. Every 2-hyperedge N = {u, v} enforces the line
uv into G. Thus, all solid lines are in G. The connection of each 3-hyperedge

Algorithms and Implementation for Interconnection Graph Problem 203

t 1

t 2
t 3

t 5t 6

t 1 t 4

t 2
t 3

t 5t 6

t t7 8

t 1 t 4

t 2
t 3

t 5t 6

R 1

R

R

R

R

R
R

R

R

R

R

R

R

R

R R
2

3

4

5

6

7

8

13

12

11 16

15

14

10
9

t t7 8

t 4

t t7 8

(a) hypergraph H

graph of H graph of H

(b) a minimal interconnection (c) another minimal interconnection

Fig. 2. Examples for minimal interconnection graphs

needs at least one dashed line because the solid one is already in G. Since there
are four line disjoint triangles, the two minimal interconnection graphs of H have
four dashed lines (see Figure 2(b) and (c)),

The combinatorial optimization problem of computing interconnection graphs
is called Minimum Interconnection Graph Problem (IGPmin):

Input: A hypergraph H = (V, R).
Output: A graph G = (V, E) such that G[N] is connected for all N ∈ R.
Costs: The number |E| of edges.

The decision version of this problem, denoted by IGP, is to decide whether
hypergraph H has an interconnection graph of costs at most some given k.
Furthermore, we introduce the problem variants 3IGPmin and 3IGP where all
hyperedges of H have at most three vertices, i.e., are at most 3-hyperedges.

To compute any interconnection graph G for H = (V, R) is simple, e.g., by
taking the complete graph on vertex set V or choosing the clique graph CH =
(V, {uv : u, v ∈ N, N ∈ R}) of H . We can also derive an interconnection graph
by computing spanning trees for all N ∈ R and then joining them. Moreover,
the problem becomes trivial when H contains only 2-hyperedges because then
H is itself its own interconnection graph.

However, Section 2 of this paper shows by reductions from the well-known
Minimum Vertex Cover (VCmin) optimization problem that the versions 3IGPmin

and 3IGP are already computationally hard. The selection of a minimum vertex
cover in a graph can be realized by the optimal selection of edges in 3-hyperedge.
For the proof we need the decision variant VC of VCmin and the degree-bounded
version 3VCmin, where each vertex has degree at most three. Despite this bad
news Section 3 presents a search tree based parameterized algorithm for IGPmin.
As a result, the problem becomes fixed parameter tractable [4] when the edge
size of input hypergraphs is bounded. Finally, in Section 4 we give a reduction
based greedy algorithm and justify its performance experimentally.

204 H. Fan et al.

2 The Hardness of the Interconnection Graph Problem

This section shows that IGP is NP-hard and remains so when restricted to
3IGP. In addition, unless P=NP there is no PTAS for IGPmin since the 3IGPmin

is already APX-complete. Used terminology and notations of graph theory and
complexity theory are from [1,6].

Lemma 2.1. (1) VC≤p3IGP, (2) 3VCmin ≤A
p 3IGPmin, (3) 3IGPmin ≤A

p VCmin.

Proof. For (2) and (3) we present two polynomial algorithms f1 and f2 respec-
tively. The first transforms instances x of the first problem to instances f1(x) of
the second one. Subsequently, if y is a solution to f1(x) then f2(f1(x), y) gives
the solution for x with the property: If y costs c times optimum, then f2(f1(x), y)
costs c′ times optimum. Statement (1) is a byproduct of the proof for (2).

(1,2): Let G = (V, E) be a graph. Algorithm f1(G) computes the hypergraph
H = (V ′, R) with V ′ = V ∪ {x}, where x �∈ V , and R = E ∪ {{u, v, x} :
uv ∈ E}. Trivially, if G has a vertex cover C then H has the interconnection
graph G′(C) = (V ′, E′ = E ∪ {vx : v ∈ C}) with |E′| = |C| + |E| edges. For
any solution interconnection graph G′ = (V ′, E′) for H the algorithm f2(G, G′)
returns the set C = {v : vx ∈ E′ \ E} of size |C| = |E′| − |E|. If C was not a
vertex cover of G, then there must be uv ∈ E such that {u, v}∩C = ∅. Therefore
{u, v, x} ∈ R induces an unconnected subgraph in G′ which contradicts G′ being
interconnection graph for H . The polynomial complexity of f1 and f2 is straight
forward. Now (1) has been shown already, since f1 reduces VC to 3IGP. For (2)
let G = (V, E) have maximum degree three. Obviously, |E| ≤ 3|Copt| since in a
minimum vertex cover Copt of G every vertex covers at most three edges. If E′′

is the edge set of G′(Copt) and |E′| is c times optimal costs then |E′| ≤ c|E′′|.
For C = f2(G, G′) it follows |C| ≤ c|Copt|+ (c− 1)|E|. Thus, |C| ≤ c′|Copt| with
c′ = 4c − 3.

(3): Let H = (V, R) be a hypergraph of at most 3-hyperedges. For each 3-
hyperedge N = {u, v, w} ∈ R we let GN = (UN , EN) be the triangle on the
vertex set UN = {uv, uw, vw} and for each 2-hyperedge N = {u, v} ∈ R we let
GN = (UN , EN) be the artificial self-loop (uv, uv). Algorithm f1(H) composes
a graph G = (U, E) by merging the gadgets GN for all N ∈ R in the way
U =

⋃
N∈R UN and E =

⋃
N∈R EN . If H has an interconnection graph G′ =

(V, C) then C is a vertex cover for G. It contains every 2-hyperedge N and for
every 3-hyperedge N at least two edges, thus, covering triangles and loops GN .
Given any solution vertex cover C for G the function f2(H, C) returns the graph
G′ = (V, C) which must be an interconnection graph for H . The set C has to
cover all triangles GN by at least two vertices and thus connects N . Moreover,
for all N = {u, v} the loop GN forces the vertex uv into C and thus ensures the
connection of N . Again, f1 and f2 are obviously polynomial. Because C and G′

have equal costs it follows that C having c times optimal costs implies the same
for G′. �	

Corollary 2.2. The problem IGP is NP-complete, even when restricted to 3IGP.

Algorithms and Implementation for Interconnection Graph Problem 205

Proof. IGP (and 3IGP) is in NP by guessing in non-deterministic fashion for
given H = (V, R) all subgraphs G of the complete graph with vertex set V and
testing in polynomial time the connectivity of the graphs G[N] for all N ∈ R.
The hardness of 3IGP (and thus, IGP) in NP is shown in Lemma 2.1. �	

Corollary 2.3. The optimization problem 3IGPmin is APX-complete.

Proof. By Lemma 2.1 3IGPmin ≤A
p VCmin and thus, each c-approximation algo-

rithm for VCmin approximates 3IGPmin with factor c by the given A-reduction.
VCmin can be 2-approximated [7] and so can 3IGPmin. Hence, 3IGPmin is in
APX. Since 3VCmin is APX-complete [8] this follows due to Lemma 2.1 for
3IGPmin by 3VCmin ≤A

p 3IGPmin. �	

3 A Search Tree Based Parameterized Algorithm

This section considers the fixed-parameter IGP, where integer k is given as a fixed
integer rather than an input. The parameterized complexity theory [4] concerns
whether the parameterized problem is Fixed-Parameter Tractable (FPT), i.e.,
the existence of an algorithm of time complexity O(f(k)p(n)), where p(n) is a
polynomial function of input size n.

Figure 3 shows a parameterized algorithm for IGP using the well-known search
tree approach [4,5]. The algorithm decides whether H has an interconnection
graph of cost at most k by setting global variable exists to False, then invoking
InterGraph(V, R, ∅, k), and finally printing the value of variable exists.

InterGraph(V, R, E, k){
G = (V, E)
If R = ∅ and k ≥ 0

exists = True
Else if R �= ∅ and k > 0

Choose N ∈ R
If G[N] is connected

R = R \ {N}
InterGraph(V, R, E, k)

Else
For every pair {u, v} ⊆ N with uv �∈ E

E = E ∪ {uv}
InterGraph(V, R, E, k-1)

End For
End If

End If
}

Fig. 3. Search tree based parameterized algorithm

206 H. Fan et al.

Theorem 3.1. For hypergraphs H = (V, R) of at most h-hyperedges, the search
tree based interconnection graph algorithm answers whether H has an in in-
terconnection graph of cost at most k in time O((h(h − 1)/2)k+1n2m), where
n = |V |, m = |R|.

Proof. The execution of the algorithm builds a search tree. At each node of
the search tree, if R = ∅, an interconnection graph G = (V, E) is returned;
otherwise an N is chosen from R and processed. If G[N] is connected, then no
edge is needed for N . If G[N] is not connected, then at least one edge uv �∈ E
with {u, v} ∈ N has to be chosen for the interconnection graph to make G[N]
connected. Since |N | ≤ h, there are at most h(h − 1)/2 possible choices for uv,
hence there are at most h(h − 1)/2 children at a node. The height of the search
tree is at most k since k decreases by 1 while branching. Hence, there are at
most (h(h − 1)/2)k+1 nodes. At each node, there are at most m hyperedges
N to check for branching. For each N , it computes G[N] and tests if G[N] is
connected, which can be done in time O(n2). Therefore, the time spent at each
node is bounded by O(n2m), and the total time of the algorithm is bounded by
O((h(h − 1)/2)k+1n2m). �	

By Theorem 3.1 the parameterized IGP is FPT when the edge size of input
hyperedges is bounded. In particular, 3IGP can be solved in time O(3k+1n2m).
However, it is not known whether the IGP (i.e., without edge size restriction) is
FPT. We leave it as an open problem.

Problem 3.2. Is the parameterized IGP fixed parameter tractable for any input
hypergraphs?

4 A Reduction Based Greedy Algorithm

This section presents a reduction based greedy algorithm for IGPmin. Start-
ing with an empty graph, the algorithm constructs an interconnection graph of
hypergraph H by adding edges and removing hyperedges when it reduces a con-
nected subgraph with the currently constructed graph until no hyperedge left.
We call an interconnection graph containing an edge set E′ minimal if it is of the
minimum number of edges among all interconnection graphs containing E′. The
algorithm has two modes, reduction mode and greedy mode, switching alter-
nately. In the reduction mode, a reduction procedure is called, which adds new
edges under certain conditions. The new edges added during the reduction are in
a minimal interconnection graph containing the current edge set. In the greedy
mode, the algorithm greedily chooses an edge e∗ that reduces the most number
of components of all induced subgraphs of hyperedges. But this operation may
choose an edge which is not in a minimal interconnection graph containing the
current edge set. Let H ′ = (V, R′) be the current hypergraph and G′ = (V, E′)
the current graph constructed. For u, v ∈ V , define

dH′,G′(uv) = |{N ∈ R′ : u, v are not in the same component of G′[N]}|

Algorithms and Implementation for Interconnection Graph Problem 207

The details of the algorithm is shown in Figure 4. Note that the algorithm
keeps a current hyperedge set R′, an edge set E′, and a candidate edge set Ē′.
The initial setting is R′ = R, E′ = ∅, Ē′ = {uv : u, v ∈ N, N ∈ R}. At each
iteration, it first invokes the reduction procedure Reduction(R′, E′, Ē′), which
returns R′, E′, Ē′. If R′ = ∅, then it outputs G = (V, E′), and stops; other-
wise, let H ′ = (V, R′), G′ = (V, E′) and choose e∗ ∈ Ē′ such that dH′,G′(e∗) =
max{dH′,G′(e) : e ∈ Ē′}. Add e∗ to E′ and remove e∗ from Ē′. Repeat the
process until R′ becomes empty.

Lemma 4.1. Suppose that Reduction(R′, E′, Ē′) returns (R′′, E′′, Ē′′). Then
the minimal interconnection graph containing E′′ has the same number of edges
as the minimal interconnection graph containing E′.

Proof. The reduction done by Reduction(R′, E′, Ē′) consists of a sequence of
simple reductions by rules 1 to 4. It is sufficient to show that after a simple
reduction, the property holds. Assume that (R′′, E′′, Ē′′) is what returned by
a simple reduction from (R′, E′, Ē′). Let G1 = (V, E′ ∪ E′

0) be a minimal in-
terconnection graph of H containing E′, and G2 = (V, E′′ ∪ E′′

0) a minimal
interconnection graph of H containing E′′, where E′ ∩E′

0 = ∅, E′′ ∩E′′
0 = ∅. We

show |E′ ∪ E′
0| = |E′′ ∪ E′′

0 |.

Case 1. The reduction is done by Rule 1. Then E′′ = E′, and G2 is also a
minimal interconnection graph containing E′. Therefore |E′′ ∪ E′′

0 | = |E′ ∪ E′
0|.

Case 2. The reduction is done by Rule 2. Then we have E′′ = E′ ∪ {uv}. We
show that G1 can be transformed to a minimal interconnection graph containing
E′′. If uv ∈ E′ ∪ E′

0, then (V, E′ ∪ E′
0) is itself a minimal interconnection graph

containing E′′, which implies |E′′ ∪E′′
0 | = |E′ ∪E′

0|. Suppose that uv �∈ E′ ∪E′
0.

Then there exists an N ∈ R′ such that u, v are two isolated vertices of G′[N].
Since G2[N] is connected, G2[N] contains two edges ux, yv such that x and y
are in the same component of G2[N] − u − v. Let T = {w : wv ∈ E′

0} and
G3 = (V, (E′ ∪ ((E′

0 \ {wv : w ∈ T })∪ {uw : w ∈ (T \ {y})∪ {v})))). Then G3 is
a minimal interconnection graph of H containing E′′

0 with |E(G3)| = |E(G1)|.
Case 3. The reduction is done by Rule 3. Let E2 = {N : N ∈ R′, |N | = 2}.
Then E′′ = E′ ∪ E2. Since a minimal interconnection graph containing E′ must
contain all 2-subset edges in R′, G1 is also a minimal interconnection graph
containing E′′. We have |E′ ∪ E′

0| = |E′′ ∪ E′′
0 |.

Case 4. The reduction is done by Rule 4. Then E′′ = E′ ∪ {uw, vw}. We
show (V, E′ ∪ {uw, wv}∪E′′

0) is a minimal interconnection graph containing E′.
Suppose that all minimal interconnection graphs containing E′ do not contain
{uw, wv}. Let (V, E′ ∪ E′

0) be such a minimal interconnection graph. Then E′
0

must contain uv and one of uw and wv, say uw. Since dH′,G′(uv) = 1, uv is
only contained in N = {u, v, w}. Then (V, (E′ \ {uv}) ∪ {wv} is a minimal
interconnection graph containing E′ ∪ {uw, wv}, a contradiction follows. �	
Theorem 4.2. For any hypergraph H = (V, R), the reduction based greedy al-
gorithm returns an interconnection graph of H in time O(n2m), where n =
|V |, m = |R| > n. If Reduction(R, ∅, Ē) returns (R′, E′, Ē′) and R′ = ∅, then
G = (V, E′) is a minimal interconnection graph of H.

208 H. Fan et al.

Input: hypergraph H = (V, R)
Set R′ = R, E′ = ∅, Ē′ = {uv : u, v ∈ N, N ∈ R}.
H ′ = (V, R′), G′ = (V, E′)
reduction = true
While R′ �= ∅

If reduction
Reduction(R′, E′, Ē′)
reduction = false

Else
choose e∗ ∈ Ē′ such that dH′,G′(e∗) = max{dH′,G′(e) : e ∈ Ē′}
E′ = E′ ∪ {e∗}, Ē′ = Ē′ \ {e∗}
reduction = true

End If
End While
Output: (V, E′)

Reduction(R′, E′, Ē′)
H ′ = (V, R′), G′ = (V, E′)
repeat = true
r1 = r2 = r3 = r4 = true;
While repeat

If there is an N ∈ R′ such that G′[N] is connected Rule 1
remove N from R′

Else r1 = false
If u, v ∈ V satisfy that {u, v} ∩ N �= ∅ implies {u, v} ⊆ N and Rule 2

there is N ∈ R′ such that u, v are two isolated vertices of G′[N]
add uv to E′

remove v from hyperedges that contain v
remove edges from Ē′ that contain v
r1 = true

Else r2 = false
If there is an N = {u, v} ∈ R′ Rule 3

add uv to E′ and remove uv from Ē′.
remove N from R′

r1 = true, r2 = true
Else r3 = false
If there is an N = {u, v, w} ∈ R′ with uv ∈ Ē and dH′,G′(uv) = 1 Rule 4

add {uw, vw} ∩ Ē′ to E′ and remove {uv, uw, vw} ∩ Ē′ from Ē′.
remove N from R′.
r1 = true, r2 = true, r3 = true

Else r4 = false
repeat = r1 OR r2 OR r3 OR r4

End While
Return (V ′, R′, E′, Ē′).

Fig. 4. Reduction based greedy algorithm for IGP

Proof. It is obvious that when R′ = ∅, (V, E′) is an interconnection graph of H .
To derive the time complexity, we need a hyperedge data structure consisting
of a list of vertex sets of its connected components in the induced subgraph,
and a list of all the hyperedge in increasing order of the size of hyperedges. For

Algorithms and Implementation for Interconnection Graph Problem 209

each vertex, we use an ordered list of hyperedges that contain the vertex. We
use an ordered list of the vertex data structures for all vertices. For each edge
uv ∈ Ē′, we use a list of hyperedges such that u, v are in different components
of the induced subgraph by the hyperedge. For all edges of Ē′, we keep a list
of the edge data structures in decreasing order of dH′,G′(uv). With this setting,
the reduction by rules 1 can be done in time O(n), because a hyperedge N
such that G′[N] is connected is be at the top of the hyperedge list, and it takes
time O(n) to maintain the data structure after removing N . For rule 2, it takes
time O(n) to find a pair u, v with the property, and time O(m) to maintain the
hyperedge data structure after adding uv. For rule 3, it takes time O(1) to find
an N = {u, v}, and time O(m) to maintain the hyperedge data structure after
adding uv. For rule 4, it takes time O(1) to find N with the property and time
O(m) to maintain the data structure after adding edge. When no reduction can
be done, it also takes time O(1) find e∗ and time O(m) to maintain the data
structure after adding e∗. The total number of iterations (i.e., adding edges) is
bounded by O(n2), therefore the time complexity of the algorithm is bounded
by O(n2m).

When Reduction(R, ∅, Ē) returns an empty R′, then (V, E′) is a minimal
interconnection graph of H containing empty set by Lemma 4.1, so it is a minimal
interconnection graph of H . �	

5 Experimental Results

We implemented the reduction based greedy algorithm in C. The main purpose
of our implementation is to develop an automation design tool for RIN design.
We tested three classes of hypergraphs with the implementation. The first class
is hypergraph H1(m) consisting of vertices 1, . . . , 2m and hyperedges {i, i +
1}, {i + m, i + m + 1}, {i, i + 1, i + m}, {i + m, i + m + 1, i + 1}, i = 1, . . . , m −
1, {1, m}, {2m, m + 1}, {m, 1, 2m}, {2m, m + 1, 1}. The clique graph of H1(m)
has 4m edges and the minimal interconnection graph of H1(m) has 3m edges.
The second class is hypergraph H2(m) consisting of vertices 1, . . . , 2m + 2, and
hyperedges {0, 1, i, i + m}, i = 2, . . . , m + 1, {i, i + 1, i + m, i + m + 1}, i =
2, . . . , m, {m + 1, 2, 2m + 1, m + 2}. The clique graph of H2(m) has 9m + 1
edges and the minimal interconnection graph of H2(m) has 3m + 1 edges. The
third class is a random hypergraph H consisting of vertices 1, . . . , n and a set
of random hyperedges. The number of random hyperedges is set to 5n. The
size of each edge is randomly assigned a value between 2 and 10. There are 10
runs for each n. The program is able to find the minimal interconnection graphs
for both H1(m) and H2(m). For the random hypergraphs, the program find
an interconnection graph with average improvement of over 70% over the initial
clique graph. The testing results are shown in Table 1, in which the column name
|V (H)|, |E(H)|, |E(CH)| and |E(G)| denote the number of vertices, the number
of hyperedges, the number of edges in the clique graph, and the number of edges
in derived interconnection graphs, respectively. The Improvement% column is
computed by (|E(CH)|−|E(G)|)/|E(CH)|. The time column is the running time
in second on a Linux machine with 1.8GHz AMD Athlon 64X2 processor.

210 H. Fan et al.

Table 1. Experimental results of the algorithm

|V (H)| |E(H) |E(CH)| |E(G)| Improvement% Time (s)

Results of test case one: H1(m)

600 1200 1200 900 25 8.27
800 1600 1600 1200 25 20.6
1000 2000 2000 1500 25 42.28

Results of test case two: H2(m)

602 600 2701 901 66.6 3.34
802 800 3601 1201 66.6 7.78
1002 1000 4501 1501 66.6 14.79

Results of random hypergraphs with 5n hyperedges

20 100 190 78 59 0.16
40 200 774 238 69 4.17
60 300 1689 456 73 23.31
80 400 2866 703 75 81.99
100 500 4155 989 76 244.39
120 600 5613 1300 77 541.75

Acknowledgments

Thank C.Q. Zhang and J.B. Qian for helpful discussions.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan Press,
London (1976)

2. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron FP-
GAs. Kluwer-Academic Publisher, Boston (1999)

3. Lemieux, G., Lewis, D.: Design of Interconnection Networks for Programmable
Logic. Kluwer-Academic Publisher, Boston (2003)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1998)

5. Ellis, J., Fan, H., Fellows, M.: The Dominating Set Problem is Fixed Parameter
Tractable for Graphs of Bounded Genus. Journal of Algorithms 52(2), 152–168
(2004)

6. Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. John Wiley & Sons,
Chichester (2000)

7. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Inf. 22, 115–123 (1985)

8. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. System Sci. 43, 425–440 (1991)

Algorithms and Experimental Study for the

Traveling Salesman Problem of Second Order

Gerold Jäger and Paul Molitor

Computer Science Institute,
University of Halle-Wittenberg,
D-06099 Halle (Saale), Germany

jaegerg@informatik.uni-halle.de,

paul.molitor@informatik.uni-halle.de

Abstract. We introduce a new combinatorial optimization problem,
which is a generalization of the Traveling Salesman Problem (TSP) and
which we call Traveling Salesman Problem of Second Order (2-TSP). It
is motivated by an application in bioinformatics, especially the Permuted
Variable Length Markov model. We propose seven elementary heuristics
and two exact algorithms for the 2-TSP, some of which are general-
izations of similar algorithms for the Asymmetric Traveling Salesman
Problem (ATSP), some of which are new ideas. Finally we experimen-
tally compare the algorithms for random instances and real instances
from bioinformatics. Our experiments show that for the real instances
most heuristics lead to optimum or almost-optimum solutions, and for
the random instances the exact algorithms need less time than for the
real instances.

Keywords: Traveling Salesman Problem, Assignment Problem, Travel-
ing Salesman Problem of Second Order, Heuristic, Exact Algorithm.

1 Introduction

Gene regulation in higher organisms is accomplished by several cellular processes,
one of which is transcription initiation. In order to better understand this process,
it would be desirable to have a good understanding of how transcription factors
bind to their binding sites. While tremendous progress has been made on the fields
of structural biology and bioinformatics, the accuracies of existing models to pre-
dict the location and affinity of transcription factor binding sites are not yet satis-
factory. The aim is to better understand gene regulation by finding more realistic
binding site models. One model that extends the position weight matrix (PWM)
model, the weight array matrix (WAM) model, and higher-order Markov models
in a natural way is the Permuted Markov (PM) model. Permuted Markov models
were proposed by [5] for the recognition of transcription factor binding sites. The
class of PM models was further extended by [24] to the class of Permuted Variable
Length Markov (PVLM) models, and it was demonstrated that PVLM models can
improve the recognition of transcription factor binding sites for many transcrip-
tion factors. Finding the optimal PM model for a given data set is NP-hard, and

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 211–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 G. Jäger and P. Molitor

finding the optimal PVLM model for a given data set is NP-hard, too. Hence,
heuristic algorithms for finding the optimal PM model and the optimal PVLM
model were proposed in [5] and [24], respectively. Experimental evidence has been
accumulated that suggests that the binding sites of many transcription factors fall
into distinct classes. Grosse proposed to extend PM models to PM mixture mod-
els, to extend PVLM models to PVLM mixture models, and to apply both mixture
models to the recognition of transcription factor binding sites [15]. While both the
PM mixture model and the PVLM mixture model look appealing from a biological
perspective, they pose a computational challenge: the optimal PM mixture model
and the optimal PVLM mixture model can be obtained only numerically. One of
the commonly used algorithms for finding optimal mixture models is the Expec-
tation Maximization (EM) algorithm. The EM algorithm consists of two steps,
the E step and the M step, which are iterated until convergence. Applied to the
problem of finding the optimal PM or PVLM mixture model of order 1, each M
step requires the solution of an ATSP instance. Likewise, applied to the problem of
finding the optimal PM or PVLM mixture model of order 2, each M step requires
the solution of an instance of a generalization of the ATSP, which we call 2-TSP
and which is introduced in the following.

For a directed graph G = (V, E) with n ≥ 2 vertices and a weight function
c : V × V → R ∪ {∞} with c(u, u) = ∞ for all u ∈ V the Asymmetric Traveling
Salesman Problem is the problem of finding a complete tour (v1, v2, . . . , vn) with
minimum costs c(vn, v1) +

∑n−1
j=1 c(vj , vj+1). ATSP is NP-hard, which can be

shown by a simple polynomial reduction from the Hamiltonian Cycle Problem
(HCP) and a polynomial reduction of HCP from the NP-complete 3-SAT [20].
The special case that the weight of each arc equals the weight of the correspond-
ing reverse arc is called Symmetric Traveling Salesman Problem (STSP).

In this paper we introduce the following problem, which – to the best of
our knowledge – has not been considered in literature before. For a directed
graph G = (V, E) with n ≥ 3 vertices and a weight function c : V × V × V →
R ∪ {∞} with c(u, v, w) = ∞ for u, v, w ∈ V with u = v or u = w or v = w
consider the problem of finding a complete tour (v1, v2, . . . , vn) with minimum
costs c(vn−1, vn, v1) + c(vn, v1, v2) +

∑n−2
j=1 c(vj , vj+1, vj+2). As this problem is

a natural generalization of the ATSP, where the costs do not depend on arcs,
but on each sequence of three vertices in the tour, we call it Traveling Salesman
Problem of Second Order (2-TSP).

2-TSP is also NP-hard, which can be seen as follows. Let c be the weight
function of an ATSP instance. If you define the three-dimensional weight function
c′(u, v, w) := c(v, w) ∀u ∈ V \ {v, w}, then solving this ATSP instance and the
corresponding 2-TSP instance are equivalent. Thus ATSP can be reduced in
polynomial time to 2-TSP.

In some sense, 2-TSP and ATSP have the same difficulty, as both have (n−1)!
feasible tours. In another sense, 2-TSP is much more difficult, as it has a three-
dimensional weight function and the ATSP only has a two-dimensional one.
As we were not able to find an effective polynomial reduction from 2-TSP to
ATSP, 2-TSP has to be considered as a new combinatorial optimization problem.

Algorithms and Experimental Study for the TSP of Second Order 213

The purpose of this paper is to develop heuristics and exact algorithms for this
problem and to do an experimental study of these algorithms for random and
real instances.

The paper is organized as follows. In Section 2 we propose different heuristics
and in Section 3 different exact algorithms for the 2-TSP. In Section 4 we give
an experimental study for the heuristics and the exact algorithms. Finally we
summarize this paper and give suggestions for future research in Section 5.

2 Heuristics for the Traveling Salesman Problem of
Second Order

Let in the following for a given tour T and a given vertex v ∈ T , p(v) be the
predecessor of v and s(v) be the successor of v.

2.1 Cheapest-Insert Algorithm

The Cheapest-Insert Algorithm (CI) is a generalization of an algorithm for the
ATSP [23]. We start with an arc (v1, v2) as a subtour and choose this arc in
such a way that the sum of the costs of a cost minimum predecessor of v1 and
a cost minimum successor of v2 is minimum. Then step by step, a new vertex is
included in the subtour, so that the new subtour is cost minimum. If the tour is
complete, we stop this procedure.

2.2 Nearest-Neighbor Algorithm

The Nearest-Neighbor Algorithm (NN) is also a generalization of an algorithm for
the ATSP [23]. Again we start with one arc (v1, v2), now considered as a path.
Then step by step, we compute neighbors in the direction v1 → v2 in such a way
that the new path becomes cost minimum. We stop, until the path contains n
vertices and we receive a tour. As we only walk in one direction, the predecessor of
v1 is chosen in the last step. As in this step only one possibility for the predecessor
of v1 exists, the costs of (p(p(p(v1))), p(p(v1)), p(v1))), (p(p(v1)), p(v1), v1)), and
(p(v1), v1, s(v1)) are irrelevant for this choice. Thus we choose the arc (v1, v2) in
the first step in such a way that the sum of the costs of a cost minimum successor
of v2 and the average costs of a predecessor of v1 is cost minimum.

2.3 Two-Directional-Nearest-Neighbor Algorithm

In this section we suggest a variation of the Nearest-Neighbor Algorithm, which
we call Two Directional Nearest-Neighbor Algorithm (2NN). For this algorithm,
we contribute two important ideas. The first idea is to use both directions to find
the next neighbor. Thus it is the question, which direction should be chosen in
each step. One criteria for this choice is to use the minimum cost neighbor over
all new vertices and over both directions. Our idea is based on the fact that the
tour has to be closed anyway, so that both directions have to be used now or at

214 G. Jäger and P. Molitor

a later step of the algorithm. Thus for a given path (v1, . . . , vi), the cost values
c(vi−1, vi, x) for a cost minimum neighbor vertex x and c(y, v1, v2) for a cost
minimum neighbor vertex y itself are less important than the difference to the
second smallest values in both directions. For both directions, this value can be
viewed as an upper tolerance of the problem of finding a cost minimum neighbor
vertex (for an overview over the theory of tolerances see [12,13]). A similar idea
was used for a tolerance based version [11] of the greedy heuristic [7] for the
ATSP and a tolerance based version [14] of the contract-or-patch heuristic for
the ATSP [7,16]. Thus we choose the direction from which the upper tolerance
value is larger, as not using the cost minimum neighbor vertex would cause a
larger jump of the costs of the current path.

2.4 Assignment-Patching Algorithm

A well-known technique for the ATSP is the patching technique, which starts
from k cycles, where each vertex is visited exactly by one of the cycles, and
then – step by step – patches two cycles together, until there is only one cycle,
which is the ATSP tour of this heuristic. The most popular version of ATSP
patching is based on the Assignment Problem (AP), which is defined as follows.
Let a matrix C = (cij)1≤i,j≤n ∈ Rn,n be given. Then the AP is to find a node

permutation π∗ so that π∗ = argmin
{∑n

i=1 ci,π(i) : π ∈ Πn

}
, where Πn is

the set of all permutations of {1, . . . , n}. There are many efficient algorithms
for the AP [2,10,19] (for an experimental comparison of AP algorithms see [4]).
The most efficient one is the Hungarian algorithm, which is based on König-
Egervary’s theorem and has a complexity of O(n3). In our algorithm we use the
implementation of the Hungarian algorithm by Jonker and Volgenant [27].

The corresponding AP instance to an ATSP instance uses the same weight
function c with cii = ∞ for 1 ≤ i ≤ n. As the AP solution can be computed
efficiently and the solution value is a good lower bound for an optimum ATSP
solution value, the AP solution is a good starting point for patching. Karp and
Steele suggested for each step to patch the two cycles containing the most number
of vertices [21]. For each patching step for cycles C1 and C2, two arcs e1 ∈ C1 =
(v1, w1) and e2 = (v2, w2) ∈ C2 are replaced by arcs (v1, w2) and (v2, w1). These
arcs are chosen in such a way from both cycles that we receive a minimum cost
set of cycles in the next step. For the ATSP this means that the term c(v1, w2)+
c(v2, w1) − c(v1, w1) − c(v2, w2) is minimum. For the 2-TSP the following term
has to be minimized:

c(p(v1), v1, w2) + c(v1, w2, s(w2)) + c(p(v2), v2, w1) + c(v2, w1, s(w1))
−c(p(v1), v1, w1) − c(v1, w1, s(w1)) − c(p(v2), v2, w2) − c(v2, w2, s(w2))

(1)

As natural extension of the AP we define for a directed graph G = (V, E)
with n ≥ 3 and a weight function c : V ×V ×V → R∪{∞} with c(u, v, w) = ∞
for u, v, w ∈ V with u = v or u = w or v = w the Assignment Problem of Second

Algorithms and Experimental Study for the TSP of Second Order 215

Order (2-AP) as the problem of finding an one-to-one-mapping f : V → V so
that the costs

∑n
i=1 c(vi, f(vi), f(f(vi))) are minimum.

Recently Fischer and Lau [6] have shown by a reduction from SAT that 2-AP is
NP-hard. One way to solve it is by integer programming (see Section 3.2), which
is not fast enough for an efficient heuristic. Instead we suggest to approximate
an optimum solution for 2-AP by a polynomial time solvable heuristic solution.
For this purpose define a two-dimensional weight function c′ : V ×V → R, which
depends on the three-dimensional weight function c : V ×V ×V → R as follows:
c′(v, w) = minu∈V \{v,w} c(u, v, w) for v �= w ∈ V .

The solution of the AP for this weight function, which can be computed in
O(n3), is a lower bound for the 2-AP solution, which we call approximated 2-AP
solution. We then patch the cycles of this AP solution, and call the approach
Assignment Patching Algorithm (AK), where “K” stands for “Karp Steele”.

2.5 Nearest-Neighbor-Patching Algorithm

One drawback of the NN algorithm is that the number of remaining vertices
becomes smaller (by 1) at each step. Thus in average the difference between the
weight of the current path after adding one vertex and before should increase at
each step. The idea of the following algorithm is to modify the NN algorithm in
such a way that it outputs not a tour, but a set of cycles. Then these cycles are
patched by the Patching Algorithm.

The main step of the Nearest Neighbor Patching Algorithm (NNK) is to stop
the NN Algorithm, if closing the current cycle would lead to a “good” subtour.
More exactly, we change the path (v1, . . . , vi) to a cycle, if the sum of the two
weights c(vi−1, vi, v1) and c(vi, v1, v2), which are added by the closing, are smaller
than a bound. Experiments have shown that 2 ·

∑i−2
j=1 c(vj , vj+1, vj+2) seems to

be a good choice for this bound. As all cycles should contain at least 3 vertices
and the rest of the graph has also to be divided into cycles, it holds 3 ≤ i ≤ n−3.
We repeat these steps with the remaining vertices, until each vertex is contained
in exactly one cycle.

2.6 Two Directional Nearest-Neighbor-Patching Algorithm

The Two Directional Nearest Neighbor Patching Algorithm (2NNK) is exactly
the NNK Algorithm with the only difference that for the computation of the
cycles instead of the NN Algorithm the 2NN Algorithm is used.

2.7 Greedy Algorithm

The Greedy Algorithm (G) is also a generalization of an ATSP algorithm [7]
which is based on the contraction procedure.

Let G = (V, E) be a complete graph with n ≥ 3 vertices and c : E → R a weight
function. Furthermore let an arbitrary arc e be given, w.l.o.g. e = (vn−1, vn). The
contraction of e means constructing a new complete graph G′ = (V ′, E′) with

216 G. Jäger and P. Molitor

V = {v′1, . . . , v′n−1} and v′i = vi for i = 1, . . . , n − 2, v′n−1 = (vn−1, vn) and with
weight function c′ : E′ → R defined by

c′(v′i, v
′
j) =

⎧⎨⎩
c(vi, vj) for 1 ≤ i �= j ≤ n − 2
c(vi, vn−1) for 1 ≤ i ≤ n − 2, j = n − 1
c(vn, vj) for i = n − 1, 1 ≤ j ≤ n − 2

Analogously we define the contraction procedure for a three-dimensional wei-
ght function:

c′(v′i, v
′
j , v

′
k)

=

⎧⎪⎪⎨⎪⎪⎩
c(vi, vj , vk) for 1 ≤ i, j, k ≤ n − 2, i �= j, i �= k, j �= k
c(vi, vj , vn−1) for 1 ≤ i �= j ≤ n − 2, k = n − 1
c(vi, vn−1, vn) + c(vn−1, vn, vk) for 1 ≤ i �= k ≤ n − 2, j = n − 1
c(vn, vj , vk) for 1 ≤ j �= k ≤ n − 2, i = n − 1

The greedy algorithm starts with contracting a “good” arc. We choose such an
arc in the same way as in the CI Algorithm. Then we contract this arc, i.e., this
arc appears in the final tour, and construct a graph with a vertex less. This step
is repeated, until only three vertices remain. For this graph exactly two possible
tours exist. We choose the smaller one of those, and finally we re-contract, i.e.,
all vertices are replaced by the paths which they consist of.

2.8 k-OPT Algorithm

The common characteristic of all previous algorithms is that in different ways
they construct a tour. The first tour which is found is also the outputted tour.
This is called a construction heuristic. In this section we introduce a so called
improvement heuristic, i.e., it starts with a tour produced by a construction
heuristic and improves it. For introducing the k-OPT algorithm [22] we need the
following definition. Let a complete graph G = (V, E), |V | = n and a complete
tour T be given, and let k ≤ n. Furthermore let a (two-dimensional or three-
dimensional) weight function be given. A k-OPT step changes T by omitting k
arcs from the tour and adding k arcs not from the tour in such a way that the
set of arcs after the change is still a tour. T is called k-optimum, if no r-OPT
step with r ≤ k reduces the weight of the tour. Note that in general a k-optimum
tour is not unique.

Each tour received by one of the previous construction heuristics can be trans-
formed to a k-optimum tour by doing tour improving k-OPT steps as long, as
they exist. As is customary in literature [17] we consider only the case k ≤ 5.

3 Exact Algorithms for the Traveling Salesman Problem
of Second Order

3.1 Branch-and-Bound Algorithm

The following Branch-and-Bound Algorithm (BnB) in the worst case visits all pos-
sible tours in a lexicographic order and computes the tour with minimum costs.

Algorithms and Experimental Study for the TSP of Second Order 217

To avoid that in fact all tours have to be visited, it computes (local) lower bounds
and upper bounds by visiting and analyzing subpaths of all possible tours.

First we start with an arbitrary heuristic for the 2-TSP to compute a good
upper bound. If at some state of the algorithm we consider a subpath, we com-
pute a lower bound lb for a 2-TSP solution containing this subpath. As lower
bound the approximated 2-AP solution (see Section 2.4) is computed. If lb is
larger or equal than the current upper bound ub, we can prune this branch. The
upper bound is updated, if a whole tour with smaller costs is visited. All tours
are started with a fixed vertex v1, which is chosen in such a way that the sum
over all values c(v1, x, y) with x �= v1, y �= v1, x �= y is maximum. This choice is
used, because we expect more prunes to appear, as the lower bounds in the first
steps should be rather large.

3.2 Integer-Programming Algorithm

The AP can be described as an integer program as follows:

min
n∑

i=1

n∑
j=1,j �=i

cijxij (2)

n∑
j=1,j �=i

xij = 1 ∀ 1 ≤ i ≤ n (3)

n∑
i=1,i�=j

xij = 1 ∀ 1 ≤ j ≤ n (4)

xij ∈ {0; 1} ∀ 1 ≤ i �= j ≤ n (5)

where C = (cij)1≤i�=j≤n is the weight matrix of the AP instance. Equation (3)
means that each vertex has exactly one out-arc and equation (4) that each vertex
has exactly one in-arc. The AP solution consists of all arcs with xij = 1.

Similarly, we suggest to model the 2-AP by the following integer program:

min
n∑

i=1

n∑
j=1,j �=i

n∑
k=1,k �=i,k �=j

cijkxijk (6)

n∑
j=1,j �=i

n∑
k=1,k �=i,k �=j

xijk = 1 ∀ 1 ≤ i ≤ n (7)

n∑
i=1,i�=j

n∑
k=1,k �=i,k �=j

xijk = 1 ∀ 1 ≤ j ≤ n (8)

n∑
i=1,i�=k

n∑
j=1,j �=i,j �=k

xijk = 1 ∀ 1 ≤ k ≤ n (9)

n∑
k=1,k �=i,k �=j

xijk =
n∑

k=1,k �=i,k �=j

xkij ∀ 1 ≤ i �= j ≤ n (10)

xijk ∈ {0; 1} ∀ 1 ≤ i, j, k ≤ n, i �= j, i �= k, j �= k (11)

where C = (cijk)1≤i,j,k≤n, i�=j,i�=k,j �=k is the weight matrix of the 2-AP instance.

218 G. Jäger and P. Molitor

Equation (7) means that each vertex appears exactly once as a first vertex of
a path of three vertices of the tour, equation (8) that each vertex appears exactly
once as a second vertex of a path of three vertices of the tour and equation (9)
that each vertex appears exactly once as a third vertex of a path of three vertices
of the tour. Equation (10) expresses the condition that, if i is a second vertex
and j a third vertex of a path of three vertices of the tour, then there is another
path of three vertices of the tour, where i is the first vertex and j is the second
vertex.

Like for the AP and the ATSP, a solution of the 2-AP consists of k ≥ 1 cycles.
If k = 1, the solution of the 2-AP is an optimum 2-TSP solution. To avoid the
possibility k > 1, we prevent each cycle (vs1 , . . . , vst) by adding the following
inequality to the integer program:

xst−1,st,s1 + xst,s1,s2 +
t−2∑
i=1

xsi,si+1,si+2 ≤ t − 1 (12)

Unfortunately an exponential number of inequalities of that type exists. For
this purpose, we solve the integer program and – step by step – add inequalities
of that type which are violated.

Furthermore we can use a good upper bound to speed-up the IP Algorithm.

4 Experimental Study

We implemented all algorithms in C++, where as subroutines we used the AP
solver implemented by Jonker and Volgenant [27] and the IP solver Cplex [26].
All experiments were carried out on a PC with an Athlon MP 1900+ CPU with
2GB memory.

As test instances we chose a class of random instances, where each entry cijk

is independently chosen as an integer from [0, . . . , 10000]. For the tests regarding
the heuristics we computed the average over 1,000 instances for each dimension
3, 4, . . . , 44, and regarding the exact algorithms the average over 10 instances for
each dimension 3, 4, . . . , 24. Furthermore we considered three real classes ML,
BMA, MAP [15], which for each class and each dimension consist of one instance.
For the heuristics we used the instances with dimension 3, 4, . . . , 41 and for the
exact algorithms the instances with dimension 3, 4, . . . , 17. We observe that the
real instances are much harder to solve than the random instances.

4.1 Comparison of Heuristics

An experimental study of heuristics for the ATSP is given in [18]. In this section
we make a similar study for the 2-TSP. In detail, we compare all considered
heuristics, which are Cheapest-Insert Algorithm (CI), Nearest-Neighbor Algo-
rithm (NN), Two-Directional Nearest-Neighbor Algorithm (2NN), Assignment-
Patching Algorithm (AK), Nearest-Neighbor-Patching Algorithm (NNK),

Algorithms and Experimental Study for the TSP of Second Order 219

Two-Directional Nearest-Neighbor-Patching Algorithm (2NNK) and Greedy Al-
gorithm (G). Furthermore we consider for each algorithm a version, where the
algorithm is followed by the 5-OPT Algorithm.

All construction algorithms are rather fast, as they have complexity not worse
than O(n3). We observe that the running times of all seven basic algorithms are
very similar (except G which is slower) and the running times of all seven basic
algorithms plus OPT steps are also very similar. Comparing the algorithms with
and without OPT steps, the algorithms with OPT steps are considerably slower.
Thus we only compare the upper bounds, where for the random instances we use
the average value over 1,000 instances. We use the versions 2NN and 2NN+OPT
as a basis for all comparisons and compare the remaining six algorithms against
these versions by the difference of upper bounds. The results for the basic versions
can be found in Figure 1 and the results for the OPT versions in Figure 2. If
some lines do not appear in the diagrams, it means they have y-value 0. To
compare the basic and the OPT versions, we only consider 2NN and 2NN+OPT
as a representative. These results are shown in Figure 3.

The experiments show that the OPT versions clearly beat the basic versions.
Furthermore the results for the random instances are completely different to
the results for the real instances. For the real instances, CI and AK are the
best algorithms, whereas for the random instances, 2NN and 2NNK are the best
algorithms. AK is the worst algorithm for the random instances, and G is rather
bad for all instances. Similar results as for the basic versions hold for the OPT
versions.

Finally we compare the upper bounds with the optima computed by one of the
exact algorithms BnB or IP. Again the results differ for the real and the random
instances. Considering real instances, it holds that for 44 of 45 instances at
least one (of seven) OPT heuristics finds the optimum. For the single remaining
instance as well as for the unsuccessful heuristics we receive upper bounds very
close to the optimum. Note that these results lead to many y-values 0 or at least
small y-values in the diagrams. In contrast, for the random instances the upper
bounds are more far away from the optimum.

4.2 Comparison of Exact Algorithms

In this section we compare the running times of the IP Algorithm and the BnB
Algorithm, where all running times are given in seconds. The results can be
found in Figure 4.

We observe that the random instances can be solved much faster than the
real instances. Furthermore the BnB Algorithm is more efficient than the IP-
Algorithm for the real and the random instances of our benchmark set. But
on the other hand further experiments showed, that the IP-Algorithm was able
to solve the MAP instance of dimension 21 in about three days and the BMA
instance of dimension 26 in about three weeks, whereas the BnB Algorithm was
not able to solve these instances. Thus for larger dimensions the IP-Algorithm
becomes more efficient. For the IP Algorithm, the number of iterations of adding
equalities of type (12) is the most important criterion for the running time. For

220 G. Jäger and P. Molitor

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

ML Instances

CI
NN
AK

NNK
2NNK

G

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

MAP Instances

CI
NN
AK

NNK
2NNK

G

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

BMA Instances

CI
NN
AK

NNK
2NNK

G

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

Random Instances

CI
NN
AK

NNK
2NNK

G

Fig. 1. Quality comparison of basic heuristics with respect to 2NN

Algorithms and Experimental Study for the TSP of Second Order 221

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

ML Instances

CI+OPT
NN+OPT
AK+OPT

NNK+OPT
2NNK+OPT

G+OPT

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

MAP Instances

CI+OPT
NN+OPT
AK+OPT

NNK+OPT
2NNK+OPT

G+OPT

-100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

BMA Instances

CI+OPT
NN+OPT
AK+OPT

NNK+OPT
2NNK+OPT

G+OPT

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45

U
p
p
e
r

B

o
u
n
d

D

if
f
e
r
e
n
c
e

Dimension

Random Instances

CI+OPT
NN+OPT
AK+OPT

NNK+OPT
2NNK+OPT

G+OPT

Fig. 2. Quality comparison of OPT heuristics with respect to 2NN+OPT

222 G. Jäger and P. Molitor

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45

U
pp

er
 B

ou
nd

 D
iff

er
en

ce

Dimension

ML Instances
2NN

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45

U
pp

er
 B

ou
nd

 D
iff

er
en

ce

Dimension

MAP Instances

2NN

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45

U
pp

er
 B

ou
nd

 D
iff

er
en

ce

Dimension

BMA Instances
2NN

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40 45

U
pp

er
 B

ou
nd

 D
iff

er
en

ce

Dimension

Random Instances
2NN

Fig. 3. Quality comparison of 2NN with respect to 2NN+OPT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18T
im

e
in

 S
ec

on
ds

 in
 L

og
ar

ith
m

ic
 S

ca
le

Dimension

ML Instances
IP

BnB

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18T
im

e
in

 S
ec

on
ds

 in
 L

og
ar

ith
m

ic
 S

ca
le

Dimension

MAP Instances
IP

BnB

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18T
im

e
in

 S
ec

on
ds

 in
 L

og
ar

ith
m

ic
 S

ca
le

Dimension

BMA Instances
IP

BnB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25T
im

e
in

 S
ec

on
ds

 in
 L

og
ar

ith
m

ic
 S

ca
le

Dimension

Random Instances
IP

BnB

Fig. 4. Running time comparison of IP and BnB

Algorithms and Experimental Study for the TSP of Second Order 223

real instances this number is very large: for dimension larger or equal than 10 we
have at least 30 iterations. In contrast, the number of iterations is rather small
for random instances: not more than 5 iterations for 195 of the 220 examples of
dimensions 3, 4, . . . , 24. This is the main reason for the running time difference
of the IP Algorithm between real and random instances.

5 Summary and Future Research

The purpose of this paper is to introduce a new combinatorial optimization prob-
lem with important applications in bioinformatics. We suggest seven heuristics
and two exact algorithms for this problem and compare them in an experimen-
tal study. For the real instances, the best of our heuristics finds the optima in
almost all cases, whereas an exact algorithm is able to compute instances up
to dimension 26. For the exact algorithms the running times are considerably
smaller for the random instances than for the real instances.

Nevertheless the paper aims to be only a starting point for research in this
challenging area. It seems interesting to know, whether completely different
heuristics as genetic algorithms [9] or tabu search [8] can be applied for this
problem. Also for exact algorithms improvements seem to be possible. For ex-
ample, the BnB Algorithm might be improved by different branching criteria or
better lower bounds. Another possibility is to apply a branch-and-cut approach,
as successfully done by the program package Concorde [1,25] for the STSP. Fur-
thermore integer programming can be improved by cut-and-solve, as shown in
[3] for the special case of the ATSP.

Acknowledgement

This work was supported by German Research Foundation (DFG) under grant
number MO 645/7-3.

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem. A Computational Study. Princeton University Press, Princeton (2006)

2. Bertsekas, D.P.: A New Algorithm for the Assignment Problem. Math. Pro-
gram. 21, 152–171 (1981)

3. Climer, S., Zhang, W.: Cut-and-Solve: An Iterative Search Strategy for Combina-
torial Optimization Problems. Artificial Intelligence 170(8), 714–738 (2006)

4. Dell’Amico, M., Toth, P.: Algorithms and Codes for Dense Assignment Problems:
the State of the Art. Discrete Appl. Math. 100(1-2), 17–48 (2000)

5. Ellrott, K., Yang, C., Sladek, F.M., Jiang, T.: Identifying Transcription Factor
Binding Sites Through Markov Chain Optimization. Bioinformatics 18, 100–109
(2002)

6. Fischer, F., Lau, A.: University of Chemnitz. Private Communication
7. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction Heuristics for the Asym-

metric TSP. European J. Oper. Res. 129, 555–568 (2001)

224 G. Jäger and P. Molitor

8. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Bonn (1989)
10. Goldberg, A.V., Kennedy, R.: An Efficient Cost Scaling Algorithm for the Assign-

ment Problem. Math. Program. 71, 153–177 (1995)
11. Goldengorin, B., Jäger, G.: How To Make a Greedy Heuristic for the Asymmet-

ric Traveling Salesman Competitive. SOM Research Report 05A11, University of
Groningen, The Netherlands (2005)

12. Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer,
Heidelberg (2006)

13. Goldengorin, B., Jäger, G., Molitor, P.: Tolerances Applied in Combinatorial Op-
timization. J. Comput. Sci. 2(9), 716–734 (2006)

14. Goldengorin, B., Jäger, G., Molitor, P.: Tolerance Based Contract-or-Patch Heuris-
tic for the Asymmetric TSP. In: Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235,
pp. 86–97. Springer, Heidelberg (2006)

15. Grosse, I.: University of Halle-Wittenberg, Chair for Bioinformatics. Private Com-
munication

16. Gutin, G., Zverovich, A.: Evaluation of the Contract-or-Patch Heuristic for the
Asymmetric TSP. INFOR 43(1), 23–31 (2005)

17. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Sales-
man Heuristic. European J. Oper. Res. 126(1), 106–130 (2000)

18. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.:
Experimental Analysis of Heuristics for the ATSP. In: Gutin, G., Punnen, A.P.
(eds.) The Traveling Salesman Problem and Its Variations, ch. 10, pp. 445–489.
Kluwer, Dordrecht (2002)

19. Jonker, R., Volgenant, A.: A Shortest Augmenting Path Algorithm for Dense and
Sparse Linear Assignment Problems. Computing 38, 325–340 (1987)

20. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum,
New York (1972)

21. Karp, R.M., Steele, J.M.: Probabilistic Analysis of Heuristics. In: Lawler, E.L.,
Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman
Problem, ch. 6, pp. 181–205. John Wiley & Sons, Chichester (1985)

22. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Oper. Res. 21, 498–516 (1973)

23. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An Analysis of Several Heuristics
for the Traveling Salesman Problem. SIAM J. Comput. 6, 563–581 (1977)

24. Zhao, X., Huang, H., Speed, T.P.: Finding Short DNA Motifs Using Permuted
Markov Models. Journal of Computational Biology 12, 894–906 (2005)

25. Source code of [1] (Concorde), http://www.tsp.gatech.edu/concorde.html
26. Homepage of Cplex,

http://www.ilog.com/products/optimization/archive.cfm

27. Source code of [19], http://www.magiclogic.com/assignment.html

http://www.tsp.gatech.edu/concorde.html
http://www.ilog.com/products/optimization/archive.cfm
http://www.magiclogic.com/assignment.html

Fast Computation of Point-to-Point Paths on

Time-Dependent Road Networks

Giacomo Nannicini1,2, Philippe Baptiste1, Daniel Krob1, and Leo Liberti1

1 LIX, École Polytechnique, F-91128 Palaiseau, France
{giacomon,baptiste,dk,liberti}@lix.polytechnique.fr
2 Mediamobile, 10 rue d’Oradour sur Glane, Paris, France

Abstract. We propose an algorithm for the point-to-point time-depend-
ent shortest path problem, using which good solutions may be found in
a short time; our method provides an upper bound to the number of
settled nodes for each shortest path computation, which is highly desir-
able in some industrial applications. In particular, we address a typical
server scenario, where we have to compute point-to-point shortest paths
in road networks where arc costs (travelling times) are time-dependent,
and where each request has to be provided within an allotted time frame.

1 Introduction

Consider a weighted directed graph G = (V, A), a set T of time instants, and a
cost function c : A×T → R+: in our case, G represents a road network evaluated
by travelling times, so the graph may not be Euclidean, and the travel time
c((u, v), τ) on an arc (u, v) depends on the departure time τ from node u; this
allows us to model situations such as “rush hours”, where there are congestions
at particular times during the day. We assume that G is strongly connected.

Our study is motivated by the following industrial application. We have a
server machine that collects traffic information on a road network G = (V, A),
and has speed profiles based on historical data that models traffic situation on
each arc for each time of the day. We want to provide users (e.g. GPS devices,
web services) with point-to-point time-dependent shortest paths on G; for sev-
eral reasons (secrecy, bandwidth, etc.) these speed profiles cannot be directly
provided to the users, so computations have to be carried out by the server ma-
chine. This implies that each shortest path query has to be answered in a short
time. Since the road network in question is covered by traffic sensors that provide
the real-time and historical data used to compute the speed profiles, typically
its size will not be huge, but we assume that it is large enough so that an appli-
cation of Dijkstra’s algorithm [1] is too slow for our needs. Assuming that the
average number of shortest paths queries that have to be answered in a given
time interval is known, we would like to guarantee that each computation can
be carried out in the allotted time frame. Our method has a preprocessing phase
that provides an upper bound on the number of nodes that have to be explored
during a shortest path computation; this can be translated into an upper bound

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 225–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 G. Nannicini et al.

to the maximum computational time, using an upper bound on the time spent
per node and on the time for each priority queue operation. By increasing the
value of the approximation constant that is used throughout the whole method,
one is able to decrease this upper bound on the number of explored nodes (up
to a certain degree), so that the desired time requirements can be met.

In [2], the problem of finding the fastest path between two nodes on a time-
dependent graph is addressed: let τ ∈ T be the time of arrival at node u; assum-
ing that c((u, v), τ) is known for each (u, v) ∈ A and for all possible τ ∈ T , and
that the network has the FIFO property (also called non-overtaking property),
this problem can be polynomially solved [3] with Dijkstra’s algorithm [1], in the
same way as if arc costs were not time-dependent. If the FIFO property is not
respected, then the problem is NP-hard (see [4]). We focus on the FIFO variant
of this problem. For many industrial applications, Dijkstra’s algorithm is not
fast enough if applied on a large graph: a single application may require several
seconds on a graph with millions of nodes. If one removes the constraints on the
time-dependency of c, some practically efficient algorithms are [5,6]; the ALT
algorithm (A∗ with landmarks) has been tested in a time-dependent scenario
as well (see [7]). The ALT algorithm is more efficient than Dijkstra’s algorithm,
but even if time requirements for each shortest path computation are small on
average, they have a high variance, and thus this algorithm is not applicable to
our problem. In [8], the vertex set is partitioned in clusters, and precomputed
cluster distances are used to accelerate a Dijkstra search; the authors state that
their method can be used in a time-dependent scenario, but they do not provide
experimental results for this case. We first discussed the idea of guarantee regions
in [9]; however, in that case we addressed a different scenario, where the cost
function was not time-dependent. In this paper we extend those concepts to the
time-dependent case, present a different and more efficient query algorithm, and
provide a detailed experimental evaluation.

The rest of this paper is organized as follows: in Sect. 2 we define a guaran-
tee region with an approximation property for the point-to-point shortest path
problem on an unclustered graph; then we extend those concepts to a clustered
graph, so as to make them useful in practice. In Sect. 3 we describe our query
algorithm. In Sect. 4, we discuss some practical issues, such as how to effectively
store guarantee regions, and give computational results. In the rest of this section
we will give a problem definition and introduce our notation.

Problem definition. We consider the Point-to-Point Time-Dependent Sho-

rtest Path Problem (PPTDSPP): given a directed graph G = (V, A), two
distinct vertices s, t ∈ V , a set of time instants T , a starting time τ0 ∈ T and an
arc weight function c : A × T → R+, find a path p = (s = v1, . . . , vk = t) in G
such that the time dependent path cost, defined recursively as follows:

φ(v1, v2) = c((v1, v2), τ0)
φ(v1, . . . , vi) = φ(v1, . . . , vi−1) + c((vi−1, vi), φ(v1, . . . , vi−1))

for all 2 ≤ i ≤ k, is minimum.

Fast Computation of Point-to-Point Paths 227

In practice, the time-dependent cost function c is not necessarily fixed: there
may be different cost functions for different day types (e.g. weekdays, holidays),
or there may be updates to c based on real-time traffic information and traffic
forecasting. For the sake of simplicity, throughout this paper we will use a fixed
cost function.

We assume some lower and upper bounding functions λ, μ : A → R for c
are known. This is a reasonable assumption, since the travel time prediction
function c is modeled on historical data and is known in advance. For each arc
(u, v) ∈ A, let λ(u, v) = minτ∈T c((u, v), τ) be the minimum possible travel time
on that arc, and let μ(u, v) = maxτ∈T c((u, v), τ) be the maximum travel time;
we assume that these values are known for all arcs in A. If the time-dependent
cost function c is not fixed, we have to make sure that the lower and upper bounds
are still valid. We naturally extend this functions to be defined on a whole path
p, i.e. λ(p) =

∑
(u,v)∈p λ(u, v), μ(p) =

∑
(u,v)∈p μ(u, v). We call Gλ = (V, A, λ)

and Gμ = (V, A, μ) the graph G weighted respectively by the lower and upper
bounding functions λ, μ.

For s, t ∈ V we denote the set of all paths (s, . . . , t) from s to t by P (s, t),
the set of all shortest paths from s to t with departure time τ0 by P ∗

τ0
(s, t),

and the set of all shortest paths from s to t on the graph weighted by function
λ (respectively, μ) as P ∗

λ (s, t) (respectively, P ∗
μ(s, t)). Given U ⊆ V such that

s, t ∈ U , let G[U] be the subgraph of G induced by U . We denote the set of
all paths between s and t in G[U] by P [U](s, t), the set of all shortest paths
between s and t in G[U] with departure time τ0 by P ∗

τ0
[U](s, t) and the set of all

shortest path between s and t in G[U] weighted by function λ (respectively, μ)
by P ∗

λ [U](s, t) (respectively, P ∗
μ [U](s, t)).

We define φ∗ : V × V × T → R+, φ∗(s, t, τ0) = φ(p∗) for p∗ ∈ P ∗
τ0

(s, t) as the
time-dependent cost of the optimal path from s to t with departure time τ0.

2 Guarantee Regions

Given two nodes s and t, we can define a subset of V which guarantees an
approximation property when computing a time-dependent path between those
two nodes. The basic idea is as follows: we consider a path p between s and t;
its cost, weighted by the upper bounding function μ(p), is an upper bound on
the cost of the shortest path from s to t for any possible departure time. Then,
for each node v, we consider a lower bound on the cost of the shortest s → t
path passing through v: if the lower bound is greater or equal to μ(p)/K, then
v does not have to be explored to compute a K-approximated solution between
s and t. This is formally stated in Defn. 2.1 and Prop. 2.2. We remark that
these are the same concepts described in [9], but here we extend them to the
time-dependent case.

Definition 2.1. For K > 1, s, t ∈ V and any path p ∈ P (s, t), we define the
guarantee region between nodes s and t as:

γst(K, p) = {v ∈ V |v ∈ p ∨ ∃ q ∈ P (s, t) (v ∈ q ∧ λ(q) <
1
K

μ(p))}.

228 G. Nannicini et al.

Proposition 2.2. For K > 1, s, t ∈ V , p ∈ P (s, t) and r∗ ∈ P ∗
τ0

[γst(K, p)](s, t),
we have φ(r∗) ≤ Kφ∗(s, t, τ0) for any departure time τ0.

A natural choice for the “seed” path p is to consider the shortest path between
s and t on the Gμ; this allows us to minimize μ(p)/K.

Proposition 2.3. Let p∗ ∈ P ∗
μ(s, t) be a shortest s → t path in Gμ, and p ∈

P (s, t) be another (different) s → t path. If p∗ ⊂ γst(K, p) then γst(K, p∗) ⊆
γst(K, p).

Although the result only holds if p∗ ∈ P ∗
μ(s, t), p∗ ⊂ γst(K, p), Prop. 2.3 is useful

because it states that choosing the initial path p as the shortest path in Gμ is
a good choice, even if it is not necessarily the best one. The trouble with the
guarantee regions defined above is that, although only a pre-processing step,
building all guarantee regions for all node pairs in a very large graph is not a
feasible task with current technology. We deal with this problem by covering V
with clusters V1, . . . , Vk.

Definition 2.4. A covering V1, . . . , Vk of V is valid if for all i ≤ k there is
a vertex ci such that for all other vertices v ∈ Vi there is a path p ∈ P (ci, v)
entirely contained in Vi. We call ci the center of cluster i.

For all i ≤ k let σi=maxv∈Vi,p∈P∗
μ(v,ci) μ(p) and δi =maxv∈Vi,p∈P∗

μ (ci,v),p⊂Vi
μ(p))

be the cost of the longest shortest path in Gμ from v to ci over all v ∈ Vi and
the cost of the longest shortest path in Gμ entirely contained in Vi from ci to v
over all v ∈ Vi. These values are finite because we assumed that G is strongly
connected, and Defn. 2.4 ensures that a path entirely contained in Vi from the
central node ci to all other vertices in Vi exists.

To define guarantee regions that are valid for any two nodes in the source
and destination cluster, we will proceed in the same way as before; in order to
compute a valid upper bound on the cost of the shortest path between any node
in the source cluster Vi and any node in the destination cluster Vj , we will need
to consider not only the cost of a path between the centers of the two clusters,
but also the radii σi and δj .

Definition 2.5. Given a valid covering V1, . . . , Vk of V , for K > 1, i �= j ≤ k
and any path p ∈ P (ci, cj), we define the guarantee region between Vi and Vj as:

Γij(K, p)={v∈V |v ∈ p∨v ∈ Vj∨∃ q ∈ P (ci, cj) (v ∈ q∧λ(q)<
1
K

(μ(p)+σi+δj))}.

Theorem 2.6. Given a valid covering V1, . . . , Vk of V , for all s, t in V and for
K > 1 let i = argminn=1,...,k{φ∗(s, cn, τ0)}, j : t ∈ Vj; suppose i �= j, and let
p ∈ P (ci, cj). Then we have

min
v∈Γij(K,p)

{φ(q) + φ(r)|q ∈ P ∗
τ0

(s, v), r ∈ P ∗
φ(q)[Γij(K, p)](v, t), φ(q)≤φ∗(s, ci, τ0)}

≤ Kφ∗(s, t, τ0)

for any departure time τ0.

Fast Computation of Point-to-Point Paths 229

Thm. 2.6 suggests a query algorithm to compute valid paths between two
nodes; the idea is to find, from the source node, the closest cluster center as-
suming departure time τ0, and then “hop on” a guarantee region at that center.
That is, if i is the index of the cluster whose center is the closest to s assuming
departure time τ0, and j is the index of the cluster which contains t, then after
settling ci we constrain the search to explore only nodes in the guarantee region
between Vi and Vj . The query algorithm is described in Sect. 3.

A result similar to Prop. 2.3 holds for Γij(K, p∗) when p∗ ∈ P ∗
μ(ci, cj), and

serves as a hint to choose our initial path. Unfortunately, guarantee regions
defined this way may fail to be minimal (see [9]).

Proposition 2.7. Given a valid covering V1, . . . , Vk of V , for i, j ≤ k, i �= j let
p∗ ∈ P ∗

μ(ci, cj) be a shortest ci → cj path in Gμ, and p ∈ P (ci, cj) be another
(different) ci → cj path. If q∗ ⊂ Γij(K, p) then Γij(K, p∗) ⊆ Γij(K, p).

3 Query Algorithm

Given a valid covering V1, . . . , Vk for V , Thm. 2.6 points at a way to compute
a K-approximated time-dependent path between any pair of nodes s, t ∈ V .
Suppose we have already computed Γij(K, p∗) ∀i �= j, 1 ≤ i, j ≤ k, and for
p∗ ∈ P ∗

μ(ci, cj); let us define Γii(K, p∗) = V ∀i, 1 ≤ i ≤ k. We will use a slightly
modified version of time-dependent Dijkstra’s algorithm, where we will call l[v]
Dijkstra’s algorithm label of a node v ∈ V , and we denote by p[v] the parent
node for node v. We assume to set l[v] := ∞, p[v] := nil ∀v ∈ V . Algorithm 1
respects the theorem’s conditions; for simplicity, we will assume the departure
time to be τ0 = 0.

Proposition 3.1. Algorithm 1 computes a path p from s to t such that φ(p) ≤
Kφ∗(s, t, τ0).

In order to provide an upper bound on the computational time of each shortest
path computation, we have to provide an upper bound on the number of nodes
that are explored. The required upper bound on computational time can then
be derived considering the maximum time spent per node (i.e. while settling
the node with maximum degree in the graph) and the maximum time for a
priority queue operation. It is straightforward to note that, once Algorithm 1
has switched to phase 2, then the number of nodes that can be explored is
bounded from above by |Γij(K, p∗)| + |Vj |, where i and j are, respectively, the
index of the source and of the destination cluster. We have to provide a bound
on the number of nodes explored before switching to phase 2: in order to do so
we note that, if we restrict the algorithm in phase 1 to explore only nodes within
Vi, where s ∈ Vi, then the approximation guarantee is still valid, although the
solution quality may decrease. Thus we require that, if b nodes have already been
explored in phase 1, then the algorithm is restricted to explore only nodes in Vi,
until it switches to phase 2. It is easy to prove correctness of this approach. An
upper bound on the number of explored nodes is then

b + |Vi| + |Γij(K, p∗)| + |Vj |. (1)

230 G. Nannicini et al.

Algorithm 1. Compute a K-approximation of the time-dependent shortest path
from a node s to a node t

1: Let j : t ∈ Vj

2: Q ← {s}
3: l[s] ← 0
4: S ← φ
5: stop ← false

6: phase ← 1
7: i ← 0
8: while ¬stop do
9: extract x ← arg minq∈Q{l[q]}

10: S ← x
11: if x = t then
12: stop ← true

13: if phase = 1 ∧ ∃n : x = cn then
14: i ← n
15: phase ← 2
16: for all arcs (x, y) ∈ A do
17: if phase = 1 ∨ y ∈ Γij(K, p∗) then
18: if y /∈ S then
19: if y /∈ Q then
20: l[y] ← l[x] + c((x, y), l[x])
21: p[y] ← x
22: Q ← Q ∪ {y}
23: else if l[x] + c((x, y), l[x]) < l[y] then
24: l[y] ← l[x] + c((x, y), l[x])
25: p[y] ← x
26: return t, p[t], p[p[t]], . . . , s

The size of Γij(K, p∗) can be decreased by increasing K. A polynomial time
algorithm that computes guarantee regions is described in [9].

4 Computational Experiments

Once all guarantee regions have been computed, we have to store them efficiently
in memory for a fast access. This issue is crucial for performance, since the query
algorithm has to test, for each node, whether it belongs to a given guarantee
region or not, and thus the algorithm’s efficiency depends on how quickly this
answer can be given. Assuming that we know each node’s position on a plane, a
natural way to store node sets would be to define a geometric container for each
guarantee region, e.g. an ellipse; however, with this approach the routine which
tests if a node belongs to a given guarantee region yields too many false positive
answers, which is due to the fact that guarantee regions are an union of paths,
and thus their shape is not necessarily easy to model (see Fig. 1). Our approach
to solve this problem is to associate, with each node, a bit table, or “bit flags”,
which are used to determine if a node belongs to the guarantee region between

Fast Computation of Point-to-Point Paths 231

Fig. 1. Graphical representation of a guarantee region on a plane. Gray circled dots
represent source and destination node, while small black square dots represent nodes
within the guarantee region.

clusters i and j, which we call Γij , for given i �= j. Suppose we have covered V
with k clusters V1, . . . , Vk; then we associate a table T of k × (k − 1) bits each
with each node v, with the property that the j-th bit of the i-th row of T is
1 if and only if: v ∈ Γij if j < i, or v ∈ Γi(j+1) if j ≥ i. Since Γii = Vi, the
corresponding information does not have to be stored, thus each row can have
only k − 1 elements.

We used a subgraph of the French road network, corresponding to Île-de-
France (i.e. Paris and surroundings), to validate our approach with a prototype.
This subgraph has ≈ 400000 vertices and ≈ 800000 arcs. Time-dependent costs
were modeled as piecewise linear functions of time (expressed in seconds); that
is, on each edge we stored 24 breakpoint values, one for each hour over a day,
and the arc cost for a given second τ was computed via a linear interpolation
of the breakpoints preceding and following τ . For a subset of arcs (8374 arcs
in total, all of them corresponding to highways or high importance roads) we
used real historical data to compute the breakpoint values for weekdays; for the
remaining arcs we generated breakpoint values using the traffic-free speed value
for that arc over a day, and then generating two bendings in the speed profile so
as to slow the arc down by a factor of 1.5–3 during peak hours, with each drop
centered at 8 AM or 6 PM and lasting 3-5 hours. This empirical way to generate
time-dependent costs was not meant to be completely realistic, but at least it
should provide “reasonable” data. Then, for each query, we randomly generated
with a uniform distribution a departure time in seconds between 7 AM and 7
PM, so that the optimal time-dependent solution had a very high probability of
being different than the traffic-free static solution.

To validate the clustered approach we generated a k-center clustering over V ,
with k = 100 clusters, using k′-oversampling with k′ = 200 (see [8]); that is,
we picked 200 random nodes, we connected them to a “dummy” central node,
and we grew clusters of neighbouring nodes around each of the 200 centers.
Then, when all nodes had been assigned to a cluster, we progressively deleted

232 G. Nannicini et al.

Table 1. Computational results on clustered graph: average values. A ∗ in the first
column indicates that the value for K has been adaptively chosen, and we report the
starting value, which is also the maximum one.

max # settled nodes solution cost increase CPU time improved

K dijkstra approx naive approx savings paths

3 185514 60045 4.56% 1.10% 53.99% 91.8%
3.5 194640 35561 4.43% 4.91% 74.66% 74.5%

4 190077 15597 4.58% 9.27% 87.69% 53.2%
4.5 193240 9943 4.46% 16.51% 91.51% 38.2%

3.5∗ 188988 29341 4.38% 1.75% 78.22% 76.4%
4∗ 184327 17256 4.79% 4.54% 86.28% 67.2%

4.5∗ 190944 12675 4.40% 5.40% 91.72% 58.2%

the smallest remaining cluster, i.e. the one with the smallest radius, allowing
other clusters to grow into the deleted one. We iterated this procedure until
100 clusters were left. We compared the number of explored and settled nodes
between a Dijkstra search and Algorithm 1, where source and destination node
were chosen at random. We also compared the results with respect to the naive
algorithm of computing the shortest path in the static traffic-free graph, i.e. Gλ,
and then applying time-dependent costs. Results are reported in Table 1. For
each value of K (first column), we indicate the average number of settled nodes
in 1000 Dijkstra searches on the full graph, the average number of settled nodes
with Algorithm 1 and the same source-destination pairs, the average percentage
increase P of the naive solution value with respect to the optimum (that is,
if p∗ is the optimal solution and p is the naive solution, the average value of
(1−φ(p)/φ(p∗))), the average percentage increase of the approximated solution
value with respect to the optimum, the average CPU time savings of Algorithm
1 in percentage of the CPU times saved with respect to the exact algorithm (0%
means as slow as the exact algorithm; a negative value means that there is an
increase in CPU time, while a positive value means that CPU time decreased),
and the percentage of shortest path computations where the approximated a
solution had a cost smaller or equal than the cost of the naive solution. We
do not provide exact query times because those are highly dependent on the
implementation; what is most interesting, here, is the speed-up with respect to
plain Dijkstra’s algorithm in terms of number of settled nodes and of relative
CPU time. The number of settled nodes for the naive approach is not relevant:
many speed-up techniques exist for the static case (see [10]), so we can assume
that it is a fast computation.

While for small values of K computational times could increase, due to the
overhead for constraining the Dijkstra search within the boundaries of the guar-
antee region, for large enough values of the approximation constant the savings
in CPU time are significant, with a small average decrease of the solution quality
with respect to the optimum. We note, however, that the naive solution has a
better average behaviour than our approximated solution for values of K ≥ 3.5.
We tried to investigate the reason behind this. We can see that, for K = 3.5,

Fast Computation of Point-to-Point Paths 233

Table 2. Computational results on clustered graph with a maximum number of settled
nodes for each computation: average values

max # settled nodes solution cost increase CPU time improved

nodes dijkstra approx naive approx savings paths

50000 189994 23238 3.77% 3.98% 81.91% 74.8%
65000 190698 27159 3.73% 3.13% 78.54% 77.0%
80000 196529 37771 3.72% 2.71% 71.32% 81.4%

in 74.5% of the shortest path computations the approximated solution is better
than the naive one, but in the remaining cases the approximated solution is very
far from the optimum, while the naive one isn’t. This is due to the fact that, if K
is too large, then the guarantee region between two clusters i and j may consist
of only the shortest path between ci and cj on Gμ. Any approximated solu-
tion between those two clusters will pass through that path, which leads to poor
performance. For K = 3, in 91.8% of the shortest path computations the approx-
imated solution has a cost which is smaller than the cost of the naive solution,
so the average behaviour of the approximated solution is satisfying. However,
the computation is only 54% faster than a full (unconstrained) Dijkstra search.

To deal with this issue, we adaptively chose the value of the approximation
constant K as follows: for each cluster pair, we started with the maximum value
for K (Kcurr ← Kmax), and if the computed guarantee region included only the
path between the cluster centers we decreased K by 10% (Kcurr ← 0.9Kcurr).
We iterated until the guarantee region for that cluster pair had a cardinality
which was greater than the number of nodes on the shortest path on Gμ between
the cluster centers. Results for this approach are reported in Table 1, on the rows
with a ∗ in the first column. With this modification in the guarantee regions
generation process, we see that the solution quality significantly increases, while
still yielding a speed-up in computational time. Moreover, we are able to obtain
a better average behaviour than the naive approach for larger values of K that
allow for an increased speed-up factor, which is a necessary requirement to state
that our approach can be useful in practice. We can also see that, if we compare
the number of paths where the approximated solution is better than the naive
one, there is an improvement with respect to the basic version of the algorithm.
Although for K = 3.5 the naive solution will be better than the one computed
with our algorithm almost 25% of the times, from a practical point of view
the approximated solution has much more value with respect to the naive one,
because it changes dynamically reflecting traffic changes; on the other hand, the
naive solution between two points is always fixed regardless of the time of the
day, which is negatively perceived by users.

We also tested the performance of the approach described in Sect. 3 with
a maximum number of settled nodes for each point-to-point computation. In
order to do this, we initially set K = 3, and if necessary we increased its value
until all regions comprised a number of nodes smaller than a given threshold.
In (1), we set b = 4000. Results are reported in Table 2 (same columns as in
previous tables). We can easily observe that the algorithm’s performance does

234 G. Nannicini et al.

not decrease, and if we are willing to settle up to 65000 nodes for each shortest
path computation then our method finds a path which is on average better than
the naive solution, while still yielding a speed-up factor of almost 5 with respect
to plain Dijkstra’s algorithm.

5 Conclusion

We proposed an algorithm for the point-to-point time-dependent shortest path
problem; our approach is based on the definition of a covering of the vertex set,
and then for each pair of covering sets we use lower and upper bounding func-
tions for arc costs to define the set of nodes that has to be explored during a
Dijkstra search in order to compute a K-approximated path for chosen K. With
this approach we are able to give an upper bound on the number of settled nodes
during each shortest path computation; this, in turn, can be used to provide an
upper bound on the total time of the computation, which is very desirable in
some industrial applications. We have proposed and tested an algorithm to im-
plement this method in practice. Computational results show that our approach
results in a speed-up with respect to plain Dijkstra’s algorithm, with a small
average decrease in the solution quality.

References

1. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1, 269–271 (1959)

2. Dreyfus, S.: An appraisal of some shortest-path algorithms. Operations Re-
search 17(3), 395–412 (1969)

3. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for intel-
ligent vehicle-highway systems application. Journal of Intelligent Transportation
Systems 1(1), 1–11 (1993)

4. Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. Journal of the ACM 37(3), 607–625 (1990)

5. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: Efficient point-to-point short-
est path algorithms. In: Proceedings of the 8th Workshop on Algorithm Engineering
and Experiments (ALENEX 2006). LNCS, pp. 129–143. Springer, Heidelberg (2006)

6. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: [11], pp.
23–36

7. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: [11], pp.
52–65

8. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using pre-
computed cluster distances. In: Alvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS,
vol. 4007, pp. 316–327. Springer, Heidelberg (2006)

9. Nannicini, G., Baptiste, P., Krob, D., Liberti, L.: Fast paths in dynamic road net-
works. In: Quillot, A., Mahey, P. (eds.) Proceedings of ROADEF 2008, Clermont-
Ferrand, Université Blaise Pascal (2008)

10. Wagner, D., Willhalm, T.: Speed-up techniques for shortest-path computations. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 23–36. Springer,
Heidelberg (2007)

11. Demetrescu, C. (ed.): WEA 2007. LNCS, vol. 4525. Springer, Heidelberg (2007)

Ant Colony Optimization Metaheuristic for the

Traffic Grooming in WDM Networks

Xiangyong Li, Yash Aneja, and Fazle Baki

Odette School of Business, University of Windsor, Windsor City, Ontario, Canada
N9B 3P4

Abstract. This paper studies the routing strategy in non-bifurcated
traffic grooming in WDM networks. It is to optimally route the speci-
fied traffic over a given logical topology to minimize the congestion of
the WDM network. We first present the node-arc formulation. To over-
come the computational complexity by implementing exact algorithms,
we present an ant colony optimization (ACO) metaheuristic. The compu-
tational results compared to those of exact algorithms demonstrate that
ACO is a computationally efficient and suitable approach for obtaining
high-quality routing strategy in non-bifurcated traffic grooming problem
in WDM networks.

Keywords: WDM networks, traffic grooming, routing strategy,
ant colony optimization, metaheuristic.

1 Introduction

Wavelength Division Multiplexing (WDM) is emerging as a dominant and suc-
cessful technology for use in backbone networks. Generally, many small telecom-
munications flows are grouped into larger units, which can be processed as single
entities. This is called traffic grooming, which is to find the optimum strategy
to handle a set of request with deterministic source and destination nodes for
data communication. In general, traffic grooming can be divided into two cat-
egories, i.e. the bifurcated model of traffic grooming [1] and the non-bifurcated
model of traffic grooming. In the first approach, the communication t(s, d) from
end-nodes s to d can be split into a number of components, and the different
components may be communicated using different logical paths from s to d. The
latter approach deals with the case where each communication request can only
be communicated by a single lightpath [2]. The bifurcated model routing strat-
egy with splitting traffic flow has been widely discussed in [3,4]. In [2], the non-
bifurcated traffic grooming is studied, which has the objective of minimizing the
cost of the network by minimizing the number of lightpaths and maximizing the
throughput of the network. Hu and Leida [5] studied traffic grooming, routing,
and wavelength assignment in optimal WDM mesh networks (GRWA), where
the objective is to minimize the number of transponders. The non-bifurcated
traffic grooming has three subproblems: (1) find a logical topology; (2) carry out
RWA for each lightpath; (3) find an optimal traffic routing strategy [6,2].

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 235–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

236 X. Li, Y. Aneja, and F. Baki

This paper focuses on the routing problem in non-bifurcated traffic grooming
with the objective of minimizing the network congestion. The value of network
congestion is defined as the maximum traffic load on a logical link [4,6]. For a
given logical topology of a WDM network, the MILP of the routing subproblem
can be derived based on the node-arc representation. Such formulation can be
directly solved by a mathematical programming tool. But this formulation can
only work well for smaller networks. To the best of our knowledge, no study has
worked on the non-bifurcated traffic grooming minimizing the congestion.

The aim of this paper to deal with the routing strategy in non-bifurcated traf-
fic grooming to minimize the congestion in the WDM network by a metaheuristic.
In a WDM network, there exists a communication request between each pairs
of end-nodes. The total number of binary variables thus will become very large.
This makes the traffic grooming problem computationally challenging. It is not
practical to get optimal routing strategy to minimize congestion for large WDM
network. A feasible alternative way is to quickly produce good, although not
necessarily optimal, routing strategy by implementing the heuristics or meta-
heuristics. In this paper, we present an ant colony optimization metaheuristic
to deal with the non-bifurcated traffic grooming problem with the objective of
minimizing congestion. The remainder of this paper is organized as follows. In
section 2, we give the arc-node formulation of the traffic grooming problem. In
section 3, we present an ACO-based metaheuristic. Some experiments are car-
ried out to investigate the performance of ACO in Section 4. Our conclusions
are summarized in Section 5.

2 Problem Formulation

We first outline some notations as follows:

– N : the node set, N = {1, 2, 3, · · · , n}, where n is the number of nodes;
– A: the arc set, A = {(i, j)|i, j ∈ N, i �= j};
– K: the set of traffic demands, K = {1, 2, 3, · · · , |K|};
– |K|: number of traffic demands; generally total number of traffic demands is

n × (n − 1) in WDM networks;
– qk: the quantity of traffic demand k;
– sk: the source node of traffic demand k;
– dk: the destination node of traffic demand k;
– xk

ij : a binary decision variable; it equals 1 if the entire quantity of traffic
demand k is transferred on arc (i, j), and equals 0 otherwise;

– λmax: the congestion in the network, which represents the maximum traffic
load on the arcs in the network.

The node-arc formulation of the grooming problem is defined as follows:

min λmax (1)

s.t.
∑
k∈K

qkxk
ij ≤ λmax, ∀(i, j) ∈ A (2)

Ant Colony Optimization Metaheuristic for the Traffic Grooming 237

∑
j:(i,j)∈A

xk
ij −

∑
j:(j,i)∈A

xk
ji =

⎧⎨⎩
1, if i = sk

−1, if i = dk

0, otherwise
∀i ∈ N, ∀k ∈ K (3)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K (4)

where constraint (2) defines the value of congestion in the WDM network.

3 ACO-Based Metaheuristic for Traffic Grooming
Problems

We consider ant colony optimization (ACO) as an alternative method to solve
traffic grooming in WDM networks, especially for large networks. ACO is a
nature-inspired metaheuristic for hard CO problems [7]. The inspiring source
underlying ACO is the foraging behavior of real ants. The central mechanism of
ACO algorithms is to probabilistically construct solutions for the CO problem
by a parameterized probability model indicated by the pheromone trails. For the
detailed description of ACO and its variants, the readers can refer to [7].

The ACO algorithm for traffic grooming problem is a MAX -MIN ant sys-
tem. It forces the pheromone values in [τmin, τmax] that increases the diversifica-
tion and prevents the algorithm from converging to a solution. To automatically
scale the objective functions, we implement the algorithm in the hyper-cube
framework [8], where the pheromone trails values are restricted in [0, 1]. Hence-
forth, we refer to our proposed ACO algorithm as ACO-TG. ACO-TG acts in a
similar way as simple-ACO (S-ACO) [7]. Considering special network properties,
each traffic demand k is associated with one artificial ant, which independently
searches a path joining its source and destination nodes. At each iteration, one
ant starts from its origin and is launched toward the destination, where a greedy
stochastic policy is used to choose the next node to move to. Such policy is
indicated by the pheromone trails and heuristic information. The ants act inde-
pendently and communicate in an indirect way through pheromone trails and
network’s current traffic status. After one ant builds its path, the traffic state of
the network is dynamically updated and the traffic information is used for path
constructions for other commodities. Algorithm 1 gives the outline of ACO-TG.
Before discussing ACO-TG in detail, we first define some symbols used.

– pk: constructed path of traffic demand k linking its origin and destination;
– P : the set of paths already constructed at each iteration, P = {pk|k ∈ K};
– λ∗: the minimum congestion of the network since the start of ACO-TG;
– P ∗: the set of paths of the network with minimum congestion;
– D: the matrix of current traffic status of the WDM network;
– ino: maximum allowed iterations without solution improvement found;

(1) Definition of pheromone trails and heuristic information. In traffic
grooming, we need to find an independent path for each traffic demand. Accord-
ingly, we maintain an independent pheromone matrix Tk associated with each

238 X. Li, Y. Aneja, and F. Baki

Algorithm 1. ACO for traffic grooming (ACO-TG) in WDM networks
input the data of the problem instance
initialize pheromone trails T = {Tk|k ∈ K} and statistical data
set algorithmic parameters
while (termination conditions not met) do

P ← ∅
InitialNetworkTraffic(A)
for k = 1 to |K| do

ComputeHeuristic(D,A)

pk ← PathConstruction(Tk, η, k) {See Algorithm 2}
P ← P

S
pk

UpdateTraffic(D,pk)
end for
LocalSearch(P,λmax)
λmax = EvaluateSolution(P)
if P∗ = ∅ or λmax < λ∗ then

i0 = 0, P∗ ← P and λ∗ = λmax
else if

i0 ← i0 + 1
end if
if i0 ≥ ino then

ResetPherromoneTrails(T , A)
else

PheromoneTrailsUpdate(T , P∗, ρ)
end if

end while
output P∗ and λ∗

traffic demand k, which is defined as Tk = {τijk|(i, j) ∈ A}. The entry τijk indi-
cates the learned desirability for an ant to move to node j immediately after i in
the path of traffic demand k. The pheromone trails represent the search memory
and are set to 0.5 at the start of ACO-TG.

