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Preface

These are the proceedings of the 10th Workshop on Cryptographic Hardware and
Embedded Systems (CHES), held in Washington D.C., USA, August 10–13, 2008.
This workshop was sponsored by the International Association for Cryptologic
Research (IACR).

The CHES 2008 workshop attracted 107 submissions from 23 countries, of
which the program committee selected 27 papers for publication. The review pro-
cess followed strict standards: each paper received at least four reviews; members
of the program committee were restricted to submitting at most two papers. The
42 Program Committee members from 13 countries were selected carefully to en-
sure that different fields, such as hardware and software implementations, active
and passive implementation attacks, cryptanalysis and cryptography including
random number generation, embedded systems, and trusted computing, were
well represented and a balance between academia and industry was achieved.
Counting all Program Committee members, external reviewers, and the Pro-
gram Co-chairs, we had 158 people contributing to the review process. We would
like to thank all Program Committee members and external reviewers for their
contribution to the review process.

In just 10 years, the CHES workshop has grown to become the flagship
event in its area, attracting high-profile papers and attendees from academia
and industry. This excellence is reflected in the quality of the contributed pa-
pers and invited talks. In cooperation with the CHES Steering Committee, the
Program Committee awarded the CHES 2008 Best Paper Award to two contri-
butions: “Attack and Improvement of a Secure S-box Calculation Based on the
Fourier Transform” by Jean-Sébastien Coron, Christophe Giraud, Emmanuel
Prouff and Matthieu Rivain, and “Time-Area Optimized Public-Key Engines:
MQ-Cryptosystems as Replacement for Elliptic Curves?” by Andrey Bogdanov,
Thomas Eisenbarth, Andy Rupp and Christopher Wolf. The purpose of the
award is to formally acknowledge excellence in research. We would like to con-
gratulate the authors of these two papers. In addition to presentations of peer-
reviewed papers there were excellent invited presentations. At the time of com-
piling the proceedings, an invited talk by Adi Shamir on “RSA: Past, Present
and Future”, and an invited talk by Ernie Brickell from Intel on “A Vision for
Platform Security” had been confirmed.

In order to celebrate the 10th anniversary of CHES, the workshop program
included a tour of the National Cryptologic Museum in Fort Mead and a talk
by Christof Paar and Çetin Kaya Koç on the history of CHES. In addition
there was a rump session and a panel discussion. Special thanks for making
these possible and taking care of the local organization go to the General Co-
chairs Kris Gaj and Jens-Peter Kaps (both from George Mason University). We
are also greatly indebted to the CHES Steering Committee for their guidance
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and support throughout the process of putting this program together. The peer
review process and the production of these proceedings were greatly facilitated by
the IACR Webreview System. Shai Halevi (IBM) receives our sincere gratitude
for providing and maintaining this software, and for always being prepared to
help.

We would also like to acknowledge and thank our sponsors, many of whom
have generously supported the workshop over the years. At the time of writ-
ing this preface a number of companies had been confirmed as sponsors: Cryp-
tography Research, Inc., CygnaCom Solutions, escrypt GmbH, IBM Research,
Oberthur Technologies, Philips Intrinsic-ID, Research Center of Information Se-
curity (RCIS) Japan, and Thomson R&D France.

Finally, we would like to thank all the researchers and authors from all over
the world who submitted their work to the CHES 2008 conference and whose
efforts create the vibrant field of research that CHES is proud to represent.

August 2008 Elisabeth Oswald
Pankaj Rohatgi
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Çetin Kaya Koç Oregon State University, USA
Markus Kuhn University of Cambridge, UK
Klaus Kursawe Philips Research, Netherlands
Ruby Lee Princeton University, USA
Kerstin Lemke-Rust T-Systems, Germany
Arjen Lenstra EPFL, Switzerland, and Alcatel-Lucent Bell

Laboratories, USA
Stefan Mangard Infineon Technologies, Germany
Mitsuru Matsui Mitsubishi Electric, Japan
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Attack and Improvement of a Secure S-Box

Calculation Based on the Fourier Transform

Jean-Sébastien Coron1, Christophe Giraud2, Emmanuel Prouff2,
and Matthieu Rivain1,2

1 University of Luxembourg
jean-sebastien.coron@uni.lu

2 Oberthur Technologies
{c.giraud,e.prouff,m.rivain}@oberthurcs.com

Abstract. At CHES 2006, a DPA countermeasure based on the Fourier
Transform was published. This generic countermeasure aims at protect-
ing from DPA any S-box calculation used in symmetric cryptosystems
implementations. In this paper, we show that this countermeasure has a
flaw and that it can be broken by first order DPA. Moreover, we have
successfully put into practice our attack on two different S-box imple-
mentations. Finally, we propose an improvement of the original counter-
measure and we prove its security against first order DPA.

1 Introduction

The processing of a cryptographic algorithm on a physical device may leak infor-
mation about the manipulated data. To exploit this information, Side Channel
Attacks (SCA) were introduced in 1996, cf. [8]. It is today composed of a large va-
riety of attacks that differ in the attack model, the nature of the side channels they
target or the leakage treatments they perform. The Differential Power Analysis
(DPA) introduced in [9] is probably the one which has received the most attention
in the literature. This attack has indeed been demonstrated to be very powerful
against unprotected cryptographic implementations, where it allows the attacker
to recover the value of a secret key with only a few leakage measurements. Roughly
speaking, a DPA is a statistical attack that correlates a physical leakage with the
values of particular intermediate variables (called sensitive variables in this pa-
per) that depend on both a public value and the secret key. To avoid information
leakage and its exploitation by DPA, the manipulation of sensitive variables must
be protected by adding countermeasures to the algorithm.

A very common countermeasure to protect block cipher implementations from
DPA is to mask every sensitive variable with a randomly generated variable
(called mask) and then to perform the calculations by only manipulating the
masked variable and/or the mask. When such a technique is applied, a problem
occurs which is usually referred in the literature as the mask correction Problem.
It relies on the difficulty of masking the calculation of non-linear sub-functions
(e.g. the so-called S-boxes), without ever manipulating an intermediate variable
that depends on sensitive data. Many papers have been published that aim at
providing a solution to this problem (see for instance [1,7,10,11,12]). At CHES

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 1–14, 2008.
c© International Association for Cryptologic Research 2008



2 J.-S. Coron et al.

2006, Prouff, Giraud and Aumônier proposed in [11] a solution that may be of
particular interest when the input/output dimensions of the function to protect
are small and when the masks values are regenerated many times during the
algorithm processing. Moreover, the solution is provided together with a proof of
security that allows the reader to formally validate its security. In this paper, we
show that contrary to what is claimed in [11], a DPA attack can be successfully
mounted against this countermeasure. We exhibit the flaw upon which our attack
is based and we present how to successfully exploit it to recover the value of a
secret parameter. Finally, we propose an improvement of the countermeasure
proposed in [11] and we prove its security versus DPA in a realistic model.

2 Preliminaries

In the rest of the paper, we say that a variable is sensitive with respect to DPA
(shortened to sensitive variable in the context of the present paper) if it is a
non-constant function of a plaintext and a secret key. A DPA (also called first
order DPA in the literature when it is compared to higher order DPA) exploits
the leakage about a single intermediate sensitive variable. Hereafter, we recall
the formal definition of the security against DPA (see for instance [2,4,11]).

Definition 1. A cryptographic algorithm is said to be secure against DPA if all
its intermediate variables are independent of any sensitive variable.

Conversely, an algorithm is said to admit a first order flaw if one of its interme-
diate variables depends on a sensitive variable.

A common countermeasure against DPA is to add (by bitwise or modular
addition) a random value called the mask to each sensitive variable. Masks and
masked variables propagate throughout the cipher in such a way that every
intermediate variable is independent of any sensitive variable. This strategy,
called first order masking, ensures that the instantaneous leakage is independent
of any sensitive variable, thus rendering DPA ineffective.

As pointed out for instance in [6,1], the tricky part when masking the im-
plementation of an algorithm is to deal with the following problem, called mask
correction Problem:

Problem 1. Let F be a (n, m)-function (that is a function from F
n
2 into F

m
2 ).

From a masked input Z ⊕ R1 ∈ F
n
2 , the mask R1 ∈ F

n
2 and an output mask

R2 ∈ F
m
2 , compute F (Z) ⊕ R2 without introducing any first order flaw.

3 Secure S-Box Calculation Based on the Fourier
Transform

In [11], an algorithm claimed to solve Problem 1 is proposed. The method is
based on the involutivity property of the Fourier Transform. Before describing
it, let us first recall some basics about the transformation itself.
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Algorithm 1. Computation of an arithmetically masked S-box output from a boolean
masked input

Inputs: A masked input Z̃ = Z ⊕ R1, the input mask R1 and a lookup table F̂

Output: The 3-tuple ((−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n, R3, R2) where R2 and R3 are
random values.

1. Pick up three n-bit randoms R2, R3 and R4

2. result ← 2nR3 + R4

3. for a from 0 to 2n − 1 do
4. T1 ← SSP(a, Z̃) [T1 = (−1)a·Z̃ ]

5. T2 ← Z̃ ⊕ a [T2 = Z̃ ⊕ a]

6. T2 ← T2 ⊕ R2 [T2 = Z̃ ⊕ a ⊕ R2]

7. T2 ← SSP(R1, T2) [T2 = (−1)R1·(Z̃⊕a⊕R2)]

8. T2 ← T1 × T2 [T2 = (−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

9. T2 ← T2 × F̂ (a) [T2 = F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2)]

10. result ← result � T2 [result = (2n
R3 + R4) �

∑
i∈{0,a}

F̂ (i)(−1)i·Z̃⊕R1·(Z̃⊕i⊕R2)]

11. end
12. result ← result � n [result = (−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n]

13. return (result, R3, R2)

For every (n, m)-function F , the Fourier transform F̂ of F is defined for every
Z = (Z0, · · · , Zn−1) ∈ F

n
2 by:

F̂ (Z) =
∑
a∈F

n
2

F (a)(−1)a·Z , (1)

where · denotes the scalar product defined by a · Z =
⊕n−1

i=0 aiZi.
It is well known that this transformation is involutive, which means that̂̂

F = 2nF or equivalently that:

F (Z) =
1
2n

∑
a∈F

n
2

F̂ (a)(−1)a·Z , Z ∈ F
n
2 . (2)

Let R1, R2, R3 and R4 be 4 random masks belonging to F
n
2 , and let Z denotes

a sensitive variable. The algorithm proposed in [11] to process F (Z)+R3 mod 2n

securely from Z̃ = Z ⊕ R1 and R1, implements the right-hand side calculus of
the following relation (which is a slightly modified version of Relation (2)):

(−1)(Z̃⊕R2)·R1F (Z) + R3 mod 2n

=

⎢⎢⎢⎣ 1
2n

⎛⎝R′ +
∑
a∈F

n
2

F̂ (a)(−1)a·Z̃⊕R1·(Z̃⊕a⊕R2) mod 22n

⎞⎠⎥⎥⎥⎦ , (3)

where R′ = 2nR3 + R4.
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Let SSP denote the signed scalar product X, Y �→ (−1)X·Y , let � denote the
addition modulo 22n and let × denote the multiplication of two values belonging
to {−1, 1}. We recall hereafter the algorithm proposed in [11] to process the
right-hand side of (3) securely.

Finally, it is proposed in [11] to use the method described in [5] in order to
transform the arithmetic masking of the output of Algorithm 1 into a boolean
masking.

The authors of [11] had proposed a proof of security versus DPA for the
countermeasure defined by Algorithm 1, but as we will see in the next section,
the proof is flawed and the countermeasure is not secure against DPA.

4 DPA against the Fourier Transform Based S-Box
Calculation

4.1 First Order Flaw

Unlike what is claimed in [11], the implementation of Algorithm 1 is not immune
against DPA. Indeed, the variable V = a · Z̃ ⊕ R1 · (Z̃ ⊕ a ⊕ R2) processed at
Step 8 brings information about the sensitive variable Z (recalling Z̃ = Z ⊕R1).
To exhibit the dependency between V and Z, let us first rewrite V as follows:

V = a · Z̃ ⊕ R1 · (Z̃ ⊕ a ⊕ R2)

= a · (Z ⊕ R1) ⊕ R1 · (Z̃ ⊕ a ⊕ R2)

= a · Z ⊕ R1 · (Z̃ ⊕ R2) .

The relation above shows that the intermediate variable V equals the sensitive
variable a·Z (a being a loop index) masked with the scalar product R1 ·(Z̃⊕R2).
Since R2 is uniformly distributed and is independent of both Z and R1, then so
does the variable Z̃⊕R2. The flaw of the method proposed in [11] comes from the
fact that the scalar product of two uniformly distributed random variables does
not output an uniformly distributed random variable. For example, the product
b1 · b2 of two random bits b1 and b2 equals 0 with probability 3/4, and equals
1 with probability 1/4. More generally, for n-bit random variables we have the
following lemma.

Lemma 1. Let X and Y be two random variables uniformly distributed over F
n
2

and mutually independent. Then the scalar product X · Y satisfies

Pr[X · Y = 0] =
1
2

+
1

2n+1 . (4)

Proof. We have:

P [X ·Y = 0] = P [X �= 0] ·P [X ·Y = 0|X �= 0]+P [X = 0] ·P [X ·Y = 0|X = 0] .

Since the Boolean function y ∈ F
n
2 �→ x · y is linear and not null for every

x �= 0, we have #{x · y = 1} = #{x · y = 0} = 2n−1. This, together with the
fact that X and Y are independent, implies P [X · Y = 0|X �= 0] = 1

2 . Since
P [X · Y = 0|X = 0] = 1 and P [X �= 0] = 2n−1

2n , we deduce (4). �
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Remark 1. In the security proof conducted in [11], it is stated that the uniform
distribution of X and Y implies the one of X ·Y . We show in Lemma 1 that this
assertion is actually wrong.

Lemma 1 implies that the distribution of R1 · (Z̃ ⊕ R2) has a bias 1
2n+1 with

respect to the uniform distribution. Since the sensitive variable a · Z is masked
with a biased mask, the variable V defined in (4) leaks information on a ·Z. This
information can be used to recover Z by DPA.

4.2 DPA Attack

A DPA attack [9] targets the leakage L(b) generated by the processing of a
sensitive bit b in order to recover information about a secret which we denote
here by k�. It can be performed with only a few information about the leakage
and it actually only assumes that the expectation of L(b) depends on the value
of b. Let us first recall the outlines of the attack in the general case where b can
be expressed as:

b = f(X, k�) , (5)

where f is a Boolean function and X is a public variable.

Description. To perform a DPA, the target algorithm is executed several times,
say N , for a sequence of values (xi)i≤N taken by X . For each execution, the
attacker measures the leakage li generated by the processing of b. Then, the
resulting leakage measurement sequence (li)i≤N is involved to (in)validate a key
hypothesis k on k�. For such a purpose, the attacker first computes the se-
quence of guesses (bi)i≤N which are the predicted values of the bit b processed in
the successive executions: namely, for every i ≤ N we have bi = f(xi, k). Then,
the leakage measurements are separated in two categories: the ones for which
the predicted bit bi is equal to 1, and the ones for which it is equal to 0. Finally,
the so-called differential Δk corresponding to the difference between the mean
values of the two sets is computed:

Δk =
∑N

i=1 bi × li∑N
i=1 bi

−
∑N

i=1(1 − bi) × li∑N
i=1(1 − bi)

. (6)

If the key hypothesis is correct then the expectation satisfies:

E[Δk� ] = E[L(1)] − E[L(0)] . (7)

If the key hypothesis is incorrect then a ratio α ∈ [0, 1] of the bi’s is wrongly
predicted and the expectation of the differential satisfies:

E[Δk] = (1 − 2α)
(
E[L(1)] − E[L(0)]

)
. (8)

Since α is usually around 1
2 , we have E[Δk �=k� ] 	 0. This implies that, for a

sufficiently large N , the correct key hypothesis is such that Δk is of maximum
amplitude.
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Remark 2. Depending on the function f , it may happen that the correct key
hypothesis is not the single one for which Δk is of maximum amplitude. Indeed,
a key hypothesis such that α = 1 also results in a differential of maximal ampli-
tude. According to (6), this differential and the one corresponding to the correct
key hypothesis have exactly the same amplitude but have opposite signs. To dif-
ferentiate them the attacker needs to determine the polarity of E[L(1)]−E[L(0)].

DPA Attack Exploiting a Biased Mask. Let us now consider the case where
the target bit b is masked, namely:

b = f(X, k�) ⊕ R , (9)

where R is a random bit.
If R is uniformly distributed over F2, then no successful DPA attack is possible.

Indeed, in that case b equals 0 (resp. 1) with probability 1
2 independently of

k�. Conversely, when the distribution of R is biased compared to the uniform
distribution, then the distribution of b depends on f(X, k�), which renders DPA
possible. In the following, we denote by ε �= 0 the bias such that P [R = 0] = 1

2+ε.
The DPA works in the same way as in the unmasked case. The sequence

of guesses is still defined as bi = f(xi, k) (since R is not predictable) and the
differential Δk is computed according to (6). The randomization provided by R
implies that the bit effectively processed equals f(xi, k

�) with probability 1
2 + ε.

One deduces that, for the correct key hypothesis, a portion 1
2 + ε of the bi’s is

correctly predicted while a portion 1
2 − ε is wrongly predicted in average. This

implies that the expectation of the differential for the correct key hypothesis
satisfies:

E[Δk� ] =
(

1
2

+ ε

)(
E[L(1)] − E[L(0)]

)
+

(
1
2

− ε

) (
E[L(0)] − E[L(1)]

)
,

that is:
E[Δk� ] = 2ε × (

E[L(1)] − E[L(0)]
)

.

Hence the expectation of Δk� is divided by a factor 1
2ε compared to an unpro-

tected implementation (this also holds for the differentials Δk obtained for wrong
key hypotheses – see Appendix A – ). This implies, according to the analysis
in [3], that the number of required leakage measurements is roughly multiplied
by ( 1

2ε)2. A more detailed analysis is conducted in Appendix A where we give
the exact distribution of Δk, assuming that the leakage noise has a Gaussian
distribution.

As a result, Lemma 1 implies that a DPA on Algorithm 1 exploiting the flaw
exhibited in Section 4.1 is expected to require about 22n times more leakage
measurements than a DPA when no masking is used. Since Algorithm 1 is only
interesting for a small value of n (e.g. n = 4), this factor is not prohibitive.

4.3 DPA Attack on the Flaw

In this section, we apply the DPA attack described in Section 4.2 in order to
exploit the flaw exhibited in Section 4.1. More precisely, our attack targets a bit
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b which is a scalar product a · Z masked with a biased mask R = R1 · (Z̃ ⊕ R2),
that is

b = a · Z ⊕ R . (10)

We recall that a refers to a loop index in Algorithm 1 and that its value can be
chosen by the attacker among {0, · · · , 2n − 1}. The sensitive variable Z is the
sensitive S-box input and it can be written as a function of a public variable X
and a piece of secret data k�. The way our attack is performed depends on this
function which can take several forms. In the sequel we consider two usual cases.

The first one is referred as the linear case and assumes:

Z = X ⊕ k� .

This occurs for instance in AES and in FOX algorithms for the first round S-box
calculation.

The second case, referred as the non-linear case, assumes the existence of a
non-linear transformation φ such that:

Z = φ(X ⊕ k�) .

This occurs for instance in the AES algorithm implemented using the composite
field method [10,11] (see [11, §4.1] for details). In that case, φ is the non-linear
(8, 4)-function which from a ∈ F256 processes d ∈ F16 according to the notations
of [10,11].

The Linear Case. We consider here the case where the targeted bit can be
expressed as b = a · (X ⊕ k�) ⊕ R that is:

b = a · X ⊕ a · k� ⊕ R . (11)

The bit b in (11) only depends on one secret binary value a · k�. Therefore, a
DPA on b will provide at most one bit of information on k�. Hence, recovering
the whole secret k� requires to perform a DPA attack on b for t different loop
indices a0, ..., at−1.

When mounting a DPA attack on b for a particular loop index a, the sequence
of guesses can only take one of the two following forms: (a · xi)i or (a · xi ⊕ 1)i.
According to (6), these two sequences result in two differentials that are opposite
one to each other. The attacker does not know a priori which of these differentials
correspond to the correct key hypothesis. Indeed, depending on the device, the
polarity (−1)s of the good differential Δa·k� may be positive or negative. In
other terms, the DPA allows the attacker to recover the value of a ·k� ⊕s, where
k� and s are unknown.

Since the polarity s is the same for all the loop indices a, then performing t
DPA attacks for t different loop indices a0, ..., at−1 provides the attacker with
a system of t equations and n + 1 variables (the polarity bit s and the n bits
of k�). Solving this system requires to have at least t = n + 1 equations. After
choosing n indices ai having linearly independent vectorial representations in F

n
2

and after defining an = a0 ⊕a1, it can be checked that solving the system allows
the attacker to unambiguously determine the value of k�.



8 J.-S. Coron et al.

The Non-linear Case. We now consider the case where b satisfies:

b = a · φ(X ⊕ k�) ⊕ R . (12)

For a non-linear φ, the attack is analogous to a classical DPA on some output
bit of e.g. a DES or AES S-box [9]. The non-linearity of φ ensures that for the
correct key hypotheses a peak of maximal amplitude will appear while for most
other key hypothesis no peak will appear. This enables to fully recover k�.

In this section, we have described how to exploit the leakage on a sensitive bit
which is masked with a biased random bit. In the linear case, the attack requires
to perform n + 1 DPAs while only one DPA is needed in the non-linear case. In
the following section, we present experimental results for these two attacks.

5 Experimental Results

We put into practice the attacks described in Section 4.2 for two S-box implemen-
tations on an 8-bit smart card. Both attacks exploited the power consumption
resulting from several S-box calculations.

Regarding the linear case, we performed the attack on the S-box calculation of
FOX algorithm during the first round protected by the method described in [11].
In this case, the sensitive bits we targeted are of the form a · (X ⊕k�)⊕R, where
a, X, k� ∈ F

4
2. Following the outlines of the attack described in Section 4.3 for

the linear case, we have applied 4 + 1 DPAs on five different loop iterations of
Algorithm 1, namely one DPA for every a ∈ {1, 2, 4, 8, 3}.

Figure 1.a represents the value of
∑3

i=0 Δai·k, where ai = 2i, obtained af-
ter 20 000 executions of the algorithm. The full black curve corresponds to the
correct subkey value k� and the dotted black curve corresponds to the com-
plementary of this value. As expected, these two candidates are such that the
highest peaks of the differential vectors Δai·k are either all positive or all neg-
ative, hence leading to the highest amplitudes for

∑3
i=0 Δai·k. As explained in

Section 4.3, we then computed the differential Δa·k� for a = a0 ⊕ a1 = 3. Fig-
ure 1.c illustrates this computation. The polarity of the highest peak of Δ3·k�

being negative, one deduces that the correct subkey value k� corresponds to the
full black curve in Figure 1.a.

Figures 1.b and 1.d represent respectively the convergence of the peak of
maximal amplitude for

∑3
i=0 Δai·k and for Δ3·k� according to the number of

power consumption measurements. By analyzing these curves, we deduce that
the value of the 4-bit subkey k� is recovered by using about 8 000 executions of
the algorithm.

Regarding the non-linear case, we attacked the AES S-box calculation using
the composite field method in order to perform the inversion in F

4
2 instead of F

8
2

and the method of [11] to protect this inversion (see [11, § 4.1] for more details).
In that case, the targeted bit is of the form a · φ(X ⊕ k�) ⊕ R where X, k� ∈ F

8
2,

a ∈ F
4
2 and φ : F

8
2 → F

4
2. Figure 2.a represents the value of the differentials Δk’s

for k ∈ F
8
2 and a = 1, when 200 000 executions of the algorithm are used. It can

be seen that the correct subkey k� (plotted in black) is easily distinguishable.
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Fig. 1. Practical DPA attack – the linear case

Figure 2.b represents the convergence of the maximum peak amplitude for
the differentials according to the number of power consumption measurements.
The analysis of these curves shows us that the value of the 8-bit subkey k� is
recovered after about 100 000 executions of the algorithm.

6 An Improved Version of a Secure S-Box Calculation

InthefollowingweproposeanimprovementofAlgorithm1thatallowstocircumvent
the flaw depicted in Section 4.1 and also leads to a more efficient implementation.

The new algorithm is still a secure calculation of a Fourier Transform but it is
based on a slightly modified version of (3) which we rewrite in the following form:

(−1)R2F (Z) + R3 mod 2n

=

⎢⎢⎢⎣ 1
2n

⎛⎝R′ +
∑
a∈F

n
2

F̂ (a)(−1)R2⊕a·Z̃⊕a·R1 mod 22n

⎞⎠⎥⎥⎥⎦ , (13)

where Z̃ = Z ⊕ R1, R2 ∈ F2, (R1, R3, R4) ∈ (Fn
2 )3 and R′ = 2nR3 + R4.
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Fig. 2. Practical DPA attack – the non-linear case

After a brief look at (13) (and before the deeper analysis conducted later on
in this section), we can notice that the sensitive variable a · Z is now masked
with the uniformly distributed random bit R2. Furthermore, it may be noticed
that the exponent in the summation in (13) involves less operations than in (3).

Let us denote by SP the function X, Y �→ X ·Y and by SFT the function X, T �→
F̂ (X)(−1)T . As we prove in this section, Algorithm 2 implements (13) securely.

9. T1 ← SFT(a, T1) [T1 = F̂ (a)(−1)R2⊕a·Z ]

10. result ← result � T1 [result = (2nR3 + R4) �
∑

i∈{0,a} F̂ (i)(−1)R2⊕i·Z ]

11. end
12. result ← result � n [result = (−1)R2F (Z) + R3 mod 2n]

13. return (result, R3, R2)

Algorithm 2. First order Secure S-box calculation

Inputs: A masked value Z̃ = Z ⊕ R1 and the mask R1

Output: The 3-tuple ((−1)R2F (Z) + R3 mod 2n, R3, R2), where R2 and R3 are random
values.

1. Generate a random bit R2

2. Generate two n-bit random R3 and R4

3. result ← 2nR3 + R4

4. for a from 0 to 2n − 1 do
5. T1 ← SP(a, Z̃) [T1 = a · Z̃]

6. T1 ← T1 ⊕ R2 [T1 = R2 ⊕ a · Z̃]

7. T2 ← SP(a, R1) [T2 = a · R1]

8. T ← T ⊕ T [T = R ⊕ a · Z]

Efficiency Analysis. Although Algorithm 2 is more secure than Algorithm 1,
it is also faster. For each loop, Algorithm 2 requires two XORs, two calls to the
function SP and one call to the lookup table SFT. Therefore, for each loop Algo-
rithm 1 performs 2 extra multiplications compared to Algorithm 2. Combining
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this result with the fact that function SP is slightly faster than function SSP,
we deduce that our method is faster than the one proposed in [11].

Security Analysis. In Table 1, we list the intermediate variables of Algorithm 1
that involve a sensitive variable. The values which only depend on the loop
counter or on a random value are obviously omitted.

Table 1. The different sensitive values manipulated during Algorithm 2

Step Instruction Masked Value Mask(s)

5.1 register ← Z̃ Z̃ R1

5.2 T1 ← SP(a, Z̃) a · Z̃ a · R1

6 T1 ← T1 ⊕ R2 R2 ⊕ a · Z̃ R2 ⊕ a · R1

8 T1 ← T1 ⊕ T2 R2 ⊕ a · Z R2

9 T1 ← SFT(a, T1) F̂ (a)(−1)R2⊕a·Z R2

10 result ← result � T1 (2nR3 + R4) �
∑

i F̂ (i)(−1)R2⊕i·Z (R2, R3, R4)

11 result ← result � n (−1)R2F (Z) + R3 mod 2n R3

As it can be checked in Table 1, the intermediate variables manipulated at
Steps 5.1, 6, 8, 9, 10 and 11 are additively masked with a uniformly distributed
random variable (resp. R1, R2 ⊕ a · R1, R2, R2, R3||R4 and R3) which is in-
dependent of the sensitive variable. Those intermediate variables are therefore
independent of the sensitive variable Z.

The intermediate variable at Step 5.2 can be rewritten a · Z ⊕ a · R1. When a
equals 0, this variable equals 0 whatever Z and R1. Otherwise, for every a �= 0
the variable a · R1 is uniformly distributed and independent of Z. We deduce
that a · Z ⊕ a · R1 (and hence a · Z̃) is independent of Z whatever a.

Therefore, we have proved that all the intermediate variables manipulated
during the execution of Algorithm 1 are independent of Z, which implies that
our method is secure against first order DPA.

7 Conclusion

In this paper, we have shown that a provably secure DPA countermeasure pub-
lished at CHES 2006 has a flaw. We have explained how this flaw can be exploited
to mount an efficient attack on S-box implementations protected by this coun-
termeasure. Our attack is not only theoretical since we have successfully put it
into practice on two different S-box implementations: the AES S-box using the
composite field method and the FOX S-box.

Finally, we have proposed an improvement of the CHES 2006 countermeasure
for which we prove the resistance against first order DPA. Moreover we showed
that our improvement is not only more secure but can also be implemented more
efficiently than the original countermeasure.
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ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001)

6. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

7. Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed
Field Representations and its Efficient Implementation for AES. In: Nedjah, N.,
Mourelle, L.M. (eds.) Embedded Cryptographic Hardware: Methodologies and Ar-
chitectures, pp. 213–228. Nova Science Publishers (2004)

8. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

9. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

11. Prouff, E., Giraud, C., Aumonier, S.: Provably Secure S-Box Implementation Based
on Fourier Transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249. Springer, Heidelberg (2006)

12. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021 (2008), http://eprint.iacr.org/

A Distribution of the Differentials

In this section, we investigate the distribution of the differential Δk when the
attack targets a masked bit b = f(X, k�)⊕R where R is a random bit satisfying
P [R = 0] = 1

2 + ε. Our analysis includes the unmasked case by setting ε to 1
2 .

We make the usual assumption that the leakage has a Gaussian distribution:

L(b) ∼ N
(

μ − δ

2
(−1)b, σ2

)
, (14)

http://eprint.iacr.org/
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where μ, δ and σ are constants and δ equals E[L(1)] − E[L(0)].
The leakage measurement li obtained for the ith encryption can thus be ex-

pressed as:

li = μ − δ

2
(−1)b�

i +ri + ηi , (15)

where, for the ith encryption, b�
i is the unmasked value of b (i.e. b�

i = f(xi, k
�)),

ri is the mask value and ηi is the noise in the leakage measurement.
We make the additional assumption that for every key hypothesis k, the se-

quence of guesses satisfies: #{i; bi = 0} = #{i; bi = 1} = N/2. This assumption
is realistic since the functions f(·, k) are usually balanced (i.e. #{x; f(x, k) =
1} = #{x; f(x, k) = 0}) and since the xi’s are usually uniformly distributed. It
allows us to rewrite (6) as:

Δk = − 2
N

(
N∑

i=1

(−1)bi li

)
. (16)

This relation together with (15) leads to:

Δk =
δ

N

N∑
i=1

(−1)bi+b�
i +ri − 2

N

N∑
i=1

(−1)biηi

=
δ

N

⎛⎜⎝ N∑
i=1

bi=b�
i

(−1)ri −
N∑

i=1
bi �=b�

i

(−1)ri

⎞⎟⎠ − 2
N

N∑
i=1

(−1)biηi

Recalling that α is the ratio of the bi’s that are wrongly predicted (i.e. α =
#{i; bi �= b�

i }/N) and after rewriting (−1)ri as 1 − 2ri, we get:

Δk = δ(1 − 2α) +
2δ

N

⎛⎜⎝ N∑
i=1

bi �=b�
i

ri −
N∑

i=1
bi=b�

i

ri

⎞⎟⎠ − 2
N

N∑
i=1

(−1)biηi .

Since ri is distributed over F2 with P [ri = 1] = 1/2 − ε then for every I ⊆
{1, · · · , N}, the sum

∑
i∈I ri has a binomial distribution with parameter (#I,

1/2 − ε). Moreover, since ηi has a Gaussian distribution N (0, σ2), then the sum∑N
i=1(−1)biηi has a Gaussian distribution N (0, Nσ2). This way, we obtain:

Δk ∼ N
(

δ(1 − 2α),
4σ2

N

)
+

2δ

N
B

(
αN,

1
2

− ε

)
− 2δ

N
B

(
(1 − α)N,

1
2

− ε

)
.

After approximating B(n, p) by N (np, np(1 − p)) (which is almost exact when
n ≥ 30, np > 5 and n(1 − p) > 5), we finally get:

Δk ∼ N
(

2ε × δ(1 − 2α),
4σ2 + δ2(1 − 4ε2)

N

)
.



14 J.-S. Coron et al.

This relation shows that the biased masking results in a reduction of the
expectation of Δk and in an increase of its variance. The expectation is divided
by a factor 1/2ε while its variance is multiplied by a factor 1 + δ2(1 − 4ε2)/σ2.
When the leakage signal-to-noise ratio is low, i.e. σ  δ, then the biais has a weak
influence on the variance and its main effect is the reduction of the expectation.
According to [3] this results in an increase of the number of required leakage
measurements by a factor (1/2ε)2. If the leakage signal-to-noise ratio is not that
low, the increase of the variance is significant and the number of required leakage
measurements is multiplied by (1/2ε)2

(
1 + δ2(1 − 4ε2)/σ2

)
.
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Abstract. This paper proposes new chosen-message power-analysis
attacks against public-key cryptosystems based on modular exponen-
tiation, which use specific input pairs to generate collisions between
squaring operations at different locations in the two power traces. Un-
like previous attacks of this kind, the new attacks can be applied to
all the standard implementations of the exponentiation process: binary
(left-to-right and right-to-left), m-ary, and sliding window methods. The
SPA countermeasure of inserting dummy multiplications can also be de-
feated (in some cases) by using the proposed attacks. The effectiveness
of the attacks is demonstrated by actual experiments with hardware and
software implementations of RSA on an FPGA and the PowerPC pro-
cessor, respectively. In addition to the new collision generation methods,
a high-accuracy waveform matching technique is introduced to detect
the collisions even when the recorded signals are noisy and the clock has
some jitter.

Keywords: side-channel attacks, power-analysis attacks, RSA, modu-
lar exponentiation, waveform matching.

1 Introduction

Physical attacks on cryptographic modules using side-channel information are
attracting extensive attention. In order to reveal the secret parameters, the power
dissipation, the electromagnetic radiation, or the operating times related to in-
ternal operations are analyzed. Two of the best known attacks are Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) proposed by Kocher et
al. [1,2].

The original concept of side-channel attacks against modular exponentiation
[3] is to look for some physical phenomena which differentiates between multipli-
cation and squaring operations. Messerges presented a variety of power-analysis
attacks against RSA with some experimental results [4]. However, most of the
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implementations of modular exponentiation nowadays use the same sequence of
instructions to implement multiplications and squarings, and for random inputs,
it is very difficult to distinguish between these two operations. In order to cause
secret information to leak via the power waveforms, chosen-message attacks that
use specific data specialized for a particular cryptographic module were proposed
[5,6,7,8,9,10].

The timing attacks against RSA with Montgomery multiplication [11] and/or
CRT algorithm in [5,6] measures the operating times caused by extra calcula-
tions depending on input data. The SPA with adaptively chosen messages [7] can
be applied to an RSA implementation using CRT based on Garner’s algorithm,
in which an extra modular reduction is performed at the end of the operation
according to the input data. The DPA using the Hamming weight of an inter-
mediate value [8] was also applied to RSA with CRT. These attacks focused
on specific RSA implementations, and thus information about the implementa-
tion is indispensable to reveal the secret keys. The first three attacks can be
defeated by inserting dummy operations, and the DPA of [8] cannot be applied
to implementations using the Montgomery algorithm.

Over the last few years, several researchers have proposed to use a power anal-
ysis technique which is a mixture of the simple and the differential approaches.
This technique compares two segments of power consumption data (within a
single execution or in two different executions) and uses the result to determine
whether the values operated on were the same or different. For example, when
we perform two multiplications a×b and c×d, we expect the power consumption
curves to be similar when a = c and b = d, and different in all other cases. This
can give us a simple equality oracle, even though it may be extremely difficult to
determine the actual values of a, b, c, and d from the complex waveforms. This
is not a standard SPA technique since we do not try to understand the details
of each waveform, and it is not a standard DPA since it is not based on the
statistical analysis of large collections of power traces. We propose to call such
attacks on pairs of waveforms CPA (Comparative Power Analysis).

One of the simplest attacks of this type was proposed by Yen et al [10]. It
uses the particular input data of N − 1 where N is the modulus, which has
the special property that all its powers are either 1 or −1. However, a simple
countermeasure is to block the special message N − 1, and the attack can only
be applied to implementations using a left-to-right binary method.

Another attack of this type is the “doubling attack” of Fouque and Valette [9].
They used the two related input messages X and X2 to cause collisions between
adjacent time frames in the two power waveforms, where squaring operations
are performed. Since every message X can be part of such a message pair, it is
harder to block potentially harmful messages. As in the case of Yen’s method,
these attacks can only be applied to the left-to-right binary method, and the
authors make this point explicit in the title of their paper: “The Doubling Attack
- Why Upwards is Better than Downwards”.

In this paper we propose new power-analysis attacks using input pairs
which can be successfully applied to all the standard implementations of the
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exponentiation function, including both left-to-right and right-to-left binary
methods, m-ary (window), and sliding window methods. The major new ele-
ment of these attacks is the observation that an attacker can easily choose pairs
of messages that generate collisions between their power traces at arbitrary time
frames (which need not be the same or adjacent) even though he does not know
the factorization of the modulus and thus cannot extract modular roots. Infor-
mation about the locations of such non-adjacent collisions in the power traces is
then used to identify the bit pattern of the secret exponent. In the proposed at-
tack, the relationship between the two input messages can cope flexibly with the
many variants of exponentiation algorithms, including those which were immune
to previous attacks.

We demonstrate the practical effectiveness of the proposed attacks against
hardware and software implementations of RSA using a Xilinx FPGA with a
PowerPC processor core. In this experiment, a high-accuracy waveform matching
technique is introduced to find collisions between squaring patterns that appear
at different time frames even when the signal is noisy and the clock has some
jitter.

The remainder of this paper is organized as follows: Section 2 presents an
overview of modular exponentiation algorithms and describes power-analysis at-
tacks using a chosen-message pair. In Section 3, the new power-analysis attacks
using chosen-message pairs against binary and m-ary methods are proposed.
Section 4 describes the experimental results using actual RSA hardware and
software implementations. Finally, Section 5 contains some concluding remarks.

2 Preliminary and Related Attacks

2.1 Modular Exponentiation Algorithms

Modular exponentiation is one of the most important arithmetic operations for
public-key cryptography, such as the RSA scheme and the ElGamal encryption
scheme, and for the Diffie-Hellman key agreement. Basically, there are two types
of efficient exponentiation algorithms: binary methods and m-ary (or window)
methods [12,13].

The binary method performs multiplications and squarings sequentially ac-
cording to the bit pattern of the exponent. There are two variations of the algo-
rithm. The left-to-right binary method starts at the exponent’s MSB and works
downward. The right-to-left binary method, on the other hand, starts at the
exponent’s LSB and works upward. ALGORITHM 1 shows the left-to-right
binary method, where k indicates the bit length of the secret keys. Each multi-
plication (or squaring) operation requires a large number of clock cycles due to
the long operand length depending on the implementation. The binary method
is frequently used in smartcards and embedded devices, due to its simplicity and
low resource consumption.

The m-ary method processes more than one bit of the exponent in each iter-
ation cycle, in which the exponent uses a representation with base m. ALGO-
RITHM 2 shows the m-ary method in which the exponent is processed from
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ALGORITHM 1
Left-to-right binary method

Input: X, N ,
E = (ek−1, ..., e1, e0)2

Output: Z = XE mod N

1 : Z := 1;
2 : for i = k − 1 downto 0
3 : Z := Z * Z mod N ;
4 : if (ei = 1) then
5 : Z := Z * X mod N ;
6 : end if
7 : end for

ALGORITHM 2
m-ary method

Input: X, N ,
E = (ek−1, ..., e1, e0)2m ,
for m ≥ 1.

Output: Z = XE mod N

1 : g0 := 1;
2 : for i = 1 to 2m − 1
3 : gi := gi−1 ∗ X; — gi = Xi

4 : end for
5 : Z := 1;
6 : for i = k − 1 downto 0
7 : for l = 1 to m
8 : Z := Z * Z mod N ;
9 : end for
10: Z := Z * gei mod N ;
11: end for

the MSB down to the LSB. The powers gi mod N (i = 0, 1, 2, ..., 2m −1) are pre-
computed and used in multiplication. The intermediate value Z is raised to the
power of 2m by repeating the squaring operation m times. The m-ary method
requires fewer clock cycles but more memory resources compared with the bi-
nary methods, and thus is often used for software implementation on processors
with large memory resources. The sliding window method is an extension of the
m-ary method to reduce the amount of pre-computation by using the presence
of zero bits in the exponent.

2.2 SPA Using a Chosen-Message Pair against Modular
Exponentiation

The doubling attack [9] uses the two related inputs X and X2. The secret ex-
ponent is revealed by detecting collisions of squaring operations in two power
traces. Fig. 1 illustrates an image of the doubling attack against the left-to-right
binary method in ALGORITHM 1 with the secret key exponent of “101001...”
The doubling attack can generate a collision between a squaring operation at
the i + 1-th cycle in the power trace of X and a squaring operation at the i-th
cycle in that of X2 only if the corresponding key bit ei is 0. The collision for
squaring is detected by comparing the power traces, and thus we do not have
to know the intermediate data being processed. The doubling attack works on
modular exponentiation based on left-to-right binary methods including those
using the blinding countermeasures shown in [14].

A different attack which uses the message pair X and −X (= N −X mod N)
was proposed by Yen et al [10]. Fig. 2 illustrates an image of this attack against
the left-to-right binary method. When the key bit ei is 0, a collision between
power traces can be observed for the two squaring operations during the same
iteration cycle.
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Both attacks exploit the fact that the values which are squared depend on the
bits of the secret exponent. As mentioned in [9], it is hard to apply the attack to
exponentiation algorithms such as right-to-left algorithms and window methods
that perform squaring operations independently of the secret exponent.

3 The New Attacks

The above two attacks generate collisions of squaring operations at the adjacent
or the same time frames in two power traces. In contrast, the proposed attacks
generate a collision between two power traces at two arbitrary time frames by us-
ing two input messages with a more flexible relationship. One input gives a power
trace including an unknown (multiplication or square) operation depending on
a target key bit to be estimated, which is called a target operation. The other
input gives a power trace including a square operation, the input of which can
be determined by the known sub-key bits, referred to as the reference operation.
The partial traces for the target and reference operations are called target and
reference waveforms, respectively. The collision between the target and reference
waveforms is used to estimate the target key bit.

Our attacks provide direct and backward estimations of the key exponent
using the collision. The direct estimation simply compares the target (squaring or
multiplication) operation with the reference (squaring) operation to identify the
target operation corresponding to the key bit. The backward estimation identifies
the target operation by comparing a squaring operation following the target
operation with the reference operation. Unlike all the previous techniques, these
new estimation techniques can be applied to all the standard exponentiation
techniques (including both left-to-right and right-to-left binary methods, m-ary
methods and the sliding window methods).

The simple trick we use in order to generate a collision at any pair of locations
in two power traces is to find a solution for any equation of the form Y α =
Zβ mod N , where α and β are given constants. Note that the attacker does not
know the factorization of N and thus cannot solve this equation by extracting
modular roots. However, he can choose an arbitrary value R and compute Y =
Rβ mod N and Z = Rα mod N , which is clearly a solution for the equation.
This method is also applicable for CRT implementation that uses the prime
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factors p and q of N as the moduli since the message pair Y and Z satisfies
Y α = Zβ mod p and Y α = Zβ mod q.

3.1 Attack on Binary Methods

First, the direct estimation of the binary method shown in ALGORITHM 1 is
described. Suppose that the sub-key bits E(j) (= ek−1, ..., ek−j) of the secret expo-
nent E have already been obtained. In order to estimate the next key bit ek−(j+1),
a message pair is used, which causes a collision between the target and reference
operations performed at different time frames. If a collision is observed, the tar-
get operation is a squaring (i.e., ek−(j+1) = 0). If no collision is observed, then the
operation is a multiplication (i.e., ek−(j+1) = 1). Once ek−(j+1) is obtained, the
remaining bits ek−(j+2), ..., e0 are sequentially computed in the same manner.

The message pair Y and Z is given as Y α = Zβ(Y �= Z), where the α and β
satisfy

α = 2E(j), (1)

β =
⌊ α

2t

⌋
(0 ≤ t ≤ j), (2)

respectively. Here, Y α is the input for the target operation performed by ek−(j+1),
and Zβ is the input for the reference operation. If ek−(j+1) = 0, the operation of
Y α is the same as that of Zβ. In contrast, if ek−(j+1) = 1, the operation of Y α is
a multiplication, and is different from that of Zβ . As a result, the bit ek−(j+1) is
obtained by comparing the target waveforms of Y α and the reference waveform
of Zβ.

Fig. 3 shows an example of the direct (bit/digit) estimation of ALGO-
RITHM 1. Suppose that the attacker already knows the first four bits (E(4) =
11002). In this condition, α and β are given as α = 24 and β = 1, 3, 6, 12, or 24.
In order to estimate the next key bit, a message pair Y and Z, which meets the
condition Y 24 = Z3 (i.e., α = 24 and β = 3) is used. Here, Y 24 is the input for
the target operation, and Z3 is the input for the reference operation. If β = 24
(Y 24 = Z24), then Y = r and Z = −r. Therefore, this attack is identical to



Collision-Based Power Analysis of Modular Exponentiation 21

Time

P
ow

er

Time

P
ow

er

1 Z Z2 Z24Z3 Z6 Z12

1 Y Y2 Y24Y6 Y12

1 …001Sub-key

Y3

Check the collision 
between these parts.

PY

PZ

S M S SM S S

S M S SM S S

Y25
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Yen’s attack [10]. If β = 12 (Y 24 = Z12), then Y = r and Z = r2, which is
identical to the doubling attack [9]. Thus, these attacks are special cases of the
present direct estimation.

Now, the backward estimation of ALGORITHM 1 is explained. To estimate
the key bit ek−(j+1), a squaring operation following the target operation for
ek−(j+1) is investigated. Unlike the direct estimation, the bit value of ek−(j+1)
(0 or 1) is estimated first, and the input message pair is then selected so that the
power waveform for the squaring following the target operation would match the
waveform for the reference operation. Assuming that ek−(j+1) = 1, the message
pair Y and Z is selected so as to meet the condition Y α+1 = Zβ. If the estimation
of ek−(j+1) is correct, the operating sequence and data for the squaring of Y α+1

are the same as those of Zβ , and the two waveforms of the squaring would be
identical. In contrast, if the estimation is incorrect, the two square waveforms
would be different.

Fig. 4 shows an example of the backward (bit/digit) estimation against the
binary method. Assuming that the target key bit is 1, and the message pair is
selected to meet the condition Y 25 = Z3. If the estimation is correct, a multipli-
cation Y 24 × Y is performed as the target operation and the result of Y 25 is fed
to the following squaring. Therefore, the same input values Y 25 and Z3 (= Y 25)
are used for the squaring operations that generate two power waveforms to be
compared. If the target key bit is 0, the target operation is squaring, and the
input of the following squaring is Y 48 (= Y 24×2), which is not equal to Z3, and
thus the two waveforms for the squaring do not match.

As described above, the direct estimation compares the two waveforms gen-
erated by the reference (square) and the target (unknown) operations with the
same input data to determine the target operation. In contrast, the backward
estimation compares the two waveforms generated by square operations to deter-
mine the input data to the squaring following the target (unknown) operation. In
order to determine the operation or the data using waveform matching, the pro-
posed method controls the relation between the messages Y and Z as Equations
(1) and (2).
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3.2 Attack on m-Ary Methods

The backward estimation has no additional advantage over the direct estimation
for attacking the conventional binary method. However, the backward estimation
is essential when attacking the m-ary method shown in ALGORITHM 2. This
algorithm always performs a multiplication after raising the intermediate result
to the power of 2m (i.e., m squaring operations). Therefore, the direct estimation,
which detects the multiplication performed only if the corresponding key bit is
1, cannot be applied. Suppose that the m-bit sub-keys E(j) = (ek−1, ..., ek−j)2m

of the secret exponent E have already been obtained. To estimate the next sub-
key ek−(j+1), the waveform of the squaring following the target multiplication
is investigated. At the beginning of the attack, the target sub-key ek−(j+1) is
assumed as γ (0 ≤ γ ≤ 2m − 1), and the message pair Y and Z is selected to
meet the condition Y α+γ = Zβ , where the α and β are given as

α = 2mE(j), (3)

β =
⌊ α

2mt

⌋
(0 ≤ t ≤ j), (4)

respectively. If the estimation is correct (ek−(j+1) = γ), the input data Y α+γ to
the squaring following the target multiplication is the same as the Zβ input in the
reference squaring, and thus the waveforms for the two squaring operations would
match. Even if the estimation is wrong, the correct sub-key can be obtained after
2m trials at most.

Fig. 5 shows an example of the attack against the m-ary algorithm of AL-
GORITHM 2, where m = 4. When the sub-key ek−1 = 12 is already known, α
and β can be given by α = 192 and β = 12. Assuming that ek−2 is γ, a message
pair Y and Z is selected to meet the condition Y 192+γ = Z12. If the estimation
is correct, the input of the squaring (Y 192+γ) following the target operation is
equal to that of the reference squaring (Z12), and these inputs would make iden-
tical waveforms. In this case, the correct sub-key ek−2 can be estimated with at
most 24 = 16 trials.
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Fig. 8. Experimental conditions

4 Experiments

4.1 Identification of Operations by Waveform Matching

The proposed attacks create collisions between target and reference power wave-
forms at time frames which can be far apart, whereas previous attacks compare
the waveforms at adjacent time frames or at the same time frame, as shown in
Figs. 1 and 2. Therefore, a flexible and precise matching technique which can
overcome the cumulative effect of clock jitter and noise is crucial for collision
detection. In the following, the phase-based waveform matching technique [15],
which can match waveform positions with a resolution higher than the sampling
resolution, is used. Fig. 6 shows an overview of the identification method. Given
two power traces PY and PZ , we first cut out the waveform segments that include
the target and reference operations, P ′

Y and P ′
Z , respectively. The segments can

easily be recognized because each multiplication or square operation consumes
less power around the boundaries of the operation. The waveform segments are
then aligned precisely using the phase-based waveform matching technique. Fi-
nally, the difference between the waveforms is calculated to evaluate the equality
of the operations or data being processed.

4.2 Experimental Results

RSA hardware and software using the Montgomery multiplication algorithm
were implemented on the Xilinx FPGA platform Side-channel Attack Standard
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Fig. 9. Results of hardware implementation (target: squaring):(a) power traces of Y
and Z, (b) waveform segments, and (c) differential waveform
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Fig. 10. Results of hardware implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform

Evaluation BOard (SASEBO) [16] shown in Fig. 7. The RSA hardware with
the FPGA’s embedded multipliers performs 1,024-bit modular exponentiation
using the binary method. On the other hand, the RSA software is executed as a
PowerPC processor macro in the FPGA, where both binary and 4-ary methods
are applied to a 256-bit exponent due to memory limitations.

The power traces were monitored using an oscilloscope (Agilent MSO 6104A)
at 400 Msamples/sec for software and 800 Msamples/sec for hardware as voltage
drops caused by the resistor inserted between the FPGA ground pin and the
ground plane. Fig. 8 summarizes the experimental conditions.

Figs. 9 and 10 show the experimental results of the direct estimation using
power traces generated by the RSA hardware with two different keys. The mea-
sured power waveforms in Figs. 9 (a) and 10 (a) are aligned on the reference
and target time frames as (b), and then the differential waveforms in (c) are
calculated. In order to reduce the noise distortion of the differential waveform,
low-pass filtering techniques, as well as phase-based waveform matching, are ap-
plied. The result is extremely clean, producing a greatly reduced difference signal
when the two squared values are the same. In Figs. 9 and 10, the first four bits of
the exponents are the same and are known as “1101”, and each 5-th key bit will
be identified. As described in the example operation of Fig. 3, a message pair
Y and Z that satisfies Y 24 = Z3 is used for the identification. The amplitude
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Fig. 11. Results of software implementation (target: squaring):(a) power traces of Y
and Z, (b) waveform segments, and (c) differential waveform
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Fig. 12. Results of software implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform

of the differential waveform in Fig. 9 (c) remains around zero, and thus the tar-
get (unknown) and reference (square) operations are the same. As a result, the
target operation is squaring, and the 5-th key bit is identified as 0. In contrast,
the differential waveform in Fig. 10 (c) indicates that the target and reference
operations do not match. Therefore, the target operation is multiplication, and
the 5-th key bit is revealed to be 1. Figs. 11 and 12 show the experimental results
of the software implementation of RSA with the same algorithm and parameters
used in Figs. 9 and 10, respectively. By applying the same matching techniques
used for the hardware implementation, the secret key bits (target operations)
can be easily identified.

Fig. 13 shows the differential waveforms derived from the backward estimation
applied to the RSA software using the 4-ary method, where the known sub-key is
12. As described in Section 3.2 using the example operation of Fig. 5, a message
pair Y and Z that meets the condition Y 192+γ = Z12 was executed by the RSA
software. The parameter γ denotes the next unknown 4-bit sub-key, and thus all
sixteen possible sub-keys 0000 ∼ 1111 were tested. Figs. 13 (a) and 13 (b) show
the differential waveforms for the correct sub-key (γ = 3) and for one of the
fifteen incorrect sub-keys (γ = 4), respectively. The correct waveform is easily
distinguished from the incorrect waveforms. For additional details, Root Mean
Square (RMS) and maximum errors in the differential waveforms are shown in
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Table 1. RMS and maximum errors of differential waveforms

Key guess 0 1 2 3 4 5 6 7

RMS error 1.92 2.11 1.98 1.27 1.77 2.91 1.75 1.95

Max. error 11.39 11.55 12.05 4.86 11.76 12.41 11.70 11.50

Key guess 8 9 a b c d e f

RMS error 1.96 1.89 1.74 2.11 1.90 1.82 2.21 2.07

Max. error 11.78 11.52 11.43 12.53 12.29 11.07 12.83 12.55

Table 1. In addition to visual observation, Table 1 can be used to automate the
computation of the correct key bits.

The above results demonstrate that the proposed attacks can defeat both
binary and m-ary methods. The m-ary method was not implemented in hard-
ware due to memory limitations. But the proposed attack would defeat RSA
hardware with the m-ary method as well as RSA software implementations,
judging from the results of RSA hardware with the binary method. In addi-
tion to the logical approach, signal processing techniques such as phase-based
matching and filtering greatly reduced the noise disturbing the correlation check
between the target and reference waveforms. The same squaring operations can
then be identified by numerical (RMS and maximum error) evaluation as well
as visual observation. Although waveforms are not shown in the present study,
the right-to-left binary method under the same condition described above was
also defeated by the proposed attacks. Furthermore, the proposed attacks can be
adapted to sliding window methods by combining the attacks against the binary
and m-ary methods. These results clearly indicate that the proposed attacks
are better than the previous attacks, which can only be applied to some of the
implementations.
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5 Conclusions

In this paper, we proposed new power-analysis attacks using chosen-message
pairs against a variety of modular exponentiation algorithms. The message pairs
are selected to have an exponential relationship in order to identify the same
squaring operations which are performed at different time frames as determined
by the bit pattern of the secret exponent. The proposed attacks can be adapted
to all the standard exponentiation algorithms such as left-to-right/right-to-left
binary methods, m-ary methods, and sliding window methods. Notice that stan-
dard message padding techniques such as OAEP provide no protection against
our attacks: even though the chosen Y and Z ciphertexts are unlikely to produce
validly padded plaintexts, this fact will be discovered only after the modular
exponentiations will take place, and thus the attacker can recover the secret
exponent even when no plaintexts are provided by the decryption process.

The effectiveness of the proposed attacks was demonstrated by experiments
on RSA hardware/software implementations with the Montgomery multiplica-
tion algorithm. We also introduced signal processing techniques to reduce the
expected noise distortion in the waveform comparison process. The proposed at-
tacks derived the secret exponents from both binary methods and m-ary methods
independently of the implementation platform. The values of the message pair
can be selected arbitrarily. Therefore, the proposed attacks can also be applied to
CRT implementations with/without the Montgomery multiplication algorithm,
in which the relationship is controllable. In addition, dummy multiplication in-
serted as an SPA countermeasure for the left-to-right binary method can easily
be detected by the new backward estimation technique which compares a squar-
ing waveform following the true or dummy multiplication waveform with the
reference waveform.

The right-to-left binary method with the squaring-and-multiply-always
technique [17] and the blinding techniques [3] can still be used as effective coun-
termeasures against the proposed attacks. Note however that the blinding tech-
niques for the exponent and the message should be used simultaneously because
each one of them separately can be defeated by the proposed attacks. For exam-
ple, the mask updating technique in [3,14] is vulnerable to the proposed attacks
as suggested in [9]. With regard to m-ary methods, the randomized m-ary meth-
ods [18,19] would also work as countermeasures.

The proposed chosen-message attacks provide a flexible relationship between
two input messages and can generate waveform collisions in different time frames.
The phase-based waveform matching with filtering technique enables high-
accuracy alignment and collision detection between reference and target wave-
forms in any time frames independently of the algorithms, implementations, and
platform. As a whole, the proposed methods and techniques make it possible to
apply comparative power-analysis attacks to additional RSA implementations,
using a very small number of chosen messages. Further research is being con-
ducted to expand the applicable scope of the attacks even further (e.g., to ex-
ponentiation algorithms based on addition chains), and to overcome a variety of
possible countermeasures.
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Abstract. In this paper, two efficient multiple-differential methods to
detect collisions in the presence of strong noise are proposed - binary and
ternary voting. After collisions have been detected, the cryptographic key
can be recovered from these collisions using such recent cryptanalytic
techniques as linear [1] and algebraic [2] collision attacks. We refer to
this combination of the collision detection methods and cryptanalytic
techniques as multiple-differential collision attacks (MDCA).

When applied to AES, MDCA using binary voting without profiling
requires about 2.7 to 13.2 times less traces than the Hamming-weight
based CPA for the same implementation. MDCA on AES using ternary
voting with profiling and linear key recovery clearly outperforms CPA
by requiring only about 6 online measurements for the range of noise
amplitudes where CPA requires from 163 to 6912 measurements. These
attacks do not need the S-box to be known. Moreover, neither key nor
plaintexts have to be known to the attacker in the profiling stage.

Keywords: side-channel attacks, collision detection, multiple-differential
collision attacks, AES, DPA.

1 Introduction

Side-channel attacks have become mainstream since their first publication in [3].
Differential power analysis (DPA) [4] and correlation power analysis (CPA) [5],
a generalization of DPA, are probably the most wide-spread practical attacks
on numerous cryptographic embedded systems such as smart-card microcon-
trollers [6] and dedicated lightweight ASICs [7].

Collision attacks represent another class of side-channel attack techniques
being essentially based on the cryptanalytic properties of attacked cryptographic
algorithms. Collision attacks on block ciphers were proposed in [8] for DES. The
idea is due to Hans Dobbertin and was also discussed in the early work [9]. Since
then there has been quite a bit of research in this area: [10] improves the collision
attack on DES, [11] applies the technique to AES, [12] suggests a collision attack
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on an AES-based MAC construction, [13] combines collision attacks on AES with
differential cryptanalysis to overcome several masked rounds.

Recently such improvements as linear collision attacks [1] and algebraic col-
lision attacks [2] for AES have been proposed which require a very low number
of measurements for the key recovery procedure to succeed with a high proba-
bility and within a feasible time span. However, these attacks as well as those in
[11] and [12] are rather theoretical being substantially based on the assumption
that the implementation allows the attacker to reliably detect if two given S-box
instances process the same value.

The contribution of this paper is two-fold. On the theoretical side, two col-
lision detection techniques are proposed called binary and ternary voting. We
refer to the combination of the statistical collision detection methods and crypt-
analytic collision attacks as multiple-differential collision attacks (MDCA). On
the practical side, we apply MDCA to a hardware implementation of AES for a
wide range of noise amplitudes using advanced power consumption simulation.

