
Oblivious Transfer Based on the McEliece

Assumptions

Rafael Dowsley1, Jeroen van de Graaf2, Jörn Müller-Quade3,
and Anderson C.A. Nascimento1

1 Department of Electrical Engineering, University of Brasilia,
Campus Universitario Darcy Ribeiro, Brasilia, CEP: 70910-900, Brazil

rafaeldowsley@redes.unb.br, andclay@ene.unb.br
2 Laboratrio de Computação Cient́ıfica, Universidade Federal de Minas Gerais,

CEP 31270-901, Brazil
jvdg@ufmg.br

3 Universität Karlsruhe, Institut fuer Algorithmen und Kognitive Systeme
Am Fasanengarten 5, 76128 Karlsruhe, Germany

muellerq@ira.uka.de

Abstract. We implement one-out-of-two bit oblivious transfer (OT)
based on the assumptions used in the McEliece cryptosystem: the hard-
ness of decoding random binary linear codes, and the difficulty of distin-
guishing a permuted generating matrix of Goppa codes from a random
matrix. To our knowledge this is the first OT reduction to these problems
only.

1 Introduction

Oblivious transfer [31,27,11] is a primitive of central importance in modern cryp-
tography as it implies two-party secure computation [16,20] and multi-party com-
putation [9]. There exist several flavors of OT, but they are all equivalent [8].
In this work, we focus on the so-called one-out-of-two oblivious transfer (OT).
This is a two-party primitive where a sender (Alice) inputs two bits b0, b1 and a
receiver (Bob) inputs a bit c called the choice bit. Bob receives bc and remains
ignorant about b1−c, while Alice only receives a confirmation message from Bob
after he completed his part of the protocol successfully. In particular, Alice can-
not learn Bob’s choice.

OT can be constructed based on computational assumptions, both generic
such as enhanced trapdoor permutations [11,14,17] and specific such as factor-
ing [27], Diffie-Hellman [3,25,1], Quadratic or Higher-Order Residuosity, or from
the Extended Riemann Hypothesis [18].

Our result: We build OT based on the two assumptions used in the McEliece
cryptosystem [23]: (1) hardness of decoding of a random linear code (known to
be NP-complete [4], and known to be equivalent to the learning parity with noise
(LPN) problem [28]); and (2) indistinguishability of the scrambled generating
matrix of the Goppa code [22] from a random one. It is noteworthy that there

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 107–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 R. Dowsley et al.

exists no black box reduction from Public Key Cryptography to OT [13]. How-
ever, by exploiting some algebraic properties of cyphertexts geenrated by the
McElice Cryptosystem we bypass the negative results of [13].

Comparison to other work: To our knowledge, this is the first oblivious
transfer protocol based on the McEliece assumptions only and, concurrently with
[19], the first computationally secure oblivious transfer protocol not known to be
broken by a quantum computer. However, for obtaining a protocol of equivalent
complexity, [19] uses additional assumptions: the random oracle assumption and
permuted kernels. Also, [19] needs Shamir’s zero knowledge proofs [30] which
are avoided in our simpler construction. Our protocol is unconditionally secure
for Bob and computationally secure for Alice.

In this work, we consider only static adversaries, i.e., we assume that either
Alice or Bob is corrupted before the protocol begins.

2 Preliminaries

In this section, we establish our notation and provide some facts from coding
theory and formal definitions of security for oblivious transfer and bit commit-
ment. Then, for the sake of completeness, we describe the McEliece cryptosystem
and introduce the assumptions on which its security, and also the security of our
protocol is based.

Henceforth, we will denote by x ∈R D a uniformly random choice of element
x from its domain D; and by ⊕ a bit-wise exclusive OR of strings. All logarithms
are to the base 2.

