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Preface

ICITS 2008, the Third International Conference on Information Theoretic Secu-
rity, was held in Calgary, Alberta, Canada, during August 10–13, 2008, at the
University of Calgary. This series of conferences was started with the 2005 IEEE
Information Theory Workshop on Theory and Practice in Information-Theoretic
Security (ITW 2005, Japan), held on Awaji Island, Japan, October 16–19, 2005.

The conference series aims at bringing focus to security research when there
is no unproven computational assumption on the adversary. This is the frame-
work proposed by Claude Shannon in his seminal paper formalizing modern
unclassified research on cryptography. Over the last few decades, Shannon’s
approach to formalizing security has been used in various other areas including
authentication, secure communication, key exchange, multiparty computation
and information hiding to name a few. Coding theory has also proven to be a
powerful tool in the construction of security systems with information theoretic
security.

There were 43 submitted papers of which 14 were accepted. Each contributed
paper was reviewed by three members of the Program Committee. In the case
of co-authorship by a Program Committee member the paper was reviewed by
five members of the committee (no committee member reviewed their own sub-
mission). In addition to the accepted papers, the conference also included nine
invited speakers, whose contributions were not refereed. These proceedings con-
tain the accepted papers with any revisions required by the Program Committee
as well as the contributions by invited speakers.

The invited speakers were:

João Barros Strong Secrecy for Wireless Channels
Claude Crèpeau Interactive Hashing: An Information Theoretic Tool
Juan Garay Partially Connected Networks: Information

Theoretically Secure Protocols and Open Problems
Venkatesan Guruswami List Error-Correction with Optimal Information Rate
Goichiro Hanaoka Some Information-Theoretic Arguments for

Encryption: Non-malleability and
Chosen-Ciphertext Security

Norbert Lütkenhaus Theory of Quantum Key Distribution: The Road
Ahead

Pierre Moulin Perfectly Secure Information Hiding
Serge Vaudenay The Complexity of Distinguishing Distributions
Moti Yung Does Physical Security of Cryptographic Devices

Need a Formal Study?



VI Preface

Submissions to ICITS 2008 were required to be anonymous. The task of
selecting 14 papers out of 43 submissions was challenging. Each paper was care-
fully discussed until a consensus was reached. It was a great pleasure to work
with such a high-caliber and meticulous Program Committee. External referees
helped the Program Committee in reaching their decisions, and I thank them
for their effort. A list of all external referees appears later in these proceedings.

I would like to thank the General Chair of the conference, Barry Sanders,
and the Organizing Committee (listed below), whose unrelenting effort ensured
the smooth running of the conference. I would like to thank Michal Sramka and
Karl-Peter Marzlin, in particular, for their continued effort in maintaining the
conference website and submission system (iChair), and lending a hand whenever
it was required.

The conference benefited enormously from the generous financial support
of the University of Calgary, the Informatics Circle of Research Excellence in
Alberta, the Pacific Institute of Mathematical Sciences, the Canadian Institute
for Advanced Research and Quantum Works.

Finally, I would like to thank the authors of all submitted papers for their
hard work and all attendees of the conference whose support ensured the success
of the conference.

August 2008 Reihaneh Safavi-Naini
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Partially Connected Networks:
Information Theoretically Secure Protocols

and Open Problems
(Invited Talk)

Juan A. Garay

Bell Labs, Alcatel-Lucent, 600 Mountain Ave., Murray Hill, NJ 07974
garay@research.bell-labs.com

Abstract. We consider networks (graphs) that are not fully connected, and where
some of the nodes may be corrupted (and thus misbehave in arbitrarily mali-
cious and coordinated ways) by a computationally unbounded adversary. It is
well known that some fundamental tasks in information-theoretic security, such
as secure communication (perfectly secure message transmission) [4], broadcast
(a.k.a. Byzantine agreement) [7], and secure multi-party computation [1,2], are
possible if and only the network has very large connectivity—specifically, Ω(t),
where t is an upper bound on the number of corruptions [3,4]. On the other hand,
typically in practical networks most nodes have a small degree, independent of
the size of the network; thus, it is unavoidable that some of the nodes will be
unable to perform the required task.

The notion of computation in such settings was introduced in [5], where achiev-
ing Byzantine agreement with a low number of exceptions on several classes of
graphs was considered, and more recently studied in [6,8] with regards to secure
multi-party computation.

In this talk we review several protocols for the above tasks, and point out
some interesting problems for future research.
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Almost Secure 1-Round Message Transmission

Scheme with Polynomial-Time Message
Decryption

Toshinori Araki

NEC Corporation
t-araki@ek.jp.nec.com

Abstract. The model of (r-round, n-channel) message transmission
scheme (MTS) was introduced by Dolev et al. [5]. In their model, there
are n channels between a sender S and a receiver R, and they do not
share any information like keys. S wants to send a message to R secretly
and reliably in r-round. But, there is an adversary A who can observe
and forge at most t information which sent through n-channels.

In this paper, we propose almost secure (1-round, 3t+1-channel) MTS.
Proposed scheme has following two properties. (1) If sending message is
large some degree, the communication bits for transmitting messages is
much more efficient with comparing to the perfectly secure (1-round, 3t+
1-channel) MTS proposed by Dolev et.al [5]. (2) The running time of
message decryption algorithm is polynomial in n.

1 Introduction

Background. The model of (r-round, n-channel) message transmission scheme
(MTS) was first introduced by Dolev et al. [5]. In their model, there are n chan-
nels between a sender S and a receiver R, and they do not share any information
like keys. S wants to send a message m ∈ M to R secretly and reliably in r-round.
But, there is an adversary A who can observe and forge at most t information
which sent through n-channels.

We call a (r-round, n-channel) MTS is (t, δ)-secure if the scheme satisfies the
following four conditions for any infinitely powerful adversary.

1. A can not obtain any partial information about m.
2. R never accepts m̂ �= m.
3. R can output m̂ = m with probability at least 1 − δ.
4. If the all forged informations are null strings, R can output m̂ = m.

There are three typical measures for the efficiency of (t, δ)-secure (r-round,
n-channel) MTS ; that is, t : the number of channels which controlled by A,
r : the number of rounds and b(l) : the total number of bits which sent through
channels for communicating l bits message. This paper focuses on the case: r = 1.

With respect to 1-round MTS, Dolev et al. showed that the necessary and
sufficient condition for achieving (t, 0)-security is n ≥ 3t + 1 [5]. They also

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 2–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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proposed a (t, 0)-secure scheme for n = 3t + 1 whose b(l) is l · n. This scheme
satisfies the bound of b(l) presented in [6]. In the case of δ �= 0, some schemes
are proposed [4,8,11]. However, the scheme proposed in [11] is flawed [8]. The
(t, δ)-secure scheme for n = 2t+1 proposed in [4,8] requires decryption algorithm
where running time is exponential in n.

The scheme in [4,8] is based on a kind of (k, n) threshold scheme which can
detect only the fact of cheating. Inspired by the result [4,8], we think “If we use
another kind of secret sharing scheme, how MTS can construct?”. This is the
motivation of this research. In this paper, we research about a MTS based on a
(k, n) threshold scheme which can identify t cheaters.

Our Contribution. In this paper, we propose (t, δ)-secure schemes for r = 1
and 3t+1 channels. This scheme is based on a secret sharing scheme proposed in
[12] which can identify t-cheaters. The proposed schemes possesses the following
two properties.

1. The communication bits b(l) satisfies b(l) ≈ n · (l/(t + 1) + log 1/δ).
2. The running time of decryption algorithm is polynomial in n.

If sending message is large some degree, proposed scheme’s communication
bits is much smaller than that of the scheme in [5].

Organization. The rest of the paper is organized as follows. In Section 2, we
briefly review the model of (t, δ)-secure (1-round, n-channel) MTS. In Section 3,
we briefly review the tools for constructing proposed schemes. In Section 4, we
present a (t, δ)-secure (1-round, 3t + 1-channel) MTS. The running time of de-
cryption algorithm is polynomial in n. In Section 5, we present a variation of the
scheme proposed in Section 4. In Section 6, we summarize our work.

2 Message Transmission Scheme

In this section, we define a model of (t, δ)-secure (1-round, n-channel) message
transmission scheme (MTS). In this model, there are a sender S and a receiver
R are connected by n channels C = {C1, . . . , Cn}. They do not share any infor-
mations like keys. The sender’s goal is sending a message m ∈ M to the receiver
in one-round, where M denotes the set of messages. But there is an adversary
A who can observe and forge the informations sent through at most t channels.

A (1-round, n-channel) MTS consists of a pair of two algorithms (Enc, Dec).
Encryption algorithm Enc takes a message m ∈ M as input and outputs a list
(x1, . . . , xn). Each xi is the information sent through Ci and we call each xi

to ciphertext. Ordinarily, Enc is invoked by the S. Decryption algorithm Dec
takes a list of the ciphertexts from channels (x̂1, . . . , x̂n) and outputs m̂ ∈ M or
failure.

To define the security, we define the following game for any (1-round, n-channel)
message transmission schemeMTS = (Enc, Dec) and for any (notnecessarily poly-
nomially bounded) Turing machine A = (A1, A2), where A represents adversary
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who can observe and forge the ciphertexts sent through at most t channels. Follow-
ing definitions are based on the definitions in [8].

Game(MTS, A)
m ← M; //according to the probability distribution over M.
(x1, . . . , xn) ← Enc(m);
(i1, . . . , it) ← A1;
(x′

i1 , . . . , x
′
it

) ← A2(xi1 , . . . , xit); // x′ can be null string.

Definition 1. We say (1-round, n-channel) message transmission scheme MTS
(t, δ)-secure if the following four conditions are satisfied for any adversary A who
can observe and forge the ciphertexts sent through at most t channels.

-Privacy. A cannot obtain any information about m.
-General Reliability. The receiver outputs m̂ = m or failure. In the other
words, the receiver never output invalid message.
-Failure

Pr(Dec(x̂1, . . . , x̂n) = failure) ≤ δ

-Trivial Reliability. If all forged messages are null strings, then Dec outputs
m. (This is a requirement for the case t channel fail to deliver messages).

With respect to (t, 0)-secure (1-round, n(= 3t+1)-channel) message transmis-
sion scheme, the following result is already known.

Proposition 1. [5] There exists (t, 0)-secure (1-round, n(= 3t + 1)-channel)
message transmission scheme with b(l) = l · n.

In [4,8], a (t, δ)-secure (1-round, n(= 2t + 1)-channel) message transmission
scheme is proposed. But, the running time of this scheme’s message decryption
algorithm is exponential in n.

3 Preliminaries

In this section, we review the tools for constructing proposed scheme.

3.1 (k, n) Threshold Scheme

A (k, n) threshold secret sharing scheme [2,10] is a cryptographic primitive used
to distribute a secret s to n participants in such a way that a set of k or more
participants can recover the secret s and a set of k−1 or less participants cannot
obtain any information about s. There are n participants P = {P1, . . . , Pn} and
a dealer D in (k, n) threshold scheme.

A model consists of two algorithms: ShareGen and Reconst. Share genera-
tion algorithm ShareGen takes a secret s ∈ S as input and outputs a list
(v1, v2, . . . , vn). Each vi is called a share and is given to a participant Pi. Or-
dinarily, ShareGen is invoked by the D. Secret reconstruction algorithm Reconst
takes a list of shares and outputs a secret s ∈ S.
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Shamir’s (k, n) Threshold Scheme. In this paper, we use shamir’s secret
sharing scheme [10]. In this scheme, on input a secret s ∈ GF (p), the D randomly
choose a polynomial f(x) of degree at most k−1 over GF (p) such that f(0) = s,
and the share vi = f(i). In case m ≥ k, the list of shares {vi1 , . . . , vim} is
equivalent to codeword of generalized Reed-Solomon code [9]. Moreover, in case
m = k+2t, we can correct shares even when t shares are forged by using efficient
algorithm like Berlekamp algorithm [1] which complexity is O(m2) [9].

Ramp Scheme. In the above case, secret is only embeded to constant term of
f(x). In [3], Blakley proposed to embed secret to other coefficients. For example,
on input a secret s = (s0, . . . , sN−1) ∈ GF(p)N , the D randomly choose aj ∈
GF(p) for N ≤ j ≤ k − 1 and generate a polynomial f(x) of degree k − 1 over
GF (p) such that f(x) = s0 + s1x + . . . + sN−1x

N−1 + aNxN + . . . + ak−1x
k−1

and the share vi = f(i).
In above case, any k or more participants can recover s but no subset of less

than k −N participants can determine any partial information about s. We call
this type of threshold scheme to (k, N, n) threshold scheme.

3.2 t-Cheater Identifiable (k, n) Threshold Scheme

A secret sharing scheme capable of identifying cheaters was first presented by
Rabin and Ben-Or [13]. They considered the scenario in which at most t cheaters
submit forged shares in the secret reconstruction phase. Such cheaters will suc-
ceed if they cannot be identified as cheaters in reconstructing the secret.

This model consists of two algorithms. The share generation algorithm
ShareGen is the same as that in the ordinary secret sharing schemes.

A secret reconstruction algorithm Reconst is slightly changed: it takes a list of
shares as input and outputs either a secret or a pair (⊥, L) where ⊥ is a special
symbol indicating that cheating was detected, and L is a set of cheaters who
submit invalid shares to Reconst. Reconst outputs ⊥ if and only if cheating has
detected.

The model can be formalized by the following simple game defined for any
(k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any (not
necessarily polynomially bounded) Turing machine B = (B1, B2), where B repre-
sents cheaters Pi1 , . . . , Pit who try to cheat Pit+1 , . . . , Pik

. Following definitions
are based on the definitions in [12].

Game(SS, B)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , it) ← B1;
(v′i1 , . . . , v

′
it
, it+1, . . . , ik) ← B2(vi1 , . . . , vit);

The advantage of each cheater Pij is expressed as Adv(SS, B, Pij ) = Pr[s′ ∈
S ∧ s′ �= s ∧ ij /∈ L] ,

where s′ is a secret reconstructed from v′i1 , . . . , v
′
it
, vit+1 , . . . , vik

and the proba-
bility is taken over the distribution of S and over the random tapes of ShareGen
and B.
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Definition 2. We say (k, n) threshold secret sharing scheme SS (t, ε)-cheater
identifiable if the following three conditions are satisfied for any adversary B who
can observe and forge t shares.

-Condition 1. Any set of k or more honest participants can recover original
secret s.
-Condition 2. Any set of k− 1 or less participants cannot determine any infor-
mation about s.
-Condition 3. Adv(SS, B, Pij ) ≤ ε for any adversary B and any Pij .

Above definition does not have any condition about a set of k + 1 or more
participants containing some cheaters. A definition including this situation is
given in [7]. However, we adopt a definition given in [12]. Because, the pro-
posed scheme of this paper is based on a cheater identifiable (k, n) threshold
secret sharing scheme proposed in [12] and this base scheme does not define the
reconstruction algorithm for such situation.

Next, we briefly review the scheme presented in [12].

The Obana Scheme [12]
The Share Generation algorithm ShareGen and the Share Reconstruction algo-
rithm Reconst are described as follows where p and q are a prime powers such
that q ≥ np.

-Share Generation: On input a secret s ∈ GF(p), the share generation
algorithm ShareGen outputs a list of ciphertexts (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) of degree at most k over GF(p) such
that fs(0) = s .

2. Generate a random polynomial C(x) of degree at most t over GF(q) .
3. Compute vi = (fs(i), C(p · (i − 1) + fs(i))) and output (v1, . . . , vn) where

each p · (i − 1) + fs(i) is computed over integer and then reduced to GF(q)

-Secret Reconstruction and Cheater Identification: On input a list
of share ((vs,j1 , vc,j1), . . . , ((vs,jk

, vc,jk
)), the reconstruction algorithm Reconst

outputs a secret s or ⊥ as follows:

1. Reconstruct Ĉ(x) from (vc,j1 , . . . , vc,jk
) using an error correction algorithm

of generalized Reed-Solomon Code (e.g. Berlekamp algorithm. [1])
2. Check if vc,jl

= Ĉ(p · (jl − 1) + vs,jl
) holds (for 1 ≤ l ≤ k.) If vc,jl

�=
Ĉ(p · (jl − 1) + vs,jl

) then jl is added to the list of invalid shares L.
3. If L = ∅ then compute the secret ŝ from (vs,j1 , . . . , vs,jk

) using Lagrange
interpolation and output ŝ, otherwise Reconst outputs (⊥, L).

The properties of this scheme is summarized by the following proposition.

Proposition 2. [12] If k ≥ 3t + 1 then the Obana scheme is a (t, ε) cheater
identifiable (k, n) threshold scheme such that

|S|1 = p, ε = 1/q, q ≥ n · p, |vi| = p · q(= |S|/ε).

1 Throughout the paper, the cardinality of the set X is denoted by |X |.



Almost Secure 1-Round Message Transmission Scheme 7

By using this scheme, even if there exist t forged shares in more than 3t + 1
shares, we can choose only valid shares with high probability.

3.3 Almost Strong Class of Universal Hash Functions

Obana scheme is using the properties of Almost strong class of universal hash
functions. Here, we review the properties of this as follows.

A family of hash functions H : A → B with the properties (1) and (2) below
is called Almost strongly universal hash functions with strength t ε-ASUt.

1. For any x ∈ A and y ∈ B, |{he ∈ H | he(x) = y}| = |H |/|B|.
2. For any distinct x1, . . . , xt ∈ A and for any distinct y1, . . . yt ∈ B,

|{he ∈ H | he(x1) = y1, . . . , he(xt) = yt}|
|{he ∈ H | he(x1) = y1, . . . , he(xt−1) = yt−1}| ≤ ε.

4 Proposed Scheme

As noted before, proposed scheme is based on t cheater identifiable secret sharing
scheme proposed in [12].

Basically, proposed scheme’s ciphertext xi is the share vi of [12] which set k =
2t+1 and n = 3t+1. If do so, R receive at least valid 2t+1 ciphertexts. Moreover,
by the property of t cheater identifiable secret sharing scheme, the receiver R
can choose only valid ciphertexts with high probability from received ciphertexts.
Clearly, in this case, R can decrypt valid message. But, there is small probability
that R choose more than 2t + 1 valid ciphertexts and some invalid ciphertexts.
For satisfying “General Reliability”, we must make Dec which can detect the
fact perfectly and efficiently. To do so, we use the a property of Shamir’s (k, n)
threshold scheme such that k valid shares determine a polynomial and invalid
shares never pass this polynomial. By using this property, we can perfectly detect
the fact noted before. Because, receiver R receives at least 2t+1 valid ciphertexts.
In proposed scheme, we use (2t + 1, t + 1, 3t + 1) threshold scheme for efficiency.
Because, in message transmission , we may take into account adversary who can
observe only t channel. So we may use (2t + 1, t + 1, 3t + 1) threshold scheme.

The encryption algorithm Enc and the decryption algorithm Dec are described
as follows where p and q are prime powers such that q ≥ np.

-Enc: On input a message m ∈ GF(pt+1) where (m0, m1, . . . , mt) is a vector
representation of m, the encryption algorithm Enc outputs a list of ciphertexts
(c1, . . . , cn) as follows:

1. Generate a random polynomial fm(x) of degree at most 2t over GF(p) such
that

fm(x) = m0 + m1x + . . . + mtx
t + at+1x

t+1 + . . . + a2tx
2t

where at+1, . . . , a2t are ramdom elements over GF(p).
2. Generate a random polynomial C(x) of degree at most t over GF(q) .
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3. Compute ci = (fm(i), C(p · (i − 1) + fm(i))) and output (c1, . . . , cn) where
each p · (i− 1)+ fm(i) is computed over integer and then reduced to GF(q) .

-Dec: On input a list of ciphertexts ((cm,1, cc,1), . . . , ((cm,n, cc,n)), the decrip-
tion algorithm Dec outputs a message m or ⊥ as follows:

1. Reconstruct Ĉ(x) from (cc,1, . . . , cc,n) using an error correction algorithm of
generalized Reed-Solomon Code (e.g. Berlekamp algorithm.[1]).

2. Check if cc,i = Ĉ(p · (i − 1) + cm,i) holds (for 1 ≤ i ≤ n.) If cc,i = Ĉ(p · (i −
1) + cm,i) then i is added to the list of valid ciphertexts L.

3. Reconstruct f̂m(x) from k of cm,i where i ∈ L and check all cm,i where i ∈ L

pass f̂m(x). If all cm,i where i ∈ L pass f̂m(x), output the values embeded
to fm. Otherwise Dec outputs failure.

Clearly, the running time of Dec is polynomial in n and the properties of this
scheme is summarized by the following theorem.

Theorem 1. Proposed scheme is (t, δ)-secure (1-round, 3t+1-channel) message
transmission scheme such that δ = t/(q − t + 1).

Proof. At first, (C(x1), C(x2), . . . , C(xn)) is a codeword of the Reed-Solomon
Code with minimum distance n − t. Moreover, if n − t > 2t(n = 3t + 1) then
C(x) can be reconstructed even when t ciphertexts are forged.

Privacy. We use (2t + 1, t + 1, 3t + 1) threshold scheme for encrypting messages
and A can know at most t(= 2t + 1 − (t + 1)) ciphertexts about message So, by
the property of ramp scheme, A can not get any information about message.

General Reliability. A can forge at most t ciphertexts. In other words, in
decryption, there are 2t + 1 channels’ informations are unforged. These infor-
mations about message determine one polynomial which encrypting message. If
A want R to decrypt invalid message m̂ �= m, at least A must forge ciphertexts
such that the forged value about message is not on polynomial f . But, Dec check
whether all information about message pass the same polynomial of degree 2t.
So, Dec never outputs invalid message.

Failure. Here, we prove δ = t/(q − t + 1). Firstly, we show C(x) is 1/q-ASUt+1.
Suppose C(x) = a0 + a1 · x + . . . , at · xt, for any a1, . . . , at, x1 and y1, we can
manipulate a0 so as to C(x1) = y1. So, |{C(x) | C(x1) = y1}| = qt. |H | = qt+1

and |B| = q. So C(x) suffices condition 1 for 1/q-ASUt+1. Similarly, for any
a1, . . . , at, x1, . . . , xt+1 and y1, . . . , yt+1, |{C(x) | C(x1) = y1, . . . , C(xt) = yt}| =
q and |{C(x) | C(x1) = y1, . . . , C(xt+1) = yt+1}| = 1. So, |{C(x) | C(x1) =
y1, . . . , C(xt+1) = yt+1}|/|{C(x) | C(x1) = y1, . . . , C(xt) = yt}| = 1/q. So, C(x)
suffices condition 2 for 1/q-ASUt+1. So, C(x) is 1/q-ASUt+1.

As noted beginning of proof, C can be reconstructed even when t informations
are forged. C is chosen randomly, the following equality holds for any distinct
x1, . . . , xt, xt+1 ∈ GF(q) and for any y1, . . . , yt, yt+1 ∈ GF(q).

Pr[C(xt+1) = yt+1|C(x1) = y1, . . . , C(xt) = yt] = 1/q
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Without loss of generality, we can assume C1, . . . , Ct are channels which A
observe and forge the ciphertexts sent through. Suppose that A try to forge c1

to c′1 = (c′m,1, c
′
c,1) such that c′m,1 �= cm,1, 1 is added to L in the process of

decryption if c′c,1 = C(c′m,1) since Enc can recover the original C(x) even when
t ciphertexts are forged.

Since {C(x)|C(x) over GF(q) and the degree at most t} is a strong class of
universal hash functions and c′m,1 is different from any of p · (i − 1) + c′m,i (1 ≤
i ≤ t), the following equation holds:

Pr[C(c′m,1) = c′c,1|C(p · (i − 1) + cm,i) = cc,i, (for1 ≤ i ≤ t)] = 1/q

where the probability is taken over the random choice of C(x). The above dis-
cussion holds for any ci(1 ≤ i ≤ t) (But, we must consider that A can choose the
values of forged ciphertext adaptively.) For making R output “failure”, A must
make pass at least one forged ciphertext. A can forge at most t informations.
So, if q is sufficiently large, the probability that Enc outputs “failure” is

1−(1−1/q)(1−1/(q−1)) . . .(1−1/(q−t+1)) ≤ 1−(1−1/(q−t+1))t ≤ t/(q−t+1).

Trivial Reliability. As noted above, C(x) can be reconstructed correctly. In
this case, information about message do not contain forged information. So, the
R can correctly decrypt messages. �
Proposed scheme is (t, δ)-secure (1-round, 3t + 1-channel) MTS such that

|M | = pt+1, δ = t/(q − t + 1), |xi| = p · q.
Now suppose log|M | = l, this scheme’s communication bits b(l) is b(l) = n ·
(log p + log q) ≈ n · (l/(t + 1) + log 1/δ).

5 A Scheme with Flexible Parameters

There is a limitation that the δ must be smaller than t/n|M |1/t in section 4’s
scheme. This limitation is not preferable, especially when we want to send a
message with large size. However, for considering sharing a secret with large size,
in [12] a t-cheater identifiable secret sharing scheme is proposed. The properties
of this scheme are summarized by following proposition.

Proposition 3. [12] If k ≥ 3t+1, there exists a (t, ε) cheater identifiable (k, n)
threshold scheme such that

|S| = pN , ε = (N − 1)/p + 1/q ≤ N/p, q ≥ n · p, |vi| = pN+1 · q.
Using this scheme, we can construct a (1-round, 3t + 1-channel) message trans-
mission scheme as follows.

-Enc: On input a message m ∈ GF((pN ·(t+1)) where (m0, m1, . . . , mt) is a
vector representation of m, the encryption algorithm Enc outputs a list of ci-
phertexts (c1, . . . , cn) as follows:
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1. Generate a random polynomial fm(x) of degree at most 2t over GF(pN ) such
that

fm(x) = m0 + m1x + . . . + mtx
t + at+1x

t+1 + . . . + a2tx
2t

where at+1, . . . , a2t are ramdom elements over GF(pN ).
2. Generate e ∈ GF(p) randomly and construct a random polynomial Ce(x) of

degree at most t over GF(p) such that Ce(0) = e.
3. Generate a random polynomial Cs(x) of degree at most t over GF(q) .
4. Compute cm,i = (cm,i,0, . . . , cm,i,N−1) = fm(i) where cm,i,j ∈ GF(p) (for 0 ≤

j ≤ N−1), cCe,i = Ce(i) and cCs,i = Cs(p·(i−1)+(
∑N−1

j=0 cm,i,j ·ej mod p)).
5. Compute ci = (cm,i, cCe,i, cCs,i) and output (c1, . . . , cn).

-Dec: On input a list of ciphertexts ((cm,1, ce,1, cs,1), . . . , (cm,n, ce,n, cs,n)),
the decryption algorithm Dec outputs a secret m or ⊥ as follows:

1. Reconstruct Ĉe(x) and Ĉs(x) from (ce,1, . . . , ce,n) and (cs,1, . . . , cs,n), respec-
tively using an error correction algorithm of Reed-Solomon Code.

2. Check if cCe,i = Ĉe(i) (for 1 ≤ i ≤ n.) If cCe,i = Ĉe(i) then i is added to the
list of valid ciphertexts L.

3. Compute ê = Ĉe(0).
4. Check if cs,i = Ĉs(p · (i− 1) + (

∑N−1
l=0 cm,i,l · el mod p)) holds (for all i ∈ L).

If cs,i �= Ĉs(p · (i − 1) + (
∑N−1

l=0 cm,i,l · el mod p)) then i is removed from the
list of valid ciphertexts L.

5. Reconstruct f̂m(x) from k of cm,i where i ∈ L and check all cm,i where i ∈ L

pass f̂m(x). If all cm,i where i ∈ L pass f̂m(x), output the values embeded
to fm. Otherwise Dec outputs failure.

Clearly, the running time of Dec is polynomial in n and the properties of this
scheme is summarized by the following theorem.

Theorem 2. Proposed scheme is (t, δ)-secure (1-round, (3t + 1)-channel) mes-
sage transmission scheme such that δ = t(N−1)/(p−(N+1)(t−1))+t/(q−t+1)).

Proof. The proofs of Privacy, General Reliability and Trivial Reliability are the
same as in the proof of Theorem 1. So, we only prove δ = t(N − 1)/(p − (N +
1)(t − 1)) + t/(q − t + 1)).

As in the proof of Theorem 1, (Ce(x1), Ce(x2), . . . , Ce(xn)) and (Cs(x1),
Cs(x2), . . . , Cs(xn)) are codewords of the Reed-Solomon Code with minimum
distance n − t. Moreover, n − t > 2t (n = 3t + 1). So, Ce(x) and Cs(x) can be
reconstructed even when t ciphertexts are forged.

Suppose that A try to forge c1 to c′1 = (c′m,1, c
′
e,1, c

′
s,1) such that c′m,1 �= cm,1,

1 is added to L in the process of decryption if c′s,1 = Cs(
∑N−1

j=0 c′m,1,j · ej mod p)
where e randomly distributed over GF(p). There are two cases to consider in
computing such probability. In the first case suppose that c′s,1 �= cs,1. In this case,
the successful probability ε of A who know that cs,i = Cs(p·(i−1)+(

∑N−1
j=0 cm,i,j ·
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ej mod p)) hold for 1 ≤ i ≤ t is computed as follows. (For simplicity we will
denote

∑N−1
j=0 cm,i,j · ej mod p by g(cm,i, e). )

ε = Pr[c′s,i = Cs(g(c′m,i))|cs,i = Cs(g(cm,i))(for1 ≤ i ≤ t)]
= Pr[g(cm,i, e) �= g(c′m,i, e)]

·Pr[c′s,i = Cs(g(c′m,i))|cs,i = Cs(g(cm,i))(for1 ≤ i ≤ t), g(cm,i, e) �= g(c′m,i, e)]
≤ 1/q

where the last inequality directly follows from the fact that {Cs} is a family of
a strong class of universal hash function with strength t + 1. (See the proof of
Theorem 1 for details. )

Next we consider the second case in which c′s,1 = cs,1 holds. In this case ε is
computed as follows.

ε = Pr[c′s,i = Cs(g(c′m,i))|cs,i = Cs(g(cm,i))(for1 ≤ i ≤ t)]
= Pr[g(cm,i, e) = g(c′m,i, e)] + Pr[g(cm,i, e) �= g(c′m,i, e)] ·

Pr[c′s,i = Cs(g(c′m,i))|cs,i = Cs(g(cm,i))(for1 ≤ i ≤ t), g(cm,i, e) �= g(c′m,i, e)]
≤ Pr[g(cm,i, e) = g(c′m,i, e)] + 1/q

g(cm,i, e) and g(c′m,i, e) are different polynomial of degree at most N − 1 about
e. So, g(cm,i, e) = g(c′m,i, e) has at most N − 1 roots. So,

Pr[g(cm,i, e) = g(c′m,i, e)] + 1/q ≤ (N − 1)/p + 1/q

The above discussion holds for any ci(1 ≤ i ≤ t) (But, we must consider that
A can choose the values of forged ciphertext adaptively.) For making R output
“failure”, A must make pass at least one forged ciphertext. A can forge at most
t informations. So, if p is sufficiently large, the probability that Enc outputs
“failure” is

1−(1 −((N−1)/p + 1/q)) . . . (1−((N − 1)/(p −(N + 1)(t − 1))+1/(q−t+1)))
≤ 1 − (1 − ((N − 1)/(p − (N + 1)(t − 1)) + 1/(q − t + 1)))t

≤ t(N − 1)/(p − (N + 1)(t − 1)) + t/(q − t + 1)) �

Proposed scheme is (t, δ)-secure (1-round, 3t + 1-channel) MTS such that

|M | = p(t+1)·N , δ = t(N − 1)/(p− (N +1)(t− 1))+ t/(q− t+1)), |xi| = pN+1 · q.
Now suppose log|M | = l, this scheme’s communication bits b(l) is b(l) ≈ n · (N ·
log p + log p + log q) ≈ n · (l/(t + 1) + 2 · log 1/δ).

The scheme proposed in section 4 is more efficient. But, this scheme can take
more flexible parameters by controlling N .

6 Conclusion

In this paper, we present two (t, δ)-secure (1-round, 3t + 1-channel) message
transmission scheme.
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Table 1. Comparison of the communication bits b(l)

Scheme in § 4 Scheme in § 5 (N = 3) Dolev et.al. (δ = 0)

b(512) 2500, δ ≈ 2−126 2160, δ ≈ 2−40 5120

b(1024) 5160, δ ≈ 2−254 4310, δ ≈ 2−83 10240

b(2048) 10280, δ ≈ 2−510 8560, δ ≈ 2−168 20480

b(3072) 15400, δ ≈ 2−766 12810, δ ≈ 2−766 30720

Table 2. Comparison of the communication bits b(l) for large message

Scheme in § 5 (δ ≥ 2−80) Dolev et.al. (δ = 0)

b(1M) 2.5M + 2040 10M

b(2M) 5M + 2120 20M

b(4M) 10M + 2280 40M

These schemes are quite simple and direct construction using (t, ε)-Cheater
Identifiable (k, n) threshold schemes proposed by Obana [12] and ramp scheme
[3]. However, if sending message is large some degree, this scheme is much more
efficient with respect to the number of communication bits for transmitting mes-
sages comparing to the perfectly secure (1-round, 3t+1-channel) MTS proposed
by Dolev et.al [5].

Table 1 compares the length of communication bits b(l) and δ for the various
message size where t = 3 and n = 3·3+1 = 10. In Table 2, we compare the length
of communication bits b(l) for the large message size. It can be seen that proposed
scheme has small failure probability but the bit length of communication bits is
much more efficient comparing to the scheme proposed in [5].

Finding the bound of b(l) of (t, δ(�= 0))-secure scheme and comparing this to
our proposed scheme will be future work.
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Abstract. Interactive Hashing has featured as an essential ingredient in
protocols realizing a large variety of cryptographic tasks, notably Obliv-
ious Transfer in the bounded memory model. In Interactive Hashing, a
sender transfers a bit string to a receiver such that two strings are re-
ceived, the original string and a second string that appears to be chosen
at random among those distinct from the first.

This paper starts by formalizing the notion of Interactive Hashing as
a cryptographic primitive, disentangling it from the specifics of its vari-
ous implementations. To this end, we present an application-independent
set of information theoretic conditions that all Interactive Hashing pro-
tocols must ideally satisfy. We then provide a standard implementation
of Interactive Hashing and use it to reduce a very standard version of
Oblivious Transfer to another one which appears much weaker.

1 Introduction

Interactive Hashing (IH) is a cryptographic primitive that allows a sender Alice
to send a bit string w to a receiver Bob who receives two output strings, labeled
w0, w1 according to lexicographic order. The primitive guarantees that one of
the two outputs is equal to the original input. The other string is guaranteed to
be effectively random, in the sense that it is chosen beyond Alice’s control, even
if she acts dishonestly. On the other hand, provided that from Bob’s point of
view w0, w1 are a priori equiprobable inputs for Alice, the primitive guarantees
that Bob cannot guess which of the two was the original input with probability
greater than 1/2. We remark that typically both outputs are also available to
Alice. See Figure 1.

In this article we provide a study of Interactive Hashing in the information the-
oretic setting and in isolation of any surrounding context. This modular approach
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Fig. 1. Interactive Hashing: the sender Alice sends string w to Bob, who receives two
strings w0, w1, labeled according to lexicographic order. One of the two (in our example,
w0) is equal to the input string while the other is effectively randomly chosen. Bob
cannot distinguish which of the two was the original input.

allows specific implementations (protocols) of Interactive Hashing to be analyzed
independently of any applications in which they appear as sub-protocols. It thus
leads to a better appreciation of the power of Interactive Hashing as a crypto-
graphic primitive in its own right.

To demonstrate the relevance of Interactive Hashing, we present an applica-
tion to protocols for Oblivious Transfer (OT). Oblivious Transfer is an important
primitive in modern cryptography. It was originally studied by Wiesner [Wie70]
(under the name of “multiplexing”), in a paper that marked the birth of quantum
cryptography and was later independently introduced to cryptography in sev-
eral variations by Rabin [Rab81] and by Even, Goldreich and Lempel [EGL85].
Oblivious transfer has since become the basis for realizing a broad class of cryp-
tographic protocols, such as bit commitment, zero-knowledge proofs, and general
secure multiparty computation [Yao86,GMW87,Kil88,Gol04].

In a one-out-of-two Oblivious Transfer, denoted
(
2
1

)
-OT, a sender owns two

secret bits b0 and b1, and a receiver wants to learn bc for a secret bit c of his
choice. The sender will only collaborate if the receiver can obtain information
about exclusively one of b0 or b1. Likewise, the receiver will only participate
provided that the sender cannot obtain any information about c.

1.1 Organization of the Paper

We present the previous work on Interactive Hashing in Section 2. In Section 3
we identify and formalize the information theoretic security properties of Interac-
tive Hashing. Then, in Section 3.1 we turn our attention to the Interactive Hash-
ing implementation that appeared as a sub-protocol in [OVY93] and refer the
reader to recent work [Sav07,CCMS09] demonstrating that despite its simplicity,
it meets all security properties set forth in Section 3. This new proof of security
is an important improvement over the proof that appeared in [CCM98], where
the authors demonstrate that a slight variant of the IH protocol of [OVY93]
could be securely used in their specific scenario. The new proof is more general,
as it is based on the security properties stated in Section 3. Moreover, the proof
is significantly simpler and more intuitive. Lastly, it provides an easier to use
and much tighter upper bound on the probability that the protocol fails to ensure
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that one of the two strings is sufficiently random. Section 4 defines our example
problem: reducing

(
2
1

)
-OT to a very weak version of Oblivious Transfer. Section 5

exhibits the solution to our example problem using Interactive Hashing. Finally,
we conclude in Section 6 and introduce a few open problems.

2 Previous Work

Various implementations of Interactive Hashing have appeared as sub-protocols
in the cryptographic literature, first in computational contexts where at least
one of the participants is polynomially bounded and later also in contexts where
security is unconditional (information theoretic).

While reviewing the previous work, the reader should bear in mind that so
far, Interactive Hashing has never been presented as an independent primitive.
Instead, it only appears within the context of larger protocols achieving a variety
of different cryptographic tasks. Not surprisingly, the properties it is expected to
have can vary significantly from one application to the next, and thus the proof
of security in each case depends on the specific setting.

2.1 Uses of Interactive Hashing in Computational Contexts

Interactive Hashing first appeared as a sub-protocol within a protocol achieving
Oblivious Transfer from an unbounded sender to a polynomial-time bounded
receiver [OVY93]. Soon thereafter, Interactive Hashing was deployed in various
other scenarios, such as zero-knowledge proofs [OVY94] and bit commitment
schemes [OVY92,NOVY98], where at least one of the participants was compu-
tationally bounded. For more recent applications of Interactive Hashing in this
setting consult [HHK+05,NOV06,NV06,HR07].

2.2 Uses of Interactive Hashing in Information Theoretic Contexts

Beside the computational scenarios in which it was originally used, Interactive
Hashing proved to be an important tool in information theoretic contexts as well.
Its first such use was in protocols for Oblivious Transfer which are information-
theoretically secure under the sole assumption that the receiver’s memory is
bounded [CCM98,Din01,DHRS07]. Interactive Hashing was later used to opti-
mize reductions between Oblivious Transfer variants [CS06].

We remark that while some of the security properties required of Interactive
Hashing in information theoretic settings bear a very close resemblance to their
counterparts in computational settings, some other properties are substantially
different. Moreover, the transition from computational to information theoretic
settings requires a re-evaluation of all security properties of any protocol. For
this reason, starting with [CCM98], the security properties of the underlying In-
teractive Hashing sub-protocol have been re-evaluated in the light of the specific,
information theoretic context where it was used.
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3 Information-Theoretic Secure Interactive Hashing

We now formalize the security properties that Interactive Hashing is expected
to satisfy in information theoretic contexts. As these properties do not depend
on any specific application, they allow us to define Interactive Hashing as an
independent cryptographic primitive.

Definition 1. Interactive Hashing is a cryptographic primitive between two play-
ers, the sender and the receiver. It takes as input a string w ∈ {0, 1}t from the
sender, and produces as output two t–bit strings one of which is w and the other
w′ �= w. The output strings are available to both the sender and the receiver, and
satisfy the following properties:

1. The receiver cannot tell which of the two output strings was the original
input. Let the two output strings be w0, w1, labeled according to lexicographic
order. Then if both strings were a priori equally likely to have been the
sender’s input w, then they are a posteriori equally likely as well1.

2. When both participants are honest, the input is equally likely to be paired
with any of the other strings. Let w be the sender’s input and let w′ be the
second output of interactive hashing. Then provided that both participants
follow the protocol, w′ will be uniformly distributed among all 2t − 1 strings
different from w.

3. The sender cannot force both outputs to have a rare property. Let G be a
subset of {0, 1}t representing the sender’s “good set”. Let G be the cardinality
of G and let T = 2t. Then if G/T is “small”, the probability that a dishon-
est sender will succeed in having both outputs w0, w1 be in G is comparably
“small”.

Remark 1. In the computational contexts of Section 2.1, similar properties to
Properties 1 and 2 were also required. On the other hand, the computational
counterpart to Property 3 is usually stated quite differently, as there is no pre-
determined good set G. For instance, in [NOVY98] where the inputs and outputs
of Interactive Hashing are interpreted as images under a one-way permutation
π, one of the two outputs is required to be sufficiently random so that any
polynomial-time algorithm that can compute pre-images to both outputs a sig-
nificant fraction of the time can be used to efficiently invert π on a randomly
chosen string with non-negligible probability.

We shall also point out that Property 3 is easy to satisfy when G ∈ o(
√

T )
because of the so called Birthday paradox. If the receiver picks a random hash
function h from {0, 1}t → {0, 1}t−1 and announces it to the sender, only with
very small probability will there exist a pair w0, w1 ∈ G such that h(w0) = h(w1).
The real challenge, met by Interactive Hashing, is to obtain Property 3 for sets
G such that G ∈ Ω(

√
T ).

1 Note that if we want this property to hold for all possible outputs, then w must be
uniformly chosen. Otherwise, this property will only hold whenever w happens to be
paired with a string w′ having the same a priori probability as w.
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3.1 A Secure Protocol for Interactive Hashing

We will be examining the implementation of Interactive Hashing given in Pro-
tocol 1. This standard implementation was originally introduced in a compu-
tational context by Ostrovsky, Venkatesan, and Yung [OVY93]. In Section 3.1
we will see that this very simple protocol actually meets all our information
theoretic security requirements as well.

Protocol 1. Interactive Hashing

Let w be a t-bit string that the sender wishes to send to the receiver. All oper-
ations below take place in the binary field F2.

1. The receiver chooses a (t − 1) × t matrix Q uniformly at random among all
binary matrices of rank t − 1. Let qi be the ith query, consisting of the ith

row of Q.
2. For 1 ≤ i ≤ t − 1 do:

(a) The receiver sends query qi to the sender.
(b) The sender responds with ci = qi · w.

3. Given Q and c (the vector of Bob’s responses), both parties compute the
two values of w consistent with the linear system Q ·w = c. These solutions
are labeled w0, w1 according to lexicographic order.

Remark 2. One way of choosing the matrix Q is to choose a (t − 1) × t binary
matrix uniformly at random and test whether it has rank t − 1, repeating the
process if necessary. Note that a later variation of the protocol [NOVY98] chose
Q in a canonical way to guarantee that it has rank t − 1, which results in a
somewhat more practical implementation. However, this appears to complicate
the proof of security.

Theorem 1 establishes the security of Protocol 1.

Theorem 1. [Sav07,CCMS09] Protocol 1 satisfies all three information theo-
retic security properties of Definition 1. Specifically, for Property 3, it ensures
that a dishonest sender can succeed in causing both outputs to be in the “good
set” G with probability at most 15.6805 · G/T .

3.2 Proofs of Information Theoretic Security

Cachin, Crépeau, and Marcil [CCM98] proved a similar property to Property 3
for a slight variant of Protocol 1 in the context of memory-bounded Oblivious
Transfer where again, the goal of a dishonest sender is to force both outputs of
the protocol to be from a subset G of cardinality G (out of a total T = 2t). While
their approach relies on upper-bounding the number of the sender’s remaining
good strings during the various rounds of the protocol, the new proof of [Sav07,
CCMS09] focuses instead on following the evolution of the number of pairs of
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good strings remaining after each round. This seems to be a more natural choice
for this scenario, as there is exactly one such pair remaining at the end of the
protocol if the sender succeeds in cheating and none otherwise (as opposed to two
strings versus zero or one). Consequently, the probability of cheating is simply
equal to the expected number of remaining pairs. Thanks to the nature of the
protocol, it is relatively easy to establish an upper bound on the expected number
of remaining pairs after each incoming query, and to keep track of its evolution
through the protocol.

The new approach of [Sav07,CCMS09] not only leads to a simpler and more
robust proof of security, but more importantly, it also allows to establish a more
general and much tighter upper bound on a dishonest sender’s probability of
cheating. Specifically, it allows to show that any strategy a dishonest sender
might employ can succeed with probability no larger than 15.6805 · G/T , for all
fractions G/T of good strings. The corresponding upper bound in [CCM98] is√

2 · 8
√

G/T and is only valid provided that G/T <
(
16t8

)−1. It should be noted
that the new upper bound is in fact tight up to a small constant. Indeed, the
probability of succeeding in cheating using an optimal strategy is lower-bounded
by the probability of getting two good output strings when the sender chooses
w ∈ G as input and then acts honestly. By Property 2 of Interactive Hashing, w
is equally likely to be paired with any of the remaining strings. It follows that the
probability of w being paired with one of the other G− 1 good strings is exactly
G−1/T−1. Assuming that G ≥ 50, the new upper bound is larger than this lower
bound by a factor of at most 15.6805 · (G

T

) (
T−1
G−1

)
< 15.6805

(
G

G−1

)
≤ 16. This

establishes that the new upper bound is tight up to a small constant in all cases
where the possibility of cheating exists.

3.3 An Alternative Implementation

Ding et al. [DHRS07] make use of a new, constant-round Interactive Hashing pro-
tocol to achieve Oblivious Transfer with a memory-bounded receiver. The main
idea behind their protocol, which requires only four rounds of interaction (com-
pared to t − 1 rounds in Protocol 1), is that if the receiver sends a random per-
mutation π to the sender (Round 1) who then applies it to his input string w and
announces a certain number of bits of π(w) (Round 2), then two more rounds suf-
fice to transmit the remaining part of π(w) so that only 1 bit remains undeter-
mined: in Round 3, the receiver chooses a function g uniformly at random from
a family of 2–wise independent 2–1 hash functions, and in Round 4 the sender
announces the value of the function applied to the remaining bits of π(w). The
output of the Interactive Hashing protocol consists of the two possible inputs to
the permutation π consistent with the values transmitted at rounds 2 and 4. The
security of this scheme is based on the observation that the permutation π in the
first round divides the (dishonest) sender’s good set G into buckets (indexed by
the bits transmitted at Round 2), so that with high probability, in each bucket
the fraction of good strings is below the Birthday Paradox threshold. This allows
regular 2–1 hashing to be used in Rounds 3 and 4 to complete the protocol.
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It should be noted that since a random permutation would need exponential
space to describe, the construction resorts to almost t-wise independent permu-
tations, which can be efficiently constructed and compactly described.

Unfortunately, the protocol of [DHRS07] is less general than Protocol 1 for a
variety of reasons: first, its implementation requires that the two parties know a
priori an upper bound on the cardinality of the dishonest receiver’s good set G, as
this will determine the number of bits of π(w) announced in Round 2. Secondly,
the upper bound for the probability that Property 3 is not met is, according to the
authors’ analysis, Ω (t · G/T) and only applies when G ≥ 4t. Moreover, the proto-
col does not fully satisfy Property 2, but only a slight relaxation2 of it. Lastly, the
protocol is very involved, and probably prohibitively complicated to implement
in practice. We leave it as an open problem to improve upon this construction.

4 Reducing OT to a Very Weak OT

We illustrate the power of Interactive Hashing in information theoretic contexts
by considering the following straightforward scenario, originally suggested by the
second author: suppose that a sender Alice and a receiver Bob wish to implement
1-out-of-k Bit Oblivious Transfer, which we will denote as

(
k
1

)
–Bit OT. For the

purposes of our example, suffice it to say that Alice would like to make available
k randomly chosen bits to Bob, who must be able to choose to learn any one
of them, with all choices being equally likely from Alice’s point of view. Alice
is only willing to participate provided that (dishonest) Bob learns information
about exclusively one bit, while Bob must receive the assurance that (dishonest)
Alice cannot obtain any information about his choice. Suppose that all that
is available to Alice and Bob is an insecure version of

(
k
1

)
–Bit OT, denoted

(k − 1)–faulty
(
k
1

)
–Bit OT, which allows honest Bob to receive (only) one bit of

his choice but might allow a dishonest Bob to learn up to k−1 bits of his choice.
The rest of this section focuses on the early work of the first two authors who
had made repeated but unsuccessful attempts to find a satisfactory reduction
of

(
k
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT, whereas Protocol 4 shows how

Interactive Hashing makes such a reduction almost trivial.

Remark 3. For simplicity, Protocol 2 and Protocol 4 reduce
(
2
1

)
–Bit OT to weaker

versions of OT without any loss of generality since
(
k
1

)
–Bit OT can in turn be re-

duced to
(
2
1

)
–Bit OT using the well-known reduction in [BCR86]. We shall denote

“x+ky” to be “x+y mod k” except if x+y ≡ 0 (mod k) in which case “x+ky = k”.
More formally, x +k y = (x + y − 1 mod k) + 1.

4.1 Reduction of
(2
1

)
–Bit OT to O(

√
k)–Faulty

(k
1

)
–Bit OT

As a warm up exercise we exhibit a simple reduction of
(
2
1

)
–Bit OT to O(

√
k)–

faulty
(

k
1

)
–Bit OT, a faulty primitive, allowing a dishonest Bob to get at most

O(
√

k) bits of Alice’s input at his choosing.
2 It approximates the uniform distribution over the remaining strings within some

η < 2−t.
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Protocol 2. Reduction of
(
2
1

)
–Bit OT to O(

√
k)–faulty

(
k
1

)
–Bit OT

Let b̊0, b̊1 and c̊ be the inputs of Alice and Bob, respectively, for
(
2
1

)
–Bit OT.

1. Alice and Bob agree on a security parameter n.
2. For 1 ≤ i ≤ n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik while Bob selects at random
ci ∈R {1, . . . , k}.

(b) Alice uses O(
√

k)–faulty
(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici .
(c) Alice picks a random distance Δi ∈R {1, . . . , k/2} and announces it to

Bob.
(d) Bob announces σi such that ci = σi +k c̊Δi to Alice.

3. Alice computes R0 =
n⊕

i=1

riσi and R1 =
n⊕

i=1

ri(σi+kΔi).

4. Alice sends e0 = b̊0 ⊕ R0 and e1 = b̊1 ⊕ R1 to Bob.
5. Bob obtains b̊̊c = ec̊ ⊕ Rc̊ = ec̊ ⊕⊕n

i=1 rici .

It is relatively straightforward to see that when both participants are honest,
Protocol 2 allows Bob to obtain the bit of his choice since he knows Rc̊ =⊕n

i=1 rici and can thus decrypt ec̊. In case Alice is dishonest, Bob’s choice c̊ is
perfectly hidden from her when she obtains σi at Step 2d. This is because at
the beginning of the protocol, Bob is equally likely to make the choices σi or
σi +k Δi.

Now consider what a dishonest Bob can do. At round i, upon learning Δi in
Step 2c, the probability that there exists a pair of indices at distance Δi where
Bob knows both bits is less than �i(�i−1)/2

k/2 when Bob knows 	i bits out of k.
This is because the maximum number of distances possible between 	i positions
is 	i(	i−1)/2, while the total number of distances is k/2. Thus, for an appropriate

choice of the hidden constant in the O() notation we have
O(

√
k(

√
k−1)/2)

k/2 < 1/2.
In consequence, the probability that in Step 2d Bob is able to claim a σi such that
he knows both riσi and ri(σi+kΔi) is less than 1/2. See Figure 2 for an example.
Therefore, the probability that after n rounds Bob may compute both R0 and
R1 is less than 1/2

n.

4.2 Reduction of O(
√

k)–Faulty
(k
1

)
–Bit OT to (k/2)–Faulty(k

1

)
–Bit OT

As a continuation of the previous exercise we reduce O(
√

k)–faulty
(
k
1

)
–Bit OT

to (k/2)–faulty
(
k
1

)
–Bit OT, a faulty primitive allowing a dishonest Bob to get

at most k/2 bits of Alice’s input at his choosing.
It is again relatively straightforward to see that when both participants are

honest, Protocol 3 allows Bob to obtain the bit of his choice since he knows
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Fig. 2. O(
√

k)–faulty
(

k
1

)
–Bit OT: Each row i corresponds to a round and in each row

O(
√

k) grey squares indicate the positions obtained by a dishonest Bob. The bold lines
indicate the distance Δi chosen by Alice. Bob can obtain both bits in the end if a pair
of grey squares exists at the right distance in each row. We see that a few rows have
such a pair but many don’t.

Fig. 3. (k/2)–faulty
(

k
1

)
–Bit OT: Each two rows 2i − 1, 2i correspond to round i. Row

2i − 1 shows the number of bits known to dishonest Bob (in light grey). Each row 2i,
shows an execution of (k/2)–faulty

(
k
1

)
–Bit OT after mixing via πi, and shifting via σi

to align as many known bits (in darker grey) as possible in the first Θ(
√

k) positions.
Most of the times, it is not possible to save all the Θ(

√
k) known bits.



Interactive Hashing: An Information Theoretic Tool 23

Protocol 3. Reduction of O(
√

k)–faulty
(
k
1

)
–Bit OT to (k/2)–faulty

(
k
1

)
–Bit OT

1. Alice and Bob agree on a security parameter n.
2. Bob selects at random c ∈R {1, . . . , k}.
3. For 1 ≤ i ≤ 2n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik while Bob selects at random
ci ∈R {1, . . . , k}.

(b) Alice uses (k/2)–faulty
(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici .
(c) Alice picks a random permutation πi ∈R {1, . . . , k} → {1, . . . , k} and

announces it to Bob.
(d) Bob computes a shift σi such that πi(ci) = σi +k c and announces it to

Alice.
4. Alice computes For 1 ≤ j ≤ k

Rj =
2n⊕
i=1

riπ−1
i (σi+kj).

5. Bob outputs c and Rc =
⊕2n

i=1 rici .
6. Alice outputs R1, . . . , Rk.

Rc =
⊕2n

i=1 rici . In case Alice is dishonest, Bob’s choice c is perfectly hidden
from her when she obtains σi at Step 3d.

The rest of the reasoning is a bit more subtle. See Figure 3 for an example.
Consider the first Θ(

√
k) bits known by Bob. The number of sequences containing

k/2 known bits that will have exactly those Θ(
√

k) bits in the correct position
is given by(

k − Θ(
√

k)
k/2

)
<

(
k − Θ(

√
k)

(k − Θ(
√

k))/2

)
≈
√

2
π

2k−Θ(
√

k)√
k − Θ(

√
k)

.

All k shifts of these sequences are also successful for Bob because he can shift
them to align them with the first Θ(

√
k) bits known, thus a grand total of at

most k times more or
√

2
π

√
k + Θ(

√
k)2k−Θ(

√
k). However, any new execution

of (k/2)–faulty
(
k
1

)
–Bit OT combined with a random permutation πi yields a

completely random sequence with an equal number of bits known and unknown,
or one out of

(
k

k/2

) ≈
√

2
π

2k√
k
. So the probability that a random sequence can

be shifted to have the first Θ(
√

k) known bits in the correct positions is at most
the ratio of the two expressions:

k
(k−Θ(

√
k)

k/2

)(
k

k/2

) <

√
k + Θ(

√
k)2k−Θ(

√
k)

2k/
√

k
< O(k)2−Θ(

√
k) � 1/2.
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We assume that the number of bits known to Bob after the first i rounds is in
Ω(

√
k) (a position j is known to Bob if so far he obtained all the bits necessary

to later compute Rj), otherwise we have already achieved our goal. For n > k,
starting from k/2 known bits, and repeating the protocol 2n times, one of the
following two options must hold:

1. At some round, Bob is left with less than O(
√

k) known bits
2. At all rounds, Bob has Ω(

√
k) bits left, and has thus lost fewer than k/2

bits overall (unlikely since under these conditions, the expected number of
bits lost is n > k)

This guarantees that the total number of bits still valid at the end of the protocol is
definitely O(

√
k) except with exponentially small probability. Thus, this reduction

can be used as a substitute for O(
√

k)–faulty
(
k
1

)
–Bit OT in Protocol 2.

The combination of Protocol 2 and Protocol 3 is a Θ(n2) time reduction from(
2
1

)
–Bit OT to (k/2)–faulty

(
k
1

)
–Bit OT. However, it is easy to see that it will

fail completely if we start with (k−1)–faulty
(
k
1

)
–Bit OT instead of (k/2)–faulty(

k
1

)
–Bit OT. This is because in each execution of step 3c the resulting sequence

will be a run of k − 1 known bits. In this situation Bob is able to choose a shift
σi such that he never loses a single bit through the operations of Step 4.

We finally note that indeed for any ε < 1, if dishonest Bob obtains εk bits per
transfer, xoring two transfers, after permuting and shifting as in Protocol 3, trans-
fers on average ε2k instead of εk. We may thus claim that the combined transfer
produces at most ε′k known bits, for ε′ = ε2+ε

2 < ε, except with exponentially
small probability. Repeating this idea at most a constant number of times pro-
duces a resulting ε′ < 1/2. Since the sequence ε > ε′ > ε′′ > ... converges to zero,
using a constant extra amount of work we can extend the result established for
ε = 1/2 to any ε < 1. This was the state of affairs until information theoretic
Interactive Hashing was considered as a tool to solve this problem.

5 Reducing to (k − 1)–Faulty
(k

1

)
–Bit OT Using

Interactive Hashing

Finally, we reduce
(
2
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT, a faulty primitive

allowing a dishonest Bob to get at most k−1 bits of Alice’s input at his choosing.
For simplicity, we will also assume that k is a power of 2.

It is relatively straightforward to see that when both participants are honest,
Protocol 4 allows Bob to obtain the bit of his choice since he knows Rd =⊕n

i=1 rici and can thus decrypt ec̊. In case Alice is dishonest, Bob’s choice c̊ is
perfectly hidden from her when she obtains f at Step 6. This is because at the
beginning of the protocol, Bob is equally likely to make the choices encoded by
w0 as those encoded by w1. Consequently, by Property 1 of Interactive Hashing,
given the specific outputs, the probability of either of them having been the
original input is exactly 1/2. Hence d is uniformly distributed from Alice’s point
of view and so f = d ⊕ c̊ carries no information about c̊.
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Protocol 4. Reduction of
(
2
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT

Let b̊0, b̊1 and c̊ be the inputs of Alice and Bob, respectively, for
(
2
1

)
–Bit OT.

1. Alice and Bob agree on a security parameter n.
2. For 1 ≤ i ≤ n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik .
(b) Alice uses (k − 1)–faulty

(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici for a randomly selected ci ∈R {1, . . . , k}. .
3. Bob encodes his choices during the n rounds of 2b as a bit string w of length

n · log(k) by concatenating the binary representations of c1, c2, . . . , cn.
4. Bob sends w to Alice using Interactive Hashing. Let w0, w1 be the output

strings labeled according to lexicographic order, and let d ∈ {0, 1} be such
that w = wd.

5. Let p1, p2, . . . , pn be the positions encoded in w0 and let q1, q2, . . . , qn be the

positions encoded in w1. Alice computes R0 =
n⊕

i=1

ripi and R1 =
n⊕

i=1

riqi .

6. Bob sends f = d ⊕ c̊ to Alice.
7. Alice sends e0 = b̊0 ⊕ Rf and e1 = b̊1 ⊕ Rf̄ to Bob.
8. Bob decodes b̊̊c = ec̊ ⊕ Rf⊕c̊ = ec̊ ⊕ Rd.

Fig. 4. (k−1)–faulty
(

k
1

)
–Bit OT: using Interactive Hashing Bob chooses two sequences

of indices labelled with “zeros” and “ones”. One of them corresponds to the sequence
he knows (in the case where he is honest) while the second is the result of Interactive
Hashing. Except with exponentially small probability, even if Bob is dishonest, one of
the sequences will contain a missing (white) bit (a “one” in this example). Note that
both “zero” and “one” may end up in the same location, once in a while, which is not
a problem.
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As for the case where Bob is dishonest, we can assume that he always avails
himself of the possibility of cheating afforded by (k − 1)–faulty

(
k
1

)
–Bit OT, and

obtains k − 1 out of k bits every time. Even so, though, by the end of Step 2, it
is always the case that the fraction of all good encodings among all kn possible
encodings of positions is no larger than f =

(
k−1

k

)n
< e−n/k (an encoding is

“good” if all positions it encodes are known to Bob). Note that while f can be
made arbitrarily small by an appropriate choice of n, the number of good strings
f ∗ kn always remains above the Birthday Paradox threshold. By Property 3 of
Interactive Hashing, Bob cannot force both w0 and w1 to be among these “good”
encodings except with probability no larger than 15.6805 ·e−n/k. This probability
can be made arbitrarily small by an appropriate choice of the security parameter
n. See Figure 4 for an example.

6 Conclusion and Open Problems

We have presented a rigorous definition of Interactive Hashing by distilling and
formalizing its security properties in an information theoretic context, indepen-
dently of any specific application. This opens the way to recognizing Interactive
Hashing as a cryptographic primitive in its own right, and not simply as a sub-
protocol whose security properties, as well as their proof, depend on the specifics
of the surrounding application. We have also demonstrated that there exists a
simple implementation of Interactive Hashing (Protocol 1) that fully meets the
above-mentioned security requirements, and cited a proof of correctness that
significantly improves upon previous results in the literature.

Open problems. The interested reader is encouraged to consider the following
open problems:
1. Devise a more appropriate name for Interactive Hashing which better cap-

tures its properties as a cryptographic primitive rather than the mechanics
of its known implementations.

2. Investigate how much interaction, if any, is really necessary in principle to
implement Interactive Hashing.

3. Explore ways to implement Interactive Hashing more efficiently.To this end,
the constant-round Interactive Hashing protocol of [DHRS07] briefly de-
scribed in Section 3.3 is an important step in the right direction. Improve
on this construction so that it meets all the security requirements.
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Abstract. We introduce a simple, practical approach with probabilis-
tic information-theoretic security to mitigate one of quantum key dis-
tribution’s major limitations: the short maximum transmission distance
(∼ 200 km) possible with present day technology. Our scheme uses clas-
sical secret sharing techniques to allow secure transmission over long
distances through a network containing randomly-distributed compro-
mised nodes. The protocol provides arbitrarily high confidence in the
security of the protocol, and modest scaling of resource costs with im-
provement of the security parameter. Although some types of failure are
undetectable, users can take preemptive measures to make the probabil-
ity of such failures arbitrarily small.

Keywords: quantum key distribution; QKD; secret sharing; information
theoretic security.

1 Introduction

Public key cryptography is a critical component of many widely-used cryptosys-
tems, and forms the basis for much of our ecommerce transaction security infras-
tructure. Unfortunately, the most common public key schemes are known to be
insecure against quantum computers. In 1994, Peter Shor developed a quantum
algorithm for efficient factorization and discrete logarithms [1]; the (supposed)
hardness of these two problems formed the basis for RSA and DSA, respectively.
Sufficiently powerful quantum computers do not yet exist, but the possibility of
their existence in the future already poses problems for those with significant
forward security requirements.

A more secure replacement for public key cryptography is needed. Ideally, this
replacement would offer information-theoretic security, and would possess most
or all of the favorable qualities of public key cryptography. At present, no com-
plete replacement exists, but quantum key distribution (QKD)—in conjunction
with one-time pad (OTP) or other symmetric ciphers—appears promising.

QKD—first developed by Bennett and Brassard [2]—is a key distribution
scheme that relies upon the uncertainty principle of quantum mechanics to guar-
antee that any eavesdropping attempts will be detected. In a typical QKD setup,
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individual photons are sent through optical fiber or through free space from the
sender to the receiver. The receiver performs measurements on the photons,
and sender and receiver communicate via an authenticated (but not necessarily
private) classical channel.

Optical attenuation of these single photon pulses limits the maximum trans-
mission distance for a single QKD link to about 200 km over fiber with present
technology [3], and significantly less through air. Unlike optically-encoded classi-
cal information, the “signal strength” of these photons cannot be amplified using
a conventional optical amplifier; the No Cloning Theorem [4] prohibits this. We
refer to this challenge as the relay problem.

Two classes of quantum repeaters have been proposed to resolve the distance
limitations of QKD. The first makes use of quantum error correction to detect
and rectify errors in specially-encoded pulses. Unfortunately, the extremely low
error thresholds for such schemes (∼ 10−4) make this impractical for use in a
realistic quantum repeater. The second class of quantum repeaters uses entan-
glement swapping and distillation [5,6] to establish entanglement between the
endpoints of a chain of quantum repeaters, which can then be used for QKD [7].
This method is much more tolerant of errors, and offers resource costs that
scale only polynomially with the number of repeaters (i.e., polynomially with
distance). However, such repeaters do have one major drawback: they require
quantum memories with long decoherence times [6].

In order to be useful for practical operation, a quantum repeater must possess
a quantum memory that meets the following three requirements:

1. Long coherence times: at a minimum, coherence times must be comparable
to the transit distance for the entire repeater chain (e.g., ∼ 10 ms for a
trans-Atlantic link).

2. High storage density: the bandwidth for a quantum repeater is limited by
the ratio of its quantum memory capacity to the transit time for the entire
repeater chain [8].

3. Robustness in extreme environments: practical quantum repeaters must be
able to operate in the range of environments to which telecom equipment is
exposed (e.g., on the ocean floor, in the case of a trans-oceanic link).