The heuristic information ηij is assigned to each arc (i, j). It is a problem-
specific information, which represents the attractability of visiting node j as
the next node in current partial path when the ant is located at i. j is one of
the neighboring nodes, i.e.j ∈ N (pk). We first describe the definition of N (pk),
which is also used in the path construction (see section 3.4). Let i be the end-
node of partial path pk of traffic demand k. Suppose N1 = {j|(i, j) ∈ A, j /∈ pk}
and N2 = {j|(i, j) ∈ A}. N (pk) defines the set of all neighboring nodes j, which
can be included in partial path pk of commodity k. It can be defined as follows:

N (pk) =
{
N1, if N1 �= ∅
N2, if N1 = ∅ (5)

The ant first chooses the next node among all unvisited nodes. If the ant reaches
a dead node, then we allow the ant to go back to one node already visited.

We consider two kinds of information to define the heuristic information.
The heuristic information is first to reflect current traffic state of the network.
Namely, the ants will prefer arcs with less traffic load. Since there is a communi-
cation request between each pair of end-nodes, the total number of commodities
will become very large. To get a better routing strategy, we should reduce the
influence of one path on possible congestion status of the network. With this
thought in mind, we naturally make the ants prefer shorter paths. Here the
shortest path is the one containing minimum number of arcs, which connect the
next node j to move and the destination of current traffic demand. All ants share

Ant Colony Optimization Metaheuristic for the Traffic Grooming 239

Algorithm 2. Path construction in ACO-TG — PathConstruction(Tk, η, k)
pk = {sk}, current ← sk
while (current �= dk) do

Choose next node ν ∈ N (pk) according to the policy in Equations (7)-(8)
pk ← pk S

ν;
end while
PathCycleDelete(pk)

output pk

the same heuristic information. It is computed as follows:

ηij = (η1
ij)

β(η2
ij)

γ

=
(

1 − DijP

j′∈N(pk)

Dij′

)β(
1

Wjdk

)γ (6)

where ηij is the function of η1
ij and η2

ij . η1
ij reflects current traffic state of the

network. It is a normalized value in [0, 1]. η1
ij contains two special cases. The first

is the situation where all the neighboring arcs except one arc (i, j0) have 0 traffic.
With the above equation, η1

ij0 = 0. In order to select this arc with a positive
probability, we can set it to a small value, e.g. η1

ij0
= 0.001. Moreover, at the

start of the iteration, we set all the η1
ij equal to 1. η2

ij is inversely proportional
to the shortest distance Wjdk

between j and the destination node dk of current
traffic demand k. When j is the destination node, Wjdk

is set to 1. β and γ are
two coefficients, which weigh the relative importance of two components.

(2) ComputeHeuristic(D, A). The heuristic information is updated dynam-
ically based on the traffic state of the networks. After the path is built for one
demand, its quantity will be placed on the path and current traffic status D will
thus be updated. Such traffic status will be used by other ants in path construc-
tion. Before constructing a new path, the heuristic information is first computed
that is achieved by the function ComputeHeuristic(D, A).

(3) InitialNetworkTraffic(A). It is to initialize the traffic state of the net-
work. In ACO-TG, the network’s current traffic state is the result of indirect
cooperation of the ants and the decision base for path construction. At the start
of each iteration, the network is initialized as a null network.

(4) PathConstruction(Tk, k). The most important component of ACO-TG is
the greedy stochastic policy applied to construct the path of each traffic demand
in the network. Such selection policy is a probability model that is indicated by
the pheromone trails and heuristic information. In the path construction, an ant
independently and incrementally builds a path for traffic demand k by sequen-
tially adding a node to the partial path pk until it reaches the destination. The
ant starts from the origin of traffic demand k and moves step by step toward
its destination. The procedure of path solution is given in Algorithm 2. We take
traffic demand k as an example to explain how its path is built probabilistically.

240 X. Li, Y. Aneja, and F. Baki

Located at current node i, the ant selects the next node j to move to by a
pseudorandom proportional rule as follows:

j =
{

arg maxν∈N (pk) {τiνk · ηiν}, if rand() ≤ p0

J, otherwise (7)

where rand() is a random number uniformly distributed in [0, 1]. p0 is para-
meter controlling the balance between diversification and intensification. When
rand() > p0, the next node j is probabilistically determined by some selection
strategies. Here the probabilistic choice of the next node is performed analo-
gous to the roulette wheel selection procedure of evolutionary computation. The
probability distribution is defined as follows:

pk
ij =

⎧⎨⎩
τijk·ηijP

j′∈N(pk)

τij′k·ηij′
, if j ∈ N (pk)

0, otherwise
(8)

where pk
ij denotes the probability of node j being chosen as the target in the

partial path of traffic demand k. Since an ant is allowed to return to the already
visited nodes, the cycle may occur. This further results in the situation where
the path may last for a long time. That is to say a path covers many nodes. We
consider a parameter maxl to control the maximum lifetime of each path. While
containing more than maxl nodes, the ant deletes the path and the memory
about the path, and re-constructs the corresponding path. In our experiment,
maxl is set equal to 25. In order to minimize the influence of one path on the
traffic state in the network, we delete the cycle in each path. It is achieved by
the function of PathCycleDelete(pk) in Algorithm 2.

After the path is constructed for one traffic demand, the corresponding quan-
tity will be placed on the network. And the local traffic of the network is accord-
ingly updated, which is achieved by the procedure UpdateTraffic(D, pk). The
new traffic information will be used in building the paths for other commodities.

(5) PheromoneTrailsUpdate(T , η, ρ). The aim of update of pheromone
trails is that the information in some good solutions should be indicated by
the pheromone trails and the nodes in these solutions will be biased by other
ants in sequent path constructing. Such update contains two subprocedures, i.e.,
evaporation and reinforcement. Pheromone trails on all arcs will first be reduced
by evaporation ratio. Second, some additional pheromone trails will be deposited
on the arcs in some good solutions. Since we define an independent pheromone
matrix for each traffic demand, an independent update is associated with each
traffic demand that is very different from the implementation in general ACO
methods. In the traffic grooming, the only task of the ants is to find a path
for each traffic demand. Therefore, we cannot associate an evaluation function
with the path of each traffic demand. In fact, all ants cooperate with each other
to find a traffic pattern with minimum congestion. As a result, the ants should
share the collective experience. As a natural idea, more additional reinforcement
should be given to the paths when a better traffic mode (less congestion) is

Ant Colony Optimization Metaheuristic for the Traffic Grooming 241

found. Therefore, we define a best path pk
best for each traffic demand k. It is the

path when the network has a best traffic mode. Since ACO-TG is implemented
in hyper-cube framework, the following update rule is considered:

τijk ← τijk + ρ(χ(i, j, pk
best) − τijk), ∀τijk ∈ Tk (9)

The function χ is given as

χ(i, j, pk
best) =

{
1, if arc (i, j) is included in path pk

best of traffic demand k
0, Otherwise

(10)
where ρ is the reinforcement that is set to ρ = 0.1 in our implementation. By the
above procedure, the pheromone matrix associated with each traffic demand is
sequentially renewed. It is important to note that using the best path to update
the pheromone trails is an exploitation procedure. By such approach, the search
memory can be used and reinforced that is an intensification strategy.

As indicated previously, ACO-TG is a MAX -MIN ant system. An upper
bound τmax and lower bound τmin are added to the pheromone values. In our
implementation, we have set the lower bound to 0.001 and upper bound to 0.999.
After the pheromone update, we set the pheromone values in [τmin, τmax]:

τijk ← min{τmax, max{τmin, τijk}} (11)

(6) Diversification and intensification strategies. The diversification and
intensification strategies are considered to enhance the performance of ACO-TG.
We consider the following simple local search, which works as follows.

(1) Find the arc (i∗, j∗) with traffic flow λmax;
(2) Find the set K∗ of commodities which use arc (i∗, j∗) in their paths;
(3) Sort the commodities in K∗ in descending order of the quantities;
(4) For each traffic demand k′ in K∗, we consider three different operations

to compute the maximum congestion saving Δk′ : (a) Break the arc (i∗, j∗), and
insert an unvisited node between in i∗ and j∗ with maximum congestion saving;
(b) Break the path and reconnect the predecessor node of i∗ to node j∗; (c)
Break the path and reconnect node i∗ to the successor node of i∗;

(5) If the maximum congestion saving in K∗ is bigger than 0, we perform the
operations and reconstruct a path for the corresponding traffic demand.

As an intensification strategy, the best path is used to update the pheromone
trails. This may make ACO-TG trapped in local optimum. To lead the algo-
rithm escape from local optimum, ResetPherromoneTrails(T , A) sets all the
pheromone values back to 0.5 when the number of iterations without improve-
ment found reaches to the value of ino.

4 Experiment and Computational Results

In this section, we carry out a series of experiments to investigate the perfor-
mance of ACO-TG on some generated instances with practical WDM networks.

242 X. Li, Y. Aneja, and F. Baki

ACO-TG is coded in C language and complied on VC++ 6.0. All the experiments
are implemented on a PC with Intel CPU 2.2G under Windows XP.

4.1 Benchmark Testing Problems

The testing instances are generated based on two real-world networks: the US
National Science Foundation network, the NSF network, and the British Syn-
chronous Digital Hierarchy network, the SDH network. The NSF network is the
old US T1 backbone that is composed of 14 nodes, 21 bidirectional links (42
arcs). The SDH network contains 30 nodes, 55 bidirectional links (110 arcs).
Based on NSF and SDH networks, we randomly generated two sets of instances,
respectively. The first set consists of 20 instances with NSF network. The second
set contains 10 instances with SDH network. For all the instances, there exists
one communication request between each pair of nodes. The quantity of each
traffic demand is an integer uniformly distributed in [5, 50]. The arc-node for-
mulation for the NSF network has 7644 binary variables and 2590 constraints.
However for the SDH network, there are 95700 binary variables and 26210 con-
straints. Therefore, it takes a long time to solve the arc-node formulation by
exact algorithms. This is also verified in the following experiments.

4.2 Parameters Tuning

The preliminary experiment focuses on the tuning of main parameters. We con-
sider the following candidate set, i.e. β ∈ {1, 2, 3, 5, 8, 10}, γ ∈ {1, 2, 3, 4, 5, 6},
p0 ∈ {0, 0.2, 0.4, 0.6, 0.7}. With each configuration, ACO-TG is implemented on
100 tuning instances, which is randomly generated using the method in the pre-
vious section. The computational results show that ACO-TG statistically has
best performance with the following configuration: β = 2, γ = 3, and p0 = 0.4.

4.3 Computational Results

In this section, we investigate the performance of ACO-TG on two sets of in-
stances. The first experiment is carried out to check how well ACO-TG works on
the instances of the NSF network. In addition to the determined parameters pre-
viously, the stopping criteria of ACO-TG is maximum number of iterations, i.e.,
100000 iterations. Two versions of ACO-TG are considered, namely, ACO-TG
with local search (ACO-TG), and ACO-TG without local search (ACO-TGw).
Each version of ACO-TG is run on all instance of NSF network with 20 trials.
To give an indicative comparison, we also use LINGO 9.0 to solve the node-arc
formulation on these 20 instances. Table 1 reports the results of ACO-TG on the
NSF network. For each instance, we show the best solutions (Best), the worst
solution (Worst), average solution (Avg.) and standard deviation (Std.) over 20
trials for ACO-TG. The CPU times (CPUs) taken to find best solutions, are also
reported. Since LINGO 9.0 can not find an optimal solution for the node-arc for-
mulation in reasonable times, we ran it for 19 hours for each instance and report

Ant Colony Optimization Metaheuristic for the Traffic Grooming 243

Table 1. Computational results of ACO-TG on the NSF network

No. LB
Node-arc method ACO-TG ACO-TGw
Best CPUs Best Worst Avg. Std. CPUs Best Worst Avg. Std. CPUs

1 347.5 353 19 h1 352 374 362.4 5.98 1200.4 s 355 385 367.15 7.47 236.9 s2

2 347.75 351 19 h 351 383 367.05 6.52 265.3 s 355 383 371.1 6.75 211.8 s
3 347 352 19 h 352 379 367.85 6.47 160.3 s 354 376 367.4 6.63 187.3 s
4 354 3583 19 h 355 371 363.5 5.46 672.1 s 357 377 365.35 5.83 152.4 s
5 343.25 350 19 h 345 382 359.9 8.50 881.9 s 348 376 365.4 7.60 190.1 s
6 347.25 351 19 h 355 373 366 4.90 382.3 s 356 378 369.6 6.35 282.6 s
7 362 377 19 h 364 383 373.8 6.21 179.2 s 365 388 378.05 5.63 170.3 s
8 336.25 344 19 h 344 372 358.15 6.85 224.8 s 346 371 359.5 7.91 253.5 s
9 345.75 355 19 h 353 388 367 10.24 195.2 s 356 377 368.2 7.18 85.3 s
10 362.5 367 19 h 364 383 373.9 6.24 396.4 s 369 391 380.15 7.51 148.0 s
11 325.5 330 19 h 330 345 339.8 4.69 486.4 s 336 360 346.15 6.07 239.9 s
12 344.5 349 19 h 349 363 361.4 5.85 376.5 s 357 380 368.3 5.97 265.1 s
13 326.6 332 19 h 329 348 335.5 5.68 307.0 s 331 350 340.9 5.43 256.6 s
14 345.75 350 19 h 349 382 363.85 7.23 99.7 s 351 373 362.2 7.50 81.3 s
15 306.5 311 19 h 315 344 328.45 7.01 390.6 s 323 350 333.45 6.29 104.0 s
16 360 362 19 h 361 375 367.85 4.23 297.5 s 363 376 368.6 3.47 191.1 s
17 373.75 380 19 h 376 400 391.6 8.29 819.8 s 387 413 397.6 7.84 112.4 s
18 365.75 369 19 h 366 389 374.5 8.41 699.7 s 368 390 377.8 7.53 189.1 s
19 339.67 345 19 h 347 376 365.3 7.96 174.0 s 351 383 362.3 8.34 143.1 s
20 321.75 327 19 h 329 361 348.05 7.64 162.8 s 331 365 347.2 8.10 119.0 s
1 “h” denotes hours.
2 “s” denotes seconds.
3 Based on the node-arc formulation, LINGO 9.0 can not find an optimal solution and still

returns solution 358 after it is implemented for 305 hours.

the best feasible solutions at that time. Additionally, we also solve the linear
programming relaxation of the node-arc formulation. Accordingly the solution
of linear programming relaxation gives a lower bound (LB), which is also shown
in Table 1. Form computational results, we can draw the following conclusions:

(1)In general, ACO-TG works very well and is a computationally efficient ap-
proach for traffic grooming; it has found high-quality routing strategy quickly;

(2) The computational time of node-arc method is very expensive. It will take
a long time to find good solutions by exact algorithm; in contrast to node-arc
method, ACO-TG can find better solutions very quickly;

(3) Compared to the solutions found by exact algorithm in 19 hours, ACO-TG
can found better solutions within small CPU times. For example, on instance 4,
the best feasible solution, which is returned by LINGO within 305 hours, has the
objective value 358. ACO-TG, however, can find a better solution within 335.7
seconds that has smaller objective values, 355. Same conclusion also holds for
instances 5, 7, 9, 10, 13, 16, 17, and 18. For instance 18, we found that ACO-TG,
in fact, had already found a better solution 368 within 211 seconds;

(4) The computational results also indicate the merit of local search, which
has improved the performance of ACO-TG. But on the other hand, the consid-
eration of local search increases the computational time;

(5) It can also be seen that both versions of ACO-TG are an approach with
high robustness, which is indicated by the standard deviation column.

The second experiment is to check ACO-TG’s performance on the problems
of the SDH network. The SDH network is a much bigger network. ACO-TG is
implemented to solve all instances of SDH network with 10 runs. The results
are reported in Table 2. LINGO 9.0 is also used to get the lower bound (LB)
and feasible integer solutions on all instances. Since the SDH network is a big-
ger network, the computation time is very much more. Therefore, LINGO 9.0

244 X. Li, Y. Aneja, and F. Baki

Table 2. Computational results of ACO-TG on the SDH network

No.
Linear relaxation Node-arc method ACO-TG
LB CPUs LINGO-first CPUs Best Worst Avg. Std. CPUs

1 1963.17 19:10:211 2020 19:11:04 2041 2223 2111.4 43.38 2481.2 s2

2 1969.33 19:11:11 2019 19:07:01 2082 2205 2131.20 31.58 4017.0 s
3 1953.25 18:58:32 2001 19:03:20 2059 2085 2094.25 28.16 3618.0 s
4 2002.5 19:01:12 2046 19:01:11 2086 2210 2133.10 34.68 3937.7 s
5 2002 19:14:15 2062 18:58:27 2104 2228 2158.00 34.53 3818.3 s
6 2010.33 19:10:09 2060 18:56:52 2074 2151 2120.20 36.07 1524.0 s
7 1956.33 19:22:21 2012 18:53:34 2047 2176 2115.60 33.88 4047.5 s
8 2053 18:59:07 2133 18:52:28 2127 2240 2178.65 28.44 2451.7 s
9 2105 19:06:12 2163 19:40:13 2185 2249 2206.50 28.82 3150.0 s
10 1935.17 19:18:45 1999 19:37:15 1991 2076 2022.45 22.42 3613.2 s

1 x:xx:xxx denotes x hours, xx minutes, and xxx seconds.
2 “s” denotes seconds.

is only performed to get the first feasible integer solution (LINGO-first) and
corresponding CPU times (CPUs) is reported. In the context of ACO-TG, the
best solution (Best), the worst solution (Worst), average solution (Avg.) and
standard deviation (Std.) over 10 trials are reported. Additionally, the computa-
tional times (CPUs) to find the best solution, is also given. The results in Table
2 indicate that the SDH network is more complex than the NSF network, and
therefore more difficult to solve by exact algorithms. In fact, it took about 19
hours for LINGO 9.0 to find the first feasible solution for each instance. However,
ACO-TG can return high-quality solutions relatively quickly. Our future work
will focus on the improvement of implementation speed on large WDM networks.
Based on the computational results in Tables 1 and 2, ACO-TG, in general, can
produce high-quality routing strategy in reasonable computation times.

5 Conclusions

This paper is aimed at dealing with non-bifurcated traffic grooming problem in
WDM networks, where most of nodes communicate with each other. The ob-
jective is to find a communication path for each traffic demand minimizing the
congestion. To overcome the computational complexity of exact algorithms, we
propose an ACO-based metaheuristic (ACO-TG). The computational results in-
dicate that ACO-TG is an effective approach to find high-quality routing strat-
egy within moderate computational effort. The future work will focus on the
performance improvement of ACO-TG on large and practical WDM networks.

References

1. Dutta, R., Rouskas, G.N.: On optimal traffic grooming in wdm rings. IEEE Journal
on Selected Areas in Communications 20, 110–121 (2002)

2. Bandyopadhyay, S., Klasing, R.: Dissemination of information in optical networks:
from technology to algorithms. Springer, Heidelberg (2007)

3. Krishnaswamy, R., Sivarajan, K.: Design of logical topologies: A linear formulation
for wavelength routed optical networks with no wavelength changers. IEEE/ACM
Transactions on Networking 9, 186–198 (2001)

Ant Colony Optimization Metaheuristic for the Traffic Grooming 245

4. Aneja, Y., Bandyopadhyay, S., Jaekel, A.: On routing in large wdm networks. Op-
tical Switching and Networking 3, 219–232 (2006)

5. Hu, J., Leida, B.: Traffic grooming, routing, and wavelength assignment in optical
wdm mesh networks. In: Proceedings of 2004 IEEE INFOCOM. IEEE Press, Los
Alamitos (2004)

6. Dutta, R., Rouskas, G.: A survey of virtual topology design algorithms for wave-
length routed optical networks. Optical Networks Magazine 1, 73–89 (2000)

7. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Massachusetts
(2004)

8. Blum, C., Dorigo, M.: The Hyper-Cube Framework for Ant Colony Optimization.
IEEE Transactions On Systems, Man, And Cybernetics- Part B 34, 1161–1172
(2004)

Elementary Approximation Algorithms for

Prize Collecting Steiner Tree Problems

Shai Gutner�

School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
gutner@tau.ac.il

Abstract. This paper deals with approximation algorithms for the prize
collecting generalized Steiner forest problem, defined as follows. The in-
put is an undirected graph G = (V, E), a collection T = {T1, . . . , Tk},
each a subset of V of size at least 2, a weight function w : E → R+,
and a penalty function p : T → R+. The goal is to find a forest F that
minimizes the cost of the edges of F plus the penalties paid for subsets
Ti whose vertices are not all connected by F .

Our main result is a combinatorial (3− 4
n
)-approximation for the prize

collecting generalized Steiner forest problem, where n ≥ 2 is the number
of vertices in the graph. This obviously implies the same approximation
for the special case called the prize collecting Steiner forest problem (all
subsets Ti are of size 2).

The approximation ratio we achieve is better than that of the best
known combinatorial algorithm for this problem, which is the 3-approx-
imation of Sharma, Swamy, and Williamson [13]. Furthermore, our algo-
rithm is obtained using an elegant application of the local ratio method
and is much simpler and practical, since unlike the algorithm of Sharma
et al., it does not use submodular function minimization.

Our approach gives a (2 − 1
n−1

)-approximation for the prize collect-
ing Steiner tree problem (all subsets Ti are of size 2 and there is some root
vertex r that belongs to all of them). This latter algorithm is in fact the lo-
cal ratio version of the primal-dual algorithm of Goemans and Williamson
[7]. Another special case of our main algorithm is Bar-Yehuda’s local ratio
(2 − 2

n
)-approximation for the generalized Steiner forest problem (all the

penalties are infinity) [3]. Thus, an important contribution of this paper is
in providing a natural generalization of the framework presented by Goe-
mans and Williamson, and later by Bar-Yehuda.

Keywords: Approximation algorithms, prize collecting Steiner tree
problem, local ratio, primal-dual.

1 Introduction

There is substantial literature dealing with approximation algorithms for prize
collecting Steiner tree problems. The purpose of this paper is to present el-
egant combinatorial algorithms for these problems. The local ratio technique
� This paper forms part of a Ph.D. thesis written by the author under the supervision

of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 246–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Elementary Approximation Algorithms 247

[2,3,4] that we employ enables us to present simple algorithms together with a
straightforward analysis.

The main focus of the paper in on the prize collecting generalized Steiner
forest (PCGSF) problem, defined as follows. The input is an undirected graph
G = (V, E), a collection T = {T1, . . . , Tk}, each a subset of V of size at least 2,
a weight function w : E → R+, and a penalty function p : T → R+, where R+

denotes the set of positive real numbers. The objective is to compute a forest F
that minimizes the cost of the edges of F and the sum of the penalties of the
subsets Ti whose vertices are not all connected by F . Thus, all the vertices of
a subset Ti must be in the same connected component of F in order to avoid
the penalty. Note that we intentionally define costs and penalties to be positive,
as this will turn out to be convenient later. During intermediate stages of the
algorithm, zero cost edges are contracted, whereas zero penalties can be ignored.

Previous Results. The special case of the PCGSF problem called the prize
collecting Steiner forest problem (all subsets Ti are of size 2) has received con-
siderable attention lately. A modification of the LP rounding algorithm in [6] im-
plies a 3-approximation for this problem. This was improved in [9] to give an LP
based 2.54-approximation for the problem as well as a primal-dual combinatorial
(3− 2

n)-approximation using Farkas’ Lemma. The authors of [8] give a 3-budget-
balanced and group-strategyproof mechanism for the game-theoretic version of
the prize collecting Steiner forest problem, which is an extension of the method
presented in [12]. Their result also provides a primal-dual 3-approximation al-
gorithm for this problem.

A generalized framework of the prize collecting problems with an arbitrary
0 − 1 connectivity requirement function and a submodular penalty function is
studied by Sharma, Swamy, and Williamson in [13]. Their model captures both
the PCGSF problem defined in this paper as well as the problems of [10,9]. The
authors give a complicated primal-dual 3-approximation algorithm together with
an LP rounding algorithm with a performance ratio of 2.54.

Two classical primal-dual algorithms, relevant to this paper, are due to Goe-
mans and Williamson [7]. They give a (2 − 1

n−1)-approximation for the prize
collecting Steiner tree problem (all subsets Ti are of size 2 and there is some
root vertex r that belongs to all of them) as well as a (2 − 2

n)-approximation
for the generalized Steiner forest problem (all the penalties are infinity) that
simulates an algorithm of Agrawal, Klein, and Ravi [1]. For the latter problem,
a simple (2 − 2

n)-approximation based on the local ratio technique is presented
by Bar-Yehuda in [3].

Our Results. The main result is a local ratio (3 − 4
n)-approximation for the

prize collecting generalized Steiner forest problem, where n ≥ 2 is the number
of vertices in the graph. This obviously implies the same approximation for the
special case of the prize collecting Steiner forest problem, which was previously
studied in [9,8].

The approximation ratio of our algorithm is slightly better than that of the
3-approximation of Sharma et al. [13], which is the best known combinatorial

248 S. Gutner

approximation algorithm for the problem. The algorithm we present makes an el-
egant use of the local ratio method and therefore, unlike the algorithm of Sharma
et al., does not use submodular function minimization. This makes our approach
much simpler and practical. We also note that the main algorithm presented in
this paper is not the local ratio version of the primal-dual 3-approximation al-
gorithm from [13] and cannot be obtained from it using the equivalence between
the primal-dual schema and the local ratio technique [5].

There are two interesting special cases of our main algorithm. We present a
(2− 1

n−1)-approximation for the prize collecting Steiner tree problem (all subsets
Ti are of size 2 and there is some root vertex r that belongs to all of them). This
latter algorithm is in fact the local ratio version of the primal-dual algorithm
of Goemans and Williamson [7]. Another special case of our main algorithm is
Bar-Yehuda’s local ratio (2− 2

n)-approximation for the generalized Steiner forest
problem (all the penalties are infinity) [3]. Thus, an important contribution of
this paper is in providing a natural generalization of the framework presented
by Goemans and Williamson, and later by Bar-Yehuda.

2 The Prize Collecting Generalized Steiner Forest
Problem

In this section we present the algorithm for the PCGSF problem. The following
are some definitions that are needed for presenting the algorithm.

Definition 1. Given an instance (G, T = {T1, . . . , Tk}, w, p) of the PCGSF
problem, a vertex is said to be an active vertex if it belongs to at least one
of the subsets Ti.

Definition 2. A solution F to the PCGSF problem is a minimal solution if
every leaf (a vertex of degree 1) of the forest F is an active vertex.

Definition 3. Suppose G = (V, E) is an undirected graph and T = {T1, . . . , Tk}
is a collection of subsets of V of size at least 2. For every active vertex v, let t(v)
be some arbitrary subset Ti for which v ∈ Ti. The degree-weighted instance
corresponding to G,T , and t is the quadruple (G, T, w, p), defined as follows.

– For each e ∈ E, w(e) is the number of its endpoints that are active vertices.
– For each Ti ∈ T , p(Ti) = |{v ∈ Ti|t(v) = Ti}|.

Note that in the previous definition, the weight of an edge w(e) can take a value
of 0, 1, or 2, whereas the penalty of a subset Ti satisfies 0 ≤ p(Ti) ≤ |Ti|. The
following definition describes the important and natural operation of an edge
contraction.

Definition 4. Let (G, T, w, p) denote an instance of the PCGSF problem. The
contraction of an edge {u, v} into a new vertex x results in a new instance
(G′, T ′, w′, p′), defined as follows.

Elementary Approximation Algorithms 249

– For a vertex y, if y is adjacent in G to both u and v, then it is adjacent to
x in G′ and w′({y, x}) = min{w(y, u), w(y, v)}. We say that the edge {y, x}
of the graph G′ corresponds to the original edge in the graph G for which
the minimum is attained.

– For any subset Ti ∈ T , if Ti∩{u, v} �= ∅, then define T ′
i = (Ti∪{x})−{u, v}.

In case Ti �= {u, v}, it follows that |T ′
i | ≥ 2 and the new subset T ′

i is added
to T ′. During this process, there could be two subsets Ti and Tj for which
T ′

i = T ′
j. Obviously, the two subsets can be joined and their new penalty in

p′ is defined to be p(Ti) + p(Tj).

The following two lemmas establish the important property of minimal solutions
to degree-weighted instances.

Lemma 1. Every solution to a degree-weighted instance of the PCGSF problem
has a total cost of at least n, where n ≥ 2 is the number of active vertices.

Proof. Consider some specific active vertex v. There is some subset Ti ∈ T
for which t(v) = Ti. In case the vertex v is not connected in the solution to all
the other vertices of Ti, then we pay a penalty of 1 because of v. Otherwise, the
solution must contain at least one edge incident with v. This means that the
solution pays a cost of 1 for this edge due to vertex v. Every active vertex incurs
a cost or penalty of at least 1, and therefore the total cost of the solution is at
least n. �	

Lemma 2. Every minimal solution to a degree-weighted instance of the PCGSF
problem has a total cost of at most 3n − 4, where n ≥ 2 is the number of active
vertices.

Proof. Examine some specific connected component of the solution that contains
q active vertices. Since this is a minimal solution, all of its leaves are active
vertices. We prove by induction on q that the cost of the edges in this connected
component is at most 2(q − 1). For q = 1, the connected component is a vertex
with no edges, so this is obviously true. For q = 2, the connected component
must be a path, whose two endpoints are active vertices, and the claim holds.

Suppose that q > 2. Take some leaf v, which by our assumption must be an
active vertex. Now examine the path that starts from v and continues until the
first time that either a vertex of degree at least 3 or another active vertex is
reached. The cost of the edges in this path is at most 2. After removing this
path from the solution, we are left with a connected component with q−1 active
vertices whose leaves are all active vertices. The result now follows from the
induction hypothesis.

For proving the lemma, we distinguish between two cases. If all the active
vertices are in one connected component of the solution, then the solution is ac-
tually a tree and no penalties are paid. The cost of the edges in the solution is at
most 2(n − 1). The total cost, including the penalties, is also 2(n − 1) ≤ 3n − 4,
since n ≥ 2. Otherwise, there are at least two connected components in the

250 S. Gutner

solution. The cost of the edges in all the components can be at most 2(n − 2).
Note that the sum of all penalties in the instance is exactly n. The solution pays
at most n for penalties, so the total cost is at most 2(n − 2) + n = 3n − 4. �	

The last two lemmas determine the approximation ratio of the algorithm. The
purpose of the next lemma is to show that the analysis is indeed tight.

Lemma 3. For every n ≥ 2, there exists a degree-weighted instance of the
PCGSF problem on a graph with n vertices for which the optimal solution has
total cost n whereas some minimal solution has a total cost of 3n − 4.

Proof. Consider the following instance with vertices v1, . . . , vn, which are all
active. Between every two vertices there is an edge of cost 2. Define p({v1, v2}) =
2 and p({v1, vi}) = 1 for every 3 ≤ i ≤ n. All other penalties are zero.

The optimal solution has no edges. The cost of the edges is zero and the sum
of penalties paid is n for a total cost of n. A possible minimal solution is the path
v2, v3, . . . , vn. The cost of the edges is 2(n − 2) and the payment of penalties is
still n for a total cost of 3n − 4. �	

We now present the main algorithm of the paper.

Algorithm 1. PCGSF (G, T, w, p)
Input: Graph G = (V, E), collection T = {T1, . . . , Tk}, each a subset of V of size

at least 2, weight function w : E → R+, penalty function p : T → R+

Output: A forest F ⊆ E
if T = ∅ then

return ∅
else

The set of active vertices is defined as Active ← {v ∈ V |∃i v ∈ Ti}
For every edge e ∈ E, let d(e) be the number of its active endpoints
For every active vertex v, let t(v) be an arbitrary subset Ti for which v ∈ Ti

For every Ti ∈ T , define d(Ti) = |{v ∈ Ti|t(v) = Ti}|
ε ← min({w(e)/d(e)|e ∈ E, d(e) �= 0} ∪ {p(Ti)/d(Ti)|Ti ∈ T, d(Ti) �= 0})
Define a weight function w′ as follows: w′(e) = w(e) − d(e) · ε for all e ∈ E
Define a penalty function p′ as follows: p′(Ti) = p(Ti) − d(Ti) · ε for all Ti ∈ T
Let Z be the set of all edges e ∈ E for which w′(e) = 0 and let Z′ be a
spanning forest of (V, Z)
Let (G′, {T ′

1, . . . , T
′
k}, w′′, p′′) be obtained from (G, T, w′, p′) by contracting

the edges in Z′

Let T ′ be the collection of subsets T ′
i of size at least 2 for which p′′(T ′

i) > 0
F ′ ← PCGSF (G′, T ′, w′′, p′′)
Let F ′′ be the forest obtained from the edges in G corresponding to those in
F ′ together with Z′

while there is a leaf in F ′′ which is not an active vertex do
Remove from F ′′ the edge incident with that leaf

return F ′′

Elementary Approximation Algorithms 251

Theorem 1. There is a local ratio (3 − 4
n)-approximation algorithm for the

PCGSF problem, where n ≥ 2 is the number of vertices in the graph.

Proof. The pseudocode of algorithm PCGSF (G, T, w, p) that solves this prob-
lem appears above. The proof is by induction on |E| + k. Given an instance
(G, T, w, p) of the problem, the functions w and p are decomposed by the algo-
rithm, so that w = w′ + δ and p = p′ + γ, where the quadruple (G, T, δ, γ) is a
constant multiple of a degree-weighted instance. It follows from Lemmas 1 and
2 that the solution F ′′ computed by the algorithm is a (3 − 4

n)-approximation
for the instance (G, T, δ, γ).

Before the next recursive call, the algorithm either contracts an edge or re-
duced some penalty to zero. By the induction hypothesis, the recursive call to
PCGSF (G′, T ′, w′′, p′′) returns a solution F ′ which is a (3− 4

n)-approximation.
Adding edges of cost zero to F ′ does not change the cost of the solution. Re-
moving leaves that are not active vertices can only reduce the cost. Thus, it is
easy to verify that the solution F ′′ computed by the algorithm is also a (3− 4

n)-
approximation for the instance (G, T, w′, p′). It follows from the basic local ratio
decomposition observation that F ′′ is a (3 − 4

n)-approximation for the instance
(G, T, w′ + δ, p′ + γ), as needed.

As for the time complexity of the algorithm, the argument above shows that
the algorithm performs at most |E|+ k recursive calls, and thus runs in polyno-
mial time. �	

3 The Prize Collecting Steiner Tree Problem

This section introduces the algorithm for the prize collecting Steiner tree (PCST)
problem. An instance of this problem consists of a graph G = (V, E), a root
vertex r ∈ V , a subset U ⊆ V − {r} of active vertices, a weight function w :
E → R+, and a penalty function p : U → R+. Given an instance (G, r, U, w, p),
the goal is to compute a tree rooted at r that minimizes the cost of the edges
of the tree plus the penalties paid for vertices not in the tree. An active vertex
is simply a vertex with positive penalty (the root vertex is not active). The set
of active vertices is denoted by U in the problem instance. A minimal solution
is a tree rooted at r whose leaves are active vertices (and possibly also r). In a
degree-weighted instance corresponding to a graph G = (V, E), a root r and a
subset U ⊆ V − {r} of active vertices, the weight function w(e) is equal to the
number of active endpoints of the edge e, whereas the penalty function satisfies
p(v) = 1 for every v ∈ U and p(v) = 0 otherwise. When the edge {u, v} is
contracted, the penalty of the new vertex created is p(u) + p(v). This is except
for when an edge {r, v} incident with the root is contracted. In this case, the
new vertex created is also called r and it still has zero penalty.

Lemma 4. Every solution to a degree-weighted instance of the PCST problem
has a total cost of at least n, where n is the number of active vertices.

Proof. Let q be the number of active vertices connected to r in the solution. Each
such vertex must have some edge incident with it in the solution and therefore

252 S. Gutner

a cost of at least 1 is paid for this vertex. For each of the n − q active vertices
that are not connected to r, a penalty of 1 is paid. �	

Lemma 5. Every minimal solution to a degree-weighted instance of the PCST
problem has a total cost of at most 2n − 1, where n is the number of active
vertices.

Proof. Let q be the number of active vertices connected to r in the solution. An
argument similar to the one used in the proof of Lemma 2 gives that the cost of
the edges in a minimal solution is at most 2q − 1. The penalty paid is n − q for
a total cost of 2q − 1 + n − q = n + q − 1 ≤ 2n − 1, since q ≤ n. �	

The last two lemmas determine the approximation ratio of the algorithm. The
purpose of the next lemma is to show that the analysis is indeed tight.

Lemma 6. For every n ≥ 1, there exists a degree-weighted instance of the PCST
problem on a graph with n active vertices for which the optimal solution has total
cost n whereas some minimal solution has a total cost of 2n − 1.

Proof. Consider the following instance with a root vertex r together with the
vertices v1, . . . , vn. For every 1 ≤ i ≤ n, the vertex vi is active and has a penalty
of 1. Between every two vertices there is an edge of cost 2, except for edges
between the root r and a vertex vi that have a cost of 1.

The optimal solution has no edges. The cost of the edges is zero and the sum
of penalties paid is n for a total cost of n. A possible minimal solution is the
path r, v1, v2, . . . , vn. The cost of the edges is 1 + 2(n − 1) and the payment of
penalties is zero for a total cost of 2n − 1. �	

Theorem 2. There is a local ratio (2 − 1
n−1)-approximation algorithm for the

PCST problem, where n ≥ 2 is the number of vertices in the graph.

Proof. The pseudocode of algorithm PCST (G, r, U, w, p) that solves this prob-
lem appears below. The proof is analogues to that of Theorem 1 using Lemmas
4 and 5 instead of Lemmas 1 and 2. Note that since the root is not an active
vertex, the maximum number of active vertices is n − 1. �	

4 Concluding Remarks

– The integral solution computed by our algorithm for the prize collecting
generalized Steiner forest problem can be compared with the optimal solution
of the natural LP for this problem. It can be verified that the algorithm is
still a (3 − 4

n)-approximation, even with respect to this optimal fractional
solution. This is also implied by the equivalence between the local ratio
method and the primal-dual schema.

– The algorithms presented in this paper use the local ratio method which
seems like the most natural, simple and time-efficient framework for address-
ing prize collecting Steiner tree problems. This should be further explored to

Elementary Approximation Algorithms 253

Algorithm 2. PCST (G, r, U, w, p)
Input: Graph G = (V, E), root vertex r ∈ V , subset U ⊆ V − {r} of active

vertices, weight function w : E → R+, penalty function p : U → R+

Output: A tree T ⊆ E rooted at r
if U = ∅ then

return ∅
else

For every edge e ∈ E, let d(e) be the number of its active endpoints
ε ← min({w(e)/d(e)|e ∈ E, d(e) �= 0} ∪ {p(v)|v ∈ U})
Define a weight function w′ as follows: w′(e) = w(e) − d(e) · ε for every e ∈ E
Define a penalty function p′ as follows: p′(v) = p(v) − ε for every v ∈ U
Let Z be the set of all edges e ∈ E for which w′(e) = 0 and let Z′ be a
spanning forest of (V, Z)
Let (G′, r, U ′, w′′, p′′) be obtained from (G, r, U, w′, p′) by contracting the
edges in Z′

T ′ ← PCST (G′, r, U ′, w′′, p′′)
Let the tree T ′′ be the connected component of r in the union of the edges in
G corresponding to those in T ′ together with Z′

while there is a leaf in T ′′ which is not an active vertex (or the root r) do
Remove from T ′′ the edge incident with that leaf

return T ′′

determine whether this approach has applications for facility location prob-
lems and for the multicommodity rent-or-buy (MRoB) problem. The tech-
niques presented in [11] might be helpful in enhancing the time performance
of our algorithms.

– An interesting open problem is to decide whether there is a combinatorial
algorithm for the prize collecting Steiner forest problem with an approxima-
tion factor better than 3. Improving upon the performance guarantee of the
LP rounding 2.54-approximation algorithm is another intriguing challenge.

Acknowledgements

I would like to thank Noga Alon and Yossi Azar for helpful discussions.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algo-
rithm for the generalized Steiner problem on networks. SIAM Journal on Com-
puting 24(3), 440–456 (1995)

2. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J.(S.), Schieber, B.: A unified
approach to approximating resource allocation and scheduling. Journal of the
ACM 48(5), 1069–1090 (2001)

3. Bar-Yehuda, R.: One for the price of two: a unified approach for approximating
covering problems. Algorithmica 27(2), 131–144 (2000)

254 S. Gutner

4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: A unified frame-
work for approximation algorithms: In memoriam: Shimon Even 1935–2004. ACM
Computing Surveys 36(4), 422–463 (2004)

5. Bar-Yehuda, R., Rawitz, D.: On the equivalence between the primal-dual schema
and the local ratio technique. SIAM Journal on Discrete Mathematics 19(3), 762–
797 (2005)

6. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the
prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

7. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

8. Gupta, A., Könemann, J., Leonardi, S., Ravi, R., Schäfer, G.: An efficient cost-
sharing mechanism for the prize-collecting Steiner forest problem. In: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1153–1162 (2007)

9. Hajiaghayi, M., Jain, K.: The prize-collecting generalized Steiner tree problem via
a new approach of primal-dual schema. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 631–640 (2006)

10. Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for information networks.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 933–942 (2005)

11. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem:
theory and practice. In: Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 760–769 (2000)

12. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for
Steiner forests. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 612–619 (2005)

13. Sharma, Y., Swamy, C., Williamson, D.P.: Approximation algorithms for prize-
collecting forest problems with submodular penalty functions. In: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1275–
1284 (2007)

Polynomial Time Approximation Scheme for

Connected Vertex Cover in Unit Disk Graph

Zhao Zhang1,�, Xiaofeng Gao2,��, and Weili Wu2,��

1 College of Mathematics and System Sciences, Xingjiang University,
Urmuqi, Xinjiang, China

zhzhao@xju.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75083, USA
{xxg05200,weiliwu}@utdallas.edu

Abstract. Connected Vertex Cover Problem (CVC) is an NP -hard
problem. The currently best known approximation algorithm for CVC
has performance ration 2. This paper gives the first Polynomial Time
Approximation Scheme for CVC in Unit Disk Graph.

Keywords: Connected Vertex Cover, Unit Disk Graph.

1 Introduction

Minimum Vertex Cover Problem (MVC) is a classical optimization problem in
graph and combinatorial theory. For a undirected graph G = (V, E), a subset
C ⊆ V is called a vertex cover of G (VC) if for any (v, w) ∈ E, either v ∈ C or
w ∈ C. MVC is to find a vertex cover of G with the minimum number of vertices.
This problem has many real-world applications [3], including many in the field
of bioinformatics. It can also be used in the construction of phylogenetic trees,
in phenotype identification, and in analysis of microarray data. MVC has been
studied extensively in the literature [8]. It is known to be NP-hard [9] for a long
time. Papadimitriou et al. [13] proved that VC is APX-complete, and Monien et
al. [12,3] gave an approximation algorithm for VC with ratio 1 − log log n

2 log n (n is
the number of vertices).

If furthermore, a vertex cover C induces a connected subgraph G[C], then
C is called a connected vertex cover (CVC). The Minimum Connected Vertex
Cover Problem (MCVC) is to find a CVC with minimum cardinality. MCVC
problem is an enforced version of MVC when certain connectivity constraints
are needed in some applications. For example, in routing and wavelength as-
signment (RWA) problem for optical networks, people select a suitable path and
wavelength among the many possible choices with the help of CVC. MCVC is
� Support in part by NSFC (60603003) and XJEDU. This work was done while this

author visited at University of Texas at Dallas.
�� Support in part by National Science Foundation under grants CCF-9208913 and

CCF-0728851.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 255–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 Z. Zhang, X. Gao, and W. Wu

also NP-hard. In fact, Garey and Johnson [7] showed that MCVC is as hard to
approximate as MVC. The currently best known approximation algorithms for
MCVC have performance ratio 2, which were given by Arkin et al. [2,14].

In this paper, we consider MCVC problem in Unit Disk Graphs (UDG). A
graph G is an UDG if each vertex of G is associated with the center of a disk
with diameter 1 on the plane, and two vertices u, v of G are adjacent if and
only if the two disks corresponding to u and v have non-empty intersection. In
another word, (u, v) ∈ E(G) if and only if the Euclidean distance between the
centers corresponding to u and v is at most 1. Such a set of unit disks on the
plane is called the geometric representation of G. When talking about a unit disk
graph in this paper, we assume that the geometric representation is given, since
it has been proved in [10] that determining whether a graph is a UDG is NP-
complete. UDG is widely used in wireless networks, where each vertex represents
an idealized multi-hop radio based station, and the corresponding disk is the
communication range of the station. For MVC in UDG, there exists Polynomial
Time Approximation Scheme (PTAS). That is, for any positive real number ε,
there exists a (1 + ε)-approximation. In fact, Erlebach et al. [5,11] presented a
PTAS for Minimum Weight Vertex Cover (MWVC) in Disk Graph (DG), where
DG is a generalization of UDG, in which disks have different radiuses.

In this paper, we present the first PTAS for CVC on UDG, using partition
technique and shifting strategy. Such an approach was used for Steiner trees in
the plane [15]. A more complicated approach was used for connected dominating
set [4]. It should be noted that in [4], the technique is heavily based on the
property of 2-dimension. In other words, the technique cannot be applied to
higher dimensional space, e.g., unit ball graphs, which is also an important model
for wireless sensor networks. The technique presented in this paper can be applied
to any dimension. Therefore, it is actually proved in this paper that there exists
PTAS in unit n-dimensional ball graphs for any n.

The idea of the algorithm is: First, we take an area containing all vertices of
the graph, and partition it into small squares. For each small square, define the
inner area and the boundary area, such that the inner area and the boundary
area of a same small square has an overlap. For each component of the inner
area, compute a minimum CVC. To cover edges not in the inner area, use a
constant-approximation algorithm to compute a connected vertex cover C0 of
G, and union those vertices of C0 which belong to the ‘boundary area’ of the
partition into the above CVC’s. The overlap of inner area and boundary area
ensures the connectivity of the output. The shifting strategy is used to select a
partition such that the number of vertices of C0 falling into the boundary area
of this partition is small enough relative to ε.

The rest of this paper is organized as follows. In Section 2, we introduce
some terminologies used to describe the algorithm. In Section 3, the algorithm
is presented. In Section 4 we show the correctedness of our algorithm, analyze
the time complexity, and prove that it is a PTAS. A conclusion is given in
Section 5.

Polynomial Time Approximation Scheme 257

2 Preliminaries

In this section we introduce the symbols and definitions used for algorithm de-
scription.

For a given UDG G = (V, E), where |V | = n, we assume that all the disks are
located in a square plane Q = {(x, y)|0 ≤ x ≤ q, 0 ≤ y ≤ q}, where q is related
to n. Using partition strategy, we divide Q into squares each with side length
m × m. We set m = ! 48ρ

ε ", where ρ is a constant which is the approximation
ratio of an APX for CVC (for example, ρ can be taken as 2 if we use the
2-approximation algorithm in [6]), and ε is an arbitrary positive number. Let
p = � q

m + 1. Since we shall use shifting policy, we widen Q into a bigger region
Q̃ = {(x, y)| − m ≤ x ≤ pm,−m ≤ y ≤ pm} (see Fig. 1).

������

����� �

	

Q
~

Q

Fig. 1. Partition for Graph G

Name this partition as P (0), and denote by P (a) the partition obtained from
P (0) by shifting it such that the left-bottom corner of P (a) is at (a−m, a−m),
for a = 0, 1, · · · , m − 1.

For each square e, we define the Inner area Ie and Boundary area Be (see
Fig. 2). If e = {(x, y)|im ≤ x ≤ (i + 1)m, jm ≤ y ≤ (j + 1)m},

Ie = {(x, y)|im + 1 ≤ x ≤ (i + 1)m − 1, jm + 1 ≤ y ≤ (j + 1)m − 1},

Be = e − {(x, y)|im + 2 ≤ x ≤ (i + 1)m − 2, jm + 2 ≤ y ≤ (j + 1)m − 2}.

Note that there is an overlap of Ie and Be.

258 Z. Zhang, X. Gao, and W. Wu

Fig. 2. Inner Region and Boundary Region for a Square

3 Algorithm Overview

For a partition P (a), denote by B(P (a)) =
⋃

e∈P (a) Be. The algorithm is exe-
cuted in two phases.

Phase I. Use a ρ-approximation to compute a CVC C0 for graph G. Let C0(a) =
C0 ∩B(P (a)) be the set of vertices of C0 lying in the boundary area of partition
P (a). Choose a∗ such that |C0(a∗)| = min |C0(a)|.

Phase II. For any square e ∈ P (a∗), denote by Ge the subgraph of G induced
by the vertices in Ie, and Comp(Ge) the set of connected components in Ge. For
each square e and each component H ∈ Comp(Ge), use exhaust search to find
a minimum CVC CH of H . Set Ce =

⋃
H∈Comp(Ge) CH .

Final Result Output C = C0(a∗) ∪ (
⋃

e∈P (a∗)

Ce).

4 Analysis of the Algorithm

In this section, we firstly prove the correctness of our algorithm, and then dis-
cuss the overall time complexity, that is, we prove that our algorithm runs in
polynomial time. Finally, we give the performance ratio of the algorithm, which
is (1 + ε).

4.1 Correctness

To prove that the output C of our algorithm is a CVC for graph G, we firstly
prove that C is a vertex cover for G, then prove that the induced subgraph G[C]
is connected.

Lemma 1. C is a vertex cover for G = (V, E).

Polynomial Time Approximation Scheme 259

Proof. For each square e, the inner area Ie and the boundary area Be have an
overlap with width 1. Since for any edge (v, w), the Euclidean distance between
v and w is less than or equal to 1, we see that both v and w belong to the
inner area Ie for some square e, or belong to the boundary area B(P (a∗)). In
the former case, the edge (v, w) is in a component H of Ge. By Phase II of the
algorithm, either v ∈ CH or w ∈ CH , meaning that(v, w) can be covered by
Ce ⊆ C. In the second case, by Phase I of the algorithm, C0 is a CVC of G.
Therefore either v ∈ C0(a∗) or w ∈ C0(a∗), meaning that (v, w) can be covered
by C0(a∗) ⊆ C. Thus we have proved that any edge in G is covered by C. So C
is a vertex cover of G.

Lemma 2. The induced subgraph G[C] is connected.

Proof. We prove this lemma by two steps. In step 1, we show that distinct
connected components in G[C0(a∗)] (if exist) can be connected through vertices
in

⋃
e∈P (a∗)

Ce. In step 2, we show that there is no other components of G[C] left

after step 1.
Step 1. Let H1 and H2 be two components in G[C0(a∗)] which are ‘clos-

est’ in G[C0] with each other. Then, there is a path P = (v1, v2, · · · , vt) of
G[C0] connecting H1 and H2 through the inner area of ‘one’ square e. With-
out loss of generalization, we may assume that v1 ∈ V (H1), vt ∈ V (H2) and
{v2, · · · , vt−1} ⊆ Ie. Fig. (see 3 for illustration).

H2

H1

v1
v2 vt-1

vt

v3

Fig. 3. An Illustration for H1 and H2

It is easy to see that v1 and vt belong to Ie ∩ Be, so P is in a connected
component H of Ge. Based on Phase II of our algorithm, P is covered by CH .
It follows that [either v1 ∈ CH or v2 ∈ CH], and [either vt−1 ∈ CH or vt ∈ CH].
Since G[CH] is connected, we see that H1 and H2 are connected through G[CH].

Step 2. Let G̃ be the component of G[C] containing all vertices of C0(a∗).
Such G̃ exists because of step 1. Suppose G̃ �= G[C], then there exists a square
e and a connected component H of Ge such that

260 Z. Zhang, X. Gao, and W. Wu

(i) CH ∩ C0(a∗) = ∅ and
(ii) no vertex of CH is adjacent with any vertex in C0(a∗).
Let x be a vertex in CH . Then either x ∈ C0 or x is adjacent with a vertex

y ∈ C0. We firstly assume that x ∈ C0. From (i), we know that x �∈ C0(a∗), so
x ∈ e\Be. Since G[C0] is connected, there is a path P in G[C0] connecting x
to the other parts of G outside of e. Suppose P = (v0, v1, ..., vt), where v0 = x,
vt �∈ e, and {v1, ..., vt−1} ⊆ e. Let i be the index such that vi is the first vertex
on P with vi ∈ Be. Then

(iii) vi ∈ C0(a∗);
(iv) vi ∈ Ie and thus vi and x belong to a same component of Ge, which is H ;
(v) both vi−1 and vi are in Ie, and hence the edge (vi−1, vi) are in H (note

that i ≥ 1 since v0 = x �∈ Be).
By (v) and Phase II of the algorithm, either vi ∈ CH or vi−1 ∈ CH . But this
contradicts (i) (ii) and (iii).

The case that x �∈ C0 but is adjacent with a vertex y ∈ C0 can be proved
similarly.

Therefore, we have proved that G̃ = G[C]. �	

Based on the conclusions from Lemma 1 and Lemma 2, we obtain the following
theorem showing the correctness of our algorithm.

Theorem 1. The output C of our algorithm is a connected vertex cover for G.

4.2 Time Complexity

In this subsection we consider the time complexity of our algorithm. Phase I of
the algorithm uses a polynomial time ρ-approximation to compute C0. Phase II
uses exhaust search which is the most time consuming part. We shall prove that
this part can also be executed in polynomial time, by implementing the relation
between vertex cover and independent set.

Lemma 3. The number of independent unit disks in an m×m square is at most
� (m+2)2

π .

Proof. Enlarge the m × m square to an (m + 2) × (m + 2) square by adding a
boundary with width one. Then all the disks whose centers are in the m × m
square lie completely in the (m + 2) × (m + 2) square. Since each unit disk
occupies area π, the result follows from the independence assumption.

With the help of Lemma 3, we have the following theorem.

Theorem 2. The running time of our algorithm is nO(1/ε2), where n is the
number of vertices in the graph.

Proof. It is well known that a vertex set S is a vertex cover of a graph if and
only if its complement is an independent set. Thus by Lemma 3, each V (H)\CH

contains at most � (m+2)2

π independent vertices, and therefore the exhaust search

Polynomial Time Approximation Scheme 261

for CH (which can be done by considering the complement of each independent

set in H) takes time at most
∑� (m+2)2

π �
k=0

(
nH

k

)
= n

O(m2)
H , where nH is the number

of vertices in H , and the total running time for phase II is at most
∑

e,H n
O(m2)
H =(∑

e,H nH

)O(m2) = nO(m2) = nO(1/ε2).

4.3 Performance

Here we prove that our algorithm is a (1 + ε)-approximation.

Definition 1. For two subgraphs G1, G2 of G, the distance between G1 and G2

is the length of a shortest path of G connecting G1 and G2 (where ‘length’ means
the number of edges on the path), denoted by dist(G1, G2).

In another word, if dist(G1, G2) = k, then G1 and G2 can be connected through
k − 1 vertices. If a vertex cover of a connected graph is not a connected vertex
cover, the distance between connected components of the subgraph induced by
the vertex cover is not far, as can be seen from the following lemma.

Lemma 4. Suppose H is a connected graph, and C is a vertex cover of H. If
H [C] is not connected, then there exist two components R1, R2 of H [C] such
that dist(R1, R2) = 2.

Proof. Let R1, R2 be two ‘closest’ connected components of G[C], and P =
(v0, v1, ..., vt) be a shortest path of H connecting R1 and R2, v0 ∈ V (R1) and
vt ∈ V (R2). If t ≥ 3, consider the edge (v1, v2). Since C covers H , we have
either v1 ∈ C or v2 ∈ C. Suppose, without loss of generality, that v1 ∈ C.
Let R3 be the component of G[C] containing v1. Then R3 �= R1 and R2, and
dist(R3, R2) < dist(R1, R2), contradicting our choice of R1 and R2.

The following lemma is well known in unit disk graph.

Lemma 5. Let G be a unit disk graph and u be a vertex in V (G). The there
are at most 5 independent vertices in N(u), where N(u) is the set of vertices
adjacent with u in G.

The following theorem shows that our algorithm is a PTAS.

Theorem 3. Let C∗ be an optimal CVC for G, and C be the output of our
algorithm. Then |C| ≤ (1 + ε)|C∗|.

Proof. Firstly, we prove that

|C0(a∗)| ≤ ε

6
|C∗|. (1)

When the partition shifts, a vertex of C0 belongs to at most 8 boundary areas
of B(P (a))’s. Therefore, we have,

262 Z. Zhang, X. Gao, and W. Wu

|C0(0)| + |C0(1)| + · · · + |C0(m − 1)| ≤ 8|C0|,

and thus

|C0(a∗)| ≤ 8ρ|C∗|
m

≤ ε

6
|C∗|.

Next, we shall add some vertices to C∗ such that the resulting set C̃ satisfies:
for each square e and

for each component H ∈ Comp(Ge), C̃ ∩ V (H) is a CVC of H . (2)

For a square e, let C̃e = C∗ ∩ Ie. It is easy to see that for each component
H ∈ Comp(Ge), C̃e ∩ V (H) covers H . Suppose there exists a component H ∈
Cpomp(Ge) such that requirement (2) is not satisfied. By Lemma 4, there are
two components R1, R2 of G[C̃e ∩V (H)] such that R1 and R2 can be connected
through one vertex in V (H)\C̃e. Add this vertex to C̃e. If the new C̃e still
does not satisfy requirement (2), continue as above to add vertices to merge
components. Suppose this is done k times before C̃e satisfies (2), then

|C̃e| ≤ |C∗ ∩ e| + k. (3)

On the other hand, we can show that

|C0(a∗) ∩ e| ≥ k

5
. (4)

For this purpose, we suppose that the components merged are in the order that
R1 with R2, R3 with R4, · · · , R2k−1 with R2k. For simplicity of presenting
the idea, we firstly assume that all the above Rj ’s are distinct components of
G[C∗ ∩ Ie]. For each i = 1, 2, · · · , k, let xi be a vertex in V (R2i−1) ∩ Be ∩ Ie,
such that xi is adjacent with a vertex yi ∈ Be \ Ie. Such xi exists since R2i−1 is
connected to the outer parts of e through C∗. Then either xi ∈ C0 or yi ∈ C0.
Set zi = xi if xi ∈ C0 and zi = yi otherwise. Note that both xi, yi ∈ Be. Hence
zi ∈ C0(a∗) ∩ e. A vertex may serve more than once as zi’s. For example, it is
possible that there are two indices i �= j such that the vertex of C0 covering
edges (xi, yi) and (xj , yj) is the same yi = yj ∈ C0. In this case, we see that xi

and xj are independent since they belong to different components of G[C∗ ∩ Ie].
Then by Lemma 5, such vertex serves at most 5 times as zi’s, and inequality (4)
follows. Next, suppose the Rj ’s are not all distinct. For example, suppose R3 is
the component obtained by merging R1 and R2. Then x3 can be chosen such
that x3 ∈ V (H2)∩Be ∩ Ie, which is independent with x1. In general we can find
k independent vertices x1, x3, ..., x2k−1 and thus (4) also holds in this case.

Combining inequalities (3) and (4), we have

|C̃e| ≤ |C∗ ∩ e| + 5|C0(a∗) ∩ e|. (5)

Polynomial Time Approximation Scheme 263

Since in Phase II of the algorithm, Ce is a ‘minimum’ vertex set satisfying
requirement (2) for each square e, we have |Ce| ≤ |C̃e|. Combining this with (1)
and (5), we have

|
⋃

e∈P (a∗)

Ce| =
⋃

e∈P (a∗)

|Ce| ≤
∑

e∈P (a∗)

|C̃e|

≤
∑

e∈P (a∗)

(
|C∗ ∩ e| + 5|C0(a∗) ∩ e|

)
= |C∗| + 5|C0(a∗)| ≤ (1 +

5ε

6
)|C∗|.

Hence
|C| ≤ |C0(a∗)| + |

⋃
e∈P (a∗)

Ce| ≤ (1 + ε)|C∗|.

5 Conclusion

In this paper, we presented the first polynomial time approximation scheme to
compute a connected vertex cover of a graph. The method used in this paper can
be applied to CVC problems in n-dimensional ball graphs. In a unit ball graph,
each vertex corresponds to the center of a unit ball in the n-dimensional space,
and two vertices are adjacent if and only if the Euclidean distance between them
is at most 1.

References

1. Abu-Khzam, F.N., et al.: Kernelization Algorithms for the Vertex Cover Problem:
Theory and Experiments. In: Proc.6th Workshop on Algorithm Engineering and
Experiments & 1st Workshop on Analytic Algorithmics and Combinatorics, pp.
62–69 (2004)

2. Arkin, E.M., Halldorsson, M.M., Hassin, R.: Approximating the Tree and Tour
Covers of a Graph. Inform. Process. Lett. 47, 275–282 (1993)

3. Bar-Yehuda, R., Even, S.: A local-ration Theorem for Approximating the Weighted
Vertex Cover Problem, Analysis and Design of Algorithms for Combinatorial Prob-
lems. Annals of Discrete Mathematics 25, 27–46 (1985)

4. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approxima-
tion scheme for minimum connected dominating set in ad hoc wireless networks.
Networks 42, 202–208 (2003)

5. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-Time Approximation Schemes for
Geometric Intersection Graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

6. Fujito, T., Doi, T.: A 2-Approximation NC Algorithm for Connected Vertex Cover
and Tree Cover. Inform. Process. Lett. 90, 59–63 (2004)

7. Garey, M.R., Johnson, D.S.: The Rectilinear Steiner-Tree Problem is NP-
Complete. SIAM J. Appl. Math. 32, 826–834 (1977)

8. Hochbaum, D.H.: Approximation Algorithm for NP-hard Problems, PWS, Boston,
MA (1996)

264 Z. Zhang, X. Gao, and W. Wu

9. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

10. Kratochvil, J.: Intersection graphs of noncrossing arc-connected sets in the plane.
In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg
(1997)

11. Li, X.Y., Wang, Y.: Simple Approximation Algorithms and PTASs for Various
Problems in Wireless Ad-Hoc Networks. Journal of Parallel and Distributed Com-
puting 66, 515–530 (2006)

12. Monien, B., Speckenmeyer, E.: Ramsey Numbers and an Approximation Algorithm
for the Vertex Cover Problem. Acta Informatica 22, 115–123 (1985)

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation, and Com-
plexity Classes. J. Computer and System Sciences 43, 425–440 (1991)

14. Savage, C.: Depth-First Search and the Vertex Cover Problem. Inform. Process.
Lett. 14, 233–235 (1982)

15. Wang, L.S., Jiang, T.: An approximation scheme for some Steiner tree problems
in the plane. Networks 28(4), 187–193 (1996)

Improved Primal-Dual Approximation

Algorithm
for the Connected Facility Location Problem�

Hyunwoo Jung, Mohammad Khairul Hasan, and Kyung-Yong Chwa

Division of Computer Science, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea

{solarity,shaon,kychwa}@tclab.kaist.ac.kr

Abstract. In the Connected Facility Location(ConFL) problem, we are
given a graph G = (V, E) with nonnegative edge cost ce on the edges,
a set of facilities F ⊂ V , a set of demands, i.e., clients D ⊂ V , and
a parameter M ≥ 1. Each facility i has a nonnegative opening cost fi

and each client j has dj units of demand. Our objective is to open some
facilities, say F ⊂ F , assign each demand j to some open facility i(j) ∈ F
and connect all open facilities using a Steiner tree T such that the total
cost, which is

P
i∈F fi +

P
j∈D djci(j)j + M

P
e∈T ce, is minimized.

We give an improved primal-dual 6.55-approximation algorithm for
the ConFL problem which improves the Swamy and Kumar’s primal-
dual 8.55-approximation algorithm [1].

Keywords: Approximation algorithms, Primal-Dual algorithms, Facil-
ity location problem.

1 Introduction

For the past ten years, researches related to facility location problems have at-
tracted new interests of many researchers. After the first constant factor
approximation algorithm of Shmoys, Tardos and Aardal [2] for the uncapac-
itated facility location problem(UFLP), various approximation algorithms by
using technique of LP-rounding [2,3,4], primal-dual [5] and local-search [6] have
been developed. Dual-fitting combined with greedy augmentation gives 1.52-
approximation algorithm [7]. Byrka [8] get an approximation algorithm that
touches (rf , 1+2e−rf) approximability limiting curve found by Jain et al. [9] for
rf ≥ 1.6774 for UFLP by extending Chudak and Shmoys’ algorithm [10]. He gave
a bi-factor (1.6774, 1.3738)-approximation algorithm. By mixing this result with
(1.11, 1.7764)-approximation algorithm of Jain et al. [9], he gave the current best
1.5-factor approximation algorithm for UFLP. This is very close to current lower
bound 1.463 of UFLP by Guha and Khuller [4] unless NP ⊆ DTIME(nlog log n).
Under the development of approximation algorithms of UFLP, variants of UFLP
like hard capacity facility [11], k-median [5] and universal facility [12] have been
considered.
� This research is supported by KOSEF Grant R01-2007-000-11905-0.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 265–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 H. Jung, M.K. Hasan, and K.-Y. Chwa

Connected Facility Location(ConFL) problem is a variant of UFLP. In an in-
stance of the ConFL problem, we are given a graph G = (V, E) with nonnegative
edge cost ce on each edge e ∈ E, a set of facilities F ⊂ V , a set of demands,
i.e., clients D ⊂ V , and a parameter M ≥ 1. Each facility i ∈ F has a non-
negative opening cost fi and each client j has dj units of demand. A solution
of this problem opens a set of facilities F ⊂ F and assigns each demand j to
some open facility i(j) ∈ F . In addition, the solution connects all open facilities
using a Steiner tree T . The assignment cost of demand j is djci(j)j , where ckl

is the distance between vertices k and l. We assume that the distance follows
triangle inequality. The facility connection cost is M times the cost of Steiner
tree T which connects all open facilities. An optimal solution of this problem is
a solution where total cost,

∑
i∈F fi +

∑
j∈D djci(j)j +M

∑
e∈T ce is minimized.

1.1 Related Works

The first constant factor approximation algorithm for ConFL problem was given
by Karger and Minkoff [13]. Gupta et al. [14] improved this result by giving
a 10.66-approximation algorithm based on LP rounding. The first primal-dual
algorithm was given by Swamy and Kumar [1]. Their algorithm is combinato-
rial having approximation factor 8.55. Hasan, Jung and Chwa [15] gave an LP
rounding 8.29-approximation algorithm for this problem. The authors in the
same paper gave a LP rounding based 7-approximation algorithm for a special
case of the ConFL problem where all facilities have equal opening costs.

Very recently Eisenbrand et al. [16] gave a 4-factor Randomized Approxima-
tion Algorithm (RAA) for the ConFL problem. This algorithm can be deran-
domized using the technique of Williams and Zuylen [17] that uses conditional
expectation by solving a exponential sized linear program. This means that the
algorithm of [16] is not so practical. Our algorithm is more efficient in time
complexity than the most recent algorithm which needs to solve an exponential
size linear program.

In section 2, we give our result and high level idea of our algorithm. In section
3, well-known linear programming formulation is given. In section 4, we describe
the improved primal-dual 6.55-approximation algorithm. Finally in section 5, we
give an analysis for the approximation factor of the algorithm.

2 High Level Idea of the Algorithm

In this paper we propose a primal-dual 6.55-approximation algorithm for ConFL
problem which outperforms the best known primal-dual algorithm [1] with ap-
proximation factor 8.55. As we described before, the only deterministic ap-
proach [16] which can give approximation factor better than our result performs
worse in time complexity.
The high level idea of Swamy and Kumar’s algorithm [1] is like following.

1. Each demand pays for gathering at least M demands.
2. Each demand pays for being connected to a facility and temporarily opening

a facility.

Improved Primal-Dual Approximation Algorithm for ConFL Problem 267

3. Select independent locations and open facilities
4. Construct Steiner tree for open facilities

Our algorithm proceeds like following.

1. Each demand pays for being connected to a facility and temporarily opening
a facility.

2. Each demand pays for gathering at least M demands.
3. Construct Steiner tree for open facilities

The main difference between our algorithm and Swmay and Kumar’s [1] lies
in that our algorithm first pays for opening facilities, then pays for gathering de-
mands. Also in our algorithm, we open facilities incrementally to be independent.
So, in our algorithm there is no extra step to pick independent set of locations.
These things together gives 2-factor decrease in the approximation factor.

3 Linear Programming Formulation

Given an instance of ConFL problem, we assume that a particular facility, say
v, has zero opening cost and it belongs to an optimal solution. This assumption
does not affect the approximation factor of the algorithm. Also we assume that
for each demand j ∈ D, dj = 1. With these assumptions, the LP relaxation of
ConFL problem and its dual can be written as:

min
∑

i∈F ,i�=v

fiyi +
∑
j∈D

∑
i∈F

cijxij + M
∑
e∈E

ceze (P1)

s.t
∑
i∈F

xij ≥ 1 for all j ∈ D

xij ≤ yi for all i ∈ F , i �= v, j ∈ D
xvj ≤ 1 for all j ∈ D∑

i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j ∈ D

xij , yi, ze ≥ 0

max
∑
j∈D

αj −
∑
j∈D

βvj (D1)

s.t αj ≤ cij + βij +
∑

s⊆V :i∈S,v/∈S

θSj for all i �= v, j ∈ D (1)

αj ≤ cvj + βvj for allj ∈ D (2)∑
j∈D

βij ≤ fi for all i ∈ F , i �= v (3)

∑
j∈D

∑
S⊆V :e∈δ(S),v/∈S

θSj ≤ Mce for all e ∈ E (4)

αj , βij , θSj ≥ 0

268 H. Jung, M.K. Hasan, and K.-Y. Chwa

Here xij indicates whether a client j is connected to facility i. yi indicates
whether facility i is open. And ze indicates whether edge e is included in the
Steiner tree.

In the dual program, αj is the payment of client j for opening a facility, for
being connected to a facility, and for constructing the Steiner tree connecting
all open facilities. βij is the payment of client j for opening facility i. And θS,j

is the payment of client j for constructing Steiner tree.

4 Algorithm Description

We use the term location to refer to a vertex in V or an internal point on an edge.
A facility, on the other hand, refers only to a vertex in F . The concept of location
has been described in [1]. For convenience we are repeating the properties of
location. For an edge e = (u, w), we assume that ce = cuw = the shortest path
distance between u and w. That is, ce satisfies metric property. For a point p on
e, cup increases continuously from 0 to ce as p moves from u to w. For a vertex
q ∈ V − {u, w} and p on (u, w) we assume that cpq = min(cqu + cup, cqw + cwp).
For any two points p and p̂ on e = (u, w) and ê respectively, we assume that
cpp̂ = min(cup + cup̂, cwp + cwp̂).

Our algorithm executes in two phases. In phase 1, the algorithm mainly deter-
mines the set of facilities to open and the assignment of each client to some open
facility. Phase 1 also determines part of the Steiner tree which connects all open
facilities. Our main contribution is phase 1. In phase 1 of Swamy and Kumar’s
algorithm, there is a demand that needs to pay 7-times of its dual cost to be
connected to an open facility. But in our algorithm, in phase 1, demands pays for
at most 5-times of its dual cost for being connected to an open facility. So in fact,
in phase 1, there appears 2-factor decrease in the approximation factor. Phase
2, which is similar to that of the algorithm described in [1], basically determines
the remaining part of the Steiner tree used to connect all open facilities.

4.1 Phase 1

A demand is in one of two states: (a) frozen and (b) unfrozen. Initially all de-
mands are unfrozen. Each facility is in one of three states (a) active (b) inactive,
and (c) admin. Initially all facilities are active except v. v is always inactive. For
each inactive facility except v, we will assign an admin facility which is called
the master facility of that inactive facility. Throughout the algorithm we update
dual variables α, β, θ and an extra variable γ, where γij is defined for each facility
demand pair (i, j) ∈ (F ×D). Initially γi,j = −1 for each (i, j) pair and all other
variables are zero. At a particular time, we say that a demand j is tight with
a location l iff αj ≥ clj , a facility i is paid for iff

∑
j∈D βij = fi, a demand j

spans location l through facility i iff γij ≥ cil, and we say that demand j spans
location l iff ∃i∈F [j spans l through i].

We always raise the dual variable αj at the same speed for each unfrozen
demand j. A demand becomes frozen when it gets connected to some facility.

Improved Primal-Dual Approximation Algorithm for ConFL Problem 269

A demand can be connected to some facility in two ways (i) directly and (ii)
indirectly. It should be noticed that a demand can be connected to different
facilities at different times and in different ways (directly or indirectly). In that
case the connection established at last will be the final connection. For example,
if demand j is indirectly connected to facility i1 and later the same demand j is
directly connected to facility i2 then after the execution of phase 1, demand j is
said to be directly connected to facility i2.

We will use a notion of time t. At t = 0 we start raising dual variable αj

in unit rate for every demand j until j gets frozen. As we raise αj , demand
j may become tight with some facility i. Starting from this time we also raise
βij in unit rate until j becomes frozen or facility i becomes paid for. Let t′i be
the earliest time when a facility i is paid for and t′ij be the earliest time when
demand j is tight with facility i. Suppose, tij = max{t′i, t′ij} which is the earliest
time that a facility i is paid for and a demand j is tight with a facility i. For each
facility-demand pair (i, j) ∈ F ×D, at tij , we set γij = 0 (previously γij = −1).
Starting from time at tij , we raise γij in unit rate until j becomes frozen. This
implies that if demand j spans a location l through facility i then cil ≤ γij ≤ αj .
Throughout phase 1 we raise θSj in unit rate for each non-empty S and unfrozen
j pair, where S = {i ∈ F − {v} : j spans location i}.

We continue raising all the variables until one of the following events occurs (if
several events occur simultaneously then ties are broken according to the order
of events given below):

1. A demand j becomes tight with some admin facility i: Indirectly connect j
to i. Make j frozen.

2. A demand j becomes tight with some inactive facility k: if k = v then
indirectly connect j to v. Otherwise, indirectly connect j to i, where i is the
master facility of k. Make j frozen.

3. At least M distinct demands (frozen or unfrozen) span a location l: A facility-
demand pair (i, j) is chosen like this: If there is a pair (i′, j′) such that j′

spans l through i′ and i′ is an admin facility then i = i′ and j = j′. Or, if
there is a pair (i′′, j′′) such that j′′ spans l through i′′ and i′′ is an inactive
facility then i = i′′ and j = j′′. Otherwise, j is a demand that spans l with
minimum αj value and i is a facility such that j spans l through i. There
are three cases:
(a) i is an admin facility: Indirectly connect each unfrozen demand that

spans l to i and make it frozen.
(b) i is an inactive facility: Let î be the master of i. Indirectly connect each

unfrozen demand that spans l to î and make it frozen.
(c) i is an active facility: Make facility i admin. Declare this demand set

(frozen or unfrozen) spanning l as a village Di for an admin facility i.
Additionally any demand ĵ with βiĵ > 0 is also added to Di. Note that ĵ
may not span l because otherwise it has already been added. We say that
location l is the admin location of Di. Directly connect all the demands
of village Di to admin facility i. Let I be the set of active facilities such
that each of them are tight with some demand of this village (i /∈ I since

270 H. Jung, M.K. Hasan, and K.-Y. Chwa

i is an admin facility now). Make each facility of I inactive and make
i the master facility of each facility in I. Also facility i is the master
facility of itself. Each demand j′ which is tight with some facility of I
but j′ /∈ Di is indirectly connected to i. Make all demands which are
directly or indirectly connected to i frozen.

If a demand j gets frozen, we stop raising αj , βij , γij and θSj for all i ∈ F
and S ⊂ V . We continue this process until all the demands get frozen.

4.2 Phase 2

Let Ĝ = (V, Ê) be a graph augmented from G by including edges adjacent to
admin location of each village Di since an admin location may not be a vertex
in G. Let T ′ = (V, E′) be a subgraph of Ĝ such that E′ contains only the
shortest distance path edges between the admin facility and admin location of
each village. We use ρ approximation algorithm (ρ ≤ 2) for Steiner tree problem
to form the Steiner tree T ′′ on v and the component of each admin facility in
T ′. We take the union of edges of T ′ and T ′′ to form T̂ . Finally a Steiner tree T
on v and the vertices corresponding to the admin facilities is found by removing
each edge (li, i) whenever li is a leaf in T̂ .

After the execution of phase 1 and phase 2, we open v and all admin facilities.
Demands indirectly connected to v are assigned to v and for each admin facility,
all demands which are directly or indirectly connected to it is assigned to this
facility. Finally the edges of T are selected to connect all open facilities.

To give a intuition why the approximation factor reduces in our algorithm, we
give an example for phase 1. See the figure 1. If we run the Swamy and Kumar’s
algorithm, after phase 1 of their algorithm, one of facilities among i1, i2 and i3
will be open after the clients being gathered at i4 location. We suppose that i2 is
open, then the client j1 needs 3 ·αj to be connected. But if we run our algorithm,
after paying for facilities(although it is 0), the clients are gathered at the facility
i4 after being spanned from each facilities. After that we can choose i2 as open
facility. So clients j2 needs at most 2 · αj to be connected.

So far we have assumed that for each demand j, dj = 1. It is not very difficult
to handle arbitrary nonnegative demand by controlling the rate at which we
raise the variables αj , βij , γij and θSj . We omit the detail here.

5 Analysis

Lemma 1. (α, β, θ) is a dual feasible solution.

Proof. The idea of the proof of this lemma is similar to the proof of Lemma 3.1
in [1]. For a facility-demand pair (i, j) ∈ F ×D and i �= v, it is very easy to see
that (1) is satisfied up to tij where tij is the earliest time such that at tij , i is
paid for and j is tight with i. But at tij , γij is set to zero and one can observe
that after that time j spans location i through facility i. Since after tij we raise
θSj where i ∈ S, (1) is always satisfied. It can be checked very easily that both
(2) and (3) are also satisfied.

Improved Primal-Dual Approximation Algorithm for ConFL Problem 271

1j

1i

3i

2i

4i

2j

3j

Fig. 1. This is a local information of a whole graph. We assume that all other facilities
including v and other clients are placed far enough. The edge cost seen is all 1 and cost
of all facilities except i4 is 0. The facility cost of i4 is ∞.

To check the satisfiability of (4), let us consider an edge e = (u, w) and a
demand j such that

∑
S⊆V :e∈δ(S),v/∈S θSj > 0. Also assume that j spans u be-

fore w. Let p be a point on (u, w) such that cup = x. Let us define f(j, x)
as 1 if j spans p and j was not frozen at the earliest time when j spanned
p , otherwise f(j, x) is 0. Then,

∑
S⊆V :e∈δ(S),v/∈S θS,j ≤

∫ ce

0
f(j, x)dx. Now,∑

j

∑
S⊆V :e∈δ(S),v/∈S θS,j ≤

∑
j

∫ ce

0 f(j, x)dx =
∫ ce

0

∑
j f(j, x)dx ≤ Mce

The last inequality holds because
∑

j f(j, x) is at most M . Otherwise, we have
more than M demands that span a location but none of them are frozen which
is a contradiction. �	

Lemma 2. Let j be a demand and Ij = {i ∈ F : βij > 0}. Then, at most one
facility in Ij is open in our solution.

Proof. Since only v and the admin facilities created in phase 1 are opened and
v /∈ Ij because βvj = 0, it is enough to prove that at most one facility in Ij is
selected as an admin facility in phase 1.

For a contradiction, let us assume that i1 and i2 are two admin facilities such
that i1, i2 ∈ Ij . Without loss of generality let us assume that i1 has been selected
as an admin facility earlier than i2 and i1 has been made admin at t1. Clearly,
βi1j > 0 at t1. And this implies that βi2j > 0 at t1 because j is frozen after t1.
Then, facility i2 is made inactive at t1. This is a contradiction because once a
facility is inactive it can never become an admin facility. �	

As we have discussed before, a demand can be connected (directly or indirectly)
to several facilities. In that case the connection established at the latest time is
the final connection. A demand gets frozen only when it is connected to some
facility. Since the algorithm continues until all the demands become frozen, it is
easy to see that after the execution of phase 1, the facility to which demand j
is connected (directly or indirectly) is well defined. The following lemma proves

272 H. Jung, M.K. Hasan, and K.-Y. Chwa

that once a demand is directly connected to some facility it will never be con-
nected to any other facility.

Lemma 3. Once a demand j is directly connected to a facility i it will never be
connected (directly or indirectly) to some other facility.

Proof. It is obvious that a frozen demand can not be indirectly connected to some
other facility by phase 1. Since a demand becomes frozen after being connected
for the first time, once j is directly connected to i, it will never be indirectly
connected to some other facility. It remains to prove that j will not be directly
connected to some other facility also.

For deriving a contradiction, let us assume that the algorithm directly con-
nects j twice first time to i and then to i′, where i �= i′. Then both i and i′

are two admin facilities. Let li and li′ be the corresponding admin locations. Let
us assume that ti and ti′ are the times when j is directly connected to i and
i′ respectively, where ti ≤ ti′ . Now, since j is directly connected to i′, either
βi′j > 0 at ti′ or j spans i′ at ti′ . If βi′j > 0 at ti′ then βi′j > 0 at ti because j is
frozen after ti. But it is not possible because in that case j is tight with i′ at ti
and i′ is made inactive. So, we can assume that j spans li′ at ti′ which implies
that j spans lt̂ at ti since j is frozen after ti. Then, at ti′ there is a facility say
k, such that j spans li′ through k and k is inactive because at ti all the facilities
tight with j are made inactive. But the algorithm has chosen facility i′, where
some client spans li′ through k and k is inactive. This is a contradiction because
the algorithm can not chose i′ when k is present. �	

Lemma 4. At the end of phase 1 for each village Di, |{j ∈ Di : j spans li }| ≥
M where i and li are the admin facility and the admin location of village Di,
respectively.

Proof. When a village is created, there are at least M demands spanning the
admin location li. These demands are added to Di and are directly connected
to the admin facility i at the time when the village has been created. According
to the previous lemma these demands remain directly connected at the end of
phase 1. �	

Lemma 5. If a client j is directly connected to facility i then cij ≤ 2αj.

Proof. Since j is directly connected to i, i is the admin facility of a village Di

such that j ∈ Di. This implies, either j spans an admin location li or βij > 0
when a village Di has been created. If βij > 0 at that time then cij < αj by the
constraint(1). So let us assume that βij = 0.

Now, when Di has been created, the algorithm has chosen (i, j′) as the facility-
demand pair such that j′ spans li through facility i and αj′ ≤ αj . Since j also
spans li, cij ≤ cili + clij ≤ αj′ + αj ≤ 2αj �	

Lemma 6. If client j is indirectly connected to a facility i then cij ≤ 5αj.

Improved Primal-Dual Approximation Algorithm for ConFL Problem 273

Fig. 2. j is indirectly connected to i with cij ≤ 5αj : ĵ spans li through î, j′ spans l
through k, ĵ is tight with k (ĵ may not span l) and j spans l

Proof. There are several cases depending on how j has been indirectly connected
to i.

Case 1 (j becomes tight with an admin facility i): In this case cij ≤ αj .
Case 2 (j becomes tight with v): In this case i = v and cij ≤ αj

Case 3 (j becomes tight with an inactive facility k such that i is the master of k):
In this case, when k was made inactive by i there is a demand j′ ∈ Di such
that j′ was tight with k. Then, cij′ ≤ 2αj′ (by lemma 5) and ckj′ ≤ αj′ . Since
j becomes tight with k, ckj ≤ αj . Clearly αj′ ≤ αj because j is unfrozen.
So, cij ≤ cij′ + ckj′ + ckj ≤ 4αj.

Case 4 (At least M demands span a location l and one of these demands spans
l through i which is already an admin facility): In this case the algorithm
chooses (i, j′) pair where j′ spans l through i. Since only unfrozen demands
of these M spanning demands are indirectly connected to i, j is unfrozen.
This implies, αj′ ≤ αj . Now, since j′ spans l through i and j spans l, cil ≤ αj′

and clj ≤ αj . So, cij ≤ clj + cil ≤ 2αj

Case 5 (At least M demands span a location l and one of these demands spans
l through inactive facility k such that i is the master of k): In this case
the algorithm chooses (k, j′) pair where j′ spans l through k. Since only
unfrozen demands of these M spanning demands are indirectly connected to
the master of k, j is unfrozen. Since i is the master of k, there is a client
ĵ ∈ Di such that ĵ is tight with k. Now, αj′ ≤ αj , αĵ ≤ αj since j is unfrozen
and ciĵ ≤ 2αĵ (by lemma 5). Because j′ spans l through k and j spans l,
ckl ≤ αj′ and clj ≤ αj . Thus, cij ≤ ciĵ +ckĵ +ckl+clj ≤ 2αĵ +αĵ +αj′ +αj ≤
5αj (see Figure 2). �	

Let F ′ be the set of admin facilities selected by the algorithm at the end of phase
1. For a facility i ∈ F ′, assume that Li = {j ∈ Di : j spans li } which is the
set of demands that span li, where li is the admin location of village Di. Also
let us assume that Ci = {j ∈ D : βij > 0} which is the set of demands that
pays for facility cost of i . Lemma 2 shows that Ci ⊆ Di for each i ∈ F ′. Let
D′ = ∪i∈F ′Di which is the set of demands each of which is directly connected.
C′ = ∪i∈F ′Ci which is the set of demands each of which pays for the facility
costs of some admin facility. Then, C′ ⊆ D′. We start raising βij when j becomes

274 H. Jung, M.K. Hasan, and K.-Y. Chwa

tight with i and stop raising βij when either i becomes paid for or j becomes
frozen. Thus,

j ∈ Ci ⇒ cij + βij ≤ αj . (5)

For a graph T0 = (V, E0), which is a subgraph of G, let us define the cost
of T0, cost(T0) = M

∑
e∈E0

ce. Next two lemmas bound the cost of T ′ and T ′′

generated in phase 2, respectively.

Lemma 7. cost(T ′) ≤
∑

j∈D′ αj

Proof. Let us consider a village Di. Then, there is a demand ĵ ∈ Di such that
ĵ spans li through i and αĵ = minj∈Li αj , where li is the admin location of
village Di. So, Mcili ≤ Mαĵ ≤

∑
j∈Li

αj ≤
∑

j∈Di
αj , where the second last

inequality holds because of Lemma 4 and the fact that αĵ = minj∈Li αj . Now,
cost(T ′) = M

∑
i∈F ′ cili ≤

∑
i∈F ′

∑
j∈Di

αj =
∑

j∈D′ αj . �	

Lemma 8. Let C∗ and S∗ be the assignment cost and Steiner tree cost of
an optimal solution. Then, cost(T ′′) ≤ ρ(S∗ + C∗ + τ), where ρ ≤ 2 is the
approximation factor of the Steiner tree algorithm used in phase 2 and τ =∑

i∈F ′
∑

j∈Li
clij.