MDCA works in the two scenarios: where profiling is either allowed (ternary
voting) or not allowed (ternary voting without profiling and binary voting).
Note that the notion of profiling for our collision detection techniques is different
from that for template attacks [14], [15]. While template attacks require detailed
knowledge of the implementation in the profiling stage, the only information
needed in the profiling stage of the collision detection methods is the time interval
when the S-boxes are executed.

MDCA based on the binary voting method for the given AES implementa-
tion needs about 2.7 to 13.2 times less traces than Hamming-weight based CPA
in the range of noise levels we studied. While MDCA based on ternary vot-
ing without profiling does not exhibit any advantages over CPA, the required
number of online measurements for ternary voting with profiling is considerably
lower than that for CPA for all noise amplitudes we investigated. For instance,
if ≤ 106 profiling measurements are allowed, MDCA based on ternary voting
with profiling and linear key recovery requires only 6 online measurements in
the noise amplitude range where the standard CPA would require from 163
to 6912 measurements. A further advantage of the proposed collision detection
techniques combined with the linear collision attacks is that they work with se-
cret S-boxes. Moreover, ternary voting with profiling also requires neither keys
nor inputs/outputs to be known in the profiling stage. However, as already men-
tioned, the attacker has to know when the S-boxes are executed within the
implementation.

The remainder of the paper is organized as follows. Section 2 discusses the at-
tack scenarios, introduces some notation and briefly mentions the linear collision
attacks. Section 3 presents the multiple-differential collision detection techniques
and theoretically investigates some of their properties. Section 4 characterizes
the underlying least-square based binary comparison test for an AES implemen-
tation, applies MDCA to this implementation and compares the results to CPA.
We conclude in Section 5.
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2 Preliminaries

2.1 Attack Flows

There are two basic attack scenarios we consider: collision attacks without pro-
filing and collision attacks with profiling. A collision attack without profiling
consists of an online stage and an offline stage, while a collision attack with
profiling additionally contains a profiling stage.

In the online stage, some random known 16-byte plaintexts Pi = {pi
j}16

j=1,
pi

j ∈ GF (28), are sent to the attacked device implementing AES, where they
are added with the first 16-byte subkey K = {kj}16

j=1, kj ∈ GF (28). Then each
of the 16 values ai

j = pi
j ⊕ kj , ai

j ∈ GF (28), is processed by the AES S-box.
The online traces Ti = {τ i

j}16
j=1, τ i

j = (τ i
j,1, . . . , τ

i
j,l) ∈ R

l, corresponding to these
S-box calculations are acquired by the measurement equipment (e.g. they can
contain such side-channel parameters as power consumption or electromagnetic
radiation).

In the optional profiling stage, the device is triggered to perform a number of
cryptographic operations with some unknown profiling inputs for some unknown
keys. The profiling traces are acquired by the measurement equipment. The
profiling stage takes place before the online stage and can be reused by several
attacks on the same implementation.

The offline stage recovers the key. This occurs in two steps. First, collisions
are detected in the online traces Ti by means of signal processing. The collision
detection with profiling additionally uses the profiling traces. Second, an AES
key candidate is obtained using the detected collisions and the corresponding
inputs Pi. Note that one or several plaintext-ciphertext pairs produced with the
attacked key may be needed to identify the correct key candidate in the offline
stage.

If averaging is applied, the attacker has to be able to send several unknown
equal inputs to the device and to fix some unknown key for these measurements
in the profiling stage. Additionally, he has to be able to send several copies of
the known random plaintexts to the implementation in the online stage.

The attack complexity is defined by three parameters. Cprofiling is the number
of inputs to AES for which measurements have to be performed in the profiling
stage (number of profiling measurements). Obviously, Cprofiling = 0 for colli-
sion attacks without profiling. Conline is the number of inputs to AES for which
measurements have to be performed in the online stage (number of online mea-
surements). Coffline is the computational complexity of the key recovery, that
is, the number of operations needed to solve the resulting systems of linear or
nonlinear equations and to identify the most probable solution.

2.2 Key Recovery from S-Box Collisions

AES-128 performs 160 S-box operations in the data path for each run, which are
different for different inputs, and 40 additional S-box computations in the key
schedule, which remain the same for a given key. If two of these S-box instances
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in one or two distinct runs process the same value, there is a generalized internal
collision. The power of the improved collision attacks [1] on AES origins from
the fact that the number of generalized collisions grows quadratically with the
linear increase of the number of unique inputs considered. So, even if the key
schedule is ignored, there are about 40.9 colliding S-boxes for just one input and
already about 555.2 collisions for 5 inputs.

When collisions have been detected, the AES key has to be recovered. In this
paper we use the linear collision attacks [1] for this purpose. A linear collision
in AES is a generalized collision within the first AES round. Given such a linear
collision, the attacker obtains a binomial linear equation over GF (28) of the form
kj1 ⊕ kj2 = pi1

j1
⊕ pi2

j2
for j1 �= j2.

Let γ be the number of different random inputs Pi to the algorithm for which
collisions have to be detected in order for the key to be recovered with probability
π within Coffline operations. In this paper, we apply the variant of linear collision
attacks with γ = 6, π = 0.854 and Coffline equal to 237.15 encryptions, see [1] for
details and [2] for some more advanced techniques.

3 Multiple-Differential Collision Detection

The goal of the collision detection is to decide if two S-box instances in AES
have had equal inputs based on side-channel traces.

For the direct binary comparison of S-box instances, the least-square based
test was used in the original collision attack on AES in [11], which is essentially
a computation of the Euclidean distance between two real-valued traces. Its
resolution can be increased by suppressing noise through averaging.

However, there are other collision detection methods substantially using the
simple binary comparison, two of which - binary voting and ternary voting - we
propose in this section. Both methods can be combined with averaging. Addi-
tionally, the ternary voting test enables performance gains through profiling.

3.1 Binary Comparison

Definition. Given two traces τ i1
j1

= (τ i1
j1,1, . . . , τ

i1
j1,l) ∈ R

l and τ i2
j2

= (τ i2
j2,1, . . . ,

τ i2
j2,l) ∈ R

l, respectively corresponding to S-box j1 for plaintext Pi1 and to S-box
j2 for plaintext Pi2 , the binary comparison test TBC can be defined as:

TBC(τ i1
j1

, τ i2
j2

) =
{

0 (no collision), if SBC(τ i1
j1

, τ i2
j2

) > Y BC

1 (collision), if SBC(τ i1
j1

, τ i2
j2

) ≤ Y BC ,

where Y BC is a decision threshold and

SBC(τ i1
j1

, τ i2
j2

) =
l∑

r=1

(τ i1
j1,r − τ i2

j2,r)
2,
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which can be seen as a correlation characteristic of two reduced templates. Let
TBC be characterized by the following type I and II error probabilities:

α1 = Pr{TBC(τ i1
j1

, τ i2
j2

) = 0|ai1
j1

= ai2
j2

},

α2 = Pr{TBC(τ i1
j1

, τ i2
j2

) = 1|ai1
j1

�= ai2
j2

}.

Note that α1 and α2 depend on the implementation and the value of Y BC .
Of course, there is a strong dependency on the noise as well. See Section 4 for
estimations of α2 with a given α1 for one implementation example and a wide
range of noise amplitudes.

Combination with Averaging. To increase the resolution of the collision
detection one can use averaging. That is, each plaintext is sent t times to the
device. Respectively, t measurements are performed for each plaintext. Then the
obtained traces for each distinct plaintext are averaged. If the noise is due to
normal distribution with the zero mean value and a standard deviation σ, then
the noise amplitude of the trace averaged t times will be σ/

√
t.

3.2 Binary Voting Test

In this subsection we propose a more efficient method to suppress noise which
is called binary voting. Like in averaging, traces for multiple copies of the same
plaintexts are first obtained. However, instead of averaging, the attacker tries to
detect collisions using binary comparison for each pair of the traces and applies
voting to filter for correct ones.

Definition. We have to reliably detect collisions for γ different plaintexts. Then
each of these plaintexts is sent MBV times to the device. So we have a group
τ̃ i
j = {τ i,m

j }MBV

m=1 , τ i,m
j ∈ R

l, of traces for each S-box instance and each plaintext.
That is, the direct application of binary voting requires Conline = γ · MBV

measurements.
The binary voting test is based on the following statistic which uses a binary

comparison test (for instance, the least-square based one as defined above):

SBV (τ̃ i1
j1

, τ̃ i2
j2

) =
MBV∑
m=1

TBC(τ i1,m
j1

, τ i2,m
j2

),

where the multiple traces for two S-box instances are pairwisely compared to
each other. The test TBV to decide if there has been a collision is then defined
as

TBV (τ̃ i1
j1

, τ̃ i2
j2

) =
{

0 (no collision), if SBV (τ̃ i1
j1

, τ̃ i2
j2

) < Y BV

1 (collision), if SBV (τ̃ i1
j1

, τ̃ i2
j2

) ≥ Y BV ,

where Y BV is a decision threshold. The idea is that the distribution of statistic
SBV will be different for ai1

j1
= ai2

j2
and for ai1

j1
�= ai2

j2
.
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Properties. As the individual binary comparisons are independent, the distri-
bution of SBV is due to the binomial law with MBV experiments and success
probability p. If ai1

j1
= ai2

j2
, the success probability is p = pe = 1−α1. If ai1

j1
�= ai2

j2
,

it is p = pne = α2. For sufficiently large group sizes MBV , the distribution of
SBV can be approximated by a normal distribution N (MBV p, MBV p(1 − p)).
That is, the problem of collision detection is reduced to the problem of distin-
guishing between two normal distributions in this case. Thus, the required value
of MBV can be obtained using

Proposition 1. Let α1 and α2 be type I and II error probabilities, respectively,
for TBC. Then the number of S-box traces in each group needed to distinguish
between ai1

j1
= ai2

j2
and ai1

j1
�= ai2

j2
using binary voting test TBV can be estimated

as

MBV ≈ (u1−β1

√
α1(1 − α1) + u1−β2

√
α2(1 − α2))2

(1 − α1 − α2)2
,

where:

– β1 and β2 are the required type I and II error probabilities for TBV ,
– u1−β1 and u1−β2 are quantiles of the standard normal distribution N (0, 1).

Combination with Averaging. The required value of MBV depends on α1
and α2 which in turn can be seen as functions of the noise amplitude σ. For this
reason we will write MBV (σ) where this dependency is important.

The binary voting technique can be combined with averaging. The traces are
first averaged t times. Then the statistic SBV is computed. That is, one deals
with MBV (σ/

√
t) instead of MBV (σ).

Since each plaintext Pi is sent t·MBV (σ/
√

t) times to the device, binary voting
with averaging requires Conline = γ ·t·MBV (σ/

√
t) measurements. Depending on

the concrete implementation and on the range of σ, the measurement complexity
can be reduced, if γ · t · MBV (σ/

√
t) < γ · MBV (σ) for some t. In the sequel, we

will refer to binary voting with averaging simply as binary voting, since binary
voting with averaging for t = 1 corresponds to the basic binary voting.

3.3 Ternary Voting Test

Ternary voting is another statistical technique we propose to reliably detect colli-
sions. It is based on indirect comparisons of traces, where two given S-box traces
(target traces, a subset of online traces) are compared through a pool of other ones
(reference traces, profiling traces if any and possibly a subset of online traces).

While the ternary voting test is less efficient than the binary voting one in
terms of the overall number of traces needed, it allows for profiling. That is,
the reference traces can be acquired in the profiling stage and shared by several
attacks, which can significantly amplify the performance of the online stage.

Definition. Let NTV be the number of S-box instances whose (reference) traces
{τm}NTV

m=1 , τm ∈ R
l, are available to the attacker for some random unknown
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inputs {am}NTV

m=1 , am ∈ GF (28). Let τ i1
j1

and τ i2
j2

be the traces for two further
S-box instances for which we have to decide if ai1

j1
= ai2

j2
. Then the ternary voting

test can be defined as follows:

TTV (τ i1
j1

, τ i2
j2

) =
{

0 (no collision), if STV (τ i1
j1

, τ i2
j2

) < Y TV

1 (collision), if STV (τ i1
j1

, τ i2
j2

) ≥ Y TV ,

where
STV (τ i1

j1
, τ i2

j2
) =

∑NT V

m=1 F (τ i1
j1

, τ i2
j2

, τm)

with

F (τ i1
j1

, τ i2
j2

, τm) = TBC(τ i1
j1

, τm) · TBC(τ i2
j2

, τm)

and Y TV is some decision threshold. The key idea of ternary voting is similar to
that of binary voting: The distributions of STV (τ i1

j1
, τ i2

j2
) for ai1

j1
= ai2

j2
and for

ai1
j1

�= ai2
j2

will be different. Typically, STV (τ i1
j1

, τ i2
j2

) will be higher for ai1
j1

= ai2
j2

than for ai1
j1

�= ai2
j2

. To decide if there has been a collision, the attacker needs to
statistically distinguish between these two cases.

Properties. To explore the behaviour of F , it is not sufficient to know the
type I and II error probabilities for the binary comparison test. Let TBC be
characterized by the simultaneous distribution of the test results depending on
the relations between ai1

j1
, ai2

j2
and am:

χ1 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

= ai2
j2

= am},

χ2 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

= ai2
j2

�= am},

χ3 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

�= ai2
j2

, ai1
j1

= am, ai2
j2

�= am},

χ4 = Pr{TBC(τ i1
j1

, τm) = 1, TBC(τ i2
j2

, τm) = 1|ai1
j1

�= ai2
j2

, am �= ai1
j1

, am �= ai2
j2

}.

Then the probabilities

pe = Pr{F (τ i1
j1

, τ i2
j2

, τm) = 1|ai1
j1

= ai2
j2

}

and

pne = Pr{F (τ i1
j1

, τ i2
j2

, τm) = 1|ai1
j1

�= ai2
j2

}
can be computed using

Proposition 2. If ai1

j1 , a
i2
j2

, am ∈ GF (2)8 are uniformly distributed and mutually
independent, then

pe = 1
28 χ1 + 28−1

28 χ2

and

pne = 2
28 χ3 + 28−2

28 χ4.
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Proof. If ai1
j1

= ai2
j2

, two cases are possible for F (τ i1
j1

, τ i2
j2

, τm) = 1:

– ai1
j1

= ai2
j2

= am which happens with probability of 1/28, and

– ai1
j1

= ai2
j2

�= am which happens with probability 28−1
28 .

If ai1
j1

�= ai2
j2

, there are three cases leading to F (τ i1
j1

, τ i2
j2

, τm) = 1:

– ai1
j1

= am, ai2
j2

�= am with probability 1/28,
– ai2

j2
= am, ai1

j1
�= am with probability 1/28, and

– ai1
j1

�= am, ai2
j2

�= am with probability (28 − 2)/28.

The claims of the proposition follow. �

For the sake of simplicity, we first study the properties of TTV under the assump-
tion that all applications of F to compute STV are mutually independent. Under
this assumption, STV (τ i1

j1
, τ i2

j2
) would have a binomial distribution with NTV be-

ing the number of experiments and success probability p = pe, if ai1
j1

= ai2
j2

, or
p = pne, if ai1

j1
�= ai2

j2
. Thus, for sufficiently large values of NTV , STV (τ i1

j1
, τ i2

j2
)

could be approximated by normal distribution N (NTV p, NTV p(1 − p)). Thus,
similarly to binary voting, the number NTV of S-box reference instances needed
to distinguish between ai1

j1
= ai2

j2
and ai1

j1
�= ai2

j2
could be estimated as

NTV ≈ (u1−β1

√
pe(1 − pe) + u1−β2

√
pne(1 − pne))2

(pe − pne)2
,

where β1 and β2 are the required type I and II error probabilities for TTV , u1−β1

and u1−β2 are quantiles of the standard normal distribution N (0, 1).
However, the applications of F are dependent and this result can be only used

to obtain a rough estimation of NTV .

Procedure, Complexity, Averaging. Now we can describe the basic pro-
cedure of ternary voting in the case that the target key is fixed in the device
and the plaintexts are random and known. This is what we call ternary voting
without profiling.

The number NTV of S-box reference instances as well as the number MTV

of different inputs for which reference traces have to be acquired depend on
the noise level σ. We will write NTV (σ) and MTV (σ), when this dependency is
crucial for understanding.

First, the attacker obtains traces for MTV (σ) random plaintexts. This yields
τm for NTV (σ) = 160 ·MTV (σ) different S-box instances for AES-128, if the key
schedule is not considered and all the 16·10 S-box traces within each AES run are
acquired at a time. Then, if MTV (σ) ≥ γ, no further measurements are needed.
Otherwise, the attacker acquires traces for further γ −MTV (σ) plaintexts. Note
that some of the reference traces can be interpreted as target traces (16 S-box
traces corresponding to the first round in each of some γ executions of AES).
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This yields the complexity of Conline = max(γ, MTV (σ)) measurements, where

MTV (σ) =
⌈

NTV (σ)
160

⌉
.

Like binary voting, ternary voting can be combined with averaging to achieve
better resolution. In this case each trace has to be averaged t times. Thus, the
complexity of ternary voting with averaging is Conline = t ·max(γ, MTV (σ/

√
t)).

In the sequel we refer to ternary voting both with and without averaging simply
as ternary voting.

Profiling. Now we are ready to describe what we refer to as ternary voting with
profiling. Unlike binary voting, the method of ternary voting allows for profiling.
In the profiling stage, reference traces are acquired only, for which the attacker
has to know neither the key used nor the plaintexts. Moreover, this also works if
keys are changed between blocks of t executions. The target traces are obtained
in the online phase and compared based on the pre-measured reference traces.

Thus, Cprofiling = t · MTV (σ/
√

(t)) measurements have to be performed in
the profiling stage, each measurement comprising all 10 rounds of AES-128.
Then only Conline = t · γ measurements are needed in the online stage, each
measurement comprising only the first round for the linear key recovery. For the
latter measurements we do have to know inputs. Moreover, they all have to be
performed with the key to be recovered.

3.4 Required Error Probabilities of Collision Detection

The measurement complexity of the binary and ternary voting methods depends
on the success probability to be achieved. Let us take q as a desirable success
probability of the whole attack and estimate the required type II error proba-
bilities β2 for binary and ternary voting. Recall that π is the success probability
of the cryptanalytic collision attack used to recover the key after the collisions
have been detected.

In the linear key recovery, there are 16γ S-box instances between which a

collision can occur. That is, the voting has to be performed w =
(

16γ
2

)
times.

Then β2 can computed as

β2 = 1 − (q/π)1/w.

For instance, if γ = 6 and q = 0.5, one obtains β2 ≈ 1.174 ·10−4. Additionally, β1
has to be low enough to enable the detection of a sufficient number of collisions.

4 MDCA and AES: A Case Study

The purpose of this section is to estimate the real-world efficiency of different
MDCA variants based on an AES implementation example and to compare
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the methods to the standard Hamming-weight based CPA for the same AES
implementation. In order to be able to perform this comparison for different
noise levels σ, we carefully simulated the deterministic power consumption in
Nanosim using dedicated power simulation libraries and added Gaussian noise
of different amplitudes to it. The main results of the section are summarized in
Table 1.

4.1 Implementation and Simulated Traces

The characteristics of TBC strongly depend on the signal-to-noise ratio of the
implementation. To perform the estimations for a variety of noise levels, a serial
VHDL implementation of the AES S-box has been performed (that is, only one
S-box is calculated at a time). The deterministic power consumption for all 28 in-
puts was simulated using Synopsys Nanosim with the Dolphin Integration power
consumption library SESAME-LP2 based on a 250nm technology by IHP [16].
The design was clocked at 10 MHz. The sampling rate was set to 10 Gsamples/s.

The S-box was implemented as combinatorial logic on the basis of an 8-bit
register. Each S-box calculation y = S(x) occurs in two clocks. In the first clock,
the input x is read from the register and the output y is computed. In the second
clock, the register is set to zero and the calculated output y is written to the
register.

The simulated deterministic power traces obtained are noise-free. That is,
there is neither electronic noise (power supply noise, clock generator noise, con-
ducted emissions, radiated emissions, etc.) nor algorithmic noise (since only the
relevant part of the circuit is considered) in these traces. To model noise we
added random values due to univariate normal distribution1 with the zero mean
value and a standard deviation σ whose value characterizes the noise amplitude.

Note also that the simulated signal was not subject to a low-pass filter as it
would have been the case for the real-world measurements of power consump-
tion due to the presence of capacitances within the chip as well as on the circuit
board where the power consumption measurements are performed. This would
have cut off the high-frequency contribution to the signal reducing the advan-
tage of high-resolution measurements. However, the effect of this circumstance
is rather limited for the measurements of the electromagnetic radiation. A major
limitation in this case is the bandwidth of the oscilloscope. Thus, we believe that
the simulated traces with added Gaussian noise can be used for an initial anal-
ysis of the efficiency of our collision detection techniques. The main advantage
of using the simulated power consumption is that one can add noise of different
amplitudes to model the behaviour of attack methods for different devices and
physical conditions.

To evaluate α2 for this implementation, we chose Y BC in TBC so that α1
becomes sufficiently low by shifting Y BC to the right. For this value of α1, the
1 Normal distribution is a sound noise model [17]. As a matter of fact, the noise is often

distributed due to the multivariate normal distribution [17], [18]. However, only a
few co-variances in the co-variance matrix of this multivariate normal distribution
significantly differ from zero [18] for many implementations.
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Fig. 1. Type II error probability α2 for TBC as a function σ

type II error probability α2 was estimated experimentally by executing TBC for
random equal and unequal inputs to the S-box. We performed that for several
noise amplitudes σ. The results can be found in Figure 1. Though this cannot
be seen as a complete characterization of TBC , the figure is meant to illustrate
the intuition behind the multiple-differential collision detection methods.

4.2 Reference Figures for CPA

We compared the efficiency of MDCA with binary and ternary voting to the
Hamming-weight based CPA [5]. The Hamming-weight power consumption model
is sound for the implementation in question, since the register is first set to zero
and then re-written with the target byte value. CPA was applied to the same sim-
ulated traces with the same noise amplitudes as MDCA. The number of measure-
ments needed by CPA is denoted by CCPA.

For our comparison, it was assumed that traces for all 16 S-boxes in the first
round are acquired within one measurement. This is very similar to MDCA based
on linear key recovery considered in this paper: The traces corresponding to the
16 S-box calculations in the first round are acquired at a time in the online stage
for binary voting and ternary voting with profiling.

The number of measurements needed for CPA can be potentially reduced if
guessing entropy is allowed in the offline stage of CPA. To treat this point, we
assumed that CPA is successful, if it returns a correct 8-bit key chunk with
probability 0.5. At the same time, it was assumed for all collision attacks that
the needed success probability of the complete attack is q = 0.5. That is, a
collision attack on AES is successful, iff it returns the correct 16-byte key with
probability 0.5.

Note that power consumption models are also important for collision attacks.
The right choice of a power consumption model allows the attacker to perform
binary comparison more efficiently. In this paper, the consideration was restricted
to the Euclidean distance of two vectors. However, other binary comparison
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tests can turn out to be more consistent with the power consumption of other
implementations.

4.3 Online and Profiling Complexity of MDCA

In this subsection, Conline and Cprofiling for MDCA based on binary voting and
ternary voting both with and without profiling are experimentally derived for the
given implementation. The estimations are performed for the linear key recovery
method with γ = 6.

Table 1. Conline against different values of σ for TBV , TTV without profiling, TTV

with profiling and CCPA

103σ 0.46 0.93 2.32 3.25 4.65 6.97 9.30 11.62 13.95

Conline, TBV 60 192 276 468 960 1290 1872 2976 4242
Conline, TTV w/o profiling 80 390 2605 5200 10640 23840 42320 66080 95200
Conline, TTV with profiling 6 6 6 6 6 18 30 60 120

CCPA, HW based CPA 163 349 1645 4192 6912 15676 26341 39348 56025

Binary Voting. Figure 2 and Table 1 give experimental values of Conline for
the binary voting test in a range of noise amplitudes. The values of t have been
chosen that minimize the resulting number of traces needed. If σ′ is the noise
amplitude to be attained by averaging and σ is the given noise level, then one has
to average about t = (σ/σ′)2 times. Thus, Conline ≈ γ σ2

σ′2 MBV (σ′). The results
demonstrate that binary voting is well-suited for our implementation providing
an advantage of factor 2.7 to 13.2 for a wide range of σ.

Ternary Voting without Profiling. Figure 3 and Table 1 give concrete values
of Conline in this case for a range of noise amplitudes. Values of t were chosen that
minimize Conline. The performance of the ternary voting test without profiling is
comparable to CPA. However, ternary voting without profiling does not exhibit
any advantages over CPA in terms of measurement complexity.

Ternary Voting with Profiling. For a given σ, the attacker can reduce t which
leads to a linear decrease of Conline and to a considerable growth of Cprofiling due
to the slope of MTV as a function of the noise amplitude (see Figure 3 for this
dependency). We assumed that ≤ 106 measurements in the profiling stage are
feasible. To obtain the lowest possible online complexity within this bound on
the profiling complexity, we chose t that minimizes Conline with Cprofiling ≤ 106

for each interesting value of σ. The resulting values of Conline and Cprofiling are
depicted in Figure 4.3. The values of Conline can be also found in Table 1. Note
that there is a wide spectrum of parameter choices: If there are more severe limits
on Cprofiling, then t and Conline increase. And the other way round: If the attack
scenario admits for higher values of Cprofiling, Conline can be further reduced.
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Fig. 2. Binary voting test against CPA: Conline (black line) and CCPA (grey line) as
functions of σ
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Fig. 3. Ternary voting test without profiling against CPA: MTV (σ) (on the left, black
line) and Conline (on the right, black line) as well as CCPA (both graphics, grey lines)
as functions of σ

The complexity estimations for ternary voting were performed under the as-
sumption that the attacker is able to acquire the reference traces for all S-boxes
in each of the 10 AES rounds at a time. If one deals with a short-memory os-
cilloscope, Cprofiling increases in a linear way with respect to the decrease of the
available memory volume. However, only measurements for the first round are
needed for the target traces, if the linear key recovery is used.
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Fig. 4. Ternary voting test with profiling: Conline (solid black line), Cprofiling ≤ 106

(dashed black line) and CCPA (solid grey line) as functions of σ

5 Conclusions and Outlooks

In this paper two statistical techniques - binary and ternary voting - allow-
ing to safely detect collisions even in the presence of considerable noise have
been proposed. An AES hardware implementation with its accurately simu-
lated power consumption has been taken as an example to demonstrate the
power of the methods. This also enables us to obtain a clear dependency of
the attack efficiency from the noise amplitude in a wide range of values and
to soundly compare the multiple-differential techniques with CPA for the same
implementation.

The binary voting method combined with linear key recovery is well applicable
to AES being 2.7 to 13.2 times more efficient than CPA in terms of measurement
complexity for our implementation in the explored range of noise amplitudes.
Ternary voting combined with linear key recovery and profiling needs only about
6 online measurements for the range of noise amplitudes where CPA requires
from 163 to 6912 measurements for the same implementation.

Techniques similar to the ones described in this work might turn out applicable
to other symmetric constructions such as stream ciphers or message authenti-
cation codes and asymmetric constructions such as digital signature schemes.
There can be also some potential in using MDCA-like methods to overcome
certain random masking schemes for block ciphers.
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Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{abogdanov,eisenbarth,arupp}@crypto.rub.de,
chris@Christopher-Wolf.de, cbw@hgi.rub.de

Abstract. In this paper ways to efficiently implement public-key
schemes based on Multivariate Quadratic polynomials (MQ-schemes
for short) are investigated. In particular, they are claimed to resist
quantum computer attacks. It is shown that such schemes can have
a much better time-area product than elliptic curve cryptosystems.
For instance, an optimised FPGA implementation of amended TTS
is estimated to be over 50 times more efficient with respect to this
parameter. Moreover, a general framework for implementing small-field
MQ-schemes in hardware is proposed which includes a systolic archi-
tecture performing Gaussian elimination over composite binary fields.

Keywords: MQ-cryptosystems, ECC, hardware implementation,
TA-product, UOV, Rainbow, amended TTS.

1 Introduction

Efficient implementations of public key schemes play a crucial role in numerous
real-world security applications: Some of them require messages to be signed in
real time (like in such safety-enhancing automotive applications as car-to-car
communication), others deal with thousands of signatures per second to be gen-
erated (e.g. high-performance security servers using so-called HSMs - Hardware
Security Modules). In this context, software implementations even on high-end
processors can often not provide the performance level needed, hardware imple-
mentations being thus the only option. In this paper we explore the approaches to
implement Multivariate Quadratic-based public-key systems in hardware meet-
ing the requirements of efficient high-performance applications. The security of
public key cryptosystems widely spread at the moment is based on the difficulty
of solving a small class of problems: the RSA scheme relies on the difficulty
of factoring large integers, while the hardness of computing discrete logarithms
provides the basis for ElGamal, Diffie-Hellmann scheme and elliptic curves cryp-
tography (ECC). Given that the security of all public key schemes used in prac-
tice relies on such a limited set of problems that are currently considered to be
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hard, research on new schemes based on other classes of problems is necessary as
such work will provide greater diversity and hence forces cryptanalysts to spend
additional effort concentrating on completely new types of problems. Moreover,
we make sure that not all “crypto-eggs” are in one basket. In this context, we
want to point out that important results on the potential weaknesses of exist-
ing public key schemes are emerging. In particular techniques for factorisation
and solving discrete logarithms improve continually. For example, polynomial
time quantum algorithms can be used to solve both problems. Therefore, the
existence of quantum computers in the range of a few thousands of qbits would
be a real-world threat to systems based on factoring or the discrete logarithm
problem. This emphasises the importance of research into new algorithms for
asymmetric cryptography.

One proposal for secure public key schemes is based on the problem of solving
Multivariate Quadratic equations (MQ-problem) over finite fields F, i.e. finding
a solution vector x ∈ F

n for a given system of m polynomial equations in n
variables each ⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

for given y1, . . . , ym ∈ F and unknown x1, . . . , xn ∈ F is difficult, namely NP-
complete. An overview over this field can be found in [14].

Roughly speaking, most work on public-key hardware architectures tries to
optimise either the speed of a single instance of an algorithm (e.g., high-speed
ECC or RSA implementations) or to build the smallest possible realization of
a scheme (e.g., lightweight ECC engine). A major goal in high-performance ap-
plications is, however, in addition to pure time efficiency, an optimised cost-
performance ratio. In the case of hardware implementations, which are often
the only solution in such scenarios, costs (measured in chip area and power con-
sumption) is roughly proportional to the number of logic elements (gates, FPGA
slices) needed. A major finding of this paper is that MQ-schemes have the better
time-area product than established public key schemes. This holds, interestingly,
also if compared to elliptic curve schemes, which have the reputation of being
particularly efficient.

The first public hardware implementation of a cryptosystem based on mul-
tivariate polynomials we are aware of is [17], where enTTS is realized. A more
recent result on the evaluation of hardware performance for Rainbow can be
found in [2].

1.1 Our Contribution

Our contribution is many-fold. First, a clear taxonomy of secure multivariate
systems and existing attacks is given. Second, we present a systolic architecture
implementing Gauss-Jordan elimination over GF(2k) which is based on the work
in [13]. The performance of this central operation is important for the overall
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efficiency of multivariate based signature systems. Then, a number of concrete
hardware architectures are presented having a low time-area product. Here we
address both rather conservative schemes such as UOV as well as more ag-
gressively designed proposals such as Rainbow or amended TTS (amTTS).
For instance, an optimised implementation of amTTS is estimated to have a
TA-product over 50 times lower than some of the most efficient ECC imple-
mentations. Moreover, we suggest a generic hardware architecture capable of
computing signatures for the wide class of multivariate polynomial systems based
on small finite fields. This generic hardware design allows us to achieve a time-
area product for UOV which is somewhat smaller than that for ECC, being
considerably smaller for the short-message variant of UOV.

2 Foundations of MQ-Systems

In this section, we introduce some properties and notations useful for the re-
mainder of this article. After briefly introducing MQ-systems, we explain our
choice of signature schemes and give a brief description of them.

2.1 Mathematical Background

Let F be a finite field with q := |F| elements and define Multivariate Quadratic
(MQ) polynomials pi of the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). We now define the polynomial-vector P := (p1, . . . , pm) which

signature x

x = (x1, . . . , xn)

�
private: S

x′

�
private: P′

y′

�
private: T

message y �

public:

(p1, . . . , pn)

Generation Verification

Fig. 1. Graphical Representation of the MQ-trapdoor (S, P ′, T )
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yields the public key of these Multivariate Quadratic systems. This public
vector is used for signature verification. Moreover, the private key (cf Fig.1)
consists of the triple (S, P ′, T ) where S ∈ Aff(Fn), T ∈ Aff(Fm) are affine trans-
formations and P ′ ∈ MQ(Fn, Fm) is a polynomial-vector P ′ := (p′1, . . . , p

′
m)

with m components; each component is in x′
1, . . . , x

′
n. Throughout this paper,

we will denote components of this private vector P ′ by a prime ′. The linear
transformations S and T can be represented in the form of invertible matri-
ces MS ∈ F

n×n, MT ∈ F
m×m, and vectors vS ∈ F

n, vT ∈ F
m i.e. we have

S(x) := MSx + vS and T (x) := MT x + vT , respectively. In contrast to the
public polynomial vector P ∈ MQ(Fn, Fm), our design goal is that the private
polynomial vector P ′ does allow an efficient computation of x′

1, . . . , x
′
n for given

y′
1, . . . , y

′
m. At least for secure MQ-schemes, this is not the case if the public

key P alone is given. The main difference between MQ-schemes lies in their
special construction of the central equations P ′ and consequently the trapdoor
they embed into a specific class of MQ-problems.

In this kind of schemes, the public key P is computed as function composition
of the affine transformations S : F

n → F
n, T : F

m → F
m and the central

equations P ′ : F
n → F

m, i.e. we have P = T ◦P ′ ◦S. To fix notation further, we
note that we have P , P ′ ∈ MQ(Fn, Fm), i.e. both are functions from the vector
space F

n to the vector space F
m. By construction, we have ∀x ∈ F

n : P(x) =
T (P ′(S(x))).

2.2 Signing

To sign for a given y ∈ F
m, we observe that we have to invert the computation of

y = P(x). Using the trapdoor-information (S, P ′, T ), cf Fig. 1, this is easy. First,
we observe that transformation T is a bijection. In particular, we can compute
y′ = M−1

T y. The same is true for given x′ ∈ F
n and S ∈ Aff(Fn). Using the

LU-decomposition of the matrices MS, MT , this computation takes time O(n2)
and O(m2), respectively. Hence, the difficulty lies in evaluating x′ = P ′−1(y′).
We will discuss strategies for different central systems P ′ in Sect. 2.4.

2.3 Verification

In contrast to signing, the verification step is the same for all MQ-schemes and
also rather cheap, computationally speaking: given a pair x ∈ F

n, y ∈ F
m, we

evaluate the polynomials

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and given αi, βi,j , γi,j,k ∈ F. Then, we verify that
pi = yi holds for all i ∈ {1, . . . , m}. Obviously, all operations can be efficiently
computed. The total number of operations takes time O(mn2).



Time-Area Optimized Public-Key Engines 49

2.4 Description of the Selected Systems

Based on [14] and some newer results, we have selected the following suitable
candidates for efficient implementation of signature schemes: enhanced TTS,
amended TTS, Unbalanced Oil and Vinegar and Rainbow. Systems of the big-
field classes HFE (Hidden Field Equations), MIA (Matsumoto Imai Scheme A)
and the mixed-field class �IC — �-Invertible Cycle [8] were excluded as results
from their software implementation show that they cannot be implemented as
efficiently as schemes from the small-field classes, i.e. enTTS, amTTS, UOV and
Rainbow. The proposed schemes and parameters are summarised in Table 1.

Table 1. Proposed Schemes and Parameters

q n m τ K Solver
Unbalanced Oil 256 30 10 0.003922 10 1 × K = 10

and Vinegar (UOV) 60 20 20 1 × K = 20
Rainbow 256 42 24 0.007828 12 2 × K = 12

enhanced TTS (v1) 256 28 20 0.000153 9 2 × K = 9
(v2) 0.007828 10 2 × K = 10

amended TTS 256 34 24 0.011718 4,10 1 × K = 4, 2 × K = 10

Unbalanced Oil and Vinegar (UOV)

p′i(x
′
1, . . . , x

′
n) :=

n−m∑
j=1

n∑
k=j

γ′
i,j,kx′

jx
′
k for i = 1 . . . v1

Unbalanced Oil and Vinegar Schemes were introduced in [10,11]. Here we have
γ ∈ F, i.e. the polynomials p are over the finite field F. In this context, the
variables x′

i for 1 ≤ i ≤ n − m are called the “vinegar” variables and x′
i for

n − m < i ≤ n the “oil” variables. We also write o := m for the number of
oil variables and v := n − m = n − o for the number of vinegar variables. To
invert UOV, we need to assign random values to the vinegar variables x′

1, . . . , x
′
v

and obtain a linear system in the oil variables x′
v+1, . . . , x

′
n. All in all, we need

to solve a m × m system and have hence K = m. The probability that we do
not obtain a solution for this system is τUOV = 1 −

∏m−1
i=0 qm−qi

qm2 as there are

qm2
matrices over the finite field F with q := |F| elements and

∏m−1
i=0 qm − qi

invertible ones [14].
Taking the currently known attacks into account, we derive the following

secure choice of parameters for a security level of 280:

– Small datagrams: m = 10, n = 30, τ ≈ 0.003922 and one K = 10 solver
– Hash values: m = 20, n = 60, τ ≈ 0.003922 and one K = 20 solver

The security has been evaluated using the formula O(qv−m−1m4) =
O(qn−2m−1m4). Note that the first version (i.e. m = 10) can only be used
with messages of less than 80 bits. However, such datagrams occur frequently
in applications with power or bandwidth restrictions, hence we have noted this
special possibility here.
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Rainbow. Rainbow is the name for a generalisation of UOV [7]. In particular,
we do not have one layer, but several layers. This way, we can reduce the number
of variables and hence obtain a faster scheme when dealing with hash values.
The general form of the Rainbow central map is given below.

p′i(x
′
1, . . . , x

′
n) :=

vl∑
j=1

vl+1∑
k=j

γ′
i,j,kx′

jx
′
k for i = vl . . . vl+1, 1 ≤ l ≤ L

We have the coefficients γ ∈ F, the layers L ∈ N and the vinegar splits v1 <
. . . < vL+1 ∈ N with n = vL+1. To invert Rainbow, we follow the strategy for
UOV — but now layer for layer, i.e. we pick random values for x1, . . . , xv1 , solve
the first layer with an (v2 − v1) × (v2 − v1)-solver for xv1+1, . . . , xv2 , insert the
values x1, . . . , xv2 into the second layer, solve second layer with an (v3 − v2) ×
(v3 − v2)-solver for xv2+1, . . . , xv3 until the last layer L. All in all, we need to
solve sequentially L times (vl − vl−1) × (vl − vl−1) systems for l = 2 . . . L + 1.
The probability that we do not obtain a solution for this system is τrainbow =

1 − ∏L
l=1

∏vl+1−vl
i=0 qvl+1−vl−qi

qvl+1−v2
l

using a similar argument as in Sec. 2.4.

Taking the latest attack from [3] into account, we obtain the parameters
L = 2, v1 = 18, v2 = 30, v3 = 42 for a security level of 280, i.e. a two layer
scheme 18 initial vinegar variables and 12 equations in the first layer and 12
new vinegar variables and 12 equations in the second layer. Hence, we need two
K = 12 solvers and obtain τ ≈ 0.007828.

Amended TTS (amTTS). The central polynomials P ′ ∈ MQ(Fn, Fm) for
m = 24, n = 34 in amTTS [6] are defined as given below:

p′i := x′
i + α′

ix
′
σ(i) +

8∑
j=1

γ′
i,jx

′
j+1x

′
11+(i+j mod 10) , for i = 10 . . .19;

p′i := x′
i+α′

ix
′
σ(i)+ γ′

0,ix
′
1x

′
i +

8∑
j=1

γ′
i,jx

′
15+(i+j+4 mod 8)j+1x

′
π(i,j), for i=20 . . .23;

p′i := x′
i + γ′

0,ix
′
0x

′
i +

9∑
j=1

γ′
i,jx

′
24+(i+j+6 mod 10)j+1x

′
π(i,j) , for i = 24 . . .33.

We have α, γ ∈ F and σ, π permutations, i.e. all polynomials are over the finite
field F. We see that they are similar to the equations of Rainbow (Sec. 2.4) — but
this time with sparse polynomials. Unfortunately, there are no more conditions
given on σ, π in [6] — we have hence picked one suitable permutation for our
implementation.

To invert amTTS, we follow the sames ideas as for Rainbow — except with
the difference that we have to invert twice a 10 × 10 system (i = 10 . . . 19 and
24 . . .33) and once a 4 × 4 system, i.e. we have K = 10 and K = 4. Due to the
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Fig. 2. Signature Core Building Block: Systolic Array LSE Solver (Structure)

structure of the equations, the probability for not getting a solution here is the
same as for a 3-Layer Rainbow scheme with v1 = 10, v2 = 20, v3 = 24, v4 = 34
variables, i.e. τamTTS = τRainbow(10, 20, 24, 34) ≈ 0.011718.

Enhanced TTS (enTTS). The overall idea of enTTS is similar to amTTS,
m = 20, n = 28. For a detailed description of enTTS see [16,15]. According to
[6], enhanced TTS is broken, hence we do not advocate its use nor did we give a
detailed description in the main part of this article, However, it was implemented
in [17], so we have included it here to allow the reader a comparison between
the previous implementation and ours.

3 Building Blocks for MQ-Signature Cores

Considering Section 2 we see that in order to generate a signature using an
MQ-signature scheme we need the following common operations:

– computing affine transformations (i.e. vector addition and matrix-vector
multiplication),

– (partially) evaluating multivariate polynomials over GF(2k),
– solving linear systems of equations (LSEs) over GF(2k).

In this section we describe the main computational building blocks for realizing
these operations. Using these generic building blocks we can compose a signature
core for any of the presented MQ-schemes (cf Section 4).
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3.1 A Systolic Array LSE Solver for GF(2k)

In 1989, Hochet et al. [9] proposed a systolic architecture for Gaussian elimi-
nation over GF(p). They considered an architecture of simple processors, used
as systolic cells that are connected in a triangular network. They distinguish
two different types of cells, main array cells and the boundary cells of the main
diagonal.

Wang and Lin followed this approach and proposed an architecture in 1993
[13] for computing inverses over GF(2k). They provided two methods to effi-
ciently implement the Gauss-Jordan algorithm over GF(2) in hardware. Their
first approach was the classical systolic array approach similar to the one of
Hochet et al.. It features a critical path that is independent of the size of the
array. A full solution of an m × m LSE is generated after 4m cycles and every
m cycles thereafter. The solution is computed in a serial fashion.

The other approach, which we call a systolic network, allows signals to propa-
gate through the whole architecture in a single clock cycle. This allows the initial
latency to be reduced to 2m clock cycles for the first result. Of course the critical
path now depends of the size of the whole array, slowing the design down for
huge systems of equations. Systolic arrays can be derived from systolic networks
by putting delay elements (registers) into the signal paths between the cells.

We followed the approach presented in [13] to build an LSE solver architec-
ture over GF(2k). The biggest advantage of systolic architectures with regard
to our application is the low amount of cells compared to other architectures
like SMITH [4]. For solving a m × m LSE, a systolic array consisting of only m
boundary cells and m(m + 1)/2 main cells is required.

An overview of the architecture is given in Figure 2. The boundary cells
shown in Figure 3 mainly comprise one inverter that is needed for pivoting
the corresponding line. Furthermore, a single 1-bit register is needed to store
whether a pivot was found. The main cells shown in Figure 4 comprise of one
GF(2k) register, a multiplier and an adder over GF(2k). Furthermore, a few
multiplexers are needed. If the row is not initialised yet (Tin = 0), the entering
data is multiplied with the inverse of the pivot (Ein) and stored in the cell. If
the pivot was zero, the element is simply stored and passed to the next row in
the next clock cycle. If the row is initialised (Tin = 1) the data element ai,j+1
of the entering line is reduced with the stored data element and passed to the
following row. Hence, one can say that the k-th row of the array performs the
k-th iteration of the Gauss-Jordan algorithm.

The inverters of the boundary cells contribute most of the delay time tdelay

of the systolic network. Instead of introducing a full systolic array, it is already
almost as helpful to simply add delay elements only between the rows. This
seems to be a good trade-off between delay time and the number of registers
used. This approach we call systolic lines.

As described earlier, the LSEs we generate are not always solvable. We can
easily detect an unsolvable LSE by checking the state of the boundary cells after
3m clock cycles (m clock cycles for a systolic network, respectively). If one of
them is not set, the system is not solvable and a new LSE needs to be generated.
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Fig. 3. Pivot Cell of the Systolic Array LSE Solver

Table 2. Implementation results for different types of systolic arrays and different sizes
of LSEs over GF(28) (tdelay in ns, FMax in MHz)

Size on FPGA Speed Size on ASIC
Engine Slices LUTs FFs tdelay FMax GE (estimated)

Systolic arrays on a Spartan-3 device (XC3S1500, 300 MHz)
Systolic Array (10x10) 2,533 4,477 1,305 12.5 80 38,407
Systolic Array (12x12) 3,502 6,160 1,868 12.65 79 53,254
Systolic Array (20x20) 8,811 15,127 5,101 11.983 83 133,957

Alternative systolic arrays on a Spartan-3
Systolic Network (10x10) 2,251 4,379 461 118.473 8.4 30,272
Systolic Lines (12x12) 3,205 6,171 1,279 13.153 75 42,013

Systolic arrays on a Virtex-V device (XC5VLX50-3, 550 MHz)
Systolic Array (10x10) 1314 3498 1305 4.808 207 36,136
Systolic Lines (12x12) 1,534 5,175 1,272 9.512 105 47,853
Systolic Array (20x20) 4552 12292 5110 4.783 209 129,344

However, as shown in Table 1, this happens very rarely. Hence, the impact on the
performance of the implementation is negligible. Table 2 shows implementation
results of the different types of systolic arrays for different sizes of LSEs (over
GF(28)) on different FPGAs.

3.2 Matrix-Vector Multiplier and Polynomial Evaluator

For performing matrix-vector multiplication, we use the building block depicted
in Figure 5. In the following we call this block a t-MVM. As you can see a t-MVM
consists of t multipliers, a tree of adders of depth about log2(t) to compute the
sum of all products ai · bi, and an extra adder to recursively add up previously
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Fig. 5. Signature Core Building Block: Combined Matrix-Vector-Multiplier and
Polynomial-Evaluator

computed intermediate values that are stored in a register. Using the RST-signal
we can initially set the register content to zero.

To compute the matrix-vector product

A · b =

⎡⎢⎣a1,1 . . . a1,u

...
...

av,1 . . . av,u

⎤⎥⎦ ·

⎡⎢⎣b1

...
bu

⎤⎥⎦
using a t-MVM, where t is chosen in a way that it divides1 u, we proceed row
by row as follows: We set the register content to zero by using RST. Then we

1 Note that in the case that t does not divide u we can nevertheless use a t-MVM to
compute the matrix-vector product by setting superfluous input signals to zero.
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feed the first t elements of the first row of A into the t-MVM, i.e. we set a1 =
a1,1, . . . , at = a1,t, as well as the first t elements of the vector b. After the
register content is set to

∑t
i=1 a1,ibi, we feed the next t elements of the row and

the next t elements of the vector into the t-MVM. This leads to a register content
corresponding to

∑2t
i=1 a1,ibi. We go on in this way until the last t elements of

the row and the vector are processed and the register content equals
∑u

i=1 a1,ibi.
Thus, at this point the data signal c corresponds to the first component of the
matrix-vector product. Proceeding in a analogous manner yields the remaining
components of the desired vector. Note that the u

t parts of the vector b are re-
used in a periodic manner as input to the t-MVM. In Section 3.4 we describe a
building block, called word rotator, providing these parts in the required order
to the t-MVM without re-loading them each time and hence avoid a waste of
resources.

Therefore, using a t-MVM (and an additional vector adder) it is clear how
to implement the affine transformations S : F

n → F
n and T : F

m → F
m which

are important ingredients of an MQ-scheme. Note that the parameter t has a
significant influence on the performance of an implementation of such a scheme
and is chosen differently for our implementations (as can be seen in Section 4).

Besides realizing the required affine transformations, a t-MVM can be re-
used to implement (partial) polynomial evaluation. It is quite obvious that
evaluating the polynomials p′i (belonging to the central map P ′ of a MQ-
scheme, cf Section 2) with the vinegar variables involves matrix-vector mul-
tiplications as the main operations. For instance, consider a fixed polynomial
p′i(x

′
1, . . . , x

′
n) =

∑n−m
j=1

∑n
k=j γ′

i,j,kx′
jx

′
k from the central map of UOV that

we evaluate with random values b1, . . . , bn−m ∈ F for the vinegar variables
x′

1, . . . , x
′
n−m. Here we like to compute the coefficients βi,0, βi,n−m+1, . . . , βi,n

of the linear polynomial

p′i(b1, . . . , bn−m, x′
n−m+1, . . . , x

′
n) = βi,0 +

n∑
j=n−m+1

βi,jx
′
j .

We immediately obtain the coefficients of the non-constant part of this linear
polynomial, i.e. βi,n−m+1, . . . , βi,n, by computing the following matrix-vector
product: ⎡⎢⎣γ′

i,1,n−m+1 . . . γ′
i,n−m,n−m+1

...
...

γ′
i,1,n . . . γ′

i,n−m,n

⎤⎥⎦ ·

⎡⎢⎣ b1

...
bn−m

⎤⎥⎦ =

⎡⎢⎣βi,n−m+1

...
βi,n

⎤⎥⎦ (1)

Also the main step for computing βi,0 can be written as a matrix-vector product:

⎡⎢⎢⎢⎢⎢⎣
γ′

i,1,1 0 0 . . . 0
γ′

i,1,2 γ′
i,2,2 0 . . . 0

...
...

. . .
...

γ′
i,1,n−m−1 γ′

i,2,n−m−1 . . . γ′
i,n−m−1,n−m−1 0

γ′
i,1,n−m γ′

i,2,n−m . . . γ′
i,n−m,n−m

⎤⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎣ b1

...
bn−m

⎤⎥⎦ =

⎡⎢⎣ αi,1

...
αi,n−m

⎤⎥⎦ (2)
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Fig. 6. Signature Core Building Block: Equation Register

Of course, we can exploit the fact that the above matrix is a lower triangular
matrix and we actually do not have to perform a full matrix-vector multiplica-
tion. This must simply be taken into account when implementing the control
logic of the signature core. In order to obtain βi,0 from (αi,1 . . . αi,n−m)T we
have to perform the following additional computation:

βi,0 = αi,1b1 + . . . + αi,n−mbn−m .

This final step is performed by another unit called equation register which is
presented in the next section.

3.3 Equation Register

The Equation Register building block is shown in Figure 6. A w-ER essentially
consists of w + 1 register blocks each storing k bits as well as one adder and one
multiplier. It is used to temporarily store parts of an linear equation until this
equation has been completely generated and can be transferred to the systolic
array solver.

For instance, in the case of UOV we consider linear equations of the form

p′i(b1, . . . , bn−m, x′
n−m+1, . . . , x

′
n) = y′

i ⇔
n−m∑
j=1

αi,jbj − y′
i +

n∑
j=n−m+1

βi,jx
′
j = 0

where we used the notation from Section 3.2. To compute and store the con-
stant part

∑n−m
j=1 αi,jbj−y′

i of this equation the left-hand part of an m-ER is used
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Fig. 7. Signature Core Building Block: Word Rotator

(see Figure 6): The respective register is initially set to y′
i. Then the values αi,j

are computed one after another using a t-MVM building block and fed into
the multiplier of the ER. The corresponding values bj are provided by a t-WR
building block which is presented in the next section. Using the adder, y′

i and the
products can be added up iteratively. The coefficients βi,j of the linear equation
are also computed consecutively by the t-MVM and fed into the shift-register
that is shown on the right-hand side of Figure 6.

3.4 Word Rotator

A word cyclic shift register will in the following be referred to as word rotator
(WR). A (t, r)-WR, depicted in Figure 7, consists of r register blocks storing
the u

t parts of the vector b involved in the matrix vector products considered in
Section 3.2. Each of these r register blocks stores t elements from GF(2k), hence
each register block consists of t k-bit registers. The main task of a (t, r)-WR is
to provide the correct parts of the vector b to the t-MVM at all times. The r
register blocks can be serially loaded using the input bus x. After loading, the r
register blocks are rotated at each clock cycle. The cycle length of the rotation
can be modified using the multiplexers by providing appropriate control signals.
This is especially helpful for the partial polynomial evaluation where due to
the triangularity of the matrix in Equation (2), numerous operations can be
saved. Here, the cycle length is

⌈
j
t

⌉
, where j is the index of the processed row.

The possibility to adjust the cycle length is also necessary in the case r > u
t

frequently appearing if we use the same (t, r)-WR, i.e., fixed parameters t and
r, to implement the affine transformation T , the polynomial evaluations, and the
affine transformation S. Additionally, the WR provides bj to the ER building
block which is needed by the ER at the end of each rotation cycle. Since this bj

value always occurs in the last register block of a cycle, the selector component
(right-hand side of Figure 7) can simply load it and provide it to the ER.
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4 Performance Estimations of Small-Field MQ-Schemes
in Hardware

We implemented the most crucial building blocks of the architecture as described
in Section 3 (systolic structures, word rotators, matrix-vector multipliers of dif-
ferent sizes). In this section, the estimations of the hardware performance for
the whole architecture are performed based on those implementation results.
The power of the approach and the efficiency of MQ-schemes in hardware is
demonstrated at the example of UOV, Rainbow, enTTS and amTTS as speci-
fied in Section 2.

Side-Note: The volume of data that needs to be imported to the hardware
engine for MQ-schemes may seem too high to be realistic in some applications.
However, the contents of the matrices and the polynomial coefficients (i.e. the
private key) does not necessarily have to be imported from the outside world
or from a large on-board memory. Instead, they can be generated online in
the engine using a cryptographically strong pseudo-random number generator,
requiring only a small, cryptographically strong secret, i.e. some random bits.

4.1 UOV

We treat two parameter sets for UOV as shown in Table 3: n = 60, n = 20
(long-message UOV) as well as n = 30, m = 10 (short-message UOV). In UOV
signature generation, there are three basic operations: linearising polynomials,
solving the resulting equation system, and an affine transform to obtain the
signature. The most time-consuming operation of UOV is the partial evaluation
of the polynomials p′i, since their coefficients are nearly random. However, as
already mentioned in the previous section, for some polynomials approximately
one half of the coefficients for the polynomials are zero. This somewhat simplifies
the task of linearization.

For the linearization of polynomials in the long-message UOV, 40 random
bytes are generated to invert the central mapping first. To do this, we use a
20-MVM, a (20,3)-WR, and a 20-ER. For each polynomial one needs about 100
clock cycles (40 clocks to calculate the linear terms and another 60 ones to
compute the constants, see (1) and (2)) and obtains a linear equation with 20
variables. As there are 20 polynomials, this yields about 2000 clock cycles to
perform this step.

After this, the 20 × 20 linear system over GF(28) is solved using a 20 × 20
systolic array. The signature is then the result of this operation which is returned
after about 4×20=80 clock cycles. Then, the 20-byte solution is concatenated
with the randomly generated 40 bytes and the result is passed through the
affine transformation, whose major part is a matrix-vector multiplication with
a 60×60-byte matrix. To perform this operations, we re-use the 20-MVM and
a (20,3)-WR. This requires about 180 cycles of 20-MVM and 20 bytes of the
matrix entries to be input in each cycle.

For the short-message UOV, one has a very similar structure. More precisely,
one needs a 10-MVM, a (10,3)-WR, a 10-ER and a 10×10 systolic array. The
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design requires approximately 500 cycles for the partial evaluation of the poly-
nomials, about 40 cycles to solve the resulting 10×10 LSE over GF(28) as well
as another 90 cycles for the final affine map.

Note that the critical path of the Gaussian elimination engine is much longer
than that for the remaining building blocks. So this block represents the per-
formance bottleneck in terms of frequency and hardware complexity. Thus, the
maximal frequency for both UOV variants will be bounded by about 200 MHz for
XC5VLX50-3 and about 80 MHz for XC3S1500. See Table 3 for our estimations.

4.2 Rainbow

In the version of Rainbow we consider, the message length is 24 byte. That is,
a 24-byte matrix-vector multiplication has to be performed first. One can take
a 6-MVM and a (6,7)-WR which require about 96 clock cycles to perform the
computation. Then the first 18 variables of x′

i are randomly fixed and 12 first
polynomials are partially evaluated. This requires about 864 clock cycles. The
results are stored in a 12-ER. After this, the 12×12 system of linear equations
is solved. This requires a 12×12 systolic array over GF(28) which outputs the
solution after 48 clock cycles. Then the last 12 polynomials are linearised using
the same matrix-vector multiplier and word rotator based on the 18 random
values previously chosen and the 12-byte solution. This needs about 1800 clock
cycles. This is followed by another run of the 12×12 systolic array with the same
execution time of about 48 clock cycles. At the end, roughly 294 more cycles are
spent performing the final affine transform on the 42-byte vector. See Table 3
for some concrete performance figures in this case.

4.3 enTTS and amTTS

Like in Rainbow, for enTTS two vector-matrix multiplications are needed at
the beginning and at the end of the operation with 20- and 28-byte vectors
each. We take a 10-MVM and a (10,3)-WR for this. The operations require
40 and 84 clock cycles, respectively. One 9-ER is required. Two 10×10 linear
systems over GF(28) need to be solved, requiring about 40 clock cycles each. The
operation of calculating the linearization of the polynomials can be significantly
optimised compared to the generic UOV or Rainbow (in terms of time) which
can drastically reduce the time-area product. This behaviour is due to the special
selection of polynomials, where only a small proportion of coefficients is non-zero.

After choosing 7 variables randomly, 10 linear equations have to be generated.
For each of these equations, one has to perform only a few multiplications in
GF(28) which can be done in parallel. This requires about 10 clock cycles. After
this, another variable is fixed and a further set of 10 polynomials is partially
evaluated. This requires about 10 further cycles.

In amTTS, which is quite similar to enTTS, two affine maps with 24- and
34-byte vectors are performed with a 12-MVM and a (12,3)-WR yielding 48
and 102 clock cycles, respectively. Two 10×10 and one 4×4 linear systems have
to be solved requiring for a 10×10 systolic array (twice 40 and once 16 clock
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Table 3. Comparison of hardware implementations for ECC and our performance es-
timations for MQ-schemes based on the implementations of the major building blocks
(F=frequency, T=Time, L=luts, S=slices, FF=flip-flops, A=area)

Implementation F, MHz T, μs L/S/FF A,kGE L×T

ECC over GF(2163), [1], NIST, XC2V200 100 41 8,300/-/- - 71.3
ECC over GF(2163), [12], NIST, XCV200E-7 48 68.9 25,763/-/- - 372.3
UOV n = 60, m = 20, XC5VLX50-3 209 11 15,497/4,188/4,999 166.6 35.7
UOV n = 60, m = 20, XC3S1500 83 27.7 21,167/9,203/6,828 227.5 122.8
UOV n = 30, m = 10, XC5VLX50-3 207 3.1 5,276/1,265/1,487 56.7 3.4
UOV n = 30, m = 10, XC3S1500 80 8 8,601/4,072/2,916 92.4 14.4
Rainbow n = 42, m = 24, XC5VLX50-3 105 30.3 5,929/1,681/1,869 63.7 37.6
Rainbow n = 42, m = 24, XC3S1500 79 39.1 7,114/1,968/2,377 76.4 58.2

enTTS n = 24, m = 20, [17], CMOS 0.25 μm 80# 291 - 22 -
enTTS n = 24, m = 20, XC5VLX50-3 207 1.1 4,341/1,284/1,537 44.2 1.0
enTTS n = 24, m = 20, XC3S1500 80 2.8 5,423/1,248/1,986 55.9 3.2
amTTS n = 34, m = 24, XC5VLX50-3 207 1.5 4,471/1,412/1,678 45.7 1.4
amTTS n = 34, m = 24, XC3S1500 80 3.9 6,034/2,920/2,395 61.6 4.9

# For comparison purposes we assume that the clock frequency for the design is 80
MHz.

cycles). Moreover, a 10-ER is needed. The three steps of the partial evaluation
of polynomials requires roughly 25 clock cycles in this case. See Table 3 for our
estimations on enTTS and amTTS.