Two sequences {Xn}n∈N and {Yn}n∈N of random variables are called computa-
tionally indistinguishable, denoted X

c= Y , if for every non-uniform probabilistic
polynomial-time distinguisher D there exists a negligible function ε(·) such that
for every n ∈ N,

|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| < ε(n)

2.1 Security Definition of Oblivious Transfer

Let us denote by V iew
˜A(˜A(z), B(c)) and V iew

˜B(A(b0, b1), ˜B(z)) the views of
dishonest Alice and Bob, respectively, which represent their inputs z, results of
all local computations, and messages exchanged. Our definition of security is
based on the one shown in [18] (conveniently adapted to protocols with more
than two messages).

Definition 1. A protocol [A, B](b0, b1; c) is said to securely implement oblivi-
ous transfer, if at the end of its execution by the sender Alice and the receiver
Bob which are modelled as probabilistic polynomial time (PPT) Turing machines
having as their input a security parameter N , the following properties hold:

– Completeness: when the players honestly follow the protocol, Bob outputs bc

while Alice has no output.

Oblivious Transfer Based on the McEliece Assumptions 109

– Security for Alice: For every PPT adversary B̃, every input z, and a (suf-
ficiently long) random tape RB chosen at random, there exists a choice bit
c such that for bc ∈ {0, 1} the distribution (taken over Alice’s randomness)
of runs of B̃(z) using randomness RB with Alice having input bc and bc = 0
is computationally indistinguishable from the distribution of runs with Alice
having input bc and bc = 1.

– Security for Bob: For any PPT adversary ˜A, any security parameter N and
any input z of size polynomial in N , the view that ˜A(z) obtains when Bob
inputs c = 0 is computationally indistinguishable from that of when Bob
inputs c = 1, denoted:

V iew
˜A(˜A(z), B(0))|z c= V iew

˜A(˜A(z), B(1))|z .
A protocol is said to be secure against honest-but-curious players, if the previous
definition holds in the case Alice and Bob follow the protocol. An oblivious-
transfer protocol is unconditionally secure against a player if the given properties
hold even when this player is not computationally bounded.

2.2 Security Definition of String Commitment

We also need commitment schemes in our constructions. A string commitment
protocol consists of two stages. In the first one, called Commit, the sender (Al-
ice) provides the receiver (Bob) with evidence about her input bit-string b. Bob
cannot learn it before the second stage, called Open, where Alice reveals her
commitment to Bob, such that she cannot open a value different from b with-
out being caught with high probability. Let us denote by V iew

˜A(˜A(z), B(a)) and
V iew

˜B(A(b), ˜B(z)) the views of dishonest Alice and Bob, respectively, which rep-
resent their inputs z, results of all local computations, and messages exchanged.
Our definition is based on [24].

Definition 2. A protocol [A, B](b) is said to securely implement string com-
mitment, if at the end of its execution by the sender Alice and the receiver Bob,
which are represented as PPT Turing machines having as their input a security
parameter N , the following properties hold:

– Completeness: when the players honestly follow the protocol, Bob accepts b.
– Hiding: For any PPT adversary ˜B, any security parameter N , any input z of

size polynomial in N , and any k ∈ N, after the Commit stage, but before the
Open stage, the view of ˜B(z) when Alice inputs b ∈ {0, 1}k is computationally
indistinguishable from the view where Alice inputs any other b′ ∈ {0, 1}k,
b′ �= b:

V iew
˜B(A(b), ˜B(z))|z c= V iew

˜B(A(b′), ˜B(z))|z
– Binding: For any PPT adversary ˜A, any security parameter N and any

input z of size polynomial in N , any k ∈ N, there exists b ∈ {0, 1}k which
can be computed by Alice after the Commit stage, such that the probability
that ˜A(b′), b′ �= b is accepted by Bob in the Open stage is negligible in N .

110 R. Dowsley et al.

A string commitment protocol is unconditionally secure against a player if the
properties in Definition 2 hold even when this player is not computationally
bounded.

2.3 McEliece Cryptosystem

The folowing definition was taken from [19]. The McEliece cryptosystem [23]
consists of a triplet of probabilistic algorithms ME = (GenME, EncME, DecME)
and M = {0, 1}k.

