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Preface

Volume VIII of the Transactions on Rough Sets (TRS) contains a wide spectrum
of contributions to the theory and applications of rough sets.

The pioneering work by Prof. Zdzis�law Pawlak led to the introduction of
knowledge representation systems during the early 1970s and the discovery of
rough sets during the early 1980s. During his lifetime, he nurtured worldwide
interest in approximation, approximate reasoning, and rough set theory and its
applications1. Evidence of the influence of Prof. Pawlak’s work can be seen in
the growth in the rough-set literature that now includes over 4000 publications
by more than 1900 authors in the rough set database2 as well as the growth and
maturity of the International Rough Set Society3.

This volume of TRS presents papers that introduce a number of new ad-
vances in the foundations and applications of artificial intelligence, engineering,
logic, mathematics, and science. These advances have significant implications in
a number of research areas. In addition, it is evident from the papers included in
this volume that rough set theory and its application form a very active research
area worldwide. A total of 58 researchers from 11 countries are represented in
this volume, namely, Australia, Canada, Chile, Germany, India, Poland, P.R.
China, Oman, Spain, Sweden, and the USA. Evidence of the vigor, breadth, and
depth of research in the theory and applications rough sets can be found in the
articles in this volume.

This volume contains 17 papers that explore a number of research streams.
These research streams are represented by papers on rough consequence logics
(M.W. Bunder, Mohua Banerjee, and Mihir K. Chakraborty), approximations for
incomplete data (Jerzy W. Grzyma�la-Busse and Wojciech Rzasa), dominance-
based rough set approach and multi-criteria decision analysis (Ye Chen, Kevin
W. Li, Jason Levy, Keith W. Hipel, and D. Marc Kilgour), partially ordered
monads (Patrik Eklund and M. Ángeles Galán), biological control of leafy spurge
weed (Mohamed T. Elhadi and Wojciech Ziarko), Pawlak flow graphs and gran-
ular computing (Huawen Liu, Jigui Sun, and Huijie Zhang), generalized indis-
cernibility relations (Wojciech Jaworski), information quanta and approximation
operators (Marcin Wolski), reducts and decision rules (Mikhail Ju. Moshkov,
Marcin Piliszczuk, and Beata Zielosko), evolutionary rough k-medoid clustering
(Georg Peters, Martin Lampart, and Richard Weber), learning complex concepts
(Tuan Trung Nguyen), rough set database system representing 3421 publications

1 See, e.g., Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences
177, 3–27 (2007); Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Informa-
tion Sciences 177, 28–40 (2007); Pawlak, Z., Skowron, A.: Rough sets and Boolean
reasoning. Information Sciences 177, 41–73 (2007).

2 http://rsds.wsiz.rzeszow.pl/rsds.php
3 http://roughsets.home.pl/www/
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and 1913 authors (Zbigniew Suraj and Piotr Grochowalski), attribute reduction
and machine learning (Yiyu Yao, Yan Zhao, Jue Wang, and Suqing Han), rough
set theory and applications in China (Guoyin Wang, Qingua Zhang, Houkan
Huang, Dongyi Ye, Qinghua Hu, Xuegang Hu, Zhongzhi Shi, Yongli Li, Lin
Shang, Liping An, Ying Sai, Shanben Chen, Jiye Liang, Keyun Qin, Huanglin
Zeng, Keming Xie, Duoqian Miao, Fan Min, Zhaocong Wu, Weizhi Wu, and
Jianhua Dai), rough neural computing in classifying power system signals (Lit-
ing Han and James F. Peters).

The editors of this volume extend their hearty thanks to the following re-
viewers: Jan Bazan, Mohua Banerjee, Maciej Borkowski, Cory Butz, Jerzy W.
Grzyma�la-Busse, Mihir K. Chakraborty, Krzysztof Dembczynski, Salvatore
Greco, Bożena Kostek, Churn Jung Liau, Pawan Lingras, Dan Lockery, Sushmita
Mitra, Mikhail Ju. Moshkov, Son Nguyen, Hoa Nguyen, Piero Pagliani, Uma
Shankar, Zbginiew Suraj, Marcin Szczuka, Sheela Ramanna, Dominik Ślȩzak,
Jaros�law Stepaniuk, Piotr Synak, Piotr Wasilewski, Arkadiuz Wojna, Marcin
Wolski, Jakub Wróblewski, Wei Zhi Wu, JingTao Yao, Yiyu Yao, and Wojciech
Ziarko.

This issue of TRS has been made possible thanks to the laudable efforts of a
great many generous persons and organizations. The editors and authors of this
volume also extend an expression of gratitude to Alfred Hofmann, Ursula Barth,
Christine Günther and the LNCS staff at Springer for their support in making
this volume of TRS possible. In addition, the editors of this volume extend their
thanks to Marcin Szczuka for his consummate skill and care in the compilation
of this volume.

April 2008 James F. Peters
Andrzej Skowron
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Some Rough Consequence Logics and their

Interrelations

Martin W. Bunder1, Mohua Banerjee2, and Mihir K. Chakraborty3

1 School of Mathematics and Applied Statistics, University of Wollongong,
Wollongong, NSW 2522, Australia

martin bunder@uow.edu.au
2 Department of Mathematics and Statistics, Indian Institute of Technology

Kanpur 208016, India
mohua@iitk.ac.in

3 Department of Pure Mathematics, University of Calcutta
35 Ballygunge Circular Road, Kolkata 700019, India

mihirc99@vsnl.com

Abstract. This paper considers a number of alternative rough conse-
quence logics which come in a natural way from the logics Lr and LR
previously studied by Chakraborty and Banerjee. The systems have been
compared to variants of S5, and the logic Triv of Hughes and Cresswell.
A comparison has also been made with Lr and LR, and therefore with
Jaśkowski’s discussive logic J , as J is equivalent to LR.

1 Introduction

Since the inception of the theory of rough sets (Pawlak [1]), its close link with
the system S5 of modal logic was apparent. In rough set theory, one has to start
with an approximation space which is a set X (of objects) with an equivalence
relation R (the indiscernibility of objects by a given collection of attributes). A
rough set may be viewed as a triple 〈X,R,A〉, A ⊆ X . The Kripke structure for
S5 on the other hand, is also a set (of worlds) with an equivalence relation (the
accessibility relation). The interpretation of any well-formed formula (wff) in S5
is a set in the Kripke structure, viz. the set of worlds where the wff is true. The
usual Kripke semantics of a wff in S5, thus, turns out to be a rough set. So, S5
can be given a rough-set semantics in a natural way.

There is a very significant notion in rough set theory, viz. the notion of rough
equality - two sets A and B are roughly equal in the approximation space 〈X,R〉,
if they have the same lower and upper approximations relative to 〈X,R〉. The ex-
pression for the corresponding rough equivalence of wffs α and β in the language
of S5 is (Lα ↔ Lβ) ∧ (Mα ↔ Mβ), L, M , being the necessity and possibility
operators respectively. This expression is abbreviated as α ≈ β (Banerjee and
Chakraborty [2]). Not much attention is paid to wffs of the form α ≈ β in modal
logic literature. We know little about properties of such formulae. This fact was
noted in Chakraborty and Banerjee [3] and a good deal of development, e.g.
the Lindenbaum-like construction on the wffs of S5 with ≈ instead of the usual

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M.W. Bunder, M. Banerjee, and M.K. Chakraborty

bi-implication↔ has appeared in subsequent papers (Banerjee and Chakraborty
[2], Wasilewska and Vigneron [4]). In S5, α ↔ β ‘says’ that the set of worlds
where α holds is the same as the set of worlds where β holds, while α ≈ β would
say that the two sets are roughly equal. The usual modus ponens (MP) rule
reads as ‘if α and α → γ are derived then γ may be derived’. In the rough set
context (i.e. interpretation), a natural intuition leads to the following.

If α, β → γ and α ≈ β are all “derivable” from a set Γ of wffs then γ should
also be derivable from Γ .

That is, to derive γ, it would be enough to know if α and β → γ are derivable
from Γ , where β is a ‘close associate’ of α, not necessarily exactly α. (So α and
β hold in sets of worlds that are roughly equal.) One could see that such a rule
might be given the name “rough modus ponens” (RMP), which is a general-
ization of modus ponens. Formally, the consequence relation generated by this
kind of modus ponens should be distinct from the standard consequence of S5
(henceforth denoted by 	S5 or by 	 if there is no confusion). If the former con-
sequence is denoted by the symbol |∼ then the above generalised modus ponens
may be written as

(RMP)
Γ |∼ α Γ |∼ β → γ Γ 	 α ≈ β

Γ |∼ γ
.

This, as well as a seemingly weaker version of it, viz.

(MP≈)
Γ |∼ α Γ |∼ β → γ 	 α ≈ β

Γ |∼ γ

shall be discussed in this paper.
As Γ 	 α ≈ α and 	 α ≈ α hold always, taking β to be the same as α one

can immediately see that RMP or MP≈ reduce to the standard MP rule. Some
more comments on this aspect are made towards the end of this section.

In fact, thinking of α ≈ β as a double rough implication ((α ∼> β)∧(β ∼> α)),
it seems natural that only α ∼> β should be required in MP≈. It may be observed
that ∼> would represent the notion of rough inclusion. So with

α ∼> β := (Mα→Mβ) ∧ (Lα→ Lβ),

we also consider the rule:

(MP∼>)
Γ |∼ α Γ |∼ β → γ 	 α ∼> β

Γ |∼ γ
.

As a first step towards the study of consequence of the above sort, Banerjee
and Chakraborty [3] defined a logic Lr of rough consequence based on S5 and
the rule

(RMP1)
Γ |∼ α 	 β → γ 	Mα→Mβ

Γ |∼ γ
.
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It should be stated that in the original version (Chakraborty and Banerjee [3])
two rules were taken, RMP1 and RMP2, but subsequently in Bunder [5] and
Banerjee [6] it was noticed that the latter follows from the former one.

Note 1. RMP1 is weaker than MP≈ and RMP in that	 β → α replacesΓ |∼β → α,
but stronger in that 	Mα→Mβ replaces 	 α ≈ β.

Note 2. Banerjee and Chakraborty [2] and Bunder [5] have shown that (RMP1)
is equivalent to the simpler rule:

(R1)
Γ |∼ α 	Mα→Mβ

Γ |∼ β
.

(RMP1) gives a semantics (Banerjee and Chakraborty [2]) which is quite different
to that intended for RMP.

The logic has been extended recently by Banerjee [6] by adding another rule viz.

(R2)
Γ |∼ Mα Γ |∼ Mβ

Γ |∼ Mα ∧Mβ
.

The new logic, which we will call LR, is capable of capturing the rough logic
proposed by Pawlak [7] in 1987. A notion of rough truth was introduced in
the paper [7]. In modal language, α would be termed roughly true in a domain,
provided α ‘possibly’ holds at every world in it. This was extended to define rough
validity and rough semantic consequence in [3,2], giving rise to a ‘rough truth
semantics’. In this semantics the rule RMP1, is accorded a sound interpretation:
if α is a rough semantic consequence of Γ , the set of worlds where β holds is
always included in the set of worlds where γ holds, and if the set of worlds
where α holds is always roughly upper included in the set of worlds where β
holds then γ is a rough semantic consequence of Γ . RMP1 being equivalent to
R1, the interpretation becomes simpler: if α is a rough semantic consequence of
Γ , and if the set of worlds where α holds is always roughly upper included in
the set of worlds where β holds then β is a rough semantic consequence of Γ .
In terms of rough truth, R1 may be equivalently interpreted as: if α is a rough
semantic consequence of Γ , and β is roughly true whenever α is, β is also a
rough semantic consequence of Γ .

In Banerjee [6], it was observed that the classical conjunction rule {α, β}|∼α∧β
is not sound in the rough truth semantics: even if α and β are both roughly true
in a domain, α ∧ β may not be so. However, Mα ∧Mβ is roughly true in this
situation, i.e. at every world, independently, α possibly holds and so does β.
So the rule R2 is sound. R2, along with R1, in fact, helps to establish that
LR is sound and complete with respect to the rough truth semantics. It is also
gratifying to find that the logic LR turns out to be equivalent to Jaśkowski’s
discussive logic J [8], proposed long back in 1948 in a different context altogether.
An analysis of the rules RMP and MP≈ gives rise to an interesting class of similar
modus ponens rules, that take into account various levels of inclusion between
two sets in a rough context. Thus various rough consequences emerge. It may be
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remarked here that rough logics have been developed from various other angles
(e.g. Rasiowa and Skowron [9], or cf. Or�lowska [10]), but none have the agendum
to reflect ‘roughness’ within the derivation rule(s). This reflection of roughness
may be said to be the essence of the various ‘rough’ modus ponens rules in the
present paper. It will be clear in Section 3, when the rules are specified, that
these rules correspond to the natural meaning of the notion of rough equality,
rough upper inclusion, rough lower inclusion, rough inclusion and the like.

The aim of this paper is to present a picture of all these consequences (and the
corresponding logics, including S5 itself and those defined by (R1) and (R2)), in
a unified manner and to study the interrelations among them.

2 Two Variants of S5

We consider two variants of S5 (called S5(1) and S5(2)) that allow hypotheses.

Definition 1. S5(1):

Axiom Schemes
(Propositional Logic) 1 α→ β → α

2 (α→ β → γ) → (α→ β) → α→ γ
3 (∼ α→∼ β) → β → α

(Modal) 4 L(α→ β) → Lα→ Lβ
5 Lα→ α
6 Mα→ LMα

Rules

Let Γ, Δ be sets of wffs and α a wff.

(Ax) α is an axiom ⇒ 	 α (axioms)

(id) α 	 α (identity)

(wk) Γ 	 α ⇒ Γ,Δ 	 α (weakening)

(N) 	 α ⇒ 	 Lα (necessitation)

(MP) Γ 	 α, Γ 	 α→ β ⇒ Γ 	 β (modus ponens)

We say Γ 	 α is derivable in S5(1), if it is obtained by finite applications of the
axioms and rules. Sometimes we write Γ 	S5(1) α, if the emphasis is needed.

It may be observed that the overlap rule is derivable from the identity (id)
and weakening (wk) rules above:

(ov) α ∈ Γ ⇒ Γ 	 α (overlap)

This version of S5 is equivalent to the one given in Hughes and Cresswell [11],
which has, instead of (N):

(N1)
Γ, 	 α

Γ,L 	 Lα
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where Γ contains only formulas of the form Lβ,  none of these, and

L = {Lβ | β ε }.

The formulation is also equivalent to one which has:

δ1, . . . , δn 	 α ⇔ 	 δ1 → · · · → δn → α

By 	 α we will mean φ 	 α.

The other version of S5 that we consider, is the following (cf. e.g. Fitting [12]).

Definition 2. S5(2):

This is S5(1) except that (N) is replaced by

(N2) Γ 	S5(2) α ⇒ Γ 	S5(2) Lα

We write Γ 	S5(2) α, if this is derivable by finite applications of the S5(2) axioms
and rules.

Note that S5(1), S5(2) and S5 are theorem equivalent.

Theorem 1. 	 α ⇔ 	S5(1) α ⇔ 	S5(2) α

Proof. This follows from the fact the (Ax), (ov), (MP) and (N2) can only be
used to prove 	S5(i) α (i = 1 or 2) when Γ is empty. ��

We note that S5, S5(1) and S5(2) satisfy standard logical properties such as:

Theorem 2. In S5(1) and S5(2):

1. Monotonicity holds.
i.e. Γ 	 α ⇒ Γ, 	 α

2. Compactness holds.
i.e. Γ 	 α ⇒ (∃δ1, . . . , δn ε Γ ) δ1, . . . , δn 	 α

3. Cut holds.
i.e. Γ, α 	 β &  	 α ⇒ Γ, 	 β

We can also prove, in the standard way:

Theorem 3. (Substitution of Equivalence Theorem for S5)
If δ′ is the result of replacing zero or more occurrences of α in δ by β then

	 L(α↔ β) → (δ ↔ δ′) (1)

Theorem 4. (The Deduction Theorem for S5(1))

Γ, α 	S5(1) β ⇒ Γ 	S5(1) α → β

The deduction theorem however fails for S5(2). This follows from Theorem 4
and the proof below.
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Theorem 5. S5(2) is strictly stronger than S5(1).

Proof. Obviously
Γ 	S5(1) α ⇒ Γ 	S5(2) α.

α 	S5(2) Lα follows by (N2). If also α 	S5(1) Lα, by the deduction theorem
	S5(1) α→ Lα, which is false. ��

Note 3. When claiming α is unprovable in S5(1) or S5(2), we use Theorem 1
and the decision procedure for S5 from Hughes and Cresswell [11].

Many properties of S5 will be used in this paper. The following have proofs in
Hughes and Cresswell [11] or can be easily derived. Some are used in the proof
of the deduction theorem for S5(2) which follows.

Theorem 6. The following are valid in S5.

(i) 	M(α→ β) ↔ (Lα→Mβ)
(ii) 	 α→ β ⇒ 	Mα→Mβ
(iii) 	 α→Mα
(iv) 	MMα↔Mα
(v) 	 LMα↔Mα
(vi) 	MLα↔ Lα
(vii) 	 LLα↔ Lα
(viii) 	M(α ∨ β) ↔Mα ∨Mβ
(ix) 	 L(α ∧ β) ↔ Lα ∧ Lβ
(x) 	Mα→ β ⇔ 	 α→ Lβ
(xi) 	Mα→Mβ ⇔ 	 α→Mβ
(xii) 	 Lα→ Lβ ⇔ 	 Lα→ β
(xiii) 	 L(Lα ∨ β) ↔ Lα ∨ Lβ
(xiv) 	M(Mα ∧ β) ↔ Mα ∧Mβ
(xv) 	 L(α→ Lβ) ↔ Mα→ Lβ
(xvi) 	 L(Mα→ β) ↔ Mα→ Lβ

Theorem 7.
, δ 	S5(2) α (2)

⇔
 	S5(2) Lδ → Lα (3)

Proof. (⇒): By induction on the derivation of (2).
Case 1. α is an axiom or α ∈ . By (Ax)/(ov) and (N2), 	S5(2) Lα, so by
propositional logic and (wk) we have (3).
Case 2. α = δ. By propositional logic and (wk) we have (3).
Case 3. (2) comes by (N2) from , δ 	 β, where α = Lβ.
By the induction hypothesis we have Δ 	 Lδ → Lβ. By Theorem 6(vii) we
obtain (3).
Case 4. (2) comes by (MP) from , δ 	S5(2) β → α and , δ 	S5(2) β.
By the induction hypothesis:
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 	S5(2) Lδ → L(β → α)
and  	S5(2) Lδ → Lβ.

As by Axiom 4, 	S5(2) L(β → α) → Lβ → Lα, (3) follows.
(⇐): By (id), (N2) and (wk),

, δ 	S5(2) Lδ.

So if (3) holds, (2) follows by (wk), (MP) and Axiom 5. ��

Note 4. (i) Marek and Truszczyński [13] have a similar result on page 200.
(ii) Theorems 1, 7, Axiom 4 and (vii) of Theorem 6 give:

δ1, . . . , δn 	S5(2) α ⇔ 	S5 Lδ1 → . . .→ Lδn → Lα.

So we have a decision procedure for judgements of S5(2) with finite contexts.

3 The “Modus Ponens” (MP) Rules

Looking at the rules MP≈ and MP∼> presented in the Introduction, we check
in what possible ways, the S5-premisses in these (viz. 	 α ≈ β, 	 α ∼> β
respectively) could be changed.

With wffs α, β, one can form the following implications using the connec-
tives L,M :

(i) Lα→ Lβ, (ii) Lα→ β, (iii) Lα→Mβ, (iv) α→ Lβ, (v) α→β,
(vi) α→Mβ, (vii) Mα→ Lβ, (viii) Mα→ β, (ix) Mα→Mβ,
(x) M(α→ β), (xi) L(α→ β).

An equivalence relation then emerges:

	 I1 if and only if 	 I2, where I1, I2 are any of the above implications.

It is easy to check that we obtain the equivalence classes:

C1 : {(vi), (ix)}, C2 : {(i), (ii)}, C3 : {(v), (xi)}, C4 : {(iv), (vii), (viii)},
C5 : {(iii), (x)}.

Thus one could consider five representative rules, which we name MP1, MP2,
MP3, MP4 and MP5, corresponding to the classes C1 − C5 respectively.

MP1 Γ |∼ α Γ |∼ β → γ 	Mα→Mβ

Γ |∼ γ

MP2 Γ |∼ α Γ |∼ β → γ 	 Lα→ Lβ

Γ |∼ γ

MP3 Γ |∼ α Γ |∼ β → γ 	 α→ β

Γ |∼ γ

MP4 Γ |∼ α Γ |∼ β → γ 	Mα→ β

Γ |∼ γ
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MP5 Γ |∼ α Γ |∼ β → γ 	 Lα→Mβ

Γ |∼ γ

Observation 1. Consider the S5-premise of any of the MPi rules (e.g.
Mα→Mβ in MP1). If α and β are reversed, then taking β = γ and α as any
S5-theorem, we will find that the corresponding MP rule, and Rule (S5) below,
lead to triviality: Γ |∼β, for any β and any Γ .

This illustrates that we have all the interesting S5 implications possible in such
rules.

Notation. For rules of inference R, R′, we write R⇒ R′, when R′ follows from
the assumption that R holds.

Observation 2. MP2 ⇒MP3 ⇒MP4, and MP5 ⇒MP1.

Note 5. MP1, MP2, MP3, MP5, MP∼> and MP≈ all have a special case (when
α = β):

MP0 Γ |∼ α Γ |∼ α→ γ

Γ |∼ γ

Observation 3. MP2 ⇒MP∼> ⇒MP≈.

In the next section, we shall show how logics for the rules MP0 −MP5, MP≈,
MP∼> reduce to four distinct systems, viz. Triv (Hughes and Cresswell [11]),
S5(1), S5(2) and a seemingly new logic corresponding to MP4.

Note 6. Mα→ β is the discursive or discussive implication of Jaśkowski [8] (see
also da Costa and Dubikajtis [14]).

The discussive modus ponens rule is the first of two special cases of MP4:

MP4(1) Γ |∼ α Γ |∼ Mα→ γ

Γ |∼ γ

MP4(2) Γ |∼ α 	Mα→ β

Γ |∼ β

4 The Systems Lri

We now define a logic for each rule MPi, i = 0, ..., 5,≈,∼>.

Definition 3. Lri :

Lri is the logic based on MPi and the rules:

(ov) α ε Γ ⇒ Γ |∼iα,

(S5) 	 α ⇒ Γ |∼iα.
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We use |∼i for provability in Lri, unless the system being used is clear from the
context.

The basic logical properties hold for all Lris as they did for S5(1) and S5(2).

Theorem 8. Monotonicity, Compactness and Cut hold for Lri, where i = 0, ...,
5,∼>,≈.

Notation. (i) We shall write L1 ∼ L2 for two logics L1, L2, to express that L1

is equivalent to L2, i.e. α is derivable from Γ in L1 if and only if it is derivable
from Γ in L2.
(ii) L1 � L2 (or, equivalently, L2 � L1) will denote that L2 is stronger than L1,
i.e. if α is derivable from Γ in L1, it is derivable from Γ in L2, and
(iii) L1 ≺ L2 (or, equivalently, L2 � L1) will denote that L2 is strictly stronger
than L1, i.e. if α is derivable from Γ in L1, it is derivable from Γ in L2, but not
conversely.

Note 7. Logics L1, L2 will be termed independent of each other, provided there
are Γ, α such that α is derivable from Γ in L1 but not in L2, and, on the other
hand, there are Δ,β such that β is derivable from Δ in L2 but not in L1.

Observation 4. Because of Observation 2, we get Lr4 � Lr3 � Lr2, and
Lr1 � Lr5.

Lr0, Lr1, Lr2, Lr3, Lr5, Lr∼>, and Lr≈ all have MP0, or equivalently, the
valid judgement:

α, α→ β |∼i β.

Lr and LR do not have either, nor, as we will show, does Lr4.
Lr and LR have the deduction theorem

Γ, α |∼ β ⇒ Γ |∼ α→ β.

as does S5(1).

We will show that Lr0, Lr1, Lr3 and Lr5 also have this property. The other
systems have a weakened form.

Lemma 1. For i = 0, 1, 2, 3, 4, 5,∼>,≈

(i)
|∼i Lα

|∼i α
(ii)

|∼i α

|∼i Lα
.

Proof. These are straightforward for all systems except Lr4. For Lr4:

(i) By Axiom 5 and Theorem 6(vi), 	MLα→ α, so if |∼4 Lα, |∼4 α follows by
MP4(2).

(ii) By induction on the derivation of |∼4 α.

Case 1. If 	 α then 	 Lα and so |∼4 Lα.
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Case 2. |∼4 α comes by MP4 from |∼4 γ, |∼4 β → α and 	Mγ → β.

By the induction hypothesis we have |∼4 L(β → α). By Axiom 4 and Theorem
6(vi),
|∼4 ML(β → α) → Lβ → Lα, so by MP4(1), |∼4Lβ → Lα.
From 	 Mγ → β we have 	 L(Mγ → β) by (N) and so, by Axiom 4 and
Theorem 6(v), 	Mγ → Lβ. Now using |∼4 γ and MP4 we have |∼4 Lα. ��

One can prove substitution of equivalence theorems for Lri.

Theorem 9. (Substitution of Equivalence for Lri with i = 1, 2, 3, 4, 5,∼>,≈)

If δ′ is the result of replacing zero or more occurrences of α in δ by β then

(i) |∼iL(α↔ β) → (δ ↔ δ′)

(ii) If |∼i α↔ β then |∼i δ ↔ δ′.

Proof. (i) By Theorem 3 and (S5).

(ii) If |∼i α↔ β, by Lemma 1(ii) |∼i L(α↔ β) and if MP0 holds we have

|∼i δ ↔ δ′.

In the i = 4 case we use Theorem 3 and Theorem 6(vi) to give

	ML(α↔ β) → (δ ↔ δ′).

|∼4 L(α↔ β) and MP4(2) give |∼4δ ↔ δ′. ��

We note two more properties of Lri. Let α →i β denote the S5-implication in
MPi (e.g. α→1 β := Mα→Mβ).

Theorem 10. (i)
Γ |∼i α 	 α→i β

Γ |∼i β
.

(ii)
Γ, α |∼i γ 	 β →i α

Γ, β |∼i γ
.

Proof. (i) This is MPi with β = γ.
(ii) By induction on the derivation of

Γ, α |∼i γ. (4)

Case 1. If γ ∈ Γ then Γ, β |∼i γ.

Case 2. If γ = α then Γ, β |∼i β,
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and the result follows by (i), as 	 β →i α.

Case 3. If 	 γ then Γ, β |∼i γ.

Case 4. (4) comes by MPi from

Γ, α |∼i δ

Γ, α |∼i η → γ

and 	 δ →i η. .

By the induction hypothesis

Γ, β |∼i δ

and Γ, β |∼i η → γ .

So the result holds by MPi. ��

Theorem 10 holds for ≈ as →i.

Let us note a nontrivial rough implication and two rough equivalences.

Lemma 2. (i) 	 α ∼> (α→ Lα).
(ii) 	 (Mα→ α) ≈ (α→ Lα).

(iii) 	 α ≈ Lα ∨ (Mα∧ ∼ α).

Proof. (i) 	 Lα→ (α→ Lα), so by (N), Axiom 4 and Theorem 6(vii),

	 Lα→ L(α→ Lα). (5)

By Theorem 6(vi), 	Mα→ (Lα→MLα), and so by Theorem 6(i),
	Mα→M(α→ Lα). Finally by (5), 	 α ∼> α→ Lα.

(ii) The following equivalences hold in S5.
By Theorem 6(xvi) and (xv):
	 L(Mα→ α) ↔Mα→ Lα, and 	Mα→ Lα↔ L(α→ Lα).

Also by Theorem 6(i), (v) and (vi):
	M(Mα→ α) ↔Mα→Mα, 	Mα→Mα↔ Lα→ Lα,
	 Lα→ Lα↔ Lα→MLα, and 	 Lα→MLα↔M(α→ Lα).

Hence 	 (Mα→ α) ≈ (α→ Lα).

(iii) In S5, by Theorem 6(xiii), (ix), (vii) and (v),
	 L(Lα ∨ (Mα∧ ∼ α)) ↔ Lα.

Also, by Theorem 6(viii), (xiv), (vi), (iv), Axiom 5 and Theorem 6(iii),
	M(Lα ∨ (Mα∧ ∼ α)) ↔Mα.

Hence 	 α ≈ Lα ∨ (Mα∧ ∼ α). ��
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5 Lr1 ∼ Lr5 ∼ Triv

We first prove a few properties of Lr1.

Theorem 11. (Deduction Theorem for Lr1)

Γ, δ |∼1 β ⇒ Γ |∼1 δ → β.

Proof. By induction on the derivation of

Γ, δ |∼1 β. (6)

Case 1. β = δ In this case 	 δ → β and by (S5) Γ |∼1 δ → β.

Case 2. β ∈ Γ In this case we have

(S5)
	 β → δ → β

MP0
Γ |∼1 β Γ |∼1 β → δ → β

Γ |∼1 δ → β
.

Case 3. (6) comes by MP1 from

Γ, δ |∼1 α

Γ, δ |∼1 γ → β

and 	 Mα→Mγ.

The latter gives using Theorem 6 (i), 	M(δ → α) →M(δ → γ).
By the induction hypothesis Γ |∼1 δ → α
and Γ |∼1 δ → γ → β.
Also 	(δ → γ → β) → (δ → γ) → (δ → β)
and so by(S5) andMP0, Γ |∼1 (δ → γ) → δ → β.
Now byMP1, Γ |∼1 δ → β. ��

Lemma 3. (i) |∼1 Mα→ α,
(ii) |∼1 α→ Lα.

Proof. (i) From Mα |∼1 Mα, Mα |∼1 α → α, 	 MMα → Mα and MP1 we
get Mα |∼1α. The result follows by Theorem 11.

(ii) By (i) |∼1 Mα→ α, so as, by Theorem 6(i) and (v), 	 M(Mα→ α) →
M(α→ Lα), the result follows by S5 and MP1. ��

Theorem 12. Lr1 is equivalent to Lr5.

Proof. (i) By Observation 4, Lr1 � Lr5.
(ii) MP5 is derivable in Lr1:
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Using Lemma 3(ii) and (MP0),

Γ |∼1 α Γ |∼1 α→ Lα

(MP1)
Γ |∼1 Lα Γ |∼1 β → Lβ 	 Lα→Mβ

	MLα→Mβ

Γ |∼1 Lβ Γ |∼1 Lβ → β Γ |∼1 β → γ

Γ |∼1 γ ��

We recall that the Trivial system (Hughes and Cresswell [11]) Triv comprises
the classical propositional logic axioms, the modal axiom Lα↔ α, and the rule
	 α, 	 α→ β ⇒ 	 β.

Theorem 13. Lr1 and Lr5 are equivalent to Triv.

Proof. By Lemma 3(ii) and Theorem 12, |∼ α ↔ Lα, both in Lr1 and Lr5.
All the S5 axioms and rules are available in these two systems as well, and
so the classical propositional logic axioms and rules are inherited too. Thus
Triv � Lr1 ∼ Lr5. For the converse, we note that the theorems and valid
rules of Lr1 ( Lr5) can be transformed using 	 α ↔ Lα to the postulates of
Triv. Hence the systems are equivalent. ��

6 Lr2 ∼ Lr∼> ∼ Lr≈ ∼ S5(2) ≺ Lr1

Theorem 14. Lr2, Lr∼>, Lr≈ and S5(2) are equivalent.

Proof. We first show that MP2, MP∼>, MP≈ are admissible in S5(2).

If we have Γ 	S5(2) α and Γ 	S5(2) β → γ, we have, by compactness subsets
{δ1, . . . , δi} and {δj , . . . , δk} of Γ such that

δ1, . . . , δi 	S5(2) α
and δj , . . . , δk 	S5(2) β → γ

and so by monotonicity, for n = max(i, k),

δ1, . . . , δn 	S5(2) α

δ1, . . . , δn 	S5(2) β → γ.

Then by Theorem 7 and Axiom 4,

	S5(2) Lδ1 → . . .→ Lδn → Lα

and 	S5(2) Lδ1 → . . .→ Lδn → Lβ → Lγ.

If also 	 Lα→ Lβ (which follows from 	 α∼>β as well as 	 α ≈ β), we have

	S5(2) Lδ1 → . . .→ Lδn → Lγ

and by Theorem 7 and monotonicity:
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Γ 	S5(2) γ.

Now we prove (N2) in Lr2, Lr∼> and Lr≈. Let |∼ denote any of |∼2, |∼∼>, |∼≈.
If Γ |∼ α then using 	 α → (Mα → α) and 	 α → (α → Lα) → Lα we can
prove: Γ |∼ Mα→ α and Γ |∼ (α→ Lα) → Lα.

Then by Lemma 2(ii), from which follows 	 L(Mα→ α) → L(α → Lα) and
	 (Mα→ α)∼>(α→ Lα), we have Γ |∼ Lα.

As MP0 holds in Lr2, Lr∼>, Lr≈, the systems are all equivalent. ��

Theorem 15. Lr1 is strictly stronger than Lr2.

Proof. Lr1 clearly contains all of S5(2) and so Lr2. We have |∼1 α → Lα by
Lemma 3(ii), but � 	α → Lα and so, by Theorem 1, � |∼2 α → Lα. Hence Lr1 is
strictly stronger than Lr2. ��

7 Lr4 ≺ Lr3 ∼ Lr0 ∼ S5(1) ≺ Lr2

Theorem 16. Lr0 is equivalent to Lr3.

Proof. MP0 holds in Lr3. We now show that MP3 holds in Lr0.

MP0

Γ |∼0 α (S5)
	 α→ β

Γ |∼0 α→ β

MP0
Γ |∼0 β Γ |∼0 β → γ

Γ |∼0 γ ��

Theorem 17. S5(1) is equivalent to Lr0.

Proof. The postulates of S5(1) hold in Lr0 by definition of the system, and in
particular, due to Theorem 8 and Lemma 1(ii). Clearly, the postulates of Lr0
hold in S5(1). ��

Corollary 1. S5(1) is equivalent to Lr3.

In view of Theorems 1, 14 and Corollary 1:

Theorem 18. Lr2, Lr3 and S5 have the same theorems.

The following Lemma allows us to show that Lr0 is strictly stronger than Lr4.

Lemma 4. If
δ1, . . . , δn |∼4 α, (7)

then for some i, 1 ≤ i ≤ n

	 δi →Mδ1 → . . .→Mδi−1 →Mδi+1 . . .→Mδn → α. (8)
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Proof. By induction on the derivation of (7).
Case 1. 	 α. Then (8) follows.
Case 2. α = δi. (8) follows.
Case 3. (7) comes by MP4 from:

δ1, . . . , δn |∼4 β,

δ1, . . . , δn |∼4 γ → αand
	Mβ → γ. (9)

By the induction hypothesis, for some i and j:

	 δj → Mδ1 → . . .→Mδj−1 →Mδj+1 → . . .→Mδn → β

	 δi → Mδ1 → . . .→Mδi−1 →Mδi+1 → . . .→Mδn → γ → α (10)

Using Theorem 6(ii), (i) and (v):
	Mδj → Mδ1 → . . .→Mδj−1 →Mδj+1 → . . .→Mδn →Mβ.

So by (9)
	Mδj → Mδ1 → . . .→Mδj−1 →Mδj+1 → . . .→Mδn → γ,

and by (10) and Theorem 6(iii) we obtain (8). ��

Note 8. (i) Writing α⇒ β for the discussive implication Mα→ β, this Lemma
gives:

δ1, . . . , δn |∼4 α ⇒ 	 δi → δ1 ⇒ . . . δi−1 ⇒ δi ⇒ . . . δn ⇒ α.

(ii) As 	 δi → . . . implies |∼4 δi → . . ., the Lemma is also a form of deduction
theorem for Lr4.

Theorem 19. Lr3 is strictly stronger than Lr4.

Proof. MP4 is clearly valid in Lr0. We have:

p→ q, p |∼0 q,

but not 	 (p→ q) →Mp→ q
nor 	 p→M(p→ q) → q.
So by Lemma 4,

p→ q, p � |∼4 q.

��

Using Theorems 16, 17, 5 and 14, we thus obtain

Theorem 20. Lr4 ≺ Lr3 ∼ Lr0 ∼ S5(1) ≺ Lr2.
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8 The Banerjee and Chakraborty Systems, Jaśkowski’s J
and the Systems Lri

Jaśkowski’s discussive logic J is given (see da Costa and Doria [15]) by:

Definition 4. J Γ 	J α⇔MΓ 	S5(1) Mα.

We have in Banerjee [6]

Theorem 21. J is equivalent to LR.

Further,

Theorem 22. Lr is strictly weaker than LR.

Proof. α, Mα → β 	J β, but p,Mp → q �	r q. The latter requires (see Bunder
[5]) 	Mp→Mq or 	M(Mp→ q) →Mq, both of which fail. ��

Theorem 23. Lr1 is strictly stronger than J.

Proof. From Theorem 13 it follows that Lr1 is stronger than or equivalent to J.

p, p→ q |∼1 q

holds but
p, p→ q � 	J q

as
Mp, M(p→ q) � 	S5(1)Mq.

��

Theorem 24. J is strictly stronger than Lr4.

Proof. MP4 is derivable in J :
Γ 	J α, Γ 	J β → γ and 	 Mα → β imply, by definition of 	J , MΓ 	
Mα, MΓ 	M(β → γ). But the last gives, by Theorem 6(i), MΓ 	 Lβ →Mγ.
Also, 	 Mα → Lβ, using rule (N) and Axiom 6 of S5 on 	 Mα → β. Thus,
MΓ 	Mα→Mγ, and as MΓ 	Mα, we get MΓ 	Mγ, i.e. Γ 	J γ.
We note that Mα 	J α, but Mp �	 p. As Lr4 ≺ S5(1) (Theorem 20), Mp � |∼4p.

Theorem 25. Lr and J are both independent of each of Lr2 and Lr3.

Proof. Given Theorems 22, 21 and 20, all we require is to show:

(i) there is α such that |∼rα, but � |∼2α, and
(ii) there is α such that 	 α, but �	J α.

(i) We have by Theorem 6(v) and (i),

	M(Mα→ α),
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and so
|∼r Mα→ α.

But
� 	Mp→ p,

and so
� |∼S5(2)Mp→ p,

i.e.
� |∼2 Mp→ p.

(ii) As demonstrated for Theorem 23,

p, p→ q 	 q

holds but
p, p→ q � 	J q.

��

Theorem 26. Lr is independent of Lr4.

Proof.
p,Mp→ q |∼4 q

(MP4(1)), but as noted in the proof of Theorem 22,

p,Mp→ q � |∼r q.

As Lr4 ≺ Lr2, we get the other side through part (i) in the proof of Theorem
25. ��

9 Some Extended Systems

9.1 The + Systems

Definition 5. Lr+
i :

The system Lr+
i , where i = 1, 2, 3, 4,∼> or ≈, is the system Lri with the S5-

premise in MPi modified to include Γ on the left of the 	.

The modified MPi will be called MP+
i and the modified |∼i, |∼

+
i .

As
	 γ

Γ 	 γ
holds each MPi follows from MP+

i and so:

Theorem 27. Each Lr+
i is stronger than or equivalent to Lri.

Theorem 28. Lr+
1 and Lr+

5 are equivalent to Lr1.
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Proof. 	 α ↔ Lα and the substitution of equivalence rule will be provable in
Lr+

1 , so any valid judgement Γ |∼+
1 β can be transformed into a valid judgement

of classical propositional logic. Thus by Theorem 13, Γ |∼1β is valid as well.
Similarly for Lr+

5 . ��

Theorem 29. Lr+
2 , Lr+≈ and Lr+

∼> are all equivalent to Lr2.

Proof. We show that MP+
2 is derivable in Lr2. It then follows that MP+

∼> and
MP+≈ (rule (RMP) of the Introduction) are derivable too.
If Γ 	 Lα→ Lβ, then for a finite subset {δ1, . . . , δn} of Γ , δ1, . . . , δn 	 Lα→ Lβ.

By the deduction theorem for S5(1) and propositional calculus:

	 Lα→ δ1 → . . .→ δn → Lβ

and so
	 Lα→ δ1 → . . .→ δn → β.

By (N), Axiom 4 and Theorem 6(vii),

	 Lα→ L(δ1 → . . .→ δn → β.) (11)

We next have given Γ |∼2 β → γ:

	 (β → γ) → δn → (δn → β) → γ

MP0
Γ |∼2 β → γ Γ |∼2 (β → γ)→ δn → (δn → β) → γ

MP0
Γ |∼2δn Γ |∼2δn → (δn → β) → γ

Γ |∼2(δn → β) → γ
Repeating the process we obtain

Γ |∼2 (δ1 → . . .→ δn → β) → γ.

Now using (11) and Γ |∼ α we have by MP2,

Γ |∼2 γ.

So MP+
2 holds. ��

Theorem 30. Lr+
3 is equivalent to Lr3.

Proof. Let Γ 	 α→ β. Then by compactness, for some finite subset {δ1, ..., δn}
of Γ , δ1, ..., δn 	 α→ β. As the deduction theorem holds for S5(1),

	 δ1 → . . .→ δn → α→ β

|∼3 δ1 → . . .→ δn → α→ β

and by MP0,
Γ |∼3 α→ β.

Now if Γ |∼3 α and Γ |∼3 β → γ,MP0 gives Γ |∼3 γ.

So MP+
3 holds in Lr3. ��
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Theorem 31. Lr+
4 is equivalent to Lr0.

Proof. We show that MP0 is derivable in Lr+
4 .

We assume Γ |∼+
4 α. As, clearly, Lr+

4 is weaker than or equivalent to Lr+
3 , which

is equivalent to S5(1), we have Γ 	 α, and so Γ 	Mα→ α.
If also Γ |∼+

4 α→ β, we have, by MP+
4 , Γ |∼+

4 β. ��

Lr and LR can be extended to L+
r and LR+ (just as for Lri), by adding Γ before

the 	 in the modus ponens rules. However, it seems that, when this is done, the
two variants of Lr in Bunder [5] and Banerjee [6] are no longer equivalent. In
fact it seems there are at least three variants of L+

r and three of LR+. We have
some results on these but most of this work is left for later.

Fig. 1. The consequences

10 Conclusions

We have studied a number of rough consequence logics which come in a natural
way from (RMP ) and have studied their relative strengths. These logics are
represented in the following figure. Here a downward line leads from a system
to a system that is strictly weaker. A dotted line joining two systems indicates
that the systems are independent.

It is interesting to note that the logics Lr and LR(∼ J) are independent of
almost all the other systems. Neither Lr, nor LR has standard modus ponens,
while all the Lris, except Lr4, do. All systems except Lr2 (and those equivalent
to it) and Lr4 have a standard deduction theorem.

Lr, LR and also Lr4 are paraconsistent, i.e. α,∼ α |∼ β fails. None of the
other systems are paraconsistent.

As for semantics, one can see that little is missing – considering the equiv-
alences established between the various systems. S5(1) has a well-known se-
mantics, Fitting [12] gives a semantics for a system equivalent to S5(2), while
those for Lr and LR (as mentioned in the Introduction) can be found in [3,6].
Only Lr4 remains. However, the soundness of the rule MP4 is not a problem, as
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(again from the established relationships) it would be sound in each of the logics
LR, S5(1), S5(2).

The observation that all the systems cluster into a few equivalence classes,
should be of help in possible applications of these systems. One can foresee
situations where approximate reasoning would be required, in particular, where
the antecedent of the major premise of MP does not fully match with the minor
premise, but only does so roughly. Looking into concrete applications of the
logics, is however, beyond the scope of the present work.

As yet unsolved problems include:

1. What are the semantics for the new system Lr4?
2. What are the relations between the various L+

r and LR+ systems?
3. How do these results change if we replace our use of S5 by that of a weaker

modal logic?
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Abstract. For completely specified decision tables lower and upper ap-
proximations are unique, the lower approximation is the largest definable
set contained in the approximated set X and the upper approximation
of X is the smallest definable set containing X. For incomplete decision
tables the existing definitions of upper approximations provide sets that,
in general, are not minimal definable sets. The same is true for gener-
alizations of approximations based on relations that are not equivalence
relations. In this paper we introduce two definitions of approximations,
local and global, such that the corresponding upper approximations are
minimal. Local approximations are more precise than global approxima-
tions. Global lower approximations may be determined by a polynomial
algorithm. However, algorithms to find both local approximations and
global upper approximations are NP-hard. Additionally, we show that
for decision tables with all missing attribute values being lost, local and
global approximations are equal to one another and that they are unique.

1 Introduction

Development of appropriate methodology to incomplete data sets is crucial since
many real-life data sets have missing attribute values. Mining incomplete data
requires either a preprocessing (filling in missing attribute values before the main
process of rule set induction, decision tree generation, etc.) or mining the data
set taking into account that it is incomplete. In this paper we will use the latter
approach.

Initially rough set theory was applied to complete data sets (with all attribute
values specified). Recently rough set theory was extended to handle incomplete
data sets (with missing attribute values) [1,2,3,4,5,6,8,9,10,11,20,21,22,23]. We
observe intensive research activity in two areas: rough set approaches to handle
incomplete data, mostly in the form of decision tables with missing attribute
values, and, in many attempts to study generalizations of the standard indis-
cernibility relation used to describe decision tables. In the latter area concerned
relations are not equivalence relations. Our paper contributes to both research
areas.
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In general, incomplete decision tables are described by characteristic relations,
in a similar way as complete decision tables are described by indiscernibility
relations [3,4,5,6].

In spite of the fact that input data are presented as decision tables in ap-
plications of rough set theory, in theory oriented research such information is
frequently expressed as approximation spaces and neighborhood systems [12,17].

Our main objective is to study two novel kinds of approximations: local and
global. Both of the two kinds of approximations are optimal in some sense. It
means that lower approximations, local and global, are the largest sets that are
locally and globally definable, respectively, and contained in the approximated
set X . Similarly, upper approximations, local and global, are the smallest sets
that are locally and globally definable, respectively, containing the approximated
set X . As it will be shown the two kinds of approximations coincide for complete
data, and they may differ for incomplete data sets.

A preliminary version of this paper was presented at the Fifth International
Conference on Rough Sets and Current Trends in Computing, Kobe, Japan,
November 6–8, 2006 [7].

2 Basic Notions

We assume that the input data sets are presented in the form of a decision ta-
ble. An example of a decision table is shown in Table 1. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, ..., 8}. Some variables are called
attributes while one selected variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table 1, A = {Temperature,
Headache, Nausea}. Any decision table defines a function ρ that maps the di-
rect product of U and A into the set of all values. For example, in Table 1,
ρ(1, T emperature) = high. A decision table with completely specified function
ρ will be called completely specified, or, for the sake of simplicity, complete.

For a complete decision table indiscernibility relation indB is defined accord-
ing to the following formula

indB = {(x, y) ∈ U2 | ρ(x, a) = ρ(y, a), a ∈ B}.

For any B ⊆ A, indB is an equivalence relation. Let [x]B denotes the equivalence
class containing x with respect to the relation indB, let IA = {[x]A | x ∈ U} and
I = {[x]B|x ∈ U,B ⊆ A}. It is known that every set X ⊆ U may be presented
as a union of some elements of the family I if and only if it can be presented as
a union of some elements of the family IA. Elements of the family IA are called
elementary sets. Every set X ⊆ U that is a union of some elementary sets is
called definable. We assume that the empty set is definable and we denote the
family of all definable sets by D. It was observed in [16,17] that a pair (U,D) is a
topological space with a topology of open-closed sets. This topology is equivalent
to a topology defined by a base IA as well as defined by a base I. A family IA is
a base of D with the smallest cardinality. The largest definable set X contained
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Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes

2 very high yes yes yes

3 ? no no yes

4 high yes yes yes

5 high ? yes yes

6 normal yes no yes

7 normal no yes no

8 * yes * no

in X ⊆ U will be called a lower approximation of X . The smallest definable set
X containing X ⊆ U will be called an upper approximation of X . Therefore in
the topological space (U, I), the lower approximation of the set is its interior
and the upper approximation of the set is its closure. Thus in any discussion on
definability and approximations of the set, we may restrict ourselves to elements
of the space (U, IA). This is an important property since the set IA is easy to
compute.

In the topological space (U, I), the set X ⊆ U will be called J-definable if it
can be presented as a union of some elements of the family J , where J ⊆ I.
Obviously, if J1 ⊆ J2, then every set J1-definable is also J2-definable, [16,17].

3 Incomplete Data Sets

In practice, input data for data mining are frequently affected by missing at-
tribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ
will be called incomplete.

For the rest of the paper we will discuss incomplete data sets such that for
each case at least one attribute value is specified and all decision values are
specified. In this paper we will distinguish two types of missing attribute values.

The first type of missing attribute value will be called lost. A missing attribute
value is lost when for some case (example, object) the corresponding attribute
value was mistakenly erased or forgotten to enter into the data set. The original
value existed but for a variety of reasons now it is not accessible.

The second type of missing attribute values, called ”do not care” conditions,
are based on an assumption that missing attribute values were initially, when
the data set was created, irrelevant. For example, in a medical setup, patients
were subjected to preliminary tests. Patients whose preliminary test results were
negative were diagnosed as not affected by a disease. They were perfectly well
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diagnosed in spite of the fact that not all tests were conducted on them. Thus
some test results are missing because these tests were redundant. In different
words, a missing attribute value of this type may be potentially replaced by any
value typical for that attribute. This type of a missing attribute value will be
called a ”do not care” condition.

Note that both types of missing attribute values are universal (or standard),
since they can be used for any incomplete data set. Obviously, if we are familiar
with the reason why some attribute values are missing, we should apply the
appropriate interpretation: lost values or ”do not care” conditions.

For the rest of the paper we will denote lost values by ”?” and ”do not care”
conditions by ”*”. An example of incomplete decision table is shown in Table 1.

For incomplete decision tables there are two special cases: in the first case, all
missing attribute values are lost, in the second case, all missing attribute values
are ”do not care” conditions. Incomplete decision tables in which all attribute
values are lost, from the viewpoint of rough set theory, were studied for the
first time in [8], where two algorithms for rule induction, modified to handle
lost attribute values, were presented. This approach was studied later, e.g., in
[21] and [22], where the indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were extensively studied in [10], [11], including extending the idea
of the indiscernibility relation to describe such incomplete decision tables.

Other types of missing attribute values are possible as well, see, e.g., [6].
Moreover, note that some other rough-set approaches to missing attribute values
were presented in, e.g., [1,2,15].

4 Blocks of Attribute-Value Pairs

An important tool to analyze decision tables is a block of the attribute-value
pair. Let a be an attribute, i.e., a ∈ A and let v be a specified value of a for
some case. A block of an attribute-value pair is defined in the following way:

– If for a specified attribute a there exists a case x such that ρ(x, a) =?, i.e.,
the corresponding value is lost, then the case x should not be included in
any blocks[(a, v)] for all values v of attribute a,

– If for a specified attribute a there exists a case x such that the corresponding
value is a ”do not care” condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.
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Alternatively, a block of the pair (a, v) is defined according to the following
formula:

[(a, v)] = {x ∈ U |ρ(x, a) = v or ρ(x, a) = ∗}.

Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8},

For data sets with other types of missing attribute values, the definition of
the attribute-value block is modified, see, e.g., [6].

5 Definability

As it was mentioned in Section 1, for complete data sets the family IA is the
set of all elementary sets. Additionally, the cardinality of the set IA is smaller
than or equal to the cardinality of the set U . Thus testing whether a set X is
definable is—computationally—a simple task. For incomplete data the situation
is different. For a case x ∈ U the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a))] of attribute a
and its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U.

Characteristic set KB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. In [25] KA(x) was called a successor
neighborhood of x, see also [12,13,14,19,24,26,27].

Let K = {KB(x)|x ∈ U,B ⊆ A} and KB = {KB(x) | x ∈ U}, for B ⊆ A. For
Table 1 members of the family KA are:

KA(1) = {1, 4, 5, 8} ∩ U ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = U ∩ {2, 4, 6, 8} ∩ U = {2, 4, 6, 8}.



26 J.W. Grzyma�la-Busse and W. Rza̧sa

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).

The characteristic relation R(B) is reflexive but—in general—does not need to
be symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets KB(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7),
(8, 2), (8, 4), (8, 6), (8, 8)}. The most convenient way to define the characteristic
relation is through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [21], see also, e.g., [20,22].

For decision tables where all missing attribute values are ”do not care” condi-
tions a special characteristic relation was defined in [10], see also, e.g., [11].

For incomplete data sets, a set X will be called B-globally definable if it is
KB-definable, i.e., if X is a union of members of the family KB. A set that is
A-globally definable will be called globally definable. Obviously, the cardinality of
the set KA is smaller than or equal to the cardinality of U , so checking whether
a set is globally definable is computationally easy. However, in general KA is
not a base of the approximation space (U,K). Thus X may be KB-definable in
this space (for some B ⊆ A) in spite of the fact that it is not KA-definable.
Moreover, a set may be K-definable and be not KB-definable for any fixed
B ⊆ A. The family K may have much greater cardinality than the family KA.
As a consequence, the problem of checking whether a set is definable in the space
(U,K) is computationally complex. Similarly, searching for a base of the space
(U,K) may be computationally complex.

For incomplete data set it is advantageous to define a local definability. A set T
of attribute-value pairs, where all attributes belong to set B and are distinct, will
be called a B-complex. Any A-complex will be called—for simplicity—a complex.
Obviously, any set containing a single attribute-value pair is a complex. For the
rest of the paper we will discuss only nontrivial complexes, i.e., such complexes
that the intersection of all attribute-value blocks from a given complex is not
the empty set.

Set X depends on a complex T if and only if

∅ �= [T ] =
⋂
{[t] | t ∈ T } ⊆ X.

For an incomplete decision table and a subset B of the set A of all attributes, a
union of intersections of attribute-value pair blocks of attribute-value pairs from
some B-complexes, will be called a B-locally definable set. A-locally definable
sets will be called locally definable. If (U,A, d, V, ρ) is an incomplete decision
table, then the space (U,L) is an approximation space, where L is a family of all
subsets of the set of all possible intersections of attribute-value blocks, members
of complexes. Obviously, L ⊇ K for any decision table. Thus, the computational
complexity of the problems of looking for a minimal base of the space (U,L) and
checking whether a set is locally definable is exponential.
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Any set X that is B-globally definable is B-locally definable, the converse is
not true. In the example of Table 1, the set {7, 8} is a A-locally definable since
it is equal to the intersection of [(Temperature, normal)] and [(Nausea, yes)].
Nevertheless, the set {7, 8} is not A-globally definable.

The importance of the idea of local definability is a consequence of the follow-
ing fact: A set is locally definable if and only if it can be expressed by decision
rule sets. This is why it is so important to distinguish between locally definable
sets and those that are not locally definable.

For decision tables in which all missing attribute values are lost, local defin-
ability is reduced to global definability. The proof of this fact will be given in
Section 7.

Note that definability, introduced in [19], differs from our definitions. For
example, the set {1, 2, 4, 6, 8}, globally definable according to our definition, is
not definable in [19]. Additionally, sets that are definable in [19], are not even
locally definable according to our definition.

6 Local Approximations

Let X be any subset of the set U of all cases. The set X is called a concept and
is usually defined as the set of all cases defined by a specific value of the decision.
In general, X is not a B-definable set, locally or globally.

Let B ⊆ A. The B-local lower approximation of the concept X , denoted by
LBX , is defined as follows

⋃
{[T ] | T is a complex of X , [T ] ⊆ X }.

The B-local upper approximation of the concept X , denoted by LBX , is defined
as the minimal set containing X and defined in the following way
⋃
{[T ] | ∃ a family T of complexes T of X with ∀ T ∈ T , [T ] ∩X �= ∅}.

Obviously, the B-local lower approximation of X is unique and it is the largest
B-locally definable set contained in X . Any B-local upper approximation of X
is B-locally definable, it contains X , and is, by definition, the smallest.

For Table 1

LA{1, 2, 3, 4, 5, 6} = ([(Headache, no)] ∩ [(Nausea, no)]) = {3},

so one complex, {(Headache, no), (Nausea, no)}, describes LA{1, 2, 3, 4, 5, 6},

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8},

so again, one complex, {(Temperature, normal), (Nausea, yes)}, describes LA
{7, 8}.

LA{1, 2, 3, 4, 5, 6}=
[(Temperature, high)]∪ [(Headache, yes)] ∪ [(Nausea, no)] =

{1, 2, 3, 4, 5, 6, 8},
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therefore, to describe LA{1, 2, 3, 4, 5, 6} three complexes are necessary: {(Tem-
perature, high)}, {(Headache, yes)}, {(Nausea, no)}. Finally,

LA{7, 8} = LA{7, 8} = {7, 8}.

For the incomplete decision table from Table 1 the local lower approximations
for both concepts, {1, 2, 3, 4, 5, 6} and {7, 8}, as well as the upper local approx-
imations for these concepts, are unique. Though the local lower approximations
are always unique, the local upper approximations, in general, are not unique.
For example, let us consider an incomplete decision table from Table 2.

Table 2. An incomplete decision table

Attributes Decision

Case Age Complications Hypertension Delivery

1 * alcoholism mild pre-term

2 >35 obesity severe pre-term

3 >35 obesity ? pre-term

4 * none none pre-term

5 >35 none none full-term

6 <25 none none full-term

7 25..35 none none full-term

For Table 2

[(Age, <25)] = {1, 4, 6},
[(Age, 25..35)] = {1, 4, 7},
[(Age, >35)] = {1, 2, 3, 4, 5},
[(Complications, alcoholism)] = {1},
[(Complications, obesity)] = {2, 3},
[(Complications, none)] = {4, 5, 6, 7},
[(Hypertension, mild)] = {1}.
[(Hypertension, severe)] = {2}.
[(Hypertension, none)] = {4, 5, 6, 7}.

Moreover, for Table 2

LA{1, 2, 3, 4} =
[(Complications, alcoholism)]∪ [(Complications, obesity)] =

{1, 2, 3},

LA{5, 6, 7} = ∅,
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However,
LA{1, 2, 3, 4}

is not unique, any of the following sets

[(Age,> 35)] = {1, 2, 3, 4, 5},

[(Age,< 25)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 6},

or

[(Age, 26..35)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 7}.

may serve as local upper approximations of {1, 2, 3, 4}.
Lastly,

LA{5, 6, 7} = [(Complications, none)] = {4, 5, 6, 7}.

Algorithms to compute local lower or upper approximations are NP-hard, since
the corresponding problems may be presented in terms of prime implicants,
monotone functions, and minimization. A similar result for reducts of complete
decision tables is well known [18].

7 Global Approximations

For incomplete decision tables global lower and upper approximations may be
defined in a few different ways, see, e.g., [3,4,5]. In this paper we suggest yet
another definition of global approximations. Note that our definition of global
approximations is based on characteristic sets, as oppose to local approximations,
introduced in the previous section, where attribute-value blocks were used.

Again, let B ⊆ A. Then B-global lower approximation of the concept X ,
denoted by GBX , is defined as follows

⋃
{KB(x) | x ∈ X,KB(x) ⊆ X}.

Let us observe that the definition of global lower approximation is identical with
the definition of subset (or concept) lower approximation [3,4,5]. The B-global
upper approximation of the concept X , denoted by GBX , is defined as the
minimal set containing X and defined in the following way

⋃
{KB(x) | ∃ Y ⊆ U ∀ x ∈ Y, KB(x) ∩X �= ∅}.

Similarly as for local approximations, a global lower approximation for any con-
cept X is unique. Additionally, both B-global approximations, lower and upper,
are B-globally definable. On the other hand, global upper approximations do
not need to be unique. For Table 1,

GA{1, 2, 3, 4, 5, 6} = KA(3) = {3},
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GA{7, 8} = KA(7) = {7},

GA{1, 2, 3, 4, 5, 6} =
KA(1) ∪KA(2) ∪KA(3) ∪KA(5) ∪KA(6) = {1, 2, 3, 4, 5, 6, 8}.

Furthermore,
GA{7, 8}

may be computed in four different ways:

(1) as KA(1) ∪KA(7) = {1, 7, 8},
(2) as KA(2) ∪KA(7) = {2, 7, 8},
(3) as KA(4) ∪KA(7) = {4, 7, 8},
(4) or as KA(6) ∪KA(7) = {6, 7, 8},

all four sets are global upper approximations of the concept {7, 8}.
In general, local approximations are more precise than global approximations.

For any concept X and a subset B of A,

LBX ⊇ GBX

and

LBX ⊆ GBX.

It is not difficult to find a simple algorithm to compute global lower approxi-
mation in polynomial time. Nevertheless, algorithms to compute global upper
approximations are NP-hard as well.

On the other hand, determining local and global approximations is quite sim-
ple for incomplete data sets with all missing values being lost. For decision tables
with all missing values being lost, the following results hold:

Lemma 1. Let the only missing attribute values in a decision table be lost. Let
x, y ∈ U , let B be a subset of the attribute set A, and let y ∈ KB(x). Then
KB(y) ⊆ KB(x).

Proof. Let a1, a2, ..., an be all attributes from B such that ρ(x, ai) = vi is
specified (i.e., vi �= ?) for all i = 1, 2, ..., n. Then KB(x) is equal to

[(a1, v1)] ∩ [(a2, v2)] ∩ ... ∩ [(an, vn)].

If y ∈ KB(x) then y ∈ [(a1, v1)], y ∈ [(a2, v2)],... y ∈ [(an, vn)]. Moreover,
ρ(y, ai) are all specified, for i = 1, 2, ..., n, since all missing attribute values are
lost. Obviously, it is possible that for some a ∈ A−B, ρ(y, a) is specified as well.
Thus KB(y) is a subset of the following set [(a1, v1)]∩[(a2, v2)]∩...∩[(an , vn)], or,

KB(y) ⊆ KB(x).
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Lemma 2. Let the only missing attribute values in a decision table be lost. Let
T be a nontrivial complex. Let B be the set of all attributes involved in T . There
exists x ∈ U such that [T ] = KB(x).

Proof. Let {a1, a2, ..., an} = B. Let T = {(a1, v1), (a2, v2), ..., (an, vn)}, where
v1, v2, ...vn are values of a1, a2, ..., an, respectively. Then for any x ∈ [T ], ρ(x, a1)
= v1, ρ(x, a2) = v2, ..., ρ(x, an) = vn, since all missing attribute values are lost.
Therefore, [T ] = KB(x).

Lemma 3. Let the only missing attribute values in a decision table be lost. Let
B be a subset of the set A of all attributes. For every nontrivial complex T such
that all attributes involved in T are in B there exists a subset X of U such that

[T ] =
⋃
{KB(x) | x ∈ X}.

Proof. Let C be the set of all attributes involved in T , i.e., if T = {(a1, v1),
(a2, v2), ..., (an, vn)}, where v1, v2, ...vn are values of a1, a2, ..., an, respectively,
then C = {a1, a2, ..., an}. There exists y ∈ U such that [T ] = KC(y), by Lemma
2. Let X = [T ]. Thus, ∪{KB(y) | y ∈ X} ⊆ [T ] since C ⊆ B. On the other hand,
[T ] ⊆ ∪{KB(y) | y ∈ X} since y ∈ KB(y). Thus ∪{KB(y) | y ∈ X} = [T ].

Due to our last result, we may observe that for data sets with the only missing
attribute values being lost, sets KB(x), for x ∈ U and B ⊆ A, are finer granules
(subsets of U) than any nontrivial B-complexes, since any nontrivial B-complex
is a union of some sets KB(x).

Theorem 1. Let the only missing attribute values in a decision table be lost and
let B be a subset of the attribute set A. Then every subset X ⊆ U is B-locally
definable if and only if it is B-globally definable.

Proof. Straightforward, due to Lemma 3.

Theorem 2. Let the only missing attribute values in a decision table be lost
and let B be a subset of the attribute set A. Then for every concept X ⊆ U ,
its B-local approximations are equal to its B-global approximations. Moreover,
computing such approximations is of polynomial computational complexity.

Proof. For lower approximations, the proof is obvious since LBX ⊇ GBX and
Lemma 3. Similarly for upper approximations since LBX ⊆ GBX and Lemma
3. Thus, we may compute the lower approximation (B-local or B-global) using
the following formula

GBX =
⋃
{KB(x) | x ∈ X,KB(x) ⊆ X},

and, by analogy, the upper approximation (also, B-local or B-global) using the
following formula

GBX =
⋃
{KB(x) | x ∈ X}.

The last formula needs some explanation. The B-global upper approximation
GBX is defined as a minimal set satisfying the following formula:

⋃
{KB(x) | ∃ Y
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⊆ U ∀ x ∈ Y, KB(x) ∩X �= ∅}. Any y ∈ U −X such that KB(y) ∩X �= ∅ may
be ignored as a member of Y since if x ∈ KB(y) ∩ X then KB(x) ⊆ KB(y) by
Lemma 1, i.e., any element from KB(y) ∩ X can be covered by some KB(x),
where x ∈ X . Thus we may assume that Y ⊆ X .

Moreover, we may also assume that Y = X . Indeed, let us suppose that Y
should be a proper subset of X and let x ∈ X − Y . Then x ∈ KB(y) for some
y ∈ Y . However, KB(x) ⊆ KB(y), by Lemma 1. Therefore, if we assume that
Y = X , the set GBX will be not affected.

Computing both GBX and GBX using such formulas requires an algorithm
with time computational complexity, in the worst case, of O(n2 ·m), where n is
the cardinality of U and m is the cardinality of A.

Corollary. Let the only missing attribute values in a decision table be lost and
let B be a subset of the attribute set A. For every concept X ⊆ U , all B-local
upper approximations of X are unique, all B-global upper approximations of X
are unique, and are equal to one another.

8 Conclusions

In this paper we introduced two new kinds of approximations: local and global.
These approximations describe optimally approximated sets (lower approxima-
tions are largest, upper approximations are smallest and, at the same time, local
approximations are locally definable while global approximations are globally
definable).

Note that our global approximations may be used to describe behavior of sys-
tems defined by relations that are not equivalence relations, as in
[12,13,14,19,24,25,26,27].

As a final point, optimality comes with the price: in a general case algorithms
to compute both local upper approximations and global upper approximations
are NP-hard.
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Abstract. A dominance-based rough set approach (DRSA) to multi-
ple criteria ABC analysis (MCABC) is designed and compared to other
approaches using a practical case study. ABC analysis is a well-known in-
ventory planning and control approach, which classifies inventory items,
or stock-keeping units (SKUs), based solely on their annual dollar us-
age. Recently, it has been suggested that MCABC can provide more
managerial flexibility by considering additional criteria such as lead time
and criticality. This paper proposes an MCABC method that employs
DRSA to generate linguistic rules to represent a decision maker’s pref-
erences based on the classification of a test data set. These linguistic
rules are then applied to classify other SKUs. A case study is used to
compare the DRSA with other MCABC approaches to demonstrate the
applicability of the proposed method.

Keywords: Inventory management, ABC analysis, multiple criteria de-
cision analysis, rough set theory, dominance-based rough set approach.

1 Introduction

In response to demand for mass customization, firms often increase inventories
of components, work-in-progress, and spare parts [30]. The different items in
an inventory system, referred to as stock-keeping units (SKUs), typically num-
ber in the thousands. Corner convenience stores, for instance, may have several
thousand SKUs. In such a large inventory system, specific control schemes for
individual SKUs are simply not practical, as they would leave no resources for
other management activities [5]. Instead, a general practice in industry is to
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aggregate SKUs into several groups and apply control policies that are uniform
across each group [1].

One commonly used approach to classifying SKUs is ABC analysis. In the
traditional ABC analysis, SKUs are ranked in descending order of annual dollar
usage, the product of unit price and annual demand. The top few SKUs, with
the highest annual dollar usage, are placed in group A, which will receive the
most management attention; the SKUs with least annual dollar usage are placed
in group C and will receive the least management attention; and the remaining
SKUs are placed in group B. Figure 1 captures the essence of this rule.

Cumulative 
percentage of 
dollar usage

Cumulative 
percentage 
of SKUs

80%

20%

Fig. 1. Example of Dollar Usage Distribution Curve [2]

Traditional ABC analysis can be viewed as an implementation of Pareto’s fa-
mous observation about the uneven distribution of national wealth [19]: the ma-
jority of national wealth is controlled by a few, and the majority of the population
controls only a small portion of the wealth. Applications similar to ABCanalysis are
found in many managerial areas [32]; for instance, in marketing it is often observed
that the majority of sales come from a few important customers, while a significant
proportion of total sales is due to a large number of very small customers.

Classical ABC analysis has been criticized because of the amount of attention
that management pays to an SKU depends on a single criterion, the annual dollar
usage of the SKU at the time of classification [9]. However, other attributes of
an SKU sometimes play a significant role in prioritization. For instance, suppose
that two SKUs are virtually identical except that one is easy to replace while the
other is unique and has only one specific supplier. Understandably the SKU with
higher substitutability should receive less management attention. Other criteria
that could be accounted for include obsolescence, repairability, criticality, and
lead time [7], [8].

To carry out multiple criteria classification of SKUs, a variety of approaches
has been proposed. One of the first attempts was the Flores and Whybark’s
bi-criteria matrix method [7]. This approach begins by selecting another critical
criterion, in addition to dollar usage, depending on the nature of the industry.
Some examples are obsolescence, lead time, substitutability, reparability, criti-
cality and commonality [7]. Next, the model requires that SKUs be divided into
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three levels of importance, A, B, and C, for each of the two criteria, respec-
tively. The model then reclassifies SKUs into three categories, AA, BB, and CC,
representing the three new groups, according to some rules jointly determined
by the new criterion and the dollar usage. The structure of the model can be
conveniently represented as a joint criteria matrix as shown in Figure 2, adapted
from [7]. A general guideline as indicated by the arrows is to regroup AB and
BA as AA, AC and CA as BB, and BC and CB as CC.

AA AB AC

BA BB BC

CA CB CC

A

B

C

A B C

Dollar
Usage

Another Critical Criterion

Fig. 2. The Joint Matrix for Two Criteria

Other approaches include the analytic hierarchical process (AHP) [9,21], ge-
netic algorithm [15] and artificial neural networks [20]. Recently, based upon the
same case study as described in [9], Ramanathan [27], Ng [17], Zhou and Fan [33],
and Chen et al. [2,4] proposed various new approaches to MCABC. For example,
Chen et al. [4] proposed a multiple criteria ABC analysis (MCABC) method that
employs DRSA to generate linguistic rules for representing a decision maker’s
preferences based on the classification of a test data set.

In this paper, we refine the previous work in [4] and provide a comprehensive
analysis procedure to demonstrate how DRSA can be applied to MCABC. Our
results are then compared with other approaches using a practical case study.
More specifically, we show how DRSA, a recent advance in rough set theory
[11], can be applied to extract information about a decision maker’s preferences
from the classification of test data and then generate a set of decision rules to
classify other SKUs. In addition, the compatibility of DRSA to generate decision
rules with other methods are tested and the comparison of classification ability
is explored.

The reminder of the paper is organized as follows. Section 2 provides some
background pertaining to multiple criteria decision analysis, while Section 3 de-
scribes the DRSA in the context of MCABC. An illustrative example is furnished
in Section 4, followed by some concluding remarks in Section 5.

2 Multiple Criteria Decision Analysis

Multiple criteria decision analysis (MCDA) is a set of techniques to assist a
single decision maker (DM) to choose, rank, or sort a finite set of alternatives
according to two or more criteria [28]. The first step of MCDA is to establish
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a basic structure of the decision problem: define the objectives, arrange them
into criteria, identify all possible alternatives, and measure the consequences of
each alternative on each criterion. A consequence is a direct measurement of the
success of an alternative against a criterion (e.g. cost in dollars). Note that a
consequence is usually a physical measurement or estimate; it should not include
preferential information.

Figure 3, adapted from [3], shows the basic structure of an MCDA problem.
In this figure, N = {N1, N2, · · · , N i, · · · , Nn} is a set of alternatives, and Q =
{1, 2, · · · , j, · · · , q} is a set of criteria. The consequence of alternative N i over
criterion j is denoted cj(N i), which can be shortened to ci

j when there is no
possibility of confusion. Note that there are n > 1 alternatives and q > 1 criteria.

2

...C
ri

te
ri

a

Alternatives

1

j

q

icj

N1 N2 Ni Nn......

...

Fig. 3. The Structure of MCDA

Several approaches are available for a DM to structure a decision problem
as per Figure 3. Roy [28] suggested that MCDA can be organized into three
problématiques, or fundamental problems, as follows:

• α, Choice problématique. Choose the best alternative from N.
• β, Sorting problématique. Sort the alternatives of N into predefined,

relatively homogeneous groups, arranged in preference order.
• γ, Ranking problématique. Rank the alternatives of N from best to worst.

MCABC is a special kind of sorting problématique: the alternatives are SKUs,
and they are to be arranged into three groups, A, B or C. The preference order
A � B � C signifies that an SKU in A is to receive more management attention
than an SKU in B, for instance. It is understood that SKUs in the same group
are to receive equal management attention; in this sense, they are indifferent.

The DM’s preferences are crucial to the solution of any MCDA problem;
moreover, different ways of expressing them may lead to different results. Pareto-
Superiority [19] may be used to identify some inferior alternatives, but almost
always a more elaborate preference construction is needed to carry out any of
the problématiques. Generally speaking, there exist two kinds of preference ex-
pressions: values, which are preferences on consequences, and weights, which are
preferences on criteria.

After the structure of an MCDA problem is determined and the DM’s pref-
erences are acquired, a model must be constructed to aggregate preferences,
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thereby permiting the chosen problématique to be investigated. Some methods,
such as multiattribute utility theory (MAUT) [18], are direct models in which
explicit numerical functions are constructed to evaluate alternatives; others, in-
cluding Outranking methods [28] and AHP [29], employ pair-wise comparison
procedures rather than explicit functions to conduct the evaluation; still oth-
ers, such as rough set theory [11], tackle the MCDA problem implicitly using
linguistic rules.

3 A Rough Set Approach to MCABC

Pawlak [22,23] introduced Rough Sets as a tool to describe dependencies among
attributes and to evaluate the significance of individual attributes. Because of
its ability to handle the inherent uncertainty or vagueness of data, rough set
theory complements probability theory, evidence theory, fuzzy set theory, and
other approaches. Recent advances in rough set theory have made it a powerful
tool for data mining, pattern recognition, and information representation. For
example, Pawlak and Skowron [24] provided a comprehensive literature review of
rough set theory including different research directions and various applications.
Some theoretical extensions of rough set theory are proposed in [25], and the
hybrid of rough set theory and Boolean reasoning with different applications are
discussed in [26].

An important principle of rough sets is that all relevant information about
alternatives, which may include both condition and decision attributes, can be
expressed in a data set [22]. Condition attributes refer to the characteristics of the
alternatives; for instance, condition attributes describing a firm can include size,
financial characteristics (profitability, solvency, liquidity ratios), market position,
and so on. Decision attributes define a partition of the alternatives into groups
reflecting the condition attributes in some way. In terms of MCDA, condition
and decision attributes are regarded as criteria and decision choices, respectively.

3.1 A Dominance-Based Rough Set Theory for MCABC

As pointed out in [11,14], the original rough set approach cannot efficiently ex-
tract knowledge from the analysis of a case set. In MCDA problems, preferences
over groups and indiscernibility or similarity must be replaced by the dominance
relation [14] (also see [10,12] for a detailed discussion of the relationship between
the classical rough set approach and DRSA).

To apply rough set theory to MCABC, we treat SKUs as alternatives and
relevant data about SKUs as criteria (conditions). We select a non-empty case
set T ⊆ N and ask the DM to decide how to partition the case set into three
non-overlapping classes, A′, B′ and C′, with a preference order A′ � B′ � C′.
(Typically, T is much smaller than N. For convenience, we assume that T =
{N1, . . . , Nm}.) Then we use rough set theory to extract a set of linguistic rules,
R, that capture preferential information in the case set classification, and apply
R to all elements of N to extend A′ to A, B′ to B, and C′ to C. Thus, N is
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Fig. 4. The Structure of the Case Set

sorted into three classes, A, B, and C, with a preference order A � B � C.
This classification procedure is illustrated in Figure 4.

Let Sj be a binary preference relation with respect to criterion j ∈ Q, such
that N iSjN

l means that “N i is at least as good as N l with respect to cri-
terion j”, where N i, N l ∈ T are alternatives. We assume that Sj is a com-
plete preorder, i.e. a strongly complete and transitive binary relation, and that
S = (S1, S2, . . . , Sq) is a comprehensive preference relation on N, i.e. N iSN l

means N iSjN
l for every criterion j ∈ Q, for N i, N l ∈ N.

The upward union and downward union [11,14] with respect to the classes in
the test set is defined next. Upward unions are denoted by subscript “≥”, and
downward unions by subscript “≤”.

• C′≥ = C′ ∪B′ ∪A′; C′≤ = C′.
• B′≥ = B′ ∪A′; B′≤ = C′ ∪B′.
• A′≥ = A′; A′≤ = C′ ∪B′ ∪A′.

For example, C′≥ consists of those test items that at least belong to group C′,
and C′≤ those test items that at most belong to group C′.

N i dominates N l with respect to criterion set P ⊆ Q and is written as
N iDPN l, iff N iSjN

l for all j ∈ P. Relative to N i, the P-dominating set is
defined by

D+
P(N i) = {N l ∈ T : N lDPN i},

and the P-dominated set by

D−P(N i) = {N l ∈ T : N iDPN l}.

With respect to P ⊆ Q, we say that N i belongs to G′≥ unambiguously, where
G′ = A′, B′ or C′, iff N i ∈ G′≥ and, for any N l ∈ D+

P(N i), N l ∈ G′≥. More
generally, the P-lower approximation to G′≥ is
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P(G′≥) =
{
N i ∈ T : D+

P(N l) ⊆ G′≥
}

,

and the P-upper approximation to G′≥ is

P(G′≥) =
⋃

Al∈G′
≥
D+

P(N l).

Similarly, the P-lower approximation to G′≤ is

P(G′≤) =
{
N l ∈ N′ : D−P(N l) ⊆G′≤

}
,

and the P-upper approximation to G′≤ is

P(G′≤) =
⋃

N l∈G′
≤
D−P(N l).

The P-boundaries (P-doubtful regions) of G′≤ and G′≥ are

BNP(G′≤) = P(G′≤)−P(G′≤),

BNP(G′≥) = P(G′≥)−P(G′≥).

The quality of the sorting of the case set T with respect to P ⊆ Q is

γP(G′) =

�
�
�N−

{(�
I′=A′,B′,C′ BNP(I′

≤)
)�(�

I′=A′,B′,C′ BNP(I′
≥)
)}�

�
�

m ,

where m is the size (cardinality) of the case set T. Thus, γP(G′) represents the
proportion of alternatives in the case set T that are accurately sorted using only
the criteria in P.

Each minimal subset P ⊆ Q such that γP(T) = γQ(T) is called a reduct of
Q. A case set T can have more than one reduct; the intersection of all reducts
is called the core [11,14].

3.2 Decision Rules for MCABC

The approximations obtained through dominance can be used to construct de-
cision rules capturing preference information contained in the classification of
a case set [11]. Assume that all criteria are benefit criteria, i.e. that cj(N i) ≥
cj(N l) implies N iSjN

l for all j ∈ Q and N i, N l ∈ N. Then three types of deci-
sion rules can be generated from a non-empty set of criteria P ⊆ Q and are used
to sort N into G and H, respectively, where G �= H and G,H ∈ {A,B,C}, as
required.

• R≥ decision rules, which have the syntax

If cj(N i) ≥ rj for all j ∈ P, then N i ∈ G≥,

where, for each j ∈ P, rj ∈ R is a consequence threshold for criterion
j. Rules of this form are supported only by alternatives from the P-lower
approximations of class G′≥.

• R≤ decision rules, which have the syntax
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If cj(N i) ≤ rj for all j ∈ P, then N i ∈ G≤,

where, for each j ∈ P, rj ∈ R is a consequence threshold for criterion
j. Rules of this form are supported only by alternatives from the P-lower
approximations of class G′≤.

• R≥≤ decision rules, which have the syntax

If cj(N i) ≥ rj for all j ∈ O and cj(N i) ≤ rj for all j ∈ P−O,

then N i ∈ G ∪H,

where O ⊆ P such that both O and P−O are non-empty, and rj ∈ R is a
consequence threshold for criterion j for each j ∈ P. Rules of this form are
supported only by alternatives from the P-boundaries of the unions of the
classes G′≥ and H′≤.

A set of decision rules is complete if, when it is applied to alternatives in the
case set T, all of them can be reclassified to one or more groups and there is
no alternative for which rules cannot be applied for classification. Furthermore,
alternatives are consistent when they are classified to the original groups; alter-
natives are inconsistent when they are assigned to a different group or more than
one group. A set of decision rules is minimal if it is complete and non-redundant,
i.e. exclusion of any rule makes the set incomplete [11]. Fortunately, software is
available (see below) that produces sets of minimal decision rules.

4 Application

4.1 Background

We now employ a case study on a hospital inventory system, based on data
in [9], to demonstrate the proposed procedure. In the reference, 47 disposable
SKUs used in a respiratory therapy unit are classified using AHP-based method
[29] for MCABC analysis. Table 1 lists data on the SKUs, referred to as S1
through S47. Four criteria as listed in Column 2-5 of Table 1 are considered
to be relevant to the MCABC analysis: (1) average unit cost ($), ranging from
$5.12 to $210.00; (2) annual dollar usage ($), ranging from $25.38 to $5840.64;
(3) criticality, described by numerical values (1, for high or very critical, 0.5, for
moderate or important, and 0.01, for low or non-critical); (4) lead time (weeks),
the normal time to receive replenishment after an order is placed, ranging from
1 to 7 weeks. The last column of Table 1 shows the AHP-based classification
results.

As indicated earlier, in addition to the initial work of Flores et al. [9], several
MCABC methods, including Chen et al. [2,4], Ramanathan [27], Ng [17], and
Zhou and Fan [33], have been proposed and used the same data set as listed above
for demonstration purposes. Here, two types of comparisons of DRSA with other
approaches are conducted to show the applicability of DRSA in MCABC:
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– Decision rule generation comparison: The approaches by Flores et al.[9],
Ramanathan [27], Ng [17], and Zhou and Fan [33] rely on direct sorting in
which explicit numerical functions are constructed and employed to classify
SKUs. To carry out the comparison, DRSA is used to generate decision rules
based on the data set including the condition attributes as shown in Table
1 and the decision attributes calculated by other methods. Then, employing
the generated decision rules, the reclassification of the training set is done
to examine the compatibility of DRSA with other approaches. To a certain
extent, this comparison employs a practical example to validate the con-
clusions drawn by Slowinski et al. [31] and Greco et al. [13] that DRSA is
the most general MCDA methodology and other MCDA approaches can be
represented in terms of decision rules.

– Comparison of classification results: Next, the classification results obtained
by using the AHP-based approach in [9] are adopted as benchmark data and
are compared with those generated by the herein proposed DRSA approach.
To apply the DRSA procedure, a training set, consisting of three A items,
five B items, and seven C items, is randomly selected from the 47 SKUs.
The training set is then fed into the DRSA-based MCABC procedure to
generate decision rules for classifying all 47 SKUs in the inventory system.
The sampling is conducted 20 times and the final classification results are
then reconciled with those in [9] to examine how well our proposed approach
can extract the inherent knowledge imbedded in the training set.

4.2 Decision Rule Generation Comparison

Firstly, based on the classification results obtained by an AHP-based approach
[9] as shown in the last column of Table 1, DRSA is utilized to generate decision
rules to reflect the DM’s subjective judgement, and these rules are employed to
reclassify the data set to verify the compatibility of these two approaches. Then,
a summary of similar comparisons is provided with other MCABC models. The
purpose of these comparisons is to examine whether the reclassification can re-
produce the results obtained with other MCABC approaches, thereby confirming
the claim in [31] and [13] that DRSA is the most general MCDA methodology
and other MCDA approaches can be represented in terms of decision rules. Note
that, in general, the case (training, test) set information can be provided by the
expert directly and, hence, the generated rules should express the knowledge of
the expert used to give his/her classification information.

Analysis Procedures. The software 4eMka2 [16] is employed to conduct the
calculations and the analysis procedures are given as follows:
(1) Criteria specification

The detailed criteria specification using 4eMka2 is shown in Figure 5. All of
the criteria are interpreted to be benefit criteria: for example, lead time is a gain
criterion since the greater the lead time, the higher the level of management
attention required. Hence, their preferences are all set as “Gain” as shown in the
fifth column of the figure. Note that A1, A2, A3 and A4 represent the criteria
of average unit cost, annual dollar usage, criticality and lead time, respectively.
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Table 1. Listing of SKUs with multiple criteria, adapted from [9]

SKUs Criteria

Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week) Group

S1 49.92 5840.64 1 2 A
S2 210.00 5670.00 1 5 A
S3 23.76 5037.12 1 4 A
S4 27.73 4769.56 0.01 1 C
S5 57.98 3478.80 0.5 3 B
S6 31.24 2936.67 0.5 3 C
S7 28.20 2820.00 0.5 3 C
S8 55.00 2640.00 0.01 4 C
S9 73.44 2423.52 1 6 A
S10 160.50 2407.50 0.5 4 B
S11 5.12 1075.20 1 2 B
S12 20.87 1043.50 0.5 5 B
S13 86.50 1038.00 1 7 A
S14 110.40 883.20 0.5 5 B
S15 71.20 854.40 1 3 A
S16 45.00 810.00 0.5 3 C
S17 14.66 703.68 0.5 4 B
S18 49.50 594.00 0.5 6 A
S19 47.50 570.00 0.5 5 B
S20 58.45 467.60 0.5 4 B
S21 24.40 463.60 1 4 A
S22 65.00 455.00 0.5 4 B
S23 86.50 432.50 1 4 A
S24 33.20 398.40 1 3 A
S25 37.05 370.50 0.01 1 C
S26 33.84 338.40 0.01 3 C
S27 84.03 336.12 0.01 1 C
S28 78.40 313.60 0.01 6 C
S29 134.34 268.68 0.01 7 B
S30 56.00 224.00 0.01 1 C
S31 72.00 216.00 0.5 5 B
S32 53.02 212.08 1 2 B
S33 49.48 197.92 0.01 5 C
S34 7.07 190.89 0.01 7 C
S35 60.60 181.80 0.01 3 C
S36 40.82 163.28 1 3 B
S37 30.00 150.00 0.01 5 C
S38 67.40 134.80 0.5 3 C
S39 59.60 119.20 0.01 5 C
S40 51.68 103.36 0.01 6 C
S41 19.80 79.20 0.01 2 C
S42 37.70 75.40 0.01 2 C
S43 29.89 59.78 0.01 5 C
S44 48.30 48.30 0.01 3 C
S45 34.40 34.40 0.01 7 B
S46 28.80 28.80 0.01 3 C
S47 8.46 25.38 0.01 5 C
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Fig. 5. The Criterion Settings

Average unit cost and annual dollar usage are identified as continuous crite-
ria shown in the sixth column of Figure 5, while criticality and lead time are
identified as discrete criteria along with all possible values shown in the last
column of the figure. Note that criticality in Flores et al. [9] is represented using
numerical values, 1, 0.5 and 0.01, for high critical, moderate and low critical,
respectively. Considering the ordinal nature of this criterion, in the DRSA, the
linguistic expressions, h, m and l are used instead of 1, 0.5 and 0.01. The same
setting is applied to other comparisons. The last row of the figure is the decision
attribute, class, which indicates three sorting groups, A, B, and C, for MCABC.
(2) Input data

All data in Table 1 are input into the software for training as shown in Figure 6.
(3) Calculation of unions

All upward unions, downward unions, and boundaries for each class, A′, B′,
and C′, are calculated by the software and shown in Figure 7. There are no
cases in each group boundary, indicating that the case set has been classified
consistently.
(4) Rule generation

As shown in Figure 8, 17 rules are generated based on the algorithm, DomLEM
as described in [12], to construct a minimal cover. These rules can be regarded
as experts’ knowledge in linguistic expressions generated by rough set theory
and may help a DM to identify and explain his or her preferences using natural
languages. The DM can check and update them as necessary and then apply them
to classify any remaining SKUs. For convenience, these 17 rules are reproduced
below:

– Rule 1. (A1 ≤ 7.07) & (A2 ≤ 197.92) ⇒ (Class at most C);
– Rule 2. (A2 ≤ 150) & (A4 ≤ 6) ⇒ (Class at most C);
– Rule 3. (A3≤1) & (A4≤ 6) ⇒ (Class at most C);
– Rule 4. (A1≤ 31.24) & (A3 ≤ m) & (A4≤3) ⇒ (Class at most C);
– Rule 5. (A2≤ 2936.670000) & (A3 ≤ m) & (A4 ≤ 3) ⇒ (Class at most C);
– Rule 4. (A2≤ 2936.670000) & (A3 ≤ m) & (A4 ≤ 3) ⇒ (Class at most C);
– Rule 5. (A1≤ 45) & (A2 ≤ 810) & (A3 ≤ m) & (A4 ≤ 3) ⇒ (Class at most

C);
– Rule 6. (A2 ≤ 370.5) ⇒ (Class at most B);
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Fig. 6. The Case Set Input

– Rule 7. (A3 ≤ m) & (A4 ≤ 4) ⇒ (Class at most B);
– Rule 8. (A1 ≤ 20.87) ⇒ (Class at most B);
– Rule 9. (A2 ≤ 883.2) & (A3 ≤ m) & (A4 ≤ 5) ⇒ (Class at most B);
– Rule 10. (A2 ≥ 5037.12) ⇒ (Class at least A);
– Rule 11. (A2 ≥ 398.4) & (A3 ≥ h) & (A4 ≥ 3) ⇒ (Class at least A);
– Rule 12. (A3 ≥ m) & (A4 ≥ 6) ⇒ (Class at least A);
– Rule 13. (A3 ≥ h) ⇒ (Class at least B);
– Rule 14. (A2 ≥ 455) & (A3 ≥ m) & (A4 ≥ 4) ⇒ (Class at least B);
– Rule 15. (A1 ≥ 34.4) & (A4 ≥ 7) ⇒ (Class at least B);
– Rule 16. (A1 ≥ 57.98) & (A2 ≥ 3478.8) ⇒ (Class at least B);
– Rule 17. (A1 ≥ 72) & (A3 ≥ m) ⇒ (Class at least B);

(5) Classification precision
All items in the case set are then reclassified using the generated rules. The

reclassification results are used to assess classification precision. The generated
rules successfully reclassified all items in the case study into corresponding “cor-
rect” groups. Therefore, the generated decision rules can accurately capture the
DM’s preferences, as represented in the classification results by using the AHP-
based approach [9].
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Fig. 7. The Unions in the Case Set

Comparison Summary. Similar procedures are employed to generate deci-
sion rules based on the classification information provided by other approaches
including Ramanathan’s [27], Ng’s [17] (Note that the criterion, critical factor,
is dropped in Ng’s paper and hence, DRSA only analyzes the data set without
the condition attribute of critical factor.), and Zhou and Fan’s [33]. The detailed
analytical steps are skipped here and the compatibility of DRSA with other
methods is summarized in Table 2.

Table 2. Summary of Decision Rule Generation Comparisons

Approach Reclassification Results

Name Correct Answers Incorrect Decisions Ambiguous Decisions

Flores et al. (AHP) 47 0 0

Ramanathan 17 0 30

Ng 47 0 0

Zhou and Fan 47 0 0

Conclusions : With the approaches of Flores et al. [9], Ng [17], and Zhou
and Fan [33], DRSA successfully reclassified all SKUs into the relevant “correct”
groups, and there are no incorrect or ambiguous decisions. However, the precision
of reclassification using Ramanathan’s approach [27] is not so promising, since
there are 17 correct, but 30 ambiguous decisions. This large number of ambiguous
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Fig. 8. The Rules Generated by 4eMka2

decisions seemingly resonates with Zhou and Fan’s [33] call for an improvement of
Ramanathan’s model [27] as the classification results may be skewed by extreme
values in less important criteria [33]. In short, these comparisons demonstrate
that DRSA can successfully generate decision rules that reclassify SKUs into
corresponding “correct” groups. This experiment confirms the main conclusion
as drawn by Slowinski et al. [31] and Greco et al. [13] that DRSA is the most
general MCDA methodology and other MCDA approaches can be represented
in terms of decision rules.

4.3 Comparison of Classification Results

Now, a sample of 15 SKUs, consisting of three A, five B, and seven C items, is
randomly drawn from the classification results of the AHP-based approach. This
sample is input into the DRSA procedure as a training set to generate a list of
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decision rules. These rules are then applied to all 47 SKUs for classifying them
into appropriate groups. This sampling process is repeated 20 times in order
to draw statistically significant inferences. The summary of the experiment is
given in Table 3. The first column from the left identifies the random training
set (the actual lists of Ti, i = 1, 2, ..., 20 are not elaborated for the sake of space,
but they are available upon request). The second, third, and fourth columns
summarize the results from the output of 4eMka2 [16], specifying the number of
correct, incorrect, and ambiguous classification results out of the 47 SKUs. The
last column indicates the number of “extreme errors”, where original A items in
[9] are classified into C, or C items in [9] are classified into group A as per the
generated rules. From a managerial point of view, this kind of “errors” is severe
and should always be avoided.

Table 3. Summary of Comparison of Classification Results

Test Reclassification Results

Set Correct Answers Incorrect Decisions Ambiguous Decisions Extreme Errors

T1 36 9 2 3

T2 29 13 5 0

T3 33 3 11 0

T4 39 6 2 0

T5 35 6 6 3

T6 35 10 2 0

T7 30 15 2 0

T8 33 10 4 2

T9 39 7 1 0

T10 41 6 0 0

T11 31 7 9 0

T12 36 5 6 2

T13 35 9 3 0

T14 41 6 0 0

T15 32 8 7 7

T16 37 10 0 0

T17 39 6 2 0

T18 36 4 7 0

T19 28 11 8 0

T20 37 7 3 0

Table 3 demonstrates the applicability of our proposed DRSA approach for
MCABC. Firstly, it is rare to have extreme errors of classifying A items into
group C, or C items into group A: our sample gives a 95% confidence inter-
val of 0.850 ± 0.835. Secondly, most of the 47 SKUs can be categorized into
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corresponding “correct” groups (the 95% confidence interval is 35.100± 1.777).
The remaining ambiguity is largely due to the lack of effective mechanisms in
DRSA to prioritize different criteria in classifying SKUs while the AHP-based
approach allows a DM to determine the weights of criteria. If some conflicting
rules generated from the training set are examined and properly removed by the
experts who conducted the AHP-based analysis [9], one can expect an increasing
number of “correct decisions” and a lower number of “ambiguous decisions”.

5 Conclusions

Classical ABC analysis is a straightforward technique to achieve cost-effective
inventory management by categorizing SKUs into three groups according to
annual dollar usage and then applying similar inventory management procedures
throughout each group. However, management can often be made more effective
by classifying SKUs under additional criteria, such as lead time and criticality.
MCABC furnishes an inventory manager with the flexibility of accounting for
more factors when an SKU is categorized.

This paper proposes a dominance-based rough set approach to solve MCABC
problems under the umbrella of MCDA theory. Two comparison experiments are
conducted based upon a case study. The first experiment, decision rule gener-
ation comparison, examines whether the DRSA can reproduce the results ob-
tained by other decision models. It is shown that, in most situations, the re-
sults are comparable with those obtained using other decision analysis methods
such as the AHP-based approach, thereby confirming the applicability of this
approach.

In the second experiment, comparisons of classification results, the classifica-
tion result obtained by using the AHP-based approach is adopted as a benchmark
and is compared with the one generated by the DRSA. It demonstrates that the
decision rules obtained by the DRSA can provide a good approximation of the
decision analysis conducted by the AHP method. Future research is needed to
compare the classification abilities of this method in various situations with other
case-based classification methods, such as methods described by Doumpos and
Zopounidis [6].
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Abstract. In this paper we will show that partially ordered monads contain ap-
propriate structure for modeling rough sets in a generalized relational setting.
Partially ordered monads are further shown to be useful in topological and gen-
eralized convergence frameworks. The paper thus demonstrates the use of monad
constructions for applications to rough sets and even further towards entirely new
types of applications of these generalized rough sets. In doings so, the paper opens
up previously unknown research directions for rough sets both towards applica-
tions within other theoretical research areas but also for real world applications.

1 Introduction

We aim in this paper to provide a categorical setting for rough sets, connecting them
with categorical structures so that rough sets can be described in a more generalized
setting providing an innovative approach to categorical rough sets. The paper is an
extension of [6] where properties of generalized relations were studied with respect
to techniques as provided by operations within partially ordered monads.

A major advantage of category theory is its ‘power of abstraction’ in the sense that
many mathematical structures can be characterized in terms of relatively few categor-
ical ones. This fact enables to pursue a more general study towards generalizations of
the structures. Category theory has been successfully applied in different areas as topol-
ogy, algebra, geometry or functional analysis. In recent years, category theory has also
contribute on the development of computer science: the abstraction of this theory has
brought the recognition of some of the constructions as categories. This growing in-
terest towards categorical aspects can be found in, for instance, term rewriting systems,
game semantics, concurrency. In a gross manner we one can say a category is given by a
class of object and a class of morphisms between the objects under certain mathematical
conditions. Examples of categories come not only from mathematics (the category of
groups and group homomorphisms, the category of topological spaces and continuous
functions, etc.) but also from computer science. Deductive systems is a category where
the objects are formulas and morphisms are proofs. Partially ordered sets form a cate-
gory where objects are partially ordered sets and morphisms are monotone mappings. A
particular partially ordered set also forms a category where objects are its elements and
there is exactly one morphism from an element x to an element y if and only if x ≤ y.
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We can go beyond categories and wonder if there is a category of categories. The answer
is yes (once properly respecting the underlying selected set theory). In this category of
categories the objects are categories and the morphisms are certain structure-preserving
maps between categories, called functors. Examples of functors are for instance the list
functor, the powerset functor and the term functor. The concept of naturality is impor-
tant in many of the applications of category theory. Natural transformation are certain
structure-preserving maps from one functor to another. It might seem abstract to con-
sider morphisms between morphisms of categories, but natural transformations appear
in a natural way very frequently both in mathematics as well as in computer science.
Natural transformations are cornerstones in the concept of monads.

Category theory, being an abstract and general theory, enables us to describe and
present concepts like fuzzy sets or rough sets in a unified way. Fuzzy set theory is
founded on the idea that many nonmathematical properties cannot be adequately de-
scribed in terms of crisp sets comprising those elements that fulfil a given property.
Often the notion of membership is considered as a gradual property for fuzzy sets.
Fuzzy set theory offers a more expressive mathematical language and has many appli-
cations in a very wide variety of fields. Originally, fuzzy sets were introduced by Zadeh
[38] in 1965 as a need to increase the expressiveness of classical mathematics to deal
with information systems that are incomplete, uncertain and imprecise. A fuzzy set is a
class with unsharp boundaries. Zadeh introduced the idea of grade of membership of an
object in a fuzzy set as a number in the unit interval: Given a set X , a fuzzy set A in X
is characterized by a membership function which associates to each element in X a real
number in the interval [0, 1], representing the grade of membership of x in A. A fuzzy
set, therefore, can be represented as a mapping A : X → [0, 1], with A(x) ∈ [0, 1]
being the membership degree of x in A. Crisp sets can now be seen as those fuzzy sets
A such that A(x) = 1 if x ∈ A or 0 otherwise. This definition correspond exactly of
that given by the crisp powerset monad.

In 1967, Goguen, [17], extended the idea of fuzzy sets to L-fuzzy sets, considering
order structures, L, beyond the unit interval. An L-fuzzy set A is now represented as a
mapping A : X → L. Note here that considering the two element lattice, denoted by
L = 2, we obtain the crisp situation, i.e. we obtain essentially set theory. The case of
L = [0, 1], represent the case of fuzzy sets as introduced by Zadeh. Goguen remarked
also that the set of all L-fuzzy sets, LX , can be given whatever operation L has, and
these operations in LX will obey any law valid in L which extends point by point.

The extended notion of L-fuzzy sets can also be represented extending the crisp pow-
erset monad and considering a completely distributive lattice L. Therefore, we can say
that powerset monads are a categorical way to represent fuzzy sets. Beyond fuzzy sets,
we will show in this paper how considering some particular types of monads, partially
ordered monads, we can also represent rough sets. In particular, the crisp partially or-
dered monad is used to represent classical rough sets. The different generalizations of the
powerset functor become important in order to extend the classical notions of rough sets.

The paper is organized as follows. In Section 2 we introduce monads and provide the
main examples of monads in Section 3. Section 4 extends monads to partially ordered
monads, again followed by Section 5 providing examples of partially ordered mon-
ads. Section 6 gives an overview of related applications of partially ordered monads to
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topology and convergence. In Section 7, partially ordered monads are then applied to
rough sets, laying out the framework for generalized rough sets and demonstrating the
power of partially ordered monad constructions for generalized rough sets and their
properties. Finally, Section 8 concludes the paper.

2 Monads and Submonads

As remarked in [2], the naming and identification of monads, in particular as associated
with adjoints, can be seen initiated around 1958. Godement was at that time one of the
very first authors to use monads, even if then only named standard constructions. Hu-
ber in 1961 shows that adjoint pairs give rise to monads. Kleisli [26] and also Eilenberg
and Moore [4] proved the converse in 1965. The construct of a Kleisli category was
thus made explicit in those contributions. Lawvere [29] introduced universal algebra
into category theory. This can be seen as the birth of the term monad. These develop-
ments then contain all categorical elements for substitution theories. The exploitation of
terms and unifications thereof within logic programming is formally described in [33]
as early as in 1965. It is therefore somewhat surprising that the categorical connection
to unification was not found until twenty years later by Rydeheard and Burstall in [34].

Let C be a category. A monad (or triple, or algebraic theory) over C is written as Φ =
(ϕ, η, μ), where ϕ : C→ C is a (covariant) functor, and η : id→ ϕ and μ : ϕ ◦ ϕ→ ϕ
are natural transformations for which μ◦ϕμ = μ◦μϕ and μ◦ϕη = μ◦ηϕ = idϕ hold. A
Kleisli category CΦ for a monad Φ over a category C is given with objects in CΦ being
the same as in C, and morphisms being defined as homCΦ(X,Y ) = homC(X,ϕY ).
Morphisms f :X ⇁ Y in CΦ are thus morphisms f :X → ϕY in C, with ηϕ

X :X → ϕX
being the identity morphism. Composition of morphisms in CΦ is defined as

(X
f
⇁ Y ) " (Y

g
⇁ Z) = X

μϕ
Z◦ϕg◦f−→ ϕZ. (1)

Composition in the case of the term monad comes down to substitution, and this brings
us immediately to substitution theories in general for monads. Monads can be composed
and especially the composition of the powerset monad with the term monad provides
groundwork for a substitution theory as a basis for many-valued logic [16]. In the fol-
lowing we will provide detail for powerset monads.

The concept of subfunctors and submonads can be used to provide a technique for
constructing new monads from given ones.

Definition 1. Let ϕ be a set functor. A set functor ϕ′ is a subfunctor of ϕ, written
ϕ′ ≤ ϕ, if there exists a natural transformation e:ϕ′ → ϕ, called the inclusion trans-
formation, such that eX :ϕ′X → ϕX are inclusion maps, i.e., ϕ′X ⊆ ϕX . The con-
ditions on the subfunctor imply that ϕf |ϕ′X= ϕ′f for all mappings f : X → Y .
Further,≤ is a partial ordering.

Proposition 1 ([8]). Let Φ = (ϕ, η, μ) be a monad over Set, and consider a subfunc-
tor ϕ′ of ϕ, with the corresponding inclusion transformation e : ϕ′ → ϕ, together with
natural transformations η′ : id→ ϕ′ and μ′ : ϕ′ϕ′ → ϕ′ satisfying the conditions

e ◦ η′ = η, (2)

e ◦ μ′ = μ ◦ ϕe ◦ eϕ′. (3)
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Then Φ′ = (ϕ′, η′, μ′) is a monad, called the submonad of Φ, written Φ′ � Φ.

3 Examples of Monads

In this section we develop some examples of powerset monads. These examples have
an important role in many applications. Powerset monads and their many-valued exten-
sions are in close connection to fuzzification and are good candidates to represent situa-
tions with incomplete or imprecise information. With respect to topological application,
the fuzzy filter monad is a key construction when studying convergence structures from
a more general point of view.

Unless otherwise stated, we assume L to be a completely distributive lattice. For
L = {0, 1} we write L = 2.

3.1 The Powerset Monad

The covariant powerset functor Lid is obtained by LidX = LX , i.e. the set of mappings
(or L-fuzzy sets) A : X → L, and following [17], for a morphism f :X → Y in Set,
the category of sets and functions, by defining

Lidf(A)(y) =
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =
{

1 if x = x′

0 otherwise
(4)

and μ : Lid ◦ Lid → Lid by

μX(M)(x) =
∨

A∈LidX

A(x) ∧M(A).

It was shown in [30] that Lid = (Lid, η, μ) indeed is a monad. Note that 2id is the
usual covariant powerset monad P = (P, η, μ), where PX is the set of subsets of
X , ηX(x) = {x} and μX(B) =

⋃
B. Further, note that the transitivity condition,

relationally viewed as f ◦ f ⊆ f , translates to
⋃

Pf(f(x)) ⊆ f(x) for all x ∈ X .

Remark 1. The category of ‘sets and relations’, i.e. where objects are sets and mor-
phisms f : X → Y are ordinary relations f ⊆ X × Y with composition of morphisms
being relational composition, is isomorphic to the Kleisli category Set2id

. Indeed, re-
lations f ⊆ X×Y are morphisms f : X ⇁ Y in Set2id

, i.e. morphisms f : X → PY
in Set, and relational composition corresponds exactly to composition according to (1).

Remark 2. Extending functors to monads is not trivial, and unexpected situations may
arise. Let the id2 functor be extended to a monad with

ηX(x) = (x, x) and μX((x1, x2), (x3, x4)) = (x1, x4).

Further, the proper powerset functor P0, where P0X = PX \ {∅}, as well as id2 ◦ P0

can, respectively, be extended to monads, even uniquely. However, as shown in [13],
P0 ◦ id2 cannot be extended to a monad.
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Remark 3. The interaction between monads and algebras is well-known. The tutorial
example is the isomorphism between the Kleisli category of the powerset monad and the
category of ‘sets and relations’. The Eilenberg-Moore category of the powerset monad
is isomorphic to the category of complete lattices and join-preserving maps. The Kleisli
category of the term monad coincides with its Eilenberg-Moore category and is isomor-
phic to the category of Ω-algebras. A rather intrepid example, although still folklore,
is the isomorphism between the Eilenberg-Moore category of the ultrafilter monad and
the category of compact Hausdorff spaces. Here is where “algebra and topology meet”.

3.2 Powerset Monads with Fuzzy Level Sets

In [9], a number of set functors extending the powerset functor together with their exten-
sion principles are introduced. By extension principles we mean the two possible gen-
eralizations of a mapping f :X → Y where X, Y are sets, when working in the fuzzy
case according to an optimistic or pessimistic interpretation of the fuzziness degree.

1. Maximal extension principle: FfM :FX → FY ,

FfM (A)(y) =

⎧
⎨

⎩

sup{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

2. Minimal extension principle: Ffm:FX → FY ,

Ffm(A)(y) =

⎧
⎨

⎩

inf{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

Both extensions FfM and Ffm coincide with the direct image extension in the case
of crisp subsets, that is, given A ∈ PX , then PfM (A) = Pfm(A) = f(A) ∈ PY .
These maximal and minimal extension principles can be further generalized to the L-
fuzzy powersets, just changing the calculations of suprema and infima by the lattice join
and meet operators. We will use the set I = {x ∈ X | f(x) = y and A(x) > 0}:
1. Maximal L-fuzzy extension principle: LfM :LX → LY is

LfM (A)(y) =

⎧
⎨

⎩

∨
I A(x) if I �= ∅

0 otherwise

2. Minimal L-fuzzy extension principle: Lfm:LX → LY ,

Lfm(A)(y) =

⎧
⎨

⎩

∧
I A(x) if I �= ∅

0 otherwise

We can now extend the definition of powersets to powersets with fuzzy level sets. Func-
tors for α-upper L-fuzzy sets and α-lower L-fuzzy sets, denoted Lα and Lα, respec-
tively, are given as follows:

LαX = {A ∈ LidX | A(x) ≥ α or A(x) = 0, for all x ∈ X}
LαX = {A ∈ LidX | A(x) ≤ α or A(x) = 1, for all x ∈ X}.
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For mappings f :X → Y , we define Lαf : LαX → LαY as the restriction of the
mapping given by the minimal L-fuzzy extension principle to the L-fuzzy set LαX .
Similarly, Lαf : LαX → LαY is given as the restriction of the mapping given by the
maximal L-fuzzy extension principle.

L-fuzzy set categories are defined for each of these extended power set functors
and the rationality of the extension principle is proved in the categorical sense, i.e.
the associated L-fuzzy set categories are shown to be equivalent to the category of
sets and mappings. Each of these new set functors, Lα and Lα can be extended to be
monads. Since (Lid, η, μ) is a monad, we can easily generalize this result to the case of
(Lα, ηα, μα). To provide Lα with the monad structure, the unit and multiplications are
defined as follows:

ηαX(x)(x′) =

⎧
⎨

⎩

1 if x = x′

0 otherwise

μαX(A)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∧

A∈I

A(x) ∧A(A) if I = {A ∈ LαX | A(x) ∧ A(A) > 0} �= ∅

0 otherwise

Remark 4. For mappings f :X → Y , we could obtain Lαf as Lidf|LαX
. Thus, Lα

become subfunctor of Lid and Lα = (Lα, ηLα

, μLα

) is a submonads of Lid.

Remark 5. For L = 2, Lα = Lα = 2id.

3.3 The Covariant Double Contravariant Powerset Monad

The contravariant powerset functor Lid is the contravariant hom-functor related to L,
i.e. Lid = hom(−, L) : Set → Set, which to each set X and mapping f : X → Y
assigns the set LX of all mappings of X into L, and the mappings hom(f, L)(g) =
g ◦ f (g ∈ LY ), respectively. Note that 2id is the usual contravariant powerset functor,

where 2idX = PX , and morphisms X
f→ Y in Set are mapped to 2idf representing

the mapping M #→ f−1[M ] (M ∈ PY ) from PY to PX .
For double powerset functors it is convenient to write LLid

= Lid ◦ Lid and LLid

=
Lid ◦ Lid. Note that LLid

is a covariant functor. It may be interesting also to note that
the filter1 functor is a subfunctor of 22id

, but not a subfunctor of 22id
.

In the case of LLid

, for X
f→ Y in Set and M ∈ LLX

, we have LLid

f(M) =
M◦ Lidf , and hence, LLid

f(M)(g) = M(g ◦ f).

Proposition 2 ([13]). The covariant set functor LL = Lid ◦ Lid can be extended to
a monad, considering the following definitions of the natural transformations ηLL and
μLL:

ηLL
X (x)(A) = A(x), μLL

X (U) = U ◦ ηLL
LX .

1 A filter on a set X is a nonempty set F of subsets of X such that: (i) ∅ /∈ F , (ii) A, B ∈ F
⇒ A∩B ∈ F , (iii) A ∈ F A ⊆B ⇒ B ∈F .
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It is well-known that the proper2 filter functor F0 becomes a monad where ηF0 : id→
F0 is the unique natural transformation and μF0 : F0 ◦ F0 → F0 is given by

μF0
X (U) =

⋃

R∈U

⋂

M∈R

M

i.e. the contraction mapping suggested in [28].

Remark 6. In relation with the functor 22id

, it can easily be seen that μ22id

X (U) =
μF0

X (U).

3.4 The Fuzzy Filter Monad

In the case of fuzzy filter monads we assume L to be a complete chain with different
least and last element 0 and 1, respectively. A a mappingM : LidX → L is called an
L-fuzzy filter on X [13] if

(F1)M(ᾱ) = α for all α ∈ L and
(F2)M(f ∧ g) = M(f) ∧M(g) for all f, g ∈ LidX .

where ᾱ denote the constant mapping from X into L with value α.
Let POSet denote the category of partially ordered sets. Moreover, let (FL,≤) :

Set → POSet be the covariant functor defined as follows: For each set X , (FL,≤)X
is the partial ordered set (FLX,≤), where FLX consists of all L-fuzzy filters on X and
≤ is defined argumentwise by

M ≤ N ⇐⇒ M(f) ≥ N (f) for all f ∈ LidX.

For each mapping f : X → Y , (FL,≤)f is the mapping FLf : FLX → FLY defined
by

FLf(M)(g) = M(g ◦ f).

for all L-fuzzy filtersM on X and all g ∈ LidX .
The underlying set functor FL : Set → Set of (FL,≤) is called the L-fuzzy filter

functor. The L-fuzzy filter monad (FL, η, μ) (see [13]) consists of natural transforma-
tions ηX : X → FLX and μX : FLFLX → FLX given by

ηX(x)(f) = f(x) (5)

for all x ∈ X and f ∈ LidX and

μX(L) = L ◦ EX (6)

for all L ∈ FLFLX , where EX is the mapping of LidX into LFLX which assigns to
each f ∈ LidX the mapping M #→ M(f) (M ∈ FLX), written EXf . For each
mapping f ∈ LidX ,

supEXf = sup f. (7)

2 F0X = FX \ {∅}
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4 Basic Triples and Partially Ordered Monads

Partially ordered monads are generalizations derived from convergence structures, orig-
inally involving filters [28]. In [18], convergence spaces were empowered with functors
extended to monads. The development of partially ordered monads is due to [20], with
applications e.g. for compactifications in [21]. Topology and convergence were driving
forces in the development of partially ordered monads and the demonstration of their
power. However, these monads are useful also in other areas. We will show that they
contain sufficient structure for modelling rough sets [31] in a generalized setting with
set functors. This generalization builds upon a more general powerset functor setting
far beyond just strings [25] and relational algebra [37]. Kleene algebras are widely used
e.g. in formal languages [35] and analysis of algorithms [1].

Unless otherwise stated, throughout this section we assume that the underlying cate-
gory is acSLAT, the category of almost complete semilattices, i.e. partially ordered sets
(X,≤) such that the suprema supM of all non-empty subsets M of X exists. Mor-
phisms f : (X,≤) → (Y,≤) satisfy f(supM) = sup f [M] for non-empty subsetsM
of X .

A basic triple ([20]) is a triple Φ = (ϕ,≤, η), where (ϕ,≤) : Set → acSLAT,
X #→ (ϕX,≤) is a covariant functor, with ϕ : Set → Set as the underlying set
functor, and η : id → ϕ is a natural transformation. If (ϕ,≤, ηϕ) and (ψ,≤, ηψ) are
basic triples, then also (ϕ ◦ ψ,≤, ηϕψ ◦ ηψ) is a basic triple. For each set X and all
x, y ∈ X , the infimum ηX(x) ∧ ηX(y) only exists in case of x = y, i.e. ηX injective.

For each set X the partial ordering of (ϕX,≤) is considered as a finer relation. The
elements of ϕX are called ϕ-objects on X , the minimal elements of (ϕX,≤) are called
ultra ϕ-objects. For each set X all non-empty suprema of (ϕX,≤) exist and for each
mapping f : X → Y the mapping ϕf : ϕX → ϕY assigns non-empty suprema to
non-empty suprema. The behaviour of infima of subsets of ϕX may have an essential
influence on the topological properties of the general topological structures defined by
means of Φ.

A basic subtriple of Φ is a basic triple Φ′ = (ϕ′,≤, η′) such that

1. ϕ′ is a subfunctor of ϕ and for each set X , (ϕ′X,≤) is an almost complete sub-
semilattice of (ϕX,≤) (hence the supremum in (ϕX,≤) of a non-empty subset of
ϕ′X is an element of ϕ′X).

2. η′X(x) = ηX(x) for each set X and each x ∈ X .

A partially ordered monad is a quadruple Φ = (ϕ,≤, η, μ), such that

(i) (ϕ,≤, η) is a basic triple.
(ii) μ : ϕϕ→ ϕ is a natural transformation such that (ϕ, η, μ) is a monad.

(iii) For all mappings f, g : Y → ϕX , f ≤ g implies μX ◦ ϕf ≤ μX ◦ ϕg,
where ≤ is defined argumentwise with respect to the partial ordering of ϕX .

(iv) For each set X , μX :(ϕϕX),≤) → (ϕX,≤) preserves non-empty suprema.

In the following we introduce the notion of partially ordered submonads. Let Φ =
(ϕ,≤, η, μ) and Φ′ = (ϕ′,≤, η′, μ′) be partially ordered monads. Φ′ is called a partially
ordered submonad of Φ, provided that
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1. (ϕ′,≤, η′) is a basic subtriple of (ϕ,≤, η) and
2. e ◦ μ′ = μ ◦ ϕe ◦ eϕ′ , where e : ϕ′ → ϕ is the natural transformation consisting

of all inclusion mappings eX : ϕ′X → ϕX .