5 Comparison and Conclusions

Our implementation results (as well as the estimations for the optimisations in
case of enTTS and amTTS) are compared to the scalar multiplication in the
group of points of elliptic curves with field bitlengths in the rage of 160 bit
(corresponding to the security level of 280) over GF(2k), see Table 3. A good
survey on hardware implementations for ECC can be found in [5].

Even the most conservative design, i.e. long-message UOV, can outperform
some of the most efficient ECC implementations in terms of TA-product on some
hardware platforms. More hardware-friendly designs such as the short-message
UOV or Rainbow provide a considerable advantage over ECC. The more aggres-
sively designed enTTS and amTTS allow for extremely efficient implementations
having a more than 70 or 50 times lower TA-product, respectively. Though the
metric we use is not optimal, the results indicate that MQ-schemes perform
better than elliptic curves in hardware with respect to the TA-product and are
hence an interesting option in cost- or size-sensitive areas.
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Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{gueneysu,cpaar}@crypto.rub.de

Abstract. Elliptic Curve Cryptosystems (ECC) have gained increasing
acceptance in practice due to their significantly smaller bit size of the
operands compared to other public-key cryptosystems. Since their com-
putational complexity is often lower than in the case of RSA or discrete
logarithm schemes, ECC are often chosen for high performance public-
key applications. However, despite a wealth of research regarding high-
speed software and high-speed FPGA implementation of ECC since the
mid 1990s, providing truly high-performance ECC on readily available
(i.e., non-ASIC) platforms remains an open challenge. This holds espe-
cially for ECC over prime fields, which are often preferred over binary
fields due to standards in Europe and the US.

This work presents a new architecture for an FPGA-based ultra high
performance ECC implementation over prime fields. Our architecture
makes intensive use of the DSP blocks in modern FPGAs, which are
embedded arithmetic units actually intended to accelerate digital signal
processing algorithms. We describe a novel architecture and algorithms
for performing ECC arithmetic and describe the actual implementation
of standard compliant ECC based on the NIST primes P-224 and P-256.
We show that ECC on Xilinx’s Virtex-4 SX55 FPGA can be performed
at a rate of more than 37,000 point multiplications per second. Our archi-
tecture outperforms all single-chip hardware implementations over prime
fields in the open literature by a wide margin.

Keywords: Elliptic Curve Cryptosystems, FPGA, High-Performance.

1 Introduction

With the explosive growth of Internet-based applications like ecommerce, peer-
to-peer networks and distributed gaming as well as embedded ones — ranging
from mobile over set-top boxes to automotive — the demand for security in such
systems has also grown dramatically. In these applications, asymmetric cryptog-
raphy is used to achieve a large variety of security goals. However, asymmetric
cryptographic algorithms are extremely arithmetic intensive since their security
assumptions rely on computational problems which are considered to be hard in
combination with parameters of significant bit sizes.

Neal Koblitz and Victor Miller proposed independently in 1985 [20,17] the use
of Elliptic Curve Cryptography providing similar security compared to classical
cryptosystems but using smaller keys. This benefit allows for greater efficiency
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when using ECC (160–256 bit) compared to RSA or discrete logarithm schemes
over finite fields (1024–4096 bit) while providing an equivalent level of secu-
rity [18]. Due to this, ECC has become the most promising candidate for many
new applications, especially in the embedded domain, which is also reflected by
several standards by IEEE, ANSI and SECG [15,1,5,6].

In addition to many new “lightweight” applications (e.g., digital signature
on RFID-like devices), there are also many new applications which call for high-
performance asymmetric primitives. Even though very fast public-key algorithms
can be provided for PC and server applications by accelerator cards equipped
with ASICs, providing very high speed solutions in embedded devices is still a
major challenge. Somewhat surprisingly, there appears to be extremely few, if
any, commercially available ASICs or chip sets that provide high speed ECC
and which are readily available for integration in general embedded systems. A
potential alternative is provided by Field Programmable Gate Arrays (FPGA).
FPGAs have evolved over the last decade to a powerful alternative for classical
ASIC circuits. In addition, FPGAs provide the advantage of dynamic and flexi-
ble circuit reconfigurability allowing for rapid prototyping at little development
costs. However, despite a wealth of research regarding high-speed FPGA (and
high-speed software) implementation of ECC since the mid 1990s, providing truly
high-performance ECC (i.e., to reach less than 100μs per point multiplication)
on readily available platforms remains an open challenge. This holds especially
for ECC over prime fields, which are often preferred over binary fields due to
standards in Europe and the US, and a somewhat clearer patent situation.

In this work, we propose a novel hardware architecture based on reconfig-
urable FPGAs supporting ECC cryptography over prime fields GF (p) offering
the highest single-chip performance reported in literature up to now. Usually,
known ECC implementations for reconfigurable logic implement the computa-
tionally expensive low-level arithmetic in configurable logic elements, allowing
for greatest flexibility but offering only moderate performance. Some implemen-
tations have attempted to address this problem by using dedicated arithmetic
hardware in the reconfigurable device for specific parts of the computations, like
built-in 18x18 multipliers. But other components of the circuitry for field addi-
tion, subtraction and inversion have been still implemented in the FPGA’s fabric
which usually leads to a significant decrease in performance.

The central idea of this contribution is to relocate the arithmetic intensive
operations of ECC over prime fields entirely in dedicated hardcore units on
the FPGA actually reserved for use in Digital Signal Processing (DSP) filter
applications. These DSP accelerating functions are built-in components in the
static logic of modern FPGA devices capable to perform integer multiplication,
addition and subtraction as well as a multiply-accumulate operation.

2 Previous Work

We briefly summarize previously published results of relevance to this contribu-
tion. There is a wealth of publication addressing ECC hardware architectures,
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and a good overview can be found in [8]. In the case of high speed architectures
for ECC, most implementation primarily address elliptic curves over binary fields
GF (2m) since the arithmetic is more hardware-friendly [22,10]. Our work, how-
ever, focuses on the prime field GF (p). First implementations for ECC over
prime fields GF (p) have been proposed by [23,24] demonstrating ECC proces-
sors built completely in reconfigurable logic. The contribution by [19] proposes
a high-speed ECC crypto core for arbitrary moduli with up to 256 bit length
designed on a large number of built-in multiplier blocks of FPGA devices pro-
viding a significant speedup for modular multiplications. However, other field
operations have been implemented in the FPGA fabric, resulting in a very large
design (15,755 slices and 256 multiplier blocks) on a large Xilinx XC2VP125 de-
vice. The architecture presented in [7] was designed to achieve a better trade-off
between performance and resource consumption. According to the contribution,
an area consumption of only 1,854 slices and a maximum clock speed of 40 MHz
can be achieved on a Xilinx Virtex-2 XC2V2000 FPGA for a parameter bit
length of 160 bit.

Our approach to implementing an FPGA-based ECC engines was to shift all
field operations into the integrated DSP building blocks available on modern
FPGAs. We show that this approach leads to an extremely high throughput.
Furthermore, our strategy frees most configurable logic elements on the FPGA
for other applications and requires less power compared to a conventional design.
To the best of our knowledge, this architecture offers the fastest performance for
ECC computations over prime fields with up to 256 bit security in reconfigurable
logic.

3 Mathematical Background

In the following, we will briefly introduce to the mathematical background rel-
evant for this work. We will start with a short review of the Elliptic Curve
Cryptosystems (ECC). Please note that only ECC over prime fields GF (p) will
be subject of this work since binary extensions fields GF (2m) require binary
arithmetic which is not (yet) natively supported by DSP blocks.

3.1 Elliptic Curve Cryptography

Let p be a prime with p > 3 and Fp = GF (p) the Galois Field over p. Given the
Weierstrass equation of an elliptic curve

E : y2 = x3 + ax + b,

with a, b ∈ GF (p) and 4a3 + 27b2 �= 0, points Pi ∈ E , we can compute tuples
(x, y) also considered as points on this elliptic curve E . Based on a group of
points defined over this curve, ECC arithmetic defines the addition R = P + Q
of two points P , Q using the tangent-and-chord rule as the primary group op-
eration. This group operation distinguishes the case for P = Q (point doubling)
and P �= Q (point addition). Furthermore, formulas for these operations vary
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for affine and projective coordinate representations. Since affine coordinates re-
quire the availability of fast modular inversion, we will focus on projective point
representation to avoid the implementation of a costly inversion circuit. Given
two points P1, P2 with Pi = (Xi, Yi, Zi) and P1 �= P2, the sum P3 = P1 + P2 is
defined by

A = Y2Z1 − Y1Z2 B = A2Z1Z2 − C3 − 2C2X1Z2 C = X2Z1 − X1Z2

X3 = BC Y3 = A(C2X1Z2 − B) − C3Y1Z2 Z3 = C3Z1Z2, (1)

where A, B, C are auxiliary variables and P3 = (X3, Y3, Z3) is the resulting point
in projective coordinates. Similarly, for P1 = P2 the point doubling P3 = 2P1 is
defined by

A = aZ2 + 3X2 B = Y Z C = XY B D = A2 − 8C

X3 = 2BD Y3 = A(4C − D) − 8B2Y 2 Z3 = 8B3. (2)

Most ECC-based cryptosystems rely on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) and thus employ the technique of point multiplication k ·P as
cryptographic primitive, i.e., a k times repeated point addition of a base point P .
Precisely, the ECDLP is the fundamental cryptographic problem used in proto-
cols and crypto schemes like the Elliptic Curve Diffie-Hellman key exchange [9],
the ElGamal encryption scheme [12] and the Elliptic Curve Digital Signature
Algorithm (ECDSA) [1].

3.2 Standardized General Mersenne Primes

The arithmetic for ECC point multiplication is based on modular computa-
tions over a prime field GF (p). These computations always include a subse-
quent step to reduce the result to the domain of the underlying field. Since
the reduction is very costly for general primes due to the demand for a multi-
precision division, special primes have been proposed by Solinas [26] which have
been finally standardized in [21]. These primes provide efficient reduction algo-
rithms based on a sequence of multi-precision addition and subtractions only
and eliminate the need for the costly division. Special primes P-l with bitlengths
l = {192, 224, 256, 384, 521} are part of the standard. But we believe that the
primes P-224 and P-256 are the most relevant bit sizes for future implementa-
tions of the next decades.

According to Algorithm 1 the modular reduction for P-224 can be performed
with two 224-bit subtractions and additions. However, these four consecutive
operations can lead to a potential over- and underflow in step 1. With Z =
z1 + z2 + z3 − z4 − z5, we can determine the bounds −2p < Z < 3p reducing the
number of final correction steps to two additions or subtractions to compute the
correctly bounded c mod p224.

Algorithm 2 presents the modular reduction for P-256 requiring two doublings,
four 256-bit subtractions and four 256-bit additions. Based on the computation
Z = z1 + 2z2 + 2z3 + z4 + z5 − z6 − z7 − z8 − z9, the range of the result to be
corrected is −4p < Z < 5p.
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Algorithm 1. NIST Reduction with P-224 = 2224 − 296 + 1
Input: Double-sized integer c = (c13, . . . , c2, c1, c0) in base 232 and 0 ≥ c ≥ P-2242

Output: Single-sized integer c mod P-224.
1: Concatenate ci to following 224-bit integers zj :

z1 = (c6, c5, c4, c3, c2, c1, c0), z2 = (c10, c9, c8, c7, 0, 0, 0),

z3 = (0, c13, c12, c11, 0, 0, 0), z4 = (0, 0, 0, 0, c13, c12, c11),

z5 = (c13, c12, c11, c10, c9, c8, c7)

2: Compute c = (z1 + z2 + z3 − z4 − z5 mod P-224)

Algorithm 2. NIST Reduction with P-256 = 2256 − 2224 + 2192 + 296 − 1
Input: Double-sized integer c = (c15, . . . , c2, c1, c0) in base 232 and 0 ≥ c ≥ P-2562

Output: Single-sized integer c mod P-256.
1: Concatenate ci to following 256-bit integers zj :

z1 = (c7, c6, c5, c4, c3, c2, c1, c0), z2 = (c15, c14, c13, c12, c11, 0, 0, 0),

z3 = (0, c15, c14, c13, c12, 0, 0, 0), z4 = (c15, c14, 0, 0, 0, c10, c9, c8),

z5 = (c8, c13, c15, c14, c13, c11, c10, c9), z6 = (c10, c8, 0, 0, 0, c13, c12, c11),

z7 = (c11, c9, 0, 0, c15, c14, c13, c12), z8 = (c12, 0, c10, c9, c8, c15, c14, c13),

z9 = (c13, 0, c11, c10, c9, 0, c15, c14)

2: Compute c = (z1 + 2z2 + 2z3 + z4 + z5 − z6 − z7 − z8 − z9 mod P-256)

4 An Efficient ECC Architecture Using DSP Cores

In this section we demonstrate how to implement ECC over NIST primes P-224
and P-256 using available DSP blocks of Xilinx Virtex-4 FPGAs.

4.1 DSP-Accelerator Blocks in FPGAs

Modern FPGA devices like Xilinx Virtex-4 and Virtex-5 as well as Altera Stratix
FPGAs have been equipped with dedicated arithmetic hardcore extensions to
accelerate, in particular, digital signal processing applications. These function
blocks (DSP blocks) can be used to build a more efficient implementation in
terms of performance and reduce at the same time the demand for logical el-
ements. In general, DSP blocks of FPGAs can be programmed to perform ba-
sic arithmetic functions, especially, multiplication, addition and subtraction of
(un)signed integers. A common DSP component comprises an lM -bit signed inte-
ger multiplier coupled with an lA-bit signed adder, where lA > lM holds. For en-
abling maximum performance, the multiplier and adder block can be augmented
with pipeline registers to reduce signal propagation delays between components.
Using different data paths, DSP blocks can operate on external inputs A, B, C
as well as on feedback values from accumulation or even results Pj±1 from a
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neighboring DSP block. Figure 1 shows the generic DSP-block used in recent
Xilinx FPGA devices [29].

4.2 ECC Engine Design Criteria

When using DSP blocks to develop a high-speed ECC design, there are several
criteria which should be met to exploit their full performance. Note that the
following aspects have been designed to target the requirements of Xilinx Virtex-
4 FPGAs:

1. Build DSP cascades: Neighboring DSP blocks can be cascaded to widen or
extent their atomic operand width (e.g., from 18 bit to 256 bit).

2. Use DSP routing paths: DSPs have been provided with inner routing paths
connecting two adjacent blocks. It is advantageous in terms of performance
to use these paths as frequently as possible instead of using FPGA’s general
switching matrix for connecting logic blocks.

3. Consider DSP columns: Within a Xilinx FPGA, DSPs are aligned in columns,
i.e., routing paths between DSPs within the same column are efficient while
a switch in columns can lead to degraded performance. Hence, DSP cascades
should not exceed the column width (typically 32/48/64 DSPs per column).

4. Use DSP pipeline registers: DSP blocks feature pipeline stages which should
be used to achieve the maximum clock frequency supported by the device
(up to 500MHz).

5. Use different clock domains: Optimally, DSP blocks can be operated at max-
imum device frequency. This is not necessarily true for the remainder of the
design so that separate clock domains should be introduced (e.g. by halving
the clock frequency for control signals) to address the critical paths in each
domain individually.
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4.3 Arithmetic Units

According to the EC arithmetic introduced in Section 3.1, an ECC engine over
GF (p) based on projective coordinates requires functionality for modular ad-
dition, subtraction and multiplication. Since modular addition and subtraction
is very similar, both operation are combined. In the following description we
will assume a Virtex-4 FPGA as reference device and corresponding DSP block
arithmetic with word sizes lA = 32 and lM = 16 for unsigned addition and
multiplication, respectively. Note that native support by the DSP blocks on a
Virtex-4 device is available for up to 48-bit signed addition and 18-bit signed
multiplication.

Modular Addition/Subtraction. Let A, B ∈ GF (P ) be two multi-precision
operands with lengths |A|, |B| ≤ l and l = �log2 P � + 1. Modular addition
C = A+B mod P and subtraction C = A−B mod P can be efficiently computed
according to Algorithm 3:

Algorithm 3. Modular addition and subtraction
Input: A, B, P with 0 ≤ A,B < P ;

Operation flag f ∈ {0, 1} denotes a subtraction when f = 1 and addition otherwise
Output: C = A ± B mod P
1: (CIN0, S0) = A + (−1)fB;
2: (CIN1, S1) = S0 + (−1)1−fP ;
3: Return S|f−Cf |;

For using DSP blocks, we need to divide the l-bits operands into multiple
words each having a maximum size of lA bit due to the limited width of the DSP
input port. Thus, all inputs A, B and P to the DSP blocks can be represented
in the form X =

∑nA−1
i=0 xi · 2i·lA , where nA = �l/lA� denotes the number of

words of an operand. According to Algorithm 3, we employ two cascaded DSP
blocks, one for computing s(0,i) = ai ± (bi + CIN0) and a second for s(1,i) =
s(0,i)∓(pi+CIN1). The resulting values s(0,i) and s(1,i) each of size |s(j,i)| ≤ lA+1
are temporarily stored and recombined to S0 and S1 using shift registers (SR).
Finally, a 2-to-1 l-bit output multiplexer selects the appropriate value C = Si.
Figure 2 presents a schematic overview of a combined modular addition and
subtraction based on two DSP blocks. Note that DSP blocks on Virtex-4 FPGAs
provide a dedicated carry input cIN but no carry output cOUT. Particularly, this
fact requires extra logic to compensate for duplicate carry propagation to the
second DSP which is due to the fixed cascaded routing path between the DSP
blocks. In this architecture, each carry is considered twice, namely in s0,i+1 and
s1,i what needs to be corrected. This special carry treatment requires a wait
cycle to be introduced so that one lA-bit word can be processed each two clock
cycles. However, this is no restriction for our architecture since we design for
parallel addition and multiplication so that the (shorter) runtime of an addition
is completely hidden in the duration of a concurrent multiplication operation.
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Modular Multiplication. The most straightforward multiplication algorithm
to implement the multiplication with subsequent NIST prime reduction (cf. Sec-
tion 3.2) is the schoolbook multiplication method with a time complexity of
O(n2) for n-bit inputs. Other methods, like the Karatsuba algorithm [16], trade
multiplications for additions using a divide-and-conquer approach. Due to the
higher number of additions, this latter strategy is only preferable in case that
the complexity costs of an an addition is significantly below that of a multipli-
cation [28]. But even when neglecting any further control overhead introduced
by the Karatsuba method, this does not hold for Virtex-4 devices since mul-
tiplication is comparably cheap within the DSP blocks. Let A, B ∈ GF (P )
be two multi-precision integers with bit length l ≤ �log2 P � + 1. According
to the limited input size lM of DSP blocks, we split now the values A, B in
nM = �l/lM� words represented as X =

∑nM−1
i=0 xi · 2ilM . Schoolbook mul-

tiplication computes C = A · B based on accumulation of (nM )2 products
C =

∑2nM

i=0 2i·nM
∑i

j=0 ajbi−j providing a result C of size |C| ≤ 2nM . For par-
allel execution on nM DSP units, we compacted the order of inner product
computations as shown in Figure 3. All nM DSP blocks operate in a loadable
Multiply-and-Accumulate mode (MACC) so that intermediate results remain in
the corresponding DSP block until an inner product si =

∑i
j=0 ajbi−j is fully

computed. Note that si returned from the nM DSP blocks are not aligned and
can vary in size up to |si| ≤ 2lM + log2(nM ) = lACC = 36 bits. Thus, all si

need to be converted to non-redundant representation to finally form the final
product of words ci with maximum size 2lM each. Hence, we feed all values
into a subsequent accumulator to combine each si with the corresponding bits
of si−1 and si+1. Considering the special input constraints, timing conventions
and carry transitions of DSP blocks, we developed Algorithm 4 to address the
accumulation of inner products based on two DSP blocks performing lACC -bit
additions.

Figure 4 gives a schematic overview of the multiplication circuit returning the
full-size product C. This result has to be reduced using the fast NIST prime
reduction scheme discussed in the next section.
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Algorithm 4. Accumulation of partial product ci

Input: Partial products si with bitsize |si| ≤ lACC for i = 0 . . . 2nM − 1 and lACC =
2lM + log2(nM )

Output: Product C = (c2nM , . . . , c0) with bitsize |C| ≤ 2l
1: s(−1) → 0; c(−1) → 0
2: for i = 0 to 2nM − 2 by 2 do
3: di → ADD(si−1[lACC − 1 . . . lM ], si[lACC . . . 0])
4: ci → ADD(di[lACC . . . lM ], (si+1[lM . . . 0]|ci−1[3lM . . . 2lM ]))
5: end for
6: return c = (c2nM −1, . . . , c0)

Modular Reduction. At this point we will discuss the subsequent modular re-
duction of the 2nM -bit multiplication result C using the NIST reduction scheme.
All fast NIST reduction algorithms rely on a reduction step (1) defined as a se-
ries multi-precision additions and subtractions followed by a correction step (2)
to achieve a final value in the interval [0, . . . , P − 1] (cf. Algorithms 1 and 2). To
implement (1), we decided to use one DSP-block for each individual addition or
subtraction, e.g., for the P-256 reduction we reserved a cascade of 8 DSP blocks.
Each DSP performs one addition or subtraction and stores the result in a register
whose output is taken as input to the neighboring block (data pipeline).

For the correction step (2), we need to determine in advance the possible
overflow or underflow of the result returned by (1) to avoid wait or idle cycles
in the pipeline. Hence, we introduced a Look-Ahead Logic (LAL) consisting of a
separate DSP block which exclusively computes the expected overflow or under-
flow. Then, the output of the LAL is used to select a corresponding reduction
value which are stored as multiple {0, . . . , 5P} in a ROM table. The ROM values
are added or subtracted to the result of (1) by a sequence of two DSP blocks
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ensuring that the final result is always in {0, . . . , P − 1}. Figure 5 depicts the
general structure of the reduction circuit which is applicable for both primes
P-224 and P-256.

4.4 ECC Core Architecture

With the basic field operations for l−bit computations at hand supporting NIST
primes P-224 and P-256, we have combined a modular multiplier and a modular
subtraction/addition component with dual-port RAM modules (BRAM) and
a state machine to build an ECC core. We have implemented an asymmetric
datapath supporting two different operand lengths: the first operand provides
full l-bit of data whereas the second operand is limited to 32-bit words so that
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several words need to be transferred serially to generate the full l-bit input. This
approach allows for direct memory accesses of our serial-to-parallel multiplier
architecture. Note further that we introduced different clock domains for the
core arithmetic based on the DSP blocks and the state machines for upper layers
(running at half clock frequency only). An overview of the entire ECC core is
shown in Figure 6. We implemented ECC group operations based on projective
Chudnowsky coordinates1 since the implementation should support to compute
a point multiplication k · P as well as a corresponding linear combination k ·
P + r · Q based on a fixed base point P ∈ E , k, r ∈ {1, . . . , ord(P) − 1} and Q ∈
〈P〉. Both operations can be considered as basic ECC primitives, e.g., used for
ECDSA signature generation and verification [1]. The computation of k ·P +r ·Q
can make use of Shamir’s trick to efficiently compute several point products
simultaneously [12]. For this first implementation of the point multiplication
and the sake of simplicity, we used a standard double-and-add (binary method)
algorithm [14], but more efficient windowing methods [2] can also be implemented
without significantly increasing the resource consumption.
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Fig. 6. Schematic overview of a single ECC core

4.5 ECC Core Parallism

Due the intensive use of DSP blocks to implement the core functionality of ECC,
the resulting implementation requires only few reconfigurable logic elements on
the FPGA. This allows for efficient multiple-core implementations on a single
FPGA improving the overall system throughput by a linear factor n dependent
on the number of cores. Note that most other high-performance implementations
occupy the full FPGA due to their immense resource consumption so that these
cannot easily be instantiated several times.
1 ECC operations based on mixed affine-Jacobian coordinates are more efficient but

more complex in hardware when considering precomputed points in Jacobian co-
ordinates required for computing k · P + r · Q as required for ECDSA signature
verification.
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Based on our synthesis results, the limiting factor of our architecture is the
number of available DSP blocks of a specific FPGA device (cf. Section 5).

5 Implementation

The proposed architecture has been synthesized and implemented for the small-
est available Xilinx Virtex-4 device (XC4VFX12-12SF363) and the correspond-
ing results are presented in Subsection 5.1. This FPGA type offers 5,472 slices
(12,288 4-input LUTs and flip flops) of reconfigurable logic, 32 DSP blocks
and can be operated at a maximum clock frequency of 500MHz. Furthermore,
to demonstrate how many ECC computations can be performed using ECC
core parallelism, we take a second device, the large Xilinx Virtex-4 XC4VSX55-
12FF1148 providing the maximum number of 512 DSP blocks and 24,576 slices
(49,152 4-input LUTs and flip flops) as a reference for a multi-core architecture.

5.1 Implementation Results

Based on the Post-Place and Route (PAR) results using Xilinx ISE 9.1 we can
present the following performance and area details for ECC cores for primes
P-224 and P-256 on the small XC4VFX12 device as shown in Table 1. Note that
up to now the implementation for P-224 is not yet fully verified in functionality
or optimized. The core for P-256, however, is already available for use in real-
world products.

Table 1. Requirements and clock frequency of a single ECC core on a Virtex-4 FX 12
after PAR

Aspect ECC Core P-224 ECC Core P-256

Slices occupied 1,580 (29%) 1,715 (31%)
4-input LUTs 1,825 2,589
Flip flops 1,892 2,028
DSP blocks 26 32
BRAMs 11 11
Frequency/Max. delay 487 MHz/2.050 ns 490 MHz/2.040 ns

5.2 Throughput of a Single ECC Core

Given an ECC core with a separate adder/subtracter and multiplier unit, we can
perform a field multiplication and field addition simultaneously. By optimizing
the execution order of the basic field operations, it is possible to perform all
additions/subtraction required for the ECC group operation in parallel to a
multiplication. Based on the runtimes of a single field multiplication, we can
determine the number of required clock cycles for the operations k ·P and k ·P +
r · Q using the implemented Double-and-Add algorithm. Moreover, we also give
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Table 2. Performance of ECC operations based on a single ECC core using projective
Chudnowsky coordinates on a Virtex-4 XC4VFX12 (Figures denoted with an asterisk
are estimates)

Aspect ECC Core P-224 ECC Core P-256

Cycles per MUL in GF (p) 58 70
Cycles per ADD/SUB in GF (p) 16 18

Cycles per ECC Addition (Chudnovsky) 812 980
Cycles per ECC Doubling (Chudnovsky) 580 700

Cycles k · P (Double&Add) 219,878 303,450
Cycles k · P (Window) 178,000* 243,000*
Cycles k · P + r · Q (Double&Add) 265,959 366,905
Cycles k · P + r · Q (Window) 194,000* 264,000*

Time and OP/s for k · P (Double&Add) 452 μs/2214 620 μs/1614
Time and OP/s for k · P (Window) 365 μs*/2740* 495 μs*/2020*
Time and OP/s for k · P + r · Q (Double&Add) 546 μs/1831 749 μs/1335
Time and OP/s for k · P + r · Q (Window) 398 μs*/2510* 540 μs*/1850*

estimates concerning their performance when using a window-based method [2]
based on a window size w = 4.

Note that the specified timing considers signal propagation after complete
PAR excluding the timing constraints from I/O pins since no underlying data
communication layer was implemented. Hence, when being combined with an
I/O protocol of a real-world application, the clock frequency will be slightly
lower than specified in Table 1 and 3.

5.3 Multi-core Architecture

Since a single ECC core has obviously moderate resource requirements, it is
possible to place multiple instances of the core on a larger FPGA. On a single
XC4VSX55 device, we can implement, depending on the underlying prime field,
between 16–18 ECC cores running in parallel (cf. Table 3). Due the small amount
of LUTs and flip flops required for a single core, the number of available DSP
blocks (and routing resources) on the FPGA is here the limiting factor.

5.4 Comparison

Based on our architecture, we can estimate a throughput of more than 37,000
point multiplications on the standardized elliptic curve P-224 per second which
exceeds the throughput of all single-chip hardware implementation known to the
authors by far. A detailed comparison with other implementations is presented
in Table 4.
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Table 3. PAR-Results for a multi-core architecture on a Virtex-4 XC4VSX55 device
for ECC over prime fields P-224 and P-256 (Figures denoted with an asterisk are
estimates)

Aspect ECC P-224 ECC P-256

Number of Cores 18 16
Slices occupied 24,452 (99%) 24,574 (99%)
4-input LUTs 32,688 34,896
Flip flops 34,166 32,430
DSP blocks 468 512
BRAMs 198 176
Frequency/Max. delay 372 MHz/2.685 ns 375 MHz/2.665 ns

OP/s k · P (Double&Add) 30,438 19,760
OP/s k · P (Window) 37,700* 24,700*
OP/s k · P + r · Q (Double&Add) 25,164 16,352
OP/s k · P + r · Q (Window) 34,500* 22,700*

At this point we like to point out that the field of highly efficient prime
field arithmetic is believed to be predominated by implementations on general
purpose microprocessors rather than on FPGAs. Hence, we will also compare
our hardware implementation against the performance of software solutions on
recent microprocessors. Since most performance figures for software implemen-
tations are given in cycles rather than absolute times, we assumed for comparing
throughputs that, on a modern microprocessor, repeated computations can be
performed without interruption simultaneously on all available cores with no
further cycles spent, e.g., on scheduling or other administrative tasks. Note that
this is indeed a very optimistic assumption possibly overrating the performance
of software implementations with respect to actual applications.

For example, a point multiplication using the highly efficient software imple-
mentation by Dan Bernstein based on floating point arithmetic for ECC over
P-224 requires 839.000 cycles on an (outdated) Intel Pentium 4 [3] at 1.4GHz.
According to our assumption for cycle count interpretation, this correlates to
1670 point multiplication per second.

Despite the good performance figures on this platform, we prefer to take more
recent results, e.g., obtained from ECRYPT’s eBATS project. According to the
report from March 2007 [11], an Intel Core2 Duo running at 2.13GHz is able
to generate 1868 and 1494 ECDSA signatures based on the OpenSSL imple-
mentation for P-224 and P-256, respectively. Taking latest Intel Core2 Quad
microprocessors into account, these performance figures might even double. We
also compare our work to the very fast software implementation by [13] using an
Intel Core2 system at 2.66GHz. However, in this contribution the special Mont-
gomery and non-standard curve over F2255−19 is used instead of a standardized
NIST prime. Despite of that, for the design based on this curve the authors
report the impressive throughput of 6700 point multiplications per second.
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Table 4. Selected high-performance implementations of public-key cryptosystems

Scheme Device Implementation Logic Clock Time

This work XC4VFX12-12 GF(p), NIST-224 1580 LS/26 DSP 487 MHz 365 μs
XC4VFX12-12 GF(p), NIST-256 1715 LS/32 DSP 490 MHz 495 μs
XC4VSX55-12 GF(p), NIST-224 24452 LS/468 DSP 372 MHz 26.5 μs
XC4VSX55-12 GF(p), NIST-256 24574 LS/512 DSP 375 MHz 40.5 μs

ECC [23] XCV1000E GF(p), NIST-192 5708 LS 40 MHz 3 ms
ECC [19] XC2VP125-7 GF(p), 256-bit 15755 LS/256 MUL 39.5 MHz 3.84 ms
ECC [24] 0.13 μm CMOS GF(p), 160-bit 117500 GE 137.7 MHz 1.21 ms

ECC [3] Intel Pentium4 GF(p), NIST-224 32 bit μP 1.4 GHz 599 μs
ECC [11] Intel Core2 Duo GF(p), NIST-256 64 bit μP 2.13 GHz 669a μs
ECC [13] Intel Core2 Duo GF(2255 − 19) 64 bit μP 2.66 GHz 145 μs

RSA[4] XC40250XV 1024-bit 6826 CLB 45.2 MHz 3.1 ms
RSA[27] XC4VFX12-10 1024-bit (DSP) 3937 LS/17 DSP 400 MHz 1.71 ms
RSA[25] 0.5 μm CMOS 1024-bit 28,000 GE 64 MHz 46 ms

a Note that this figure reflects a full ECDSA signature generation rather than a point
multiplication.

For a fair comparison with software solutions it should be considered that a
single Virtex-4 SX 55 costs about US$ 1,1702. Recent microprocessors like the
Intel Core2 Duo, however, are available at only about a quarter of that price.
With this in mind, we might not be able to beat all software implementation in
terms of the cost-performance ratio, but we still like to point out that our FPGA-
based design - as the fastest reported hardware implementation so far - definitely
closes the performance gap between software and hardware implementations for
ECC over prime fields. Furthermore, we like to emphasize again that all software
related performance figures are based on very optimistic assumptions.

6 Conclusion

We presented a novel ECC implementation for fields over NIST primes P-224
and P-256. Due to the exhaustive utilization of DSP blocks, which are con-
tained as hardcores in modern FPGA devices, we are able to perform the critical
components computing low-level integer arithmetic operations nearly at maxi-
mum device frequency. Furthermore, considering a multi-core architecture on a
Virtex-4 XC4VSX55 FPGA, we can achieve a throughput of more than 24,000
and 37,000 point multiplications per second for P-256 and P-224, respectively,
what significantly exceeds the performance of all other hardware implementation
known to the authors and comes close to the cost-performance ratio provided
by the fastest available software implementations in the open literature.

2 Market price for a single device in May 2008.
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Abstract. Modern Graphics Processing Units (GPU) have reached a
dimension with respect to performance and gate count exceeding conven-
tional Central Processing Units (CPU) by far. Many modern computer
systems include – beside a CPU – such a powerful GPU which runs idle
most of the time and might be used as cheap and instantly available
co-processor for general purpose applications.

In this contribution, we focus on the efficient realisation of the com-
putationally expensive operations in asymmetric cryptosystems on such
off-the-shelf GPUs. More precisely, we present improved and novel imple-
mentations employing GPUs as accelerator for RSA and DSA cryptosys-
tems as well as for Elliptic Curve Cryptography (ECC). Using a recent
Nvidia 8800GTS graphics card, we are able to compute 813 modular ex-
ponentiations per second for RSA or DSA-based systems with 1024 bit
integers. Moreover, our design for ECC over the prime field P-224 even
achieves the throughput of 1412 point multiplications per second.

Keywords: Asymmetric Cryptosystems, Graphics Processing Unit,
RSA, DSA, ECC.

1 Introduction

For the last twenty years graphics hardware manufacturers have focused on pro-
ducing fast Graphics Processing Units (GPUs), specifically for the gaming com-
munity. This has more recently led to devices which outperform general purpose
Central Processing Units (CPUs) for specific applications, particularly when
comparing the MIPS (million instructions per second) benchmarks. Hence, a re-
search community has been established to use the immense power of GPUs for
general purpose computations (GPGPU). In the last two years, prior limitations
of the graphics application programming interfaces (API) have been removed by
GPU manufacturers by introducing unified processing units in graphics cards.
They support a general purpose instruction set by a native driver interface and
framework.

In the field of asymmetric cryptography, the security of all practical cryptosys-
tems rely on hard computational problems strongly dependant on the choice of
parameters. But with rising parameter sizes (often in the range of 1024–4096
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bits), however, computations become more and more challenging for the under-
lying processor. For modern hardware, the computation of a single cryptographic
operation is not critical, however in a many-to-one communication scenario, like
a central server in a company’s data processing centre, it may be confronted with
hundreds or thousands of simultaneous connections and corresponding crypto-
graphic operations. As a result, the most common current solution are cryp-
tographic accelerator cards. Due to the limited market, their price tags are
often in the range of several thousands euros or US dollars. The question at
hand is whether commodity GPUs can be used as high-performance public-key
accelerators.

In this work, we will present novel implementations of cryptosystems based on
modular exponentiations and elliptic curve operations on recent graphics hard-
ware. To the best of our knowledge, this is the first publication making use of
the CUDA framework for GPGPU processing of asymmetric cryptosystems. We
will start with implementing the extremely wide-spread Rivest Shamir Adleman
(RSA) cryptosystem [30]. The same implementation based on modular expo-
nentiation for large integers can be used to implement the Digital Signature
Algorithm (DSA), which has been published by the US National Institute of
Standards and Technology (NIST) [25]. Recently, DSA has been adopted to el-
liptic curve groups in the ANSI X9.62 standard [2]. The implementation of this
variant, called ECDSA, is the second major goal of this work.

2 Previous Work

Lately, the research community has started to explore techniques to accelerate
cryptographic algorithms using the GPU. For example, various authors looked
at the feasibility of the current industry standard for symmetric cryptography,
the Advanced Encryption Standard (AES) [21,31,18,9]. Only two groups, namely
Moss et al. and Fleissner, have aimed for the efficient implementation of mod-
ular exponentiation on the GPU [24,14]. Their results were not promising, as
they were limited by the legacy GPU architecture and interface (cf. the next
section). To the best of our knowledge there are neither publications about the
implementation of these systems on modern, GPGPU-capable hardware nor on
the implementation of elliptic curve based systems.

We aim to fill this gap by implementing the core operations for both systems
efficiently on modern graphics hardware, creating the foundation for the use of
GPUs as accelerators for public key cryptography. We will use Nvidia’s current
flagship GPU series, the G80 generation, together with its new GPGPU interface
CUDA.

3 Using GPUs for General-Purpose Applications

The following section will give an overview over traditional GPU computing,
followed by a more in-depth introduction to Nvidia’s general purpose interface
CUDA.
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3.1 Traditional GPU Computing

Roughly, the graphics pipeline consist of the stages transform & light, assemble
primitives, rasterise and shade. First GPUs had all functions needed to im-
plement the graphics pipeline hardwired, but over time more and more stages
became programmable by introducing specialised processors, e.g. vertex and frag-
ment processors that made the transform & light and shading stages, respec-
tively, more flexible.

When processing power increased massively while prices kept falling, the re-
search community thought of ways to use these resources for computationally
intense tasks. However, as the processors’ capabilities were very limited and
the API of the graphics driver was specifically built to implement the graphics
pipeline, a lot of overhead needed to be taken into account. For example, all
data had to be encoded in textures which are two dimensional arrays of pixels
storing colour values for red, green, blue and an additional alpha channel used
for transparency. Additionally, textures are read-only objects, which forced the
programmers to compute one step of an algorithm, store the result in the frame
buffer, and start the next step using a texture reference to the newly produced
pixels. This technique is known as ping-ponging. Most GPUs did only provide in-
structions to manipulate floating point numbers, forcing GPGPU programmers
to map integers onto the available mantissa and find ways to emulate bit-logical
functions, e.g., by using look-up tables.

These limitations have been the main motivation for the key GPU manufac-
turers ATI/AMD and Nvidia to create APIs specifically for the GPGPU com-
munity and modify their hardware for better support: ATI’s solution is called
Close To the Metal (CTM) [1], while Nvidia presented the Compute Unified
Device Architecture (CUDA), a radically new design that makes GPU program-
ming and GPGPU switch places: The underlying hardware of the G80 series is
an accumulation of scalar common purpose processing units (“unified” design)
and quite a bit of “glue” hardware to efficiently map the graphics pipeline to
this new design. GPGPU applications however directly map to the target hard-
ware and thus graphics hardware can be programmed without any graphics API
whatsoever.

3.2 Programming GPUs Using Nvidia’s CUDA Framework

In general, the GPU’s immense computation power mainly relies on its inherent
parallel architecture. For this, the CUDA framework introduces the thread as
smallest unit of parallelism, i.e., a small piece of concurrent code with associated
state. However, when compared to threads on microprocessors, GPU threads
have much lower resource usage and lower creation and switching cost. Note
that GPUs are only effective when running a high number of such threads. A
group of threads that is executed physically in parallel is called warp. All threads
in one warp are executed in a single instruction multiple data (SIMD) fashion.
If one or more thread(s) in the same warp need to execute different instructions,
e.g., in case of a data-dependent jump, their execution will be serialised and the
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threads are called divergent. As the next level of parallelism, a (thread) block
is a group of threads that can communicate with each other and synchronise
their execution. The maximum number of threads per block is limited by the
hardware. Finally, a group of blocks that have same dimensionality and execute
the same CUDA program logically in parallel is called grid.

To allow optimal performance for different access patterns, CUDA implements
a hierarchical memory model, contrasting the flat model normally assumed on
computers. Host (PC) and device (GPU) have their own memory areas, called
host memory and device memory, respectively. CUDA supplies optimised func-
tions to transfer data between these separate spaces.

Each thread possesses its own register file, which can be read and written.
Additionally, it can access its own copy of so-called local memory. All threads
in the same grid can access the same on-chip read- and writable shared mem-
ory region. To prevent hazards resulting from concurrent execution of threads
synchronisation mechanisms must be used. Shared memory is organised in groups
called banks that can be accessed in parallel. All threads can access a read- and
writable memory space called global memory and read-only regions called
constant memory and texture memory. The second last is optimised for
one-dimensional locality of accesses, while the last is most effective when being
used with two-dimensional arrays (matrices). Note that the texture and constant
memories are the only regions that are cached. Thus, all accesses to the off-chip
regions global and local memory have a high access latency, resulting in penalties
when being used too frequently.

The hardware consists of a number of so-called multiprocessors that are build
from SIMD processors, on-chip memory and caches. Clearly, one processor ex-
ecutes a particular thread, the same warp being run on the multiprocessor at
the same time. One or more blocks are mapped to each multiprocessor, sharing
its resources (registers and shared memory) and get executed on a time-sliced
basis. When a particular block has finished its execution, the scheduler starts
the next block of the grid until all blocks have been run.

Design Criteria for GPU Implementations. To achieve optimal perfor-
mance using CUDA, algorithms must be designed to run in a multitude of par-
allel threads and take advantage of the presented hierarchical memory model. In
the following, we enumerate the key criteria necessary for gaining the most out
of the GPU by loosely following the CUDA programming guide [27] and a talk
given by Mark Harris of Nvidia [17].

A. Maximise use of available processing power
A1. Maximise independent parallelism in the algorithm to enable easy

partitioning in threads and blocks.
A2. Keep resource usage low to allow concurrent execution of as many

threads as possible, i.e., use only a small number of registers per thread
and shared memory per block.

A3. Maximise arithmetic intensity, i.e., match the arithmetic to band-
width ratio to the GPU design philosophy: GPUs spend their transistors
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on ALUs, not caches. Bearing this in mind allows to hide memory ac-
cess latency by the use of independent computations (latency hiding).
Examples include using arithmetic instructions with high throughput as
well as re-computing values instead of saving them for later use.

A4. Avoid divergent threads in the same warp.

B. Maximise use of available memory bandwidth
B1. Avoid memory transfers between host and device by shifting

more computations from the host to the GPU.
B2. Use shared memory instead of global memory for variables.
B3. Use constant or texture memory instead of global memory for

constants.
B4. Coalesce global memory accesses, i.e., choose access patterns that

allow to combine several accesses in the same warp to one, wider access.
B5. Avoid bank conflicts when utilising shared memory, i.e., choose pat-

terns that result in the access of different banks per warp.
B6. Match access patterns for constant and texture memory to the cache

design.

CUDA Limitations. Although CUDA programs are written in the C language
together with extensions to support the memory model, allow synchronisation
and special intrinsics to access faster assembler instructions, it also contains a
number of limitations that negatively affect efficient implementation of public
key cryptography primitives. Examples are the lack for additions/subtractions
with carry as well as the missing support for inline assembler instructions1.

4 Modular Arithmetic on GPUs

In the following section we will give different ways do realise modular arith-
metic on a GPU efficiently, keeping the aforementioned criteria in mind. For the
RSA cryptosystem we need to implement arithmetic modulo N , where N is the
product of two large primes p and q: N = p · q. The arithmetic of both DSA
systems, however, is based on the prime field GF (p) as the lowest-level building
block. Note that the DSA systems both use a fixed – in terms of sessions or
key generations – prime p, thus allowing to choose special primes at build time
that have advantageous properties when reducing modulo p. For example, the
US National Institute of Standards and Technology (NIST) proposes a set of
generalised Mersenne primes in the Digital Signature Standard (DSS) [25, Ap-
pendix 6]. As the RSA modulus N is the product of the two secret primes p and
q that will be chosen secretly for each new key pair, we cannot optimise for the
modulus in this case.
1 Nvidia published their own (abstract) assembler language PTX [28], however as

of CUDA version 1.0 one kernel cannot contain code both generated from the C
language and PTX.
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Modular Addition and Subtraction. In general, addition s ≡ a + b mod m
of two operands a and b, where 0 ≤ a, b < m, is straightforward, as the result of
the plain addition operation a + b always satisfies 0 ≤ a + b < 2m and therefore
needs at maximum one subtraction of m to fulfil 0 ≤ s < m. Due to the SIMD
design, we require algorithms that have a uniform control flow in all cases and
compute both a + b and a + b − m and decide afterwards which is the correctly
reduced result, cf. Criterion A4. Subtraction d ≡ a − b mod m can be treated
similarly: we compute both a − b and a − b + m and use a sign test at the end
to derive the correctly reduced result.

Modular Multiplication. Multi-precision modular multiplication r ≡ a·b mod
m is usually the most critical operation in common asymmetric cryptosystems. In
a straightforward approach to compute r, we derive a double-sized product r′ =
ab first and reduce afterwards by multi-precision division. Besides the quadratic
complexity of standard multiplication, division is known to be very costly and
should be avoided whenever possible. Thus, we will discuss several multiplication
strategies to identify an optimal method for implementation on GPUs.

4.1 Modular Multiplication Using Montgomery’s Technique

In 1985 Peter L. Montgomery proposed an algorithm [23] to remove the costly
division operation from the modular reduction. Koç et al. [6] give a survey of
different implementation options. As all multi-precision Montgomery multiplica-
tion algorithms feature no inherent parallelism except the possibility to pipeline,
we do not consider them optimal for our platform and implement the method
with the lowest temporary space requirement of n+2 words, coarsely integrated
operand scanning (CIOS), as a reference solution only (cf. to Algorithm 1).

4.2 Modular Multiplication in Residue Number Systems (RNS)

As an alternative approach to conventional base-2w arithmetic, we can represent
integers based on the idea of the Chinese Remainder Theorem, by encoding an
integer x as a tuple formed from its residues xi modulo n relatively prime w-bit
moduli mi, where |x|mi denotes x mod mi:

〈x〉A = 〈x0, x1, . . . , xn−1〉A = 〈|x|m0 , |x|m1 , . . . , |x|mn−1〉A (1)

Here, the ordered set of relatively prime moduli (m0, m1, . . . , mn−1), gcd
(mi, mj) = 1 for all i �= j, is called base and denoted by A. The product of
all moduli, A =

∏n−1
i=0 mi is called dynamic range of A, i.e., the number of val-

ues that can be uniquely represented in A. In other words, all numbers in A get
implicitly reduced modulo A. Such a representation in RNS has the advantage
that addition, subtraction and multiplication can be computed independently for
all residues:

〈x〉A ◦ 〈y〉A=〈|x0 ◦ y0|m0 , |x1 ◦ y1|m1 , . . . , |xn−1 ◦ yn−1|mn−1〉A, ◦∈{+, −, ·} (2)
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Algorithm 1. Montgomery Multiplication for Multi-Precision Integers
(CIOS Method) [6]
Require: Modulus M and radix R = 2wn s.t. R > M and gcd(R, M) = 1; M ′

0 =
(−M−1 mod R) mod 2w , two unsigned integers 0 ≤ A, B < M in Montgomery
form, i.e. X = (Xn−1Xn−2 . . . X0)2w for X ∈ {A, B, M}.

Ensure: The product C = ABR−1 (mod M), 0 ≤ C < M , in Montgomery form.
1: T ← 0
2: for i from 0 to n − 1 do
3: c ← 0
4: for j from 0 to n − 1 do {Multiplication}
5: (c, Tj) ← Aj · Bi + Tj + c
6: end for
7: (Tn+1, Tn) ← Tn + c

8: m ← T0 · M ′
0 mod 2w {Reduction}

9: (c, T0) ← m · M0 + T0

10: for j from 1 to n − 1 do
11: (c, Tj−1) ← m · Mj + Tj + c
12: end for
13: Tn−1 ← Tn + c
14: Tn ← Tn+1 + c
15: end for
16: return (Tn−1Tn−2 . . . T0)2w

which allows carry-free computations2 and multiplication without partial prod-
ucts. However, some information involving the whole number x cannot be easily
computed. For instance, sign and overflow detection and comparison of mag-
nitude are hard, resulting from the fact that residue number systems are no
weighted representation. Furthermore, division and as a result reduction mod-
ulo an arbitrary modulus M �= A is not as easy as in other representations.

But similar to the basic idea of Montgomery multiplication, one can create a
modular multiplication method for input values in RNS representation as shown
in Algorithm 2, which involves a second base B = (m̃0, m̃1, . . . , m̃n−1) with
corresponding dynamic range B. It computes a value v = XY + fM that is
equivalent to 0 mod A and XY mod M . Thus, we can safely divide by A, i.e.,
multiply by its inverse modulo B, to compute the output XY A−1 (mod M).
Note that the needed reduction modulo A to compute f is free in A.

All steps of the algorithm can be efficiently computed in parallel. However, a
method to convert between both bases, a base extension mechanism, is needed.
We take three different options into account: the method based on a Mixed
Radix System (MRS) according to Szabó and Tanaka [37], as well as CRT-based
methods due to Shenoy and Kumaresan [33], Kawamura et al. [20] and Bajard et
al. [3]. We present a brief introduction of these methods, but for more detailed
information about base extensions, please see the recent survey at [5].

2 Inner-RNS operations still contain carries.
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Algorithm 2. Modular Multiplication Algorithm for Residue Number Sys-
tems [20]
Require: Modulus M , two RNS bases A and B composed of n distinct moduli mi

each, gcd(A,B) = gcd(A,M) = 1 and B > A > 4M .
Two factors X and Y , 0 ≤ X, Y < 2M , encoded in both bases and in Montgomery
form, i.e. 〈X〉A∪B and 〈Y 〉A∪B, X = xA (mod M) and Y = yA (mod M).

Ensure: The product C = XY A−1 (mod M), 0 ≤ C < 2M , in both bases and
Montgomery form.

1: 〈u〉A∪B ← 〈X〉A∪B · 〈Y 〉A∪B
2: 〈f〉A ← 〈u〉A · 〈−M−1〉A
3: 〈f〉A∪B ← BaseExtend(〈f〉A)
4: 〈v〉B ← 〈u〉B + 〈f〉B · 〈M〉B {〈v〉A = 0 by construction}
5: 〈w〉B ← 〈v〉B · 〈A−1〉B
6: 〈w〉A∪B ← BaseExtend(〈w〉B)
7: return 〈w〉A∪B

4.3 Base Extension Using a Mixed Radix System (MRS)

The classical way to compute base extensions is due to Szabó and Tanaka [37].
Let (m0, . . . , mn−1) be the MRS base associated to A. Then, each integer x can
be represented in a mixed radix system as

x = x′
0 + x′

1m0 + x′
2m0m1 + · · · + x′

n−1m0 . . . mn−2. (3)

The MRS digits x′
i can be derived from the residues xi by a recursive strategy:

where m−1
(i,j) are the pre-computed inverses of mj modulo mi. To convert x from

x′
0 = x0 (mod m0) (4)

x′
1 = (x1 − x′

0)m
−1
(1,0) (mod m1)

...
x′

n−1 = (· · · ((xn − x′
0)m

−1
(n−1,0)

− x′
1)m

−1
(n−1,1)

− · · · − x′
n−2)m

−1
(n−1,n−2)

(mod mn−1)

this representation to a target RNS base, we could reduce Equation (3) by each
target modulus m̃k, involving pre-computed constants c̃(k,i) =

∣∣∣∏i−1
l=0 ml

∣∣∣
m̃k

. But

instead of creating a table for all c̃k, a recursive approach is more efficient in our
situation, eliminating the need for table-lookups [4], and allowing to compute all
residues in the target base in parallel:

|x|m̃k
=

∣∣(. . . ((x′
n−1mn−2+x′

n−2)mn−3+x′
n−3)mn−4+ · · · + x′

1)m0 + x0
∣∣
m̃k

(5)

4.4 Base Extension Using the Chinese Remainder Theorem (CRT)

Recall the definition of the CRT and adopt it to the source base A with dynamic
range A:

x =
n−1∑
k=0

Âk

∣∣∣∣ xk

Âk

∣∣∣∣
mk

− αA, α < n (6)
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where Âk = A/mk and α is an integer s.t. 0 ≤ x < A. Note that α is strictly
upper-bounded by n. When reducing this equation with an arbitrary target
modulus, say m̃i, we yield

|x|m̃i
=

∣∣∣∣∣
n−1∑
k=0

∣∣∣Âk

∣∣∣
m̃i

δk − |αA|m̃i

∣∣∣∣∣
m̃i

, δk =
∣∣∣xk · Âk

−1
∣∣∣
mk

(7)

where
∣∣∣Âk

∣∣∣
m̃i

,
∣∣∣Âk

−1
∣∣∣
mk

and |A|m̃i
are pre-computed constants. Note that the δk

do not depend on the target modulus and can thus be reused in the computation
of a different target residue.

This is an efficient way to compute all residues modulo the target base, pro-
vided we know the value of α. While involving a couple of look-ups for the con-
stants as well, the instruction flow is highly uniform (cf. Criterion A4) and fits
to our SIMD architecture, i.e., we can use n threads to compute the n residues
of x in the target base in parallel (cf. Criterion A1).

The first technique to compute such an α is due to Shenoy and Kumaresan
[33] and requires a redundant modulus mr ≥ n that is relatively prime to all other
moduli mj and m̃i, i.e., gcd(A, mr) = gcd(B, mr) = 1. Consider Equation 7, set
m̃i = mr and rearrange it to the following:

|α|mr =

∣∣∣∣∣|A−1|mr ·
(

n−1∑
k=0

∣∣∣Âk

∣∣∣
mr

δk − |x|mr

)∣∣∣∣∣
mr

. (8)

Since α < n ≤ mr it holds that α = |α|mr and thus Equation 8 computes the
exact value of α, involving the additional constant |A−1|mr .

Kawamura et al. propose a different technique that approximates α using
fixed-point computations [20]. Consider Equation 7, rearrange it and divide
by A:

α =
n−1∑
k=0

δk

mk
− |x|m̃i

A
=

⌊
n−1∑
k=0

δk

mk

⌋
. (9)

Next, they approximate α by using truncr(δk) as numerator and 2w as denomi-
nator and adding a properly chosen offset σ, where truncr(δk) sets the last w−r
bits of δk to zero:

α′ =

⌊
n−1∑
k=0

truncr(δk)
2w

+ σ

⌋
=

⌊
1
2r

n−1∑
k=0

⌊
δk/2w−r

⌋
+ σ

⌋
, (10)

Thus, the approximate value α′ can be computed in fixed-point arithmetic as
integer part of the sum of the r most-significant bits of all δk. Provided σ is chosen
correctly, Equation 10 will compute α′ = α, and the resulting base extension will
be exact.

Finally, Bajard et al. follow the most radical approach possible [3]: they allow
an offset of αA ≤ (n − 1)A to occur in Equation 7 and thus do not need to
compute α at all. After the first base extension we have f ′ = f + αA and thus
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w′ = w + αM , i.e., the result w′ will contain a maximum offset of (n − 1)M ,
and thus be equivalent to w mod M . However, this technique needs additional
measures of precaution in the multiplication algorithm, which predominantly
condense in the higher dynamic ranges needed.

4.5 Multiplication Modulo Generalised Mersenne Primes

For some cryptosystems like DSA, arithmetic in an underlying prime field is
required. Taking advantage of the special structure of Mersenne primes, the re-
duction modulo p after a multiplication can be carried out very efficiently. Using
such a method, we can compute r′ using a standard multi-precision multiplica-
tion method first, followed by a reduction algorithm that is specific for the given
prime. In this work, we will use an algorithm to efficiently compute multiplica-
tions modulo P-224, where P-224 is the 224 bit prime proposed by NIST [25].
Algorithm 3 performs the complete reduction for this prime with only two addi-
tions and two subtractions of 224bit integers and a subsequent correction step to
determine the correct value of r ≡ r′ mod p, since −2p ≤ r′ < 3p must be consid-
ered. Note that this final correction step additionally needs the same amount of
computations, as we have to avoid data-dependant branches (cf. Criterion A4).

Algorithm 3. NIST Reduction for P-224 = 2224 − 296 + 1
Require: Double-sized integer r′ = (r′

13, . . . , r
′
2, r

′
1, r

′
0) in base 232 and 0 ≤ r′ < P-2242

Ensure: Single-sized integer r ≡ r′ mod P-224, 0 ≤ r < P-224.
1: Concatenate r′

i to following 224-bit integers tj :

t1 = (r′
6, r

′
5, r

′
4, r

′
3, r

′
2, r

′
1, r

′
0), t2 = (r′

10, r
′
9, r

′
8, r

′
7, 0, 0, 0), t3 = (0, r′

13, r
′
12, r

′
11, 0, 0, 0)

t4 = (0, 0, 0, 0, r′
13, r

′
12, r

′
11), t5 = (r′

13, r
′
12, r

′
11, r

′
10, r

′
9, r

′
8, t7)

2: Compute r′′ = t1 + t2 + t3 − t4 − t5
3: return r = r′′ mod P-224

5 Implementation

In this section we will describe the implementation of two primitive operations
for a variety of cryptosystems: first, we realise modular exponentiation on the
GPU for use with RSA, DSA and similar systems. Second, for ECC-based cryp-
tosystems we present an efficient point multiplication method which is the fun-
damental operation, e.g., for ECDSA or ECDH [16].

5.1 Modular Exponentiation Using the CIOS Method

We implemented the CIOS Method as introduced in Algorithm 1 for sequential
execution since it does not include any inherent parallelism. Fan et al. describe
efficient ways to pipeline such an algorithm for the use on multi-core systems [13].
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This would however need fairly complex coordination and memory techniques
and thus will not be considered further for our implementation, cf. Criteria A4
and B4-B6.

As all modular exponentiations are independent, we let each thread compute
exactly one modular exponentiation in parallel with all others. Resulting from
that, this solution only profits from coarse-grained parallelism. We assume the
computation of distinct exponentiations, each having the same exponent t –
for example RSA signatures using the same key – and thus need to transfer
only the messages Pi for each exponentiation to the device and the result P t

i

(mod N) back to the host. As a result, every thread executes the same control
flow, fulfilling Criterion A4. To accelerate memory transfers between host and
device, we use page-locked host memory and pad each message to a fixed length
that forces the starting address of each message to values that are eligible for
global memory coalescing (cf. Criteria B1 and B4).

For modular exponentiation based on Algorithm 1, we applied the straightfor-
ward binary right-to-left method [35]. During exponentiation, each thread needs
three temporary values of (n+2) words each that get used as input and output of
Algorithm 1 in a round-robin fashion by pointer arithmetic. Thus, 3(n+2) words
are required. This leads to 408bytes and 792bytes for 1024bits and 2048bit pa-
rameters, respectively. Each multiprocessor features 16384bytes of shared mem-
ory, resulting in a maximum number of 
16386/408� = 40 and 
16386/792� = 20
threads per multiprocessor for 1024 and 2048bits, respectively, if we use shared
memory for temporary values. Clearly, both solutions are inefficient when con-
sidering that each multiprocessor is able to execute 768 threads per block in
principle (i.e., we favour Criterion A2 over B2).

Thus, we chose to store the temporary values in global memory. We have to
store the values interleaved so that memory accesses of one word by all threads
in a warp can be combined to one global memory access. Hence, for a given set
of values (A, B, C, . . .) consisting each of n + 2 words X = (x0, x1, . . . , xn+1),
we store all first words (a0, b0, c0, . . .) for all threads in the same block, then all
second words (a1, b1, c1, . . .), and so on (cf. Criterion B4).

Moreover, we have to use nailing techniques, as CUDA does not yet include
add-with-carry instructions. Roughly speaking, nailing reserves one or more of
the high-order bits of each word for the carry that can occur when adding two
numbers. To save register and memory space, however, we store the full word
of w bits per register and use bit shifts and and-masking to extract two nibbles,
each providing sufficient bits for the carry (cf. Criterion A3). This can be thought
of decomposing a 32 bit addition in two 16 bit additions plus the overhead for
carry handling.