– Key generation algorithm: The PPT key generation algorithm GenME works
as follows:
1. Generate a k×n generator matrix G of a Goppa code, where we assume

that there is an efficient error-correction algorithm Correct which can
always correct up to t errors.

2. Generate a k × k random non-singular matrix S.
3. Generate a n × n random permutation matrix T.
4. Set P = SGT, and output pk = (P, t) and sk = (S,G,T).

– Encryption algorithm: EncME takes a plaintext m ∈ {0, 1}k and the public-
key pk as input and outputs ciphertext c = mP ⊕ e, where e ∈ {0, 1}n is a
random vector of Hamming weight t.

– Decryption algorithm: DecME works as follows:
1. Compute cT−1(= (mS)G⊕eT−1), where T−1 denotes the inverse matrix

of T.
2. Compute mS = Correct(cT−1).
3. Output m = (mS)S−1.

2.4 Security Assumptions

In this subsection, we briefly introduce and discuss the McEliece assumptions
used in this work. First, we assume that there is no efficient algorithm which
can distinguish the scrambled (according to the description in the previous Sub-
section) generating matrix of the Goppa code P and a random matrix of the
same size. Currently, the best algorithm by Courtois et al. [7] works as follows:
enumerate each Goppa polynomial and verify whether the corresponding code
and the generator matrix G are “permutation equivalent” or not by using the
support splitting algorithm [29], which is nt(1+o(1))-time algorithm, with n and
t as defined in the previous subsection.

Assumption 3. There is no PPT algorithm which can distinguish the public-
key matrix P of the McEliece cryptosystem from a random matrix of the same
size with non-negligible probability.

We note that this assumption was utilized in [7] to construct a digital signature
scheme.

The underlying assumption on which McEliece is the hardness of decoding
random linear codes. This problem is known to be NP-complete [4], and all cur-
rently known algorithms to solve this problem are exponential. In particular, for
small number of errors, the best one was presented by Canteaut and Chabaud [6].

Oblivious Transfer Based on the McEliece Assumptions 111

Assumption 4. The Syndrome Decoding Problem problem is hard for every
PPT algorithm.

We will also need a bit commitment scheme based on the same assumption. Of
course we could use a modification of the McEliece system which is semantical
secure, see [26]. However, we can do better.

According to a well-known result by Naor [24], bit commitment
scheme can be constructed using a pseudorandom generator. The latter primi-
tive can be built efficiciently using the Syndrome Decoding problem as described
by Fischer and Stern [12]. Naor’s scheme is unconditionally binding, computa-
tionally hiding and meets the completeness property. So using this construction
we are using only one of the McEliece assumption. In addition, for string com-
mitment Naor’s construction is very efficient.

3 Passively Secure Protocol for OT

For now, assume Alice and Bob to be honest-but-curious. We first sketch the
intuition behind this protocol. We construct it according to the paradigm pre-
sented in [3]. Bob sends to Alice an object which is either a public key or a
randomized public key for which the decoding problem is difficult. To randomize
a public key, we use bitwise-XOR with a random matrix. Alice, in turn, computes
the bitwise-XOR of the received entity with the same random matrix, hereby ob-
taining the second “key”. She encrypts b0 and b1 with the received and computed
keys, respectively, and sends the encryptions to Bob. The protocol is secure for
Bob because Alice cannot distinguish a public key from a random matrix. The
protocol is complete because Bob can always decrypt bc. At the same time, it
is also secure for Alice, because Bob is unable to decrypt the second bit as he
cannot decode the random code.

Recall that Alice’s inputs are the bits b0 and b1 while Bob inputs the bit c
wishing to receive bc. Denote the Hamming weight of a vector z by wH(z).

