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Preface

These are the proceedings of the 10th Workshop on Cryptographic Hardware and
Embedded Systems (CHES), held in Washington D.C., USA, August 10-13, 2008.
This workshop was sponsored by the International Association for Cryptologic
Research (TACR).

The CHES 2008 workshop attracted 107 submissions from 23 countries, of
which the program committee selected 27 papers for publication. The review pro-
cess followed strict standards: each paper received at least four reviews; members
of the program committee were restricted to submitting at most two papers. The
42 Program Committee members from 13 countries were selected carefully to en-
sure that different fields, such as hardware and software implementations, active
and passive implementation attacks, cryptanalysis and cryptography including
random number generation, embedded systems, and trusted computing, were
well represented and a balance between academia and industry was achieved.
Counting all Program Committee members, external reviewers, and the Pro-
gram Co-chairs, we had 158 people contributing to the review process. We would
like to thank all Program Committee members and external reviewers for their
contribution to the review process.

In just 10 years, the CHES workshop has grown to become the flagship
event in its area, attracting high-profile papers and attendees from academia
and industry. This excellence is reflected in the quality of the contributed pa-
pers and invited talks. In cooperation with the CHES Steering Committee, the
Program Committee awarded the CHES 2008 Best Paper Award to two contri-
butions: “Attack and Improvement of a Secure S-box Calculation Based on the
Fourier Transform” by Jean-Sébastien Coron, Christophe Giraud, Emmanuel
Prouff and Matthieu Rivain, and “Time-Area Optimized Public-Key Engines:
MQ-Cryptosystems as Replacement for Elliptic Curves?” by Andrey Bogdanov,
Thomas Eisenbarth, Andy Rupp and Christopher Wolf. The purpose of the
award is to formally acknowledge excellence in research. We would like to con-
gratulate the authors of these two papers. In addition to presentations of peer-
reviewed papers there were excellent invited presentations. At the time of com-
piling the proceedings, an invited talk by Adi Shamir on “RSA: Past, Present
and Future”, and an invited talk by Ernie Brickell from Intel on “A Vision for
Platform Security” had been confirmed.

In order to celebrate the 10th anniversary of CHES, the workshop program
included a tour of the National Cryptologic Museum in Fort Mead and a talk
by Christof Paar and Cetin Kaya Kog¢ on the history of CHES. In addition
there was a rump session and a panel discussion. Special thanks for making
these possible and taking care of the local organization go to the General Co-
chairs Kris Gaj and Jens-Peter Kaps (both from George Mason University). We
are also greatly indebted to the CHES Steering Committee for their guidance



VI Preface

and support throughout the process of putting this program together. The peer
review process and the production of these proceedings were greatly facilitated by
the TACR Webreview System. Shai Halevi (IBM) receives our sincere gratitude
for providing and maintaining this software, and for always being prepared to
help.

We would also like to acknowledge and thank our sponsors, many of whom
have generously supported the workshop over the years. At the time of writ-
ing this preface a number of companies had been confirmed as sponsors: Cryp-
tography Research, Inc., CygnaCom Solutions, escrypt GmbH, IBM Research,
Oberthur Technologies, Philips Intrinsic-ID, Research Center of Information Se-
curity (RCIS) Japan, and Thomson R&D France.

Finally, we would like to thank all the researchers and authors from all over
the world who submitted their work to the CHES 2008 conference and whose
efforts create the vibrant field of research that CHES is proud to represent.

August 2008 Elisabeth Oswald
Pankaj Rohatgi
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Attack and Improvement of a Secure S-Box
Calculation Based on the Fourier Transform

Jean-Sébastien Coron', Christophe Giraud?, Emmanuel Prouff?,
and Matthieu Rivain!?

! University of Luxembourg
jean-sebastien.coron@uni.lu
2 Oberthur Technologies
{c.giraud,e.prouff,m.rivain}@oberthurcs.com

Abstract. At CHES 2006, a DPA countermeasure based on the Fourier
Transform was published. This generic countermeasure aims at protect-
ing from DPA any S-box calculation used in symmetric cryptosystems
implementations. In this paper, we show that this countermeasure has a
flaw and that it can be broken by first order DPA. Moreover, we have
successfully put into practice our attack on two different S-box imple-
mentations. Finally, we propose an improvement of the original counter-
measure and we prove its security against first order DPA.

1 Introduction

The processing of a cryptographic algorithm on a physical device may leak infor-
mation about the manipulated data. To exploit this information, Side Channel
Attacks (SCA) were introduced in 1996, cf. [8]. It is today composed of a large va-
riety of attacks that differ in the attack model, the nature of the side channels they
target or the leakage treatments they perform. The Differential Power Analysis
(DPA) introduced in [9] is probably the one which has received the most attention
in the literature. This attack has indeed been demonstrated to be very powerful
against unprotected cryptographic implementations, where it allows the attacker
to recover the value of a secret key with only a few leakage measurements. Roughly
speaking, a DPA is a statistical attack that correlates a physical leakage with the
values of particular intermediate variables (called sensitive variables in this pa-
per) that depend on both a public value and the secret key. To avoid information
leakage and its exploitation by DPA, the manipulation of sensitive variables must
be protected by adding countermeasures to the algorithm.

A very common countermeasure to protect block cipher implementations from
DPA is to mask every sensitive variable with a randomly generated variable
(called mask) and then to perform the calculations by only manipulating the
masked variable and/or the mask. When such a technique is applied, a problem
occurs which is usually referred in the literature as the mask correction Problem.
It relies on the difficulty of masking the calculation of non-linear sub-functions
(e.g. the so-called S-bozes), without ever manipulating an intermediate variable
that depends on sensitive data. Many papers have been published that aim at
providing a solution to this problem (see for instance [II7ITOITTIT2]). At CHES

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 1 2008.
© International Association for Cryptologic Research 2008
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2006, Prouff, Giraud and Auménier proposed in [I1] a solution that may be of
particular interest when the input/output dimensions of the function to protect
are small and when the masks values are regenerated many times during the
algorithm processing. Moreover, the solution is provided together with a proof of
security that allows the reader to formally validate its security. In this paper, we
show that contrary to what is claimed in [I1], a DPA attack can be successfully
mounted against this countermeasure. We exhibit the flaw upon which our attack
is based and we present how to successfully exploit it to recover the value of a
secret parameter. Finally, we propose an improvement of the countermeasure
proposed in [I1] and we prove its security versus DPA in a realistic model.

2 Preliminaries

In the rest of the paper, we say that a variable is sensitive with respect to DPA
(shortened to sensitive variable in the context of the present paper) if it is a
non-constant function of a plaintext and a secret key. A DPA (also called first
order DPA in the literature when it is compared to higher order DPA) exploits
the leakage about a single intermediate sensitive variable. Hereafter, we recall
the formal definition of the security against DPA (see for instance [2/4ITT]).

Definition 1. A cryptographic algorithm is said to be secure against DPA if all
its intermediate variables are independent of any sensitive variable.

Conversely, an algorithm is said to admit a first order flaw if one of its interme-
diate variables depends on a sensitive variable.

A common countermeasure against DPA is to add (by bitwise or modular
addition) a random value called the mask to each sensitive variable. Masks and
masked variables propagate throughout the cipher in such a way that every
intermediate variable is independent of any sensitive variable. This strategy,
called first order masking, ensures that the instantaneous leakage is independent
of any sensitive variable, thus rendering DPA ineffective.

As pointed out for instance in [6I], the tricky part when masking the im-
plementation of an algorithm is to deal with the following problem, called mask
correction Problem:

Problem 1. Let F be a (n,m)-function (that is a function from F% into F3").
From a masked input Z ® R; € F5, the mask Ry € Iy and an output mask
Ry € FY*, compute F(Z) @ R without introducing any first order flaw.

3 Secure S-Box Calculation Based on the Fourier
Transform

In [I1], an algorithm claimed to solve Problem [ is proposed. The method is
based on the involutivity property of the Fourier Transform. Before describing
it, let us first recall some basics about the transformation itself.
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Algorithm 1. Computation of an arithmetically masked S-box output from a boolean
masked input

INPUTS: A masked input Z =Z ® Ry, the input mask R; and a lookup table P

OutpuT: The 3-tuple ((—1 )(ZEBRZ> BLP(Z) + Ry mod 2", R3, Rs) where Ry and Rj are
random values.

1. Pick up three n-bit randoms Ra, R3 and R4
2. result «— 2" Rs + R4
3. for a from 0 to 2" — 1 do

4. Ty« SSP(a,Z) [Ty = ( 1) )
5. T —ZGa [T> @ a]
6. Ty —To® Re [T» = ZEBaEBRﬂ
7. Ty — SSP(Rl,Tg) [T2 ( )Rl (Z@a@RQ)}
]. Ty — Ty x T [To = (—1)* Z®R;- (ZeBaGBRz)}
9. Ty Tz x Fla) [T: = F( )(—1)* ZOR (FBaRa)]
10.  result < result BT [result = (2" R3 + R4) B Z (B)(-1)" ZoR1: (Z@@RQ)}
i€{0,a}

11. end

12. result < result > n [result = (—1)(2@R2)'R1F(Z) + R3 mod 2"]

13. return (result, Rs, R»)

For every (n, m)-function F', the Fourier transform F of F is defined for every
Z =(Zo, -+, Zn—1) € FY by:

=Y Fla=n)*7, (1)

a€Fy

where - denotes the scalar product defined by a - Z = @] -0 aZZZ
It is well known that this transformation is involutive, which means that

F=2"F or equivalently that:
F(2)=_ Y Fla)(-1)"% ZeFy . (2)

Let Ry, R2, Rz and R4 be 4 random masks belonging to 5, and let Z denotes
a sensitive variable. The algorithm proposed in [T1] to process F(Z)+ Rz mod 2"
securely from Z=7® R; and R;, implements the right-hand side calculus of
the following relation (which is a slightly modified version of Relation (2])):

(—1)Z®R2)F1 p(7) 4 Ry mod 27

_ 21n R/ + Z F a Z@Rl (Z@L‘L@Rg) mod 22n , (3)
aclFy

where R’ = 2"R3 + Ry.
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Let SSP denote the signed scalar product X,Y s (—1)X'Y let @ denote the
addition modulo 22" and let x denote the multiplication of two values belonging
to {—1,1}. We recall hereafter the algorithm proposed in [II] to process the
right-hand side of (B securely.

Finally, it is proposed in [I1] to use the method described in [5] in order to
transform the arithmetic masking of the output of Algorithm 1 into a boolean
masking.

The authors of [I1] had proposed a proof of security versus DPA for the
countermeasure defined by Algorithm 1, but as we will see in the next section,
the proof is flawed and the countermeasure is not secure against DPA.

4 DPA against the Fourier Transform Based S-Box
Calculation

4.1 First Order Flaw

Unlike what is claimed in [I1], the implementation of Algorithm 1 is not immune
against DPA. Indeed, the variable V = a - 7D R, - (Z @ a ® Rg) processed at
Step 8 brings information about the sensitive variable Z (recalling Z = Z & Ry ).
To exhibit the dependency between V and Z, let us first rewrite V' as follows:

V=a-Z®R - (Z®a®dRy)
—a-(ZO®R) G R - (Z®a®Ry)
—a-Z®R, - (Z®R,) .

The relation above shows that the intermediate variable V' equals the sensitive
variable a-Z (a being a loop index) masked with the scalar product Ry -(Z® R3).
Since Ry is uniformly distributed and is independent of both Z and Ry, then so
does the variable Z & Ry. The flaw of the method proposed in [IT] comes from the
fact that the scalar product of two uniformly distributed random variables does
not output an uniformly distributed random variable. For example, the product
by - by of two random bits b; and by equals 0 with probability 3/4, and equals
1 with probability 1/4. More generally, for n-bit random variables we have the
following lemma.

Lemma 1. Let X and Y be two random variables uniformly distributed over FY
and mutually independent. Then the scalar product X -Y satisfies

1

1
PrX Y =01 =+ ., - (4)

Proof. We have:
PX.Y=0=PX#0]-P[X-Y=0X#0+P[X=0]-PX-Y=0X=0].

Since the Boolean function y € Fy +— x -y is linear and not null for every
x # 0, we have #{z -y = 1} = #{z -y = 0} = 2"~ 1. This, together with the
fact that X and Y are independent, implies P[X -Y = 0|X # 0] = . Since

P[X Y =0/X =0]=1and P[X #0] = ¥, we deduce (@). o
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Remark 1. In the security proof conducted in [I1], it is stated that the uniform
distribution of X and Y implies the one of X -Y. We show in Lemma [] that this
assertion is actually wrong.

Lemma [Il implies that the distribution of R; - (2 @ R») has a bias 2n1+1 with
respect to the uniform distribution. Since the sensitive variable a - Z is masked
with a biased mask, the variable V' defined in () leaks information on a-Z. This
information can be used to recover Z by DPA.

4.2 DPA Attack

A DPA attack [9] targets the leakage L(b) generated by the processing of a
sensitive bit b in order to recover information about a secret which we denote
here by k*. It can be performed with only a few information about the leakage
and it actually only assumes that the expectation of L(b) depends on the value
of b. Let us first recall the outlines of the attack in the general case where b can
be expressed as:

b:f(Xak*)a (5)

where f is a Boolean function and X is a public variable.

Description. To perform a DPA, the target algorithm is executed several times,
say N, for a sequence of values (z;)i<n taken by X. For each execution, the
attacker measures the leakage [; generated by the processing of b. Then, the
resulting leakage measurement sequence (I;)i<n is involved to (in)validate a key
hypothesis k£ on k*. For such a purpose, the attacker first computes the se-
quence of guesses (b;);<n which are the predicted values of the bit b processed in
the successive executions: namely, for every ¢ < N we have b; = f(x;, k). Then,
the leakage measurements are separated in two categories: the ones for which
the predicted bit b; is equal to 1, and the ones for which it is equal to 0. Finally,
the so-called differential Ay corresponding to the difference between the mean
values of the two sets is computed:

A _Zi]\ilbixli_Zi]\il(l_bi)Xli (©)
E = N N .
Zi:l bi Zi:l(l - bi)

If the key hypothesis is correct then the expectation satisfies:
E[Ap] = E[L(1)] = E[L(0)] . (7)

If the key hypothesis is incorrect then a ratio o € [0, 1] of the b;’s is wrongly
predicted and the expectation of the differential satisfies:

E[Ay] = (1 = 20) (E[L(1)] = E[L(0)]) - (®)

Since « is usually around %, we have E[Ajzp+] ~ 0. This implies that, for a

sufficiently large N, the correct key hypothesis is such that Ay is of maximum
amplitude.
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Remark 2. Depending on the function f, it may happen that the correct key
hypothesis is not the single one for which Ay, is of maximum amplitude. Indeed,
a key hypothesis such that e = 1 also results in a differential of maximal ampli-
tude. According to (@), this differential and the one corresponding to the correct
key hypothesis have exactly the same amplitude but have opposite signs. To dif-
ferentiate them the attacker needs to determine the polarity of E[L(1)]—E[L(0)].

DPA Attack Exploiting a Biased Mask. Let us now consider the case where
the target bit b is masked, namely:

b=f(X,k")®R, 9)

where R is a random bit.

If R is uniformly distributed over F5, then no successful DPA attack is possible.
Indeed, in that case b equals 0 (resp. 1) with probability } independently of
k*. Conversely, when the distribution of R is biased compared to the uniform
distribution, then the distribution of b depends on f(X, k*), which renders DPA
possible. In the following, we denote by & # 0 the bias such that P[R = 0] = ] +e.

The DPA works in the same way as in the unmasked case. The sequence
of guesses is still defined as b; = f(z;,k) (since R is not predictable) and the
differential Ay is computed according to (Bl). The randomization provided by R
implies that the bit effectively processed equals f(xz;, k*) with probability % +e.
One deduces that, for the correct key hypothesis, a portion é + € of the b;’s is
correctly predicted while a portion é — ¢ is wrongly predicted in average. This
implies that the expectation of the differential for the correct key hypothesis
satisfies:

Blaw] = ( + ¢) (BLL] - ELO) + (5~ <) (BlEO) - ELza)) .

that is:
E[Ag+] = 2e x (E[L(1)] — E[L(0)]) .

Hence the expectation of Ag« is divided by a factor 215 compared to an unpro-

tected implementation (this also holds for the differentials Ay obtained for wrong
key hypotheses — see Appendix [A] - ). This implies, according to the analysis
in [3], that the number of required leakage measurements is roughly multiplied
by (215)2. A more detailed analysis is conducted in Appendix [Al where we give
the exact distribution of Ay, assuming that the leakage noise has a Gaussian
distribution.

As a result, Lemma [[] implies that a DPA on Algorithm 1 exploiting the flaw
exhibited in Section Bl is expected to require about 22" times more leakage
measurements than a DPA when no masking is used. Since Algorithm 1 is only
interesting for a small value of n (e.g. n = 4), this factor is not prohibitive.

4.3 DPA Attack on the Flaw

In this section, we apply the DPA attack described in Section in order to
exploit the flaw exhibited in Section Il More precisely, our attack targets a bit
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b which is a scalar product a - Z masked with a biased mask R = Ry - (Z & Ry),
that is
b=a-Z®R. (10)

We recall that a refers to a loop index in Algorithm 1 and that its value can be

chosen by the attacker among {0,---,2"™ — 1}. The sensitive variable Z is the

sensitive S-box input and it can be written as a function of a public variable X

and a piece of secret data k*. The way our attack is performed depends on this

function which can take several forms. In the sequel we consider two usual cases.
The first one is referred as the linear case and assumes:

Z=Xa®k" .

This occurs for instance in AES and in FOX algorithms for the first round S-box
calculation.

The second case, referred as the non-linear case, assumes the existence of a
non-linear transformation ¢ such that:

7 =¢(X Dk .

This occurs for instance in the AES algorithm implemented using the composite
field method [TOITT] (see [11, §4.1] for details). In that case, ¢ is the non-linear
(8,4)-function which from a € Fasg processes d € Fig according to the notations

of [TONTT].

The Linear Case. We consider here the case where the targeted bit can be
expressed as b= a - (X ® k*) @ R that is:

b=a-XPa-k*®R . (11)

The bit b in (1) only depends on one secret binary value a - k*. Therefore, a
DPA on b will provide at most one bit of information on k*. Hence, recovering
the whole secret k* requires to perform a DPA attack on b for ¢ different loop
indices ag, ..., Gt—1.

When mounting a DPA attack on b for a particular loop index a, the sequence
of guesses can only take one of the two following forms: (a - z;); or (a-z; @ 1);.
According to (@), these two sequences result in two differentials that are opposite
one to each other. The attacker does not know a priori which of these differentials
correspond to the correct key hypothesis. Indeed, depending on the device, the
polarity (—1)® of the good differential A,.p~ may be positive or negative. In
other terms, the DPA allows the attacker to recover the value of a-k* ® s, where
k* and s are unknown.

Since the polarity s is the same for all the loop indices a, then performing ¢
DPA attacks for ¢ different loop indices ag, ..., a;_1 provides the attacker with
a system of ¢ equations and n + 1 variables (the polarity bit s and the n bits
of k*). Solving this system requires to have at least t = n + 1 equations. After
choosing n indices a; having linearly independent vectorial representations in F?4
and after defining a,, = ag & ay, it can be checked that solving the system allows
the attacker to unambiguously determine the value of k*.
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The Non-linear Case. We now consider the case where b satisfies:
b=a-¢(XDEK)DR. (12)

For a non-linear ¢, the attack is analogous to a classical DPA on some output
bit of e.g. a DES or AES S-box [9]. The non-linearity of ¢ ensures that for the
correct key hypotheses a peak of maximal amplitude will appear while for most
other key hypothesis no peak will appear. This enables to fully recover k*.

In this section, we have described how to exploit the leakage on a sensitive bit
which is masked with a biased random bit. In the linear case, the attack requires
to perform n + 1 DPAs while only one DPA is needed in the non-linear case. In
the following section, we present experimental results for these two attacks.

5 Experimental Results

We put into practice the attacks described in Section .2l for two S-box implemen-
tations on an 8-bit smart card. Both attacks exploited the power consumption
resulting from several S-box calculations.

Regarding the linear case, we performed the attack on the S-box calculation of
FOX algorithm during the first round protected by the method described in [IT].
In this case, the sensitive bits we targeted are of the form a- (X ®k*) ® R, where
a, X, k* € F3. Following the outlines of the attack described in Section for
the linear case, we have applied 4 + 1 DPAs on five different loop iterations of
Algorithm 1, namely one DPA for every a € {1,2,4,8,3}.

Figure [la represents the value of Z?:o Aa, .k, where a; = 2, obtained af-
ter 20 000 executions of the algorithm. The full black curve corresponds to the
correct subkey value k£* and the dotted black curve corresponds to the com-
plementary of this value. As expected, these two candidates are such that the
highest peaks of the differential vectors A,,.r are either all positive or all neg-
ative, hence leading to the highest amplitudes for Z?:o Ag, k. As explained in
Section L3l we then computed the differential A, g« for a = ag & a1 = 3. Fig-
ure [[lc illustrates this computation. The polarity of the highest peak of Az g«
being negative, one deduces that the correct subkey value k* corresponds to the
full black curve in Figure [la.

Figures [[Ib and [ld represent respectively the convergence of the peak of
maximal amplitude for Z?:o Ag, .k and for Az according to the number of
power consumption measurements. By analyzing these curves, we deduce that
the value of the 4-bit subkey k* is recovered by using about 8 000 executions of
the algorithm.

Regarding the non-linear case, we attacked the AES S-box calculation using
the composite field method in order to perform the inversion in F3 instead of F3
and the method of [IT] to protect this inversion (see [I1l § 4.1] for more details).
In that case, the targeted bit is of the form a - ¢(X @ k*) ® R where X, k* € F§,
a € F3 and ¢ : F§ — F3. Figure Pla represents the value of the differentials Ay’s
for k € F§ and a = 1, when 200 000 executions of the algorithm are used. It can
be seen that the correct subkey k* (plotted in black) is easily distinguishable.
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Fig. 1. Practical DPA attack — the linear case

Figure Plb represents the convergence of the maximum peak amplitude for
the differentials according to the number of power consumption measurements.
The analysis of these curves shows us that the value of the 8-bit subkey k* is
recovered after about 100 000 executions of the algorithm.

6 An Improved Version of a Secure S-Box Calculation

Inthe following we propose animprovement of Algorithm 1 that allows to circumvent

the flaw depicted in Section Iland also leads to a more efficient implementation.
The new algorithm is still a secure calculation of a Fourier Transform but it is

based on a slightly modified version of (B]) which we rewrite in the following form:

(-1)2F(Z) + R3 mod 2"
1 ~ _
= R + 2 : F(a)(_l)RQ@a.Z@a.Rl mod 2277, 7 (13)

on
acFy

where Z = Z ® Ry, Ry € F,, (R1, R3, Ry) € (F}3)® and R’ = 2"Rs3 + Ry.
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Fig. 2. Practical DPA attack — the non-linear case

After a brief look at (I3]) (and before the deeper analysis conducted later on
in this section), we can notice that the sensitive variable a - Z is now masked
with the uniformly distributed random bit Rs. Furthermore, it may be noticed
that the exponent in the summation in ([I3]) involves less operations than in (3)).
__ Let us denote by SP the function X, Y +— XY and by SFT the function X, 7" —
F(X)(—=1)T. As we prove in this section, Algorithm 2 implements ([3)) securely.

