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Abstract. The Dendritic Cell Algorithm is an immune-inspired algorithm orig-
inally based on the function of natural dendritic cells. The original instantiation
of the algorithm is a highly stochastic algorithm. While the performance of the
algorithm is good when applied to large real-time datasets, it is difficult to anal-
yse due to the number of random-based elements. In this paper a deterministic
version of the algorithm is proposed, implemented and tested using a port scan
dataset to provide a controllable system. This version consists of a controllable
amount of parameters, which are experimented with in this paper. In addition the
effects are examined of the use of time windows and variation on the number of
cells, both which are shown to influence the algorithm. Finally a novel metric for
the assessment of the algorithms output is introduced and proves to be a more
sensitive metric than the metric used with the original Dendritic Cell Algorithm.

1 Introduction

Artificial Immune Systems (AISs) have developed significantly over the past five years,
instigated by the creation of novel algorithms termed ‘2nd Generation AISs’. These
AISs initially rely on interdisciplinary collaboration to use current research in immunol-
ogy to produce algorithms which are both true to the underlying metaphor used as
inspiration and perform well upon their resultant application domain. One such 2nd
Generation AIS is the Dendritic Cell Algorithm (DCA), which is based on models of
the dendritic cells (DCs) of the human immune system.

The original DCA was developed as part of the Danger Project [1], and formed the
majority of Greensmith’s thesis [3]. A prototype of the algorithm was first presented in
2005 [4] with a fully implemented real-time system version presented in 2006 [8]. The
DCA has distinct advantages when applied to real-time computer security problems, as
it has very low CPU processing requirements and does not require extensive training
periods. All versions of the DCA to date have used a relatively large number of param-
eters and stochastic elements, such as random selection of cells and variable thresholds.
Setting these parameters to the appropriate values has always been somewhat arbitrary,
and thus has left the algorithm open to various criticisms. The use of various probabilis-
tic elements was in part an artifact of the use of the Twycross’ libtissue framework
for the initial algorithm development. While this framework is useful for the rapid de-
velopment of such AISs, one of the drawbacks for the DCA is the sheer amount of
interacting entities.
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As a result, it is still unclear which parts of the algorithm are responsible for its per-
formance and for its time-dependent correlation properties. In order to push forward the
DCA as a serious contender within biologically inspired computation, a thorough anal-
ysis of the algorithm itself must be performed: a task too complex when implemented
within a large framework. Insight is needed into exactly what each component of the
algorithm does and how detection is actually achieved. Despite avoiding a theoretical
approach so far, the time has come to pick apart this algorithm and to break it down
into a controllable deterministic system which is more accessible for the performance
of various computational analyses and the various parameter relationships explored.

The aim of this paper is to describe, implement, and test a deterministic DCA (dDCA)
to uncover its inner relationships and function. This paper is structured as follows, with
background information present in section 2, section 3describing the dDCA and the
new metric Kα. Experiments are described in section 4, with a discussion of results
and conclusions presented in sections 5 and 6 respectively.

2 DCA Overview

Metaphorically, DCs are the crime-scene investigators of the human immune system,
traversing the tissue for evidence of damage - namely signals, and for potential suspects
responsible for the damage, namely antigen. More information regarding the function
of natural DCs can be found in [10] with a distilled version for computer scientists pre-
sented in [3]. The DCA is derived from an abstract model of DC biology resulting in a
population based algorithm which provides robust detection and correlation. Different
cells process signals acquired over different time periods, generating individual ‘snap-
shots’ of input information which are correlated with antigens. The original DCA is
described in detail in numerous sources including [7] and [3].

The majority of research performed with the DCA has been within the sphere of
security. In particular, the works of Greensmith et al. have focussed on computer se-
curity applications. The algorithm to date has been successfully applied to port-scan
detection [8] [6] [5], and upon comparison to a self organizing map performed well on
the large dataset used, classifying 13 million antigens in under 100 seconds. In addition
to her work, the DCA has also been applied to the detection of a novel threat on the
internet, botnets [2], where the DCA produced high rates of true positives and low rates
of false positives in comparison to a statistical technique. Outside of computer security
Kim et al. have successfully applied the DCA to the detection of misbehaviour in wire-
less sensor networks, where again the algorithm showed a lot of promise. More recently
in the work of Lay and Bate [9], the DCA is applied to the detection of overruns in the
scheduling of processes, again with success.