Protocol 5

1. Alice chooses a k × n random binary matrix Q and sends it to Bob.
2. Bob generates a secret key (S, G, T) following the procedures of the McEliece

algorithm, sets Pc = SGT and P1−c = Pc ⊕ Q and sends P0, t to Alice.
3. Alice computes P1 = P0⊕Q, then encrypts two random bit strings r0, r1 ∈R

{0, 1}k with P0 and P1, respectively, i.e., for i = 0, 1 : yi = riPi ⊕ zi, where
zi ∈ {0, 1}n, wH(zi) = t, computes for i = 0, 1: mi ∈R {0, 1}k, encrypts b0

and b1 as follows: for i = 0, 1 : b̂i = bi ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a
scalar product modulo 2 and finally sends for i = 0, 1 : yi, mi, b̂i to Bob.

4. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, mc〉.
The next theorem formally states the security of the above protocol.

Theorem 1. Protocol 5 is complete and secure for both Alice and Bob against
passive attacks according to Definition 1 under Assumptions 3 and 4.

112 R. Dowsley et al.

Proof. Given that under passive attacks, the players always follow the protocol,
we argue the properties listed in Definition 1.

Completeness: This follows by observing that Bob always receives a valid
encryption of rc that allows him to compute bc in Step 4.

Security for Alice: Let ˜B be any PPT passively cheating receiver. Let c be the
bit such that b̂1−c = b1−c ⊕ 〈r1−c, m1−c〉 and y1−c = r1−c(Pc ⊕ Q) ⊕ z1−c. Note
that Q is chosen randomly and independently from Pc, so from ˜B’s point of view,
learning r1−c is equivalent to decoding a random linear code with generating
matrix Pc ⊕Q. This is known to be hard [4]. It was proven in [15] that 〈r, m〉 is
a hard-core predicate for any one-way function f given f(r) and m. Hence, by
Assumption 4, the distribution (taken over Alice’s randomness) of runs of B̃(z)
using randomness R with Alice having input bc and bc = 0 is computationally
indistinguishable from the distribution of runs with Alice having input bc and
bc = 1.

Security for Bob: This follows directly from Assumption 3. Honest-but-curious
Alice is unable to distinguish between P = SGT and a random k × n matrix,
and hence she is also unable to tell Pc = SGT from P1−c = SGT ⊕ Q for any
c ∈ {0, 1}. This implies computational indistinguishability of the protocol views
for Alice.

Unfortunately, Protocol 5 is not secure if the parties cheat actively. One problem
is that, given a random matrix Q, Bob can come up with two matrices P ′, P ′′,
where P ′⊕P ′′ = Q, such that they are the generating matrices of the codes with
some reasonably good decoding properties. It is clear that in this case, Bob will
be able to partially decode both b0 and b1.

4 Fully Secure Protocol

In order to arm the passive protocol with security against malicious parties one
could use a general compiler as the one in [14]. However, we present a direct and
more efficient aproach:

1. Implement a randomized oblivious transfer in which Bob is forced to choose
his the public key before and therefore independent of Q, if not he will
be detected with probability at least 1

2 .
2. Convert the randomized oblivious transfer into an oblivious transfer for spe-

cific inputs with the same characteristics of security;
3. Reduce the probability that a malicious Bob learns simultaneously informa-

tion on both b0 and b1.

4.1 Random OT with High Probability of B Cheating

First, we implement a protocol that outputs two random bits a0, a1 to Alice and
outputs a random bit d and ad to Bob. In this protocol, Alice detects with proba-
bility at least 1

2 − ε a malicious Bob that chooses the public key depending of Q.

Oblivious Transfer Based on the McEliece Assumptions 113

To achieve this, Bob generates two different McEliece keys by following the
same procedures of protocol 5 and by using two random bits c0, c1. He commits to
P0,c0 and P1,c1 . Then, Bob receives two random matrices Q0 and Q1 from Alice,
computes P0,1−c0 = P0,c0 ⊕ Q0 and P1,1−c1 = P1,c1 ⊕ Q1 and sends P0,0, P1,0, t
to her. Alice chooses one of the commitments for Bob to open and checks if the
opened information is consistent with an honest procedure; otherwise, she stops
the protocol. Finally, she encrypts a0 and a1 using the matrices associated to
the commitment that was not opened.

