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Abstract. For completely specified decision tables lower and upper ap-
proximations are unique, the lower approximation is the largest definable
set contained in the approximated set X and the upper approximation
of X is the smallest definable set containing X. For incomplete decision
tables the existing definitions of upper approximations provide sets that,
in general, are not minimal definable sets. The same is true for gener-
alizations of approximations based on relations that are not equivalence
relations. In this paper we introduce two definitions of approximations,
local and global, such that the corresponding upper approximations are
minimal. Local approximations are more precise than global approxima-
tions. Global lower approximations may be determined by a polynomial
algorithm. However, algorithms to find both local approximations and
global upper approximations are NP-hard. Additionally, we show that
for decision tables with all missing attribute values being lost, local and
global approximations are equal to one another and that they are unique.

1 Introduction

Development of appropriate methodology to incomplete data sets is crucial since
many real-life data sets have missing attribute values. Mining incomplete data
requires either a preprocessing (filling in missing attribute values before the main
process of rule set induction, decision tree generation, etc.) or mining the data
set taking into account that it is incomplete. In this paper we will use the latter
approach.

Initially rough set theory was applied to complete data sets (with all attribute
values specified). Recently rough set theory was extended to handle incomplete
data sets (with missing attribute values) [1,2,3,4,5,6,8,9,10,11,20,21,22,23]. We
observe intensive research activity in two areas: rough set approaches to handle
incomplete data, mostly in the form of decision tables with missing attribute
values, and, in many attempts to study generalizations of the standard indis-
cernibility relation used to describe decision tables. In the latter area concerned
relations are not equivalence relations. Our paper contributes to both research
areas.
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In general, incomplete decision tables are described by characteristic relations,
in a similar way as complete decision tables are described by indiscernibility
relations [3,4,5,6].

In spite of the fact that input data are presented as decision tables in ap-
plications of rough set theory, in theory oriented research such information is
frequently expressed as approximation spaces and neighborhood systems [12,17].

Our main objective is to study two novel kinds of approximations: local and
global. Both of the two kinds of approximations are optimal in some sense. It
means that lower approximations, local and global, are the largest sets that are
locally and globally definable, respectively, and contained in the approximated
set X . Similarly, upper approximations, local and global, are the smallest sets
that are locally and globally definable, respectively, containing the approximated
set X . As it will be shown the two kinds of approximations coincide for complete
data, and they may differ for incomplete data sets.

A preliminary version of this paper was presented at the Fifth International
Conference on Rough Sets and Current Trends in Computing, Kobe, Japan,
November 6–8, 2006 [7].

2 Basic Notions

We assume that the input data sets are presented in the form of a decision ta-
ble. An example of a decision table is shown in Table 1. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, ..., 8}. Some variables are called
attributes while one selected variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Headache, Nausea}. Any decision table defines a function ρ that maps the di-
rect product of U and A into the set of all values. For example, in Table 1,
ρ(1, T emperature) = high. A decision table with completely specified function
ρ will be called completely specified, or, for the sake of simplicity, complete.

For a complete decision table indiscernibility relation indB is defined accord-
ing to the following formula

indB = {(x, y) ∈ U2 | ρ(x, a) = ρ(y, a), a ∈ B}.

For any B ⊆ A, indB is an equivalence relation. Let [x]B denotes the equivalence
class containing x with respect to the relation indB, let IA = {[x]A | x ∈ U} and
I = {[x]B|x ∈ U, B ⊆ A}. It is known that every set X ⊆ U may be presented
as a union of some elements of the family I if and only if it can be presented as
a union of some elements of the family IA. Elements of the family IA are called
elementary sets. Every set X ⊆ U that is a union of some elementary sets is
called definable. We assume that the empty set is definable and we denote the
family of all definable sets by D. It was observed in [16,17] that a pair (U, D) is a
topological space with a topology of open-closed sets. This topology is equivalent
to a topology defined by a base IA as well as defined by a base I. A family IA is
a base of D with the smallest cardinality. The largest definable set X contained
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Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes
2 very high yes yes yes
3 ? no no yes
4 high yes yes yes
5 high ? yes yes
6 normal yes no yes
7 normal no yes no
8 * yes * no