Algorithm 2. First order Secure S-box calculation

INPUTS: A masked value Z = Z @ Ry and the mask Ry

OuTpUT: The 3-tuple ((—1)%2F(Z) + R3 mod 2", R3, R2), where Ry and R are random
values.

1. Generate a random bit Ro

2. Generate two n-bit random R3z and R4
3. result +— 2"R3 + R4

4. for a from 0 to 2" — 1 do

5. T\« SP(a,Z) [Ty =a- 7
6. Ty «—T1 @ Rs [T1=R2®a~2]
7. T> «— SP(a, R1) [Ty =a- Ri]
8. T —T®T [T =R ®a-Z]
9. T, — SFT(a,T1) [Ty = ﬁ'(a)(—l)Rz@”"z}
10.  result «— result BT, [result = (2"R3 + R4) H ZiE{O,a} ﬁ(i)(_l)Rz@i.z]
11. end

12. result < result >n [result = (—1)%2 F(Z) + R3 mod 2"]

13. return (result, R3, R2)

Efficiency Analysis. Although Algorithm 2 is more secure than Algorithm 1,
it is also faster. For each loop, Algorithm 2 requires two XORs, two calls to the
function SP and one call to the lookup table SE'T. Therefore, for each loop Algo-
rithm 1 performs 2 extra multiplications compared to Algorithm 2. Combining
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this result with the fact that function SP is slightly faster than function SSP,
we deduce that our method is faster than the one proposed in [11].

Security Analysis. In Table[I] we list the intermediate variables of Algorithm 1
that involve a sensitive variable. The values which only depend on the loop
counter or on a random value are obviously omitted.

Table 1. The different sensitive values manipulated during Algorithm 2

Step Instruction Masked Value Mask(s)
5.1 register «— 7 7 R1
52 Ty «— SP(a,Z2) a-Z a- R
6 Thn « T1®R R:®a-Z Ro@a- R
8 T — TieT, Ro®a-Z Ro
9 Ty « SFT(a,T)) F(a)(—1)f28e7 Ry
10 result «— result BT; (2"Rs + Ra) B Y., F(i)(=1)"2%"Z (R, Rs, Ra)
11 result « result > n (=12 F(Z) + R3 mod 2" Rs

As it can be checked in Table [[l the intermediate variables manipulated at
Steps 5.1, 6, 8, 9, 10 and 11 are additively masked with a uniformly distributed
random variable (resp. Ri, Ro @ a - Ry, Ra, R, R3||Rs and Rj3) which is in-
dependent of the sensitive variable. Those intermediate variables are therefore
independent of the sensitive variable Z.

The intermediate variable at Step 5.2 can be rewritten a - Z @ a - R;. When «a
equals 0, this variable equals 0 whatever Z and R;. Otherwise, for every a # 0
the variable a - Ry is uniformly distributed and independent of Z. We deduce
that a - Z @ a- Ry (and hence a - Z) is independent of Z whatever a.

Therefore, we have proved that all the intermediate variables manipulated
during the execution of Algorithm 1 are independent of Z, which implies that
our method is secure against first order DPA.

7 Conclusion

In this paper, we have shown that a provably secure DPA countermeasure pub-
lished at CHES 2006 has a flaw. We have explained how this flaw can be exploited
to mount an efficient attack on S-box implementations protected by this coun-
termeasure. Our attack is not only theoretical since we have successfully put it
into practice on two different S-box implementations: the AES S-box using the
composite field method and the FOX S-box.

Finally, we have proposed an improvement of the CHES 2006 countermeasure
for which we prove the resistance against first order DPA. Moreover we showed
that our improvement is not only more secure but can also be implemented more
efficiently than the original countermeasure.
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A Distribution of the Differentials

In this section, we investigate the distribution of the differential Ay when the
attack targets a masked bit b = f(X, k*) @ R where R is a random bit satisfying
P[R=0] = é + €. Our analysis includes the unmasked case by setting ¢ to %

We make the usual assumption that the leakage has a Gaussian distribution:

Lb) ~N (/J - g(—1)b702> ; (14)
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where 41, 6 and o are constants and 6 equals E[L(1)] — E[L(0)].

The leakage measurement [; obtained for the ith encryption can thus be ex-

pressed as:

==y (D (13
where, for the i*" encryption, b7 is the unmasked value of b (i.e. bX = f(z;, k*)),
r; is the mask value and 7; is the noise in the leakage measurement.

We make the additional assumption that for every key hypothesis k, the se-
quence of guesses satisfies: #{i;b; = 0} = #{i;b; = 1} = N/2. This assumption
is realistic since the functions f(-, k) are usually balanced (i.e. #{x; f(x, k) =
1} = #{z; f(z,k) = 0}) and since the x;’s are usually uniformly distributed. It
allows us to rewrite (B) as:

9 N
Ap=— (Z(_WZ) : (16)

i=1

This relation together with (I3 leads to:

5 . 2 &
N O
S D STS I YIS Ayt
N N

i=1 i=1 i=1
bi=b* by #bF

Recalling that « is the ratio of the b;’s that are wrongly predicted (i.e. @ =
#{i;b; # bX}/N) and after rewriting (—1)" as 1 — 2r;, we get:

Ap=6(1—20)+ | Dori= Do = DD 0
i=1 i=1 =1

bi#b bi=b¥
Since r; is distributed over Fy with P[r; = 1] = 1/2 — ¢ then for every I C
{1,---, N}, the sum ), ;r; has a binomial distribution with parameter (#I,
1/2 —¢). Moreover, since 7; has a Gaussian distribution N'(0,0?), then the sum
zg\;l(—l)bi n; has a Gaussian distribution A(0, No?). This way, we obtain:

402 26 1 26 1
AwN(é(l—m), N)+NB(aN,2—e) - NB((l—a)N,Q—e) .

After approximating B(n,p) by N (np,np(1 — p)) (which is almost exact when
n > 30, np > 5 and n(1l —p) > 5), we finally get:

2 | 201 4.2
AkNN<2s><5(1—2a),4U +5]\([1 46)) .
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This relation shows that the biased masking results in a reduction of the
expectation of Ax and in an increase of its variance. The expectation is divided
by a factor 1/2e while its variance is multiplied by a factor 1 + §2(1 — 4¢2) /02,
When the leakage signal-to-noise ratio is low, i.e. o > §, then the biais has a weak
influence on the variance and its main effect is the reduction of the expectation.
According to [3] this results in an increase of the number of required leakage
measurements by a factor (1/2¢)2. If the leakage signal-to-noise ratio is not that
low, the increase of the variance is significant and the number of required leakage
measurements is multiplied by (1/2¢)?(1 + 62(1 — 4¢?)/0?).



Collision-Based Power Analysis of Modular
Exponentiation Using Chosen-Message Pairs

Naofumi Homma', Atsushi Miyamoto', Takafumi Aoki!,
Akashi Satoh?, and Adi Shamir3

! Graduate School of Information Sciences, Tohoku University
{homma ,miyamoto}@acki.ecei.tohoku.ac.jp, aokiGecei.tohoku.ac.jp
2 National Institute of Advanced Industrial Science and Technology
akashi.satoh@aist.go. jp
3 Weizmann Institute of Science
adi.shamir@weizmann.ac.il

Abstract. This paper proposes new chosen-message power-analysis
attacks against public-key cryptosystems based on modular exponen-
tiation, which use specific input pairs to generate collisions between
squaring operations at different locations in the two power traces. Un-
like previous attacks of this kind, the new attacks can be applied to
all the standard implementations of the exponentiation process: binary
(left-to-right and right-to-left), m-ary, and sliding window methods. The
SPA countermeasure of inserting dummy multiplications can also be de-
feated (in some cases) by using the proposed attacks. The effectiveness
of the attacks is demonstrated by actual experiments with hardware and
software implementations of RSA on an FPGA and the PowerPC pro-
cessor, respectively. In addition to the new collision generation methods,
a high-accuracy waveform matching technique is introduced to detect
the collisions even when the recorded signals are noisy and the clock has
some jitter.

Keywords: side-channel attacks, power-analysis attacks, RSA, modu-
lar exponentiation, waveform matching.

1 Introduction

Physical attacks on cryptographic modules using side-channel information are
attracting extensive attention. In order to reveal the secret parameters, the power
dissipation, the electromagnetic radiation, or the operating times related to in-
ternal operations are analyzed. Two of the best known attacks are Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) proposed by Kocher et
al. [1I2].

The original concept of side-channel attacks against modular exponentiation
[3] is to look for some physical phenomena which differentiates between multipli-
cation and squaring operations. Messerges presented a variety of power-analysis
attacks against RSA with some experimental results [4]. However, most of the
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implementations of modular exponentiation nowadays use the same sequence of
instructions to implement multiplications and squarings, and for random inputs,
it is very difficult to distinguish between these two operations. In order to cause
secret information to leak via the power waveforms, chosen-message attacks that
use specific data specialized for a particular cryptographic module were proposed
[BIGI7USIOITO].

The timing attacks against RSA with Montgomery multiplication [11] and/or
CRT algorithm in [5l6] measures the operating times caused by extra calcula-
tions depending on input data. The SPA with adaptively chosen messages [7] can
be applied to an RSA implementation using CRT based on Garner’s algorithm,
in which an extra modular reduction is performed at the end of the operation
according to the input data. The DPA using the Hamming weight of an inter-
mediate value [§] was also applied to RSA with CRT. These attacks focused
on specific RSA implementations, and thus information about the implementa-
tion is indispensable to reveal the secret keys. The first three attacks can be
defeated by inserting dummy operations, and the DPA of [8] cannot be applied
to implementations using the Montgomery algorithm.

Over the last few years, several researchers have proposed to use a power anal-
ysis technique which is a mixture of the simple and the differential approaches.
This technique compares two segments of power consumption data (within a
single execution or in two different executions) and uses the result to determine
whether the values operated on were the same or different. For example, when
we perform two multiplications a x b and ¢ x d, we expect the power consumption
curves to be similar when a = ¢ and b = d, and different in all other cases. This
can give us a simple equality oracle, even though it may be extremely difficult to
determine the actual values of a, b, ¢, and d from the complex waveforms. This
is not a standard SPA technique since we do not try to understand the details
of each waveform, and it is not a standard DPA since it is not based on the
statistical analysis of large collections of power traces. We propose to call such
attacks on pairs of waveforms CPA (Comparative Power Analysis).

One of the simplest attacks of this type was proposed by Yen et al [I0]. It
uses the particular input data of N — 1 where N is the modulus, which has
the special property that all its powers are either 1 or —1. However, a simple
countermeasure is to block the special message N — 1, and the attack can only
be applied to implementations using a left-to-right binary method.

Another attack of this type is the “doubling attack” of Fouque and Valette [9].
They used the two related input messages X and X2 to cause collisions between
adjacent time frames in the two power waveforms, where squaring operations
are performed. Since every message X can be part of such a message pair, it is
harder to block potentially harmful messages. As in the case of Yen’s method,
these attacks can only be applied to the left-to-right binary method, and the
authors make this point explicit in the title of their paper: “The Doubling Attack
- Why Upwards is Better than Downwards”.

In this paper we propose new power-analysis attacks using input pairs
which can be successfully applied to all the standard implementations of the
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exponentiation function, including both left-to-right and right-to-left binary
methods, m-ary (window), and sliding window methods. The major new ele-
ment of these attacks is the observation that an attacker can easily choose pairs
of messages that generate collisions between their power traces at arbitrary time
frames (which need not be the same or adjacent) even though he does not know
the factorization of the modulus and thus cannot extract modular roots. Infor-
mation about the locations of such non-adjacent collisions in the power traces is
then used to identify the bit pattern of the secret exponent. In the proposed at-
tack, the relationship between the two input messages can cope flexibly with the
many variants of exponentiation algorithms, including those which were immune
to previous attacks.

We demonstrate the practical effectiveness of the proposed attacks against
hardware and software implementations of RSA using a Xilinx FPGA with a
PowerPC processor core. In this experiment, a high-accuracy waveform matching
technique is introduced to find collisions between squaring patterns that appear
at different time frames even when the signal is noisy and the clock has some
jitter.

The remainder of this paper is organized as follows: Section 2 presents an
overview of modular exponentiation algorithms and describes power-analysis at-
tacks using a chosen-message pair. In Section 3, the new power-analysis attacks
using chosen-message pairs against binary and m-ary methods are proposed.
Section 4 describes the experimental results using actual RSA hardware and
software implementations. Finally, Section 5 contains some concluding remarks.

2 Preliminary and Related Attacks

2.1 Modular Exponentiation Algorithms

Modular exponentiation is one of the most important arithmetic operations for
public-key cryptography, such as the RSA scheme and the ElGamal encryption
scheme, and for the Diffie-Hellman key agreement. Basically, there are two types
of efficient exponentiation algorithms: binary methods and m-ary (or window)
methods [T2/T3].

The binary method performs multiplications and squarings sequentially ac-
cording to the bit pattern of the exponent. There are two variations of the algo-
rithm. The left-to-right binary method starts at the exponent’s MSB and works
downward. The right-to-left binary method, on the other hand, starts at the
exponent’s LSB and works upward. ALGORITHM 1 shows the left-to-right
binary method, where k indicates the bit length of the secret keys. Each multi-
plication (or squaring) operation requires a large number of clock cycles due to
the long operand length depending on the implementation. The binary method
is frequently used in smartcards and embedded devices, due to its simplicity and
low resource consumption.

The m-ary method processes more than one bit of the exponent in each iter-
ation cycle, in which the exponent uses a representation with base m. ALGO-
RITHM 2 shows the m-ary method in which the exponent is processed from
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ALGORITHM 1 ALGORITHM 2
LEFT-TO-RIGHT BINARY METHOD m-ARY METHOD
Input: X, N, Input: X, N,
FE = (ek_h...,el,eo)z FE = (ek_l,...,el,eo)gm,
Output: Z = X¥ mod N for m > 1.
1 7 =1; Output: Z = X¥ mod N
2 for i =k — 1 downto 0 1: go:=1;
3: Z :=7Z* Z mod N; 2: fori=1to2™ -1
4: if (e; = 1) then 3: gi=gi1%X; —g=X"
5: Z := 7 * X mod N; 4: end for
6 end if 5: Z:=1;
7 : end for 6: fori=+k—1downto 0
7 forl=1tom
8: Z := 7 * Z mod N;
9: end for
10: Z = Z* g, mod N;
11: end for

the MSB down to the LSB. The powers g; mod N (i =0,1,2,...,2™ —1) are pre-
computed and used in multiplication. The intermediate value Z is raised to the
power of 2" by repeating the squaring operation m times. The m-ary method
requires fewer clock cycles but more memory resources compared with the bi-
nary methods, and thus is often used for software implementation on processors
with large memory resources. The sliding window method is an extension of the
m-ary method to reduce the amount of pre-computation by using the presence
of zero bits in the exponent.

2.2 SPA Using a Chosen-Message Pair against Modular
Exponentiation

The doubling attack [9] uses the two related inputs X and X2. The secret ex-
ponent is revealed by detecting collisions of squaring operations in two power
traces. Fig. [[lillustrates an image of the doubling attack against the left-to-right
binary method in ALGORITHM 1 with the secret key exponent of “101001...”
The doubling attack can generate a collision between a squaring operation at
the ¢ + 1-th cycle in the power trace of X and a squaring operation at the i-th
cycle in that of X2 only if the corresponding key bit e; is 0. The collision for
squaring is detected by comparing the power traces, and thus we do not have
to know the intermediate data being processed. The doubling attack works on
modular exponentiation based on left-to-right binary methods including those
using the blinding countermeasures shown in [I4].

A different attack which uses the message pair X and —X (= N — X mod N)
was proposed by Yen et al [I0]. Fig. Plillustrates an image of this attack against
the left-to-right binary method. When the key bit e; is 0, a collision between
power traces can be observed for the two squaring operations during the same
iteration cycle.
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Fig. 1. Doubling attack. [9] Fig. 2. Yen’s attack. [10]

Both attacks exploit the fact that the values which are squared depend on the
bits of the secret exponent. As mentioned in [9], it is hard to apply the attack to
exponentiation algorithms such as right-to-left algorithms and window methods
that perform squaring operations independently of the secret exponent.

3 The New Attacks

The above two attacks generate collisions of squaring operations at the adjacent
or the same time frames in two power traces. In contrast, the proposed attacks
generate a collision between two power traces at two arbitrary time frames by us-
ing two input messages with a more flexible relationship. One input gives a power
trace including an unknown (multiplication or square) operation depending on
a target key bit to be estimated, which is called a target operation. The other
input gives a power trace including a square operation, the input of which can
be determined by the known sub-key bits, referred to as the reference operation.
The partial traces for the target and reference operations are called target and
reference waveforms, respectively. The collision between the target and reference
waveforms is used to estimate the target key bit.

Our attacks provide direct and backward estimations of the key exponent
using the collision. The direct estimation simply compares the target (squaring or
multiplication) operation with the reference (squaring) operation to identify the
target operation corresponding to the key bit. The backward estimation identifies
the target operation by comparing a squaring operation following the target
operation with the reference operation. Unlike all the previous techniques, these
new estimation techniques can be applied to all the standard exponentiation
techniques (including both left-to-right and right-to-left binary methods, m-ary
methods and the sliding window methods).

The simple trick we use in order to generate a collision at any pair of locations
in two power traces is to find a solution for any equation of the form Y =
Z” mod N, where o and 3 are given constants. Note that the attacker does not
know the factorization of N and thus cannot solve this equation by extracting
modular roots. However, he can choose an arbitrary value R and compute ¥ =
RPmod N and Z = R* mod N, which is clearly a solution for the equation.
This method is also applicable for CRT implementation that uses the prime
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Fig. 3. Attack on the binary method (direct estimation)

factors p and g of N as the moduli since the message pair Y and Z satisfies
Y = Z8 mod p and Y* = Z” mod q.

3.1 Attack on Binary Methods

First, the direct estimation of the binary method shown in ALGORITHM 1 is
described. Suppose that the sub-key bits £ (= ex—1, ..., ex—j) of the secret expo-
nent £ have already been obtained. In order to estimate the next key bit ex_ (1),
a message pair is used, which causes a collision between the target and reference
operations performed at different time frames. If a collision is observed, the tar-
get operation is a squaring (i.e., e;_(;41) = 0). If no collision is observed, then the
operation is a multiplication (i.e., e;_(j11) = 1). Once e,_(;j11) is obtained, the
remaining bits e;_(;y2), ..., €0 are sequentially computed in the same manner.

The message pair Y and Z is given as Y = Z8(Y # Z), where the a and 3
satisfy

o =2E0), (1)
6=|5] 0=t<i), (2)

respectively. Here, Y is the input for the target operation performed by e, _ (1),
and Z” is the input for the reference operation. If ek—(j+1) = 0, the operation of
Y@ is the same as that of Z”. In contrast, if €k—(j+1) = 1, the operation of Y is
a multiplication, and is different from that of Z”. As a result, the bit Ch—(j+1) 18
obtained by comparing the target waveforms of Y and the reference waveform
of ZP.

Fig. Bl shows an example of the direct (bit/digit) estimation of ALGO-
RITHM 1. Suppose that the attacker already knows the first four bits (E*) =
11003). In this condition, o and 3 are given as a = 24 and 3 =1, 3,6, 12, or 24.
In order to estimate the next key bit, a message pair Y and Z, which meets the
condition Y24 = Z3 (i.e., @ = 24 and 8 = 3) is used. Here, Y?* is the input for
the target operation, and Z3 is the input for the reference operation. If 5 = 24
(Y?* = Z2%) then Y = r and Z = —r. Therefore, this attack is identical to
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Fig. 4. Attack on the binary method (backward estimation)

Yen’s attack [10]. If B = 12 (Y* = Z!'2), then Y = r and Z = 72, which is
identical to the doubling attack [9]. Thus, these attacks are special cases of the
present direct estimation.

Now, the backward estimation of ALGORITHM 1 is explained. To estimate
the key bit ej_(j11), a squaring operation following the target operation for
er—(j+1) is investigated. Unlike the direct estimation, the bit value of e,_(;41)
(0 or 1) is estimated first, and the input message pair is then selected so that the
power waveform for the squaring following the target operation would match the
waveform for the reference operation. Assuming that e;_(;41) = 1, the message
pair Y and Z is selected so as to meet the condition Y*+1 = Z8_ If the estimation
of ey_(j+1) is correct, the operating sequence and data for the squaring of Y*+1
are the same as those of Z°, and the two waveforms of the squaring would be
identical. In contrast, if the estimation is incorrect, the two square waveforms
would be different.

Fig. [ shows an example of the backward (bit/digit) estimation against the
binary method. Assuming that the target key bit is 1, and the message pair is
selected to meet the condition Y2 = Z3. If the estimation is correct, a multipli-
cation Y24 x Y is performed as the target operation and the result of Y2° is fed
to the following squaring. Therefore, the same input values Y2° and Z3 (= Y?%)
are used for the squaring operations that generate two power waveforms to be
compared. If the target key bit is 0, the target operation is squaring, and the
input of the following squaring is Y48 (= Y24%2)_ which is not equal to Z3, and
thus the two waveforms for the squaring do not match.

As described above, the direct estimation compares the two waveforms gen-
erated by the reference (square) and the target (unknown) operations with the
same input data to determine the target operation. In contrast, the backward
estimation compares the two waveforms generated by square operations to deter-
mine the input data to the squaring following the target (unknown) operation. In
order to determine the operation or the data using waveform matching, the pro-
posed method controls the relation between the messages Y and Z as Equations

@ and ().
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Fig. 5. Attack on the m-ary methods (backward estimation)

3.2 Attack on m-Ary Methods

The backward estimation has no additional advantage over the direct estimation
for attacking the conventional binary method. However, the backward estimation
is essential when attacking the m-ary method shown in ALGORITHM 2. This
algorithm always performs a multiplication after raising the intermediate result
to the power of 2™ (i.e., m squaring operations). Therefore, the direct estimation,
which detects the multiplication performed only if the corresponding key bit is
1, cannot be applied. Suppose that the m-bit sub-keys EVU) = (ej_1, ..., ek—j)am
of the secret exponent E have already been obtained. To estimate the next sub-
key ej_(j4+1), the waveform of the squaring following the target multiplication
is investigated. At the beginning of the attack, the target sub-key ej_(jq1) is
assumed as v (0 < v < 2™ — 1), and the message pair Y and Z is selected to
meet the condition Y*+7 = Z8 where the o and 3 are given as

a=2"EY), (3)

0= | gue] (0E3), (4)

respectively. If the estimation is correct (e,_(j11) = 7), the input data Y**7 to
the squaring following the target multiplication is the same as the Z? input in the
reference squaring, and thus the waveforms for the two squaring operations would
match. Even if the estimation is wrong, the correct sub-key can be obtained after
2™ trials at most.