Proof. The idea of this proof is similar to that of Swamy and Kumar [1]. We
can obtain a Steiner tree T̂ ′′ = G(V, Ê′′) on v and the component of each admin
facility in T ′ like this: for each village with admin facility i we find the shortest
li − j − i∗(j) path for j ∈ Li, where i∗(j) is the facility to which demand j
is assigned in the optimal solution. We add these shortest paths found for all
villages to T ′. Then we add the edges of T ∗ to this graph where T ∗ is the Stener
tree connecting all open facilities in the same optimal solution. Finally cycles are
broken by removing arbitrary edges so that the resultant graph becomes tree T̂ ′′.
It is easy to see that the cost(T ′′) ≤ ρ · cost(T̂ ′′). Now,

cost(T̂ ′′) =S∗ + M
∑
i∈F ′

(shortest li − j − i∗(j) path for j ∈ Li)

≤S∗ +
∑
i∈F ′

∑
j∈Li

(clij + ci∗(j)j) (6)

=S∗ +
∑
i∈F ′

∑
j∈Li

ci∗(j)j +
∑
i∈F ′

∑
j∈Li

clij

≤S∗ + C∗ + τ

where (6) follows from Lemma 4. Thus, cost(T ′′) ≤ ρ(S∗ + C∗ + τ). �	

Lemma 9. Let a demand j be assigned to i(j) in our solution, F =
∑

i∈F ′ fi,
C =

∑
j∈D ci(j)j , and τ =

∑
i∈F ′

∑
j∈Li

clij Then, F + C + cost(T ′) + 2τ ≤
5
∑

j∈D αj, where li and i are the admin location and admin facility of village
Di respectively.

Improved Primal-Dual Approximation Algorithm for ConFL Problem 275

Proof.

F + C + cost(T ′) + 2τ =
∑
i∈F ′

fi +
∑
j∈D

ci(j)j + cost(T ′) + 2
∑
i∈F ′

∑
j∈Li

clij

=
∑
i∈F ′

fi +
∑
j∈D′

ci(j)j +
∑

j∈D\D′

ci(j)j + cost(T ′) + 2
∑
i∈F ′

∑
j∈Li

clij

=
∑
i∈F ′

∑
j∈Ci

βij +
∑
i∈F ′

∑
j∈Di

cij +
∑

j∈D\D′

ci(j)j + cost(T ′) + 2
∑
i∈F ′

∑
j∈Li

clij

(7)

=
∑
i∈F ′

(
∑
j∈Ci

βij +
∑
j∈Di

cij + 2
∑
j∈Li

clij) +
∑

j∈D\D′

ci(j)j + cost(T ′)

=
∑
i∈F ′

(
∑
j∈Ci

(βij + cij) +
∑

j∈Di\Ci

cij + 2
∑
j∈Li

clij) +
∑

j∈D\D′

ci(j)j + cost(T ′)

≤
∑
i∈F ′

(
∑
j∈Ci

αj +
∑

j∈Di\Ci

2αj + 2
∑
j∈Li

αj) +
∑

j∈D\D′

5αj +
∑
j∈D′

αj

(8)

≤
∑
i∈F ′

(
∑
j∈Ci

2αj +
∑

j∈Di\Ci

2αj +
∑
j∈Di

2αj) +
∑

j∈D\D′

5αj +
∑
j∈D′

αj

(9)

=
∑
j∈D′

4αj +
∑

j∈D\D′

5αj +
∑
j∈D′

αj

=5
∑
j∈D

αj

where (7) follows from Lemma 2, (8) follows from Lemma 5, Lemma 6, Lemma 7
and Equation 5, finally (9) follows from the fact that Li ⊆ Di. �	

Theorem 1. The algorithm gives a solution of cost at most 6.55 · OPT , where
OPT is the cost of optimal solution.

Proof. Let F, C and S be the facility opening cost, demand assignment cost,
and Steiner tree cost of the solution obtained by the algorithm, respectively. For
ρ ≤ 2 we get:

F + C + S ≤F + C + (cost(T ′) + cost(T ′′))
≤F + C + cost(T ′) + 2τ + ρ(S∗ + C∗) (10)

≤5
∑
j∈D

αj + ρ(S∗ + C∗) (11)

≤5 · OPT + ρ · OPT

=(5 + ρ) · OPT

276 H. Jung, M.K. Hasan, and K.-Y. Chwa

(10) follows from Lemma 8 and (11) follows from Lemma 9. Plugging the value
ρ = 1.55 [18] which is the current best factor for approximation algorithm of
Steiner tree problem gives us a solution of cost at most 6.55 · OPT . �	

6 Concluding Remarks

In this paper we deal with the Connected Facility Location problem and give a
6.55 factor primal-dual approximation algorithm for this problem. This problem
has important applications specially in the field of computer networks and mobile
communication. Our algorithm is simple and combinatorial in structure.

The Capacitated Facility Location problem is a generalization of the Facility
Location problem. LP-based algorithm for this problem with uniform facility cost
is given by Levi et al [19]. There is no known primal-dual technique for capaci-
tated facility location problem. Prominent future works are to find primal-dual
algorithms for the Capacitated Facility Location and the Connected Capacitated
Facility Location problems by extending the algorithm of this paper.

References

1. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40, 245–269 (2004)

2. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility loca-
tion problems (extended abstract). In: STOC 1997: Proceedings of the twenty-ninth
annual ACM symposium on Theory on Computing, pp. 265–274 (1997)

3. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24, 296–317 (1995)

4. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
Journal of Algorithms 31, 228–248 (1999)

5. Jain, K., Vazirani, V.V.: Approximation algorithms for the metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation.
Journal of the ACM 48, 274–296 (2001)

6. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuris-
tic for facility location problems. In: Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1–10 (1998)

7. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric
facility location problems. In: Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization, pp. 229–242 (2002)

8. Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapaci-
tated facility location problem. In: APPROX-RANDOM, pp. 29–43 (2007)

9. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: STOC 2002: Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pp. 731–740 (2002)

10. Chudak, F.A., Shmoys, D.: Improved approximation algorithms for the uncapaci-
tated facility location problem. SIAM Journal on Computing 33(1), 1–25 (2003)

11. Pal, M., Tardos, E., Wexler, T.: Facility location with nonuniform hard capacities.
In: Proceedings of The 42nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 329–338 (2001)

Improved Primal-Dual Approximation Algorithm for ConFL Problem 277

12. Mahdian, M., Pal, M.: Universal facility location. In: Proceedings of 11the Euro-
pean Symposim on Algorithms, pp. 409–422 (2003)

13. Karger, D.R., Minkoff, M.: Building steiner trees with incomplete global knowl-
edge. In: FOCS 2000: Proceedings of 41st Annual Symposium on Foundations of
Computer Science, pp. 613–623 (2000)

14. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: a network design problem for multicommodity flow. In: Proceed-
ings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 389–398
(2001)

15. Hasan, M.K., Jung, H., Chwa, K.-Y.: Improved approximation algorithm for con-
nected facility location problems. In: Proceedings of The First International Con-
ference on Combinatorial Optimization and Applications, pp. 311–322 (2007)

16. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected
facility location problems via random facility sampling and core detouring. In:
SODA 2008: Proceedings of the nineteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1174–1183 (2008)

17. Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an
approximation algorithm for single source rent-or-buy. Operations Research Let-
ters 35(6), 707–712 (2007)

18. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proceedings of The 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 329–338 (2000)

19. Levi, R., Shmoys, D.B., Swamy, C.: LP-based spproximation slgorithms for capac-
itated facility location. In: Proceedings of IPCO, pp. 206–218 (2004)

Two Constant Approximation Algorithms for

Node-Weighted Steiner Tree in Unit Disk
Graphs

Feng Zou1, Xianyue Li2, Donghyun Kim1, and Weili Wu1,�

1 Department of Computer Science, University of Texas at Dallas,
Richardson, TX, 75080

{phenix.zou,donghyunkim}@student.utdallas.edu, weiliwu@utdallas.edu
2 School of Mathematics and Statistics, Lanzhou University,

Lanzhou, Gansu, P.R. China, 730000
lixianyue@lzu.edu.cn

Abstract. Given a graph G = (V, E) with node weight w : V → R+

and a subset S ⊆ V , find a minimum total weight tree interconnecting
all nodes in S. This is the node-weighted Steiner tree problem which
will be studied in this paper. In general, this problem is NP-hard and
cannot be approximated by a polynomial time algorithm with perfor-
mance ratio a ln n for any 0 < a < 1 unless NP ⊆ DTIME(nO(log n)),
where n is the number of nodes in s. In this paper, we show that for
unit disk graph, the problem is still NP-hard, however it has polyno-
mial time constant approximation. We will present a 4-approximation
and a 2.5ρ-approximation where ρ is the best known performance ra-
tio for polynomial time approximation of classical Steiner minimum tree
problem in graphs. As a corollary, we obtain that there is polynomial
time (9.875+ε)-approximation algorithm for minimum weight connected
dominating set in unit disk graphs.

1 Introduction

Given a graph G = (V, E) with weight function w on E and a subset S, Steiner
tree problem (STP) is to find a minimum subgraph of G interconnecting all nodes
in S. We call the set S as terminal set. For any Steiner tree T for S and node
u ∈ V (T), we call u as a terminal node if u ∈ S, otherwise, we call it as a
Steiner node. The Steiner tree problem is a classical problem in networks, which
is very interesting nowadays. The problem is known to be NP-hard, as well as
in most metrics[6]. Lots of effort have been devoted to study the approximation
algorithms for this problem[3,8,11,14,17] and have successfully achieved constant
ratios for this problem.

Node-Weighted Steiner Tree problem (NWST) is a variation of the classical
STP. Given a graph G = (V, E) with node weight w : V → R+ and a subset

� Support in part by National Science Foundation under grant CCF-0514796 and
CCF-0750992.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 278–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Two Constant Approximation Algorithms for Node-Weighted Steiner Tree 279

S of V , the node-weighted Steiner tree problem is to find a Steiner tree for the
set S such that its total weighted is minimum. Since all of nodes in terminal set
will be contained in any Steiner tree constructed, for convenience, we usually set
w(u) = 0 for all nodes u ∈ S.

In this paper, We study NWST problem in a special type of graphs called
unit disk graph, which has a wide application in networks. A unit disk graph
is associated with a set of unit disks in the Euclidean plane. Each node is the
center of a unit disk. An edge exists between two nodes u and v if and only if
|uv| ≤ 1, where |uv| is the Euclidean distance between u and v. For this special
type of graphs, we propose two constant approximation algorithms for NWST
problem from different perspectives with approximation ratio 4 and 2.5ρ respec-
tively, where ρ = 1+ ln 3

2 ≈ 1.55 is the best known approximation for the classical
Steiner tree problem[14]. As an application on Minimum Weighted Connected
Dominating Set (MSCDS) problem, we obtain a (9.875+ε)-approximation algo-
rithm for this problem, which improves the best previous approximation ratio
10+ε[9].

The rest of this paper is organized as follows. In section 2, we introduce the re-
lated work for NWST problem. In section 3, we first present the main idea of our
algorithms. Then, we give some useful definitions and denotations. In subsection
3.2 and 3.3, we introduce the algorithms and prove their approximation ratios,
respectively. As a corollary, we obtain a (9.875+ε)-approximation algorithm for
MSCDS problem in unit disk graphs. Final, we conclude our results.

2 Related Work

Quite a few work has been done for NWST problem starting from early 80s.
Most of the early work[1,2,13,15,16] focus on solving the problem and its varia-
tions using linear programming. For instance, Aneja [1] used a specialized integer
programming (set covering) formulation to represent the STP and used the row
generation scheme to solve the exponential increase of the number of constraints
in the formulation related to the size of the problem. Segev [15] proposed an inte-
ger programming solution for an extension of the standard Steiner Tree problem
using lagarangian relaxation and subgradient optimization. Though these work
presented solutions for Steiner tree problem from the perspective of linear pro-
gramming, they did not provide solid theoretical proof for the approximation
ratios of their algorithms at all.

In 1991, Berman (see ref. in [10]) proved that NWST problem can not be
approximated within a factor of o(ln k) by giving an approximation-preserving
reduction from Set Cover[5] to NWST problem, where k is the size of the terminal
set. Later, Klein and Ravi [10] presented the first asymptotically optimal solution
of approximation ratio 2 lnk, by constructing the Steiner tree with spiders, a tree
with at most one node of degree greater than two. Later, this ratio is improved
to be 1.35 lnk by Guha and Khuller [7] by introducing a new concept called
branch-spider. This is the best known ratio up till now.

280 F. Zou et al.

As a special case, when the weights of all nodes are same, NWST problem is
equivalent to Steiner Tree with Minimum Number of Steiner Nodes (ST-MSN)
problem. Given a set of n terminals S in the Euclidean plane and a positive
constant c, the ST-MSN problem is to find a Steiner tree for S with minimum
number of Steiner nodes such that each edge in the tree has a length no more
than c. In [4], they showed that there is a 3-approximation algorithm for ST-
MSN. In 2006, M.Min et al.[12] presented this problem in unit disk graph and
gave a 3-approximation algorithm for a special terminal set.

3 Node-Weighted Steiner Tree Problem (NWST)

In this section, we study the NWST problem in unit disk graphs and propose two
approximation algorithms for solving this problem. The main idea of the first one
is to construct the Minimum Spanning Tree (MST) to solve the NWST. In this
algorithm, we first construct an edge-weighted complete graph G′ on terminal set
such that the weight of every edge in G′ is equal to the length of the shortest path
between its endpoints in the original graph G. Then, compute a MST of the new
graph G′. By replacing each edge in the MST with the corresponding shortest
path in the original graph, we obtain a connected subgraph of G containing all
nodes in the terminal set. We prove that this yields a valid NWST which has
a total weight of no more than 4 times the weight of the optimal Node-Weight
Steiner Tree of G.

The second algorithm has a better approximation ratio than the first one,
while rooted from a totally different methodology. The main idea is based on
the classical Steiner Tree problem. Firstly, we construct an edge-weighted graph
G′′ with the same node-set and edge-set as the original graph G. Then, we
define the weight of every edge in G′′ as the half of the sum of its endpoints’
weights in G. Finally, we use ρ-approximation algorithm to obtain a Steiner
tree of G′′. From the Steiner tree of G′′, we can get a Steiner Tree of G with
approximation ratio 2.5ρ ≈ 3.875. As a corollary, we obtain a polynomial time
algorithm for minimum weight connected dominating set in unit disk graphs
with approximation ratio 9.875+ε.

3.1 Preliminaries

In this section, we give some useful definitions and denotations. For a node-
weighted (or edge-weighted) graph G with weight function w and a subgraph H
of G, denote w(H) be the the weight sum of all nodes (or edges) in H . For any
two nodes u and v of G, denote distG(u, v) as the weight of the shortest path
between u and v, which is calculated as min

∑
vk∈p

w(vk) among all the possible

paths between u and v. Here vk is the internal node on every possible path p.
Given a edge-weighted graph G and a node subset S, we denote the ρ-

approximation algorithm for Steiner Minimum Tree(SMT) as SMT(G,S) and
the algorithm for finding Minimum Spanning Tree(MST) as MST(G).

Two Constant Approximation Algorithms for Node-Weighted Steiner Tree 281

3.2 4-Approximation Algorithm

In this algorithm, we first construct a complete graph G′ on terminal set S with
a weight function c on its edges such that c(u, v) = distG(u, v) for any two nodes
u and v in S. Denote the optimal Node-Weighted Steiner Tree of the graph G on
S as TOPT NWS and the minimum spanning tree of G′ as TMST . We can obtain
the following theorem:

Theorem 1. Suppose that for any terminal set S in G, there always exists a
minimum spanning tree TMST for the newly constructed complete graph G′ such
that the maximum degree of it is at most Δ. Then, the weight of TMST is no
more than (Δ − 1)-times of the weight of TOPT NWS .

Proof. Suppose that TOPT NWS contains k Steiner points {s1, s2, . . . , sk} in the
ordering of the breadth-first search starting from a vertex of S. Meanwhile, we
define N(S) as the weight of the minimum spanning tree of the new complete
graph for the terminal set S. We claim that

N(S ∪ {s1, s2, . . . , si}) ≤ N(S ∪ {s1, s2, . . . , si+1}) + (Δ − 1) ∗ w(si+1).

To show this claim, let Gi be the newly constructed complete graph for the ter-
minal set S ∪ {s1, s2, . . . , si}. Consider a minimum spanning tree T for Gi+1

with degree at most Δ. Suppose si+1 has adjacent vertices v1, v2, . . . , vd(d ≤ Δ).
Then at least one of the edges (si+1, vj)(j = 1, . . . , d) has weight 0. Otherwise,
by BFS, there exists a vertex u ∈ S ∪ {s1, s2, . . . , si} such that (si+1, u) is an
edge of E(G). This implies that the weight of this edge in the graph Gi+1 is
0. If all weight of edges (si+1, vj)(j = 1, . . . , d) are more than 0, adding edge
(si+1, u) and deleting one of them, we can get a new tree with weight less than
the current one, which is a contradiction. So without loss of generality, as-
sume that the weight of (si+1, v1) is 0. Delete all edges (si+1, vj)(j = 2, . . . , d),
and add (d − 1) edges (v1, vj)(j = 2, . . . , d). We obtain a spanning tree T

′
for

Gi. Note that according to the triangle inequality of the distance between two
vertices, cGi(v1, vj) ≤ cGi+1(si+1, vj) + w(si+1). Hence, the claim holds from
N(S ∪ {s1, s2, . . . , si}) ≤ c(T

′
) ≤ N(S ∪ {s1, s2, . . . , si+1}) + (Δ − 1) ∗ w(si+1).

Since N(S ∪ {s1, s2, · · · , sk}) = 0 and by the claim and recurrence, we have

c(TMST) = N(S) ≤ N(S ∪ {s1}) + (Δ − 1) ∗ w(s1)
≤ N(S ∪ {s1, s2}) + (Δ − 1)(w(s1) + w(s2))
...

≤ N(S ∪ {s1, s2, ..., sk}) + (Δ − 1)(
k∑

i=1

w(si))

= (Δ − 1)w(TOPT NWS). �	

For every edge of TMST , replacing it with the corresponding shortest path be-
tween its endpoints in G, we obtain a connected subgraph H of G containing

282 F. Zou et al.

Algorithm 1. NWST1 (G=(V,E,w,S))

1: Initialize a complete graph G
′
= (V

′
, E

′
, c) of G by setting V

′
= S

2: for each pair of vertex (vi, vj) in graph G
′
do

3: Set the c(vi, vj) = disG(vi, vj), the shortest path between vi and vj

4: end for
5: H = MST (G

′
)

6: for each edge (vi, vj) in graph T do
7: Replace it with the corresponding shortest path in graph G
8: end for
9: Output H

Algorithm 2. NWST2 (G = (V, E, w, S))

1: Initialize an edge-weighted graph G
′

= (V
′
, E

′
, w

′
, S

′
) by setting V

′
= V ,S

′
= S

and E
′
= E

2: for each edge (vi, vj) in graph G
′
do

3: Assign the weight of this edge w
′
(vi, vj) = (w(vi) + w(vj))/2.

4: end for
5: T = SMT(G

′
, S)

6: Output T

all nodes of S. Obviously, the weight sum of all nodes in H is no more than the
weight of TMST .

The detailed algorithm is presented in algorithm 1. Since in any unit disk
graph, there always exists a spanning tree with maximum degree no more than
5[12], we can obtain the following corollary:

Corollary 1. The connected subgraph we obtained at the end of the algorithm
NWST 1 is 4-approximation for TOPT NWS in unit disk graph.

3.3 2.5ρ-Approximation Algorithm

The idea of this algorithm is to convert the node-weighted Steriner tree problem
to the classical Steiner tree problem. Firstly, we construct an edge-weighted
graph G′′ from G as follows by initializing G′′ with the same node-set and edge-
set as G and an edge weight function w′. For every edge e = (u, v) in G′′, let the
edge weight w′(u, v) = 1

2 (w(u) + w(v)). The second step of this algorithm is to
compute a Steiner tree T of G′′ on S through the ρ-approximation algorithm.
Final, view T as the node-weighted Steiner tree of G on S and output it. The
pseudo-code of this algorithm is presented in algorithm 2.

To better illustrate this algorithm, we give an example. Given a node-weighted
graph G and a terminal set S as in figure1. a, firstly, we transform it into graph
G′ 1. b according to the weight assignment. The numbers besides each vertex in
G are the weights associated with them and we set the weight of all vertices in
the terminal set as 0. Secondly, we calculate the SMT for graph G′, which is the
subgraph in figure 1. c. Figure 1. d presents the NWST for original graph G.

Two Constant Approximation Algorithms for Node-Weighted Steiner Tree 283

1
v

1

4

4

2

3

1
v

1/ 2

5 / 2 2

2

2

2

3/ 2 3/ 2

1

1
2

2

2
v

2
v

2
v

2
v

3
v

3
v

3
v

3
v

4
v

()a ()b

' '
(,)G S()G ()c()d

G G
2 5 7

{ , , }S v v v=
2 5 7

{ , , }S v v v=

4
v5

v

5
v

5
v

5
v

6
v

6
v

7
v

7
v

7
v

7
v

'

' ' ' ' '

'

'

'

'

'
'

'

'

'

'

and and

SMTNWST2

Fig. 1. An example of 2.5ρ algorithm

Since G is a unit disk graph, for any terminal set S, there always exists a
Steiner minimum tree with maximum degree no more than 5[12]. The following
lemma proves the relationship between the weight of the optimal SMT in graph
G

′′
and the weight of the optimal NWST we want.

Lemma 1. Denote TOPT SM as the optimal Steiner Minimum Tree for G
′′

on
the set S and TOPT NWS as the optimal Node-weighted Steiner Tree of G on
the same terminal set S, respectively. Then w′(TOPT SM) ≤ 2.5w(TOPT NWS)
when G is a unit disk graph.

Proof. Consider TOPT NWS as a Steiner tree on S of G′′. For convenience,
denote T as TOPT NWS, V as V (TOPT NWS),E as E(TOPT NWS) and dT (u)
as the degree of node u in tree T, we have

w′(TOPT SM) ≤ w′(TOPT NWS)

=
∑

e=uv∈E

(
1
2
(w(u) + w(v)))

=
∑
u∈V

dT (u)
2

w(u)

≤ 5
2

∑
u∈V

(w(u)) = 2.5w(T).

Hence, the lemma holds. �	
If we consider the Steiner tree T of G′′ as a subgraph of G, we can get the
following lemma:

284 F. Zou et al.

Lemma 2. For any Steiner tree T of G′′ on terminal set S, if we view it as a
subgraph G, then T is also a Steiner tree of G on set S and w(T) ≤ w′(T).

Proof. Since for any Steiner tree, the degree of each Steiner node is not less than
2 and all weight of nodes in terminal set is 0, the lemma holds. �	

Theorem 2. Algorithm NWST2 is a 2.5ρ-approximation for node-weighted
Steiner tree problem in unit disk graph.

Proof. Let T be the output of NWST2. Denote TOPT SM and TOPT NWS as
Lemma 1. By Lemmas 1 and 2, we have

w(T) ≤ w′(T) ≤ ρw′(TOPT SM) ≤ 2.5ρw(TOPT NWS). �	

Since the node-weighted Steriner tree can be used in the MWCDS problem to
interconnect all nodes of the CDS, we can obtain the following corollary.

Corollary 2. Using node-weighted Steriner tree to interconnect all nodes of the
CDS produces (9,875+ε)-approximation for minimum weighted connected dom-
inating set in unit disk graph.

Proof. For any node-weighted graph G and a terminal set S, denote TOPT and
TOPT CDS be the optimal Steiner tree of G on S and optimal CDS of G, respec-
tively. Since the induced graph G[S∪TOPT CDS] is connected, this graph contain
a Steiner tree of G on S. Thus, w(TOPT) ≤ w(TOPT CDS). By[9], we can get
a dominating set C of G with w(C) ≤ (6 + ε)w(TOPT CDS). Then, using algo-
rithm NWST2 for C, we can obtain a Steiner tree T with w(T) ≤ 2.5ρw(TOPT).
Clearly, V (T) is a connected dominating set of G and

w(V (T)) = w(C) + w(T)
≤ (6 + ε)w(TOPT CDS) + 2.5ρw(TOPT)
≤ (9.875 + ε)w(TOPT CDS). �	

4 Conclusion

In this paper, we propose two constant approximation algorithms for NWST
problem in unit disk graph . The approximation ratios of these two algorithms
are 4 and 2.5ρ, respectively. As a corollary, we improve the approximation of
MWCDS in unit disk graphs from 10+ε to 9.875+ε.

References

1. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in
graphs. Networks 10, 167–178 (1980)

2. Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14, 147–
159 (1984)

Two Constant Approximation Algorithms for Node-Weighted Steiner Tree 285

3. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem.
Journal of Algorithms 17, 381–408 (1994)

4. Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximation for
Steiner tree with minimum number of Steiner points. Theoretical Computer Sci-
ence 262, 83–99 (2001)

5. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45, 634–652
(1998)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability:A Guide to the Theory
of NP-Completeness. Freeman, San Fransico (1978)

7. Guha, S., Khuller, S.: Improved Methods for Approximating Node Weighted Steiner
Trees and Connected Dominating Sets. Information and Computation 150, 57–74
(1999)

8. Hougardy, S., Prömel, H.J.: A 1.598 Approximation Algorithm for the Steiner
Problem in Graphs. SODA, 448–453 (1998)

9. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A Better Constant-Factor Approximation
for Weighted Dominating Set in Unit Disk Graph (preprint)

10. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms 19, 104–115 (1995)

11. Kou, L.T., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees, pp.
141–145 (1981)

12. Min, M., Du, H., Jia, X., C.X.H, Huang, S.C.H., Wu, W.: Improving Construction
for Connected Dominating Set with Steiner Tree in Wireless Sensor Networks.
Journal of Global Optimizatio 35, 111–119 (2006)

13. Moss, A., Rabani, Y.: Approximation Algorithms for Constrained Node Weighted
Steiner Tree Problems. In: STOC (2001)

14. Robins, G., Zelikovski, A.: Improved Steiner Tree Approximation in Graphs. In:
Proc. of 11th. ACM-SIAM Symposium on Discrete. Algorithms, pp. 770–779 (2000)

15. Segev, A.: The node-weighted steiner tree problem. Networks 17, 1–17 (1987)
16. Shore, M.L., Foulds, L.R., Gibbons, R.B.: An algorithm for the Steiner problem in

graphs. Networks 12, 323–333 (1982)
17. Zelikovsky, A.: An 11/6 approximation algorithm for the network Steiner problem.

Algorithmica 9, 463–470 (1993)

An Improved Approximation Algorithm for the

Capacitated Multicast Tree Routing Problem

Zhipeng Cai1,�, Zhi-Zhong Chen2,��, Guohui Lin1,� � �, and Lusheng Wang3,†

1 Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada

2 Department of Mathematical Sciences, Tokyo Denki University
Hatoyama, Saitama 350-0394, Japan

3 Department of Computer Science, City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong

Abstract. The Capacitated Multicast Tree Routing Problem is consid-
ered, in which only a limited number of destination nodes are allowed
to receive data in one routing tree and multiple routing trees are needed
to send data from the source node to all destination nodes. The goal is
to minimize the total cost of these routing trees. An improved approxi-
mation algorithm is presented, which has a worst case performance ratio
of 8

5
+ 5

4
ρ. Here ρ denotes the best approximation ratio for the Steiner

Minimum Tree problem, and it is about 1.55 at the writing of the paper.
This improves upon the previous best having a performance ratio of 2+ρ.

Keywords: Capacitated Multicast Tree Routing, Approximation Algo-
rithm, Steiner Minimum Tree, Tree Partitioning.

1 Introduction

Multicast consists of concurrently sending the same data from a single source
node to multiple destination nodes. Such a service plays an important role
in computer and communication networks supporting multimedia applications
[8,10,14]. It is well known that multicast can be easily implemented on local area
networks (LANs) since nodes connected to a LAN usually communicate over a
broadcast network, yet quite challenging to implement in wide area networks
(WANs) as nodes connected to a WAN communicate via a switched/routed net-
work [5,15].

� Supported by NSERC and the 2007 Queen Elizabeth II Doctoral Award. Email:
zhipeng@cs.ualberta.ca.

�� Supported in part by the Grant-in-Aid for Scientific Research of the Ministry
of Education, Science, Sports and Culture of Japan, under Grant No. 20500021.
chen@r.dendai.ac.jp.

� � � To whom correspondence should be addressed. Tel: (780) 492 3737; Fax: (780) 492
1071. Supported by CFI and NSERC. Email: ghlin@cs.ualberta.ca.

† Fully supported by a grant from the RGC of the Hong Kong Special Administrative
Region, China [Project No. CityU 121207]. cswangl@cityu.edu.hk.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 286–295, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Capacitated Multicast Tree Routing Problem 287

In order to perform multicast communication in WANs, the source node and
all the destination nodes must be interconnected. The problem of multicast rout-
ing in WANs is thus equivalent to finding a multicast tree in a network that spans
the source and all the destination nodes, with its goal to minimize the cost of
the multicast tree which is the total weight of edges in the tree.

In this paper, the Capacitated Multicast Routing Problem is studied in which
only a limited number of destination nodes can be assigned to receive the pack-
ets sent from the source node during each transmission. The switches or routers
in the underlying network are assumed to have the broadcasting ability. For
simplicity, such a routing model is called the multi-tree model [7,6]. Multi-tree
model has its origin in WDM optical networks with limited light-splitting capa-
bilities. Under this model, we are interested in finding a set of trees such that
each tree spans the source node and a limited number of destination nodes that
are assigned to receive data and every destination node must be designated to
receive data in one of the trees. Compared with the traditional multicast rout-
ing model without the capacity constraint (called the Steiner Minimum Tree
problem which allows any number of receivers in the routing tree), this simpler
model makes multicast easier and more efficient to be implemented, at the ex-
pense of increasing the cost of the routing tree. Specifically, when the number
of destination nodes in a tree is limited to at most k, we call it the Multicast
k-Tree Routing (kMTR) problem, which is formally defined in the following.

For a graph G, we denote its node set by V (G). We model the underlying
communication network as a triple (G, s, D), where G is a simple, undirected, and
edge-weighted complete graph, s ∈ V (G) is the source node, and D ⊆ V (G)−{s}
is the set of destination nodes. The weight of each edge e in G, denoted by w(e),
is nonnegative and represents the routing cost of e. The additive edge weight
function w(·) generalizes to subgraphs of G in a natural way. That is, if T is
a subgraph of G, then the weight (or cost) of T , denoted by w(T), is the total
weight of edges in T . A subgraph T of G is said to be a D-marked Steiner tree
if T is a tree, at least one node in T is marked, and each marked node in T is
contained in D. For each D-marked Steiner tree T , we use D ∩ T to denote the
set of marked nodes in T . Note that some nodes in both D and T may not be
marked. The size of T is the number of marked nodes in T . A set T of D-marked
Steiner trees are disjointly-D-marked if (D∩T1)∩(D∩T2) = ∅ for every two trees
T1 and T2 in T . Let k be a given positive integer. A k-tree routing in network
(G, s, D) is a set {T1, . . . , T} of disjointly-D-marked Steiner trees such that each
Ti (1 ≤ i ≤ �) contains s and is of size at most k and D =

⋃
i=1(D ∩ Ti). The

weight (or cost) of a k-tree routing is the total weight of trees in the routing.
Given a network (G, s, D), the multicast k-tree routing (kMTR) problem asks for
a k-tree routing in (G, s, D) whose weight is minimized over all k-tree routings
in (G, s, D).

For the kMTR problem, the cases where k = 1, 2 can be solved efficiently [6].
The general case of kMTR, where k is not fixed, is NP-hard [5]. In [1,11], kMTR
is proven to be NP-hard when k is a fixed integer greater than 2. The best known
approximation algorithm for kMTR (k ≥ 3) has a worst case performance ratio

288 Z. Cai et al.

of (2 + ρ) [1,3,9], where ρ is the approximation ratio for the Steiner Minimum
Tree problem, and it is about 1.55 [4,13] at the writing of this paper. Recently,
Morsy and Nagamochi presented an approximation algorithm for kMTR (k ≥ 3)
having a worst case performance ratio of (3

2 + 4
3ρ) [12], which constitutes an

improvement only when ρ < 1.5.
In this paper, we take advantage of the weight averaging technique introduced

in [1,3] to facilitate the design and analysis of a better approximation algorithm
for kMTR. We extend another technique for partitioning routing trees in [1,3]
to guarantee better quality subtrees. Combining them, we achieve an (8

5 + 5
4ρ)-

approximation algorithm. This improves upon the previous best approximation
ratio of (2 + ρ) [1,3,9]. It is also an improvement over (3

2 + 4
3ρ) [12] as long as

ρ ≥ 1.2. In the next section, we present the tree partitioning process in details,
the complete algorithm, and its performance analysis.

Due to the space constraint, proofs of the technical lemmas are left out. The
interested readers may refer to [2] for the details.

2 An (8
5

+ 5
4
ρ)-Approximation Algorithm for kMTR

Throughout this section, fix a positive integer k and an instance (G, s, D) of
the kMTR problem. For ease of explanation, we assume that k is a multiple of
12. Recall that G is a simple, undirected, and edge-weighted complete graph,
s ∈ V (G) is the source node, and D ⊆ V (G) − {s} is the set of destination
nodes. The nodes in V (G) − (D ∪ {s}) can be used as intermediate nodes in a
routing to save the routing cost.

For each pair (u, v) of nodes in G, we use w(u, v) to denote the weight of the
edge between u and v. If {u, v} is an edge in G such that w(u, v) is larger than
the weight of the shortest path between u and v in G, then {u, v} is useless in
any routing and hence can be ignored. So, we can assume that for each pair
(u, v) of nodes in G, w(u, v) equals the weight of the shortest path between u to
v in G. Then, the edge weight function of G satisfies the triangle inequality.

Let T ∗ be an optimal k-tree routing in network (G, s, D). Let R∗=
∑

T∈T ∗w(T).
Note that R∗ is the weight of the k-tree routing T ∗. Moreover, if d is a marked
node in a tree T ∈ T ∗, then clearly w(s, d) ≤ w(T). Thus, we have∑

d∈D

w(s, d) ≤
∑

T∈T ∗

∑
d∈D∩T

w(s, d) ≤ k ×
∑

T∈T ∗

w(T) ≤ k × R∗. (1)

In the following (8
5 + 5

4ρ)-approximation algorithm, we first apply the currently
best approximation algorithm for the Steiner Minimum Tree problem (which has
a worst-case performance ratio of ρ) to obtain a Steiner tree T 0 on {s} ∪ D in
network (G, s, D). Recall that T 0 is a subgraph of G that is D-marked Steiner
tree with D∩T 0 = D. Since the weight of an optimal Steiner tree is a lower bound
on R∗, the weight of tree T 0 is upper bounded by ρR∗, that is, w(T 0) ≤ ρR∗. We
now root tree T 0 at source s. Note that tree T 0 does not necessarily correspond
to a k-tree routing, because the subtree rooted at some child of s in T 0 may
contain more than k marked nodes.

The Capacitated Multicast Tree Routing Problem 289

In the following, for a D-marked Steiner tree T in G and a node v in T , we
use Tv to denote the subtree of T rooted at v. For a child u of an internal node
v in T , the subtree Tu together with edge (v, u) is called the branch rooted at v
and containing u. Recall that D ∩ T denotes the set of marked nodes in T and
the size of T is |D∩T |. If |D∩T | ≤ k, then T can be used in a k-tree routing to
route those nodes in D ∩ T . If source s is not in T , then we can add s and the
edge {s, u} to T , where u is a node in T such that w(s, u) = minv∈V (T) w(s, v).
Let c(T) denote minv∈V (T) w(s, v). Note that c(T) = 0 if s ∈ V (T). We call c(T)
the connection cost of T and define the routing cost of T to be w(T) + c(T).
Moreover, since c(T) ≤ mind∈D∩T w(s, d), we have

c(T) ≤ 1
|D ∩ T |

∑
d∈D∩T

w(s, d). (2)

Although tree T 0 does not necessarily correspond to a k-tree routing, it serves
as a good starting point because w(T 0) ≤ ρR∗. Our idea is to transform T 0

into a k-tree routing without increasing its weight significantly. Basically, the
transformation is done by case analysis. Each case corresponds to a lemma in
Section 2.1. With these lemmas, we will define several types of operations in
Section 2.2 that can be applied to T 0 (to turn it into a k-tree routing). An
outline of the whole algorithm is given in Section 2.3.

2.1 Several Lemmas

This section proves several lemmas that will help us transform T 0 into a k-tree
routing.

Lemma 1. [1,3] Given a D-marked Steiner tree T such that

– k < |D ∩ T | ≤ 3
2k,

we can compute two disjointly-D-marked Steiner trees X1 and X2 from T in
polynomial time such that both X1 and X2 are of size at most k, D ∩ T =
(D ∩X1)∪ (D ∩X2), and the total routing cost of X1 and X2 is at most w(T)+
2 × 1

k

∑
d∈D∩T w(s, d).

Lemma 2. If T is a D-marked Steiner tree such that

– 2
3k ≤ |D ∩ T | ≤ k,

then the routing cost of T is at most w(T) + 3
2 × 1

k

∑
d∈D∩T w(s, d).

Proof. This is trivial since the size of T is at least 2
3k, following Equation 2.

Lemma 3. Suppose that T is a D-marked Steiner tree satisfying the following
conditions:

290 Z. Cai et al.

– 3
2k ≤ |D ∩ T | ≤ 2k.

– The root r of T has exactly three children v1, v2, and v3.
– |D ∩ Tv1 | < 2

3k, |D ∩ Tv2 | < 2
3k, and |D ∩ Tv1 | + |D ∩ Tv2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, . . . , Xp with
2 ≤ p ≤ 3 in polynomial time such that each Xi (1 ≤ i ≤ p) is of size at most k,
D ∩ T =

⋃p
i=1(D ∩ Xi), and the total routing cost of X1 through Xp is at most

5
4w(T) + 3

2 × 1
k

∑
d∈D∩T w(s, d).

Proof. See [2].

Lemma 4. Suppose that T is a D-marked Steiner tree satisfying the following
conditions:

– 5
2k ≤ |D ∩ T | ≤ 3k.

– The root r of T has exactly two children v1 and v2.
– k < |D ∩ Tv1 | ≤ 3

2k and k < |D ∩ Tv2 | ≤ 3
2k.

– For i ∈ {1, 2}, there is a node ui in Tvi (possibly ui = vi) such that ui has
exactly two children xi,1 and xi,2 in Tvi , |D ∩ Txi,1 | < 2

3k, |D ∩ Txi,2 | < 2
3k,

and |D ∩ Txi,1| + |D ∩ Txi,2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, . . . , Xp with
3 ≤ p ≤ 4 in polynomial time such that each Xi (1 ≤ i ≤ p) is of size at most k,
D ∩ T =

⋃p
i=1(D ∩ Xi), and the total routing cost of X1 through Xp is at most

5
4w(T) + 8

5 × 1
k

∑
d∈D∩T w(s, d).

Proof. See [2].

Lemma 5. Suppose that T is a D-marked Steiner tree satisfying the following
conditions:

– 2k < |D ∩ T | ≤ 5
2k.

– The root r of T has exactly two children v1 and v2.
– k < |D ∩ Tv1 | < 4

3k and k < |D ∩ Tv2 | < 4
3k.

– For each i ∈ {1, 2}, there is a node ui in Tvi (possibly ui = vi) such that ui

has exactly two children xi,1 and xi,2, |D∩Txi,1 | < 2
3k, |D∩Txi,2 | < 2

3k, and
|D ∩ Txi,1 | + |D ∩ Txi,2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, X2, and X3

in polynomial time such that each Xi (1 ≤ i ≤ 3) is of size at most k, D ∩
T =

⋃3
i=1(D ∩ Xi), and the total routing cost of X1, X2, and X3 is at most

5
4w(T) + 3

2 × 1
k

∑
d∈D∩T w(s, d).

Proof. See [2].

Lemma 6. Suppose that T is a D-marked Steiner tree satisfying the following
conditions:

The Capacitated Multicast Tree Routing Problem 291

– 4
3k ≤ |D ∩ T | ≤ 3

2k.
– The root r of T has exactly three child nodes v1, v2, and v3.
– |D ∩ Tv1 | < 2

3k, |D ∩ Tv2 | < 2
3k, and |D ∩ Tv1 | + |D ∩ Tv2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1 and X2 in poly-
nomial time such that both X1 and X2 are of size at most k, D ∩ T = (D ∩
X1)∪ (D ∩X2), and the total routing cost of X1 and X2 is at most 5

4w(T)+ 8
5 ×

1
k

∑
d∈D∩T w(s, d).

Proof. See [2].

2.2 Operations to Be Applied to T 0

We are now ready to describe how to transform the initial Steiner tree T 0 (rooted
at the source node s) into a k-tree routing. The transformation will be done
by performing eight types of operations (namely, type-i operations with i ∈
{0, . . . , 7}) on T 0 until T 0 becomes empty. When performing theses operations
on T 0, we will maintain the following invariants:

(I1) A type-i operation is applied to T 0 only when no type-j operations with
j < i can be applied.

(I2) The source node s always remains in T 0.

We define a big node in T 0 to be an internal node v in T 0 with |D∩T 0
v | > k, and

define a huge node in T 0 to be an internal node v in T 0 with |D∩T 0
v | > 2k. Note

that a big node in T 0 may be a huge node or not. A big node in T 0 is extreme
if all its children in T 0 are not big. Similarly, a huge node in T 0 is extreme if all
its children in T 0 are not huge.

We next proceed to the definition of the operations on T 0. A type-0 operation
can be applied on T 0 if |D∩T 0| ≤ k or every branch rooted at s and containing
a child of s is of size at most k. In the former case, a type-0 operation on T 0

includes T 0 in the output k-tree routing and then deletes the whole tree. In the
latter case, a type-0 operation on T 0 includes each branch rooted at the root of
T 0 (and containing a child of the root) in the output k-tree routing and then
deletes the whole tree. In either case, the total routing cost equals w(T 0) (i.e., no
connection cost is needed when a type-0 operation is applied) because s ∈ V (T 0)
by Invariant (I2). Note that if no type-0 operations can be applied to T 0, then
s is a big node in T 0 but is not an extreme big node in T 0 for s �∈ D, implying
that extreme big nodes always exist in T 0 and they are different from s.

If T 0 has an internal node v that has at least three children and has two
children x1 and x2 with |D ∩ T 0

x1
| + |D ∩ T 0

x2
| ≤ k, then a type-1 operation

modifies T 0 as follows:

1. Make a copy vc of v (without marking vc even if v is marked in T 0).
2. Delete the edges (v, x1) and (v, x2).
3. Add three edges (v, vc), (vc, x1), and (vc, x2) so that vc becomes a new child

of v while x1 and x2 become the children of vc. (Comment: (v, vc) is a dummy
edge of weight 0.)

292 Z. Cai et al.

If T 0 has an internal node v with 2
3k ≤ |D ∩ T 0

v | ≤ k, then a type-2 operation
modifies T 0 as follows:

1. Include T 0
v in the output k-tree routing (cf. Lemma 2).

2. Remove v and all its descendants from T 0.

Note that if no type-2 operations can be applied to T 0, then every extreme big
node in T 0 has at least two children because k > k − 1 ≥ 2

3k.
If T 0 has an extreme big node u with at least three children, then a type-3

operation modifies T 0 as follows:

1. Pick three arbitrary children v1, v2, and v3 of u in T 0. (Comment: Since u is
an extreme big node in T 0 and no type-2 operations can be applied to T 0,
|D ∩ T 0

vj
| < 2

3k for each j ∈ {1, 2, 3}. Moreover, since no type-1 operations
can be applied to T 0, |D ∩ T 0

vi
| + |D ∩ T 0

vj
| > k for every pair (i, j) with

1 ≤ i < j ≤ 3.)
2. Let T be the union of the three branches rooted at u and containing v1, v2,

or v3.
3. Use T to obtain a set of D-marked Steiner trees as described in Lemma 3,

and include them in the output k-tree routing.
4. Remove v1, v2, v3, and their descendants from T 0.
5. If u is marked in T 0, then unmark it in T 0.

Note that if neither type-2 nor type-3 operations can be applied to T 0, then
every extreme big node v in T 0 has exactly two children and hence satisfies
that k < |D ∩ T 0

v | < 4
3k. Moreover, we can claim that every huge node in T 0

has a descendant that is a big but not huge node, if neither type-2 nor type-3
operations can be applied to T 0. For a contradiction, assume that the claim
does not hold. Then, there is an extreme huge node v in T 0 whose children are
not big nodes. So, v is an extreme big node in T 0. Thus, k < |D ∩ T 0

v | < 4
3k,

contradicting the assumption that v is huge.
If T 0 has an extreme big vertex v such that the path from s to v contains a

node u with 4
3k ≤ |D∩T 0

u | ≤ 3
2k, then a type-4 operation modifies T 0 as follows:

1. Construct a D-marked Steiner tree T by initializing it as T 0
u and re-rooting

it at v.
2. Use T to obtain two D-marked Steiner trees as described in Lemma 6, and

include them in the output k-tree routing.
3. Remove u and its descendants from T 0.

If T 0 has an extreme big node v such that the path from s to v contains a
node u with 3

2k ≤ |D ∩ T 0
u | ≤ 2k, then a type-5 operation modifies T 0 in the

same way as a type-4 operation does except that Lemma 3 is used instead of
Lemma 6.

If T 0 has a huge node, then a type-6 operation modifies T 0 as follows:

1. Select an (arbitrary) extreme huge node u in T 0.
2. Find an extreme big node v1 that is a descendant of u in T 0 (Comment: As

claimed before, v1 is big but not huge, implying that v1 �= u.)

The Capacitated Multicast Tree Routing Problem 293

3. Let u1 be the child of u in T 0 that is v1 itself or an ancestor of v1 in T 0.
(Comment: |D ∩ T 0

u1
| < 4

3k because u1 is not huge and neither type-4 nor
type-5 operations can be applied to T 0. Consequently, u has at least two
children in T 0.)

4. If every child u2 of u in T 0 with u2 �= u1 satisfies that |D ∩ T 0
u2

| ≤ 2
3k, then

modify T 0 as follows:
(a) Construct a D-marked Steiner tree T by initializing it as T 0

u and then
repeatedly deleting a child u2 �= u1 and the descendants of u2 until
|D ∩ T | ≤ 2k. (Comment: |D ∩ T | ≥ 4

3k because |D ∩ T 0
u2

| < 2
3k for each

child u2 of u in T 0 with u2 �= u1.)
(b) Re-root T at v1.
(c) If |D∩T | > 3

2k, then use T to obtain two or three D-marked Steiner trees
as described in Lemma 3 and include them in the output k-tree routing.
Otherwise, use T to obtain two D-marked Steiner trees as described in
Lemma 6 and include them in the output k-tree routing.

(d) Remove the nodes in V (T) − {u} from T 0.
(e) If u is marked in T 0, then unmark it in T 0.

5. If some child u2 of u in T 0 with u2 �= u1 satisfies that |D ∩ T 0
u2

| > 2
3k, then

modify T 0 as follows:
(a) Find an extreme big node v2 in T 0

u2
. (Comment: Since u is an extreme

huge node in T 0, |D ∩ T 0
u2

| ≤ 2k. Consequently, u2 must be a big node
in T 0 because |D∩T 0

u2
| > 2

3k no type-2 operations can be applied to T 0.
Moreover, |D ∩ T 0

u2
| < 4

3k because neither type-4 nor type-5 operations
can be applied to T 0. Possibly, v2 = u2.)

(b) Construct a D-marked Steiner tree T by setting it to be the union of the
two branches rooted at u and containing u1 or u2. (Comment: Clearly,
2k < |D ∩ T | < 8

3k.)
(c) If |D ∩ T | ≤ 5

2k, then use T to obtain three D-marked Steiner trees
as described in Lemma 5 and include them in the output k-tree rout-
ing. Otherwise, use T to obtain three or four D-marked Steiner trees as
described in Lemma 4 and include them in the output k-tree routing.

(d) Remove the nodes in V (T) − {u} from T 0.
(e) If u is marked in T 0, then unmark it in T 0.

Suppose that no type-i operations with 0 ≤ i ≤ 6 can be applied to T 0. Then,
k < |D∩T 0| < 4

3k. Consequently, there is only one extreme big node u in T 0. As
mentioned before, s is a big but not extreme big node in T 0. So, u �= s. Let v1

and v2 be the children of u in T 0, and let v3 be the parent of u in T 0 (possibly,
v3 = s). Now, a type-7 operation modifies T 0 as follows:

1. Re-root T 0 at u (so that v3 becomes a child of u, too). (Comment: |D∩T 0
v3
| <

1
3k because k < |D ∩ T 0| < 4

3k and |D ∩ T 0
v1
| + |D ∩ T 0

v1
| > k.)

2. Among the nodes in (D ∩ T 0
v1

) ∪ (D ∩ T 0
v2

), find the closest node d′ to s.
(Comment: w(s, d′) < 1

k

∑
d∈(D∩T 0

v1
)∪(D∩T 0

v2
) w(s, d).)

3. Let i ∈ {1, 2} be the integer with d′ ∈ T 0
vi

.
4. Include T 0

vi
as a D-marked Steiner tree in the output k-tree routing. (Com-

ment: c(T 0
vi

) ≤ w(s, d′) < 1
k

∑
d∈D∩T w(s, d).)

294 Z. Cai et al.

5. Obtain a tree T by deleting vi and its descendants from T 0. (Comment:
|D ∩ T | < k because |D ∩ T 0

v3
| < 1

3k and |D ∩ T 0
vj
| < 2

3k, where j is the
integer in {1, 2} − {i}.)

6. Include T as a D-marked Steiner tree in the output k-tree routing. (Com-
ment: Since s remains in T 0 after Step 5, the connection cost of T 0 is 0. Thus,
the total routing cost of T 0

vi
and T is at most w(T 0) + 1

k

∑
d∈D∩T w(s, d).)

7. Remove the whole tree T 0.

2.3 Summary of the Algorithm

A high-level description of the complete approximation algorithm is depicted in
Figure 1.

Input: A network (G, s, D).
Output: a k-tree routing in (G, s, D).

1. Compute a Steiner tree T 0 on {s} ∪ D, using the currently best
approximation algorithm;

2. Root T 0 at s;
3. While (T 0 is not empty) do:
3.1. Let i be the smallest j such that a type-j operation, 0 ≤ j ≤ 7,

can be applied to T 0;
3.2. Perform a type-i operation on T 0;
4. Output the k-tree routing.

Fig. 1. A high-level description of the approximation algorithm for kMTR

Theorem 1. kMTR (k ≥ 3) admits an (8
5+ 5

4ρ)-approximation algorithm, where
ρ is the currently best performance ratio for approximating the Steiner Minimum
Tree problem.

Proof. Notice that whenever we cut a subtree T out of the base Steiner tree T 0

by performing a type-i operation with i ∈ {0, . . . , 7}, we maintain the following
invariants:

– We construct a set T of disjointly-D-marked Steiner trees from T and include
them in the output k-tree routing, where the total routing cost of the trees
in T is at most 5

4w(T) + 8
5 × 1

k

∑
d∈D∩T w(s, d).

– After cutting T out of T 0, T 0 may share a node with T but does not share
an edge with T , and no node of D ∩ T is marked in T 0.

By the above invariants, the total routing cost of the trees in the output k-tree
routing is R ≤ 5

4w(T 0) + 8
5 × 1

k

∑
d∈D w(s, d) ≤ 5

4w(T 0) + 8
5R∗, where T 0 is the

initial Steiner tree obtained in Step 1 of the algorithm and the last inequality
follows from Equation 1. Since w(T 0) ≤ ρR∗, we have R ≤ (5

4ρ + 8
5)R∗.

The Capacitated Multicast Tree Routing Problem 295

3 Conclusions

We have presented an (8
5 + 5

4ρ)-approximation algorithm for kMTR. This im-
proves the previous best (2+ρ)-approximation algorithm. It would be interesting
to know whether the algorithm can be further improved along this approach via
finer analysis.

References

1. Cai, Z.: Improved algorithms for multicast routing and binary fingerprint vector
clustering. Master’s thesis, Department of Computing Science, University of Al-
berta (June 16, 2004)

2. Cai, Z., Chen, Z.-Z., Lin, G.-H., Wang, L.: An improved approximation algorithm
for the capacitated multicast tree routing problem. Technical Report TR08-06,
Department of Computing Science, University of Alberta (May 2008)

3. Cai, Z., Lin, G.-H., Xue, G.L.: Improved approximation algorithms for the ca-
pacitated multicast routing problem. In: Wang, L. (ed.) COCOON 2005. LNCS,
vol. 3595, pp. 136–145. Springer, Heidelberg (2005)

4. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms for
the Steiner tree problem in graphs. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees
in Industries, pp. 235–279. Kluwer Academic Publishers, Dordrecht (2001)

5. Gu, J., Hu, X.D., Jia, X., Zhang, M.-H.: Routing algorithm for multicast under
multi-tree model in optical networks. Theoretical Computer Science 314, 293–301
(2004)

6. Gu, J., Hu, X.D., Zhang, M.-H.: Algorithms for multicast connection under multi-
path routing model. Information Processing Letters 84, 31–39 (2002)

7. Hadas, R.L.: Efficient collective communication in WDM networks. In: Proceedings
of IEEE ICCCN 2000, pp. 612–616 (2000)

8. Huitema, C.: Routing in the Internet. Prentice Hall PTR, Englewood Cliffs (2000)
9. Jothi, R., Raghavachari, B.: Approximation algorithms for the capacitated mini-

mum spanning tree problem and its variants in network design. ACM Transactions
on Algorithms 1, 265–282 (2005)

10. Kuo, F., Effelsberg, W., Garcia-Luna-Aceves, J.J.: Multimedia Communications:
Protocols and Applications. Prentice Hall, Inc., Englewood Cliffs (1998)

11. Lin, G.-H.: An improved approximation algorithm for multicast k-tree routing.
Journal of Combinatorial Optimization 9, 349–356 (2005)

12. Morsy, E., Nagamochi, H.: An improved approximation algorithm for capacitated
multicast routings in networks. Theoretical Computer Science 390, 81–91 (2008)

13. Robins, G., Zelikovsky, A.Z.: Improved Steiner tree approximation in graphs. In:
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), pp. 770–779 (2000)

14. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia ap-
plications. IEEE Journal on Selected Areas in Communications 14, 1228–1234
(1996)

15. Zhang, X., Wei, J., Qiao, C.: Constrained multicast routing in WDM networks with
sparse light splitting. In: Proceedings of IEEE INFOCOM 2000, March 26–30, pp.
1781–1790 (2000)

Covering Arrays Avoiding Forbidden Edges

Peter Danziger1, Eric Mendelsohn2, Lucia Moura3, and Brett Stevens4

1 Ryerson University
2 University of Toronto
3 University of Ottawa
4 Carleton University

Abstract. Covering arrays (CAs) can be used to detect the existence
of faulty pairwise interactions between parameters or components in a
software system. The generalization considered here applies to the sit-
uation in which some input combinations are invalid. In this paper, we
study covering arrays avoiding forbidden edges (CAFEs), where certain
pairwise interactions are forbidden while all others must be covered. We
study the complexity of the problem and give an algorithm for the case
of binary alphabets.

1 Introduction

This paper addresses the application problem of testing a complex system whose
behavior depends on the values of k parameters or factors. Suppose each of the
k factors may take any of g values. To exhaustively test the system, we would
need gk tests, which is too costly in practice, even for moderate number of
factors k. Instead, covering arrays have been extensively used in this context
since they offer effectiveness at a substantially lower cost, having applications
ranging from software and hardware testing [9,15,16,18,24] to genomics [25] and
material sciences [4]. In realistic situations, constraints involving the factors will
restrict certain configurations of the parameters. In this paper, we investigate
test plans given by covering arrays that avoid some fixed set of configurations of
the parameters.

Covering arrays provide an alternative to exhaustive testing, by offering a
much smaller test suite that guarantees coverage of all possible interactions from
any t factors. In this paper, we focus on t = 2, where pairwise interactions of
factors are tested. A covering array (CA) is a matrix with symbols from a g-ary
alphabet, with n rows and k columns. Each of its columns represents a parame-
ter and each of its rows gives a test to be performed. The number of rows, n, is
called the size of the array. The array must offer a pairwise (t = 2) coverage of
factor values, that is, for any pair of the k factors, the corresponding columns
exhaustively cover all possible g2 combinations of values. In practice, small in-
teraction coverage (t = 2, 3, 4) has been shown very powerful for software failure
detection, and in particular t = 2 offers an excellent compromise between failure
detection and size. Empirical results show that testing all pairwise interactions
in a software system finds most of its faults [9,15,16]; some authors also link
pairwise coverage to good “code coverage” [3,10]. The minimal size of a covering

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 296–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Covering Arrays Avoiding Forbidden Edges 297

Product line 1) display 2) email 3) camera 4) video 5) video
options (factors): viewer camera ringtones

possible values: A=16 Million colours D=graphical G=2 Megapixels J=Yes L=Yes
B=8 Million colours E=text H=1 Megapixel K=No M=No
C=Black and White F=none I=none

Constraints on valid configurations: Forbidden edges:
(C1) Graphical email viewer requires a colour display {C, D}
(C2) 2 Megapixel camera requires a color display {C, G}
(C3) Graphical email viewer not supported with the 2 Megapixel camera {D, G}
(C4) 8 Million colour display does not support a 2 Megapixel camera {B, G}
(C5) Video camera requires a camera and a colour display {I, J}, {C, J}
(C6) Video ringtones cannot occur with No video camera {L, K}

Graph G for given constraints: Graph Ĝ for given and implied constraints:

C

A

B

F

D

E

G

H

I

K

J L

M

(1) (4) (5)(2) (3)

C

A

B

F

D

E

G

H

I

K

J L

M

(1) (4) (5)(2) (3)

Pairwise testing without constraints: Pairwise testing with constraints in Ĝ:

display email camera video video
viewer camera ringtones

test 1 A F I J L

test 2 B E I K M

test 3 A E G K M

test 4 C F G K L

test 5 B F H J M

test 6 A D I J M

test 7 C E H J M

test 8 B D H K L

test 9 C D G J L

display email camera video video
viewer camera ringtones

test 1 A D I K M

test 2 A E G K M

test 3 A F G J L

test 4 A D H J L

test 5 B D H K M

test 6 B E I K M

test 7 B F H J M

test 8 C E H K M

test 9 C F I K M

(a) (b)

Fig. 1. Mobile phone product line

array with k factors and g possible values per factor is denoted by CAN(k, g).
For fixed g, this number is known to asymptotically grow as (g log k)/2 [12],
offering a practical solution over exhaustively going through gk tests.

There is a vast literature on covering arrays and their constructions (see Col-
bourn’s surveys [6,7]), including generalizations. There are situations in which
considering t-way interactions for t > 2 gives additional testing benefits [15] over
t = 2, so we can look at covering arrays of strength t [6]. When each factor i
has gi possible values, mixed covering arrays (MCAs) [22] have been considered.
Another generalization of CAs and MCAs targets situations where some factor
combinations need not be tested [21,20], the so called covering arrays on graphs.

Figure 1 shows an example of a system with k = 5 factors. Let us first consider
the case without constraints on valid configurations. Testing exhaustively such
a system would require 72 = 3× 3× 2× 2× 2 tests, but an MCA of size 9 allows

298 P. Danziger et al.

us to test all pairwise interactions (see MCA in Figure 1a). If the system fails
due to a single factor value or due to a combination of two factor values on the
system, at least one of the tests given by this MCA will fail.

In reliability testing, we often encounter extra constraints on feasible parame-
ter combinations. Cohen et.al. [5] discuss the application in highly configurable
systems, where these types of constraints are common. The example in Figure 1
with constraints (C1) to (C6) is extracted from [5]; the constraints in this hy-
pothetical mobile phone example can be modeled as pairs that cannot appear
as part of a valid test. Other applications frequently present similar constraints
such as adverse drug interactions or forbidden chemical reactions [4].

The problem of constructing a test set that covers all allowed pairwise interac-
tions while avoiding a set of forbidden pairs has not been satisfactorily addressed
in the literature nor by the combinatorial interaction testing tools available [5].
With the exception of the paper by Cohen et al., which gives a comparison of vari-
ous heuristic algorithms that incorporate such constraints, we have not found any
other works addressing this problem nor seen any theoretical results. The present
paper concentrates on establishing initial theoretical results, algorithms for build-
ing covering arrays with forbidden configurations as well as bounds on their sizes.

In general, the forbidden interactions may be of any size; for instance, in the
example of Figure 1, we could add the following constraint: “(C7) The combina-
tion of 16 Million colours, Text and 2 Megapixel camera will not be supported”
[5], which is equivalent to forbidding the interaction {A, E, G}. However, in the
present paper we concentrate on the case of forbidden pairwise interactions like
in constraints (C1) to (C6). In this case, the forbidden interactions can be rep-
resented by the edges of a graph as illustrated in Figure 1. Graph G represents
the given constraints and graph Ĝ includes both given and implied constraints.
An array whose rows cover all the non-edges of Ĝ and avoids its edges is called
a Covering Array avoiding Forbidden Edges (CAFE), and is exemplified for this
case in Figure 1b.

Next, we summarize our contributions and the organization of the paper. In
Section 2, we give the main definitions and basic bounds. In Section 3, we study
the complexity of the problem. In particular, we show that determining whether
G admits a CAFE can be decided in polynomial time for g = 2, while it is NP-
complete for g ≥ 5. On the other hand, it remains open whether determining its
minimum size is NP-hard even for g=2. In Section 4, we give a general recursive
construction for CAFEs based on CAFEs for the connected components of the
graph. In Section 5, we give an algorithm for g = 2 which constructs a CAFE
whose size is bounded by k + 1 plus the size of an edge clique covering number
of a related, smaller graph. In particular, when G is bipartite, our algorithm
produces a covering array of size at most k + 2.

2 Definitions and Preliminaries

Let us define the testing problem more formally. Consider a system with k factors
(parameters or components) 1, . . . , k. Each factor i can take one of gi possible

Covering Arrays Avoiding Forbidden Edges 299

values, which we consider w.l.o.g. to be in the set {0, . . . , gi − 1}, denoted by
[0, gi − 1]. A test is an assignment of values to factors, i.e., a k-tuple in [0, g1 −
1] × · · · × [0, gk − 1]. The execution of a test can have two outcomes: pass or
fail; we call it a passing or a failing test, respectively. An interaction is a set
of values assigned to distinct factors: I = {(f1, a1), . . . , (ft, at)}, fi �= fj for
i �= j, and ai ∈ [0, gfi − 1], 1 ≤ i ≤ t. An interaction I is a t-way interaction
if |I| = t. We say that a test (or a k-tuple) T = (T1, . . . , Tk) covers interaction
I = {(f1, a1), . . . , (ft, at)}, if Tfi = ai for 1 ≤ i ≤ t. Thus, a test covers exactly(
k
t

)
t-way interactions, 1 ≤ t ≤ k. We assume that failures are caused by faulty

interactions, that is, the execution of a test fails if and only if it covers one or more
faulty interactions. Covering arrays are combinatorial designs that correspond
to test suites that cover all t-way interactions of factor values, and consequently
all s-way interactions with 1 ≤ s ≤ t.

Definition 1. A mixed covering array, A, denoted by MCA(n; t, (g1, . . . , gk)),
is an n × k array, such that each column i (corresponding to a factor) has val-
ues from the alphabet [0, gi − 1], and every possible t-way interaction is cov-
ered by some row, or in other words, for every t-set of factors {f1, . . . , ft} and
every t-tuple of values (a1, . . . , at) ∈ [0, gf1 − 1] × · · · × [0, gft − 1], there ex-
ists at least one row r (corresponding to a test) such that A[r, fj] = aj for all
j ∈ [1, t]. Given t and g1, . . . , gk, the mixed covering array number, denoted by
MCAN(t, (g1, . . . , gk)), is the smallest n for which an MCA(n; t, (g1, . . . , gk))
exists. When gi = g for all 1 ≤ i ≤ k, we call the objects simply covering arrays
and simplify the notation to CA(n; t, k, g), and CAN(t, k, g).

The test suite in Figure 1a gives a MCA(9; 2, (3, 3, 2, 2, 2)) which is optimal since
g1g2 = 9.

Consider a graph whose edges represent the forbidden pairwise interactions in
a system like in Figure 1. Let G = G(g1,...,gk) denote a graph with k parts of sizes
g1, . . . , gk that is k-partite except for the possible existence of loops (forbidden
single settings). The vertices of G are vi,ai , where i ∈ [1, k] and ai ∈ [0, gi − 1].
If g1 = · · · = gk = g, then we simplify the notation to G = Gk,g . We define a
graph G| on the same vertex set as G and including the edges from E(G) but
also containing all the edges {vi,a, vi,b} for a �= b ∈ [0, gi − 1]. A graph G is
said to be factor connected if G| is connected; factor-connected components of G
correspond to components of G|.

A k-tuple T = (T1, . . . , Tk) ∈ [0, g1 − 1] × · · · × [0, gk − 1] is said to avoid
G = G(g1,...,gk) if for all i, j ∈ [1, k], we have {vi,Ti , vj,Tj} �∈ E(G). We say that
an interaction {(i, a), (j, b)}, i �= j, such that {vi,a, vj,b} �∈ E(G) is consistent
with G if there exists a k-tuple T with Ti = a and Tj = b that avoids G. A graph
is consistent if all pairwise interactions {(i, a), (j, b)}, i �= j, with {vi,a, vj,b} �∈
E(G) are consistent. This definition is equivalent to saying that all forbidden
interactions implied by the edges of the graph are also edges of the graph.

Definition 2. (CAFE) A covering array with forbidden edges for a graph G =
Gg1,...,gk

is an n×k array A with each column i having symbols from the alphabet
[0, gi − 1], and denoted by CAFE(n, G), such that

300 P. Danziger et al.

1. each row of A forms a k-tuple avoiding G;
2. for all vi,a, vj,b ∈ V (G) with i �= j, if {vi,a, vj,b} �∈ E(G), then there exists a

row r such that Ar,i = a and Ar,j = b.

We note that this definition does not have to specifically mention loops because
of the requirement that each row avoids G. We denote by CAFEN(G) the min-
imum n for which there exists a CAFE(n, G), if such an object exists, or +∞
otherwise.

Similarly, CAFE1(n, G) and CAFEN1(G) are defined by substituting the
second condition above by a pointwise coverage requirement: for all vi,a ∈ V (G)
such that {vi,a, vi,a} �∈ E(G), there exists a row r such that Ar,i = a.

It is easy to see that there exists a CAFE for G if and only if G is consistent.
The minimal supergraph of G that is consistent is called the avoidance closure
of G and denoted by Ĝ. So, a graph is consistent if and only if G = Ĝ. Figure 1
gives an example of G and Ĝ. Let Ei,j(G) denote the set of edges with an end in
factor i and the other in factor j. When a CAFE exists it is also easy to calculate
a lower and upper bound on its size,

max
1≤i<j≤k

(gigj − |Ei,j(G)|) ≤ CAFEN(G) ≤
∑

1≤i<j≤k

(gigj − |Ei,j(G)|), (1)

since each nonedge between two factors must be covered and any row whose
pairs are all covered elsewhere can be discarded.

As we add edges to G = Gk,g , CAFEN(G) may decrease or increase. For
fixed g, when G is empty we know CAFEN(G) = CAN(k, g) → g

2 log k, as
k → ∞. The upper bound in Eq. 1 gives CAFEN(G) ≤ g2

(
k
2

)
− |E(G)|. A

graph consisting of two cliques induced by {v0,i ∈ V (G) : 1 ≤ i ≤ �k/2 } and
{v0,i ∈ V (G) : �k/2 + 1 ≤ i ≤ k}, respectively, requires k2/4 rows just to
cover the non-edges involving one vertex in each clique. This example shows
that quadratic growth in k is unavoidable.

CAFEs are closely related to edge clique coverings of graphs.

Definition 3. Let G be a graph. An edge clique cover of G is a set of cliques
{Ki}i∈I of G such that for every e ∈ E(G) there exists an i ∈ I such that
e ∈ Ki. The edge clique covering number of G, θ′(G) is defined to be the size of
the minimum edge clique cover.

In Section 5 we show that CAFEN(G) = θ′(G|), when G = Gk,2 (Theorem 6).
Therefore, we direct the reader to some of the many results known about this
graph parameter [1,2,11,13,17].

3 Computational Complexity Results

In this section, we establish main computational complexity results for the prob-
lems under study (Theorem 4). Consider the following languages, associated to
decision problems of interest to us:

Covering Arrays Avoiding Forbidden Edges 301

– AVOID= {< G = G(g1,...,gk) >: there exists a k−tuple avoiding G};
– ONE-COVER&AVOID= {< G = G(g1,...gk) >: for some n there exists

a CAFE1(n, G)};
– COVER&AVOID= {< G = G(g1,...,gk) >: for some n there exists a

CAFE(n, G)};
– CAFEN= {< G = G(g1,...,gk), N >: there exists a CAFE(N, G)}.

For each language L defined above, we define g-L = {< G = G(g1,...,gk) >∈ L :
g1 = · · · = gk = g}.

Theorem 4. Consider the decision problems defined above. Then,

1. 2-AVOID is in P .
2. g-AVOID is NP-complete for g ≥ 3, and so AVOID is NP-complete.
3. 2-ONE-COVER&AVOID and 2-COVER&AVOID are in P .
4. (g−1)-ONE-COVER&AVOID and g-COVER&AVOID are NP-complete

for g ≥ 5.
5. g-CAFEN is NP-complete, for g ≥ 5, and so CAFEN is NP-complete.

(Note that the NP-hardness of 2-CAFEN is still open!)

Proof. 1. Solve 2-AVOID by treating each forbidden edge as a disjunction of
literals.

2. To prove that 3-AVOID is NP-complete, we reduce from 3-SAT. Let φ =
(l1,0∨l1,1∨l1,2)∧· · ·∧(lk,0∨lk,1∨lk,2) be a formula with k clauses with 3 literals
each. Build G, a k-partite graph with 3 vertices per part, corresponding to
the literals in each of the clauses, and such that {vi,a, vj,b} ∈ E(G) if and
only if i �= j and li,a = ¬lj,b. It is easy to see that φ is satisfiable if and only
if there exists a k-tuple avoiding G.

3. 2-COVER&AVOID can be solved by one call for each non-edge, {vi,a, vj,b},
to a 2-AVOID oracle on the graph G{vi,a,vj,b} obtained from G by replacing
the vertices in parts i and j with gi copies of vi,a and gj copies of vj,b,
respectively, as well as copy of their associated edges. A similar argument
works for 2-ONE-COVER&AVOID.

4. We first transform an instance of g-AVOID into an instance of (g+1)-ONE-

COVER&AVOID. Given G, an instance of g-AVOID, build an instance G′

for (g + 1)-ONE-COVER&AVOID in the following way. Append to G one
new part indexed by k + 1 with a vertex vk+1,0 plus g − 1 isolated vertices.
Add a new vertex, vA

i , per part i, 1 ≤ i ≤ k + 1. Add edges between vk+1,0

and each vA
i , 1 ≤ i ≤ k. The second transformation is identical.

5. We can reduce from g-COVER&AVOID, by just using N large enough (e.g.
the upper bound in Eq. 1) when deciding whether < G, N >∈ g-CAFEN,
and the result follows from 4. �	

4 A Recursive Construction for CAFEs

We give a construction of CAFEs for a graph based on CAFEs for the factor
connected components of the graph. The proof is omitted due to space consid-
erations.

302 P. Danziger et al.

Theorem 5. Let G = G(g1,...,gk) be a graph with non-trivial factor-connected
components G1, . . . , Gs with associated factors F1, . . . , Fs, respectively, and with
�≥0 trivial factor-connected components, corresponding to single factors 1, . . . , �.
(So {1, . . . , k} = {1, . . . , �}∪F1∪. . .∪Fs). Let ki = |Fi|, 1 ≤ i ≤ s. If the following
designs exist:

1. Pi: a CAFE1(pi, Gi), 1 ≤ i ≤ s, that is, a covering array of strength 1
avoiding graph Gi with ki columns and pi rows;

2. Ai: an ai × ki array, such that the array Ci obtained by appending the rows
of Pi and Ai is a CAFE(pi + ai, Gi);

3. P : an MCA(p, 1, (g1, . . . , g�)) on factors 1, . . . , �; (possibly empty (p = 0) if
� = 0)

4. Q: a q × � array, such that the array C obtained by appending the rows of P
and Q is an MCA(p + q; 2, (g1, . . . , g�));

5. M : an MCA(m; 2, (p1, . . . , ps, p)), that is a mixed covering with m rows,
s + 1 (or s columns if p = 0) columns with alphabets sizes p1, . . . , ps, p,
respectively.

Then, there exists a CAFE(n,G) with n = m + max{a1, . . . , as, q}. �	

5 An Algorithm for Constructing Binary CAFEs

The following proposition characterizes consistent graphs for g = 2, that is,
graphs with g = 2 for which G = Ĝ, or equivalently graphs that are in 2-

COVER&AVOID. Its proof is essentially derived from transitively closing a
related directed graph,

−→
G : for every undirected edge {vi,a, vj,b} ∈ E(G), put

(vi,a, vj,1−b), (vj,b, vi,1−a) ∈ A(
−→
G). The statement is equivalent to saying that

G = Ĝ if and only if G does not contain the subgraphs in Figure 2 as induced
subgraphs. The necessity is clear, for the dashed lines (non-edges) in Figure 2
would be non-consistent.

Proposition 1. Let G = Gk,2 be a graph with vertex set V (G) = {vi,a|1 ≤ i ≤
k, a ∈ {0, 1}}. Then, G = Ĝ if and only if {vi,a, vj,b} ∈ E(G) whenever

– there exist vertices in the same part, vl,c and vl,1−c such that edges {vi,a, vl,c}
and {vj,b, vl,1−c} exist; or

– there exist vertices in the same part, vl,0 and vl,1 such that edges {vi,a, vl,0}
and {vi,a, vl,1} exist; or

– there is a loop {vi,a, vi,a} ∈ E(G).

and {vi,a, vi,a} ∈ E(G) whenever there exist vertices in the same part, vl,0 and
vl,1 such that edges {vi,a, vl,0} and {vi,a, vl,1} exist.

The avoidance closure of G, Ĝ, can be efficiently computed in O(k × |E(G)|),
the same complexity as calculating the transitive closure of

−→
G [23].

Our next result is that for g = 2 a CAFE for a graph corresponds to an edge
cover by cliques of its complement.

Covering Arrays Avoiding Forbidden Edges 303

Fig. 2. Forbidden induced subgraphs for binary CAFEs

Theorem 6. Let G = Gk,2 such that G = Ĝ. Then, CAFEN(G) = θ′(G|).

Proof. Since every row of a CAFE(n, G) must be an independent set of size
k in G|, the maximum size of an independent set is k and every non-edge of
G| must be covered by some row of the CAFE(n, G), it is easy to see that
θ′(G|) ≤ CAFEN(G). Given any clique in G| (independent set in G|), we
show that it can be extended to a clique of size k in G|. Suppose that the
vertices {vi1,a1 , vi2,a2 , . . . , vi�,a�

} induce a clique in G|. Suppose that neither ver-
tex for part j can be added and still induce a clique. This means that some edge
{vil,al

, vj,0} and {vim,am , vj,1} must both be missing from G|, or in other words
that these two edges are present in G|. But in this case since G = Ĝ would
force edge {vil,al

, vim,am} to appear in G which contradicts the fact that this
was an edge in a clique in G|. Hence, every clique can be extended by one point
and induction shows that all maximal cliques are of size k. This establishes that
CAFEN(G) ≤ θ′(G|). �	

Calculating θ′(G|) may be an NP-hard problem so Theorem 6 does not nec-
essarily give a good method to determine either CAFEN(G) or produce a
CAFE(n, G). However, since the extension of cliques to k-cliques can be done
greedily (see proof above), any heuristics or approximation algorithms for the
edge clique covering problem adapt directly to produce CAFE(n, G) for g = 2.

In Algorithm 1, we give a method that builds a CAFE for a graph G = Gk,2 =
Ĝ. This algorithm reduces the problem to finding an edge covering by cliques of
a subgraph of G|. At a first glance, this might not seem much better than what
Theorem 6 gives us. However, in certain situations the subgraph obtained may
be much simpler, as in the case of bipartite G (see Corollary 2).

Theorem 7. Let G = Gk,2 such that G = Ĝ. Let G1 be the graph calculated
in BuildCafe, which is obtained by removing all edges incident to the ver-
tices corresponding to a k-tuple avoiding G. Then, Algorithm 1 is correct, and
BuildCafe returns a CAFE(n, G) for n = k + 1 + m, where m is the size of
an edge clique cover of G1.

Proof. If G = Ĝ = Kk,2 then the required CAFE is empty. So from now on
we assume that G = Ĝ �= Kk,2. Since G = Ĝ �= Kk,2, there exists a feasible
row via the reduction from 2-AVOID to 2-SAT which yields a k-tuple T (test)
that avoids G. Thus, we relabel the values of 0 and 1 in each factor so that

304 P. Danziger et al.

Algorithm 1. Build CAFE(n, G) for g = 2.
Require: G = Gk,2, G| connected and G avoidance closed.

procedure BuildCAFE(G) **** (main procedure) ****
CAFE ← ∅
if G �= Kk,2 then

Using 2 − SAT formulation find an independent set of size k, I ∈ G|

Swapping values in each factor if necessary, let I = {vi,0|1 ≤ i ≤ k}
Remove factors that contain a loop
Contract pairs of factors with parallel edges
Order the factors so all 0-1 edges go down and to the right 	 Topologically

sort
−→
G

V (GB) ← V (G); E(GB) ← {{vi,0, vj,1} ∈ E(G) : i, j ∈ [1, k]}
V (G1) ← {vi,1 ∈ V (G) : i ∈ [1, k]}; E(G1) ← {{vi,1, vj,1} ∈ E(G) : i, j ∈

[1, k]}
B ← BuildBipartite(GB)
C ← BuildOnes(G1)
CAFE ← {0k} ∪ B ∪ C
for all i, a factor contracted to j do

add new column i in CAFE
set values in column i as forced by values in column j

for all i, a factor with a loop do
add new column i in CAFE
set values in column i as forced by loop.

return CAFE

procedure BuildBipartite(G)
for all 1 ≤ i ≤ k do

for all k ≥ j > i do
bj ← 0

bi ← 1
for all i > j ≥ 1 do

if {vj,0, vi,1} ∈ E(G) then
bj ← 1

else
bj ← 0

B ← B ∪ {b}
return B

procedure BuildOnes(G)
edge-cover G by cliques (K1, K2, . . . , Km)
for all 1 ≤ i ≤ m do

for all j ∈ V (Ki) do
cj ← 1

for all j �∈ V (Ki) do
if {vj,0, vl,1} ∈ E(G) for some l ∈ V (Ki) then

cj ← 1
else

cj ← 0

C ← C ∪ {c}
return C

Covering Arrays Avoiding Forbidden Edges 305

T = (0, . . . , 0). After relabeling, all edges of G are between a vertex valued 0
(i.e. vi,0 for some i) and a vertex valued 1 or are between two vertices valued 1.

Next, we remove any factors which have their values forced. This happens to
factor i if and only if there is a loop at vi,1. Note that after we are done building
a CAFE for the graph without these factors, we simply put these factors back
into the array as new columns and set their value to 0 in every row. Next, we
iteratively contract any pair of factors which contain two parallel edges between
them, that is two edges of the form {vi,0, vj,1} and {vi,1, vj,0}. These edges imply
that the value in factor i must be equal to the value in factor j. Note that after
we are done building a CAFE for the graph with contracted factors, we simply
put the extra factors back into the array as new columns and set to their forced
value in every row.

We can now assume that our graph is closed, has no loops and no pair of
parallel edges and thus at most one edge between any two factors. It has no
0-0 edges and thus only 0-1 edges and 1-1 edges. We reorder the factors so that
all 0-1 edges slope down and to the right, that is, if {vi,0, vj,1} ∈ E(G) then
j > i. This is always possible and can be verified using the fact that there is
at most one edge between any two factors and that G = Ĝ (alternatively, it is
equivalent to the fact that the corresponding directed graph is acyclic and can
be topologically sorted).

We edge-decompose the graph into the subgraphs containing exclusively each
of these two kinds of edges: the bipartite subgraph (GB) and the 1-1 subgraph
(G1). We now construct three partial covering arrays each of which avoids the
whole graph. They will cover the non-forbidden 0-0 pairs, 0-1 pairs and 1-1 pairs,
respectively. The first covering array, A, is a single row containing only 0’s.

The second partial covering array, B, will have exactly k rows with the values
Bi,i = 1 and Bi,j = 0 for all i < j already set:

1 0 0 · · · 0 0
1 0 · · · 0 0

. . .
...

1 0
1.

Then for i > j, we set Bi,j = 1 if {vj,0, vi,1} ∈ E(GB) and 0 otherwise.
We must show that this covers all required 0-1 pairs and avoids all forbidden

0-1 and 1-1 edges. For every pair of factors i < j, we must always cover the
pair {vi,1, vj,0} and this is covered in row i. If we also need to cover the pair
{vi,0, vj,1} this is done in row j; Bj,i = 0 since this pair is not a forbidden edge.

We now check that we do not cover any forbidden edges. Suppose B�,i = 0 and
B�,j = 1. By construction the pair {vi,0, v�,1} is not an edge of G, {vj,0, v�,1} ∈
E(G) and by closure, {vi,0, vj,1} is not an edge of G. Similarly, suppose B�,i = 1
and B�,j = 1. Again by construction, both {vi,0, v�,1}, {vj,0, v�,1} ∈ E(G) and
thus by closure, {vi,1, vj,1} is not a forbidden edge.

The third partial covering array, C, will have one row for each clique in an
edge clique cover of the complement of G1 (only on the vertices at the 1-level).

306 P. Danziger et al.

These cliques in the complement are independent sets in G1 and thus avoid the
1-1 edges and every 1-1 pair that is not an edge will be covered. Theses are
also cliques in the graph G| and thus by the proof of Theorem 6 they can be
extended to maximal cliques of size k, which is equivalent to completing this row
of C while avoiding G. �	

Next, we want to apply the algorithm to bipartite graphs. We need the following
lemma which we state without proof.

Lemma 8. Let G = Ĝ. Then G is bipartite if and only if G| is bipartite. �	

The two colour classes are equivalent to two disjoint rows of a CAFE, thus we
get the next result.

Corollary 1. G is bipartite if and only if it admits a CAFE(n, G) which con-
tains two disjoint rows.

Corollary 2. Let G = Gk,2, G = Ĝ and suppose that G is bipartite. Then
CAFEN(G) ≤ k + 2.

Proof. Since G is bipartite, so is G| by Lemma 8. Thus, we can choose the
k-tuple avoiding G in Theorem 7, as one of the two parts of G|, which yields
G1 with no edges and m = 1. Thus the CAFE produced by Algorithm 1 has
size k + 2. �	

We know that the graph G which has edges {vi,0, vj,1} for all 1 ≤ i < j ≤ k has
CAFEN(G) = k+1 so the upper bound given by this algorithm is close to best
possible in this case.

If every factor connected component of G is bipartite then using Theorem 5
we get:

Corollary 3. Let G = Gk,2, G = Ĝ and suppose the factor connected compo-
nents of G are {G1, G2 . . .Gs} with ki factors in Gi. Assume also that each Gi

is bipartite. Then

CAFEN(G) ≤ CAN(s, 2) + max
1≤i≤s

{ki} − 1 ∈ O(log s + max
1≤i≤s

{ki}).

Proof. Algorithm 1 produces Pi which all have size 2 and can be used in
Theorem 5. �	

For the case of non-bipartite graphs, Algorithm 1 requires us to build an edge
clique cover of G1. In this case, we can use one of the constructive results on
edge clique covers [1,2,11,13,17]. We hope that an edge clique cover of G1 will
be much smaller than one of Ĝ|, as it was the case of a bipartite G. A direction
of further research is to extend the results obtained for bipartite graphs to other
interesting classes of graphs.

Covering Arrays Avoiding Forbidden Edges 307

References

1. Brigham, R.C., Dutton, R.D.: Upper bounds on the edge clique cover number of a
graph. Discrete Math. 52, 31–37 (1984)

2. Brigham, R.C., Dutton, R.D.: A compilation of relations between graph invariants.
Supplement I. Networks 21, 421–455 (1991)

3. Burr, K., Young, W.: Combinatorial test techniques: Table-based automation, test
generation, and code coverage. In: Proc. Intl. Conf. on Soft. Test. Anal. and Rev.,
October 1998, pp. 503–513. ACM, New York (1998)

4. Cawse, J.N.: Experimental design for combinatorial and high throughput materials
development. GE Global Research Technical Report 29, 769–781 (2002)

5. Cohen, M.B., Dwyer, M.B., Shi, J.: Interaction testing of highly-configurable sys-
tems in the presence of constraints. In: International Symposium on Software Test-
ing and Analysis (ISSTA), London, July 2007, pp. 129–139 (2007)

6. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matem-
atiche(Catania) 58, 121–167 (2004)

7. Colbourn, C.J.: Covering arrays. In: Colbourn and Dinitz [8], pp. 361–364
8. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs, 2nd edn.

Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton
(2007)

9. Dalal, S.R., Karunanithi, A.J.N., Leaton, J.M.L., Patton, G.C.P., Horowitz, B.M.:
Model-based testing in practice. In: Proc. Intl. Conf. on Software Engineering
(ICSE 1999), pp. 285–294 (1999)

10. Dunietz, S., Ehrlich, W.K., Szablak, B.D., Mallows, C.L., Iannino, A.: Applying
design of experiments to software testing. In: Proc. Intl. Conf. on Software Engi-
neering (ICSE 1997), October 1997, pp. 205–215. IEEE, Los Alamitos (1997)

11. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Canad. J. Math. 18, 106–112 (1966)

12. Gargano, L., Körner, J., Vaccaro, U.: Sperner capacities. Graphs Combin. 9, 31–46
(1993)

13. Gyárfás, A.: A simple lower bound on edge coverings by cliques. Discrete Math. 85,
103–104 (1990)

14. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard
to keyword conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978)

15. Kuhn, D.R., Reilly, M.: An investigation of the applicability of design of experi-
ments to software testing. In: Proc. 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, October 2002, pp. 91–95. IEEE, Los Alamitos (2002)

16. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Soft. Eng. 30, 418–421 (2004)

17. Lovász, L.: On covering of graphs. In: Theory of Graphs (Proc. Colloq., Tihany,
1966), pp. 231–236. Academic Press, New York (1968)

18. Mandl, R.: Orthogonal latin squares: An application of experiment design to com-
piler testing. Communic. of the ACM 28, 1054–1058 (1985)

19. Martinez, C., Moura, L., Panario, D., Stevens, B.: Algorithms to locate errors
using covering arrays. In: Proc. LATIN 2008 - 8th Latin American Theoretical
INformatics conference (April 2008)

20. Meagher, K., Moura, L., Zekaoui, L.: Mixed covering arrays on graphs. Journal of
Combinatorial Designs 15, 393–404 (2007)

21. Meagher, K., Stevens, B.: Covering arrays on graphs. J. Combin. Theory. Ser. B 95,
134–151 (2005)

308 P. Danziger et al.

22. Moura, L., Stardom, J., Stevens, B., Williams, A.W.: Covering arrays with mixed
alphabet sizes. J. Combin. Des. 11, 413–432 (2003)

23. Nuutila, E.: Efficient transitive closure computation in large digraphs. Acta Poly-
technica Scandinavica, Mathematics and Computing in Engineering Series, Finnish
Academy of Technology, vol. 74 (1995)

24. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Transactions on Information Theory 34, 513–522 (1988)

25. Shasha, D.E., Kouranov, A.Y., Lejay, L.V., Chou, M.F., Coruzzi, G.M.: Using com-
binatorial design to study regulation by multiple input signals: A tool for parsimony
in the post-genomics era. Plant Physiology 127, 1590–2594 (2001)

26. Tang, D.T., Chen, C.L.: Iterative exhaustive pattern generation for logic testing.
IBM Journal Research and Development 28, 212–219 (1984)

27. Williams, A.W., Probert, R.L.: A measure for component interaction test coverage.
In: Proc. ACS/IEEE Intl. Conf. Comput. Syst. & Applic., pp. 301–311 (2001)

The Robot Cleans Up

Margaret-Ellen Messinger∗ and Richard J. Nowakowski�

Department of Mathematics and Statistics,
Dalhousie University, Halifax NS, Canada

{messnger,rjn}@mathstat.dal.ca

Abstract. Imagine a large building with many corridors. A robot cleans
these corridors in a greedy fashion, the next corridor cleaned is always the
dirtiest to which it is adjacent. We determine bounds on the minimum
s(G) and maximum S(G) number of time steps (over all edge weightings)
before every edge of a graph G has been cleaned. We show that Eule-
rian graphs have a self-stabilizing property that holds for any initial edge
weighting: after the initial cleaning of all edges, all subsequent cleanings
require s(G) time steps. Finally, we show the only self-stabilizing trees
are a subset of the superstars.

Keywords: cleaning process, searching, greedy algorithm, edge
traversing.

1 Introduction

The robot cleaning process is a variant of the cleaning and searching processes (see
[3,4]) in which there is one cleaning agent, the robot, available to clean the edges
of the graph. In this model, the contaminant is immobile, so recontamination of
edges is not an issue. For example, imagine a set of water pipes with algae, or, as
in the Abstract, a robot vacuum randomly cleaning a set of rooms. A robot would
have some, possibly limited, processing power. In the model considered here, we
allow the robot to make a local, greedy choice. One formulation of this model is
to assign a weight to each edge of the graph, which corresponds to the level of
contamination. At each time step, the robot cleans (i.e. traverses) the incident
edge with the highest level of contamination and re-sets that contamination level
to zero, while the level of contamination for all other edges is increased by one.

In Section 2, the problem is formulated in an equivalent way: each edge has
a time associated with it, the time at which it was last cleaned. If an edge has
not been cleaned, then it has a negative number assigned. We assume that it
takes one time step to clean an edge. At time t, the robot cleans (traverses) the
incident edge of minimum weight, sets the weight on that edge to t while all
other edge weights remain unchanged.

We first show, Theorem 1, that for any finite connected graph, there is some
finite time step by which every edge of the graph has been cleaned. The robot
doesn’t know that it has cleaned the graph, indeed, it is supposed to continually
� Research partially supported by NSERC.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 309–318, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 M.-E. Messinger and R.J. Nowakowski

v1 v2 v3 v4 v5

−10

−1 −2 −3 −4

−9 −8 −7 −6

−5

Fig. 1. An initial weighting of G for which the robot has cleaned every edge after
|E(G)| steps

v1 v2 v3 v4 v5

−10

−8 −6 −4 −2

−9 −7 −5 −3

−1

Fig. 2. An initial weighting of G for which the robot has cleaned every edge after
(1/4)|E(G)|2 + (1/2)|E(G)| steps

clean the graph. The focus is then on s(G) and S(G), the minimum and maxi-
mum number of steps required to clean the graph on the first and on subsequent
cleanings.

Given an initial set of edge weights and initial location of the robot, the
robot acts very much like a cellular automaton, see the automatic ant [2]. The
robot problem is also similar to some edge-traversal (also known as arc-routing)
problems, which generally require a least-cost traversal of a subset of edges of a
network. In Section 3, an algorithm that solves one such edge-traversal problem
(the Chinese Postman Problem) is exploited to find a lower bound for s(G).

Consider the two weightings of G, given in Figures 1 and 2, and suppose the
robot is initially placed at v1. In Figure 1, every edge of G has been cleaned

The Robot Cleans Up 311

after |E(G)| steps (and the path of the robot is traced in the lower graph). In
Figure 2, every edge of G has been cleaned after (1/4)|E(G)|2 + (1/2)|E(G)|
steps (and the path of the robot is traced in the lower graph). If G is a cycle,
then s(G) = S(G) = |E(G)|, but Figures 1 and 2 illustrate that the difference
between S(G) and s(G) can be at least (1/4)|E(G)|2 − (1/2)|E(G)|. Theorem 5
in Section 4 provides an upper bound for S(G).

What happens if the robot traverses the edges of G a second, third, or fourth
time? Eventually the process must settle into some reoccurring sequence of initial
weightings as there are only a finite number of edge sequences. Theorem 6 of
Section 5 shows that for Eulerian graphs, no matter how many steps are required
before every edge of the graph G has been cleaned at least once, every subsequent
cleaning requires only |E(G)| steps. For a tree T , Theorem 7 shows the only trees
with this self-stabilizing property are a subset of the superstars.

Throughout this paper, we will assume that every graph is finite and connected.

2 Definitions and Preliminaries

For a graph G = (V, E), an initial weighting of G is a bijection C : E →
{−1,−2, . . . ,−|E|}. Initially, the robot is placed at some vertex v ∈ V . Let Ct(e)
denote the weight of edge e at step t. Thus, if edge e′ is traversed at step t, then
set Ct+1(e′) := t+1 and set Ct+1(e) := Ct(e) for all e ∈ E\{e′}. As the number of
steps before every edge of a graph is cleaned is the main concern of this paper,
set C0 = E and let Ct denote the set of edges which have not been traversed
by step t. Consequently, the process will terminate when Ct = ∅ for some step t
(once every edge has been traversed) and return the time step σ(G, C, v) = t.

Definition 1. For a graph G = (V, E) with an initial weighting C and the robot
initially located at some vertex v ∈ V , the one-pass robot R1(G, C, v) is a
process defined as follows:

(0) Set t := 0, C0 := E and C(e) := C0(e) for every e ∈ E.
(1) If Ct = ∅ then STOP, return σ(G, C0, v) = t.
(2) Let e′ = {u, v} such that Ct(e′) = min{Ct(e) : e = {u, v} for all w ∈ N(v)}.
(3) The robot traverses edge e′ from v to u, setting Ct+1 := Ct\{e′}, Ct+1(e′) :=

t + 1 and Ct+1(e) := Ct(e) for all e ∈ E\{e′}.
(4) Relabel vertex u (where the robot is located) as v, set t := t + 1, and return

to (1).

Given the initial weightings of Figures 1 and 2, suppose the robot is initially
located at v1. Then the process of Figure 1 terminates after 10 steps and the
process of Figure 2 terminates after 30 steps. Although the termination was
apparent in these examples, Theorem 1 shows the process always terminates in
a finite number of steps.

Given an arbitrary initial weighting of graph G and an arbitrary initial loca-
tion of the robot, an arbitrary application of R1 to G is an application of the
one-pass robot process to G.

312 M.-E. Messinger and R.J. Nowakowski

Lemma 1. During an arbitrary application of R1 to graph G, suppose the robot
first visits v after traversing the edge {u, v}. The robot will not traverse {u, v}
from v to u until all other edges incident with v have been traversed.

Suppose the robot first visits v after traversing {u, v}. By Definition 1, at each
subsequent visit to v, the robot may not traverse {u, v} unless every other inci-
dent edge has been traversed.

Theorem 1. An arbitrary application of R1 to (a finite connected) graph G will
terminate after a finite number of steps.

Proof. For a finite connected graph G = (V, E), let C be an arbitrarily initial
weighting and let v ∈ V be an arbitrary initial location of the robot. Assume that
R1 does not terminate after a finite number of steps. As the process terminates
once every edge has been traversed, there is some edge e = {u, v} which is
not traversed, but is adjacent to an edge that is. There must be a maximum
cardinality subset S of vertices, each of which is visited by the robot an infinite
number of times. Suppose u ∈ S. By Lemma 1, all vertices adjacent to u must be
visited by the robot an infinite number of times. Since S is a maximum connected
component thus G = S. Thus, R1 must terminate after a finite number of steps.

The fact that every edge in a graph will be traversed raises several questions.
Specifically, what is the minimum or maximum number of time steps before every
edge has been traversed, taken over all initial weightings and initial locations of
the robot?

Definition 2. Let C be the set of all bijections C : E → {−1,−2, . . . ,−|E|} for
a graph G = (V, E). Then

s(G) = min
v∈V, C∈C

σ(G, C, v) and S(G) = max
v∈V, C∈C

σ(G, C, v).

Let G = (V, E) be a graph and suppose no edge is traversed twice in the first k
steps. Label the first k edges traversed as e1, e2, . . . , ek such that ei was traversed
at step i. We may now assume that the edges were weighted in that order
originally, thus we do not have to give the weighting in advance. In essence,
for s(G), we try to use untraversed edges whereas for S(G), we try to reuse
edges as often as possible.

3 Results for s(G)

Clearly, s(G) ≥ |E(G)| for every graph G. If a graph G = (V, E) is Eulerian,
then Lemma 2 shows the edges can be traversed in exactly |E| steps; however,
many initial weightings will return a larger number of steps to traverse the edges
as shown in Figure 2. Let do(G) denote the number of vertices of odd degree in
a graph G. Then graph G is semi-Eulerian if do(G) = 2.

Lemma 2. If G = (V, E) is an Eulerian graph, then s(G) = |E| and the initial
and final locations of the robot are the same. If G is a semi-Eulerian graph, then
s(G) = |E| and the initial and final locations are the two vertices of odd degree.

The Robot Cleans Up 313

Proof. Let G = (V, E) be an Eulerian graph and v be an arbitrary vertex at
which the robot is initially located. There must exist an initial weighting that
permits the robot to follow an Eulerian circuit through G. Note the robot must
return to v after traversing the |E|th edge.

Suppose G = (V, E) is semi-Eulerian with odd vertices u, v. Let G′ = (V ′, E′)
be the supergraph of G formed by the addition of the edge e = {u, v}. Assign
a weight of −|E′| to e and start the robot at u. The result follows immediately
from the previous argument.

If G is semi-Eulerian, then both the initial and final locations of the robot must
be the two vertices of odd degree. However, for every vertex of odd degree of a
graph that is neither the initial or final vertex for the robot, at least one incident
edge must be traversed at least twice.

Theorem 2. For a graph G = (V, E) with do(G) > 0, s(G) ≥ |E| + (do(G) −
2)/2.

Proof. Let G = (V, E) be a graph with an arbitrary application of R1 to G. If
do(G) = 2, then the result is known from Lemma 2; assume do(G) > 2. Assume
that the initial and final locations of the robot are both vertices of odd degree
(if either or both are vertices of even degree the lower bound will be increased).
Each of the remaining do(G) − 2 vertices of odd degree must be incident to
an edge which is traversed twice. But such an edge could be incident with two
vertices of odd degree, so at least (do(G) − 2)/2 edges must be traversed twice.

Corollary 1 shows that the bound of Theorem 2 can be tight.

Corollary 1. Let Kn = (V, E) be a complete graph on n vertices. Then

s(Kn) =

{
|E| if n is odd
|E| + (n − 2)/2 if n is even.

Proof. If n is odd, the result follows from Lemma 2. Suppose n is even. Label
the vertices of Kn as v1, v2, . . . , vn and initially place the robot at v1. The robot
can first traverse an n − 1-cycle such that Ci(vi, vi+1) = i for i = 1, 2, . . . , n − 2
and Cn−1(vn−1, v1) = n − 1. The robot can now traverse the remaining edges
of the subgraph induced by the vertices {v1, v2, . . . , vn−1}. As this subgraph is
Eulerian, the robot can traverse each edge once before returning to v1 at step
t = |E(Kn−1)|. Note that at this step, the untraversed edges of Kn are precisely
those edges incident with vn.

At step t = |E(Kn−1)| + 1, the robot traverses edge {v1, vn}. At step t =
|E(Kn−1)|+2, it traverses edge {vn, vn−1}. At step t = |E(Kn−1)|+3, the robot
is located at vertex vn−1 and the minimum weighted edge incident with vn−1 is
{vn−2, vn−1} (as it was last traversed at step t = n − 2). The robot traverses
{vn−2, vn−1}, followed by edge {vn−2, vn}. This argument can be repeated to
traverse the remaining edges incident with vn.

Finally, every edge of Kn has been traversed in (n−1)+|E(Kn−1)|+(n−2)/2 =
|E(Kn)| + (n − 2)/2 steps. By Theorem 2, this is the minimum.

314 M.-E. Messinger and R.J. Nowakowski

Let W (G) denote the length of the shortest walk which traverses every edge
of a graph G = (V, E) at least once. It is clear that s(G) ≥ W (G) ≥ |E| with
equality if and only if G is Eulerian or semi-Eulerian. The Chinese Postman
Problem is to find the shortest closed walk of a graph such that each edge is
traversed at least once. For a graph G, the solution of the Chinese Postman
Problem may be obtained by creating a new graph G′: minimally adding new
edges to G, such that G′ is Eulerian [1]. We use this construction for W (G):
let M(G) be the minimum number of edges added to G to ensure it is semi-
Eulerian (which will require less edges than ensuring it is Eulerian). That is,
M(G) is a least-cost augmentation of G into G′ where G′ is semi-Eulerian.
Although W (G) = |E| + M(G) provides a lower bound for s(G), the difference
between s(G) and W (G) can be large as shown in Figure 3 (the order in which
edges are cleaned is shown for each).

Theorem 3. For any graph G, s(G) ≥ W (G) = |E| + M(G).

G

s(G)

W (G)

Fig. 3. An example for which s(G) = W (G) + (diam(G) − 3)/2

To determine s(T) for a tree T , we must alter the termination point of the
one-pass robot. The vertex-recurrent one-pass robot process is simply the one-
pass robot process extended such that it terminates once every edge has been
traversed and the robot has returned to its initial location. Thus, for an initial
weighting C and initial location v of the robot, the vertex-recurrent process will
be denoted by V R1(G, C, v). Lemma 3 shows that for a tree T = (V, E), the
vertex-recurrent process terminates after 2|E| steps.

Lemma 3. Let T = (V, E) be a tree with an arbitrary initial weighting C and the
robot initially placed at an arbitrary vertex v ∈ V . Then V R1(T, C, v) terminates
after exactly 2|E| steps.

Proof. Let T = (V, E) be a tree and initially place the robot at an arbitrary
vertex v ∈ V . If v is not a leaf, then deg(v) = k ≥ 2. Let T1, T2, . . . , Tk be the
maximal subtrees of T that have v as a leaf. By Lemma 1, when the robot leaves
v and traverses an edge to Ti, it will only return to v after having traversed
every edge of Ti. By induction, the number of steps until every edge has been
traversed and the robot has returned to v is 2

∑k
i=1 |E(Ti)| = 2|E|.

The Robot Cleans Up 315

If v is a leaf with stem u, the robot begins at v and first traverses {u, v} to u.
By induction, the rest of the tree is traversed in 2(|E| − 1) steps with the robot
returning to u. Finally, the robot traverses {u, v} back to v. Then V R1(T, C, v)
will terminate after 2|E| steps.

Theorem 4. For any tree T = (V, E) with diameter diam(T),

s(T) = 2|E| − diam(T).

Proof. Let T = (V, E) be a tree with diameter diam(T). As T is a tree, the
maximum number of edges that can be traversed exactly once, is diam(T). As
the remainder of the edges must be traversed at least twice, s(T) ≥ diam(T) +
2(|E| − diam(T)) = 2|E| − diam(T).

Let P = {p1, p2, . . . , pd+1} be a path of length d = diam(T). In the subgraph
obtained by the removal of the edges of P , let Tpi be the tree which includes
vertex pi. In T , initially place the robot at p1; it sequentially traverses the edges
of P , such that when it arrives at a vertex pi, it traverses the subtree Tpi before
traversing the edge {pi, pi+1}. By Lemma 3, it traverses Tpi and returns to pi in
exactly 2|E(Tpi)| steps. In this manner, the robot will traverse all edges of the
tree in d +

∑d+1
i=1 2|E(Tpi)| = 2|E| − diam(T) steps.

Corollary 2. Let G = (V, E) be a unicyclic graph with cycle C and let P be the
longest path in G that contains only one vertex of C. Then

s(G) = 2|E| − |E(C)| − |E(P)|.

4 Results for S(G)

Theorem 1 showed that for any initial weighting and any initial location of the
robot, the process will terminate after a finite number of steps. This motivates
the question, what is the maximum number of steps before the process terminates
(over all possible initial weightings and initial robot locations)?

Corollary 3 follows directly from Lemma 3. Clearly S(T) ≤ 2|E|−1 for a tree
T = (V, E) as the final edge traversed is only traversed once. Suppose v is a leaf
on T and the robot is initially located at some vertex u (where u is adjacent to
v). Then it can traverse the edges of T \{v} in exactly 2|E| − 2 steps, followed
by edge {u, v}.

Corollary 3. For any tree T = (V, E), S(T) = 2|E| − 1.

Let Hn be the graph on n vertices that consists of a path P = {v1, v2, . . . , vn};
an additional edge between vi and vi+1 for i = 1, 2, . . . , n − 1; and a loop at
both v1 and vn. The graph H5 is illustrated in Figure 2. If the robot is initially
located at v1, it can traverse the edges of H5 in the order given in Figure 2.
Clearly the robot could traverse the edges of Hn in a similar manner. For Hn, as
|E| = 2n − 2, the number of steps before the process terminates is 2

∑n−1
i=1 i =

n2 − n = (1/4)|E|2 + (1/2)|E|. Consequently, a general upper bound on S(G)
must be at least O(|E|2).

316 M.-E. Messinger and R.J. Nowakowski

Theorem 5. Let G = (V, E) be a graph and let u ∈ V with deg(u) = Δ(G). Then

S(G) ≤ 1 + 2(deg(u) − 1)
(∏

v∈V : v �=u

deg(v)
)
.

Further, if G contains no leaves,

S(G) ≤ 1 + (deg(u) − 1)
(∏

v∈V : v �=u

deg(v)
)
.

Proof. Let G = (V, E) be a graph with an arbitrary application R1 to G. Label
the vertices of G as v1, v2, . . . , vn and let u be a vertex with deg(u) = Δ(G).

For each time step t > 0 we associate with each vertex, the incident edge with
minimum weight to form a list Lt (with n entries) such that the ith entry in the
list is the edge incident with vi of minimum weight. If at step t, the edge incident
with a leaf is traversed for the first time, then Lt = Lt+1. Otherwise, Lt and
Lt+1 must be distinct. In order to get an upper bound, we allow the process to
continue well past the time step t1 (when R1 normally terminates) to when all
edges have been traversed. By some time step t′ > t1, the event (�) must have
occurred:

(�) For every v ∈ V , each of the deg(v) edges has appeared in a list as the
edge with minimum weight incident to v.

Although there are a total of
∏

v∈V deg(v) possible lists, if G contains no
leaves, then (�) must occur by at most step t′ = (deg(u) − 1)(

∏
v∈V : v �=u

deg(v)) + 1. This implies that every edge of the graph has been traversed.
Recall that for every step t in which the edge incident to a leaf is first

traversed, Lt = Lt+1. So if G contains leaves, the result is 1 + 2(deg(u) −
1)(
∏

v∈V : v �=u deg(v)) time steps.

5 Self-stabilizing Graphs

What happens if the process is applied a second time, using the final weighting
(and final robot location) of the first application as the initial weighting (and
initial robot location) of the second application. What if the process is applied
i times? Eventually the process must settle into some reoccurring sequence of
initial weightings as there are only a finite number of edge sequences; however,
we first formalize the idea of consecutive applications of the robot process.

Given an initial weighting C and an initial location of the robot at some vertex
v(t0), the one-pass robot process terminates after σ(G, C, v) = t1 steps at which
time the robot is located at vertex v(t1). Then the ith application of the process
R1(G, Cti−1 , v(ti−1)) terminates at step ti = σ(G, Cti−1 , v(ti−1)). For i > 1, the
ith application of the process will use the final weighting of the i-1th process as
its initial weighting.

Definition 3. For every initial weighting and every initial robot location, if ti =
s(G) for every i > 1, then graph G is self-stabilizing.

The Robot Cleans Up 317

If a graph G is self-stabilizing, then no matter how many steps pass before every
edge of G has been traversed in the first application, the process will require only
s(G) steps in subsequent applications. For example, given the initial weighting of
graph G in Figure 2 where the robot is initially placed at v1, the process requires
(1/2)|E(G)|2 +(1/2)|E(G)| steps before every edge has been traversed. One may
easily verify that for the graph in Figure 2, for each subsequent application, the
process only requires |E(G)| steps.

Theorem 6. Every Eulerian graph is self-stabilizing.

Proof. Let G = (V, E) be an Eulerian graph with an arbitrary initial weighting
C1 and an arbitrary initial location v1 for the robot. Let t be the first time step
in the process when the robot is located at a vertex and every edge incident
with that vertex has been traversed. By Lemma 1 and the fact that all vertex
degrees are even, the robot must be located at v1 at step t. There are two cases
to consider. First, if all the edges have been traversed then the robot will follow
the same path in subsequent applications of the process.

Second, if not all edges have been traversed then the robot has traversed a
circuit A1, starting and ending at v1 (i.e. vertices, but not edges, can be repeated
on A1). There must be some vertex on A1 that has untraversed incident edges.
Let v2 be the first such vertex on A1. Let {e1, e2, . . . , ej} ∈ A1 be the first j
edges of G the robot traverses such that the robot traverses ej to visit v2 for
the first time. Consider a new weighting: let C2(ei) = C1

t (ei) for i = 1, 2, . . . , j
and C2(e) = C1(e) for all other edges e. Now consider a new process with initial
weighting C2 and the robot initially located at v2. By changing the weighting
in this way, the robot must follow the edges of A1 from v2 to v1 and then back
to v2. So all the edges that were traversed starting at v1 with weighting C1 are
also traversed starting at v2 with weighting C2. As v2 is incident to at least two
untraversed edges, the robot will traverse these and create a larger circuit. If
this does not include all the edges then apply this procedure again. Each time
a larger circuit is produced so (eventually) there must be some vertex vi with
circuit Ai such that there are no untraversed edges incident with Ai.

Given k paths, the superstar is the graph obtained by merging k leaves, one from
each path. The reader may easily verify that both paths and superstars, where
each ray is of equal length, are self-stabilizing trees. Theorem 7 shows these are
the only self-stabilizing trees.

Theorem 7. A tree T is self-stabilizing if and only if it is either a path or a
superstar where each ray is of equal length.

Proof. Since a path is self-stabilizing, consider T = (V, E), a self-stabilizing tree
with more than 2 leaves. We show that for the given initial weighting and location
of the robot, T must be a superstar (where each ray is of equal length).

Let x be the initial location of the robot and y be the final location of the
robot after an application of the process R1 where x and y are leaves. Let
P = {p0, p1, p2, . . . , pa−1, pa} be the path from x = p0 to y = pa. Let z be

318 M.-E. Messinger and R.J. Nowakowski

a leaf of T such that d = d(y, z) ≤ d(y, �) for all other leaves � ∈ V . In the
subgraph obtained by the removal of the edges of P from T , let Tpi be the
subtree containing vertex pi, for each i ∈ {1, 2, . . . , a−1}. Let Tpk

be the subtree
containing vertex z.

The robot now traverses the edges of T such that when it arrives at vertex
pi, it traverses the subtree Tpi before traversing the edge {pi, pi+1} (this may be
done by Lemma 3). Once the robot arrives at pk, it traverses the edges of Tpk

such that the first leaf in Tpk
the robot reaches is z. (Again, this may be done

by Lemma 3). Finally, the robot traverses the remaining edges of P from pk to
y = pa and every edge has been traversed.

Apply the process a second time to T with the robot initially located at
y = pa, using the final weighting of the first application as the initial weighting
in the second. As the weight on edge {pi−1, pi} is less than the weight on all
other edges incident with pi, the robot first traverses the edges of P . After the
robot has traversed P , it is located at x = p0 and must subsequently traverse
the edges of P again; however when it arrives at vertex pi, it now traverses the
subtree Tpi before traversing edge {pi, pi+1} for each i ∈ {1, 2, . . . , k − 1}. When
the robot arrives at pk, it traverses the edges of Tpk

; however, the final edge
traversed will be the edge incident with z.

By Lemma 3, the second process requires exactly 2|E|−d(y, z) steps and as T
is self-stabilizing, Theorem 4 implies d(y, z) = diam(T). Then d(y, �) = diam(T)
for all leaves � ∈ V \{y} and further, d(u, v) = diam(T) for any leaves u, v ∈ V .
Thus, T must be a superstar with each ray of equal length.

References

1. Edmonds, J., Johnson, E.L.: Matching, Euler Tours and the Chinese Postman.
Mathematical Programming 5, 88–124 (1973)

2. Gale, D.: Tracking the automatic ant and other mathematical explorations. Springer,
New York (1998)

3. Messinger, M.E., Nowakowski, R.J., Pra�lat, P.: Cleaning a Network with Brushes.
Theoretical Computer Science 399, 191–205 (2008)

4. Messinger, M.E., Nowakowski, R.J., Pra�lat, P., Wormald, N.C.: Cleaning random d-
regular graphs with brushes using a degree–greedy algorithm. In: Janssen, J., Pra�lat,
P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 13–26. Springer, Heidelberg (2007)

On Recovering Syntenic Blocks
from Comparative Maps

Zhixiang Chen1, Bin Fu1, Minghui Jiang2,�, and Binhai Zhu3

1 Department of Computer Science, University of Texas - Pan American, Edinburg, TX
78539-2999, USA

{chen,binfu}@cs.panam.edu
2 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA

mjiang@cc.usu.edu
3 Department of Computer Science, Montana State University, Bozeman, MT 59717, USA

bhz@cs.montana.edu

Abstract. A genomic map is represented by a sequence of gene markers, and
a gene marker can appear in several different genomic maps, in either positive
or negative form. A strip (syntenic block) is a sequence of distinct markers that
appears as subsequences in two or more maps, either directly or in reversed and
negated form. Given two genomic maps G and H , the problem Maximal Strip
Recovery (MSR) is to find two subsequences G′ and H ′ of G and H , respectively,
such that the total length of disjoint strips in G′ and H ′ is maximized. Previously
only a heuristic was provided for this problem, which does not guarantee finding
the optimal solution, and it was unknown whether the problem is NP-complete
or polynomially solvable. In this paper, we develop a factor-4 polynomial-time
approximation algorithm for the problem, and show that several close variants of
the problem are intractable.

1 Introduction

In comparative genomics, a starting point is to decompose two given genomes into
syntenic blocks—segments of chromosomes which are deemed to be homologous in the
two input genomes. Various methods have been proposed, but they are very vulnerable
to ambiguities and errors. Recently, a heuristic method was proposed to eliminate noise
and ambiguities in genomic maps, through handling a problem called Maximal Strip
Recovery (see below for the formal definition) [6,16]. But it was unknown whether the
problem can be solved in polynomial time or is NP-complete. In this paper, we design
a factor-4 polynomial-time approximation algorithm for the problem, and show that
several close variants of the problem are intractable.

A genomic map is represented by a sequence of gene markers, and a gene marker can
appear in several different genomic maps, in either positive or negative form. A strip
(syntenic block) is a sequence of distinct markers that appears as subsequences in two or
more maps, either directly or in reversed and negated form. Given two genomic maps G
and H , the problem Maximal Strip Recovery (MSR) [6,16] is to find two subsequences

� Partially supported by NSF grant DBI-0743670.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 319–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

320 Z. Chen et al.

G′ and H ′ of G and H , respectively, such that the total length of disjoint strips in G′

and H ′ is maximized. Intuitively, those gene markers not included in G′ and H ′ are
noise and ambiguities.

We give a precise formulation of the generalized problem MSR-d: Given d signed
permutations (genomic maps) Gi of 〈1, . . . , n〉, 1 ≤ i ≤ d, find k sequences (strips) Sj

of length at least two, and find d signed permutations πi of 〈1, . . . , k〉, such that each
sequence G′

i = Sπi(1) . . . Sπi(k) (here S−j denotes the reversed and negated sequence
of Sj) is a subsequence of Gi, and the total length of the strips Sj is maximized. Note
that the problem Maximal Strip Recovery (MSR) [6,16] is exactly the problem MSR-2
in our new formulation. We refer to Fig. 1 for an example.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
G2 = 〈−8,−5,−7,−6, 4, 1, 3, 2,−12,−11,−10, 9〉
S1 = 〈1, 3〉
S2 = 〈6, 7, 8〉
S3 = 〈10, 11, 12〉
π1 = 〈1, 2, 3〉
π2 = 〈−2, 1,−3〉
G′

1 = 〈1, 3, 6, 7, 8, 10, 11, 12〉
G′

2 = 〈−8,−7,−6, 1, 3,−12,−11,−10〉

Fig. 1. An example for the problem MSR

A heuristic based on Maximum Clique (and its complement Maximum Independent
Set) was previously given for the problem MSR (MSR-2) [6,16], which does not guar-
antee finding the optimal solution. It was unknown whether MSR is NP-complete or
polynomially solvable. In this paper, we show that the previous heuristic [6,16] can be
modified to achieve a factor-4 approximation for MSR; we also show that the problem
becomes intractable when the number of genomic maps is increased from two to three.
In Section 2 and Section 3, we prove the following two theorems:

Theorem 1. There is a factor-4 polynomial-time approximation algorithm for MSR.

Theorem 2. MSR-3 is NP-complete.

1.1 Weight Constraint on Markers

When building genomic maps, a priori information about the gene markers can be de-
rived from comparative analysis. For example, certain genes that are responsible for
important genetic functions in several close species can often be identified. It is reason-
able to give the corresponding gene markers larger weights. Denote by MSR-WT the
problem MSR with the additional weight constraint WT:

WT: The total weight of markers in the strips is between two positive integersw1 and w2.

On Recovering Syntenic Blocks from Comparative Maps 321

In Section 4, we prove the following theorem:

Theorem 3. MSR-WT is NP-complete.

1.2 Number of Non-breaking Points as Score Function

A careful reader will notice that our definition of the problem MSR-2 is slightly dif-
ferent from the original definition of the problem Maximal Strip Recovery (MSR) [16,
Page 517]: we require a minimum length of two for each strip, i.e., each strip must
contain at least two distinct markers. We believe this requirement is indeed necessary
(but overlooked) in the original definition. Indeed, the problem would become trivial
otherwise: if a strip can have length one, then we simply need to count the number of
common markers, which can be done in O(n log n) time by sorting.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
G2 = 〈1, 2,−4, 9,−3, 5, 10, 6,−8, 11,−7, 12〉
G′

1 = 〈1, 2, 3, 4, 5, 6, 7, 8〉
G′

2 = 〈1, 2,−4,−3, 5, 6,−8,−7〉
G′′

1 = 〈1, 2, 9, 10, 11, 12〉
G′′

2 = 〈1, 2, 9, 10, 11, 12〉

Fig. 2. An example for the two score functions

An alternative way to avoid such short strips is to define the score of each strip in a
different way: instead of using the strip length as the score, we can use the number of
non-breaking points (or adjacencies) in a strip [3,15]. Then a strip of length l will have
a score of l − 1 when l ≥ 2, and a zero score when l = 1. We believe that, in practice,
the two score functions can lead to different levels of effectiveness of the strip recovery
algorithm. We refer to Fig. 2 for an example. For the two subsequences G′

1 and G′
2, the

total strip length (there are four strips) is 8 and the number of non-breaking points is 4.
For the two subsequences G′′

1 and G′′
2 , the total strip length (there is only one strip) is

6 and the number of non-breaking points is 5. In the biological context, both solutions
may be desirable.

Denote by MSR-NB the problem MSR with the alternative score function NB:

NB: The score function uses the number of non-breaking points instead of the strip
length.

Also define two problems MSR-NB-3 and MSR-NB-WT, analogous to the two problems
MSR-3 and MSR-WT. The difference between the two score functions, the strip length
and the number of non-breaking points, has led to contrasting computational complexi-
ties (NP-hard versus polynomially solvable) of another biological problem [12,10]. For
our three problems MSR-NB, MSR-NB-3, and MSR-NB-WT, however, we can obtain
results similar to those for MSR, MSR-3, and MSR-WT. We have the following three
theorems (the proofs are omitted to avoid repeating trivial technical details):

322 Z. Chen et al.

Theorem 4. There is a factor-4 polynomial-time approximation algorithm for MSR-NB.

Theorem 5. MSR-NB-3 is NP-complete.

Theorem 6. MSR-NB-WT is NP-complete.

1.3 Duplicate Markers

In our definition of MSR-d, each marker appears exactly once in each genomic map and
hence at most once in the strips. In the biological context, however, duplicate markers
are rare but still possible, as so-called paralogy set: “Two or more strips may contain
exactly the same markers but differ in where they appear, by virtue of the paralogy sets
their markers belong to.” [16, Page 516].

Define the following variation DU of the problem MSR:

DU: Duplicate markers are allowed in the genomic maps and the strips.

Note that although duplicate markers may appear in the strips, each strip in itself does
not contain duplicate markers since it is a sequence of distinct markers. That is, dupli-
cate markers may only appear in different strips.

Denote by MSR-NB-WT-DU the problem MSR with the score function NB, the
weight constraint WT, and the variation DU. It is not surprising that recovering syntenic
blocks becomes harder when duplicate markers are allowed. Recognizing the similar-
ity between the problem MSR-NB-WT-DU and the recently studied problem Exemplar
Non-breaking Similarity [3], we prove the following theorem:

Theorem 7. MSR-NB-WT-DU is W[1]-complete. Moreover, unless P equals NP, MSR-
NB-WT-DU does not admit any approximation of factor n1−ε for some ε, 0 < ε < 1.

Several more variants of the problem MSR can be defined analogously, in particular,
MSR-DU and MSR-NB-DU. Our factor-4 approximations for MSR and MSR-NB, with
slight modifications, also hold for MSR-DU and MSR-NB-DU; however, the complex-
ities of MSR and its several variants remain unknown. In Section 6, we conclude with
two open problems.

2 A Factor-4 Approximation for MSR

We prove Theorem 1 in this section. A heuristic for the problem Maximal Strip Recov-
ery (MSR) was previously proposed [6,16]. This simple heuristic works as follows:

1. Extract a set of pre-strips from the two sequences;
2. Compute an independent set of strips from the pre-strips.

This approach is inefficient because the number of pre-strips could be exponential in
the sequence length, and furthermore the problem Maximum Weight Independent Set
(MWIS) is NP-hard.

Our factor-4 approximation algorithm for MSR is slightly modified from the previ-
ous heuristic [6,16]. For a sequence S and two indices i and j, denote by S[i, j] the
substring of S starting at i and ending at j. The algorithm works as follows:

On Recovering Syntenic Blocks from Comparative Maps 323

1. Compose O(n4) 2-intervals, one for each pair of substrings of the two genomic
maps G1 and G2. For each 2-interval with indices i1 and j1 in G1 and indices
i2 and j2 in G2, assign it a weight equal to the maximum length of a common
subsequence (may be reversed and negated) of the two substrings G1[i1, j1] and
G2[i2, j2].

2. Compute a 4-approximation for MWIS in the intersection graph of the 2-intervals
using the fractional local-ratio algorithm for split interval graphs [1].

This completes the proof of Theorem 1.
We note that the problem MWIS in 2-interval graphs is also known as the problem 2-

Interval Pattern [14], which has been extensively studied [1,2,5,7,9,10,11,14] because
of its application to RNA secondary structure prediction.

3 MSR-3 Is NP-Complete

We prove Theorem 2 in this section. It is clear that MSR-3 is in NP. We show that MSR-
3 is NP-hard by a reduction from the NP-hard problem Separated 2-Interval Pattern [1].
Let L1 and L2 be two parallel lines. Denoted by D = (I, J) a separated 2-interval that
is the union of two closed intervals I ⊂ L1 and J ⊂ L2. Given a set of n separated
2-intervals, the problem Separated 2-Interval Pattern is to find a maximum independent
set in the corresponding intersection graph. By a standard technique in interval graphs,
we can assume without loss of generality that the 4n endpoints of the 2n intervals of
the n separated 2-intervals are distinct.

Our construction uses 2n2+2n distinct markers: 2n2 peg markers pi,j for 1 ≤ i ≤ n
and 1 ≤ j ≤ 2n, and 2n interval markers ui and vi for 1 ≤ i ≤ n.

Use the 2n2 peg markers to construct n pairs of peg sequences Pi and Qi of equal
length 2n, for 1 ≤ i ≤ n:

Pi = pi,1 . . . pi,2n,

Qi = −pi,2n . . . − pi,1.

Let S be the sequence u1v1 . . . unvn of 2n interval markers. For each separated 2-
interval Di = (Ii, Ji), label the two left endpoints of Ii and Ji with the marker ui, and
label the two right endpoints of Ii and Ji with the marker vi. Then the 2n markers for
the 2n endpoints of the n intervals Ii, ordered along the line L1, is a permutation S1 of
S; similarly, the 2n markers for the 2n endpoints of the n intervals Ji, ordered along
the line L2, is another permutation S2 of S.

Construct three genomic maps:

G0 = u1v1P1 . . . unvnPn,

G1 = S1Q1 . . . Qn,

G2 = S2Q1 . . . Qn.

Note that each genomic map is a signed permutation of the 2n2 + 2n distinct markers.
We will show that the set of n separated 2-intervals has an independent set of size at least

324 Z. Chen et al.

k if and only if G1, G2, and G3 have three subsequences G′
1, G′

2, and G′
3, respectively,

with a total strip length of at least 2n2 + 2k.
We note the following important property of our construction:

Proposition 1. If a strip of G′
1, G′

2, and G′
3 contains a peg marker pi,j , then it does not

contain any interval marker or any peg marker pi′,j′ such that i′ �= i.

We first prove the “only if” direction. Suppose that the set of n separated 2-intervals
has an independent set of size k, that is, there are k disjoint separated 2-intervals
Di1 , . . . , Dik

. Let G′
1, G′

2, and G′
3, respectively, be the subsequences of G1, G2, and

G3 that contain the 2n2 peg markers and the 2k interval markers ui1 , vi1 , . . . , uik
, vik

.
Then G′

1, G′
2, and G′

3 have n + k strips: the n strips P1, . . . , Pn, each of length 2n, and
the k strips ui1vi1 , . . . , uik

vik
, each of length 2. The total strip length is 2n2 + 2k.

We next prove the “if” direction. Suppose that G1, G2, and G3 have three subse-
quences G′

1, G′
2, and G′

3, respectively, with a total strip length of at least 2n2 + 2k,
k > 0. We say that a sequence S contributes to a strip R if R contains a marker in S.
If a strip contains two interval markers for two different separated 2-intervals, then the
two interval markers would enclose a peg sequence Pi in the genomic map G0. Hence,
by Proposition 1, the peg sequence Pi would not contribute to any strip. Note that the
total length of the strips is at most the length of each genomic map, which is 2n2 + 2n.
Also note that the length of each peg sequence is 2n. If the peg sequence Pi does not
contribute to any strip, then the total length of the strips would be at most 2n2, which
is less than 2n2 + 2k, a contradiction. Therefore, if a strip contains an interval marker
ui or vi of a separated 2-interval Di, then the strip must contain only the two interval
markers ui and vi. The total length of strips of peg markers is at most the total length of
the n peg sequences, which is 2n2. The remaining strip length of at least 2k must come
from at least k strips of interval markers, which correspond to an independent set of k
separated 2-intervals.

The reduction time is clearly polynomial in the size of the Separated 2-Interval Pat-
tern instance. This completes the proof of Theorem 2.

4 MSR-WT Is NP-Complete

We prove Theorem 3 in this section. It is easy to see that MSR-WT is in NP. We
show that MSR-WT is NP-hard by a reduction from the NP-hard problem One-In-Three
3SAT [13]. Let φ = f1∧f2∧ . . .∧fm be a boolean formula with m clauses in conjunc-
tive normal form, with n variables x1, x2, . . . , xn. Each clause fi is the disjunction of
exactly three literals, like (x2∨x5∨ x̄7). We will construct two genomic maps G and H
and show that φ is one-in-three satisfiable (i.e., each clause has exactly one true literal)
if and only if G and H have two subsequences G′ and H ′, respectively, such that

1. The total length of the strips in G′ and H ′ is at least some integer �;
2. The total weight of the markers in G′ and H ′ is equal to some integer w (note that

we set w1 = w2 = w in this proof).

On Recovering Syntenic Blocks from Comparative Maps 325

Our construction uses 3m + n distinct markers: 3m clause markers

f1,1, f1,2, f1,3, . . . , fm,1, fm,2, fm,3,

and n peg markers
g1, . . . , gn.

For each clause fi, label its three literals with the three clause markers fi,1, fi,2, fi,3.
For each variable xi, let Fi and F̄i, respectively, be the two sequences of markers for
the literals xi and x̄i:

Fi = fi1,j1 . . . fiu,ju ,

F̄i = fi′1,j′1
. . . fi′v ,j′v .

Put

Si = FiF̄i,

Ti = F̄iFi.

Then construct two genomic maps

G = S1g1 . . . Sngn,

H = T1g1 . . . Tngn.

Assign each peg marker gi a weight that is a decimal number with a one followed by
n − i zeros. Assign each clause marker for fi a weight that is a decimal number with a
one followed by m +n− i zeros. Then set the threshold weight w to a decimal number
with m + n consecutive ones, and set the threshold strip length � to m + n. Note that
each genomic map is a permutation of the 3m + n markers. Also note that w is exactly
the total weight of m clause markers, one for each clause, and the n peg markers.

We first prove the “only if” direction. Let x1 = b1, . . . , xn = bn be a one-in-three
truth assignment that satisfies φ. For each i, obtain two subsequences S′

i and T ′
i , respec-

tively, from the two sequences Si and Ti:

S′
i = T ′

i =
{

Fi if bi = true,
F̄i if bi = false.

Then let

G′ = S′
1g1 . . . S′

ngn,

H ′ = T ′
1g1 . . . T ′

ngn.

There is only one strip in G′ and H ′ since G′ = H ′. By the definition of one-in-three
truth assignment, each clause fi contains exactly one true literal, hence exactly one
of the three clause markers fi,1, fi,2, fi,3 appears in G′ (H ′). Therefore the total strip
length is exactly �, and the total weight of markers is exactly w.

We next prove the “if” direction. Let G′ and H ′ be two subsequences of G and H ,
respectively, with total strip length at least � and total marker weight exactly w. The

326 Z. Chen et al.

weight condition ensures that exactly one of the three markers for each clause appears
in G′ and H ′. The strip length condition then implies that there is only one strip of
length exactly �. Indeed G′ = H ′. The distribution of the clause markers among the
“buckets” S′

i and T ′
i corresponds to a one-in-three truth assignment for φ.

The reduction time is clearly polynomial in the length of φ. This completes the proof
of Theorem 3.

5 Complexity of MSR-NB-WT-DU

We prove Theorem 7 in this section. We achieve this by showing that the problem
MSR-NB-WT-DU contains another difficult problem as a special case. Given a genome
G, which is a sequence of genes possibly with duplicates, a genome G′ is exemplar of G
if G′ contains the same set of genes as G does but has no duplicates. Given two genomes
G and H, the problem Exemplar Non-Breaking Similarity (ENBS) [3] is to compute two
exemplar genomes G′ and H′ such that the number of non-breaking points between G′

and H′ is maximized.
Let g1, . . . , gn be the n distinct genes in the two genomes G and H. Use n distinct

markers, one marker g′i for each gene gi, 1 ≤ i ≤ n, and construct two genomic maps
G and H of markers corresponding to the two genomes G and H of genes. The opti-
mization goal of maximizing non-breaking similarity in ENBS corresponds to exactly
the score function NB in MSR-NB-WT-DU. To ensure that each gene gi appears ex-
actly once in G′ and in H′, assign each gene marker g′i a special weight that is a decimal
number with a one followed with n− i zeros, then set the threshold weights w1 and w2

to an integer that is a decimal number with n ones.
ENBS is a very difficult problem [3]: (i) ENBS is W[1]-complete; (ii) even if each

of the n genes appears exactly once in G and at most twice in H, ENBS still cannot be
approximated within a factor of n1−ε for some ε, 0 < ε < 1, unless P equals NP. Since
ENBS is a special case of MSR-NB-WT-DU, these lower bounds automatically apply
to MSR-NB-WT-DU. This completes the proof of Theorem 7.

We note that the W[1]-completeness [8] of MSR-NB-WT-DU has the following im-
plication [4]: Let p be the optimal solution value for MSR-NB-WT-DU. Then, unless
an unlikely collapse occurs in the parameterized complexity theory, MSR-NB-WT-DU
is not solvable in time f(p)no(p) for any function f .

6 Open Problems

We conclude the paper with two open problems:

1. Are the four problems MSR (MSR-2), MSR-NB, MSR-DU, and MSR-NB-DU
NP-complete? (We conjecture that at least MSR-DU and MSR-NB-DU are NP-
complete.)

2. Are the two problems MSR-WT and MSR-NB-WT-DU still intractable with only
one-sided weight constraint, i.e., the total weight of the strips is at least w1? (Note
that our proofs of Theorem 3 and Theorem 7 use the property that the weight con-
straint is from both directions.)

On Recovering Syntenic Blocks from Comparative Maps 327

References

1. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.: Scheduling split
intervals. SIAM Journal on Computing 36, 1–15 (2006)

2. Blin, G., Fertin, G., Vialette, S.: Extracting constrained 2-interval subsets in 2-interval sets.
Theoretical Computer Science 385, 241–263 (2007)

3. Chen, Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes
with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 119–
130. Springer, Heidelberg (2007)

4. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational lower
bounds. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC
2004), pp. 212–221 (2004)

5. Chen, E., Yang, L., Yuan, H.: Improved algorithms for largest cardinality 2-interval pattern
problem. Journal of Combinatorial Optimization 13, 263–275 (2007)

6. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks
from comparative maps. In: Proceedings of the 7th International Workshop on Algorithms in
Bioinformatics (WABI 2007), pp. 277–288 (2007)

7. Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approximating the
2-interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 426–437. Springer, Heidelberg (2005)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
9. Jiang, M.: A 2-approximation for the preceding-and-crossing structured 2-interval pattern

problem. Journal of Combinatorial Optimization 13, 217–221 (2007)
10. Jiang, M.: Improved approximation algorithms for predicting RNA secondary structures with

arbitrary pseudoknots. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp.
399–410. Springer, Heidelberg (2007)

11. Jiang, M.: A PTAS for the weighted 2-interval pattern problem over the preceding-and-
crossing model. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp.
378–387. Springer, Heidelberg (2007)

12. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931.
Springer, Heidelberg (2004)

13. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th ACM
Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

14. Vialette, S.: On the computational complexity of 2-interval pattern matching problems. The-
oretical Computer Science 312, 223–249 (2004)

15. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. Journal
of Theoretical Biology 99, 1–7 (1982)

16. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in
rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 4, 515–522 (2007)

Automatic Generation of Symmetry-Breaking

Constraints

Leo Liberti

LIX, École Polytechnique, F-91128 Palaiseau, France
liberti@lix.polytechnique.fr

Abstract. Solution symmetries in integer linear programs often yield
long Branch-and-Bound based solution processes. We propose a method
for finding elements of the permutation group of solution symmetries,
and two different types of symmetry-breaking constraints to eliminate
these symmetries at the modelling level. We discuss some preliminary
computational results.

1 Introduction

We consider a Mixed Integer Linear Program (MILP) in the following form:

min c�x
Ax ≤ b

x ∈ [xL, xU]
∀i ∈ Z xi ∈ Z.

⎫⎪⎪⎬⎪⎪⎭ (1)

where c, x, xL, xU ∈ Rn, b ∈ Rm, A is a real m × n matrix and Z ⊆ {1, . . . , n}.
Throughout the paper, elements of groups are represented by means of permu-
tations of either the column or the row space; permutations on the row space are
denoted by left multiplication, and permutations on the column space by right
multiplication. Because a solution x of (1) has as many elements as the columns
of A, a permutation π on x is likened to a permutation of the column space, and
hence denoted by right multiplication xπ.

Problems (1) having many symmetries are known to be very difficult to solve
to global optimality with Branch-and-Bound (BB) techniques. These converge
slowly in presence of symmetries because many leaf nodes in the BB tree may
contain (symmetric) global optima: hence, no node in the paths leading from the
root to these leaf nodes can ever be pruned. Despite the practical difficulties given
by solution symmetries, there are relatively few group theory based methods in
mathematical programming. These may be classified in three broad categories:
(a) the abelian group approach proposed by Gomory to writing integer feasi-
bility conditions for x; (b) symmetry-breaking techniques for specific problems,
whose symmetry group can be computed in advance; (c) general-purpose sym-
metry group computations and symmetry-breaking techniques implemented via
branching strategies and local cuts in a typical BB solution algorithm.

Category (a) was established by R. Gomory [7]: given a basis B of the con-
straint matrix A, it considers the (abelian) group G = Zn/〈col(B)〉, where Zn is

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 328–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

liberti@lix.polytechnique.fr

Automatic Generation of Symmetry-Breaking Constraints 329

the additive group of integer n-sequences and 〈col(B)〉 is the additive group gen-
erated by the columns of the (nonsingular) matrix B. We consider the natural
group homomorphism ϕ : Zn → G with kerϕ = 〈col(B)〉: letting (xB , xN) be a
basic/nonbasic partition of the decision variables, we apply ϕ to the standard
form constraints BxB + NxN = b to obtain ϕ(BxB) + ϕ(NxN) = ϕ(b). Since
ϕ(BxB) = 0 if and only if xB ∈ Zn, setting ϕ(NxN) = ϕ(b) is a necessary and
sufficient condition for xB to be integer feasible. Gomory’s seminal paper gave
rise to further research, among which [22,1]

Category (b) is possibly the richest in terms of number of published papers.
Many types of combinatorial problems exhibit a certain amount of symme-
try. Symmetries are usually broken by means of specific branching techniques
(e.g. [16]), appropriate global cuts (e.g. [21]) or special formulations [11,2] based
on the problem structure. The main limitation of the methods in this category
is that they are difficult to generalize and/or to be rendered automatic.

Category (c) contains two main research streams. The first was established
by F. Margot in the early 2000s [14,15], and is applicable to problems in general
form (1) where xL = 0, xU = 1, i.e. Binary Linear Programs (BLPs). Margot
defines the symmetry group of a BLP as:

{π ∈ Sn | c�π = c� ∧ ∃σ ∈ Sn (σb = b ∧ σAπ = A)}, (2)

or, in other words, all relabellings of problem variables for which the objec-
tive function and constraints are the same. The symmetry group (2) is used to
derive effective BB pruning strategies by means of isomorphism pruning and
isomorphism cuts local to some selected BB tree nodes (Margot extended his
work to general integer variables in [17]). Stronger results of the same type can
be obtained for covering and packing problems [20], for these have an objec-
tive function vector c = (1, . . . , 1) and a RHS vector b = (1, . . . , 1) fixed by all
elements of Sn and Sm respectively, and their constraint matrix is 0-1.

The second was established by V. Kaibel and M. Pfetsch in 2007 [9]. Symme-
tries in the column space (i.e. permutations of decision variables) of binary ILPs
having 0-1 constraint matrices are shown to affect the quality of the linear pro-
gramming bound. Limited only to permutations in cyclic and symmetric group,
complete descriptions of orbitopes are provided by means of linear inequalities.
Let x′ be a point in {0, 1}n (the solution space), with n = pq, so that we can
arrange the components of x′ in a matrix C. Given a group G and π ∈ G, for all
0-1 p × q matrices C let Cπ be the matrix obtained by permuting the columns
of C according to π. Let G · C be the orbit of C under the action of all π ∈ G,
G · C be the lexicographically maximal matrix in G · C (ordering matrices by
rows first) and Mmax

pq (G) be the set of all G · C. Then the full orbitope associ-
ated with G is conv(Mmax

pq (G)). Inspired by the work on orbitopes, E. Friedman
very recently proposed a similar but extended approach leading to fundamental
domains [5]: given a feasible polytope X ⊆ [0, 1]n with integral extreme points
and a group G acting as an affine transformation on X (i.e. for all π ∈ G there
is a matrix A ∈ GL(n) and an n-vector d such that πx = Ax + d for all x ∈ X),
a fundamental domain is a subset F ⊂ X such that GF = X .

330 L. Liberti

The Constraint Programming (CP) community is also concerned with sym-
metries and some of the results in the CP literature can be extended to mathe-
matical programming (see [3] for a good introduction).

The present work belongs to category (c): it proposes general-purpose methods
for identifying (some) solution symmetries and restrict the feasible region so
that it does not contain all representatives per equivalence class. This paper
contributes two ideas: (i) breaking the same type of symmetries described in
[16,14,15,17] at the modelling instead of the algorithmic level (whereas Margot
proposes symmetry breaking methods local to each node of the BB tree, we
discuss global symmetry breaking constraints which can be added to the original
formulation); and (ii) computing symmetries automatically instead of assuming
them as given. In Section 2 we propose symmetry breaking constraints derived
from cycles; Section 3 describes a mathematical program whose solution encodes
a permutation of the symmetry group; in Section 4 we discuss some practical
strategies for exploiting the proposed symmetry breaking constraints and some
preliminary computational results.

1.1 Notation

For a group G ≤ Sn and a set X of row vectors, XG = {xg | x ∈ X ∧ g ∈ G};
if Y is a set of column vectors, GY = {gy | y ∈ Y ∧ g ∈ G}. If X = {x}, we
denote XG by xG (and similarly for Y). For a mathematical program P we let
F(P) be the feasible region of P and G(P) be the set of (global) optima of P .
For x ∈ Rn, we let ran(x) = {a ∈ R | ∃j ≤ n (xj = a)} be the range of x. All
groups considered in this paper are finite.

2 Theoretical Results

2.1 Efficiency of Symmetry Breaking Constraints

We let Sn be the symmetric group of order n ∈ N. For a set X ⊆ Rn, a group
G ≤ Sn and x, y ∈ X , we define an equivalence relation x ∼G y ⇔ ∃π ∈ G (xπ =
y). The relation ∼G partitions X into a set E(G, X) of equivalence classes (each
of finite cardinality) such that X =

⋃
Y ∈E(G,X) Y (the cardinality of E(G, X)

itself need not be finite or even countable).

Definition 2.1
A linear constraint dx ≤ d0 with (d, d0) ∈ Rn+1 is symmetry breaking with
respect to G and X if for all Y ∈ E(G, X) there are x̄ �= ȳ ∈ Y s.t. dx̄ ≤ d0

and dȳ > d0. The constraint is symmetry breaking of order � if there is at least
one equivalence class Y ∈ E(G, X) in which there are exactly � − 1 points y
s.t. dȳ > d0. The constraint is maximally symmetry breaking if there is at least
one equivalence class Y ∈ E(G, X) for which it is symmetry breaking of order |Y |.

Defn. 2.1 can easily be extended to systems of constraints. Supposing X ⊆ Zn,
symmetry breaking constraints are not in general valid cuts for any linear poly-
hedron containing X , because they may also cut off some integral points. How-
ever, they guarantee feasibility of at least one integral point per equivalence

Automatic Generation of Symmetry-Breaking Constraints 331

class. Adding appropriate symmetry breaking constraints to P results in a re-
formulation of the narrowing type [13], i.e. a reformulation Q of P with a map
ψ : F(Q) → F(P) such that ψ(G(Q)) ⊆ G(P) [12]. Notice that symmetry break-
ing constraints of order � ≤ 1 do not break any symmetry at all, as they do not
separate any point in any equivalence class of E(G, X).

2.2 Symmetry Groups Associated to a MILP

We consider symmetries that leave various properties of P invariant.

Definition 2.2
The set

G∗ = {π ∈ Sn | ∀x ∈ G(P) (xπ ∈ G(P))} (3)

of automorphisms of G(P) is called the solution symmetry group of P . The set

G̃ = {π ∈ Sn | ∀x ∈ F(P) (xπ ∈ F(P))} (4)

of automorphisms of F(P) is called the feasible symmetry group of P

It is easy to show that G̃, G∗ are both subgroups of Sn, and that G∗ ≤ G̃. Next,
we extend (2) to formulation (1).

Definition 2.3
The set

GP = {π ∈ Sn | ∀a ∈ {c, xL, xU}
(a�π = a�) ∧ Zπ = Z ∧ ∃σ ∈ Sn (σb = b ∧ σAπ = A)} (5)

of permutations that fix the problem formulation is called the problem symmetry
group of P .

It is equally easy to show that GP is a subgroup of Sn. The following useful
result states that problem symmetries are solution symmetries.

Proposition 2.4
GP ≤ G∗.

2.3 Symmetry Breaking Constraints from Disjoint Cycles

Let R be the relaxation of P obtained by removing the constraints Ax ≤ b, X̄ =
F(R) and X∗ = G(R). Let σ = (σ1, . . . , σk) be a cycle of length 1 < k ≤ n in Sn.
For any x ∈ Rn, let x[σ] = (xσ1 , . . . , xσk

), and assume that x[σ] are constrained
to be integer. Let Ḡ ≤ Sn be the group of all permutation automorphisms of X̄ .
If σ ∈ Ḡ, for all x ∈ X̄ and j ≤ k we have xL

σ1
≤ x[σ]j ≤ xU

σ1
, i.e. there is a

unique number of values χ that all variables in x[σ] can take. We let χ̄ be the

332 L. Liberti

row vector whose j-th component is χk−j for all j ≤ k. Consider the following
constraints, often cited in the literature for symmetry breaking purposes [21,10]:

∀1 ≤ h ≤ k − 1 χ̄(x[σ] − xL[σ]) ≤ χ̄(x[σ] − xL[σ])σh (6)

⇒
k∑

j=1

χk−j(xσj − xL
σj

) ≤
k∑

j=1

χk−j(xσh(σj) − xL
σh(σj)

)).

Proposition 2.5
Let σ = (σ1, . . . , σk) be a cycle of length k ≤ n in Ḡ. Then constraints (6) are
maximally symmetry breaking w.r.t. 〈σ〉, X̄ .

The practical trouble with (6) is their well-known poor scaling, as the values of
the coefficients are of different orders of magnitude.

Next, we consider some well-scaled (though less effective) symmetry breaking
constraints.

Proposition 2.6
Let σ = (σ1, . . . , σk) be a cycle of length k ≤ n in Ḡ. For all x ∈ X̄ with
|ran(x[σ])| = �,

∀2 ≤ j ≤ k xσ1 ≤ xσj (7)

are symmetry breaking constraints of order �.

Notice that if � = k, then by Prop. 2.6 (7) are symmetry-breaking constraints
of order k; furthermore, if � = k the vector x ∈ Rn having distinct components
x[σ] gives rise to an equivalence class x〈σ〉 of cardinality k, so (7) are maximally
symmetry breaking. If � = 1 then (7) do not break any symmetry (remark after
Defn. 2.1) but then again if � = 1 it means that x[σ] = (a, . . . , a) for some a ∈ R,
so |x〈σ〉| = 1, which means there are no symmetric solutions complicating the
solution process. The most likely case is that x[σ] ∈ {0, 1}k and � = 2: this is
unfortunate as this situation provides the weakest case of Prop. 2.6. We stress,
however, that symmetry breaking constraint of order � will cut away at least
(not exactly) � − 1 symmetric solutions.

Example 2.7
Let x = (0, 1, 1, 1), and σ = (1, 2, 3, 4). Then x〈σ〉 = {(0, 1, 1, 1), (1, 0, 1, 1),
(1, 1, 0, 1), (1, 1, 1, 0)}. Since |ran(x)| = |{0, 1}| = 2, constraints (7) are symmetry
breaking of order 2. However, exactly 3 elements of x〈σ〉 are cut off by (7) (i.e. all
elements of x〈σ〉 � {x}). Taking x = (0, 0, 0, 1), on the other hand, results in (7)
only cutting off xσ = (1, 0, 0, 0) according to Prop. 2.6.

The main insight given by Example 2.7 is that if we make the assumption that
optimal solutions of binary problems will contain on average as many 0s as 1s
on components indexed by σ, we can expect (7) to cut away �k/2 symmetric
solutions even though � = 2. Another insight is that if we suspect optimal solu-
tions to have a large number of components attaining small values of the range,
we might want to change the ≤ relation in (7) to a ≥ relation to increase the
number of cut-off symmetric solutions (modifying the inequality relation in (7)
to xσ1 ≥ xσj only requires a trivial change to the proof).

Automatic Generation of Symmetry-Breaking Constraints 333

3 Finding Symmetries

Let

ĜP = {(σ, π) ∈ Sm × Sn | ∀a ∈ {c, xL, xU}
(a�π = a�) ∧ Zπ = Z ∧ (σb = b ∧ σAπ = A)}. (8)

It is easy to see that the projection of ĜP on the second component Sn is equal to
GP . For q ∈ N, Let ϑ : Sq → GL(q) be the regular (faithful) permutation matrix
representation of elements of Sq, i.e. for π ∈ Sq, ϑ(π) is a doubly stochastic
invertible matrix with entries in {0, 1}, such that for any row vector v ∈ Rn,
vπ = vθ(π). We can then write the condition of (8) in terms of products of
vectors and matrices.

We consider decision variables: σih, the (i, h)-th element of the matrix ϑ(σ)
for all i, h ≤ m, σ ∈ Sm; and πjk, the (j, k)-th element of the matrix ϑ(π) for
all j, k ≤ n, π ∈ Sn. Let z ∈ {0, 1}n be the indicator vector of Z, such that
zj = 1 ⇔ j ∈ Z, and let Γ (P) be the set of binary values of σ, π defined by the
following constraints:

∀j ≤ n
∑
k≤n

xL
k πjk = xL

j ∧
∑
k≤n

xU
k πjk = xU

j (9)

∀j ≤ n
∑
k≤n

ckπjk = cj ∧
∑
k≤n

zkπjk = zk (10)

∀i ≤ m, j ≤ n
∑
h≤m

σihAhj =
∑
k≤n

Aikπkj (11)

∀i ≤ m
∑
h≤m

σihbh = bi (12)

∀j ≤ n
∑
k≤n

πkj = 1 ∧
∑
k≤n

πjk = 1 (13)

∀i ≤ m
∑
h≤m

σih = 1 ∧
∑
h≤m

σhi = 1 (14)

∀j, k ≤ n πkj ∈ {0, 1} (15)
∀i, h ≤ m σih ∈ {0, 1}. (16)

It is easy to show that Γ (P) = {(ϑ(σ), ϑ(π)) | (σ, π) ∈ ĜP }. In order to exclude
the identity from Γ (P), we also add the constraint:∑

j≤n

πjj ≤ n − 1 (17)

Since by Sect. 4 we look for long cycles, we arbitrarily choose an index j′ ≤ n
which is likely to belong to a long cycle in some permutation of GP (this choice
should be based on the block structure of A) and minimize the following objective
function, which ensures that we select a permutation moving j′:

min πj′j′ . (18)

334 L. Liberti

We call the problem of minimizing (18) subject to (9)-(17) the Feasible Per-

mutation Program associated to P w.r.t. j′, denoted by FPP(P, j′).

Proposition 3.1
If FPP(P, j′) is infeasible, then GP = {e}.

Although solving the full FPP(P, j′) may be more CPU-intensive than solving the
original problem, various improvements based on the block structure of the con-
straints in Γ (P) are possible. A promising one consists in solving relaxations of
the FPP where (11) only fix certain rows or blocks, and verifying later than the
solution is valid in the general problem. Computational experience shows that al-
though the linear relaxation of the FPP may be fractional, solutions to the FPP
are mostly found at the root node of the CPLEX [8] BB tree after cuts addition.

4 Practical Solution Strategies

Our strategy for solving (1) consists in seeking permutations of GP having long
cycles in their disjoint cycle representation, and add symmetry breaking con-
straints (6) or (7). In this section we restrict the discussion to the well-scaled
constraints (7) but the same ideas can be (and were) applied to (6) too.

Ideally, we would like to be able to add symmetry-breaking constraints (7) for
all disjoint cycles in all generators of GP . This, however, may lead to infeasibility,
as Example 4.1 shows.

Example 4.1
Suppose G(P) = {(0, 1, 1, 0), (1, 0, 0, 1)} and GP = {e, (1, 2)(3, 4)}. Then both (6)
and (7) would imply x1 ≤ x2 and x3 ≤ x4, which are satisfied by no point in G(P).

The trouble arises because for a cycle σ, constraints (7) arbitrarily decide that
xσ1 is the component of x[σ] having minimum value. At the modelling level, this
is similar to the main drawback of the algorithm proposed in [14]: “the branching
variable cannot be chosen freely, but always has to be the non-fixed variable with
smallest index” ([15], p. 3-4). However, since at the modelling level there is no
knowledge of what variables are fixed, (7) can only be imposed for one single
cycle. A promising strategy is that of selecting the longest cycle σ from the set
of all disjoint cycles in all permutations of GP . In general, we can change the
arbitrary choice of minimum component for any i ≤ |σ| (the cycle length), and
we denote BreakSymm2(P, i) the reformulated problem P with (7) adapted
to σ and i as added constraints. It is easy to show that BreakSymm2(P, i) is
a valid narrowing for all cycles σ and i ≤ |σ|, albeit one that is still subject
to an arbitrary choice. We circumvent this by introducing continuous variables
yσ

i ≥ 0 whose value is exactly 0 only if xσi is the minimum element of σ, and
reformulating (7) as follows:

∀i, j ≤ |σ|, j �= i xσi − xσj ≤ yσ
i (19)∑

i≤|σ|
yσ

i ≤ |σ| − 1. (20)

Automatic Generation of Symmetry-Breaking Constraints 335

Constraints (19) express the fact that there may be indices i for which xσi is
minimum in x[σ], and (20) say that there is at least one such i, thus yielding
a narrowing BreakSymm2(P) that is independent of of the choice of i. We
remark that an aggregated version of (19), when combined with (20), produces
a narrowing Q′ such that F(Q′) = F(BreakSymm2(P)):

∀i ≤ k (|σ| − 1)xσi −
∑
j �=i

xσj ≤ (|σ| − 1)yσ
i . (21)

Although in general aggregated constraints tend to produce slacker linear relax-
ations [19], we mention (21) here because in the tested instances they usually
improve CPU times.

Since (19)-(20) together simply express the fact that there is a minimum
component in each x[σ], and this sentence is true for each disjoint cycle and
each permutation in GP , it follows that (19)-(20) can be added to P for each
cycle σ appearing in the set of disjoint cycles over all permutations of GP ,
yielding a valid narrowing denoted by BreakSymm2All(P). This, however,
adds several variables and constraints to P , which implies that the size of the
solution set increases, and each linear relaxation costs more in terms of CPU
time; moreover, although BreakSymm2All(P) is a valid narrowing of P , the
relaxation of BreakSymm2All(P) need not be strictly tighter than that of P .

4.1 Computational Experiments

The results we report should be treated as preliminary experiments rather than
full computational results. Although the whole software structure is in place
and the process of finding symmetries and then solutions of MILPs has been
made fully automatic (by means of several different software packages, some
developed on purpose and some off-the-shelf such as AMPL [4], CPLEX [8] and
GAP [6]), finding elements of GP automatically is still too costly in terms of
CPU time. Moreover, because of the small size of problems for which it was
possible to automatically compute symmetries, the addition of constraints and
variables and consequent higher cost at each BB node offset the advantages of
the narrowing as regards CPU time.

We employed the test set as described in Table 1. Instance is the instance
name, Source lists the instance library or citation where the instance appears,
Integers and Constraints report the number of integer variables and constraints
respectively, Size lists the size of the instance in bytes, and Infeasible is 1 if the
instance is infeasible. Table 2 reports the results. Column Group contains the
subgroup of GP found automatically by repeatedly solving a version of the FPP
with random coefficients on the objective function (we call this the “randomized
FPP procedure”); the group descriptions are non-unique, as there are many pos-
sible semi-direct product types �, see e.g. sts27 and stein27. Longest contains
the size of the longest cycle in the group generators, which is used to formulate
SymmBreak2(P). N is the number of nodes in the BB tree of the original prob-
lem P , and N ′ is the number of nodes in the BB tree of BreakSymm2(P). The

336 L. Liberti

Table 1. Test set description

Instance Source Integers Constraints Size Infeasible

enigma [18] 100 21 5616 0
jgt18 [11], p. 413 132 105 9399 1
oa66234 [17], Table 1 64 42 5176 0
oa67233 [17], Table 1 128 64 12153 0
oa76234 [17], Table 1 64 42 5176 0
ofsub9 [11], p. 413 203 92 13157 1
stein27 [18] 27 118 5789 0
sts27 [15], p. 17 27 117 5612 0

Table 2. Results of the computational experiments. The last column refers to
SymmBreak2(P). The group descriptions were computed by GAP [6].

Instance Group Longest N N ′

enigma C2 2 3321 269
jgt18 C2 × S4 6 573 1300
oa66234 S3 2 0 0
oa67233 C2 × S4 6 6 0
oa76234 S3 2 0 0
ofsub9 C3 × S7 21 1111044 980485
stein27 ((C3 × C3 × C3) � PSL(3, 3)) � C2 24 1084 1843
sts27 ((C3 × C3 × C3) � PSL(3, 3)) � C2 26 1317 968

instances were solved by CPLEX 10.1 [8] on one core of a 32 bit Intel Core Duo
1.2GHz with 1.5GB RAM running Linux.
Remarks on the experiments.

– Although the instance set is definitely still too small to draw significant
conclusions (work is ongoing to enlarge it), the encouraging result is that
there was an improvement on the only really difficult instance (ofsub9):
even more so as, it being infeasible, BB performance is poor because there are
many fewer prunings than with feasible ones (no upper bounding objective
function value is ever available).

– The extensions of Sect. 4 applied to (6) did not yield good results due to the
increased constraint matrix density and bad scaling.

– Using the straight version of (6) and (7) (with the arbitrary choice on the
chosen longest cycle orbit representative) sometimes decreases N ′ so that
even the CPU times are improved, depending on the arbitrary choice; in
such cases, (6) were better than (7) as expected.

– Instance stein27 is like sts27 but with an added cardinality constraint (sum
of all variables ≥ 13, a constraint which is inactive on all optimal solutions);
this (small) difference in problem formulation caused the randomized FPP
procedure to find different permutations (although leading to the same group
description, the exact group structure is different) and hence to different
performance.

Automatic Generation of Symmetry-Breaking Constraints 337

– Sometimes long “easy” cycles are overlooked, such as in the case of oa66234
and oa76234: the group is S3, yet the cycle only has length 2. This happens
because we select disjoint cycles from the group generators instead of the
group elements themselves to avoid listing all permutations of a group. At
the moment we let GAP select the generators automatically, but an improved
implementation should take care of selecting generators having long cycles.

5 Conclusion and Future Work

We proposed an automatic way to compute permutations of the symmetry group
of a MILP in general form (1) and derived two types of global symmetry breaking
constraints designed to reduce the number of symmetric solutions. We exhibited
a few preliminary experimental results indicating a positive trend. Future work
will concentrate on: (i) reducing the computational effort taken to find permu-
tations by means of exploitation of the block structure of the MILP constraint
matrix; (ii) finding a method to reduce the influence of the arbitrary choice of
orbit representative in (6), (7) not based on adding variables to the problem;
(iii) extend the computational results to a more significant instance test set.

References

1. Bell, D.: Constructive group relaxations for integer programs. SIAM Journal on
Applied Mathematics 30(4), 708–719 (1976)

2. Boulle, M.: Compact mathematical formulation for graph partitioning. Optimiza-
tion and Engineering 5, 315–333 (2004)

3. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry defini-
tions for constraint satisfaction problems. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 17–31. Springer, Heidelberg (2005)

4. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

5. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In:
Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 146–153.
Springer, Heidelberg (2007)

6. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10
(2007)

7. Gomory, R.: Some polyhedra related to combinatorial problems. Linear Algebra
and Its Applications 2(4), 451–558 (1969)

8. ILOG. ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France (2006)

9. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathematical Pro-
gramming (to appear)

10. Lee, J.: All-different polytopes. Journal of Combinatorial Optimization 6, 335–352
(2002)

11. Lee, J., Margot, F.: On a binary-encoded ILP coloring formulation. INFORMS
Journal on Computing 19(3), 406–415 (2007)

12. Liberti, L.: Reformulation techniques in mathematical programming, Thèse
d’Habilitation à Diriger des Recherches (November 2007)

338 L. Liberti

13. Liberti, L.: Reformulations in mathematical programming: Definitions. In: Ar-
inghieri, R., Cordone, R., Righini, G. (eds.) Proceedings of the 7th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization, Crema, Università Statale
di Milano (2008)

14. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Program-
ming 94, 71–90 (2002)

15. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming B 98,
3–21 (2003)

16. Margot, F.: Small covering designs by branch-and-cut. Mathematical Programming
B 94, 207–220 (2003)

17. Margot, F.: Symmetric ILP: coloring and small integers. Discrete Optimization 4,
40–62 (2007)

18. Martin, A., Achterberg, T., Koch, T.: MIPLIB 2003. A library of pure and mixed-
Integer programs (2003)

19. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

20. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. In: Fischetti,
M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 104–118. Springer,
Heidelberg (2007)

21. Sherali, H., Smith, C.: Improving discrete model representations via symmetry
considerations. Management Science 47(10), 1396–1407 (2001)

22. Wolsey, L.: Group representation theory in integer programming. Technical Report
Op. Res. Center 41, MIT (1969)

On the Stable Set Polytope of Claw-Free Graphs

Anna Galluccio, Claudio Gentile, and Paolo Ventura

Istituto di Analisi dei Sistemi ed Informatica, CNR, Viale Manzoni 30, 00185 Roma, Italy
{galluccio,gentile,ventura}@iasi.cnr.it

Abstract. We define the class of geared (fuzzy) line graphs as the class of graphs
obtained by repeated applications of the extended gear composition to a (fuzzy)
line graph H . Using the decomposition theorem for claw-free graphs of Chud-
novsky and Seymour [2], we show that this class represents a large subclass of
claw-free graphs having stability number at least 4.

We provide a complete linear description of the stable set polytope of geared
(fuzzy) line graphs. This result gives a first substantial answer to the longstanding
open question of finding a defining linear system for the stable set polytope of
claw-free graphs [10].

1 Introduction

Let P ⊆ Rn be a polyhedron; a linear system Ax ≤ b is said to be defining for P
if P = {x ∈ RV

+ : Ax ≤ b}. The facet defining inequalities (facets, for short)
for P are those inequalities that constitute the unique (up to positive multiplications)
nonredundant defining linear system of P . Given c ∈ Rn, the optimization problem over
(P, c) consists in finding the maximum value of cT x for x ∈ P . So, finding the defining
linear system for P is equivalent to transform the original optimization problem into
the linear program max{cT x : Ax ≤ b}. Given x∗ ∈ Rn, the separation problem over
(P, x∗) is to find an inequality valid for all points of P and violated by x∗, or prove
that x∗ ∈ P . A well-known result of Grötschel, Lovász and Schrijver [10] states that
the existence of a polynomial time algorithm to optimize over (P, c) for any c ∈ Rn

is equivalent to the existence of a polynomial time separation algorithm for (P, x∗) for
any x∗ ∈ Rn. In practice, a consequence of this result is that a defining linear system
for P may be dynamically determined by solving the optimization problem with respect
to different objective functions. Therefore, a largely accepted conjecture in the Mixed-
Integer Programming community is that if there exists a polynomial time algorithm for
optimize over a polyhedron P , then an explicit description of the defining linear system
of P can also be found. Only for very few known problems [12] this conjecture is still
open and one of them is the stable set problem for claw-free graphs.

Given a graph G = (V, E) and a vector w ∈ QV
+ of node weights, the stable set

problem is the problem of finding a set of pairwise nonadjacent nodes (stable set) of
maximum weight. Let α(G, w) denote the maximum weight of a stable set of G; we
refer to α(G) = α(G,�) (� being the vector of all ones) as the stability number of
G. The stable set polytope, denoted by STAB(G), is the convex hull of the incidence
vectors of the stable sets of G. Since the stable set problem is NP -hard, it is unlikely to
find a defining linear system of STAB(G) for general graphs. Nevertheless there are
classes of graphs for which such systems are known, as bipartite graphs, line graphs [3],

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 339–350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 A. Galluccio, C. Gentile, and P. Ventura

series-parallel graphs [13], perfect graphs. For all these classes of graphs, the weighted
stable set problem is polynomial time solvable and an explicit linear description of
STAB(G) is known.

Claw-free graphs are those graphs such that the neighborhood of each node has no
stable set of size three. There exist polynomial time algorithms for solving the maxi-
mum weight stable set problem on a claw-free graph [14,5] but, despite many research
efforts [8,9,11,16] and many disproved conjectures [9,6], still a linear description of
the stable set polytope of a claw free graph is unknown. Finding such a defining linear
system may be the first step towards a new algorithm for claw-free graphs, possibly
computationally more effective than the existing ones (the algorithm by [14] is O(|V |7)
and the one by [5] is O(|V |6)).

The recent work of Chudnovsky and Seymour [2] on the structure of claw-free graphs
set new directions to investigate the problem of finding a defining linear system for
STAB(G) when G is claw-free. We consider graphs with stability number at least 4;
we denote by C the set of claw-free graphs with stability number at least 4 and by Q
the set of quasi-line graphs with stability number at least 4 (a graph is quasi-line if the
neighborhood of each node can be partitioned into two cliques). Clearly, Q ⊆ C. In [1]
Chudnovsky and Seymour proved that the set Q is partitioned into two sets: Q (fuzzy
line graphs) and Qc (fuzzy circular interval graphs). Then they showed that any graph
in C either belongs to Qc or it can be obtained by composing three types of graphs,
called strips: linear interval strips, XX-strips and antihat strips.

A defining linear system for STAB(G) was given by Chudnovsky and Seymour
[1] when G ∈ Q and by Eisenbrand et al. [4] when G ∈ Qc. This leaves open the
problem of finding a linear description for STAB(G) when G ∈ C \ Qc. In this paper
we consider the class XX of graphs obtained by composing only two types of strips:
linear interval strips and XX-strips. Clearly XX ⊆ C \ Qc.

We provide a linear description of STAB(G) when G ∈ XX . To this aim we use a
graph composition named gear composition introduced in [6] that builds a new graph
G, called geared graph, starting from a given graph H and substituting an edge of H
with the fixed graph called gear.

The gear composition produces new facets for the stable set polytope [6], called
geared inequalities, which play an important role in solving the problem of finding a
linear description for STAB(G) when G ∈ XX . In fact, we prove that any graph in
XX can be built from a graph in Q via the gear composition and then we show that
a defining linear system for STAB(G) when G ∈ XX consists of: rank inequalities,
(lifted) 5-wheel inequalities and geared inequalities.

We now introduce some notations. A linear inequality πT x ≤ π0 is valid for
STAB(G) if it holds for all x ∈ STAB(G) and it will be denoted as (π, π0). An
inequality (π, π0) is said to be a rank inequality if πi = 1 for i ∈ S ⊆ VG, πi = 0 for
i ∈ VG \ S and π0 = α(G[S]) where G[S] is the subgraph of G induced by S.

We denote by δ(v) the set of edges of G having v as endnode and by N(v) the set
of nodes of VG adjacent to v. We also denote by G \ A the subgraph of G induced by
VG \ A where A ⊆ VG and by G \ e (G + e) the subgraph of G obtained by removing
(adding) the edge e.

On the Stable Set Polytope of Claw-Free Graphs 341

A k-hole Ck = (v1, v2, . . . , vk) is a chordless cycle of length k. A k-antiwheel
W = (h : Ck) is a graph consisting of a k-antihole Ck and a node h (hub of W)
adjacent to every node of Ck. If k = 5, then C5 is isomorphic to C5 and we refer to W
as a 5-wheel. The inequality

∑5
i=1 xvi + 2xh ≤ 2 is facet defining for STAB(W) and

it is called 5-wheel inequality. A claw is a 3-antiwheel. A gear B is a graph of eight
nodes {a, b1, b2, c, d1, d2, h1, h2} such that W1 = (h1 : a, d1, b1, c, h2) and W2 =
(h2 : a, d2, b2, c, h1) are 5-wheels; moreover, the edges of these wheels are the only
edges of B.

In Section 2, we recall the definition of gear composition and some of its polyhedral
properties. In Section 3, we show the graphs in XX can be built by iteratively applying
the gear composition to a graph of Q. Finally in Section 4, we provide a defining linear
system for the stable set polytope of graphs in C \ Qc.

2 Gear Composition

An edge v1v2 of a graph H is said to be simplicial if K1 = N(v1) \ {v2} and K2 =
N(v2) \ {v1} are cliques of H and both K1 \ K2 and K2 \ K1 are nonempty. Notice
that K1 and K2 might have nonempty intersection.

Definition 1. Let H = (VH , EH) be a graph with a simplicial edge v1v2 and let B =
(VB , EB) be a gear. The gear composition of H and B produces a new graph G =
(H, B, v1v2), called geared graph, such that:

VG = VH \ {v1, v2} ∪ VB,
EG = EH \ (δ(v1) ∪ δ(v2)) ∪ EB ∪ F1 ∪ F2, withFi ={diu, biu|u ∈ Ki}(i = 1, 2).

Definition 2. Let H = (VH , EH) be a graph containing the simplicial edge v1v2 and
let (π, π0) be a valid inequality for STAB(H) such that πv1 = πv2 = λ > 0. Let
B = (VB , EB) be a gear and G = (H, B, v1v2) a geared graph. Then the inequalities

'
∑

i∈VH\{v1,v2}
πixi + λ

∑
i∈VB\{h1,h2}

xi + 2λ(xh1 + xh2) ≤ π0 + 2λ (1)

'
∑

i∈VH\{v1,v2}
πixi + λ

∑
i∈VB\A

xi ≤ π0 + λ (2)

where A ∈ {{b1, c}, {b2, c}, {d1, a}, {d2, a}, {a, c}}

are called geared inequalities associated with (π, π0). The unique geared inequality
that is full support on VB is (1) and it will be called proper geared inequality.

Definition 3. Let He be a graph obtained from H = (VH , EH) by subdividing the
simplicial edge e = v1v2 with a node t. An inequality (π, π0) which is valid for
STAB(He) is said to be g-liftable (with respect to v1v2) if πv1 = πv2 = πt = λ > 0.

342 A. Galluccio, C. Gentile, and P. Ventura

Definition 4. Let G = (H, B, v1v2) be a geared graph and (π, π0) a g-liftable inequal-
ity. Then the inequalities

'
∑

i∈VH\{v1,v2}
πixi + λ

∑
i∈VB

xi ≤ π0 + λ, (3)

'
∑

i∈VH\{v1,v2}
πixi + λ

∑
i∈VB\A

xi ≤ π0 (4)

where A ∈ {{b1, c, b2, h1, h2}, {d1, a, d2, h1, h2}}

are called g-lifted inequalities associated with (π, π0). The unique g-lifted inequality
that is full support on VB is (3) and it will be called proper g-lifted inequality.

In [7], we showed that the linear description of STAB(G) is completely determined
by the linear description of STAB(H) and STAB(He). In fact, we proved that:

Theorem 1. [7] Let G = (H, B, e) be a geared graph. Then the stable set polytope
STAB(G) is described by the following linear inequalities:

• clique-inequalities,
• (lifted) 5-wheel inequalities,
• geared inequalities associated with facet defining inequalities of STAB(H) hav-

ing nonzero coefficient on the endnodes of e,
• g-lifted inequalities associated with facet defining inequalities of STAB(He) hav-

ing nonzero coefficient on the endnodes of e,
• facet of STAB(H) having zero coefficient on the endnodes of e.

This result implies that, if H and He are “well behaved” with respect to the stable set
problem (meaning that there exist a defining linear system for their stable set polytopes)
then the geared graphs obtained from H do the same. In the following we will extend
some of the polyhedral properties of the gear composition in order to prove that a large
subclass of claw-free graphs behave well with respect to the stable set problem.

3 Geared (Fuzzy) Line Graphs

In 2006, Chudnovsky and Seymour [2] proved that claw-free graphs with stability num-
ber at least 4 that are not quasi-line are obtained by composing only three kinds of
graphs, called strips. One kind of strips, the linear interval strips, is used to generate
quasi-line graphs while the other two kind of strips, the XX-strips and the antihat-
strips, contain 5-wheels and so, they are necessary to generate claw-free graphs that
are not quasi-line. This structure suggests the idea that claw-free graphs which are not
quasi-line and have stability number at least 4 might not be so distant from line graphs
in terms of polyhedral description of their stable set polytope. In the following sections
we give an evidence of this fact by showing that a defining linear system for the stable
set polytope of a large subclass of claw-free graphs with stability number at least 4 is
built starting from the defining linear system of the stable set polytope of line graphs

On the Stable Set Polytope of Claw-Free Graphs 343

and using the gear composition. We actually conjectured that this holds for all claw-free
graphs with large stability number [6].

Before stating the decomposition theorem of Chudnovsky and Seymour we recall
some of their definitions:

Definition 5. A strip (G, a, b) consists of a claw-free graph G together with two desig-
nated simplicial vertices a, b called the ends of the strip. Two strips can be composed
as follows: let A and B be the nodes of G\ {a, b} adjacent in G to a and b respectively,
and define A′ and B′ similarly. Take the disjoint union of G \ {a, b} and G′ \ {a′, b′};
and let H be the graph obtained from this by adding all possible edges between A and
A′ and between B and B′.