5.2 Modular Exponentiation Using Residue Number Systems

Computations in residue number systems yield the advantage of being inherently
parallel. According to Algorithm 2 all steps are computed in one base only, ex-
cept for the first multiplication. Thus, the optimal mapping of computations to
threads is as follows: each thread determines values for one modulus in the two
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bases. As a result, we have coarse-grained (different exponentiations) and fine-
grained parallelism (base size), fulfilling Criterion A1. We call n′ the number of
residues that can be computed in parallel, i.e., the number of threads per en-
cryption. The base extension by Shenoy et al. needs a redundant residue starting
from the first base extension to be able to compute the second base extension.
To reflect this fact, we use two RNS bases A and B, having n moduli each, and
an additional residue mr resulting in n′ = n + 1. For all other cases, it holds
that n′ = n.

Considering the optimal number of bits per modulus, we are faced with w =
32bit integer registers on the target hardware. Thus, to avoid multi-precision
techniques, we can use moduli that are smaller than 2w. The hardware can
compute 24 bit multiplications faster than full 32 bit multiplications. However,
CUDA does not expose an intrinsic to compute the most-significant 16 bits of the
result. Using 16bit moduli would waste registers and memory and increase the
number of memory accesses as well. Thus, we prefer full 32 bit moduli to save
storage resources at the expense of higher computational cost (cf. Criteria A2
and A3).

For Algorithm 1 to work, the dynamic ranges A and B and the modulus M
have to be related according to B > A > 22M , or B > A > (2+n)2M when using
Bajard’s method. For performance reasons, we consider full warps of 32 threads
only, resulting in a slightly reduced size of M . The figures for all possible combi-
nations can be found in Table 6 in the Appendix. For input and output values,
we assume that all initial values will have been already converted to both bases
(and possibly the redundant modulus mr) and that output values will be re-
turned in the same encoding. Note that it would be sufficient to transfer values
in one base only and do a base extension for all input values (cf. Criterion B1,
transferring values in both bases results in a more compact kernel together with
a slightly higher latency). Different from the CIOS method, temporary values
can be kept local for each thread, i.e., every thread stores its assigned residues
in registers. Principally all operations can be performed in parallel on different
residues and – as a result – the plain multiplication algorithm does not need any
synchronisations. However, both properties do not hold for the base extension
algorithms.

Mixed Radix Conversion. Recall that the mixed radix conversion computes
the mixed radix representation from all residues in the source base first and
uses this value to compute the target residues. The second step involves the
computation of n′ residues and can be executed in parallel, i.e., each thread
computes the residue for ’its’ modulus. As a result, we have to store the n MRS
digits in shared memory to make them accessible to all threads (cf. Criteria A1
and B2). The first step however is the main caveat of this algorithm due to
its highly divergent nature as each MRS digit is derived from the residue of
a temporary variable in a different modulus (and thus thread) and depends
on all previously computed digits, clearly breaking Criterion A4 and resulting
in serialisation of executions. Additionally, note that threads having already
computed an MRS digit do not generate any useful output anymore.
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CRT-Based Conversion. The first step for all CRT-based techniques is to com-
pute the δk for each source modulus and can be carried out by one thread for each
value. Second, all n′ threads compute a weighted sum involving δk and a modulus-
dependent constant. Note that all threads need to access all δk and thus δk have to
be stored in shared memory (cf. Criterion B2). Third, α has to be derived, whose
computation is the main difference in the distinguished techniques. α is needed
by all threads later and thus needs to be stored in shared memory as well. After
computing α all threads can proceed with their independent computations.

Bajard’s method does not compute α and consequently needs no further oper-
ations. For Shenoy’s method, the second step above is needed for the redundant
modulus mr as well, which can be done in parallel with all other moduli. Then, a
single thread computes α and writes it to shared memory. The redundant residue
mr comes at the price of an additional thread, however the divergent part needed
to compute α does only contain one addition and one multiplication modulo mr.
Kawamura’s method needs to compute the sum of the r most significant bits of
all δk. While the right-shift of each δk can be done using all threads, the sum over
all shifted values and the offset has to be computed using a single thread. A final
right-shift results in the integer part of the sum, namely α.

Comparison and Selection. Clearly, Bajard’s method is the fastest since it
involves no computation of α. Shenoy’s method only involves a small divergent
part. However, we pay the price of an additional thread for the redundant mod-
ulus, or equivalently decrease the size of M . Kawamura’s technique consists of
a slightly larger divergent part, however it does neither include look-ups nor
further reduces the size of M .

Not all base extension mechanisms can be used for both directions required for
Algorithm 2. For Bajard’s method, consider the consequence of an offset in the sec-
ond base extension: we would compute some w′′ in base A that is not equal to the
w′ in B. As a result, neither 〈w′〉A nor 〈w′′〉B could be computed leading to an in-
valid input for a subsequent execution of Algorithm 2. Thus, their method is only
available for A → B conversions. Shenoy’s method can only be used for the second
base extension as there is no efficient way to carry the redundant residue through
the computation of f modulo A. The technique by Kawamura et al. would in prin-
ciple be available for both conversions. However, the sizes of both bases would be
different to allow proper reduction in the A → B case, thus we exclude this option
fromour consideration.Table 1shows the available and the practical combinations.

Table 1. Base Extension Algorithm Combinations

A → B
MRC (M) Shenoy (S) Kawamura (K) Bajard (B)

B
→

A MRC (M) • ◦ ◦ •
Shenoy (S) • ◦ ◦ •
Kawamura (K) • ◦ ◦ •
Bajard (B) ◦ ◦ ◦ ◦
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5.3 Point Multiplication Using Generalised Mersenne Primes

For realising the elliptic curve group operation, we chose mixed affine-Jacobian
coordinates [8] to avoid costly inversions in the underlying field and thus con-
centrated on efficient implementation of modular multiplication, the remaining
time critical operation. For this, we used a straightforward schoolbook-type mul-
tiplication combined with the efficient reduction technique for the generalised
Mersenne prime presented in Algorithm 3.

As for the CIOS method, there is no intrinsic parallelism except pipelining in
this approach (cf. Criterion A1). Thus, we use one thread per point multiplica-
tion. We assume the use of the same base point P per point multiplication kP
and varying scalars k. Thus, the only input that has to be transferred are the
scalars. Secondly, we transfer the result in projective Jacobian coordinates back
to the host. For efficiency reasons, we encode all coordinates interleaved for each
threads in a block again.

We used shared memory to store all temporary values, nailed to 28 bits to
allow schoolbook multiplication without carry propagation. Thus, we need 8
words per coordinate. Point addition and doubling algorithms were inspired by
libseccure [29]. With this approach shared memory turns out to be the lim-
iting factor. Precisely, we require 111words per point multiplication to store
7 temporary coordinates for point addition and modulo arithmetic, two points
and each scalar. This results in 444 bytes of shared memory and a maximum
of 
16384/444� = 36 threads per multiprocessor. This leaves still room for im-
provements as Criterion A1 is not fulfilled. However, due to internal errors in
the toolchain, we were not (yet) able to compile a solution that uses global mem-
ory for temporary values instead. Note that the left-to-right binary method for
point multiplication demands only one temporary point. However, for the sake
of a homogeneous flow of instructions we compute both possible solutions per
scalar bit and use a small divergent section to decide which of them is the desired
result (cf. Criterion A4).

6 Conclusion

With the previously discussed implementations on GPUs at hand, we finally
need to identify the candidate providing the best performance for modular ex-
ponentiation.

6.1 Results and Applications

Before presenting the benchmarking results of the best algorithm combinations
we show our results regarding the different base extension options for the RNS
method. The benchmarking scheme was the following: first, we did an exhaustive
search for the number of registers per thread that can principally be generated
by the toolchain. Then, we benchmarked all available execution configurations
for these numbers of registers. To make the base extension algorithms compa-
rable, we would have to repeat this for all possible combinations, as shown in
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Table 2. Results for different Base Extension Techniques (RNS Method)

Base Ext. Throughput (1024 bits) Throughput (2048 bits)
A → B B → A [Enc/s] (rel.) [Enc/s] (rel.)

M M 194 (46%) 28 (50%)
B M 267 (63%) 38 (67%)
B K 408 (97%) 55 (98%)
B S 419 (100%) 56 (100%)

Table 1. However to reduce the complexity of benchmarking, it suffices to mea-
sure all possible combinations in the first row and all possible combinations in
the second column to gain figures for all available combinations. The results for
the particular best configuration can be found in Table 2.

Clearly, the mixed radix based approach also used in [24] cannot compete with
CRT-based solutions. Kawamura et al. is slower than the method of Shenoy et
al. , but performs only slightly worse for the 2048bit range. Figure 1 shows the
time over the number of encryptions for the four cases and the 1024bit and
2048bit ranges, respectively.

Both graphs show the characteristic behaviour: Depending on the number of
blocks that are started on the GPU and the respective execution configuration we
get stair-like graphs. Only multiples of the number of warps per multiprocessor
and the number of multiprocessors result in optimal configurations that fully
utilise the GPU. However, depending on the number of registers per thread and
the amount of shared memory used other configurations are possible and lead
to smaller steps in between.

Optimised Implementations. Beside the reference implementation based on
the CIOS algorithm, we selected as best choice the CRT-RNS method based on a
combination of Bajard’s and Shenoy’s methods to compute the first and second
base extension of Algorithm 2, respectively.

The selection of the implementation was primarily motivated to achieve high
throughput rather than a small latency. Hence, due to the latency, not all im-
plementations might be suitable for all practical applications. To reflect this, we
present figures for data throughput as well as the initial latency tmin required at
the beginning of a computation. Note that our results consider optimal configu-
rations of warps per block and blocks per grid only. Table 3 shows the figures for
modular exponentiation with 1024 and 2048bit moduli and elliptic curve point
multiplication using NIST’s P-224 curve.

The throughput is determined from the number of encryptions divided by the
elapsed time. Note that this includes the initial latency tmin at the beginning of
the computations. The corresponding graphs are depicted in Figure 2. Note the
relatively long plateau when using the CIOS technique. It is a direct result from
having coarse-grained parallelism only: the smallest number of encryptions that
can be processed is 128 times higher than for the RNS method. Its high offset
is due to storing temporary values in global memory: memory access latency is
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Fig. 1. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right)
Moduli For Different Base Extension Methods, based on a Nvidia 8800 GTS Graphics
Card

Table 3. Results for Throughput and Minimum Latency tmin on a Nvidia 8800 GTS
Graphics Card

Technique Throughput Latency tmin OPs at tmin

[OPs/s] [ms/OP] [ms]

ModExp-1024 CIOS 813.0 1.2 6930 1024
ModExp-1024 RNS 439.8 2.3 144 4

ModExp-2048 CIOS 104.3 9.6 55184 1536
ModExp-2048 RNS 57.9 17.3 849 4

ECC PointMul-224 1412.6 0.7 305 36

hidden by scheduling independent computations, however the time needed to
fetch/store the first value in each group cannot be hidden.

Clearly, the CIOS method delivers the highest throughput at the price of a
high initial latency. For interactive applications such as online banking using
TLS this will be a major obstacle. However, non-interactive applications like a
certificate authority (CA) might benefit from the raw throughput3. Note that
both applications will share the same secret key for all digital signatures when
using RSA. In case of ECC (ECDSA) however, different exponents were taken
into account.

The residue number system based approach does only feature roughly half
of the throughput but provides a more immediate data response. Thus, this
method seems to be suitable even in interactive applications. Last but not least
elliptic curve cryptography clearly outperforms modular exponentiation based
techniques not only due to the much smaller parameters. With respect to other
hardware and software implementations compared against our results in the next
section, we present an ECC solution which outperforms most hardware devices
and comes close the the performance of recent dual-core microprocessors.

3 Also consider the top model of Nvidia’s next series of GPUs, the GeForce 9800GX2,
that can be used in a four-card setup.
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Fig. 2. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right)
Moduli and Elliptic Curve Point Multiplication on NIST’s P-224 Curve, based on a
Nvidia 8800 GTS Graphics Card

6.2 Comparison with Previous Implementations

Due to the novelty of general purpose computations on GPUs and since directly
comparable results are rare, we will take reference to recent hardware and soft-
ware implementations in literature as well. To give a feeling for the different
GPU generations we include Table 4.

Table 4. Comparison of Nvidia GPU platforms

GPU Shader clock Shaders Fill Rate Mem Bandwidth CUDA
[MHz] [GPixels/s] [GB/s]

7800GTX 13.2 54.4 no

8800GTS 1200 92 24.0 64.0 yes
8800GTX 1350 128 36.8 86.4 yes

9800GX2 1500 2 · 128 76.8 128.0 future

Moss et al. implemented modular exponentiation for 1024bit moduli on
Nvidia’s 7800GTX GPU [24], using the same RNS approach but picking different
base extension mechanisms. The authors present the maximum throughput only
that has been achieved at the cost of an unspecified but high latency. Fleissner’s
recent analysis on modular exponentiation for GPUs is based on 192bit moduli
but relates the GPU performance solely to the CPU of his host system.

Costigan and Scott implemented modular exponentiation on IBM’s Cell plat-
form, i.e., a Sony Playstation 3 and an IBM MPM blade server, both running
at 3.2GHz [10]. We only quote the best figures for the Playstation 3 as they
call the results for the MPM blade preliminary. The Playstation features one
PowerPC core (PPU) and 6 Synergistic Processing Elements (SPUs). Software
results have been attained from ECRYPT’s eBATS project [11]. Here, we picked
a recent Intel Core2 Duo with 2.13GHz clock frequency. Since mostly all figures
for software relate to cycles, we assumed that repeated computations can be
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Table 5. Comparison of our designs to results from literature. The higher throughput
values the better. ModExp-i denotes modular exponentiation using an i-bit modulus.
PointMul-i denotes point multiplication on elliptic curves over Fp, where p is a i-bit
prime. Results that used the Chinese remainder theorem are marked with “CRT”.

Reference Platform & Technique Throughput [ModExps/s] and [PointMuls/s]
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Our Design Nvidia 8800GTS GPU, CIOS algorithm 813.0 104.3
Nvidia 8800GTS GPU, RNS arithmetic 439.8 57.9
Nvidia 8800GTS GPU, ECC NIST-224 1412.6

[24] Moss Nvidia 7800GTX GPU, RNS arithmetic 175.4
[10] Costigan Sony Playstation 3, 1 PPU, 6 SPUs 909.2 401.4
[22] Mentens Xilinx xc2vp30 FPGA 471.7 1724.1 235.8 1000.0 440.5
[32] Schinianakis Xilinx xc2vp125 FPGA, RNS arithmetic 413.9
[36] Suzuki Xilinx xc4fx12 FPGA, using DSPs 584.8 79.4
[26] Nozaki 0.25μm CMOS, 80 MHz, 221k GE 238.1 34.2

[11] eBATS Intel Core2 2.13 GHz 1447.5 300.4 2623.4 a 1868.5a 1494.8a

[15] Gaudry Intel Core2 2.66 GHz 6900b

a Performance for ECDSA operation including additional modular inversion and multiplication operation.
b Special elliptic curve in Montgomery form, non-compliant to ECC standardised by NIST.

performed without interruption on all available cores so that no further cycles
are spent, e.g., on scheduling or other administrative tasks. Note that this is a
very optimistic assumption possibly overrating the performance of microproces-
sors with respect to actual applications. We also compare our work to the very
fast software implementation by [15] on an Intel Core2 system at 2.66GHz but
which uses the special Montgomery and non-standard curve over F2255−19.

To the best of our knowledge, Mentens published the best results for public key
cryptographyonreconfigurablehardwaresofar[22].SheusedaFieldProgrammable
Gate Array (FPGA) of Xilinx’ Virtex-II Pro family, namely the xc2vp30-7FF1152.
Schinianakis et al. implemented elliptic curve cryptography on the same family of
FPGAsbutusingRNSarithmetic for the underlying field [32]. Suzuki implemented
themodular exponentiationonFPGAs taking advantage of the includeddigital sig-
nal processors (DSPs) on a board from Xilinx’ Virtex 4 FX family [36].

Nozaki et al. designed an RSA circuit in 0.25 μm CMOS technology, that needs
221k gate equivalents (GE) [26] and uses RNS arithmetic with Kawamura’s base
extension mechanism.

6.3 Further Work

Elliptic curves in Hessian form feature highly homogeneous formulae to com-
pute all three projective coordinates in point additions [19,34]. However, the
curves standardised by ANSI and NIST cannot be transformed to Hessian form.
Furthermore, point doublings can be converted to point additions by simple co-
ordinate rotations. Thus, it is possible to compute point doublings and additions
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for all three coordinates in parallel. A future study will show the applicability
to graphics hardware.
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A Appendix

Table 6. Modulus Sizes for Modular Multiplication Using RNS

1st Base Ext. 2nd Base Ext. 1024 bit range 2048 bit range

Bajard et al. Shenoy et al. 981 2003
Others 1013 2035

Others Shenoy et al. 990 2014
Others 1022 2046
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Abstract. This paper proposes an efficient concurrent error detection
scheme for hardware implementation of the block cipher AES. The pro-
posed scheme does not require an additional arithmetic unit, but simply
divides the round function block into two sub-blocks and uses the sub-
blocks alternately for encryption (or decryption) and error detection. The
number of clock cycles is doubled, but the maximum operating frequency
is increased owing to the shortened critical path of the sub-block. There-
fore, the proposed scheme has a limited impact on hardware performance
with respect to size and speed. AES hardware with the proposed scheme
was designed and synthesized using a 90-nm CMOS standard cell library
with size and speed optimization options. The compact and high-speed
implementations achieved performances of 2.21 Gbps @ 16.1 Kgates and
3.21 Gbps @ 24.1 Kgates, respectively. In contrast, the performances of
AES hardware without error detection were 1.66 Gbps @ 12.9 Kgates
for the compact version and 4.22 Gbps @ 30.7 Kgates for the high-speed
version. There is only a slight difference between the performances with
and without error detection. The performance overhead caused by the er-
ror detection is evaluated at the optimal balance between size and speed
and was estimated to be 14.5% at maximum. Conversely, the AES hard-
ware with the proposed scheme had better performance in some cases.
If pipeline operation is allowed, as in the CTR mode, throughputs can
easily be boosted by further dividing the sub-blocks. Although the pro-
posed error detection scheme was applied to AES in the present study,
it can also be applied to other algorithms efficiently.

1 Introduction

The fault injection attack is a physical attack to obtain internal secret informa-
tion from cryptographic modules by causing a malfunction in operating units or
the sequencer logic using electrical noise injection on the power source or clock
signal or by illuminating the module by an electronic beam. In 1996, Boneh,

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 100–112, 2008.
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Demillo, and Lipton [1] proposed a fault injection attack against public key
cryptosystems, and Biham and Shamir [2] extended this attack to symmetric
key cryptosystems. Since then, research on the fault injection attack has been
rapidly evolved [3-5], and several papers have proposed attacks on the standard
block cipher AES [7-13].

On the other hand, several countermeasures that detect errors in processing
have also been proposed [14-29]. Fig. 1 summarizes the conventional error detec-
tion schemes for block cipher hardware with a loop architecture that iteratively
uses one round function block. The figures illustrate error detection schemes for
encryption process, but the same schemes can be applied to decryption circuits
and to implementations merging encryption and decryption datapaths.

In Fig. 1(a), the data in register RegX is processed by the round function block
for encryption (Enc), and then an error detection code, such as a parity bit, is
generated. The code is compared with an expected value output from another
data path (Predict) [14, 17-20]. It is very easy to calculate the expected value for
linear functions by using a small amount of hardware resources, and thus sev-
eral studies have proposed error detection codes for the non-linear substitution
function S-box [15, 16, 21-23]. The operation “Predict” is much simpler than
“Enc” and usually outputs a smaller number of bits, and thus it is impossible to
detect all of the error patterns. Therefore, the trade-off between overhead of the
additional circuit, “Predict”, and the error detection ratio should be considered
carefully.

In Fig. 1(b), two encryption operations for the same data in the register RegX
are performed by duplicated round function blocks, and the results are compared
[24]. The architecture of Fig. 1(c) has encryption and decryption datapaths, and
the data in RegX is encrypted and soon decrypted. The result is then compared
with the original data in RegY [24, 25]. These two schemes have a disadvantage
in that the hardware size is almost double compared to that of the circuit without
error detection.

The scheme of Fig. 1(d) encrypts the same data twice using one round function
block and two results are compared [26, 27]. In Fig. 1(e), the round function block
supports both encryption and decryption, and confirms that encrypted data can
be decrypted correctly. This scheme can also be applied efficiently to the round
function F (x) with the characteristic of x = F (F (x)) [28]. The drawback of
these schemes is that twice as many clock cycles are required.

Fig. 1(f) is similar to Fig. 1(d), where two encryptions are performed to con-
firm that the same encrypted data are generated, but the round function block
is divided into two sub-blocks and encryption and error detection (another en-
cryption) are performed simultaneously in each sub-block [29]. Hardware size
and the number of clock cycles are almost the same between these schemes, but
the maximum operating frequency of Fig. 1(f) is much higher than any other
scheme in Fig. 1 because the critical path (the round function block) is halved.

Fig. 1(f) is the best scheme in terms of circuit size and speed, but the use of
the same datapath for two encryptions (one of which is for error detection) causes
a major problem. When an attacker injects an electron beam to cryptographic
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circuit, it is very difficult to control the beam precisely in order to make an error
in only one clock period. In contrast, it is incomparably easy to keep the beam
on during certain periods and to keep the circuit in failure. In this case, the same
error occurs repeatedly and thus the scheme of Fig. 1(f) that repeats the same
encryption twice for data checking cannot detect the error. The beam might
cause different types of errors in each cycle, but defects on transistor devices
and metal interconnections in LSI chips always make the same error, and thus
the scheme of Fig. 1(f) is unworkable for these static errors.

In order to solve these problems, this paper proposes a new error detection
scheme that performs encryption (or decryption) and error detection simulta-
neously in different operating blocks with limited impact on hardware size and
speed. AES hardware using the proposed scheme is designed and synthesized
using an ASIC library, and the effectiveness of the scheme is evaluated.

2 Proposed Error Detection Scheme

2.1 Normal AES Circuit

Fig. 2 shows a block diagram of an AES circuit using a loop-architecture based
on the compact implementation proposed in references [30] and [31], which does
not support error detection feature. A 128-bit input is encrypted (or decrypted)
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with a 128-bit secret key in 10 clock cycles. The encryption and decryption paths
are merged by sharing GF (28) inverters in S-boxes and common terms between
the permutation functions MixColumns and InvMixColumns. The circuit size is
almost halved in comparison to an implementation with two different datapaths
for encryption and decryption. In order to merge the datapaths, the location of
AddRoundKey and InvMixColumns (shown as InvMixCol. in Fig. 2) is switched
from the original order. Then, the MixColumns function block is placed at the
output of the key scheduler on the right in Fig. 2 to compensate the side effect.
In the next section, the proposed error detection scheme is explained in contrast
with this normal architecture.

2.2 AES Circuit with the Proposed Scheme

The proposed scheme uses a datapath that supports both encryption and de-
cryption, which is similar to that shown in Fig. 2, and divides the merged round
function block into pre- and post-blocks. Then, one of the blocks is used for
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encryption (or decryption), and another block is used for decryption (or encryp-
tion) for error detection. Fig. 3 shows the outline of the proposed scheme in the
encryption mode. Decryption can be carried out in a similar way. SR and ISR
denote ShiftRows and InvShiftRows, respectively, SB and ISB denote SubBytes
and InvSubBytes, respectively, and MX and IMX denote MixColumns and In-
vMixColumns, respectively. In Fig. 3(b), the order of ISB and ISR is switched
to share components between the encryption (Enc.) and decryption (Dec.) flows
of Fig. 3(a). Then SR and ISR are merged, and SB and ISR are merged, and
a half round function block, BlockS, is composed. The permutation functions
MX and IMX are also merged and compose another half round block, BlockM,
with two 128-bit XORs (AddRoundKey). These two blocks are used alternately
for encryption (or decryption) and error detection, as shown in Fig. 3(c), and
each round of Round1, · · ·, Round10 in Fig. 3(a) is processed in two clock cycles
as Round1X, Round1Y, · · ·, Round10X, Round10Y. The number of operating
cycles is doubled, but the maximum operating frequency is boosted because
the critical path of the round function block is divided into two sub-blocks.
Therefore, this has a minor impact on the operating speed. It is also possible
to increase the operating frequency of the normal AES circuit in Fig. 1 by di-
viding the round function block. However, it is only efficient for the Electric
Code Book (ECB) and Counter (CTR) modes that can process 128-bit data
blocks independently but cannot increase the speed for feedback modes, such as
Cipher Block Chaining (CBC). When speed performance with the CTR is the
first priority, the proposed architecture can also respond to this requirement by
increasing the number of pipeline stages from 2 to 2n. For example, it is easy
to perform two encryptions (or decryptions) and two decryption (or encryption)
as error detections by dividing sub-block BlockS and BlockM into two smaller
sub-blocks each.

In Fig. 3(c), the XOR output from Round0 is processed by the SR and SB
functions of BlockS in the clock cycle Round 1X, and the result is fed to BlockS
and BlockM. In the following cycle Round 1Y, the inverse operation of Round1X
is performed by BlockS, and the result is compared with the input to BlockS
in the previous cycle Round1X for error detection. At the same time, the MX
and XOR (AddRoundKey) operations are executed by BlockM to continue the
encryption process. In the next cycle Round2X, BlockS performs the following
encryption process, and BlockM checks the previous result. In a similar manner,
the remainder of the encryption and error detection operations are executed by
BlockS and BlockM interchangeably. The same round function blocks are used
for encryption and error detection, but these operations are different, and thus
static errors caused by defects in LSIs can be detected, while the scheme of Fig.
1(f) cannot find the errors, where the same operation is executed twice by the
same function block for encryption and error detection.

Fig. 4 shows the datapath architecture of the AES circuit using the pro-
posed error detection scheme. This architecture does not switch the order of
AddRoundKey and InvMixColumns to share the XOR gates for AddRoundKey,
as in Fig. 2. The critical path of the round function block in Fig. 2 is shortened by
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sharing the XOR gate, but the additional MixColumns block is required at the
output port of the key scheduler. In contrast, when the proposed scheme that
divides the round function block into two sub-blocks was applied, implemen-
tations without sharing the XOR gates showed better performance in balance
between size and speed. When the signal delay time for the round function block
is shortened by the division, the key scheduler becomes the critical path. There-
fore, the scheduler is also divided in two by inserting a register and uses two
clocks to generate one round key. In Fig. 4, the datapaths of the round function
block and the key scheduler are divided at the end of S-boxes for simplicity, but
pipeline registers are actually placed inside the S-boxes in order to balance the
signal delay times before and after the registers.

Even if the round function block works correctly, the key scheduler can also
be attacked [11, 12, 13], or malfunction in a control counter may output inter-
mediate data soon after the first round key is XORed without waiting for the
completion of 10-round operations [3]. In order to prevent this, the key scheduler
in Fig. 4 compares the round-key generated in the round key register with the
pre-calculated keys in the key registers DecKreg or EncKreg in the final round
of encryption or decryption, respectively. The register DecKreg holds the first
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round-key for decryption that is the last round-key for encryption, and the regis-
ter EncKreg holds the first round-key for encryption that is the last round-key of
decryption. Even if an attacker can flip a few bits in the control counter to skip
the round operations, it is impossible to control the unknown 128-bit round-key
to match the final value.

2.3 Example Operation

Fig. 5 shows the example encryption process of the AES circuit with the proposed
error detection scheme. It is assumed that the initial key for decryption K10 has
been calculated from the initial key K0 for encryption, and the keys K0 and
K10 are stored in registers EncReg and DecReg, respectively. In Fig. 5(a), a
plaintext input XORed with the initial key K0 has been stored in the data
register DregX as D0, and the first half of the round function (Shiftrows and
SubBytes) is applied to the data D0, and then the result D1X is fed back to
the register DregX. At the same time, the data D0 is transferred to the register
DregY for error detection, and the key register generates the first round-key K1
from K0.

In Fig. 5(b), the datapath for encryption in Fig. 5(a) is used for decryption
as error detection. The data D1X in DregX is processed by InvShiftRows and
InvSubBytes, and the result is compared with the data D0 in RegY. In the other
data path, the last half of the round function, MixColumns and AddroundKey
(XOR with the round-key K1), is applied to the data D1X, and the result of the
first round function is obtained in DregX as D1.
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In Fig. 5(c), the same encryption datapath of Fig. 5(a) encrypts the data D1
in DregX to D2X, and the datapath on the right (InvMixColumns and XOR)
decrypts the same data D1 to D1X for error detection. The output from the
right datapath is then compared with the data in RegY. In a similar manner,
the encryption and error detection process are continuously performed.

Fig. 5(d) shows the operation in the final round, where AddRoundKey with
the 10-th round key K10 for encryption, and InvShiftRows and InvSubBytes are
performed for error detection. As shown in Fig. 3(c), the MixColumns block is
bypassed for this final round. In order to check whether the sequencer logic and
key scheduler worked correctly and all 10 rounds are processed without skip,
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the final round key generated in the round key register is compared with the
pre-calculated key K10 in EncKreg. The ciphertext D10 can be output in this
cycle, but it is output in the next cycle of Fig. 5(e) after confirming that D10
can return to D10X. The next plaintext cannot be input before this final check
and thus requires 21 clocks, 20 clocks (= 10 rounds × 2 clocks) + one additional
clock for the final check, to encrypt (or decrypt) one data block.

3 ASIC Performance Comparison

Table 1 shows a comparison of the performance between the AES circuits with
and without the proposed error detection scheme, as shown in Figs. 2 and 4. The
designs were synthesized by a Synopsis Design Compiler using a 90-nm CMOS
standard cell library. In addition to size and speed optimizations, implementa-
tions that achieve the highest hardware efficiency, defined as throughput per
gate, are shown.

The signal delay time for the round function block is approximately halved by
using the proposed scheme, but the maximum operating frequency is not dou-
bled because of the setup and hold times of the inserted register. In addition,
the proposed scheme requires an additional clock cycle and additional hardware
resources for error detection. Therefore, simple prediction may indicate that the
proposed scheme is slower and larger than the simple AES circuit without the
error detection scheme. However, the throughputs of compact implementations
are 2.21 Gbps with 16.1 Kgates for the proposed scheme and 1.66 Gbps with 12.9
Kbps for the simple architecture. Thus, the proposed scheme is faster. Moreover,
the gate counts of the high-speed versions are 24.1 Kgates with 3.21 Gbps for the
proposed scheme and 30.7 Kgates with 4.22 Gbps for the simple architecture.
Thus, the proposed scheme is smaller. This is because the longer combinatorial
logic path in the round function block of the simple architecture causes wide
variations in logic synthesis. The range of gate counts and throughputs in Table
1 are ×2 for the simple architecture, while this range is within ×1.5 for the pro-
posed scheme. To achieve compact implementation, it is important to reuse gate
logic, even though the critical path becomes longer, and to use smaller cells, even
though their drivability is lower. On the other hand, parallel processing without

Table 1. Hardware performance comparison

16,099 362.32 2,208.40 137.18 Size
17,087 406.50 2,477.70 145.01 Efficiency
24,114 526.32 3,208.00 133.04 Speed
12,949 129.37 1,655.90 127.88 Size
20,003 265.25 3,395.20 169.48 Efficiency
30,708 330.03 4,224.40 137.57 Speed
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sharing gate logic and use of large cells with higher drivability are efficient for
high-speed implementation. This means that smaller circuits become slower and
faster circuits become larger. Therefore, the simple implementation with a wide
range of synthesis optimization had smaller but “slower” performance for the
compact implementation, and the high-speed version is faster but “larger” than
the proposed architecture.

The results indicate that total hardware performance cannot be determined by
simply measuring gate counts and throughput, and thus the performance over-
head caused by the error detection circuit cannot be evaluated either. Therefore,
as the criterion, we use the balance between hardware size and operating speed,
that is, the hardware efficiency is defined as the throughput per gate. How-
ever, the hardware efficiency still varies somewhat depending on the synthesis
constraints. Consequently, the optimal balance between size and speed, i.e., the
highest hardware efficiency, was chosen as the score of the hardware performance.
To investigate the highest hardware efficiency, logic synthesis was repeated sev-
eral times by changing the constraints. Then, the proposed AES architecture
and the simple AES architecture achieved efficiencies of 145.0 Kbps/gate (=
2.48 Gbps/17.1 Kgates) and 169.5 Kbps/gate (= 3.40 Gbps/20.0 Kgates), re-
spectively. The efficiency of the proposed scheme is 85.5% compared to the simple
architecture, and thus we can say that the performance overhead of the error
detection scheme is at most 14.5%. Meanwhile, in many cases, the AES cir-
cuit with the error detection showed better performances. These results clearly
demonstrate the advantage of the proposed scheme.

4 Conclusion

This paper proposed an error detection scheme for the AES circuit, and evaluated
its performance using a 90-nm standard cell library. The scheme divides a round
function block into two sub-blocks and uses them alternatively for encryption (or
decryption) and error detection. Therefore, no extra calculation block is needed,
even though only a pipeline register, a selector and a comparator are added. The
number of operating cycles is doubled, but the operating frequency is boosted
because the round function block in the critical path is halved. Therefore, the
scheme has only a minor impact on hardware performance.

Logic synthesis was repeated by changing the optimization conditions, and the
AES circuit with the proposed scheme achieved a range of 16.1 ∼ 24.1 Kgates
for hardware size and 2.21 ∼ 3.21 Gbps for throughput. Those of the simple
architecture without error detection are 12.9 ∼ 30.7 Kgates and 1.66 ∼ 4.22
Gbps. The simple implementation has a longer combinatorial logic path, which
leads to a wider range of performance optimization. These different ranges make
it difficult to compare the performance between the proposed and simple archi-
tectures. Therefore, the highest hardware efficiency (throughput/gate), which
gives the optimal balance between hardware speed and size was chosen for the
performance comparison. The hardware efficiencies are 145.0 kbps/gate for the
proposed scheme and 169.4 Kbps/gate for the simple implementation, and thus
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the performance overhead due to the error detection is only 14.5%. In addition,
the AES circuit with the proposed scheme had better performance than the
simple implementation depending on the constraints of logic synthesis.

Although the round function block was divided by 2 in the above implementa-
tions, it should be possible to increase the number of pipeline stages to 4, 6, and
8, in which half of the stages are used for encryption and the other half are used
for error detection. This is a very efficient way to achieve a much higher through-
put when pipeline operation, such as that for the CTR mode, is possible. The
proposed scheme does not depend greatly on the algorithm, and thus it can also
be applied to hardware implementations of several coding algorithms, as well as
cryptographic hardware. As a result, the proposed error detection scheme has
significant advantages in both efficiency and versatility.

We have developed experimental ASIC and FPGA boards called SASEBO
(Side-channel Attack Standard Evaluation BOard) and have distributed these
boards to research institutes in an attempt to contribute to establish stan-
dard evaluation criteria and test requirements for cryptographic modules against
physical analysis attacks including fault injection attacks. A cryptographic ASIC
chip with countermeasures is currently under development, and the AES circuit
proposed in this paper will be implemented on the chip. Detailed technical in-
formation and specifications about the experimental chip and the boards will be
disclosed on the Website of the SASEBO project [32].
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Abstract. The use of an appropriate fault detection scheme for hard-
ware implementation of the Advanced Encryption Standard (AES)
makes the standard robust to the internal defects and fault attacks. To
minimize the overhead cost of the fault detection AES structure, we
present a lightweight concurrent fault detection scheme for the compos-
ite field realization of the S-box using normal basis. The structure of the
S-box is divided into blocks and the predicted parities of these blocks
are obtained. Through an exhaustive search among all available com-
posite fields and transformation matrices that map the polynomial basis
representation in binary field to the normal basis representation in com-
posite field, we have found the optimum solution for the least overhead
S-box and its parity predictions. Finally, using FPGA implementations,
the complexities of the proposed schemes are compared to those of the
previously reported ones. It is shown that the FPGA implementations
of the S-box using normal basis representation in composite fields out-
perform the traditional ones using polynomial basis for both with and
without fault detection capability.

Keywords: Advanced encryption standard, fault detection, normal ba-
sis, S-box.

1 Introduction

The AES was approved by NIST in 2001 [1] and is currently replaced the previous
Data Encryption Standard in many applications. In encryption, the AES accepts
a 128-bit plaintext and a key as the inputs, where the key size can be selected as
128, 192 or 256 bits. In the AES-128, which is hereafter referred to as AES, the
ciphertext is generated after 10 rounds, where each encryption round (except for
the final round) consists of four transformations [1].

Among the four transformations in the encryption of the AES, only the S-box
operation is non-linear. There exist several fault detection schemes devised for
detecting the faults in the hardware implementation of this operation, see for
example [2], [3], [4], [5], [6], [7], and [8]. In this regard, the schemes in [2], [4],
[5], [6], and [7] are independent of the way this transformation is implemented
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in hardware. In [2], redundant unit is proposed for the fault detection of the S-
box, where an inverse S-box is placed after the S-box. Although such an scheme
detects any faults in the S-box or the inverse S-box, its overhead is at least 100%.
The approach in [4] and [5] is based on storing the one-bit predicted parity of
the S-box in a table and comparing it with the actual parity. Theoretically,
this causes the error coverage of 50% for a single S-box. In [6], a multiplication
approach for the fault detection of the multiplicative inversion of the S-box is
presented. In this approach, the result of the multiplication of the input and the
output of the multiplicative inversion is compared to the actual result.

There exist some other fault detection schemes that are suitable for a specific
implementation of the S-box, see for example [3] and [8]. The fault detection
approach presented in [3] is based on the table look-up S-boxes which may not
be preferable for high performance implementations. Therefore, for applications
requiring high performance AES implementations, the S-box is implemented
using logic gates in the composite field [9]. This reduces the area complexity of
the implementations. In addition, through pipelining, the working frequencies of
the hardware implementations can be increased [10].

Since direct calculation of the multiplicative inversion is costly [9], [11], com-
posite field arithmetic is used to perform a low cost inversion. It is noted that
the inversion in GF (28) can be implemented by mapping the binary field to the
composite field using polynomial or normal bases. It is shown in [9] that the
S-box structure using normal basis in composite field requires lower gate count
as compared to its counterparts using polynomial basis. In this paper, we have
implemented both types of the S-boxes on FPGAs and have shown that the
ones using normal basis has lower complexities than the one using polynomial
basis. Furthermore, we show that the parity predictions for the proposed fault
detection scheme using normal basis has lower gate count and time complexity
in comparison with those presented in [8] which uses polynomial basis.

In this paper, we propose a lightweight concurrent parity-based fault detec-
tion scheme for the S-box using normal basis. This scheme can also be applied
to the inverse S-box. Through an exhaustive search, we obtain the least area and
delay overhead S-box and its fault detection scheme for the optimum compos-
ite field. In this regard, our comparisons through FPGA implementations show
that the presented scheme is more efficient than the previously reported ones.
Furthermore, considering random fault injection, high error coverage is achieved
for the presented scheme.

The organization of this paper is as follows: In Section 2, preliminaries regard-
ing the AES S-box and its implementation using composite fields and normal
basis are explained. The proposed fault detection scheme for the S-box is pre-
sented in Section 3. Moreover, in this section, the time and space complexities
of the proposed scheme are analyzed. In Section 4, the presented fault detection
scheme for the S-box and the previously reported ones are implemented on FP-
GAs and they are compared in terms of time and space complexities. Finally,
conclusions are made in Section 5.
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2 Preliminaries

In this section, we first describe the S-box operation. Then, the composite field
realization of the S-box using normal basis is explained.

2.1 The S-Box

The S-box is a nonlinear operation which takes an 8-bit input and generates
an 8-bit output. In the S-box, the irreducible polynomial of P (x) = x8 + x4 +
x3 + x + 1 is used to construct the binary field GF (28). Let X ∈ GF (28) and
Y ∈ GF (28) be the input and the output of the S-box, respectively. Then, the
S-box consists of the multiplicative inversion, i.e., X−1 ∈ GF (28), followed by
an affine transformation. The affine transformation consists of the matrix A and
the vector b to generate the output as

y = Ax−1 + b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x−1 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where, y and x−1 are vectors corresponding to the field elements Y and X−1,
respectively.

In the following, we explain the composite field realization of the multiplicative
inversion using normal basis. Then, in the next section, we propose the parity-
based fault detection scheme of the S-box using this realization.

2.2 Multiplicative Inversion Using Composite Fields and Normal
Basis

Let us briefly explain the composite field arithmetic to calculate the multiplica-
tive inversion over GF (28). In what follows, we use capital Roman letters such
as X and Y for the elements in the binary field GF (28). Furthermore, small
Greek letters such as ηh, ηl, ν represent the elements in GF (24). Finally, capital
Greek letters such as Φ and Ω are utilized for the elements in GF (22).

The transformation matrix Ψ transforms a field element X =
∑7

i=0 xiα
i in

the binary field GF (28) to the corresponding representation in the compos-
ite field GF (28)/GF (24). The result of this transformation is the polynomial
X = ηhu16 + ηlu (see Fig. 1), with the multiplications modulo the irreducible
polynomial u2 + τu + ν. It is noted that the coefficients ηh and ηl are field
elements in the sub-field GF (24) representing X in terms of the normal basis
[U16, U ] [12]. The decomposition can be further applied to represent GF (24) as a
linear polynomial over GF (22) with multiplications modulo the irreducible poly-
nomial of v2 + Ωv + Φ which uses the normal basis [V 4, V ]. Moreover, one can
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Fig. 1. The S-box using composite field and normal basis [12] and its fault detection
blocks

represent GF (22) as a linear polynomial over GF (2) with multiplications mod-
ulo the irreducible polynomial of w2 + w + 1 using the normal basis [W 2, W ].
After calculating the inversion in the composite field, the inverse transformation
matrix Ψ−1 is used to transform the composite field representation to the field
element Y =

∑7
i=0 yiα

i in GF (28).
For calculating the multiplicative inversion, the most efficient choice is to let

Ω = τ = 1 in the above irreducible polynomials [9], [12]. Then, we have the
following for the multiplicative inversion using normal basis [12]

(ηhu16 + ηlu)−1 = [θηh]u16 + [θηl]u, (2)

where, θ = (ηhηl + (ηh
2 + ηl

2)ν)−1 (see the output of block 3 in Fig. 1). As seen
in (2), the multiplicative inversion consists of a number of multiplications, an
inversion, a squaring and modulo-2 additions in GF (24). In the next section,
while we derive the parity predictions for the S-boxes, we will explain these in
more details. Then, we derive the most efficient coefficients ν and Φ for the
presented fault detection scheme.

3 Fault Detection Scheme

In this paper, we use multiple stuck-at fault model at the logic level. This type
of fault, which forces multiple nodes to be stuck at logic one (for stuck-at one) or
zero (for stuck-at zero) independent of the fault-free logic values, has been fre-
quently used in the literature, see for example [16]. It is noted that the presented
scheme is independent of the life time of the faults. Thus, both permanent and
transient stuck-at faults lead to the same fault coverage.

In the parity-based fault detection scheme of a block of logic gates, the parity
of the block is predicted and it is compared to the actual parity. The result
of this comparison is the error indication flag of the corresponding block. This
method has been utilized in the literature to develop a fault detection scheme
for different applications, see for example [3], [13], [14], [15].



A Lightweight Concurrent Fault Detection Scheme 117

We have divided the S-box into 5 blocks similar to what is done in [8]. This
results in low overhead parity predictions while maintaining the fault detection
required for the security-constrained environments. This is shown in Fig. 1. Let
bi be the output of block i in Fig. 1, where b1 = ηh + ηl, b2 = γ, b3 = θ, b4 = σ,
and b5 = Y . As seen in this figure, the first block consists of the transforma-
tion matrix that changes an element in polynomial basis to the composite field.
Moreover, the last block (block 5) is obtained by mixing the inverse and affine
transformation matrices. The remaining three blocks are for the multiplicative
inversion, where, the hardware realization of equation (2) has been depicted. In
this figure, the modulo-2 additions, consisting of 4 XOR gates, are shown by two
concentric circles with a plus inside. Furthermore, the multiplications in GF (24)
are shown by rectangles with crosses inside. In the remaining of this section, the
five predicted parities of the outputs of five blocks of the S-box (b1-b5 in Fig. 1)
are obtained. The predicted parity of the output of block i is a Boolean function
of the inputs of block i. These parity predictions are denoted by P̂b1, P̂b2, P̂b3,
P̂b4, and P̂b5 in Fig. 1. It is noted that we have exhaustively searched for the
best possible choice of ν and Φ to find the least overhead parity predictions using
composite field and normal basis, the details of which are to follow.

3.1 Least Overhead Parity Predictions

The implementation complexities of different blocks of the S-box are dependent
on the choice of the coefficients ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible
polynomials u2 + u + ν and v2 + v + Φ used for the composite field. Therefore,
the area/delay complexities of the predicted parities of these blocks are also af-
fected for different choices of ν and Φ. It is noted that only the values of these
coefficients that make the polynomials irreducible are acceptable. Therefore, it
can be derived that the only two acceptable values for Φ are Φ = w2 = {10}2
and Φ = w = {01}2. Furthermore, among the 16 values for ν, the follow-
ing 8 make the polynomial of u2 + u + ν irreducible and thus are possible:
ν ∈ {{Φ00}2, {00Φ}2, {Φ200}2, {00Φ2}2, {Φ11}2, {11Φ}2, {Φ211}2, {11Φ2}2} = {
{0100}2, {0001}2, {1000}2, {0010}2, {0111}2, {1101}2, {1011}2, {1110}2}.

In what follows, we are going to compare different implementations of the
predicted parities of the blocks in the S-box considering different combinations
of ν and Φ to reach a low complexity fault detection scheme.

Blocks 1 and 5 of the S-box. Based on the possible values of ν and Φ,
the transformation matrices in blocks 1 and 5 of the S-box, denoted as Ψ and
Ψ−1/affine, can be constructed using the algorithm presented in [17] with a
slight modification for normal basis. One possible way to find the least complex
transformation matrices is to calculate the Hamming weights, i.e., the number
of non-zero elements, of the matrices Ψ and Ψ−1/affine. It is noted in [9] that
instead of considering the Hamming weights, subexpression sharing is used for
obtaining the low complexity implementations. We have exhaustively searched
for the least overhead transformation matrices and their parity predictions com-
bined, the results of which are presented in Table 1. In this table, for every
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Table 1. Area/delay complexities of blocks 1 and 5 of the S-box and their predicted
parities for possible values of νs and Φs

H(Ψ)+H Total area of Total delay of Total area of Total delay of

Φ ν (Ψ−1/affine) blocks 1 and 5 blocks 1 and 5 P̂b1 and P̂b5 P̂b1 and P̂b5

0001 57 28X 5X
0010 57 32X 5X
0100 57 34X 5X

10 1000 57 30X 5X
0111 67 34X 3X
1011 65 30X 5X
1101 67 34X 3X
1110 65 31X 7TX 5X 4TX

0001 57 32X 5X
0010 57 32X 5X
0100 57 29X 5X

01 1000 57 34X 5X
0111 65 34X 5X
1011 67 37X 3X
1101 65 34X 5X
1110 67 32X 3X

X = XOR, TX= Delay of an XOR.

possible combination of ν and Φ, the Hamming weights of Ψ and Ψ−1/affine for
the least complex cases are tabulated in column 3. Also, the number of gates
needed for the low complexity implementation of blocks 1 and 5 are presented
in column 4 of the table. Furthermore, the total number of XOR gates needed
for the predicted parities of blocks 1 and 5 of the S-box, i.e., P̂b1 and P̂b5, and
the delays associated with them are also shown in the table.

Block 2: As shown in Fig. 1, block 2 of the S-box consists of a multiplication,
an addition, a squaring and a multiplication by constant ν in GF (24). The
multiplication in GF (24) presented in [12], is depicted in Fig. 2a. As seen in
this figure, it consists of three multiplications, additions and a multiplication by
constant Φ in GF (22). Moreover, the multiplication in GF (22) is shown in this
figure. The following lemmas are used for deriving the predicted parity of the
multiplication in GF (24) and block 2, respectively. It is noted that all proofs are
presented in Appendix A.

Lemma 1. Let λ = (λ3, λ2, λ1, λ0) and δ = (δ3, δ2, δ1, δ0) be the inputs of a
multiplier in GF (24). The predicted parity of the result of the multiplication of
λ and δ in GF (24) is independent of Φ and can be derived as

P̂π = λ3δ3 + λ2δ2 + λ1δ1 + λ0δ0. (3)

Lemma 2. The predicted parity of block 2, i.e., P̂b2 in Fig. 1, depends on the
choice of the coefficients ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible polyno-
mials u2 + u + ν and v2 + v + Φ used for the composite field.
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Fig. 2. (a) Multiplication and (b) Inversion in GF (24) [12]

The proof is presented in Appendix A.
Using Lemma 1 and Lemma 2 and Fig. 1, we can state the following to predict

the parity of block 2. The proof is presented in Appendix A.

Lemma 3. The predicted parity of block 2, i.e., P̂b2, can be derived as shown in
Table 2.

Table 2 shows the predicted parities for different combinations of ν and Φ and
their area/delay complexities. Moreover, the complexities for block 2 are shown
in this table. As seen in Table 2, the delay overhead for both the original block
and its parity prediction is the same for all the cases. Whereas, the area in terms
of the number of gates are different for different values of ν and Φ.

Block 3: Block 3 in Fig. 1 consists of an inversion in GF (24). The hardware
implementation for this block has also been shown in Fig. 2b [12]. As seen in
this figure, the inversion in GF (24) is dependent on the two possible choices of
Φ and is the same for different values of ν. Therefore, depending on the choice
of Φ, there are two possible choices for this block and its parity prediction. It
is noted that for both of these implementations, the area and the critical path
delay are the same. The following theorem is used for obtaining the predicted
parity of block 3, i.e., P̂b3, the proof of which is presented in Appendix A.
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Table 2. Parity predictions and complexities of block 2 of the S-box in Fig. 1 for
possible values of ν and Φ

Area of Delay of Predicted Area of Delay of

Φ ν block 2 block 2 parity (P̂b2) P̂b2 P̂b2

0001 28X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1 3X+3O+1A
0010 29X+9A (η7 ∨ η3) + (η5 ∨ η1) + (η4 ∨ η0) + η6η2 3X+3O+1A
0100 28X+9A (η6 ∨ η2) + (η5 ∨ η1) + (η4 ∨ η0) + η7η3 3X+3O+1A

10 1000 29X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η5 ∨ η1) + η4η0 3X+3O+1A
0111 28X+9A (η4 ∨ η0) + η7η3 + η6η2 + η5η1 3X+3A+1O
1011 29X+9A (η7 ∨ η3) + η6η2 + η5η1 + η4η0 3X+3A+1O
1101 28X+9A (η6 ∨ η2) + η7η3 + η5η1 + η4η0 3X+3A+1O
1110 29X+9A 6TX (η5 ∨ η1) + η7η3 + η6η2 + η4η0 3X+3A+1O 2TX

0001 29X+9A +1TA (η6 ∨ η2) + (η5 ∨ η1) + (η4 ∨ η0) + η7η3 3X+3O+1A +1TA

0010 28X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η5 ∨ η1) + η4η0 3X+3O+1A
0100 29X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1 3X+3O+1A

01 1000 28X+9A (η7 ∨ η3) + (η5 ∨ η1) + (η4 ∨ η0) + η6η2 3X+3O+1A
0111 29X+9A (η6 ∨ η2) + η7η3 + η5η1 + η4η0 3X+3A+1O
1011 28X+9A (η5 ∨ η1) + η7η3 + η6η2 + η4η0 3X+3A+1O
1101 29X+9A (η4 ∨ η0) + η7η3 + η6η2 + η5η1 3X+3A+1O
1110 28X+9A (η7 ∨ η3) + η6η2 + η5η1 + η4η0 3X+3A+1O

A = AND, {+, X} = XOR, {∨, O} = OR.
TX= Delay of an XOR, TA= Delay of an AND= Delay of an OR.

Theorem 1. Let γ = (γ3, γ2, γ1, γ0) be the input and θ = (θ3, θ2, θ1, θ0) be the
output of an inverter in GF (24). Then, for Φ = w2 = {10}2, the predicted parity
of block 3, i.e., P̂b3, can be found as

P̂b3 = P̂θ = γ2γ0(γ3 + γ1) + γ3γ1(γ2 + γ0). (4)

Also, for Φ = w = {01}2 we have

P̂b3 = P̂θ = γ3γ1(γ2 + γ0) + γ2γ0(γ3 + γ1). (5)

Block 4: Block 4 of the S-box consists of two multiplications in GF (24). Ac-
cording to Lemma 1, the area/delay overhead of the multiplications in GF (24)
and that of their predicted parity are the same for both Φ = w = {01}2 and Φ =
w2 = {10}2. Moreover, as seen in Fig. 1, we have P̂b4 = P̂ηhθ + P̂ηlθ = P̂(ηh+ηl)θ.
Then, according to (3) in Lemma 1 with the inputs of ηh + ηl and θ, one can
find P̂b4 as

P̂b4 = (η7 + η3)θ3 + (η6 + η2)θ2 + (η5 + η1)θ1 + (η4 + η0)θ0. (6)

It is noted that as seen in Fig. 1, for the implementation of P̂b4, the modulo-2
additions of η7 + η3, η6 + η2, η5 + η1, and η4 + η0 are already available at the
input of block 2. Therefore, implementing (6) only needs 3 XORs and 4ANDs.
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Fig. 3. Time complexity of the presented concurrent fault detection scheme for the 5
blocks of the S-box

3.2 Complexity Analysis

Based on the above discussions, the delay overhead of the predicted parities of
the 5 blocks in the S-box is the same for different combinations of ν and Φ, i.e.,
the total delay of the predicted parities is 14TX + 4TA. This delay overhead can
overlap the delays for the implementations of the 5 blocks in Fig. 1. We use Fig. 3
for explaining this delay overhead in more details. As seen in this figure, the time
complexity of the presented concurrent fault detection scheme for the 5 blocks
of the S-box is shown. For this reason, the delays for the parity predictions, i.e.,
the delays for P̂b1-P̂b5, as well as the delays for the actual parity calculations1,
i.e., the delays for Pb1-Pb5, are depicted in this figure. As seen in Fig. 3, the
delays for 5 parity predictions can overlap the time needed for computations
in the corresponding blocks. After finding the predicted parity for a block, say
block i, the actual parity of this block is obtained during the time needed for
the computation of block i + 1. As seen in Fig. 3, the only delay overhead for
this concurrent scheme is the delay of the actual parity of block 5 which is 3TX .

Using the discussions presented in this section and the results of Tables 1 and
2, the total gate count of all blocks of the S-box and their parity predictions for
different combinations of ν and Φ are shown in Table 3. As seen in this table,
if we only consider the area complexities of the parity predictions, the following
four composite fields have the least area: Φ = {10}2 and ν ∈ {{0111}2, {1101}2}
and also Φ = {01}2 and ν ∈ {{1011}2, {1110}2}. As seen from Table 3, the
gates needed for implementing these low-area parity predictions are 12 XORs,
11 ANDs, 1 OR and 1 NOT. However, the results of the table show that none of
these has the least area for the S-box and its fault detection circuit together. As
seen in Table 3, among all the 16 possible combinations of ν and Φ, the composite

1 Binary trees of XOR gates are used.
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Table 3. Area complexities of blocks 1 to 5 of the S-box and their predicted parities
for possible values of νs and Φs

Area of Area of Total area of the S-box

Φ ν blocks 1 to 5 P̂b1 to P̂b5 and its parity predictions

0001 119X+36A 14X+9A+3O+1N 133X+45A+3O+1N
0010 124X+36A 14X+9A+3O+1N 138X+45A+3O+1N
0100 125X+36A 14X+9A+3O+1N 139X+45A+3O+1N

10 1000 122X+36A 14X+9A+3O+1N 136X+45A+3O+1N
0111 125X+36A 12X+11A+1O+1N 137X+47A+1O+1N
1011 122X+36A 14X+11A+1O+1N 136X+47A+1O+1N
1101 125X+36A 12X+11A+1O+1N 137X+47A+1O+1N
1110 123X+36A 14X+11A+1O+1N 137X+47A+1O+1N
0001 124X+36A 14X+9A+3O+1N 138X+45A+3O+1N
0010 123X+36A 14X+9A+3O+1N 137X+45A+3O+1N
0100 121X+36A 14X+9A+3O+1N 135X+45A+3O+1N

01 1000 125X+36A 14X+9A+3O+1N 139X+45A+3O+1N
0111 126X+36A 14X+11A+1O+1N 140X+47A+1O+1N
1011 128X+36A 12X+11A+1O+1N 140X+47A+1O+1N
1101 126X+36A 14X+11A+1O+1N 140X+47A+1O+1N
1110 123X+36A 12X+11A+1O+1N 135X+47A+1O+1N

X = XOR, A = AND, O = OR, N = NOT .

field shown in bold face, i.e., Φ = w2 = {10}2 and ν = {00Φ2}2 = {0001}2,
has the least area for the S-box and its fault detection circuit combined. It is
interesting to note that after area optimization, this field has also been suggested
in [9] for reaching the least area S-box using composite field.

From the previous section, we reach the following parity predictions for the 5
blocks in order to obtain the least overhead S-box and its fault detection circuit
in Fig. 1

P̂b1 = x7 + x5, (7)

P̂b2 = (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1, (8)

P̂b3 = γ2γ0(γ3 + γ1) + γ3γ1(γ2 + γ0), (9)

P̂b4 = (η7 + η3)θ3 + (η6 + η2)θ2 + (η5 + η1)θ1 + (η4 + η0)θ0, (10)

P̂b5 = σ7 + σ5 + σ4 + σ3 + σ2, (11)

where, ∨ represents an OR operation.
We conclude this section with the calculation of the error coverage of the

presented scheme. As seen in Fig. 1, since the 5 blocks of the S-box do not overlap,
the fault detection of each block is independent of those of the others. It is noted
that using parities, the probability of detecting (or not detecting) the faults by
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the error indication flag of each block is 1
2 . Therefore, using the mentioned fault

model, for the error coverage of each S-box we have 100 × (1 − (1
2 )5)% = 97%.

4 Comparisons

In this section, we compare the area and the delay of the presented scheme with
those of the previously reported ones. For this reason, first the gate count and
the gate delays of the schemes are obtained and compared. Then, the implemen-
tations on the Xilinx [18] FPGAs are presented.

4.1 Area and Time Complexities

For deriving the area overhead of the presented fault detection scheme, we as-
sume that 2-input AND and OR gates require 6 transistors each using the full
CMOS technology. Also, 2-input XOR and XNOR gates can be implemented
using 10 transistors each [19] and a NOT gate can be realized using 2 transistors
assuming that PMOS and NMOS need the same chip area. Therefore, the space
complexities of a 2-input AND (OR) and a NOT gate are equivalent to 0.6 and
0.2 XOR gates, respectively.