Fig. [l shows an example of the attack against the m-ary algorithm of AL-
GORITHM 2, where m = 4. When the sub-key ex_; = 12 is already known, «
and [ can be given by a = 192 and 8 = 12. Assuming that ej_» is 7, a message
pair Y and Z is selected to meet the condition Y9217 = Z'2 If the estimation
is correct, the input of the squaring (Y192+7) following the target operation is
equal to that of the reference squaring (Z'?), and these inputs would make iden-
tical waveforms. In this case, the correct sub-key ex_o can be estimated with at
most 24 = 16 trials.
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EXPERIMENTAL FPGA BOARD (SASEBO)
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Fig. 7. Evaluation board Fig. 8. Experimental conditions

4 Experiments

4.1 Identification of Operations by Waveform Matching

The proposed attacks create collisions between target and reference power wave-
forms at time frames which can be far apart, whereas previous attacks compare
the waveforms at adjacent time frames or at the same time frame, as shown in
Figs. [l and @l Therefore, a flexible and precise matching technique which can
overcome the cumulative effect of clock jitter and noise is crucial for collision
detection. In the following, the phase-based waveform matching technique [I5],
which can match waveform positions with a resolution higher than the sampling
resolution, is used. Fig. [l shows an overview of the identification method. Given
two power traces Py and Py, we first cut out the waveform segments that include
the target and reference operations, P, and P, respectively. The segments can
easily be recognized because each multiplication or square operation consumes
less power around the boundaries of the operation. The waveform segments are
then aligned precisely using the phase-based waveform matching technique. Fi-
nally, the difference between the waveforms is calculated to evaluate the equality
of the operations or data being processed.

4.2 Experimental Results

RSA hardware and software using the Montgomery multiplication algorithm
were implemented on the Xilinx FPGA platform Side-channel Attack Standard



24 N. Homma et al.

* Target '
"WWWMWWWWW
S
Reference
Horizontal axis: 500us/div 0 1 2 3 4 5 60 1 2 3 4 5 6
Vertical axis: 30mV/div Sampling Point x 10° Sampling Point x 10°

(a) (b) (c)
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Fig. 10. Results of hardware implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform

M

Evaluation BOard (SASEBO) [16] shown in Fig. [ The RSA hardware with
the FPGA’s embedded multipliers performs 1,024-bit modular exponentiation
using the binary method. On the other hand, the RSA software is executed as a
PowerPC processor macro in the FPGA, where both binary and 4-ary methods
are applied to a 256-bit exponent due to memory limitations.

The power traces were monitored using an oscilloscope (Agilent MSO 6104A)
at 400 Msamples/sec for software and 800 Msamples/sec for hardware as voltage
drops caused by the resistor inserted between the FPGA ground pin and the
ground plane. Flg [8 summarizes the experimental conditions.

Figs. @ and [I0 show the experimental results of the direct estimation using
power traces generated by the RSA hardware with two different keys. The mea-
sured power waveforms in Figs. [ (a) and [0 (a) are aligned on the reference
and target time frames as (b), and then the differential waveforms in (c) are
calculated. In order to reduce the noise distortion of the differential waveform,
low-pass filtering techniques, as well as phase-based waveform matching, are ap-
plied. The result is extremely clean, producing a greatly reduced difference signal
when the two squared values are the same. In Figs.[@ and[I0, the first four bits of
the exponents are the same and are known as “1101”, and each 5-th key bit will
be identified. As described in the example operation of Fig. B, a message pair
Y and Z that satisfies Y24 = Z3 is used for the identification. The amplitude
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Fig. 12. Results of software implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform

of the differential waveform in Fig.[dl (¢) remains around zero, and thus the tar-
get (unknown) and reference (square) operations are the same. As a result, the
target operation is squaring, and the 5-th key bit is identified as 0. In contrast,
the differential waveform in Fig. [[0l (¢) indicates that the target and reference
operations do not match. Therefore, the target operation is multiplication, and
the 5-th key bit is revealed to be 1. Figs.[[Tland [2show the experimental results
of the software implementation of RSA with the same algorithm and parameters
used in Figs. @ and [0 respectively. By applying the same matching techniques
used for the hardware implementation, the secret key bits (target operations)
can be easily identified.

Fig. I3 shows the differential waveforms derived from the backward estimation
applied to the RSA software using the 4-ary method, where the known sub-key is
12. As described in Section 3.2 using the example operation of Fig. [ a message
pair Y and Z that meets the condition Y9277 = Z!2 was executed by the RSA
software. The parameter v denotes the next unknown 4-bit sub-key, and thus all
sixteen possible sub-keys 0000 ~ 1111 were tested. Figs. [[3] (a) and I3 (b) show
the differential waveforms for the correct sub-key (v = 3) and for one of the
fifteen incorrect sub-keys (v = 4), respectively. The correct waveform is easily
distinguished from the incorrect waveforms. For additional details, Root Mean
Square (RMS) and maximum errors in the differential waveforms are shown in
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Table 1. RMS and maximum errors of differential waveforms

Key guess 0 1 2 3 4 5 6 7
RMS error  1.92 211 198 1.27 1.77 291 175 195
Max. error  11.39 11.55 12.05 4.86 11.76 1241 11.70 11.50
Key guess 8 9 a b c d e f
RMS error 196 189 174 211 190 1.82 221 2.07
Max. error  11.78 11.52 11.43 12.53 12.29 11.07 12.83 12.55

Table[Il In addition to visual observation, Table[I] can be used to automate the
computation of the correct key bits.

The above results demonstrate that the proposed attacks can defeat both
binary and m-ary methods. The m-ary method was not implemented in hard-
ware due to memory limitations. But the proposed attack would defeat RSA
hardware with the m-ary method as well as RSA software implementations,
judging from the results of RSA hardware with the binary method. In addi-
tion to the logical approach, signal processing techniques such as phase-based
matching and filtering greatly reduced the noise disturbing the correlation check
between the target and reference waveforms. The same squaring operations can
then be identified by numerical (RMS and maximum error) evaluation as well
as visual observation. Although waveforms are not shown in the present study,
the right-to-left binary method under the same condition described above was
also defeated by the proposed attacks. Furthermore, the proposed attacks can be
adapted to sliding window methods by combining the attacks against the binary
and m-ary methods. These results clearly indicate that the proposed attacks
are better than the previous attacks, which can only be applied to some of the
implementations.
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5 Conclusions

In this paper, we proposed new power-analysis attacks using chosen-message
pairs against a variety of modular exponentiation algorithms. The message pairs
are selected to have an exponential relationship in order to identify the same
squaring operations which are performed at different time frames as determined
by the bit pattern of the secret exponent. The proposed attacks can be adapted
to all the standard exponentiation algorithms such as left-to-right /right-to-left
binary methods, m-ary methods, and sliding window methods. Notice that stan-
dard message padding techniques such as OAEP provide no protection against
our attacks: even though the chosen Y and Z ciphertexts are unlikely to produce
validly padded plaintexts, this fact will be discovered only after the modular
exponentiations will take place, and thus the attacker can recover the secret
exponent even when no plaintexts are provided by the decryption process.

The effectiveness of the proposed attacks was demonstrated by experiments
on RSA hardware/software implementations with the Montgomery multiplica-
tion algorithm. We also introduced signal processing techniques to reduce the
expected noise distortion in the waveform comparison process. The proposed at-
tacks derived the secret exponents from both binary methods and m-ary methods
independently of the implementation platform. The values of the message pair
can be selected arbitrarily. Therefore, the proposed attacks can also be applied to
CRT implementations with/without the Montgomery multiplication algorithm,
in which the relationship is controllable. In addition, dummy multiplication in-
serted as an SPA countermeasure for the left-to-right binary method can easily
be detected by the new backward estimation technique which compares a squar-
ing waveform following the true or dummy multiplication waveform with the
reference waveform.

The right-to-left binary method with the squaring-and-multiply-always
technique [I7] and the blinding techniques [3] can still be used as effective coun-
termeasures against the proposed attacks. Note however that the blinding tech-
niques for the exponent and the message should be used simultaneously because
each one of them separately can be defeated by the proposed attacks. For exam-
ple, the mask updating technique in [3I14] is vulnerable to the proposed attacks
as suggested in [9]. With regard to m-ary methods, the randomized m-ary meth-
ods [I8/T9] would also work as countermeasures.

The proposed chosen-message attacks provide a flexible relationship between
two input messages and can generate waveform collisions in different time frames.
The phase-based waveform matching with filtering technique enables high-
accuracy alignment and collision detection between reference and target wave-
forms in any time frames independently of the algorithms, implementations, and
platform. As a whole, the proposed methods and techniques make it possible to
apply comparative power-analysis attacks to additional RSA implementations,
using a very small number of chosen messages. Further research is being con-
ducted to expand the applicable scope of the attacks even further (e.g., to ex-
ponentiation algorithms based on addition chains), and to overcome a variety of
possible countermeasures.
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Abstract. In this paper, two efficient multiple-differential methods to
detect collisions in the presence of strong noise are proposed - binary and
ternary voting. After collisions have been detected, the cryptographic key
can be recovered from these collisions using such recent cryptanalytic
techniques as linear [I] and algebraic [2] collision attacks. We refer to
this combination of the collision detection methods and cryptanalytic
techniques as multiple-differential collision attacks (MDCA).

When applied to AES, MDCA using binary voting without profiling
requires about 2.7 to 13.2 times less traces than the Hamming-weight
based CPA for the same implementation. MDCA on AES using ternary
voting with profiling and linear key recovery clearly outperforms CPA
by requiring only about 6 online measurements for the range of noise
amplitudes where CPA requires from 163 to 6912 measurements. These
attacks do not need the S-box to be known. Moreover, neither key nor
plaintexts have to be known to the attacker in the profiling stage.

Keywords: side-channel attacks, collision detection, multiple-differential
collision attacks, AES, DPA.

1 Introduction

Side-channel attacks have become mainstream since their first publication in [3].
Differential power analysis (DPA) [4] and correlation power analysis (CPA) [5],
a generalization of DPA, are probably the most wide-spread practical attacks
on numerous cryptographic embedded systems such as smart-card microcon-
trollers [6] and dedicated lightweight ASICs [1].

Collision attacks represent another class of side-channel attack techniques
being essentially based on the cryptanalytic properties of attacked cryptographic
algorithms. Collision attacks on block ciphers were proposed in [§] for DES. The
idea is due to Hans Dobbertin and was also discussed in the early work [9]. Since
then there has been quite a bit of research in this area: [I0] improves the collision
attack on DES, [I1] applies the technique to AES, [12] suggests a collision attack
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on an AES-based MAC construction, [I3] combines collision attacks on AES with
differential cryptanalysis to overcome several masked rounds.

Recently such improvements as linear collision attacks [I] and algebraic col-
lision attacks [2] for AES have been proposed which require a very low number
of measurements for the key recovery procedure to succeed with a high proba-
bility and within a feasible time span. However, these attacks as well as those in
[11] and [I2] are rather theoretical being substantially based on the assumption
that the implementation allows the attacker to reliably detect if two given S-box
instances process the same value.

The contribution of this paper is two-fold. On the theoretical side, two col-
lision detection techniques are proposed called binary and ternary voting. We
refer to the combination of the statistical collision detection methods and crypt-
analytic collision attacks as multiple-differential collision attacks (MDCA). On
the practical side, we apply MDCA to a hardware implementation of AES for a
wide range of noise amplitudes using advanced power consumption simulation.

MDCA works in the two scenarios: where profiling is either allowed (ternary
voting) or not allowed (ternary voting without profiling and binary voting).
Note that the notion of profiling for our collision detection techniques is different
from that for template attacks [14], [I5]. While template attacks require detailed
knowledge of the implementation in the profiling stage, the only information
needed in the profiling stage of the collision detection methods is the time interval
when the S-boxes are executed.

MDCA based on the binary voting method for the given AES implementa-
tion needs about 2.7 to 13.2 times less traces than Hamming-weight based CPA
in the range of noise levels we studied. While MDCA based on ternary vot-
ing without profiling does not exhibit any advantages over CPA, the required
number of online measurements for ternary voting with profiling is considerably
lower than that for CPA for all noise amplitudes we investigated. For instance,
if < 10% profiling measurements are allowed, MDCA based on ternary voting
with profiling and linear key recovery requires only 6 online measurements in
the noise amplitude range where the standard CPA would require from 163
to 6912 measurements. A further advantage of the proposed collision detection
techniques combined with the linear collision attacks is that they work with se-
cret S-bozes. Moreover, ternary voting with profiling also requires neither keys
nor inputs/outputs to be known in the profiling stage. However, as already men-
tioned, the attacker has to know when the S-boxes are executed within the
implementation.

The remainder of the paper is organized as follows. Section 2 discusses the at-
tack scenarios, introduces some notation and briefly mentions the linear collision
attacks. Section [3] presents the multiple-differential collision detection techniques
and theoretically investigates some of their properties. Section Hl characterizes
the underlying least-square based binary comparison test for an AES implemen-
tation, applies MDCA to this implementation and compares the results to CPA.
We conclude in Section
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2 Preliminaries

2.1 Attack Flows

There are two basic attack scenarios we consider: collision attacks without pro-
filing and collision attacks with profiling. A collision attack without profiling
consists of an online stage and an offline stage, while a collision attack with
profiling additionally contains a profiling stage.

In the online stage, some random known 16-byte plaintexts P; = {p; 16

j=1
pi € GF(2®), are sent to the attacked device implementing AES, where they
are added with the first 16-byte subkey K = {k;}1%,, k; € GF(2%). Then each
of the 16 values a§- = p§- @ kj, a; € GF(2%), is processed by the AES S-box.
The online traces T; = {7'JZ ;21, T; = (7';717 . 77';71) € R, corresponding to these
S-box calculations are acquired by the measurement equipment (e.g. they can
contain such side-channel parameters as power consumption or electromagnetic
radiation).

In the optional profiling stage, the device is triggered to perform a number of
cryptographic operations with some unknown profiling inputs for some unknown
keys. The profiling traces are acquired by the measurement equipment. The
profiling stage takes place before the online stage and can be reused by several
attacks on the same implementation.

The offline stage recovers the key. This occurs in two steps. First, collisions
are detected in the online traces T; by means of signal processing. The collision
detection with profiling additionally uses the profiling traces. Second, an AES
key candidate is obtained using the detected collisions and the corresponding
inputs P;. Note that one or several plaintext-ciphertext pairs produced with the
attacked key may be needed to identify the correct key candidate in the offline
stage.

If averaging is applied, the attacker has to be able to send several unknown
equal inputs to the device and to fix some unknown key for these measurements
in the profiling stage. Additionally, he has to be able to send several copies of
the known random plaintexts to the implementation in the online stage.

The attack complexity is defined by three parameters. Cprofiling is the number
of inputs to AES for which measurements have to be performed in the profiling
stage (number of profiling measurements). Obviously, Cprofiing = 0 for colli-
sion attacks without profiling. Copline is the number of inputs to AES for which
measurements have to be performed in the online stage (number of online mea-
surements). Comine 1S the computational complexity of the key recovery, that
is, the number of operations needed to solve the resulting systems of linear or
nonlinear equations and to identify the most probable solution.

2.2 Key Recovery from S-Box Collisions

AES-128 performs 160 S-box operations in the data path for each run, which are
different for different inputs, and 40 additional S-box computations in the key
schedule, which remain the same for a given key. If two of these S-box instances



Multiple-Differential Side-Channel Collision Attacks on AES 33

in one or two distinct runs process the same value, there is a generalized internal
collision. The power of the improved collision attacks [I] on AES origins from
the fact that the number of generalized collisions grows quadratically with the
linear increase of the number of unique inputs considered. So, even if the key
schedule is ignored, there are about 40.9 colliding S-boxes for just one input and
already about 555.2 collisions for 5 inputs.

When collisions have been detected, the AES key has to be recovered. In this
paper we use the linear collision attacks [I] for this purpose. A linear collision
in AES is a generalized collision within the first AES round. Given such a linear
collision, the attacker obtains a binomial linear equation over G F' (28) of the form
kj1 @ ij = p;ll EB;DE for j1 75 j2.

Let v be the number of different random inputs P; to the algorithm for which
collisions have to be detected in order for the key to be recovered with probability
7 within Comine operations. In this paper, we apply the variant of linear collision
attacks with v = 6, 7 = 0.854 and Comine equal to 237-1° encryptions, see [I] for
details and [2] for some more advanced techniques.

3 Multiple-Differential Collision Detection

The goal of the collision detection is to decide if two S-box instances in AES
have had equal inputs based on side-channel traces.

For the direct binary comparison of S-box instances, the least-square based
test was used in the original collision attack on AES in [T1], which is essentially
a computation of the Euclidean distance between two real-valued traces. Its
resolution can be increased by suppressing noise through averaging.

However, there are other collision detection methods substantially using the
simple binary comparison, two of which - binary voting and ternary voting - we
propose in this section. Both methods can be combined with averaging. Addi-
tionally, the ternary voting test enables performance gains through profiling.

3.1 Binary Comparison

Deﬁnition Given two traces Til = (" ,,...,m2 ) e R and TZZ = (ri2,...,
Ji,1 J1 l J2,1
Tis, 2) € R!, respectively correspondlng to S-box j; for plaintext le and to S-box

jo for plaintext P;,, the binary comparison test T8¢ can be defined as:

TBC (i1 i) = 0 (no collision), if B (7!
T Tia) = 1 (collision), if GBC( ’7-‘2) < yBC,

YBC

where is a decision threshold and

l
BC 2
6 Jl’ ]2 Z ]17 327 ) )

r=1
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which can be seen as a correlation characteristic of two reduced templates. Let
TBC be characterized by the following type I and II error probabilities:

o = Pr{TBC(T;1 i) = O\aéll =a®

17 "2 o Tg2de
g = Pr{TBC(Tﬁ,T;j) = 1aj}, #ajl}.

Note that «; and oy depend on the implementation and the value of Y B¢,
Of course, there is a strong dependency on the noise as well. See Section €l for
estimations of as with a given «; for one implementation example and a wide

range of noise amplitudes.

Combination with Averaging. To increase the resolution of the collision
detection one can use averaging. That is, each plaintext is sent ¢ times to the
device. Respectively, t measurements are performed for each plaintext. Then the
obtained traces for each distinct plaintext are averaged. If the noise is due to
normal distribution with the zero mean value and a standard deviation o, then
the noise amplitude of the trace averaged t times will be o /v/t.

3.2 Binary Voting Test

In this subsection we propose a more efficient method to suppress noise which
is called binary voting. Like in averaging, traces for multiple copies of the same
plaintexts are first obtained. However, instead of averaging, the attacker tries to
detect collisions using binary comparison for each pair of the traces and applies
voting to filter for correct ones.

Definition. We have to reliably detect collisions for v different plaintexts. Then
each of these plaintexts is sent MZY times to the device. So we have a group
= {r" MPY pim e RL of traces for each S-box instance and each plaintext.
That is, the direct application of binary voting requires Copline = v - M BV
measurements.

The binary voting test is based on the following statistic which uses a binary

comparison test (for instance, the least-square based one as defined above):

MBV
BV (~i1 ~i2\ __ BC/_t1,m _iz,m
S (leaTjZ)_ Zs (Tj1 Ty )a
m=1

where the multiple traces for two S-box instances are pairwisely compared to
each other. The test TEV to decide if there has been a collision is then defined
as

7 J1

TBY (7 Fi2) = 0 (no collision), if GBV(%?H%;,;) <YBV
72 1 (collision), if GBV(%;H%”) >YBV,
1 J2
where Y2V is a decision threshold. The idea is that the distribution of statistic

BV : i _ o i i
&7" will be different for a;) = a;} and for aj} # a3’.
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Properties. As the individual binary comparisons are independent, the distri-
bution of G5V is due to the binomial law with M5V experiments and success
probability p. If a;?l = a}i, the success probability is p = p. = 1 —a1. If a}ll * a;ff;,
it is p = ppe = ag. For sufficiently large group sizes MBY, the distribution of
&8V can be approximated by a normal distribution N'(MZVp, MBVp(1 — p)).
That is, the problem of collision detection is reduced to the problem of distin-
guishing between two normal distributions in this case. Thus, the required value
of M BV can be obtained using

Proposition 1. Let oy and as be type I and II error probabilities, respectively,
for BC. Then the number of S-box traces in each group needed to distinguish

between aé»ll = aéi and aé»ll #+ aéi using binary voting test T8V can be estimated
as
BV & (W5 Vor(l —ar) +uig,/az(1l — az))?
(1 — ] — 0&2)2 ’
where:

— 1 and By are the required type I and II error probabilities for TPV,
— ui_p, and ui_g, are quantiles of the standard normal distribution N(0,1).

Combination with Averaging. The required value of M2V depends on ay
and as which in turn can be seen as functions of the noise amplitude o. For this
reason we will write M BV (o) where this dependency is important.

The binary voting technique can be combined with averaging. The traces are
first averaged ¢ times. Then the statistic 8V is computed. That is, one deals
with MBV (o /+/t) instead of MBV (o).

Since each plaintext P; is sent t-M BV (o/+/t) times to the device, binary voting
with averaging requires Copiine = v-t- MBY (0/+/t) measurements. Depending on
the concrete implementation and on the range of o, the measurement complexity
can be reduced, if -t - MBV (a/\/t) < v- MPV (o) for some t. In the sequel, we
will refer to binary voting with averaging simply as binary voting, since binary
voting with averaging for ¢ = 1 corresponds to the basic binary voting.

3.3 Ternary Voting Test

Ternary voting is another statistical technique we propose to reliably detect colli-
sions. It is based on indirect comparisons of traces, where two given S-box traces
(target traces, a subset of online traces) are compared through a pool of other ones
(reference traces, profiling traces if any and possibly a subset of online traces).
While the ternary voting test is less efficient than the binary voting one in
terms of the overall number of traces needed, it allows for profiling. That is,
the reference traces can be acquired in the profiling stage and shared by several
attacks, which can significantly amplify the performance of the online stage.

Definition. Let N7V be the number of S-box instances whose (reference) traces
{Tm}ff;‘;, 7m € R!, are available to the attacker for some random unknown
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inputs {am N2}, am € GF(28). Let T;f and Ti2 be the traces for two further
S-box instances for which we have to decide if a; = a . Then the ternary voting
test can be defined as follows:
TTV (i iz — 0 (no collision), if &7V (77!, 72) < YTV
1 (collision), if &™V(r;!,7;2) > YTV,

11’ J2
j2
where -
N o
GTV( ]1 I 7]122) = Zm:l F(szll ’ T;‘jaTm)
with
F(T;ll7 st’Tm) ‘ZBC( Tjro T ) QBC( ]27Tm)
and YTV is some decision threshold. The key idea of ternary voting is similar to
that of binary voting: The distributions of GTV( e ]2) for a“ = a;’; and for
0 # aéi will be different. Typically, &Y (72! i 7']’2) will be hlgher for a“ = a]2

than for ajll # aj’f‘z. To decide if there has been a collision, the attacker needb to
statistically distinguish between these two cases.