5 Examples of Partially Ordered Monads

Some of the examples presented in Section 3 are now shown to be extendable to partially
ordered monads.

5.1 The Crisp Powerset Monad

The usual covariant powerset monad P = (P, η, μ), can be extended to a partially
ordered monad, (P,⊆, η, μ), considering as the partial ordering the inclusion,⊆.

Clearly by the properties of the monad, (P,⊆, η) is a basic triple, μ is a natural
transformation and μX : (PPX),⊆) → (PX,⊆) preserves non-empty suprema.

Given f, g : Y → PX with f ⊆ g e.g. f(y) ⊆ g(y) for all y ∈ Y implies μX ◦Pf ⊆
μX ◦ Pg:

(μX ◦ Pf)(B) =
⋃

y∈B⊆Y

f(y) ⊆
⋃

y∈B⊆Y

g(y) = (μX ◦ Pg)(B)

5.2 The Fuzzy Powerset Monad

The powerset monad, (Lid, η, μ) can also be extended to a partially ordered monad,
considering the partial order defined as A ≤ A′, with A,A′ ∈ LidX if A(x) ≤ A′(x)
for all x ∈ X .

Let us see that μX ◦Lidf ≤ μX ◦Lidg: provided that f ≤ g where f, g : Y → LidX .

μLid

X (Lidf(B))(x) =
∨

A∈LidX

A(x) ∧ Lidf(B)(A)

=
∨

A∈LidX

A(x) ∧
∨

f(y)=A

B(y)

=
∨

A∈LidX

∨

f(y)=A

A(x) ∧B(y)

=
∨

y∈Y

f(y)(x) ∧B(y)

≤
∨

y∈Y

g(y)(x) ∧B(y)

= μLid

X (Lidg(B))(x).

5.3 Powerset Monads with Fuzzy Level Sets

The monad (Lα, ηα, μα) can also be extended to a partially ordered monad. This result
is a generalization of Lid being extendable to a partially ordered monad.
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To provide Lα with the partially ordered monad structure we need to check that if
f, g : Y → LαX are such that f ≤ g then μX ◦ Lαf ≤ μX ◦ Lαg. In the same way
as the case of Lid, the partial order is defined as A ≤ A′, with A,A′ ∈ LαX meaning
A(x) ≤ A′(x) for all x ∈ X .

μLα

X (Lαf(B))(x) =
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧ Lαf(B)(A)

=
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧
∧

y∈Y,f(y)=A,B(y)>0

B(y)

=
∧

A∈LαX,A(x)>0,f(y)=A,B(y)>0

A(x) ∧B(y)

=
∧

B(y)>0

f(y)(x) ∧B(y)

≤
∧

B(y)>0

g(y)(x) ∧B(y)

= μLα

X (Lαg(B))(x).

Note that f ≤ g implies f(y)(x)∧B(y) ≤ g(y)(x)∧B(y) for all x ∈ X and therefore
μLα

X (Lαf(B))(x) ≤ μLα

X (Lαg(B))(x).

5.4 The Covariant Double Contravariant Powerset Monad and the Partially
Ordered Fuzzy Filter Monad

Consider f, g : Y → LLX , f ≤ g. To see if μX ◦ LLf ≤ μX ◦ LLg we have

(ηLX(A) ◦ f)(y) = f(y)(A)

Therefore, f ≤ g implies (ηLX(A) ◦ f)(y) ≤ (ηLX(A) ◦ g)(y). By definition of μX ,

μX ◦ LLf(M) = LLf(M) ◦ ηLX

For A ∈ LX
μX ◦ LLf(M)(A) = M(ηLX(A) ◦ f)

To drop any conclusion of the type M(ηLX(A) ◦ f) ≤ M(ηLX(A) ◦ g) we need to
add conditions on the definition ofM : LY → L.

Clearly to get the partially ordered monad, we need to add conditions on the def-
inition of M. In particular this is the situation for the fuzzy filter monad, where the
definition of M has to fulfil certain conditions, being those conditions the reason why
the we can extend the monad to a partially ordered monad.

Indeed, the quadrupel (FL,≤, η, μ), is a partially ordered monad [14].

6 Previous Work on Partially Ordered Monads for Fuzzy
Convergence

Compactness for ordinary topologies, viewed as convergence spaces, comes down to
ultrafilters always converging. For convergence spaces in general compactification the-
ories are developed based on corresponding Cauchy spaces and their completions. The
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completion given by [28] is particularly interesting as it turns out that the comple-
tion construction makes use of the multiplication in the underlying filter monad. This
observation was indicated in [5] and further fully developed in [14]. The Kowalsky
completion of an associated Cauchy space, obtained with respect to one suitable choice
function, is indeed a compactification ans is frequently called the Richardson compact-
ification since in the filter case it coincides with the usual Richardson compactification
[32]. The underlying set functor (and monad) of convergence structures is the filter
functor (that extends to a monad). Convergence structures in a more general view, i.e.
without particular binding to underlying monads, was introduced as extension struc-
tures in [19]. This notion contains important structural properties of Cauchy structures
and it is basically for a general completion theory.

6.1 Extension Structures

Let X be a set. By a ϕ-extension structure on X we mean a triple (S, T,∼) such that

S ⊆ ϕX , T ⊆ ϕX ×X

holds and ∼ is an equivalence relation on S which fulfills the following conditions,

whereM T→ x is written instead of (M, x) ∈ T :

(E1)M T→ x impliesM∈ S,

(E2)M T→ x , M∼N implyN T→ x,

(E3)M T→ x , N T→ implyM∼N .

X equipped with a ϕ-extension structure on X is called a ϕ-extension space. A mor-
phism f : (X, (S1, T1,∼1)) → (Y, (S2, T2,∼2)) between ϕ-extension spaces is a map-
ping f : X → Y , such that the following conditions are fulfilled:

(M1)M ∈ S1 implies ϕf(M) ∈ S2,

(M2)M T1→ x implies ϕf(M) T2→ f(x),
(M3)M∼1 N implies ϕf(M) ∼2 ϕf(N ) .

Let ϕ-EXT be the category of the ϕ-extension spaces and their related morphisms. A ϕ-

extension space (X, (S, T,∼)) is called separated provided thatM T→ x and M T→ y
imply x = y, which means that T is a partial mapping, that is, a mapping of a subset
of ϕX into X , and (X, (S, T,∼)) is called complete provided that for each M ∈ S

we have M T→ x for some x ∈ X . A ϕ-extension space (X, (S, T,∼)) and also its

ϕ-extension structure are called η-stable provided that ηX(x) T→ x holds for all x ∈ X .
For each η-stable ϕ-extension space (X, (S, T,∼)) we have

T = { (M, x) | M ∼ ηX(x) } .

Hence, T is completely fixed by means of S and ∼.
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6.2 Φ-Cauchy Structures and Completions

Let Φ = (ϕ,≤, η) be a basic triple. A Φ-Cauchy structure on a set X is a subset S of
ϕX with the following properties:

(C1) ηX(x) ∈ S holds for all x ∈ X .
(C2)M ∈ S andN ≤M implyN ∈ S.
(C3) For allM,N ∈ S, for which the infimumM∧N exists, we haveM∨N ∈ S.

In the filter case, Φ-Cauchy structures are Cauchy structures in the usual sense. A pair
consisting of a set X and a Φ-Cauchy structure on X , is called a Φ-Cauchy space. If
(X,S) is a Φ-Cauchy space, then the elements of S are called the Φ-Cauchy objects
of this space. A mapping f : (X,S) → (Y, S′) between Φ-Cauchy spaces is called Φ-
Cauchy continuous, provided that ϕf assigns Φ-Cauchy objects to Φ-Cauchy objects.
Each Φ-Cauchy structure S on a set X can be identified with the η-stable ϕ-extension
structure (S, T,∼), where the equivalence relation on S is defined by

M∼N ⇐⇒ M∨N ∈ S (8)

and T is given by

M T→ x ⇐⇒ M∨ ηX(x) ∈ S . (9)

A mapping between Φ-Cauchy spaces is Φ-Cauchy continuous if and only if it is a
morphism between the associated η-stable ϕ-extension spaces.

Proposition 3. For each Φ-Cauchy structure S on X the set T defined by (8), is a
Φ-limit structure, that is, the following conditions are fulfilled:

(L1) ηX(x) T→ x holds for all x ∈ X .

(L2)M T→ x and N ≤M implyN T→ x .

(L3) FromM T→ x and N T→ x it followsM∨N T→ x .

For each Φ-Cauchy space the set T defined by (9), is called the Φ-limit structure of S
and (X,T ) is called the related Φ-limit space of (X,S) .

Proposition 4. Let f : (X,S) → (Y, S′) be a Φ-Cauchy continuous mapping between
Φ-Cauchy spaces. Then the mapping f : (X,T ) → (Y, T ′) between the related Φ-limit

spaces is continuous, that is,M T→ x implies ϕf(M) T ′
→ x.

Of course, the notions of separatedness and completeness introduced for extension
spaces, we also use for Φ-Cauchy spaces. Clearly, separatedness is the usual separa-
tion axiom of the associated Φ-limit spaces. For each set X a mapping p : X → ϕX
for which ηX ≤ p holds, is called a Φ-pretopology. Each Φ-pretopology on X can be
identified with the Φ-limit structure T = { (M, x) ∈ ϕX ×X | M ≤ p(x) } .

For the completions of Φ-Cauchy spaces the following conditions are required.

(R) If for a set X and forM,N ∈ ϕX and x, y ∈ X the infimum

(M∨ ηX(x) ) ∧ (N ∨ ηX(y) )

exists, then at least one of the infima M∧N , M∧ ηX(y) and N ∧ ηX(x) exists
or x = y.
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(V) If for a mapping f : X → Y and M ∈ ϕX and y ∈ Y the infimum ηY (y) ∧
ϕf(M) exists, then there is an element x of X such that y = f(x).

Proposition 5. [21] Let Φ = (ϕ,≤, η) be a basic triple. If Φ fulfills the conditions
(R) and (V), then the category Φ-CHYsep cpl of all separated and complete Φ-Cauchy
spaces is an epireflective subcategory of the category Φ-CHYsep of all separated Φ-
Cauchy spaces.

6.3 Compactness as Completeness and Monadic Compactifications

Let Φ = (ϕ,≤, η) be a basic triple. A Φ-limit space (X,T ) is called compact provided
that all ultra ϕ-objects M on X converge with respect to T . A Φ-limit space (X,T )
is called weakly separated if for all x, y ∈ X , whenever there is a ϕ-object on X
converging to x and to y with respect to T , then

{M |M T→ x } = {M |M T→ y } .

Proposition 6. [21] Let (X,T ) be a weakly separated Φ-limit space and let

S = {M |M T→ x for some x } ∪ {M |M ultra ϕ−object } .

Then (X,S) is a Φ-Cauchy space and (X,T ) is the associated Φ-limit space of (X,S).

We have that (X,T ) is compact if and only if (X,S) is complete.

The Čech-Stone-compactification gives that the category of compact Hausdorff spaces
is an epireflective subcategory of the category of all Hausdorff spaces. In [3] it was
shown that this does not hold for the category of separated compact filter limit spaces
which is not an epireflective subcategory of the category of all separated filter limit
spaces. For fuzzy filters the situation can obviously not be improved, but a special type
of compactification proposed in [32] is possible by applying the notion of partially
ordered monads.

Let Φ = (ϕ,≤, η, μ) be a partially ordered monad. We assume that Φ fulfills the
following conditions

(U1) For each ϕ-object M on a set X there exists an ultra ϕ-object U on X such
that U ≤M.
(U2) For each mapping f : X → Y and each ultra ϕ-object U on X , ϕf(U) is an
ultra ϕ-object on Y .

Because of (U1) and (U2) there is a subfunctor ϕu of ϕ such that for each set X , ϕuX
is the set of all ultra ϕ-objects on X . Let e : ϕu → ϕ be the natural transformation such
that for each set X , eX : ϕuX → ϕX is an inclusion mapping. A further condition is
required.

(U3) For each set X and each ultra ϕ-object U on ϕuX , (μX ◦ϕeX)(U) is an ultra
ϕ-object on X .
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Condition (U3) implies that there is a natural transformation μu : ϕu ϕu → ϕu such
that e ◦ μu = μ ◦ ϕe ◦ eϕ.

In the following let a separated Φ-limit space (X,T ) be fixed, let S be the Φ-Cauchy
structure on X defined as in Proposition 6, let ∼ be the related equivalence relation on
S defined by (1) and let X

∧
= {M∼ | M ∈ S } be the set of all equivalence classes

with respect to ∼. We define a mapping κ : X
∧ → ϕX by

κ(M∼
) =

⎧
⎨

⎩
ηX(x) ifM T→ x

M if M is a non-converging ultra ϕ-object.

Proposition 7. [21] Given that (U1), (U2) and (U3) hold, each ultra ϕ-object K on
X

∧
, (μX ◦ ϕκ)(K) is an ultra ϕ-object on X . Further, (X

∧
, T

∧
) with

T
∧

= { (K,M∼
) ∈ ϕX

∧ ×X
∧ | (μX ◦ ϕκ)(K) ∈ M∼ }

is a separated and compact Φ-limit space.

(X
∧
, T

∧
) is called the monadic Richardson compactification of (X,T ). Let ι : X →

X
∧

be the mapping x #→ ηX(x)
∼

.

Proposition 8. [21] Assume that (U1), (U2) and (U3) are fulfilled. Then ι : (X,T ) →
(X

∧
, T

∧
) is an epimorphism of the category Φ-LIMsep and for each continuous map-

ping f : (X,T ) → Y of (X,T ) into a separated, compact and regular Φ-limit space
Y , there exists one and only one continuous mapping f

∧
: (X

∧
, T

∧
) → Y such that

f = f
∧ ◦ ι.

7 Applications to Rough Sets

The structure offered by partially ordered monads allows us to model rough sets in a
generalized settings. Rough sets build upon relations, and categorically, relations are
presented here as mappings in a category. Their extension to fuzzy relations are studied
in the same context. Upper and lower approximations for rough sets are introduced in
terms of the natural transformations of the partially ordered monads and generalized
powerset partially ordered monads are used to extend the classical view of rough sets.

Partially ordered submonads are also studied in this section as a way to reduce data
in a given information system.

7.1 Relations, Fuzzy Relations and Kleisli Categories

Relations play a fundamental role in many areas. Particular properties of the relations
are on demand for classifying data and mathematical foundations are needed to provide
bases for developing methods. Uncertain situations or information systems with lack of
information is an important application on the study of rough sets.

Rough sets are, traditionally, based on indistinguishable relations and given an infor-
mation system, one of the first criteria for reducing data is by means of equivalent rela-
tions. Some extensions, think over relations where the transitivity property is dropped
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(tolerance relations). There are also other situations where, due to a more imprecise and
uncertain nature of the situation considered, some extended relations, fuzzy relations,
are to be considered.

A classical (n-ary) relation, R is defined over crisp sets X1, X2, . . . , Xn as a subset
of the cartesian product X1 ×X2 × . . .×Xn. If X = X1 = . . . = Xn, the relation is
said to be defined on X .

Let us consider a binary relation R ⊆ X × Y . We will use the notation xRy to
represent that the element (x, y) ∈ R. Considering P , the crisp powerset functor, we
can represent the relation as a mapping ρ : X → PY , where

ρ(x) = {y ∈ Y such that xRy}.

As regarded as mappings, considering the composition of two relations, ρ : X → PY
and ρ′ : Y → PZ we clearly see that the conventional composition of mappings can not
be done since the domain of ρ′ and codomain of ρ are different. To find the appropriate
definition of this composition we have to consider the Kleisli composition as defined
previously in the paper (1), i.e. we need to use that P is a monad and has a “flattering”
operator, μ:

(X
ρ
⇁ Y ) " (Y

ρ′

⇁ Z) = X
μP

Z◦Pρ′◦ρ−→ PZ.

This, indeed, works since the Kleisli category associated to the crisp powerset monad
is equivalent to the category SetRel, where the objects are sets and the morphisms are
relations: ρ : X → PY corresponds to a relation R ⊆ X × Y by the observation
(x, y) ∈ R if and only if y ∈ ρ(x); and Kleili composition, due to its definition in the
case of the powerset monad μP

Z ◦Pρ′(ρ(x)) =
⋃

y∈ρ(x) ρ
′(y), corresponds to the usual

composition of relations R ⊆ X × Y , R′ ⊆ Y × Z , (x, z) ∈ R′ ◦ R if and only if
∃y, y ∈ ρ(x), z ∈ ρ′(y).

Relations can now be extended to fuzzy relations. Let X and Y be nonempty sets. A
fuzzy relation R is a fuzzy subset of the cartesian product X×Y . If X = Y we say that
R is a binary fuzzy relation on X . R(x, y) is interpreted as the degree of membership
of the pair (x, y) in R.

If we consider now the generalized powerset monad, LidX is the set of all L-fuzzy
sets. An L-fuzzy set A is nothing but a mapping A : X → L. As a first step, and
in the same way as before we can extend the concept of relation to a fuzzy relation,
i.e. a mapping ρ : X → LidY , ρ(x) is nothing but an element in LidY , a mapping
ρ(x) : Y → L. An element y ∈ Y will be assigned a membership degree, ρ(x)(y)
representing, as a value in L, the degree on which the elements x and y are fuzzy
related. Note that this situation extend the classical relations (crisp powerset situation)
in the sense that membership values are 1 if the elements are related and 0 otherwise.

With respect to the Kleisli category associated to the powerset monad Lid, the ob-
jects are sets and homomorphism are given as mappings X → LidY in Set.

Proposition 9. The Kleisli category associated to Lid is equivalent to the category of
set and fuzzy relations, SetFuzzRel.

Proof. To see that SetLid
is equivalent to SetFuzzRel we need to see that there is one

to one correspondence between the membership valued of the fuzzy relations. And this
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is clear since we define ρ(x) : Y → L as the mapping assigning to an element y, the
degree of membership on the fuzzy relation of the pair (x, y).

Proposition 10. Kleisli composition associated to Lid is given by:

μLid
Z (Lidρ

′(ρ(x)))(z) =
∨

y∈Y

ρ′(y)(z) ∧ ρ(x)(y)

Proof. By the definition of the multiplication of the monad it follows:

μLid
Z (Lidρ

′(ρ(x)))(z) =
∨

A∈LidX

A(z) ∧ Lidρ
′(ρ(x))(A)

=
∨

A∈LidX

A(z) ∧
∨

ρ′(y)=(A)

ρ(x)(y)

=
∨

A∈LidX

∨

ρ′(y)=(A)

A(z) ∧ ρ(x)(y)

=
∨

y∈Y

ρ′(y)(z) ∧ ρ(x)(y).

The previous proposition tells which membership grade we should assign to the compo-
sition of two fuzzy relations, i.e. the suprema of the membership grades on the fuzzy re-
lations. This Kleisli composition of fuzzy relations can be connected to situations where
we want to combine different information systems and study rough approximations.

7.2 Ordinary Relations and Rough Sets

Let R be a relation on X , i.e. R ⊆ X×X . We represent the relation as a mapping ρX :
X → PX , where ρX(x) = {y ∈ X |xRy}. The corresponding inverse relation R−1

is represented as ρ−1
X (x) = {y ∈ X |xR−1y}. Based on indistinguishable relations,

rough sets are introduced by defining the upper and lower approximation of sets. These
approximations represent uncertain or imprecise knowledge. To be more formal, given
a subset A of X , the lower approximation of A correspond to the objects that surely
(with respect to an indistinguishable relation) are in A. The lower approximation of A
is obtained by

A↓ = {x ∈ X |ρ(x) ⊆ A}
and the upper approximation by

A↑ = {x ∈ X |ρ(x) ∩A �= ∅}.

In what follows we will assume that the underlying almost complete semilattice has
finite infima, i.e. is a join complete lattice. Considering P as the functor in its corre-
sponding partially ordered monad we then immediately have

Proposition 11. [6] The upper and lower approximations of a subset A of X are given
by

A↑ =
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)
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and

A↓ =
∨

ρX (x)≤A

ηX(x),

respectively.

The corresponding R-weakened and R-substantiated sets of a subset A of X are given
by

A⇓ = {x ∈ X |ρ−1(x) ⊆ A}

and

A⇑ = {x ∈ X |ρ−1
X (x) ∩A �= ∅}.

Proposition 12. [6] The R-weakened and R-substantiated sets of a subset A of X are
given by

A⇑ = μX ◦ PρX(A)

and

A⇓ =
∨

ρ−1
X (x)≤A

ηX(x),

respectively.

Proposition 13. If A ⊆ B then A↑ ⊆ B↑, A↓ ⊆ B↓, A⇑ ⊆ B⇑, A⇓ ⊆ B⇓.

The upper and lower approximations, as well as the R-weakened and R-substantiated
sets, can be viewed as ↑X , ↓X ,⇑X ,⇓X : PX → PX with ↑X (A) = A↑, ↓X (A) =
A↓, ⇑X (A) = A⇑ and ⇓X (A) = A⇓.

Considering the crisp powerset monad we define equivalent relations (reflexive, sym-
metric and transitive) by

Definition 2. ρX : X → PX is reflexive if ηX ⊆ ρX , symmetric if ρ = ρ−1 and
transitive if y ∈ ρ(x) implies ρ(y) ⊆ ρ(x).

In what follows, equivalence relations are now connected to upper and lower approxi-
mations.

Proposition 14. The following properties hold:

(i) If ρX is reflexive A↓ ⊆ A and A ⊆ A↑.
(ii) If ρX is symmetric A↓↑ ⊆ A and A ⊆ A↑↓.

(iii) If ρX is transitive A↑↑ ⊆ A↑ and A↓ ⊆ A↓↓.

Corollary 1. If ρX is an equivalence relation, A↓↑ = A↓ and A↑↓ = A↑.
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7.3 Inverse Relations

Inverse relations in the ordinary case means to mirror pairs around the diagonal. The fol-
lowing propositions relate inverses to the multiplication of the corresponding monads.

Proposition 15. [6] In the case of P ,

∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

if and only if
ρ−1

X (x) =
⋃

ηX (x)≤ρX(y)

ηX(y).

Concerning inverse relations, in the case of ϕ = Lid we would accordingly define
ρ−1

X (x)(x′) = ρX(x′)(x).

Proposition 16. [6] In the case of Lid,

μX ◦ Lidρ
−1
X (A)(x) =

∨

x′∈X

(ρX(x) ∧A)(x′).

Consider now the powerset monads with fuzzy level sets, Lα and Lα. For Lα is similar
to Lid situation. Let us see how is the situation for Lα

Proposition 17. In the case of Lα,

μX ◦ Lαρ
−1
X (A)(x) =

∧

x′∈X

(ρX(x) ∧A)(x′).

Proof.

μLα

X (Lαρ
−1
X (A))(x) =

∧

B∈LαX,B(x)>0,Lαρ−1
X (A)(B)>0

B(x) ∧ Lαρ
−1
X (A)(B)

=
∧

B∈LαX,B(x)>0,Lαρ−1
X (A)(B)>0

B(x) ∧
∧

x′∈ρX (B),A(x′)>0

A(x′)

=
∧

B∈LαX,B(x)>0,x′∈ρX (B),A(x′)>0

B(x) ∧A(x′)

=
∧

x′∈X

ρ−1
X (x′)(x) ∧A(x′)

=
∧

x′∈X

ρX(x)(x′) ∧A(x′)

=
∧

x′∈X

(ρX(x) ∧A)(x′).

We have made use of the definition of the inverse relation ρ−1
X (x′)(x) = ρX(x)(x′).
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Note that in the case of L = 2, for the functor 2α we obtain the classical definition of
the upper approximation of a set A.

Generalizing from the ordinary power set monad to a wide range of partially ordered
monads requires attention to relational inverses and complement. The role of the diago-
nal clearly changes, and the representation of inverses is an open question. Inverses and
complements must be based on negation operators as given by implication operators
within basic many-valued logic [22].

7.4 Monadic Relations and Rough Monads

Let Φ = (ϕ,≤, η, μ) be a partially ordered monad. We say that ρX : X → ϕX is a
Φ-relation on X , and by ρ−1

X : X → ϕX we denote its inverse. The inverse must be
specified for the given set functor ϕ. For any f :X → ϕX , the following condition is
required:

ϕf(
∨

i

ai) =
∨

i

ϕf(ai)

This condition is valid both for P as well as for Lid.

Remark 7. Let ρX and ρY be relations on X and Y , respectively. Then the mapping
f : X → Y is a congruence, i.e. x′ ∈ ρX(x) implies f(x′) ∈ ρY (f(x)), if and only if
Pf ◦ ρX ≤ ρY ◦ f . Thus, congruence is related to kind of weak naturality.

Let ρX : X → ϕX be a Φ-relation and let a ∈ ϕX . The Φ-ρ-upper and Φ-ρ-lower
approximations, and further the Φ-ρ-weakened and Φ-ρ-substantiated sets, now define
rough monads using the following monadic instrumentation:

⇑X (a) = μX ◦ ϕρX(a)

↓X (a) =
∨

ρX (x)≤a

ηX(x)

↑X (a) = μX ◦ ϕρ−1
X (a)

⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Proposition 18. [6] If a ≤ b, then ⇑X a ≤⇑X b, ↓X a ≤↓X b, ↑X a ≤↑X b,
⇓X a ≤⇓X b.

Definition 3. ρX : X → ϕX is reflexive if ηX ≤ ρX , and symmetric if ρ = ρ−1.

Note that in the case of relations for P and Lid, if the relations are reflexive, so are their
inverses.

Proposition 19. [6]

(i) If ρ is reflexive, a ≤⇑X (a).
(ii) ρ is reflexive iff ↓X (a) ≤ a.

(iii) ρ−1
X is reflexive iff a ≤↑X (a).

(iv) If ρ is symmetric, then ↑X (↓X (a)) ≤ a.

In the particular case a = ηX(x) we have a ≤↓X ◦ ↑X (a).
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The idea of submonad is similar to the idea of subsets.In this sense, the calculations
related to submonads is a way to reduce data in a given information system.

Let Φ′ = (ϕ′,≤, η′, μ′) be a partially ordered submonad of Φ = (ϕ,≤, η, μ). Given
a′ ∈ ϕ′X we have the following proposition:

Proposition 20. For a′ ∈ ϕ′X ,

↑X (a′) = μX ◦ ϕρ−1
X (a′)

Proof. Since a′ ∈ ϕ′X , ↑X (a′) = μ′X ◦ ϕ′ρ
′−1
X (a′). For defining submonad we use

the mapping e : ϕ′ → ϕ that is the natural transformation consisting of all inclusion
mappings eX : ϕ′X → ϕX . ρ

′−1
X is the restriction of the relation ρ−1

X on ϕX . Therefore

eX ◦ ρ
′−1
X = ρ−1

X and a′ = eX(a′). The by naturality of eX and submonad properties
we obtain:

↑X (a′) =↑X (eX(a′)) = eX ◦ μ′X ◦ ϕ′ρ
′−1
X (a′)

= μX ◦ ϕeX ◦ eϕ′X ◦ ϕ′ρ
′−1
X (a′)

= μX ◦ ϕeX ◦ ϕρ
′−1
X ◦ eX(a′)

= μX ◦ ϕ(eX ◦ ρ
′−1
X )(eX(a′))

= μX ◦ ϕρ−1
X (eX(a′))

= μX ◦ ϕρ−1
X (a′).

Similarly for the lower approximation we have

Proposition 21. For a′ ∈ ϕ′X ,

↓X (a′) =
∨

ρX (x)≤a′

ηX(x)

These propositions show us that rough approximations are well defined wrt submonads,
i.e. their definition in the submonad correspond to the one for the monad.

8 Conclusions

Partially ordered monads enrich monads with structure for generalizing rough sets. Var-
ious semantic viewpoints become available for the purpose of modelling uncertainties
in many-valued logic. This paper can, on the one hand, provide a solid categorical back-
ground and, on the other hand, due to its mathematical core, establish connections with
other categorical structures with the objective to enrich the theory. This is for instance
the situation for topological and convergence like structures. Their applications to rough
sets is future work and need to be based on suitable connections within the categorical
framework. Further, algebraic structures of rough sets should be investigated, not only
in direction towards topological notions but also involving logical structures. Substruc-
tures are always important as they provide additional examples.
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(1968)

25. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton
(1956)

26. Kleisli, H.: Every standard construction is induced by a pair of adjoint functors. Proc. Amer.
Math. Soc. 16, 544–546 (1965)

27. Kortelainen, J.: A Topological Approach to Fuzzy Sets, Ph.D. Dissertation, Lappeenranta
University of Technology, Acta Universitatis Lappeenrantaensis 90 (1999)
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Abstract. This paper constitutes an account of the authors’ experiences
and a presentation of results obtained in a real-life application of rough
set theory’s methods and techniques in the identification and analysis
of data dependencies and relationships on an empirical data. The data
was collected in the course of an experiment on the biological control of
the Leafy Spurge [13] weed in the prairies of Western Canada using an
agent beetle known as Aphthona nigriscutis (A. n.). The rough set theory
was applied to the data in order to identify and analyze the different
factors affecting the success of the biological control of the host weed.
This led to the discovery and confirmation of meaningful patterns and
the computation of a set of rules for the critical application of agent
beetle A. n in the control of Leafy Spurge weed.

1 Introduction

Plants that spread accidentally or intentionally become serious and undesirable
weeds. Losses from weeds are believed to be equal to the combined losses from
insects and diseases, and rank second only to losses from soil erosion [1]. Cul-
tural and chemical practices constitute the main methods of weed control. Such
methods are very costly, bring limited relief, increase soil erosion and, worst of
all, they contaminate underground water and pollute the environment [1], [5].
For those reasons, such methods are considered undesirable and environmentally
unsafe, especially on uncultivated and graze lands. Other alternatives are pur-
sued. One alternative method is a Biological Control (Biocontrol). It is based
on the identification and manipulation of weeds’ natural enemies. Such enemies
can be utilized to influence the abundance and existence of their host plants.

The transfer and manipulation of natural enemies of weeds, primarily plant
feeding insects, have resulted in various levels of success of control in a wide range
of weeds around the world and all over the prairies of Canada and the USA [2],
[3], [4]. There are many examples of successful iocontrol programs. One of the
earliest successes was with the cottony cushion scale, a pest that was devastating
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the California citrus industry in the late 1800s. A predatory insect, the Vidalia
beetle, and a parasitoid fly were introduced from Australia. In a short time
the cottony cushion scale was completely controlled by these introduced agents.
Damage from the alfalfa weevil was substantially reduced by the introduction
of natural enemies. Less than two decades after their introduction, the alfalfa
acreage treated for alfalfa weevil in the northeastern United States was reduced
by 75 percent. A small wasp, Trichogramma ostriniae, brought from China to
help control the European corn borer, is another example of biocontrol efforts.
Many biocontrol programs for insect pests and weeds are under way across the
United States and Canada [2].

Despite all the success, biocontrol still faces many challenges and obstacles,
with many trials failing [6]. One critical factor in this respect is to do with a sci-
entist’s inability to make sense of the relationships and dependencies that exist
among agents, weeds, level of success of the projects on one hand and the multi-
factors. Our research is addressing this issue in the context of rough set theory
[8]. Work presented here is based on work conducted by Agriculture Canada
dealing with control of Leafy Spurge weed using, among others agents, a bee-
tle known as Aphthona nigriscutis (A. n.). Leafy Spurge [13] is an herbaceous
perennial of Eastern European origin. It has dominated and excluded most other
herbaceous plants on uncultivated land on the North American prairies since its
introduction around 1865 with alarming increases in the last few decades [7].
Major projects to study and demonstrate the applicability and effectiveness of
the biocontrol on the reduction of the weed have been undertaken by Agricul-
ture Canada. It has been discovered that the growth of the A. n. agent and its
effectiveness as biocontrol was determined by the interaction of a variety factors
with incomplete understanding of the nature of the relationships between those
factors. In our approach, a data analysis methodology, the subject of this paper,
based on the application of learning and data discovery techniques derived within
the framework of rough set theory, was introduced and used. The methodology
was used to analyze the available data, explore hidden relationships, define new
patterns, confirm existing dependencies and helpfully provide a way to predict
the suitability of sites before the release of the beetle.

In summary, the objectives of this project (and consequently the subject of
this paper) were:

• The identification of the major factors contributing to the effectiveness of
biological control of Leafy Spurge;

• The analysis of the relationships and dependencies between the factors and
obtained control results;

• The creation of general classification rules that are representative of patterns
contained in the data. Such rules are to be used for the prediction of the
outcome for sites with predetermined factors;

• The investigation of the use of rough set techniques and the verification
of their usefulness and effectiveness as an analytical, data discovery and
development tool for the biological control of leafy spurge in particular and
similar tasks in general.



A Rough Sets Approach to the Biological Control of Leafy Spurge 77

The rest of the paper contains a general description of the basics of rough set
theory, techniques used in our experiments, the description of the experiments
performed on collected data, results and analysis followed by the conclusions.

2 The Rough Set Approach

In this section we briefly review the relevant concepts contained in rough set the-
ory as introduced by Pawlak [8][9]. It is worth noting here that many of the tech-
niques and methods of rough set theory presented here and elsewhere are backed
up with practical implementations of toolkits and systems [14]. DataQuest [15],
one of the early rough set-based systems was used in our work.

2.1 Approximation Space

Given a finite non-empty set U of objects, called a universe. Typically, in appli-
cations, the objects are represented by collected observations expressed in terms
of data vectors. The limits of discernibility of objects are formally expressed by
an equivalence relation over a set of objects. Each object of U is characterized by
a description, in the form of a set of attribute-values. In its original form as first
introduced by Pawlak [8][9], an equivalence relation on the universe of objects
is defined based on their attribute-values. The equivalence relation is called an
indiscernibility relation R(C), where C is a set of condition attributes used to
represent objects belonging to the domain of interest U . The attributes are dis-
crete and finite-valued properties of objects. Each attribute a belonging to C is
a mapping a : U → Va, where Va is a finite set of values called the domain of the
attribute a. The indiscernibility relation represents prior classification knowledge
about the universe of interest U . It is expressed in terms of identity of values of
the condition attributes C on objects.

The pair (U,R) is called an approximation space and the equivalence classes
of R are called elementary sets or classes. It is assumed, as it is the case in appli-
cations, that the approximation space consists of a finite number of elementary
sets.

2.2 Rough Approximations

If we let R∗ be a collection of all elementary sets, then any definable subset
of the universe U is a set union of some elementary sets. All other subsets
are undefinable or rough. For any definable set X there exits an uncertainty-
free criterion for determining the membership status in the set of any object
belonging to the universe U . The criterion normally is a logical formula specifying
combinations of conditions to be satisfied by all objects belonging to the definable
set. The criterion is referred to as a description of the set X , denoted as des(X). If
the set X is rough, the defining description does not exist and the membership
status of some objects with respect to the set X cannot be determined with
certainty. The rough set X of interest in our analysis will be referred to as
target set. Rough sets can be approximately characterized by the following two
definable sets (called lower and upper approximations respectively):
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The lower approximation, or the positive region, of a rough set X ⊆ U in the
approximation space (U,R) is defined as

R(X) =
⋃
{E ∈ R∗ : E ⊆ X}. (1)

The lower approximation of X is a union of elementary classes totally included in
X , that is, this is the largest definable set contained in the rough set X . Objects
belonging to the lower approximation with certainty belong to the set X .

The upper approximation of X , denoted as R(X), is a union of these elemen-
tary classes which have some overlap with X , i.e.

R(X) =
⋃
{E ∈ R∗ : E ∩X �= ∅}. (2)

The upper approximation is the smallest definable set containing the rough set
X . Objects belonging to the upper approximation possibly belong to the set X .

In addition, based on the upper and lower approximations, the boundary area
consisting of objects whose membership status with respect to the set X is
uncertain can be defined as follows:

BNR(X) = R(X)−R(X). (3)

That is, the boundary area is a union of such elementary classes which have only
partial overlap with the set X .

The union of all elementary classes which are completely disjoint from the set
X , is called the negative region of X , denoted NEGR(X):

NEGR(X) =
⋃
{E ∈ R∗ : E ∩X = ∅} (4)

The negative region is a largest definable collection of objects which with cer-
tainty do not belong to X .

2.3 Information Tables

The attributes used to form the approximation space are called condition at-
tributes C, whereas the prediction target is called decision attribute D.

We will assume the target set X is represented by a single binary-valued
attribute d called a decision attribute. The sets of objects corresponding to values
of the decision attribute, that is to X and ¬X , are called decision categories.

Both condition attributes and the decision attributes define a mapping de-
noted as

C ∪ {d} : U → C ∪ {d}(U) ⊆ ⊗a∈C∪{d}Va, (5)

where ⊗ denotes Cartesian product operator of all domains of attributes a ∈
C ∪ {d}. Let S ⊆ U be a finite subset of the universe referred to as sample. The
mapping C ∪ {d} : S → C ∪ {d}(S) can be represented by an information table
consisting of tuples, corresponding to elements of the collection C ∪ {d}(S). An
example information table, based on the biocontrol data, is shown in Table 1.
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Table 1. Sample partial information table for weed control data

SIZE DATE SP ORG PH CLAY SILT SAND TEXT ECO SLO ASPE REL SHD SUR SHR SV PP BI EVAL

LRG EARL 1 MID MID LOW LOW MID SCL SG YES STH SLP YES PP NO YES YES YES GOOD

LRG EARL 2 MID MID LOW LOW MID SCL SG YES STH SLP YES PP NO YES YES YES GOOD

MID EARL 2 MID MID LOW LOW HI SL SG YES STH SLP NO FC YES NO NO NO GOOD

MID EARL 2 MID MID LOW LOW HI SND ASP YES STH CONX YES FC YES NO NO NO GOOD

MID EARL 2 MID MID LOW LOW HI LS ASP NO NO FLAT YES FC YES NO NO NO FAIL

SML MID 1 HI HI MID MID LOW SICL MO YES STH SLP YES FC YES NO NO NO FAIL

SML MID 1 HI MID LOW MID MID LOM SG YES STH SLP YES PP YES NO NO YES FAIL

MID MID 1 LOW HI LOW LOW HI LS SG YES EW CONX NO FC YES NO NO YES FAIL

MID MID 1 LOW HI LOW LOW HI LS SG YES EW SLP NO MB YES NO NO NO FAIL

MID MID 1 MID HI LOW LOW HI SND SG NO NO CONX NO FC YES NO NO YES FAIL

MID MID 1 HI HI LOW MID MID LOM FG NO NO FLAT NO FC YES NO NO NO GOOD

MID LATE 1 MID HI LOW LOW HI SL ASP YES STH CONX YES PP YES NO NO YES FAIL

MID LATE 1 LOW HI LOW LOW HI LS SG YES NOR CONV NO MB YES NO NO NO GOOD

MID LATE 1 HI HI MID MID LOW SICL SG YES STH CONV YES PP YES NO YES NO FAIL

With the above notation, the elementary set corresponding to the tuple t of
values of condition attributes C, that is for t ∈ C(U), is given by:

Et = C−1(t) = {e ∈ U : C(e) = t}. (6)

The example partial information table derived from Leafy Spurge biocontrol
data is shown in Table 2 (end of section 2.5).

2.4 Dependency Analysis and Data Reduction

One of the major tasks taken by the rough sets methodology is the analysis of
data dependencies, identification and elimination of redundancies in information
tables. In this project, the rough sets methodology is adapted and used for
the determination of the usefulness of a given information table, identification of
important attributes, and assessment of their degree of importance, and relevance
with respect to a predefined decision action attribute. In the context of the
DataQuest system used in our experiments, the overall process involved the
following steps:

• Selection of condition and decision attributes.
A decision must be made on the factors to be used in the determination of
the target (decision) attribute value.

• Selection of the target decision value. A choice must also be made on
the decision value(s) of the decision attribute to evaluate for.

• Computation of dependencies. Computation of dependencies involves
measuring degree of determinism in representation of decision categories in
terms of combinations of values of condition attributes. Technically, the de-
pendency measure is a relative size of all decision categories obtained by
dividing the cardinality of lower approximations of the categories by the
number of observations [9]. It reflects the degree of functional dependency
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between condition and decision attributes . The computed degree of depen-
dency can assume any value between 0 and 1. The system DataQuest can
provide for individual or total dependency. Individual dependency refers to
the degree to which individual condition attribute can be used to determine
the decision attribute. Whereas total dependency refers to the degree to
which the whole set of condition attributes can be used to determine the
decision attribute.

• Computation of relative reducts. This is a process of redundancy iden-
tification and elimination [9] involving finding a minimal subset of condition
attributes, which have the same degree of dependency with the decision at-
tribute as all condition attributes. By computing the set of possible reducts,
we decide on which set of condition attributes to be used for the computa-
tion of rules. All reducts preserve total dependency. The main consideration
in making the selection is that of the user preferences and domain charac-
teristics. For instance, a user may use cost of data sampling or accuracy of
measurements for the selection of attributes to be used.

• Attribute significance determination. This is the evaluation of the rela-
tive power of individual condition attribute, with respect to total dependency
between conditions and decision attributes. This is, to determine which fac-
tors are dominant and which are irrelevant, with respect to the decision.
The core attributes [9], that is the ones that are contained in each reduct,
are considered to be the most important ones as far as the dependency is
concerned. In addition, the system DataQuest allows for computation of the
significance factor for each condition reduct attribute, defined as the relative
degree of dependency decrease due to elimination of the attribute from the
reduct [15].

• Computation of minimal rules. Once a reduct has been selected, the
system can generate rules based on suggested sets of attributes. These rules
can then be used for consultation and prediction of the suitability of sites
before the release of the agent. The description of the rule computation
algorithm is presented in the next section.

2.5 Computation of Rules

Rule computation based on the identified dependency is one of the most funda-
mental aspects of the rough set theory. In the context of rough set theory, rules
are expressions representing relationships between subsets of the universe U . For
any definable set Y and the target set X of the universe U , the rule is a formal
statement des(Y ) → X , where des(Y ) is a defining description of the set Y . The
set Y is referred to as rule support set. The rule is interpreted as a statement
which says that if an object matches the description of the set Y then it belongs
to the target set X .

In our experiments, rules were computed by the system DataQuest according
to the algorithm based on the notions of reducts of categories introduced in
[9]. The algorithm produces a set of rules forming locally minimal cover of the
lower approximation, or of the boundary area, of the target set X . The lower
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approximation-based rules are deterministic, or certain, with a unique outcome,
whereas the boundary area-based rules are non-deterministic, or uncertain with
several possible outcomes, in general.

Let F = {X1, X2, ...Xn} be a family of subsets of U and let Y be a subset
of U such that

⋂
F ⊆ Y . The family of sets H ⊆ F is a relative join-reduct of

categories of F with respect to the set Y if:

•
⋂

H ⊆ Y ;
• the family of sets H is non-redundant with respect to preservation of the

relation
⋂

H ⊆ Y , that is for every subset X ∈ H , the relation
⋂

(H−X) ⊆ Y
does not hold.

The join-reduct of categories H is a locally minimal sub-family of the family of
sets F preserving the relation

⋂
H ⊆ Y since no component set of H can be

removed from it without affecting the relation.
The other kind of reduct of categories used in the computation of rules is

the union-reduct. The union-reduct is a locally minimal subset of the family F
preserving the union

⋃
F of its members. In detail, the family of sets H ⊆ F is

a union-reduct of F if:

•
⋃

H =
⋃

F ;
• the family of sets H is non-redundant with respect to preservation of the

relation
⋃

H =
⋃

F , that is for every subset X ∈ H ,
⋃

(H − {X}) �=
⋃

F .

The rules are computed from the information table obtained based on pre-
declared condition and decision attributes. They can be computed for each
decision category. The main stages of the rule computation algorithm of the
DataQuest system are sketched as follows.

Algorithm (Computation of Locally Minimal Rules).

1. Identify descriptions of all elementary sets forming lower approximation of
the selected decision category or boundary area.

2. Based on the identified descriptions, express each elementary set as an in-
tersection of sets corresponding to symbols appearing in the description of
each elementary set.

3. For each elementary set of the lower approximation (or boundary area),
compute relative join-reduct of categories.

4. Form the set union of the join-reducts obtained in step (3);
5. To obtain locally minimal cover of the lower approximation (or the boundary

area) of the target set, compute union-reduct of join-reducts obtained in step
(4).

6. The join-reducts obtained in step (5) are definable sets whose descriptions
are conjunctions of conditions defining the intersecting sets appearing in each
join-reduct. The descriptions form preconditions of the rules for the lower
approximation of the target set or the boundary area.
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Table 2. Rules in tabular form computed from the weed control data

ID CNO DNO SZE SPN ORG SLT TXT ECO ASP REL SHD PP BI AF EVL
1 2 46 – 2 – – SND – – FLT NO – – – GD
2 8 46 – 2 LOW LOW – – – – NO – – – GD
3 3 46 LRG – – MID – – – – YES – – – GD
4 4 46 – 1 – – – MG STH – – – – – GD
5 3 46 – – HI – SND – – – – – – YES GD
6 1 46 – 1 HI LOW – – – – – – YES – GD
7 2 46 – – LOW – SND MG – – – – – NO GD
8 7 46 – – – – – – – SLP – – – YES GD
9 3 46 – – – – – – – FLT YES – YES – GD
10 4 46 – – – – SND – STH COX – – NO – GD
11 2 46 – – – – SND – EW SLP – – – – GD
12 3 46 – – LOW – – ASP – FLT NO – – – GD
13 5 46 – – – LOW – – – SLP – – YES – GD
14 5 46 LRG – LOW – OTH – – FLT NO – – – GD
15 3 46 – – – – OTH – STH SLP NO – – – GD
16 1 46 – – – – – MG EW – – – – – GD
17 7 46 – – – MID SND – – – – – NO NO GD
18 1 46 – – – – – – – CAV NO – – – GD
19 1 34 – 2 – – – MG – – – YES – – FL
20 3 34 – 2 – – OTH – – – – NO – – FL
21 3 34 – – – – – - ASP NTH – – – – – FL
22 1 34 – – – – – ASP STH – – YES – – FL
23 5 34 – – – MID OTH – – – – – – – FL
24 1 34 – – – – – MG NON – – – – YES FL
25 2 34 – 1 – LOW SND – – SLP – NO NO – FL
26 1 34 – – – LOW – ASP EW – – NO – – FL
27 2 34 – – – – – MG NTH – – – – NO FL
28 2 34 – 1 – LOW SND SG – – – NO – – FL
29 8 34 – – – LOW – ASP NON – – NO NO – FL
30 4 34 – 1 – – – SG – COX – – – – FL
31 2 34 – – – – – SG EW – – – – – FL
32 3 34 – – – LOW – – – COX – – YES – FL
33 3 34 SMLL – – – – – – – – – – – FL

Quite independent, sometimes overlapping, but never redundant production
rules are computed by the algorithm. They can be based on the whole set of
data or on manually, or automatically, selected attribute reducts [9]. The rules
computed are displayed in a table format, with each row corresponding to a
single rule. Values that do not matter to the decision are left blank and are
dealt with as do not care values. Computation of rules based on less than full
functional dependency means that the system will lack sufficient information to
be able to discriminate between every decision category and some boundary area
rules will be produced.

A number of measures are provided by the system to help establish confidence
in the computed rules include:

• The number of rows in the information table that support each
given rule (CNo). That is, this is the number of observations that match
rule condition part. This value corresponds to the rule support or generality
parameter reflecting the percentage of cases in the universe matching rule
condition part. The percentage of cases matching rule condition part and
also matching the rule’s decision part, the rule accuracy measure is always at
maximum value of 1 for all lower approximation-based (deterministic) rules.
(for more details on rule evaluation measures see, for example, [17],[16]).
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• The number of cases with a particular decision value (DNo). That
is, this is the number of observations in the information table with the same
value of the decision attribute as that of the rule. This value, jointly with
CNo, corresponds to the rule coverage, or resolution [17] parameter reflecting
the percentage of the target set covered by objects matching rule condition
part, which is given by the ratio of CNo

Dno for deterministic rules.

The DataQuest system provides for adaptive classification environment and
consultation interface. A set of condition attributes can be entered into the
system to be used to predict the outcome. Incorrect decisions, different multiple
decisions, or no decisions at all, are not the results of the systems failure but
a lack of sufficient cases. To have the systems experience grow, every failure
case can be added to the respective table with corrected and verified decision
value. The task of building classification system using DataQuest reduces to an
accumulation of sufficient number of representative cases.

3 Experiments

In this section, we provide a comprehensive overview of the application of the
rough set methodology to the analysis of data reflecting the effectiveness of
biological control of growth of weeds.

3.1 Experimental Procedure

The investigation method is based on the computer analysis of empirical data
acquired from a number of test sites. Test sites are locations where the A. n.
beetles are released and monitored. The data has been collected in the course of
research carried out at the Regina Research Station of Agriculture Canada.

In the context of this research, the observable and measurable data and the
effects on the present status of the site are expressed as attributes and attribute
values for each release site. A number of experiments were done each based on a
set of data with particular properties and measurements of different aspects of
release sites. These runs were used at first for tuning the knowledge base so as to
arrive at a final representation. The final data set was then used in identifying
the most important attributes, rule generation and prediction.

3.2 Data Collection and Usage

Data from release cases were collected, tabulated and refined to arrive at a work-
able set of data that is suitable for computers and representable as an information
system. Two important aspects were kept in mind:

• inclusion of as many factors as possible and
• inclusion of as many complete cases as possible.

Cases with incomplete data factors were excluded. A final data table represent-
ing non-uniform cases from releases made in Canadian provinces of Saskatchewan,
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Table 3. Factors used in the experiments

Name Description Name Description

Size Number of beetles released in the site Aspect Direction of slopes
Date Part of the summer when site created Relief Site’s relief:concave, convex
Span Time from site creation till evaluation Shade Presence of shade
Organic C Level of Organic Carbon in soil Cover Presence of bare ground
pH Ph level of the soil. Shrubs Presence of shrubs
Clay Percentage level of Clay in the soil S. c. Presence of Stipa comata
Silt Percentage level of Silt in the soil S. v. Presence of Stipa viridulav
Sand Percentage level of Sand in the soil P. p. Presence of Poa Pratensis
Texture Soil texture in terms of Sandy, loamy B. i. Presence of Bromus inermis
Eco Region Ecological region type where the site is A. f. Presence of Artemisia frigida
Slope Indication of the existence of slopes E. A. Presence of Equisetum arvensis
Evaluation Effectiveness of the control in the site – –

Manitoba and Alberta was compiled. The data included an incomplete table of
over 150 cases and 23 attributes. After the exclusion of agents other than the A.
n., data was reduced to 128 cases of which 80 were non-redundant, complete and
were used for training and testing the system. Table 3 shows the list of selected
factors used in the experiment.

The following two sections contain the results of the experiments performed
on the final and complete set of data [7], [11], along with their analysis and
testing results.

4 Results and Analysis

Four major categories of factors, Release, Physical, Ecological and Vegetation
were first analyzed separately. Then the attributes were combined and analyzed
producing results as shown in Table 4 and described in the next few sections.

4.1 Data Modelling and Analysis

Two important considerations used in the evaluation of release sites were sup-
plied by the experts. They included the amount of weed depression introduced
by the control agent and density of the beetles’ presence. The former is expressed
as diameter of the control area whereas the latter is expressed by the number of
beetles in five sweeps. The two factors were combined according to the following
formula supplied by the field experts:

q = (diameter/2)2(number − of − beetles) (7)

The resulting q values were then mapped into one of GOOD or FAIL decision
categories using predefined ranges as supplied by the domain expert [11]. The
survival of the colony and the reduction of the target weed are thought to be a
function of many factors related to Release, Physical, Ecological or Vegetation
considerations. Previous studies [12] have revealed that:
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Table 4. Summary of significance of factors

No Sets Attribute Name Sub-sets Sig. Comb.Set Core
1 Release Factors Size 75 Yes
2 – Date 25 –
3 – Span 25 Yes
4 Physical Factors pH 63.0 –
5 – Texture 59.3 –
6 – Silt 48.1 –
7 – Organic C 44.4 –
8 – Clay 25.9 –
9 – Sand 0.0 Yes
10 Ecological Factors Region 44.7 –
11 – Cover 44.7 Yes
12 – Shade 42.1 Yes
13 – Relief 31.6 –
14 – Aspect 28.9 –
15 – Slope 0.0 –
16 Vegetation Factors Shrubs 33.3 –
17 – Bis 33.3 –
18 – S.c 20.8 –
19 – P.p 20.8 –
20 – S.v 16.7 –
21 – A.f 12.5 –
22 – E.a 0.0 –
23 Effect and Evaluation Evaluation – –

• The controlling agent thrives well in OPEN, DRY, and COARSE soils.
• Presence of Stipa comata (S.c), southerly slopes and bare grounds are indi-

cations of favorable conditions that should evaluate to GOOD.
• On the other hand, presence of shade, northern slopes and swales are indi-

cation of more moisture and characteristic of poor sites and should evaluate
to POOR.

The initial set of data was first used and it yield 93% total dependency indi-
cating strong patterns in the data. Some inconsistencies resulting from attribute
Span produced less than 100% dependency on the table led to the elimination
of the earlier releases of the inconsistent cases. It is observed that the finer the
qualitative values, the stronger the dependency. Based on this idea, the data-
base in the initial runs contained all possible values. This resulted in a 100%
dependency. Some of the categories proved to be unnecessary and thus were
eliminated or merged with each other while maintaining maximal dependency of
(100%) [11]. This resulted in coarser values for the attributes Span, Size, Date,
Organic-carbon, pH, Clay, and Sand. The values for each of those attributes were
re-modelled and made coarser by merging of values. The resulting set was then
used by the system with results as discussed next.

4.2 Release Factors

This subset includes Size, Date, and Span factors. Running the system on the
release data revealed the following :
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• A total dependency of 5.0% was obtained meaning that approximately 5%
of the cases could be unambiguously classified to their correct decision cat-
egories. Obviously a very weak dependency suggesting that release data on
its own may not be very detrimental to the characterizations of relationship
between evaluation of success and release factors.

• Rules generated based on the release data concluded that all cases with
releases of less than 50 beetles did poorly, in line with expert’s expectations
[7][11][12].

• The significance factor of each parameter was established and is shown in
Table 4 with Size as the most important of the three (75%), followed by
Date and Span (25% each). The core of this group of data is made up of
Size, Date, and Span.

4.3 Physical Factors

This subset contained the attributes of Organic carbon, pH, Clay, Sand, Slit and
Texture. A number of interesting results obtained as outlined next:

• A much greater dependency (33%) was obtained. That is, one third of the
cases were unambiguously classified into their correct decision category. This
suggested that physical data is an important component inline with expert’s
findings [7][11] [12].

• Except for Sand, all other attributes were considered as important. This
was expected and understandable in the case of Texture, Slit and Clay since
they indicated the moisture holding capacity of the soil. the PH and Organic
carbon’s importance were not previously known to the expert, but were sat-
isfactorily explained since soil with high organic carbon develops in poorly
drained sites. As far as pH is concerned, two aspects might explain its im-
portance. Soils with low pH values are not good for the beetles. High pH
values are an indication of alkaline soils. In turn, alkalis are indicative of dry
sandy soils and are better for the beetles. This is true in the prairies where
factors such as low rain fall, warm weather and long periods of sun exposure
contribute to high evaporation and efficient drainage on sandy soils.

• Rules generated by the system were consistent with the above observations
in that high organic carbon content was a characteristic of poor sites; 27%
of the relevant cases did poorly even though they were on sandy soil with
low silt content. And 47% of the sites did poorly because they were on non-
sandy soil but contained high organic carbon and low pH values. On the
other hand, 67% of the relevant cases that did well were releases on sandy
soils with high pH values.

• The attribute Sand was given 0% significance value while Texture was rated
at 59.3%. This is a very interesting result, since texture includes the sand
content. Thus, the attribute Sand was not necessary and was eliminated as
redundant. The core of this set of data included the attributes pH, Texture,
Silt, Organic Carbon, and Clay.
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4.4 Ecological Factors

The six attributes considered were Ecological region, Relief, Aspect, Slope, Sur-
face cover and Shade. Results were as follows:

• A greater total dependency of 47.5% was obtained for this set of ecologi-
cal factors. This is quite useful, since factors of topological nature require
less effort in collecting and sampling when compared to physical data for
example.

• All of the attributes, except for Slope, were judged important with very close
values of importance suggesting that they are all equally important.

• Rules generated have confirmed the above observations quite well. For ex-
ample, 26% of the relevant cases that did poorly were released on Aspen
shaded-areas with no slope or bare ground (highly moist and considered bad
for the beetles). The 17% of sites that did poorly were released in the Aspen
region with northerly aspects. On the other hand, 21% that did well were
on short grass areas with bare ground, and 17% were on southerly aspects
even though they were on Aspen regions and had no bare ground. The set of
attributes of Ecological region, Surface cover, Shade, Relief and Aspect were
considered the most important.The interaction of such factors can result in
differing degrees of moisture which can accordingly affect the beetles [7].

4.5 Vegetation Factors

This sub-set of data accounts for the occurrence of certain plant species in a site
including Shrubs, Bromus inermis (Bis), Stipa comata (S.c) , Artemisia fridida
(A.f), Poa pratensis ( P.p) and Equisetum arvense (E.a). The occurrence of each
plant is an indication of certain conditions, but its absence may not indicate the
opposite conditions. Results were as follows:

• A total dependency of 30.0% was obtained for vegetation factors, higher than
that of release factors but lower than physical and ecological factors.

• Interestingly enough Shrubs had the highest importance (33.3%) suggesting
that groups of plants of common characteristics may be far better in char-
acterizing the relationships than single plants. S.c had the same significance
of 33.3% in accordance with expert’s observations that S.c seems to indicate
favorable sites. Only E. a. was left out of the most important attributes.

• Rules generated confirmed the above observations as well as previous findings
[7][11]. For instance, 21% of the relevant cases that did well had Stipa comat
(S.c) and 26% had no Shrubs. The core of this set is made up of the attributes
Shrubs, S.c, P.p, Bis, S.v and A.f.

4.6 Combined Factors

The final run of the system was on the combined set of 23 factors. The following
are some of the results obtained:
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1. A total dependency of 100% was obtained. This means that all of the cases
in the knowledge base were correctly and unambiguously classified. A 100%
total dependency represents a very strong relationship between the condi-
tion factors and decision attributes. However, one has to be cautions with
the interpretation of an extreme result like that. The high value of the de-
pendency my be just the reflection of the relatively high number of attributes
used and of the small number of observations which results in a classifica-
tion containing only the singleton elementary classes leading to full (100%)
dependency.

2. The list of most important factors contributing to the success or failure of
the site contained Size, Span, Aspect, Texture and Relief. This was a very
interesting result, since each attribute of the core set is a good indicator
of moisture level, openness and soil texture. This in turn makes the list of
factors quite important to the characterization of good and poor sites. This
has a direct effect on the cost and efficiency of running the experiments as all
core factors except for Texture are observable and easy to measure factors.
Effect of each CORE attribute can be explained as follows:

• Size: Small numbers of beetles will probably end up in failure whereas
large ones will be successful even in less favorable sites.

• Span: It seems that evaluations after one year may not indicate whether
the beetle will succeed. Cases for sites of longer periods are needed to
tell if the Span affects the sites.

• Texture: It was found that soil types represented as sandy, which in-
clude sand, sandy loam, sandy clay loam and loamy soil types, are char-
acteristics of good sites. Analysis of these types using a table provided
by the Research Station showed that sandy soils contain about 50 % or
more sand and about 50% or less silt and clay. The reverse is true for
poor sites. Soils rich in silt or clay and low in sand are characteristics
of unfavorable sites. This is in line with findings by [7] in that the two
types are used in characterizing how coarse and dry soil is. Moist and
fine soils (Silty or Clay) are poor for the beetle whereas dry and coarse
(Sandy to Loam) are good for the beetle.

• Ecological region: Good sites tend to be in the short grass prairies
regions and are rare in the Aspen, Montane or Fescue grass regions. The
opposite is true for the poor sites. However, there are exceptions. Since,
the ecological region is a broad categorization of huge areas; moist sites
may exist in dry regions and vise versa.

• Aspect: Southerly to easterly aspects are characteristics of good sites
whereas northerly aspects are characteristics of poor sites. This is con-
sistent with findings and is expected since southerly aspects are subject
to more sun exposure than northerly aspects. Thus, they are dryer and
warmer [7][12]. For example, 7% of the cases did well even though they
were on a non-sandy soil due to southerly aspect. Also 9% did well even
though they were on unfavorable ecological region due to southerly aspect.
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• Relief: Though flat sites can be successful, sloped and convex sites gen-
erally have a better chance of success. They tend to have better drainage,
more bare grounds and thus are generally dryer. In contrast, concave sites
and northerly sloped which are moister. This is evident from results ob-
tained. For instance, 15%, that did well had slopes, whereas 25% which
did poorly were flat.

3. As far as reduction is concerned, the system was able to identify 24 different
combinations of attributes that can be used to discriminate good sites from
poor ones. Each subset generated by the system corresponds to a combina-
tion of factors that include, along with the core, one or more of the factors
from the original set. Each reduct represents a reduction from 46% to 55%.
Any subset can be used to generate rules used to predict the success or fail-
ure of sites. These many different reducts represent some of the flexibility
provided for the user in selecting a cost-effective, accurate and easy to sam-
ple set of factors, while maintaining the same ability of characterizing good
sites from poor ones.

4. A set of rules was generated based on combined set of data. Examples of
such rules are shown here, for the complete set of rules generated see [11].

5. In an attempt to verify the usefulness of the dependency expressed by the
rules, 80 cases were tested out. Leave-one-out method of testing was used.
That is, the test data was basically the same as the training data except,
that the rules used to test one case were based on the knowledge base not
containing the test case. A 100% total dependency was obtained on all 80
runs that were made. Testing results are shown in Table 6. It contains the
test results for each decision and for all decision categories.
The test resultsdo confirmtheusefulnessof the rules thatcanbegenerated from
the developed knowledge base. It is important however to note the following:

• The degree of correctness (incorrectness) of the prediction made by the
system varies from one decision category to another. Best results of 73%
were obtained for good sites. This may be attributed to the fact that
the knowledge base contained more good cases than poor ones. It is
also possible that sites may fail for any considerations other than being
in unfavorable places and conditions. This is certainly true for cases
reported to be grazed by cattle, where no beetles were found and thus
the site was judged poor rather than good. This meant that sites judged
as poor by the experts were predicted good by the system. This is like
saying that the site has favorable conditions but may have failed due to
other reasons.

• The system was not able to suggest any answers for 6% of the test cases.
This is like saying that the knowledge base was not representative enough
and that more cases and/or factors are needed to reach a maximum
effectiveness.

• All of the cases that were not predictable fall in the good decision category
and none in the fail category. This confirms that more good cases need to
be included in the knowledge base so as to make it representative enough.
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Table 5. Sample rules for each decision category

Combined
Site is GOOD IF
Size = Large and Silt = Medium and Texture = Sandy and Shrubs = Yes
Size=Large and Organic Carbon = Low and Texture = Non-Sandy and Relief = Flat and Shrubs = No
Texture = Sandy and Aspect = STHerly and Relief = Convex and B.I = No
Site is FAIL IF
Span = two years and Ecological Region = Aspen and Aspect = North P.p =No
Sitl Content = Low and Ecological Region = Aspen and Aspect = North and P.p.= No and B. i.= No

Vegetation Factors only
Site is GOOD IF
Shrubs =Y es and P. P. = Yes and A. f. = Yes
Site is FAIL IF
Shrubs = No and S. c. =Y es and S. v. = No and A. f. = No

Ecological Factors only
Site is GOOD IF
Ecological Region = Aspen and Aspect = STHly = Relief = Convex and Surface = Fully covered
Site is FAIL IF
Ecological Region = Mixed Grass and Shade = No and Surface = Bare

Physical Factors only
Site is GOOD IF
Ph = High and Silt = Medium and Texture = Sandy
Site is FAIL IF
Organic Carbon = High and Ph = Low and Clay = Low and Texture = non-sandy

Release factors only
Site is GOOD IF
Size = Large and Date = Early
Site is FAIL IF
Size = Small

Table 6. Results of tests

Decision —- Total Correct Incorrect Unable-To
ALL Raw 80 51 24 5

Percent 100% 64 30% 6%
Raw 75 51 24 -

Percent 94% 68% 32% -
GOOD Raw 46 30 11 5

Percent 58% 65% 24% 11
Raw 41 30 11 -

Percent 51% 73% 27% -
POOR Raw 34 18 16 0

Percent 42% 53% 47% 0
Raw 34 8 16 -

Percent 42% 68% 32% -

In summary, the system did well in correctly predicting the success of 73% of
the good cases and 68% of all cases.

5 Conclusion

The basic elements of the original rough set model of rough sets as introduced
by Pawlak were presented and applied to the biological control of Leafy Spurge
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by establishing its utility in analysis, discovery and rule generation. Using rough
set’s tools and techniques, data factors were analyzed, some dependencies were
identified, and rules describing these dependencies were computed and tested.

By applying the theory in the biological control of weeds, the effects of differ-
ent parameters on the success or failure of this application were analyzed. Major
data groups relating to different aspects of the prairies environment were col-
lected. The surveyed factors included four important aspects of release physical,
topological characteristics and vegetation.

Results obtained confirm strongly the usefulness and need for rough set in
domains where no formulas exist and little data is available.

Not only have the obtained results confirmed the findings of respective re-
searchers but also suggested the importance of factors some of which researchers
were not aware. Different combinations of factors, including the most important
ones, were presented as alternatives that can be used to evaluate the appropri-
ateness of sites before new releases are made.

Test runs on the generated rules assert the validity of such rules, as a repre-
sentation of strong dependencies existent in the knowledge base. Analysis of the
work done indicate that the theory of rough sets can be fruitfully applied in the
field of biological control of weeds and similar fields.
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Abstract. In this paper, we mainly discuss the relationship between
the extended Pawlak flow graph (EFG) with granular computing (GrC),
and develop a both simple and concrete model for EFG using GrC. The
distinct advantage is that we can resort to merits of GrC to benefit us
in analyzing and processing data using flow graph, for its structure is
inherently consistent with GrC, which provides us with both structured
thinking at the philosophical level and structured problem solving at the
practical level. In pursuit of our purpose, at first, EFG will be mainly
discussed in three aspects under GrC, namely, granulation of EFG, some
relationships and operations of granules. Under the framework of GrC
model, inference and reformation in EFG can be easily implemented in
virtue of decomposition and composition of granules, respectively. Based
on this scheme, two efficient reduction algorithms about EFG are also
proposed.

Keywords: Pawlak Flow graph, Granular computing, Rough set, Infor-
mation System, Reduct.

1 Introduction

Since Zdzis�law Pawlak proposed a flow graph (FG) in his pioneer paper [18],
which is a new graphical model for representing knowledge and reasoning data,
series of relative papers about FG, such as [19,20,21,22,23,24,25,26,27], have
been continuously put forward to place emphasis upon its importance in data
analysis. In these literatures, Pawlak investigated that FG is tightly related with
several theories (e.g., rough sets, decision systems, Bayes’ theorem, data mining
and decision tree). In addition, these works also pave the way for its application
in many fields [26]. For example, Palwak firstly discussed the relations between
probability theory and FG in [20]. Then FG was linked up with decision systems
in sources [21,22,24], and tied up with rough sets in his recent paper [25].

Unlike optimal flow, FG mainly concerns information flow distribution in the
view of quantity. In a FG, each node denotes one element set and each branch

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 93–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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describes flow distribution between nodes. In addition, each branch is considered
as a rule. Thus, every path from the root to a leaf denotes a decision rule, where
leaf represents decision class or label. As a result, a FG is a set of decision rules.
In other words, FG is a kind of graph representation of decision algorithm in
some ways [18]. Under this context, each branch or path associates with three
coefficients, i.e., the strength, certainty and coverage factors. Moreover, these
information flow distributions in FG are governed by Bayes’ formula and abide
by flow conservation equations [25].

As a mathematical model of finding and mining knowledge, FG has some
advantages, such as intuitional representation, straightforward computation, ex-
plicit relations and parallel processing. Just owing to these, a considerable at-
tention from many researchers has been paid on FG since it has been proposed.
For example, Butz et al. argued that rough set FGs can be transformed into
Bayesian networks in polynomial times [3]. Subsequently, they figured out that
the FG inference algorithm in the past has exponential complexity and then pre-
sented a polynomial time complexity algorithm for inference in FG [4,5]. While
Kostek and Czyzewski successfully applied the inference technology about FG
in musical metadata retrieval, in order to improve retrieval efficiency [9,10].

Even so, some undesirable effects also reside in FG. For example, it cannot
exactly or precisely depict the relationships among nodes in network, because
FG is only based on information flow distribution and represents the relation-
ships among nodes in quantity of flow. To tackle with this problem, Sun et al.
introduced an extension of flow graph (in short, EFG) in [33] on the ground of
the fact that qualitative analysis is no less important than quantification mea-
sures in data mining. This extension, however, not only has the capability of FG
in the quantification aspect, but also can be interpreted by information systems
or granular computing (GrC) from qualitative view.

Since information granulation has been addressed by L.A. Zadeh in his pa-
per [40], many fruitful researches have been made (see [11], [16], [39] and [41]). To
label studies on information granulation and computations, T.Y. Lin introduced
a term, called GrC, which is more about a philosophical way of thinking and a
practical methodology of problem solving deeply rooted in human mind [38]. Its
emerging is primarily motivated by the practical needs for simplification, clarity,
low cost, approximation, and tolerance of uncertainty. By effectively using levels
of granularity, GrC provides a systematic, natural way to analyze, understand,
represent, and solve real world problems [38]. The predominance of GrC lies in
that complicated problem can be divided into several simple and easily managed
sub-problems, so as to cut the solution cost down and assist users to get far away
from unnecessary and trivial matters.

Ascribing to its well-structural network, EFG is intrinsically consistent with
GrC [34,14]. In this paper, the relationships between EFG and GrC will be re-
vealed from three aspects: granulation of the universe, relationships of granules
and computing with granules. These elements, however, are three fundamental
issues of granular computing [39]. Without loss of generality, we will first dis-
cuss granulation of EFG in details, and then involve some relationships among
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granules. The transition among granules describe the capability of model in
solving problem among different levels of granularity. Further, an approximation
reduction algorithm about EFG based on the model of GrC will be represented
after decomposition and composition of granules are introduced. Furthermore,
some issues of inference and reformation in EFG will be concerned later, and
corresponding algorithms will also be given.

The structure of the rest is organized as follows. Section 2 briefly reviews re-
lated work about the state of the art of FG. Section 3 presents some notations of
flow graph and its extension. In Section 4, the model of EFG under the interpre-
tation of GrC is highlighted. Section 5 provides the inference and reformation
procedures in EFG according to decomposition and composition on granules,
respectively. Moreover, the corresponding algorithms are also given in this sec-
tion. Section 6 introduces two kinds of reduction algorithms about EFG under
the framework of GrC and some simulated experiments for the proposed reduc-
tion algorithms have been performed in Section 7. Finally, several concluding
remarks are summarized in Section 8.

2 Related Work

Since flow graph has been introduced, many promising works have been down
on it in the past years. In this section, we will briefly review the state of the art
of flow graphs.

After addressed the concept of flow graph in [18], Pawlak put his great en-
deavor to its theoretic foundation and application. As an illustration, he pointed
out that FG is closely related with rough sets and decision algorithms in [25],
and then discussed in details its application in data mining [26], such as produc-
tion quality and voting analysis. More works about FG proposed by Pawlak can
be found in the related literatures listed in the reference.

Butz et al. in [3] figured out that FG is a special case of Bayesian network.
Under this context, they demonstrated that the time complexity of the tradi-
tional inference method in FG is exponential. In addition, they investigated an
efficient inference algorithm in [4] to reduce its computational cost. This method
eliminates variables (i.e., layers) one by one, not all variables at a time. As a re-
sult, the reasoning process will be ended in polynomial time. To further improve
its efficiency, a variable elimination order, which is measured by the number of
input and output for each node of variable, was introduced in [5].

To remedy the deficiency of FG in qualitative aspect, Sun et al. [33] proposed
the concept of EFG. Subsequently, they integrated EFG with granular computing
together, for they shares many common characteristics in structure [34,14]. Just
owing to the advantages of GrC, the inference and reformation processes in
EFG can be complemented freely and easily under the partition model of GrC.
Meanwhile, a reduction of EFG can be achieved in a hierarchy manner.

In a FG, each node denotes a pair of attribute and its value. This implies
that FG can not be utilized to represent fuzzy information systems effectively.
To alleviate this problem, Mieszkowicz-Rolka and Rolka [15] generalized FG
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into a fuzzy one, called fuzzy flow graph, to describe decision tables with fuzzy
attributes. Under this representation, node in fuzzy FG refers to a linguistic
value of attribute. In addition, a T-norm operator was chosen to calculate the
information flow between nodes. Correspondingly, the certainty and strength of
path were also extended.

As a graphical framework, FG is more intuitional and comprehensible in com-
parison with rule representation form. However, rule is widely used in data min-
ing ascribing to its easy interpretation. Thus, several scholars attempt to build
the relationship between rule and FG. For example, Pattaraintakorn et al. [17]
considered graphical representation of rules for ordinal prediction, and adopted
the measurements in FG to scale prediction rules. Moreover, Chitchareon and
Pattaraintakorn [7] recently revealed the relationship between association rules
and flow graphs, that is, a path in FG is an association rule if its confidence and
certainty are all determinative. Besides, Chan and Tsumoto [6] elaborated the
relationship between decision rule and FG under the context of multiset deci-
sion tables. In multiset decision table, each row denotes one path in FG and the
whole table is a minimal representation of FG. Thus, the learning procedure of
decision rules from inconsistent data becomes easy, and the obtained rule set is
a minimal one.

For the application of FG, Kostek and Czyzewski [9,10] successfully applied
FG to analyze the dependent relation between meta-data in musical databases.
Its purpose is to improve the effectiveness and efficiency of access to such infor-
mation and release the limitation of online resources. In temporal data mining,
succeeding data is usually determined by the anterior models. To predict future
behavior of modeled systems, Suraj and Pancerz [32] exploited FG to obtain
this kind of dependent relation and represented it as prediction rule, so as to de-
scribe the changes of components in the consecutive time windows of a temporal
information system.

3 Flow Graphs and Its Extension

In this section, some concepts of flow graph and its extension will be recalled
briefly. More relevant notations can be consulted [23] and [33].

3.1 Flow Graph

A flow graph (FG) is a directed, acyclic, finite graph G = (N,B, ϕ), where N is
a set of nodes, B ⊆ N × N is a set of directed branches, ϕ : B → R+ is a flow
function and R+ is non-negative real [23].

In a FG, if (n, n′) ∈ B then n is called an input of n′ and n′ is an output of n
reversely. I(n) and O(n) are the sets of all inputs and outputs of n, respectively.
That is to say, I(n) = {n′ ∈ N |(n′, n) ∈ B} and O(n) = {n′ ∈ N |(n, n′) ∈ B}.
ϕ(n, n′) denotes the throughflow from node n to n′. For each node n, its inflow
and outflow are ϕ+(n) =

∑
n′∈I(n) ϕ(n′, n) and ϕ−(n) =

∑
n′∈O(n) ϕ(n, n′),

respectively.
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A normalized FG is a directed, acyclic, finite graph G = (N,B, σ), where N
and B are denoted as above. σ : B → (0, 1] is normalized flow of (n, n′) ∈ B
such that σ(n, n′) = ϕ(n, n′)/ϕ(G). Usually, σ(n, n′) refers to the strength of the
branch (n, n′). Correspondingly, the inflow and outflow of node n are σ+(n) =∑

n′∈I(n) σ(n′, n) and σ−(n) =
∑

n′∈O(n) σ(n, n′), respectively. Obviously, the
normalized throughflow of G is σ(G) = 1. The certainty and coverage of (n, n′)
are defined as cer(n, n′) = σ(n, n′)/σ(n) and cov(n, n′) = σ(n, n′)/σ(n′), where
σ(n) �= 0 and σ(n′) �= 0.

Cohering with decision table closely, FGs can be directly constructed from
decision tables. Furthermore, FG is a graphical representation of decision algo-
rithms by organizing the decision rules obtained from decision table as a directed
acyclic path [18]. For instance, each node n ∈ N in FG depicts a pair of attribute-
value n = (a, v) and branch (n, n′) ∈ B shows the correlation between n and n′.
Moreover, ϕ(n) represents the meaning of its corresponding attribute-value pair
n = (a, v), and σ(n, n′) denotes the probability of co-occurrence about n and
n′. In other words, a FG is a set of decision rules, where each decision rule is
a path from root to leaf with strength, certainty and coverage. Moreover, these
coefficients are accord with Bayes’ theorem and flow conservation equations [25].

3.2 An Extension of Flow Graph

As mentioned above, we know that FG is a quantification graph, that is, it
represents simply the relations among nodes by virtue of flow distribution of in-
formation. Despite that some valuable results can be achieved using quantitative
factors, however, it is not sufficient to depict concretely and exactly the relation-
ships among nodes. In addition, qualitative factors, as well as quantitative ones,
play very important roles in data mining, for they can bring more reasonable
outcomes to data analysis. Therefore, an extension of FG has been proposed
in [33] on the ground of the information or objects flowing in the network.

An extension of flow graph (EFG) is a directed, acyclic, finite graph G =
(E,N,B, ϕ, α, β), where E and N are the sets of objects and nodes respectively.
B ⊆ N × N is the set of directed branches, ϕ : B → 2E is the set of objects
which flow through branches and α, β : B → [0, 1] are thresholds of certainty
and decision, respectively.

In the same way as the tight relation between FGs and decision tables, an
EFG G = (E,N,B, ϕ, α, β) can also be illustrated as a decision table DT =
(U,C,D). To be more specific, each node n ∈ N in G is an attribute-value pair
(a, v) in DT , and its throughflows refers to the meaning of the pair, namely,
ϕ(n) = {o ∈ U |a(o) = v}, where a ∈ C ∪ D and v ∈ Va. Additionally, branch
(n, n′) ∈ B means that its corresponding attribute-value pairs associate with
each other, i.e., ϕ(n, n′) = {o ∈ U |a(o)=v ∧ a′(o)=v′}, where U is the universe
in DT , (a, v) and (a′, v′) are pairs with respect to n and n′ respectively.

For the sake of simplicity, hereafter we assume that nodes with same attribute
form a layer and an EFG are arranged in several layers, denoted by a set L. In
the same layer, there does not exist any branch among nodes and one object
only belongs to one node. The throughflow of (n, n′) is not empty if (n, n′) ∈ B.
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In analogy to FG, node n is an input (father) of n′, if (n, n′) ∈ B, and n′ is
an output (child) of n reversely. Likewise, I(n) and O(n) are the sets of fathers
and children of node n respectively. In EFG, node n is called the root if I(n) = ∅
holds, and n is a leaf if O(n) = ∅. In addition, n is an internal node if n is
neither the root nor a leaf. The inflow and outflow of node n are respectively
defined as

ϕ+(n) =
⋃

n′∈I(n)
ϕ(n′, n) and ϕ−(n) =

⋃
n′∈O(n)

ϕ(n, n′). (1)

Moreover, ϕ(n) = ϕ+(n) = ϕ−(n) if n ∈ N is an internal node. For branch
(n, n′) ∈ B, its input and output are nodes n and n′ respectively. Thus, an
object flowing through (n, n′) also pass through both n and n′, and vice versa.
This means that if ϕ(n) and ϕ(n′) are given, we can obtain the throughflow of
(n, n′) ∈ B by

ϕ(n, n′) = ϕ−(n) ∩ ϕ+(n′) = ϕ(n) ∩ ϕ(n′), (2)

in virtue of Eq. (1). The input and output of the EFG G are denoted as I(G) =
{n ∈ N |I(n) = ∅} and O(G) = {n ∈ N |O(n) = ∅}, respectively.

For any layer l ∈ L in EFG, its total throughflow is ϕ(l) =
⋃

n∈l ϕ(n) = E.
This implies that ϕ(l) is a partition on E, because ϕ(n) ∩ ϕ(n′) = ∅ for any
n, n′ ∈ l.

The certainty and coverage factors of each branch (n, n′) ∈ B in an EFG are

cer(n, n′) = |ϕ(n, n′)|/|ϕ(n)| and cov(n, n′) = |ϕ(n, n′)|/|ϕ(n′)|, (3)

respectively, where |X | is the cardinality of X , ϕ(n) �= ∅ and ϕ(n′) �= ∅. Mean-
while, |ϕ(n, n′)| is also called the strength of (n, n′).

A directed path from n to n′, denoted by [n...n′], is a sequence of nodes
n1, ..., nm, where (ni, ni+1)∈B for 1≤i≤m−1, n1=n, nm=n′ and

⋂m−1
i=1 ϕ(ni, ni+1)

�= ∅. In addition, the support, certainty and coverage of the path [n1...nm] are

ϕ(n1...nm) =
⋂m−1

i=1 ϕ(ni, ni+1),
cer(n1...nm) = |ϕ(n1...nm)|/|ϕ(n1...nm−1)|,

cov(n1...nm) = |ϕ(n1...nm)|/|ϕ(nm)|
(4)

respectively, where ϕ(n1...nm−1) �= ∅ and ϕ(nm) �= ∅. Readers interested in more
detailed description should refer to the paper written by the authors.

For an EFG G = (E,N,B, ϕ, α, β), if we only cast our lights on quantity of
objects flowing through branches in G, rather than concrete objects, the EFG
can be transformed into a FG G′ = (N,B, ϕ′). That is, ϕ′(n, n′) = |ϕ(n, n′)|/|E|,
α = 0 and β = 0. Additionally, an approximate FG [23] can be achieved from
the EFG by adjusting the value of α or β. This implies a fact that EFG has
more powerful capabilities than FG.

One probably observe that EFG is similar to information map proposed by
Skowron and Synak [30]. Information map is defined by means of transition
relations on set of states and every state consists of information label and infor-
mation. These states is similar to nodes in EFG. However, EFG is distinguished
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Table 1. Discretized Iris database

id Petalwidth Petallength Sepalwidth Sepallength Class

o0 ≤1.65 ≤2.45 (2.25, 3.05] ≤6.05 Iris-Setosa

o1 ≤1.65 ≤2.45 >3.05 ≤6.05 Iris-Setosa

o2 ≤1.65 (2.45, 4.95] ≤2.25 ≤6.05 Iris-Versicolour

o3 ≤1.65 (2.45, 4.95] ≤2.25 >6.05 Iris-Versicolour

o4 ≤1.65 (2.45, 4.95] (2.25, 3.05] ≤6.05 Iris-Versicolour

o5 ≤1.65 (2.45, 4.95] (2.25, 3.05] >6.05 Iris-Versicolour

o6 ≤1.65 (2.45, 4.95] >3.05 ≤6.05 Iris-Versicolour

o7 ≤1.65 (2.45, 4.95] >3.05 >6.05 Iris-Versicolour

o8 (1.65, 1.75] (2.45, 4.95] (2.25, 3.05] ≤6.05 Iris-Virginica

o9 >1.75 >4.95 (2.25, 3.05] >6.05 Iris-Virginica

o10 >1.75 >4.95 >3.05 >6.05 Iris-Virginica

from information map at two aspects, i.e., binary relation and information func-
tion. The binary relation is symmetrical in EFG, which is a hierarchy structure,
and can be constructed if only both nodes in adjoining layers have shared ob-
jects, whereas the relation among states is transition one and has partial orders
in many cases [29]. Moreover, the functions in information map among branches
shared the same father probably include common information. However, as we
stated above, EFG is a partition model and there has nothing to the throughflow
of branches shared the same input.

In the interest of having a better comprehension to EFG, a well-known data-
base, Iris Plants (Iris), in machine learning community will be served as a run-
ning example to illuminate our ideas.

Example 1. The Iris database, which is available from the UCI machine learn-
ing repository [2], has four numerical predictive attributes (i.e., petalwidth, petal-
length, sepalwidth, sepallength) and the class. After numerical attributes have been
discretized and then the same rows have been removed, Iris is shown in Table 1.

According to the relation between decision table and EFG, an EFG G =
(E,N,B, ϕ, α, β), which is depicted in Fig. 1, can be built from the above decision
table. It is organized as six layers in the light of five attributes: Petalwidth,
Petallength, Sepalwidth, Sepallength and Class, where E = {o1, ..., o10} denotes
eleven objects observed, N = {n01, n11, n12, n13, n21, n22, n23, n31, n32, n33, n41,
n42} ∪ {n51, n52, n53} represents corresponding features, α = 0, β = 0, CL =
{l0, l1, l2, l3, l4}, O(G) = l5 and B,ϕ as shown in Fig. 1.

In this EFG, the root of G is n01 and leaves are n51, n52 and n53. The input
and output of node n22 are I(n22) = {n11, n12} and O(n22) = {n31, n32, n33},
respectively. The throughflow of branch (n11, n21) ∈ B is ϕ(n11, n21) = {o0, o1}.
For node n22, its inflow is ϕ+(n22) = ϕ(n11, n22)∪ϕ(n12, n22) = {o2, ..., o8} and
outflow is ϕ−(n22) = ϕ(n22, n31) ∪ ϕ(n22, n32) ∪ ϕ(n22, n33) = {o2, ..., o8}, i.e.,
ϕ(n22) = ϕ+(n22) = ϕ−(n22).

The sequence n01, n11, n22, n31 is a path and its degrees of certainty and cover-
age are cer(n01, n11, n22, n31) = 2/7 and cov(n01, n11, n22, n31) = 1, respectively.
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Fig. 1. An EFG G generated from the discretized Iris database, where n11, n12, n13:≤
1.65, (1.65, 1.75], >1.75; n21, n22, n23:≤2.45, (2.45, 4.95], >4.95; n31, n32, n33:≤2.25,
(2.25, 3.05], >3.05; n41, n42:≤6.05, >6.05; n51, n52, n53: Iris-Setosa, Iris-Versicolour,
Iris-Virginica

In addition, sequence n01, n11, n22, n31, n41, n52 denotes a decision rule n01∧n11∧
n22 ∧ n31 ∧ n41 → n52 in its corresponding decision table. ��

4 Relationship Between EFG and GrC

As a graphical tool of data analysis in data mining, FG has been interpreted by
decision algorithms, probability and rough sets [25]. However, we will investigate
the relationship between EFG and GrC in this section, for EFG shares many
common features with GrC in structural facet.

4.1 Granulation

With respect to a layer l ∈ L in an EFG G, two objects x, y ∈ E probably flow
through the same node n ∈ l, i.e., x, y ∈ ϕ(n). At this point, x is indistinguishable
from y with respect to n. This means that x, y can be grouped into a granule.

Definition 1. Let G = (E,N,B, ϕ, α, β) be an EFG, if x, y ∈ E flow through
n ∈ N , i.e., x, y ∈ ϕ(n), then we will say x, y belong to the same granule g(n),
denoted as a pair (n,m(n)), where n is its descriptor and m(n) is its meaning
of the granule respectively, and x, y ∈ m(n).

This indicates a fact that the meaning of the granule g(n) represents those
objects which flow through the node n. Hence, the equation

m(n) = {x ∈ E|x ∈ ϕ(n)} = ϕ(n), (5)

holds for ∀n ∈ N in EFG.

Definition 2. Let G = (E,N,B, ϕ, α, β) be an EFG, a granule g(n) will be
called an element granule if n is a single node in G, i.e., n ∈ N .

On the basis of assumption, each object x ∈ E only flows through one node in
each layer l in EFG G. As a result, the family of granules F ({l}) = {g(n)|m(n) �=
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∅, ∀n ∈ l} forms a partition over E, denoted by E/l, and its corresponding
equivalence relation Rl on E is

xRly ⇔ x ∈ m(n) ∧ y ∈ m(n) ∧ n ∈ l. (6)

Since the equivalence class of x with reference to Rl is [x]Rl
= {y ∈ E|xRly},

this equivalence class is also a granule according to Def. 1 and represented as
g(n) = (n, [x]Rl

), where n is one of nodes in layer l and x ∈ ϕ(n).

Definition 3. Let g(n), g(n′) be two granules, the combined granule g(n∧n′) of
the granules is g(n ∧ n′) = g(n ∧ n′,m(n ∧ n′)), where ∧ is combined operation.

Proposition 1. Let g(n), g(n′) be two granules and g(n∧n′) be their combined
granule, then m(n ∧ n′) = m(n) ∩m(n′) holds.

Proof. By assuming that x, y ∈ E are indiscernible with respect to the combined
granule g(n ∧ n′), i.e., x, y ∈ m(n ∧ n′). This implies that x flow through both
nodes n and n′. That is to say, x ∈ ϕ(n) and x ∈ ϕ(n′). Meanwhile, y also
belongs to the meanings of n and n′. Thus x, y ∈ ϕ(n) ∩ ϕ(n′). In terms of
Eq.(5), we have x, y ∈ m(n) ∩m(n′).

Likely, if x, y ∈ m(n) ∩m(n′), both x and y flow through nodes n and n′ at
the same time. As a result, x, y ∈ ϕ(n∩ n′), and x, y ∈ m(n∩ n′) on the ground
of Def. 1. ��

Def. 3 and Proposition 1 depict the manner of composition among granules.
In EFG, each node is an element granule. Thus, the combined granule of two
element granules (e.g. g(n) and g(n′)) is the granule g(n ∧ n′) corresponding
to the branch (n, n′) and its meaning m(n ∧ n′) is the throughflow ϕ(n, n′). In
other words, every node or branch in EFG is a granule. Furthermore, each path
is also considered as a granule by combining the nodes and branches and its
throughflow is the meaning of the granule. Assume that [n...n′, n′′] is a path,
then ϕ(n...n′, n′′) = ϕ(n...n′) ∩ ϕ(n′′) holds. This means that the granule g(n ∧
...∧ n′ ∧ n′′) consists of the granules g(n∧ ... ∧ n′) and g(n′′) and its meaning is
m(n∧ ...∧ n′ ∧ n′′) = ϕ(n...n′, n′′). Moreover, in terms of Proposition 1 and Eq.
(5), we have the following proposition.

Proposition 2. In GrC model of EFG, if g(n ∧ ... ∧ n′ ∧ n′′) is the granule of
path [n...n′, n′′], the meaning of this granule is

m(n ∧ ... ∧ n′ ∧ n′′) = ϕ(n...n′) ∩ ϕ(n′′). (7)

Generally, for a subset of layers L′ in EFG, the equivalence relation is RL′ =⋂
l∈L′ Rl such that xRL′y ⇔ ∧l∈L′ x ∈ m(n)∧y ∈ m(n)∧n ∈ l, and each granule

is g(∧n∈l,l∈L′ n), whose meaning is m(∧n∈l,l∈L′ n) =
⋂

n∈l,l∈L′ m(n).
Moreover, if l, l′ ∈ L are different layers in the same EFG, the family of

granules F ({l, l′}) = {g(n ∧ n′)|m(n ∧ n′) �= ∅, ∀n ∈ l ∧ ∀n′ ∈ l′} also forms a
partition E/{l, l′} over E, for m(n∧n′) = ϕ(n)∩ϕ(n′) holds for any n ∈ l, n′ ∈ l′.
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Definition 4. Let g(n), g(n′) be two granules, g(n) is finer than g(n′), denoted
as g(n) ⊆ g(n′), if m(n) ⊆ m(n′). A family of granules F (L) is finer that another
F (L′), denoted as F (L) ⊆ F (L′), if there exists a granule g(n′) in F (L′) for any
granule g(n) ∈ F (L), such that g(n) ⊆ g(n′).

Obviously, if L′ ⊆ L, F (L) ⊆ F (L′). That is, the more layers, the finer partition
over E and granules generated by the layers in the light of Def. 3. What’s more,
all paths with the same length, which start from the root in EFG, compose a
partition over E.

Example 2. (cont.) In the EFG G illustrated as Fig. 1, g(nij) is an element gran-
ule and its corresponding meaning is ϕ(nij), where nij ∈ N . Branch (n11, n22) ∈
B forms a combined granule g(n11∧n22) = (n11∧n22, ϕ(n11)∩ϕ(n22)). Further-
more, l1:Petalwidth, l2:Petallength, l3:Sepalwidth, l4:Sepallength and l5:Class
generate respectively different partitions over E and their corresponding gran-
ules are shown in the following:
l1 : g(n11)=(n11, {o0, ..., o7}), g(n12)=(n12, {o8}), g(n13)=(n13, {o9, o10});
l2 : g(n21)=(n21, {o0, o1}), g(n22)=(n22, {o2, ..., o8}), g(n23)=(n23, {o9, o10});
l3 : g(n31)=(n31, {o2, o3}), g(n32)=(n32, {o0, o4, o5, o8, o9}),

g(n33)=(n33, {o1, o6, o7, o10});
l4 : g(n41)=(n41, {o0, o1, o2, o4, o6, o8}), g(n42)=(n42, {o3, o5, o7, o9, o10});
l5 : g(n51)=(n51, {o0, o1}), g(n52)=(n52, {o2, ..., o7}),

g(n53)=(n53, {o8, o9, o10});
The meanings of granules with respect to L′ = {l0, l1} and L′′ = {l0, l1, l2} are
L′ : m(n01 ∧ n11) = {o0, ..., o7}, m(n01 ∧ n12) = {o8},

m(n01 ∧ n13) = {o9, o10};
L′′ : m(n01 ∧ n11 ∧ n21) = {o0, o1}, m(n01 ∧ n11 ∧ n22) = {o2, ..., o7},

m(n01 ∧ n12 ∧ n22)={o8}, m(n01 ∧ n13 ∧ n23)={o9, o10}.
Obviously, the granules in F (L′′) are finer than those in F (L′). ��

4.2 Decomposition and Composition of Granules

Decomposition and composition are two necessary operations in problem-solving
for granules, because these operations can traverse views among different levels
of granularity at any moment. However, there is no exception to the GrC model
of EFG.

Granule decomposition deals with the transition from a coarse granule to
finer ones in order to provide more details for data analysis, whereas composition
operation tackles with the shift from several fine granules to a coarser one to make
distinct granules no longer differentiable by discarding some trivial matters [38].
Decomposition operation also means that the problem will been divided into a
series of more manageable and smaller subtasks to reduce an overall computing
cost, while combination operation integrates several sub-problems into one, in
order to provide with a better insight into its essence rather than get buried in
unnecessary details.

According to the analysis in subsection 4.1, we observe that the granule model
of EFG is a partition one [37] and the conversion process from one granularity to
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another can be easily achieved under the framework of quotient space theory [42].
More details or extra information are needed, when a granule is decomposing
into several ones, which are usually finer than their father. However, they carry
more information. In EFG, information is often encoded as layers and each layer
divides E into a partition on the basis of Def. 2. Hence, granule decomposition
is in fact the process that breaks granules in one partition down to finer ones
in another partition. Further, the finer granules in EFG are, the more layers are
required.

Definition 5. In GrC model of EFG, granules decomposition function is a map-
ping Dec : F×F → F such that Dec(F ′,F ′′) = {g(n∧n′)|m(n∧n′) �= ∅∧g(n) ∈
F ′∧g(n′) ∈ F ′′}, where F , F ′ and F ′′ are the families of granules which compose
different partitions over E, that is,

⋃
g(ni)∈F m(ni) = E and m(ni) ∩m(n′i)=∅

for ∀g(ni), g(n′i) ∈ F .

Proposition 3. In Grc model of EFG, Dec(F ,F ′) is a partition over E, if F
and F ′ are two different families of granules.

Proof. This proposition can be proved in a straightforward way according to
Def. 1, 3 and Proposition 1. ��

Example 3. (cont.) Assume that two partitions F ({l0, l1}) and F ({l2}) in Ex-
ample 2 are given. If the family of granules F ({l0, l1}) is too coarse, however, a
finer one can be obtained by decomposition operation Dec(F ({l0, l1}), F ({l2})),
and it is represented as F (L′′) in Example 2. ��

In contrast with decomposition, granule composition is the procedure that ex-
tracts the common information from granules regardless of distinct ones for the
purpose of generalization from specificity. As described above, information is
represented as layer in EFG. Thus, the common information owned by several
granules refers to the common layers which they all share. For example, granule
g(n11) in Example 2 is the composition of granules g(n11∧n21) and g(n11∧n22),
for they share the common information (i.e., Petalwidth), where n11 ∈ l1 is a
node in the Petalwidth layer.

Definition 6. In GrC model of EFG, granules composition function is a map-
ping Com : F → F×F such that Com(F) = {(g(n), g(n′))|m(n) �= ∅∧g(n∧n′) ∈
F}, where F is the family of granules which constitutes a partition over E, and
g(n) and g(n′) are the common and unnecessary knowledge, respectively.

Proposition 4. In Grc model of EFG, if F is a partition consisting of granules,
all granules g(n) also constitute another partition over E, where (g(n), g(n′)) ∈
Com(F).

Proof. Let F ′ be the family of granules g(n). This means that F ′ is one common
knowledge of F by Com(F). From Def. 6, we know any granule g(n ∧ n′) in F
is finer its corresponding one g(n) in F ′, namely, F ⊆ F ′. However, F is a
partition over E, thus

⋃
g(n)∈F ′ m(n) = E. Furthermore, for any x ∈ E, there
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is only a granule g(n ∧ n′) ∈ F such that x ∈ m(n ∧ n′). As a result, only the
corresponding granule g(n) ∈ F ′ of g(n ∧ n′) satisfies x ∈ g(n), for g(n ∧ n′) is
finer than g(n). In conclusion, this proposition holds. ��

In GrC model of EFG, the size of a partition F (L ∪ L′) over E denotes how
much the knowledge we have. So the function Com gets the shared knowledge
F (L) from all granules in F (L ∪ L′) and changes the former knowledge into a
coarser one F (L′) at the same time.

Example 4. (cont.) Let the partition F ({l0, l1, l2}) in Example 2 be given. If we
only need the knowledge about Petalwidth (namely, l1), rather than Petallength
l2. That is to say, the information about l2 is useless and can be ignored. Thus,
the common knowledge F ({l0, l1}) can be achieved by combining all granules in
F ({l0, l1, l2}). ��

Since Dec and Com work under the partitions of model, they are the special cases
of binary neighborhood relations [11]. Based on Def. 4, the following property is
immediately accessible.

Property 1. Let G be a GrC model of EFG, if F ′ and F ′′ are partitions over E
in G, then
1). Dec(F ′,F ′′) ⊆ F ′, Dec(F ′,F ′′) ⊆ F ′′;
2). F ′ ⊆ F ′′, where F ′′ is the common knowledge generated by Com(F ′).

5 Inference and Reformation

As mentioned above, each directed path in EFG represents a granule and the
longer the path, the finer the granule. Thus a kind of nested granulations hierar-
chy is constituted by all granules corresponding to paths starting from the root.
For convenience, in the rest of this paper, granules denote those paths stemming
from the root and leaves are arranged in decision layer DL (i.e., O(G)) and
others in condition layers CL.

Since an EFG is the graph model of decision rules in some way, where each
path from the root to a leaf is a decision rule, inference of EFG in fact is a
procedure of granule decomposition. Based on Def. 3, 4 and 5, we can directly
obtain the following proposition.

Proposition 5. In GrC model of EFG, F (L ∪ {l})=Dec(F (L), F ({l})), where
L ⊆ CL, l ∈ CL and F (L), F ({l}) are families of granules generated by L and
{l}, respectively.

In the granules hierarchy, the root lies in the highest layer and the leaves is
in the lowest one. The granules in the same layer form a partition over E and
the granules in the i-th layer are finer than those in the j-th layer if i > j.
Moreover, one granule in one high layer can be split into several disjoint finer
granules in its next layer by granule decomposition. In terms of this principle,
the data inference in EFG can be easily implemented by employing the granule
decomposition operation. Meanwhile, more details (or information) about the
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granule can be obtained. As a result, granules decomposition (or composition)
can be accessed in a top-down (or bottom-up) manner.

The main idea of the inference of EFG is that E has been separated by the
root firstly, and then the partition F (L) is divided by layer {l} ∈ CL, step by
step, into a new one Dem(F (L), F ({l})). If a granule g(n) ∈ Dem(F (L), F ({l}))
is finer than a decision granule g(n′) ⊆ F (DL), then g(n) will be removed from
Dem(F (L), F ({l}))), otherwise it would be processed further. The algorithm
will be terminated when all granules are classified or the layers in CL are all
used out. More details about inference in EFG are given in Alg. 1.

Algorithm 1. Inference algorithm in EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: A new EFG G′ = (E, N ′, B′, ϕ, α, β).
F (L) = {E}; F (DL) = {g(n)|n ∈ N is a leaf}; B′ = ∅; N ′ = {n|n ∈ N is a leaf};
while F (L) �= ∅ and CL �= ∅ do

F (L) = Dem(F (L), F ({l})); CL = CL − {l}; //Select l from CL ;
for ∀g(n) ∈ F (L) do

If ∃g(n′) ∈ F (DL) and g(n) ⊆ g(n′) then
F (L) = F (L) − {g(n)}; N ′ = N ′ ∪ {n}; B′ = B′ ∪ {(n, n′)};

end
end
if F (L) �= ∅ and CL = ∅ then

//In this case, there exists inconsistent path in EFG ;
for ∀g(n) ∈ F (L) do

If ∃g(n′) ∈ F (DL) and g(n) ∩ g(n′) �= ∅ then B′ = B′ ∪ {(n, n′)};
N ′ = N ′ ∪ {n}; F (L) = F (L) − {g(n)};

end
end

On the contrary, the common knowledge F ({l}) can also be drawn from the
specified knowledge Dem(F (L), F ({l})) by granule composition. Similarly, the
following fact holds in the light of Def. 3, 4 and 6.

Proposition 6. In GrC model of EFG, Com(F (L∪{l}))=(F (L), F ({l})), where
L ⊆ CL, l ∈ CL, F ({l}) is the family of coarse granules (i.e., common knowledge)
generated by {l} and F (L) is the knowledge without {l}.
This proposition illustrates that a hierarchy graph can be constructed by continu-
ously composing granules, where each layer denotes a kind of common knowledge
and different knowledge lies in different layers. At granules composition stage,
coarser granules can be created and put into a higher abstract level regardless of
some inessential information from several ones in the same layer. However, this
is also the thought of reformation algorithm in EFG (Alg. 2). The reformation
begins from the finest granules F (L∪{l})), and then extracts continuously their
common knowledge F ({l}) which forms a new layer l in EFG. The reformation
algorithm will end if there is no different knowledge in F (L), i.e., |L| = 1, and
its pseudo-code is shown in Alg. 2.
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Algorithm 2. Reformation algorithm in EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: A reformed EFG G′ = (E,N ′, B′, ϕ, α, β).
B′ = B; N ′ = N ; F (CL) = {g(n)|n ∈ CL} ;
while |CL| �= 1 do

l = first(CL); CL = CL − {l}; // i.e., CL = {l} ∪ L;
for ∀g(n ∧ n′) ∈ F (CL) do

if n ∈ l then
F (CL) = F (CL) − {g(n ∧ n′)}; F (CL) = F (CL) ∪ {g(n)} ∪ {g(n′)} ;
N ′ = N ′ ∪ {n}; B′ = B′ ∪ {(n, n′)} ;
for ∀(n′′, n ∧ n′) ∈ B′ do B′ = B′ ∪ {(n′′, n)} ;

end
end

end

Fig. 2. An inferred EFG G′ obtained from the original EFG G in Example 1 (left) and
a reconstructed EFG G′′(right) yielded by Alg. 2 on G′

Since the number of granules in each layer is at most |E|, the cost of granule
decomposition is |E|2, and Alg. 1 takes less |CL| times iteration before it stops.
Thus, the time complexity of Alg. 1 is O(|E|2|CL|). Likewise, the complexity of
Alg. 2 is O(|E|2|CL|).

Example 5. (cont.) Let G be the EFG in Fig. 1. After the inference algorithm
(Alg. 1) is performed over G, an inferential EFG G′ is available and shown as
the left of Fig. 2. Furthermore, a reconstructed EFG G′′ (in the right of Fig. 2)
is achieved, if the Alg. 2 is carried out on the inferential EFG G′. ��

6 Reduction of EFG

An simplification of EFG can bring some advantages, such as low costs and
rapid reasoning, in data analysis and reasoning. In this section, two kinds of
EFG reduction algorithms based on GrC will be discussed. Above all, some
definitions about reduction of EFG and path are given as follows.
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Definition 7. Let G be an EFG and [n1, ..., nk] be a path in G, we will say ni is
dispensable in the path with respect to O(G) if ϕ(n1, ..., nk) = ϕ(n1, ..., ni−1, ni+1,
..., nk), where 1≤ i ≤ k, otherwise ni is indispensable. If there is no dispensable
nodes in the path [n1, ..., nk], then [n1, ..., nk] is called a minimal reduction one.

As we known, an EFG is a set of paths from the root to leaves. If each path in
an EFG is indispensable, however, the EFG is a simplified one.

Definition 8. Let G be an EFG, we will say G is a minimal reduction EFG if
all paths in G are minimal reduction paths.

The relationship between flow graphs and decision algorithms is first presented
by Pawlak in [21], where every branch (n, n′) ∈ B is interpreted as a rule n→ n′,
and each path [n1,...,nk] is a sequence of rules n1 → n2,..., nk−1 → nk, in short
n1, ..., nk−1 → nk. As mentioned above, a rule refers to a path in EFG. Hence,
in this paper measures of rules are slightly different from those in [21].

Under the framework of GrC, each path in EFG from the root to other node
is denoted as a granule, and any element contained in the meaning of the granule
flows through the path. An object x satisfies granule g(n), if x flows through its
corresponding path n, namely, x ∈ ϕ(n). On the ground of this interpretation,
the meaning of granule g(n1∧...∧nk) is the throughflow of the path [n1, ..., nk]
determining a rule n1, ..., nk−1 → nk. Hence, the support of rule n1, ..., nk−1 →
nk is equal to the throughflow ϕ(n1...nk) of the path [n1, ..., nk](i.e., the meaning
of granule g(n1∧...∧nk)). Further, the certainty and coverage of n1, ..., nk−1 →
nk are those certainty and coverage of the path [n1, ..., nk], i.e.

cer(n1...nk−1 → nk) =
|m(n1 ∧ ... ∧ nk−1) ∩m(nk)|

|m(n1 ∧ ... ∧ nk−1)| = cer(n1...nk), (8)

cov(n1...nk−1 → nk) =
|m(n1 ∧ ... ∧ nk−1) ∩m(nk)|

|m(nk)| = cov(n1...nk), (9)

respectively, where m(n1 ∧ ... ∧ nk−1) �= ∅ and m(nk) �= ∅. However, these
quantities consistent with those in [39]. If nk belongs to the decision layer DL,
rule n1...nk−1 → nk is a decision rule.

6.1 Reformation Method

As stated in Def. 7, whether node ni in path [n1, ..., nk] is dispensable or not is
determined by its contributions to decision-making. If its occurrence in the path
does not affect the original results, it means that the node ni is useless and can
be safely removed from the path. In the view of GrC, ni is a redundant one, if the
meaning of the path [n1, ..., ni−1] will not be changed after ni has been inserted
into the path. However, this gives us a good indication to eliminate superfluous
nodes by adopting a top-down manner. In addition, the inference algorithm in
Section 5 can be utilized to achieve our purpose after some minor modifications
have been carried, for the inference procedure has the capability of producing
all decision rules.
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Algorithm 3. Revised Decomposition Operation
Input : Two families of granules (i.e., partitions) F (L) and F ({l}) over E.
Output: The new family of granules F (L).
F (L′) = F (L); F (L) = Dem(F (L′), F ({l})) ;
for ∀g(n) ∈ F (L) do

if ∃g(n′) ∈ F (L′) and m(n) = m(n′) then
F (L) = F (L) − {g(n)}; F (L) = F (L) ∪ {g(n′)};

end
end

It is observed that the ‘F (L) = Dem(F (L), F ({l}))’ statement in Alg. 1
is used to generate finer granules by decomposition operation. That is to say,
some redundant information(i.e., nodes) will not be considered in this statement,
if more strict constraints are imposed on it. The details of revised process is
illustrated in Alg. 3.

The ‘F (L) = F (L)−{g(n)}’ statement in Alg. 3 is applied to discard the new
granule g(n), while the aim of ‘F (L) = F (L) ∪ {g(n′)}’ is to add the original
granule g(n′) of g(n) into F (L). This indicates that the corresponding path n′

of g(n′) will not benefit from the knowledge F ({l}) because of m(n) = m(n′).
After the Alg. 1 with the revised decomposition operation is conducted on an
EFG, a more simply inferential EFG can be obtained. Moreover, a reduction of
the original EFG is available when the Alg. 2 is employed later. Alg. 4 is the
reduction algorithm about EFG.

Algorithm 4. Reduction algorithm of EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: A reduction of EFG G = (E,N, B, ϕ, α, β).
1) Performing the revised algorithm Alg. 1 with Alg. 3 on G ;
2) Running Alg. 2 on G generated in step 1);

6.2 Inference Method

As previous illustration, Alg. 4 consists of two steps. The first one is the inference
procedure from the top to bottom, while the other is the reformation about
the EFG reversely. Besides this compound method, this subsection introduces
another reduction algorithm which only adopts a manner of top-down.

A rule n → n′ in EFG is certainty if cer(n → n′)=1, namely, ϕ(n) ⊆ ϕ(n′),
and m(n) ⊆ m(n′) in its GrC model. However, it is too rigid to the real-life
world filled with noise data. To cope with this problem, an variable degree of
certainty rule is introduced in a naive way.

Definition 9. [43] A rule n → n′ is approximation certainty if cer(n → n′) ≥
β, where 0< β ≤1.

In GrC model of EFG, if granule g(n1 ∧ ... ∧ nk) corresponding to [n1, ..., nk] is
finer than decision granule g(nd) ∈ F (DL), all sub-granules g(n1∧...∧nk∧nk+1)
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Algorithm 5. Approximation reduction algorithm of EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: An approximation reduction of EFG G′ = (E, N ′, B′, ϕ, α, β).
F (L) = {E}; F (DL) = {g(n)|n ∈ N is a leaf};
B′ = ∅; N ′ = {n|n ∈ N is a leaf or the root};
for ∀g(n1 ∧ ... ∧ ni) ∈ F (L) do

IsExistDispensableNode = False ;
if ∃g(n) ∈ F (DL) and |m(n1∧...∧ni) ∩ m(n)|/|m(n1∧...∧ni)| ≥ β then

// g(n1 ∧ ... ∧ ni) → g(n) is an approximation rule ;
B′ = B′ ∪ {(ni, n)} ;

else
for ∀(ni, nj) ∈ B and m(n1∧...∧ni) ∩ m(nj) �= ∅ do

if m(n1∧...∧ni) ∩ m(nj) = m(n1∧...∧ni) then
IsExistDispensable = True ; // nj is dispensable ;
for ∀(nj , nt) ∈ B do B = B ∪ (ni, nt) ;

else
B′ = B′ ∪ {(ni, nj)}; N ′ = N ′ ∪ {nj} ;
if g(nj) /∈ F (DL) then

m(n1∧...∧ni ∧ nj) = m(n1∧...∧ni) ∩ m(nj) ;
F (L) = F (L) ∪ g(n1 ∧ ... ∧ ni ∧ nj);

end
end

end
end
if IsExistDispensableNode = False then F (L) = F (L) − {g(n1 ∧ ... ∧ ni)};

end

are also finer than g(nd). At this case, other knowledge F (l) is useless for g(n1∧
... ∧ nk) with respect to F (DL), where g(nk+1) ∈ F (l). Based on this fact, an
approximation reduction algorithm about EFG is described as Alg. 5. Alg. 5 is
slightly distinguish from the inference algorithm (Alg. 1). The main distinctions
lie in the manner of processing dispensable nodes and inserting branches and
nodes into new EFG G′. In Alg. 5, redundant nodes will not be accessed by
updating their related branches (the third For statement), whereas Alg. 1 will
not tackle useless nodes unless their corresponding rules have been generated.
Moreover, branches and nodes are inserted into new EFG G′, once rules have
formed. However, all branches and nodes will be preserved in G′ except those
related with superfluous nodes in the approximation reduction algorithm. The
time complexity of Alg. 5 is O(|E|2|CL|), where |E| is the number of objects
occurring in G and |CL| is the maximal number of conditional layers. Under the
context of GrC, however, the reduction algorithms (Alg. 4 and Alg. 5) are all
lower than those in [33] where the time complexity of nodes reduction algorithm
of EFG is O(|E|2|CL|).

One may consider that different layer orders will lead to different EFG and
for a given EFG G, there are probably many reductions. In order to achieve
better results, different methods should be adopted to suit for specific problems
at hand. Therefore, heuristic strategies, such as the priority of layers with most
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Table 2. The steps of the Alg. 5

Loop State

0 F (L)={g(n01)}; N ′={n01, n51, n52, n53}; B′={};
1 F (L)={g(n01∧n13), g(n01∧n12), g(n01∧n11)};

N ′ = {n01, n51, n52, n53, n13, n12, n11}; B′={(n01, n13), (n01, n12), (n01, n11)};
2 F (L)={g(n01∧n12), g(n01∧n11)}; N ′={n01, n51, n52, n53, n13, n12, n11};

B′={(n01, n13),(n01, n12),(n01, n11),(n13, n53)};
3 F (L)={g(n01∧n11)}; N ′={n01, n51, n52, n53, n13, n12, n11};

B′={(n01, n13),(n01, n12),(n01, n11),(n13, n53),(n12, n53)};
4 F (L)={g(n01∧n11∧n22), g(n01∧n11∧n21)};

N ′={n01, n51, n52, n53, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n53),(n12, n53),(n11, n22),(n11, n21)};

5 F (L)={g(n01∧n11∧n21)}; N ′={n01, n51, n52, n53, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n53),(n12, n53),(n11, n22),(n11, n21),
(n22, n52)};

6 F (L)={}; N ′={n01, n51, n52, n53, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n53),(n12, n53),(n11, n22),(n11, n21),
(n22, n52),(n21, n51) };

nodes [12], need to be taken into account to obtain a minimal reduction of
EFG. In fact, the order of importance of attributes is also a crucial problem
to classification in data mining. For the sake of simplicity, we only employed a
greedy method in Alg. 4 and Alg. 5.

Example 6. (cont.) Let G be the EFG depicted in Fig. 1 and β = 1, the steps
of the approximation reduction algorithm are shown in Table 2 and the result
(namely, the approximation reduction EFG G′′ of G) is illustrated as Fig. 2,
after Alg. 5 has been performed. For the simplified EFG G′′, only four decision
rules are available if required. While eleven decision rules will be generated by
the LEM2 from the Iris database. ��

7 Simulation Experiments

In order to validate the reduction algorithms presented in the above section is
feasible in practice, eleven benchmark data sets, which are all available from the
UCI Machine Learning Repository [2], were used in our experiments. Most of the
datasets are frequently used in literatures and the machine learning community.
The appropriate references of the origin can be obtained from the UCI website.
Table 3 shows some general information about these datasets. The number of
objects (i.e., records) in each dataset is shown as the second column and the
third is the number of attributes (namely, features) with respect to the datasets.

All experiments were conducted on a Pentium IV, with a CPU clock rate of
2.8 GHz, 512 MB main memory. The proposed reduction algorithm1 has been
1 The code is available at http://ccst.jlu.edu.cn/ai/hwliu/publications/EFG07.zip
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Table 3. Data sets used in experiments

Data sets Records Attributes Data sets Records Attributes

Autos 205 26 Heart-disease 270 14
Breast-cancer 286 10 Mushroom 8124 23

Credit-a 690 16 Sonar 208 61
Diabetes 768 9 Vehicle 846 19

Flags 194 30 Zoo 101 18
Glass 214 10

implemented in Borland Delphi 7. In experiments, the last attribute in each
dataset was taken as decision class. Since EFG can only process discrete and
complete data, some pre-processing steps must be performed on datasets. Cur-
rently, various tools are available and capable of dealing with this problem.
However, we choose RSES software (version 2.2), which has been developed by
Skowron et al. [28] and is now widely applied in the rough set community and
data mining domain. The main reason is that RSES not only has implemented
many preprocessing and classification algorithms, but also is competent for ex-
ploring the intermediate results to end-users, so as to help users to analyze the
experimental data. Our experiments briefly consist of the following steps:

• Step one: Handling with missing values. Up to now, several typical
approaches have been applied in practice to cope with the missing value,
such as ignoring or deleting objects with missing values, or treating it with
a special value. Among these methods, an interposition approach, which
replaces missing values with some values in the same attribute, perhaps is
the most often used. In our experiments, we filled the missing values with
most common values or with mean ones in RSES.

• Step two: Discretization. Discretization refers to transform attributes
with continuous values into categorical ones, in order to reduce time complex-
ity in rule induction and to prevent over-fitting in classification. Numerous

Table 4. The experimental results of the reduction algorithms

Original EFG Reduced EFG
Data sets Nodes Layers Nodes Layers Elapsed time (s)

Autos 96 25 47 14 0.064
Breast-cancer 44 9 32 8 0.032

Credit-a 76 15 44 11 0.126
Diabetes 34 8 28 7 0.148

Flags 326 29 216 5 0.342
Glass 33 9 25 6 0.031

Heart-disease 28 13 20 8 0.031
Mushroom 119 22 48 9 1.25

Sonar 73 60 21 10 0.031
Vehicle 49 18 39 13 0.281

Zoo 144 17 86 6 0.031

Notes: the number of layers only refers to the condition layers.
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discretization methods have been proposed till now [13]. However, a simple
discretization in RSES, known as “a global discretization” [1], was taken into
consideration in our experiments.