In the previous section, the total gate count for the predicted parities of 5
blocks of the S-box was derived as 14 XORs, 9 ANDs, 3 ORs and 1 NOT which
is equivalent to 21.4 XORs. In addition, 23 XORs and 5 XORs are needed for
obtaining the actual parities and the comparisons of the predicted and the actual
parities, respectively. Therefore, the equivalent gates for the total area overhead
is obtained as 21.4 + 28 = 49.4 XOR gates. Moreover, as seen in Table 3, the
corresponding S-box implementation needs 119 XORs and 36 ANDs which is
equivalent to 140.6 XOR gates. Therefore, the percentage of area overhead is
approximately 49.4

140.6 � 35%.
The complexity of the presented fault detection scheme can be compared to

the other fault detection schemes of the S-box using composite fields. The original
area of the S-boxes and the overheads of these fault detection schemes in terms
of equivalent XOR gates are presented in Table 4. The S-box presented in [11]
has been hardware optimized in [20] and is extensively used in the literature, see
for example [21], [22]. The gate count for the predicted parities of this S-box in
[20] is derived as 23 XORs, 10 ANDs and 1 XNOR [8]. In addition, similar to the
scheme in this paper, 28 XORs are required for obtaining the actual parities and
their comparisons with the predicted parities. Therefore, the equivalent gates
for the total area overhead is obtained as 58 XORs. Moreover, this S-box needs
123 XORs and 36 ANDs, equivalent to 144.6 XOR gates, resulting in the area
overhead of approximately 40%. In addition, for comparison, we have derived the
parity predictions of the S-box using polynomial basis, presented in [23] which
is used in the literature, see for example [24], [25], [26]. Table 4 shows the total
equivalent gate count for the fault detection scheme of this S-box, comprising
the actual and the predicted parities and comparisons. As seen in this table,
the gate overhead for the fault detection scheme of this S-box is around 38%.
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Table 4. Area overhead comparison of the parity-based fault detection schemes

S-box [11], [20], [21], [22] [23], [24], [25], [26] [27] Presented
FDSa [8] Appliedb Appliedb This work

S-box XORs 144.6 144.6 141.6 140.6
FDS XORsc 58 56 56.4 49.4

Area overhead 40% 38% 39% 35%

a Fault detection scheme.
b We have applied the technique proposed in [8] to derive the predicted parities for

the 5 blocks of the S-boxes presented in [23]-[27].
c The area complexity overhead of the fault detection scheme is dependent on the way

the S-box is implemented. Therefore, the numbers of XOR gates are different for
different S-box realizations.

Finally, using subexpression sharing for the implementation of the S-box in [27],
the area overhead of the fault detection scheme is approximately 39% (see Table
4). As seen in this table, all the above S-boxes and their fault detection S-boxes
are less compact than the scheme presented in this paper. It is noted that similar
to the presented fault detection scheme, the delay overhead of these schemes is
4TX comprising 3TX for calculating the actual parity of block 5 plus one TX for
its comparison with the predicted parity of this block.

4.2 FPGA Implementations

In the following, we have implemented the S-boxes using look-up table (LUT)
and the ones presented in [20], [23], and [27] which use polynomial basis (PB)
representation in composite field. We have also implemented the fault detection
schemes proposed in [2] and [3] which are based on the LUT implementation of
the S-box and the one presented in [8] which is based on the S-box of [20]. More-
over, we have applied similar technique presented in [8] and derived formulations
for the S-boxes of [23] and [27] to implement their fault detection schemes. All
the schemes are implemented on the Xilinx VirtexTM-E and VirtexTM-II Pro
FPGAs [18] and are compared with the one presented in this paper. For the im-
plementations, VHDL has been used as the design-entry language for the Xilinx
ISETM version 9.1i. Furthermore, the synthesis is performed using XSTTM.

For the presented scheme in this paper, we have implemented the S-box pre-
sented in the previous section and the fault detection circuits, i.e., the equations
(7)-(11). The results of the implementations have been tabulated in Table 5.
In this table, the synthesis optimization goal is set as area with medium effort.
The number of slices used for the implementations on the target devices and
the minimum clock periods (delays) are presented in this table. It is noted that
we have not used sub-pipelining in the implementations of the S-boxes using
composite fields since the results are intended for finding the space complexity
of the S-boxes and the overhead of their fault detection schemes.
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Table 5. Comparisons of the implementation of the fault detection scheme of the S-box
using normal basis (NB) with those of other schemes on Xilinx FPGAs

FPGA family S-box Slice Delay (ns)
(Device) Structure FDS Original FDS Overheada Original FDS Overheada

LUT [2] 88 188 113.6% 6.280 8.621 37.3%
LUT [3] 88 206 134.1%b 6.280 8.242 31.2%

Virtex-E PB [20] [8] 33 42 27.3% 17.976 19.079 6.1%
(xcv50e-8) PB [23] Appliedc 38 50 31.6% 15.875 17.077 7.8%

PB [27] Appliedc 37 47 27.0% 19.133 19.912 4.1%
NB This work 31 39 25.8% 16.517 17.360 5.1%
LUT [2] 69 150 117.4% 3.826 5.398 41.0%

LUT [3] 69 159 130.4%b 3.826 4.287 12.0%
Virtex-2 Pro PB [20] [8] 33 42 27.3% 9.375 10.317 10.0%
(xc2vp2-7) PB [23] Appliedc 38 50 31.6% 8.285 9.582 15.7%

PB [27] Appliedc 37 47 27.0% 9.986 10.832 8.4%
NB This work 31 39 25.8% 9.339 10.026 9.8%

a Overhead=F DS−original
original

× 100.
b The high area overhead is because of using two blocks of 256 × 9 memory cells to

generate the predicted parity bit and the 8-bit output of the S-box [3].
c We have applied the technique proposed in [8] to derive the predicted parities for

the 5 blocks of the S-boxes presented in [23] and [27].

The results of the comparison of the presented fault detection scheme for the S-
box using normal basis with those of the other schemes have also been presented
in Table 5. Using pipelined distributed memories, we have implemented the fault
detection scheme presented in [2], which is based on using redundant units for the
S-box of table look-ups. Furthermore, the fault detection scheme proposed in [3]
is implemented. This scheme uses 512×9 memory cells to generate the predicted
parity bit and the 8-bit output of the S-box [3]. The results in Table 5 show that
for both of these schemes the area overhead is more than 100%. We have also
implemented the fault detection scheme presented in [8] which uses the original
S-box proposed in [20]. This S-box uses the polynomial basis representation in
composite field. Our implementations show that the implementation of [20] is
more area-efficient on FPGAs than the ones presented in [23] and [27]. However,
the one presented in [23] is the fastest one compared to [20] and [27]. Moreover,
we have applied the fault detection schemes presented in [8] to the S-boxes in
[23] and [27]. Those fault detection schemes have also been implemented and the
implementation results are also shown in this table.

As seen in bold faces in the table, the presented S-box is the most compact
one among the other S-boxes with and without the fault detection scheme. It
is interesting to note that the least area required for the S-box implementation
using normal basis on FPGAs complies with the least gate count reported in
[12] for such a composite field. Moreover, except for the scheme in [27], the post
place and route timing overhead of the presented scheme is less than the other
schemes. It is interesting to note that the presented scheme has less delay for the
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fault detection S-box compared to the scheme for [27]. This delay can overlap
the computation time of the next transformation in the AES encryption.

5 Conclusions

In this paper, we have presented a high performance parity-based concurrent
fault detection scheme of the S-box using normal basis for the advanced encryp-
tion standard. We have exhaustively searched for the least complex S-box as well
as its fault detection circuit and have presented closed formulations for the parity
predictions of each block of the S-box. We have implemented a number of pro-
posed S-boxes and their fault detection schemes from the literature on FPGAs
and compared them with the one presented here. Our FPGA implementations
using area optimized syntheses show that the S-box using normal basis is more
compact than the one using polynomial basis. Moreover, the cost of the FPGA
implementation of the presented fault detection scheme is 25.8% slice overhead
with negligible timing delay. It is noted that similar parity-based fault detection
scheme can be obtained for the inverse S-box in the AES decryption.
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Appendix A: Proofs

Proof of Lemma 1. According to Fig. 2a, for the inputs Λ = (Λ1, Λ0) and Δ =
(Δ1, Δ0), the two-bit result of the multiplication in GF (22), Π = (Π1, Π0), can
be derived as Π1 = Δ1Λ0 + Δ0Λ1 + Δ0Λ0 and Π0 = Δ1Λ0 + Δ0Λ1 + Δ1Λ1.
Furthermore, multiplication by two possible values of Φ, i.e., Φ = w2 = {10}2
and Φ = w = {01}2, can be obtained by putting Δ = Φ. Then, we have Π1 = Λ0
and Π0 = Λ1 + Λ0 for Φ = w2 = {10}2 and Π1 = Λ1 + Λ0 and Π0 = Λ1 for
Φ = w = {01}2. Consequently, one can derive the coordinates of π according to
Fig. 2a and these discussions for the operations in the multiplication GF (24).
Therefore, for Φ = w2 = {10}2 we have

π3 = λ3(δ3 + δ1 + δ0) + λ2(δ1 + δ2) + λ1(δ3 + δ2 + δ1 + δ0) + λ0(δ3 + δ1),
π2 = λ3(δ2 + δ1) + λ2(δ3 + δ2 + δ0) + λ1(δ3 + δ1) + λ0(δ2 + δ0),
π1 = λ3(δ3 + δ2 + δ1 + δ0) + λ2(δ3 + δ1) + λ1(δ3 + δ2 + δ1) + λ0(δ3 + δ0), (12)
π0 = λ3(δ3 + δ1) + λ2(δ2 + δ0) + λ1(δ3 + δ0) + λ0(δ2 + δ1 + δ0).

Also, for Φ = w = {01}2 we have the result as

π3 = λ3(δ3 + δ2 + δ1) + λ2(δ3 + δ0) + λ1(δ3 + δ1) + λ0(δ2 + δ0),
π2 = λ3(δ3 + δ0) + λ2(δ2 + δ1 + δ0) + λ1(δ2 + δ0) + λ0(δ3 + δ2 + δ1 + δ0),
π1 = λ3(δ3 + δ1) + λ2(δ2 + δ0) + λ1(δ3 + δ1 + δ0) + λ0(δ2 + δ1), (13)
π0 = λ3(δ2 + δ0) + λ2(δ3 + δ2 + δ1 + δ0) + λ1(δ2 + δ1) + λ0(δ3 + δ2 + δ0).

Modulo-2 adding the coordinates of (12) or (13) gives (3) and the proof is com-
plete. In addition, another proof can be obtained by observing Fig. 2a and noting
that the output of the multiplication by Φ is added to both of the results, i.e.,
it is added to both (π3, π2) and (π1, π0). Therefore, it is canceled in finding the
predicted parity. ��

Proof of Lemma 2. Considering the fact that P̂b2 = P̂(ηh+ηl)2ν + P̂ηhηl
, one can

use Lemma 1 to obtain P̂ηhηl
independent of the values of ν and Φ. However,

P̂(ηh+ηl)2ν depends on the elements ν and Φ. This is because of having squaring
in GF (24), i.e., (ηh + ηl)2, and also a multiplication by ν to obtain P̂(ηh+ηl)2ν .
Therefore, the predicted parity of block 2 is also dependent on these values and
the proof is complete. ��

Proof of Lemma 3. One can use Lemma 1 to obtain P̂(ηh+ηl)2ν and P̂ηhηl
in

P̂b2 = P̂(ηh+ηl)2ν +P̂ηhηl
. P̂ηhηl

can be easily found using Lemma 1. Furthermore,
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using Lemma 1 with the inputs being λ = (ηh + ηl)2 and δ = ν one can obtain
P̂(ηh+ηl)2ν . Noting that the possible values for Φ are Φ = w2 = {10}2 and
Φ = w = {01}2, one can find the corresponding possible (ηh + ηl)2 using (12)
and (13). This is achieved by putting both inputs in (12) or (13) as ηh + ηl.
Then, for Φ = w2 = {10}2 we have

(ηh + ηl)2 =(η7 + η6 + η5 + η3 + η2 + η1, η6 + η5 + η4 + η2 + η1 + η0,

η7 + η5 + η4 + η3 + η1 + η0, η7 + η6 + η4 + η3 + η2 + η0), (14)

and for Φ = w = {01}2 we have

(ηh + ηl)2 =(η7 + η5 + η4 + η3 + η1 + η0, η7 + η6 + η4 + η3 + η2 + η0,

η7 + η6 + η5 + η3 + η2 + η1, η6 + η5 + η4 + η2 + η1 + η0). (15)

One can obtain the predicted parities of block 2, i.e., P̂b2 = P̂(ηh+ηl)2ν + P̂ηhηl
, for

all the possible combinations of ν and Φ. The results are presented in Table 2. ��

Proof of Theorem 1. According to Fig. 2b, P̂θ = P̂Υ−1γh
+ P̂Υ−1γl

= P̂Υ−1(γh+γl).
Then, according to the predicted parity of the multiplication in GF (22) in the
proof of Lemma 1, we have P̂Υ−1(γh+γl) = Υ−1

1 (γ3+γ1)+Υ−1
0 (γ2+γ0). Moreover,

considering the fact that the inversion in GF (22) is free, i.e., Υ−1 = (Υ0, Υ1), we
reach P̂θ = Υ0(γ3 + γ1) + Υ1(γ2 + γ0). Then, according to the formulations for
the multiplication in GF (22) and knowing that the squaring in GF (22) is free,
finding the coordinates of Υ for two values of Φ is straightforward and the proof
is complete. ��
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Abstract. Fault attacks as introduced by Bellcore in 1996 are still a
major threat toward cryptographic products supporting RSA signatures.
Most often on embedded devices, the public exponent is unknown, turn-
ing resistance to fault attacks into an intricate problem. Over the past
few years, several techniques for secure implementations have been pub-
lished, all of which suffering from inadequacy with the constraints faced
by embedded platforms. In this paper, we introduce a novel countermea-
sure mechanism against fault attacks in RSA signature generation. In
the restricted context of security devices where execution time, mem-
ory consumption, personalization management and code size are strong
constraints, our countermeasure is simply applicable with a low compu-
tational complexity. Our method extends to all cryptosystems based on
modular exponentiation.

Keywords: Bellcore attack, Chinese Remainder Theorem, Fault attacks,
RSA, Software countermeasure, Modular exponentiation.

1 Introduction

1.1 Restricted Context

Throughout the paper, we will be considering constrained embedded architec-
tures on which one seeks to simultaneously optimize the following:

Execution Time. The secure RSA-CRT signature computation has to be per-
formed in reasonable time. Without giving concrete bounds, the time overhead
added by the countermeasure must remain negligible compared to the whole RSA
signature calculation. This is of prime importance for micro-controllers running
under a clock frequency of only a few megahertz.

Memory Consumption. Countermeasures require extra RAM memory buffers
to store security parameters. 2K RSA is now supported as a standard function-
ality and we impose that the whole memory consumption remains comprised
between 1 and 2K bytes.

Personalization Management. The availability of input key parameters is
very strict. Only the input message m, as well as the key elements p, q, dp, dq, iq

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 130–145, 2008.
c© International Association for Cryptologic Research 2008
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are known while performing the signature and no extra variable parameter can
be stored in non-volatile memory. This constraint stems from mass-production
requirements where the personalization of unusually formatted keys in the device
is costly and no customizable key container is available in EEPROM nor Flash
to store anything different from the classical RSA-CRT key sets [1].

Code Size. On micro-controllers that have little ROM, the code size will be of
a great concern. The extra code size added by the countermeasure must remain
negligible compared to the whole code size of the signature. To minimize the
code, it is preferable to design a simple countermeasure based on already existing
arithmetic bricks.

1.2 The Bellcore Attack and Related Countermeasures

Invasive attacks on a hardware device consist in disturbing its expected behav-
ior and making it work abnormally in order to infer sensitive data. They were
introduced in the late nineties. As the technological response of hardware man-
ufacturers evolves, new hardware countermeasures are being added regularly.
However it is widely believed that those can only be effective if combined with
efficient software countermeasures. Embedded devices are especially exposed to
this category of attacks since the attacker has the hardware fully available in
hands. A typical example is the original Bellcore attack [2] which allows an
attacker to retrieve the RSA private key given one faulty signature.

Since the discovery of the Bellcore attack, countermeasures have been pro-
posed by the research community. In 1997, Shamir proposed an elegant coun-
termeasure [3] assuming that the private exponent d is known when running an
RSA signature generation in CRT mode. In practice, however, this parameter
is hardly available. Aumüller et al. [4] in 2002, Blömer et al. [5] in 2003, Joye
and Ciet [6] and Giraud [7] in 2005, and Kim and Quisquater [8] in 2007 also
proposed CRT secure implementations of RSA. All these countermeasures have
a dramatic impact either on execution time, memory consumption or person-
alization management constraints. As an example, Aumüller et al. set out an
efficient countermeasure [4] in 2002 using a small prime on which evaluating Eu-
ler’s totient function is trivial. We will see in the sequel that, on the one hand,
this countermeasure gives good performances. On the other hand, the selection
of a random prime constitutes a real disadvantage.

This paper presents a simple alternative countermeasure thwarting fault at-
tacks on RSA with CRT. Compared to prior techniques, our countermeasure is
cost-effective regarding all considered constraints.

In Section 2, we make a brief review of the Bellcore attack and we show the
disadvantages of previous propositions in the defined context. Our secure expo-
nentiation algorithm and its application to RSA in the CRT mode is shown in
Section 3. We then analyze its security under a fault model described in Sec-
tion 4, where brief estimates in terms of time execution, memory consumption,
personalization management and code size are undertaken. Finally Section 5
concludes this paper.
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2 Related Work

2.1 RSA-CRT System

RSA was introduced in 1977 by Rivest, Shamir and Adleman [9]. In the so-called
straightforward mode, (N, e) is the RSA public key and (N, d) the RSA private
key such that N = pq, where p and q are large prime integers, gcd((p − 1), e) =
gcd((q − 1), e) = 1 and d = e−1 mod (p − 1)(q − 1). The RSA signature of a
message m < N is given by S = md mod N .

As the computing power of crypto-enabled architectures increases, RSA key
sizes inflate overtime. 2K RSA is now a standard functionality. It is a strong
constraint on embedded devices as processors have little RAM memory and run
under a clock frequency of a few megahertz. RSA is more efficient in Chinese
Remainder Theorem mode than in straightforward mode. The RSA-CRT domain
is composed of an RSA public key (N, e) and an RSA private key (p, q, dp, dq, iq)
where N = pq, p and q are large prime integers, gcd((p−1), e) = gcd((q−1), e) =
1, dp = e−1 mod (p − 1), dq = e−1 mod (q − 1) and iq = q−1 mod p. As it
handles data with half the RSA modulus size, RSA with CRT is theoretically
about four times faster and is therefore better suited to embedded devices. The
RSA signature in CRT mode is described in Figure 1.

Input: message m, key (p, q, dp, dq, iq)
Output: signature md ∈ ZN

Sp = mdp mod p
Sq = mdq mod q
S = Sq + q · (iq · (Sp − Sq) mod p)
return (S)

Fig. 1. Naive CRT implementation of RSA

2.2 The Bellcore Attack against RSA with CRT

In 1996, the Bellcore Institute introduced a differential fault attack [2] which is
still weakening the RSA-CRT signature security today. On embedded platforms,
this attack is usually considered as “easy” since the attacker has full access to the
device. Disturbing the calculation of either Sp = mdp mod p or Sq = mdq mod q
can be achieved in ways such as voltage glitches, laser or temperature variation.
Once the precise disturbance is obtained the attack succeeds, and allows an
attacker to retrieve the RSA prime factors with a single gcd calculation. By
construction, S = Sq + q · (iq · (Sp − Sq) mod p) = Sp + p · (ip · (Sq − Sp) mod q).
Noting S the correct signature and S̃ the faulty signature where either Sp or Sq

(but not both) is incorrect for the same input message, gcd(S − S̃, N) is either q
or p. A standard improvement of the Bellcore attack [10] leads to retrieving the
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factorization of N without the genuine signature by calculating gcd((S̃e − m)
mod N, N) ∈ {p, q}. Thus, the RSA private elements p and q are recovered and,
as a consequence, the whole RSA-CRT private key is recovered.

2.3 Previous Countermeasures

Shamir’s Method and Generalizations. One year after the discovery of
the Bellcore attack, Shamir proposed an elegant countermeasure [3] where the
method consists in computing S∗

p = md mod pr and S∗
q = md mod qr sepa-

rately and in checking the consistency of S∗
p and S∗

q by testing whether S∗
p =

S∗
q mod r. A more efficient variant suggests to choose r prime and reduce d mod-

ulo (p−1)(r−1) and (q−1)(r−1). However, requiring the RSA straightforward-
mode private exponent d, while performing an RSA signature generation in CRT
mode, is unpractical since the key material is given in CRT format [1]. This pa-
rameter is most often not known and it would be unacceptable in our context
to personalize d for each device. d could be computed from p, q, dp and dq, but
as no key container would be available to store it, the computation of d would
be mandatory at each RSA signature. As described in [11], this would lead to
an unreasonable execution time overhead since we need to invert (p−1) modulo
(q − 1). Moreover, the CRT recombination is not protected at all since injecting
a fault in iq during the recombination allows the gcd attack.

Other improvements of Shamir’s method which include the protection of the
recombination were proposed later. As an example, Aumüller et al. [4] in 2002
proposed a careful implementation that also protects the CRT recombination.
As opposed to Shamir’s method, only dp and dq (and not d) are required. The
algorithm is fully described in Figure 2. The proposal uses the efficient variant
of the method where the parameter t is prime. Therefore the solution gives good
performances. Compared to the naive CRT implementation of RSA, only two
extra exponentiations modulo t and a few modular reductions are required. This
solution presents a big disadvantage: the way the random prime is selected. Is
it fixed or picked at random in a fixed table? (If this prime is recovered, does
it make new flaws appear?). Is it different on each device? (This would impact
personalization management). Is it generated at random for each signature?
(This would lead to an unacceptable slowdown).

Interestingly, other solutions combining generalizations of Shamir’s method
and infective computation were proposed. The main idea of this combination
consists in infecting the signature S whenever a fault is induced, such that the
gcd attack is no more feasible on the faulty signature S′, i.e. S′ �= S mod p
and S′ �= S mod q. This concept was introduced in 2001 by Yen, Kim, Lim and
Moon [12]. Later, Blömer, Otto and Seifert suggested a countermeasure [5] based
on infective computation in 2003. Unfortunately, as for Shamir’s original method,
it requires the availability of d. Moreover, some parameters t1 and t2 required by
the countermeasure have to satisfy quite strong properties: amongst the required
properties, it is needed that: gcd(t1, t2) = gcd(d, ϕ(t1)) = gcd(d, ϕ(t2)) = 1,
where ϕ represents the Euler’s totient function. t1 and t2 should normally be
generated one time with the RSA key and the same values used throughout the
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Input: message m, key (p, q, dp, dq, iq)
32-bit prime integer t
Output: signature md ∈ ZN

p′ = pt
d′p = dp + random1 · (p − 1)
S′

p = md′
p mod p′

if (p′ mod p �= 0) or (d′p mod (p − 1) �= dp) then
return (error)

end if

q′ = qt
d′q = dq + random2 · (q − 1)
S′

q = md′
q mod q′

if (q′ mod q �= 0) or (d′q mod (q − 1) �= dq) then
return (error)

end if

Sp = S′
p mod p

Sq = S′
q mod q

S = Sq + q · (iq · (Sp − Sq) mod p)
if (S − S′

p �= 0 mod p) or (S − S′
q �= 0 mod q) then

return (error)
end if

Spt = S′
p mod t

Sqt = S′
q mod t

dpt = d′p mod (t − 1)
dqt = d′q mod (t − 1)

if S
dqt

pt ≡ S
dpt

qt mod t then
return (S)

else
return (error)

end if

Fig. 2. Aumüller et al.’s secure CRT implementation of RSA

lifetime of the key, but t1 and t2 cannot be stored in this strong personalization
context. Therefore the generation of t1 and t2 at each signature is not negligible.
Compared to Aumüller et al.’s countermeasure, the BOS algorithm requires the
generation of t1 and t2, two evaluations of the totient function ϕ on t1 and t2
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and two inversions. This constitutes a real disadvantage in terms of simplicity
and execution time.

Joye and Ciet also set out an elegant countermeasure based on infective com-
putation [6]. Their generalization of Shamir’s method is more efficient than BOS
since, compared to Aumüller et al.’s countermeasure, one only needs to compute
ϕ(t1) and ϕ(t2) for two random numbers t1 and t2. However, evaluations are not
negligible as they imply a full factorization of t1 and t2. As a consequence, Joye
and Ciet’s countermeasure is not satisfactory in terms of execution time.

Last year, Kim and Quisquater proposed a CRT implementation of RSA de-
feating fault attacks and all known side-channel attacks [8], based on combina-
tion of Shamir’s method and infective computation too. However, their proposed
scheme requires either one inversion modulo N , or to update and store three
unusually formatted parameters of size |N |, at each signature. As defined in
Section 1.1, no key container is available in non-volatile memory and therefore,
this solution becomes hardly acceptable in terms of execution time.

Giraud’s Method. In 2005, Giraud proposed an efficient way [7] to protect
RSA with CRT against fault attacks. His countermeasure is based on the prop-
erties of the Montgomery-ladder exponentiation algorithm [13]. Using this expo-
nentiation algorithm, we compute successively (mdp , mdp−1) and (mdq , mdq−1).
The Montgomery-Ladder algorithm infects both results whenever a fault is in-
duced. The two recombined values S and S′ = mdq−1 + q · (iq · (mdp−1 −
mdq−1) mod p) are computed and the final verification S = mS′ is made. This
solution is also SPA-safe. Unfortunately, the memory consumption is clearly pro-
hibitive since it requires the storage of m, Sp, Sq, S′

p and S′
q in RAM during the

calculation of S. For large RSA key sizes, this countermeasure seems hardly
feasible in portable devices.

This shows that devising a CRT implementation of RSA that thwarts the
Bellcore attack and meets the strong requirements of embedded systems remains
a hard problem.

3 Our Secure RSA with CRT

3.1 Mathematical View

We consider a generic exponentiation of a message m to the exponent d modulo
N . We perform the exponentiation modulo NR where R is for example a 64-bit
random integer. We impose that N and R are coprime, i.e. gcd(N, R) = 1.

Let α be such that

{
α ≡ 0 mod R

α ≡ 1 mod N
and β be such that

{
β ≡ 1 mod R

β ≡ 0 mod N

Applying the Chinese Remainder Theorem, we get the existence and the unique-
ness of α and β in ZNR. We build these integers using Garner’s algorithm:

α = R · (R−1 mod N) = 1 − [N · (N−1 mod R)] mod NR
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β = N · (N−1 mod R) = 1 − [R · (R−1 mod N)] mod NR

Considering R now such that R = r2, where r is for example a 32-bit random
number, we get the following result:

Theorem 1 (Exponentiation Identity in ZNr2). Let N and r be integers
such that gcd(N, r) = 1, let β = N · (N−1 mod r2) and α = 1 − β mod Nr2.
For any m ∈ ZNr2 and for any d ∈ N

∗,

(αm + β · (1 + r))d = αmd + β · (1 + dr) mod Nr2

We refer to Appendix A for a proof and related mathematical details. Theorem 1
provides a way to perform a secure exponentiation in any ring (ZN , +, ·), N ∈ N

∗.

3.2 A Secure Exponentiation Algorithm

We want to perform an exponentiation md of an integer m < N over ZN . Pick
a random integer r coprime with N and compute β = N · (N−1 mod r2) and
α = 1 − β mod Nr2. Applying Theorem 1, in order to exponentiate the element
m and verify that no disturbance occurred, proceed as follows:

1. Compute m̂ = αm + β · (1 + r) mod Nr2

2. Verify that m̂ = m mod N and in case of inequality return “error detected”
3. Compute Sr = m̂d mod Nr2 and S = Sr mod N (= md mod N)
4. Verify that Sr = αS + β · (1 + dr) mod Nr2 and in case of inequality return

“error detected”

By virtue of equalities β = β2 and αβ = 0 in ZNr2 (by construction of α and
β), the consistency of Sr can also be verified by any one of the following checks:

1. βSr = β · (1 + dr) mod Nr2

2. N · (Sr − β · (1 + dr)) = 0 mod Nr2

3. Sr = 1 + dr mod r2

The optimal choice will depend on the hardware architecture and the algorith-
mic context. This countermeasure may be applied to any cryptographic scheme
based on exponentiation in (ZN , +, ·), N ∈ N

∗ (RSA [9], Diffie-Hellman key ex-
change [14], ElGamal [15], . . . ). Here we underline its application to the CRT
implementation of RSA, where it appears to be particularly relevant.

3.3 Application to RSA with CRT

As p and q are prime, r is automatically coprime with p and q ,we define:
βp = p · (p−1 mod r2), αp = 1 − βp mod pr2, βq = q · (q−1 mod r2) and αq =
1 − βq mod qr2. Figure 3 shows a possible application of our countermeasure to
RSA with CRT. Exponentiations Spr and Sqr are performed over Zpr2 and Zqr2 .
We verify that each exponentiation has not been disturbed by checking:

βpSpr = βp · (1 + d′pr) mod pr2 and βqSqr = βq · (1 + d′qr) mod qr2.
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We pick up two 64-bit random integers R3 and R4. We then transform:

Spr into S′
p s.t.

{
S′

p ≡ Sp mod p

S′
p ≡ R3 mod r2 and Sqr into S′

q s.t.

{
S′

q ≡ Sq mod q

S′
q ≡ R4 mod r2

Next, the resulting signature is recombined over ZNr2 :

S = S′
q + q · [

iq · (S′
p − S′

q) mod pr2] ,

and, we perform the final consistency check:

S = R4 + qiq · (R3 − R4) mod r2 .

If all verifications are positive, we return the result S mod N .

3.4 Recommendations

The quality of the random number generator must be verified. We recommend to
choose r such that iq �= 0 mod r. Indeed if r | iq, the fault detection probability
is reduced since the verification N · [S − R4 − qiq · (R3 − R4)] ≡ 0 mod Nr2 is
true even though the result of Sp − Sq mod pr2 or q has been modified. So we
recommend to renew the generation of the random r while r divides iq. r must
be as large as possible within the limits of the hardware architecture. Since we
can see r as a security parameter, the larger it is, the higher the fault detection
probability. Indeed, the highest success probability of an attack is 2−(|r|−1) ln 2
(see Section 4.1 and Appendix B for more details). So we suggest that r should
be at least a 32-bit random integer. Finally, we choose r with most significant
bit equal to one, in order to optimize the security level. We also choose r odd in
order to optimize the efficiency of the inversion.

4 Analysis

4.1 Resistance against Fault Attacks

The following fault model defines what an attacker is able to do by assumption.
By disturbing the device, we mean that an attacker can:

– modify a value in memory obtaining a totally random result uncorrelated to
the original value (as known as permanent fault);

– modify a value when it is handled in local registers, without modifying the
global value in memory. The value handled obtained is fully random looking
to the attacker and uncorrelated to the original value (as known as transient
fault);

The design does not address attackers who can:

– modify the code execution. Processor instructions cannot be replaced or
removed while executing code. Such an attacker might have the power to
dump EEPROM and obtain the secret key;
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Input: message m, key (p, q, dp, dq, iq)
32-bit random integer r
64-bit random integers R1, R2, R3 and R4

Output: signature md ∈ ZN

p′ = pr2, mp = m mod p′

ipr = p−1 mod r2, βp = pipr and αp = 1 − βp mod p′

m̂p = αpmp + βp · (1 + r) mod p′

if (m̂p �= m mod p) then
return (error)

end if
d′p = dp + [R1 · (p − 1)]

Spr = m̂
d′

p
p mod p′

if (βpSpr �= βp · (1 + d′pr) mod p′) or (d′p �= dp mod (p − 1)) then
return (error)

end if
S′

p = Spr − βp · (1 + d′pr − R3)

q′ = qr2, mq = m mod q′

iqr = q−1 mod r2, βq = qiqr and αq = 1 − βq mod q′

m̂q = αqmq + βq · (1 + r) mod q′

if (m̂q �= m mod q) or (mp mod r2 �= mq mod r2) then
return (error)

end if
d′q = dq + [R2 · (q − 1)]

Sqr = m̂
d′

q
q mod q′

if (βqSqr �= βq · (1 + d′qr) mod q′) or (d′q �= dq mod (q − 1)) then
return (error)

end if
S′

q = Sqr − βq · (1 + d′qr − R4)

S = S′
q + q · (iq · (S′

p − S′
q) mod p′)

N = pq
if (N · [S − R4 − qiq · (R3 − R4)] �= 0 mod Nr2) or (qiq �= 1 mod p)
then

return (error)
end if
return (S mod N)

Fig. 3. Our secure CRT implementation of RSA
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– inject a permanent fault in the input elements, the message m as well as the
key (p, q, dp, dq, iq). We suppose that input elements are given along with an
integrity value that can be verified whenever during the signature;

– Change the Boolean result of a conditional check. An expression “if a =
b” has a result true or false that cannot be modified. We made here a
compromise on the level of security. Indeed, contrary to some other methods
based on infective computations, our design uses conditional checks. However
it would be possible to replace these checks by unconditional infections of
the computation.

We consider the CRT implementation of RSA described in Figure 3 and we
assume the recommendations discussed in Section 3.4 have been followed. Noting
|a| the bit size of a and a the faulty value of a, let us review some fault scenarios
and identify the associated success probabilities (probabilities are more detailed
in Appendix B):

– Modifying p or r in a transient way during the calculation of p′ or modifying
p′ in a permanent way before the check of m̂p (The same holds for q′):
Pr[m̂p = m mod p] ≈ 2−(|p|−1) ln 2
After the check of m̂p, if the permanent fault occurs only during the
exponentiation:
Pr[βpSpr = βp · (1 + d′pr) mod p′] ≈ 2−(|p′|−1) ln 2

– Modifying m in a transient way during the calculation of m̂p or modifying
m̂p in a permanent way before the check (The same holds for m̂q):
Pr[m̂p = m mod p] ≈ 2−(|p|−1) ln 2

– Modifying m in a permanent way after the first exponentiation (we may
also consider that m is associated with an integrity value that is verified):
Pr[mq mod r2 = mp mod r2] ≈ 2−(2|r|+1)

If the permanent fault occurs after the check of m̂p:
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[m̂p = 1 + r mod r2] ≈ 2−2|r|+1

– Modifying p or r2 in a transient way during the calculation of ipr, or modi-
fying ipr in a permanent way (The same holds for iqr):
Pr[(αpm+βp ·(1+r) = m mod p)∩(αpm+βp ·(1+r) = (1+r) mod r2)] = 0

– Modifying p or ipr in a transient way during the calculation of βp or modi-
fying βp in a permanent way (The same holds for βq):
Pr[(αpm+βp ·(1+r) = m mod p)∩(αpm+βp ·(1+r) = (1+r) mod r2)] = 0

– Modifying βp or p′ in a transient way during the calculation of αp or modi-
fying αp in a permanent way (The same holds for αq):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[αp = 0 mod r2] ≈ 2−2|r|+1

– Modifying (p − 1) or dp in a transient way during the calculation of d′p or
modifying d′p in a permanent way (The same holds for d′q):
Pr[d′p = dp mod (p − 1)] ≈ 2−(|p|−1) ln 2

– Modifying d′p in a transient way during the computation of Spr (The same
holds for Sqr):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[d′p = d′p mod r] ≈ 2−(|r|−1) ln 2
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– Modifying m̂p or p′ in a transient way during the computation of Spr (The
same holds for Sqr):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[m̂p = 1 + r mod r2] ≈ 2−2|r|+1

– Modifying Spr, βp · (1 + d′pr), R3 or p′ in a transient way during the compu-
tation of S′

p, or modifying S′
p in a permanent way (The same holds for S′

q):
Pr[S − R4 − qiq · (R3 − R4) = 0 mod r2] ≈ 2−2|r|+1

– Modifying S′
p, S′

q,p
′, q, iq or S′

q in a transient way during the recombination:
Pr[N · (S − R4 − qiq · (R3 − R4)) = 0 mod Nr2] ≈ 2−2|r|+1

4.2 Side-Channel Analysis

Although side-channel analysis is not studied in this paper, the design should
be combined with adapted extra countermeasures against side-channel attacks.

4.3 Performance Analysis

Execution Time. The most expensive steps are the two inversions. They
are performed on parameters with length twice the length of r. Noting ipr0 =
p−1 mod r and iqr0 = q−1 mod r, we make use of tricks to compute ipr and iqr

from ipr0 and iqr0. Indeed let p = p0 + p1r mod r2 and ipr1 = [−i0p1 − (i0p0 −
1)] · i0 mod r. Then ipr = ripr1 + ipr0 (The same holds for iqr). Thus, only two
inversions modulo r are needed to compute ipr and iqr. If r is for example a
32-bit value and implementation is carried out on a 32-bit chip architecture,
an SPA-safe extended binary gcd algorithm can be implemented very efficiently
since loops of the algorithm would be composed of comparisons, shifts, subtrac-
tions and additions on 32-bit single precision data. In this context, the execution
time added by our countermeasure would be clearly less costly than Aumüller
et al.’s countermeasure [4]. On smaller micro-controllers, execution time will de-
pend on the hardware architecture, but a good approximate being that the two
inversions can be considered at most as costly as two exponentiations modulo
t (if |t| = |r|). Our proposal is therefore more efficient than Joye and Ciet’s
solution [6] where two extra totient calculations are needed. We can also con-
sider that our algorithm is about as efficient as Giraud’s countermeasure [7],
if our exponentiation algorithm only has the property that an attacker cannot
distinguish squarings from multiplications. In the case of RSA with CRT where
the exponents are masked, the exponentiation algorithm could be unbalanced
contrary to Montgomery-Ladder algorithm [13]. If we suppose that the modu-
lus and the exponent are randomized by a 64-bit random integer, we perform
about

⌊
|p|
2

⌋
− 96 and

⌊
|q|
2

⌋
− 96 fewer modular multiplications for each expo-

nentiation, but with larger operands. As an example, if the implementation is
carried out on a 32-bit architecture, one Montgomery modular multiplication
with two operands of length k 32-bit words, theoretically requires 2k(k + 1)
single-precision multiplications. Thus, one Montgomery-Ladder exponentiation
requires about 128k2(k +1) single-precision multiplications with clear data, ver-
sus 96(k + 2)2(k + 3) for a classical exponentiation with randomized data. As
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a consequence, for p and q greater than about 640 bits, our algorithm would
be slightly more efficient than Giraud’s one. Under this size, it would be the
opposite.

Memory Consumption. Our countermeasure requires about as much memory
as Aumüller et al.’s [4] and Joye and Ciet’s implementation [6]. Obviously, it
requires far less memory than Giraud’s proposal [7] where memory consumption
is a real disadvantage. We can consider in Figure 3 that βp, βq are not kept in
RAM during the calculations of S′

p and S′
q since ipr and iqr can be stored on

the stack. βp and βq can be calculated “on-the-fly” when needed. In the same
way for the value mp, only mp mod r2 can be stored on the stack. The instant
when memory consumption is the highest occurs during the recombination (as
in a classical RSA-CRT signature), except that S′

p, respectively S′
q, have length

|p| + 2|r|, and |q| + 2|r|. The final result has length |N | + 2|r|. Some crypto-
processors are not able to perform the final verification (S − R4 − qiq · (R3 −
R4)) · N ≡ 0 mod Nr2 if N is a 2K integer, since the co-processor register size
may be limited to 2K. In this case, the final verification can be replaced with
S − R4 − qiq · (R3 − R4) ≡ 0 mod r2.

Personalization Management. The proposed implementation only requires
the usual parameters needed for the computation, the input message m and the
classical RSA-CRT key set (p, q, dp, dq, iq).

Code Size. The countermeasure is mainly based on arithmetic operations al-
ready developed for the RSA-CRT signature. Only the modular inversion, which
is also based on classical arithmetic operations, should be implemented. The
code of the modular inversion is often contained in products that supply the
RSA signature as they supply the RSA key generation too. Even if the code of
modular inversion must be added, this leads to an acceptable code size overhead.

5 Conclusion

This paper presents an original algorithm which computes secure exponentia-
tions in an arbitrary integer ring (ZN , +, ·) where N ∈ N

∗. Our countermeasure
mechanism can be applied to secure any cryptosystem requiring exponentiations
in rings or finite fields of integers, such as Diffie-Hellman key exchange [14], El
Gamal decryption [15], RSA in straightforward mode [9], Schnorr [16], DSA [17],
KCDSA [18] and so forth. However, it is especially relevant in the case of RSA
with CRT where it constitutes an efficient defense line against Bellcore attack.

Reviewing related work on CRT implementation of RSA and considering si-
multaneously all practical constraints faced by cryptographic devices, our solu-
tion matches all desirable requirements.

Although here side-channel attacks have not been studied, our CRT imple-
mentation of RSA can be simply associated with appropriate countermeasures
against simple and differential side-channel attacks.



142 D. Vigilant

Acknowledgments. The author wishes to thank Pascal Paillier, Mathieu
Chartier and the CHES2008 reviewers for helpful remarks on the preliminary
version of this paper.

References

1. Sun Microsystems Inc.: Javacard 2.2.2 - application programming interface. Tech-
nical report (2006)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Shamir, A.: Method and apparatus for protecting public key schemes from tim-
ing and fault attacks, U.S. Patent Number 5,991,415 (also presented at the rump
session of EUROCRYPT 1997) (November 1999)

4. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on
rsa with crt: Concrete results and practical countermeasures. In: Kaliski Jr., B.S.,
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A Proof of Theorem 1

Claim. Let N and R be integers such that gcd(N, R) = 1, let β = (N ·(N−1 mod
R)) and α = 1 − β mod NR. Then α and β are non zero elements verifying the
following properties:

1. α2 = α mod NR

2. β2 = β mod NR

3. αβ = 0 mod NR (α and β are zero divisors in (ZNR, + , · ))

Proof. This trivially comes from the definition of α and β.

Lemma 1. Let N and r be integers such that gcd(N, r) = 1, let β = N ·
(N−1 mod r2) and α = 1 − β mod Nr2. Then, for any d ∈ N

∗ and any pair
(A, B) ∈ (ZNr2 × ZNr2):

(αA + βB)d = αAd + βBd mod Nr2 (1)

Proof. Let us take R = r2. Since αβ = 0 mod Nr2, for any d ∈ N
∗ and for any

(A, B) ∈ (ZNr2)2, we get:

(αA + βB)d = (αA)d + (βB)d mod Nr2 = αAd + βBd mod Nr2 ,

as αd = α and βd = β modulo Nr2.

Lemma 2. Let N and r be coprime integers and β = N · (N−1 mod r2). For
any d ∈ N

∗, we have:

β · (1 + r)d = β · (1 + dr) mod Nr2 (2)

Proof. Since β = 0 mod N , the equation holds modulo N . It also holds modulo
r2 since β = 1 mod r2 and for any d ∈ N

∗, (1+ r)d = 1+dr mod r2. By Chinese
remaindering, the equation therefore holds modulo Nr2. ��

Finally, combining Equations (1) and (2), we get the exponentiation identity of
Theorem 1, for any m ∈ ZNr2 and for any d ∈ N

∗:

(αm + β · (1 + r))d = αmd + β · (1 + dr) mod Nr2
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B Details Concerning Success Probabilities of Fault
Attacks

Let us consider the fault model defined in 4.1. Assume that the attacker modifies
a value A (A = B mod C) and obtains a random value A uncorrelated to A.
We give here a generic expression of a success probability for passing the test
A = B mod C where C is a t-bit integer. We force 2t−1 < C < 2t, C = 1 mod 2.
According to our recommendations in Section 3.4, r is odd, its most significant
bit is one and we can deduce the same property for p. We suppose that C
is uniform. We note E the event that the fault is undetected, Pr[E] the total
probability of E, Pr[E | C] the probability of E assuming C, Pr[c = C] the
probability of taking an element c in the considered set S such that c = C. Since
the random result obtained is uniformly distributed, we know that:

Pr[E | C] =
1
C

(3)

We want to compute Pr[E]. Let S =
{
C s.t. 2t−1 < C < 2t and C = 1 mod 2

}
.

From the total probability Theorem, we have:

Pr[E] =
∑
C∈S

(Pr[E | C] · Pr[c = C]) (4)

Since C is uniform:
Pr[c = C] =

1
|S| (5)

Replacing Identities (3) and (5) in Equation (4), we get:

Pr[E] =
1

|S| ·
∑
C∈S

1
C

Let S̄ =
{
C s.t. 2t−1 < C < 2t and C = 0 mod 2

}
, then:∑

C∈S∪S̄

1
C

= [lnC]2
t

2t−1 = ln(2t) − ln(2t−1) = t ln 2 − (t − 1) ln 2 = ln 2

Since, |S| = |S̄|, we may approximate:

Pr[E] =
1

|S| ·
∑
C∈S

1
C

≈ 1
|S| · 1

2

∑
C∈∪S̄

1
C

=
1

|S| · ln 2
2

Hence:
Pr[E] ≈ 1

|S| · ln2
2

=
1

2t−2 · ln2
2

= 2−(t−1) ln 2

This explains the probability values 2−(|p|−1) ln 2, 2−(|p′|−1) ln 2 and 2−(|r|−1) ln 2.



RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks 145

Given the same C, we now assume that the attacker modifies a value A (A =
B mod C2) and obtains a random value A uncorrelated to A. We apply the
same argument, we compute the success probability for passing the test A =
B mod C2. In this case:

Pr[E | C] =
1

C2 (6)

The Identity (5) still applies here. Hence, replacing Identities (5) and (6) in
Equation (4):

Pr[E] =
1

|S| ·
∑
C∈S

1
C2

∑
C∈S∪S̄

1
C2 =

[
− 1

C

]2t

2t−1

= − 1
2t

+
1

2t−1 = − 1
2t

+
2
2t

= 2−t

In the same way, we may approximate:

Pr[E] =
1

|S| ·
∑
C∈S

1
C2 ≈ 1

|S| · 1
2

∑
C∈S∪S̄

1
C2 =

1
|S| · 1

2t+1

And therefore:

Pr[E] ≈ 1
|S| · 2−(t+1) = 2−(t−2) · 2−(t+1) = 2−2t+1

This leads to the probability value 2−(2|r|+1).
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Abstract. We briefly address general aspects that reliable security eval-
uations of physical RNGs should consider. Then we discuss an efficient
RNG design that is based on a pair of noisy diodes. The main contribu-
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stochastic model which interestingly also fits to other RNG designs. We
prove a theorem that provides tight lower bounds for the entropy per ran-
dom bit, and we apply our results to a prototype of a particular physical
RNG.
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1 Introduction

Many cryptographic mechanisms require random numbers, e.g. as session keys,
signature parameters, ephemeral keys (DSA, ECDSA), zero-knowledge proto-
cols, challenge response-protocols, nonces. Inappropriate RNGs may allow to
break principally strong cryptosystems, e.g. if an adversary is able to deter-
mine session keys. Ideal RNGs generate random numbers that are uniformly
distributed on their range and independent. An ideal RNG, however, is a math-
ematical construction (lastly a fiction). Following [11] (cf. [21] for further ex-
planations) ’real-world’ RNGs can be divided into two classes, which contain
the true RNGs (TRNGs) and the deterministic RNGs (DRNGs; aka pseudo-
random number generators), respectively. The TRNGs fall into two subclasses:
Physical TRNGs use non-deterministic effects of electronic circuits (e.g. shot
noise from Zener diodes, inherent semiconductor thermal noise, free running os-
cillators) or physical experiments (e.g., time between emissions of radioactive
decay, quantum photon effects). Non-physical non-deterministic RNGs exploit
non-deterministic events (e.g., system time, hard disk seek time, RAM content,
user interaction). So-called hybrid RNGs combine design elements from both,
TRNGs and DRNGs.
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Unlike for deterministic RNGs it seems hardly possible to specify approved
designs for physical RNGs (in a strict sense) since security-relevant properties do
not only depend on the generic design but also on its implementation. A designer
of a physical RNG is faced with two challenges. At first he has to develop an
appropriate design, and then he has to implement it carefully. The second task
may be even more difficult, namely providing evidence that the generic RNG
design and its implementation are indeed appropriate.

In the last years several designs of physical RNGs have been proposed [4, 5,
6,7,9] etc., and several evaluation guidances and standards were developed and
became effective [1, 2, 11, 13, 17]. These documents define properties that strong
RNGs should fulfil, and the evaluation guidances explain how these criteria shall
be verfied. A comprehensive treatment of evaluation aspects for physical RNGs
are given in [22].

In Section 2 we briefly address central aspects and goals that reliable security
evaluations of physical RNGs should consider. In Section 3 we discuss an RNG
design that exploits a pair of noisy diodes. Section 4 contains the main contribu-
tion of our paper. We formulate and analyze a stochastic model that describes
this design and, interestingly, also fits to further RNG designs. In particular, we
prove a theorem that allows to quantify a tight lower bound for the average en-
tropy per random bit. We apply our results to a particular physical RNG where
we derive lower entropy bounds per random bit that are very close to 1. Finally
we explain a generic online test scheme that is tailored to RNG designs which
belong to the analyzed stochastic model.

2 Security Evaluation of Physical RNGs: Fundamental
Aspects

In this section we address central aspects that are relevant for security evalua-
tions of physical RNGs. For a comprehensive treatment of this matter we refer
the interested reader to [21, 22, 19].

2.1 Entropy

With regard to Section 4 we extend the definition of Shannon entropy to ran-
dom variables with infinite range. More precisely, to a random variable X that
assumes values in a countable (finite or infinite) set Ω (e.g. Ω = IN0) we assign
the term

H(X) := −
∑
ω∈Ω

Prob(X = ω) log2(Prob(X = ω)). (1)

As usual, we set 0 · log2(0) := 0. Following the common convention we denote
the Shannon entropy briefly as ’entropy’ in the remainder.

Remark 1. (i) We point out that H(X) ∈ [0, ∞] where H(X) = ∞ is possible
for infinite Ω. The ’auxiliary’ random variables V(s′), which will be relevant in
Section 4, yet have finite entropy for any s′ ∈ (0, ∞) (cf. [20], Lemma 2(ii)).
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(ii) Random numbers that are generated by physical RNGs can usually be mod-
elled by stationary stochastic processes (cf. Sect. 4). At least the internal random
numbers (cf. Subsect. 2.2) typically assume values in Ω = {0, 1}, and for all cases
of practical relevance the Shannon entropy per internal random bit should be
close to 1. Hence the Shannon entropy provides a sound estimate for the average
guessing workload, justifying the use of the Shannon entropy for physical RNGs
in place of the more conservative min-entropy. For physical RNGs it is usually
much easier to compute the Shannon entropy than the min-entropy (cf. [21],
Subsect. 5.2, for a more comprehensive treatment of this matter). We mention
that it may be necessary to apply the min-entropy in place of the Shannon
entropy in specific guessing problems with very imbalanced probability distribu-
tions (cf. [15]).

2.2 Central Definitions and Goals of a Security Evaluation

The core of a physical RNG is its noise source, which usually generates a time-
continuous analog signal that is digitized after uniform time intervals. The digi-
tized values are called das random numbers where ’das’ abbreviates digital analog
signal . The das-random numbers may be algorithmically postprocessed, giving
the so-called internal random numbers . Algorithmic postprocessing may increase
the entropy per bit, but only at cost of performance (data compression). If the
entropy of the das-random numbers is sufficiently large the algorithmic postpro-
cessing may be saved in favour of higher throughput. Online and tot tests shall
detect non-tolerable weaknesses while the RNG is in operation. Upon external
request the RNG outputs external random numbers.

The main part of a security evaluation considers the generic design and its
implementation. The central goal is to quantify (at least a lower bound for) the
entropy per random bit. Unfortunately, entropy cannot be measured as voltage
or temperature. Instead, entropy is a property of random variables and not
of observed realizations (here: random numbers). In particular, entropy cannot
be guaranteed by passing a collection of statistical blackbox tests [14, 16] since
typically even weak pseudorandom sequences pass these tests [19, 21, 22]. To
quantify entropy one has to study the distribution of the random numbers, or
more precisely, the distribution of the underlying random variables.

Definition 1. Random variables are denoted with capital letters. Realizations
of these random variables, i.e. values that are assumed by these random vari-
ables, are denoted by the respective small letters. For instance, the das random
numbers r1, r2, . . . are interpreted as realizations of random variables R1, R2, . . ..
We denote the internal random numbers and the underlying random variables
by y1, y2, . . . and Y1, Y2, . . ., respectively.

External random numbers are not under control of the RNG designer. Since
the external random numbers are usually concatenations of the internal random
numbers it is natural to focus on the conditional entropy

H(Yn+1 | Y1 = y1, . . . , Yn = yn) (2)
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which corresponds to the real-life situation that an adversary knows a subse-
quence y1, y2, . . . , yn of internal random numbers, e.g. due to openly transmitted
challenges or session keys which the adversary received legitimately.

The random variables R1, R2, . . . describe the stochastic behaviour of the das
random numbers. Their distribution clearly depends on the noise source and
the digitization mechanism. Usually, it is not feasible to determine these dis-
tributions exactly. At least in a strict sense the exact distribution depends on
the characteristics of the components of the particular noise source, and these
characteristics may differ to some extent even for RNGs from the same produc-
tion series. A sound security evaluation of a physical RNG should be based on
a stochastic model .

Stochastic Model. Ideally, the stochastic model comprises a family of dis-
tributions that contains the true distribution of the internal random numbers.
At least, the stochastic model should specify a family of probability distribu-
tions that contains the distribution of the das-random numbers or even merely
of ’auxiliary’ random variables provided that these random variables enable the
verification of a lower entropy bound for the internal random numbers. We follow
this approach in Sect. 4, for instance.

Example 1. (Repeated tossing of a single coin) Since coins have no memory
it is reasonable to assume that the random variables Rj are independent and
binomially B(1, p)-distributed with unknown parameter p ∈ [0, 1], defining a
one-parameter family of probability distributions. Given a particular coin the
parameter p can be estimated by tossing the coin a large number of times.
Substituting the gained estimate p̃ into the entropy formula yields an estimate
for the entropy. The entropy of the internal random numbers depends on p and
the algorithmic postprocessing (if there is any).

For ’real life’ RNGs the stochastic model is usually more complicated than in
Example 1, often depending on several parameters. For most RNG designs it
is reasonable to assume that the sequence R1, R2, . . . is stationary (i.e. time-
invariant; Definition 2), at least within time periods that are large compared to
the output rate. Drifts of process parameters within the life cycle of the RNG
(e.g. due to ageing effects) are not problematic if the distribution remains in
the acceptable part of the specified class of distributions. In a first step we are
interested in

H(Rn+1 | R1 = r1, . . . , Rn = rn) (3)

for any history r1, . . . , rn, or at least in the average conditional entropy

H(Rn+1 | R1, . . . , Rn). (4)

For dependent random variables the calculation of (4) is in general easier than
(3). At least if (4) is too small a suitable (data-compressing) postprocessing algo-
rithm should be applied to the das random numbers that increases the average
entropy per bit ( [22], Sect. 5). (Of course, even if not necessarily needed, a
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strong cryptographic postprocessing algorithm with memeory may serve as an
additional security anchor.)

Due to tolerances of components, ageing effects, a total breakdown of the
noise source or (depending on the conditions of use) maybe active attacks the
RNG may output considerably weaker random numbers than the RNG proto-
types which were investigated in the lab. Online tests and tot tests (’total failure
test’) shall detect non-tolerable weaknesses while the RNG is in operation. Un-
fortunately, there do not exist statistical tests that are universally strong for
any RNG design. Instead, these tests should be tailored to the stochastic model
of the das random numbers. The statistical tests may be supported by physical
sensors. The second task of a security evaluation is thus to verify the effective-
ness of the online and tot tests and the consequence of noise alarms [18, 19, 22].
We will briefly address relevant aspects in Section 6.

Remark 2. A reasonable stochastic model is the core of any CC (Common Cri-
teria) evaluation with regard to the evaluation guidance AIS 31 [2, 13], which
has been effective in Germany since 2001. We point out that besides physical
RNGs with cryptographic postprocessing the international ISO norm [11] also
permits physical RNGs without cryptographic postprocessing provided that a
sound stochastic model confirms that the random numbers have enough entropy
and that effective online tests are applied.

3 An RNG Design Based on Two Noisy Diodes

Figure 1 illustrates an RNG design that exploits two identical noisy diodes. (E.g.)
Zener diodes have a reverse avalanched effect (depending on the diode type 3 - 4
Volt or about 10 V) and generate more than 1 mV noisy voltage with a frequency
of about 10 MHz. The outlets of both diodes provide symmetrical input to an
operational amplifier that amplifies the difference of the voltages. We point out
that, depending on the implementation, the device and the conditions of use,
a design with only one noisy diode may be more vulnerable to manipulations
by active adversaries, e.g. by external electromagnetic fields. The circuit of the
AC coupling, the negative feedback for the operational amplifier, the stabilizing
mechanism for the power supply or compensating effects of temperature are
omitted in the graphic. The output of the operational amplifier (with very high
amplification rate) is fed into a Schmitt trigger. The mean voltage of the amplifier
output signal is about the middle of the two threshold values of the Schmitt
trigger. Due to the steep edges of the input and usage of the 0-1-upcrossings
only the hysteresis effect should be negligible. Moreover, the proposed design
only exploits 0-1-crossings. The output signal of the Schmitt trigger consists of
zeros (’low’) and ones (’high’). The time lengths of these signals is random.

Each 0-1 crossing (up-crossing) within the Schmitt trigger clocks an inter-
mediate flip-flop. This flip-flop inverts the D-input of a second (final) flip-flop,
which is latched by a clock after constant time intervals. The number of 0-1-
crossings within the nth clock cycle gives the das random number rn. Hence
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yn+1 = yn ⊕ rn+1(mod 2) where yn and yn+1 denote the internal random num-
bers in Step n and n + 1, respectively. (We mention that more efficient algorith-
mic postprocessing algorithms than the addition (mod 2) may exist but this is
outside the scope of this paper.)

Unlike for related designs that exploit both 0-1- and 1-0-crossings it is ir-
relevant whether the intervals between 0-1- and 1-0-crossings and the intervals
between 1-0- and 0-1-crossings are identically distributed. This feature increases
robustness at cost of halving the output rate.

Fig. 1. RNG with two noisy diodes: generic design

The uncertainty on the number of switchings of the Schmitt trigger per time
interval is crucial for the entropy of the random numbers. Hence the ratio beteen
the cycle length of the clock and the average length between two consecutive 0-
1-crossings should not be selected too small. If the distribution of the interval
lengths changes considerably, causing a smaller or larger number of switchings
within the particular clock cycles, this may have significant influence on the
entropy per output bit. Online and tot test should detect such behaviour (cf.
Subsect. 6). The tot test may separately check the generation of the noisy voltage
for each diode in order to detect a total breakdown or abnormality of the noise.

4 Formulation and Analysis of the Stochastic Model

In this section we formulate and analyze a stochastic model for the RNG design
discussed in the previous section. Interestingly, the same stochastic model fits
to to other RNG designs as well (cf. Remark 3(ii), (iii)). Theorem 1 collects the
main results.

In the following we assume that the analogue part of the noise source is in
equilibrium state (since a sufficient amount of time has passed since the start of
the RNG; a fraction of a second should suffice). We begin with the analysis of
the das random numbers r0, r1, . . . at time t = 0. The internal random numbers
y1, y2, . . . are latched at equidistant times s1 := s, . . . , sj := js, . . . where s > 0
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denotes the cycle length of the clock that latches the final flip-flop (cf. Fig. 1).
Recall that the das random number rn denotes the number of 0-1-switchings of
the Schmitt trigger within the time interval In := (sn−1, sn] = ((n − 1)s, ns].
Clearly

yn ≡ yn−1 + rn ≡ y0 + r1 + · · · + rn(mod2) for n ≥ 1 (5)

where y0 denotes the internal random number at time t = 0. Our goal is to
determine a lower bound for

H(Rn+1 | R1, . . . , Rn) and finally for H(Yn+1 | Y0, Y1, . . . , Yn), (6)

the average conditional entropy per das-random number, resp. the average con-
ditional entropy per internal random number. Recall that the second formula
corresponds to the real-world situation where an adversary knows several inter-
nal random numbers y0, y1, y2, . . . , yn (cf. Sect. 2). Since the algorithmic post-
processing is very elementary results on the das random numbers can directly
be transferred to the internal random numbers.

Definition 2. As usually, iid stands for ‘independent and identically distributed’.
A sequence of random variables X1, X2, . . . or . . . , X−1, X0, X1, . . . is called
(strictly) stationary if for each integer r ≥ 1 the distribution of (Xm+1, . . . , Xm+r)
does not depend on the shift parameter m. The generalized variance of the sequence
X1, X2, . . . is defined as

σ2 = Var(X1) + 2
∞∑

i=2

E ((X1 − μ)(Xi − μ)) . (7)

The sequence X1, X2, . . . is called q-dependent if the vectors (Xa, . . . , Xb) and
(Xc, . . . , Xd) are independent whenever c − b > q.

As usually, N(μ, σ2) denotes a normal distribution with mean μ and variance
σ2. The cumulative distribution function of the standard normal distribution
N(0, 1) is denoted with Φ, i.e. Φ(x) =

∫ x

−∞ e−t2/2 dt/
√

2π for x ∈ IR.