in X ⊆ U will be called a lower approximation of X . The smallest definable set
X containing X ⊆ U will be called an upper approximation of X . Therefore in
the topological space (U, I), the lower approximation of the set is its interior
and the upper approximation of the set is its closure. Thus in any discussion on
definability and approximations of the set, we may restrict ourselves to elements
of the space (U, IA). This is an important property since the set IA is easy to
compute.

In the topological space (U, I), the set X ⊆ U will be called J-definable if it
can be presented as a union of some elements of the family J , where J ⊆ I.
Obviously, if J1 ⊆ J2, then every set J1-definable is also J2-definable, [16,17].

3 Incomplete Data Sets

In practice, input data for data mining are frequently affected by missing at-
tribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ
will be called incomplete.

For the rest of the paper we will discuss incomplete data sets such that for
each case at least one attribute value is specified and all decision values are
specified. In this paper we will distinguish two types of missing attribute values.

The first type of missing attribute value will be called lost. A missing attribute
value is lost when for some case (example, object) the corresponding attribute
value was mistakenly erased or forgotten to enter into the data set. The original
value existed but for a variety of reasons now it is not accessible.

The second type of missing attribute values, called ”do not care” conditions,
are based on an assumption that missing attribute values were initially, when
the data set was created, irrelevant. For example, in a medical setup, patients
were subjected to preliminary tests. Patients whose preliminary test results were
negative were diagnosed as not affected by a disease. They were perfectly well
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diagnosed in spite of the fact that not all tests were conducted on them. Thus
some test results are missing because these tests were redundant. In different
words, a missing attribute value of this type may be potentially replaced by any
value typical for that attribute. This type of a missing attribute value will be
called a ”do not care” condition.

Note that both types of missing attribute values are universal (or standard),
since they can be used for any incomplete data set. Obviously, if we are familiar
with the reason why some attribute values are missing, we should apply the
appropriate interpretation: lost values or ”do not care” conditions.

For the rest of the paper we will denote lost values by ”?” and ”do not care”
conditions by ”*”. An example of incomplete decision table is shown in Table 1.

For incomplete decision tables there are two special cases: in the first case, all
missing attribute values are lost, in the second case, all missing attribute values
are ”do not care” conditions. Incomplete decision tables in which all attribute
values are lost, from the viewpoint of rough set theory, were studied for the
first time in [8], where two algorithms for rule induction, modified to handle
lost attribute values, were presented. This approach was studied later, e.g., in
[21] and [22], where the indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were extensively studied in [10], [11], including extending the idea
of the indiscernibility relation to describe such incomplete decision tables.

Other types of missing attribute values are possible as well, see, e.g., [6].
Moreover, note that some other rough-set approaches to missing attribute values
were presented in, e.g., [1,2,15].

4 Blocks of Attribute-Value Pairs

An important tool to analyze decision tables is a block of the attribute-value
pair. Let a be an attribute, i.e., a ∈ A and let v be a specified value of a for
some case. A block of an attribute-value pair is defined in the following way:

– If for a specified attribute a there exists a case x such that ρ(x, a) =?, i.e.,
the corresponding value is lost, then the case x should not be included in
any blocks[(a, v)] for all values v of attribute a,

– If for a specified attribute a there exists a case x such that the corresponding
value is a ”do not care” condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.
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Alternatively, a block of the pair (a, v) is defined according to the following
formula:

[(a, v)] = {x ∈ U |ρ(x, a) = v or ρ(x, a) = ∗}.

Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8},

For data sets with other types of missing attribute values, the definition of
the attribute-value block is modified, see, e.g., [6].