These requirements are so demanding that it is possible that practical quantum
repeaters will not be widely available until after large-scale quantum computers
have been built—in other words, not until too late.

The distance limitations of QKD and the issues involved in developing prac-
tical quantum repeaters make it challenging to build secure QKD networks that
span a large geographic area. The näıve solution of classical repeaters leads to
exponentially decaying security with transmission distance if each repeater has
some independent probability of being compromised. If large QKD networks are
to be built in the near future (i.e., without quantum repeaters), an alternative
method of addressing the single-hop distance limitation must be found. We refer
to this as the relay problem.
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Given an adversary that controls a randomly-determined subset of nodes in
the network, we have developed a solution to the relay problem that involves
encoding encryption keys into multiple pieces using a secret sharing proto-
col [9,10]. These shares are transmitted via multiple multi-hop paths through
a QKD network, from origin to destination. Through the use of a distributed re-
randomization protocol at each intermediate stage, privacy is maintained even
if the attacker controls a large, randomly-selected subset of all the nodes.

We note that authenticated QKD is information-theoretic secure [11], as is
OTP; in combination, these two cryptographic primitives provide information-
theoretic security on the level of an individual link. Our protocol makes use of
many such links as part of a network that provides information-theoretic security
with very high probability. In particular, with some very small probability δ, the
protocol fails in such a way as to allow a sufficiently powerful adversary to
perform undetected man-in-the-middle (MITM) attacks. The failure probability
δ can be made arbitrarily small by modest increases in resource usage. In all other
cases, the network is secure. We describe the level of security of our protocol as
probabilistic information-theoretic.

In analyzing our protocol, we consider a network composed of a chain of
“cities”, where each city contains several parties, all of whom are linked to all
the other parties in that city. We assume intracity bandwidth is cheap, whereas
intercity bandwidth is expensive; intercity bandwidth usage is the main resource
considered in our scaling analysis. For the sake of simplicity, we consider commu-
nication between two parties (Alice and Bob) who are assumed to be at either
end of the chain of cities. A similar analysis would apply to communication
between parties at any intermediate points in the network.

2 Adversary and Network Model

It is convenient to model networks with properties similar to those described
above by using undirected graphs, where each vertex represents a node or party
participating in the network, and each edge represents a secure authenticated
private channel. Such a channel could be generated by using QKD in conjunction
with a shared secret key for authentication, or by any other means providing
information-theoretic security.

We describe below an adversary and network model similar in some ways to
one we proposed earlier1 in the context of a protocol for authenticating mutual
strangers in a very large QKD network, which we referred to as the stranger
authentication protocol. In that protocol, edges represented shared secret keys,
whereas here they represent physical QKD links. Network structure in the previ-
ous model was assumed to be random (possibly with a power law distribution, as
is common in social networks), whereas here the network has a specific topology
dictated by geographic constraints, the distance limitations of QKD, and the
requirements of the protocol.

1 Pre-print available at www.arXiv.org as arXiv:0803.2717.
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2.1 Adversarial Capabilities and Limitations

We call the following adversary model the sneaky supercomputer :

(i) The adversary is computationally unbounded.
(ii) The adversary can listen to, intercept, and alter any message on any public

channel.
(iii) The adversary can compromise a randomly-selected subset of the nodes in

the network. Compromised nodes are assumed to be under the complete
control of the adversary. The total fraction of compromised nodes is limited
to (1 − t) or less.

Such an adversary is very powerful, and can successfully perform MITM at-
tacks against public key cryptosystems (using the first capability) and against
unauthenticated QKD (using the second capability), but not against a QKD
link between two uncompromised nodes that share a secret key for authentica-
tion (since quantum mechanics allows the eavesdropping to be detected) [11].
The adversary can always perform denial-of-service (DOS) attacks by simply
destroying all transmitted information; since DOS attacks cannot be prevented
in this adversarial scenario, we concern ourselves primarily with security against
MITM attacks. Later, we will briefly consider variants of this adversarial model
and limited DOS attacks.

The third capability in this adversarial model—the adversary’s control of a
random subset of nodes—simulates a network in which exploitable vulnerabilities
are present on some nodes but not others. As a first approximation to modeling a
real-world network, it is reasonable to assume the vulnerable nodes are randomly
distributed throughout the network.

An essentially equivalent adversarial model is achieved if we replace the third
capability as follows: suppose the adversary can attempt to compromise any
node, but a compromise attempt succeeds only with probability (1 − t), and
the adversary can make no more than one attempt per node. In the worst case
where the adversary attempts to compromise all nodes, the adversary will control
a random subset of all nodes, with the fraction of compromised nodes being
roughly (1 − t).

2.2 The Network

For the relay problem, let us represent the network as a graph G, with V (G) being
the set of vertices (nodes participating in the network) and E(G) being the set of
edges (secure authenticated channels, e.g. QKD links between parties who share
secret keys for authentication). N = |V (G)| is the number of vertices (nodes). Vd

is the set of compromised nodes, which are assumed to be under the adversary’s
control; |Vd| ≤ N(1 − t). Furthermore, let us assume that the network has the
following structure: nodes are grouped into m clusters—completely connected
sub-graphs containing n nodes each. There are thus N = mn nodes in the
network. We label the nodes as vi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. Each node
is connected to one node in the immediately preceding cluster and one node in
the cluster immediately following it.
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Alice Bob

Fig. 1. White vertices represent honest parties, whereas shaded vertices represent dis-
honest parties. Double vertical lines represent secure communication links between all
joined vertices (i.e., all parties within a given city can communicate securely). In the
graph shown above, 40% of the parties in cities between Alice and Bob are dishon-
est, but Alice and Bob can still communicate securely using the method described in
Sec. 3 and Fig. 2.

More formally, let E�(G) ≡ {(vi,j , vi,j+1) : vi,j , vi,j+1 ∈ V (G)} and Eσ(G) ≡
{(vi,j , vk,j) : vi,j , vk,j ∈ V (G)}. Then, E(G) ≡ E�(G) ∪ Eσ(G).

This network structure models a chain of m cities (a term which we use
interchangeably with “cluster”), each containing n nodes. The cities are spaced
such that the physical distance between cities allows QKD links only between
adjacent cities. To realistically model the costs of communication bandwidth,
we assume that use of long distance links (i.e., those represented by E�(G)) is
expensive, whereas intracity links (i.e., Eσ(G)) are cheap.

Next, we consider two additional nodes—a sender and a receiver. The sender
(hereafter referred to as Alice or simply A) has direct links to all the nodes in
city 1, while the receiver (Bob, or B) has a link to all nodes in city m. We assume
Alice and Bob to be uncompromised. An example is shown in Fig. 1.

3 The Relay Protocol

In the relay problem, Alice wishes to communicate with Bob over a distance
longer than that possible with a single QKD link, with quantum repeaters being
unavailable. As described above, Alice and Bob are separated by m “cities”,
each containing n participating nodes. (In the case where different cities contain
different numbers of participating nodes, we obtain a lower bound on security
by taking n to be the minimum over all cities.)

To achieve both good security and low intercity bandwidth usage, we can em-
ploy a basic secret sharing scheme with a distributed re-randomization of the
shares [12] performed by the parties in each city. This re-randomization procedure
is similar to that used in the mobile adversary proactive secret sharing scheme
[13,14]. Note that in the following protocol description, the second subscript la-
bels the city, while the first subscript refers to the particular party within a city.
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(i) Alice generates n random strings ri,0, i ∈ {1, . . . , n} of length 	, r ∈ {0, 1}�.
	 is chosen as described in Sec. 3.1.

(ii) Alice transmits the strings to the corresponding parties in the first city:
vi,1 receives ri,0.

(iii) When a party vi,j receives a string ri,j−1, it generates n−1 random strings
q
(k)
i,j , k �= i of length 	, and transmits each string q

(k)
i,j to party vk,j (i.e.,

transmission along the vertical double lines shown in Fig. 1).
(iv) Each party vi,j generates a string ri,j as follows:

ri,j ≡ ri,j−1 ⊕
⎛⎝⊕

k,k �=i

q
(k)
i,j

⎞⎠⊕
⎛⎝⊕

k,k �=i

q
(i)
k,j

⎞⎠ ,

where the symbols (⊕ and
⊕

) are both understood to mean bitwise XOR.
Note that the string ri,j−1 is received from a party in the previous city,
the strings q

(k)
i,j are generated by the party vi,j , and the strings q

(i)
k,j are

generated by other parties in the same city as vi,j . The string ri,j is then
transmitted to party vi,j+1 (i.e., transmission along the horizontal lines
shown in Fig. 1).

(v) Steps (iii) and (iv) are repeated until the strings reach the parties in city
m. All the parties vi,m in city m forward the strings they receive to Bob.

(vi) Alice constructs s ≡ ∏
i ri,0 and Bob constructs s′ ≡ ∏

i ri,j−1.
(vii) Alice and Bob use the protocol summarized in Fig. 2 and described in detail

in Section 3.1 to determine if s = s′. If so, they are left with a portion of s
(identified as s3), which is their shared secret key. If s �= s′, Alice and Bob
discard s and s′ and repeat the protocol.

3.1 Key Verification

In the last step of the protocol described above, Alice and Bob must verify that
their respective keys, s and s′, are the same and have not been tampered with.
We note that there are many ways2 to accomplish this; we present one possible
method here (summarized in Fig. 2) for definiteness, but make no claims as to
its efficiency.

We consider Alice’s key s to be composed of three substrings, s1, s2, and s3,
with lengths 	1, 	2, and 	3, respectively (typically, 	3 � 	1, 	2). Bob’s key s′ is
similarly divided into s′1, s′2, and s′3. If Alice and Bob successfully verify that
s′3 = s3, they can use s3 as a shared secret key for OTP encryption or other
cryptographic purposes.

The verification is accomplished as follows:

(i) Alice generates a random nonce r, and computes the hash H [s3] of s3. She
then sends (r, H [s3]) ⊕ s1 to Bob.

2 See for example pp. 13–14 of the SECOQC technical report D-SEC-48, by L. Salvail
[15].
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(r, H(s3))  s1

H(r)  s2’

Fig. 2. Alice and Bob perform a verification sub-protocol to check that their respective
secret keys, s = (s1, s2, s3) and s′ = (s′1, s

′
2, s

′
3), are in fact the same. Alice generates

a random number r, concatenates it with the hash H [s3] of s3, XORs this with s1,
and sends the result to Bob. Bob decodes with s′1, verifies that H [s3] = H [s′3], then
sends back to Alice the result of bit-wise XORing the hash of r, H [r], with s′2. Finally,
Alice decodes with s2 and checks to see that the value Bob has computed for H [r] is
correct. Alice and Bob now know s3 = s′3 and can store s3 for future use. Note that
with this protocol, the adversary can fool Alice and Bob into accepting s �= s′ with 100
% probability if the adversary knows s and s′.

(ii) Bob receives the message from Alice, decrypts by XORing with s′1, and
verifies that the received value of H [s3] matches H [s′3]. If so, he accepts
the key, and sends Alice the message H [r] ⊕ s′2. If not, Bob aborts.

(iii) Alice decrypts Bob’s message by XORing with s2, and verifies that the
received value of H [r] is correct. If so, Alice accepts the key, and verification
is successful. If not, Alice aborts.

We now outline a proof of the security of this verification process, and discuss
requirements for the hash function H . We begin with the assumption that Eve
does not know s or s′; if she does, the relay protocol has failed, and Eve can
perform MITM attacks without detection (conditions under which the relay
protocol can fail are analyzed in Sec. 4). Our goal is to show that Alice and Bob
will with very high probability detect any attempt by Eve to introduce errors in
s′3 (i.e., any attempt by Eve to cause s′3 �= s3), and that the verification process
will also not reveal any information about s3 to Eve.

We note that any modification by Eve of the messages exchanged by Alice
and Bob during the verification process is equivalent to Eve introducing errors
in s′1 and s′2 during the main part of the relay protocol. If she controls at least
one intermediate node, Eve can introduce such errors by modifying one or more
of the strings transmitted by a node under her control. We can thus completely
describe Eve’s attack on the protocol by a string e = (e1, e2, e3), where s′ = s⊕e,
and the three substrings e1, e2, and e3 have lengths 	1, 	2, and 	3, respectively
(with 	 = 	1 + 	2 + 	3).

It is clear that Eve cannot gain any information about s3 from the verification
process, since the only information ever transmitted about s3 (the hash H [s3])
is encrypted by the OTP s1, and s1 is never re-used.

Before proceeding, let us further partition s1 into two strings s1a and s1b,
where s1a is the portion of s1 used to encrypt r, and s1b is the portion used
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to encrypt H [s3]. Let 	1a and 	1b be the lengths of s1a and s1b. We similarly
partition s′1 and e1.

Eve’s only hope of fooling Bob into accepting a tampered-with key (i.e., ac-
cepting even though s′3 �= s3) is for her to choose e1b and e3 such that the
expression H [s3] ⊕ H [s3 ⊕ e3] = e1b is satisfied. Random guessing will give her
a ∼ 2−�1b chance of tricking Bob into accepting; for Eve to do better, she must
be able to exploit a weakness in the hash function H that gives her some infor-
mation as to the correct value of e1b for some choice of e3. Note that Eve’s best
strategy for this attack is to choose e1a and e2 to be just strings of zeroes.

From this observation, we obtain the following condition on the hash function:
for a random s3 (unknown to Eve), there exists no choice of e3 such that Eve
has any information about the value of e1b she should choose to satisfy H [s3] ⊕
H [s3 ⊕ e3] = e1b. In practice, it would be acceptable for Eve to gain a very small
amount of information, as long as the information gained did not raise Eve’s
chances much beyond random guessing. This is a relatively weak requirement on
H , and is likely satisfied by any reasonable choice of hash function.

To fool Alice into falsely accepting, Eve can either fool Bob via the afore-
mentioned method, or Eve can attempt to impersonate Bob by sending Alice a
random string of length 	2, in the hopes that it happens to be equal to s2⊕H [r].
Clearly, her chances for the latter method are no better than 2−�2. The latter
method of attack only fools Alice and not Bob; it is thus of limited use to Eve.

We note that the security of the verification protocol depends on the choice
of 	1 and 	2 (as described above); these parameters should be chosen so as to
provide whatever degree of security is required. Alice and Bob choose 	3 so as
to obtain whatever size key they desire. Since the security of the verification
process does not depend on 	3, the communication cost of key verification is
negligible in the limit of large 	3 (i.e., in the limit of large final key size).

4 Security of the Relay Protocol

In order for the secret to be compromised, there must be some j ∈ {1, . . . , m−1}
such that, for all i ∈ {1, . . . , n}, at least one of vi,j and vi,j+1 is dishonest (i.e.,
such that, for some j, every string ri,j is either sent or received by a compromised
party). If this happens, we say the protocol has been compromised at stage j.
For a given j, the probability of compromise is (1− t2)n, but the probability for
j is not entirely independent of the probabilities for j − 1 and j + 1. Thus, we
can bound from below the overall probability of the channel between Alice and
Bob being secure, ps, by (1):

ps ≥ [
1 − (1 − t2)n

]m−1
. (1)

From this result, we see that, if we wish to ensure our probability of a se-
cure channel between Alice and Bob is at least ps, it is sufficient to choose
n = log

(
1 − p

1/(m−1)
s

)
/ log

(
1 − t2

)
. Intercity bandwidth consumed is propor-

tional to n, so we see that we have good scaling of resource consumption with
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communication distance. Alternatively, we can re-write the equation for choos-
ing n in terms of a maximum allowed probability of compromise, δ = 1−ps. For
δ � 1, we obtain the following relation:

n � log (m − 1) − log δ

− log (1 − t2)
.

Total resource usage (intercity communication links required) scales as O(mn),
or O(m log m) for fixed δ, t. While intracity communication requirements scale
faster (as O(mn2)), it is reasonable to ignore this because of the comparatively
low cost of intracity communication and the finite size of the earth (which effec-
tively limits m to a maximum of 100 or so for a QKD network with single link
distances of ∼ 100 km).

If each party in the network simultaneously wished to communicate with one
other party (with that party assumed to be m/2 cities away on average), total
intercity bandwidth would scale as O(m2n2). By comparison, the bandwidth for
a network of the same number of parties employing public key cryptography
(and no secret sharing) would scale as O(m2n). Since n scales relatively slowly
(i.e., with log m), this is a reasonable penalty to pay for improved security.

5 Alternative Adversary Models

We now briefly consider a number of alternative adversary models. First, let
us consider replacing adversary capability (iii) with the following alternative,
which we term (iii′): the adversary can compromise up to k − 1 nodes of its
choice. Compromised nodes are assumed to be under the complete control of
the adversary, as before. In this scenario, the security analysis is trivial. If k >
n, the adversary can compromise Alice and Bob’s communications undetected.
Otherwise, Alice and Bob can communicate securely.

We could also imagine an adversary controls some random subset of nodes
in the network—as described by (iii)—and wishes to disrupt communications
between Alice and Bob (i.e., perform a DOS attack), but does not have the
capability to disrupt or modify public channels. Alice and Bob can modify the
protocol to simultaneously protect against both this type of attack and also
the adversary mentioned in Section 2.1. To do so, they replace the simple se-
cret sharing scheme described above with a Proactive Verifiable Secret Sharing
(PVSS) scheme [16]. In this scenario, nodes can check at each stage to see if
any shares have been corrupted, and take corrective measures. This process is
robust against up to n/4 − 1 corrupt shares, which implies that PVSS yields
little protection against DOS attacks unless t > tthresh ≈ √

3/2.

6 Conclusion

We have shown a protocol for solving the relay problem and building secure
long-distance communication networks with present-day QKD technology. The
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protocol proposed employs secret sharing and multiple paths through a network
of partially-trusted nodes. Through the choice of moderately large n in the relay
problem, one can make the possibility of compromise vanishingly small. For
fixed probability of compromise of each of the intermediate nodes, the number
of nodes per stage required to maintain security scales only logarithmically with
the number of stages (i.e., with distance).

Given that QKD systems are already commercially available, our methods
could be implemented today.
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Abstract. It is widely accepted by the information security community
that a secrecy criterion based solely on minimizing the rate at which an
eavesdropper extracts bits from a block of noisy channel outputs is too
weak a concept to guarantee the confidentiality of the protected data.
Even if this rate goes to zero asymptotically (i.e. for sufficiently large code-
word length), vital information bits can easily be leaked to an illegitimate
receiver. In contrast, many of the recent results in information-theoretic
security for wireless channel models with continuous random variables rely
on this weak notion of secrecy, even though previous work has shown that
it is possible to determine the ultimate secrecy rates for discrete mem-
oryless broadcast channels under a stronger secrecy criterion — namely
one which bounds not the rate but the total number of bits obtained by
the eavesdropper. Seeking to bridge the existing gap between fundamen-
tal cryptographic requirements and ongoing research in wireless security,
we present a proof for the secrecy capacity of Gaussian broadcast channels
under the strong secrecy criterion. As in the discrete memoryless case, the
secrecy capacity is found to be the same as in the weaker formulation. The
extension to fading channels is shown to be straightforward.

1 An Information-Theoretic Approach to Wireless
Security

In contrast to their wireline counterparts, wireless links are exceptionally prone
to eavesdropping attacks. As long as the eavesdropper (Eve, here with an
antenna) is able to operate a suitable receiver at some location within the trans-
mission range of the legitimate communication partners (Alice and Bob), infor-
mation about the sent messages may be easily obtained from the transmitted
signals and this eavesdropping activity is most likely to remain undetected. While
the latter aspect is hard to prevent in wireless systems — in contrast to quantum
systems which are known to have a no-cloning property — the former can be
countered by (a) using strong end-to-end encryption to protect the confidential
data (thus relying on computational security), (b) using secrecy attaining chan-
nel codes and signal processing at the physical-layer (exploiting the principles of
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information-theoretic security), or (c) combining both solutions in an effective
manner.

It is fair to state that cryptographic solutions based on the computational
hardness of certain numerical problems have been the object of intense study
for several decades, whereas information-theoretic security for wireless channels
has only very recently caught the attention of the research community and is
still very much at an infant stage. Building on Shannon’s notion of perfect se-
crecy [16], the information-theoretic foundations for a physical-layer approach
to security were first laid by Wyner [19] and later by Csiszár and Körner [4],
who proved in seminal papers that there exist channel codes guaranteeing both
robustness to transmission errors and a prescribed degree of data confidential-
ity. An extension to the Gaussian instance of the wiretap channel was promptly
provided by Leung-Yan-Cheong and Hellman in [8]. Owing to the basic circum-
stances that (a) the legitimate receiver must have less noise than the attacker for
the secrecy capacity to be strictly positive, (b) secrecy capacity achieving codes
were not yet available, and (c) a viable security solution based on public-key
cryptography was made available at the same time by Diffie and Hellman [5],
these basic results in information-theoretic security were viewed by many as
not more than a theoretical curiosity. In [11], Maurer offered a breakthrough by
observing that legitimate users can always generate a secret key through public
communication over an insecure yet authenticated channel, even when they have
a worse channel than the eavesdropper.

It was not until a decade later that information-theoretic concepts found their
way into wireless security research. Hero [7] introduced space-time signal pro-
cessing techniques for secure communication over wireless links, and Negi and
Goel [12] investigated achievable secret communication rates taking advantage
of multiple-input multiple output communications. Parada and Blahut [14] es-
tablished the secrecy capacity of various degraded fading channels. Barros and
Rodrigues [1] provided a detailed characterization of the outage secrecy capac-
ity of slow fading channels, and they showed that fading alone guarantees that
information-theoretic security is achievable, even when the eavesdropper has a
better average Signal-to-Noise Ratio (SNR) than the legitimate receiver – with-
out the need for public communication over a feedback channel or the introduc-
tion of artificial noise. Practical secret key agreement schemes for this scenario
are described by Bloch et al. in [2]. The ergodic secrecy capacity of fading chan-
nels was derived independently by Liang et al. [9] and Gopala et al. in [6] and
power and rate allocation schemes for secret communication over fading chan-
nels were presented. Other recent directions include secure relays and the secrecy
capacity of systems with multiple antennas.

No doubt the recent surge in research on information-theoretic security for
wireless channels has produced a considerable number of non-trivial results.
However, in order to increase their potential cryptographic value it is useful
to revisit the most common underlying assumptions. Beyond the fact that code
constructions capable of bridging the gap between theory and practice are still
elusive, many of the aforementioned contributions have a non-obvious drawback,
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which is not necessarily related with the actual solutions but rather with subtle
aspects of the problem formulation. Since they make use of the available secrecy
results for Gaussian wiretap channels, a number of contributions in wireless
information-theoretic security adopt the secrecy condition of the early work of
Leung-Yan-Cheong and Helmann in [8] (and similarly [19,4]), which considers
only the rate at which an eavesdropper is able to extract bits from a block of
noisy channel outputs and not the total amount of information that he is able to
obtain. As argued by Maurer and Wolf for discrete memoryless channels [10], the
former is too weak a concept to guarantee the confidentiality of the protected
data, because even if this rate goes to zero (in the limit of very large codeword
length) vital information bits can easily be leaked to an illegitimate receiver.
This motivates us to consider the secrecy capacity of wireless channels under
the strong secrecy criterion.

1.1 A Case for Strong Secrecy

To underline the importance of a strong secrecy criterion, we now present two
different examples. The first one shows a trivial (insecure) scheme that satisfies
the weaker condition used in [8], whereas the second example highlights the fact
that strong secrecy requires strong uniformity on what the eavesdropper sees.

Example 1. Suppose that Alice wants to send Bob a sequence of n bits, denoted
un, which she wants to keep secret from Eve. For simplicity, we assume that all
channels are noiseless, which means that both Bob and Eve observe noiseless ver-
sions of the cryptogram xn sent by Alice. We consider two different (asymptotic)
secrecy conditions:

Weak Secrecy: ∀ε > 0 we have that (1/n)H(Un|Xn) ≥ 1 − ε, for some n
sufficiently large.
Strong Secrecy: ∀ε > 0 we have that H(Un|Xn) ≥ n − ε, for some n suffi-
ciently large

Notice that the difference between these two measures of secrecy is that strong
secrecy demands that the total uncertainty about un is arbitrarily close to n bits,
whereas weak secrecy settles for the average uncertainty per bit to be arbitrarily
close to 1. As we shall see this seemingly unimportant subtle issue can determine
whether Eve is able to extract any information from the cryptogram xn.

Suppose now that Alice produces the cryptogram xn by computing the XOR of
the first k bits (u1, u2 . . . uk), 0 < k < n, with a secret sequence of random bits sk

and appending the remaining n− k bits (uk+1, uk+2, . . . , un) to the cryptogram.
The sequence of secret bits sk, which we assume to be shared via a private
channel with Bob, is generated according to a uniform distribution and thus
can be viewed as a one-time pad for the first k bits. Clearly, we have that
H(Un|Xn) = n − k, which proves unequivocally that this trivial scheme does
not satisfy the strong secrecy criterion. However, this is no longer true when
we accept the weak secrecy criterion. In fact, since (1/n)H(Un|Xn) = 1 − k/n
Alice may actually disclose an extremely large number of bits, while satisfying
the weak secrecy condition.
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Example 2. Suppose once again that all channels are noiseless and Alice wants
to send Bob a sequence of n bits, denoted un, which she wants to keep secret
from Eve. Alice now produces the cryptogram xn by computing the XOR of
each bit ui with a secret random bit si, such that xn = un ⊕ sn. The sequence
of secret bits sn, which we assume to be shared via a private channel with Bob,
is generated in a way such that the all-zero sequence has probability 1/n and all
non-zero sequences are uniformly distributed. More formally, if Sn denotes the
set of all binary sequences and 0n denotes a n-bit sequence with n zeros, then
the probability distribution of the secret sequence can be written as

P (sn) =

{
1/n if sn = 0

(1−1/n)
(2n−1) if sn ∈ Sn\0

Clearly, since sn is not uniformly distributed according to P (Sn) = 1/2−n,
Alice’s scheme cannot be classified as a one-time-pad and thus does not satisfy
the perfect secrecy condition H(Un|Xn) = n established by Shannon. To verify
that the aforementioned asymptotic condition for weak secrecy is met by this
scheme, we introduce an oracle J which returns the following values

J =
{

0 if sn = 0
1 otherwise.

Using this definition, we may write

(1/n)H(Un|Xn) ≥ (1/n)H(Un|XnJ)

= −
∑

xn,un

p(xn, un, J = 0) log p(xn|un, J = 0)

−
∑

xn,un

p(xn, un, J = 1) log p(xn|un, J = 1).

Since the first term is equal to zero, we can restrict our attention to the second
term. Notice that

p(xn, un, J = 1) = p(xn|un, J = 1)p(un|J = 1)p(J = 1)

with

p(xn|un, J = 1) =
{

0 if xn = un

1
2n−1 otherwise,

whereas p(un|J = 1) = 1/2n and p(J = 1) = 1 − 1/n. It follows that

(1/n)H(Un|Xn) ≥ −
∑

xn �=un

1
2n − 1

1
2n

(1 − 1
n

) log
1

2n − 1

= −(1 − 1
n

) log
1

2n − 1

= log 2n − 1 − log(2n − 1)
n

≥ log(2n − 1) − 1.
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Thus, we conclude that for any ε > 0 there exists an n0 such that (1/n)H(Un|Xn)≥
1 − ε, and weak secrecy holds.

However, this does not at all imply that strong secrecy can be achieved by
this scheme, in fact the following argument proves its failure:

∀ε > 0 H(Un|Xn) = H(Xn ⊕ Sn|Xn)
= H(Sn|Xn)
≤ H(Sn)

= − 1
n

log
1
n

− (2n − 1) · (1 − 1/n)
(2n − 1)

log
(1 − 1/n)
(2n − 1)

= Hb(1/n) + (1 − 1/n) log(2n − 1)
≤ Hb(1/n) + n − 1
≤ n − 1 + ε, for n sufficiently large,

where Hb(α) = −α log α − (1/α) log(1/α) is the binary entropy function. Al-
though the weak secrecy condition would suggest that this scheme is secure, it
follows from our analysis that the eavesdropper can acquire on average at least
one bit of information from the cryptogram. A closer inspection reveals that
there is actually a non negligible probability that the eavesdropper is able to ob-
tain the entire information sequence. For example, if n = 100 bits, then the per
letter entropy of the key becomes (1/n)H(Sn) = 0.99, which is very close to 1.
However, the all-zero sequence occurs with probability P (Sn = 0) = 0.01, which
implies that, because of the slight non-uniformity of the key, the eavesdropper
has a one in one hundred chance of succeeding — even when the weak secrecy
condition is met.

1.2 Contribution

Our contribution is a proof for the secrecy capacity of the Gaussian wiretap
channel of [8] under the strong secrecy condition defined in [10]. As in the
discrete memoryless case and using similar arguments as in [10], we are able
to show that substituting the weak secrecy criterion by the stronger version
does not alter the secrecy capacity. Based on this result, it is possible to re-
evaluate the cryptographic validity of previous results on information-theoretic
security for wireless channels. We believe that both this contribution and the
work of Nitinawarat [13] on strong secret key agreement with Gaussian random
variables and public discussion are important steps towards adding credibil-
ity to physical-layer security schemes based on information-theoretic reasoning
(e.g. [18] and [3]).

The remainder of the paper is organized as follows. Section 2 provides a set
of basic definitions and states the problem in a formal way. This is followed by a
strong secrecy result for the Gaussian channel in Section 3. The paper concludes
in Section 4 with a discussion of the implications of this result for the secrecy
capacity of wireless fading channels.
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2 Problem Statement

We assume that a legitimate user (Alice) wants to send messages to another
user (Bob). Alice encodes the message W ∈ {1, . . . , 2nR} into the codeword Xn.
When Alice transmits her codeword, Bob observes the output of a discrete-time
Gaussian channel (the main channel) given by

Y (i) = X(i) + Zm(i),

where Zm(i) is a zero-mean Gaussian random variable that models the noise
introduced by the channel at time i.

A third party (Eve) is also capable of eavesdropping Alice’s transmissions.
Eve observes the output of an independent Gaussian channel (the eavesdropper
channel) given by

Z(i) = X(i) + Zw(i),

where the random variable Zw(i) represents zero-mean Gaussian noise.
It is assumed that the channel input and the channel noise are independent.

The codewords transmitted by Alice are subject to the average power constraint

1
n

n∑
i=1

E
[|X(i)|2] ≤ P,

and the average noise power in the main and the eavesdropper channels are
denoted by Nm and Nw, respectively.

Let the transmission rate between Alice and Bob be R and the average error
probability Pn

e = P (W �= Ŵ ), where W denotes the sent message chosen uni-
formly at random and Ŵ denotes Bob’s estimate of the sent message. We are
interested in the following two notions of secrecy with respect to Eve.

Definition 1 (Weak Secrecy [19,4]). We say that the rate R′ is achievable
with weak secrecy if ∀ε > 0 for some n sufficiently large there exists an encoder-
decoder pair satisfying R ≥ R′ − ε, Pn

e ≤ ε and

(1/n)H [W |Zn] ≥ 1 − ε. (1)

Definition 2 (Strong Secrecy [10]). We say that the rate R′ is achievable
with strong secrecy if ∀ε > 0 for some n0 such that n > n0 there exists an
encoder-decoder pair satisfying R ≥ R′ − ε, Pn

e ≤ ε and

H [W |Zn] ≥ n − ε. (2)

The weak secrecy capacity Cw
s of the Gaussian channel corresponds to the maxi-

mum rate R that is achievable with weak secrecy. Its value was determined in [8]
and can be computed according to

Cw
s =

{
Cm − Cw for Nw > Nm

0 otherwise. (3)
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where

Cm =
1
2

log
(

1 +
P

Nm

)
and Cw =

1
2

log
(

1 +
P

Nw

)
denote the capacity of the main and of the eavesdropper’s channel, respectively.

Our goal is to determine the strong secrecy capacity Cs
s of the Gaussian chan-

nel, defined as the maximum transmission rate at which Bob and Alice can
communicate with strong secrecy with respect to Eve.

3 Strong Secrecy Capacity for the Gaussian Channel

3.1 Proof Idea

The main results in information-theoretic security thus far can be roughly di-
vided into two classes: (i) secrecy capacity (or rate-equivocation region) for chan-
nel models (e.g. [19]) and (ii) secret key capacity for source models (e.g. [11]).
In the latter case, it is assumed that the legitimate partners may use the noisy
channel to generate common randomness and communicate freely over a noise-
less authenticated channel in order to agree on a common secret key. Although
they are conceptually different, it is useful for our purposes to establish a clear
connection between these two classes of problems. Specifically, we shall now show
at an intuitive level that secure communication over a wiretap channel can be
viewed as a special case of secret key agreement. These notions shall be made
precise in the next Section, where we present the proof of our main theorem.

According to Shannon, “the fundamental problem of communication is that
of reproducing at one point either exactly or approximately a message selected
at another point” [16]. Suppose that communication in the source model occurs
only in one direction, namely from Alice to Bob. In this case, Alice will know
beforehand which secret key Bob will generate from the noisy channel outputs,
because, knowing the side information sent by Alice, Bob is going to recover with
overwhelming probability the exact same random sequence that is available to
Alice at the start of the secret key agreement scheme. Thus, simply by carrying
out the key generation process on her random sequence, Alice can construct the
actual secret key before transmitting any data to Bob.

If we disregard complexity issues (which are of no importance in information-
theoretic reasoning), then there is nothing preventing Alice from generating all
possible secret keys beforehand. In other words, she can take all random se-
quences and run the key generation process. The set of secret keys that she can
generate in this manner can be viewed as the set of messages that she can convey
to Bob reliably and securely (in the Shannon sense on both counts).

3.2 Main Result

Our main result, whose proof follows [10] closely with the necessary adaptations
for the Gaussian channel, is summarized in the following theorem.
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Theorem 1. For the Gaussian channel with power constraint P , we have that
Cs

s = Cw
s .

We will prove this result using a succession of lemmas.

Lemma 1 (adapted from [10]). Let Q be a scalar quantizer, and let us assume
that the eavesdropper observes ZΔ = Q(Z) instead of Z. Let XΔ be a random
variable with E

[
X2

Δ

] ≤ P taking only a finite number of (real) values, and let
pXΔ denote its probability distribution. All rates Rs satisfying

Rs ≤ max
pXΔ

[I(XΔ; Y ) − I(XΔ; ZΔ)]

are achievable strong secrecy rates.

Proof. The key idea of this lemma is to analyze a simpler channel than the
initial Gaussian wiretap channel illustrated in Fig. 1. The assumption that the
eavesdropper observes a quantized version of the channel output is merely a
mathematical convenience and shall be removed later.

We consider the conceptual channel illustrated in Fig. 2, where, in addition to
the Gaussian wiretap channel, Alice has the option of sending messages to Bob
over a public authenticated channel with infinite capacity. Furthermore, Alice’s
inputs Xn

Δ to the conceptual channel are restricted to discrete random variables,
that is random variables whose support is a finite set of R, and we assume that
Eve observes a scalar quantized version Zn

Δ of the continuous output Zn of the
channel.

Let ε > 0 and let pXΔ(x) be a probability mass function on R. We also define
Rs = I(XΔ; Y ) − I(XΔ; ZΔ).

� Encoding and decoding procedures.
The coding scheme that we will use to communicate over the channel of Fig. 2
consists of three key ingredients.

1. a wiretap code C of blocklength n and rate Rs achieving an average proba-
bility error Pe ≤ ε′ over the main channel and ensuring an equivocation rate
(1/n)H(W |Zn

Δ) > Rs − ε′; for n sufficiently large; the existence of such a
code for any ε′ > 0 follows from [19,4]; we let C⊗m denote the code obtained
by the m-fold concatenation of C;

Nm

Nw

Y n

Zn

decoder

decoder

Bob

Eve

encoder

Alice

Xn

M M̂

Fig. 1. Gaussian wiretap channel
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public authenticated channel

Nm

Nw

Y n

decoder

Bob

encoder

Alice

M M̂
Xn

Δ

Eve

decoder
Zn

Zn
Δscalar

quantizer

Fig. 2. Conceptual channel used in proof. Alice’s inputs Xn
Δ to the Gaussian channels

are restricted to discrete random variables and Eve observes a scalar quantized version
Zn

Δ of the continuous output Zn of the channel.

2. a Slepian-Wolf encoder f : {0, 1}km → {0, 1}t (and its associated decoder
g : {0, 1}t × {0, 1}km → {0, 1}km), whose parameters are to be determined
later; the existence of such a code follows from [17];

3. an extractor E : {0, 1}km × {0, 1}d → {0, 1}r whose parameters are to be
determined later (extractors appear also in [10]); by enumerating all the
values of E over {0, 1}km×{0, 1}d, it is possible to associate to each sequence
wr ∈ {0, 1}r a set S(wr) ⊂ {0, 1}km × {0, 1}d, such that

∀wkm, wd ∈ {0, 1}km × {0, 1}d
E(wkr , wd) = wr ;

In order to transmit a sequence wr, Alice performs the following encoding
procedure.

1. select a pair (wkm, wd) uniformly at random in S(wr);
2. transmit wd over the public authenticated channel;
3. send f(wkm) obtained with the Slepian-Wolf encoder over the public au-

thenticated channel;
4. encode wkm according to the code C⊗m and transmit the resulting codeword

over the wiretap channel.

At the receiver, Bob decodes its information by performing the following
operations.

1. retrieve wd and f(wkm) from the public channel;
2. estimate ŵkm from the output of the wiretap channel according to the wire-

tap code C⊗m;
3. decode w̃km = g(ŵkm, f(wkm));
4. estimate ŵr = E(w̃km, wr);

In the remainder of this section, the random variables corresponding to the
sequences wkm, ŵkm, wr, ŵr, and wd are denoted by W km, Ŵ km, W r, Ŵ r, and
W d, respectively.
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� Analysis of probability of error.
Letting P⊗m

e = P
[
W km �= Ŵ km

]
denote the average probability of error of

achieved by the code C⊗m, we immediately have by the union bound:

P⊗m
e ≤ mPe ≤ mε′.

From [17] (see also [10, Lemma 1]), for m large enough, there exist an encoding
function f : {0, 1}km → {0, 1}t and a decoding function g : {0, 1}km ×{0, 1}t →
{0, 1}km such that

t ≤ H(Ŵ km|W km) (1 + ε′)

and
P
[
Ŵ r �= W r

]
= P

[
W km �= g

(
f
(
W km

)
, Ŵ km

)]
< ε.

Note that by Fano’s inequality we have

t ≤ (
kP⊗m

e + 1
)
(1 + ε′) = (mkε′ + 1) (1 + ε′) .

� Analysis of equivocation.
By definition of the wiretap code C, we have that H(W k|Zn

Δ) > n (Rs − ε′). The
following results states that if m is large enough, the inequality also holds for
the min-entropy H∞ [10]. Formally, let δ > 0 and let F(δ) denote the event that
the sequences wkm and

(
wkm, znm

Δ

)
are δ-typical, and that znm

Δ is such that the
probability taken over w′km according to the distribution p(wkm|Znm

Δ = znm)
that (w′km, znm

Δ ) is δ-typical is at least 1− δ. Then, from [10, Lemma 6] we have

m (1 − P [F(δ)]) → 0 as m → ∞,

H∞(W km|Znm
Δ ,F(δ)) ≥ m

(
H(W k|Zn

Δ) − 2δ
)

+ log(1 − δ),

≥ mn

(
Rs − ε′ − 2δ

n

)
+ log(1 − δ).

Taking into account the messages disclosed over the public channel we have
by [10, Lemma 10] that with probability at least 1 − 2− log m

H∞(W km|Znm
Δ , f(W km),F(δ)),

≥ mn

(
Rs − ε′ − 2δ

n

)
+ log(1 − δ) − (mkε′ + 1) (1 + ε′) − log m,

Δ= mnRs(1 − η) where η → 0 as n → ∞.

From [10, Lemma 9], for any α, η′ > 0 and sufficiently large m, we can choose
E : {0, 1}km → {0, 1}r with d ≤ αkm and r ≥ (Rs(1 − η) − η′)mn such that

H(E(W km, W d)|W d, f(W km),F(δ)) ≥ r − 2−(mn)1/2−o(1)
.

Hence, for m sufficiently large, the overall code achieves an equivocation

H
(
W r|W d, f(W km)

) ≥ H(E(W km, W d)|W d, f(W km),F(δ))(1 − δ) ≥ r − ε,
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with a communication rate R = r/(mn) ≥ Rs − ε over the wiretap channel, and
the transmission of

αkm + (mkε′ + 1) (1 + ε′) + log m
Δ= η3mn

bits over the public channel, where η3 → 0 as n → ∞. Notice that the public
messages could be transmitted error-free over the wiretap channel itself (using
for instance a capacity-approaching code) at a negligible cost in terms of overall
transmission rate.

Therefore, Rs = I(XΔ; Y ) − I(XΔ; ZΔ) is an achievable strong secrecy rate.

The following lemma shows that restricting the eavesdropper’s observations
to quantized values is merely a mathematical convenience.

Lemma 2. If the eavesdropper does not quantize his observations, all rates Rs

satisfying
Rs ≤ max

pXΔ

[I(XΔ; Y ) − I(XΔ; Z)]

are achievable strong secrecy rates.

Proof. The proof relies heavily on the measure-theoretic definition of entropy,
as described in [15]. We refer the reader to the above reference for a precise
definition of entropy and information in this case.

Let us first introduce a family of scalar quantizers as follows. If I is an interval of
R, we denote its indicator function by 1I . For any j ≥ 1, let

{
Ij

k : k ∈ {1, . . . , 2j}
}

be the unique set of disjoint intervals of R, symmetric around 0, such that for all
k, PZ(Ij

k) = 1
2j . For each Ij

k, define as xj
k be the middle point of Ij

k. The quantizer
Qj is defined as follows.

Qj : R → R : z �−→
∑

k∈{1,...,2j}
xj

k1Ij
k
.

By construction, the knowledge of Qn(z) allows to reconstruct the values of
Qj(z) for all j ∈ {0, . . . , n}.

Let us now consider a suboptimal eavesdropper who would quantize the con-
tinuous output of the channel Z using the family of quantizers {Qj}j≥0. The
random variables Qj(Z) resulting from the quantizations are denoted by ZΔj . By
construction, the sequence ZΔj converges almost surely to the random variable
Z as j → ∞. Therefore, we have:

H(W |Zn)
(a)
= H(W |Zn,

{
Zn

Δj

}
j≥0

),

(b)
= H(W |

{
Zn

Δj

}
j≥0

),

(c)
= lim

k→∞
H(W |

{
Zn

Δj

}
0≤j≤k

),

(d)
= lim

k→∞
H(W |Zn

Δk
),



Strong Secrecy for Wireless Channels 51

where (a) follows from [15, Corollary (b) p. 48], (b) follows from the almost sure
convergence of

{
Zn

Δj

}
, (c) follows from [15, Theorem 3.10.1] and the fact that

W takes only a finite number of values, and (d) follows from [15, Corollary (b)
p. 48].

For any k, since I(XΔ; ZΔk
) ≤ I(XΔ; Z), Lemma 1 guarantees that, for any

pXΔ , there exists a code achieving a rate Rs = I(XΔ; Y )−I(XΔ; Z) and ensuring
an equivocation H(W |ZΔk

) arbitrarily close to nRs. As a consequence of the
above equalities, for any ε > 0, there exists k0 sufficiently large and a code
designed assuming that the eavesdropper quantizes his observations with Qk0

such that
H(W |Zn) ≥ H(W |Zn

Δk0
) − ε,

which concludes the proof.

Lemma 3. The weak secrecy capacity is an achievable strong secrecy rate.

Proof. Let G be a Gaussian random variable with zero mean and variance P . Let
Qj be the quantizer defined as in Lemma 2 (by replacing Z by G). Notice that we
can always choose the quantized values in such a way that the random variable
GΔj = Qj(Δ) satisfies the power constraint; hence, I(GΔj ; Y )− I(GΔj ; Z) is an
achievable strong secret key rate. Following the same approach as in the proof
of Lemma 2, one can show that for any ε > 0, there exists k0 sufficiently large
such that

I(GΔk0
; Y ) ≥ 1

2
log(1 +

P

Nm
) − ε and I(GΔk0

; Z) ≤ 1
2

log(1 +
P

Nw
).

Consequently, for any ε > 0

Rs =
1
2

log(1 +
P

Nm
) − 1

2
log(1 +

P

Nw
) − ε

is an achievable strong secrecy rate.

Lemma 4. For the Gaussian wiretap channel, the strong secrecy capacity is
equal to the weak secrecy capacity.

Proof. By definition, the strong secrecy capacity cannot exceed the weak secrecy
capacity; therefore all achievable strong secrecy rates are upper bounded by the
weak secrecy capacity.

4 Implications for Fading Channels

Having established the strong secrecy capacity of the Gaussian Wiretap Channel,
the next natural question is how this affects the fundamental security limits of
wireless channels. More specifically, we consider the scenario in which Bob and
Eve observe the outputs of a discrete-time Rayleigh fading channel (the main
channel) given by

Ym(i) = Hm(i)X(i) + Zm(i),
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and (the eavesdropper ’s channel) given by

Yw(i) = Hw(i)X(i) + Zw(i),

respectively. Here, Hm(i) and Hw(i) are circularly symmetric complex Gaussian
random variables with zero-mean and unit-variance representing the main chan-
nel and eavesdropper’s channel fading coefficient, respectively. Zm(i) and Zw(i)
denote zero-mean circularly symmetric complex Gaussian noise random vari-
ables. We further assume that the codewords transmitted by Alice are subject
to the average power constraint

1
n

n∑
i=1

E
[|X(i)|2] ≤ P,

and the average noise powers in the main channel and the eavesdropper’s channel
are denoted by Nm and Nw, respectively. The channel input, the channel fading
coefficients, and the channel noises are all independent.

There are two cases of interest:

1. The main channel and the eavesdropper’s channel are quasi-static fading
channels, that is the fading coefficients, albeit random, are constant during
the transmission of an entire codeword (∀i = 1, . . . , n Hm(i) = Hm and
Hw(i) = Hw) and, moreover, independent from codeword to codeword. This
corresponds to a situation where the coherence time of the channel is large [2];

2. The main channel and the eavesdropper’s channel are ergodic fading chan-
nels, that is the fading coefficients are drawn randomly in an independent
and identically distributed fashion for each transmitted symbol, which cor-
responds to a situation where the coherence time of the channel is short [9].

In both cases, the secrecy capacity is generically computed by assuming in the
first case that every particular fading realization corresponds to one instance of
the Gaussian wiretap channel, and in the second case that delay plays no role
and so the encoder can wait as long as necessary to have enough identical fading
realizations to be able to encode as if it was transmitting over the corresponding
instance of the Gaussian wiretap channel.

Close inspection of the proofs shows that in both cases we can safely substitute
the weak secrecy capacity achieving random code construction by the strong
secrecy construction we presented in the previous section and obtain the strong
secrecy capacity for both slow fading (as in [1,2]) and ergodic fading channels
(as in [9]).
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Abstract. In this paper we propose a new key predistribution scheme
for wireless sensor networks in which the sensors are arranged in a square
grid. We describe how Costas arrays can be used for key predistribu-
tion in these networks, then define distinct difference configurations, a
more general structure that provides a flexible choice of parameters in
such schemes. We give examples of distinct difference configurations with
good properties for key distribution, and demonstrate that the resulting
schemes provide more efficient key predistribution on square grid net-
works than other schemes appearing in the literature.

Keywords: wireless sensor networks, key predistribution, costas arrays.

1 Introduction

Wireless sensors are small, battery-powered devices with the ability to take mea-
surements of quantities such as temperature or pressure, and to engage in wireless
communication. When a collection of sensors is deployed the sensors can com-
municate with each other and thus form an ad hoc network, known as a wireless
sensor network (WSN), in order to facilitate the transmission and manipulation
of data by the sensors. Such networks have a wide range of potential applications,
including wildlife monitoring or pollution detection (see Römer and Mattern [33]
for some examples of how they have been used in practice).

For many applications it is desirable to encrypt communications within the
network, since wireless communication is highly vulnerable to interception. The
limited memory and battery power of sensors means that for many purposes
symmetric techniques are preferred to more computationally intensive public
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key operations. Thus sensors must share secret keys, in order to provide authen-
tication, confidentiality, or data integrity. One method for enabling this is for
the sensors’ keys to be preloaded prior to deployment. This technique is known
as key predistribution.

Much of the literature on key predistribution in wireless sensor networks deals
with the case where the physical topology of the network is completely unknown
prior to deployment [3,4,5,6,7,9,10,12,13,18,19,21,22,23,24,26,28,29,30,31,35]. In
practice, however, many sensor network applications involve networks for which
there is some degree of control (indeed, often complete control) over the sensors’
locations. Key predistribution is particularly effective in such networks, as the
location knowledge can be harnessed to develop more efficient schemes. For in-
stance, it may be possible to reduce the number of keys shared by pairs of nodes
that cannot physically communicate. Not only does this reduce the amount of
keying material that must be stored, but it improves the resiliency of the net-
work: an adversary learns fewer keys when capturing a given number of nodes,
and those keys it does learn tend to be shared only by nodes in a restricted
neighbourhood of those captured nodes. Also, a priori knowledge of location re-
duces the need for nodes to undergo location discovery or neighbour discovery;
this may reduce or even eliminate any communication overheads in the key setup
process, particularly in the case where there is some regularity or symmetry to
the sensors’ distribution.

While there are several examples of location-based schemes appearing in the
literature [8,9,10,11,17,20,25,34], in the majority of cases the networks consist
of randomly distributed nodes whose approximate location is known. In [27],
Martin and Paterson give an indication of the types of networks that have been
considered in the WSN key predistribution literature, and suggest that there
is considerable scope for the development of schemes suited to specific network
topologies, in situations where the topology is known before sensor deployment.

In this paper we consider the particular case of a network where the sen-
sors are arranged in a square grid. There are many potential applications in
which such a pattern may be useful: monitoring vines in a vineyard or trees in
a commercial plantation or reforestation project, studying traffic or pollution
levels on city streets, measuring humidity and temperature at regular intervals
on library shelves, performing acoustic testing at each of the seats in a the-
atre, monitoring goods in a warehouse, indeed any application where the objects
being studied are naturally distributed in a grid. For purposes of commercial
confidentiality or for protecting the integrity of scientific data it is necessary to
secure communication between sensors, and thus it is important to have effi-
cient methods of distributing keying material in such networks. The goal of this
paper is to provide some practical key predistribution schemes designed specif-
ically for square grids. We show that the highly structured topology of these
networks can be exploited to develop schemes that perform significantly better
for this application than more general techniques, such as those of Eschenauer
and Gligor [13]. Our schemes are designed for homogeneous networks in which
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all sensors have the same capabilities. We assume the nodes have no access to
an external trusted authority (such as a base station) for the purposes of estab-
lishing keys once they have been deployed. We assume that the location of each
node within the grid is known prior to deployment, and consider the problem
of establishing pairwise keys between nodes within communication distance of
one another. This setting can be described in the language of [27] as that of
a locally 2-complete scheme for a network with fixed sensors and full location
control.

In the following section, we discuss the desirable properties for key predistribu-
tion schemes based on square grids. In Sect. 4 we describe a key predistribution
scheme based on Costas arrays, and we introduce the concept of distinct-difference
configurations and use them to generalise our scheme. In Sect. 5 we discuss cer-
tain important properties of KPSs, and in Sect. 6 we compare the behaviour of our
schemes to that of several schemes from the literature. We show that our schemes
outperform these previously studied schemes under our network model.

2 The Network Model

We say that a wireless sensor network is grid based if it consists of a (potentially
unbounded) number of identical sensors arranged in a square grid.

If each sensor has a maximum transmission range r then a sensor is able to
communicate directly with all nodes within the circle of radius r that surrounds
it. (We say that two squares occur at distance r if the Euclidean distance between
the centres of the squares is r.) Without loss of generality we can scale our unit
of distance so that adjacent nodes in the grid are at distance 1 from each other;
we will adopt this convention throughout this paper as it removes unnecessary
complications from our discussions.

We refer to nodes within the circle of radius r centred at some node Ψ as
r-neighbours of Ψ . For most applications it is useful for any two neighbouring
nodes in a sensor network to be able communicate securely. In designing a KPS,
however, we are restricted by the limited storage capacity of the sensors: if a node
has many neighbours, it may be unable to store enough keys to share a distinct
key with each neighbour. We would like to design key predistribution schemes
in which each node shares a key with as many of its r-neighbours as possible,
while taking storage constraints into account. (Note that we only require keys to
be shared by nodes that are r-neighbours, in contrast to a randomly distributed
sensor network which potentially requires all pairs of nodes to share keys.) One
way of achieving this is for each key to be shared by several different nodes;
however, it is necessary to restrict the extent to which each key is shared, to
protect the network against key compromise through node capture.

In Sect. 4 we propose a construction for KPSs that seek to balance the com-
peting requirements discussed in this section. First, however, we describe a com-
binatorial structure that we will use in this construction.
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3 Costas Arrays

Costas arrays were first introduced for use in the detection of sonar signals
(see [16]), and have received much attention for this and other applications (an
extensive bibliography can be found at [32]). To the best of our knowledge,
the KPS we propose in Sect. 4 represents the first time these structures have
been used for key distribution. In this section we provide basic definitions and
properties of these arrays, and briefly describe some known constructions.

Definition 1. A Costas array of order n is an n × n matrix with the following
properties:

– each position is either blank or contains a dot,
– each row and each column contains exactly one dot,
– all n(n − 1) vectors connecting pairs of dots are distinct as vectors (any two

vectors are different in either length or direction).

Example 1
• •• .

This is an example of a Costas array of order 3. It is easily seen that the six
vectors connecting pairs of dots are distinct.

The application of Costas arrays in sonar or radar relies on the fact that if a
translation is applied to a copy of a Costas array then at most one dot of the
translated array coincides with a dot of the original array, unless the two are
exactly superimposed. It is this property that motivates our use of Costas arrays
in constructing KPSs. We formalise it as follows.

Lemma 1. Let S = {d1,d2, . . . ,dn} be the set of positions of the dots in a
Costas array A. Suppose the array A is translated by a vector v in the lattice
Z2 and let S′ = {d1 + v,d2 + v, . . . ,dn + v} be the set of positions of the dots
in the translated array. Then if v �= 0, we have |S ∩ S′| ≤ 1.

Proof. Suppose there exists a vector v and dot positions di,dj ,dk,dl such that
di = dj + v and dk = dl + v. Then di − dk = dj − dl. As A is a Costas array,
this implies that di = dj and dk = dl, and hence v = 0. �

Two main constructions for Costas arrays are known (see [14,15,16] for further
discussion). Let p be an odd prime. An integer α is a primitive root modulo p if
the powers α1, α2, . . . , αp−1 are all distinct modulo p; such integers exist for all
odd primes p.

The Welch Construction. Let α be a primitive root modulo p and let A be
a (p − 1) × (p − 1) array. For 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ p − 1 we put a dot
in A(i, j) if and only if αi ≡ j (mod p).
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The Golomb Construction. Let q be a power of a prime and let α and β
be two primitive elements in GF(q), i.e. elements that generate the multi-
plicative group of GF(q). We define A to be a (q − 2) × (q − 2) array. For
1 ≤ i ≤ q − 2 and 1 ≤ j ≤ q − 2 we put a dot in A(i, j) if and only if
αi + βj = 1. We remark that when α = β the construction is called the
Lempel Construction.

There are several variants for these two constructions resulting in Costas
arrays with orders slightly smaller (by 1, 2, 3, or 4) than the orders of these two
constructions.

4 Construction of Key Predistribution Schemes for
Grid-Based Networks

In this section we provide basic definitions relating to key predistribution, and ex-
amine certain properties that must be considered when designing such schemes,
before proposing constructions of KPSs that are specifically adapted to grid-
based networks.

Let K be a finite set whose elements we refer to as keys (whether they be
either actual secret keys, or quantities from which such keys may be derived).
We consider a set U of wireless sensors, each of which has sufficient memory to
store m keys; after deployment the nodes U form a wireless sensor network W .

Definition 2. A key predistribution scheme (KPS) for W is a map U → Km

that assigns up to m keys from K to each node in U .

Each node stores the keys assigned to it in its memory prior to deployment.
Once the nodes are deployed we have the following possible situations.

– Two nodes that share one or more common elements of K can use them to
derive a common key.

– Two nodes that do not share a key may rely on an intermediate node with
which they both share a key in order to communicate securely; this is referred
to as a two-hop path.

If each k ∈ K is assigned to a set Sk ⊂ U of at most α nodes we refer to
the KPS as an [m, α]-KPS. As mentioned in Sect. 2, one of the goals when
designing an [m, α]-KPS is to enable each node to communicate directly with as
many nodes as possible, hence we would like to maximise the expected number
of neighbouring nodes that share at least one key with a given Ψ . We note that
when evaluating properties of a grid-based network in which the network does
not extend infinitely in all directions, complications may arise due to nodes on
the edge of the network having a reduced number of neighbours. This can be
avoided by restricting attention to properties of nodes on the interior of the
network (nodes Ψ such that each grid position that is within range of Ψ contains
a node of the network). This is a reasonable restriction to make as it greatly
simplifies analysis and comparison of KPSs, especially since for a grid-based



Efficient Key Predistribution for Grid-Based Wireless Sensor Networks 59

network of any size the edge nodes will only represent a small proportion of the
network.

Theorem 1. When an [m, α]-KPS is used to distribute keys to nodes in a square
grid network, the expected number of r-neighbours of a node ψ in the interior of
the network that share at least one key with Ψ is at most m(α − 1). The value
m(α − 1) is achieved precisely when the following conditions are met.

1. Each interior node stores exactly m keys, each of which are shared by exactly
α nodes.

2. No pair of nodes shares two or more keys.
3. The distance between any two nodes sharing a key is at most r.

Proof. The maximum number of keys allocated to an interior node Ψ by an
[m, α]-KPS is m; each of these keys is shared by at most α nodes (which may or
may not be r-neighbours of Ψ). Hence a given interior node shares keys with at
most α − 1 of its r-neighbours, and this maximum value is achieved if and only
if no two nodes share more than one key with Ψ , and every node with which Ψ
shares a key is an r-neighbour of Ψ . The result follows directly. �
This result indicates that when distributing keys according to an [m, α]-KPS,
limiting the number of keys shared by each pair of nodes to at most one increases
the number of pairs of neighbouring nodes that share keys, hence this is desirable
from the point of view of efficiency. This restriction will be further exploited
in the analysis of Sect. 5. In the following section we describe a method of
constructing [m, α]-KPSs with this property.

4.1 Key Predistribution Using Costas Arrays

We now propose a KPS for a grid-based network, in which the pattern of nodes
that share a particular key is determined by a Costas array. The result is a
[n, n]-KPS in which any two nodes have at most one key in common.

Construction 2. Let A be a n × n Costas array. We can use A to distribute
keys from a keypool K to a set U of nodes arranged in a grid-based network as
follows.

– Arbitrarily choose one square of the grid to be the origin, and superimpose
A on the grid, with its lower left-hand square over the origin. Select a key
k00 from K, and distribute it to nodes occurring in squares coinciding with
a dot of A (so n nodes receive the key k00).

– Similarly, for each square occurring at a position (i, j) in the grid, we place
the lower left-hand square of A over that square, then assign a key kij ∈ K
to the squares that are now covered by dots of A.

If the dots of the Costas array occur in squares (0, a0), (1, a1), . . . , (n − 1, an−1)
of the array then the above scheme associates a key kij with the nodes in squares
(i, j + a0), (i + 1, j + a1), . . . , (i + n − 1, j + an−1) (where such nodes exist). We



60 S.R. Blackburn et al.

observe that the deterministic nature of this key allocation, together with the
structured topology of a square grid, means that nodes can simply store the
coordinates in the grid of those nodes with which they share keys, thus obvi-
ating the need for a shared-key discovery process with ensuing communication
overheads.

Example 2. Consider the 3 × 3 Costas array of Example 1. If we use this array
for key distribution as described above, each node stores three keys. Figure 1
illustrates this key distribution: each square in the grid represents a node, and
each symbol contained in a square represents a key possessed by that node.
The central square stores keys marked by the letters A, B and C; two further
nodes share each of these keys, which are marked in bold. Letters in standard
type represent keys used to connect the central node to one of its neighbours
via a two-hop path, other keys are marked in grey. Note that we have only
illustrated some of the keys; the pattern of key sharing extends in a similar
manner throughout the entire network.

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

F

F

F

G

G

G

H

H

H

I

I

I

J

J

J

K

K

KL

L

L

M

M

M

N

N

N

O

O

O

P

P

P

Q

Q

Q

R

R

R

S

S

S

T

T

U

U

V

V

V

W

W

W

X

X

X

Y

Y

Z

Z

Z
Δ

Δ

Δ

Φ

Φ

Γ

Γ Θ

Θ

Λ

Λ

Ξ

Ξ
Π

Π

Π

Σ

Σ

Υ

Υ

Ψ

Ψ

Ω

Ω

�

�

Fig. 1. Key distribution using a 3 × 3 Costas array

Theorem 3. The key predistribution scheme in Construction 2 has the follow-
ing properties:

1. Each sensor is assigned n different keys.
2. Each key is assigned to n sensors.
3. Any two sensors have at most one key in common.
4. The distance between two sensors which have a common key is at most√

2(n − 1).

Proof

1. There are n dots in A. For each dot in turn, if we position A so that dot
lies over a given node Ψ , this determines a positioning of A for which the
corresponding key is allocated to Ψ . Hence Ψ stores n keys in total.

2. A key kij is assigned to n positions in the square grid, namely those that
coincide with the n dots of a fixed shift of A.
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3. Suppose there exist two sensors A and B sharing (at least) two keys. These
keys correspond to different translations of the array A, hence there exist
two translations of A in which dots occur at the positions of both A and B.
However, by Lemma 1, two copies of A coincide in at most one dot, thus
contradicting the original assumption.

4. The two most distant sensors which have a key in common must correspond
to two dots in the same translation of A. The largest distance between two
dots in A occurs if they are in two opposite corners of the array, i.e. at
distance

√
2(n − 1).

�
Corollary 1. When the [n, n]-KPS of Construction 2 is applied to a grid-based
network then a node on the interior of the network shares keys with n(n − 1)
other nodes, the maximum possible for a [n, n]-KPS.

4.2 Distinct-Difference Configurations in Key Predistribution

The proof of Part 3 of Theorem 3 relies on the property that the vectors con-
necting pairs of dots in a Costas array are pairwise distinct. We do not, however,
make use of the requirement that each row and column have exactly one dot.
This suggests that we can relax this condition in order to explore other struc-
tures for use in key predistribution. This leads us to the following definition.

Definition 3. A distinct-difference configuration DD(m, r) consists of a set of
m dots placed in a square grid such that

– any two of the dots in the configuration are at distance at most r apart,
– all m(m − 1) differences between pairs of dots are distinct as vectors (any

two vectors differ either in length or direction).

A Costas array is an example of a DD(n, r), for some r ≤ √
2(n−1). Like Costas

arrays, a DD(m, r) can be used for key predistribution:

Construction 4. For a given DD(m, r) we distribute keys as in Construction 2,
using the DD(m, r) in place of a Costas array.

Theorem 5. If a DD(m, r) is used for key predistribution as described in Con-
struction 4 the resulting KPS has the following properties:

1. Each sensor is assigned m different keys.
2. Each key is assigned to m sensors.
3. Any two sensors have at most one key in common.
4. The distance between two sensors which have a common key is at most r.

Proof. As in the case of the Costas arrays, the fact that differences between pairs
of dots are distinct imply that two nodes share at most one key. The limit on the
distance between nodes sharing keys are a distance of at most r apart follows
directly from the restriction on the distances between dots in the DD(m, r). �
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Example 3
•• •

This is an example of a DD(3, 2). If used in a KPS each node stores 3 keys. Fig-
ure 2 illustrates (part of) the pattern of key sharing that results. As in Fig. 1, each
square in the grid represents a node, and each letter represents a key possessed
by that node. This key distribution has an advantage over that of Example 2
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Fig. 2. Key predistribution using a DD(3, 2)

in that each node still shares keys with six other nodes, but these nodes are all
2-neighbours, rather than 3-neighbours.

This construction provides [m, m]-KPSs in which interior nodes share keys with
an optimal number m(m− 1) of neighbouring nodes. We have greater flexibility
than Construction 3.5 because we consider a more general class of configurations.
So we are better able to choose a configuration whose properties match the
application requirements. The use of a DD(m, r) enables the construction of
a KPS suitable for the specific radius r and maximum storage m of a given
network1, whereas in the case of Costas arrays the number of dots and the
maximal distance between them are directly linked.