Protocol 6

1. Bob generates two McEliece secret keys (S0, G0, T0) and (S1, G1, T1). He
chooses c0, c1 ∈R {0, 1} and sets P0,c0 = S0G0T0 and P1,c1 = S1G1T1. He
commits to P0,c0 and P1,c1 .

2. Alice chooses Q0 and Q1 uniformly at random and sends them to Bob.
3. Bob computes P0,1−c0 = P0,c0 ⊕ Q0 and P1,1−c1 = P1,c1 ⊕ Q1. He sends

P0,0, P1,0, t to Alice.
4. Alice computes P0,1 = P0,0⊕Q0 and P1,1 = P1,0 ⊕Q1. Then she chooses the

challenge j ∈R {0, 1} and sends it to Bob.
5. Bob opens his commitment to P1−j,c1−j and sets d = cj

6. Alice checks the following: P1−j,c1−j must be equal to P1−j,0 or P1−j,1, oth-
erwise she stops the protocol.

7. Alice encrypts two random bit strings r0, r1 ∈R {0, 1}k with Pj,0 and Pj,1,
respectively, i.e., for i = 0, 1 : yi = riPj,i⊕zi, where zi ∈ {0, 1}n, wH(zi) = t,
computes for i = 0, 1: mi ∈R {0, 1}k, encrypts a0, a1 ∈R {0, 1} as follows:
for i = 0, 1 : âi = ai ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a scalar product and
finally sends for i = 0, 1 : yi, mi, âi to Bob.

8. Bob decrypts rd and computes ad = âd ⊕ 〈rd, md〉. If Bob encounters a
decoding error while decrypting rd, then he outputs ad = 0.

Theorem 2. Assuming the used bit commitment scheme secure, protocol 6 im-
plements a randomized oblivious transfer that is complete and secure for Bob
against active attacks according to Definition 1 under Assumptions 3 and 4. Ad-
ditionally, the probability that a malicious Bob learns both a0 and a1 is at most
1
2 + ε(n) where ε(n) is a negligible function.

Proof. Completeness: An honest Bob always passes the test of Step 6 and
receives a valid encryption of rd, so he can compute ad.

Security for Alice: In order to obtain simultaneously information on a0 and
a1, Bob must learn r0 and r1. The encryptions of r0 and r1 only depend on Pj,0

and Pj,1, respectively.
If Bob sends both P0,0 and P1,0 chosen according to the protocol (honest

procedure), then the probability that he learns both inputs of Alice is the same
as in the passive protocol, i.e., it is negligible. If Bob chooses in a malicious
way both P0,0 and P1,0, then with overwhelming probability Alice will stop the
protocol in step 6 and Bob will learn neither r0 nor r1.

114 R. Dowsley et al.

The best strategy for Bob is to choose honestly one of the matrices and choose
the other in a malicious way, thus he can cheat and partially decode both r0 and
r1 in case Alice asks him to open the matrix correctly chosen. However, note
that with probability 1

2 , Alice asks him to open the matrix maliciously chosen.
In this case, Bob will be able to open the commitment with the value that Alice
expects in step 6 only with negligible probability. Thus, the probability that a
malicious Bob learns both a0 and a1 is at most 1

2 +ε(n) where ε(n) is a negligible
function.

Security for Bob: The commitment to Pj,cj = Pj,d is not opened, so the
security for Bob follows from Assumption 3 as in the protocol 5.

As long as the commitment is secure, possible differences from the passive
scenario are the following ones:

– Alice could cheat by sending a specially chosen matrix Q, however by As-
sumption 3, she cannot tell Pj,cj from random, hence her choice of Q will
not affect her ability to learn d;

– For some i ∈ {0, 1}, Alice may use a different matrix instead of Pj,i for
encrypting ri in Step 7 hoping that i = d so that Bob will encounter the
decoding error and then complain, hereby disclosing his choice. However, the
last instruction of Step 8 thwarts such attack by forcing Bob to accept with
a fixed output “0”. Sending a “wrong” syndrome is then equivalent to the
situation when Alice sets his input ai = 0.