The DCA is also showing promise in the area of robotic security as demonstrated
by Oates et al. [11]. A proof of concept experiment is performed to demonstrate that
the DCA could be used for basic object discrimination in a controlled environment.
The same researchers have now extended this research into the theoretical domain [12]
through frequency tuning analysis. This research has highlighted that the DCA exhibits
filter properties and also suggests the importance of the lifespan limit. Their research
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also contains two optimizations of the DCA which are used in this paper, namely a real
valued representation of individual DC output and tissue centric processing of signals.

3 The Deterministic DCA (dDCA)

In this section the dDCA is formally described followed by a discussion of the modified
features. In order to produce the deterministic version, it is necessary to make a number
of assumptions and modifications to the original DCA:

– Both signals and antigen are required for the system to correctly function. If no
signals are used, then the DCs will not exceed their lifespan limit and will not be
able to present antigen. If no antigen are used, then the context has no subject.

– At minimum two signal categories are required, an activating signal and an in-
hibitory signal - the danger and safe signal respectively.

– A uniform distribution of lifespan values is used across the population. This allows
for the study of the time-window effect in a repeatable and controllable manner.

– To provide reproducibility and for the ease of sensitivity a reduction in parameters
is required from those used with the original DCA. As a result explicit antigen
storage and sampling of the antigen population is removed, with all antigen data
sampled by the DC population.

– Each DC in the population is exposed to identical input signal data and would
process these signals in an identical manner. This results in the optimisation of the
signal processing procedure, as the output signal values are calculated only once
for the entire population, as suggested by Oates et al. [12].

– The output context value of an individual DC is reduced to one factor, k̄, which
negative numbers indicate a safe context and positive numbers indicating analogous
to the previously used mature context. This is also derived from the theoretical
analysis provided in Oates et al. [12].

One further modification is proposed for use with this system. This is the incorpo-
ration of an antigen profile. In previous implementations of the DCA, the string type
antigens are stored in an ‘antigen vector’ data structure. This required the random se-
lection of antigen by each DC and antigen overwriting. To ensure exact reproducibility
the random sampling and storage is replaced by a simple array. In this array the value of
the antigen is stored with the number of times a DC has collected antigens of this type.
This reduces the required overhead as no dynamic memory management is required and
leaves no concerns over denial of service due to the potential threat of antigen flooding.

Previous versions of the DCA featured in excess of 10 parameters, each of which
were derived from empirical biological observation and through sensitivity analysis.
The resultant algorithm contains three parameters. Firstly, the number of DCs must be
defined - this is set to 100 as previously, but is experimented with in Section 4. Sec-
ondly the weighting schema for the signal processing. The signal processing equation
used previously is modified for use with simplified weight values. As with the original
DCA, the input signals are transformed to output signals. However a different procedure
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is needed as the processing is performed in the tissue, the incorporation of k reduces
the outputs from three to two and this is coupled with the reduction to two signal cat-
egories. The new signal processing procedure is shown in Equations 1 and 4, where
S and D is the input value for the safe and danger signals respectively with 2 and 3
showing subsequent derivation thereof, c is the interim costimulation output signal and
k is the interim context output value. Pseudocode for the implemented dDCA is given
in Algorithm 1.

csm = S + D (1)

k = (mature − semi) (2)

k = (D − S) − S (3)

k = D − 2S (4)

input : Antigen and Signals
output: Antigen Types and cumulative k values

set number of cells;
initialise DCs();
while data do

switch input do
case antigen

antigenCounter++;
cell index = antigen counter modulus number of cells ;
DC of cell index assigned antigen;
update DC’s antigen profile;

end
case signals

calculate csm and k;
for all DCs do

DC.lifespan -= csm;
DC.k += k;
if DC.lifespan <= 0 then

log DC.k, number of antigen and cell iterations ;
reset DC();

end
end

end
end

end
for each antigen Type do

calculate anomaly metrics;
end

Algorithm 1. Pseudocode of the deterministic DCA
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3.1 Anomaly Metrics: MCAV and Kα

The mature context antigen value (MCAV) is calculated once all data is processed,
derived from the output of the cells collected during run-time. This value is generated
for each antigen type (α), where α is defined as a set of antigens of identical value. As
the name suggests, the MCAV is a measure of the proportion of antigen presented by
a fully mature cell as shown in Equation 5, where MCAVα is the MCAV for antigen
type α, M is the number of ’mature’ antigen of type α, and Ag is the total amount of
antigen presented for antigen type α.

MCAVα =
M

Ag
(5)

This metric returns a value between zero and one, where the probability of an anti-
gen type being anomalous increases as this value tends to one. This is a convenient,
normalised output, to which an anomaly threshold can be applied. However, it fails to
encapsulate the magnitude of the difference between positive and negative values of the
presented k̄. In the MCAV calculation a value of k̄ of -1 is treated in exactly the same
manner as a value of -200. The algorithm provides this information, hence it may be
fruitful to incorporate this information into a more sophisticated metric.