We have noted that the use of a DD(m, r) maximises the number of r-
neighbours that share keys with a given node. Additionally, it is desirable to
maximise the number of r-neighbours that can communicate securely with a
given node Ψ via a one-hop or two-hop path. We refer to this quantity as the two-
hop r-coverage of a KPS. In the case of our scheme based on distinct-difference
configurations we refer to the two-hop r-coverage of a DD(m, r) to indicate
the two-hop r-coverage obtained by a KPS constructed from that configura-
tion. Table 1 shows the maximum possible values for the two-hop r-coverage
of a DD(m, r) for r = 1, 2, . . . , 12. The empty positions in the table represent
combinations of m and r for which no DD(m, r) exists. In Fig. 3 we illustrate
DD(m, r) achieving the maximal two-hop r-coverage values shown in Table 1,
for those cases where the corresponding two-hop r-coverage cannot be obtained
1 provided a suitable DD(m,r) can be found. For a given r there is evidently an

upper limit on the value of m for which a DD(m,r) exists. If the potential storage
m exceeds this value a DD(m′, r) could be employed with m′ equal to the maximum
number of dots possible in a distance r distinct-difference configuration.
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Table 1. The maximum two-hop r-coverage of a DD(m,r)

m\r 1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 4 4 4 4 4 4 4 4 4 4
3 - 12 18 18 18 18 18 18 18 18 18 18
4 - - 28 46 54 54 54 54 54 54 54 54
5 - - 28 48 80 102 118 126 130 130 130 130
6 - - - 48 80 112 148 184 222 240 254 262
7 - - - - 80 112 148 196 252 302 346 374
8 - - - - - 112 148 196 252 316 376 ≥432
9 - - - - - - 148 196 252 316 376 440
10 - - - - - - - 196 252 316 376 440
11 - - - - - - - - 252 316 376 440
12 - - - - - - - - - 316 376 440

by a configuration with smaller m (without increasing r) or smaller r (without
increasing m). (For a given radius r the number of two-hop r-neighbours is ev-
idently bounded by the total number of r-neighbours; these totals correspond
to the numbers in bold in Fig. 3. Similarly, for a given m there is a maximum
number of two-hop r-neighbours that can be achieved by a DD(m, r); these
values appear in italics. Both trends are apparent in Table 1.) In the case of
m = 8, r = 12 the best known two-hop r-coverage is 432.
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Fig. 3. Distinct-difference configurations with maximal two-hop r-coverage γ. The la-
bels indicate the corresponding m:r:γ. The value of γ is given in bold if it is the
maximum possible for the given r, and in italics if it is the maximum given m.

5 Evaluation of Key Predistribution Schemes for
Grid-Based Networks

In Sect. 4 we indicated some desirable properties of key predistribution schemes
in order to motivate our constructions. We now provide a wider analysis of the
properties of these schemes. There are no standard metrics for evaluating KPSs,
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as desirable properties depend on the particular application environment; authors
tend to devise their own metrics for evaluating the schemes they propose. Never-
theless the basic goals of these schemes remain the same: it is beneficial to restrict
the amount of storage and communication overheads required, while maximising
the number of secure communication links between nodes, even in the case when
nodes are subject to adversarial compromise. In this section we consider each of
these aspects, in the context of grid-based networks, and define the precise quan-
tities we use in Sect. 6 to compare our schemes with previous schemes.

Table 2. A comparison of key predistribution schemes for a 100 × 100 grid-based net-
work. (Entries represent the mean over 10000 trials, with the sample standard deviation
given in brackets.)

Scheme m α One-hop Two-hop Resilience L. Resilience

Costas 8 8 56 366 331 (86) 59 (53)
DD(8, 11) 8 8 56 376 336 (86) 59 (53)
Liu & Ning 8 2 8 24 23.87 (1.48) 20.3 (7.0)
Eschenauer & Gligor 8 ≈ 200 56.2 (7.0) 370.0 (3.8) 36 (38) 36 (38)
Ito et al. 8 ≈ 8 36.2 (6.4) 319.6 (20.1) 259 (97) 52 (47)

Storage. There is no established consensus on the number of symmetric keys
that a sensor can feasibly store in practice. Estimations in the literature
range from “perhaps 30-50” [23] to more than 200 [6]. As sensor technology
improves, the amount of memory available is increasing. However, there is
always a tradeoff between the amount of memory used for cryptographic
purposes and the amount available for the rest of the sensor’s functionality.
Also, the development of smaller, less power-hungry sensors will continue to
place limits on memory capacity in the future. It is common for the storage
requirement to be a parameter of a KPS, and for other properties to be
described in terms of this parameter. When choosing parameters for the
schemes we compare in Sect. 6, we fix an upper bound for the storage and
consider only schemes whose storage requirements do not exceed this bound.

Cost of shared key discovery. The deterministic nature of our scheme means
that no communication is required either for neighbour discovery, or for
shared key discovery.

One-hop and two-hop coverage. As discussed in Sect. 4, our schemes ensure
nodes have the maximum number m(m− 1) of one-hop r-neighbours that is
possible for a [m, m]-KPS. Thus the number of secure communication links is
maximised by choosing m to be as large as possible. Note that there are two
factors constraining the size of m: the memory capacity of nodes, and the
combinatorial limits on the size of m for a fixed value of r. In order to assess
the connectivity of a scheme, it is also desirable to take into account the
two-hop r-coverage. Table 1 illustrates that if the storage m is sufficient, it
is possible to find distinct difference configurations for use in Construction 4
that ensure that every node on the interior of the network can communicate
with each of its r-neighbours by either a one-hop or a two-hop path.
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Resilience. Informally speaking, the resilience of a KPS is the extent to which
secure communication can be maintained within the network when an adver-
sary compromises a certain number of nodes and extracts the keys that they
store. In Sect. 6 we will measure the resilience of a scheme by the expected
number of r-neighbours of a node Ψ that can still communicate securely
(i.e. by using keys unknown to the adversary) with Ψ by either a one-hop
or two-hop path, after a fixed number of nodes have been compromised.
We will consider both the case in which the compromised nodes are chosen
uniformly throughout the network, and the case where the nodes are drawn
uniformly from the r-neighbourhood of Ψ (we assume that Ψ itself is not
compromised.) We refer to the quantity arising from the latter case as the
local resilience.

6 Concrete Comparison of Existing Schemes

In order to illustrate the performance of the KPSs proposed in this paper we
select some concrete values for the network parameters, which allows us to com-
pare the performance of our schemes explicitly with other schemes appearing in
the literature. Our schemes are shown to perform better than previously known
schemes in our network model. We will consider a grid-based network with 10000
nodes arranged in a square, in which each node can store up to 8 keys and has a
communication range r = 11. The results of our analysis of several schemes are
summarised in Table 2. For each scheme we are interested in the values of m,
α and the expected number of one-hop 11-neighbours (One-hop) and two-hop
11-neighbours (Two-hop). We also measure the number of a node’s two-hop links
that remain secure after an adversary compromises five nodes, either uniformly
throughout the network (Resilience), or uniformly from among that node’s 11-
neighbours (L. Resilience). These values for each scheme are displayed in Ta-
ble 2, and represent the mean value over 10000 randomly generated instances.
The corresponding sample standard deviation is given in brackets. In each case
the parameters for the schemes have been chosen so that the storage requirement
is at most 8 keys, and so that all schemes have (where possible) a similar number
of one-hop 11-neighbours. We now give a brief description of the schemes we are
considering, as well as an explanation of the parameter choices involved.

Construction 4. The 11-neighbourhood of a node contains 376 other nodes. If
the storage limit is 8, then Construction 4 results in a KPS in which each
node has 56 one-hop neighbours. Using the DD(8, 11) shown in Fig. 3 means
that all 376 11-neighbours of a given node can communicate with that node
via a one-hop or two-hop path.

Construction 2. This construction also results in nodes having 56 one-hop
neighbours, however the best two-hop 11-coverage that results from an 8×8
Costas array is 366, achieved by the following array.

•• • • ••• •
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Eschenauer and Gligor [13]. In Eschenauer and Gligor’s KPS, each node is
assigned m keys drawn uniformly without replacement from a key pool of
a fixed size. By taking m = 8 and a keypool of size 400 for this network
we obtain a KPS in which the number of one and two-hop 11-neighbours is
similar to that of our schemes.

Liu and Ning [25]. Liu and Ning’s ‘closest pairwise scheme’ is a location-
based scheme in which each node shares keys with its c closest neighbours.
Since we are working with a square grid, we can consider a scheme in which
each node shares pairwise keys with the 8 nodes surrounding it.

Ito, Ohta, Matsuda and Yoneda [20]. The scheme of Ito et al. is a location-
based, probabilistic scheme. They propose associating keys with points in
the target area, then for each node they randomly choose m points that
are expected to lie within its communication range after deployment, and
assign the corresponding keys to that node. To deploy this scheme in our
grid-based network we associate a key with each grid point, then for each
node randomly choose 8 points within distance 11 of that node.

Other location based schemes. Most of the location-based KPSs in the lit-
erature do not assume a precise knowledge of sensor locations, but instead
divide the target area into regions (square, rectangular, hexagonal and trian-
gular regions have all been proposed) and suppose that the region in which
each sensor will be deployed is known a priori. Schemes such as those in
[9,10,17,34,25] involve all nodes in each region being given shares in a thresh-
old key establishment scheme such as those of [1,2] with nodes receiving
shares corresponding to each of the neighbouring regions. The storage con-
straints of the specific network environment we are considering mean that
most of these scheme either cannot be employed, or else could only be em-
ployed with such low thresholds as to severely compromised their resilience.

The scheme of Du, Deng, Han, Chen and Varshney [11] similarly divides
the target area into regions, and then modifies Eschenauer and Gligor’s ba-
sic scheme by letting the pool from which nodes draw keys depend on the
region in which they are to be deployed. However, Ito et al. argue that this
does not provide sufficient granularity [20], as a rectangular region does not
adequately model the circle throughout which a node is supposed to be able
to communicate.

In Table 2 we compare our Costas array and DD(8, 11) schemes, Liu and
Ning’s closest pairwise scheme, Eschenauer and Gligor’s scheme, and the scheme
of Ito et al. for the choices of parameters discussed above. This data highlights
several differences in the behaviour of the various schemes in this environment;
in particular we note the following.

The local resilience of Eschenauer and Gligor’s scheme is less than that of our
schemes, and the resilience is substantially less (as their scheme does not take
account of the nodes’ locations, the resilience matches the local resilience). This
is essentially due to the large value of α that is required in order for their scheme
to give adequate one-hop or two-hop coverage. The use of location knowledge
in the scheme of Ito et al. results in an improvement in resilience, although it
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is still significantly less than that of our schemes, and the one-hop and two-hop
coverage is lower too. A change of parameters could increase the coverage, but
at the cost of increasing α, so that any increase in resilience would be curtailed.
Furthermore, even though [20] is location based, the fact that its key distribution
is probabilistic means that it incurs the same shared-key-discovery cost as [13],
whereas our deterministic schemes involve no key-discovery overheads.

The coverage of Liu and Ning’s scheme is very low. The resilience is high in
proportion to the coverage, in that most of the links are expected to remain
unaffected after node compromise. However since the number of links existing
prior to node compromise is small, then in absolute terms the resilience and local
resilience are even lower than that of [13].

Thus we see that both Construction 2 and Construction 4 yield KPSs that pro-
vide good one-hop and two-hop coverage in grid-based networks with restricted
storage, and that the resulting KPSs are demonstrably more resilient in the fact
of node compromise than previously proposed schemes. They therefore represent
a good solution whenever a very lightweight yet resilient KPS is required for a
grid-based network.
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2 Dept. of Computer Science, Columbia University, 3 Google Inc.

fstandae@uclouvain.be, {tal,moti}@cs.columbia.edu

Traditionally, cryptographic algorithms provide security against an adversary
who has only black box access to cryptographic devices. That is, the only thing
the adversary can do is to query the cryptographic algorithm on inputs of its
choice and analyze the responses, which are always computed according to the
correct original secret information. However, such a model does not always cor-
respond to the realities of physical implementations.

During the last decade, significant attention has been paid to the physical
security evaluation of cryptographic devices. In particular, it has been demon-
strated that actual attackers may be much more powerful than what can be
captured by the black box model. They can actually get a side-channel informa-
tion, based on the device physical computational steps.

A large set of practical techniques for breaking and repairing (i.e., applying
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of the area?

In this talk, it will be argued that having a model and a more basic approach
to formalizing the physical leakage can be useful and revealing. A model in this
area relies on certain signals being communicated to the attacker, so it is (to
some degree) of an Information Theory or Communication Theory nature. It will
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up a fair ground for arguing about differences in approaches.
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Abstract. We present information-theoretically secure bit commit-
ment, zero-knowledge and multi-party computation based on the
assistance of an initialization server. In the initialization phase, the
players interact with the server to gather resources that are later used
to perform useful protocols. This initialization phase does not depend
on the input of the protocol it will later enable. Once the initialization
is complete, the server’s assistance is no longer required. This paper
improves on previous work as there is only one server and it does not
need to be trusted. If the server is honest, the protocols are secure
against any coalition of dishonest players. If all players are honest, then
there is an exponentially small probability that both the initialization
phase succeeds and that later the protocol fails. That is, the server
cannot create a situation in the initialization phase that would lead
honest players to accuse each other. The protocols are built in a modular
fashion and achieve linear complexity for the players in terms of the
security parameter, number of players and the size of the circuit.

Keywords: two-party computation, multi-party computation, cryptog-
raphy, zero-knowledge, initialization server.

1 Introduction

Two-party computation is a common scenario: Alice and Bob want to compute
a function based on their inputs such that they get the correct output but also
without revealing their respective input to the other participant. This situation
can obviously be generalized to more than two participant. Multi-party com-
putation was first introduced by [18, 24, 25]. It has been shown that without
any computational assumptions, secure multi-party computation is possible if
and only if a majority of participants are honest, in the presence of a broad-
cast channel [22]. If no broadcast channel is available, this proportion must be
strictly more than 2/3 [3, 6]. Multi-party computation security can also be based
on other assumptions: noisy channels [11, 14, 15], or using directly some prim-
itives such as oblivious transfer (OT) [13, 19], trapdoor one-way permutations
[18] or bounded memory [4, 5].

Beaver [1, 2] introduced in 1997 a model where a server is involved in the
computation. This third party is said to be semi-trusted. It is trusted in the sense

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 71–85, 2008.
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that it doesn’t collude with any participant and it follows the protocol correctly.
But if the players are honest, a dishonest server cannot learn anything about
the input and output of the protocol it enables. In some contexts, the qualifier
honest but curious is also used. Beaver uses this server to distribute commodities
to users prior to the calculation. Under these assumptions, he realizes a protocol
for OT on which secure multi-party computation can be based. In the same
model, Rivest [23] has also shown simple algorithms for bit commitment (BC)
and OT. Many specific problems having practical applications have been solved
using such a third party [10, 16, 17]. This model is very appealing since it is
close to the Internet setting in which a server provides services. Since this server
does not have to be fully trusted, it has practical applications.

Yet trust is an issue and this is the problem we address in this paper. In
[1, 23], since the server has to follow the protocol, it is an issue to choose a
server trusted by both parties. The way they addressed this problem was by
using more than one server. The drawback is that the protocol is less practical.
Here, our protocols deal with a dishonest server, as long as it doesn’t collude with
other participants. That is, the server could make the initialization phase fail,
but will not be able to make honest players accuse each other of cheating. Once
the initialization phase succeeds, the security of the primitives and protocols
performed in the computation phase is unconditional.

Our protocols have the following properties. If the server does not collude with
any player, the initialization phase enables protocols that achieve information
theoretical privacy and correctness. That is, the protocols are resilient to both
cheating players and a dishonest server at the same time under the no-collusion
assumption. If all players are honest, the server will gain no information about
the protocol realized after the initialization phase. Furthermore, whatever the
server behaviour, the probability that both the initialization phase succeeds and
the later protocol aborts is exponentially small. The last criteria is unusual
in conventional multi-party computation but is reasonable in presence of two
different types of actors.

An appealing aspect of our protocols is their simplicity and efficiency. As first
said, the situation of multi-party computation has been studied for a long time
and is well understood. An attentive reader will recognize flavours of known
techniques. For example, our protocols are based on so-called commitment chips
similar to two precomputed oblivious transfers and our bit commitments are
constructed so that the Rudich technique [12, 13, 20] can be used and some
noise can be tolerated.

It is worthwhile to mention that a simple but inefficient solution can easily
be obtained from known techniques. For example the server, during the initial-
ization phase, could distribute two random strings of n bits to Alice and Bob
such that the Hamming distance between these two strings is εn. This could be
probabilistically verified with some accuracy. Afterwards, Alice and Bob could
use these two strings as one-time pads to communicate. This would result in
a binary symmetric channel with error ε which is known to be sufficient for
multi-party computation [13, 14] since it enables the participants to realize OT.
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Another way would be to adapt ideas from [9] and [8]. It is not too hard to obtain
similar results based these article for the two-party case, but for the multi-party
case, the obtained protocol would be significantly less efficient than the one we
present. Note also that [21] propose a elegant solution where the initialization
server is fully trusted; in our protocol, the server does not have to be trusted
and the solution we propose is also more efficient.

In the following sections, we present protocols for commitment (Sect. 2), com-
mitted circuit evaluation and zero-knowledge (Sect. 3) and multi-party secure
computation (Sect. 4). Even though our protocols are intricate, the proofs are
relatively straightforward are not particularly enlightening. We present proof
sketches in the appendix.

2 Bit Commitment

BC is a cryptographic procedure composed of two phases. In the commitment
phase, Alice commits to a bit value with Bob and in the opening phase, she
reveals that bit. We say that the commitment is binding if, after the commitment
phase, Alice can only open one unique value. We say that the commitment is
concealing if, after the commitment phase, Bob has no information about the
committed bit. Note that the opening phase is optional.

To accomplish BC (as well as all the following protocols), we rely on com-
mitment chips (CCs). Our protocol begins by an initialization phase where the
server creates enough CCs and gives them to the players. A CC i is a weak
commitment to the value vi = xi

1 ⊕ xi
2 ⊕ xi

3 ⊕ xi
4, the parity of four bits that the

server privately transmits to Alice. Of these four bits, the server only transmits
to Bob one of the first two and one of the last two. We will always suppose that
communication between the players and the server is done in a private way. CCs
can be seen as a combination of 2 (12)-OTs are constructed is such a way that
the Rudich technique can be used. It is crucial that Alice doesn’t know which
bits Bob knows. The CCs created in the initialization phase are the resources
shared by Alice and Bob to construct BCs and all other protocols.

In the protocols, we denote Alice by A, Bob by B and the server by S. Note
that except if otherwise stated, the CCs and BCs are from Alice to Bob.

Protocol 1. CC Commit
Input: an index i ∈ I
Result: the CC indexed by i is created

S chooses xi
1, x

i
2, x

i
3, x

i
4 ∈R {0, 1} and sends them to A

S chooses �i ∈R {1, 2} and ri ∈R {3, 4} and sends to B (�i, ri, x�i , xri)

To verify the honesty of the server (i.e. that the bits of Alice and Bob corre-
spond), half of the CCs given by the server will be opened. In all our protocols,
we say that a bit is inconsistent whenever Alice and Bob disagree on its value.

From the protocol CC Preprocessing we can already see the role of the
two bits given to Bob: if Alice wants to change the value of one CC, she must
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Protocol 2. CC Unveil
Input: an index i ∈ I
Result: the CC indexed by i is unveiled

A sends xi
1, x

i
2, x

i
3, x

i
4 to B

B outputs FAIL if xi
�i or xi

ri are inconsistent

Protocol 3. CC Preprocessing
Result: I an index set of CCs

Let I be a set of indices
∀i ∈ I , Call CC Commit(i)

B chooses O ⊂R I such that |O| = |I|
2

and sends its description to A
∀i ∈ O, Call CC Unveil(i) and Bob outputs ABORT if the output is FAIL
A and B set I to I � O

change the value of at least one its four xis. Since she is not aware of which bits
Bob knows, she will change a bit Bob knows with probability one-half, and get
caught. Note also that since Bob knows only two bits of each CC, he has no
information about the parity of the four bits.

Since we would like Alice to only have an exponentially small probability of
successfully cheating when committing, we define s = 2k + 1 (a odd security pa-
rameter), and a BC to the value b will be a group of 3s CCs to the value b. The
choice of 3s instead of s is useful in the following section. Note that once the ini-
tialization phase is complete, the players do not need the server to realize BC.

After the initialization phase, a set of indices I corresponding to CCs is shared
between Alice and Bob. To construct a BC (as well as other protocols), CCs are
consumed and removed from this set.

Protocol 4. BC Commit
Input: b ∈ {0, 1} and I an index set of CCs
Result: a BC B to the value b (I is updated)

A chooses B ⊂R I such that |B| = 3s and such that ∀i ∈ B, vi = b
A sends a description of B to B
A and B set I to I � B

To open the BC C, Alice only needs to reveal every bit of every CC. The
condition for Bob to accept the opening is that no more than 1

10 of the CCs
aren’t consistent with the bits he knows. Why? Because the server is not trusted.
The verification done in the initialization phase assures the players that there is
little inconsistency, but not that there is none.

If Alice is dishonest, she can choose to construct a BC in an undefined way
by choosing CCs with two different values. In order to ensure that the BC value
is always well-defined, we say that the value of a BC is the value of the majority
of the values of the CCs of which it is made. This is why we choose s to be odd.
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Protocol 5. BC Unveil
Input: a BC B
Result: B is opened

A sends b to B
B sets e to 0
∀i ∈ B

Call CC Unveil(i)
if CC Unveil(i) outputs FAIL or does not have value b, then set e to e + 1

If e ≥ |C|
10

, B outputs ABORT

Usually, in the analysis of a two-party protocol, we consider what happens
when one of the participants is honest and the other is dishonest. Here, we also
have to consider the fact that the server can be dishonest.

Lemma 1. (BC Commit: concealing) As long as Bob and the server do not
collude, after BC Commit(b), Bob has no information on b.

Lemma 2. (BC: binding) As long as Alice and the server do not collude, after
BC Commit(B), BC Unveil(B = b) has a chance exponentially small in s to
succeed.

Since we want to consider a cheating server, we also want to be sure that, if the
server is dishonest, none of the honest players can be falsely incriminated.

Lemma 3. (BC: robust) Given that Alice and Bob are honest, there is an ex-
ponentially small probability that both the preprocessing succeeds and that one of
the later BC Unveil aborts.

So, if Alice and Bob are honest and the server is dishonest, it cannot make the
initialization phase succeed in such a way that later, a commitment phase or an
opening phase will fail. Once the initialization phase has been done, the only
way for the protocol to abort is if Alice or Bob misbehave. Thus, there is no way
the server can cheat in a way that Alice or Bob will be accused wrongly (except
with exponentially small probability).

A very useful characteristic of our BC protocol is the possibility for Alice to
choose m BCs and prove to Bob that the parity of their committed values is
p without revealing any other information. The parity of m CCs, each chosen
from a different BC, must also be p. The protocol CC Parity verifies this fact,
but has probability 1/2 of failure in case Alice tries to cheat. BC Parity simply
calls CC Parity s times to amplify this probability. This is the well-known
technique introduced by Rudich. At the end of the BC Parity protocol, Bob
will be convinced of the parity and all the BCs will remain valid, but s CCs
contained in each BC will have been consumed.

Note that FAIL is an acceptable outcome for a sub-protocol but that when a
sub-protocol outputs ABORT, it implies that the calling protocol also outputs
ABORT and so on. Note that each BC is composed of 3s CCs. This implies
that three operations (BC Parity, BC Unveil) can be performed on a single
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Protocol 6. CC Parity
Input: a list of CC indices i1, i2, . . . , im and a parity p
Result: B learns if p = vi1 ⊕ vi2 ⊕ · · · ⊕ vim

A sends p to B
A computes q =

⊕m
j=1 x

ij

1 ⊕ x
ij

2 and sends it to B
B sends r ∈R {0, 2} to A
For j from 1 to m, A sends to B x

ij

1+r and x
ij

2+r

B checks that these values are consistent and:
If r = 0, B checks that q =

⊕m
j=1 x

ij

1 ⊕ x
ij

2

If r = 2, B checks that p ⊕ q =
⊕m

j=1 x
ij

3 ⊕ x
ij

4

If an error is detected, the output of the protocol is FAIL

Protocol 7. BC Parity
Input: a list of BCs B1, B2, . . . , Bm and a bit p
Result: B learns if p = b1 ⊕ b2 ⊕ · · · ⊕ bm

A computes p = b1 ⊕ b2 ⊕ · · · ⊕ bm and sends it to B
B sets e to 0
Repeat s times

For j from 1 to m
B chooses ij ∈R Bj and send it to A
A and B sets Bj to Bj � ij

A and B call CC Parity(i1, i2, . . . , im, p)
If the protocol outputs FAIL, set e to e + 1

If e > s
10

then ABORT

BC before it becomes useless. This can be used to perform FAN-OUT and NOT
gates in the obvious way.

Lemma 4. (BC Parity: robust) Given that Alice and Bob are honest, the prob-
ability that both the initialization phase succeeds and that BC Parity outputs
ABORT is exponentially small in s.

Lemma 5. (BC Parity: zero-knowledge) If Alice and the server are honest,
after BC Parity(B1, B2, . . . , Bm), Bob cannot learn any information except
p = b1 ⊕ b2 ⊕ · · · ⊕ bm.

Lemma 6. (BC Parity: sound) Given that Alice and the server do not collude
and that p = b1 ⊕ b2 ⊕ · · · ⊕ bm, the probability that Parity BC(B1, B2, . . . , Bm,
p) succeeds is exponentially small in s.

3 Oblivious Circuit Evaluation and Zero-Knowledge

In this section, we discuss techniques called oblivious circuit evaluation (OCE)
to compute functions on committed bits, producing committed bits with the
right relationship without revealing any information whatsoever (i.e. in a zero-
knowledge way). To do this, it is sufficient to be able to do a NOT gate and an
AND gate on committed bits.
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The NOT could be achieved using the BC Parity protocol from the previous
section. One just has to observe that x = y ⇔ x ⊕ y = 0. The implementation
of the AND gate requires some preprocessing. This preprocessing step creates
AND-Commitment-Chips (ACCs). An ACC is a triplet of commitment chips
(V1, V2, V3) such that v1 ∧ v2 = v3. As you can se, we use uppercase letters
for objects and lowercase letter for bit values. As usual, the preprocessing of
the ACC is independent of the circuit to be evaluated later. Each AND gate
requires the use of 10s ACCs. It is straightforward to see that with the tools to
evaluate an arbitrary known circuit on committed values, it is easy to prove any
statement in NP in a zero-knowledge way.

Suppose that Alice has commitments B1 and B2 and wants to commit herself
to the AND of the two values. First, she creates ACCs to random values. Half
of them are opened to ensure consistency. She then chooses a subset of the
remaining ACCs with the appropriate value and then uses them to construct
B3 such that b1 ∧ b2 = b3. In the protocol, the union of the third component of
every ACC forms a BC to the desired value. For this to be secure, we have on
one hand to manage potential errors but on the other hand to prevent Alice from
using these to create a tweaked gate. Alice has therefore to group ACCs each
time an AND gate is to be computed. The final protocol, OCE of a function
F , can be realized using BC Parity to perform NOT and FAN-OUT gates and
OCE AND for AND gates.

Protocol 8. OCE AND
Input: BCs B1,B2 and B3

Result: B is convinced that b3 = b1 ∧ b2

A chooses at random a set T of triplets of indices of CCs such that
∀[i1, i2, i3] ∈ T, vi3 = vi1 ∧ vi2

|T | = 10s
and sends it to B

B sets e to 0
B creates O ⊂R T such that |O| = 5s and sends it to A
∀[i1, i2, i3] ∈ O

A opens i1, i2 and i3 using CC Unveil
if any of the openings output FAIL or
if vi3 �= vi1 ∧ vi2 B sets e to e + 1

If e > 5s
10

then B outputs ABORT
B sets e to 0
A creates S ⊂ T such that |S| = s and ∀[i1, i2, i3] ∈ S,vi1 = b1 and vi2 = b2

A sends a description of S to B
A and B set T to T � S
∀[i1, i2, i3] ∈ S

B chooses j1 ∈R B1, j2 ∈R B2 and j3 ∈R B3

A proves that vi1 = vj1 ,vi2 = vj2 and vi3 = vj3 using CC Parity
If this FAILS then set e to e + 1
A and B set B1 to B1 � j1, B2 to B2 � j2 and B3 to B3 � j3

If e > s
10

then B outputs ABORT
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Lemma 7. (OCE: robust) Given that Alice and Bob are honest, the probability
that both the initialization phase succeeds and that the OCE protocol aborts is
exponentially small in s.

Lemma 8. (OCE: sound) If Bob and the server are honest, the value of the
commitments at the end of OCE protocol are correct except with exponentially
small probability in s.

Lemma 9. (OCE: zero-knowledge) If Alice and the server are honest, Bob
learns absolutely nothing while performing OCE with Alice.

4 Secure Multi-party Computation

In this section, we deal with protocols that can involve more that two partici-
pants. Secure multi-party computation (MP) is a n player task where all players
learn the output of a circuit evaluated on private inputs coming from each of
them. This is a very general, useful and well-studied task. In this section, we
present a protocol to implement information theoretically secure MP. As in our
previous protocols, an initialization phase is required, but this phase does not
depend on the function that is computed later. As usual in multi-party com-
putation, all the input bits and the intermediate values are shared using secret
sharing among all players. Since we have no bound on the number of dishonest
players, the secret sharing scheme we choose is simply parity. In the first step,
each player commits to his input. Then the circuit is evaluated gate by gate
(AND gates and NOT gates), and the output is a committed secret shared value
between all players. Finally, the answer bits are opened. Known techniques [7]
could be used to reveal the result of the function gradually in order not to give
an unfair advantage to any of the players. This process is called multi-party
computation (MP).

We implement the inputs and all intermediate values by a distributed BC
(DBC). A DBC B with value b is a set of n2 BCs B[i, j] (player i is committed
to player j) with value b[i, j] such that for all i, we have that for all j and j′,
b[i, j] = b[i, j′] and therefore we choose to denote that value by b[i]. In addition,
b =

⊕n
i=1 b[i]. Of course, this is in the honest cases. Inconsistent DBCs will fail

when used in an AND gate.
To begin the computation of the known circuit, each player i has to construct,

with the help of the other players, a DBC to every b of his input bits. This is
done by having player i commit to every other player to b (∀j, B[i, j] = b) and
all other players commit to 0 (∀k �= i, j, B[k, j] = 0). The consistency of the
commitment of player i is not verified, but the fact that all other commitments
are equal to zero is.

There is no way after MP bit initialization to be sure that player i is
committed to the same value with all the players. If this is not the case, the
first AND gate directly or indirectly involving this bit will fail, except with
exponentially small probability.
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Protocol 9. MP bit initialization
Input: a bit d from player i
Result: a DBC B with value b.
∀j �= i

Player i commits to b to Player j using BC Commit
∀k �= j

Player j commit to bit 0 to player k using BC Commit
Player k chooses s CCs in that commitment
Player j opens these CCs using CC Unveil
If more than s

10
are inconsistent or do not have value 0, Player k outputs

ABORT

Protocol 10. DACC
Result: a set D of DACC is created
Let D be a set of indices
For all k ∈ D

S chooses uniformly at random v[i], v′[i] and v′′[i] such that⊕n
i=1 v′′[i] =

⊕n
i=1 v[i] ∧⊕n

i=1 v′[i]
∀i, j �= i, S creates CCs from i to j to the value v[i], v′[i] and v′′[i] using CC

Commit,
v[i], v′[i] and v′′[i] are associated with the index k

∀j, player j chooses 1/2n indices in D and asks the other players to unveil all these
CCs

If any of the unveiling FAILS or if
⊕n

i=1 v′′[i] �= ⊕n
i=1 v[i] ∧ ⊕n

i=1 v′[i] then
ABORT
All players remove the opened value from D

In the preprocessing stage, the server creates random triplets of vectors of
CCs, called Distributed AND CCs (DACCs). These triplets are such that the
AND of the first two values equals the third one.

Note that there is an exponential number of different possible distinct DACCs.
Therefore, the server cannot just choose groups of identical ones to form a Dis-
tributed AND BC (DABC). Actually the same kind of problem will also happen
in the choice of DABC. In order to have an efficient algorithm, we have to use a
trick, both in DABC and MP AND.

Once the DACCs are verified, they will be grouped by the server to create a
DABC. The server does not group them such that the vectors are identical but
only such that the parity of the vectors is identical. Note that by flipping an
even number of bits, the parity of a vector does not change. Thus, to make an
identical set, the participants have to modify the vector (in an even number of
places) such that at the end they are identical. All this is accomplished without
interaction with the server and without revealing information on the committed
bit of the resulting triplet.

In order to process a NOT gate, one player (we arbitrarily choose player 1
here) commits to the opposite bit with every player. These new commitments
replace his commitment in the DBC vector B.
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Protocol 11. DABC
Input: D an index set of DACCs
Result: E a set of DABCs
The server chooses C ⊂R D such that |C| = s and

∃α, β, ∀k ∈ C, α =
⊕n

i=1 vk[i] and β =
⊕n

i=1 v′
k[i]

Let k′ ∈ C be a specific index
The server broadcasts the index forming a description of C and the value k′

∀k ∈ C � k′, ∀i
Player i broadcasts t[i] = vk[i] ⊕ vk′ [i] and t′[i] = v′

k[i] ⊕ v′
k′ [i]

For every 1 broadcasted,
each player flips the first bit of the four-tuple constituting the CC

If
⊕n

i=1 t[i] �= 0 or
⊕n

i=1 t′[i] �= 0 then ABORT
D is set to D � C and C is added to E
All the previous steps are repeated until there is are enough elements in D

Protocol 12. MP NOT
Input: a DBC B and a set E of DABCs
Result: a DBC B′ such that b �= b′

Let β be the value that player 1 is committed to in B
∀i �= 1

Player 1 commits with B′[1, i] to value β using BC Commit
Player 1 proves to player i that b′[1, i] �= b[1, i] using BC Parity
∀j Player i and j rename B[i, j] to B′[i, j]

In order to compute the AND, we will use the DABC. The idea is similar
to the computation of an AND gate in the preceding section: choose a DABC
such that the first two vectors are identical to those in the input of the gate
and consider the third one as the output. Once again, an exponential number
of DABCs would be needed to achieve a perfect matching. Fortunately, this is
not required, we only need the number of differences to be even, which means
the values are equal. This simple idea is very important in making the protocols
efficient.

As mentioned, there is no way during the initialization phase to be sure the
one player is committed to the same value with every other player. This problem
is solved because of the properties of the MP AND protocol. In that protocol,
every player must broadcast the parity of his values in B (and B′) and his value
in A (and A′). If he had committed to an opposite value in the initialization
phase, he must now cheat the parity protocols. We must assume that every bit
is involved directly or indirectly in at least one AND gate (possibly a dummy
one).

Combining the protocols presented in this section, we obtain a protocol MP.
FAN-OUT is done in the obvious way, the NOT and AND gates use protocols
MP NOT and MP AND and initialization of input bits using protocol MP bit
initialization. The MP protocol we obtain has the following nice properties.
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Protocol 13. MP AND
Input: two DBCs B and B′, E a DABC
Result: a DBC A′′ such that b ∧ b′ = a′′

Repeat
Player 1 chooses C ∈R E (C = (A, A′, A′′)) and announces his choice
∀i

Player i broadcasts p[i] = b[i] ⊕ a[i]
Player i broadcasts p′[i] = b′[i] ⊕ a′[i]

Until
⊕

i p[i] = 0 and
⊕

i p′[i] = 0
∀i

∀j �= i
Player i proves to player j that p[i] = b[i] ⊕ a[i] using BC Parity
Player i proves to player j that p′[i] = b′[i] ⊕ a′[i] using BC Parity

The A′′ is the resulting DBC

Lemma 10. (MP: correct) If the server and all players are honest, the function
is computed correctly with probability 1, in expected polynomial time.

Lemma 11. (MP: robust) Whatever the server does, if all players are honest,
the probability that the preprocessing succeeds and MP fails is exponentially small
in s.

The previous lemma implies that if all players are honest it is almost impossible
for the server to act in such a way that players will be led to believe that the
protocols failed because of a dishonest player. Conversely, if a protocol fails after
the initialization phase, this means that the most likely explanation is that a
player cheated.

Lemma 12. (MP: zero-knowledge) In MP, any group of dishonest players can-
not learn anything else than the outcome of the function provided they do not
collude with the server.

5 Conclusion and Future Work

We have presented protocols for a server to provide resources to players so that
they can perform at a later time protocols that implement bit commitment, zero-
knowledge and secure multi-party computation. Our protocols and initialization
phase are efficient, quite simple and their security is easy to verify. Table 1
summarizes the complexity, both in terms of communication and computation.
The complexity of the protocols take into account the creation of necessary
resources in the initialization phase. The complexity for the server in each of
these protocols is obtained by multiplying by the number of players. We use n
for the number of players, m for the size of the function and s for the security
parameter.

Although we do not have any formal proof of the optimality of our protocols,
the fact that they are linear in each parameter seems to indicate that except for
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Table 1. Protocol Complexity

Protocol Expected Amortized Complexity

BC Commit and BC Unveil O(s)
BC Parity O(sm)
OCE O(sm)
MP bit initialization O(sn)
DABC O(sn)
MP NOT O(sn)
MP AND O(sn)
MP O(snm)

the constants (which are already quite small), no further complexity improve-
ment could be achieved.
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[11] Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg
(1997)
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Appendix

The protocols we presented are built in a modular fashion and relatively simple,
so their security is not to hard to see. Here we only give brief sketches of proofs.
We mostly use the following two ideas: the fact that the parity of a random string
is unknown when one of its bits is unknown, and Chernoff bound arguments.

Proof (Lemma 1). If Bob and the server do not collude, it is easy to see that
after the preprocessing phase, Bob has no information about the CCs that have
been created. The fact that BC Commit is concealing follows directly from
this.

Proof (Lemma 2). If Alice and the server do not collude, for each CC, Alice
ignores which two bits Bob knows. If the BC has value b (the value of the majority
of CCs) then to open b, Alice must lie on at least s/2 CCs in the protocol CC
Unveil. Each time there is a probability 1

2 that Bob will see some inconsistency.
It is clear that the probability that more than 1/10 of the executions of CC
Unveil fail is exponentially close to 1 in the security parameter s (Chernoff).

Proof (Lemma 3). During the initialization phase, if the CCs created by the
server are such that 1

20 of them are inconsistent (i.e. for at least one bit, Bob
and Alice have opposite values), then the probability that the protocol CC
Preprocessing succeeds is exponentially small in s (Chernoff). Now, if the
fraction of incoherent CCs is less than 1

20 and if the initialization succeeded,
the probability for Alice to choose 3s CCs such that at least 1

10 of them are
inconsistent is exponentially small in s (Chernoff).

Proof (Lemma 4). Same argument as in Lemma 3.

Proof (Lemma 5). If Bob and the server do not collude, in each CC, v = x1 ⊕
x2 ⊕ x3 ⊕ x4. Bob ignores either x1 or x2 as well as either x3 or x4. Since each
CC is independent and because only (x1 and x2) or (x3 and x4) are revealed,
Bob does not learn any information on v. It is important that each time a BC
is involved in a BC Parity, CCs are not reused.

Proof (Lemma 6). Every time the protocol CC Parity is used, if the parity
of the CCs selected is not p, there is a probability 1/4 that Bob will find some
inconsistency. If the parity of the BCs is p, because the indices ij are chosen at
random, there is a probability at least 1/2 that the parity of the selected CCs
will also be p. Thus, each time the protocol CC Parity is used, there is a proba-
bility 1/8 that Bob will see some inconsistencies. Remember that that if Alice is
dishonest the BCs used in the protocol might be composed of inconsistent CCs.

Proof (Lemma 7). Using the same argument as in Lemma 3, one can show that
the evaluation of NOT and AND gates is robust. From this we conclude that
OCE is robust.
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Proof (Lemma 8). Again, the soundness of OCE relies on the soundness of the
AND and NOT gates. The soundness of the NOT gate follows from Lemma 6.
For the soundness of the AND gate, note that because of the way the ACCs are
created, the probability that Alice could insert more than s

10 incorrect ACCs
(the AND relation is not true) is exponentially small. When choosing the subset
S, Alice could gather all these ACCs but this does not suffice to succeed in
proving a false relation in the rest of the OCE AND protocol which also relies
on the BC Parity protocol.

Proof (Lemma 9). The zero-knowledgeless of OCE easily derives from the zero-
knowledgeless of the NOT and AND gates, which itself follows from Lemma 5.

Proof (Lemma 10). If all players are honest, if the protocol MP terminates then
the value obtained at the end of the protocol is correct. Note that the protocols
DACC and MP AND have a probabilistic part which makes their running
time an expected value. In both protocols, each trial has a probability of success
of 1/2.

Proof (Lemma 11). This is because of the way the protocol DACC tests for
inconsistencies and because of the fact that BC and BC Parity are robust
themselves.

Proof (Lemma 12). This follows from the fact that the preprocessing stage does
not depend on the function to be evaluated and from the fact that BCs are
concealing, BC Parity is zero-knowledge and DBCs are distributed using a
secret sharing scheme that is secure against any coalition of n − 1 players.
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Abstract. To simplify proofs in information-theoretic security, the stan-
dard security definition of two-party secure function evaluation based
on the real/ideal model paradigm is often replaced by an information-
theoretic security definition. At EUROCRYPT 2006, we showed that
most of these definitions had some weaknesses, and presented new infor-
mation-theoretic conditions that were equivalent to a simulation-based
definition in the real/ideal model. However, there we only considered the
perfect case, where the protocol is not allowed to make any error, which
has only limited applications.
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on a new measure of information that we call the statistical information,
which may be of independent interest.
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1 Introduction

Secure function evaluation [1] allows two (or more) parties to jointly compute
a function in a secure way, which means that no player may get additional
information about the other players’ inputs or outputs, other than what may be
deduced from their own input and output. A computationally secure solution
to this problem has been given in [2]. Schemes ensuring unconditional security
were subsequently provided in [3] and independently in [4].

Oblivious transfer [5,6,7] is a simple primitive of central interest in secure
function evaluation. It allows a sender to send one of n binary strings of length
k to a receiver. The primitive allows the receiver to receive the string of his
choice while concealing this choice from a (possibly dishonest) sender. On the
other hand, a dishonest receiver cannot obtain information about more than one
of the strings, including partial joint information on two or more strings. It has
since been proved that oblivious transfer is in fact sufficient by itself to securely
compute any function [8,9]. More completeness results followed in [10,11,12,13].

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 86–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Statistical Security Conditions for Two-Party Secure Function Evaluation 87

1.1 Security Definitions

Formal security definitions for secure function evaluation have been proposed in
[14] and [15]. Both definitions were inspired by the simulation paradigm used in
[16] to define zero-knowledge proofs of knowledge. These definitions require that
for any adversary, there exists a simulated adversary in an ideal setting (which is
secure by definition) that achieves the same. That protocols which satisfy these
definitions are sequentially composable has been proved in [17]. See also [18].

Later, a stronger notion of security, called universal composability, has been
defined in [19] and independently in [20]. It guarantees that protocols are securely
composable in any way.

Even though simulation-based security definitions are widely accepted as be-
ing the right definition of security today, ad-hoc definitions are still widely used
due to their simplicity. Unfortunately, as we showed in [21], many of these def-
initions proposed for various specific scenarios have turned out to be deficient.
We proposed in [21] simple information-theoretic conditions for the security of
function evaluation, and proved that they are equivalent to the standard defi-
nition in the real/ideal model. However, these conditions could only be applied
in the perfect case, when the protocol does not have any failure probability and
does not leak any information, and therefore had only a very limited range of
applications. For the special case of randomized oblivious transfer, these condi-
tions have been generalized in [22] to the statistical case, where the protocol is
allowed to make errors with a small probability.

1.2 Information Measures

The Shannon mutual information has been introduced in [23], and is one of the
most important tools in information theory, as a measure of how many bits of
information one random variable has over the other. The mutual information
tells us for example how many bits can be transmitted over a noisy channel.

In information-theoretic cryptography, the mutual information has also been
used in security definitions, to express that an adversary obtains almost no
information about some secret, i.e., that two random variables are almost inde-
pendent. But since in cryptography we are not interested in how many bits the
adversary gets, but in the probability that he gets any information at all, the
mutual information is not a good measure for that task.

1.3 Contribution

First, we propose a new measure of information that we call the statistical in-
formation, which is better suited to express security conditions than the mutual
information. The difference between the statistical and the mutual information is
the distance measure they are based on: while the mutual information is based
on the relative entropy, the statistical information is based on the statistical
distance.

Then we will generalize the results from [21] and [22]. We present necessary
and sufficient information theoretic conditions for any two-party secure function
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evaluation in the statistical case, and apply them to oblivious transfer. The
statistical information plays a very important role to state these conditions.

1.4 Related Work

Recently, Fehr and Schaffner showed in [24] that similar results also hold in
the quantum setting. They presented security conditions for quantum protocols
where the honest players have classical input and output, and showed that any
quantum protocol that satisfies these conditions can be used as a sub-protocol
in a classical protocol.

1.5 Preliminaries

For a random variable X , we denote its distribution by PX and its domain by X .
PY |X = PXY /PX denotes a conditional probability distribution, which models a
probabilistic function that takes x as input and outputs y, distributed according
to PY |X=x.

Definition 1. The statistical distance between two distributions PX and PX′

over X is defined as δ(PX , PX′) = 1
2

∑
x∈X |PX(x) − PX′(x)|.

If δ(PX , PX′) ≤ ε, we may also write PX ≡ε PX′ or X ≡ε X ′. We will need the
following basic properties of δ.

Lemma 1 (Triangle Inequality). For any distributions PX , PX′ and PX′′ ,
we have

δ(PX , PX′′) ≤ δ(PX , PX′) + δ(PX′ , PX′′) .

Lemma 2 (Data Processing). For any distributions PXY and PX′Y ′ , we have

δ(PX , PX′) ≤ δ(PXY , PX′Y ′) .

Lemma 3. For any distributions PX and PX′ , and any conditional distribution
PY |X , we have

δ(PX , PX′) = δ(PXPY |X , PX′PY |X) .

Lemma 4. For any distributions PX and PX′ we have δ(PX , PY ) ≤ ε, if and
only if there exist events EX and EY with Pr[EX ] = Pr[EY ] = 1− ε and PX|EX

=
PY |EY

.

2 Statistical Information

In this section, we introduce the statistical information IS. While the mutual
information uses relative entropy as the underlying distance measure, we will
use the statistical distance. Its value tells us how close the distribution of three
random variables X , Y and Z is to a Markov-chain.

Definition 2. The statistical information of X and Y given Z is defined as
IS(X ; Y | Z) := δ(PXY Z , PZPX|ZPY |Z) .
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Obviously, this measure is non-negative and symmetric in X and Y . We will now
show more properties of IS, which are related to similar properties of the mutual
information.

Lemma 5 (Chain rule). For all PWXY Z , we have

IS(WX ; Y | Z) ≤ IS(W ; Y | Z) + IS(X ; Y | WZ)

Proof. We have

IS(X ; Y | WZ) = δ(PWXY Z , PWY ZPX|WZ) .

From Lemma 3 follows that

δ(PWY ZPX|WZ , PZPW |ZPY |ZPX|WZ) = δ(PWY Z , PZPW |ZPY |Z)
= IS(W ; Y | Z) .

Using Lemma 1 and PWX|Z = PW |ZPX|WZ , we get

δ(PWXY Z , PZPWX|ZPY |Z) ≤ IS(W ; Y | Z) + IS(X ; Y | WZ) . �

Lemma 6 (Monotonicity). For all PWXY Z , we have

IS(W ; Y | Z) ≤ IS(WX ; Y | Z) .

Proof. Using Lemma 2, we get

IS(WX ; Y | Z) = δ(PWXY Z , PZPW |ZPX|WZPY |Z)
≥ δ(PWY Z , PZPW |ZPY |Z)
= IS(W ; Y | Z) . �

Note that there exist PXY Z and QZXQY |Z , where

δ(PXY Z , QZXQY |Z) < δ(PXY Z , PZPX|ZPY |Z),

so PZPX|ZPY |Z is not always the closest Markov-chain to PXY Z . Luckily, as the
following two lemmas show, PZPX|ZPY |Z is only by a factor of 4 away from the
optimal Markov-chain, which is sufficient for our applications1.

Lemma 7. For all probability distributions PXY Z , we have

IS(X ; Y | Z) ≤ 2 · min
QY |Z

δ(PXY Z , PXZQY |Z) .

1 An alternative definition for IS would be to take the distance to the closest Markov-
chain. However, we think that this would make the definition much more compli-
cated, at almost no benefit.
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Proof. Let QY |Z be the conditional probability distribution that minimizes the
expression, and let ε := δ(PXY Z , PXZQY |Z). We have

PXZQY |Z = PZQY |ZPX|Z .

Let Q′
Y Z := PZQY |Z . From Lemma 2 follows that δ(PY Z , Q′

Y Z) ≤ ε and from
Lemma 3 that δ(PY ZPX|Z , Q′

Y ZPX|Z) ≤ ε. From Lemma 1 follows then that

δ(PXY Z , PXZPY |Z) ≤ 2ε . �

Lemma 8. For all probability distributions PXY Z , we have

IS(X ; Y | Z) ≤ 4 · min
QXZ ,QY |Z

δ(PXY Z , QXZQY |Z) .

Proof. Let QXZ and QY |Z be the conditional probability distributions that min-
imize the expression, and let ε := δ(PXY Z , QXZQY |Z). From Lemma 2 follows
that δ(PXZ , QXZ) ≤ ε and from Lemma 3 that δ(PXZQY |Z , QXZQY |Z) ≤ ε.
From Lemma 1 follows that δ(PXY Z , PXZQY |Z) ≤ 2ε. The statement follows by
applying Lemma 7. �

Lemma 9. For all PWXY Z , we have

IS(X ; Y | WZ) ≤ 2 · IS(WX ; Y | Z) .

Proof. From Lemma 7 follows that

IS(X ; Y | WZ) ≤ 2 · min
QY |W Z

δ(PWXY Z , PWXZQY |WZ)

≤ 2 · δ(PWXY Z , PWXZPY |Z)
= 2 · IS(WX ; Y | Z) . �

2.1 Relation between I and IS

Since we would like to use IS in situations where previously the Shannon mutual
information I has been used, it is important to know how these two measures
relate to each other. Using Pinsker’s inequality (see, for example, Lemma 16.3.1
in [25]) and Jensen’s inequality, it is easy to show that

IS(X ; Y | Z) ≤
√

I(X ; Y | Z) .

The other direction can be shown using Lemma 12.6.1 from [25]. We get that
for IS(X ; Y | Z) ≤ 1

4 ,

I(X ; Y | Z) ≤ −2 · IS(X ; Y | Z) log
2 · IS(X ; Y | Z)
|X | · |Y| · |Z| .
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3 Two-Party Secure Function Evaluation

3.1 Definition of Security in the Real/Ideal Paradigm

We will now give a definition of secure function evaluation based on the real/ideal
model paradigm. We use the same definitions as [21], which are based on Defi-
nition 7.2.10 of [18] (see also [17]).

Let x ∈ X denote the input of the first party, y ∈ Y the input of the second
party and z ∈ {0, 1}∗ an additional auxiliary input available to both parties, that
is ignored by all honest parties. A g-hybrid protocol is a pair of (randomized)
algorithms Π = (A1, A2) which can interact by exchanging messages and which
additionally have access to the functionality g. A pair of algorithms A = (A1, A2)
is called admissible for protocol Π if either A1 = A1 or A2 = A2, i.e., if at least
one of the parties is honest and uses the algorithm defined by the protocol Π .
The joint execution of Π under A on input pair (x, y) ∈ X × Y and auxiliary
input z ∈ {0, 1}∗ in the real model, denoted by

realg

Π,A(z)
(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and
A2(y, z) using the functionality g.

The ideal model defines the optimal setting where the players have access to
an ideal functionality f they wish to compute. The trivial f -hybrid protocol
B = (B1, B2) is defined as the protocol where both parties send their inputs x
and y unchanged to the functionality f and output the values u and v received
from f unchanged. Let B = (B1, B2) be an admissible pair of algorithms for B.
The joint execution of f under B in the ideal model on input pair (x, y) ∈ X ×Y
and auxiliary input z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and
B2(y, z) using the functionality f .

We say that a protocol securely computes a functionality, if anything an ad-
versary can do in the real model can be simulated in the ideal model.

Definition 3 (Statistical Security). A g-hybrid protocol Π securely com-
putes f with an error of at most ε if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π, there exists a pair of
algorithms B = (B1, B2) that is admissible in the ideal model for protocol B
(and where the same players are honest), such that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

A very important property of the above definition is that it implies sequential
composition, see [17]. Note that in contrast to [17] or [18], we do not require the
simulation to be efficiently computable.
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The following lemma formalizes the idea already mentioned in [21], namely
that if a protocol is secure against adversaries without auxiliary input, then it
is also secure against adversaries with auxiliary input. To avoid that the ideal
adversary with auxiliary input gets infinitely big, we have to additionally require
that there exists an explicit construction of the ideal adversary without auxiliary
input.

Lemma 10. If a g-hybrid protocol Π securely computes f with an error ε against
adversaries with constant auxiliary input and the construction of the ideal adver-
sary is explicit, then it securely computes f with an error of at most ε.

Proof. If both players are honest the auxiliary input is ignored and the lemma
holds. Let player i be malicious and denote by Ai the algorithm used. For a fixed
z ∈ {0, 1}∗, let A

z

i be equal to Ai, but with the auxiliary input z hard-wired
into it. Since Π securely computes f with an error ε against adversaries with
constant auxiliary input, there exists an algorithm B

z

i , such that for all x ∈ X
and y ∈ Y, we have

idealf,B
z(x, y) ≡ε realg

Π,A
z(x, y) .

Now, we let Bi be the concatenation of all B
z

i , i.e., on auxiliary input z the
adversary Bi behaves as B

z

i . Note that since we have an explicit construction
of B

z

i , Bi has a finite description. Obviously, we have for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗ that

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

Hence, Π securely computes f with an error of at most ε. �
Therefore, to show the security of a protocol in our model, the auxiliary input
can be omitted, which we will do for the rest of this paper.

3.2 Information-Theoretic Conditions for Security

We will now state our main results, which are information-theoretic conditions
for the statistical security of a protocol without the use of an ideal model.

First of all, we will slightly change our notation. Let X and Y be random
variables denoting the player’s inputs, distributed according to a distribution
PXY unknown to the players, and let U and V be random variables denoting
the outputs of the two parties, i.e., for specific inputs (x, y) we have

(U, V ) = realg

Π,A
(x, y) , (U, V ) = idealf,B(x, y) .

The security condition of Definition 3 can be expressed as

PUV |X=x,Y =y ≡ε PUV |X=x,Y =y .

To simplify the statement of the following theorem, we will assume that the
ideal functionality f is deterministic. It can be generalized to probabilistic func-
tionalities without any problems.
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The conditions for the security for player 1 must ensure that there exists an
ideal adversary that achieves almost the same as the real adversary. We achieve
this by requiring that there exists a virtual input value Y ′ that the adversary
could have created (this is ensured by IS(X ; Y ′ | Y ) ≈ 0), and a virtual output
value V ′ that, together with U , could be the output of the ideal functionality,
given X and Y ′ as input (this is ensured by Pr[(U, V ′) = f(X, Y ′)] ≈ 1). The
protocol is secure if the adversary’s output V could have been calculated by him
from Y , Y ′ and V ′, which is ensured by IS(UX; V | Y Y ′V ′) ≈ 0.

Theorem 1. A protocol Π securely computes the deterministic functionality
f with an error of at most 3ε, if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π and for any input (X, Y )
distributed according to PXY over X ×Y, A produces outputs (U, V ) distributed
according to PUV |XY , such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr[(U, V ) = f(X, Y )] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest then there exist random variables
Y ′ and V ′ distributed according to PY ′V ′|XY UV such that

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε ,

IS(X ; Y ′ | Y ) ≤ ε

and
IS(UX ; V | Y Y ′V ′) ≤ ε .

– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ distributed according to PX′U ′|XY UV such that

Pr[(U ′, V ) = f(X ′, Y )] ≥ 1 − ε ,

IS(Y ; X ′ | X) ≤ ε

and
IS(V Y ; U | XX ′U ′) ≤ ε .

Both PY ′V ′|XY UV and PX′U ′|XY UV should have explicit constructions.

Proof. If both players are honest, the correctness condition implies

PUV |X=x,Y =y ≡ε PUV |X=x,Y =y ,

for all x and y. If both players are malicious nothing needs to be shown.
Without loss of generality, let player 1 be honest and player 2 be malicious.

Let us for the moment assume that the input distribution PXY is fixed and
known to the adversary, so the joint distribution in the real model is

PXY UV = PXY PUV |XY .
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We will define an admissible protocol B = (B1, B2) in the ideal model that
produces almost the same output distribution as the protocol Π in the real
model. On input y, let B2 choose his input y′ according to PY ′|Y =y, which we
model by the channel PY ′|Y . After receiving v′ from the ideal functionality f ,
let B2 choose his output v according to PV |Y =y,Y ′=y′,V ′=v′ , which we model by
the channel PV |Y Y ′V ′ . The distribution of the input/output in the ideal model
is given by

PXY UV = PXY

∑
y′,v′

PY ′|Y PUV ′|XY ′PV |Y Y ′V ′ ,

where (U, V ′) = f(X, Y ′).
In the real model, it follows from IS(X ; Y ′ | Y ) ≤ ε that

PXY PY ′|XY ≡ε PXY PY ′|Y ,

from IS(UX; V | Y Y ′V ′) ≤ ε that

PXY PUY ′V ′|XY PV |XY UY ′V ′ ≡ε PXY PUY ′V ′|XY PV |Y Y ′V ′ ,

and from Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε and Lemma 4 that

PXY PY ′|XY PUV ′|XY ′ ≡ε PXY PY ′|XY PUV ′|XY Y ′ .

We have

PXY UV = PXY

∑
y′,v′

PY ′|Y PUV ′|XY ′PV |Y Y ′V ′

≡ε PXY

∑
y′,v′

PY ′|XY PUV ′|XY ′PV |Y Y ′V ′

≡ε PXY

∑
y′,v′

PY ′|XY PUV ′|XY Y ′PV |Y Y ′V ′

≡ε PXY

∑
y′,v′

PY ′|XY PUV ′|XY Y ′PV |XY UY ′V ′

= PXY UV .

Therefore, given PXY , we are able to construct an adversary in the ideal
model that simulates the output of the real protocol with an error of at most
3ε. However, we have to show that a fixed adversary in the ideal model works
for every input (x, y) ∈ X × Y.2

Given PXY , let e be the average error of the simulation, and let exy be the
error if the input is (x, y). We have e =

∑
x,y PXY (x, y)·exy. Let h(PXY ) → P ′

XY

a function that maps from the space of all distribution over X ×Y to itself, where

P ′
XY (x, y) := PXY (x, y) · exy + 1

e + 1
.

2 This part is missing in [21], but there the problem can be solved easily by fixing
PXY to the uniform distribution. But in our case, this would give us an error bound
that would depend on the dimension of the input, which would be quite weak.
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h is a continuous3 function from a non-empty, compact, convex set S ⊂ R|X×Y|

into itself, so by Brouwer’s Fixed Point Theorem h must have a fixed point
distribution QXY . (A constructive proof of Brower’s Fixed Point Theorem can
be found in [26].) So we have for all (x, y) that

QXY (x, y) = QXY (x, y) · exy + 1
e + 1

and QXY (x, y) > 0, and hence exy = e. Therefore, by taking the adversary in
the ideal model for the input distribution QXY , the output will have the same
error e for all inputs. Since e ≤ 3ε, we get for all x and y

PUV |X=x,Y =y ≡3ε PUV |X=x,Y =y ,

which implies that the protocol is secure with an error of at most 3ε. �
Theorem 2 now shows that our conditions are not only sufficient but also
necessary.

Theorem 2. If a protocol Π securely computes the deterministic functionality
f with an error of at most ε, then for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π and for any input (X, Y )
distributed according to PXY over X ×Y, A produces outputs (U, V ) distributed
according to PUV |XY , such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr[(U, V ) = f(X, Y )] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest then there exist random variables
Y ′ and V ′ distributed according to PY ′V ′|UV XY such that

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε ,

IS(X ; Y ′ | Y ) = 0

and
IS(UX; V | Y Y ′V ′) ≤ 4ε .

– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ distributed according to PX′U ′|UV XY such that

Pr[(U ′, V ) = f(X ′, Y )] ≥ 1 − ε ,

IS(Y ; X ′ | X) = 0

and
IS(V Y ; U | XX ′U ′) ≤ 4ε .

3 We can assume that PY ′V ′|XY UV is a continuous function of PXY .
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Proof. There exists an admissible pair of algorithms B = (B1, B2) for the ideal
model such that for all x ∈ X and y ∈ Y, we have

PUV |X=x,Y =y =ε PUV |X=x,Y =y .

If both players are honest we have B = B. B1 and B2 forward their inputs (X, Y )
unchanged to the trusted third party, get back (U ′, V ′) := f(X, Y ) and output
(U, V ) = (U ′, V ′) = f(X, Y ). It follows that Pr[(U, V ) = f(X, Y )] ≥ 1 − ε.

Without loss of generality, let player 1 be honest and player 2 be malicious.
Let us look at the execution of B = (B1, B2), and let PXY be an arbitrary
input distribution. The malicious B2 can be modeled by the two conditional
probability distributions PY ′S|Y computing the input to the ideal functionality
f and some internal data S, and PV |V ′S computing the output. We get

PXY UV Y ′V ′ =
∑

s

PXY PY ′S|Y PUV ′|XY ′PV |V ′S (1)

= PXY PY ′|Y PUV ′|XY ′
∑

s

PS|Y Y ′PV |V ′S (2)

= PXY PY ′|Y PUV ′|XY ′PV |Y V ′Y ′ , (3)

where (U, V ′) = f(X, Y ′).
Let PY ′V ′|UV XY := PY ′V ′|UV XY . From PY ′V ′|UV XY = PY ′|Y PV ′|UV XY Y ′ fol-

lows that
IS(X ; Y ′ | Y ) = 0 .

From PUV XY ≡ε PUV XY and Lemma 3 follows that

PXY UV Y ′V ′ ≡ε PXY UV Y ′V ′ .

Since PXY UV Y ′V ′ = PXY UV ′Y ′PV |Y V ′Y ′ , it follows from Lemma 8 that

IS(UX; V | Y Y ′V ′) ≤ 4ε ,

and from Lemma 2 follows PXY ′UV ′ ≡ε PXY ′UV ′ , and therefore

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε . �

3.3 Oblivious Transfer

We now apply Theorem 1 to 1-out-of-n string oblivious transfer, or
(
n
1

)
-OTk for

short. The ideal functionality fOT is defined as fOT(X, C) := (⊥, XC), where
⊥ denotes a constant random variable, X = (X0, . . . , Xn−1), Xi ∈ {0, 1}k for
i ∈ {0, . . . , n − 1}, and C ∈ {0, . . . , n − 1}.
Theorem 3. A protocol Π securely computes

(
n
1

)
-OTk with an error of at most

6ε if for every pair of algorithms A = (A1, A2) that is admissible for protocol
Π and for any input (X, C), A produces outputs (U, V ) such that the following
conditions are satisfied:
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– (Correctness) If both players are honest, then U = ⊥ and

Pr[V = XC ] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there
exists a random variable C′ distributed according to PC′|XCV , such that

IS(X ; C′ | C) ≤ ε , and IS(X ; V | CC′XC′) ≤ ε .

– (Security for Player 2) If player 2 is honest, we have V ∈ {0, 1}k and

IS(C; U | X) ≤ ε .

Proof. We need to show that these conditions imply the conditions of Theorem 1
for ε′ := 2ε. For correctness and the security for player 1 this is trivial.

For the security for player 2, we choose X ′ = (X ′
0, . . . , X

′
n−1) as follows: for all

values i, let X ′
i be chosen according to the distribution PV |XU,C=i except for X ′

C .
We set X ′

C = V . Note that all X ′
i, 0 ≤ i ≤ n − 1, have distribution PV |XU,C=i.

Thus X ′ does not depend on C given XU , and we have IS(C; X ′ | XU) = 0.
From Lemma 5 follows that

IS(C; X ′U | X) ≤ IS(C; U | X) + IS(C; X ′ | XU) ≤ ε .

Lemmas 6 implies that IS(C; X ′ | X) ≤ ε and, since V is a function of X ′ and
C, it follows from Lemma 9 that

IS(V C; U | XX ′) = IS(C; U | XX ′) ≤ 2 · IS(C; X ′U | X) ≤ 2ε .

The statements follows by applying Theorem 1. �
Furthermore, note that using Lemmas 5 and 6, we get

IS(C; U | X) ≤ IS(C; X ′U | X)
≤ IS(C; X ′ | X) + IS(C; U | XX ′)
≤ IS(C; X ′ | X) + IS(V C; U | XX ′) ,

from which it is easy to show that the conditions of Theorem 1 also imply the
conditions in Theorem 3.
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Abstract. We derive upper bounds on the size of set systems having
the c-identifiable parent property (c-IPP) and the c-traceability property
(c-TA).

1 Introduction

A combinatorial model for traitor tracing in broadcast encryption was introduced
in [3] and [5]. In this model a data supplier gives each user a different set of k
keys, drawn from a base set V of v keys (a set of size k will be called a k-set).
Any k-subset of V can be used to decrypt a message: for each new broadcast,
the data supplier generates a new encryption key s �∈ V and distributes s using
a k-out-of-v threshold secret sharing scheme. Each share of s is encrypted with
a different key from V , and these encrypted shares are broadcast.

A coalition of c users may collude, combining some of their keys to produce a
new, unauthorized k-set T . If such a “traitor” set is confiscated, we would like to
be able to identify at least one of the users who contributed to T . This motivates
the following definitions:

Definition 1. Let F be a collection of k-subsets of V , and let T ⊂ V . The
c-parent sets of T are

Pc(T ) = {P ⊂ F : |P| ≤ c and T ⊂ ∪U∈PU}
Definition 2. A collection F of k-subsets of V has the c-Identifiable Parent
Property if, for all k-subsets T ⊂ V , either Pc(T ) is empty, or⋂

P∈Pc(T )

P �= ∅

Such a collection is called a c-IPP(k, |F|, |V |) set system.

It is natural to consider the special case in which we can identify parents of
T by finding those S ∈ F which maximize |S ∩ T |:
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Definition 3. A collection F of k-subsets of V has the c-Traceability Property
if, for all k-subsets T ⊂ V , either Pc(T ) is empty, or⋂

P∈Pc(T )

P ⊃ {U ∈ F : |U ∩ T | = max
S∈F

|S ∩ T |}

Such a collection of sets is called a c-TA(k, |F|, |V |) set system.

