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Abstract. We apply Artificial Immune Systems(AIS) [4] for credit card
fraud detection and we compare it to other methods such as Neural
Nets(NN) [8] and Bayesian Nets(BN) [2], Naive Bayes(NB) and Deci-
sion Trees(DT) [13]. Exhaustive search and Genetic Algorithm(GA) [7]
are used to select optimized parameters sets, which minimizes the fraud
cost for a credit card database provided by a Brazilian card issuer. The
specifics of the fraud database are taken into account, such as skewness
of data and different costs associated with false positives and negatives.
Tests are done with holdout sample sets, and all executions are run us-
ing Weka [18], a publicly available software. Our results are consistent
with the early result of Maes in [12] which concludes that BN is better
than NN, and this occurred in all our evaluated tests. Although NN is
widely used in the market today, the evaluated implementation of NN is
among the worse methods for our database. In spite of a poor behavior
if used with the default parameters set, AIS has the best performance
when parameters optimized by GA are used.

1 Introduction

In recent years many bio-inspired algorithms are sprouting for solving the clas-
sification problems as one can see for instance in [3]. In 1998, Neal et al. [9]
developed an artificial immune system (AIS), JISYS, applied it for mortgage
fraud detection, and reported some first results, still based on simulated data.
In 2002, the journal Nature [10] published an article on AIS where it indicated
that AIS had many kinds of applications, including the detection of fraudulent
financial transactions. Even though this article previewed a possible commercial
application for 2003 by a British company, we are not aware of any subsequent
publication on AIS in financial fraud detection which reported good experimen-
tal results. The current paper reports our studies and application of AIS on
credit card fraud detection. Moreover, in contrast to the poor performance of
AIS with the default parameters, we report here an optimized and robust set of
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parameters under which AIS led to the best results, even when compared to the
best results from all other analyzed methods.

The lack of publicly available database has been a limiting factor for the pub-
lications on financial fraud detection [14], particularly credit card transactions.
In fact, only few publications on this field bring a real contribution based on
experiments. For instance, the method AdaCost [16,6] was developed from Ad-
aboost [15] for credit card fraud detection, and resulted in the metaheurists Cost
Sensitive [5], which can be applied for many applications where there are different
costs for false positive and false negative. Comparative studies between Neural
Networks (NN) and Bayesian Networks (BN) in credit card fraud detection were
reported [12], which favored the result of BN.

In this paper, we present our studies of AIS compared to other techniques such
as BN and NN as well. In addition, we have also included comparative studies
with two other methods: Decision Trees (DT) and Naive Bayes (NB). Moreover,
we take into account the skewed nature of the dataset, the different costs for
false positive and false negative in order to evaluate a classifier performance, as
well as the need of a parametric adjustment in order to obtain the best results
for every compared method.

Background: Fraud prevention is interesting for financial institutions. The ad-
vent of new technologies as telephone, automated teller machines (ATMs) and
credit card systems have amplified the amount of fraud loss for many banks.
Analyzing whether each transaction is legitimate or not is very expensive. Con-
firming whether a transaction was done by a client or a fraudster by phoning
all card holders is cost prohibitive if we check them in all transactions. Fraud
prevention by automatic fraud detections is where the well-known classification
methods can be applied, where pattern recognition systems play a very impor-
tant role. One can learn from past (fraud happened in the past) and classify
new instances (transactions). In credit card business today, perhaps the most
commonly used technique is Neural Networks, for example in Fair Isaac’s Falcon
software as claimed in its website (http://www.fairisaac.com/fic/en/product-
service/product-index/falcon-fraud-manager/). In general, the NN implementa-
tion is inside a complex work-flow system which is integrated with the bank
database. When a new transaction comes in, the work-flow calculates all the in-
put variables and outputs a fraud score. Then this score is used to decide which
transaction is going to be checked manually and to order its priority.