Kα is implemented with the dDCA, and uses the magnitudes of the k̄ values. This
generates real valued anomaly scores and may assist in the polarisation of normal and
anomalous processes. The process of calculating this anomaly score is shown in Equa-
tion 6, where km is the k̄ value for DCm, αm is the number of antigen presented of
type α by DCm.

Kα =
∑

m km∑
m αm

(6)

As this equation returns real valued numbers dependent on the actual values of the
input signals used, we propose a method for defining an anomaly threshold, to allow
for the classification of the antigen types analysed. This can be performed if the signals
are known a priori. The number of signal instances and the equivalent processed total
sum of the input signals. The threshold, TK , is defined in Equation 7 with SK , the
weighted sum of all input signals, defined in Equation 8, where Is is the number of
pairs of signal instances, ī is the mean number of iterations per cell incarnation, and D
and S representing danger and safe signal values.

TK =
SK

Is
∗ ī (7)

SK =
∑

Is

D − 2
∑

Is

S (8)

Once TK is applied to the Kα values, antigen types with a value of over this threshold
are classed as anomalous, and lower values classed as normal. If required, true and false
positives can be derived from this information. A similar threshold can be derived from
the MCAV, using the ratio of total danger signals to total safe signals present in the used
dataset.
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4 Experimental Analysis

4.1 Introduction

In this section initial tests are performed using the dDCA. This involves re-visiting a
past dataset, namely the ping scan data used in Greensmith et al. [7] with one ran-
domly selected set used to test the algorithm. In these experiments two aspects of the
algorithm’s function are examined:

– E0: A validation exercise to ensure the dDCA is correct.
– E1: The influence of variation in the number of cells.
– E2: Examination of ‘time windows’ and their effects on performance.

4.2 Testing Dataset

For these experiments one safe and one danger signal are used to provide the context
information. As opposed to contriving artificial data, a dataset containing an outbound
port scan is used. The object of using this data is that it is real-world data yet it is also
relatively small, with approximately 25,000 antigens and 38 sets of danger and safe sig-
nal instances. The data is derived from a monitored remote shell session, where antigens
are derived from process ID numbers and signals from monitored attributes of machine
behaviour. Specifically, the danger signal is the rate of sending of outbound network
packets, with the safe signal being the inverse rate of change of the packet sending rate.
For more information of the necessity of these signals for port scan detection and for
the mechanisms involve in port scanning please refer to [3].

In this dataset signals are updated once per second, with antigens generated as
processes produce system calls. Both signals are normalised within a range of 0 to
50, based on maximum values derived in preliminary experiments. A graph of these
signals is shown in Figure 1(a), where the mean danger signal value is 15.0 and mean
safe signal value is 21.8. In terms of antigens, four processes of interest are captured by
the antigen generator. These processes include two anomalous processes namely nmap
the port scan process and pts a parent process of the nmap. Also included are two nor-
mal processes including sshd the remote shell facilitator process and bash the process
of the actual monitored remote shell. The aim of the dDCA for these experiments is to
produce high MCAV and Kα for the nmap and pts with lower values for the bash and
sshd processes.

4.3 Experimental Setup

The deterministic DCA has two parameter values namely the number of cells and the
lifespan limit. Unless specified otherwise, all experiments described use 100 artificial
DCs with a maximum lifespan limit of 100 csm signal units. The increments of the
lifespans are derived from the maximum limit divided by the number of cells. This is
used to ensure an equivalent range of cells are present in each experiment. The TK

value used for this experiment is calculated as shown in Equation 9 , where the number
of signal instances is 38 and the mean number of iterations per cell incarnation is 2.
The anomaly threshold for the MCAV is set to 0.69 based on the ratio of danger to
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Table 1. MCAVs produced for dDCA versus Original DCA (mean of 3 runs)

Process ID Original DCA dDCA
nmap 0.999 0.969

pts 0.901 0.830
bash 0.711 0.623
sshd 0.070 0.202

safe signals within the dataset. The signal processing schema used is the one described
previously in Equation 4 For the implementation, the dDCA is coded in C (gcc 4.0.1),
with all experiments run on a 2.2 GHz MacBook Intel Core 2 Duo.