• Step three: Reduct and inference in EFG. After being performed pre-
processing, data can be used to construct EFG. We have been implemented
reduct and inference algorithms in Delphi 7.0. Since only dataset with TAB
format has been recognized in RSES, our program also permit datasets with
this format.

Intuitionally, the reduction result of the proposed reduction algorithm is de-
termined by the order of condition layers in EFGs. That is to say, different
arranged orders of condition layers in an EFG would yield different results. To
obtain fair results, we carried out experiments repeatedly 10 times, and the or-
ders of condition layers was arranged randomly at each time. Ultimately, the
mean values were obtained and presented in Table 4.

From the experimental results, we know that lots of condition layers and nodes
were reduced effectively in many cases. For example, in the Sonar database, only
ten condition layers and twenty-one nodes were preserved in the reduction EFG,
while its original one had 60 layers and 73 nodes. This means that the reduction
algorithm works well. However, its limitation is also evident. In our experiments,
the numbers of layers and nodes in the reduction EFGs varied from each other,
under the different arranged orders of the condition layers. For instance, the
least number of nodes was twenty-four with seven layers, while the least number
of layers was two and its corresponding nodes were 109 in the case of the Zoo
database.

8 Conclusion

Owing to its well-structured representation, EFG is closely relative with GrC.
In this paper, we firstly discussed the relation between EFG and GrC from three
aspects in GrC, and then gave a GrC model of EFG. Under this interpretation,
each node, branch or path in EFG represents a granule, and the meaning of
the granule is the throughflow of its corresponding path. Moreover, the gran-
ules, whose corresponding path starts from the root of EFG, form a hierarchical
structure. In this hierarchy, the granules with respect to the same length paths
are arranged in the same layer and getting finer along with the depth of the
hierarchy.

Benefiting from structured ideas in GrC, the inference and reformation pro-
cedures in EFG can be easily acquired through granule composition and decom-
position operation. Since the GrC model of EFG is a partition one, however, the
transform of granularity between different layers can be freely achieved without
loss of knowledge. Further, their corresponding algorithms have also been imple-
mented in polynomial time. Moreover, two kinds of efficient reduction algorithms
about EFG have been proposed.

SinceEFGsrequireagreatdeal of storage,however, this isunpractical inprocess-
ing mass data. Moreover, the arranged order of condition layers will perform great
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effect on the reduction algorithms. Thus, our future works will be carried on how to
reduce EFG’s storage and arrange the condition layers in EFG heuristically.
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Abstract. In this paper, we discuss an approach to structural objects
based on a generalisation of indiscernibility relation used in rough set the-
ory. The existing results in rough set theory are based on the assumption
that objects are perceived by attribute value vectors.

We propose the new point of view on rough set theory. We replace
information systems with the knowledge representation models that in-
corporate information relative to the structure of objects. We redefine the
indiscernibility relation as a relation on objects characterised by some ax-
ioms. Such a definition can be naturally applied for information systems
with missing values and multivalued attributes. We extend the approach
on structural objects. We introduce the meaning representation language
for expressing properties of structural objects and we show how to select
relevant formulae from this language for sequential data.

Keywords: Indiscernibility relation, rough sets, knowledge representa-
tion, sequential data, missing values, multivalued attributes, structural
objects, model of reality, data analysis, information system.

1 Introduction

Rough set theory [28,29] is based on the analysis of information systems con-
sisting of sets of objects characterised by attribute value vectors. This data
representation found successful application in many fields [30,31,32]. However,
such information systems have some drawbacks when we deal with multivalued
attributes or attributes with missing values. Moreover, the representation by
means of vector of feature values should be treated as a consequence of a more
primitive representation of structural objects. This representation is next used
for computing the values of relevant attributes.

For the above reasons, we postulate a new approach to knowledge representa-
tion. We model the reality and our domain knowledge using an approach based
on logic, in particular on model theory [22]. We describe our knowledge by a
set of axioms written in a formal language. Such an approach solves semantic
ambiguities which are present, for example, in information systems with miss-
ing values: the missing value of an attribute may be interpreted as originally
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specified for a given object, yet unknown under the present knowledge or the
attribute may be not applicable for a certain case or the attribute may have any
value from its domain for this object. In order to solve these ambiguities, an
additional domain knowledge, not represented in a given information system, is
needed.

We define rough set concepts such as indiscernibility, definability and set
approximations in terms of axioms. We prove that, in thecase of complete in-
formation systems, the proposed approach is equivalent to the approach used
so far in rough set theory [28,29]. Then we compare our idea with extensions of
rough set theory for information systems with missing values and multivalued
attributes presented in [8,9,14,15,16,17,18,19,20,4,27].

Finally, we extend the rough set approach on structural objects. We introduce
the meaning representation language for expressing properties of structural ob-
jects represented by data. Our language provides description of features of data
irreducible relative to the attribute value vectors. The idea of knowledge rep-
resentation by means of formal language was thoroughly studied in Artificial
Intelligence [36].

Structural objects are often represented by means of the sequential data gen-
erated as the result of purposeful actions, for example, textual documents, voice
signals or recorded parameters of cars on road. Unfortunately, the sequential
representation of structural objects is computationally opaque — the structure
is hidden in the sequence and the fair deal of knowledge is needed to extract it
[3,34].

We show how to extract object descriptions from the sequential data using
a relevant rule system (grammar of regular language) equipped with seman-
tic attachments. Our approach is motivated by Structural Pattern Recognition
[5,24,26], Natural Language Processing [12] and Information Extraction [21] as
well as by Knuth’s Attributed Grammars [13]. We already studied this feature
extraction task in [11].

Structural objects are composed out of subobjects connected by relational
constraints. These relations together with properties of objects create an ontol-
ogy [2,7]. The ontology defining the structure of objects, is acquired from an
expert. It helps to select the object properties relevant for the further applica-
tions. The ontology is representing hints showing how to translate data into the
meaning representation language formula and how to identify objects.

The novelty of our approach is that it makes possible the generalisation of the
definition of indiscernibility, making it independent from the existence of missing
values, multivalued attributes and other characteristics of data. This definition
is driven by semantics and it depends on the meaning of features. This allows
us to merge indiscernibility with domain knowledge, introduce structure on the
attribute values, express the fact that one value may be a specific case of another
and deal with the problem that one object may have many different descriptions.

The indiscernibility classes are defined on the basis of the structure of ob-
jects. They provide us patterns that approximate high level concepts relevant
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for classification and knowledge discovery. These patterns are expressed by log-
ical formulae.

Missing values and multivalued attributes are examples of ambiguity in data.
These are simple cases illustrating ambiguity arising during the sequential data
processing. Due to the ambiguity we obtain various contradicting interpreta-
tions of data. Each of them represents a possible model of reality. We may not
determine which of these interpretations is correct without acquiring further
information such as a domain knowledge or more data.

This paper is structured as follows. In Section 2, we define our knowledge
representation model. In Section 3, we present the application of our knowledge
representation model to the information systems. In Section 4, we show how to
represent structural objects as the meaning representation language formulae.
In Section 5, we describe the transformation of sequential data into the meaning
representation language formulae. In Section 6, we define the set approximations.
In Section 7, we conclude our paper presenting applications and extensions of
our ideas.

2 Knowledge Representation

The goal of data analysis is to discover information about reality from a given
data. However, the data itself can also be treated as a kind of information. In
this section we present the knowledge representation model and we consider the
problem of a relationship between this representation and the reality.

The latter question is known in the philosophy of language as the reference
problem. Some ideas presented below corresponds to picture theory of language
developed by Wittgenstein in [37].

Overview of various theories of reference in the computer science context is
presented in [10] and an example of the basic data model for rough set theory
is reported in [6].

2.1 Reality Perceived by Sensors

We do not possess the direct insight into the nature of reality. We perceive it
by means of sensors. Sensors generate structural data on the basis of reality,
by extracting objects and relations among them. Sensors recognise properties
of objects as well as relations between them. As examples of sensors, one can
consider a thermometer, a camera as well as an expert. Generally, every analysis
of the reality that results in structural data may be understood as obtained by
means of sensor measurements.

We represent sensor measurements by means of relational structures developed
using model theory [23]. In model theory structures are composed out of a set of
individuals, and some relations among them. The set of all individuals is called as
the universe of the structure. We also refer to the individuals as objects or entities.

Individuals and relations from a relational structure are represented by sym-
bols. The set of such symbols is called a signature. The interpretation is a func-
tion that maps symbols from a given signature to individuals and relations. The
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interpretation assigns objects or relations to names. It assures that the object
or relation represent the aspect of sensor activity stated by its name. For exam-
ple, the symbol red is interpreted as an object that represents the red colour.
The signature is a lexicon for every syntactic construct (i.e. language formula,
information system, image) by means of which we describe sensor measurements.

Let the structure P be a model of the reality observed by our sensors 1. We
assume that P is a relational structure of signature ΣP and with the universe P .
ΣP consists of symbols of constants u1, u2, . . . and relational symbols a1, a2, . . . .
In symbols, P can be described by:

P = 〈P, uP1 , uP2 , . . . , aP1 , aP2 , . . . 〉,

where P includes objects as well as attribute values for objects uP1 , uP2 , . . . , and
aP1 , aP2 , . . . are interpretations of the symbols from ΣP . Constants are mapped
to individuals and relational symbols to relations.

Let us consider the following example: Our goal is to describe persons. Our
sensors recognise person properties such as name, age, colour of hair, number
of hairs, known languages. A person may be a parent for another person and
the colour of hair of some person may be similar to the colour of hair
of another person.

In our example of a world, we are given 10 persons: p1, p2, . . . , p10. We know
the names: Alice, Bob, Charlie, David. The age may be young or old. The
possible colours of hair are blond, brown, black or non specified directly
h1, h2, h3. The number of hairs varies from none, little, many. The known
languages are Pascal, Ocaml and Cobol.

We denote our example world as P1. The signature ΣP1 consists of

– constants p1, p2, . . . , p10, Alice, Bob, Charlie, David, young, old, blond,
brown, black, h1, h2, h3, none, little, many, Pascal, Ocaml, Cobol,

– unary relations is a person, is a hair colour that define categories of
objects

– binary relations name, age, colour of hair, number of hairs,
known languages, parent that define person attributes .

– binary relation similar that define the similarity between colours of hair.

The structure P1 is defined as follows:

P1 = 〈P1, p
P1
1 , pP1

2 , . . . , pP1
10 , Alice

P1 , BobP1 , CharlieP1 , DavidP1 ,

youngP1 , oldP1 , blondP1 , brownP1 , blackP1 , hP1
1 , hP1

2 , hP1
3

noneP1 , littleP1 , manyP1 , PascalP1 , OcamlP1 , CobolP1 ,

is a personP1 , is a hair colourP1 ,

nameP1 , ageP1 , colour of hairP1 , number of hairsP1 ,

known languagesP1 , parentP1 , similarP1〉.
1 We mean the model in a sense of mathematical modelling, and the structure in a

sense of model theory.
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There is no clear distinction between individuals and values of individual
attributes. Therefore, we consider interpretation of every constant as an object.
For example, property values like names of colours are objects. In our example,
the hair colours are values of the attribute colour of hair and individuals on
whose the relation similar is defined.

Objects may be abstract entities. The constant Alice refers to the abstract
entity which is a name, while each pi points to a certain person.

Let us consider the digital camera as an another example. We may define pho-
tos, data produced by this sensor, as a structure whose universe is composed out
of pixels, colours and objects that represent the picture itself. We introduce bi-
nary relations horizontal neighbours and vertical neighbours that defines
the topology of pixels and the 3-argument relation colour of pixel whose ar-
guments are a picture, pixel and colour. The latter relation provide us an access
to the picture contents.

Assume that we would like to recognise people on photos. We add new sensor
which provides data structuralised by concepts such as man, face, eye, hand.
The problem of people recognition is equivalent to the problem of describing one
sensor concept in terms of some other concepts.

We consider objects in the universe as atomic entities. We describe their struc-
ture by means of relations yet we do not asume that objects are explicitely rep-
resented by vectors of feature values. There are two reasons for such a decision.
First, in order to define structure of a given object one must possess its unam-
biguous decomposition into essential components. And the problem is whether
such essential components exist. The second reason is that that such a structure
is accessible only on the metalanguage level and therefore is useless. Instead of
this, we represent the internal structure of objects by means of relations between
them, for examle the meronymy relation.

Objects perceived by sensors need not necessarily be the real things. Objects
may be epiphenomena, created by sensors (for example by human perception),
nevertheless we need them in order to operate on reality. While modelling the
reality we do not recognise existing objects. We define them.

2.2 Semantics of Knowledge

Knowledge, or information, provides us an insight into P , the model of the reality
observed by sensors. Information about P is represented by means of symbols
connected by syntactic rules. Languages, information systems, images, tables,
time series etc. are examples of such representations.

Besides the symbolic representation we do not possess any insight into P and
this representation describes the results of sensor measurements in an incomplete
and ambiguous way. It includes information only for a part of interesting us
sensors and objects. For a given information there exists lots of different models
consistent with this information.

We introduce semantics for all symbolic representations. This semantics al-
lows us to define the symbolic representations in the formal way and translate
information between such representations.
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Definition 1. We describe semantics of symbolic representation by the class of
structures, which we name as the class possible worlds and denote as P. Every
Q ∈ P is a model of possible reality, i.e., the world that does not contradict our
knowledge. Each Q ∈ P posses signature ΣQ and interpretation IQ.

The class of structures P defines knowledge independently from the syntactic
medium. Every Q ∈ P describes sensor measurements in a precise way (Q de-
scribes also the possible reality with the precision relative to the sensor pre-
cision). Imprecise description provided by the symbolic representation is inter-
preted as a collection of precise descriptions. Possible worlds consists of all the
possible extensions of the set of given sensor measurements without any estima-
tion or inductive reasoning over unknown measurements. Even as the multicipity
of possible worlds refer to the incompleteness of knowledge, the P ∈ P statement
defines its correctness: the knowledge is correct if the real world belongs to the
class of possible ones.

For each Q ∈ P its signature ΣQ is a set of atomic symbols available for
symbolic representation. Signature differs across the possible worlds since some
symbols may be unknown to us or we may assume existence of something that
in fact does not really exist.

The interpretation is a link between sensor measurements and symbols. A part of
symbols refers to the sensor construction. Interpretations of these symbols should
be correlated among the possible worlds. In the digital camera example constants
that represent pixels and colours as well as relations horizontal neighbours and
vertical neighbours should be identical in all possible worlds.

In order to formalise the above we introduce primitives.

Definition 2. Primitives are symbols such that

– For each primitive symbol σ
σ ∈ ΣP .

– For each constant primitive symbol σ and for each Q ∈ P if σ ∈ ΣQ then

IP(σ) = IQ(σ).

– For each n-ary relational primitive symbol σ and for each Q ∈ P if σ ∈ ΣQ
then

∀u1,...,un∈P∩Q IP (σ)(u1, . . . , un) = IQ(σ)(u1, . . . , un).

In other words, each primitive has the same interpretation for all real objects
in every possible world. The primitives for unreal objects may be defined in
an arbitrary way. We require from the interpretations of all possible worlds to
preserve the constraints defined by primitives.

Primitives connect names with specific objects. They allow us state that ob-
jects have diverse properties, belong to distinct sorts. We provide the meaningful
names for primitives in order to represent their metalanguage definitions.

In our example the constants Alice, Bob, Charlie, David, young, old, blond,
brown, black, none, little, many, Pascal, Ocaml, Cobol and the categories of
objects is a person, is a hair colour are primitives
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2.3 Language

Signature symbols denote basic concepts given by sensors. Complex concepts
are defined out of basic ones by means of language. The language is a set of
syntactic rules for connecting signature symbols. Each syntactic rule generate a
language formula. For each rule there is provided a method of calculation the
interpretation of the formula generated by the rule .

Definition 3. Let A be a set of language formulae without free variables. We
say that A is valid in the structure Q iff for each formula a ∈ A, truth is an
interpretation of a in the structure Q. We denote the above as

Q |= A.

We use language for the knowledge representation. In terms of language we define
sensor properties.

We create constraints for symbols whose interpretation depend on the nature
of the sensor. The requirement of category for the relation argument is defined
by the formula that states that if a relation is true for a certain objects as its
arguments, then these objects must belong to a certain category. The category
itself is determined by a primitive relation. For example

∀x,y similar(x, y) =⇒ is a hair colour(x) ∧ is a hair colour(y)

and
∀x,y name(x, y) =⇒ is a person(x) ∧

∧ (y = Alice∨ y = Bob ∨ y = Charlie∨ y = David).

In the same way we may state that for each object the attribute has exactly one
value. For example

∀x∃!y name(x, y).

We provide the meaningful names for symbols whose interpretation is restricted
by the properties of sensors

Such an approach assures us that the given symbol represents corresponding
relations in all possible worlds. For example, the relation denoted by symbol
colour of hair may vary in different possible worlds, yet it is desired for it to
point in each world to the colour of hair.

The second use of language is to define values of sensor measurements.
We define the class P(A) of possible realities by a set of language formulae A,

which we call axioms:
P(A) = {Q : Q |= A}.

Definition 4. We say that the set of language formula ϕ is a semantic conse-
quence of axioms A iff for each structure Q, such that Q |= A,

Q |= ϕ.

We denote the above as
A |= ϕ.
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Table 1. Notation

Symbol Interpretation

P a structure that is a real world
ΣP the signature of P
P the universe of P
IP the interpretation of P
Q an arbitrary structure
ΣQ the signature of Q
Q the universe of Q
IQ the interpretation of Q
P the class of possible worlds
Q ∈ P a possible world
A the set of axioms
|= the relation of semantic consequence
Q |= A the axioms A are satisfied in the structure Q
A |= ϕ the formula ϕ is the semantic consequence of axioms A
U the universe of information system
A the set of attributes of information system
m(u, a) the set of values of the attribute a for the object u in the information system.
AX lower approximation of X

AX upper approximation of X

The knowledge is provided in three ways: Primitives defined in metalanguage
assure the connection between symbols and elements of sensor measurements.
Axioms expressed as language formulae describe the properties of sensors. Lan-
guage is used also to formulate axioms that define values of sensor measurements.

The Table 1 contains the summary of notation introduced in this and the
following sections.

3 Information Systems

In this section, we consider data sets presented in a form of information system
[27]. We propose axiomatic representation of information systems, define indis-
cernibility and set approximations for complete information systems, then we
extend the definitions on the case of missing values and multivariate attributes.
We compare our approach with the literature.

3.1 Complete Data

An example of information system is presented in Table 2, we denote this system
by I1. The system I1 contains information about structure P1 from Section
2, yet not the whole information. Rows of the information system represent
known objects, elements of P universe, while columns are labelled by known
attributes. Attributes are relations in P . The set of labels of objects described in
the information system will be denoted by U . In Table 2, U = {p1, p2, p3, p4, p5}.
The set of all attributes included in the information system will be denoted by
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Table 2. A complete information system

name age

p1 Alice young

p2 Alice old

p3 Bob young

p4 Bob old

p5 Bob young

A. In Table 2, A = {name, age}. We assume that both U and A are finite.
Each attribute a defines a relation between the set of objects and the set of
attribute values Va. In Table 2, Vname = {Alice, Bob} and Vage = {young, old}.
Any information system defines attribute values for given objects. Let

m(u, a)

denote the set of values of the attribute a for the object u in the information
system. Usually each attribute has exactly one value for each object, i.e m(u, a)
contains one element for every u and a. In such a case information system is
called complete.

We consider an information system as a sensor. Constants that represent at-
tribute values are primitives. We introduce the primitive relation is an object
which recognise objects measured by sensor described in the information system.
For each u ∈ U we the statement is an object(u) is true, yet the relation is
an object is broader: it contains all objects that the sensor perceived, perceive
and will perceive. The information system provides also the structural informa-
tion about the domains of the attributes. We encode this information in the
following way: for each attribute a we state

P |= ∀x,y a(x, y) =⇒ is an object(x) ∧ y ∈ Va.

The complete information system also states that every attribute has exactly
one value for each object: for each attribute a we state

P |= ∀x

(
is an object(x) =⇒ ∃!y a(x, y)

)
.

We encode the information system as a set of axioms A in the following way:
For each u ∈ U , for each a ∈ A we state

P |= a(u, v),

where v ∈ m(u, a) in the information system.
The above transformation treats both an object etiquette and an attribute

value as constants. The attributes are considered as binary relations.
For Table 2, our knowledge about P1 provided by an information system I1

is restricted to the following axiom:
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P1 |= name(p1, Alice) ∧ age(p1, young) ∧ name(p2, Alice) ∧ age(p2, old) ∧

∧name(p3, Bob) ∧ age(p3, young) ∧ name(p4, Bob) ∧ age(p4, old)∧
∧name(p5, Bob) ∧ age(p5, young).

Axioms derived for Table 2 allow us to define many different structures. The
set of possible worlds P(A) consists of all the possible extensions of information
system presented in Table 2. P(A) will include

Q1 = 〈Q1, p
Q1
1 , pQ1

2 , . . . , pQ1
5 , AliceQ1 , BobQ1 , youngQ1 , oldQ1 , nameQ1 , ageQ1〉

as well as

Q2 = 〈Q2, p
Q2
1 , pQ2

2 , . . . , pQ2
10 , AliceQ2 , BobQ2 , youngQ2 , oldQ2 , nameQ2 , ageQ2〉

or
Q3 = 〈Q3, p

Q3
1 , pQ3

2 , . . . , pQ3
5 ,

AliceQ3 , BobQ3 , youngQ3 , oldQ3 , nameQ3 , ageQ3 , parentQ3〉.
Axioms do not provide any information about objects p6, . . . , p10. They may
have arbitrary properties. Relations name, age and parent are specified in any
way that satisfy A. They do not need to be consistent with their definition in P .

Rough set theory [28,29] is based on the idea of an indiscernibility relation. Let
B be a nonempty subset of the set A of all attributes. The indiscernibility relation
IND(B) is a relation on objects in a complete information system defined for
x, y ∈ U as follows

(x, y) ∈ IND(B) iff ∀a ∈ B
(
m(x, a) = m(x, a)

)
or equivalently

(x, y) ∈ IND(B) iff ∀a ∈ B ∀v ∈ Va

(
a(x, v) ⇐⇒ a(y, v)

)
.

For example, for Table 2, p3 and p5 are indiscernible with respect to the at-
tributes name and age.

The indiscernibility is an equivalence relation. We will denote its equivalence
class generated by object u as

[u]IND(B).

Definition 5. By a query over the set of attributes A we denote any formula
n∧

i=1

ai(x, vi),

where ai ∈ A, vi ∈ Vai and n ≤ |A|. x is a free variable, which is valuated to an
object.

Consider the query:

ϕ(x) = name(x, Bob) ∧ age(x, young).

This formula is satisfied either if p3 is the value for x or its value is p5. p3 and
p5 cannot be distinguished by formula ϕ(x).

We postulate the following definition of indiscernibility:
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Definition 6. Let A be a set of axioms. Let ϕ(x) be a query with free variable
x. Let u1 and u2 be constants. We say that u1 and u2 are indiscernible by the
query ϕ(x) if (

A |= ϕ(u1)
)
⇐⇒

(
A |= ϕ(u2)

)
.

Theorem 1. Let I = (U,A) be a complete information system with the set of
objects’ labels U and the set of attributes A. Let B be a subset of A. Objects
u1 ∈ U and u2 ∈ U are indiscernible with respect to attribute set B iff they are
indiscernible with respect to every query over the set of attributes B.

Proof. Let A be axioms derived from I.
If (u1, u2) ∈ IND(B), for every a ∈ B there exists va such that

m(u1, a) = m(u2, a) = {va}.

Then the set of formulae {a(u1, va) : a ∈ B} is a subset of A and the set of
formulae {a(u2, va) : a ∈ B} is a subset of A. So for all a ∈ B and v ∈ Va we
have

A |= a(u1, v) ⇔ A |= a(u2, v).

Thus for every query ϕ(x) we obtain A |= ϕ(u1) ⇔ A |= ϕ(u2).
If (u1, u2) �∈ IND(B) we have a ∈ B and v1, v2 such that v1 �= v2, m(u1, a) =

{v1} and m(u2, a) = {v2}. Thus

A |= a(u1, v1) ∧ A �|= a(u2, v1)

and the query ϕ(x) = a(x, v1) distinguishes u1 and u2.

Assume that we have two sensors. Measurements of both of them are repre-
sented by information systems and these information systems shares their sets
of objects, i.e. the relation is an object is identical for both sensors. We wish
to describe the measurements of one sensor by means of measurements of the
second one. Alternatively we say the that we are describing the value of attribute
in an information system (which we call the decision attribute) by the values of
the rest of attributes. We may reduce this problem to the problem of description
of the set objects in the information system for which the decision attribute has
a certain value. Such a set is either definable or indefinable by other attributes.

Definition 7. Let X be a subset of U . We say that X is definable by A iff there
exist queries ϕ1(x), . . . , ϕn(x) such that

∀u ∈ U
(
u ∈ X ⇐⇒ A |= ϕ1(u) ∨ · · · ∨ ϕn(u)

)
.

Each definable set is a sum of objects that satisfy at least one of a given queries.

Proposition 1. Let I = (U,A) be a complete information system with set of
objects’ labels U and set of attributes A. Let A be axioms derived from I. X is
definable by A iff

X = [u1]IND(A) ∪ · · · ∪ [un]IND(A)

for some u1, . . . , un ∈ U .
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Proof. X is definable by A if and only if

X =
n⋃

i=1

{u ∈ U : A |= ϕi(u)}.

Theorem 1 states that u1, u2 ∈ {u ∈ U : A |= ϕi(u)} iff (u1, u2) ∈ IND(A).

An indefinable set X ⊂ U may be approximated by two definable sets. The first
one is called the lower approximation of X , denoted by AX , and is defined by

⋃
{Y | Y ⊂ X ∧ Y is definable by A}.

The second set is called the upper approximation of X, denoted by AX , and is
defined by ⋂

{Y | X ⊂ Y ∧ Y is definable by A}.

AX ⊂ U because every definable set is a subset of U .

Proposition 2. The lower and the upper approximations of any set X ⊂ U are
definable.

Proof. For a given information system, there is a finite number of definable sets.
Thus ⋃

{Y | Y ⊂ X ∧ Y is definable} = Y1 ∪ · · · ∪ Yn,

where Yi is defined by a formula ϕi(x). Hence, Y1∪· · ·∪Yn is defined by ϕ1(x)∨
· · · ∨ ϕn(x). Similarly

⋂
{Y | X ⊂ Y ∧ Y is definable} = Y1 ∩ · · · ∩ Yn,

where every Yi is defined by a formula ϕi(x). Hence, Y1 ∩ · · · ∩ Yn is defined
by ϕ1(x) ∧ · · · ∧ ϕn(x). The last formula may be transformed into a form of an
alternative of queries.

Theorem 2. Let I = (U,A) be a complete information system with set of ob-
jects’ labels U and set of attributes A, such that U and A are finite. Let A be the
set of axioms derived from I. Then

AX = AX and AX = AX.

Proof. According to Prop. 1

AX =
⋃
{[u1]IND(A) ∪ · · · ∪ [un]IND(A) ⊂ X} =

=
⋃
{[u]IND(A) | [u]IND(A) ⊂ X} = AX,

AX =
⋂
{X ⊂ [u1]IND(A) ∪ · · · ∪ [un]IND(A)}.

IND(A) is an equivalence relation, so

AX =
⋃
{[u]IND(A) | [u]IND(A) ∩X �= ∅} = AX.
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Let the set X be the subset of universe of information system for which the
decision attribute d takes the value v. Let ϕ(x) and ϕ(x) be the formulae that
define the lower and upper approximation of X . ϕ(x) is equivalent to ϕ(x) when
X is definable. Symbolically:

{x | x ∈ U ∧ ϕ(x)} ⊆ {x | x ∈ U ∧ d(x, v)} ⊆ {x | x ∈ U ∧ ϕ(x)}.

The claim that

{x | is an object(x) ∧ ϕ(x)} ⊆ {x | is an object(x) ∧ d(x, v)} ⊆

⊆ {x | is an object(x) ∧ ϕ(x)}.
we denote as inductive reasoning.

Inductive reasoning bases on the assumption that the definition generated for
the specific data is still valid in the general case. ϕ(x) and ϕ(x) constitutes a
classifier that assigns values of decision attribute to new samples.

Since a sample of objects included in the information system is not representa-
tive enough to define the bounds correctly, statistical methods are used in order
to obtain bounds that are correct with the high probability. Such as method
are for example: the limit of the number of queries in the bound definition, the
minimal support for each query in the bound and so on.

3.2 Incomplete Data

Real-life data are frequently incomplete, i.e. values for some attributes are miss-
ing. We will assume three different interpretations of missing values:

– missing attribute values that are lost, i.e they are specified, yet their value
are unknown

– attributes not applicable for a certain case, e.g. the colour of hair for a com-
pletely bald person

– do not care values: the attribute may have any value from its domain.

We will extend the definition of m(u, a). m(u, a) =? will mean that the value
of attribute a for object u is lost, m(u, a) = � that it is ‘do not care’ and
m(u, a) = − that it is not applicable.

The problem of missing values was thoroughly studied (see e.g. [8,9,14,15]).
The presented ideas were based on various modifications of indiscernibility rela-
tion so it could handle missing values and remain definable in terms of attributes.

The definitions of indiscernibility, definability, lower and upper approximation
we stated in the above section may do not need to be modified for information
systems with missing values. They are equivalent to the definitions proposed in
the cited papers.

We express the various types of missing value semantics using axioms:

– for each u ∈ U , for each a ∈ A we state

P |= a(u, v),

where v ∈ m(u, a) in the information system.
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Table 3. An information system with missing values

number of hairs colour of hair

p1 none -
p2 little brown

p3 ? blond

p4 � brown

– ‘lost’ values we define as follows: for each u ∈ U , for each a ∈ A we state

P |= a(u, v1) ∨ · · · ∨ a(u, vn),

where v1, . . . , vn are all possible values of attribute a.

– for each u ∈ U , for each a ∈ A whose value is not applicable we state

P |= ∀x¬a(u, x),

– for each u ∈ U , for each a ∈ A, for each v from the domain of a we state

P |= a(u, v),

when the value of a is ‘do not care’ for object u.

We may describe contents of Table 3 using the following formula 2:

P1 |= number of hairs(p1, none) ∧ ∀x¬colour of hair(p1, x) ∧

∧ number of hairs(p2, little) ∧ colour of hair(p2, brown) ∧

∧
(
number of hairs(p3, none) ∨ number of hairs(p3, little) ∨

∨ number of hairs(p3, many)
)
∧ colour of hair(p3, blond)

∧ number of hairs(p4, none) ∧ number of hairs(p4, little) ∧

∧ number of hairs(p4, many) ∧ colour of hair(p4, brown).

Since indiscernibility with respect to the set of attributes does not work for
incomplete information systems authors extended it or replaced it by another
concepts.

The extension proposed in [14] for the information systems with ‘do not care’
missing values is the relation

(x, y) ∈ SIM(B) iff ∀a ∈ B
(
m(x, a) = � ∨m(y, a) = � ∨m(x, a) = m(y, a)

)
.

2 Since it is impossible to have none, little and many hairs at the same
time, the formula number of hairs(p4, none) ∧ number of hairs(p4, little) ∧
number of hairs(p4, many) is contradictory. Yet, for the purpose of example, we do
not take this fact into account.
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Theorem 3. Let I = (U,A) be an information system with ‘do not care’ missing
vales. Let U be the set of objects and A be the set of attributes. Let B be a subset
of A. If objects u1 ∈ U and u2 ∈ U are indiscernible with respect to every query
over the set of attributes B then

(u1, u2) ∈ SIM(B).

The reverse implication is not valid for information systems with nontrivial miss-
ing values.

Proof. Let A be axioms derived from I. If (u1, u2) �∈ SIM(B) we have a ∈ B
and v1, v2 ∈ Va such that v1 �= v2, m(u1, a) = {v1} and m(u2, a) = {v2}. Thus

A |= a(u1, v1) and A �|= a(u2, v1)

and the query ϕ(x) = a(x, v) distinguishes u1 and u2.
For the case of reverse implication let us consider Table 3. We have

(p2, p4) ∈ SIM({number of hairs}),

yet the query
number of hairs(x, none)

distinguish them.

In [8] an another approach for ‘do not care’ and ‘lost’ missing values is pre-
sented. The indiscernibility with respect to the set of attributes is replaced by
the concept of characteristic set:

Definition 8. For an object u ∈ U the characteristic set KA(u) is defined as

KA(u) =
⋂

a∈A

K(u, a),

where K(u, a) is defined in the following way

– if m(u, a) = {v} then

K(u, a) = {u′ ∈ U | m(u′, a) = {v} ∨m(u′, a) = �}.

– if m(u, a) =? or m(u, a) = � then K(u, a) = U .

Lemma 1. Let I = (U,A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes.
Let A be axioms derived from I. For every a ∈ A and for each u ∈ U such that
m(u, a) = {v}

x ∈ K(u, a)⇐⇒ A |= a(x, v).

Proof. Let x be an element of K(u, a). Then m(u, a) = {v} or m(u, a) = �. In
both cases a(x, v) is satisfied by A.

If A |= a(x, v), then either the value of a on x was specified as v either it was
‘do not care’ missing value. In both cases x ∈ K(u, a).
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Theorem 4. Let I = (U,A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes. Let
A be axioms derived from I. The set X ⊂ U is definable iff X is the union of
characteristic sets.

Proof. Let u1, . . . , un be such that

X =
n⋃

i=0

KA(ui) =
n⋃

i=0

⋂

a∈A

K(ui, a) =
n⋃

i=0

⋂

a∈Ai

K(ui, a),

where Ai is the set of all attributes specified for ui. Let m(ui, a) = {va,i}.
According to Lemma 1

K(ui, a) = {x ∈ U | A |= a(x, va,i)}.

Thus x ∈ X iff

A |=
n∨

i=0

∧

a∈Ai

a(x, va,i).

Theorem 5. Let I = (U,A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes. Let
A be axioms derived from I. For each X ⊂ U

AX =
⋃
{KA(x) | KA(x) ⊂ X},

AX =
⋃
{KA(x) | x ∈ U,KA(x) ∩X �= ∅}.

Lower and upper approximations are equivalent to subset lower and upper ap-
proximations (defined in [8]).

Proof. AX is definable, so according to Thm. 4

AX =
n⋃

i=1

KA(ui)

for some u1, . . . , un ∈ U . Since AX ⊂ X , we obtain KA(ui) ⊂ X . If KA(x) ⊂ X
then KA(x) ⊂

⋃n
i=1 KA(ui), because KA(x) is definable and AX is the largest

definable subset of X .
AX is definable, so according to Thm. 4

AX =
n⋃

i=1

KA(ui)

for some u1, . . . , un ∈ U . Since AX is the smallest definable set such that X ⊂
AX , we obtain KA(ui) ∩X �= ∅.
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3.3 Multivalued Attributes

Multiple valued attributed (introduced in [27] and studied in [20]) may reflect
our incomplete knowledge about their values, what makes them similar to ‘lost’
missing values. The may also represent attributes that have a few values simul-
taneously, in which case the are like ‘do not care’ missing values.

– ‘lost’ multiple values we define as follows: for each u ∈ U , for each a ∈ A we
state

P |= a(u, v1) ∨ · · · ∨ a(u, vn),

where v1, . . . , vn are all possible values of attribute a for object u mentioned
in information system.

– for each u ∈ U , for each a ∈ A, for each value v of attribute a for object u
in information system

P |= a(u, v),

when the value of a is ‘do not care’ multiple value for object u.

Table 4. A multiple valued information system

name known languages

p5 Bob Pascal, Ocaml, Cobol
p6 David, Alice Ocaml

For example objects in Table 4 will be described by the following formula:

P1 |= name(p5, Bob) ∧ known languages(p5, Pascal) ∧

∧ known languages(p5, Ocaml) ∧ known languages(p5, Cobol) ∧
∧ (name(p6, David) ∨ name(p6, Alice)) ∧ known languages(p6, Ocaml).

Multivalued attributes is a simple extension of the ‘missing values’ case and
the whole theory derived for the information systems with missing attributes is
applicable here.

4 Structural Objects

Information systems are devoted to representation of simple objects described by
a vector of attributes. What makes compound objects different from the simple
ones is the internal structure. Structural objects are composed of subobjects
connected by relations.

We shown in Section 3 that the idea of representing knowledge in terms of
axioms provides us a flexible and extendable framework for coherent theory of
data analysis. Now, we formally define the language for knowledge representa-
tion, which allow us to describe properties of structured objects. We call it a
meaning representation language.
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Table 5. A set of data sequences

s1 Alice has brown hair.

s2 Charlie and David know Ocaml and Cobol.

s3 Bob’s hair colour is black,

similar to David’s hair colour.

s4 Parents of Alice and Bob are old.

s5 Alice, Bob, Charlie and David are old.

The meaning representation language represents concepts included in data
and dependencies between them. It is an extension of the formulae used to
describe axioms derived from information systems in Section 3.

Syntax of the language is defined as follows: We have the set of constants and
the set of predicate names.

Constants play the role of labels for entities described in data. Constant
names may be meaningful (see Section 2) or may not carry any information
about pointed entity. The anonymity of constants reflects the fact that we do
not posses direct access to the entities. We know only the relations between en-
tities and these relation does not define entities in an exact way. It reflects the
incompleteness of our knowledge.

Predicates posses lists of one or more arguments. Number of arguments for a
given predicate is not fixed. Predicates represent relations on finite sequences of
entities. The predicates have meaningful names.

Atomic formula is a predicate. Formula is composed of one or more atomic
formulae connected by means of conjunction or alternative. We do not use quan-
tifiers, functions or negation.

The semantics of the meaning representation language is based on the concepts
presented in Section 2. The structure P plays the role of the reality model.
Information about P is represented by axioms A. The axioms are written using
the meaning representation language. P(A) is the set of possible world defined
by A. We assume that data are consistent; in other words:

P |= A.

For example, Table 5 provides us knowledge representation of s1 by the fol-
lowing axioms:

P1 |= name(u1, Alice) ∧ colour of hair(u1, brown).

Note that object identifiers are not sequence identifiers si. One sequence may
describe many objects. The same object may be mentioned in several sequences,
yet we must use the domain knowledge in order to assure that different constants
denote the same object. Let us consider now s2:

P1 |= name(u2, Charlie) ∧ name(u3, David) ∧ and(u4, u2, u3)∧

∧known languages(u4, Ocaml) ∧ known languages(u4, Cobol).
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The conjunction and in the sequence s2 has two meanings. The second time it
is used as logical ‘∧’, while in the first case of use it forks the sequence. We
represent this operation using symbol and defined as

and(a, a1, . . . , an) ∧ ϕ(a, a1, . . . , an) ⇐⇒

⇐⇒ ϕ(a1, a1, . . . , an) ∧ · · · ∧ ϕ(an, a1, . . . , an).

In sequence s3, the colour of hair is an object and the property of person in
the same time:

P1 |= name(u5, Bob) ∧ colour of hair(u5, black)∧

∧name(u6, David) ∧ colour of hair(u6, u7) ∧ similar(black, u7).

The sequence s4 is ambiguous: in first interpretation Parents of Bob are old
and in the second Bob is old. We use ‘∨’ in order to represent both possibilities.

P1 |= name(u8, Alice) ∧ parent(u9, u8) ∧ parent(u10, u8) ∧ name(u11, Bob)∧

∧
(
and(u12, u9, u10, u11) ∨

(
parent(u9, u11) ∧ parent(u10, u11)∧

∧and(u12, u9, u10)
))
∧ age(u12, old).

In sequence s5 we have the list of objects that could be arbitrary long:

P1 |= name(u13, Alice) ∧ name(u14, Bob) ∧ name(u15, Charlie)∧

∧name(u16, David) ∧ and(u17, u13, u14, u15, u16) ∧ age(u17, old).

5 Sequential Data Processing

Now, we show how to obtain structural object description written in form of
axioms. We assume that the source information is given as the sequence of sym-
bols, for example textual data, recorded sound, sequence of some measurements
etc. We will carefully study the process of translation of sequential data into
our meaning representation language in the following sections. This process is
similar to the segmentation of images [35]. As we will see it is tightly connected
with the syntax of the meaning representation language.

Sequential data are a description of some world P . This description is not a
precise definition, rather the theory of the set of possible worlds P(A). Our goal
is to transform this description into the set of axioms A that would define the
same theory of P(A). Thanks to this processing the data obtain the description
that has a formal semantics and identifies objects and their properties.

The sequential data processing is an example of complex translation from
one sensor into another one. We show in Section 6 that this process may be
considered as rough set approximation.

The classical approach to sequential data analysis consists in splitting the data
into subsequences of constant length denoted as windows. Then each window
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is treated as a vector of attribute values. The advantage of this approach is
a simple translation into an information system. The disadvantage is that it
does not reflect the semantics of the data. If the windows are small, they cut
object descriptions. If they are large, they do not distinguish objects. When
the sequence length used for describing objects varies, the proper window size
does not exist. In addition windows does not allow to express the properties of
structured objects described by the sequential data.

In our approach, we divide sequences into the windows that vary in size and
merge windows into larger structures. We transform data sequences into axioms
using the methodology of the attributed grammars [13]. The basic idea is to
perform the syntactic decomposition of the sequence using generative grammar
and add the semantic value for each grammar symbol. In our case, these semantic
values are formulae of meaning representation language. The semantic values
are calculated by means of semantic attachments assigned to grammar rules. We
extract concepts explicitly stated in sequence, not the ones that can be deduced
from it.

5.1 Syntactic Rules

First, we define grammar which we will use for describing syntactic structure of
data sequences.

We decided that our grammar would recognise regular languages. Yet we may
replace our grammar with Context-Free Grammar without deep modification in
the system.

We represent syntactic rules using a modification of context-free grammars
by adding some special rule, called, a term accumulation rule. Formally let

G = (Σ,N,XI , R,+,≺)

be such that

– Σ is a finite set of terminal symbols,
– N is a finite set of non-terminal symbols.
– XI ∈ N is the start-symbol of grammar.
– R is a finite set of production rules. Each production has the form A → α

or A → β+, where A is a non-terminal and α is a sequence of terminals
and non-terminals and β ∈ Σ ∪ N . A → β+ is a shortcut for set of rules:
A→ β,A→ ββ,A→ βββ, . . . .

– ≺ is binary relation of Σ ∪N such that A ≺ B if and only if there is a rule
A→ α in R such that B belongs to α or there is a rule A→ B+.

– ≺ is a irreflexive and transitive partial order.

We will denote every subsequence parsed to a grammar symbol as a phrase.

Proposition 3. Language L can be recognised by grammar defined above if and
only if L is regular language.
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For example, for sequences from Table 5 the following grammar may be generated:

[name] ::= Alice | Bob | Charlie | David
[age] ::= young | old
[colour of hair] ::= brown | black
[number of hairs] ::= none | little | many
[known language] ::= Pascal | Ocaml | Cobol
[known languages] ::= [known language] |

[known language] and [known language]
[name,] ::= [name] ,
[name list] ::= [name,] +
[names] ::= [name] | [name] and [name] | [name list] and [name]
[parents] ::= [names] | parents of [names]
[person] ::= [parents] | [parents] and [parents]
XI ::= [person] are [age] |

[person] has [colour of hair] hair |
[person] know [known languages]

Names of the symbols in the grammar reflect the concept names. The grammar
is ambiguous. The sequence s4 may be parsed in two different ways which reflect
two possible interpretations of sequence.

5.2 Data Sequence Representation

We are looking for all the possible derivation trees for a given data sequence and
grammar.

We need representation that can describe ambiguous, partially parsed data.
We represent it as directed acyclic graph whose edges are labelled by grammar
symbols. We call it the graph of syntactic decomposition.

We represent data sequence as a graph that is a list. Formally, let {σi}n
1 ,

σi ∈ Σ be the sequence. We create graph with vertexes V = {v0, . . . , vn} and
set of edges E = {v0

σ1−→ v1, . . . , vn−1
σn−→ vn}.

While applying the rule we find path in the graph with edge labels that match
to the rule. Then we add to graph a new edge from beginning to end of the path
labelled with rule production.

In order to apply the rule A→ α1, . . . , αk we find all paths

va0

α1−→ va1

α2−→ va2 . . . vak−1

αk−→ vak

and we add for each of them the edge

va0

A−→ vak

to the graph.
While applying the A→ β+ rule, we find all paths

va0

β−→ va1

β−→ va2 . . . vak−1

β−→ vak
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Fig. 1. Part of the graph of syntactic decomposition for sequence s4

and we add for each of them the edge

va0

A−→ vak

to the graph.
We will denote the edge labelled α such that vi

α−→ vj by αi,j .
As a result of parsing process we obtain the edge from the beginning to the

end of graph labelled by the start symbol of grammar.

5.3 Parser Algorithm

Having defined the data representation, we describe the parser algorithm.
We divide the set of symbols into layers: Let N0 = Σ and let

Nn+1 = {A : ∃A→ α1 . . . αk∀i(αi ∈ Nn) ∪ ∃A→ β+(β ∈ Nn)}.

Now we divide the rules set R into layers. Let R−1 = ∅ and

Rn = {A→ α1 . . . αk : ∀iαi ∈ Nn} ∪ {A→ β+ : β ∈ Nn} \Rn−1.

Since we do not allow recurrent symbol to occur there is finite number of layers.
For example, for grammar created for sequences from Table 5 we obtain:

N0 = {Alice, Bob, Charlie, David, young, old, brown, black,
none, little, many, Pascal, Ocaml, Cobol,
and, ,, parents, of, are, has, know, hair}

N1 = {[name], [age], [colour of hair],
[number of hairs], [known language]}

N2 = {[known languages], [name,]}
N3 = {[name list]}
N4 = {[names]}
N5 = {[parents]}
N6 = {[person]}
N7 = {XI}
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and

R0 =

[name] ::= Alice | Bob | Charlie | David
[age] ::= young | old
[colour of hair] ::= brown | black
[number of hairs] ::= none | little | many
[known language] ::= Pascal | Ocaml | Cobol

R1 =
[known languages] ::= [known language] |

[known language] and [known language]
[name,] ::= [name] ,

etc.
Rules belonging to each layer are independent. Hence we may go through the

sequence once for each layer and apply all matching rules simultaneously.
For each path in graph, the algorithm finds all rules that match to the path

and add their production to graph. We begin with graph (V,E0), where E0 = E.
We obtain graph (V,En+1) by applying to (V,En) rules from Rn. For each text’s
subsequence we find all its possible syntactic consequences.

In order to do it efficiently we create prefix tree out of every layer: For each
rule A → α1 . . . αk in Rn we create path in the tree from the root labelled by
symbols α1 till αk and we label the leaf tree node by A. For each node we merge
paths that have identical labels.

Using this data structure we can apply all A→ α rules in layer in O(|En|l log |
Σ ∪ E|+ |En||R+

n |) time, where

l = max
Rn

{k : A→ α1 . . . αk ∈ Rn}.

Since l, log |Σ ∪ E| and number of layers is relatively small |En| is crucial for
parser performance.

For the different kinds of grammar parser may be replaced with other known
in literature parsers [12].

5.4 Semantic Values of Grammar Symbols

In case of ambiguous grammar, the number of possible syntax derivation trees
may be exponential to the sequence length. The concept of the graph of syntactic
decomposition is their compact representation. The number of possible semantic
values of the sequence is equal to the number of syntax derivation trees. That
is why we cannot represent them directly. Instead, we distribute the semantic
values across the graph of syntactic decomposition.

The meaning representation language formulae must have syntax coherent
with the graph of syntactic decomposition. This requirement creates the de-
pendence between the syntax of the meaning representation language and the
process of translating data into axioms.

The formulae are spread across the graph in a way presented below.
Consider the edge αi,j of the graph. This edge was created as the result of

parsing a phrase. The phrase described an entity. We represent this entity by
means of constant aα,i,j . We describe its properties derived from the phrase by
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the formula of meaning representation language. We name this formula semantic
value of grammar symbol and denote it as [[α]]i,j . We assign the formula [[α]]i,j
to the edge αi,j on the implementation level.

The formula [[α]]i,j has the following structure:

[[α]]i,j :=
n∨

k=1

pk(aα,i,j , aαk
1 ,ik

1 ,jk
1
, . . . , aαk

mk
,ik

mk
,jk

mk
) ∧

mk∧

l=1

[[αk
l ]]ik

l ,jk
l
.

Each [[αk
l ]]ik

l
,jk

l
is assigned to the edge αk

l ik
l ,jk
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must by associated with graph edge on the implementation level.
Semantics for a terminal symbol αi,j is an one-argument predicate whose

name is α and whose argument is the variable aα,i,j .
For example, for graph of syntactic decomposition presented on Fig. 1 we will

obtain the following semantic values:

[[[name]]]2,3 = [name](a[name],2,3, Alice)
[[[names]]]2,5 = and(a[names],2,5, a[name],2,3, a[name],4,5) ∧ [[[name]]]2,3∧

∧[[[name]]]4,5

[[[parents]]]0,3 = [parents](a[parents],0,3, a[names],2,3) ∧ [[[names]]]2,3

[[[person]]]0,5 =
(
equal(a[person],0,5, a[parents],0,5) ∧ [[[parents]]]0,5

)
∨

∨
(
and(a[person],0,5, a[parents],0,3, a[parents],4,5)∧

∧[[[parents]]]0,3 ∧ [[[parents]]]4,5

)
.

5.5 Semantic Attachments

Semantic values of grammar symbols are constructed using semantic attachments
of grammar rules. Semantic attachment are functions that compose semantics
of greater objects out of semantics of smaller ones.

Let A → α1 . . . αk be a syntactic rule and fA→α1...αk
be a semantic attach-

ment assigned to it. Assume that the rule was matched to the path α1,i0,i1 , . . . ,
αk,ik−1,ik

. As the rule was applied the symbol Ai0,ik
was created.

The semantic value for Ai0,ik
is constructed as follows: first we calculate the

value of
fA→α1...αk

([[α1]]i0,i1 , . . . , [[αk]]ik−1,ik
).

We demand from the values of the semantic attachments to be predicate. Let

p(aA,i0,ik
, aβ1,j1,k1 , . . . , aβn,jn,kn) := fA→α1...αk

([[α1]]i0,i1 , . . . , [[αk]]ik−1,ik
),

where every βi,ji,ki belongs to {α1,i0,i1 , . . . , αk,ik−1,ik
}. Now we define semantics

of Ai0,ik
as

[[A]]i0,ik
:= p(aA,i0,ik

, aβ1,j1,k1 , . . . , aβn,jn,kn) ∧
∧

1≤i≤n

[[βi]]ji,ki) ∨ [[A]]i0,ik
.
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[[A]]i0,ik
on the right side of assignment is the semantic value of the edge Ai0,ik

before the rule application. The semantic value for nonexistent edge is falsity.
The first argument of the predicate p is the constant aA,i0,ik

whose value is
the entity described by phrase parsed to Ai0,ik

.
The semantic attachment manipulates on formulae considering them as terms.

It extracts parts of formulae and constructs the predicate p using them. In most
cases it uses the constant pointing to the entity described by the predicate. The
semantic attachment often concatenates the names of predicates that are the
semantic values of terminal symbols

For example, the grammar created for sequences from Table 5 may have the
following semantic attachments:

[name] ::= Alice
name(u[name], Alice)

[age] ::= old
age(u[age], old)

[known language] ::= Pascal
[known language](u[name], Pascal)

[known languages] ::= [known language]
equal(u[known languages], u[known language])

[known languages] ::= [known language]1 and [known language]2

equal(u[known languages], u[known language]1
, u[known language]2

)
[names] ::= [name]

equal(u[names], u[name])
[names] ::= [name]1 and [name]2

and(u[names], u[name]1
, u[name]2

)
[parents] ::= [names]

equal(u[parents], u[names])
[parents] ::= parents of [names]

parents(u[parents], u[names])
[person] ::= [parents]

equal(u[person], u[names])
[person] ::= [parents]1 and [parents]2

and(u[person], u[parents]1
, u[parents]2

)
XI ::= [person] are [age]

equal(uXI , u[person], u[age])
XI ::= [person] know [known languages]

equal(uXI , u[person], u[known languages]).

The space complexity determines the representation of semantics. Each rule
application add one predicate, so space complexity of semantics is proportional
to the number of applied rules.

Thank to such representation of formulae we omit combinatorial explosion
during the analysis of data with high ambiguity.

Various predicates generated for a given subsequence are possible descriptions
of an entity. That is why we point that entity by the same constant in each
predicate.
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We connect different possible subsequence interpretations by means of al-
ternative. Only one of them may be correct because only one of contradicting
formulae may be consistent, ensuring that only one clause of alternative will be
true. In case when text interpretations do not contradict, it could happen that
a few clauses will be true (consistent with the facts described in the document)
at the same time, despite the fact that only one of them could be meant do be
written.

For for each A→ β+ rule we assign semantic action fA→β+ such that

[[A]] = fA→β+([[β1]], [[β2]], . . . ).

We represent semantic value of the symbol generated by accumulation rule as a
graph, whose vertexes are constants that are arguments of predicate. Each path
from beginning to ending vertex in such a graph represents a list of predicate
arguments. The predicates are connected by alternative. We denote such a graph
as graph of logic structure of accumulation symbol.

Size of semantics for accumulation rule is smaller than n(n+1)
2 , where n is

number of vertexes in the graph of syntax decomposition.
We may add a few different semantic attachments to a syntactic rule. Obtain-

ing rules that are grammatically identical but differ on semantic level.
In the end of parsing process we obtain an edge labelled by start symbol of

grammar. Its semantic value is a formula that contains every possible translation
for the entire text into meaning representation language.

6 Set Approximations

Now, when we studied the process of generating axioms for a given data, we
define rough sets for objects described by axioms written as the meaning repre-
sentation language formulae.

The most important difference with the case of information systems is the
extension of the definition of query that makes it suitable for data represented
in a form of meaning representation language formulae.

Definition 9. By a query we denote any formula ϕ(x) of the form

∃x1,...,xn

k∧

i=1

pi(ai
1, . . . , a

i
ki

),

where each ai
j either is a variable belonging to {x, x1, . . . , xn} or a constant. x

is a free variable and pi are predicates.

For example, the query

ϕ1(x) = ∃x1 colour of hair(x, x1) ∧ similar(x1, brown)

refers to the people whose hair has colour similar to brown. In Table 6, the
formula ϕ1(x) is satisfied either if p1 is the value of x or its value is p2. p1 and
p2 cannot be distinguished by formula ϕ1(x).
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Table 6. A set of axioms

P1 |= colour of hair(p1, h1) ∧ similar(h1, brown)
P1 |= colour of hair(p2, h2) ∧ similar(h2, brown)

The indiscernibility is defined in the same way as for information systems
(compare with Definition 6 in Section 3):

Definition 10. Let A be a set of axioms. Let ϕ(x) be a query with free variable
x. Let u1 and u2 be constants. We say that u1 and u2 are indiscernible by the
query ϕ(x) if (

A |= ϕ(u1)
)
⇐⇒

(
A |= ϕ(u2)

)
.

In case of information systems, the set of objects’ labels U were given. When
data are represented as a set of axioms, we define the set of objects’ labels U as
the set of all constant symbols included in axioms.

Definition 11. Let X be a subset of U . We say that X is definable by A iff
there exist queries ϕ1(x), . . . , ϕn(x) such that

∀u ∈ U
(
u ∈ X ⇐⇒ A |= ϕ1(u) ∨ · · · ∨ ϕn(u)

)
.

Nondefinable X may be approximated by two definable sets. The first one is
called lower approximation of X , denoted by AX and defined as

⋃
{Y | Y ⊂ X ∧ Y is definable by A}.

The second set is called upper approximation of X, denoted by AX and defined
as ⋂

{Y | X ⊂ Y ∧ Y is definable by A}.

AX ⊂ U because every definable Y ⊂ U .
Lower and upper approximations are definable, so

AX = {u ∈ U | ϕ(u)},

AX = {u ∈ U | ϕ(u)}.
We consider rough set approximation as a pair of formula

∀u∈U

(
ϕ(u) =⇒ u ∈ X

)
,

∀u∈U

(
¬ϕ(u) =⇒ ¬u ∈ X

)
,

providing that ϕ and ϕ are the strongest formulae for which the above implica-
tions holds.

The sequential data processing methodology presented in the Section above
may be interpreted as rough set approximation. Syntactic rules are queries and
semantic attachments define the measurements of the approximated sensor. As
the effect of sequential data processing we obtain the upper approximation of
structural sensor by means of means of sequential sensor measurements.
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7 Conclusions

When we process data into meaning representation language formulae we obtain
knowledge base, which we may use for various data mining applications.

We can look for information using concepts from the documents. We describe
properties of desired objects by means of queries and then we find the set of
objects that satisfy the query.

The meaning representation language formulae provide us features for cluster-
ing and classification of the structural objects. If we define a decision attribute,
we may construct rule based classifiers that use queries as selectors in decision
rules. We plan to adapt the classical rule generation algorithms, so they could
analyse the information contained in the properties of structurally described
objects.

One of the classification tasks is an object identification. The goal of object
identification is to determine the object’s ontological category. We use properties
of objects extracted from the sequential data for that purpose.

Object descriptions extracted from the sequential data are often incomplete.
Part of attributes is missing. When we identify the object’s ontological category,
we add the values of missing attributes to the set of axioms as ‘lost’ missing values.

We plan also to study the process of high level concept extraction: the algorithms
for defining the concepts that are not included in data but only approximated.

We will search for automatic methods for generating ontologies and deter-
mining the structure of objects in a way that would provide features useful for
further application.

The ontology is most important during the process of feature selection. In our
case the development of grammar and semantics for processing the sequential
data into the meaning representation language formulae. This suggest that both
problems are tightly connected and should be studied together.

On the other hand we plan to derive methods of extracting features from
visual data and to extend our system on numerical data sequences.
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Dai Tri Man Lê�� and Ryszard Janicki

McMaster University, Department of Computing and Software
Hamilton, ON, L8S 4K1 Canada
{ledt,janicki}@mcmaster.ca

Abstract. Mereocat (mereological category), a theory of part-whole relations
based on category theory, is proposed and its basic properties are discussed. The
concepts of mereological sum is redefined in categorical framework. The theory
is then applied to model some properties of component software architecture.

Keywords: mereology, category theory, software component, “part of” relation.

1 Introduction

A correct construction of complex entities from the more primitive ones is one of the
basic problems in many parts of science and virtually all engineering. This problem is
especially important for the young field of software engineering, since software systems
have grown much larger and more complex each year. The need of precise rules for both
composition and decomposition in software constructions had been recognised more
than thirty years ago (see [25]), but widely accepted formal techniques have not yet
been found.

Attempts to formalise the concept of “part of” and “fusion” (composition) of parts
go back to S. Leśniewski (1916-37, [20, 36]), and H. Leonard, N. Goodman (1940-50,
[9, 19]). Leśniewski invented Mereology as an alternative to what is now called “stan-
dard set theory” (i.e. based on Zermelo-Fraenkel axioms1). Leonard and Goodman for-
mulated Mereology within set theory, which makes the theory more accessible to appli-
cations. Both models of Mereology have been substantially extended [4,9,6,32,33,36],
and recently many new concepts have been added. For example, Mereotopology [35]
tackles the problem of axiomatising various topological properties; a new general-
isation of a mereological sum, called mereological supremum has been introduced
in [15], and the problem of equivalent parts is analysed in [13]. Most of known appli-
cations came from philosophy, cognitive science and pure mathematics [4,6,23,33,36].

� Partly supported by NSERC of Canada Grant.
�� Partly supported by Ontario Graduate Scholarship.
1 The fundamental difference is that in Leśniewski’s systems, the operator called “is” and usually

denoted by “ε”, corresponds to both set theory membership “∈” and subset “⊆” operators, i.e.
we would write a ε A for a ∈ A and B ε A for B⊆ A [20, 32, 36].

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 146–174, 2008.
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However since mid nineties, mereological ideas started to be applied in other parts
of science (and engineering) as for instance: industrial engineering [31], approximate
reasoning [28], knowledge engineering [24], and recently in computer science and soft-
ware engineering [12, 13, 14, 15].

In both Leśniewski’s and Leonard-Goodman’s mereologies, the “parthood” is con-
sidered to be a global relation, i.e. the relationship “a is part of b” does not have any
external name. However, “a is part of b” and “a is part of c” are often very different
relationships. In particular, when the same parts might be used to construct different
objects, having unique names would often help both the understanding of relationships
and part manipulation. A natural solution is to name the relationship “a is a part of
b” as for instance fab, or, to say that the relationship “a is a part of b” is a morphism
fab : a→ b. This leads us to category theory [22].

In this paper, which is a substantial extension of some ideas from [18], we propose
a categorical mereology, called mereocat. The work was inspired by Basic Mereology
of [13, 15] and Goguen’s General System Theory [7, 8].

We will next use mereocat to model some hierarchical structures of Component
Based Software. Component Based Software development [1] focuses on building a
large software system by composing pre-existing parts, i.e. software components. The
paradigm arises as an answer for the disadvantage of object-oriented paradigm that
does not have an architectural method to separate the computational and compositional
aspects. However it appears that both the formal and intuitive sense of parthood in
Component Based Software is fuzzier and more confusing than the one in classical
engineering. Although “part-whole” relationship is considered to be one of the most
important UML modelling concepts within object-oriented modelling through the no-
tion of aggregation and composition (see [24, 29]) and very recently within component
based modelling through the UML notion of “structure classifiers” (see [11]), accord-
ing to the authors’ knowledge, no formal and complete parthood model does exist. We
hope to contribute a little to a solution of this problem.

In the next two chapters we recall the basic concepts and results of Standard Mere-
ology and Category Theory. In Chapter 4 we will define our categorical mereology,
mereocat. Mereocat sums will be discussed in Chapter 5 and mereocat product in a
very short Chapter 6. Elements of CommUnity, a component design framework [5, 21]
will be discussed in Chapter 7. We will use CommUnity as a design tool in Chapter 8,
where we show how mereocat can help in modelling parthood properties of Component
Based Software. Chapter 9 contains our final comments.

2 Standard Mereology

Before introducing our categorical mereology, to make our ideas and concepts better
understood we start with basic notions of “standard mereology” [4,33]. This is a mere-
ology based on the Calculus of Individuals by Leonard and Goodman [9, 19]. From a
mathematical point of view it is a part of the theory of partially ordered sets. We will
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not discuss here the mathematics of Leśniewski’s systems2 as they cannot easily be
formulated within standard set theory [32, 33, 36].

To make the papers self-sufficient, we start with a survey on the principal properties
of partial orders.

Let X is a set. A relation �⊆ X×X is called a partial order iff it is reflexive (x� x),
anti-symmetric (x� y∧y� x ⇒ x = y), and transitive (x� y∧y� z ⇒ x� z). If� is
a partial order then the pair (X ,�) is called a partially ordered set or poset. A relation
≺ defined as x≺ y ⇐⇒ x� y∧ x �= y is called a strict partial order.

Let (X ,�) be a poset and let A ⊆ X . An element a ∈ X is called an upper bound (a
lower bound) of A iff ∀x ∈ A. x � a (∀x ∈ A. a � x). The sets of all upper bounds and
lower bounds of A are denoted by ub(A) and lb(A) respectively.

The element * ∈ X satisfying ∀x ∈ X . x�* is called the top of X , and the element
⊥ satisfying ∀x ∈ X .⊥� x is called the bottom of X .

An element a ∈ A is a minimal (maximal) element of A iff ∀x ∈ A. ¬(x ≺ a) (∀x ∈
A.¬(a≺ x)). The set of all minimal (maximal) elements of A will be denoted by min(A)
(max(A)).

An element a ∈ X is called the least upper bound (supremum) of A, denoted sup(A),
iff a ∈ ub(A) and ∀x ∈ ub(A). a� x, and it is called the greatest lower bound (infimum)
of A, denoted inf(A), iff a ∈ lb(A) and ∀x ∈ lb(A). x� a.

The minimal elements of the set X \ {⊥} are called atoms of the poset (X ,�), and
Atoms denotes the set of all atoms of X.

The relation ≺̂ defined as x≺̂y ⇐⇒ x ≺ y∧¬(∃z. x ≺ z ≺ y) is called the cover
relation for �.

Now we will begin with mereological axioms, but to do so we need some definitions.
Let (X ,�) be a poset (with or without ⊥). The relation � is now interpreted as “part
of”; a is a part of b iff a � b, and a is a proper part of b iff a ≺ b. Notice that “a is a
part of b” is equivalent to saying that “b is a whole of a”. The element ⊥ is interpreted
as an empty part. The relation ◦, † and " on X \ {⊥} defined as

x◦ y⇐⇒∃z ∈ X \ {⊥}. z� x∧ z� y (overlap)

c † y⇐⇒¬(x◦ y) (disjoint)

x" y⇐⇒∃z ∈ X \ {⊥}. x� z∧ y� z (underlap)

are called overlapping, disjointness and underlapping respectively. Two element x and
y overlap iff they have a common non-empty part, they are disjoint iff they do not have
a common non-empty part, and they underlap if they are both parts of another element
(see [4, 33] for more properties).

There are many mereological axioms, we will only discuss those we consider the most
important for our purposes [4,19,13,33]. The first three axioms below deal with the mean-
ing of “part of” relation, the remaining five describe global properties of mereologies.

2 Conceptually the ideas of Leśniewski and Leonard-Goodman appear to be similar, but math-
ematical results about this relationship are hard to find and the major one [10] has not been
widely accepted among Leśniewski’s disciples (see [36]). The paper [10] is right in the case
of Leśniewski’s elementary mereology, however Leśniewski’s non-elementary mereology is a
much richer system, so [10] is often considered heresy for some Leśniewski’s followers [36].
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¬(y� x) ⇒ ∃z. (z� y∧ x † z) (SSP)

x≺ y ⇒ (∃z ∈ X . z≺ y∧ x † z)∨ x =⊥ (WSP)

x≺ y ⇒ (∃z ∈ X . z≺ y∧¬(z� x))∨ x =⊥ (SCP)

∀x ∈ X \ {⊥}. ∃y ∈ Atoms. y� x (ATM)

⊥ ∈ X (BOT)

* ∈ X (TOP)

x� y⇐⇒ x(≺̂)∗y (CCL)

∀x ∈ X . ∃y ∈max(X). x� y (WUB)

The axiom SSP is called Strong Supplementation Principle. It implies quite regular
properties, among others it guarantees that different objects have different sets of proper
parts. Mereologies satisfying SSP are called Extensional Mereologies. Detailed discus-
sion of SSP and its consequences can be found in [4,33]. We think SSP is too restricted
for our purposes. In mathematics and computer science different objects are very often
built from the same proper parts. For instance, A×B �= B×A (unless A = B), and both
A×B and B×A are intuitively built from the same parts.

The axiom WSP, called Weak Supplementation Principle, is much weaker and very
popular. Among others, it guarantees that if an element has a proper non-empty part,
it has more than one. Mereologies satisfying WSP are often called Minimal Mereolo-
gies [4, 33]. For example, a totally ordered set is not a minimal mereology. It is of-
ten believed that any reasonable mereology must conform to this axiom [33], how-
ever we strongly disagree with this opinion. The hidden assumption behind WSP is
that some parts, including the most elementary ones, are unique. Consider the set S =
{(a,1),(a,2),(b,1)}. Intuitively {a}, {b}, {1}, {2}, {(a,1)}, {(a,2)}, {(b,1)}, and
{(a,1),(a,2)}, {(a,2),(b,1)}, {(a,1),(b,1)} are proper parts of it. WSP does not hold
as {(a,2),(b,1)} and {(a,1)}, both proper parts of S, overlap on {a} and {1}. A pos-
sible solution is to “tag” all elementary components, i.e. to consider the set SWSP =
{(a1,1a),(a2,2a),(b1,1b)} instead of S, but this usually leads to unnecessary complex-
ity of a model. We will come back to this issue in our Example 1.

The axiom SCP, is called Strong Company Principle [4]. It is weaker than WSP and,
intuitively, it says that a proper part x has to be supplemented by some other proper
part z which is not “included” in the part x. For example, a totally ordered set does
not satisfy SCP. However even SCP may not hold if the repetition of components is
allowed. Consider a mereology of multisets, the only part of {a,a,a,a} is {a} (or a).
Again, “tagging” elementary elements seems to solve the problem but may result in
unnecessarily complex model. Nevertheless, we believe this axiom seems to be helpful
in many “software oriented” mereologies.

Some modern mereologies, for instance Rough Mereology of Polkowski and Skowron
[28] do not assume even SCP. The exact meaning of a “part” is left for particular
applications.

The axiom ATM (Atomistic Mereology) says that all objects (except the empty part)
are built from elementary elements called atoms. The axiom BOT simply says that the
empty part does exist. Most of classical mereological theories assume the empty part
does not exist. The argument is that the empty part (empty element) is not needed except
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for completeness properties [4, 33]. We believe, that empty part, as empty set or empty
string, is a very useful concept that eventually will make our theory simpler. The top*
is called Universe in mereology, and it plays either the role of ”universe of concourse”
or it simply represents the most complex object [33]. The axiom CCL (Cover Closed)
seems to be implicitly assumed in many mereological theories, however it not usually
openly discussed [4,33]. It was formally introduced in [13] and it states that the part-of
relation is the reflexive and transitive closure of the cover relation for �. Every finite
poset satisfies CCL. The final axiom WUB (Weakly Upper Bounded) means that the set
max(X) is a roof that cover the whole set. This axiom is crucial when the concept of
equivalent parts is introduced [13].

Posets satisfying ATM and SSP are often called Hyperextensional Mereologies [4,9,
33]. The name follows from the fact that in such cases the objects are identical if they
are built from the identical sets of atoms. Hyperextensional mereologies usually lead to
very elegant theories, but they appear to be too restricted for our purposes.

A mereology that satisfies BOT, WSP, CCL, WUB and ATM is called Basic Mere-
ology in [13], however, detailed analysis of examples from [13] and [15] indicates that
the author of [13] actually meant SCP not WSP.

We believe a search for a “universal” Mereology does not lead very far, so for
any particular application a specific Mereology should be constructed . In mereocat
analysed in the rest of this paper, we will only assume BOT and SCP, with a possibility
of adding additional axioms when needed.

Example 1 ( [13,15]). For every set A, let Â = {{a} | a ∈ A} be the set of all singletons
generated by A, i.e. if A = {a,b}, then Â = {{a},{b}}.

Let D1 = {a,b}, D2 = {1,2} be sets and let X = 2D1 ∪2D2 ∪2D1×D2 .
Define the relation � in X×X as follows:

A� B ⇐⇒ A⊆ B ∨ A⊆ πi(B), i = 1,2

where πi(B) is the projection of B on i-th coordinate, i.e. π1(B) = {x1 | (x1,x2) ∈ B},
π2(B) = {x2 | (x1,x2) ∈ B}.

One can show by inspection that the pair (X ,�) satisfies BOT, SCP, CCL, WUB
and ATM with Atoms = D̂1 ∪ D̂2, ⊥ = /0 and * = {(a,1),(a,2),(b,2),(b,2)}. This
example is a special case of a more general model that is discussed in detail in [12,
13, 15]. A Hasse diagram of the relation � is presented in Figure 1. The axiom WSP
is not satisfied, as for instance, {(a,2),(b,1)} and {(a,1)}, are both proper parts of
{(a,1),(a,2),(b,1)}, and they overlap on {a} and {1}. �

The operations⊕ and - defined by

z = x⊕ y ⇐⇒ (∀w ∈ X . w◦ z⇔ w◦ x∨w◦ y), (sum)
z = x- y ⇐⇒ (∀w ∈ X . w� z⇔ w� x∧w� y)∧ z �=⊥ (product)

are called the mereological sum and mereological product respectively [9, 4, 33]. It
is implicitly assumed for both definitions that in order to exist, z must be unique.
Both concepts can easily be extended from two elements to any set in a standard
way [4, 33]. The sum of elements of the set A (if exists) will be denoted by

�
A,

and the product of elements of the set A (if exists) will be denoted by
�

A. There
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/0

{a} {b} {1} {2}

{a,b} {1,2}
{(a,1)} {(a,2)} {(b,2)}

{(b,1)}

{(a,1),(a,2)}

{(a,1),(b,1)}

{(a,1),(b,2)}

{(a,2),(b,1)}

{(a,2),(b,2)}

{(b,1),(b,2)}

{(a,1),(a,2),(b,1),(b,2)}

{(a,1),(a,2),(b,1)}

{(a,1),(a,2),(b,2)}

{(a,1),(b,1),(b,2)}

{(a,2),(b,1),(b,2)}

Fig. 1. A Hasse diagram of the relation � from Example 1

is an obvious relationship between mereological sum and least upper bound and be-
tween mereological product and greatest lower bound, however those concepts are not
identical. Let X = { /0,{a},{b},{c},{a,b,c}}. The tuple (X ,⊆) is clearly a Minimal
Mereology, sup({{a},{b}}) = {a,b,c}, {a}⊕ {b} does not exist. On the other hand
sup({{a},{b},{c}}) =

�{{a},{b},{c}}= {a,b,c}. The idea is that if � represents
“part-of” relation and the element {{a},{b},{c}} is built from all three parts {a}, {b}
and {c}. Consider the relation � from Figure 1. The least upper bound of {(b,2)} and
{1,2} does not exist while {(b,2)}⊕{1,2}= {(b,1),(b,2)}. However for {a,b} and
{1,2}, neither sup({a,b},{1,2}) nor {a,b}⊕{1,2} does exist.

Many mereologies assume that x- y implies the existence of x⊕ y [33], which re-
sults in very elegant models similar to semi-lattices or, when additional assumptions
are made, to quasi boolean algebras [33]. However, for our purposes such assumption
is too strong, most of the models we are interested in do not have this property (includ-
ing systems from [12, 13, 15]). If different objects are allowed to have identical proper
parts, then the sum x⊕ y often does not exist. The concept of mereological supremum
proposed in [15] is a partial (but only partial) solution to this problem. The mereological
supremum of {a,b} and {1,2} is {(a,1),(a,2),(b,1),(b,2)}, the top of this mereology
and the most complex object that can be constructed from parts {a,b} and {1,2}. Un-
fortunately the definition of mereological supremum is rather complex and has not been
tested for many examples.

For more details on Standard and Basic Mereologies the reader is referred to [4, 13,
15, 33].

As we have mentioned in the Introduction, the mereologies discussed in this chapter
consider the “parthood” as a global relation, and particular relationship “a is part of b”
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does not have any specific external name. By providing such a name3 and interpreting
it as a morphism from a to b we move to the domain of category theory.

3 Elements of Category Theory

In order to make this paper self-sufficient, and to set up a uniform notation, we will now
introduce the basic concepts of category theory [5, 22].

A category C consists of

1. a class ob(C), which denotes the class of C-objects of A,
2. a class mor(C), which denotes the class of C-morphisms (or C-arrows).
3. for each morphism f ∈ mor(C) has a unique source object A and target object B

where A,B ∈ ob(C). We write A
f−→ B or f : A→ B to denote “ f is a morphism

from A to B”,
4. for each pair (A,B) of C-objects, a class C(A,B), which denotes the hom-class of

all C-morphisms from A to B,

5. for each C-object A, a morphism A
idA−→ A, called the C-identity on A,

6. a composition law associating with two C-morphisms A
f−→ B and B

g−→ C a C-

morphism A
g◦ f−→C, called the composition of f and g,

such that the following axioms hold:

– composition is associative; i.e., for morphisms A
f−→ B, B

g−→C, and C
h−→D, the

equation h ◦ (g ◦ f ) = (h ◦ g)◦ f holds,
– C-identities act as identities with respect to composition; i.e., for C-morphisms

A
f−→ B, we have idB ◦ f = f and f ◦ idA = f .

The following types of morphisms will often be used throughout this paper. Let C
be a category and A,B ∈ ob(C).

A morphism A
f−→ B of C is:

– an isomorphism iff there is a morphism B
g−→ A of C such that g ◦ f = idA and

f ◦ g = idB. Under these conditions, A and B are said to be isomorphic, which is
denoted by A∼= B.

– a monomorphism if f ◦g = f ◦h implies g = h for all C-morphisms g,h : C→ A. In
this case, we say f is monomorphic (or monic).

Finally the functor is defined as follows. For the categories C and D, a functor F
from C to D is a mapping that:

– associates to each object X ∈ ob(C) an object F(X) ∈ ob(D),

3 Naming relationship looks trivial from a theoretical point of view, but it is extremely important,
often underestimated part of any formal software specification procedure [26].
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– associates to each morphism f : X → Y ∈ mor(C) a morphism F( f ) : F(X) →
F(Y ) ∈ mor(D)

and the following two properties hold:

– F(idX) = idF(X) for every object X ∈ ob(C)
– F(g ◦ f ) = F(g)◦F( f ) for all morphisms f : X → Y and g : Y → Z of C.

We denote the indentity functor from a category C to itself by IC, (or simply, by C).

4 Introduction to Mereocat

Mereocat is a theory whose structures possess mereological properties and are defined
in terms of category theory. Goguen’s work on inclusive categories [7] provided a major
motivation. The concept of inclusive morphism from [7] appears to be close to the
concept of “part of” as understood in software engineering (see [12]). In mathematics,
the categorical approach to set theory can be found in Lawvere and Rosebrugh [17],
where the whole set theory is presented as the algebra of mappings. In [17] the phrase
“part of” which denotes monomorphism represents both “subset of” and “member of”,
but no reference to existing papers on Mereology is given. Nevertheless, these ideas
are very close to fundamental Leśniewski’s concepts [20, 32, 36], even though their
formulations use categorical notions.

Before giving the definition of a mereocat, we recall the notion of a comma category4

[22].

Suppose that A, B, and C are categories, and two functors A S−→ C T←− B, we can
form the comma category (S ↓ T ) as follows:

– The objects are triples (D,E, f ), with D ∈ ob(A), E ∈ ob(B), and f : T (D)→ S(E)
a morphism in C.

– The morphisms from (D,E, f ) to (D′,E ′, f ′) are pairs (g,h) where g : D→ D′ and
h : E → E ′ are morphisms in A and B respectively making the following diagram
commutes

S(D) S(D′)

T (E) T (E ′)

�
S(g)

�

f

�

f ′

�
T (h)

Morphisms are composed by taking (g,h)◦ (g′,h′) to be (g ◦ g′,h ◦ h′).
A special case of comma category is of an arrow category [2,22]. From any category

C, the arrow category Ar(C) of arrows of C is the category (IC ↓ IC). In detail, Ar(C)

has objects as C-morphisms and a morphism between from an object A
f−→ A′ to an

4 The name comes from the notation originally used in [17], which involved the comma punc-
tuation mark.
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object B
g−→ B′ is a pair of part-morphisms A

h−→ B and A′
k−→ B′ making following

diagram commute

A B

A′ B′

�
h

�
f

�
g

�
k

This morphism will be denoted as (k, l) : f → g.

We can now provide the main definition of this paper, our categorical mereology.

Definition 1. A mereocat MC is a category consisting of

– its object in ob(MC), which are called mereo-objects (or objects),
– its morphisms which are called part-morphisms (or parts),
– an initial object denoted by ⊥ (every morphism :⊥→ A is called empty-part),

such that the following conditions hold

1. if A
f−→ A is a MC-morphism then f = idA,

2. for every pair of part-morphisms ( f ,g), the hom-class Ar(MC)( f ,g) has at most
one element, and

3. for every part-morphism A
f−→ B of MC such that A �∼= B and A �∼=⊥, there exists a

part-morphism C
g−→ B such that C �∼=⊥ and C �∼= B and Ar(MC)(g, f ) = /0. �

The first very important thing is that we do not call mereo-objects “parts” as in the tradi-
tional mereologies. An AA battery is a part of a camera, only when it is placed into it, not
in general. The same battery might be a part of a clock, remote control, etc., or it might

be a top of an abstract sculpture. In this model, the morphisms (battery
in−→ camera),

(battery
in′−→ clock), (battery

in′′−→remote-control), (battery
in′′′−→abstract-sculpture), etc.,

are parts. When saying some object is a part of a whole, we assign implicitly a role the
object plays with respect to the whole, and the nature of the whole as well.

However, every mereo-object A itself can be considered as an external part (a whole)
because every object A is equipped with an identity map iA. Since iA and A are cate-
gorically the same, in this paper, we will abuse the notation by also calling an object A

“part”, or “part of B”, if the morphism A
f−→ B is obvious from the context.

The conditions (1), (2) and (3) in principle state that this category can be interpreted
as a mereology.

The condition (1) makes sure we have a unique way to identify a whole as an external
part using its identity morphism.

The condition (2) makes sure that MC and Ar(MC) behave like a posets. Note that
the concept of poset in this categorical definition is not “strict” since antisymmetry is
not assumed to resolve into extensional equality [17].

The condition (3) is the categorical formulation of SCP axiom. Intuitively, it says
that a “proper” part f has to be supplemented by some other “proper” part g which is
not “included” in the part f .
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Proposition 1. Let MC be a mereocat, then

1. All part-morphisms of MC are monomorphic.
2. All morphisms of Ar(MC) are monomorphic.

Proof. Follows from condition (2) of Definition 1. �

For example, a category of finite sets whose morphisms are inclusive mappings, i.e.
function of the form i(x) = x, is a mereocat. And so is the mereology described in

Figure 1, with morphisms A
fAB−→ B iff A≺ B, and A

idA−→ A for all A.
Some examples of structures which are not mereocats are:

– Finite sets and functions (because functions are not necessarily monomorphic).
– The following simple category:

⊥ B C�
f

�
g

since, for instance, B �= C but we cannot find another morphism with the target C
to satisfy the condition (3) of Definition 1.

Since in this model, parts are morphisms, we need to define what is “part of a part”.
The part-of relationship between parts is defined as follows:

Definition 2. Let f : A→ B and g : A′ → B′ be two parts of a mereocat MC. We say f
is a part of g iff there exists a morphism (k, l) : f → g in the category Ar(MC).

A A′

B B′

�
k

�
f

�
g

�
l

Under this condition, we say f is part-of g. �

Note that we allow f = idA : A→ A and g = idA′ : A′ → A′, which further justify con-
sidering occasionally mereo-object as parts, if this does not lead to any ambiguity.

By using morphisms we may provide very exact and unambiguous specification of
various aspects of parthood, which we believe cannot easily be achieved using the tra-
ditional relational models alone. Every mereocat MC automatically generates its com-
panion category Ar(MC), which actually is the part-of category, and can be used to
model more elaborate parthood properties.

Definition 3. For a mereocat MC, the category of Ar(MC) is called the part-of cate-
gory of MC. �

The Definitions 2 and 3, and their properties are illustrated in the below example.

Example 2. Let BBlock be a mereocat where objects are house building blocks and a
part-morphism f : A → C means A is used to build C. Suppose the following square
commutes:
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This implies that (k, l) : f → g is a morphism of Ar(BBlock). Hence, the part-morphism
f , which specifies how the block (1) of A become block (1) of C, is part-of the part-
morphism g, which specifies how the house of B becomes one of the houses of D as
follows:

Furthermore, the commutativity of the square also implies the part-of relationship be-
tween k and l through the existence of the morphism ( f ,g) as shown in the next diagram:

�

The next, rather abstract, example illustrates both Definition 1 and Definition 2.
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Example 3. Let us consider a mereocat M specified using the following diagram5 where
the square BCFE and the triangle ABC commute,

⊥

H

D E F G I

B C

A

�
�

�
�

�
�

��

�
�
�
�
�
�
��

�

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
p0

�
�
��p1

�
p2

�
p3

�
p4

�
�
��

p5 �
�

�
�

�
�

��

p9
�

p6

�
�
��p7 �

p8

We have:

– for any part morphism p : X → Y in the diagram, (p, p) : idX → idY is a morphism
of Ar(M). Hence, if there an arrow between any two objects of M, we say idX is
part-of idY (or we can abuse the notation by saying X is part-of Y ). For instance, B
is part of A, C is part of A, D is part-of A and⊥ is part-of everything in the diagram.

– p7 is part-of p8 because (p6, idA) : p7 → p8 is a morphism of Ar(M) (the triangle
ABC commutes)

– p3 is part-of p4 because (p2, p6) : p3 → p4 is a morphism of Ar(M) (the square
BCFE commutes), but also p2 is part-of p6 because (p3, p4) : p2 → p6 is a mor-
phism of Ar(M). �

The next example deals with a more realistic situation.

Example 4. Assume that we have a filled car with two passengers in it. We can model
two possible parts of it as the collection of two people and the car with empty seats.

In Figure 2, People models the collections of two people; Empty Car and Filled
Car model the empty and filled car respectively. The arrows from People to Filled

Car describe the morphism People
f−→Filled Car, which associates the people to the

appropriate car seats. The arrows from Empty Car to Filled Car describe the morphism
Empty Car

g−→Filled Car, which associates the seats of the empty car to the seats of
filled car. Notice that the arrows are needed since in category theory the mappings are
used to characterise the objects. This is different from theory, e.g. set theory, where the
members of a collection define the collection itself. As a result, category theory is often
considered a “component-free” or “blackbox” approach. �

5 In category theory, to simplify the diagram, identity arrows and arrows that can be inferred
from composition of arrows are not drawn.
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Fig. 2. The car model with part mophisms f and g from Example 4

We will now show that a mereocat can be interpreted as a mereology which is defined
in Section 2. Since we consider mereocat to be a generic rather than specific concept,
the mereological assumptions are very weak. We assume only equivalents of BOT and
SCP, the other axioms may be added when needed. The following results show formal
relationship among a mereocat, its arrow category companion, and a standard mereology.

Proposition 2. Let MC be a mereocat satisfying A∼= B⇒ A = B for all A,B∈ ob(MC),
and let � be a relation on ob(MC) defined as:

A� B⇐⇒∃ f ∈ hom(MC). f : A→ B

Then (ob(MC),�) is a mereology that satisfies BOT and SCP.

Proof. It is a straightforward consequence of the conditions (1), (2) and (3) of Definition
1. �

Proposition 3. Let MC be a mereocat such that

1. for any two objects A,B ∈ ob(MC) , if A∼= B then A = B, and

2. for every part-morphism A
f−→ B of MC with A �= B and A �=⊥, there exists a part-

morphism C
g−→ B with C �= B and C �=⊥ such that no MC-object D �=⊥ and two

part-morphisms D
k−→ A and D

l−→C making the following diagram commute

B

A C

D

���
f ���g

���
k ���l

Let � be a relation on ob(MC) defined as:

A� B⇐⇒∃ f ∈ hom(MC). f : A→ B
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Then (ob(MC),�) is a minimal mereology with BOT.

Proof. Form Proposition 2 and the condition (2) above, which is a categorical equiva-
lence of WSP. �

Proposition 4. Let BM = (X ,�) be a mereology satisfying BOT and SCP. Define C as
a category such that ob(C) = X and there is a morphism fAB : A→ B iff A � B. The
category C is a mereocat.

Proof. Proof follows from the fact BM is a poset so there is at most one morphism
from one object to another in ob(C), while BOT and SCP imply the remaining mereocat
properties. �

Proposition 5. Let MC be a mereocat such that for any two part-morphisms f and g,
f ∼= g implies f = g. Then the arrow category Ar(MC) is a mereology with BOT and
SCP.

Proof. – Reflexivity: any part f : A→B is a part of itself, since the following diagram
commutes

A A

B B

�
iA

�
f

�
f

�
iB

– Antisymmetry: if f : A→ B is part-of g : A′ → B′ and g is also part-of f , then hom-
classes Ar(MC)( f ,g) and f Ar(MC)( f ,g) and Ar(MC)(g, f ) are not empty then
there is a unique morphism from f to g and a unique morphism from g to f . In
other words, f ∼= g. Hence, we conclude f = g.

– Transitivity: suppose f : A→ B is part-of g : A′ → B′ and g is a part-of h : A′′ → B′′.
Since Ar(MC) is a category, we have following commutative diagram

A A′ A′′

B B′ B′′

�
k

�
f

�
g

�
k′

�
h

�
l

�
l′

and hence f is part-of h. Since the BOT and SCP are also satisfied, we are done.
�

Sometimes we want to look at the categorical structure consisting of only the parts of
some specific whole. This can be done using the concept of slice category. Given a
category C and a fixed object A ∈ ob(C), the slice category (see [2]) over A, denoted
by (C ↓ A), is a category whose objects are morphisms with the same target A and a
morphism from f : B→ A to g : C→ A in (C ↓ A) is a commutative triangle

B

A C
���
f

�
h

���g
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Definition 4. Let MC be a mereocat and A be an object of MC, the part-of category
restricted to A is the slice category (MC ↓ A). �

In Example 3, the part-of category restricted to C is

⊥ H

D E F

B C

�

�
�
��

�

�
p0

�
�
��p1

�
p2

�
p3

�
p4

�
p6

The concept of atomic part can be defined categorically as follows:

Definition 5. Let MC be a mereocat, an object A of MC is called an atom in MC iff the
slice category (MC ↓ A) consists only two objects idA and⊥→ A. In this case, the part
idA (or A) is called an atomic part. �

In Example 3, D, E , H, G and I are atomic parts. Intuitively, a part is atomic if they do
not have any sub-parts except the empty part.

5 Mereocat Sums

The traditional concepts of fusion in mereology through the use of mereological sum
as in [36, 33] are always problematic. The problems are carefully discussed by Meirav
[23]. According to Meirav, the root of some most noteworthy difficulties has been the
traditional tendency to focus on the horizontal dimension of wholes (i.e. the part-whole
relations) and neglect the vertical dimension (i.e. relations among the whole itself and
its parts). In fact, in software engineering, the very popular object modelling method
UML [30] mainly provides only mechanisms to model the vertical relationships with
both their static and dynamic behaviours, which are extremely important as well.

However, the solutions proposed in [23], mainly based on the linguistic differences
on the meaning of “part of”, does not seem to suit computer science and software engi-
neering needs.

Another solution, the notion of mereological supremum of [15], is formally rather
complex, and occasionally not very intuitive and does not solve many problems dis-
cussed in [23].

In our model, fusion will be defined based on the concepts of part-morphism, mere-
ological sum and categorical universal constructions. Instead of using only one mere-
ological sum definition for every kinds of composition as in Standard Mereology, we
use separate concepts of sums which depends on how the sub-parts are related. Four
different types of sum and their generalisation will be provided and discussed.
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5.1 Independent Sum

In many cases, a whole is constructed by putting two or more parts together and all
of these parts contribute to the behaviours of the whole independently. This form of
composition is defined as follows:

Definition 6. In a mereocat MC, a whole C is an independent sum of two parts A and
B iff

– there exists two part morphisms fA : A→C and fB : B→C, and
– for any part morphism fE : E →C and E �∼=⊥, at least one of the following condi-

tions satisfies:
1. there exist an object F �∼= ⊥ and two parts h1 : F → E and h2 : F → A making

the following diagram commute:

F A

E C

�
h2

�
h1

�
fA

�
fE

2. there exist an object G �∼= ⊥ and two parts i1 : G→ E and i2 : G→ B making
the following diagram commute:

G B

E C

�
i2

�
i1

�
fB

�
fE

�

The first part of definition says C is a whole such that fA and fB are part-of it and
the second part of the definition says that any part overlaps the whole iff it overlaps at
least one of the part of the whole. The second part of this definition is based on the
overlapping requirement of the mereological sum of Standard Mereology but for the
case when A and B are disjoint.

It is worth to notice that the whole C is only defined to be an independent sum,
because there might be several way to build a whole satisfying this definition of the
sum as demonstrated the following example.

Example 5. Recall the mereocat of BBlock from Example 2. In Figure 3, the house D
is a sum of B and E , but D′ is also a sum of B and E .

�

Hence, to make sure that the sum is unique up to an isomorphism in a sense if two
objects C and C′ are both sums of set of objects, then C ∼= C′, we need to impose
the universal property [22]. This restricted form of independent sum can be defined in
mereocat as follows:

Definition 7. In a mereocat MC, a whole C is a strict independent sum of two parts A
and B iff there exist part morphisms fA : A→C and fB : B→C such that
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Fig. 3. Both D and D′ are indepedent sums of B and E

– C an independent sum of A and B, and
– for any object C′ and a pair of morphisms gA : A→C′ and gB : B→C′ of MC there

is a unique morphism k : C→C′ in MC making the following diagram commute

A B

C

C′

�
���

fA
�
�
�
�
�
�
��

gA

�
�
��

fB �
�
�
�
�
�
��

gB

�
k

�

The above definition says C is a whole such that fA and fB are part-of it, and for any
other whole C′ containing A and B, C is a part of that whole through the existence of
k. Intuitively, this means C is the “minimal” whole containing both A and B. This re-
quirement of the existence of a unique k imposes the universal property needed. This
definition of strict independent sum can be seen as a special form of coproduct in cate-
gory theory [22].

For instance, in the Example 5, if D and D′ are both strict independent sums of B
and E then we will require that the existence of part mophisms j and j′ as in Figure
4. Intuitively, this existence of j and j′ says that D and D′ are “the same”, but the fact
whether they should be considered the same or not depends mainly on a designer’s
specification purpose which affects how morphisms are defined. Notice that if we only
require, for instance, D to be the strict independent sum then we only need a unique
arrow j : D→ D′.

5.2 Interactive Sum

In many cases, it might not be possible to build any generic structures by only using the
independent sum operation on parts. Consider the following example:
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Fig. 4. There exist arrows j : D→ D′ and j′ : D′ → D

Example 6. In the mereocat BBlock, we want to be able to specify explicitly that the
house D is a sum of B and C and the block A is the common part of them as shown in
Figure 5. To clarify things, we use the dotted arrows to specify each morphisms f , g,
h and i by associating each block from each source to the correspondent block in the
target house.

Fig. 5. The block A is the common part of two houses B and C

However, having the common part A, D is not an independent sum of B and C.
�

Intuitively, the block A acts as some form of “connector” to connect B and C together
to create D. Hence, we need another kind of sum which can be defined as follows:

Definition 8. In a mereocat MC, a whole S is an interactive sum of two parts f : A→B
and g : A→ C in MC iff there exist two part-morphisms iB : B→ S and iC : C → S in
MC such that:

– iB ◦ f = iC ◦ g, and
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– for any part morphism iE : E → S and E �= ⊥, at least one of the following condi-
tions satisfies:
1. there exist an object F �∼= ⊥ and two parts h1 : F → E and h2 : F → B making

the following diagram commute:

F B

E S

�
h2

�
h1

�
iB

�
iE

2. there exist an object G �∼= ⊥ and two parts l1 : G→ E and l2 : G→C making
the following diagram commute:

G C

E S

�
l2

�
l1

�
iC

�
iE

�

The first part of the definition says S is a whole such that iB and iC are part-of it and
A is the common part of S, iB and iC. The second part imposes the mereological sum
requirement from Standard Mereology (i.e any part overlaps the whole if it overlaps at
least one of the parts of the whole).

In Example 6, we can conclude that the whole D is an interactive sum of two parts
f : A→ B and g : A→C.

The strict version of interactive sum which requires to satisfy the universal property
is defined as follows:

Definition 9. In a mereocat MC, a whole S is the strict interactive sum of two parts
f : A → B and g : A → C in MC iff there exist two part-morphisms iB : B → S and
iC : C→ S in MC such that:

– S is an interactive sum of f : A→ B and g : A→C, and
– for any object S′ and two part-morphisms i′B : B→ S′ and i′C : C → S′ in MC such

that i′B ◦ f = i′C ◦g, there is a unique morphism k : S→ S′ in MC making the follow-
ing diagram commute

A B

C S

S′

�
g

�
f

�
iB

�
�
�
�
�
�
��

i′B
�

iC
��������i′C

�
���k

�
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Fig. 6. Car made of two parts h and k from Example 7

Intuitively, this definition guarantees that S is the “minimal” whole containing both f
and g. When the strict interactive sum exists, it is unique up to an isomorphism. This
definition of strict interactive sum can be seen as a special form of pushout in category
theory [22].

Example 7. In Example 4, we can also build Filled Car from the the object Seat

Assignment with two part-morphisms Seat Assignment h−→People and Seat Assign-

ment k−→Empty Car as in Figure 6. Two morphisms h and k associate explicitly each
person with his/her corresponding seat. Intuitively, we can think of each seat assign-
ment as some form of common attribute between each person and an empty seat. Hence,
Filled Car is an interactive sum of two parts h and k.

We can change the choices of seats by using a new morphism Seat Assignment’
k′−→Empty Car in the place of k′ as shown in Figure 7.

It is worth to notice in the sum Filled Car’ how the morphism People
f ′−→Filled

Car’ is different from f to reflect the change. �

Hence, our generic definition of mereological sums provides a simple but very explicit
way to specify how the sum is built. The information of how the each sum is composed
is not just contained in each object itself, but also the morphisms with respect to it. For
example, how Filled Car’ is different from Filled Car is reflected in the differences
between { f ,g} and { f ′,g′}.

The use of morphisms to specify the sum has a strong advantage here. Together
with the version of non-strict independent/interactive sum, we allow different non-
isomorphic wholes to be built from a same set of parts. Hence, the morphisms equipped
to each resulting whole will help distinguishing one whole from another.

Notice that although part-morphisms in the previous mereocat example are mostly
functions, part-morphisms need not be functions. It is also clear that (strict) independent
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Fig. 7. Car made of two parts h′ and k′ from Example 7

sum is a special case of (strict) interactive sum when the common part in the (strict)
independent sum is the ⊥ part.

5.3 Generalised Sum

We first recall the concept of a diagram in category theory. A diagram in a category C
is a graph homomorphism δ : I→ |C| for some (directed) graph I where |C| denotes the
underlying graph of C. For simplicity, we only write δ : I → C to denote the diagram
δ. Such diagram is called a diagram of type I and I is called the index graph of δ. δ is
called a finite diagram if the index graph has only finite nodes and arrows.

Let δ : I→C be a diagram in a category C. A cocone [22] with base δ is an object Z
of C together with a family {pA : δ(A)→ Z}A∈ob(I) of morphisms of C, usually denoted
by p : δ→ Z. The object Z is said to be the vertex of the cocone, and for each A∈ ob(I),
the morphism pA is said to be the edge of the cocone at point A. The cocone p is said
to be commutative iff for every arrow s : A → B of graph I, the following diagram
commutes:

Z

δ(A) δ(B)
�
��

pA

�
δ(s)

�
��

pB

In a mereocat, a commutative cocone can be interpreted as the whole which contains all
the parts in a diagram. Clearly, not every commutative cocone is a sum of a diagram in
a mereocat, since a commutative cocone might contain more parts than the parts of the
diagram itself. Hence, we can define the notion of generalised sum which generalises
both the independent and interactive sum concepts as following:

Definition 10. In a mereocat MC, a generalised sum of a diagram δ : I→MC is an
object Z together with a family {pA : δ(A)→ Z}A∈ob(I) of part-morphisms such that

– {pA : δ(A)→ Z}A∈ob(I) is a commutative cocone of δ, and
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Fig. 8. The commutative cocone {h, i, j,k} with vertex E from Example 8

– for any part-morphism iE : E → S and E �∼= ⊥, there exists some A ∈ ob(I) and
two part morphisms f : F → δ(A) and g : F → E and F �∼=⊥ making the following
diagram commute:

F δ(A)

E S

�
f

�

g

�
pA

�
iE

�
Just like the notions of strict independent and interactive sums, we also want to guaran-
tee the minimality and the uniqueness up to an isomorphism of a generalised sum. This
is where the notion of colimit in category theory [22] is needed.

Let δ : I→ C be a diagram in category C. A colimit of δ is a commutative cocone
p : δ→ Z such that for every other commutative cocone p′ : δ′ → Z′, there is a unique
morphism f : Z → Z′ such that f ◦ p = p′.

Definition 11. In a mereocat MC, the strict generalised sum of a diagram δ : I→MC
is an object Z together with a family {pA : δ(A)→ Z}A∈ob(I) of part-morphisms such
that

– Z is a generalised sum of δ, and
– {pA : δ(A)→ Z}A∈ob(I) is the colimit of δ. �

Example 8. Recall the mereocat BBlock. In Figure 8, the house E is a generalised sum
of the diagram created by A, B, C, D and the morphisms between them. The commuta-
tive cocone in this case is {h, i, j,k}.

�

The generalised sum might not always exist for any finite arbitrary diagram of a mereo-
cat. When the strict generalised sum always exists for any arbitrary diagram of a mere-
ocat then following the category theory terminology, we will call that mereocat a co-
complete mereocat. When the strict generalised sum only exists for finite diagram, we
will call the mereocat finitely cocomplete.
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6 Mereocat Product

Although not as carefully discussed as the notions of sum, we also include a brief dis-
cussion on the product construction in mereocat. The product notion which seems most
interesting to us is the dual notion of the strict interactive sum by reversing the direction
of the arrows. The definition can be given in detail as follows:

Definition 12. In a mereocat MC, a whole P is the product of two parts fA : A→C and
fB : B→C iff there exist two part-morphisms pA : P→ A and pB : P→ B such that

– f ◦ pA = g ◦ pB and
– for any other pair of part-morphisms p′A : P′ → A and p′B : P′ → B, there exists a

unique part-morphism k making the following diagram commute

P′

P A

B C

�
�
�
�
�
�
��

p′B

�
���k
��������

p′A

�
pB

�pA

�
fA

�
fB �

The universal property guarantees that if the product exists then it is unique up to some
isomorphism. Intuitively, it also means that P is the maximal common part of A and B.
Clearly, this concept of product is similar to the merelogical one in Standard Mereology.
The product concept in mereocat corresponds exactly to the pullback notion in category
theory [22].

For instance, in Example 6, the block A is the product of B and C.

7 Categorical Connector Framework

We assume the reader has rudimentary knowledge of basic notions of Component Based
Software paradigm [1].

Mereocat is a relatively general theory and in order to be used to model component-
based softwares, it needs to be equipped with some formal architectural framework.
For this role we adopt CommUnity, the architectural design framework invented by Fi-
adeiro et al. in [21,5]. CommUnity is flexible and quite general, and most importantly, it
does not restrict us to any specific architecture description language. It also allows easy
modelling of different aspects of parallel design. Last but not least, the categorical for-
malisation of CommUnity can be easily merged with the concepts of mereocat. To keep
the paper as self-sufficient as possible we will give a brief overview of CommUnity’s
three architectural elements: components, configurations and connectors.

Components, which can be thought in a sense of Component Based Software, are
the model entities that perform computation and are able to synchronise with their en-
vironments and exchange information through channels. Hence, components are given



A Categorical Approach to Mereology and Its Application 169

in terms of their channels and actions in a form of “designs”. For example, component
design print below consists of input channel i, output channel po and private channel
rd. Actions of print are given in CommUnity as a special form of “guarded commands”,
except satisfying the guards only means the actions can be executed but does not force
the action to be executed right away. In print, if rd=false then action print is allowed to
be executed and change rd to true. Action prod of print does the “opposite” of action
print and also assign input i to output po. The convert component does the task of of a
conversion module which convert a MSWord document to a PS document.

design print design convert
in i:ps out o:ps
out po:ps prv w:MSWord
prv rd:bool do to ps[o]: true, false→ o:=ps(w)
do print[rd]: ¬rd→ po:=i ‖ rd:= true
[] prod[rd]: rd→ rd:= false

Configurations are diagrams in a category of designs where objects are designs and
morphisms are superposition, also called design morphisms. A configuration describes
the coordination and interaction of component designs when they are instantiated. A de-
sign morphism σ : P1 → P2 identifies that P2 can be obtained from P1 by “augmenting”
additional behaviours to P1 while still preserving properties of P1 in P2.

From a meaningful configuration (e.g. an output channel is not connected to other
output channels) [21], a new design can be constructed using colimit construction. For
example, we want to build a new useful design from the previous designs print and
convert, using the configuration in the diagram below where cable, convert, print are
objects and each arrow represents a morphism between them.

Notice that explicit names are not given to the action and channel of cable used for
interconnection, but • symbols are used instead [5,21]. The reason is the interconnection
does not rely on the global naming but precisely on associations (name binding), for
example, we need to explicitly specify that o, to ps are bound to i and prod respectively.
In other words, the action and channel names of cable do not play any important role
with respect to the resulting design, for instance, user in this case.

cable
o←•→i

to ps→•←prod

convert print
o←i

to ps→prod

user

�
���

�
��	





	

“inclusion”
�
���

design user
out o,po:ps
prv rd:bool, w: MSWord
do print[rd]: ¬rd→ po:=o ‖rd:= true
[] to ps[o,rd]: rd → o:=ps(w)‖ rd:= false

Using colimit construction, the new object user and two arrows from convert and print
to user are introduced into the diagram. Here the colimit, as the “interactive sum” in
our mereocat terminology, returns the minimal single design representing the whole
configuration.

The design objects and design morphisms constitute category C-DSGN.
Connectors are model entities independent from components whose purpose is to

coordinate interactions between components as in the spirit of [1]. Connectors are given
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in CommUnity in terms of a “glue” design and collection of “role” designs. Since the
formal concept of connectors is quite lengthy, readers are referred to [21].

8 Software Components and Mereocat

In real world, a Component Based Software development for complex systems is more
than just composing a system from pre-existing components together using connec-
tors. When a system becomes larger and larger, it helps to understand the architectural
structure of the system better by analysing different architectural views, which are the
different abstractions of the same software system. The first kind of views is by par-
titioning a system vertically into subsystems, which aggregate modules implementing
related functionalities. The second kind of views is by looking at the horizontal sec-
tions that may have different scope within the system. Layers may belongs to a single
subsystem, a part of subsystem or across different subsystems [16].

The categorical framework discussed previously are designed to support composition
of subsystems from component designs. The framework is very successful in separating
and clarifying the roles of coordination vs. computation in component architecture de-
velopment. However, it does not seem obviously how the framework supports the layer
and subsystem views of software architecture. Their approach mathematically treats all
the designs as categorical objects and strongly emphasise the properties preserved by
morphisms, but also “flattens” down the whole architectural structure. Our goal is to
complement their framework by bringing back the depth to the architectural structure
using part-of relation from mereocat. Fortunately, the task is trivial since CommUnity
has already defined precisely the design and design morphism concepts. We only need
a proper interpretation of parts and the part-of relationship.

Proposition 6. Assume that a design S, which can be software system or subsystem, is
constructed using colimit construction from a configuration diagram6 δ : I→ C-DSGN
upon instantiation. Let ⊥ denote the empty design which has a unique empty design
morphism to every design and let {pA : δ(A)→ S}A∈ob(I) denote the colimit which con-
stitutes S, then the category C such that

– ob(C) = {⊥}∪{δ(A)}A∈ob(I)∪{S}, and
– hom(C) = {⊥→ δ(A)}A∈ob(I)∪{S} ∪{δ(A)}A∈hom(I)∪{pA : δ(A)→ S}A∈ob(I)
∪{idA}A∈ob(C)

is a mereocat.

Proof. Follows from the properties of the colimit construction and the fact that in the
base diagram δ of instantiation configuration there is at most one morphism from one
design to another. �

This proposition presents the proper definition of the parthood relation in Component
Based Software in one layer of the compositional architecture where the designs in

6 See the definition of diagram at the beginning of subsection Generalised Sum.
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Fig. 9. A non-hierachical way of specifying the User-Printer system

{δ(A)}A∈ob(I) contribute directly to the collective behaviour of the system (or subsys-
tem) S. In this view, the design S and the cocone {pA : δ(A)→ S}A∈ob(I) is exactly the
generalised sum of δ in the mereocat C.

For example, in the case of user system, the commutative diagram clearly implies
that convert is part-of user, print is part-of user, cable is part-of convert, cable is part-
of print and cable is part-of user. Moreover, due to how we define the part-of relation
in mereocat, we can also conclude that cable → convert is part-of print → user and
cable→ print is part-of convert→ user.

We can use the tools of mereocat, to analyse only one subsystem, or we can also
apply the construction of Proposition 6 again carefully to build a new mereocat from
the mereocats of subsystem. This in turn provides us an effective way of modularisation
as shown in the next example.

Example 9. Using the previous components convert and print, we can design a User-
Printer application where, a user application send a PS document to a “printing server”
component printer to print the document. All the communication is done through a
bounded buffer buffer, which prevents user from sending a new document when there
is no space and prevents printer from reading a new message when no new message
has been sent. The designs of buffer and printer are given as follows:

design buffer design printer
in ci:ps in i:ps
out co:ps prv busy:bool
prv rd: bool; q:queue do rec: ¬busy→ busy:=true
do put: ¬full(q)→ q:= enqueue (i,q) [] end print:busy → busy:=false
[]prv next: ¬empty(q) ∧¬ rd

→ o:=head(q) ‖ q:= tail(q) ‖ rd:=true
[] get: rd→ rd:= false

We can specify the configuration of the situation in two different ways.
The first method is to specify the architectural configuration as in Figure 9.
Notice that instead of drawing the categorical diagram as in previous section, we

use the “syntactic sugar” of name-binding to associate the correspondent methods and
channels of designs. According to the name-binding method of [21], we bind print
component with the input of buffer.

The second method, by using mereocat, is to specify the subsystem user and its
sub-parts as a way to modularise the configuration as in Figure 10. We connect the
resulting subsystem user to buffer where user is the strict interactive sum of two parts
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Fig. 10. Specifying the User-Printer system using mereocat

cable→ convert and cable→ print. The dotted arrows denote the morphisms convert→
user and print→ user of the interactive sum. As a result, we have a more hierarchical
view of the whole User-Printer system. �

Obviously, we can recursively apply this method to different parts of the system when
the system grows larger and larger. Notice that buffer (the “glue” design) and its asso-
ciations (name-bindings) constitute a connector according to the connector definition
in [21].

9 Conclusion

The main contribution of this paper is an introduction of a categorical mereology - mere-
ocat. The major philosophical difference between mereocat and traditional mereologies
is the treatment of “parts”. In traditional mereologies parthood is defined globally as a
relation (partial order) among all the elements. In mereocat parts are defined locally, as
morphisms f : a → b interpreted “a is a part of b and the name of this relation is f ”.
Defining parts as morphisms gives us more flexibility and among others allows to define
more realistic and useful sum and product operations. As a result, we have found a cat-
egorical setting that seems more intuitive and applicable for specification purposes than
traditional mereologies. We then applied mereocat to model some parthood properties
of Component Based Software architecture.

The paper provides a first complete version of our categorical mereology, but it also
leaves many questions unanswered and problems untouched. We will mention only a
few of them. Can we define a “universal sum” such that the notion of mereological
supremum of [13] is a special case? How a categorical setting can help in defining
“constructors” and “destructors” proposed in [12] and discussed in [15]? How the fact
that parts are morphisms affect the entire concept of “constructors” and “destructors”?
Can we easily incorporate equivalence relations discussed in [13] into mereocat? We
have not exploited categorical funtor-based constructions in this paper.

We are currently working on a mereological refinement notion for mereocat. We be-
lieve mereocat with refinement would be more useful modelling tool than a flattened
architecture of [5, 21]. For example, we can substitute not just one of components con-
vert or print but the whole subsystem user in the evolution of the system User-Printer.

On the surface there seems to be a link between the model presented in this paper
and the category of Chu spaces, where objects are classifications and morphisms are
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infomorphisms, and infomorphisms are used to capture some kind of part-whole rela-
tionship [3, 34]. However, a more detailed study indicates that the Chu spaces model
does not relate to the concept of mereology as understood in this paper. Moreover, we
do not describe things using states [3] and we do not have the concept of ‘time’ built
in. However, we plan to study the possible relationships more thoroughly in the future.
There also seems to be some sort of relationship between our interactive sum and the
sum with constraints of [34], however a detailed discussion requires introducing many
detailed concepts of Rough Sets [27, 28, 34], and is beyond the scope of this paper.
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Abstract. In different theories involving indiscernibility, it is assumed
that at some level the objects involved are actually assignable distinct
names. This can prove difficult in different application contexts if the
main semantic level is distinct from the semantic-naming level. Set-
theoretically too this aspect is of much significance. In the present re-
search paper we develop a framework for a generalized form of rough
set theory involving partial equivalences on different types of approxi-
mation spaces. The theory is also used to develop an algebraic semantics
for variable precision rough set and variable precision fuzzy rough set
theory. A quasi-inductive concept of relativised rough approximation is
also introduced in the last section. Its relation to esoteric rough sets is
considered.

Keywords: Esoteric Rough Set Theory, Rough Sets, Variable Precision
Rough Set Theory, Algebraic Semantics of Generalized Rough Set The-
ory, Irreflexive Rough Set Theory, VPRFS, GVPRFS.

1 Introduction

In both rough set theory and generalizations thereof involving relations explicitly,
it is assumed that the relation in the underlying approximation or information
space is at least reflexive. This amounts to a degree of distinguishability at a
higher meta-level. Naturally we assume familiarity with rough sets [1], gener-
alizations thereof [2,3,4,5,6], VPRS [7], VPRFS [8] and algebraic semantics
thereof (where possible) [2,9,10].

Suppose we have a finite set of objects, but have forgotten (as a functor),
all the maps that can prove the finiteness and suppose we know that for each
function symbol there exists an object and a partial interpretation of the function
on the object which gives the last value. The last condition is optional. We can
as well allow indeterminate finiteness or even transfiniteness. In this situation
suppose we have no mechanism of distinguishing between any two of the objects,
because the interpretation of names or the counting functions is a problem. If
we allow real time modifications of the number of objects, we have other things
to consider. Models of such can be constructed by weakening extensionality or

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 175–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



176 A. Mani

by modifying the underlying logic with a suitable modified concept of equality
of sets. Intuitionist versions of such indeterminacy inclusive set theory may be
seen as mixing intuitionist things with indeterminacy of the kind. In the present
paper we will concern ourselves with rough set theory.

Rough set theory in this situation requires deep modifications. Modifications
which effectively break much of it’s usual possible logics and semantics. Nor
does any of the current generalized versions of rough set theory allow a rea-
sonable treatment of the situation. All this in spite of the naturalness of partial
equivalences in the situation. Though the concepts of approximability by definite
objects and the concept of being between the lower and upper approximation
of an object are possible at least partially, embedding such in some kind of
’completed model’ is yet to be investigated on the errors involved.

There are statistical properties of the information associated. These are known
to be really bad. But much improvement is possible by improving on the parti-
tionability of the set...which amounts to requiring additional information...obtai-
nable by special procedures. We deal with all this in particular in the esoteric
rough set theory developed in the present research.

The following notions are stated to make the notation and terminology precise.
An approximation space X = 〈X,R〉 is a pair with X being a set in ZFC and R
an equivalence relation. For any A ∈ ℘(X), the lower approximation Al of A is
defined via,

Al =
⋃
{Y ;Y ∈ X | R, Y ⊂ A}

(X | R being the set of classes of R), while its upper approximation Au is defined
via,

Au =
⋃
{Y ;Y ∈ X | R, Y ∩A �= φ}.

Al (resp. Au) can be seen to be the collection of objects that R-definitely (resp.
R-possibly) belong to A or as the collection of objects of X whose types are
fully included in (resp. intersect), the set of types of objects of A. The triple
(X, R, A) is called a rough set. A is roughly included in B, A,B ⊂ X , A ≺ B
if and only if Al ⊂ Bl and Au ⊂ Bu. A and B are roughly equal iff A ≺ B and
B ≺ A if and only if Al = Bl and Au = Bu.

In contrast to the above, an Information System is a tuple of the form
〈U, A, νa : a ∈ A〉, with U being the universe, A is a set of attributes and νa is
a valuation map : U #→ U which is defined for each a ∈ A.

Algebras used in the paper will be written in the form

S = 〈S, f1, f2, . . . fn, (v1, v2, . . . vn)〉

with S being a set, f1, f2, . . . fn being operation symbols and v1, v2, . . . vn being
their corresponding arities. The operation symbols together with their arities
constitute the signature of the algebra. The interpretation of the signature on
the set S will be kept implicit, so that operations will be written like operation
symbols. Distinguished elements will be treated as 0-place operations.

A pre-rough algebra is an algebra of the form

S = 〈S,�,�,⇒, L,¬, 0, 1, (2, 2, 2, 1, 1, 0, 0)〉
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which satisfies

(i) 〈S,�,�,¬〉 is a De Morgan lattice.

(ii) ¬¬a = a ; L(a) � a = L(a)

(iii) LL(a) = L(a) ; L(1) = 1 ; L(a � b) = L(a) � L(b)

(iv) ¬L¬L(a) = L(a) ; ¬L(a) � L(a) = 1

(v) L(a � b) = L(a) � L(b)

(vi) (L(a) � L(b) = L(a),¬L(¬(a � b)) = ¬L(¬a) −→ a � b = a)

(vii) a⇒ b = (¬L(a) � L(b)) � (L(¬a) � ¬L(¬b)).