Skewed data and other discussions: Fraud detection model is among the most
complicated models used for the credit card industry. Skewness of the data,
search space dimensionality, different cost of false positive and false negative,
durability of the model and short time-to-answer are among the problems one
has to face in developing a fraud detection model. In this article we focus our
attention on skewness of the data by comparing five methods1 .
1 The problem of taking into account the different cost between false positive and

false negative during the training phase needs a special investigation which is what
we intend to conclude before December this year. The durability and short time-to-
answer problem we intend to start to analyze next year.
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Fraud Tagging: We have obtained our database from a large Brazilian bank, with
registers within time window between Jul/14/2004 through Sep/12/2004. Each
register represents a credit card authorization, with only approved transactions
excluding the denied transactions. One applies the following rule for classifying
an authorization: a transaction is considered fraudulent if, in the next 2 months
after the date of the transaction, which is called performance period, either the
client queried the transaction, or the bank distrusts it as a legitimate transaction
and confirms it does not belong to the client; otherwise the transaction is tagged
as legitimate. When an authorization is tagged as fraudulent2, the Bank has
almost 100% of certainty about this claim, but when the transaction is tagged
legitimate, it cannot be affirmed this is in fact legitimate, but it can only be sure
that the transaction was still not identified as fraudulent in the performance
window. However, according to the Bank, at least 80% of the occurred frauds
are identified as fraudulent in 2-month period.

Sampling: The sampling of transactions is done in two steps: first, one randomly
samples card numbers to be analyzed in this period, irrespective to whether the
card had or not a fraud transaction in the historical period; second, there is a
weighted sampling of the class where 10% of legitimate transactions are selected
and 100% fraudulent transactions are selected.

In the end, the database that we have received from the bank contains 41647
registers, from which 3.74% are fraudlent.

Categorization: We preprocess the database in three steps:

1. We apply statistical analysis in order to remove variables that are consid-
ered unimportant for the modeling (ex: card number). From 33 variables in
the beginning we had 17 independent variables and 1 dependent variable
(flag fraud) after this phase;

2. We bind the variables. All variables but Merchant Category Code (MCC)3

are categorized in at most 10 groups, one digit only. See Table 1.
3. We generate 9 splits (also known as samples) from the databases. Each split

contains a pair of databases: 70% of transactions for development (training
set), and 30% of transaction for validation (testing set, holdout sample).
Table 2 shows that these splits have about the same number of frauds and
legitimates transactions.

All 9 splits are subsequently converted to Weka [18] format (.arff), on which our
studies are executed. The software Weka-3-4-11 is used for all of our studies and
the implementations used for DT, BN, NB and NN are built in Weka. The only
plugged in implementation was the AIS, the AIRS2 version 1.6 (March 2006)
implemented by Jason Brownlee [1], originally designed by Watkins et al. [17].
2 According to the scope of the annotated dataset provided by the Bank, we dealed

with the fraud modalities Lost/Stolen, Skimming, Mail Order, Account Take Over
and Telephone Order ; and we did not manage other types like Never Received Is-
suance, Manual Counterfeit and Fraud Application.

3 MCC got 33 categories so it could fit the number of groups of Transaction Category
Code (TCC).
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Table 1. Number of categories for each variable. Previous represents the value of the
last transaction made for the same client.

name mcc mcc previous zip code zip code previous value trans
# of categ. 33 33 10 10 10

name value trans previous pos entry mode credit limit brand variant
# of categ. 10 10 10 6 6

name score type person type of trans # of statements speed
# of categ. 10 2 2 4 8

name diff score credit line flag fraud
# of categ. 6 9 2

Table 2. Number of frauds and legitimates in each split

base 1 2 3 4 5 6 7 8 9
development frauds 1,084 1,092 1,088 1,075 1,081 1,116 1,099 1,106 1,100
development legitimates 27,904 28,012 28,061 28,145 28,045 27,973 28,113 27,884 28,188
validation frauds 475 467 471 484 478 443 460 453 459
validation legitimates 12,184 12,076 12,027 11,943 12,043 12,115 11,975 12,204 11,960

Performance measures: In order to evaluate the classifiers, we have considered
the use of KS, ROC Curve, Lift Curve, Precision (Hit Rate) and Recall accuracy
(Detection Rate). From conversations with fraud prevention specialists and the
first results using ROC curve and Hit Rate, we found out that we would obtain
more appliable results if we used a cost function in which we adopted an average
cost of $ 1 for every verification, and an average loss of $ 100 for every undetected
fraud. This cost function combines Hit Rate and Detection Rate in one unique
measure, and evaluates the function in only one point, the applicable cut-off. This
was considered to be more similar to the used practice of a fraud score than a
ROC curve that compares multiple references simultaneously. If we denote tp,
fp and fn as the number of true positives (true frauds), false positive and false
negatives, the final cost is given by:

$cost = $100 × fn + $1 × ( fp + tp ).