Definition 6. A homogeneous pair of cliques in G is a pair (A, B) such that:

• A and B are cliques in G and A ∩ B = ∅,
• |A| ≥ 2 or |B| ≥ 2,
• no vertex of G \ (A ∪ B) has both a neighbour and a non-neighbour in A, and the

same in B.

Definition 7. Let T be a graph with vertex set {u1, . . . , u13} and with adjacency as
follows. (u1, . . . , u6) is a hole of G of length 6. Next, u7 is adjacent to u1, u2; u8 is ad-
jacent to u4, u5; u9 is adjacent to u6, u1, u2, u3; u10 is adjacent to u3, u4, u5, u6, u9;
u11 is adjacent to u3, u4, u6, u1, u9, u10; u12 is adjacent to u2, u3, u5, u6, u9, u10; u13

is adjacent to u1, u2, u4, u5, u7, u8. Let X ⊆ {u11, u12, u13}; then the strip (T \
X, u7, u8) is called an XX-strip.

We can now state the decomposition theorem of Chudnovsky and Seymour; the decom-
position involves the antihat strips, but we omit their definition since they will never be
used in the following.

Theorem 2. [2] For every claw-free graph G with α(G) ≥ 4, if G does not admit a 1-
join and there is no homogeneous pair of cliques in G, then either G is a circular interval
graph, or G is a composition of linear interval strips, XX-strips, and antihat strips.

Since graphs containing homogeneous pairs cannot be represented with the above strips,
Chudnovsky and Seymour were forced to introduce the concept of fuzziness [2] and to
give a “fuzzy” version of the above theorem were all the strips are fuzzy strips. Since
the fuzziness is a very technical concept we do not go into the detail of its definition (we
refer the interested reader to [2]). To our purpose it suffices to observe that (fuzzy) linear
interval strips are quasi-line graphs and to refer to a quasi-line graph that is a composition
of (fuzzy) linear interval strips as a (fuzzy) line graph. The class of (fuzzy) line graphs
is denoted by Q and the class of (fuzzy) circular interval graphs is denoted by Qc.

It is worth noticing that the fuzziness does not have much relevance from the poly-
hedral point of view. This was already noticed by Chudnovsky and Seymour who
proved that:

Theorem 3. [1] If G is a (fuzzy) line graph, then STAB(G) is described by the Ed-
monds’ inequalities.

344 A. Galluccio, C. Gentile, and P. Ventura

And it was further confirmed by the work of Eisenbrand et al. on (fuzzy) circular inter-
val graphs.

Lemma 1. [4] Let F be a facet of STAB(G) where G is a fuzzy circular interval
graph. Then F is also a facet of STAB(G′), where G′ is a circular interval graph
obtained from G by removing some edges.

By Theorem 2 and its “fuzzy” version, finding a linear description of STAB(G) for
claw-free graphs with α(G) ≥ 4 is equivalent to finding a linear description of
STAB(G) for (fuzzy) circular interval graphs, namely the graphs in Qc, and for graphs
that are composition of (fuzzy) linear interval strips, XX-strips and antihat strips. Since
the first case has been solved in [4] and the antihat strips do not seem to produce “inter-
esting” facet defining inequalities for STAB(G), we focus our attention on the graphs
that are a

composition of XX-strips and (fuzzy) linear interval strips.

We call these graphs XX-graphs and their family will be denoted as XX .
In the following we show that any XX-graph can be obtained by iteratively applying

the gear composition defined in Section 2 to a (fuzzy) line graph, i.e., a graph in Q.
We start by showing that the gear is a subgraph of an XX-strip.

Lemma 2. The graph obtained by composing a strip (G, v1, v2) with the XX-strip
(T \ {u11, u12, u13}, u7, u8) is a geared graph.

Proof. Rename the nodes {a, b1, b2, c, d1, d2, h1, h2} of a gear B as {u6, u2, u4, u3, u1,
u5, u9, u10}. Thus, the strip composition of (G, v1, v2) and the XX-strip (T \{u11, u12,
u13}, u7, u8}), as defined in Definition 5, corresponds to the gear composition of G′ =
(VG, EG ∪ {v1v2}) and the gear B. In fact, being the nodes v1 and v2 simplicial, we
have that the edge v1v2 of G′ is simplicial. The graph obtained by applying the above
strip composition is precisely the geared graph (G′, B, v1v2).

As a consequence of the above lemma and Definition 7 we have that each XX-strip
composition produces a geared graph G = (H, B, e) plus an extra set Y of nodes
which are properly adjacent to B. This, together with Theorem 2, implies that a large
number of claw-free graphs can be seen as geared graphs. We now prove that we can
restrict ourselves to consider only XX-strips not containing node u13 since this node
can be added using an appropriate linear interval strip.

Lemma 3. The class of XX-graphs coincides with the subclass of claw-free graphs
obtained by composition of XX-strips of type (T \ {u13}, u7, u8) and (fuzzy) linear
interval strips.

Proof. Let G be an XX-graph obtained by composing a strip (L, v1, v2) and an XX-
strip (T \ X, u7, u8) such that u13 /∈ X . Consider the linear interval strip (L′, a0, b0)
such that VL′ = {v′1, v′2, u13, a0, b0} and the triples {v′1, u13, a0} and {v′2, u13, b0}
induce two triangles. It is trivial to see that the graph L′′ obtained by composing the
strip (L, v1, v2) with the linear interval strip (L′, a0, b0) has v′1 and v′2 as simplicial
nodes. Thus (L′′, v′1, v

′
2) is a strip and its composition with the XX-strip (T \ (X ∪

{u13}), u7, u8) yields the graph G, as claimed.

On the Stable Set Polytope of Claw-Free Graphs 345

We now show that the XX-graphs admit a decomposition different from the strip de-
composition: they can be obtained by repeated applications of an “extended” gear com-
position to a (fuzzy) line graph.

Definition 8. Let B = (VB , EB) be a gear and let u11 and u12 be two new nodes.
Let δ(u11) = {u11d1, u11a, u11h1, u11h2, u11c, u11b2} and δ(u12) = {u12d2, u12a,
u12h1, u12h2, u12c, u12b1}. Let Y ⊆ {u11, u12} and δ(Y) = ∪i∈Y δ(ui).

An extended gear BY is a graph with node set VB ∪ Y and edge set EB ∪ δ(Y)
(see Fig. 1.).

An extended gear composition is a gear composition where the gear B is replaced by
BY for some Y ⊆ {u11, u12}. The graph resulting from an extended gear composition
will still be called geared graph and denoted as (H, BY , e).

d1

b1

h1

c

a

h2

d2

b2

u12 u11

Fig. 1. The extended gear BY with Y = {u11, u12}

In order to show that the gear composition can be used to build XX-graphs, we need to
show that the removal of a simplicial edge preserves the property of the graph of being
(fuzzy) line.

Proposition 1. H is a (fuzzy) line graph with a simplicial edge e = v1v2 if and only if
(H \ e, v1, v2) is a strip with H \ e (fuzzy) line graph.

Proof. First we prove the “if” direction. It suffices to observe that H is obtained by
composing the strip (H \ e, v1, v2) with a strip (P, a0, b0) consisting of a path P =
(a0, u1, u2, b0) and then rename the nodes ui as vi, i = 1, 2. To prove the other direc-
tion observe that a (fuzzy) line graph is a graph in Q. Hence to prove that H \ e is a
(fuzzy) line graph we must first show that it is quasi-line, i.e., it contains neither a claw
nor an odd-antiwheel. Suppose by contradiction that H \ e contains a claw C. Since the
only edge which was removed from H is e = v1v2, we have that C contains both v1

and v2. So, C = (y : v1, v2, w) with y ∈ K1 ∩K2 and w ∈ VH \ (K1 ∪K2 ∪{v1, v2}).
Since e is simplicial, there exists a node z1 ∈ K1 \K2 and a node z2 ∈ K2 \K1. Thus,

346 A. Galluccio, C. Gentile, and P. Ventura

wzi ∈ EH , i = 1, 2, since otherwise (y : v1, z2, w) or (y : v2, z1, w) would be claws
in H , contradicting the hypothesis that H is quasi-line. Hence, the edge e belongs to
the 5-wheel (y : v1, v2, z2, w, z1) contained in H , contradicting the hypothesis that H
is quasi-line. Similarly, it can be proved that H \ e does not contain odd-antiwheels and
so, it is a quasi-line graph. Thus, by the decomposition of quasi-line graphs in [1], H \e
either belongs to Q or it belongs to Qc. Since it is possible to prove that if H \ e ∈ Qc,
then H ∈ Qc, we have that H \ e is a (fuzzy) line graph as claimed.

Definition 9. Let H be a (fuzzy) line graph which is not a clique and let E∗
H be the set

of its simplicial edges. A g-operation on e ∈ E∗
H is either an extended gear composition

or an edge subdivision of e. A graph G ∈ G∗
H if and only if

either G = H ,
or G = (L, BY , e), where L ∈ G∗

H , BY is an extended gear, and e ∈ E∗
H ∩ EL

(i.e., e is a simplicial edge of H on which no g-operation has been performed),
or G = Le, where L ∈ G∗

H and e ∈ E∗
H ∩ EL.

The graphs in
⋃

H∈Q� G∗
H will be called geared (fuzzy) line graphs.

In the following lemma we show that:

Lemma 4. The geared (fuzzy) line graphs are the XX-graphs.

Proof. By Proposition 1 and Lemmas 2 and 3, it is trivial to see that XX-graphs are
geared (fuzzy) line graphs. To prove the opposite, suppose by contradiction that there
exists a graph G in G∗

H for some H ∈ Q which is not an XX-graph. In particular,
assume G be obtained by performing the smallest number of g-operations. If G = H
then, by definition, H is an XX-graph. Hence, either G = (L, BY , e) or G = Le,
where e = v1v2 is a simplicial edge of H .

Suppose first that G = Le. By the minimality of G we know that L is an XX-
graph. Since e is simplicial it does not belong to any XX-strip of L. So, we can build a
new graph L̃ from L by replacing each XX-strip (T \ X, v1, v2) with the simple path
(a0, v1, v2, b0). It follows that L̃ is a (fuzzy) line graph and, by Proposition 1, L̃ \ e is
also a (fuzzy) line graph. Now we reconstruct L \ e from L̃ \ e by replacing the simple
paths previously introduced with the corresponding XX-strips. Thus L \ e is obtained
as a composition of XX-strips and (fuzzy) linear interval strips, and so, it is an XX-
graph. Since G is obtained by composing the strip (L\e, v1, v2) and (a, v′1, t, v

′
2, b) and

renaming v′i as vi, i = 1, 2, we have that G is an XX-graph, as claimed.
Consider now the case G = (L, BY , e). As above, we can prove that L\e is an XX-

graph. If we add to BY two nodes v′1 and v′2 adjacent to b1, d1 and b2, d2, respectively,
we have that G is obtained by composing the strips (L \ e, v1, v2) and the XX-strip
(BY ∪ {v′1, v′2}, v′1, v′2)). Thus the thesis follows.

From the above results it follows that the XX-graphs can be built in two different
ways: either using the strip composition defined by Chudnovsky and Seymour in [2]
or using the extended gear composition. This result allows us to exploit the polyhedral

On the Stable Set Polytope of Claw-Free Graphs 347

properties of the gear composition to find a linear description for the stable set polytope
of XX-graphs. This will be discussed in the next section.

4 Stable Set Polytope of XX-Graphs

In this section we consider the geared graph G = (H, BY , e) obtained as an extended
gear composition of the graph H and the extended gear BY , with Y ⊆ {u11, u12}.

Let (γ, γ0) be a non trivial facet defining inequality of STAB(G) which is not a
clique or a (lifted) 5-wheel inequality. If Y = ∅ then, by Theorem 1, (γ, γ0) is one of
the following inequalities:

• an inequality of type (1) or (2) associated with a facet of STAB(H);
• an inequality of type (3) or (4) associated with a facet of STAB(He);
• a facet of STAB(H).

We now show that the properties of the extended gear composition do not change
substantially when Y �= ∅. In particular we prove that the above inequalitities can be
“lifted” to the higher dimensional space containing u11 and u12 using the sequential
lifting procedure [15]. We start finding the lifting coefficient of u11 and u12 for inequal-
ities (1), (2), (3), and (4).

Lemma 5. Let G = (H, BY , e) with Y = {u11} and (β, β0) be a geared inequality
that is facet defining for STAB(G′), where G′ = (H, B, e).
If (β, β0) is of type (1) then the node u11 is lifted with coefficient βu11 = λ.
If (β, β0) is of type (2) then the node u11 is lifted with coefficient βu11 = λ if A =
{b1, c} or A = {d2, a}, and βu11 = 0 otherwise.

Similarly, we prove that:

Lemma 6. Let G = (H, BY , e) with Y = {u11} and (β, β0) be a g-lifted inequality
that is facet defining for STAB(G′), where G′ = (H, B, e).
If (β, β0) is of type (3) then the node u11 is lifted with coefficient βu11 = λ.
If (β, β0) is of type (4) then the node u11 is lifted with coefficient βu11 = 0.

The next lemma shows the lifting coefficient βu12 for geared and g-lifted inequalities
once the node u11 has been already lifted.

Lemma 7. Let G = (H, B, e), G′ = (H, B{u11}, e), and G′′ = (H, B{u11,u12}, e).
Moreover, let (β′, β0) be a facet defining inequality for STAB(G′), obtained by lifting
the inequality (β, β0) of type (1) ÷ (4) on node u11.
If (β, β0) is a proper gear inequality (1) or a proper g-lifted inequality (3), then the
node u12 is lifted with coefficient βu12 = λ.
In all other cases, the node u12 is lifted with coefficient βu12 = 0.

By symmetry, the results of Lemmas 5÷7 hold if we interchange the role of u11 and
u12. However the extension of the gear B with the nodes u11 and u12 does not generate
only inequalities that are (sequential liftings of inequalities) defined in definitions 2
and 4. Indeed, new facet defining inequalities are generated. More precisely,

348 A. Galluccio, C. Gentile, and P. Ventura

Theorem 4. Let G = (H, B, e), G′ = (H, B{u11}, e), and G′′ = (H, B{u11,u12}, e).
Let (π, π0) be a g-liftable facet defining inequality for STAB(He), then∑

i∈VH\{v1,v2}
πixi + λ(xd1 + xu11 + xb2) ≤ π0 (5)

is facet defining for both STAB(G′) and STAB(G′′); moreover,∑
i∈VH\{v1,v2}

πixi + λ(xb1 + xu12 + xd2) ≤ π0 (6)

is facet defining for STAB(G′′).

Observe that the above inequalities (5) and (6) have a structure very similar to the
g-lifted inequalities (4). In fact, the nodes of the gear associated with the nonzero coef-
ficients of each inequality of type (4) induce the simple paths (d1, a, d2) and (b1, c, b2).
The same holds for inequalities (5) and (6), where the simple paths are (d1, u11, b2) and
(b1, u12, d2), respectively.
We are now ready to prove the main result of the paper.

Definition 10. A facet defining inequality (γ, γ0) ∈ G if and only if it is (the sequential
lifting of)

either a rank inequality,
or a 5-wheel inequality,
or a geared or a g-lifted inequality associated with an inequality in G.

From the definitions 2 and 4, it is not difficult to see that geared inequalities and g-lifted
inequalities either contain at least a pair of coefficients equal to 2λ corresponding to the
hubs of a gear or all their coefficients equal λ. For the sake of simplicity, from now on,
we call geared inequalities the inequalities in G containing at least a pair of hubs of an
extended gear with coefficients 2λ. Thus, all the inequalities of G that are not geared are
either rank-inequalities or (lifted) 5-wheel inequalities. Consider now the polyhedron

GSTAB(G) = {x ∈ RV
+| x satisfies G}. (7)

By Theorem 1 and the results of this section, it follows that STAB(G) ⊆ GSTAB(G);
moreover, a graph G is said to be G-perfect if the equality holds. By Theorem 1, we
have that:

Theorem 5. Let G = (H, BY , e) with Y = ∅. If H and He are G-perfect, then G is
G-perfect.

The above result can be extended to geared graphs obtained by performing an extended
gear composition as follows:

Theorem 6. Let G = (H, BY , e) with Y ⊆ {u11, u12}. If H and He are G-perfect,
then G is G-perfect.

On the Stable Set Polytope of Claw-Free Graphs 349

Finally, to prove that geared (fuzzy) line graphs, i.e., graphs in ∪H∈Q�G∗
H , are G-perfect

we need the following:

Theorem 7. Let H be a graph and E∗
H the set of its simplicial edges. Let HF be the

graph obtained from H by subdividing all the edges in F ⊆ E∗
H . If H and HF are

G-perfect for any F ⊆ E∗
H , then every graph G ∈ ∪H∈Q�G∗

H is G-perfect.

We now prove that the claw-free graphs in XX are G-perfect. More precisely,

Theorem 8. If G is an XX-graph then STAB(G) is defined by the (sequential lifting
of the) following inequalities:

• rank inequalities,
• 5-wheel inequalities,
• geared inequalities.

Proof. By Lemma 4, the graph G is a geared (fuzzy) line graph, namely it belongs to the
family G∗

H for some H ∈ Q. By Proposition 1, the graph H \ e is a (fuzzy) line graph.
To obtain He one just needs to compose (H \ e, v1, v2) with the strip (P, a, b) where
P is the path (a, u1, t, u2, b) and then rename ui as vi, i = 1, 2. Hence, He is a (fuzzy)
line graph and the same holds for HF for any subset F ⊆ E∗

H of simplicial edges of
H . By Theorem 3, we know that STAB(H) and STAB(HF) are described only by
rank inequalities, i.e., the Edmonds’ inequalities [3], and so, H and HF are G-perfect.
Hence, by Theorem 7, every graph G ∈ ∪H∈Q�G∗

H is G-perfect, i.e., STAB(G) is
completely described by inequalities in G and the theorem follows.

References

1. Chudnovsky, M., Seymour, P.: Claw-free graphs VI: Quasi-line graphs (manuscript) (2004)
2. Chudnovsky, M., Seymour, P.: Claw-free graphs IV: Decomposition theorem. J. Comb. Th.

B (to appear, 2007)
3. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. Res. of Nat. Bureau

of Stand. B 69B, 125–130 (1965)
4. Eisenbrand, F., Oriolo, G., Stauffer, G., Ventura, P.: The stable set polytope of quasi-line

graphs. Combinatorica (to appear)
5. Oriolo, G., Pietropaoli, U., Stauffer, G.: A new algorithm for the maximum weighted stable

set problem in claw-free graphs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008.
LNCS, vol. 5035, pp. 77–96. Springer, Heidelberg (2008)

6. Galluccio, A., Gentile, C., Ventura, P.: Gear composition and the stable set polytope. Opera-
tions Research Letters (to appear, 2008)

7. Galluccio, A., Gentile, C., Ventura, P.: Gear composition of stable set polytopes and G-
perfection. Mathematics of Operations Research (submitted, 2006)

8. Galluccio, A., Sassano, A.: The rank facets of the stable set polytope for claw-free graphs. J.
Comb. Th. B 69, 1–38 (1997)

9. Giles, R., Trotter, L.E.: On stable set polyhedra for K1,3-free graphs. J. Comb. Th. B 31,
313–326 (1981)

10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimiza-
tion. Springer, Berlin (1988)

350 A. Galluccio, C. Gentile, and P. Ventura

11. Liebling, T.M., Oriolo, G., Spille, B., Stauffer, G.: On non-rank facets of the stable set poly-
tope of claw-free graphs and circulant graphs. Math. Methods of Oper. Research 59, 25–35
(2004)

12. Rinaldi, G., Conforti, M., Wolsey, L.: On the cut polyhedron. Discrete Mathematics 277,
279–285 (2004)

13. Mahjoub, A.R.: On the stable set polytope of a series-parallel graph. Mathematical Program-
ming 40, 53–57 (1988)

14. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Th. B 28,
284–304 (1980)

15. Padberg, M.W.: On the facial structure of vertex packing polytope. Mathematical Program-
ming 5, 199–215 (1973)

16. Pulleyblank, W.R., Shepherd, B.: Formulations of the stable set polytope. In: Rinaldi, G.,
Wolsey, L. (eds.) Proceedings Third IPCO Conference, pp. 267–279 (1993)

A Combinatorial Algorithm to Optimally Colour

the Edges of the Graphs That Are Join of
Regular Graphs

Caterina De Simone and Anna Galluccio

Istituto di Analisi dei Sistemi ed Informatica, CNR, Viale Manzoni 30,
00185 Rome, Italy

{desimone,galluccio}@iasi.cnr.it

Abstract. We prove that the edges of every even graph G = G1 + G2

that is the join of two regular graphs Gi = (Vi, Ei) can be coloured with
Δ(G) colours, whenever Δ(G) = Δ(G2) + |V (G1)|. The proof of this
result yields a combinatorial algorithm to optimally colour the edges of
this type of graphs.

1 Introduction

The graphs in this paper are simple, that is they have no loops or multiple edges.
Let G = (V, E) be a graph; the degree of a vertex v, denoted by dG(v), is the
number of edges incident to v; the maximum degree of G, denoted by Δ(G), is the
maximum vertex degree in G; G is regular if the degree of every vertex is the same.

An edge-colouring of G is an assignment of colours to its edges so that no two
edges incident to the same vertex receive the same colour. A t-edge-colouring of
G is then a partition of the edge set E into t disjoint matchings.

The chromatic index of G, denoted by χ′(G), is the least t for which G has
a t-edge-colouring. Since all the edges incident to a vertex must be in different
matchings, we know that χ′(G) is at least Δ(G). In fact, Vizing [16] proved that
χ′(G) is at most Δ(G) + 1. Graphs with χ′(G) = Δ(G) are said to be Class 1,
while the others are said to be Class 2. Despite the fact that an edge-colouring
of any graph G with Δ(G) + 1 colours can be found in polynomial time, the
problem of deciding whether G is Class 1 is NP-complete even if Δ(G) = 3 [10].
On the other hand, graphs with “large” maximum degree seem to behave better
from the computational point of view [4,14]. Indeed, the study of the edge-
colouring problem for this type of graphs is motivated by a famous and still
unsolved conjecture of Hilton [3] known as “The Overfull Conjecture”: if true,
there would exist a polynomial time algorithm to decide whether a graph G
(with n vertices and Δ(G) > n/3) is Class 1. This motivates us to study the
edge-colouring problem for the class of join graphs.

A graph G = (V, E) is the join of two graphs G1 = (V1, E1) and G2 = (V2, E2)
(with V1 ∩ V2 = ∅), if V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}.
When G is the join of G1 and G2 we shall write G = G1 + G2. (Note that
Δ(G) ≥ |V |/2.)

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 351–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

352 C. De Simone and A. Galluccio

The join operation (also known in literature as graph substitution or sum)
plays an important role in solving hard combinatorial problems and in designing
efficient algorithms for many optimization problems [2,12]. The class of join
graphs has one more characteristics: it properly contains the class of P4-free
graphs, i.e., graphs not containing a P4 as an induced subgraph. These graphs,
also known as cographs, are very interesting because for them many NP-hard
problems can be solved in polynomial time [5,6]. Nevertheless, it is not known
whether it is NP -complete to decide if a cograph is Class 1.

Contrary to the intuition suggested by the Overfull Conjecture, it is very
convenient to deal with graphs that not only have large maximum degree but
are also “dense”. Thus, in this paper, we study the edge-colouring problem for
the class of graphs that are the join of two regular graphs: these are the join
graphs with the highest number of edges. Observe that any polynomial time
algorithm that colours the edges of a graph G with Δ(G) colours yields also
a Δ(H)-edge-colouring for any subgraph H (induced or not) of G such that
Δ(H) = Δ(G).

Besides the classical application to the timetabling problem [13], the edge-
colouring problem has several applications in computer network problems, such
as the design of wavelength division multiplexing (WDM) networks [1].

Let G = G1 +G2 be a join graph with an even number n of vertices such that
Gi = (Vi, Ei) is regular (i = 1, 2). Write ni = |V (Gi)| and Δ(Gi) = Δi. Clearly,
n = n1 + n2 and Δ(G) = max{n1 + Δ2, n2 + Δ1}. Without loss of generality,
we shall assume that n1 ≤ n2. If Δ1 = 0 and Δ(G) = n1 + Δ2 then G is Class 1
[11]; if Δ1 = Δ2 and n1 = n2 then G is Class 1 [9]; if G is regular then G is
Class 1 [8].

The aim of this paper is to prove that, if Δ(G) = n1 + Δ2 then G is Class 1,
thus generalizing the previous results.

In Section 2 we give some properties of the equitable edge-colourings of graphs.
In Section 3 we show that every join graph G = G1 + G2 with an even number
n of vertices and maximum degree equal to n1 + Δ2 is Class 1, whenever both
G1 and G2 are regular. The proof of this result is combinatorial and provides an
O(n4) time algorithm for finding an optimal edge-colouring of these graphs.

2 Equitable Edge-Colourings of Graphs

Let C = {c1, . . . , ct} be an edge-colouring of a graph G with m edges. The
colouring C is said to be equitable if each ci has size equal to either �m/t or
!m/t". Throughout the paper we shall refer to each ci as both a colour and a
matching of G. Equitable edge-colourings always exist and are easy to construct:

Proposition 1 ([7],[13][15]). Every graph G with χ′(G) ≤ t has an equitable
t-edge-colouring which can be found in O(|V (G)|4) time.

Before showing the relations between the equitable edge-colourings of two graphs
we need two easy observations.

A Combinatorial Algorithm to Optimally Colour the Edges of the Graphs 353

Observation 1. Let G be a graph with m edges such that χ′(G) ≤ t; let C =
{c1, . . . , ct} be an equitable edge-colouring of G. If m/t is not integral, then the
number of colours ci of size �m/t is equal to t !m/t" − m.

To see the validity of the observation, note that if p denotes the number of
colours ci of size �m/t (and so t − p is the number of colours ci of size !m/t"),
then m = p �m/t + (t − p) !m/t".

The next observation is a simple application of the previous one.

Observation 2. For i = 1, 2, let Gi be a graph with ni vertices, mi edges, and
maximum degree Δi; let Ci be an equitable (Δi + 1)-edge-colouring of Gi. If
mi/(Δi + 1) is not integral (i = 1, 2) and if⌈

m2

Δ2 + 1

⌉
−
⌈

m1

Δ1 + 1

⌉
=

n2 − n1

2

then q − p is equal to

(Δ1 + 1)
(

n2 − n1

2
− m2

Δ2 + 1
+

m1

Δ1 + 1

)
+ (Δ2 − Δ1)

(⌈
m2

Δ2 + 1

⌉
− m2

Δ2 + 1

)
where p denotes the number of colours of C1 that have size equal to �m1/(Δ1 + 1)
and q denotes the number of colours of C2 that have size equal to �m2/(Δ2 + 1) .

For every colour ci, we shall denote by X(ci) the subset of vertices of G = (V, E)
that are missed by colour ci; in other words, X(ci) is the set of all vertices that
are exposed with respect to the matching ci. Clearly, |X(ci)| = |V | − 2|ci|.

Theorem 1. For i = 1, 2, let Gi be a graph with ni vertices, mi edges, and
maximum degree Δi; let C1 = {f1, . . . , fΔ1+1} and C2 = {h1, . . . , hΔ2+1} be
equitable edge-colourings of G1 and G2, respectively. Assume that n1 ≤ n2, n1 +
n2 even, and Δ1 ≤ Δ2.

If m2/(Δ2 + 1) − m1/(Δ1 + 1) ≥ (n2 − n1)/2 then there exists an ordering of
the elements of C2 such that

|X(hi)| ≤ |X(fi)| for every i = 1, . . . , Δ1 + 1.

Otherwise, then there exists an ordering of the elements of C2 such that

|X(hi)| ≥ |X(fi)| for every i = 1, . . . , Δ1 + 1.

Proof. Set
x =

m1

Δ1 + 1
, y =

m2

Δ2 + 1
.

Since C1 is equitable, each matching fi has size equal to �x or !x" (i =
1, . . . , Δ1 + 1); since C2 is equitable, each matching hi has size equal to �y
or !y" (i = 1, . . . , Δ2 + 1). Observe that, for every i = 1, . . . , Δ2 + 1,

|X(hi)| = n2 − 2|hi| = n1 − 2
(
|hi| −

n2 − n1

2

)
.

354 C. De Simone and A. Galluccio

Since |X(fi)| = n1 − 2|fi| (i = 1, . . . , Δ1 + 1), proving the theorem amounts to
show that there exists an ordering of the elements of C2 such that

|hi| ≥ |fi| +
n2 − n1

2
i = 1, . . . , Δ1 + 1, (1)

whenever y − x ≥ (n2 − n1)/2, and such that

|hi| ≤ |fi| +
n2 − n1

2
i = 1, . . . , Δ1 + 1, (2)

whenever y − x < (n2 − n1)/2.
First assume that

y − x ≥ n2 − n1

2
. (3)

Since !y"−!x" ≥ y−!x" > y− (x+1), it follows that !y"−!x" > (n2 −n1)/2−
1. But then the integrality of both r.h.s and l.h.s in the previous inequality
implies that

!y" − !x" ≥ n2 − n1

2
. (4)

Now if y = !y" then |hi| = y for every i. Since |fi| ≤ !x" for every i, it follows
that |hi| − |fi| ≥ !y" − !x" for every i = 1, . . . , Δ1 + 1, and so (1) holds.
Hence we can assume that �y < y < !y". If x = !x" then !y"− !x" = !y"− x >
y − x, and so

!y" − !x" >
n2 − n1

2
. (5)

But then the identity !y" = �y + 1 and the integrality of both the r.h.s. and
the l.h.s. in (5) imply that �y − �x ≥ (n2 − n1)/2. Since |hi| ≥ �y for every i
and since |fi| = �x for every i, it follows that |hi| − |fi| ≥ �y − �x for every
i = 1, . . . , Δ1 + 1. But then again (1) holds.

Hence we can assume that �x < x < !x" and �y < y < !y". In this case
!x" = �x + 1 and !y" = �y + 1, and so (4) implies that

�y − �x ≥ n2 − n1

2
. (6)

Note that
!y" − �x >

n2 − n1

2
. (7)

Now, let p denote the number of matchings fi of size �x and let q denote the
number of matchings hi of size �y . If p ≥ q then (4), (6), and (7) imply that
any q matchings hi of size �y and any Δ1 +1−q matchings hi of size !y" satisfy
(1), and we are done.

Hence we may assume that p < q. If Δ2 − Δ1 ≥ q − p, then Δ2 + 1 − q ≥
Δ1 + 1 − p, and so (4) and (6) imply that any p matchings hi of size �y and
any Δ1 + 1 − p matchings hi of size !y" satisfy (1), and again we are done.

Hence we can assume that p < q and Δ2−Δ1 < q−p. If �y −!x" ≥ (n2−n1)/2
then the previous inequality along with (4) and (6) imply that any q + Δ1 −Δ2

A Combinatorial Algorithm to Optimally Colour the Edges of the Graphs 355

matchings hi of size �y and any Δ2 + 1 − q matchings hi of size !y" satisfy (1)
and again we are done.

Thus we are left with the case p < q, Δ2 −Δ1 < q − p, and �y − !x" < (n2 −
n1)/2. In this case, (4) and (6) imply that �y − �x = !y" − !x" = (n2 − n1)/2,
and so by Observation 2,

q − p = (Δ1 + 1)
(

n2 − n1

2
− y + x

)
+ (Δ2 − Δ1)(!y" − y).

Since (3) holds and since !y" − y < 1, it follows that q − p < Δ2 − Δ1, a
contradiction.

Next assume that

y − x <
n2 − n1

2
. (8)

Since �y − �x < y − (x − 1), it follows that �y − �x < (n2 − n1)/2 + 1. But
then the integrality of both r.h.s and l.h.s in the previous inequality implies that

�y − �x ≤ n2 − n1

2
. (9)

Now if y = �y then |hi| = y for every i. Since |fi| ≥ �x for every i, it follows
that |hi| − |fi| ≤ �y − �x for every i = 1, . . . , Δ1 + 1, and so (2) holds.

Hence we can assume that �y < y < !y". If x = �x then �y −�x = �y −x <
y − x, and so �y − �x < (n2 − n1)/2. But then the identity !y" = �y + 1 and
integrality of both the r.h.s. and the l.h.s. in the previous inequality imply that

!y" − �x ≤ n2 − n1

2
. (10)

Since |hi| ≤ !y" for every i and since |fi| = �x for every i, it follows that
|hi| − |fi| ≤ !y" − �x for every i = 1, . . . , Δ1 + 1, and so (2) holds.

Hence we can assume that �x < x < !x" and �y < y < !y". In this case
!x" = �x + 1 and !y" = �y + 1, and so (9) implies that

!y" − !x" ≤ n2 − n1

2
. (11)

Note that

�y − !x" <
n2 − n1

2
. (12)

Now, let p denote the number of matchings fi of size �x and let q denote the
number of matchings hi of size �y . If p ≤ q and Δ1 +1−p ≤ Δ2 +1−q, then (9)
and (11) imply that any p matchings hi of size �y and any Δ1 +1−p matchings
hi of size !y" satisfy (2), and we are done.

If p ≤ q and Δ1 + 1 − p > Δ2 + 1 − q, then (9), (11) and (12) imply that any
q − Δ2 + Δ1 matchings hi of size �y and any Δ2 + 1 − q matchings hi of size
!y" satisfy (2), and again we are done.

Hence, we can assume that p > q. If !y" − �x ≤ (n2 − n1)/2 then any q
matchings hi of size �y and any Δ1 + 1 − q matchings hi of size !y" satisfy (2)
and again we are done.

356 C. De Simone and A. Galluccio

Thus we are left with the case p > q and !y" − �x > (n2 − n1)/2. In this
case, (9) and (11) imply that �y − �x = !y" − !x" = (n2 − n1)/2, and so by
Observation 2,

q − p = (Δ1 + 1)
(

n2 − n1

2
− y + x

)
+ (Δ2 − Δ1)(!y" − y).

Since (8) holds and since !y" > y, it follows that q−p > 0, a contradiction. Thus
the theorem follows.

3 Even Join Graphs

In this section we shall show how Theorem 1 becomes a very useful tool when
we want to optimally colour the edges of a graph that has an even number of
vertices and it is the join of two regular graphs.

Observation 3. Let G be a k-regular graph and let C = {c1, . . . , ck+1} be
an equitable edge-colouring of G. Then, each vertex is missed by exactly one
colour, and so the vertex set of G can be partitioned into the k + 1 subsets
X(c1), . . . , X(ck+1).

Let G = G1 + G2 be a join graph with an even number n of vertices such that
Gi is ki-regular with ni vertices. Without loss of generality we shall assume
that n1 ≤ n2. In [9] it was shown that if k1 > k2, or if k1 < k2 and n1 = n2

then G is Class 1. Hence we shall assume that k1 ≤ k2, and that if n1 = n2

then k1 = k2. Moreover, we can always assume that ki < ni − 1 (i = 1, 2), for
otherwise Δ(G) = n − 1, and so G would be a subgraph of the complete graph
with n vertices which is Class 1 (because n is even).

In [8] it was shown that every regular join graph with an even number of
vertices is Class 1. To prove this result, it was crucial to prove that every regular
join graph G = G1 + G2 contains a (k1 + 1)-regular spanning subgraph H such
that H is (k1 +1)-edge-colourable and H contains G1 as induced subgraph. Note
that, when G is regular, Δ(G) = k2 + n1 = k1 + n2. Here we want to generalize
this result by just assuming that Δ(G) = k2 + n1 (G is not necessarily regular).
To this purpose, we first need a technical lemma that generalizes Theorem 1 in
[8] and can be proved in a similar way.

Lemma 1. Let G = G1 + G2 be a join graph with an even number of vertices
such that Gi has ni vertices with n1 < n2, and it is ki-regular with k1 ≤ k2

and ki < ni − 1. Let C1 = {f1, . . . , fk1+1} and C2 = {h1, . . . , hk2+1} be equitable
edge-colourings of G1 and G2, respectively. If there exists an ordering of the
elements of C2 such that |X(hi)| ≤ |X(fi)| for every i = 1, . . . , k1 + 1, then G
contains a spanning subgraph H that is (k1 + 1)-regular and has the following
two properties:

(a) H ⊃ G1,
(b) χ′(H) = k1 + 1.

A Combinatorial Algorithm to Optimally Colour the Edges of the Graphs 357

Proof. (Sketch) Let H2 be the spanning subgraph of G2 induced by the match-
ings hi (i = 1, . . . , k1 + 1). Note that each vertex of H2 has degree equal to
either k1 or k1 + 1 (by Observation 3); let A denote the set of vertices having
degree k1 and let B denote the set of vertices having degree k1 + 1. By con-
struction, A = ∪k1+1

i=1 X(hi) and |A| =
∑k1+1

i=1 |X(hi)|. Set αi = |X(fi)| − |X(hi)|
(i = 1, . . . , k1 + 1). Since |X(hi)| = n2 − 2|hi| and |X(fi)| = n1 − 2|fi|, it follows
that each αi is a nonnegative even integer (because n2 − n1 is even).
To build the required graph H we shall consider two cases.

1. αi = 0 for every i = 1, . . . , k1 + 1.
With every vertex uj of V1 associate a vertex vuj of H2 so that if uj ∈ X(fi)
for some i, then vuj ∈ X(hi) (this can be done because |X(fi)| = |X(hi)| for
every i). Let ej = ujvuj , j = 1, . . . , n1. Then H is the spanning subgraph of G
that is formed by G1, H2, and the n1 edges ej . Clearly H is (k1 +1)-regular and
it satisfies property (a). Now, identify each colour hi with colour fi, and colour
edge ej = ujvuj with the colour fi missing both uj and vuj . Then χ′(H) = k1+1
and the lemma holds.

2. αi > 0 for some i.
From every matching hi (with αi > 0) remove precisely αi/2 “special” edges in
order to obtain a new matching h′

i such that |X(h′
i)| = |X(hi)| + αi = |X(fi)|

(the special edges are edges having at least one endpoint of degree k1 +1 in H2).
Set hi := h′

i and αi = 0. Proceed as in Case 1.

Corollary 1. Let G = G1 +G2 be a join graph with an even number of vertices
such that Gi is a ki-regular graph having ni vertices, with n1 < n2, and ki <
ni−1. If Δ(G) = k2+n1 then G contains a spanning subgraph H that is (k1+1)-
regular, it properly contains G1 and it is Class 1.

Proof. Let C1 = {f1, . . . , fk1+1} and C2 = {h1, . . . , hk2+1} be equitable edge-
colourings of G1 and G2, respectively. Let mi denote the number of edges of Gi,
i = 1, 2. By assumption, Δ(G) = k2 + n1 and n1 < n2, and so k1 < k2. By
Lemma 1, it is sufficient to show that there exists an ordering of the elements of
C2 such that |X(hi)| ≤ |X(fi)| for every i = 1, . . . , k1 + 1. To this purpose, we
only need verify that m2/(k2 + 1) − m1/(k1 + 1) ≥ (n2 − n1)/2: indeed as soon
as this is accomplished, the desired ordering exists by Theorem 1. Now,

m2

k2 + 1
− m1

k1 + 1
=

n2k2

2(k2 + 1)
− n1k1

2(k1 + 1)
=

(n2 − n1)k1k2 + n2k2 − n1k1

2(k1 + 1)(k2 + 1)
.

By assumption, Δ(G) = k2 +n1, and so k2 − k1 ≥ n2 −n1. Now, (n2 −n1)(n1 +
k2) = (n2 −n1)n1 +(n2 −n1)k2, and so (n2 −n1)(n1 +k2) ≤ (k2 −k1)n1 +(n2 −
n1)k2 = n2k2 − n1k1. Then

m2

k2 + 1
− m1

k1 + 1
≥ n2 − n1

2
k1k2 + n1 + k2

(k1 + 1)(k2 + 1)
.

Since k1k2 + n1 + k2 > (k1 + 1)(k2 + 1) (because n1 > k1 + 1), the corollary
follows.

358 C. De Simone and A. Galluccio

Now we are ready to prove our main result.

Theorem 2. Let G = G1+G2 be a join graph with an even number n of vertices
such that Gi is a noncomplete ki-regular graph with ni vertices, with n1 < n2. If
Δ(G) = k2 + n1 then G is Class 1.

Proof. Write G = (V, E), Gi = (Vi, Ei) (i = 1, 2). By Corollary 1, G contains
a (k1 + 1)-regular spanning subgraph H = (V, F), having G1 as an induced
subgraph, and such that χ′(H) = k1 + 1.

Now, consider the graph G−H = (V, E−F). Note that the set V1 is an indepen-
dent set of G−H of size n1 (because G1 is an induced subgraph of H); moreover,
in the graph G−H , every vertex in V1 is adjacent to precisely n2−1 vertices in V2.
Hence, dG−H(u) = n2 − 1 for every vertex u in V1. Since H is (k1 + 1)-regular it
follows that, for every vertex v in V2, dG−H(v) = dG(v)−(k1+1) = k2−k1+n1−1,
and so Δ(G − H) = k2 − k1 + n1 − 1. Hence
(a) dG−H(u) = n2 − 1 ≤ Δ(G − H) for every vertex u in V1,
(b) dG−H(v) = Δ(G − H) for every vertex v in V2.
Now, let G′

2 = (V2, E
′
2) denote the subgraph of G − H induced by V2. Clearly,

the number of edges of G′
2 is equal to the number of edges of G − H minus

the number of edges in G − H that join vertices in V1 to vertices in V2, that is
|E′

2| = |E − F | − n1(n2 − 1). Now (a) and (b) imply that G − H has precisely
n1(n2 − 1)/2 + n2Δ(G − H)/2 edges, and so

|E′
2| =

n2Δ(G − H)
2

− n1(n2 − 1)
2

. (13)

Since Δ(G′
2) ≤ k2 < n2 − 1 ≤ Δ(G − H), it follows that we can colour the

edges of G′
2 with Δ(G − H) colours. Let C = {c1, . . . , cΔ(G−H)} be an equitable

Δ(G − H)-edge-colouring of G′
2.

Set x = |E′
2|/Δ(G − H); by (13)

x =
n2

2
− n1(n2 − 1)

2Δ(G − H)
.

Since n2−1 ≤ Δ(G−H), it follows that x ≥ (n2−n1)/2, and so �x ≥ (n2−n1)/2.
Then, for every i, |ci| ≥ (n2 − n1)/2 (because |ci| ≥ �x), and so

|X(ci)| = n2 − 2|ci| ≤ n1, i = 1, . . . , Δ(G − H). (14)

For every vertex vj in V2 let t(vj) denote the number of vertices ui in V1 that
are nonadjacent to vj in the graph G − H ; to put it differently, t(vj) is nothing
but the number of vertices ui that are adjacent to vj in the graph H . Then, in
the graph G − H every vertex vj is adjacent to precisely n1 − t(vj) vertices ui,
and so

dG′
2
(vj) = dG−H(vj) − (n1 − t(vj)) = Δ(G − H) − (n1 − t(vj)). (15)

Now, we are ready to extend the colouring C to all the edges of G − H that
join vertices in V1 to vertices in V2. To this purpose, let Q denote this set of

A Combinatorial Algorithm to Optimally Colour the Edges of the Graphs 359

edges. Let B denote the bipartite graph with bipartition C and V2, and edge set
{civj : ci ∈ C, vj ∈ V2, and vj is missed by colour ci}.

Observe that (14) and (15) imply that dB(ci) ≤ n1 for every ci ∈ C, and
dB(vj) = n1−t(vj) ≤ n1 for every vj ∈ V2. Let E(B) denote the set of edges of B.
We have: |E(B)| =

∑
vj∈V2

dB(vj) =
∑

vj∈V2
(n1 − t(vj)). Since

∑
vj∈V2

t(vj) =
n1, it follows that |E(B)| = n1(n2−1). Note that at least one vj has degree equal
to n1 in the bipartite graph B: if, for every vertex vj in V2, dB(vj) ≤ n1 −1 then∑

vj∈V2
dB(vj) ≤ n2(n1 − 1), and so |E(B)| ≤ n2(n1 − 1). But then n1 ≥ n2,

contradicting the assumption that n1 < n2. Thus Δ(B) = n1.
Then, there exists an equitable edge-colouring D = {d1, . . . , dn1} of B. Since

|E(B)| = n1(n2 − 1), it follows that |di| = n2 − 1 for every i, and so each
matching di misses exactly one of the n2 vertices of V2, and such a vertex must
have degree smaller than n1 in B. Now, in the graph G − H each vertex ui in
V1 is adjacent to every vertex vj in V2, but one; let vui denote such a vertex.
Without loss of generality, we may assume that, for every i = 1, . . . , n1, the
matching di misses precisely vui (this can always be done because t(vui) ≥ 1
and so dB(vui) ≤ n1 − 1).

Finally, consider an arbitrary edge civj of B (with ci ∈ C and vj ∈ V) and
let dr be its colour. Since vj is not missed by dr, it follows that the edge vjur

belongs to Q. We claim that we can colour edge vjur with colour ci. To verify
that the colouring so obtained is admissible, assume the contrary: there exist
in Q two adjacent edges e and e′ that have the same colour ci. Let e = vjur.
If e′ = vhur then in B both edges civj and civh would be coloured dr, which
is impossible; if e′ = vjut then in B the edge civj would be coloured both dr

and dt, which again is impossible. Thus, χ′(G − H) = Δ(G − H). But then,
χ′(G) ≤ χ′(H) + χ′(G − H) ≤ (k1 + 1) + (k2 − k1 + n1 − 1) = Δ(G). Thus G is
Class 1 and the theorem follows.

An immediate consequence of the above results, is that, under the assumptions
of Theorem 2, there exists a polynomial time algorithm for finding a Δ(G)-edge-
colouring of a graph G that is the join of two regular graphs. The running time of
this algorithm lies on the complexity of finding equitable edge-colourings. Since
an equitable edge-colouring of a graph with q vertices can be found in time O(q4)
(see Proposition 1), it follows that the running time of our algorithm is O(n4).
——————————————————————————————
The edge-colouring algorithm
Input. G = G1 + G2 such that: Gi noncomplete ki-regular with ni vertices,
n1 < n2, n1 + n2 even, and Δ(G) = k2 + n1.

1. Find H satisfying the properties in Corollary 1 and a (k1 +1)-edge-colouring
F of H.

2. Set G′
2 as the subgraph of G − H spanned by the vertices of G2.

3. Find an equitable Δ(G − H)-edge-colouring C of G′
2.

4. Extend C to a Δ(G − H)-edge-colouring C∗ of G − H.

Output. A Δ(G)-edge-colouring of G: F ∪ C∗.
——————————————————————————————

360 C. De Simone and A. Galluccio

References

1. Berry, R., Modiano, E.: Optimal Transceiver Scheduling in WDM/TDM Networks.
IEEE J. on Select. Areas in Comm. 23, 1479–1495 (2005)

2. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory, Ser.
B 18, 138–154 (1975)

3. Chetwynd, A.G., Hilton, A.J.W.: Star multigraphs with three vertices of maximum
degree. Math. Proc. Cambridge Phil. Soc. 100, 303–317 (1986)

4. Chetwynd, A.G., Hilton, A.J.W.: The edge-chromatic class of graphs with maxi-
mum degree at least |V | − 3. Annals of Discrete Mathematics 41, 91–110 (1989)

5. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-
crete Appl. Math. 3, 163–174 (1981)

6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. of Comput. 14, 926–934 (1985)

7. De Werra, D.: Investigations on an edge-coloring problem. Discrete Math. 1, 167–
179 (1972)

8. De Simone, C., Galluccio, A.: Edge-colouring of regular graphs of large degree.
Theor. Comp. Sc. 389, 91–99 (2007)

9. De Simone, C., de Mello, C.P.: Edge colouring of join graphs. Theor. Comp. Sc. 355,
364–370 (2006)

10. Holyer, I.: The NP-completeness of edge-colouring. SIAM J. Comput. 14, 718–720
(1981)

11. Hoffman, D.G., Rodger, C.A.: The chromatic index of complete multipartite
graphs. J. Graph Theory 16, 159–163 (1992)

12. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimiza-
tion over relations, set systems and Boolean functions. Ann. Oper. Res. 4, 195–225
(1985)

13. McDiarmid, C.J.H.: The solution of a timetabling problem. J. Inst. Math. Appl. 9,
23–34 (1972)

14. Perkovic, L., Reed, B.: Edge coloring regular graphs of high degree. Discrete
Math. 165/166, 567–570 (1997)

15. Perkovic, L.: Edge Coloring, Polyhedra and Probability, Ph.D Thesis Carnegie
Mellon Univ., US (1998)

16. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret Analiz 3,
25–30 (1964) (in Russian)

Magic Labelings on Cycles and Wheels

Andrew Baker and Joe Sawada

University of Guelph, Guelph, Ontario, Canada, N1G 2W1
{abaker04,jsawada}@uoguelph.ca

Abstract. We present efficient algorithms to generate all edge-magic
and vertex-magic total labelings on cycles, and all vertex-magic total
labelings on wheels. Using these algorithms, we extend the enumeration
of the total labelings on these classes of graphs.

1 Introduction

Consider a wireless network in which every device must be able to connect to a
subset of the other devices in the network using a unique channel to prevent colli-
sions. One way to create such a channel assignment is to give numeric labels to the
devices and channels in such a way that the labels of two devices and the commu-
nication line between them sum to a consistent value across every pair of devices
in the network. In this case, knowing the labels of the two communicating devices
gives the identification number of the communication line between them [1].

This solution is an example of an edge-magic total labeling (EMTL). EMTLs
are one application of the “magic” concept of magic squares to graphs.Given a sim-
ple undirected graph G = (V, E), let λ be a mapping from the numbers 1 through
|V | + |E| to the elements (vertices and edges) of G such that each element has a
unique label. An edge-magic total labeling is a labeling λ in which the weight of
each edge is the same. The weight of an edge is obtained by the sum of the label
of the edge and the labels of its two endpoints and denoted by w(e). If the weight
is the same for every edge, it is termed the magic constant of the labeling, and is
given by h. For an example of an EMTL with h = 20, see Fig 1(a).

A vertex-magic total labelling (VMTL) is a labeling λ in which the weight
w(v) of each vertex is the same. The weight of a vertex is obtained by adding
the sum of the labels of the incident edges to the label of the vertex itself. If the
weight is the same for every vertex in the graph, it is called the magic constant
and is given by k. For an example of an VMTL with k = 20, see Fig 1(b).

A totally magic labeling is a labeling λ which is simultaneously both a vertex-
magic total labeling and an edge-magic total labeling. The magic constants h and
k are not necessarily equal. The class of totally magic graphs (those which admit
a totally magic labeling) is much more restricted than the edge-magic or vertex-
magic graphs. Figure 2 gives an example of a totally magic labeling on the cycle
C3. The only known connected totally magic graphs are K1, K3, and P3. There
are however an infinite number of disconnected totally magic graphs, as any
graph consisting of a union of 2n+1 (n ≥ 0, n ∈ Z) disjoint triangles is a totally
magic graph [1]. There are additional types of magic labelings described beyond

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 361–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 A. Baker and J. Sawada

b)a) 1

7

11

2

8

10

4

6

9

5

3
12

1

7

11

2

8

10

4

6

9

5
3

12

Fig. 1. Two C6 graphs with corresponding edge-magic and vertex-magic total labelings.
a) gives an edge-magic total labeling, and b) gives a vertex-magic total labeling.

6

3
4

5

1

2

Fig. 2. The graph C3 with a totally magic labeling. In this case, h = 9 (the edge-magic
constant), and k = 12 (the vertex-magic constant).

EMTLs, VMTLs and totally magic labelings. For a more complete treatment,
see Gallian’s dynamic survey [2].

Depending on which labels are assigned to vertices and which to edges, it is
possible to achieve labelings with different magic constants on the same graph.
A lower bound for a VMTL is obtained by applying the largest |V | labels to the
vertices, while an upper bound is found by applying the smallest |V | labels to the
vertices. Summing the weights of every vertex in a VMTL gives us

∑
v∈V w(v) =

|V |k. Every vertex label contributes to one weight (the weight of that vertex)
while every edge label contributes to two weights (the weights of its two end
points). Thus |V |k =

∑
v∈V λ(v) + 2

∑
e∈E λ(e). By applying either the |V |

smallest or largest labels to the vertices, we can obtain the inequality

13n2 + 11n + 2
2(n + 1)

≤ k ≤ 17n2 + 15n + 2
2(n + 1)

which gives basic limits on the magic constant of a graph without taking into
account the structure of the graph [3]. Once the structure of the graph is taken
into account, additional limits may be found. The set of integers which are
delimited by these upper and lower bounds is the feasible range. The values

Magic Labelings on Cycles and Wheels 363

which are the magic constant for some VMTL of a graph form the graph’s
spectrum. Therefore the spectrum is a subset of the feasible range.

In this paper we focus on finding all non-isomorphic VMTLs for cycles and
wheels. Section 2 presents previous results with respect to vertex-magic total
labelings on cycles and wheels. Sections 3 and 4 detail the enumeration algo-
rithms and results for cycles and wheels respectively. Open problems for further
research are presented in Section 5.

2 Background

Throughout this paper, we focus primarily on two classes of graph, the cycles
and the wheels. The cycle Cn is given by the vertex set v1, v2, . . . , vn ∈ V (G),
and edge set ei ∈ E(G) where for 1 ≤ i < n, ei = {vi, vi+1} and en = {v1, vn}.
Cycles are regular graphs (graphs in which every vertex has the same degree) as
every vertex has degree 2. The wheels Wn consist of a cycle Cn together with an
additional dominating vertex. A dominating vertex is a vertex which is adjacent
to every other vertex in the graph. Figure 3 shows a sample wheel graph (W6)
and illustrates the naming scheme we will use while discussing parts of a wheel.
Except for W3, the wheels are not regular graphs.

Hub

Rim

Spoke

Vertex

Fig. 3. The wheel graph W6 demonstrating the naming convention we adopt for the
elements of a wheel

2.1 Cycles

Every vertex-magic total labeling on a cycle (and indeed any regular graph) has
a mirrored dual labeling. This property allows us, given an original labeling λ
on graph G, to obtain the dual labeling λ′ given by λ′(v) = |V |+ |E|+ 1− λ(v)
for all vertices v ∈ V (G) and λ′(e) = |V |+ |E|+ 1−λ(e) for all edges e ∈ E(G).
The resulting magic constant k′ is given by k′ = 6n + 3 − k for cycles [4].
Consequently, the distribution of VMTLs by magic constant is symmetrical over
the feasible range, and the presence of a VMTL achieving a magic constant in
the upper half of the feasible range may be inferred by the presence of the dual
labeling achieving the corresponding magic constant in the lower half of the
feasible range.

364 A. Baker and J. Sawada

4
63 x

5

Fig. 4. A partial labeling of a piece of a graph with determined label x

Cycles also have a one-to-one correspondence between their edge- and vertex-
magic total labelings. To obtain an EMTL λe from a vertex-magic total labeling
λv, set λe(vi) = λv(ei) and λe(ei) = λv(v(i+1) mod |V |) [4]. Figure 1 shows this
correspondence graphically. Due to this relationship with EMTLs (which were
developed earlier than VMTLs), previous work has been done to enumerate the
edge-magic (and therefore also the vertex-magic) total labelings on cycles. The
cycles C3 through C10 were completely enumerated by Godbold and Slater [5].
We confirm these calculations, and also count the number of VMTLs/EMTLs
on the cycles C11 through C18.

Godbold and Slater show that a VMTL exists for every feasible magic constant
for Cn when n > 4 [5]. Our enumeration breaks down the results for cycles by
magic constant.

2.2 Wheels

As the wheel Wn consists of a cycle Cn together with a dominating hub vertex,
Wn has n + 1 vertices and 2n edges. The vertices v1 through vn refer to the
vertices of the cycle, with the rim edges r1 through rn corresponding to the
cycle edges e1 through en. The spoke edges are those which connect the hub to
a cycle vertex, and are given by si = {hub, vi} for 1 ≤ i ≤ n. We demonstrate
this naming scheme graphically in Figure 3.

A general conjecture on VMTLs is that having vertices in a graph which differ
widely with regard to their degrees prevents that graph from having a vertex-
magic total labeling. This holds for wheels, which have a high-degree hub, as
shown by MacDougall, Miller and Wallis in [3].

MacDougall et al. give two different methods of computing a feasible range
for wheel graphs, and the true feasible range is given by the most restrictive
maximum and minimum values. In addition to the bounds on the feasible range
given earlier, the feasible range on wheels can been further bounded from below
by k ≥ (n+1)(n+2)

2 and above by k ≤ 7n + 6 once you take the structure of
the wheel into account. For the wheels Wn with n > 11, the minimum magic
constant is larger than the maximum magic constant, so no VMTL can exist.
MacDougall et al. also enumerate the VMTLs on wheels for W3 (which is also
the complete graph K4), W4, and W5 [3]. We extend these results, counting W6

through W10.

3 Cycle Algorithm

A näıve method to generate all vertex-magic total labelings for a graph is to
simply try all (|V | + |E|)! permutations of the mapping of the labels onto the

Magic Labelings on Cycles and Wheels 365

function initializeCycle ()
for each available label i where i ≤ n + 1 do

λ(v1) := i
avail [i] := false
for each available label j do

λ(e1) := j
avail [j] := false
λ(en) := k − λ(v1) − λ(e1)
if λ(e1) < λ(en) ≤ 2n and avail [λ(en)] then

avail [λ(en)] := false
extendCycle (2)
avail [λ(en)] := true

avail [j] := true
avail [i] := true

Fig. 5. Pseudocode for the initialization function for cycles. Global variables n and k
are set to the desired values before the initializeCycle function is called.

function extendCycle (t)
if t = n then

λ(vn) := k − λ(en) − λ(en−1)
if λ(v1) < λ(vn) ≤ 2n and avail [λ(vn)] then

Print ()
else

for each available label i where i > λ(v1) do
λ(vt) := i
avail [i] := false
λ(et) := k − λ(vt) − λ(et−1)
if 0 < λ(et) ≤ 2n and avail [λ(et)] then

avail [λ(et)] := false
extendCycle (t + 1)
avail [λ(et)] := true

avail [i] := true

Fig. 6. Pseudocode for the extend function for cycles. Global variables n and k are set
to the desired values before the extendCycle function is called.

elements of the graph, and check to see if each result is a VMTL. Not only does
this rapidly become infeasible on its own, as the size of the cycle increases it will
also allow isomorphic copies of the same labeling to be generated independently.
As such, every successfully generated VMTL must be compared to every other
previously generated VMTL in order to remove duplicate copies.

Our general approach is to apply vertex and edge labels working iteratively
around the cycle. In the cycle VMTL generation algorithm, we remove cases
of rotational symmetry by assigning the smallest vertex label to v1, and then
handle the reflective symmetry by making sure that λ(e1) < λ(en). Since v1

must receive the smallest vertex label, it cannot be larger than n + 1 or there
will be insufficient labels to label the remaining vertices.

366 A. Baker and J. Sawada

Table 1. The total number of non-isomorphic VMTLs for cycle graphs Cn (3 ≤ n ≤ 18)

Cn

n Unique VMTLs n Unique VMTLs n Unique VMTLs n Unique VMTLs

3 4 7 118 11 36128 15 74931690

4 6 8 282 12 206848 16 613296028

5 6 9 1540 13 1439500 17 5263250382

6 20 10 7092 14 10066876 18 47965088850

Since we are interested in calculating the number of VMTLs for each magic
constant, the algorithm we develop takes both n (the size of the cycle) and k
(the magic constant) as input.

We say that a label is a determined label if it contributes its value to the
weight of a vertex for which every other contributing label is known. Assuming
we know the magic constant we are trying to reach, there is only one possible
value for the determined label. There are three conditions on a determined label
λ(x) which allow us to terminate the recursion tree at this node and backtrack.
These conditions are:

1. λ(x) < 1,
2. λ(x) > |V | + |E|, and
3. λ(x) has already been used in this labeling.

Figure 4 gives a partial labeling and illustrates a determined label. In this ex-
ample, if the desired magic constant is 20, then x must be 11. However, if the
desired magic constant is 15, then x would have to be 6. Since 6 has already
been used in this labeling, it would not be a valid partial labeling for k = 15. If
in a cycle we have magic constant k, then λ(e2) = k −λ(v2)−λ(e1). Then, once
we know λ(v3) and λ(e2), we are able to determine λ(e3).

Our algorithm aims to obtain determined labels as quickly as possible. If a
given label being applied in the algorithm is determined and the partial labeling
is infeasible, then the entire computation subtree rooted at that partial labeling
can immediately be excluded. Even in the worst-case scenario, where none of
the determined labels eliminates a partial labeling, the use of a determined
label reduces the branching factor at a position in the computation tree from
1 ≤ i ≤ |V | + |E| to 1.

Before the algorithm itself is called, the global variables n and k are set with
the size of the cycle and desired magic constant respectively, and the available
list is initialized to every label being currently available. The actual algorithm
begins with an initialization phase (by a call to initializeCycle()) which sets
the labels of a vertex and two edges (v1, e1, and en). The initialize function
then calls extendCycle(2) which recursively labels the remaining vertices and
edges. Execution completes when there is only one vertex (vn) remaining without
a label. A linked list of unused labels is maintained at all times. This way, the
more complete the partial labeling becomes, the fewer potential labels must be
considered for each non-determined element.

Magic Labelings on Cycles and Wheels 367

Table 2. The number of unique VMTLs for cycle graphs C3 through C10 broken down
by magic constant (k). (Note that the duals have not been included.)

C3 C4 C5 C6

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

9 1 12 1 14 1 17 3

10 1 13 2 15 0 18 1

16 2 19 6

C7 C8 C9 C10

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

19 9 22 10 24 31 27 125

20 10 23 19 25 43 28 236

21 11 24 57 26 125 29 698

22 29 25 55 27 264 30 1138

28 307 31 1349

C11 C12 C13 C14

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

29 308 32 1602 34 3809 37 32077

30 711 33 4111 35 10967 38 91866

31 1781 34 10834 36 33951 39 299525

32 3371 35 19183 37 79234 40 576701

33 4945 36 30877 38 139499 41 977354

34 6948 37 36817 39 202253 42 1427929

40 250037 43 1627986

C15 C16 C17 C18

k Unique VMTLs k Unique VMTLs k Unique VMTLs k Unique VMTLs

39 63995 42 884789 44 1152784 47 26677502

40 284590 43 2706053 45 8660408 48 104169715

41 889063 44 8685625 46 30280605 49 351608789

42 2332807 45 20266824 47 86881643 50 859974262

43 4402572 46 37574150 48 187828262 51 1815449072

44 7339913 47 59829497 49 336981439 52 3082588134

45 10395599 48 83018416 50 511013242 53 4648495519

46 11757306 49 93682660 51 683131331 54 6154283390

52 785695477 55 6939298042

The initialization function starts the labeling by attempting every possible
label for vertex v1 and edge e1. We require that λ(v1) be the minimal vertex
label in order to remove rotational symmetry. The maximum possible label for
v1 is n + 1 due to the fact that since v1 receives the minimum vertex label, we
must retain n−1 labels greater than λ(v1) for the other vertices. This determines
the label for edge en. In order to remove reflective symmetry, we require λ(en) >
λ(e1). The initialization function then calls the extend function with parameter
2. The pseudocode for the initialization function can be found in Figure 5.

368 A. Baker and J. Sawada

Table 3. The total number of non-isomorphic VMTLs for wheel graphs Wn (3 ≤ n ≤ 8)

Wn

n Unique VMTLs n Unique VMTLs n Unique VMTLs

3 14 6 859404 9 17804388662

4 2080 7 22063500 10 418858095690

5 31892 8 637402504 11 pending

The extend method takes a single parameter - the position (t) in the cycle
which is to be generated. A single loop applies, in turn, every unused label
greater than λ(v1) to vertex vt. Applying a label to vt determines the label for
et. The extend method then calls itself with parameter t + 1. The recursion
terminates when t = n. At this point there is only one unlabeled element, vn,
which is obviously determined. If the single remaining label is the required label,
then the VMTL is successfully completed and the Print() method is called.
Print() is a generic function which can be used to perform any operation on
the completed VMTL. In the case of enumeration, a count of the number of
VMTLs is incremented. Figure 6 gives the pseudo-code for the extend function.

In order to obtain results more quickly, the algorithm is parallelized to run
on multiple different processors. Each process is given an integer value as a
command-line argument which acts as a static value for the first element to be
assigned a label. Instead of iterating through all available values, the algorithm
simply uses the supplied label. As the runtime increases for larger graphs, the
problem is distributed to more processors by supplying two seed values which
determine the first two elements to receive labels.

3.1 Results

Table 1 gives the total number of EMTLs/VMTLs on the cycles C3 through C18,
of which C11 through C18 had not previously been enumerated. Table 2 give the
number of unique labelings broken down by magic constant.

4 Wheel Algorithm

Wheel graphs have a clear relationship to the cycles so the algorithm for generat-
ing all unique VMTLs on wheel Wn bears a similarity to the algorithm for cycle
Cn. However, the extra vertex and additional n edges complicate the process.

As with the cycle algorithm, our wheel VMTL generation algorithm applies
vertex and edge labels working iteratively around the edge of the cycle portion
of the wheel. We remove rotational symmetry by assigning the smallest spoke
label to s1. As with cycles, reflective symmetry is removed by ensuring that
λ(r1) < λ(rn). We use the s1 instead of the v1 to remove rotational symmetry
for the wheel in order to trim the computation tree of partial labelings which will
result in a hub with excessive weight more efficiently. Since s1 must receive the

Magic Labelings on Cycles and Wheels 369

Table 4. The number of unique VMTLs for wheel graphs W3 through W5 broken down
by magic constant (k)

W3 W4 W5

k Unique VMTLs k Unique VMTLs k Unique VMTLs

19 0 26 89 32 239

20 2 27 149 33 1242

21 5 28 522 34 2694

22 0 29 376 35 5180

23 5 30 573 36 7873

24 2 31 211 37 7173

25 0 32 131 38 4124

33 29 39 2511

40 776

41 80

W6 W7 W8

k Unique VMTLs k Unique VMTLs k Unique VMTLs

39 5978 45 24998 52 795294

40 36945 46 204170 53 7352502

41 76335 47 880257 54 28521585

42 158805 48 2198247 55 64090384

43 173887 49 3637665 56 106131735

44 187409 50 4760707 57 132239986

45 116447 51 4425875 58 133415487

46 77827 52 3384967 59 92798616

47 21793 53 1818749 60 53134373

48 3978 54 646233 61 17008206

55 81632 62 1914336

W9 W10 W11

k Unique VMTLs k Unique VMTLs k Unique VMTLs

58 0 66 1739667155 78 pending

59 34364364 67 4780216858 79 pending

60 236314351 68 18515045434 80 pending

61 833847423 69 39874554946 81 pending

62 1846542901 70 75518840087 82 162942689359

63 2996328931 71 84888911188 83 8201853531

64 3821193834 72 90187289669

65 3553033163 73 60230503071

66 2649033979 74 33425583234

67 1364327018 75 9122758622

68 435740211 76 574725426

69 33662487

370 A. Baker and J. Sawada

function initializeWheel ()
for each available label i do

λ(s1) := i
hubWeight := λ(s1)
avail [i] := false
for each available label j do

λ(r1) := j
avail [j] := false
for each available label p where p > λ(r1) do

λ(rn) := p
avail [p] := false
λ(v1) := k − λ(s1) − λ(r1) − λ(rn)
if 0 < λ(v1) ≤ 3n + 1 and avail[λ(v1)] then

avail [λ(v1)] := false
extendWheel (2)
avail [λ(v1)] := true

avail [p] := true
avail [j] := true

avail [i] := true

Fig. 7. Pseudocode for the initialization function for wheels. Global variables n and k
are set to the desired values before the initializeWheel function is called.

smallest spoke label, it cannot be larger than 2n + 2 or there will be insufficient
labels to label the remaining spokes.

Determined labels continue to be an asset to remove subtrees of the compu-
tation tree. In this case, we require three labels in order to determine a fourth.
For example, λ(r2) = k − λ(s2) − λ(v2) − λ(r1).

As in the case of the cycles, before the algorithm itself is called, the global
variables n and k are set with the size of the wheel and desired magic constant
respectively, and the available list is initialized to every label being currently
available. The actual algorithm begins with an initialization phase (by a call to
initializeWheel()) which labels s1, e1, en, and v1 in such a way as to prevent
isomorphic labelings from being generated. The initialize function then calls
extendWheel(2) which recursively labels a spoke, exterior vertex, and rim
and calls itself until only sn, vn, and the hub remain, which are then labeled by
a call to finalizeWheel(). Also like the cycle algorithm, a linked list consisting
of the unused labels is maintained in order to improve efficiency as the partial
labeling becomes more complete.

The initialization function starts the labeling by attempting every possible
label for spoke edge s1 and rim edge r1. Every possible label greater than λ(r1)
is applied to rn, thus removing reflective symmetry. This determines the label
for vertex v1. The initialization function then calls the extend function with
parameter 2. The pseudocode for the initialization function is given in Figure 7.

The extend function takes a single parameter t which gives the position of the
wheel currently being expanded and applies every possible label greater than

Magic Labelings on Cycles and Wheels 371

function extendWheel (t)
if t = n then

finalizeWheel()
else

for each available label i where i > λ(s1) do
λ(st) := i
avail [i] := false
hubWeight := hubWeight + λ(st)
potentialHub := the minimum available label
potentialSpokes := the sum of the n − t smallest available labels > λ(s1)
if (hubWeight + potentialHub + potentialSpokes < k) then

for each available label j do
λ(rt) := j
avail [j] := false
λ(vt) := k − λ(st) − λ(rt) − λ(rt−1)
if 0 < λ(vt) ≤ 3n + 1 and avail [λ(vt)] then

avail [λ(vt)] := false
extendWheel (t + 1)
avail [λ(vt)] := true

avail [j] := true
avail [i] := true

Fig. 8. Pseudocode for the extend function for wheels. Global variables n and k are
set to the desired values before the extendWheel function is called.

function finalizeWheel ()
for each available label i where i > λ(s1) do

λ(sn) := i
avail [i] := false
λ(vn) := k − λ(sn) − λ(rn) − λ(rn−1)
if 0 < λ(vn) ≤ 3n + 1 and avail[λ(vn)] then

avail [λ(vn)] := false
λ(hub) := k −

Pn
i=1 λ(si)

if 0 < λ(hub) ≤ 3n + 1 and avail[λ(hub)] then
Print ()

avail [λ(vn)] := true
avail [i] := true

Fig. 9. Pseudocode for the finalize function for wheels. Global variables n and k are
set to the desired values before the finalizeWheel function is called.

λ(s1) to st. The extend function then applies every possible label to vt which
determines the label for rt. The finalize function is called when t = n.

In order to prune the computation tree more effectively, we keep a close watch
on the weight of the hub vertex through the variable hubWeight. Due to its high
degree, its weight can easily exceed the desired magic constant. Every time a
label is applied to a spoke, the partial hub weight variable is updated. Once
in each iteration of the extend method, we check to ensure that the minimum

372 A. Baker and J. Sawada

b)

c)

a)

Fig. 10. Examples of graphs in three classes related to the wheels: a) t-fold wheel, b)
friendship graph, c) fan

weight the hub can achieve is less than or equal to the desired magic constant.
The minimal weight is given by the partial weight plus the smallest unused label
(applied to the hub) and the n− t smallest unused labels which are greater than
λ(s1). If the minimal hub weight is larger than the desired magic constant, the
partial labeling fails and the next set of labels is considered. The pseudocode for
the extend function can be found in Figure 8.

The finalize function tries every available label for sn which is greater than
λ(s1). This determines the labels for both vn and the hub. If these last labels
can be successfully applied, then the Print() method is called which increments
the number of labelings. Figure 9 gives the pseudocode for the finalize function.

4.1 Results

Table 3 gives the total number of VMTLs on the wheels W3 through W10, of
which W6 through W10 had not previously been enumerated. Results on W11

are currently pending completion. Table 4 gives the number of unique labelings
broken down by magic constant. Of particular note is the fact that W9 does
not have a VMTL for k = 58 even though it is in the feasible range as given
by MacDougall, Miller, and Wallis in [3]. Goemans gave a counting argument
showing why no VMTL on W9 can have k = 58 after we posed the problem of
the missing labeling [6].

5 Conclusion and Open Problems

As there are EMTLs/VMTLs for all cycles Cn with n ≥ 3, the number of unique
labelings on larger cycles remain an open problem. It is desirable, however, to
determine a formula which gives the number of EMTLs/VMTLs on a cycle of
size n without having to actually count them.

Magic Labelings on Cycles and Wheels 373

In addition to the wheels, MacDougall, Miller and Wallis present other related
classes of graphs which have similar size restrictions [3]. Figure 10 gives sam-
ple graphs for three of these related classes: fans, t-fold wheels, and friendship
graphs.

Acknowledgements

This work was made possible by the facilities of the Shared Hierarchical Acad-
emic Research Computing Network (SHARCNET:www.sharcnet.ca).

References

1. Wallis, W.D.: Magic Graphs. Birkhäuser, New York (2001)
2. Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal of Com-

binatorics 15, DS6 (2008)
3. MacDougall, J.A., Miller, M., Wallis, W.D.: Vertex-magic total labelings of wheels

and related graphs. Utilitas Mathematica 62, 175–183 (2002)
4. MacDougall, J.A., Miller, M., Slamin, Wallis, W.D.: Vertex-magic total labelings of

graphs. Utilitas Mathematica 61, 3–21 (2002)
5. Godbold, R.D., Slater, P.J.: All cycles are edge-magic. Bulletin of the ICA 22, 93–97

(1998)
6. Goemans, M.: Personal Communication (2008)

Minimum Cost Homomorphism Dichotomy for

Locally In-Semicomplete Digraphs

A. Gupta1, M. Karimi1, E.J. Kim2, and A. Rafiey1

1 School of Computing Science
Simon Fraser University

Burnaby, B.C., Canada, V5A 1S6
{arvind,mmkarimi,arashr}@cs.sfu.ca

http://cs.sfu.ca
2 Department of Computer Science

Royal Holloway, University of London
Egham, TW20 0EX, UK
eunjung@cs.rhul.ac.uk

http://www.cs.rhul.ac.uk/

Abstract. For digraphs G and H , a homomorphism of G to H is a
mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈
A(H). In the minimum cost homomorphism problem we associate costs
ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and the cost
of a homomorphism f is defined

∑
u∈V (G) cf(u)(u) accordingly. Here the

minimum cost homomorphism problem for a fixed digraph H , denoted
by MinHOM(H), is to check whether there exists a homomorphism of G
to H and to obtain one of minimum cost, if one does exit.

The minimum cost homomorphism problem is now well understood for
digraphs with loops. For loopless digraphs only partial results are known.
In this paper, we find a full dichotomy classification of MinHom(H), when
H is a locally in-semicomplete digraph. This is one of the largest classes
of loopless digraphs for which such dichotomy classification has been
proved. This paper extends the previous result for locally semicomplete
digraphs.

1 Introduction

For digraphs G and H , a mapping f : V (G)→V (H) is a homomorphism of G
to H if f(u)f(v) is an arc of H whenever uv is an arc of G. The problem of
deciding whether there is a homomorphism from G to H , called the homomor-
phism problem, is NP-complete in general. However if we fix the target digraph
H , the complexity of the homomorphism problem may be polynomial. From this
point of view, establishing the computational complexity of the homomorphism
problem for a fixed digraph H , denoted by HOM(H), has attracted great at-
tention: Given a fixed digraph H , decide whether an input digraph G admits a
homomorphism to H .

In the list homomorphism problem for a fixed digraph H , denoted by List-
HOM(H), the input is a digraph G and the sets L(u), u ∈ V (G), of vertices of

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 374–383, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Minimum Cost Homomorphism Dichotomy 375

H . We wish to decide whether there is a homomorphism f of G to H such that
f(u) ∈ L(u) for each u ∈ V (G). In the minimum cost homomorphism problem
we associate costs ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and
the cost of a homomorphism f is defined

∑
u∈V (G) cf(u)(u) accordingly. Here

the minimum cost homomorphism problem for a fixed digraph H , denoted by
MinHOM(H), is to check whether there exists a homomorphism of G to H and
to obtain one of minimum cost, if one does exit.

The minimum cost homomorphism problem was introduced, in the context of
undirected graphs, in [15]. There, it was motivated by a real-world problem in
defense logistics; in general, the problem seems to offer a natural and practical
way to model many optimization problems.

Our interest is in proving dichotomies: given a class of problems such as
HOM(H), we would like to prove that for each digraph H the problem is
polynomial-time solvable, or NP-complete. This is, for instance, the case for
HOM(H) with undirected graphs H [17]; in that case it is known that HOM(H)
is polynomial time solvable when H is bipartite or has a loop, and NP-hard
otherwise [17]. This is a dichotomy classification, since we specifically classify
the complexity of the problems HOM(H), depending on H .

For undirected graphs H , a dichotomy classification for the problem Min-
HOM(H) has been provided in [16]. Thus, the minimum cost homomorphism
problem for graphs has been handled, and interest shifted to directed graphs.
The first studies [12,13,14] focused on irreflexive digraphs (no vertex has a loop),
where dichotomies have been obtained for digraphs H such that H is semicom-
plete or semicomplete multipartite digraph. Later, Gutin et al. could find the
dichotomy for oriented cycles, which are fundamental structures in digraphs [8].
The dichotomy is also known for locally-semicomplete and quasi-transitive di-
graphs [6]. More recently, [10] promoted the study of digraphs with loops allowed;
and, in particular, of reflexive digraphs. Hell et al. [5] verified the conjecture of
Gutin and Kim [9], and proved the dichotomy for reflexive digraphs, the most
general class of digraphs for which the dichotomy is known.

It is still an open problem whether there is a dichotomy classification for the
complexity of MinHOM(H) when H is a digraph with possible loops. Gutin,
Rafiey, and Yeo [8] conjectured that such a classification exists and, moreover,
the following assertion holds:

Conjecture 1. Let H be a digraph with possible loops. Then MinHOM(H) is
polynomial time solvable if H has either a Min-Max ordering or a k-Min-Max
ordering for some k ≥ 2. Otherwise, MinHOM(H) is NP-hard.

For the definition of Min-Max ordering and k-Min-Max ordering see Section 2.
In this paper, we verify this conjecture for locally in-semicomplete digraphs

(see Section 2 for the definition), which is one of the largest classes of loopless
digraphs for which such dichotomy classification has been proved. This paper
extends the previous result for locally semicomplete digraphs [6]. Although the
class of locally semicomplete digraphs is not very large, the class of locally in-
semicomplete digraphs is large enough and contains a wide variety of digraphs

376 A. Gupta et al.

from a very sparse digraphs like directed path to very dense like semicomplete
digraphs.

Throughout this paper, we always assume that the fixed digraph H is locally
in-semicomplete unless stated otherwise. The next section has been devoted to
notation and terminology together with some preliminary results. When H is
strongly connected, we will show in section 3 that the directed cycles are the only
polynomial cases and obviously they have k-MinMax ordering. We will divide
the non-strong locally in-semicomplete digraphs to digraphs having a cycle and
acyclic digraphs. For digraphs having a cycle, We can find k-MinMax ordering
by excluding a few forbidden induced subgraphs for which MinHom(H) are NP-
hard. When H is acyclic the situations for which MinHom(H) is NP-hard are
too many to classify as a few induced subgraphs. But, roughly speaking, after
excluding this NP-hard cases, we will have Min-Max ordering for the remaining
digraphs. Due to that, We guess in proving conjecture 1 in general, the most
difficult class seems to be the class of acyclic digraphs.

2 Terminology and Preliminaries

A digraph D is semicomplete if, for each pair x, y of distinct vertices either x
dominates y or y dominates x or both. A digraph D is locally in-semicomplete
if for every vertex x of D, the in-neighbors of x induce a semicomplete digraph.
We assume that all digraphs are loopless and do not have parallel arcs.

An (x, y)-path in a digraph D is a directed path from x to y. A digraph D is
strongly connected (or, just, strong) if, for every pair x, y of distinct vertices in
D, there exist an (x, y)-path and a (y, x)-path. A strong component of a digraph
D is a maximal induced subgraph of D which is strong. A strong component
digraph of a digraph D, abbreviated by SCD(D), is obtained by contracting
each strong component Di of D into a single vertex vi and placing an arc from
vi to vj , i �= j if and only if there is an arc from Di to Dj [2]. Observe that
SCD(D) is acyclic. We call a strong component an initial strong component if
its corresponding vertex in SCD(D) is of in-degree zero.

A digraph D is path-mergeable if for any choice of vertices x, y of V (D) and
any pair of internally disjoint (x, y)-paths P ,Q, there exists an (x, y)-path R in
D such that V (R) = V (P) ∪ V (Q). The following two propositions are due to
Bang-Jensen, see [1].

Proposition 1. Let D be a digraph which is path-mergeable and let P = xx1 . . .
xry, P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x,y)-paths in D. The
paths P and P ′ can be merged into one (x,y)-path P ∗ such that vertices from
P (respectively, P ′) remain in the same order as on that path.

Proposition 2. Every locally in-semicomplete digraph is path-mergeable.

A subgraph T of a digraph D is an out-branching if T is a spanning oriented tree
of D with only one vertex s of in-degree zero (called the root). The following is
a basic characterization of digraphs with out-branchings.

Minimum Cost Homomorphism Dichotomy 377

Proposition 3. A connected digraph D contains an out-branching if and only
if D has only one initial strong component, or equivalently, SCD(D) has only
one vertex of in-degree zero.

Let D be any digraph. If xy ∈ A(D), we say x dominates y or y is dominated by
x, and denote by x→y. For sets X, Y ⊂ V (D), X→Y means that x→y for each
x ∈ X, y ∈ Y , but no vertex of Y dominates a vertex in X . The converse of D
is the digraph obtained from D by reversing the directions of all arcs.

A linear ordering < of V (H) is a Min-Max ordering if i < j, s < r and
ir, js ∈ A(H) imply that is ∈ A(H) and jr ∈ A(H). It is known that if H
admits a Min-Max ordering, then the problem MinHOM(H) is polynomial time
solvable [12]. However, there are digraphs with polynomial MinHOM(H) which
do not have Min-Max ordering [13].

Let H be a digraph and let k ≥ 2 be an integer. We say that H has a k-Min-
Max ordering if there is a k-partition of V into subsets V1, V2, . . . Vk and there
is an ordering vi

1, v
i
2, . . . , v

i
(i) of Vi for each i such that

(i) Every arc of H is an arc from Vi to Vi+1 for some i ∈ {1, 2, . . . , k},
(ii) vi

1, v
i
2, . . . , v

i
(i)v

i+1
1 vi+1

2 , . . . , vi+1
(i+1) is a Min-Max ordering of the subgraph

of H induced by Vi ∪ Vi+1 for each i ∈ {1, 2, . . . , k},

where all indices i + 1 are taken modulo k.
Due to [14], it is known that if H admits a k-Min-Max ordering, then Min-

HOM(H) is polynomial time solvable.

3 Strong Locally In-Semicomplete Digraphs

We start to investigate the complexity of MinHOM(H) by considering the strongly
connected case. The next observation is folklore, see [16].

Proposition 4. Let H ′ be an induced subgraph of the digraph H. If MinHOM(H ′)
is NP-hard, then MinHOM(H) is NP-hard. �	

Due to Proposition 4, in many cases it suffices to focus on small subgraphs and
prove they are NP-hard instead of looking at the whole digraph. In the arguments
which will follow, we shall sometimes omit to mention Proposition 4 when it is
obvious from the context.

The following two Lemmas follow from [12], [6], and [9].

Lemma 1. Let H be a semicomplete digraph containing a cycle and let H �∈
{−→C2,

−→
C3}. Then MinHom(H) is NP-hard.

Lemma 2. Let H be a digraph obtained from −→
Ck = 12 . . . k1, k ≥ 2, and an

additional vertex k + 1. MinHom(H) is NP-hard if at least one of the following
conditions hold.

(a) k + 1 is dominated by at least two vertices of the cycle and no other arc
exists.

378 A. Gupta et al.

(b) There are two consecutive vertices i, i + 1 in −→
Ck such that i→k + 1 and

k + 1→i + 1, and no other arc exists.
(c) There are three consecutive vertices i, i + 1, i + 2 such that i→k + 1 and

k + 1→{i + 1, i + 2}, and no other arc exists.

The next theorem is the main result of this section and will use it later for
characterizing general locally in-semicomplete digraphs.

Theorem 1. Let H be a strongly connected locally in-semicomplete digraph.
Then MinHom(H) is polynomial time solvable if H is a directed cycle. Other-
wise, MinHom(H) is NP-hard.

Proof: See [7] for the proof. �	

4 Nonstrong Locally In-Semicomplete Digraphs

The next theorem was first proved for locally in-tournament digraphs in [3] and
later slightly modified into a more general statement in [4].

Theorem 2. Let H be a connected non-strong locally in-semicomplete digraph.
Then the following holds for H.

(a) Let A and B be distinct strong components of H. If a vertex a ∈ A
dominates a vertex in B, then a→B.
(b) H has only one initial strong component, or equivalently SCD(H)
has an out-branching.

Corollary 1. Let H be a connected non-strong locally in-semicomplete digraph
and consider the strong components of it. If H has a non-trivial initial strong
component other than a directed cycle or a non-trivial non-initial strong compo-
nent, then MinHOM(H) is NP-hard.

Proof: By Theorem 1 every strong component of H should be a directed cycle,
otherwise, MinHOM(H) is NP-hard. Now, suppose a non-initial strong compo-
nent B is nontrivial, i.e. |B| ≥ 2. From Theorem 2 it follows that there exists a
vertex a such that a→B. Choose an induced cycle C from B and let H ′ be the
subgraph induced by V (C) ∪ {a}. Then MinHOM(H ′) is NP-hard by part (a)
of Lemma 2. �	
Theorem 2 and Corollary 1 above tell us that if MinHOM(H) is polynomial time
solvable for a non-strong locally in-semicomplete digraph H , the structure of H
is globally ’acyclic’ once we shrink the initial strong component to a vertex.

In the next two subsections we will show that a locally in-semicomplete digraph
H for which MinHOM(H) is polynomial time solvable has a special structure.

4.1 Locally In-Semicomplete Digraphs Having a Cycle

Let N be the class of connected non-strong locally in-semicomplete digraphs
having a directed cycle C as an initial strong component where the other strong
components are trivial.

Minimum Cost Homomorphism Dichotomy 379

Lemma 3. Let O1 be a digraph obtained from a directed cycle −→
Ck = x1x2 . . .

xkx1, k ≥ 2, and the digraph D with vertex set xk+m, xk+m+1, xk+m+2, m ≥ 0,
and arc set {xk+mxk+m+1, xk+mxk+m+2, xk+m+1xk+m+2} by joining xk to xk+m

with the directed path xkxk+1 . . . xk+m. Then MinHom(O1) is NP-hard.