Stochastic Model. We interpret the lengths t1, t2, . . . of the time intervals
between consecutive 0-1-switchings as realizations of a q-dependent stationary
stochastic process T1, T2, . . .. We set μ := E(T1) and σ2

T := Var(T1) while the
generalized variance of T1, T2, . . . simplifies to

σ2 = σ2
T + 2

q+1∑
i=2

E ((T1 − μ)(Ti − μ)) (8)

We assume σ2
T > 0 (otherwise the das-random numbers were deterministic),

E(|Tj |3) < ∞ (needed for the proof of Lemma 2(iii); cf. also Remark 3(iii)) and
Prob(T1 = 0) = 0.

The term zn denotes the index of the first 0-1-switching that follows after time
sn = ns (i.e., when the clock latches the nth time) while wn := tzn − sn. That
is, wn equals the time span from sn to the next 0-1-switching. In particular,
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w0 + t1 + · · ·+ tzn−1 ≤ sn < w0 + t1 + · · ·+ tzn . Recall that the stochastic model
of an RNG shall enable to determine (at least a lower bound for) the conditional
entropy H(Yn+1 | Y0, . . . , Yn). This defines our central goal.

More abstract, the corresponding random variables can be described as
follows:

T1, T2, . . . are stationary (9)
Rn := Zn − Zn−1 with (10)
Zn := minm∈IN{W0 + T1 + T2 + . . . + Tm > sn} (11)

Remark 3. (i) Relations (9) to (11) remain valid if we substitute the two noisy
diodes by a single noisy diode.
(ii) We note that (9) to (11) also fits to a RNG design, which was introduced
in [23] and later analyzed in [8,20]. This noise source consists of two independent
ring oscillators. To simplify analysis we assumed W0 = 0 in [20]. Since the ratios
(sn − sn−1)/μ and thus the das random numbers r1, r2, . . . were extremely large
this simplification had little impact.
(iii) The assumption that the Tj are q-dependent may be relaxed as long as
a version of the central limit theorem for dependent random variables remains
valid (cf. Lemma 2(iii)).
(iv) Due to the nature of shot noise one may assume that q is very small, pre-
sumably q ≤ 1 (cf. Sect. 5).
(v) In our context s should be selected considerably larger than μ so that at
least one 0-1-switching should occur in each time interval (sn, s(n + 1)] with
overwhelming probability. Then zn equals the index of the first 0-1-switching
within this interval.

With regard to Remark 3(i), (ii) it should be profitable to study the system (9)
to (11) under general (weak) assumptions as well as for specific conditions on the
distribution of the Tj (e.g., for iid or Markovian Tj). Note, however, that although
(9) to (11) fit to several RNG designs the distributions of the random variables
T1, T2, . . . and, consequently, the distribution of R1, R2, . . . and Y1, Y2, . . . may
be very different. Lemma 1 below considers the ’transfer’ of the stationarity
property.

Lemma 1. (Stationarity Lemma) Let . . . , T ′
−1, T

′
0, T

′
1, . . . denote a doubly infi-

nite sequence of stationary random variables with Prob(T ′
j ∈ [0, s)) = 1 and

Prob(T ′
j = 0) < 1. Assume that the sequence . . . , S′

−1, S
′
0, S

′
1, . . . fulfils S′

j+1 −
S′

j ≡ T ′
j+1(mod s) for each integer j. Assume further that S′

J is uniformly dis-
tributed on [0, s) and independent from the random variables . . . , T ′−1, T

′
0, T

′
1, . . .

for a particular integer J .
(i) S′

j is uniformly distributed on [0, s) for each integer j, and the random vari-
ables . . . , S′−1, S

′
0, S

′
1, . . . are stationary.

(ii) For j ≥ 1 let z′j denote the jth index m > 0 for which S′
m < S′

m−1, and
W ′

j := S′
zj

. For R′
j = Z ′

j − Z ′
j−1 the random vectors (W ′

j , R
′
j) and the random

variables W ′
j, R′

j and Y ′ := f(R′
j) (with f : IR → IR) are stationary.
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Proof. For k ≥ 0 trivially S′
J+k ≡ S′

J + T ′
J+1 + · · · + T ′

J+k(mod s), and the in-
dependence of S′

J and T ′
J+1 + · · · + T ′

J+k proves the first assertion of (i). The
case k < 0 can be handled analogously. We point out that the sequence (S′

j −
S′

j−1)(mod s) ≡ T ′
j(mod s) is stationary. We claim that S′

J+j and (T ′
i , . . . , T

′
k)

are independent for any triple of integers (j, i, k) with i ≤ k. Let M := {J +
1, . . . , J + j, i, . . . , k} and assume j ≥ 0 for the moment. Then Prob(S′

J+j ∈ A |
T ′

τ = t′τ for all τ ∈ M}= Prob(S′
J + T ′

J+1 + · · · + T ′
J+j(mod s) ∈ A | T ′

τ = t′τ
for all τ ∈ M}= Prob(SJ ∈ (A − t′J+1 − · · · − t′J+j)(mod s)) = Prob(S′

J ∈ A)
for each Borel subset A ⊆ [0, s) and any realizations t′J+1, . . . , t

′
J+j , t

′
i, . . . , t

′
k

since the random variables S′
J and (T ′

J+1, . . . , T
′
J+j , T

′
i , . . . , T

′
k) are independent,

and SJ is uniformly distributed on [0, s). This proves the claim for j ≥ 0. For
j ≤ 0 we have S′

J ≡ S′
J+j + TJ+j+1 + · · · + T ′

J(mod s), and the claim can be
shown analogously. Let k and j be fixed for the moment. By the preceding
Prob(S′

j+1, (T
′
j+2, . . . , T

′
j+k) ∈ A × B) = Prob(S′

j+1 ∈ A)Prob(T ′
j+2, . . . , T

′
j+k ∈

B) = Prob(S′
1 ∈ A)Prob(T ′

2, . . . , T
′
k ∈ B) = Prob(S′

1, (T
′
2, . . . , T

′
k) ∈ A × B)

for any Borel subsets A ⊆ [0, s) and B ⊆ [0, s)k−1. Hence (S′
1, T

′
2, . . . , T

′
k)

and (S′
j+1, T

′
j+2, . . . , T

′
j+k) are identically distributed. Let the diffeomeorphism

χk: [0, s)k → [0, s)k be given by χ(x1, . . . , xk) := (x1, x1 + x2(mod s), . . . , x1 +
· · · + xk(mod s)). Since (S′

j+1, S
′
j+2, . . . , S

′
j+k) = χk(S′

j+1, T
′
j+2, . . . , T

′
j+k), the

random vectors (S′
1, S

′
2, . . . , S

′
k) and (S′

j+1, S
′
j+2, . . . , S

′
j+k) are identically dis-

tributed. Since j and k were arbitrary, this completes the proof of (i).
Let j1 > 0 denote the smallest index for which S′

j1 < S′
j1−1. Divide the ran-

dom variables . . . , S′
−1, S

′
0, S

′
1, . . . into increasing subsequences . . . , (. . . , S′

j1−1),
(S′

j1 , . . . , S
′
j2−1), (S

′
j2 , . . .), . . . such that S′

jm−1 > S′
jm

. (As Prob(T ′
j = 0) < 1

these subsequences are finite with probability 1.) Alternatively, these subse-
quences can be described by the sequence (W ′

j , R
′
j)j∈Z (and index j0). For any

k ≥ 1, integers r1, . . . , rk ≥ 1 and subsets A1, . . . , Ak ⊆ [0, s) the probability
Prob((W ′

1+τ , R′
1+τ ) ∈ A1 ×{r1}, . . . , (W ′

k+τ , R′
k+τ ) ∈ Ak ×{rk}) depends on the

distribution of the r := (r1 + · · · + rk + 2)-tuple (S′
j1−1, . . . , S

′
j1+r−2). Since the

sequence . . . , (S′
1, . . . , S

′
r), (S

′
2, . . . , S

′
r+1), . . . is stationary the above probability

is independent of τ . This proves the stationarity of (W ′
j , R

′
j)j∈Z . The random

variables W ′
j , R′

j and Y ′
j are functions of (W ′

j , R
′
j), which completes the proof

of (ii).

Assumption 1. Unlike Prob(T ′
j ≥ s) in Lemma 1 the probability Prob(Tj ≥

s) may be not 0 but negligible if μ � s. It is reasonable to assume that for
’large’ indices j the term T1 + · · · + Tj(mod s) is uniformly distributed on [0, s)
(→ uniformity assumption on S′

j), and that T1, T2, . . . may be assumed to be
stationary. Note that the intervals between the 0-1 switchings from the start of
the RNG to time t = 0 can be described by random variables Tj with negative
indices. The assumptions on the Tj seem to be natural and very mild, and with
regard to Lemma 1 (and its proof) we assume in the following that besides the
Tj also (Rj)j∈IN, (Wj)j∈IN0 , (Rj(mod 2))j∈IN and finally (Yj)j∈IN are stationary.

Definition 3. The cumulative distribution functions of the random variables Tj

and Wn are denoted by GT (·) and GW (·). For u ∈ (0, ∞) the random variable
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V(u) := inf
{

τ ∈ IN | ∑τ+1
j=1 Tj > u

}
= sup

{
τ ∈ IN | ∑τ

j=1 Tj ≤ u
}

quantifies the
number of 0-1-switchings in the interval [0, u] if W0 ≡ 0.

Lemma 2 collects some useful properties that will be needed later. Note that
(12) formally confirms the intuition that the knowledge of more random numbers
should not weaken the adversary’s position. We point out that (12) might become
false without the stationarity property, namely when Rn (for what reasons ever!)
is easier to guess than Rn+1.

Lemma 2

(i) H(Rn | R0, R1, . . . , Rn−1) ≥ H(Rn+1 | R0, R1, . . . , Rn) and (12)
H(Yn | Y0, Y1, . . . , Yn−1) ≥ H(Yn+1 | Y0, Y1, . . . , Yn) for all n ∈ IN .

In particular, limn→∞ H(Rn+1 | R1, . . . , Rn) and limn→∞ H(Yn+1 | Y1, . . . , Yn)
exist.
(ii) For k ≥ 1 we have

Prob(V(u) = k) = Prob (T1 + · · · + Tk ≤ u) − Prob (T1 + · · · + Tk+1 ≤ u) . (13)

Further,

Prob(V(u) = 0) = 1 − Prob (T1 ≤ u) , Prob(V(u) = ∞) = 0 and (14)
H(V(u)) < ∞. (15)

(iii) The distributions of the random variables (
∑k

j=1 Tj − kμ)/(
√

kσ) tend to
the standard normal distribution as k tends to infinity. In particular,

Prob
(

T1 + · · · + Tk − kμ√
kσ

≤ x

)
−→k→∞ Φ(x). (16)

for each x ∈ IR.
If the random variables T1, T2, . . . are iid the condition E(|Tj |3) < ∞ may be
dropped, and in particular σ2 = σ2

T

(iv) Let u = vμ with v >> 1. Then

Prob
(
V(vμ) = k

) ≈ Φ

(
v − k√

k
· μ

σ

)
− Φ

(
v − (k + 1)√

k + 1
· μ

σ

)
for k ≥ 1 (17)

Prob
(
V(vμ) = 0

) ≈ 1 − Φ
(
(v − 1)

μ

σ

)
. (18)

The distribution of the random variable V(vμ) (or more precisely, its approxima-
tion given by (17) and (18)) depends only on the ratios μ/σ and u/μ = v but
not on the absolute values of the parameters μ, σ2, u = vμ. The mass of V(vμ)
is essentially concentrated on those k’s with k ≈ v. Unless k is very small the
interval

Jk :=
[
v − (k + 1)√

k + 1
· μ

σ
,
v − k√

k
· μ

σ

)
has length ≈ μ

σ
· v + k

2k3/2 (19)
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(v) (iid case) If the random variables T1, T2, . . . are iid then

Prob(Wn ≤ x) =
1
μ

∫ x

0
(1 − GT (u)) du =: GW (x). (20)

(Note that if ’Prob(Wn ≤ x)’ is substituted by ’limn→∞Prob(Wn≤x) assertion
(20) remains valid even if the sequence (Wn)n∈IN0 is not stationary.) If GT (·) is
continuous (or equivalently, if Prob(T1 = y) = 0 for all y ∈ [0, ∞)) then GW (·)
has density g(x) := (1 − GT (x))/μ.

Proof. By Assumption 1 the random variables Rj and Yj are stationary. Hence,
(e.g.)

H(Yn | Y1, . . . , Yn−1) = H(Yn+1 | Y2, . . . , Yn) ≥ H(Yn+1 | Y1, . . . , Yn),

and since entropy is non-negative this verifies (i). Assertions (ii), (iii) and the first
assertions of (iv) follow from Lemma 1 and Lemma 2(ii) in [20]. We merely men-
tion that (iii) applies a version of the Central Limit Theorem for dependent ran-
dom variables that was proved in [12]. The remaining assertions in (iv) demand
elementary but careful computations. (Note that (

√
k + 1−√

k)(
√

k + 1+
√

k) =
1 and

√
k ≈ √

k + 1.) The remark in brackets and (20) were shown in [10] (4.10),
and the last assertion of (v) follows by differentiation.

Under mild regularity assumptions on the T1, T2, . . . plausible heuristic argu-
ments indicate that

H(Yn+1 | Y1, . . . , Yn) ≥ min{H(V(s−u)(mod2)) | u ∈ [0, μ + aσ)}GW (μ + aσ).
(21)

even for moderate parameter a > 0. We point out that for n = 0 or if the Tj are
iid (21) is valid for any a ≥ 0. Due to the lack of space we omit details. Theorem 1
collects the main results of this paper. Theorem 1 focuses on the entropy of the
internal random numbers. Cancelling the term ’(mod 2)’ in (21), (24), (25) and
(26) yields entropy estimates for the das random numbers. Equation (29) can be
used to compute the autocovariance function and the autocorrelation function
of the random variables R1, R2, . . ..

Theorem 1. (i)

Prob(Rn+1 = k) ≈
∫ s

0
Prob(V(s−u) = k − 1)GW (du) for k ∈ IN0 (22)

Prob(Rn+1(mod 2)) ≈
∫ s

0
Prob(V(s−u) ≡ k − 1(mod 2))GW (du) for k ∈ {0, 1}(23)

H(Rn+1(mod 2)) ≥ H(Rn+1(mod 2) | Wn) ≈
∫ s

0
H(V(s−u)(mod 2))GW (du)(24)

with equality for iid random variables Tj.
(ii) Substituting the integrands in (22) to (24) by Prob(V(s−u) = k−1 | W0 = u),
Prob(V(s−u) ≡ k − 1(mod 2) | W0 = u), and H(V(s−u)(mod 2) | W0 = u), resp.,
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provides equality also for the general case. For dependent Tj these conditional
terms implicitly define conditions on the random variables T1, T2, . . . and thus
on V(s−u).
(iii) (iid case) If the sequence T1, T2, . . . is iid

H(Yn+1 | Y0, . . . , Yn) ≥
∫ s

0
H(V(s−u)(mod 2))GW (du) for all n ∈ IN . (25)

If GT (·) is continuous the right-hand side of (25) reads∫ s

0
H(V(s−u)(mod 2))

1
μ

(1 − GT (u)) du. (26)

(iv) E((R1 + · · · + Rj)k) =
∫ js

0
E((V(js−u) + 1)k | W0 = u)GW (du) (27)

≈
∫ js

0
E((V(js−u) + 1)k)GW (du) for each k ∈ IN(28)

with equality for iid random variables Tj. The stationarity of the Rj implies

E((R1 + . . . + Rj)2) = jE(R2
1) + 2

j∑
i=2

(j + 1 − i)E(R1Ri) (29)

Proof. By stationarity (Rn+1 | Wn = u) is distributed as (V(s−wn)+1 | W0 = u),
and thus (Rn+1(mod 2) | Wn = u) as (V(s−wn) + 1(mod 2) | W0 = u). Formulae
(22) to (24) and (ii) follow immediately from the stationarity of the random
variables R1, R2, . . . and W1, W2, . . .. Within this proof νn and νn|y0,...,yn

denote
the distribution of Wn, resp. of the conditional random variable (Wn | Y0 =
y0, . . . , Yn = yn). In this notation

H(Yn+1 | Y0 = y0, . . . , Yn = yn) ≥ H(Yn+1 | Y0 = y0, . . . , Yn = yn, Wn) (30)

=
∫ ∞

0
H(Yn+1 | Yj = yj, j ≤ n; Wn = u) νn|y0,...,yn

(du)

If the Tj are iid for all n ∈ IN the vector (Tzn+1, Tzn+1+2, . . .) is distributed
as (T1, T2, . . .), regardless of u and the history y0, . . . , yn. In particular, since
H(Yn+1 | ·) = H(Yn+1 − Yn(mod 2) | ·) = H(Rn+1(mod 2) | ·) the integrand of
the right-hand side of (30) only depends on u. More precisely, for any y0, . . . , yn

the integrand equals H(V(s−u) + 1(mod 2)) = H(V(s−u)(mod 2)). Altogether

H(Yn+1 | Y0, . . . , Yn, Wn)

=
∑

y0,...,yn∈{0,1}
Prob(Y0 = y0, . . . , Yn = yn)

∫ ∞

0
H(V(s−u)(mod 2)) νn|y1,...,yn

(du)

=
∫ ∞

0
H(V(s−u)(mod 2)) νn(du) =

∫ s

0
H(V(s−u)(mod 2))GW (du)
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in the iid case. The last equation follows from the fact that Prob(Wn+1 > s) =
1−GW (s) ≈ 0 since s >> μ. This proves (25), and (26) follows immediately from
Lemma 2(v). The sum R1 + · · · + Rn = Zn − Z0 is distributed as V(ns−W0) + 1,
which proves (27). For iid Tj the history (expressed by W0) is irrelevant, yielding
(28). The stationarity of the Tj finally yields (29).

Remark 4. (i) (robustness) Formulae (24), (25) and (26) (with and without
’(mod 2)’) provide entropy estimators for the das random numbers and the in-
ternal random numbers that seem to be robust against at least moderate devia-
tions of the distribution of the random variables T1, T2, . . .. In fact, by (17) and
(18) the entropy H(V(s−u)) essentially depends on the ratios (s−u)/μ and μ/σ.
The density (1 − GT (·))/μ in (26) is monotonically decreasing, which addition-
ally supports robustness.
(ii) (approximation errors) Theorem 1 tacitly applies the normal approximations
(17) and (18). For large ratios s/μ this should not cause serious problems unless
very small ’entropy defects’ ε := 1 − H(Yn+1 | Y1, . . . , Yn) shall be verified (cf.
Sect. 5); for small ratios s/μ one should be careful anyway. The convergence
rate of the central limit theorem and thus the meaning of ’small’ depends on the
distribution of the random variables T1, T2, . . .. Fortunately, for the conditional
entropy H(Yn+1 | Y1, . . . , Yn) the sum

∑
k≡0( mod 2) Prob(V(s−u) = k) is relevant

so that one may expect that approximation errors in Lemma 2(iv) cancel out
each other to a large extent.

To be on the safe side (especially for very small ε) one may study the
approximation errors in (17) and / or in H(V(s−u)(mod 2)) for the relevant dis-
tribution. For this purpose stochastic simulations may be applied where pseudo-
random numbers tj are generated according to the distribution of the random
variables T1, T2, . . .. A similar approach can be followed with experimental data
from measurements (cf. (iii)). If the Tj are independent one may operate with
Fourier transforms. Concerning (17) it seems to be reasonable to concentrate on
integers k in a vicinity of s/μ, resp. for (s − u)/μ with small u.
(iii) Theorem 1 considers the stationary distribution of the random variables Wj

but it can also be adjusted to experimental data in a straight-forward way. To
apply (22), (23), (24), (25) and (28) one uses a sequence of measured time spans
t1, t2, . . . between consecutive 0-1-crossings to obtain an empirical distribution
for the stationary distribution of W1, W2, . . . (tacitly assuming ergodicity). The
formulae are then applied with this empirical distribution in place of GW . For
Theorem 1(ii) and (27) (relevant for dependent Tj’s) the procedure is similar
but more costly since only subsequences of t1, t2, . . . can be used to obtain the
conditional distributions (· | u). Of course, in this empirical approach statistical
deviations add to the approximation errors mentioned in (ii).

Remark 5. In [4] a design of a physical RNG is investigated that also exploits the
switchings of a comparator. The amplified noise is also modelled as a stationary
stochastic process, and the autocorrelation function of the random numbers are
computed. We mention that unlike the present paper reference [4] yet considers
idealized assumptions (Gaussian white noise etc.), which clearly simplify analy-
sis. [4] exploits the number of comparator switchings within fixed time periods
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for an online test (cf. Sect. 6). For an introduction into the field of stationary
stochastic processes we refer the interested reader e.g. to [24].

5 Practical Experiments

As pointed out in Remark 3 relations (9) to (11) fit to various RNG designs.
The distribution of the random variables Tj and thus of Rj and Yj depend on
the particular design but also on the concrete implementation. To get ’real’ das
random numbers we performed measurements on a prototype of a particular
physical RNG (cf. Fig. 2 and Acknowledgement) for which the design left from
the first flip-flop coincides with the generic design discussed in Section 3.

Fig. 2. RNG prototype used for measurements

Maximum-Likelihood tests indicate that the one-dimensional empirical distri-
bution of the times between consecutive 0-1-crossings can be well approximated
by a Gamma distribution with shape parameter 3.0949 and rate 0.0240. In Fig. 3
the circles show the percentiles of the empirical distribution, and the curve shows
the percentile of Gamma distribution with the indicated parameters.

We applied Theorem 1 (more precisely, (25) and (28) and (29)) to a set of
≈ 620 000 measured time spans t1, t2, . . . between consecutive 0-1-crossings to
obtain Table 1 (cf. Remark 4(iii)). We estimated μ = E(T1) by μ̃ = 128.85ns and
Var(T1) by σ̃2

T = 5314.0. The estimates for the autocovariances cov(Tj , Tj+τ ) =
E(TjTj+τ ) − E(Tj)E(Tj+τ ) were −2.08, −10.08, 5.56, 3.80 and −1.18 for the
shift parameters τ = 1, . . . , 5. Compared to σ̃2

T these values are very small,
and experiments with various measurement sets support the conjecture that the
true autocovariances are essentially 0. We point out that also contingency tests
did not contradict the hypothesis that the random variables Tj and Tj+1 are
independent (97 from 99 tests on significance level 0.01 were passed).

The correlation coefficient of random variables X and Y is given by corr(X, Y )
= cov(X, Y )/

√
Var(X)Var(Y ). We applied Theorem 1 directly to the experi-

mental data and to their Gamma approximation (Table 1). Especially for the
small clock lengths s = 7.497μ̃ and s = 9.996μ̃ the exact conditional entropy
H(Yn+1 | Y1, . . . , Yn) might differ somewhat from the estimates in Table 1
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Fig. 3. Empirical distribution of the time between 0-1 crossings: histogram and per-
centiles

(cf. Remark 4(ii)). Table 1 suggest that the true conditional entropies should
be indeed very close to 1, especially for s = 15.017μ̃, which gives an output
of slightly more than 500 kBit internal random numbers per second. For a k-
fold convolution (let’s say for k ∈ {10, . . . , 20}) of a gamma distribution with the
above-mentioned parameters the normal approximation and thus approximation
(17) should be pretty good. Numerical experiments indicate that for s = 15.017μ̃
the entropy defect ε = 1−H(Yn+1 | Y1, . . . , Yn) (cf. Remark 4) should be smaller
than (at least) < 10−4. Smaller bounds seem to be realistic but (in our opinion)
deserve more elaborate analysis.

It is easy to see that the random variables Rn and Rn+1 are negatively cor-
related: A ’large’ value rn (resp., a small value rn) is an indicator that wn is
also large (resp., that wn is small), and thus rn+1 is likely to be small (resp.,
rn+1 to be large). Apart from the autocorrelation coefficients corr(R1, R2) and
corr(R1, R3) the results obtained by the direct application of Theorem 1 to the
experimental data and to their Gamma approximation are essentially equal. To
obtain the autocorrelation coefficients we had to apply (28) and (29) iteratively.
In particular since the terms E(R2

j ) dominate estimation errors clearly propagate
to the autocorrelation coefficients. The results for the Gamma approximation are
more reasonable since |corr(R1, R3)| is considerably smaller than |corr(R1, R2)|
and both values decrease for larger s, what was expected. Increasing the sample
size should also yield better results for the direct use of the experimental data.

6 Online Tests

The conditional entropies H(Rn+1 | R0, . . . , Rn) and H(Yn+1 | Y0, . . . , Yn) are
closely related to the entropy of the random variables V(s−u) and V(s−u)( mod 2),
respectively. If the ratio (s−u)/μ is not too small H(V(s−u)) essentially depends
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Table 1. Experimental Results

s=7.497μ̃ s=9.996μ̃ s=9.996μ̃ s=15.017μ̃ s=15.017μ̃
(Gamma approx.) (Gamma approx.)

E(R1) 7.493 9.994 9.996 15.014 15.017
Var(R1) 2.701 3.502 3.519 5.107 5.141

corr(R1, R2) −0.034 −0.034 −0.041 −0.011 −0.028
corr(R1, R3) 0.022 0.010 0.0001 0.019 0.00009

H(Rn+1 |R1, . . . , Rn) 2.631 2.850 2.858 3.155 3.163
H(Yn+1 |Y1, . . . , Yn) 0.99990 1.00000 0.99999 1.00000 1.00000

only on the ratios μ/σ and (s−u)/μ (17). Moreover, ’small’ arguments u provide
the essential contribution to the integrals from Theorem 1. Hence it is natural
(and effective) to estimate the process parameters μ = E(Tj) and the generalized
variance σ2 of T1, T2, . . . while the RNG is in operation. Unfortunately, this
required an internal clock with high resolution, which may be too costly for
many applications.

Alternatively, one may check the process parameters μ and σ2 indirectly,
namely by estimating the mean value μR := E(Rj) and the generalized variance
σ2

R of the stationary sequence R1, R2, . . .. In a first step intervals Iμ and Iσ2

should be specified which contain ’suitable’ values of the process parameters μ
and σ2. By Theorem 1(iv) one computes sets IμR and Iσ2

R
that contain μR and

σ2
R if μ and σ2 are contained in Iμ and Iσ2 . It seems to be reasonable if the online

tests consider the mean and maybe also the generalized variance of R1, R2, . . ..
Generically,

– Estimate μR: Compute the arithmetic mean av(r1, . . . , rm) := (r1 + · · · +
rm)/m.

– Estimateσ2
R orarelatedparameter fromdasrandomnumbersrm+1, . . . , rm+M .

The respective test fails if the estimator lies outside a particular regions. Such
basis tests may directly serve as online tests, or they can be integrated into a
more sophisticated procedure that covers the tasks of the tot test, self test and
online test. Due to lack of space we cannot deepen this aspect here but refer
the interested reader to [18], [22], Sect. 6, or [13], Example 7. In any case the
probability for a failure of a single test must be determined to specify appropriate
test rules.

The distribution of av(R1, . . . , Rm) can be computed with (22) with upper
integration boundary ms in place of s. The second basis test should be tai-
lored to the distribution of the random variables Rj , which is determined by
the RNG. The generalized variance σ2

R can be estimated directly, or a relevant
set of covariances cov(Rn, Rn+k) may be estimated. A precise computation of
the failure probability, i.e. that the test value lies outside a specified set, is more
complicated than for the arithmetic mean. This may be done on basis of theoret-
ical considerations, or by stochastic simulations (with pseudorandom numbers
t̃1, t̃2, . . . that are generated according to the specified distribution of the ran-
dom variables Tj), or on basis of measurement series. We point out that under
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suitable circumstances the second type of online test may be dropped, e.g. when
within the class of distributions that contains the true distribution of R1, R2, . . .
(→ stochastic model) the generalized variance σ2 is a function of μ.

7 Final Remarks

We addressed general requirements that should be considered in security evalu-
ations of physical RNGs. We formulated and analyzed a stochastic model that
describes the stochastic behaviour of a particular RNG design that exploits two
noisy diodes. Interestingly, this stochastic model also fits to other designs, which
makes its understanding important. Theorem 1 collects the main results of this
paper, which allow to establish tight lower bounds for the entropy per internal
random random number. We applied our results to a particular physical RNG,
and we briefly touched the field of online tests.

Acknowledgement. The authors would like to thank Frank Bergmann, who
courteously provided the RNG prototype, and Joachim Schüth for performing
measurements.
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Abstract. In this paper, a new true random number generator (TRNG),
based entirely on digital components is proposed. The design has been
implemented using a fast random number generation method, which is
dependent on a new type of ring oscillator with the ability to be set
in metastable mode. Earlier methods of random number generation in-
volved employment of jitter, whereas the proposed method leverages the
metastability phenomenon in digital circuits and applies it to a ring
oscillator. The new entropy employment method allows an increase in
the TRNG throughput by significantly reducing the required entropy
accumulating time. Samples obtained from simulation of TRNG design
have been evaluated using AIS.31 and FIPS 140-1/2 statistical tests. The
results of these tests have proven the high quality of generated data. Cor-
ners analysis of the TRNG design was also performed to estimate the ro-
bustness to technology process and environment variations. Investigated
in FPGA technology, phase distribution highlighted the advantages of
the proposed method over traditional architectures.

Keyword: Digital TRNG, Metastable Ring Oscillator, AIS.31, FPGA.

1 Introduction

The security of most cryptographic systems relies on unpredictability and irre-
producibility of digital key-streams that are used for encryption and/or signing
of confidential information. These key-streams are generated by random number
generators (RNG), which are further split into two classes: true random number
generators (TRNG) and deterministic random number generators (DRNG) [1],
[2]. The key difference between TRNG and DRNG lies in the entropy source
component. For TRNG, an analog physical process (electronic thermal noise,
radioactive decay, etc.) is used, while for DRNG, a random number called seed
is used [1], [2]. Since the seed value is constant, it must be refreshed regularly to
maintain the required security level. This seed value is generated by a TRNG, so
any security system should be comprised of a TRNG as the key part. Compro-
mising on the TRNG means compromising on the whole security system. That’s
why a great degree of attention is paid to TRNG as the fundamental security
component that guarantees the quality of the whole security system.

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 164–180, 2008.
c© International Association for Cryptologic Research 2008
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In this paper, we introduced a TRNG based entirely on digital designs. For
this purpose, a new type of ring oscillator was created. To validate the theoretical
background of the proposed method, we implemented and simulated it in the
Cadence Design Environment (CDE). Additionally, we performed the FPGA
implementation for phase distribution investigation. The samples obtained were
statistically evaluated according to AIS.31 and FIPS 140-1/2 standards [3], [4].

This paper contains the following sections: Section 2 describes the basic con-
cept of digital TRNG and technology state of the art. Section 3 describes
metastable ring oscillator theory, implementation and simulation, statistical eval-
uation, and robustness investigation. Section 4 describes the investigations in
FPGA implementation and finally, Section 5 gives the conclusion of this paper.

2 Digital TRNG

Traditional TRNGs are based on a precise analog design requiring special custom
layout. The migration of such TRNG products to a new platform or technology is
complicated since it involves a heavy custom re-design, an increased budget, and
more time-to-market. TRNG design, which is based entirely on digital compo-
nents, is free from such drawbacks. By significantly reducing the need to custom
re-design, it facilitates product migration. Hereafter, we will use the term Digital
TRNG in this paper to explain this totally digital synthesizable design.

The first scheme considered as totally Digital TRNG was based on coupled os-
cillators. This method produces randomness from the phase noise in free-running
oscillators. The output of the fast oscillator is sampled on the rising edge of a
slower clock using a D flip-flop [5]. The main physical phenomenon used as an
entropy source in such architectures is jitter, which is defined as the short-term
variation of signal’s significant instants from their ideal positions in time, due
to the existence of thermal and shot noise in a semiconductor device. Oscillator
jitter causes uncertainty in the exact sample values, ideally producing a random
bit for each sample. By carefully selecting the ratio between the two oscilla-
tor frequencies, an artificially enhanced randomness can be achieved. But such
synchronization of oscillators requires special custom design that increases the
complexity of development. So, straightforward implementation of such a scheme
cannot be achieved easily.

Another problem with such a scheme is that it necessitates wait for jitter ac-
cumulation and only after that accumulated entropy can be sampled as random
data. The length of waiting time depends on the technology specification and
component parameters, and usually takes from a few hundreds to several thou-
sands of oscillator periods, limiting the throughput up to 1 Mbits/sec, which is
considered critical for high-performance security applications.

There were many efforts to decrease the jitter accumulation time. For example,
Jun and Kocher employed the hybrid TRNG [6], wherein the thermal noise source
modulated the frequency of the slower clock. The variable, noise-modulated slower
clock triggers the measurements of the fast clock. Drift between the two clocks
thus provide the source of random binary digits. But such architecture cannot
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be considered as purely digital because direct noise amplification circuit requires
analog design. Another example of the mixed usage of digital and analog TRNGs
is presented by Trichina, Bucci, Seta and Luzzi [7].

To overcome the de-synchronization of the sampling oscillator, another ap-
proach was used in [8], where Sunar, Martin and Stinson proposed to use a
plurality of free running ring oscillators (RO), outputs of which are XORed. Ac-
cording to the authors, properly selected numbers of oscillators and their periods
guarantee that the entire spectrum will be populated with transition zones. Also,
sampling the waveform only in such zones would provide enough entropy. The
area cost for this solution is huge. For example, in [9] even a minimal TRNG
design based on 110 free running 3-cascades ring oscillators occupies 565 slices
in Xilinx Virtex FPGA, what is more than the lightest known AES implementa-
tions [10]. Additionally, in [11] there were serious concerns about the unrealistic
assumptions of the theoretical model used in [8] which raised questions about the
practical implementation of such a Digital TRNG architecture. Bock, Bucci and
Luzzi proposed a scheme where the oscillators are re-synchronized before each
bit generation [12]. As a result, the periodical behavior typical for the oscillator-
based source is suppressed and each bit generation restarts from the same state
as with a direct-amplification source. Fischer and Drutarovsky proposed to sam-
ple the jittered signal by several shifted in-time flip-flops, aiming to guarantee
that at least one of them will correspond to the random jitter [13]. However, ob-
tained throughput was low. For the implementation in Altera APEX EP20K200
FPGA with a 88.245MHz internal clock, it generated only 69 kbps.

Another type of Digital TRNG exploits the metastability of RS latches and
edge-triggered flip-flops (for example, see [14]). The output of such a flip-flop
may become unpredictable if the input and clock signals are such that the setup
and/or hold times are violated. For example, when the data input signal is
forced to change at nearly the same time as the clock signal the output signal
then stabilizes on a random, typically biased value after a random amount of
time. The metastability of D-type flip-flops can be exploited together with the
jitter of underlying ring oscillator signals by using D-type flip-flops for sam-
pling the ring oscillator signals. In any case, naturally occurred metastability
events are relatively rare and when they occur are sensitive to temperature and
voltage changes [14]. So, TRNGs, which are based solely on naturally occurred
metastability events are relatively slow and do not appear to be very reliable.

Tkacik proposed the use of two oscillators of different sizes that were clocking
linear feedback shift register and cellular automata shift register [15]. The in-
vestigation of individual statistical characteristics of LFSR and CASR outputs
showed the presence of some weakness. To improve the design their outputs were
XORed. Such architecture includes a pseudo randomness properties and does not
comply with the AIS.31 P2.d)(vii) requirements for getting desirable statistical
raw data characteristics [1], [2]. A theoretical attack for this TRNG is described
by Dichtl in [16].

Golić introduced Fibonacci and Galois ring oscillators, which are both defined
as generalizations of a typical ring oscillators [17]. He claimed that the high-speed
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output oscillating signal has both pseudo and true randomness properties. True
randomness accumulates from unpredictable variations in the delay of internal
logic gates that get propagated and enhanced through feedback, possibly in
a chaotic manner, and also from internal metastability events. It is suggested
that further randomness due to metastability may be induced within a sampling
unit (e.g., a D-type flip-flop) as well as that the mutual coupling effect between
the oscillating and sampling signals may be significantly reduced by the pseudo
random noise-like form of the oscillating signal. Recently, the inherited pseudo
randomness property of Fibonacci and Galois ring oscillators was fixed by us-
ing restarting mode, which makes the generator stateless and excludes pseudo
randomness as described in [11].

In spite of the many proposals for hardware-based TRNGs, finding an efficient
and robust method for high-speed generation of true random numbers that can
be implemented by using only logic gates in digital semiconductor technology re-
mains a challenge. The ideal method should be efficient in terms of gate count,
achievable speed, and power consumption. Further in this paper, the authors pro-
pose an original method which can be used for Digital TRNG implementation.

3 Metastable Ring Oscillator

3.1 Metastability Employment

To increase the throughput of the Digital TRNG based on jitter phenomena in
ring oscillators, the available solutions require either a custom layout design or
huge area costs. In this paper, we suggest the use of another physical phenomenon
as entropy source in oscillators – metastability.

It is known that for any digital component with threshold level near the
metastable state, the circuit behavior becomes totally stochastic and depends
on the characteristics of the circuit noise [18]. Thus, a metastable state is the
perfect entropy source. But, due to the mismatch of transistors, temperature
imbalance within a chip, ionizing radiation, or any other parasitic fluctuation of
the output voltages, the probability that the physical flip-flop circuit will stay in
the metastable region is very small [19]. Therefore, straightforward employment
of metastability phenomena in flip-flop circuits is inefficient due to the rare
occurrence of natural metastability event [14] .

Thus, it is required to build a circuit with the ability to be put into a
metastable state. Our investigation in CMOS technology showed that such a
circuit could be implemented on an inverter. In Fig.1, the generic scheme of
metastability employment based on a CMOS inverter is shown. If the inverter is
connected into the loop by a switch, the output voltage converges to metasta-
bility level and stays there as long as required (see Fig.1b))1. Due to inherited
thermal noise, the output voltage stochastically fluctuates around the metastable
level.
1 This state is stable as long as input and output are connected, and becomes

metastable when the control signal allows the oscillator to run.
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Fig. 1. Metastability employment scheme based on CMOS inverter a), and its conver-
gence process b)

When a ring oscillator is composed of such schemes, after disconnecting the
feedback loop, the initial state of the ring oscillator is completely defined by
the entropy from stochastic fluctuations of each inverter (here we neglected the
deterministic disturbances propagated through the power supply; such a special
case was considered separately and showed that our design is robust for realistic
±10% voltage variation). In Fig.2, the explanation of metastability employment
in an inverter-based ring oscillator circuit is shown.

1. Initialization. The initialization is done by putting the RO system into the
metastable point (threshold voltage level). The momentary voltage value of

Fig. 2. Metastability employment in the inverter-based ring oscillator. Entropy exists
at the beginning of the oscillation and transition periods, because initial voltage is
defined by thermal noise. Because of low amplitude value and not stabilized period,
the sampling is postponed until amplitude value is high enough and setup/hold time
condition is satisfied. Usually it takes only few periods, so appeared latency is negligible
comparatively to jitter accumulation process.
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the initial noise influences the RO system and causes the oscillations, which at
the beginning are very lowby amplitude (and canbe recoveredby followingmo-
mentary voltage values with bigger amplitude). Thus, the initial voltage value
of an RO system is defined by the noise and already inherits enough entropy.

2. Transition Process. This process is semi-deterministic (almost does not in-
crease entropy). Deterministic part consists of amplifying the noise signal
obtained at the initialization mode. But due to the continuous influence of
noise, this deterministic signal can be recovered and the initial entropy level
can even be increased. Sampling in this period is not applied because the
signal voltage value could be significantly lower than required2.

3. Stabilized Oscillations. Full-range amplitude oscillations at stabilized peri-
ods allow for effective sampling, because of the inherited entropy from the
initialization mode.

As can be seen from Fig.2, the main advantage of the proposed method is the
significant decrease in the latency of TRNG due to earlier sampling times. Com-
pare: with jitter accumulating it is required to wait a few hundreds/thousands
of RO oscillation periods and for the method proposed in this paper it is enough
to wait only few periods.

3.2 Generic Meta-RO Architecture

Based on the theoretical assumptions from the previous section, we propose an
original architecture of a metastable ring oscillator (Meta-RO) as shown in the
Fig.3. This architecture consists of:

– an odd plurality of inverters that can form either independent entropy source
components while in metastable mode, or a traditional RO while in genera-
tion mode;

– a corresponding number of Switching Components (referred as MUXes) for
re/dis-connecting inverters between two modes;

– a Control Clock Generator to control the random number generation process
by switching between metastability (MS) and generation (Gener.) mode to
guarantee the proper entropy collecting and entropy acquiring;

– a Sampling Component (referred as D flip-flop) for sampling the collected
entropy from Meta-RO;

– a Delay Component to synchronize the sampling process with generating
random data process by pre-defined delay.

The proposed method operates as follows (see Fig.3). First, the Control Clock
Generator switches the system into MS mode by sending the corresponding
signals to the Switching Components to disconnect each inverter from the others
and connect it into a loop (this helps to apply the metastability point to the
input of every inverter after a while). Since each inverter is disconnected from
the other and the threshold point voltage is applied to its input, they form a set
of independent noise sources.
2 The gain of inverters of the modern technology is big enough, so usually transition

process is very short.
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Fig. 3. Generic Meta-RO architecture a) and operational diagram b). The set of in-
verters could be used to form independent entropy sources (in metastable mode) or a
regular ring oscillator to amplify and resolve the obtained random state.

After a while, the system is switched into the Generation mode, where invert-
ers are re-connected to each other to form a traditional RO. Since in the previous
MS mode the value of each inverter output was defined by random noise, the
momentary voltages inside the RO are also random, causing high entropy. After
sampling a random bit, the TRNG system again is switched to MS mode to
collect a new random value. Since for whole process it is required to wait just
several periods of RO oscillation, the total TRNG throughput can be increased
significantly compared to traditional jitter employment architectures.

3.3 Implementation in Cadence Design Environment

For appropriate and accurate investigation of the proposed architecture, Meta-
RO5st (a 5-stage metastable ring oscillator) has been implemented in Cadence
Virtuoso Environment version 5.10.41 within a 65nm technology process library.

The specifics of our investigation are such that even if we are investigating a
Digital TRNG case to consistently prove the proposed Meta-RO architecture, we
still have to provide analog simulation with transient analysis of random data
generation. In this case, the realistic implementation of the proposed method
into existent ASIC technology will verified3.

The whole design of the core of the Meta-RO5st architecture (FIFO, external
control and interfaces not included) covered up to 70 transistors. Taking into
3 The relevancy of the simulation to the real chip processes still is an open question.

In this paper the authors could not solve it completely, but at least consider the
technology process and temperature variations. Another advantage of the simula-
tion consists in the absence of complex patterns in the power supply lines, which
complicates the distinguishing between true and pseudo randomness.
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Fig. 4. Results of Meta-RO5st simulation. From the figure it is clear the difference
between MS and Generation mode following the control clock signal.

account the nominal parameters of CMOS transistor in 65nm technology, the
raw estimation for the covered area is about 1μm2, which is the smallest area
estimation for the known Digital TRNGs.

Simulation was performed by Virtuoso Spectre Circuit Simulator. This sim-
ulator allows the use of an embedded transient noise feature during simulation
which gives a realistic estimation for the internal noise value and behavior inside
the device.

In Fig.4, an example of Meta-RO5st simulation is shown. The figure clearly
shows that in MS mode the Meta-RO comes to the metastability point.

3.4 Statistical Evaluation

There are several standards and criteria for evaluating random number gen-
erators including PRNG and TRNG. FIPS 140-1/2 [3], [4] is one of the most
accepted standard series. In FIPS 140-1, four statistical tests are presented for
evaluating RNG used in crypto systems. Note that the statistical tests in FIPS
140-2 are almost the same as in FIPS 140-1, except for the thresholds and ranges
of each test. (The statistical tests in FIPS 140-2 are stricter than those in FIPS
140-1.) However, in the later version of FIPS 140-2, the statistical requirements
for the RNG are omitted as a result of amendment. AIS.31 [1] is a German stan-
dard for the necessary properties of secure TRNGs and their evaluations. This
standard includes 9 statistical tests for the evaluation of random output from
TRNG. Detailed description of the test and methodology on how to use it can
be found in [1] and [2]. Note that statistical tests T0–T5 required a relatively
strict statistical quality of the sample since they are applied to the output of a
post-processing. Furthermore, T1–T4 are exactly the same as the statistical tests
in FIPS 140-1. T6 is a uniform distribution test consisting of two sub-tests. T7 is
a comparative test for multinomial distributions that consists of two sub-tests.
Finally T8 is an entropy test that corresponds to Coron’s entropy estimation.
Note that the last 3 statistical tests T6–T8 required relatively loose conditions
since these tests are applied for the direct output of TRNG.
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In this evaluation, we performed statistical tests for the random samples from
Spectre simulation. Because of the complexity of analog simulation (large num-
ber of parameters, high precision, large number of simulated and stored points,
etc.) the obtaining of a big sample was limited. To perform appropriate simula-
tion instead of one long simulation 20 experiments (every for 7 μs) with different
noise seed have been run. Sampling period equals 7ns, giving throughput above
140Mbits/sec. In total a sample of 20,000 bits was obtained. Raw sample in-
herits Bias = 0.484075796 and Shannon Entropy = 0.999268198. The size of
this random sample was too short to apply the original AIS.31 statistical tests.
Instead, we used the modified version of AIS.31 with re-estimated boundaries
for every test. In Table 1 a summary on the results of the AIS.31 test is shown.
Tests T0, T6-2, T7-1, T7-2, and T8 are not available because of the sample size.
As it is shown in the table, the generated sample passed the tests, except T1 for
FIPS 140-2. Detailed investigation showed that reason of fail was the stronger
boundaries for the bias in the FIPS 140-2 test4.

Table 1. Statistical test on Meta-RO5st (20 kbits simulated by Spectre CDE)

Test AIS.31 FIPS 140-1 FIPS 140-2

T1: Monobit Test P P F
T2: Poker Test P P P
T3: Run Test P P P
T4: Long Run Test P P P
T5: Autocorrelation Test P NA NA
T6-1: Uniform Test Results P NA NA

3.5 Corners Analysis

One of the major challenges facing semiconductor companies today is how to
increase yield. The ability to predict and improve yield becomes even more vital
as processes move to geometries under 100 nm. To account for process varia-
tions, an IC designer not only has to design for good electrical performance,
but also for high manufacturing yield. There are many factors that effect yield.
Manufacturing issues such as defect density on the silicon, maturity of the pro-
cess, and effectiveness of design rules all affect yield. Another factor is how the
design reacts to technological process variation and environment conditions (for
example, high/low temperatures and voltage fluctuations) simultaneously. So,
to be convinced of the robustness of our design to technological process and
environment variations, special investigation must be performed.

Corners simulation is perhaps the most widely used method to test for process,
temperature, and voltage variations. With this method, a designer determines
the worst case corners, or conditions, under which the design will be expected
to function. The process variations mean the variation on used pmos and nmos
transistors. They can be “slow” or “fast”, so there are possible 4 corners (SS,
4 The obtained value equaled 9681, while acceptance boundaries were [9725, 10275].
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SF, FS and FF). This kind of simulation is very important because param-
eters of used transistors in real scheme can be very different, causing design
malfunctioning.

To estimate the robustness of the proposed design to process and temperature
variations (PTVA), the Corners analysis for 65 nm technology library was run
in CDE. Process variations ran all 4 possible technology variation sets (FF, SS,
FS, and SF) while temperature changed from −25 to 100 with step = 25 degrees
of Celsius. Similar to the nominal case, the sampling period equaled 7 ns, giving
throughput above 140Mbits/sec. For every specific PTVA point a 2,600 bits
sample was generated. For every PVTA point the bias was estimated, the data
is collected in Table 2.

Table 2. Bias estimation for Corners analysis on Meta-RO5st

Temperature
PVA −25 0 25 50 75 100

FF 0.4665 0.4896 0.5135 0.5281 0.5442 0.5565
SS 0.3892 0.3689 0.3792 0.4073 0.4323 0.4515
FS 0.4119 0.4258 0.4377 0.4496 0.4558 0.4577
SF 0.4808 0.5039 0.5046 0.4865 0.4711 0.4554

The analysis of Table 2 showed that the technology process and tempera-
ture variation significantly influenced the quality of the generated data. We can
propose three approaches to solve this problem.

The most common method consists of decreasing the operation rate. In this
case, the period of the metastability mode is proportionally increasing, caus-
ing longer time for convergence and assuring a metastable state is reached (see
Fig. 1b)).

The second most common approach consists of applying a post-processing to
the raw data to increase the original entropy. There are many post-processing
schemes: XOR, von Neumann, resilient, etc [1], [2], [8], [17], [21]–[23]. Von Neu-
mann corrector stands as the most powerful method of significantly reducing
the existing bias (in spite of degradation in performance by factor 4 in average).
The general method is described in [21], and modern advanced methods are
represented in [22] and [23]. Fig. 5 is the result of statistical evaluation of pre-
viously generated samples (Meta-RO5st Corners analysis) after post-processing
by von Neumann corrector. Since the sample size was too short, only an online
test could be applied [1]. This test is intended to detect some kinds of statisti-
cal defects from the sampled random sequences. As can be seen in the figure,
the post-processed data passed the online test for every PTVA point. The po-
tential throughput was decreased approximately 4 times and was estimated as
35Mbits/sec.

The third approach consists of balancing the design. The parasitic RC charac-
teristic of a digitizer circuit influences the loads of the last inverter in Meta-RO,
causing change of the output voltage value from the original metastable level.
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Fig. 5. Online test values via temperature for different process variations after post-
processing by von Neumann

Therefore the metastable levels between the last and other inverters in RO are
mismatched, causing some bias to the generated data. If the output of every in-
verter is similarly loaded, then the difference in the metastability level between
inverters will be minimized, reducing the bias. So, another approach consists of
balancing the digitizer circuits.

Table 3 shows the bias estimation for data generated by a simulation of bal-
anced Meta-RO5st design with decreased operation rate period (T= 20ns al-
lows to get throughput of 50 Mbits/sec). Again, for every specific PTVA point
2,600 bits sample was generated. The analysis showed that only 2 PVTA points
(marked as * in the table) are slightly out of the AIS.31 acceptable boundaries
[0.475, 0.525]. First, it must be noted that boundaries [0.475, 0.525] were defined
for a 20 kbits sample, and for a 2,600 bits sample they could be wider. Also, we
believe that further decreasing of the operation rate will refine the bias in those
points as well.

Table 3. Bias estimation for Corner analysis on Meta-RO5st (balanced design)

Temperature
PVA −25 0 25 50 75 100

FF 0.5169 0.4940 0.4967 0.4785 0.4924 0.5006
SS 0.5111 0.5075 0.5120 0.5117 0.5111 0.5155
FS 0.4618* 0.4672* 0.4880 0.5016 0.5170 0.5100
SF 0.4757 0.5137 0.5019 0.5110 0.5100 0.5019

Also, similar stable results (with usage of balanced Meta-RO5st design) were
obtained for 150nm semiconductor technology. The properties of Digital TRNG
for the following variations were investigated: PVA (FF, FS, SF and SS), tem-
perature (−40, −25, 25 and 125 of Celsius) and supply voltage variation (1.45V
and 1.9V with 50mv noise harmonic at 20MHz and 100kHz).

Thus, any of the methods listed above (as well a combination) could be
used for building a Meta-RO–based TRNG robust to process and environment
variations.
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4 Investigation in FPGA Technology

In order to provide a proof of the proposed Meta-RO concept we conducted the
experiments in FPGA technology (Xilinx XC2V3000–5). We noted that straight-
forward implementation of the Verilog code of Meta-RO5st design is not possible,
because the logic synthesizer performs unnecessary design optimization, causing
malfunctioning of Meta-RO. To avoid this, special constraints had to be used. Ad-
ditionally, every logic function in FPGA is implemented by a look-up table, the
dynamic properties of which are different from the properties of inverters or other
gates. That is why the designer has to be very careful while implementing a Meta-
RO in FPGA.

Direct measurement of the Meta-RO5st analog signal by oscilloscope (see
Fig. 6) confirms that Meta-RO5st digital TRNG functioned properly and fol-
lowed the theoretical assumption discussed above. We can see during metasta-
bility mode how the voltage is converged, arriving at metastable level. When the
control signal takes a high value, the generation mode is started.

Fig. 6. Random number generation process in FPGA technology. Digital TRNG output
is switched between metastable and generation state following the control signal.

To check pseudo randomness properties we used the Dichtl and Golić idea [11]
for measuring the data from the same initial conditions. In Fig. 7 the results of
the measurement of several consequent D-TRNG runs are shown. In the figure,
the horizontal axis is the time, the period of time shown for each run is 100μs.
The vertical axis is the output voltage of the sampled signal. To guarantee the
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Fig. 7. Consequent runs of Meta-RO5st after restarting. Since after restarting, every
generated sample is different, this is evidence that output of the proposed D-TRNG is
not defined by a deterministic source.

same initial conditions we must wait a few minutes between consequent runs,
powering off the FPGA board. Every run in the figure corresponds to a different
sample, i.e., the output of D-TRNG is not defined by a deterministic source.

To confirm the advantages of the proposed method, it is necessary to compare
the phase distribution characteristics of Meta-RO and traditional ring oscilla-
tor. In [20], Bucci and Luzzi introduced the concept of stateless generator. The
stateless hypothesis can be fulfilled by resetting TRNG to a constant value for
every state variable in both the entropy source and the post-processor, before the
generation of a new bit. For a random number generator built on a traditional
RO, this means resetting the RO to some constant value before generating every
new bit. Thus, in the following experiments we examined the phase distribution
for traditional RO with Reset and Meta-RO5st (unbalanced).

In Fig. 8 the measurement of Meta-RO5st is shown5. We measured the time
of the first transition of the signal starting from 30ns to 40 ns after switching
to generation mode. Since the period of Meta-RO5st oscillation is about 10 ns,
we can interpret this measurement as a phase distribution in generation mode.
Compared to the phase distribution of a traditional 5-stage ring oscillator (see
Fig. 9), we noted that the phase distribution of Meta-RO5st was spread over the
complete period of oscillation. This effect allows faster entropy accumulation for
random number generation compared to traditional jitter-based TRNG. Thus,
digital TRNG based on Meta-RO provides higher entropy for significantly in-
creased throughput. Additionally, period-wide phase distribution of Meta-RO
guarantees some minimal entropy accumulating (far different from zero) in any
instance of time during sampling, significantly decreasing the risk of random
number quality degradation due to parasitic synchronization of Meta-RO with
other processes in the system.
5 Agilent oscilloscope “Measuring Jitter Using Histogram” feature and methodology

has been used for this experiment.
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Fig. 8. Histogram of phase distribution in Meta-RO5st digital TRNG. The phase dis-
tribution occupies the whole period of the Meta-RO oscillations, significantly increasing
the entropy.

Fig. 9. Histogram of phase distribution in traditional 5-stage RO with reset (measured
for rise transition from 30 ns after restart)
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Table 4. Summary of the statistical tests on Meta-RO5st (FPGA implementation)

Test Suite Tests Without post-
processing, %

With post-
processing, %

FIPS 140-1/2 T1-T4 68 100
AIS.31 Class P1 T0-T4 68 100

T5 (Autocorrelation) 100 Not needed
AIS.31 Class P2 T0-T4 68 100

T5 (Autocorrelation) 100 Not needed
T6-T8 88 Not allowed

NIST STS Spectrum test 100 Not needed

For FIPS 140-1/2 and AIS.31 tests, evaluation was made completely over 1
Gbits of data samples. The preliminary investigation showed that the statisti-
cal properties of the samples vary during the generation. The reason for such
instability can be explained by the fact that the FPGA design is sensitive to
temperature fluctuations and voltage supply noise. Improving FPGA operation
and environment conditions (using a stable power supply source and installing
a cooler over the FPGA) allowed us to obtain more satisfactory results, summa-
rized in Table 4.

As it can be seen from the table, our FPGA design has no correlation problem,
i.e., in 1 Gbit of total data there was no single failure in either the AIS.31 T5
Autocorrelation test or the NIST STS Spectrum test6. There are still some bias
weaknesses, however, which could be fixed by post-processing (where applicable).
Thus, our FPGA design successfully passes FIPS 140-1/2 and AIS.31 Class P1,
but problems may arise with AIS.31 Class 2. Taking into account the fact that
FPGA implementation is not very stable compared to ASIC, we can expect that
real ASIC implementation will have no such weaknesses.

5 Conclusion

In this paper, a method for true random number generation was proposed. The
highlight of this method lies in the usage of metastability phenomena in the
ring oscillator for entropy accumulating, compared to traditional methods based
on jitter. For practical realization of this method, a special ring oscillator ar-
chitecture with the ability to be set in metastable mode was discovered. This
ring oscillator is based on digital components only and does not require special
custom design.

For validation of the proposed method, a Meta-RO5st (5-stage metastable
ring oscillator) component was implemented and simulated in Cadence. Col-
lected samples were tested according to AIS.31 and FIPS 140-1/2 standard
6 National Institute of Standards and Technology. A Statistical Test Suite for the

Validation of Random Number Generators and Pseudo Random Number Gener-
ators for Cryptographic Applications. http://csrc.nist.gov/groups/ST/toolkit/rng/
documents/SP800-22b.pdf
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requirements and inherit Bias = 0.48407 and Shannon Entropy = 0.99926 for
raw samples. The throughput reached 140Mbits/sec in nominal conditions. To
compensate for process and temperature variations, the sampling rate was de-
creased, and as a result the throughput reached 35–50Mbits/sec. The estimated
area for 65 nm semiconductor technology is approximately 1 μm2 (for Digital
TRNG core only).

Physical experiments in FPGA technology showed that phase distribution
of the proposed metastable RO occupies the complete oscillating period with
stronger entropy value, allowing faster entropy accumulating for random num-
ber generation. Thus, Digital TRNG based on Meta-RO provides high entropy
for significantly increased throughput. Statistical evaluation showed that our
FPGA design could successfully pass FIPS 140-1/2 and AIS.31 Class P1. Fur-
ther improvements in FPGA operation environment conditions could increase
the quality of the proposed TRNG to pass AIS.31 Class P2.

The patent for this method of true random number generation and Meta-RO
architecture is pending.

Acknowledgement

We deeply appreciate the support of Markus Dichtl, whose useful comments and
notes significantly increase the quality and value of the paper.

References

1. Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation
Methodology for True (Physical) Random Number Generators, version 3.1, Bun-
desamt für Sicherheit in der Informationstechnik (BSI), Bonn (2001)

2. Schindler, W., Killmann, W.: Evaluation Criteria for True (Physical) Random
Number Generators Used in Cryptographic Applications. In: Kaliski Jr., B.S., Koç,
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rithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 319–333. Springer, Heidelberg (2003)
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Abstract. Physical Unclonable Functions (PUFs) have properties that
make them very attractive for a variety of security-related applications.
Due to their inherent dependency on the physical properties of the device
that contains them, they can be used to uniquely bind an application to a
particular device for the purpose of IP protection. This is crucial for the
protection of FPGA applications against illegal copying and distribution.
In order to exploit the physical nature of PUFs for reliable cryptography
a so-called helper data algorithm or fuzzy extractor is used to generate
cryptographic keys with appropriate entropy from noisy and non-uniform
random PUF responses. In this paper we present for the first time effi-
cient implementations of fuzzy extractors on FPGAs where the efficiency
is measured in terms of required hardware resources. This fills the gap
of the missing building block for a full FPGA IP protection solution.
Moreover, in this context we propose new architectures for the decoders
of Reed-Muller and Golay codes, and show that our solutions are very at-
tractive from both the area and error correction capability points of view.

Keywords: Physical Unclonable Functions, Intrinsic PUF, Fuzzy Ex-
tractor, Helper Data Algorithm, FPGAs, Implementation.