5 Definability

As it was mentioned in Section 1, for complete data sets the family IA is the
set of all elementary sets. Additionally, the cardinality of the set IA is smaller
than or equal to the cardinality of the set U . Thus testing whether a set X is
definable is—computationally—a simple task. For incomplete data the situation
is different. For a case x ∈ U the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a))] of attribute a
and its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U.

Characteristic set KB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. In [25] KA(x) was called a successor
neighborhood of x, see also [12,13,14,19,24,26,27].

Let K = {KB(x)|x ∈ U, B ⊆ A} and KB = {KB(x) | x ∈ U}, for B ⊆ A. For
Table 1 members of the family KA are:

KA(1) = {1, 4, 5, 8} ∩ U ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = U ∩ {2, 4, 6, 8} ∩ U = {2, 4, 6, 8}.
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The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).

The characteristic relation R(B) is reflexive but—in general—does not need to
be symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets KB(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7),
(8, 2), (8, 4), (8, 6), (8, 8)}. The most convenient way to define the characteristic
relation is through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [21], see also, e.g., [20,22].

For decision tables where all missing attribute values are ”do not care” condi-
tions a special characteristic relation was defined in [10], see also, e.g., [11].

For incomplete data sets, a set X will be called B-globally definable if it is
KB-definable, i.e., if X is a union of members of the family KB. A set that is
A-globally definable will be called globally definable. Obviously, the cardinality of
the set KA is smaller than or equal to the cardinality of U , so checking whether
a set is globally definable is computationally easy. However, in general KA is
not a base of the approximation space (U, K). Thus X may be KB-definable in
this space (for some B ⊆ A) in spite of the fact that it is not KA-definable.
Moreover, a set may be K-definable and be not KB-definable for any fixed
B ⊆ A. The family K may have much greater cardinality than the family KA.
As a consequence, the problem of checking whether a set is definable in the space
(U, K) is computationally complex. Similarly, searching for a base of the space
(U, K) may be computationally complex.

For incomplete data set it is advantageous to define a local definability. A set T
of attribute-value pairs, where all attributes belong to set B and are distinct, will
be called a B-complex. Any A-complex will be called—for simplicity—a complex.
Obviously, any set containing a single attribute-value pair is a complex. For the
rest of the paper we will discuss only nontrivial complexes, i.e., such complexes
that the intersection of all attribute-value blocks from a given complex is not
the empty set.

Set X depends on a complex T if and only if

∅ �= [T ] =
⋂

{[t] | t ∈ T } ⊆ X.

For an incomplete decision table and a subset B of the set A of all attributes, a
union of intersections of attribute-value pair blocks of attribute-value pairs from
some B-complexes, will be called a B-locally definable set. A-locally definable
sets will be called locally definable. If (U, A, d, V, ρ) is an incomplete decision
table, then the space (U, L) is an approximation space, where L is a family of all
subsets of the set of all possible intersections of attribute-value blocks, members
of complexes. Obviously, L ⊇ K for any decision table. Thus, the computational
complexity of the problems of looking for a minimal base of the space (U, L) and
checking whether a set is locally definable is exponential.
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Any set X that is B-globally definable is B-locally definable, the converse is
not true. In the example of Table 1, the set {7, 8} is a A-locally definable since
it is equal to the intersection of [(Temperature, normal)] and [(Nausea, yes)].
Nevertheless, the set {7, 8} is not A-globally definable.

The importance of the idea of local definability is a consequence of the follow-
ing fact: A set is locally definable if and only if it can be expressed by decision
rule sets. This is why it is so important to distinguish between locally definable
sets and those that are not locally definable.

For decision tables in which all missing attribute values are lost, local defin-
ability is reduced to global definability. The proof of this fact will be given in
Section 7.

Note that definability, introduced in [19], differs from our definitions. For
example, the set {1, 2, 4, 6, 8}, globally definable according to our definition, is
not definable in [19]. Additionally, sets that are definable in [19], are not even
locally definable according to our definition.