Erdős, Frankl, and Füredi [4] proved that if F is a family of k-subsets of a
v-set such that no member of F is contained in the union of c others, then

|F| ≤

(
v

�k/c�
)

(
k − 1

�k/c� − 1

) (1)

Clearly a c-IPP(k, b, v) set system satisfies these conditions (since no coalition
of c users can produce the keyset of some other user); we are not aware of any
previous work stating a better bound than (1). Alon and Stav [1] and Blackburn
[2] show that a c-IPP code of length k over an alphabet of size v has size at most

( (c/2 + 1)2! − 1)v�k/(�(c/2+1)2�−1)� (2)

and our bounds on c-IPP set systems are similar. A code is a collection of
codewords u = (u1, u2, · · ·uk) from V k; each user has one codeword, and if a
coalition of users produces an unauthorized word T , only keys from position i
can be used to produce Ti. So in a code the parent sets are defined as follows.

Definition 4. Let F be a code of length k over V , and let T ∈ V k. The c-parent
sets of T are

Pc(T ) = {P ⊂ F : |P| ≤ c and Ti ∈ {Ui : U ∈ P} for all 1 ≤ i ≤ k }

2 c-IPP Set Systems

We first prove the following

Lemma 1. Let F be a c-IPP(k, b, v) set system. Then there is some X ∈ F and
some � k

1+�c/2��-subset Y ⊂ X such that Y is not contained in the union of any
�c/2� sets from F\{X}.
Proof. Suppose on the contrary that, for any � k

1+�c/2��-subset Y of any X ∈ F ,

there exist Y1, · · ·Y�c/2� (all different from X) such that Y ⊂ ∪�c/2�
i=1 Yi. We will

show that F is not c-IPP.
Let X1, · · ·X1+�c/2� be distinct members of F ; by our assumption there exist

Y1,1, · · ·Y1,�c/2� ∈ F (none of them equal to X1) such that∣∣∣∣∣∣
⋃

1≤j≤�c/2�
Y1,j ∩ X1

∣∣∣∣∣∣ ≥
⌈

k

1 +  c/2!
⌉

. (3)
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Now for each 2 ≤ i′ ≤ 1 +  c/2! similarly choose Yi′,1, · · ·Yi′,�c/2� such that∣∣∣∣∣∣
⋃
i≤i′

⋃
1≤j≤�c/2�

Yi,j ∩ Xi

∣∣∣∣∣∣ ≥ i′
k

1 +  c/2! . (4)

Our supposition guarantees the existence of these sets; for each i′ select a subset
Yi′ ⊂ Xi′ of size at most � k

1+�c/2�� that is disjoint from what has been covered
already with i < i′, and choose sets Yi′,j to contain Yi′ .

….

2
,1

cY

1X

1,1Y

2,1Y

2
,

2
1

ccY

2/1 cX

1,2/1 cY

2,2/1 cY

2X

1,2Y

2,2Y

2
,2

cY

Fig. 1. Proof of Lemma 1

Figure 1 illustrates these sets; the shaded intersections represent a set T of
size at least k. Now

T ⊂
⋃
i

Xi (5)

and also for each i′

T ⊂
⋃
i�=i′

Xi ∪
⋃
j

Yi′,j . (6)

Note that the intersection of all these coalitions must be disjoint, even though it
is not necessarily the case that all of the Xi and Yi,j are distinct. If Xi′ = Yi′′,j
then this set will be excluded from (6) because i′ �= i′′; while if Y1,j1 = Y2,j2 =
· · · = Yc,jc this set will be excluded from (5). These are the only possibilities
since all the Xi are distinct. Thus it is impossible to identify a parent of T , and
this proves the lemma. �

Now define a unique subset of X (with respect to collection F) to be a subset
which is not contained in any Z ∈ F\{X}. If we consider the proof of (1) given
in [4], we find that it can be restated in the following way:

Lemma 2. Let F be a collection of sets; suppose |S| = k and S is not contained

in the union of any c members of F\{S}. Then S has at least
(

k − 1
�k

c � − 1

)
unique

�k
c �-subsets.
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We can now prove

Theorem 1. Let F be a c-IPP(k, b, v) set system. Then

b ≤

(
v⌈
k

�c2/4�+�c/2�
⌉)

( � k
1+�c/2�� − 1⌈

k
�c2/4�+�c/2�

⌉
− 1

) .

Proof. Let X and Y be as in the statement of Lemma 1. Then by Lemma 2 Y
(and hence X) contains at least

( � k
1+�c/2�� − 1

� � k
1+�c/2� �
�c/2� � − 1

)
=
( � k

1+�c/2�� − 1⌈
k

�c2/4�+�c/2�
⌉
− 1

)

unique
⌈

k
�c2/4�+�c/2�

⌉
-subsets; here we make use of the fact that

⌈
�k/a�

b

⌉
=
⌈

k
ab

⌉
(for any integers a, b) and that �c/2� c/2! =  c2/4!. Now remove X from F ; the
resulting family is obviously still c-IPP so we can repeatedly apply Lemma 1,
removing this many unique sets of keys for each member of F . Clearly no set of
keys can be removed more than once, and the theorem follows. �

Theorem 1 can be strengthened when c=2:

Theorem 2. Let F be a 2-IPP(k, b, v) set system. Then

b ≤

(
v

�k/3�
)

(�2k/3� − 1
�k/3� − 1

) .

Proof. We show that some member of such a set system must contain a � 2k
3 �-

subset which is not covered by any two other users. The upper bound will then
follow as in the proof of Theorem 1.

Suppose on the contrary that, for any � 2k
3 �-subset Y of any X ∈ F , there

exist Y1, Y2 �= X such that Y ⊂ Y1 ∪ Y2. We will show that F is not 2-IPP.
Given X ∈ F there must (by our assumption) exist Y �= X such that |X ∩ Y | =
τ + k

3 with τ ≥ 0. Now Y \X must be covered by 2 other sets; thus there must
exist a set Z with |Z ∩ Y \X | ≥ 2k/3−τ

2 , and similarly there must exist Z ′ with
|Z ′ ∩ X\Y | ≥ 2k/3−τ

2 . Thus there is a set T of k keys contained in both X ∪ Z
and Y ∪ Z ′; if Z = Z ′ then note that T is also contained in X ∪ Y (see Fig. 2).
Thus it is impossible to identify a parent of T . �

Theorems 1 and 2 can be improved slightly by the following observation. Let
t =

⌈
k

�c2/4�+�c/2�
⌉
. We know that no set is contained in the union of c others;
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2

3/2k

3

k

Z

2

3/2k

X Y Z

Fig. 2. Proof of Theorem 2

thus once we have removed all but c + 1 sets, each remaining set must have at
least one key not contained in any other remaining set; thus each remaining set
has at least

(
k−1
t−1

)
unique t-subsets (of which

(� k
1+�c/2� �−1

t−1

)
are already counted),

and similarly the final remaining set has
(
k
t

)
unique t-subsets. Thus

b ≤

(
v

t

)
(� k

1+�c/2�� − 1
t − 1

) − c

⎛⎝ (
k−1
t−1

)
(� k

1+�c/2� �−1

t−1

) − 1

⎞⎠−
(

k
t

)(� k
1+�c/2� �−1

t−1

) + 1 .

3 c-TA Set Systems

The following is proved in [5]:

Theorem 3. If F is a family of k-sets in which every t-subset of every set is
unique, then F is

⌊√
k−1
t−1

⌋
-TA.

It is easy to verify that this implies the following sufficient condition for a set
system to be c-TA:

Corollary 1. If F is a family of k-sets in which every � k
c2 �-subset of every set

is unique, then F is c-TA.

We prove

Theorem 4. Let F be a c-TA(k, b, v) set system. Then every member of F
contains at least one unique � k

c2 �-subset, and

b ≤
(

v

� k
c2 �

)
.

Proof. Suppose on the contrary that some A ∈ F does not contain any unique
� k

c2 �-subsets; we will show that F is not c-TA. Select B1 ∈ F\{A} to maximize
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1
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Fig. 3. Proof of Theorem 4 with c = 2

|A∩B1|; by assumption |A∩B1| = τ1 +k/c2 with τ1 ≥ 0. Now for each 2 ≤ i ≤ c
we may assume that there exist Bi ∈ F\{A} such that

|A ∩ (B1 ∪ · · · ∪ Bi)| ≥ |A ∩ (B1 ∪ · · · ∪ Bi−1)| + k

c2
(7)

i.e. Bi contains at least � k
c2 � elements of A which are not contained in B1 ∪ · · ·∪

Bi−1. If |A\(B1 ∪ · · · ∪ Bi−1)| > k
c2 then our assumption implies (7); otherwise

it implies that A is contained in the union of c or fewer other sets, in which case
F would not even be c-IPP.

For each i we have |Bi ∩ A| = τi + k/c2 with τ1 ≥ τi ≥ 0. Now let

T ′ = A ∩
⋃
i

Bi .

From (7) we have |T ′| ≥ �τ1 +k/c�. We will exhibit a traitor set T of size k, such
that T ⊂ ∪iBi and yet |T ∩A| ≥ |T ∩Bi| for all i (see Fig. 3 for an illustration of
the case c = 2). This set will contain T ′, along with some keys from each Bi\A.
We may assume that∣∣∣∣∣∣

⎛⎝ ⋃
1≤i<j≤c

Bi ∩ Bj

⎞⎠ \A
∣∣∣∣∣∣ < k − |T ′| ≤ c − 1

c
k − τ1

for if this were not the case, then there would be at least k keys which are
contained in two or more of the sets A, B1, · · ·Bc; then any c of these users
could produce the same traitor set, so F would not even be c-IPP. Therefore
each Bi contains more than

k − (τi + k/c2) − (
c − 1

c
k − τ1) ≥ c − 1

c2
k
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keys which are not in A and not in any other Bj . So let T contain � c−1
c2 k� such

keys from each Bi. Then we have |T | ≥ k and T ⊂ ∪iBi, and also for each i

|Bi ∩ T | = τi + k/c2 +
⌈

c − 1
c2

k

⌉
≤ �τ1 + k/c� ≤ |T ∩ A|

as required.
The upper bound on |F| follows immediately from the fact that each A ∈ F

contains a unique � k
c2 �-subset. �
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Abstract. We implement one-out-of-two bit oblivious transfer (OT)
based on the assumptions used in the McEliece cryptosystem: the hard-
ness of decoding random binary linear codes, and the difficulty of distin-
guishing a permuted generating matrix of Goppa codes from a random
matrix. To our knowledge this is the first OT reduction to these problems
only.

1 Introduction

Oblivious transfer [31,27,11] is a primitive of central importance in modern cryp-
tography as it implies two-party secure computation [16,20] and multi-party com-
putation [9]. There exist several flavors of OT, but they are all equivalent [8].
In this work, we focus on the so-called one-out-of-two oblivious transfer (OT).
This is a two-party primitive where a sender (Alice) inputs two bits b0, b1 and a
receiver (Bob) inputs a bit c called the choice bit. Bob receives bc and remains
ignorant about b1−c, while Alice only receives a confirmation message from Bob
after he completed his part of the protocol successfully. In particular, Alice can-
not learn Bob’s choice.

OT can be constructed based on computational assumptions, both generic
such as enhanced trapdoor permutations [11,14,17] and specific such as factor-
ing [27], Diffie-Hellman [3,25,1], Quadratic or Higher-Order Residuosity, or from
the Extended Riemann Hypothesis [18].

Our result: We build OT based on the two assumptions used in the McEliece
cryptosystem [23]: (1) hardness of decoding of a random linear code (known to
be NP-complete [4], and known to be equivalent to the learning parity with noise
(LPN) problem [28]); and (2) indistinguishability of the scrambled generating
matrix of the Goppa code [22] from a random one. It is noteworthy that there

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 107–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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exists no black box reduction from Public Key Cryptography to OT [13]. How-
ever, by exploiting some algebraic properties of cyphertexts geenrated by the
McElice Cryptosystem we bypass the negative results of [13].

Comparison to other work: To our knowledge, this is the first oblivious
transfer protocol based on the McEliece assumptions only and, concurrently with
[19], the first computationally secure oblivious transfer protocol not known to be
broken by a quantum computer. However, for obtaining a protocol of equivalent
complexity, [19] uses additional assumptions: the random oracle assumption and
permuted kernels. Also, [19] needs Shamir’s zero knowledge proofs [30] which
are avoided in our simpler construction. Our protocol is unconditionally secure
for Bob and computationally secure for Alice.

In this work, we consider only static adversaries, i.e., we assume that either
Alice or Bob is corrupted before the protocol begins.

2 Preliminaries

In this section, we establish our notation and provide some facts from coding
theory and formal definitions of security for oblivious transfer and bit commit-
ment. Then, for the sake of completeness, we describe the McEliece cryptosystem
and introduce the assumptions on which its security, and also the security of our
protocol is based.

Henceforth, we will denote by x ∈R D a uniformly random choice of element
x from its domain D; and by ⊕ a bit-wise exclusive OR of strings. All logarithms
are to the base 2.

Two sequences {Xn}n∈N and {Yn}n∈N of random variables are called computa-
tionally indistinguishable, denoted X

c= Y , if for every non-uniform probabilistic
polynomial-time distinguisher D there exists a negligible function ε(·) such that
for every n ∈ N,

|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| < ε(n)

2.1 Security Definition of Oblivious Transfer

Let us denote by V iewÃ(Ã(z), B(c)) and V iewB̃(A(b0, b1), B̃(z)) the views of
dishonest Alice and Bob, respectively, which represent their inputs z, results of
all local computations, and messages exchanged. Our definition of security is
based on the one shown in [18] (conveniently adapted to protocols with more
than two messages).

Definition 1. A protocol [A, B](b0, b1; c) is said to securely implement oblivi-
ous transfer, if at the end of its execution by the sender Alice and the receiver
Bob which are modelled as probabilistic polynomial time (PPT) Turing machines
having as their input a security parameter N , the following properties hold:

– Completeness: when the players honestly follow the protocol, Bob outputs bc

while Alice has no output.
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– Security for Alice: For every PPT adversary B̃, every input z, and a (suf-
ficiently long) random tape RB chosen at random, there exists a choice bit
c such that for bc ∈ {0, 1} the distribution (taken over Alice’s randomness)
of runs of B̃(z) using randomness RB with Alice having input bc and bc = 0
is computationally indistinguishable from the distribution of runs with Alice
having input bc and bc = 1.

– Security for Bob: For any PPT adversary Ã, any security parameter N and
any input z of size polynomial in N , the view that Ã(z) obtains when Bob
inputs c = 0 is computationally indistinguishable from that of when Bob
inputs c = 1, denoted:

V iewÃ(Ã(z), B(0))|z c= V iewÃ(Ã(z), B(1))|z .
A protocol is said to be secure against honest-but-curious players, if the previous
definition holds in the case Alice and Bob follow the protocol. An oblivious-
transfer protocol is unconditionally secure against a player if the given properties
hold even when this player is not computationally bounded.

2.2 Security Definition of String Commitment

We also need commitment schemes in our constructions. A string commitment
protocol consists of two stages. In the first one, called Commit, the sender (Al-
ice) provides the receiver (Bob) with evidence about her input bit-string b. Bob
cannot learn it before the second stage, called Open, where Alice reveals her
commitment to Bob, such that she cannot open a value different from b with-
out being caught with high probability. Let us denote by V iewÃ(Ã(z), B(a)) and
V iewB̃(A(b), B̃(z)) the views of dishonest Alice and Bob, respectively, which rep-
resent their inputs z, results of all local computations, and messages exchanged.
Our definition is based on [24].

Definition 2. A protocol [A, B](b) is said to securely implement string com-
mitment, if at the end of its execution by the sender Alice and the receiver Bob,
which are represented as PPT Turing machines having as their input a security
parameter N , the following properties hold:

– Completeness: when the players honestly follow the protocol, Bob accepts b.
– Hiding: For any PPT adversary B̃, any security parameter N , any input z of

size polynomial in N , and any k ∈ N, after the Commit stage, but before the
Open stage, the view of B̃(z) when Alice inputs b ∈ {0, 1}k is computationally
indistinguishable from the view where Alice inputs any other b′ ∈ {0, 1}k,
b′ �= b:

V iewB̃(A(b), B̃(z))|z c= V iewB̃(A(b′), B̃(z))|z
– Binding: For any PPT adversary Ã, any security parameter N and any

input z of size polynomial in N , any k ∈ N, there exists b ∈ {0, 1}k which
can be computed by Alice after the Commit stage, such that the probability
that Ã(b′), b′ �= b is accepted by Bob in the Open stage is negligible in N .



110 R. Dowsley et al.

A string commitment protocol is unconditionally secure against a player if the
properties in Definition 2 hold even when this player is not computationally
bounded.

2.3 McEliece Cryptosystem

The folowing definition was taken from [19]. The McEliece cryptosystem [23]
consists of a triplet of probabilistic algorithms ME = (GenME, EncME, DecME)
and M = {0, 1}k.

– Key generation algorithm: The PPT key generation algorithm GenME works
as follows:
1. Generate a k×n generator matrix G of a Goppa code, where we assume

that there is an efficient error-correction algorithm Correct which can
always correct up to t errors.

2. Generate a k × k random non-singular matrix S.
3. Generate a n × n random permutation matrix T.
4. Set P = SGT, and output pk = (P, t) and sk = (S,G,T).

– Encryption algorithm: EncME takes a plaintext m ∈ {0, 1}k and the public-
key pk as input and outputs ciphertext c = mP ⊕ e, where e ∈ {0, 1}n is a
random vector of Hamming weight t.

– Decryption algorithm: DecME works as follows:
1. Compute cT−1(= (mS)G⊕eT−1), where T−1 denotes the inverse matrix

of T.
2. Compute mS = Correct(cT−1).
3. Output m = (mS)S−1.

2.4 Security Assumptions

In this subsection, we briefly introduce and discuss the McEliece assumptions
used in this work. First, we assume that there is no efficient algorithm which
can distinguish the scrambled (according to the description in the previous Sub-
section) generating matrix of the Goppa code P and a random matrix of the
same size. Currently, the best algorithm by Courtois et al. [7] works as follows:
enumerate each Goppa polynomial and verify whether the corresponding code
and the generator matrix G are “permutation equivalent” or not by using the
support splitting algorithm [29], which is nt(1+o(1))-time algorithm, with n and
t as defined in the previous subsection.

Assumption 3. There is no PPT algorithm which can distinguish the public-
key matrix P of the McEliece cryptosystem from a random matrix of the same
size with non-negligible probability.

We note that this assumption was utilized in [7] to construct a digital signature
scheme.

The underlying assumption on which McEliece is the hardness of decoding
random linear codes. This problem is known to be NP-complete [4], and all cur-
rently known algorithms to solve this problem are exponential. In particular, for
small number of errors, the best one was presented by Canteaut and Chabaud [6].
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Assumption 4. The Syndrome Decoding Problem problem is hard for every
PPT algorithm.

We will also need a bit commitment scheme based on the same assumption. Of
course we could use a modification of the McEliece system which is semantical
secure, see [26]. However, we can do better.

According to a well-known result by Naor [24], bit commitment
scheme can be constructed using a pseudorandom generator. The latter primi-
tive can be built efficiciently using the Syndrome Decoding problem as described
by Fischer and Stern [12]. Naor’s scheme is unconditionally binding, computa-
tionally hiding and meets the completeness property. So using this construction
we are using only one of the McEliece assumption. In addition, for string com-
mitment Naor’s construction is very efficient.

3 Passively Secure Protocol for OT

For now, assume Alice and Bob to be honest-but-curious. We first sketch the
intuition behind this protocol. We construct it according to the paradigm pre-
sented in [3]. Bob sends to Alice an object which is either a public key or a
randomized public key for which the decoding problem is difficult. To randomize
a public key, we use bitwise-XOR with a random matrix. Alice, in turn, computes
the bitwise-XOR of the received entity with the same random matrix, hereby ob-
taining the second “key”. She encrypts b0 and b1 with the received and computed
keys, respectively, and sends the encryptions to Bob. The protocol is secure for
Bob because Alice cannot distinguish a public key from a random matrix. The
protocol is complete because Bob can always decrypt bc. At the same time, it
is also secure for Alice, because Bob is unable to decrypt the second bit as he
cannot decode the random code.

Recall that Alice’s inputs are the bits b0 and b1 while Bob inputs the bit c
wishing to receive bc. Denote the Hamming weight of a vector z by wH(z).

Protocol 5

1. Alice chooses a k × n random binary matrix Q and sends it to Bob.
2. Bob generates a secret key (S, G, T ) following the procedures of the McEliece

algorithm, sets Pc = SGT and P1−c = Pc ⊕ Q and sends P0, t to Alice.
3. Alice computes P1 = P0 ⊕Q, then encrypts two random bit strings r0, r1 ∈R

{0, 1}k with P0 and P1, respectively, i.e., for i = 0, 1 : yi = riPi ⊕ zi, where
zi ∈ {0, 1}n, wH(zi) = t, computes for i = 0, 1: mi ∈R {0, 1}k, encrypts b0

and b1 as follows: for i = 0, 1 : b̂i = bi ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a
scalar product modulo 2 and finally sends for i = 0, 1 : yi, mi, b̂i to Bob.

4. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, mc〉.
The next theorem formally states the security of the above protocol.

Theorem 1. Protocol 5 is complete and secure for both Alice and Bob against
passive attacks according to Definition 1 under Assumptions 3 and 4.
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Proof. Given that under passive attacks, the players always follow the protocol,
we argue the properties listed in Definition 1.

Completeness: This follows by observing that Bob always receives a valid
encryption of rc that allows him to compute bc in Step 4.

Security for Alice: Let B̃ be any PPT passively cheating receiver. Let c be the
bit such that b̂1−c = b1−c ⊕ 〈r1−c, m1−c〉 and y1−c = r1−c(Pc ⊕ Q) ⊕ z1−c. Note
that Q is chosen randomly and independently from Pc, so from B̃’s point of view,
learning r1−c is equivalent to decoding a random linear code with generating
matrix Pc ⊕ Q. This is known to be hard [4]. It was proven in [15] that 〈r, m〉 is
a hard-core predicate for any one-way function f given f(r) and m. Hence, by
Assumption 4, the distribution (taken over Alice’s randomness) of runs of B̃(z)
using randomness R with Alice having input bc and bc = 0 is computationally
indistinguishable from the distribution of runs with Alice having input bc and
bc = 1.

Security for Bob: This follows directly from Assumption 3. Honest-but-curious
Alice is unable to distinguish between P = SGT and a random k × n matrix,
and hence she is also unable to tell Pc = SGT from P1−c = SGT ⊕ Q for any
c ∈ {0, 1}. This implies computational indistinguishability of the protocol views
for Alice.

Unfortunately, Protocol 5 is not secure if the parties cheat actively. One problem
is that, given a random matrix Q, Bob can come up with two matrices P ′, P ′′,
where P ′⊕P ′′ = Q, such that they are the generating matrices of the codes with
some reasonably good decoding properties. It is clear that in this case, Bob will
be able to partially decode both b0 and b1.

4 Fully Secure Protocol

In order to arm the passive protocol with security against malicious parties one
could use a general compiler as the one in [14]. However, we present a direct and
more efficient aproach:

1. Implement a randomized oblivious transfer in which Bob is forced to choose
his the public key before and therefore independent of Q, if not he will
be detected with probability at least 1

2 .
2. Convert the randomized oblivious transfer into an oblivious transfer for spe-

cific inputs with the same characteristics of security;
3. Reduce the probability that a malicious Bob learns simultaneously informa-

tion on both b0 and b1.

4.1 Random OT with High Probability of B Cheating

First, we implement a protocol that outputs two random bits a0, a1 to Alice and
outputs a random bit d and ad to Bob. In this protocol, Alice detects with proba-
bility at least 1

2 − ε a malicious Bob that chooses the public key depending of Q.
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To achieve this, Bob generates two different McEliece keys by following the
same procedures of protocol 5 and by using two random bits c0, c1. He commits to
P0,c0 and P1,c1 . Then, Bob receives two random matrices Q0 and Q1 from Alice,
computes P0,1−c0 = P0,c0 ⊕ Q0 and P1,1−c1 = P1,c1 ⊕ Q1 and sends P0,0, P1,0, t
to her. Alice chooses one of the commitments for Bob to open and checks if the
opened information is consistent with an honest procedure; otherwise, she stops
the protocol. Finally, she encrypts a0 and a1 using the matrices associated to
the commitment that was not opened.

Protocol 6

1. Bob generates two McEliece secret keys (S0, G0, T0) and (S1, G1, T1). He
chooses c0, c1 ∈R {0, 1} and sets P0,c0 = S0G0T0 and P1,c1 = S1G1T1. He
commits to P0,c0 and P1,c1 .

2. Alice chooses Q0 and Q1 uniformly at random and sends them to Bob.
3. Bob computes P0,1−c0 = P0,c0 ⊕ Q0 and P1,1−c1 = P1,c1 ⊕ Q1. He sends

P0,0, P1,0, t to Alice.
4. Alice computes P0,1 = P0,0 ⊕Q0 and P1,1 = P1,0 ⊕Q1. Then she chooses the

challenge j ∈R {0, 1} and sends it to Bob.
5. Bob opens his commitment to P1−j,c1−j and sets d = cj

6. Alice checks the following: P1−j,c1−j must be equal to P1−j,0 or P1−j,1, oth-
erwise she stops the protocol.

7. Alice encrypts two random bit strings r0, r1 ∈R {0, 1}k with Pj,0 and Pj,1,
respectively, i.e., for i = 0, 1 : yi = riPj,i⊕zi, where zi ∈ {0, 1}n, wH(zi) = t,
computes for i = 0, 1: mi ∈R {0, 1}k, encrypts a0, a1 ∈R {0, 1} as follows:
for i = 0, 1 : âi = ai ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a scalar product and
finally sends for i = 0, 1 : yi, mi, âi to Bob.

8. Bob decrypts rd and computes ad = âd ⊕ 〈rd, md〉. If Bob encounters a
decoding error while decrypting rd, then he outputs ad = 0.

Theorem 2. Assuming the used bit commitment scheme secure, protocol 6 im-
plements a randomized oblivious transfer that is complete and secure for Bob
against active attacks according to Definition 1 under Assumptions 3 and 4. Ad-
ditionally, the probability that a malicious Bob learns both a0 and a1 is at most
1
2 + ε(n) where ε(n) is a negligible function.

Proof. Completeness: An honest Bob always passes the test of Step 6 and
receives a valid encryption of rd, so he can compute ad.

Security for Alice: In order to obtain simultaneously information on a0 and
a1, Bob must learn r0 and r1. The encryptions of r0 and r1 only depend on Pj,0

and Pj,1, respectively.
If Bob sends both P0,0 and P1,0 chosen according to the protocol (honest

procedure), then the probability that he learns both inputs of Alice is the same
as in the passive protocol, i.e., it is negligible. If Bob chooses in a malicious
way both P0,0 and P1,0, then with overwhelming probability Alice will stop the
protocol in step 6 and Bob will learn neither r0 nor r1.
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The best strategy for Bob is to choose honestly one of the matrices and choose
the other in a malicious way, thus he can cheat and partially decode both r0 and
r1 in case Alice asks him to open the matrix correctly chosen. However, note
that with probability 1

2 , Alice asks him to open the matrix maliciously chosen.
In this case, Bob will be able to open the commitment with the value that Alice
expects in step 6 only with negligible probability. Thus, the probability that a
malicious Bob learns both a0 and a1 is at most 1

2 +ε(n) where ε(n) is a negligible
function.

Security for Bob: The commitment to Pj,cj = Pj,d is not opened, so the
security for Bob follows from Assumption 3 as in the protocol 5.

As long as the commitment is secure, possible differences from the passive
scenario are the following ones:

– Alice could cheat by sending a specially chosen matrix Q, however by As-
sumption 3, she cannot tell Pj,cj from random, hence her choice of Q will
not affect her ability to learn d;

– For some i ∈ {0, 1}, Alice may use a different matrix instead of Pj,i for
encrypting ri in Step 7 hoping that i = d so that Bob will encounter the
decoding error and then complain, hereby disclosing his choice. However, the
last instruction of Step 8 thwarts such attack by forcing Bob to accept with
a fixed output “0”. Sending a “wrong” syndrome is then equivalent to the
situation when Alice sets his input ai = 0.

Thus, it follows that the protocol is secure against Alice.

4.2 Derandomizing the Previous Protocol

Subsequently, we use the method of [2] to transform the randomized oblivious
transfer into an (ordinary) oblivious transfer with the same characteristics of
security.
Protocol 7

1. Bob and Alice execute the protocol 6. Alice receives a0, a1 and Bob receives
d, ad.

2. Bob chooses c, sets e = c ⊕ d and sends e to Alice.
3. Alices chooses b0, b1 ∈ {0, 1}, computes f0 = b0 ⊕ ae and f1 = b1 ⊕ a1⊕e and

sends f0, f1 to Bob.
4. Bob computes bc = fc ⊕ ad.

Theorem 3. Protocol 7 implements an oblivious transfer with the same char-
acteristics of security of the protocol 6.

Proof. Completeness: fc = bc ⊕ ac⊕e = bc ⊕ ad, so an honest Bob can recover
bc because he knows ad.

Security for Alice: f1⊕c = b1⊕c ⊕ a1⊕c⊕e = b1⊕c ⊕ a1⊕d, so Bob can recover
both b0 and b1 only if he knows a0 and a1.

Security for Bob: Alice has to discover d in order to compute c, thus the
security for Bob follows from the protocol 6.
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4.3 Reducing the Probability of B Cheating

Finally, we use the reduction of [10] to minimize the probability that a malicious
Bob learns both inputs of Alice. In this reduction, protocol 7 is executed s times
in parallel, where s is a security parameter. The inputs in each execution are
chosen in such way that Bob must learn both bits in all executions to be able to
compute both inputs of Alice in protocol 8.

Protocol 8

1. Alice chooses b0, b1 ∈ {0, 1} and b0,1, b0,2, . . . , b0,s, b1,1, b1,2,
. . . , b1,s ∈R {0, 1} such that b0 = b0,1 ⊕ b0,2 ⊕ . . . ⊕ b0,s and b1 = b1,1 ⊕
b1,2 ⊕ . . . ⊕ b1,s.

2. Bob chooses c ∈ {0, 1}.
3. Protocol 7 is executed s times, with inputs b0,i, b1,i from Alice and ci = c

from Bob for i = 1 . . . s.
4. Bob computes bc = bc,1 ⊕ bc,2 ⊕ . . . ⊕ bc,s.

Theorem 4. Assuming that the bit commitment scheme used in protocol 6 is
secure, protocol 8 is complete and secure for both Alice and Bob against active
attacks according to Definition 1 under Assumptions 3 and 4.

Proof. Completeness: An honest Bob learns all bc,i for i = 1 . . . s in the s
executions of protocol 7 and therefore he can compute bc.

Security for Alice: Bob must discover both bits in all executions of protocol 7
in order to learn something simultaneously on b0 and b1. The probability that a
malicious Bob learns both bits in an execution of protocol 7 is at most 1

2 + ε(n),
where ε(n) is a negligible function. There exists an n0 such that ε(n) < 1

4 for
any n > n0. We can choose n > n0, so β = 1

2 + ε(n) < 3
4 and the probability

that a malicious Bob learns both b0 and b1 is less than (3
4 )s, which is negligible

in s. Thus, the protocol is secure for Alice.

Security for Bob: Alice discovers c if she learns any ci, but this probability is
negligible because the probability that she learns a specific ci in the respective
execution of the protocol 7 is negligible and the number of executions of the
protocol 7 is polynomial.
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Abstract. The construction of error-correcting codes that achieve the
best possible trade-off between information rate and the amount of errors
that can be corrected has been a long sought-after goal. This talk will
survey some of the work on list error-correction algorithms for algebraic
codes [8,5], culminating in the construction of codes with the optimal
information rate for any desired error-correction radius [7,4]. Specifically,
these codes can correct a fraction p of worst-case errors (for any desired
0 < p < 1) with rate 1 − p − ε for any constant ε > 0. We will describe
these codes, which are called folded Reed-Solomon codes, and give a peek
into the algebraic ideas underlying their list decoding.

Over the years, list-decodable codes have also found applications ex-
traneous to coding theory [3, Chap. 12], including several elegant ones
in cryptography. The problem of decoding Reed-Solomon codes (also
known as polynomial reconstruction) and its variants from a large num-
ber of errors has been suggested as an intractability assumption to base
the security of protocols on [6]. Progress on list decoding algorithms
for algebraic codes has led to cryptanalysis of some of these schemes.
It is interesting to note that the line of research that eventually led to
the above-mentioned result for folded Reed-Solomon codes can be traced
back to a cryptographic assumption concerning simultaneous polynomial
reconstruction and algorithms for decoding “interleaved” Reed-Solomon
codes that it inspired [1,2]. Given the cryptographic theme of the ICITS
conference, we will also briefly allude to the above connection in the talk.
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Quantum Key Distribution (QKD) has been an area with lots of research activity.
So nearly 25 years after the publication of the Bennett-Brassard 1984 protocol,
what is left to do? As a basis of my talk, I will present the ideas of quantum key
distribution in a language that emphasizes the common basis with information
theoretic secure key distribution schemes that are based on independent noise
assumptions in channels. As I will show, the role quantum theory plays is to verify
the nature of correlations between sender, receiver and eavesdropper based only
on the observations of sender and receiver. For reviews of practical QKD and
issues addressed in this presentation, see [1,2,3].

Current research directions concentrate on the theoretic side on the optimal
method of extracting secret key out of given observed correlations between sender
and receiver. As it is the case in the classical scenario, different protocols using
for example one-way or two-way communication over an authenticated public
channel can have different maximum thresholds for error rates, and can yield
different key rates. Other research directions deal with side channels and imper-
fections that are unavoidable in the implementation of the QKD protocols. After
all, in implementations we are not sending ’qubits’, the quantum equivalent of
classical bits, but real optical signals that have a rich internal structure.

As for applications, it is desirable to go beyond the simple point-to-point QKD
connection and I will present researchdone within the EuropeanConsortium SEC-
OQC [4] that builds a network demonstrator using trusted repeater stations in Vi-
enna. This demonstrator involves the development of optical technology for the
QKD implementation, but also the development of keymanagement structures and
routing protocols that are compatible with high-security application scenarios.
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Abstract. In secure two-party function evaluation Alice holding ini-
tially a secret input x and Bob having a secret input y communicate
to determine a prescribed function f(x, y) in such a way that after the
computation Bob learns f(x, y) but nothing more about x other than
he could deduce from y and f(x, y) alone, and Alice learns nothing. Un-
conditionally secure function evaluation is known to be essentially im-
possible even in the quantum world. In this paper we introduce a new,
weakened, model for security in two-party quantum computations. In our
model – we call it susceptible function computation – if one party learns
something about the input of the other one with advantage ε then the
probability that the correct value f(x, y) is computed, when the proto-
col completes, is at most 1 − δ(ε), for some function δ of ε. Thus, this
model allows to measure the trade-off between the advantage of a dishon-
est party and the error induced by its attack. Furthermore, we present
a protocol for computing the one-out-of-two oblivious transfer function
that achieves a quadratic trade-off i.e. δ = Ω(ε2).

1 Introduction

In two-party computation, Alice holding initially a private (i.e., secret) input
x ∈ {0, 1}n and Bob having a private input y ∈ {0, 1}m communicate to deter-
mine a given function f(x, y) ∈ {0, 1}p. In the standard one-sided setting the
computation is secure if the, possible malicious, parties with unbounded com-
puting power perform a communication protocol in such a way that (1) at the
end of an honest execution of the protocol Bob learns the value f(x, y) unam-
biguously (2) no matter what Bob does he cannot learn anything more about
x other than what follows from the values of y and f(x, y), and (3) no matter
what Alice does, she learns nothing.

In [6] Beimel, Malkin, and Micali have given a combinatorial characterization
of all securely computable functions in classical setting. It is proved there that
f can be computed securely if and only if there do not exist inputs x0, x1, y0, y1

such that f(x0, y0) = f(x1, y0) and f(x0, y1) �= f(x1, y1). Unfortunately, almost
all useful functions fail to satisfy this criterion.
� Part of this work was done during the stay of the first author at the University of
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An important example of a function that cannot be computed in such way
is the one-out-of-two oblivious transfer function OT defined as follows: let Alice
hold initially two secret bits a0, a1 and let Bob have a secret selection bit i. Then
we define OT((a0, a1), i) = ai. The problem has been proposed in [16,15,12] as a
generalization of Rabin’s notion for oblivious transfer [22]. Oblivious transfer is a
primitive of central importance particularly in secure two-party and multi-party
computations. It is well known ([18,9]) that OT can be used as a basic component
to construct protocols solving more sophisticated tasks of secure computations
such as two-party oblivious circuit evaluation.

The impossibility of (unconditionally) secure function computations in the
classical setting rises a question whether, and if so - in which way, quantum
cryptography can ensure the security. Indeed, much interest has been devoted to
develop quantum two-party protocols [3,4,8,14,13,10,7,23], some of which were
claimed to be unconditionally secure [10,7,23]. However, in his paper [21] Lo
proved that such (unconditionally) secure computations of all non-trivial func-
tions are impossible even in quantum setting. As a corollary, a possibility of a
secure quantum computation of the one-out-of-two oblivious transfer function
OT is ruled out.

Moreover, Lo [21] generalized his impossibility result to non-ideal protocols,
being ones that may violate the security constraints (1)-(3) slightly. In his ‘non-
ideal’ model the requirements are relaxed as follows:

(1′) The density matrix that Bob has at the end of the protocol can be slightly
different from an eigenstate of the measurement operator that he is sup-
posed to use (thus, the correctness with probability 1 is not guaranteed any
more, even if parties follow the protocol honestly).

(2′) There is allowed a small probability of Alice’s distinguishing between dif-
ferent Bob’s inputs.

(3′) There is allowed also a small probability of Bob’s distinguishing between
different Alice’s inputs.

So, intuitively, the result of Lo states that there is no quantum protocol for
computing any non-trivial function such that its correctness is high and the
information leakage is small.

In this paper we consider a slightly different relaxation of ideal case of the
security requirements for the one-sided two-party computation. Our model, we
call it susceptible function computation, requires the constraint (1) (i.e. an honest
execution of the protocol computes f(x, y) correctly) but it allows, even huge
information gain by a cheater. However, it requires that if the leakage is big then
the probability that Bob computes the correct value f(x, y) is proportionally
small. In other words (precise definition will be given in Section 2), for a function
δ(·) we require that for all inputs x and y

(a) If both parties follow the protocol then at the end of the computation Bob
learns the value f(x, y) unambiguously.
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(b) If Alice learns y with advantage ε then the probability that Bob computes
the correct value f(x, y) at the end of the protocol, is at most 1 − δ(ε), for
some function δ of ε.

(c) If Bob with advantage ε learns about x more than what follows from the
values of y and f(x, y) then the probability that Bob is able to compute
correctly the value f(x, y) is at most 1 − δ(ε).

Particularly, if both Alice and Bob honestly perform a δ(ε)-susceptible protocol,
for an appropriate function δ, then Bob learns the value f(x, y) correctly and he
gains no additional information about x and Alice learns nothing about y. Note,
that in our model Bob cannot get full knowledge about x; otherwise he would
be able to compute f(x, y) correctly, what contradicts requirement (c).

Intuitively, our model investigates the security of two-party computations
when, for some external reasons, the correct computation of f(x, y) is desired
by both parties that are, nevertheless, curious to acquire additional knowledge
about the input of the other party. To get this additional information a cheat-
ing party may arbitrarily deviate from the protocol.1 But, the key feature of
our model is that it imposes a trade-off between the addition knowledge that a
cheating party can infer and the correctness of the value f(x, y) computed by
Bob. Particularly, if for given Alice’s input x and Bob’s input y the parties need
to compute the correct value f(x, y) with probability 1 then for any strategy
used by a cheating party he or she is not able to gain any additional infor-
mation. However, if for some external reasons, it is sufficient that the protocol
may compute the correct value with probability (at least) 1 − ε then a cheater
may get some (limited) additional information, and the amount of information
is bounded by δ(ε).

The main result of this paper states that for the OT function there exists
a susceptible protocol with δ(ε) = Ω(ε2). Hence, we show that a non-trivial
function can be computed Ω(ε2)-susceptible. That is, we give an OT protocol
which, speaking informally (precise definitions are presented in Section 3), fulfills
the following properties.

– If both Alice having initially bits a0, a1 and Bob having bit i are honest then
Bob learns the selected bit ai, but he gains no further information about the
other bit and Alice learns nothing.

– If Bob is honest and has a bit i and Alice learns i with advantage ε then for
all input bits a0, a1 ∈ {0, 1} the probability that Bob computes the correct
value ai, when the protocol completes, is at most 1 − Ω(ε2).

– If Alice is honest and has bits a0, a1 then for every input bit i ∈ {0, 1} it
is true that if Bob can predict the value a1−i with advantage ε then the
probability that Bob learns correctly ai is at most 1 − Ω(ε2).

Such a model of function evaluation is new and there exists no classical
counterpart of such susceptible two-party computations. This follows from a

1 This is in contrast to honest-but-curious model, where parties have to follow the
protocol faithfully.
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combinatorial characterization of functions securely computable in the honest-
but-curious model given by Beaver [5] and Kushilevitz [20] as well as from the
characterization theorem of privately computable functions in a weak sense by
Chor and Kushilevitz [11].

Though these papers study the so called two-sided setting, in which both
parties learn the result of the function when the protocol is completed, we can
apply them for the one-sided model for slightly modified functions: we replace
the original function f(x, y) by r ⊕ f(x, y) where r is an additional Bob’s input
and ⊕ denotes the bitwise xor-function. Now, using this modification one can
conclude from [5,20] that if a classical (one-sided) protocol computes OT correctly
with probability 1 then its information leakage is strictly greater than 0.

Moreover, from [11] we get that if a classical protocol computes OT correctly
with probability 1− ε, then one of the parties can learn something about the in-
put of the other one with advantage at least 1

2 −ε. The characterization from [11]
holds for honest-but-curious players, but we can apply it also to the malicious
setting: we just make the malicious party to use the honest-but-curious strategy
to cheat. Thus, the theorem by Chor and Kushilevitz can also be used to analyze
even malicious attacks. Clearly, the above assertions invalidate existence of any
susceptible two-party protocols in classical setting.

Comparison to Previous Work. For secure two-party computations two mod-
els are considered in the literature. In the first one, the honest-but-curious model,
we assume that the players never deviate from the given protocol but try to
acquire knowledge about the input of the other player only by observing the
communication. In the second setting, the malicious model, Alice or Bob may ar-
bitrarily deviate from the protocol to defeat the security constraints. Moreover,
depending on the computational power of the players we distinguish between
computationally security and information theoretically security. In the first case
we assume that any player is computationally bounded and in the second case
we do not restrict the computational power of the players.

Recall, that in the classical malicious model, only few (trivial) functions can be
computed securely in the information theoretic setting ([6]). The similar holds
also for the honest-but-curious model. This follows from the characterization
by Beaver [5] and Kushilevitz [20]. In [19] Klauck shows that in the honest-but-
curious model quantum computations do not help. He proves that every function
that can be computed securely using a quantum protocol can also be computed
securely by a deterministic protocol.2 On the other hand, he shows that allowing
a small leakage, quantum communication allows us to compute Boolean functions
which are not securely computable in the classical honest-but-curious model.

As we already mentioned, [21] proved that for quantum protocols in malicious
setting it is impossible to compute securely any non-trivial function. In the light
of this fact, Hardy and Kent [17] and independently Aharonov et al. [2], have in-
troduced the notion of cheat sensitive protocols which, instead of unconditional

2 In the literature one calls secure computations in the honest-but-curious model also
private computations.
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security, give only a guarantee that if one party cheats then the other has a pro-
portional probability of detecting the mistrustful party. The result of Aharonov
et al. [2] presents a protocol for quantum bit commitment they call it quantum
bit escrow that ensures that whenever one party cheats with advantage ε then,
at the end of the protocol, there exists a test that can be performed by the other
party that detects the cheating with probability Ω(ε2). However, the drawback
of this protocol is that only one party can perform the test i.e. only one party can
check whether the other cheated, and there is no mechanism that would allow
fair resolving of this conflict. The authors state finding a protocol without this
drawback as an open problem. Also the protocol presented by Hardy and Kent
[17] is a weak variant of cheat sensitive quantim bit commitment in the sense that
either Alice or Bob can detect a cheating party with non-zero probability. From
this perspective, our result can be seen as a cheat sensitive protocol for oblivious
transfer (which subsumes bit commitment) with Ω(ε2) trade-off, provided there
is some way of allowing the party to test whether Bob computed correct value.
Unfortunately, since we do not know how to implement such mechanism, the
open problem is still unsettled.

2 Preliminaries

We assume that the reader is already familiar with the basics of quantum cryp-
tography (see [2] for a description of the model and results that will be helpful).
The model of quantum two-party computation we use in this paper is essentially
the same as defined in [2].

For a mixed quantum state ρ and a measurement O on ρ, let ρO denote the
classical distribution on the possible results obtained by measuring ρ accord-
ing to O = {Oj}j, i.e. ρO is some distribution p1, . . . , pt where pj denotes the
probability that we get result j and Oj are projections on the orthonormal sub-
spaces corresponding to j. We use L1-norm to measure distance between two
probability distributions p = (p1, . . . , pt) and q = (q1, . . . , qt) over {1, 2, . . . , t}:
|p − q|1 = 1

2

∑t
i=1 |pi − qi|.

In the following we investigate one sided two party quantum protocols F =
(A, B), i.e. let x denote the input of Alice and y denote the input of Bob then at
the end of the protocol Bob knows the result F (x, y) of the protocol. By purifica-
tion we can assume that each protocol consists of two phases. In the first phase,
called quantum phase, both parties perform only unitary transformations on the
quantum states. In the second phase both parties only perform a measurement
and maybe some computations on classical bits.

We say that a quantum protocol F = (A, B) for computing the function f is
δ(ε)-susceptible with respect to Alice, if for every strategy A′ used by Alice the
protocol F ′ = (A′, B) fulfills the following condition: Let ρx,y

A denote a reduced
density matrix in Alice’s hand at the end of the quantum phase of Alice and let
O be the measurement of y by Alice. Then for all x and y it is true: if for some
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y′ with y �= y′ it holds that |(ρx,y
A )O − (ρx,y′

A )O|1 ≥ ε then the probability that
Bob computes the correct value of f(x, y) is at most 1 − δ(ε), i.e. Pr[F ′(x, y) =
f(x, y)] ≤ 1 − δ(ε) .

We say that F = (A, B) is δ(ε)-susceptible with respect to Bob, if for every
strategy B′ used by Bob the protocol F ′ = (A, B′) fulfills the following condition:
Let ρx,y

B denote a reduced density matrix in Bob’s hand at the end of the quantum
phase of Bob and let O be the measurement of x by Bob. Then for all y and
for all x it is true: if for some x′ �= x with f(x, y) = f(x′, y) it holds that
|(ρx,y

B )O − (ρx′,y
B )O|1 ≥ ε then the probability that Bob computes the correct value

of f(x, y) is at most 1 − δ(ε).
Both probabilities are taken over the random inputs of all the parties.

Definition 1. Let δ(ε) be a function in ε. A quantum protocol F for computing
f is δ(ε)-susceptible if the following conditions hold:

1. If both parties follow F then Bob computes f correctly, i.e. Pr[F (x, y) =
f(x, y)] = 1 for all x and y,

2. F is δ(ε)-susceptible with respect to Alice, and
3. F is δ(ε)-susceptible with respect to Bob.

We recall that we are interested in unconditional security, so in particular the
above definition does not restrict the computational power of adversaries.

Let |0〉,|1〉 be an encoding of classical bits in our computational (perpendic-
ular) basis. Let |0×〉 = 1√

2
(|0〉 − |1〉), |1×〉 = 1√

2
(|0〉 + |1〉) be an encoding of

classical bits in diagonal basis. By Rα, α ∈ {0, 1
2 , 1}, we denote the unitary

operation of rotation by an angle of α · π/2. More formally:

Rα :=
(

cos(α · π
2 ) sin(α · π

2 )
− sin(α · π

2 ) cos(α · π
2 )

)
We should note that this operation allows us to exchange between the bit

encoding in perpendicular and in diagonal basis. Moreover, by applying R1 we
can flip the value of the bit encoded in any of those two bases.

Let ||A||t = tr(
√

A†A), where tr(A) denotes trace of matrix A. A fundamental
theorem gives us a bound on L1-norm for the probability distributions on the
measurement results:

Theorem 1 (see [1]). Let ρ0, ρ1 be two density matrices on the same Hilbert
space H. Then for any generalized measurement O |ρO0 − ρO1 |1 ≤ 1

2 ||ρ0 − ρ1||t.
This bound is tight and the orthogonal measurement O that projects a state on
the eigenvectors of ρ0 − ρ1 achieves it.

A well-known result states that if |φ1〉, |φ2〉 are pure states, then || |φ1〉〈φ1| −
|φ2〉〈φ2| ||t = 2

√
1 − |〈φ1|φ2〉|2.
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3 Ω(ε2)-Susceptible Oblivious Transfer

In this section we present a Ω(ε2)-susceptible protocol for OT.

Protocol 1 (Susceptible QOT). Input A : a0, a1 ∈ {0, 1}, B : i ∈ {0, 1};
Output B : ai.

1. A chooses randomly α ∈R {0, 1
2} and h ∈R {0, 1} and sends to B:

Rα|a1 ⊕ h〉 ⊗ Rα|a0 ⊕ h〉
2. B receives |Φ1〉 ⊗ |Φ0〉, chooses randomly β ∈R {0, 1} and sends Rβ |Φi〉 back

to A.
3. A receives |Φ〉, computes R−1

α |Φ〉, measures the state in computational basis
obtaining the result n and sends m = n ⊕ h to B.

4. B receives m and computes ai = m ⊕ β.

Here, as usually, ⊕ denotes xor. To see that this protocol computes OT correctly
if both parties are honest we remind that the operator RαRβ commutes with
R−1

α (this is not true in general, although it is true in two dimensions) and that
Rβ is (up to a phase) a NOT-gate conditioned on β. We will now focus on the
question whether Protocol 1 still retains security if we use it against malicious
parties. The following theorem follows from Lemma 1 and 2 which will be proven
in the remaining part of this section:

Theorem 2. Protocol 1 is a Ω(ε2)-susceptible protocol for OT.

3.1 Malicious Alice

Lemma 1. Let Alice and Bob perform Protocol 1 and assume Bob is honest
and deposits a bit i, with Pr[i = 0] = 1/2. Then for every strategy used by Alice,
every value a′ Bob learns at the end of the computation it holds that for all
a0, a1 ∈ {0, 1} and for any generalized measurement O

if |(ρ0
A)O − (ρ1

A)O|1 ≥ ε then Pri∈R{0,1}[a′ = ai] ≤ 1 − cA · ε2 .

where ρj
A denotes a reduced density matrix in Alice hand at the end of the protocol

if Bob’s input bit is given by i := j and cA > 0 is a constant independent of
Alice’s strategy.

Proof: Any cheating strategy A of Alice corresponding to her input a0, a1 can be
described as preparing some state |Φ〉 =

∑
x∈{0,1}2 |vx, x〉, sending the two right-

most qubits to Bob and performing some measurement O = {H0, H1, H2, H3}
on this what she gets back after Bob’s round, where H0,H1,H2, H3 are four pair-
wise orthogonal subspaces being a division of whole Hilbert space that comes
into play, such that, for l, k = 0, 1, if our measurement indicates the outcome
corresponding to H2k+l then it reflects Alice’s belief that i = l and that the mes-
sage m = k should be sent to Bob. We emphasis that we allow Alice’s strategy
to depend on her input.
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The outline of the proof is the following. We first bond the fact that A achieves
some advantage ε to a certain relation between H and |Φ〉. Then we show that
this relation implies at least cA · ε2 of noise in the value of a′ computed by Bob.

We first consider the case when a0 ⊕ a1 = 0. Clearly, in this case m ⊕ a0 =
m⊕a1 = β. So if Alice manages to compute m that is correct i.e. a′ = m⊕β = ai

then she also knows the value of β. Thus, we can compute the probability of A
computing the correct result, by computing the the probability that she can
indicate the value of β correctly.

Let ρa,b be a density matrix of Alice’s system after Bob’s round, corresponding
to i = a and β = b. After some calculations we get:

ρ0,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
+|v000〉〈v101| + |v101〉〈v000| + |v111〉〈v010| + |v010〉〈v111|

ρ0,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
−|v001〉〈v100| − |v100〉〈v001| − |v110〉〈v011| − |v011〉〈v110|

ρ1,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
+|v000〉〈v011| + |v011〉〈v000| + |v111〉〈v100| + |v100〉〈v111|

ρ1,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
−|v001〉〈v010| − |v010〉〈v001| − |v110〉〈v101| − |v101〉〈v110| .

where xt means flipping bit xt, i.e. xt = 1 − xt.
We look first onto Alice’s advantage that she can achieve. In order to cheat,

Alice has to distinguish between two density matrices γl = 1
2ρl,0 + 1

2ρl,1 for
l ∈ {0, 1}, where γl corresponds to i = l. By examination of the difference of
those matrices we get, after some calculations, that:

γ0 − γ1 =
1
2
|VS0〉〈VA1| + 1

2
|VA1〉〈VS0| − 1

2
|VS1〉〈VA0| − 1

2
|VA0〉〈VS1|

where |VS〉 = |v00〉+ |v11〉 and |VA〉 = |v10〉− |v01〉. One can easily show that the
advantage ε := |(ρ0

A)O − (ρ1
A)O|1 of Alice is at most

∑3
l=0 σl where

σl = |tr(Hl(γ0 − γ1)Hl
†)|

≤ ∑
j∈{0,1}

1
2 |tr(Hl(|VS(j − 1)〉〈VAj| + |VAj〉〈VS(j − 1)|)Hl

†)|
≤ ∑

j∈{0,1}(|〈Ol
j |VAj〉| · |〈VS(1 − j)|Ol

j〉|)
≤ ∑

j∈{0,1} |〈Ol
j |VAj〉|

and |Ol
j〉 is an orthogonal, normalized projection of |VAj〉 onto subspace Hl. The

second inequality is true because we have tr(Hl|VAj〉〈ψ|Hl
†) = 〈Ol

j |VAj〉〈ψ|Ol
j〉

for every state |ψ〉.
Let jl be the index for which |〈Ol

jl
|VAjl〉| ≥ |〈Ol

1−jl
|VA(1 − jl)〉|. Clearly,

σl ≤ 2|〈Ol
jl
|VAjl〉|. Moreover, we assume that σ0 + σ1 ≥ σ2 + σ3. If this is not

the case we could satisfy this condition by altering the strategy A of Alice (by
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appropriate rotation of her basis) in such a way that the definitions of Hk and
Hk+2 would swap leaving everything else unchanged.

We look now on the probability of obtaining the correct result by Alice. The
probability p0 of Alice getting outcome that convinces her that β = 0 in case
when actually β = 1 is at least

p0 ≥ 1
2 〈O0

j0
|ρ0,1|O0

j0
〉 + 1

2 〈O0
j0
|ρ1,1|O0

j0
〉 =

1
2 |〈O0

j0 |v001〉 − 〈O0
j0 |v010〉|2 + 1

2 |〈O0
j0 |v001〉 − 〈O0

j0 |v100〉|2
+ 1

2 |〈O0
j0
|v110〉 − 〈O0

j0
|v011〉|2 + 1

2 |〈O0
j0
|v110〉 − 〈O0

j0
|v101〉|2 .

So, by inequality |a − b|2 + |a − c|2 ≥ 1
2 |b − c|2 we get that

p0 ≥ 1
4 |〈O0

j0
|v010〉 − 〈O0

j0
|v100〉|2 + 1

4 |〈O0
j0
|v011〉 − 〈O0

j0
|v101〉|2

= 1
4 |〈O0

j0 |VA0〉|2 + 1
4 |〈O0

j0 |VA1〉|2 ≥ 1
16σ2

0 .

Similar calculation of the probability p1 of getting outcome convincing Alice that
β = 1 when actually β = 0 yields that the probability of computing wrong result
is at least

Pr[a′ �= ai] = Pr[β ⊕ m �= ai] ≥ 1
16

(σ2
0 + σ2

1) ≥ 1
256

(
∑3

l=0σl)2.

Hence, the lemma holds for the case a0 ⊕ a1 = 0.
Since in case of a0⊕a1 = 1 the reasoning is completely analogous - we exchange

only the roles of |VS〉 and |VA〉 and Alice has to know the value of β ⊕ i, instead
of β in order to give the correct answer to Bob, the proof is concluded.

In fact, the above lemma is asymptotically tight since we can design a strategy
of Alice which allows her to meet the quadratical bound imposed by the above
lemma. To see this, consider |Φ〉 =

√
1 − Δ|000〉+√

Δ|110〉. Intuitively, we label
the symmetric and anti-symmetric part of |Φ〉 with 0 and 1. Let H2 = |01〉〈01|,
H3 = 0. One can easily calculate that

ρ0,0 = (1 − Δ)|00〉〈00| +
√

Δ(1 − Δ)(|00〉〈11| + |11〉〈00|) + Δ|11〉〈11|

ρ1,0 = (1 − Δ)|00〉〈00| + Δ|10〉〈10|

and therefore ||ρ0,0 − ρ1,0||t ≥ √
Δ(1 − Δ) − 2Δ. So, by Theorem 1 there exists

a measurement {H0, H1} allowing us to distinguish between those two density
matrices with

√
Δ(1 − Δ) − 2Δ accuracy and moreover H2, H3⊥H0, H1 since

tr(H2ρ0,0H
†
2) = tr(H2ρ1,0H

†
2) = 0. Now, let M = {H0, H1, H2, H3} be Alice’s

measurement. To cheat, we use the following strategy A corresponding to her
input a0 = a1 = 0. Alice sends the last two qubits of |Φ〉 to Bob, after receiving
the qubit back she applies the measurement M . If the outcome is H2 then she
answers m = a0 ⊕ β = 1 to Bob and sets i′ = 0 with probability 1

2 , in the other
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case she sends m = a0 ⊕ β = 0 to Bob and according to the outcome being 0 or
1 she sets i′ = 0 (i′ = 1).

To see that this strategy gives correct result with probability greater than
1 − Δ

2 we should note that probability of outcome H2 in case of β = 0 is 0 and
in case of β = 1 is 1 − Δ. On the other hand, since β = 0 with probability 1

2 ,
Alice’s advantage in determining the input of Bob is greater than 1

2

√
Δ − 3

2Δ.
So, by setting ε = 1

2

√
Δ − 3

2Δ, we get that the presented strategy proves that
the Protocol 1 cannot be δ(ε) susceptible for δ(ε) ≥ 2ε2.

3.2 Malicious Bob

Now, we analyze Bob’s possibility of cheating. Our goal is to show:

Lemma 2. Let Alice and Bob perform Protocol 1. Assume Alice is honest and
deposits bits a0, a1, with Pr[a0 = 0] = Pr[a1 = 0] = 1/2. Let i denote Bob’s input
bit. Then for every strategy B used by Bob and any value a′

i computed by Bob it
holds that for i = 0

if |(ρa0a1,0
B )O − (ρa0a1,0

B )O|1 ≥ ε then Pra0,a1∈R{0,1}[a′
0 = a0] ≤ 1 − cBε2

and for i = 1

if |(ρa0a1,1
B )O − (ρa0a1,1

B )O|1 ≤ ε then Pra0,a1∈R{0,1}[a′
1 = a1] ≥ 1 − cBε2.

where ρa0a1,i
B denotes a reduced density matrix in Bob’s hand at the end of the

protocol and cB > 0 is a constant independent of Bob’s strategy.

Proof: Consider some malicious strategy B of Bob. Wlog we may assume that
i = 0 - the case of i = 1 is completely symmetric. In the following we skip the
superscript i, i.e. let ρa0a1

B denote ρa0a1,i
B , for short. Our aim is to show that

if |(ρa0a1
B )O − (ρa0a1

B )O|1 ≤ ε then Pra0,a1∈R{0,1}[a′ �= a0] ≤ cBε2.

Strategy B can be think of as a two step process. First a unitary transforma-
tion U is acting on |Φa0,a1,h〉 = |v〉 ⊗ Rα|a1 ⊕ h〉 ⊗ Rα|a0 ⊕ h〉, where v is an
ancillary state3. Next the last qubit of U(|Φa0,a1,h〉) is sent to Alice4, she performs
step 3 of Protocol 1 on these qubit and sends the classical bit m back to Bob.
Upon receiving m, Bob executes the second part of his attack: he performs some
arbitrary measurement O = {H0, H1, H2, H3}, where outcome corresponding to
subspace H2l+k implies Bob’s believe that a′

0 = l and a′
1 = k.

The unitary transformation U can be described by a set of vectors {V l,j
k } such

that U(|v〉⊗|l, j〉) = |V l,j
0 〉⊗|0〉+|V l,j

1 〉⊗|1〉. Or alternatively in diagonal basis, by
a set of vectors {W l,j

k } such that U(|v〉⊗|l×, j×〉) = |W l,j
0 〉⊗|0×〉+ |W l,j

1 〉⊗|1×〉.
3 Note that this does not restrict Bob’s power. Particularly, when Bob tries to make

a measurement in the first step then using standard techniques we can move this
measurement to the second step.

4 We can assume wlog that the last qubit is sent since U is arbitrary.
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We present now, an intuitive, brief summary of the proof. Informally, we can
think of U as about some kind of disturbance of the qubit Rα|a0 ⊕ h〉 being
sent back to Alice. First, we will show that in order to cheat Bob’s U has to
accumulate after Step 2, till the end of the protocol, some information about the
value of a0⊕h hidden in this qubit. On the other hand, to get the proper result i.e.
the value of a0, this qubit (which is sent back to Alice) has to still contain actual
information about encoded value being disturbed at the smallest possible degree.
That implies for Bob a necessity of some sort of partial cloning of that qubit,
which turns out to impose the desired bounds on possible cheating. We show this
by first reducing the task of cloning to one where no additional hint in the form
of Rα|a1 ⊕ h〉 is provided and then we analyze this simplified process. In this
way, this proof gives us a sort of quantitative non-cloning theorem. Although, it
seems to concern only our particular implementation of the protocol, we believe
that this scenario is useful enough to be of independent interests.

We analyze first Bob’s advantage i.e. his information gain about a1. Wlog we
may assume that Bob can distinguish better between two values of a1 if a0 = 0.
That is

|(ρ00
B )O − (ρ01

B )O|1 ≥ |(ρ10
B )O − (ρ11

B )O|1 .

Let now ρj,k,l be a density matrix of the system before Bob’s final measure-
ment, corresponding to α = j · 1

2 , h = k, a1 = l and a0 = 0. The advantage
ε = |(ρ00

B )O − (ρ01
B )O|1 of Bob in this case can be estimated by Bob’s ability to

distinguish between the following density matrices:
1
4 (ρ0,0,0 + ρ1,0,0 + ρ0,1,0 + ρ1,1,0) (case a1 = 0), and
1
4 (ρ0,0,1 + ρ1,0,1 + ρ0,1,1 + ρ1,1,1) (case a1 = 1).

Using the triangle inequality we get that for the measurement O performed by
Bob

ε ≤ 1
8
(|ρO0,0,0−ρO0,1,1|1 + |ρO1,1,0−ρO1,0,1|1 + |ρO0,1,0−ρO0,0,1|1 + |ρO1,0,0−ρO1,1,1|1). (1)

Each component corresponds to different values of α and h⊕a1. And each compo-
nent is symmetric to the other in such a way that there exists a straight-forward
local transformation for Bob (i.e. appropriate rotation of the computational basis
on one or both qubits) which transform any of above components onto another.
So, we can assume wlog that the advantage in distinguishing between ρ0,0,0 and
ρ0,1,1, ε0 = |ρO0,0,0 − ρO0,1,1|1 is the maximum component in the right-hand side
of the inequality (1) and therefore we have ε ≤ 1

2ε0. Let, for short, γ0 = ρ0,0,0

and γ1 = ρ0,1,1. One can easily calculate that

γ0 = |0〉〈0| ⊗ |V 00
0 〉〈V 00

0 | + |1〉〈1| ⊗ |V 00
1 〉〈V 00

1 | (2)
γ1 = |0〉〈0| ⊗ |V 01

1 〉〈V 01
1 | + |1〉〈1| ⊗ |V 01

0 〉〈V 01
0 |. (3)

As we can see to each value of m in above density matrices corresponds a pair of
vectors which are critical for Bob’s cheating. I.e. the better they can be distin-
guishable by his measurement the greater is his advantage. But, as we will see
later, this fact introduces perturbation of the indication of the value of a0.
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First, we take a look on the measurements H0, H1 performed by Bob. Let us
define σ2m+p for p, m ∈ {0, 1} as follows

σ2m+p =

{
|tr(Hp|0V 0p

p 〉〈0V 0p
p |H†

p) − tr(Hp|0V
0(1−p)
1−p 〉〈0V

0(1−p)
1−p |H†

p)| if m = 0,

|tr(Hp|1V 0p
1−p〉〈1V 0p

1−p|H†
p) − tr(Hp|1V

0(1−p)
p 〉〈1V

0(1−p)
p |H†

p)| if m = 1.

Let for m = 0, p0 ∈ {0, 1} be such that σp0 ≥ σ1−p0 and similarly, for m = 1 let
p1 ∈ {0, 1} be such that σ2+p1 ≥ σ2+(1−p1). Then we get

|γO
0 − γO

1 |1 =
∑3

t=0 |tr(Htγ0H
†
t ) − tr(Htγ1H

†
t )|

≤ 2(σp0 + σ2+p1) +
∑3

t=2 |tr(Htγ0H
†
t ) − tr(Htγ1H

†
t )|.