Properties. To explore the behaviour of F, it is not sufficient to know the
type I and II error probabilities for the binary comparison test. Let T8C be
characterized by the simultaneous distribution of the test results depending on

the relations between a}ll, a}’f‘z and a,,:

BC 110 _
Pr{TBC( Ji )= Bc(sz,Tm) = 1\ag1 = az2 = am},
X2 = Pr{TB (7)1, Tm) = 1 EB (75, 7m) = 1aj, = a} # am},
X3 = PT{TBC(TE,Tm) = I,ZBC(TE,Tm) = 1‘&}11 # a;i7a]1 m, @ Jz 7& am}
X4 = Pr{TP(T}} ) = 1, TPC(732, ) = Laj, # 032, am # ), am # 0
Then the probabilities
pe = Pr{F (1 T Tis,Tm) = laj, = af
and
ne = Pr{F(r}}, 72, 7)) = 1]a} #a}?

can be computed using

Proposition 2. Ifa

G 32, am € GF(2)8 are uniformly distributed and mutually
independent, then

8
Pe = 218X1 + 22g1X2
and

2 282
DPne = 28 X3 T "9 " X4-
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Proof. 1f a;?l = a;i, two cases are possible for F(T;ll , T;;,Tm) =1:
— a;ll = aéz = a,, which happens with probability of 1/28, and
. . 8
— a¥, = a3 # a,, which happens with probability et

If a;ll #+ a;f‘;, there are three cases leading to F(lel1 , T;j,?’m) =1:
— d = ap, a?‘; # a,, with probability 1/28,
— a? = am, ajll # a,, with probability 1/28 and

—a’t # an, a?‘; # a,, with probability (2% — 2)/28.
The claims of the proposition follow. ([
For the sake of simplicity, we first study the properties of 7V under the assump-
tion that all applications of F' to compute &”" are mutually independent. Under
this assumption, &V (7!, 7;2) would have a binomial distribution with N7 be-
ing the number of experiments and success probability p = pe, if ajll = aéi, or
D = Pne, if ajll £ aj’f‘z. Thus, for sufficiently large values of N7V, GTV(T;;,T;;))
could be approximated by normal distribution N'(NTVp, NTVp(1 — p)). Thus,
similarly to binary voting, the number N*V of S-box reference instances needed
to distinguish between a}} = a}2 and a}} # a}? could be estimated as

NTV ~ (u1-g, \/pe(l —Dpe) tui1—p, \/pne(l — Pne))?
(pe - pne)2

)

where 31 and (35 are the required type I and II error probabilities for TV

and u;_g, are quantiles of the standard normal distribution A/(0,1).
However, the applications of F' are dependent and this result can be only used
to obtain a rough estimation of N7V,

, Ul—p4

Procedure, Complexity, Averaging. Now we can describe the basic pro-
cedure of ternary voting in the case that the target key is fixed in the device
and the plaintexts are random and known. This is what we call ternary voting
without profiling.

The number N7V of S-box reference instances as well as the number M7TY
of different inputs for which reference traces have to be acquired depend on
the noise level 0. We will write N7V (¢) and MTY (5), when this dependency is
crucial for understanding.

First, the attacker obtains traces for M7V (¢) random plaintexts. This yields
Ty for NTV () = 160- MTV (o) different S-box instances for AES-128, if the key
schedule is not considered and all the 16-10 S-box traces within each AES run are
acquired at a time. Then, if M7V (¢) > v, no further measurements are needed.
Otherwise, the attacker acquires traces for further v — M7V (o) plaintexts. Note
that some of the reference traces can be interpreted as target traces (16 S-box
traces corresponding to the first round in each of some «y executions of AES).
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This yields the complexity of Cypine = max(y, M*V (o)) measurements, where

=[]

Like binary voting, ternary voting can be combined with averaging to achieve
better resolution. In this case each trace has to be averaged ¢ times. Thus, the
complexity of ternary voting with averaging is Coptine = t -max(y, MTV (o /\/t)).
In the sequel we refer to ternary voting both with and without averaging simply
as ternary voting.

Profiling. Now we are ready to describe what we refer to as ternary voting with
profiling. Unlike binary voting, the method of ternary voting allows for profiling.
In the profiling stage, reference traces are acquired only, for which the attacker
has to know neither the key used nor the plaintexts. Moreover, this also works if
keys are changed between blocks of ¢ executions. The target traces are obtained
in the online phase and compared based on the pre-measured reference traces.

Thus, Cprofiting = ¢ - M7V (c/1/(t)) measurements have to be performed in
the profiling stage, each measurement comprising all 10 rounds of AES-128.
Then only Conline = t - v measurements are needed in the online stage, each
measurement comprising only the first round for the linear key recovery. For the
latter measurements we do have to know inputs. Moreover, they all have to be
performed with the key to be recovered.

3.4 Required Error Probabilities of Collision Detection

The measurement complexity of the binary and ternary voting methods depends
on the success probability to be achieved. Let us take ¢ as a desirable success
probability of the whole attack and estimate the required type II error proba-
bilities By for binary and ternary voting. Recall that 7 is the success probability
of the cryptanalytic collision attack used to recover the key after the collisions
have been detected.

In the linear key recovery, there are 16y S-box instances between which a

collision can occur. That is, the voting has to be performed w = (127> times.

Then (2 can computed as
By =1~ (q/m)"/®.

For instance, if ¥ = 6 and ¢ = 0.5, one obtains 33 ~ 1.174-10~%. Additionally, 3,
has to be low enough to enable the detection of a sufficient number of collisions.

4 MDCA and AES: A Case Study

The purpose of this section is to estimate the real-world efficiency of different
MDCA variants based on an AES implementation example and to compare
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the methods to the standard Hamming-weight based CPA for the same AES
implementation. In order to be able to perform this comparison for different
noise levels o, we carefully simulated the deterministic power consumption in
Nanosim using dedicated power simulation libraries and added Gaussian noise

of different amplitudes to it. The main results of the section are summarized in
Table [l

4.1 Implementation and Simulated Traces

The characteristics of T2 strongly depend on the signal-to-noise ratio of the
implementation. To perform the estimations for a variety of noise levels, a serial
VHDL implementation of the AES S-box has been performed (that is, only one
S-box is calculated at a time). The deterministic power consumption for all 2% in-
puts was simulated using Synopsys Nanosim with the Dolphin Integration power
consumption library SESAME-LP2 based on a 250nm technology by THP [I6].
The design was clocked at 10 MHz. The sampling rate was set to 10 Gsamples/s.

The S-box was implemented as combinatorial logic on the basis of an 8-bit
register. Each S-box calculation y = S(x) occurs in two clocks. In the first clock,
the input z is read from the register and the output y is computed. In the second
clock, the register is set to zero and the calculated output y is written to the
register.

The simulated deterministic power traces obtained are noise-free. That is,
there is neither electronic noise (power supply noise, clock generator noise, con-
ducted emissions, radiated emissions, etc.) nor algorithmic noise (since only the
relevant part of the circuit is considered) in these traces. To model noise we
added random values due to univariate normal distributior] with the zero mean
value and a standard deviation ¢ whose value characterizes the noise amplitude.

Note also that the simulated signal was not subject to a low-pass filter as it
would have been the case for the real-world measurements of power consump-
tion due to the presence of capacitances within the chip as well as on the circuit
board where the power consumption measurements are performed. This would
have cut off the high-frequency contribution to the signal reducing the advan-
tage of high-resolution measurements. However, the effect of this circumstance
is rather limited for the measurements of the electromagnetic radiation. A major
limitation in this case is the bandwidth of the oscilloscope. Thus, we believe that
the simulated traces with added Gaussian noise can be used for an initial anal-
ysis of the efficiency of our collision detection techniques. The main advantage
of using the simulated power consumption is that one can add noise of different
amplitudes to model the behaviour of attack methods for different devices and
physical conditions.

To evaluate ao for this implementation, we chose YB¢ in TBY so that oy
becomes sufficiently low by shifting Y2 to the right. For this value of a, the

! Normal distribution is a sound noise model [I7]. As a matter of fact, the noise is often
distributed due to the multivariate normal distribution [I7], [I8]. However, only a
few co-variances in the co-variance matrix of this multivariate normal distribution
significantly differ from zero [18] for many implementations.
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Fig. 1. Type II error probability a2 for as a function o

type II error probability ap was estimated experimentally by executing T2 for
random equal and unequal inputs to the S-box. We performed that for several
noise amplitudes o. The results can be found in Figure [[l Though this cannot
be seen as a complete characterization of T2, the figure is meant to illustrate
the intuition behind the multiple-differential collision detection methods.

4.2 Reference Figures for CPA

We compared the efficiency of MDCA with binary and ternary voting to the
Hamming-weight based CPA [5]. The Hamming-weight power consumption model
is sound for the implementation in question, since the register is first set to zero
and then re-written with the target byte value. CPA was applied to the same sim-
ulated traces with the same noise amplitudes as MDCA. The number of measure-
ments needed by CPA is denoted by Ccpa .

For our comparison, it was assumed that traces for all 16 S-boxes in the first
round are acquired within one measurement. This is very similar to MDCA based
on linear key recovery considered in this paper: The traces corresponding to the
16 S-box calculations in the first round are acquired at a time in the online stage
for binary voting and ternary voting with profiling.

The number of measurements needed for CPA can be potentially reduced if
guessing entropy is allowed in the offline stage of CPA. To treat this point, we
agssumed that CPA is successful, if it returns a correct 8-bit key chunk with
probability 0.5. At the same time, it was assumed for all collision attacks that
the needed success probability of the complete attack is ¢ = 0.5. That is, a
collision attack on AES is successful, iff it returns the correct 16-byte key with
probability 0.5.

Note that power consumption models are also important for collision attacks.
The right choice of a power consumption model allows the attacker to perform
binary comparison more efficiently. In this paper, the consideration was restricted
to the Euclidean distance of two vectors. However, other binary comparison
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tests can turn out to be more consistent with the power consumption of other
implementations.

4.3 Online and Profiling Complexity of MDCA

In this subsection, Conline and Cprofiling for MDCA based on binary voting and
ternary voting both with and without profiling are experimentally derived for the
given implementation. The estimations are performed for the linear key recovery
method with v = 6.

Table 1. Conline against different values of o for B V, TV without profiling, gtV
with profiling and Ccpa
1030 0.46 0.93 2.32 3.25 4.65 6.97 9.30 11.62 13.95
Contine, T2V 60 192 276 468 960 1290 1872 2976 4242

Conline, TV w/o profiling 80 390 2605 5200 10640 23840 42320 66080 95200
Conline; TV with profiling 6 6 6 6 6 18 30 60 120
Copa, HW based CPA 163 349 1645 4192 6912 15676 26341 39348 56025

Binary Voting. Figure Pl and Table [l give experimental values of Copine for
the binary voting test in a range of noise amplitudes. The values of ¢ have been
chosen that minimize the resulting number of traces needed. If ¢’ is the noise
amplitude to be attained by averaging and o is the given noise level, then one has
to average about t = (0/0’)? times. Thus, Conline ~ 7(‘7’,2; MPEBV (5"). The results
demonstrate that binary voting is well-suited for our implementation providing
an advantage of factor 2.7 to 13.2 for a wide range of o.

Ternary Voting without Profiling. Figure[Band Table[l give concrete values
of Conline in this case for a range of noise amplitudes. Values of ¢ were chosen that
minimize Copline. The performance of the ternary voting test without profiling is
comparable to CPA. However, ternary voting without profiling does not exhibit
any advantages over CPA in terms of measurement complexity.

Ternary Voting with Profiling. For a given o, the attacker can reduce ¢ which
leads to a linear decrease of Coniine and to a considerable growth of Cproiling due
to the slope of MTV as a function of the noise amplitude (see Figure 3] for this
dependency). We assumed that < 10° measurements in the profiling stage are
feasible. To obtain the lowest possible online complexity within this bound on
the profiling complexity, we chose ¢ that minimizes Contine With Cprofiling < 106
for each interesting value of 0. The resulting values of Conline and Chprofiling are
depicted in Figure The values of Cyyjine can be also found in Table[Il Note
that there is a wide spectrum of parameter choices: If there are more severe limits
on Chrofiling, then ¢ and Conline increase. And the other way round: If the attack
scenario admits for higher values of Clofiling, Conline can be further reduced.
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Fig. 3. Ternary voting test without profiling against CPA: MV (¢) (on the left, black
line) and Copnline (on the right, black line) as well as Ccpa (both graphics, grey lines)
as functions of o

The complexity estimations for ternary voting were performed under the as-
sumption that the attacker is able to acquire the reference traces for all S-boxes
in each of the 10 AES rounds at a time. If one deals with a short-memory os-
cilloscope, Chprofiling increases in a linear way with respect to the decrease of the
available memory volume. However, only measurements for the first round are
needed for the target traces, if the linear key recovery is used.
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Fig. 4. Ternary voting test with profiling: Coniine (solid black line), Cprofiling < 106
(dashed black line) and C'cpa (solid grey line) as functions of o

5 Conclusions and Outlooks

In this paper two statistical techniques - binary and ternary voting - allow-
ing to safely detect collisions even in the presence of considerable noise have
been proposed. An AES hardware implementation with its accurately simu-
lated power consumption has been taken as an example to demonstrate the
power of the methods. This also enables us to obtain a clear dependency of
the attack efficiency from the noise amplitude in a wide range of values and
to soundly compare the multiple-differential techniques with CPA for the same
implementation.

The binary voting method combined with linear key recovery is well applicable
to AES being 2.7 to 13.2 times more efficient than CPA in terms of measurement
complexity for our implementation in the explored range of noise amplitudes.
Ternary voting combined with linear key recovery and profiling needs only about
6 online measurements for the range of noise amplitudes where CPA requires
from 163 to 6912 measurements for the same implementation.

Techniques similar to the ones described in this work might turn out applicable
to other symmetric constructions such as stream ciphers or message authenti-
cation codes and asymmetric constructions such as digital signature schemes.
There can be also some potential in using MDCA-like methods to overcome
certain random masking schemes for block ciphers.
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Abstract. In this paper ways to efficiently implement public-key
schemes based on Multivariate Quadratic polynomials (M Q-schemes
for short) are investigated. In particular, they are claimed to resist
quantum computer attacks. It is shown that such schemes can have
a much better time-area product than elliptic curve cryptosystems.
For instance, an optimised FPGA implementation of amended TTS
is estimated to be over 50 times more efficient with respect to this
parameter. Moreover, a general framework for implementing small-field
MQ-schemes in hardware is proposed which includes a systolic archi-
tecture performing Gaussian elimination over composite binary fields.

Keywords: M Q-cryptosystems, ECC, hardware implementation,
TA-product, UOV, Rainbow, amended TTS.

1 Introduction

Efficient implementations of public key schemes play a crucial role in numerous
real-world security applications: Some of them require messages to be signed in
real time (like in such safety-enhancing automotive applications as car-to-car
communication), others deal with thousands of signatures per second to be gen-
erated (e.g. high-performance security servers using so-called HSMs - Hardware
Security Modules). In this context, software implementations even on high-end
processors can often not provide the performance level needed, hardware imple-
mentations being thus the only option. In this paper we explore the approaches to
implement Multivariate Quadratic-based public-key systems in hardware meet-
ing the requirements of efficient high-performance applications. The security of
public key cryptosystems widely spread at the moment is based on the difficulty
of solving a small class of problems: the RSA scheme relies on the difficulty
of factoring large integers, while the hardness of computing discrete logarithms
provides the basis for ElGamal, Diffie-Hellmann scheme and elliptic curves cryp-
tography (ECC). Given that the security of all public key schemes used in prac-
tice relies on such a limited set of problems that are currently considered to be
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hard, research on new schemes based on other classes of problems is necessary as
such work will provide greater diversity and hence forces cryptanalysts to spend
additional effort concentrating on completely new types of problems. Moreover,
we make sure that not all “crypto-eggs” are in one basket. In this context, we
want to point out that important results on the potential weaknesses of exist-
ing public key schemes are emerging. In particular techniques for factorisation
and solving discrete logarithms improve continually. For example, polynomial
time quantum algorithms can be used to solve both problems. Therefore, the
existence of quantum computers in the range of a few thousands of gbits would
be a real-world threat to systems based on factoring or the discrete logarithm
problem. This emphasises the importance of research into new algorithms for
asymmetric cryptography.

One proposal for secure public key schemes is based on the problem of solving
Multivariate Quadratic equations (M Q-problem) over finite fields F, i.e. finding
a solution vector x € F" for a given system of m polynomial equations in n
variables each

1 =p1(x1, ..., x)
Y2 = pa(z1,...,20)

Ym :pm(l“lw-wl’n),

for given y1,...,ym € F and unknown z1,...,x, € F is difficult, namely NP-
complete. An overview over this field can be found in [14].

Roughly speaking, most work on public-key hardware architectures tries to
optimise either the speed of a single instance of an algorithm (e.g., high-speed
ECC or RSA implementations) or to build the smallest possible realization of
a scheme (e.g., lightweight ECC engine). A major goal in high-performance ap-
plications is, however, in addition to pure time efficiency, an optimised cost-
performance ratio. In the case of hardware implementations, which are often
the only solution in such scenarios, costs (measured in chip area and power con-
sumption) is roughly proportional to the number of logic elements (gates, FPGA
slices) needed. A major finding of this paper is that M Q-schemes have the better
time-area product than established public key schemes. This holds, interestingly,
also if compared to elliptic curve schemes, which have the reputation of being
particularly efficient.

The first public hardware implementation of a cryptosystem based on mul-
tivariate polynomials we are aware of is [I7], where enTTS is realized. A more
recent result on the evaluation of hardware performance for Rainbow can be
found in [2].

1.1 Owur Contribution

Our contribution is many-fold. First, a clear taxonomy of secure multivariate
systems and existing attacks is given. Second, we present a systolic architecture
implementing Gauss-Jordan elimination over GF(2¥) which is based on the work
in [13]. The performance of this central operation is important for the overall
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efficiency of multivariate based signature systems. Then, a number of concrete
hardware architectures are presented having a low time-area product. Here we
address both rather conservative schemes such as UOV as well as more ag-
gressively designed proposals such as Rainbow or amended TTS (amTTS).
For instance, an optimised implementation of amTTS is estimated to have a
TA-product over 50 times lower than some of the most efficient ECC imple-
mentations. Moreover, we suggest a generic hardware architecture capable of
computing signatures for the wide class of multivariate polynomial systems based
on small finite fields. This generic hardware design allows us to achieve a time-
area product for UOV which is somewhat smaller than that for ECC, being
considerably smaller for the short-message variant of UOV.

2 Foundations of MQ-Systems

In this section, we introduce some properties and notations useful for the re-
mainder of this article. After briefly introducing M Q-systems, we explain our
choice of signature schemes and give a brief description of them.

2.1 Mathematical Background

Let F be a finite field with ¢ := |F| elements and define Multivariate Quadratic
(MQ) polynomials p; of the form

n

pi($17"'axn) = Z 'Yi,j,kxjxk+2ﬂi7j$j + o,
1<j<k<n Jj=1

for 1 <i<m;l <j <k <nandaf; %,k €F (constant, linear, and

quadratic terms). We now define the polynomial-vector P := (p1, ..., pym) which

signature x

T = (w17"'7$n)
A
Generation private: S Verification

!’

T

i public:

private: P’ (1., Pn)

!’

Yy

private: T
message y <

Fig. 1. Graphical Representation of the M Q-trapdoor (S, P’,T)
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yields the public key of these Multivariate Quadratic systems. This public
vector is used for signature verification. Moreover, the private key (cf Figll)
consists of the triple (S, P’,T) where S € Aff(F"), T € Aff(F™) are affine trans-
formations and P’ € MQ(F",F™) is a polynomial-vector P’ := (p},...,p},)
with m components; each component is in 2}, ...,/ . Throughout this paper,
we will denote components of this private vector P’ by a prime ’. The linear
transformations S and T can be represented in the form of invertible matri-
ces Mg € F**" My € F™ ™ and vectors vg € F",vpr € F™ i.e. we have
S(x) == Mgz + vs and T(z) := Mrpx + vp, respectively. In contrast to the
public polynomial vector P € MQ(F™ F™), our design goal is that the private
polynomial vector P’ does allow an efficient computation of x, ..., 2!, for given
Yy, Y, At least for secure M Q-schemes, this is not the case if the public
key P alone is given. The main difference between M Q-schemes lies in their
special construction of the central equations P’ and consequently the trapdoor
they embed into a specific class of M Q-problems.

In this kind of schemes, the public key P is computed as function composition
of the affine transformations S : F* — F* T : F™ — F™ and the central
equations P’ : F" — F™_ j.e. we have P =T oP’ 0 S. To fix notation further, we
note that we have P, P’ € MQ(F",F™), i.e. both are functions from the vector
space F™ to the vector space F™. By construction, we have Vo € F" : P(z) =

T(P'(S(x)))-

2.2 Signing

To sign for a given y € F™, we observe that we have to invert the computation of
y = P(x). Using the trapdoor-information (S, P’, T'), cf Fig.[Il this is easy. First,
we observe that transformation T is a bijection. In particular, we can compute
y = MT_ly. The same is true for given z’ € F™ and S € Aff(F"). Using the
LU-decomposition of the matrices Mg, M7, this computation takes time O(n?)
and O(m?), respectively. Hence, the difficulty lies in evaluating o' = P'~1(y/).
We will discuss strategies for different central systems P’ in Sect. 24

2.3 Verification

In contrast to signing, the verification step is the same for all M Q-schemes and
also rather cheap, computationally speaking: given a pair x € F",y € F™, we
evaluate the polynomials

n
Di(T1, . XTp) = g Vi, kT T + E BijTi + oy,
i=1

1<j<k<n

for 1 <i¢<m;1 <35 <k<nand given oy, B j,%ijr € F. Then, we verify that
p; = y; holds for all ¢ € {1,...,m}. Obviously, all operations can be efficiently
computed. The total number of operations takes time O(mn?).
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2.4 Description of the Selected Systems

Based on [I4] and some newer results, we have selected the following suitable
candidates for efficient implementation of signature schemes: enhanced TTS,
amended TTS, Unbalanced Oil and Vinegar and Rainbow. Systems of the big-
field classes HFE (Hidden Field Equations), MIA (Matsumoto Imai Scheme A)
and the mixed-field class (IC — ¢-Invertible Cycle [8] were excluded as results
from their software implementation show that they cannot be implemented as
efficiently as schemes from the small-field classes, i.e. en TTS, amTTS, UOV and
Rainbow. The proposed schemes and parameters are summarised in Table [I1

Table 1. Proposed Schemes and Parameters

q n o m T K Solver
Unbalanced Oil 256 30 10 0.003922 10 1 x K =10
and Vinegar (UOV) 60 20 20 1 x K=20
Rainbow 256 42 24 0.007828 12 2 x K =12
enhanced TTS (v1) 256 28 20 0.000153 9 2x K =29
(v2) 0.007828 10 2 x K =10
amended TTS 256 34 24 0.011718 4,10 1 x K =4,2 x K =10
Unbalanced Oil and Vinegar (UOV)
n—m n
/ !/ / R !/ !’ N
pi(xy, ..., x)) = E E Vi Ty fori=1... v
j=1 k=j

Unbalanced Oil and Vinegar Schemes were introduced in [TO/IT]. Here we have
v € F, i.e. the polynomials p are over the finite field F. In this context, the
variables m; for 1 < i < n —m are called the “vinegar” variables and m; for
n—m < 1 < n the “oil” variables. We also write o := m for the number of
oil variables and v := n —m = n — o for the number of vinegar variables. To
invert UOV, we need to assign random values to the vinegar variables a, ...,z
and obtain a linear system in the oil variables 7, ,..., . All in all, we need
to solve a m x m system and have hence K = m. The Rr()lbz}':t)ility that we do

vuov _ 1— | i ‘12 —q'
qm

not obtain a solution for this system is 7 as there are

m? m—1 _m

¢™ matrices over the finite field F with ¢ := |F| elements and []";" ¢" — ¢’
invertible ones [14].