A distributive lattice is said to be completely distributive if and only if the
infinite supremum operation distributes over meet and dually the infinite meet
operation distributes over join. Naturally the lattice must be complete. A com-
pletely distributive pre-rough algebra is called a rough algebra. In all these al-
gebras it is possible to define an operation M by setting M(x) = ¬L¬(x) for
each element x. M corresponds to the upper approximation operator. The oper-
ation ⇒ is weaker than classical implication and corresponds to rough inclusion
by way of a ⇒ b = 1 iff a ≤ b in the associated lattice order. Bi-implication
naturally corresponds to rough equality.

1.1 Generalized Covers Approach

In [3], a theory of generalized rough sets based on covers of subsets of a given
set S is considered. Let S be a set and K = {Ki}n

1 be a collection of subsets of
it. If X ⊆ S, then consider the sets (with K0 = ∅, Kn+1 = S)

(i) X l1 =
⋃
{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}

(ii) X l2 =
⋃
{∩(S \Ki) : ∩I(S \ Ki) ⊆ X, I ⊆ {1, ..., n + 1}}

(iii) Xu1 =
⋂
{∪i∈ IKi : X, ⊆ ∪Ki, I ⊆ {1, ..., n + 1}}

(iv) Xu2 =
⋂
{S \ Ki : X, ⊆ S \ Ki, i ∈ {0, ..., n}}

The pair (X l1, Xu1) is called a AU -rough set by union, while (X l2, Xu2) a
AI-rough set by intersection (in the notation of [3] these are (F∪∗ (X), F∗∪(X))
and (F∩∗ (X), F∗∩(X)) respectively).

Theorem 1. The following are true :

(i) X l1 ⊆ X ⊆ Xu1
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(ii) X l2 ⊆ X ⊆ Xu2

(iii) ∅l1 = ∅l2 = ∅

(iv) (∪K = S −→ Su1 = Su2 = S)

(v) (∪K = S −→ ∅u2 = ∅, Sl1 = S)

(vi) (∩K = ∅ −→ ∅u1 = ∅, Sl2 = S)

(vii) (X ∩ Y )l1 ⊆ X l1 ∩ Y l1, (X ∩ Y )l2 = X l2 ∩ Y l2

(viii) (X ∪ Y )u1 = Xu1 ∪ Y u1, Xu2 ∪ Y u2 ⊆ (X ∪ Y )u2

(ix) (X ⊆ Y −→ X l1 ⊆ Y l1, X l2 ⊆ Y l2)

(x) If K is pairwise disjoint then (X ∩ Y )l1 = X l1 ∩ Y l1, (X ∪ Y )u2 =
Xu2 ∪ Y u2

(xi) (X ⊆ Y −→ Xu1 ⊆ Y u1, Xu2 ⊆ Y u2)

(xii) X l1 ∪ Y l1 ⊆ (X ∪ Y )l1

(xiii) X l2 ∪ Y l2 ⊆ (X ∪ Y )l2

(xiv) (X ∩ Y )u1 ⊆ Xu1 ∩ Y u1

(xv) (X ∩ Y )u2 ⊆ Xu2 ∩ Y u2

(xvi) (S \ X)l1 = S \ Xu2

(xvii) (S \ X)l2 = S \ Xu1

(xviii) (S \ X)u1 = S \ X l2

(xix) (S \ X)u2 = S \ X l1

(xx) (X l1)l1 = X l1, (X l2)l2 = X l2

(xxi) (Xu1)u1 = Xu1, (Xu2)u2 = Xu2

(xxii) (X l1)u1 = X l1, (Xu2)l2 = Xu2

(xxiii) X l2 ⊆ (X l2)u2, (Xu1)l1 ⊆ Xu1
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(xxiv) (K∩j (X))u2 = K∩j (X), j = 1, 2, ..., t1

(xxv) (K∪j (X))l1 = K∪j (X), j = 1, 2, ..., t2

In this, (K∪j (X)) is the minimal union for j being in the indicated range and
(K∩j (X)) is the maximal intersection.
Proof. The properties are essentially set-theoretical as shown in the following
proofs:

(i) X l1 ⊆ X ⊆ Xu1. Suppose X is non-empty. If x ∈ X l1, then x is in
some of those Ki) for which Ki) ⊆ X holds. So x ∈ X as well.
If x ∈ X , x is in all those unions of the form ∪i∈ I Ki that include X for
some I ⊆ {0, 1, . . . , n}. So x ∈ Xu1.

(ii) If X is nonempty and x ∈ X l2, then x is in some of the intersections of
complements of Kis that are contained in X . So X l2 ⊆ X .
If x ∈ X , then if x is in a Ki that is contained in X , then there must
exist a Ki for some i ∈ {0, 1 . . . n} such that its complement contains
X . So also if x is in a Ki that is not contained in X . When x is in no Ki,
then x is in every complement of Kis. So we have X ⊆ Xu2.

(iii) This follows from the definition.
(iv) If ∪K = S then Su1 =

⋂
{∪Ki : S = ∪Ki} = S. Su2 =

⋂
{S \ Ki :

S = S \ Ki, i ∈ {0, 1, . . . n}} = S in the situation too.
(v) If ∪K = S, then ∅u2 =

⋂
{S \ Ki : i ∈ {0, . . . , n} = ∅, while

Sl1 =
⋃
{Ki : Ki ⊆ S} = ∪K = S.

(vi) If ∩K = ∅, then ∅u1 =
⋂
{Ki : i ∈ {1, 2, . . . , n}} = ∅ and Sl2 =⋃

{∩I(S \ Ki) : I ⊆ {1, 2, . . . , n + 1}} = S.
(vii) If x ∈ (X ∩ Y )l1 then x is in some of the Ki ⊆ (X ∩ Y ), but these will

be subsets of both X and Y respectively. So x will be in X l1 ∩ Y l1.
For the second part it is clear that X l2 ∩ Y l2 ⊆ (X ∩ Y )l2. Suppose
that the reverse inclusion is false. Then there must exist x ∈ (X ∩ Y )l2

such that x /∈ X l2 and x /∈ Y l2. The latter means that there exist no
intersection of complements of Kis that are included in X and Y , but are
included in X ∩ Y . This obvious contradiction proves that (X ∩ Y )l2 =
X l2 ∩ Y l2.

(viii) From the definitions it is clear that Xu1 ∪ Y u1 will be a subset of
(X ∪ Y )u1 as the latter is the intersections of the unions of Kis that
contain (X ∪ Y ). If x ∈ (X ∪ Y )u1 then x is in all of the unions of Kis
that contain (X ∪ Y ). Now each of these unions will contain X and Y
respectively. If x is in X or Y , then there is nothing to prove. So suppose
that x is in neither. Now if x is neither in Xu1 and Y 2, then we will be
able to form a collection of Ki that contains X ∪ Y , contradicting our
original assumption that x ∈ (X ∪ Y )u1.

(ix) Let X ⊂ Y and let Ki ⊆ X , then Ki is also included in Y . The union of
all such Ki’s is the corresponding lower approximation. So X l1 ⊆ Y l1.
Again if X ⊂ Y and if ∩i∈ IS \ Ki ⊆ X , then it is a subset of Y as
well, in fact some subsets of I may also have the property for Y and
not for X . And as the unions of these intersections is the second lower
approximation, so X l2 ⊆ Y l2.
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(x) We already have (X ∩ Y )l1 ⊆ X l1 ∩ Y l1. Let x ∈ X l1 ∩ Y l1. As the
constituent Ki’s in X l1 and Y l1 are respectively disjoint, suppose x ∈ Kj

for a fixed j. If x is not in X ∩ Y , then we have an obvious contradiction
to the existence of such a Kj. Therefore we have X l1 ∩ Y l1 ⊆ (X ∩ Y )l1

(xi) Let X ⊂ Y and let Y ⊆ ∪i∈ IKi for some I ⊆ {1, 2, . . . n + 1} then
X ⊆ ∪i∈ IKi. Xu1 and Y u1 are formed by the intersection of such unions
of Ki’s. So Xu1 ⊆ Y u1.
Again if X ⊂ Y , and Y ⊆ S \ Ki for some i, then X will also be a
subset of the same. But there may exist some Kj for which, X is a subset
of it’s complement and Y is not so. So Xu2 ⊆ Y u2.

(xii) If x ∈ X l1 ∪ Y l1, then x is in at least one of the Ki’s contained in X l1 or
Y l1. But that Ki must be contained in X ∪ Y and therefore in (X ∪ Y )l1

as well. So X l1 ∪ Y l1 ⊆ (X ∪ Y )l1.
(xiii) If x ∈ X l2 ∪ Y l2, then x is in at least one of the intersections of the

form ∩i∈ I(S \ Ki) that is included in X or Y . Therefore x is in X ∪ Y .
But ∩i∈ I(S \ Ki) ⊆ X ∪ Y . So X l2 ∪ Y l2 ⊆ (X ∪ Y )l2.

(xiv) The intersection of the unions of Kis that contain X and Y respectively
will intersect in a set containing (X ∩ Y )u1 (as a larger number of unions
of Kis will contain (X ∩ Y )u1 and as their intersection is precisely (X ∩
Y )u1).

(xv) If x ∈ (X ∩ Y )u2, then x is present in all those S \Ki that contain X ∩ Y .
It is not present in any of those Kis that are included in S \ (X ∩ Y ) =
(S \ X) ∪ (S \ Y ). Suppose x is not in (Xu2 ∩ Y u2, then in each of
the three cases we have a contradiction to our original assumption. So
(X ∩ Y )u2 ⊆ Xu2 ∩ Y u2.

(xvi) (S \ X)l1 =
⋃
{Ki : Ki ⊆ S \ X}. Now this is the same as

⋃
{Ki :

X ⊆ S \ Ki} = S \ Xu2

(xvii) (S \ X)l2 = S \ Xu1 is proved in the same way as the above.
(xviii) (S \ X)u1 = S \ X l2 is proved in the same way as the above.

(xix) (S \ X)u2 = S \ X l1 is proved in the same way as the above.

The other statements are easy to prove through standard set-theoretic arguments.
��

1.2 Concrete Katrinak Algebras

This is a streamlined modification of the approach due to Duntsch [11]. A double
Stone algebra
〈L, +, ·, ∗, +, 0, 1〉 is an algebra of type (2, 2, 1, 1, 0, 0) such that

(i) 〈L, +, ·, 0, 1〉 is a bounded distributive lattice.

(ii) x∗ is the pseudo-complement of x, i.e. y ≤ x∗ ⇔ y · x = 0,

(iii) x+ is the dual pseudo-complement of x, i.e. x+ ≤ y ⇔ y + x = 1,

(iv) x∗ + x∗∗ = 1, x+ · x++ = 0.
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It is possible to replace the second and the third condition by the equations,

– x · (x · y)∗ = x · y∗, x + (x + y)+ = x + y+

– x · 0∗ = x, x + 1+ = x

– 0∗∗ = 0, 1(++) = 1

.
A double Stone algebra is regular if and only if x · x+ ≤ y + y∗ if and only

if
(x+ = y+, x∗ = y∗ −→ x = y).

Let B be a Boolean algebra and F a filter on it, then let

[B,F ] = {(a, b) : a, b ∈ B, a ≤ b, (a ∨ bc) ∈ F}.

On this,the operations +, ·, ∗, + are definable via

– (a, b) + (c, e) = (a ∨ c, b ∨ e)

– (a, b) · (c, e) = (a ∧ c, b ∧ e)

– (a, b)∗ = (bc, bc)

– (a, b)+ = (ac, ac)

An algebra K = 〈[B, F ], +, ·, ∗, +〉 of this form is called a Katrinak algebra in
[11].In such an algebra we can identify B with {(a, a) : a ∈ B} and F with
{(a, 1) : (a, 1) ∈ K}.

If instead we start from an arbitrary set S and construct the collection of all
fields of subsets F(S) of it, then the Katrinak algebras formed from the elements
of F(S) will be called concrete Katrinak algebras. The following theorem is an
adaptation of theorem that had been originally proved in [12].

Theorem 2. Each concrete Katrinak algebra is a regular double Stone algebra
and conversely every regular double stone algebra is isomorphic to a concrete
Katrinak algebra.

Proof. Let K be a concrete Katrinak algebra constructed over a set S, so that
its universal set is [B, F ], B = 〈B, +, ·, −, 0, 1〉 being the Boolean algebra and
F being a filter on B such that

[B, F ] = {(a, b) ∈ B × B : a ≤ b and − b + a ∈ F}.

Then, L = 〈[B, F ], +, ·, ∗, +〉 is a regular double Stone algebra if we set

(a, b)∗ = (−b, −b), (a, b)+ = (−a, −a)
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Let 〈L, +, ·, ∗, +, 0, 1〉 be a regular double Stone algebra. Define the center
B(L) and the dense set of L via, B(L) = {x∗ : x ∈ L} and Δ(L) = {x :
x∗ = 0} respectively. Then B(L) is a Boolean algebra isomorphic to B in which
the operations ∗ and + coincide with the complementation operation. Let H =
(Δ(L))++. If we define a map τ : L #→ (B(L), H), under τ(x) = (x++, x++)
then this is an isomorphism. ��

In the associated algebraization, Duntsch uses a language L of rough set logic
consisting of a nonempty set of propositional variables P , two binary connectives
∨, ∧, two unary connectives ∗, + (representing negations) and a constant T for
truth. Formulas are constructible in the usual way, so that the set F(L) of
formulas is a free algebra of type (2, 2, 1, 1, 0) generated over P . A model of L
then is a pair of the form (W, υ), where W is a set and υ : P #→ ℘(W ) × ℘(W )
is a valuation, such that if υ(p) = (A, B) then A ⊆ B.

Given a model M = (W, υ), it’s meaning function σ is defined as an extension
of the valuation function σ : F(L) #−→ ℘W × ℘W such that,

– σ(T) = (W, W )

– ∀p ∈ P σ(p) = υ(p)

– If σ(ϕ) = (A, B) and σ(ψ) = (C, E), then

• σ(ϕ ∧ ψ) = (A ∩ C, B ∩ E)

• σ(ϕ ∨ ψ) = (A ∪ C, B ∪ E)

• σ(ϕ∗) = (−B, −B)

• σ(ϕ+) = (−A, −A), −A being the complement of A in ℘(W ).

Now on Ran(σ) = {σ(ϕ) : ϕ ∈ F(L)}, if we define the operations +, ·, ∗, +

via,

– σ(ϕ) · σ(ψ) = σ(ϕ ∧ ψ)

– σ(ϕ) + σ(ψ) = σ(ϕ ∨ ψ)

– (σ(ϕ))∗ = σ(ϕ∗)

– (σ(ϕ))+ = σ(ϕ+).

With these operations Ran(σ) is a Katrinak algebra and σ is a morphism.
The variety generated by it coincides with the variety of regular double stone
algebras. Moreover the associated logic has a finitely complete strongly sound
inferential base and fails the Beth definability property.
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2 Esoteric Rough Set Theory

We intend the term esoteric rough set theory to qualify all those generalized
rough set theories that involve a lack of consistent naming scheme in the do-
main of approximation. In rough set theory along with its classicalist meta-level
interpretation, we have at least two levels of discernibility. At the meta-level we
have enough discernibility to distinguish between all the elements of the set. In
esoteric rough set theory too the intended interpretation will be by the transfer
of all discernibility to the main relation of the approximation space. The even-
tual logic corresponding to the theory may be the most faithful representation
of the intended interpretation.

Definition 1. By a partial equivalence R on a set S we mean a binary relation
satisfying all of the following :

(i) R ∩ ΔS �= ΔS

(ii) Rc = R

(iii) ((x, y), (y, z) ∈ R, x �= y �= z −→ (x, z) ∈ R)

The third condition will be referred to as weak transitivity, while the condition

((x, y), (y, z) ∈ R −→ (x, z) ∈ R)

will be called strong transitivity. For each x ∈ S, [x] = {y : (x, y) ∈ R} will
be the pseudoclass formed by x. A pseudoclass [x] will be said to be an essential
class if and only if ∀y ∈ [x] [x] = [y].

Proposition 1. The set of pseudo-classes ER induced by a partial equivalence
R on a set S satisfy all of the folllowing :

(i)
⋃
ER ⊆ S

(ii) x �= y, [x] ∩ [y] �= ∅ −→ {x, y} ∈ [x] ∩ [y]

(iii) [x] ∩ [y] �= ∅ −→ [x] = [y]

Proof. (i) If [x] = {y : (x, y) ∈ R}, then ER = {[x] : x ∈ S}. As it is possible
that x /∈ [x], and that (∀y) (x, y) /∈ R so in general we have

⋃
ER ⊆ S.

(ii) If the intersection of [x] and [y] is nonempty, then there must exist at least
one z ∈ S such that (x, z), (y, z) ∈ R. It follows that in such a case
{x, y} ∈ [x] ∩ [y].

(iii) If z ∈ [x] ∩ [y], then (∀a ∈ [x])(∀b ∈ [y])(a �= b −→ (a, z), (b, z) ∈ R).
So it follows that (∀a ∈ [x])(∀b ∈ [y])(a �= b −→ (a, b) ∈ R). This
ensures [x] = [y].

��
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It is easy to prove the following proposition by any form of transfinite induction,
but in our approach this extension is not particularly useful at the object level
as we do not accept extensionality there!

Proposition 2. Every partial equivalence ς on a set S is extensible to a unique
smallest equivalence relation ς� (in ZFC).

Proof. Let pEQ(S) be the set of all partial equivalence relations on the set S.
The inclusion order ⊆ on the set is a partial order on it. By this order we will
be able to find a set of equivalences that contain the partial equivalence ς. As
the set of equivalences on a set forms a complete lattice (in the induced order),
the intersection of the set of equivalences that contain ς will be an equivalence.
This must necessarily be the least equivalence containing ς. Note that we can
always obtain ς� as the reflexive, transitive and symmetric completion of ς.

Definition 2. A partial approximation space S will be a pair of the form 〈S,R〉,
where R is a partial equivalence relation on the set S. If A is a subset of S, then
the lower approximation Al of A can be defined via

Al =
⋃
{[x] : [x] ⊆ A}

. By [x] of course we mean the set {y : (x, y) ∈ R}. Similarly we can define the
upper approximation via

Au = {[x] ; [x] ∩ A �= ∅}

.Proposition 3. If there exists an element x ∈ S such that ¬((x, x) ∈ R) , then
it is possible that Sl ⊂ S, but if x is not R-related to all other elements in S,
then it is necessary that Sl ⊂ S and Su ⊂ S.

Proof. Suppose it is the case that (x, x) is not in R, but (x, y) ∈ R for some
y �= x, then x ∈ [y] will hold. In this case if for example all other elements are
R-related to themselves, then Sl = S will hold.

If on the other hand if we have a single x, that is not R-related to any other
element, then x will not be in any of the pseudo-classes, so that Sl ⊂ S will
necessarily hold. ��

Proposition 4. If A is a subset of a partial approximation space S, then it is
possible that A � Au. If however each element of A is R-related to some other
element in S, then A ⊆ Au will hold.

Proof. Suppose A contains an element x that is not R-related to any other
element in S, then by definition x /∈ Au. Hence the result. ��

Definition 3. In the light of the above pathology, we will say that a subset A
of a partial approximation space is a well-related subset if and only if A does
not contain any element that is not related to every other element of S. A par-
tial approximation space that satisfies the condition Sl = S will be said to be
awell partial approximation space (ASW). Otherwise we will term it an ill-posed
partial approximation space (ASI)
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For the greater part of this research paper we will avoid this crucial distinction.

Proposition 5. A partial approximation space S will be a well partial approxi-
mation space if and only if each subset of S is well-related.

Proof. There is nothing much to prove here. If S is an ASW, then each element
of S must be related to some other element of it. As partial equivalences are
symmetric, every subset of S will have the property. The converse is obvious.

��
Definition 4. If S = 〈S,R〉 is a partial approximation space, let

(i) S∗ = S ∪ {⊥, T }

(ii) Extend R to R∗ by the condition R∗ = R ∪ {(T, x) : x �=⊥}

S∗ = 〈S∗, R∗〉 will be said to be the twisted approximation space.

It should be noted that it is often possible to define many partial and total
algebraic operations on partial approximation spaces with the intended meaning
being of partial or total causal dependence. This is easier to effect in twisted
approximation spaces. In general we may end up with multiple terms with no
sensible interpretation. In a twisted approximation space, we will have the option
of assigning these to the elements ⊥, T . Another reason for defining the twisted
approximation space is in the following :

Proposition 6. The set E∗R of pseudo-classes of R is a lattice with respect to
the set-theoretic inclusion.

Proof. On E∗R we can define the following operations naturally :

(i) [x] ∨ [y] = [y] if and only if [x] ⊆ [y]

(ii) [x] ∧ [y] = [x] if and only if [x] ⊆ [y]

(iii) [x] ∧ [y] = ∅ = [⊥] if and only if [x] is not comparable with y.

(iv) [x] ∨ [y] = [T ] if and only if [x] is not comparable with [y] and there is no
c ∈ S such that [x], [y] ⊂ [c].

(v) [x] ∨ [y] = [c] for some c �= T if and only if [x] ∩ [y] �= ∅ and [x]∪ [y] = [c]

(vi) [x] ∧ [T ] = [T ]

(vii) [x] ∨ [⊥] [x]

Given this it is easy to check that it is a lattice. Note that it is possible that
[x] ⊂ [y].

Proposition 7. On E∗R it is provable that
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(i) (a ∨ b = [T ] −→ a ∧ b = [⊥])

(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Proof. (i) If two pseudoclasses are not comparable, only then will their join be
[T ] and then it must be the case that the two pseudoclasses have empty or
nonempty intersection. The nonempty intersection cannot be a pseudo-class
unless it is [⊥]. So the result holds.

(ii) This part is direct.
��

Definition 5. The degree η(x) of a pseudo-class [x] is the cardinality of the set

{y : y ∈ [x], (y, y) /∈ R, x �= y}.

The cardinality of the set {y : y ∈ [x], (y, y) /∈ R} will be called the full degree
γ([x]) of the pseudo-class. The structure Σ(S) = 〈E∗R,∨, ∧, ⊥, T, η, γ 〉 will be
said to be the discernibility spectra of the partial approximation space.

Definition 6. Given two partial approximation spaces S = 〈S, R〉 and K =
〈K, P 〉, a mapping ξ : Σ(S) #→ Σ(K) (from a discernibility spectra into an-
other) will be said to be a injective morphism if and only if it satisfies :

– ξ induces a injective lattice morphism : 〈E∗R,∨, ∧, ⊥, T 〉 #→ 〈E∗P ,∨, ∧, ⊥
, T 〉(forgetfully)

– η(x) ≤ η(ξ(x))

– γ(x) ≤ γ(ξ(x))

ξ will be called an isomorphism if it induces a lattice isomorphism and corre-
sponding η and γ values are respectively equal.

Definition 7. Let S = 〈S, R〉 and T = 〈Y , K〉 be two partial approximation
spaces such that there is an injective relation morphism ζ : S #→ Y and (x, y) ∈
R implies (ζ(x), ζ(y)) ∈ K, then we will say that Y is an injective extension of
S.

In the following two theorems we can assume that the partial approximation
spaces involved are finite. The concepts of degree and full degree of pseudo
classes can be used to arrive at notions of equivalent partial approximation
spaces. However, we can prove

Theorem 3. If a partial approximation space Y is an injective extension of a
well partial approximation space S with the injective relation morphism ζ : S #→
Y being such that for any x ∈ S (ζ(x) ζ(x)) ∈ P implies (x, x) ∈ R, then we
have an embedding of Σ(S) into Σ(T ).
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Proof. Let ζ : S #→ Y be the injective relation morphism associated. For any
x ∈ S, we have ζ([x]) ⊆ [ζ(x)] in general. So let ζ∗ be a map from Σ(S) into
Σ(Y ) such that

(∀x ∈ S) ζ∗[x] = [ζ(x)] .

Clearly ζ∗ is well defined provided there are no isolated singletons (which is
ensured by requiring that S is a well partial approximation space).

In 〈E∗R,∨, ∧, ⊥, T 〉, equal pseudoclasses are of course identified and the meet
of two incomparable elements is the bottom ⊥ and their join is the top T . If
ζ∗[x] = ζ∗[y] then [x] = [y] is essential precisely because of the condition for any
x ∈ S (ζ(x) ζ(x)) ∈ P implies (x, x) ∈ R. ζ∗ serves as the required embedding
as the lattice embedding part is a standard result. The rest is easy to verify.

Theorem 4. If two partial approximation spaces have isomorphic discernibility
spectras, then they themselves are isomorphic to each other (relation morphi-
cally).

Proof. Let X = 〈X, R〉 and Y = 〈Y , P 〉 be two partial approximation spaces
with isomorphic discernibility spectras Σ(X) and Σ(Y ) respectively. If the spec-
tras are isomorphic then there exists a map ϕ : Sigma(X) #−→ Σ(Y ) such that
the conditions mentioned in the definition hold. The equality of corresponding
η and γ values along with the finiteness assumptions ensures the result.

Proposition 8. The set ER of pseudo-classes of R is endowable with a partial
lattice structure using the set-theoretic inclusion order. It satisfies all of

(i) [x] ∨ ([y] ∨ [z]) s= ([x] ∨ [y]) ∨ [z] (and dually)
(ii) If [x] ⊆ [y] then [x] ∨ [y] = [y]

(iii) If [x] ∨ [y] = [z] and [x] � [y] and conversely, then [x] ∧ [y] is not defined.
(iv) ER is a tree (a poset in which each principal order ideal is a well-ordered

set.
s= is the strong weak equality (if either side is defined then the other is and the
two are equal).

Proof. The first thing that is to be noted is that if [x] ⊂ [y], then [y] = [x]∪ {x}.
If [x] and [y] have nonempty intersection and either is not included in the other,
then it is necessary that (x, x), (y, y) /∈ R. In this case their intersection is not
a pseudoclass and the largest pseudoclass contained in will not be defined unless
their intersection is a singleton. This proves the third part that can happen in
the only one situation. The strong weak associativity in the first part is induced
by the set theoretic property. ��

Proposition 9. If S∗ = 〈S∗, R∗〉 is the twisted approximation space corre-
sponding to S and E∗R the set of its pseudoclasses, then ER (as a partial lattice)
is embeddable in the lattice E∗R.
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Proof. The proof is easy as it based on the natural identification of corresponding
pseudo classes. Note that we can construct E∗R from ER as a special two point
completion (for the notion see [13] for example). ��

Proposition 10. Given a partial approximation space S there exists a unique
minimal approximation space S� that contains it in the following sense; the
relation of S is contained in the relation of S� and the underlying set of S is
also a subset of that of S�.

Proof. S = 〈S,R〉 is a partial approximation space with R being a partial
equivalence. So the closure R� of R under reflexivity and transitivity will be
well defined. S� can be taken to be the set along with the closure of the relation.
The class of all approximation spaces containing S is partially orderable by the
lexicographic order induced by set-inclusion. It is easy to show by any form of
general transfinite induction that the above defined S� is minimal and unique
as well. ��

For proceeding with the algebraization procedure, it is very important to have
answers for the following question(s) in particular (in the power set of the partial
approximation space):

– What is the fine structure of lower and upper approximation of sets and how
do they interact with derived set-theoretic operations?

– Given a set in the form Ay, does there exist a set B such that Bf = Ay and in
what form can B be in (y, f being variables over the set {l, u, lu, ul, ll, uu}
or subsets thereof)?

– What is the relationship between the different types of approximations ?

The interaction with derived set-theoretic operations is considered in the section
on generalized esoteric covers.

We shall show that if approximations of a set or sets satisfies a property that
is not satisfied in an approximation space, then it must be due to the existence
of certain kinds of subsets. This allows us a particular approach to the main
questions. But we will consider other approaches too.

3 Exceptional Sets

Definition 8. A set K of a partial approximation pace S will be said to R-
isolated if and only if ((x, y) ∈ R, x ∈ K −→ y ∈ K).

The relationship of the collection F(A) of all isolated sets which are not disjoint
from a given set A can be expected to actually define the approximations of the
set A. We shall show that it suffices to restrict ourselves to one, two and three
element isolated sets alone. These are classified into different types on the basis
of the relationship of the elements to A, R and S. This is done in coherence with
the different types of possible approximations.
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Classification of Three Element Isolated Sets not Disjoint from a
Given Set A

Definition 9. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

1 -exceptional for A if and only if all of the following are true.

(i) x ∈ A, y, z ∈ S \ A

(ii) (x, x) /∈ R, (y, y) ∈ R, (z, z) /∈ R

(iii) (x, y), (x, z) ∈ R

Definition 10. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

2 -exceptional for A if and only if all of the following are true.

(i) x, y ∈ A, z ∈ S \ A

(ii) (x, x) /∈ R, (y, y) /∈ R, (z, z) /∈ R

(iii) (x, y), (x, z) ∈ R

Definition 11. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

3 -exceptional for A if and only if all of the following are true.

(i) x, y ∈ A, z ∈ S \ A

(ii) (x, x) /∈ R, (y, y) ∈ R, (z, z) /∈ R

(iii) (x, y), (x, z) ∈ R

Definition 12. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

4 -exceptional for A if and only if all of the following are true.

(i) x, y ∈ A, z ∈ S \ A

(ii) (x, x) /∈ R, (y, y) /∈ R, (z, z) ∈ R

(iii) (x, y), (x, z) ∈ R

Definition 13. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

5 -exceptional for A if and only if all of the following are true.

(i) x ∈ A, y, z ∈ S \ A

(ii) (x, x) ∈ R, (y, y) /∈ R, (z, z) /∈ R

(iii) (x, y), (x, z) ∈ R

Definition 14. A three element isolated set {x, y, z} not contained in a set A
will be said to be 3

6 -exceptional for A if and only if all of the following are true.
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(i) x ∈ A, y, z ∈ S \ A

(ii) (x, x) /∈ R, (y, y) ∈ R, (z, z) ∈ R

(iii) (x, y), (x, z) ∈ R

Classification of Two Element Isolated Sets (non-disjoint from a
given subset A)

Definition 15. A two element isolated set {x, y} not contained in a set A will
be said to be 2

1 -exceptional for A if and only if all of the following are true.

(i) x ∈ A, y ∈ S \ A

(ii) (x, x) /∈ R, (y, y) /∈ R

(iii) (x, y) ∈ R

Definition 16. A two element isolated set {x, y} not contained in a set A will
be said to be 2

2 -exceptional for A if and only if all of the following are true.

(i) x ∈ A, y ∈ S \ A

(ii) (x, x) /∈ R, (y, y) ∈ R

(iii) (x, y) ∈ R

Definition 17. A two element isolated set {x, y} not contained in a set A will
be said to be 2

3 -exceptional for A if and only if all of the following are true.

(i) x ∈ A, y ∈ S \ A

(ii) (x, x) ∈ R, (y, y) /∈ R

(iii) (x, y) ∈ R

Classification of Isolated Singletons in a Given Set

There are two possible types of singleton isolated sets. In the first type the
element must be related to itself. In the other type the element must not be
related to itself. Naturally the existence of the second type of sets will make the
partial approximation space an ASI.

Definition 18. A set K will be said to be exceptional for a set A if and only if
all of the following hold:

(i) K is isolated.
(ii) (∃x ∈ K) (x, x) /∈ R
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(iii) K � A, K ∩ A �= ∅

Proposition 11. If K is a subset of a partial approximation space S with the
properties that

(i) (∀x ∈ K) (∀y)((x, y) ∈ R −→ (y, y) ∈ R)

(ii) (∀x ∈ K)(x, x) ∈ R,

then
K ll = K l = K lu ⊆ K ⊆ Ku = Kul = Kuu.

Proof. Let S∗ be the reflexive completion of the partial approximation space.
It is easy to check that the lower approximation of K in both the spaces are
identical. The case is similar for upper approximations and all possible successive
approximations too. So the result follows. ��

From the above we see that any deviation from the usual approximation prop-
erties must be due to exceptional sets. In the next few theorems we

– Determine the general relation between approximations in the presence of
different kinds of exceptional sets.

– Prove that the above defined exceptional sets are essentially independent in
their determination of the relation between approximations and

– Show that for determining the most general possible set-theoretic relations
between the different approximations, it suffices to restrict ourselves to at
most three element exceptional sets.

On an exceptional set K for A, for any x, y ∈ K, let x ∼A y if and only if
one of the following is true :

(i) x, y ∈ A and (x, x), (y, y) ∈ R

(ii) x, y ∈ A and (x, x), (y, y) /∈ R

(iii) x, y ∈ S \ A and (x, x), (y, y) ∈ R

(iv) x, y ∈ S \ A and (x, x), (y, y) /∈ R.

Then ∼A is an equivalence on K and we have exactly four classes (some of which
may be empty). Note that elements in the first of these classes remain in A and
all approximations thereof and have no new effect essentially. So we have the
following theorem :

Theorem 5. If K is an exceptional set for A, then the relative set-theoretic
relationship between the different approximations (with respect to the inclusion
order) will remain invariant when K is replaced with a suitable finite subset F
in S. In more clear terms we mean if A, Al, Alu, Au, Auu, All are related within
themselves by the relations {⊂, =} in the way Φ, then B, Bl, Blu, Bu, Buu, Bll

will be related in the way Φ, where B = (A \ K) ∪ (F ∩ A). All interpretations
are assumed to be in S.



192 A. Mani

A subset A of a partial approximation space S will be fully featured if it includes
all types of elements relevant for the approximation process. This is possible
because the existence of distinct elements of distinct types are essentially inde-
pendent as far as the implications on possible properties are concerned. We have
arrived at the following definition by a careful analysis of all possible types of
existence of exceptional sets for a given set.

Definition 19. A set of the form

K = K0 ∪ {x1, y1, y2, z1, z2, a1, b1, c1, f1, f2, g1, h1}

satisfying all of

(i) K0 is a nonempty subset of S with at least two elements that are not
subsets of any other exceptional subsets of K.

(ii) Elements of K0 are distinct from the others listed.

(iii) (∀x ∈ K0)(x, x) ∈ R

(iv) (∀x ∈ K0)(∀y)((x, y) ∈ R −→ (y, y) ∈ R).

(v) ∃x2, x3 ∈ S \ K

(vi) {x1, x2, x3} is a 3
1 -exceptional set for K.

(vii) ∃y3 ∈ S \ K

(viii) {y1, y2, y3} is a 3
2 -exceptional set for K.

(ix) ∃z3 ∈ S \ K

(x) {z1, z2, z3} is a 3
3 -exceptional set for K.

(xi) ∃f3 ∈ S \ K

(xii) {f1, f2, f3} is a 3
4 -exceptional set for K.

(xiii) ∃g2, g3 ∈ S \ K

(xiv) {g1, g2, g3} is a 3
5 -exceptional set for K.

(xv) ∃h2, h3 ∈ S \ K

(xvi) {h1, h2, h3} is a 3
6 -exceptional set for K.

(xvii) ∃a2 ∈ S \ K
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(xviii) {a1, a2} is a 2
1 -exceptional set for K.

(xix) ∃b2 ∈ S \ K

(xx) {b1, b2} is a 2
2 -exceptional set for K.

(xxi) ∃c2 ∈ S \ K

(xxii) {c1, c2} is a 2
3 -exceptional set for K.

will be said to be fully featured in S.

Proposition 12. If F, K are two fully featured sets in a partial approximation
space, then F |∼ is bijective to K |∼.

Proof. They will have the same number of classes with respect to the equivalence
∼. ��

Proposition 13. Any subset K of a partial approximation space S is repre-
sentable as a disjoint union of R-isolated sets.

Proof. Suppose K is the set of pseudoclasses of K. We can form non-disjoint
subcollections {Pλ}λ∈Λ of K. For each λ in the indexing set Λ, let Aλ =

⋃
Pλ.

Each Aλ is R-isolated and
S =

⋃
Aλ.

��
Proposition 14. Let A be a subset of a partial approximation space S with
the only exceptional set for it being the single 2

1 -exceptional set {x, y}, then the
following hold in general

(i) All = Alu = Al ⊆ Au = Aul = Auu

(ii) Al, Aul, Au are not unions of pseudoclasses of elements in them.

(iii) None of the approximations include the exceptional set.

Proof. {x, y} is the only 2
1 -exceptional set for A, so x ∈ A and y ∈ S \ A and

[y] = {x} ∈ Al. Al \ {x} consists of essential-classes alone. So the first part of
the result follows. The second and third part are obvious as y /∈ Au. ��

Proposition 15. Let A be a subset of a partial approximation space S with
the only exceptional set for it being the single 2

2 -exceptional set {x, y}, then the
following hold in general

(i) All = Al = Alu ⊂ Au = Aul = Auu

(ii) Al and Au are unions of pseudoclasses of elements in them.
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(iii) Au contains the exceptional set {x, y} for A.

Proof. (i) Clearly [x] = {y} and [y] = {x, y}. So both of these pseudoclasses
are not present in Al. The rest of the pseudoclasses in Al are essential-classes.
But the two pseudoclasses [x], [y] are subsets of Au. So we have Al ⊂ Au

in general.
(ii) This follows from the proof of the first part.
(iii) This follows from the proof of the first part.

��
Proposition 16. Let A be a subset of a partial approximation space S with
the only exceptional set for it being the single 2

3 -exceptional set {x, y}, then the
following hold in general

(i) All = Al ⊂ Alu ⊆ Au = Aul = Auu

(ii) Aul and Au are unions of pseudoclasses of elements in them.

(iii) Au contains the exceptional set {x, y} for A.

Proof. (i) Clearly [x] = {x, y} and [y] = {x}. So [y] is included in A, but [x]
is not included in it. Apart from [y] all other pseudoclasses included in Al

are essential-classes. So All = Al ⊂ Alu (as [x] ⊂ Alu).
(ii) Note that [x] ⊂ Au, so the result follows.

(iii) Follows from the first part.
��

Proposition 17. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

1 -exceptional set {x, y, z}, then the
following hold in general

(i) Al ⊂ A, Alu ⊂ A and Alu ⊂ Aul = Au = Auu

(ii) Au is a union of pseudoclasses of elements (but not in A). Al is a union
of essential-classes.

(iii) Au contains the exceptional set {x, y, z} for A.

Proof. (i) Clearly [x] = {y, z}, [y] = {x, y, z}, [z] = {x, y}. So none of them
are included in A and only [y], [z] intersect it to form the nonempty the set
{x}. So it is essential that Al ⊂ A. As Al is made up of essential-classes
alone, so Alu = Al. The rest follows.

(ii) We need to include [y] or [z] for getting Au.
(iii) Follows from the proof of the first part.

��
Proposition 18. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

2 -exceptional set {x, y, z}, then the
following hold in general
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(i) All = Al ⊆ A and Al ⊂ Alu ⊆ Au = Aul = Auu

(ii) Al is not a union of pseudoclasses of elements in it, while Au is a union
of pseudoclasses of elements in A.

(iii) {x, y, z} is still exceptional for Al and is contained in Au.

Proof. (i) In this case [x] = {y, z}, [y] = {x, z} [z] = {x, y}. Clearly
[z] is included in A and all three pseudoclasses have nonempty intersection
with A. Al is a not a union of essential-classes but still we have All = Al.
Alu = Al ∪ {z} and in general this will be a subset of Au or maybe equal
to it. The equality Au = Aul = Auu is obvious as there exist no elements
in S \ Au, that form pseudoclasses intersecting Au.

(ii) Al includes [z] and this pseudoclass cannot be replaced by any other.
(iii) Follows from the above two parts.

��
Proposition 19. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

3 -exceptional set {x, y, z}, then the
following hold in general

(i) All = Al ⊂ Alu ⊆ Aul = Au = Auu

(ii) Al is not a union of pseudoclasses of elements in it, while Au is a union
of pseudoclasses in A itself.

(iii) {x, y, z} is contained in Au.

Proof. (i) In this case [x] = {y, z}, [y] = {x, y, z} [z] = {x, y}. x, y ∈ A
and z ∈ S \ A. So x, y ∈ Al. Apart from these Al is a union of essential
classes. But Alu will be Al ∪ {z} precisely, while Au will include Alu and
some other essential classes in general. So the result follows.

(ii) Clearly [x] is not included in Al, but both Au and Alu are unions of pseudo-
classes of some elements in it.

(iii) This has been shown in the proof of the first part.
��

Proposition 20. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

4 -exceptional set {x, y, z}, then the
following hold in general

(i) Al = Alu ⊂ Aul = Au = Auu

(ii) Al, Au are a union of pseudoclasses of some elements in it.

(iii) {x, y, z} is contained in Au, but not in Alu.
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Proof. (i) In this case [x] = {y, z}, [y] = {x, z} [z] = {x, y, z}. So Al will
be the union of essential classes alone and Alu will be also be the union of
just these. Au will contain [z], these essential classes and some other essential
classes possibly. So the result holds.

(ii) None of [x], [z] and [y] are included in Al in the first place and Al is a union
of essential classes. The argument for Au is in the proof of the first part.

(iii) Has been proved in the first part.
��

Proposition 21. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

5 -exceptional set {x, y, z}, then the
following hold in general

(i) Al = Alu ⊂ Aul = Au = Auu

(ii) Both Al and Au are unions of pseudoclasses of some elements in it.

(iii) {x, y, z} is contained in Au, but not in Alu.

Proof. (i) In this case [x] = {x, y, z}, [y] = {x, z} [z] = {x, y}. As only
x ∈ A, so none of these pseudoclasses can be contained in Al and it is a
union of essential classes contained in A. Alu will therefore be equal to Al.
Au will contain [x], these essential classes and some other essential classes
possibly. So the result follows.

(ii) Follows from the first part.
(iii) Follows from the first part. This is what ensures the strict inclusion in the

first part.
��

Proposition 22. Let A be a subset of a partial approximation space S with the
only exceptional set for it being the single 3

6 -exceptional set {x, y, z}, then the
following hold in general

(i) Al = Alu and Aul = Au = Auu

(ii) Au is a union of pseudoclasses of elements in itself but not in A.

(iii) {x, y, z} is contained in Au, but not in Alu.

Proof. (i) In this case [x] = {y, z}, [y] = {x, y, z} [z] = {x, y, z}. So both
Al and Alu will contain none of the elements {x, y, z}, but Au and Auu will
contain all of them. Al will consequently be a union of some essential classes
in A, but Au will be a union of pseudoclasses in Au.

(ii) Clearly the pseudoclasses of elements of A do not contain x.
(iii) Follows from the first part.

��
Remark 1. In the above, equality between sets is to be understood in the sense
of conjunction of ⊆ and ⊇. But we can use a different contextual logic of com-
bining interpretations in the following:
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– If A ⊂ B in case X alone applies and A = B in case Y alone applies, then
A ⊂ B holds when both case X and Y apply.

– If A ⊂ B in case X alone applies and B ⊂ A in case Y alone applies, then
A ‖ B when both case X and Y apply.

– If A ⊆ B in case X alone applies and A = B in case Y alone applies, then
A ⊂ B holds when both case X and Y apply.

– If A ‖ B in case X alone applies and A ⊆ B in case Y alone applies, then
A ‖ B holds when both case X and Y apply.

– If A ‖ B in case X alone applies and A ‖ B in case Y alone applies, then
A ‖ B holds when both case X and Y apply.

X, Y will be one of the exclusive exceptional sets existing for A or B or some
set whose approximation is A or B.

Theorem 6. The following hold in any partial approximation space :

(i) In each of the nine propositions, we can use an arbitrary number of excep-
tional sets of the same corresponding type with no change in the content of
the propositions.

(ii) Given an arbitrary set A with any number of exceptional sets of any of
the above nine types, the relationship between the approximations Al, All,
Au, Auu, Alu, Aul is generable by the contextual logic of the individual
relationships.

Relationship Diagrams : The first diagram below summarizes the relation
between the different approximations in ASW. The abbreviations correspond to
applications of the lower and upper approximation and the identity operator.

ll l

lu

Id

ul u uu= =

The following summarizes the relation between the different approximations
in ASI.
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Definition 20. In a partial approximation space, tuples of the form
〈
Al, Alu Au

〉

will be called esoteric rough tuples.

Definition 21. Two subsets A, B of S, will be said to be roughly pseudo equal,
A � B if and only if

(i) Al = Bl, Au = Bu

(ii) Alu = Blu

Proposition 23. The rough pseudo-equality relation � defined is an equivalence
relation on ℘(S). The class generated by a subset A will be denoted by [A]r.

Proposition 24. If a subset B of S is of the form Al, then it is possible to find
a set C, such that Cu = B.

Proof. B = Al = ∪{[x] : [x] ⊆ Ax ∈ S}. We cannot in general take C to be
the set Al itself. Let the union of the essential classes contained in A (and therefore
Al) be P . If [z] is a pseudoclass contained in Al \ P with z ∈ S \ A, then we will
exclude all elements of the pseudoclass from C and include z alone. We will need to
repeat the procedure for similar pseudoclasses. We can safely include other types
of pseudoclasses in Al and P in our required C. That is it. ��

Proposition 25. Let A, B be two subsets of a partial approximation space S,
then there exists a subset C such that Alu ∪ Blu = Clu.

Proof. If we prove this for fully featured sets, then we are done. But we will need
to wade through all the possible intersections. The result is obvious when there
are no exceptional sets for A and B. As in this case the intersection will include
some or no pseudo-classes (and with no exceptional sets being present in them).

But it suffices to note that the operation of lu on a fully featured set of the
form (where the symbols mean as in the definition of a fully featured set)

K0 ∪ {x1, y1, y2, z1, z2, a1, b1, c1, f1, f2, g1, h1}
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results in one of the form

(K0)l ∪ {y1, y2, y3, z1, z2, z3, a1}

In the most general case A and B can have

(i) a common set which does not contain exceptional subsets for either of A
or B.

(ii) uncommon parts under the above condition
(iii) a common exceptional subset.
(iv) disjoint exceptional subsets.
(v) and exceptional parts of one being contained in the other as isolated sets.

And in all cases the construction of C is possible. ��

4 Equalities in Esoteric Rough Set Theory

In this brief section we shall clarify on the different possible weak equivalences
definable on a set and on a related algebra. These are directly related to the very
definition of possible partial approximation spaces and their semantics. The main
theorem in this section is due to [14,15].

Definition 22. A weak partial congruence ϑ on an algebra of the form L =
〈L, f1, . . . , fn〉 is a weak equivalence relation which is compatible with the oper-
ations of L in the sense

∧
(xi, yi) ∈ ϑ −→ (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ ϑ

for every operation of the corresponding arity. The set of all weak partial con-
gruences on L will be denoted by Cw(L).

Definition 23. The algebra

Kw(L) =
〈
Cw(L), ∨, ∧, ◦, −1, ,, σ, L2

〉

is called the weak partial congruence algebra where the lattice operations, re-
lation composition (whenever it is defined) ◦, inverse and the diagonal relation
(corresponding to the least subalgebra on the lattice of subalgebras) are defined
in the usual way.

Theorem 7. A weak partial congruence algebra satisfies all of the following :

(i)  ◦ ( ∨ ρ) =  ∨ ρ

(ii)  ◦ ( ∧ ρ) =  ∧ ρ

(iii)  ∧ (ρ ∨ θ) = ( ∧) ∨ ( ∧ θ)
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(iv) ρ ◦ θ ∈ Cw(L) if and only if ρ ◦ θ = θ ◦ ρ

(v) If ρ ◦ θ ∈ Cw(L) and ρ ∨ θ = ρ ◦ θ if and only if  ∧ ρ =  ∧ θ

Given an abstract weak congruence algebra, it need not happen that there exists
an algebra L, such that its weak congruence algebra is isomorphic to it. In spite
of this, the algebra is useful in the selection of improved forms of partial weak
congruences or equivalences given particular ones.

4.1 Connections with Equalities in the Rough Context and
Dynamic Extensions

Given a partial approximation space S = 〈S, R〉, we can always construct an
approximation space Sm = 〈S, Rm〉, with Rm being the reflexive completion
of R. It turns out that the possible concepts of rough equality on the respective
spaces do not correspond in any natural way. This consequently bears on the
semantics too. But again note that we can construct the greatest approxima-
tion space Sg contained in the given partial approximation space (This is the
approximation space on the subset T = {x : x ∈ S, (x, x) ∈ R} with the
equivalence Rg = R ∩ T 2). We will refer to the former approximation space as
the supra-approximation space and the latter as the infra-approximation space
corresponding to the partial approximation space S. By =m and =g we will
mean the rough equalities induced by Sm and Sg respectively.

A sequence of approximation spaces ordered by a concept of subrelational
structure is the primary structure of interest in dynamic rough contexts and
temporal rough contexts. If A = 〈A, ρ〉 and B = 〈B, σ〉 are two approximation
spaces, then let A � B if and only if A ⊆ B and ρ = σ ∩ A2. A single
partial approximation space can serve as a representation of such a sequence.
This order can be extended to partial approximation spaces as well. Unless we
impose additional conditions on the combining process, the sequence in general
cannot determine the partial approximation space uniquely. But this part is less
important.

Theorem 8. Every partial approximation space S uniquely determines an in-
terval of approximation spaces under the �-order. This interval is given by

[Sg, Sm] = {X : Sg, � X � Sm}

Proof. By definition Sg and Sm are uniquely determined by S. These in turn
uniquely determine the interval of approximation spaces. ��
The converse question is of natural interest. But it is actually dependent on the
procedure adopted. If we are given an approximation space and some sub struc-
tures of it then we can always define an associated partial approximation space.
But that partial approximation will correspond to the interval of approximation
spaces generated by the original set of approximation spaces. The following two
theorems roughly specify the converse context. A more thorough study of the
connections with dynamic versions of rough set theory and temporal extensions
thereof will be considered in a separate paper by the present author.
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Theorem 9. Any pair of approximation spaces A, B satisfying A � B de-
termines a partial approximation space S uniquely. In this situation A, B are
respectively isomorphic (relation theoretically) to Sg and Sm respectively.

Proof. Given A = 〈A, RA〉 and B = 〈B, RB〉 satisfying the subobject relation-
ship, let S = B and R = RB \ ΔB \A, where ΔB \A = {(x, x) : x ∈ B \ A},
is the required partial approximation space.

The converse construction will obviously lead to A being relation morphically
isomorphic to Sg and B to Sm respectively.

We consider the relationship by way of correspondences between the different
types of equalities next.

Proposition 26. If X, Y are approximation spaces such that X � Y , then
A ≈ B in Y implies A ≈ B in X.

Proof. The proof is well known. In words the result says that if the means of
distinguishing between entities is reduced then that which could not be distin-
guished before will remain indistinguishable. ��

Proposition 27. If A, B are two subsets of S, such that A � B in the partial
approximation space S, then it is not necessary that they are roughly equal in
the space Sm.

Proof. Suppose in addition that (∃a ∈ (S \ A) ∩ B) [a] ⊂ A ∩ B in the
partial approximation space S, then it will be the case that Al = Bl in S and
Al ⊂ Bl in Sm. (In this situation the required models that satisfy Au = Bu and
Alu = Blu in S can be constructed, by assuming that no further exceptional
sets exist). This will ensure ¬(A =m B). ��

Theorem 10. If A, B are two subsets of S, such that A � B in the partial ap-
proximation space S, then it is necessary that their intersection with the universe
of Sg be roughly equal in the space Sg.

Proof. If the underlying universe of Sg is T = {x : x ∈ S, (x, x) ∈ R}
with the equivalence relation being Rg = R ∩ T 2, then let AT = A ∩ T and
BT = B,∩T . If [x] is an essential class contained in A, then [x] ∩ T is a class
contained in AT and similarly for B. Suppose [z] is a maximal pseudoclass (in
the usual inclusion order) contained in A with z /∈ A, then the class generated
by any member of [z] (if any) in Sg will be contained in A. It is necessary that
this z /∈ B and [z] ⊂ B in S and the class generated by any member of [z]
in Sg will be in [B] (else we will have a contradiction). This will ensure that
Al

T = Bl
T . Continuing the argument we have the result. ��

The above result can be proved using fully featured sets and restrictions thereof.
Avoiding it does make it nonconstructive.

Theorem 11. If A, B are two subsets of S, such that A =m B in the approxi-
mation space Sm, then it is not necessary that they are roughly pseudo equal in
the space S.
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Proof. We can obtain a model affirming the situation by essentially expanding
the lower approximation of one of the sets A in S with an extra pseudoclass [z]
(say) such that z /∈ A ∩ B and [z] ⊂ A, while [z] � B. This will ensure that
the lower approximations differ in the partial approximation space. In fact it is
easy to show that if we are given a partial approximation space S and Sm, then
we can find sets A, B with the required properties. ��

5 Generalized Esoteric Covers

The method of generalized covers mentioned in the introduction can be adapted
to the esoteric rough context in different ways. We consider the direct adaptation,
a generalization thereof and formulate its main properties.

If we directly start from a partial approximation space S and take the col-
lection of sets K to be the same as the collection of pseudo-classes, then the
result proved in the section on generalized covers remains valid (provided the
number of pseudoclasses is finite). In general the collection of all pseudoclasses
K if finite in number need not be such that their union is S and neither need
they be pairwise disjoint. If we take only the maximal pseudoclasses alone then
also they need not be pairwise disjoint. For well-related partial approximation
spaces however, it is the case that ∪K = S.

Definition 24. A partial approximation space will be said to finitary if and only
if it has a finite number of pseudoclasses.

As before if X ⊆ S, then consider the sets (with K0 = ∅, Kn+1 = S)

(i) X l1 =
⋃
{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}

(ii) X l2 =
⋃
{∩(S \Ki) : ∩I(S \ Ki) ⊆ X, I ⊆ {1, ..., n + 1}}

(iii) Xu1 =
⋂
{∪IKi : X, ⊆ ∪i∈ I Ki I ⊆ {1, ..., n + 1}}

(iv) Xu2 =
⋂
{S \ Ki : X, ⊆ S \ Ki i ∈ {0, ..., n}}

The pair (X l1, Xu1) will be called a PAU -rough set by union,
while (X l2, Xu2) will be called a PAI-rough set by intersection We will deal
with the connections with the lower and upper approximations introduced in
the esoteric approach.

Theorem 12. In a finitary partial approximation space S = 〉S, R〈, for any
X ⊆ S,

– X l = X l1

– Xu1 ⊆ Xu, Xu1 ⊆ Xu2

– X l1 ⊆ X l2
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Proof. – By our assumptions the definitions of X l and X l1 are the same.
– The inequality of Xu and Xu1 in general can be shown with a two element

counterexample. Suppose {x, y} is a set such that (x, x), (x, y), (y, x) ∈ R
alone then {x}u = {x, y}, but {x}u1 = {x}. The ⊆ part is set-theoretic.
If x ∈ Xu1 then it is in all the unions of pseudoclasses containing X . So
it will remain in the complements (of pseudoclasses) which, contain X .
Possible equality can be contradicted by considering sets containing isolated
singletons. The element that is not related to anything will be present in
Xu2, but not in Xu1.

– The existence of an irreflexive element x ∈ S \ X whose pseudoclass is
contained in X , will cause X l1 ⊂ X l2. Other types of exceptional sets do
not disturb the equality of the two.

��

Theorem 13. The following hold in any finitary partial approximation space
S under the assumption that K is the set of pseudoclasses of S. X, Y being
arbitrary subsets of S.

(i) X l1 ⊆ X ⊆ Xu1 ⊆ Xu2

(ii) X l1 ⊆ X l2 ⊆ X ⊆ Xu2

(iii) ∅l1 = ∅l2 = ∅

(iv) (∪K = S −→ Su1 = Su2 = S)

(v) (∪K = S −→ ∅u2 = ∅, Sl1 = S)

(vi) ∅u1 = ∅, Sl2 = S

(vii) (X ∩ Y )l1 = X l1 ∩ Y l1, (X ∩ Y )l2 = X l2 ∩ Y l2

(viii) (X ∪ Y )u1 = Xu1 ∪ Y u1 ⊆ Xu2 ∪ Y u2 = (X ∪ Y )u2

(ix) (X ⊆ Y −→ X l1 ⊆ Y l1, X l2 ⊆ Y l2)

(x) If K is pairwise disjoint then (X ∩ Y )l1 = X l1 ∩ Y l1, (X ∪ Y )u2 =
Xu2 ∪ Y u2

(xi) (X ⊆ Y −→ Xu1 ⊆ Y u1, Xu2 ⊆ Y u2)

(xii) X l1 ∪ Y l1 ⊆ (X ∪ Y )l1

(xiii) X l2 ∪ Y l2 ⊆ (X ∪ Y )l2

(xiv) (X ∩ Y )u1 ⊆ Xu1 ∩ Y u1
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(xv) (X ∩ Y )u2 ⊆ Xu2 ∩ Y u2

(xvi) (S \ X)l1 = S \ Xu2

(xvii) (S \ X)l2 = S \ Xu1

(xviii) (S \ X)u1 = S \ X l2

(xix) (S \ X)u2 = S \ X l1

(xx) (X l1)l1 = X l1, (X l2)l2 = X l2

(xxi) (Xu1)u1 = Xu1, (Xu2)u2 = Xu2

(xxii) (X l1)u1 = X l1, (Xu2)l2 = Xu2

(xxiii) X l2 ⊆ (X l2)u2, (Xu1)l1 ⊆ Xu1

(xxiv) (K∩j (X))u2 = K∩j (X), j = 1, 2, ..., t1

(xxv) (K∪j (X))l1 = K∪j (X), j = 1, 2, ..., t2

Proof. The theorem follows immediately from the proof of the above theorem
and the theorem in the generalized cover section. ��

It must be noted that the generalized covers approach crucially depends on
the choice of the collection K. Already when we take it as the collection of all
pseudoclasses we have seen that the approximations are quite distinct from the
approximations that we introduced except for l1 and the lower approximation.

Below we introduce a new way of using multiple collections to arrive at a
rationalized approximation operations on partial approximation spaces. The as-
sociated heuristics may be seen as being essentially rough-set theoretical.

If L is a subset of pseudoclasses with the property that it is maximal with
respect to being pairwise nondisjoint, then let ∩L = L0 and ∪L = L+. Since
the collection K of pseudoclasses can be represented as a union of such maximal
pseudo-classes, so it makes sense to consider new collections L of sets of the
form L0 and collections M of sets of the form L+. The collections L and M are
respectively pairwise disjoint. In fact, for each element x ∈ S, we can associate
the empty set or an element of the collection L in a unique way. We can do the
same with M.

Definition 25. The eight approximation operators generated respectively by the
collections L and M will be termed rationalized approximation operators.

In general these do not coincide with the approximation operators in the spaces
Sg and Sm, but simulate an approximation-space like semantics over the partial
approximation space. In conjunction with the operators generated from the collec-
tion of pseudoclasses we have an enhanced set of operators. It is here that some of
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the compositions of operators behave like approximation operators over approxi-
mation spaces. We will deal with the details of this in a separate paper [16].

6 Three Algebraic Semantics

A semantics of a generalized form of rough set theoretical reasoning need not nec-
essarily be based on the behaviour of the indistinguishable in the face of approx-
imation operations on them. Even classical rough set theory can be differently
modelled (see [17] for example). We define more than three different algebraic
semantics for the set theoretical semantics of esoteric rough set theory.

Definition 26. A subset A of a partial approximation space S will be said to be
an almost definite set if and only if it is the case that

Al = Alu = Au

Definition 27. A subset A of a partial approximation space S will be said to be
a definite set if and only if it is the case that

Al = Alu = Au = A.

Let E(S) and F(S) be the set of all almost definite and definite subsets of S. In
general,

E(S) ⊆ F(S).

Theorem 14. The set F(S) is endowable with a boolean algebra structure.

Proof. For any α, β ∈ F(S) if we let

α ∧ β =
⋃
{[x] : [x] ⊆ α, [x] ⊆ β}

α ∨ β =
⋃
{[x] : [x] ⊆ α ∪ β}

αc =
⋃
{[x] : [x] ⊆ S \ α}

then the structure F(S) =
〈
F(S), ∨, ∧, c, 0, 1

〉
is a boolean algebra, where

0 = ∅ and 1 = 0c. The last operation is not a partial operation as the ele-
ments of F(S) are definite sets. Note that 1 need not coincide with S itself. The
distributive lattice structure under the defined operations follows from purely
set-theoretic considerations. ��

Theorem 15. The set E(S) is not necessarily a lattice under operations defined
in the same way as in the above proof.

Proof. It is possible that elements of E(S) contain isolated elements. For such
subsets ∧ and ∨ as defined above will not be lattice operations (idempotency
will also fail). Counterexamples are easy to construct. ��
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Let K(S) be the set of all subsets of the form Al, Alu and Au, A being a subset
of S (S being the partial approximation space). Now let

Π(S) = {(x, y) : x, y ∈ K(S), x ⊆ y}.

On Π(S) we can define the following operations and relations:

– (x, y) ≤ (a, b) if and only if x ⊆ a and y ⊆ b.

– (a, b) � (x, y) � (a ∩ x, b ∩ y)

– (a, b) � (x, y) � (a ∪ x, b ∪ y)

– ∼ (a, b) � (bc, ac) if defined.

– L(a, b) � (a, a)

– 0 � (∅, ∅)

– T � (Su, Su)

– ¬(a, b) � (Su \ b, Su \ a)

– �(a, b) � (b, b)

Definition 28. The partial algebra

Π(S) =
〈
Π(S),�, �, ∼, ¬, L, �, 0, T, (2, 2, 1, 1, 1, 1, 0, 0)

〉

will be said to be the esoteric definite algebra corresponding to the partial ap-
proximation space S.

A binary operation f is said to be weakly commutative if and only if, if both
the terms fS(x, y) and fS(y, x) are defined, then the two are equal in value.
fS is the interpretation of the symbol f over S. This can also be written as
fS(x, y) w= fS(y, x). � is the directional equality; if the LHS is defined, then
the RHS is and is equal to it. For more details refer to [13,18].

Theorem 16. An esoteric definite algebra satisfies all of the following :

(i) �, � are idempotent, commutative and associative operations.

(ii) (∼ x = a −→∼∼ x = x

(iii) (a � b) � a = a

(iv) (a � b) � a = a



Esoteric Rough Set Theory: Algebraic Semantics 207

(v) ¬¬(x) = ¬(x)

(vi) ∼ (a � b) w= ∼ (a)� ∼ (b)

(vii) (a � b) � c = (a � c) � (b � c)

(viii) LL(x) = L(x)

(ix) ��(x) = �(x)

(x) �L(x) = L(x)

(xi) L(�(x)) = �(x)

Proof. (i) Idempotency, commutativity and associativity are induced by the
properties of the corresponding set theoretical operations on the compo-
nents.

(ii) ∼ x = a in the premise essentially means that ∼ x is defined. The con-
clusion is ensured by the property of set-theoretic complements. It is easy
to show that ∼∼ x need not be equal to x always by considering isolated
elements and their set complements.

(iii) Set intersection and union operation are being performed on each of the
components in the � and � operations respectively. So the statement is
essentially about absorption.

(iv) Same as the above.
(v) ¬x is defined for any x in the first place as Su \ Al for any set A will be

representable as a set of the form X l or Xu or X lu and similarly for the
upper and mixed approximations of A. The rest is obvious.

(vi) Suppose both sides of the weak inequality are defined, then the comple-
ments of a and b are of the required form and so also is the RHS. The
equality is purely set theoretic property though.

(vii) This follows from the distribution of ∪ over ∩ and its dual.
(viii) If x = (a, b), then LL(x) = LL(a, b) = L(a, a) = (a, a), while L(a, b)=

(a, a).
(ix) If x = (a, b), then ��(x) = ��(a, b) = �(b, b) = (b, b), while �(a, b)=

(b, b).
(x) If x = (a, b), then �L(x) = �L(a, b) = �(a, a) = (a, a), while

L(a, b) = (a, a).
(xi) If x = (a, b), then L�(x) = L�(a, b) = L(b, b) = (b, b), while �(a, b)=

(b, b).

All this is in sharp contrast to the structure of definite sets in rough set theory.
Note that the main differences are in the behaviour of negation and the top. The
other point is that if we ignore sets of the form Alu in the above considerations,
then the structure improves. We can expect this to be a partial semantics of
esoteric rough set theory. In case of rough sets, the corresponding structure is a
topological quasi-boolean algebra (see [9]).
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Theorem 17. If S is an approximation space, then Π(S) without the operations
�,¬ is isomorphic to the topological quasi boolean algebra generated by its definite
elements.

Proof. Under the conditions, the set K(S) consists of only definite elements of the
form Au and Al alone. So the result follows by the theorem proved in [9] [19].

Different concepts of rough equalities are definable for collections of subsets of
a partial approximation space. These include the rough pseudo-equality defined
in the earlier section and the ones definable on the basis of different types of
esoteric covers of sets. We get different partial algebraic semantics of the version
of esoteric rough set theory corresponding to these.

Let ℘(S) be the powerset of the underlying set of a partial approximation
space S. Then � is an equivalence relation on it. We can define different inter-
esting operations on the quotient (see [16]).

Neo BZ-Lattices

Given a partial approximation space 〈S, R〉, form its power set ℘(S). Let ¬((x, y)
∈ R) if and only if (x, y) ∈ F , then if R is a partial equivalence, then F is a
partially reflexive and symmetric relation. For any set H ⊆ S, let

– H◦ = {x ; (∀y ∈ H) (x, y) ∈ F}

– L(H) = Hc◦◦c

– U(H) = H◦◦

Definition 29. The algebra

P =
〈
℘(S),∨, ∧, ◦, c, l, u, L, U ∅, S, (2, 2, 1, 1, 1, 1, 1, 1 0, 0)

〉

will be called a Neo BZ-Lattice. The operations l, u are the lower and upper
approximations due to R respectively.

Theorem 18. P =
〈
℘(S),∨, ∧, ◦, c, l, u, L, U ∅, S

〉
is of type

(2, 2, 1, 1, 1, 1, 1, 1 0, 0) and is boolean algebra with extra operations which sat-
isfies all of the following :

(i)
〈
℘(S),∨, ∧, c, ∅, S, (2, 2, 1, 0, 0)

〉
is a boolean algebra.

(ii) H◦ ⊆ H◦◦◦

(iii) (H ⊆ K −→ (K◦ \ K∗) ⊆ .H◦), where K∗ = K ∧ K◦.

(iv) H◦ ∧ K◦ ⊆ (H ∨ K)◦
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(v) (H ∧ K)◦ ⊆ H◦ ∨ K◦

(vi) H◦ \ H∗ ⊆ Hc

Proof. (i) ∨ and ∧ are the same as the usual set-theoretic operations of union
and intersection.

(ii) If (a, a) ∈ F , a ∈ H and {a} ∪ K is an isolated set for some K ⊆ Hc,
then a is in H◦ and elements R-related to a cannot be in H◦. But a subset
of K will in general be included in H◦. a will then be in H◦◦. But if no part
of K is included in H◦◦, then a /∈ H◦◦. It is easy to construct examples.
H◦ ⊆ H◦◦◦ can be verified by considering fully featured sets.

Proposition 28. In general for a subset H, H◦◦ is not comparable with H.

Proof. Let x0 ∈ H be such that

– (∀x ∈ H)¬ (x0, x) ∈ R

– (x0, x0) /∈ R

Then it is that x0 ∈ H◦, but it is possible that the element may or may not
be in H◦◦ (depending on how the elements related to x0 are). The required
counterexample is easy.

We can extend the theory to a more abstract level by essentially using a BZ-
lattice abstraction as in [2]. But we have reservations on the generality and the
bias inherent in the approach especially in case of similarity spaces [16].

An Abstract Algebraic Approach

The basic idea in this approach is to capture a set theory in the light of the truths
offered by esoteric rough set theory. It differs severely from the Katrinak algebras
approach in rough set theory, but is motivated by similar considerations. The
intended valuation is into sets of tuples of the form (Al, Alu, Au). But we need
to refine this to restrict our considerations to unions of pseudo-classes alone.
For this purpose we use the additional operation τ , (this essentially removes the
pseudoclasses that are not contained within the set on which it is operating).

In this algebraization, our language L of general rough set logic will consist of
a nonempty set of propositional variables P , two binary connectives ∨, ∧, three
unary connectives ∗, +, " and three constants T, T0, F for truth. Formulas are
constructible in the usual way, so that the set F(L) of formulas is a free algebra
of type (2, 2, 1, 1, 1, 0, 0) generated over P . A model of L then is a pair of the
form (W, υ), where W is a set and υ : P #→ ℘(W ) × ℘(W ) × ℘(W ) is a
valuation, such that if υ(p) = (A, B, C) then A ⊆ B ⊆ C. Further we will
assume that an operation τ : ℘(W ) #→ ℘(W ) satisfying all of the following is
given:
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Inclusion τ(A) ⊆ A

Idempotence τ(τ(A)) = τ(A)

Monotonicity (A ⊆ B −→ τ(A) ⊆ τ(B))

Empty-set τ(∅) = ∅

⊥ A⊥ = τ(Ac), c being the complementation operation.

Given a model M = (W, υ), it’s meaning function σ will be an extension of
the valuation function σ : F(L) #−→ ℘(W ) × ℘(W ) × ℘(W ) such that,

1. σ(T) = (τ(W ), τ(W ), τ(W )) = 1

2. σ(T0) = (W, W, W ) = 2

3. σ(F) = (∅), ∅, ∅) = 0

4. ∀p ∈ P σ(p) = υ(p)

5. If σ(ϕ) = (A, B, C) and σ(ψ) = (E, F, G), then
– σ(ϕ ∧ ψ) = (A ∩ E, B ∩ F, C ∩ G)

– σ(ϕ ∨ ψ) = (A ∪ E, B ∪ F, C ∪ G)

– σ(ϕ∗) = (C⊥, C⊥, C⊥)

– σ(ϕ+) = (A⊥, A⊥, A⊥)

– σ(ϕ�) = (B⊥, B⊥, B⊥)

Now on Ran(σ) = {σ(ϕ) : ϕ ∈ F(L)}, if we define the operations
⊕, ·, ∗, +, � via,

1. σ(ϕ) · σ(ψ) = σ(ϕ ∧ ψ)

2. σ(ϕ) ⊕ σ(ψ) = σ(ϕ ∨ ψ)

3. (σ(ϕ))∗ = σ(ϕ∗)

4. (σ(ϕ))+ = σ(ϕ+)

5. (σ(ϕ)� = σ(ϕ�)).

Theorem 19. Ran(σ) with the defined operations is an algebra satisfying all of
the following :
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(i) 〈Ran(σ), +, ·, 0, 1〉 is a bounded distributive lattice.

(ii) (a ≤ b∗ −→ (a · b) = 0)

(iii) a∗∗∗ = a∗

(iv) a+++ = a+

(v) a�� · a = a

(vi) x∗ ⊕ x∗∗ = 1

(vii) x+ · x++ = 0

(viii) (x+ = y+, x∗ = y∗, x� = y� −→ x ⊕ y∗ = 1)

(ix) x+ · x∗ = x∗

(x) 2∗ = 0

(xi) 1∗∗ = 1

Proof. The following proof can be understood in a purely abstract way with no
explicit reference to sets. We have retained the connection with sets for a more
visual presentation of the proof.

(i) ⊕ and · are clearly distributive lattice operations on Ran(σ). It is bounded
by 0 and 2 and it is essential that 2 covers 1 (lattice-theoretically).

(ii) If a ≤ b∗, then a is contained in the image of the complement (by τ) of
the upper approximation of b, so that the meet · of a and b is the image 0
of the triple of empty sets.

(iii) a∗∗∗ is obtained by three applications of an upper approximation followed
by a complementation and then by the τ operation in order on the compo-
nents. But τ essentially forms the union of the largest collection of pseudo-
classes that are contained within the complement (component-wise). We
are using most of the results regarding upper approximations that have
been developed in the section on exceptional sets.

(iv) a+++ = a+ can be proved in the same way as the above.
(v) a� will consist of pseudoclasses included in complement of the lu ap-

plications on the components of a. An application lu on the resulting
components will have no effect. The complements of these will contain a
component-wise. An application of the τ operation on the components will
still contain a. So a�� · a = a.

(vi) x∗ is a subset of the complement of the upper approximation of x. x∗∗ is
essentially the largest union of pseudoclasses contained in the complement
of x∗. Now their disjunction (⊕) will not contain the singleton isolated sets
alone. This is precisely 1.
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(vii) x+ · x++ = 0 follows by an argument similar to the one above.
(viii) If (x+ = y+, x∗ = y∗, x� = y�, then obviously it does not mean that

x = y. But given an arbitrary nonempty pseudoclass, it must be the case
that it is either in x or y∗. So we have x ⊕ y∗ = 1.

(ix) x∗ is included in x+

(x) The complement of 2 is 0 and τ of that is still τ .
(xi) τ of the 2 is 1.

��
Definition 30. Ran(σ) along with the defined operations will be called an es-
oteric 2SA algebra.

Definition 31. An abstract esoteric 2SA algebra will be an algebra of the form

A = 〈A, ∨, ∧, ", ∗, +, 0, 1, (2, 2, 1, 1, 1, 0, 0)〉

that satisfies all of the following:

(i) Ran(σ), +, ·, 0, 1 is a bounded distributive lattice.

(ii) a ≤ b∗ −→ (a · b) = θ

(iii) a∗∗∗ = a∗

(iv) a+++ = a+

(v) a�� · a = a

(vi) x∗ ⊕ x∗∗ = 1

(vii) x+ · x++ = 0

(viii) (x+ = y+, x∗ = y∗, x� = y� −→ x ⊕ y∗ = 1)

(ix) x+ · x∗ = x∗

(x) 2∗ = 0

(xi) 1∗∗ = 1

Definition 32. If S = 〈S, R〉 and F = 〈F , H〉 are two partial approximation
spaces such that the associated lattices of pseudo-classes E∗(R) and E∗(H) are
respectively isomorphic, then we will say that the partial approximation spaces
are p-equivalent.

These algebras are investigated in greater detail by the present author in [16]. In
particular we prove an abstract representation theorem and that, if the esoteric
2SA algebras associated with S and F are isomorphic, then the two partial
approximation spaces must be p-equivalent.
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7 Examples

We consider some examples for the general esoteric rough set theory context in
this section.

Example 1: Let S = {1, 2, 3, 4, 5} be a set and

R = {(1, 2), (2, 1), (3, 3), (4, 4), (5, 5), (4, 5), (5, 4)}

a partial equivalence on it. Consider the subsets A = {2, 3} and F = {1, 4}.
We have,
– F l = {1}, F ll = {1}

– F lu = {1}

– Fu = {1, 4, 5}, Fuu = {1, 4, 5}

– Al = {2, 3}, All = {2, 3}

– Au = {2, 3}, Auu = {2, 3}

– Alu = {2, 3}
This shows that it is possible that sets like A can actually exist in particular.
Note that the classes of elements of A are not contained in A.
Now consider Sm, here we have
– Al = {3} and F l = ∅

– Au = {1, 2, 3} and Fu = {1, 2, 4, 5}
Example 2: Fishes in a Pond Suppose we have a pond of fishes of different

type. Suppose also that our problem is to determine some biological infor-
mation matrix relating to each of the fishes on a dynamic rule-evolution
scheme. If the experimenter observes streams of fishes and stops after a cer-
tain correct time. If it is possible that the same fish is considered more than
once and the attributes measured are subject to much imprecision, then we
have a context for the present theory.

Example 3: Any VPRS or VPFRS context can be interpreted as a context
involving partially reflexive relations. This is developed further in the next
section.

Example 4: Contexts involving tolerance relations (similarity spaces) do not
require the esoteric approach, but if we have problems of defining a mini-
mal identification map for the set of elements under consideration, then the
approach is certainly warranted. Suppose we have a context involving search-
ing for a particular data set from a huge collection of data sets with limited
computational resources (as of a needle in a haystack problem). Examples
include detecting cancerous tissues in sequences of mammograms. Here the
methods of esoteric rough set theory can be effectively used.
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Example 5: In clustering of very large sets of documents available from multi-
ple sources too, the theory can be effective. Often the same document may be
found at multiple points. Rough set theory has been considered for document
clustering in [20] for example.

Example 6: Let S = {1, 2, 3, 4, 5} be a set and

R = {(1, 2), (2, 1), (1, 1), (3, 3), (4, 4), (5, 5), (4, 5), (5, 4)}

a partial equivalence on it. Consider the subsets A = {2, 3} and F = {1, 4}.
We have,
– F l = {1}, F ll = {1}

– F lu = {1}

– Fu = {1, 4, 5}, Fuu = {1, 4, 5}

– Al = {3}, All = {3}

– Au = {1, 2, 3}, Auu = {1, 2, 3}

– Alu = {3}
This shows that it is possible that sets like A can actually exist in particular.
Note that the classes of elements of A are not contained in A.
Now consider Sm, here we have
– Al = {3} and F l = ∅

– Au = {1, 2, 3} and Fu = {1, 2, 4, 5}

8 Esoteric Rough Set Theory, VPRS and VPRFS

What is actually done in VPRS and VPRFS is a process of trimming which
results in simpler or more complex degree based elimination of elements from
approximations (see [21,22,7,8]). In case of VPRFS of course the same trimming
process is applied to (interpreted over) fuzzy rough sets. The main issue is of the
inclusion of elements in the approximations with very low degree of membership
in the different approximations. The problems of noise in the data come next.
Our proposed solution for these consists in using preference orders on subsets
in conjunction with esoteric rough set theory. In our approach we start from an
approximation space together with a set of preferred subsets of it and derive
a partial approximation space with an esoteric semantics for it. This way the
problems relating to the application contexts of variable precision rough and
rough-fuzzy set theory can be approached differently through esoteric rough set
theory (ESRT).

In what follows we will develop the main transformation process for the VPRS
context. It should be noted that it is possible to arrive at a suitable esoteric
semantics without sufficient information about the membership functions too.
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Let S = 〈S, R〉 be an approximation space with R being an equivalence

relation on S. Let A, B be crisp subsets of S, then A
β

⊆ B if and only if
e(A, B) = β, where

e(A, B) = 1 − o(A ∩ B)
o(A)

.

In more general forms of VPRS two numbers a, b are selected under 0 ≤ a ≤
b ≤ 1 and the b-lower and a-upper approximations are defined via

Alb = {x ; [x]
1− b
⊆ A}

and
Aua = {x ; e([x]R, A) ≤ 1 − a}.

Given this we will require a set ζ of subsets of S to be specified as a set
of preferred sets. This procedure is not part of the different VPRS variants.
Given the set of preferred sets, we can construct a new partially reflexive, weakly
transitive and symmetric relation through certain rules. We will refer to these
rules as the Modified VPR Trimming Rules :

– ((∀A ∈ ζ) [x]R
1− b

� A) ⇔ (x, x) /∈ R+

– ((∀A ∈ ζ) [x]R
1− b

� A), (x, y) ∈ R ⇒ (x, y), (y, x) /∈ R+

– R+ is the largest subset of R also satisfying symmetry and weak transitivity

Definition 33. Given an approximation space and a set of preferred sets ζ, the
relation R+ will be called the relation determined by ζ

Definition 34. In the above context if ζ1 and ζ2 are sets of preferred sets sat-
isfying A ∈ ζ1 then there is a B ∈ ζ2 such that B ⊆ A, then ζ2 will be said to
be pre-finer than ζ1. Note that we assume nothing about ζ being a partition.

Proposition 29. In the above context S+ = 〈S, R+〉 is a partial approximation
space.

Proof. Clearly R+ is a partially reflexive relation by construction. Weak transi-
tivity is ensured by the last step. So S+ is a partial approximation space. ��
What is the nature of a preferred set in the context(s) ?

A preferred set is a set which, we expect to be more severely influenced by
classes with low degrees of membership in it. It is possible to involve expert
heuristics in the situation. In case of the VPRS and VPRFS approaches such a
provision is not admissible. The existence of very nice measures is presumed in
the VPRS and to a lesser extent in the VPRFS case.

Instead of using the above procedure of modifying VPRS and VPRFS, we can
instead modify a given approximation space in the following way. This will be
called the Generatively Trimmed VPRS procedure.

GTVPRS We start with an approximation space S = 〈S, R〉 and a collection
of subsets F of S.
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Definition 35. For a subset X of S it’s cautious upper approximation by F
will be the set

Xuf =
⋃
{[x] : ∃K ∈ F , [x] ⊆ K, [x] ∩ X �= ∅, x ∈ S}.

The collection of all cautious upper approximations of subsets of S will be denoted
by UC(S). This cautious upper approximation may not include the original set
X, but will hopefully intersect it !

Definition 36. For a subset X of S it’s cocautious upper approximation by F
will be the set

Xue =
⋃
{[x] : ∀K ∈ F , [x] � K, [x] ∩ X �= ∅}.

The collection of all cocautious upper approximations of subsets of S will be
denoted by UCO(S).

Definition 37. For a subset X of S it’s cautious lower approximation by F
will be the set

X lf =
⋃
{[x] : ∃K ∈ F , [x] ⊆ K, [x] ⊆ X x ∈ S}.

The collection of all cautious lower approximations of subsets of S will be denoted
by LC(S).

Definition 38. For a subset X of S it’s cocautious lower approximation by F
will be the set

X le =
⋃
{[x] : ∀K ∈ F , [x] � K, [x] ⊆ X}.

The collection of all cocautious lower approximations of subsets of S will be
denoted by LCO(S).

The following definition is concrete in it’s dependence on the whole process.

Definition 39. By a generatively cautiously trimmed variable precision rough
space GCTV PRS, we will mean the tuple

S+ = 〈S, LC(S), UC(S), F〉 .

Definition 40. By a generative cocautiously trimmed variable precision rough
space GCCTV PRS, we will mean the tuple

Sco = 〈S, LCO(S), UCO(S), F〉 .

Now given the above definition sequence we can formulate the trimming portion
of the construction as follows :

(i) If S = 〈S, R〉 is an approximation space and F of S, a collection of sub-
sets characterized by a concept of being R-well-defined or ill-defined or
preferred.
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(ii) Depending on the type that we select in the previous step we will define
our concept of generatively trimmed rough set. If it is R-well-defined or
preferred, then any tuple of the form

〈
A, Alf , Auf

〉
with A being any sub-

set of S will be such a set.

(iii) A full generatively trimmed rough set will be a tuple of the form
〈
A, Alf , Auf , Ale, Aue

〉

with A being any subset of S.

Given the above we can proceed by a reconstruction procedure which uses
the esoteric rough set theory mechanism or attempt a direct semantic approach.
The co-cautious approach apparently has the edge in application contexts, while
from the algebraization viewpoint, they are similar.

Esoteric Reconstruction Procedure
In this the basic aim is to obtain esoteric rough set semantics from the trimmed
structures. Clearly this is always possible and we have some choice here.

Definition 41. By the LC-Respace we will mean the structure

K(S+l) = 〈S, P 〉

with P being a new relation defined by the following

(i) From LC(S) form the collection of all minimal intersections LCm(S) and
maximal unions LCM (S) and similarly from UC(S), form UCm(S) and
UCM (S) respectively.

(ii) x ∈
⋃

LCm(S) if and only if (x, x) ∈ P

(iii) If x, y, z ∈
⋃

LCm(S) and (∃B ∈ LCm(S))x, y, z ∈ B then
(x, y), (y, z), (y, x) ∈ P

(iv) If x, y ∈
⋃

LCm(S), (∃B ∈ LC(S))x, y, z ∈ B and z /∈
⋃

LCm(S)
then (x, z), (z, x) /∈ P and (x, y) ∈ P .

Proposition 30. Any LC-Respace is a partial approximation space.

Proof. LCm(S) is the collection of minimal intersections generated by LC(S).
The second condition ensures the partial reflexivity of P . Symmetry is also im-
mediate from the form of the definition. For weak transitivity, note that the
elements of LC(S) are all unions of classes, while LCm(S) is also similar. ��

Definition 42. By the UC-Respace we will mean the structure

K(S+u) = 〈S, Q〉

with Q being a new relation defined by the following :
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(i) x ∈
⋃

UCm(S) if and only if (x, x) inQ

(ii)

If x, y, z ∈
⋃

UCm(S) and (∃B ∈ UCm(S))x, y, z ∈ B

then(x, y) (y, z), (y, x) ∈ Q

(iii)

If x, y ∈
⋃

UCm(S), (∃B ∈ UC(S))x, y, z ∈ B and z /∈
⋃

UCm(S)

then (x, z), (z, x) /∈ Q and (x, y) ∈ Q.

Proposition 31. Any UC-Respace is a partial approximation space.

Proof. UCm(S) is the collection of minimal intersections generated by UC(S).
The second condition ensures the partial reflexivity of Q. Symmetry is also im-
mediate from the form of the definition. For weak transitivity, note that the
elements of UC(S) are all unions of classes, while UCm(S) is also similar. ��

Definition 43. By the ULC-Respace we will mean the structure

K(S+ul) = 〈S, P 〉

with P being a new relation defined by the following :

(i) x ∈
⋃

LCm(S) if and only if (x, x) in P
(ii) If x, y, z ∈

⋃
UCm(S) and (∃B ∈ UCm(S))x, y, z ∈ B then

(x, y) (y, z), (y, x) ∈ P
(iii) If x, y ∈

⋃
LCm(S), (∃B ∈ LC(S))x, y, z ∈ B and z /∈

⋃
LCm(S)

then (x, z), (z, x) /∈ P and (x, y) ∈ P .

Proposition 32. Any ULC-Respace is a partial approximation space.

Proof. The second condition ensures the partial reflexivity of P . Symmetry is
also immediate from the form of the definition. For weak transitivity, note that
the elements of UC(S) and LC(S) are all unions of classes, while UCm(S) and
LCm(S) are similar. ��

Remark 2. These will not be extensible to the original approximation space in
general. A fuller characterization of this will be considered separately. The no-
tions of cocautiously trimmed spaces yield quite different partial approximation
spaces.

A third procedure for dealing with VPRS and VPRFS is by obtaining partially
ordered partial approximation spaces directly. The associated computational as-
pects maybe difficult.
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9 Relativised Approximations

We introduce different new concepts of relativised rough approximations with
some quasi-inductive import in the following. Important questions on the connec-
tions with these relativised approximations arise naturally in the above context.
Computationally the relativised approach may prove difficult if used directly.

Definition 44. Let A, B be two subsets of a partial approximation space S then
by the B-lower approximation of A we will mean the set

Al
B =

⋃
{[x] : [x] ⊆ A, x ∈ B}

Definition 45. For a subset A of a partial approximation space S by a lower
plus approximation (LPA) of A, we will mean a set Al+ for which

Al+ =
⋃
{[x] : [x] ⊆ A, x ∈ Al+}

holds.
Definition 46. For a subset A of a partial approximation space S by the lower
minus approximation (LM0) of A, we will mean the set

Al− =
⋃
{[x] : [x] ⊆ Al−, x ∈ A}.

Proposition 33. (i) If S is an approximation space then for a subset A, Al
A =

Al.

(ii) If A is a subset of a partial approximation space S, then generally Al
A ⊆

Al.

(iii) If in a partial approximation space S, Al
A = Al, then there exist no ex-

ceptional sets for A of type 2
1 ,

2
3 ,

3
2 and 3

3 alone.

Proof. (i) Obviously the two are identical as classes of elements contained in A
cannot be generated by elements outside A.

(ii) For example, if {x, y} is a 2
1 -exceptional set for A, then Al

A will not contain
x, while Al will contain the element x. So in general Al

A ⊆ Al.
(iii) This is the full proof of how Al

A ⊂ Al can happen. It can be deduced from
the definition. Other types of exceptional sets will not affect the relation
between Al and Al

A.
��

Proposition 34. The following are all true for a subset A of a partial approx-
imation space S:

(i) Al+ ⊆ Al
A.

(ii) Al− ⊆ Al
A

(iii) Al− ⊆ Al
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Proof. The construction of Al+ is well-defined and contradictions must be ac-
tively used in determining it. Suppose we have a x ∈ S \A such that [x] ⊂ A,
then [x] � Al+. If [y] ⊆ Al+, then [y] ⊆ A, and y ∈ A, so [y] ⊆ Al

A. This
proves the first assertion.

The proofs of the other parts follow from the definitions and the required
counterexamples (for possible strict inclusion) can be generated directly using
the different types of exceptional sets. For example note that if {j1, j2, j3} is
an isolated set such that j1 ∈ A and j2, j3 ∈ S \ A and ((j3, j3) ∈ R,
((ji, jk) ∈ R only when i �= k. Then j1, j2 /∈ Al−, but j1, j2 ∈ Al.

Proposition 35. The following hold for a subset A of an approximation space
S:

(i) Al− = Au.

(ii) Al+ = Al

Proof. (i) The class [x] generated by an element x ∈ A will be a subset of
Al− and Au and both of them consist of precisely the union of such classes.

(ii) Al+ is also a form of B-lower approximation with B = S in approximation
spaces.

��
Proposition 36. Given a subset A of a partial approximation space, there exists
a least subset A∗, such that Au

A∗ = Au and a least subset A+ such that Al
A+ =

Al.

Proof. By Zorn’s Lemma or any other form of transfinite induction.

In subjective terms reducts are minimal sets of attributes that preserve the
quality of classification. These are defined in the context of decision tables which,
in turn have a dual relationship with approximation spaces. The main problem
is in getting at good scalable algorithms for the computation of the different
types of reducts (or supersets that are close to them). In actual applications the
appropriate concept of reduct is to be decided from the context especially when
the size of the decision table necessitates the use of approximate reducts (see
[23,24]).

Different modified concepts of decision tables may be defined as a proper
generalization of the corresponding concept for approximation spaces. Using an
additional distinguished attribute for example, we can redefine the indiscerni-
bility relation generated. This way we can get the required partial reflexivity.
Another possibility is to proceed through the decision tables corresponding to
the supra and infra approximation spaces associated. A useful version is

Definition 47. By a p-decision table we mean a tuple of the form

T = 〈O, AT ∪ {δ, τ}〉

with O being a set of objects, AT a set of attributes, δ a decision (δ ∈ AT )
and τ ∈ AT being a distinguished element (possibly an extra dummy element).
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Moreover each object a must map O to the value set Va, τ being the sole partial
map. Atomic descriptors will be attribute-value pairs. The partially reflexive in-
discernibility relation I generated by a subset X of attributes can then be defined
via

I(X) = {(x, y) ∈ O2 ; ∀a ∈ X(x �= y → a(x) = a(y), or τ(x) and x = y}

Algorithms using relative approximations have also been considered by the present
author. These will appear separately.

Problems over partial approximation space also lead to relative approxima-
tions. This is the case when we need to consider the partial approximations
given an approximation perspective determined by equivalences or tolerances.
This aspect is considered along with an application of rough sets to Bayesian
belief networks in [5]

10 Conclusion

In this research we have developed a theory of esoteric rough sets for contexts
involving problems with self identification of elements and the contexts of VPRS
and VPFRS. It is also shown that sequences of rough sets that occur in dynamic
contexts can be approached through the methods developed. We have also pro-
posed three different algebraic semantics for the theory. The proposed algebraic
semantics will be of natural interest in the development of associated logics.

A partial approximation space in a real context actually ends up capturing
situations of the form: we know that two things are indistinguishable, but at
the same time one of them is not indistinguishable from others in the same
way as the other. It can be argued that this amounts to admitting a dialethic
or paraconsistent scheme of interpretation at the meta-level. From a classical
perspective of discernibility this can still be resolved by claiming that the concept
of discernibility afforded by partial approximation spaces is itself distinct from
the one provided by approximation spaces. So the logics that can be associated
can be quite different in semantic content.

The importance of dealing with sequences of rough sets in a unified way under
different conditions is implicit in the proposed model for dealing with layered
learning in [25]. The methods developed in the section on dynamic extensions
need to be explored in this light too. The connections with similarity spaces is
another aspect to be investigated in more detail. Some problems on reducts and
variations thereof are also being investigated through relative approximations
and esoteric methods by the present author.
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Abstract. Domain, or background, knowledge has proven to be a key
component in the development of high-performance classification sys-
tems, especially when the objects of interest exhibit complex internal
structures, as in the case of images, time series data or action plans.
This knowledge usually comes in extrinsic forms such as human ex-
pert advices, often contains complex concepts expressed in quasi-natural
descriptive languages and need to be assimilated by the classification
system. This paper presents a framework for the assimilation of such
knowledge, equivalent to matching different ontologies of complex con-
cepts, using rough mereology theory and rough set methods. We show
how this framework allows a learning system to acquire complex, highly
structured concepts from an external expert in an intuitive and fully
interactive manner. We also argue the needs to focus on expert’s knowl-
edge elicited from outlier or novel samples, which we deem have a crucial
impact on the classification process. Experiment results show that the
proposed methods work well on a large collection of handwritten digits,
though they are by no means limited to this particular type of data.

Keywords: Rough mereology, concept approximation, ontology match-
ing, handwritten digit recognition, outlier samples.

1 Introduction

A machine learning problem can be viewed as a search within a space of hy-
potheses H for a hypothesis h that best fits a set of training samples T . Amongst
the most popular approaches to such problems are e.g. statistical learning, de-
cision trees, neural networks or genetic algorithms, commonly referred to as
inductive learning methods, i.e. methods that generalize from observed training
examples by finding features that empirically distinguish positive from negative
training examples. Though these methods allow for highly effective learning sys-
tems, there often exist proven bounds on the performance of the classifiers they
can construct, especially when the samples involved exhibit complex internal
structures, such as optical characters, facial images or time series data. It is
believed that analytical learning methods based on structural analysis of train-
ing examples are more suitable in dealing with such samples. In practice, best
performances are obtained using a combination of the two learning methods [1].

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 224–236, 2008.
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An analytical learning algorithm, in addition to the training set T and a
hypothesis space H assume a domain theory D which carries prior knowledge
about the samples being learned. The search is now for a hypothesis h that best
fits T and at the same time conforms to D. In other words, a background or
domain knowledge is available to the learning system and may help facilitate the
search for the target hypothesis. One of the widely used approach to analytical
learning is the Explanation Based Learning (EBL) method, which uses specific
training examples to analyze, or explain, which features are relevant or irrele-
vant to the target classification function. The explanations therefore can serve as
search control knowledge by establishing initial search points or by subsequent
altering search directions. Domain (or background) knowledge can serve as addi-
tional search control tools. Usually fast and efficient greedy searches have limits
in the patterns they can discover, while complex and more elaborated, more
exhaustive strategies typically display high computational costs. The trade-off
between the two groups might be greatly refined with domain knowledge in order
to steer the search process to more promising areas more quickly or to fine tune
the construction of components patterns that would be difficult to find greedily.

In this paper, we investigate an architecture in which the explanation comes
from an external, possibly human, expert. Moreover, the explanations will not
come as a priori, but will be provided by the expert in a two way dialog along
with the evolution of the learning system. It is worthy to note that while hu-
mans sometimes may not be able to explicitly explain how they perform certain
tasks, they often find it easy to correct things that “went wrong” on specific
examples. Incorporating this knowledge into the learning process is an effective
way to improve its overall performance. Learning from external domain knowl-
edge sources constitutes an integral part of the intensively pursued research over
Knowledge-rich Data Mining, as stipulated in, e.g. [2]

One of the first and major challenges of this approach is that the knowledge
employed by the external expert is often expressed in a descriptive language,
called a foreign language Lf , which may contain natural language constructs,
like, for example “Ed has a square face” or “The Sun is in eclipse”. This lan-
guage is usually alien to the learning system, which has its own knowledge en-
coded using a different domestic language Ld describing, for example, physical
sensor measurements. This is because the expert and the system have different
knowledge ontologies, meaning they rely on different concepts and relations [3].
An ontology matching, i.e. a mapping between concepts and, in a further step,
relations used by the expert and the learning system is needed.

The expert knowledge ontology, similarly to the samples to which it applies,
will be highly structured. More specifically, it has the form of a lattice, or acyclic
tangled trees of concepts, representing different aspects of the expert’s percep-
tion about training samples. One can view these concepts as abstract informa-
tion granules which, together with binding relations amongst them, form the
expert’s reasoning about the samples. These concepts and, in a further steps,
their binding relations have to be translated, or in other words, approximated
by the learning system by means of its domestic expressions. Examples:
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– SquareFace(Ed)≡ (Ed.getFace().Width - Ed.getFace().Height ≤ 2.0 cm)
– IsEclipse(p)≡ (s=p.GetSun())∧(m=p.GetMoon())∧(s∩m.Area≥ s.Area·0.9)

A key issue is that although the concepts and relations get approximated,
their hierarchical structure remains intact in translation. This aims to allow
parent concepts be approximated using the approximations of children concepts,
essentially building an approximate reasoning scheme. We will show how this
multi layered approximation can be performed using rough inclusion measures,
rough set decision rules and how to ensure the quality of approximation using
tools based on rough mereology theory.

The principal requirements for a satisfactory translation/approximation at a
given level in the hierarchy are the following:

– A flexible matching of a variations of similar domestic patterns to a foreign
concept, i.e. the translation result should not be a single patterns, but rather
a collection or cluster of patterns.

– It should find approximations for the foreign concepts and relations, while
preserving their hierarchical structure. In other words, inherent structure of
the provided knowledge should be passed intact.

– Robustness, which means it is proof to noisy input data and incidental un-
derperformance of approximation on lower levels

– Stability, which guarantees that any input pattern matching concepts on a
lower level to a satisfactory degree will result in a satisfactory target pattern
on the next level.

The expert’s advices are based, in a natural way, on his perception on train-
ing samples. Human perception and behavior are subject of extensive research of
Cognitive Science [4]. We will discuss resemblances and common points of interest
between complex concepts’ approximation and popular cognitive architectures.

Another important issue is the focus we place on the analysis of atypical,
or outlier samples. Recent developments in pattern recognition clearly indicate
they are crucial to search refining. They allow to better understand the inter-
class dependencies of the sample collection and help to steer the search process
through vital points in the search spaces. Together with the explanation based
learning approach these outliers, borderline samples often prove to be key in
forming effective domain reasoning schemes.

2 Knowledge Elicitation from External Expert

We assume an architecture that allows a learning recognition system to consult
a human expert for advices on how to analyze a particular sample or a set of
samples. Typically this is done in an iterative process, with the system subse-
quently incorporating knowledge elicited on samples that could not be properly
classified in previous attempts.
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Fig. 1. System’s Overview

2.1 Ontology Matching

The knowledge on training samples that comes from an expert obviously reflects
his perception about the samples. The language used to describe this knowledge
is a component of the expert’s ontology which is an integral part of his percep-
tion. In a broad view, an ontology consists of a vocabulary, a set of concepts
organized in some kind of structures, and a set of binding relations amongst
those concepts [3]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or
a lattice, of concepts. A concept on a higher level will be synthesized from its
children concepts and their binding relations. The reasoning thus proceeds from
the most primitive notions at the lowest levels and work bottom-up towards
more complex concepts at higher levels.

As the human perception is inherently tolerant to variation and deviation,
concepts and relations in his ontology are approximate by design. To use the
terms of granular computing, they are information granules that encapsulate
the autonomous yet interdependent aspects of human perception.

The knowledge elicitation process assumes that samples for which the learning
system deems it needs additional explanations are submitted to the expert, which
returns not only their correct class identity, but also an explanation on why, and
perhaps more importantly, how he arrived at his decision. This explanation is
passed in the form of a rule:

[CLASS(u) = k] ≡ 2(EFeature1(u), ..., EFeaturen(u))

where EFeaturei represents the expert’s perception of some characteristics of
the sample u, while synthesis operator 2 represents his perception of some
relations between these characteristics. In a broader view, 2 constitutes of a
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relational structure that encompasses the hierarchy of experts’ concepts ex-
pressed by EFeaturei.

The ontology matching aims to translate the components of the expert’s on-
tology, such as EFeaturei and binding relations embedded in the 2 structure,
expressed in the foreign language Lf , which may have the form of, e.g.

“A six is a digit that has a closed belly below a slanted neck.”
[CLASS(u) =‘6’] ≡ a, b are parts of u; “Below”(b,a); “SStroke”(a);“CBelly”(b)

into the patterns familiar to the learning system, which involve, e.g. pixels count-
ing or calculations of density or mass center of pixel collections.

Single concept approximation. A foreign concept C is approximated by a
domestic pattern (or a set of patterns) p in term of a rough inclusion measure
Match(p, C) ∈ [0, 1]. The measure tells how well the patterns describe the subset
of samples which fit the concept. Such measures take root in the theory of rough
mereology [5], and are designed to deal with the notion of inclusion to a degree.
An example of concept inclusion measures would be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}|

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, find sets of patterns Pat,
Pat1,...,Patn and a relation 2d so as to satisfy the following quality requirements :

if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = 2d(Pat1, ..., Patn))

then Quality(Pat) ≥ α

where p, pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such
as support, coverage, or confidence [6].

–

SupportCLASS=k(Pat) = |{u ∈ U : Found(Pat, u) ∧ CLASS(u) = k}|

–

ConfidenceCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : Found(Pat, u)}|
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–

CoverageCLASS=k(Pat) =
Support(Pat)

|{u ∈ U : CLASS(u) = k}|

where U is the training set.

In other words, we seek to translate the expert’s knowledge into the domestic
language so that to generalize the expert’s reasoning to the largest possible
number of training samples. More refined versions of the inclusion measures
would involve the granulation of the Found and Fit test functions

Match(p, C) =
|{u ∈ T : Found(p, u) ≥ c1 ∧ Fit(C, u) ≥ c2}|

|{u ∈ T : Fit(C, u) ≥ c2}|

where c1 and c2 constitute adjustable threshold values.
We also may consider additional weight coefficients attached to the said func-

tions in order to a more flexible construction of Match(p, C). Adjustment of
these coefficients based on feedback from actual training data may help opti-
mize the approximation quality.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. For instance, a stroke at 85 degree to the horizontal in an
image can still be regarded as a vertical stroke, though obviously not a ‘pure’
one. Instead of just answering in a ‘Y es/No’ fashion, the expert may express his
degrees of belief using such terms as ‘Strong’, ‘Fair’, or ‘Weak’.

Domestic patterns satisfying the defined quality requirement can be quickly
found, taking into account that sample tables submitted to experts are usu-
ally not very large. The most effective strategies seem to be genetic algorithms
equipped with some greedy heuristics. For example, [7] reported using this kind
of tools and methods for a similar problem.

Relations between features. Relations between expert’s features may in-
clude concepts such as ’Above’, ’Below’ or simply ’Near’. They express not only
expert’s perceptions about particular concepts, but also the interdependencies
among them. Similarly to the stand-alone features, these relations can also be
described by the expert with a degree of tolerance.

The approximation of these relations has been formalized within the frame-
work of perception structures developed by Skowron [8]. A perception structure
S, in a simpler form, is defined as:

S = (U,M,F, |=, p)

where U is a set of samples, F is a family of formulas expressed in domestic
language that describe certain features of the samples and M is a family of
relational structures in which these formulas can be evaluated, while p:U →
M × F is a perception function such that ∀u∈U : p1(u)|=p2(u) (p1 and p2 are
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Fig. 2. Tolerant matching by expert

the first and second component projections of p) which means that p2(u) is
satisfied (is true) in the relational structure p1(u). This may express that some
relations among features within samples are observed.

Perception structures, following natural constructs in the expert’s foreign lan-
guage, can involve tolerant matching. Two relational structures might be consid-
ered approximately the same if they allow for similar formulas to yield similar
results in majority of cases when these formulas are applicable.

Layered approximate reasoning paradigm. Let’s observe that the approx-
imation quality requirement previously introduced yields a powerful feature of
the multi-layered approximation scheme. First, as the target pattern Pat retains
its quality regardless of deviations of input patterns, the approximation is robust
with regards to noisy input data or imperfect performances on lower levels. This
also means high reusability of the same framework on changing or evolving data.
Second, we have the global stability, which guarantees that if only some input
patterns Pat,i are equally “close” or “similar” to EFeaturei, then the target
pattern Pat, = 2d(Pat,1, ..., Pat,n) will meet the same quality requirements as
Pat to a satisfactory degree.

These issues are illustrated in Fig. 3. Any variances (presented as polygonal
shapes) of the concepts approximated by Pat1 or Pat2 (inner circles), as long
as they are sufficiently close to these standard concepts, i.e. they do not surpass
the outer, dot-lined circles, can be used to approximate the upper level concept
within a guaranteed degree of precision. The same applies to variances of the
bounding relation R.

This leads to an approximation of EFeaturei which is independent from par-
ticular patterns Pati. The hierarchy scheme itself therefore becomes a high level
search knowledge control mechanism that allow for the classifier system, when
conditions are met, to bypass intermediate levels of reasoning without sacrificing
too much on approximation quality.
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Fig. 3. Quality constraints

The preservation of approximation quality allows retaining of subsequent ad-
vances in search processes. This is especially important in applications pertaining
to complex objects, where search processes are generally computationally expen-
sive. It is argued that analyzing and mining complex structured objects heavily
rely on the synthesis of more abstract objects’ features from more basic ones by
way of domain knowledge incorporation. External knowledge transfer is deemed
crucial for meaningful data mining tasks [9].

It is noteworthy to observe that our approach, based on approximate rea-
soning scheme and granular computing, though developed independently, have
much in common with theories and methods of Cognitive Science. For exam-
ple, one of the most fundamental assumption of Unified Theory of Cognition
[4] stipulates that human perception are inherently hierarchical and theories on
such perception should be deliberately approximate. Most, if not all, cognitive
architectures such as SOAR, ACT-R, Prodigy or recently developed ICARUS
[10] are based on knowledge and data chunking, which follows the hierarchical
structure of human perception. Chunking resembles in many ways the layered
reasoning paradigm. Many other common issues such as search control, target
function learning or external background knowledge assimilation can also be
observed.

On the other hand, cognitive architectures seem not to incorporate the ap-
proximation of internal predicates or goal seeking strategies to a large extent,
while the approximation of concepts and their binding relations is at the core of
our approach.
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2.2 Analysis of Outlier Cases

Our architecture typically asks for the expert’s additional knowledge on samples
which escaped previous classification attempts. This eventually results in asking
the expert’s help on “hard” samples that had defied much of our classification
efforts, mainly because they differ to a significant extent from other samples of
their class, or belong to a boundary region between several classes.

Outliers are kind of atypical samples that either are markedly different from
the rest of their group in terms of some similarity measures, or behave very differ-
ently from the norm [11]. These samples previously tended to be treated as bias
or noisy input data and were frequently discarded or suppressed in the learning
process. However, there is an increasing effort to develop better methods for their
analysis, based on the observation that they often carry useful diagnosis on the
characteristics of the sample domain and, if properly analyzed, may provide valu-
able guidance in discovering the causalities underlying the behavior of a learning
system. As such, they may prove to be valuable as additional search control knowl-
edge. Most popular measures to detect outliers can be found in [12].

While outlier detection does not pose significant computation problems, their
effective use in eliciting additional domain knowledge is believed difficult without
support of a human expert.

Our approach to outlier detection and analysis will assume a somewhat dif-
ferent perspective. It focuses on two main issues:

1. Elicitation of intensional knowledge from outliers by approximating the
perception of external human experts.

2. Evaluation of suspicious samples by verification the performance of classi-
fiers constructed using knowledge elicited from these samples.

Having established a mechanism for eliciting expert’s knowledge as described
above, we can develop outlier detection tests that might be completely indepen-
dent from the existing similarity measures within the learning system as follows.
For a given training samples u∗, we ask the expert for his explanation on u∗

and received a foreign knowledge structure 2(u∗). Next, we approximate 2(u∗)
under restrictive matching degrees to ensure only the immediate neighborhood
of u∗ is investigated. Let’s say the result of such an approximation is a pattern
(or set of pattern) p∗u. It is now sufficient to check Coverage(p∗u). If this coverage
is high, it signifies that u∗ may bear significant information that is also found in
many other samples. The sample u∗ therefore cannot be regarded as an outlier
despite the fact that there may not be many other samples in its vicinity in
terms of existing domestic distance measures of the learning system. This test
shows that outlier analysis and expert’s elicited knowledge are complementary
to each other.

In our architecture, outliers may be detected as samples that defied previous
classification efforts, or samples that pass the above described outlier test, but
may also be selected by the expert himself. In this way, we can benefit from the
best of both sources of knowledge.
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Fig. 4. Outlier analysis scheme

3 Implementation

The proposed framework and methods have been verified with a OCR system
working on the NIST SD 19 handwritten digits. The domestic representational
language of digit images involves various simple pixel evaluation functions and
the Loci coding scheme, which reflects the local and global topological morphol-
ogy or strokes in an image.

The expert’s advices employ concepts such as ‘Circle’, ‘Slanted Strokes’ or
‘West Open Belly’. The expert will explain what he means when he says, e.g.
‘Circle’, by providing a decision table (U, d) with reference samples, where d is
the expert decision to which degree he considers that ‘Circle’ appears in samples
u∈U . The samples in U may be provided by the expert, or may be picked up
by him among samples explicitly submitted by the system, e.g. those that had
been misclassified in previous attempts.

Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

#NESW Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair

We then attempt to find domestic feature(s) that approximates these de-
grees of belief using, among other means, genetic algorithms. In this particular
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• C: is a and a .west belly neckOK. Now I know what

Fig. 5. Expert Concepts Approximated by Patterns

example, such feature may be the number of pixels that have black neighbors in
all four directions (See Tab. 2).

Having approximated the expert’s features EFeaturei, we can try to translate
his relation 2 into our 2d by asking the expert to go through U and provide
us with the additional attributes of how strongly he considers the presence of
EFeaturei and to what degree he believes the relation 2 holds (See Tab. 3).

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

We then replace the attributes corresponding to EFeaturei with the rough
inclusion measures of the domestic feature sets that approximate those concepts
(computed in the previous step). In the next stage, we try to add other features,
possibly induced from original domestic primitives, in order to approximate the
decision d. Such a feature may be expressed by Sy < By, which tells whether
the median center of the stroke is placed closer to the upper edge of the image
than the median center of the belly. (See Tab. 4) Again, this task should be
resolved by means of adaptive or evolutionary search strategies without too
much computing burden, although it is more time-expensive compared with
single concept approximation.

The expert’s perception ”A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’” is eventually approximated by a classifier in the form
of a rule:
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Table 5. Comparison of performances

No domain knowledge With domain knowledge Gain

Total learning time 205s 168s 22%
Negative classifier learning time 3.7s 2.2s 40%
Positive classifier learning time 28.2s 19.4s 31%

Skeleton graph size 3-5 nodes 2-5 nodes

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with particular Loci codes, and Sy < By reasons about centers
of gravity of the two collections.

In this way, the knowledge transfer from the human expert to the recognition
engine is conducted within a fully interactive process, which essentially performs
a refined, supervised, multilayered learning scheme, taking full advantage of the
introduced rough set and rough mereology methodologies.

We compared the performances gained by a standard learning approach with
and without the aid of the domain knowledge. The additional knowledge, passed
by a human expert on popular classes as well as some atypical samples allowed to
reduce the time needed by the learning phase from 205 minutes to 168 minutes,
which means an improvement of about 22 percent without loss in classification
quality. In case of screening classifiers, i.e. those that decide a sample does not
belong to given classes, the improvement is around 40 percent. The represen-
tational samples found are also slightly simpler than those computed without
using the background knowledge.

4 Conclusion

A formal framework based on multi-layered approximate reasoning schemes for
the domain knowledge assimilation problem is proposed. We demonstrated that
rough mereology theory and granular computing can be successfully used to
transfer domain knowledge expressed in quasi-natural languages into domestic
languages of computer learning system. A universal, robust and stable scheme
for human-computer ontology matching in a clear, friendly interactive manner
is also presented. We also argue that outlier analysis is key to successful domain
knowledge elicitation whence elicited domain knowledge can help detect new
outlier. Comparison of selected common aspects with cognitive theories and ar-
chitectures has been outlined. Proposed methods have been verified by an OCR
system working on a large handwritten digit dataset.
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Abstract. The present paper investigates topological variations of information
structures (together with the associated operators) from the theory of Information
Quanta, namely Information Quantum Relational Systems (IQRSs) and Property
Systems, with special emphasis put on approximation spaces from Rough Set
Theory (RST) and contexts from Formal Concept Analysis (FCA), respectively.
The main novelty of this study comes from the influence of the theory of Heyting-
Brouwer Algebras (HBAs) – some of that influence is reflected in the choice of
Alexandroff topological spaces as the main source of both IQRSs and Property
Systems. It allows us to establish some new results concerning RST and FCA,
and to extend RST by a new type of rough sets, i.e. Heyting-Brouwer rough sets,
defined with respect to bitopological spaces. Furthermore, we provide two inter-
pretations of operators from RST and FCA, the first one in terms of HBAs and
the second one (by the extended Gödel translation from intuitionistic logic to S4)
in terms of temporal logic S4.t.

1 Introduction

The framework of Information Quanta (IQ), explicitly introduced and explored by
P. Paliagni and M. Chakraborty [7,8], distinguishes two levels of how information gath-
ered, for example, in the process of observation, comes into account. On the first level,
whose information structures are called Property Systems, information is given “lo-
cally”: objects are regarded as separate elements which possess or not some known
properties. On the second level, whose information structures are called Information
Quantum Relational Systems (IQRSs), information is encoded “globally”: an object a
is not viewed separately but is regarded as a “cluster” consisting of other objects which
are sufficiently similar to a with respect to a relation R which encodes information
from a Property System. In the present paper we apply the framework of IQ to the well-
known theories of data mining and knowledge acquisition, namely Rough Set Theory
(RST) [9] and Formal Concept Analysis (FCA) [16]. Basically, RST is concerned with
IQRSs while FCA deals with Property Systems.

Firstly, we shall discuss how operators from RST and FCA behave when applied to
the first and second level information structures. The special case of interest to us is
when both Property Systems and IQRSs are induced by Alexandroff spaces. This idea
comes from the theory of Heyting-Brouwer Algebras (HBAs) [4,11,12,13,19], which
play an important role in our investigation. C. Rauszer introduced two standard methods

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 237–250, 2008.
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of obtaining HBAs [11,12,13]. The first method is based on preordered sets; the second
method is based on the concept of a bitopological space. A bitopological space is a
(nonempty) set X equipped with two topologies τ1 and τ2 satisfying some additional
requirements. These two topologies are usually represented by their interior Intτ1 and
closure Clτ2 operators, respectively. As a consequence, a bitopological space is typi-
cally introduced as a triple (X, Int, Cl).

Each topological approximation space (X, τ) may be represented as a bitopological
space (X, Int, Cl), where both operators Int and Cl are induced by the same topology
τ . A rough set is then a pair (Int(A), Cl(A)), for some A ⊆ X . By a simple gener-
alisation of this observation we shall introduce the new concept of a Heyting-Brouwer
rough set called a HB-rough set. Given an Alexandroff topological space we introduce
its corresponding bitopological space (X, Int, Cl) (where Int and Cl may give rise
to two different topologies) and define a HB-rough set as a pair (Int(A), Cl(A)), for
some A ⊆ X . The interior operator Int is defined by means of RST while the closure
operator Cl is defined in terms of FCA. For topological approximation spaces the con-
cepts of a rough set and a HB-rough set coincide; thus the notion of a HB-rough set
really generalises the concept of a rough set in the sense of Pawlak’s definition [9]. At
the end of the paper we provide an interpretation of operators employed by the con-
cept of a HB-rough set in terms of temporal logic S4.t. Firstly, we consider topological
models and related IQRSs and then present the corresponding Property Systems.

2 Information Structures and Approximation Operators

Following [7,8], we shall assume that the pieces of information collected in the process
of observation are basically given by: (a) a set G of objects, (b) a set M of observable
properties, and (c) a fulfilment relation |= between G and M , where g |= m reads as
“the object g has a property m.” It is also assumed, that there are no “dummy” objects
and properties, i.e., objects without any property and properties enjoyed by no object.

Definition 1 (Property System). A triple (G,M, |=), where G and M are finite sets,
|=⊆ G×M is a relation such that for all g ∈ G there exists m ∈M such that g |= m,
and for all m ∈M there exists g ∈ G such that g |= m, is called a context or Property
System.

On this view, the collected pieces of information are given “locally”, that is, we have a
set of individuals which can be examined if they enjoy (or not) some known properties.
However, we generally do not have an access to individual objects because the set of
properties may not be sufficiently rich to distinguish any two given elements. In this
case information must be encoded “globally” as a relation which “glues” objects into
information granulae.

Definition 2 (IQRS). Let S be a Property System and for all g ∈ G,Qg = {g′ : ∀m ∈
M if g |= m then g′ |= m}, then we say that R is induced by S iff

(g, g′) ∈ R iff g′ ∈ Qg.

The system (G,R) is called an Information Quantum Relational System (IQRS) and R
is called an information quantum relation.
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Basically, FCA deals with Property Systems and |= whereas RST deals with IQRSs
and R. Both theories has its own operators induced by binary relations, which can be
described as Galois connections [3].

Definition 3 (Galois Connection). Let (U ,≤) and (V ,�) be partially ordered sets
(posets). If π∗ : U → V and π∗ : V → U are functions such that for all a ∈ U and
b ∈ V , a ≤ π∗b iff π∗a � b, then the quadruple π = 〈(U ,≤), π∗, π∗, (V ,�)〉 is called
a Galois connection, where π∗ and π∗ are called the coadjoint and adjoint part of π,
respectively.

Now we discuss Galois connections induced by binary relations, namely polarities and
axialities (also called residuated mappings or Galois adjunctions) [3].