− 57.4 =
−1090

38
∗ 2 (9)

4.4 E0: Validation

Before the dDCA can be used for these experiments, it must first be validated against
the results generated by the original DCA. For this purpose, the results presented for the
original DCA are derived from data used for Chapter 6 of [3]. The results of one run of
the dDCA with default parameters are compared with three runs of the original DCA,
with the MCAV results generated presented in Table 1. As shown in this table, the same
trends are evident in both datasets. However, less polarisation between the normal and
anomalous processes is shown with the dDCA. Despite such discrepancies, as similar
trends are shown, we are confident that the dDCA is valid as a form of DCA.

4.5 E1: Cell Number Experiments

In this series, the number of cells used to process data are varied between runs. The set
of cell numbers used is n = {1, 5, 10, 50, 100, 500, 1000, 5000}. Based on past sensi-
tivity analyses of the cell numbers we expect the greatest variation between 1 and 100
cells. In addition to exploring this relationship, this experiment is used to generate statis-
tics regarding the mean behaviour of the cell population. During these experiments, the
number of antigen presented per cell per iteration, the number of iterations per lifespan
and the number of cell resets are collated and mean values are calculated. Additionally,
these experiments are timed to gain some insight into the scalability of the algorithm.

Both the MCAV and Kα values are shown for the four processes of interest for
each cell number and we can use this information to assess the differences between
the two output metrics. We predict that the real valued magnitude of Kα will produce
more polarised results as it will provide discrimination between borderline cases and
the more extreme, which of course is merely represented as 0 or 1 for the MCAV.

The results for the cell number experiments are shown in Figures 1(b) and 1(c). A
graph of the timing results for the experiments are presented in Figure 1(d). Statistics
regarding the cell behaviour information are presented in Table 2.
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(a) Input Signals for the 38s session (b) MCAV of varying cell numbers

(c) Kα of varying cell numbers (d) Execution Times of varying cell numbers

(e) MCAV for time-shifts (f) Kα for time-shifts

Fig. 1. The input signal data is displayed in (a) with results for both series of experiments given
in (b) to (f). Figures (b) and (c) show the MCAV and Kα values across a range of cell numbers
plotted on a log-scale, (d) shows the execution times for varying the cell numbers, with (e) and
(f) showing the MCAV and Kα with varying time delays.

4.6 E2: Time Window Experiments

It is assumed that the DCA performs correlation between antigen and signals based on
time windows. These experiments are designed to ascertain if this is indeed the case.
The nature of the time window effect created by the population of DCs is examined by
shifting the position of the signals within the dataset. Each cell in the population has a
lifespan, which defines the quantity of input signals the cell can process per incarnation.
Having variable time windows should add robustness when the signals occur after the
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Table 2. Cell behaviour statistics

Cell Number Mean iterations Mean incarnations
1 3.7 19.0
5 2.3 10.0
10 2.1 8.7
50 1.9 9.9
100 1.8 10.1
500 1.1 17.4
1000 1.1 17.4
5000 1.0 17.5

antigens, but we expect a reduction in DCA performance should the signals occur before
the antigen.

While the cells create a type of moving average for the signals, this does not extend
before the cell is initialised, and therefore signals appearing before antigen may result in
a poor performance. A total of 20 extra datasets are created, with a maximum shift of 20
second for the signals before and after the original position, at two second increments.
As with E1, both the MCAV and Kα values are calculated for each process of interest.
These results are presented in Figures 1(e) and 1(f).

5 Experimental Analysis

5.1 E1: Cell Numbers

In E0 the dDCA is validated as fit for purpose. Subsequently when the number of cells
is varied in E1 a noticeable effect on the performance of the DCA is indicated as shown
in Figures 1(b) and 1(c). When the MCAV is used as the anomaly metric, an increase in
the number of cells causes an increase in the MCAV for both pts and bash, though sshd
and nmap do not increase to the same magnitude. The same trends are evident though
less noticeable when using Kα for the bash and pts processes. This may be because it
is difficult to assess if these processes, the parent processes of the nmap scan process,
are actually anomalous or normal given that they have involvement in facilitating the
scan itself. These two processes are borderline cases, and it appears that Kα provides
improved information for this type of input data.

The sshd process which does not assist the scan has consistently low Kα values, well
below the derived threshold of -57.4. It is interesting to note that as the number of cells
used increases, the resultant output values converge. One possible explanation for this
is that the lifespan limit is set incorrectly and maybe an improvement could be made if
the range of these thresholds also increase in proportion to the number of cells.