Thus, it follows that the protocol is secure against Alice.

4.2 Derandomizing the Previous Protocol

Subsequently, we use the method of [2] to transform the randomized oblivious
transfer into an (ordinary) oblivious transfer with the same characteristics of
security.
Protocol 7

1. Bob and Alice execute the protocol 6. Alice receives a0, a1 and Bob receives
d, ad.

2. Bob chooses c, sets e = c ⊕ d and sends e to Alice.
3. Alices chooses b0, b1 ∈ {0, 1}, computes f0 = b0 ⊕ ae and f1 = b1 ⊕ a1⊕e and

sends f0, f1 to Bob.
4. Bob computes bc = fc ⊕ ad.

Theorem 3. Protocol 7 implements an oblivious transfer with the same char-
acteristics of security of the protocol 6.

Proof. Completeness: fc = bc ⊕ ac⊕e = bc ⊕ ad, so an honest Bob can recover
bc because he knows ad.

Security for Alice: f1⊕c = b1⊕c ⊕ a1⊕c⊕e = b1⊕c ⊕ a1⊕d, so Bob can recover
both b0 and b1 only if he knows a0 and a1.

Security for Bob: Alice has to discover d in order to compute c, thus the
security for Bob follows from the protocol 6.

Oblivious Transfer Based on the McEliece Assumptions 115

4.3 Reducing the Probability of B Cheating

Finally, we use the reduction of [10] to minimize the probability that a malicious
Bob learns both inputs of Alice. In this reduction, protocol 7 is executed s times
in parallel, where s is a security parameter. The inputs in each execution are
chosen in such way that Bob must learn both bits in all executions to be able to
compute both inputs of Alice in protocol 8.

Protocol 8

1. Alice chooses b0, b1 ∈ {0, 1} and b0,1, b0,2, . . . , b0,s, b1,1, b1,2,
. . . , b1,s ∈R {0, 1} such that b0 = b0,1 ⊕ b0,2 ⊕ . . . ⊕ b0,s and b1 = b1,1 ⊕
b1,2 ⊕ . . . ⊕ b1,s.

2. Bob chooses c ∈ {0, 1}.
3. Protocol 7 is executed s times, with inputs b0,i, b1,i from Alice and ci = c

from Bob for i = 1 . . . s.
4. Bob computes bc = bc,1 ⊕ bc,2 ⊕ . . . ⊕ bc,s.

Theorem 4. Assuming that the bit commitment scheme used in protocol 6 is
secure, protocol 8 is complete and secure for both Alice and Bob against active
attacks according to Definition 1 under Assumptions 3 and 4.

Proof. Completeness: An honest Bob learns all bc,i for i = 1 . . . s in the s
executions of protocol 7 and therefore he can compute bc.

Security for Alice: Bob must discover both bits in all executions of protocol 7
in order to learn something simultaneously on b0 and b1. The probability that a
malicious Bob learns both bits in an execution of protocol 7 is at most 1

2 + ε(n),
where ε(n) is a negligible function. There exists an n0 such that ε(n) < 1

4 for
any n > n0. We can choose n > n0, so β = 1

2 + ε(n) < 3
4 and the probability

that a malicious Bob learns both b0 and b1 is less than (3
4)s, which is negligible

in s. Thus, the protocol is secure for Alice.

Security for Bob: Alice discovers c if she learns any ci, but this probability is
negligible because the probability that she learns a specific ci in the respective
execution of the protocol 7 is negligible and the number of executions of the
protocol 7 is polynomial.