Proposition 1. Any relation R ⊆ U × V induces a Galois connection called polarity
R+

+ = 〈(PU ,⊆), R+, R+, (PV ,⊆)〉, where PU is the power set of U , R+ and R+ are
defined as follows: for any A ⊆ U and B ⊆ V ,

R+(A) = {b ∈ V : (∀a ∈ A)〈a, b〉 ∈ R}

R+(B) = {a ∈ U : (∀b ∈ B)〈a, b〉 ∈ R}
Below, we shall present FCA in a very concise way to give the reader at least a “taste”
of this theory. For a detailed exposition of FCA see [16].

A triple 〈U ,V , R〉, where R ⊆ U ×V , is called a context. Each context is associated
with two operators R+ and R+ called derivation operators. These operators allows one
to build concepts, i.e. meaningful entities which constitute our knowledge about the
context.

Definition 4 (Concept). A concept of a given context 〈U ,V , R〉 is a pair (A,B), where
A ⊆ U and B ⊆ V such that A = R+(B) and B = R+(A).

Basically, FCA is concerned with hierarchies of concepts induced by formal contexts.
However, in the present paper we shall pay attention only to the derivation operators
and their compositions.

Proposition 2. Any relation R ⊆ U × V induces a Galois connection (adjunction)
called axiality R∃∀ = 〈(PU ,⊆), R∃, R∀, (PV ,⊆)〉, where R∃ and R∀ are defined as
follows: for any A ⊆ U and B ⊆ V ,

R∃(A) = {b ∈ V : (∃a ∈ U)〈a, b〉 ∈ R & a ∈ A}

R∀(B) = {a ∈ U : (∀b ∈ V)〈a, b〉 ∈ R⇒ b ∈ B}
The theoretical dual of R∃∀, defined as R∃∀ = 〈R∃, R∀〉 = (R−1)∃

∀
, is also an axiality

but from (PV ,⊆) to (PU ,⊆). R−1 means the converse relation of R, that is, bR−1a iff
aRb. Now, we recall basic concepts of RST.

Definition 5 (Approximation Operators). Let U be a set, E an equivalence relation
on U , and [a]E – the equivalence class containing a ∈ U . With each A ⊆ U , we can
associate its E-lower and E-upper approximations, A and A, respectively, defined as
follows:

A = {a ∈ U : [a]E ⊆ A},
A = {a ∈ U : [a]E ∩A �= ∅}.
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A pair (U , E) is called approximation space. A rough set is a pair (A,A), for some A ⊆
U . A subset A ⊆ U is called definable if A =

⋃
B for some B ⊆ U/E, where U/E is

the family of equivalence classes of E. For any definable set A it holds that A = A. The
chief idea of RST is to approximate an undefinable set A by means of two definable sets
A ⊆ A ⊆ A. The lower approximation A consists of points which necessarily belong
to A while the upper approximation A consists of points which possibly belong to A.

Each approximation space (U , E) may be converted into topological space (U , τE);
in literature topological spaces induced by equivalence relations are called approxima-
tion topological spaces [10].

Definition 6 (Approximation Topologial Space). A topological space (X, τ) with an
interior operation Int induced by an equivalence relation E, that is

Int(A) =
⋃
{[x] ∈ B : [x] ⊆ A},

where B, the family of all equivalence classes of E, is a subbasis of τ , and [x] denotes
the equivalence class of x ∈ X , is said to be an approximation topological space.

On this view, the lower approximation A is the interior of A ⊆ U and the upper ap-
proximation A is the closure of A. A set A ⊆ U is definable only if A ∈ τE . It is
worth emphasising that every topological approximation space satisfies the following
clopen sets property: every closed set is open and every open set is closed [10]. In topol-
ogy such sets are called clopen. Hence both approximations are clopen and, as a result,
definable.

Now let us return to the basic structures introduced in this section, that is, Galois
connections, Property Systems, and IQRSs. Any (finite) topological space S = (X, τ)
may be viewed as a Property System (X, τ, |=), where x |= A iff x ∈ A, and, in
consequence, it gives rise to an IQRS S = (X,R). Let us recall that for any topological
space (X, τ) we can convert the relation of set inclusion on τ into a preorder, called the
specialisation preorder, on elements of X :

x � y iff Cl({x}) ⊆ Cl({y}). (1)

Furthermore, for arbitrary preordered set (X,�) there is always a topology τ whose
specialisation preorder is �, and there will in general be many of them. Among these
topologies the special role is played by specialisation topologies.

Definition 7 (Specialisation Topology). Let (X,�) be a preordered set. A speciali-
sation topology on X is a topology τ with a specialisation order � such that every
automorphism of (X,�) is homeomorphism.

A topology τE induced by an equivalence relation E is an example of a specialisa-
tion topology. However, the canonical example of this kind of topology is given by an
Alexandroff topology.

Definition 8. A topological space (X, τ) is called an Alexandroff space if its topology
τ is closed under arbitrary intersections and arbitrary unions.

In such case, each x ∈ X has the smallest neighbourhood defined as follows:

∇(x) =
⋂
{A ∈ τ : x ∈ A}. (2)
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The Alexandroff topology is actually the largest specialisation topology induced by �.
In this topology the following sets

∇′(x) = {y ∈ X : x � y} for all x ∈ X. (3)

form a sub-basis. Moreover one can prove that∇(x) = ∇′(x), for any x.

Proposition 3. There is a one-to-one correspondence between Alexandroff topologies
on a set X and preorders on X .

Given an Alexandroff topological space (X, τ) we may produce a preorder (namely
its specialisation preorder) by (1). Given a preordered set (X,�) we may obtain its
Alexandroff topology by (3). Actually, Alexandroff spaces and preordered sets regarded
as categories are dually isomorphic and we may identify them. Let us stress that any
finite space is an Alexandroff space.

Proposition 4. Let S = (X, τ) be a (finite) topological space, � its specialisation
preorder, and S = (X,R) its IQRS; then R =�.

Proof. By definition Qx = {y : ∀(A ∈ τ) if x ∈ A then y ∈ A} = {y : ∇(y) ⊆
∇(x)} = {y : y ∈ ∇(x)}. Now, by definition 〈x, y〉 ∈ R iff y ∈ ∇(x) iff x � y.

In other words for any finite topological space its specialisation preorder coincides with
the quantum information relation R induced by its Property System. However, the proof
actually does not involve the finiteness of the underlying space – it employs the fact
that the space is Alexandroff. Therefore we shall modify a little the concepts of Prop-
erty Systems and IQRSs: any Alexandroff topological space will be regarded as a valid
Property System. That is, for Alexandroff spaces we shall drop out the finiteness con-
dition. As a consequence, by Proposition 4 we have that:

Proposition 5. Let (U , E) may be an approximation space and (U , τE) its approx-
imation topological space; then (U , E) is an IQRS induced by the Property System
(U , τE , |=).

Now, we recall and give a new proof of some well-known results concerning Galois
connections and approximation operators from RST.

Lemma 1 (P. Pagliani, M. Chakraborty). Let Oi, Oj be a Galois connection induced
by an IQRS (G,R), then OiOj = Oj .

Proposition 6 (I. Düntsch, G. Gediga). Let (U , τE) be a topological approximation
space and A ⊆ U then:

(i) E∃E∀(A) = E∃E∀(A) = A

(ii) E∀E∃(A) = E∀E∃(A) = A

Proof. We prove only (i); the proof of (ii) is analogous.

A = {a ∈ U : [a]E ⊆ A} =

{a ∈ U : ∀(b ∈ U)〈a, b〉 ∈ E ⇒ b ∈ A} =

E∀(A) = E∃E∀(A) (by Lemma 1).

Since E−1 = E, we have E∃E∀(A) = E∃E∀(A).
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Proposition 6 – dressed differently – has been firstly proved (by means of other meth-
ods) in [1,2]. The direct relationship between Galois connections and RST has been
observed in [7,8,17].

The operator ∇ expressed by means of Equation (3) may be easily defined for sets
as well:

∇(A) =
⋃

y∈A

∇(y) (4)

Proposition 7. Let (X, τ) be an Alexandroff topological space, (X, τ, |=) its Property
System, (X,R) its IQRS, Int and Cl the interior and closure operators induced by τ ,
respectively. Then

(i) |=∀|=∃ (A) = Cl(A),

(ii) |=∃|=∀ (A) = Int(A),

(iii) |=+|=+ (A) = ∇(A),

(iv) R∀R∃(A) = ∇(A),

(v) R∀R∃(A) = Cl(A),

(vi) R∃R∀(A) = Int(A),

(vii) R∃R∀(A) =
⋃

x∈X

(Cl({x}) ⊆ A).

for all A ⊆ U .

Proof. (i) Let:
B = |=∃ (A) = {B ∈ τ : ∃(x ∈ A)x |= B}

Then:
|=∀ (B) = {x ∈ X : ∀(B ∈ τ) if x |= B then B ∈ B}

Furthermore, x ∈ Cl(A) iff for every B ∈ τ such that x ∈ B we have B ∩ A �= ∅, i.e.
B ∈|=∃ (A).
(ii) Now, let:

B = |=∀ (A) = {B ∈ τ : ∀(x ∈ A) if B |=−1 x then x ∈ A}.

Then:
|=∃ (B) = {x ∈ X : ∃(B ∈ B)B |=−1 x} =

{x ∈ X : ∃(B ⊆ A)B |=−1 x} =

{x ∈ X : ∃(B ⊆ A)B ⊇ {x}}

It means that x ∈|=∃|=∀ (A) iff there exists B ∈ τ such that x ∈ B and B ⊆ A iff
x ∈ Int(A).
(iii) Let:

B = |=+ (A) = {B ∈ τ : ∀(x ∈ A) x |= B} =

{B ∈ τ : A ⊆ B}
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Then:
|=+ (B) = {x ∈ X : ∀(B ∈ B) x |= B}.

Thus
|=+|=+ (A) =

⋂
{B ∈ τ : A ⊆ B} = ∇(A)

(iv) By Lemma 1 we have to prove that R∃(A) = ∇(A). For any Alexandroff space X ,
we have:

∇(A) =
⋃

y∈A

∇(y) =

{x ∈ X : ∃(y ∈ A) x ∈ ∇(y)} =

{x ∈ X : ∃(y ∈ A) yRx} = R∃(A)

(v) As above, for any Alexandroff space X we have:

Cl(A) =
⋃

y∈A

Cl(y) =

{x ∈ X : ∃(y ∈ A) x ∈ Cl(y)} =

{x ∈ X : ∃(y ∈ A) xRy} = R∃(A)

(vi)
R∀(A) = {x ∈ X : ∀z if xRz then z ∈ A} =

{x ∈ X : ∀z if∇z ⊆ ∇x then z ∈ A} =

{x ∈ X : ∀z if z ∈ ∇x then z ∈ A} =

{x ∈ X : ∇x ⊆ A} = Int(A)

(vii)
R∀(A) = {x ∈ X : ∀z if zRx then z ∈ A} =

{x ∈ X : ∀z if Cl({z}) ⊆ Cl({x}) then z ∈ A} =

{x ∈ X : ∀z if z ∈ Cl({x}) then z ∈ A} =

{x ∈ X : Cl({x}) ⊆ A} =
⋃

x∈X

(Cl({x}) ⊆ A).

The above proposition explains how operators from RST and FCA behave when ap-
plied to information structures of the first and second level. Generally speaking, their
compositions can be described in terms of the operators of interior, closure, and mini-
mal open neighborhood. Please note, that operators from RST and from FCA may be
applied to Property Systems (that is Alexandroff topological spaces); however, only op-
erators from RST (i.e. based on axialities) can be applied to IQRSs. Observe that when
R is a specialisation preorder then R+(A) gives all points y which belongs to the min-
imal open neighborhood∇(x) of every element x of A. But, in most cases there is no
such point. On the other hand, when R is an equivalence relation then R+R+ = R∀R∃.
Thus, polarities either brings the empty set ∅ or may be recovered from axialities. In
this sense the derivation operators of FCA, R+ and R+, are not regarded as quantum
operators [8].
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3 Approximation Operators, Heyting-Brouwer Algebras and
Rough Sets

In the present section we study the operators from RST and FCA in terms of Heyting-
Brouwer Algebras (HBAs), introduced and developed by C. Rauszer [11,12,13]. It was
already proved by P. Pagliani that rough sets can be made into a HBA [6]. In contrast,
we shall here restrict our attention to the lower and upper approximation operators,
leaving aside the concept of a rough set.

We begin by recalling some basic concepts of the theory of HBAs – a detailed expo-
sition of the properties of HBAs may be found in [4,11,12,13,19]. Although C. Rauszer
introduced them under a different name, namely semi-Boolean algebras, they are today
usually called HBAs for two reasons: (i) a semi-Boolean algebra is a Heyting algebra
which is also Brouwerian, (ii) semi-Boolean algebras provide a semantics for Heyting-
Brouwer logic – the term introduced by C. Rauszer in [12]. Summing up, the name of
HBA seems to be more natural than the original one.

Definition 9 (Heyting Algebra). An algebra (X,≤,∨,∧, ∧→,*,⊥) is called a Heyt-

ing algebra iff (X,≤,∨,∧, ∧→,*,⊥) is a bounded distributive lattice and
∧→ is a rela-

tive pseudo-complement of a with respect to c, i.e.,

a ∧ b ≤ c if and only if b ≤ a
∧→ c

for all a, b, c ∈ X

Definition 10 (Heyting-Brouwer Algebra). A Heyting-Brouwer algebra (HBA) (X,≤
,∨,∧, ∧→,

∨→,*,⊥) is a Heyting algebra (X,≤,∨,∧, ∧→,*,⊥) equipped with the op-

eration of coimplication
∨→, that is:

a ∨ b ≥ c if and only if b ≥ a
∨→ c

for all a, b, c ∈ X

It is worth stressing that a HBA can be alternatively defined by means of the operation
of pseudo-difference÷ (originally used by Rauszer):

a ∨ b ≥ c if and only if b ≥ c÷ a

for all a, b, c ∈ X. However, later – following [19] – we shall introduce Heyting-
Brouwer (sentential) logic (HBL) whose axiomatisation is based on coimplication and
therefore a HBA is defined by means of

∨→ instead of÷.
The standard method of producing HBAs is based on preorders (or Alexandroff

topologies):

Proposition 8 (C. Rauszer). Let S = (X,≤) be a preordered set, (X, τS) the induced
Alexandroff topological space, and

A
∧→ B = {a ∈ X : (∀b ≥ a)(b ∈ A⇒ b ∈ B)}

A
∨→ B = {a ∈ X : (∃b ≤ a)(b �∈ A & b ∈ B)}

then the algebra (τS ,⊆,∩,∪, ∧→,
∨→, ∅, G) is a HBA.
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Let us now recall that in RST both lower and upper approximations are open sets (i.e.
definable sets). However, for arbitrary Alexandroff topological space the closure of a
set A is not necessarily open, thus the upper approximation A = Cl(A) may be an
indefinable set. What we actually need is to make Cl(A) an Int-open so to generalise
the notion of a topological approximation space. The solution to this problem is brought
by the concept of a bitopological space.

Definition 11 (Bitopological Space). A bitopological space (X, Int,Cl) is a non-
empty set equipped with an interior operation Int and a closure operation Cl satis-
fying:

Int(A) = Cl(Int(A)) and Cl(A) = Int(Cl(A)),

for all A ⊆ X.

Please note that any toplogical approximation space (X, τ) gives rise to a bitopological
space (U , Int, Cl), where both operators, Int and Cl, are induced by τ . But in case of
an Alexandroff topological space S = (U , τ), the operator Int is ”only one half” of
a bitopological space (X, Int,Cl), since Cl – in general – may be different from Cl.
It is clear that Cl returns τ -open sets, i.e. definable sets, as it is required by RST. The
same argument applies to the closure operator Cl and (X,Int, Cl).

Proposition 9. Let (X, τ) be an Alexandroff topological space, (X, |=) its Property
System and (X,R) its IQRS; then (X,R∃R∀, |=+|=+) and (X,R∃R∀, R∀R∃) are
bitopological spaces.

Proof. By Proposition 7 both operators, R∃R∀ and R∀R∃, return open sets of (X, τ).
Furthermore, R∃R∀ is actually the interior operator induced by τ . It is easy to see that
R∀R∃ is a closure operator which, as said above, also returns elements of τ . Addition-
ally, by the same proposition |=+|=+ is equal to R∀R∃.

Additionally, R∃R∀(R∀R∃(A)) = R∀R∃(A) by Lemma 1. Indeed, R∃R∀ = R∀

and R∀R∃ = R∃.

Proposition 10. Let (X, τ) be an Alexandroff topological space, R its specialisation

preorder and (X, τ, |=) its Property System; then the algebra (τ,⊆,∪,∩, ∧→,
∨→,U , ∅):

A
∧→ B = R∃R∀(−A ∪B),

A
∨→ B =|=+|=+ (−A ∩B) = R∀R∃(−A ∩B),

for all A,B ∈ τ , where − is the set complement, is is a HBA.

Proof. By Lemma 1 R∃R∀(−A∪B) = R∀(−A∪B) = {x ∈ X : ∀(y ∈ X) xRy ⇒
y ∈ −A ∪B}. By classicall propositional logic we get that R∀(−A ∪B) = {x ∈ X :
∀(y ∈ X) xRy & y ∈ A ⇒ y ∈ B}. Analogously, R∀R∃(−A ∩ B) = R∃(−A ∩
B) = {x ∈ X : ∃(y ∈ −A ∩ B) yRx} = {x ∈ X : ∃(y ∈ X) yRx & y �∈
A & y ∈ B}.
The same result may be obtained for the upper approximation operator R∀R∃. Let us
recall that the compositions S∀S∃ and S∃S∀, where S ⊆ X × Y for X,Y being non-
empty sets, give the closure and interior operators, respectively. On the other hand both
compostions S+S+ and S+S+ give two closure operators. Therefore, for every A ⊆ U
we have to define dual |=+|=+ (A) = −(|=+|=+ (−A)).
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Corollary 1. Let (U , τ) be an Alexandroff topological space, R its specialisation or-
der and (X, τ, |=) its Property System, then (U , R∃R∀, R∀R∃) and (U , dual |=+|=+

, R∀R∃) are bitopological spaces.

Corollary 2. Let X, τ) be an Alexandroff topological space, R its specialisation pre-

order and (X, τ, |=) its Property System; then the algebra (−τ,⊆,∪,∩, ∧→,
∨→,U , ∅) is

a HBA:
A
∧→ B = dual |=+|=+ (−A ∪B) = R∃R∀(−A ∪B),

A
∨→ B = R∀R∃(−A ∩B),

for all A,B ∈ −τ , where −τ = {A ⊆ X : −A ∈ τ}.

The above corollary follow from Proposition 9 and Proposition 10 by the duality of
operators and topologies.

Now, let (X, τE) be an approximation topological space and let (X, Int, Cl) be the
induced bitopological space. Since a rough set from a topological approximation space
may be represented as (Int(A), Cl(A)), for some A ⊆ X , Proposition 9 suggests
a straightforward generalisation of rough sets by means of the induced bitopological
space: a HB-rough set of an Alexandroff topological space (X, τ ) is as a pair of sets
(R∃R∀(A), R∀R∃(A)), for some A ⊆ X . Please note that both HB-approximations of
A, namely R∃R∀(A) and R∀R∃(A), are definable in (X, τ).

Corollary 3. Let (X, τE) be a topological approximation space induced by an equiv-
alence relation E. Then, the set of rough sets induced by (X, τE) is equal to the set of
HB-rough sets induced by this space.

This corollary shows that HB-rough sets are in fact generalised rough sets in the sense
of RST. It is worth spelling out again the topological interpretation of these operators.
Let (X, τ) be an Alexandroff topological space and R its specialisation order. As we
have already said, the lower approximation A of a set A ⊆ X is its interior, that is, the
largest open set included in A. On the other hand, dualR+R+(A) is the largest closed
set included in A ⊆ X . In case of a topological approximation spaces both concepts
coincide due to the clopen set property. Similar argument applies to the upper approxi-
mation operator and R+R+. The upper approximation A of A ⊆ X is its closure, that
is the smallest closed set which includes A, whereas R+R+(A) is the smallest open set
which includes A. Since for any topological approximations space open and closed sets
coincide, R∀R∃(A) is equivalent to R+R+(A), for all A ⊆ X .

Now, we consider logics which are related to the operators employed by HB-rough
sets or, better still, to their approximation operators. Firstly we introduce Heyting-
Brouwer logic.

The Heyting-Brouwer sentential calculus (HBL) is formulated in the propositional
language LHB with connectives ∧,∨, ∧→,

∨→,*,⊥. Its axiomatisation was given by C.
Rauszer in [12]. However, we shall follow the presentation given in [19].

Let us abbreviate
∧¬ p = p

∧→ ⊥,
∨¬ p = p

∨→ * and define:

H = {p ∧→ (q ∧ (q ∨→ p)), (q ∨→ p) ∧→∨¬ (p ∧→ q),
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(r ∨→ (q ∨→ p)) ∧→ ((p ∨ q) ∨→ p),
∧¬ (q ∨→ p) ∧→ (p ∧→ q),

∧¬ (p ∨→ p)}.

The HBL is the smallest logic containing INT ∪H , where INT is any axiomatisation
of intuitionistic logic, and closed under uniform substitutions, modus ponens and

p
∧¬∨¬ p

Proposition 11 (C. Rauszer). A formula of LHB is provable in HBL iff it is valid in
all HBAs.

In view of Proposition 10 approximation operators from both RST and FCA are implicit
in the semantics of HBL. However, by means of the extended Gödel translation from
intuitionistic logic to S4 [14,5] we can elicit these operators from the model of HBL to
the language of tense logic S4.t. Let us recall that temporal logics have two diamonds
and two boxes – a pair of operators �F , ♦F for ”always in the Future” and ”some time
in the Future”, respectively, and a pair of operators �P , ♦P for ”always in the Past” and
”some time in the Past”, respectively.

The extended Gödel translation t is defined as follows [14,5]:

αt = �Fα

*t = *

⊥t = ⊥

(α ∧ β)t = αt ∧ βt

(α ∨ β)t = αt ∨ βt

(α ∧→ β)t = �F (αt → βt)

(α ∨→ β)t = ♦P (¬αt ∧ βt)

Proposition 12 (P. Łukowski). For all α ∈ LHB

HBL |= α iff S4.t |= α

Let us recall that for an Alexandroff topological space (X, τ) and its specialisation
preorder R the triple (X,R∃R∀, R∀R∃) is a bitopological space. This space gives rise
to a HBA which forms a model for HBL. Now, the extended Gödel translation actually
provides a temporal version of the well known strong completeness theorem of modal
logic S4 with respect to the class of all topological spaces.

Definition 12 (IQR Model). Let (X, τ) be an Alexandroff topological space, R its spe-
cialisation preorder and V the valuation function from propositional letters to subsets
of U . The function V is extended to Boolean connectives in the standard way, for modal
operators the extension is as follows:
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V (�Fα) = R∃R∀(V (α)),

V (♦Fα) = R∀R∃(V (α)),

V (�Pα) = R∃R∀(V (α)),

V (♦Pα) = R∀R∃(V (α)).

The definition of truth is as usual: a � α iff a ∈ V (α). The triple (X, τ, V ) will be
called an Information Quantum Relational Model (IQRM).

Proposition 13. A formula is provable in S4.t iff it is valid in all IQRMs.

Please observe that an IQRM is in fact an IQRS. Proposition 7 allows us to deal with
topological spaces in a more direct way. As we have already said each Alexandroff
topological space is in fact a Property System (X, τ, |=):

Definition 13 (Property Model). Let (X, τ, |=) be a Property System induced by an
Alexandroff topological space and let V be defined as follows:

V (�Fα) = |=∃|=∀ (V (α)),

V (♦Fα) = |=∀|=∃ (V (α)),

V (�Pα) = dual |=+|=+ (V (α)),

V (♦Pα) = |=+|=+ (V (α)).

The tuple (X, τ, |=, V ) will be called a property model.

Proposition 14. A formula is provable in S4.t iff it is valid in all property models.

Thus S4.t may be regarded as a logic expressing mutual relationships among operators
from RST and FCA [18].

4 Concluding Remarks

In the present paper we have investigated Rough Set Theory (RST) and Formal Concept
Analysis (FCA) – both expressed in the conceptual framework of the theory of Infor-
mation Quanta – against the background of the theory of Heyting-Brouwer Algebras
(HBAs). In result, we have established some new relationships between approximation
operators from RST and derivation operators from FCA, and provided two interpreta-
tions of theses operators: the first one in terms of HBAs and the second one – by the
extended Gödel translation from intuitionistic logic to S4 – in terms of temporal system
S4.t. Also, the paper has introduced the concept of Heyting-Brouwer rough set defined
with respect to bitiopological spaces which generalises the usual notion of a rough set.
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Abstract. In the paper, the accuracy of greedy algorithms for construc-
tion of partial covers, reducts and decision rules is considered. Bounds
on the minimal complexity of partial covers, reducts and decision rules
based on an information about greedy algorithm work are studied. The
results of experiments with greedy algorithms are described.
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1 Introduction

This paper is devoted to the consideration of partial decision reducts and partial
decision rules on the basis of partial cover study. Partial reducts and partial
decision rules are generalizations of exact reducts and exact decision rules which
belong to the main notions of rough set theory [12,17].

Rough set theory often deals with decision tables containing noisy data. In
this case exact reducts and exact decision rules can be “over-learned”, i.e., de-
pend essentially on the noise. In rough set theory reducts and decision rules are
considered often as way for knowledge representation [16]. It is clear that, instead
of an exact reduct with many attributes, it is more appropriate to work with a
partial reduct containing a small number of attributes which separate almost all
pairs of rows with different decisions. The same situation is with decision rules.
In [13] Zdzis�law Pawlak wrote that “the idea of an approximate reduct can be
useful in cases when a smaller number of condition attributes is preferred over
accuracy of classification”.

Last years in rough set theory partial reducts and partial decision rules are
studied intensively [9,10,20,21,22,23,25]. There are a number of approaches to
the definition of approximate reducts [22]. In [10,21,22,23] it was proved that for
each of the considered approaches the problem of partial reduct minimization
(construction of a partial reduct with minimal cardinality) is NP -hard. The
approach considered in [10] is the closest to the approach studied in this paper

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 251–288, 2008.
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(see also [21,23]). Approximate reducts are also investigated in the extensions of
rough set model such as VPRS (variable precision rough sets) [27] and α-RST
(alpha rough set theory) [14].

In the paper, we consider theoretical and experimental results on partial de-
cision reducts and partial decision rules. These investigations are based on the
study of partial covers. The results for covers and partial covers (including known
results listed in Sect. 2.2) will be useful for wider spectrum of problems consid-
ered in rough set theory, for example, for the investigation of (i) reducts and rules
for information systems, (ii) reducts and rules for decision tables with missing
values, (iii) subsystems of a given decision rule system which “cover” the same
set of rows, etc.

Based on the technique created by Ślȩzak in [21,23], we generalize well known
results of Feige [2], and Raz and Safra [15] on the precision of approximate
polynomial algorithms for exact cover minimization (construction of an exact
cover with minimal cardinality) to the case of partial covers. From obtained
results and results of Slav́ık [18,19] on the precision of greedy algorithm for
partial cover construction it follows that, under some natural assumptions on
the class NP , the greedy algorithm for partial cover construction is close to the
best polynomial approximate algorithms for partial cover minimization.

An information about the greedy algorithm work can be used for obtaining
of lower and upper bounds on the minimal cardinality of partial covers. We fix
some kind of information, and find the best lower and upper bounds depending
on this information.

We obtain a new bound on the precision of greedy algorithm for partial cover
construction which does not depend on the cardinality of covered set. This bound
generalizes the bound obtained by Cheriyan and Ravi [1] and improves the bound
obtained by Moshkov [8]. Based on the results of Slav́ık [18,19] on the precision
of greedy algorithm for partial cover construction, we prove that obtained bound
is, in some sense, unimprovable.

We prove that for the most part of set cover problems there exist exact (and,
consequently, partial) covers with small cardinality. Experimental results show
that, for the most part of randomly generated set cover problems, during each
step the greedy algorithm chooses a subset which covers at least one half of
uncovered elements. We prove that under some assumption, for the most part
of set cover problems, during each step the greedy algorithm chooses a subset
which covers at least one half of uncovered elements.

The most part of results obtained for partial covers is generalized to the case
of partial reducts and partial decision rules. In particular, we show that

– Under some natural assumptions on the class NP , greedy algorithms are
close to the best polynomial approximate algorithms for the minimization of
the cardinality of partial reducts and the length of partial decision rules.

– Based on an information received during the greedy algorithm work, it is
possible to obtain lower and upper bounds on the minimal cardinality of
partial reducts and the minimal length of partial decision rules.
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– For the most part of randomly generated binary decision tables, greedy al-
gorithms construct simple partial reducts and partial decision rules with
relatively high accuracy.

Obtained results will further to wider use of partial reducts and partial deci-
sion rules in rough set theory and applications.

Some similar problems were studied in [9] for the case, when each attribute
has its own weight. Usually, results obtained in [9] are weaker and proofs from
[9] are more complicated than the corresponding results and proofs from this
paper. We must also note that even if all weights are equal to 1, then the results
of the work of greedy algorithms considered in this paper can be different from
the results of the work of greedy algorithms considered in [9].

The paper consists of five sections. In Sect. 2 partial covers are studied. In
Sect. 3 partial tests (partial superreducts) and partial reducts are investigated.
In Sect. 4 partial decision rules are considered. Sect. 5 contains short conclusions.

2 Partial Covers

2.1 Main Notions

Let A = {a1, . . . , an} be a nonempty finite set and S = {Bi}i∈{1,...,m} =
{B1, . . . , Bm} be a family of subsets of A such that B1 ∪ . . . ∪ Bm = A. We
assume that S can contain equal subsets of A. The pair (A,S) is called a set
cover problem.

Let I be a subset of {1, . . . ,m}. The family P = {Bi}i∈I is called a subfamily
of S. The number |I| is called the cardinality of P and is denoted by |P |. Let
P = {Bi}i∈I and Q = {Bi}i∈J be subfamilies of S. The notation P ⊆ Q means
that I ⊆ J . Let P ∪Q = {Bi}i∈I∪J , P ∩Q = {Bi}i∈I∩J , and P \Q = {Bi}i∈I\J .

A subfamily Q = {Bi1 , . . . , Bit} of the family S is called a partial cover for
(A,S). Let α ∈ IR and 0 ≤ α < 1. The subfamily Q is called an α-cover for
(A,S) if |Bi1 ∪ . . . ∪ Bit | ≥ (1 − α)|A|. For example, 0.01-cover means that we
must cover at least 99% of elements from A. Note that a 0-cover is an exact
cover. By Cmin(α) = Cmin(α,A, S) we denote the minimal cardinality of α-cover
for (A,S). The notation Cmin(α) will be used in cases, when A and S are known.

Let us consider a greedy algorithm with threshold α (see Algorithm 1) which
constructs an α-cover for (A,S). By Cgreedy(α) = Cgreedy(α,A, S) we denote the
cardinality of constructed α-cover for (A,S).

2.2 Known Results

First, we consider some known results for exact covers, when α = 0.

Theorem 1. (Nigmatullin [11]) Cgreedy(0) ≤ Cmin(0)(1 + ln |A| − lnCmin(0)).

Theorem 2. (Johnson [3], Lovász [6])

Cgreedy(0) ≤ Cmin(0)(1 + ln(max
Bi∈S

|Bi|)) ≤ Cmin(0)(1 + ln |A|) .
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Algorithm 1: Greedy algorithm for partial cover construction
Input : Set cover problem (A,S) with S = {B1, . . . , Bm}, and real number α,

0 ≤ α < 1.
Output: α-cover for (A,S).
Q ←− ∅;
while Q is not an α-cover for (A, S) do

select Bi ∈ S with minimal index i such that Bi covers the maximal number
of elements from A uncovered by subsets from Q;
Q ←− Q ∪ {Bi};

end
return Q;

More exact bounds (depending only on |A|) were obtained by Slav́ık [18,19].

Theorem 3. (Slav́ık [18,19]) If |A| ≥ 2, then Cgreedy(0) < Cmin(0)(ln |A| −
ln ln |A|+ 0.78).

Theorem 4. (Slav́ık [18,19]) For any natural m ≥ 2 there exists a set cover
problem (A,S) such that |A| = m and Cgreedy(0) > Cmin(0)(ln |A| − ln ln |A| −
0.31).

There are some results on exact and approximate polynomial algorithms for
cover minimization.

Theorem 5. (Karp [4]) The problem of construction of 0-cover with minimal
cardinality is NP -hard.

Theorem 6. (Feige [2]) If NP �⊆ DTIME(nO(log log n)), then for any ε, 0 <
ε < 1, there is no polynomial algorithm that for a given set cover problem (A,S)
constructs a 0-cover for (A,S) which cardinality is at most (1− ε)Cmin(0) ln |A|.

Theorem 7. (Raz and Safra [15]) If P �= NP , then there exists γ > 0 such
that there is no polynomial algorithm that for a given set cover problem (A,S)
constructs a 0-cover for (A,S) which cardinality is at most γCmin(0) ln |A|.

Note that some results on the minimal exact covers for almost all set cover
problems from some classes were obtained by Vercellis [24]. Kuzjurin in [5] in-
vestigated the behavior of greedy algorithm during the construction of exact
covers for almost all problems from some classes of set cover problems such that
each element from A belongs to the same number of subsets from S.

We will now consider some known results for partial covers, where α ≥ 0.

Theorem 8. (Slav́ık [18,19]) Let 0 ≤ α < 1 and 4(1− α)|A|5 ≥ 2. Then
Cgreedy(α) < Cmin(α)(ln 4(1− α)|A|5 − ln ln 4(1− α)|A|5 + 0.78).

Theorem 9. (Slav́ık [18,19]) Let 0 ≤ α < 1. Then for any natural t ≥ 2 there
exists a set cover problem (A,S) such that 4(1 − α)|A|5 = t and Cgreedy(α) >
Cmin(α)(ln 4(1− α)|A|5 − ln ln 4(1− α)|A|5 − 0.31).
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Theorem 10. (Slav́ık [19]) Let 0 ≤ α < 1. Then Cgreedy(α) ≤ Cmin(α)(1 +
ln(maxBi∈S |Bi|)).

There are some bounds on Cgreedy(α) which does not depend on |A|. Note that
in the next two theorems we consider the case, where α > 0.

Theorem 11. (Cheriyan and Ravi [1]) Let 0 < α < 1. Then Cgreedy(α) ≤
Cmin(0) ln 1

α + 1.

This bound was rediscovered by Moshkov in [7] and generalized in [8].

Theorem 12. (Moshkov [8]) Let 0 < β ≤ α < 1. Then Cgreedy(α) ≤ Cmin(α −
β) ln 1

β + 1.

There is a result on exact polynomial algorithms for partial cover minimization.

Theorem 13. (Ślȩzak [21,23]) Let 0 ≤ α < 1. Then the problem of construction
of α-cover with minimal cardinality is NP -hard.

2.3 On Polynomial Approximate Algorithms

In this subsection, using technique created by Ślȩzak in [21,23], we generalize the
results of Feige, Raz and Safra (Theorems 6 and 7) to the case of partial covers.

When we say about a polynomial algorithm for set cover problems (A,S), it
means that the time complexity of the considered algorithm is bounded from
above by a polynomial depending on |A| and |S|.

When we say about an algorithm, that for a given set cover problem (A,S)
constructs an α-cover which cardinality is at most f(A,S)Cmin(α,A, S), we as-
sume that in the case f(A,S) < 1 the considered algorithm constructs an α-cover
for (A,S) which cardinality is equal to Cmin(α,A, S).

We consider an arbitrary set cover problem (A,S) with S = {B1, . . . , Bm}.
Let α ∈ IR and 0 < α < 1. We correspond to (A,S) and α a set cover problem
(Aα, Sα). Let n(α) =

⌊
|A|α
1−α

⌋
and b1, . . . , bn(α) be elements which do not belong

to the set A. Then Aα = A ∪ {b1, . . . , bn(α)} and Sα = {B1, . . . , Bm, Bm+1, . . . ,
Bm+n(α)}, where Bm+1 = {b1}, . . . , Bm+n(α) = {bn(α)}.

It is clear that there exists a polynomial algorithm which for a given set cover
problem (A,S) and number α constructs the set cover problem (Aα, Sα).

Lemma 1. Let Q ⊆ S be a 0-cover for (A,S) and α be a real number such that
0 < α < 1. Then Q is an α-cover for (Aα, Sα).

Proof. It is clear that |Aα| = |A|+ n(α). One can show that

|A| − 1 < (1− α)|Aα| ≤ |A| . (1)

It is clear that subsets from Q cover exactly |A| elements from Aα. From (1)
we conclude that Q is an α-cover for (Aα, Sα). ��
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Lemma 2. Let Qα ⊆ Sα be an α-cover for (Aα, Sα). Then there exists Q ⊆ S
which is a 0-cover for (A,S) and for which |Q| ≤ |Qα|. There exists a polynomial
algorithm which for a given Qα constructs corresponding Q.

Proof. Let Qα = Q0 ∪ Q1, where Q0 ⊆ S and Q1 ⊆ Sα \ S. If Q0 covers all
elements of the set A, then in the capacity of Q we can choose the set Q0. Let
Q0 cover not all elements from A, A′ be the set of uncovered elements from A,
and |A′| = m. Taking into account that Qα covers at least (1− α)|Aα| elements
from Aα and using (1) we conclude that Qα covers greater than |A|−1 elements.
Thus, Qα covers at least |A| elements. It is clear that each subset from Sα \ S
covers exactly one element. Therefore, |Q1| ≥ m. One can show that there exists
a polynomial algorithm which finds t ≤ m subsets Bi1 , . . . , Bit from S covering
all elements from A′. Set Q = Q0 ∪ {Bi1 , . . . , Bit}. It is clear that Q is a 0-cover
for (A,S), and |Q| ≤ |Qα|. ��

Corollary 1. Let α ∈ IR and 0 < α < 1. Then Cmin(0, A, S) = Cmin(α,Aα, Sα).

Proof. From Lemma 1 it follows that Cmin(α,Aα, Sα) ≤ Cmin(0, A, S). From
Lemma 2 it follows that Cmin(0, A, S) ≤ Cmin(α,Aα, Sα). ��

Lemma 3. Let α, b and δ be real numbers such that 0 < α < 1, b > 0
and δ > 0, and let there exist a polynomial algorithm A that, for a given
set cover problem (A,S), constructs an α-cover which cardinality is at most
b ln |A|Cmin(α,A, S). Then there exists a polynomial algorithm B that, for a
given set cover problem (A,S), constructs a 0-cover which cardinality is at most
(b + δ) ln |A|Cmin(0, A, S).

Proof. Let us describe the work of the algorithm B. Let β = 1 + α
1−α and

a = max
{

1
b ,

b ln β
δ

}
. If ln |A| ≤ a, then, in polynomial time, we consider all

subfamilies of S, which cardinality is at most |A|, and find among them a 0-
cover for (A,S) with minimal cardinality. It is clear that the cardinality of this
0-cover is equal to Cmin(0, A, S).

Let ln |A| > a. Then b ln |A| > 1, (b + δ) ln |A| > 1 and

δ ln |A| > b lnβ . (2)

In polynomial time, we construct the problem (Aα, Sα), and apply to this
problem the polynomial algorithm A. As a result, we obtain an α-cover Qα for
(Aα, Sα) such that |Qα| ≤ b ln |Aα|Cmin(α,Aα, Sα).

It is clear that |Aα| ≤ |A|β. Using Corollary 1 we obtain Cmin(α,Aα, Sα) =
Cmin(0, A, S). Therefore, |Qα| ≤ b(ln |A|+ lnβ)Cmin(0, A, S).

From (2) we obtain b(ln |A| + lnβ) = (b + δ) ln |A| − δ ln |A| + b lnβ ≤
(b + δ) ln |A|. Therefore, |Qα| ≤ (b + δ) ln |A|Cmin(0, A, S). From Lemma 2 we
conclude that, in polynomial time, we can construct a 0-cover Q for (A,S) such
that |Q| ≤ (b + δ) ln |A|Cmin(0, A, S). ��

We now generalize Theorem 6 to the case of partial covers.
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Theorem 14. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)),
then for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given
set cover problem (A,S) constructs an α-cover for (A,S) which cardinality is at
most (1 − ε)Cmin(α,A, S) ln |A|.

Proof. If α = 0, then the statement of the theorem coincides with Theorem
6. Let α > 0. Let us assume that the considered statement does not hold: let
NP �⊆ DTIME(nO(log log n)) and for some ε, 0 < ε < 1, there exist a polynomial
algorithm A that, for a given set cover problem (A,S), constructs an α-cover for
(A,S) which cardinality is at most (1− ε)Cmin(α,A, S) ln |A|.

Applying Lemma 3 with parameters b = (1− ε) and δ = ε
2 we conclude that,

under the assumption NP �⊆ DTIME(nO(log log n)), there exists a polynomial
algorithm B that, for a given set cover problem (A,S), constructs a 0-cover for
(A,S) which cardinality is at most (1 − ε

2 )Cmin(0, A, S) ln |A|. Last statement
contradicts Theorem 6. ��

From Theorem 10 it follows that Cgreedy(α) ≤ Cmin(α)(1 + ln |A|). From this
inequality and from Theorem 14 it follows that, under the assumption NP �⊆
DTIME(nO(log log n)), the greedy algorithm is close to the best polynomial ap-
proximate algorithms for partial cover minimization.

We now generalize Theorem 7 to the case of partial covers.

Theorem 15. Let α ∈ IR and 0 ≤ α < 1. If P �= NP , then there exists
ρ > 0 such that there is no polynomial algorithm that for a given set cover
problem (A,S) constructs an α-cover for (A,S) which cardinality is at most
ρCmin(α,A, S) ln |A|.

Proof. If α = 0, then the statement of the theorem coincides with Theorem
7. Let α > 0. We will now show that in the capacity of ρ we can take the
number γ

2 , where γ is the constant from Theorem 7. Let us assume the contrary:
let P �= NP , and a polynomial algorithm A exist that, for a given set cover
problem (A,S), constructs an α-cover for (A,S) which cardinality is at most
γ
2Cmin(α,A, S) ln |A|.

Applying Lemma 3 with parameters b = γ
2 and δ = γ

2 we conclude that, under
the assumption P �= NP , there exists a polynomial algorithm B that, for a given
set cover problem (A,S), constructs a 0-cover for (A,S) which cardinality is at
most γCmin(0, A, S) ln |A|. Last statement contradicts Theorem 7. ��

2.4 Bounds on Cmin(α) Based on Information About Greedy
Algorithm Work

Using information on the greedy algorithm work we can obtain bounds on
Cmin(α). We consider the two simple examples. It is clear that Cmin(α) ≤
Cgreedy(α). From Theorem 10 it follows that Cgreedy(α) ≤ Cmin(α)(1 + ln |A|).
Therefore, Cmin(α) ≥ Cgreedy(α)

1+ln |A| . Another lower bounds on Cmin(α) can be ob-
tained based on Theorems 8 and 12.

In this subsection, we fix some information on the greedy algorithm work, and
find the best upper and lower bounds on Cmin(α) depending on this information.
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Information on Greedy Algorithm Work. Assume that (A,S) is a set
cover problem and α is a real number such that 0 ≤ α < 1. Let us apply the
greedy algorithm with threshold α to the problem (A,S). Assume that during
the construction of α-cover the greedy algorithm chooses consequently subsets
Bj1 , . . . , Bjt . Set Bj0 = ∅ and for i = 1, . . . , t set δi = |Bji \ (Bj0 ∪ . . . ∪Bji−1)|.

Write Δ(α,A, S) = (δ1, . . . , δt). As information on the greedy algorithm
work we will use the tuple Δ(α,A, S) and numbers |A| and α. Note that δ1 =
max{|Bi| : Bi ∈ S} and t = Cgreedy(α,A, S). Let us denote by PSC the set of
set cover problems and DSC = {(α, |A|, Δ(α,A, S)) : α ∈ IR, 0 ≤ α < 1, (A,S) ∈
PSC}.

Lemma 4. A tuple (α, n, (δ1, . . . , δt)) belongs to the set DSC if and only if α is
a real number such that 0 ≤ α < 1, and n, δ1, . . . , δt are natural numbers such
that δ1 ≥ . . . ≥ δt,

∑t−1
i=1 δi < (1− α)n and (1− α)n ≤

∑t
i=1 δi ≤ n.

Proof. Let (α, n, (δ1, . . . , δt)) ∈ DSC and (α, n, (δ1, . . . , δt)) = (α, |A|, Δ(α,A,
S)). It is clear that α is a real number, 0 ≤ α < 1, and n, δ1, . . . , δt are natural
numbers. From the definition of greedy algorithm it follows that δ1 ≥ . . . ≥ δt.
Taking into account that α is the threshold for the greedy algorithm we obtain∑t−1

i=1 δi < (1− α)n and (1− α)n ≤
∑t

i=1 δi ≤ n.
Let (α, n, (δ1, . . . , δt)) be a tuple for which α is a real number such that 0 ≤

α < 1, and n, δ1, . . . , δt are natural numbers such that δ1 ≥ . . . ≥ δt,
∑t−1

i=1 δi <

(1−α)n and (1−α)n ≤
∑t

i=1 δi ≤ n. We define a set cover problem (A,S) in the
following way: A = {a1, . . . , an} and S = {{a1, . . . , aδ1}, . . . , {aδ1+...+δt−1+1, . . . ,
aδ1+...+δt}, {aδ1+...+δt+1}, . . . , {an}} (for simplicity, we omit here notation B1 =
{a1, . . . , aδ1}, . . . ). It is not difficult to show that Δ(α,A, S) = (δ1, . . . , δt). Thus,
(α, n, (δ1, . . . , δt)) ∈ DSC . ��

Best Upper Bound for Cmin(α). We define a function USC : DSC → IN. Let
(α, n, (δ1, . . . , δt)) ∈ DSC . Then USC(α, n, (δ1, . . . , δt)) = max{Cmin(α,A, S) :
(A,S) ∈ PSC , |A| = n,Δ(α,A, S) = (δ1, . . . , δt)}. It is clear that Cmin(α,A, S) ≤
USC(α, |A|, Δ(α,A, S)) is the best upper bound for Cmin(α) depending on α, |A|
and Δ(α,A, S).

Theorem 16. Let (α, n, (δ1, . . . , δt)) ∈ DSC. Then USC(α, n, (δ1, . . . , δt)) = t.

Proof. Let us consider an arbitrary set cover problem (A,S) such that |A| = n
and Δ(α,A, S) = (δ1, . . . , δt). It is clear that Cmin(α,A, S) ≤ Cgreedy(α,A, S).
Since Cgreedy(α,A, S) = t, we have U(α, n, (δ1, . . . , δt)) ≤ t.

We consider the following set cover problem (A,S): A = {a1, . . . , an} and
S = {{a1, . . . , aδ1}, . . . , {aδ1+...+δt−1+1, . . . , aδ1+...+δt}, {aδ1+...+δt+1}, . . . , {an}}
(we omit here notation B1 = {a1, . . . , aδ1}, . . .). It is clear that |A| = n. Lemma
4 now shows that Δ(α,A, S) = (δ1, . . . , δt). Taking into account that all subsets
from S are pairwise disjoint it is not difficult to prove that Cmin(α,A, S) =
Cgreedy(α,A, S) = t. Therefore, USC(α, n, (δ1, . . . , δt)) ≥ t. ��

Thus, Cmin(α,A, S) ≤ Cgreedy(α,A, S) is the best upper bound for Cmin(α)
depending on α, |A| and Δ(α,A, S).
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Best Lower Bound for Cmin(α). We define a function LSC : DSC → IN. Let
(α, n, (δ1, . . . , δt)) ∈ DSC . Then LSC(α, n, (δ1, . . . , δt)) = min{Cmin(α,A, S) :
(A,S) ∈ PSC , |A| = n,Δ(α,A, S) = (δ1, . . . , δt)}. It is clear that Cmin(α,A, S) ≥
LSC(α, |A|, Δ(α,A, S)) is the best lower bound for Cmin(α) depending on α, |A|
and Δ(α,A, S). For (α, n, (δ1, . . . , δt)) ∈ DSC and δ0 = 0 set

l(α, n, (δ1, . . . , δt)) = max
{⌈
4(1 − α)n5 − (δ0 + . . . + δi)

δi+1

⌉
: i = 0, . . . , t− 1

}
.

Theorem 17. Let (α, n, (δ1, . . . , δt)) ∈ DSC . Then LSC(α, n, (δ1, . . . , δt)) =
l(α, n, (δ1, . . . , δt)).

Proof. Let us consider an arbitrary set cover problem (A,S) such that |A| = n
and Δ(α,A, S) = (δ1, . . . , δt). Set p = Cmin(α,A, S). It is clear that there exist p
subsets from S which cover a subset V of the set A such that |V | ≥ 4(1− α)n5.

Let i ∈ {0, . . . , t − 1}. After i steps of the greedy algorithm work, at least
4(1− α)n5− (δ0 + . . .+ δi) elements from the set V are uncovered. Therefore, in
the family S there is a subset which can cover at least �(1−α)n�−(δ0+...+δi)

p of un-

covered elements. Thus, δi+1 ≥ �(1−α)n�−(δ0+...+δi)
p and p ≥ �(1−α)n�−(δ0+...+δi)

δi+1
.

Since p is a natural number, we have p ≥
⌈
�(1−α)n�−(δ0+...+δi)

δi+1

⌉
. Taking into ac-

count that i is an arbitrary number from {0, . . . , t−1} we obtain Cmin(α,A, S) ≥
l(α, n, (δ1, . . . , δt)). Thus, LSC(α, n, (δ1, . . . , δt)) ≥ l(α, n, (δ1, . . . , δt)).

Let us show that L(α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)).
Write d = l(α, n, (δ1, . . . , δt)), r = 4(1− α)n5 and q = n− (δ1 + . . . + δt). Let

us consider the following set cover problem (A,S): A = {a1, . . . , an} and S =
{B1, . . . , Bt, Bt+1, . . . , Bt+q, Bt+q+1, . . . , Bt+q+d}, where B1 = {a1, . . . , aδ1}, ...,
Bt = {aδ1+...+δt−1+1, . . . , aδ1+...+δt}, Bt+1 = {aδ1+...+δt+1}, ..., Bt+q = {an}.
Let D = {a1, . . . , ar}. For j = 1, . . . , d, the set Bt+q+j includes all elements
from the set D of the kind ar−id−j+1, i = 0, 1, 2, . . ., and only such elements.

It is clear that subsets Bt+q+1, . . . , Bt+q+d form an α-cover for (A,S). There-
fore, Cmin(α,A, S) ≤ d.

We prove by induction on j = 1, . . . , t that, during the step number j, the
greedy algorithm chooses the subset Bj from S. Note that from Lemma 4 it
follows that δ1 ≥ . . . ≥ δt.

Let us consider the first step of greedy algorithm. It is clear that the cardinality
of B1 is equal to δ1, and δ1 is greater than of equal to the cardinality of each of
sets B2, . . . , Bt+q. Let us show that δ1 is greater than of equal to the cardinality

of each of sets Bt+q+1, . . . , Bt+q+d. We have
⌈

r
δ1

⌉
≤ d. Therefore, r

δ1
≤ d and

r
d ≤ δ1. Let r = sd+a, where s is a nonnegative integer and a ∈ {0, 1, . . . , d−1}.
Then the cardinality of each of the sets Bt+q+1, . . . , Bt+q+d is equal to s if a = 0,
and is at most s+ 1 if a > 0. From the inequality r

d ≤ δ1 it follows that δ1 ≥ s if
a = 0, and δ1 ≥ s + 1 if a > 0. So at the first step the greedy algorithm chooses
the set B1.

Let us assume that during j steps, 1 ≤ j ≤ t−1, the greedy algorithm chooses
the sets B1, . . . , Bj . Let us consider the step number j + 1. It is clear that Bj+1
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covers δj+1 uncovered elements. One can show that each set from Bj+2, . . . , Bt+q

covers at most δj+1 uncovered elements. Set u = r−(δ1+. . .+δj). Let u = sd+a,
where s is a nonnegative integer and a ∈ {0, 1, . . . , d − 1}. One can show that
each set from Bt+q+1, . . . , Bt+q+d covers at most s uncovered elements if a = 0,

and at most s + 1 uncovered elements if a > 0. It is clear that
⌈

u
δj+1

⌉
≤ d.

Therefore, u
δj+1

≤ d and u
d ≤ δj+1. Hence, δj+1 ≥ s if a = 0, and δj+1 ≥ s + 1 if

a > 0. So at the step number j + 1 the greedy algorithm chooses the set Bj+1.
Since the greedy algorithm chooses subsets B1, . . . , Bt, we have Δ(α,A, S) =

(δ1, . . . , δt). Therefore, Cmin(α) ≥ d. As it was proved earlier, Cmin(α) ≤ d.
Hence, Cmin(α) = d and LSC(α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)). Therefore,
LSC(α, n, (δ1, . . . , δm)) = l(α, n, (δ1, . . . , δt)). ��

So Cmin(α,A, S) ≥ l(α, |A|, Δ(α,A, S)) is the best lower bound for Cmin(α)
depending on α, |A| and Δ(α,A, S).

Properties of Best Lower Bound for Cmin(α). Assume that (A,S) is a set
cover problem and α is a real number such that 0 ≤ α < 1. Let

lSC(α) = lSC(α,A, S) = l(α, |A|, Δ(α,A, S)) .

Lemma 5. Let α1, α2 ∈ IR and 0 ≤ α1 < α2 < 1. Then lSC(α1) ≥ lSC(α2).

Proof. Let Δ(α1, A, S) = (δ1, . . . , δt1) and Δ(α2, A, S) = (δ1, . . . , δt2). We have
t1 ≥ t2. Let δ0 = 0, j ∈ {0, . . . , t2 − 1} and

⌈ �|A|(1−α2)�−(δ0+...+δj)
δj+1

⌉
= lSC(α2).

It is clear that lSC(α1) ≥
⌈ �|A|(1−α1)�−(δ0+...+δj)

δj+1

⌉
≥ lSC(α2). ��

Corollary 2. lSC(0) = max{lSC(α) : 0 ≤ α < 1}.

The value lSC(α) can be used for obtaining of upper bounds on the cardinality
of partial covers constructed by the greedy algorithm.

Theorem 18. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Cgreedy(α) < lSC(α− β) ln

(
1−α+β

β

)
+ 1.

Proof. Let Δ(α − β,A, S) = (δ1, . . . , δt), δ0 = 0, M = (1 − α + β)|A| and
l = lSC(α − β). We have l ≥ 1 and l ≥ max

{
M−(δ0+...+δi)

δi+1
: i = 0, . . . , t− 1

}
.

Therefore, for i = 0, . . . , t− 1, M−(δ0+...+δi)
δi+1

≤ l and

M − (δ0 + . . . + δi)
l

≤ δi+1 . (3)

Let us assume that l = 1. Then δ1 ≥ M and Cgreedy(α) = 1. It is clear

that lSC(α − β) ln
(

1−α+β
β

)
> 0. Therefore, if l = 1, then the statement of the

theorem holds. Let l ≥ 2. Let us show that for j = 1, . . . , t,

M − (δ0 + . . . + δj) ≤M

(
1− 1

l

)j

. (4)
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For i = 0, from (3) it follows that δ1 ≥ M
l . Therefore, (4) holds for j = 1. Let

us assume that (4) holds for some j, 1 ≤ j ≤ t− 1. Let us show that

M − (δ0 + . . . + δj+1) ≤M

(
1− 1

l

)j+1

. (5)

Write Q = M−(δ0 + . . .+δj). For i = j, from (3) it follows that δj+1 ≥ Q
l . Using

this inequality and (4) we obtain M − (δ0 + . . . + δj+1) ≤ Q− Q
l ≤ Q

(
1− 1

l

)
≤

M
(
1− 1

l

)j+1. Therefore, (5) holds. Thus, (4) holds.
Let Cgreedy(α) = p. It is clear that Cgreedy(α) ≤ Cgreedy(α − β) = t. There-

fore, p ≤ t. It is clear that δ1 + . . . + δp−1 < |A|(1 − α). Using (4) we ob-
tain M −M

(
1− 1

l

)p−1 ≤ δ1 + . . . + δp−1. Therefore, |A|(1 − α + β) − |A|(1 −
α + β)

(
1− 1

l

)p−1
< |A|(1 − α). Hence, |A|β < |A|(1 − α + β)

(
1− 1

l

)p−1 =

|A|(1−α+β)
(

l−1
l

)p−1
and

(
l

l−1

)p−1

< 1−α+β
β . If we take the natural logarithm

of both sides of this inequality, we obtain (p − 1) ln
(

1 + 1
l−1

)
< ln

(
1−α+β

β

)
.

Taking into account that l − 1 is a natural number, and using the inequality
ln
(
1 + 1

r

)
> 1

r+1 , which holds for any natural r, we obtain ln
(

1 + 1
l−1

)
> 1

l .

Therefore, Cgreedy(α) = p < l ln
(

1−α+β
β

)
+ 1 = lSC(α− β) ln

(
1−α+β

β

)
+ 1. ��

Corollary 3. Let α ∈ IR and 0 < α < 1. Then Cgreedy(α) < lSC(0) ln
(

1
α

)
+ 1.

If lSC(0) is a small number, then we have a good upper bound on Cgreedy(α).
If lSC(0) is a big number, then we have a big lower bound on Cmin(0) and on
Cmin(α) for some α.

2.5 Upper Bound on Cgreedy(α)

In this subsection, we obtain one more upper bound on Cgreedy(α) which does
not depend on |A|, and show that, in some sense, this bound is unimprovable.

Theorem 19. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Cgreedy(α) < Cmin(α− β) ln

(
1−α+β

β

)
+ 1.

Proof. From Theorem 18 it follows that Cgreedy(α) < lSC(α−β) ln
(

1−α+β
β

)
+1,

and from Theorem 17 it follows that lSC(α− β) ≤ Cmin(α− β). ��

Let us show that obtained bound is, in some sense, unimprovable.

Lemma 6. Let α be a real number, 0 ≤ α < 1, j ∈ {0, . . . , |A| − 1} and j
|A| ≤

α < j+1
|A| . Then Cmin(α) = Cmin( j

|A| ) and Cgreedy(α) = Cgreedy( j
|A|).

Proof. Taking into account that j
|A| ≤ α we conclude that Cmin(α) ≤ Cmin( j

|A|)

and Cgreedy(α) ≤ Cgreedy( j
|A| ).
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Let Q = {Bi1 , . . . , Bit} be an arbitrary α-cover for (A,S). Let M = |Bi1∪. . .∪
Bit |. It is clear that M ≥ |A|(1−α). Therefore, 1− M

|A| ≤ α. Taking into account

that α < j+1
|A| we obtain |A| −M < j + 1. Hence, |A| −M ≤ j and |A| − j ≤M .

Therefore, M ≥ |A|(1 − j
|A|), and Q is also an j

|A| -cover. Thus, each α-cover is

an j
|A| -cover. Using this fact it is not difficult to show that Cmin(α) ≥ Cmin( j

|A|)

and Cgreedy(α) ≥ Cgreedy( j
|A| ). ��

Theorem 20. There is no real δ < 1 such that for any set cover problem (A,S)
and for any real α and β, 0 < β ≤ α < 1, the following inequality holds:

Cgreedy(α) ≤ δ

(
Cmin(α− β) ln

(
1− α + β

β

)
+ 1

)
. (6)

Proof. Assume the contrary: let such δ exist. We now consider an arbitrary α,
0 < α < 1, and an arbitrary set cover problem (A,S). Let j ∈ {0, . . . , |A| − 1}
and j

|A| ≤ α < j+1
|A| . Using (6) we obtain

Cgreedy

(
j

|A| +
1

2|A|

)
≤ δ

(
Cmin

(
j

|A|

)
ln

(
1− j

|A| −
1

2|A| + 1
2|A|

1
2|A|

)
+ 1

)

= δ

(
Cmin

(
j

|A|

)
ln (|A| − j) + Cmin

(
j

|A|

)
ln 2 + 1

)
.

Lemma 6 now shows Cgreedy

(
j
|A| + j

2|A|
)

= Cgreedy

(
j
|A|
)

= Cgreedy (α) and

Cmin( j
|A|) = Cmin(α). Let us evaluate the number |A| − j. We have j ≤ α|A| <

j + 1. Therefore, |A| − j − 1 < |A| − α|A| ≤ |A| − j and |A| − j = 4(1 − α)|A|5.
Finally, we have

Cgreedy(α) ≤ δ (Cmin (α) ln (4(1− α)|A|5) + Cmin (α) ln 2 + 1) . (7)

Using Theorem 9 we conclude that for any natural t ≥ 2 there exists a set
cover problem (At, St) such that 4(1− α)|At|5 = t and Cgreedy(α,At, St) >
Cmin(α,At, St)(ln t−ln ln t−0.31). Let Ct = Cmin(α,At, St). Using (7) we obtain
for any t ≥ 2, Ct(ln t− ln ln t− 0.31) < δ(Ct ln t + Ct ln 2 + 1). If we divide both
sides of this inequality by Ct ln t, we obtain 1− ln ln t

ln t −
0.31
ln t < δ + δ ln 2

ln t + δ
Ct ln t .

It is clear that Ct ≥ 1. Therefore, with growth of t the left-hand side of this
inequality tends to 1, and the right-hand side of this inequality tends to δ, which
is impossible. ��

2.6 On Covers for the Most Part of Set Cover Problems

Assume that (A,S) is a set cover problem, the elements of A are enumerated
by numbers 1, . . . , n, and sets from S are enumerated by numbers 1, . . . ,m. It is
possible that sets from S with different numbers are equal. There is a one-to-one
correspondence between such set cover problems and tables with n rows and m
columns filled by numbers from {0, 1} and having no rows filled by 0 only. Let
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A = {a1, . . . , an} and S = {B1, . . . , Bm}. Then the problem (A,S) corresponds
to the table which, for i = 1, . . . , n and j = 1, . . . ,m, has 1 at the intersection
of i-th row and j-th column if and only if ai ∈ Bj .

A table filled by numbers from {0, 1} will be called SC-table if this table has
no rows filled by 0 only.

Lemma 7. The number of SC-tables with n rows and m columns is at least
2mn − 2mn−m+log2 n.

Proof. Let i ∈ {1, . . . , n}. The number of tables, in which the i-th row is filled
by 0 only, is equal to 2mn−m. Therefore, the number of tables, which are not
SC-tables, is at most n2mn−m = 2mn−m+log2 n. Thus, the number of SC-tables
is at least 2mn − 2mn−m+log2 n. ��

On Exact Covers for the Most Part of Set Cover Problems. First,
we study exact covers for the most part of set cover problems such that m ≥
4log2 n5+ t and t is large enough.

Theorem 21. Let us consider set cover problems (A,S) such that A = {a1, . . . ,
an}, S = {B1, . . . , Bm} and m ≥ 4log2 n5 + t, where t is a natural number.
Let i1, . . . , i�log2 n�+t be pairwise different numbers from {1, . . . ,m}. Then the
fraction of set cover problems (A,S), for which {Bi1 , . . . , Bi�log2 n	+t

} is an exact
cover for (A,S), is at least 1− 1

2t−1 .

Proof. Let k = 4log2 n5 + t. The analyzed fraction is equal to the fraction of
SC-tables with n rows and m columns which have no rows with only 0 at the
intersection with columns i1, . . . , ik. Such SC-tables will be called correct.

Let j ∈ {1, . . . , t}. The number of tables with n rows and m columns filled by 0
and 1, in which the j-th row has only 0 at the intersection with columns i1, . . . , ik,
is equal to 2mn−k. Therefore, the number of SC-tables which are not correct is at
most n2mn−k = 2mn−k+log2 n. Using Lemma 7 we conclude that the fraction of
correct SC-tables is at least 1− 2mn−k+log2 n

2mn−2mn−m+log2 n = 1− 1
2k−log2 n−2k−m ≥ 1− 1

2t−1 .
��

For example, if t = 7, then for at least 99% of set cover problems (A,S) the
subsets Bi1 , . . . , Bi�log2 n	+t

form an exact cover for (A,S).
So if m ≥ 4log2 n5 + t and t is large enough, then for the most part of set

cover problems there exist exact (and, consequently, partial) covers with small
cardinality.

On Partial Covers Constructed by Greedy Algorithm for the Most
Part of Set Cover Problems. We will now study the behavior of greedy
algorithm for the most part of set cover problems such that m ≥ n + t and t is
large enough.

Let us consider set cover problems (A,S) such that A = {a1, . . . , an} and
S = {B1, . . . , Bm}. A problem (A,S) will be called saturated if for any nonempty
subset A′ of A there exists a subset Bi from S which covers at least one half of
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elements from A′. For a saturated set cover problem, the greedy algorithm at
each step chooses a subset which covers at least one half of uncovered elements.

Let us evaluate the number of saturated set cover problems. First, we prove
an auxiliary statement.

Lemma 8. Let k be a natural number and σ ∈ {0, 1}. Then the number of
k-tuples from {0, 1}k, in which the number of σ is less than k

2 , is at most 2k−1.

Proof. Let k be even. Then the number of k-tuples from {0, 1}k, in which the

number of σ is less than k
2 , is equal to C0

k + . . .+ C
k
2−1

k which is less than 2k−1.
Let k be odd. Then the number of k-tuples from {0, 1}k, in which the number

of σ is less than k
2 , is equal to C0

k + . . . + C
6 k

2 7
k which is equal to 2k−1. ��

A table with n rows and m columns filled by numbers from {0, 1} will be called
saturated if for any k ∈ {1, . . . , n} for any k rows there exists a column which
has at least k

2 numbers 1 at the intersection with considered rows. Otherwise,
the table will be called unsaturated.

Theorem 22. Let us consider set cover problems (A,S) such that A = {a1, . . . ,
an}, S = {B1, . . . , Bm} and m > n. Then the fraction of saturated set cover
problems (A,S) is at least 1− 1

2m−n−1 .

Proof. It is clear that analyzed fraction is equal to the fraction of saturated
SC-tables.

Let us consider tables with n rows and m columns filled by numbers from
{0, 1}. Let k ∈ {1, . . . , n} and i1, . . . , ik be pairwise different numbers from
{1, . . . , n}. We now evaluate the number of tables in which at the intersection
of each column with rows i1, . . . , ik the number of 1 is less than k

2 . Such tables
will be called unsaturated in rows i1, . . . , ik.

From Lemma 8 it follows that the number of k-tuples from {0, 1}k, in which
the number of 1 is less than k

2 , is at most 2k−1. Therefore, the number of tables,
which are unsaturated in rows i1, . . . , ik, is at most 2mn−m.

There are 2n different subsets of rows. Therefore, the number of unsaturated
tables is at most 2mn+n−m. Using Lemma 7 we conclude that the fraction of
saturated SC-tables is at least 1 − 2mn+n−m

2mn−2mn−m+log2 n = 1 − 1
2m−n−2log2 n−n ≥

1− 1
2m−n−1 . ��

For example, if m = n+7, then at least 99% of set cover problems are saturated.
Let us analyze the work of greedy algorithm on an arbitrary saturated set cover
problem (A,S). For i = 1, 2, . . ., after the step number i at most |A|2i elements
from A are uncovered. We now evaluate the number Cgreedy(α), where 0 < α < 1.
It is clear that Cgreedy(α) ≤ i, where i is a number such that 1

2i ≤ α. One can
show that 1

24log2 1
α5 ≤ α. Therefore, Cgreedy(α) ≤

⌈
log2

1
α

⌉
. Some examples can

be found in Table 1.
Let us evaluate the number Cgreedy(0). It is clear that all elements from A

will be covered after a step number i if |A|2i < 1, i.e., if i > log2 |A|. If log2 |A|
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Table 1. Values of
�
log2

1
α

�
for some α

α 0.5 0.3 0.1 0.01 0.001

Percentage of covered elements 50 70 90 99 99.9�
log2

1
α

�
1 2 4 7 10

is an integer, we can set i = log2 |A| + 1. Otherwise, we can set i = 4log2 |A|5.
Therefore, Cgreedy(0) ≤ log2 |A|+ 1.

We now evaluate the number lSC(0). Let Δ(0, A, S) = (δ1, . . . , δm). Set δ0 =
0. Then lSC(0) = max

{⌈
|A|−(δ0+...+δi)

δi+1

⌉
: i = 0, . . . ,m− 1

}
. Since (A,S) is a

saturated problem, we have δi+1 ≥ |A|−(δ0+...+δi)
2 and 2 ≥ |A|−(δ0+...+δi)

δi+1
for

i = 0, . . . ,m− 1. Therefore, lSC(0) ≤ 2. Using Corollary 2 we obtain lSC(α) ≤ 2
for any α, 0 ≤ α < 1.

Results of Experiments. We made some experiments with set cover problems
(A,S) such that |A| ∈ {10, 50, 100, 1000, 3000, 5000} and |S| = 10. For each value
of |A| we generated randomly 10 problems (A,S) such that for each element ai

from A and for each subset Sj from S the probability of ai to be in Sj is equal
to 1

2 . The results of experiments are represented in Tables 2 and 3.
In Table 2 the average percentage of elements covered at the i-th step of

greedy algorithm is presented, i = 1, . . . , 10. For example, 52.5 means that, on
the average, 52.5% of elements remaining uncovered before i-th step are covered
at i-th step.

Table 2. Average percentage of elements covered at i-th step of greedy algorithm

Number i of step
|A| 1 2 3 4 5 6 7 8 9 10

10 71.0 87.5 100.0

50 62.4 67.5 80.1 100.0

100 58.9 60.6 62.9 67.8 82.7 95.0 100.0

1000 52.8 52.4 52.4 53.4 54.7 57.3 64.7 76.2 85.0 100.0

3000 51.2 51.5 52.5 52.6 53.6 54.2 56.9 61.2 72.3 100.0

5000 51.1 51.3 51.5 52.4 52.5 54.3 56.7 63.1 82.0 100.0

In Table 3 for each α ∈ {0.1, 0.01, 0.001, 0.0} the minimal, average and maxi-
mal cardinalities of α-covers constructed by the greedy algorithm are presented.

The obtained results show that for the most part of the considered set cover
problems (not only for the case, when |S| > |A|) during each step the greedy
algorithm chooses a subset which covers at least one half of uncovered elements.

It must be also noted that with increase of step number the percentage of
elements, covered at this step, grows for the most part of the considered set
cover problems.
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Table 3. Cardinalities of α-covers for set cover problems (A, S) with |S| = 10

α
|A| 0.1 0.01 0.001 0.0

min avg max min avg max min avg max min avg max

10 2 2.0 2 2 2.4 3 2 2.4 3 2 2.4 3
50 2 2.6 3 4 4.0 4 4 4.0 4 4 4.0 4
100 3 3.0 3 5 5.5 7 5 5.5 7 5 5.5 7
1000 3 3.9 4 6 6.6 7 8 8.9 10 8 8.9 10
3000 4 4.0 4 6 6.9 7 8 9.0 10 9 9.9 10
5000 4 4.0 4 7 7.0 7 9 9.0 9 9 9.9 10

3 Partial Tests and Reducts

3.1 Main Notions

Let T be a table with n rows labeled with nonnegative integers (decisions) and
m columns labeled with attributes (names of attributes) f1, . . . , fm. This table
is filled by nonnegative integers (values of attributes). The table T is called a
decision table.

By P (T ) we denote the set of unordered pairs of different (in at least one
column) rows of T with different decisions. We say that an attribute fi separates
a pair of rows (r1, r2) ∈ P (T ) if rows r1 and r2 have different values at the
intersection with column fi.

Let 0 ≤ α < 1. A set of attributes Q is called an α-test for T if attributes
from Q separate at least (1 − α)|P (T )| pairs from the set P (T ). An α-test is
called an α-reduct if each proper subset of the considered α-test is not an α-test.
If P (T ) = ∅, then each subset of {f1, . . . , fm} is an α-test, and empty set is an
α-reduct only.

For example, 0.01-test means that we must separate at least 99% of pairs from
P (T ). Note that a 0-reduct is an exact reduct. It must be also noted that each
α-test contains at least one α-reduct as subset.

By Rmin(α) = Rmin(α, T ) we denote the minimal cardinality of an α-reduct
for T . It is clear that Rmin(α, T ) coincides with minimal cardinality of an α-test
for T .

We will now describe a greedy algorithm with threshold α which constructs
an α-test for T .

Let us denote by Rgreedy(α) = Rgreedy(α, T ) the cardinality of constructed
α-test for T .

3.2 Relationships between Partial Covers and Partial Tests

Let T be a decision table with m columns labeled with attributes f1, . . . , fm, and
with a nonempty set P (T ). We correspond a set cover problem (A(T ), S(T )) to
the considered decision table T in the following way: A(T ) = P (T ) and S(T ) =
{B1, . . . , Bm}, where B1 = P (T, f1), . . . , Bm = P (T, fm), and for i = 1, . . . ,m
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Algorithm 2: Greedy algorithm for partial test construction
Input : Decision table T with conditional attributes f1, . . . , fm, and real

number α, 0 ≤ α < 1.
Output: α-test for T .
Q ←− ∅;
while Q is not an α-test for T do

select fi ∈ {f1, . . . , fm} with minimal index i such that fi separates the
maximal number of pairs from P (T ) unseparated by attributes from Q;
Q ←− Q ∪ {fi};

end
return Q;

the set P (T, fi) coincides with the set of pairs from P (T ) separated by the
attribute fi.

Let during the construction of an α-test for T the greedy algorithm choose
consequently attributes fj1 , . . . , fjt . Set P (T, fj0) = ∅ and for i = 1, . . . , t set
δi = |P (T, fji) \ (P (T, fj0) ∪ . . . ∪ P (T, fji−1))|. Let Δ(α, T ) = (δ1, . . . , δt). It is
not difficult to prove the following statement.

Proposition 1. Let α be a real number such that 0 ≤ α < 1. Then |P (T )| =
|A(T )|, Δ(α, T ) = Δ(α,A(T ), S(T )), Rmin(α, T ) = Cmin(α,A(T ), S(T )), and
Rgreedy(α, T ) = Cgreedy(α,A(T ), S(T )).

Let (A,S) be a set cover problem, A = {a1, . . . , an} and S = {B1, . . . , Bm}.
We correspond a decision table T (A,S) to the set cover problem (A,S) in the
following way. The table T (A,S) contains m columns labeled with attributes
f1, . . . , fm and n + 1 rows filled by numbers from {0, 1}. For i = 1, . . . , n and
j = 1, . . . ,m, the number 1 stays at the intersection of i-th row and j-th column
if and only if ai ∈ Bj . The (n + 1)-th row is filled by 0. The first n rows are
labeled with the decision 0. The last row is labeled with the decision 1.

For i = {1, . . . , n+1}, we denote by ri the i-th row. It is not difficult to see that
P (T (A,S)) = {(r1, rn+1), . . . , (rn, rn+1)}. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
One can show that the attribute fj separates the pair (ri, rn+1) if and only if
ai ∈ Bj . It is not difficult to prove the following statements.

Proposition 2. Let α be a real number such that 0 ≤ α < 1, and {i1, . . . , it} ⊆
{1, . . . ,m}. Then {fi1 , . . . , fit} is an α-test for T (A,S) if and only if {Bi1 , . . . ,
Bit} is an α-cover for (A,S).

Proposition 3. Let α be a real number and 0 ≤ α < 1. Then |P (T (A,S))| =
|A|, Rmin(α, T (A,S)) = Cmin(α,A, S), Rgreedy(α, T (A,S)) = Cgreedy(α,A, S)
and Δ(α, T (A,S)) = Δ(α,A, S).

Proposition 4. There exists a polynomial algorithm which, for a given set cover
problem (A,S), constructs the decision table T (A,S).



268 M.Ju. Moshkov, M. Piliszczuk, and B. Zielosko

3.3 On Precision of Greedy Algorithm

The following three statements are simple corollaries of the results of Slav́ık (see
Theorems 8–10).

Let T be a decision table with m columns labeled with attributes f1, . . . , fm.

Theorem 23. Let 0 ≤ α < 1 and 4(1 − α)|P (T )|5 ≥ 2. Then Rgreedy(α) <
Rmin(α)(ln 4(1 − α)|P (T )|5 − ln ln 4(1− α)|P (T )|5+ 0.78).

Proof. Let (A,S) = (A(T ), S(T )). From Proposition 1 it follows that |A| =
|P (T )|. Therefore, 4(1− α)|A|5 ≥ 2. Theorem 8 now shows that

Cgreedy(α,A, S) < Cmin(α,A, S)(ln 4(1 − α)|A|5 − ln ln 4(1− α)|A|5 + 0.78) .

By Proposition 1, we obtain Rgreedy(α) = Cgreedy(α,A, S) and Rmin(α) =
Cmin(α,A, S). Taking into account that |A| = |P (T )| we conclude that the state-
ment of the theorem holds. ��

Theorem 24. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a decision
table T such that 4(1 − α)|P (T )|5 = t and

Rgreedy(α) > Rmin(α)(ln 4(1− α)|P (T )|5 − ln ln 4(1 − α)|P (T )|5 − 0.31) .

Proof. From Theorem 9 it follows that for any natural t ≥ 2 there exists a
set cover problem (A,S) such that 4(1− α)|A|5 = t and Cgreedy(α,A, S) >
Cmin(α,A, S)(ln 4(1 − α)|A|5 − ln ln 4(1− α)|A|5 − 0.31).

Let us consider the decision table T = T (A,S). From Proposition 3 it fol-
lows that |P (T )| = |A|, Cgreedy(α,A, S) = Rgreedy(α, T ) and Cmin(α,A, S) =
Rmin(α, T ). Therefore, the statement of the theorem holds. ��

Theorem 25. Let 0 ≤ α < 1 and P (T ) �= ∅. Then Rgreedy(α) ≤ Rmin(α)(1 +
ln(maxj∈{1,...,m} |P (T, fj)|)).

Proof. For the set cover problem (A,S) = (A(T ), S(T )), from Theorem 10 it
follows that Cgreedy(α,A, S) ≤ Cmin(α,A, S)(1 + ln(maxj∈{1,...,m} |P (T, fj)|)).

Proposition 1 shows that Cgreedy(α,A, S) = Rgreedy(α) and Cmin(α,A, S) =
Rmin(α). Therefore, the statement of the theorem holds. ��

3.4 On Polynomial Approximate Algorithms

Theorem 26. (Nguyen and Ślȩzak [10], Ślȩzak [23]) Let 0 ≤ α < 1. Then the
problem of construction of α-reduct with minimal cardinality is NP -hard.

Let us generalize Theorem 14 to the case of partial tests.

Theorem 27. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)), then
for any ε, 0 < ε < 1, there is no polynomial algorithm that, for a given decision
table T with P (T ) �= ∅, constructs an α-test for T which cardinality is at most
(1− ε)Rmin(α, T ) ln |P (T )|.
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Proof. Assume the contrary: let NP �⊆ DTIME(nO(log log n)) and for some ε,
0 < ε < 1, a polynomial algorithm A exist that, for a given decision table T
with P (T ) �= ∅, constructs an α-test for T which cardinality is at most (1 −
ε)Rmin(α, T ) ln |P (T )|.

Let (A,S) be an arbitrary set cover problem, A = {a1, . . . , an} and S =
{B1, . . . , Bm}. From Proposition 4 it follows that there exists a polynomial algo-
rithm which, for a given set cover problem (A,S), constructs the decision table
T (A,S). Let us apply this algorithm, and construct the table T = T (A,S).
Let us apply to the table T the algorithm A. As a result, we obtain an α-test
{fi1 , . . . , fit} for T such that t ≤ (1 − ε)Rmin(α, T ) ln |P (T )|. From Proposi-
tion 2 it follows that {Bi1 , . . . , Bit} is an α-cover for (A,S). From Proposi-
tion 3 it follows that |A| = |P (T )| and Rmin(α, T ) = Cmin(α,A, S). Therefore,
t ≤ (1− ε)Cmin(α,A, S) ln |A|.

Thus, under the assumption NP �⊆ DTIME(nO(log log n)), there exists a poly-
nomial algorithm that, for a given set cover problem (A,S), constructs an α-cover
for (A,S) which cardinality is at most (1 − ε)Cmin(α,A, S) ln |A|, but this fact
contradicts Theorem 14. ��

From Theorem 25 it follows that Rgreedy(α) ≤ Rmin(α)(1 + ln |P (T )|). From
this inequality and from Theorem 27 it follows that, under the assumption
NP �⊆ DTIME(nO(log log n)), the greedy algorithm is close to the best poly-
nomial approximate algorithms for partial test minimization.

Let us generalize Theorem 15 to the case of partial covers.

Theorem 28. Let α be a real number such that 0 ≤ α < 1. If P �= NP , then
there exists ρ > 0 such that there is no polynomial algorithm that, for a given
decision table T with P (T ) �= ∅, constructs an α-test for T which cardinality is
at most ρRmin(α, T ) ln |P (T )|.

Proof. Let us show that in the capacity of such ρ we can choose ρ from Theorem
15. Assume that the considered statement does not hold: let P �= NP and a
polynomial algorithm A exist that, for a given decision table T with P (T ) �= ∅,
constructs an α-test for T which cardinality is at most ρRmin(α, T ) ln |P (T )|.

Let (A,S) be an arbitrary set cover problem, A = {a1, . . . , an} and S =
{B1, . . . , Bm}. From Proposition 4 it follows that there exists a polynomial al-
gorithm which for a given set cover problem (A,S) constructs the decision table
T (A,S). Let us apply this algorithm and construct the table T = T (A,S).
Let us apply the algorithm A to the table T . As a result, we obtain an α-
test {fi1 , . . . , fit} for T such that t ≤ ρRmin(α, T ) ln |P (T )|. From Proposi-
tion 2 it follows that {Bi1 , . . . , Bit} is an α-cover for (A,S). From Proposi-
tion 3 it follows that |A| = |P (T )| and Rmin(α, T ) = Cmin(α,A, S). Therefore,
t ≤ ρCmin(α,A, S) ln |A|.

Thus, under the assumption P �= NP , there exists a polynomial algorithm
that for a given set cover problem (A,S) constructs an α-cover for (A,S) which
cardinality is at most ρCmin(α,A, S) ln |A|, but this fact contradicts Theorem 15.

��
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3.5 Bounds on Rmin(α) Based on Information About Greedy
Algorithm Work

In this subsection, we fix some information on the greedy algorithm work and
find the best upper and lower bounds on Rmin(α) depending on this information.

Information on Greedy Algorithm Work. Assume that T is a decision table
with m columns labeled with attributes f1, . . . , fm, P (T ) �= ∅, and α is a real
number such that 0 ≤ α < 1. Let us apply the greedy algorithm with threshold
α to the table T . Let during the construction of α-test the greedy algorithm
choose consequently attributes fj1 , . . . , fjt . Set P (T, fj0) = ∅ and for i = 1, . . . , t
set δi = |P (T, fji) \ (P (T, fj0) ∪ . . . ∪ P (T, fji−1))|. Let Δ(α, T ) = (δ1, . . . , δt).
As information on the greedy algorithm work we will use the tuple Δ(α, T )
and numbers |P (T )| and α. Note that δ1 = max{|P (T, fi)| : i = 1, . . . ,m} and
t = Rgreedy(α, T ).

Let us denote by PDT the set of decision tables T with P (T ) �= ∅. Set DDT =
{(α, |P (T )|, Δ(α, T )) : α ∈ IR, 0 ≤ α < 1, T ∈ PDT }.

Lemma 9. DDT = DSC .

Proof. Let α ∈ IR, 0 ≤ α < 1 and T ∈ PDT . Then from Proposition 1
it follows that (α, |P (T )|, Δ(α, T )) = (α, |A(T )|, Δ(α,A(T ), S(T ))). Therefore,
DDT ⊆ DSC . Let α ∈ IR, 0 ≤ α < 1 and (A,S) ∈ PSC . Then from Proposition 3
it follows that (α, |A|, Δ(α,A, S)) = (α, |P (T (A,S))|, Δ(α, T (A,S))). Therefore,
DSC ⊆ DDT . ��

Note that the set DSC was described in Lemma 4.

Best Upper Bound for Rmin(α). We define a function UDT : DDT → IN.
Let (α, n, (δ1, . . . , δt)) ∈ DDT . Then UDT (α, n, (δ1, . . . , δt)) = max{Rmin(α, T ) :
T ∈ PDT , |P (T )| = n,Δ(α, T ) = (δ1, . . . , δt)}. It is clear that Rmin(α, T ) ≤
UDT (α, |P (T )|, Δ(α, T )) is the best upper bound for Rmin(α) depending on α,
|P (T )| and Δ(α, T ).

Theorem 29. Let (α, n, (δ1, . . . , δt)) ∈ DDT . Then UDT (α, n, (δ1, . . . , δt)) = t.

Proof. Let T be an arbitrary decision table such that |P (T )| = n and Δ(α, T ) =
(δ1, . . . , δt). It is clear that Rmin(α, T ) ≤ Rgreedy(α, T ) = t. Therefore, t ≥
UDT (α, n, (δ1, . . . , δt)).

Let us show that UDT (α, n, (δ1, . . . , δt)) ≥ t. From Lemma 9 it follows that
(α, n, (δ1, . . . , δt)) ∈ DSC . From here and from Theorem 16 it follows that there
exists a set cover problem (A,S) such that |A| = n, Δ(α,A, S) = (δ1, . . . , δt)
and Cmin(α,A, S) = t. Let us consider the decision table T = T (A,S). From
Proposition 3 it follows that |P (T )| = n, Δ(α, T ) = (δ1, . . . , δt) and Rmin(α, T ) =
t. Therefore, UDT (α, n, (δ1, . . . , δt)) ≥ t. ��

Thus, Rmin(α, T ) ≤ Rgreedy(α, T ) is the best upper bound for Rmin(α) depending
on α, |P (T )| and Δ(α, T ).
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Best Lower Bound for Rmin(α). We define a function LDT : DDT → IN.
Let (α, n, (δ1, . . . , δt)) ∈ DDT . Then LDT (α, n, (δ1, . . . , δt)) = min{Rmin(α, T ) :
T ∈ PDT , |P (T )| = n,Δ(α, T ) = (δ1, . . . , δt)}. It is clear that Rmin(α, T ) ≥
LDT (α, |P (T )|, Δ(α, T )) is the best lower bound for Rmin(α) depending on α,
|P (T )| and Δ(α, T ).

Let (α, n, (δ1, . . . , δt)) ∈ DDT . We now remind the definition of the parameter
l(α, n, (δ1, . . . , δt)). Set δ0 = 0. Then

l(α, n, (δ1, . . . , δt)) = max
{⌈
4(1 − α)n5 − (δ0 + . . . + δi)

δi+1

⌉
: i = 0, . . . , t− 1

}
.

Theorem 30. Let (α, n, (δ1, . . . , δt)) ∈ DDT . Then LDT (α, n, (δ1, . . . , δt)) =
l(α, n, (δ1, . . . , δt)).

Proof. Let T be an arbitrary decision table such that |P (T )| = n and Δ(α, T ) =
(δ1, . . . , δt). We now consider the set cover problem (A,S) = (A(T ), S(T )). From
Proposition 1 it follows that |A| = n and Δ(α,A, S) = (δ1, . . . , δt). Apply-
ing Theorem 17 we obtain Cmin(α,A, S) ≥ l(α, n, (δ1, . . . , δt)). From Propo-
sition 1 it follows that Cmin(α,A, S) = Rmin(α, T ). Therefore, Rmin(α, T ) ≥
l(α, n, (δ1, . . . , δt)) and LDT (α, n, (δ1, . . . , δt)) ≥ l(α, n, (δ1, . . . , δt)).

Let us show that LDT (α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)). From Lemma 9
it follows that (α, n, (δ1, . . . , δt)) ∈ DSC . From here and from Theorem 17 it fol-
lows that there exists a set cover problem (A,S) such that |A| = n, Δ(α,A, S) =
(δ1, . . . , δt) and Cmin(α,A, S) = l(α, n, (δ1, . . . , δt)). Let us consider the decision
table T = T (A,S). From Proposition 3 it follows that |P (T )| = n, Δ(α, T ) =
(δ1, . . . , δt) and Rmin(α, T ) = l(α, n, (δ1, . . . , δt)). Thus, LDT (α, n, (δ1, . . . , δt)) ≤
l(α, n, (δ1, . . . , δt)). ��

So Rmin(α, T ) ≥ l(α, |P (T )|, Δ(α, T )) is the best lower bound for Rmin(α) de-
pending on α, |P (T )| and Δ(α, T ).

Properties of Best Lower Bound for Rmin(α). Assume that T is a decision
table from PDT and α is a real number such that 0 ≤ α < 1. Let lDT (α) =
lDT (α, T ) = l(α, |P (T )|, Δ(α, T )).

Lemma 10. Let α1 and α2 be real numbers such that 0 ≤ α1 < α2 < 1. Then
lDT (α1) ≥ lDT (α2).

Proof. Let Δ(α1, T ) = (δ1, . . . , δt1) and Δ(α2, T ) = (δ1, . . . , δt2). We have t1 ≥
t2. Let δ0 = 0, j ∈ {0, . . . , t2 − 1} and

⌈ �|P (T )|(1−α2)�−(δ0+...+δj)
δj+1

⌉
= lDT (α2). It

is clear that lDT (α1) ≥
⌈ �|P (T )|(1−α1)�−(δ0+...+δj)

δj+1

⌉
≥ lDT (α2). ��

Corollary 4. lDT (0) = max{lDT (α) : 0 ≤ α < 1}.

The value lDT (α) can be used for obtaining of upper bounds on the cardinality
of partial tests constructed by the greedy algorithm.
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Theorem 31. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Rgreedy(α) < lDT (α − β) ln

(
1−α+β

β

)
+ 1.

Proof. Let (A,S) = (A(T ), S(T )). Theorem 18 now shows Cgreedy(α,A, S) <

lSC(α−β,A, S) ln
(

1−α+β
β

)
+1. By Proposition 1, lDT (α−β) = lDT (α−β, T ) =

lSC(α − β,A, S) and Rgreedy(α) = Rgreedy(α, T ) = Cgreedy(α,A, S). Therefore,
the statement of the theorem holds. ��

Corollary 5. Let α be a real number and 0 < α < 1. Then Rgreedy(α) <
lDT (0) ln

(
1
α

)
+ 1.

If lDT (0) is a small number, then we have a good upper bound on Rgreedy(α).
If lDT (0) is a big number, then we have a big lower bound on Rmin(0) and on
Rmin(α) for some α.

3.6 Upper Bound on Rgreedy(α)

Let T be a decision table from PDT . In this subsection, we obtain an upper
bound on Rgreedy(α) = Rgreedy(α, T ) which does not depend on |P (T )|, and
show that, in some sense, this bound is unimprovable.

Theorem 32. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Rgreedy(α) < Rmin(α − β) ln

(
1−α+β

β

)
+ 1.

Proof. From Theorem 31 it follows that Rgreedy(α) < lDT (α−β) ln
(

1−α+β
β

)
+1,

and from Theorem 30 it follows that lDT (α− β) ≤ Rmin(α− β). ��

Let us show that obtained bound is, in some sense, unimprovable.

Theorem 33. There is no real δ < 1 such that for any decision table T ∈ PDT

and for any real α and β, 0 < β ≤ α < 0, the following inequality holds:
Rgreedy(α) ≤ δ

(
Rmin(α− β) ln

(
1−α+β

β

)
+ 1

)
.

Proof. Assume the contrary: let such δ exist. Let us consider an arbitrary set
cover problem (A,S) and arbitrary α, β ∈ IR such that 0 < β ≤ α < 0. Set
T = T (A,S). Then Rgreedy(α, T ) ≤ δ

(
Rmin(α− β, T ) ln

(
1−α+β

β

)
+ 1

)
.

From Proposition 3 it follows that Rgreedy(α, T ) = Cgreedy

(α,A, S) and Rmin(α − β, T ) = Cmin(α − β,A, S). Therefore, there exists real
δ < 1 such that for any set cover problem (A,S) and for any real α and β, 0 < β ≤
α < 1, the inequality Cgreedy(α,A, S) ≤ δ

(
Cmin(α− β,A, S) ln

(
1−α+β

β

)
+ 1

)

holds, which contradicts Theorem 20. ��
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3.7 On Tests for the Most Part of Binary Decision Tables

On Tests for the Most Part of Binary Information Systems. A binary
information system is a table with n rows (corresponding to objects) and m
columns labeled with attributes f1, . . . , fm. This table is filled by numbers from
{0, 1} (values of attributes). There are exactly 2mn different binary information
systems with n rows and m columns.

A set Q ⊆ {f1, . . . , fm} is called a test for the considered information system
if attributes from Q separate any two rows with different numbers i and j, where
i, j ∈ {1, . . . , n}. It is clear that if we add a decision attribute to the considered
information system, then each test for this information system is an exact test
for obtained binary decision table.

A decision attribute is a tuple (d1, . . . , dn) of decisions corresponding to the
rows of information system. Let us fix a set D of decision attributes. Then the
number of different decision tables with decision attribute from D, which can be
obtained from a given information system, is equal to |D|, and the number of
binary decision tables with n rows, m columns and decision attribute from D is
equal to 2mn|D|.

If we prove the existence of good tests for the most part of binary information
systems with n rows and m columns, then it means the existence of good tests
for the most part of binary decision tables with n rows, m columns and decision
attributes from D.

The following theorem is very close to a similar result obtained in test theory
(see [26] for details).

Theorem 34. Let us consider binary information systems with n rows and m
columns labeled with attributes f1, . . . , fm. Let m ≥ 42 log2 n5 + t, where t is a
natural number, and i1, . . . , i�2 log2 n�+t be different numbers from {1, . . . ,m}.
Then the fraction of information systems, for which {fi1 , . . . , fi�2 log2 n	+t

} is a
test, is at least 1− 1

2t+1 .

Proof. Let k = 42 log2 n5 + t, j, l ∈ {1, . . . , n} and j �= l. The number of infor-
mation systems, for which j-th and l-th rows are equal at the intersection with
columns fi1 , . . . , fik

, is equal to 2mn−k. The number of pairs j, l ∈ {1, . . . , n} such
that j �= l is at most n2

2 . Therefore, the number of information systems, for which
{fi1 , . . . , fik

} is not a test, is at most n2

2 2mn−k = 2mn−k+2 log2 n−1 ≤ 2mn−t−1.
Thus, the fraction of information systems, for which {fi1 , . . . , fik

} is a test, is at
least 2mn−2mn−t−1

2mn = 1− 1
2t+1 . ��

For example, if t = 6, then for at least 99% of the considered information systems
the attributes fi1 , . . . , fi�2 log2 n	+t

form a test.
So if m ≥ 42 log2 n5+ t and t is large enough, then for the most part of binary

information systems there exist tests with small cardinality. Therefore, for the
most part of binary decision tables (with decision attributes from a fixed set D)
there exist exact (and, consequently, partial) tests with small cardinality.
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On Partial Tests Constructed by Greedy Algorithm for the Most Part
of Binary Decision Tables with Binary Decision Attributes. We now
study (under some assumption on relationships between m and n) the behavior of
greedy algorithm for the most part of binary decision tables with binary decision
attributes with values from {0, 1}. To this end we investigate binary information
systems of a special kind.

Let t be a natural number. We will study so-called t-separable binary infor-
mation systems with n rows and m columns labeled with attributes f1, . . . , fm.

Let W = {(c, δ) : c ∈ {1, . . . , 2t}, δ ∈ {0, 1}}. An arbitrary tuple ((c1, δ1), . . . ,
(cn, δn)) ∈ Wn is interpreted as follows: the set of rows of the considered in-
formation system is divided into 2t classes (it is possible that some classes are
empty), and each row is labeled with a decision from {0, 1}. For j = 1, . . . , n
the number cj is the number of class to which j-th row belongs, and δj is the
decision attached to j-th row. It is clear that |Wn| = 2n(t+1).

Fix a tuple δ̄ ∈ Wn, δ̄ = ((c1, δ1), . . . , (cn, δn)). Let |{c1, . . . , cn}| = k. It
means that the tuple δ̄ determines a partition of set of rows into k nonempty
classes. It is clear that 1 ≤ k ≤ 2t. For i = 1, . . . , k we denote by A0

i the set
of rows from the i-th class with decision 0, and by A1

i – the set of rows from
the i-th class with decision 1. Let us define the notion of δ̄-attribute. This is an
attribute (column) which for any i ∈ {1, . . . , k} at the intersection with rows
from A0

i has at least |A
0
i |

2 numbers 0, and at the intersection with rows from A1
i

has at least |A
1
i |

2 numbers 1. A binary information system with m columns and
n rows will be called t-separable if for any δ̄ ∈Wn this system has a δ̄-attribute.

Let the considered information system be t-separable, t ≥ 1. We now show
that in this system all rows are pairwise different. Let i, j ∈ {1, . . . , n}. Let us
consider such δ̄ that i-th and j-th rows are in the first class and have different
decisions, and all other rows are in the second class. It is clear that δ̄-attribute
must separate i-th and j-th rows.

We now study the work of greedy algorithm for a decision table T obtained
from a t-separable binary information system I by adding a binary decision
attribute. Let I have n rows and m columns labeled with attributes f1, . . . , fm.

Let us consider the tuple δ̄ = ((1, δ1), . . . , (1, δn)), where δj is the decision at-
tached to j-th row for j = 1, . . . , n. Let A0

1 be the set of rows with decision 0, and
A1

1 be the set of rows with decision 1. Since I is a t-separable information system,
there is a δ̄-attribute fp1 which at the intersection with rows from A0

1 has at least
|A0

1|
2 numbers 0, and at the intersection with rows from A1

1 has at least |A
1
1|

2 num-
bers 1. Let a0 be the number of rows from A0

1 for which the value of fp1 is equal
to 0, a1 – the number of rows from A0

1 for which the value of fp1 is equal to 1, b0 –
the number of rows from A1

1 for which the value of fp1 is equal to 0, and b1 – the
number of rows from A1

1 for which the value of fp1 is equal to 1.
Let us denote by P (T ) the set of unordered pairs of different rows from T

with different decisions. We know that all rows are pairwise different. Therefore,
|P (T )| = (a0 + a1)(b0 + b1). The attribute fp1 separates a0b1 + a1b0 pairs from
P (T ). Let us show that a0b1 + a1b0 ≥ |P (T )|

2 . To this end we must prove that
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2a0b1 + 2a1b0 ≥ (a0 + a1)(b0 + b1) = a0b0 + a0b1 + a1b0 + a1b1. This inequality
is equivalent to the inequality a0b1 + a1b0 ≥ a0b0 + a1b1. The last inequality is
equivalent to the inequality a0(b1 − b0) ≥ a1(b1 − b0). It is clear that a0 ≥ a1

and b1 ≥ b0. Therefore, the considered inequality holds.
Thus, during the first step the greedy algorithm chooses an attribute fl1 which

separates at least one half of pairs from P (T ).
Let the greedy algorithm make k ≤ t steps and choose attributes fl1 , . . . , flk .

These attributes divide the set of rows into q ≤ 2k nonempty classes. In each class
attributes fl1 , . . . , flk are constant. Let us consider the tuple δ̄ = ((c1, δ1), . . . ,
(cn, δn)), where cj is the number of class to which j-th row belongs, and δj is
the decision attached to j-th row, j = 1, . . . , n. It is clear that δ̄ ∈ Wn. For
i = 1, . . . , q, we denote by A0

i the set of rows from the i-th class with decision 0,
and by A1

i – the set of rows from the i-th class with decision 1. The number of
unseparated pairs from P (T ) is equal to

∑q
i=1

∣∣A0
i

∣∣ ∣∣A1
i

∣∣. If
∑q

i=1

∣∣A0
i

∣∣ ∣∣A1
i

∣∣ = 0,
then {fl1 , . . . , flk} is an exact test for T . Let

∑q
i=1

∣∣A0
i

∣∣ ∣∣A1
i

∣∣ > 0. Since I is a
t-separable, there exists a δ̄-attribute fpk+1 . As it was made earlier for one class,
we can show that fpk+1 separates at least one half of unseparated pairs from
P (T ). Therefore, during the step number k + 1 the greedy algorithm chooses an
attribute flk+1 which separates at least one half of unseparated pairs from P (T ).

Thus, for any decision table T , obtained from a t-separable binary information
system I by adding a binary decision attribute, during the first t + 1 steps the
greedy algorithm at each step chooses an attribute that separates at least one
half of unseparated pairs from P (T ) (if unseparated pairs exist).

Let us evaluate the fraction of t-separable binary information systems, under
some assumptions on joint behavior of n and m.

Theorem 35. Let t and k be natural numbers. Let us consider binary informa-
tion systems with n rows and m ≥ 22t+1

((t+1)n+k) columns. Then the fraction
of t-separable binary information systems is at least 1− 1

2k .

Proof. Let us fix a tuple δ̄ = ((c1, δ1), . . . , (cn, δn)) ∈ Wn. This tuple deter-
mines an equivalence relation on the set of rows of information system: two
rows with numbers i and j are equivalent if ci = cj and δi = δj . This equiva-
lence relation divides the set of rows into p ≤ 2t+1 classes of equivalence. We
now consider an arbitrary equivalence class. Let this class contain s rows. To
be δ̄-attribute, an attribute for some σ ∈ {0, 1} must have at least s

2 num-
bers σ at the intersection with considered s rows. From Lemma 8 it follows
that there are at least 2s−1 tuples from {0, 1}s which have at least s

2 numbers
σ. Using this fact it is not difficult to prove that there are at least 2n−p ≥
2n−2t+1

tuples from {0, 1}n which are δ̄-attributes. Therefore, the number of
tuples which are not δ̄-attributes is at most 2n − 2n−2t+1

. Hence, the num-
ber of information systems without δ̄-attributes is at most

(
2n − 2n−2t+1

)m

.

The number of information systems without at least one δ̄-attribute, δ̄ ∈ Wn,
is at most 2n(t+1)

(
2n − 2n−2t+1

)m

. Therefore, the number of t-separable in-

formation systems is at least 2mn− 2n(t+1)
(

2n − 2n−2t+1
)m

, and the fraction
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Table 4. Average percentage of pairs of rows separated at i-th step of greedy algorithm
(m = 40 and c = 10)

Number Number i of step
of rows n 1 2 3 4 5 6 7 8 9 10

10 59.3 67 85.7 100

50 52 53.2 55 58.1 61.9 69.2 89.7 100

100 50.9 51.5 52.2 54 55.8 59.7 65 73.5 91 100

1000 50.1 50.1 50.2 50.3 50.5 50.8 51.1 51.5 52.2 53.2

3000 50 50 50.1 50.1 50.2 50.2 50.3 50.5 50.8 51

5000 50 50 50 50.1 50.1 50.1 50.2 50.3 50.4 50.6

of t-separable information systems is at least 1 −
2n(t+1)

�
2n−2n−2t+1�m

2mn = 1 −
2n(t+1)

(
1− 1

22t+1

)m

. Let r = 22t+1
. Using well known inequality

(
r−1

r

)r ≤ 1
e

we obtain 2n(t+1)
(

1− 1

22t+1

)m

= 2n(t+1)
(

r−1
r

)r m
r ≤ 2n(t+1)−m

r . Therefore,

the fraction of t-separable information systems is at least 1 − 2n(t+1)− m

22t+1 .
If m ≥ 22t+1

((t + 1)n + k), then this fraction is at least 1− 2−k. ��

For example, if m = 256(3n+7), then at least 99% of binary information systems
are 2-separable.

Let us consider the work of greedy algorithm on an arbitrary decision table
T obtained from a t-separable binary information system by adding a binary
decision attribute. For i = 1, 2, . . . , t + 1, after step number i at most |P (T )|

2i

pairs from P (T ) are unseparated. Using this fact it is not difficult to prove that
Rgreedy(α) ≤

⌈
log2

1
α

⌉
and lDT (α) ≤ 2 for any α such that 1

2t+1 ≤ α < 1.

Results of Experiments. We made some experiments with binary decision ta-
bles T containing n ∈ {10, 50, 100, 1000, 3000, 5000} rows, m ∈ {10, 40, 100} con-
ditional attributes and one decision attribute with values from the set {1, . . . , c},
c ∈ {2, 10, 100}. For each triple of values (n,m, c) we generated randomly 10

Table 5. Average cardinality of α-tests for decision tables with 10 conditional at-
tributes

Number of different decisions c
2 10 100

Number α
of rows n 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0

10 2.1 2.8 2.8 2.8 3.1 4.5 4.5 4.5 3.1 4.5 4.5 4.5
50 3.7 6 7.8 7.8 4 6.1 8.6 9.1 4 6.2 7.9 8.6
100 3.9 6.4 8.7 9.4 4 6.9 9 10 4 6.9 9 9.9
1000 4 7 9.1 10 4 7 9 10 4 7 9 10
3000 4 7 9 10 4 7 9 10 4 7 9 10
5000 4 7 9 10 4 7 9 10 4 7 9 10
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decision tables such that each element of table is equal to b, b ∈ {0, 1}, with
probability 1

2 , and each decision is equal to d, d ∈ {1, . . . , c}, with probability 1
c .

The results of experiments are represented in Tables 4–7.
In Table 4 the average percentage of pairs of rows from P (T ) separated at

the i-th step of greedy algorithm, i = 1, . . . , 10, is presented for the case, when
m = 40 and c = 10. For example, 50.2 means that, on the average, 50.2% of
pairs remaining unseparated before i-th step are separated at i-th step.

Table 6. Average cardinality of α-tests for decision tables with 40 conditional at-
tributes

Number of different decisions c
2 10 100

Number α
of rows n 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0

10 2.1 2.3 2.3 2.3 3 3.8 3.8 3.8 3 4 4 4
50 3.1 5.1 6.2 6.2 3.7 6 7 7.6 4 6 7.4 7.8
100 3.7 6 8 8.5 4 6 8.3 9.4 4 6.5 8.8 9.6
1000 4 7 10 15.2 4 7 10 15.9 4 7 10 16.6
3000 4 7 10 18.4 4 7 10 19.1 4 7 10 19.3
5000 4 7 10 19.9 4 7 10 20.7 4 7 10 20.9

In Table 5 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average cardinality of α-
tests constructed by the greedy algorithm is presented for decision tables with
10 conditional attributes.

In Table 6 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average cardinality of α-
tests constructed by the greedy algorithm is presented for decision tables with
40 conditional attributes.

In Table 7 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average cardinality of α-
tests constructed by the greedy algorithm is presented for decision tables with
100 conditional attributes.

Table 7. Average cardinality of α-tests for decision tables with 100 conditional at-
tributes

Number of different decisions c
2 10 100

Number α
of rows n 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0 0.1 0.01 0.001 0.0

10 1.9 1.9 1.9 1.9 2.4 3.3 3.3 3.3 3 4 4 4
50 3 5 6 6 3.5 6 7 7 4 6 7 7.2
100 3.1 6 7.2 8 4 6 8 9.1 4 6.1 8.1 9
1000 4 7 10 14.6 4 7 10 15.2 4 7 10 15.4
3000 4 7 10 17.9 4 7 10 18.6 4 7 10 18.8
5000 4 7 10 19.1 4 7 10 20 4 7 10 20
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The obtained results show that for the most part of the considered decision
tables (not only for the case, when m8 n, and only binary decision attributes
are used) during each step the greedy algorithm chooses an attribute which
separates at least one half of unseparated pairs.

It must be also noted that with increase of step number the percentage of
pairs of rows, separated at this step, grows for the most part of the considered
decision tables.

4 Partial Decision Rules

4.1 Main Notions

Assume that T is a decision table with n rows labeled with nonnegative inte-
gers (decisions) and m columns labeled with attributes (names of attributes)
f1, . . . , fm. This table is filled by nonnegative integers (values of attributes).

Let r = (b1, . . . , bm) be a row of T labeled with a decision d. By U(T, r) we
denote the set of rows from T which are different (in at least one column) from
r and are labeled with decisions different from d. We will say that an attribute
fi separates a row r′ ∈ U(T, r) from the row r if the rows r and r′ have different
numbers at the intersection with column fi. The pair (T, r) will be called a
decision rule problem.

Let 0 ≤ α < 1. A decision rule

(fi1 = bi1) ∧ . . . ∧ (fit = bit) → d (8)

is called an α-decision rule for (T, r) if attributes fi1 , . . . , fit separate from r at
least (1−α)|U(T, r)| rows from U(T, r). The number t is called the length of the
considered decision rule. If U(T, r) = ∅, then for any fi1 , . . . , fit ∈ {f1, . . . , fm}
the rule (8) is an α-decision rule for (T, r). The rule (8) with empty left-hand
side (when t = 0) is also an α-decision rule for (T, r).

For example, 0.01-decision rule means that we must separate from r at least
99% of rows from U(T, r). Note that a 0-decision rule is an exact decision rule.
By Lmin(α) = Lmin(α, T, r) we denote the minimal length of α-decision rule for
(T, r).

We will now describe a greedy algorithm with threshold α which constructs
an α-decision rule for (T, r).

Let us denote by Lgreedy(α) = Lgreedy(α, T, r) the length of constructed α-
decision rule for (T, r).

4.2 Relationships between Partial Covers and Partial Decision
Rules

Let T be a decision table with m columns labeled with attributes f1, . . . , fm, r
be a row from T , and U(T, r) be a nonempty set.

We correspond a set cover problem (A(T, r), S(T, r)) to the considered deci-
sion rule problem (T, r) in the following way: A(T, r) = U(T, r) and S(T, r) =
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Algorithm 3: Greedy algorithm for partial decision rule construction
Input : Decision table T with conditional attributes f1, . . . , fm, row

r = (b1, . . . , bm) of T labeled with the decision d, and real number α,
0 ≤ α < 1.

Output: α-decision rule for (T, r).
Q ←− ∅;
while attributes from Q separate from r less than (1 − α)|U(T, r)| rows from
U(T, r) do

select fi ∈ {f1, . . . , fm} with minimal index i such that fi separates from r
the maximal number of rows from U(T, r) unseparated by attributes from Q;
Q ←− Q ∪ {fi};

end
return

�
fi∈Q(fi = bi) → d;

{B1, . . . , Bm} where B1 = U(T, r, f1), . . . , Bm = U(T, r, fm) and for i = 1, . . . ,m
the set U(T, r, fi) coincides with the set of rows from U(T, r) separated by the
attribute fi from the row r.

Let during the construction of an α-decision rule for (T, r) the greedy al-
gorithm choose consequently attributes fj1 , . . . , fjt . Set U(T, r, fj0) = ∅ and
for i = 1, . . . , t set δi = |U(T, r, fji) \ (U(T, r, fj0) ∪ . . . ∪ U(T, r, fji−1))|. Let
Δ(α, T, r) = (δ1, . . . , δt). It is not difficult to prove the following statement.

Proposition 5. Let α be a real number such that 0 ≤ α < 1. Then |U(T, r)| =
|A(T, r)|, Δ(α, T, r) = Δ(α,A(T, r), S(T, r)), Lmin(α, T, r) = Cmin(α,A(T, r),
S(T, r)), and Lgreedy(α, T, r) = Cgreedy(α,A(T, r), S(T, r)).

Let (A,S) be a set cover problem, A = {a1, . . . , an} and S = {B1, . . . , Bm}. We
correspond a decision rule problem (T (A,S), r(A,S)) to the set cover problem
(A,S) in the following way. The table T (A,S) contains m columns labeled with
attributes f1, . . . , fm and n+1 rows filled by numbers from {0, 1}. For i = 1, . . . , n
and j = 1, . . . ,m, the number 1 stays at the intersection of i-th row and j-th
column if and only if ai ∈ Bj . The (n + 1)-th row is filled by 0. The first n rows
are labeled with the decision 0. The last row is labeled with the decision 1. Let
us denote by r(A,S) the last row of table T (A,S). For i ∈ {1, . . . , n + 1} we
denote by ri the i-th row. It is not difficult to see that U(T (A,S), r(A,S)) =
{r1, . . . , rn}. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. One can show that the
attribute fj separates the row rn+1 = r(A,S) from the row ri if and only if
ai ∈ Bj . It is not difficult to prove the following statements.

Proposition 6. Let α ∈ IR, 0 ≤ α < 1, and {i1, . . . , it} ⊆ {1, . . . ,m}. Then
(fi1 = 0)∧ . . .∧ (fit = 0) → 1 is an α-decision rule for (T (A,S), r(A,S)) if and
only if {Bi1 , . . . , Bit} is an α-cover for (A,S).

Proposition 7. Let α be a real number such that 0 ≤ α < 1. Then |U(T (A,S),
r(A,S))| = |A|, Lmin(α, T (A,S), r(A,S)) = Cmin(α,A, S), Lgreedy(α, T (A,S),
r(A,S)) = Cgreedy(α,A, S) and Δ(α, T (A,S), r(A,S)) = Δ(α,A, S).
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Proposition 8. There exists a polynomial algorithm which for a given set cover
problem (A,S) constructs the decision rule problem (T (A,S), r(A,S)).

4.3 On Precision of Greedy Algorithm

The following three statements are simple corollaries of results of Slav́ık (see The-
orems 8–10). Let T be a decision table with m columns labeled with attributes
f1, . . . , fm, and r be a row of T .

Theorem 36. Let 0 ≤ α < 1 and 4(1− α)|U(T, r)|5 ≥ 2. Then Lgreedy(α) <
Lmin(α)(ln 4(1− α)|U(T, r)|5 − ln ln 4(1− α)|U(T, r)|5+ 0.78).

The proof of this theorem is similar to the proof of Theorem 23.

Theorem 37. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a de-
cision rule problem (T, r) such that 4(1 − α)|U(T, r)|5 = t and Lgreedy(α) >
Lmin(α)(ln 4(1− α)|U(T, r)|5 − ln ln 4(1− α)|U(T, r)|5 − 0.31).

The proof of this theorem is similar to the proof of Theorem 24.

Theorem 38. Let 0 ≤ α < 1 and U(T, r) �= ∅. Then Lgreedy(α) ≤ Lmin(α)(1 +
ln(maxj∈{1,...,m} |U(T, r, fj)|)).

The proof of this theorem is similar to the proof of Theorem 25.

4.4 On Polynomial Approximate Algorithms

Theorem 39. Let 0 ≤ α < 1. Then the problem of construction of α-decision
rule with minimal length is NP -hard.

Proof. From Theorem 13 it follows that the problem of construction of α-cover
with minimal cardinality is NP -hard. Using Propositions 6 and 8 we conclude
that there exists a polynomial-time reduction of the problem of construction of
α-cover with minimal cardinality to the problem of construction of α-decision
rule with minimal length. ��

Let us generalize Theorem 14 to the case of partial decision rules.

Theorem 40. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)),
then for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given
decision rule problem (T, r) with U(T, r) �= ∅ constructs an α-decision rule for
(T, r) which length is at most (1− ε)Lmin(α, T, r) ln |U(T, r)|.

The proof of this theorem is similar to the proof of Theorem 27.
From Theorem 38 it follows that Lgreedy(α) ≤ Lmin(α)(1 + ln |U(T, r)|). From

this inequality and from Theorem 40 it follows that, under the assumption
NP �⊆ DTIME(nO(log log n)), the greedy algorithm is close to the best poly-
nomial approximate algorithms for partial decision rule minimization.

Let us generalize Theorem 15 to the case of partial decision rules.
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Theorem 41. Let α be a real number such that 0 ≤ α < 1. If P �= NP , then
there exists ρ > 0 such that there is no polynomial algorithm that for a given
decision rule problem (T, r) with U(T, r) �= ∅ constructs an α-decision rule for
(T, r) which length is at most ρLmin(α, T, r) ln |U(T, r)|.

The proof of this theorem is similar to the proof of Theorem 28.

4.5 Bounds on Lmin(α) Based on Information About Greedy
Algorithm Work

In this subsection, we fix some information on the greedy algorithm work and
find the best upper and lower bounds on Lmin(α) depending on this information.

Information on Greedy Algorithm Work. Assume that (T, r) is a deci-
sion rule problem, where T is a decision table with m columns labeled with
attributes f1, . . . , fm, U(T, r) �= ∅, and α is a real number such that 0 ≤ α < 1.
Let us apply the greedy algorithm with threshold α to the problem (T, r). Let
during the construction of α-decision rule the greedy algorithm choose conse-
quently attributes fj1 , . . . , fjt . Set U(T, r, fj0) = ∅ and for i = 1, . . . , t set δi =
|U(T, r, fji) \ (U(T, r, fj0)∪ . . .∪P (U(T, r, fji−1))|. Let Δ(α, T, r) = (δ1, . . . , δt).
As information on the greedy algorithm work we will use the tuple Δ(α, T, r),
and numbers |U(T, r)| and α. Note that δ1 = max{|U(T, r, fi)| : i = 1, . . . ,m}
and t = Lgreedy(α, T, r).

Let us denote by PDR the set of decision rule problems (T, r) with U(T, r) �= ∅,
and DDR = {(α, |U(T, r)|, Δ(α, T, r)) : α ∈ IR, 0 ≤ α < 1, (T, r) ∈ PDR}.

Lemma 11. DDR = DSC.

The proof of this lemma is similar to the proof of Lemma 9. Note that the set
DSC was described in Lemma 4.