We should see first that the second term in the above sum corresponds to
advantage in distinguishing between two values of a1 by measurement H2, H3 in
case of a0 = 0. But those subspaces reflect Bob’s belief that a0 = 1. Therefore,
we have that∑3

t=2|tr(Htγ0H
†
t ) − tr(Htγ1H

†
t )| ≤ Pra0,a1∈R{0,1}[a′

0 �= a0|a0 = 0].

So, we can neglect this term because it is of the order of the square of the
advantage (if not then our lemma would be proved). We get: ε0

2 ≤ σp0 + σ2+p1 .
Now, we define projection Om as follows. For m = 0 let O0 be the normalized

orthogonal projection of |0V 0p0
p0

〉 onto the subspace Hp0 if

tr(Hp0 |0V 0p0
p0

〉〈0V 0p0
p0

|H†
p0

) ≥ tr(Hp0 |0V
0(1−p0)
1−p0

〉〈0V
0(1−p0)
1−p0

|H†
p0

).

Otherwise, let O0 be the normalized orthogonal projection of |0V
0(1−p0)
1−p0

〉 onto
Hp0 . Analogously, we define O1 as a normalized orthogonal projection of |1V 0p1

1−p1
〉

onto the subspace Hp1 if

tr(Hp1 |1V 0p1
1−p1

〉〈1V 0p
1−p1

|H†
p1

) ≥ tr(Hp1 |1V 0(1−p1)
p1

〉〈1V 0(1−p1)
p1

|H†
p1

)

else O1 is a normalized orthogonal projection of |1V
0(1−p1)
p1 〉 onto Hp1 . Hence we

get

σp0 ≤ ||〈0V 0p0
p0

|O0〉|2 − |〈0V
0(1−p0)
1−p0

|O0〉|2|,
σ2+p1 ≤ ||〈1V 0p1

1−p1
|O1〉|2 − |〈1V 0(1−p1)

p1
|O1〉|2|.

We proceed now, to investigation of the probability of obtaining the correct
result i.e. the correct value of a0. Recall that Pr[a1 = 0] = 1

2 so the density
matrices corresponding to initial configuration of the second qubit - Rα|a1 ⊕ h〉
is now exactly 1

2 |0〉〈0| + 1
2 |1〉〈1| even if we know h and α. So, from the point

of view of the protocol, as perceived by Bob, those two density matrices are
indistinguishable. Therefore, we can substitute the second qubit from the ini-
tial configuration with a density matrix 1

2 |0〉〈0| + 1
2 |1〉〈1| of a random bit r
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encoded in perpendicular basis and the probability of obtaining proper result is
unchanged.

We analyze now the probability of computing the correct result in case of
r = 0. Note, that the vectors {V 0,j

k }k,j still describe U , but vectors {W 0j
k }k,j are

different, they are defined by U acting now on initial configuration |v〉 ⊗ |0〉 ⊗
Rα|j〉, with α = 1

2 . We investigate the correspondence between {V 0j
k }k,j and the

new vectors. For j = 0 we have:

U(|v00×〉) = 1√
2
U(|v00〉 − |v01〉) = 1√

2
(V 00

0 |0〉 + V 00
1 |1〉 − V 01

0 |0〉 − V 01
1 |1〉)

= 1
2 ((V 00

0 − V 00
1 − V 01

0 + V 01
1 )|0×〉 + (V 00

0 + V 00
1 − V 01

0 − V 01
1 )|1×〉)).

Similarly, for j = 1 we have:

U(|v01×〉) = 1√
2
U(|v00〉 + |v01〉) = 1√

2
(V 00

0 |0〉 + V 00
1 |1〉 + V 01

0 |0〉 + V 01
1 |1〉)

= 1
2 ((V 00

0 − V 00
1 + V 01

0 − V 01
1 )|0×〉 + (V 00

0 + V 00
1 + V 01

0 + V 01
1 )|1×〉)).

Thus, let us denote these vectors by

W̃ 00
0 =

1
2
((V 00

0 + V 01
1 ) − (V 01

0 + V 00
1 )), W̃ 00

1 =
1
2
((V 00

0 − V 01
1 ) − (V 01

0 − V 00
1 )),

W̃ 01
0 =

1
2
((V 00

0 − V 01
1 ) + (V 01

0 − V 00
1 )), W̃ 01

1 =
1
2
((V 00

0 + V 01
1 ) + (V 01

0 + V 00
1 )).

In order to obtain the correct result Bob has to distinguish between the den-
sity matrices corresponding to two values of a0. In particular, he has to distin-
guish between density matrices γ′

0, γ′
1 corresponding to two possible values of a0

knowing that m = 0. These density matrices are:

γ′
0 =

1
4
|0〉〈0| ⊗ (|V 00

0 〉〈V 00
0 | + |V 01

1 〉〈V 01
1 | + |W̃ 00

0 〉〈W̃ 00
0 | + |W̃ 01

1 〉〈W̃ 01
1 |), (4)

γ′
1 =

1
4
|0〉〈0| ⊗ (|V 01

0 〉〈V 01
0 | + |V 00

1 〉〈V 00
1 | + |W̃ 01

0 〉〈W̃ 01
0 | + |W̃ 00

1 〉〈W̃ 00
1 |). (5)

Now, the probability of failure i.e. the probability that in case of m = 0 Bob’s
measurement indicates that a0 = 0 if in fact it is a0 = 1, is at least

tr(Hp0γ
′
1H

†
p0

) ≥ tr(|O0〉〈O0|γ′
1)

= 1
4 (|〈0V 01

0 |O0〉|2 + |〈0V 00
1 |O0〉|2 + |〈0W̃ 01

0 |O0〉|2 + |〈0W̃ 00
1 |O0〉|2).

But since the fact that W̃ 01
0 = 1

2 ((V 00
0 − V 01

1 ) + (V 01
0 − V 00

1 )), W̃ 00
1 = 1

2 ((V 00
0 −

V 01
1 )−(V 01

0 −V 00
1 )), and the parallelogram law (|a+b|2+ |a−b|2 = 2|a|2+2|b|2),

we have that this probability is at least

1
4 (|〈0W̃ 01

0 |O0〉|2 + |〈0W̃ 00
1 |O0〉|2) ≥ 1

8 |〈0V 00
0 |O0〉 − 〈0V 01

1 |O0〉|2
≥ 1

32 (|〈0V 00
0 |O0〉| − |〈0V 01

1 |O0〉|)2(|〈0V 00
0 |O0〉| + |〈0V 01

1 |O0〉|)2

≥ 1
32 (|〈0V 00

0 |O0〉|2 − |〈0V 01
1 |O0〉|2)2 ≥ σ2

p0
32 .
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Similarly we analyze density matrices γ′′
0 , γ′′

1 corresponding to two possible
values of a0 knowing that m = 1. These density matrices are equal to resp. γ′

1

and γ′
0 after changing |0〉〈0| to |1〉〈1|. Now, by repeating completely analogous

estimation of failure’s probability with usage of vectors |V 01
0 〉, |V 00

1 〉, |W̃ 00
0 〉,

and |W̃ 01
1 〉, we get that this probability is at least

σ2
2+p1
32 . Therefore, since the

vectors involved in imposing failure in both cases are distinct, we conclude that

Pra1∈R{0,1}[a′
0 �= a0|r = 0] ≥ σ2

p0
+σ2

2+p1
32 . Hence we have

Pra1∈R{0,1}[a′
0 �= a0]

= 1
2Pra1∈R{0,1}[a′

0 �= a0|r = 0] + 1
2Pra1∈R{0,1}[a′

0 �= a0|r = 1]

≥ σ2
p0

+σ2
2+p1

64 ≥ ε2

128

and the lemma is proved.
Finally, it is worth mentioning that the value of m doesn’t need to be corre-

lated in any way with value of ai. That is, Bob by using entanglement (for in-
stance, straightforward use of Bell states) can make the value of m independent
of ai and still acquire perfect knowledge about ai. He uses simple error-correction
to know whether m = ai or m = 1− ai. His problems with determining whether
flip has occurred, start only when he wants additionally to accumulate some
information about the value of ai ⊕ h.

Once again, it turns out that the quadratic susceptibility is asymptotically op-
timal. To see that this quadratical bound imposed by the above lemma can be
achieved consider the following cheating strategy. Let U∗ be such that U∗(|v〉 ⊗
|l, j〉) = |vj〉 ⊗ |l, j〉. So, |V l,j

j 〉 = |vj〉 ⊗ |l〉 and |V l,j
1−j〉 = 0. Moreover, let

〈v0|v1〉 =
√

1 − Δ. As we can see, usage of U∗ accumulates some information
about value of j = a0⊕h by marking it with two non-parallel (therefore possible
to distinguish) vectors in Bob’s system. We do now the following. We use U∗

on |v〉 ⊗Rα|a1 ⊕ h〉 ⊕Rα|a0 ⊕ h〉 and send the last qubit to Alice. When we get
the message m which is exactly a0 with probability5 of order 1 − Δ, we make
an optimal measurement to distinguish between v0 and v1. By Theorem 1 this
optimal measurement has advantage of order

√
Δ. So, after getting the outcome

j′, we know that Pr[j′ = a0 ⊕ h] ≥ 1
2 + Ω(

√
Δ) and we can simply compute

the value of h′ = m ⊕ j′. Having such knowledge about the value of h′ we can
distinguish between values of a1 encoded in the second qubit Rα|a1 ⊕ h〉 with
the advantage proportional to Ω(

√
Δ). So, our claim follows.

4 Concluding Remark

In this paper we have presented a Ω(ε2)-susceptible protocol for OT. An inter-
esting question is whether we can find δ(ε)-susceptible protocols for other non-
trivial functions and a reasonable δ and whether there exists a combinatorial
characterization for such functions.
5 This can be easily computed - the perturbation arises when α = 1

2
.
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The next natural question to ask is whether there exists a δ(ε)-susceptible
protocol for OT such that δ(ε) is asymptotically greater than Ω(ε2). In fact,
looking at the quadratic trade-off of the expression || |φ1〉〈φ1| − |φ2〉〈φ2| ||t in
the case of 〈φ1|φ2〉 = 1 − ε and the case of 〈φ1|φ2〉 = ε might suggest that the
quadratic trade-off (which similarly arises in [2]) is inherent for all non-trivial
susceptible computable functions.

It is also interesting to know, whether our protocol could be transformed
into one that does not need external reasons to make the correct computation of
OT((a1, a2), i) desirable for both parties i.e. a protocol in which failure to compute
OT((a1, a2), i) correctly would immediately lead to detection of cheating.

Finally, even if our protocol is very simple - thus may be relatively easy
to implement - the constants hidden in Ω(ε2) are rather impractical. Thus,
trying to come up with a different protocol with better constants or some way
of amplifying the trade-off of our protocol can be worthwhile.
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Abstract. In this paper, we study the problem of perfectly reliable mes-
sage transmission (PRMT) and perfectly secure message transmission
(PSMT) between a sender S and a receiver R in an undirected syn-
chronous network, tolerating a mixed adversary, where the adversary
can be either static or mobile. The connectivity requirement, phase com-
plexity and communication complexity are three important parameters of
any interactive PRMT/PSMT protocol and are well studied in the liter-
ature in the presence of a static/mobile Byzantine adversary. However,
in the presence of a mixed adversary, we encounter several surprising
consequences. In this paper, we prove that even though the connectivity
requirement for PRMT is same against both static and mobile mixed
adversary, the lower bound on communication complexity for PRMT
tolerating a mobile mixed adversary is more than its static mixed coun-
terpart. This is interesting because against a ”Byzantine adversary”, the
connectivity requirement and the lower bound on the communication
complexity of PRMT protocols are same for both static and mobile case.
Thus our result shows that for PRMT, a mobile mixed adversary is more
powerful than its static counterpart. As our second contribution, we de-
sign a four phase communication optimal PSMT protocol tolerating a
”static mixed adversary”. Comparing this with the existing three phase
communication optimal PSMT protocol against a ”static Byzantine ad-
versary”, we find that additional one phase is enough to design commu-
nication optimal protocol against a static mixed adversary. Finally, we
show that the connectivity requirement and lower bound on communi-
cation complexity of any PSMT protocol is same against both static and
mobile mixed adversary, thus proving that mobility of the adversary has
no effect on PSMT. To show that our bound is tight, we also present a
worst case nine phase communication optimal PSMT protocol tolerating
a mobile mixed adversary which is first of it’s kind. This also shows that
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the mobility of the adversary does not hinder to design constant phase
communication optimal PSMT protocol. In our protocols, we have used
new techniques which can be effectively used against both static and
mobile mixed adversary and are of independent interest.

1 Introduction

In perfectly reliable message transmission (PRMT) problem, a sender S is con-
nected to a receiver R in an unreliable network by n node disjoint paths called
wires; S wishes to send a message m, chosen from a finite field F, reliably to R,
in a guaranteed manner (without any error), in spite of the presence of several
kinds of faults in the network. The perfectly secure message transmission (PSMT)
problem has an additional constraint that the adversary should get no informa-
tion about m. The faults in the network is modeled by an adversary who controls
the actions of nodes in the network in a variety of ways and have unbounded com-
puting power. Security against such an adversary is called information theoretic
security, which is also known as perfect security. The PRMT and PSMT problem
was first studied and solved by Dolev et.al [5] against static Byzantine adversary.
The PRMT and PSMT problems are very important primitives in various reli-
able and secure distributed protocols. If S and R are directly connected (which
is generally assumed in generic secure multiparty protocols [2,7,13,21]), then re-
liable and secure communication is trivially guaranteed. However, in reality, it
is not economical to directly connect every two nodes in the network. Therefore
such a complete network can only be virtually realized by simulating the missing
links using PRMT and PSMT protocols as primitives.

Existing Results: There are various settings in which PRMT and PSMT prob-
lem has been studied extensively in the past (see [5,4,6,14,8,19,16,12]). The most
natural and interesting questions posed in the context of PRMT/PSMT are:
(a) POSSIBILITY: What is the necessary and sufficient condition that a given
network should satisfy for the possibility of PRMT/PSMT from S to R? (b)
OPTIMALITY: Once the POSSIBILITY of a protocol is ensured in a given net-
work, what is the communication complexity lower bound for any reliable/secure
protocol to send a message of specific length. Moreover, how to design commu-
nication optimal PRMT/PSMT protocols which satisfies the lower bound? The
above questions can be examined in various settings. The questions in (a) and
(b) have been completely answered against static Byzantine adversarial model
in [12,16,1,18,9]) and against mobile Byzantine adversarial model in [19,11].
In [15], the authors have partially answered the questions (a) and (b) against
static mixed adversarial model. However, nothing is known in mobile mixed
adversarial model. Also in spite of being a very practical adversarial model, mo-
bile mixed adversary have got no exposure in context of PRMT/PSMT.

Why to Study Mixed Mobile Adversary?: In a typical large network, cer-
tain nodes may be strongly protected and few others may be moderately/weakly
protected. An adversary may only be able to failstop(/eavesdrop in) a strongly



Perfectly Reliable and Secure Communication Tolerating Static 139

Table 1. Connectivity requirement and lower bound on communication complexity for
PRMT and PSMT problems; Results with “*” are provided in this paper. Moreover,
all the bounds are tight. Here � is the number of field elements in the message. The
communication complexity is in terms of field elements.

Byzantine Adversary Mixed Adversary
Static Mobile Static Mobile

PRMT; Connectivity (n) 2tb + 1 [5] 2tb + 1 [19] 2tb + tf + 1 [15] 2tb + tf + 1*

PRMT; Lower Bound Ω(�) [18,12] Ω(�) [11] Ω
( (n−tf )�

n−(tb+tf )

)
[15] Ω( n�

n−(tb+tf ) )*

PSMT; Connectivity (n) 2tb + 1 [5] 2tb + 1 [19] 2tb + tf + tp + 1 [15] 2tb + tf + tp + 1*

PSMT; Lower Bound Ω( n�
n−2tb

) [16] Ω( n�
n−2tb

) [16] Ω( n�
n−(2tb+tf +tp) ) [15]* Ω( n�

n−(2tb+tf +tp) )*

protected node, while he may affect a weakly protected node in Byzantine fash-
ion. Thus, we may capture the abilities of an adversary in a more realistic manner
using three parameters tb, tf , tp where tb, tf , tp are the number of nodes under
the influence of adversary in Byzantine, failstop and passive fashion respectively.
Also it is better to grade different kinds of disruption done by adversary and
consider them separately, rather than treating every kind of fault as Byzantine
fault, as this is an “overkill”. Also we stress that a mobile adversary may capture
practical scenarios better than a static adversary. For example when S and R
are engaged in interaction for a long time, then some faults in initial phases can
be fixed and in the mean time, a hacker may attack some other nodes.

Recently in [17], the authors have studied the issues related to the possibil-
ity and optimality of almost perfectly reliable and secure message transmis-
sion1 against static mixed adversary, where R may output an incorrect message
with very negligible probability. However, our protocols have zero error prob-
ability. We stress that the techniques used in [17] cannot be used to design
PRMT/PSMT protocols against mixed adversary, as there is a negligible (but
non-zero) probability involved in the techniques of [17].

Our Contribution: In this work, we focus our attention on PRMT/PSMT
in undirected synchronous networks against static and mobile mixed adversary.
Table 1 tabulates both the existing and proposed (in this paper) connectivity
requirement and communication complexity lower bound results.

1: We provide a four phase communication optimal PSMT protocol tolerating
a static mixed adversary, which is a first protocol of its kind. Comparing this
with the existing three phase communication optimal PSMT protocol against a
static Byzantine adversary [12], we find that one additional phase is enough for
a communication optimal PSMT protocol against a static mixed adversary.
2: We show that PRMT tolerating a mobile mixed adversary is possible iff
PRMT is possible against a static mixed adversary. We prove the lower bound
on the communication complexity of any PRMT protocol against a mobile mixed
adversary and show that it is tight by designing a three phase communication

1 In [17], the authors have termed it as probabilistic perfectly reliable and secure mes-
sage transmission.
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optimal PRMT protocol, whose communication complexity matches this bound.
Comparing these results with existing results for PRMT against a static mixed
adversary, we find that though mobility of mixed adversary has no affect on
possibility of PRMT protocols, it significantly affects its optimality. This
is surprising because mobile Byzantine and static Byzantine adversary has
same effect in PRMT in terms of possibility [19] and optimality [11].
3: We show that mobility of the adversary does not affect the possibility and
optimality of PSMT protocols tolerating mixed adversary. We also present
a worst case nine phase communication optimal PSMT protocol tolerating a
mobile mixed adversary, which is first of it’s kind. Comparing this with the
first contribution, we conclude that mobility of adversary does not hinder the
possibility of designing constant phase communication optimal PSMT protocol
against mixed adversary, even though it requires slightly more number of phases.

To design our protocols, we propose new techniques, which can be effectively used
against both static and mobile mixed adversary. We stress that our results on
mixed adversary are not simple and trivial extensions of the existing results on
Byzantine adversary.

2 Definitions, Network Settings and Adversarial Model

The underlying network is a synchronous network represented by an undirected
graph where S and R are two nodes. A mixed adversary, with unbounded com-
puting power, controls at most tb, tf and tp nodes (excluding S, R) in Byzantine,
fail-stop and passive fashion respectively. Following the approach of [5], we ab-
stract the network and concentrate on solving PRMT/PSMT problem for a single
pair of processors (S, R), connected by n vertex disjoint paths w1, w2, . . . , wn,
also known as wires. In the worst case, if adversary controls a single node on a
wire, then out of n wires, at most tb, tf and tp wires can be under the control of
the adversary in Byzantine, failstop and passive fashion respectively.

A wire which is controlled in a failstop fashion may fail to deliver any infor-
mation, but if it delivers the information then it will be correct. However, the
adversary will have no idea about the information that passed through a wire
which is controlled in failstop fashion. A wire which is passively controlled will
always deliver correct information. However, the adversary will also completely
know the information, which passed through a passively controlled wire. A
Byzantine corrupted wire may deliver correct information or it may deliver
incorrect information. However, in any case, the adversary will completely know
the information, which passed through a Byzantine corrupted wire. The mixed
adversary can be static or mobile. We denote the static and mobile mixed
adversary by Astatic

(tb,tf ,tp) and Amobile
(tb,tf ,tp) respectively.

Scope of Astatic
(tb,tf ,tp): Astatic

(tb,tf ,tp) controls the same set of tb, tf and tp wires among
the n wires, in Byzantine, fail-stop and passive fashion respectively, in different
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phases of any PRMT/PSMT protocol. A wire which is under the control of
Astatic

(tb,tf ,tp), will remain so throughout the protocol.

Scope of Amobile
(tb,tf ,tp): Amobile

(tb,tf ,tp) may control different set of tb, tf and tp wires

among n wires, in Byzantine, fail-stop and passive fashion respectively, in dif-
ferent phases of any PRMT/PSMT protocol. A wire controlled by Amobile

(tb,tf ,tp) in
some phase, may become free in subsequent phase. Though Amobile

(tb,tf ,tp) can con-
trol different set of wires in different phases of the protocol, it does not allow
the adversary to gain any information which has previously passed (in earlier
phases of the protocol) through the wires under its control in current phase. This
is because the wires (and hence the nodes along these wires) erase all the local
information from its memory at the end of each phase. Also any wire which is
not under the control of the adversary in current phase will behave correctly,
irrespective of the way it behaved in earlier phases of a protocol. The adversary
can gain information from the wires in a cumulative fashion.

Throughout the paper we use m to denote the message that S wants to send
to R, where m is a sequence of 	 ≥ 1 field elements from a finite field F. The
only restriction on F is that |F| ≥ n. We use |m| to denote the number of field
elements in m. Any information which is sent through all the wires is said to be
“broadcast”. If x is “broadcast” over at least 2tb + tf + 1 wires, then receiver
will be able to correctly receive x by taking the majority among the received
values. The communication complexity of any protocol is the total number of
field elements communicated by S and R in the protocol. We say that a wire
is corrupted, if the information sent over the wire is changed. A wire which is
not under the control of the adversary is said to be honest.

Definition 1 (Optimal PRMT/PSMT (OPRMT/OPSMT) Protocol).
Let N be a network, under the influence of Astatic

(tb,tf ,tp) or Amobile
(tb,tf ,tp) and Π be a

PRMT/PSMT protocol, which sends m by communicating O(b) field elements.
Then Π is called an OPRMT/OPSMT protocol if the lower bound on the com-
munication complexity of any PRMT/PSMT protocol in N to send m is Ω(b)
field elements.

3 Coding Theory Preliminaries

In our protocols, we have used Reed-Solomon (RS) codes. Let Ch(tb,tf ) be a
noisy channel, where at most tf and tb locations of a codeword can be arbitrarily
erased and changed respectively during the transmission. We call the later type
of errors as Byzantine errors.

Definition 2 ([10]). For a message block M = (m1 m2 . . . mk) over F, define
Reed-Solomon polynomial as PM (x) = m1 + m2x + m3x

2 + . . . + mkxk−1. Let
α1, α2, ..., αn, n > k, denote a sequence of distinct and fixed elements from F.
Then vector C = (c1 c2 . . . cn) where ci = PM (αi), 1 ≤ i ≤ n is called the
Reed-Solomon (RS) codeword of size n for the message block M .
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The next theorem summarizes a known result related to Reed-Solomon (RS)
codes.

Theorem 1 (Singleton Bound [10]). Suppose a sender generates a RS code-
word C of size |C| = N , for a message block M of size k and sends the codeword
C through Ch(tb,tf ). Let the received codeword be C′ of size |C′| ≥ N − tf and
different from C in at most tb locations. Then the receiver can reconstruct the
message M from C′ iff N ≥ 2tb + tf + k.

Theorem 2 gives the number of errors which can be corrected and detected by
RS codes.

Theorem 2 ([10,4]). Let C denotes the RS codeword for a message block of
size k, where |C| = n and let C be sent over Ch(tb,tf ). Let n′ denotes the size
of the received codeword C′, where n′ ≥ n − tf . Then RS decoding can correct
up to c Byzantine errors in C′ and simultaneously detect additional d Byzantine
errors in C′ iff n′ − k ≥ 2c + d.

RS-DECODING ALGORITHM[10]: Berlekamp Welch algorithm is one of the
most simple and efficient RS decoding algorithms existing in the literature. In
general, we denote the RS decoding algorithm by RS − DEC(n′, c, d, k). The
algorithm takes an n′ length codeword C′ received through Ch(tb,tf ), where C′

corresponds to a codeword which was encoded using a polynomial of degree
k − 1 (so the message block size is k). Let t′b ≤ tb denotes the actual number
of Byzantine errors that are present in C′. The only information receiver knows
about t′b is that t′b ≤ tb. The variables c and d are passed as parameters to the
algorithm, where c represents the number of Byzantine errors that receiver wants
to correct in C′ and d represents the number of additional Byzantine errors that
receiver wants to detect in C′. The variables c and d should satisfy the relation
given in Theorem 2. In addition, c + d ≤ tb. The algorithm tries to correct at
most c Byzantine errors in C′. In addition to this, it tries to detect at most d
additional Byzantine errors (if they are present) in C′. The algorithm either (a)
outputs a polynomial of degree k − 1, along with an error list or (b) fails to
output any polynomial of degree k− 1. The error list (if it is produced) contains
at most c entries, where each entry is a pair, indicating an error location in C′

along with the value received at that location in C′.

Definition 3. We call an error list generated by RS−DEC algorithm as “good”
if each of the values in the error list, pointed as corrupted/modified value, is
indeed corrupted. Otherwise we call the error list as “bad”. When an error
list is “bad”, it must point a correct value in C′ as corrupted.

We now design a single phase PRMT protocol called PRMT-Mixed using RS
codes tolerating Astatic

(tb,tf ,tp). In the protocol, S and R are connected by N ≥
2tb + tf + 1 wires, wi, 1 ≤ i ≤ N .

Lemma 1. Protocol PRMT-Mixed correctly sends m by communicating
O
(

N�
N−2tb−tf

)
field elements.
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Proof: Follows from the working of the protocol and Theorem 1. �

Protocol PRMT-Mixed has the following important property.

Theorem 3. If R in advance knows the identity of α ≤ tb wires which are
Byzantine corrupted, then protocol PRMT-Mixed can reliably send m using
block size k ≤ (N − 2tb − tf ) + α.

Proof: Since R knows α wires which are Byzantine corrupted, it simply ignores
these wires and therefore the connectivity (set of active wires) reduces to N −α.
Also among the values received by R along these N−α wires, at most tb−α could
be Byzantine corrupted. Substituting these values in Theorem 1, we get k ≤
N−α−2(tb−α)−tf ≤ (N−2tb−tf )+α. Hence PRMT-Mixed(m, 	, N, tb, tf , k)
will work correctly with k ≤ (N − 2tb − tf ) + α.

Protocol PRMT-Mixed(m, �, N, tb, tf , k): Single Phase PRMT ToleratingAstatic
(tb,tf ,tp)

– S breaks m into blocks B1,B2, . . . ,B�/k, each consisting of k field elements, where
k = N −2tb − tf . If � is not an exact multiple of k, a default padding can be used.

– For each block Bj, 1 ≤ j ≤ �/k of size k, S computes n length RS codeword of Bj

denoted by (cj1cj2 . . . cjN ). S sends cji, 1 ≤ j ≤ �/k along the wire wi, 1 ≤ i ≤ N .
– R parallely receives the (possibly corrupted/erased) cji’s for all Bj’s and applies

the RS decoding algorithm to each of them and reconstructs all Bj’s. R then
concatenates the Bj’s to recover the message m.

4 OPSMT Tolerating Astatic
tb

and Its Limitations

The existing OPSMT protocol against a tb active static Byzantine adversary
Astatic

tb
works as follows [12]: S and R are connected by n = 2tb+1 wires, of which

at most tb can be under the control of Astatic
tb

. Essentially, S sends one random
tb degree polynomial over each of the n wires and their n values distributed
over n wires. After a sequence of interaction between S and R according to the
protocol, the constant coefficients of the tb + 1 polynomials which are not under
the control of the adversary, are established as an information theoretic secure
”one time pad” between S and R. Moreover the communication complexity of the
interaction is O(n2). Now using this one time pad, S securely sends tb+1 = Θ(n)
field elements to R by communicating O(n2) field elements [12].

For tolerating Astatic
(tb,tf ,tp), S and R must be connected by at least n = 2tb +

tf + tp + 1 wires (see Theorem 4). Now if we use the same technique of sending
polynomials as well as their values (as used in OPSMT protocol against Astatic

tb
),

S and R ends up in establishing a secure ”one time pad” of length tb + 1 after
communicating O(n2) field elements. The reason is that adversary can failstop
tf wires and passively listen the polynomials over (tb + tp) wires. Therefore only
n − tf − tb − tp = tb + 1 polynomials will be unknown to the adversary. Since
n = 2tb + tf + tp + 1, tb may not be Θ(n) and can even be a constant. Thus the
resulting PSMT protocol may send a message of very small size with very high
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communication complexity of O(n2), which may not be an OPSMT protocol
against Astatic

(tb,tf ,tp). In the next section, we propose certain new protocols based
on some new techniques, using which we can design OPSMT protocols tolerating
both Astatic

(tb,tf ,tp) and Amobile
(tb,tf ,tp).

5 OPSMT Tolerating Static Mixed Adversary Astatic
(tb,tf ,tp)

We first recall the characterization for the possibility and the lower bound
on communication complexity of any multiphase PSMT protocol tolerating
Astatic

(tb,tf ,tp).

Theorem 4 ([15]). Any r-phase (r ≥ 2) PSMT protocol between S and R in an
undirected network N tolerating Astatic

(tb,tf ,tp) is possible iff N is (2tb + tf + tp +1)-
(S,R)-connected.

Theorem 5 ([15]). Any r-phase (r ≥ 2) PSMT protocol which securely
sends 	 field elements in the presence of Astatic

(tb,tf ,tp) needs to communicate

Ω
(

n�
n−(2tb+tf +tp)

)
field elements, where n ≥ 2tb + tf + tp + 1.

Let S and R be connected by n = 2tb + tf + tp +1 wires wi, 1 ≤ i ≤ n. We design
a four phase OPSMT protocol OPSMT Πstatic

(tb,tf ,tp) which securely sends n field
elements by communicating O(n2) field elements, tolerating Astatic

(tb,tf ,tp). We first
design few sub-protocols and finally combine them to get OPSMT Πstatic

(tb,tf ,tp).

Assumption 1. In our protocols, we assume that whenever sender sends some
information to receiver through n wires, then the receiver receives information
over first N ′ (n − tf ≤ N ′ ≤ n) wires and the last n − N ′ fails to deliver any
information to the receiver.

5.1 Pad Establishment Πstatic
(tb,tf ,tp)- A Conditional Single Phase

PSMT Protocol

Let A and B be connected by n = 2tb + tf + tp + 1 wires under the
influence of Astatic

(tb,tf ,tp). Also A in advance knows the identity of at least
tb

2 Byzantine corrupted wires. We then design a single phase sub-protocol
Pad Establishment Πstatic

(tb,tf ,tp), given in Table 2, which securely establishes an
information theoretically secure, random one time pad of length n between A
and B.

Theorem 6. Pad Establishment Πstatic
(tb,tf ,tp) establishes the information theo-

retic secure n tuple q = [q1(0) . . . qn(0)] between A and B against Astatic
(tb,tf ,tp) in

single phase by communicating O(n2) field elements.

Proof: From Lfault, B identifies |Lfault| ≥ tb

2 Byzantine corrupted wires and
neglects them. Among the remaining wires, at most tf can fail to deliver any
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information. So in the worst case n′ = 2tb + tp + 1 − |Lfault|. The codeword
Q′

j, 1 ≤ j ≤ n received by B, represents a RS codeword, which is RS encoded
using a polynomial of degree k−1 = tb −|Lfault|+ tp. Also B knows that in Q′

j ,
at most tb − |Lfault| values could be corrupted and tries to correct these errors
by applying RS−DEC with c = tb −|Lfault| and d = 0. Substituting the values
of n′, c, d and k in the inequality of Theorem 2, we find that RS −DEC(n′, tb −
|Lfault|, 0, tb − |Lfault| + tp + 1) will be able to correct all the tb − |Lfault| ≤ tb

2
errors in Q′

j and outputs qj(x) correctly.
The adversary gets at most tb − |Lfault| + tp distinct points on each tb −

|Lfault| + tp degree polynomial qj(x), implying information theoretic security
for each qj(0). For each qj(x), 1 ≤ j ≤ n, A sends n − |Lfault| = O(n) values
which incurs a total communication complexity of O(n2). Also communication
complexity of broadcasting Lfault is O(n2). �

Table 2. Conditional Single Phase Protocol to Establish an One Time Pad

Protocol Pad Establishment Πstatic
(tb,tf ,tp)

Computation and Communication by A
• A saves the identity of the known faulty wires in a list Lfault. According to the
problem specification, tb

2
≤ |Lfault| ≤ tb. A selects n random polynomials qj(x), 1 ≤

j ≤ n, over F, each of degree tb −|Lfault|+ tp. For each qj(x), 1 ≤ j ≤ n, A computes
a RS codeword [qj1 qj2 . . . qjn] of size n. For 1 ≤ i ≤ n, if wire wi �∈ Lfault, then A
sends to B the values qji over wi. Finally A broadcasts Lfault to B.

Computation by B
• B receives Lfault and neglects any information received over wi ∈ Lfault. Among
the remaining wires, at most tf wires can fail to deliver any information. Suppose
B receives values over the first n′ ≥ n − |Lfault| − tf wires. Let B receives q′ji over
wi, 1 ≤ i ≤ n′. Let Q′

j = [q′j1 q′j2 . . . q′jn′ ], 1 ≤ j ≤ n denote the jth received
codeword. B applies RS − DEC(n′, tb − |Lfault|, 0, tb − |Lfault| + tp + 1) algorithm
to Q′

j , recovers qj(x) and hence qj(0). The n tuple q = [q1(0) q2(0) . . . qn(0)] is
established correctly and securely between A and B.

5.2 Error Identification Πstatic
(tb,tf ,tp) - A Three Phase Protocol to

Identify at Least tb

2
Byzantine Corrupted Wires

As before A and B are connected by n = 2tb + tf + tp + 1 wires. We now design
a novel three phase protocol Error Identification Πstatic

(tb,tf ,tp), given in Table 3,
tolerating Astatic

(tb,tf ,tp), which has the following properties: (a) If at most tb

2 wires
get Byzantine corrupted during first phase then A securely establishes an one
time pad of length n with B at the end of second phase. (b) If more than tb

2 wires
get Byzantine corrupted during first phase, then the pad will not be established.
However, either A comes to know the identity of at least tb

2 Byzantine corrupted
wires at the end of second phase or B comes to know the identity of at least tb

2
Byzantine corrupted wires at the end of third phase.
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Table 3. A three phase protocol

Protocol Error Identification Πstatic
(tb,tf ,tp)

Phase I: (A to B): A randomly selects n polynomials p1(x), p2(x), . . . , pn(x)
over F, each of degree tb + tp. For each pj(x), 1 ≤ j ≤ n, A computes a RS codeword
[pj1 pj2 . . . pjn] of size n. Over wire wi, 1 ≤ i ≤ n, A sends the values pji.

Phase II: (B to A): Let B receives information over first n′ wires where

n − tf ≤ n′ ≤ n. Let B receives p′
ji, 1 ≤ j ≤ n over wire wi, 1 ≤ i ≤ n′. B

then forms the received codewords P ′
j = [p′

j1 p′
j2 . . . p′

jn′ ], 1 ≤ j ≤ n.

• In each P ′
j , 1 ≤ j ≤ n, B assumes at most tb

2
values to be corrupted, applies

RS − DEC(n′, tb
2

, 0, tb + tp + 1) algorithm to each P ′
j and tries to reconstruct some

polynomial p̄j(x) of degree tb + tp.

• If there exists some j ∈ {1, 2, . . . , n}, such that B fails to recover a tb + tp degree
polynomial after applying RS − DEC(n′, tb

2
, 0, tb + tp + 1) to codeword P ′

j , then
B broadcasts to A, “ERROR-R” signal and received codeword P ′

j , along with its
index j. /* At least tb/2 + 1 Byzantine errors are present in P ′

j . */

• If some polynomial of degree tb + tp is reconstructed after applying RS decoding
algorithm to each of n received codewords, then B proceeds as follows:

Let Error Listj denotes the error list obtained by applying RS decoding algorithm
to P ′

j . Also let Lj be the number of pairs in Error Listj . Since RS decoding is
applied to P ′

j , assuming the number of errors in P ′
j to be at most tb

2
, Lj ≤ tb

2
.

For 1 ≤ j ≤ n, B broadcasts Error Listj to A.

Computation by A

• If A receives “ERROR-R” signal and index j along with P ′
j , then A locally

compares P ′
j with Pj (the original jth codeword restricted to first n′ locations), finds

the identity of at least tb
2

+ 1 faulty wires which delivered incorrect components of
Pj during first phase and TERMINATES the protocol.

• If A receives n error-lists and all the n error lists are “good”, then A concludes
that B has recovered each pj(x), 1 ≤ j ≤ n correctly and the protocol terminates.
Otherwise, A finds at least one j ∈ {1, 2, . . . , n}, such that Error Listj is ”bad”. If
there are multiple such j’s, A randomly selects one. In this case, A concludes that
B reconstructed p̄j(x) �= pj(x) and initiates Phase III.

Conditional Phase III: A to B: If A has identified a j such that B has recon-
structed p̄j(x) �= pj(x), then A broadcasts to B the tuple [pj1 pj2 . . . pjn], which is
the original codeword corresponding to pj(x) (which A had sent during Phase I). In
this case, B correctly receives the actual codeword corresponding to pj(x), compares
it with the codeword P ′

j (corresponding to pj(x)) which it has received during Phase
I, identifies more than tb

2
faulty wires and terminates the protocol.
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We now formally prove the properties of protocol
Error Identification Πstatic

(tb,tf ,tp).

Theorem 7. 1. If atmost tb

2 wires are Byzantine corrupted duringPhase I, then
an n length information theoretically secure pad p = [p1(0) p2(0) . . . pn(0)] is
established between A and B at the end of Phase II.

2. If more than tb

2 Byzantine errors occurred during Phase I, then either A or
B comes to know the identity of more than tb

2 corrupted wires at the end of
Phase II or Phase III respectively.

Proof: See the full version of this paper [3]. �

Theorem 8. Communication complexity of Error Identification Πstatic
(tb,tf ,tp) is

O(n2tb).

5.3 Reducing the Communication Complexity of Protocol
Error Identification Πstatic

(tb,tf ,tp)

We now present a nice trick to reduce the communication complexity
of sending n error-lists from O(n2tb) to O(n2) in Phase II of proto-
col Error Identification Πstatic

(tb,tf ,tp) (previously, it has been broadcast). Let
ERROR ListJ be the error-list with maximum number of pairs LJ , where
J ∈ {1, 2, . . . , n}. If there are several error-lists with LJ pairs, then B arbitrar-
ily selects one. B then broadcasts only Error ListJ and sends the remaining
error-lists after concatenating them into a list Y and executing the protocol
PRMT-Mixed(Y, |Y |, n, tb, tf , LJ). A correctly receives Error ListJ and veri-
fies whether it is ”good” . If it is, then A concludes that B has correctly recovered
pJ(x). In this case, A also identifies LJ faulty wires from Error ListJ . Thus from
Theorem 3, protocol PRMT-Mixed will correctly deliver the list Y contain-
ing the remaining error-lists. On the other hand, if A finds that Error ListJ is
”bad”, then A concludes that B has not recovered pJ(x) correctly. In this case,
A fails to know LJ faults from Error ListJ and hence can not recover list Y
delivered using PRMT-Mixed. But still A identifies one polynomial (pJ(x))
which is not received correctly by B (due to more than tb

2 errors during Phase
I). Note that while the properties of protocol Error Identification Πstatic

(tb,tf ,tp)

(Theorem 7) remain intact by incorporating these changes, the communication
complexity reduces to O(n2). For complete formal details, see the full version of
the paper [3].

Lemma 2. The above steps when incorporated in Phase II of proto-
col Error Identification Πstatic

(tb,tf ,tp), reduces its communication complexity to
O(n2).

Proof: Broadcasting LJ incurs a communication overhead of O(n2). From
Lemma 1 and Theorem 3, PRMT-Mixed(Y, |Y |, n, tb, tf , LJ) incurs a com-

munication overhead of O
(

|Y |
LJ

∗ n
)

= O(n2) because |Y | ≤ (n − 1) ∗ (2LJ).
�
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5.4 Designing Four Phase OPSMT Protocol OPSMT Πstatic
(tb,tf ,tp)

We now combine Error Identification Πstatic
(tb,tf ,tp) and

Pad Establishment Πstatic
(tb,tf ,tp) to design a four phase OPSMT protocol

called OPSMT Πstatic
(tb,tf ,tp), given in Table 4, tolerating Astatic

(tb,tf ,tp). In the
protocol, we show, how an one time pad is established between S and R. Once
S knows that the pad is going to be established, S can blind the message by
XORing it with the pad and broadcasts the blinded message to R in the last
phase of the protocol. On receiving the blinded message, R extracts the message
by XORing the blinded message with the pad. We now prove the correctness
and security of protocol OPSMT Πstatic

(tb,tf ,tp).

Theorem 9. In OPSMT Πstatic
(tb,tf ,tp), S correctly establishes a random, infor-

mation theoretically secure one time pad of length n with R in four phases.

Proof: In OPSMT Πstatic
(tb,tf ,tp), the sub-protocol Error Identification Πstatic

(tb,tf ,tp)

terminates in either two phases or three phases. If it terminates in two phases,
then there are two possibilities: If at the end of second phase, R concludes that
the pad p is securely established with S, then R terminates the protocol in third
phase by broadcasting “SUCCESS-R” signal. Otherwise at the end of Phase II,
R will know the identity of at least tb

2 + 1 faulty wires (see Theorem 7). With
this knowledge, R securely establishes the pad q with S during phase III using
sub-protocol Pad Establishment Πstatic

(tb,tf ,tp) (Theorem 6).
If Error Identification terminates in three phases, then at the end of Phase

III, S identifies at least tb

2 + 1 faulty wires (Theorem 7). Now S establishes the
pad q with R during fourth phase, using Pad Establishment (see Theorem 6).
The security of pad p (q) follows from Theorem 7 (Theorem 6).

Table 4. A Four Phase OPSMT Protocol Tolerating Astatic
(tb,tf ,tp)

Protocol OPSMT Πstatic
(tb,tf ,tp)

• R and S starts executing protocol Error Identification Πstatic
(tb,tf ,tp), where

Phase I is initiated by R. IF at the end of Phase II of protocol
Error Identification Πstatic

(tb,tf ,tp), pad p = [p1(0) p2(0) . . . pn(0)] is established se-
curely between R and S, then R terminates the protocol by broadcasting “SUCCESS-
R” signal to S.

• IF at the end of Phase II of Error Identification Πstatic
(tb,tf ,tp), R identifies tb

2
+ 1

faulty wires, then R securely establishes an one time pad q = [q1(0) q2(0) . . . qn(0)]
with S by executing Pad Establishment Πstatic

(tb,tf ,tp).

• IF at the end of Phase III of protocol Error Identification Πstatic
(tb,tf ,tp), S iden-

tifies at least tb
2

+ 1 faulty wires, then S securely establishes an one time pad q =
[q1(0) q2(0) . . . qn(0)] with R by executing protocol Pad Establishment Πstatic

(tb,tf ,tp)

and terminates the protocol.
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Theorem 10. Protocol OPSMT Πstatic
(tb,tf ,tp) is an OPSMT protocol communi-

cating O(n2) field elements.

Proof: The communication complexity follows from Lemma 2, Theorem 6 and
working of the protocol. From Theorem 5, in an n = 2tb + tf + tp + 1 connected
network, any four phase PSMT protocol has to communicate Ω(n2) field ele-
ments to securely send n field elements against Astatic

(tb,tf ,tp). Since communication
complexity of OPSMT Πstatic

(tb,tf ,tp) is O(n2), it is an OPSMT protocol. �

Remark 1. Noticeably OPSMT Πstatic
(tb,tf ,tp) sends only codeword of polynomials,

in contrast to the existing protocol summarized in section 4, which sends both
polynomial and its codeword. The advantage that we get by sending only code-
word is that we obtain one information theoretic secure value per codeword (after
some intermediate information exchanges and then applying RS decoding), thus
establishing a secure one time pad of size Θ(n) between S and R. Soon, we will
show that this technique can be used to design OPRMT and OPSMT protocols
even against mobile mixed adversary.

6 OPRMT Tolerating Mobile Mixed Adversary Amobile
(tb,tf ,tp)

We first recall that for the existence of any PRMT protocol tolerating Astatic
(tb,tf ,tp),

the network should be (2tb + tf + 1)-(S, R)-connected [15]. The next theorem
gives the characterization of PRMT tolerating Amobile

(tb,tf ,tp).

Theorem 11. PRMT between S and R in an undirected network N , tolerating
Amobile

(tb,tf ,tp) is possible iff N is (2tb + tf + 1)-(S,R)-connected.

Proof: (2tb + tf + 1)-(S,R)-connected network is required for the existence of
PRMT against a weaker adversary Astatic

(tb,tf ,tp) [15]. Hence it is required against
more stronger Amobile

(tb,tf ,tp). On the other hand, if N is (2tb + tf + 1)-(S, R)-
connected, then S can reliably send a message by broadcasting it to R. �

As a sufficiency proof, we specified broadcasting which is a naive protocol. It
communicates n	 field elements for transmitting 	 elements reliably. So it is not
an efficient PRMT protocol against Amobile

(tb,tf ,tp). So, the important question here
is: can we reliably send a message containing 	 field elements by communicating
less than O(n	) field elements against Amobile

(tb,tf ,tp)? We answer this question by
proving the lower bound on communication complexity of PRMT protocols tol-
erating Amobile

(tb,tf ,tp) and show that it is more than the existing lower bound against
Astatic

(tb,tf ,tp). This shows that as far as lower bound on communication complexity
of PRMT is concerned, Amobile

(tb,tf ,tp) is more powerful than Astatic
(tb,tf ,tp).

Remark 2. In [15], it is shown that any PRMT protocol in a n-(S, R)-connected
network (n ≥ 2tb + tf + 1), communicates Ω

(
(n−tf )�

n−(tb+tf )

)
field elements in order

to reliably send 	 field elements against Astatic
(tb,tf ,tp). If n = 2tb + tf + 1, then
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this it implies that any PRMT protocol has to communicate Ω(	) field elements
to reliably send a message containing 	 field elements against Astatic

(tb,tf ,tp). More-
over, in [20], the authors have shown that this bound is tight by designing an
O
(
log( tf

n−tf
)
)

phase OPRMT protocol.

Theorem 12. Any PRMT protocol between S and R connected by n ≥ 2tb +
tf + 1 wires under the influence of Amobile

(tb,tf ,tp) must communicate Ω( n�
n−(tb+tf ))

field elements in order to transmit a message containing 	 field elements.

Proof(sketch):Theproof of the theorem is inspiredby entropybased argument,
used to prove the lower bound on the communication complexity of PRMT/PSMT
protocols against Astatic

tb
[18]. The complete formal proof is available in the full

Table 5. Three Phase OPRMT Protocol Tolerating Amobile
(tb,tf ,tp)

Protocol OPRMT Πmobile
(tb,tf ,tp)

Phase I: S to R: S divides m into blocks B1, B2, . . . , Bz, each containing 1 + tb
2

field elements. For each Bj , 1 ≤ j ≤ z, S computes a RS codeword of size n denoted
by [cj1 cj2 . . . cjn] and sends cji through wi.

Phase II: R to S: R receives information over the first n − tf ≤ n′ ≤ n wires.
Through these n′ wires, R receives the values c′ji, 1 ≤ j ≤ z, 1 ≤ i ≤ n′. Let
C′

j , 1 ≤ j ≤ z denotes jth received codeword where C′
j = [c′j1 c′j2 . . . c′jn′ ]. R

applies RS − DEC(n′, tb
2

, tb
2

, tb
2

+ 1) algorithm to each C′
j and tries to correct tb

2

errors and simultaneously detect additional tb
2

errors in C′
j .

– If RS−DEC does not detect additional errors (≤ tb
2

) in any C′
j , after correcting

at most tb
2

errors, then RS − DEC recovers each block Bj of m correctly. R
recovers m by concatenating all Bj ’s and broadcasts “TERMINATE” signal to
S.

– If ∃J ∈ {1, 2, . . . , z}, such that RS −DEC detects additional errors in C′
J , after

correcting at most tb
2

errors, then R broadcasts C′
J and index J .

Phase III: S to R: If S receives “TERMINATE” signal, then he terminates the
protocol. Else S does the following:

– S receives C′
J and index J . After locally comparing C′

J with its corresponding
original codeword CJ , S identifies at least tb

2
+ 1 wires which were Byzantine

corrupted during Phase I and broadcasts their identity to R.

Local Computation by R: If during second phase, R has broadcasted C′
J , then R

correctly receives the identity of at least tb
2

+1 wires, which delivered incorrect values
during Phase I. From each codeword C′

j received during first phase, R removes the
c′ji’s received over these corrupted wires. R applies RS − DEC to the new C′

j ’s,
assuming the number of errors c (to be corrected) to be at most tb

2
and the number

of additional errors d (to be detected) to 0 and correctly recovers all Bj ’s and hence m.
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version of this paper [3]. Rather, here we try to quantify the reason behind different
lower bound for static and mobile mixed adversary. In static case, the lower bound
is derived by assuming that both S and R knows the set of wires which are fail-stop
corrupted in advance. Hence the term (n−tf) appears in the numerator of the lower
bound expression against Astatic

(tb,tf ,tp) (see Remark 2). This is a reasonable assump-
tion because against static adversary,we can always strategies protocols to remem-
ber faults caught in earlier phases and use that knowledge to amortize the overall
communication complexity and message size in later phases (the OPRMT protocol
of [20] is based on this important principle). However, protocols tolerating mobile
mixed adversary is memoryless because adversary corrupts different set of wires in
different phases of the protocol. Hence, the protocols against mobile mixed adver-
sary cannot use the knowledge of the faults, which occurred in previous phases, to
amortize the communication complexity and message size in later phases. �

We now design a three phase OPRMT protocol OPRMT Πmobile
(tb,tf ,tp), given in

Table 5, which reliably sends a message m containing n(tb +1) field elements by
communicating O(n2) field elements, where n = 2tb + tf + 1.

Theorem 13. OPRMT Πmobile
(tb,tf ,tp) reliably sends n(tb + 1) field elements by

communicating O(n2) field elements in three phases tolerating Amobile
(tb,tf ,tp).

Proof: See the full version of this paper [3]. �

7 OPSMT Tolerating Mobile Mixed Adversary Amobile
(tb,tf ,tp)

The characterization for the possibility of any multiphase PSMT protocol tol-
erating Amobile

(tb,tf ,tp) is same as the characterization for PSMT against Astatic
(tb,tf ,tp)

(see Theorem 4). The fact that Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp)

proves the necessity of the characterization. To prove the sufficiency, we present
an OPSMT protocol in the sequel tolerating Amobile

(tb,tf ,tp). Before that we note
that the lower bound on communication complexity of PSMT protocols against
Astatic

(tb,tf ,tp) (specified in Theorem 5) holds good in case of PSMT protocols tol-
erating Amobile

(tb,tf ,tp). Since Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp), any lower
bound against Astatic

(tb,tf ,tp) is a trivial lower bound against Amobile
(tb,tf ,tp). We now

show that this bound is tight. We present a constant phase OPSMT protocol
OPSMT Πmobile

(tb,tf ,tp), given in Table 6, 7 and 8, which securely sends Θ(n) field
elements by communicating O(n2) field elements against Amobile

(tb,tf ,tp), where S and
R are connected by n = 2tb + tf + tp + 1 wires. The protocol terminates in at
most nine phases and establishes an information theoretically secure one time
pad of length either n − 1 or n

2 between S and R.
Notice that the technique proposed in section 5.3 for sending n error lists in

a single phase incurring O(n2) communication complexity, can not be adopted
against mobile adversary. This is so because the technique used the knowledge
of the Byzantine corruption done in earlier phases. However, mobile adversary
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Table 6. A Constant Phase OPSMT Protocol Tolerating Amobile
(tb,tf ,tp)

Protocol OPSMT Πmobile
(tb,tf ,tp)

Phase I: S to R: S selects n random polynomials pj(x), 1 ≤ j ≤ n over F, each
of degree tb + tp, such that pj(0) = sj . For each pj(x), S forms a RS codeword
[cj1 cj2 . . . cjn] of size n and sends cji over wire wi.

Phase II: R to S: R receives c′ji’s over the first n − tf ≤ n′ ≤ n wires. R applies
RS − DEC(n′, tb

2
, 0, tb + tp + 1) to the jth, 1 ≤ j ≤ n received codeword C′

j =
[c′j1 cj2 . . . c′jn′ ]. There are two possible cases:

1. Corresponding to each C′
j , 1 ≤ j ≤ n, RS−DEC outputs some polynomial p̄j(x)

of degree tb + tp, along with error list Error Listj containing at most tb
2

pairs.
R then combines only the first n

2
error lists and reliably sends them to S using

three phase PRMT protocol OPRMT Πmobile
(tb,tf ,tp).

2. There exists at least one J ∈ {1, 2, . . . , n}, such that RS − DEC, when applied
to C′

J , fails to output any tb + tp degree polynomial. In this case, R broadcasts
C′

J and its index J .

Table 7. Remaining Execution of OPSMT Πmobile
(tb,tf ,tp), when step 2 of Phase II has

been executed

Execution I
Phase III: S to R

– S correctly receives index J and codeword C′
J . After locally comparing C′

J with
its corresponding actual codeword CJ , S identifies at least tb

2
+ 1 wires which

delivered incorrect values to R during Phase I. S saves the identity of these
wires in a list Lfault and broadcasts Lfault to R.

– S also lists all cji’s, j ∈ {1, 2, . . . , n} − {J}, sent during Phase I, over wi ∈
Lfault. S then re-sends these (n − 1) × |Lfault| = O(ntb) values by executing
the three phase PRMT protocol OPRMT Πmobile

(tb,tf ,tp). This will occupy the next

three phases. /* The re-send values are already known to Amobile
(tb,tf ,tp) because the

wires in Lfault were under the control of Amobile
(tb,tf ,tp) during Phase I. */

Local Computation by R (At the end of Phase V)

• After receiving list Lfault, R identifies |Lfault| > tb
2

wires which has delivered
incorrect information during Phase I. R removes from the n − 1 codewords C′

j ’s,
j ∈ {1, 2, . . . , n} − {J} (received during Phase I), the values c′ji’s, which R has
received along wi ∈ Lfault during Phase I. R replaces them with the corresponding
actual cji’s, which S has re-send through PRMT protocol PRMT Πmobile

(tb,tf ,tp).

• After replacement, R knows that out of the n′ values in each C′
j , j ∈ {1, 2, . . . , n}−

{J}, at most tb − |Lfault| could be corrupted. R applies RS − DEC(n′, tb −
|Lfault|, 0, tb + tp + 1) algorithm to these n − 1 C′

j ’s and correctly recovers pj(x)’s.
The constant term of these n− 1 polynomials constitute an n− 1 length information
theoretically secure pad established between S and R and the protocol terminates
here.
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Table 8. Remaining Execution of OPSMT Πmobile
(tb,tf ,tp), when step 1 of Phase II has

been executed

Execution II
/* R has initiated three phase OPRMT − Πmobile

(tb,tf ,tp) to reliably send first n
2

error

lists during Phase II. The OPRMT protocol will be over at the end of Phase IV.*/

Local Computation by S (At the end of Phase IV): S reliably receives first n
2

error lists through OPRMT Πmobile
(tb,tf ,tp) and checks the status of these error lists.

– If all error lists are “good”, then S concludes that R has correctly recov-
ered pj(x), 1 ≤ j ≤ n

2
correctly and an information theoretically secure pad

[p1(0) p2(0) pn/2(0)] is established with R. S terminates the protocol by broad-
casting terminating signal to R. Accordingly R terminates the protocol.

– If ∃J ∈ {1, 2, . . . , n
2
}, such that Error ListJ is “bad”, then S concludes that

more than tb
2

values has been changed in Jth codeword during Phase I.

Phase V: S to R (If second case happens in the above computation)

S asks R to broadcast the Jth codeword as received by R during Phase I. S does
this by broadcasting index J along with “ERROR” signal.

Phase VI: R to S

On receiving “ERROR” signal and index J during Phase V, R broadcasts C′
J ,

received during Phase I.

Phase VII: S to R
On receiving C′

J , S identifies more than tb
2

wires which were Byzantine corrupted
during Phase I and saves them in a list Lfault. From here onwards the execution is
similar as in Execution I. We specify only the small differences:

– If wi ∈ Lfault, then S lists the ith component of the codewords corresponding to
the last n

2
polynomials pj(x), n/2 + 1 ≤ j ≤ n. S reliably re-sends these compo-

nents by executing OPRMT Πmobile
(tb,tf ,tp). Recall that in this execution sequence,

R had not sent the last n
2

error lists during Phase II (step 1). The re-send val-
ues are already known to the adversary and does not give any extra information
about pj(x), n/2 + 1 ≤ j ≤ n.

– OPRMT Πmobile
(tb,tf ,tp) terminates in Phase IX (since it takes 3 phases) and there-

fore at the end of phase IX, R performs the same local computation as done
in Execution I to correctly recover the polynomials pj(x), n/2 + 1 ≤ j ≤ n to
establish a pad of size n

2
. The n

2
size pad constitutes the constant term of the

recovered polynomials pj(x), n/2 + 1 ≤ j ≤ n.

can corrupt different set of wires in different phases. So, here we use the three
phase reliable protocol OPRMT Πmobile

(tb,tf ,tp) to send the error lists in three phases
with same communication complexity of O(n2). Also note that while executing
OPRMT Πmobile

(tb,tf ,tp), S and R can neglect a pre-determined set of tp wires and
run the protocol on the remaining 2tb+tf +1 wires (the PRMT protocol requires
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only 2tb + tf + 1 wires between S and R). This does not affect the correctness
and working of the protocol.

Theorem 14. Protocol OPSMT Πmobile
(tb,tf ,tp) correctly and securely establishes an

one time pad of length Θ(n) between S and R in at most nine phases by com-
municating O(n2) field elements tolerating Amobile

(tb,tf ,tp).

Proof: See the full version of this paper [3]. �

8 Conclusion

In this paper we have contributed significantly to the progress of the state of the
art in the problem of PRMT and PSMT. We presented a number of constant
phase protocols which are first of their kind and enjoys the property of being
communication optimal against static and mobile mixed adversary . One can try
to reduce the phase complexity of our OPRMT and OPSMT protocols tolerating
static and mobile mixed adversary.
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Abstract. The problem of establishing symmetric keys in wireless sen-
sor networks has been extensively studied, but other aspects of key man-
agement have received comparatively little attention. In this paper we
consider the problem of refreshing keys that are shared among several
nodes in a WSN, in order to provide forward security. We discuss several
applications that lead to sensor networks with very different properties,
and we propose key refreshing schemes that are useful in each of these
environments, together with resynchronisation methods that allow nodes
possessing different versions of a key to arrive at a common version.

Keywords: key refreshing, wireless sensor networks, forward security.

1 Introduction

A wireless sensor network (WSN) consists of a number of small, battery-powered
sensing devices (known as sensor nodes) that employ wireless communication to
form a network in order to distribute and manipulate the sensed data. As public-
key cryptographic techniques are regarded as being undesirably costly for these
highly constrained devices it is necessary for nodes to share symmetric keys
for the purposes of providing authentication, data integrity or confidentiality.
Much research has been done on the problem of establishing shared keys in such
networks (see [3,8,14] for surveys of this area); less attention has been paid to
the ongoing key management requirements that arise after a network has been
deployed. One such requirement, recognised in the cryptographic community
since the 1980s (see [5]), is forward security: if a node is captured and its secret
material compromised, an adversary should not be able to decrypt messages
that were intercepted by the adversary in the past. In a network environment,
we may weaken this requirement to insisting that the adversary cannot decrypt
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messages that were broadcast more than a very short time ago. Forward security
is of particular significance in a WSN, as the nodes operate in an uncontrolled
environment and lack tamper proof hardware, and hence are vulnerable to adver-
sarial compromise. Moreover, the difficulty of distinguishing node compromise
from routine node failure adds to the security challenges of such an environment.

Schemes for refreshing keys (updating keys using a one-way function) in order
to provide forward security in a WSN setting have so far been restricted to
networks in which there are no group keys and where nodes are capable of storing
a separate key for each of their neighbours (this is the case for the schemes
proposed by Klonowski et al. [6] and Mauw et al. [9]). But these restrictions are
often not valid: group keys (which could be shared by many nodes) are needed in
many applications; even when keys are only used to secure pairwise links, a node
might use the same key to communicate with more than one of its neighbours
because of limited storage capabilities. (For example, this will often be the case
if key predistribution techniques such as those of Eschenauer and Gligor [4] or
Lee and Stinson [7] are used.) Indeed, when a network is dense, the number of
secure links a node might want to establish might exceed the number of keys it
is able to store.

This paper is the first to examine how to provide forward security by key
refreshing in networks with these more general patterns of key sharing. We con-
sider five network environments that require different methods of key refreshing.
We propose three different key refreshing solutions: the synchronous techniques
of event-driven refreshing (Scheme 1) and flooded refreshing (Scheme 2), and
the asynchronous message-driven refreshing (Scheme 3). In addition, we propose
two methods of resynchronising the versions of each key in the asynchronous
case: by means of a flood, or through the use of a leader election algorithm.

In Sect. 2 we consider definitions of forward security appearing in the liter-
ature, and examine standard techniques for refreshing pairwise keys, as well as
those that have been proposed for use in sensor networks.

In Sect. 3 we discuss several applications for sensor networks that give rise
to five distinct categories of networks with differing properties. As suggested by
the examples given in [13] by Römer and Mattern, the properties of sensors and
their communication patterns can vary much more widely than is acknowledged
in much of the sensor network literature. The network environments we describe
encompass a wide range of possible WSNs: sensors may be fixed or mobile,
the network may be dense or sparse, the amount of communication within the
network may be steady, or it may fluctuate. In fact, the schemes we propose are
not restricted to sensor networks, but may find application in any network in
which symmetric keys are shared by more than two entities. We assume that
each node stores a number of symmetric keys from some key pool, and that each
key is potentially stored by a number of different nodes. We further suppose that
a node is able to determine its neighbours: nodes with which it shares at least
one key, and which are within its communication range.

In Sect. 4 we propose schemes for updating keys to provide forward security
in the first two environments we have identified.
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In Sect. 5 we discuss a scheme appropriate for the remaining three environ-
ments, and provide schemes for resynchronising the versions of keys possessed
by nodes in cases where the nodes hold differing versions of the same key. We
conclude with a discussion of some further issues relating to key refreshing in
WSNs.

2 Forward Security through Pairwise Key Refreshing

In this section we describe standard techniques for achieving forward security for
a single pairwise key, as well as two schemes that have been proposed in a sensor
network context. We then point out the problems of extending pairwise schemes
to the setting where a key is shared by more than one node in a network.

2.1 Notions of Forward Security

Provably Secure Refreshing. In [1], Bellare and Yee describe how symmetric
keys can be refreshed using a stateful generator: a pseudorandom bit generator
that takes a state as input, then produces an output block and a new state, which
is used as the input for the next iteration of the generator. Such a generator is
defined to be forward secure if an adversary who is given access to the state of the
generator at a time of its choice cannot feasibly distinguish the sequence of bits
previously output by the generator from a random sequence. A stateful generator
can be used for key refreshing in the following manner. Let g : {0, 1}s → {0, 1}b+s

be a pseudorandom generator (such as the Blum-Blum-Shub generator [2], for
example) and let s0 be a randomly chosen s-bit initial state. The first b bits of
g(s0) are output as an initial key k1, and the remaining s bits are stored as the
state s1. A sequence of keys ki can then be produced by applying g to the state
si−1, updating the state using the output of g each time. Bellare and Yee prove
that this stateful generator is forward secure, provided that g is pseudorandom.
As this process is deterministic, two entities who share an initial common state
can use this method to produce a forward-secure sequence of shared keys without
any communication overheads.

In the constrained environment of a WSN, however, the use of a provably
secure generator is likely to prove too computationally expensive. Also, the need
to store the generator’s internal state as well as the current key represents an
additional overhead. In order to realise a significant gain in efficiency, it may
therefore be deemed acceptable in a sensor network context to consider a weaker
form of forward security, namely: given a version of a key, it should be computa-
tionally infeasible to decrypt any ciphertexts produced with prior versions of the
key. This can be achieved by the use of a one-way function. This is a standard
technique that can be described as follows.

Standard Refreshing. Suppose that nodes Alice and Bob share a symmetric
key k taken from a key space K. Let f : K → K be a public one-way function (so
f can be efficiently computed, but it is difficult to find an inverse image under
f). In practice, we may build a one-way function f from a secure hash function.
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Define the ith version ki of the key k by k0 = k and ki = f(ki−1) for i ≥ 1.
Initially, both Alice and Bob store version 0 of the key. Whenever they exchange
an encrypted message, they use the current version of the key. After exchang-
ing the message, they replace their key ki by ki+1 = f(ki), and destroy the
original key ki. This process is known as refreshing the key. Note that if Alice
or Bob are compromised, the adversary only comes into possession of the most
up-to-date version ki of the key. The adversary is unable to compute any pre-
vious version kj of the key, where j < i, because f is one-way, and so cannot
decrypt any ciphertexts intercepted before the node compromise. This method
therefore satisfies the restricted notion of forward security (although it does not
achieve Bellare and Yee’s indistinguishability property, as the function f can be
used to distinguish a sequence of keys from a random sequence). Both standard
and provably secure refreshing require no communication overhead. The former
technique is a little more efficient, but the latter technique has the advantage of
a more precisely defined security model. In our schemes, which we describe in
Sect. 4 and 5, either technique can be used.