Taking the currently known attacks into account, we derive the following
secure choice of parameters for a security level of 280:

— Small datagrams: m = 10, n = 30, 7 = 0.003922 and one K = 10 solver
— Hash values: m = 20,n = 60, 7 = 0.003922 and one K = 20 solver

The security has been evaluated using the formula O(¢*~™ 'm?) =
O(q"2m=1m?*). Note that the first version (i.e. m = 10) can only be used
with messages of less than 80 bits. However, such datagrams occur frequently
in applications with power or bandwidth restrictions, hence we have noted this
special possibility here.
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Rainbow. Rainbow is the name for a generalisation of UOV [1]. In particular,
we do not have one layer, but several layers. This way, we can reduce the number
of variables and hence obtain a faster scheme when dealing with hash values.
The general form of the Rainbow central map is given below.

v Vi1

Pz, ... 2l) = Z Z%{,j,kx;‘x;c fori=v;...041,1 <I<L
i=1 k=j

We have the coefficients v € F, the layers L € N and the vinegar splits v; <
... <vp41 € N with n = vp 1. To invert Rainbow, we follow the strategy for
UOV — but now layer for layer, i.e. we pick random values for x4, ..., z,,, solve
the first layer with an (ve — v1) X (vy — v1)-solver for @y, +1,...,Ty,, insert the
values x1,...,x,, into the second layer, solve second layer with an (v3 — va) x
(vs — vo)-solver for @,,41,...,T,, until the last layer L. All in all, we need to
solve sequentially L times (v; —vj—1) X (v; — vj—1) systems for | = 2... L+ 1.
The probability that we do not obtain a solution for this system is 77%nbow —
1- lL:l =’ quf:I—t; i using a similar argument as in Sec. 241

Taking the latest attack from [3] into account, we obtain the parameters
L = 2,v; = 18,v3 = 30,v3 = 42 for a security level of 280, i.e. a two layer
scheme 18 initial vinegar variables and 12 equations in the first layer and 12
new vinegar variables and 12 equations in the second layer. Hence, we need two
K = 12 solvers and obtain 7 ~ 0.007828.

Amended TTS (amTTS). The central polynomials P’ € MQ(F™ F™) for
m =24,n =34 in amTTS [6] are defined as given below:

8
o I o ’ - .
P =T + QT + Z%,j%‘+1m11+(i+j mod 10) » f0r ¢ =10...19;
Jj=1
8
o /o ro . / . .
Di = Tyt G+ Y0, L1 + Z Vi,iT154 (i+j+4 mod 8)j+1%n(i,j)» 0T 1=20...23;
Jj=1
9
r ro . / .
D =X + 707i$01‘i + Z’Yi7jx24+(i+j+6 mod 10)j+1$7r(i,j) , for i =24...33.
=1

We have o,y € F and o, 7 permutations, i.e. all polynomials are over the finite
field F. We see that they are similar to the equations of Rainbow (Sec. 2Z4]) — but
this time with sparse polynomials. Unfortunately, there are no more conditions
given on o, 7 in [6] — we have hence picked one suitable permutation for our
implementation.

To invert amTTS, we follow the sames ideas as for Rainbow — except with
the difference that we have to invert twice a 10 x 10 system (¢ = 10...19 and
24 ...33) and once a 4 x 4 system, i.e. we have K = 10 and K = 4. Due to the
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Fig. 2. Signature Core Building Block: Systolic Array LSE Solver (Structure)

structure of the equations, the probability for not getting a solution here is the
same as for a 3-Layer Rainbow scheme with vy = 10,v9 = 20,v3 = 24,v4 = 34
variables, i.e. 7¢MTTS = pRainbow (10 20,24, 34) ~ 0.011718.

Enhanced TTS (enTTS). The overall idea of enTTS is similar to amTTS,
m = 20,n = 28. For a detailed description of enTTS see [16/15]. According to
[6], enhanced TTS is broken, hence we do not advocate its use nor did we give a
detailed description in the main part of this article, However, it was implemented
in [I7], so we have included it here to allow the reader a comparison between
the previous implementation and ours.

3 Building Blocks for M Q-Signature Cores

Considering Section 2] we see that in order to generate a signature using an
M Q-signature scheme we need the following common operations:

— computing affine transformations (i.e. vector addition and matrix-vector
multiplication),

— (partially) evaluating multivariate polynomials over GF(2*),

— solving linear systems of equations (LSEs) over GF(2¥).

In this section we describe the main computational building blocks for realizing
these operations. Using these generic building blocks we can compose a signature
core for any of the presented M Q-schemes (cf Section HI).
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3.1 A Systolic Array LSE Solver for GF(2F)

In 1989, Hochet et al. [9] proposed a systolic architecture for Gaussian elimi-
nation over GF(p). They considered an architecture of simple processors, used
as systolic cells that are connected in a triangular network. They distinguish
two different types of cells, main array cells and the boundary cells of the main
diagonal.

Wang and Lin followed this approach and proposed an architecture in 1993
[[3] for computing inverses over GF(2*). They provided two methods to effi-
ciently implement the Gauss-Jordan algorithm over GF(2) in hardware. Their
first approach was the classical systolic array approach similar to the one of
Hochet et al.. It features a critical path that is independent of the size of the
array. A full solution of an m x m LSE is generated after 4m cycles and every
m cycles thereafter. The solution is computed in a serial fashion.

The other approach, which we call a systolic network, allows signals to propa-
gate through the whole architecture in a single clock cycle. This allows the initial
latency to be reduced to 2m clock cycles for the first result. Of course the critical
path now depends of the size of the whole array, slowing the design down for
huge systems of equations. Systolic arrays can be derived from systolic networks
by putting delay elements (registers) into the signal paths between the cells.

We followed the approach presented in [I3] to build an LSE solver architec-
ture over GF(2%). The biggest advantage of systolic architectures with regard
to our application is the low amount of cells compared to other architectures
like SMITH [4]. For solving a m x m LSE, a systolic array consisting of only m
boundary cells and m(m + 1)/2 main cells is required.

An overview of the architecture is given in Figure @2l The boundary cells
shown in Figure B] mainly comprise one inverter that is needed for pivoting
the corresponding line. Furthermore, a single 1-bit register is needed to store
whether a pivot was found. The main cells shown in Figure @ comprise of one
GF(2%) register, a multiplier and an adder over GF(2*). Furthermore, a few
multiplexers are needed. If the row is not initialised yet (T;, = 0), the entering
data is multiplied with the inverse of the pivot (E;,) and stored in the cell. If
the pivot was zero, the element is simply stored and passed to the next row in
the next clock cycle. If the row is initialised (T, = 1) the data element a; j11
of the entering line is reduced with the stored data element and passed to the
following row. Hence, one can say that the k-th row of the array performs the
k-th iteration of the Gauss-Jordan algorithm.

The inverters of the boundary cells contribute most of the delay time tgeiay
of the systolic network. Instead of introducing a full systolic array, it is already
almost as helpful to simply add delay elements only between the rows. This
seems to be a good trade-off between delay time and the number of registers
used. This approach we call systolic lines.

As described earlier, the LSEs we generate are not always solvable. We can
easily detect an unsolvable LSE by checking the state of the boundary cells after
3m clock cycles (m clock cycles for a systolic network, respectively). If one of
them is not set, the system is not solvable and a new LSE needs to be generated.
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Fig. 3. Pivot Cell of the Systolic Array LSE Solver

Table 2. Implementation results for different types of systolic arrays and different sizes
of LSEs over GF(2®%) (tdelay in 08, Fyax in MHz)

Size on FPGA Speed Size on ASIC
Engine Slices LUTs FFs tdelay FMax GE (estimated)
Systolic arrays on a Spartan-3 device (XC3S1500, 300 MHz)
Systolic Array (10x10) 2,533 4,477 1,305 12.5 80 38,407
Systolic Array (12x12) 3,502 6,160 1,868 12.65 79 53,254
Systolic Array (20x20) 8,811 15,127 5,101 11.983 83 133,957
Alternative systolic arrays on a Spartan-3
Systolic Network (10x10) 2,251 4,379 461 118.473 8.4 30,272
Systolic Lines (12x12) 3,205 6,171 1,279 13.153 75 42,013
Systolic arrays on a Virtex-V device (XC5VLX50-3, 550 MHz)
Systolic Array (10x10) 1314 3498 1305 4.808 207 36,136
Systolic Lines (12x12) 1,534 5,175 1,272 9.512 105 47,853
Systolic Array (20x20) 4552 12292 5110 4.783 209 129,344

However, as shown in Table[T] this happens very rarely. Hence, the impact on the
performance of the implementation is negligible. Table [2] shows implementation
results of the different types of systolic arrays for different sizes of LSEs (over
GF(2%)) on different FPGAs.

3.2 Matrix-Vector Multiplier and Polynomial Evaluator

For performing matrix-vector multiplication, we use the building block depicted
in Figure[Bl In the following we call this block a t-MVM. As you can see a t-MVM
consists of ¢ multipliers, a tree of adders of depth about logs(t) to compute the
sum of all products a; - b;, and an extra adder to recursively add up previously
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Fig. 5. Signature Core Building Block: Combined Matrix-Vector-Multiplier and
Polynomial-Evaluator

computed intermediate values that are stored in a register. Using the RST-signal
we can initially set the register content to zero.
To compute the matrix-vector product

ail ... a1 b1
A-b=
Ay, 1 - +. AQuu bu

using a t-MVM, where ¢ is chosen in a way that it divided] u, we proceed row
by row as follows: We set the register content to zero by using RST. Then we

! Note that in the case that ¢ does not divide u we can nevertheless use a t--MVM to
compute the matrix-vector product by setting superfluous input signals to zero.
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feed the first ¢ elements of the first row of A into the --MVM, i.e. we set a3 =
ai1,...,a; = aiy, as well as the first ¢ elements of the vector b. After the
register content is set to 22:1 a1,;b;, we feed the next ¢ elements of the row and
the next ¢ elements of the vector into the --MVM. This leads to a register content
corresponding to Zfil a1,;b;. We go on in this way until the last ¢ elements of
the row and the vector are processed and the register content equals > ; aq,;b;.
Thus, at this point the data signal ¢ corresponds to the first component of the
matrix-vector product. Proceeding in a analogous manner yields the remaining
components of the desired vector. Note that the | parts of the vector b are re-
used in a periodic manner as input to the --MVM. In Section 3.4l we describe a
building block, called word rotator, providing these parts in the required order
to the --MVM without re-loading them each time and hence avoid a waste of
resources.

Therefore, using a t--MVM (and an additional vector adder) it is clear how
to implement the affine transformations S : F* — F™ and T : F™ — F™ which
are important ingredients of an M Q-scheme. Note that the parameter ¢ has a
significant influence on the performance of an implementation of such a scheme
and is chosen differently for our implementations (as can be seen in Section ).

Besides realizing the required affine transformations, a t--MVM can be re-
used to implement (partial) polynomial evaluation. It is quite obvious that
evaluating the polynomials p) (belonging to the central map P’ of a MO-
scheme, cf Section [2) with the vinegar variables involves matrix-vector mul-
tiplications as the main operations. For instance, consider a fixed polynomial
P, an) = 3 Y v ey, from the central map of UOV that

we evaluate with random values by,...,b,_,, € F for the vinegar variables
x, ...,z .. Here we like to compute the coeflicients 3;.0, 8i n—m+1s-- -, Bin

of the linear polynomial

n
pg(bh...,bn,m,$;,m+17...,$;) = /Bi,U + Z /Bidm;’ :

j=n—m+1

We immediately obtain the coefficients of the non-constant part of this linear

polynomial, i.e. Bin—m+1,--.,0Bin, by computing the following matrix-vector
product:
’Y;,l,n—m+1 e ’y;,n—m,n—m+1 bl /Bi,n—m+1
: = : (1)
7’2,1,71 e fy;,nfm,n bn*m Bi,’ﬂ

Also the main step for computing 3; o can be written as a matrix-vector product:

!
Vi,1,1 0 0 N 0
! !
Vi 1,2 Vi,2,2 0 0 b1 1
: : = : (2)
! ! !
Yi,1,n—m—1 Yi,2,;n—m—1 -+ Vi;n—m—1,n—m—1 0 bn—m Qi n—m

/ / /
f}/i,l,nfm ’Yi,Z,nfm e ’Yi,nfm,nfm
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Fig. 6. Signature Core Building Block: Equation Register

Of course, we can exploit the fact that the above matrix is a lower triangular
matrix and we actually do not have to perform a full matrix-vector multiplica-
tion. This must simply be taken into account when implementing the control
logic of the signature core. In order to obtain ;¢ from (a1 . ..ai’n,m)T we
have to perform the following additional computation:

Bio = aiibt + ...+ i p—mbp—m .

This final step is performed by another unit called equation register which is
presented in the next section.

3.3 Equation Register

The Equation Register building block is shown in Figure [ll A w-ER essentially
consists of w + 1 register blocks each storing k bits as well as one adder and one
multiplier. It is used to temporarily store parts of an linear equation until this
equation has been completely generated and can be transferred to the systolic
array solver.

For instance, in the case of UOV we consider linear equations of the form

n—m

n
/ / / / / /
Pi(b1s e b, T ) = Y S Z o b —yi + Z Bijr; =0
Jj=1 Jj=n—m-+1

where we used the notation from Section To compute and store the con-
l_

stant part 377" jbj—y; of this equation the left-hand part of an m-ER is used
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Fig. 7. Signature Core Building Block: Word Rotator

(see Figure[Al): The respective register is initially set to y;. Then the values «; ;
are computed one after another using a t-MVM building block and fed into
the multiplier of the ER. The corresponding values b; are provided by a t-WR
building block which is presented in the next section. Using the adder, y} and the
products can be added up iteratively. The coefficients 3; ; of the linear equation
are also computed consecutively by the t--MVM and fed into the shift-register
that is shown on the right-hand side of Figure

3.4 Word Rotator

A word cyclic shift register will in the following be referred to as word rotator
(WR). A (t,r)-WR, depicted in Figure [ consists of r register blocks storing
the % parts of the vector b involved in the matrix vector products considered in
Section 3.2l Each of these r register blocks stores t elements from GF(2%), hence
each register block consists of ¢ k-bit registers. The main task of a (¢,r)-WR is
to provide the correct parts of the vector b to the --MVM at all times. The r
register blocks can be serially loaded using the input bus z. After loading, the r
register blocks are rotated at each clock cycle. The cycle length of the rotation
can be modified using the multiplexers by providing appropriate control signals.
This is especially helpful for the partial polynomial evaluation where due to
the triangularity of the matrix in Equation (), numerous operations can be
saved. Here, the cycle length is HL where j is the index of the processed row.
The possibility to adjust the cycle length is also necessary in the case r > §
frequently appearing if we use the same (t,7)-WR, i.e., fixed parameters ¢ and
r, to implement the affine transformation 7', the polynomial evaluations, and the
affine transformation S. Additionally, the WR provides b; to the ER building
block which is needed by the ER at the end of each rotation cycle. Since this b;
value always occurs in the last register block of a cycle, the selector component
(right-hand side of Figure []) can simply load it and provide it to the ER.
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4 Performance Estimations of Small-Field M Q-Schemes
in Hardware

We implemented the most crucial building blocks of the architecture as described
in Section [ (systolic structures, word rotators, matrix-vector multipliers of dif-
ferent sizes). In this section, the estimations of the hardware performance for
the whole architecture are performed based on those implementation results.
The power of the approach and the efficiency of M Q-schemes in hardware is
demonstrated at the example of UOV, Rainbow, enTTS and amTTS as speci-
fied in Section 2

Side-Note: The volume of data that needs to be imported to the hardware
engine for M Q-schemes may seem too high to be realistic in some applications.
However, the contents of the matrices and the polynomial coefficients (i.e. the
private key) does not necessarily have to be imported from the outside world
or from a large on-board memory. Instead, they can be generated online in
the engine using a cryptographically strong pseudo-random number generator,
requiring only a small, cryptographically strong secret, i.e. some random bits.

4.1 UOV

We treat two parameter sets for UOV as shown in Table Bl n = 60, n = 20
(long-message UOV) as well as n = 30, m = 10 (short-message UOV). In UOV
signature generation, there are three basic operations: linearising polynomials,
solving the resulting equation system, and an affine transform to obtain the
signature. The most time-consuming operation of UOV is the partial evaluation
of the polynomials p}, since their coefficients are nearly random. However, as
already mentioned in the previous section, for some polynomials approximately
one half of the coefficients for the polynomials are zero. This somewhat simplifies
the task of linearization.

For the linearization of polynomials in the long-message UOV, 40 random
bytes are generated to invert the central mapping first. To do this, we use a
20-MVM, a (20,3)-WR, and a 20-ER. For each polynomial one needs about 100
clock cycles (40 clocks to calculate the linear terms and another 60 ones to
compute the constants, see () and (2))) and obtains a linear equation with 20
variables. As there are 20 polynomials, this yields about 2000 clock cycles to
perform this step.

After this, the 20 x 20 linear system over GF(28) is solved using a 20 x 20
systolic array. The signature is then the result of this operation which is returned
after about 4x20=80 clock cycles. Then, the 20-byte solution is concatenated
with the randomly generated 40 bytes and the result is passed through the
affine transformation, whose major part is a matrix-vector multiplication with
a 60x60-byte matrix. To perform this operations, we re-use the 20-MVM and
a (20,3)-WR. This requires about 180 cycles of 20-MVM and 20 bytes of the
matrix entries to be input in each cycle.

For the short-message UOV, one has a very similar structure. More precisely,
one needs a 10-MVM, a (10,3)-WR, a 10-ER and a 10x10 systolic array. The



Time-Area Optimized Public-Key Engines 59

design requires approximately 500 cycles for the partial evaluation of the poly-
nomials, about 40 cycles to solve the resulting 10x10 LSE over GF(2%) as well
as another 90 cycles for the final affine map.

Note that the critical path of the Gaussian elimination engine is much longer
than that for the remaining building blocks. So this block represents the per-
formance bottleneck in terms of frequency and hardware complexity. Thus, the
maximal frequency for both UOV variants will be bounded by about 200 MHz for
XC5VLX50-3 and about 80 MHz for XC3S1500. See Table Bl for our estimations.

4.2 Rainbow

In the version of Rainbow we consider, the message length is 24 byte. That is,
a 24-byte matrix-vector multiplication has to be performed first. One can take
a 6-MVM and a (6,7)-WR which require about 96 clock cycles to perform the
computation. Then the first 18 variables of z are randomly fixed and 12 first
polynomials are partially evaluated. This requires about 864 clock cycles. The
results are stored in a 12-ER. After this, the 12x12 system of linear equations
is solved. This requires a 12x12 systolic array over GF(28) which outputs the
solution after 48 clock cycles. Then the last 12 polynomials are linearised using
the same matrix-vector multiplier and word rotator based on the 18 random
values previously chosen and the 12-byte solution. This needs about 1800 clock
cycles. This is followed by another run of the 12x12 systolic array with the same
execution time of about 48 clock cycles. At the end, roughly 294 more cycles are
spent performing the final affine transform on the 42-byte vector. See Table
for some concrete performance figures in this case.

4.3 enTTS and amTTS

Like in Rainbow, for enTTS two vector-matrix multiplications are needed at
the beginning and at the end of the operation with 20- and 28-byte vectors
each. We take a 10-MVM and a (10,3)-WR, for this. The operations require
40 and 84 clock cycles, respectively. One 9-ER is required. Two 10x10 linear
systems over GF(2%) need to be solved, requiring about 40 clock cycles each. The
operation of calculating the linearization of the polynomials can be significantly
optimised compared to the generic UOV or Rainbow (in terms of time) which
can drastically reduce the time-area product. This behaviour is due to the special
selection of polynomials, where only a small proportion of coefficients is non-zero.

After choosing 7 variables randomly, 10 linear equations have to be generated.
For each of these equations, one has to perform only a few multiplications in
GF(2%) which can be done in parallel. This requires about 10 clock cycles. After
this, another variable is fixed and a further set of 10 polynomials is partially
evaluated. This requires about 10 further cycles.

In amTTS, which is quite similar to enTTS, two affine maps with 24- and
34-byte vectors are performed with a 12-MVM and a (12,3)-WR yielding 48
and 102 clock cycles, respectively. Two 10x10 and one 4 x4 linear systems have
to be solved requiring for a 10x10 systolic array (twice 40 and once 16 clock
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Table 3. Comparison of hardware implementations for ECC and our performance es-
timations for M Q-schemes based on the implementations of the major building blocks
(F=frequency, T=Time, L=luts, S=slices, FF=flip-flops, A=area)

Implementation F, MHz T, pus L/S/FF AKGE LxT
ECC over GF(2'%%), [I], NIST, XC2V200 100 41 8,300/-/- - 71.3
ECC over GF(2'%%), [12], NIST, XCV200E-7 48 68.9 25,763/-/- - 372.3
UOV n = 60, m = 20, XC5VLX50-3 209 11 15,497/4,188/4,999 166.6  35.7
UOV n = 60, m = 20, XC3S1500 83 27.7 21,167/9,203/6,828 227.5 122.8
UOV n = 30, m = 10, XC5VLX50-3 207 3.1 5,276/1,265/1,487 56.7 3.4
UOV n = 30, m = 10, XC3S1500 80 8 8,601/4,072/2,916 92.4  14.4
Rainbow n = 42, m = 24, XC5VLX50-3 105 30.3 5,929/1,681/1,869 63.7  37.6
Rainbow n = 42, m = 24, XC3S1500 79 39.1 7,114/1,968/2,377 76.4  58.2
enTTS n = 24, m = 20, [I7], CMOS 0.25 um 807 291 - 22 -
enTTS n = 24, m = 20, XC5VLX50-3 207 1.1 4,341/1,284/1,537 442 1.0
enTTS n = 24, m = 20, XC3S1500 80 2.8 5,423/1,248/1,986 55.9 3.2
amTTS n = 34, m = 24, XC5VLX50-3 207 1.5 4,471/1,412/1,678 45.7 1.4
amTTS n = 34, m = 24, XC3S1500 80 3.9  6,034/2,920/2,395 61.6 4.9

# For comparison purposes we assume that the clock frequency for the design is 80
MHz.

cycles). Moreover, a 10-ER is needed. The three steps of the partial evaluation
of polynomials requires roughly 25 clock cycles in this case. See Table [3 for our
estimations on enTTS and amTTS.