Best Upper Bound for Lmin(α). We define a function UDR : DDR → IN. Let
(α, n, (δ1, . . . , δt)) ∈ DDR. Then UDR(α, n, (δ1, . . . , δt)) = max{Lmin(α, T, r) :
(T, r) ∈ PDR, |U(T, r)| = n,Δ(α, T, r) = (δ1, . . . , δt)}. It is clear that

Lmin(α, T, r) ≤ UDR(α, |U(T, r)|, Δ(α, T, r))

is the best upper bound for Lmin(α) depending on α, |U(T, r)| and Δ(α, T, r).

Theorem 42. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then UDR(α, n, (δ1, . . . , δt)) = t.

The proof of this theorem is similar to the proof of Theorem 29.
Thus, Lmin(α, T, r) ≤ Lgreedy(α, T, r) is the best upper bound for Lmin(α)

depending on α, |U(T, r)| and Δ(α, T, r).

Best Lower Bound for Lmin(α). We define a function LDR : DDR → IN. Let
(α, n, (δ1, . . . , δt)) ∈ DDR. Then LDR(α, n, (δ1, . . . , δt)) = min{Lmin(α, T, r) :
(T, r) ∈ PDR, |U(T, r)| = n,Δ(α, T, r) = (δ1, . . . , δt)}. It is clear that

Lmin(α, T, r) ≥ LDR(α, |U(T, r)|, Δ(α, T, r))

is the best lower bound for Lmin(α) depending on α, |U(T, r)| and Δ(α, T, r).
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Let (α, n, (δ1, . . . , δt)) ∈ DDR. We now remind the definition of parameter
l(α, n, (δ1, . . . , δt)). Set δ0 = 0. Then

l(α, n, (δ1, . . . , δt)) = max
{⌈
4(1 − α)n5 − (δ0 + . . . + δi)

δi+1

⌉
: i = 0, . . . , t− 1

}
.

Theorem 43. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then LDR(α, n, (δ1, . . . , δt)) =
l(α, n, (δ1, . . . , δt)).

The proof of this theorem is similar to the proof of Theorem 30.
Thus, Lmin(α, T, r) ≥ l(α, |U(T, r)|, Δ(α, T, r)) is the best lower bound for

Lmin(α) depending on α, |U(T, r)| and Δ(α, T, r).

Properties of Best Lower Bound for Lmin(α). Assume that (T, r) is a
decision rule problem from PDR, and α ∈ IR, 0 ≤ α < 1. Let

lDR(α) = lDR(α, T, r) = l(α, |U(T, r)|, Δ(α, T, r)) .

Lemma 12. Let α1, α2 ∈ IR and 0 ≤ α1 < α2 < 1. Then lDR(α1) ≥ lDR(α2).

The proof of this lemma is similar to the proof of Lemma 10.

Corollary 6. lDR(0) = max{lDR(α) : 0 ≤ α < 1}.
The value lDR(α) can be used for obtaining of upper bounds on the length of
partial decision rules constructed by the greedy algorithm.

Theorem 44. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Lgreedy(α) < lDR(α− β) ln

(
1−α+β

β

)
+ 1.

The proof of this theorem is similar to the proof of Theorem 31.

Corollary 7. Let α ∈ IR and 0 < α < 1. Then Lgreedy(α) < lDR(0) ln
(

1
α

)
+ 1.

If lDR(0) is a small number, then we have a good upper bound on Lgreedy(α).
If lDR(0) is a big number, then we have a big lower bound on Lmin(0) and on
Lmin(α) for some α.

4.6 Upper Bound on Lgreedy(α)

Assume that (T, r) is a decision rule problem from PDR. In this subsection, we
obtain an upper bound on Lgreedy(α) = Lgreedy(α, T, r), which does not depend
on |U(T, r)|, and show that, in some sense, this bound is unimprovable.

Theorem 45. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Lgreedy(α) < Lmin(α − β) ln

(
1−α+β

β

)
+ 1.

The proof of this theorem is similar to the proof of Theorem 32.
Let us show that obtained bound is, in some sense, unimprovable.

Theorem 46. There is no real δ < 1 such that for any decision rule problem
(T, r) ∈ PDR and for any real α and β, 0 < β ≤ α < 0, the following inequality
holds: Lgreedy(α) ≤ δ

(
Lmin(α − β) ln

(
1−α+β

β

)
+ 1

)
.

The proof of this theorem is similar to the proof of Theorem 33.
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4.7 On Decision Rules for the Most Part of Binary Decision Tables

On Tests and Local Tests for the Most Part of Binary Information
Systems. A binary information system I is a table with n rows (corresponding
to objects) and m columns labeled with attributes f1, . . . , fm. This table is filled
by numbers from {0, 1} (values of attributes). For j = 1, . . . , n we denote by rj

the j-th row of table I.
A subset {fi1 , . . . , fik

} of attributes is a test for the information system I if
these attributes separate any two rows rj and rl, where j, l ∈ {1, . . . , n} and
j �= l.

Adding an arbitrary decision attribute to the considered information system
I we obtain a decision table T . For j = 1, . . . , n let rj = (bj

1, . . . , b
j
m) and dj be

the decision attached to rj . If {fi1 , . . . , fik
} is a test for the information system

I, then for any j ∈ {1, . . . , n} the rule (fi1 = bj
i1

) ∧ . . . ∧ (fik
= bj

ik
) → dj is a

0-decision rule for (T, rj).
Let m ≥ 42 log2 n5 + t, where t is a natural number. Let i1, . . . , i�2 log2 n�+t

be pairwise different numbers from {1, . . . ,m}. From Theorem 34 it follows that
the fraction of information systems, for which {fi1 , . . . , fi�2 log2 n	+t

} is a test, is
at least 1− 1

2t+1 .
We will now fix a set D of decision attributes. From the considered result

it follows, for example, that for 99% of binary decision tables with n rows,
m ≥ 42 log2 n5+ 6 conditional attributes and decision attribute from D for each
row there exists an exact decision rule which length is equal to 42 log2 n5+ 6.

It is possible to improve this bound if we consider decision rules not for all
rows but for one fixed row only.

Let j ∈ {1, . . . , n}. A subset {fi1 , . . . , fik
} of attributes will be called a j-th

local test for the information system I if these attributes separate from the row
rj any row rl, where l ∈ {1, . . . , n} and l �= j.

Adding an arbitrary decision attribute to the considered information system
I we obtain a decision table T . Let rj = (b1, . . . , bm) and d be the decision
attached to rj . If {fi1 , . . . , fik

} is a j-th local test for the information system I,
then (fi1 = bi1) ∧ . . . ∧ (fik

= bik
) → d is a 0-decision rule for (T, rj).

We will now fix a set D of decision attributes. If we prove the existence of
good j-th local tests for the most part of binary information systems with n rows
and m columns, then it means the existence of good decision rules for j-th row
for the most part of binary decision tables with n rows, m conditional attributes
and decision attributes from D.

Theorem 47. Let us consider binary information systems with n rows and
m columns labeled with attributes f1, . . . , fm. Let m ≥ 4log2 n5 + t, where t
is a natural number, j ∈ {1, . . . , n} and i1, . . . , i�log2 n�+t be pairwise different
numbers from {1, . . . , m}. Then the fraction of information systems, for which
{fi1 , . . . , fi�log2 n	+t

} is a j-th local test, is at least 1− 1
2t .

Proof. Let k = 4log2 n5+ t, l ∈ {1, . . . , n} and l �= j. The number of information
systems, for which j-th and l-th rows are equal at the intersection with columns
i1, . . . , ik, is 2mn−k. Therefore, the number of information systems, for which
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{fi1 , . . . , fik
} is not a j-th local test, is at most n2mn−k = 2mn−k+log2 n ≤ 2mn−t.

Thus, the fraction of information systems, for which {fi1 , . . . , fik
} is a j-th local

test, is at least 2mn−2mn−t

2mn = 1− 1
2t . ��

Let us fix a set D of decision attributes and a number j ∈ {1, . . . , n}. From
obtained result it follows that for 99% of binary decision tables with n rows,
m ≥ 4log2 n5 + 7 conditional attributes and the decision attribute from D for
j-th row there exists an exact decision rule which length is equal to 4log2 n5+ 7.

On Partial Decision Rules Constructed by Greedy Algorithm for the
Most Part of Binary Decision Tables. Now we study the behavior of greedy
algorithm for the most part of binary decision tables, under some assumption on
relationships between the number of rows and the number of columns in tables.

Let I be a binary information system with n rows and m columns labeled
with attributes f1, . . . , fm. For j = 1, . . . , n, we denote by rj the j-th row of
I. The information system I will be called strongly saturated if, for any row
rj = (b1, . . . , bm) of I, for any k ∈ {1, . . . , n − 1} and for any k rows with
numbers different from j, there exists a column fi which has at least k

2 numbers
¬bi at the intersection with considered k rows.

First, we evaluate the number of strongly saturated binary information sys-
tems. After that, we study the work of greedy algorithm on a decision table
obtained from a strongly saturated binary information system by adding a de-
cision attribute.

Theorem 48. Let us consider binary information systems with n rows and m ≥
n+log2 n columns labeled with attributes f1, . . . , fm. Then the fraction of strongly
saturated information systems is at least 1− 1

2m−n−log2 n+1 .

Proof. Let us fix a number j ∈ {1, . . . , n}, a tuple b̄ = (b1, . . . , bm) ∈ {0, 1}m,
a number k ∈ {1, . . . , n − 1} and k rows with numbers different from j. Let us
evaluate the number of information systems in which rj = b̄ and, for i = 1, . . . ,m,
the column fi has less than k

2 numbers ¬bi at the intersection with considered k
rows. Such information systems will be called (j, b̄)-unsaturated in the considered
k rows.

From Lemma 8 it follows that the number of tuples from {0, 1}k, which have
less than k

2 numbers ¬bi, is at most 2k−1. Therefore, the number of informa-
tion systems, which are (j, b̄)-unsaturated in the considered k rows, is at most
2mn−2m.

There are n variants for the choice of j, at most 2n−1 variants for the choice of
k ∈ {1, . . . , n−1} and k rows with numbers different from j, and 2m variants for
the choice of tuple b̄. Therefore, the number of information systems, which are
not strongly saturated, is at most n2n−12m2mn−2m = 2mn−2m+log2 n+n−1+m =
2mn+log2 n+n−m−1, and the fraction of strongly saturated information systems is
at least 2mn−2mn+log2 n+n−m−1

2mn = 1− 1
2m−n−log2 n+1 . ��

For example, if m ≥ n + log2 n + 6, then at least 99% of binary information
systems are strongly saturated.
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Let us consider the work of greedy algorithm on an arbitrary decision table
T obtained from a strongly saturated binary information system. Let r be an
arbitrary row of table T . For i = 1, 2, . . ., after the step number i at most
|U(T,r)|

2i rows from U(T,R) are unseparated from r. It is not difficult to show
that Lgreedy(α) ≤

⌈
log2

1
α

⌉
for any real α, 0 < α < 1. One can prove that

Lgreedy(0) ≤ log2 |U(T, r)|+ 1. It is easy to check that lDR(0) ≤ 2.

Results of Experiments. We made some experiments with binary decision ta-
bles T containing n ∈ {10, 50, 100, 1000, 3000, 5000} rows, m ∈ {10, 40, 100} con-
ditional attributes and one decision attribute with values from the set {1, . . . , c},
c ∈ {2, 10, 100}. For each triple of values (n,m, c) we generated randomly a de-
cision table such that each element of this table is equal to b, b ∈ {0, 1}, with
probability 1

2 , and each decision is equal to d, d ∈ {1, . . . , c}, with probability
1
c . For this table we choose randomly 10 rows r. The results of experiments are
represented in Tables 8–11.

In Table 8 the average percentage of rows from U(T, r) separated from r at
i-th step of greedy algorithm, i = 1, . . . , 10, is presented for the case, when
m = 40 and c = 10. For example, 53.10 means that, on the average, 53.10% of
rows remaining unseparated before i-th step are separated at i-th step.

Table 8. Average percentage of rows separated at i-th step of greedy algorithm (m = 40
and c = 10)

Number Number i of step
of rows n 1 2 3 4 5 6 7 8 9 10

10 85.79 100.00
50 65.99 74.71 94.67 100.00
100 61.90 67.42 79.38 100.00
1000 54.05 55.05 56.54 56.56 64.01 76.50 100.00
3000 52.04 52.50 53.77 55.52 57.06 61.51 71.01 82.94 100.00
5000 51.57 52.09 53.10 54.31 56.28 59.01 64.85 74.46 92.07 100.00

Table 9. Average length of α-decision rules for decision tables with 10 conditional
attributes

α
0.1 0.01 0.001 0.0

Number Number of different decisions c
of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.4 2.0 2.2 1.4 2.0 2.2 1.4 2.0 2.2 1.4 2.0 2.2
50 2.5 2.8 3.0 3.3 4.2 4.1 3.3 4.2 4.1 3.3 4.2 4.1
100 2.8 3.0 3.0 4.4 5.1 5.0 4.4 5.1 5.0 4.4 5.1 5.0
1000 3.2 3.5 3.9 5.8 6.1 6.2 7.8 8.4 8.7 7.8 8.4 8.7
3000 3.9 4.0 4.0 6.2 6.4 6.5 8.2 8.6 8.7 8.8 9.3 9.5
5000 4.0 4.0 4.0 6.4 6.8 6.8 8.6 8.9 9.1 9.0 9.9 9.9
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Table 10. Average length of α-decision rules for decision tables with 40 conditional
attributes

α
0.1 0.01 0.001 0.0

Number Number of different decisions c
of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.3 2.0 2.0 1.3 2.0 2.0 1.3 2.0 2.0 1.3 2.0 2.0
50 2.0 2.1 2.5 2.6 3.0 3.3 2.6 3.0 3.3 2.6 3.0 3.3
100 2.1 2.9 2.9 3.3 4.2 4.0 3.3 4.2 4.0 3.3 4.2 4.0
1000 3.0 3.0 3.1 5.0 5.8 5.8 6.1 7.0 7.0 6.1 7.0 7.0
3000 3.1 4.0 3.9 6.0 6.0 6.0 7.4 8.0 7.9 7.7 8.5 8.7
5000 3.9 4.0 4.0 6.0 6.2 6.1 8.0 8.1 8.7 8.5 9.1 9.3

Table 11. Average length of α-decision rules for decision tables with 100 conditional
attributes

α
0.1 0.01 0.001 0.0

Number Number of different decisions c
of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.1 2.0 2.0 1.1 2.3 2.0 1.1 2.3 2.0 1.1 2.3 2.0
50 2.0 2.0 2.1 2.5 3.0 3.0 2.5 3.0 3.0 2.5 3.0 3.0
100 2.0 2.5 2.9 3.0 3.9 4.0 3.0 3.9 4.0 3.0 3.9 4.0
1000 3.0 3.0 3.0 5.0 5.1 5.3 6.0 6.4 6.8 6.0 6.4 6.8
3000 3.0 3.5 3.7 6.0 6.0 6.0 7.0 7.8 7.8 7.1 8.2 7.9
5000 3.4 4.0 4.0 6.0 6.0 6.0 7.6 8.0 8.0 8.0 8.9 8.7

In Table 9 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision
rules constructed by greedy algorithm is presented for decision tables with 10
conditional attributes.

In Table 10 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision
rules constructed by the greedy algorithm is presented for decision tables with
40 conditional attributes.

In Table 11 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision
rules constructed by the greedy algorithm is presented for decision tables with
100 conditional attributes.

The obtained results show that for the most part of the considered decision
rule problems (not only for the case, when m ≥ n + log2 n) during each step
the greedy algorithm chooses an attribute which separates at least one half of
unseparated rows.

It must be also noted that with increase of step number the percentage of
rows, separated at this step, grows for the most part of the considered decision
rule problems.
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5 Conclusions

The paper is devoted (mainly) to the theoretical and experimental analysis of
greedy algorithms for partial cover, reduct and decision rule construction.

The obtained results show that, under some natural assumptions on the class
NP , these algorithms are close to the best polynomial approximate algorithms
for the minimization of partial covers, reducts and rules. Based on an information
received during greedy algorithm work it is possible to obtain lower and upper
bounds on the minimal complexity of partial covers, reducts and rules. Exper-
imental and some theoretical results show that, for the most part of randomly
generated set cover problems and binary decision tables, greedy algorithms con-
struct simple partial covers, reducts and rules with relatively high accuracy.
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Abstract. Recently, clustering algorithms based on rough set theory
have gained increasing attention. For example, Lingras et al. introduced
a rough k-means that assigns objects to lower and upper approximations
of clusters. The objects in the lower approximation surely belong to a
cluster while the membership of the objects in an upper approximation
is uncertain. Therefore, the core cluster, defined by the objects in the
lower approximation is surrounded by a buffer or boundary set with
objects with unclear membership status. In this paper, we introduce an
evolutionary rough k-medoid clustering algorithm. Evolutionary rough
k-medoid clustering belongs to the families of Lingras’ rough k-means
and classic k-medoids algorithms. We apply the evolutionary rough
k-medoids to synthetic as well as to real data sets and compare the
results to Lingras’ rough k-means. We also introduce a rough version of
the Davies-Bouldin-Index as a cluster validity index for the family of
rough clustering algorithms.

Keywords: Rough Sets, Rough k-Medoids, Cluster Analysis, Evolution-
ary Clustering, Davies-Bouldin-Index.

1 Introduction

Since its introduction by Pawlak during the early 1980s [19,20,21] and elaborated
in [24] rough set theory has gained increasing attention among researchers and
practitioner and established itself as a central concept of soft computing [29]
besides fuzzy sets [32], neural nets [5] and others.

The core idea of rough set theory is to separate between objects with clear
membership to a set on the one hand and those with ambiguous memberships
on the other hand.
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An object with a clear membership is assigned to one and only one set. In
rough set terminology it is a member of the lower approximation of the set. If the
membership of an object is unclear it is assigned to the upper approximations
of all possible sets. Obviously, such an object must be assigned to two or more
upper approximations since, otherwise, its membership would be clearly defined.

Originally, rough set theory was a purely and strictly set-based approach
(see [23]), where it is unambiguously possible to determine the objects of the
upper and the lower approximations. In this context further powerful constructs
- like reducts, global and local coverings besides others - have been introduced.
However, in the meantime a new branch of rough set theory has been established
which is basically an interval estimation using distances [31, 30]. In contrast to
original rough sets the assignment of objects to the approximations is arguable
and depends on the experimental set-up.

The main contribution of this paper is that we extend rough clustering by a
rough k-medoids algorithm and its evolutionary version. The evolutionary rough
k-medoids belongs to the family of rough clustering algorithms as introduced by
Lingras et al. [12] and its refined version by Peters [26] on the one hand and
Kaufmann’s classic k-medoids [8] on the other hand. The evolutionary extension
of the rough k-medoids goes along the lines with Mitra’s work on evolutionary
rough partitive clustering [16]. In experiments with synthetic and real data we
compare the new rough k-medoids to the rough k-means algorithms proposed
by Lingras and Peters. As cluster validity index we introduce a rough version of
the Davies-Bouldin-Index [4].

The paper is structured as follows. In the next Section we give a short intro-
duction to Lingras’ rough k-means cluster algorithm and important refinements
and extensions. In Section 3 we discuss the classic k-medoids and its relationship
to crisp k-means. Then, in Section 4, we introduce the new rough k-medoids and
its evolutionary extension. In the subsequent Section we present the results of
our experiments. The paper concludes with a summary in Section 6.

2 Rough k-Means Algorithms

In this Section we describe rough k-means algorithms [12, 26] and their evolu-
tionary extensions [16].

2.1 Basic Properties of Rough Sets

The family of rough clustering algorithms that are based on Lingras’ rough k-
means belongs to the interval based branch of rough set theory. In contrast to
original rough set theory this branch has a reduced set of properties as defined
next:

1. An object is a member of one lower approximation at most.
2. A member of a lower approximation is also a member of the corresponding

upper approximation. So, the lower approximation is a subset of the upper
approximation.
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3. If an object does not belong to any lower approximation it is a member of
at least two upper approximations.

The part of an upper approximation that is not covered by a lower approx-
imation is often called boundary set. The actual memberships to a single clus-
ter of the objects in the boundary set cannot be determined due to missing
information.

Consider the following, set-based example. The tail-sides of 1-EURO coins are
identical independently of the country that issued them. The head-side shows
national symbols of the issuing country. Therefore, if one only sees the tail-
side of an 1-EURO coin one can determine its value. However, due to missing
information one cannot determine where is was issued.

2.2 Lingras’ Rough k-Means Cluster Algorithm

The classic k-means was introduced by Hartigan and Wong [7]. In the meantime
several variations have been suggested. They include fuzzy k-means by Bezdek
[1], fast k-means by Darken and Moody [18,3] and indiscernibility based k-means
by J.F. Peters and Borkowski [28]. In the context of our paper Lingras’ [14] rough
k-means is of special interest. It proceeds as follows:

1. Initialization. Assign each object to one and only one lower approximation.
Due to the second property (Section 2.1) it is also a member of the corre-
sponding upper approximation.

2. Calculation of the means. The means are calculated as the weighted sums of
the cluster members. The objects in the lower approximation are weighted
by the factor wl and the objects in the boundary set by wb.

3. Assignment of the objects to the approximations. First, each object is as-
signed to the upper approximation of the cluster of its closest mean. Second,
the distances to the remaining means are checked. If a distance is not signif-
icantly larger than to the closest mean (defined by the threshold ε) then the
object is assigned to the corresponding upper approximation of this mean.
If no other mean is reasonably close then the object is assigned to the lower
approximation of the cluster of its closest mean.

4. Convergence of the algorithm. If the algorithm has converged Stop, otherwise
continue with Step (2) Calculation of the means.

Peters [25, 26] suggested some refinements of Lingras’ rough k-means which
improve the algorithm with respect to its numerical stability and in the presence
of outliers, besides others. Applications of the rough k-means can be found for
example in [11].

2.3 Mitra’s Evolutionary Extension of the Rough k-Means

Mitra [16] argued that one of the main challenges of Lingras’ rough k-means is
to set the initial parameters. These are the number of clusters K, the weights of
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Fig. 1. Evolutionay Rough k-Means

the lower approximation (wl) and the boundary set (wb), and the threshold ε.
She suggested an evolutionary extension of Lingras’ rough k-means to optimize
the initial parameters.

The principles of the evolutionary rough k-means are as follows: Lingras’
algorithm is framed by an iteration that optimizes the weights wl and wb and
the threshold ε for a given number of clusters K (Fig. 1). As optimization method
Mitra chose a classic genetic algorithm [6] and as its fitness function the Davies-
Bouldin-Index [4].

The Davies-Bouldin-Index (DBI) was also chosen as cluster validity index. It
is considered as a general cluster validation criterion for partitive cluster algo-
rithms since its results are independent from the number of clusters. Basically
the Davies-Bouldin-Index is the ratio of the sum of the within-cluster scatter to
the between cluster separation. Well separated clusters are obtained when the
within-cluster scatter is small and the separation between different clusters is
large [2]:

DBI =
1
K

K∑

k=1

max
k �=l

{
S(Uk) + S(Ul)

d(Uk, Ul)

}
(1)

with S(Uk) the average distance of the objects of cluster k to the cluster center
(accordingly for S(Ul)) as a measure for the within-cluster distances:
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S(Uk) =

(
1
|Ck|

∑

Xn∈Ck

‖Xn −mk‖q
2

)1/q

(2)

and d(Uk, Ul) the distance between the cluster centers of the clusters k and l as
an indicator for the between-cluster separation:

d(Uk, Ul) =

⎧
⎨

⎩

F∑

f=1

|mkf −mlf |p
⎫
⎬

⎭

1/p

= ‖mk −ml‖p (3)

The parameters p, q can be chosen separately. The Davies-Bouldin-Index has
to be minimized for optimal cluster separation.

In a comparative study Mitra showed that the evolutionary rough k-means
produces good results with respect to the Davies-Bouldin-Index in comparison to
the classic k-means and k-medoids as well as to the fuzzy k-means and Lingras’
rough k-means. However, Mitra’s study is limited by the following constraints:

1. The Davies-Bouldin-Index was designed for classic cluster algorithms where
an object fully belongs to a cluster or it is not a member of a cluster at
all. Since rough cluster algorithms have upper approximations with objects
of ambiguous memberships to at least two clusters Mitra only considered
the objects in the lower approximations of the cluster when calculating the
Davies-Bouldin-Index. Obviously, the cluster separation of these data con-
stellation is much better in comparison to the whole data set since the objects
in the boundary sets are neglected. Therefore the significance of a compari-
son of the Davies-Bouldin-Indexes obtained by classic crisp algorithms, like
the k-means and the k-medoids, and the rough k-means is limited.

2. The initial parameters pertain to the rough k-means only. Other algorithms
like k-means, k-medoids do not have such tunable parameters.

So, although overall the evolutionary rough k-means performed well, the com-
parison with crisp clustering algorithms has limited expressiveness.

3 Classic k-Medoid Clustering

3.1 The Algorithm

The k-medoids was introduced by Kaufmann and Rousseeuw [8]. Instead of
artificial cluster centers as in the k-means in k-medoid clustering each cluster is
represented by a real object. The algorithm proceeds as follows:
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1. Initialization. Select an objective function and define the number of clusters
K. Randomly choose K objects as medoids and assign the remaining objects
(non-medoids) to the clusters of their closest medoids.

2. Determination of the medoids. Swap each medoid with every non-medoid as
long as the objective function improves.

3. Convergence check. If the algorithm has converged Stop, otherwise continue
with Step (2) Determination of the medoids.

The objective function of the k-medoids is well separated from any other step
of the clustering algorithm. Therefore it can be liberally defined by the data
analyst. However, often the compactness of clustering (CPC) is chosen:

CPC =
K∑

k=1

CPC(Ck)

with CPC(Ck) =
∑

Xn∈Ck

d(Xn,mk)

and CPC(Ck) the compactness of cluster Ck.

(4)

A fuzzy version of the k-medoids was introduced by Krishnapuram et al. [9]
and applied to web document and snippet clustering.

3.2 Comparison of k-Medoids and k-Means

The k-medoids has a real object as representative of a cluster while in k-means
a cluster is represented by an artificial object. This leads to the following advan-
tages of k-medoids in comparison to k-means:

1. Each cluster has a real, touchable object as its representative instead of an
elusive artificial one.

2. The k-medoids delivers better results in presence of (extreme) outliers since
the cluster center is always within the core cluster while applying the k-means
could result in cluster centers that are “drawn” out of the core clusters. For
example see Fig. 2 where the outlier draws a cluster center of the k-means
out of the core cluster.

3. In a wide range the k-medoids is less noise sensitive in comparison to the
k-means. However, this can also be interpreted as disadvantage (see below
the last item of the drawbacks of the k-medoids).

4. The objective function of the k-medoids can be freely defined by the user.

The main drawbacks of k-medoids compared to k-means are:

1. The k-medoids algorithm is of combinatoric nature. This makes it less effi-
cient in comparison to the k-means.

2. The need for a real object as representative of a cluster compromises on the
quality of its cluster centers in comparison to the artificial cluster centers in
the k-means.
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Fig. 2. Cluster Representatives and Outliers

3. For small changes in the distribution of the objects the cluster centers change
discontinuously in certain circumstances: they jump from one object to an-
other.

There is no general rule which cluster algorithms should be applied in cer-
tain circumstances. So it is up to the expert to choose an adequate one for an
experiment1.

4 Evolutionary Rough k-Medoids

In this Section we present two versions of the new rough k-medoids and their
evolutionary extensions.

4.1 Rough k-Medoids Algorithms

We suggest rough k-medoids algorithms based on Lingras’ as well as on Peters’
versions of rough k-means. They are as follows.

Notations:
1 It should be noted that, besides k-means and k-medoids, certainly a three digit

number of variations and further cluster algorithms have been proposed up to date
[15].
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Abbreviation Meaning

Xn,X Data set: Xn for the nth data point and X =
(X1, ...,XN )T with n = 1, ..., N (N the number of
objects).

Ck, Ck, Ck, C
B
k Clusters: Ck the kth cluster, Ck its lower approxima-

tion, Ck the upper approximation and CB
k = Ck−Ck

the boundary set.
mk,M Medoids: mk the medoid of cluster Ck. The set of all

medoids M = (m1, ...,mK)T with k = 1, ...,K (K
the number of clusters).

d(X′
n,mk) Distance between object X′

n and medoid mk:
d(X′

n,mk) = ‖X′
n −mk‖.

wl, wu, wb Weights wl, wu and wb for the lower and upper ap-
proximations and the boundary set.

ε, ζ Thresholds in rough clustering.
T, T ′ Set T respectively T ′: clusters that are considered to

be close to an object.
ROF Rough objective function ROF as defined in 4.2.

Algorithm (Model A):

First, we introduce a new rough cluster algorithm that has its roots in the
classic k-medoids [8] and Lingras’ rough k-means [13]. It proceeds as follows:

1. Randomly define K objects of the set X as medoids: mk, k = 1, ...,K.
Assign them to the lower approximation of the set they are medoids of2:
mk ∈ Ck. The remaining objects are denoted as X′

m,m = 1, ..., (N −K).
2. Assign the remaining (N −K) objects X′

m to the K clusters in a two step
process. In the first step an object is assigned to the upper approximation of
the cluster to which it is closest to. In the second step the object is assigned to
the upper approximation of further reasonably close clusters or it is assigned
to the lower approximation of the closest cluster. The details are as follows:
(a) For a given object X′

m determine its closest medoid mk:

d(X′
m,mk) = min

h=1,...K
d(X′

m,mh) (5)

Assign X′
m to the upper approximation of the cluster k: X′

m ∈ Ck.
(b) Determine the clusters Ch that are also close to X′

m - they are not farther
away from X′

m than d(X′
m,mk) + ε where ε is a given threshold:

T = {h : d(X′
m,mh)− d(X′

m,mk) ≤ ε ∧ h �= k} (6)

2 Note, every cluster should have at least one sure member. Therefore we assign the
medoids to the lower approximations.
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– If T �= ∅ (X′
m is also close to at least one other medoid besides mk)

– Then X′
m ∈ Ch, ∀h ∈ T .

– Else X′
m ∈ Ck.

3. Calculate ROFcurrent.
4. Swap every medoid mk with every object X′

m and calculate ROFk↔m
3.

Let ROFk0↔m0 = min
∀k,∀m

ROFk↔m for k = 1, ...,K, m = 1, ..., (N −K).

– If ROFk0↔m0 < ROFcurrent

– Then swap the medoid mk0 and object Xm0 and set ROFcurrent =
ROFk0↔m0 . Go back to Step (2).

– Else Stop.

Algorithm (Model B):

Second, we present a new rough cluster algorithm that has its foundations in
the classic k-medoids [8] and Peters’ refined rough k-means [26]. It differers from
rough k-medoids Model A as presented above in Eq (6) of Step (2) (b). Instead
of the absolute distance as in Lingras’ rough k-means Peters suggested to take a
relative distance to improve its performance in the presence of outliers. Applying
this to the rough k-medoids we get as new Step (2) (b):

T ′ = {h : d(X′
m,mh)

d(X′
m,mk)

≤ ζ ∧ h �= k}
with ζ a threshold.

(7)

The remaining parts of the algorithm are unchanged in comparison to Model A.

4.2 Objective Functions

In this Section we introduce two rough objective functions: (1) a Rough Com-
pactness of Clustering and (2) a Rough Davies-Bouldin-Index.

Rough Compactness of Clustering. The classic objective function of k-
medoids, the compactness of clustering CPC (see Eq (4)), can not be applied to
the rough k-medoids since the objects are assigned to the two approximations.
Therefore we have to adapt the compactness of clustering CPC to rough sets
by splitting up the compactness of cluster CPC(Ck) into a weighted sum. We
obtain a rough compactness of clustering RCPC.

For the rough k-medoids that is based on Lingras’ rough k-means the rough
compactness of cluster RCPC(Ck) consists of the weighted sum of the objects
in the lower approximation and in the boundary region:

RCPC(Ck) = wl

∑
Xn∈Ck

d(Xn,mk) + wb

∑

Xn∈(Ck−Ck)

d(Xn,mk)

with wl + wb = 1.
(8)

3 The properties of the ROF will be discussed in Section 4.2.
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For the rough k-medoids that is based on Peters’ refined rough k-means we
get the weighted sum for the objects in the lower and upper approximations,
respectively:

RCPC(Ck) = wl

∑
Xn∈Ck

d(Xn,mk) + wu

∑

Xn∈Ck

d(Xn,mk)

with wl + wu = 1.
(9)

Along the lines with the classic compactness of clustering CPC we get a rough
objective function ROF :

ROF = RCPC =
K∑

k=1

RCPC(Ck) (10)

Rough Davies-Bouldin-Index. Mitra et al. [17] suggested a rough Davies-
Bouldin-Index using the weights of the rough approximations.

Alternatively one could follow Pawlak’s [22] suggestion to generally weight the
objects in an upper approximation by the factor 0.5. Following his arguments
we could weight the distances of an object in the lower approximation to the
cluster center by 1 and the distance of an object in an upper approximation by
0.5 when calculating the Davies-Bouldin-Index.

However, we adapt Laplace’s famous Principle of Indifference [10] to rough
clustering. Laplace argued that - if there are no reasons given that probabilities
are not equally distributed - one has to assume that the probabilities are equally
distributed.

Obviously we can apply Laplace’s principle to the objects in the boundary
sets since their memberships to a certain cluster is undefined. If an object n
belongs to bn boundary sets we can assume a degree of membership of 1/bn to
each of the corresponding clusters.

Utilizing Laplace’s argument for the rough Davies-Bouldin-Index we weight
the distance of the object n in a boundary set by 1/bn and get:

S(Uk) =

⎛

⎝ 1

|Ck|
∑

Xn∈Ck

‖Xn −mk‖2 + 1

|Ck−Ck|
∑

Xn∈(Ck−Ck)

( ‖Xn−mk‖2
bn

)q

⎞

⎠
1/q

(11)
Each object n in a boundary set now has a total weight of 1 in the rough

Davies-Bouldin-Index since it belongs with a fraction of 1/bn to each of the bn

clusters.

4.3 An Evolutionary Extension of the Rough k-Medoids

Along the lines with Mitra’s evolutionary extension of rough k-means [16] we
implemented an evolutionary rough k-medoids and applied the rough Davies-
Bouldin-Index as fitness function in the genetic optimization of the initial
parameters.



Evolutionary Rough k-Medoid Clustering 299

5 Experiments

In this Section the non-evolutionary and the evolutionary versions of the rough
k-medoid clustering algorithm are validated and compared to rough k-means
in experiments with four different data sets: synthetic, colon cancer, forest and
synthetically generated control data.

– Non-evolutionary rough k-medoids. In the non-evolutionary experiments a
two step approach is chosen: (1) Up to 400 experiments are conducted with
randomly selected initial parameters (weights and threshold). (2) The initial
parameters that lead to the best Davies-Bouldin-Indexes (with p = q = 2)
are analyzed in more detail. In the neighborhood of these initial parameters
between 25 and 100 additional experiments are conducted to further opti-
mize the Davies-Bouldin-Index. Since the algorithms converge towards local
minima each experiment is repeated at least five times with identical initial
settings.

– Evolutionary rough k-medoids. In the evolutionary experiments the ini-
tial parameters (weights and threshold) are optimized. To better compare
the results to the non-evolutionary experiments the number of clusters K
is excluded from the optimization and remains unchanged from the non-
evolutionary test setup.

In our study we exclude comparisons to crisp cluster algorithms because of a
missing well accepted cluster validity index for crisp and rough clustering.

5.1 Synthetic Data

Data Set. The two-dimensional, synthetic data set consists of 10 objects as
depicted in Fig. 3 [27]. Basically they are arranged in two clusters.

Experiments. The number of clusters is set to K = 2. First, in rough k-
medoid clustering the data are optimized according to the rough compactness of
clustering. The results that are obtained for the rough k-means and the rough
k-medoids are shown in the Tables 1 and 24.

Discussion. The Davies-Bouldin-Indexes for the rough k-means are better in
comparison to the rough k-medoids which are optimized according to the RCPC
function. This shows that the RCPC and the DBI are of different nature.
Furthermore, in rough k-means the cluster centers are not limited to real objects
as in rough k-medoids.

Optimizing rough k-medoids according to the Davies-Bouldin-Index provides
much better results (see Table 1). Both versions of the rough k-medoids algorithm
select the same objects as their medoids and have the same approximations (see

4 Please note, that we use the following notations: DBI and RCPC define the objec-
tive function applied in the rough k-medoids.
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Fig. 3. Synthetic Data

Table 1. Synthetic Data: Results

Non-Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.403

Peters’ rough k-means 0.401

Rough k-medoids Model A (RCPC) 0.755

Rough k-medoids Model B (RCPC) 0.649

Rough k-medoids Model A (DBI) 0.404

Rough k-medoids Model B (DBI) 0.404

Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.378

Peters’ rough k-means 0.399

Rough k-medoids Model A (RCPC) 0.686

Rough k-medoids Model B (RCPC) 0.649

Rough k-medoids Model A (DBI) 0.404

Rough k-medoids Model B (DBI) 0.404
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Table 2. Synthetic Data: Cluster Centers

Non-Evolutionary Algorithm m1 m2

Lingras’ rough k-means (0.119, 0.153) (0.815, 0.850)

Peters’ rough k-means (0.111, 0.145) (0.823, 0.857)

Rough k-medoids Model A (RCPC) (0.100, 0.200) (0.500, 0.500)

Rough k-medoids Model B (RCPC) (0.100, 0.200) (0.600, 0.500)

Rough k-medoids Model A (DBI) (0.000, 0.200) (1.000, 0.800)

Rough k-medoids Model B (DBI) (0.000, 0.200) (1.000, 0.800)

Fig. 3 and Table 2). The results are similar to the results obtained by rough
k-means.

The evolutionary rough k-medoids shows improved results in comparison to
the non-evolutionary version when the RCPC is chosen as objective function.

When the Davies-Bouldin-Index is already implemented as objective func-
tion in the rough cluster algorithm the evolutionary optimization of the initial
parameters did not improve the results any further. So the trial and error opti-
mization of the initial parameters were found to be enough for this small data
set.

5.2 Colon Cancer Data

Data Set. The colon cancer data (http://www.molbio.princteon.edu/colondata)
consists of 62 gene expression records. Forty records stem from patients who suf-
fer from cancer. The remaining 22 records belong to healthy people. Each data
record has more than 2000 features. Due to performance requirements the ex-
periments are conducted with a reduced number of 21 features [26]. The number
of clusters is set to K = 2 to represent the two classes of patients.

Experiments. First, we apply the rough compactness of clustering in rough k-
medoids. Second, we use the Davies-Bouldin-Index as objective function in the
rough k-medoids algorithms. The results are depicted in Table 3.

Discussion. In the case of the colon cancer data the two objective functions,
rough compactness of clustering and Davies-Bouldin-Index, lead to the same
results. Lingras’ rough k-means only performs a little bit inferior and, at the
first sight, Peters’ rough k-means produces significantly worse results than all
other rough clustering algorithms.

Taking a closer look at the distribution of the objects to the cluster, we see
that all algorithms expect Peters’ tend to prefer unequally distributed solutions
with no objects in the boundary sets (see Table 4). In contrast to that, Peters’
algorithm provides a more intuitive solution where the lower approximations of
both clusters have significant numbers of members.

The evolutionary rough k-medoids showed the same result (DBI = 0.530)
for all tested versions. It did not improve the results compared to the
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Table 3. Colon Cancer Data: Results

Non-Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.602

Peters’ rough k-means 1.178

Rough k-medoids Model A (RCPC) 0.530

Rough k-medoids Model B (RCPC) 0.530

Rough k-medoids Model A (DBI) 0.530

Rough k-medoids Model B (DBI) 0.530

Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.542

Peters’ rough k-means 1.116

Rough k-medoids Model A (RCPC) 0.530

Rough k-medoids Model B (RCPC) 0.530

Rough k-medoids Model A (DBI) 0.530

Rough k-medoids Model B (DBI) 0.530

Table 4. Colon Cancer Data: Assignment of the Objects

Number of objects in

Non-Evolutionary Algorithms Cluster 1 Cluster 2 Boundary

Lingras’ rough k-means 61 1 0

Peters’ rough k-means 29 4 29

Rough k-medoids Model A (RCPC) 61 1 0

Rough k-medoids Model B (RCPC) 61 1 0

Rough k-medoids Model A (DBI) 61 1 0

Rough k-medoids Model B (DBI) 61 1 0

Evolutionary Algorithm

Lingras’ rough k-means 45 15 2

non-evolutionary version. However, for Lingras’ rough k-means the evolu-
tionary component significantly improved the results by two means. First,
the Davies-Bouldin-Index was reduced from DBInon−evolutionary = 0.602 to
DBIevolutionary = 0.542. Second, the distribution of the objects to the approx-
imations is more intuitive in comparison to the non-evolutionary approach (see
Table 4). The lower approximations of the clusters have 15 and 45 objects in-
stead of the assignment of 61 objects to one cluster and only 1 to the other
cluster in the non-evolutionary version (see Table 4).
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Table 5. Forest Data: Results

Non-Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.908

Peters’ rough k-means 0.933

Rough k-medoids Model A (RCPC) 0.925

Rough k-medoids Model B (RCPC) 0.807

Rough k-medoids Model A (DBI) 0.484

Rough k-medoids Model B (DBI) 0.502

Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.681

Peters’ rough k-means 0.899

Rough k-medoids Model A (RCPC) 0.779

Rough k-medoids Model B (RCPC) 0.807

Rough k-medoids Model A (DBI) 0.482

Rough k-medoids Model B (DBI) 0.498

5.3 Forest Data

Data Set. The forest database (http://kdd.ics.uci.edu) consists of more than
500,000 data records. The features describe characteristics of a forest like slope,
soil type and others. Ten of the features are quantitative. For our evaluation we
use a randomly reduced data set of 241 objects and all 10 quantitative features.
The number of clusters is arbitrarily set to K = 3 in all experiments.

Experiments. For the forest data we obtained Davies-Bouldin-Indexes as de-
picted in Table 5.

Discussion. Like in the experiments before, rough k-medoids using the Davies-
Bouldin-Index as objective function performed better than rough k-medoids op-
timized according to the RCPC and rough k-means.

This confirms the results of the previous experiments. Choosing the DBI as
objective function is a distinct advantage when the DBI is also used as cluster
validity index.

Again, the improvements for rough k-medoids with the Davies-Bouldin-Index
as objective function are only small when the initial parameters are optimized
evolutionarily. In contrast to that the improvements obtained for Lingras’ rough
k-means are significant.

5.4 Control Chart Data

Data Set. The control data set (http://kdd.ics.uci.edu) is synthetically gener-
ated and consists of 600 data records and 6 different classes of control charts.
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Table 6. Control Chart Data: Results

Non-Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.539

Peters’ rough k-means 0.534

Rough k-medoids Model A (RCPC) 0.586

Rough k-medoids Model B (RCPC) 0.508

Rough k-medoids Model A (DBI) 0.462

Rough k-medoids Model B (DBI) 0.398

Evolutionary Algorithms Davies-Bouldin-Index

Lingras’ rough k-means 0.521

Peters’ rough k-means 0.463

Rough k-medoids Model A (RCPC) 0.586

Rough k-medoids Model B (RCPC) 0.493

Rough k-medoids Model A (DBI) 0.453

Rough k-medoids Model B (DBI) 0.395

Experiments. In our experiments we used a reduced set of 21 objects and set
the number of clusters to K = 6 to represent the 6 different classes of control
charts. We obtained Davies-Bouldin Indexes as shown in Table 6.

Discussion. As observed before, those algorithms that are already optimized
according to the Davies-Bouldin-Index outperformed both rough k-medoids with
the RCPC as objective function as well as the rough k-means algorithms.

The results of the evolutionary algorithms confirm the observations of the
previous experiments. If the objective function is identical to the cluster validity
index the improvements of evolutionary optimization are limited. However, in
contrast to some of the previous experiments, the results did not significantly
improve by evolutionary optimizing the initial parameters in the other cases.

6 Conclusion

In this article we presented two versions of a new rough k-medoid clustering
algorithm and tested them in four experiments. A comparison to rough k-means
approaches shows that the special strength of rough k-medoids is its isolated
objective function which can be freely defined by the user.

A comparison to the evolutionary versions shows that, in most cases, the im-
provements obtained by the evolutionary rough k-medoids are limited in compar-
ison to the non-evolutionary versions. Therefore, in rough k-medoid clustering
it is not as necessary to implement an evolutionary version as in rough k-means.
The main reason for that is that in rough k-medoids the objective function can
be liberally chosen, ideally identical to the selected cluster validity index.
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Although several cluster validity indexes have been suggested already (see
e.g. [2]) there is no criterion to compare the quality of crisp and rough cluster al-
gorithms. Therefore we abstained from a comparison of the new rough k-medoids
to the classic k-medoids. However, there is a need for a comprehensive class of
cluster validity indexes that can be applied to crisp and rough as well as to fuzzy
clustering approaches.
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Abstract. This paper gives an overview of the current version of the
Rough Sets Database System (in short the RSDS system). The current
version of the RSDS system includes a number of modifications, exten-
sions and functional improvements. The RSDS system is a freely avail-
able database system, developed to facilitate the creation of the rough
sets bibliography for various types of publications as well as their fast
popularization and application. This database is the most comprehensive
online rough sets bibliography currently available at the Internet address
http://rsds.univ.rzeszow.pl. The main functionalities of this system are
presented along with a brief explanation of its exploitation methods.

Keywords: rough sets, data mining, knowledge discovery, pattern recog-
nition, machine learning, database systems.

1 Introduction

The rough set theory [1] is a rapidly developing discipline of theoretical and
applied computer science. It has become apparent during recent years that a
bibliography on this subject is urgently needed as a tool for both the efficient
research, and the use of the rough set theory.

This paper presents the latest edition of the Rough Set Database System (in
short the RSDS system) for the creation of the bibliography on the rough sets
and their applications. The first version of the RSDS system became available
almost five years ago. The current version of this system includes a number of
modifications, extensions and functional improvements, in particular:

– new versions of an advanced searching,
– information about co-authors for every author in the system,
– a module of a graph – statistical analysis of the content of the system,
– a module of a classification of scientific publications according to a projected

classifier,
– an interactive map of the world showing who and where in the world works

on the development of the rough set theory and its applications,
– some auxiliary sections, e.g. FAQ, Opinions.

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 307–331, 2008.
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The present version of the RSDS system includes new bibliographical de-
scriptions of publications. Moreover, the existing contents of the database has
been verified with respect to the accuracy and excessiveness of the stored data.
As a result of conducted operations the data stored in the RSDS system is
reliable and in most cases they have abstracts and keywords added. At the mo-
ment there are over 3400 publications in the database that have been written
by over 1900 authors. Descriptions of publications in the system are classed in
accordance with 12 publication types (specified in the specification BibTeX ),
i.e., article, book, booklet, inbook, incollection, inproceedings, manual, master-
sthesis, phdthesis, proceedings, techreport, unpublished. Functionality of the
created system is based on possibilities: adding, modifying, searching and data
transforming (descriptions of publications) in the system. To simplify the main-
tenance of the system by users there were created separate sections (group of
menu) that make it possible to move around the whole system.

A system user is able to login to it through the Login section. For registered
users there are given possibilities such as: inserting new data in the system using
a special form, modifying inserted data, classifying publications in accordance
with a designed classifier. All system users are able to gain information (biblio-
graphical descriptions publications).

In the section called Search there are two kinds of searching possible: alpha-
betical and advanced. The advanced search allows to find bibliographic data
according to criteria. After finding the searched data, the system is able to gen-
erate and download the text file including these data (in the format of BibTeX ).

In the section called Statistics there are dynamically generated statistics, that
describe the system usage, data and their analysis.

In the system there is information concerning the software connected with
the rough sets and biographies of outstanding people working actively into the
rough set domain.

The actual version of the system has been given new extensions which make
it more functional. The earlier versions of the RSDS system have been described
in publications [2,3,4].

The rest of the paper is organized as follows. Section 2 presents an overview
of the current possibilities of the RSDS system. The future plans for the RSDS
system are discussed in section 3. Conclusions are given in section 4.

2 Capabilities of the System

2.1 Home Page

Having the system activated, the English version of the home page appears on a
display. The service menu comprises several options making it possible to move
around the whole system. The menu includes the following: Home page, Login,
Append, Search, Download, Send, Write to us, Statistics, Help, FAQ, Software,
People, Opinions, Map (see Figure 1).
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Fig. 1. The starting page of the RSDS system with a marked user menu

2.2 Adding Data – Online

The section Append is used for adding new data (publications) into the system.
One must not use the national marks when introducing data into the system.

This section is available only for the users registered in the system (see
Figure 2). In order to register into the system you have to fill in a form available
in the section Login.

Fig. 2. A message displayed when trying to add new publications without logging into
the system
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Fig. 3. Scheme for operation of adding data online

If a user logs into the system for the first time, he/she has to fill in a registra-
tion form available in the section First Login (after pressing the key First Login).
In this form the user gives personal data. When the form has been filled in cor-
rectly and the id and the password has been defined, the user is automatically
logged into the system. On the other hand, when the user is already registered
in the system and wants to log in, then, in the section Login he fills in the form
containing the id and the password, and when they are written correctly he is
logged into the system. Next, the section Append becomes activated for the user.
For the sake of safety the system automatically remembers which publications
have been added by a given user. This information is also used when the data
is edited. Adding new bibliographical descriptions has been divided into two
phases (see Figure 3):

– During the first phase the user defines information describing a given pub-
lication, which is demanded by the system BibTeX specification, and corre-
sponding to a particular type of a publication.

– During the second phase one defines information connected with authors or
editors of a given publication.

At the beginning of introducing the data describing a publication the user
defines the type of a publication (see Figure 4). There are twelve types of publi-
cations available. Depending on a chosen type, a form is generated which contains
the data used for describing a given publication, i.e., a title, an editor, a year of
publishing, a publishing etc. The data necessary for describing a given type are
marked with an asterisk (*) (see Figure 5).

The list concerning publication types together with the fields describing them
is as follows.
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Publication Description
article An article from a journal.

Fields required: author, title, journal, year.
Optional fields: volume, number, pages, month, note.

book A book with the known, given publisher.
Fields required: author or editor, title, publisher, year.
Optional fields: volume, series, address, edition, month,
note.

booklet Printed and bound matter, whilst the publisher is unknown.
Fields required: title.
Optional fields: author, address, month, year, note.

inbook A part of a book, could be a chapter or given pages.
Fields required: author or editor, title, chapter or pages,
publisher, year.
Optional fields: volume, series, address, edition, month,
note.

incollection A part of a book with its own title.
Fields required: author, title, book title, publisher, year.
Optional fields: editor, chapter, pages, address, month,
note.

inproceedings An article published in the conference proceedings.
Fields required: author, title, book title, year.
Optional fields: author, organization, publisher, address,
month, note.

manual Manual or documentation.
Fields required: title.
Optional fields: author, organization, address, edition,
month, year, note.

mastersthesis M.Sc. thesis.
Fields required: author, title, school, year.
Optional fields: address, month, note.

phdthesis Ph.D. thesis.
Fields required: author, title, school, year.
Optional fields: address, month, note.

proceedings Proceedings.
Fields required: title, year.
Optional fields: editor, publisher, organization, address,
month, note.

techreport Report, usually with a given number, being periodically
issued.
Fields required: author, title, institution, year.
Optional fields: number, address, month, note.

unpublished A document with a given author and title data, unpub-
lished.
Fields required: author, title, note.
Optional fields: month, year.
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Explanation on existing fields.

abstract An abstract of a publication.
address Publisher’s address.
author Forename and surname of an author (or authors).
booktitle Title of a quoted in part book.
chapter The chapter number.
edition Issue, edition.
editor Forenames and surnames of editors. If there also exists the

field ”author”, the ”editor” denotes the editor of a larger
entity, of which the quoted work is a part.

institution Institution publishing the printed matter.
ISBN The International Standard Book Number.
ISSN The International Standard Serial Number. Used to identify

a journal.
journal Journal’s name.
keywords Key words attached to a publication. This can be used for

searching a publication.
month Month of issue or completion of the manuscript.
note Additional information useful to a reader.
number The journal or the report number. Usually journals are be-

ing identified by providing their year and a number within
the year of issue. A report, in general, has only a number.

organization Organization supporting a conference.
pages One or more page numbers; for example 42-11, 7,41,73-97.
publisher Publisher’s name.
school University, college, where the thesis is submitted.
series The name of a book series. If one quotes the book from a

given series, then the ”title” field denotes the title of a book,
whilst the ”series” field should contain the entire series’
name.

title The title of the work.
URL The WWW Universal Resource Locator that points to the

item being referenced. This often is used for technical re-
ports to point to the http or ftp site where the postscript
source of the report is located.

volume The periodical’s or the book’s volume.
year Year of issue. In case of unpublished work, the year of com-

pleting writing. Year only in number format e.g. 1984.

Note: All data must be appended in the Latin alphabet - without national
marks.

When all required data is introduced, the system displays the introduced data
again in order to verify its correctness. When the data is accepted the user gets
on to another stage of adding a new publication - introduction of data related
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Fig. 4. Choosing the type of a publication in order to introduce it into the system

Fig. 5. A form of introducing data about a new publication displayed after stating the
type of a publication

to the authors or editors of publications (see Figure 6). The data of the authors
or editors are to be introduced singly (each author or editor separately) in order
to add them correctly to the system. When the data of an author is introduced
the system displays it again to verify it.This step will be repeated as long as
the user decides he has introduced all data and accepts the whole process by
pressing the key End. After being accepted, the data is sent to the database of
the system.
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Fig. 6. A form used for introducing data about the authors and editors of publications

2.3 Searching for Data

In order to search for information one has to use the section Search (see Figure
7). In this section the following ways of searching has been detached: alphabetical,
advanced ver. 1, advanced ver. 2.

In the alphabetical way of searching we can distinguish searching according
to: titles, authors, publishers, conferences, journals, year of issue (Figure 8).

When we choose e.g. searching according to the authors of publications, the
letters of the alphabet are displayed. The letters denote certain groups of authors
segregated alphabetically (see Figure 8). When one clicks on any letter, the list
of authors whose names start with a given letter appears. Next to each surname

Fig. 7. Scheme for operation of searching for data
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Fig. 8. An alphabetical search (according to authors - starting page)

there is information about the number of publications of this author available in
the system. There are some icons that may appear next to a surname and they
denote (see Figure 9):

– an icon of a lupe - information about an author,
– an icon of an envelope - an email address of an author,
– an icon of a house - www site of an author.

Fig. 9. The results of the alphabetical searching according to the authors starting with
the letter S
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When a user clicks on a chosen name, the list of all publications of this author
appears. The publications which are found are first displayed in a HTML format
(Figure 10), and after clicking the link to BibTeX, a description in a BibTeX
format is generated (Figure 11).

In an alphabetical search according to the titles of publications (publishers,
conferences, journals, year of issue), when we indicate a particular letter we
receive the list of the titles of publications (publishers, conferences, journals,

Fig. 10. A list of publications found thanks to the alphabetical searching for the author
Suraj Zbigniew

Fig. 11. A detailed description of a chosen publication
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year of issue) in the system, starting with a given letter (year). Displaying the
found publications for subcategories has been adequately prepared in order to
shorten the time of searching for a proper publication. In searching according to:

– Titles, an alphabetical list of titles has been divided into successive years of
publishing.

– Authors, the list of publications for particular authors has also been divided
according to the years of publishing. In addition, for every author there is
a dynamic list of co-authors writing publications with a given author built.
Each surname of the co-authors allows for connection with his publications
(see Figure 10).

– Publishers, the list of publications for particular editors has also been divided
into the years of publishing.

– Conferences, in this subcategory there have been distinguished the main
names of conferences and put in an alphabetical order. After choosing a
particular name, the list according to the years is displayed and after choos-
ing one year one gets the access to the publication connected with a given
conference taking place in a chosen year.

– For journals the list of publications has been prepared in such a way, that
each of the magazines has been divided according to years, which include
successive numbers of magazines with adequate publications assigned.

– Year of issue, in this subsection there is a division of publications according
to particular years of publishing.

In the subcategories every list is being built in a dynamic way, i.e., every change
in the system causes the change in the list.

If we choose an advanced ver. 1 search path we have a possibility to define
accurately the conditions of searching for the publication (see Figure 12). The

Fig. 12. A form used for defining the conditions of an advanced searching ver. 1
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Fig. 13. An exemplary result of an advanced searching ver. 1

fields of the form used for developing the conditions of searching have been
equipped with dynamic ”self-organizing” lists, i.e., writing letters into the edition
fields causes limiting the content of the list to data matching an introduced
pattern. Between particular conditions of searching we can define the connections
in forms of logical operators AND and OR. After filling a form in and clicking
the button Search, we receive the list of publications which fulfill the criteria
(see Figure 13).

When we choose an advanced ver. 2 of the option of searching we gain the
possibility of searching for publications with automatic grouping the results of
searching defined by a classificator. After writing the query into the edition field
and pressing the key Search we receive the list of found publications grouped
according to proper categories. This list is presented in form of a developable
”tree” (see Figure 14).

When the user finds an adequate publication, he has a possibility of getting
its description in two formats:

– HTML - this is the format of displaying publications in the system (without
the possibility of generating the description files),

– BibTeX - this is the format of displaying publications generated after clicking
the link BibTeX. It has the possibility of generating the description files.

After generating a description of a publication in the BibTeX format, the possi-
bility of adding the received description to the file created by the user - clicking
the link Add to the file or downloading the created file is activated - clicking the
link Download the file (see Figure 11).
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Fig. 14. An exemplary result of an advanced searching ver. 2

2.4 Editing the Existing Data

In the system there is also a possibility of edition of introduced data. Each user has
a possibility to edit only the data which is introduced through one’s own account
into the system, i.e., during the session in which one was logged in. To go further to
the edition of a publication introduced by the user, one has to log into the system.
Then, one has to use the section Search, and when the publication is displayed in
a HTML format, one has to click on the link Edit, and then, by means of a special
form, make changes in the fields describing the publication. When the user wishes
to stop the process of edition, he must click on the button Submit entry in order to
send the data to the administrator of the system. The user logged into the system
as an administrator has a possibility of removing repeated publications.

2.5 The Classification of Publications with the Use of a Defined
Classificator

In the system there is a possibility of attributing to every publication a classifi-
cator describing in a detailed way the theory and application of the rough sets.
The classifier had been divided into 8 main groups which include subgroups
describing the parent groups.

Generally, the structure of the classifier looks as follows: in the classifier the
main groups were marked with the letters A,. . . , H, while the subgroups with
successive numbers 1,. . . , 48. The main groups have been prepared in order to
describe all directions of the research over the rough sets and these are:

A. Foundations
B. Applications in
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Fig. 15. A structure of a classifier

C. Methods
D. Methodology
E. Software systems
F. History
G. Didactics
H. Others

It is used for grouping publications during the advanced searching (ver. 2).
Each user of the system has a possibility of classifying publications introduced
through one’s own account in the system, i.e., during the session in which one
was logged in on that account. The option of classification becomes available only
when the user logs into the system. After logging in and finding a given publi-
cation (by means of available ways of searching) during displaying a description
of a publication in the HTML format, next to the link Edit appears the link
Classify which causes entering the section of classificating a given publication.
After indicating which subject presented in the classificator we can classify the
publication to - there is a possibility of attributing several descriptions to one
publication (see Figure 16). Then, a chosen classification is displayed again in

Fig. 16. The screenshot displaying the classification of a given publication
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order to verify the correctness in the format e.g. B, A.1, A.2–5 (the format used
by a publisher Springer-Verlag). After it is accepted with the key Submit entry
it is sent to the system.

2.6 Registration of Users into the System

In order to make it possible to add data into the system, one has to log into
the system as a user by going to a section Login and filling a form in with
following data: user name and user password given during the first logging into
the system.

In case of a lack of a name and password, one has to press the button First
login. Then, one has to fill in a form with data such as: first name, surname,
email, username and password. When the form is filled in correctly and the
button Login is pressed, the user account will be set up and the user will be
automatically logged into the system. If the form is not filled in correctly an
adequate notice about an error will be displayed.

2.7 Saving Data in a File

When we display data in BibTeX format there is a possibility to form a file
which would include bibliographical descriptions interesting for a user. One can
do it by clicking on the link Add to the file. Then, a file *.tex will be formed
and we can add the descriptions to this file during one session in the system.
There is also a possibility to download the generated file by means of a Download
section at any moment (see Figure 17). When the session is completed and the
file is not downloaded, it is automatically deleted. In the system, two methods of

Fig. 17. A form used for stating the method of recording a generated file of a bibliog-
raphy
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downloading files are implemented for the comfort of the users: saving on a local
disc of a computer, or sending the file as an attachment to an email message.

2.8 Sending Files with Data to an Administrator

It is possible to submit a file with the bibliographic data to the database ad-
ministrator, who has the software allowing for appending automatically large
data to the database (the section Send). In order to do it, one can use a special
dedicated form. Submissions in the form of BibTeX files are preferred. Please
note that submissions are not immediately available, as the database is updated
in batches once a month.

2.9 Handling the Users Comments

The section Write to us allows to write and send the comments concerning
the service to us by using a special dedicated form. Any comments about the
service will be helpful and greatly appreciated. Please post them to the database
administrator who permanently carries out work on improving the service and
broadening its possibilities.

2.10 Statistics

The section Statistics includes statistical information concerning the system.
This section has been divided into seven pages:

– Page 1 contains information describing: the number of users’ visits to the
site, number of the authors in a database, as well as the dynamic diagrams
related to: the number and types of publications in a database, number and
years of published works.

– Page 2 contains the statistics depicting the countries from which the users
of the service come.

– Page 3 contains the monthly and yearly statistics of visits to the service.
– Page 4 includes information about what percent of all authors have written

particular number of publications. Table 1 contains the listing, showing that
the greatest number of authors 51% has written one publication related to
the rough sets per person, two publications have been written by 11% of
authors, three publications by 6% of authors. Only few authors have written
a larger number of publications e.g. 6-10 publications have been written by
about 4% of authors while 11-20 by about 2.4% of authors. At this point
we can come to the conclusion that most authors learn about the rough sets
because it is a fairly ”young” research field.

– Page 5 contains the analysis of data in the system with a division into defined
time periods.
The task of our analysis was to prepare data in the system i.e. we did not
consider the publications without an author - reviewed works, collective pub-
lications - e.g. proceedings, publications without the year of publishing. Such
works make up a small percentage of the works included in the system and
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Table 1. The percentage share of authors with a given number of publications

Number of publications Percentage of authors

1 51.32%

2 11.09%

3 6.08%

4 1.98%

5 1.67%

6-10 3.65%

11-20 2.38%

21-50 1.32%

51-100 0.61%

101-200 0.25%

> 200 0.05%

we have rejected them because during the analysis we interpret the relations
between authors and publications as well as the publishing years and publi-
cations. Without these data we are not able to define such relations. After
rejecting particular publications we have chosen 3071 publications written
by 1578 authors for our analysis. The publications in the system can be di-
vided into adequate groups: article - 869 items, book - 138 items, inbook - 19
items, incollection - 284, inproceedings - 1860, manual - 2 items, masterthesis
- 12, phdthesis - 16, proceedings - 68, techreport - 148 items, unpublished -
2 item. The first analysis was done by dividing the period during which they
had been created into the following intervals: 1981-85, 1986-90, . . . . Thanks
to dividing the period into such intervals we can observe the development
of the rough sets theory and use in numbers. By comparison of the five-year
periods we can state during which period the development of the works on
the rough sets was the greatest. Table 2 presents the results of the carried
analysis.

When analyzing the results we can come to the following conclusions:

• The period during which the greatest number of publications were writ-
ten and the greatest number of authors were creating the publications
was the period between 2001-2005. This period is also the best when
considering other parameters.

• As for the data concerning the number of publications written by one
author the period between 1996-2000 was the best, while considering
the number of authors falling on one publication the best period was
between 2001-2005.

• Taking into consideration co-operation between the authors when creat-
ing publications we can observe that most authors write their works on
their own or with one co-author. This means that until 1995 co-operation
during writing common publications had hardly existed. After that year
the situation has changed - the number of publications created by groups
of co-authors increased.
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Table 2. The data record for a given five-year period

In years 1981-1985 1986-1990 1991-1995 1996-2000 2001-2005

Number of publications 35 86 489 1007 1454

Number of authors 12 45 219 539 1102

Mean publications/author 4 2.98 3.71 5.32 4.09

Standard deviation publication/author 4.93 3.39 7.01 43.53 44.17

Mean authors/publication 0.37 0.56 0.66 0.88 1.11

Standard deviation authors/publication 0.76 0.84 1 1.14 1.28

Percentage share of publications
with n coauthors

Luck of authors 2.86% 2.33% 6.13% 5.56% 7.08%
(a publication under edition only)

n = 0 68.57% 54.65% 44.58% 37.84% 27.79%

n = 1 20% 32.56% 34.36% 32.27% 30.61%

n = 2 5.71% 6.98% 9% 15.39% 21.94%

n > 2 2.86% 3.49% 5.93% 8.94% 12.59%

Number of authors sharing common 12 33 180 480 1033
publications
Their percentage share 100% 73.33% 82.19% 89.05% 93.74%

Mean coauthors/author 2.17 1.96 2.27 2.77 3.06

Mean coauthors/author sharing 2.17 2.67 2.77 3.11 3.26
a common publication

– Page 6 contains the analysis of the data prepared before, according to the
periods defined as follows: 1981-85, 1981-90, 1981-95, . . . . When analyzing
the data according to time periods defined in this way our analysis has a
global character showing the relation of a given five-year period to other
periods. Table 3 presents the results of the carried analysis.
On the basis of the results we have come to the following conclusions:
• The greatest development of publications created in the field of the rough

sets and in respect of people (authors) interested in this subject took
place after 1995.

• After 1995 the number of publications written by one author suddenly
increased.

• The year 1995 is a fateful year for the development of the rough sets
theory and its use.

– Page 7 contains the analysis of the so-called collaboration graph. (The ver-
tices of the graph are the authors in our database, and two vertices are joined
by an edge if the two authors have published a joint paper.) An exemplary
structure of the collaboration graph is presented in the Figure 18, where the
vertices at the graph were marked with the letters A,. . . , G.

The co-operation graph on the basis of the data in the system contains
1904 vertices joined with 2954 edges. The average degree of the vertex in
the obtained graph equals 3.10. Among all nodes of the graph there are
139 isolated vertices. These are the authors of publications who have not
co-operated with anyone. We will not take these authors into consideration
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Table 3. The cumulative data record to the end of a given five-year period

Year of completion 1981-1985 1981-1990 1981-1995 1981-2000 1981-2005

Number of publications 35 121 610 1617 3071

Number of authors 12 47 238 670 1578

Mean publications/author 4 3.87 4.18 6.67 5.69

Standard deviation publication/author 4.93 5.25 8.64 63.04 77.94

Mean authors/publication 0.37 0.5 0.63 0.79 0.94

Standard deviation authors/publication 0.76 0.83 0.97 1.08 1.19

Percentage share of publications
with n co-authors

Luck of authors 2.86% 2.48% 5.41% 5.5% 6.25%
(a publication under edition only)

n = 0 68.57% 58.68% 47.38% 41.43% 34.97%

n = 1 20% 28.93% 33.28% 32.65% 31.68%

n = 2 5.71% 6.61% 8.52% 12.8% 17.13%

n > 2 2.86% 3.31% 5.41% 7.61% 9.96%

Number of authors sharing common 12 36 195 590 1465
publications
Their percentage share 100% 76.6% 81.93% 88.06% 92.84%

Mean co-authors/author 2.17 2.13 2.38 2.83 3.15

Mean co-authors/author sharing 2.17 2.78 2.9 3.21 3.39
a common publication

Fig. 18. An exemplary structure of a collaboration graph

in our analysis. For further analysis we will take the co-operation graph
without the rejected authors (isolated vertices). Such graph we will call the
reduced graph. It consists of 1765 vertices. The average degree of the vertex
in the reduced graph equals 3.35. It means that every author in the system
co-operated with three authors on average.

Further analysis of the co-operation graph included determining the com-
ponents of the graph and analyzing the largest of them. We have determined
284 components containing 2 to 713 non-isolated vertices. Among these
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components there is one which consists of the largest number of vertices
i.e. 713 and it is called the largest component. Each of the components rep-
resents the groups of authors co-operating with each other. These groups
may include people closely co-operating with each other as well as people
who are included thanks to indirect co-operators. The components can be
also used to define the person one needs to get in touch with in order to find
a particular author.

In order to describe the components, particularly the largest component,
we we have accepted the following parameters: the average distance between
two vertices, the diameter and the radius.

The distance between two vertices (authors) in a given group denotes
that if we made a sphere from a given vertex (author), with the radius equal
to the average distance between two vertices, we would obtain information
about people closely co-operating with that particular author.

The diameter denotes how far from a particular author there is a person
the least related to him, i.e., how far are the people working the least in the
group.

The radius denotes the leaders, i.e., the most closely co-operating people.
These parameters we have determined for the largest component and

their values are: The average distance between the vertices is equal to 5.26
with a standard deviation 2.20, the diameter equals 17 whereas the radius
equals 9. This means that the groups of co-operating authors are quite large
and they have many distant branches.

On the other hand, if we made a sphere from every vertex of the com-
ponent, with the radius equal to the radius of the component, all spheres
would have a common part on some vertex (vertices). The vertex (vertices)
from the common part denotes the leader (leaders) of a given group. Find-
ing in a group authors outlying from the leader as far as a diameter denotes
finding the ”satellites” of a given group, and finding the authors outlying
from the leader as far as a radius denotes finding the very leaders of a given
group.

The statistics Page 1-page 3 are generated dynamically, i.e. every change
in the data in the system is reflected in the statistics. Page 4-page 7 are
generated by means of the software created by us and determined factors
are updated once a month. A detailed analysis of the obtained results in
generated statistics has been presented in the paper [6].

2.11 Help

This section provides information in what way one can use the RSDS system.

2.12 FAQ

This section provides answers concerning frequently asked questions about the
RSDS system.
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2.13 Software

In this section there is an opportunity to search for information concerning
the software connected with the rough sets. There are two ways of searching
demanded information:

– A search through submitting an application’s name.
– An alphabetic search.

Apart from a description of the searched software, the RSDS system allows to
download a searched application.

2.14 People

This section allows to find the biographies of outstanding people concerned with
the rough sets methodology. After having found a person, this person’s biog-
raphy, e-mail, the name and address of the academy the person works at, is
available.

2.15 Opinions

This section allows to present the represenative comments and remarks given by
the users about the RSDS system.

2.16 Interactive Map of the World

The possibilities of the system have been augmented about an interactive map of
the world illustrating where in the world the rough set theory is being developed
and used - section Map, as well as allowing for different kind of searching for
information in the system.

The realized map has been divided into 4 main parts:

– the map of the world,
– maps of the continents,
– maps of the countries,
– information about chosen rough set research groups (people).

After the map has been started (a map section in the main menu of the system)
the map of the world is displayed with a division into continents. In this part one
can obtain information about: how many rough set research groups are there on
a given continent and how many authors come from a given continent.

After choosing the continent we go to a detailed map of the continent with
the countries marked on it. In this part we can also obtain information about
the number of rough set research groups and the number of authors depending
on the country. In the top right-hand corner of the window there is a list of
the countries where we can find people who deal with the rough sets. This is to
facilitate navigation.
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Fig. 19. An interactive map of the world - a map of the world (part 1)

Fig. 20. An interactive map of the world - a map of particular continent (part 2)

When we choose a particular country we can move to the map with the cities
(research centers), where we can find research groups (people) working on the
rough set theory and its applications.

After choosing the city we obtain information about the research groups in
a given city and information who is the leader of the group. When we choose a
particular group we will move to the part with information about this group:

– The name of the research group (if the group has WWW web site the name
is a reference to this site).

– The leader and members of the group (each name is a reference to the pub-
lication of a particular person in the system).

– E-mail address of a given person - an icon of an envelop (from this level, if
we have the mail program configured in the system we can send an e-mail
message to a given person).
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Fig. 21. An interactive map of the world - a map of a chosen country (part 3)

Fig. 22. An interactive map of the world - detailed information for a chosen scientific
group (part 4)

– WWW web site of a person - an icon of a house (this icon symbolizes the
WWW web site of a person and is a reference to this site).

The created map of the world can be also used to find descriptions of publi-
cations when we only have information about the origin of the author.

3 Plans for the Future

The system being created by us mainly gives users the access to data related
to publications concerning the rough sets. As far as the conducted research is
concerned it makes up the experimental environment for developing and testing
the methods connected with intelligent administration and searching for infor-
mation in the database (especially bibliographical database). The foundation of
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developing the above methods is preparing the ontology of concepts for the sys-
tem. We want the defined ontology to reflect the structure of the system and the
dependencies between the data which can be inferred from them. The next step
towards the ”intelligent system” will be a trial to implement new information-
searching methods, i.e. descriptions of publications which will allow to obtain
well chosen results especially in terms of semantics (on the basis of a defined
ontology of concepts). For the users of the system we also want to create a
helper to facilitate using the system, and making the process of searching for
publications the most effective as regards time and quality. We also want to
develop and implement the mechanism which would search for the data for the
system in the Internet, so that the system would contain current information on
publications being created. The data will be descriptions of publications, infor-
mation about people working on the ”rough sets” and the software related to
this theory.

4 Conclusions

We have presented the current possibilities of the RSDS system. Using this sys-
tem is an opportunity for an information exchange between the scientists and
practitioners who are interested in the foundations and applications of the rough
sets. The developers of the RSDS system hope that the increase in the dissem-
ination of the results, methods, theories and applications based on the rough
sets, will stimulate the further development of the foundations and methods
for real-life applications in the intelligent systems. For future updating of the
bibliography we will appreciate receiving all forms of help and advice. In par-
ticular, we would like to become aware of any relevant contributions which are
not referred to in this bibliography database. All submitted material will also
be included in the RSDS system. The RSDS system has been designed, imple-
mented, and installed currently at Rzeszów University. The RSDS system runs
on any computer with any operating system connected to the Internet. The ser-
vice is based on the Internet Explorer 6.0, Mozilla 2.0 as well as Opera 7.03
(correct operation requires the web browser with the accepting cookie option
enabled).
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Abstract. An implicit assumption of many machine learning algorithms
is that all attributes are of the same importance. An algorithm typically
selects attributes based solely on their statistical characteristics, without
considering their semantic interpretations. In order to resolve difficulties
associated with this unrealistic assumption, many researchers attempted
to introduce user judgements of the importance of attributes into ma-
chine learning. However, there is still a lack of formal framework. Based
on decision theory and measurement theory, a model of user-oriented
reduct construction is proposed for machine learning by considering the
user preference of attributes. It seamlessly combines internal information
and external information. User preferences of attributes are extended to
user preferences of attribute sets. Accordingly, user preferred reducts can
be constructed.

Keywords: user preference, attribute reduction, conditional user pref-
erence.

1 Introduction

One of the basic tasks of machine learning is to derive knowledge from data in
terms of rules. The discovered rules should be concise, precise, general, easy to
understand and practically useful. It is a crucial issue to select the most suitable
attributes, features or properties of the objects in a dataset in a machine learning
process.

The problem of attribute selection is studied in many different areas, such as
machine learning, data mining and pattern recognition [3,12,13,16,22,28]. In the
theory of rough sets, the attribute selection process is understood as reduct con-
struction [16]. The difference between reduct construction and feature selection is
their termination criteria. For feature selection, one might stop adding or delet-
ing features when a predetermined condition is satisfied, such as a threshold of
the importance of an attribute, a performance measure, or a computational cost
measure. For reduct construction, the algorithm does not stop until the minimum
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set of features that possesses some particular property is obtained. Reduct con-
struction thus is a special case of feature selection. In fact, many feature selection
algorithms can be viewed as the construction of approximate reducts.

Many proposals have been made regarding the importance of individual at-
tributes or subsets of attributes. They can be broadly divided into two classes,
the approaches based on internal information and the approaches based on ex-
ternal information. Internal information based approaches typically depend on
the syntactic or statistical information of the dataset. For example, an attribute
weighting function is designed by using attributes’ distribution information or
prediction power. External information based approaches assign weights to at-
tributes, or rank attributes based on semantics or constraints. These two classes
are complementary to each other. Once an ordering of attributes is obtained,
independent of a particular approach, more important attributes are used first
in a learning process. Therefore, it is possible to consider both syntactic and
semantic information in a unified framework.

A review of the existing research in machine learning shows that the major
research efforts have been focused on the internal information based approaches,
although the external information based approaches may be more meaningful
and effective. This may stem from the fact that external information covers a
very diverse range, is highly subjective, and usually is not well-defined. Conse-
quently, it may be difficult to build a well-accepted model. The concept of user
preference has been studied by many researchers [8,9,10,14,21,24,27,31,35,36]. In
this paper, we extend the results from paper [31]. We provide a formal model
of reduct construction for machine learning by considering the user preference
of attributes. The model seamlessly combines internal information and external
information.

The rest of the paper is organized as follows. Section 2 discusses the user prefer-
ence of attributes. Both quantitative and qualitative representations are discussed.
Section 3 extends the user preference of attributes to attributes sets. Both quan-
titative and qualitative user preferences of attribute sets are discussed. Section 4
illustrates the usefulness of the proposed model by applying it to reduct construc-
tion. We extend the results to conditional and dynamic preferences in Section 5.

2 User Preference of Attributes

In many machine learning algorithms, it is implicitly assumed that all attributes
are of the same importance. Consequently, attributes are selected solely based
on their characteristics revealed in an information table. This results in a model
that is simple and easy to analyze. At the same time, without considering the
semantic information of attributes, the model is perhaps unrealistic. A more
realistic model can be built by considering attributes with non-equal importance.
This type of external information is normally provided by users, and is referred
to as user judgement or user preference.

User judgement can be expressed in various forms. Quantitative judgement
involves the assignment of different weights to different attributes. Qualitative
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judgement is expressed as an ordering of attributes. In many situations, user
judgement is determined by semantic considerations. For example, it may be
interpreted in terms of more intuitive notions, such as the cost of testing, the
easiness of understanding, or the actionability of an attribute. It is virtually
impossible to list all interpretations of user judgement. The meaning of a user
judgement becomes clear only in a particular context of application. To simplify
our discussion, we treat user judgement as a primitive notion. In other words,
we only investigate the desirable properties of a user judgement, as well as how
to incorporate it into a machine learning process.

2.1 Quantitative Judgement of Attributes

A simple and straightforward way to represent user judgement of attributes is to
assign them with numerical weights. Formally, it can be described by a mapping:

w : At −→ 9, (1)

where At is a finite non-empty set of attributes, and 9 is the set of real numbers.
For an attribute a ∈ At, w(a) is the weight of a. The numerical weight w(a) may
be interpreted as the degree of importance of a, the cost of testing a in a rule,
or the number of occurrences of a in a set (which is also called the frequency
of a). The weights of attributes naturally induce an ordering of attributes. For
example, if the weights are interpreted as costs, a machine learning algorithm
should use, if possible, attributes with lower costs first.

The use of numerical weights for attribute importance has been extensively
considered in machine learning. In many learning algorithms, a numerical func-
tion is used to compute weights of individual attributes based on their distribu-
tion characteristics. According to the computed weights, attributes are selected.
For example, entropy-theoretic measures have been studied and used for at-
tribute selection [29].

2.2 Qualitative Judgement of Attributes

A difficulty with the quantitative method is the acquisition of the precise and
accurate weights of all attributes. To resolve this difficulty, we consider a quali-
tative judgement that only relies on pairwise comparisons of attributes. For any
two attributes, we assume that a user is able to state whether one is more im-
portant than, or more preferred to, the other. This qualitative user judgement
can be formally defined by a binary relation � on At. For any two a, b ∈ At:

a � b⇐⇒ the user prefers a to b. (2)

The relation � is called a preference relation. If a � b holds, we say that the
user strictly prefers a to b. In contrast to the quantitative representation, the
preference does not say anything regarding the degree of preference, namely, how
much a is preferred to b.
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In the absence of preference, i.e., if both ¬(a � b) and ¬(b � a) hold, we say
that a and b are indifferent. An indifference relation ∼ on At is defined as:

a ∼ b⇐⇒ ¬(a � b) ∧ ¬(b � a). (3)

The indifference of attributes may be interpreted in several ways. A user may
consider the two attributes are of the same importance. The indifference may
also occur when the comparison of two attributes are not meaningful, as they are
incompatible. When both a and b are unimportant, it may not make too much
sense to compare them. The indifference represents such an absence of prefer-
ence. In fact, in many practical situations, one is only interested in expressing
the preference of a subset of crucial attributes, and considers all unimportant
attributes to be the same.

Based on the strict preference and indifference relations, one can define a
preference-indifference relation � on At:

a � b⇐⇒ (a � b) ∨ (a ∼ b). (4)

If a � b holds, we say that b is not preferred to a, or a is at least as good as b.
The strict preference can be re-expressed as a � b⇐⇒ (a � b) ∧ ¬(b � a).

A Weak Order Interpretation. A user preference relation must satisfy cer-
tain axioms in order to capture our intuitive understanding of preference. The
following two axioms, studied extensively in decision theory [6] and measurement
theory [18], seem to be reasonable, for any a, b, c ∈ At:

(1). a � b =⇒ ¬(b � a) (asymmetry);
(2). (¬(a � b) ∧ ¬(b � c)) =⇒ ¬(a � c) (negative transitivity).

The asymmetry axiom states that a user cannot prefer a to b, and at the same
time prefer b to a. The negative transitivity axiom states that if a user does not
prefer a to b, nor b to c, then the user should not prefer a to c. If a preference
relation � on At is asymmetric and negatively transitive, it is called a weak
order [6,18].

A weak order imposes structures on the set of attributes. Additional properties
of a weak order are summarized in the following lemma [6].

Lemma 1. Suppose a preference relation � on a finite set of attributes At is a
weak order. Then,

– Exactly one of a � b, b � a and a ∼ b relations holds for any two a, b ∈ At;
– � is transitive;
– ∼ is an equivalence relation that induces a partition At/∼ of At;
– � is transitive and connected;
– The relation �′ on the partition At/∼, defined by [a]∼ �′ [b]∼ ⇐⇒ a � b, is

a linear order, where [a]∼ is the equivalence class containing a.
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A Strict Partial Order Interpretation. Another class of user preference
relations is defined by the following two axioms. For any a, b, c ∈ At:

(1). ¬(a � a) (irreflexivity);
(2). (a � b) ∧ (b � c) =⇒ a � c (transitivity).

The irreflexivity axiom states that a user cannot prefer a to a itself. The transi-
tivity axiom states that if a user prefers a to b, and b to c, then the user should
prefer a to c. If a preference relation � on At is irreflexive and transitive, then
it is asymmetry and is called a strict partial order [6,18].

For a strict partial order, the indifference relation is no longer an equivalence
relation. In terms of ∼, we can define a new binary relation ≈ as:

a ≈ b⇐⇒ ∀c ∈ At (a ∼ c⇐⇒ c ∼ b). (5)

A strict partial order also imposes structures on the set of attributes. Additional
properties of a strict partial order are summarized in the following lemma [6].

Lemma 2. Suppose a preference relation � on a finite set of attributes At is a
strict partial order. Then,

– Exactly one of a � b, b � a, a ≈ b and (a ∼ b∧¬(a ≈ b)) relations holds for
any two a, b ∈ At;

– ≈ is an equivalence relation that induces a partition At/≈ of At;
– The relation �′′ on the partition At/≈, defined by [a]≈ �′′ [b]≈ ⇐⇒ a � b,

is a strict partial order, where [a]≈ is the equivalence class containing a.

Linear Order Extensions. A linear order is a weakly connected weak order.
That is, for a, b ∈ At, a � b or b � a whenever a �= b. A linear order is a weak
order in which any two distinct elements are comparable [6,7,18].

For the three orders, we have (� is a linear order) =⇒ (� is a weak order)
=⇒ (� is a strict partial order). In general, the converse implications do not
hold. For a weak order or a strict partial order, it is possible to obtain its linear
extensions. Given a weak order or a strict partial order, �, a linear order �l is
called an extension of � if for any a, b ∈ At,

a � b =⇒ a �l b.

That is, �l preserves the strict preference of �, but may introduce extra prefer-
ence. Formally, this may be expressed equivalently as � ⊆ �l. In the subsequent
discussion, we also express a linear order in terms of the preference-indifference
relation �l.

Example 1. Suppose a user preference relation � is on a set of attributes At =
{a, b, c, d} by the following weak order:

c � a, c � b, d � a, d � b, d � c.
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This relation � satisfies the asymmetry and negative transitivity conditions. For
attributes a and b, we have a ∼ b. Thus, three equivalence classes {d}, {c}, {a, b}
can be formed. They can also be written as [d]∼, [c]∼, [a]∼ (or [b]∼), respectively.
In turn, they can be arranged as three levels in a linear order: [d]∼ �′ [c]∼ �′
[a]∼. If one does not care the order of attributes in an equivalence class, we can
extend the given weak order to either of the two distinct linear orders:

d �1 c �1 b �1 a,

d �2 c �2 a �2 b.

Suppose a user preference relation � on a set of attributes At = {a, b, c, d, e}
is given by the following strict partial order:

a � b, a � c, a � d, a � e, b � d, b � e, c � e, d � e.

There is no preference relation between b and c, neither between c and d. Accord-
ing to the definition of ≈, we have b ≈ d. Therefore, we obtain four equivalence
classes {a}, {b, d}, {c}, {e}. They can also be written as [a]≈, [b]≈ (or [d]≈), [c]≈
and [e]≈, respectively. The equivalence classes [b]≈ and [c]≈ cannot be ordered.
We can extend this order into the following three different linear orders:

a �1 b �1 c �1 d �1 e,

a �2 b �2 d �2 c �2 e,

a �3 c �3 b �3 d �3 e.

2.3 Connections between Quantitative and Qualitative Judgements
of Attributes

A quantitative judgement can be easily translated into a qualitative judgement.
The translation to a preference relation only preserves the ordering of attributes
implied by the quantitative weights. Additional information given by the numer-
ical values of weights is lost.

Given the weights of attributes, we can uniquely determine a preference rela-
tion. Suppose w(a) and w(b) represent the importance of a, b ∈ At, a preference
relation is defined by:

a � b⇐⇒ w(a) > w(b). (6)

When w(a) and w(b) are the costs of testing attributes a, b ∈ At in a rule, the
following preference relation should be used instead,

a � b⇐⇒ w(a) < w(b). (7)

In general, two attributes may have the same weights.
The measurement of a user preference by a quantitative function depends on

the properties of the preference relation. By imposing different sets of axioms
on a user preference, it is possible to derive quantitative measurements using
different scales. Different scales allow different arithmetic operations [6,7,18].

The following theorem states that a weak order is both necessary and sufficient
for a numerical measurement [6].
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Theorem 1. Suppose � is a preference relation on a finite non-empty set At
of attributes. There exists a real-valued function u : At → 9 satisfying the con-
dition:

a � b⇐⇒ u(a) > u(b), a, b ∈ At, (8)

if and only if � is a weak order. Moreover, u is uniquely defined up to a strictly
monotonic increasing transformation.

The function u is referred to as an order-preserving utility function in ordinal
scale. It provides a quantitative representation of a user preference. That is, the
numbers of u(a), u(b), . . . as ordered by > reflect the order of a, b, . . . under the
preference relation �.

The utility function also trustfully represents the indifference relation, i.e.,

a ∼ b⇐⇒ u(a) = u(b), a, b ∈ At. (9)

According to Theorem 1, for a given preference relation, there exist many utility
functions. Under the ordinal scale, it is only meaningful to examine the order
induced by a utility function. Although numerical values are used, it is not
necessarily meaningful to apply arithmetic operations on them.

The next theorem states that a strict partial order is necessary and sufficient
for a weaker numerical measurement [6].

Theorem 2. Suppose � is a preference relation on a finite non-empty set At
of attributes. There exists a real-valued function u : At → 9 satisfying the con-
dition:

a � b =⇒ u(a) > u(b), a, b ∈ At, (10)

if and only if � is a strict partial order.

Compared with Theorem 1, for a strict partial order we can only obtain a single
implication. That is, we can conclude that a preferred attribute has a larger
weight value. However, we cannot make a reverse inference. Equation (10) can
be re-expressed as

u(b) ≤ u(a) =⇒ ¬(a � b).

That is, we can only infer that an attribute with a smaller weight value is not
preferred to an attribute with a larger weight value.

3 User Preference of Attribute Sets

Conceptually, rule learning in an information system can be viewed as two tasks,
the selection of a subset of attributes, and the construction of rules using such
attributes. The two tasks can in fact be integrated in one algorithm without
a clear separation. Ideally, the subset should contain more preferred attributes
and avoid including unfavoured attributes. In this case, users should be able to
express the preference over subsets of attributes. This requires a user preference
relation on the power set 2At. In this section, we present the way to derive a
preference relation � on 2At based on a preference relation � on At.
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3.1 Basic Properties

For simplicity, we use the same symbol to denote the preference relation on At
and the preference relation on 2At. Obviously, the relation � on 2At needs to
satisfy certain conditions. By definition, � on 2At must be an extension of � on
At. That is, for two singleton attribute sets {a} and {b}:

(E1). {a} � {b} ⇐⇒ a � b;
(E2). {a} ∼ {b} ⇐⇒ a ∼ b;
(E3). {a} � {b} ⇐⇒ a � b.

According to Theorem 1, the axiom

(T). � on 2At is a weak order,

is required. One may impose additional conditions depending on particular ap-
plications.

3.2 Quantitative Judgement of Attribute Sets

When the user judgement is given as weights of attributes, we can extend the
weighting function w on At to a weighting function on 2At. For simplicity, we use
the same symbol to denote these two functions. Similarly, the extensions are not
unique. For example, for A ⊆ At, we consider the following possible extensions:

Additive extension: w(A) =
∑

a∈A w(a),
Average extension: w(A) =

�
a∈A w(a)

|A| ,
Maximal extension: w(A) = maxa∈A w(a),
Minimal extension: w(A) = mina∈A w(a).

One can interpret the meaningful extensions based on the physical meaning of
the weighting function on At. It is important to note that only some extensions
are meaningful in a particular application. For example, if w(a) is a cost measure-
ment function, the above extensions are interpreted as the total cost, average
cost, maximal cost, and minimal cost, respectively. An attribute set with the
minimum cost is normally more useful. If w(a) is an information measurement
function, w(A) is the joint information of all attributes in the set. Normally, an
attribute set with the maximal information gain is preferred.

Based on the computed weights, we can order subsets of attributes in a similar
way to the ones given by Equations (6) and (7).

3.3 Qualitative Judgement of Attribute Sets

For a set of attributes, we can arrange them in a linear order based on the
preference-indifference relation �. This enables us to derive a possible ordering
of subsets by consecutively examining attributes one by one. Based on the di-
rections in which attributes are examined, we define two lexical orders. In the
left-to-right lexical order, we compare two sets of attributes from left to right, in
order to determine which set of attributes is preferred. In the right-to-left lexical
order, we compare attributes in the reverse order.
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Definition 1. Left-to-right lexical order: Given two attribute sets A : a1 �
a2 � . . . � am and B : b1 � b2 � . . . � bn, let t = min{m,n}. We say that A
precedes B in the left-to-right lexical order, written A � B, if and only if

(a) there exists an i: 1 ≤ i ≤ t such that aj ∼ bj for 1 ≤ j < i and ai � bi, or
(b) ai ∼ bi for 1 ≤ i ≤ t and m < n.

Definition 2. Right-to-left lexical order: Given two attribute sets A : a1 �
a2 � . . . � am and B : b1 � b2 � . . . � bn, let t = min{m,n}. We say that A
precedes B in the right-to-left lexical order, written A � B, if and only if

(a) there exists an i: 0 ≤ i < t such that am−j ∼ bn−j for 0 ≤ j < i and
am−i � bn−i, or

(b) am−i ∼ bn−i for 0 ≤ i < t and m < n.

These two lexical orders represent two extreme views and define two different
criteria for comparing attribute sets. The meaning of them can be interpreted as
follows. The left-to-right method focuses on the preferred attributes of the two
sets. That is, the winner is determined by comparing the strongest attributes
in the sets. By the left-to-right lexical order, an attribute set A is preferred
to another attribute set B if and only if the most preferred attribute of A is
preferred to the most preferred attribute of B, or A is a proper subset consisting
of the most preferred attributes of B.

On the other hand, the right-to-left method emphasizes the less preferred
attributes of the two sets. The winner is determined by comparing the weakest
attributes in the sets. By the right-to-left lexical order, an attribute set A is
preferred to another attribute set B if and only if the least preferred attribute
of A is preferred to the least preferred attribute of B, or A is a proper subset
consisting of the least preferred attributes of B.

The left-to-right lexical order encourages an optimistic comparison, and the
right-to-left lexical order promotes a pessimistic comparison. The left-to-right
lexical order is also understood as the dictionary order.

Example 2. The running example can be used to illustrate the differences be-
tween two lexical orders. Recall that attributes in Example 1 can be arranged
as {d} �′ {c} �′ {a, b}. For two attribute subsets A : d � c � a and B : d � a,
since d ∼ d and c � a, then A is the winner according to the left-to-right lexical
order. At the same time, since a ∼ a and d � c, thus B is the winner according
to the right-to-left lexical order.

For two attribute subsets C : d � c � a and D : c � b, since d � c, then C is
the winner according to the left-to-right lexical order. On the other hand, since
a ∼ b, c ∼ c and |D| < |C|, then D is the winner according to the right-to-left
lexical order.

Example 3. Suppose A and B are two subsets of an attribute set At, which is
under the following preference relations: a � b, a � c and b � c. Seven distinct
subsets of A and B can be identified. They are {a}, {b}, {c}, {a, b}, {a, c}, {b, c}
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and {a, b, c}. The preference of attribute sets can be determined by the heuristic
lexical orders. According to the left-to-right lexical order, we obtain:

{a} � {a, b} � {a, b, c} � {a, c} � {b} � {b, c} � {c}.

According to the right-to-left lexical order, we obtain:

{a} � {b} � {a, b} � {c} � {a, c} � {b, c} � {a, b, c}.

Both lexical orders satisfy Axioms (E1)-(E3) and (T), and should be considered
as examples of potential extensions of the preference order from At to 2At. They
may provide different preference orders as shown in the example. It may be
difficult to argue which one is better based solely on theoretical basis. In real
applications, we might also need to consider other extensions.

A tree representation of all subsets of At has been studied by Zhang et
al. [32,33]. We can explain and extend it to a graph representation. Under such
a graph structure, a traversal method of all the subsets according to the left-to-
right order or the right-to-left order can be determined.

4 User Preference of Reducts

The usefulness of the proposed model can be illustrated by attribute reduct
construction.

4.1 Preliminaries

In many data analysis applications, information and knowledge is stored and
represented in an information table. An information table provides a convenient
way to describe a finite set of objects by a finite set of attributes [16]. It represents
all available information and knowledge. That is, objects are only perceived,
observed, or measured by using a finite number of attributes.

Definition 3. Information tables: An information table is the following tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values of a ∈ At, and Ia : U → Va is an
information function that maps an object of U to exactly one value in Va.

Two objects are discernible if their values are different in at least one attribute.
Skowron and Rauszer suggested a matrix form for storing the sets of attributes
that discern pairs of objects [19].

Definition 4. Discernibility matrices: Given an information table S, its dis-
cernibility matrix M is a |U | × |U | matrix with each element defined by

mx,y = {a ∈ At | Ia(x) �= Ia(y)},

where x, y ∈ U .
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Each matrix element maps an object pair into a set of attributes. Any attribute
of the set can distinguish the two objects. A discernibility matrix M is symmet-
ric, i.e., mx,y = my,x, and mx,x = ∅. The discernibility of objects can be also
expressed as a set M by collecting only the distinct nonempty elements as:

M = {mx,y | mx,y �= ∅}.

In the following discussion, we will use the set representation.
The theory of rough sets has been applied to data analysis, data mining and

knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts [16]. The basic idea of reduct construction is to find the min-
imum subset of attributes that has the same property, or performs the same, as
the entire set of attributes. Different algorithms, approaches and methodologies
have been extensively studied [1,2,10,11,15,17,19,20,23,24,26,30,34,35,32]. The
objective of reduct construction is to reduce the number of attributes, and at
the same time, to preserve a desired property.

Definition 5. Reducts: Given an information table S and a property p, an
attribute set R ⊆ At is called a p-reduct of At, or simply a reduct of At, if R
satisfies the two conditions:

(i). R and At express the same property p of S;
(ii). for any R′ ⊆ R, R′ does not exprss the property p.

The first condition indicates the joint sufficiency of the attribute set R, and the
second condition indicates that each attribute in R is individually necessary.

Normally, an information table contains more than one reduct. If an attribute
appears in at least one reduct, it is called a reduct attribute; if it appears in all
reducts, it is called a core attribute; if it does not appear in any reduct, it is called
a non-reduct attribute. A core attribute is a reduct attribute. Wei et al. [25] referred
to the core attributes as the absolutely necessary attributes, the reduct attributes
as the relatively necessary attributes, and the non-reduct attributes as the ab-
solutely unnecessary attributes. For all attributes in At, we can classify them into
three categories: the set REDUCT of all reduct attributes, the set CORE of all
core attributes, and the set NREDUCT of all non-reduct attributes.

An attribute set R′ ⊆ At is called a super-reduct of a reduct R, if R′ ⊇ R; an
attribute set R′ ⊆ At is called a partial reduct of a reduct R, if R′ ⊆ R. Given a
reduct, there exist many super-reducts and many partial reducts. The set CORE
is a partial reduct of any reduct, and the set REDUCT is a super-reduct of any
reduct. For any reduct R, we have:

∅ ⊆ CORE ⊆ R ⊆ REDUCT ⊆ At.

Thetwo setsCOREandREDUCTcanbeusedas initial sets for reductconstruction.
Given a user preference relation on the attribute set At, we can rank reducts

according to the two lexical orders. Conceptually, internal information deter-
mines a set of reducts, and a user preference determines an ordering of reducts.
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The two lexical orders immediately suggest two strategies for reduct construc-
tion, i.e., the deletion strategy and the addition strategy. While the deletion
strategy can deterministically generate the winning reduct under the right-to-
left order, the addition strategy cannot guarantee the generation of the winning
reduct under the left-to-right order. In fact, constructing the winning reduct un-
der the left-to-right order has been proved to be NP-hard [14]. More information
about these two algorithms can be found in [30].

Before introducing the two algorithms, we need to introduce an important
matrix operation. Given a discernibility matrix M , the Absorb operation absorbs
any matrix element m = mx,y if there exists another matrix element m′ = mx′,y′

such that m′ ⊆ m. By the definition of a discernibility matrix, any attribute
a ∈ m′ is sufficient to distinguish both object pairs (x, y) and (x′, y′). Thus,
attributes in m −m′ are superfluous. The Absorb operation of a discernibility
matrix M is defined as:

Absorb(M) : For all m′,m ∈M,
if m′ ⊆ m and m′ �= ∅, then M = M − {m}.

That is, all supersets of a set are deleted from M .

4.2 The Deletion Algorithm

A deletion algorithm starts from the entire attribute set At, or from the reduct
attribute set REDUCT, deletes the superfluous attributes one-by-one until a
reduct is constructed. The order for attribute deletion can be based on the user
preference of attributes.

Input: The discernibility matrix M of an information table.
Output: A reduct R.

(1) Construct an attribute ordering of attribute set At.
(2) R = At.
(3) M = Absorb(M).
(4) While M is not a family of singleton attribute sets:

(4.1) Select the right-most attribute a in the ordering that satisfies
the condition {a} /∈ M ;

(4.2) R = R − {a} and M = Absorb({m − {a} | m ∈ M}).
(5) Update R by deleting the attributes not existing in M .

Algorithm 1. A deletion algorithm for reduct construction

A deletion algorithm is described as Algorithm 1, where the ordering of at-
tributes can be constructed from an evaluation function or given by a user.
According to the algorithm, given the attribute set At, an attribute a can be
deleted from M if {a} is not a singleton attribute set that uniquely distinguish
any object pair. Thus, the attribute set R = R−{a} is jointly sufficient to keep
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the discernibility of all object pairs, and is a super-reduct. The iteration process
is stopped under the condition that M is a family of singleton attribute sets. All
the remaining attributes in the discernibility matrix are necessary and sufficient
to keep the discernibility of all object pairs, and hence a reduct is obtained. We
update R by deleting the attributes not existing in M . In fact, the constructed
reduct R is the union of all singleton attribute sets in M .

This deletion algorithm deletes the most unfavoured attributes first. That is,
we check from the right, the most unfavourable attribute in At, to the left, the
most preferred attribute in At. This results in the winning reduct under the
right-to-left lexical order.

Example 4. Consider an information table S with an ordering At : a � b �
c � d � e � f � g. Suppose after absorption, the set representation of the
matrix is read as: M = {{a, g}, {a, f}, {b, d, e}, {b, e, f}, {c, d, f}, {e, f, g}}. Ac-
cording to the algorithm, suppose we select the least preferred attribute g for
deletion. Consequently, M is updated as {{a}, {b, d, e}, {c, d, f}, {e, f}} after the
absorption. In the second round, we further select the least preferred attribute
f for deletion. As a result, M = {{a}, {c, d}, {e}}. In the third round, we can
repeat the same procedure by deleting the least preferred attribute d, and up-
date M = {{a}, {c}, {e}}. At this stage, M contains only singleton attribute
sets, and cannot be further simplified. Thus, R = {a, c, e}, which is the winning
reduct under the right-to-left lexical order.

4.3 The Addition Algorithm

An addition algorithm starts from the empty set ∅, or from the core attribute set
CORE, adds the necessary attributes one-by-one until a reduct is constructed.
The order for attribute addition can be based on the user preference of attributes.

Input: The discernibility matrix M of an information table.
Output: A reduct R.

(1) Construct an attribute ordering of attribute set At.
(2) R = ∅.
(3) M = Absorb(M).
(4) While M is not a family of singleton attribute sets:

(4.1) Select the left-most attribute a in the ordering that satisfies
the condition that there exists an element ma ∈ {m ∈ M | a ∈ m}
such that ∀m ∈ M (m − (ma − {a})) �= ∅);

(4.2) Select an element ma that satisfies the condition of (4.1);
(4.3) R = R ∪ {a} and M = Absorb({m − (ma − {a})) | m ∈ M}).

Algorithm 2. An addition algorithm for reduct construction

An addition algorithm is described as Algorithm 2 where the ordering of
attributes can be constructed from an evaluation function or given by a user.
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According to the algorithm, given the attribute set At, an attribute a can be
added to R if it is necessary to distinguish at least one pair of objects. This
is made possible by not considering attributes in ma − {a}, also denoted as
Tail(a), in the construction of the partial reduct of R. To keep the discernibility
property, we must ensure that for all m ∈ M , m − Tail(a) �= ∅. It means that
by deleting Tail(a) from any matrix element m, the discernibility of all objects
does not change. Otherwise, the element ma cannot be selected. If all the tails
of a cannot be deleted, then a is a non-reduct attribute, and cannot be added to
R. The attributes in the set R = R ∪ {a} are individually necessary to keep the
discernibility of some object pairs, and thus is a partial reduct. The iteration
process is stopped when M is a family of singleton attribute sets. That is, all
the remaining attributes are necessary and sufficient to keep the discernibility of
all object pairs, and hence a reduct is obtained. In fact, the constructed reduct
R is the union of all singleton attribute sets in M .

The addition adds the most preferred attributes first. That is, we check from
the left, the most preferred attribute in At, to the right, the most unfavoured
attribute in At. Comparing to the deletion algorithm which can deterministically
generate the winning reduct under the right-to-left order, the addition algorithm
cannot deterministically generate the reduct of the left-to-right order. The essen-
tial, but non-deterministic, part of the algorithm is in Step (4.2). For a chosen
attribute a, there may exist more than one tail. The criterion for selecting one
tail of a for deleting is to keep the best candidate attribute for further processing.
Deleting a less preferred tail cannot guarantee the result of a more promising at-
tribute in the future round. In other words, keeping the less preferred tail might
induce a more preferred reduct attribute set, or, keeping the more preferred tail
might induce a less preferred reduct attribute set in the future round. Liang et
al. [14] have proved that the problem of constructing the winning reduct under
the left-to-right lexical order is NP-hard.

Example 5. We can use the same setting in Example 4 to illustrate the com-
plexity of the addition algorithm. Given an information table S with an ordering
At : a � b � c � d � e � f � g, and the set representation of the discernibility
matrix after absorption is read as: M = {{a, g}, {a, f}, {b, d, e}, {b, e, f},{c, d, f},
{e, f, g}}. According to the algorithm, suppose we select the most preferred at-
tribute a for addition. We obtain R = {a}, and we can either delete the tail {g},
or the tail {f} of a.

- If the tail {g} of a is selected, then accordingly, the discernibility matrix M
is updated as {{a}, {b, d, e}, {c, d, f}, {e, f}}. In the second round, we select
the second-most preferred attribute b for addition and obtain R = {a, b}.
The tail {d, e} of b needs to be deleted. This turns out M = {{a}, {b}, {f}},
containing only singleton attribute sets. Consequently, we obtain the reduct
R = {a, b, f}.

- On the other hand, if the tail {f} of a is selected, then accordingly, M is
updated as {{a}, {b, e}, {c, d}, {e, g}}. In the second round, we still select the
second-most preferred attribute b for addition and obtain R = {a, b}. The tail
{e} of b needs to be deleted. This turns out M = {{a}, {b}, {c, d}, {g}}. In the
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third round, we select the third-most preferred attribute c for addition and
obtain R = {a, b, c}. The tail {d} of c needs to be deleted. This yields M =
{{a}, {b}, {c}, {g}} contains only singleton attribute sets. Consequently, we
obtain the reduct R = {a, b, c, g}.

According to the left-to-right lexical order, we have {a, b, c, g} � {a, b, f}.

5 Conditional User Preferences

In the previous discussion, we simply assume that a user can precisely and com-
pletely express the preference over the entire attribute set. This enables us to
investigate fundamental issues in a simple model. One may argue that a user
might not be able to provide such information in practices. A practical issue
is how to acquire the user preference of attributes. In this section, we discuss
conditional user preferences of attributes and reducts.

5.1 Conditional User Preference of Attributes

User preferences under practical constraints are also understood as conditional
user preferences, constrained user preferences, or dynamic user preferences. A
simple conditional user preference can be interpreted as “given the condition x,
a is preferred to b.” The measurement of a simple conditional user preference
relation states that “given the condition x, the weight of a is higher than the
weight of b.” A related notion of the conditional user preference of attribute
values has been considered by some researchers [4,5,9].

Formally, a conditional user preference relation can be defined in two ways.
Suppose there is a constraint attribute set A and a constraining attribute set B.
A conditional user preference is the preference relation of B depending on the
preference relation of A, i.e.,

(B,�) | (A,�).

Based on this constraint-based interpretation, given two constraint attributes x
and y, we can express the conditional user preference of attributes a and b as
(a � b) | (x � y). It means that the preference of attributes a and b is constrained
by the preference of attributes x and y. Suppose a set A is a partial reduct. A
conditional user preference is the preference relation of the set Ac depending on
the attributes in A, i.e.,

(Ac,�) | A.

Based on this dynamic-based interpretation, given a constraint attribute x, we
can express the conditional user preference a and b as (a � b) | {x}.

For both interpretations, we can introduce preference on attribute sets. This
leads to the following implication for a partial reduct A:

a � b | A⇒ A ∪ {a} � A ∪ {b}.
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We also can obtain the implication in another form for a super-reduct A:

a � b | A⇒ A− {b} � A− {a}.

They can be immediately applied to the two reduct construction algorithms.

5.2 Reduct Construction Based on Conditional Preferences

Based on the conditional user preference of attributes, we can simply modify the
above deletion Algorithm 1 and the addition Algorithm 2 as Algorithms 3 and 4
in order to cope with the dynamically changed attribute order. More specifically,
by moving the Step (1) of these algorithms to be the first operation in Step (3)
which results the attribute selection, we allow the user to specify the preference
in the on-going construction procedure. The fitness value of attributes can be
computed, modified and ordered in each iteration. This approach requires an
interaction between the user and the system during the computation, and let
the user guide the processing.

Input: The discernibility matrix M of an information table.
Output: A reduct R.

(1) R = At.
(2) M = Absorb(M).
(3) While M is not a family of singleton attribute sets:

(3.1) Construct an attribute ordering of all the attributes exist in M ;
(3.2) Select the right-most attribute a in the ordering that satisfies

the condition {a} /∈ M ;
(3.3) R = R − {a} and M = Absorb({m − {a} | m ∈ M}).

(4) Update R by deleting the attributes not existing in M .

Algorithm 3. A modified deletion algorithm for reduct construction

Input: The discernibility matrix M of an information table.
Output: A reduct R.

(1) R = ∅.
(2) M = Absorb(M).
(3) While M is not a family of singleton attribute sets:

(3.1) Construct an attribute ordering of all the attributes exist in M ;
(3.2) Select the left-most attribute a in the ordering that satisfies

the condition that there exists an element ma ∈ {m ∈ M | a ∈ m}
such that ∀m ∈ M (m − (ma − {a})) �= ∅);

(3.3) Select an element ma that satisfies the condition of (3.1);
(3.4) R = R ∪ {a} and M = Absorb({m − (ma − {a})) | m ∈ M}).

Algorithm 4. A modified addition algorithm for reduct construction

The construction of an attribute ordering in Step (3) of the two algorithms are
based on the notion of the conditional user preference. In fact, we do not need a
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complete specification of all preferences of attributes. For the deletion algorithm,
we only need to ask for the most unfavoured attribute, i.e., the right-most attribute
under the right-to-left order. For the addition algorithm, we only ask for the most
preferred attribute, i.e., the left-most attribute under the left-to-right order.

Example 6. Consider the same information table S with At ={a, b, c, d, e, f, g}.
The set representation of the discernibility matrix after absorption is read as:
M = {{a, g}, {a, f}, {b, d, e}, {b, e, f}, {c, d, f}, {e, f, g}}. Suppose the user wants
to keep the most preferred attribute a in the partial reduct, i.e., R = {a}.
According to the modified addition algorithm, we can delete either {g} or {f}.

- If the tail {g} of a is selected, then the discernibility matrix M is updated
as {{a}, {b, d, e}, {c, d, f}, {e, f}}. In the second round, we re-order the re-
maining attributes and obtain the left-most attribute c for addition. The tail
{d, f} of c needs to be deleted. This turns out the partial reduct R = {a, c}
and M = {{a}, {c}, {e}} containing only singleton attribute sets. Conse-
quently, we obtain the reduct R = {a, c, e} after update.

- On the other hand, if the tail {f} of a is selected, then M is updated as
{{a}, {b, e}, {c, d}, {e, g}}. In the second round, we re-order the remaining
attributes and obtain the left-most attribute c for addition. The tail {d}
of c needs to be deleted. This turns out the partial reduct R = {a, c} and
M = {{a}, {b, e}, {c}, {e, g}}. In the third round, we order the remaining
attributes again, and obtain the left-most attribute g for addition. The tail
{e} of {g} need to be deleted. This yields the partial reduct R = {a, c, g}
and M = {{a}, {b}, {c}, {g}} containing only singleton attribute sets. Con-
sequently, we obtain the reduct R = {a, b, c, g} after update.

6 Conclusion

In order to avoid an over-simplified assumption that all the attributes are equally
important, we propose a model for machine learning based on the user preference
of attributes. Based on utility theory and measurement theory, both the qualita-
tive and quantitative representations of user preference of attributes, and the con-
nection between the qualitative and quantitative representations are explored.

User preferences of attributes can be extended to the user preference of at-
tribute sets. We explore several quantitative extensions and qualitative exten-
sions. For the qualitative user preference of attribute sets, we need to consider two
different forms: the left-to-right lexical order and the right-to-left lexical order, re-
spectively. While the left-to-right order encourages an optimistic comparison be-
tween attribute sets, the right-to-left order promotes a pessimistic comparison.

With respect to the user preference of attribute sets, the computation of the
most preferred reducts can be studied. Regarding the two lexical orders, we have
the winning reduct under the left-to-right lexical order and the potential winner
of the right-to-left lexical order, respectively.

It is also noted that a user preference can be either unconditional or condi-
tional on some constraints. For conditional situations, a dynamic mechanism is
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required for the reduct construction. The paper proposed different algorithms to
cope with both unconditional and conditional user preferences. They focus on
user-oriented attribute selection and reduction.
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Abstract. This article gives a capsule view of research on rough set the-
ory and applications ongoing at universities and laboratories in China.
Included in this capsule view of rough set research is a brief descrip-
tion of the following things: Chinese research groups on rough set with
their URLs for web pages, names of principal researchers (supervisors),
numbers of graduate students, and topics being investigated. Statistical
summaries showing the growth in the research on rough set theory and
application in China are included. In addition, an introduction summa-
rizing the research interests of Chinese researchers is included in this
article. The contribution of this article is a complete overview of the
principal research directions in rough set theory and its applications in
China.

1 Introduction

Rough set theory is a valid mathematical tool to deal with imprecise, uncertain,
and vague information proposed by Professor Z. Pawlak in 1982[151]. It has been
developed and applied in many fields such as decision analysis, machine learn-
ing, dada mining, pattern recognition, and knowledge discovery successfully[152,
209, 336]. This theory has been studied for over 25 years now. The community of
rough set is growing in the whole world. There are 3 series of international con-
ferences on rough sets, that is, RSCTC (international conference on Rough Sets
and Current Trends in Computing)[1, 15, 42, 153, 154, 186, 200, 212], RSFDGrC
(international conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing)[2, 100, 155, 156, 201, 208, 213, 331, 332], RSKT (international confer-
ence on Rough Sets and Knowledge Technology)[157, 169, 202, 214]. There are
many rough set references of books, journal special issues, proceedings, book
chapters, etc[16, 101–107, 147–150,158–168, 170–172, 187, 188, 203–207,211, 273–
276, 333–335]. A rough set database (http://rsds.univ.rzeszow.pl) has been
set up with almost 4000 references.

The primary notions of rough set theory are the approximation space, lower
and upper approximations of an object set. An approximation space is a classi-
fication of a domain of interest into disjoint categories. Human knowledge about
a domain is expressed by the classification formally. Rough set theory treats
knowledge as an ability to classify perceived objects relative to classes in par-
titions defined by the indiscernibility relation. Objects with matching feature
values are considered to be indistinguishable to each other. The lower approxi-
mation of an object set (S) is a set of classes that are proper subsets of S, while
its upper approximation is a set of classes having non-empty intersection with S.
When the set difference between the lower and upper approximations (i.e., the
boundary) is non-empty, the set S is called a rough set.

Research on rough set theory and applications in China began in the mid-
dle 1990s. Professor Qing Liu is one of the initiators at that time[115]. Sub-
sequently, more and more researchers are interested in rough set theory. Some
Chinese researchers like Huanglin Zeng, Guoyin Wang, Wenxiu Zhang, Duoqian
Miao, etc, started their researches on rough set theory in the middle 1990s. The
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Chinese rough set community is growing very quickly. The Chinese Rough Set
and Soft Computing Society (CRSSC, http://cs.cqupt.edu.cn/crssc) was
set up in 2003, which is a branch of the Chinese Association of Artificial Intelli-
gence (CAAI). Several international conferences related to rough set theory have
been organized in China. Chinese conference on rough sets and soft computing
is held every year since 2001.

In this paper, we give a capsule view of research on rough set theory and
applications ongoing in China, introduce key research groups on rough set theory
and applications in China, summarize the research interests of Chinese rough set
researchers.

In section 1, the Chinese Rough Set and Soft Computing Society (CRSSC)
is introduced. Some key research groups of CRSSC are also introduced. A gen-
eral introduction of the current developing status of the research on rough set
theory and applications in China is also made in this section. In section 2, a
brief overview of the principle research directions in rough set theory and its
applications in China is presented. In section 3, a summary about the research
on rough set theory and applications in China is made.

2 Development of the Chinese Rough Set and Soft
Computing Society

The Chinese Rough Set and Soft Computing Society (CRSSC) was set up in 2003.
It is a national scientific society issued by the Ministry of Civil Affairs (MCA) of
China. It is a branch of the Chinese Association of Artificial Intelligence (CAAI).
CRSSC is the home of Chinese researchers on rough set theory and applications.

In this section, we will introduce the organization and works of CRSSC, and
some generation information of the research on rough set theory and applications
in China in recent years.

2.1 Organization of CRSSC

The Chinese Rough Set and Soft Computing Society (CRSSC) was officially set
up during the 2003 Chinese Conference on Artificial Intelligence (CAAI-10) in
Guangzhou, November 21, 2003. Profesor Guoyin Wang at the Chongqing Uni-
versity of Posts and Telecommunications serves as its Chair, Profesors Duoqian
Miao at Tongji University, Weizhi Wu at Zhejiang Ocean University, and Zhihua
Zhou at Nanjing University serve as its Vice-Chairs, and Professor Qing Liu at
Nanchang University serves as its honorary Chair. At present, there are over 70
CRSSC society members from different universities and institutes of the whole
country. The Chinese conference on rough set and soft computing is its official
conference. It is held every year since 2001. The following is a list of CRSSC
conferences held until now.