2.2 Forward Security in Sensor Networks

The literature contains examples of schemes for refreshing pairwise keys that
have been proposed specifically for WSNs. In [9], Mauw, van Vessem and Bos
consider a network in which each node communicates directly with a base sta-
tion. Each node n shares a unique initial key x0

n with the base station, and
the standard refreshing technique described in Subsect. 2.1 is used, with key xi

n

being generated as H(xi−1
n ), where H is a one-way hash function (the authors

suggest the use of SHA-1).
Klonowski, Kuty�lowski, Ren and Rybarczyk consider the scenario in which ev-

ery node “shares a separate pairwise key with each neighbour” [6]. Their scheme
also employs a one-way function F but, based on a key distribution mechanism
in [11], incorporates an element of randomness. In their scheme, if nodes A and
B share key kAB and A wants to send a message to B, then A encrypts the
message using a key k′ = F (kAB, i), where i is chosen uniformly at random
from the set {0, 1, . . . , l} for some small l. Node B then has to perform several
trial decryptions in order to determine the precise value of i and hence k′ that
was used. This is more computationally expensive than the standard pairwise
refreshing technique, and has the complication that B must succeed in receiv-
ing and decrypting the message in order for key refreshing to occur successfully.
The presence of the randomness does, however, provide the additional property
that an adversary that possesses an old version of a key will eventually be un-
able to determine newer versions of the key unless it has continued to monitor
all the messages sent using intermediate versions of that key. Note that real
randomness, rather than pseudorandomness, must be used for this additional
property to hold (as we may assume that node compromise reveals the state of
any pseudorandom generator used by the node). This limits the applicability of
the scheme. Note also that the computational burden of trial decryptions may
be eliminated from this scheme at the expense of a little more communication
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complexity by appending the random bits used in key refresh to the message
from A to B.

Since randomness is not needed for forward security, and a security model
where the randomness has benefits must involve a weakening of the standard
model considered for sensor networks (in which an adversary is capable of inter-
cepting all communication), we do not consider randomness in the schemes we
present later in the paper.

The schemes we have considered so far all involve refreshing keys that are
shared by exactly two entities. As discussed in the introduction, however, many
sensor network applications involve keys that are shared by more than two par-
ticipants. Refreshing keys in this situation becomes more complicated; in the
following subsection we discuss some of the issues that arise.

2.3 Problems That Arise When Widely Shared Keys Are Refreshed

When seeking to maintain forward security when a key k is shared by more
than two nodes, a pairwise key refreshing scheme cannot be used without some
modifications. If user X is currently storing version i of the key k, we write
vnk(X) = i. In the standard two node schemes discussed in Subsect. 2.1, it is
clear that vnk(Alice) = vnk(Bob) at all times, whereas this will not usually be
the case if more than two nodes use the same key. If communicating nodes simply
refresh their keys after each message, other nodes using the same key will not
necessarily be aware that a message has been transmitted and so will not refresh
their key appropriately. This causes two problems:

– (Undecipherable messages) If users X and Y are such that vnk(X) < vnk(Y ),
we have a problem if X sends a message to Y using version vnk(X) of k
(since Y cannot decrypt). So we need to have a mechanism to ensure that
the version numbers of X and Y are synchronised.

– (Degradation of forward security) Suppose some node Z has refreshed its key
less than communicating nodes X and Y , so vnk(Z) < vnk(X) = vnk(Y ).
Then the compromise of Z allows an adversary to decipher any messages
exchanged by X and Y using versions of the key lying between vnk(Z) and
vnk(X). So we need to have a mechanism to ensure that no node stores a
“very old” version of a key.

The first problem could be solved by requiring nodes to use a different version
number of the key for each pairwise communication link they maintain. A node
would have to store a set of version numbers (one for each link) together with the
version of the key corresponding to the lowest of these version numbers. But this
causes a proliferation of version numbers and so this solution is often unrealistic
because of storage constraints in the WSN model. Moreover, the second problem
becomes worse.

In this paper we propose two alternative classes of solutions. In Sect. 4 we
address the problems of undecipherable messages and degradation of forward
security by describing mechanisms to ensure that all nodes update their copy of
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k at essentially the same time (synchronised key refreshing). However, in some
applications this approach is unrealistic, and so in Sect. 5 we describe a method
whereby a pair of communicating nodes determines which version number of
the key to use (asynchronous key refreshing, addressing the first problem) and
then describe several mechanisms to ensure that no node stores a low version
number of a key (key resynchronisation, addressing the second problem). First,
however, we discuss several applications for sensor networks. These give rise
to five categories of network environment, in which our different schemes are
appropriate.

3 Sensor Network Environments and Applications

The vast array of applications that have been proposed for WSNs leads to net-
works with widely varying properties. In order to provide a context for the key
refreshing schemes we propose in this paper, we consider five distinct sensor
network application environments. The differing characteristics of these situa-
tions mean that the most appropriate method of key refreshing varies between
examples. Here we describe these environments, and give examples of possible
applications for which they are appropriate.

1. (Synchronised clocks). In many applications, the nodes in the network
have synchronised clocks. As discussed in Römer et al. [12], clock synchro-
nisation comes at a cost. However, in networks where it is provided for the
purposes of the application, we can exploit clock synchronisation for perform-
ing key refreshing. Examples of applications for which clock synchronisation
is necessary include an intruder detection system in which records of events
are timestamped by individual sensors, or a system for monitoring volcanic
activity in which the network is used to provide a global picture of a volcano’s
behaviour at a given time.

2. (Frequent flooding). Many environments do not require nodes to have
synchronised clocks, but frequent flooding of messages through the network
should take place. This might be the case, for example, in a disaster recov-
ery scenario in which sensors attached to medical personnel flood real-time
updates on their status to others in the area.

3. (Infrequent network-wide events). Some applications call for networks
in which synchronised clocks and regular flooding are not present, but in
which there is an occasional event that can be detected by the entire network.
For example, the data sink could consist of a helicopter that flies over the
network occasionally and broadcasts a request to retrieve data to the entire
network. In some applications an infrequent flooding of the network might
take place (for example, an intruder detection system in a warehouse might
be armed or disarmed by a flooded message that is triggered by the locking
or unlocking of a door).

4. (Infrequent local events). Our fourth category consists of networks in
which no global events occur with sufficient frequency or regularity and no
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regular flooding takes place, but whose communication capacity can support
an occasional flooded message. This is the case in networks measuring events
that occur locally, and in which there is a low amount of (mostly local)
communication between nodes.

5. (Regular disconnection). The final network environment that we address
consists of networks that have a high likelihood of becoming disconnected,
but in which the separate components continue functioning independently
until the network is later reconnected. This might occur in sparse networks
in which nodes are sited at the very edge of their communication capacities,
or networks in which clusters of nodes are associated with moving objects,
such as vehicles.

4 Schemes to Synchronise Key Refreshing

This section contains two schemes that can be used to synchronise key refreshing
throughout a network; they can be applied in the first two application environ-
ments respectively. The schemes can either be used to refresh a fixed key from
the keypool, or a subset of keys.

4.1 Synchronous Event-Driven Key Refreshing

The simplest means of maintaining synchronicity of key version numbers is:

Scheme 1 (Event-driven refreshing). Nodes refresh their keys in response
to some event that can be observed by the whole network.

In our first application scenario, in which nodes have synchronised clocks, the
network can simply refresh their keys every five minutes, say, thus providing
forward security for messages more than five minutes old. Alternatively, if nodes
are capable of detecting some network-wide event that happens with sufficient
frequency, then they can refresh their keys every time such an event is detected,
thus removing the requirement that their internal clocks be strictly synchronised.
Finally, in networks possessing a base station capable of broadcasting directly
to each node, the base station can simply send regular messages prompting the
nodes to refresh their keys.

This scheme is very desirable in that there are no communication overheads.
The existence of a suitable network-wide event is a strong (but widely satisfied)
requirement: the more complex schemes discussed in subsequent sections are
intended to be used when this requirement is not met.

4.2 Flooded Refreshing

Another solution to the problem of version number synchronisation is for a node
to flood a key refresh signal throughout the network each time a key needs to be
refreshed. The resulting communication overhead makes this infeasible in many
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instances; however, in our second scenario where much of the traffic involves
messages being flooded throughout the entire network, the refresh signal can be
‘piggy-backed’ onto a flooded message. Each such flood then acts as a signal for
all keys to be updated (hence the same version number is maintained for each
key). The following scheme illustrates how this can be carried out, taking into
account the fact that the flooding of separate messages may be simultaneously
initiated at differing points of the network. The only communication overhead
associated with refreshing in this manner is the need to append the version
number to the encrypted message. (Even this overhead could be eliminated at the
cost of nodes potentially having to perform several trial decryptions to determine
the correct version number.)

Scheme 2 (Flooded refreshing)

1. Before initiating the flooding of a message, a node first updates all its keys.
It then encrypts the message under the new version of its keys before broad-
casting it.

2. A node X receiving a flooded message encrypted with a version i > vnk(X)
of key k must update k in order to decrypt the message; it similarly updates
the rest of its keys, then encrypts the message under these new versions
before forwarding it. (Note that a node only forwards each message once; if
it receives additional copies of the same message it simply ignores them.)

3. A node keeps a particular version of its keys until after it has broadcast a
message using a higher version number. If a node receives several messages
encrypted with different version numbers before it is able to forward them, it
encrypts all the messages using the highest of these version numbers before
rebroadcasting them. Once the messages have been sent it deletes all older
versions of its keys.

This scheme ensures that nodes only have to store multiple versions of the same
key for the brief time between receiving a message and rebroadcasting it. If
we assume that the media access control employed by the WSN prevents two
neighbouring nodes from broadcasting simultaneously, then this manner of key
updating prevents problems arising from nodes needing to use old versions of
keys that they have already deleted. (Note that because of the small distances
involved, we suppose that a message sent directly to a node by its neighbour is
received instantaneously.)

Theorem 1. If synchronous key refreshing is performed using Scheme 2 then
no node receives a message encrypted with a version of a key that it has already
deleted.

Proof. Suppose a node A receives a message m rebroadcast by a neighbouring
node B encrypted with version vnk(B) of a key k possessed by A. Then A has
version vnk(A), and vnk(A) ≤ vnk(B), unless A has already rebroadcast some
message using a version number higher than vnk(B). However, in that case, A’s
neighbour B would have received that message prior to sending m, and thus
vnk(B) ≥ vnk(A), which is a contradiction. �
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In environments where a significant proportion of communication is local,
Scheme 2 would incur an undesirable communication overhead. So we need to
find schemes that flood the network less frequently.

5 The Asynchronous Case

The synchronous schemes discussed in Sect. 4 all have the advantage of ensuring
that nodes sharing a given key maintain the same numbered version of that
key. In our last three network environments, however, there are no sufficiently
frequent network-wide events that would enable these schemes to be employed.
In Subsect. 5.1, we discuss an asynchronous scheme that can be used in these
environments. The nature of the scheme means that we need to resynchronise the
version numbers across the network occasionally, to prevent undue degradation of
forward security. Subsect. 5.2, 5.3 and 5.4 discuss methods for resynchronisation
appropriate in environments 3, 4 and 5 respectively.

5.1 Asynchronous Key Refreshing

A simple method of asynchronous key refreshing, in which different nodes refresh
their keys at different rates, is described as follows:

Scheme 3 (Message-driven refreshing)

1. When two neighbouring nodes X and Y want to communicate using key k,
X sends vnk(X) to Y and Y sends vnk(Y ) to X.

2. X and Y each compute

newvn = 1 + max{vnk(X), vnk(Y )}.

3. X and Y each update their copy of k by applying f an appropriate number
of times, so that

vnk(X) = vnk(Y ) = newvn.

Then they use the updated key k to encrypt any information they wish to
send to each other.

This scheme works well if all the nodes are more-or-less equally active, and
hence update k at similar rate1. Even so, it is still possible that relatively inac-
tive nodes do not update k very often. Thus, to avoid the degradation of forward
security, a resynchronisation scheme must be deployed. Again, the method em-
ployed will depend on the network environment: we now discuss some possible
methods.
1 Due to the broadcast nature of wireless communication, it is also possible for any

neighbours of the nodes involved in this exchange to learn the version number reached
and refresh their own keys if necessary.
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5.2 Periodic Resynchronisation

The third category of networks discussed in Sect. 3 consists of those that expe-
rience regular events (such as a helicopter fly-past) that would be suitable for
event-based key refreshing except that they do not happen with sufficient fre-
quency. In such a context, the asynchronous refreshing Scheme 3 can be applied,
but with the version numbers held by nodes being resynchronised each time
the infrequent event is observed. A simple resynchronisation scheme requires all
nodes to update their keys to a pre-specified version number upon detection of
the event. For example, the jth occurrence of the regular event could trigger
each node to update their version number to the value 100j (assuming that no
node will transmit more than 100 times between events). Thus less active nodes
will “catch up” with highly active nodes once a day, maintaining some level of
sychronicity on a regular basis. This technique is suitable as long as the amount
of traffic likely to occur between consecutive occurrences of the event in question
does not vary greatly and can be reasonably estimated. It has the advantage of
incurring no communication overheads.

5.3 Resynchronisation by a Flood

In applications where there are no network-wide events and the network can only
support occasional flooding (see our fourth environment), a flooding technique
could be used for resynchronisation rather than key refresh. So whenever a node
has refreshed its key 100 times (say), it uses the flooded key refresh scheme from
Sect. 4 to flood the network with a message requiring all nodes to update their
keys to its version number. Flooding places an extra communication burden
on the network, but this can be made manageable since the frequency of the
floods is much lower than the frequency of key refresh operations. This scheme
trades a degradation of forward security for an improvement in communication
complexity.

5.4 Resynchronisation Via a Leader Election

A third approach towards resynchronising keys in the absence of an appropriate
network-wide event would be to periodically execute a protocol to resynchro-
nise the network, by determining which node has the highest version number of
a key k. (This is similar to the leader election problem that is studied in dis-
tributed systems.) Then every node would update their keys to this version2.
This technique is useful in the fifth application environment of Sect. 3, in which
the network may be temporarily disconnected. If the amount of traffic in each

2 In general, it is not necessary for the refreshing of two distinct keys to be synchro-
nised. For the sort of applications we are considering, however, it simplifies matters
if all keys are refreshed at the same time. In particular this avoids any problems
arising when the set of nodes that share a given key is disconnected.
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component varies then the key versions possessed by nodes in different compo-
nents will differ. In order to resynchronise these versions once the components
are reconnected, it will be necessary to excute a protocol of this nature.

There is a large literature describing algorithms for leader election in different
settings. For our purposes, a variation of the algorithms described in Peleg [10] is
appropriate, and we describe this algorithm below (Algorithm 1). This approach
to resynchronisation is appropriate in situations when the network needs to run
a protocol to establish some of its global properties (such as the shortest path
to a sink node) in cases when the network is dynamic.

The algorithm has time complexity O(D) and message complexity O(DE),
where D is the diameter of the network and E is the number of edges in the
network. We describe an algorithm for leader election that can be initiated by
any node x. The algorithm does not require that message transmissions be syn-
chronised. The number of rounds (or pulses) is determined by the maximum
distance of a node from the initiating node x, which we denote by dmax. The
value of dmax does not have to be known ahead of time; indeed, the algorithm
will compute it. We do not require that nodes have any knowledge of the struc-
ture of the network, except for the requirement that every node is assumed to
know who all of its neighbours are. Note that if two nodes initiate the protocol
simultaneously, it is easy to avoid any resulting conflicts by enforcing a standard
rule for deciding which algorithm to drop.

Every node i has a value vi; at the end of the algorithm, every node should
know the value

vmax = max{vi}.
In this algorithm, nodes broadcast tuples of the form (s, y, d, v), whose com-

ponents are defined as follows:

– s is the node who is broadcasting the tuple, (s = 0 denotes a termination
condition for the algorithm)

– y is the node at maximum distance (which is denoted by d) from the initiating
node x, according to the current knowledge of s,

– v is the value of vmax, according to the current knowledge of s.

Algorithm 1

1. The first time node s receives a broadcast from any of its neighbours, it
increments d by one and specifies itself as the node of maximum distance
from x. It sets the value of v to be the maximum of vs and the received value
of v, then it broadcasts the tuple (s, s, d, v). This represents the first pulse
for node s.

2. In subsequent pulses, the node s waits until it receives broadcasts from all
of its neighbours (subsequent to its last broadcast). Then it updates d and
v (and y, if necessary) based on the most recent set of tuples received, and
broadcasts an updated tuple.

3. The initialising node x terminates the algorithm once there are two consec-
utive pulses in which the maximum received d-value does not change. This
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allows x to conclude that it has received information from every other node.
It broadcasts the terminating condition (s = 0) in the form of the tuple
(0, y, d, v) in which d = dmax, v = vmax, and y has distance dmax from x.

4. Whenever a node receives a broadcasted tuple with s = 0, it rebroadcasts this
tuple and terminates.

Algorithm 1 can be used in conjunction with our asynchronous key refreshing
scheme (Scheme 3). As it requires a substantial amount of communication be-
tween nodes it is perhaps most useful when performed occasionally, in response
to a change in network conditions. For example, in the context of our fifth ap-
plication environment, if the network becomes disconnected then Algorithm 1
can be applied in order to resynchronise key version numbers once connectivity
is restored. We now give an example that demonstrates its behaviour.

Example 1. We present an example illustrating Algorithm 1. We use the graph
in vertex set {1, . . . , 6} with edges 12, 15, 23, 24, 25, 34, 46 (Fig. 1). The values
stored in the nodes are v1 = 8, v2 = 6, v3 = 17, v4 = 11, v5 = 12, v6 = 17, and
the initialising node is x = 1.
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Fig. 1. A network in which the nodes possess different versions of a key

The tuples that will be broadcast during the execution of the algorithm are
shown in Table 1. During the first pulse node 1 broadcasts the tuple (1, 1, 0, 8)
to initiate the algorithm. This is received by its neighbours, nodes 2 and 5. Node
2 has a lower version number than node 1, so it broadcasts the tuple (2, 2, 1, 8).
The first 2 denotes that the tuple is being sent by node 2, the second 2 and
the 1 indicate that node 2 is at distance 1 from the initiating node, and that
as yet it does not know of any nodes located further away. The 8 is the highest
version number that node 2 has encountered so far. Similarly, during this second
pulse node 5 broadcasts (5, 5, 1, 12) to indicate that it is at distance 1 from
node 1, including its own value for v as it is higher than that of node 1. This
process continues until node 1 has received tuples with d = 3 in two consecutive
pulses. Node 1 now knows that node 6 is the farthest node, and that the highest
version number in the network is 17. It thus broadcasts the termination message
(0, 6, 3, 17), which is then rebroadcast by the other nodes in the network, until
all nodes have received and rebroadcast this message.

6 Discussion

We have seen that the behaviour of a key refreshing scheme depends on the
network environment in which it is to be applied. In Table 2 we summarise
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Table 1. Example of the Leader Election Algorithm

1 2 3 4 5 6

send (1, 1, 0, 8)

receive (1, 1, 0, 8) (1, 1, 0, 8)
send (2, 2, 1, 8) (5, 5, 1, 12)

receive (2, 2, 1, 8) (5, 5, 1, 12) (2, 2, 1, 8) (2, 2, 1, 8) (2, 2, 1, 8)
(5, 5, 1, 12)

send (1, 2, 1, 12) (3, 3, 2, 17) (4, 4, 2, 11)

receive (1, 2, 1, 12) (4, 4, 2, 11) (3, 3, 2, 17) (1, 2, 1, 12) (4, 4, 2, 11)
(3, 3, 2, 17)
(4, 4, 2, 11)

send (2, 3, 2, 17) (5, 2, 1, 12) (6, 6, 3, 11)

receive (2, 3, 2, 17) (5, 2, 1, 12) (2, 3, 2, 17) (2, 3, 2, 17) (2, 3, 2, 17)
(5, 2, 1, 12) (6, 6, 3, 11)

send (1, 3, 2, 17) (3, 3, 2, 17) (4, 6, 3, 17)

receive (1, 3, 2, 17) (4, 6, 3, 17) (3, 3, 2, 17) (1, 3, 2, 17) (4, 6, 3, 17)
(3, 3, 2, 17)
(4, 6, 3, 17)

send (2, 6, 3, 17) (5, 3, 2, 17) (6, 6, 3, 17)

receive (2, 6, 3, 17) (5, 3, 2, 17) (2, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17)
(5, 3, 2, 17) (6, 6, 3, 17)

send (1, 6, 3, 17) (3, 6, 3, 17) (4, 6, 3, 17)

receive (1, 6, 3, 17) (4, 6, 3, 17) (3, 6, 3, 17) (1, 6, 3, 17) (4, 6, 3, 17)
(3, 6, 3, 17)
(4, 6, 3, 17)

send (2, 6, 3, 17) (5, 6, 3, 17) (6, 6, 3, 17)

receive (2, 6, 3, 17) (5, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17)
(5, 6, 3, 17) (6, 6, 3, 17)

send (0, 6, 3, 17) (3, 6, 3, 17) (4, 6, 3, 17)

receive (0, 6, 3, 17) (4, 6, 3, 17) (3, 6, 3, 17) (0, 6, 3, 17) (4, 6, 3, 17)
send (0, 6, 3, 17) (0, 6, 3, 17)

receive (0, 6, 3, 17) (0, 6, 3, 17) (0, 6, 3, 17)
send (0, 6, 3, 17) (0, 6, 3, 17)

receive (0, 6, 3, 17)

the properties of the schemes we have proposed for key refreshing and resyn-
chronisation, as well as prior schemes appearing in the literature. The first four
schemes have the advantage of incurring no communication overheads, although
the scheme of [6] does involve a slight computational overhead, due to the need
for trial decryptions. In the case of a network where there is pairwise commu-
nication with a base station, our event-driven scheme essentially reduces to the
scheme of [9]; however, it is applicable in a wider range of environments, partic-
ularly any network where the nodes have synchronised clocks.

The remaining schemes do require extra communication, but are applicable
in environments in which the first four schemes cannot be used. In the case of
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the flooded scheme this overhead is slight, as it is only necessary to append a
key version number to each message that is flooded through the network. The
final refreshing scheme (message-driven refreshing) is more costly, as two version
numbers have to be transmitted before each message is sent. However, it can be
used in any network environment, and hence can be employed in networks that
do not have the necessary properties for the other schemes to be applied. Similar
observations can be made regarding the resynchronisation schemes.

Table 2. A comparison of key refreshing and resynchronisation schemes. +vn=key
version number appended to each message; x×vn=x additional transmissions of vn per
message; n=number of nodes; D=diameter of network; E=number of edges in network
graph; for description of applications, see Sect. 3.

Scheme Required Network Suitable Application
Properties Environments

Key Refreshing
pairwise keys [9] nodes communicate directly with

the base station
base station [6] keys are shared by pairs of nodes

1. Event-driven frequent occurrence of a network-
wide event

synchronised clocks

2. Flooded frequent flooding of messages frequent flooding

3. Message-driven - any

Resynchronisation
Periodic occasional network-wide event infrequent network-wide events

Flooded capable of supporting occasional
flooded messages

infrequent local events

Leader Election - regular disconnection

There are several issues concerning key refreshing in a WSN context that merit
further research. In some WSNs it is customary to deploy an excess of nodes that
then spend part of their time in a ‘sleep’ state. Such nodes have the potential to
degrade forward security if they are asleep through several key refresh events.
One solution might be to mandate that nodes refresh their keys numerous times
before entering the sleep state, however overall network-wide management of
this process requires further investigation. Also, nodes in a WSN have relatively
high failure probabilities, whether due to battery exhaustion, destruction, or
simple malfunction. It would be interesting to investigate ways of limiting the
degradation of forward security due to the results of node failure. Finally, many
WSNs have specific topologies (such as hierarchal networks) for which it may be
possible to devise dedicated key refreshing schemes that perform more efficiently
than the general ones proposed in this paper.
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Abstract. In this paper, we describe a new traitor tracing scheme which
relies on Tardos’ collusion secure codes to achieve constant size cipher-
texts. Our scheme is also equipped with a black-box tracing procedure
against pirates that are allowed to decrypt with some (possibly high)
error rate while keeping the decoders of the lowest possible size when
using collusion secure codes, namely of size proportional to the length of
Tardos’ code.

1 Introduction

One common issue in digital content distribution is the problem of broadcast-
ing data to several legitimate users in a secure way. Therefore, the broadcaster
usually encrypts its data for the legitimate users. This is for example the case
in pay-TV systems which allow to restrict access to the content to subscribers
only, or when distributing digital media such as DVDs encrypted such that they
can be used with compliant readers only [1]. In these scenarios and many others,
the legitimate users rely on a decryption box containing the secrets that are
necessary to obtain the digital content from the broadcasted information; this
decryption box can be a tamper resistant device such as a smart card, a firmware
for an electronic appliance, or a software on a personal computer. Tamper re-
sistant devices are hard and expensive since they are designed to withstand a
large range of attacks from side-channels attacks to invasive attacks. This raises
the following issue: What if legitimate users are able to extract the secrets from
their decryption box and redistribute them?

Traitor tracing is a well known cryptographic means to discourage such indeli-
cate users (hereafter called traitors) from redistributing their secrets: It provides
a way of embedding different secrets into each user’s decryption box so that even
if several traitors collude to produce a pirate decoder from their shared secrets,
an authority is able to trace at least one of them. The efficiency of a traitor trac-
ing scheme can be evaluated through several parameters: the maximum size c of
tolerated coalitions, the size of the broadcasted ciphertext, and the size of the
decoders. While it is obvious to design a traitor tracing scheme with a ciphertext
size linear in the total number N of users, efficiently resisting collusions when
traitors have full access to their decoders is not straightforward. Since its in-
troduction by Chor, Fiat, and Naor [7], several techniques have been proposed.

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 171–182, 2008.
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A first class of schemes that we might call combinatorial is based on carefully
choosing some subset of a set of master keys to be put in each decryption box.
By analyzing the keys found in a pirate decoder, it is possible to trace one of
the traitors. The schemes [7, 8, 12, 18, 19] belong to this family. Another class
of schemes is the public key traitor tracing schemes first introduced in [16] by
Kurosawa and Desmedt. To this family belong for instance [2, 4, 6, 9, 17, 20].
A third class of schemes relying on the use of collusion secure codes (and thus
combining ideas from the two previous classes) has been introduced by Kiayias
and Yung in [15]. The schemes [3, 10, 22, 29] belong to this class. Several of these
works also provided additional features apart from the basic traitor tracing prop-
erties. It has been shown how to cope with decoders that decrypt correctly only
with some (non-negligible) probability [19]. Tracing the traitors using black-box
access only to the pirate decoders has been first proposed in [8]. The notion of
public traceability has been proposed in [6, 21].

Our work, as for instance [10, 15, 29], is based on the use of collusion secure
codes. These schemes enjoy many nice and desirable properties: they support
black-box tracing and the ratio between the ciphertexts and the plaintexts is
constant. However, since these schemes use collusion secure codes for both the
ciphertext and the key used in the decoders, the size of the ciphertexts and de-
coders is quite large, namely O(c4 log(N/ε)) for resisting coalitions of at most
c traitors with probability 1 − ε. Another drawback of [15] comes from the use
of an all-or-nothing transform (AONT [24]) to prevent deletion of keys from the
pirate decoders as a way to escape the tracing procedure based on the underlying
collusion secure code. This AONT renders the scheme quite rigid and prevents
the reduction of the ciphertext’s size since it requires to use every key from the
decoder in order to decrypt a ciphertext, and thus slows down the decryption
process. Safavi-Naini and Wang propose in [26] to use collusion secure codes
that support random deletion in any position. In [29], Sirvent constructs new
collusion secure codes which support deletion of a number of positions chosen
by the adversary in addition to the usual properties: this results in a black-box
tracing procedure which accommodates even more powerful pirates than [15, 26]
and allows to remove the need for AONT. However, codewords from collusion
secure codes supporting adversarial erasure have length Ω(c4 log(N/ε)) and the
size of the ciphertexts and decoders remains large. In this paper, we propose
a scheme based on Tardos’ collusion secure code with constant size ciphertexts
and thus resolve a first issue with code based traitor tracing schemes. The inde-
pendent work [3] also proposes a scheme with constant size ciphertexts, but to
be able to trace pirate decoders with non-negligible error rate δ, the size of the
decoders is Ω(c4/(1 − δ)2 log(N/ε)) and tracing is accordingly expensive. This
large complexity comes from the fact that the authors in [3] built a collusion
secure code with the strong property of resisting erasure. While this might lead
to useful applications in settings other than traitor tracing, we show that such a
strong collusion secure code is not required here: Our scheme takes advantage of
the specific setting of traitor tracing where it is possible to distinguish between
erased and unreadable positions. As a result our scheme can rely on Tardos’ code
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and, in addition to bring constant size ciphertexts, also allows decoders of size
O(c2 log(N/ε)) even when considering pirate decoders with high error rates δ.

2 Tardos’ Collusion Secure Codes

Fingerprinting with collusion secure codes allows to uniquely identify a digital
document among several copies of it by embedding a fingerprint (a codeword).
Such an identification scheme must be resilient to collusions of traitors trying
to remove their fingerprints so as to escape identification. Therefore, collusion
secure codes share some properties with traitor tracing; However, the main as-
sumption here (called the marking assumption) is that the traitors from a coali-
tion are only able to identify the positions where the digits from their respective
codewords differ; Such positions are called detectable positions. This assumption
especially makes sense when fingerprinting data: apart from the codewords, the
documents are identical, and it is easy to uncover places where two copies of a
document differ.

Among the first collusion secure codes are the identifiable parent property
(IPP) codes introduced in [7]; However, these codes are defined over large alpha-
bets and are resilient in a restricted attack model. The marking assumption and
a way to construct randomized collusion secure codes has first been proposed
by Boneh and Shaw in [5]; The length of the codewords is O(N3 log(N/ε)) for
fully-collusion resistant codes and O(c4 log(N/ε)) for codes resisting coalitions of
at most c traitors. Tardos later introduced a new construction in [31] and proved
that the size of its codewords is optimal: a length of O(c2 log(N/ε)) is enough to
resist coalitions of at most c traitors. This obviously gives fully-collusion secure
codes of length O(N2 log(N/ε)).

2.1 Tardos’ Construction

We now briefly describe the generation of a Tardos collusion secure code as
proposed in [31]. We additionally describe the associated tracing procedure.

Code generation. In order to generate a code for N users that resists to c-
collusions, set the length 	 = 100c2 log(N

ε ) where ε is the false-positive error
probability (that is, the probability that an innocent user is accused) of the
tracing algorithm and randomly draw a sequence of probabilities pi as follows:

pi = sin2(ri), i ∈ �1, 	 � (1)

where ri is randomly drawn from [t, π/2 − t] and 0 < t < π/4 is chosen so that
300 c sin2 t = 1.

Each binary codeword w of the code is then constructed by choosing its i-th
digit to be either ‘1’ or ‘0’ according to the probability pi, that is: Pr[wi = 1] = pi.

Tracing procedure. The authority traces a subset of the traitors from a coali-
tion (of at most c traitors) that has produced some binary word v by computing
an accusation sum Zw for each possible codeword w via:
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Zw =
�∑

i=1

vi ·
(

w̄i

√
1 − pi

pi
+ (w̄i − 1)

√
pi

1 − pi

)
,

where w̄i is the bit wi viewed as an integer. Then, users corresponding to code-
words w such that Zw > 20 c log(N

ε ) are declared as traitors. Tardos proves that
the probability of false-negative alarms (that is, the probability that no traitor
is found) is then εc/4.

2.2 Note about the Marking Assumption

Here we make some basic remark that will be used later on in this paper. Think
about Tardos’ code as a matrix containing the codewords in its rows. We note
that the columns in Tardos’ code are all treated identically: they are generated
the same way and contribute to the accusation sum following the same rule.
Moreover, these columns have been generated independently. This very simple
fact allows one to use codewords of bigger length, say, twice or four times the
length of Tardos’ original codewords (i.e. L = 2	 or L = 4	) and still allows to
trace the traitors by using any subset of positions of size 	. We stress here that
the traitors can make an educated choice of the subset of positions instead of
choosing them randomly. However, even in this case, the resulting set of codeword
remains a perfectly valid instance of Tardos’ code.

This remark is motivated by the usual marking assumption for collusion secure
codes. Indeed, the most commonly used marking assumption is that traitors are
able to identify positions in their code words only where the digits differ: this fits
a wide range of settings, such as watermarking of digital content. However, in
the following, we additionally consider that some of the positions—regardless of
the fact that they can be identified or not—might be deleted by the traitors, so
that this position does not hold the original digit anymore. This issue motivated
the introduction of AONT in [15] and the introduction of collusion secure codes
resisting erasure in [3, 29]. However, our above remark shows that expanding a
Tardos’ code of length 	 to a length L = 1

β 	 allows to cope with collusions of at
most c traitors that are able to delete up to (1 − β)L digits from their pirate
word, and then fall back to the classical marking assumption on the untouched
subset of βL = 	 positions.

3 Traitor Tracing Schemes from Collusion Secure Codes

3.1 Construction

Building the Decoders. The main idea to build the decoder is to use two
different set of keys, viewed as a pair of tables denoted T (0) and T (1), each con-
sisting of L randomly drawn n-bit elements and to use them to recover u random
values k1, . . . , ku broadcasted (in an encrypted form) to the users in order to
derive the corresponding session key SK from the header for the data encap-
sulation mechanism: Obviously, the idea of using such a pair of tables is to allow



Efficient Traitor Tracing from Collusion Secure Codes 175

Fig. 1. The header is made of the values ri, z
(0)
i and z

(1)
i and the decoder of user a

has access to table T a. Using its bit string Ia, user a selects the correct values zi to be
decrypted: here, user a selects z

(0)
1 , z

(1)
2 , . . . , z

(1)
i , . . . , z

(0)
u . User a then decrypts these

values with the corresponding keys T a[k1], . . . , T a[ku] from table T a. The decrypted
keys k1, . . . , ku are further combined together to form the session key SK = k1⊕· · ·⊕ku.

the embedding of the identity of the user a in her personal decoder: if Ia is an
L-bit string carrying the identity of user a, then we create a table T a specific to
user a by choosing as the i-th element T a[i] the key T (Ia

i )[i]. (Here, Ia
i denotes

the i-th bit of the bit string Ia.)
Coming back to the derivation of the session key SK from header, since each

decoder either embeds a key from T (0) or a key from T (1), the above-mentioned
values ki must be encrypted under both of these keys. The derivation of the ses-
sion key is then performed from an header = (r1, . . . , ru, z

(0)
1 , z

(1)
1 , . . . , z

(0)
u , z

(1)
u )

where the ri are u randomly chosen indices from �1, L� and the zi are values
obtained by encrypting u randomly chosen n-bit values k1, . . . , ku using an
encryption scheme Ẽ as follows:

∀i ∈ �1, u�, z
(0)
i = ẼT (0)[ri](ki) and z

(1)
i = ẼT (1)[ri](ki) .

Note that the number u of elements of the table T entering in the derivation
of the session key SK also depends on other system parameters in a way that
is going to be discussed later on. A brief description of how these elements fit
together into our proposal for an implementation of the function FK to be used
in our key encapsulation mechanism within each decoder is given in Figure 1.

Then, the data encapsulation mechanism is implemented as:

Encryption of M by broadcaster:

1. Draw (r1, r2, . . . , ru) from �1, L�u randomly;
2. Draw u elements k1, k2, . . . , ku from {0, 1}n randomly;
3. Encrypt the random values ki as z

(0)
i = ẼT (0)[ri](ki) and z

(1)
i = ẼT (1)[ri](ki),

for i ∈ �1, u�;
4. Set header = (r1, . . . , ru; z(0)

1 , z
(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(1)
u );
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5. Derive the session key as SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;
6. Encrypt M with the underlying encryption algorithm E and the secret

key SK: C = ESK(M);
7. Output the ciphertext E′(M) = (header, C).

Decryption of (header, C) in decoders:

1. Extract r1, . . . , ru from header;
2. Depending on the value Ia

i of the i-th bit of the user’s identifying string Ia,
compute

ki = D̃T a[ri]

(
z
(Ia

i )
i

)
∀i ∈ �1, u� .

3. Derive the temporary secret key SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;
4. Use the underlying decryption algorithm to decrypt C with SK: M =

DSK(C);
5. Output the plaintext D′(C) = M .

Pirate Decoders. A pirate decoder is only required to decrypt valid cipher-
texts with some probability τ . This is meant to take into account the case of
coalitions of pirates dropping some of the secrets required to decrypt so as to
help concealing their identity, which is highly critical in the setting of decoders
based on collusion secure codes.

The Tracing Procedure. There are two main types of decoders: stateless
decoders and stateful decoders. Stateless decoders do not record information be-
tween two decryption attempts whereas stateful decoders might memorize some
information in order to help escaping the tracing procedure. We first describe a
procedure against stateless decoders.

Our tracing procedure is derived from the general black-box tracing strategy
for stateless decoders described in [8]: In order to decide if the decoder embeds
the key T (0)[r] or the key T (1)[r] for some position r, the tracer provides the
information to derive SK only for one of the key, that is, broadcasts ẼT (0)[r](k1)
and ẼT (1)[r](0); Therefore, if the decoder decrypts correctly this (invalid) cipher-
text, the tracer deduces that the decoder knows T (0)[r].

Our tracing procedure also heavily relies on the property that the pirate de-
coders always embed at least 	 digits that have been produced through the clas-
sical marking assumption (traitors can only put unreadable digits on detectable
positions, the other positions are untouched) where 	 is the required length for
Tardos’ code to be secure. We give sufficient conditions on the parameters u
and β for this property to hold in Theorem 2 of the next paragraph.

We first describe the tracing procedure for u = 1. In this case, header only
consists of three values (r, z0, z1) where D̃T 0[r] = D̃T 1[r]. We call a 0-invalid
header a header (r, z0, ∗) produced from a valid header (r, z0, z1) by replacing z1

by a randomly chosen value ‘*’ and similarly call (r, ∗, z1) a 1-invalid header.
One can easily detect if the cell r of a decoder is coming from T (0)[r], T (1)[r] is
unreadable or is wrong/erased; as noted previously, the ability to decide between



Efficient Traitor Tracing from Collusion Secure Codes 177

unreadable cells (i.e. where the decoder knows the two possible keys) and the
wrong/erased cells (i.e. where the decoder knows none of the keys) is fundamental
to the tracing procedure. In order to distinguish these two types of positions,
just follow the procedure:

– Input a number L/τ of valid headers with randomly chosen positions r
(where τ is the decryption threshold of the decoder); every possible posi-
tion therefore occurs τ−1 times on the average. Every position for which the
decoder decrypted at least once, is declared an inhabited position. (Thus,
inhabited position are the positions r for which the tracer knows for sure
that the decoder embeds at least one of the values T (0)[r], T (1)[r].)

– For every inhabited position r, input a number τ−1 of 0/1-invalid headers.
As soon as the decoder correctly decrypts a b-invalid header, deduce that
cell r is coming from table T (b). If the decoder never decrypts b-invalid
headers, deduce that the position r corresponds to a detectable position in
the collusion secure code, that is, assume that the decoder knows both T (0)[r]
and T (1)[r] and call this position an unveiled position.

(Note that the above procedure declares a position r to be ‘0’, ‘1’, or unveiled
even though the pirate decoder refused to use the corresponding key T (i)[r] all
of the time but once, i.e. used a probabilistic strategy to hide its choices.) Since
the pirate decoder embeds at least 	 digits (either from detectable positions
or untouched from the traitors’ original codewords) we are able to trace the
traitors by applying Tardos’ tracing procedure to these 	 positions as explained
in Section 2.

This procedure naturally extends to the case of u > 1. Remember that the
pirate decoder must decrypt correctly with probability greater than the thresh-
old τ the well formed headers. Therefore, for τ−1L choices of the u-tuples, the
tracer knows about every inhabited position (each time the decoder refuses to
decrypt during this first phase no assumption is made, but when the decoder
decrypts, u inhabited positions are learnt). Then, for every inhabited position r,
the tracer considers 0/1-invalid headers corresponding to position r and chooses
the remaining u − 1 positions among the set of inhabited positions (discov-
ered in the previous phase) randomly; the type (‘0’, ‘1’, or unveiled) of posi-
tion r is then determined as in the case u = 1 and the tracing procedure ends
as before.

It is also possible to trace stateful decoders. Indeed, Kiayias and Yung pro-
posed in [14] a generic strategy to convert a tracing procedure against state-
less decoders into a tracing procedure against stateful decoders by using two
versions of the plaintext watermarked differently. This strategy can be applied
with a slight modification of our scheme: instead of encrypting k1 under T (0)[r1]
and T (1)[r1], the broadcaster encrypts k1 under T (0)[r1] and k̃1 under T (1)[r1];
Then instead of ESK(M), the broadcaster encrypts the plaintext watermarked
in two different ways M1 and M2 under SK = k1 ⊕ k2 ⊕ · · · ⊕ ku and under
S̃K = k̃1 ⊕ k2 ⊕ · · · ⊕ ku respectively, that is, provides ESK(M1) and E

S̃K
(M2).
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3.2 Security

In this paragraph we provide two results. The first one, given by Theorem 1,
is that the encryption scheme we propose is secure. The second one is that our
proposed implementation of the decoders is indeed resistant to coalitions of at
most c-traitors and is given in Theorem 2.

Semantic Security of a Symmetric Encryption Scheme. The semantic
security of a symmetric encryption SKE = (KeyGen, Enc, Dec) is defined as
follows:

Definition 1. Let A be an adversary against SKE and λ be some security pa-
rameter. The adversary A chooses two messages, m0 and m1, of equal length, and
gives them to an encryption oracle. The key generation KeyGen(λ) generates a
random key K, draws a random value σ ∈ {0, 1}, and encrypts the correspond-
ing message mσ using the key K. The resulting ciphertext c� = EncK(mσ) is
then provided to the adversary A. Finally, the adversary outputs σ̂ ∈ {0, 1}. We
define the advantage of A against SKE to be

AdvSKE
A (λ) =

∣∣∣Pr [σ = σ̂] − 1
2

∣∣∣
in the above attack game. We also define AdvSKE(λ) as the maximum of all
advantages AdvSKE

A (λ) for all probabilistic, polynomial-time machines A. We
say that SKE is semantically secure if AdvSKE(λ) is negligibly for a security
level λ.

Theorem 1. Assume that the encryption schemes (Ẽ, D̃) and (E, D) are se-
mantically secure. Let us assume that adversaries know for a fraction of at most
2α positions the corresponding entry from at least one of the two tables T (0)

and T (1), and let u(λ) be chosen so that πu(λ) =
(
αL
u

)
/
(
L
u

)
is negligible for the

security level λ. Then

AdvE′
(λ) ≤ πu(λ) + 2AdvẼ(λ) + AdvE(λ)

and thus (E′, D′) is semantically secure against the above adversaries.

Proof. First, note that for each choice of the tuple of indices r1, r2, . . . , ru, either
the adversary knows at least one value in every of the u pairs (T (0)[r1], T (1)[r1]),
. . . , (T (0)[ru], T (1)[ru]), or she does not know T (0)[ri] and T (1)[ri] for at least
one index ri among r1, . . . , ru. The first case happens at most πu =

(
αL
u

)
/
(
L
u

)
of the times over the random choices of r1, . . . , ru. In the other case, we can
assume without loss of generality that the adversary A knows the u−1 remaining
indices and (by renaming the indices) that the unknown values correspond to r1,
that is she does not know T (0)[r1] nor T (0)[r1]. Let us note s0 = T (0)[r1] and
s1 = T (1)[r1]. As the keys to encrypt k2, . . . , ku are known to the adversary, the
encryption of a message m of E′ can be expressed, under the adversary’s view,
as

(
Ẽs0(k1), Ẽs1(k1), k2, . . . ku, ESK(m)

)
, where SK = k1 ⊕ k2 ⊕ · · · ⊕ ku. Let

κ = k2 ⊕ · · · ⊕ ku so that SK = k1 ⊕ κ.
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We now wish to bound the advantage of the adversary in breaking (E′, D′).
To this end, let Game0 be the original attack game played by the adversary A
against (E′, D′). We denote by ψ = (e�

0, e
�
1, k

�
2 , . . . , k�

u, c�) the target ciphertext,
we denote by σ the hidden bit generated by the encryption oracle, and we let σ̂
be the bit outputted by A. Let T0 be the event where σ = σ̂ . Also, let k�

1 denote
the underlying message corresponding to the ciphertexts e�

0, e�
1 and SK� denote

the symmetric key used to encrypt mσ, that is: e�
0 = Ẽs0(k�

1), e�
1 = Ẽs1(k�

1), and
c� = ESK(mσ).

We also define a modified game Game1 which behaves just like game G1,
except that a completely random symmetric key SK+ is used in place of the key
SK�. Let T1 be the event that σ = σ̂ in this game Game1.

It is straightforward to see that there is an oracle query machine A1, whose
running time is essentially the same as that of A, such that:∣∣Pr[T1] − Pr[T0]

∣∣ ≤ 2AdvẼ
A1

(λ) . (2)

Indeed, the adversary A1 just uses adversary A to play two independent games
against Ẽ: one under the key s0 and another under the key s1. In the attack
games that A1 are playing against Ẽ, the challenged message k1 is equal to
SK�⊕k�

2 ⊕· · ·⊕k�
u in game Game0, and is equal to SK+⊕k�

2 ⊕· · ·⊕k�
u in game

Game1.
Finally, we observe that in this modified game Game1, the key SK+ is used

to encrypt message mσ and does not play any other role. Thus, in game Game1,
the adversary A is essentially carrying out an attack against E:∣∣∣∣Pr[T1] − 1

2

∣∣∣ ≤ AdvE(λ) . (3)

By combining Eq. (2) and Eq. (3) in the case where the adversary lacks at least
one pair, we get:

AdvE′
(λ) ≤ πu(λ) + (1 − πu)

(
2AdvẼ(λ) + AdvE(λ)

)
which proves the theorem. �

An immediate corollary of the previous theorem is that the encryption scheme
prevents an attacker from dropping too many cells of its pirate decoder with-
out dramatically dropping its probability of correctly decrypting. The following
theorem in turn shows that this can be exploited to rely on the collusion secure
code to trace at least one of the traitors.

Theorem 2. Consider our construction for a traitor tracing scheme given in
Sec. 3.1 with master tables T (0), T (1) of n-bit cells and length L, a number u of
keys ki, and where the identifying strings are taken from the c-collusion secure
code for N users derived from Tardos’ fingerprinting scheme such as explained
in Sec. 2, that is of size L = 100

β c2 log
(

N
ε

)
. We claim that no coalition of less

than c traitors can produce a pirate decoder with a decryption probability greater
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than 2−t that can not be traced to at least one of the traitors as soon as β and u
are chosen so that: (

βL

u

)
≤ 2−t

(
L

u

)
. (4)

Proof. The idea of the proof is as follows: for the underlying fingerprint code to
work, we need to ensure that at least (say) one fourth of the cells of the tables
has to be kept. Forcing the pirate decoder to embed this number of cells to be
able to decrypt correctly can be achieved by increasing the number u of required
cells to derive the session key SK.

First of all, note that for a cell from the table T P of the pirate decoder to be
useful to the pirate, more than n − t bits must be exact. (The remaining t bits
can be guessed on the fly for a price of at most 2−t, but more than t unknown
bits would be too costly.) Therefore, either the pirate decoder stores n− t bits or
more of some cell (and thus the corresponding bit from the fingerprinting code
can be deduced) or the decoder stores less than n − t bits of the cell (and thus
it is useless for the derivation of the session key).

From the above we deduce that we can assume that only a certain fraction 0 <
α ≤ 1 of the cells of the table are kept in the pirate decoder. Now the probability
that the decoder is able to decrypt correctly is: πu =

(
αL
u

)
/
(
L
u

)
, so that the pirate

decoder can not decrypt with probability higher than 2−t by the hypothesis made
at Eq. 4 if α < β. Therefore the pirate decoder embeds more than βL digits and
since the underlying Tardos’ fingerprint code of length L has been expanded to
100
β c2 log

(
N
ε

)
, there remains 100c2 log

(
N
ε

)
digits in the pirate word which allows

Tardos’ tracing algorithm to output a list of traitors as usual. �

3.3 Efficiency and Sample Parameters

We now propose a set of parameters for a sample implementation with the
AES as the underlying encryption schemes (E, D) and (Ẽ, D̃). The key size is
therefore chosen to be n = 128. For a number of users N = 230, setting β = 1

2 ,
and considering coalitions of at most c = 100 traitors, the expanded code has
length L � 224, and Theorem 2 gives the following data:

2−t = 10
100 2−t = 1

100 2−t = 1
1000

u 4 7 10

4 Conclusion

The long series of work about traitor tracing schemes based on collusion secure
codes shows that they can provide many interesting properties such as constant
size ciphertexts, black-box tracing procedures against stateful (and possibly high
error rate) pirate decoders. In contrast, the intriguing question of whether achiev-
ing trace and revoke capabilities is possible or not remains open.
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Abstract. The algebraic setting for threshold secret sharing scheme can
vary, dependent on the application. This algebraic setting can limit the
number of participants of an ideal secret sharing scheme. Thus it is
important to know for which thresholds one could utilize an ideal thresh-
old sharing scheme and for which thresholds one would have to use non-
ideal schemes. The implication is that more than one share may have to
be dealt to some or all parties. Karnin, Greene and Hellman constructed
several bounds concerning the maximal number of participants in thresh-
old sharing scheme. There has been a number of researchers who have
noted the relationship between k-arcs in projective spaces and ideal linear
threshold secret schemes, as well as between MDS codes and ideal linear
threshold secret sharing schemes. Further, researchers have constructed
optimal bounds concerning the size of k-arcs in projective spaces, MDS
codes, etc. for various finite fields. Unfortunately, the application of these
results on the Karnin, Greene and Hellamn bounds has not been widely
disseminated. Our contribution in this paper is revisiting and updating
the Karnin, Greene, and Hellman bounds, providing optimal bounds on
the number of participants in ideal linear threshold secret sharing schemes
for various finite fields, and constructing these bounds using the same tools
that Karnin, Greene, and Hellman introduced in their seminal paper. We
provide optimal bounds for the maximal number of players for a t out of n
ideal linear threshold scheme when t = 3, for all possible finite fields. We
also provide bounds for infinitely many t and infinitely many fields and a
unifying relationship between this problem and the MDS (maximum dis-
tance separable) codes that shows that any improvement on bounds for
ideal linear threshold secret sharing scheme will impact bounds on MDS
codes, for which there is a number of conjectured (but open) problems.

1 Introduction

Threshold secret sharing is an important cryptographic tool that is used in
many applications in cryptography. It provides group access control of secret
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keys, and it can be used to provide group signatures and group authentication,
it is used in e-voting, e-government, as well as many other applications. The
problem that we will consider is to determine the maximal number of players
(participants) that can participate in a t out of n linear threshold sharing scheme
over a finite field. This number depends on both t and the field F. Bounds for
this problem were introduced almost 25 years ago in [14], but since then few
improvements have been made. Meanwhile, there has been considerable work
on the bounds of the size of shares for sharing schemes over general access
structures, for example [7,8,12]. Moreover, there has been significant amount of
work concerning bounds on information rate [3,22,18]. However, our focus is on
ideal threshold schemes. An ideal threshold scheme is a threshold sharing scheme
for which the size of the shares is the same as the size of the secret.

The problem of determining the maximal number of participants in a t out
of n ideal linear threshold scheme is related to a coding theory problem, but
the goals are different. In a t out of n threshold scheme we require completeness
(any t or more participants can compute the secret) and privacy (any t − 1 or
less participants learn nothing about the secret. Whereas in coding theory the
goal is primarily a “completeness problem”. In [16], McEliece and Sarwate first
discussed the relationship between coding theory and secret sharing, however
they did not provide any bounds concerning the limitations on the number of
participants. In Section 7 we discuss the relationship to the problem we pose and
the problem concerning the maximal size of a MDS code for a finite field F. A
considerable amount of research has been conducted on the problem concerning
the maximal size of a MDS code for a finite field F, in particular for many finite
fields the maximal size has been known [17, 20, 11], as we discuss in Section
7. Further there is a direct relationship between MDS codes and ideal linear
threshold secret sharing schemes. Unfortunately, as far as we know, the Karnin,
Greene and Hellman bounds. were not updated. Several other problems, such as
k-arcs in a projective space [13], and orthogonal arrays [6] have been shown to be
equivalent to MDS codes and/or ideal linear threshold secret sharing schemes,
and thus under the equivalence, results concerning maximal size in a finite field
would impact the problem of determining the maximal number of participants
in a t out of n ideal linear threshold scheme.

Summary of Our Results. The problem posed in this paper is to determine
the maximal n for t out of n linear, ideal threshold sharing scheme over a finite
field F, which we denote by nmax,t or in short nmax. Our results provide improved
bounds on the maximal number of participants in a perfect ideal linear secret
sharing scheme. Moreover, we are able to construct these bounds using many
of the “tools” that Karnin, Greene and Hellman introduced in their ground
breaking paper on secret sharing [14]. In this paper we provide optimal solutions
for nmax,t for t = 3 for both fields of characteristic 2 and odd characteristic. We
provide upper bounds for nmax,t for infinitely many cases of t and F. We provide
a unification of this problem to a coding theory problem and pose open problems
that have an implication in threshold secret sharing and coding theory.
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2 Background

Shamir [21] and Blakley [1] independently introduced the concept of threshold
secret sharing over a finite field.

Definition 1. [22] A t out of n threshold sharing scheme is a scheme for sharing
a secret key k to n participants in such a way that any t participants can reconstruct
the key but no group of t− 1 or less can reconstruct the key. A t out of n threshold
sharing scheme will consist of two phases: the distribution phase where some entity
called the dealer, using a distribution algorithm D, constructs shares s1, . . . , sn

and for i = 1, . . . , n. For each i, the dealer privately sends share si to participant
Pi. The second phase called the reconstruction phase, occurs when t participants
Pi1 , . . . , Pit want to reconstruct the secret key. Using reconstruction algorithm R
and shares si1 , . . . , sit they reconstruct the secret key k.

Definition 2. [22] A t out of n threshold sharing scheme is called a perfect
sharing scheme provided that given a secret k, any set of at least t participants
can compute k, and any subset of t − 1 or less participants gain no information
about k. That is, if s1, . . . , sn represent the shares distributed to the n partici-
pants, then the security conditions are:

(i) (completeness) Prob(k = k|si1 = si1 , . . . , sit = sit) = 1
(ii) (privacy) Prob(k = k|si1 = si1 , . . . , sit−1 = sit−1) = Prob(k = k)

The set Γ which consists of all sets of t or more participants is called the access
structure for a threshold scheme.

A linear secret sharing scheme is such that the reconstruction of the secret key by
the t participants is performed by taking linear combination of the t shares [22].
In a t out of n linear threshold sharing scheme over finite field F the shares
{s1, . . . , sn} can be constructed using the distribution matrix D as follows.⎡⎢⎢⎢⎣

s1

s2

...
sn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x11 x12 x13 · · · x1m

x21 x22 x23 · · · x2m

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnm

⎤⎥⎥⎥⎦ . ·

⎡⎢⎢⎢⎣
k
a1

...
am−1

⎤⎥⎥⎥⎦ (1)

Here k is the secret. Equation (1) can be abbreviated as S = D · y (we use y to
denote the column matrix). Note that if a perfect linear scheme is defined over
a finite field then the number of columns of D will be t.

An ideal threshold sharing scheme is a threshold sharing scheme such that the
size of the shares is the same as the size of the secret.
Note. In the context of this paper, all threshold sharing schemes that are dis-
cussed will be perfect, ideal and linear t out on n threshold sharing schemes. We
will use the acronym t out of n PIL threshold sharing scheme to denote a
perfect, ideal and linear t out on n threshold sharing scheme.

Since a t out of n PIL threshold secret sharing scheme must satisfy
Definition 1, we can restate the requirements in terms of characteristics of the
distribution matrix D.
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1. Completeness. Any set of participants containing at least t participants can
compute the secret k. Thus any t rows of the distributor’s matrix D given in (1)
must have a row span that includes the row [1,0,0,..,0].

2. Privacy. No subset of less than t participants can determine any information
about the secret k. Thus any t−1 or less rows of D cannot have a row span that
includes [1,0,0,..,0].

An important tool used in many threshold schemes is the Vandermonde ma-
trix. The Vandermonde matrix is a matrix of the form⎡⎢⎢⎢⎣

1 x1 x2
1 · · · xl−1

1

1 x2 x2
2 · · · xl−1

2
...

...
...

. . .
...

1 xl x2
l · · · xl−1

l

⎤⎥⎥⎥⎦ .

The determinant of the Vandermonde matrix denoted by Δ(x1, x2, . . . , xl), over
a finite field F is non-zero provided xi �= xj , for i �= j. Thus the Vandermonde
matrix is invertible over any field.

Shamir Secret Sharing scheme is an effective tool to share out the secret
key whenever the key space is isomorphic to some finite field F. The essen-
tial tool used in Shamir Secret Sharing is the Lagrange interpolation polyno-
mial. Shamir’s scheme constructs a t our of n threshold sharing scheme as
follows. For secret k belonging to finite field F, a dealer selects t − 1 ran-
dom elements from F, denoted by a1, . . . , at−1, and computes the polynomial
f(x) = k + a1x + · · · + at−1x

t−1. The dealer selects n distinct non-zero ele-
ments from F, x1, x2, . . . xn and computes f(xi), for i = 1, . . . , n. The dealer
then privately sends each participant Pi the share f(xi). Later when t par-
ticipants Pi1 , Pi2 , . . . , Pit wish to reconstruct the secret key k, they send their
shares to a combiner who computes the secret using Lagrange Interpolation:
k =

∑t
j=1 f(xi) ·

∏t
l=1
l �=j

−xil

xij
−xil

. Observe that the distribution matrix of Shamir’s
scheme is the Vandermonde matrix. A limitation imposed by the Shamir secret
sharing scheme concerns the limit on the number of participants of a thresh-
old sharing scheme over finite field F, that is there is an implicit bound that
n ≤ |F| − 1.

In [14], Karnin, Greene and Hellman described the following threshold sharing
scheme which we will call the Karnin-Greene-Hellman secret sharing scheme.
The scheme is as follows. Consider the finite field GF (qm). Let α be a primitive
element of GF (qm), and let αi denote αi, for i = 1, . . . , qm − 1. The dealer
selects a1, a2, . . . , at−1 at random from GF (qm). The dealer then constructs the
n shares si as follows⎡⎢⎢⎢⎢⎢⎣

s1

s2

...
sr

sr+1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 α1 α2

1 . . . αt−1
1

1 α2 α2
2 . . . αt−1

2
...

...
...

. . .
...

1 αr α2
r . . . αt−1

r

0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
k
a1

a2

...
at−1

⎤⎥⎥⎥⎥⎥⎦ (2)
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Here n = r +1 and r ≤ qm −1. The dealer then sends si privately to participant
Pi. Observe that given any t rows of D, denoted by Di1,i2,...,it , the resulting
matrix is a t×t invertible matrix. Hence y = D−1

i1,i2,...,it
·Si1,i2,...,it , here Si1,i2,...,it

denotes the column vector consisting of the shares si1 , si2 , . . . , sit . Thus the secret
k can be computed. Further, given any t − 1 rows of D, the row [γ, 0, 0, . . . , 0]
for all γ ∈ GF (qm) \ {0}, will not be in the row span of Di1,i2,...,it−1 . Thus
no information concerning the secret k will be revealed by t − 1 or less shares.
Consequently, one can construct a t out of r+1 threshold sharing, where r+1 =
|F|. Thus the number of participants n can be as large as the field and so from
the perspective of determining the maximal n that can be used in a t out of n
threshold secret sharing scheme, we see that the Karnin-Green-Hellman secret
sharing scheme is more efficient than the Shamir secret sharing scheme.

We define nmax,t to be the largest n for which one can construct a t out of n
PIL threshold sharing scheme over finite field F.

In [14], Karnin, Greene and Hellman established the following.

Theorem 1 (KGH). [14] Suppose the secret space S = F = GF (qm), then
nmax,t satisfies

|F| ≤ nmax,t ≤ |F| + t − 2, qm > t, (3)
nmax,t = t, qm ≤ t, (4)

The proof of this result is provided in [14]. The lower bound given in (3) is estab-
lished by using the sharing scheme constructed by Karnin, Greene and Hellman.
The upper bound can be understood by applying the following representation
described by Karnin, Green and Hellman in [14], which we define as the KGH
normal form.

Definition 3. Let D be the distribution matrix of a t out of n PIL threshold
sharing scheme over finite field F. Then D is in KGH normal form provided
that the distribution matrix D satisfies the following equation.

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 · · · x1t

1 x22 x23 · · · x2t

...
...

...
. . .

...
1 xr2 xr3 · · · xrt

1 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Recall that the shares are computed via the matrix equation s = D · y, where
yT = [k, a1, . . . , al]. Observe that the first column of the matrix D given in (5)
represents the use of the secret key k.
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Lemma 1 (KGH). [14] For every t out of n PIL threshold sharing scheme
over a finite field, one can always express the distribution matrix D in KGH
normal form (as illustrated in equation (5)).

Lemma 1 and its proof are provided in [14, proof of Theorem 4, p. 39].
There exists a great similarity between linear codes and threshold secret shar-

ing schemes.

Definition 4. [17,20] A linear code of length n and rank k is a linear subspace
with dimension k of the vector space Fn

q where Fq is the finite field with q elements
The linear code of length n and rank k is often denoted as a [n, k, d] linear code,
where d is the minimum distance between codes.

As noted above, there is a similarity between linear codes and the completeness
property of a t out of n linear threshold sharing schemes. The threshold t in a t
out of n threshold sharing scheme corresponds to the k of a [n, k, d] linear code,
and the distribution matrix D corresponds to the transpose of the generator
matrix of the linear code. The difference between threshold sharing scheme and
a linear code is that the privacy condition is also a necessary requirement for a
t out of n PIL threshold sharing schemes.

Example 1. Consider a [3, 2, 2] linear code with generator matrix G, given by:

G =
[
1 0 1
0 1 1

]
Consider the matrix GT , and interpret it as a distribution matrix of a 2 out of 3
threshold secret sharing scheme. Clearly it would satisfy the completeness prop-
erty, Since any two rows would contain the row span [1,0]. However it violates
the privacy condition since one row would generate [1,0].

3 Some Preliminary Results

Consider the distribution matrix D written in KGH normal form, as described
in (5). Then D can be represented as

D =

⎡⎢⎢⎣
A

01×(t−1) I(t−1)×(t−1)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 · · · x1t

1 x22 x23 · · · x2t

...
...

...
. . .

...
1 xr2 xr3 · · · xrt

1 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)
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where A is a (r + 1) × t matrix (here r = n − t), 01×(t−1) is the column matrix
consisting of zeros, and I(t−1)×(t−1) is the (t − 1) × (t − 1) identity matrix.

A necessary and sufficient condition for a t out of n PIL threshold sharing
scheme is the following.

Lemma 2 (KGH). [14] Let D be a matrix in KGH normal form (6), then D
is the distribution matrix of a t out of n PIL threshold scheme if and only if
every j × j minor of A (for j = 1, . . . , min(t, n − t + 1)) is nonzero.

The proof is provided in [14, proof of Theorem 4, p. 39].
The dual of a t out of n threshold scheme is a n − t + 1 out of n threshold

scheme. The dual has been studied extensively in literature, for more information
on the dual see [10]. It is straightforward to go from a t out of n threshold scheme
and construct its dual, with the same number of players. In [10], Cramer and
Fehr provided the algebraic conditions for constructing the dual of a t out of n
threshold scheme which is defined over a ring (such conditions would of course
have to be satisfied for a dual over a field). The distribution matrix of the dual
is related to the reconstruction matrix. That is, a series of matrix operations
including a transpose of the reconstruction matrix will provide the distribution
matrix of the dual.

Thus if v = nmax,t − t + 1 then there exists a v out of nmax,t PIL threshold
scheme. Therefore nmax,v ≥ nmax,t.

We now discuss a result concerning the properties of a distribution matrix
written in KGH form.

Lemma 3. Let D be a matrix in KGH normal form. If D is a distribution
matrix of a t out of n threshold scheme the following must be true.

(1) for all i, j, with 1 ≤ i ≤ r and 2 ≤ j ≤ t, the i, j entry of A satisfies
xi,j �= 0 and xij �= 1.

(2) for i, v ∈ {1, . . . , r}, i �= v, and for each j = 2, . . . , t, we have xij �= xvj.
(3) for j, l ∈ {2, . . . , t}, j �= l. and for each i = 1, . . . , r, we have xij �= xil,

and
(4) for i, v ∈ {1, . . . , r}, i �= v, and for j, l ∈ {1, . . . , t}, j �= l, the field

elements
xvj

xvl
�= xij

xil
.

Proof. In [14] Karnin, Greene and Hellman established that every j× j minor of
A is nonzero. The proof of Lemma 3 is established by considering various 1 × 1
and 2 × 2 minors of A.

For example to establish that every xi,j is nonzero, consider a 1 × 1 minor
of A. To establish that xi,j does not equal 1, consider a 2 × 2 minor consisting
of the ith row, the r + 1st row, the 1st column and the jth column of D. The

resulting minor
∣∣∣∣1 xi,j

1 1

∣∣∣∣ �= 0, which implies xi,j �= 1. The remaining cases (2),

(3), and (4) of Lemma 3 can be established in a similar manner.