5 Comparison and Conclusions

Our implementation results (as well as the estimations for the optimisations in
case of enTTS and amTTS) are compared to the scalar multiplication in the
group of points of elliptic curves with field bitlengths in the rage of 160 bit
(corresponding to the security level of 25°) over GF(2%), see Table Bl A good
survey on hardware implementations for ECC can be found in [5].

Even the most conservative design, i.e. long-message UOV, can outperform
some of the most efficient ECC implementations in terms of TA-product on some
hardware platforms. More hardware-friendly designs such as the short-message
UOV or Rainbow provide a considerable advantage over ECC. The more aggres-
sively designed enTTS and amTTS allow for extremely efficient implementations
having a more than 70 or 50 times lower TA-product, respectively. Though the
metric we use is not optimal, the results indicate that M Q-schemes perform
better than elliptic curves in hardware with respect to the TA-product and are
hence an interesting option in cost- or size-sensitive areas.
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Abstract. Elliptic Curve Cryptosystems (ECC) have gained increasing
acceptance in practice due to their significantly smaller bit size of the
operands compared to other public-key cryptosystems. Since their com-
putational complexity is often lower than in the case of RSA or discrete
logarithm schemes, ECC are often chosen for high performance public-
key applications. However, despite a wealth of research regarding high-
speed software and high-speed FPGA implementation of ECC since the
mid 1990s, providing truly high-performance ECC on readily available
(i.e., non-ASIC) platforms remains an open challenge. This holds espe-
cially for ECC over prime fields, which are often preferred over binary
fields due to standards in Europe and the US.

This work presents a new architecture for an FPGA-based ultra high
performance ECC implementation over prime fields. Our architecture
makes intensive use of the DSP blocks in modern FPGAs, which are
embedded arithmetic units actually intended to accelerate digital signal
processing algorithms. We describe a novel architecture and algorithms
for performing ECC arithmetic and describe the actual implementation
of standard compliant ECC based on the NIST primes P-224 and P-256.
We show that ECC on Xilinx’s Virtex-4 SX55 FPGA can be performed
at a rate of more than 37,000 point multiplications per second. Our archi-
tecture outperforms all single-chip hardware implementations over prime
fields in the open literature by a wide margin.

Keywords: Elliptic Curve Cryptosystems, FPGA, High-Performance.

1 Introduction

With the explosive growth of Internet-based applications like ecommerce, peer-
to-peer networks and distributed gaming as well as embedded ones — ranging
from mobile over set-top boxes to automotive — the demand for security in such
systems has also grown dramatically. In these applications, asymmetric cryptog-
raphy is used to achieve a large variety of security goals. However, asymmetric
cryptographic algorithms are extremely arithmetic intensive since their security
assumptions rely on computational problems which are considered to be hard in
combination with parameters of significant bit sizes.

Neal Koblitz and Victor Miller proposed independently in 1985 [20/17] the use
of Elliptic Curve Cryptography providing similar security compared to classical
cryptosystems but using smaller keys. This benefit allows for greater efficiency

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 62478 [2008.
© International Association for Cryptologic Research 2008
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when using ECC (160-256 bit) compared to RSA or discrete logarithm schemes
over finite fields (1024-4096 bit) while providing an equivalent level of secu-
rity [I8]. Due to this, ECC has become the most promising candidate for many
new applications, especially in the embedded domain, which is also reflected by
several standards by IEEE, ANSI and SECG [I5/TI56].

In addition to many new “lightweight” applications (e.g., digital signature
on RFID-like devices), there are also many new applications which call for high-
performance asymmetric primitives. Even though very fast public-key algorithms
can be provided for PC and server applications by accelerator cards equipped
with ASICs, providing very high speed solutions in embedded devices is still a
major challenge. Somewhat surprisingly, there appears to be extremely few, if
any, commercially available ASICs or chip sets that provide high speed ECC
and which are readily available for integration in general embedded systems. A
potential alternative is provided by Field Programmable Gate Arrays (FPGA).
FPGAs have evolved over the last decade to a powerful alternative for classical
ASIC circuits. In addition, FPGAs provide the advantage of dynamic and flexi-
ble circuit reconfigurability allowing for rapid prototyping at little development
costs. However, despite a wealth of research regarding high-speed FPGA (and
high-speed software) implementation of ECC since the mid 1990s, providing truly
high-performance ECC (i.e., to reach less than 100us per point multiplication)
on readily available platforms remains an open challenge. This holds especially
for ECC over prime fields, which are often preferred over binary fields due to
standards in Europe and the US, and a somewhat clearer patent situation.

In this work, we propose a novel hardware architecture based on reconfig-
urable FPGAs supporting ECC cryptography over prime fields GF(p) offering
the highest single-chip performance reported in literature up to now. Usually,
known ECC implementations for reconfigurable logic implement the computa-
tionally expensive low-level arithmetic in configurable logic elements, allowing
for greatest flexibility but offering only moderate performance. Some implemen-
tations have attempted to address this problem by using dedicated arithmetic
hardware in the reconfigurable device for specific parts of the computations, like
built-in 18x18 multipliers. But other components of the circuitry for field addi-
tion, subtraction and inversion have been still implemented in the FPGA’s fabric
which usually leads to a significant decrease in performance.

The central idea of this contribution is to relocate the arithmetic intensive
operations of ECC over prime fields entirely in dedicated hardcore units on
the FPGA actually reserved for use in Digital Signal Processing (DSP) filter
applications. These DSP accelerating functions are built-in components in the
static logic of modern FPGA devices capable to perform integer multiplication,
addition and subtraction as well as a multiply-accumulate operation.

2 Previous Work

We briefly summarize previously published results of relevance to this contribu-
tion. There is a wealth of publication addressing ECC hardware architectures,
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and a good overview can be found in [§]. In the case of high speed architectures
for ECC, most implementation primarily address elliptic curves over binary fields
GF(2™) since the arithmetic is more hardware-friendly [22/T0]. Our work, how-
ever, focuses on the prime field GF(p). First implementations for ECC over
prime fields GF(p) have been proposed by [23l24] demonstrating ECC proces-
sors built completely in reconfigurable logic. The contribution by [19] proposes
a high-speed ECC crypto core for arbitrary moduli with up to 256 bit length
designed on a large number of built-in multiplier blocks of FPGA devices pro-
viding a significant speedup for modular multiplications. However, other field
operations have been implemented in the FPGA fabric, resulting in a very large
design (15,755 slices and 256 multiplier blocks) on a large Xilinx XC2VP125 de-
vice. The architecture presented in [7] was designed to achieve a better trade-off
between performance and resource consumption. According to the contribution,
an area consumption of only 1,854 slices and a maximum clock speed of 40 MHz
can be achieved on a Xilinx Virtex-2 XC2V2000 FPGA for a parameter bit
length of 160 bit.

Our approach to implementing an FPGA-based ECC engines was to shift all
field operations into the integrated DSP building blocks available on modern
FPGAs. We show that this approach leads to an extremely high throughput.
Furthermore, our strategy frees most configurable logic elements on the FPGA
for other applications and requires less power compared to a conventional design.
To the best of our knowledge, this architecture offers the fastest performance for
ECC computations over prime fields with up to 256 bit security in reconfigurable
logic.

3 Mathematical Background

In the following, we will briefly introduce to the mathematical background rel-
evant for this work. We will start with a short review of the Elliptic Curve
Cryptosystems (ECC). Please note that only ECC over prime fields GF(p) will
be subject of this work since binary extensions fields GF(2™) require binary
arithmetic which is not (yet) natively supported by DSP blocks.

3.1 Elliptic Curve Cryptography

Let p be a prime with p > 3 and F, = GF'(p) the Galois Field over p. Given the
Weierstrass equation of an elliptic curve

E:yi=a+ax+0,

with a,b € GF(p) and 4a® + 27b% # 0, points P; € £, we can compute tuples
(z,y) also considered as points on this elliptic curve £. Based on a group of
points defined over this curve, ECC arithmetic defines the addition R =P + Q
of two points P, Q using the tangent-and-chord rule as the primary group op-
eration. This group operation distinguishes the case for P = Q (point doubling)
and P # Q (point addition). Furthermore, formulas for these operations vary
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for affine and projective coordinate representations. Since affine coordinates re-
quire the availability of fast modular inversion, we will focus on projective point
representation to avoid the implementation of a costly inversion circuit. Given
two points Py, P2 with P; = (X;,Y;, Z;) and Py # Pa, the sum Ps =Py + Py is
defined by

A=YsZ1 —Y1Zy B=A>Z1Zy—C?—-20%X 12y C = X221 — X125
X3 = BC Yz = A(C?X,1Z5 — B) = C3Y1Zy Z3=C*7Z1Z>, (1)

where A, B, C are auxiliary variables and P3 = (X3, Y3, Z3) is the resulting point
in projective coordinates. Similarly, for P; = P the point doubling Ps = 2P is
defined by

A=aZ?+3X? B=YZ C=XYB D= A?-8C
X3 =2BD Y3 = A(4C — D) — 8B%*Y? Z3 = 8B>. (2)

Most ECC-based cryptosystems rely on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) and thus employ the technique of point multiplication k- P as
cryptographic primitive, i.e., a k times repeated point addition of a base point P.
Precisely, the ECDLP is the fundamental cryptographic problem used in proto-
cols and crypto schemes like the Elliptic Curve Diffie-Hellman key exchange [9],
the ElGamal encryption scheme [I2] and the Elliptic Curve Digital Signature
Algorithm (ECDSA) [1].

3.2 Standardized General Mersenne Primes

The arithmetic for ECC point multiplication is based on modular computa-
tions over a prime field GF(p). These computations always include a subse-
quent step to reduce the result to the domain of the underlying field. Since
the reduction is very costly for general primes due to the demand for a multi-
precision division, special primes have been proposed by Solinas [26] which have
been finally standardized in [2I]. These primes provide efficient reduction algo-
rithms based on a sequence of multi-precision addition and subtractions only
and eliminate the need for the costly division. Special primes P-I with bitlengths
1 = {192,224,256,384,521} are part of the standard. But we believe that the
primes P-224 and P-256 are the most relevant bit sizes for future implementa-
tions of the next decades.

According to Algorithm [ the modular reduction for P-224 can be performed
with two 224-bit subtractions and additions. However, these four consecutive
operations can lead to a potential over- and underflow in step [l With Z =
21+ 22 4 23 — 24 — 25, we can determine the bounds —2p < Z < 3p reducing the
number of final correction steps to two additions or subtractions to compute the
correctly bounded ¢ mod paoy.

Algorithm[2 presents the modular reduction for P-256 requiring two doublings,
four 256-bit subtractions and four 256-bit additions. Based on the computation
Z =214 22904+ 223+ 24 + 25 — 26 — 27 — 28 — 29, the range of the result to be
corrected is —4p < Z < bp.
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Algorithm 1. NIST Reduction with P-224 = 2224 — 296 4

Input: Double-sized integer ¢ = (ci3,...,c2,c1,co) in base 232 and 0 > ¢ > P-2242
Output: Single-sized integer ¢ mod P-224.
1: Concatenate ¢; to following 224-bit integers z;:

z1 = (cs, 5, Ca,C3,C2,C1,C0), 22 = (c10,Co,Cs,c7,0,0,0),
z3 = (0, c13, c12,¢11,0,0,0), z4 = (0,0,0,0, c13, c12, c11),

z5 = (c13, c12, €11, C10, Co, C8, C7)

2: Compute ¢ = (21 + 22 + 23 — z4 — z5 mod P-224)

Algorithm 2. NIST Reduction with P-256 = 2256 — 2224 4 2192 4 996 _ |
Input: Double-sized integer ¢ = (cis, ..., c2,c1,co) in base 232 and 0 > ¢ > P-2562
Output: Single-sized integer ¢ mod P-256.

1: Concatenate ¢; to following 256-bit integers z;:

C7,C6, C5, Ca, C3,C2,C1,C0), 22 = (c15, C14, C13, C12, €11, 0, 0,0),
07615761476137612707070)7 R4 = (61576147070707 610769768)7

z1 :(
z3 :(
z5 = (cs, c13, C15, C14, C13, C11, C10, C9 ), 26 = (C10, Cs,0,0,0, c13, c12, c11),
z7 = (c11,¢9,0,0, c15, C14, C13, C12), 28 = (c12,0, c10, C9, C8, C15, C14, C13),
Z9 :(

13,0, c11, 10, €9, 0, c15, C14)

2: Compute ¢ = (21 + 222 + 223 + 24 + 25 — 26 — 27 — 28 — 29 mod P-256)

4 An Efficient ECC Architecture Using DSP Cores

In this section we demonstrate how to implement ECC over NIST primes P-224
and P-256 using available DSP blocks of Xilinx Virtex-4 FPGAs.

4.1 DSP-Accelerator Blocks in FPGAs

Modern FPGA devices like Xilinx Virtex-4 and Virtex-5 as well as Altera Stratix
FPGAs have been equipped with dedicated arithmetic hardcore extensions to
accelerate, in particular, digital signal processing applications. These function
blocks (DSP blocks) can be used to build a more efficient implementation in
terms of performance and reduce at the same time the demand for logical el-
ements. In general, DSP blocks of FPGAs can be programmed to perform ba-
sic arithmetic functions, especially, multiplication, addition and subtraction of
(un)signed integers. A common DSP component comprises an [/-bit signed inte-
ger multiplier coupled with an [ 4-bit signed adder, where 4 > [j; holds. For en-
abling maximum performance, the multiplier and adder block can be augmented
with pipeline registers to reduce signal propagation delays between components.
Using different data paths, DSP blocks can operate on external inputs A, B, C'
as well as on feedback values from accumulation or even results Pj4+; from a
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DSP-Block Structure Modes of Operation
C A B
4 /Ir|M ,I/lm
DSP +- | Add/Subtract
Pii) 2y Pi.s x | Multiply
In
s : Multiply & Accumulate

+Pi

Fig. 1. Generic and simplified structure of DSP-blocks of advanced FPGA devices

neighboring DSP block. Figure [ shows the generic DSP-block used in recent
Xilinxk FPGA devices [29].

4.2 ECC Engine Design Criteria

When using DSP blocks to develop a high-speed ECC design, there are several
criteria which should be met to exploit their full performance. Note that the
following aspects have been designed to target the requirements of Xilinx Virtex-
4 FPGAs:

1.

Build DSP cascades: Neighboring DSP blocks can be cascaded to widen or
extent their atomic operand width (e.g., from 18 bit to 256 bit).

Use DSP routing paths: DSPs have been provided with inner routing paths
connecting two adjacent blocks. It is advantageous in terms of performance
to use these paths as frequently as possible instead of using FPGA’s general
switching matrix for connecting logic blocks.

Consider DSP columns: Within a Xilinx FPGA, DSPs are aligned in columns,
i.e., routing paths between DSPs within the same column are efficient while
a switch in columns can lead to degraded performance. Hence, DSP cascades
should not exceed the column width (typically 32/48/64 DSPs per column).
Use DSP pipeline registers: DSP blocks feature pipeline stages which should
be used to achieve the maximum clock frequency supported by the device
(up to 500 MHz).

Use different clock domains: Optimally, DSP blocks can be operated at max-
imum device frequency. This is not necessarily true for the remainder of the
design so that separate clock domains should be introduced (e.g. by halving
the clock frequency for control signals) to address the critical paths in each
domain individually.
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4.3 Arithmetic Units

According to the EC arithmetic introduced in Section B an ECC engine over
GF(p) based on projective coordinates requires functionality for modular ad-
dition, subtraction and multiplication. Since modular addition and subtraction
is very similar, both operation are combined. In the following description we
will assume a Virtex-4 FPGA as reference device and corresponding DSP block
arithmetic with word sizes {4 = 32 and [p; = 16 for unsigned addition and
multiplication, respectively. Note that native support by the DSP blocks on a
Virtex-4 device is available for up to 48-bit signed addition and 18-bit signed
multiplication.

Modular Addition/Subtraction. Let A, B € GF(P) be two multi-precision
operands with lengths |A|,|B] < I and | = |logy, P] + 1. Modular addition
C = A+ B mod P and subtraction C' = A— B mod P can be efficiently computed
according to Algorithm

Algorithm 3. Modular addition and subtraction
Input: A, B,P with0 < A, B < P;
Operation flag f € {0, 1} denotes a subtraction when f = 1 and addition otherwise
Output: C =A+ Bmod P
1: (C|No,S()) =A+ (—l)fB;
2: (C|N1, Sl) =S+ (—1)17fP;
3: Return S‘f_cf‘;

For using DSP blocks, we need to divide the [-bits operands into multiple
words each having a maximum size of [ 4 bit due to the limited width of the DSP
input port. Thus, all inputs A, B and P to the DSP blocks can be represented
in the form X = Z:.L:Ao_l x; - 24 where ny = [l/la] denotes the number of
words of an operand. According to Algorithm [3, we employ two cascaded DSP
blocks, one for computing s ;) = a; £ (b; + Cino) and a second for s ;) =
5(0,4) F (pi+Cint). The resulting values s ;) and s(; ;) each of size |s(; ;)| < la+1
are temporarily stored and recombined to Sy and S; using shift registers (SR).
Finally, a 2-to-1 [-bit output multiplexer selects the appropriate value C' = 5;.
Figure [ presents a schematic overview of a combined modular addition and
subtraction based on two DSP blocks. Note that DSP blocks on Virtex-4 FPGAs
provide a dedicated carry input ¢y but no carry output coyrt. Particularly, this
fact requires extra logic to compensate for duplicate carry propagation to the
second DSP which is due to the fixed cascaded routing path between the DSP
blocks. In this architecture, each carry is considered twice, namely in sg ;41 and
s1,; what needs to be corrected. This special carry treatment requires a wait
cycle to be introduced so that one [ 4-bit word can be processed each two clock
cycles. However, this is no restriction for our architecture since we design for
parallel addition and multiplication so that the (shorter) runtime of an addition
is completely hidden in the duration of a concurrent multiplication operation.
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Fig. 2. Modular addition/subtraction based on DSP-blocks

Modular Multiplication. The most straightforward multiplication algorithm
to implement the multiplication with subsequent NIST prime reduction (cf. Sec-
tion B2]) is the schoolbook multiplication method with a time complexity of
O(n?) for n-bit inputs. Other methods, like the Karatsuba algorithm [16], trade
multiplications for additions using a divide-and-conquer approach. Due to the
higher number of additions, this latter strategy is only preferable in case that
the complexity costs of an an addition is significantly below that of a multipli-
cation [28]. But even when neglecting any further control overhead introduced
by the Karatsuba method, this does not hold for Virtex-4 devices since mul-
tiplication is comparably cheap within the DSP blocks. Let A, B € GF(P)
be two multi-precision integers with bit length [ < |log, P| + 1. According
to the limited input size lp; of DSP blocks, we split now the values A, B in
ny = [1/Iy] words represented as X = S ~'g; . 2% Schoolbook mul-
tiplication computes C' = A - B based on accumulation of (nar)? products
C = 227”” Qi Z o ajbi—; providing a result C' of size |C| < 2ny,. For par-
allel execution on nj; DSP units, we compacted the order of inner product
computations as shown in Figure Bl All ny; DSP blocks operate in a loadable
Multiply-and-Accumulate mode (MACC) so that intermediate results remain in
the corresponding DSP block until an inner product s; = Z;:O a;jb;—j is fully
computed. Note that s; returned from the ny; DSP blocks are not aligned and
can vary in size up to |s;| < 2y + logy(na) = lace = 36 bits. Thus, all s;
need to be converted to non-redundant representation to finally form the final
product of words ¢; with maximum size 2[); each. Hence, we feed all values
into a subsequent accumulator to combine each s; with the corresponding bits
of s;—1 and s;4+1. Considering the special input constraints, timing conventions
and carry transitions of DSP blocks, we developed Algorithm [ to address the
accumulation of inner products based on two DSP blocks performing [ 4cc-bit
additions.

Figure [ gives a schematic overview of the multiplication circuit returning the
full-size product C'. This result has to be reduced using the fast NIST prime
reduction scheme discussed in the next section.
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Serial Multiplication Parallelized Multiplication
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Fig. 3. Parallelizing multiplication for efficient DSP-based computation

Algorithm 4. Accumulation of partial product ¢;

Input: Partial products s; with bitsize |s;| < lacc for i =0...2nyp — 1 and lacc =
2lnr + logy (nar)
Output: Product C = (c2n,y,,---,co) with bitsize |C] < 21
1: S(,l) — 0; C(,1> — 0

2: for i =0 to 2nym — 2 by 2 do

3: dl — ADD(SZ'_1[ZACC — 1 - .ZM},Si[lACC - O])

4: C; — ADD(di[lACC . lzu], (81‘+1[lzu - O”Cifl[gljw . 2[@1}))
5: end for

6: return ¢ = (c2ny—1,---,¢0)

Modular Reduction. At this point we will discuss the subsequent modular re-
duction of the 2n,/-bit multiplication result C' using the NIST reduction scheme.
All fast NIST reduction algorithms rely on a reduction step (1) defined as a se-
ries multi-precision additions and subtractions followed by a correction step (2)
to achieve a final value in the interval [0,..., P — 1] (cf. Algorithms [ and 2]). To
implement (1), we decided to use one DSP-block for each individual addition or
subtraction, e.g., for the P-256 reduction we reserved a cascade of 8 DSP blocks.
Each DSP performs one addition or subtraction and stores the result in a register
whose output is taken as input to the neighboring block (data pipeline).

For the correction step (2), we need to determine in advance the possible
overflow or underflow of the result returned by (1) to avoid wait or idle cycles
in the pipeline. Hence, we introduced a Look-Ahead Logic (LAL) consisting of a
separate DSP block which exclusively computes the expected overflow or under-
flow. Then, the output of the LAL is used to select a corresponding reduction
value which are stored as multiple {0, ...,5P} in a ROM table. The ROM values
are added or subtracted to the result of (1) by a sequence of two DSP blocks
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Fig. 4. An [-bit multiplication circuit employing a cascade of parallelly operating DSP
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Fig. 5. Modular reduction for NIST-P-224 and P-256 using DSP blocks

ensuring that the final result is always in {0,..., P — 1}. Figure [l depicts the
general structure of the reduction circuit which is applicable for both primes
P-224 and P-256.

4.4 ECC Core Architecture

With the basic field operations for [ — bit computations at hand supporting NIST
primes P-224 and P-256, we have combined a modular multiplier and a modular
subtraction/addition component with dual-port RAM modules (BRAM) and
a state machine to build an ECC core. We have implemented an asymmetric
datapath supporting two different operand lengths: the first operand provides
full [-bit of data whereas the second operand is limited to 32-bit words so that
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several words need to be transferred serially to generate the full [-bit input. This
approach allows for direct memory accesses of our serial-to-parallel multiplier
architecture. Note further that we introduced different clock domains for the
core arithmetic based on the DSP blocks and the state machines for upper layers
(running at half clock frequency only). An overview of the entire ECC core is
shown in Figure [fl We implemented ECC group operations based on projective
Chudnowsky coordinatesﬂp since the implementation should support to compute
a point multiplication k - P as well as a corresponding linear combination k -
P +1r-Q based on a fixed base point P € £, k,r € {1,...,ord(P) —1} and Q €
(P). Both operations can be considered as basic ECC primitives, e.g., used for
ECDSA signature generation and verification [I]. The computation of k-P+r-Q
can make use of Shamir’s trick to efficiently compute several point products
simultaneously [12]. For this first implementation of the point multiplication
and the sake of simplicity, we used a standard double-and-add (binary method)
algorithm [14], but more efficient windowing methods [2] can also be implemented
without significantly increasing the resource consumption.