6 Local Approximations

Let X be any subset of the set U of all cases. The set X is called a concept and
is usually defined as the set of all cases defined by a specific value of the decision.
In general, X is not a B-definable set, locally or globally.

Let B ⊆ A. The B-local lower approximation of the concept X , denoted by
LBX , is defined as follows

⋃
{[T ] | T is a complex of X , [T ] ⊆ X }.

The B-local upper approximation of the concept X , denoted by LBX , is defined
as the minimal set containing X and defined in the following way

⋃
{[T ] | ∃ a family T of complexes T of X with ∀ T ∈ T , [T ] ∩ X �= ∅}.

Obviously, the B-local lower approximation of X is unique and it is the largest
B-locally definable set contained in X . Any B-local upper approximation of X
is B-locally definable, it contains X , and is, by definition, the smallest.

For Table 1

LA{1, 2, 3, 4, 5, 6} = ([(Headache, no)] ∩ [(Nausea, no)]) = {3},

so one complex, {(Headache, no), (Nausea, no)}, describes LA{1, 2, 3, 4, 5, 6},

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8},

so again, one complex, {(Temperature, normal), (Nausea, yes)}, describes LA
{7, 8}.

LA{1, 2, 3, 4, 5, 6} =
[(Temperature, high)] ∪ [(Headache, yes)] ∪ [(Nausea, no)] =

{1, 2, 3, 4, 5, 6, 8},
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therefore, to describe LA{1, 2, 3, 4, 5, 6} three complexes are necessary: {(Tem-
perature, high)}, {(Headache, yes)}, {(Nausea, no)}. Finally,

LA{7, 8} = LA{7, 8} = {7, 8}.

For the incomplete decision table from Table 1 the local lower approximations
for both concepts, {1, 2, 3, 4, 5, 6} and {7, 8}, as well as the upper local approx-
imations for these concepts, are unique. Though the local lower approximations
are always unique, the local upper approximations, in general, are not unique.
For example, let us consider an incomplete decision table from Table 2.

Table 2. An incomplete decision table

Attributes Decision

Case Age Complications Hypertension Delivery

1 * alcoholism mild pre-term
2 >35 obesity severe pre-term
3 >35 obesity ? pre-term
4 * none none pre-term
5 >35 none none full-term
6 <25 none none full-term
7 25..35 none none full-term

For Table 2

[(Age, <25)] = {1, 4, 6},
[(Age, 25..35)] = {1, 4, 7},
[(Age, >35)] = {1, 2, 3, 4, 5},
[(Complications, alcoholism)] = {1},
[(Complications, obesity)] = {2, 3},
[(Complications, none)] = {4, 5, 6, 7},
[(Hypertension, mild)] = {1}.
[(Hypertension, severe)] = {2}.
[(Hypertension, none)] = {4, 5, 6, 7}.

Moreover, for Table 2

LA{1, 2, 3, 4} =
[(Complications, alcoholism)] ∪ [(Complications, obesity)] =

{1, 2, 3},

LA{5, 6, 7} = ∅,
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However,
LA{1, 2, 3, 4}

is not unique, any of the following sets

[(Age, > 35)] = {1, 2, 3, 4, 5},

[(Age, < 25)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 6},

or

[(Age, 26..35)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 7}.

may serve as local upper approximations of {1, 2, 3, 4}.
Lastly,

LA{5, 6, 7} = [(Complications, none)] = {4, 5, 6, 7}.

Algorithms to compute local lower or upper approximations are NP-hard, since
the corresponding problems may be presented in terms of prime implicants,
monotone functions, and minimization. A similar result for reducts of complete
decision tables is well known [18].

7 Global Approximations

For incomplete decision tables global lower and upper approximations may be
defined in a few different ways, see, e.g., [3,4,5]. In this paper we suggest yet
another definition of global approximations. Note that our definition of global
approximations is based on characteristic sets, as oppose to local approximations,
introduced in the previous section, where attribute-value blocks were used.