Theorem 2. Let F be a finite field and let t ≥ 2, then
(1) nmax,t ≤ 1 + nmax,t−1, and
(2) for positive integer θ and t ≥ θ + 1, nmax,t ≤ θ + nmax,t−θ.
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Proof. To prove (1) let D represent a distribution matrix written in KGH form
for a t out of nmax,t PIL threshold secret sharing scheme over field F. Let D̃
represents the matrix formed by removing the tth column of D and the last row of
D. The last row of D is of the form [0, 0, . . . , 0, 1]. Thus D̃ is a (nmax,t−1)×(t−1)
matrix. Therefore, it is trivial that any t−1 rows of D̃ contain the row [1, 0, . . . , 0]
in its row span. Further it is trivial that any t−2 or less rows of D̃ do not contain
[γ, 0, 0, . . . , 0] with γ �= 0, in its row span. Thus D̃ is a t − 1 out of nmax,t − 1
threshold scheme. Hence nmax,t−1 ≥ nmax,t − 1.

The proof of (2) follows from (1), by applying it θ many times.

Note: the Karnin-Green-Hellman [14] bounds (see Theorem 1) are tight for
t = 2, so we focus on t > 2.

4 An nmax,t Optimal Scheme for GF (2m) When t = 3

We now construct a 3 out of n PIL threshold sharing scheme over the field
GF (2m) for which n = nmax,3. Important tools in our construction will be the
KGH normal form and the Vandermonde matrix.

Theorem 3. Let F = GF (2m) be a finite field and let n = |F| + 1, then there
exists a secure 3 out of n PIL threshold sharing scheme over F.

Proof. Since the characteristic of F = GF (2m) is 2, all nonzero nontrivial ele-
ments (elements not equal to 0 or 1) of F have (multiplicative) order1 greater
than 2. Let x1, x2, . . . x|F|−2 denote the distinct elements of F not equal to 0 or 1.
Consider the following matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1

...
...

...
1 x|F|−2 x2

|F|−2

1 1 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Thus D is a (|F| + 1) × 3 matrix. We now establish that D is a distribution
matrix of a 3 out of n PIL threshold sharing scheme.

We first consider completeness. We will show that any three participants can
construct the secret. Label the rows of the distribution matrix (7) from 1 to n
in a top-to-down manner.

case (i) Given any 3 rows from {1, . . . , n − 2}, the secret can be constructed
due to the invertibility of the Vandermonde matrix.

case (ii) Suppose we are given the row [0,1,0] and the row [0,0,1] and one
additional row selected from {1, . . . , n − 2} then it is trivial that one
can construct the secret.

1 The order of an element a ∈ F∗ is the smallest positive integer e such that ae = 1.
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case (iii) Suppose one of the rows belongs to {[0, 1, 0], [0, 0, 1]} and the two other
rows selected from rows {1, . . . , n − 2}. Then reduce the system by
using row operations utilizing the row from the set {[0, 1, 0], [0, 0, 1]}.
The resulting system is a 2 by 2 Vandermonde system and hence
invertible.

So the completeness property is established. The proof for privacy follows in a
very similar manner.

Thus for all fields F of characteristic 2, we have nmax,3 = |F|+ 1 = |F|+ 3− 2 =
|F| + t − 2. Consequently for fields of characteristic 2, we find that the Karnin,
Greene, and Hellman upper bound given in equation (3) for nmax,3 is tight.

Recall the dual of a t out of n threshold scheme is a n − t + 1 out of n
threshold scheme. Suppose D is the distribution matrix of a t out of nmax,t

scheme. Then Dual(D) is a distribution matrix for a nmax,t− t+1 out of nmax,t

scheme. Thus if we let v = nmax,t − t + 1, then Dual(D) is the distribution
matrix of a v out of nmax,t scheme. Hence nmax,v ≥ nmax,t. Consequently we
have nmax,|F|−2 ≥ |F| + 1 (since |F| − 2 = nmax,3 − 3 + 1. It is trivial to show
that nmax,|F|−2 ≤ |F| + 1 Therefore we have:

Corollary 1. Let F be a field of characteristic 2, and consider a |F| − 2 out of
n PIL threshold sharing scheme, then nmax,|F|−2 ≥ |F| + 1.

5 Bounds of nmax,t for Fields of Odd Characteristic
When t = 3

The construction of a 3 out of |F|+1 PIL threshold sharing scheme (where charac-
teristic of F is even) is such that the upper |F|−2 rows of the distribution matrix D
(what we denoted earlier as matrix A) is a Vandermonde matrix. This construc-
tion does not violate Lemma 3 because no element of F has order 2. In a finite field
with odd characteristic, we are guaranteed to have the element −1 (the additive
inverse of 1) and −1 �= 1 ( a condition that is false in fields of characteristic 2).
Thus attempting to utilize this construction for 3 out of |F|+1 scheme, would vio-
late Lemma 3. This observation does not imply anything about nmax,3 for a field
of odd characteristic. However the following result establishes the precise value
for nmax,3.

Theorem 4. Consider a field F = GF (pm), where p is prime with p > 2, and
consider all 3 out of n PIL threshold sharing schemes, then n ≤ |F|. Thus we
have that nmax,3 = |F|.
Proof. Without loss of generality assume that F = Zp for p prime > 2. The proof
for the case where F = GF (pm) with m > 1 follows in a similar manner.

By Theorem 1, nmax,3 satisfies that |F| ≤ nmax,3 ≤ |F| + 3 − 2 = |F| + 1.
So we are left to show that nmax,3 < |F| + 1. Suppose nmax,3 = |F| + 1. If
nmax,3 = |F| + 1 where t = 3, then r as described in the equation (5) satisfies
r = |F|+1−3 = |F|−2. Note that |F|−2 is the number of elements of F that are
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not equal to 0 or 1. By Lemma 3 the (i, 1) entry xi1 of A is unique and is not equal
to 0 or 1, for i = 1, . . . , r. Then the set of xi1, for i = 1, . . . , r, represents the |F|−2
elements not equal to 0 or 1. Similarly the set of xi2, for i = 1, . . . , r, represents
the |F| − 2 elements not equal to 0 or 1 and the set of xi2

xi1
, for i = 1, . . . , r,

represents the |F| − 2 elements not equal to 0 or 1. By Wilson’s Theorem [4],
the product all the nonzero elements of Zp reduced modulo p will equal −1.
Therefore the product of all the elements xi1 satisfies

∏r
i=1 xi1 = −1 mod p.

Similarly both
∏r

i=1 xi2 = −1 mod p and
∏r

i=1
xi2
xi1

= −1 mod p.
Then

r∏
i=1

xi2

xi1
= −1 = (

r∏
i=1

xi1)/(
r∏

i=1

xi2) = (−1)/(−1) = 1

Therefore we have a contradiction and so nmax,3 �= |F| + 1. Hence nmax,3 = |F|
when F = Zp. The proof will be valid for all fields F = GF (pm) where p prime
and p > 2.

Thus nmax,3 = |F| for fields of odd characteristic. Consequently, for 3 out of
n PIL threshold sharing schemes, the characteristic of the field does affect the
maximal number of participants that can participate in the threshold scheme.

Corollary 2. The optimal scheme with n = nmax,t for fields of odd character-
istic when t = 3 is given by the Karnin, Greene and Hellman secret sharing
scheme.

Because we have reduced the bound for nmax,3 to |F| and since 1 + nmax,t−1 ≥
nmax,t, we see that nmax,4 ≤ |F| + 1 = |F| + 4 − 3 < |F| + 4 − 2 (the latter is
the KGH upper bound). We can continue this process. For example nmax,5 ≤
1 + nmax,4 ≤ 2 + nmax,3. We then have the following bound.

Corollary 3. Suppose F is a finite field of odd characteristic, then nmax,t ≤
|F| + t − 3.

The bound is an improvement of the upper bound given Theorem 1 (as derived
in [14]). Thus we have demonstrated an improved upper bound for nmax,t for
fields of odd characteristic when t ≥ 3.

6 Implications of nmax,t for t ≥ 4

Recall that the nonzero elements of F form a multiplicative cyclic group. Let α
be a primitive element then for all x ∈ F\{0} there exists an i such that x = αi.

We can then apply the fact that the multiplicative group of F is cyclic, since
the matrix A (submatrix of D) consists of nonzero elements they can each be
expressed as α to a power. Further all elements in each row of A are distinct and
all elements in each column j of A (j = 2, . . . , t) are distinct. We can interpret
each power (the discrete log with respect to α) as a function of the row number i
and that the column number j determines a permutation of the possible powers
{1, . . . , |F|−2}, i.e. we can view it as πi(j). That is, the condition xij �= xil (where
neither is 0 or 1) can be interpreted as απj(i) �= απl(i) and that πj(i) �= πl(i).
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As a motivating example, consider the distribution matrix D of a 4 out of n
PIL threshold sharing scheme. Then

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 x14

...
...

...
...

1 xr2 xr3 xr4

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 απ2(1) απ3(1) απ4(1)

...
...

...
...

1 απ2(r) απ3(r) απ4(r)

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Here πw is a permutation of the set {1, 2, . . . , |F|−2} and πw(i) is the ith term of
this function. Note we are only interested in the first n− t terms of the function
πw (we view a function on |F| − 2 terms as an (|F| − 2)-tuple).

We can then generalize equation (8) to any t out of n threshold scheme and
then generalize Lemma 3 as follows.

Theorem 5. Let D be a matrix in KGH normal form. If D is a distribution
matrix of a t out of n threshold scheme for each of the columns w = 2, . . . , t there
exists a permutation πw of the set {1, 2, ., |F| − 2} such that for i = 1, . . . n − t
the (i, w) entry of D is απw(i). Then each of the following must be true.

(1) for all i ∈ {1, . . . , n− t} and w ∈ {2, .., t}, the discrete log of the i, w entry
of A satisfies πw(i) �= 0,

(2) for j, l ∈ {2, . . . t}, with j �= l and for each row i ∈ {1 . . . , n − t}, we have
πj(i) �= πl(i),

(3) for i, v ∈ {1, . . . n − t}, with i �= v, and for j, l ∈ {2, . . . t}, with j �= l, we
have πj(i) − πl(i) �= πj(v) − πl(v), and

(4) π−1
w ◦ πj is a derangement on the first n − t elements of the function

π−1
w ◦ πj.

Here a derangement π is a permutation on the set {1, . . . , T} such that π(i) �= i
for all i, we require derangement condition (4) to be satisfied on only the first
n − t elements of π.
The proof of Theorem 5 follows immediately from Lemma 2.

7 Unifying Threshold Sharing Schemes with MDS Codes

We now describe the relationship between the maximum nmax,t for t out of n PIL
threshold sharing schemes and nMDS,max,t MDS codes. Bounds on the maximal
number of participants in a perfect ideal linear t out of n threshold sharing
scheme and bounds on maximal size of MDS codes are very similar, where the
former appears to be one less than the latter. In Theorem 6 we prove that this
is true. First we introduce some terminology.

Recall the definition of a [n, k, d] linear code. The Singleton Bound gives

d ≤ n − k + 1. (9)
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A [n, k, d] linear code is called a maximum distance separable (MDS) code if
d = n − k + 1 [17,20].

We now introduce some combinatorial constructions of MDS codes.

Some Combinatorial Constructions of MDS Codes
An n-arc is a set of points in the projective geometry PG(k − 1, q) such that no
k points lie in a hyperplane PG(k − 2, q), where 3 ≤ k ≤ n. An [n, k] MDS code
over field Fq exists iff there exists an n-arc in PG(k − 1, q).

Also, an [n, k] MDS code over field Fq exists iff the rows of a (qk, n, q, k) linear
orthogonal array of index unity and symbols from Fq exists.

We now define nMDS,max,k as the maximum value of n for a [n, k, d] MDS
code for finite field F.

Theorem 6. For finite field F, nmax,t=nMDS,max,t − 1.

We establish Theorem 6 via the following lemmas, Lemma 4 and Lemma 5.
These lemmas have been established previously in [11] (other sources for similar
arguments include [17, 19, 13]). We state the lemmas in a manner to fit the
context of this paper and we provide the proof using our tools (KGH tools) and
terminology.

Lemma 4. Consider a [n, k, d] linear MDS code C for which n is maximum and
d ≥ 2, then there exists a generator matrix G of the code C and a row R of GT

such that if D is the matrix formed by using all but the Rth row of GT . Then D
is a distribution matrix of a k out of nmax,k PIL threshold sharing scheme.

Proof. Consider

GT =
[

B1

B2

]
where B2 is a k × k matrix, and due to completeness invertible. Thus

GT B−1
2 =

[
B1

B2

]
B−1

2 =
[

B1B
−1
2

I

]
where I is the k × k identity matrix. Therefore we may assume without loss of
generality that GT is expressed in systematic form (i.e. the last k rows form the
identity matrix). Label the columns of GT from 1 to k and label the rows of
GT from 1 to n in a top to down fashion. Let R denote the row consisting of
[1, 0, 0, . . . , 0] and remove R from GT and denote this matrix by D. Then clearly
any k rows of D are invertible. Further, each j × j minor of D is nonzero. This
follows from the fact that every k rows of D are invertible and that the last k−1
rows of D possess the form [0, 0, . . . , 0, 1, 0, . . . , 0] where the 1 occurs in the 	
columns for 	 = 2, . . . k.

Thus every bound on a [n, k, d] linear MDS code infers a bound on nmax,k of a
k out of n PIL threshold sharing scheme.
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Lemma 5. Let D be a distribution matrix of a k out of nmax,k PIL threshold
sharing scheme written in KGH normal form. Then by adding a row R to D,
the resulting matrix is the transpose of a generator matrix for a [n, k, d] MDS
code.

Proof. Since D is written in KGH normal form, it satisfies (3). We now add the
row [1, 0, . . . , 0] to D, denote this matrix by D′. Then

D′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 · · · x1k

1 x22 x23 · · · x2k

...
...

...
. . .

...
1 xr2 xr3 · · · xrk

1 1 1 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, (D′)T forms a generator matrix of a [n, k, d] MDS code where n = nmax,k+
1, as we now explain. We need to show that (D′)T forms a [n, k, d] linear code
where d = n − k + 1. A codeword is a member of the row span of (D′)T . Recall
that d is the minimum distance between codewords. Observe that column 1 of
D′ consists of 1 + nmax,k − (k − 1) = 1 + nmax,k − k + 1 = n − k + 1 many
nonzero elements. Thus d ≤ n− k + 1. Since [0, 0, . . . , 0] is a code word, and the
code a linear code, we are left to show that any nontrivial linear combination of
rows of (D′)T consists of at least d = n − k + 1 nonzero elements. Now observe
that (D′)T = [AT |Ik×k] where AT is a k × n − k matrix and Ik×k is the k × k
identity matrix. Since there are only k rows of (D′)T , we need to show that
any nontrivial linear combination of ρ many rows of (D′)T , contains at least
d = n − k + 1 nonzero elements, where ρ ≤ k. We partition the argument into
two parts: if one takes a linear combination of ρ many rows from Ik×k , then
one is going to have exactly ρ many nonzero entries. Thus we are left to show
that if one takes a linear combination of ρ many rows from AT then one has at
least d − ρ many nonzero entries. Here d = n − k + 1 and there are n − k many
columns of AT . We claim that any row which is a linear combination of ρ many
rows of AT contains at most ρ − 1 zero elements. This implies that there are at
least n − k − (ρ − 1) = n − k + 1 − ρ = d − ρ many nonzero elements. To prove
this claim, suppose there is a linear combination ρ many rows of AT for which
there are at least ρ many zeros. Thus there is a ρ× ρ matrix formed by ρ many
rows and ρ many columns of AT for which a nontrivial linear combination of
rows is [0, 0, . . . , 0]. This implies that there is a ρ× ρ minor of AT which is zero.
However, this contradicts a result noted in the proof of Lemma 3, that every
j × j minor of A is nonzero. Hence there are at most ρ − 1 many zero elements
of the linear combination of ρ many rows of AT and so there are at least d − ρ
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many nonzero elements. Consequently (D′)T is a generator matrix of a MDS
[n, k, d] code.

Therefore bounds on nmax,k of a k out of n PIL threshold sharing scheme infers
bounds on [n, k, d] linear MDS code.

The proof of Theorem 6 follows from the above Lemmas.
Thus we see that bounds concerning nmax,t for t out of n PIL threshold

sharing schemes directly impact bounds on linear MDS codes and vice versa.
There are several open problems concerning bounds on MDS codes. It is possi-
ble that the problem concerning constructing bounds for nmax,t may be easier
than problems concerning constructing bounds on MDS codes (since there are
more constraints to this problem, i.e. both “completeness” and “privacy” must
be satisfied for threshold sharing schemes). Thus any improvements in bounds
concerning nmax,t will directly impact bounds concerning linear MDS codes.

Some Known Results Concerning MDS Codes. The following is some
results that are known concerning the maximal size of MDS codes for finite
fields. Our work, which was derived using KGH tools, agree with the known
results. If we let nMDS,max,k denote the maximum value of n for a [n, k, d] MDS
code for finite field Fq, then by [11, 20]

nMDS,max,k =

⎧⎪⎪⎨⎪⎪⎩
q + 1 when k = 2
q + 1 when k = 3 or k = q − 1 and q odd
q + 2 when k = 3 and q is even
k + 1 when k ≥ q

For k ≥ q it is known that nMDS,max,k = k + 1. The well-known MDS con-
jecture states that for 2 ≤ k < q,

nMDS,max,k =
{

q + 2, q even and k = 3 or k = q − 1,
q + 1, otherwise.

This conjecture has been proved for small values of k (for example for k ≤ 5),
it has also been established for small values of q (for q ≤ 27) and has been
established for some other cases, see [11].

The following upper bounds for nMDS,max,k have been proved by Bush [5].
For 2 ≤ k < q,

nMDS,max,k ≤
{

q + k − 2, k ≥ 3 and q odd,
q + k − 1, otherwise,

These general upper bounds have been improved slightly according to [23]
where it states that q + k − 3 is an upper bound in the case k >= 4 and q even.
They refer to [15].

As noted there exists a relationship between MDS codes and k-arcs in projec-
tive geometry. Thus there exists a relationship exists between linear threshold
schemes and k-arcs in projective geometry. There is also a relationship between
linear threshold schemes and orthogonal arrays. In [6], Dawson et. al. established
several results concerning orthogonal arrays and threshold schemes, in particular
that all linear threshold schemes are equivalent to orthogonal arrays.
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8 Conclusion

We have discussed several bounds on the maximal number of players, nmax,t, in
t out of n threshold schemes over a finite field. We have derived these bounds
using the same tools that Karnin, Greene and Hellamn described in their original
paper. We have formalized the notation for this problem and derived several
results. We have also unified this problem to a problem in coding theory, namely
linear MDS codes and have noted that improvements in constructing bounds on
nmax,t directly impact bounds concerning MDS codes.
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Abstract. It is known that string (1, 2)-OT and Rabin’s OT are equiv-
alent. Actually, there have been many reductions between them. Many
of them use the privacy amplification technique as a basic tool. The pri-
vacy amplification technique essentially involves some post-processing of
sending random objects (e.g., random indices of pairwise independent
hash functions) per each invocation of Rabin’s OT is necessary. In this
paper, we show a simple direct reduction of string (1, 2)-OT to Rabin’s
OT by using a deterministic randomness extractor for bit-fixing sources.
Our reduction can be realized without privacy amplification and thus our
protocol is simpler and more efficient with respect to the communication
complexity than the previous reductions.

Keywords: oblivious transfer, reduction, privacy amplification, deter-
ministic randomness extractor.

1 Introduction

Suppose that Alice (database company) has two secret strings, s0 and s1. Bob
(user) wants to buy one sc among them. But he wants to keep his choice private.
That is, it must be that Alice does not know which one Bob bought. On the
other hand, Alice wants to keep her privacy. That is, it must be that Bob does
not know s1−c. A two-party protocol which realizes the above goal is called a
1-out-of-2 string oblivious transfer, denoted string (1, 2)-OT [19]. If s0 and s1

are single bits, the protocol is called a bit (1, 2)-OT. On the other hand, suppose
that Alice wants to send a mail to Bob. However, the mail system is so bad that
Bob receives the mail with probability 1/2. Notice that Alice does not know if
Bob received or not. A two-party protocol which realizes the above situation is
called Rabin’s OT [27].

It is known that a string (1, 2)-OT, a bit (1, 2)-OT and Rabin’s OT are all
equivalent. That is, there is a reduction between any two of them. Reductions

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 199–209, 2008.
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especially of string (1, 2)-OT to simpler bit (1, 2)-OT have been extensively stud-
ied in the literature. A reduction of 1-bit (1, 2)-OT to Rabin’s OT was shown by
Crépeau [12]. After that, the notion of universal OT was introduced by Brassard
and Crépeau [5] and the reductions to universal OT have been intensively stud-
ied [5,8,15,29]. (Those reductions immediately imply corresponding reductions
to Rabin’s OT as the universal OT gives the dishonest receiver only more power.)
Recently, Imai, Morozov and Nascimento [22] gave a direct efficient reduction of
string (1, 2)-OT to Rabin’s OT.

One of the techniques for reductions of string (1, 2)-OT to bit (1, 2)-OT
is known as a notion of zigzag functions, based on particular types of error-
correcting codes called self-intersecting codes. This technique was used in earlier
literature [7,6]. In the reductions, a predetermined zigzag function f is supposed.
The underlying idea is as follows: if x0 (resp., x1) is a random preimage of s0

(resp., s1), and if Bob is given to choose the i-th bit of either x0 or x1 by using
bit (1, 2)-OT, then no information on either x0 or x1 can be obtained. Another
technique for reductions of string (1, 2)-OT to bit (1, 2)-OT is known as privacy
amplification, originally used in the context of key agreement [3,2]. It is rather
standard and used in recent literature, e.g., [8]. In the reduction, Alice uses a
transformation of a string x into a shorter string s so as not to recover x from
s even if Bob know the transformation. To implement string (1, 2)-OT with two
secrets s0 and s1, Alice executes a sequence of bit (1, 2)-OT with the i-th bit of
x0 and the i-th bit of x1. Subsequently, Alice informs Bob how to transform x0

(resp., x1) to s0 (resp., s1) via privacy amplification. The important difference
between zigzag functions and privacy amplification is when Alice reveals “the
trick” to Bob. While zigzag functions is known before the execution of bit (1, 2)-
OT, in the construction based on privacy amplification the function is revealed
after the execution of bit (1, 2)-OT. Because of this difference, constructions
based on privacy amplification in general are simpler and more efficient. On the
other hand, constructions based on privacy amplification must generate a new
function (e.g., a hash key of pairwise independent hash functions) and send it at
each execution of the protocol. Since string (1, 2)-OT is an important building
block in cryptography, the communication cost of the post-processing may not
be negligible.

Since Rabin’s OT is as simple as bit (1, 2)-OT, it is also important to consider
reductions of string (1, 2)-OT to Rabin’s OT. Also note that since Rabin’s OT
can be seen as an erasure channel, the direct reduction can be a construction
of string (1, 2)-OT based on the erasure channel. As we mentioned, almost all
previous reductions use privacy amplification technique. A reduction by Imai et
al [22] is one of such reductions and invokes about the number 4L of Rabin’s
OT to implement L-bit (1, 2)-OT.

Our Contribution
In this paper, we show a simple direct reduction of string (1, 2)-OT to Ra-
bin’s OT by using a deterministic randomness extractor, i.e., without privacy
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amplification1. Our reduction is as efficient as the direct reduction by Imai et
al.[22] from the view point of the number of invocations of smaller primitives.
That is, our construction of L-bit (1, 2)-OT also uses about the number 4L of
invocations of Rabin’s OT. The advantage of our reduction is the use of deter-
ministic randomness extractor. It enables us to enjoy the advantages of both
zigzag functions and privacy amplification. Since the deterministic randomness
extractor to be used in the reduction can be predetermined, any post-processing
is not necessary. This property, which implies the reduction of the communica-
tion cost, is quite important because string (1, 2)-OT is a basic cryptographic
building block and such a building block can be used many times. In addition,
our construction is rather simple than the previous results based on privacy
amplification.

Note that Bennett, Brassard and Robert [3] have already studied the pri-
vacy amplification in the “deterministic” scenario. But, just a replacement of
(randomized) privacy amplification technique with some deterministic privacy
amplification does not work in general. The deterministic extractor we use is
tailored for specific sources, say, bit-fixing sources. The use of deterministic ex-
tractors for bit-fixing sources plays an essential role in our protocol.

Remarks on Deterministic Extractors for Bit-Fixing Sources

An (n, k)-bit-fixing source introduced by Chor et al. [11] was a distribution
over {0, 1}n where some k bits out of n bits are uniformly distributed and the
other n− k bits are constant. One of the motivations for studying deterministic
extractors for bit-fixing sources is a connection to cryptography. Consider the
following cryptographic scenario: even if the adversary obtains some bits of an
n-bit secret key, he learns almost nothing about the secret key. Such exposure
resilient property in cryptology was studied in [24,28,4,16,10,18]. Relations of
exposure resilient cryptography to deterministic extractors for bit-fixing sources
were discussed in [24,16].

Kurosawa, Johansson and Stinson showed the first deterministic extractor un-
der the name of almost (n − k)-resilient functions [24]. Canetti, Dodis, Halevi,
Kushilevitz and Sahai showed a probabilistic construction of deterministic ex-
tractors [10]. Kamp and Zuckerman [23] showed an explicit construction of de-
terministic extractors for bit-fixing sources by adapting random walks on regular
graphs. After that Gabizon, Raz and Shaltiel [20] improved Kamp-Zuckerman’s
extractor by coupling with samplers and seeded extractors. The deterministic
extractor of [20] extracts (1− o(1))k bits from (n, k)-bit-fixing sources whenever
k > (log n)c for some universal constant c > 0. For k � √

n, the extracted bits
have statistical distance 2−nΩ(1)

from uniform, and for k ≤ √
n, the extracted

bits have statistical distance k−Ω(1) from uniform.

1 Since extractors are one of privacy amplification techniques, deterministic extrac-
tors can be seen as a kind of privacy amplification. However, since the deterministic
extractor is a deterministic machinery, we would like to claim that the term “ampli-
fication” is not appropriate in our setting.
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Our protocol uses deterministic extractors for bit-fixing sources differently
from the standard usage. Thus, our protocol is not only an improvement of the
previous reduction but also another cryptographic application of deterministic
extractor for bit-fixing sources.

2 Preliminaries

2.1 (1, 2)-Oblivious Transfer

In L-bit (1, 2)-OT, Alice has two secret strings s0, s1 ∈ {0, 1}L and Bob has a
secret bit c. Then the following three conditions must be satisfied.

– At the end of the protocol, Bob receives sc. This condition is called
correctness.

– But Bob learns no information other than sc. This condition is called sender’s
privacy.

– On the other hand, Alice has no information on c. This condition is called
receiver’s privacy.

We give more formal definitions for the above conditions in the following.
Though there is a definition based on the universal composability [14], we adopt
an information theoretic one due to Brassard, Crépeau and Wolf [8] since it is
suitable to our discussion. (Actually, defining OT is a subtle problem. See [15,14]
for the topic. We have considered the problem in our definitions).

Let A be Alice’s (probabilistic) algorithm for the protocol and B Bob’s. Let
[A; B](a; b) be the random variable that describes the outputs obtained by Alice
and Bob when they execute together the programs A and B on respective inputs
a and b. Similarly, let [A; B]∗(a; b) be the random variable that describes the
total information (including messages exchanged between Alice and Bob and
the results of any local random sampling) they may have performed acquired
during the protocol [A; B] on respective inputs a and b. Let [A; B]P (a; b) and
[A; B]∗P (a; b) be the marginal random variables obtained by restricting the above
to only one party P , i.e., either Alice or Bob. The latter random variable is also
known as view of P .

Definition 1. A protocol [A; B] for L-bit (1, 2)-OT is (1− ε)-correct if we have

Pr{[A; B](s0, s1; c) �= (⊥, sc)} ≤ ε

for every s0, s1 ∈ {0, 1}L and c ∈ {0, 1}, where ⊥ denotes the empty output.

Let (S0, S1) and C be random variables taking values over {0, 1}2L and {0, 1}
that describe Alice’s and Bob’s respective inputs. Also we denote, by V({0, 1}2L)
and V({0, 1}), all the random variables over {0, 1}2L and {0, 1}, respectively.
We assume that both Alice and Bob are aware of the arbitrary joint probability
distribution of these random variables PS0,S1,C . A sample (s0, s1, c) is generated
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from the distribution and (s0, s1) is given to Alice as her secret input while c is
given to Bob as his secret input.

Let H(X) be the Shannon entropy of a random variable X . The mutual
information of two random variables X and Y is denoted by I(X ; Y ) = H(X)−
H(X | Y ) and conditioned by a third random variable Z as I(X ; Y | Z) = H(X |
Z) − H(X | Y, Z).

Definition 2. A protocol [A; B] for L-bit (1, 2)-OT satisfies receiver’s (1 − ε)-
privacy if for all (S0, S1) ∈ V({0, 1}2L), C ∈ V({0, 1}), for all s0, s1 ∈ {0, 1}L,
for all dishonest A′,

I(C; [A′; B]∗A′(S0, S1; C) | (S0, S1) = (s0, s1)) ≤ ε.

The random variable C in the above definition may depend on the random
variables S0 and S1.

Definition 3. A protocol [A; B] for L-bit (1, 2)-OT satisfies sender’s (1 − ε)-
privacy if for all (S0, S1) ∈ V({0, 1}2L), C ∈ V({0, 1}), for all c ∈ {0, 1}, for all
dishonest B′, there exists C′ ∈ V({0, 1}) such that

I(S1−C′ ; [A, B′]∗B′(S0, S1; C) | C′, SC′ , C = c)/L ≤ ε

where the random variable C′ is independent of (S0, S1) conditioned on C.

2.2 Rabin’s Oblivious Transfer

In Rabin’s OT, Alice has a secret bit b. At the end of the protocol, Bob receives
b with probability 1/2. On the other hand, Alice does not know if Bob received
b or not. (Rabin’s OT can be viewed as an erasure channel.)

2.3 Previous Reductions

Crépeau showed a reduction of 1-bit (1, 2)-OT to Rabin’s OT [12]. In his re-
duction, Rabin’s OT must be invoked at least 64s/3 > 21s times, where s is a
security parameter such that

– (1 − 2−s)-correctness, and
– Sender’s (1 − 2−s)-privacy is satisfied.

Also there is a direct direction of string (1, 2)-OT to Rabin’s OT due to Imai
et al [22]. They gave only a simple sketch of the analysis. Since their protocol
is similar to ours, our analysis shown later may be applicable to the analysis of
their protocol.

3 Deterministic Extractor

An (n, k)-bit-fixing source is a distribution X on {0, 1}n on which n − k bits
are fixed and the remaining k bits are uniform and independent each other.
A deterministic bit-fixing source extractor is a function E : {0, 1}n → {0, 1}L

which on input an arbitrary (n, k)-bit-fixing source, outputs L bits that are
statistically-close to uniform.
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Definition 4. (bit-fixing source on S). A distribution X = (Xi1 , Xi2 , · · · , Xin)
over {0, 1}n is a bit-fixing source on S = {i1, · · · , ik} ⊆ {1, · · · , n} if the joint
distribution of Xi1 , Xi2 , · · · , Xik

is uniformly distributed over {0, 1}k and for
every i �∈ S, Xi is a fixed constant.

Definition 5. ((n, k)-bit-fixing source). A distribution X over {0, 1}n is an
(n, k)-bit-fixing source if there exists a subset S = {i1, · · · , ik} ⊆ {1, · · · , n}
such that X is a bit-fixing source on S.

Definition 6. (deterministic extractor). A function E : {0, 1}n → {0, 1}L is a
deterministic (k, ε)-bit-fixing source extractor if for every (n, k)-bit-fixing source
X , the distribution E(X) (obtained by sampling x from X and computing E(x))
is ε-close to the uniform distribution on L bit strings.

Gabizon, Raz and Shaltiel [20] gave a deterministic extractor for bit-fixing
sources as follows.

Proposition 1. For every constant 0 < γ < 1/2, there exists an integer n′

(depending on γ) such that: for any n > n′ and any k, there is an explicit
deterministic (k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}L, where L =
k − n1/2+γ and ε = 2−Ω(nγ).

Consider k = n1/2+α for some constant 0 < α < 1/2. We can choose any γ < α
and extract L = n1/2+α − n1/2+γ bits.

4 Direct Reduction of String (1, 2)-OT to Rabin’s OT

Only known direct reduction of string (1, 2)-OT to Rabin’s OT uses the technique
of privacy amplification. In this section, we show a direct and simple reduction
of string (1, 2)-OT to Rabin’s OT without privacy amplification. In general, con-
structions (of string (1, 2)-OT from bit (1, 2)-OT) based on privacy amplification
is simpler. While we use a different technique (i.e., deterministic extractor) than
privacy amplification, our construction is rather simpler.

4.1 Proposed Reduction

We show how to realize string (1, 2)-OT from p-OT directly and efficiently, where
p-OT is a generalization of Rabin’s OT. In p-OT, Alice has a secret bit b. At
the end of the execution of the protocol, Bob receives b with probability p. On
the other hand, Alice does not know if Bob received b or not. Rabin’s OT is a
special case such that p = 1/2.

Alice and Bob agree on a positive integer n and 0 < δ <
√

2p/3. Let N =
n(p− δ/

√
2) and k = n(p− 3δ/

√
2)/2. Suppose that there exists a deterministic

(k, ε)-bit-fixing source extractor E : {0, 1}N → {0, 1}L.
Then our L-bit (1, 2)-OT is described as follows.
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1. Alice chooses x1, · · · , xn ∈ {0, 1} randomly.
2. For i = 1, · · · , n, Alice and Bob execute p-OT on xi.
3. Bob chooses U0, U1 ⊆ {1, · · · , n} such that |U0| = |U1| = N , U0 ∩

U1 = ∅ and he knows xi for each i ∈ Uc. He then sends (U0, U1) to
Alice.

4. Suppose that

U0 = {i1, · · · , iN}, U1 = {j1, · · · , jN}.

Define
R0 = (xi1 , · · · , xiN ), R1 = (xj1 , · · · , xjN ).

Alice sends y0 = E(R0) ⊕ s0 and y1 = E(R1) ⊕ s1 to Bob.
5. Bob computes sc = E(Rc) ⊕ yc.

4.2 Security

Now we will prove the security of the above protocol implementing L-bit (1, 2)-
OT. More formally, we have the following.

Theorem 1. The protocol above implements L-bit (1, 2)-OT with the following
properties.

– (1 − 2e−nδ2
)-correctness,

– sender’s (1 − (ε + 2e−nδ2
))-privacy, and

– receiver’s 1-privacy,

where ε is the statistical difference between extractor outputs and the uniform
distribution.

Proposition 2. (Hoeffding Bound [21]) Let x1, x2, · · · , xn be independent
Bernoulli random variables. If Pr(xi = 1) = p for 1 ≤ i ≤ n, then for all
0 ≤ γ ≤ 1, we have

Pr
(∣∣∣∣∑n

i=1 xi

n
− p

∣∣∣∣ ≥ γ

)
≤ 2e−2nγ2

.

Let
X = {xi | Bob received xi at step 2}.

Note that E[|X |] = np. Then by applying the Hoeffding Bound,

n

(
p − δ√

2

)
≤ |X | ≤ n

(
p +

δ√
2

)
(1)

with probability more than 1 − 2e−nδ2
. Therefore,
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1. There exists Uc ⊆ {1, · · · , n} such that N
def= n(p − δ/

√
2) = |Uc| and he

knows xi for each i ∈ Uc, since, at step 2, he receives elements enough to
constitute Uc. Hence honest Bob can receive sc with probability more than
1 − 2e−nδ2

. Thus the protocol satisfies (1 − 2e−nδ2
)-correctness.

2. Again from eq.(1), Bob knows at most M
def= n(p + δ/

√
2) bits among

x1, · · · , xn with probability more than 1−2e−nδ2
. On the other hand, |U0|+

|U1| = 2n(p − δ/
√

2). Hence Bob has no information on the rest of

|U0| + |U1| − M = 2n

(
p − δ√

2

)
− n

(
p +

δ√
2

)
= n

(
p − 3δ√

2

)
= 2k

bits, because he does not receive any of them at step 2. Let us consider
more precisely. Now, we assume that at step 3 Bob sends Ud and U1−d such
that |Ud ∩ X | ≥ |U1−d ∩ X | (and |Ud| = |U1−d| = N and Ud ∩ U1−d =
∅). Then k indices out of U1−d are unknown to Bob. That is R1−d is an
(N, k)-bit-fixing source for Bob. Here, we can define the random variable
C′ (appeared in Definition 3) as Bob’s choice d, which is independent of
(S0, S1) conditioned on C. Then he has (almost) no information on s1−d

(regardless of the knowledge on d, sd and c) because E is a deterministic
(k, ε)-bit-fixing source extractor and yi = E(Ri) ⊕ si for i = 0, 1. It means
that sender’s (1− ε)-privacy is satisfied on conditioning that Bob receives sc

as expected. After all, sender’s (1 − (ε + 2e−nδ2
))-privacy is satisfied.

3. Receiver’s 1-privacy immediately follows from the construction.

4.3 Comparison

Rabin’s OT is a special case such that p = 1/2. Suppose that p = 1/2 in
our protocol. Then we obtain L-bit (1, 2)-OT which satisfies sender’s (1 − (ε +
2e−nδ2

))-privacy for any 0 < δ <
√

2/6 if there exists a deterministic (k, ε)-
bit-fixing source extractor E : {0, 1}N → {0, 1}L with N = n(0.5 − δ/

√
2) and

k = n(0.5 − 3δ/
√

2).
If we use a deterministic extractor for bit-fixing sources due to Gabizon, Raz

and Shaltiel [20]2, then we have

L = (1 − o(1))k = (1 − o(1))n(
1
2
− 3√

2
δ)/2.

We consider the case where L-bit (1, 2)-OT satisfies both (1 − 2−s)-correctness
and sender’s (1 − 2−s)-privacy. Let s = nδ2 ln 2. (For simplicity, we assume that
ε = 0.) Then,
2 Their extractor consists of the Kamp-Zuckerman extractor[23] based on almost ran-

dom walk on cycle graphs, a sampler (that can be realized by almost k-wise indepen-
dent random variables[1]) and a standard seeded extractor. The computational cost
of the seeded extractor is relatively expensive. So, we may use another deterministic
extractor for bit-fixing sources if exists. For example, a generalization by Lee, Lu and
Tsai [26] is a more efficient deterministic extractor for bit-fixing sources. What we
care in the paper is on the communication cost, so we do not consider the running
cost of extractors.
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L ≈ n/4 − O(
√

sn).

It means that we invoke Rabin’s OT approximately n ≈ 4L + O(
√

sL) times to
construct L-bit (1, 2)-OT.

On the other hand, the previous reduction of L-bit (1, 2)-OT to Rabin’s OT
requires 2-step reduction. In the first step, we can construct a 1-bit (1, 2)-OT
from Rabin’s OT by using the reduction of Crépeau [12]. In the second step,
we can construct an L-bit (1, 2)-OT from the 1-bit (1, 2)-OT. The first step
requires at least 21s invocations of Rabin’s OT as shown in Sec.2.3, where s
is the security parameter. Brassard, Crépeau and Wolf showed the second step
which runs n = 2L + s′ instances of 1-bit (1, 2)-OT, where s′ is a security
parameter [8]. Hence the previous reduction requires at least 21sL invocations
of Rabin’s OT.

See the following table for comparison. From this table, we see that our re-
duction is more efficient with respect to the communication complexity than the
previous reduction, since our protocol does not use post-processing (i.e., sending
random matrices and so on) for privacy amplification.

the number of invocations of Rabin’s OT
to construct L-bit (1, 2)-OT

Previous 2-step reduction at least 21sL

Imai et al [22] 4L + O(
√

sL) (with post-processing each)
This paper 4L + O(

√
sL) (without post-processing)

5 Discussion

5.1 Technical Difference from Previous Reductions

Technical differences between our reduction and Crépeau’s reduction [12] are
as follows. The main difference is that we use a deterministic extractor for bit-
fixing sources E : {0, 1}N → {0, 1}L while Crépeau used a deterministic function
E : {0, 1}N → {0, 1} such that

E(x1, · · · , xN ) = x1 ⊕ · · · ⊕ xN .

In a sense, the usage of deterministic extractor for bit-fixing sources might be
seen as a generalization. The reduction by Imai et al is also similar to Crépeau’s
reduction. They introduced privacy amplification as usual because their reduc-
tion is from string OT but from bit OT. Using predetermined deterministic ex-
tractors allows us to construct a direct and efficient reduction of L-bit (1, 2)-OT
to Rabin’s OT because ours does not need post-processing for each invocation
as well as Crépeau’s reduction from 1-bit (1, 2)-OT to Rabin’s OT.

Another (but slight) difference from Crépeau’s is that he used Bernshtein’s
Law of large numbers while we use Hoeffding bound which is tighter. While
Imai et al. did not give the analysis, similar analysis may be applicable since our
protocol is similar to theirs.
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6 Concluding Remark

It is very hard to derive a lower bound on the number t of invocations of Rabin’s
OT to construct L-bit (1, 2)-OT. Imai et al. [22] showed that a lower bound on
the number t of invocations of Rabin’s OT to construct L-bit (1, 2)-OT in the
semi-honest model is 2L. Thus, a trivial lower bound in the malicious model is
also 2L. As we have shown, the upper bound is almost 4L. So, there is still a
gap between upper and lower bounds. It remains open to look for the matching
bound. In case of the OT reduction from string (1, 2)-OT to bit (1, 2)-OT, the
lower bounds have been extensively studied [17,30,25]. The techniques therein
may be helpful to improve the lower bound in [22].
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Abstract. Cryptography often meets the problem of distinguishing dis-
tributions. In this paper we review techniques from hypothesis testing to
express the advantage of the best distinguisher limited to a given num-
ber of samples. We link it with the Chernoff information and provide a
useful approximation based on the squared Euclidean distance. We use
it to extend linear cryptanalysis to groups with order larger than 2.1

1 Preliminaries

1.1 Best Distinguisher

The hypothesis testing problem can be considered as a simple game in which a
first player uses a source to generate independent random samples in some given
finite set Z with a distribution P which follows either a null hypothesis H0 or an
alternate hypothesis H1. The second player, often called distinguisher, must de-
termine which hypothesis was used by using the samples. In the simplest testing
problem, the source follows a distribution P ∈ {P0, P1} chosen among two distri-
butions, both being known to the distinguisher. He faces two hypotheses, namely
H0 : P = P0 and H1 : P = P1. This situation is commonly referred to as the
simple hypothesis testing problem since both alternatives fully determine the dis-
tribution. A more complex situation arises when one of the two hypotheses is com-
posite, i.e., when the distinguisher has to guess whether the distribution followed
by the source is one particular distribution (H0 : P = P0) or if it belongs to a set
of several distributions (H1 : P ∈ {P1, . . . , Pd}). Finally, the difficulty of the game
can be increased from the point of view of the distinguisher if the exact description
of the alternate hypothesis is not available. In that case, it shall guess whether the
source follows a specific (known) distribution (H0 : P = P0) or not (H1 : P �= P0).

In all cases, the adversary is assumed to be computationally unbounded2 and
to be only limited by the number q of samples available, so that we will referred
to it as a q-limited distinguisher and denote it Aq. If Zq = Z1, . . . , Zq are the q
samples available to Aq, we define the type I error α and the type II error β by:

α = PrH0 [Aq(Zq) = 1] β = 1 − PrH1 [Aq(Zq) = 1]
� Supported by the Swiss National Science Foundation, 200021-107982/1.
1 These results will be part of [1].
2 So that we can assume w.l.o.g. that the adversary is fully deterministic.
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For composite hypotheses, these probabilities make sense when distributions are
assigned weights (following the Bayesian approach). We measure the ability to
distinguish between hypothesis H0 and H1 by the advantage defined as

AdvAq(H0, H1) = |PrH0 [Aq(Zq) = 1] − PrH1 [Aq(Zq) = 1]| = |1 − α − β| .

In the simple hypothesis case we denote the advantage by AdvAq(P0, P1). We
let

PZq [z] =
nz

q
,

be the relative proportion of occurrences of each symbol of Z (PZq is also called
type of Zq [4]), where nz is the number of occurrences of the symbol z in the
sequence Zq = Z1, . . . , Zq. Since the samples are assumed to be mutually in-
dependent, their particular order must be irrelevant. Consequently, the final
distinguishing decision can be solely based on the type PZq of the sequence.
Denoting P the set of all probability distributions over Z, we can completely
describe any distinguisher by an acceptance region Π ⊂ P such that

Aq(Zq) = 1 ⇔ PZq ∈ Π.

For q = 1 we can easily show (see [2]) that AdvAq(P0, P1) reaches a maximum
equal to

BestAdv1(P0, P1) =
1
2
‖P0 − P1‖1

where the norm ‖ · ‖1 of a function f is defined by ‖f‖1 =
∑

x |f(x)|. We can
apply this result to the probability distribution of Zq. By using the equality

2(aa′ − bb′) = (a − b)(a′ + b′) + (a′ − b′)(a + b)

we deduce that
BestAdvq(P0, P1) ≤ q

2
‖P0 − P1‖1

The first concern of the present paper is to obtain a more precise expression for
BestAdvq(P0, P1).

Notations. The natural logarithm is denoted ln while log refers to basis 2
logarithm. The support of a distribution P is the set Supp(P) of all z for which
P[z] > 0. In this paper, P0 and P1 will be two distinct distributions on a finite set
Z such that Supp(P0)∪Supp(P1) = Z. We will denote Z ′ = Supp(P0)∩Supp(P1).
In the case where both P0 and P1 are of full support we have Z = Z ′, otherwise
Z ′ � Z. The Chernoff information3 between P0 and P1 is

C(P0, P1) = − inf
0<λ<1

log
∑
z∈Z′

P0[z]1−λP1[z]λ.

3 Note that our definition differs from that sometimes given (e.g., in [4, p.314]), namely
C(P0, P1) = −min0≤λ≤1 log

∑
z∈Z P0[z]1−λP1[z]λ, since the latter is not well defined

when Supp(P0) �= Supp(P1).
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The Kullback-Leibler divergence between P0 and P1 is

D(P0‖P1) =
∑

z∈Supp(P0)

P0[z] log
P0[z]
P1[z]

with the convention that D(P0‖P1) = +∞ when Supp(P0) �⊆ Supp(P1). The
notation f(q) .= g(q) for q → +∞ means that f(q) = g(q)eo(q) or equivalently
that

lim
q→+∞

1
q

log
f(q)
g(q)

= 0.

We denote f(q) ∼ g(q) for f(q) = g(q)(1 + o(1)).

1.2 Neyman-Pearson

Given 3 distributions P0, P1, P, let us define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
P1[z]

with the natural convention that log 0 = −∞ and 1
0 = +∞. (Note that if P

has a support either included in the one of P0 or in the one of P1 then we
never encounter an illegal operation such as 0

0 or ∞ − ∞.) The best distin-
guisher between P0 and P1 can be expressed as follows. Given a sample vector
Zq we compute L(PZq) (which is nothing but the logarithmic likelihood ratio).
The distinguisher is defined by a threshold τ and outputs 1 iff L(PZq) ≤ log τ .
The Neyman-Pearson Lemma [6] says that for any distinguisher achieving error
probabilities α and β, there exists τ such that the above distinguisher has er-
ror probabilities not larger than α and β respectively. This means that for any
distinguisher there exists one based on the likelihood ratio which is at least as
good in terms of error probabilities.

If one is concerned with maximizing the advantage (or equivalently in mini-
mizing α + β) then the best distinguisher is defined by τ = 1. It can be defined
by the acceptance region

Π = {P ∈ P : L(P) ≤ 0}.
A classical result (see [4, Section 12.9]) gives a precise asymptotic expression for
α and β when P0 and P1 have the same support.

Theorem 1. Let P0 and P1 be two distributions of finite support Z. Let
BestAdvq(P0, P1) denote the best advantage for distinguishing P0 from P1 with
q samples and α and β the type I and type II errors of the distinguisher, respec-
tively. We have

1 − BestAdvq(P0, P1)
.= α

.= β
.= 2−qC(P0,P1).

Unfortunately, this expression of α and β is not correct if the supports do not
match as the following example shows.
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Example 2. We can consider Z = {1, 2, 3} and

P0 =
(

1
3

1
3

1
3

)
P1 =

(
a b 0

)
with a + b = 1, 1

3 > a > 1
7 . We have

L(P) =
{

P[1] log 1
3a + P[2] log 1

3b if P[3] = 0
+∞ if P[3] �= 0

The Chernoff information is computed from the minimum over ]0, 1[ of

F (λ) =
1
3
(3a)λ +

1
3
(3b)λ.

This is a convex function such that F (0) = 2
3 and F (1) = 1. Assuming that

a ∈]13 , 1
7 [, since a + b = 1 we have 9ab > 1 thus F ′(0) > 0. We deduce that F is

increasing over ]0, 1[ so the minimum is F (0) = 2
3 : we have C(P0, P1) = − log 2

3 .
Since F (λ) → +∞ when λ → −∞ the minimum of F is reached for some
λ < 0 which we call λ0. We have 2−qC(P0,P1) =

(
2
3

)q. The type I error α is
the probability that L(PZq) ≤ 0 under distribution P0 which mandates that 3
never occurs. This holds with probability

(
2
3

)q. When this happens, the number
of occurrences of 1 and 2 are roughly similar so L(PZq) ≤ 0. We can indeed
show that α

.=
(

2
3

)q, which matches the result of Theorem 1. However, the
type II error β is the probability that L(PZq) > 0 under distribution P1 which
is the probability that n1 log 3a + n2 log 3b < 0. This means that 2 must occur
much less than 1 although its probability b is higher than a. As a consequence of
Theorem 3 below we can show that β

.= F (λ0)q which does not match Theorem 1.
The expression is thus correct for α but incorrect for β. In what follows we show
that the expression is always correct for max(α, β) so it is still correct for the
advantage.

2 Best Advantage for Simple Hypothesis Testing

2.1 Result

Theorem 3. Let P0 and P1 be two distributions of finite supports with union
Z and intersection Z ′. Given a distribution P over Z we define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
P1[z]

and F (λ) =
∑
z∈Z′

P0[z]1−λP1[z]λ.

Let Π = {P ∈ P : L(P) ≤ 0} be the acceptance region of the best distinguisher.
Its type I error α satisfies

α
.=
(

inf
λ>0

F (λ)
)q

.
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If there exists z ∈ Z ′ such that 0 < P1[z] < P0[z] then

β
.=
(

inf
λ<1

F (λ)
)q

.

Otherwise, β = 0.

If for all z ∈ Z ′ we have P1[z] ≥ P0[z] then β is clearly zero and infλ>0 F (λ) =
F (0) so max(α, β) = α

.= 2−qC(P0,P1). Otherwise, we note that

max
(

inf
]0,+∞[

F, inf
]−∞,1[

F

)
= inf

]0,1[
F

because F is a convex function. Hence, we still have

max(α, β) .= 2−qC(P0,P1).

We deduce the following result.

Corollary 4. Let P0 and P1 be two distributions of finite support with intersec-
tion Z ′. We have

1 − BestAdvq(P0, P1)
.= 2−qC(P0,P1) =

(
inf

0<λ<1

∑
z∈Z′

P0[z]1−λP1[z]λ
)q

.

2.2 Proof of Theorem 3

We first recall Sanov’s theorem. To do this, we recall some notions of topology.
The set of all functions from the finite set Z to R is a vector space of finite
dimension thus all norms ‖ · ‖ define the same topology. An open set is a union
of open balls, i.e. a set of functions f satisfying ‖f −f0‖ < r for a given function

f0 and a given radius r ∈ R. The interior of a set Π is the union
◦
Π of all open

sets included in Π. A closed set is an intersection of closed balls. The closure of
a set Π is the intersection Π of all closed sets containing Π.

Theorem 5 (Sanov [7]). Let P0 be a distribution over a finite set Z and Zq =
Z1, . . . , Zq be q mutually independent random variables following distribution P0.

Let Π be a set of distributions over Z such that
◦
Π = Π. We have

Pr[PZq ∈ Π] .= 2−qD(Π‖P0)

where D(Π‖P0) = infP∈Π D(P‖P0).

Intuitively, the
◦
Π = Π assumption means that Π has no isolated point which

could substantially influence D(P‖P0) but would exceptionally (if ever) be
reached by PZq .
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Lemma 6. Let P0 be a distribution of finite support Z. Let g be a function such
that g(z) > 0 for all z ∈ Z. Given a distribution P over Z we define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
g(z)

and F (λ) =
∑
z∈Z

P0[z]1−λg(z)λ.

Let Π be the set of distributions over Z such that L(P) ≤ 0 and consider the
distinguisher Aq who accepts Zq (i.e., returns 1) iff PZq ∈ Π. We have

Pr[Aq(Zq) = 1] = Pr[PZq ∈ Π] .=
(

inf
λ>0

F (λ)
)q

.

If Π is now the set of all distributions such that L(P) < 0 and there exists z such
that 0 < P0[z] < g(z) the result still holds. Otherwise, the probability is zero.

Proof. We first assume that P0[z] ≥ g(z) for all z. If Π is defined by L(P) ≤ 0,
the probability is P0(Z ′′)q where Z ′′ is the set of all z’s such that P0[z] = g(z),
and the result easily comes. If Π is defined by L(P) < 0, the probability is clearly
zero.

We now assume that we have 0 < P0[z] < g(z) for some z. Clearly, the
distribution P such that P(z) = 1 verifies L(P) < 0 so Π is nonempty. Considering
the topology of distributions over Z, we notice that L is continuous. Since L(P) <
0 for some P ∈ Π, for ε > 0 small enough all distributions within a distance to P
smaller than ε are in Π as well. This means that the interior of Π is nonempty.

We note that Π is a convex set. Consequently, we have
◦
Π = Π so that Sanov’s

theorem applies and we have

Pr[PZq ∈ Π] .= 2−qD(Π‖P0).

What remains to be shown is that D(Π‖P0) is equal to − infλ>0 log F (λ) for
both possible definitions of Π.

The set Π is bounded and topologically closed in a real vector space of finite
dimension and therefore compact. We notice that P �→ D(P‖P0) is continuous
on Π. We deduce that D(Π‖P0) = D(P‖P0) for some P in Π: we do have global
minima for this function in Π. Furthermore, the function P �→ D(P‖P0) is convex
since

D((1 − t)P + tP′‖P0) ≤ (1 − t)D(P‖P0) + tD(P′‖P0)

so we deduce that there is no local minimum which is not global as well. Since
the set of P’s such that D(P‖P0) ≤ r is a convex set for any radius r, the set of
global minima is indeed a convex set as well. Finally, if P reaches a minimum,
then the segment between P0 and P except P contains distributions “closer” (in
the sense of D) to P0 which must then be outside of Π. Thus their L value are
positive. So, either the segment is reduced to P0 (meaning that L(P0) ≤ 0) or
we must have L(P) = 0 due to the continuity of L. Hence, the closest P in Π is
either P0 (if P0 ∈ Π) or some P such that L(P) = 0.
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We consider the differentiable function P �→ D(P‖P0) over the open space {P :
Z −→ R∗

+} with constraints N(P) = 1 and L(P) = cste where N(P) =
∑

z P(z).
By looking at the differentials, we have

∂D(P‖P0)
∂P(a)

= log
P(a)
P0[a]

+
1

ln 2

so ∂2D(P‖P0)
∂P(a)∂P(b) = 0 for a �= b and is strictly positive otherwise. Hence the second

differential of D(P‖P0) is a strictly positive quadratic form. Thus, P is a local
minimum for D(·‖P0) over the distributions whose L value is constant iff the
first differential is a linear combination of dN and dL. This is the case iff P is of
form Pλ for some λ where

Pλ[z] =
P0[z]1−λg(z)λ∑
a P0[a]1−λg(a)λ

.

We deduce that for all λ ∈ R, Pλ is the closest (in the sense of D) distribution
to P0 with this L(Pλ) value. We look for the one for which this is zero.

We observe that F is a convex function such that F (0) = 1 and F ′(0) =
−L(P0) ln 2. More precisely, we have F ′(λ) = −L(Pλ)F (λ) ln 2. Since there exists
z such that P0[z] < g(z) the limit of F at +∞ is +∞. We note that

D(Pλ‖P0) = −λL(Pλ) − log F (λ).

If the closest P is not P0 we have L(P0) ≥ 0 hence F ′(0) ≤ 0, so there must
be a λ ≥ 0 such that F ′(λ) = 0 and for which F (λ) is minimal. Clearly, this
minimum is infλ>0 F (λ). We deduce L(Pλ) = 0 thus Pλ is the closest distribution
to P0 in Π. The above expression of the distance yields the announced result in
this case.

When P0 is in Π we have L(P0) ≤ 0 thus F ′(0) ≥ 0. Since F is convex, F is
increasing on [0, +∞[ so infλ>0 F (λ) = F (0) = 1. Since 0 = D(Π‖P0) the result
holds in this case as well. �
Proof (of Theorem 3). Let P̃0[z] = P0[z]/P0(Z ′) for z ∈ Z ′ and P̃0[z] = 0
otherwise. Let g(z) = P1[z]/P0(Z ′) for z ∈ Z ′ and g(z) = 0 otherwise. Applying
Lemma 6 to P̃0 and g over Z ′ defines two functions L̃ and F̃ and a set Π̃ of
distributions over Z ′ satisfying L̃(P) ≤ 0. Clearly, we have L̃(P) = L(P) for any
distribution over Z ′. Indeed, Π consists of Π̃ plus all the distributions of support
included in the one of P1 but not in Z ′. The probability to reach one of these
latter distributions when sampling z’s following P0 is clearly zero. Hence, the
probability of accepting Zq is the probability that PZq ∈ Π̃, under H0. It is
P0(Z ′)q times the probability that PZq ∈ Π̃ when sampling the Zi’s according
to P̃0. By applying Theorem 1 we immediately obtain the result. �

3 Approximations for “Close” Distributions

We assume in this section that P1 is close to P0 of full support Z. More pre-
cisely, we assume that P0 is fixed of support Z and that P1 tends towards P0.
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Eventually, both distributions have the same support Z, and for all z ∈ Z we
have xz = o(1) as P1 → P0 where

xz =
P1[z] − P0[z]

P0[z]
.

3.1 Computing the Chernoff Information

Theorem 7. Let P0 be a distribution of support Z. If the distribution P1 over
Z tends towards P0, then

C(P0, P1) ∼ 1
8 ln 2

∑
z∈Z

(P1[z] − P0[z])2

P0[z]
.

Proof. We let x = (xz)z∈Z and consider

F (λ, x) =
∑
z∈Z

P0[z](1 + xz)λ

g(λ, x) =
∑
z∈Z

P0[z](1 + xz)λ ln(1 + xz).

We define λ∗ ∈ [0, 1] as the value verifying g(λ∗, x) = 0. In terms of λ, F (λ, x) is
strictly convex of derivative g(λ, x). Clearly, C(P0, P1) = − log F (λ∗, x). We will
approximate F (λ∗, x) when x is small and subject to

∑
z P0[z]xz = 0. We first

have

g(λ, x) =
∑

z

P0[z](1 + λxz + o(xz))
(

xz − x2
z

2
+ o(x2

z)
)

=
∑

z

P0[z]
(

λ − 1
2

)
x2

z + o
(‖x‖2

2

)
since

∑
z P0[z]xz is zero. As g(λ∗, x) = 0 we deduce that λ∗ tends towards 1

2 as
x tends towards 0. We now let

F (λ∗, x) = F

(
1
2
, x

)
+
(

λ∗ − 1
2

)
F ′

λ

(
1
2
, x

)
+

1
2

(
λ∗ − 1

2

)2

R

with |R| ≤ maxλ F ′′
λ (λ, x) for λ ∈ [0, 1]. As F ′

λ(λ, x) = g(λ, x), previous compu-
tations immediately lead to F ′

λ(1
2 , x) = g(1

2 , x) = o(‖x‖2
2). Similarly we have

F ′′
λ (λ, x) =

∑
z∈Z

P0[z](1 + xz)λ (ln(1 + xz))
2

=
∑
z∈Z

P0[z](1 + o(1)) (xz + o(xz))2

=
∑
z∈Z

P0[z]x2
z + o(‖x‖2)
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which is a O(‖x‖2), hence

F (λ∗, x) = F

(
1
2
, x

)
+ o(‖x‖2).

Now, we have

F

(
1
2
, x

)
=
∑
z∈Z

P0[z]
√

1 + xz

=
∑
z∈Z

P0[z]
(

1 +
1
2
xz − 1

8
x2

z + o(x2
z)
)

= 1 − 1
8

∑
z∈Z

P0[z]x2
z + o(‖x‖2

2)

and therefore
F (λ∗, x) = 1 − 1

8

∑
z∈Z

P0[z]x2
z + o(‖x‖2

2),

which can be written

F (λ∗, x) = 1 − 1
8

∑
z∈Z

(P1[z] − P0[z])2

P0[z]
+ o

(∑
z∈Z

(
P1[z] − P0[z]

P0[z]

)2
)

.

�
Our computations were based on the assumption that xz = o(1) for all z. In
practice however, both distribution are fixed. Yet we can use Theorem 7 to
approximate C(P0, P1) when |P1[z] − P0[z]| � P0[z] for all z.

3.2 Close-to-Uniform Distributions

In the particular case where P0 is the uniform distribution over Z of cardinality
n, Theorem 7 yields

C(P0, P1) ∼ n

8 ln 2
‖P1 − P0‖2

2

for the Euclidean norm ‖ · ‖2, which can be used as the approximation

C(P0, P1) ≈ n

8 ln 2
‖P1 − P0‖2

2

when |P1[z] − 1
n | � 1

n for all z. When Z has a group structure, this can be
expressed as

C(P0, P1) ≈ 1
8 ln 2

‖P̂1 − P̂0‖2
2 or even C(P0, P1) ≈ 1

8 ln 2

∑
χ∈Ẑ

LP(χ)

where Ẑ is the dual group of Z (i.e., the set of all group homomorphisms χ

between Z and the non-zero complex numbers) and where P̂ is the Fourier
transform of P, i.e.

P̂(χ) =
∑
z∈Z

P[z]χ̄(z) and LP(χ) = |P̂1(χ)|2 = |E(χ(Z))|2
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where Z follows the distribution P1. This formally proves a heuristic result from
Baignères, Stern, and Vaudenay [3] by showing that the best advantage is ap-
proximately

1 − e−
q
8 ‖P̂1−P̂0‖2

2

for q large and ‖P̂1 − P̂0‖2 small.

4 A Case of Composite Hypothesis Testing

So far, we considered the problem of testing the null hypothesis H0 : P = P0

against the simple alternate hypothesis H1 : P = P1 where P0 and P1 were
fully specified. We now consider the problem of distinguishing the case where
P is equal to a specified distribution P0 (the null hypothesis H0) from the case
where P belongs to a set D = {P1, . . . , Pd} of d fully specified distributions (the
hypothesis H1). Under H1 we assume that the selection of Pi is taken with an a
priori weight of πi to define the advantage for distinguishing H0 from H1. For
simplicity we assume that all distributions have the same support Z.

4.1 Complex Hypothesis Testing

Theorem 8. Let P0 be a distribution of support Z and D = {P1, . . . , Pd} be
a finite set of distributions of support Z. In order to test the null hypothesis
H0 : P = P0 against H1 : P ∈ D, the advantage of the best q-limited distinguisher
is such that

1 − BestAdvq(P0,D) .= max
1≤i≤d

2−qC(P0,Pi).

It is reached by the distinguisher accepting Zq iff

min
1≤i≤d

∑
z∈Z

PZq [z] log
P0[z]
Pi[z]

≤ 0.

Proof. Consider a q-limited distinguisher Aq defined by an acceptance region Π
and denote by Advq its advantage. We have

1 − Advq = PrH0 [Aq(Zq) = 1] +
d∑

i=1

πiPr[Aq(Zq) = 0|P = Pi]

thus 1−Advq is at least the average of all 1−BestAdvq(P0, Pi) with weight πi,
which are (asymptotically) 2−qC(P0,Pi). We deduce that

1 − Advq

.
>

d∑
i=1

πi2−qC(P0,Pi) thus 1 − Advq

.
> max

1≤i≤d
2−qC(P0,Pi).

We define

Li(P) =
∑
z∈Z

P[z] log
P0[z]
Pi[z]
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and consider the distinguisher based on the likelihood ratio between P0 and Pi

which is the closest to PZq . We have

D(P‖Pi) =
∑
z∈Z

P[z] log
P[z]
Pi[z]

so that D(P‖Pi) ≤ D(P‖Pj) is equivalent to Li(P) ≤ Lj(P). Finally, this distin-
guisher is based on L(P) = mini Li(P) and accepts H1 iff L(P) ≤ 0. Let Πi be
the set of all P’s such that Li(P) ≤ 0 and Π be the union of all Πi’s. The best
distinguishers simply checks whether PZq ∈ Π.

Looking at the proof of Theorem 1, we can first see that the probability that
PZq ∈ Π under the null hypothesis is equivalent to 2−qD(Π‖P0) which is the
maximum of 2−qD(Πi‖P0), itself equal to 2−qC(Pi,P0). We deduce that

PrH0 [Aq(Zq) = 1] .= max
1≤i≤d

2−qC(P0,Pi).