Since the received database had only 10% of legitimate and 100% of fraudulent
transactions, we had to adjust the cost function to:

$cost = $100 × fn + $10 × fp + $1 × tp.

Once we prepared the data, we chose the methods to compare with the opti-
mization criteria.

2 Parameter Space

In this small section we just introduce a very short description of the input
parameters for the five chosen methods. A better description of these parameters
can be found in the Appendix, and details about the methodologies and their
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parameters can be found in Weka documentations [19,18] as well. The methods
and their respective parameters are:

– NB has no parameter;
– DT has 2 parameters ( C, M);
– BN has 3 parameters ( D, Q, E) and 3 sub parameter (P, S, A);
– NN has 7 parameters ( L, M, N, V, S, E, H);
– AIS has 9 parameters ( S, F, C, H, R, V, A, E, K).

The methods NB and DT have a small parameter space. The parameter space
of BN is also quite small, especially if we notice that there are few choices for
many of them.

3 Optimization of Parameters

The parameter spaces of the methods Decision Tree, Bayesian Network and
Naive Bayes are small enough in such a way that an exhaustive exploration of all
possible parameter is possible. However, this is not the case for Neural Networks
and Artificial Immune Systems. In order to find an optimized parameter set for
these methods, we performed a parameters set optimization based on a Genetic
Algorithm (GA).

Initial Population 
(50 randomly executions)

GA – start
generation pool

GA – Best Parents
(15 parameter sets 
with smaller costs)

Cross Over

Children
(15 new children)

Mutation

20 generations?

Local Search
around the best
parameter set

new population

NO

YES

Fig. 1. Genetic Algorithm for parameters optimization

As showed in Figure 1, we start with an initial pool of 50 random execu-
tions, followed by 20 Genetic Algorithm (GA) generations. Each GA generation
combines two randomly selected candidates among the best 15 from previous
generation. This combination performs: cross over, mutation, random change
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or no action for each parameter independently. As the generation goes by, the
chance of no action increases. In the end, we perform a local search around the
optimized founded by GA optimization. Notice that the final solution cannot be
claimed to be optimal, and it is usually not optimal, but only suboptimal.

4 Robustness of the Parameters

Given a classification method M , after the parameter optimization, all opti-
mized parameters may be independent of the split. In this case we say that this
parameter set is robust and we name it ROBUST (M).

When this does not happen, the optimization process is not as strong since
the obtained optimized parameter set loses generalization power. In this case
we decided to sacrifice prediction in order to gain robustness in the parameter
set. In order to rewrite the optimization function that should be used in a GA
algorithm, we have used a visualization procedure with computed costs for many
equally spaced parameter sets in the parameter space. After defined a good
optimization function, we proceeded not with another GA optimization because
our time constraints, but we reused our initial runs used in the visualization,
with the following kind of multiresolution optimization [9]:

1. we identify those parameters that have not changed, and we freeze these
values for these respective parameters;

2. for any other parameter we screen the 20 best parameter sets for each split
and identify reasonable range;

3. for all non-robust parameters, we choose an integer step s so the the searching
space does not explode;

4. we evaluate the costs for all possible combinations according to the searching
space defined above, and find the parameter set P that brings the minimum
average cost among all the different used splits;

5. we zoom the screen to the neighborhood of P, refine steps s, and repeat the
process from then on, until no refinement is possible.

In this case, after this process, we also call this parameters set robust and we
name it ROBUST (M). We should notice that we could also have used a GA
optimization instead of a multiresolution optimization like the one performed by
our multiresolution optimization.

In order to run the multiresolution optimization, we elected 6 splits (2,3,4,5,6
and 7) as the robustization split group, and 3 others (8,9 and 1) as the evaluation
split group for posterior evaluation and comparison of all methods.

5 Results

We compare the following five classification methods: Naive Bayes (NB), Neural
Network (NN), Bayesian Network (BN), Artificial Immune System (AIS) and
Decision Tree(DT). For any method M, we have applied three different strategies:
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DEFAULT (M), OPTIMIZED(M) and ROBUST (M), in which DEFAULT
means to use default parameters provided by Weka; OPTIMIZED refers to an
optimized set of parameters obtained as described in Section 3, and ROBUST
is an optimized robust set of parameters.