Acknowledgements. The authors acknowledge previous discussions with Kirill
Morozov and Hideki Imai.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Beaver, D.: Precomputing Oblivious Transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

116 R. Dowsley et al.

3. Bellare, M., Micali, S.: Non-Interactive Oblivious Transfer and Applications. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidel-
berg (1990)

4. Berlekamp, E.R., McEliece, R.J., Avan Tilborg, H.C.: On the Inherent Intractabil-
ity of Certain Coding Problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

5. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to primitive narrow-sense BCH codes of length 511.
IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

7. Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece Digital Signa-
ture Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174.
Springer, Heidelberg (2001)

8. Crépeau, C.: Equivalence between two flavors of oblivious transfers. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)

9. Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Pri-
vate Multi-Party Computations. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, p. 110. Springer, Heidelberg (1995)

10. Damg̊ard, I., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

11. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Proceedings CRYPTO 1982, pp. 205–210. Plenum Press (1983)

12. Fischer, J., Stern, J.: An Efficient Pseudo-Random Generator Provably as Secure as
Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 245–255. Springer, Heidelberg (1996)

13. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The Rela-
tionship between Public Key Encryption and Oblivious Transfer. In: FOCS 2000,
pp. 325–335 (2000)

14. Goldreich, O.: Foundations of Cryptography (Basic Applications), vol. 2. Cam-
bridge University Press, Cambridge (2004)

15. Goldreich, O., Levin, L.A.: Hard-Core Predicates for Any One-Way Function. In:
21st ACM Symposium on the Theory of Computing, pp. 25–32 (1989)

16. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game, or: A
completeness theorem for protocols with honest majority. In: Proc. 19th ACM
STOC, pp. 218–229. ACM Press, New York (1987)

17. Haitner, I.: implementing Oblivious Transfer Using Collection of Dense Trap-
door Permutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409.
Springer, Heidelberg (2004)

18. Kalai, Y.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005)

19. Kobara, K., Morozov, K., Overbeck, R.: Oblivious Transfer via McEliece’s PKC
and Permuted Kernels, Cryptology ePrint Archive 2007/382 (2007)

20. Kilian, J.: Founding Cryptography on Oblivious Transfer. In: 20th ACM STOC,
pp. 20–31. ACM Press, New York (1988)

21. Kobara, K., Imai, H.: Semantically Secure McEliece Cryptosystems – Conversions
for McEliece PKC. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35.
Springer, Heidelberg (2001)

Oblivious Transfer Based on the McEliece Assumptions 117

22. McEliece, R.J.: The Theory of Information and Coding. The Encyclopedia of Math-
ematics and Its Applications, vol. 3. Addison-Wesley, Reading (1977)

23. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
In: Deep Space Network progress Report (1978)

24. Naor, M.: Bit Commitment using Pseudo-Randomness. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)

25. Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: SODA 2001 (SIAM
Symposium on Discrete Algorithms) (2001)

26. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic Security for the McEliece
Cryptosystem without Random Oracles. WCC 2007, Versailles, France (April 2007)

27. Rabin, M.O.: How to Exchange Secrets by Oblivious Transfer. Technical Memo
TR-81, Aiken Computation Laboratory, Harvard University (1981)

28. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: Proc. 37th STOC, pp. 84–93 (2005)

29. Sendrier, N.: Finding the Permutation Between Equivalent Linear Codes: The Sup-
port Splitting Algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

30. Shamir, A.: An efficient identification scheme based on permuted kernels. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg
(1990)

31. Wiesner, S.: Conjugate coding. Sigact News 15(1), 78–88 (1983) (original
manuscript written circa 1970)

	Oblivious Transfer Based on the McEliece Assumptions
	Introduction
	Preliminaries
	Security Definition of Oblivious Transfer
	Security Definition of String Commitment
	McEliece Cryptosystem
	Security Assumptions

	Passively Secure Protocol for OT
	Fully Secure Protocol
	Random OT with High Probability of B Cheating
	Derandomizing the Previous Protocol
	Reducing the Probability of B Cheating

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