When the Zi’s are sampled according to Pi under hypothesis H1, the probability
of rejection is the probability that PZq �∈ Π. This is less than the probability
that PZq �∈ Πi and we know that it is equivalent to 2−qC(P0,Pi). Since this is less
than the maximum of 2−qC(P0,Pj), the advantage Advq is such that

1 − Advq
.= max

1≤i≤d
2−qC(P0,Pi)

Therefore, this distinguisher has the best advantage, asymptotically. �

4.2 Example: Generalized Linear Cryptanalysis

Let X be a random variable over G, an Abelian group. Let χ be a character
over G such that the group Z = χ(G) is of order d. Let Z = χ(X). Let P0 be
the uniform distribution over Z. For each u ∈ Z we consider the distribution Pu

defined by Pu[u] = 1−ε
d + ε and Pu[z] = 1−ε

d for all z ∈ Z such that z �= u. Note
that LP(χ) = ε2 when Z follows distribution Pu for any u. These distributions
have the property that P̂u is flat in the sense that for all ϕ �= 1, |P̂u(ϕ)| = ε. In
linear cryptanalysis [5, 3], χ is the product of several characters with “indepen-
dent” biased distributions. It thus inherits of a distribution P such that P̂ is the
product of “independent” Fourier transforms (this is the Piling-up Lemma) and
is flattened as such. We have the following result.

Theorem 9. If Z = χ(X) where χ is a character of order d, the best distin-
guisher between the null hypothesis that Z is uniformly distributed in the range
of χ and the alternate hypothesis that Z follows some distribution Pu with u
unknown is defined by

Aq(Zq) = 1 ⇔ max
u

PZq [u] ≥ log(1 − ε)
log(1 − ε) − log(1 + (d − 1)ε)

where the right-hand side is approximated by 1
d (1 + (d− 1) ε

2 ). This distinguisher
has an advantage such that 1 − Advq

.= 2−qC(P0,P1) which is approximated by

1 − Advq ≈ e−q d−1
8 ε2

.
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Proof. We use the distinguisher which outputs 1 iff minu Lu(PZq ) ≤ 0 (as sug-
gested by Theorem 8). Clearly, minu Lu is reached for the value of u which
maximizes PZq [u]. We obtain that Zq is accepted iff

max
u

PZq [u] ≥ log(1 − ε)
log(1 − ε) − log(1 + (d − 1)ε)

which is approximately 1
d(1+(d−1) ε

2 ). As it is surprising enough, we stress that
the best distinguisher is based on ‖PZq‖∞ and not on the statistical average of
χ(X) as one would expect. We can now focus on its advantage. By Theorem 8
we have

1 − Advq
.= max

u∈Z
2−qC(P0,Pu).

Since all C(P0, Pu) are equal, we can focus on C(P0, P1). Assuming that ε � 1
d ,

we obtain

C(P0, P1) = − inf
λ

log
1
d

(
(1 + (d − 1)ε)λ + (d − 1)(1 − ε)λ

) ≈ d − 1
8 ln 2

ε2.

The advantage is thus roughly 1 − e−
d−1
8 qε2

. �

Another problem consists in distinguishing the null hypothesis that Z is uni-
formly distributed in the range of χ from the alternate hypothesis that Z fol-
lows some arbitrary distribution of known flatness ζ. We define the flatness of
a distribution P1 by ‖P̂1 − P̂0‖2. (Previously, we had ζ = ε

√
d − 1.) For such

distributions, the Chernoff information is approximated by C(P0, P1) ≈ ζ2

8 ln 2 .
By Theorem 8, the best distinguisher satisfies 1 − Advq ≈ e−

q
8 ζ2

. It is defined
by accepting Zq iff we have L(PZq) ≤ 0 for

L(PZq) = min
P1

‖P̂1−P̂0‖2=ζ

∑
z∈Z

PZq [z] log
P0[z]
P1[z]

.

Since ‖f‖2
2 = 1

d‖f̂‖2
2 for any function f : Z → R, by writing P0[z] = 1

d and
assuming that PZq [z] − P0[z] and P1[z] − P0[z] are negligible to the first order,
the above sum approximates to

L(PZq) ≈ d

ln 2

(
1
2
‖P1 − P0‖2

2 − max
P1

∑
z∈Z

(
PZq [z] − 1

d

)(
P1[z] − 1

d

))

which is clearly reached when P1[z] − 1
d is proportional to PZq [z] − 1

d . It is
negative iff ‖PZq −P0‖2 ≥ 1

2‖P1 −P0‖2. So the best distinguisher accepts Zq iff
‖PZq − P0‖2 ≥ ζ

2
√

d
. We conclude by the following heuristic result.

Theorem 10. If Z = χ(X) where χ is a character of order d, the best distin-
guisher between the null hypothesis that Z is uniformly distributed in the range
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of χ and the alternate hypothesis that Z follows some unknown distribution P1

of known flatness ζ = ‖P̂1 − P̂0‖2 is defined by

Aq(Zq) = 1 ⇔
∑

z

(
PZq [z] − 1

d

)2
1
d

≥ ζ2

4
.

It has an advantage approximated by

1 − Advq ≈ e−
q
8 ζ2

.

All in all, this is nothing but a χ2 test on the frequencies with threshold ζ2

4 .

5 Conclusion

We provided a precise asymptotic expression for the best distinguisher between
two given distributions. We gave a simple approximation of this in terms of
the Euclidean distance between the two distributions. We derived a link to the
spectral analysis of distributions. We studied the problem of distinguishing one
distribution from a set of distributions. This lead us to generalize linear crypt-
analysis to arbitrary Abelian groups with order not necessarily equal to 2.
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Abstract. In this paper, we briefly review two independent studies: (1)
an information-theoretic definition and constructions of non-malleable en-
cryption, and (2) applications of information-theoretically secure tools for
enhancing security of computationally secure cryptographic primitives.

1 Introduction

In this paper, we review two security notions, i.e. non-malleability and chosen-
ciphertext security, from the viewpoint of information theory. Specifically, in
Sec. 2 we first discuss how we can define non-malleability in an information-
theoretic manner, and construct perfectly non-malleable encryption schemes.
Next, in Sec. 3 we discuss how we can upgrade semantically secure encryption [10]
to have (bounded) chosen-ciphertext security by using information-theoretically
secure tools. It should be noticed that these two security notions have been
mainly discussed in the context of computational security. We hope that these
observations will be helpful for finding out novel applications of information-
theoretically secure cryptographic tools.

2 Perfect Non-malleability

Frankly, non-malleability means an adversary’s inability: given a challenge ci-
phertext c, to generate a different ciphertext ĉ such that the plaintexts m, m̂
underlying these two ciphertexts are meaningfully related. The notion was orig-
inally proposed by Dolev, Dwork, and Naor [6], and the discussion that followed
after their original proposal was mainly given from a computationally secure
perspective, e.g. [1,17,18]. The first formalization of information-theoretic non-
malleability was given by Hanaoka et al. [13], and this was then extended by
McAven, Safavi-Naini, and Yung [16]. In this section, we dicuss how we can de-
fine non-malleability in an information-theoretic manner by mainly explaining
the definition by Hanaoka et al. [13].

2.1 Malleability of the “Classical” One-Time Pad

It is well known that the classical one-time pad does not provide non-malleability
(in any possible definition). For understanding (information-theoretic)

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 223–231, 2008.
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non-malleability, here we briefly review this observation. Let c = m ⊕ k, where
c, m, and k are a ciphertext, a plaintext, and a secret key, respectively. For this
simple encryption, Shannon proved that it is perfectly impossible to extract any
information about the plaintext from any ciphertext, assuming that m ∈ {0, 1}�

and k is picked from {0, 1}� uniformly at random. However, it is malleable since
for any given ciphertext c(= m⊕ k), we can generate another ciphetext ĉ whose
plaintext is m⊕r by modifying it as ĉ = c⊕r, where r is any 	-bit binary string.

2.2 Towards Information-Theoretic Non-malleability

Intuitively, if an encryption scheme is malleable, then it is always vulnerable
against chosen-ciphertext attacks (this is a reason why the one-time pad cannot
be used as the DEM part for CCA-secure hybrid encryption under the standard
KEM/DEM composition theorem [21]). More precisely, for a given malleable (de-
terministic, symmetric) encryption scheme S, a plaintext-ciphertext pair (m, c),
and another ciphertext c′(�= c) of S under the same secret key, an adversary
can always extract some information on the plaintext of c′ as follows: Since S
is malleable, there exists a meaningful relation R such that the adversary can
generate another ciphertext ĉ whose plaintext m̂ satisfies R(m, m̂) = 1. Then,
the plaintext of c′ is considered m̂ if c′ = ĉ, or it is not otherwise. Hence, we
observe that information on the plaintext of c′ is leaked.

From the above observation, we notice that if it is impossible to extract any
information on the plaintext of c′, then it is also information-theoretically impos-
sible to generate ĉ for any meaningful relation R. Therefore, we can define that
an encryption scheme S′ is non-malleable if for any given plaintext-ciphertext
pair (m, c) and another ciphetext c′ of S′ (under the same secret key), any in-
formation on the plaintext of c′ is not leaked.

2.3 Perfect Non-malleability

Now, we formally define perfect non-malleability [13] for unconditionally secure
encryption with two parties, i.e. a sender S and a receiver R. In our model, S
and R (or one of them) generate an encryption key e for S, and a decryption
key d for R. (The decryption key d may be the same as e.) To send a plaintext
m to R with data confidentiality, S encrypts m by using e and transmits the
ciphertext c to R. R decrypts c by using d and recovers m. Throughout this
paper, we let a random variable be X and H(X ) denote the entropy of X . For
X , let X := {x|Pr[X = x] > 0}. |X | is the cardinality of X .

Definition 1. Let E , D, M and C denote the random variables induced by e, d,
m and c, respectively. We say that S = (E ,D,M, C) has perfect secrecy (PS) if

1. R correctly decrypts m from c, that is, H(M|C,D) = 0.
2. Any outsider cannot obtain any information on m from c, that is, H(M|C) =

H(M).

It will also satisfy perfect non-malleability (NM) if
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3. Any outsider cannot generate a ciphertext whose plaintext is meaningfully re-
lated to m, that is,

H(M̂|C, Ĉ,M) = H(M̂|C,M),

where ĉ(�= c) be another ciphertext which can be generated by S instead of c,
m̂(�= m) be a plaintext corresponding ĉ, and Ĉ and M̂ denote random vari-
ables induced by ĉ and m̂, respectively.

Then, we say that S = (E ,D,M, C) has PS&NM if it satisfies both PS and NM.

Remark. There are also other different definitions of information-theoretic non-
malleability.1 Here, we mainly focus on the above definition due to its simplicity.
In [16], a stronger definition is given without using the entropy measure. However,
we note that for the most of interesting cases, the above definition is sufficient. On
the other hand, the above definition of perfect non-malleability seems stronger
than the minimum requirement since it overkills some existing schemes which are
considered likely to be non-malleable, e.g. the one-time pad plus authentication
codes. Finding out the most appropriate definition of information-theoretic non-
malleability is considered as an interesting research topic.

2.4 A Generic Construction Via Chaffing-and-Winnowing

In [11], Hanaoka et al. presented a generic construction of encryption schemes
with perfect non-malleability from authentication codes (A-codes) [9,22] by us-
ing the chaffing-and-winnowing framework [19]. In this subsection, we review
Hanaoka et al.’s construction.

A-Codes. In the model of A-codes, there are three participants, a sender S, a
receiver R and a trusted initializer TI. TI generates secret information u and v
for S and R, respectively. In order to send a plaintext m to R, S generates an
authenticated message (m, α) from m by using u and transmits (m, α) to R. R
verifies validity of α using m and v. We note that S and/or R may generate u
and v themselves to remove TI.

Definition 2. Let U ,V ,M and A denote the random variables induced by
u, v, m and α, respectively. We say that A = (U ,V ,M,A) is p-impersonation
secure (p-Imp) if

1. Any set of outsiders (which do not include S, R or TI) can perform imper-
sonation with probability at most p. Namely,

max
(m,α)

Pr[R accepts (m, α)] ≤ p,

it is also p-substitution secure (p-Sub) if

1 For computational non-malleability, there exist some different definitions. See, for ex-
ample, [18] for such definitions.
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2. Any set of outsiders can perform substitution with probability at most p.
Namely, letting (m′, α′) be an authenticated message generated by S,

max
(m′,α′)

max
(m,α)( �=(m′,α′))

Pr[R accepts (m, α)|(m′, α′)] ≤ p.

We say that A = (U ,V ,M,A) is p-impersonation&substitution secure (p-
Imp&Sub) if it is both p-Imp and p-Sub secure.

Construction methods for A-codes are given in, for example, [9,22,12,20]. In the
rest of the paper, for simplicity, we let f : M× U → A denote a mapping such
that f(m, u) = α.

Chaffing-and-Winnowing. In [19], Rivest proposed a novel and interesting cryp-
tographic technique called “chaffing-and-winnowing”. Remarkable property of
this cryptographic technique is that it can provide data confidentiality by us-
ing only authentication when sending data over an insecure channel. In brief,
chaffing-and-winnowing can be constructed as follows. In the setup phase, a
sender S and a receiver R prepare their keys for message authentication. When
S sends a plaintext m to R, S adds “dummy” plaintext m′ (with an invalid au-
thentication tag) so that “dummy” m′ obscure the intended message m, so that
only the authorized receiver R can distinguish the “real” from the “dummy”.
On receiving the message, R removes the dummy m′ by checking its tag. As
long as an adversary does not distinguish the valid tag from the invalid tag, it
cannot tell which one of m and m′ is real and not real. In [11], via the chaffing-
and-winnowing framework, Hanaoka et al. presented a generic construction of
encryption schemes with perfect secrecy from weakly secure A-codes, and an-
other one with perfect non-malleability from fully secure A-codes. Stinson [23]
improved Hanaoka et al.’s scheme (with perfect secrecy) with shorter ciphertext
length.

The Construction. We next show Hanaoka et al.’s encryption scheme with
PS&NM from p-Imp&Sub A-codes. For simplicity, we consider only optimal p-
Imp&Sub A-codes such that p = 1/|A| = 1/|U |1/2. It should be noticed that if an
A-code is p-Imp&Sub, then |A| ≥ 1/p and |U | ≥ 1/p2 [15]. Many of such optimal
A-codes have been known. Then, Hanaoka et al.’s construction [11] is as follows:

Key Generation. For a given A-code A = (U ,V ,M,A), S and R generate
u ∈ U and v ∈ V as an encryption key for S and a decryption key for
R, respectively. Let the plaintext space be M . S picks |M | distinct keys
u1, ..., u|M| from U\{u} such that

∀ui, uj(�= ui), ∀m ∈ M, f(m, ui) �= f(m, uj).

Encryption. Let a plaintext be m∗ ∈ M . S sets α := f(m∗, u) and finds
ui such that f(m∗, ui) = α. Then, S sends c := (m||αm)m∈M to R, where
αm := f(m, ui).
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Decryption. On receiving c′, R parses c′ as c′ := (m||αm)m∈M and selects m′

such that m′ is accepted as valid (by using v). Finally, R outputs m′.

For any given A-code, the above scheme properly works with perfect secrecy
and perfect non-malleability due to the following lemmas [11].

Lemma 1. If A is a 1/|M |-Imp&Sub A-code, then, for all u ∈ U there exist
u1, ..., u|M| ∈ U\{u} such that for all ui, uj(�= ui) ∈ {u1, ..., u|M|} and m ∈ M ,
f(m, ui) �= f(m, uj).

Lemma 2. For any u ∈ U , any u1, ..., u|M| chosen as in above, and any m ∈ M ,
|{ui|f(m, ui) = f(m, u), ui ∈ {u1, ..., u|M|}}| = 1.

Lemma 3. The above scheme has PS, i.e. H(M∗) = H(M∗|C), where M∗ is
a random variable induced by m∗.

Lemma 4. The above scheme has NM, i.e. H(M̂|C, Ĉ,M∗) = H(M̂|C,M∗),
where ĉ(�= c) is another ciphertext which can be generated by S instead of c,
m̂(�= m∗) be a plaintext underlying ĉ, and Ĉ and M̂ denote random variables
induced by ĉ and m̂, respectively.

2.5 A Practical Instantiation

Here, we introduce a practical instantiation [13,14] of a perfectly non-malleable
encryption from the above methodology with specific (but well-known) A-codes.
As seen in the construction, a ciphertext essentially consists of (f(m, ui))m∈M ,
and consequently, this can be compressed as a single f(m∗, u) if f(m, ui) always
takes the same value for all m ∈ M . More formally, it is sufficient to send one
authentication tag instead of |M | tags if the underlying A-code has the following
property: For all α ∈ A, there exists at least one u ∈ U such that for all messages
m ∈ M , f(m, u) = α, that is,

∀α ∈ A, ∃u ∈ U s.t. ∀m ∈ M, f(m, u) = α.

Let Û denote a subset of U such that Û = ∪α∈A{u|∀m ∈ M, f(m, u) = α}.
Now, we present a method for compressing ciphertexts by using such Û . If in

the encryption scheme in the previous subsection, for all u there exist u1, . . . , u|M|
such that for all m0, m1 ∈ M, f(m0, ui) = f(m1, ui), then a ciphertext becomes
(mj ||α)mj∈M where α = f(m∗, u), and therefore, a full ciphertext can be re-
constructed from only α. Hence, it is sufficient to send only one authentication
tag α as a cipheretext. For implementing this idea, we pick u from U\Û , and
always use Û as {u1, · · · , u|M|}.

The concrete construction is as follows:

Key Generation. For a given A-code A = (U ,V ,M,A), S and R generates
u ∈ U\Û and v ∈ V as an encryption key for S and a decryption key for R,
respectively. Let the plaintext space be M .

Encryption. Let a plaintext be m∗ ∈ M . S sets c := f(m∗, u), and sends c
to R.
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Decryption. On receiving c′, R selects m′ such that c′ is accpeted as valid
(by using m′, v). Finally, R outputs m′.

Since the above construction is a special case of that in the previous subsec-
tion, it also provides PS&NM. An example of A-codes with the above property
is as follows: Let M = A = GF (p) and U = V = GF (p)2. Let an authentication
tag for message m be α = k1m + k2, where (k1, k2) ∈ GF (p)2 is a shared secret
between S and R. For simplicity, we assume that p is a prime. Then, we can set
Û = {(0, 0), . . . , (0, p − 1)}.

Based on the above A-code, we can construct a very simple non-malleable
one-time pad [13,14] as follows:

Key Generation. Let the plaintext space be GF (p). S and R generate
(k1, k2) ∈ (GF (p)\{0}) × GF (p) as their common key.

Encryption. Let a plaintext be m∗ ∈ GF (p). S sets c = k1m
∗ +k2, and sends

c to R.
Decryption. On receiving c′(= α), R computes m′ = (c′ − k2) · k−1

1 , and
outputs m′.

In the above construction, we notice that the ciphertext length is the same as
the plaintext length.

3 Chosen-Ciphertext Security

In this section, (as an independent interest to the previous section) we briefly
point out that information-theoretically secure tools can be also used as powerful
building blocks for computationally secure encryption schemes, and present, for
example, how security of public key encryption (PKE) schemes can be enhanced
via information-theoretic discussions. Specifically, we introduce Cramer et al.’s
method [4] which generically converts any chosen-plaintext (CPA) secure PKE
scheme [10] into another one which provides security against chosen-ciphertext
(CCA) adversaries with some restrictions, i.e. bounded CCA (BCCA) security
(see below).

3.1 General Observation

In the security proof of CCA-security of a PKE scheme P, for any given al-
gorithm A which breaks CCA-security of P, we construct another algorithm
B which solves the underlying hard problem, e.g. the decisional Diffie-Hellman
problem, by using A as a subroutine. The main technical hurdle for the proof
is (usually) that B has to respond to any decryption query from A without
knowing the witness of the given hard problem. It should be noticed that A
may be computationally unlimited, and therefore, B has to deceive such a pow-
erful adversary. Hence, even in the arguments for computational CCA-security,
information-theoretic arguments are still important.
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3.2 Bounded CCA-Security

Here, we give a brief review of BCCA-security [4]. We say that a PKE scheme P
is q-BCCA-secure if it is CCA-secure in the standard sense [6,1] except that the
number of decryption queries is known to be at most q a priori. If q is infinite
or zero, then this is equivalent to the standard CCA-security or CPA-security,
respectively. For simplicity, we consider only non-adaptive BCCA-security in the
following subsections rather than adaptive BCCA-security.

3.3 BCCA-Security from Cover Free Families (and CPA-Security)

In this subsection, we show how we can upgrade a CPA-secure PKE scheme
to have BCCA-security via an information-theoretic argument [4]. For the con-
struction, we utilize cover free families (CFF) as such an information-theoretic
tool which is defined as follows:

Cover Free Family. Let L be a set with |L| = u and F = {F1, ...,Fv} be a family
of subsets of L.

Definition 3. We say (L,F) is a (u, v, w)-cover free family (CFF) if Fi �⊆
∪j∈SiFj for all i ∈ {1, ..., v} and for all Si ⊆ {1, ..., v}\{i} such that |Si| ≤ w.

There exist nontrivial constructions of CFF with u = O(w2 log2 v) and |Fi| =
O(w log v) for all i ∈ {1, ..., v}. This implies that there exists a (u, v, w)-CFF
such that u = O(poly(k)) and v = Ω(exp(k)) if w = O(poly(k)) for a security
parameter k. It should be noticed that for given L and index i, one can efficiently
generate Fi. An example of concrete methods for generating CFF [7,8] is as
follows. Consider a code C of length N on an alphabet Q with |Q| = t. Let a
codeword c ∈ C be (c1, ..., cN ) ∈ QN , and Fc be {(i, ci)}1≤i≤N . Let F denote
{Fc}c∈C, and L be {1, ..., N} × Q. When applying Reed-Solomon code as C,
(L,F) becomes a CFF.

Proposition 1. For given N , t and w where t is a prime power and N ≤ t+1,
there exists a (tN, t�(N+w−1)/w�, w)-CFF.

The Construction. Let P = (Gen, Enc, Dec) be a PKE scheme where Gen, Enc,
and Dec are a key generation algorithm, an encryption algorithm, and a decryp-
tion algorithm, respectively. These algorithms are defined as usual. Let (L,F)
be a (u, v, q)-CFF such that u = O(poly(k)), v = Ω(exp(k)), and q = O(poly(k))
for a security parameter k. Then, a non-adaptive q-CCA-secure PKE scheme P′

is constructed as follows:

Key Generation. For a given security parameter k, a receiver generates a
(u, v, q)-CFF (L,F) such that L = {1, ..., u} and (dki, eki) ← Gen(1k) for
1 ≤ i ≤ u, and outputs a private decryption key dk = ((dki)1≤i≤u, (L,F))
and a public encryption key ek = ((eki)1≤i≤u, (L,F)).

Encryption. For given ek and a plaintext M ∈ M, a sender picks r
from {1, ..., v} uniformly at random, divides M into (Mi)i∈Fr such that⊕

i∈Fr
Mi = M , computes Ci ← Enc(eki, Mi) for all i ∈ Fr, and outputs

C = (r, (Ci)i∈Fr).
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Decryption. For given dk and a ciphertext C′ = (r′, (C′
i)i∈Fr′ ), the receiver

calculates M ′
i ← Dec(dki, Ci) for all i ∈ Fr′ and M ′ ← ⊕

i∈Fr′
Mi, and

outputs M ′.

Theorem 1 ([4]). The above scheme P′ is non-adaptively q-BCCA-secure if P
is CPA-secure.

An intuitive explanation of the role of CFF for deceiving a BCCA adversary is as
follows: Let B is an algorithm whose goal is to break CPA-security of P by using
another algorithm A which breaks q-BCCA-security of P′. For a given public
key ek′, B picks random j from {1, ..., u}, sets ekj = ek′, and generates (dki, eki)
for all i ∈ {1, ..., u}\{j}. Then, B inputs ek = ((eki)1≤i≤u, (L,F)) to A. When
A submits a query C = (r, (Ci)i∈Fr), B can respond to it by straightforward
decryption if j �∈ Fr. Finally, B inputs C∗ = (r∗, (Ci)i∈Fr∗ ) as a challenge
ciphertext where r∗ is picked from {1, ..., v} uniformly at random. Due to CFF,
it is information-theoretically guaranteed that [A never submits a query such
that j �∈ Fr] ∧ [j ∈ Fr∗ ] with probability at least 1/u, which is non-negligible.

Remark. The above construction is a simplified version of adaptive q-BCCA-
secure construction in [4], and it is constructed based on Dodis, Katz, Xu,
and Yung’s key-insulated encryption scheme [5] along with Canetti, Halevi, and
Katz’s IBE-to-PKE transform [2]. It is possible to enhance security of the above
scheme with fully adaptive BCCA-security by using one-time signatures [4] (sim-
ilarly to [2]). Following the work by Cramer et al., Choi, Dachman-Soled, Malkin,
and Wee [3] presented another black-box construction of q-BCCA-secure PKE
schemes with non-malleability by using error-correcting codes.
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Abstract. Xoring two permutations is a very simple way to construct
pseudorandom functions from pseudorandom permutations. The aim of
this paper is to get precise security results for this construction. Since
such construction has many applications in cryptography (see [2,3,4,6]
for example), this problem is interesting both from a theoretical and from
a practical point of view. In [6], it was proved that Xoring two random

permutations gives a secure pseudorandom function if m � 2
2n
3 . By

“secure” we mean here that the scheme will resist all adaptive chosen
plaintext attacks limited to m queries (even with unlimited computing
power). More generally in [6] it is also proved that with k Xor, instead

of 2, we have security when m � 2
kn

k+1 . In this paper we will prove that
for k = 2, we have in fact already security when m � O(2n). Therefore
we will obtain a proof of a similar result claimed in [2] (security when
m � O(2n/n2/3)). Moreover our proof is very different from the proof
strategy suggested in [2] (we do not use Azuma inequality and Chernoff
bounds for example), and we will get precise and explicit O functions.
Another interesting point of our proof is that we will show that this
(cryptographic) problem of security is directly related to a very simple
to describe and purely combinatorial problem. An extended version of
this paper can be obtained on eprint [8].

Keywords: Pseudorandom functions, pseudorandom permutations, se-
curity beyond the birthday bound, Luby-Rackoff backwards.

1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudoran-
dom functions (PRF) named “Luby-Rackoff backwards” was first considered in
[3]. This problem is obvious if we are interested in an asymptotical polynomial
versus non polynomial security model (since a PRP is then a PRF), but not if
we are interested in achieving more optimal and concrete security bounds. More
precisely, the loss of security when regarding a PRP as a PRF comes from the
“birthday attack” which can distinguish a random permutation from a random
function of n bits to n bits, in 2

n
2 operations and 2

n
2 queries. Therefore different

ways to build PRF from PRP with a security above 2
n
2 and by performing very

few computations have been suggested (see [2,3,4,6]). One of the simplest way

R. Safavi-Naini (Ed.): ICITS 2008, LNCS 5155, pp. 232–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(and the way that gives so far our best security result) is simply to Xor k inde-
pendent pseudorandom permutations, for example with k = 2. In [6] (Theorem
2 p.474), it has been proved, with a simple proof, that the Xor of k indepen-
dent PRP gives a PRF with security at least in O(2

k
k+1 n). (For k = 2 this gives

O(2
2
3 n)). In [2], a much more complex strategy (based on Azuma inequality and

Chernoff bounds) is presented. It is claimed that with this strategy we may prove
that the Xor of two PRP gives a PRF with security at least in O(2n/n

2
3 ) and at

most in O(2n), which is much better than the birthday bound in O(2
n
2 ). How-

ever the authors of [2] present a very general framework of proof and they do not
give every details for this result. For example, page 9 they wrote “we give only a
very brief summary of how this works”, and page 10 they introduce O functions
that are not easy to express explicitly. In this paper we will use a completely
different proof strategy, based on the “coefficient H technique” (see Section 3
below), simple counting arguments and induction. We will need a few pages, but
we will get like this a self contained proof of security in O(2n) for the Xor of two
permutations with a very precise O function. Since building PRF from PRP has
many applications (see [2,3,4]), we think that these results are really interesting
both from theoretical and from practical point of view. It may be also interesting
to notice that there are many similarities between this problem and the security
of Feistel schemes built with random round functions (also called Luby-Rackoff
constructions). In [7], it was proved that for L-R constructions with k rounds
functions we have security that tends to O(2n) when the number k of rounds
tends to infinity. Then in [11], it was proved that security in O(2n) was obtained
not only for k → +∞, but already for k = 7. Similarly, we have seen that in
[6] it was proved that for the Xor of k PRP we have security that tends O(2n)
when k → +∞. In this paper, we show that security in O(2n) is not only for
k → +∞, but already for k = 2.

Remark: in this paper, we concentrate on proofs of security while in paper [9]
we present the best known attacks for the Xor of k random permutations.

2 Notation and Aim of This Paper

In all this paper we will denote In = {0, 1}n. Fn will be the set of all applications
from In to In, and Bn will be the set of all permutations from In to In. Therefore
|In| = 2n, |Fn| = 2n·2n

and |Bn| = (2n)!. x ∈R A means that x is randomly
chosen in A with a uniform distribution.

The aim of this paper is to prove the theorem below, with an explicit O
function (to be determined).

Theorem 1. For all CPA-2 (Adaptive chosen plaintext attack) φ on a function
G of Fn with m chosen plaintext, we have: AdvPRF

φ ≤ O( m
2n ) where AdvPRF

φ

denotes the advantage to distinguish f ⊕ g, with f, g ∈R Bn from h ∈R Fn.

By “advantage” we mean here, as usual, for a distinguisher, the absolute value of
the difference of the two probabilities to output 1. This theorem says that there
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is no way (with an adaptive chosen plaintext attack) to distinguish with a good
probability f ⊕ g when f, g ∈R Bn from h ∈R Fn when m � 2n. Therefore, it
implies that the number λ of computations to distinguish f ⊕ g with f, g ∈R Bn

from h ∈R Fn satisfies: λ ≥ O(2n). We say also that there is no generic CPA-2
attack with less than O(2n) computations for this problem, or that the security
obtained is greater than or equal to O(2n). Since we know (for example from [2])
that there is an attack in O(2n), Theorem 1 also says that O(2n) is the exact
security bound for this problem.

3 The General Proof Strategy

We will use this general Theorem:

Theorem 2. Let α and β be real numbers, α > 0 and β > 0. Let E be a subset
of Im

n such that |E| ≥ (1 − β) · 2nm. If:

1. For all sequences ai, 1 ≤ i ≤ m, of pairwise distinct elements of In and for
all sequences bi, 1 ≤ i ≤ m, of E we have:

H ≥ |Bn|2
2nm

(1 − α)

where H denotes the number of (f, g) ∈ B2
n such that

∀i, 1 ≤ i ≤ m, (f ⊕ g)(ai) = bi

Then
2. For every CPA-2 with m chosen plaintexts we have: p ≤ α + β where p =

AdvPRF
φ denotes the advantage to distinguish f ⊕ g when (f, g) ∈R B2

n from
a function h ∈R Fn.

By “advantage” we mean here, as usual, for a distinguisher, the absolute value
of the difference of the two probabilities to output 1.

Proof of Theorem 2
It is not very difficult to prove Theorem 2 with classical counting arguments. This
proof technique is sometimes called the “Coefficient H technique”. A complete
proof of Theorem 2 can also be found in [10] page 27 and a similar Theorem was
used in [11] p.517. In order to have access to all the proofs, Theorem 2 is also
included in the eprint extended version of this paper [8].

How to get Theorem 1 from Theorem 2

In order to get Theorem 1 from Theorem 2, a sufficient condition is to prove
that for “ most” (most since we need β small) sequences of values bi, 1 ≤ i ≤ m,
bi ∈ In, we have: the number H of (f, g) ∈ B2

n such that ∀i, 1 ≤ i ≤ m,

f(ai)⊕g(ai) = bi satisfies: H ≥ |Bn|2
2nm

(1−α) for a small value α (more precisely

with α � O( m
2n )). For this, we will evaluate E(H) the mean value of H when
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the bi values are randomly chosen in Im
n , and σ(H) the standard deviation of H

when the bi values are randomly chosen in Im
n . (Therefore we can call our general

proof strategy the “Hσ technique”, since we use the coefficient H technique plus
the evaluation of σ(H)). We will prove that E(H) = |Bn|2

2nm and that σ(H) =
|Bn|2
2nm O( m

2n )
3
2 , with an explicit O function, i.e. that σ(H) � E(H) when m � 2n.

From Bienayme-Tchebichev Theorem, we have

Pr
(|H − E(H)| ≤ αE(H)

) ≥ 1 − σ2(H)
α2E2(H)

So

Pr
[
H ≥ E(H)(1 − α)

] ≥ 1 − σ2(H)
α2E2(H)

Therefore from Theorem 2 we will have for all α > 0: AdvPRF
φ ≤ α +

σ2(H)
α2E2(H)

.

With α =
( σ(H)

E(H)

)2/3, this gives AdvPRF
φ ≤ 2

( σ(H)
E(H)

)2/3 = 2
( V (H)
E2(H)

)1/3. So if

σ(H)
E(H) = O( m

2n )3/2, and E(H) = |Bn|2
2nm , Theorem 1 comes from Theorem 2.

Introducing N instead of H

H is (by definition) the number of (f, g) ∈ B2
n such that ∀i, 1 ≤ i ≤ m,

f(ai) ⊕ g(ai) = bi. ∀i, 1 ≤ i ≤ m, let xi = f(ai). Let N be the number of
sequences xi, 1 ≤ i ≤ m, xi ∈ In, such that:

1. The xi are pairwise distinct, 1 ≤ i ≤ m.
2. The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m. We see that H = N ·

|Bn|2(
2n(2n−1)...(2n−m+1)

) . (Since when xi is fixed, f and g are fixed on exactly

m pairwise distinct points by ∀i, 1 ≤ i ≤ m, f(ai) = xi and g(ai) = bi ⊕xi).

Thus we have AdvPRF
φ ≤ 2

( σ(H)
E(H)

)2/3 = 2
( σ(N)
E(N)

)2/3 (3.1). Therefore, instead

of evaluating E(H) and σ(H), we can evaluate E(N) and σ(N), and our aim is
to prove that

E(N) =
(2n(2n − 1) . . . (2n − m + 1))2

2nm
and that σ(N) � E(N) when m � 2n

As we will see, the most difficult part will be the evaluation of σ(N). (We will
see in Section 5 that this evaluation of σ(N) leads us to a purely combinatorial
problem: the evaluation of values that we will call λα).

Remark: We will not do it, nor need it, in this paper, but it is possible to im-
prove slightly the bounds by using a more precise evaluation than the Bienayme-
Tchebichev Theorem: instead of

Pr(|N − E(N)| ≥ tσ(N)) ≤ 1
t2

,
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it is possible to prove that for our variables N , and for t >> 1, we have something
like this:

Pr(|N − E(N)| ≥ tσ(N)) ≤ 1
et

(For this we would have to analyze more precisely the law of distribution of N :
it follows almost a Gaussian and this gives a better evaluation than just the
general 1

t2 ).

4 Computation of E(N)

Let b = (b1, . . . , bm), and x = (x1, . . . , xm). For x ∈ Im
n , let

δx = 1 ⇔
{

The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

and δx = 0 ⇔ δx �= 1. Let Jm
n be the set of all sequences xi such that all the xi

are pairwise distinct, 1 ≤ i ≤ m. Then |Jm
n | = 2n(2n − 1) . . . (2n − m + 1) and

N =
∑

x∈Jm
n

δx. So we have E(N) =
∑

x∈Jm
n

E(δx). For x ∈ Jm
n ,

E(δx) = Prb∈RIm
n

(All the xi ⊕ bi are pairwise distinct)

=
2n(2n − 1) . . . (2n − m + 1)

2nm

Therefore

E(N) = |Jm
n | · 2n(2n − 1) . . . (2n − m + 1)

2nm
=

(2n(2n − 1) . . . (2n − m + 1))2

2nm

as expected.

5 First Results on V (N)

We denote by V (N) the variance of N when b ∈R Im
n . We have seen that our

aim (cf(3.1)) is to prove that V (N) � E2(N) when m � 2n (with E2(N) =
(2n(2n−1)...(2n−m+1))4

22nm ). With the same notations as in Section 4 above, N =∑
x∈Jm

n
δx. Since the variance of a sum is the sum of the variances plus the sum

of all covariances we have:

V (N) =
∑

x∈Jm
n

V (δx)+
∑

x,x′∈Jm
n

x �=x′

[
E(δx δx′)−E(δx)E(δx′)

]
(5.1)

We will now study the 3 terms in (5.1), i.e. the terms in V (δx), the terms in
E(δx δx′) and the terms in E(δx)E(δx′).

Terms in V (δx)

V (δx) = E(δ2
x) − (E(δx))2 = E(δx) − (E(δx))2
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V (δx) =
2n(2n − 1) . . . (2n − m + 1)

2nm
− (2n(2n − 1) . . . (2n − m + 1))2

22nm

So
∑

x∈Jm
n

V (δx) =
(2n(2n − 1) . . . (2n − m + 1))2

2nm
− (2n(2n − 1) . . . (2n − m + 1))3

22nm

This term is less than E(N) and therefore is much less than E2(N). (5.2)
Terms in E(δx)E(δx′)

E(δx)E(δx′) =
(2n(2n − 1) . . . (2n − m + 1))2

22nm

∑
x,x′∈Jm

n
x �=x′

E(δx)E(δx′)=
[2n(2n− 1) . . . (2n − m+1) − 1][2n(2n − 1) . . . (2n−m+1)]3

22nm

� (2n(2n − 1) . . . (2n − m + 1))4

22nm
= E2(N) (5.3)

Terms in E(δx δx′)
Therefore the last term Am that we have to evaluate in (5.1) is

Am =def

∑
x,x′∈Jm

n x �=x′
E(δx δx′

)
=

∑
x,x′∈Jm

n
x �=x′

Prb∈Im
n

({The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

)

Let λm =def the number of sequences (xi, x
′
i, bi), 1 ≤ i ≤ m such that

1. The xi are pairwise distinct, 1 ≤ i ≤ m.
2. The x′

i are pairwise distinct, 1 ≤ i ≤ m.
3. The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.
4. The x′

i ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.

We have Am = λm

2nm (5.4). Therefore from (5.1), (5.2), (5.3), (5.4), we have
obtained:

V (N) ≤ E(N)+E2(N)− λm

2nm
(5.5)

We want to prove that V (N) � E2(N). Therefore, our aim is to prove that

λm � 2nm ·E2(N) =
(2n(2n − 1) . . . (2n − m + 1))4

2nm
(5.6)

Change of variables
Let fi = xi and gi = x′

i, hi = xi ⊕ bi. We see that λm is also the number of
sequences (fi, gi, hi), 1 ≤ i ≤ m, fi ∈ In, gi ∈ In, hi ∈ In, such that
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1. The fi are pairwise distinct, 1 ≤ i ≤ m.
2. The gi are pairwise distinct, 1 ≤ i ≤ m.
3. The hi are pairwise distinct, 1 ≤ i ≤ m.
4. The fi ⊕ gi ⊕ hi are pairwise distinct, 1 ≤ i ≤ m.

We will call these conditions 1.2.3.4. the “conditions λα”. (Examples of λm values
are given in Appendix A). In order to get (5.6), we see that a sufficient condition
is finally to prove that

λm =
(2n(2n − 1) . . . (2n − m + 1))4

2nm

(
1 + O(

m

2n
)
)

(5.7)

with an explicit O function. So we have transformed our security proof against
all CPA-2 for f ⊕ g, f, g ∈R Bn, to this purely combinatorial problem (5.7) on
the λm values. (We can notice that in E(N) and σ(N) we evaluate the values
when the bi values are randomly chosen, while here, on the λm values, we do not
have such bi values anymore). The proof of this combinatorial property is given
below and in the eprint version. (Unfortunately the proof of this combinatorial
property (5.7) is not obvious: we will need a few pages. However, fortunately,
the mathematics that we will use are simple).

6 First Results in λα

The values λα have been introduced in Section 5. Our aim is to prove (5.7), (or
something similar, for example with O(mk+1

2nk ) for any integer k) with explicit
O functions. For this, we will proceed like this: in this Section 6 we will give a
first evaluation of the values λα. Then, in Section 7, we will prove an induction
formula (7.2) on λα. Finally, in the Appendices, we will use this induction formula
(7.2) to get our property on λα.

Let Uα =
[2n(2n − 1) . . . (2n − α + 1)]4

2nα
. We have Uα+1 = (2n−α)4

2n Uα.

Uα+1 = 23n
(
1−4α

2n
+

6α2

22n
−4α3

23n
+

α4

24n

)
Uα (6.1)

Similarly, we want to obtain an induction formula on λα, i.e. we want to evaluate
λα+1
λα

. More precisely our aim is to prove something like this: λα+1
λα

= Uα+1
Uα

(
1 +

O( 1
2n )+O( α

22n )
)

(6.2)
Notice that here we have O( α

22n ) and not O( α
2n ). Therefore we want something

like this:

λα+1

23n · λα
=
(
1 − 4α

2n
+

6α2

22n
− 4α3

23n
+

α4

24n

)(
1 + O(

1
2n

) + O(
α

22n
)
)

(6.3)

(with some specific O functions)
Then, from (6.2) used for all 1 ≤ i ≤ α and since λ1 = U1 = 23n, we will get

λα =
( λα

λα−1

)(λα−1

λα−2

)
. . .

(λ2

λ1

)
λ1 = Uα

(
1 + O(

1
2n

) + O(
α

22n
)
)α
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and therefore we will get property (5.4): λα = Uα

(
1+O(

α

2n
)
)

as wanted. Notice

that to get here 0( α
2n ) we have used 0( α

22n ) in (6.2). By definition λα+1 is the
number of sequences (fi, gi, hi), 1 ≤ i ≤ α + 1 such that we have:

1. The conditions λα

2. fα+1 /∈ {f1, . . . , fα}
3. gα+1 /∈ {g1, . . . , gα}
4. hα+1 /∈ {h1, . . . , hα}
5. fα+1 ⊕ gα+1 ⊕ hα+1 /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα ⊕ gα ⊕ hα}

We will denote by β1, . . . , β4α the 4α equalities that should not be satisfied here:
β1 : fα+1 = f1, β2 : fα+1 = f2, . . ., β4α : fα+1 ⊕ gα+1 ⊕ hα+1 = fα ⊕ gα ⊕ hα.

First evaluation
When fi, gi, hi values are fixed, 1 ≤ i ≤ α, such that they satisfy conditions λα,
for fα+1 that satisfy 2), we have 2n −α solutions and for gα+1 that satisfy 3) we
have 2n − α solutions. Now when fi, gi, hi, 1 ≤ i ≤ α, and fα+1, gα+1 are fixed
such that they satisfy 1), 2), 3), for hα+1 that satisfy 4) and 5) we have between
2n − α and 2n − 2α possibilities. Therefore (first evaluation for λα+1

λα
) we have:

λα(2n − α)2(2n − 2α) ≤ λα+1 ≤ λα(2n − α)2(2n − α)

Therefore, 1 − 4α

2n
≤ λα+1

23n · λα
≤ 1 (6.4). This an approximation in O( α

2n ) and

from it we get λα = Uα

(
1 + O(

α

2n
)
)α, i.e. λα = Uα

(
1 + O(

α2

2n
)
)
, i.e. we get

security until α2 � 2n, i.e. until α � √
2n. However, we want security until

α � 2n and not only α � √
2n, so we want a better evaluation for λα+1

23n·λα
(i.e.

we want something like (6.3) instead of (6.4)).

7 An Induction Formula on λα

A more precise evaluation
For each i, 1 ≤ i ≤ 4α, we will denote by Bi the set of (f1, . . . , fα+1, g1, . . . ,
gα+1, h1, . . . , hα+1), that satisfy the conditions λα and the conditions βi. There-
fore we have: λα+1 = 23nλα − | ∪4α

i=1 Bi|.
We know that for any set Ai and any integer μ, we have:

| ∪μ
i=1 Ai| =

μ∑
i=1

|Ai| −
∑

i1<i2

|Ai1 ∩ Ai2 |

+
∑

i1<i2<i3

|Ai1 ∩ Ai2 ∩ Ai3 | + . . . + (−1)μ+1|A1 ∩ A2 ∩ . . . ∩ Aμ|

Moreover, each set of 5 (or more) equations βi is in contradiction with the
conditions λα because we will have at least two equations in f , or two in g, or
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two in h, or two in f ⊕ g ⊕ h (and fα+1 = fi and fα+1 = fj gives fi = fj with
i �= j and 1 ≤ α, j ≤ α, in contradiction with λα).

Therefore, we have:

λα+1 =23nλα−
4α∑
i=1

|Bi|+
∑
i<j

|Bi∩Bj |−
∑

i<j<k|Bi∩Bj∩Bk|+
∑

i<j<k<l

|Bi∩Bj∩Bk∩Bl|

• 1 equation
In Bi, we have the conditions λα plus the equation βi, and βi will fix fα+1,

or gα+1, or hα+1 from the other values. Therefore, |Bi| = 22nλα and −∑4α
i=1 |Bi| = −4α · 22nλα.
• 2 equations
First Case: βi and βj are two equations in f (or two in g, or two in h, or two

in f ⊕ g ⊕ h. ( For example: fα+1 = f1 and fα+2 = f2). Then these equations
are not compatible with the conditions λα, therefore |Bi ∩ Bj | = 0.

Second Case: we are not in the first case. Then two variables (for example
fα and gα) are fixed from the others. Therefore: |Bi∩Bj | = 2nλα and

∑
i<j |Bi∩

Bj | = 6α2 · 2nλα.
• 3 equations
If we have two equations in f , or in g, or in h, or in f ⊕ g ⊕ h, we have

|Bi∩Bj∩Bk| = 0. If we are not in these cases, then fα+1, gα+1 and hα+1 are fixed
by the three equations from the other variables, and then |Bi ∩ Bj ∩ Bk| = λα.
Therefore: −∑

i<j<k |Bi ∩ Bj ∩ Bk| = −4α3λα.
• 4 equations
This value is different from 0 only if we have one equation fα+1 = fi, one

equation gα+1 = gj, one equation hα+1 = hk and one equation fα+1 ⊕ gα+1 ⊕
hα+1 = fl ⊕ gl ⊕ hl. Then |Bi ∩ Bj ∩ Bk ∩ Bl| = number of fa, gb, hc, with
a, b, c ∈ {1, . . . , α}, that satisfy the conditions λα plus the equation X : fi ⊕ gj ⊕
hk = fl ⊕ gl ⊕ hl.

Case 1. i, j, k, l are pairwise distinct. Here we have α(α−1)(α−2)(α−3) =
α4 − 6α3 + 11α2 − 6α possibilities for i, j, k, l and from the symmetries of all
indexes in the conditions λα, all the λ′

α(X) of this case 1 are equal. We denote
by λ

′(4)
α this value of λ′

α(X). (The (4) here is to remember that we have exactly
4 indexes i, j, k, l).

Case 2. In {i, j, k, l}, we have exactly 3 indexes. Here we have 6α(α− 1)(α−
2) = 6α3 − 18α2 + 12α possibilities for i, j, k, l (since there are 6 possibilities to
choose an equality). From the symmetries in the conditions λα, all the λ′

α(X) of
this case 2 are equal. We denote by λ

′(3)
α this value of λ′

α(X).
Case 3. In {i, j, k, l}, 3 indexes have the same value (example i = j = k) and

the other one has a different value. Then X is not compatible with the conditions
λα.

Case 4. In i, j, k, l, we have 2 indexes and we are not in the Case 3 (for
example i = j and k = l). Here we have 3α(α − 1) = 3α2 − 3α possibilities for
i, j, k, l. From the symmetries in the conditions λα all the λ′

α(X) of this case 4
are equal. We denote by λ

′(2)
α this value of λ′

α(X).



A Proof of Security in O(2n) for the Xor of Two Random Permutations 241

Case 5. We have i = j = k = l. Here we have α possibilities for i, j, k, l. Here
X is always true, and λ′

α(X) = λα.
From these 5 cases we get:∑

i<j<k<l

|Bi ∩ Bj ∩ Bk ∩ Bl| = α(α − 1)(α − 2)(α − 3)λ
′(4)
α

+6α(α − 1)(α − 2)λ
′(3)
α + 3α(α − 1)λ

′(2)
α + αλα

Therefore

λα+1 = (23n − 4α · 22n + 6α2 · 2n − 4α3 + α)λα + (α4 − 6α3 + 11α2 − 6α)λ
′(4)
α

+(6α3 − 18α2 + 12α)λ
′(3)
α + (3α2 − 3α)λ

′(2)
α (7.1)

We will denote by [λ′
α] any value of λ′

α(X) such that X is compatible with the
conditions λα and such that X is not always true (X is not 0 = 0). Then, from
(7.1) we write

λα+1 = (23n − 4α · 22n + 6α2 · 2n − 4α3 + α)λα + (α4 − 4α2 + 3α)[λ′
α] (7.2)

where A · [λ′
α] is just a notation to mean that we have A terms λ′

α but each of
these λ′

α may have different values. Our aim is to get (6.3) from (7.2). For this
we see that we have to prove that

[λ′
α] =

λα

2n
(1+O(

1
2n

)+O(
α

22n
)) (7.3)

for “most” values [λ′
α] or for the values λ

′(4)
α . This is what we started in Appendix

B and the complete result is in the Appendices of the eprint version of this
paper [8].

8 From [εα] to AdvPRF
φ

Let [εα] = 2n[λ′
α]

λα
− 1. Therefore, [λ′

α] = λα

2n (1 + [εα]). From the analysis of the
previous sections, we know that if we can prove that |[εα]| is small, then AdvPRF

φ

will be small. Let evaluate more precisely the links between |[εα]| and AdvPRF
φ

that we have. From formula (7.2), we have:

λα+1 = 23n
[
1 − 4α

2n
+

6α2

22n
− 4α3

23n
+

α

23n
+

(α4 − 4α2 + 3α)
24n

+ A
]
λα

with

A ≤ α4[εα]
2n · 23n

(8.1)

Therefore, by using Uα of section 6 we have:

λα+1

λα
=

Uα+1

Uα
· (1 − 4α

2n + 6α2

22n − 4α3

23n + α
23n + (α4−4α2+3α)

24n + A)

(1 − 4α
2n + 6α2

22n − 4α3

23n + α4

24n )
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λα+1

λα
=

Uα+1

Uα
· (1 +

α
23n − 4α2

24n + 3α
24n + A

1 − 4α
2n + 6α2

22n − 4α3

23n + α4

24n

)
(8.2)

Therefore, with (8.1) we have

λα+1

λα
=

Uα+1

Uα
· (1 + O1(

α

23n
) + O2(A)

)
with

|O1(
α

23n
)| ≤ α

23n(1 − 4α
2n )

(8.3)

and

|O2(A)| ≤ A

(1 − 4α
2n )

(8.4)

Since λ1 = U1 = 23n, we have

λα =
( λα

λα−1

)(λα−1

λα−2

)
. . .

(λ2

λ1

)
λ1 = Uα

[
1 + O(

α

23n
) + O(A)

]α
λα =

[2n(2n − 1) . . . (2n − α + 1)]4

2nα

(
1+O(

α2

23n
)+αO(A)

)
(8.5)

Now from (8.5) and (5.5) we get:

V (N) ≤ E(N) + (E(N))2
(
O(

α2

23n
) + αO(A)

)
Therefore, from (3.1) we get that the best CPA-2 attacks φ satisfy:

AdvPRF
φ ≤ 2

( V (N)
E2(N)

)1/3

≤ 2
( 1

E(N)
+ O(

α2

23n
) + αO(A)

)1/3

More precisely, by using (8.3) and (8.4) we get:

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1 − 4m
2n )

+
α5 · [εα]

24n · (1 − 4α
2n )

)1/3

(8.6)

Here we have 1
E(N) = 2nm

(2n(2n−1)...(2n−m+1))2 and this is much smaller than m3

23n

for example, thanks to Stirling Formula. From formula (8.6) we see clearly that
a bound on |[εα]| gives immediately a precise bound on AdvPRF

φ . Now, in the
Appendices of the extended version ([8]), we present good bounds for |[εα]|.
More precisely, we proceed progressively: first, in Appendix B, we get a bound
for |[εα]| in O( α

2n ) and therefore a security (from (8.6)) in O(2
5n
6 ). Then, in

Appendix D we get a bound for |[εα]| in O( α5

25n ) and therefore a security (from
(8.6)) in O(2

9n
10 ). Finally, in Appendix E, we iterate the process in order to obtain

security in m � O(2n) as wanted.
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9 A Simple Variant of the Schemes with Only One
Permutation

Instead of G = f1 ⊕ f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0) ⊕ f(x‖1),
with f ∈R Bn and x ∈ In−1. This variant was already introduced in [2] and it
is for this that in [2] p.9 the security in m

2n + O(n)
(

m
2n

)3/2 is presented. In fact,
from a theoretical point of view, this variant G′ is very similar to G, and it is
possible to prove that our analysis can be modified to obtain a similar proof of
security for G′.

10 A Simple Property about the Xor of Two
Permutations and a New Conjecture

I have conjectured this property:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then ∃(g, h) ∈ B2
n, such that f = g ⊕ h.

Just one day after this paper was put on eprint, J.F. Dillon pointed to us that
in fact this was proved in 1952 in [5]. We thank him a lot for this information.
(This property was proved again independently in 1979 in [12]).

A new conjecture. However I conjecture a stronger property. Conjecture:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then the number H of (g, h) ∈ B2
n,

such that f = g ⊕ h satisfies H ≥ |Bn|2
2n2n .

Variant: I also conjecture that this property is true in any group, not only
with Xor.

Remark: in this paper, I have proved weaker results involving m equations with
m � O(2n) instead of all the 2n equations. These weaker results were sufficient
for the cryptographic security wanted.

11 Conclusion

The results in this paper improve our understanding of the PRF-security of the
Xor of two random permutations. More precisely in this paper we have proved that
the Adaptive Chosen Plaintext security for this problem is in O(2n), and we have
obtained an explicit O function. These results belong to the field of finding security
proofs for cryptographic designs above the “birthday bound”. (In [1,7,11], some
results “above the birthday bound” on completely different cryptographic designs
are also given). Our proofs need a few pages, so are a bit hard to read, but the results
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obtained are very easy to use and the mathematics used are elementary (essentially
combinatorial and induction arguments). Moreover, we have proved (in Section 5)
that this cryptographic problem of security is directly related to a very simple to
describe and purely combinatorial problem. We have obtained this transformation
by combining the “coefficient H technique” of [10,11] and a specific computation of
the standard deviation of H . (In a way, from a cryptographic point of view, this is
maybe the most important result, and all the analysis after Section 5 can be seen as
combinatorial mathematics and not cryptography anymore). Since building PRF
from PRP has many practical applications,we believe that these results are of real
interest both from a theoretical point of view and a practical point of view.
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Appendices

A Examples: λ1, λ2, λ3

As examples, we present here the exact values for λ1, λ2, λ3.
Computation of λ1

λ1 =def Number of (f1, g1, h1) with f1, g1, h1 ∈ In

Therefore λ1 = 23n.
Computation of λ2 from (7.2)

λ2 =def Number of (f1, g1, h1), (f2, g2, h2) such that

f2 �= f1, g2 �= g1, h2 �= h1, f2 ⊕ g2 ⊕ h2 �= f1 ⊕ g1 ⊕ h1

From the general formula (7.1) or (7.2) of Section 7, we have (with α = 1):

λ2 = [23n − 4 · 22n + 6 · 2n − 3]λ1 + 0

(here [λ′
1] = 0 since we have only one indice and in X we must have at least two

indices).
λ2 = [23n − 4 · 22n + 6 · 2n − 3] · 23n

Computations of λ2 from the βi equations

λ2 =23nλ1−
4∑

i=1

|Bi|+
∑
i<j

|Bi∩Bj |−
∑

i<j<k

|Bi∩Bj∩Bk|+
∑

i<j<k<l

|Bi∩Bj∩Bk∩Bl|

1 equation:
∑4

i=1 |Bi| = 4 · 22nλ1.
2 equations:

∑
i<j |Bi ∩ Bj | = 6 · 2nλ1.

3 equations:
∑

i<j<k |Bi ∩ Bj ∩ Bk| = 4λ1.
4 equations:

∑
i<j<k<l |Bi ∩ Bj ∩ Bk ∩ Bl| = λ1.

Therefore λ2 = (23n − 4 · 22n + 6 · 2n − 3)λ1 (as expected we obtain the same
result as above).

Computation of λ3 from (7.2)
From the general formulas (7.1) and (7.2), we have (with α = 2):

λ3 = (23n − 8 · 22n + 24 · 2n − 30)λ2 + 6λ
′(2)
2

where λ
′(2)
2 is the number of (f1, g1, h1), (f2, g2, h2) such that f2 �= f1, g2 �=

g1, h2 �= h1, f2 ⊕ g2 ⊕ h2 �= f1 ⊕ g1 ⊕ h1 and f1 ⊕ g1 = f2 ⊕ g2 (all the other
equations X of the type λ

′(2)
2 give the same value λ

′(2)
2 ). When f1, g1, h1 are

fixed (we have 23n possibilities) then we will choose f2 �= f1, h2 �= h1, and
g2 = f1 ⊕ f2 ⊕ g1 (so we have g2 �= g1 and f2 ⊕ g2 ⊕h2 �= f1 ⊕ g1 ⊕h1). Therefore
λ

′(2)
2 = 23n · (2n − 1)2 and the exact value of λ3 is:

λ3 = (23n − 8 · 22n + 24 · 2n − 30)λ2 + 6 · 23n · (2n − 1)2
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(with λ2 = (23n − 4 · 22n + 6 · 2n − 3) · 23n as seen above).
Computation of λ

′(2)
α from the βi equations

λ′
2 =22nλ1−

4∑
i=1

|B′
i|+

∑
i<j

|B′i∩B′
j |−

∑
i<j<k

|B′
i∩B′

j∩B′
k|+

∑
i<j<k<l

|B′
i∩B′

j∩B′
k∩B′

l |

Here X is: f1 ⊕ f2 = g1 ⊕ g2

• X + 1 equations
4∑

i=1

|B′
i| = 4 · 2nλ1

• X + 2 equations. If the 2 equations βi are (f1 = f2 and g1 = g2), or
(h1 = h2 and f1 ⊕ g1 ⊕ h1 = f2 ⊕ g2 ⊕ h2), then X is the Xor of these equations.
Therefore ∑

i<j

|B′i ∩ B′
j | = 4 · λ1 + 2 · 2nλ1

• X+3 equations. X is always a consequence of the 3 equations,
∑

i<j<k |B′
i∩

B′
j ∩ B′

k| = 4λ1.
• X + 4 equations.

∑
i<j<k<l |B′

i ∩ B′
j ∩ B′

k ∩ B′
l| = λ1.

Therefore
λ

′(2)
α = (22n − 4 · 2n + 4 − 2 · 2n − 4 + 1)λ1

λ
′(2)
α = (22n − 2 · 2n + 1)λ1

(as expected we obtain the same result as above).
Remark. Here

2nλ
′(2)
2

λ2
=

1 − 2
2n + 1

22n

1 − 4
2n + 6

22n − 3
23n

= 1 +
2
2n

+
3

22n
+ O(

1
23n

)

Therefore we see that in
2n[λ′

α]
λα

, we have sometimes a term in O( 1
2n ). However

this is exceptional: here f1 ⊕ g1 = f2 ⊕ g2 is the Xor of the conditions f1 �= f2

and g1 �= g2, or of the conditions h1 �= h2 and f2 ⊕ g2 ⊕ h2 �= f1 ⊕ g1 ⊕ h1.
Moreover here we have only 2 indices.

B Evaluations of [λ′
α]/λα in O( α

2n ), Security in m << 2
5n
6

By definition [λ′
α] denotes (as we have seen in Section 7) the number of

(f1, . . . , fα, g1, . . . , gα, h1, . . . , hα) of I3α
n

that satisfy the conditions λα plus an equation X of the type:

fj ⊕ gj ⊕ hj = fk ⊕ gl ⊕ hi
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with i, j, k, l ∈ {1, . . . , α} such that X is compatible with the conditions λα and
such that X is not 0 = 0 (i.e. we do not have i = j = k = l). We have seen
in Section 7 that [λ′

α] is not a fixed value: it can be λ
′(4)
α (by symmetries of the

hypothesis for this case we can assume X to be: fα⊕gα⊕hα = hα−1⊕gα−2⊕fα−3)
or λ

′(3)
α (for this case we can assume X to be: fα ⊕ gα = fα−1 ⊕ gα−2) or λ

′(2)
α

(for this case we can assume X to be: fα ⊕ gα = fα−1 ⊕ gα−1). However, as
we will see all these three values [λ′

α] are very near, and they are very near λα

2n .

(Remark: we are mainly interested in λ
′(4)
α very near λα

2n since in formula (7.1)

of Section 7 we have a term in α4λ
′(4)
α ).

Theorem 3. For all values [λ′
α] we have:

1 − 8α

2n
≤ 2n [λ′

α]
λα

≤ 1 +
8α

(1 − 8α
2n )2n

Proof of Theorem 3
We will present here the proof with X : fα ⊕ gα ⊕ hα = hα−1 ⊕ gα−2 ⊕ fα−3.
The proof is exactly similar for all the other cases. From (6.4), we have:

1 − 4(α − 1)
2n

≤ λα

23nλα−1
≤ 1

and

1 − 4(α − 2)
2n

≤ λα−1

23nλα−2
≤ 1

Therefore

26nλα−2

(
1− 4(α − 1)

2n

)2 ≤ λα ≤ 26nλα−2 (B1)

We will now evaluate [λ′
α] from λα−2.

In [λ′
α] we have the condition λα−2 plus

1. fα−1 /∈ {f1, . . . , fα−2}
2. gα−1 /∈ {g1, . . . , gα−2}
3. hα−1 /∈ {h1, . . . , hα−2}
4. fα−1 ⊕ gα−1 ⊕ hα−1 /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα−2 ⊕ gα−2 ⊕ hα−2}
5. fα /∈ {f1, . . . , fα−1}
6. gα /∈ {g1, . . . , gα−1}
7. hα /∈ {h1, . . . , hα−1}
8. fα ⊕ gα ⊕ hα /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα−1 ⊕ gα−1 ⊕ hα−1}
9. (Equation X): fα ⊕ gα ⊕ hα = fα−3 ⊕ gα−2 ⊕ hα−1

We can decide that X will fix hα from the other values: hα = fα ⊕ gα ⊕ fα−3 ⊕
gα−2 ⊕ hα−1, and we can decide that conditions 2, 3, 4 and 8 will be written in
hα−1 and gα−1:
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hα−1 /∈ {
h1, . . . , hα−2,

f1 ⊕ g1 ⊕ h1 ⊕ fα−1 ⊕ gα−1, . . . , fα−2 ⊕ gα−2 ⊕ hα−2 ⊕ fα−1 ⊕ gα−1,

f1 ⊕ g1 ⊕ h1 ⊕ fα−3 ⊕ gα−2, . . . , fα−2 ⊕ hα−2 ⊕ fα−3

}
In this set we have between α − 2 and 3(α − 2) elements when h1, . . . , hα−2 are
pairwise distinct.

gα−1 /∈ {
g1, . . . , gα−2, fα−1 ⊕ fα−3 ⊕ gα−2

}
In this set we have between α − 2 and α − 1 elements when g1, . . . , gα−2 are
pairwise distinct (gα−1 �= fα−1 ⊕ fα−3 ⊕ gα−2 comes from the last condition 8).

Similarly, we can write conditions 6 and 7 in gα:

gα/∈{g1, . . . , gα−1,h1⊕fα⊕fα−3⊕gα−2⊕hα−1, . . . , hα−1⊕fα⊕fα−3⊕gα−2⊕hα−1

}
In this set we have between α − 1 and 2(α − 1) elements when g1, . . . , gα−1 are
pairwise distinct. Therefore we get:

[λ′
α]≥λα−2 (2n − (α − 2))︸ ︷︷ ︸

fα−1

(2n − (α − 1))︸ ︷︷ ︸
gα−1

(2n − 3(α − 2))︸ ︷︷ ︸
hα−1

(2n − (α − 1))︸ ︷︷ ︸
fα

(2n − 2(α − 1))︸ ︷︷ ︸
gα

and

[λ′
α] ≤ λα−2 (2n − (α − 2))︸ ︷︷ ︸

fα−1

(2n − (α − 2))︸ ︷︷ ︸
gα−1

(2n − (α − 2))︸ ︷︷ ︸
hα−1

(2n − (α − 1))︸ ︷︷ ︸
fα

(2n − (α − 1))︸ ︷︷ ︸
gα

So (
1 − (α − 2)

2n

)(
1 − (α − 1)

2n

)2(
1 − 3(α − 2)

2n

)(
1 − 2(α − 1)

2n

) ≤ [λ′
α]

25nλα−2

≤ (
1 − (α − 2)

2n

)3(
1 − (α − 1)

2n

)2
So we have: 1 − 8α

2n ≤ [λ′
α]

25nλα−2
≤ 1 and with (B1) this gives:

25nλα

26n

(
1 − 8α

2n

) ≤ [λ′
α] ≤ 25nλα

26n(1 − 4(α−1)
2n )2

≤ λα

2n(1 − 8α
2n )

So 1 − 8α
2n ≤ 2n[λ′

α]

λα
≤ 1 + 8α

2n(1− 8α
2n )

as claimed.

Theorem 4. We have AdvPRF
φ ≤ 2

( 1

E(N)
+

m2

23n(1 − 4m
2n )

+
8m6

25n(1 − 12m
2n )

)1/3
(B.2)

Proof of Theorem 4
This proof follows immediately from Theorem 3 and formula (8.6) of Section 8.

Remark: If m >>
√

2n (these are the only difficult cases), then in this expression, the

main term is
(

8m6

25n(1− 12m
2n )

)1/3

in O( m2

25n/3 ).

In order to get security in m << 2n, instead of m << 25n/6, we need to have a
better evaluation of [λ′

α] (i.e. we need |[εα]| = O( α
22n ) instead of O( α

2n )).
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