2 Dual Port RAM
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Fig. 6. Schematic overview of a single ECC core

4.5 ECC Core Parallism

Due the intensive use of DSP blocks to implement the core functionality of ECC,
the resulting implementation requires only few reconfigurable logic elements on
the FPGA. This allows for efficient multiple-core implementations on a single
FPGA improving the overall system throughput by a linear factor n dependent
on the number of cores. Note that most other high-performance implementations
occupy the full FPGA due to their immense resource consumption so that these
cannot easily be instantiated several times.

L ECC operations based on mixed affine-Jacobian coordinates are more efficient but
more complex in hardware when considering precomputed points in Jacobian co-
ordinates required for computing k- P + r - Q as required for ECDSA signature
verification.
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Based on our synthesis results, the limiting factor of our architecture is the
number of available DSP blocks of a specific FPGA device (cf. Section [Hl).

5 Implementation

The proposed architecture has been synthesized and implemented for the small-
est available Xilinx Virtex-4 device (XC4VFX12-12SF363) and the correspond-
ing results are presented in Subsection [l This FPGA type offers 5,472 slices
(12,288 4-input LUTs and flip flops) of reconfigurable logic, 32 DSP blocks
and can be operated at a maximum clock frequency of 500 MHz. Furthermore,
to demonstrate how many ECC computations can be performed using ECC
core parallelism, we take a second device, the large Xilinx Virtex-4 XC4VSX55-
12FF1148 providing the maximum number of 512 DSP blocks and 24,576 slices
(49,152 4-input LUTs and flip flops) as a reference for a multi-core architecture.

5.1 Implementation Results

Based on the Post-Place and Route (PAR) results using Xilinx ISE 9.1 we can
present the following performance and area details for ECC cores for primes
P-224 and P-256 on the small XC4VFEX12 device as shown in Table[Il Note that
up to now the implementation for P-224 is not yet fully verified in functionality
or optimized. The core for P-256, however, is already available for use in real-
world products.

Table 1. Requirements and clock frequency of a single ECC core on a Virtex-4 FX 12
after PAR

Aspect ECC Core P-224 ECC Core P-256
Slices occupied 1,580 (29%) 1,715 (31%)
4-input LUTSs 1,825 2,589

Flip flops 1,892 2,028

DSP blocks 26 32
BRAMs 11 11
Frequency/Max. delay 487 MHz/2.050 ns 490 MHz/2.040 ns

5.2 Throughput of a Single ECC Core

Given an ECC core with a separate adder/subtracter and multiplier unit, we can
perform a field multiplication and field addition simultaneously. By optimizing
the execution order of the basic field operations, it is possible to perform all
additions/subtraction required for the ECC group operation in parallel to a
multiplication. Based on the runtimes of a single field multiplication, we can
determine the number of required clock cycles for the operations k-P and k- P+
r - Q using the implemented Double-and-Add algorithm. Moreover, we also give



74 T. Giineysu and C. Paar

Table 2. Performance of ECC operations based on a single ECC core using projective
Chudnowsky coordinates on a Virtex-4 XC4VFX12 (Figures denoted with an asterisk
are estimates)

Aspect ECC Core P-224 ECC Core P-256
Cycles per MUL in GF(p) 58 70

Cycles per ADD/SUB in GF(p) 16 18

Cycles per ECC Addition (Chudnovsky) 812 980

Cycles per ECC Doubling (Chudnovsky) 580 700

Cycles k - P (Double& Add) 219,878 303,450
Cycles k - P (Window) 178,000%* 243,000*
Cycles k- P+ 17 - Q (Double&Add) 265,959 366,905
Cycles k- P +r- Q (Window) 194,000%* 264,000*

Time and OP/s for k- P (Double&Add)

Time and OP/s for k- P (Window)

Time and OP/s for k- P + r - Q (Double& Add)
Time and OP/s for k- P +r - Q (Window)

452 ps/2214
365 pus* /2740
546 ps/1831
398 us*/2510%

620 p15/1614
495 pus*/2020%
749 ps/1335
540 ps*/1850%

estimates concerning their performance when using a window-based method [2]
based on a window size w = 4.

Note that the specified timing considers signal propagation after complete
PAR excluding the timing constraints from I/O pins since no underlying data
communication layer was implemented. Hence, when being combined with an
I/O protocol of a real-world application, the clock frequency will be slightly
lower than specified in Table [l and

5.3 Multi-core Architecture

Since a single ECC core has obviously moderate resource requirements, it is
possible to place multiple instances of the core on a larger FPGA. On a single
XC4VSX55 device, we can implement, depending on the underlying prime field,
between 16-18 ECC cores running in parallel (cf. Table[B]). Due the small amount
of LUTs and flip flops required for a single core, the number of available DSP
blocks (and routing resources) on the FPGA is here the limiting factor.

5.4 Comparison

Based on our architecture, we can estimate a throughput of more than 37,000
point multiplications on the standardized elliptic curve P-224 per second which
exceeds the throughput of all single-chip hardware implementation known to the
authors by far. A detailed comparison with other implementations is presented
in Table [l
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Table 3. PAR-Results for a multi-core architecture on a Virtex-4 XC4VSX55 device
for ECC over prime fields P-224 and P-256 (Figures denoted with an asterisk are
estimates)

Aspect ECC P-224 ECC P-256
Number of Cores 18 16
Slices occupied 24,452 (99%) 24,574 (99%)
4-input LUTSs 32,688 34,896
Flip flops 34,166 32,430
DSP blocks 468 512
BRAMs 198 176
Frequency/Max. delay 372 MHz/2.685 ns 375 MHz/2.665 ns
OP/s k- P (Double&Add) 30,438 19,760
OP/s k- P (Window) 37,700% 24,700%*
OP/s k- P +r-Q (Double&Add) 25,164 16,352
OP/s k- P +r-Q (Window) 34,500% 22,700%*

At this point we like to point out that the field of highly efficient prime
field arithmetic is believed to be predominated by implementations on general
purpose microprocessors rather than on FPGAs. Hence, we will also compare
our hardware implementation against the performance of software solutions on
recent microprocessors. Since most performance figures for software implemen-
tations are given in cycles rather than absolute times, we assumed for comparing
throughputs that, on a modern microprocessor, repeated computations can be
performed without interruption simultaneously on all available cores with no
further cycles spent, e.g., on scheduling or other administrative tasks. Note that
this is indeed a very optimistic assumption possibly overrating the performance
of software implementations with respect to actual applications.

For example, a point multiplication using the highly efficient software imple-
mentation by Dan Bernstein based on floating point arithmetic for ECC over
P-224 requires 839.000 cycles on an (outdated) Intel Pentium 4 [3] at 1.4GHz.
According to our assumption for cycle count interpretation, this correlates to
1670 point multiplication per second.

Despite the good performance figures on this platform, we prefer to take more
recent results, e.g., obtained from ECRYPT’s eBATS project. According to the
report from March 2007 [II], an Intel Core2 Duo running at 2.13 GHz is able
to generate 1868 and 1494 ECDSA signatures based on the OpenSSL imple-
mentation for P-224 and P-256, respectively. Taking latest Intel Core2 Quad
microprocessors into account, these performance figures might even double. We
also compare our work to the very fast software implementation by [13] using an
Intel Core2 system at 2.66 GHz. However, in this contribution the special Mont-
gomery and non-standard curve over Fa2s5_19 is used instead of a standardized
NIST prime. Despite of that, for the design based on this curve the authors
report the impressive throughput of 6700 point multiplications per second.
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Table 4. Selected high-performance implementations of public-key cryptosystems

Scheme Device Implementation Logic Clock Time

This work XC4VFX12-12 GF(p), NIST-224 1580 LS/26 DSP 487 MHz 365 us
XC4VFX12-12

GF(p), NIST-256 1715 LS/32 DSP 490 MHz 495 us
XC4VSX55-12 GF(p), NIST-224 24452 1.5/468 DSP 372 MHz 26.5 us
XC4VSX55-12  GF(p), NIST-256 24574 1.S/512 DSP 375 MHz 40.5 us

ECC 23] XCVI000E  GF(p), NIST-192 5708 LS 40 MHz 3 ms
ECC [[9] XC2VP125-7  CF(p), 256-bit 15755 LS/256 MUL 39.5 MHz 3.84 ms
ECC [24] 0.13 ym CMOS  GF(p), 160-bit 117500 GE 137.7 MHz 1.21 ms
ECC [3] Intel Pentium4 GF(p), NIST-224 32 bit uP 1.4 GHz 599 us
ECC [1I] Intel Core2 Duo GF(p), NIST-256 64 bit uP 2.13 GHz 669" us
ECC [13] Intel Core2 Duo GF(2%° — 19) 64 bit uP 2.66 GHz 145 us
RSAM]  XC40250XV 1024-bit 6826 CLB 45.2 MHz 3.1 ms
RSA27] XC4VFX12-10 1024-bit (DSP) 3937 LS/17 DSP 400 MHz 1.71 ms
RSA[Z5] 0.5 um CMOS 1024-bit 28,000 GE 64 MHz 46 ms

a

Note that this figure reflects a full ECDSA signature generation rather than a point
multiplication.

For a fair comparison with software solutions it should be considered that a
single Virtex-4 SX 55 costs about US$ 1,17(@. Recent microprocessors like the
Intel Core2 Duo, however, are available at only about a quarter of that price.
With this in mind, we might not be able to beat all software implementation in
terms of the cost-performance ratio, but we still like to point out that our FPGA-
based design - as the fastest reported hardware implementation so far - definitely
closes the performance gap between software and hardware implementations for
ECC over prime fields. Furthermore, we like to emphasize again that all software
related performance figures are based on very optimistic assumptions.

6 Conclusion

We presented a novel ECC implementation for fields over NIST primes P-224
and P-256. Due to the exhaustive utilization of DSP blocks, which are con-
tained as hardcores in modern FPGA devices, we are able to perform the critical
components computing low-level integer arithmetic operations nearly at maxi-
mum device frequency. Furthermore, considering a multi-core architecture on a
Virtex-4 XC4VSX55 FPGA, we can achieve a throughput of more than 24,000
and 37,000 point multiplications per second for P-256 and P-224, respectively,
what significantly exceeds the performance of all other hardware implementation
known to the authors and comes close to the cost-performance ratio provided
by the fastest available software implementations in the open literature.

2 Market price for a single device in May 2008.
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Abstract. Modern Graphics Processing Units (GPU) have reached a
dimension with respect to performance and gate count exceeding conven-
tional Central Processing Units (CPU) by far. Many modern computer
systems include — beside a CPU — such a powerful GPU which runs idle
most of the time and might be used as cheap and instantly available
co-processor for general purpose applications.

In this contribution, we focus on the efficient realisation of the com-
putationally expensive operations in asymmetric cryptosystems on such
off-the-shelf GPUs. More precisely, we present improved and novel imple-
mentations employing GPUs as accelerator for RSA and DSA cryptosys-
tems as well as for Elliptic Curve Cryptography (ECC). Using a recent
Nvidia 8800GTS graphics card, we are able to compute 813 modular ex-
ponentiations per second for RSA or DSA-based systems with 1024 bit
integers. Moreover, our design for ECC over the prime field P-224 even
achieves the throughput of 1412 point multiplications per second.

Keywords: Asymmetric Cryptosystems, Graphics Processing Unit,
RSA, DSA, ECC.

1 Introduction

For the last twenty years graphics hardware manufacturers have focused on pro-
ducing fast Graphics Processing Units (GPUs), specifically for the gaming com-
munity. This has more recently led to devices which outperform general purpose
Central Processing Units (CPUs) for specific applications, particularly when
comparing the MIPS (million instructions per second) benchmarks. Hence, a re-
search community has been established to use the immense power of GPUs for
general purpose computations (GPGPU). In the last two years, prior limitations
of the graphics application programming interfaces (API) have been removed by
GPU manufacturers by introducing unified processing units in graphics cards.
They support a general purpose instruction set by a native driver interface and
framework.

In the field of asymmetric cryptography, the security of all practical cryptosys-
tems rely on hard computational problems strongly dependant on the choice of
parameters. But with rising parameter sizes (often in the range of 1024-4096
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bits), however, computations become more and more challenging for the under-
lying processor. For modern hardware, the computation of a single cryptographic
operation is not critical, however in a many-to-one communication scenario, like
a central server in a company’s data processing centre, it may be confronted with
hundreds or thousands of simultaneous connections and corresponding crypto-
graphic operations. As a result, the most common current solution are cryp-
tographic accelerator cards. Due to the limited market, their price tags are
often in the range of several thousands euros or US dollars. The question at
hand is whether commodity GPUs can be used as high-performance public-key
accelerators.

In this work, we will present novel implementations of cryptosystems based on
modular exponentiations and elliptic curve operations on recent graphics hard-
ware. To the best of our knowledge, this is the first publication making use of
the CUDA framework for GPGPU processing of asymmetric cryptosystems. We
will start with implementing the extremely wide-spread Rivest Shamir Adleman
(RSA) cryptosystem [30]. The same implementation based on modular expo-
nentiation for large integers can be used to implement the Digital Signature
Algorithm (DSA), which has been published by the US National Institute of
Standards and Technology (NIST) [25]. Recently, DSA has been adopted to el-
liptic curve groups in the ANSI X9.62 standard [2]. The implementation of this
variant, called ECDSA, is the second major goal of this work.

2 Previous Work

Lately, the research community has started to explore techniques to accelerate
cryptographic algorithms using the GPU. For example, various authors looked
at the feasibility of the current industry standard for symmetric cryptography,
the Advanced Encryption Standard (AES) [2TI3TJT8/9]. Only two groups, namely
Moss et al. and Fleissner, have aimed for the efficient implementation of mod-
ular exponentiation on the GPU [24JI4]. Their results were not promising, as
they were limited by the legacy GPU architecture and interface (cf. the next
section). To the best of our knowledge there are neither publications about the
implementation of these systems on modern, GPGPU-capable hardware nor on
the implementation of elliptic curve based systems.

We aim to fill this gap by implementing the core operations for both systems
efficiently on modern graphics hardware, creating the foundation for the use of
GPUs as accelerators for public key cryptography. We will use Nvidia’s current
flagship GPU series, the G80 generation, together with its new GPGPU interface
CUDA.

3 Using GPUs for General-Purpose Applications

The following section will give an overview over traditional GPU computing,
followed by a more in-depth introduction to Nvidia’s general purpose interface
CUDA.
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3.1 Traditional GPU Computing

Roughly, the graphics pipeline consist of the stages transform € light, assemble
primitives, rasterise and shade. First GPUs had all functions needed to im-
plement the graphics pipeline hardwired, but over time more and more stages
became programmable by introducing specialised processors, e.g. vertex and frag-
ment processors that made the transform & light and shading stages, respec-
tively, more flexible.

When processing power increased massively while prices kept falling, the re-
search community thought of ways to use these resources for computationally
intense tasks. However, as the processors’ capabilities were very limited and
the API of the graphics driver was specifically built to implement the graphics
pipeline, a lot of overhead needed to be taken into account. For example, all
data had to be encoded in textures which are two dimensional arrays of pixels
storing colour values for red, green, blue and an additional alpha channel used
for transparency. Additionally, textures are read-only objects, which forced the
programmers to compute one step of an algorithm, store the result in the frame
buffer, and start the next step using a texture reference to the newly produced
pixels. This technique is known as ping-ponging. Most GPUs did only provide in-
structions to manipulate floating point numbers, forcing GPGPU programmers
to map integers onto the available mantissa and find ways to emulate bit-logical
functions, e.g., by using look-up tables.

These limitations have been the main motivation for the key GPU manufac-
turers ATI/AMD and Nvidia to create APIs specifically for the GPGPU com-
munity and modify their hardware for better support: ATT’s solution is called
Close To the Metal (CTM) [I], while Nvidia presented the Compute Unified
Device Architecture (CUDA), a radically new design that makes GPU program-
ming and GPGPU switch places: The underlying hardware of the G80 series is
an accumulation of scalar common purpose processing units (“unified” design)
and quite a bit of “glue” hardware to efficiently map the graphics pipeline to
this new design. GPGPU applications however directly map to the target hard-
ware and thus graphics hardware can be programmed without any graphics API
whatsoever.

3.2 Programming GPUs Using Nvidia’s CUDA Framework

In general, the GPU’s immense computation power mainly relies on its inherent
parallel architecture. For this, the CUDA framework introduces the thread as
smallest unit of parallelism, i.e., a small piece of concurrent code with associated
state. However, when compared to threads on microprocessors, GPU threads
have much lower resource usage and lower creation and switching cost. Note
that GPUs are only effective when running a high number of such threads. A
group of threads that is executed physically in parallel is called warp. All threads
in one warp are executed in a single instruction multiple data (SIMD) fashion.
If one or more thread(s) in the same warp need to execute different instructions,
e.g., in case of a data-dependent jump, their execution will be serialised and the
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threads are called divergent. As the next level of parallelism, a (thread) block
is a group of threads that can communicate with each other and synchronise
their execution. The maximum number of threads per block is limited by the
hardware. Finally, a group of blocks that have same dimensionality and execute
the same CUDA program logically in parallel is called grid.

To allow optimal performance for different access patterns, CUDA implements
a hierarchical memory model, contrasting the flat model normally assumed on
computers. Host (PC) and device (GPU) have their own memory areas, called
host memory and device memory, respectively. CUDA supplies optimised func-
tions to transfer data between these separate spaces.

Each thread possesses its own register file, which can be read and written.
Additionally, it can access its own copy of so-called local memory. All threads
in the same grid can access the same on-chip read- and writable shared mem-
ory region. To prevent hazards resulting from concurrent execution of threads
synchronisation mechanisms must be used. Shared memory is organised in groups
called banks that can be accessed in parallel. All threads can access a read- and
writable memory space called global memory and read-only regions called
constant memory and texture memory. The second last is optimised for
one-dimensional locality of accesses, while the last is most effective when being
used with two-dimensional arrays (matrices). Note that the texture and constant
memories are the only regions that are cached. Thus, all accesses to the off-chip
regions global and local memory have a high access latency, resulting in penalties
when being used too frequently.

The hardware consists of a number of so-called multiprocessors that are build
from SIMD processors, on-chip memory and caches. Clearly, one processor ex-
ecutes a particular thread, the same warp being run on the multiprocessor at
the same time. One or more blocks are mapped to each multiprocessor, sharing
its resources (registers and shared memory) and get executed on a time-sliced
basis. When a particular block has finished its execution, the scheduler starts
the next block of the grid until all blocks have been run.

Design Criteria for GPU Implementations. To achieve optimal perfor-
mance using CUDA, algorithms must be designed to run in a multitude of par-
allel threads and take advantage of the presented hierarchical memory model. In
the following, we enumerate the key criteria necessary for gaining the most out
of the GPU by loosely following the CUDA programming guide [27] and a talk
given by Mark Harris of Nvidia [17].

A. Mazimise use of avatlable processing power

[All. Maximise independent parallelism in the algorithm to enable easy
partitioning in threads and blocks.

[AP. Keep resource usage low to allow concurrent execution of as many
threads as possible, i.e., use only a small number of registers per thread
and shared memory per block.

[AB. Maximise arithmetic intensity, i.e., match the arithmetic to band-
width ratio to the GPU design philosophy: GPUs spend their transistors
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on ALUs, not caches. Bearing this in mind allows to hide memory ac-
cess latency by the use of independent computations (latency hiding).
Examples include using arithmetic instructions with high throughput as
well as re-computing values instead of saving them for later use.

[A4. Avoid divergent threads in the same warp.

B. Maximise use of available memory bandwidth

Avoid memory transfers between host and device by shifting
more computations from the host to the GPU.

Use shared memory instead of global memory for variables.

. Use constant or texture memory instead of global memory for
constants.

Coalesce global memory accesses, i.e., choose access patterns that
allow to combine several accesses in the same warp to one, wider access.
Avoid bank conflicts when utilising shared memory, i.e., choose pat-
terns that result in the access of different banks per warp.

Match access patterns for constant and texture memory to the cache
design.

=

d &
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CUDA Limitations. Although CUDA programs are written in the C language
together with extensions to support the memory model, allow synchronisation
and special intrinsics to access faster assembler instructions, it also contains a
number of limitations that negatively affect efficient implementation of public
key cryptography primitives. Examples are the lack for additions/subtractions
with carry as well as the missing support for inline assembler instructiond.

4 Modular Arithmetic on GPUs

In the following section we will give different ways do realise modular arith-
metic on a GPU efficiently, keeping the aforementioned criteria in mind. For the
RSA cryptosystem we need to implement arithmetic modulo N, where N is the
product of two large primes p and ¢: N = p - q. The arithmetic of both DSA
systems, however, is based on the prime field GF(p) as the lowest-level building
block. Note that the DSA systems both use a fized — in terms of sessions or
key generations — prime p, thus allowing to choose special primes at build time
that have advantageous properties when reducing modulo p. For example, the
US National Institute of Standards and Technology (NIST) proposes a set of
generalised Mersenne primes in the Digital Signature Standard (DSS) [25, Ap-
pendix 6]. As the RSA modulus N is the product of the two secret primes p and
q that will be chosen secretly for each new key pair, we cannot optimise for the
modulus in this case.

! Nvidia published their own (abstract) assembler language PTX [28], however as
of CUDA version 1.0 one kernel cannot contain code both generated from the C
language and PTX.
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Modular Addition and Subtraction. In general, addition s = a + b mod m
of two operands a and b, where 0 < a,b < m, is straightforward, as the result of
the plain addition operation a + b always satisfies 0 < a + b < 2m and therefore
needs at maximum one subtraction of m to fulfil 0 < s < m. Due to the SIMD
design, we require algorithms that have a uniform control flow in all cases and
compute both a + b and a + b — m and decide afterwards which is the correctly
reduced result, cf. Criterion [A4l Subtraction d = a — b mod m can be treated
similarly: we compute both a — b and a — b+ m and use a sign test at the end
to derive the correctly reduced result.

Modular Multiplication. Multi-precision modular multiplication » = a-b mod
m is usually the most critical operation in common asymmetric cryptosystems. In
a straightforward approach to compute r, we derive a double-sized product r’ =
ab first and reduce afterwards by multi-precision division. Besides the quadratic
complexity of standard multiplication, division is known to be very costly and
should be avoided whenever possible. Thus, we will discuss several multiplication
strategies to identify an optimal method for implementation on GPUs.