1 Introduction

Virtually all keyed cryptographic primitives, regardless of whether they are based
on public-key or private-key cryptography, assume the secrecy of the key used to
encrypt/sign a given message. Since the late 90’s, there has been a lot of interest
in developing methods to guard against key compromise at the protocol level but
also at the physical level [1,2,3]. By physical level, we mean mechanisms which
can make the platform where cryptographic primitives run (more) secure to key
compromise. One of the most interesting of these methodologies is the idea of
Physical Unclonable Functions (PUFs) as introduced in [1]. A PUF is a primi-
tive that maps challenges Ti to responses Ri, which are highly dependent on the
physical properties of the device in which the PUF is contained or embedded.
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We will write Ri ← PUF(Ti) to denote the response Ri of a PUF to a challenge
Ti. Physical Unclonable Functions have essentially two parts: i) a physical part
and ii) an operational part. The physical part is a physical system that is very
difficult to clone. It inherits its unclonability from uncontrollable process varia-
tions during manufacturing. In the case of PUFs on an IC such process variations
are typically deep-submicron variations such as doping variations in transistors.
The operational part corresponds to the function. In order to turn the physical
system into a function a set of challenges Ti (stimuli) has to be available to which
the system responds with a set of sufficiently different responses Ri. Examples
of PUFs include optical PUFs [1], silicon PUFs [4], coating PUFs [2], Intrinsic-
PUFs [5], and LC-PUFs [6]. Regardless of their particular instantiation, their
unclonability, and tamper evidence properties have made PUFs very useful tools
in IP protection and secure key storage applications.

IP Protection For FPGAs. Field Programmable Gate Arrays (FPGAs) are gain-
ing widespread acceptance as substitutes for ASICs in many applications. In
fact their re-programmability has made them very attractive in the embedded
market, where software and functionality updates can be common and desir-
able by customers. As a result of this shift, it is increasingly the case that the
functionality of an embedded system is presented in the form of a bit configu-
ration file or, in the case of microprocessors, in the form of a program. Thus,
the very property that makes FPGAs so attractive (their programmability) also
makes it very easy for counterfeiters to copy an IP developer’s configuration file
and create a similar product without the up-front cost of Intellectual Property
(IP) development. This problem was introduced most recently1 by Simpson and
Schaumont [8]. In particular, the authors in [8] showed that by using a PUF on
an FPGA they could develop protocols that allow binding of a particular IP to
a particular FPGA. Their protocols also allow proving authenticity of the IP
to the hardware platform. In [5], the authors further reduce the computation
and communication complexity of the protocols in [8] and introduce the idea
of Intrinsic-PUFs based on the start-up values of SRAM memory values. Both
based their protocols on symmetric-key primitives. In [9], the authors observe
that by introducing public-key cryptography, the corresponding private-key does
not need to ever leave the FPGA, even during the enrollment stage, thus increas-
ing the security of the overall system. A common characteristic of all PUF-based
protocols in [5,8,9] is the derivation of a key(s) from the PUF, which is used to
encrypt a piece of IP and authenticate its origin. In the remainder of the pa-
per, we will refer to the encrypting operation for ease of presentation but it is
clear that our discussion extends to the computation of Message Authentication
Codes (MACs) and/or signatures on a particular IP block.

The Need for a Helper Data Algorithm. Notice that PUF responses are noisy by
nature. In other words, two calls to the PUF with the same challenge Ti will
produce two different but closely related responses Ri, R

′
i, where the measure

of closeness can be defined via a distance function. We will make the distance

1 See [7] for earlier references to the problem.
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function more explicit in Sect. 2. Intuitively, the distance function should be
small among responses originating from the same device and very large for PUF
responses originating from different devices. Nevertheless, it is clear that the
plain PUF response can not be used as the key, since this would mean that
the data encrypted under response Ri could not be decrypted with response
R′

i, even if both responses originate from the same PUF embedded in the same
device2. In order to derive reliable and uniform strings from (imperfect) sources
of randomness, such as a PUF, the concept of a fuzzy extractor or helper data
algorithm were introduced in [10,11].

Related Work. To our knowledge, there is no previous description of the complex-
ities and design choices made to implement a helper data algorithm on hardware
and, more specifically, on FPGAs. In both [12,13] the noisy nature of a PUF is
acknowledged. Their solution to the problem is to add an error correcting stage
based on BCH codes. Other codes are not considered and no detailed explanation
of how to choose the code is given. Gassend [14] also considers the problem of
noisy measurements in PUFs by considering Hamming codes and product codes.
The solutions based on product codes in [14] is only able to correct up to two
errors. Gassend gets around this problem by trying different challenges until the
response has a sufficiently small number of errors that they can be solved. It is
worth noticing that a similar problem to the one we are considering is present
in biometrics. In fact, the first fuzzy extractor construction [15] was aimed at
biometric applications. Dodis et al. [11] also describe a software implementation
of a fuzzy extractor based on BCH codes. Somewhat related to our construction
is the construction of Hao et al. [16] where they implement a two stage error cor-
recting scheme for biometric applications (iris recognition). The scheme in [16]
uses first a Hadamard code and then a Reed-Solomon code in a concatenated
manner. Notice that the authors in [16] do not consider the hardware implemen-
tation of their schemes. In addition, Reed-Solomon codes are optimized for burst
errors and thus, are not applicable to our solution since errors present in PUF
responses tend to be random.

Our Contributions. In this paper, we focus on the study and implementation
of fuzzy extractors on FPGAs, as [5,8,9] assume the existence of such a block
but do not provide explicit constructions nor investigate the hardware costs of
fuzzy extractors on FPGAs. Our work can be seen as the final block necessary
to generate cryptographic keys and, thus, allows for the construction of full IP-
protection solutions on FPGAs. We focus on making an efficient choice of code.
By efficient, we mean two things. First, we aim to be able to reconstruct the same
key with high probability. In other words, given a code we want to achieve an
error probability (the probability that an error pattern happens that can not be
corrected by the chosen error correcting code) of at least 10−6 ≈ 2−20. We argue
in Sect. 3.2 that this is a conservative estimate, which can be applied for most
applications. In this respect, we show empirically that from the codes considered,

2 This would only work if Ri = R′
i, which in general is highly unlikely.
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the best codes (meaning those that can achieve a low error probability) are BCH
codes [17,18].

Our second efficiency measure refers to hardware resources. In particular, once
we have achieved a certain error probability, we desire that the error correcting
decoding algorithm implementation be as area efficient as possible. This, in fact,
is a key requirement and makes our work fundamentally different from other
helper data algorithm implementations. In particular, the aim of our solution
is not the implementation of a helper data algorithm on an FPGA by itself.
Rather, our aim is to implement a helper data algorithm in as little hardware
as possible and, in the process, allow for the secure deployment of IP. The IP
block, in fact, is the one that should determine the FPGA resources, not the
helper data algorithm. In our search for an area efficient solution, we turned to
different code constructions. We find that concatenation of codes as introduced
by Forney [19], allows for the use of codes that are much simpler to implement
and possibly more area efficient than BCH codes. In particular, an odd repeti-
tion code followed by a Reed-Muller code or a Golay code can satisfy our error
probability requirements. We expect that such construction will incur in con-
siderable area savings with respect to a construction based on BCH codes only.
We also propose new architectures for the decoders of Reed-Muller and Golay
codes, which are of independent interest. In addition, we identify which universal
hash function constructions from those already known in the literature are most
suitable for small area implementations. These results are described with focus
on an implementation results targeting a Spartan-3E Xilinx FPGA, which is a
typical FPGA used in low cost applications.

Notation. Algebraically a binary linear code C with message length k and code-
word length n is a k-dimensional subspace of F

n
2 . The messages specify each el-

ement of the subspace and the codewords are their representations in F
n
2 . Given

two codewords v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn), with vi, wi ∈ F2,
the Hamming distance between the two words, denoted by dH , is the number
of coordinates in which v and w differ. The minimum distance dmin of a linear
code C is the smallest Hamming distance between any two different codewords
in C. For linear codes the minimum distance is equal to the minimum non-zero
weight in C. We write an [n, k, d]-code to mean a binary code C of length n, car-
dinality 2k (encoding messages of length k), and minimum distance d. A linear
code with minimum distance d has error correcting capability or error correct-
ing distance t =

⌊
dmin−1

2

⌋
. An important data structure related to the linear

code is the generator matrix G whose rows are elements of a basis for the linear
code. For a binary linear [n, k, d]-code, we can write the generator matrix in the
standard form as G = (Ik|P ), where Ik is the k × k identity matrix and P is a
k × (n − k) matrix. The parity check matrix is then found as H = (PT |In−k).
This is an n − k by n matrix such that the inner product of any codeword with
any column of H equals zero. Encoding a message m is accomplished by com-
puting v = mG. The syndrome of a received word r = v + e, where v and e are
a codeword and error, respectively, is defined as Sr = Hr = He. We refer the
reader to [20,21] as standard references for error correcting codes.
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2 Helper Data Algorithms

PUF responses can not be used as a key (as in e.g. [2]) in a cryptographic prim-
itive for two reasons. First, PUF responses are obtained through measurements
on physical systems, which are typically noisy. This leads to a problem since
cryptographic functions are very sensitive to noise on their inputs. Second, PUF
responses are not uniformly distributed. Hence, even if there was no noise, the
response would not form a cryptographically secure key. In order to deal with
both issues a Helper Data Algorithm (HDA) or Fuzzy Extractor or has to be
used. In the remainder of this paper, we will use the two terms interchangeably.
For the precise definition of a Fuzzy Extractor and Helper Data algorithm we
refer to [10,11].

In general a helper data algorithm deals with both issues (noise and non-
uniformity of keys) by implementing first an information reconciliation phase and
second, by applying a privacy amplification or randomness extraction primitive.
In order to implement those two primitives, helper data W are generated during
the enrollment phase. During this phase, carried out in a trusted environment, a
probabilistic procedure called Gen is run. Later, during the key reconstruction or
authentication phase, the key is reconstructed based on a noisy measurement R′

i

and the helper data W . During this phase, a procedure called Rep is performed.
We present one of the constructions for such procedures previously described in
[11]. Other constructions as well as constructions for other metrics can be found
in [11]. Notice that all constructions have an error correcting stage. Optimizing
such stage will be our focus in the next sections.

Construction Based on Code Offset. In order to implement the procedures Gen
and Rep an error correction code C and a set H of universal hash functions [22]
is required. The parameters [n, k, d] of the code C are determined by the length
of the responses R and the number of errors t that have to be corrected. The
distance d of the code is chosen such that t errors can be corrected. The Gen-
procedure takes as input a PUF response(s) R and produces as output a key K
and helper data W = (W1, W2), i.e., (K; W ) = (K; (W1, W2)) ← Gen(R). This
is achieved as follows. First, a code word CS ← C is chosen at random from C.
Then, a first helper data vector equal to W1 = CS ⊕R is generated. Furthermore,
a hash function hi is chosen at random from H and the key K is defined as
K ← hi(R). The helper data W2 is set to i. During the key reconstruction phase
the procedure Rep is run. It takes as input a noisy response R′ from the same
PUF and helper data W and reconstructs the key K i.e. K ← Rep(R′, W ). This
is accomplished according to the following steps: (1) Information Reconciliation:
Using the helper data W1, W1 ⊕ R′ is computed. Then, the decoding algorithm
of C is used to obtain CS . From CS , R is reconstructed as R = W1 ⊕ CS ; and
(2) Privacy amplification: The helper data W2 is used to choose the correct
hash function hi ∈ H and to reconstruct the key as K = hi(R). Notice that
we have implicitly assumed the use of a binary code. The security of the above
constructions has been established in [10,11].
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3 Searching for Good Linear Codes and Efficient HDAs

We will model the noise present in PUF responses as a binary symmetric chan-
nel (BSC). In particular, in a BSC, the bit error probability pb specifies the
probability that a transmitted information bit is received in error. Then, with
probability 1 − pb the sent information bit equals the received one. We assume
that all bits are independent, which turns out to be a good assumption as shown
in [9,5]. In [9], the authors also show that the probability that a string of n bits
has more than t errors is given by:

Ptotal =
n∑

i=t+1

(
n

i

)
pi

b(1 − pb)n−i = 1 −
t∑

i=0

(
n

i

)
pi

b(1 − pb)n−i (1)

Notice that the value of Ptotal will determine the minimum distance of the code
and thus, the size of the code. We argue that a conservative value is Ptotal ≤ 10−6.
To see this, we relate the failure error probability of our system to the error
probability of the hardware platform (in this case FPGAs), which is given in
terms of the Failure-In-Time (FIT) unit. Given a FIT rate λ, the probability that
a failure will occur until time t is given by PFailure until time t(t) = 1 − exp(−λt).
For both Xilinx and Altera devices, the lowest FIT rate that we found in [23,24]
was five for older devices. All device families manufactured in newer process
technology have a FIT rate higher than twelve. Assuming conservatively a FIT
rate equal to five, for a 15-year period the resulting failure probability is 6.610−4.
Thus, it is clear that assuming Ptotal ≤ 10−6 is quite conservative for any realistic
application (i.e. applications that should last more than a month).

3.1 The Naive Approach: Simple Codes

We consider codes which can be used to correct random errors (as opposed to
burst errors) in a received word r. Thus, we do not consider Reed-Solomon codes,
which have very good burst error correcting capabilities, as well as convolutional
codes for similar reasons. We also discarded LDPC codes [25], which are very ef-
ficient but require very large and sparse binary matrices, thus making them re-
source intensive in hardware applications (see e.g. [26,27] for designs targeting
FPGAs, which occupy more than 50% of a high-end FPGA). We do not consider
Hadamard codes explicitly but notice that they are equivalent to first-order Reed-
Muller codes. Similarly, the Hamming code is a [2m − 1, 2m − m − 1, 3]-code and
can therefore correct only one error. Thus, it is not very useful to decode received
vectors with high error rates as in the applications we are considering. In order to
attain the desired error probability of 10−6, we simply start by looking at what
can be achieved via straight forward use of the following codes: repetition code,
Reed-Muller codes of the first order3, binary Golay code, and binary BCH codes.
We refer to [28] for extensive tables for different error probabilities. For our par-
ticular case, we summarize the relevant code parameters in Table 1. In Table 1,
3 Reed-Muller codes of higher order offer better error correction performance at a con-

siderable higher cost in decoder complexity. Thus, we do not consider them.
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Table 1. Results for different codes with pb = 0.15. A code denoted with a star (∗)
means it has been shortened.

Code [n, k, d] t = �d/2� Ptotal source bits
for 171 bits

Repetition [33, 1, 33] 16 1.0010−6 5643
Reed-Muller [256, 9, 128] 63 2.0410−5 4864
Reed-Muller [512, 10, 256] 127 2.5410−9 9216

Golay [23, 12, 7] 3 0.4604 345
BCH [511, 19, 239] 119 2.9710−7 4599
BCH [1023, 46, 439] 219 1.8510−8 4092
BCH [1020, 43, 439]∗ 219 1.4410−8 4080

the last column refers to the number of SRAM source bits required to obtain 171
“error-free” bits which can then be hashed to obtain 128 random and uniformly
distributed bits. This is based on the amount of entropy in SRAM PUFs reported
in [5]. Then, the last column in Table 1 can be computed as n�171/k�, where n and
k, refer to the code parameters. We observe that in this table, we have only consid-
ered the code as stated in the first column or a shortened version of it in the case
of the [1020, 43, 439]-BCH code. Shortening a code4 is one of many different code
modifications and one which we found useful empirically. We also notice that the
number of errors that a shortened code can correct is at least t. However, correcting
the additional error patterns enabled by the code shortening results in additional
decoder complexity. Notice that neither the Golay code nor the [256, 9, 128]-Reed-
Muller code provide our desired error probability and that the BCH codes provide
a very low error rate. Thus, the question that we ask is if we can extract a 128-bit
cryptographically secure key with less than 4080 bits of SRAM.

3.2 A New Construction Based on Concatenated Codes

Notice that the previous scheme has several disadvantages. First, a scheme based
on the repetition code alone, although low complexity, requires more than 5000
bits of SRAM. Second, although we have not discussed the complexity of the
decoders yet, BCH decoder algorithms are very complex and, thus, we expect
it to be expensive in terms of area. Thus, in this section we propose a new
scheme based on concatenation of two error correcting codes C1 and C2 [19] to
get less complexity while achieving the same or comparable error probabilities.
Given two codes C1 and C2 with parameters [n1, k1, d1] and [n2, k2, d2] respec-
tively, the concatenated code Cc is a [nc, kc, dc]-code with nc = n1n2, kc = k1k2
and dc = d1d2. Notice that very long codes can be constructed from consider-
ably shorter ones. Furthermore, a concatenated code can correct (depending on
construction) random and burst errors simultaneously and the decoding com-
plexity of two short codes is lower than the complexity of the entire code. Based
4 One way to shorten an [n, k, d]-code, is to set i information symbols to zero to obtain

an [n − i, k − i, d]-code.
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Algorithm 1. Genc Algorithm for Concatenated Codes
Require: An [n1, k1, d1]-code C1, an [n2, k2, d2]-code C2, a family H of universal hash

functions, and a PUF response R of size sR = l2 · n2 bits, where l2 = � l1·n1
k2

� and
l1 = � sK

k1
� or l1 = � sK

k1
� + 1.

Ensure: Helper data (W1, W2) and a key K of size sK

1: Set l1 ← � sK
k1

� if k2 divides l1 · n1, otherwise l1 ← � sK
k1

� + 1
2: Generate uniformly at random code words v1i from C1, for i = 1, 2, . . . , l1.
3: Form the string u by concatenating the binary representation of v1i for i =

l1, . . . , 2, 1. At the end u = (u1, u2, · · · , ulu), where ui ∈ {0, 1} and lu = l1 · n1.
4: Set l2 ← � lu

k2
�. If k2 does not divide lu, extend u by adding l2k2 − lu zero bits to

it. The resulting string u′ is of size l2 · k2 bits.
5: Write u′ = (U ′

1, U
′
2, . . . , U

′
l2), where U ′

i are words of size k2 bits.
6: For i = 1, 2, . . . , l2, compute v2i ← EncodeC2(U

′
i), where EncodeC2 is the encoding

algorithm for the code C2.
7: Form the string w by concatenating the binary representation of v2i for i =

1, 2, . . . , l2. At the end w = (w1, w2, · · · , wlw ), where wi ∈ {0, 1} and lw = l2 · n2.
8: Set W1 ← w ⊕ R, where ⊕ is the bitwise logical XOR operation.
9: Choose a random hash function hi ∈ H

10: Set W2 ← i
11: Set RK to the first (l2 − 1) · n2 bits of R. This essentially ignores n2 bits of the

response R.
12: Set K ← hi(RK)

on our discussion on fuzzy extractors in Sect. 2, our new constructions for the
procedures Gen and Rep are described in Algorithms 1 and 2, respectively.

Before considering specific examples, we discuss what the error probability
will be for our concatenated codes. Intuitively, the main idea of our construction
is to first use a rather simple code, let’s say C2 to bring the number of errors
down. Then, with the second code, C1, the remaining errors are corrected. By a
clever choice of the first code also the second code, has to correct only a few errors
making the scheme more efficient. A similar idea is presented in [29] as a way to
cope with extremely noisy channels. In particular, [29] reduced the error prob-
ability by using a repetition code and then combine the first stage with a more
powerful code. For example, a simple calculation with (1) will demonstrate that
just using the [3, 1, 3] repetition code, it is possible to bring the error probability
from 15% to 6%. In general, the resulting error probability can be estimated as
follows. Given two codes C1, C2 with parameters [n1, k1, d1; t1 = 	(d1−1)/2
] and
[n2, k2, d2; t2 = 	(d2 − 1)/2
], respectively, the Repc-procedure will first decode
with DecodeC2 and the result will be decoded with DecodeC1 . Thus, the error
probabilities P2 and P1 after decoding with the decoding algorithms of C2 and
C1, respectively, correspond to:

P2 =
n2∑

i=t2+1

(
n2

i

)
pi

b(1 − pb)n2−i = 1 −
t2∑

i=0

(
n2

i

)
pi

b(1 − pb)n2−i (2)
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Algorithm 2. Repc Algorithm for Concatenated Codes
Require: Helper data (W1, W2), the decoding algorithms DecodeC1 and DecodeC2 cor-

responding to the [n1, k1, d1]-code C1 and [n2, k2, d2]-code C2, respectively, and a
noisy PUF response R′ of size sR = l2 · n2 bits, where l2 and l1 are as determined
in Algorithm 1.

Ensure: A key K of size sK

1: Set w̃ ← W1 ⊕ R′, where ⊕ is the bitwise logical XOR operation. This results in a
bit string w̃ = (w̃1, w̃2, · · · , w̃lw ), where w̃i ∈ {0, 1} and lw = l2 · n2.

2: Set ṽ2i = (w̃(i−1)n2+1, w̃(i−1)n2+2, . . . , w̃in2) for i = 1, 2, . . . , l2.
3: Compute v′

2i ← DecodeC2(ṽ2i) and recover the perturbed string ũ′ =

(Ũ ′
1, Ũ

′
2, . . . , Ũ

′
l2), where Ũ ′

i are words of size k2 bits.
4: If zero bits were added during the Genc procedure, delete them and obtain a string

ũ = (ũ1, ũ2, · · · , ũlu), where ũi ∈ {0, 1} and lu = l1 · n1. Otherwise (if no zero bits
were added) set ũ ← ũ′.

5: Set v′
1i = (ũ(i−1)n1+1, ũ(i−1)n1+2, . . . , ũin1) for i = 1, 2, . . . , l1.

6: Compute v1i ← DecodeC1(v
′
1i) and recover the original string u = (u1, u2, · · · , ulu),

where ui ∈ {0, 1} and lu = l1 · n1.
7: Perform Steps 4 through 12 of Algorithm 1 to recover K.

P1 =
n1∑

i=t1+1

(
n1

i

)
P i

2(1 − P2)n1−i = 1 −
t1∑

i=0

(
n1

i

)
P i

2(1 − P2)n1−i

where pb is the bit error probability of the source, in our case the noise in the
PUF response. Notice that Pi is the word error probability. In other words,
the probability that a word will be in error after decoding. This is equal to
the bit error probability in the case of the repetition code but not in the case
of Golay, Reed-Muller or BCH codes. However, it is well known [30] that the
resulting bit error probability is always less or equal to the word error probability
as estimated in (2). Thus, we are being conservative in our estimates and the
results in Table 2 correspond to worst case error probabilities. We report in
Table 2 the best constructions that we found. Extensive tables for different PUF
bit-error probabilities can be found in [28]. Our first observation about Table 2
is that we can achieve probabilities ≤ 10−6 not using BCH codes. This is a
nice outcome of the construction, since this allows us to consider other codes
which accept a more efficient implementation. Nevertheless, BCH codes error
correction capabilities are indisputable. A second and perhaps more important
observation is that when we combine a repetition code with a BCH code in a
concatenated construction, the code size and thus, the number of SRAM source
bits required decreases considerably (compare 4080 in Table 1 with the shortened
[226, 86, 43]-BCH code at 2260 bits). Thus, it is clear that our construction offers
considerable advantages.
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Table 2. Output error probabilities for several concatenated codes with an input bit
error probability of pb = 0.15. Codes denoted with a star (∗) have been shortened.

C2 C1 P1 source bits
[n2, k2, d2] [n1, k1, d1] for 171 bits

repetition [3, 1, 3] BCH [127, 29, 43] 8.48 E-06 2286
RM [64, 7, 32] 1.02 E-06 4800
BCH [63, 7, 31] 8.13 E-07 4725

repetition [5, 1, 5] RM [32, 6, 16] 1.49 E-06 4640
BCH [226, 86, 43]∗ 2.28 E-07 2260

repetition [7, 1, 7] G23[23, 12, 7] 1.58 E-04 2415
G23[20, 9, 7]∗ 8.89 E-05 2660
BCH [255, 171, 23] 8.00 E-05 1785
RM [16, 5, 8] 3.47 E-05 3920
BCH [113, 57, 19]∗ 1.34 E-06 2373

repetition [9, 1, 9] BCH [121, 86, 11] 6.84 E-05 2178
G23[23, 12, 7] 8.00 E-06 3105
RM [16, 5, 8] 1.70 E-06 5040

repetition [11, 1, 11] G24[24, 13, 7] 5.41 E-07 3696
G23[23, 12, 7] 4.52 E-07 3795

4 HDA Architecture and Implementation Results

In addition to the error correcting properties of the codes that we previously
considered, we also consider their performance from a hardware perspective. In
particular, in this work we aim to make designs as small as possible in order to
reserve space for the actual IP block to be implemented on the FPGA. We pro-
pose decoder architectures for first order Reed-Muller codes and for the binary
Golay codes. For hash functions, we take the architecture proposed by Krawczyk
[31] since this family accepts a more efficient implementation than all the other
ones proposed or described in [32,31,33]. Due to space constraints, we refer to
[28] for an exact analysis of their complexity.

Reed-Muller Codes. In this work we only consider first-order Reed-Muller codes
because of their simple decoding algorithms. The procedure for decoding these
codes is shown in Algorithm 3. To describe the process of generating the charac-
teristic vectors let us denote the row of the generator matrix corresponding with
the variable vi by v(1)

i and its logical negation by v(0)
i . Then the characteristic

vectors of vi are different vectors ∏
j=1,··· ,m,j �=i

v(kj)
j , (3)

where kj is either 0 and 1. The values of kj for each of the m−1 values of j assign
to each characteristic vector for each variable a number between 0 and 2m−1 −1.
Thus an m − 1 bit counter can be used to enumerate all of the characteristic



Efficient Helper Data Key Extractor on FPGAs 191

Algorithm 3. Decoding R(1, m) codes using Majority logic

Require: x = (x0, x1, . . . , x2m−1) (the received vector) and G ∈ F
(m+1)×2m

2 the gen-
erator matrix of R(1, m)

Ensure: û = (u0, u1, · · · , um) the original message
1: for i = 1 to m do do
2: Find 2m−1 characteristic vectors for the row i of G (the index of the rows of G

begin with zero).
3: Compute the dot product of each of these vectors with the received message.
4: Compute the majority of the values of the dot products and assign it to ui.
5: end for
6: Multiply (u1, · · · um) by the sub-matrix consisting of the last m rows of G to get

the vector s with 2m entries.
7: Assign the majority of the entries in s + x to u0.

vectors corresponding with a variable. We are aware of two different hardware
structures proposed in the literature for hardware based decoding of R(1, m)
codes which are also described in [21, Chapter 13]. However, since we target a
low resource implementation, we propose an architecture that is a factor of m
(asymptotically) smaller than those proposed in [21] at the cost of additional
processing time. We defer a more detailed comparison of the architectures to the
full version of the paper.

The newly proposed design is based on Algorithm 3 and is shown in Fig. 1. The
most important parts of this circuit are the GM-generator and the CV-generator
modules. The output of the GM-module periodically consists of each column of
the generator matrix. Due to the structure of the R(1, m) generator matrix and
considering the fact that only the last m rows of the (m+1)×2m generator matrix
are required, it is easy to verify that GM-generator can be realized using an m-bit
counter. The CV-generator module generates the bits of each of the characteristic
vectors using the current column of the generator matrix, based on the index of
the characteristic vector, the m − 1 values of kj from (3), which is the output of
CV Index and the variable being currently decoded which is the output of Vari-
able counter. CV-generator consists of several multiplexers, which output an input
value or its logical inverse, and the required circuitry to compute the product in
(3). The Majority Decoder is a counter which can be either m bit or m+1 bit wide
and its content must be compared with 2m−1 or 2m, respectively. Hence its output
is its (m − 1)th or mth bit, respectively. The output of Algorithm 3 is the mes-
sage corresponding to the appropriate codeword whereas for PUF applications the
codeword is needed. After the message is correctly decoded it is multiplied, again
using the inner product module, by the generator matrix and the result is stored
in the Received Word module. Our decoder requires m2m−12m = m22m−1 iter-
ations to process each row of the generator matrix with 2m columns for each of
the 2m−1 characteristic vectors and each of the m decoded messages. To this time
the 2m iterations for processing each of the 2m columns of the generator matrix
should be added. The Received Word module is used for both input and output
of the values. The overall complexity of the decoder is shown in Table 3.
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Fig. 1. Block diagram of our Reed-Muller decoder

Golay Code. An arithmetic decoder as seen in Algorithm 4 uses the weight
structure of the syndrome to determine the error patterns [34]. P is the non-
identity part of the generator matrix. The vector cpi is the ith column of P and
rpi the ith row, respectively. The error vector is denoted as e = (x, y) where
x and y are vectors of length 12. A vector xi is the zero vector with a 1 at
the ith position. Our proposed circuit shown in Figure 2 can be derived from
Algorithm 4. The main steps in the decoding process are the computation of
the syndrome and helper syndrome, the determination of the Hamming weight,
GF (2) addition and the comparison of the Hamming weights with a constant.

We use a dot product block, which consists of 1 AND, 1 XOR and 1 FF for the
serial computation of the syndrome and the helper syndrome. These syndromes
are of length 12 and therefore the Hamming weight is at most 12 which can be
represented with 4 bits. The result of the dot product or the GF (2) addition
respectively is loaded into a 12-bit shift register and a simple 4-bit counter
counts the number of ones. The 4-bit counter requires 8 XOR, 8 AND and 4
OR gates. The result is then compared with a constant depending on the step
of Algorithm 4. This step requires a 4-bit comparator and therefore 12 AND, 8
OR and 8 NOT gates. The constants are stored in memory and need 3 FFs.The
GF (2) addition is done with an XOR gate. Furthermore we need 24 FF for the
error vector e, 24 FF to store the received vector and 288 FF for the generator
matrix. The gate complexity without the control circuit is shown in Table 3. The
above circuit can be optimized by removing the shift register and constructing
the generator matrix on the fly, so we need to store only 24 bits for the first
column and 23 bits for the second column. The other columns are determined
by a simple shift operation. The complexity of the circuit without control can
be seen in Table 3.

Universal Hashing. As previously mentioned, we use a construction due to
Krawczyk [31]. This construction makes use of random binary matrices, where
the hash value hA(x) is the Boolean multiplication of the matrix A by the mes-
sage x. Krawczyk [31] shows how this can be implemented using a simple LFSR.
We only need to store the first column of the matrix and the next columns
are generated by the LFSR. The circuit is shown in Fig. 3. For a 128-bit key
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Algorithm 4. Arithmetic Decoding of the Golay G24 code [34]
Require: r (the received vector), G = [I |P ] (the generator matrix)
Ensure: v (the encoded message)
1: Compute the syndrome s = Gr
2: if wt(s) ≤ 3 then
3: e = (sT , 0)
4: else if wt(s + cpi) ≤ 2 for a column vector cpi then
5: e = ((s + cpi)

T , yi)
6: else
7: Compute the helper syndrome z = P T s
8: if wt(z) ≤ 3 then
9: e = (0, (z)T )

10: else if wt(z + rpT
i ) ≤ 2 for a row vector rpi then

11: e = (xi, (z)T + rpi)
12: else
13: Too many errors
14: end if
15: end if
16: v = r + e

Table 3. Area complexity of a serial implementation of arithmetic Golay decoding and
low resources Reed-Muller decoder

Decoder Variant FF XOR AND OR NOT
Golay store matrix 352 10 21 12 8

Golay generate matrix 99 10 21 12 8

Low resource R(1, m) decoder 2m + 6m − 1 m2

2 + 13m
2 − 2 9m 5m2

2 + m
2 − 1 m

the LFSR and the register for the accumulator need to be of size 128, thus re-
quiring 256 FF. In addition the LFSR requires about 128

2 XOR gates and the
accumulator 128 XOR gates. The size of the shift register in Fig. 3 depends on
the parameter n of the error correcting code used. Thus, for the Reed-Muller
codes and Golay code it needs between 16 and 64 FFs depending on the code.
Altogether without control the circuit requires 272-320 FFs and 192 XOR gates.
Implementation Results. We have implemented the repetition code, Golay and
Reed-Muller code decoders (R(1, 4), R(1, 5), R(1, 6)) as well as the Toeplitz de-
sign for a universal hash function based on [31] in VHDL. We target the Spartan-
3E 500 FPGA and use Xilinx ISE v9.2 for our tooling. We synthesized and
mapped all designs. The Spartan-3E family of devices corresponds to low end
FPGAs typically used in automotive and consumer electronic applications. The
results are shown in Table 4. We observe that our designs our very space efficient.
In particular, combining any repetition code decoder (a counter plus logic), a
Reed-Muller or Golay code, any of the designs for the hash function our utiliza-
tion is not greater than 10%. It seems clear that the Reed-Muller code is both
superior in area but also in error correction performance (based on Table 2). Al-
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Fig. 2. Block diagram of our arithmetic Golay decoder

RegisterShift Register Control

LFSR

Accumulator

Fig. 3. LFSR-based Toeplitz hashing

Table 4. Implementation Results on Xilinx Spartan-3E-500 FPGA

Code / Hash Output Slices Latency Critical Path Performance for 128-bit
(bits) (cycles) (nsec) key@50 MHz (sec)

Repetition [3, 1, 3] 3 41 (1%) 6 5.3 2.1 10−5

Repetition [5, 1, 5] 5 41 (1%) 10 5.3 3.4 10−5

Repetition [7, 1, 7] 7 41 (1%) 14 5.3 4.8 10−5

Repetition [9, 1, 9] 9 41 (1%) 18 5.3 6.2 10−5

Repetition [11, 1, 11] 11 41 (1%) 22 5.3 7.5 10−5

R(1, 4) 16 69 (1%) 503 5.5 3.5 10−4

R(1, 5) 32 90 (1%) 1743 5.6 1.0 10−3

R(1, 6) 64 127 (1%) 6495 5.6 3.2 10−3

Golay G24 24 539 (5%) 1188 6.6 3.6 10−4

Toeplitz Hash 16 [31] 128 319 (3%) 64 5.7 1.0 10−5

Toeplitz Hash 24 [31] 128 327 (3%) 96 5.7 1.2 10−5

Toeplitz Hash 32 [31] 128 335 (3%) 128 5.7 1.0 10−5

Toeplitz Hash 64 [31] 128 367 (3%) 256 5.7 1.0 10−5

though, the Golay code decoder can be optimized by generating the parity check
matrix on the fly, in terms of area it is still outperformed by the Reed-Muller
codes. We can estimate the complexity of the overall helper data algorithm by
assuming a concatenated construction with a Repetition code, a Reed-Muller
code, a Toeplitz-based hash function and 100% overhead for control. Even then,
the overall fuzzy extractor requires less than 10% of the FPGA resources. Un-
fortunately, we have not found any BCH code implementations on FPGAs to
which we can compare. However, the BCH decoding algorithms themselves are
much more complex, thus, it is expected that their hardware complexity will be
similarly higher. In the full version of the paper, we expect to have a full BCH
decoder and thus, be able to fully compare all our constructions.
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5 Conclusion

We present the first efficient implementations of helper data algorithms on FP-
GAs. Helper data algorithms are used to extract cryptographic keys from the
noisy response of, e.g., a Physical Unclonable Function (PUF). PUFs have be-
come an attractive subject of research due to their nice properties for unforgeable
authentication and secure key storage purposes. In particular, one can deploy
them to securely bind applications to the underlying hardware, a mechanism
that has various applications and most prominently IP protection. Our solution
offers the last missing building block toward real world IP protection on FPGAs.
Our helper data algorithms are efficient with regard to the required hardware
resources, which is important for hardware design. In the design of our helper
data algorithms, we make use of various linear codes constructions, each with
own advantages and shortcomings. These constructions are then compared in
terms of error correction capabilities and hardware resource usage, giving the
designer the necessary tools to make an informed decision when implementing a
helper data algorithm.
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2. Tuyls, P., Schrijen, G.-J., S̆korić, B., van Geloven, J., Verhaegh, N., Wolters, R.::
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

3. Trusted Computing Group: TPM main specification. Technical Report Version 1.2
Revision 94 (March 2006)

4. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown
functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications
Security — CCS 2002, pp. 148–160. ACM, New York (2002)

5. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)
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Abstract. In this paper, we describe a new attack against a classical
differential power analysis resistant countermeasure in public key im-
plementations. This countermeasure has been suggested by Coron since
1999 and is known as the exponent randomization.

Here, we show that even though the binary exponentiation, or the
scalar product on elliptic curves implementation, does not leak informa-
tion on the secret key, the computation of the randomized secret expo-
nent, or scalar, can leak useful information for an attacker. Such part
of the algorithm can be not well-protected since its goal is to avoid at-
tack during the exponentiation. Consequently, our attack can be mounted
against any kind of exponentiation, even very resistant as soon as the ex-
ponent randomization countermeasure is used. We target an �-bit adder
which adds �-bit words of the secret exponent and of a random value.
We show that if the carry leaks during the addition, then we can almost
learn the high order bits of each word of the secret exponent. Finally,
such information can be then used to recover the entire secret key of
RSA or ECC based cryptosystems.

1 Introduction

Side channel attacks are very powerful attacks and today most embedded ap-
plications that require high level of security use countermeasures against such
kind of attacks. Two of the most carefully studied algorithms are the square-
and-multiply algorithm and its analog on Elliptic Curve, the double-and-add
algorithm, since its wide usage. There exists a classical countermeasure to avoid
simple power analysis (SPA) attack, that always performs the multiply or the
add operation so that all the operations of the implementation are not key
dependent. This countermeasure is very efficient in practice, so that most im-
plementations use it. However, such implementations can be attacked by using
differential power analysis (DPA [13]) techniques such as in [14] and a popular
countermeasure consists in randomizing the secret exponent or secret scalar by
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a multiple of the order of the elements ϕ(N) in the case of RSA modulus or of
the order of the base point in the case of Elliptic Curve. Such countermeasure
has been proposed by Coron in [7] since 1999. With this countermeasure, the
secret exponent will never be the same and DPA attacks that recover the secret
bit by bit cannot be mounted.

Related Work. This well-known countermeasure has been first attacked by
Fouque and Valette in [11] using the Doubling Attack. However, in such attack
the adversary is assumed to be able to send many times the same message and
that no randomization of the message is performed before the exponentiation.
Here, our attack avoids these two drawbacks since the attack does not need the
knowledge of the message.

In [10], Fouque et al. show that if Coron’s countermeasure is used with some
windowing exponentiation algorithms and a small public key e, then a simple
SPA followed by a very clever attack can recover the secret key d and ϕ(N) in
the same time. In [10], the implementation is not protected against SPA attacks
since the classical SPA attack does not work on the windowing algorithms. In this
work, the authors have to solve a problem similar of that which we try to solve
here, namely, recovering the secret d in RSA, knowing some non-consecutive bits
of d. Indeed, side channel technique allows Fouque et al. to learn some key bits
of many randomized exponents of the form dj = d + λjϕ(N), for many λj in a
small set, the set of 20-bit or 32-bit integers in typical implementations.

Recovering secret RSA key knowing some bits of d is an old problem starting
from the pionerring work of Boneh, Durfee and Frankel in [2] since 1998. How-
ever, the techniques used in Boneh et al.’s paper are based on Coppersmith’s
lattice algorithm [5,6] that works well when the bits are consecutive. Later, other
attacks such as [9,1] have been proposed on RSA, but no one except [10] targets
the case when bits are non consecutive.

In the Elliptic Curve case, the problem of recovering secret scalar when non-
consecutive bits are known has also been studied. The Baby Step Giant Step
algorithm can always be used, however reducing the memory requirement is
not always possible as with Pollard algorithm or the lambda method, a.k.a. the
kangoroo algorithm in [19,15]. However, Stinson describes an algorithm due to
Coppersmith in [18] that can be used to reduce the memory requirement. A simi-
lar algorithm has been devised by Coron et al. in [8] for RSA modulus. However,
the missing bits must not be too numerous since the method is based on the
birthday paradox and memory and time requirements are almost in the square
root or fourth root of the number of missing bits.

Our Results. In this paper, we show that the exponent randomization coun-
termeasure can be attacked very efficiently and the whole secret key can be
recovered. The main novelty of the attack is to target the computation of the
randomization itself dj = d + λj · ϕ(N) in case of an RSA modulus and not
the exponentiation x �→ xdj mod N . In the addition of a random value with a
fix and secret one, the targeted operation is the sum of the secret scalar with
a random number, a random multiple of the order of the base point P . Seifert
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in [17] and Brier et al. in [3] have also studied attacks on other part of the algo-
rithm, on some public information for example. Here, our attack is less invasive
since we do not change parameters and we only record some electromagnetic
radiations. Finally, this attack is very efficient since it works against very secure
or even “provably-secure” exponentiation that uses the exponent randomization
since the side channel leakage comes from the countermeasure and not from the
exponentiation algorithm.

We show that when the secret exponent, or scalar, and the randomization are
cut into �-bit word, then the carries of the adder can leak and such information
can be used to guess the high order bits of each �-bit word of the secret with a
good precision. Then to recover the whole secret key, either the number of missing
bits is small enough so that a classical baby step giant step method could be
used or other techniques are required to find the other bits. In the case of RSA
keys or large ECC keys, the idea consists in recovering the randomized value λj

using the known bits of the order. Once the λj ’s are known, the addition or the
exponentiation are unprotected against classical DPA attacks such as address-bit
DPA [12] or Correlation Power Analysis (CPA) attack [4].

Organization of the Paper. The principle of the attack is presented in sec-
tion 2. Then, in section 3, we theoretically explain how the knowledge of the
number of carries allows us to guess the high order bits of each word of the
secret key. In section 4, we show that the internal carries of the full addition
involved in the masking process can be observed by SCA. Finally, in section 5
we describe the attacks against classical implementations of RSA and ECC to
retrieve the whole secret key.

2 The Attack Principle

The idea of the attack is to target the countermeasure operation and not the
exponentiation or scalar product operation. The former operation is usually not
well protected since it is used to protect the latter one. So, in the sequel, we
assume that the exponentiation is protected against SPA by using the square-
and-multiply always algorithm and against DPA attack by using randomiza-
tion of the message even with unknown blinding and the randomization of the
exponent.

2.1 The Secret Randomization Countermeasure

It is well-known that randomizing d with dj = d + λjϕ(N) for RSA and dj =
d + λj#E for ECC leads to the same results. Furthermore, if λj is different at
each execution of the algorithm, classical DPA attacks which retrieve the secret
bit by bit become ineffective. Such a countermeasure is known as the exponent
randomization. Fig. 1 describes this technique for RSA and ECC.
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– Inputs: a message M for RSA (resp. a point P of a curve E for
ECC), a word size in bits μ, an exponent d, a modulus N (resp.
#E , the cardinal of E).

– Output: Md mod N for RSA (resp. d · P for ECC)

1. Take a μ-bit random integer λj

2. Compute dj = d + λjϕ(N) (resp. dj = d + λj#E)
3. Return SCA protected exponentiation Mdj mod N (resp. dj · P )

Fig. 1. The Private Exponent Randomization for RSA (resp. ECC)

2.2 The Sketch of the Attack

If someone adds random integers Ri to a fixed integer S, the probability over
the different values of Ri to observe a carry flag only depends on S. Indeed, on
8-bit integers, random addition with the fixed value 0xFF is more likely to raise
a carry flag than with the fixed integer 0x01.

Integers are often too large to be added through a digital circuit. The operands
are usually broken into �-bit words and the full addition function is splitted into
�-bit additions. An �-bit addition is the sum of two �-bit integers. A carry flag
is raised for a buffer overflow, i.e. when the �-bit sum is larger or equal to 2�.

These carry flags raised during the full addition can be observed by side chan-
nel analysis. An attacker who observes a device for many secret randomizations
can use the carry flag as a source of information to retrieve the secret RSA or
ECC exponent. Our attack uses two stages: the side channel analysis to obtain
information on the secret and the cryptographic attack which uses the informa-
tion to recover the entire secret key.

2.3 The Exponent Randomization Ripple Carry Addition

This subsection describes the notations used in the rest of the paper. The at-
tacker performs m exponent randomizations and j denotes the indice of the
randomization from 0 to m − 1.

The addition function used for the exponent randomization is assumed to be
designed as a k-word ripple carry addition. The two operands of the addition are
broken in k �-bit words with � = 8, 16 or 32. The full addition is then performed
word by word using a �-bit adder which takes as input two �-bit operands and a
carry-in and outputs the sum and the carry-out. The ripple strategy consists in
chaining the carry-out and the carry-in together. Let i be the word indice from 0
to k−1. The private exponent and the mask are denoted by d and A(j) = λjϕ(N)
for RSA and A(j) = λj#E for ECC. The carry flag raised during the ith �-bit
addition for the jth randomization is c

(j)
i and Ci is the sum of the carry flags

raised during the m exponent randomizations, Ci =
∑m−1

j=0 c
(j)
i . The principle of

the ripple adder for the jth exponent randomization is described in Fig. 2 and
the notations are the following:
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Fig. 2. jth Exponent randomization

– �: The atomic adder size
– k: The number of words.
– m: The number of exponent randomizations observed.
– d: The private exponent d =

∑k−1
i=0 Di2�·i.

– d′: The randomized private exponent d′ =
∑k−1

i=0 D′
i2

�·i.
– A(j): The jth mask A(j) =

∑k−1
i=0 a

(j)
i 2�·i.

– c
(j)
i : The carry involved in the addition of the ith �-bit word:

– c
(j)
−1 = 0 (no initial carry.)

– c
(j)
i = 1 if Di + a

(j)
i + c

(j)
i−1 ≥ 2� with 0 ≤ i < k and c

(j)
i = 0 otherwise.

– Ci: The number of carries in the addition of the ith �-bit word: Ci =∑m−1
j=0 c

(j)
i

3 The Exponent Randomization Attack

The exponent randomization consists in summing the private exponent with a
mask. To do so, both exponent and mask are divided into k �-bit words. In this
section, we assumed that the attacker can observe or deduce the number Ci of
carries involved on the ith �-bit addition in the m exponent randomizations. In
the next section, we show that such information can be observed by using side
channel attack.

In the following, we assume that the randomization λjϕ(N) (or λj#E) are
uniformly distributed values. Even though such an assumption is not correct, we
can assume that it is locally correct. For each word of λjϕ(N), we can assume
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this property since the number of curves needed is less than the 232 values of
the λj ’s and the multiplication has the property to quickly spread the random
values of the λjs into all words of λjϕ(N) except maybe the first and last words.

Probability of Guessing a Word given the Number of Carries. The at-
tacker has to guess the ith word of the secret exponent knowing the number of car-
ries involved during the m randomizations. Theorem 1 gives us the probability of
a correct guess of the probability distribution of guessing the ith word of the secret
knowing the number Ci of carry flags involved in its making is given by Eq. 1.

Theorem 1. The probability distribution of guessing the ith word of the secret
knowing Ci the number of carries flags involved in the m randomizations is

Pr(Di = n|Ci = q) =
(n/2�)q(1 − n/2�)m−q∑2�−1

α=0 (α/2�)q(1 − α/2�)m−q
(1)

Proof. First, we compute the probability distribution of the first �-bit word D0
of the secret exponent given the number of carries C0 involved with a �-bit adder
implementation during m randomizations, i.e. we prove the above formula for
i = 0. Then, we use an induction on i to prove the theorem for all values i.

During a single randomization, the probability Pr(C0 = 1|D0 = n) of observing
one carry for the first word is n/2�. Indeed, let a given mask Aj , a given secret d,
and their first �-bit words are respectively aj

0 and D0. These words can take 2�

different values with the same probability. The value D0 is fixed while aj
0 is purely

random, thus: Pr(C0 = 1|D0 = n) = Pr(n + aj
0 > 2� − 1) = Pr(aj

0 > 2� − n − 1).
Then a carry is observed when aj

0 takes one of the n values larger than or equal
to 2� − n and smaller than or equal to 2� − 1. Therefore:

Pr(C0 = 1|D0 = n) = n/2� (2)

Now, we compute the probability distribution Pr(D0 = n ∩ C0 = q) using the
definition of the conditional probability: Pr(D0 = n∩C0 = q) = Pr(C0 = q|D0 =
n) ·Pr(D0 = n). Since there exist

(
m
q

)
possible cases where q carries are observed

during m randomizations. Therefore:

(3)

Then, we need to compute the probability distribution of the event C0 = q. Since,
the secret D0 can take 2� different values, we can thus compute the probability by
summing on all value of D0 as follows: Pr(C0 = q) =

∑2�−1
α=0 Pr(C0 = q∩D0 = α)

and using (3), we get:

Pr(C0 = q) =
1
2�

·
(

m

q

) 2�−1∑
α=0

(α/2�)q(1 − α/2�)m−q (4)
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Finally, we compute the probability distribution Pr(D0 = n|C0 = q) by using
(3) and (4):

Pr(D0 = n|C0 = q) =
(n/2�)q(1 − n/2�)m−q∑2�−1

α=0 (α/2�)q(1 − α/2�)m−q
(5)

Now, we prove theorem (1) for i > 0. For the jth randomization, the (i + 1)th

addition carry cj
i+1 does not only depend on the value of Di+1 + aj

i+1 but also
on the ith addition carry cj

i . More precisely, the (i + 1)th addition carry does
not depend on the ith addition carry except if Dj

i+1 + aj
i+1 = 2� − 1. Then, as

Di+1 is fixed, cj
i+1 depends on cj

i one time out of 2�. If we omit this fact, then
equation (5) can be generalized to:

Pr(Di+1 = n|Ci+1 = q) =
(n/2�)q(1 − n/2�)m−q∑2�−1

α=0 (α/2�)q(1 − α/2�)m−q
(6)

��
Even if this function is discrete, the probability distribution of the random vari-
able Di/2� knowing Ci can be approximated as the Beta distribution β(q +
1, m − q + 1). This approximation is detailed in Appendix B and Fig. 3 repre-
sents the evolution of the probability distribution according to the number m of
experiments.

The probability distribution shape tends to zero except on a lobe which is
maximal for

⌊
q · (2� + 1)/m

⌋
or

⌈
q · (2� + 1)/m

⌉
. The attacker can then take a

decision. The most probable of these two words is defined as the secret estimate
D̂i. The attacker’s probability to take the right decision, i.e. the probability of
D̂i = n, increases with m. The worst case, i.e. when the probability of D̂i = n
is the lowest, is for m = 2q leading to D̂i = 2�−1.

Furthermore, instead of choosing one single word, the attacker can select the
most probable words that could match to the secret. He owns then not anymore
one estimate but a set of estimates. He can then accumulate the different prob-
abilities, meaning he tries to guess part of the secret instead of the whole secret
itself. This strategy can be very efficient. Indeed, just a few words achieve a non
negligible probability, the other ones having a probability close to 0. This strategy
consists then in using cumulative properties instead of the density properties.

This gain can be illustrated through an example: an attacker observes 10, 000
exponent randomizations and observes 1, 250 carries on a 8-bit adder. What can
he deduce? The probability that 0x20 is the secret word is 0.47. But the proba-
bility that 0x1F or 0x20 is the secret word increases to 0.7. Cumulating 4 words
(0x1E,0x1F,0x20 0x21) leads to a probability of success higher than 0.99. In the
worst case, m = 2q, the variance of β(m/2+1, m/2+1) is σ2 = 1/4(m+3) [16].
Then, the number of estimates to accumulate for reaching a success probability
of at least 0.99 is proportional with 2�/

√
m by using Chebyshev bound. We veri-

fied experimentally this result: for 10, 000 exponent randomizations, 4 estimates
are needed for getting a probability of 0.99 when q = 5, 000 and � = 8.
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Fig. 3. Probability Distribution of D|C According to the Number of Experiments with
� = 8 and � = 16

4 The Exponent Randomization SCA

In this section, we show that the value Ci can be learned by the adversary. The
target of our side channel attack is the carry-out of the atomic adder. We have
tested its feasibility by simulating a 160-bit masking on the ProASIC 3/E starter
kit from Actel which is a FPGA development kit. We have designed a full ripple
addition function with a 32-bit adder. In appendix A, we give some information
concerning addition design.

4.1 The Location and Profiling Stages

The SCA feasibility is demonstrated with EMA techniques, studying the elec-
tromagnetic side channel. Radiation is measured in the near field zone using a
small loop probe sensitive to the horizontal magnetic field. The used test bench
is represented on Fig. 4. The two operands are randomly chosen to localise in
space the adder on the chip and time slot where the addition is performed during
the implementation. The carry flag can then be localised more sharply by using
a DPA attack.
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Fig. 4. EM Test Bench

In order to build the jth 160-bit mask used for the jth exponent randomization,
the random generator of the FPGA is used. The 32-bit addition is performed in
two stages: the loading stage (the new operands of the adder are loaded) and
the addition stage (the add instruction is executed).

4.2 The Attacking Stage

The 160-bit secret d is split in 5 32-bit words. Then, it is randomized m times and
the average EMA trace Γm is computed. From the profiling stage, we can locate on
Γm the carry contribution for each wordDi. This contribution is noise free. Indeed,
the noise is assumed to be zero-mean. It is close to zero with m large enough. For
each word Di, the corresponding carry contribution is expected to be proportional
with the carry probability. The number of carry flags raised during the m masking
operations can be then deduced according to the previous section.

The previous statements are illustrated on a concrete case. We performed
1000 masking operations. The least significant bits (LSB) of each word Di are
chosen randomly, the probability to have a carry depends then only on the most
significant bits (MSB) of Di. Thus, we build d such as:

– D0=0x00FC3478: the expected carry probability is around 0
– D1=0x40FE56AC: the expected carry probability is around 63/256
– D2=0x804890BD: the expected carry probability is around 127/256
– D3=0xC0C2A4C8: the expected carry probability is around 200/256
– D4=0xFF98ACBF: the expected carry probability is around 255/256

Fig. 5 shows Γ1000 where the contribution of the masking of D0 is subtracted.
To do so, an extra loading is made with D0 parameters but the addition is not
performed: this yields the characteristic of the unrelated instructions.

For a given word of d, the expected carry probability and the carry radiation
are proportional as it is shown in Tab. 1. The relative amplitude difference
between two consecutive maskings is 5μV.
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Fig. 5. Average Trace Γ1000 where the contribution of the masking of D0 is subtracted

Table 1. Absolute and relative contributions of the carry on Γ1000

Masking Absolute Amplitude Relative Amplitude
D0 − D0 0.012mV 0mV

D1 − D0 0.031mV 0.019mV

D2 − D0 0.036mV 0.024mV

D3 − D0 0.043mV 0.031mV

D4 − D0 0.049mV 0.037mV

4.3 Results and Conclusion

For a ripple carry addition, the attacker can have access to the information Ci

even in the presence of noise. If the addition function has been designed another
way, we claim that the attacker has access to the same amount of information.
Indeed, the computational cost of the carry-out of a �-bit adder depends on
the way it is built. The more the carry-out is complex to obtain, the more its
computation costs power and the more it leaks with the side channel. The ripple
carry adder is the adder whose carry-out is the lowest side channel available.
Indeed, it needs 2 OR and 3 AND while the carry-out of a 4-bit look-ahead
adder costs 10 OR and 4 AND as it is stated in Appendix A.

Furthermore, independently of the addition design, it takes into account word
adder whose operands are a word of the private exponent and the corresponding
word of the mask: the unique difference is the carry-in treatment. However this
difference is negligible: as Di is fixed, the carry-out of the word adder depends
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one time out 2� on the carry-in. Then, irrespective of the addition function used,
we assume that the multiple bits adder takes into account a carry-in equals to zero.

5 Recovering the Entire Secret Keys

In this section, we present two ways to use the information extracted by the
side channel measurements. The first technique consists in finding enough bits
with the carry leakage to be able to realize a kind of exhaustive search of the
secret by using the baby step-giant step method. The second technique consists
in combining two side channel attacks to retrieve the entire secret key. Both
attacks are complementary as their efficiency depends on the size of the key and
on the size of the registers. Some examples are discussed in the last subsection.

5.1 A Kind of Exhaustive Search

We assume that the attacker performs m measurements of the exponent ran-
domization of the secret d, stored in k �-bit words. In the previous analysis, he
is able to reduce the number of possible values in each word of d. For each word,
a fraction 2�/

√
m of the corresponding key word is possible (the probability the

secret is in this set is then higher than 0.99) so the number of possible values for
d will be (2�/

√
m)k. If the attacker can reduce the set of possible values for d to

a subset of size lower than 2128, we consider that he can find the whole secret
exponent d with classical baby-step giant-step methods for a computational cost
lower than 264. We can note that this attack will be more efficient on shorter
keys and smaller register such as elliptic curve implementations on 8-bit or 16-bit
registers. So the computational cost of the attack is (2�/

√
m)k/2.

5.2 The Combined Attack

The other solution uses the carry leakage information to find partial information
on d which will be used to find for each masking operation dj = d + λj × ϕ(N)
(or dj = d + λj × #E) the random value λj . Once sufficiently many λj ’s are
known, a classical DPA attack can be mounted either on the masking operation
or directly on the exponentiation to retrieve the missing bits of d. In fact, the
knowledge of λj will unprotect the exponentiation against classical attacks such
as an address bit DPA which does not need to know the value of the message.
We will see in the following that the success of this attack depends more on the
size of key and on the size of λ than on the number of possible measurements.

Sketch of the Attack. The attack can be divided into three steps:

– with m measurements, the attacker approximates the value Di of each reg-
ister with a precision of

√
m,

– with this approximation, he can try all possible values for λ and compute for
the known bits of the order Ord = ϕ(N) or #E all the possible values for λ ×
Ord. In case of RSA, only half of the bits are known as the most significant bits
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of ϕ(N) are equal to those of N , but in the discrete logarithm case, the order of
the group is known so all the bits of Ord are known. With the approximation
of d, the attacker can compute for each value λ the value of the carry of the
ith register. The carry at register i will be perfectly defined excepted when it
comes from the unknown bits of Di which can happen with probability 1/

√
m.

If the number of carries information is sufficient, each curve can be associated
with a single value of λ. This will happen when the number of registers where
the carry is known, is larger than the size of λ.

– with the m measurements and their associated value of λ, an address-bit
DPA or CPA attack can be mounted to retrieve the value of d. If the attacker
targets the masking operation or the address during the exponentiation, he
will have to guess recursively the unknown bits of d and eventually, the
unknown bits of ϕ(N) in case of RSA.

The number of measurements m is defined by the number of curves needed to
complete an address bit DPA attack on the masking operation or on the expo-
nentiation without the exponent masking protection. Usually, 10, 000 curves are
sufficient to mount such an attack but this depends on the noise level. With such
a number of curves, the approximation of the value Di of each register has a pre-
cision of 26. If λ is a 32-bit long random value, the attacker needs the secret key to
be stored on more than 32 registers in case of discrete logarithm problem or more
than 64 in case of RSA as only the most significant bits of ϕ(N) are known.

5.3 Results on RSA and ECC

In this section, we will present some applications of the previous attacks. The
complexity in terms of measurement and computation is evaluated according to
the considered attack with a λ of 32 bits.

Table 2. Attack complexity on some examples. “ES” stands for exhaustive
search, “CA” for combined attacks, and “NP” for Not Practical.

Cryptographic implementation attack Measurements computational cost
RSA 1024 on a 8-bit adder cell ES 216 1

RSA 1024 on a 8-bit adder cell CA 10, 000 232

RSA 1024 on a 16-bit adder cell CA 10, 000 232

RSA 1024 on a 32-bit adder cell NP

RSA 2048 on a 32-bit adder cell CA 10, 000 232

ECC 160 on a 16-bit adder cell ES 216 ≈ (216/
√

216)10/2 = 240

ECC 160 on a 32-bit adder cell ES 220 ≈ (232/
√

220)5/2 = 255

6 Conclusion

In this article, we show that the addition performed during an exponent ran-
domization is a risky operation. Indeed, the internal carries due to local buffer
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overflows during this operation are a side channel available and secret depen-
dent so that the whole private exponent can be recovered for some public key
implementations. The SCA feasibility has been demonstrated using near field
techniques for gaining the electromagnetic radiations of a FPGA summing two
32-bit words: the presence of a carry has been detected.

This new attack is interesting since it targets the countermeasure and not the
algorithm that it has to protect. Usually this operation is not well-protected and
so side channel leakage can be observed. Finally, the attack can be performed
on any exponentiation algorithm except the final phase which is needed only
for RSA based cryptosystem. The carry leakage is in general sufficient to attack
ECC based cryptosystem since the secret keys are smaller.
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A The Addition Strategy

The addition problems start when adding 2 single bits and finishes when able to
add 2 words of arbitrary length.

A.1 The Single Bit Adder

The single bit adder is the most elementary logical circuit of a device. Two kinds
of single bit adder exist: the half adder and the full adder. The Half Single Bit
Adder (HA) has two inputs labelled a and b and two outputs: the sum s and the
carry-out cout. The value s is the 1-bit sum of a and b while cout is the carry flag
raised in case of overflow. Sum and carry-out are computed as follow : s = a ⊕ b
and cout = a.b The Full Single Bit Adder (FA) is a half adder that takes into
account the carry-in bit cin. The different relations become s = a ⊕ b ⊕ cin and
cout = (a.b) + (b.cin) + (cin.b).