DT AISBN NNNB

DTAIS

BN

NN

NB

DT
AIS

BN

NNNB

parameters

parameters

parameters

default

optmized

robust

R$20K R$30K R$40K

Fig. 2. Summary results for the methods in all strategies. Average and standard devi-
ation (statistics based on the 3 evaluation splits) are represented by small error-bars,
for the 5 methods, for the 3 strategies. The figure is divided in three stacked horizontal
lines with their methods statistics (the error-bars) in order to separate strategies: de-
fault parameters, optimized parameters and robust parameters, in order of evolution.
All 3 large horizontal lines represent the cost functions, ranging from R$ 20 thousand
in the left end to R$ 40 thousand in the right end. In order to better display the error-
bars, some of them were vertically shifted. AIS led to the smallest cost with robust
parameters, followed by DT, and NN led to the largest cost.

Table 3. Summary results for the methods in all strategies. Average and standard
deviation for the 3 evaluation splits.

Strategy DT AIS BN NN NB
DEFAULT 32.76 (4.83%) 35.66 (3.21%) 28.91 (2.65%) 39.10 (4.68%) 30.44 (1.68%)
OPTIMIZED 27.84 (4.16%) 24.97 (5.43%) 28.90 (2.69%) 29.98 (4.38%) 30.44 (1.68%)
ROBUST 27.87 (4.21%) 23.30 (2.29%) 28.90 (2.69%) 36.33 (9.75%) 30.44 (1.68%)

One can see in Figure 2 and Table 3 the final costs of the classification meth-
ods obtained for all strategies. We show here only the average costs with their
standard deviations for the 3 splits used for evaluation of the robust parame-
ter sets. The cost is represented in thousand of Reais (Brazilian Currency), the
smaller, the better. The standard deviations (num%) are considered in the same
way as errors. From these results one can notice that:

– The Bayesian methods BN and NB are such that their results are indepen-
dent from the used strategies. This is expected for NB, since there are no
parameters. For BN, the default parameters performed almost in the same
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way as the optimized strategies, independently from the splits. The maxi-
mum number of node parents influences the final topology and probability
tables but not enough to impact the final costs;

– For strategy DEFAULT we used the default parameters. BN was the best
method. AIS and NN got relatively poor results compared to the others. Par-
ticularly, NN improved only 15.4%4 in relation to a strategy which considers
all transactions as legitimate;

– For what concerns the strategy OPTIMIZED with optimized parameters,
we verified that almost all the methods led to reduced costs in comparison to
the case with default parameters. The method that reduced its cost the most,
with 29.98%5 of cost reduction, was AIS and it became the best method
for this strategy. The second best method was DT, that reached a 15.01%
of cost reduction. NN reduced its cost by 23.33%6 ;

– When we analyzed the strategy ROBUST , we saw two important facts:
first, there was an abrupt cost increase for ROBUST (NN) in relation to
OPTIMIZED(NN), that shows the over-fitting tendency of method NN
with optimized parameters. There was a cost reduction for ROBUST (AIS)
in relation to OPTIMIZED(AIS). We suppose that this happened due
to the fact that AIS has more parameters and also the largest parametric
search space. In this way, when the parametric space is reduced, after the
freezing of some parameters during the parameters robustization process, it
can be observed a more efficient optimization. This phenomenon is many
times mentioned as “Curse of Dimensionality”.

Robust set of parameters: The table 4 shows the set of optimized robust param-
eters for each method.

At first glance, we can observe that for DT we have a tree with minimum
pruning according to parameter M. For NN, we see that the parameters L and
M achieved very interesting values with a big L (Learning Rate) and very small
M (Momentum). This fact allows us to trace a parallel with DT, saying that,
as well as DT, NN takes a step to less pruning and more over-fitting. BN was
already optimal with default parameters. Finally, for AIS, we obtained a very
good set of parameters from GA execution, which made the multiresolution
optimization phase quite easy in order to obtain a good optimized and robust
set of parameters. One of the most surprising results was K equals to 1, which
means that no voting is necessary: the first rule that matches decides the class.