Again, let B ⊆ A. Then B-global lower approximation of the concept X ,
denoted by GBX , is defined as follows

⋃
{KB(x) | x ∈ X, KB(x) ⊆ X}.

Let us observe that the definition of global lower approximation is identical with
the definition of subset (or concept) lower approximation [3,4,5]. The B-global
upper approximation of the concept X , denoted by GBX , is defined as the
minimal set containing X and defined in the following way

⋃
{KB(x) | ∃ Y ⊆ U ∀ x ∈ Y, KB(x) ∩ X �= ∅}.

Similarly as for local approximations, a global lower approximation for any con-
cept X is unique. Additionally, both B-global approximations, lower and upper,
are B-globally definable. On the other hand, global upper approximations do
not need to be unique. For Table 1,

GA{1, 2, 3, 4, 5, 6} = KA(3) = {3},
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GA{7, 8} = KA(7) = {7},

GA{1, 2, 3, 4, 5, 6} =
KA(1) ∪ KA(2) ∪ KA(3) ∪ KA(5) ∪ KA(6) = {1, 2, 3, 4, 5, 6, 8}.

Furthermore,
GA{7, 8}

may be computed in four different ways:

(1) as KA(1) ∪ KA(7) = {1, 7, 8},

(2) as KA(2) ∪ KA(7) = {2, 7, 8},

(3) as KA(4) ∪ KA(7) = {4, 7, 8},

(4) or as KA(6) ∪ KA(7) = {6, 7, 8},

all four sets are global upper approximations of the concept {7, 8}.
In general, local approximations are more precise than global approximations.

For any concept X and a subset B of A,

LBX ⊇ GBX

and

LBX ⊆ GBX.

It is not difficult to find a simple algorithm to compute global lower approxi-
mation in polynomial time. Nevertheless, algorithms to compute global upper
approximations are NP-hard as well.

On the other hand, determining local and global approximations is quite sim-
ple for incomplete data sets with all missing values being lost. For decision tables
with all missing values being lost, the following results hold:

Lemma 1. Let the only missing attribute values in a decision table be lost. Let
x, y ∈ U , let B be a subset of the attribute set A, and let y ∈ KB(x). Then
KB(y) ⊆ KB(x).

Proof. Let a1, a2, ..., an be all attributes from B such that ρ(x, ai) = vi is
specified (i.e., vi �= ?) for all i = 1, 2, ..., n. Then KB(x) is equal to

[(a1, v1)] ∩ [(a2, v2)] ∩ ... ∩ [(an, vn)].

If y ∈ KB(x) then y ∈ [(a1, v1)], y ∈ [(a2, v2)],... y ∈ [(an, vn)]. Moreover,
ρ(y, ai) are all specified, for i = 1, 2, ..., n, since all missing attribute values are
lost. Obviously, it is possible that for some a ∈ A−B, ρ(y, a) is specified as well.
Thus KB(y) is a subset of the following set [(a1, v1)]∩[(a2, v2)]∩...∩[(an , vn)], or,

KB(y) ⊆ KB(x).
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Lemma 2. Let the only missing attribute values in a decision table be lost. Let
T be a nontrivial complex. Let B be the set of all attributes involved in T . There
exists x ∈ U such that [T ] = KB(x).

Proof. Let {a1, a2, ..., an} = B. Let T = {(a1, v1), (a2, v2), ..., (an, vn)}, where
v1, v2, ...vn are values of a1, a2, ..., an, respectively. Then for any x ∈ [T ], ρ(x, a1)
= v1, ρ(x, a2) = v2, ..., ρ(x, an) = vn, since all missing attribute values are lost.
Therefore, [T ] = KB(x).