– CRSSC2001 (Chongqing, May 2001)
– CRSSC2002 (Shuzhou, October 2002)
– CRSSC2003 (Chongqing, October 2003)
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Fig. 1. Statistical information of CRSSC conferences

– CRSSC2004 (Zhoushan, October 2004)
– CRSSC2005 (Anshan, August 2005)
– CRSSC2006 (Jinhua, October 2006)
– CRSSC2007 (Taiyuan, August 2007)

Professor Zdzislaw Pawlak attended the CRSSC2001 in Chongqing and gave
a talk. Many other oversea researchers on rough set theory and applications
such as Professors Andrzej Skowron, Tsau Young Lin, Yiyu Yao, Ning Zhong,
Shusaku Tsumoto, Leung Lee, Xiaohua (Tony) Hu, Jingtao Yao, also attended
the conference to give talks and communicate with Chinese researchers. Some
statistical information about the CRSSC conferences is shown in Figure 1.

Except for the CRSSC conferences, the society starts to sponsor other two
series of workshops, Chinese Workshop on Granular Computing (CGrC) and
Chinese Workshop on Web Intelligence (CWI) from 2007. The CGrC2007 and
CWI2007 were jointly held together with CRSSC2007 in Taiyuan in August
2007. CRSSCs, CGrCs, and CWIs are good forums for Chinese researchers on
rough set theory and applications to introduce, exchange their research results.

In order to communicate with oversea researchers, RSFDGrC2003 and RSKT
2006 were held in China. The RSKT2008 will also be held in Chengdu, China, in
May 2008. In fact, CRSSC is one of the major sponsors of the RSKT conferences.

2.2 Key Research Groups of CRSSC

The Chinese rough set community is growing very quickly. Many outstanding
research groups are emerging in Chinese universities and institutes. Here, we
make a brief introduction to these research groups.

(1) Institute of Computational Intelligence, Department of Computer
Science, Beijing Jiaotong University

Homepage: Http://cit.njtu.edu.cn/
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Principal researchers: Houkuan Huang(hkhuang@center.njtu.edu.cn)
Jian Yu (jianyu@bjtu.edu.cn)

Postal Address: School of Computer & Information Technology,
Beijing Jiaotong University

(2) Institute of Computer Science & Technology, Chongqing Univer-
sity of Posts and Telecommunications

Homepage: Http://cs.cqupt.edu.cn/wanggy
Principal researchers: Guoyin Wang(wanggy@ieee.org)

Yu Wu(wuyu@cqupt.edu.cn)
Jun Zhao(zhaojun@cqupt.edu.cn)
Hong Yu(yuhong@cqupt.edu.cn)
Xinghua Fan(fanxh@cqupt.edu.cn)

Postal Address: Institute of Computer Science & Technology,
Chongqing University of Posts and Telecommunications,
Chongqing, P. R. China, 400065

Graduated students: 18 PhD students and 40 Master students.

(3) College of Math. and Computer, Fuzhou University
Homepage: Http://youth.fzu.edu.cn/cetc/channel/
Principal researchers: Dongyi Ye(yiedy@fzu.edu.cn)
Postal Address: College of Math. and Computer,

Fuzhou University,
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Fuzhou, 350002, P. R. China
Graduated students: 9 Master students.

(4) Institute of advanced power and propulsion, Harbin Institute of
Technology

Homepage: Http://www.turbo.hit.edu.cn
Principal researchers: RenYu Da(yudaren@hcms.hit.edu.cn)

Qinghua Hu(huqinghua@hcms.hit.edu.cn)
Wen Bao(baowen@hit.edu.cn)
Zhiqiang Xu(xuzhiqiang@hcms.hit.edu.cn)

Postal Address: PO Box 458,
Harbin Institute of Technology,
Harbin, 150006, Heilongjiang, P. R. China

Graduated students: 25 PhD students and 20 Master students.

(5) Institute of Artificial Intelligence and Data Mining, Hefei Univer-
sity of Technology

Homepage: Http://www1.hfut.edu.cn/organ/kddweb/
Principal researchers: Xuegang Hu (jsjxhuxg@hfut.edu.cn)

Hao Wang(jsjxwangh@hfut.edu.cn)
Xindong Wu(xwu@cs.uvm.edu)
Dexing Wang(wangdexing198706@yahoo.com.cn)
Hongliang Yao(lhy_y@sohu.com)
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Postal Address: School of Computer & Information,
Hefei University of Technology,
Hefei, 230009, Anhui, P.R.China

Graduated students: 8 PhD students and 45 Master students.

(6) Intelligence Science Laboratory, Institute of Computing Technol-
ogy, Chinese Academy of Sciences

Homepage: Http://www.intsci.ac.cn/shizz/
Principal researchers: Zhongzhi Shi (shizz@ics.ict.ac.cn)

Qing He(heq@ics.ict.ac.cn)
Hong Hu(huhong@ics.ict.ac.cn)
Zhiping Shi(shizp@ics.ict.ac.cn)
Zuqiang Meng(Mengzq@ics.ict.ac.cn)

Postal Address: Institute of Computing Technology,
Chinese Academy of Sciences,
Beijing, 100080, P. R. China

Graduated students: 2 Post Doctors, 16 PhD students and 8 Master students.

(7) School of Information Science & Engineering, Lanzhou University
Homepage: Http://xxxy.lzu.edu.cn/
Principal researchers: Yongli Li(ylli@lzu.edu.cn)
Postal Address: Lanzhou University,

No.222, Tianshui South Rd.
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Lanzhou, 730000, Gansu, P. R. China
Graduated students: 40 Master students.

(8) Dept. of Computer Science and Technology, State Key Laboratory
for Novel Software Technology, Nanjing University

Homepage: Http://cs.nju.edu.cn/shanglin
Principal researchers: Lin Shang(shanglin@nju.edu.cn)

Xuri Yin(yinxuri@ai.nju.edu.cn)
Postal Address: State Key Laboratory for Novel Software Technology,

Nanjing University,
Mailbox 419, Hankou Road 22, Nanjing, 210093, P. R. China

Graduated students: 3 PhD students and 4 Master students.

(9) Management Science & Engineering Department, Business School,
Nankai University

Homepage: Http://www.nankai.edu.cn
Principal researchers: Liping An(anliping@nankai.edu.cn)
Postal Address: Management Science & Engineering Department,

Business School, Nankai University,
Tianjin, 300071, P. R. China

Graduated students: 3 Master students.

(10) School of Computer & Information Engineering, Shandong Uni-
versity of Finance

Homepage: Http://www2.sdfi.edu.cn/jsj/
Principal researchers: Ying Sai(saiying@sdfi.edu.cn),

Jiqin Liu(sdfiljq@126.com)
Postal Address: Shandong University of Finance

No. 40 Shun-geng Road, Jinan City, 250014
Shandong Province, P.R. China

Graduated students: 5 Master students
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(11) Intelligent Robotic Welding Laboratory, Shanghai Jiaotong
University

Homepage: Http://www.sjtu.edu.cn/staff/teachers/182.xml
Principal researchers: Shanben Chen(sbchen@sjtu.edu.cn)
Postal Address: Welding Engineering Institute,

Shanghai Jiaotong University
No. 1954, Huashan Road, Shanghai, 200030, P. R. China

Graduated students: 2 PhD students and 4 Master students.

(12) Key Laboratory of the Ministry of Education for Computation
Intelligence & Chinese Information Processing, Shanxi University

Homepage: Http://www.sxu.edu.cn/yuanxi/jikex/
Principal researchers: Jiye Liang(ljy@sxu.edu.cn)

Deyu Li(lidy@sxu.edu.cn)
Wenjian Wang(wjwang@sxu.edu.cn)
Yuhua Qian(jinchengqyh@126.com)
Kaishe Qu(quks@sxu.edu.cn)
Ru Li(liru@sxu.edu.cn)
Xia Zhang(zhangxia@sxu.edu.cn)

Postal Address: School of Computer & Information Technology,
Shanxi University
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Taiyuan, 030006, Shanxi, P. R. China
Graduated students: 6 PhD students and 32 Master students.

(13) Intelligent Control Development Center, Southwest Jiaotong
University

Principal researchers: Keyun Qin(qinkeyun@swjtu.edu.cn)
Tianrui Li(trli@swjtu.edu.cn)
Chaozhe Jiang(jiangchaozhe@163.com)

Postal Address: Intelligent Control Development Center,
Southwest Jiaotong University,
Chengdu, 610031, P. R. China

Graduated students: 6 PhD students and 14 Master students.

(14) Artificial Intelligence Key Laboratory, Sichuan University of Sci-
ence and Engineering

Homepage: Http://rgzn.suse.edu.cn/
Principal researchers: Huanglin Zeng(zhl@suse.edu.cn)

Yi Yao(jwc@suse.edu.cn),
Chenghua Fu(dxx@suse.edu.cn)

Postal Address: Artificial Intelligence of Key Laboratory,
Sichuan University of Science and Engineering,
Zigong, Si Chuan, 643000, P.R. China

Graduated students: 30 Master students.

(15) Department of Automation, College of Information Engineering,
Taiyuan University of Technology.

Homepage: Http://auto.tyut.edu.cn/ (in building)
Principal researchers: Keming Xie(kmxie@tyut.edu.cn),

Gang Xie(xiegang@tyut.edu.cn),
Gaowei Yan(yangaowei@tyut.edu.cn),
Zehua Chen(chenzehua@tyut.edu.cn),
Jun Xie(xiejun@tyut.edu.cn),
Hongbo Guo(ghb666@sohu.com),
Qiuyu Xia(qyxljl@yahoo.com.cn)
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Postal Address: Department of Automation,
College of Information Engineering,
Taiyuan University of Technology,
Taiyuan, Shan Xi, P.R.C 030024

Graduated students: 7 PhD students and 65 Master students.

(16) Laboratory of Intelligent Information Processing, Tongji
University

Homepage: Http://hpcc.tongji.edu.cn/∼dqmiao
Principal researchers: Duoqian Miao(miaoduoqian@163.com)

Yan Wu(yanwu@mail.tongji.edu.cn)
Hongyun Zhang(zhangjiaye1972@hotmail.com)
Chunmei Liu(chunmei.liu@mail.tongji.edu.cn)

Postal Address: Department of Computer Science and Technology,
Tongji Universtiy(Jiading Campus),
4800 CaoAn Highway,
Shanghai, 201804, P. R. China

Graduated students: 15 PhD students and 19 Master students.

(17) Digital Multimedia Laboratory, University of Electronic Science
and Technology of China

Homepage: Http://www.dm.uestc.edu.cn
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Principal researchers: Leiting Chen(richardchen@uestc.edu.cn)
Fan Min(minfan@uestc.edu.cn)
Mingtian Zhou(mtzhou@uestc.edu.cn)
Qingxin Zhu(qxzhu@uestc.edu.cn)
Qihe Liu(qiheliu@uestc.edu.cn)
Hongbin Cai(caihb@uestc.edu.cn)
Jianzhong Zhang(jianzhang@uestc.edu.cn)
Hao Tan(tanhao@uestc.edu.cn)
Jinzhong Cui(jzcui@uestc.edu.cn)
Mingyun He(hmyun@uestc.edu.cn)
Guanghui Lu(lugh@uestc.edu.cn)

Postal Address: School of Computer Science and Technology,
University of Electronic Science and Technology of China,
Chengdu, 610054, P. R. China

Graduated students: 13 PhD students and 107 Master students.

(18) School of Remote Sensing Information Engineering, Wuhan
University

Homepage: Http://rsgis.wtusm.edu.cn/
Principal researchers:Zhaocong Wu(zcwoo@whu.edu.cn)
Postal Address: School of Remote Sensing Information Engineering,

Wuhan University,
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129 Luoyu Road, Wuhan, 430079, P. R. China
Graduated students: 3 Master students.

(19) Institute for Information and System Sciences, Faculty of Science,
Xi’an Jiaotong University

Homepage: Http://www.rcsci.xjtu.edu.cn/fsci/graduateSchool/index.
aspx

Principal researchers: Wenxiu Zhang(wxzhang@mail.xjtu.edu.cn)
Yee Leung(yeeleung@cuhk.edu.hk)
Weizhi Wu(wuwz@zjou.edu.cn)
Jusheng Mi(mijsh@263.net)
Degang Chen(chengdegang@263.net)
Lin Wei(qjjwv@nwu.edu.cn)
Mingwen Shao(mwshao@mail.xjtu.edu.cn)
Xiujiu Yuan(yuanxiujiu@sohu.com)
Lili Wei(liliwei@nxu.edu.cn)

Postal Address: Institute for Information and System Sciences,
Faculty of Science, Xi’an Jiaotong University,
Xi’an, 710049, Shanxi, P. R. China

Graduate students: 18 PhD students and 40 Master degree students.

(20) Institute of Artificial Intelligence, Zhejiang University

Homepage: Http://www.cs.zju.edu.cn/
Principal researchers: Jianhua Dai(jhdai@126.com)

Weidong Chen(chenwd@zju.edu.cn)
Postal Address: Institute of Artificial Intelligence,

Zhejiang University,
Hangzhou, 310027, P. R. China

Graduated students: 3 PhD students and 8 Master students.

2.3 General Status of Research on Rough Set Theory and
Applications in China

Research on rough set theory and applications in China began in the middle
1990s. The Chinese rough sets and soft computing society has become one of
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Fig. 2. Distribution of Chinese journal papers on rough set

Fig. 3. Number of Chinese journal papers on rough set

the biggest national rough set societies in the whole world. Chinese researchers
achieved many significant results on rough set theory and applications. There are
15 Chinese monographs related to rough set published in the past 20 years[69,
73, 92, 116, 136, 195, 215, 291, 292, 298, 299, 304–308]. Over 3000 Chinese papers
about rough set theory and applications have been published. Some of them are
published on international journals such as Fundamenta Informaticae, Informa-
tion Sciences, Transactions on Rough Sets, etc. In China, Chinese journals are
categorized into three levels, that is, top (leading) journals, core journals, and
normal journals. Over 150 rough set related papers are published on top Chi-
nese journals, and over 2000 papers on core Chinese journals. The distribution
and number of publications of Chinese papers related to rough set each year are
shown in Figure 2 and Figure 3. Figure 4 and Figure 5 show the status about
Chinese PhD and MS degree dissertations in recent years. Table 1 shows the
number of papers published in international conferences on rough sets by Chi-
nese researchers. From Figures 2, 3, 4, and 5, one can find that both the quality
and quantity of Chinese research papers are growing very quickly.
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Fig. 4. Number of Chinese PhD and MS degree dissertations

Fig. 5. Distribution of Chinese PhD and MS dissertations

Table 1. Rough set papers from China for international conferences

Confere-
nce

RSCTC
2000

RSTGC
2001

RSCTC
2002

RSFDGrC
2003

RSCTC
2004

RSFDGrC
2005

RSKT
2006

RSCTC
2006

JRS
2007

Number
of paper

7 3 10 64 30 44 83 19 44

Confere-
nce site

Canada Japan USA China Sweden Canada China Japan Canada

The development of the research on rough set theory and applications in China
gets many supports. NSFC (National Natural Science Foundation of China),
one of the most important national research foundations in China, supported
researches on rough set theory greatly. By far, there are about 20 NSFC projects
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founded by NSFC. The number of NSFC supported research projects is increas-
ing year after year. A partial list of these projects is shown in Table 2. Some
other national and provincial science & technology research programs in China
also supported the researches on rough set theory and applications in the past
20 years.

Table 2. NSFC projects on rough set in China

Project Chief University/ Project
No.

Project Title
Scientist Institute Dates

60773113

Basic theory and method for
data-driven knowledge ac-
quisition

G. Y. Wang

Chongqing Uni-
versity of Posts
and Telecommu-
nications

2008.01
∼2010.12

60775036
Study on principal curve
theory and its application in
character recognition

D. Q. Miao Tongji
University

2008.01
∼2010.12

60773174

Approaches to attribute re-
duction and knowledge ac-
quisition based on concept
lattices

J. S. Mi Hebei Normal
University

2008.01
∼2010.12

10771056
The theory of fuzzy concept
lattice and its application to
information science

Q. G. Li
Hunan
University

2008.01
∼2010.12

60703013
Rough set models and al-
gorithms for heterogeneous
feature analysis

Q. H. Hu
Harbin Institute
of Technology

2008.01
∼2010.12

60703038

Rough 3-valued Lukasiewicz
algebra and application in
granular computing in alge-
braic settings

J. H. Dai
Zhejiang
University

2008.01
∼2010.12

60773133

Research on granulation
structure and its knowledge
acquisition in complex
information systems

J. Y. Liang
Shanxi
University

2008.01
∼2010.12

60673096

Mathematical structure of
information granularity and
its applications in data min-
ing

W. Z. Wu
Zhejiang Ocean
University

2007.01
∼2009.12

60663003
On the statistical evidence
for rough set data analysis L. L. Wei

Ningxia Univer-
sity

2007.01
∼2009.12

Continued . . .
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Table 2. (continued)

60672178

The research of theoretical
system of prevention rules
of Aircrew’s human errors
based on rough set data min-
ing method

Z. Tao
Civil Aviation
University of

China

2007.01

∼2007.12

10671173
Mapping theory and its ap-
plications in uncertain deci-
sion making

J. J. Li Zhangzhou Nor-
mal College

2007.01
∼2009.12

60675031

Dynamic information ana-
lyze based on quotient space
topology structural transfor-
mation

L. Zhang
Anhui
University

2007.01
∼2009.12

70601013

Knowledge modeling and
control methods by rough
set software computation for
complex industry process

L. P. An
Nankai
University

2007.01
∼2009.12

60672173

Small spatial scale weather
forecast for civil airport
based on rough set and as-
sociation rules

W. Fan
Civil Aviation
University of
China

2007.01
∼2007.12

70571032

Study on theory, method
and application of knowl-
edge acquisition from in-
complete information sys-
tem based on rough set

X. Z. Zhou
Nanjing

University

2006.01

∼2008.06

60573068

Basic theory and effective al-
gorithm of granular comput-
ing for huge dada processing

G. Y. Wang

Chongqing Uni-
versity of Posts
and Telecommu-
nications

2006.01
∼2008.12

10571151
Covering methods and its
applications on rough set
theory

S. Lin
Zhangzhou Nor-
mal College

2006.01
∼2008.12

60503022
Incremental learning based
on rough sets theory L. Shang

Nanjing Univer-
sity

2006.01
∼2008.12

60573074

Research on measurements
of knowledge roughness and
data analysis method based
on rough set

D. Y. Li
Shanxi
University

2006.01
∼2008.12

60475017
Theory of quotient space
based granular computing
and its applications

L. Zhang Anhui
University

2005.01
∼2007.12

Continued . . .
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Table 2. (continued)

60475019
Study on methods of gran-
ular representation, model
and inference

D. Q. Miao Tongji
University

2005.01
∼2007.12

60474036

Knowledge modeling and
control methods by rough
set software computation for
complexindustry process

S. B. Cheng
Shanghai Jiao-
tong University

2005.01
∼2007.12

70471003
Research on uncertainty de-
cision methods based on soft
computations

J. Y. Liang Shanxi
University

2005.01
∼2007.12

60374029
Research on MEA-based
rough-fuzzy intelligent
control

K. M. Xie
Taiyuan Univer-
sity of Technol-
ogy

2004.01
∼2006.12

60373078

Rough set theory under
fuzzy and random environ-
ment and knowledge acqui-
sition

W. Z. Wu
Zhejiang Ocean
University

2004.01
∼2006.12

60373111

Problem of uncertain infor-
mation processing based on
rough set theory

G. Y. Wang

Chongqing Uni-
versity of Posts
and Telecommu-
nications

2004.01
∼2006.12

30271637

Rough set theory-based
analysis of the effects of
detoxification by acupunc-
ture

P. Xu
Shanghai Univer-
sity of T.C.M

2003.01
∼2005.12

40201039
Rough sets approach to au-
tomatic classification of re-
mote sensing image

Z. C. Wu
Wuhan
University

2003.01
∼2005.12

60275019

Research on uncertainty
fuzziness and knowledge
acquisition in rough set
theory

J. Y. Liang
Shanxi
University

2003.01
∼2005.12

70271048
Study on the theory of dy-
namic rough managing and
managing method

K. Q. Shi
Shandong
University

2003.01
∼2005.12

60175016
Combination of rough sets &
fuzzy sets and its application
in data mining

D. Q. Miao
Shanxi
University

2002.01
∼2002.12

60075013
Study on uncertain informa-
tion processing K. D. Liu

Hebei Universi-
ty of Engineer-
ing

2001.01
∼2003.12

Continued . . .
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Table 2. (continued)

69875012
Study on intelligence pat-
tern recognition on rough
sets

H. L. Zeng
Sichuan Univer-
sity of Science
and Engineering

1999.01
∼2001.12

69803014

Automatic knowledge acqui-
sition technology based on
rough setand its application

G. Y. Wang

Chongqing Uni-
versity of Posts
and Telecommu-
nications

1999.01
∼2001.12

3 Research on Rough Set Theory and Its Applications in
China

There are many topics being investigated by Chinese researchers concerning
rough sets such as the fundamentals of rough sets, knowledge acquisition, gran-
ular computing based on rough set, extended rough set models, rough logic, and
applications of rough set. The work and achievements of Chinese researchers are
briefly introduced in this section.

3.1 Fundamentals of Rough Sets

Research on the fundamentals of rough sets are developing very quickly in China.
There are many fundamental topics studied by Chinese researchers in recent
years that include algebra and information systems, information entropy, rough
entropy, rough logics and rough algebras.

Guoyin Wang and his group found that the concepts of rough set theory in the
algebra viewpoint and information viewpoint are not equivalent to each other[3,
41, 216–226]. A comparative study was done on the quantitative relationship
between some basic concepts of rough set theory like attribute reduction, at-
tribute significance and attribute core defined from these two viewpoints. It was
found that the relationship between these conceptions from the two viewpoints
is rather an inclusion instead of an equivalence due to the fact that rough set
theory discussed from an information point-of-view restricts attributes and deci-
sion tables more strictly than it does when considered from the algebra point of
view. The identity of the two viewpoints will only hold in consistent information
decision systems. Dongyi Ye[278] found an error in the approach of Hu and Cer-
cone for attribute core computation from the algebra viewpoint and corrected
by introducing an improved discernibility matrix.

Duoqian Miao proposed a new method of knowledge representation based on
information entropy[137, 138]. The relationship between entropy and the rough-
ness of knowledge was analyzed. He compared the rough set methods with repre-
sentative inductive learning algorithms[139]. A new method for the discretization
of continuous attributes was proposed[140].

Jiye Liang, Deyu Li and Yuhua Qian established a relationship between in-
clusion degree and rough set data analysis[93, 140], introduced the concepts of
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information entropy, rough entropy, granulation measure, and knowledge granu-
lation into information systems[93–97,269]. Based on a granulation order, they
developed the technique of positive approximation and converse approximation
for dynamic knowledge reduction and rule generation from a decision table[98,
173–175].To evaluate the whole performance of a decision-rule set, three new
measurements be introduced[174]. Deyu Li, Yee Leung and Bo Zhang studied
algebraic structure of rough set for double universes, knowledge acquisition in
incomplete information systems and knowledge reduction and decision rule op-
timization in inconsistent systems[71, 77, 78]. Kaishe Qu established the rela-
tionship between formal concept analysis and rough set theory. The notions of
decision table and decision rule in rough set theory are introduced naturally into
formal concept analysis as decision context and decision implication[183–185].

Wenxiu Zhang’s group defined rough approximations by a constructive ap-
proach in fuzzy environments and in complex information systems[18, 72, 126–
128, 256], the constructive approach is suitable and useful for practical appli-
cations of rough sets. They developed rough approximation operators based on
different mathematical structures such as neighborhood systems, Boolean lat-
tices, complete distributive lattices, coverings, random sets [19, 81, 82, 257]. Re-
lationships between rough set theory and formal concept analysis was studied, in
especial, rough set approximations in formal concept analysis were investigated
in detail[124, 193, 194, 249].

Jianhua Dai’s group proposed a uniform structure based on 3-valued
Lukasiewicz algebra for rough algebras[22,23], and the concept of rough 3-valued
Lukasiewicz algebra. Rough sets are interpreted within the framework of BZ-
lattices[24]. The relations between some rough algebras and BZ-lattices are es-
tablished[25]. The rough set model was generalized based on molecular lattices.
Logics for rough sets with rough double stone algebraic semantics and rough
stone algebraic semantics are constructed[26–29]. Additionally, a minimal axiom
group for rough sets based on quasi-ordering[30]was constructed by this group.

3.2 Knowledge Acquisition

Knowledge acquisition is one of the most important topics in the study of rough
set theory. Reduction is one of the most important contributions of rough set
theory to data mining. There are many Chinese groups working on knowledge
acquisition based on rough set theory. Guoyin Wang’s group developed sev-
eral knowledge reduction algorithms and methods[4, 5, 17, 99, 181, 182, 227–230,
286, 287, 314, 315] using information entropy, discernibility matrix, etc. Based on
Wang’s new finding on the complexity analysis of quick sort for a two dimensions
table, n*(m+logn) while not m*n*logn, some new efficient attribute reduction
methods were developed[45–47]. Some other related issues of knowledge reduc-
tion based on rough set theory, such as attribution core computation[316,321,
322], data pre-procession like data discretization[44, 317, 318], were also stud-
ied. Several efficient knowledge reduction algorithms based on entropy were de-
veloped by Duoqian Miao’s group[141–143,300]. Wenxiu Zhang’s Group pro-
posed many new concepts of attribute reduction and presented useful methods
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of knowledge reduction in various complex information tables and formal con-
texts. They introduced general approaches of attribute reduction in rough set
theory and in concept lattice. At the same time, attribute features in information
systems and in formal contexts were characterized[79,80, 83, 129, 130, 210, 254,
258, 268, 309]. Houkuan Huang’s group proved that the relative reduction in the
view of information theory is equal to the μ-decision reduction and μ-reduction,
the results based on Hu’s improved discernibility matrix and function are gen-
eral decision reductions, and the results based on Ye’s improved discernibility
matrix and function are relative reductions (also called Pawlak’s reductions)[31–
33]. Dongyi Ye’s group[279–282] studied some interesting issues related to data
inconsistency degree and the computation of all attribute reductions based on
a modified matrix. A concise recursive relation between positive regions was
proposed for developing faster reduction algorithms. A novel greedy maximum
distribution reduction algorithm for inconsistent decision tables was proposed.
Moreover, through establishing an equivalence relationship between the compu-
tation of the minimum attribute reduction and an unconstrained binary opti-
mization problem, a PSO-based minimum reduction algorithm was developed.
Some improved algorithms for attribute reduction and attribute value reduction
were proposed[62] by Xuegang Hu’s group. Keyun Qin and his research group
discussed knowledge reduction approaches from logical point of view[177, 178].
They proved that the d-reduction (or distribute reduction, or approximate reduc-
tion) preserves the definite decision rules equivalent and under the distribution
reduction or entropy reduction, all the decision rules derived from an information
system and the corresponding reduced information system are logical equivalent.
Keing Xie’s group proposed Bit Granular Matrx(BGrM) to realize knowledge re-
duction including attribute reduction and attribute value reduction by BGrM
operation[264].

Since human experts may play an important role in a machine learning process,
their knowledge should be deliberately considered. Fan Min’s group[117, 145,
146, 265] proposed M-reductions and M-relative reductions ensuring that an at-
tribute subset M selected by human experts are always included in the reduction.
Weighted reduction enables human experts to express their preferences in the
process of reduction selection. The relationship between the new definitions and
the traditional definitions are closely investigated. Instead of designing different
reduction algorithms for inconsistent decision tables, they proposed a scheme
converting the latter into consistent decision tables. Jue Wang and his group
presented the concept of the information quantity of decision attributes. So a
new reduction algorithm based on information quantity is developed, and they
proved that the entropy of knowledge decreases monotonously as the granularity
of information becomes smaller[123,250]. Qinghua Hu’s group proposed a new
approach to attribute reduction of consistent and inconsistent covering decision
systems with covering rough sets, and an information-preserving hybrid data
reduction method based on fuzzy-rough techniques. And other some attribute
reduction methods are presented by his group[20,54–57].
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In order to mine huge data sets, incremental knowledge acquisition is a topic
in the field of knowledge discovery in database. Incremental knowledge reduction
technologies were studied based on the simulation of human learning process[48,
64, 252, 323–325] in Guoyin Wang’s group. They proposed incremental algo-
rithms for attribute reduction based on modified discernibility matrix, developed
a distributed model of incremental attribute reduction by decomposing values of
decision attribute of positive region and boundary region in a non-tolerant de-
cision table, a rough set and rule tree based incremental knowledge acquisition
algorithm, and a new incremental learning algorithm based on variable precision
rough set model, etc. An Incremental Updating Algorithm for Core Computing
in Dominance-based Rough Set Model is proposed by Lin Shang’s group[68].

Guoyin Wang and his group proposed a new understanding for data mining,
that is, data mining is a process of knowledge transformation[231–233]. Based on
this understanding, they designed a model of domain-oriented data-driven data
mining (3DM)[231]. Some features of knowledge in data format, like uncertainty,
were used to control a data mining process. Some valid data driven knowledge
acquisition methods were developed[234–236,253, 283–285,319].

Ying Sai’s group proposed a data analysis and data mining model for ordered
information tables[189,190]. Ordering of objects is a fundamental issue in hu-
man decision making and may play a significant role in the design of intelligent
information systems. They generalized the notion of information tables to or-
dered information tables by adding order relations on attribute values. A data
analysis method was thus proposed to describe the properties of ordered informa-
tion tables. They defined the concepts of reduction and core etc. by analyzing
the attribute dependency in ordered information tables. They formalized the
problem of mining ordering rules, designed an ordered decision logic language
(ODL-language), and presented a solution for mining ordering rules. Mining or-
dering rules based on ordered relations is a concrete example of application of
generalizations of rough set model with non-equivalence relations[191,277].

The classical rough set theory is based on complete information systems. That
is, all values of each object are known. Unfortunately, there are always some
missing values in real life information tables due to some reason. Almost all
databases used for data mining contain imperfection, such as noise, unknown
values or errors due to inaccurate measuring equipment, or some other limita-
tions. Guoyin Wang and his group proposed an extended rough set model based
on a new limited tolerance relation[237,238, 288], and developed some knowledge
reduction algorithms for extracting rules from incomplete information tables di-
rectly[21, 49, 65–67, 303]. Rule generation from incomplete information systems
by GDT approach and a default rule extracting method were proposed by Lin
Shang’s group[192]. Jiye Liang defined combination entropy and combination
granulation in incomplete information systems[175], and proposed an algorithm
of knowledge reduction in incomplete information systems based on informa-
tion entropy[96, 97]. Deyu Li introduced the concept of a maximal consistent
block into rough set theory. It was used to construct an optimal depiction for
elementary knowledge granulations and discernibility functions of knowledge
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reduction in incomplete information systems[71]. Deyu Li reviewed the rela-
tionship among the five kinds of reducts in an inconsistent decision information
system and proposed the optimal methods for the five kinds of decision rules[78].

Uncertain information processing is a key issue of intelligent information
processing. There are several different types of uncertainties in rough set based
information processing[239–241]. Some methods for measuring the uncertainty
of information systems were developed[51, 242, 267, 320]. New uncertain reason-
ing methods were developed also by Guoyin Wang’s group. The positive region
in rough set framework and Shannon conditional entropy are two traditional un-
certainty measures, used usually as heuristic metrics in attribute reduction[243–
245]. For the study of uncertainty measures related to rough set theory, Wenxiu
Zhang and his group investigated the fuzziness, roughness, and entropy of crisp
rough sets and fuzzy rough sets[43, 131, 132, 313]. They established the relation-
ships between rough set theory and the Dempster-Shafer theory of evidence in
various situations[259]. Jiye Liang and his group defined a new information en-
tropy and compared it with Shannon entropy systematically[95, 96].

3.3 Granular Computing Based on Rough Sets

Rough sets are part of the foundations of granular computing. In the field of
computational intelligence, granular computing is a new method for simulating
human thinking and solving complicated problems. By effectively using levels of
granularity, granular computing provides a systematic and natural way for ana-
lyzing, understanding, representing, and solving real world problems. With gran-
ular computing, one aims at structured thinking at the philosophical level, and
structured problem solving at the practical level[34]. Guoyin Wang and his group
developed some granular computing models and operators based on rough set
theory[50, 52, 246]. Some data mining and knowledge acquisition algorithms were
developed based on granular computing[6, 7, 11, 35, 36, 40, 53]. A tolerance gran-
ular space based information classification method was discussed by Zhongzhi
Shi and his group[326–330]. Based on the theory of tolerance granular space
and related knowledge of information classification, a tolerance granular space
modeling algorithm TGM and a tolerance granular space based classification
algorithm TGLC were developed. Simulation results show that the algorithms
have higher classification rates and are more robust than other algorithms. The
technique of granulation was also applied to image texture recognition. Duoqian
Miao and his group studied granular representation, model and inference[74–76,
255]. Wenxiu Zhang’s group developed some granular computing models and op-
erators based on rough set theory and formal concept analysis[12–14, 125]. Some
basic problems and research issues on granular computing and applications were
discussed by Keming Xie[264, 270]. Yongli Li’s group[88] found that a granular
information world could be generated by different measures used to view the
world. Qing Liu defined the granules of decision rules based on rough set[108,
118, 119]. Granular language, syntax, semantics, and operation rules of granular
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statements were also defined based on rough set. A reasoning model based on
these concepts was proposed and used in logic reasoning.

3.4 Extended Rough Set Models

To process some problems more efficiently, many extended rough set models
have been proposed, e.g., fuzzy rough set model, rough fuzzy set model, cover-
ing rough set model, and variable precision rough set model. The relationship
between fuzzy rough set models and fuzzy topologies on a finite universe is dis-
cussed by Keyun Qin’s group[179]. They proved that there exist a one-to-one cor-
respondence between the set of all reflexive and transitive fuzzy relations and the
set of all fuzzy topologies which satisfy axiom. The extended covering rough set
models were discussed[180], and based on the notion of neighborhood, five pairs
of dual covering approximation operators were defined with their properties.

Rough set, fuzzy set, vague set, and Bayes theory are all useful technologies
for uncertain information processing. Guoyin Wang’s group studied their rela-
tionship and tried to integrate them. A mapping relationship between vague set
and fuzzy set is set up[122, 266]. Knowledge acquisition from vague spaces[38,
39] and weighted naive Bayes classification based on rough set[37] were studied.

Wenxiu Zhang, Weizhi Wu and their group[133,260, 261, 310] proposed a gen-
eralized fuzzy rough set model and an axiomatic method to extend rough set
theory. In this method, they characterized relation-based rough approximation
operators using the axiomatic approach and solved the problem of finding as-
sumptions permitting a given set-theoretic operator to represent upper and lower
approximations derived from a special binary relation. They presented different
sets of axioms to characterize various classes of crisp and fuzzy approximation
operators[84,85, 134, 262]. Guilong Liu[110] defined a pair of dual approxima-
tion operators for rough fuzzy set and proved that an axiomatic system must
be satisfied by the operators. The rough fuzzy set, fuzzy rough set, and cover-
ing rough set were discussed by Duoqian Miao’s group also[144, 301]. Some new
concepts of knowledge reduction based on variable precision rough set theory
such as upper distribution reduction and lower distribution reduction are intro-
duced by Jusheng Mi[135]. Bing Huang and Xianzhong Zhou[63] proposed a new
rough set model based on tolerance degree in incomplete information systems.
Yongli Li defined a uniform expression of rough set and fuzzy rough set using
the body-shadow relation model of Pan-systems theory[89]. Kaiquan Shi and his
group proposed a singular rough set(S-rough set) model, and studied its two
kinds of mathematics structures: single-direction S-Rough set and two-direction
S-Rough set[196–199]. Fuzzy-rough set model has been researched by Qinghua
Hu’s group[58–61]

3.5 Rough Logic

The rough logic defined on neighbor valued decision tables and its truth values of
the formulas were discussed by Qing Liu’s group[109, 116, 120]. Using the rough
equality of lower and upper approximations with respect to the domain of for-
mulas, they defined the rough equality between two logical formulas, established
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a rough logical reasoning system with rough equality relation and developed
a temporal rough logic system. A neighborhood logic for neighborhood valued
information tables, which is the logic used as operators with neighborhood topo-
logical interior and neighborhood topological closure, was discussed. The model
of the proposed logic language was studied also[121].

3.6 Applications of Rough Sets

As a valid mathematical tool to deal with imprecise, uncertain, and vague in-
formation, rough set theory has been applied in such fields as decision analysis,
machine learning, dada mining, and pattern recognition successfully. Guoyin
Wang’s group used rough set theory in many real life applications, like emotion
recognition[271,272], video retrieval[289,290], network intrusion detection[90,
247, 248], junk email filtering[91], etc. Huanglin Zeng’s group[293–297] proposed
a fast learning algorithm for solving linear equations and related problems and
a new selection and reduction method of system features in pattern recognition
based on rough set. They developed a model of intelligent information processing.
Houkuan Huang’s group investigated conflict solving with rough sets and applied
rough set theory into diagnosis systems[87, 311, 312]. Ying Sai’s group[111–114]
proposed two static rough communication models using rough set theory, and
discussed their properties and applications. Combining the fuzzy set theory, they
proposed two fuzzy rough communication models. A dynamic rough communica-
tion model was proposed using the two-direction s-rough sets theory. Zhaocong
Wu developed a rough logical learning mechanism of RBFNN (Radial Basis
Function Neural Network) based on rough set and used it in classification of
remotely-sensed multi-spectral images[263]. Keyun Qin and his group did a lot
of work on decision making, traffic and transportation controlling, selection of
chemical solvents, evaluation of project management based on rough set[70, 86].
Duoqian Miao’s group developed an automatic recognition system of bills based
on principal curves, and applied the fuzzy rough set in bioinformatics[251,302].
Liping An’s group[8–10] proposed several methods for some real-world problems
in banking, such as CRM in banking, risk and profit forecasting and controlling,
and credit evaluating and decision making based on rough set theory. Qing Liu
developed a medicine decision information system based on rough set[116].

The rough set theory has also been used in a lot of data mining areas, such
as information retrieval, medical data analysis, aircraft pilot performance eval-
uation, image processing, and voice recognition, etc.

4 Summary

The rough set theory seems to be of fundamental importance in the fields of
artificial intelligence and cognitive science, especially in the areas of machine
learning, knowledge acquisition, decision analysis, and pattern recognition. It has
been applied in many real-life applications like medical data analysis, finance,
banking, voice recognition, image processing, etc. Developed independently from
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relational databases, rough set is another theory for processing relational data-
bases (Information tables could be taken as relational databases). It could be
used to analyze imprecise, uncertain or incomplete information in data. It is a
new set theory complimentary to fuzzy set theory.

Many different problems can be addressed by rough set theory. Since it was
proposed by Professor Z. Pawlak, it has attracted attentions of many researchers
from different fields. In China, there is a rough set community of about 100 pro-
fessors and hundreds of students. Although there are already many important
theoretical contributions including fundamental of rough set, knowledge acqui-
sition, granular computing, extended rough set model, and some applications
about rough set in China, many essential research problems are still to be fur-
ther studied. Some of them are listed as follows.

(1)General rough set model.
(2)Granular computing based on extended rough set model.
(3)Efficient reduction methods for a huge database.
(4)Decomposition of large information tables.
(5)Efficient and widely assessable software.
(6)Rough logic and rough control.
(7)Comparison with many other approaches to data analysis, like neural net-

works, genetic algorithms and others.

In this paper, we introduced the research on rough set theory and applications
ongoing at universities and laboratories in China. We hope it would be helpful to
establish better understanding, communication, and cooperation between Chi-
nese researchers and overseas researchers.
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on elementary sets. In: Śl ↪ezak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y.
(eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 185–193. Springer, Heidel-
berg (2005)

49. Hu, F., Huang, H., Wang, G.Y., Wu, Y.: Granular computing in incomplete
information systems. Mini-micro Systems 26, 1335–1339 (2005)

50. Hu, F., Huang, H., Wang, G.Y., Wu, Y.: A granular computing model based on
tolerance relation. Computer Science 31, 48–50 (2004)

51. Hu, J., Wang, G.Y., Zhang, Q.H.: Uncertainty measure of covering generated
rough set. In: 2006 IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology (WI-IAT 2006 Workshops) (WI-IATW
2006), pp. 498–504 (2006)

52. Hu, J., Wang, G.Y., Zhang, Q.H., Liu, X.Q.: Approximation operators based on
general relation. Computer Science 33, 60–62, 69 (2006)

53. Hu, J., Wang, G.Y., Zhang, Q.Z., Liu, X.Q.: Attribute reduction based on granu-
lar computing. In: Greco, S., et al. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259,
pp. 458–466. Springer, Heidelberg (2006)

54. Hu, Q.H., Yu, D.R., Xie, Z.X.: Information-preserving hybrid data reduction
based on fuzzy-rough techniques. Pattern recognition letters 27, 414–423 (2006)

55. Hu, Q.H., Zhao, H., Xie, Z.X., Yu, D.R.: Consistency based attribute reduction.
In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426,
pp. 96–107. Springer, Heidelberg (2007)

56. Hu, Q.H., Wang, M.Y., Yu, D.R.: Construct rough decision forests based on
sequentially data reduction. In: 2006 IEEE Conference on machine learning and
cybernetics, Dalian, China, August 2006, pp. 13–16 (2006)

57. Hu, Q.H., Li, X.D., Yu, D.R.: Analysis on classification performance of rough
set based reducts. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI),
vol. 4099, pp. 423–433. Springer, Heidelberg (2006)

58. Hu, Q.H., Xie, Z.X., Yu, D.R.: Hybrid attribute reduction based on a novel
fuzzy-rough model and information granulation. Pattern Recognition, 3509–3521
(2007)

59. Hu, Q.H., Xie, Z.X., Yu, D.R.: Weighting algorithm for text classification based
on rough set approach. Journal of the China society for scientific and technical
information 24, 59–63 (2005)



Research on Rough Set Theory and Applications in China 381

60. Hu, Q.H., Yu, D.R., Xie, Z.X.: Fuzzy probabilistic approximation spaces and
their information measures. IEEE transactions on fuzzy systems 14, 191–201
(2006)

61. Hu, Q.H., Yu, D.R., Wang, M.Y.: Constructing rough decision forests. In: Śl ↪ezak,
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In: Śl ↪ezak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC
2005. LNCS (LNAI), vol. 3641, pp. 682–691. Springer, Heidelberg (2005)

328. Zheng, Z., Hu, H., Shi, Z.Z.: Tolerance granular space and its applications. In:
Proceedings of IEEE International Conference on Granular Computing, pp. 367–
372 (2005)

329. Zheng, Z., Hu, H., Shi, Z.Z.: Granulation based image texture recognition.
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Abstract. This paper proposes an approach to classify faults that com-
monly occur in a High Voltage Direct Current (HVDC) power system.
These faults are distributed throughout the entire HVDC system. The
most recently published techniques for power system fault classification
are the wavelet analysis, two-dimensional time-frequency representation
for feature extraction and conventional artificial neural networks for fault
type identification. The main limitation of these systems is that they are
commonly designed to focus on a group of faults involved in a specific
area of a power system. This paper introduces a framework for fault clas-
sification that covers a wider range of faults. The proposed fault classifi-
cation framework has been initiated and developed in the context of the
HVDC power system at Manitoba Hydro, which uses what is known as
the TranscanTM system to record and archive fault events in files. Each
fault file includes the most active signals (there are 23 of them) in the
power system. Testing the proposed framework for fault classification is
based on fault files collected and classified manually over a period of two
years. The fault classification framework presented in this paper intro-
duces the use of the rough membership function in the design of a neural
fault classification system. A rough membership function makes it possi-
ble to distinguish similar feature values and measures the degree of over-
lap between a set of experimental values and a set of values representing
a standard (e.g., set of values typically associated with a known fault). In
addition to fault classification using rough neural networks, the proposed
framework includes what is known as a linear mean and standard devi-
ation classifier. The proposed framework also includes a classifier fusion
technique as a means of increasing the fault classification accuracy.

Keywords: Power system faults, knowledge-based fault recognition,
rough membership, rough neuron, rough neural network, classification,
classify fusion.

1 Introduction

With the rapid increase of electrical power consumption by utilities and in-
dustries, more stability and efficiency in power delivery is needed. A report by
CEIDS (Consortium for Electric Infrastructure to Support a Digital Society)
shows that the U.S. economy is losing between $104 billion and $164 billion a
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year due to power outages [10]. The analysis and classification of power system
disturbances are becoming mandatory in working towards minimizing and even
eliminating power outages. Typically, an effort is made to identify the most sig-
nificant patterns of system faults that provide input to a region-based analysis
system for decision support. Operators or engineers make use of the summary
reports to operate and maintain a power system.

In the power fault classification research area, the existing literature and meth-
ods [8,11,12,13,16,17,20,21,26,29,37,38,55,69,70,71,72,76,77,82,83,85] explained
in section 4 are focused on the wavelet analysis, two-dimensional time-frequency
representation for signal pre-processing, feature extraction and conventional ar-
tificial neural networks for fault type identification. In this research project
for Manitoba Hydro power fault classification system, autocorrelation, cross-
correlation, Wavelets, FFT, IFFT, low pass filter, phase shifting, derivatives and
coding have been used to analyze and extract feature information of the 23 most
active signals recently recorded at the Dorsey Station. With the feature values as
input, the conventional artificial neural network has been applied to determine
the fault type in the beginning stage of this research and the results addressed
in section 8 are undesirable due to the complexity and uncertainty of the feature
information. The instinct is to introduce the rough neuron for rough member-
ship computation to distinguish similar feature values by assigning each of them
with the degree of each type of fault. It greatly improves the quality of the fea-
ture information and consequently the classification performance. However, the
rmNNs successfully classify 10 types of faults with 100% accuracy while for fault
7 and 10 with only 83% and 75% accuracy respectively. The bringing in of the
second classifier LMD and classifier fusion techniques [1,6,22,30,34,35,67,74,75]
is to profit from the complementary information that different classifiers provide
and to improve the classification performance for some types of faults.

This paper is organized as follows: Section 1 (this section) is an introduction
for this paper. Section 2 briefly introduces power system fundamentals and a brief
overview of power system faults. Section 3 reviews the rough set and classifier
fusion theories. Section 4 gives an overview of fault identification techniques com-
monly used in the electrical power industry. The main parts of the research com-
pleted for this Manitoba Hydro power system fault classification are presented
in section 5 to section 9. Appendices A(Correlation Theory), B(Conventional
Fast Fourier Transform), C (Wavelet Transform), and D (Time-Frequency Rep-
resentation Theory) summarize the basic theory used in this article.

2 Power System Fundamentals

This section briefly introduces the power system fundamentals [84,23] required
for an understanding of power system faults.

2.1 Power Systems

Electric power transmission was originally developed with direct current (DC).
The availability of transformers and the development and improvement of



398 L. Han and J.F. Peters

induction motors at the beginning of the 20th century, led to the use of al-
ternating current (AC) transmission. Even so, d.c transmission is generally used
for the following reasons:

1. An overhead DC transmission line with its towers can be designed to be less
costly per unit of length than an equivalent AC line designed to transmit
the same level of electric power. However the DC converter stations at each
end are more costly than the terminating stations of an AC line and so there
is a break-even distance above which the total cost of DC transmission is
less than the cost of AC transmission. In addition, DC transmission line can
have a lower visual profile than an equivalent AC line, which contributes to
a lower, perceived environmental impact. An environmental advantage to a
DC transmission line over an AC line is the presence of lower electromagnetic
fields.

2. If transmission is by underground cable, the break-even distance is less than
overhead transmission. It is not practical to consider AC cable systems ex-
ceeding 50 kilometers but hundreds of kilometers of underground DC cable
transmission systems are feasible.

3. Some AC electric power systems are not synchronized with neighboring net-
works even though the physical distance between them is quite small. This
occurs in Japan where half the country has a 60Hz network and the other
has a 50Hz system. It is physically impossible to connect the two by direct
AC methods for the purpose of exchanging electric power between them.
However, if a DC converter station is located in each system with an inter-
connecting DC link, it is possible to transfer power flow from one system to
the other.

The integral part of an HVDC power converter is the valve or valve arm. It
may be non-controllable if constructed from one or more power diodes in series
or controllable if constructed from one or more thyristors in series. Figure 1 de-
picts the International Electrotechnical Commission (IEC) graphical symbols for
valves and bridges (valve groups). The standard bridge or converter connection
is defined as a 2-way connection consisting of six valves or valve arms, which are
shown in Figure 2. Electric power flowing between an HVDC valve group and
an AC system is three phase. When electric power flows into a DC valve group
from an AC system, it flows through a rectifier. If power flows from the DC valve
group into the AC system, it flows through an inverter.

The most common building block for HVDC valves is the thyristor (see
Figure 3 for characteristics of a thyristor). In the ‘off’ state, a thyristor blocks
the flow of current as long as the reverse or forward breakdown voltages (Vbr

or Vbo) are not exceeded. A thyristor can be made to attain an ‘on’ state if it
is forward biased (Vak > 0) and a small positive ‘gate’ voltage is applied be-
tween the gate and the cathode. This ‘firing pulse’ need not be present once the
thyristor is ignited, although in practice, a train of pulses in rapid succession is
often maintained over an entire conduction period. Once turned on, a thyristor
follows its ‘on’ characteristic as shown in Figure 3. Note that the forward voltage
drop in the on condition is relatively small and an actual thyristor characteristic
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Fig. 1. Standard graphical symbols for valves and bridges [84]

Fig. 2. Electric circuit configuration of the basic 6-pulse valve group with its converter
transformer in star-star connection [84]

closely follows that of an ideal switch (horizontal line for the ‘off’ state, vertical
y axis for the ‘on’ state). The thyristor can also turn on if the voltage across
it exceeds the forward break-over voltage Vbo. This mechanism is often used to
protect a thyristor against excessive voltage.

The normal state transition diagram for a thyristor is shown in Figure 4. The
thyristor attains its ‘off’ state when the current through it attempts to reverse.
One other factor that is necessary for a successful turn-off is that a thyristor
must not be subject to a forward biasing voltage too soon after the current has
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Fig. 3. Thyristor characteristic [23]

Fig. 4. State transition diagram for thyristor switching [23]

extinguished. Otherwise, there is a possibility of re-ignition even in the absence
of a pulse. Re-ignition occurs when the charge carriers in the semi-conductor
have not had sufficient time to be re-absorbed. This critical time is referred to
as the turn-off time toff and often expressed in terms of a so called “extinction
angle” γ = ωtoff , if AC waveforms of angular frequency ω are involved. This
phenomenon in which a thyristor fails to attain its forward blocking state, ‘off’
state, is referred to as commutation failure.

The 6-pulse bridge is the most widely used HVDC converter configuration.
Figure 5 shows a typical 6-pulse thyristor bridge with the AC supply, the con-
verter transformer Xc and the DC-side smoothing reactance. A 6-pulse bridge
consists of an upper and a lower half as seen in Figure 6(a). It is assumed initially
that the converter transformer is ideal so that there is no leakage inductance. It
is also assumed that ideal thyristors behave like diodes, i.e., zero voltage drop
when the device is on and an ideal open circuit when off. The device is in a con-
ducting state as soon as the forward biased voltage (Vak > 0) causes current to
flow in the forward (anode to cathode) direction and no ‘firing pulse’ is required.

The upper bridge half is a standard maximum select circuit that selects the
largest of the three voltages Va, Vb and Vc at the common cathode terminal. This
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Fig. 5. Three phase (6-pulse) bridge

6.1:

6.2:

Fig. 6. Analysis of three phase (6-pulse) bridge

can be proved by contradiction. To see this , assume Va < Vb but that Vp = Va

because D1 is assumed to be conducting. Then D3 should also conduct since it
is forward biased because Vb > Va, hence, Va = Vb, which is a contradiction. The
only possibility that does not lead to a contradiction is for Vp to be equal to the
largest of the three voltages.

Similarly the lower bridge half causes a voltage Vn = min(Va, Vb, Vc) to appear
at the common anode terminal of devices D2, D4 and D6. Thus the total DC side
voltage as can be seen from Figure 6(2) must be the difference Vdc = Vp − Vn.
The waveforms for the bridges are shown in Figure 7. The current on the AC side
in phase a is Id when D1 conducts and −Id when D4 conducts. The conduction
period for D1 can be determined from the waveforms as the period in which the
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Fig. 7. Three phase diode bridge waveforms (no overlap) [23]

voltage Va of phase a is the largest of the three phase voltages. Similarly, D4 is
on when Va is at its smallest in magnitude.

The sequence of conduction for the valves in the upper bridges is D1, D3,
D5, D1, D3, D5, and so on, since each successive phase dominates over a 120◦

interval. In the bottom bridge, the sequence is D2, D4, D6, D2, D4, D6, and so
on. Considering the two halves together, each valve enters conduction 60◦ after
its predecessor in the sequence D1, D2, D3, D4, D5, D6, D1, D2, D3, D4, D5,
D6, and so on.

Without any series inductance in the circuit, the current instantaneously rises
to the value ±Id on turn-on and makes an instantaneous transition to zero on
turn-off when the current transfers to the next phase. The valve voltage is an
important parameter in determining the valve rating. The voltage in the forward
direction across valve 1 is determined to be Va − Vp, and while the valve is
conducting this voltage is zero.

In practice, transformer leakage inductance must be considered. With the
inclusion of transformer reactance Xc shown in Figure 8, the current can no
longer make an instantaneous transition from one phase to another because that
would require a discontinuous change in inductor current as is evidenced from
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Fig. 8. Three phase (6-pulse) bridge: transformer inductance included

Fig. 9. Three phase diode bridge waveforms [23]

the waveforms shown in Figure 9. In this case, when valve 1 is turned on, there
is an “overlap” between valve 1 and valve 5, i.e., valve 1 is turned on while valve
5 starts to be turned off. The overlap interval is represented by the angle μ.
During this interval, the DC-side voltage Vp (similarly Vn) is the average of the
two conducting phase voltages, i.e., Va and Vc. Also note from Figure 9 that the
valve voltage waveform now has additional commutation “spikes”.

The thyristors in a controlled bridge are idealized, i.e., a thyristor behaves like
a diode, except that mere forward bias (positive anode-cathode voltage) is not
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Fig. 10. Controlled thyristor bridge waveforms: α = 15◦ [23]

sufficient to ensure conduction. The additional condition to attain the conducting
state is a required gate, ‘firing pulse’ that must be present in addition to a forward
bias. Hence, the main difference in analyzing the operation of a thyristor bridge
is that the maximum (or minimum) select action only commences on the issue
of a firing pulse. The thyristor valves are fired in the sequence T1, T2, T3, T4,
T5, and T6. The elapsed angle from the earliest instant at which a thyristor
may conduct (i.e., the point at which forward bias first appears) to the instant
at which the firing pulse is issued and the valve commences conduction is called
the “firing” or “delay” angle and is denoted by the Greek letter α.

In the waveforms shown in Figure 10, α = 15◦ has been used. Also note that
in Figure 10, the pulse duration is a full 120◦. This is not strictly necessary,
since a thyristor valve that has been triggered on continues conducting until
the current through it attempts to flow in the reverse direction. However, in
HVDC systems, it is common practice to keep pulsing continuous over a valve’s
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Fig. 11. 31 signals in the “Valve Current Commutation Failure” fault

nominal conduction interval of 120◦ (in the form of a train of high-frequency
pulses) in case a premature current zero occurs because of waveform distortions.
Note that for this value of the firing angle (α = 15◦), the DC voltage is positive
and the power flows from the AC to the DC side. This is the “rectifier” mode of
operation. Note that if continuous current is maintained in the circuit by some
external device, the firing angle α can be made to have a value in excess of 90◦.
In this situation, the voltage Vp turns out to be negative and Vn is positive,
which causes the DC voltage to be negative. Thus, power transfer is from the
DC side to the AC side, although the direction of the DC current remains the
same. This is the “inverter” mode of operation.

2.2 Power System Faults

A power system fault is the result of an electrical disturbance. At the Manitoba
Hydro Dorsey Station, the TranscanTM recording system is deployed as a power
system monitoring tool. It archives 31 power signals in a fault file whenever a
power system fault occurs. A typical screen snapshot of 31 signals recorded by
TranscanTM is shown in Figure 11. TranscanTM is capable of recording power
system faults in a real-time manner. However, this system cannot identify the
type and cause of a recorded fault. Engineers at the Dorsey Station must visually
assess all the 31 signals then manually log the cause of the fault into the database
of the TranscanTM system and consolidate this information into an archived fault
file. The graphical user interface (GUI) of the TranscanTM system is shown in
Figure 12. The 23 most active and informative signals referenced in the proposed
fault classification system are listed in Table 1.
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Fig. 12. The TranscanTM system GUI

Table 1. Most active power system signals

Bus signals AC Phase A, B, C Sinusoidal
Pole voltages and currents Constant
Pole current order Constant

Valve signals 6-pulse Periodic
(total 3 valve groups) Current A phase, B phase, C phase Sinusoidal

Start pulse Periodic

Table 2. Common power system faults

Fault index Fault name Number of fault files
Fault 1 Minor AC Disturbance 240
Fault 2 Severe AC Disturbance 148
Fault 3 Valve Current Closed/Blocked/Deblocked 114
Fault 4 Line Fault 81
Fault 5 Valve Current Commutation Failure 95
Fault 6 Pole Voltages/Currents Closed/Blocked/Deblocked 64
Fault 7 Phase Current Arc Back 26
Fault 8 Parallel Operation 29
Fault 9 Pole Current Oscillation 31
Fault 10 Normal Affected by Another Pole 18
Fault 11 Asymmetric Protection 25
Fault 12 Disturbance on DC Voltage 25

The twelve most common power system faults are listed in Table 2. An in-
formation table for fault classification cannot be established without a good
understanding of the mechanism underlying each fault and the behavior of the
signal associated with each fault.

– AC Voltage Disturbance. This is a bus error that will induce some other
faults such as valve current commutation failure, line fault and valve current
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blocked. Normally, three AC phase voltages are sinusoidal signals that have a
fixed 120◦ phase delay relative to each other. The AC voltage line will be im-
pacted by different disturbances such as a falling tree hitting a transmission
line, heavy snowfall or severe wind, and sometimes radiation or magnetic
field interference.

– Valve Current Closed/Blocked/Deblocked. This fault happens in one or two
valve groups. There are three valve groups in poles 1 and 2, and two valve
groups in poles 3 and 4. Vg11, Vg12, Vg13 designate pole 1; Vg21, Vg22,
Vg23, pole 2; Vg31, Vg32, pole 3; Vg41, Vg42, pole 4. A failure of a 6-pulse
signal in a valve group will shut down or block the valve currents. An AC
voltage disturbance also has the same effect. The restart of the 6-pulse signal
will unblock the valve currents.

– Line Fault. This fault is due to the AC voltage disturbance, the pole line
short to the ground or the energy of a DC line decreases (line force retard)
causing a pole line voltage flashover or shutdown. The power system will
restart in a short time if the control system responds quickly.

– Valve Current Commutation Failure. This happens when a valve is not
turned off successfully because the valve is subject to a forward biasing volt-
age too soon after the current has been extinguished. This causes a minor
valve current distortion for a very short period of time.

– Pole Voltages/Currents Closed/Blocked/Deblocked. This happens when all
the valve groups in one pole are closed, blocked or deblocked.

– Phase Current Arc Back. This happens only in one valve group. The valve
current increases sharply for a short period of time and then shuts down.
This type of power system fault is caused when valve lines short together or
short to ground.

– Parallel Operation. This is not a fault but an indicator that the line mainte-
nance is in progress. When a pole current line needs to be tested, the current
will be switched to another pole line. Inside the power station, the current
of this pole line goes down to 0; outside the station, the current provided
does not decrease, and the pole voltage remains normal.

– Pole Current Oscillation. This fault is caused by oscillation of the pole current
order. Usually with this fault, the pole voltage remains relatively constant.

– Normal Affected by Another Pole. This fault happens occasionally. There is
a bi-pole power system at the Dorsey Station. Pole 1 and pole 2 compose
one active station. Pole 3 and pole 4 are usually for a back-up station. If a
fault, especially a line fault, occurs in pole 1, TranscanTM will generate 2
fault files: one for pole 1, and one for pole 2 even in the case where pole 2
is absolutely normal. This occurs because the bus signals, pole voltages and
currents are shared and reordered in both pole 1 and pole 2 fault files.

– Asymmetric Protection. If the pulse to open the valve arrives in an abnormal
sequence, this fault will cause more than two valves to open at the same time.
The circuit control system will then force this valve group to close. The
most noticeable event associated with this fault is that the 6-pulse signal
will have 7 cycles of severe oscillation and will be closed until the control
system restarts the valve group.
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– Disturbance on DC Voltage. At the Dorsey Station, the AC voltage is con-
verted from the DC voltage. The long distance transmission of DC voltage is
easier and the interference problem is greatly decreased. However, sometimes
snow on DC transmission lines or windy weather will cause changes in the
DC voltages and a DC voltage disturbance is recorded.

3 Mathematics Underlying Fault Classification and
Recognition Techniques

This section gives an overview of the mathematics underlying fault classification
and fault recognition techniques.

3.1 Rough Set Theory

This section briefly presents the basic rough set approach to the approximation
of sets [57] that provides a foundation for classifying power system fault signals.
The rough set approach introduced by Zdzis�law Pawlak [40,48,49,50,51,52,53]
and elaborated by others [32,43,44,45,54,57,68,73,58,78,42,41,65,3,59,60,61] pro-
vides the grounds for approximating a set X . Let B denote a set of functions
that represent object features (traditionally, also called attributes in rough set
theory [51]) of objects in a set U . The basic approach in rough set theory is to
use an equivalence relation ∼B [62]

∼B= {(x, x′) ∈ U × U | ∀f ∈ B, f(x) = f(x′)} ,

to define the partition of a set U into non-empty, pairwise disjoint subsets (equiv-
alence classes). An equivalence class in a partition is denoted by [x]B, where

[x]B = {x′ ∈ U | ∀f ∈ B, f(x) = f(x′)} .

The equivalence classes in a partition form a new set, denoted by U/ ∼B,
where

U/ ∼B= {[x]B | x ∈ U} ,
for a given set of objects U . Let X ⊆ U be a set of objects of interest. After the
partition of the set U has been defined, the lower and upper approximations of
the set X are defined relative to the equivalence classes in the partition.

Preliminaries

The notation and terminology in Table 3 is important for an understanding of
basic rough set theory. Let U,F denote a set of sample objects and a set of func-
tions, respectively. The functions in F represent the features (attributes) of the
objects in U . Assume that B ⊆ F , the notation (U,B) denotes an information
system, which is usually represented in table form.

In keeping with current notation for equivalence relations,∼ denotes an equiv-
alence relation on a set U [19]. The ∼ symbol is used extensively to express
equivalence [9,18,19].
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Table 3. Rough Set Theory Symbols

Symbol Interpretation

U Set of sample objects,
F Set of functions representing object features,
B B ⊆ F ,
X X ⊆ U ,
x x ∈ X,

∼B ∼B= {(x, x′) ∈ U × U | ∀x ∈ U, f(x) = f(x′)},
[x]B [x]B = {x′ ∈ U |x′ ∼B x},

U/ ∼B U/ ∼B=
�
[x]B | x ∈ U

�
, a partition of U ,

B∗X
�

x:[x]B⊆X [x]B , B-lower approximation of X,
B∗X

�
x:[x]B∩X 	=∅[x]B , B-upper approximation of X,

BndBX BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X}.

The notation U/ ∼ denotes a partition of U . Let [x] denote a class belonging
to U/ ∼, where

[x] = {x′ ∈ U | x ∼ x′}.
The classes of a partition are disjoint, i.e., if [x] , [y] ∈ U/ ∼, then [x] ∩ [y] = ∅.
In addition, every object in U is in only one class in U/ ∼.

The use of ∼B drew attention to the role of the set B in partitioning a set U .
The basic idea here is that the relation ∼B provides a classification of objects
according to knowledge contained in the system (U , B) [33].

The class [x]B is called a B-elementary set [48,51]. If (x, x′) ∈ ∼B (also written
x ∼B x′), then x and x′ are said to be indiscernible with respect to all functions
in B, or simply, B-indiscernible. In the case where B = {f}, ∼{f} denotes an
equivalence relation defined relative to a set of feature f and [x]{f} denotes the
equivalence class x/ ∼{f} represented by x and defined by ∼f . For simplicity,
write ∼f to denote ∼{f}.

A sample X ⊆ U can be approximated from information contained in B by
constructing a B-lower approximation

B∗X =
⋃

x:[x]B⊆X

[x]B ,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B .

The B-lower approximation B∗X is a collection of classes of sample elements
that can be classified with full certainty as members of X . By contrast, the
B-upper approximation B∗X is a collection of classes representing both certain
and possibly uncertain knowledge about X because it is possible for B∗X to
have one or more classes that are not subsets of X but still have a non-empty
intersection with X . An approximation boundary BndBX is defined by

BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X} .
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Table 4. Decision system notation

Symbol Interpretation

d Decision function,
U Set of sample objects,
F Set of functions representing features,

(U , F , d) Decision system.

The set BndBX contains all objects in the upper approximation B∗X that are
not in the lower approximation B∗X . Whenever B∗X � B∗X , the sample X
has been classified imperfectly, and is considered a rough set. In other words, a
set X is a rough set, if and only if, the boundary BndBX is not empty.

Information Tables
For computational reasons, a syntactic representation of information systems is
usually given in the form of tables. Discovering objects in the composition of
a class [x]B ⊆ U/ ∼B, x ∈ U in the partition U/ ∼B in the system (U,F) is
accomplished by gathering together inside the class all of those objects that have
matching function values. Identifying the classes in U/ ∼B is greatly aided by a
table representation of (U,F).

Decision Systems
Of particular interest is the extension of information systems made possible by
including a function d representing what is known as a decision attribute in
rough set theory. A decision is defined by a function d : X −→ Vd, where Vd

is the range of d. In addition, (U,F , d) denotes a decision system. It is typical
in rough set theory to start with an information system (U,F) and introduce a
decision function d as a means of separating sample objects in U into decision
classes, i.e., sets of objects representing a particular value of d. Decision systems
are also represented by tables.

Rough Membership Function
Because it is important to determine the extent to which a set of sample signals
match a class of signals representing a particular power system fault, the rough
membership function defined by (1) has been used in this research. The degree
of overlap between X and [x]B containing x can be quantified with the rough
membership function (rmf),

μB
X : U → [0, 1] defined by μB

X(x) =
|[x]B ∩X |

[x]B
. (1)

The rough membership function has proven to be very useful in measuring the
extent that classes of signals for known faults overlap with sets of signals rep-
resenting power system faults to be classified. This is explained in detail in
Section 7, where the rmf is used in the design of a neural network useful in
classifying power system faults.
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3.2 Classifier Fusion Theory

Classifier combination has received considerable attention in the past decade and
is now an established pattern recognition offspring. It has been recognized for
some time that the classical approach to designing a pattern recognition system,
which focuses on finding the best classifier has a serious drawback. Any comple-
mentary discriminatory information that other classifiers may encapsulate is not
tapped. Multiple expert fusion aims to make use of many different designs to
improve classification performance. Over the last few years, a myriad of methods
for fusing the output of multiple classifiers have been proposed.

Let D = {D1, D2, ..., DL} be a set of classifiers and 9n be the feature space.
All classifiers produce soft class labels. We assume that dj,i(x) ∈ [0, 1] is an
estimate of the degree of set ci offered by classifier Dj for an input x ∈ 9n, i =
1, 2; j = 1, ..., L. There are two possible classes C = {c1, c2} and L classifiers
D = {D1, D2, ..., DL} [34]. Simple fusion methods are the most obvious choice
when constructing a multiple classifier system [30,35,74,75,6], i.e., the support
for class ci, di(x), yielded by the set of classifiers is [34]

di(x) = F(d1,i(x), ..., dL,i(x)), i = 1, 2, (2)

where F is the chosen fusion method. Here, it is necessary to study the fusion
methods compared in [1]:

– minimum
– maximum
– average
– median
– majority vote
– oracle.

For the majority vote, the first step is to harden the individual decisions by
assigning class labels Dj(x) = c1 if dj,1(x) > 0.5, and Dj(x) = c2 if dj,1(x) ≤ 0.5,
j = 1, ..., L. Next, the class label most represented among the L (label) output
is chosen.

The oracle model is an abstract fusion model. In this model, if at least one
of the classifiers produces the correct class label, then the team produces the
correct class label too. Usually, Oracle is used in comparative experiments.

In order to achieve a high overall performance of the classification function,
the performance of each individual classifier has to be optimized prior to using
it within any fusion schemes. That is, the fusion scheme will be able to improve
the overall classification result relative to the performance of the individual, op-
timized classifiers. If several classifiers with only marginal performance are being
used, the results cannot necessarily be expected to reach the high performance
sought. On the other hand, if several classifiers are used that work exceptionally
well, any further gains will be exceedingly hard to accomplish because the op-
portunity for diversity will be diminished. Individual classifier optimization can
be performed by selecting object features, appropriate parameters, and classifier
structure that governs the performance.
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Fig. 13. Typical 2-class confusion matrix [22]

After designing a classifier fusion scheme, a confusion matrix M can be gen-
erated for each classifier using labeled training data [22]. The confusion matrix
lists the true classes c versus the estimated classes ĉ. Because all classes are enu-
merated, it is possible to obtain information not only about correctly classified
states (N00 and N11), but also about false positives (N01) and false negatives
(N10). A typical two-class confusion matrix M is shown in Figure 13.

From the confusion matrix of each classifier, the false positive (FP) error, the
false negative (FN) error, the total error rate (TER), and the total success rate
(TSR) can be calculated for the classifier. These error rates are defined as in (3)
to (6). The total error rate (TER) or the total success rate (TSR) is typically
used as a simple measure for overall performance of a classifier.

FP =
N01

N00 + N01
. (3)

FN =
N10

N10 + N11
. (4)

TER =
N01 + N10

N00 + N11 + N01 + N10
. (5)

TSR = 1− TER. (6)

Although each individual classifier’s performance is very important to the per-
formance of a classifier fusion, the dependency between the classifiers to be fusioned
also affects the fusion results. Some studies [67] have shown that the degree of cor-
relation between the classifiers adversely affects the performance of the subsequent
classifier fusion. If two classifiers agree everywhere, the fusion of the two classifiers
will not achieve any accuracy improvement no matter what fusion method is used.
For classifier fusion design, classifier correlation analysis is, therefore, equally as
important as the classifier performance analysis. Based on the classifier output on
the labeled training data, a 2x2 matrix N as shown in Figure 14 can be gener-
ated for each classifier pair. The off-diagonal numbers directly indicate the corre-
lation degree of the two classifiers. The smaller the two off-diagonal numbers are,
the higher the correlation between the two classifiers will be. The proportion of
specific agreement, which here is called the correlation, ρ2, is defined in [67] as
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ρ2 =
2×NFF

NTF + NFT + 2×NFF
, (7)

where, as further shown in Figure 14, NTT implies that both classifiers classi-
fied correctly; NFF means both classifiers classified incorrectly; NTF represents
the case of the 1st classifier classified correctly and the 2nd classifier classified
incorrectly; and NFT stands for the 2nd classifier classified correctly and the
1st classifier classified incorrectly. In order for classifier fusion to be effective in
performance improvement, the correlation, ρ2, has to be small (low correlation).

Consider the output of two classifiers as enumerated in Table 5. The calcu-
lation of ρ2 yields ρ2 = 0.36. Had classifier 2 been completely redundant to
classifier 1, the correlation would have been ρ2 = 1.

The 2-class correlation coefficient can be extended to n different classifiers [22].
The notion that redundancy is described by the individual true and false answers
of the classifiers is retained from the 2 class correlation analysis. The larger the
ρ-correlation, the larger the redundancy. In particular, the ρ-correlation goes to
zero if the individual incorrect answers are disjoint for all answers. That implies
that there is always at least one correct answer from some classifier for any
case available. The ρ-correlation coefficient gets larger as the number of wrong

Fig. 14. Correlation analysis matrix [22]

Table 5. Results from experiment for 2 classifiers [22]

Answer classifier 1 Answer classifier 2
T T
T F
F T
T F
F F
F F
T F
F T
T T
T T
T T
T T
T F
T T
T T
F T
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answers are the same for many answers. Let Nf be the number of experiments
where all classifiers give a wrong answer; N c

i be the number of experiments
with combinations of correct and incorrect answers; c is the combination of
correct and incorrect answers (for 2 classifiers: c ∈ {wr, rw}; for 3 classifiers:
c ∈ {wwr,wrw, rww,wrr, rwr, rrw} etc.); n is the number of classifiers. The
ρ-correlation coefficient is then [22]

ρn =
nNf

∑2n−2
i=1 N c

i + nNf
. (8)

If N is the number of experiments and N t is the number of experiments for
which all classifiers had a right answer, (8) can more conveniently be rewritten
as [22]

ρn =
nNf

N −Nf −N t + nNf
. (9)

Consider a 3-classifier example, which is the same as the previous 2-classifier
example except that a third classifier was added that will get answer wrong in
50% of the cases. The calculation of ρn yields: ρn = 0.21.

Although the newly added classifier has poor performance, its addition reduces
the overall redundancy of the classifier assembly.

Note that the ρ-correlation does not record redundancy for any particular
classifier (for n > 2) but for a set of classifiers only. For illustrative purposes,
consider two simplistic cases shown in Table 6 and Table 7 [22].

Table 6. Output for 3 classifiers (case 1) [22]

Answer Answer Answer
classifier 1 classifier 2 classifier 3

T F F
F T F
F T T
T T T
F F F

The ρ-correlation is ρn = 0.5.

Table 7. Output for 3 classifiers (case 2) [22]

Answer Answer Answer
classifier 1 classifier 2 classifier 3

T F T
F T T
F T F
T T T
F F F

The ρ-correlation is ρn = 0.5.
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Obviously the third classifier is different in the two example cases above.
However, the degree of correlation is the same because it does not matter whether
it is correlated to the first or to the second classifier. Rather, it is only relevant
that it is correlated to the combination of the first two classifiers. Note that the
calculation of the ρ-correlation factor can be performed on multi-class scenarios
as well because the factor is only concerned with the correctness of the outcome.

4 Technology Review of Power System Fault
Classification (PSFC)

4.1 Wavelet Applications in Power Systems

The main difficulty in dealing with power engineering phenomena is the extreme
variability of the signals and the necessity to operate on a case–by–case ba-
sis. Another aspect of power disturbance signals is often localized temporally
or spatially (e.g., transients in power systems). This requires the efficient use
of analysis methods, which are versatile enough to handle signals in terms of
their time-frequency localization. Wavelets localize the information in a time-
frequency plane. In particular, wavelets are capable of trading one type of res-
olution for another, which makes them especially suitable for the analysis of
non-stationary signals. The fundamentals of wavelets are explained in Appen-
dix C. Considerable work has been done in applying the wavelet transform to
power systems in analyzing and processing the voltage-current signals to make
a real-time identification of transients in a fast and accurate way [20].

15.1: Evolution of wavelet publications
in power systems

15.2: Percentage of wavelet publications in
different power system areas

Fig. 15. Overview of wavelet applications in power systems [20]

The wavelet transform was first applied to power systems in 1994 by Robert-
son [70] and Rebeiro [69]. Since then, the number of publications in this area has
rapidly increased as Figure 15.1 shows. Figure 15.2 illustrates the most popular
wavelet transform applications in power systems:
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– Power system protection
– Power quality
– Power system transients
– Partial discharges
– Load forecasting
– Power system measurement

The field of power system transients is the area in which wavelets were first ap-
plied to power system applications by Robertson [70]. In this paper, the authors
presented a methodology for the development of software for classifying power
system disturbances by type from the transient waveform signature. Transients
are signals with a finite life, i.e., a transient reduces to zero in a finite time.
Electromagnetic transients are caused by sudden changes in system topology or
parameters. For instance, short circuit faults are one of the most common causes
of transients in a power system. Power system switching causes transients as well.
Robertson [71] distinguished single-phase faults from capacitor switching using
waveform signatures.

An example of transient analysis using wavelets was given by Ramaswamy [72].
Using the Electromagnetic Transient Package provided in the Power System
Simulation Software, MIPOWER, and the wavelet transform toolbox provided
in MATLAB Ver. 5.3, the authors analyzed a group of simulated transients
namely the phase BC-Ground fault, three phase-Ground fault and phase C-
Ground fault, in a simple power system network (Figure 16) consisting of a
generator, a load, two buses and a transmission line. Figure 17 shows a typical
waveform of a certain type of transient disturbance in power systems.

Fig. 16. A typical power system network [72]

The authors applied different types of wavelets to the transient disturbance
signal to perform Multiple Level Decomposition. The Meyer wavelet (Figure 18)
was found to work better as the fundamental source signal was restored at the
4th approximation. Other wavelets such as a ‘Haar’ wavelet, added noise to the
fundamental wave. The transients were analyzed by the ‘Meyer’ mother wavelet
and Figure 19 shows Multiple Level Decomposition of the transient disturbance,
where s is the source signal, a4 is the 4th level approximation, d4 is the 4th level
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Fig. 17. Example of transient disturbance for certain types of faults indistinguishable
by the naked eye [72]

Fig. 18. A typical Meyer wavelet [72]

detail coefficient, d3 is the 3rd level detail coefficient, d2 is the 2nd level detail
coefficient, and d1 is the 1st level detail coefficient.

The detail coefficients of faults are given in Figure 20 for the phase BC-Ground
fault, three phase-Ground fault and phase C-Ground fault.

In power quality applications, several studies have been carried out to detect
and locate disturbances using the wavelet transform to analyze interference, im-
pulses, notches, glitches, interruptions, harmonics, flicker, etc. of non-stationary
signals. Drisen [16] analyzed power system harmonics while Santoso [76] analyzed
power system interference.

In power system protection applications, the potential benefits of applying
the wavelet transform to improve the performance of protection relays and fault
classification have been recognized in recent years. Charri [11] analyzed the tran-
sient information of a resonant grounded distribution system using the wavelet
transform. Imrǐs [26] presented the analysis of ground fault transients in high
voltage networks for earth fault location purposes using the Gaussian mother
wavelet method and discussed the main sources of error affecting the accuracy
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Fig. 19. Multiple level decomposition of a transient disturbance [72]

20.1: Phase BC-ground fault 20.2: Three phase-ground fault

20.3: Phase C-ground fault

Fig. 20. The detail coefficient of faults [72]

of the method. Liang [37] proposed an algorithm for fault classification based on
Wavelet Multiresolution Analysis (MRA) with Daubechies four (D-4) wavelet
measuring and comparing sharp variation in the values of the currents for the
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three phases in the first stage MRA detail signals extracted from the original
signal. Cheng [13] used a B-Spline wavelet transform for fault classification pur-
poses based on threshold values as in [37]. Zhao [85] proposed an algorithm
with Daubechies eight (D-8) wavelet for fault detection and classification in
an underground cable system using two different levels of MRA detail signals.
Chanda [12] presented an algorithm for classification of faults based on MRA
with Daubechies eight (D-8) wavelet transforms of the three phase currents on
a transmission line fed from both ends.

Imrǐs [26] and Chanda [12] were both using wavelets for data preprocessing
before applying the fault location and classification algorithms to the recorded
transients on transmission lines. Imrǐs analyzed ground fault transients in 110kV
networks using low frequency records for fault location purposes. As shown in
Figure 21, ground fault signals consist of different frequency components, which
result from charging or discharging of the network capacitances. The charge
transient is generated by the voltage rise in sound phases during a single-phase
to ground fault. This means that a charge transient is always a side effect of
the ground fault. Moreover, it is typically of strong amplitude and, therefore, is
reasonable to use for single-phase to ground fault location. The fault transients
are mixed with the other signals as noise and fundamental frequency components.
Sometimes the transient can be short in duration and also small in amplitude.
Moreover, the transient can be very close to the fundamental frequency signal
in the frequency domain. Therefore, the 50Hz component can negatively affect
the fault transient frequency estimation. To enable a more precise analysis of
the fault transient, preprocessing is performed with a wavelet filter [26].

Fig. 21. The recorded single phase to ground fault: Phase currents [26]

The filtering of the signal is performed using a wavelet filter to get the fault
transient precisely out of the measured signal. The wavelet filter is set exactly
on the frequency of the measured (charge) fault transient estimated by the
Fourier transform. The filter’s coefficient and its frequency response with an
example fault current are shown in Figure 22. The filter coefficients are repre-
sented by a Gaussian mother wavelet. After removing the 50Hz component, the
charge transient frequency is detected. In the case of the phase currents shown in
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22.1: Wavelet coefficients 22.2: Wavelet spectrum

22.3: Fault current and filtered
component

22.4: Spectrum of the filtered cur-
rent

Fig. 22. Pre-processing of the fault signals using wavelet [26]

Figure 21, the charge transient frequency is detected at 178.57Hz. These tran-
sients can then be used for fault location if they are detected. Transient fault
location is based on the estimation of the fault path inductance Lf from the
detected fault transients. The fault path inductance can be calculated directly
from the filtered signal (the charge transient) [26],

Lf =
1
ωc

Im

[
vc(t, f)
ic(t, f)

]
=

1
3

(L0 + L1 + L2) · lf , (10)

where ωc, vc and ic are the angular frequency, voltage and current of the charge
transient. The fault distance is lf . The constants L0, L1 and L2 are the zero-,
positive- and negative-sequence inductances of the faulty line per km. In (10), t
represents time and f the frequency.

Chanda, on the other hand, simulated the application of Wavelet MRA theory
for the classification of faults on a power transmission line as shown in Figure 23.
The base values of the voltage and power in the system are taken as 230kV and
100MVA. The frequency of the system is taken to be 50Hz. The phase current
signals are recorded at the two ends (P, Q). The generated time domain signals
are sampled every 80μs and then used for the analysis using wavelet transform.
The data considered in the analysis is assumed to be of finite duration and of
length 2N , where N is an integer. If N is chosen to be 9, the total duration of
the analysis comes to 29 (=512) × 80μs = 40.96ms, which is about two cycles
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and is sufficient for the fault analysis. With N = 9, there are (N + 1) = 9 + 1 =
10 wavelet levels. If these 10 levels are added together, then the original signal
is faithfully reproduced at each of the sample points.

Fig. 23. 230kV, 200km transmission line system used for simulation studies [12]

Daubechies Eight (D-8) wavelet is used in this work for the analysis, since it
closely matches the signal to be processed (this is of the utmost importance in
wavelet applications). Due to the unique feature of providing multiple resolu-
tion in both time and frequency by wavelets, the sub-band information can be
extracted from the original signal. When applied to faults, this sub-band infor-
mation of a faulted power system is seen to provide useful signatures for faults.
By randomly shifting the point of fault on the transmission line, a number of
simulations can be carried out. The generated time domain signal for each case
is analyzed using the wavelet transform. From the different decomposed levels,
only 3rd level output is considered for the analysis.

The types of faults considered in the analysis are L-G, L-L-G, L-L, L-L-L.
The simulations show that the fault inception angle (αF ) has a considerable ef-
fect on the phase current samples and, therefore, also on the wavelet transform
output of post-fault signals. Through exhaustive experimentation, the authors
have concluded that the parameter identified for classification is the summation
of 3rd level output for the three phase currents. The results are shown in Fig-
ure 24 and Figure 25, where, Sa = Summation of 3rd level values for current in
phase ‘a’, Sb = Summation of 3rd level values for current in phase ‘b’, and Sc =
Summation of 3rd level values for current in phase ‘c’.

If Sa +Sb +Sc
∼= 0, then the fault is classified as an L-L-L fault, in which the

magnitude of all the summation values, Sa, Sb and Sc are comparable to each
other. This can be verified from the simulation results shown in Figure 24.1 (an
L-L-L fault at 5km) and Figure 24.2 (an L-L-L fault at 195km).

If Sa + Sb + Sc
∼= 0 and also if the sum of two of the summations Sa, Sb

and Sc is equal to zero, i.e., the magnitude of one of the summations is very
small and almost negligible in comparison to the equal magnitudes of other two
summations, then the fault is classified as an L-L fault, i.e., if Sa + Sb = 0, it is
a fault involving the a and b phase; Sa +Sc = 0, it is a fault involving the a and
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24.1: Effect of Inception angle (αF )
for L-L-L Fault at 5km

24.2: Effect of Inception angle (αF )
for L-L-L Fault at 195km

24.3: Effect of inception angle (αF )
for L-L fault involving phases ‘a’, ‘b’
at 5km

24.4: Effect of inception angle (αF )
for L-L fault involving phases ‘a’, ‘b’
at 195km

Fig. 24. Preprocessing of the L-L and L-L-L fault signals using wavelet [12]

c phase; and Sb + Sc = 0, it is a fault involving the b and c phase. The results
of classifying an L-L fault involving the a and b phase are shown in Figure 24.3
(an L-L fault at 5km) and Figure 24.4 (an L-L fault at 195km).

If Sa+Sb+Sc �= 0, then it is either an L-G or L-L-G fault. If the absolute value
of any two summations (Sa, Sb, Sc) is equal and is always much smaller than the
absolute value of the 3rd summation, then it is an L-G fault. If |Sb| = |Sc| &
<< |Sa|, it is an L-G fault involving phase a; if |Sa| = |Sc| & << |Sb|, it is an L-G
fault involving phase b; and if |Sa| = |Sb| & << |Sc|, it is an L-G fault involving
phase c. The results of classifying an L-G fault involving the a phase are shown
in Figure 25.1 (an L-G fault involving the a phase at 5km) and Figure 25.2 (an
L-G fault involving the a phase at 195km).

If the absolute value of any two summations (Sa, Sb, Sc) is not equal and is
always much higher than the absolute value of the 3rd summation, then it is
an L-L-G fault as shown in Figure 25.3 and 33.4. Furthermore, provided that
Smin = min(|Sa|, |Sb|, |Sc|), if Smin = |Sc| and << |Sa| or |Sb|, then it is an
L-L-G fault involving phases a, b and ground; if Smin = |Sb| and << |Sa| or |Sc|,
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25.1: Effect of inception angle (αF )
for L-G fault involving phase ‘a’ and
ground at 5km

25.2: Effect of inception angle (αF )
for L-G fault involving phase ‘a’ and
ground at 195km

25.3: Effect of inception angle (αF )
for L-L-G fault involving phases ‘a’,
‘b’ and ground at 5km

25.4: Effect of inception angle (αF )
for L-L-G fault involving phases ‘a’,
‘b’ and ground at 195km

Fig. 25. Preprocessing of the L-G and L-L-G fault signals using wavelet [12]

then it is an L-L-G fault involving phases a, c and ground; and if Smin = |Sa|
and << |Sb| or |Sc|, then it is an L-L-G fault involving phases b, c and ground.

4.2 Combination of the Wavelet and Neural Network Techniques
for Fault Detection

Recently, research has been focused more on combining the wavelet and neural
network algorithms for fault identification in power systems. Wavelet analysis is
applied to analyze transient signals, then a neural network algorithm is utilized
for the identification of problems. The basic neural network structures and design
algorithms are given in an Appendix (see [15]).

Ramaswamy [72] and Kashyap [29] proposed a method that incorporates a
Probabilistic Neural Network (PNN) for detecting the type of power system fault.
The PNN has preference over other Artificial Neural Network (ANN) algorithms
in the application of power system fault classification. It combines the merits of
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Fig. 26. Procedure for fault detection and classification [72]

statistical theory with that of ANN. Figure 26 shows the entire procedure for
fault recognition.

Three power system faults, i.e., phase A-Ground fault, double phase AB-
Ground fault and 3-phase symmetrical fault are simulated and investigated.
Transients are analyzed by the Meyer mother wavelet, and Multiple Level De-
composition of the transient disturbance was generated. The final level detail
coefficient is considered for the feature detection and used in the Probabilistic
Neural Network.

Figure 27 shows the model of a Probabilistic Neural Network, which classifies
these three power faults [29]. The PNN Architecture consists of four layers,
i.e., the Input Layer: consisting 119 Neurons, number of samples of the detail
coefficient; the Exemplar Layer: consisting of 9 Neurons, 3 faults × 3 sets of
data for each fault; the Summation Layer: consisting of 3 Neurons, equal to
the number of faults; and the Decision Layer: follows the “Winner take all”
mechanism.

Researchers also proposed solutions for digital relays for transmission line
protection. Martin has simulated a system with two generators and three lines
(distributed parameters model) [38]. Simulations include 3 different faults at
different distances from the beginning of each line, several fault resistances, in-
ception angles, and steady states. The process consists of a preprocessing module
based on Discrete Wavelet Transform (DWT) combined with an ANN for de-
tecting and classifying fault events.

Wavelets of length six (N=6) are used for the relay to operate in real time.
These wavelets can be expressed as functions of two parameters α and β [8].
By varying parameters α and β, a family of length-6 wavelets can be generated.
For a certain range of variation of these parameters, the generated wavelets
are classified according to their performance for this particular application. The
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Fig. 27. Model of a Probabilistic Neural Network. Detail coefficient is fed to the input
layer and the type of fault is obtained at the output [29].

parameters for the length-6 wavelet with quasi-optimal performance are α =
0.48π and β = −0.35π.

Three independent multilayer (two hidden-layers), feed-forward neural net-
works have been used for detection, classification and location of fault transients.
The ANNs are fed with the six detail signals (three currents and three voltages).
The input data of the ANN is organized in a sliding-window of a quarter of a
cycle, thus a faster response is obtained since only a quarter of a cycle from
the occurrence of the fault is required. The input vector has 24 elements. The
detection ANN has one output neuron, which indicates the existence of a fault.
The location net has one neuron that indicates if the fault has occurred in the
protected zone. The classification ANN output layer has four neurons indicat-
ing which phases (A, B, C) or ground are involved in the fault event. An error
back-propagation algorithm has been used for training the ANN.

4.3 Time-Frequency Representation Technique for Classifying
Power Quality Disturbances

Voltage disturbances are the most frequent cause of a broad range of disruption
in power supply systems. Power quality (PQ) disturbances cover a broad fre-
quency range and significantly different magnitude variations. Typically, there
are five major PQ related waveform events: harmonics, voltage sags, capacitor
high frequency switching, capacitor low frequency switching, and normal voltage
variations. Harmonics distortion is the most common power quality problem [17].

Approaches for automated detection and classification of PQ disturbances
proposed recently are based on wavelet analysis and artificial neural networks
[21,55,77]. To enhance the sufficiency for supporting a robust PQ monitoring
system is one of the most interesting research areas for scientists.

A wavelet transform on a PQ signal produces a multiresolution decomposi-
tion (MRD) matrix, which contains time domain information for the signal at
different scales. This property has made wavelets a promising tool for detecting
and extracting disturbance features for various types of PQ events [21,55,77].
However, there are still some issues to be resolved in wavelet-based methods.



426 L. Han and J.F. Peters

First, while PQ disturbances cover a wide frequency range, a very small subset
of the MRD matrix (e.g., five scales in [77]) may not be a sufficient or opti-
mized selection for capturing features for all different types of PQ events. This
feature selection scheme may filter some important information for classification
and potentially degrade the recognition rates. Second, the wavelet-based meth-
ods relatively require more training examples. They result in greater efforts or
difficulties when adapting the algorithm onto a new system.

Wang and Mamishev had been investigating a feature extraction tool, time-
frequency ambiguity plane with kernel techniques [15,82,83], which is new to
the power engineering field. The fundamentals of time-frequency representation
(TFR) is presented in Appendix D. The essence of the feature extraction is to
project a PQ signal onto a low-dimension time-frequency representation (TFR),
which is deliberately designed for maximizing the separability between classes.
A distinct TFR is designed for each class. The classifiers include a Heaviside-
function linear classifier and neural networks with feedforward structures.

A set of 860 real world voltage signals from five event classes were collected
from industrial databases for the training and testing of the algorithm. Each
voltage signal to be identified consists of five cycles of a voltage waveform sam-
pled 128 times per cycle, and has a length of 640 sampling points. In the training
stage, four classification-optimal kernels are designed for separating five classes
sequentially. The kernel design process selects nine locations from the time-
frequency ambiguity plane.

Classification kernels are designed for training according to Fisher’s discrim-
inant function. Fisher’s discriminant function (FDF), which was developed by
R. A. Fisher in the 1930s, is a method that projects high dimensional data onto
low-dimensional space for classification. The projection maximizes the distances
between the means of the different classes while minimizing the variances within
each class.

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is either
0 or 1). Feature points are ambiguity plane points of locations (η, τ) where
ϕi[η, τ ] = 1. Therefore, the process of feature extraction is to select points that
are optimal for the classification task from the ambiguity plane.

A total number of N − 1 kernels need to be designed for an N-class PQ
classification system. A kernel Ks works as either a single-class separator or a
group-class separator. In the single-class separator case, kernel Ki is dedicated
to discriminate class i from all remaining classes {i+1, ..., N}. In the group-class
separator case, kernel Ki is dedicated to discriminate a class group {i, i+1, ..., i+
m} from all remaining classes {i+m+ 1, i+m+ 2, ..., i+m+N}. In the second
case, additional kernels are needed in order to uniquely identify class i from the
class group {i, i + 1, ..., i + m}, and the total number of kernels required for an
N-class classification is still N-1.

Ambiguity planes for all training signals are calculated before the Fisher’s
discriminant function is applied for the kernel design. Assume there are n classes
and totally Ni training examples for class i. The notation Aij [η, τ ] represents
the ambiguity plane of the jth training example in the ith class.
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With the Fisher’s criterion, locations on the ambiguity plane are ranked ac-
cording to their importance for classification. A certain amount of training data
from each class is needed for feature ranking in this statistical method. For ex-
ample, when designing kernel i, a Fisher’s discriminant score is calculated for
each location (η, τ) on the ambiguity plane,

JFi(η, τ) =
(mi[η, τ ]−mi−remain[η, τ ])2

D2
i [η, τ ] −D2

i−remain[η, τ ]
, (11)

where mi[η, τ ] and mi−remain[η, τ ] represent two means of location (η, τ),

mi[η, τ ] =
1
Ni

Ni∑

j=1

Aij [η, τ ], (12)

mi−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1 Akj [η, τ ]
∑5

k=i+1 Nk

, (13)

and D2
i [η, τ ] and D2

i−remain[η, τ ] represent two variances of location (η, τ),

D2
i [η, τ ] =

1
Ni

Ni∑

j=1

(Aij [η, τ ] −mi[η, τ ])2, (14)

D2
i−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1(Akj [η, τ ] −mi−remain[η, τ ])2
∑5

k=i+1 Nk

. (15)

Locations (η, τ) that receive the highest discriminant score JFi(η, τ) are se-
lected as feature locations.

By examining Fisher’s discriminant score JFi(η, τ), the optimal numbers of
feature points for each individual kernel have been found: one for the harmonics
kernel; two for the voltage sag kernel; three for the capacitor switching kernel;
and three for the capacitor high-frequency switching kernel. Therefore, nine fea-
ture locations are selected for these four kernels.

Each classification node consists of a kernel function and a classifier. A
Heaviside-function linear classifier is used for the task of separating harmon-
ics that is a great distance apart from other fault cases and is relatively easy
to discriminate. Neural networks with small numbers of input nodes are used
for all other classification tasks. The structure of the ANN for discriminating
sags is 2-12-2 (input layer node number - hidden layer node number - output
layer node number); the one for capacitor switching is 3-10-2; and the one for
capacitor high-frequency switching is 3-10-2. The transfer and training functions
adopted for the ANN include: the hyperbolic tangent sigmoid transfer function
as the transfer function for the hidden layer, the linear transfer function as the
transfer function for the output layer, backpropagation as the network training
function, the gradient descent learning function as the weight learning function,
and the mean squared error function as the performance evaluation function.
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5 Data Preparation for Manitoba Hydro HVDC PSFC

Prior to feature extraction, data preparation and signal preprocessing are re-
quired to define the characteristics of power system signals. The fault data from
the TranscanTM is in binary format and non-editable. Data preparation consists
of two steps. The first step is to convert the data from binary format to ASCII
(American Standard Code for Information Interchange) format. The second step
is to separate the signals into different groups according to their physical nature
(i.e., Pole voltages/currents, 3 AC phase voltages, valve control signals, valve
currents).

5.1 Data Conversion

The data recorded by TranscanTM is in binary format and compressed as *.x01
files [80], which are unreadable by humans. Together with the .x01 files,
TranscanTM provides *.scf files. The *.scf file is a configuration file and con-
tains the information for data arrangement. It tells how many channels have
been scanned. At the Manitoba Hydro Dorsey Station, a fault file has 48 analog
and 4 digital channels, with some of them being spares. The *.scf file indicates
the scanning order and the physical name for each channel. The first 52 bytes
in a .x01 file are used for recording the file name and date. Every 16 bits that
follow are allocated for storing one channel data. In each 16-bit data field, the
first 12 bits store one digitalized data for a channel and the last 4 bits indicate
the channel number.

For this research, a C++ program has been designed to convert the data to
ASCII format (*.dat) from binary format (.x01). Each .x01 file can be converted
into 48 *.dat files. Among these files, 23 files are selected to represent the most
active and informative signals in the power system for fault classification.

5.2 Signal Grouping

Among the 23 converted signals, some are constant signals and the others are
periodic signals. Bus signals, i.e., the 3 AC phase voltages and the pole voltages
and currents should be grouped separately from the valve signals. Bus signals
will induce more than one fault and usually cause significant problems. Valve
signals will affect only one valve group and cause a certain level of decrease or
increase of either the pole voltage or current. Table 8 lists the signal groups for
a pole 1 file. The number of signal groups will guide the number of the feature
sets to be extracted.

6 Signal Preprocessing and Feature Extraction for PSFC

To set up the information table for fault classification, the normal behavior of
each signal needs to be clarified and the abnormality of each signal related to each
type of fault can then be identified. Signal preprocessing and feature extraction
is presented in this section.



Rough Neural Fault Classification of Power System Signals 429

Table 8. Signal groups

group 1 (3 signals) AC voltage A phase, B phase, C phase
group 2 (5 signals) Pole 1 and 2 voltage, Pole 1 and 2 current, pole current order
group 3 (3 signals) Vg11 current A phase, B phase, C phase ( first valve group in pole 1 )
group 4 (3 signals) Vg12 current A phase, B phase, C phase ( second valve group in pole 1 )
group 5 (3 signals) Vg13 current A phase, B phase, C phase ( third valve group in pole 1 )
group 6 (3 signals) 6-pulse in 3 valve groups
group 7 (3 signals) Start pulse in 3 valve groups

6.1 Signal Characteristics in Normal Condition

Standard value or waveform of each signal in normal condition is described in
the following two tables.

Constant Signals
In the 23 signals converted from .x01 file, the constant signals are pole-current
order, alpha order, pole current, pole voltage. Under normal conditions, their
standard values are given in Table 9:

Table 9. Constant signals in the 23 converted signals

Pole Current Order Alpha Order Pole Current Pole Line Voltage
±1400 amps 150 degrees ±1400 amps ±450KV, ±300KV, ±150KV

Periodic Signals
The periodic signals are AC Phase Voltages, Phase Currents and 6-pulse Volt-
ages. Their normal waveform and standard peak values are shown in Table 10.

Table 10. Periodic signals in the 23 converted signals

6.2 Feature Extraction of 12 Types of Faults

Extensive time has been spent in studying 676 fault files provided by the Mani-
toba Hydro Dorsey Station. The 676 .x01 fault files recorded all the events that
happened in two recent years and covered 12 types of faults. Together with .x01
files, 676 .trt files are also provided. A .trt file contains the fault information, i.e.,
the fault cause and type. This fault information is created manually by power
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system engineers and provides a reliable basis for the target for PSFC training
and testing. Various signal processing techniques are applied to analyze the fault
signals. They are auto-correlation, cross-correlation, the FFT and inverse FFT,
low pass filter, Wavelet MRD, phase shifting, derivatives and coding techniques.
The mathematics underlying these techniques can be found in appendices A-D.
A total of 17 features or attributes in Table 11 are generated for power system
fault classification. The 17 functions that represent these 17 features (attributes)
are further described.

A portion of the information table for power system fault classification train-
ing is shown in Table 12. This information table is derived from 508 fault files
and consists of 508 lines in total, with each line containing 17 features. This table
is further processed to prepare for the training sets to calibrate the rough mem-
bership Neural Network (rmNN) for fault classification. Also, a portion of the
information table for testing is illustrated in Table 13. The testing table consists
of 168 rows generated from an additional 168 fault files. The complete training
and testing information tables are attached in an appendix available at [15].

Table 11. 17 features/attributes for power system fault classification

A1 Pole voltage sharp dropping
A2 AC voltage disturbance severity
A3 Pole index
A4 Pole 1 or 3 voltage trend
A5 Pole 2 or 4 voltage trend
A6 Pole 1 or 3 current trend
A7 Pole 2 or 4 current trend
A8 Valve current trend - valve group 1, vg*1
A9 Valve current trend - valve group 2, vg *2
A10 Valve current trend - valve group 3, vg *3
A11 Valve current minor disturbance
A12 Pole current closed with normal pole voltage
A13 3 valve groups all closed (True = 1, False = 0)
A14 Same current trend in 3 valve groups (True = 1, False = 0)
A15 Voltage flashover in 6-pulse signal
A16 Valve currents flashover
A17 Valve currents flashover happens only in one valve group (True = 1, False = 0)
Notation: * represents the pole index, i.e. for pole 1, the valve groups are Vg11, Vg12, Vg13

The following sections cover the details of signal processing for feature extrac-
tion and the 17 functions that represent these features (attributes).

Feature 1 – Pole Voltage Sharp Dropping
The pole line voltage is a constant signal and the standard values are ±450KV,
±300KV,±150KV. In fault 12 i.e., “Disturbance on DC Line”, the pole voltage is
affected by high frequency interference and causes a sharp drop at the tripping
edge. The pole voltage sharp dropping sometimes happens in fault 4 as well.
As described in Section 2.2, there are two cases in fault 4, “Pole Line Fault”
and “Force Retard”. The pole voltage in “Force Retard” decreases slowly while
the pole voltage in “Pole Line Fault” drops as sharp and quick as in fault 12.
Figure 28 shows the pole voltages in fault 4 and 12. F1121E8D.x01 is a “Force
Retard Fault”, and F2213569.x01 is a “Pole Line Fault”.
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Table 12. Partial information table for power system fault classification training

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
1 Fault 1 F08101FE.x01 0 1 1 4 43 23 23 2 2 2 0 0 0 1 0 0 0
31 Fault 1 F224045A.x01 0 1 4 414 4 313 3 2 2 2 0 0 0 1 0 0 0
69 Fault 1, 3 F2913FDD.x01 0 1 1 3 4 2 2 2 2 1 0 0 0 0 0 0 0
70 Fault 1, 3, 5 F04102CE.x01 0 1 1 43 4 3 3 21 2 2 11 0 0 0 1 0 0
91 Fault 1, 3, 5, 7 F082016A.x01 0 1 2 4 43 2 2 2 21 212 100 0 0 0 2 1 1
93 Fault 1, 3, 5, 11 F0822697.x01 0 1 2 4 43 3 34 2121 2 2 10 0 0 0 10 0 0
99 Fault 1, 3, 11 F0822405.x01 0 1 2 3 43 34 3234 2 2 21 0 0 0 0 7 0 0
103 Fault 1, 3, 11 F0922884.x01 0 1 2 4 42 34 34 2 2 2121 0 0 0 0 28 0 0
104 Fault 1, 3, 11 F0810140.x01 0 1 1 4 43 34 34 2 2 2121 0 0 0 0 7 0 0
128 Fault 1, 4 F1112E8D.x01 0 1 1 414 4 313 3 212 212 212 0 0 0 1 1 0 0
131 Fault 1, 4 F2212CD7.x01 1 1 1 431 4 31 34 21 21 21 0 0 1 1 1 0 0
150 Fault 1, 4 F2213569.x01 1 1 1 414 4 3123 3 212 212 212 0 0 0 1 1 0 0
202 Fault 1, 5 F08101CA.x01 0 1 1 4 4 3 3 2 2 2 101 0 0 1 1 0 0
209 Fault 1, 5 F0820165.x01 0 1 2 4 434 3 3 2 2 2 10 0 0 1 2 0 0
219 Fault 1, 6 F112267F.x01 0 1 2 4 41 23 21 21 21 21 0 0 1 1 0 0 0
222 Fault 1, 6 F22225C4.x01 0 1 2 41 1 41 31 1 1 1 0 0 1 1 0 0 0
229 Fault 1, 6, 7 F08226DB.x01 0 1 2 4 1 3 1 1 1 1 0 0 1 1 1 1 1
239 Fault 1, 6, 8 F11226A5.x01 1 1 2 4 14 32 1 12 12 12 0 1 0 1 1 0 0
252 Fault 2 F20404C1.x01 0 2 4 41 4 341 34 2 2 2 0 0 0 1 0 0 0
265 Fault 2 F2713113.x01 0 2 1 4 3 2 2 2 2 2 111 0 0 1 1 0 0
267 Fault 2 F2713116.x01 0 2 1 434 323 343 3 2 2 2 111 0 0 1 1 0 0
305 Fault 2, 3 F041075C.x01 0 2 1 3 32 3213 3 1 2 2 0 0 0 0 0 0 0
349 Fault 2, 3, 7 F0820715.x01 0 2 2 3 313 2 2 212 121 2 0 0 0 0 2 6 1
374 Fault 2, 6 F08226BF.x01 0 2 2 4 421 3 1 21 21 21 0 0 1 1 1 32 0
392 Fault 3 F0121F8B.x01 0 0 2 3 23 21 21 12 1 2 0 0 0 0 0 0 0
403 Fault 3 F0121F8D.x01 0 0 2 3 212 2 212 21 1 12 0 0 0 0 1 0 0
415 Fault 3, 5 F1140866.x01 0 0 4 4 3 3 313 2 1 1 100 0 0 0 0 0 0
420 Fault 4 F2410189.x01 1 0 1 41 41 31 31 21 21 21 0 0 1 1 5 0 0
421 Fault 5 F1122499.x01 0 0 2 4 434 2 2 2 2 2 110 0 0 1 1 0 0
422 Fault 5 F27200E4.x01 0 0 2 4 4 3 3 2 2 2 10 0 0 1 0 0 0
440 Fault 8 F2212F95.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
441 Fault 8 F222260C.x01 0 0 2 4 4 1 2 2 2 2 0 1 0 1 0 0 0
448 Fault 9 F1121E5D.x01 0 0 2 13 4 12 32 2 2 2 0 0 0 1 0 0 0
465 Fault 9 F2410185.x01 0 0 1 4 14 32 12 2 2 2 0 0 0 1 3 0 0
466 Fault 10 F0813030.x01 0 0 1 4 1 3 1 2 2 2 0 0 0 1 0 0 0
475 Fault 10 F272015F.x01 0 0 2 41 4 21 2 2 2 2 0 0 0 1 0 0 0
490 Fault 12 F224070E.x01 1 0 4 3 3 2 2 2 2 2 0 0 0 1 0 0 0
504 Fault 12 F2510DC5.x01 1 0 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
508 Fault 12 F2522498.x01 1 0 2 4 4 3 3 2 2 2 0 0 0 1 0 0 0

Table 13. Partial information table for power system fault classification testing

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
1 Fault 1 F0812D94.x01 0 1 1 4 43 3 3 2 2 2 0 0 0 1 0 0 0
30 Fault 1 F2240598.x01 0 1 4 414 4 313 3 2 2 2 0 0 0 1 0 0 0
46 Fault 1, 3 F2513620.x01 0 1 1 3 4 3 3 2 2 1 0 0 0 0 0 0 0
53 Fault 1, 3, 5, 7 F2720944.x01 0 1 2 3 34 2 2 2 2 1212 10 0 0 0 2 1 1
54 Fault 1, 3, 5 F08136DC.x01 0 1 1 3 4 3 3 2 2 1 110 0 0 0 1 0 0
56 Fault 1, 3, 8 F08228BE.x01 0 1 2 4 434 3 1 2 2 212 0 1 0 0 2 0 0
57 Fault 1, 3, 11 F08224D9.x01 0 1 2 4 43 3 3 21 2 2 0 0 0 0 7 0 0
82 Fault 1, 4 F2512DE2.x01 0 1 1 414 4 2312 2 212 212 212 0 0 0 1 1 0 0
86 Fault 1, 5 F2710116.x01 0 1 1 4 4 3 3 2 2 2 1 0 0 1 1 0 0
87 Fault 1, 5 F27101E6.x01 0 1 1 4 4 3 3 2 2 2 1 0 0 1 1 0 0
90 Fault 1, 6 F2420314.x01 0 1 2 41 41 431 431 21 21 21 0 0 1 1 7 0 0
93 Fault 1, 6, 8 F1122405.x01 0 1 2 4 41 1 21 21 21 21 0 1 1 1 1 0 0
94 Fault 1, 8 F1213907.x01 0 1 1 4 43 1 343 2 2 2 0 1 0 1 0 0 0
111 Fault 2 F22124E5.x01 1 2 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
116 Fault 2, 3 F22135CA.x01 0 2 1 3 4 3 3 2 2 1 0 0 0 0 0 0 0
121 Fault 2, 3, 5 F08163D5.x01 0 2 1 3 4 3 3 2 2 1 110 0 0 0 1 0 0
128 Fault 2, 3, 5, 7 F27208F3.x01 0 2 2 3 3 2 2 12 21 2 1 0 0 0 3 1 1
129 Fault 2, 4 F22124FD.x01 1 2 1 41 1 321 31 21 21 21 0 0 1 1 1 0 0
130 Fault 2, 5 F0814371.x01 0 2 1 4 1 343 1 2 2 2 1 0 0 1 1 0 0
132 Fault 2, 6 F113044A.x01 0 2 3 431 431 31 321 21 21 21 0 0 1 1 8 0 0
134 Fault 2, 6 F242042B.x01 0 2 2 4 41 34 321 21 21 21 0 0 1 1 1 0 0
135 Fault 2, 6, 7 F0827040.x01 0 2 2 3 1 3 1 1 1 1 0 0 1 1 0 2 1
136 Fault 2, 4, 7 F2923565.x01 0 2 2 3 1 23 1 1 1 1 0 0 1 1 2 4 1
137 Fault 2, 8 F1213908.x01 0 2 1 4 31 1 31 2 2 2 0 0 0 1 0 0 0
138 Fault 2, 9 F1123FF6.x01 0 2 2 3 4 3 34 2 2 2 0 0 0 1 0 0 0
139 Fault 3 F0121F8B.x01 0 0 2 3 23 21 21 12 1 2 0 0 0 0 0 0 0
144 Fault 3, 5 F0121F8E.x01 0 0 2 3 3 2 2 12 1 2 1 0 0 0 1 0 0
145 Fault 3, 5, 9 F1112BAE.x01 0 0 1 4 3 3 323 2 1 1 100 0 0 0 0 0 0
146 Fault 4 F2410819.x01 1 0 1 41 41 31 31 21 21 21 0 0 1 1 5 0 0
147 Fault 6 F1130FA4.x01 0 0 3 1 1 1 1 1 1 1 0 0 1 1 0 0 0
148 Fault 6, 8 F082B62B.x01 1 0 2 4 14 32 1 12 12 12 0 1 0 1 2 0 0
151 Fault 8 F22129F5.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
152 Fault 8 F2210A1C.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
153 Fault 9 F1122E5D.x01 0 0 2 13 4 12 32 2 2 2 0 0 0 1 0 0 0
156 Fault 9 F2410810.x01 0 0 1 4 4 32 32 2 2 2 0 0 0 1 0 0 0
158 Fault 10 F1121E95.x01 0 0 2 31 4 21 2 2 2 2 0 0 0 1 0 0 0
167 Fault 12 F2510CD5.x01 1 0 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
168 Fault 12 F2522894.x01 1 0 2 4 4 3 3 2 2 2 0 0 0 1 0 0 0
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Fig. 28. Pole line voltages with sharp dropping

The derivative of pole line voltages is an efficient method to detect the sharp
dropping of the pole line voltage. A 4-point averaging for noise compression is
applied before the derivative. The derivative result is shown in Figure 29. It is
noticeable that the derivative of P1 in F2213569.x01 and F224070E.x01 both
have sharp peaks, while the P1 in F1121E8D.x01 has fairly small output. The
threshold to determine a sharp pole voltage drop is 100. The value of feature 1
is 1 for F2213569.x01 and F224070E.x01, and 0 for F1121E8D.x01.

The function f1 representing this feature is defined by (16)

f1(x) =
{

1 if max(derivitive(average(x))) > 100,
0 otherwise,

(16)

where x is the discrete pole voltage signal in a fault file.

Fig. 29. Derivative of pole line voltages
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Fig. 30. FFT analysis of pole line voltages

Figure 28 shows that the pole voltage oscillates at the tripping edge in both
“Pole Line Fault” (F2213569.x01) and “Disturbance on DC Line” fault
(F224070E.x01). The FFT analysis in Figure 30 shows that “DC Disturbance
on DC Line” contains higher frequency components. It has a FFT peak at 60Hz,
which indicates that the interference is possibly from the AC line. The FFT peaks
for both cases of fault 4 are located lower than 6Hz. This feature is very useful
and will be added to improve the accuracy of the fault classification system.

Feature 2 – AC Disturbance
The three AC phase voltages, namely the A-phase, B-phase and C-phase, have
a fixed 120◦ phase difference from each other. It is found by studying the data
file that one period of AC phase voltage is represented by 96 data points. So
if B-phase is shifted 32 points and C-phase is shifted 64 points, the shifted
B-phase and C-phase will be exactly the same as the A-phase in normal condi-
tion. If the AC voltages have distortion, it can be detected by an error signal,
which is calculated by

err =
|(A−phase)− (shifted B−phase)|

3
+

|(shifted B−phase)− (shifted C−phase)|
3

+

|(shifted C−phase)− (A−phase)|
3

. (17)

Taking file F2713113.x01 as an example, the AC phase analysis results are
shown in Figure 31. The first graph shows the original three AC phase voltages;
the second graph shows the shifted AC phase voltages; and the last one displays
the error output of AC voltage signals.
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Fig. 31. Analysis of AC phase voltages by phase shift method

The AC disturbance error can be discretized by granule algorithm. The gran-
ule functions are designed based on the Gaussian function and can be written as

φj(x) = exp

(
−|x− μj |2

2σ2
j

)
, j = 1, 2, 3. (18)

Three granule functions need to be designed to discretize the AC disturbance
error into three intervals: low, medium and high. The center μj and σj is esti-
mated based on the 676 files provided by the Manitoba Hydro Dorsey Station.
Among those 676 fault files, 240 files are indicated as Minor AC disturbance
and 148 files as AC disturbance. The averaged AC phase voltage error calcu-
lated from the first 240 files is close to 700 while the averaged AC phase voltage
error from the other 148 files is approximately 2100. This leads to a supervised
procedure for optimizing the granule function parameters. The Gaussian gran-
ule functions for the AC disturbance error discretization are defined as (19) and
plotted in Figure 32.

φ1(x) = exp

(
−|x− 200|2

2× 2002

)
,

φ2(x) = exp

(
−|x− 700|2

2× 5002

)
,

φ3(x) = exp

(
−|x− 2100|2

2× 9002

)
. (19)
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Fig. 32. The granule formula

For an input x, the peak value of the AC voltage error, three granule output
φ1(x), φ2(x) and φ3(x) are calculated respectively. If φ1(x) is the biggest, the
AC error is small enough to be considered as normal and 0 will be assigned. If
φ2(x) is the biggest, the AC error is moderate implying a minor disturbance and
1 will be assigned. If φ3(x) is the biggest, it is a severe AC disturbance and 2
will be assigned.

The function f2 representing feature 2 can be defined as

f2(x) =

⎧
⎨

⎩

2 if max(φ1(x), φ2(x), φ3(x)) = φ3(x),
1 if max(φ1(x), φ2(x), φ3(x)) = φ2(x),
0 if max(φ1(x), φ2(x), φ3(x)) = φ1(x),

(20)

where x = max(err(Va , Vb, Vc)), Va, Vb and Vc are discrete A-phase, B-phase
and C-phase voltages in a fault file.

Feature 3 – Pole Index
The information about the pole index is very easy to retrieve but helpful to
identify the fault, “Normal Affected by Another Pole”. According to the *.scf
file, it is known that the 4th character of the file name indicates the pole index,
i.e., F272015F.x01 file is a pole 2 file. Seventeen features of this fault file are
listed in Table 14. It is observed that attributes 4 and 6 notify the pole 1 voltage
and the current was blocked. All the other features are for pole 2, and they are
normal. The fault file of pole 2 was created due to the effect from pole 1. It is
reasonable to classify this file as the fault, “Normal Affected by Another Pole”.

Table 14. Features for F272015F.x01

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
475 Fault 10 F272015F.x01 0 0 2 41 4 21 2 2 2 2 0 0 0 1 0 0 0
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The function f3 representing this feature (pole index) is defined as

f3(x) = pole index, (21)

where x is the file name of a fault file.