Final comparison of all methods: Since the standard deviation seen in Figure 2
suggests us that DT, BN and NB could have the same costs, we performed four
statistics t-student tests with 100 new random splits in the same proportion.
4 15.4% = $39.1 thousands/$46.2 thousands, where $46.2 thousands corresponds to

the average cost of the validation part of the splits 8, 9 and 1 when one simply
decides letting frauds happen unwatched.

5 29.98% = 1 - $ 24.97 thousands / $ 35.66 thousands = 1 − OPTIMIZED(AIS)/
DEFAULT (AIS).

6 23.33% = 1 - $ 29.98 thousands / $ 39.10 thousands = 1 − OPTIMIZED(NN)/
DEFAULT (NN).
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Table 4. Summary of optimized robust parameters. Parameters N,S for NN and A,S
for AIS were not iterated. Parameters E,V for NN and K,F,H,V for AIS were frozen for
the multiresolution optimization. Parameters L,M,H for NN and C,R,E for AIS needed
a multiresolution optimization. Parameter H=20 in NN is the number of attributes +
number of classes + 1, parameter P=17 for BN is the number of attributes.

Average Cost
Method on validation Robust parameters in command line display
DT $ 27,870.66 -C 0.49 -M 1
NB $ 30,439.33 n/a
BN $ 28,901.66 -D -Q weka.classifiers.bayes.net.search.local.K2 – -P 17 -S BAYES

-E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5
NN $ 36,332.33 -L 0.40 -M 0.12 -H 20 -E 0 -V 0 -N 500 -S 0
AIS $ 23,303.00 -C 30 -R 177 -E 5 -K 1 -F 0 -H 10 -V 1 -A -1 -S 1

These splits were specially created for these tests. We tested if ROBUST (AIS)−
ROBUST (DT ) = 0, ROBUST (DT )−ROBUST (BN) = 0, ROBUST (BN)−
ROBUST (NB) = 0 and ROBUST (NB) − ROBUST (NN) = 0. Not surpris-
ingly, with 99.9% of certainty, all H0 were rejected, which means that none of
them is equal. In the end, the average of costs for strategy robust is what defines
the rank of methods. From the Figure 2, we can notice that AIS produced the
best classifiers, followed by DT, BN, NB, and NN, in this order.

6 Future Work

We intend to analyze in details the optimized parameters in the coming future,
and try to reach better relations between the value of each parameter and its
relation to the skewness of the data, at same time that we enquire why AIRS2
implementation of AIS outperforms the implementations of other methods. We
are also extending the analysis in such a way to evaluate the influence of a
metaheuristics like Cost Sensitive Classifier [5], which takes into account the
different costs of false positive and false negative in the training phase. Using
this metaheuristics, in our preliminary and unfinished results, we are observing
that one may obtain better classifiers for all methods, up to Naive Bayes. We
also consider the inclusion of Support Vector Machines (SVM) in the pool of
compared methods. And given we are using AIS, a suitable comparison method
would be k nearest neighbour.

We intend to apply the models for unseen out-of-date datasets to compare
stability and life expectancies. Since, as we know, the fraudulent behavior is
very dynamic, often a model loses its prediction power in a short time. Besides
knowing which method generates the most accurate model, it is important to
know which one generates the model that remains predictive for a longer time.

7 Conclusions

In this paper, we present a comparative study of five classification methods
(Decision Tree, Neural Network, Bayesian Network, Naive Bayes and Artificial
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Immune System). The used definition of an objective function to be optimized
that takes into account different costs for false positives and false negatives is
important. In all our executions, except for NB (no parameter needed) and BN,
we concluded that the best results had not been reached with default set of
parameters as given in Weka. Particularly for AIS and NN, the results gotten
using default parameters are very poor if compared with those gotten after a
parametric adjustment using GA. Our tests results show that BN is better than
NN, the most used method in real application today, which reproduces the results
from Maes [11,12]. In addition, we obtained that AIS and DT also surpass NN.
Perhaps because DT is a classic classification method, it has been forgotten in
recent works. However, it still reveals itself as one of the best methods, with
sufficient competitive results. On our tests AIS had a surprisingly large increase
of performance from default parameters to GA optimized parameters, and this
performance was kept in the obtaining of an optimized robust parameter set.

To sum up, AIS produced the best classifiers, followed by DT, BN, NB, and
NN, respectively.
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Appendix

For next paragraph, let us define VR = [X1;X2; step = S] as been the al-
lowed variation range from X1 to X2 and S, the precision step for this specific
parameter S.