Proof: See [7] for the proof. �	
Let O2 be a digraph obtained from a directed cycle of length k by adding an
extra vertex dominated by two consecutive vertices of the cycle. MinHom(O2)
is NP-hard by part (a) of Lemma 2.

Theorem 3. Consider a digraph H ∈ N . If H does not contain O1 and O2 as
an induced subgraph then H has a k-Min-Max ordering and thus MinHom(H) is
polynomial time solvable. Otherwise, MinHom(H) is NP-hard.

Proof: See [7] for the proof. �	

4.2 Acyclic Locally In-Semicomplete Digraphs

Let A be the class of connected acyclic locally in-semicomplete digraphs. For
any H ∈ A we have SCD(H) = H . Then, by Theorem 2, H , and any induced
subgraph of H has an out-branching, and they have only one vertex of in-degree
zero. We make a unique out-branching of H , denoted by T (H), recursively as
follows:

Input: H ∈ A
Output: An out-branching T (H)
begin
Find the root of H , denoted by r;
Remove r from H to have different connected components H1, H2, . . . , Hi,
i ≥ 0;
Find the roots of H1, H2, . . . , Hi, i ≥ 0, which are denoted by r1, r2, . . . , ri,
i ≥ 0;
V (T (H)) = r ∪ V (T (H1)) ∪ V (T (H2)) . . . ∪ V (T (Hi));
E(T (H)) = {rr1, rr2, . . . , rri} ∪ E(T (H1)) ∪ E(T (H2)) . . . ∪ E(T (Hi));
end

We say that a non-trivial H has one stem if it has only one connected com-
ponent after removing the root r of T (H). Otherwise, H has multi stems. The
level of a vertex x, denoted by l(x), is the length of the (r, x)-path in T (H). The
parent of a vertex u, denoted by P (u), is a unique vertex which dominates u in
T (H). A child of a vertex u is a vertex v which is dominated by u in T (H). A
vertex v is an ancestor of vertex u, if there is a (v, u)-path from v to u in T (H).
For any u, v ∈ V (H), the joint of u and v, denoted by joint(u ,v), is the maximal
level common ancestor of u and v in T (H) (note that this vertex is unique in
T (H)). A s-joint(u,v) (s-joint(v,u) respectively) is a vertex w which is in the
directed path between joint(u ,v) and u (v) on T (H). In this section, we find
the dichotomy for H when it has one stem. Using this result, we will derive the
dichotomy for H when it has multi stems.

380 A. Gupta et al.

We need the following lemma proved in [13].

Lemma 4. Let O3 be given by V (O3) = {1, 2, 3, 4}, A(O3) = {12, 23, 34, 14, 24}.
Then MinHom(O3) is NP-hard.

Lemma 5. Let T be an acyclic tournament with vertices v1, v2, . . . , vk, k ≥ 2.
Let O4 be a digraph containing T and three other vertices u1, u2, and u3 such that
V (T)→{u1, u2}, (V (T) − v1)→u3, u1→u2, and there is no other arc in A(O4).
Then MinHom(O4) is NP-hard.

Proof: See [7] for the proof. �	

Lemma 6. Let O5 be given by V (O5) = {x1, x2, x3, x4, x5, x6}, A(O5) = A1 ∪
A2, where A1 = {x1x2, x2x3, x2x4, x3x4, x2x5, x5x6, x2x6} and A2 is any subset
of {x1x3, x1x4, x1x5, x1x6}. Then MinHom(O5) is NP-hard.

Proof: See [7] for the proof. �	

Observation 1. Let H be in A and uv ∈ A(H). Then u is an ancestor of v.

Proof: Suppose the contrary that u is not an ancestor of v. v is not definitely
an ancestor of u on T (H), as otherwise H has a cycle. Thus, neither u nor v
is the ancestor of the other one. So, there are two disjoint paths P and Q from
joint(u,v) to u and v on T (H), respectively. By definition of T (H), P and Q are
the longest paths from joint(u,v) to u and v on H . Since uv ∈ A(H) and H is
path-mergeable, there is a path R in H from joint(u,v) to v such that it includes
all vertices of P and Q; hence R is the longest path from joint(u,v) to v in H ,
contrary to the assumption that Q is the longest path from joint(u,v) to v. �	

We can easily see by Observation 1 that if l(u) ≥ l(v) then uv �∈ A(H). A vertex
v is a minimal dominating ancestor of u, denoted by MDA(u), if it dominates
u, and it has a minimal level.

Observation 2. Let H be in A and uv ∈ A(H). If H does not contain O3 as
an induced subgraph, then all ancestors of v on T (H) which are between u and
v plus u and v induce and acyclic tournament in H.

Proof: The proof is trivial since H is acyclic and locally in-semicomplete. �	

As H has one stem then r can not be a joint of any pair u and v in H . So, each
joint(u, v) has a parent in H . In the following four Lemmas we assume that H
is in A and it has one stem.

Lemma 7. MinHom(H) is NP-hard if the following conditions hold for u, v ∈
V (H):

– l(u) − l(x) = l(v) − l(x) = 2, where x is the joint(u,v);
– xu ∈ A(H) \ A(T (H));
– l(MDA(P (v))) < l(MDA(P (u)))

Minimum Cost Homomorphism Dichotomy 381

Proof: See [7] for the proof. �	

Lemma 8. MinHom(H) is NP-hard when there are vertices u, v ∈ V (H) such
that l(u) = l(v), and there is an arc wu ∈ A(H) \ A(T (H)), where w is a
s-joint(u,v).

Proof: See [7] for the proof. �	

Lemma 9. MinHom(H) is NP-hard if the following conditions hold for u, v ∈
V (H):

– l(u) = l(v), and P (u) = P (v);
– l(MDA(v)) < l(MDA(u));
– u and v lie on path P and Q of T (H) respectively such that there is an arc

v′v′′ ∈ A(H) \ A(T (H)) on Q, where l(v) ≤ l(v′), and a vertex u′ in P ,
where l(v′) + 1 = l(u′) = l(v′′) − 1.

Proof: See [7] for the proof. �	

Lemma 10. MinHom(H) is NP-hard if the following conditions hold for u, v ∈
V (H):

– l(u) = l(v), and P (u) = P (v);
– P (u) dominates a child of u;
– u and v lie on path P and Q of T (H) respectively such that there is an arc

v′v′′ ∈ A(H) \ A(T (H)) on Q, where l(v) ≤ l(v′), and a vertex u′ in P ,
where l(v′) + 1 = l(u′) = l(v′′) − 1.

Proof: See [7] for the proof. �	
Forbidden family. A digraph H belongs to the forbidden family F1 if it is one
of the digraphs introduced in the Lemmas 4, . . . , 6 and Lemmas 7, . . . , 10 for
which MinHom(H)is NP-hard.

Theorem 4. Let H be in A and it has one stem. IF H �∈ F1 then it has a
Min-Max ordering and thus MinHom(H) is polynomial time solvable. Otherwise,
MinHom(H) is NP-hard.

Proof: See [7] for the proof. �	
Let B be a subclass of A such that for any H ∈ B, each stem of H has a Min-
Max ordering. Note that two stems only share the root r of T (H) and they are
different components of H if we remove this root r. In following six Lemmas we
assume that H ∈ B, {u, v, w} ⊂ V (H), joint(u,v) = joint(u,w) = joint(v,w) = x,
and u, v, w are in different stems of H . It is obvious that x = r.

We need the following lemma obtained from Theorem 1.2 in [6].

Lemma 11. MinHom(H) is NP-hard when l(u) = l(v) = l(w) = l(x) + 2, and
{xu, xv, xw} ∈ A(H) \ A(T (H)).

382 A. Gupta et al.

Lemma 12. MinHom(H) is NP-hard when l(y)− l(x) > 2, where y ∈ {u, v, w},
and {u′u, v′v, w′w} ∈ A(H) \ A(T (H)), where u′ is an s-joint(u,v), v′ is an s-
joint(v,u), and w′ is an s-joint(w,u).

Proof: See [7] for the proof. �	

Lemma 13. MinHom(H) is NP-hard if the following conditions hold:

– l(y) − l(x) > 2, where y ∈ {u, v};
– l(w) = max(l(u), l(v));
– {u′u, v′v} ∈ A(H)\A(T (H)), where u′ is an s-joint(u,v), v′ is an s-joint(v,u).

Proof: See [7] for the proof. �	

Lemma 14. MinHom(H) is NP-hard if the following conditions hold:

– l(y) − l(x) > 2, where y ∈ {u, v};
– l(w) = max(l(u) − 1, l(v));
– {u′u, xu′′, v1v} ∈ A(H) \ A(T (H)), where u′ is a s-joint(u,v), v′ is an s-

joint(v,u), and u′′ is in the same stem with u′, where l(u′′) − l(x) = 2.

Proof: See [7] for the proof. �	

Lemma 15. MinHom(H) is NP-hard if the following conditions hold:

– l(y) − l(x) > 2, where y ∈ {u, v};
– l(w) = max(l(u) − 1, l(v) − 1);
– {u′u, xu′′, v′v, xv′′} ∈ A(H) \ A(T (H)), where u′ is a s-joint(u,v), v′ is a

s-joint(v,u), and u′′, and v′′ are in the same stem of u′, and v′ respectively,
where l(u′′) − l(x) = l(v′′) − l(x) = 2.

Proof: See [7] for the proof. �	

Lemma 16. MinHom(H) is NP-hard if the following conditions hold:

– l(u) = l(v) = l(x) + 2;
– {xu, xv, yw} ∈ A(H) \ A(T (H)), where y is an s-joint(w,u).
– there are two vertices w1, and w2 in the stems, where u, and v belong to

respectively such that l(w1) = l(w2) = l(w).

Proof: See [7] for the proof. �	

Forbidden family. A digraph H belongs to the forbidden family F2 if it is one
of the digraphs introduced in the Lemmas 11, . . . , 16 for which MinHom(H) is
NP-hard.

Theorem 5. Let H be in B and it is multi-stem. IF H �∈ F2 then it has a
Min-Max ordering and thus MinHom(H) is polynomial time solvable. Otherwise,
MinHom(H) is NP-hard.

Proof: See [7] for the proof. �	

Minimum Cost Homomorphism Dichotomy 383

References

1. Bang-Jensen, J.: Digraphs with the path-merging property. J. Graph Theory 20,
255–265 (1995)

2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer, London (2000)

3. Bang-Jensen, J., Huang, J., Prisner, E.: In-tournament digraphs. J. Combin. The-
ory Ser. B 59, 267–287 (1993)

4. Bang-Jensen, J., Gutin, G.: Generalizations of tournaments: A survey. J. Graph
Theory 28, 171–202 (1998)

5. Gupta, A., Hell, P., Karimi, M., Rafiey, A.: Minimum Cost Homomorphisms to
Reflexive Digraphs. In: Proceedings of the 8th Latin American Theoretical Infor-
matics (LATIN 2008) (to appear, 2008)

6. Gupta, A., Gutin, G., Karimi, M., Kim, E.J., Rafiey, A.: Minimum Cost Homo-
morphisms to Locally semicomplete Digraphs and Quasi-transitive Digraphs (sub-
mitted)

7. Gupta, A., Karimi, M., Kim, E.J., Rafiey, A.: Minimum Cost Homomorphisms
Dichotomy for Locally In- Semicomplete Digraphs. Journal of Discrete Applied
Mathematics (submitted)

8. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphism to Oriented Cycles
(submitted)

9. Gutin, G., Kim, E.J.: Complexity of the minimum cost homomorphism problem
for semicomplete digraphs with possible loops (submitted)

10. Gutin, G., Kim, E.J.: Introduction to the minimum cost homomorphism problem
for directed and undirected graphs. Lecture Notes of the Ramanujan Math. Society
(to appear)

11. Gutin, G., Kim, E.J.: On the complexity of the minimum cost homomorphism
problem for reflexive multipartite tournaments (submitted)

12. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost and List Homomorphisms to Semi-
complete Digraphs. Discrete Appl. Math. 154, 890–897 (2006)

13. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete
Multipartite Digraphs. Discrete Applied Math. (submitted)

14. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete
Bipartite Digraphs (submitted)

15. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost
homomorphisms of graphs. Discrete Appl. Math. 154, 881–889 (2006)

16. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph
homomorphisms. European J. Combin. (to appear)

17. Hell, P., Nešetřil, J.: On the complexity of H-colouring. J. Combin. Theory B 48,
92–110 (1990)

The Clique Corona Operation and Greedoids

Vadim E. Levit1,2 and Eugen Mandrescu2

1 Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

2 Holon Institute of Technology, Israel
eugen m@hit.ac.il

Abstract. S is a local maximum stable set of G, and we write S ∈ Ψ(G),
if S is a stable set of maximum size in the subgraph induced by S∪N(S),
where N(S) is the neighborhood of S.

It is known that Ψ(G) is a greedoid for every forest G, [10]. Bipartite
graphs and triangle-free graphs, whose families of local maximum stable
sets form greedoids were characterized in [11] and [12], respectively.

The clique corona is the graph G = H ◦ {H1, H2, ..., Hn} obtained by
joining each vertex vk of the graph H with the vertices of some clique Hk,
respectively. In this paper we demonstrate that if G is a clique corona,
then Ψ(G) forms a greedoid on its vertex set.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, and
without multiple edges) graph with vertex set V = V (G) and edge set E = E(G).
The vertices x, y ∈ V (G) are called adjacent if they are the endpoints of some
edge in G, and we write xy ∈ E(G). If X ⊂ V , then G[X] is the subgraph of
G induced by X . By G − W we mean the subgraph G[V − W], if W ⊂ V (G).
We also denote by G − F the partial subgraph of G obtained by deleting the
edges of F , for F ⊂ E(G), i.e.., G−F = (V, E −F), and we write shortly G− e,
whenever F = {e}. Kn, Cn denote, respectively, the complete graph on n ≥ 1
vertices, and the chordless cycle on n ≥ 3 vertices.

The neighborhood of a vertex v ∈ V is the set

N(v) = {w : w ∈ V and vw ∈ E},

and N [v] = {v}∪N(v). If |N(v)| = |{u}| = 1, then v is a pendant vertex of G. A
vertex v ∈ V (G) is called simplicial if G[N [v]] is a complete subgraph of G. By
simp(G) we mean the set of all simplicial vertices of G. Clearly, each pendant
vertex is also simplicial, while the converse is not necessarily true. We denote
the neighborhood of A ⊂ V by

NG(A) = {v ∈ V − A : N(v) ∩ A �= ∅}

and its closed neighborhood by NG[A] = A ∪ N(A), or shortly, N(A) and N [A],
respectively, if no ambiguity.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 384–392, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Clique Corona Operation and Greedoids 385

A stable set in G is a set of pairwise non-adjacent vertices. A stable set of
maximum size will be referred to as a maximum stable set of G, and by α(G) is
denoted the cardinality of a maximum stable set in G. In the sequel, by Ω(G)
we denote the set of all maximum stable sets of the graph G.

A set A ⊆ V (G) is called a local maximum stable set of G if A is a maximum
stable set in the subgraph induced by N [A], i.e., A ∈ Ω(G[N [A]]), [10]. Let Ψ(G)
stand for the set of all local maximum stable sets of G. Notice that Ω(G) ⊆ Ψ(G)
is true for every graph G.

It is clear that every stable set S ⊆ simp(G) belongs to Ψ(G) and, of course,
there exist local maximum stable sets that do not contain simplicial vertices. For
instance, {e, g} ∈ Ψ(G2), where G2 is the graph from Figure 1.

� � �

� � �

�
�

�

�
�

�

x

y

G1

� � � �

� � �

�
�

�

a

b
c d

g f

e
G2

� � �

� � �

G3

Fig. 1. G1 is not well-covered, G2 is well-covered, G3 is very well-covered

A graph G is well-covered if every maximal stable set of G is also a maximum
stable set, i.e., it belongs to Ω(G). If, in addition, G has no isolated vertices
and |V (G)| = 2α(G), then G is very well-covered, [3]. For example, the graph
G2 depicted in Figure 1 is well-covered, but not very well-covered, while the
graph G3 in Figure 1 is very well-covered. In other words, each stable set of
a well-covered graph is contained in a maximum stable set. Since there is no
maximum stable set S of G1 such that {a, b} ⊂ S, the graph G1 from Figure 1
is not well-covered.

Well-covered graphs were defined by Plummer in 1970, [14]. A number of
classes of well-covered graphs were completely described (see, for instance, the
following references: [3], [4], [5], [7], [16], [17], [19]. A survey on this subject is
due to Plummer [15]. In fact, well-covered graphs are exactly those graphs for
which the greedy algorithm constructing maximum stable sets vertex by vertex
always yields a maximum stable set, no matter how its greediness makes it to
chose vertices of a graph.

For general graphs, the problem of finding a maximum stable set, is NP-
hard. While, in general, it is co-NP-complete to determine if a given graph
is well-covered (Chvátal and Slater, [2], Sankaranarayana and Stewart, [18]),
Tankus and Tarsi showed that claw-free well covered graphs can be recognized
in polynomial time, [20], [21].

Let H be a graph with V (H) = {vi : 1 ≤ i ≤ n}, and {Hi : 1 ≤ i ≤ n} be a
family of graphs, where Hi = (Vi, Ei) = ({uij : 1 ≤ j ≤ qi}, Ei). Joining each
vi ∈ V (H) to all the vertices of Hi, we obtain a new graph, which we denote by
G = H ◦ {H1, H2, ..., Hn}.

More precisely, V (G) = V (H) ∪ V1 ∪ ... ∪ Vn is the vertex set of the graph
G = H ◦ {H1, H2, ..., Hn} and its edge set is

E(G) = E(H) ∪ E1 ∪ ... ∪ En ∪ {v1u1j : 1 ≤ j ≤ q1} ∪ ... ∪ {vnunj : 1 ≤ j ≤ qn}.

386 V.E. Levit and E. Mandrescu

If Hi = X, 1 ≤ i ≤ n, we write G = H ◦ X , and in this case, G is called the
corona of H and X . If all Hi are complete graphs, then G = H ◦{H1, H2, ..., Hn}
is called the clique corona of H and H1, H2, ..., Hn (see Figure 2 for an example,
where H = K3 + v3v4).

� � � �

�

�

�

� � � �

� �

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�

�
�
�
�
�
�

x

y

zu

t

v1 v2 v3 v4

K3
K2 K3

K1G

Fig. 2. G = (K3 + v3v4) ◦ {K3, K2, K3, K1} is a well-covered graph

Let us notice that G = H ◦ {H1, H2, ..., Hn} has

α(G) = α(H1) + α(H2) + ... + α(Hn).

Theorem 1. [22] The graph G = H ◦ {H1, H2, ..., Hn} is well-covered if and
only if all Hi are complete, i.e., G is a clique corona.

Moreover, the following result shows that, under certain conditions, every well-
covered graph must be of this form.

Theorem 2. [4] Let G be a connected graph of girth ≥ 6, which is isomorphic
to neither C7 nor K1. Then G is well-covered if and only if its pendant edges
form a perfect matching, i.e., G = H ◦ K1 for some graph H.

In other words, Theorem 2 shows that, apart from K1 and C7, connected well-
covered graphs of girth ≥ 6 are very well-covered. Consequently, a tree T �= K1

could be only very well-covered, and consequently, T = H ◦ K1 for some tree H
(for additional details, see [3], [8], [17]).

Theorem 3. [13] Every local maximum stable set of a graph is a subset of a
maximum stable set.

The graph G2 from Figure 1 has the property that every S ∈ Ω(G2) contains
some local maximum stable set, but these local maximum stable sets are of
different cardinalities: {a, d, f} ∈ Ω(G2) and {a}, {d, f} ∈ Ψ(G2), while for
{b, e, g} ∈ Ω(G2) only {e, g} ∈ Ψ(G2).

However, there exists a graph G satisfying Ψ(G) = Ω(G), e.g., G = Cn, for
n≥4.

A greedoid is a set system generalizing the notion of matroid.

Definition 1. [1], [6] A greedoid is a pair (V,F), where F ⊆ 2V is a non-empty
set system satisfying the following conditions:

(Accessibility) for every non-empty X ∈ F there is x ∈ X such that X−{x} ∈ F ;
(Exchange) for any X, Y ∈ F , |X | = |Y | + 1, there is x ∈ X − Y such that
Y ∪ {x} ∈ F .

The Clique Corona Operation and Greedoids 387

Recall that a matroid is a set system (V,F) satisfying the ”hereditary property”,
saying that : if X ∈ F and Y ⊆ X , then Y ∈ F , and the ”exchange property”
([23]). Evidently, any matroid is also a greedoid. It is easy to see that the family
of all stable sets of a graph is a matroid if and only if G is a disjoint union of
complete graphs, which means that, necessarily, G must be also well-covered,
but of very specific form. If G is well-covered, then Ψ(G) is a matroid if and only
if each S ∈ Ω(G) consists of only simplicial vertices, because Ω(G) ⊆ Ψ(G) and
every v ∈ S, by hereditary property, satisfies {v} ∈ Ψ(G), i.e., G[NG[v]] must be
a complete graph. In other words, G is a disjoint union of complete graphs.

It is worth mentioning that if (V,F) is a greedoid and X ∈ F , |X | = k ≥ 2,
then according to accessibility property, one can build a chain

{x1} ⊂ {x1, x2} ⊂ ... ⊂ {x1, ..., xk−1} ⊂ {x1, ..., xk−1, xk} = X

such that {x1, x2, ..., xj} ∈ F , for every j ∈ {1, ..., k − 1}. Such a chain we call
an accessibility chain of X .

For example, Ψ(G1) is a greedoid and {a} ⊂ {a, b} ⊂ {a, b, c} is an accessibility
chain of {a, b, c} ∈ Ψ(G1), where G1 is presented in Figure 3.

� � � �

� �

a b

c

G1

� � �

� �

�
�

�

G2

� � �

� �

�
�

�

G3

� � �

� �

�
�

��
�

�

G4

Fig. 3. Graphs whose family of local maximum stable sets form greedoids

In [10] we proved the following result.

Theorem 4. For every forest T, Ψ(T) is a greedoid on its vertex set.

The case of bipartite graphs having a unique cycle, whose family of local maxi-
mum stable sets forms a greedoid, is studied in [9]. The general case of bipartite
graphs was treated in [11], while for triangle-free graphs we refer the reader
to [12] for details. Nevertheless, there exist non-bipartite and non-triangle-free
graphs whose families of local maximum stable sets form greedoids. The fami-
lies Ψ(G1), Ψ(G2), Ψ(G3), Ψ(G4) of the graphs in Figure 3 are greedoids. Let us
notice that G1 is very well-covered and G3 is well-covered, while G2, G4 are not
well-covered and also non-triangle-free.

In this paper we prove that if a well-covered graph G is isomorphic to some
clique corona, then the family Ψ(G) of local maximum stable sets forms a gree-
doid on its vertex set.

2 Results

It is easy to see that no maximum stable set of C5 admits an accessibility chain.
The graph G1 in Figure 4 shows that even if some S ∈ Ω(G1) has an accessibility

388 V.E. Levit and E. Mandrescu

chain, this is not necessarily true for all maximum stable sets. The case of the
graph G2 from Figure 4 is different: each maximum stable set of G2 admits
an accessibility chain, and the reason is given in Proposition 1. Notice that
G2 = H ◦ {K3, K2, K1, K2}, where H = G2[{v, x, y, z}].

� � � �

� � �
�

�
�

�
�

�

a

b
c d

g f

eG1

� � � � � � �

� � � � ��
�

�

�
�

�

�
�

�

�
�

�

�
�

�������

�
�

�
v x

z

yG2

Fig. 4. {a, c, f}, {a, g, e} ∈ Ω(G1), but only {a, c, f} admits an accessibility chain

Proposition 1. If G = H ◦ {Kq1
, Kq2

, ..., Kqn
}, then every S ∈ Ω(G) has an

accessibility chain containing only local maximum stable sets of G.

Proof. Let us notice that V (Kq1
) ∪ V (Kq2

) ∪ ... ∪ V (Kqn
) ⊆ simp(G) and the

equality holds whenever H has no isolated vertex.
If L is a connected component of H , then G = H ◦ {Kq1

, Kq2
, ..., Kqn

} is the
disjoint union of G1 and G2, where and G1 is a clique corona of (H − L) while
G2 is a clique corona of L. Since Ψ(G) = {S1 ∪ S2 : S1 ∈ Ψ(G1), S2 ∈ Ψ(G2)}, it
is enough to check the existence of accessibility chains for connected components
only. Therefore, we may assume that H is connected.

Clearly, α(G) = n, where |V (H)| = |{v1, v2, ..., vn}| = n, and each S ∈ Ω(G)
satisfies S ∩ simp(G) �= ∅.

We prove by induction on n that every S ∈ Ω(G) has an accessibility chain.
For n = 1, the assertion is clearly true.
For n = 2, let S = {x1, x2} ∈ Ω(G). Then at least one of x1, x2 is simplicial,

say x1. Hence, the chain is {x1} ⊂ {x1, x2} = S.
Suppose that the assertion is true for every p < n.
Let G = (V, E) = H ◦ {Kq1

, Kq2
, ..., Kqn

} be with V (H) = {vi : 1 ≤ i ≤ n},
and let S ∈ Ω(G).

Since S ∩ simp(G) �= ∅, there exists some a ∈ S ∩ simp(G).
If N(a) ∩ V (H) = {vj}, then we have

Gj = G − (V (Kqj) ∪ {vj}) = (H − {vj}) ◦ {Kq1
, ..., Kq

j−1
, Kq

j+1
, ..., Kqn

}.

Hence, we get that Sn−1 = S − {a} ∈ Ω(Gj), and by the induction hypothesis,
there is a chain

{x1} ⊂ {x1, x2} ⊂ ... ⊂ {x1, x2, ..., xn−2} ⊂ {x1, x2, ..., xn−1} = Sn−1

such that {x1, x2, ..., xk} ∈ Ψ(Gj), for every k ∈ {1, ..., n−1}. Since a ∈ simp(G)
we have that NG[a] = {vj} ∪ V (Kq

j
). Consequently, we infer that

NG[{x1, x2, ..., xk} ∪ {a}] = NGj ({x1, x2, ..., xk}) ∪ V (Kq
j
) ∪ {vj},

The Clique Corona Operation and Greedoids 389

and therefore {x1, x2, ..., xk} ∪ {a} ∈ Ψ(G), for every k ∈ {1, ..., n − 1}. Clearly,
{a} ∈ Ψ(G), and consequently, we obtain the chain

{a} ⊂ {a, x1} ⊂ {a, x1, x2} ⊂ ... ⊂ {a, x1, x2, ..., xn−2} ⊂
⊂ {a, x1, x2, ..., xn−1} = {a} ∪ Sn−1 = S,

and {a, x1, x2, ..., xk} ∈ Ψ(G) for every k ∈ {1, ..., n − 1}. In other words, S
admits an accessibility chain, and this completes the proof.

Let us remark that Proposition 1 is not valid for C4, which is well-covered, but
no S ∈ Ω(C4) has an accessibility chain.

Lemma 1. If S is stable in H and NH(S) �= ∅, then S /∈ Ψ(H ◦{Kq1
, ..., Kqn

}).

Proof. Let G = H◦{Kq1
, Kq2

, ..., Kqn
}, V (H) = {v1, v2, ..., vn} and vj ∈ NH(S).

If NH(vj)∩S = {vj1 , ..., vjp}, then A = {vj}∪ {uj1 , ..., ujp}∪ (S −{vj1 , ..., vjp})
is stable, larger than S, and A ⊆ NG[S], where

uj1 ∈ V (Kqj1
), uj2 ∈ V (Kqj2

), ..., ujp ∈ V (Kqjp
).

Therefore, we infer that S /∈ Ψ(G).

Notice that if v1 is an isolated vertex of H , then G = H ◦ {Kq1
, Kq2

, ..., Kqn
}

is the disjoint union of (H − v1) ◦ {Kq2
, ..., Kqn

} and K1 ◦ Kq1
, where K1 =

({v1}, ∅), and every S ∈ Ω(G) contains exactly one vertex from {v1} ∪ V (Kq1
).

Lemma 2. If the graph H has no isolated vertices and S is a stable set in the
clique corona G = H ◦ {Kq1

, Kq2
, ..., Kqn

}, then the following assertions are
equivalent:

(i) S ∈ Ψ(G);
(ii) S = S1 ∪ S2, where ∅ �= S1 ⊆ simp(G), S2 ⊆ V (H), NH(S2) ⊆ NG(S1);
(iii) G[NG[S]] = H ′◦{Kqi1

, Kqi2
, ..., Kqip

}, for some subgraph H ′ of H, whose
V (H ′) = {vi1 , vi2 , ..., vip}, and S ∈ Ω(G[NG[S]]).

Proof. Let us denote:

V (H) = {vj : 1 ≤ j ≤ n}, V (G) = V (H) ∪ V (Kq1
) ∪ ... ∪ V (Kqn

),

where vj is joined, in G, to all the vertices of Kq
j
, 1 ≤ j ≤ n.

Notice that α(G) = n and simp(G) = V (Kq1
) ∪ ... ∪ V (Kqn

), because H has
no isolated vertices.

(i) =⇒ (ii) Assume that S ∈ Ψ(G).
Let S1 = S∩ simp(G) and S2 = S ∩V (H). According to Lemma 1, the set S1

is not empty.
If S2 = ∅, then the assertion is clearly true.
Suppose now that S2 �= ∅.
If NH(S2) � NG(S1), then there must be some vk ∈ NH(S2) such that

V (Kq
k
) ∩ S = ∅, i.e., V (Kq

k
) ∩ S1 = ∅. Let NH(vk) ∩ S2 = {vi1 , vi2 , ..., vip}.

Hence, we infer that

(S − NH(vk)) ∪ {vk} ∪ {ui1 , ui2 , ..., uip},

390 V.E. Levit and E. Mandrescu

where uij ∈ V (Kqij
) for each 1 ≤ j ≤ p, is a stable set in G[NG[S]] larger than

S, in contradiction with the choice S ∈ Ψ(G).
(ii) =⇒ (iii) Let S3 = {uk ∈ V (Kq

k
) : vk ∈ S2}. Then we deduce that

G[NG[S]] = G[S1 ∪ S3] = H ′ ◦ {Kqi1
, Kqi2

, ..., Kqip
},

for some subgraph H ′ of H , whose V (H ′) = {vi1 , vi2 , ..., vip}. In addition, we
have also that

|S| = |S1| + |S2| = |S1| + |S3| and S1 ∪ S3 ∈ Ω(G[S]).

Consequently, we get that S ∈ Ω(H ′ ◦ {Kqi1
, Kqi2

, ..., Kqip
}) as well.

(iii) =⇒ (i) Since S ∈ Ω(G[NG[S]]), it follows, by definition, that S ∈ Ψ(G).

Theorem 5. If G = H ◦ {Kq1
, Kq2

, ..., Kqn
}, then Ψ(G) is a greedoid.

Proof. Let S0 ∈ Ψ(G), i.e., S0 is a maximum stable set, of size say p, in the
induced subgraph H0 = G[N [S0]].

According to Lemma 2, we have that G[N [S0]] = HS0 ◦ {Kq
i1

, Kq
i2

, ..., Kq
ip
}

for the subgraph HS0 of H whose V (HS0) = {vi1 , vi2 , ..., vip}. By Proposition 1,
we infer that there exists a chain

{x1} ⊂ {x1, x2} ⊂ ... ⊂ {x1, x2, ..., xq−1} ⊂ {x1, x2, ..., xq−1, xq} = S0,

such that all Sk = {x1, x2, ..., xk}, 1 ≤ k ≤ q, are local maximum stable sets in
H0. The inclusion Sk ⊆ S0 implies the equality NH0 [Sk] = NG[Sk]. Hence, we
get that Sk ∈ Ψ(G), for every k ∈ {1, ..., q}. In other words, Ψ(G) satisfies the
accessibility property.

We have to show now that Ψ(G) satisfies also the exchange property.
Let us consider X, Y ∈ Ψ(G) be such that |Y | = |X | + 1 = m + 1. According

to Lemma 2(ii), the sets X and Y can be decomposed as follows:

X = X1 ∪ X2 and Y = Y1 ∪ Y2,

where X1, X2, Y1, Y2 satisfy the corresponding conditions, i.e., X1 and Y1 are
non-empty subsets of simp(G), while X2, Y2 are subsets of V (H), such that
NH(X2) ⊆ NG(X1) and NH(Y2) ⊆ NG(Y1).

Since Y is stable, X ∈ Ψ(G), and |X | < |Y |, it follows that there exists some
y ∈ Y −X , such that y /∈ NG[X]. In particular, it means that X ∪ {y} is stable.
To check whether X ∪ {y} ∈ Ψ(G), we have to analyze the two following cases
(see Figure 5).

Case 1. Y1 ⊆ X1.
Firstly, we deduce that y ∈ Y2. Lemma 2(ii) implies that NH(y) ⊆ NG(Y1).

Since Y1 ⊆ X1, it follows that NG(Y1) ⊆ NG(X1). Hence, we obtain that
NH(y) ⊆ NG(X1). Therefore, we have that

X1 ⊆ simp(G), X2 ∪ {y} ⊆ V (H),

The Clique Corona Operation and Greedoids 391

� � � � �� � �

� � �

� �
a b

c d

e f g

h

(1)

� �� � � �

� � � �

� �
a

b c d e

f

(2)

Fig. 5. X, Y are local maximum stable sets illustrating the cases 1 and 2, respec-
tively.(1) Y = {a, b, c, d, e}, X = {e, f, g, h}, Y 1 = {e} ⊂ X1 = {e, f, g} and (2)
Y = {a, b, c, d}, X = {d, e, f}, Y1 = {b, c, d} � X1 = {d, e}

and
NH(X2 ∪ {y}) = NH(X2) ∪ NH({y}) ⊆ NG(X1).

Consequently, according to Lemma 2(ii), we may infer that the stable set X∪{y}
is, actually, a local maximum stable set in G.

Case 2. Y1 �⊆ X1.
In this situation, one can choose as y every vertex z ∈ Y1 − X1, since clearly,

both conditions (namely, z ∈ Y − X and X ∪ {z} ∈ Ψ(G)) are satisfied.
Therefore, Ψ(G) satisfies the exchange property as well.
In conclusion, Ψ(G) is a greedoid on the vertex set of G.

Let us notice that Ψ(C7) is not a greedoid, because every S ∈ Ψ(C7) has |S| �= 1.

3 Conclusions

We have shown that Ψ(G) is a greedoid on the vertex set of a well-covered graph
G, which is isomorphic to some clique corona. Since there are well-covered graphs
different from a clique corona (e.g., C5 whose Ψ(C5) is not a greedoid), one can
be interested in characterizing well-covered graphs of girth ≤ 5 (see Theorem 2)
whose families of local maximum stable sets form greedoids.

References

1. Björner, A., Ziegler, G.M.: Introduction to greedoids. In: White, N. (ed.) Matroid
Applications, pp. 284–357. Cambridge University Press, Cambridge (1992)

2. Chvátal, V., Slater, P.J.: A note on well-covered graphs. Quo Vadis, Graph Theory?
Annals of Discrete Math. 55, 179–182 (1993)

3. Favaron, O.: Very well-covered graphs. Discrete Mathematics 42, 177–187 (1982)

4. Finbow, A., Hartnell, B., Nowakowski, R.J.: A characterization of well-covered
graphs of girth 5 or greater. J. of Combinatorial Theory, Ser. B 57, 44–68 (1993)

5. Hartnell, B., Plummer, M.D.: On 4-connected claw-free well-covered graphs. Dis-
crete Applied Mathematics 64, 57–65 (1996)

6. Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer, Berlin (1991)
7. Levit, V.E., Mandrescu, E.: Well-covered and König-Egerváry graphs. Congressus

Numerantium 130, 209–218 (1998)

392 V.E. Levit and E. Mandrescu

8. Levit, V.E., Mandrescu, E.: Well-covered trees. Congressus Numerantium 139, 101–
112 (1999)

9. Levit, V.E., Mandrescu, E.: Unicycle bipartite graphs with only uniquely restricted
maximum matchings. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.) Proceed-
ings of the Third International Conference on Combinatorics, Computability and
Logic (DMTCS 2001), pp. 151–158. Springer, Heidelberg (2001)

10. Levit, V.E., Mandrescu, E.: A new greedoid: the family of local maximum stable
sets of a forest. Discrete Applied Mathematics 124, 91–101 (2002)

11. Levit, V.E., Mandrescu, E.: Local maximum stable sets in bipartite graphs with
uniquely restricted maximum matchings. Discrete Applied Mathematics 132, 163–
174 (2003)

12. Levit, V.E., Mandrescu, E.: Triangle-free graphs with uniquely restricted maximum
matchings and their corresponding greedoids. Discrete Applied Mathematics 155,
2414–2425 (2007)

13. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and
algorithms. Mathematical Programming 8, 232–248 (1975)

14. Plummer, M.D.: Some covering concepts in graphs. J. of Combinatorial Theory 8,
91–98 (1970)

15. Plummer, M.D.: Well-covered graphs: a survey. Quaestiones Mathematicae 16, 253–
287 (1993)

16. Prisner, E., Topp, J., Vestergaard, P.D.: Well-covered simplicial, chordal, and cir-
cular arc graphs. J. of Graph Theory 21, 113–119 (1996)

17. Ravindra, G.: Well-covered graphs. J. Combin. Inform. System Sci. 2, 20–21 (1977)
18. Sankaranarayana, R., Stewart, L.K.: Complexity results for well-covered graphs.

Networks 22(3), 247–262 (1992)
19. Staples, J.A.: On some sub-classes of well-covered graphs, Ph. D. Thesis, Vanderbilt

University (1975)
20. Tankus, D., Tarsi, M.: Well-covered claw-free graphs. J. of Combinatorial Theory

Ser. B 66, 293–302 (1996)
21. Tankus, D., Tarsi, M.: The structure of well-covered graphs and the complexity of

their recognition problems. J. of Combinatorial Theory Ser. B 69, 230–233 (1997)
22. Topp, J., Volkmann, L.: On the well coveredness of products of graphs.

Ars Combinatoria 33, 199–215 (1992)
23. Whitney, H.: On the abstract properties of linear independence. Amer. J. Math. 57,

509–533 (1935)

On the Surface Area of the (n, k)-Star Graph

Zhizhang Shen1, Ke Qiu2, and Eddie Cheng3

1 Dept. of Computer Science and Technology, Plymouth State University, USA
zshen@plymouth.edu

2 Dept. of Computer Science, Brock University, Canada
kqiu@brocku.ca

3 Dept. of Mathematics and Statistics, Oakland University, USA
echeng@oakland.edu

Abstract. We present an explicit formula of the surface area of the
(n, k)-star graphs , i.e., |{v|d(e, v) = d}|, where e is the identity node of
such a graph; by identifying the cyclic structures of all the nodes in the
graph, presenting a minimum routing algorithm between any node in the
graph and e, and enumerating those nodes v, such that d(e, v) = d.

1 Introduction

Given a graph G(V, E) and a node v ∈ V, a question one may ask is how many
nodes are at distance d from v in G for d ∈ [0, D(G)], where D(G) is the diameter
of G. This quantity is known in the literature as the surface area of G with
radius d [10]; or the Whitney numbers of the second kind of the poset associated
with G [12]. One immediate application of a solution to the above problem is in
computing various bounds for the problem of k-neighborhood broadcasting [9].
Such a solution can also be used to derive the transmission of a (node symmetric)
graph, a notion recently suggested in [15] to achieve the generalized Moore bound,
an important concept in the extremal graph theory. As a result, this surface
area problem has been studied for a variety of graphs, e.g., for the star graph
in [12,13,10,16]; for the mesh structures in [2]; for the k-ary n-cubes in [3]; for the
rotator graphs in [6]; and for the WK-Recursive and swapped networks in [11].

The star graph was proposed in [1] to be an attractive alternative to the
hypercube topology, since it compares favorably with the latter structure in
several aspects. A star graph of dimension n, an n−star, is a regular graph
with degree n − 1. It has n! nodes, but both its degree and diameter are O(n),
i.e., sub-logarithmic in the number of vertices; while a hypercube with O(n!)
vertices has a degree and diameter of O(log(n!)) = O(n log n), i.e., logarithmic
in the number of vertices. Other attractive properties include their symmetry
properties, as well as many desirable fault tolerance characteristics [1]. However,
the requirement that the number of nodes in an n-star be n! results in a large
gap, in term of the number of nodes, between the n-star and the (n+1)-star. To
achieve scalability, (n, k)-star graph was proposed, which removes the restriction
that the total number of nodes be n! while preserving many ideal properties of
the star graph [5,8].

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 393–404, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

394 Z. Shen, K. Qiu, and E. Cheng

14

24 34

42 12

32

41

21 31

43 13

23

Fig. 1. A (4, 2)-star S4,2

Let 〈n〉 denote {1, 2, . . . , n}, n ≥ 2, and let Γn be the symmetric group of
degree n, in a star graph S(Γn, E) of dimension n, Sn for short, for any u, v ∈ Γn,
(u, v) ∈ E iff v can be obtained from u by applying a transposition (1, i) to
u, i ∈ [2, n]. On the other hand, in a (n, k)-star graph, Sn,k(V, E), k ∈ [1, n),
Sn,k for short, V = {u1 · · ·uk|∀i ∈ [1, k], ui ∈ 〈n〉, ui �= uj if i �= j}; and, for
any u, v ∈ V, (u, v) ∈ E iff v can be obtained from u by either 1) applying (1, i)
to u, i ∈ [2, k] (i-edge); or 2) for some x ∈ 〈n〉−{ui|i ∈ [1, k]}, replacing u1 with
x in u (1-edge).

For example, in a (4, 2)-star graph as shown in Fig. 1, (12, 21), (12, 32), (12, 42)
∈ E, with the first edge being a 2-edge, and the other two being two 1-edges.

In this paper, we present an explicit formula (a sum of standard and basic
operations, including factorials) for the surface area of the (n, k)-star graph. To
the best of our knowledge, this is the first result of this nature ever reported in
the literature.

The surface area of any node u in a graph G is clearly equal to |{v|dG(u, v) =
d}|, where dG(u, v) stands for the distance between u and v in G. Since Sn,k

is node symmetric [5, Theorem 3], the distance between u and v in a (n, k)-
star graph is the same as that between φ(v) and e(= 12 · · ·k), the identity
node of Sn,k, where φ is an automorphism that maps u to e. Therefore, for
n ≥ 2, d ∈ [0, D(Sn,k)], let B(n, k; d) stand for the surface area of Sn,k with
radius d, we have

B(n, k; d) = |{v|v ∈ Sn,k and d(e, v) = d}| .

Since there is exactly one node v ∈ Sn,k such that d(e, v) = 0, i.e., e itself, when
deriving B(n, k; d), we assume d ≥ 1, and define B(n, k; 0) = 1.

To derive an explicit formula for B(n, k; d), we need to identify all the nodes v
in Sn,k such that the distance between e and v equals d. We will characterize the
cycle structures of all the nodes in Sn,k in the next section, derive a distance ex-
pression between e and any v, via a minimum routing strategy, in Section 3, and
then come up with an explicit formula in Section 4. Finally, Section 5 concludes
this paper.

On the Surface Area of the (n, k)-Star Graph 395

2 The Cycle Structure of a Node in the (n, k)-Star Graph

Following [5], for a given Sn,k, k ∈ [1, n), we call a symbol i ∈ [1, k] an internal
symbol, and a symbol i ∈ (k, n] an external symbol. We also refer to a position
in [1, k] an internal position, and that in (k, n] an external position.

Let em be an external symbol occurring in an internal position of v ∈ Sn,k,
m ≥ 1, we define Eem , the external cycle associated with em in v as

Eem = (em; e0, · · · , em−1) ,

such that 1) for j ∈ [1, m], the position of ej in v is ej−1; and 2) the position of
e0 in v is em.

For example, in v = 2968134 ∈ S9,7, 8 and 9 are external symbols. It is clear
that v(4) = 8, and v(7) = 4. Although positions 8 and 9 are external, thus
undefined in S9,7, since we define via the above definition that v(8) = 7 and
v(9) = 5, we have E8 = (8; 7, 4) and E9 = (9; 5, 1, 2).

We notice that the introduction of the assumed external positions in the above
definition leads to an ideal definition for the external cycles, as compared with
the original one in [5]:

– Any afore-defined external cycle is now truly a cycle1.
– In the afore-defined external cycle Eem , there exists exactly one external

symbol, i.e., em, and at least one internal symbol(s), i.e., ej , j ∈ [0, m − 1];
such that, for all j ∈ [1, m], the position of ej is ej−1 ∈ [1, k], and the position
of e0 is defined to be em, an external position. Thus, e0 �∈ v. Therefore, the
transposition (1, em), em ∈ (k, n], corresponds to a 1-edge, i.e., replacing the
symbol in position 1 with e0.

On the other hand, for j ∈ [0, m − 1], if ej �= 1, then, (1, ej) corresponds
to an i−edge, i ∈ [2, k].

Thus, for all the symbols occurring in an external cycle, the two kinds of
transpositions as presented in the definition of Sn,k are unified in the form of
(1, j), j ∈ [2, n]. This fact is crucial for the later discussion of a (minimum)
routing algorithm for Sn,k.

If in an external cycle Eem = (em; e0, · · · , em−1), for some j ∈ [0, m−1], ej = 1,
i.e., the position of ej+1 is 1, we will then call this cycle the primary external cycle
and express Eem in the following equivalent canonical form: (1, ej+1, . . . , em;
e0, . . . , ej−1.) For example, E9 = (1, 2, 9; 5).

1 For each external symbol, xm, an external cycle is originally defined in [5] as
(x1, x2, . . . , xm) such that the position of xj in e is held by xj+1, j ∈ [1, m); and, a
desired symbol, d, is defined to be an element whose position in e is held by x1. By
this definition, for v = 2968134, an external cycle for the external symbol 8 is (4, 8),
with its desired symbol being 7.

But, such an “external cycle” is not even a cycle: The desired position of xm in e,
i.e., xm, is external, thus undefined in Sn,k, in particular, not held by x1, a symbol
that occurs in an internal position. For example, the (undefined) position 8 in the
above v is not held by 4.

396 Z. Shen, K. Qiu, and E. Cheng

The definition of an internal cycle for v ∈ Sn,k is given as usual [14, §4.1]:

C = (d1, · · · , dl) ,

such that 1) for j ∈ [1, l − 1], the position of dj+1 in v is dj ; and 2) the position
of d1 in v is dl.

Similar to the previous case, an internal cycle contains at least two symbols;
and if for some j ∈ [1, l], dj = 1, then the position of dj+1, the next element
in the cycle, is 1. When this happens, we call C a primary internal cycle, and
express it as (1, dj+1, . . . , dl, d1, . . . , dj−1).

For example, in v = 2968134, there is exactly one internal cycle (3, 6), which
is not primary.

Since, for all j, dj is an internal position, dj ∈ [1, k], thus, (1, dj), dj �= 1, is
also a transposition permitted in Sn,k.

We now address a process of constructing a cycle structure for any node v ∈
Sn,k, v �= e : If v contains at least one external symbol(s) in an internal position, we
arbitrarily select one of them, emi , to construct an external cycle Eemi

; and repeat
this process until we have constructed such cycles for all the external symbols in v.
We then proceed to construct internal cycles for those remaining internal symbols
in v such that v(i) �= i, i.e., those symbols not fixed by v.

If an external cycle is primary, we will put this cycle, in its canonical form, as
the first external cycle.

We summarize the above discussion into the following observation, which is
quite similar to the factorization result for any permutation in the well-known
symmetric group Γn.

Lemma 1. Every node v ∈ Sn,k, v �= e, can be factorized into the following
product of disjoint cycles:

v = Eem1
· · ·Eemp

C1 · · ·Cr, p + r > 0 ,

where Eemi
, i ∈ [1, p], are the external cycles and Cj , j ∈ [1, r], the internal ones.

This factorization is unique, except for the order in which the cycles are written.

For any v ∈ Sn,k, we refer to its factorization as shown in Lemma 1 as its cycle
structure, C(v), in the rest of this note. For example, let v = 2968134 ∈ S9,7, its
cycle structure, C(v), is (1, 2, 9; 5)(8; 7, 4)(3, 6).

Since a cycle is primary iff it contains 1, there exists at most one primary cycle
in the cycle structure of any node v in Sn,k. A primary cycle contains a trans-
position (1, j), j ∈ [2, n], which is the only kind of edge connection permitted in
Sn,k by definition.

3 A Minimum Routing Strategy

We now discuss a minimum routing strategy that changes any node v(�= e) ∈
Sn,k to e, based on its cycle structure in terms of a sequence of transpositions.
Incidentally, the reverse of such a strategy changes e to v.

Let C(v) be a cycle structure for a node v ∈ Sn,k, gI (gE) be the number
of internal (external) cycles included in C(v), bI (bE) be the number of symbols

On the Surface Area of the (n, k)-Star Graph 397

as contained in the respective gI (gE) cycles, and let b = bI + bE be the total
number of symbols that C(v) contains.

– For an internal cycle C = (d1, d2, · · · , dl), if C is primary, i.e., d1 = 1, then
by [7, Lemma 1], a minimum routing strategy for C is

(1, d2) ◦ (1, d3) ◦ · · · ◦ (1, dl) ;

clearly all permitted in E, with the total number of steps being l − 1.
If C is not primary, then a minimum routing strategy for C is

(1, d1) ◦ (1, d2) ◦ (1, d3) ◦ · · · ◦ (1, dl) ◦ (1, d1) ;

with its total number of steps being l + 1.
Since all the internal cycles are disjoint, we have the following result.

Lemma 2. Let tI(v, Sn,k) be a shortest transition sequence, permitted in
Sn,k, that changes the positions of all the symbols as contained in the internal
cycles of v to those in e, then

|tI(v, Sn,k)| =
{

bI + gI − 2, if one of the internal cycles is primary
bI + gI , otherwise.

We notice the above distance formula is the same as for the star graph [1].
– For the external cycles, a routing strategy is sketched in [5], which is essen-

tially to consider all the external cycles as a whole. We now fill in the details
for such a strategy, discuss its correctness, and prove its optimality.

Let Ee1
m

= (e1
m; e1

0, e
1
1, . . . , e

1
m−1) and Ee2

r
= (e2

r; e
2
0, e

2
1, . . . , e

2
r−1) be two

external cycles.

• If one of them is primary, without loss of generality, assume Ee1
m

is
primary, i.e., for some j ∈ [0, m − 1], e1

j = 1. By definition, the position
of e1

j+1 in v is 1. We then express Ee1
m

in the canonical form: Ee1
m

=
(1, e1

j+1, . . . , e
1
m−1, e

1
m; e1

0, . . . , e
1
j−1), and the routing strategy will be the

following:

Ee1
m

Ee2
r

= (1, e1
j+1) ◦ (1, e1

j+2) ◦ · · · ◦ (1, e1
m−1) ◦ (1, e2

r) ◦ (1, e2
0) ◦ · · · ◦

(1, e2
r−1) ◦ (1, e1

m) ◦ (1, e1
0) · · · ◦ (1, e1

j−1)

= (1, e1
j+1, . . . , e

1
m−1, e

2
r; e

2
0, e

2
1, . . . , e

2
r−1, e

1
m; e1

0, . . . , e
1
j−1) .

For example, let Ee1
3

= (e1
3; e

1
0, 1, e1

2), and Ee2
2

= (e2
2; e

2
0, e

2
1), we have the

following routing strategy to change all the internal symbols occurring
in these two cycles to their respective positions in e :

(1, e1
2) ◦ (1, e2

2) ◦ (1, e2
0) ◦ (1, e2

1) ◦ (1, e1
3) ◦ (1, e1

0) .

Table 1 shows the routing process.
At the end, the internal symbols e1

0, e
1
1, e

1
2, e

2
0 and e2

1 all get to their
respectively desired positions in e; while e1

3 and e2
2, two external positions

in v, now hold e2
2 and e1

3, respectively. This certainly is immaterial.

398 Z. Shen, K. Qiu, and E. Cheng

Table 1. An example of the routing strategy

Position e1
2 e1

3 e1
0 e1

1(= 1) e2
1 e2

2 e2
0

Initial e1
3 e1

0 e1
1(= 1) e1

2 e2
2 e2

0 e2
1

(1, e1
2) e1

2 e1
3

(1, e2
2) e2

0 e1
3

(1, e2
0) e2

1 e2
0

(1, e2
1) e2

2 e2
1

(1, e1
3) e2

2 e1
0

(1, e1
0) e1

0 e1
1

Final e1
2 e2

2 e1
0 e1

1 e2
1 e1

3 e2
0

The above strategy can be directly generalized to the case when the
cycle structure contains more than two external cycles, by simply com-
bining all the external cycles into one. At the end of the process, all the
internal symbols are in the right positions, while the external ones will
be cyclically shifted to the right. Further analysis shows that, for each
external cycle Eemi

containing mi+1 external symbols, it takes mi trans-
positions, with a total of bE − gE transpositions; and for each external
cycle other than the primary one, it takes an additional transposition,
with the total for this part being gE − 1 transpositions.

Thus, the total number of transpositions it takes to go through all
the external cycles, when one of them is a primary cycle, is bE − 1, a
minimum by [7, Lemma 1].

• For the other case, when none of the external cycles is primary, we have
to somehow convert the involved cycles into a sequence of transposi-
tions permitted in Sn,k. Let E1

em
= (e1

m; e1
0, e

1
1, . . . , e

1
m−1) and E2

eq
=

(e2
q; e

2
0, e

2
1, . . . , e

2
q−1) be two external cycles, it turns out that we can fol-

low the following strategy to route all the symbols to their respective
one in e :

E1
em

E2
eq

= (1, e1
m) ◦ (1, e1

0) ◦ (1, e1
1) ◦ · · · ◦ (1, e1

m−1) ◦ (1, e2
q)

◦(1, e2
0) ◦ (1, e2

1) ◦ · · · ◦ (1, e2
q−1) ◦ (1, e1

m) .

It can also be directly generalized, and it is clear that the above strategy
takes two extra steps as compared with the previous one, taking a total
of bE + 1 routing steps, also a minimum for this case.

We summarize the above discussion into the following result:

Lemma 3. Let tE(v, Sn,k) be a shortest transition sequence, permitted in Sn,k,
that changes the positions of all the symbols as contained in the external cycles
in Cv to those in e, then

|tE(v, Sn,k)| =
{

bE − 1, if one of the external cycles is primary
bE + 1, otherwise.

Based on Lemmas 2 and 3, we can derive the following result.

On the Surface Area of the (n, k)-Star Graph 399

Theorem 1. The distance between e and v in Sn,k can be expressed as follows:

1. If v does not contain any external cycle, then

d(e, v) =
{

(a) bI + gI , if none of the internal cycles is primary;
(b) bI + gI − 2, if one of the internal cycles is primary. (1)

2. Otherwise,

d(e, v) =
{

(a) b + gI + 1 if none of the cycles is primary,
(b) b + gI − 1, if one of the cycles is primary. (2)

Table 2 lists all the nodes (including the values in the external positions), their
cycle structures, as well as their distance from e, for the graph S4,2 as shown in
Fig. 1.

Table 2. An example for the distance formula

Node Cycle form bI bE b gI gE d(e, v) Justification

2134 (1, 2) 2 0 2 1 0 1 (1).(b)

3214 (1, 3;) 0 2 2 0 1 1 (2).(b)

4231 (1, 4;) 0 2 2 0 1 1 (2).(b)

3124 (1, 3; 2) 0 3 3 0 1 2 (2).(b)

4132 (1, 4; 2) 0 3 3 0 1 2 (2).(b)

2314 (1, 2, 3;) 0 3 3 0 1 2 (2).(b)

2431 (1, 2, 4;) 0 3 3 0 1 2 (2).(b)

1324 (3; 2) 0 2 2 0 1 3 (2).(a)

1432 (4; 2) 0 2 2 0 1 3 (2).(a)

4321 (1, 4;)(3; 2) 0 4 4 0 2 3 (2).(b)

3412 (1, 3;)(4; 2) 0 4 4 0 2 3 (2).(b)

As another example, let v = 1964237 = (9; 5, 2)(3, 6), where bE = 3, bI =
2, gI = 1; and let v(9) = 5, the routing steps are as follows:

196423785
(1,9)→ 5796423781

(1,5)→ 296453781
(1,2)→ 926453781

(1,9)→

126453789
(1,3)→ 621453789

(1,6)→ 321456789
(1,3)→ 123456789.

It takes a total of 7= (b + gI + 1 = 5 + 1 + 1) steps, consistent with Case a
of (2).

4 An Explicit Formula for the Surface Area of Sn,k

Let B1(n, k; d) refer to the number of the nodes falling into the case as covered
by (1), and B2(n, k; d) refer to those as covered by (2),

B(n, k; d) = B1(n, k; d) + B2(n, k; d) .

400 Z. Shen, K. Qiu, and E. Cheng

Furthermore, let

B2(n, k; d) = B21(n, k; d) + B22(n, k; d) ,

where B21(n, k; d) is the number of nodes whose cycle structures do not contain
a primary cycle (Case 2(a) in Theorem 1) and B22(n, k; d) is the number of
nodes whose cycle structures contain at least one external cycle and zero or
more internal cycles with one of them being primary (Case 2(b) in Theorem 1).

When the cycle structure C(v), of a node v ∈ Sn,k, contains no external
cycles, all the symbols occurring in v are taken from [1, k]. The only kind of
transpositions of a shortest transition sequence that changes v to e will be in the
form of (1, j), j ∈ [2, k], i.e., the only transposition allowed in Sk, a star graph
of dimension k. Therefore, these nodes v ∈ Sn,k, where d(e, v) = d, are exactly
those nodes v in Sk such that d(e, v) = d. In other words,

B1(n, k; d) = BS(k, d) ,

where BS(k, d) refers to the surface area of the star graph Sk with radius d.
B1(n, k; d) can be calculated as follows:

– If any of the internal cycles is primary, 1 will be included in one of such cycles.
We then only select bI − 1 internal symbols out of k − 1 such symbols, and
use these symbols, together with 1, bI in total, to construct the gI internal
cycles.

– Otherwise, 1 will not be included in such a cycle. Thus, we will select bI

symbols out of k − 1 internal symbols to construct the gI cycles.

In both cases, we have to form gI cycles with bI symbols, each of which
contains at least two symbols. The general quantity of d(n, k), the number of ways
of factorizing n symbols into k cycles, each of which contains at least two symbols,
is discussed in [14, §4.4]. Based on Eqs. 4.18 and 4.19 [14]: for n ≥ 2k ≥ 1,

d(n, k) =
n∑

j=0

(−1)n+k−j
s(n − j, k − j), (3)

where s(n, k) stands for the Stirling numbers of the first kind.
Further analysis shows the following result: for all k ≥ 2, d ∈ [1,

⌊
3(k−1)

2

⌋
],

B1(n, k; d) = BS(k, d) =

� d
3 �X

gI=max{1,d−k+1}

„
k − 1
d − gI

«
d(d − gI , gI)

+

� d+2
3 �X

gI=max{1,d−k+2}

„
k − 1

d − gI + 1

«
d(d − gI + 2, gI) . (4)

Other results of this nature include one as reported in [16], correcting a re-
sult derived in [12]; and another recent one obtained via a generating function
approach [4].

On the Surface Area of the (n, k)-Star Graph 401

We now come to the more interesting case that the cycle structure of a node,
v ∈ Sn,k, does contain at least one external cycle(s). In general, its cycle structure
can be the following:

C(v) = (e1
m1

; e1
0, · · · , e1

m1−1), . . . , (e
p
mp

; ep
0, · · · , e

p
mp−1), (d

1
1, · · · , d1

l1),

. . . , (dr
1, · · · , dr

lr) ,

such that p ≥ 1, r ≥ 0, and for all i ∈ [1, p], mi ≥ 1, and for all i ∈ [1, r], li ≥ 2.
We first construct and enumerate those cycle structures for v ∈ Sn,k, d(e, v) =

d, that contain b symbols with gE(≥ 1) external cycle(s), gI(≥ 0) internal cycles,
and one of those cycles is primary. By Case (b) of (2), d = b + gI − 1.

Those cycle structures for this case can be constructed in the following se-
quence of steps:

1. Select gE external symbols out of a total of n− k external symbols in C(n−
k, gE) ways. To ensure this binomial is not equal to 0, we require n−k ≥ gE ,
i.e.,

1 ≤ gE ≤ n − k . (5)

Since the order of the external cycles is of no significance, let those gE

external symbols be put down in an arbitrary but fixed manner.
2. Since one of the cycles is primary, 1 has to be chosen as one of the internal

symbols, when selecting b − gE internal symbols out of a total k internal
symbols. Hence, we choose b−gE−1 symbols out of [2, k] in C(k−1, b−gE−1)
ways.

To ensure that this latter binomial is not equal to 0, we have to require
k − 1 ≥ b − gE − 1, i.e., gE ≥ b − k. Since b = d − gI + 1,

gE ≥ d − k + 1 − gI . (6)

Since every internal cycle contains at least two symbols, bI ≥ 2gI ; and,
since there is at least one external cycle, each of which contains at least two
symbols, bE ≥ 2. Hence, 2gI ≤ bI = b − bE ≤ b − 2 = d − gI − 1. In other
words,

gI ≤ d − 1
3

. (7)

Combine (6) and (7), gE ≥ d− k + 1− gI ≥ d− k + 1− d−1
3 = 2d−3k+4

3 , i.e.,
gE ≥

⌈
2d−3k+4

3

⌉
.

Combining the last lower bound for gE with (5), we have the following
bounds for gE, the number of external cycles, for this case:

max
{

1,

⌈
2d − 3k + 4

3

⌉}
≤ gE ≤ n − k . (8)

We can similarly derive the following bounds for gI , the number of internal
cycles, for this case:

max{0, d − n + 1} ≤ gI ≤
⌊

d − 1
3

⌋
. (9)

402 Z. Shen, K. Qiu, and E. Cheng

3. Once those b−gE internal symbols are chosen, we have to select bE −gE out
of them, with or without 1, in C(b− gE, bE − gE) ways, to add them into gE

external cycles, each containing one external symbol.
Clearly, both the order of these external cycles and that of the symbols in

each cycle matter, and we denote the number of partitioning those bE − gE

symbols into gE cycles, such that both the order of these cycles and that of
the symbols inside each and every block matter, as p(bE − gE, gE).

A combinatorial argument leads to the following expression for p(n, k),
the number of ways of decomposing n symbols into k blocks, each containing
at least one symbol, and both the order of these blocks and those within these
blocks are important:

∀n ≥ 1, k ∈ [1, n), p(n, k) = n!
(

n − 1
k − 1

)
. (10)

We can also get the bounds for bE, the number of symbols as contained in
the gE external cycles, as follows:

2gE ≤ bE ≤ d − 3gI + 1 . (11)

4. We finally use the remaining b − bE internal symbols, with or without 1, to
construct gI(≥ 0) internal cycles.

There are d(b − bE , gI) = d(d − gI − bE + 1, gI) ways to construct those
cycles.

Therefore, we have the following expression of the number of nodes whose
cycle structures contain at least one external cycle(s) and zero or more internal
cycles with one of those cycles being primary.

B22(n, k; d)

=
X

gE ,gI ,bE

„
n − k
gE

« „
k − 1

d − gI − gE

« „
d − gI − gE + 1

bE − gE

«

p(bE − gE, gE)d(d − bE − gI + 1, gI) ,

where the bounds of gE, gI and bE are given in (8), (9), and (11), respectively;
and d(n, k), p(n, k) are defined in (3) and (10), respectively.

We can similarly derive the number of the cycle structures containing no
primary cycle, namely, B21(n, k; d).

Therefore, let D(Sn,k) stand for the diameter of Sn,k, which is given in [5] as
follows:

D(Sn,k) =
{

2k − 1, if 1 ≤ k ≤
⌊

n
2

⌋
,

k +
⌊

n−1
2

⌋
, if

⌊
n
2

⌋
+ 1 ≤ k < n ;

we have the following result, noticing that B1(n, k; d) is given in (4):

Theorem 2. The surface area of Sn,k, n ≥ 2, k ∈ [1, n − 1], is the following:

B(n, k; d) = B1(n, k; d) + B21(n, k; d) + B22(n, k; d) , (12)

On the Surface Area of the (n, k)-Star Graph 403

where, for d ∈ [1, D(Sn,k)],

B21(n, k; d)

=
X

gE ,gI ,bE

„
n − k
gE

« „
k − 1

d − gI − gE − 1

« „
d − gI − gE − 1

bE − gE

«

p(bE − gE, gE)d(d − bE − gI − 1, gI) ,

and the bounds of gE , gI and bE are given as follows:

max
{

1,

⌈
2d − 3k + 3

3

⌉}
≤ gE ≤ n − k, max{0, d − n} ≤ gI ≤

⌊
d − 3

3

⌋
, and,

2gE ≤ bE ≤ d − 3gI − 1 ;

B22(n, k; d)

=
X

gI ,gE ,bE

„
n − k
gE

« „
k − 1

d − gI − gE

« „
d − gI − gE + 1

bE − gE

«

p(bE − gE, gE)d(d − gI − bE + 1, gI) ,

where the bounds of gI , gE and bE are given as follows:

max
{

1,

⌈
2d − 3k + 4

3

⌉}
≤ gE ≤ n − k, max{0, d − n + 1} ≤ gI ≤

⌊
d − 1

3

⌋
,

and, 2gE ≤ bE ≤ d − 3gI + 1 .

Finally, the quantities d(n, k) and p(n, k) in the above expressions are given in
(3) and (10), respectively.

For example, we can easily calculate the following with (12): B(4, 2; 1) = 3,
B(4, 2; 2) = 4, and B(4, 2; 3) = 4, consistent with the results as shown in Table 2.

We also wrote a simple computer program to calculate the results of (12). For
example, the sequence corresponding to B(8, 3, d), d ∈ [0, 5], is (1, 7, 22, 81, 145,
80), which is not included in the On-line Encyclopedia of Integer Sequences [17].

5 Conclusion

We have studied the minimum distance routing in an (n, k)-star graph by char-
acterizing a node’s cycle structure and thus are able to express the minimum
routing distance in terms of this cycle structure. Consequently, we use this struc-
ture to obtain an explicit formula to compute the surface area centered at the
identity node e in the graph for any radius.

This formula will help in establishing various bounds in data communication
on the graph, and the techniques applied in deriving such a formula should be
also useful elsewhere.

404 Z. Shen, K. Qiu, and E. Cheng

References

1. Akers, S.B., Krishmamurthy, B.: A group theoretic model for symmetric intercon-
nection networks. IEEE Trans. on computers 38(4), 555–566 (1989)

2. Sarbazi-Azad, H.: On some combinatorial properties of meshes. In: Proc. Interna-
tional Symp. on Parallel Architecture, Algorithms and Networks (ISPAN 2004),
Hong Kong, China, May 2004, pp. 117–122. IEEE Comp. Society, Los Alamitos
(2004)

3. Sarbazi-Azad, H., Ould-Khaoua, M., Mackenzie, L.M., Akl, S.G.: On the combina-
torial properties of k-ary n-cubes. Journal of Interconnection Networks 5(1), 79–91
(2004)

4. Cheng, E., Qiu, K., Shen, Z.: A short note on the surface area of star graphs.
Parallel Processing Letters (to appear)

5. Chiang, W., Chen, R.: The (n, k)-star graph: A generalized star graph. Information
Processing Letters 56, 259–264 (1995)

6. Corbett, P.F.: Rotator graphs: an efficient topology for point-to-point multiproces-
sor networks. IEEE Trans. on Parallel and Distributed Systems 3(5), 622–626
(1992)

7. Denés, J.: The representation of permutation as the product of a minimal number
of transpositions and its connection with the theory of graphs, Magyar Tudományos
Akadémia. Matematikai Kutatóintézet 4, 63–71 (1959)

8. Duh, D., Lin, T.: Constructing vertex-disjoint paths in (n, k)-star graphs. Infor-
mation Sciences: an International Journal archive 178(3), 788–801 (2008)

9. Fertin, G., Raspaud, A.: k-Neighbourhood broadcasting. In: 8th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO
2001), pp. 133–146 (2001)

10. Imani, N., Sarbazi-Azad1, H., Akl, S.G.: On Some Combinatorial Properties of the
Star Graph. In: Proc. 2005 International Symp. on Parallel Architecture, Algo-
rithms and Networks (ISPAN 2005), December 7–9, 2005, pp. 58–65. IEEE Comp.
Society, Los Alamitos (2005)

11. Imani, N., Sarbazi-Azad1, H., Zomaya, A.Y.: Some properties of WK-recursive
and swapped networks. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W.,
Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 856–867. Springer,
Heidelberg (2007)

12. Portier, F., Vaughan, T.: Whitney numbers of the second kind for the star poset.
Europ. J. Combinatorics 11, 277–288 (1990)

13. Qiu, K., Akl, S.: On some properties of the star graph. VLSI Design 2(4), 389–396
(1995)

14. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1980)
15. Sampels, M.: Vertex-symmetric generalized Moore graphs. Discrete Applied Math-

ematics 138, 195–202 (2004)
16. Shen, Z., Qiu, K.: On the Whitney numbers of the second kind for the star poset.

European Journal of Combinatorics (to appear, 2008)
17. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/∼njas/sequences/

http://www.research.att.com/~njas/sequences/

Enumerating Isolated Cliques

in Synthetic and Financial Networks

Falk Hüffner�, Christian Komusiewicz��, Hannes Moser���,
and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{hueffner,ckomus,moser,niedermr}@minet.uni-jena.de

Abstract. We do computational studies concerning the enumeration
of maximal isolated cliques in graphs. Isolation, as recently introduced,
measures the degree of connectedness of the cliques to the rest of the
graph. Isolation helps both in getting faster algorithms than for the enu-
meration of maximal general cliques and in filtering out cliques with
special semantics. We perform experiments with synthetic graphs (in
the Gn,m,p model) and financial networks, proposing the enumeration of
isolated cliques as a useful instrument in analyzing financial networks.

1 Introduction

We study the generation of maximal cliques of an undirected graph G = (V, E),
that is, the enumeration of all vertex subsets V ′ ⊆ V such that the induced
subgraph G[V ′] is complete and there is no V ′′ � V ′ such that G[V ′′] is also
complete. Unfortunately, already finding one maximum-cardinality clique is a
notoriously hard computational problem, being NP-hard [8] as well as W[1]-
hard [7] and hard to approximate [9]. By way of contrast, finding cliques is very
important in many practical applications. Recent papers describe applications
in computational finance [3, 4] as well as computational biochemistry and ge-
nomics [5, 6].

Enumerating all maximal cliques needs exponential time. For instance, a re-
cent paper by Tomita et al. [14] proved a worst-case time complexity of Θ(3n/3)
for an n-vertex graph, arguing for its optimality due to the fact that there are
example graphs having 3n/3 maximal cliques. Recently, Ito et al. [10] proposed to
restrict the search to certain types of cliques, that is, specifically isolated cliques.
A clique V ′ of k vertices is called c-isolated in a graph G if there are less than c·k
edges leaving the induced subgraph G[V ′] in G. This concept is interesting for
two reasons. First, since one does not search for all maximal cliques any more,
faster enumeration algorithms are possible. Second, isolated cliques may be an
intrinsically relevant concept, because these cliques can represent structures with

� Supported by the DFG, Emmy Noether research group PIAF, NI 369/4.
�� Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.

��� Supported by the DFG, projects ITKO, NI 369/5 and AREG, NI 369/9.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 405–416, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

406 F. Hüffner et al.

particularly interesting properties that are detected in this way. Ito et al. [10]
stated the linear-time enumerability of isolated cliques (for constant “isolation
factor” c) by claiming an algorithm running in O(4c · c5 ·m) time for an m-edge
graph. Unfortunately, their algorithm is flawed. Hence, in our recent theoretical
work [12], we presented a nontrivially repaired algorithm with the same run-
ning time. Moreover, we introduced two closely related isolation concepts called
min-c-isolation and max-c-isolation, respectively.

Here, we present the following results. First, we give a theoretical improve-
ment for the enumeration of Ito et al.’s isolated cliques, now achieving a running
time of O(2.89c · c2 · m). The main focus of our work, however, is on computa-
tional studies, applying the three isolation concepts to random feature graphs (in
the Gn,m,p model) and financial networks. The random graphs serve as benchmark
instances for charting the tractability borderlines of our algorithms. We find for
min- and max-isolation that the algorithms are output-sensitive, and hence lead
to very fast clique enumeration for lower values of c. For isolation as introduced
by Ito et al., however, this is not always the case, and sometimes even for inter-
mediary values of c the enumeration becomes infeasible. Interestingly, we observe
that the practical and theoretical bottlenecks of the algorithm differ. The financial
networks serve as an example of how isolation can be used to find particularly in-
teresting cliques. In our experiments, we analyze the so-called clique performance,
which represents the profit/loss of the underlying financial instruments, and ob-
serve significant differences between the three isolation concepts.

2 Fundamentals and Algorithms and Implementation
Issues

The fundamental strategy and several basic ideas go back to Ito et al. [10]; while
their work contains serious flaws as spotted in [12], it initiated the study of
isolation in context with the enumeration of maximal cliques. Besides sketching
the fundamental algorithmic ideas, we additionally describe a new theoretical
result leading to an improved running time.

Fundamentals. Ito et al. [10] introduced the concept of c-isolation—which, in
the light of the following is called average-c-isolation (avg-c-isolation for short)
in this work—as follows: Let G = (V, E) be an undirected graph and c be a
positive integer. A vertex subset S ⊆ V of size k is called avg-c-isolated if it has
less than c·k outgoing edges, where an outgoing edge is an edge between a vertex
in S and a vertex in V \S. In follow up-work, we further introduced the concepts
of min-c-isolation and max-c-isolation as follows [12]. A vertex set S ⊆ V is min-
c-isolated if there is at least one vertex in S with less than c neighbors in V \S. A
vertex set S ⊆ V is max-c-isolated if every vertex v ∈ S has less than c neighbors
in V \ S. Fig. 1 illustrates the three concepts.

For notational simplification we will mostly use the terms min-isolation, avg-
isolation, and max-isolation. Note that by definition min-c-isolation is weaker
than avg-c-isolation in the sense that every avg-c-isolated clique is also min-c-
isolated but not vice versa. The enumeration of maximal min-c-isolated cliques

Enumerating Isolated Cliques in Synthetic and Financial Networks 407

max-2-isolationmin-2-isolation avg-2-isolation

Fig. 1. Isolated 4-vertex cliques for c = 2 and the three isolation concepts. The dashed
lines denote outgoing edges.

yields cliques that are at least as large as and often larger than avg-c-isolated
cliques. By way of contrast, max-c-isolation is stronger than avg-c-isolation.
Max-c-isolation is useful when we want to exclude high-degree vertices from
the enumerated sets. This can result in the enumeration of smaller cliques than
in the other two cases. The theoretical study [12] of these three concepts led to
the following theorem. Herein, n denotes the number of graph vertices and m
the number of edges.

Theorem 1 ([12]). Maximal avg-c-isolated cliques can be enumerated in O(4c ·
c3 · m) time, maximal min-c-isolated cliques in O(2c · c · m + n · m) time, and
maximal max-c-isolated cliques in O(2.44c · m) time.

Ito et al. [10] only considered avg-c-isolation and claimed a running time of
O(4c · c5 ·m) for the enumeration of maximal avg-c-isolated cliques as their main
result. Besides sketching the algorithms behind Theorem 1, we also prove a new
result, improving the time bound for avg-c-isolated cliques to O(2.89c · c2 · m).

Algorithms. In the following, we focus on describing the algorithm for avg-
isolation. The corresponding algorithms for min-isolation and max-isolation have
the same basic structure [12]; however, they differ in technical details we cannot
go into here. Given a graph G = (V, E) and an isolation factor c, first the vertices
are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v). The index of a
vertex is its position in this sorted order. Let N+[v] := {u ∈ N [v] | u > v} ∪ {v}
and N−(v) := {u ∈ N(v) | u < v}. In an avg-isolated clique, the vertex with the
lowest index is called the pivot of the clique [10]. Clearly, a pivot has less than c
outgoing edges. Since every avg-isolated clique has a pivot, we can enumerate all
maximal avg-isolated cliques of a graph by enumerating all maximal avg-isolated
cliques with pivot v for each v ∈ V and then removing those avg-isolated cliques
with pivot v that are a subset of an avg-isolated clique with another pivot.

The enumeration of maximal avg-isolated cliques with pivot v for a v ∈ V is
called the pivot procedure. It comprises three successive stages:
Trimming stage. This stage builds in polynomial time a candidate set C that
is a superset of all avg-isolated cliques with pivot v. The set C is initialized
with N+[v], and then vertices that obviously cannot be part of an avg-isolated
clique with pivot v are removed from C. In particular, we remove vertices from c
that have too many neighbors outside of C or too few neighbors in C.
Enumeration stage. This stage enumerates cliques with pivot v. Let C be
the candidate set after the trimming stage, and |N [v] \ C| = d. In total, we

408 F. Hüffner et al.

can delete at most c − 1 vertices from N [v], since otherwise v obtains too many
outgoing edges. Therefore, c̃ := c − 1 − d is the number of vertices that we may
still remove from C. We can enumerate cliques C′ ⊆ C of size at least |C| − c̃
by enumerating vertex covers1 of size at most c̃ in the complement graph G[C]:
First, we enumerate all minimal vertex covers and thus obtain maximal cliques in
the candidate set C. Then, to also capture avg-isolated cliques that are subsets
of non-avg-isolated cliques enumerated this way, for each of these cliques, we
enumerate all maximal subsets that fulfill the isolation condition. It is possible
to show [12, Lemma 1] that given a non-avg-isolated clique C′, we may only
remove vertices from the set of vertices with the c highest indices in order to
obtain a maximal avg-isolated clique that is a subset of C′. This is done in a
brute-force way by enumerating subsets of the set of vertices that may be deleted,
and then checking for each such subset whether removing this subset yields an
avg-isolated clique. This stage has running time O(2c · c6 · m) [12].

Screening stage. In the screening stage, all cliques that are either not avg-
isolated or that are avg-isolated but not maximal are removed. First, avg-
isolation is checked. Next, those cliques that pass the test for isolation are com-
pared pairwise, and we only keep maximal cliques. Finally, we check each clique
that is left for pivot v against each clique obtained during calls to pivot(u)
with u ∈ N−(v), since these are the only cliques that can be superset of a clique
obtained for pivot v. The running time of this stage is O(4c · c3 · m).

Min-isolation and max-isolation lead to conceptually simpler pivot procedures.
The new theoretical contribution provided in this paper when compared to our
previous theoretical work [12] is to show an improvement of the screening stage
in the case of the avg-isolation concept.

Suppose that an enumerated avg-isolated clique C with pivot v is not maximal.
Then there must be a nonempty vertex set S such that C ∪ S is an avg-isolated
clique. Obviously, S ⊆ N [v]\C. Also, S must be a clique and all vertices in S have
to be adjacent to all vertices in C. Let D ⊆ N [v]\C such that D contains exactly
the vertices that are adjacent to all vertices in C. To test the maximality of C, we
first enumerate all maximal cliques D′ ⊆ D. Then, for each such clique D′, the
set C∪D′ is a clique. If C∪D′ is also avg-isolated, then C is clearly not maximal
and thus removed from the output. If C ∪ D′ is not avg-isolated, however, then
we have to check whether there is an avg-isolated subset of C ∪ D′ that is also
a superset of C. This can be done by removing the vertices of highest degree
from D′ until either C ∪ D′ becomes avg-isolated or D′ is empty. In the first
case, C is not a maximal avg-isolated clique and is thus removed from the output.
In the second case, C is a maximal avg-isolated clique in C ∪ D′. If this can be
shown for all maximal cliques D′ ⊆ D, then C is a maximal avg-isolated clique
in G. With this maximality test, we can improve the asymptotic running time
bound of the enumeration algorithm (cf. Theorem 1).

1 A vertex cover of a graph is a subset D of vertices such that each graph edge has at
least one endpoint in D. See Abu-Khzam et al. [1] for algorithm engineering results
in determining minimum-cardinality vertex covers.

Enumerating Isolated Cliques in Synthetic and Financial Networks 409

Theorem 2. Maximal avg-c-isolated cliques of an m-edge graph can be enumer-
ated in O(2.89c · c2 · m) time.

Proof. Since the trimming stage and enumeration stage of the algorithm have not
changed, their running time amounts to O(c4 ·m+2c ·c2 ·c4m) = O(2c ·c6 ·m) [12].
In the screening stage of the pivot procedure, we have to test each clique for
maximality. At most 2c−1 · c cliques are enumerated during the enumeration
stage of the pivot procedure for a pivot v. For any enumerated avg-isolated
clique C, we have to enumerate all maximal cliques in a subset of N [v] \ C.
Since |N [v]\C| ≤ c−1, this can be done in O(3c/3) time [14]. For each pair of an
enumerated avg-isolated clique C and a maximal clique D′, we decide whether a
subset of C∪D′ is avg-isolated by successively removing the vertices with highest
degree from D′. Clearly, this can be done in O(c) time. Overall, one execution of
the screening stage thus has a worst-case running time of O(2c ·c)·O(3c/3)·O(c) =
O(2.89c · c2). There are n runs of the screening stage, and together with the
running times of the other stages, we achieve a total worst-case running time of
O(2c · c6 · m) + O(2.89c · c2 · n) = O(2.89c · c2 · m). �	

Implementation Issues. We briefly describe some notable differences between
the theoretical algorithms [12] and their actual implementations.2

Min-isolation. In the trimming stage, we remove vertices that have lower index
than the pivot (this differs from the description in [12]). This does not help in
achieving a better worst-case running time, but it speeds up the trimming stage
and prevents the algorithm from needlessly entering the enumeration stage for
vertices with at least c neighbors of lower index. In many instances this provided
a speed-up of factor 3 or more.

Avg-isolation. Since our experiments showed that the enumeration of avg-
isolated subsets of non-avg-isolated cliques was a bottleneck, we introduced an
additional test: We check whether we can obtain an avg-isolated set by gradually
removing the vertices of highest degree. If this is not the case, then no subset of
the clique is avg-isolated. Thus, we can avoid unnecessarily enumerating subsets
of non-avg-isolated cliques. Furthermore, we perform this test also before enter-
ing the enumeration stage, and only enter it when the enumerated cliques have
a chance of being c-isolated. Both tests provided a speed-up of approximately
two orders of magnitude in our experiments.

Max-isolation. The worst-case running time of O(2.44c · c · m) can be shown
using a maximum clique algorithm in the screening stage (for details see [12]).
Running time analysis showed that, unexpectedly, in practice the screening stage
was not the bottleneck of the enumeration algorithm. Therefore, in our imple-
mentation we instead enumerate all cliques in the set of deleted vertices to check
whether an enumerated clique is maximal. This was sufficiently fast, while keep-
ing the implementation simpler.

2 The program is written in Objective Caml and consists of about 1600 lines of code.
It is free software and available from http://theinf1.informatik.uni-jena.de/c-isol/.

http://theinf1.informatik.uni-jena.de/c-isol/

410 F. Hüffner et al.

As maximal clique enumeration algorithm (required for the screening stage of
avg-isolation and max-isolation), we used an improved variant of the standard
Bron–Kerbosch algorithm by Koch [11]. This algorithm was not a bottleneck, in
particular because of its good output-sensitivity (that is, it runs quickly if there
are only few maximal cliques). We also use this algorithm as a comparison point
for the running times of our clique enumeration algorithms.3

3 Experimental Results

Our investigations concentrate on random feature graphs that were created ac-
cording to the Gn,m,p model and on financial networks. All experiments were run
on an AMD Athlon 64 3700+ machine with 2.2GHz, 1M L2 cache, and 3 GB
main memory running under the Debian GNU/Linux 4.0 operating system with
the Objective Caml 3.09.2 compiler. Note that for some instances the enumera-
tion of avg-isolated cliques did not terminate because the program exceeded the
memory limit of 3GB or the corresponding run timed out (after half an hour).
This causes some missing data points for avg-isolation in the diagrams.

Synthetic Data. We generated random graphs using the Gn,m,p model (see
Behrisch and Taraz [2] and references therein). The underlying model is that
cliques are defined by features. More precisely, each of n vertices draws each
of m features with probability p, and two vertices are connected by an edge iff
they have at least one feature in common (note that here m does not denote the
number of edges as elsewhere). Since every nonempty intersection of vertex sets
corresponding to some features defines a maximal clique, these graphs contain
very many maximal cliques, and are tough inputs for clique enumeration.

Our main finding is that enumerating min- and max-isolated cliques is feasible
over a far wider range than enumerating general maximal cliques or avg-isolated
cliques, and that the isolation concepts can help keeping the number of enumer-
ated isolated cliques in check even in graphs that contain excessively many maxi-
mal cliques. Furthermore, we observe a difference in output-sensitivity. Whereas
min-isolation seems to be output-sensitive in general and max-isolation in most
instances, avg-isolation had high running times sometimes even for relatively few
enumerated cliques. Starting from a base setting with c = 40, n = 200, m = 45,
and p = 0.1, we examined the effect of varying parameters. Fig. 2a shows the
number of cliques output for varying c averaged over 5 instances. The average
number of maximal cliques is 92611. Starting from c ≈ 80, all maximal cliques are
enumerated using min-isolation. For avg- and max-isolation all maximal cliques
are found with c ≈ 150. In Fig. 2b, we see that the running time of the min-
and max-isolation concepts closely follows the number of cliques output, that is,
the algorithms are output-sensitive. This can not be observed for avg-isolation,
since its running time peaks for intermediary values of c. Notably, for all three
isolation concepts almost all time is spent in the enumeration stage. Therefore,
3 Note that we could not perform comparisons with the claimed fastest general clique

enumeration algorithm by Tomita et al. [14], since the code is unavailable.