Another explanation is that once the number of cells exceeds a certain limit, the
capacity of the system exceeds the requirements of the input data, and therefore no
matter how many extra cells are added, the resultant values remain similar. This is also
shown in the summary statistics of the cell behaviour presented in Table 1. The results
of the timed experiments are also encouraging, giving that the relationship between the
number of cells and the execution time appears to be linear.
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5.2 E2: Time Windows

The results of experiment E2 also show similar trends in comparison between MCAV
and Kα, with the Kα values representing more precisely the classification of these pro-
cesses. Therefore, Kα will be used in future for the assessment of our DCA experiments
both empirical and theoretical. A marked difference is shown in particular for the nmap
process between time offset -20 and zero and for the pts process also between -20 and
zero.

Examination of the pts graphs show a moderately low MCAV value, yet when Kα

is used, this value looks to remain stable at a level of 0. This could indicate that the pts
process exhibits minor fluctuations around this point, with these fluctuations amplified
by the binary classification of cells used in the MCAV, with Kα showing to be more
sensitive to encapsulating such fluctuations.

In terms of the time window analysis two conclusions can be drawn from these
graphs. Firstly, when the signals are delayed (time offset of 0 to 20), correct classifi-
cation continues for almost 10 seconds, until the anomalous processes are classified as
normal as they fall below TK . Interestingly, improved results are shown with a delay of
2-4 seconds - which is equivalent to the average number of cell iterations per lifespan.
Potentially the range of acceptable delay may be linked to a relationship between the
number of iterations and the lifespan range itself, to which a formal analysis may be
able to prove. Within the applications of the DCA in security so far, the signals are al-
ways updated after the antigens are generated, indicating one reason for why the DCA
functions in the manner shown previously. These results suggest that the dDCA has the
potential to be error tolerant to at least a five second lag in signal data, which is a desir-
able property for any behaviour based anomaly detection approach, as this reflects the
situation often seen in real world intrusion data.

The opposite effect is shown when the signals are advanced ahead of the antigens.
For the MCAV results both sets of processes, normal and anomalous, are classified in-
correctly between time offset -20 and 0. A similar effect is seen for Kα for the same
offset values. One explanation for this effect is that whilst cells produce a type of mov-
ing average, this is derived from information in only one direction i.e. the cells cannot
incorporate information received before the start of their current incarnation. Therefore
a reincarnated cell can only have knowledge of the signals which occur after its gen-
eration. While these results are interesting, a more formal analysis with contrived and
controllable data must be performed in future in order to corroborate this tenet. This
mirrors what is shown with natural DCs, as pathogenic infection (i.e. the presence of
antigen) always occurs before the generation of danger signals.

6 Conclusions

In this paper a deterministic version of the DCA is proposed, implemented and tested.
In addition to changes in the algorithm a new metric for the system’s evaluation is
proposed namely Kα which takes into account the magnitude of the output values pro-
duced by the DC population. The dDCA is compared to the original DCA using a port
scan dataset used previously with the DCA. We are satisfied that while that results are
not identical the values show similar trends, indicating that the essence of the DCA is



The Deterministic Dendritic Cell Algorithm 301

housed within the deterministic version. This version has several advantages, including
the ability to replay experiments exactly, predictability of output and the reduction in
the number of parameters required. All such factors have resulted in a version of the
DCA which is simple to implement and can produce reliable, consistent results.

One of the remaining parameters of the dDCA is the number of cells used. As this
number increases, discrimination between the processes is less obvious. While the cause
of this effect still remains unclear it has given us insight into the limits of the system
as it appears that there is a saturation point. For this particular dataset, this point is at
500 cells shown for both the MCAV and Kα. The metric Kα is tested for the first time
in this experiment and is shown to be more sensitive to the minor fluctuations in the
resulting output of the cells and provides a more precise overview of the classification
of the various antigen types. To assess the implications of Kα, this metric should be
applied to a wider range of problems.

Finally, timing discrepancies between signals and antigen are performed. As a result
it is shown that should there be a delay for the input signals, within a tolerance range
the dDCA can cope well with this delay. A potential relationship between the lifespan
maximum limit and the number of iterations per cell incarnation may exist, though a
more formal analysis is required to verify this effect. Conversely, if the signal data is
advanced, severe misclassifications can occur, hence suggesting that the dDCA should
not be applied to data where there is the potential for delayed antigen as performance
may be impaired.

As future work we intend to further explore this new instantiation of the DCA. This
investigation will involve a more in-depth study of the inherent relationships present
within the algorithm in addition to extensive testing both on a range of real-world and
synthetic data, and in comparison with other standard techniques such as support vector
machines. This has the aim of selecting such parameters appropriately no matter what
the application. In conclusion, the dDCA is a comparable and controllable form of the
DCA and is a powerful tool necessary to further the understanding of this interesting
immune-inspired algorithm.
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