Lemma 3. Let the only missing attribute values in a decision table be lost. Let
B be a subset of the set A of all attributes. For every nontrivial complex T such
that all attributes involved in T are in B there exists a subset X of U such that

[T ] =
⋃

{KB(x) | x ∈ X}.

Proof. Let C be the set of all attributes involved in T , i.e., if T = {(a1, v1),
(a2, v2), ..., (an, vn)}, where v1, v2, ...vn are values of a1, a2, ..., an, respectively,
then C = {a1, a2, ..., an}. There exists y ∈ U such that [T ] = KC(y), by Lemma
2. Let X = [T ]. Thus, ∪{KB(y) | y ∈ X} ⊆ [T ] since C ⊆ B. On the other hand,
[T ] ⊆ ∪{KB(y) | y ∈ X} since y ∈ KB(y). Thus ∪{KB(y) | y ∈ X} = [T ].

Due to our last result, we may observe that for data sets with the only missing
attribute values being lost, sets KB(x), for x ∈ U and B ⊆ A, are finer granules
(subsets of U) than any nontrivial B-complexes, since any nontrivial B-complex
is a union of some sets KB(x).

Theorem 1. Let the only missing attribute values in a decision table be lost and
let B be a subset of the attribute set A. Then every subset X ⊆ U is B-locally
definable if and only if it is B-globally definable.

Proof. Straightforward, due to Lemma 3.

Theorem 2. Let the only missing attribute values in a decision table be lost
and let B be a subset of the attribute set A. Then for every concept X ⊆ U ,
its B-local approximations are equal to its B-global approximations. Moreover,
computing such approximations is of polynomial computational complexity.

Proof. For lower approximations, the proof is obvious since LBX ⊇ GBX and
Lemma 3. Similarly for upper approximations since LBX ⊆ GBX and Lemma
3. Thus, we may compute the lower approximation (B-local or B-global) using
the following formula

GBX =
⋃

{KB(x) | x ∈ X, KB(x) ⊆ X},

and, by analogy, the upper approximation (also, B-local or B-global) using the
following formula

GBX =
⋃

{KB(x) | x ∈ X}.

The last formula needs some explanation. The B-global upper approximation
GBX is defined as a minimal set satisfying the following formula:

⋃
{KB(x) | ∃ Y
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⊆ U ∀ x ∈ Y, KB(x) ∩ X �= ∅}. Any y ∈ U − X such that KB(y) ∩ X �= ∅ may
be ignored as a member of Y since if x ∈ KB(y) ∩ X then KB(x) ⊆ KB(y) by
Lemma 1, i.e., any element from KB(y) ∩ X can be covered by some KB(x),
where x ∈ X . Thus we may assume that Y ⊆ X .

Moreover, we may also assume that Y = X . Indeed, let us suppose that Y
should be a proper subset of X and let x ∈ X − Y . Then x ∈ KB(y) for some
y ∈ Y . However, KB(x) ⊆ KB(y), by Lemma 1. Therefore, if we assume that
Y = X , the set GBX will be not affected.

Computing both GBX and GBX using such formulas requires an algorithm
with time computational complexity, in the worst case, of O(n2 · m), where n is
the cardinality of U and m is the cardinality of A.

Corollary. Let the only missing attribute values in a decision table be lost and
let B be a subset of the attribute set A. For every concept X ⊆ U , all B-local
upper approximations of X are unique, all B-global upper approximations of X
are unique, and are equal to one another.

8 Conclusions

In this paper we introduced two new kinds of approximations: local and global.
These approximations describe optimally approximated sets (lower approxima-
tions are largest, upper approximations are smallest and, at the same time, local
approximations are locally definable while global approximations are globally
definable).

Note that our global approximations may be used to describe behavior of sys-
tems defined by relations that are not equivalence relations, as in
[12,13,14,19,24,25,26,27].

As a final point, optimality comes with the price: in a general case algorithms
to compute both local upper approximations and global upper approximations
are NP-hard.
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