Enumerating Isolated Cliques in Synthetic and Financial Networks 411

n=200,m=45,p=0.1

min isolation

max isolation

avg isolation

20 40 60 80 100 120 140 160 180 200
isolation factor c

1

101

102

103

104

105

nu
m

be
r

of
 c

liq
ue

s

(a)

n=200,m=45,p=0.1

min isolation

max isolation

avg isolation

20 40 60 80 100 120 140 160 180 200
isolation factor c

10-3

10-2

10-1

1

101

102

103

ru
nn

in
g

tim
e

in
 s

ec
on

ds

(b)

Fig. 2. Gn,m,p model with n = 200, m = 45, and p = 0.1. Average running time for
Bron–Kerbosch is 5.06 seconds.

n=200,p=0.1

min 40-isolation

max 40-isolation

avg 40-isolation

bk

10 20 30 40 50 60 70 80 90
parameter m in Gn,m,p

10-1

1

101

102

103

104

105

106

107

nu
m

be
r

of
 c

liq
ue

s

(a)

n=200,p=0.1

min 40-isolation

max 40-isolation

avg 40-isolation

bk

10 20 30 40 50 60 70 80 90
parameter m in Gn,m,p

10-3

10-2

10-1

1

101

102

103

104

ru
nn

in
g

tim
e

in
 s

ec
on

ds

(b)

Fig. 3. Gn,m,p model with c = 40, n = 200, and p = 0.1. The missing point for
avg-isolation is due to the memory limit of the test runs (3 GB).

the increased running time and lack of output-sensitivity for avg-isolation stems
from the enumeration of isolated subsets of non-avg-isolated cliques, since this is
the only part where the enumeration stages differ. Furthermore, this means that
in practice the screening stage, which dominates the overall worst-case running
time, is not the bottleneck of the algorithm. Compared to the Bron–Kerbosch
algorithm, when enumerating the whole set of maximal cliques, all three algo-
rithms are about 4 times slower, but min- and max-isolation are significantly
faster when the output is restricted by a small c (see Fig. 2).

412 F. Hüffner et al.

We next examine variation of m (Fig. 3). More features lead to an expo-
nential growth of the number of maximal cliques (Fig. 3a). This growth only
wears off when the graph becomes very dense (m = 85, about 57 % of all pos-
sible edges present). In contrast, the number of min-40-isolated cliques reaches
a plateau, and for the more stringent criteria, we even notice a drop-off already
for m ≥ 30. While for the Bron–Kerbosch algorithm and min-isolation, we have
running times mostly following the number of generated cliques, for max- and
avg-isolation, we have a maximum for m = 35 and m = 45, respectively. Again,
almost all time is spent in the enumeration stage.

Similar observations were made for varying values of p and n. For both
p and n, increasing the parameter value leads to an exponential growth in
the number of maximal cliques of the graph. Again, min- and max-isolated
cliques could be enumerated over a wider range of parameter values than avg-
isolated and maximal cliques. In particular, the algorithms for enumerating min-
and max-isolated cliques were output-sensitive while this was not the case for
avg-isolation.

Financial Networks. Many works on financial network analysis are based on mar-
ket graphs (see, e.g., [13]). We generated market graphs from publicly available
stock data4. A market graph is constructed as follows. Financial instruments
(e.g., stocks or indices) are represented by vertices. For each pair of vertices u, v
there is an edge connecting them if the corresponding correlation coefficient Cuv

based on the price fluctuations of u and v in some prespecified time range ex-
ceeds some prespecified threshold θ, where −1 ≤ θ ≤ 1. Informally speaking,
two instruments u and v have a positive correlation coefficient Cuv if they show
similar daily fluctuations in the prespecified time range, and they have a nega-
tive correlation coefficient if their daily fluctuations behave oppositional. Details
about the construction of market graphs can be found, e.g., in [3].

Experimental Setup. We considered various market graphs based on the daily
fluctuations of several thousand financial instruments during 500 consecutive
trading days. Basic properties of such graphs, like degree distribution, edge den-
sity, clustering coefficient, maximum clique size, and maximum independent set
size, have been analyzed by Boginski et al. [3, 4].

The following diagrams rely on data from 2204 financial instruments begin-
ning at 2003-12-02 over 500 consecutive trading days. However, the experiments
were also executed on many other graphs (based on data from other start dates
and other threshold values) for which the following observations also hold true
(in the qualitative sense). Note that the graphs do not include financial instru-
ments whose values get below one dollar in the considered time period, since
such “penny stocks” often show strong daily fluctuations, which are addition-
ally biased by the rounding of the available data. In the experiments with fixed
threshold, the threshold is set to θ = 0.5 as proposed by Boginski et al. [4]
in order to ensure that only significantly correlated stocks are adjacent. More-
over, our experiments showed that for θ = 0.5 there is a good balance between

4 We used the data from finance.yahoo.com.

finance.yahoo.com

Enumerating Isolated Cliques in Synthetic and Financial Networks 413

threshold = 0.5

min-isolation

max-isolation

avg-isolation

1 101 102 103 104

isolation factor

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

av
er

ag
e

cl
iq

ue
 p

er
fo

rm
an

ce

(a)

c = 60

min-isolation

max-isolation

avg-isolation

bk

0.4 0.5 0.6 0.7 0.8
threshold

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

av
er

ag
e

cl
iq

ue
 p

er
fo

rm
an

ce

(b)

Fig. 4. Average clique performance in a market graph based on 500 consecutive trad-
ing days beginning at 2003-12-02. Note that the performance of the NASDAQ in the
considered time period is 1.01.

the number of isolated cliques in the graph and the edge density (for very low
threshold levels, the graph gets too dense to contain many isolated cliques, and
for very high threshold levels, the graph can get too sparse to contain interest-
ing cliques of significant size). For threshold θ = 0.5, the graph contains 2204
vertices and 64376 edges and approximately 70000 maximal cliques.

Basic Results. As for the Gn,m,p graphs, we found enumerating min- and
max-isolated cliques to be feasible over a wide range of parameters, while the
Bron–Kerbosch algorithm and the avg-isolation algorithm are sometimes too
slow. For all three isolation concepts and for c ≤ 10 the running time is around
a second. For intermediate isolation factors we observe a peak in the running
time of max- and avg-isolation. Surprisingly, we also find that enumerating all
maximal cliques using the algorithm for min-∞-isolation is faster than Bron–
Kerbosch by one order of magnitude.

The number of enumerated isolated cliques ranges from a few hundred for
very low isolation factors up to all maximal cliques (≈ 70000) for high isolation
factors, where there are generally much more min-isolated cliques than max- and
avg-isolated cliques (up to one order of magnitude). For low isolation factors,
max- and avg-isolated cliques have size at most 10, whereas there are already
min-1-isolated cliques of size ≈ 50. For high isolation factors, the enumerated
cliques have maximum size ≈ 80.

Clique Performance. Boginski et al. [3, 4] suggested the use of clique analysis
for classifying stocks, based on the property that cliques represent sets of “sim-
ilar” financial instruments. However, they do not provide any method to find
cliques of good quality. Therefore, we measured the average performance of the
enumerated cliques. The average price of a financial instrument at some given

414 F. Hüffner et al.

trading day t is the mean price of the instrument at day t and the 10 trading
days before and after t. Average prices are used to balance stronger daily fluc-
tuations of financial instruments. The performance in the time interval [t1, t2]
(t1 < t2) of a financial instrument is the average price at day t2 divided by the
average price at day t1. The performance of a clique is the mean performance of
its vertices. The average performance of a set of cliques is the mean performance
of the cliques. We always measure the performance in the time period the market
graph is based on.

We can observe (Fig. 4a) that the performance of the enumerated min-, max-,
and avg-isolated cliques is better for lower isolation factors and generally ex-
ceeds the performance of all maximal cliques. For higher isolation factors, the
min-isolated cliques show a performance which is similar to the average per-
formance of all vertices in the graph. Most notably, max-isolated cliques have
especially high performance for intermediate isolation levels; we can observe a
peak of the performance for max-isolation around c = 100. Avg-isolation seems
to perform similarly as max-isolation, but we usually observe running time or
memory consumption problems for intermediate isolation levels. For very high
isolation factors, all three isolation concepts generate all maximal cliques and
therefore obviously yield the same average performance. In general, the described
effects depend on the underlying graph and the performance of the overall mar-
ket and are more or less pronounced. Note that for low isolation factors (c ≤ 20)
we could not observe a significant general difference of the performance of the
three isolation concepts. In our example (Fig. 4a), max- and avg-isolation are
slightly better for low isolation factors, but there are other graphs (based on
other time periods), for which min-isolation performs better. Note that the av-
erage performance of all financial instruments in the considered time period is
approximately 1.19. Surprisingly, the maximal cliques have an average perfor-
mance of about 0.99. This is caused by financial instruments with a particularly
bad performance that are included in many maximal cliques, but not in isolated
maximal cliques.

When varying the threshold value, Fig. 4b shows that the performance of max-
isolation is relatively independent of the threshold level, whereas min-isolated
and all maximal cliques perform better for higher threshold levels. Note that this
only holds true for low isolation factors c ≤ 100, since for higher isolation factors
the performance of all three isolation concepts gets closer to the performance of
all maximal cliques.

Possible Applications. We believe that especially max-isolated cliques have
some interesting properties with respect to the average clique performance: First
of all, the average performance of max-isolated cliques is relatively indepen-
dent from the chosen threshold values. This is beneficial in practice, as finding
a good threshold value is usually a relatively difficult task. Moreover, looking
more closely at the cliques responsible for the peak of the performance for inter-
mediate isolation levels, we observe that these cliques represent some niche in
the market. For instance, in Fig. 4a the peak is caused by American raw mate-
rial, oil, and energy stocks, and by related industries like transportation, pipeline

Enumerating Isolated Cliques in Synthetic and Financial Networks 415

construction, and refineries. This peak is less pronounced in graphs based on ear-
lier time periods (that is, beginning before 2003-12-02) and becomes even more
pronounced for graphs based on later time periods (that is, beginning after 2003-
12-02). This indicates that max-isolation can be useful to detect market trends.
Finally, isolated cliques performed better than general maximal cliques. Hence,
we can employ isolation to filter out financial instruments with bad performance
when enumerating cliques. This could provide a new alternative for investors
to classify financial instruments (using clique analysis as proposed by Boginski
et al. [3]). Here, a more thorough and detailed study is necessary, cooperating
with financial experts.

4 Conclusion and Outlook

Our results indicate the relevance of the newly introduced isolation concepts [12]
in comparison with the older avg-isolation [10]. For min- and max-isolation, the
enumeration algorithms show output-sensitivity. Therefore, for both of these iso-
lation concepts the restricted number of cliques output can make enumeration
algorithms for isolated cliques much faster than the standard Bron–Kerbosch al-
gorithm. However, for avg-isolation, further algorithmic improvements have to
be made in order to obtain output-sensitivity. In particular, the enumeration of
isolated subsets of non-avg-isolated cliques needs to be improved. For certain in-
stances the c-isolation algorithms are faster than Bron–Kerbosch even for c = ∞,
which results in the same output as the Bron–Kerbosch algorithm has. It would be
interesting to see whether we could further optimize our implementations for this
goal and for which kind of graphs we see a gain over Bron–Kerbosch. Our findings
with financial networks support that isolation provides “interesting” cliques. In
particular, max-isolated cliques perform better for intermediary isolation factors.
This should be analyzed more thoroughly (with the help of financial experts) to
better understand what distinguishes stocks in max-isolated cliques from those in
general maximal cliques or min-isolated cliques, and hence what leads to the dif-
ference in clique performance. Furthermore, are there any application scenarios in
which the relatively weak min-isolation concept is useful? For example, does the
pivot element of a min-isolated clique which has the fewest (and thus less than c)
neighbors outside of the clique somehow characterize the whole clique?

Acknowledgements. We thank our student assistants Robert Bredereck and
Manuel Sorge for their excellent support in gathering experimental data.

References

[1] Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and
experiments. In: Proc. 6th ALENEX, pp. 62–69. SIAM, Philadelphia (2004)

[2] Behrisch, M., Taraz, A.: Efficiently covering complex networks with cliques of
similar vertices. Theoret. Comput. Sci. 355(1), 37–47 (2006)

416 F. Hüffner et al.

[3] Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks.
Comput. Statist. Data Anal. 48(2), 431–443 (2005)

[4] Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: A network ap-
proach. Comput. Oper. Res. 33(11), 3171–3184 (2006)

[5] Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochem-
istry and genomics. European J. Oper. Res. 173(1), 1–17 (2006)

[6] Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D.,
Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.:
Complex trait analysis of gene expression uncovers polygenic and pleiotropic net-
works that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005)

[7] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

[9] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

[10] Ito, H., Iwama, K., Osumi, T.: Linear-time enumeration of isolated cliques. In: Bro-
dal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 119–130. Springer,
Heidelberg (2005)

[11] Koch, I.: Enumerating all connected maximal common subgraphs in two graphs.
Theoret. Comput. Sci. 250(1–2), 1–30 (2001)

[12] Komusiewicz, C., Hüffner, F., Moser, H., Niedermeier, R.: Isolation concepts for
enumerating dense subgraphs. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp.
140–150. Springer, Heidelberg (2007)

[13] Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics: Correlations and
Complexity in Finance. Cambridge University Press, Cambridge (2000)

[14] Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theoret. Comput.
Sci. 363(1), 28–42 (2006)

A Risk-Reward Competitive Analysis for the

Recoverable Canadian Traveller Problem�

Bing Su1,2, Yinfeng Xu1,3, Peng Xiao1,3, and Lei Tian1

1 School of Management, Xi’an Jiaotong University,
Xi’an, 710049, P.R. China

2 School of Economics and Management, Xi’an Technological University,
Xi’an, 710032, P.R. China

3 The State Key Lab for Manufacturing Systems Engineering,
Xi’an, 710049, P.R. China

{subing,yfxu,xiaopeng}@mail.xjtu.edu.cn, ttianlei@163.com

Abstract. From the online point of view, we study the Recoverable
Canadian Traveller Problem (Recoverable-CTP) in a special network, in
which the traveller knows in advance the structure of the network and
the travel time of each edge. However, some edges may be blocked and
the traveller only observes that upon reaching the vertex of the blocked
edge, and the blocked edge may be reopened but the traveller doesn’t
know its recovery time. The goal is to find a least-cost route from the
origin node to the destination node, more precisely, to find an adaptive
strategy minimizing the ratio of traversed time to the travel time of the
optimal offline shortest path (where all blocked edges and their recovery
time are known in advance). We present an optimal online strategy - a
comparison strategy and prove its competitive ratio. Moreover, with the
different forecasts of the recovery time, some online strategies are given
under the risk-reward framework, and the rewards and the risks of the
different strategies are analysed.

Keywords: Recoverable-CTP, Competitive analysis, Comparison strat-
egy, Risk-reward model.

1 Introduction

The Canadian Traveller Problem (CTP) has been introduced in [1] and is de-
fined as follows: Suppose that a traveller knows in advance the structure of a
network and the travel time of each edge. However, some edges may fail and the
traveller only observes that upon reaching a vertex of the blocked/failed edge.
The problem is to devise a good travel strategy from the origin node to the desti-
nation node without any knowledge of future edge blockages. Under this setting,
Papadimitriou and Yannakakis proved that devising an online algorithm with a
bounded competitive ratio is PSPACE-complete [1].
� The authors would like to acknowledge the support of research grant No. 70525004,

60736027, 70121001 from the NSF, No. 20060401003 from the PSF Of China and
No. 06JK099 from the Education Department of Shaanxi.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 417–426, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

418 B. Su et al.

Several variations of the CTP were studied in [2-5]. If there is a given pa-
rameter k which bounds the number of blocked edges from above, the resulting
problem is called the k-Canadian Traveller Problem (k-CTP) [2]. Bar-Noy and
Schieber studied the k-CTP, but they did not consider the problem from a com-
petitive analysis point of view. Instead, they considered the worst-case criterion
which aims at a strategy where the maximum cost was minimized [2]. Westphal
considered the online version of k-CTP and showed that no deterministic online
algorithm can achieve a competitive ratio smaller than 2k + 1 and gave an easy
algorithm which matches this lower bound [3]. The same bound was in fact ob-
tained independently in [4]. Westphal also showed that randomization can not
improve the competitive ratio substantially. He showed that by establishing a
lower bound of for the competitiveness of randomized online algorithms against
an oblivious adversary [3]. Recoverable-CTP is a variation of CTP, in which
the blocked edges may be reopened [2]. Under the assumptions that the upper
bound on the number of blockages is known in advance and the recovery time are
not very long compared with the travel time, Bar-Noy and Schieber presented a
polynomial-time travel strategy which guarantees the shortest worst-case travel
time. For the Stochastic Recoverable CTP, again when the recovery time are
not very long relative to the travel time, they also presented a polynomial-time
strategy which minimizes the expected travel time [2]. The online strategies were
studied for the Recoverable-CTP in general networks in [5]. Under the assump-
tion that the traveller doesn’t know the recovery time upon reaching a vertex
of the blocked edge, two adaptive strategies - a waiting strategy and a greedy
strategy were presented, and the competitive ratios for the two strategies were
given, respectively [5].

In this paper, we focus on the online version of the Recoverable-CTP in a
special network, in which the vertex set is V = {v1, v2, · · · , vn} and there are
multiple edges between vi and vi+1, where i = 1, · · · , n − 1. Some edges may
be blocked and the traveller only observes that upon reaching the vertex of the
blocked edge, and the blocked edge may be reopened but the traveller doesn’t
know its recovery time. Our goal is to find a least-cost route from the origin
node to the destination node by passing through v1, v2, · · · , vn one by one, more
precisely, to find an adaptive strategy minimizing the competitive ratio, which
compares the performance of this strategy with that of a hypothetical offline
algorithm that knows the entire topology in advance. We present an optimal
online strategy - a comparison strategy and prove its competitive ratio for the
Recoverable-CTP. Moreover, with the different forecasts of the recovery time,
some online strategies are given under the risk-reward framework, and the re-
wards and the risks of different strategies are analysed.

The organization of this paper is as follows. In Section 2, the problem defi-
nition and some assumptions are briefly reviewed. In Section 3, we propose and
investigate optimal online strategies for the Recoverable-CTP in a special net-
work. In Section 4, we consider the performance of some strategies under the
risk-reward framework. Finally, we conclude the work in Section 5.

A Risk-Reward Competitive Analysis for the Recoverable-CTP 419

2 Problem Statement and Formulation

LetGbe anundirectednetworkwith |V | = n vertexes, whereV = {v1, v2, · · · , vn}.
Let v1 be the origin and vn the destination. Let ei,mi = {ei,1, · · · , ei,j , · · · , ei,mi}
denote the set of all edges between vi and vi+1, where ei,j is the j shortest edge
from vi to vi+1. Let ti,j denote the travel time of ei,j . Therefore, ti,1 ≤ · · · ≤
ti,j · · · ≤ ti,mj . Let P1 = {v1, e1,1, · · · , vi, ei,1, · · · , vn−1, en−1,1, vn} be the short-
est path from v1 to vn. Denote δ = (δ1, δ2, · · · , δk) as the blockages sequence, and
tk,r as the recovery time with respect to δk. As shown in Fig. 1, suppose that block-
ages happen at P1 and the traveller has to move from v1 to vn by passing through
v2, v3, · · · , vn−1 one by one, then the problem is to design a good travel strategy
without any knowledge of future blockages.

1
v

2
v

3
v

i
v 1i

v
1n

v
n

v

1 k

Fig. 1. Graph G

In order to discuss the problem, we make the following assumptions:

(1) The traveller knows the entire network and the travel time of each edge in
advance.

(2) Blockages may happen at P1 = {v1, e1,1, · · · , vi, ei,1, · · · , vn−1, en−1,1, vn}
and the traveller does not know which one edge will be blocked in advance,
and the traveller only observes that upon arriving the vertex of the blocked
edge.

(3) The recovery time of a blockage is not known in advance, but the traveller
can obtain the recovery time until the blockage is reopened.

(4) Blockages may not happen at ei,j (j �= 1) between vi and vi+1.

If all of the blockages and their recovery time are known in advance, then the
problem becomes an offline problem, and the optimal travel strategy is obtained
by following the shortest edge from v1 to vn after modifying the travel time of
known blocked edges. If the blocked edges are unpredictable, then the problem
is obviously an online problem.

Let COPT (δ) be the travel time of the optimal offline shortest path from v1

to vn, and let CA(δ) be the corresponding travel time of the online strategy A
for the traveller to go from v1 to vn. Strategy A is said to be α-competitive [6-9]
if CA(δ) ≤ αA · COPT (δ) + b holds, where αA and b are constants not related to
δ. Denote α� as the optimal competitive ratio for the on-line problem such that
α� = inf

A∈S
(αA) for any online strategy A ∈ S, where S is the set of all online

strategies. If αA� = α�, then A� is called the optimal online algorithm.

420 B. Su et al.

The above competitive analysis is the most fundamental and significant ap-
proach. However, the above competitive analysis is not very flexible, especially
in the uncertainty environment. In practice, many travellers hope to manage
their risk and willing to take certain risks for more rewards sometimes. Al-Binali
[10] first defined the concepts of risk and reward for online financial problems.
From the risk-reward point of view, The following definitions are given for our
problem. Let I be the range of the recovery time of a blockage and F ⊂ I be
a forecast for the recovery time. If F ⊂ I is the correct forecast, then denote
α̂Â = sup

tk,r⊂F

CÂ(δ)

COP T (δ) as the restricted competitive ratio of Â , and fÂ = α�

α̂Â
the

reward of Â. The optimal restricted competitive ratio under the forecast F is
α̂� = inf

Â∈S
(α̂Â). If F ⊂ I is the false forecast, then denote αÂ be the competitive

ratio of Â for any tk,r ∈ I. Define τÂ = αÂ

α� as the risk of Â.

3 Competitive Analysis of the Comparison Strategy

In this section, we present an optimal online strategy for the Recoverable-CTP
in a special network and analyse its corresponding competitive ratio.

,i wt

1v iv
1iv nv

,i xt ,2ie

,1ie

Fig. 2. Analysis of CS

Comparison Strategy: When the traveller reaches vi and knows that the edge
ei,1 is blocked, he/she sets a upper bound of waiting time ti,w = ti,2−ti,1

2 at
vi. If the recovery time ti,r of ei,1 satisfies ti,r ≤ ti,w, then the traveller follows
the shortest edge ei,1 after waiting time ti,r; otherwise, the traveller follows the
second shortest edge ei,2 and when he/she knows that the blockage is reopened
after traversed time ti,x (ti,x < ti,2) in ei,2, he/she makes a decision according to
the following condition: If ti,1 + ti,x ≥ ti,2 − ti,x, he/she continues on the second
shortest edge ei,2 as intended; If ti,1 + ti,x ≤ ti,2 − ti,x, then he/she returns to
vi and follows the shortest edge ei,1.

Denote the Comparison Strategy as CS. As shown in Fig.2.
According to the above travelling strategy CS, we have the following lemma

and theorems.

Lemma 1. If ti,w ≤ ti,r ≤ ti,2 − ti,1 and ti,x <
ti,2−ti,1

2 , he/she returns to vi and
follows the shortest edge ei,1 by using CS.

Proof. If ti,r ≥ ti,w , then the traveller follows the second shortest edge ei,2

from vi to vi+1 by using CS. When he/she knows that the blockage is reopened,

A Risk-Reward Competitive Analysis for the Recoverable-CTP 421

he/she returns to vi and follows the shortest edge ei,1 under the condition ti,x +
ti,1 < ti,2 − ti,x. Since ti,r = ti,x + ti,2−ti,1

2 , we have ti,r < ti,2 − ti,1. Hence, if
ti,w ≤ ti,r ≤ ti,2 − ti,1, then the traveller returns to vi and follows the shortest
edge ei,1.

Theorem 1. For the Recoverable-CTP with the blockage sequence δ = (δ1,
δ2, · · · , δk), the competitive ratio of CS is 3−β

2 , where β = maxβi, βi = ti,1
ti,2

.

Proof. Set ti,w = ti,2−ti,1
2 .

(1) If ti,r < ti,w, then the online traveller waits ti,r time at vi and follows the
shortest edge ei,1, and we have CCS(δi) = ti,r + ti,1. The offline optimal
strategy is the same as the online strategy. Hence, we have COPT (δi) =
ti,r + ti,1 and CCS(δi)

COP T (δi)
= 1.

(2) If ti,w ≤ ti,r < ti,2 − ti,1, then the online traveller waits ti,w time at vi and
follows the second shortest edge ei,2. When he/she knows that the blockage
is reopened, he/she returns to vi and follows the shortest edge ei,1 by Lemma
1. The offline optimal strategy is that the traveller waits ti,r time at vi and
follows the shortest edge ei,1. Hence, we have CCS(δi) = ti,r + ti,1 + ti,x,
COPT (δi) = ti,r + ti,1 and CCS(δi) = (1 + ti,x

ti,r+ti,1
)COPT (δi). Since ti,r <

ti,2 − ti,1 and ti,x <
ti,2−ti,1

2 , we have CCS(δi)
COP T (δi)

≤ 3
2 − ti,1

2ti,2
= 3−βi

2 , where

βi = ti,1
ti,2

.
(3) If ti,r ≥ ti,2 − ti,1, then the online traveller waits ti,w time at vi and follows

the second shortest edge ei,2. The offline optimal strategy is that the traveller
follows the second shortest edge ei,2 without any waiting time. Hence, we
have CCS(δi) = ti,w + ti,1 = ti,2+ti,1

2 ≤ 3ti,2−ti,1
2 , COPT (δi) = ti,2 and

CCS(δi)
COP T (δi)

≤ 3
2 − ti,1

2ti,2
≤ 3−βi

2 , where βi = ti,1
ti,2

.

From (1), (2) and (3), we have CCS(δi)
COP T (δi)

=

k∑
i=1

CCS(δi)

k∑
i=1

COP T (δi)

≤ 3−β
2 , where β = maxβi

and βi = ti,1
ti,2

. Therefore, the competitive ratio of CS is 3−β
2 .

This concludes the proof of Theorem 1. �	
Theorem 2. For the Recoverable-CTP with the blockage sequence δ = (δ1, δ2,
· · · , δk), the competitive ratio h of any deterministic online strategy satisfies
h ≥ 3−β

2 .

Proof. For any online deterministic strategy B, let ti,B be the upper bound of
waiting time when the traveller reaches vi of blocked edge ei,1. Set ti,w = ti,2−ti,1

2 ,
and consider three cases.

(1) ti,B ∈ [0, ti,w]
The worst case is that the online traveller knows the blockage reopened
after traversed time ti,2−ti,1

2 along ei,2, he/she can continue on the second
shortest edge ei,2 or return to vi and follow the shortest edge ei,1. The travel

422 B. Su et al.

time is CB(δi) = ti,B + ti,2−ti,1
2 + ti,2−ti,1

2 + ti,1 = ti,B + ti,2. The offline
optimal strategy is that the traveller follows the shortest edge ei,1 after
waiting time ti,r = ti,B + ti,2−ti,1

2 , and we have COPT (δi) = ti,B + ti,2−ti,1
2 +

ti,1 = ti,B + ti,2+ti,1
2 . Since ti,B <

ti,2−ti,1
2 , we have αi,1 = CB(δi)

COP T (δi)
=

ti,B+ti,2

ti,B+
ti,2+ti,1

2

>
ti,2−ti,1

2 +ti,2
ti,2−ti,1

2 +
ti,2+ti,1

2

= 3ti,2−ti,1
2ti,2

= 3−βi

2 , where βi = ti,1
ti,2

. Hence,

we have αB,1 =

k∑
i=1

CB(δi)

k∑
i=1

COP T (δi)

> 3−β
2 , where β = max βi.

(2) ti,B = ti,w
If ti,B = ti,w, then by Theorem 1, we have the competitive ratio of B is
αB,2 = 3−β

2 .
(3) ti,B ∈ (ti,w, +∞)

The worst case is that the online traveller follows the second shortest edge
ei,2 after waiting time ti,B by using online strategy B. The offline optimal
strategy is that the traveller follows the second shortest edge ei,2 without any
waiting time. Hence, we have CB(δi) = ti,B +ti,2, COPT (δi) = ti,2 and αi,3 =

CB(δi)
COP T (δi)

= 1 + ti,B

ti,2
. Since ti,B >

ti,2−ti,1
2 , we have αi,3 > 1 + ti,2−t(i,1)

2ti,2
=

3−βi

2 , where βi = ti,1
ti,2

. Hence, we have αB,3 =

k∑
i=1

CB(δi)

k∑
i=1

COP T (δi)

> 3−β
2 , where

β = maxβi.

From the above analysis, we have αB = min{αB,1, αB,2, αB,3}. Then the com-
petitive ratio of any deterministic online strategy is no less than 3−β

2 .
This concludes the proof of Theorem 2. �	

From the above analysis, it is known that the comparison strategy is the optimal
deterministic online strategy, and α� = 3−β

2 .

4 Competitive Analysis of the Risk-Reward Strategies

When an online traveller is risk-averse, he will use the classical online algorithm
A and achieve the optimal competitive ratio. If the online traveller is a risk-
seeker, then the risk-reward strategy allows him to benefit from his capability,
and allows him to control his risk by using a risk strategy Â. Next, we will give
the risk-reward strategy Â with respect to the Recoverable-CTP and analysis
it’s competitive.

The online traveller can make three different forecasts of the recovery time
upon reaching the blockage: ti,r <

ti,2−ti,1
2 , ti,2−ti,1

2 ≤ ti,r < ti,2 − ti,1 and
ti,r > ti,2 − ti,1, we will discuss the three cases as following.

Forecast 1. ti,r <
ti,2−ti,1

2 .
For the forecast 1, we give the following online strategy Â1.

A Risk-Reward Competitive Analysis for the Recoverable-CTP 423

Â1: Set the upper bound of waiting time t̂i,w = ti,2−ti,1
2 . If ti,r ≤ t̂i,w, then

the traveller follows the shortest edge ei,1 after waiting time ti,r; otherwise,
the traveller follows the second shortest edge ei,2 and when he/she knows the
blockage being reopened after traversed time ti,x (ti,x < ti,2) in ei,2, he/she makes
a decision according to the following condition: If ti,1 + ti,x ≥ ti,2 − ti,x, he/she
continues on the second shortest edge ei,2 as intended; If ti,1 + ti,x < ti,2 − ti,x,
then he/she returns to vi and follows the shortest edge ei,1.

Theorem 3. For the Recoverable-CTP with a correct forecast of the recovery
time ti,r <

ti,2−ti,1
2 , the restricted optimal competitive ratio of Â1 is 1.

Proof. Set the upper bound of waiting time t̂i,2 = ti,2−ti,1
2 . If the forecast

is correct, then ti,r <
ti,2−ti,1

2 . The online traveller waits ti,r time at vi and
follows the shortest edge ei,1, and we have CÂ1

(δi) = ti,r + ti,1. The offline
optimal strategy is the same as the online strategy, and we have COPT (δi) =
ti,r + ti,1. Hence, the restricted competitive ratio for the Recoverable-CTP is

α̂Â1
=

k∑
i=1

CÂ1
(δi)

k∑
i=1

COP T (δi)

= 1.

This concludes the proof of Theorem 3. �	
From the above theorem, It is known that the reward of the strategy Â1 is
fÂ1

= α�

α̂Â1
= 3−β

2 .

If the traveller makes a false forecast regarding the recovery time of the block-
age, then ti,r >

ti,2−ti,1
2 , and the competitive ratio of Â1 is αÂ1

= 3−β
2 by

Theorem 1. Hence, τ =
αÂ1
α� = 1.

Forecast 2. ti,2−ti,1
2 ≤ ti,r < ti,2 − ti,1

For the forecast 2, we give the following online strategy Â2.

Â2: Set the upper bound of waiting time t̂i,w = ti,2 − ti,1. If ti,r ≤ t̂i,w, then
the traveller follows the shortest edge ei,1 after waiting time ti,r; otherwise, the
traveller follows the second shortest edge ei,2.

Theorem 4. For the Recoverable-CTPwith a correct forecast of the recovery time
ti,2−ti,1

2 ≤ ti,r < ti,2 − ti,1, the restricted optimal competitive ratio of Â2 is 1.

Proof. Set the upper bound of waiting time t̂i,w = ti,2 − ti,1. If the forecast
is correct, then ti,2−ti,1

2 ≤ ti,r < ti,2 − ti,1. The online traveller waits ti,r time
at vi and follows the shortest edge ei,1 , and we have CÂ2

(δi) = ti,r + ti,1.
The offline optimal strategy is the same as the online strategy, and we have
COPT (δi) = ti,r+ti,1. Hence, the restricted competitive ratio for the Recoverable-

CTP is α̂Â2
=

k∑
i=1

CÂ2
(δi)

k∑
i=1

COP T (δi)

= 1.

This concludes the proof of Theorem 4. �	

424 B. Su et al.

From the above proof, we can obtain the reward of the strategy Â2 is fÂ2
=

α�

α̂Â2
= 3−β

2 .
If the traveller makes a false forecast regarding the recovery time of the block-

age, then ti,r <
ti,2−ti,1

2 or ti,r ≥ ti,2 − ti,1. If ti,r <
ti,2−ti,1

2 , then the online
traveller follows the shortest edge ei,1 after waiting time ti,r by using online strat-
egy Â2, the offline optimal strategy is the same as the online strategy. Hence, the
competitive ratio is 1, and τ1 =

αÂ2
α� = 1

3−β
2

= 2
3−β . If ti,r ≥ ti,2 − ti,1, then the

online traveller follows the second shortest edge ei,2 after waiting time t̂i,w by
using online strategy Â2, the offline optimal strategy is that the traveller follows
the second shortest edge without any waiting time. The competitive ratio of Â2

is αÂ2
=

k∑
i=1

CÂ2
(δi)

k∑
i=1

COP T (δi)

=

k∑
i=1

(ti,2−ti,1+ti,2)

k∑
i=1

ti,2

≤ 2 − β, and τ2 =
αÂ2
α� = 2−β

3−β
2

= 4−2β
3−β .

Since τ1 ≤ τ2, we have τ =max{τ1, τ2} = 4−2β
3−β .

Forecast 3. ti,r > ti,2 − ti,1

For the forecast 3, we give the following online strategy Â3.

Â3: Set the upper bound of waiting time t̂i,w = 0. The traveller follows the
second shortest edge ei,2.

Theorem 5. For the Recoverable-CTP with a correct forecast of the recovery
time ti,r > ti,2 − ti,1, the restricted optimal competitive ratio of Â3 is 1.

Proof. Set the upper bound of waiting time t̂i,w = 0. If the forecast is correct,
then ti,r > ti,2 − ti,1. The online traveller follows the second shortest edge ei,2,
and we have CÂ3

(δi) = ti,2. The offline optimal strategy is the same as the online
strategy, and we have COPT (δi) = ti,2. Hence, the restricted optimal competitive

ratio for the Recoverable-CTP is α̂Â3
=

k∑
i=1

CÂ3
(δi)

k∑
i=1

COP T (δi)

= 1.

This concludes the proof of Theorem 5. �	

From the above proof, we can obtain the reward of the strategy Â is fÂ3
=

α�

α̂Â3
= 3−β

2 .
If the traveller makes a false forecast regarding the recovery time of the block-

age, then ti,r < ti,2−ti,1. The traveller follows the second shortest edge ei,2 by us-
ing strategy Â3. The worst case is that he/she knows the blockage reopened after
traversed time ti,2−ti,1

2 , he/she can continue on the second shortest edge ei,2 or re-
turn to vi and follow the shortest edge ei,1. The total travel time is CÂ3

(δi) = ti,2.
The offline optimal strategy is that the traveller follows the shortest edge ei,1

after waiting time ti,2−ti,1
2 , and we have COPT (δi) = ti,2−ti,1

2 + ti,1 = ti,2+ti,1
2 .

A Risk-Reward Competitive Analysis for the Recoverable-CTP 425

The competitive ratio of Â3 is αÂ3
=

k∑
i=1

CÂ3
(δi)

k∑
i=1

COP T (δi)

=

k∑
i=1

ti,2

k∑
i=1

ti,2+ti,1
2

≤ 2
1+β , and

τ =
αÂ3
α� =

2
1+β
3−β
2

= 4
(3−β)(1+β) .

From the above analysis, we conclude the results as shown in Table 1.

Table 1. Risk-reward strategy and its competitive analysis

Forecast Strategy Â
*

ˆ
ˆ ˆ

A

*

ˆ

ˆ
ˆA

A

f
Â

ˆ

*

A

,2 ,1

,
2

i i
i r

t t
t ,2 ,1

,
ˆ

2

i i
i w

t t
t 1

3

2

3

2
1

,2 ,1

, ,2 ,1
2

i i
i r i i

t t
t t t , ,2 ,1î w i it t t 1

3

2
2

4 2

3

, ,2 ,1i r i it t t
,

ˆ 0i wt 1
3

2

2

1

4

(3)(1)

* 3

2
,

,1

,2

max
i

i
i

t

t

5 Conclusions

The Recoverable Canadian Traveller Problem is valuable and important for the
traffic congestion problems. Most previous studies are based on classical com-
petitive analysis. The classical competitive analysis is the most fundamental and
important framework to study online problems, but it is not very flexible. In this
paper, we present an optimal online strategy - a comparison strategy and prove
its competitive ratio for Recoverable-CTP in a special network. Moreover, with
the different forecasts of the recovery time, some online strategies are given under
the risk-reward framework, and the rewards and the risks of different strategies
are analysed. For the Recoverable Canadian Traveller Problem, there are some
further directions, such as, how to deal with the problems in general networks
under the risk-reward framework.

References

1. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84(1), 127–150 (1991)

2. Bar-Noy, A., Schieber, B.: The Canadian traveller problem. In: Proceedings of the
second annual ACM-SIAM Symposium on Discrete Algorithms, pp. 261–270 (1991)

426 B. Su et al.

3. David, S.B., Borodin, A.: A new measure for the study of the on-line algorithm.
Algorithmica 11, 73–91 (1994)

4. Westphal, S.: A note on the k-Canadian traveller problem. Information Processing
Letters 106(3), 87–89 (2008)

5. Xu, Y.F., Hu, M.L., Su, B., Zhu, B.H., Zhu, Z.J.: The Canadian Traveller Problem
and Its Competitive Analysis. Journal of Combinatorial Optimization, 4 (in press,
2008)

6. Su, B., Xu, Y.F.: Online recoverable Canadian traveller problem. In: Proceedings
of the International Conference on Management Science and Engineering, pp. 633–
639 (2004)

7. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-
munications of the ACM 28(2), 202–208 (1985)

8. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, Cambridge (1998)

9. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. In: Proceedings
of the 22nd IEEE Symposium on Foundation of Computer Science, pp. 454–463
(1990)

10. Fiat, A., Woeginger, G.J.: Online algorithms: The state of art. Springer, Heidelberg
(1998)

11. Al-Binali, S.: A risk-reward framework for the competitive analysis of financial
games. Algorithmica 25, 99–115 (1999)

Minimizing Total Completion Time in

Two-Machine Flow Shops with Exact Delays

Yumei Huo1, Haibing Li2, and Hairong Zhao3

1 Department of Computer Science, College of Staten Island, CUNY, 2800 Victory
Blvd 1N-215, Staten Island, New York 10314

huo@mail.csi.cuny.edu
2 Lehman Brothers Inc., New York City, NY 10019, USA

hl27@njit.edu
3 Department of Mathematics, Computer Science & Statistics, Purdue University

Calumet, 2200 169th Street, Hammond, IN 46323
hairong@calumet.purdue.edu

Abstract. We study the problem of minimizing total completion time
in the two-machine flow shop with exact delay model. This problem is
a generalization of the no-wait flow shop problem which is known to be
strongly NP-hard. Our problem has many applications but little results
are given in the literature so far. We focus on permutation schedules. We
first prove that some simple algorithms can be used to find the optimal
schedules for some special cases. Then for the general case, we design
some heuristics as well as metaheuristics whose performance are shown
to be very well by computational experiments.

1 Introduction

Flow shop is one of the most classic scheduling models that has been studied since
1950’s. In the past, most research about flow shop is done under the assumption
that the time needed to move a job from one machine to another is negligible.
But this may not be true in our real life. For example, in manufacturing there
may be a transportation time (delay) from one production facility to another.

In this paper, we study the scheduling problems in the two-machine flow shop
with exact delays model. This problem arises in chemistry manufacturing where
there often may be an exact technological delay between the completion time of
some operation and the initial time of the next operation ([1]).

Formally, our scheduling model can be stated as follows. There are two ma-
chines, the upstream machine M1 and the downstream machine M2. There are n
jobs, denoted by j = 1, 2, . . . , n, for simplicity. Each job j is described by a triple
(p1,j , lj , p2,j): p1,j is the length of job j’s first operation that has to be processed
on the upstream machine M1; p2,j is the length of job j’s second operation that
has to be processed on the downstream machine M2; lj is the exact time inter-
val between the completion time of the first operation and the start time of the
second operation. For convenience, we also use p1,j and p2,j to represent the first
and the second operation of job j, respectively. We assume that both machines

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 427–437, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

428 Y. Huo, H. Li, and H. Zhao

are available from time 0, and that at any time a machine can only process one
operation. We also assume that both p1,j and p2,j are positive.

Our interest in this paper is minimizing total completion time which is one
of the most common objectives in scheduling. We use Ci,j(S) to represent the
finish time of operation pi,j in the schedule S. The completion time of job j in
S, denoted by Cj(S), is the completion time of its second operation p2,j , i.e.,
C2,j(S). The total completion time of a schedule S, denoted by

∑
Cj(S), is

simply the sum of the completion times of all jobs. If S is clear from the context,
we simply use Ci,j , Cj , and

∑
Cj for short. We use C∗ to denote the minimum

total completion time.

Related results. One of the special case of our problem is when l̄j = 0 for all j. This
case is also known as two-machine no-wait flow shop, denoted by F2 | nowait |∑

Cj . Much effort has been devoted to the no-wait flow shop scheduling. The
no-wait flow shop scheduling problem with the objective of minimizing total com-
pletion time was posed by van Deman and Baker [17]. In the same paper, they de-
veloped a branch and bound algorithm for the problem. The complexity of the this
problem was solved by Röck [13]: he showed that F2 | no-wait |

∑
Ci is NP-hard

in the strong sense. Gonzales [7] showed that F |no − wait, pi,j ∈ {0, 1} |
∑

Cj

is NP-complete in the strong sense. Sriskandarajah and Ladet [14] showed that
F2|no − wait, pi,j ∈ {0, 1} |

∑
Cj is polynomial time solvable. Rajendran and

Chaudhuri [12] developed a job insertion heuristic for the problem. They com-
pared the performance of their heuristic with that of the other existing heuristics,
and showed that their heuristic dominates all the existing heuristics. Chen et al.
[4] presented a genetic algorithm for the problem and some computational results.
Fink and Voß [5] used metaheuristics to solve the problem with m machines. Some
theoretical work has been done by [3], [9], [11], [15], [16].

It is easy to see that for the two-machine no-wait flow shop model every
feasible schedule is also a permutation schedule and it contains no forced idle
time. But this is not true in general when the exact delay is nonzero. For example,
suppose we are given three jobs (1,5,3), (1,9,2), (3,3,3). Let us denote them by
job 1, 2, 3 respectively. The optimal schedule for these three jobs is illustrated in
Figure 1. We can see that it is not a permutation schedule. Furthermore, there
is one unit of forced idle time between p1,1 and p1,2.

Despite of its important applications, not many results are known when the ex-
act delay is non-zero. For the makespan objective, Yu et.al ([18]) proves that the
problem is strongly NP-hard even in the case of unit processing times. Ageev and
Baburin [1] and Leung, Li and Zhao ([10]) independently design constant-factor
approximationalgorithms for the general case. Ageev and Baburin ([1], [2]) alsode-
signed better approximation algorithms for some special cases. Forthermore, they
proved that the existence of a (1.5 − ε)-approximation algorithm implies P=NP.
For the objective of total completion time, the only work as we are aware of is from
Leung, Li and Zhao ([10]). They have shown that by greedily scheduling the jobs
in non-decreasing order of delay, one can obtain the optimal schedule for the prob-
lem F2 | lj , p1,j = p1, p2,j = p2, p1 ≥ p2 |

∑
Cj , and obtain a 2-approximation

schedule for the problem F2 | lj , p1,j = p1, p2,j = p2, p1 < p2 |
∑

Cj .

Minimizing Total Completion Time in Two-Machine Flow Shops 429

New contributions. In this paper, we concentrate on permutation schedules of
two machines flow shop with exact delay. Following the three-field notation in-
troduced by Graham et al. [8], our problem can be classified as F2 | permu, lj , |∑

Cj . One can easily show that for permutation schedules, adding forced idle
time can only increase the total completion time. Thus, without loss of gener-
ality, we will assume that there is no forced idle time in any feasible schedule.
It should be noted that even for permutation schedules, our problem is still
NP-Hard in the strong sense. Our contributions can be summarized as follows:

– We prove that some very simple algorithms can be used to find the optimal
schedules for the following cases:

• The jobs can be ordered in a way such that p1,j ≤ p1,j+1, and p1,j+1 +
lj+1 ≥ lj + p2,j for all 1 ≤ j ≤ n − 1.

• The jobs can be ordered in a way such that p2,j ≤ p2,j+1, p1,1 + l1 =
min1≤j≤n(p1,j + lj) and p1,j+1 + lj+1 < lj + p2,j for all 1 ≤ j ≤ n − 1.

• maxj(p1,j) ≤ mini(p2,i), and lj = l.
• For all 1 ≤ j ≤ n, we have p1,j = p1, p2,j = p2 where p1 and p2 are

constants.
• For all 1 ≤ j ≤ n, lj = l and p1,i < p1,j → p2,i < p2,j .

– We design the first metaheuristics, a tabu search algorithm and a simulated
annealing algorithm, to solve our problem.

– We show that our metaheuristics perform very well through experiments on
randomly generated data.

It should be noted that the purpose of studying the special cases of the prob-
lem are two-folded: (1) It is meaningful from the theoretical point of view by
giving a boundary on the problems in P and those in NP. (2) While some cases
are hypothetical, some other cases are very practical, for example, when all jobs
have the same exact delay. When the delay is zero, this is just no wait flow shop.

2

0 1 2 3 6 9 12 14

M1

P2,1 P2,3 P2,2

p1,1 P1,2 P1,3

M

Fig. 1. The optimal schedule for three jobs: (1,5,3), (1,9,2), (3,3,3), denoted by 1, 2
and 3 respectively. It is not a permutation schedule and there is one unit of forced idle
time between p1,1 and p1,2.

The paper is organized as follows. In Section 2 we state some preliminary
results. In Section 3, we show that optimal schedules for some special cases can
be found in polynomial time. In Section 4 we design some heuristics as well as
metaheuristics for the general case. In Section 5 we give a short summary.

430 Y. Huo, H. Li, and H. Zhao

2 Preliminary Results

The NP-hardness of F2 | no-wait |
∑

Cj immediately implies the following.

Lemma 1. The problems F2 | lj = l |
∑

Cj and F2 | permu, lj |
∑

Cj are both
strongly NP-hard.

We now consider the lower bounds of the minimum total completion time of
any schedule. Let P1, P2 be the total processing time of the first and second
operation of all jobs, respectively, i.e. P1 =

∑n
j=1 p1,j, P2 =

∑n
j=1 p2,j. Suppose

that p1,j1 ≤ p1,j2 ≤ . . . ≤ p1,jn and p2,i1 ≤ p2,i2 ≤ . . . ≤ p2,in . Let P ∗
1 =∑n

i=1(n − i + 1)p1,ji , P ∗
2 =

∑n
k=1(n − k + 1)p2,ik

, and L =
∑n

j=1 lj . Then we
have the following lower bounds for the optimal total completion time C∗.

Lemma 2. For the problem F2 | lj |
∑

Cj, we have

C∗ ≥ P ∗
1 + L + P2 (1)

C∗ ≥ n · min
1≤j≤n

(p1,j + lj) + P ∗
2 (2)

The following are some properties of any feasible schedule S. The correctness fol-
lows from the assumption that there is no forced idle time in a feasible schedule.

Property 3. Let S be a feasible schedule for F2 | permu, lj |
∑

Cj . Suppose that
S schedules the jobs in the order of 1, 2, . . . , n. Then for any job j and j + 1,
1 ≤ j ≤ n − 1, we have

– either p1,j+1 + lj+1 ≥ p2,j + lj , so there is no idle time between p1,j and
p1,j+1;

– or p1,j+1 + lj+1 ≤ p2,j + lj, so there is no idle time between p2,j and p2,j+1.

3 Simple Heuristics and Solvable Special Cases

Since the general problem F2 | permu, lj |
∑

Cj is strongly NP-hard, we would
like to investigate some special cases whose optimal schedules can be found in
polynomial time. For most cases, we will use list scheduling to schedule the jobs.
That is, start with an empty schedule, then one by one greedily insert the jobs
to the partial schedules in an order given by a priority rule (list) subject to the
exact delay constraint and the permutation schedule constraint. The priority
rules we will use are the following:

– SPT: order the jobs in non-decreasing order of p1,j + lj + p2,j.
– SPT(p1): order the jobs in non-decreasing order of p1,j.
– SPT(p2): order the jobs in non-decreasing order of p2,j.

By Property 3 and the lower bounds in Lemma 2, we can prove the following
two theorems. The proof is omitted due to space limit.

Minimizing Total Completion Time in Two-Machine Flow Shops 431

Theorem 4. Suppose the jobs are numbered such that p1,j ≤ p1,j+1. If p1,j+1 +
lj+1 ≥ lj + p2,j for all 1 ≤ j ≤ n − 1, then SPT(p1) rule schedules the jobs
optimally.

Theorem 5. Suppose the jobs are numbered such that p2,j ≤ p2,j+1. If p1,1+l1 =
min1≤j≤n(p1,j + lj) and p1,j+1 + lj+1 < lj + p2,j for all 1 ≤ j ≤ n − 1, then
SPT(p2) rule schedules the jobs optimally.

Our next special case assumes that all jobs have the same delay, i.e. lj = l, where
l ≥ 0 is a constant.

Theorem 6. If maxj(p1,j) ≤ mini(p2,i), and lj = l, the optimal schedule can
ge obtained in polynomial time.

Proof. It is easy to see that every schedule must be a permutation schedule in this
case. Suppose the first job j is fixed, to minimize the total completion time, the
remaining jobs should be scheduled using SPT (p2). To find the optimal schedule,
we do the following: for each job j, we generate a schedule that schedules j first,
and schedule the remaining jobs in SPT (p2) order; the optimal schedule will
be the schedule with minimum total completion time among the n schedules
produced.

Theorem 7. The optimal schedule for F2 | permu , lj , p1,j = p1, p2,j = p2 |∑
Cj can be obtained by SPT rule.

Proof. Note that since p1,j = p1, and p2,j = p2, SPT rule is actually the same
as ordering the jobs in non-decreasing order of delays. Depending on the values
of p1 and p2, we consider two cases: p1 ≥ p2 and p1 < p2.

Case1: p1 ≥ p2. In this case, using similar arguments as in Theorem 4, one can
easily show that if we schedule the jobs in non-decreasing order of the delays,
we obtain an optimal schedule.

Case2: p1 < p2. The proof is quite involved, we sketch the main idea here. Let
Ŝ be a schedule that schedules the jobs in non-decreasing order of delays. Let S
be an optimal schedule that is different from Ŝ . Suppose that S schedules the
jobs in the order of 1, 2, . . . , n. We compare the jobs in S with jobs in Ŝ one by
one and find the first job i in S that is different from the corresponding job j in
Ŝ. Now we modify S by rescheduling the jobs i, i + 1, . . . , j − 1, j as follows:
move all jobs between i and j − 1 inclusively forward by an amount of p2, then
schedule job j before i so that there is no forced idle time between job j and i.
All other jobs are kept unchanged. One can show that the obtained schedule is
feasible and the total completion time of the new schedule S′ is not greater than
that of S.

By repeatedly doing the modification as described, one can get a schedule
that schedules the jobs in the same order of Ŝ , i.e. in the non-decreasing order
of the delays. This completes the proof.

Using similar approach as we prove the case 2 in Theorem 7, we can prove the
following theorem.

432 Y. Huo, H. Li, and H. Zhao

Theorem 8. SPT rule solves F2 | lj = l, p1,i < p1,j → p2,i < p2,j |
∑

Cj

optimally.

4 Metaheuristics

Although certain special cases can be solved by simple priority rules, their per-
formance for the general case could be very bad. In this section, we design
two metaheuristics, namely tabu search algorithm and simulated annealing al-
gorithm, to solve our problem. Both metaheuristics have been applied to solve
a variety of combinatorial optimization problems. However, this is the first time
that they are applied to two machine flow shop with exact delay problem.

4.1 Tabu Search

Tabu search is classified as a local search technique and it enhances the local
search performance by using memory. The basic idea of tabu search is to explore
the solution space using a local search procedure by iteratively moving from a
solution S to a new best one Ŝ in its neighborhood N (S), until certain stopping
criterion is satisfied. To avoid being trapped in a local optima, Ŝ is allowed be
worse than S. To avoid cycling, explored solutions are marked as tabu in memory
and excluded from being the candidate for Ŝ. For more information about tabu
search, the reader is referred to Glover [6]. In the following, we describe our design
of the three important components in the tabu search algorithm, neighborhood,
stopping criterion and the tabu structure.

Neighborhood Generation. In the literature, two of the popular neighborhood
generation methods are exchange method and insertion method. In the exchange
method, the neighbors are generated by selecting a job in the schedule and
exchanging it with another job in the schedule. In the insertion method, the
neighbors are generated by selecting a job in the schedule and inserting it into
different position in the schedule. In this paper we use a variation of insertion
method, which generates a larger neighborhood set and gives better error ratio.
Given a schedule sequence S =< j1, j2, . . . , jn > and a parameter K, we generate
the neighborhood of S with respect to K, denoted by NK(S), as follows: 1) Set
NK(S) = ∅. 2) For each position i = 1, 2, . . . , n in S and each length k =
1, 2, . . . , K, move the subsequence < ji, ji+1, . . . , ji+k−1 > to each position in
the set {1, 2, . . . , i− 1, i+ k, i + k +1, . . . , n} , to obtain a new sequence S′. Add
S′ into NK(S). 3) Return NK(S).

Stopping Criterion. We combine the number of consecutive non-improving steps
and the total number of restarts. Whenever the number of consecutive non-
improving steps reaches Imax, we restart the search from the randomly generated
schedule. If the total number of restarts during the course of search reaches Rmax,
we stop the search process and return the current best solution. Here Rmax is
introduced to avoid the local optima.

Minimizing Total Completion Time in Two-Machine Flow Shops 433

Tabu structure. Ideally we would like to store all the explored schedules into
memory in the tabu list in order to prevent the algorithm from cycling. However,
storing all these schedules would require too much memory. One popular solution
in the literature is that only recently marked tabus are kept in the memory and
the old tabus will be removed from tabu list as searching moves on. Here we
propose a new method to resolve this problem, we map a permutation schedule
S =< j1, j2, . . . , jn > to a tabu structure which only contains six attributes:
M(S) =< j1, j
n/4�, j
n/2�, j
3n/4�, jn,

∑
Cj(S) >. Such a compact structure can

be encoded to take only several bytes in physical memory. With such a mapping
scheme, we keep the tabu structure of an explored solution in memory for the
life time of tabu search. If schedule S1 and schedule S2 have the same tabu
structure, i.e. M(S1) = M(S2), we simply treat them as one. It should be noted
that M(S1) = M(S2) means the six attributes of S1 and those of S2 are exactly
the same. This tabu structure strictly avoids cycling with possible penalty that
some solutions could not be explored. But our tests show that the possibility
that S1 �= S2 and M(S1) = M(S2) is quite small (only several times before the
algorithm stops), so we can reasonably ignore this side-effect.

Now we are ready to describe our algorithm. The notations used are: L –
tabu list; S∗ – the best schedule found so far; Rmax – the maximum number
of multi-restarts; Imax – the maximum number of consecutively non-improving
steps for restart; c1 – the counter for number of non-improving steps; c2 – the
counter for number of multi-restarts.

Algorithm TabuSearch(S)

(1) Set tabu list L = ∅; Let S∗ = S. Configure the value of K, Rmax, and Imax;
Set c2 = 0;

(2) Repeat the following until c2 > Rmax

c1 = 0
found = true
While found and c1 < Imax

Search in NK(S) a best neighbor Ŝ such that M(Ŝ) is not in tabu list
L.

If Ŝ is found
If
∑

Cj(Ŝ) <
∑

Cj(S∗)
S∗ = Ŝ, c1 = 0, L = L ∪ {M(S)}, S = Ŝ

else
c1 = c1 + 1;

else found = false
generate a random schedule S that is not in the tabu list, c2 = c2 + 1

(3) return S∗.

4.2 Simulated Annealing

Simulated annealing is another metaheuristic that has been widely used to solve
combinatorial optimization problems. It was inspired by annealing in metallurgy.
By simulating this physical process, the simulated annealing algorithm moves in

434 Y. Huo, H. Li, and H. Zhao

each step from the current solution to a random neighbor solution, which is cho-
sen with a probability that depends on the difference between the corresponding
function values and on a global temperature parameter T , which is gradually
decreased during the search process. The dependency is such that the current
solution changes almost randomly when T is large, but almost always moves
to a better solution as T goes to zero. Accepting worse solutions prevents the
algorithm from being trapped at local optima. A standard simulated annealing
algorithm works as follows: (1) Randomly choose an initial solution S and set
the initial temperature T0; (2) Randomly generate a solution S′ from the neigh-
borhood of the current solution S; (3) If

∑
Cj(S′) <

∑
Cj(S), then accept S′,

otherwise accept S′ with probability ρ = e
∑

Cj (S)−
∑

Cj (S′)
T , let S = S′ if S′ is

accepted; (4) update the temperature T ; if it is less than the stop temperature,
then stop, else go to(2).

In order to apply the simulated annealing to our problem, the main compo-
nents, including neighborhood structure, temperature, and termination criterion
need to be determined. We use the same neighborhood structure as in the tabu
search algorithm. The temperature includes initial temperature T0 , the cooling
ratio δ for annealing and the stop temperature ε. We set the initial temperature
T0 at which there is 95% chance to accept a random neighbor of the initial solu-
tion. The cooling ratio δ, which is less than and close to 1, is a parameter tuned
by our experiments. We set the stop temperature ε to be 0.000000001. Further-
more, at each temperature, instead of one move, we allow at most n2 moves.
Therefore we can search a larger solution space. Following is the description of
our algorithm, where S∗ represents the best schedule found so far.

Algorithm SimulatedAnnealing(S)

(1) Configure T0, δ, and ε; let S∗ = S and T = T0.
(2) Repeat n2 times

randomly choose a neighbor solution Ŝ of S
if
∑

Cj(Ŝ) <
∑

Cj(S)
then accept Ŝ

otherwise accept Ŝ with probability ρ = e
∑

Cj(S)−
∑

Cj(Ŝ)
T

let S = Ŝ if an Ŝ is accepted and let S∗ = S if
∑

Cj(S) <
∑

Cj(S∗).
(3) Cool down the temperature to δT and goto 2) until T < ε.
(4) Return S∗.

5 Computation Results

Since there is no benchmark instances for our problem yet, we generated our
own instances for n = 20, 40, 60, 80, 100 and 120. For each n, 40 instances of
n jobs are generated; and for each job j = 1, 2, . . . , n, p1,j , lj , p2,j are randomly
chosen in the range [1, 100].

Besides the heuristics (SPT , SPT (p1), SPT (p2)) and the metaheuristics
(tabu search and simulated annealing) we mentioned above, we also tested the
following heuristics:

Minimizing Total Completion Time in Two-Machine Flow Shops 435

– SPT (p1 + lj): Order the jobs in non-decreasing order of p1,j + lj .

– SPT (p2 + lj): Order the jobs in non-decreasing order of p2,j + lj .

– ECT : Greedily insert the jobs one by one, so the completion time of the
inserted job has the smallest completion time.

The algorithms are coded in C++ and the running environment is a Linux
cluster–Typhon, which consists of 32 Dell Power Edge 2650 machines and each
machine has two Intel(R) Xeon(TM) CPU of 2.80GHz and 2GB RAM.

The error ratio is estimated by using the lower bound described in Lemma 2.
Let rerr(H) denote the error ratio of algorithm H against the lower bound and
let SH be the schedule returned by H , then

rerr(H) =
∑

Cj(SH)
max{P ∗

1 + L + P2, n · min1≤j≤n(p1,j + lj) + P ∗
2 }

− 1,

the notations P ∗
1 , L, and P2, P ∗

2 are referred to Lemma 2. Clearly, this error
ratio can be computed in linear time and gives an upper bound for the actual
error ratio calculated against the optimal solution.

Set the parameters for Tabu Search. We investigate the effect of changing
K, which determines the size of neighborhood, Imax, the number of consecutive
non-improvement steps and Rmax, the total number of restart. We divide the
instances into two groups, the small instances where n is 20, 40, and 60; and the
large instances where n is 80, 100 and 120.

For small instances, we use the instances for n = 40 to find the values of K,
Imax and Rmax. For large instances, we use the instances for n = 100. Based on
the results, for small instances, we set K = 3, Rmax = 6 and Imax = 600. For
large instances, we set K = 10, Rmax = 12 and Imax = 1000.

Set the parameters for Simulated Annealing. We used the same param-
eters K as found through experiments in tabu search. Then we investigate the
effect of changing the cooling ratio. Again, we use the instances for n = 40 to
find the best cooling ratio for small instances and we use n = 100 to find the
best cooling ratio for large instances. It turns out in both cases we choose 0.98
by considering both the time and error ratio.

Computational results. To save space, we omit the result tables, interested
reader can contact the authors for detailed results. From the experiment results,
we have the following findings: 1) The average error ratios show that the meta-
heuristics produce solutions that are very close to the lower bounds hence closer
to the optimal solutions. 2) On average, simulated annealing performs better in
terms of both the average error ratio and the running time. However, simulated
annealing does not dominate tabu search. 3) Both metaheuristics perform better
than the six simple heuristics. 4) Among the six simple heuristics, ECT performs
the best, SPT is the second best.

436 Y. Huo, H. Li, and H. Zhao

6 Conclusion

In this paper, we considered the two-machine flow shop problem with exact
delays to minimize total completion time. The problem is strongly NP-hard
in general. We studied some polynomially solvable special cases and developed
some simple heuristics as well as two metaheuristics for the general case. Com-
putational results showed that the ECT performs the best among the six simple
heuristics. It is not surprise that the two metaheuristics, a tabu search algo-
rithm and a simulated annealing algorithm, perform better than all of the sim-
ple heuristics. In our configuration of parameters, simulated annealing performs
better than tabu search.

References

1. Ageev, A.A., Kononov, A.V.: Approximation Algorithms for Scheduling Problems
with Exact Delays. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS,
vol. 4368, pp. 1–14. Springer, Heidelberg (2007)

2. Ageev, A.A., Kononov, A.V.: Approximation Algorithms for the Single and
Two- Machine Scheduling Problems with Exact Delays. Operations Research Let-
ters 35(4), 533–540 (2007)

3. Adiri, I., Pohoryles, D.: Flowshop/no-idle or no-wait scheduling to minimize the
sum of completion times. Naval Research Logistics Quarterly 29, 495–504 (1982)

4. Chen, C.L., Neppalli, R.V., Aljaber, N.: Genetic algorithms applied to the contin-
uous flow shop problem. Computers and Industrial Engineering 30, 919–929 (1996)

5. Fink, A., Voß, S.: Solving the continuous flow-shop scheduling problem by mata-
heuristics. European Journal of Operational Research 151, 400–414 (2003)

6. Glover, F.: Tabu Search - Part II. ORSA J. on Comp. 2, 4–32 (1990)

7. Gonzales, T.: Unit Execution Time Shop Problems. Mathematics of Operations
Research 7, 57–66 (1982)

8. Grham, R.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approxima-
tion in deterministic sequence and scheduling: A survey. Annals of Discrete Math. 5,
287–326 (1979)

9. Gupta, J.N.D.: Optimal flowshop schedules with no intermediate storage space.
Naval Research Logistics Quarterly 23, 235–243 (1976)

10. Leung, J.Y.-T., Li, H., Zhao, H.: Scheduling Two-Machine Flow Shops with Exact
Delay. International Journal of Foundations of Computer Science 18(2), 341–360
(2007)

11. Papadimitriou, C.H., Kanellakis, P.C.: Flowshop scheduling with limited tempo-
rary storage. Journal of the ACM 27, 533–549 (1980)

12. Rajendran, C., Chaudhuri, D.: Heursitic algorithms for coninuos flow-shop prob-
lem. Naval Research Logistics 37, 695–705 (1990)

13. Röck, H.: Some new results in flow shop scheduling. Mathematical Methods of
Operations Research (ZOR) 28(1), 1–16 (1984)

14. Sriskandarajah, C., Ladet, P.: Some No-wait Shops Scheduling Problems: Com-
plexity Aspects. European Journal of Operational Research 24(3), 424–438 (1986)

15. Szwarc, W.: A note on the fflow-shop problem without interruptions in job pro-
cessing. Naval Research Logistics Quarterly 28, 665–669 (1981)

Minimizing Total Completion Time in Two-Machine Flow Shops 437

16. Van der Veen, J.A.A., van Dal, R.: Solvable cases of the no-wait flow-shop schedul-
ing problem. Journal of the Oper. Res. Society 42, 971–980 (1991)

17. Van Deman, J.M., Baker, K.R.: Minimizing mean flowtime in the flow shop with
no intermediate queues. AIIE Transactions 6, 28–34 (1974)

18. Yu, W., Hoogeveen, H., Lenstra, J.K.: Minimizing makespan in a two-machine flow
shop with delays and unit- time operations is NP-hard. Journal of Scheduling 7,
333–348 (2004)

Efficient Method for Periodic Task Scheduling with
Storage Requirement Minimization

Karine Deschinkel and Sid-Ahmed-Ali Touati

University of Versailles Saint-Quentin-en-Yvelines, France

Abstract. In this paper, we study the general problem of one-dimensional pe-
riodic task scheduling under storage requirement, irrespective of machine con-
straints. We have already presented in [9] a theoretical framework that allows an
optimal optimization of periodic storage requirement in a periodic schedule. This
problem is used to optimize processor register usage in embedded systems. Our
storage optimization problem being NP-complete [8], solving an exact integer
linear programming formulation is too expensive in practice. In this article, we
propose an efficient two-steps heuristic using model’s properties that allows fast
resolution times while providing nearly optimal results. This method includes the
resolution of a integer linear program with a totally unimodular constraints ma-
trix in first step, then the resolution of a linear assignment problem. Our solution
has been implemented and included inside a compiler for embedded processors.

1 Introduction

This article addresses the problem of storage optimization in cyclic data dependence
graphs (DDG), which is for instance applied in the practical problem of periodic reg-
ister allocation for innermost loops on modern Instruction Level Parallelism (ILP) pro-
cessors [10]. The massive introduction of ILP processors since the last two decades
makes us re-think new ways of optimizing register/storage requirement in assembly
codes before starting the instruction scheduling process under resource constraints. In
such processors, instructions are executed in parallel thanks to the existence of multiple
small computation units (adders, multipliers, load-store units, etc.). The exploitation of
this new fine grain parallelism (at the assembly code level) asks to completely revisit
the old classical problem of register allocation initially designed for sequential proces-
sors. Nowadays, register allocation has not only to minimize the storage requirement,
but has also to take care of parallelism and total schedule time. In this research article,
we do not assume any resource constraints (except storage requirement); Our aim is to
analyze the trade-off between memory (register pressure) and parallelism in a periodic
task scheduling problem. Note that this problem is abstract enough to be considered in
other scheduling disciplines that worry about conjoint storage and time optimization in
repetitive tasks (manufacturing, transport, networking, etc.).

Existing techniques in this field usually apply a periodic instruction scheduling un-
der resource constraints that is sensitive to register/storage requirement. Therefore a
great amount of work tries to schedule the instructions of a loop (under resource and
time constraints) such that the resulting code does not use more than R values simulta-
neously alive. Usually they look for a schedule that minimizes the storage requirement

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 438–447, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Method for Periodic Task Scheduling 439

under a fixed scheduling period while considering resource constraints [3,4,6,1]. In this
paper, we satisfy register/storage constraints early before instruction scheduling under
resource constraints: we directly handle and modify the DDG in order to fix the storage
requirement of any further subsequent periodic scheduling pass while taking care of not
altering parallelism exploitation if possible. This idea uses the concept of reuse vector
used for multi-dimensional scheduling [11, 12].

This article is on continuation on our previous work on register allocation [10]. In
that paper, we showed that register allocation implies a loop unrolling. However, the
general problem of storage optimization does not require such loop unrolling. So the
current paper is an abstraction of our previous results on register optimization. Further-
more, it extends it with a new heuristic and experimental results.

Our article is organized as follows. Section 2 recalls our task model and notations al-
ready presented in [9]. Section 3 recalls the exact problem of optimal periodic schedul-
ing under storage constraints with integer linear programming: our detailed results on
the optimal resolution of this problem have been presented in [9]. Since the exact model
is not practical (too expensive in terms of resolution time), our current article provides
a new look by writing an efficient approximate method in Section 4, that we call SIR-
ALINA. Before concluding, Section 5 presents the results of our experimental evaluation
of SIRALINA, providing practical evidence of its efficiency.

2 Tasks Model

Our task model is similar to [2]. We consider a set of l generic tasks (instructions inside
a program loop) T0, . . . , Tl−1. Each task Ti should be executed n times, where n is the
number of loop iterations. n is an unknown, unbounded, but finite integer. This means
that each task Ti has n instances. The kth occurrence of task Ti is noted T 〈i, k〉, which
corresponds to task i executed at the kth iteration of the loop, with 0 ≤ k < n.

The tasks (instructions) may be executed in parallel. Each task may produce a result
that is read/consumed by other tasks. The considered loop contains some data depen-
dences represented with a graph G such that:

– V is the set of the generic tasks of the loop body, V = {T0, . . . , Tl−1}.
– E is the set of edges representing precedence constraints (flow dependences or

other serialization constraints). Any edge e = (Ti, Tj) ∈ E has a latency δ(e) ∈ N
in terms of processor clock cycles and a distance λ(e) ∈ N in terms of number of
loop iterations. The distance λ(e) means that the edge e = (Ti, Tj) is a dependence
between the task T 〈i, k〉 and T 〈j, k + λ(e)〉 for any k = 0, . . . , n − 1 − λ(e).

We make a difference between tasks and precedence constraints depending whether
they refer to data to be stored into registers or not

1. VR is the set of tasks producing data to be stored into registers.
2. ER is the set of flow dependence edges through registers. An edge e = (Ti, Tj) ∈

ER means that the task T 〈i, k〉 produces a result stored into a register and read/
consumed by T 〈j, k + λ(e)〉. The set of consumers (readers) of a generic task Ti is
then the set:

Cons(Ti) = {Tj ∈ V | e = (Ti, Tj) ∈ ER}

440 K. Deschinkel and S.-A.-A. Touati

(2,2)
(2,1)(1,0) (1,0)

(5,0)

iteration 0 iteration 1 iteration 2

(b) Loop iterations and instruction/task instances(a) Example of a DDG with Generic Taks

is labeled withEach edge e

T3

T1

T 〈4, 0〉

T 〈3, 0〉T2

T4

T 〈1, 0〉

T 〈2, 0〉

T 〈4, 1〉 T 〈4, 2〉

T 〈2, 2〉 T 〈3, 2〉

T 〈1, 2〉T 〈1, 1〉

T 〈2, 1〉 T 〈3, 1〉

(δ(e), λ(e))

Fig. 1. Example of Data Dependence Graphs with Recurrent Tasks

Figure 1 is an example of a data dependence graph (DDG) where bold circles repre-
sent VR the set of generic tasks producing data to be stored into registers. Bold edges
represent flow dependences (each sink of such edge reads/consumes the data produced
by the source and stored in a register). Tasks that are not in bold circles are instructions
that do not write into registers (write the data into memory or simply do not produce
any data). Non-bold edges are other data or precedence constraints different from flow
dependences. Every edge e in the DDG is labeled by the pair (δ(e), λ(e)).

In our generic processor model, we assume that the reading and writing from/into
registers may be delayed from the starting time of task execution. Let assume σ(T 〈i, k〉)
∈ N as the starting execution time of task T 〈i, k〉. We thus define two delay functions
δr and δw in which

δw : VR → N
Ti)→ δw(Ti)| 0 ≤ δw(Ti)
the writing time of data produced by T 〈i, k〉 is σ(T 〈i, k〉) + δw(Ti)

δr : V → N
Ti)→ δr(Ti)| 0 ≤ δr(Ti)
the reading time of the data consumed by T 〈i, k〉 is σ(T 〈i, k〉) + δr(Ti)

These two delays functions depend on the target processor and model almost all regular
hardware architectures (VLIW, EPIC/IA64 and superscalar processors).

3 Exact Problem Formulation

This section recalls the exact integer linear model for solving the problem of Periodic
Scheduling with Storage Minimisation (PSSM). It is built for a fixed desired period
p ∈ N. For more details on this problem, please refer to [9].

Efficient Method for Periodic Task Scheduling 441

3.1 Basic Variables

– A schedule variable σi ≥ 0 for each task Ti ∈ V , including σKi for each killing node
Ki. We assume a finite upper bound L for such schedule variables (L sufficiently
large, L =

∑
e∈E δ(e)); The schedule variables are integer. As our scheduling is

periodic, we only consider the integer execution date of the first task occurrence
σi = T 〈i, 0〉 and the execution date of any other occurrence T 〈i, k〉 becomes equal
to σ(T 〈i, k〉) = σi + k ∗ p.

– A binary variables θi,j for each (Ti, Tj) ∈ V 2
R . It is set to 1 iff (Ti, Tj) is a reuse

edge;
– A reuse distance μi,j for all (Ti, Tj) ∈ V 2

R ; The reuse distance are nonnegative
integer variables.

3.2 Linear Constraints

– Data dependences
The schedule must at least satisfy the precedence constraints defined by the DDG.

∀e = (Ti, Tj) ∈ E : σj − σi ≥ δ(e) − p × λ(e) (1)

– Flow dependences
Each flow dependence e = (Ti, Tj) ∈ ER means that the task occurrence T 〈j, k +
λ(e)〉 reads the data produced by T 〈i, k〉 at time σj +δr(Tj)+(λ(e)+k)×p. Then,
we should schedule the killing node Ki of the task Ti after all Ti’s consumers.

∀Ti ∈ VR, ∀Tj ∈ Cons(Ti)|e = (Ti, Tj) ∈ ER : σKi ≥ σj + δr(Tj) + p × λ(e)
(2)

– Storage dependences
There is a storage dependence between Ki and Tj if (Ti, Tj) is a reuse edge.

∀(Ti, Tj) ∈ V 2
R : θi,j = 1 =⇒ σKi − δw(Tj) ≤ σj + p × μi,j

This involvement can result in the following inequality :

∀(Ti, Tj) ∈ V 2
R : σj − σKi + p × μi,j + M1(1 − θij) ≥ −δw(Tj) (3)

where M1 is an arbitrarily large constant.
If there is no register reuse between two tasks Ti and Tj , then θi,j = 0 and the
storage dependence distance μi,j must be set to 0.

∀(Ti, Tj) ∈ V 2
R : μi,j ≤ M2θi,j (4)

where M2 is an arbitrarily large constant.

– Reuse Relations
The reuse relation must be a bijection from VR to VR. A register can be reused by
one task and a task can reuse one released register:

∀Ti ∈ VR :
∑

Tj∈VR

θi,j = 1 (5)

∀Tj ∈ VR :
∑

Ti∈VR

θi,j = 1 (6)

442 K. Deschinkel and S.-A.-A. Touati

3.3 Objective Function

As proved in [10], the storage requirement is equal to
∑

μi,j . In our periodic scheduling
problem, we want to minimize the storage requirement: Minimize z=

∑
(Ti,Tj)∈V 2

R
μi,j

Using the above integer linear program to solve an NP-problem problem as PSSM is
not efficient in practice. With a classical Branch and Bound method, we are only able
to solve small instances (DDG sizes), in practice arround 12 nodes. For this reason, we
suggest to make use of the problem structure to propose an efficient heuristic as follows.

4 SIRALINA: A Two Steps Approximate Resolution Method

Our resolution strategy is based on the analysis of the model constraints. As the problem
involves scheduling constraints and assignment constraints, and the reuse distances are
the link between these two sets of constraints, we attempt to decompose the problem
into two subproblems :

– A scheduling problem : to find a scheduling for which the potential reuse distances
are as small as possible.

– An assignment problem : to select which pairs of tasks will share the same register.

4.1 Preliminaries

If edge e = (Ti, Tj) ∈ V 2
R is a reuse edge, its reuse distance should satisfy the inequality

given by 3, where θij = 1. This inequality gives a lower bound for each reuse distance.
If (Ti, Tj) ∈ V 2

R is a reuse edge (Er denotes the set of reuse edge) then :

∀(Ti, Tj) ∈ Er : μi,j ≥ 1
p
(σKi − δw(Tj) − σj) (7)

If (Ti, Tj) ∈ V 2
R is not a reuse edge then μij = 0 according to the inequality 4.

∀(Ti, Tj) /∈ Er : μi,j = 0

The aggregation of constraint 7 for each reuse edge provides a lower bound of the
objective function value. z =

∑
(Ti,Tj)∈V 2

R
μi,j ≥ 1

p (
∑

(Ti,Tj)∈Er
σKi − δw(Tj) − σj)

As the reuse relation is a bijection from VR to VR, the left sum of the inequality can be
separated into two parts.∑

(Ti,Tj)∈Er

σKi − δw(Tj) − σj =
∑
i∈VR

σKi −
∑

j∈VR

(δw(Tj) + σj)

=
∑
i∈VR

σKi −
∑

j∈VR

σj −
∑

j∈VR

δw(Tj)

We deduce from this inequality a lower bound for the number of required registers. In
this context, it may be useful to find an appropriate scheduling for which this value is
minimal. As

∑
j∈VR

δw(Tj) is a constant for the problem, we could ignore it in the
following optimization problem.

Efficient Method for Periodic Task Scheduling 443

We consider the scheduling problem (P):⎧⎪⎪⎨⎪⎪⎩
min

∑
i∈VR

σKi −
∑

j∈VR
σj

subject to :
σj − σi ≥ δ(e) − p × λ(e), ∀e = (Ti, Tj) ∈ E
σKi − σj ≥ δr(Tj) + p × λ(e), ∀Ti ∈ VR, ∀Tj ∈ Cons(Ti)|e = (Ti, Tj) ∈ ER

(8)

As the constraints matrix of the integer linear program of System 8 is totally unimodu-
lar, i.e., the determinant of each square sub-matrix is equal to 0 or to ± 1, we can use
polynomial algorithms to solve this problem [7]. This would allow us to consider huge
DDG. The resolution of problem (P) by a simplex method will provide optimal values
σ∗

i for each task Ti ∈ VR and the optimal values σ∗
Ki

for each killing node Ki.
Once the scheduling variables have been fixed, the minimal value of each potential

reuse distance would be equal to μij = !σ∗
Ki

−δw(Tj)−σ∗
j

p " according to 7 . Knowing
the reuse distance values μij if Tj reuses the register freed by Ti, the storage allocation
which consists of choosing which task reuses which released register can be modeled
as a linear assignment problem.

We consider the linear assignment problem (A):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

∑
(Ti,Tj)∈V 2

R
μi,jθij

Subject to∑
Tj∈VR

θi,j = 1, ∀Ti ∈ VR∑
Ti∈VR

θi,j = 1, ∀Tj ∈ VR

θij ∈ {0, 1}

(9)

where μi,j is a fixed value for each edge e = (Ti, Tj) ∈ V 2
R.

4.2 Heuristic

We suggest to solve the problem with the following heuristic :

– Solve the problem (P) to deduce the optimal values σ∗
i for each task Ti ∈ VR and

the optimal values σ∗
Ki

for each killing node Ki,

– Compute the cost μij = max
(
!σ∗

Ki
−δw(Tj)−σ∗

j

p "
)

for each edge e = (Ti, Tj) ∈
V 2

R,
– Solve the linear assignment problem (A) with the Hungarian algorithm [5] which

solves assignment problems in polynomial time (O(n3)) to deduce the optimal val-
ues θ∗i,j ,

– If θ∗i,j = 1 for the edge e = (Ti, Tj) ∈ V 2
R , then (Ti, Tj) is a reuse edge and the

reuse distance is equal to μij .

5 Experiments

We now present the results obtained on several DDG extracted from many well known
benchmarks (Spec95, whetstone, livermore, lin-ddot, DSP filters, etc.). The data depen-
dence graphs of all these loops are present in [8]. The small test instances have 2 nodes

444 K. Deschinkel and S.-A.-A. Touati

Table 1. SIRALINA and optimal Results

Benchmark |V | |E| Sopt Ssiralina Topt Tsiralina

lin-ddot 4 4 7 7 0.007 0.066
liv-loop1 9 11 5 5 0.364 0.067
liv-loop5 5 5 3 3 0.005 0.066
liv-loop23 20 26 10 12 605.548 0.069
spec-dod-loop1 13 15 5 6 198.472 0.067
spec-dod-loop2 10 10 3 3 0.084 0.067
spec-dod-loop3 11 11 3 4 0.257 0.067
spec-dod-loop7 4 4 35 35 0.004 0.066
spec-fp-loop1 5 6 2 2 0.006 0.067
spec-spice-loop1 2 2 3 3 0.004 0.067
spec-spice-loop2 9 10 15 15 2.757 0.067
spec-spice-loop3 4 5 2 2 0.005 0.067
spec-spice-loop4 12 51 8 8 0.088 0.068
spec-spice-loop5 2 2 1 1 0.003 0.067
spec-spice-loop6 6 7 14 14 0.016 0.067
spec-spice-loop7 5 5 40 40 0.005 0.067
spec-spice-loop8 4 4 7 7 0.005 0.067
spec-spice-loop9 11 17 7 7 26.242 0.067
spec-spice-loop10 4 4 2 2 0.005 0.069
spec-tom-loop1 15 18 5 7 604.278 0.068
test-christine 18 17 230 230 600.847 0.068
Elliptic 36 59 NA 10 NA 0.074
whet-cycle4-1 4 4 1 1 0.005 0.066
whet-cycle4-2 4 4 2 2 0.006 0.067
whet-cycle4-4 4 4 4 4 0.01 0.067
whet-cycle4-8 4 4 8 8 0.013 0.069
whet-loop1 16 28 5 6 0.2 0.068
whet-loop2 7 10 5 5 0.006 0.067
whet-loop3 5 16 4 4 0.006 0.067

and 2 edges, the large instances have multiples hundreds of nodes and edges. We use
the ILOG CPLEX 10.2 to solve the integer linear program. The experiment was run
on PC under linux, equipped with a Pentium IV 2.13 Ghz processor, and 2 Giga bytes
of memory. In practice, the optimal method [9] can solve small instances, around 10
nodes. As far as we know about our problem, it is still NP-complete even for DDG
chains and trees [8]: we do not have simple DDG instances larger than 10 nodes. We
are able to check the efficiency of our heuristic on small DDG instances by comparing
its results against the optimal ones. The theoretical computation of the approximation
ratio constitutes an additional problem which is not studied here.

Table 1 presents the results of SIRALINA against optimal method using common
benchmarks. This table presents the results for the minimal period of each benchmark.
Note that every benchmark has its own minimal period, defined as the critical circuit
of the DDG, which is inherent to the data dependences [2]. The first column represents
the name of the benchmark. The second and third column represent the instance size

Efficient Method for Periodic Task Scheduling 445

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Pr
oc

es
si

ng
 T

im
es

 in
 m

s
-

lo
g

sc
al

e

Period

Spec-spice-loop2

spec-spice-loop2 (optimal)
spec-spice-loop2 (siralina)

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16

Pr
oc

es
si

ng
 T

im
es

 in
 m

s
-

lo
g

sc
al

e

Period

Spec-spice-loop9

spec-spice-loop9 (optimal)
spec-spice-loop9 (siralina)

Fig. 2. Processing Times of some Benchmarks vs. Period

 1

 10

 100

 0 2 4 6 8 10 12

Pe
ri

od
ic

 S
to

ra
ge

 R
eq

ui
re

m
en

t

Period

Spec-spice-loop2

spec-spice-loop2 (optimal)
spec-spice-loop2 (siralina)

 1

 10

 2 4 6 8 10 12 14 16

Pe
ri

od
ic

 S
to

ra
ge

 R
eq

ui
re

m
en

t

Period

Spec-spice-loop9

spec-spice-loop9 (optimal)
spec-spice-loop9 (siralina)

Fig. 3. Storage Requirement of some Benchmarks vs. Period

(numbers of DDG nodes and edges). Columns number 4 and 5 give the storage
requirement (objective function values) computed by the optimal and SIRALINA meth-
ods (some instances could not be solved). The two lasts columns give the resolution
times in seconds. As can be seen in this table, SIRALINA is fast and nearly optimal.
Sometimes SIRALINA is slightly longer than the optimal method for two reasons: 1)
the timer is too precise (milliseconds) and the interactions with operating system dis-
turbs our timing measurements, and 2) SIRALINA performs in two steps while the
optimal method performs in one step (resolving a unique integer linear program). In
our context, we consider that a time difference which is less than 0.1 seconds is negli-
gible. Another interesting remark is that the processing time of SIRALINA is relatively
constant compared to the processing time of the optimal method. Another improve-
ment of SIRALINA compared to the optimal method is that SIRALINA performs in
relatively a constant resolution time (irrespective of the considered period p). Figure 2
illustrates some examples, where we can see that the optimal method performs in a
high variable processing time in function of the period p while SIRALINA is more
stable. Figure 3 shows that SIRALINA is still nearly optimal with various period val-
ues. This remark has been checked for all other benchmarks and periods: in almost all
benchmarks, SIRALINA computes nearly optimal results for all periods in a satisfac-
tory (fast) processing time.

446 K. Deschinkel and S.-A.-A. Touati

Table 2. SIRALINA and other heuristics

Benchmark Sf3 Sf5 Ssiralina Tsiralina

lin-ddot-10 40 27 7 0.072
liv-loop1-10 80 60 5 0.094
spec-dod-loop3-10 100 75 4 0.107
spec-spice-loop1-10 20 19 3 0.069
spec-spice-loop3-10 30 29 2 0.071
spec-spice-loop6-10 60 48 14 0.081

For large instances we compare our results against the ones obtained by two heuris-
tics (f3 and f5) proposed in [10]. Results are reported in table 2, where Sf3 and Sf5 de-
sign the storage requirement (objective function values) computed by heuristics f3 and
f5 and the last column gives the resolution time in seconds with SIRALINA. Bench-
marks presented in table 2 correspond to instances where loop bodies are duplicated ten
times (number of DDG nodes mutliplied by 10) and for which results with heuristic f3
and f5 have been presented in [10].

6 Conclusion

This article presents an efficient heuristic for the periodic task scheduling problem un-
der storage constraints. Our model is based on the theoretical approach of reuse graphs
studied in [9]. Storage allocation is expressed in terms of reuse edges and reuse dis-
tances to model the fact that two tasks use the same storage location.

Since computing an optimal periodic storage allocation is intractable in large data
dependence graphs (larger than 12 nodes for instance), we have identified a two steps
resolution method. We call this simplified method as SIRALINA. A first optimal step
provides scheduling variables and allows to compute the potential reuse distances if
the corresponding reuse edge is added. Then a second step solves a linear assignment
problem using the Hungarian method in order to select the appropriate reuse edges.