Features 4, 5, 6 and 7 – Pole Voltage and Current Trend
To derive the trend of the pole line voltages and currents, it is necessary to smooth
the waveform by applying a low pass filter. A high order FFT followed by a low
order inverse FFT is an alternative to a digital low pass filter. The sampling rate
of the TranscanTM system is 6000 points per second. TranscanTM itself is a low
pass filter with a cutoff frequency of 3 kHz. An FFT of 8192 points followed by a 32
point inverse FFT is a low pass filter with cutoff frequency around 11.7 Hz. Most
interference on the pole line voltage has a frequency of 16 – 90 Hz and is removed by
the low pass filter. An example of pole line voltages and currents and their simplified
waveforms are shown in Figures 33 and 34, respectively.

The simplified waveforms are represented by a sequence of numbers (codes)
based on (22) and (23).

Fig. 33. Pole voltages and currents in fault 1 and 4
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Fig. 34. Simplified waveform of pole voltages and currents in faults 1 and 4

CodeV =

⎧
⎪⎪⎨

⎪⎪⎩

1 if |Pole voltage| ≤ 100,
2 if 100 < |Pole voltage| ≤ 150,
3 if 150 < |Pole voltage| ≤ 300,
4 if 300 < |Pole voltage|.

(22)

CodeI =

⎧
⎨

⎩

1 if |Pole current| ≤ 400,
2 if 400 < |Pole current| ≤ 1000,
3 if 1000 < |Pole current| ≤ 2000.

(23)

The codes for pole voltages and currents in fault F2213569.x01 are listed in
Table 15. The original codes contain 32 numbers; the simplified codes remove all
the duplicated numbers and for some special cases, i.e., “43134”, “42124” and
“32123”, they are further condensed to “414”, “414” and “313”, respectively.

Table 15. Codes for pole voltage and current trend

Signal names Original codes Simplified codes
Pole 1 volt. 44444443134444444444444444444444 414
Pole 2 volt. 44444444444444444444444444444444 4
Pole 1 current 3333333123333333333333333333333 3123
Pole 2 current 33333333333333333333333333333333 3
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Functions f4, f5, f6 and f7 represent features 4, 5, 6 and 7 respectively and
are defined as follows:

f4(x) = CodeV (LF (x)), (24)

where x is the discrete pole 1 voltage in a fault file;

f5(x) = CodeV (LF (x)), (25)

where x is the discrete pole 2 voltage in a fault file;

f6(x) = CodeI(LF (x)), (26)

where x is the discrete pole 1 current in a fault file; and

f7(x) = CodeI(LF (x)), (27)

where x is the discrete pole 2 current in a fault file.
In (24) to (27) CodeV (·) and CodeI(·) represent the coding processes and

LF (·) represents a lowpass filter.

Features 8, 9 and 10 – Valve Current Trend Vg*1, Vg*2, Vg*3
A normal valve current is a periodic signal with 96 samples per cycle. Reference
to A-phase, B-phase and C-phase are 32 and 64 points delayed respectively.
The amplitude of the phase current should match the current order in normal
condition. A normalized phase current is calculated by (28) and illustrated in
Figure 35

Normalized phase current =
phase current

phase current order
. (28)

Fig. 35. Normalized valve current reference signal

When a “Valve Current Closed/Blocked/Deblocked” happens, A, B and C
phase currents in this group are all closed and/or blocked and/or deblocked. An
example of this fault, F0121F8D.x01 is illustrated in Figure 36. In this file, valve
group 1 is blocked and valve group 3 is deblocked at a different time. To describe
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Fig. 36. Valve Current Closed/Blocked/Deblocked error

the trend of a valve current, the correlation algorithm plus a coding method is
applied. The correlation theory was described in Appendix A.

The autocorrelation of the normalized valve reference signal r(j) at origin
point, denoted ρ0 is first evaluated by (29).

ρ0 =
95∑

j=0

r(j)r(j). (29)

The Maximum of the cross-correlation of the normalized valve current refer-
ence signal and every 96-point segment of the normalized input valve current
signal x(j), denoted ρ′0 is calculated by (30).

ρ′0 = Max(ρ′0(i)) = Max(
95∑

j=0

r(j) · x(j + i)). (30)

If ρ′0/ρ0 is less than 30%, valve current is considered to be closed and a code
1 will be assigned to this input segment. The valve is considered to be normal
or deblocked back to normal if the ratio is bigger than 80% and a code 2 will
be assigned. Ratio ρ′0/ρ0 for valve group 1 and 3 in fault file F0121F8D.x01
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Fig. 37. Ratio ρ′
0/ρ0 for attribute Valve Current Trend

is illustrated in Figure 37. Usually during the interim from normal to valve
closed status and vice versa, various ratio of ρ′0/ρ0 will be observed. No code
will be assigned to the ratio between 30% and 80%. It is because only the closing
and normal stages need to be extracted to describe the trend of valve current.
After all the input segments are processed, codes, “2222111111111” for valve
group 1 and “11111111111111111111111122222” for valve group 3 are derived.
To simplify the codes, only the turn points are maintained. The simplified codes
for valve group 1 and 3 are “21” and “12” respectively (see attributes 8 and 10
of fault file 403 in Table 12).

Functions f8, f9 and f10 representing features 8, 9 and 10 are defined as
follows:

f8(x) = Code(max(r � r)/max(r � x)), (31)

where x is the discrete normalized A, B and C phase valve currents in valve
group 1 in a fault file;

f9(x) = Code(max(r � r)/max(r � x)), (32)

where x is the discrete normalized A, B and C phase valve currents in valve
group 2 in a fault file; and

f10(x) = Code(max(r � r)/max(r � x)), (33)

where x is the discrete normalized A, B and C phase valve currents in valve
group 3 in a fault file.

In (31) to (33), r denotes the discrete normalized valve current reference
signals, � is the correlation operator, and Code(·) represents the coding processes.
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Fig. 38. Valve currents in fault 5

The feature “Valve Current Trend” is very useful for classification of par-
ticular faults, e.g., fault 4 (“Line Fault”) and fault 6 (“Pole Voltages/Currents
Closed/Blocked/Deblocked”). With the occurrence of “Line Fault”, all 3 valve
groups will have the same trend (the most common pattern is “212”). With
this type of fault, pattern “12” or “21” also happens occasionally. With the oc-
currence “Pole Voltages/Currents Closed/Blocked/Deblocked”, all three valve
groups behave in the same way. The most commonly observed pattern for this
type of fault is “1” (sometimes “12” or “21” can also occur).

Feature 11 – Valve Currents Minor Disturbance
“Valve Currents Minor Disturbance” happens very frequently and usually as-
sociated with a fault of “AC Disturbance” or “Valve Current Commutation
Failure”. The typical waveforms of valve currents minor disturbance is shown
in Figure 38, which includes A, B, C, three phases of valve group Vg11 in fault
F08101CA.x01. A few cycles present distortions and happen in all three phases.
It is considered a valve minor disturbance as long as any one of three phases
shows a disturbance.
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Fig. 39. Ratio ρ′
0/ρ0 for attribute Valve Currents Minor Disturbance

Table 16. Feature (attribute) codes

Feature code 1 2,2,2,1,2,2,2
Feature code 2 2,2,2,0,2,2,2
Feature code 3 2,2,2,1,1,2,2,2
Feature code 4 2,2,2,0,0,2,2,2
Feature code 5 2,2,2,1,0,2,2,2
Feature code 6 2,2,2,0,1,2,2,2
Feature code 7 2,2,2,1,0,1,2,2,2

To detect “Valve Current Minor Disturbance”, the method applied in the
feature extraction for “Valve Current Trend” is adopted here. The ratio ρ′0/ρ0 is
estimated and displayed in Figure 39. The same threshold is used to assign the
code. If the ratio > 80%, code “2” is assigned; ratio < 30%, code “0” is assigned;
in addition, between 30% and 80%, code “1” is assigned. The feature patterns
indicating a valve current minor distortion are listed in Table 16 and the codes
derived for phase A, B and C currents of Vg11 in F08101CA.x01 are listed in
Table 17. A minor disturbance is detected in all three phases of Vg11 and a final
code “1” is assigned. Only when all three phases are normal, should a final code
“0” be assigned. For each fault file, the same procedure is applied to all three
valve groups, i.e., Vg11, Vg12 and Vg13 for pole 1. Three final codes are simply
combed together as the value for feature 11. The value of attribute 11 for fault
F08101CA.x01 is 101.

Function f11 representing feature 11 is similar to the functions for features 8,
9 and 10, except that there is a different coding process.

f11(x) = Code(max(r � r)/max(r � x)), (34)

Table 17. Codes for valve currents minor disturbance in Vg11 in F08101CA.x01

Signal names Original codes
A phase valve current 2222222222201222
B phase valve current 2222222222112222
C phase valve current 2222222222101222
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where x accepts discrete normalized A, B and C phase valve currents from all
valve groups.

Feature 12 – Pole Current Closed with Normal Pole Voltage
(True = 1, False = 0)
Section 6.2 explains how to extract the pole voltage and current trend. In one
specific case, the pole current recorded in TranscanTM gives an output of zero
while the pole voltage is perfectly normal. This event happens during a parallel
operation. For instance, a “pole 1 to pole 3 parallel operation” is to switch the
pole 1 current to pole 3 to unload the pole 1 current line for maintenance. In
Table 12, the information table for training, file F2212F95.x01 is an example of
“pole 1 to pole 3 parallel operation”. The 17 attributes of this file are listed in
Table 18. Attribute 4 indicates the pole 1 voltage is normal, while attribute 6
shows the pole 1 current is closed, therefore the value of attribute 12 is 1.

Function f12 representing feature 12 is defined by (35).

f12(x, y) =

⎧
⎨

⎩

1 if ((f4(x) == 4)or(f4(x) == 3))AND(f6(y) == 1),
1 if ((f5(x) == 4)or(f5(x) == 3))AND(f7(y) == 1),
0 otherwise,

(35)
where x is the discrete pole voltage and y is the discrete pole current.

Table 18. Features for F2212F95.x01

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
440 Fault 8 F2212F95.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0

Feature 13 – 3 Valve Groups All Closed (True = 1, False = 0)
Features 8, 9 and 10 of valve current trends have been discussed in Section 6.2.
Based on features 8, 9, 10, feature 13 can be derived. If the codes of valve current
trends for three valve groups all end in 1, meaning the three valve groups are all
closed in the end, feature 13 yields an output of 1. This usually implies that the
whole pole line is closed.

Function f13 representing feature 13 is defined as

f13(x, y, z) =
{

1 if codes f8(x), f9(y) and f10(z) are all ended in 1,
0 otherwise,

(36)

where x, y and z are the discrete normalized A, B and C phase currents in valve
groups 1, 2 and 3, respectively.

Feature 14 – Same Current Trend in 3 Valve Groups
(True = 1, False = 0)
Based on features 8, 9 and 10, feature 14 can also be derived. If the valve current
trends of three valve groups are all the same, feature 14 gives an output of 1,
which produces a high possibility of the following three faults, fault 4, “Pole Line
Fault”; fault 10, “Normal Affected by Another Pole”; and fault 12, “Disturbance
on DC Voltage”.
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Fig. 40. 6-pulse reference signal (2 cycles)

Fig. 41. 6-pulse signal in Asymmetric Protection fault

Function f14 representing feature 14 is defined by (37).

f14(x, y, z) =
{

1 if f8(x) == f9(y) == f10(z),
0 otherwise,

(37)

where x, y and z are the discrete normalized A, B and C phase currents in valve
groups 1, 2 and 3, respectively.

Feature 15 – Voltage Flashover in 6-Pulse
Feature 15 records the number of cycles of voltage flashover that happened in a
6-pulse signal. A normal 6-pulse signal shown in Figure 40 is a periodic signal.
When fault 11, “Asymmetric Protection”, happens, the 6-pulse does 7 cycles of
voltage flashover and closes the valves for protection. The typical waveform of a
6-pulse signal in fault 11, F0822405.x01, is illustrated in Figure 41.

To detect those 7 cycles of flashover, the Wavelet Multi-resolution Decom-
position (MRD) method has been applied to extract different levels of details
for the recorded signals. A number of experiments have been done to evaluate
the performances of different wavelet functions such as Daubechies wavelets and
the Meyer wavelet. The decomposition can be carried out in MatlabTM using
functions wavedec and wrcoef. The MRD with the Daubechies 2 wavelet (DB2)
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Fig. 42. The multi-level details of ‘DB2’ MRD applied to a 6-pulse signal in Asym-
metric Protection fault

Fig. 43. Seven peaks detected in a 6-pulse signal in Asymmetric Protection fault

function extracts the 7 cycles of flashover at the 6th level detail coefficient output.
Figure 42 shows the transient signal and 7-level ‘DB2’ MRD details. The exper-
iments with the ‘DB3’, ‘DB4’ and ‘Meyer’ wavelets extract 8 cycles of flashover,
which does not agree with the 6-pulse transient signal. The 6th level detail co-
efficient output from ‘DB2’ MRD is further processed by 32-point averaging. In
addition, 7 positive peaks with values greater than 18 are detected and shown in
Figure 43. Occasionally, the first 7 cycles of voltage flashover failed to close the
valves and the control system continues with another 7 cycles until the valves
are closed. An example of this phenomenon is F0922884.x01.
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Fig. 44. B and C phase currents in F082016A.x01, phase currents flashover in Vg22
valve group

Function f15 representing feature 15 is given by (38).

f15(x, y, z) = max(g15(average(MRD(x))), g15(average(MRD(y))),
g15(average(MRD(z)))), (38)

where g15(·) picks up the points with values of average(MRD(·)) greater than
18. The discrete 6-pulse signals in valve groups 1, 2 and 3 are x, y and z
respectively.
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Fig. 45. B and C phase currents in F08226BF.x01, phase currents flashover in Vg21
and Vg23 valve group

Feature 16 – Valve Currents Flashover
Feature 11, the valve current minor disturbance, has been discussed in
Section 6.2. In this section, a severe fault is addressed that is involved with
valve current flashover. A standard peak value for a valve current is 1400 Amps.
Occasionally with a severe AC bus error or the valve line shorted together or
shorted to ground, valve currents increase dramatically to an excess of 4000
Amps. Usually this happens within a pair of valves in a valve group. Two valve
currents increase in opposite directions to prevent the pole current from over-
shooting. Examples are illustrated in Figures 44 and 45. The first example is
fault 7, “Current Arc Back”, valve current flashover happens only in one valve
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Fig. 46. Averaged waveforms for B and C phase currents in F082016A.x01

group. The second one is fault 2, “AC Disturbance”, valve current flashover
happens in two valve groups.

To detect the valve current flashover, 96-point averaging is applied to derive
a mean value for each cycle. The mean value of a normal cycle is 0 and a
flashover cycle is over 1800, which is the threshold used to detect the event
of current flashover. The averaged waveforms of B and C phase currents for 3
valve groups in F082016A.x01 and F08226BF.x01 are displayed in Figures 46
and 47, respectively. For F082016A.x01, there is only one point over 1800 in
Vg22; for F08226BF.x01, there are three points over 1800 in Vg21 and two
points over 1800 in Vg23. The value for feature 16 is 1 for F082016A.x01 and 32
for F08226BF.x01.

Function f16 representing feature 16 is defined as

f16(x, y, z) = Code(g16(average(x)), g16(average(y)), g16(average(z))), (39)
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Fig. 47. Averaged waveforms for B and C phase currents in F08226BF.x01

where g16(·) picks up the points with values of average(·) greater than 1800.
Code(·) is the coding process used to concatenate the number of points from
3 valve groups and x, y and z are the discrete normalized A, B and C phase
currents in valve groups 1, 2 and 3, respectively.

Feature 17 – Valve Current Flashover Happens Only in One Valve
Group (True = 1, False = 0)
As seen in the discussion of feature 16, valve current flashover happens in both
faults 2 and 7. “Current Arc Back” usually comes with an “AC Disturbance”.
However, the current flashover in “Current Arc Back” is only due to the elec-
tronic faults in the valve group itself. A severe AC disturbance is a bus error
and affects all the valve groups. If the severe AC disturbance induces current
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flashover, it will affect almost all valve groups. To further separate these two
faults, feature 17 is added.

It is simple to obtain feature 17 based on the results of feature 16. Feature 17
will yield an output of 1 if only one valve group gives an output of a non-zero
number in feature 16.

Function f17 representing feature 17 is defined as

f17(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if only g16(average(x)) �= 0,
1 if only g16(average(y)) �= 0,
1 if only g16(average(z)) �= 0,
0 otherwise.

(40)

7 Rough Membership Neural Network (rmNN) for PSFC

A form of rough neural computing based on rough sets and rough membership
functions [46,63,64,66] is introduced in this section. A rough membership func-
tion neural network (rmNN) has been designed and applied to classify power
system faults [24,25,56].

7.1 Sample Information System For PSFC

The fault files recorded by TranscanTM form the universe of events U . Table 12
and Table 13 in Section 6.2 represent the information system and have 17 fea-
tures, which form the knowledge domain for the PSFC system. Further research
will be addressed to examine the possibility of reducing the feature dimension by
applying the discernibility-based reduction algorithm [50,4,5]. The 17 features in
the information table are sub-grouped into 11 feature sets, B = {B1, B2, ..., B11}
(Table 19). B3 contains 5 features, feature 3, 4, 5, 6 and 7. B4 has 3 features,
feature 8, 9 and 10. A feature set is a collection of the attributes which represent
the signals of same nature. Features 3, 4, 5, 6 and 7 represent pole signals, which
are constant signals in the normal condition. Features 8, 9 and 10 characterize
the valve currents, the periodic signals in 3 valve groups. By grouping 17 fea-
tures into 11 feature sets, the dimension of the knowledge domain is reduced,
whereas the classification generalization is decreased. The information system is
then represented by (U,B).

A simple information system containing sample fault events and feature set
B4 (Table 20) is discussed in this section to illustrate the rough set basic theory
in the application of the power system. In this example, assume that U is a set
of sample fault events. By way of approximation of a set of objects, consider
X ⊆ U defined as

X = {x|x is a fault event in the power system}
= {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01, F1112E8D.x01,

F2212CD7.x01, F223079B.x01, F0820165.x01, F112267F.x01, ...},

F = {f8, f9, f10}, defined in Section 6.2, is a set of functions representing the
feature set B4 = {A8, A9, A10).
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Table 19. 11 Feature Sets

B1 Feature/attribute 1
B2 Feature/attribute 2
B3 Feature/attribute 3, 4, 5, 6, 7
B4 Feature/attribute 8, 9, 10
B5 Feature/attribute 11
B6 Feature/attribute 12
B7 Feature/attribute 13
B8 Feature/attribute 14
B9 Feature/attribute 15
B10 Feature/attribute 16
B11 Feature/attribute 17

Table 20. Sample information system

Events B4
Fault file names f8 f9 f10
F08101FE.x01 2 2 2
F1113009.x01 2 2 2
F0420695.x01 2 2 21
F2913FDD.x01 2 2 1
F1112E8D.x01 212 212 212
F2212CD7.x01 21 21 21
F223079B.x01 212 212 212
F0820165.x01 2 2 2
F112267F.x01 21 21 21
F22225C4.x01 1 1 1
F20406CC.x01 2 2 2
F2713113.x01 2 2 2
F2713116.x01 2 2 2
F041075C.x01 1 2 2
F0820715.x01 1 1 1
F08226BF.x01 21 21 21
F0112939.x01 2 2 1
F1140866.x01 2 1 1
F1112BAE.x01 2 1 1
F2410189.x01 21 21 21
F1122499.x01 2 2 2
F2212F95.x01 2 2 2
F1121E5D.x01 2 2 2
F272015F.x01 2 2 2
F111302A.x01 2 2 2

The fault events and their associated fault types are listed in Table 21.
Notice that each of the events in class

[F08101FE.x01]B4
= {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01},

has exactly the same B4 output, namely, {2, 2, 2} (Table 20).
The partition of U defined by the relation ∼B4 is as follows:

[F08101FE.x01]B4
= {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01},

[F0420695.x01]B4
= {F0420695.x01},
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[F2913FDD.x01]B4
= {F2913FDD.x01, F0112939.x01},

[F1112E8D.x01]B4
= {F1112E8D.x01, F223079B.x01},

[F2212CD7.x01]B4
= {F2212CD7.x01, F112267F.x01, F08226BF.x01, F2410189.x01},

[F22225C4.x01]B4
= {F22225C4.x01, F0820715.x01},

[F041075C.x01]B4
= {F041075C.x01},

[F1140866.x01]B4
= {F1140866.x01, F1112BAE.x01}.

Table 21. Fault events and associated fault types

Events Decision
F08101FE.x01 Fault 1
F1113009.x01 Fault 1
F0420695.x01 Fault 1 and 3
F2913FDD.x01 Fault 1 and 3
F1112E8D.x01 Fault 1 and 4
F2212CD7.x01 Fault 1 and 4
F223079B.x01 Fault 1 and 4
F0820165.x01 Fault 1 and 5
F112267F.x01 Fault 1 and 6
F22225C4.x01 Fault 1 and 6
F20406CC.x01 Fault 2
F2713113.x01 Fault 2
F2713116.x01 Fault 2
F041075C.x01 Fault 2 and 3
F0820715.x01 Fault 1 and 6 and 7
F08226BF.x01 Fault 2 and 6
F0112939.x01 Fault 3
F1140866.x01 Fault 3 and 5
F1112BAE.x01 Fault 3 and 5 and 9
F2410189.x01 Fault 4
F1122499.x01 Fault 5
F2212F95.x01 Fault 8
F1121E5D.x01 Fault 9
F272015F.x01 Fault 10
F111302A.x01 Fault 12

Now select a particular set X , which contains all the events of fault 1: (Ta-
ble 21), i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,
F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,
F112267F.x01, F22225C4.x01, F0820715.x01}.

This choice leads to the following lower and upper approximations of the set X .

B4∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,
F0820715.x01},

B4
∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

∪ [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4

= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,
F0820715.x01, F08101FE.x01, F1113009.x01, F0820165.x01,
F20406CC.x01, F2713113.x01, F2713116.x01, F1122499.x01,
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F2212F95.x01, F1121E5D.x01, F272015F.x01, F111302A.x01,
F2913FDD.x01, F0112939.x01, F2212CD7.x01, F112267F.x01,
F08226BF.x01, F2410189.x01},

BndB4X = B4
∗X - B4∗X

= [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4

= {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,
F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01, F2913FDD.x01,
F0112939.x01, F2212CD7.x01, F112267F.x01, F08226BF.x01,
F2410189.x01}.

In effect, the lower approximation B4∗X indicates that the events in
[F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4 certainly are the
members of set X . B4∗X is called the “Yes” set in Section 7.2. Meanwhile,
the non-empty boundary BndB4X indicates that set X is a rough set and the
events in BndB4X might belong to set X . BndB4X is called the “YesOrNo” set
in Section 7.2.

Next, consider the degree of overlap of class [F08101FE.x01]B4 with the set
X , i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,
F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,
F112267F.x01, F22225C4.x01, F0820715.x01},

and

[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,
F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01},
where the degree of overlap is calculated using (41)

μB4
X (x) =

|[F08101FE.x01]B4 ∩X |
|[F08101FE.x01]B4|

=
3
11

= 0.273. (41)

This demonstrates that the degree to which the events in class
[F08101FE.x01]B4 belong to X is 27.3%. This shows that fault events in class
[F08101FE.x01]B4 and the faults in the set X are partially related.

7.2 Rough Membership Functions

A rough membership function (rm function) makes it possible to measure the
degree to which any specified object belongs to a given set X . In the power
fault classification system, there are 11 feature sets and 12 types of faults; the
universe is divided into 132 Rough Sets. A mapping of these 132 Rough Sets and
the information table is illustrated in Table 22.

RSij is a set of the ith (1 ≤ i ≤ 12) faults represented by function values
for functions in Bj (1 ≤ j ≤ 11). Eleven sets, RSi1, RSi2, RSi3, RSi4, RSi5,
RSi6, RSi7, RSi8, RSi9, RSi10, RSi11, are derived to represent the 11 features
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Table 22. The mapping of 132 Rough Sets and information table

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11
Fault1 RS 11 RS 12 RS 13 RS 14 RS 15 RS 16 RS 17 RS 18 RS 19 RS 110 RS 111
Fault2 RS 21 RS 22 RS 23 RS 24 RS 25 RS 26 RS 27 RS 28 RS 29 RS 210 RS 211
Fault3 RS 31 RS 32 RS 33 RS 34 RS 35 RS 36 RS 37 RS 38 RS 39 RS 310 RS 311
Fault4 RS 41 RS 42 RS 43 RS 44 RS 45 RS 46 RS 47 RS 48 RS 49 RS 410 RS 411
Fault5 RS 51 RS 52 RS 53 RS 54 RS 55 RS 56 RS 57 RS 58 RS 59 RS 510 RS 511
Fault6 RS 61 RS 62 RS 63 RS 64 RS 65 RS 66 RS 67 RS 68 RS 69 RS 610 RS 611
Fault7 RS 71 RS 72 RS 73 RS 74 RS 75 RS 76 RS 77 RS 78 RS 79 RS 710 RS 711
Fault8 RS 81 RS 82 RS 83 RS 84 RS 85 RS 86 RS 87 RS 88 RS 89 RS 810 RS 811
Fault9 RS 91 RS 92 RS 93 RS 94 RS 95 RS 96 RS 97 RS 98 RS 99 RS 910 RS 911
Fault10 RS 101 RS 102 RS 103 RS 104 RS 105 RS 106 RS 107 RS 108 RS 109 RS 1010 RS 1011
Fault11 RS 111 RS 112 RS 113 RS 114 RS 115 RS 116 RS 117 RS 118 RS 119 RS 1110 RS 1111
Fault12 RS 121 RS 122 RS 123 RS 124 RS 125 RS 126 RS 127 RS 128 RS 129 RS 1210 RS 1211

Table 23. “YesOrNo” set of feature sets from B4 to B11 in faults 1, 2, 3 and 4

YesOrNo SET
B4 B5 B6 B7 B8 B9 B10 B11

Fault 1 72 of {2 2 2 }; 10 of {2 2 21 }; 12 of {2 2 1 }; 199 of 0; 232 of 0; 206 of 0; 170 of 1; 75 of 0; 227 of 0; 227 of 0;
1 of {212 2 2 }; 1 of {21 1 2 }; 7 of {1 2 2 }; 3 of 111; 8 of 1; 34 of 1; 70 of 0; 79 of 1; 9 of 1; 13 of 1;
3 of {12 2 2 }; 6 of {21 2 2 }; 2 of {2 21 21 }; 5 of 11; 27 of 2; 3 of 2;
4 of {2 21 1 }; 2 of {2 2 212 }; 7 of 110; 10 of 4; 1 of 6;
1 of {212 21 2 }; 1 of {2 21 212 }; 9 of 10; 1 of 10;
1 of {2 2 1212 }; 1 of {2121 2 2 }; 8 of 100; 22 of 3;
1 of {2 212 12 }; 1 of {2 1 1 }; 7 of 1; 8 of 7;
5 of {2 2 2121 }; 4 of {2 21212 2 }; 2 of 101; 3 of 6;
4 of {2 21 2 }; 63 of {212 212 212 }; 6 of 8;
21 of {21 21 21 }; 1 of {21 21 1 }; 4 of 28;
3 of {21212 21212 21212 }; 9 of {1 1 1 }; 4 of 29;
1 of {21 21 2121 }; 1 of {1 21 21 }; 1 of 5;
1 of 21 1 21 ; 1 of 12 12 12 ;

Fault 2 77 of {2 2 2 }; 6 of {1 1 1 }; 10 of {1 2 2 }; 51 of 111; 148 of 0; 128 of 0; 97 of 1; 80 of 1; 126 of 0; 127 of 0;
29 of {2 2 1 }; 1 of {21212 21212 1 }; 57 of 0; 20 of 1; 51 of 0; 35 of 0; 5 of 11; 21 of 1;
1 of {21212 1 1 }; 1 of {212 212 1 }; 22 of 110; 7 of 3; 2 of 32;
1 of {21 1 2 }; 1 of {12 21 2 }; 4 of 10; 14 of 2; 2 of 22;
1 of {212 121 2 }; 1 of {2 1 2 }; 4 of 1; 3 of 6; 4 of 2;
1 of {2 21 2 }; 10 of {21 21 21 }; 7 of 11; 4 of 4; 3 of 1;
4 of {21212 21212 21212 }; 2 of 100; 2 of 8; 1 of 6;
1 of {1 21 21 }; 1 of {21 1 1 }; 1 of 101; 1 of 10; 1 of 7;
2 of {21 21 1 }; 1 of 5; 1 of 3;

1 of 7; 2 of 5;
1 of 4;

Fault 3 10 of {2 2 21 }; 49 of {2 2 1 }; 1 of {212 2 2 }; 75 of 0; 143 of 0; 145 of 0; 145 of 0; 41 of 0; 134 of 0; 134 of 0;
2 of {21 1 2 }; 20 of {1 2 2 }; 3 of {12 2 2 }; 8 of 11; 2 of 1; 17 of 2; 6 of 1; 11 of 1;
6 of {21 2 2 }; 3 of {2 21 21 }; 4 of {2 21 1 }; 27 of 110; 53 of 1; 3 of 2;
2 of {2 2 212 }; 1 of {212 21 2 }; 7 of {2 1 1 }; 6 of 10; 1 of 4; 1 of 6;
1 of {2 21 212 }; 1 of {2 2 1212 }; 22 of 100; 1 of 10; 1 of 7;
1 of {2121 2 2 }; 1 of {2 212 12 }; 7 of 1; 6 of 3;
5 of {2 2 2121 }; 4 of {2 21212 2 }; 7 of 7;
5 of {2 21 2 }; 1 of {21212 21212 1 }; 4 of 6;
1 of {21212 1 1 }; 1 of {212 212 1 }; 7 of 8;
1 of {12 21 2}; 1 of {212 121 2 }; 4 of 28;
5 of {2 1 2 }; 2 of {12 1 2 }; 4 of 29;
2 of {212 1 2 }; 1 of {2 1 21 };

Fault 4 3 of {2 2 2 }; 63 of {212 212 212 }; 81 of 0; 81 of 0; 69 of 0; 81 of 1; 3 of 0; 81 of 0; 81 of 0;
12 of {21 21 21 }; 3 of {21212 21212 21212 }; 12 of 1; 31 of 1;

21 of 3;
16 of 2;
9 of 4;
1 of 5;

for the faults of type i. For simplicity, fault file names will be replaced by sets of
values of functions, e.g., the equivalence class [F08101FE.x01]B4

is represented
by 11of {2, 2, 2} as discussed in Section 7.1. 11 fault files have same output,
which is {2, 2, 2}, from B4.

Consider two sets, RSij and RSkj , (1 ≤ k ≤ 12, k �= i), the intersection
RSij ∩RSkj belongs to the “YesOrNo” set of RSij in the case where RSij and
RSkj have feature values in common. The elements that exist only in set RSij

constitute what is known as the “Yes” set. In other words, each RSij set is
divided into two sets, the “YesOrNo” set and the “Yes” set. The RSij set is a
rough set if its “YesOrNo” set is non-empty. Examples of “YesOrNo” sets of B4
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Table 24. “Yes” set of 11 feature sets in 12 faults

Yes SET
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Fault 1 {1 4 43 23 23 } {1 4 41 3 3241 }
{1 4 434 3 343 } {1 4 41 23 21 }
{1 4 41 23 21 } {4 43 4 3 3 }
{4 41 4 321 34 } {1 4 4134 3 313 }
{2 41 4 31 34 } {2 4 4 3 23 }
{2 4314 4 3123 3 } {2 414 4 323 3 }
{2 323 4 3 3 } {2 3 4 2 2 }
{3 4 414 3 313 } {3 4 414 232 }

Fault 2 {2 3 434 3 3 } {2 323 434 2 2 }
{1 434 43 23 23 } {1 434 4 2 2 }
{4 4241 434 3141 34 } {4 41 4 341 34 }
{4 3 4 34 34 } {2 434 434 3 343 }
{2 434 4 32 32 } {3 4 4 3 3 }
{1 414 434 232 12 } {1 4 434 323 3 }
{1 4 3 2 2 } {1 4234 323 3 3 }
{1 434 323 343 3 }

Fault 3 {1 34 23 21 21 } {1 3 312 2 2 } {12 12 1 }
{1 3 2 2 212 } {2 3 23 21 21 } {1 1 12 }
{1 3 4 3 32 } {2 2 3 3 3 } {1 13 4 12 2 } {21 1 12 }
{1 3 12 2 12 } {2 3 12 2 12 } {1 212 212}
{2 3 212 2 212 } {4 4 313 3 3213 }

Fault 4 {1 41 41 31 31 }
Fault 5
Fault 6 {3 1 1 1 1 } {4 1 1 1 1 }

{1 1 1 1 1 } {2 1 1 1 1 }
Fault 7
Fault 8 {1 4 4 1 2 } {2 4 4 1 2 } {2 4 4 1 2 }

{1 4 4 1 2 } {1 4 4 1 2 } {4 431 4 321 34 }
Fault 9 {3 4 13 43 13 } {1 4 14 32 12 } {2 13 4 12 32 }

{2 143 4 12 32 } {1 4 434 23 23 }
{1 4 4 321 321 } {1 4 4 23 23 } {2 4 4 32 32 }
{2 3 4 3 43 } {1 123 4 12 32 } {1 4 4 321 321 }
{1 13 4 12 32 } {1 4 4 23 23 } {1 3 4 3 34 }
{1 3 4 3 43 }

Fault 10 {2 31 4 21 2 } {2 143 4 12 2 }
{4 3 4 3 3 } {2 41 4 21 2 }
{1 4 143 2 12 } {1 4 31 2 21 }
{1 4 3 3 3 } {1 4 123 2 12 }
{1 4 4 3 2 } {1 4 42 2 32 } {1 4 31 2 21 }

Fault 11
Fault 12 {4 3 3 2 2 } {1 3 4 2 3 } {4 3 3 2 2 }

{2 4 3 3 2 } {1 3 4 2 3 } {4 3 3 2 2 }
{2 4 3 3 2 } {4 3 3 2 2 } {4 3 3 2 2 }
{1 3 4 2 3 } {2 4 3 3 2 } {4 3 3 2 2 }

to B11 in faults 1, 2, 3 and 4 are listed in Table 23. The complete tables of the
“YesOrNo” set of all feature sets in all 12 faults are attached in an Appendix
available at [15]. The “Yes” sets of all feature sets in all 12 faults are listed in
Table 24. The equivalence classes of all feature sets are listed in Tables 25 and 26.

For a fault file, if its output of Bj falls in the “YesOrNo” set of RSij , it
indicates that the file could represent an ith fault; and the degree of ith fault
will be estimated based on the rough membership function in (42).

μB
X(x) =

|[x]B ∩X |
|[x]B |

. (42)

As an example, the rough membership calculation for the fault file
F0822405.x01 is explained in (43). For fault file F0822405.x01, the feature set
B4 gives an output of {2, 2, 21}. Since set {2, 2, 21} is identified in the
“YesorNo” set of RS34 10 times, the fault is possibly a fault 3. In (42), the
equivalence class [x]B is substituted by [F0822405.x01]B4, where x is repre-
sented by fault file F0822405.x01 and B is replaced with B4. Meanwhile, X is
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Table 25. The equivalence classes of feature sets B1, B2 and B3

Equivalence classes
B1 B2 B3
700 of 0; 495 of 1; 10 of {1 4 43 3 3 }; 7 of {1 4 1 3 1 }; 8 of {2 3 4 3 3 }; 6 of {4 4 4 3 3 }; 16 of {1 4 4 3 3 };
227 of 1; 279 of 2; 3 of {1 4 41 3 31 }; 20 of {2 4 4 3 3 }; 3 of {4 41 4 31 34 }; 7 of {1 4 4 2 2 };

153 of 0; 9 of {1 434 4 3 3 }; 2 of {2 3 43 34 34 }; 2 of {1 3 43 3 3143 }; 14 of {1 3 43 3 3 };
2 of {2 3 434 3 343 }; 60 of {1 3 4 3 3 }; 2 of {2 3 312 23 23 }; 8 of {1 3 4 2 2 };
2 of {1 3 34 3 3 }; 8 of {1 3 3 2 2 }; 2 of {1 3 413 2 2 }; 2 of {2 3 34 3 3 };
2 of {3 43 43 3 3 }; 2 of {4 43 43 3 3 }; 3 of {1 43 4 3 3 }; 27 of {1 323 4 3 3 };
6 of {1 34 4 3 3 }; 3 of {3 43 4 3 3 }; 7 of {3 3 4 3 3 }; 4 of {2 4 434 2 2 };
3 of {1 43 4 3 23 }; 3 of {4 4 43 3 3 }; 3 of {1 312 43 23 23 }; 3 of {2 3 413 2 2 };
4 of {2 4 43 2 2 }; 4 of {2 3 34 2 2 }; 4 of {2 4 43 3 34 }; 3 of {2 4 4 1 1 }; 3 of {2 4 2 3 1};
3 of {2 4 434 3 1 }; 3 of {2 4 43 1 343 }; 3 of {2 3 43 34 3134 }; 3 of {2 3 43 34 3234 };
3 of {2 4 43 3 3 }; 3 of {2 4 42 3 3 }; 3 of {2 4 43 34 34 }; 3 of {2 4 42 34 34 };
6 of {1 3 42 3 3 }; 6 of {1 4 424 3 3 }; 9 of {1 4 434 3 3 }; 3 of {1 3 43 34 3134 };
3 of {1 3 43 34 3234 }; 3 of {1 4 42 3 3 }; 3 of {1 4 43 34 34 }; 3 of {1 4 42 34 34 };
4 of {2 431 4 321 34 }; 2 of {2 414 4 313 3 }; 20 of {1 414 4 313 3 }; 8 of {1 414 4 3123 3};
2 of {1 414 4 2 2 }; 2 of {1 431 4 31 3 }; 2 of {1 41 4 31 3 }; 2 of {1 431 4 31 34 };
4 of {1 4134 4 3123 3 }; 4 of {1 4134 4 323 3 }; 2 of {1 414 4 232 2 }; 2 of {1 414 4 212 2};
2 of {1 414 4 2132 2}; 2 of {1 414 4 3213 3}; 2 of {1 4314 4 3213 3}; 2 of {2 4 414 2 212};
2 of {2 4 4134 3 3143 }; 2 of {2 4 41 34 31 }; 2 of {3 431 4 321 34 }; 36 of {3 414 4 313 3};
16 of {3 414 4 3123 3 }; 2 of {3 414 4 3143 3 }; 2 of {3 41 4 31 243 }; 4 of {3 41 4 31 34};
2 of {3 41 4 31 3 }; 2 of {3 431 4 31 34 }; 2 of {3 424 4 3134 34 }; 2 of {3 424 4 313 3};
2 of {3 414 4 212 2342 }; 2 of {3 414 4 212 232 }; 2 of {3 414 4 212 242 };
2 of {3 414 4 212 2432}; 2 of {3 414 3 313 3}; 4 of {4 4 414 3 313}; 4 of {4 4 414 232 212};
2 of {1 4314 4 313 3 }; 2 of {1 414 4 2312 2 }; 2 of {1 4 2 3 2 }; 9 of {2 4 4 2 2 };
3 of {2 4 434 3 3 }; 2 of {1 31 4 231 2 }; 2 of {2 3 41 34 31 }; 2 of {2 4 431 3 1 };
2 of {2 4 431 23 1 }; 4 of {2 4 41 23 21 };2 of {1 41 4 21 23 }; 2 of {2 41 1 41 31 };
2 of {1 31 31 31 31 }; 2 of {2 41 41 431 431 }; 2 of {2 321 31 31 321 }; 25 of {2 4 1 3 1};
3 of {4 4 41 343 31 }; 3 of {2 4 1 343 1 }; 4 of {2 4 41 1 1 }; 3 of {2 4 41 1 21 };
3 of {2 4 41 1 31 }; 3 of {2 4 431 1 341 }; 9 of {2 4 14 32 1 }; 2 of {1 4 43 1 343 };
3 of {2 434 4 3 3 }; 2 of {1 3 32 3213 3 }; 2 of {3 323 4 34 34 }; 2 of {2 313 313 323 323};
18 of {2 3 3 2 2 }; 2 of {1 3 41 3 341 }; 2 of {3 313 414 3413 3413 }; 3 of {1 313 434 2 2};
3 of {1 3 434 2 2 }; 3 of {1 3 434 1 1 }; 6 of {1 3 323 2 2 }; 3 of {1 313 3123 323 323 };
6 of {1 3 434 3 3 }; 3 of {2 4 323 3 3 }; 3 of {1 323 4 32 32 }; 3 of {1 323 434 32 32 };
3 of {1 3 31 3 31 }; 3 of {1 3 21 23 2341 }; 8 of {2 3 323 2 2 }; 4 of {2 323 32 23 23 };
5 of {2 3 313 2 2 }; 3 of {2 4 43 23 23 }; 2 of {1 41 1 321 31 }; 2 of {1 434 434 3 3 };
2 of {2 434 434 343 3 }; 2 of {1 434 1 343 1 }; 2 of {1 4 1 343 1 }; 5 of {1 4 4 32 32 };
8 of {4 313 414 3413 3413 }; 2 of {2 3 41 34 341 }; 2 of {3 431 431 31 321 };
2 of {4 431 431 321 321 }; 2 of {3 41 4 431 4 }; 2 of {3 41 4 341 34 }; 4 of {2 4 41 34 321};
2 of {2 4 421 3 1 }; 6 of {2 3 1 3 1 }; 3 of {3 41 4 321 34 }; 3 of {2 3 31 4 431 };
3 of {2 3 1 23 1 }; 3 of {2 4 21 3 321 }; 3 of {2 4 31 1 31 }; 7 of {1 4 31 1 31 };
4 of {4 4 4 32 32 }; 3 of {2 3 4 3 34 }; 6 of {2 3 3 3 3 }; 3 of {4 4 3 3 3413 };
3 of {4 4 3 3 313 }; 6 of {1 4 3 3 323 }; 3 of {1 4 3 3 3413 }; 3 of {1 4 3 3 3423 };
6 of {2 4 1 1 1 }; 4 of {1 14 4 1 32 }; 4 of {1 4 1 1 1 }; 4 of {1 4 14 32 1 };

Table 26. The equivalence classes of feature sets B4 to B11

Equivalence classes
B4 B5 B6 B7 B8 B9 B10 B11
253 of {2 2 2 }; 29 of {2 2 21 }; 122 of {2 2 1 }; 614 of 0; 874 of 0; 783 of 0; 536 of 1; 268 of 0; 830 of 0; 832 of 0;
2 of {212 2 2 }; 6 of {21 1 2 }; 47 of {1 2 2 }; 56 of 111; 53 of 1; 144 of 1; 391 of 0; 356 of 1; 41 of 1; 95 of 1;
8 of {12 2 2 }; 17 of {21 2 2 }; 6 of {2 21 21 }; 32 of 11; 110 of 2; 23 of 2;
12 of {2 21 1 }; 6 of {2 2 212 }; 3 of {212 21 2 }; 88 of 110; 27 of 4; 6 of 6;
4 of {2 21 212 }; 4 of {2 2 1212 }; 4 of {2121 2 2 }; 36 of 10; 6 of 10; 6 of 11;
3 of {2 212 12 }; 21 of {2 1 1 }; 15 of {2 2 2121 }; 62 of 100; 68 of 3; 3 of 32;
12 of {2 21212 2 }; 15 of {2 21 2 }; 32 of 1; 25 of 7; 3 of 22;
126 of {212 212 212 }; 70 of {21 21 21 }; 7 of 101; 15 of 6; 3 of 7;
14 of {21212 21212 21212 };8 of {21 21 1 }; 22 of 8; 3 of 3;
2 of {21 21 2121 }; 54 of {1 1 1 }; 5 of {1 21 21 }; 12 of 28; 6 of 5;
2 of {21 1 21 }; 17 of {12 12 12 }; 12 of 29; 3 of 4;
2 of {21212 21212 1 }; 2 of {21212 1 1 }; 6 of 5;
3 of {212 212 1 }; 4 of {12 21 2 };
3 of {212 121 2 }; 11 of {2 1 2 }; 3 of {21 1 1 };
3 of {12 1 2 }; 3 of {212 1 2 }; 2 of {2 1 21 };

replaced by RS34. [x]B4 has 29 elements. Then the degree of overlap between
[x]B4

= [F0822405.x01]B4
and RS34 can be estimated by (43).

μB4
RS34

(x) =
|[F0822405.x01]B4 ∩RS34|

|[F0822405.x01]B4|
=

10
29

= 34.4%. (43)

It demonstrates that the degree to which class [F0822405.x01]B4 belongs to
fault 3 is 34.4%.
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7.3 Rough Membership Tables for rmNN Training and Verification

By simply repeating the rough membership computation procedure described
in Section 7.2, 11 degrees to which the file F0822405.x01 belongs to fault 3 are
obtained based on RS3j (1 ≤ j ≤ 11) and [F0822405.x01]Bj

(1 ≤ j ≤ 11). The
11 degrees of membership are represented as a vector, e.g., (0.19, 0.14, 0.33,
0.34, 0.12, 0.16, 0.19, 0.37, 0.28, 0.16, 0.16). In addition, for a fault file *.x01,
the membership for each type of fault based on each feature set is derived to
transform the training information table (Table 12) and testing information table
(Table 13) into 12 rough membership training tables and 12 rough membership
testing tables, respectively. One of these rough membership tables is shown in
Table 27. The first column indicates the file index. The following 11 columns
contain 11 rough memberships for fault 3. The last column is the target that
indicates whether it is a fault 3 or not. The value of 1 is for “Yes” and 0.01 is
for “No”. Each row in Table 27 is employed as a training set to calibrate the
rmNN for fault 3. Table 28 is the rough membership table for fault 3 rmNN
verification. It is necessary to point out that both Table 27 and 28 are partial
rough membership tables. Twelve complete rough membership training tables
as well as 12 testing tables are listed in an Appendix available at [15].

7.4 Design of rmNNs for PSFC

Neural networks are collections of massively parallel computation units called
neurons. A neuron is a processing element in a neural network. To design a rough
membership neural network, the rough neurons should first be defined.

Architecture of the Rough Membership Neural Network (rmNN) for
PSFC
The architecture of an rmNN for fault classification is dependent on the number
of types of available faults. Each fault will have its own rmNN. In the research
reported in this paper, 12 separate rmNNs are employed to classify 12 types of
faults. Each rmNN will output an estimation of the degree of one type of fault for
a given object. For instance, the output neuron of the kth rmNN will aggregate
all contributions from the rough neurons in the first layer, process in the hidden
layer and finally output an estimation of the degree of kth fault. The output from
12 rmNNs will be forwarded to a fault type decider neuron. The decider neuron
simply picks up all the faults with degree values above 80%. Almost 50% of the
power system fault events are multiple faults jointed. Compared to the k-Nearest
Neighbor (k-NN) method, the neural network method was proved superior when
the input deviated in shape from the pattern used in training [39]. Since k-NN
classifiers are sensitive to outliers and noise contained in the training data [27].
The k-NN classifier may have advantageous in applications where there is less
deviation in the sampled pattern.

Concepts of Rough Neurons
Typically, a neuron y maps its weighted input from Rn to [0, 1]. A selection of
different types of neurons is given in Table 29: common neurons, rough neurons,
fuzzy neurons.
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Table 27. Partial rough membership table for fault 3 rmNN training

File Index B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 Target
11 1 508 1

1 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
4 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
7 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
31 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
55 0.19 0.14 0.5 0.34 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
69 0.19 0.14 0.5 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
70 0.19 0.14 0.33 0.35 0.25 0.16 0.19 0.37 0.15 0.16 0.16 1
91 0.19 0.14 0.25 0.25 0.35 0.16 0.19 0.37 0.15 0.15 0.12 1
92 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.15 0.15 0.12 1
93 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.17 0.16 0.16 1
99 0.19 0.14 0.33 0.34 0.12 0.16 0.19 0.37 0.28 0.16 0.16 1
103 0.19 0.14 0.33 0.33 0.12 0.16 0.19 0.37 0.27 0.16 0.16 1
104 0.19 0.14 0.36 0.34 0.12 0.16 0.19 0.37 0.32 0.16 0.16 1
128 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
131 0.05 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
141 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
150 0.05 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
162 0.05 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
202 0.19 0.14 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
209 0.19 0.14 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
219 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
222 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
229 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.15 0.12 0.01
236 0.19 0.14 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
239 0.05 0.14 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
252 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
253 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0 0.12 0.01
254 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
265 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
267 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
305 0.19 0.17 0.5 0.43 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
349 0.19 0.17 0.4 0.33 0.12 0.16 0.19 0.37 0.15 0.17 0.12 1
374 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0 0.12 0.01
391 0.19 0.2 1 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
392 0.19 0.2 1 0.67 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
403 0.19 0.2 1 1 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
415 0.19 0.2 0.33 0.33 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
420 0.05 0.2 0 0 0.12 0.16 0 0 0 0.16 0.16 0.01
421 0.19 0.2 0.25 0 0.31 0.16 0.19 0 0.15 0.16 0.16 0.01
422 0.19 0.2 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
440 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
441 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
447 0.19 0.2 0 0 0.12 0.16 0.19 0 0.09 0.16 0.16 0.01
448 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
465 0.19 0.2 0 0 0.12 0.16 0.19 0 0.09 0.16 0.16 0.01
466 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
472 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
475 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
484 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
490 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
504 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
507 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
508 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01

In the design of the rough membership function neural network (rmNN),
the hidden layer consists of fuzzy neurons defined using the t-norm, s-norm
and → (imply operators) from fuzzy set theory. The formal definition for a
hidden neuron in an rmNN is given in (44) using the t-norm, s-norm and →
operators. The reason that this form of hidden neuron is applied is because
it provides a numerical representation of set intersection (t-norm), set union
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Table 28. Partial rough membership table for fault 3 rmNN testing

File Index B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 Target
11 1 168 1

1 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
19 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
30 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
46 0.19 0.14 0.4 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
53 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.15 0.15 0.12 1
54 0.19 0.14 0.4 0.4 0.31 0.16 0.19 0.37 0.15 0.16 0.16 1
56 0.19 0.14 0.33 0.33 0.12 0.04 0.19 0.37 0.15 0.16 0.16 1
57 0.19 0.14 0.33 0.35 0.12 0.16 0.19 0.37 0.28 0.16 0.16 1
63 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
82 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
86 0.19 0.14 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
87 0.19 0.14 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
90 0.19 0.14 0 0 0.12 0.16 0 0 0.28 0.16 0.16 0.01
91 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.15 0.12 0.01
93 0.19 0.14 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
94 0.19 0.14 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
111 0.05 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
112 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
116 0.19 0.17 0.4 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
120 0.19 0.17 0.39 0.43 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
121 0.19 0.17 0.4 0.4 0.31 0.16 0.19 0.37 0.15 0.16 0.16 1
127 0.19 0.17 0.4 0.4 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
128 0.19 0.17 0.39 0.25 0.22 0.16 0.19 0.37 0.09 0.15 0.12 1
129 0.05 0.17 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
130 0.19 0.17 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
131 0.19 0.17 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
132 0.19 0.17 0 0 0.12 0.16 0 0 0.32 0.16 0.16 0.01
134 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
135 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0.13 0.12 0.01
136 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0 0.12 0.01
137 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
138 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
139 0.19 0.2 1 0.67 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
141 0.19 0.2 1 1 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
144 0.19 0.2 0.39 0.67 0.22 0.16 0.19 0.37 0.15 0.16 0.16 1
145 0.19 0.2 0.33 0.33 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
146 0.05 0.2 0 0 0.12 0.16 0 0 0 0.16 0.16 0.01
147 0.19 0.2 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
148 0.05 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
150 0.19 0.2 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
151 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
152 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
153 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
156 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
158 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
161 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
167 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
168 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01

(s-norm) and implication (→) that works well as a means of aggregating the input
from the rough membership functions in the input layer. Let B,X, [x]B denote
a set of features, a set of files with matching fault type based on knowledge,
and an equivalence class derived from known objects, respectively. The basic
computation steps performed by a rough membership neuron are reflected in
the flow chart in Figure 48.

In Figure 48 x is a newObj, an unclassified fault file. A rough neuron mea-
sures the degree of overlap of sets [x]B and X , and represents certain as well as
uncertain classification of the input newObj, x.
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Table 29. Different types of neurons

Fig. 48. Flow chart for basic Rough Neuron computation

Architecture of the Rough Membership Neural Network (rmNN) for
PSFC
The architecture of a rmNN for fault classification is dependent on the number
of types of available faults. Each fault will have its own rmNN. In the research
reported in this paper, 12 separate rmNNs are employed to classify 12 types of
faults. Each rmNN will output an estimation of the degree of one type of fault for
a given object. For instance, the output neuron of the kth rmNN will aggregate
all contributions from the rough neurons in the first layer, process in the hidden
layer and finally output an estimation of the degree of kth fault. The output
from 12 rmNNs will be forwarded to a fault type decider neuron. The decider
neuron simply picks up all the faults with degree values above 80%. Almost 50%
of the power system fault events are multiple faults jointed.

The whole computational framework that contains 12 rmNNs is shown in
Figure 49. An example of the kth rmNN is shown in Figure 50, where
rmfk(Bi(objn)) is the rough membership for fault k based on the output of
attribute set Bi for a given object n. The interconnections, i.e., rij , wij and uj

inside the rmNN are shown in Figure 51. There are 11 rough neurons in the first
layer and 11 fuzzy neurons in the hidden layer. Each neuron in the first layer is
fully connected to the neuron in the hidden layer and each neuron in the hidden
layer is fully connected to the output neuron. rmfk(Bi(objn)) is simplified as
rmfk

i in Figure 51 as well as in the weights updating formulas.
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Fig. 49. Diagram of connection of 12 rmNNs

The formula for the activation function of the hidden neuron and the output
neuron is described in (44) and (47) respectively. The formulas here are with
respect to the kth rmNN. The t-norm is defined in (44). The imply operator →
is defined in (45). The s-norm, namely probability sum, is defined in (46).

hk
j = t11i=1[rij → rmfk

i s wij ]

= [(r1j → rmfk
1 ) s w1j ][(r2j → rmfk

2 ) s w2j ]...
...[(r11j → rmfk

11) s w11j ], (44)

where

(rij → rmfk
i ) ≡ min

(
1,

rmfk
i

rij

)

=

{
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.
(45)

(rij → rmfk
i ) s wij = (rij → rmfk

i ) + wij − (rij → rmfk
i )wij . (46)

Ok = s11
j=1[hk

juj]. (47)
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Fig. 50. Diagram of rmNN for kth fault classification

Fig. 51. Interconnection of the rmNN for fault k

Weights Adjustment with a Fixed Step Size Gradient Algorithm
In the process of tuning weights in the kth rmNN, rij , wij and uj will be updated
by the partial derivative of the error. The error is the square of the difference
between the target and the output of the kth rmNN.

Error =
(
targetk −Ok

)2

=
(
targetk − s11

j=1

((
t11i=1

((
rij → rmfk

i

)
s wij

))
uj

))2

= F (rij , wij , uj) , (48)

and

u
(new)
j = u

(old)
j − α

∂Error

∂uj
,
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w
(new)
ij = w

(old)
ij − α

∂Error

∂wij
,

r
(new)
ij = r

(old)
ij − α

∂Error

∂rij
, (49)

where α is the learning rate. The effects of the learning rate are discussed in
Section 7.6. u(new)

j will be updated by the partial derivative of the error function

with respect of u(old)
j in (49).

∂Error

∂ui
= −

(
targetk −Ok

) ∂Ok

∂ui

= −
(
targetk −Ok

) ∂

∂ui

[
s11

j=1[hk
juj]

]
, (50)

where i = 1, 2, ... 11. The overall expression can be rewritten by separating the
ith component in the overall s-norm composition,

∂Ok

∂ui
=

∂

∂ui

[
A + uih

k
i −Auih

k
i

]

= hk
i (1−A), (51)

where factor A summarizes the remaining components of the s-norm composi-
tion, i.e.,

A = s11
j=1,j �=i

[
hk

juj

]
. (52)

The computation of the connections between the input layer and the hidden
layer, i.e., wij given by the second formula in (49) requires the use of the chaining
rule of differentiation. This implies the following,

∂Error

∂wij
= −

(
targetk −Ok

) ∂Ok

∂hk
j

∂hk
j

∂wij
, (53)

where wij refers to the connection from the ith node in the first layer to the jth

node in the hidden layer. The ∂Ok

∂hk
j

factor is expressed as,

∂Ok

∂hk
j

= uj(1−A). (54)

For factor ∂hk
j

∂wij
, the activation function will be applied governing the hidden

neuron,

∂hk
j

∂wij
=

∂

∂wij

(
t11l=1

[(
rlj → rmfk

l

)
s wlj

])

=
∂

∂wij

[(
rij → rmfk

i

)
s wij

] (
t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

])
. (55)
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By introducing the notation

B = t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

]
, (56)

(55) can be rewritten as

∂hk
j

∂wij
=

∂

∂wij

(
B
[(
rij → rmfk

i

)
s wij

])

= B
∂

∂wij

[(
rij → rmfk

i

)
s wij

]

= B
∂

∂wij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)

= B
(
1−

(
rij → rmfk

i

))
. (57)

The same procedure applies to update the rij parameter by computing

∂Error

∂rij
= −

(
targetk −Ok

) ∂Ok

∂hk
j

∂hk
j

∂rij
, (58)

where rij refers to the connection from the ith node in the first layer to the jth

node in the hidden layer. The ∂Ok

∂hk
j

factor is expressed in (54), which is the same
thing when updating wij .

∂hk
j

∂rij
=

∂

∂rij

(
B
[(
rij → rmfk

i

)
s wij

])

= B
∂

∂rij

[(
rij → rmfk

i

)
s wij

]

= B
∂

∂rij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)

= B (1− wij)
∂
(
rij → rmfk

i

)

∂rij
, (59)

and

∂
(
rij → rmfk

i

)

∂rij
=

∂

∂rij

{
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.

=

{
− rmfk

i

r2
ij

, if rij ≥ rmfk
i ,

0, otherwise.
(60)

The program flowchart for the rmNN calibration is illustrated in Figure 52.

Calibration Results of Selected rmNNs for PSFC
By way of illustration, only the calibration and verification results for fault 3
and 5 rmNNs are illustrated here. The results of all 12 rmNNs are attached in
an Appendix available at [15].
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Fig. 52. Flowchart of weights updating for rmNN calibration

The error output during the training of the fault 3 and fault 5 rmNNs is shown
in Figures 53 and 54 respectively. After 200 learning cycles, the error between
the target and the output of fault 3 rmNN is less than 0.8 and of fault 5 rmNN
is less than 0.2.

The output for fault 3 and 5 rmNNs compared to their targets after the first
learning cycle is shown in Figures 55 and 56 respectively. Figures 57 and 58
illustrate that after 200 learning cycles, the output for fault 3 and 5 rmNNs
matches their targets well.

It is observed, from Figures 57 and 58, that approximately 70 fault files, which
are files from file #73 to file #96, from file #318 to file #348 and from file #405
to file #419, are indicating combinations of fault 3 and 5.

The trained r, w and u parameters for fault 3 and 5 rmNNs are shown in
Tables 30 and 31 respectively.

Verification Results of Selected rmNNs for PSFC
In this section, 168 additional fault files have been used in a test set to verify the
performance of the rmNN power fault classification system. The test results for
fault 3 and 5 rmNNs are shown in Figures 59 and 60. With the fault detection
threshold set to 80%, both rmNNs have 100% classification accuracy.
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Fig. 53. Learning performance of fault 3 rmNN

Fig. 54. Learning performance of fault 5 rmNN

Table 32 summarizes the accuracy of the rmNN power fault classification sys-
tem. It has been found that for each type of fault, the more fault files used
in training, the more accurate the test results will be. For instance, a greater
number of fault files were used to calibrate the rmNNs for faults “Minor AC
disturbance”, “AC Disturbance”, “Valve Current Closed/Blocked/Deblocked”,
“Line Fault”, and “Commutation Failure”. The test results for these types of
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Fig. 55. The output for fault 3 rmNN after one learning cycle

Fig. 56. The output for fault 5 rmNN after one learning cycle

faults showed 100% accuracy. By contrast, for faults “Current Arc Back” and
“Normal affected by another pole”, 26 and 18 fault files are employed for cal-
ibration respectively; and the corresponding accuracy of the test results were
comparatively low (Table 32).

7.5 Effects of the Number of Neurons in the Hidden Layer

For verifying the rmNN performance, the rmNN sensitivity with respect to dif-
ferent numbers of neurons in the hidden layer was analyzed. The rmNNs with
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Fig. 57. The output for fault 3 rmNN after 200 learning cycles

Fig. 58. The output for fault 5 rmNN after 200 learning cycles

11, 9, 7 or 3 hidden neurons are tested for the learning and verification set. The
numerical results provide a very good performance index.

To decide on the number of hidden neurons, the square root of the product of
the input and output is a good number with which to begin, in this case,

√
11× 1

is 3.3. The test results of the learning and verification performance with 3, 7, 9
and 11 neurons for 12 rmNNs are shown in an Appendix available at [15]. The
test results indicate that the performance with 3 hidden neurons is always the
worst case and unacceptable. The performance with 7 and 9 hidden neurons is
very close. The case with 11 neurons has the best performance for fault 7 and
fault 8 rmNNs.
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Table 30. r, w and u parameters trained for fault 3 rmNN

r
0.000 0.060 0.974 0.330 0.120 0.058 0.190 0.999 0.039 0.072 0.120
0.037 0.003 0.255 0.995 0.068 0.040 0.190 0.370 0.043 0.130 0.119
0.198 0.140 0.996 0.517 0.120 0.040 0.190 0.390 0.040 0.130 0.003
0.198 0.140 0.996 0.512 0.120 0.041 0.190 0.390 0.050 0.130 0.047
0.185 0.170 0.827 0.462 0.250 0.317 0.113 0.399 0.340 0.133 0.399
0.048 0.342 0.455 0.708 0.053 0.320 0.169 0.519 0.327 0.044 0.367
0.050 0.133 0.348 0.406 0.214 0.040 0.194 0.996 0.108 0.153 0.120
0.050 0.009 0.253 0.995 0.120 0.040 0.190 0.370 0.040 0.105 0.044
0.363 0.273 0.667 0.607 0.361 0.081 0.292 0.539 0.345 0.150 0.120
0.049 0.137 0.255 0.995 0.120 0.040 0.190 0.370 0.040 0.067 0.030
0.413 0.383 0.361 0.543 0.284 0.146 0.262 0.557 0.289 0.266 0.058
w
0.176 0.253 0.003 0.000 0.218 0.268 0.116 0.001 0.114 0.050 0.158
0.002 0.118 0.000 0.004 0.206 0.114 0.156 0.000 0.095 0.233 0.307
0.000 0.074 0.003 0.000 0.302 0.106 0.000 0.000 0.023 0.003 0.287
0.000 0.216 0.003 0.000 0.123 0.302 0.000 0.000 0.195 0.111 0.070
0.243 0.308 0.000 0.055 0.011 0.145 0.289 0.162 0.074 0.022 0.192
0.274 0.168 0.000 0.000 0.157 0.113 0.165 0.037 0.131 0.115 0.000
0.207 0.033 0.000 0.000 0.082 0.110 0.000 0.003 0.184 0.148 0.133
0.279 0.311 0.000 0.004 0.200 0.067 0.000 0.000 0.295 0.103 0.229
0.192 0.227 0.000 0.000 0.238 0.036 0.000 0.000 0.191 0.022 0.063
0.088 0.073 0.000 0.004 0.298 0.297 0.000 0.000 0.312 0.193 0.137
0.000 0.071 0.154 0.000 0.177 0.145 0.181 0.041 0.213 0.111 0.231
u
1.000 1.000 0.990 0.990 0.000 0.000 1.000 1.000 0.000 1.000 0.000

Table 31. r, w and u parameters trained for fault 5 rmNN

r
0.000 0.060 0.122 0.100 0.998 0.110 0.120 0.050 0.040 0.103 0.100
0.037 0.003 0.512 0.397 0.476 0.238 0.144 0.342 0.293 0.368 0.384
0.050 0.080 0.187 0.100 0.998 0.110 0.120 0.050 0.040 0.100 0.003
0.048 0.080 0.123 0.100 0.998 0.110 0.120 0.050 0.040 0.101 0.047
0.050 0.080 0.126 0.100 0.998 0.110 0.120 0.044 0.040 0.103 0.101
0.048 0.329 0.419 0.420 0.421 0.309 0.172 0.286 0.324 0.071 0.357
0.209 0.191 0.457 0.353 0.493 0.332 0.212 0.389 0.305 0.087 0.325
0.039 0.009 0.123 0.100 0.998 0.110 0.120 0.034 0.040 0.101 0.044
0.050 0.080 0.217 0.100 0.998 0.110 0.120 0.036 0.040 0.100 0.093
0.050 0.079 0.170 0.100 0.998 0.110 0.120 0.050 0.040 0.101 0.030
0.376 0.358 0.306 0.334 0.482 0.206 0.259 0.335 0.270 0.247 0.058
w
0.176 0.253 0.000 0.107 0.002 0.256 0.080 0.009 0.092 0.009 0.143
0.002 0.118 0.000 0.078 0.034 0.095 0.176 0.211 0.046 0.196 0.257
0.049 0.074 0.067 0.139 0.002 0.118 0.060 0.021 0.007 0.000 0.287
0.086 0.222 0.000 0.000 0.002 0.282 0.000 0.103 0.152 0.068 0.070
0.255 0.314 0.042 0.120 0.002 0.157 0.264 0.283 0.057 0.000 0.231
0.274 0.166 0.000 0.045 0.040 0.107 0.159 0.210 0.104 0.113 0.000
0.204 0.029 0.157 0.036 0.000 0.080 0.065 0.058 0.140 0.236 0.108
0.284 0.311 0.000 0.000 0.002 0.044 0.000 0.232 0.246 0.050 0.229
0.240 0.239 0.018 0.006 0.002 0.030 0.010 0.142 0.182 0.014 0.059
0.101 0.072 0.063 0.018 0.002 0.287 0.065 0.311 0.270 0.175 0.137
0.000 0.072 0.181 0.003 0.037 0.137 0.173 0.231 0.193 0.105 0.231
u
1.000 0.050 1.000 1.000 1.000 0.010 0.030 1.000 1.000 1.000 0.000

The learning output comparison for fault 7 rmNN with 3, 7 and 11 hidden
neurons is shown in Figure 61(a). The learning output for fault 7 rmNN with
9 hidden neurons is omitted since its performance is close to the rmNN with
7 hidden neurons (see Appendix available at [15]). Figures 61(b), 61(c), 61(d)
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Fig. 59. Testing results for fault 3 rmNN

Fig. 60. Testing results for fault 5 rmNN

and 61(e) show the details of the A, B, C and D parts in Figure 61(a) re-
spectively. They clearly indicate that, for all the true cases, the rmNN with
11 hidden neurons present the highest output, and the rmNN with 3 hidden
neurons give the lowest output. The verification output comparison for fault 7
rmNN with 3, 7 and 11 hidden neurons is shown in Figure 62(a). The verification
output for fault 7 rmNN with 9 hidden neurons is omitted for the same reason.
Figures 62(b), 62(c), 62(d) and 62(e) show the details of the A, B, C and D parts
of Figure 62(a) and clearly confirm the results from learning for all the true cases.
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Table 32. Accuracy of the rmNN power fault classification system

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 0 1.00
AC Disturbance 44 0 1.00
Valve Current Closed/Blocked/Deblocked 44 0 1.00
Line Fault 22 0 1.00
Commutation Failure 25 0 1.00
Pole Voltages/Current Closed/Blocked/Deblocked 15 0 1.00
Current Arc Back 6 1 0.83
Parallel Operation 9 0 1.00
Pole Current Oscillation 7 0 1.00
Normal Affected by Another Pole 4 1 0.75
Asymmetric Protection 6 0 1.00
Disturbance on DC Voltage 7 0 1.00

The rmNN with 11 hidden neurons gives the highest verification score, and the
verification output from the one with 3 hidden neurons yields the lowest.

As another example, the learning and verification output comparison for fault
8 rmNN with 3, 7 and 11 hidden neurons is shown in Figures 63 and 64 respec-
tively. It agrees with the learning and verification results for fault 7 rmNN, i.e.,
different numbers of neurons in the hidden layer considerably affect the perfor-
mance of the rmNN. The goal is to have not too many but enough hidden neurons
to be able to learn correctly. There are no analytically shown facts about the
necessary number of hidden neurons, instead more tests are required to find an
appropriate number. In addition, some research shows that the redundancy on
hidden-layer neurons is useful in the fault tolerance of neural networks, especially
for the feedforward networks.

7.6 Effects of Learning Cycles, Learning Rate and Least Square
Error

To obtain satisfactory performance for an rmNN, the selection of appropriate
learning rates (α) for the rmNN is critical and challenging. Applying an improper
learning rate to the rmNN may cause the learning curve of the rmNN to oscillate.
For example, suppose a network produces an error of -0.5 and the error was
adjusted at an improper learning rate by the network. The new error is +0.5,
and the next error is -0.5 again..., so on and so forth. Apparently the learning
period this system takes will be endless. On the other hand, if the learning rate is
too small, the network parameters will improve toward the best solution, but at
a very low speed. It might take hours, even days, to optimize such a network. To
gain a good learning rate requires interactive processing to achieve an acceptable
overall direction for the search.

It is sometimes seen that the learning error decreases for the learning set of
data with more and more learning cycles (LCs), but still does not lead to better
classification performance. This suggests that the network is “overfitting” due
to some local minimum.

An example of an “overfitting” rmNN is observed when the rmNN is trained
for classifying fault 10. Figure 65.1 shows the learning least square error (LSE)
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61.1: A broad view of the performance comparison for 508 rmNN training
files

61.2: A zoom-in detail of part A 61.3: A zoom-in detail of part B

61.4: A zoom-in detail of part C 61.5: A zoom-in detail of part D

Fig. 61. The learning output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons

comparison for fault 10 rmNN with different LCs and α. The details of A and B
parts in Figure 65.1 are illustrated in Figure 65.2 and Figure 65.3, respectively.
Learning case 1 has LCs = 100, α = 0.22 and LSE = 0.233; learning case 2
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62.1: A broad view of the performance comparison for 168 rmNN testing
files

62.2: A zoom-in detail of part A 62.3: A zoom-in detail of part B

62.4: A zoom-in detail of part C 62.5: A zoom-in detail of part D

Fig. 62. The verification output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons

has LCs = 800, α = 0.22 and LSE = 0.21; and learning case 3 has LCs = 800,
α = 0.3 and LSE = 0.19. The learning cycles are increasing and the LSEs are
decreasing.
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63.1: A broad view of the performance comparison for 508 rmNN training
files

63.2: A zoom-in detail of part A 63.3: A zoom-in detail of part B

63.4: A zoom-in detail of part C 63.5: A zoom-in detail of part D

Fig. 63. The learning output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons

Figure 66.1 illustrates the learning output comparison for fault 10 rmNN in
the three cases shown in Figure 65. Figures 66.2 and 66.3 show the learning
output at points A and B. Points A and B represent file 422 and file 471, which
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64.1: A broad view of the performance comparison for 168 rmNN testing
files

64.2: A zoom-in detail of part A 64.3: A zoom-in detail of part B

64.4: A zoom-in detail of part C 64.5: A zoom-in detail of part D

Fig. 64. The verification output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons

belong to false case and true case respectively. From Figures 66.2 and 66.3, it is
found that for case 1, points A and B are 0.09 apart from each other; for case 2,
A and B are closer with a distance of 0.07; and for case 3, A and B locate almost
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65.1: Learning LSE comparison for fault 10 rmNN

65.2: A zoom in detail of part A

65.3: A zoom in detail of part B

Fig. 65. Learning LSE comparison for fault 10 rmNN with different LCs and α

at the same line with a distance of 0.01, and could barely be distinguished.
It has been found that the smaller LSE does not lead to better classification
performance. The conjecture is that the rmNN is “overfitting”, which causes the
vagueness (slight difference) between the true and false cases.
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66.1: A broad view of the performance comparison for 508 rmNN training
files

66.2: A zoom-in detail of point A

66.3: A zoom-in detail of point B

Fig. 66. The learning output comparison for fault 10 rmNN with different LCs and α

Another example shows the lower output for both learning and verification
output for true case files with a smaller LSE. Figure 67 shows the learning least
square error (LSE) comparison for fault 7 rmNN with different LCs and α. In



478 L. Han and J.F. Peters

67.1: Learning LSE comparison for fault 7 rmNN

67.2: A zoom-in detail of part A

Fig. 67. Learning LSE comparison for fault 7 rmNN with different LCs and α

learning case 1, LSE = 1.3; learning case 2, LSE = 0.54; and learning case 3,
LSE = 0.41. From case 1 to case 3, the LSE decreases.

Figure 68 shows the learning output for the 3 cases. Figures 68.2, 68.3, 68.4
and 68.5 show the details of the A, B, C and D parts in Figure 68.1.

Figure 69 shows the verification output for the 3 cases. Figures 69.2, 69.3, 69.4
and 69.5 show the details of the A, B, C and D parts in Figure 69.1.

It has been shown that, for all the true case files with a target value of 1, case
1 with the higher LSE has the highest output and case 3 with the lowest LSE
has the lowest output.

The learning cycles, learning rates applied and the learning errors received for
12 rmNNs are listed in Table 33.
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68.1: A broad view of the performance comparison for 508 rmNN training
files

68.2: A zoom-in detail of part A 68.3: A zoom-in detail of part B

68.4: A zoom-in detail of part C 68.5: A zoom-in detail of part D

Fig. 68. The learning output comparison for fault 7 rmNN with different LCs and α

7.7 Implementation of rmNN for PSFC

After theoretical development and computer simulation, the next sought-after
step is to build the software package for the implementation of rmNN power
system fault classification with a user friendly interface. The software package
provides the following functions:
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69.1: A broad view of the performance comparison for 168 rmNN testing
files

69.2: A zoom-in detail of part A 69.3: A zoom-in detail of part B

69.4: A zoom-in detail of part C 69.5: A zoom-in detail of part D

Fig. 69. The verification output comparison for fault 7 rmNN with different LCs and α

– Feature extraction
– Rough set construction
– Rough membership computation
– Rough membership neural network calibration and verification
– Power system fault type detection
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Table 33. The learning cycles, learning rate and learning error for 12 rmNNs

Training parameters
Learning cycles Learning rate Least square error

(LC) (α) (LSE)
Fault 1 rmNN 200 0.01 0.2658
Fault 2 rmNN 200 0.01 0.8579
Fault 3 rmNN 200 0.1 0.6608
Fault 4 rmNN 800 0.1 0.1653
Fault 5 rmNN 200 0.1 0.2295
Fault 6 rmNN 1000 0.2 0.4061
Fault 7 rmNN 1000 0.6 1.3
Fault 8 rmNN 800 0.02 0.1439
Fault 9 rmNN 800 0.1 0.0892
Fault 10 rmNN 100 0.22 0.233
Fault 11 rmNN 800 0.1 0.86
Fault 12 rmNN 100 0.01 0.0634

Fig. 70. The user interface for rmNN power system fault classification

C++ programs as well as the executable codes have been developed for each
function. The executables are called and embedded in a LabVIEW program,
which creates a flexible and scalable user interface. With LabVIEW, users can
interface with real-world signals, analyze data for meaningful information, and
share results through intuitive displays and reports. The screen snapshot of the
user interface for rmNN power system fault classification is shown in Figure 70.

The main GUI (graphic user interface) window for the rmNN PSFC contains
five tabs that are created for the five functions. The first tab is designed for
the features extraction function seen in Figure 70. Users are allowed to select
either a fault file list or a specific fault file to be processed. An example of a
fault file list is FaultFiles train.txt, which contains the file names of all fault files
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Fig. 71. Rough set construction for rmNN power system fault classification

Fig. 72. Rough membership computation for rmNN power system fault classification

for training. The 23 signals are analyzed and 17 features are derived for each
fault file. The thresholds applied in the features extraction can be adjusted to
achieve optimized feature values for the best fault classification performance.



Rough Neural Fault Classification of Power System Signals 483

Fig. 73. rmNN calibration and verification function for rmNN power system fault
classification

Fig. 74. Power system fault type detection
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When partial features need to be updated, the switch allocated for each feature
can be individually turned off to disable the feature extraction operation.

The second tab allows accessing the rough set construction function shown
in Figure 71. The equivalence classes, the B-low approximations (Yes Sets) and
approximation boundary sets (YesOrNo Sets) are created based on features val-
ues of all training fault files. The rough sets need to be restructured whenever
the features values are updated.

The third tab is for the rough membership computation function illustrated in
Figure 72. Twelve rough membership training tables, which contain the training
sets for the calibration of twelve rmNNs, have been derived. These training tables
need to be re-generated as well whenever the features values are adjusted.

The forth tab allows accessing the rough membership neural network calibra-
tion and verification function shown in Figure 73. Twelve pages have been devel-
oped inside this function for calibration of twelve rmNNs respectively. The learn-
ing rate and cycles are the parameters to be adjusted until the best classification
performance is achieved. The learning error, learning output and test result for
each rmNN are displayed in three graphs respectively and the final calibrated
weights are reported in the table at the bottom-right quarter of the tab window.

The final function is for the power system fault type detection, which is illus-
trated in Figure 74. For a fault file to be classified, 17 features are derived by
function 1 and loaded by this fault type detector. The 11 rough memberships, a
rough membership set, based on 11 feature sets associated with a type of fault
are estimated. Consequently a total of 12 rough membership sets are derived
and input to 12 trained rmNNs respectively. Twelve degrees, one for each fault
type, are estimated by the 12 rmNNs and forwarded to a decider neuron, which
picks up the faults with degree output greater than the preset threshold. For
example, in Figure 74, the threshold is set as 0.8; the faults detected for fault
file F1112E80Whole.dat are a combination of fault 1 and fault 4 with a degree
of 0.911 and 0.985 respectively. The fault types are indicated in a text box. The
threshold can be adjusted lower to allow more fault types to be considered.

The developed graphic user interface makes the power system fault classi-
fication easy to operate for users. The software integrates features extraction,
rough sets construction, rough membership computation, rmNNs training, veri-
fication and fault type detection into one system, which provides the possibility
for further implementation of an adaptive learning real-time fault classification
system. Currently, the most time consuming component of the software package
is the features extraction, which takes two to three seconds and needs to be
computationally optimized. The rough membership computation and fault type
detection take less than one second, which meets the need of real-time.

8 Normal Artificial Neural Network (ANN) for PSFC

Before using the rmNN to classify the power system faults, two normal artificial
neural networks were investigated. Each row in the information table (Table 12)
is an input to the neurons in the first layer of both ANNs. No rough membership
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Fig. 75. The architecture of the single ANN power fault classification system

is computed. The performance of these two types of ANNs is addressed in detail
in the following two sections.

8.1 A Single ANN for PSFC

First, a single ANN was considered to classify 12 types of faults. The single ANN
is designed with 3 layers, containing 17 neurons in the input layer and hidden
layer and 4 neurons in the output layer. Each neuron in the output layer indicates
one possible type of fault. As seen in Table 12, some *.x01 files are involved with
4 types of faults, i.e., F082016A.x01 is intervened with faults 1, 3, 5 and 7. The
four output neurons are expected to output 1, 3, 5 and 7 respectively when
processing fault F082016A.x01.

The architecture of the single ANN is illustrated in Figure 75, where

hj = g

(
17∑

i=1

rijBi (obj n)

)
, (61)

Ok =
17∑

j=1

wjkhj , (62)

and g(·) is the logistic sigmoid activation function given by

g(a) =
1

1 + e−a
. (63)

The 17 neurons in the first layer receive values from functions representing
17 features. Unlike an rmNN, the features are not grouped. Back-propagation is
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Fig. 76. Learning performance of the single ANN for power system fault classification

adopted as the network training function. A gradient descent learning function
is used as the weights updating function, and the least squared error function is
used as the learning performance evaluation function. The learning performance
is shown in Figure 76. After 1600 learning cycles, the LSE converged to 1.23.

Once the ANN is calibrated, 168 test files are applied to evaluate the accuracy
of this ANN fault classification system. Four neuron output compared with four
targets are displayed in Figures 77, 78, 79 and 80, respectively. It is noticeable
that over 60% of testing files failed the verification.

8.2 Twelve Sub-ANNs for PSFC

The basic architecture of the second ANN power fault classification system is
similar to the rmNNs described earlier. Twelve ANNs are created and each of
them classifies one type of fault. An example of ANN for kth fault classification
is illustrated in Figure 81. The output from the 12 ANNs are the estimations
of the degrees of the 12 faults respectively. The output from the 12 ANNs are
forwarded to a decider neuron, which simply picks up the faults with degrees
above a preset threshold.

In Figure 81,

hk
j = g

(
17∑

i=1

rijBi (obj n)

)
, (64)

Ok =
17∑

j=1

wjh
k
j , (65)
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Fig. 77. Target 1 verification

Fig. 78. Target 2 verification

and g(·) is the logistic sigmoid activation function same as the one applied in
the first type of ANN.

The 17 neurons in the first layer receive values from functions representing
17 features. Again, the features are not grouped. Backpropagation is still used
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Fig. 79. Target 3 verification

Fig. 80. Target 4 verification

as the network training function, the gradient descent learning function as the
weights learning function, and the least squared error function as the learning
performance evaluation function. The learning performance for fault 3 and 5
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Fig. 81. The architecture of a sample ANN for kth fault classification

Fig. 82. The learning performance for fault 3 ANN

ANN is shown in Figures 82 and 83 respectively. After 800 learning cycles, both
LSEs are approximately 10.

After 800 learning cycles, 168 test files are applied to evaluate the perfor-
mance of the ANNs. The testing output for fault 3 and 5 ANN are displayed in
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Fig. 83. The learning performance for fault 5 ANN

Fig. 84. Fault 3 ANN verification

Figures 84 and 85 respectively. It is obvious that the threshold to pick up the
fault has to be reduced to 60% to generate better accuracy. The results for the
calibrations and verifications of the 12 ANNs are attached in an Appendix avail-
able at [15]. The classification accuracy is listed in Table 34. Compared with the
rmNN system, the accuracy of the ANN fault classification system is fairly poor.
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Fig. 85. Fault 5 ANN verification

Table 34. Accuracy of 12 ANNs for PSFC

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 93 0.011
AC Disturbance 44 25 0.432
Valve Current Closed/Blocked/Deblocked 44 14 0.680
Line Fault 22 13 0.410
Commutation Failure 25 5 0.800
Pole Voltages/Current Closed/Blocked/Deblocked 15 7 0.530
Current Arc Back 6 1 0.830
Parallel Operation 9 5 0.440
Pole Current Oscillation 7 7 0.000
Normal Affected by Another Pole 4 4 0.000
Asymmetric Protection 6 5 0.170
Disturbance on DC Voltage 7 7 0.000

It either produces low detection accuracy for the desired faults or generates a
great number of unexpected false alarms.

The failure of both ANN fault classification systems is possibly due to the
input, which are the 17 feature values. Consider the feature 5 (Pole Current
Trend), two possible codes are “313” and “343”. They are very close in terms of
the values of these two numbers when treated by the ANN system. But “313”
usually happens in fault 4 (Line Faults), and “343” happens in fault 1 (Minor
AC Disturbance). The rough membership computation distinguishes these two
numbers by assigning each of them with the degree of each type of fault, which
greatly improves the quality of the feature information and consequently the
classification performance.
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Table 35. Maximum and minimum rmNN output for false and true cases, respectively

Learning Verification
Lowest output for Highest output for Lowest output for Highest output for

true cases false cases true cases false cases
fault 1 0.94 0.08 0.93 0.01
fault 2 0.9 0.16 0.9 0.04
fault 3 0.87 0.22 0.82 0.19
fault 4 0.98 0.06 0.98 0.01
fault 5 0.94 0.14 0.95 0.04
fault 6 0.74 0.5 0.84 0.27
fault 7 0.85 0.31 0.79 0.01
fault 8 0.75 0.06 0.85 0.01
fault 9 0.87 0.15 0.87 0.01
fault 10 0.68 0.56 0.66 0.01
fault 11 0.61 0.34 0.81 0.39
fault 12 0.99 0.01 0.99 0.01

9 Classifier Fusion

9.1 Motivation in Using a Second Complementary Classifier

A number of classifier fusion methods have been recently developed and lead to
potential improvement in classification performance [1,6,30,34,35,67,74,75]. In
this section, a second successful classifier based on mean and standard deviation
evaluation of the sum of 11 rough memberships is proposed. The goal is to take
advantage of the diversity of two classifiers to improve the performance of PSFC.

To achieve high overall performance of the classification function, the perfor-
mance of each individual classifier has to be optimized prior to using it within
any fusion schemes. That is, the fusion scheme will be able to improve the overall
classification result relative to the performance of the individual classifiers. If sev-
eral classifiers with only marginal performance are being used, the results cannot
necessarily be expected to reach high performance. On the other hand, if several
classifiers are used that work exceptionally well, any further gains will be exceed-
ingly hard to accomplish because the opportunity for diversity is diminished.

Recall the performance of the 12 rmNNs. Table 35 lists the minimum rmNN
output for true cases and the maximum rmNN output for false cases in both
learning and verification. The classification performance of the rmNNs for fault
1, fault 2, fault 4, fault 5 and fault 12 are excellent and both the learning and
verification output for the true cases have high scores over 0.9, while for the false
cases have low scores less than 0.16.

Faults 1, 2, 4, 5 and 12 do not need to be reinforced by a second complementary
classifier. However, for faults 3, 6, 7, 8, 9, 10 and 11 classification, a second LMD
classifier is introduced to fusion the output from rmNNs in order to increase the
overall PSFC accuracy.

9.2 Linear Mean-Deviation (LMD) Based Classifier

The input for the linear mean and deviation based (LMD) classifier is the sum
of 11 rough memberships (SORM) in the training and testing tables for rmNNs.
Figure 86 shows the SORMs of 508 training files for fault 7.
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Fig. 86. The SORMs of 508 training files for fault 7

Fig. 87. Three sets of SORMs

From all the points of SORM output, three sets are constructed. Set 1 consists
of all the points of true case with SORM values over 0.85. Set 2 contains all the
points of true case with SORM values less than 0.85. Set 3 collects all the points
of false case. These 3 sets are illustrated in Figure 87.

The points in sets 2 and 3 will be employed to estimate the mean and deviation
values to establish the distribution functions of set 2 and set 3. Assuming that
xij is the jth point in set i and there are Ni points in set i. The mean and
absolute deviation for set i, i.e., μi and devi are defined as follows.

μi =
1
Ni

Ni∑

j=1

xij . (66)
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devi =
1
Ni

Ni∑

j=1

|xij − μi|. (67)

The Gaussian distribution function of set i, fi(x), is defined as,

fi(x) =
1√

2π(devi)2
e

−(x−μi)
2

2(devi)2 . (68)

Take fault 7 as an example, the mean and deviation of sets 2 and 3 are
calculated, and listed in Table 36.

Table 36. The mean and deviation of sets 2 and 3 for fault 7 training files

Fault 7 training files

set 2 set 3

μ2 dev2 μ3 dev3

0.758 0.12 0.126 0.324

The degree of fault 7 will then be calculated as described in (69)

deg(x) =
{
x, if x ≥ 0.85,
f2(x)+1−f3(x)

2 , if x < 0.85.
(69)

Keep the SORM as the degree of fault 7, if it is bigger or equal to 0.85.
f2(x)+1−f3(x)

2 is only applied to the points with SORM values that are less than
0.85. In this way, the degree of fault 7 of the points in set 2 is raised. This method
is applied to faults 3, 6, 7, 8, 9, 10 and 11. For example, the degree of fault 7 of
508 training files is shown in Figure 88.

Use the training files, the mean and deviation of sets 2 and 3 can be estimated
to set up the distribution function for the points of true case with SORM values
less than 0.85 and the distribution function for the points of false case. The
trained distribution functions will be applied to the test points to estimate the
degree of a type of fault. In this example, the degree of fault 7 is estimated.

The SORMs of fault 7 for 168 testing files are shown in Figure 89, and the
fault 7 LMD classifier output for 168 testing files are shown in Figure 90. The
degrees of fault 7 for all the true case points are above 0.87. One point, file 128,
exists in the verification output for fault 7 rmNN. It has a low estimation of the
degree of fault 7, which is only 0.79 (Table 35, Section 9.1).

The fault 10 LMD classifier results are illustrated in Figures 91, 92, 93 and 94.
The SORMs of 508 training files are shown in Figure 91, and the LMD classifier
training output is shown in Figure 92. The SORMs of 168 testing files are shown
in Figure 93, and the LMD classifier testing output is shown in Figure 94. In
Figure 91, it is very clear that only two points (file 471 and file 472) have low
SORM output (i.e., 0.745 and 0.746) and they are almost at the same level.
The distribution function of set 2 is designed based on these two points and the
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Fig. 88. Fault 7 LMD classifier output for 508 training files

Fig. 89. The SORMs of 168 testing files for fault 7

degree of fault 10 for these two points from the LMD classifier is high and raised
to 0.985. In the test, the degree of fault 10 for file 159 is boosted to 0.984 as
well. The rmNN classifier testing output for this point, however, is as low as 0.66
(Table 35, Section 9.1).

The LMD classifier training and testing results for fault 6 are illustrated in
Figures 95 to Figure 98. There is one point, file 90, in the fault 6 LMD classifier
testing output, which gives a low estimation of the degree of fault 6. The degree
of fault 6 is only 0.786.
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Fig. 90. Fault 7 LMD classifier output for 168 testing files

Fig. 91. The SORMs of 508 training files for fault 10

The SORMs for faults 3, 6, 7, 8, 9, 10 and 11 of both training and testing
files are listed in an Appendix available at [15]. The fault 3, 6, 7, 8, 9, 10 and
11 LMD classifier training and verification output is included in an Appendix
available at [15].

Table 37 summarizes the accuracy of the LMD classifiers. Except that the
accuracy for fault 6 classification is 0.93, the accuracy for all of the other 6
faults is 100%. LMD classifier considers the isolated points with medium and
low SORM values. For fault 7, “Current Arc Back”, and fault 10, “Normal
affected by another pole”, only 26 and 18 fault files are employed for calibration
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Fig. 92. Fault 10 LMD classifier output for 508 training files

Fig. 93. The SORMs of 168 testing files for fault 10

respectively; but the LMD classifier test result is 100% accurate. On the other
hand, the rmNN classifier gives poorer results when it deals with a fault with less
files participate in learning. For fault 7 and 10, the rmNN classifier verification
accuracy is only 0.83 and 0.75 respectively (Table 32, Section 7.4).

One point that needs mentioning is that the LMD classifier is not suitable
for the classification for all 12 faults. Look at the SORMs for the 508 training
files of fault 1 and fault 2 (Figures 99 and 100), where the SORMs of many false
and true cases are comparable, which causes the failure of the LMD classifier.
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Fig. 94. Fault 10 LMD classifier output for 168 testing files

Fig. 95. The SORMs of 508 training files for fault 6

The good thing is that the accuracy of the rmNN classifier for these two faults
is excellent and compensates the weakness of the LMD classifier.

9.3 Correlation of the rmNN and LMD Classifier

In classifier fusion, it is desirable to use classifiers that not only offer reason-
able performance but also have a mutually low correlation. If two classifiers are
completely redundant, many fusion schemes not only will not gain anything, but
will actually exhibit poorer performance. Obviously, some degree of confirmatory
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Fig. 96. Fault 6 LMD classifier output for 508 training files

Fig. 97. The SORMs of 168 testing files for fault 6

information is desirable, but it is the complementary information that gives the
multi-classifier fusion a chance for success.

In this section, the correlation of the rmNN and LMD classifier will be esti-
mated to prove that they are good candidates for classifier fusion.

According to the 2-Classifier correlation analysis mentioned in Section 3.2,
the formula for the correlation is:

ρ2 =
2×NFF

NTF + NFT + 2×NFF
, (70)
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Fig. 98. Fault 6 LMD classifier output for 168 testing files

Table 37. Accuracy of the LMD power fault classification system

Fault type # of files for # of files Accuracy
verification incorrect

Fault 3: Valve Current Closed/Blocked/Deblocked 44 0 1
Fault 6: Pole Voltages/Current Closed/Blocked/Deblocked 15 1 0.93
Fault 7: Current Arc Back 6 0 1
Fault 8: Parallel Operation 9 0 1
Fault 9: Pole Current Oscillation 7 0 1
Fault 10: Normal Affected by Another Pole 4 0 1
Fault 11: Asymmetric Protection 6 0 1

where,
TT represents that the output of the rmm NN is T and the output of the

LMD is T;
TF represents that the output of the rmm NN is T and the output of the

LMD is F;
FT represents that the output of the rmm NN is F and the output of the

LMD is T; and
FF represents that the output of the rmm NN is F and the output of the

LMD is F;
and the following two methods are also applied for the correlation evaluation.

1. Try 3 thresholds for the ‘true’ decision making;
2. Consider both the training and testing files.

The correlation estimations of rmNN and LMD classifier for faults 3, 6, 7,
8, 9, 10 and 11 are listed in the following 3 tables for 3 thresholds respectively.
Table 38 shows that the correlations are all 0 for 7 faults when the threshold
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Fig. 99. The SORMs of 508 training files for fault 1

Fig. 100. The SORMs of 508 training files for fault 2

= 0.8 for ‘true’ decision making. Table 39 shows that the correlations are still
0 when the threshold is pushed to 0.85. Table 40 shows that the correlation for
fault 6 and 11 are increased to 0.2 and 0.267 respectively when the threshold is
pushed to 0.86. But 0.2 and 0.267 still have a reasonably low correlation level to
ensure the success of the classifier fusion.

9.4 Results of the rmNN and LMD Classifier Fusion

The fusion methods are less important than the diversity of the classifier team,
but still need to consider which method is more suitable for specific problem
solving.
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Table 38. 2-Classifier correlation estimation (Threshold for true case is 0.8)

Threshold 0.8
Total true cases TT TF FT FF correlation

fault 3 189 189 0 0 0 0
fault 6 79 77 1 1 0 0
fault 7 32 31 0 1 0 0
fault 8 38 37 0 1 0 0
fault 9 38 38 0 0 0 0
fault 10 22 19 0 3 0 0
fault 11 31 30 0 1 0 0

Table 39. 2-Classifier correlation estimation (Threshold for true case is 0.85)

Threshold 0.85
Total true cases TT TF FT FF correlation

fault 3 189 188 0 1 0 0
fault 6 79 70 6 3 0 0
fault 7 32 29 1 2 0 0
fault 8 38 33 3 2 0 0
fault 9 38 37 1 0 0 0
fault 10 22 18 0 4 0 0
fault 11 31 20 0 11 0 0

Table 40. 2-Classifier correlation estimation (Threshold for true case is 0.86)

Threshold 0.86
Total true cases TT TF FT FF correlation

fault 3 189 188 0 1 0 0
fault 6 79 70 5 3 1 0.2
fault 7 32 27 3 2 0 0
fault 8 38 27 3 8 0 0
fault 9 38 37 1 0 0 0
fault 10 22 18 0 4 0 0
fault 11 31 18 0 11 2 0.266667

The classifier fusion function for two classifiers can be minimum, maximum,
average, median and oracle. The majority vote usually applies when having
more than two classifiers. The minimum will not help in this PSFC system. The
maximum and oracle emphasize the possible true points and it is easy to generate
a false alarm. The average and median methods are relatively soft and safe and
their performances are approximately the same. The average method is tried in
this PSFC system and tested out to gain excellent classification performance.

Once again, take fault 7 as an example. The training output for fault 7 LMD
and the rmNN classifier are shown in Figures 101.1 and 101.2 respectively. The
output is the degree of fault 7. The average of the two training output is shown
in Figure 101.3. The lowest point in the true cases from the LMD classifier is
at file 350 with a value of 0.817. On the other hand, the lowest point in the
true cases from the rmNN classifier is at file 345 with a value of 0.845. After
averaging, the degree of fault 7 for file 350 is increased to 0.862, which is the
lowest point after classifier fusion. In the training, the rmNN classifier helps to
lift the lowest point and improve the PSFC performance.
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101.1: The learning output for fault 7 from the LMD classifier

101.2: The learning output for fault 7 from the rmNN classifier

101.3: The average of two learning output for fault7 from the LMD and
rmNN classifiers

Fig. 101. The learning output for fault 7 after the fusion of the LMD and rmNN
classifiers

Now consider the verification results, which are illustrated in Figures 102.1,
102.2 and 102.3. The lowest point in the true cases from the LMD classifier is at
file 91 with a value of 0.869. On the other hand, the lowest point in the true cases
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102.1: The verification output for fault 7 from the LMD classifier

102.2: The verification output for fault 7 from the rmNN classifier

102.3: The average of two verification output for fault7 from the LMD
and rmNN classifiers

Fig. 102. The verification output for fault 7 after the fusion of the LMD and rmNN
classifiers

from the rmNN classifier is at file 128 with a value of 0.792. After averaging, the
degree of fault 7 for file 128 is increased to 0.867, which is the lowest point after
classifier fusion; and the overall performance of the PSFC is improved. In the
testing process, the LMD classifier helps to lift the lowest point and improve the
PSFC performance.
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Table 41. Minimum learning output from the rmNN, LMD and fusioned classifier

Evaluation of classifier fusion performance (Training)
Minimum learning Minimum learning Minimum learning
output of rmNN for output of LMD for output after classifier

true cases true cases fusion for true cases
value file index value file index value file index

Fault 3 0.871 92 0.899 401 0.901 92
Fault 6 0.742 383 0.793 362 0.811 383
Fault 7 0.845 345 0.817 350 0.862 350
Fault 8 0.748 235 0.835 384 0.861 382
Fault 9 0.87 414 0.84 387 0.896 387
Fault 10 0.68 471 0.984 471 0.832 471
Fault 11 0.61 93 0.854 103 0.803 93

Table 42. Minimum verification output from the rmNN, LMD and fusioned classifier

Evaluation of classifier fusion performance (Verification)
Minimum verification output Minimum verification output Minimum verification output

of rmNN for true cases of LMD for true cases after classifier fusion
(true cases) for true cases

value file index value file index value file index
Fault 3 0.819 53 0.894 139 0.863 53
Fault 6 0.839 93 0.786 90 0.833 90
Fault 7 0.792 128 0.869 91 0.867 128
Fault 8 0.852 56 0.838 137 0.875 137
Fault 9 0.868 145 0.92 138 0.932 145
Fault 10 0.656 159 0.984 159 0.82 159
Fault 11 0.808 60 0.926 60 0.867 60

Table 43. The accuracy of the PSFC system

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 0 1.00
AC Disturbance 44 0 1.00
Valve Current Closed/Blocked/Deblocked 44 0 1.00
Line Fault 22 0 1.00
Commutation Failure 25 0 1.00
Pole Voltages/Current Closed/Blocked/Deblocked 15 0 1.00
Current Arc Back 6 0 1.00
Parallel Operation 9 0 1.00
Pole Current Oscillation 7 0 1.00
Normal Affected by Another Pole 4 0 1.00
Asymmetric Protection 6 0 1.00
Disturbance on DC Voltage 7 0 1.00

The Learning and testing results for faults 3, 6, 7, 8, 9, 10 and 11 after the
classifier fusion have been illustrated in an Appendix available at [15]. The overall
improvement of the PSFC performance will be discussed via Tables 41 and 42.

Table 41 lists the minimum learning output from the rmNN, LMD and fu-
sioned classifier for all the true cases in the training set. It is apparent that,
for faults 6, 8, 10 and 11, the minimums from rmNNs are lower than 0.8. After
classifier fusion the minimums are all above 0.8. On the other hand, for fault
6, the minimum from LMD is 0.793, lower than 0.8. After classifier fusion, the
minimum output is raised to 0.811.
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Table 42 lists the minimum verification output from the rmNN, LMD and
fusioned classifier for all the true cases in the testing set. It is apparent that,
for faults 7 and 10, the minimums from rmNNs are 0.792 and 0.656, both lower
than 0.80. After classifier fusion, the minimums are all raised above 0.82. On the
other hand, for fault 6, the minimum from LMD is 0.786, lower than 0.8. After
classifier fusion, the minimum output is raised to 0.833.

The accuracy of the PSFC, which benefits from the fusion of the rmNN and
LMD classifiers is listed in Table 43. The threshold for ‘true’ decision making is
still 0.8.

It is obvious that the overall performance of the PSFC was improved via the
fusion of the two classifiers, the rmNN and LMD. The two classifiers provide
complementary information that gives the 2-classifier fusion method a chance
to succeed. The accuracy of the PSFC is 100%, which provides confident infor-
mation for fault decision making and enhances the quality of the power system
protection functionality.

10 Conclusion

This paper introduces a rough set approach to power system fault classifica-
tion. A form of rough neural computing based on the use of rough membership
functions is introduced in the design of what is known as a rough membership
function neural network (rmNN). A rough membership function makes it pos-
sible to measure the degree that any specified object with given feature values
belongs to a given set X . The set X in this application is a set of fault files,
which represent the same type of fault. Each rmNN has 3 layers: input, hidden,
and output. The input layer contains what are known as rmf neurons, i.e., neu-
rons that compute the degree overlap between a specific class containing objects
representing a fault type and a set of sample objects representing fault signals to
be classified. The neurons in the hidden layer aggregate the output from the rmf
neurons. The hidden layer neurons are designed using fuzzy set theory, which
is ideally suited for numerical representation of aggregated rmf neuron output.
The output neuron of an rmNN estimates the degree of a specific type of fault.

The most significant contribution of this research is a demonstration that
the rough membership function successfully distinguishes objects with similar
feature values. This makes rmNN a reasonable choice as a power system fault
classifier.

A C++ and Labview based graphic user interface is implemented for the
rmNN classifier, which makes the power system fault classification easy to
operate.

To further improve the performance of the proposed approach to power system
fault classification, a 2-Classifier fusion method has been introduced. This fusion
method takes into account both the results of the rmNN classifier as well as a
linear mean and standard deviation (LMD) based classifier. The correlation of
the rmNN and LMD classifiers was estimated and has proved to be low enough
to ensure that these two classifiers provide complementary information and are
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good candidates for classifier fusion. The ‘average’ method was selected as a
fusion function.

Future work will include an extension of the TranscanTM system used by
Manitoba Hydro. In addition, it is possible to reduce the complexity of this clas-
sification system by searching for minimal subsets of attributes approximately
preserving the decision information using rough set algorithms based on dis-
cernibility and Boolean reasoning. It is possible that the method of hierarchical
learning with domain knowledge can be well adjusted. It is also possible to con-
sider various forms of unsupervised, adaptive learning as a means of classifying
power system faults.

Acknowledgements

We gratefully acknowledge the suggestions, comments, and insights concerning
this monograph by Professors Gert Martens, Mirek Pawlak, David Gunderson,
Zbigniew Ras and Andrzej Skowron. This research has been supported by Man-
itoba Hydro and Natural Sciences & Engineering Research Council (NSERC)
grant 185986. The assistance provided by Mr. L. Crowe and the other engineers
and staff at Manitoba Hydro Dorsey Station is also very much appreciated.

References

1. Alkoot, F., Kittler, J.: Experimental Evaluation of Expert Fusion Strategies. Pat-
tern Recognition Letters 20(11), 1361–1369 (1999)

2. Alpagini, J., Peters, J.F., Skowron, A., Zhong, N. (eds.): RSCTC 2002. LNCS
(LNAI), vol. 2475. Springer, Heidelberg (2002)

3. Bazan, J.G., Peters, J.F., Skowron, A.: Behavioral pattern identification through
rough set modelling. In: Slezak, D., et al. (eds.). LNCS (LNAI), pp. 685–694.
Springer, Berlin (2005)

4. Bazan, J., Osmolski, A., Skowron, A., Slezak, D., Szczuka, M., Wroblewski, J.:
Rough set approach to the survival analysis. In: Alpigini, J.J., Peters, J.F.,
Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 522–
529. Springer, Heidelberg (2002)

5. Bazan, J., Skowron, A., Slezak, D., Wroblewski, J.: Searching for the complex
decision reducts: The case study of the survival analysis. In: Zhong, N., Raś,
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A Correlation Theory

Correlation is the degree to which two or more quantities are linearly associated.
The cross-correlation of two complex functions f(t) and g(t) of a real variable t,
denoted f � g, is defined by (71) [47]

f � g = f̄(−t) ∗ g(t), (71)

where ∗ denotes convolution and f̄ is the complex conjugate of f(t). Since con-
volution is defined as (72)

f(t) ∗ g(t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ, (72)

it follows that
f(t) � g(t) =

∫ ∞

−∞
f̄(−τ)g(t− τ)dτ. (73)

Let τ ′ ≡ −τ , dτ ′ = −dτ , then (73) is equivalent to

f � g =
∫ −∞

∞
f̄(τ ′)g(t + τ ′)(−dτ ′)

=
∫ ∞

−∞
f̄(τ)g(t + τ)dτ. (74)

Similarly, for a complex function f(t), the autocorrelation ρf (t) is defined
by (75) [47]

ρf (t) ≡ f � f

= f̄(−t) ∗ f(t)

=
∫ ∞

−∞
f̄(τ)f(t + τ)dτ, (75)

Let series {ai, i = 0, 1, ..., N − 1} be a periodic sequence, then the autocorre-
lation of the sequences, sometimes called the periodic autocorrelation, is written
as (76) [86]

ρi =
N−1∑

j=0

ajaj+i, (76)

where the final subscript is understood to be taken modulo N . The cross-
correlation and autocorrelation discard phase information, returning only the
power, and are therefore irreversible operations.

The most important property of correlation is that f � f is maximum at the
origin (x = 0), in other words,

∫ ∞

−∞
f(u)f(u + x)du ≤

∫ ∞

−∞
f2(u)du. (77)

It is efficient to classify the waveforms of fault signals for differentiating one
fault from others by applying the cross-correlation and autocorrelation
operations.
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B Conventional Fast Fourier Transform (FFT)

Fourier methods such as the Fourier series and Fourier integral are used in ana-
lyzing continuous time signals. That is, Fourier methods are applicable in systems
where there is a characteristic signal s(t) defined for all values of t in the interval
[-∞, ∞].

A Fourier transform decomposes a waveform into a sum of sinusoids of differ-
ent frequencies [7]. The signal s(t) in the time domain is decomposed into the
sum of its sinusoids S(f) in the frequency domain by,

S(f) =
∫ ∞

−∞
s(t)e−j2πftdt, (78)

where j =
√
−1.

In this paper, the focus is on the application of what is known as the Dis-
crete Fourier Transform (DFT) that is applicable to discrete-time signals. A
discrete time signal s[n] is defined for values of n in the interval [-∞, ∞]. A
discrete Fourier transform is used in studying finite collections of sampled data
{s0, ..., sN−1} relative to the sequence {S0, ..., SN−1}. The DFT is given by,

Sk =
N−1∑

n=0

sne
−j 2π

N nk, k = 0, 1, ..., N − 1. (79)

A fast Fourier transform results from the application of a particular algorithm
that can compute the DFT more rapidly than other available algorithms [7].

C Wavelet Transform

The big disadvantage of a Fourier expansion is that it has only frequency res-
olution and no time resolution. This means that although we might be able to
determine all the frequencies present in a signal, we do not know when they are
present [81]. The wavelet transform provides a means of overcoming the short-
comings of the Fourier transform. In wavelet analysis, the use of a fully scalable
modulated window makes it possible to know the exact frequency and the exact
time of occurrence of this frequency in a signal. In other words, a signal can
simply be represented as a point in the time-frequency space. The window is
shifted along the signal and for every position the spectrum is calculated. Then
this process is repeated many times with a slightly shorter (or longer) window
for every new cycle. In the end, the result will be a collection of time-frequency
representations of a signal, all with different resolutions.

Wavelets provide a form of multiresolution analysis resulting from the collec-
tion of representations produced by applying a set of functions of different scales
to a signal. Large scales are used to paint the big picture, while small scales
expose the details. Thus, going from large scale to small scale is analogous to
zooming in.

The Continuous Wavelet Transform (CWT) in general is formally defined
by (80) [28]:

γ(s, τ) =
∫

f(t)Ψ∗s,τ (t)dt, (80)
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where ∗ denotes complex conjugation. Equation (80) shows how a function f(t)
is decomposed into a set of basis functions called wavelets. The variables s and
τ , scale and translation, are the new dimensions after the wavelet transform.
The inverse wavelet transform can be written as shown in (81) [28]:

f(t) =
∫ ∫

γ(s, τ)Ψs,τ (t)dsdτ. (81)

The wavelets Ψs,τ (t), sometimes called child wavelets, are generated from a
single basic wavelet Ψ(t), the so-called mother wavelet, by scaling (parameter s)
and translation (parameter τ) [28]. For a wavelet Ψs,τ (t), a family of curves with
parameters s and τ can be formed as:

Ψs,τ (t) =
1√
s
Ψ(

t− τ

s
), (82)

where s is the scale factor, τ is the translation factor and 1√
s

is the factor for
energy normalization across the different scales.

Unlike the Fourier transform or other transforms, the wavelet basis function,
Ψ(t) is not specified. The theory of wavelet transforms deals with the general
properties of the wavelets and wavelet transforms only. It defines a framework
for designing wavelets that satisfy different applications.

When discrete wavelets are used to transform a continuous signal, functions
of the form shown in (83) are selected [8].

Ψj,k(t) =
1√
sj
0

Ψ(
t− kτ0s

j
0

sj
0

), (83)

which is normally a piecewise continuous function, where j and k are integers and
s0 > 1 is a fixed dilation step. The translation factor τ0 depends on the dilation
step. The effect of discretizing the wavelet is that the time-scale space is now
sampled at discrete intervals. We usually choose s0 = 2 so that the sampling of
the frequency axis corresponds to dyadic sampling as shown in Figure 103. This
is a very natural choice for computers, the human ear and music for instance.
For the translation factor, it is usual to choose τ0 = 1 so that there is also a
dyadic sampling of the time axis.

Practical applications require Discrete Wavelet Transforms (DWT). The dis-
crete wavelets can be made orthogonal to their own dilations and translations by
special choices of the mother wavelet. There is a large class of wavelet functions
for which the set of child wavelets is an orthogonal basis. The simplest of these
is the Haar wavelet. An arbitrary signal can be reconstructed by summing the
orthogonal wavelet basis functions weighted by wavelet transform coefficients.

The DWT and Inverse DWT (IDWT) of a signal f(t) are defined in (84)
and (85), respectively.

γj,k =
∫ ∞

−∞
f(t)Ψj,k(t)dt. (84)
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Fig. 103. Localization of discrete wavelets in the time-scale space on a dyadic grid [81]

f(t) =
∑

j

∑

k

γj,kΨj,k(t), (85)

Such wavelets give rise to a Wavelet Multiresolution Analysis (MRA) derived
as follows.

Define Wj to be a set of all signals f(t) which can be synthesized from the
child wavelets Ψj,k(t), −∞ < k <∞. These spaces are orthogonal to each other
and we can synthesize any signal f(t) using (86)

f(t) =
∞∑

j=−∞
fj(t),

fj(t) =
∞∑

k=−∞
γj,kΨj,k(t), (86)

where fj(t) is in the space Wj .
There is another way to express this idea. Define Vj to be the set of all signals,

f(t), which can be synthesized from the child wavelets Ψi,k(t) where i < j and
−∞ < k <∞ as in (87)

f(t) =
j−1∑

i=−∞

∑

k

γi,kΨi,k(t). (87)

The spaces Vj are nested inside each other, as follows:

{0} ⊂ ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ L2. (88)

As j goes to ∞, Vj enlarges to become all energy signals (L2). As j goes to −∞,
Vj shrinks down to only the zero signal. It is clear from the definitions that every
signal in Vj+1 is the sum of a signal in Vj and Wj because

f(t) =
j∑

i=−∞

∑

k

γi,kΨi,k(t) =
j−1∑

i=−∞

∑

k

γi,kΨi,k(t) +
∑

k

γj,kΨj,k(t). (89)
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Fig. 104. MRA: nested subspaces

Hence, it can be written:

Vj+1 = Vj + Wj . (90)

This shows that the spaces Wj are the differences (in the subspace sense)
between adjacent spaces Vj+1 and Vj . The spaces Vj and Wj can be visualized
as shown in Figure 104.

The term Wavelet Multiresolution Analysis (MRA) refers to the analysis
of signals in relation to a nested sequence of subspaces like the one shown in
Figure 104. For example, to decompose a signal, f(t), in space V0 a few times,
use the following decomposition:

V0 = V−1 + W−1

= V−2 + W−2 + W−1

= V−3 + W−3 + W−2 + W−1

= V−4 + W−4 + W−3 + W−2 + W−1. (91)

This leads to various decompositions:

f(t) = A1(t) + D1(t)
= A2(t) + D2(t) + D1(t)
= A3(t) + D3(t) + D2(t) + D1(t)
= A4(t) + D4(t) + D3(t) + D2(t) + D1(t), (92)

where Di(t), in W−i, is called the detail at level i and Ai(t), in V−i, is called the
approximation at level i.

Figure 105 gives an example of how the decomposition can be carried out in
MatlabTM using the wavemenu interface. There are a number of sample signals,
which can be used for a demonstration analysis. The signal sumsin is the sum
of two sine waves, and is decomposed four times in this example.

Notice that different aspects of the signal appear at different levels of the
details and approximations in Figure 105.
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105.1: First level decomposition 105.2: Second level decomposition

105.3: Third level decomposition 105.4: Forth level decomposition

Fig. 105. An example of Wavelet Multiresolution Analysis (MRA) decomposition

The space Vj has a very important property related to time compression by
factors of 2. The MRA Two Scale Property asserts that a signal f(t) is in the
space Vj if and only if, f(2t) is in the next space Vj+1. Therefore, investigation
of the multiresolution analysis leads to a scaling function, a pair of discrete time
filters, and a perfect reconstruction filter bank, which can be used to calculate
the DWT quickly. In other words, a wavelet has a band-pass like spectrum. Given
that compression in time is equivalent to stretching the spectrum and shifting
it upwards, a time compression of the wavelet by a factor of 2 will stretch the
frequency spectrum of the wavelet by a factor of 2 and also shift all frequency
components up by a factor of 2. Using this insight, the finite spectrum of a signal
can then be covered with the spectra of dilated wavelets in the same way that
the signal is covered in the time domain with translated wavelets. Alternatively,
if one wavelet can be seen as a band-pass filter, then a series of dilated wavelets
can be seen as a band-pass filter bank.

The filter bank can be built in several ways. One way is to build many band-
pass filters to split the spectrum into frequency bands. Another way is to split
the signal spectrum into two (equal) parts, a lowpass and a highpass part. The
low-pass part can be split into a lowpass and a highpass part again. This split-
ting process continues until the details of a signal that has been exposed are
satisfied. In this way, an iterated filter bank is created as shown in Figure 106.
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Fig. 106. Splitting the signal spectrum with an iterated filter bank [81]

Fig. 107. Four mother wavelets often used in wavelet analysis [36]

Four mother wavelets often used in wavelet analysis are shown in Figure 107.
The difference between these wavelets is mainly due to the different lengths of
filters that define the wavelet and scaling functions [36].

The scaled (dilated) and translated (shifted) versions of the Daubechies
mother wavelet are shown in Figure 108. Daubechies wavelets belong to a spe-
cial class of mother wavelets and are actually used most often for detection,
localization, identification and classification of power disturbances.

Transient signals in a power system are non-stationary, time-varying voltage
and current signals. Wavelet transforms are feasible to provide efficient and lo-
calized analysis of non-stationary, fast transient fault signals for power systems.
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Fig. 108. Scaled and translated versions of the D4 wavelet [36]

More detailed discussion on the application of wavelets analysis for classification
of fault signals for power systems will be addressed in Section 4.2.

D Time-Frequency Representation (TFR) Theory

In addition to applying wavelet theory to power system fault classification, the
Time-Frequency Representation (TFR) algorithm is becoming attractive to sci-
entists and engineers in the power industry. This section will introduce the basics
of TFR theory, and Section 4.3 will present the TFR in classifying power system
faults.

TFR P (t, f) can be expressed as a two-dimensional Fourier transform of
the product of the ambiguity plane A(η, τ) of the signal and a kernel function
ϕ(η, τ) [14]:

P (t, f) =
∫ ∞

−∞

∫ ∞

−∞
A(η, τ)ϕ(η, τ)ej2πηte−j2πfτdηdτ, (93)

where t represents time, f represents frequency, η represents continuous fre-
quency shift, and τ represents continuous time lag. The ambiguity plane A(η, τ)
for a given signal s(t) is defined as:

A(η, τ) =
∫ ∞

−∞
s(t)s∗(t + τ)ej2πηtdt, (94)

where s(t) represents the signal at time t, and s(t + τ) represents the signal at
a future time t + τ , and the s∗(t + τ) means the complex conjugate of s(t + τ).

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is either
0 or 1). Feature points are ambiguity plane points of locations (η, τ) where
ϕi[η, τ ] = 1.
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