Naive Bayes: NB does not have any parameter.

Decision Tree: DT has two parameters C and M:

– C: the confidence threshold for pruning. (Default: 0.25). VR = [0.01;1.00;
step = 0.01].

– M: the minimum number of instances per leaf. (Default: 2). VR = [1;100;
step = 1].

Bayesian Network: BN has three parameters ( D, Q, E):

– D: defines whether a structure called ADTree will or not be used;
– Q: defines which search for topology algorithm will be used. The available

ones are: GeneticSearch, HillClimber, K2, LocalScoreSearchAlgorithm, Re-
peatedHillClimber, SimulatedAnnealing, TabuSearch e TAN. Every search
algorithm has two parameters:

Weka-3-4-11.doc/weka/classifiers/functions/MultilayerPerceptron.html
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• P: defines the number of parent’s allowed in the topology.
• S: defines the type of score to be used to build the conditional table,

they are: BAYES, BDeu, MDL, ENTROPY e AIC;
– E: defines the estimator algorithm to calculate the conditional tables. In

Weka they are: BayesNetEstimator, BMAEstimator, MultiNomialBMAEs-
timator and SimpleEstimator (this estimator has one parameter (A), called
alpha, and it ranges between 0% e 100%, and it represents a start value for
the conditional probability.).

Neural Network: NN has seven parameters ( L, M, N, V, S, E, H):

– L: the learning rate. (default 0.3). The closer to zero, the smaller the impact
of the incoming information to be learnt. VR = [0.01;1.00; step = 0.01].

– M: the momentum (default 0.2). Its inclusion (values greater than zero) has
for objective to increase the speed of the training of a neural net and to
reduce the instability. VR = [0.00;1.00; step = 0.01].

– N: the number of epochs to train through. (default 500). our tests indicates
that using N greater than 500 does not increase the performance significantly,
and fixing it to its default 500. VR = [500;500; step = 0].

– V: the percentage size of the validation set from the training to use. (default
0 (no validation set is used, instead number of epochs is used). It ranges
between 0% and 99,99%, when this parameter is greater that zero intend to
reduce over-fitting. VR = [0.00;0.99; step = 0.01].

– S: the seed for the random number generator. We used default value. VR =
[0;0; step = 0].

– E: the threshold for the number of consecutive errors allowed during valida-
tion testing. (default 20). Number between 1 and 100. This parameter par-
ticipates with N to form the stop condition of the algorithm. VR = [1;100;
step = 1].

– H: string of numbers of nodes to be used on each layer. Each number rep-
resents its own layer and the number of nodes on that layer. There are also
some wildcards: ’a’, ’i’, ’o’, ’t’. These are ’a’ = (number of attributes + num-
ber of classes) / 2, ’i’ = number of attributes, ’o’ = number of classes, and
’t’ = number of attributes + number of classes. VR = [1;20; step = 1].

Artificial Immune System: AIS has 9 parameters ( S, F, C, H, R, V, A, E, K):

– S: the seed for the random number generator. (default 0). We adopted the
fixed value 1. VR = [1;1; step = 0].

– F: the minimum number percentage affinity threshold (see [17] page 6). VR
= [0.00;0.5; step = 0.01].

– C: the Clonal Rate is an integer that ranges between 0 ant 100. VR = [1;100;
step = 1].

– H: the Hyper-mutation rate. Ranges between 0 and 100 and determines the
percentage of clones (from last parameter) that will suffer mutation. VR =
[0;10; step = 1].
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– R: the total resources is the maximum number of B-Cell (or ARB) allowed
in the system. VR = [0;200; step = 1].

– V: the Stimulation threshold is a number between 0 and 1 used as criteria
to keep or drop a given B-Cell. VR = [0.00;1.00; step = 0.01].

– A: the number of affinity threshold instances. Because of lack of documen-
tation in [1] we used the default (-1) value. VR = [-1;-1; step = 0].

– E: the memory pool size. Define the number of random initialization instances.
By simplicity we varied it between 0 and 10. VR = [0;10; step = 1].

– K: the number of nearest neighbors representing B-Cells to be matched and
consulted in a voting election of which class the current transaction belongs
to. K equals to 1 means no voting. VR = [0;10; step = 1].
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