Our practical experiments on many DDGs show that SIRALINA provides satisfac-
tory solutions with fast resolution times. Consequently, this method is included inside
a compiler for embedded systems (in collaboration with STmicroelectronics).

Finally our future work will concentrate on the particular structure of the model con-
straints to consider the application of lagrangean relaxation to produce a bound stronger
than the bound obtained by continuous relaxation and/or to find another heuristic. Fur-
thermore it will be interesting to investigate how some hardware specificities could be
take into account. For instance, the use of a rotating register file (implemented inside
some processors) implies the presence of a Hamiltonian reuse cycle. The handling of
these kind of specificities is an additional challenge.

Acknowledgement

This work has been partially supported by the ANR MOPUCE project (ANR number
05-JCJC-0039).

Efficient Method for Periodic Task Scheduling 447

References

1. de Dinechin, B.D.: Parametric Computation of Margins and of Minimum Cumulative Regis-
ter Lifetime Dates. In: Sehr, D., Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.)
LCPC 1996. LNCS, vol. 1239, pp. 231–245. Springer, Heidelberg (1997)

2. Hanen, C., Munier, A.: A Study of the Cyclic Scheduling Problem on Parallel Processors.
Discrete Applied Mathematics 57(2-3), 167–192 (1995)

3. Eichenberger, A.E., Davidson, E.S., Abraham, S.G.: Minimizing Register Requirements of a
Modulo Schedule via Optimum Stage Scheduling. International Journal of Parallel Program-
ming 24(2), 103–132 (1996)

4. Fimmel, D., Muller, J.: Optimal Software Pipelining Under Resource Constraints. Interna-
tional Journal of Foundations of Computer Science (IJFCS) 12(6), 697–718 (2001)

5. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research Logistics
Quarterly 2, 83–97 (1955)

6. Janssen, J.: Compilers Strategies for Transport Triggered Architectures. PhD thesis, Delft
University, Netherlands (2001)

7. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York
(1987)

8. Touati, S.-A.-A.: Register Pressure in Instruction Level Parallelisme. PhD thesis, Université
de Versailles, France (June 2002),
ftp.inria.fr/INRIA/Projects/a3/touati/thesis

9. Touati, S.-A.-A.: Periodic Task Scheduling under Storage Constraints. In: Proceedings of the
Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA
2007) (August 2007)

10. Touati, S.-A.-A., Eisenbeis, C.: Early Periodic Register Allocation on ILP Processors. Paral-
lel Processing Letters 14(2) (June 2004)

11. Strout, M.M., Carter, L., Ferrante, J., Simon, B.: Schedule-Independent Storage Mapping for
Loops. ACM SIG-PLAN Notices 33(11), 24–33 (1998)

12. Thies, W., Vivien, F., Sheldon, J., Amarasinghe, S.: A Unified Framework for Schedule and
Storage Optimization. ACM SIGPLAN Notices 36(5), 232–242 (2001)

ftp.inria.fr/INRIA/Projects/a3/touati/thesis

Stochastic Online Scheduling Revisited

Andreas S. Schulz

Sloan School of Management, Massachusetts Institute of Technology,
E53-361, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract. We consider the problem of minimizing the total weighted
completion time on identical parallel machines when jobs have stochas-
tic processing times and may arrive over time. We give randomized as
well as deterministic online and off-line algorithms that have the best
known performance guarantees in either setting, deterministic and off-
line or randomized and online. Our analysis is based on a novel linear
programming relaxation for stochastic scheduling problems, which can
be solved online.

1 Introduction

We study approximation algorithms for stochastic and online versions of the fol-
lowing deterministic, off-line scheduling problem. There is a set of n jobs to be pro-
cessed on m identical parallel machines. Each job j has a nonnegative weight wj ,
processing time pj , and release date rj . After its release, a job has to be processed
on some machine, and each machine can handle at most one job at a time. The ob-
jective is to assign jobs to machines and to determine a feasible sequence on each
machine so as to minimize the total weighted completion time,

∑n
j=1 wjCj . Here,

Cj denotes the completion time of job j in the schedule. The deterministic prob-
lem is well understood: It is known to be strongly NP-hard (Lenstra, Rinnooy Kan,
and Brucker 1977), and it has a polynomial-time approximation scheme (Afrati et
al. 1999); a simpler 2-approximation algorithm, which is of particular relevance to
the work described here, was earlier given by Schulz and Skutella (20002b).

In stochastic scheduling (Möhring, Radermacher, and Weiss 1984), job pro-
cessing times are modeled as random variables, each specified by some probabil-
ity distribution (with expected value μj and standard deviation σj). The actual
processing time of a job does not become known before it is completed. Research
has traditionally focused on nonanticipative policies that aim at minimizing the
objective function in expectation. Moreover, it is typically assumed that job pro-
cessing times are stochastically independent. These views are adopted here as
well. A scheduling policy is nonanticipative if its decisions about which jobs to
schedule at any given time t depend only on the jobs that are already completed
by that time and on the conditional distributions of the remaining processing
times of jobs that are still active at time t.

For the single-machine problem without nontrivial release dates (m = 1, rj = 0
for all jobs j), Rothkopf (1966) showed that the WSEPT rule is optimal,
which schedules the jobs in order of nonincreasing ratios of weight to expected

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 448–457, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stochastic Online Scheduling Revisited 449

processing time. For unit weights and exponentially distributed processing times,
the Shortest Expected Processing Time rule remains optimal on identical parallel
machines (Weiss and Pinedo 1980). In fact, Weber, Varaiya, and Walrand (1986)
showed that it suffices when the processing time distributions are stochastically
comparable in pairs. For arbitrary weights, WSEPT is optimal for exponentially
distributed processing times if the WSEPT order of jobs coincides with sequencing
the jobs in the order of nonincreasing weights (Kämpke 1987). Under minor tech-
nical assumptions, Weiss (1990) showed that the WSEPT rule is asymptotically
optimal.

The stochastic scheduling problem considered here, when jobs may have indi-
vidual release dates, was first addressed by Möhring, Schulz, and Uetz (1999). For
processing time distributions whose coefficients of variation σj/μj are bounded
from above by

√
Δ, they gave a static priority policy whose expected objective

function value is within a factor of max{4, 3 + Δ} of that of an optimal policy.1

In addition, they showed that the WSEPT rule has a performance guarantee
of 1 + (Δ + 1)/2 for the problem with identical release dates. This marked the
first time that the use of approximation algorithms was proposed in the realm
of stochastic scheduling. The analysis as well as the algorithm for the general
case is based on a linear programming relaxation, which provides a lower bound
on the expected value of an optimal policy.

A different way of dealing with incomplete information is that of online al-
gorithms and competitive analyses. In our context, jobs arrive over time and
are completely unknown prior to their arrival. However, a job’s processing time
and weight are fully revealed at the time of its arrival. The performance of an
online algorithm is usually compared to that of an optimal off-line algorithm,
which has full hindsight. This quotient is known as the competitive ratio. For
randomized online algorithms, we compare the expected objective function value
of the solution generated by the algorithm to the value of an off-line optimum.
This corresponds to the so-called oblivious adversary model. We refer the reader
to Borodin and El-Yaniv (1998) for a general introduction to online algorithms,
and to Sgall (1998) for a survey of online scheduling models and results. In the
context of the identical parallel machine scheduling problem considered here,
online algorithms were designed and analyzed by Hall et al. (1997), Chakrabarti
et al. (1996), Schulz and Skutella (20002b), Megow and Schulz (2004), and Cor-
rea and Wagner (2008). The currently best deterministic online algorithm has
a competitive ratio of 2.618 (Correa and Wagner 2008), while the best known
randomized algorithm is 2-competitive (Schulz and Skutella 20002b).

Chou et al. (2006) proposed to study stochastic online scheduling, where jobs
arrive over time, as in online scheduling, but when a job arrives only its weight
and processing time distribution become known. The expected total weighted
completion time of the schedule computed by an online policy is then compared
to that of an optimal stochastic policy, which has access to all job release dates,

1 The performance guarantee of this algorithm is actually slightly better than this; to
make for an improved reading, we generally suppress terms of order 1/m from this
extended abstract.

450 A.S. Schulz

weights, and processing time distributions at time 0. In other words, the adver-
sary controls the arrival of jobs, their weights, and their processing time distri-
butions, but he cannot influence the actual realization of processing times. While
Chou et al. (2006) considered single-machine and flow-shop problems, Megow,
Uetz, and Vredeveld (2006) looked at the identical parallel machine model con-
sidered here. They introduced δ-NBUE distributions2 and gave a deterministic
online algorithm with performance guarantee 3/2 + δ +

√
4δ2 + 1/2. Their anal-

ysis uses the linear programming relaxation introduced by Möhring, Schulz, and
Uetz (1999), when their algorithm does not.

In this paper, we present deterministic and randomized approximation algo-
rithms that have the best known performance guarantees for stochastic (off-line
and online) scheduling on identical parallel machines with the sum of weighted
completion times objective. The key is a new, stronger linear programming relax-
ation for this problem. Moreover, this linear program can be solved by a simple
online rule, which constructs a preemptive single-machine schedule. We use this
schedule to define an online policy for the original, stochastic problem. This
approach has previously been used successfully for various deterministic online
problems, including nonpreemptive scheduling on a single machine (Goemans et
al. 2002), preemptive single-machine scheduling (Schulz and Skutella 20002a),
identical parallel machine scheduling (Schulz and Skutella 20002b), and uniform
parallel machine scheduling (Chou, Queyranne, and Simchi-Levi 2006).

We present one randomized and one deterministic algorithm; both work online
and run in polynomial time.3 Their respective performance ratios are 2 + Δ
and max{2.618, 2.309+1.309Δ}, respectively. The randomized algorithm can be
derandomized, which results in a deterministic (2+Δ)-approximation algorithm
for the stochastic (off-line) scheduling problem. Table 1 compares the new results
from this paper to earlier results.

The algorithms proposed here are derived from earlier algorithms for deter-
ministic scheduling problems, as were previous algorithms for stochastic schedul-
ing. In our case, we manipulate a randomized online algorithm of Schulz and
Skutella (20002b) as well as a deterministic online algorithm by Correa and Wag-
ner (2008). Previously, Möhring, Schulz, and Uetz (1999) built on deterministic
algorithms by Hall et al. (1997); Skutella and Uetz (2005) used techniques of
Chekuri et al. (2001); and Megow, Uetz, and Vredeveld (2006) drew on ideas

2 For δ = 1, one recaptures the well-known NBUE distributions, “New Better than
Used in Expectation,” which include, among others, exponential, Erlang, uniform,
and Weibull distributions. In the context of stochastic scheduling, an NBUE distri-
bution would imply that the expected remaining processing time of a job in process
is never more than the expected processing time of that job before it was started.
NBUE distributions satisfy Δ ≤ 1 (Hall and Wellner 1981). In general, Δ ≤ 2δ − 1
(Megow, Uetz, and Vredeveld 2006).

3 A general definition of the input size of a stochastic scheduling problem would need
to deal with the way in which arbitrary probability distributions are specified. The
running times of the algorithms proposed here depend only on the input size of the
corresponding deterministic problems where job processing times are replaced by
expected values.

Stochastic Online Scheduling Revisited 451

Table 1. Overview of the development of performance guarantees/competitive ratios
for stochastic scheduling with the total weighted completion time objective. To allow
for a comparison, we assume that the processing time of each job follows an NBUE
distribution.

Model
Performance Guarantee

Reference
deterministic randomized

off-line, all rj = 0 2 − Möhring et al. (1999)

4 − Möhring et al. (1999)

off-line, general rj 3.618 − Megow et al. (2006)

3 − this paper

3.618 Megow et al. (2006)
online

3.618 3 this paper

from Megow and Schulz (2004). In each case, the challenge is to refine the algo-
rithm and its analysis such that they still work, even though job processing times
are random. In contrast to the previous approximation and online algorithms for
stochastic scheduling problems, which all relied on the lower bounds introduced
by Möhring, Schulz, and Uetz (1999), we use a linear programming relaxation
that is new in the context of stochastic scheduling.

2 A Linear Programming Relaxation

Möhring, Schulz, and Uetz (1999) showed that the vector of expected completion
times of any nonanticipative policy satisfies the following inequalities:∑

j∈S

μj Cj ≥ 1
2m

(∑
j∈S

μj

)2

− Δ − 1
2

∑
j∈S

μ2
j for all S ⊆ N.

As mentioned before, Δ is an upper bound on the squared coefficients of vari-
ation; i.e., σ2

j /μ2
j ≤ Δ for all j ∈ N , where N := {1, 2, . . . , n} denotes the set

of all jobs. One can strengthen these inequalities by observing that none of the
jobs in a subset S can be processed before time rmin(S) := min{rj : j ∈ S}.

Lemma 1. Let Π be a nonanticipative policy for the stochastic identical parallel
machine scheduling problem. Then, the corresponding vector E[CΠ] of expected
completion times satisfies the following inequalities:∑

j∈S

μj

(
Cj +

Δ − 1
2

μj

)
≥ rmin(S)

∑
j∈S

μj +
1

2m

(∑
j∈S

μj

)2

for all S ⊆ N. (1)

A similar observation was made earlier in the context of deterministic scheduling;
see Queyranne and Schulz (1995). Its relevance in our situation is a consequence

452 A.S. Schulz

of the fact that the associated linear programming relaxation, when we minimize∑
j∈N wjCj over (1), is equivalent to that of a deterministic single-machine prob-

lem. In fact, setting Mj := Cj + Δ−1
2 μj , leads to the following, equivalent linear

program:

min
∑
j∈N

wjMj (2a)

s.t.
∑
j∈S

μj

m
Mj ≥

∑
j∈S μj

m

(
rmin(S) +

∑
j∈S μj

2m

)
for all S ⊆ N. (2b)

Note that in (2) we have dropped the term 1−Δ
2

∑
j∈N wjμj from the objective

function, as it is constant anyway.
The linear program (2) can be interpreted as a relaxation of a single-machine

scheduling problem where jobs have (deterministic) processing times μj/m, and
the formulation makes use of mean busy time variables Mj . The mean busy time
Mj of job j is the average point in time at which the (single) machine is busy
with processing job j. In other words, if Ij(t) is 1 if the machine is processing
job j at time t, and 0 otherwise, then

Mj =
1
pj

∫ ∞

rj

Ij(t) t dt .

Here and henceforth, we use pj to denote the processing time of job j on the
“fast” single machine; i.e., pj = μj/m.

Theorem 2 (Goemans et al. 2002). The mean busy time vector of the pre-
emptive single-machine schedule that is constructed by the following online algo-
rithm is an optimal solution to the linear programming relaxation (2):

At any point in time, schedule from the available (and as of yet not
completed) jobs one with the highest ratio of weight to processing time.

As was done before (Goemans et al. 2002; Schulz and Skutella 20002a; Chou et
al. 2006; Correa and Wagner 2008), we refer to this preemptive schedule as the
“LP schedule.” It is worth pointing out that Theorem 2 effectively implies that
one can solve the linear programming relaxation of minimizing

∑
j∈N wjCj over

(1) online. So, not only it provides a lower bound on the expected value of an
optimal off-line policy, but also it can be used to design an online algorithm for
the stochastic scheduling problem itself.

3 A Randomized Algorithm

In the spirit of all previous approximation algorithms for nonpreemptive stochas-
tic scheduling problems, which are based on existing algorithms for determinis-
tic scheduling problems, we will now extend an algorithm of Schulz and Skutella
(20002b) to stochastic online scheduling. To describe the algorithm, we need the

Stochastic Online Scheduling Revisited 453

notion of α-points. For 0 < α ≤ 1, the α-point tj(α) of a job j is the first moment
in time when an α-fraction of j has been completed in the LP schedule. α-points
were introduced by Sousa (1989), and have since been used in the design of a
variety of approximation and online algorithms for scheduling problems.

The algorithm that we analyze here works as follows. It maintains, side-by-side
with the actual schedule on m machines, the preemptive LP schedule on the (vir-
tual) single machine. For this, we create a priority list L of jobs, sorted by nonin-
creasing ratios of weight to expected processing time. Initially, L is empty. When-
ever a new job j arrives, we draw some value αj ∈ (0, 1] uniformly at random
(independent from the drawings for other jobs). Moreover, job j is inserted into
the correct position in L. (Ties are broken arbitrarily.) We obtain the LP schedule
by scheduling, at any point in time, the first job in L on the virtual machine. As
soon as job j has reached its αj-point in the LP schedule; i.e., when it has been
processed for αjpj units of time on the virtual machine, it is randomly assigned
to one of the m machines (independent of the assignments of other jobs). It then
enters another priority list on that machine, which is arranged by nondecreasing
α-points. (As before, ties are broken arbitrarily.) On each real machine, jobs are
then scheduled nonpreemptively in that order. Note that, by construction, no job
can start before its α-point. Finally, whenever a job j is completed on the virtual
machine (i.e., it has been processed for pj periods of time), it is removed from L.
And when it is completed on its real machine, it is deleted from the priority list
of that machine. This concludes the description of the algorithm, which we call
RSOS (for Randomized Stochastic Online Scheduling).

Theorem 3. Let I be an instance of the stochastic scheduling problem to mini-
mize the total weighted completion time on identical parallel machines in which
jobs arrive over time, and let Δ be an upper bound on the squared coefficients
of variation of the jobs’ processing times. Moreover, let OPT(I) be the objec-
tive function value of an optimal off-line nonanticipative scheduling policy for I.
Finally, let RSOS(I) be the value of the schedule produced by the randomized
online policy RSOS. Then, E[RSOS(I)] ≤ (Δ + 2)E[OPT(I)].

Proof. Let us consider an arbitrary, but fixed job j. Initially, let us also fix the
index i of the machine to which j has been assigned, as well as a value of αj . Note
that j is ready to start at time tj(αj) on machine i; in particular, rj ≤ tj(αj). If
j is not started at time tj(αj), then it is delayed by jobs with a smaller α-point
that have been assigned to the same machine i. We denote by Ei,αj [Cj] the
conditional expected completion time of job j, where the expectation is taken
both over the random choices of the algorithm, except for i and αj , which are
still fixed, and the processing times. We then have

Ei,αj [Cj] ≤ tj(αj) + μj +
∑
k �=j

μk P (k on i before j)

≤ tj(αj) + μj +
∑
k �=j

μk
1
m

1
pk

∫ tj(αj)

0

Ik(t) dt

≤ tj(αj) + μj + tj(αj) = 2 tj(αj) + μj .

454 A.S. Schulz

In the first inequality, P (k on i before j) is the probability that job k �= j is
assigned to the same machine as j and will be started before j. The probability
that k is assigned to machine i is 1/m. The integral in the second inequality
captures the fraction of job k that is processed in the LP schedule before tj(αj),
which, by the choice of αk, is precisely the probability of tk(αk) being smaller
than tj(αj). The remaining two inequalities are straightforward. We finally get
rid of the conditional expectation by noting that the average αj-point is equal
to the mean busy time Mj in the LP schedule (Goemans et al. 2002). Therefore,

E[Cj] ≤ 2
∫ 1

0

tj(αj) dαj + μj = 2 Mj + μj .

The result now follows from our earlier observation that
∑

j∈N wjMj −
Δ−1

2

∑
j∈N wjμj is a lower bound on the expected value of an optimal policy

(Lemma 1), and so is
∑

j∈N wjμj . Hence,

E
[∑

j∈N

wjCj

]
≤ 2

∑
j∈N

wjMj +
∑
j∈N

wjμj

= 2
∑
j∈N

wjMj − (Δ − 1)
∑
j∈N

wjμj + Δ
∑
j∈N

wjμj

≤ (2 + Δ)OPT(I) . �	

The crucial observation, which makes this proof work, is that the set of jobs that
is scheduled on machine i before job j does not depend on the actual realization
of processing times. The order of jobs is determined by the LP schedule, which
depends only on the expected processing times.

Corollary 4. There exists a deterministic (2+Δ)-approximation algorithm for
the stochastic (off-line) problem of minimizing the weighted sum of completion
times on identical parallel machines subject to release dates.

We omit the proof from this extended abstract, but note that this algorithm
can be obtained from RSOS by the method of conditional probabilities (Spencer
1987). Of course, this implies that the derived algorithm does not work in an
online context. This will be fixed, to some extent, in the next section.

4 A Deterministic Algorithm

A simple, though somewhat less effective way of derandomizing the RSOS policy,
yet one that does not destroy its online nature, is to choose αj deterministically
beforehand. The rest of the algorithm, to which we will refer as DSOS, remains
unchanged, except that jobs are not randomly assigned to machines. Instead,
we employ a list scheduling strategy: whenever a machine becomes available, we
start a job with the smallest α-point of all not-yet-processed jobs whose α-points
have already passed. Let φ denote the golden ratio, and let us choose αj = φ−1
for all j ∈ N .

Stochastic Online Scheduling Revisited 455

Theorem 5. Let I be an instance of the stochastic scheduling problem to mini-
mize the total weighted completion time on identical parallel machines in which
jobs arrive over time, and let Δ be an upper bound on the squared coefficients
of variation of the jobs’ processing times. Moreover, let OPT(I) be the objec-
tive function value of an optimal off-line nonanticipative scheduling policy for I.
Finally, let DSOS(I) be the value of the schedule produced by the deterministic
online policy DSOS. Then, E[DSOS(I)] ≤ max{φ+ 1, φ+1

2 Δ + φ+3
2 }E[OPT(I)].

Proof. The proof is saved for the full version of this paper; it is based on careful
modifications of the proof of Correa and Wagner (2008, Theorem 3.2), which it-
self is based on that of Goemans et al. (2002, Theorem 3.3). Apart from Lemma 1,
the key insight is that the start of any job j is always delayed by the same set
of jobs, regardless of the actual instantiation of processing times. �	

5 Concluding Remarks

In this paper, we have taken the design and analysis of approximation and online
algorithms for nonpreemptive stochastic scheduling problems a step further. The
main ingredient is a new linear programming relaxation for stochastic scheduling
problems on identical parallel machines that is provably stronger than the one
that was used in the design of all previously proposed approximate policies.

While the algorithms studied here do have deterministic counterparts that
were analyzed before, it is important to recognize that the extension of algo-
rithms designed for deterministic scheduling problems to stochastic problems
is not automatic. In fact, many approaches that work well for deterministic
scheduling problems cannot be modified to handle random processing times.

In the course of this work, we have obtained the first randomized policy
for stochastic online scheduling as well as the best performance guarantee for
stochastic (off-line) scheduling on identical parallel machines with release dates.
Looking beyond the realm of stochastic scheduling, this paper provides addi-
tional proof of the versatility of the LP schedule, which had previously been
used to derive a series of best known performance guarantees, competitive ra-
tios, and asymptotic optimality results for a variety of scheduling problems; see
Goemans et al. (2002), Schulz and Skutella (20002a, 20002b), Chou et al. (2006),
and Correa and Wagner (2008), among others.

It is also worth mentioning that both RSOS and DSOS need information on
expected processing times only, even though they are compared to optimal poli-
cies that have full access to the entire distribution. Moreover, as was the case for
the previous linear programming relaxation by Möhring, Schulz, and Uetz (1999),
the new linear programming relaxation remains valid for preemptive schedules.
In particular, the nonpreemptive schedules generated by the algorithms con-
sidered here and in previous papers are approximate solutions for preemptive
stochastic scheduling as well. While their worst-case performance guarantees are
not as good as the one in Megow and Vredeveld (2006), the policies are simple,
can be implemented in polynomial time, and require little information about the
distribution of processing times.

456 A.S. Schulz

Acknowledgments

The author is grateful to the organizers of Dagstuhl Seminar 05031, where this
work was originally conceived, and to José Correa for sending him a preliminary
version of Correa and Wager (2008), which inspired him to revisit stochastic
scheduling problems. This research was supported by NSF awards #0426686
and #0700044, and by ONR grant N00014-08-1-0029.

References

Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for
minimizing average weighted completion time with release dates. In: Proceedings of
the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–43
(1999)

Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge (1998)

Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved
scheduling algorithms for minsum criteria. In: auf der Heide, F., Monien, B. (eds.)
ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)

Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for av-
erage completion time scheduling. SIAM Journal on Computing 31, 146–166 (2001)

Chou, M., Liu, H., Queyranne, M., Simchi-Levi, D.: On the asymptotic optimality of a
simple on-line algorithm for the stochastic single-machine weighted completion time
problem and its extensions. Operations Research 54, 464–474 (2006)

Chou, M., Queyranne, M., Simchi-Levi, D.: The asymptotic performance ratio of an
on-line algorithm for uniform parallel machine scheduling with release dates. Math-
ematical Programming 106, 137–157 (2006)

Correa, J., Wagner, M.: LP-based online scheduling: From single to parallel machines.
Mathematical Programming (in press, 2008)

Goemans, M., Queyranne, M., Schulz, A., Skutella, M., Wang, Y.: Single machine
scheduling with release dates. SIAM Journal on Discrete Mathematics 15, 165–192
(2002)

Hall, L., Schulz, A., Shmoys, D., Wein, J.: Scheduling to minimize average completion
time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research 22, 513–544 (1997)

Hall, W., Wellner, J.: Mean residual life. In: Csörgö, M., Dawson, D., Rao, J., Saleh,
A.E. (eds.) Proceedings of the International Symposium on Statistics and Related
Topics, pp. 169–184 (1981)

Kämpke, T.: On the optimality of static priority policies in stochastic scheduling on
parallel machines. Journal of Applied Probability 24, 430–448 (1987)

Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems.
Annals of Discrete Mathematics 1, 343–362 (1977)

Megow, N., Schulz, A.: On-line scheduling to minimize average completion time revis-
ited. Operations Research Letters 32, 485–490 (2004)

Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research 31, 513–525 (2006)

Megow, N., Vredeveld, T.: Approximation results for preemptive stochastic online
scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–
527. Springer, Heidelberg (2006)

Stochastic Online Scheduling Revisited 457

Möhring, R., Radermacher, F., Weiss, G.: Stochastic scheduling problems I: General
strategies. Zeitschrift für Operations Research 28, 193–260 (1984)

Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The power
of LP-based priority policies. Journal of the ACM 46, 924–942 (1999)

Queyranne, M., Schulz, A.: Scheduling unit jobs with compatible release dates on
parallel machines with nonstationary speeds. In: Balas, E., Clausen, J. (eds.) IPCO
1995. LNCS, vol. 920, pp. 307–320. Springer, Heidelberg (1995)

Rothkopf, M.: Scheduling with random service times. Management Science 12, 703–713
(1966)

Schulz, A., Skutella, M.: The power of α-points in preemptive single machine schedul-
ing. Journal of Scheduling 5, 121–133 (2002a)

Schulz, A., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM
Journal on Discrete Mathematics 15, 450–469 (2002b)

Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The
State of the Art. LNCS, vol. 1442, ch. 9, pp. 196–231. Springer, Heidelberg (1998)

Skutella, M., Uetz, M.: Stochastic machine scheduling with precedence constraints.
SIAM Journal on Computing 34, 788–802 (2005)

Sousa, J.: Time Indexed Formulations of Non-Preemptive Single-Machine Scheduling
Problems. Ph.D. thesis, Université Catholique de Louvain, Belgium (1989)

Spencer, J.: Ten Lectures on the Probabilistic Method. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 52. SIAM, Philadelphia (1987)

Weber, R., Varaiya, P., Walrand, J.: Scheduling jobs with stochastically ordered pro-
cessing times on parallel machines to minimize expected flowtime. Journal of Applied
Probability 23, 841–847 (1986)

Weiss, G.: Approximation results in parallel machines stochastic scheduling. Annals of
Operations Research 26, 195–242 (1990)

Weiss, G., Pinedo, M.: Scheduling tasks with exponential service times on nonidentical
processors to minimize various cost functions. Journal of Applied Probability 17,
187–202 (1980)

Delay Management Problem:

Complexity Results and Robust Algorithms�

Serafino Cicerone1, Gianlorenzo D’Angelo1, Gabriele Di Stefano1,
Daniele Frigioni1, and Alfredo Navarra2

1 Department of Electrical and Information Engineering,
University of L’Aquila, Poggio di Roio, 67040 L’Aquila Italy
{cicerone,gdangelo,gabriele,frigioni}@ing.univaq.it

2 Department of Mathematics and Informatics, University of Perugia,
Via Vanvitelli 1, 06123 Perugia, Italy

navarra@dipmat.unipg.it

Abstract. In this paper, we study the problem of planning a timetable
for passenger trains considering that possible delays might occur due to
unpredictable (but bounded) circumstances. Once arrival and departure
events are scheduled, if the timetable cannot be respected since an exter-
nal event has determined a delay to a train, the so called delay manage-
ment problem occurs. Delays might be managed in several ways and the
usual objective function considered for such purpose is the minimization
of the overall waiting time caused to passengers.

We analyze the interaction between timetable planning and delay
management in terms of the recoverable robustness model, where a
timetable is said to be robust if it is able to absorb small delays by
possibly applying given recovery capabilities. The quality of a robust
timetable is measured by the price of robustness that is the ratio be-
tween the cost of the robust timetable and that of a non-robust optimal
timetable.

We consider the problem of designing robust timetables subject to
bounded delays. We show that finding an optimal solution for this prob-
lem is NP-hard. Hence, we propose robust algorithms and evaluate their
prices of robustness. Moreover, we show that such algorithms are optimal
with respect to particular assumptions.

1 Introduction

Many real world applications are characterized by a strategic planning phase and
an operational planning phase. The main difference among the two planning
phases resides in the time in which they are applied. The strategic planning
phase aims to plan how to optimize the use of the available resources according
to some objective function before the system starts operating. The operational
planning phase aims to have immediate reaction to disturbing events that can
� This work was partially supported by the Future and Emerging Technologies Unit of

EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 458–468, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Delay Management Problem: Complexity Results and Robust Algorithms 459

occur when the system is running. In general, the objectives of strategic and
operational planning might be in conflict with each other. As disturbing events
are unavoidable in large and complex systems, it is fundamental to understand
the interaction between the objectives of the two phases.

A concrete example of real world systems, where this interaction is important,
is the timetable planning in railways systems. It arises in the strategic planning
phase of railways systems, and it requires to compute a timetable for passen-
ger trains that determines minimal passenger waiting times. However, many
disturbing events might occur during the operational phase, and they might
completely change the scheduled activities. The main effect of such disturbing
events is the arising of delays. These might be caused by malfunctioning infras-
tructure/devices, special events, or extreme weather conditions. The conflicting
objectives of strategic against operational planning are evident in timetable op-
timization. In fact, a train schedule that lets trains sit in stations for some time
will not suffer from small delays of arriving trains, because delayed passengers
can still catch potential connecting trains. On the other hand, big delays can
cause passengers to loose trains and hence imply extra traveling time.

The problem of deciding when to guarantee connections from a delayed train
to a connecting train is known in the literature as delay management prob-
lem [1,2,3] and it has a twofold impact. On the one hand, the passengers arriving
late still catch their connection and do not have to wait for the next train. On
the other hand, passengers in the connecting train now face a delay and may
miss subsequent connections. The latter implies that the delay can propagate
through the railway network. The trade-off between these two effects leads to
the natural objective of minimizing the overall delay faced by the total passenger
population. Although its natural formalization, the problem turns out to be very
complicated to be optimally solved. In fact it has been shown to be NP-hard in
the general case, while it is polynomial in some particular cases (see [2,3,4,5,6,7]).

In order to cope with the delay management problem we can follow two pos-
sible approaches: 1) to apply a recovery strategy to the timetable defined in
the strategic planning phase and try to rapidly obtain a new feasible timetable
which considers the occurred delays; 2) to design the timetable in the strategic
planning phase in order to be “prepared” to react against possible disruptions.

The second approach is known in the literature as robust optimization. In
the last years, several attempts have been done in order to formalize the notion
of robustness for optimization problems (see, e.g., [8,9,10,11]). In such models,
the basic idea of robustness is given by a problem and some kind of disturbing
events. That is, the solution provided for a given instance of the problem must
hold even though a disturbing event occurs. This approach is not always suitable
in practical scenarios as it does not allow to use recovery strategies. In fact, in
real cases, we are allowed to modify the planned solution by using (possibly)
limited resources during the operational phase. Considering robustness and re-
coverability in a unified way has lead to the recoverable robustness model. This
model has been recently introduced in [12] and it has been extended and applied
to shunting problems in [13].

460 S. Cicerone et al.

In this paper, we apply the recoverable robustness model in the context of
timetable planning and delay management problems. In detail, we take a partic-
ular timetabling problem TT and turn it into a recoverable robustness problem
that we call Robust Delay Management problem (RDM). We show that finding
a solution for RDM which minimizes the objective function of TT is NP-hard.
Hence, we propose robust algorithms and we show that such algorithms are
optimal with respect to some restrictions.

2 The Recoverable Robustness Model

In this section, we report the model of recoverable robustness given in [12] and
modified in [13]. Such a model describes how an optimization problem P can
be turned into a robustness problem P . Hence, concepts like robust solution,
robust algorithm for P and price of robustness are defined. In the remainder, an
optimization problem P is characterized by the following parameters.

– I, the set of instances of P ;
– F , the function that associates to any instance i ∈ I the set of all feasible

solutions for i;
– f : S → R, the objective function of P , where S =

⋃
i∈I F (i) is the set of all

feasible solutions for P .

Without loss of generality from now on we consider minimization problems.
Additional concepts to introduce robustness requirements for a minimization
problem P are needed:

– M : I → 2I – a modification function for instances of P . This function
models the following case. Let i ∈ I be the considered input to the problem
P , and let s ∈ S be the planned solution for i. A disruption is meant as a
modification to the input i, and such a modification can be seen as a new
input j ∈ I. Typically, the modification j depends on the current input i,
and this fact is modeled by the constraint j ∈ M(i). Hence, given i ∈ I,
M(i) represents the set of instances of P that can be obtained by applying
all possible modifications to i. Of course, when a disruption j ∈ M(i) occurs,
a new solution s′ ∈ F (j) has to be recomputed for P .

– A – a class of recovery algorithms for P . Algorithms in A represent the
capability of recovering against disruptions. Since in a real-world problem
the capability of recovering is limited, the class A can be defined in terms of
some kind of restrictions, such as feasibility or algorithmic restrictions. An
element Arec ∈ A works as follows: given (i, s) ∈ I ×S, an instance/solution
pair for P , and j ∈ M(i), a modification of the current instance i, then
Arec(i, s, j) = s′, where s′ ∈ F (j) represents the recovered solution for P .

Definition 1. A recoverable robustness problem P is defined by the triple
(P, M, A). All the recoverable robustness problems form the class RRP.

Delay Management Problem: Complexity Results and Robust Algorithms 461

Definition 2. Let P = (P, M, A) ∈ RRP. Given an instance i ∈ I for P , an
element s ∈ F (i) is a feasible solution for i with respect to P if and only if the
following relationship holds:

∃Arec ∈ A : ∀j ∈ M(i), Arec(i, s, j) ∈ F (j)

In other words, s ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ A for each possible disruption j ∈ M(i). We
use the notation FP(i) to represent all the feasible solutions for i with respect
to P . Formally FP(i) is defined as:

FP(i) = {s ∈ F (i) : s is a feasible solution for i with respect to P}.

Notice that, FP(i) can be also considered as the set of robust solutions for i with
respect to the original problem P .

Definition 3. Let P = (P, M, A) ∈ RRP. A robust algorithm for P is any
algorithm Arob such that, for each i ∈ I, Arob(i) is a robust solution for i with
respect to P .

It is worth to mention that, if A is the class of algorithms that do not change
the solution s, that is, if each algorithm Arec ∈ A fulfills the following condition

∀(i, s) ∈ I × S, ∀j ∈ M(i), Arec(i, s, j) = s,

then the robustness problem P = (P, M, A) represents the so called strict robust-
ness problem. In this case, a robust algorithm Arob for P must provide a solution
s for i such that, for each possible modification j ∈ M(i), s ∈ F (j). This means
that, since Arec has no capability of recovering against possible disruptions, then
Arob has to find solutions that “absorb” any possible disruption.

The following definition introduces the concepts of price of robustness of both
a robust algorithm and a recoverable robustness problem.

Definition 4. Let P ∈ RRP. The price of robustness of a robust algorithm Arob

for P is given by

Prob(P , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}
.

Definition 5. Let P ∈ RRP. The price of robustness of P is given by

Prob(P) = min{Prob(P , Arob) : Arob is a robust algorithm for P}.

Definition 6. Let P ∈ RRP and let Arob be a robust algorithm for P. Then,

– Arob is exact if Prob(P , Arob) = 1;
– Arob is P-optimal if Prob(P , Arob) = Prob(P).

3 Delay Management Problem

In this section we first consider a particular timetable problem and then we turn
it into a recoverable robustness problem, the Robust Delay Management problem
(RDM), according to the model of Section 2.

462 S. Cicerone et al.

3.1 The Timetabling Problem

We use an event activity network defined in [3] and reported in the following.
An arrival of a vehicle g at a station v is denoted as the arrival event (g, v, arr),

while the departure event (g, v, dep) describes the departure of some vehicle g at
some station v. The sets of arrival and departure events are denoted by Earr and
Edep, respectively. At a station v a train g might wait some time before departing.
The waiting activity is represented by an arc from (g, v, arr) to (g, v, dep), while
a driving activity, i.e., the activity performed by a departing train g from a
station v to a station u is represented by an arc from (g, v, dep) to (g, u, arr).
Another activity, called changing activity, can be performed by passengers that
need/want to move from a train g to a train h, and it is represented by an arc
from (g, v, arr) to (h, v, dep). The sets of waiting, driving and changing activities
are denoted by Await, Adrive and Achange, respectively. More formally, the event
activity network is a graph N = (E ,A) where:

- E = Earr ∪ Edep is a set of nodes, called events ;
- A = Await∪Adrive∪Achange is a set of directed arcs, called activities, where:

Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep}
Adrive = {((g, v, dep), (g, u, arr)) ∈ Edep × Earr :

vehicle g goes directly from station v to u}
Achange = {((g, v, arr), (h, v, dep)) ∈ Earr × Edep : a changing

possibility from vehicle g into h at station v is required}.

The driving and waiting activities are performed by vehicles, while the chang-
ing activities are performed by passengers. Notice that a precedence relation *
between events is canonically given, where u * v indicates that there exists a
direct path from u to v. A minimal element with respect to * always exists, but
it may be not unique. Moreover, if u ∈ E , then E(u) = {v ∈ E : u * v} represents
the set of all events that can be reached from u.

A solution for a timetabling problem requires to assign a time to each event in
such a way that all the constraints provided by the set of activities are respected.
Given a function L : A → N that assigns to each activity its minimal duration
time, a timetable Π ∈ R|E|

+ for N is given by assigning a time Π(u) to each event
u ∈ E such that Π(v) − Π(u) ≥ L(a), for all a = (u, v) ∈ A.

Given a function w : A → N that assigns to each activity a number of passen-
gers, we are interested to a particular timetabling problem TT that requires to
compute Π by also minimizing the total travel time of all passengers. Formally,
TT can be defined as follows:

(TT) min f =
∑

a=(u,v)∈A
w(a) (Π(v) − Π(u))

subject to: Π(v) − Π(u) ≥ L(a) for all a = (u, v) ∈ A (1)
Π(u) ∈ R+ for all u ∈ E (2)

Delay Management Problem: Complexity Results and Robust Algorithms 463

More precisely, an instance i of TT is specified by a triple (N , L, w), where:

– N = (E ,A) is the event activity network,
– L : A → N associates to each activity the minimal duration time,
– w : A → N associates to each activity the number of passengers.

The set of feasible solutions for i is

F (i) = {Π : Π(u) ∈ R+, ∀u ∈ E and Π(v) − Π(u) ≥ L(a), ∀a = (u, v) ∈ A}.

A solution Π for TT may produce a positive slack time s(a) for each a ∈ A.
In particular, since the planned duration of an activity a = (u, v) is given by
Π(v) − Π(u), then s(a) = Π(v) − Π(u) − L(a).

In general, a feasible solution for TT cannot cope with possible delays oc-
curring to the activities. A delay, in fact might affect many activities and the
possible slack times spread around the event activity network are not enough in
order to absorb it. Recovery (on-line) strategies might be necessary, and accord-
ing to f , a new possible solution might also consider the possibility to skip some
constrains provided by changing activities. In practice, the skip of a changing
activity from a train g to a train h means that all passengers involved in such
activity have to wait for the next train of “type” h, i.e., it is assumed that there
exists a period of time after which all the events are repeated (see [3] for details).
In this paper we are interested in solutions that respect all the constraints, hence
we do not consider the possibility to skip some changing activities.

3.2 The Robust Delay Management (RDM) Problem

We now transform the timetabling problem TT defined in the previous section
into a robust recoverable problem RDM = (TT, M, A), where M represents a
modification function and A is a class of recovery algorithms (see Section 2).

Given an instance i = (N , L, w) for TT , and a constant α ∈ N, we limit the
modifications on i by admitting a single delay of at most α time. We model it
as an increase on the minimal duration time of the delayed activity. Formally,
M(i) is defined as follows:

M(i) = {(N , L′, w) : ∃ ā ∈ A : L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a �= ā} .

We define the class A by introducing the concept of events affected by one delay
as follows. Assume that Π ∈ F (i), and that j = (N , L′, w) ∈ M(i). Notice that,
the increase of the initial lower bound L(ā) can be meant as the modeling of a
delay on the activity ā = (u, v). In this case, if L′(ā) > Π(v) − Π(u), then the
solution Π is not feasible for j, and hence a new solution Π ′ ∈ F (j) must be
computed. Note that, function M admits at most one delay occurring at some
activity (u, v), and hence v is the first node affected by such delay.

Let ā = (u, v) be the delayed activity, we define d(v) = L′(ā)−(Π(v)−Π(u)). If
d(v) > 0, then the event v has been affected by the delay on ā. As side effect, other
nodes in E(v) may be affected by the delay. The set of nodes affected by a delay

464 S. Cicerone et al.

d(v) is denoted as Aff(v), and it can be computed by algorithmAffectedEvents

shown in Figure 1. The algorithm starts from v and visits each node uk ∈ E(v) in
order to check whether the delay d(v) is propagated. This is realized by means
of function d′ : E → R+ defined as d′(uk) = maxa=(u,uk)∈A{d′(u) − s(a)} if
uk ∈ E(v), d′(uk) = d(v) if uk = v, d′(uk) = 0 otherwise. If d′(uk) > 0 then uk is
included in Aff(v).

Algorithm AffectedEvents

Input: (N , L, w), Π, v and the delay d(v) > 0
Output: Aff(v), set of events affected by the delay d(v)

1. Aff(v) := {v}
2. sort E(v) = {u1, u2, . . . , u|E(v)|} according to �
3. for k = 1 to |E(v)| do
4. d′(uk) := maxa=(u,uk)∈A{d′(u) − s(a)}
5. if d′(uk) > 0 then Aff(v) := Aff(v) ∪ {uk}
6. return Aff(v)

Fig. 1. Computing the events in E(v) affected by a delay

As limitation of the recovery algorithms in A, we require that an algorithm in
A can change the time of at most Δ events. Formally, each algorithm in A is able
to compute a solution Π ′ ∈ F (j) if |Aff(v)| ≤ Δ, where Δ ∈ N is a constant.
This implies that a robust solution for RDM must guarantee that, if a delay of
at most α time occurs, then it affects at most Δ events.

4 Complexity Analysis

In this section we discuss the computational complexity of RDM. In particular,
we first show in Section 4.1 the NP-completeness of the Bounded Delay Manage-
ment problem (denoted as BDM) which is a decision problem derived by RDM.
Then, in Section 4.2 we discuss the NP-hardness of finding an optimal solution
for RDM by showing the differences with BDM .

4.1 Complexity of BDM Problem

In order to study the complexity of RDM, we formulate it as a more general
decision problem. Instead of an event activity network, a generic DAG is consid-
ered. Functions L and w and the number α are allowed to assume positive real
values. Moreover, for the sake of simplicity, we consider

∑
a∈A w(a)s(a) as the

objective function, which differs from f only by a constant term.
In order to formulate BDM , we need to extend the concept of events affected

by a delay, given in Section 3 for event activity networks, to general DAGs.

Definition 7. Given a DAG G = (V, A), a function s : A → R+, and a number
α ∈ R+, a vertex x is α-affected by a = (u, v) ∈ A (a α-affects x) if there exists
a path p = (u ≡ v0, v ≡ v1, . . . , vk ≡ x) in G, such that

∑k
i=1 s((vi−1, vi)) < α.

Delay Management Problem: Complexity Results and Robust Algorithms 465

Remark 1: If x is α-affected by a according to a path p, then all the vertices
belonging to p but the first are α-affected by a.

Bounded Delay Management Problem (BDM)

given: A DAG G = (V, A), a function L : A → R+, a function w : A → R+,
and three numbers α ∈ R+, Δ ∈ N, K ∈ R+.

problem: Is there a function Π : V → R+ such that each edge in A α-affects
at most Δ nodes, according to the function s : A → R+ defined as
s(a = (i, j)) = Π(j)−Π(i)−L(a), and such that

∑
a∈A w(a)s(a) ≤

K?

The next theorem, shows that BDM is NP-complete, the proof is given in [14].

Theorem 1. BDM is NP-complete for Δ ≥ 3.

4.2 Complexity of RDM

In this section we discuss the complexity of RDM. Note that RDM only re-
quires to find a feasible solution. Nevertheless, it is worth to find a solution that
minimizes the total travel time of all passengers, that is the objective function
of TT . We call RDMopt the problem of finding such a solution.

We will show that RDMopt is NP-hard by showing that its corresponding
decision problem is NP-complete. We do not give a formal proof, being the proof
very similar to that provided for Theorem 1. There are only three differences
between instances of RDMopt and BDM : the functions L and w and the number
α, which in RDMopt assume only natural values; the underlying graph, which
is an event activity network in RDMopt, whereas it is a general DAG in BDM ;
and the objective functions which differ only by a constant value. The way how
the proof of Theorem 1 can be used to prove the NP-hardness of RDMopt is
given in [14]. However, due to the restrictions on the topology of a event activity
network with respect to a general DAG, the proof holds only when Δ ≥ 5. It
follows that, we can state the following theorem and corollary.

Theorem 2. RDMopt is NP-hard for Δ ≥ 5.

Corollary 1. Computing Prob(RDM) is NP-hard.

5 Particular Cases

As RDMopt is NP-hard, there do not exist polynomial RDM-optimal algorithms
unless P = NP . Then, in this section we provide solutions for particular
instances of RDM. All the formal proofs of the claimed results can be found in
[14]. Given an event activity network N = (E ,A) with a single source v0 and

466 S. Cicerone et al.

minimal duration function L : A → N, the Critical Path Method (see e.g. [15])
solves TT when w is constant. CPM works as follows. Given i = (N , L, w),

CPM(i) =
{

Π(v) = 0 if v = v0

Π(v) = max {Π(u) + L(a) : a = (u, v) ∈ A} otherwise

Let wmin and wmax (Lmin and Lmax, resp.) be the minimum and maximum
values assigned by the function w (L, resp.), with respect to all the possible in-
stances of RDM. Given i = (N , L, w), we denote γ = (1+ α

Lmin
), iγ = (N , γL, w)

and iα = (N , L+ α, w), where α is in the definition of the modification function
M of RDM. We use the critical path method to find robust solutions for RDM.
In particular, we use the algorithm CPMγ defined as CPMγ(i) = CPM(iγ).
CPMγ is clearly a robust algorithm for RDM since for each a = (u, v) ∈ A,

Π(v) − Π(u) ≥
(
1 + α

Lmin

)
L(a) = L(a) + α L(a)

Lmin
≥ L(a) + α, hence a delay of

at most α does not affect any node. CPMγ outputs a timetable with a constant
factor slack time to each activity, such a slack time is known as proportional
buffering [16]. The next theorem provides the price of robustness of CPMγ .

In the following, AΔ denotes the class of recovery algorithms limited to com-
pute a timetable which changes the time of at most Δ events.

Theorem 3. For any Δ ≥ 0, the price of robustness of CPMγ for RDM =
(TT, M, AΔ) is bounded by: Prob(RDM, CPMγ) ≤ γ wmax

wmin
.

The following theorem shows the price of robustness of RDM when Δ = 0 and
the function L is constant.

Theorem 4. Let RDM = (TT, M, A0) and L(a) = � for each a ∈ A, then
Prob(RDM) ≥ γ wmin

wmax
.

Corollary 2. Let RDM = (TT, M, A0), if w and L are constant, then
Prob(RDM, CPMγ) = γ and CPMγ is RDM-optimal.

CPMα(i) = CPM(iα) constitutes another algorithm (better then CPMγ) for
solving RDM.

Theorem 5. For each instance i of RDM, f(CPMα(i)) ≤ f(CPMγ(i)).

6 Conclusions

In this paper, we have studied the interaction between the timetabling problem,
and the delay management problem. This interaction has been analyzed in the
recoverable robustness model and the quality of a robust timetable has been
measured in terms of price of robustness.

In particular, we have considered the problem of designing robust timetables
such that a delay can affect only a limited number of subsequent events. We
have shown that finding an optimal solution for this problem is NP-hard. Hence,
we have proposed robust algorithms and evaluated their prices of robustness.

Delay Management Problem: Complexity Results and Robust Algorithms 467

Moreover, we have shown that such algorithms are optimal with respect to some
restrictions.

The field of robust optimization is still in its beginning. This work can be
considered as a first step in the study of robust timetables. Several directions for
future works deserve investigation as the analysis of different recovery strategies
and the application of other modification functions to the expected input. To
this aim, it would be interesting to follow practical experiences from real world
scenarios.

References

1. De Giovanni, L., Heilporn, G., Labbé, M.: Optimization models for the delay man-
agement problem in public transportation. European Journal of Operational Re-
search 189(3), 762–774 (2007)

2. Schöbel, A.: A model for the delay management problem based on mixed integer
programming. Electronic Notes in Theoretical Computer Science 50(1), 1–10 (2004)

3. Schöbel, A.: Integer Programming Approaches for Solving the Delay Management
Problem. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D.
(eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 145–170. Springer, Hei-
delberg (2007)

4. Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay manage-
ment: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.)
SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)

5. Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The Computational Complexity of
Delay Management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238.
Springer, Heidelberg (2005)

6. Gatto, M., Jacob, R., Peeters, L., Widmayer, P.: Online Delay Management on
a Single Train Line. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D.,
Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 306–320.
Springer, Heidelberg (2007)

7. Ginkel, A., Schöbel, A.: The bicriteria delay management problem. Transportation
Science 41(4), 527–538 (2007)

8. Bayer, H.G., Sendhoff, B.: Robust Optimization - A Comprehensive Survey. Com-
puter Methods in Applied Mechanics and Engineering 196(33-34), 3190–3218
(2007)

9. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Mathematical Programming: Special
Issue on Robust Optimization, vol. 107. Springer, Berlin (2006)

10. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

11. Fischetti, M., Monaci, M.: Robust optimization through branch-and-price. In: Pro-
ceedings of the 37th Annual Conference of the Italian Operations Research Society
(AIRO) (2006)

12. Liebchen, C., Lüebbecke, M., Möhring, R.H., Stiller, S.: Recoverable robustness.
Technical Report ARRIVAL-TR-0066, ARRIVAL Project (2007)

13. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Robust Algo-
rithms and Price of Robustness in Shunting Problems. In: Proc. of the 7th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS), pp. 175–190 (2007)

468 S. Cicerone et al.

14. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: On the in-
teraction between robust timetable planning and delay management. Technical
Report ARRIVAL-TR-0116, ARRIVAL project (2007)

15. Levy, F., Thompson, G., Wies, J.: The ABCs of the Critical Path Method. Grad-
uate School of Business Administration. Harvard University (1963)

16. Liebchen, C., Stiller, S.: Delay resistant timetabling. Technical Report ARRIVAL-
TR-0056, ARRIVAL Project (2006) Presented at CASPT (2006)

Clustered SplitsNetworks

Lichen Bao and Sergey Bereg

Department of Computer Science
Erik Jonsson School of Engineering & Computer Science

The University of Texas at Dallas
Richardson, TX 75080, USA

{lxb042000,besp}@utdallas.edu

Abstract. We address the problem of constructing phylogenetic net-
works using two criteria: the number of cycles and the fit value of the
network. Traditionally the fit value is the main objective for evaluating
phylogenetic networks. However, a small number of cycles in a network
is desired and pointed out in several publications.

We propose a new phylogenetic network called CS-network and a
method for constructing it. The method is based on the well-known split-
stree method. A CS-network contains a face which is k-cycle, k ≥ 3 (not
as splitstree). We discuss difficulties of using non-parallelogram faces in
splitstree networks. Our method involves clustering and optimization of
weights of the network edges.

The algorithm for constructing the underlying graph (except the opti-
mization step) has a polynomial time. Experimental results show a good
performance of our algorithm.

1 Introduction

A phylogenetic tree is a commonly used tool for showing the evolutionary rela-
tionships among various biological species. However phylogenetic trees have im-
portant limitations in representing recombination, recurrent and back mutation,
horizontal gene transfer and cross-species hybridization. Phylogenetic networks
are often considered for this task.

A phylogenetic network is a generalization of a phylogenetic tree, allowing
structural properties that are not tree-like [14]. Phylogenetic networks can rep-
resent the relationships between the gene sequences better since they are able
to show the recombination, hybridization, which are the most important phe-
nomena in understanding genomic role [14]. There are several methods for phy-
logenetic network construction [2,4,5,11,13]. A popular program SplitsTree [7,8]
incorporates many methods of phylogenetic network construction and is based
on the results of metric decomposition theory. The package SplitsTree could be
found at http://www.splitstree.org

We assume that evolutionary distances between species are computed and
sorted in a distance matrix D = (d(i, j)). To evaluate a phylogenetic network
N , we use a fit value (based on the least square fit value)

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 469–478, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

470 L. Bao and S. Bereg

fit(D, N) =

(
1 −

∑
i<j(dN (i, j) − d(i, j))2∑

i<j d(i, j)2

)
· 100,

where dN (i, j) is the distance between taxa i and j in the network N .
The fit value is an important objective in constructing phylogenetic networks.

Another objective is to minimize the number of cycles in the network. The
problem of minimizing the number of recombinations in a rooted directed phy-
logenetic network has been studied both theoretically and practically [9,5,12,6].
Galled networks studied in [9] have minimum reticulate nodes and, thus, have
fewer cycles. We study the problem of minimizing the number of cycles in un-
rooted phylogenetic networks.

Phylogenetic networks constructed using SplitsTree have a property that all
bounded faces are 4-cycles and can be drawn as parallelograms. In this paper we
propose a new network called CS-network that uses splits as the splitstree and
clustering with k clusters. It is constructed starting from a k-cycle (a polygon
with k vertices), with the vertices connecting to the taxa clusters. We develop a
method of constructing CS-networks and optimizing the edge weights.

2 Construction of CS-Network

Our method has an integer parameter k which is the number of clusters. We find
k clusters and introduce a face which is a k-cycle. We borrow the computation of
a circular order of taxa X = {x1, x2, . . . , xn} and a set S = {S1, S2, . . . , Sm} of
circular splits from NeighborNet [2]. The order of splits has a property that the
sizes of corresponding split sets containing x1 are non-decreasing. We assume
that all trivial splits (where one of the sets is a singleton) are present in the set
of splits. A high level description of our method has 3 steps.

1. Find a circular order of taxa and m splits. Find k clusters C1, . . . , Ck of taxa
consistent with the circular order, see Fig. 1.

C1

C2

C3

C4

C5

y1
y2

y3

y4

y5

Fig. 1. Starting figure of the network

Clustered SplitsNetworks 471

2. Insert m splits into the network.
3. Optimize the edge weights of the network.

In the rest of the paper we assume that the circular order is computed and
we use indices of taxa in the circular order.

3 Clustering

Our clustering method is similar to the neighbor joining algorithm or Neighbor-
Net [2]. In the main step the algorithm finds two clusters and joins them into a
new cluster. Two matrices are used here: the distance matrix and Q-matrix. For
current clusters C1, C2, . . . , Cr, the distance between two clusters Ci and Cj is
defined as

d(Ci, Cj) =

∑
x∈Ci

∑
y∈Cj

d(x, y)

|Ci||Cj |
(1)

and Q-distance is calculated as

Q(i, j) = (r − 2)d(i, j) −
r∑

t=1

d(i, t) −
r∑

t=1

d(j, t) (2)

where r is the number of clusters.
The clustering in NeighborNet [2] takes O(n3) time. Our clustering is based

on the circular order of taxa. We modify the neighbor joining algorithm and
show that it can can be implemented using O(n2) time only.

1. Make n clusters C1, C2, . . . , Cn, one per taxon, using the clockwise order.
2. For all pairs of clusters, compute d(Ci, Cj) using Equation (1). For n pairs of

clusters in the circular order, compute Q(Ci, Ci+1) using Equation (2). Find
two clusters Ci and Ci+1 with minimum Q(Ci, Ci+1) and combine them a
new cluster.1

3. Repeat step 2 until the number of clusters is k.

Note that, using the NeighborNet algorithm for maintaining all intercluster
distances and Q-distances, our algorithm can be implemented in O(n3) time.
The running time can be reduced to O(n2) by computing only n Q-distances in
the circular order.

4 Graph Construction

In this Section we develop a method for constructing an underlying graph of the
clustered splits network.

1 We use indices of clusters in the circular order. For example, Cn+1 = C1.

472 L. Bao and S. Bereg

1
2

35

6 1

6

5

2

3

4

1

6

5

2

3

4

1 2

3

4

6

5

(a) (b) (c) (d)
4

Fig. 2. Splitstree network construction. (a) Start from a star. (b) Add the split
{1, 5, 6}{2, 3, 4}. (c) Add the split {1, 2, 6}{3, 4, 5}. (d) Add the split {1, 2, 3}{4, 5, 6}.
Note: dotted lines represent an alternative way to add it.

1 2

3

456

7

1

2

3

45
6

7

1
2

3

45

6

7
y1

y2

y3

y4

y5

(a) (b) (c)

Fig. 3. Adding the split {1, 6, 7}, {2, 3, 4, 5} to the network shown in (a). b) The net-
work in the case y4+y5 ≤ y1+y2+y3. (c) The network in the case y4+y5 > y1+y2+y3.

4.1 Difficulty

The topology of a splits network can be found using only splits and the circular
order of taxa [4]. The splits can be added incrementally starting with a star,
see Fig. 2 for an example. Weights of the splits can be decided later (the only
condition is that the weights should be non-negative). It turns out that this is
not true if we start with a network different from a star.

Suppose that we start with a network that contains one k-cycle, say k = 5.
Let y1, . . . , y5 be the weights of its edges in clockwise order. We want to add a
split (X1, X2) of weight w and increase the network distances between all pairs
x1 ∈ X1 and x2 ∈ X2 by w. The new network actually depends on the weights
yi, see Fig. 3 for an example.

We impose k conditions for the weights of the k-cycle to be able to construct
a network. We assume for simplicity that k is odd2. The ith condition is

yi + yi+1 + · · · + yi+�k/2� ≤ yi+
k/2� + · · · + yi+k−1 (3)

where i=1, . . . , k and indices are in the circular order (i.e. for example yk+1 =y1).
2 Even k will be considered in the final version.

Clustered SplitsNetworks 473

C1

C5

C4

C3

C2

xi

xj+1

xi

xj

P

L5 L4

L3

L2

L1

(a)

xi+1

xj

(b)

Fig. 4. (a) span(X ′) = {C3, C4, C5, C1} and span(X ′′) = {C1, C2, C3}. Since
|span(X ′)| > |span(X ′′)|, xp = xi and xq = xj+1. The shortest path xpxq crosses
ladders L1 and L2. (b) Splits always separate the corresponding two taxa on two sides
of the ladder.

4.2 Construction of CS-Network Using Splits

For a circular subset of taxa X ′ = {xi, xi+1, . . . , xj}, we define span(X ′) as the
chain of clusters Ci′ , Ci′+1, . . . , Cj′ such that Cs ∩ X ′ �= ∅ for each i′ ≤ s ≤ j′.

With the conditions above, we can start the building of the phylogenetic
network. The following is the algorithm:

1. Construct the k-cycle with the clusters as in Figure 1.
2. In each cluster, add the trivial splits by connecting taxa directly to the k-

cycle vertices.
3. For each split X ′, X ′′ from S (using the order of splits in S), change the graph

as follows. Let X ′ = {xi+1, . . . , xj}. Then X ′′ = {xj+1, . . . , xi}. Compute
span(X ′) and span(X ′′).
(a) Find two taxa xp, xq. If the size of span(X ′) is smaller than the size of

span(X ′′) then p = i + 1 and q = j; otherwise p = i and q = j + 1, see
Fig. 4 (a).

(b) Find the shortest path (using minimum number of edges) δ from xp to
xq in the current (unweighted) graph.

(c) Insert a ladder by doubling edges of the path δ except the first and last
edge as in Fig. 2.

We show how the phyletic distances can be computed in CS-network. Let
π(i, j) be the shortest path (with minimum number of edges3) in the k-cycle
between clusters containing xi and xj .

Lemma 1 (Phyletic Distance). Let N be a CS-network with assigned non-
negative weights satisfying the boundary condition (3). Let xi and xj be two
3 If k is even and (i− j) ≡ k/2 mod k then there are two shortest paths and we select

either one.

474 L. Bao and S. Bereg

taxa from clusters Ci′ and Cj′ . Let s(i, j) be the sum of the weights of splits
such that xi and xj are in different sets. Let w(i, j) be the sum of y-weights of
the path π(i′, j′). The network distance between two taxa xi and xj is equal to
s(i, j) + w(i, j) (note that w(i, j) = 0 if i′ = j′).

Proof (Sketch). Let dN (i, j) be the distance between the taxa xi and xj in N .
There are two types of ladders: S-ladders corresponding to the splits and L-
ladders L1, L2, . . . , Lk attached to the k-cycle, see Fig. 4 (a). We consider two
cases.

1. The taxa xi and xj are in the same cluster, i.e. i′ = j′. The argument is the
same as for splits graphs [4] since the taxa in Ci′ are connected as a splits
graph, see Fig. 4 (a).

2. In general case where xi and xj are in different clusters, we prove the lower
bound dN (i, j) ≥ s(i, j) + w(i, j) and the upper bound dN (i, j) ≤ s(i, j) +
w(i, j). Any path between xi and xj in N crosses every ladder corresponding
to a split separating xi and xj , see Fig. 4 (b). Also this path intersects L-
ladders whose total weight is w(i, j). Therefore dN (i, j) ≥ s(i, j) + w(i, j).
We can prove by induction that the following properties are maintained
during the construction of N : (i) any shortest path (using minimum number
of edges) intersects at most �k/2 L-ladders, and (ii) any two ladders cross
at most one time. �	

5 Optimization of the Weights

5.1 Linear Programming Formulation

Lemma 1 allows us to optimize the weights. There are m+k unknowns: m weights
of the splits and k weights of the k-cycle edges. We denote them by unknown
variables zi, 1 ≤ i ≤ m is a weight of the split Si and zm+i = yi, 1 ≤ i ≤ k. We
represent them by a (m + k)-dimensional vector z = (z1, z2, . . . , zm+k)′.

To find phyletic distances we introduce a 0/1 matrix A of size n(n − 1)/2 ×
(m + k). The rows of A are indexed by pairs of taxa. The columns of A are
indexed by m splits and k edges of the k-cycle. An entry A(ij)l is given by

A(ij)l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 If l ≤ m and xi, xj are in different sets of the split Sl.
1 If l > m and the path π(i′, j′) contains vertices corresponding

to clusters Cl−m and Cl−m+1 where xi ∈ Ci′ and xj ∈ Cj′ .
0 otherwise

The phyletic distances can be computed as Az.
We represent input distances between taxa by a

(
n
2

)
-dimensional vector

d = (d(x1, x2), d(x1, x3), . . . , d(xn−1, xn))′. (4)

Ideally, the optimal weights satisfy the linear system d = Az. We can use OLS
to estimates z. However, general OLS could result in negative values, which are
not suitable to use for us. So in the following section, we use the gradient method
for the optimization.

Clustered SplitsNetworks 475

5.2 Least Squares Optimization

The objective of the least squares method is to minimize f(z) = (Az−d)2. The
vector Az − d is a

(
n
2

)
-dimensional vector. An ith element of Az − d is equal to

Aiz − di where Ai is the ith row of A. Then

f(z) =
(n
2)∑

i=1

(Aiz − di)2

where Ai is the ith row of A. Suppose that we start with an initial vector z. We
want to optimize zr for some r assuming that all zi, i �= r are fixed. Then

f(z) = c2z
2
r + c1zr + c0 (5)

where the constants c1, c2 are equal to

c2 =
(n
2)∑

i=1

a2
i,r (6)

c1 = 2
(n
2)∑

i=1

ai,r ·

⎛⎝ m+k∑
j=1,j �=r

ai,jzj − di

⎞⎠ . (7)

Let t = −c1/2c2. The optimal value is zr = t if there would be no boundary
conditions on zr. If r ≤ m then the boundary condition is zr ≥ 0 and zr =
max(0, t).

Let y1, y2, . . . , yk be the weights of the k-cycle edges, i.e. yi = zm+i. We have
zr = yi, i = r − m. Each of the k boundary conditions (3) simplifies to either
an upper or lower bound of yi. Using the smallest upper bound and the largest
lower bound it reduces to c′ ≤ yi ≤ c′′.

If c′′ < 0 or then we assign zr = 0. Suppose that c′′ > 0. If t > c′′ then we
set zr = c′′. If t < max(0, c′) then we set zr = max(0, c′). In the remaining case
max(0, c′) ≤ t ≤ c′′ and we set zr = t.

We repeat the optimization for variables z1, . . . , zm+k in a loop while f(z)
decreases.

5.3 Experiments and Results

According to the metric decomposition theory [3,1], the graph K2,3 is the only
split prime for five taxa, which means it is not totally decomposable. The graph
K3,3 is also one split prime for six taxa [10]. We select these metrics to compare
NeighborNet and our method.

The result of splitstree with NeighborNet is shown in Fig. 5. The network has
3 cycles and fit value 95.45. Using split filter one can reduce the number of cycles
to one at the price of the fit value which is 87.3.

The results for K3,3 are shown in Fig. 6. The network shown in Fig. 6 (a) is
produced by splitstree and has 6 cycles and fit value 93.94. The split filter does
not help much here and produces a network with 6 cycles again, see Fig. 6 (b).

476 L. Bao and S. Bereg

Y3

Y2

Y1

Z2

Z1

0.5

0.5

0.25

0.5

0.25

0.5

0.25

Y3

Y2 Z2

Z1 Y1

0.5

0.5 0.5

0.5

(a) (b)

Fig. 5. Splitstree network for the graph K2,3. (a) 3 cycles, fit value 95.45, and (b) 1
cycle, fit value 87.3.

Z3

Y2

Z2

Y3

Z1

Y1

0.3333

0.3333

0.3333

0.3333

0.3333

0.3333

0.17

0.33

0.17

0.33

0.33

0.17

0.17

0.17
0.17

0.33

0.33

0.33

Y2 Z2

Y1

Z1Y3

Z3

(a) (b)

Fig. 6. Splitstree network for the graph K3,3. (a) 6 cycles, fit value 93.94, and (b) 6
cycles, fit value 88.89.

Y3

Y2

Y1

Z2

Z1

0.5

0.5

0.5

0.5

0.5

0.75

0.75

0.25

Y1

Z1

Y3

Z3

Y2

Z2

0.382

0.175

0.097

0.460
0.082

0.196

0.403

0.475

0.413

0.713

0.417

0.242

(a) (b)

Fig. 7. (a) CS-network for K2,3: 1 cycle, fit value 95.45. (b) CS-network for K3,3: 3
cycles, fit value 93.31.

Clustered SplitsNetworks 477

Y1

Z1

Y2
Z2

Z3

1

1

1

0.5

0.5

0.5

Y3

Fig. 8. CS-network for K3,3 constructed
with k = 3 contains 4 cycles and has fit
value 80.95

We use a pentagon k = 5 to con-
struct CS-networks for K2,3 and K3,3,
see Fig. 7. The network for K2,3 has
only one cycle and the same fit value
as the splitstree network in Fig. 5 (a).
For K3,3 the CS-network has only 3
cycles and the fit value is still good,
Fig. 7 (b).

Finally, we construct CS-network
for K3,3 starting from a triangle. The
network is shown in Fig. 8. It contains
fewer cycles (only 4) and has the same
fit value as the splitstree network in
Fig. 6 (a).

6 Conclusion

We studied the problem of constructing a phylogenetic network using two objec-
tives: the fit value and the number of cycles. Based on the methods in splitstree,
we proposed a new method of building phylogenetic networks called CS-networks
starting with a k-cycle and by inserting splits and optimizing the weights of the
splits and edges of the k-cycle.

We run our method on distance matrices considered as “difficult” metrics for
split decomposition methods. Preliminary results show a good performance in
terms of both the number of cycles and the fit value.

References

1. Bandelt, H., Dress, A.: A canonical decomposition theory for metrics on a finite
set. Advances in Mathematics 92, 47–105 (1992)

2. Bryant, D., Moulton, V.: Neighbornet: An agglomerative method for the construc-
tion of planar phylogenetic networks. In: Guigó, R., Gusfield, D. (eds.) WABI 2002.
LNCS, vol. 2452, pp. 375–391. Springer, Heidelberg (2002)

3. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension
of certain groups: A note on combinatorial properties of metric spaces. Advances
in Mathematics 53, 321–402 (1984)

4. Dress, A., Huson, D.: Constructing splits graphs. IEEE/ACM Transactions in Com-
putational Biology and Bioinformatics 1, 109–115 (2004)

5. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic
networks. INFORMS Journal on Computing 16, 459–469 (2004)

6. Gusfield, D., Hickerson, D., Eddhu, S.: An efficiently computed lower bound on the
number of recombinations in phylogenetic networks: Theory and empirical study.
Discrete Applied Mathematics 155, 806–830 (2007)

7. Huson, D.: Splitstree: a program for analyzing and visualizing evolutionary data.
Bioinformatics 14, 68–73 (1998)

478 L. Bao and S. Bereg

8. Huson, D., Bryant, D.: Application of phylogenetic networks in evolutionary stud-
ies. Molecular Biology and Evolution 23, 254–267 (2006)

9. Huson, D., Klöpper, T.: Beyond galled trees - decomposition and computation of
galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI),
vol. 4453, pp. 211–225. Springer, Heidelberg (2007)

10. Koolen, J., Moulton, V., Tönges, U.: A classification of the six-point prime metrics.
Europ. J. Combinatorics 21, 815–829 (2000)

11. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A.,
Sun, J., Timme, R.E.: Phylogenetic networks: Modeling, reconstructibility, and
accuracy. IEEE/ACM Trans. Comput. Biology Bioinformatics 155(1), 13–23 (2004)

12. Myers, S., Griffiths, R.: Bounds on the minimum number of recombination events
in a sample history. Genetics 163, 375–394 (2003)

13. Nakhleh, L., Warnow, T., Linder, C.R., John, K.St.: Reconstructing reticulate
evolution in species: Theory and practice. Journal of Computational Biology 12(6),
796–811 (2005)

14. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper
bounds on the minimum number of recombinations in biological sequence evolution.
Advances in Mathematics 21, 413–422 (2005)

Author Index

Aneja, Yash 235

Baker, Andrew 361
Baki, Fazle 235
Bao, Lichen 469
Baptiste, Philippe 225
Bereg, Sergey 469
Betzler, Nadja 43
Bhattacharya, B. 103
Böcker, Sebastian 1
Brandenberg, René 64
Brandstädt, Andreas 160, 171
Briesemeister, Sebastian 1
Bruyère, Véronique 127
Bui, Quang B.A. 1
Burmester, B. 103

Cai, Zhipeng 286
Chaytor, Rhonda 23
Chen, Zhi-Zhong 286
Chen, Zhixiang 319
Cheng, Eddie 393
Chimani, Markus 190
Chwa, Kyung-Yong 265
Cicerone, Serafino 458

D’Angelo, Gianlorenzo 458
Damaschke, Peter 32
Danziger, Peter 296
Deschinkel, Karine 438
De Simone, Caterina 351
Di Stefano, Gabriele 458

Ernst, Jason 201
Evans, Patricia A. 23

Fan, Hongbing 201
Fernau, Henning 54
Frigioni, Daniele 458
Fu, Bin 79, 319

Galluccio, Anna 339, 351
Gao, Xiaofeng 255
Gentile, Claudio 339

Gu, Qian-Ping 89
Gupta, A. 374
Gutner, Shai 246

Hasan, Mohammad Khairul 265
Hu, Y. 103
Hüffner, Falk 405
Hundt, Christian 201
Huo, Yumei 427

Jäger, Gerold 211
Jia, Xiaohua 89
Jiang, Minghui 319
Jung, Hyunwoo 265

Kandyba, Maria 190
Karimi, M. 374
Kim, Donghyun 278
Kim, E.J. 374
Komusiewicz, Christian 405
Kranakis, E. 103
Krob, Daniel 225

Le, Van Bang 160
Levit, Vadim E. 384
Li, Haibing 427
Li, Xiangyong 235
Li, Xianyue 278
Liberti, Leo 225, 328
Lin, Guohui 286
Ljubić, Ivana 190

Mandrescu, Eugen 384
Martens, Maren 180
Marzban, Marjan 89
Mathieson, Luke 13
Mélot, Hadrien 127
Mendelsohn, Eric 296
Messinger, Margaret-Ellen 309
Molitor, Paul 211
Moser, Hannes 405
Moura, Lucia 296
Murat, Cécile 139
Mutzel, Petra 190

Nannicini, Giacomo 225
Navarra, Alfredo 458

480 Author Index

Niedermeier, Rolf 405
Nowakowski, Richard J. 309

Paschos, Vangelis Th. 139
Pra�lat, Pawe�l 149

Qiu, Ke 393

Rafiey, A. 374
Raible, Daniel 54
Raman, Venkatesh 116
Roth, Lucia 64

Saurabh, Saket 116
Sawada, Joe 361
Schulz, Andreas S. 448
Shen, Zhizhang 393
Shi, Q. 103
Skutella, Martin 180
Srihari, Sriganesh 116
Stevens, Brett 296
Su, Bing 417
Szeider, Stefan 13

Tian, Lei 417
Touati, Sid-Ahmed-Ali 438
Truss, Anke 1

Uhlmann, Johannes 43

Ventura, Paolo 339

Wagner, Peter 171
Wang, Lusheng 286
Wareham, Todd 23
Wiese, A. 103
Wu, Weili 255, 278
Wu, Yu-Liang 201

Xiao, Peng 417
Xu, Yinfeng 417

Zhang, Zhao 255
Zhao, Hairong 427
Zhao, Zhiyu 79
Zhu, Binhai 319
Zou, Feng 278

	Title Page
	Preface
	Organization
	Table of Contents
	Going Weighted: Parameterized Algorithms for Cluster Editing
	Introduction
	Preliminaries
	Edge Branching
	Refined Edge Branching
	Computational Results
	Conclusion
	References

	Parameterized Graph Editing with Chosen Vertex Degrees
	Introduction
	Preliminaries
	Graph Modification
	Basic Parameterized Complexity

	Easy Cases
	AThorninthePaw
	Editing Is Fixed Parameter Tractable for Parameter $\it{(k, r)}$
	Conclusion
	References

	Fixed-Parameter Tractability of Anonymizing Data by Suppressing Entries
	Introduction
	Problem Definition
	Parameterized Complexity Analysis
	The Parameterized Complexity of ENTRY SUPPRESSION
	Hardness Results
	Fixed-Parameter Tractability Results

	Conclusion
	References

	Multiple Hypernode Hitting Sets and Smallest Two-Cores with Targets
	Introduction and Contributions
	Weighted Hypernode Hitting Sets with Two Hits
	Hardness of Minimum Cores Including a Target Set
	Minimum Two-Cores Including a Target Set
	References

	Parameterized Complexity of Candidate Control in Elections and Related Digraph Problems
	Introduction and Preliminaries
	Parameterized Complexity of MOD and MID
	Parameterized Complexity of Candidate Control
	References

	A Parameterized Perspectiveon Packing Paths of Length Two
	Introduction and Definitions
	Combinatorial Properties of P_{2}-Packings
	The Algorithm
	Used Matching Techniques
	Correctness
	Running Time

	Future Work
	References

	New Algorithms for \it{k}-Center and Extensions
	Introduction
	Problem Formulation
	A Core-Set Based Branch-and-Bound Scheme
	Core-Sets
	Branch-and-Bound Scheme

	Convex Relaxation
	A Mixed-Integer-Convex Program
	Relaxation

	Diameter Partitioning
	Identical Containers
	Different Containers
	Partitioning Procedures

	An Application of Non-euclidean Container Shapes
	References

	Separating Sublinear Time Computations by Approximate Diameter
	Introduction
	Notations
	Tight Separations among Sublinear Time Computations
	Randomized and Deterministic Computations
	Zero-Error Randomized Algorithm and Its Complexity
	References

	Computational Study on Dominating Set Problem of Planar Graphs
	Introduction
	Fomin and Thilikos Algorithm
	Data Reduction
	Computational Results
	Concluding Remarks
	References

	Optimal Movement of Mobile Sensors for Barrier Coverage of a Planar Region (Extended Abstract)
	Introduction
	Preliminaries and Formal Model
	Optimization on a Circle

	Mobile Sensors in One Dimension
	Sensors on a Line Segment

	Min-Max Problem in 2D
	On a Circle
	On a Simple Polygon

	Approximation Algorithms for the Min-Sum Problem in 2D
	On a Circle
	The First Approach
	The Second Approach
	On a Simple Polygon

	Conclusion and Open Problems
	References

	Parameterized Algorithms for Generalized Domination
	Introduction
	Preliminaries
	VDS Is W[2]-Complete
	FPT Algorithms for Some Natural Instances of VDS
	Vectors for Which VDS Is FPT
	Graphs with Some Special Structures

	Conclusions and Discussions
	References

	Tur´an Graphs, Stability Number, and Fibonacci Index
	Introduction
	Basic Properties
	Notations
	α-Critical Graphs
	Fibonacci Index

	General Graphs
	Connected Graphs
	Observations
	References

	Vertex-Uncertainty in Graph-Problems (Extended Abstract)
	Introduction
	Solutions Are Subsets of the Initial Vertex-Set
	Solutions Are Collections of Subsets of the Initial Vertex-Set
	Solutions Are Subsets of the Initial Edge-Set
	When Things Become Complicated
	FinalRemarks
	References

	Protean Graphs with a Variety of Ranking Schemes
	Introduction
	Definitions
	Ranking by Random Labeling
	Randomly Chosen Initial Rank
	References

	Simplicial Powers of Graphs
	Introduction
	Basic Notions and Results
	Simplicial Powers Versus Leaf Powers
	2-Simplicial Powers of Some Subclasses of Chordal Graphs
	Simplicial Powers of Block Graphs
	Conclusion
	References

	On \it{k}- Versus (\it{k} + 1)-Leaf Powers
	Introduction
	Basic Notions and Results
	 \it{k}- and (\it{k} + 1)-Leaf Powers Are Inclusion-Incomparable
	The Intersection of 4- and 5-Leaf Powers
	The Complete Comparability
	Conclusion
	References

	Flows with Unit Path Capacities and Related Packing and Covering Problems
	Introduction
	Interesting Related Problems
	An FPTAS for the Fractional Max-1Fp
	Approximating the Integral Max-1FP
	Multicommodity One-Flows
	References

	Strong Formulations for 2-Node-Connected Steiner Network Problems
	Introduction
	Directed 2NCON
	Multi-commodity Flow for D2NCON
	Directed-Cut for D2NCON
	Analysis of D2NCON Formulations
	Experiments
	References

	Algorithms and Implementation for Interconnection Graph Problem
	Introduction
	The Hardness of the Interconnection Graph Problem
	A Search Tree Based Parameterized Algorithm
	A Reduction Based Greedy Algorithm
	Experimental Results
	References

	Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order
	Introduction
	Heuristics for the Traveling Salesman Problem of Second Order
	Cheapest-Insert Algorithm
	Nearest-Neighbor Algorithm
	Two-Directional-Nearest-Neighbor Algorithm
	Assignment-Patching Algorithm
	Nearest-Neighbor-Patching Algorithm
	Two Directional Nearest-Neighbor-Patching Algorithm
	Greedy Algorithm
	\it{k}-OPT Algorithm

	Exact Algorithms for the Traveling Salesman Problem of Second Order
	Branch-and-Bound Algorithm
	Integer-Programming Algorithm

	Experimental Study
	Comparison of Heuristics
	Comparison of Exact Algorithms

	Summary and Future Research
	References

	Fast Computation of Point-to-Point Paths on Time-Dependent Road Networks
	Introduction
	Guarantee Regions
	Query Algorithm
	Computational Experiments
	Conclusion
	References

	Ant Colony Optimization Metaheuristic for the Traffic Grooming in WDM Networks
	Introduction
	Problem Formulation
	ACO-Based Metaheuristic for Traffic Grooming Problems
	Experiment and Computational Results
	Benchmark Testing Problems
	Computational Results

	Conclusions
	References

	Elementary Approximation Algorithms for Prize Collecting Steiner Tree Problems
	Introduction
	The Prize Collecting Generalized Steiner Forest Problem
	The Prize Collecting Steiner Tree Problem
	Concluding Remarks
	References

	Polynomial Time Approximation Scheme for Connected Vertex Cover in Unit Disk Graph
	Introduction
	Preliminaries
	Algorithm Overview
	Analysis of the Algorithm
	Correctness
	Time Complexity
	Performance

	Conclusion
	References

	Improved Primal-Dual Approximation Algorithm for the Connected Facility Location Problem
	Introduction
	Related Works

	High Level Idea of the Algorithm
	Linear Programming Formulation
	Algorithm Description
	Phase 1
	Phase 2

	Analysis
	Concluding Remarks
	References

	Two Constant Approximation Algorithms for Node-Weighted Steiner Tree in Unit Disk Graphs
	Introduction
	Related Work
	Node-Weighted Steiner Tree Problem (NWST)
	Preliminaries
	4-Approximation Algorithm
	2.5ρ-Approximation Algorithm

	Conclusion
	References

	An Improved Approximation Algorithm for the Capacitated Multicast Tree Routing Problem
	Introduction
	An $(\frac 85 + \frac 54\rho)$-Approximation Algorithm for kMTR
	Several Lemmas
	Operations to Be Applied to $T0$
	Summary of the Algorithm

	Conclusions
	References

	Covering Arrays Avoiding Forbidden Edges
	Introduction
	Definitions and Preliminaries
	Computational Complexity Results
	A Recursive Construction for CAFEs
	An Algorithm for Constructing Binary CAFEs
	References

	The Robot Cleans Up
	Introduction
	Definitions and Preliminaries
	Results for s(G)
	Results for S(G)
	Self-stabilizing Graphs
	References

	On Recovering Syntenic Blocks from Comparative Maps
	Introduction
	Weight Constraint on Markers
	Number of Non-breaking Points as Score Function
	Duplicate Markers

	A Factor-4 Approximation for MSR
	MSR-3 Is NP-Complete
	MSR-WT Is NP-Complete
	Complexity of MSR-NB-WT-DU
	Open Problems
	References

	Automatic Generation of Symmetry-Breaking Constraints
	Introduction
	Theoretical Results
	Efficiency of Symmetry Breaking Constraints
	Symmetry Groups Associated to a MILP
	Symmetry Breaking Constraints from Disjoint Cycles

	Finding Symmetries
	Practical Solution Strategies
	Computational Experiments

	Conclusion and Future Work
	References

	On the Stable Set Polytope of Claw-Free Graphs
	Introduction
	Gear Composition
	Geared (Fuzzy) Line Graphs
	Stable Set Polytope of {\it XX}-Graphs
	References

	A Combinatorial Algorithm to Optimally Colour the Edges of the Graphs That Are Join of Regular Graphs
	Introduction
	Equitable Edge-Colourings of Graphs
	Even Join Graphs
	References

	Magic Labelings on Cycles and Wheels
	Introduction
	Background
	Cycles
	Wheels

	Cycle Algorithm
	Results

	Wheel Algorithm
	Results

	Conclusion and Open Problems
	References

	Minimum Cost Homomorphism Dichotomy for Locally In-Semicomplete Digraphs
	Introduction
	Terminology and Preliminaries
	Strong Locally In-Semicomplete Digraphs
	Nonstrong Locally In-Semicomplete Digraphs
	Locally In-Semicomplete Digraphs Having a Cycle
	Acyclic Locally In-Semicomplete Digraphs

	References

	The Clique Corona Operation and Greedoids
	Introduction
	Results
	Conclusions
	References

	On the Surface Area of the (n, k)-Star Graph
	Introduction
	The Cycle Structure of a Node in the (n, k)-Star Graph
	A Minimum Routing Strategy
	An Explicit Formula for the Surface Area of $S_{n,k}$
	Conclusion
	References

	Enumerating Isolated Cliques in Synthetic and Financial Networks
	Introduction
	Fundamentals and Algorithms and Implementation Issues
	Experimental Results
	Conclusion and Outlook
	References

	A Risk-Reward Competitive Analysis for the Recoverable Canadian Traveller Problem
	Introduction
	Problem Statement and Formulation
	Competitive Analysis of the Comparison Strategy
	Competitive Analysis of the Risk-Reward Strategies
	Conclusions
	References

	Minimizing Total Completion Time in Two-Machine Flow Shops with Exact Delays
	Introduction
	Preliminary Results
	Simple Heuristics and Solvable Special Cases
	Metaheuristics
	Tabu Search
	Simulated Annealing

	Computation Results
	Conclusion
	References

	Efficient Method for Periodic Task Scheduling with Storage Requirement Minimization
	Introduction
	Tasks Model
	Exact Problem Formulation
	Basic Variables
	Linear Constraints
	Objective Function

	SIRALINA: A Two Steps Approximate Resolution Method
	Preliminaries
	Heuristic

	Experiments
	Conclusion
	References

	Stochastic Online Scheduling Revisited
	Introduction
	A Linear Programming Relaxation
	A Randomized Algorithm
	A Deterministic Algorithm
	Concluding Remarks
	References

	Delay Management Problem: Complexity Results and Robust Algorithms
	Introduction
	The Recoverable Robustness Model
	Delay Management Problem
	The Timetabling Problem
	The Robust Delay Management (\mathcal{RDM}) Problem

	Complexity Analysis
	Complexity of {\it BDM} Problem
	Complexity of \mathcal{RDM}

	Particular Cases
	Conclusions
	References

	Clustered SplitsNetworks
	Introduction
	Construction of CS-Network
	Clustering
	Graph Construction
	Difficulty
	Construction of CS-Network Using Splits

	Optimization of the Weights
	Linear Programming Formulation
	Least Squares Optimization
	Experiments and Results

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