4.1 Modular Multiplication Using Montgomery’s Technique

In 1985 Peter L. Montgomery proposed an algorithm [23] to remove the costly
division operation from the modular reduction. Kog et al. [6] give a survey of
different implementation options. As all multi-precision Montgomery multiplica-
tion algorithms feature no inherent parallelism except the possibility to pipeline,
we do mot consider them optimal for our platform and implement the method
with the lowest temporary space requirement of n+ 2 words, coarsely integrated
operand scanning (CIOS), as a reference solution only (cf. to Algorithm [I]).

4.2 Modular Multiplication in Residue Number Systems (RNS)

As an alternative approach to conventional base-2% arithmetic, we can represent
integers based on the idea of the Chinese Remainder Theorem, by encoding an
integer x as a tuple formed from its residues x; modulo n relatively prime w-bit
moduli m;, where |z|,,, denotes x mod m;:

<$>A = <$07 L1y 7xn*1>v4 = <‘$‘m07 |‘T|m17 ) ‘x‘m7171>¢4 (1)

Here, the ordered set of relatively prime moduli (mg,m1,...,m,—1), ged
(m;,m;) = 1 for all i # j, is called base and denoted by A. The product of
all moduli, A = H?;Ol m; is called dynamic range of A, i.e., the number of val-
ues that can be uniquely represented in A. In other words, all numbers in A get
implicitly reduced modulo A. Such a representation in RNS has the advantage
that addition, subtraction and multiplication can be computed independently for
all residues:

()4 o (y)a= {70 © Yolmo, |1 0 Y1|my, - -, [Tn-1 0 Yn—1lm,_)a, 0 €{+, =} (2)
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Algorithm 1. Montgomery Multiplication for Multi-Precision Integers
(CIOS Method) [6]

Require: Modulus M and radix R = 2*" st. R > M and gcd(R, M) = 1; M) =
(—=M~' mod R) mod 2%, two unsigned integers 0 < A, B < M in Montgomery
form, ie. X = (Xpn-1Xn—2...Xo0)2w for X € {A, B,M}.

Ensure: The product C = ABR™* (mod M), 0 < C < M, in Montgomery form.

1. T+—0

2: for i from 0 ton—1 do

3 c¢c«—0

for j from 0 to n —1 do {Multiplication}

(C,Tj) <—Aj 'B—L'-f—Tj +c
end for

(Ths1,Tn) —Th +c

m «— Ty - My mod 2% {Reduction}
9: (C,T0)<—m-M()+T0

10: for j from 1 ton—1 do

11: (¢,Tj—1) «—m-M;+T;+c

12: end for

13: Tho1+—Tn+c

14: Th —Thy1+c

15: end for

16: return (TnflTnfz - T())zw

which allows carry-free computation:E and multiplication without partial prod-
ucts. However, some information involving the whole number = cannot be easily
computed. For instance, sign and overflow detection and comparison of mag-
nitude are hard, resulting from the fact that residue number systems are no
weighted representation. Furthermore, division and as a result reduction mod-
ulo an arbitrary modulus M # A is not as easy as in other representations.

But similar to the basic idea of Montgomery multiplication, one can create a
modular multiplication method for input values in RNS representation as shown
in Algorithm 2 which involves a second base B = (mg,m1,...,m,—1) with
corresponding dynamic range B. It computes a value v = XY + fM that is
equivalent to 0 mod A and XY mod M. Thus, we can safely divide by A, i.e.,
multiply by its inverse modulo B, to compute the output XY A~ (mod M).
Note that the needed reduction modulo A to compute f is free in A.

All steps of the algorithm can be efficiently computed in parallel. However, a
method to convert between both bases, a base ertension mechanism, is needed.
We take three different options into account: the method based on a Mixed
Radix System (MRS) according to Szabé and Tanaka [37], as well as CRT-based
methods due to Shenoy and Kumaresan [33], Kawamura et al. [20] and Bajard et
al. [3]. We present a brief introduction of these methods, but for more detailed
information about base extensions, please see the recent survey at [5].

2 Inner-RNS operations still contain carries.
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Algorithm 2. Modular Multiplication Algorithm for Residue Number Sys-

tems [20]

Require: Modulus M, two RNS bases A and B composed of n distinct moduli m;
each, ged(A, B) = ged(A,M) =1 and B> A > 4M.
Two factors X and Y, 0 < X, Y < 2M, encoded in both bases and in Montgomery
form, i.e. (X)aug and (Y)aun, X =xA (mod M) and Y = yA (mod M).

Ensure: The product ¢ = XY A ! (mod M), 0 < C < 2M, in both bases and
Montgomery form.

U>AUB — <X>.AUB . <Y>.AUB

Ja = (wya - (=M "")a

YAun <« BaseExtend((f).4)

(W) — (u)ys + (f)s - (M)s {{v)a = 0 by construction}

(w)s — () - (A5

w) 4uB — BaseExtend((w)s)

return (w)aun

4.3 Base Extension Using a Mixed Radix System (MRS)

The classical way to compute base extensions is due to Szabé and Tanaka [37].
Let (mo, ..., mu—1) be the MRS base associated to A. Then, each integer = can
be represented in a mized radixz system as

!/ !/ / /
T =Ty +x7mo + Tomomy + -+ T, Mo ... My_2. (3)

The MRS digits 2} can be derived from the residues z; by a recursive strategy:

where m&lj) are the pre-computed inverses of m; modulo m;. To convert = from

zy=x9 (mod my) (4)

o= (z1 — mg)m(fo) (mod my)

2 = (- ((zn — xf))m(fnlil’o) — z/l)m(jzlqi) e x;_g)m(:l1717n72) (mod m,,—1)

this representation to a target RNS base, we could reduce Equation (@) by each

target modulus 7y, involving pre-computed constants ¢ ;) = ’H;;é my ‘ . But
my,

instead of creating a table for all ¢, a recursive approach is more efficient in our

situation, eliminating the need for table-lookups [], and allowing to compute all
residues in the target base in parallel:

2], = |- (@ ymn—2 oy _s)mn—s+ay,_g)mn—a+ -+ zy)mo + zo), (5)

4.4 Base Extension Using the Chinese Remainder Theorem (CRT)

Recall the definition of the CRT and adopt it to the source base A with dynamic

range A:
1

T = Ak
0

3
|

T

— aA, a<n (6)
Ay

mp

£
I
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where A, = A/my, and « is an integer s.t. 0 < x < A. Note that « is strictly
upper-bounded by n. When reducing this equation with an arbitrary target
modulus, say m;, we yield

n—1
. A1
@l = Y ’Ak‘ o —ladlm,| . k= ’xk - Ay ’ (7)
—0 i e my
where ’Ak‘~ , Ap ’ and |Alz, are pre-computed constants. Note that the 6y
mg myg

do not depenld on the target modulus and can thus be reused in the computation
of a different target residue.

This is an efficient way to compute all residues modulo the target base, pro-
vided we know the value of . While involving a couple of look-ups for the con-
stants as well, the instruction flow is highly uniform (cf. Criterion [AZ)) and fits
to our SIMD architecture, i.e., we can use n threads to compute the n residues
of z in the target base in parallel (cf. Criterion [AT]).

The first technique to compute such an « is due to Shenoy and Kumaresan
[33] and requires a redundant modulus m, > n that is relatively prime to all other
moduli m; and m;, i.e., ged(A, m,) = ged(B, m,) = 1. Consider Equation [T, set
m; = m,- and rearrange it to the following:

A1, - (E ‘Ak‘m bk — |m|m7,>

k=0

(®)

‘a‘mT =

my

Since @ < n < m, it holds that o = |/, and thus Equation B computes the
exact value of «, involving the additional constant A=Y, .

Kawamura et al. propose a different technique that approximates « using
fixed-point computations [20]. Consider Equation [0, rearrange it and divide
by A:

n—1 P ‘x‘ n—1 P
_ ko Tl k
¢ ka A ka ' )
k=0 k=0

Next, they approximate « by using trunc, (6x) as numerator and 2* as denomi-
nator and adding a properly chosen offset o, where trunc, (6x) sets the last w—r
bits of 6, to zero:

o = \ji trun;lz(ék) + UJ _ \‘21 i Lék/Qw—rJ + O_J , (10)

k=0 k=0

Thus, the approximate value o’ can be computed in fixed-point arithmetic as
integer part of the sum of the r most-significant bits of all §;,. Provided o is chosen
correctly, Equation [0 will compute o’ = «, and the resulting base extension will
be exact.

Finally, Bajard et al. follow the most radical approach possible [3]: they allow
an offset of ®A < (n — 1)A to occur in Equation [ and thus do not need to
compute « at all. After the first base extension we have f’ = f + aA and thus
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w' = w+ aM, ie., the result w’ will contain a maximum offset of (n — 1)M,
and thus be equivalent to w mod M. However, this technique needs additional
measures of precaution in the multiplication algorithm, which predominantly
condense in the higher dynamic ranges needed.

4.5 Multiplication Modulo Generalised Mersenne Primes

For some cryptosystems like DSA, arithmetic in an underlying prime field is
required. Taking advantage of the special structure of Mersenne primes, the re-
duction modulo p after a multiplication can be carried out very efficiently. Using
such a method, we can compute 7’ using a standard multi-precision multiplica-
tion method first, followed by a reduction algorithm that is specific for the given
prime. In this work, we will use an algorithm to efficiently compute multiplica-
tions modulo P-224, where P-224 is the 224 bit prime proposed by NIST [25].
Algorithm Bl performs the complete reduction for this prime with only two addi-
tions and two subtractions of 224 bit integers and a subsequent correction step to
determine the correct value of 7 = r’ mod p, since —2p < 7’ < 3p must be consid-
ered. Note that this final correction step additionally needs the same amount of
computations, as we have to avoid data-dependant branches (cf. Criterion [AZ]).

Algorithm 3. NIST Reduction for P-224 = 2224 — 296 4

Require: Double-sized integer ' = (13, ...,75,71,75) in base 23? and 0 < /' < P-224?
Ensure: Slngle-swed integer r = ' mod P- 224 0<r<P-224.
1: Concatenate 7} to following 224-bit integers ¢;:

[ Y A Y R A ’ roor ’ ’ ’
ty = (T67T57T47T37T27T17T0)7 ta = (T107T97T87T770707 0)7 t3 = (07T137T127T11707070)
_ ’ ’ ’ o l ’ ’ ro
ta =(0,0,0,0,713,712,711), t5 = (r13, 7125711510579, T8, 17)

2: Compute 1" =ty +ty +13 —tg —t5
3: return r =" mod P-224

5 Implementation

In this section we will describe the implementation of two primitive operations
for a variety of cryptosystems: first, we realise modular exponentiation on the
GPU for use with RSA, DSA and similar systems. Second, for ECC-based cryp-
tosystems we present an efficient point multiplication method which is the fun-
damental operation, e.g., for ECDSA or ECDH [16].

5.1 Modular Exponentiation Using the CIOS Method

We implemented the CIOS Method as introduced in Algorithm [ for sequential
execution since it does not include any inherent parallelism. Fan et al. describe
efficient ways to pipeline such an algorithm for the use on multi-core systems [13].
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This would however need fairly complex coordination and memory techniques
and thus will not be considered further for our implementation, cf. Criteria [A4]
and

As all modular exponentiations are independent, we let each thread compute
exactly one modular exponentiation in parallel with all others. Resulting from
that, this solution only profits from coarse-grained parallelism. We assume the
computation of distinct exponentiations, each having the same exponent t —
for example RSA signatures using the same key — and thus need to transfer
only the messages P; for each exponentiation to the device and the result P!
(mod N) back to the host. As a result, every thread executes the same control
flow, fulfilling Criterion [A4l To accelerate memory transfers between host and
device, we use page-locked host memory and pad each message to a fixed length
that forces the starting address of each message to values that are eligible for
global memory coalescing (cf. Criteria [B1] and [B4]).

For modular exponentiation based on Algorithm [II, we applied the straightfor-
ward binary right-to-left method [35]. During exponentiation, each thread needs
three temporary values of (n+2) words each that get used as input and output of
Algorithm[lin a round-robin fashion by pointer arithmetic. Thus, 3(n+2) words
are required. This leads to 408 bytes and 792 bytes for 1024 bits and 2048 bit pa-
rameters, respectively. Each multiprocessor features 16384 bytes of shared mem-
ory, resulting in a maximum number of |16386,/408] = 40 and [16386/792| = 20
threads per multiprocessor for 1024 and 2048 bits, respectively, if we use shared
memory for temporary values. Clearly, both solutions are inefficient when con-
sidering that each multiprocessor is able to execute 768 threads per block in
principle (i.e., we favour Criterion [A2] over [B2).

Thus, we chose to store the temporary values in global memory. We have to
store the values interleaved so that memory accesses of one word by all threads
in a warp can be combined to one global memory access. Hence, for a given set
of values (A, B,C,...) consisting each of n + 2 words X = (xo,x1,...,Tnt1),
we store all first words (ag, bo, co, - - .) for all threads in the same block, then all
second words (aq, by, c1,...), and so on (cf. Criterion [B4).

Moreover, we have to use nailing techniques, as CUDA does not yet include
add-with-carry instructions. Roughly speaking, nailing reserves one or more of
the high-order bits of each word for the carry that can occur when adding two
numbers. To save register and memory space, however, we store the full word
of w bits per register and use bit shifts and and-masking to extract two nibbles,
each providing sufficient bits for the carry (cf. Criterion[A3). This can be thought
of decomposing a 32 bit addition in two 16 bit additions plus the overhead for
carry handling.

5.2 Modular Exponentiation Using Residue Number Systems

Computations in residue number systems yield the advantage of being inherently
parallel. According to Algorithm [2] all steps are computed in one base only, ex-
cept for the first multiplication. Thus, the optimal mapping of computations to
threads is as follows: each thread determines values for one modulus in the two
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bases. As a result, we have coarse-grained (different exponentiations) and fine-
grained parallelism (base size), fulfilling Criterion [ATl We call n’ the number of
residues that can be computed in parallel, i.e., the number of threads per en-
cryption. The base extension by Shenoy et al. needs a redundant residue starting
from the first base extension to be able to compute the second base extension.
To reflect this fact, we use two RNS bases A and B, having n moduli each, and
an additional residue m,. resulting in n’ = n + 1. For all other cases, it holds
that n’ = n.

Considering the optimal number of bits per modulus, we are faced with w =
32bit integer registers on the target hardware. Thus, to avoid multi-precision
techniques, we can use moduli that are smaller than 2. The hardware can
compute 24 bit multiplications faster than full 32 bit multiplications. However,
CUDA does not expose an intrinsic to compute the most-significant, 16 bits of the
result. Using 16 bit moduli would waste registers and memory and increase the
number of memory accesses as well. Thus, we prefer full 32bit moduli to save
storage resources at the expense of higher computational cost (cf. Criteria
and [AJ).

For Algorithm [T to work, the dynamic ranges A and B and the modulus M
have to be related according to B > A > 22M, or B > A > (2+n)?M when using
Bajard’s method. For performance reasons, we consider full warps of 32 threads
only, resulting in a slightly reduced size of M. The figures for all possible combi-
nations can be found in Table[d in the Appendix. For input and output values,
we assume that all initial values will have been already converted to both bases
(and possibly the redundant modulus m,) and that output values will be re-
turned in the same encoding. Note that it would be sufficient to transfer values
in one base only and do a base extension for all input values (cf. Criterion [BT]
transferring values in both bases results in a more compact kernel together with
a slightly higher latency). Different from the CIOS method, temporary values
can be kept local for each thread, i.e., every thread stores its assigned residues
in registers. Principally all operations can be performed in parallel on different
residues and — as a result — the plain multiplication algorithm does not need any
synchronisations. However, both properties do not hold for the base extension
algorithms.

Mixed Radix Conversion. Recall that the mixed radix conversion computes
the mixed radix representation from all residues in the source base first and
uses this value to compute the target residues. The second step involves the
computation of n’ residues and can be executed in parallel, i.e., each thread
computes the residue for ’its’ modulus. As a result, we have to store the n MRS
digits in shared memory to make them accessible to all threads (cf. Criteria [AT]
and [B2)). The first step however is the main caveat of this algorithm due to
its highly divergent nature as each MRS digit is derived from the residue of
a temporary variable in a different modulus (and thus thread) and depends
on all previously computed digits, clearly breaking Criterion [A4] and resulting
in serialisation of executions. Additionally, note that threads having already
computed an MRS digit do not generate any useful output anymore.
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CRT-Based Conversion. The first step for all CRT-based techniques is to com-
pute the §; for each source modulus and can be carried out by one thread for each
value. Second, all n’ threads compute a weighted sum involving 65 and a modulus-
dependent constant. Note that all threads need to access all 63 and thus 65 have to
be stored in shared memory (cf. Criterion[B2). Third, « has to be derived, whose
computation is the main difference in the distinguished techniques. « is needed
by all threads later and thus needs to be stored in shared memory as well. After
computing « all threads can proceed with their independent computations.

Bajard’s method does not compute « and consequently needs no further oper-
ations. For Shenoy’s method, the second step above is needed for the redundant
modulus m,. as well, which can be done in parallel with all other moduli. Then, a
single thread computes a and writes it to shared memory. The redundant residue
m,. comes at the price of an additional thread, however the divergent part needed
to compute « does only contain one addition and one multiplication modulo m,..
Kawamura’s method needs to compute the sum of the  most significant bits of
all 8;,. While the right-shift of each 65 can be done using all threads, the sum over
all shifted values and the offset has to be computed using a single thread. A final
right-shift results in the integer part of the sum, namely o.

Comparison and Selection. Clearly, Bajard’s method is the fastest since it
involves no computation of a. Shenoy’s method only involves a small divergent
part. However, we pay the price of an additional thread for the redundant mod-
ulus, or equivalently decrease the size of M. Kawamura’s technique consists of
a slightly larger divergent part, however it does neither include look-ups nor
further reduces the size of M.

Not all base extension mechanisms can be used for both directions required for
AlgorithmPl For Bajard’s method, consider the consequence of an offset in the sec-
ond base extension: we would compute some w” in base A that is not equal to the
w’ in B. As a result, neither (w’) 4 nor (w”)z could be computed leading to an in-
valid input for a subsequent execution of Algorithm[2l Thus, their method is only
available for A — B conversions. Shenoy’s method can only be used for the second
base extension as there is no efficient way to carry the redundant residue through
the computation of f modulo A. The technique by Kawamura et al. would in prin-
ciple be available for both conversions. However, the sizes of both bases would be
different to allow proper reduction in the A4 — B case, thus we exclude this option
from our consideration. Table[llshows the available and the practical combinations.

Table 1. Base Extension Algorithm Combinations

A—B
MRC (M) Shenoy (S) Kawamura (K) Bajard (B)
MRC (M)
Shenoy (S)

Kawamura (K)
Bajard (B)

B—A
o e e e
0o oo o0
0o oo o0
0c e e e
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5.3 Point Multiplication Using Generalised Mersenne Primes

For realising the elliptic curve group operation, we chose mixed affine-Jacobian
coordinates [§] to avoid costly inversions in the underlying field and thus con-
centrated on efficient implementation of modular multiplication, the remaining
time critical operation. For this, we used a straightforward schoolbook-type mul-
tiplication combined with the efficient reduction technique for the generalised
Mersenne prime presented in Algorithm

As for the CIOS method, there is no intrinsic parallelism except pipelining in
this approach (cf. Criterion [Al). Thus, we use one thread per point multiplica-
tion. We assume the use of the same base point P per point multiplication kP
and wvarying scalars k. Thus, the only input that has to be transferred are the
scalars. Secondly, we transfer the result in projective Jacobian coordinates back
to the host. For efficiency reasons, we encode all coordinates interleaved for each
threads in a block again.

We used shared memory to store all temporary values, nailed to 28 bits to
allow schoolbook multiplication without carry propagation. Thus, we need 8
words per coordinate. Point addition and doubling algorithms were inspired by
libseccure [29]. With this approach shared memory turns out to be the lim-
iting factor. Precisely, we require 111 words per point multiplication to store
7 temporary coordinates for point addition and modulo arithmetic, two points
and each scalar. This results in 444 bytes of shared memory and a maximum
of [16384/444] = 36 threads per multiprocessor. This leaves still room for im-
provements as Criterion [A1] is not fulfilled. However, due to internal errors in
the toolchain, we were not (yet) able to compile a solution that uses global mem-
ory for temporary values instead. Note that the left-to-right binary method for
point multiplication demands only one temporary point. However, for the sake
of a homogeneous flow of instructions we compute both possible solutions per
scalar bit and use a small divergent section to decide which of them is the desired
result (cf. Criterion [AZ]).

6 Conclusion

With the previously discussed implementations on GPUs at hand, we finally
need to identify the candidate providing the best performance for modular ex-
ponentiation.

6.1 Results and Applications

Before presenting the benchmarking results of the best algorithm combinations
we show our results regarding the different base extension options for the RNS
method. The benchmarking scheme was the following: first, we did an exhaustive
search for the number of registers per thread that can principally be generated
by the toolchain. Then, we benchmarked all available execution configurations
for these numbers of registers. To make the base extension algorithms compa-
rable, we would have to repeat this for all possible combinations, as shown in
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Table 2. Results for different Base Extension Techniques (RNS Method)

Base Ext. Throughput (1024 bits) Throughput (2048 bits)
A—-B B—-A [Enc/s] (rel.) [Enc/s] (rel.)

M M 194 (46%) 28 (50%)

B M 267 (63%) 38 (67%)

B K 408 (97%) 55 (98%)

B S 419 (100%) 56 (100%)

Table Il However to reduce the complexity of benchmarking, it suffices to mea-
sure all possible combinations in the first row and all possible combinations in
the second column to gain figures for all available combinations. The results for
the particular best configuration can be found in Table

Clearly, the mixed radix based approach also used in [24] cannot compete with
CRT-based solutions. Kawamura et al. is slower than the method of Shenoy et
al. , but performs only slightly worse for the 2048 bit range. Figure [Il shows the
time over the number of encryptions for the four cases and the 1024 bit and
2048 bit ranges, respectively.

Both graphs show the characteristic behaviour: Depending on the number of
blocks that are started on the GPU and the respective execution configuration we
get stair-like graphs. Only multiples of the number of warps per multiprocessor
and the number of multiprocessors result in optimal configurations that fully
utilise the GPU. However, depending on the number of registers per thread and
the amount of shared memory used other configurations are possible and lead
to smaller steps in between.

Optimised Implementations. Beside the reference implementation based on
the CIOS algorithm, we selected as best choice the CRT-RNS method based on a
combination of Bajard’s and Shenoy’s methods to compute the first and second
base extension of Algorithm 2] respectively.

The selection of the implementation was primarily motivated to achieve high
throughput rather than a small latency. Hence, due to the latency, not all im-
plementations might be suitable for all practical applications. To reflect this, we
present figures for data throughput as well as the initial latency ¢, required at
the beginning of a computation. Note that our results consider optimal configu-
rations of warps per block and blocks per grid only. Table B shows the figures for
modular exponentiation with 1024 and 2048 bit moduli and elliptic curve point
multiplication using NIST’s P-224 curve.

The throughput is determined from the number of encryptions divided by the
elapsed time. Note that this includes the initial latency t,,;, at the beginning of
the computations. The corresponding graphs are depicted in Figure 2l Note the
relatively long plateau wh