A.2 The Word Adder

An �-bit adder is an element used for the addition of two words of � bits each,
typically, � = 8, 16 or 32. Let A =

∑�−1
i=0 ai2i and B =

∑�−1
i=0 bi2i be the two

�-bit operands, Cin be the carry-in, S =
∑�−1

i=0 si2i be the sum and Cout be the
carry-out. The value Cout is the object of the side channel analysis. There is
not just one way of building a word adder. Indeed, different strategies exist for
dealing with internal carries. Then, the way Cout is computed depends on the
word adder design.

The Ripple Carry Adder. This is the most straightforward implementation of
a final stage �-bit adder. Carry-ins and carry-outs are chained together requiring
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Fig. 6. The Ripple Carry Adder

� FAs. Fig. 6 describes this design. Let cout,i and cin,i be respectively the carry-
out and the carry-in of the ith FA.

Chaining carries together leads to the following relations: cin,0 ← Cin

for 0 ≤ i < � cin,i+1 ← cout,i

Cout ← cout,�−1.
Then Cout is connected to the carry-out of the last FA.

The Carry Look-Ahead Adder. This adder aims to generate all carry-ins in
parallel for not waiting until the carry propagates from the stage of the FA it
has been generated. The carry propagation signal {Pi} and the carry generation
signal {Gi} are introduced using the previous notations: Pi = ai ⊕ bi, Gi = ai · bi

and then cin,i+1 = Gi + cin,i · Pi. These expressions can be computed in parallel
for all the carries. As, an example, for a 4-bit adder, we have:

cin,0 = Cin

cin,1 = G0 + cin,0 · P0 = G0 + Cin · P0

cin,2 = G1 + cin,1 · P1 = G1 + G0 · P1 + Cin · P0 · P1

cin,3 = G1 + cin,2 · P2 = G2 + G1 · P2 + G0 · P1 · P2 + Cin · P0 · P1 · P2

cin,4 = G3+cin,3 ·P3 = G3+G2 ·P3+G1 ·P2 ·P3+G0 ·P1 ·P2 ·P3+Cin ·P0 ·P1 ·P2 ·P3

Cout = cin,4

B The Beta Distribution

The last probability distribution of the secret estimate knowing the carry func-
tion given by formula (6) can be approximated by a discrete beta distribution.
Indeed: the beta distribution is defined as

β(q + 1, m − q + 1) =
∫ 1

0
tq(1 − t)m−qdt
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and using Riemann sums, we obtain:

β(q + 1, m − q + 1) = lim
n→∞

1
n

n∑
α=1

α

n

q (
1 − α

n

)m−q

.

Finally, if we assume that 2� is large enough, then

2� · β(q + 1, m − q + 1) ≈
2�−1∑
α=0

αq

2�

(
1 − α

2�

)m−q

.
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Abstract. Secret key recovery from weak side channel leakage is always
a challenge in the presence of standard counter-measures. The use of ran-
domised exponent recodings in RSA or ECC means that, over multiple
re-uses of a key, operations which correspond to a given key bit are not
aligned in the traces. This enhances the difficulties because traces cannot
be averaged to improve the signal-to-noise ratio.

The situation can be described using a hidden Markov model (HMM)
but the standard solution is computationally infeasible when many traces
have to be processed. Previous work has not provided a satisfactory way
out. Here, instead of ad hoc sequential processing of complete traces,
trace prefixes are combined naturally in parallel. This results in the sys-
tematic extraction of a much higher proportion of the information theo-
retic content of the leakage, enabling many keys of typical ECC length
to be recovered with a computationally feasible search through a list of
most likely values. Moreover, likely errors can now be located very easily.

Keywords: Side channel leakage, simple power analysis, SPA, Hidden
Markov Models, Forward-Backward Algorithm, Viterbi Algorithm.

1 Introduction

Side channel leakage from embedded cryptographic devices may contain sub-
stantial information. When possible this is averaged to improve the signal to
noise ratio and enable recovery of the secret key. However, some randomised
exponentiation algorithms are designed so that averaging over contemporane-
ous operations reduces rather than increases the useful information [4,8,9,15].
With a perfect side channel that distinguishes squares from multiplications in
each trace, it is possible to recover the secret exponent key for most of these
algorithms without substantial effort [12,13,15].

In the real world the side channels are rarely so clear, especially where design-
ers have taken steps to reduce the leakage. Then standard statistical techniques
can be applied to detect correlations between possible key bits and the trace
data, but they are computationally infeasible for the length of cryptographic
keys and the expected level of leakage. Instead, dedicated algorithms are re-
quired to extract meaningful information and search for the most likely keys.
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Karlov and Wagner [5] modelled this using input-driven Hidden Markov Mod-
els, and suggested the sequential processing of complete traces as an effective way
of limiting the computational complexity. However, they only consider traces of
equal length where the ith observation always corresponds to the ith exponent
digit. Green, Noad and Smart [3] show how to deal with the traces of different
lengths which are more typical of randomised exponentiation algorithms, and
they provide some heuristic methods for the sequential processing of complete
traces. Nevertheless, even with strong leakage it is clear from their tables (e.g. op.
cit. Table 1) that very little of the information content of the traces is success-
fully extracted. Moreover, it is unclear whether their methods would converge
to any solution in the presence of weak leakage.

The hidden Markov model (HMM) of [5] and [3] leads to a forward algorithm
that provides a global minimum for a metric that measures distance from a best-
fit solution. A backward algorithm then generates the state sequence and hence
the input key which yields that minimum value. On the other hand, the ran-
domised exponentiation algorithms of interest perform recodings which influence
the side channel traces only locally for a small number of operations. Therefore
it seems better to attempt recovery of input key bits using a more locally-based
algorithm. This, of course, is an approach which proved very successful with
weak side channels in the original timing and power analysis attacks of Kocher
et al. [6,7]. Their averaging of contemporaneous trace outputs does not work
here because such values no longer correspond to the same input symbol. Thus,
some new ideas are required but, to benefit from very weak leakage, averaging
is still key to avoiding previous convergence problems of [5] and [3].

Here the proposed algorithm adjusts trace positions in an attempt to align
outputs which correspond to the same input symbol. This allows averaging to
take place and also makes it possible to take into account the influence of recod-
ing decisions on neighbouring operations. There are a number of parameters to
choose in the algorithm. Their choice enables the calculations to be kept within
available computational resources. The output is a set of good guesses at the
secret key. Moreover, each bit is naturally assigned a correctness probability
which enables likely errors to be located easily. This seems to be a new feature:
Green et al. [3] do not say if they can locate possible errors, but the ability en-
ables many more errors to be corrected. Simulation results are provided to show
what fraction of keys are recoverable for a given effort.

As the whole process is computationally feasible, the immediate conclusion
is that designers should assume most leakage can be converted successfully into
useful knowledge when a secret key is re-used with these random recoding exp-
onentiation algorithms. Indeed, they should be able to calculate upper bounds
on the number of times the key can be safely re-used.

2 The Leakage Model

The context of the attack is the repeated use of a randomised exponentiation
algorithm for computing MD in any cryptographic group where D is a fixed
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secret key which is not subject to blinding by a random multiple of the group
order, and M is an unknown ciphertext which may vary and may be whitened.
The adversary is assumed to know all the details of the exponentiation algorithm.
Use of the key provides him with a side channel trace for the exponentiation itself,
but no further information is assumed: he is not expected to be able to choose
any input, view any output, or usefully observe any pre- and post- processing.

It is assumed that occurrences of multiplicative operations in the exponentia-
tion can be identified accurately from the corresponding side channel trace, but
that their identities as squares or multiplications can only be determined with a
substantial degree of inaccuracy1 [2]. The adversary’s aim is to discover D using
computationally feasible resources.

3 The Randomised Exponentiation

Examples of the randomised exponentiation algorithms which can be attacked
in the way described here include those of Liardet-Smart [8], Oswald-Aigner [9]
and Ha-Moon [4,15]. Their common, underlying basis is a recoding of the binary
representation of the key D into a form

D = ((...(dm−12mm−2 + dm−2)2mm−3 + ... + d2)2m1 + d1)2m0 + d0

where the digits di ∈ D and 2-power exponents mi ∈ M belong to some fixed,
pre-determined sets D and M respectively. Both di and mi are selected according
to some finite automaton which has the bits of D and the output from a random
number generator (RNG) as inputs. Different bit streams from the RNG result
in different recodings of D.

The exponentiation MD begins with the pre-calculation of the table {Md | d ∈
D}. Then the main iterative step of the exponentiation consists of mi squarings
followed by a multiplication by the table value Mdi when di �= 0. This results
in a sequence of multiplicative operations which is most easily presented using
di to denote multiplication by the table entry Mdi and mi copies of 0 to denote
the squarings. We call this a recoding sequence for D. For example, the exponent
D = 1310 = 11012 has a recoding D = (1.22+3)21+1̄ which gives the operation
sequence 100301̄. (Alternatives in processing the first digit are ignored.)

The exponentiation algorithms of interest here are assumed to have the prop-
erty that perfect knowledge of the multiplication/squaring sequences for a small
number of recodings of D yields enough information to reconstruct the secret
key D with at most a small number of ambiguities. This is the case for the algo-
rithms mentioned above: attacks on them using such information are described
in [12], [13] and [15] respectively.

1 For the table-driven exponentiation algorithms under attack here it may also be
possible, with a degree of uncertainty, to identify which table element is used in a
multiplication, and hence guess at the most likely value for the exponent digit. The
methods below can be extended easily to such cases.
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4 Notation for Leakage Traces

The above-mentioned exponentiation algorithms are reasonably secure when
the key D is used only once, as in ECDSA [1], because a single recoding pat-
tern does not generally yield sufficient information to determine a computa-
tionally feasible search space for the key. However, for key re-use, the pattern
must be hidden. Hence implementers generally employ both hardware and soft-
ware counter-measures to prevent leakage of the recoding pattern through any
side channels. Consequently, an attacker only obtains partial information about
any recoding through side channels. But extensive testing of the cryptographic
system and some pre-computation enables the adversary to process the side
channel information from each exponentiation into a sequence of probabilities
that each component operation is a squaring. For convenience, this will be re-
ferred to as a trace. So the operation sequence 100301̄ yields a trace such as
(0.23, 0.87, 0.69, 0.15, 0.83, 0.42), with the larger probabilities occurring for
doublings.

For consistency, exponent bit strings, recoding sequences and traces are all
written in the same left-to-right order. For convenience, this is the order in which
the recoding process consumes key bits and generates operation sequences. Then,
in an obvious sense, a prefix in one list always corresponds to some prefix in
another. These prefixes are extended incrementally as the attack progresses.

Recodings are pairs consisting of (i) the operation sequence r which the re-
coding automaton has generated for D, and (ii) the state s which the automaton
has entered at that point. R(D) denotes the set of all these recodings (r, s) of
D. Let • denote the end-of-list symbol and also the final state of the recoding
automaton. A list is called terminated or un-terminated according to whether
or not it ends with this symbol. When the recoding automaton reads • at the
end of D, it performs the post-processing stage required to reach its final state
• and then stops. Recoding D• will result in a pair (r•, •) ∈ R(D•) for which r
applied to M yields MD. r is terminated with • to indicate that the operation
sequence is complete. If D is not terminated, the pair (r, s) ∈ R(D) has s �= •
and it can be extended to a recoding of any D′ with prefix D.

In the above example with D = 1310, both r = 100301̄ with borrow 0 and
r′ = 10030 with borrow 1 could represent the output and state of the recoding
automaton after processing D when further input bits are possible. They belong
to R(D). Reading • next gives (r•, •) ∈ R(D•) from (r, 0) as no further process-
ing is required. However, from (r′, 1̄) there needs to be post-processing to obtain
an element in R(D•), for example, by appending 1̄ to obtain (r′1̄•, •).

5 The Metric

A metric μ(D, T ) is constructed to provide a measurement of how well a bit
string D matches the side channel leakage presented in a set T of traces. Roughly
speaking, the “best” guesses at the secret key D are those strings which provide
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the smallest distances under this metric. As indicated above, the metric for a
set of traces T is just the average of the value of the metric for a single trace t:

μ(D, T ) = |T |−1
∑
t∈T

μ(D, t)

Here μ(D, t) is the minimum of the metric applied to t and a single recoding
r ∈ R(D), i.e.

μ(D, t) = Min{μ(r, t) | r ∈ R(D)}
If r is an un-terminated recoding which is no longer than trace t, i.e. len(r) ≤
len(t), then we define

μ(r, t) = len(r)−1
∑

0≤i<len(r)

(1 − ti(ri))

where r = (r0, r1, ..., rlen(r)−1), t = (t0, t1, t2, ...), and ti(ri) is the probability2

observed through the side channel that the ith element of trace t corresponds
to the same operation as ri. The same definition is also used for μ(r, t) if r is a
terminated recoding such that len(r) = len(t). If len(r) > len(t) then t is too
short to correspond to the recoding r and so we define μ(r, t) = ∞ whether r is
terminated or not. Similarly, if r is a terminated recoding with len(r) < len(t)
then r is too short to correspond to trace t and again we set μ(r, t) = ∞.

Scaling by len(r) prevents shorter recodings of D being given an unjustified
selection bias. Then, being the average of a set of probabilities in most cases,
μ(r, t) lies in [0, 1] ∪ ∞. Hence μ(D, t) ∈ [0, 1] ∪ ∞ and μ(D, T ) ∈ [0, 1] ∪ ∞.
Clearly μ(r, t) is small when the operations in r are those which have high
probability in the corresponding initial segment of t. Thus μ(D, T ) is small when
an initial segment of each trace in T closely matches some recoding of D.

If trace t is too short or too long to correspond to any recoding of D, then
the above definitions give μ(D, t) = ∞, and therefore μ(D, T ) = ∞ for any T
containing t. Suppose dmax is the largest digit in D and k the length of the
shortest trace in T . Then the shortest trace represents the leakage from too few
operations to correspond a recoding of any string satisfying D > dmax2k. Hence
μ(D, T ) will only be finite for D with at most k+�log2 dmax� bits.

The main problem with evaluating μ is that for cryptographically sized keys
D, R(D) is too large a set over which to compute a minimum – it is exponential
in the bit length of D. Consequently, we use an approximation

μ′(D, t) = Min{μ(r, t) | r ∈ St(D)}
to μ(D, t) which is determined iteratively by the best attempts to minimise μ
for shorter strings. Specifically, for each trace and a suitable parameter R, we
iteratively create a set St of up to R triples (d, i, s) which consist of the metric

2 It may be desirable to augment this definition of ti(ri) to take account of the relevant
transition probability from the recoding FA, so that less likely events would yield
larger contributions to the sum for μ(r, t).
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value d = μ(r, t) for an underlying “good” recoding r of D, the number i of
operations in r, and the state s of the recoding finite automaton after generating
r from D. Set St is constructed as follows. First, for D being the empty bit string,
St is initialised to contain just the triple (0, 0, s0) corresponding to the empty
recoding sequence when the recoding automaton is initialised with start state
s0. For the iterative step, suppose D = D′b for bit b, and St

′ is the set of triples
constructed for D′. Then, for each (d′, i′, s′) ∈ St

′, s′ and b are fed into the FA.
The output is a set of new states s and operations to extend the underlying
recoding of D′ to ones for D. These are used to create new triples (d, i, s) for D
where i comes from increasing i′ by the number of these operations, and d comes
from a scaled incrementing of d′ by the terms (1 − ti′′(ri′′ )) with i′ ≤ i′′ < i.
As the triple also depends on a random input to the FA, there can be several
new triples for each one in St

′. These are then rationalised by removing triples
(d2, i, s) for which there is already a triple (d1, i, s) with d1 ≤ d2. Then the R
triples with the smallest values for d are chosen for inclusion in St.

If the recoding automaton had s possible states and tmax were the maximum
length of any trace, then stmax would be an upper bound on the size of St. Hence

μ′(D, T ) = μ(D, T ) for R = stmax

since all the smallest intermediate values for μ are retained. Whatever R is, μ′

can be computed easily and accurately in time which is polynomial rather than
exponential in log D. It avoids enumerating all the recodings of D. R can often
be picked much smaller than stmax without significantly affecting the accuracy
of the method, and this helps reduce the complexity of the attack.

6 The Search Tree

The main phase of the attack is the construction and pruning of a (nearly)
binary tree where internal edges are labelled by bits and edges to leaves by the
end-of-list symbol •. Each node N is labelled with the (possibly terminated) bit
string DN given by concatenating the labels along the branch from the root to
N . Nodes are also labelled with μN = μ′(DN , T ) and the sets of triples St,N

(t ∈ T ) for D = DN , each of which is computed incrementally as described in
§5. The root ρ is labelled by the empty string Dρ = ε, μρ = μ(ε, T ) = 0 and
St,ρ = {(0, 0, s0)}. For each non-terminated node N , up to three child nodes are
constructed with edges labelled 0, 1 and • respectively. Only the first two can
grow further branches, so the tree is almost binary. Upon completion, a set of
possible keys D is obtained from the labels DN on the leaves N , and they can
be arranged in order of likelihood using the values μN .

The tree is constructed breadth-first to aid pruning. Pruning is driven by the
values of μN , although not quite directly. There are three pruning rules which
are applied whenever possible. First, nodes N with μN = ∞ are deleted because
DN cannot be the correct key, nor a prefix of the correct key. This limits the
depth of the tree, thereby ensuring the construction terminates. It also removes
leaves near the root so that leaves only appear towards the bottom of the tree.
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Secondly, un-terminated nodes whose children have all been pruned are also
deleted because every line of descent from them eventually leads to a problem.

The third, and final, pruning rule uses two threshold parameters. The first, B,
is the maximum breadth of the tree after pruning. The second, λ, is the number
of “lookahead” bits. These parameters are chosen to make the construction of
the whole tree and subsequent calculations computationally feasible.

The level of a node N is its distance from the root, namely len(DN). Suppose
the tree has been fully constructed down to level l+λ and all pruning rules have
been applied to the levels above l. For a node N at level l, let NN be the set of
all its un-terminated descendents at level l+λ, and its terminated descendents
with level at most l+λ. Let3 μ̄N = min{μN ′ | N ′ ∈ NN}. Then the set of nodes
at level l is pruned to leave the B nodes with the smallest values μ̄N .

This rule removes the nodes whose recodings provide the poorest match to
the observed leakage. Since recoding choices affect the pattern of subsequent op-
erations and this effect may only become apparent in the metric after processing
several more bits, larger values of λ tend to give better results in determining
the best match D. Larger values of B clearly make the inclusion of the correct
key D more likely. Even the best fit key with smallest value at its leaf node may
not have the smallest value for μN or μ̄N at each intermediate node N . So B
and λ must be kept large enough to include the correct key; their values can be
determined only after practical experiment on the leaking device. It also pays to
be increasingly light handed in pruning the final λ levels.

7 Locating Bit Errors

By their nature, all key searching algorithms suffer from unavoidable deficiencies:
one is that the best fit key may not be among the good keys which they generate;
another is that the correct key may not be the best fit. The first problem arises
because the ultimately best fit key is not always the best at intermediate points.
To ameliorate this, a number of the best keys need to be continued all the time.
This action should also solve the second problem and is achieved by appropriate
choice of the parameters, as illustrated in the tables of the next section.

However, there are more subtle causes of errors. A single bit error can com-
pletely de-rail the process for several reasons. Firstly, because of nature of the
exponentiation algorithm, it may be possible for different key bit sequences to
generate identical leakage. An example is described in Appendix 2, and it is in-
deed a main cause of errors when dealing with the Ha-Moon recoding algorithm.
Secondly, there may be so many good choices when the wrong bit is chosen that
the correct one does not survive.

Most of these bit errors are at predictable points, namely those for which the
relative difference in the values of μ̄ for the 0-bit and 1-bit choices is very small.
Specifically, the set NN is partitioned into subsets N (0)

N and N (1)
N corresponding

to the 0- and 1- branches at N and the minimum metric values are compared for
3 Different definitions of μ̄ are possible: e.g. one might weight the metric contribution

at level l+i by i−1 instead of 1 for i > 0.
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the two sets, where the sums only include terms 1−ti(ri) from levels l+1 to l+λ.
The difference is a useful measure of confidence in the decision. It enables the
search for the correct key to be prioritised by trying alternatives for the most
doubtful bit decisions first. This reduces the search cost very considerably.

Finally we note that the smaller μ is at the end of the process, the better
the fit, and so, on average, the fewer the number of errors. Hence it is possible
to select the most likely candidates to break. Sometimes the traces can become
incorrectly aligned during key recovery. This leads to a large number of errors
and a high value for the metric, but such cases are easily detected and avoided.

8 Example Simulation

This section contains results from a simulation of the attack applied to the
Ha-Moon algorithm [4], showing variations from the choice of parameters. The
metric difference described in the previous section was used to order the bit
decisions for 192-bit keys, and the bit error with the highest difference between
the choices 0 or 1 was located. The probability of it lying at a particular point
in this list was recorded. The tables show that errors are strongly associated
with smaller differences. Consequently, for example, from Table 1 there is a
probability of 0.3868+0.0058 that, with the stated parameters and 0.4 leakage,
all the bit errors will be among the 2

16 th of bits with the lowest difference. In
practice, this means checking the alternatives for only 24 bits in order to have
a good probability of recovering a key. This is clearly computationally feasible.
The last column states that on average only 9.082 of these bits will be in error,
and so 1

2

(24
9

) ≈ 219 key tests is a realistic average for the effort involved. For the
tabulated cases, the total number of errors is typically around 20 if the position
of the worst error is anywhere in the top half of the ordered bit list, but, with
extra computation, it can become under 11, as happens for the last line of Table
3, which covers 99.5% of all cases.

The investigation did not assess performance on the final λ bits, but any
variation in the recovery rate of those bits would not affect the computational
complexity significantly.

For the simulation, the trace probability values were approximately normally
distributed with expectation 1

2 (E+1) where E is the “strength of leakage” value
in the first column of Table 14. A leakage of 0 means probability 1

2 that the
operation is a squaring rather than a multiplication, i.e. no information content.

Tables 1 and 2 illustrate the effect of different amounts of leaked data on
the key recovery process. Given that the work involved is proportional to the
number of traces |T | and to the number of recoding choices R which are stored,
but exponential in the lookahead distance λ, it is clear from Tables 3 to 5 that
the most efficient way of recovering the highest number of Ha-Moon recoded
exponents is by increasing R.

4 Green et al. [3] use a simpler model: trace probabilities are 0 or 1, with average
1
2 (E+1). They need stronger leakage, and tabulate only E = 0.6 and E = 0.8.
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Table 1. Distributions for the Worst Error in a 192-bit best-fit Exponent as Leakage
varies for Ha-Moon Exponentiation [4] with |T | = 10, λ = 5, R = 10, B = 2

Leakage In 1st In 3rd In 7th In 15th In last #Bit errors when
Level Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

0.10 1.0000 0.0000 0.0000 0.0000 0.0000 —
0.20 1.0000 0.0000 0.0000 0.0000 0.0000 —
0.30 0.9697 0.0270 0.0031 0.0002 0.0000 10.00
0.35 0.5760 0.2212 0.1542 0.0478 0.0008 9.414
0.40 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
0.45 0.0143 0.0358 0.1956 0.7407 0.0136 8.925
0.50 0.0019 0.0081 0.0811 0.8913 0.0176 8.853
0.60 0.0000 0.0001 0.0304 0.9500 0.0195 8.790

Table 2. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Num-
ber of Traces varies for Ha-Moon Exponentiation with 0.4 leakage, λ=5, R=10, B=2

Traces In 1st In 3rd In 7th In 15th In last #Bit errors when
|T | Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.9994 0.0006 0.0000 0.0000 0.0000 —
2 0.9344 0.0656 0.0000 0.0000 0.0000 —
3 0.7140 0.2218 0.0642 0.0000 0.0000 —
4 0.5154 0.1986 0.2860 0.0000 0.0000 —
5 0.3873 0.2010 0.4090 0.0027 0.0000 12.07
6 0.3081 0.1984 0.4579 0.0356 0.0000 11.08
8 0.1923 0.1830 0.3849 0.2394 0.0004 10.17
10 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
20 0.0095 0.0369 0.1850 0.4619 0.3067 5.847
40 0.0000 0.0025 0.0403 0.2456 0.7116 3.754

Table 3. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Num-
ber of Recodings varies for Ha-Moon Exponentiation with 0.4 leakage, |T |=10, λ=5,
B=2

Recodings In 1st In 3rd In 7th In 15th In last #Bit errors when
R Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

6 0.5547 0.2508 0.1599 0.0341 0.0005 9.431
7 0.3576 0.2871 0.2668 0.0864 0.0021 9.023
8 0.2541 0.2359 0.3268 0.1807 0.0025 9.264
9 0.1662 0.1929 0.3584 0.2777 0.0048 9.029
10 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
12 0.0605 0.0876 0.2930 0.5516 0.0073 9.012
15 0.0228 0.0472 0.2208 0.6999 0.0093 8.945
20 0.0104 0.0175 0.1553 0.8045 0.0123 8.960
30 0.0051 0.0112 0.1087 0.8579 0.0171 8.755
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Table 4. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Look-
ahead Value λ varies for Ha-Moon Exponentiation with 0.4 leakage, |T |=10, R=10,
B=2

Lookahead In 1st In 3rd In 7th In 15th In last #Bit errors when
λ Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.2456 0.2037 0.3370 0.2107 0.0030 9.331
2 0.2019 0.1873 0.3277 0.2782 0.0049 9.222
3 0.1632 0.1685 0.3403 0.3220 0.0060 9.269
4 0.1378 0.1572 0.3341 0.3659 0.0050 9.209
5 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
6 0.0997 0.1348 0.3502 0.4095 0.0058 9.039
8 0.0829 0.1380 0.3423 0.4312 0.0056 8.977

Table 5. Distributions for the Worst Error in a 192-bit best-fit Exponent as the Tree
Width B varies for Ha-Moon Exponentiation with 0.4 leakage, λ=5, |T |=10, R=10

Tree Width In 1st In 3rd In 7th In 15th In last #Bit errors when
B Half Quarter Eighth Sixteenth Sixteenth all in last Eighth

1 0.1521 0.1534 0.3285 0.3613 0.0047 9.199
2 0.1186 0.1456 0.3433 0.3868 0.0058 9.082
4 0.0983 0.1493 0.3348 0.4103 0.0073 9.038
8 0.0882 0.1313 0.3286 0.4440 0.0079 9.012
12 0.0857 0.1325 0.3346 0.4378 0.0094 8.926
16 0.0898 0.1357 0.3233 0.4433 0.0079 8.949

In the case of Liardet-Smart recoding [8], it is much harder to extract the
correct key than for the Ha-Moon recoding because it is much more difficult to
align the traces correctly. For example, for a maximum base 24, digits 0, ±1, ±3,
±5, ±7, 0.4 leakage, λ = 5 and B = 2, but taking 30 traces and R = 30, 0.38
of 192-bit exponents have all errors located in the last eighth of the ordered bit
list. For 0.38 of cases the worst error occurs in the first half of the list, but, on
average key guesses have fewer than 7.5 bit errors, so it is still computationally
feasible to recover almost all keys.

The Oswald-Aigner recoding [9] has comparable strength to that of Ha-Moon:
with the reference values of 0.4 leakage, 10 traces, λ=5, R=10 and B=2, 0.2714
of 192-bit exponents have all errors located in the last eighth of the ordered bits.

The standard, deterministic binary method is also susceptible to the algo-
rithm. Coding decisions are unique and do not propagate to other positions, so
only λ=1, R=1 and B=1 make sense. With 0.3 leakage and 10 traces, over 98%
of 192-bit exponents are recovered with no errors at all. Unlike that of Green et
al. [3], this algorithm reduces to the obvious, and probably optimal, one for the
binary algorithm: it simply averages the leakage from each operation to see if a
squaring is more or less likely than a multiplication followed by a squaring.
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9 Complexity

For algorithm complexity, constant time and space is assumed for individual
machine-level instructions, i.e. they are independent of the volume of data and
the required arithmetic accuracy. It is also assumed that generation and storage
of all possible recodings of a single input digit require O(1) time and space.

There are two main terms in the time complexity for processing level l of the
search tree. First, tree construction consists primarily of incrementing the metric
values at level l+λ to those for level l+λ+1. This takes O(2λBTR log R) time
since there are O(2λB) nodes to consider, each having T traces with R recodings
apiece. Each recoding is extended in all possible ways – constant time order – but
it takes O(R log R) time to select the R best recodings to keep. Secondly, pruning
is dominated by the O(B log B) time required to order nodes. The first of these
terms is the most likely to dominate for expected choices of the parameters. Both
must also be multiplied by the bit length of the key, viz. log D, to obtain the
time for processing complete traces. The space complexity has two contributions.
The first is O(2λBRT ) for storing details of the R recodings per trace associated
with the O(2λB) nodes between levels l and l+λ during tree construction. The
other is O(B log D) for storing details of nodes in the completed, pruned part.

10 Conclusion

A computationally feasible algorithm has been presented for determining the
secret key used repeatedly in exponentiations where there is weak side channel
leakage and randomised recoding has been employed to nullify the leakage. It
has been shown that it is still frequently possible to recover the key. Moreover,
it is easy to determine which results have few bit errors, and it is easy to locate
the potential errors.
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Appendix 1: A Markov Model

This section describes the construction of a hidden Markov Model H for dealing
with multiple traces [10]. We start with the case of a single trace.

The recoding automaton is a Markov process with a finite number of states
and transitions which depend on the next key digit and bits from a random
number generator. On entering a state after traversing the appropriate transition,
the recoding algorithm generates a recoded digit which is transformed into a
sequence of multiplicative operations. The attacker observes these operations
with restricted clarity. Because the observations do not correspond directly to
the states, the sequence of states is not known, giving a hidden Markov process.

Without loss of generality, we can assume that the sequence of states deter-
mines D uniquely. Then the problem is to determine the most likely sequence
of states which generates the given sequence of observations. An algorithm for
finding an optimal solution is due to Viterbi [11]. It computes the maximum
probability Pi(si) of any sequence of states s0s1...si from the start state s0 to
state si at the time of the ith observation, given the sequence of observations up
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to that point. By keeping track of which state si−1 leads to Pi(si), the optimal
sequence of states can be reconstructed from the final best state.

The model H for many traces is constructed as follows. Assume there are |T |
copies of the recoding automaton indexed by the elements of the trace set T .
These generate the operation sequences that are observed through the traces.
Let S be the set of states of the automaton. When i digits of D have been
processed by each copy of the automaton, we have an element of S×N for each
t∈T , which provides the state sti reached by the automaton of index t, and the
number of operations nti so far in its recoding. This T -tuple of pairs is a state
in H. The start state has (st0, nt0) = (s0, 0) for each t∈T . So the state set of H
is the subset of (S×N)T which is reachable from the start state. This is finite
because each nti is bounded above by the length of its trace t.

Transitions in H are T -tuples of transitions from the basic recoding automa-
ton, subject to the consistency requirement that they all correspond to the same
input bit (or digit). So the inputs which determine a transition in H are a digit
from D and a T -tuple of random numbers. The probability of this transition is
the product of the probabilities of the |T | constituent transitions of the original
automaton. When the end-of-list symbol • is read from D, each finite automaton
enters its final state, and the final state • of H is reached. The transition to this
state generates any necessary final operations in the |T | recoding sequences.

A path p = s0s1...si in H represents the first i recoding steps which have
been performed for each of the traces. So p determines a path pt = s0,ts1,t...si,t

in copy t ∈ T of the recoding automaton. If rt is the recoding sequence along
that path then it has a metric value μ(rt, t) defined in §5. This leads to defining
a path metric μ(p) =

∑
t∈T μ(rt, t). The “goodness” value of a state is the

minimum μ(p) over all paths p to that state. It is easily computed incrementally
by increasing path length. By keeping a pointer back to the previous state on
the minimum path, the best path from start to final state can be constructed,
and hence the best-fit key obtained.

If the number of operations is completely determined by the key so that all
traces have the same length, then there are typically O(|S||T |) states which need
processing for each input digit. There are more when trace lengths can vary. So,
being exponential in |T |, the usual Viterbi algorithm becomes totally impractical
when the leakage is so weak that more than a few tens of traces are needed. The
algorithm in the main body of the paper is a pruned and re-organised version of
this which is linear in |T |.

Appendix 2: Errors in Attacking Ha-Moon

In the Ha-Moon algorithm [4], the recoding automaton reads one bit at a time
and the recoding state is determined by a borrow of 0 or 1. If either the guessed
bit or the borrow is 1, but not both, then a given recoding can be extended in
two ways: either the next re-coding digit is −1 with borrow 1, or it is +1 with
borrow 0. Both result in a squaring and a multiplication and hence give rise to
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the same new metric value and the same new position along the trace, but they
differ in the borrow value.

Now select a level l node N in the search tree where this property holds for the
best recoding of every trace. These recodings occur in pairs with complementary
borrow values. Suppose bλ is the λ-bit label on the branch from N down to a
level l+λ node which is labelled with the minimum value μ̄N of the metric μ.
This minimum arises from taking a good recoding of the prefix DN for each trace
t and appending the best recoding of bλ+bt where bt is the existing borrow for
the recoding. However, using the complementary λ-bit sequence 2λ−1−bλ and
complementary borrows 1−bt of the other recodings in each pair, we can obtain
the same value of the metric for each trace, and therefore achieve the same mini-
mum μ̄N at the complementary level l+λ node. This is because, for each trace t,
2λ−bλ−bt has a recoding with the same pattern of squares and multiplications
as the chosen recoding for bλ+bt. Specifically, interchanging digits +1 and −1 in
a recoding of bλ+bt will give a recoding of 2λ−bλ−bt with exactly the same pat-
tern5 (and the complementary overflow borrow). Consequently, we obtain best
metric values at level l+λ from descending the branches corresponding to both
bλ and 2λ−1−bλ. As one is odd and the other even, we don’t know whether the
next bit for the best choice should be 0 or 1 – both are equally likely.

If the wrong bit is chosen, the subsequent bits are all wrong until the next
point at which the same problem arises. This is because, as in the branch from
level l to level l+λ, the algorithm will continue to generate the best patterns of
squares and multiplications, but now by choosing complementary bits, borrows
and digits to those which would have been derived had the error not been made.

A consequence of this is that, if no other errors are made, roughly half the bits
of the best fit guess at D are incorrect. They occur in sequences of consecutive
bits, with changes occurring at predictable points, namely those for which the
metric is totally inconclusive about the next bit.

5 The other digits in the recoding are all 0, and they are the same for both recodings.
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oper has only a limited choice of countermeasures. A combination of
masking and randomization of operations in time promises good pro-
tection and can be realized without too much overhead. Recently, new
advanced DPA methods have been proposed to attack software imple-
mentations with such kind of protection. In this work, we have applied
these methods successfully to break a protected AES software imple-
mentation on a programmable smart card. Thus, we were able to verify
the practicality of the new attacks and to estimate their effectiveness in
comparison to traditional DPA attacks on unprotected implementations.
In the course of our work, we have also refined and improved the original
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magnitude higher compared to an attack on an unprotected implemen-
tation.
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1 Introduction

Today, an increasing amount of data is processed and distributed in electronic
form. This trend is driven by advances in digital microprocessing and network
technologies, which are leading us towards visions of “ubiquitous computing”
and “ambient intelligence”. One of the most pressing problems on the way to
realizing these visions is the challenge of security. Cryptographic algorithms are
an indispensable tool to establish reasonable security assurances for digital data,
e.g. privacy, integrity, and authenticity. The presumption of most cryptographic
methods is that the employed key is only known to authorized entities. A funda-
mental principle of cryptography is that cryptographic algorithms are designed
in such a way that observable cryptographic data (e.g. the ciphertext) contains
as little information about the key as possible.

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 228–243, 2008.
c© International Association for Cryptologic Research 2008
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However, in practice keys have to be stored on physical devices like PCs
or smart cards and it has been shown that the physical properties (the so-
called side channels) of these devices can be exploited to extract information
about the cryptographic keys they contain. Amongst such side channel attacks,
power analysis developed by Kocher et al. [8] has proven to be a very potent
method. The improvement of such attacks and possible countermeasures as
defence against them has since been the topic of a wide array of scientific
publications.

In power analysis, an attacker has to record the power consumption of a device
while it performs cryptographic operations with an unknown key. A particularly
powerful attack method is Differential Power Analysis (DPA) [8], which predicts
intermediate values of the cryptographic algorithm and an according power
consumption and matches it against the recorded power traces. In this fashion,
the used key can be recovered even if the relevant information is deeply buried
within noise.

Two principal countermeasures have been proposed against power analysis:
Masking and hiding [9]. Masking tries to break the link between the predicted
intermediate values and the values processed by the device. Hiding seeks to
minimize the effect of the processed values on the power consumption. Many
specific countermeasures have been proposed on different levels for hardware
and software. For software implementations on a given platform, the options
tend to be limited to masking schemes and to hiding through the randomization
of executed operations in time.

Masking schemes split each intermediate value in a number of shares, which
are then processed independently. Only by combining all the shares, the original
value can be reconstructed. In its simplest form, a value a is split into two shares
a ◦ m and m, where m is a random mask, so that a = (a ◦ m) ◦ m. A common
choice for the operation ◦ is the logical XOR (Boolean masking). Masking
is generally susceptible to higher-order DPA attacks. Such attacks combine
information of the power consumption of the different shares (higher-order DPA
preprocessing) so that the resulting power consumption is again dependent on the
unprotected value a and thus susceptible to a “normal” 1st-order DPA attack.

As the effort for higher-order DPA attacks is expected to grow exponentially
with the order, it is assumed that a masking scheme with enough shares will make
practical attacks infeasible. A higher-order masking scheme for AES [10] based on
this idea has been developed by Schramm et al. [13]. However, Coron et al. have
demonstrated that this scheme is susceptible to 3rd-order DPAattacks irrespective
of the number of used shares [3]. Another problem is posed by the large compu-
tational overhead which is required for refreshing the masks. In [13], it has been
shown that a singleAES encryptionwith resistance against 2nd-orderDPAattacks
requires over 40 times more clock cycles (about 200,000 clock cycles in total).

Irrespective of the security aspects, overheads of this order are not likely to be
acceptable for every implementation. Therefore, it is necessary to resort to more
“light-weight” countermeasures. A possible solution which requires significantly
less overhead is a combination of 1st-order masking and operation randomization
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as proposed in [4]. Advanced DPA attacks targeted at such a combination of
masking and randomization have been proposed in [15], but so far no practical
evaluation of their effectiveness has been available. The work described in this
paper puts these new attacks to the practical test. Our goals were twofold:
First, we sought to verify that these attacks are practicable in a state-of-the-art
measurement setup. Second, we wanted to collect empirical evidence for the
degree of protection offered by this combination of countermeasures. Note that
we did not have the goal to develop new attacks on these countermeasures.
Furthermore, we stress that—as with any practical evaluation—our results may
not necessarily be optimal for the targeted device. Therefore, the increase in the
number of required power traces for the protected implementation indicated in
Section 5 should not be taken as a fixed “security gain factor” but only as an
upper border of this factor.

The rest of this paper is organized as follows. In Section 2, we describe the
protected software implementation of AES which we attacked and we give details
on the countermeasures. The advanced DPA methods which have been proposed
to break these countermeasures and which we have evaluated practically are
presented in Section 3. Some details on the attacked smart card device (especially
a characterization of its power leakage) are given in Section 4. In Section 5, we
present the results of our practical work. A further discussion of some issues
relating to the effectiveness of the attacks in dependence on the attacker’s
capabilities follows in Section 6. Finally, conclusions are drawn in Section 7.

2 Protected AES Software Implementation

The protection of our AES software implementation is based on the strategy of
combining masking, shuffling and dummy operations as published in [4]. At the
beginning and at the end of the AES operations there are so-called “randomiza-
tion zones”. Within each zone all intermediate values are protected with a single
mask and the sequence of processing of the bytes of the State is randomized.
In [4], the initial zone extends to the first MixColumns transformation. Jaffe
showed that it is possible to attack the AES after the MixColumns operation [6].
This principally means that a protection of the first round alone would be
insufficient. However, Tillich et al. showed that it is quite easy to extend this
randomization zone beyond the second SubBytes operation [15], thus thwarting
Jaffe’s attack1.

We are using the same masking scheme with six different random masks2 as
published in [4]. All intermediate values of the State and the key are masked. In
our implementation, the randomization is achieved by shuffling of the sequence
of operations on the bytes of the State. Furthermore, it would be possible
1 The randomization zone at the end can be extended in a similar fashion to protect

against Jaffe’s attack.
2 One mask for S-box inputs, one for S-box outputs, and one for each State row before

MixColumns. All other occurring masks (e.g. after MixColumns) are derived from
these six masks.
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to process additional dummy States to increase the degree of randomization.
The randomization is controlled by random values which are—similarly to the
mask bytes—unknown to the attacker. We denote the degree of randomization
with R, i.e. the number of points in time where a specific State byte can be
processed during a specific AES encryption. In our case, the 16 bytes of the
AES State are fully shuffled and no dummy States are added. This means that
the randomization degree R = 16. Hence, a specific byte of the State will be
processed with a probability of p = 1

16 at one of the 16 possible points in
time. One protected AES encryption requires less than 12,000 clock cycles on
our targeted platform, which is described in Section 4. The cost per additional
dummy State would be about 1,000 clock cycles.

The consequences of this randomization for a plain 1st-order DPA attack are
illustrated in the following. In Figure 1, the result of an attack on the first S-box
output of an unmasked and randomized implementation is shown. Note that
only the section of the trace which corresponds to the SubBytes transformation
was used. One can clearly identify four groups of peaks. When zooming into
one of these groups, again four pairs of peaks can be identified. Each group of
peaks corresponds to the transformation of a single State column, which again
encompasses four State bytes. As a specific State byte can occur at any of these
times, there are all in all 16 different positions where the output value of the
unmasked S-box correlates. Furthermore if we compare the achieved correlation
of this attack to the achieved correlation of an attack on the unprotected imple-
mentation (cf. also Figure 5 in Section 4) we end up with a correlation which is
reduced by a factor of approximately 16. As expected, the correlation coefficient
scales down linearly with the degree of randomization R [9].

3 Description of the Advanced DPA Attacks

From an implementor’s view, a combination of masking and operation random-
ization countermeasures is a good bet for protecting software implementations of
secret-key cryptographic algorithms against power analysis. Proper masking can
prevent 1st-order DPA attacks while the randomization of operations in time
can offer some protection against more elaborate attacks like higher-order DPA
and template-based methods. At the same time, the implementation complexity
and overhead can be kept within somewhat acceptable limits.

Higher-order DPA attacks and template attacks have been shown to be very
effective to circumvent masking. In higher-order DPA attacks, power leakage of
several intermediate values is combined in such a way that the resulting power
consumption value is again dependent on the original unmasked value [7, 12,
14, 16]. Template-based methods can be applied to enhance higher-order DPA
attacks or to make first-order DPA attacks feasible [9, 11]. On the other side,
the technique known as “windowing” is a good way to limit the protection of
randomization of operations [2]. In this method, all R possibilities of appearance
of a protected value are considered and combined so that the effective protection
of the countermeasure is lowered.
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Fig. 1. Result of DPA attack on randomized AES implementation using the Hamming
weight model and compressed traces

It has been shown in [15] that the attacks on masking and randomization can
be combined to form effective attacks on implementations which employ a single
mask and which randomize the course of operations. Three possible combinations
have been presented and their effectiveness has been compared by estimations
techniques and high-level simulation which neglected electronic noise.

Figure 2 shows the timeline for a part of the execution of a protected secret-key
cipher implementation. Towards the beginning at time index t0, the mask m is
processed in some form (it is generated, stored, used in some precomputation,
etc.). Subsequently, the intermediate value a masked with m appears. The oc-
currence of this masked intermediate value is protected by randomization, i.e.
in each execution the specific value a ⊕ m can appear in any of the R points at
the times t1..tR with equal probability p = 1

R . The power consumption at these

Mask m Masked value (a m)

...

t

t0 t1 t2 tR

Fig. 2. Points in time relevant for an attack
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points in time is used in all attacks from [15]. An adversary must therefore be able
to find these points in time. As will be discussed in Section 6, the constraints
for t1..tR can be relaxed, so that knowledge of the exact time indices is not
necessary. The attacks are described in the following.

3.1 Biasing Masks and Windowing Followed by 1st-Order DPA
Attack

One precondition for effective masking is that the used masks must be uniformly
distributed. If this condition is not met, 1st-order DPA attacks can become
feasible. Therefore, the principal idea of this attack is to try to determine the
Hamming weight of the used mask and to select a subset of the collected power
traces, where the mask fulfills some property, e.g. has a high Hamming weight.
This selection of power traces effectively equals a bias which is introduced into
the distribution of the mask values. The selected power traces are then only
protected by the randomization of the operations (t1..tR), whose effect can be
minimized by windowing. A subsequent 1st-order DPA attack can be successfully
applied on the selected power traces. This attack has been shown to be rather
effective under most circumstances in [15].

3.2 2nd-Order DPA Attack Followed by Windowing

The idea of this attack is to take the randomization of the operations into account
during 2nd-order DPA preprocessing. The power consumption values for m at t0
and a ⊕ m at t1..tR are pairwise combined (2nd-order DPA preprocessing). For
each pair, this preprocessing results in a joint leakage value of the two points.
If the correct points in time have been chosen, one of these R joint leakage
points is always dependent on the actual unmasked value. Which of these points
is the correct one is determined by the randomized course of operations of the
corresponding execution. When all points are windowed (i.e. summed up), the
correct one is inevitably included and the resulting power consumption is to
some degree dependent on the unmasked value. A 1st-order DPA attack can
then be mounted to determine the correct key hypothesis. This attack has been
evaluated in [15] to be less effective than the first one in most cases.

3.3 Windowing Followed by 2nd-Order DPA Attack

A third option for attacking is to reverse the order of windowing and 2nd-order
DPA preprocessing. First, randomization is compensated by summing up all R
points in time where the targeted masked value a ⊕ m can occur. Then, 2nd-order
DPA preprocessing is performed with this sum and a point of the power trace
which depends on the corresponding mask m. The result of this preprocessing
can be attacked with a 1st-order DPA attack. In [15], this attack variant has
been shown to be rather ineffective in comparison to the previous two methods.
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4 Attacked Device

The device used to implement and attack the protected AES software imple-
mentation is a smart card with an ATMega163 core [1]. The ATMega163 is
an 8-bit microcontroller based on AVR, which is a single-cycle instruction RISC
architecture from Atmel. It is equipped with 1,024 bytes of internal RAM, 16KB
in-system self-programmable FLASH and 512 bytes of EEPROM. The core of
the controller contains 32 general purpose registers which are directly connected
to the arithmetic-logic unit (ALU). Three register pairs can be used to store a
16-bit address into the internal memory.

The used smart card is shipped without any software or operating system. This
means the card is under full control of the designer and all parts of the software
(including boot code and operating system) have to be implemented from scratch.
In our scenario, there is only a minimum version of an operating system imple-
mented which can handle the basic functions of the T=1 protocol specified in ISO
7816 [5]. The card can execute the protected AES implementation described in
Section 2. For the sake of performance, the randomization parameters and mask
bytes are sent to the smart card along with the plaintext. The key used for the
AES encryption is stored in the EEPROM of the smart card.

In general, the device leaks the Hamming weight as well as the Hamming
distance of the processed values. When attacking the non-randomized S-box
output using the Hamming weight model, the maximum achievable correlation
is 0.458. In a similar attack using the Hamming distance between the S-box
input and the S-box output—which occur as subsequent values of a register—the
maximum correlation is 0.257. The results for these attacks on uncompressed
traces are displayed in Figure 3 and in Figure 4. It can be seen that for this
device and the sequence of instructions used to implement the S-box lookup, the
Hamming weight model leads to a higher correlation.

For minimization of the amount of data used for an attack, it is a common
technique to compress the measured traces [9]. When using the compression
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Fig. 3. Result of DPA attack on un-
protected AES implementation using the
Hamming weight model and uncompressed
traces
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Fig. 5. Result of DPA attack on un-
protected AES implementation using the
Hamming weight model and compressed
traces
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Fig. 6. Result of DPA attack on un-
protected AES implementation using the
Hamming distance model and compressed
traces

described in Section 5.2, the achievable correlation using the Hamming weight
model reduces from 0.458 to 0.383. With the Hamming distance model the
correlation reduces from 0.257 to 0.236. The results of an attack on compressed
traces can be seen in Figure 5 and Figure 6. For our practical attacks, this means
that most of the information is preserved in the compressed power traces.

5 Practical Results

In order to demonstrate the effectiveness and practicability of the methods
described in [15], we have attacked the protected AES software implementation
presented in Section 2. For the randomization of operations, we have used full
shuffling of the 16 State bytes, i.e. R = 16. Power traces were collected with a
LeCroy LC584AM digital oscilloscope and a differential probe by measurement
over a 1 Ω resistor in the ground line of the smart card reader. A trigger signal
has been supplied by the smart card at the beginning of encryption. We have
collected a set of 500,000 power traces, which took about 134 hours in our
measurement setup, i.e. a rate of approximately one trace per second. The
uncompressed traces required about 50GB of disk space. For comparison, a set
of compressed traces was between 700MB and 2GB in size, depending on the
actual compression function. An uncompressed trace contained 100,000 points,
whereas a compressed trace consisted of about 1,800 points (one per clock cycle).

The power traces included about 1,800 clock cycles at the start of AES
encryption spanning over various precomputations (parts of the masked key
scheduling, mask preprocessing, and the masking of the plaintext), the initial
AddRoundkey, and the first AES round. In order to keep the size of the traces
small, the sampling rate has been limited to 200 · 106 samples/second.

All statistical analyses were carried out on a PC featuring a quad-core Intel
Xeon processor at 2.33GHz and 8GB of RAM. Attack times were generally
determined by the number and size of the analyzed traces, and not by the kind
of statistical analysis. An attack using all 500,000 power traces took about 140 s
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for compressed traces and about 1,7 hours for uncompressed traces. For an attack
with biased masks, the template-building took about 160 s when 100 traces were
used for each of the nine templates. The time for attacks involving fewer traces
would scale down almost linearly.

For our attacks we have used the S-box output of the first round as interme-
diate value a and the S-box output mask as corresponding m. The time indices
t1..t16 for a ⊕ m were determined by 1st-order DPA attacks using the known
masked S-box outputs as attacked intermediate values. Suitable indices t0 were
found accordingly by using the S-box output mask as attacked value. For both
cases, the time indices resulting in high correlation values were used.

5.1 Results: Biasing Masks and Windowing Followed by 1st-Order
DPA Attack

In order to introduce a bias in the mask values, we have used templates to
derive the Hamming weight of the mask m. Templates were built from the
uncompressed traces for each Hamming weight of the mask. We used 100 traces
per template with 16 interesting points per trace. The multivariate Gaussian
distribution model has been employed. The traces used for the 1st-order DPA
attack have been compressed (integration of absolute values per clock cycle).
Randomization has been countered by windowing, i.e. the power consumption
values at times t1..t16 have been summed up. The Hamming weight of an un-
masked S-box output byte has been used as predicted power consumption. The
attack itself is therefore similar to the one described in [11] (“Templates During
Preprocessing”), except for the additional compensation of the randomization
countermeasure.

In practice, it is important to find a good tradeoff between a sharp bias and
a minimal number of discarded traces. For example, only choosing traces with a
mask Hamming weight of 8 (i.e. m = 0xFF) will lead to the highest correlation
but on the other hand, this would mean to discard 255

256 = 99.6% of the recorded
power traces. Selecting masks with a Hamming weight greater or equal to six
has been shown to be a good choice [9,11,15] and therefore we have also used it
for our evaluations.

The effectiveness of the attack depends on the accuracy of the biasing process.
In order to show the best outcome, we have also biased the masks following
their actual values (ideal case). The results for biasing with the actual Hamming
weights and with the Hamming weights predicted by template matching are
show in Figures 7 and 8, respectively.

In the ideal case, the correlation for the correct key hypothesis was about
−0.04 while the use of template matching yielded a correlation of about −0.025.
With increasing accuracy of the template method in predicting the actual Ham-
ming weight of the used mask, the result of the attack should get closer to that
of the ideal case. We use the rule of thumb from [9] to estimate the required
number of power traces for a successful attack. We have also taken those traces
into account which were discarded during the biasing process (about 85% of
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Fig. 7. Result of attack with ideal mask
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Fig. 8. Result of attack with mask biasing
through templates
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Fig. 9. Evolution of correlation in dependence on number of traces for mask biasing
through templates

all traces). For ideal biasing, about 122,000 power trace are sufficient, for our
biasing with templates, about 305,000 power traces are required.

Figure 9 shows the evolution of the correlation with increasing number of
power traces for the attack depicted in Figure 8. Note that the trace count on the
x-axis also includes the discarded traces. The correct key hypothesis is plotted in
black, the incorrect hypotheses are displayed in light gray. The outer dark gray
lines indicate the confidence interval for ρ = 0. Roughly speaking, this is the
expected region for incorrect key hypotheses. The point where the correct key
hypothesis leaves this region gives another estimation for the number of traces
required for a successful attack. In this case, the estimate lies in the vicinity of
300,000 traces, which is in line with the result from the rule of thumb from [9].

5.2 Results: 2nd-Order DPA Attack Followed by Windowing

This attack can be seen as multiple 2nd-order DPA attacks in parallel, with
their results combined by windowing. Nevertheless, a successful attack is not
quite as simple to achieve as in a conventional 2nd-order DPA attack. Normally,
most 2nd-order DPA attacks can be conducted in a more or less “brute-force”
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manner. More precisely, it is not necessary to determine the exact points in time
which carry the most information about the targeted intermediate values and
which are therefore suited most for 2nd-order DPA preprocessing. In fact, it is
sufficient to predict the general regions of the power traces which are expected
to contain the required points. By examining all possible combinations of the
points of both regions in a 1st-order DPA attack, the correct key hypothesis
can be identified without giving much thought to the actual points of the power
trace which carry the required information.

When there is a need to compensate for the randomization countermeasure
as well, it quickly becomes evident that this “brute-force” approach is no longer
feasible. Even if all of the R parallel 2nd-order DPA attacks could be done in
this manner, the subsequent windowing of the results requires that only those
points are summed up which might contain information about the unmasked
intermediate values. Our experiments have shown that the attack result is ex-
tremely sensitive even to slight variations in time of the two input points to the
2nd-order DPA preprocessing function. Therefore, choosing the best points from
the power trace becomes a crucial precondition for windowing. Unfortunately,
the best points only become known after a successful attack.

An effective way out of this dilemma can be made with a suitable compression
function. If there is only a single point per clock cycle in the power trace, the 2nd-
order DPA preprocessing and windowing can be done at the exact points in time
where the maximal information is contained. However, care must be taken that not
toomuch information is lost during compression.Our experiments have shown that
none of the standard compression functions (maximum extraction, integration) [9]
deliver satisfying results. After careful analysis of the 2nd-order DPA leakage pro-
file of the attacked device, we have developed a new compression function, which
retains most of the required information and hence delivers good results. Our new
compression function extracts a small range of points around the maximum of each
clock cycle and forms the average value of those points. At our sampling rate of
200 · 106 samples/second, a range of two points around the maximum (i.e. 5 points
in total per clock cycle) was sufficient to achieve satisfying results.

As 2nd-order DPA preprocessing function we have employed the absolute of
the difference of the two input points, as it has the best correspondence to single
bits of unmasked values and still a good correspondence to the Hamming weight
of larger values [9]. We have used the bit model (LSB of the S-box output) as
power model for our attack. The results are shown in Figure 10.

The correlation peak for the correct key hypothesis has a height of approxi-
mately 0.024, requiring about 50,000 power traces for a successful attack [9].

The evolution of the correlation with the number of power traces used in the
attack is shown in Figure 11. In this case, the correlation curve for the correct
key hypothesis leaves the confidence interval for ρ = 0 at about 65,000 traces.
Note that this number is a bit higher than the estimate from the rule of thumb
from [9]. In our experience, the evolution of the correlation is quite dependent
on the measurements, so the rule of thumb should normally be preferred for a
more general prediction.
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Fig. 10. Result of 2nd-order DPA attack
followed by windowing
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Fig. 11. Evolution of correlation in depen-
dence on number of traces

5.3 Results: Windowing Followed by 2nd-Order DPA Attack

This attack had already a very low effectiveness in the simulated evaluation
of [15]. For completeness, we have conducted attacks with this method on all
500,000 power traces. As suspected, this number of power traces was not suffi-
cient to lead to a correct prediction of the key.

5.4 Dependence of Attack Efficiency on Randomization Degree

The AES implementation allows to change the degree of randomization R in
order to trade performance against security. Table 1 shows how the effectiveness
of the two attacks from Section 3.1 and 3.2 changes with increasing R. Concep-
tually, the correlation coefficient should scale down with a factor of

√
R [15]. It

can be seen from Table 1 that both attacks approximately follow this behavior,
whereby the second one (2nd-order DPA attack followed by windowing), tends
to perform worse at a higher R.

Table 1. Maximal absolute correlation coefficient in dependence on randomization
degree R

R 1 2 4 8 16
Biasing masks 0.104 0.072 0.052 0.035 0.025
2nd-order and windowing 0.125 0.102 0.073 0.042 0.024

6 Discussion of the Practicality of the Attacks

As shown in Section 5, two of the three examined attacks succeeded with a
reasonable amount of samples. Mask biasing turned out to lead to a potentially
higher correlation, which is in line with the estimation results from [15]. However,
this attack requires to discard a large number of power traces, which increases
the total number of required power traces considerably. Furthermore, the 2nd-
order DPA attack followed by windowing puts less demands on the attacker’s
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Fig. 12. Extracting viable points for 2nd-order DPA preprocessing

knowledge and control over the device. In order to introduce a bias in the mask,
templates for the mask values have to be built. This requires the availability of a
device for profiling which is sufficiently similar to the attacked one. Moreover, the
profiling device must offer the possibility to extract some information about the
actually occurring mask values in order to allow template building. Depending
on the attack scenario, these preconditions might not be always given.

Both methods require a windowing for the time indices t1..tR, i.e. all points
in time where the attacked masked intermediate value can occur due to the
randomization countermeasure (cf. Figure 2). However, for a practical attack it
is not necessary to identify the exact points in time, but it is sufficient to know
the distance between those points. In our attack, we have first compressed the
power traces (see Section 5.2) so that there was only a single power consumption
value per clock cycle. When the distance (in clock cycles) between the R points
in time is known, all possible combinations of points with this distance can be
used in the attack. The selection of possible combinations of R points can be
seen as pulling a comb with R teeth over the power trace. The distances between
the comb’s teeth correspond to the clock cycle distances between the possible
occurrences of the masked value a ⊕ m. This is illustrated in Figure 12.

For each position of the comb and each point in time where the mask value
m is suspected to appear (“area for mask m” in Figure 12), a new correlation
value can be calculated. Thereby, 2nd-order DPA preprocessing is applied with
the current mask point and each comb tooth. The resulting 16 preprocessed
points are then summed up (windowed) to produce a single predicted power
consumption value for the attack.

Normally, an attacker has some general idea of the order of operations which
are performed by the attacked device so that it is possible to specify some areas in
the power traces where certain values are likely to appear. This limits the number
of possible combinations of comb positions and mask positions and makes the
attack faster. But even if all possible combinations are used in our case, the total
number ranges around 3 · 106, which is quite feasible for an attack3.

Depending on the scenario, an attacker can obtain information about the
distance of the R randomized points (i.e. the distance between the teeth of

3 There are about 1,800 points per compressed trace, which is hence the upper limit
for comb positions and mask positions. The maximal number of combinations is
therefore 1, 800 · 1, 800 = 3, 240, 000.
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the comb) through different means. If a device is available for profiling, then
the relevant points in time can be determined through a DPA attack with
known intermediate values. When the relevant sections of the implementation’s
source code are available, the distances can be derived with a cycle-accurate
simulator. Even if those options are not available, some general knowledge about
the protected implementation can be enough to establish a set of “candidate
combs” with different distances between the teeth. If this set is not too large,
the correct comb can be determined by trying out all combs of the set in an
attack.

For our protected AES implementation it would be sufficient to know that
there is a randomization of the columns of the State and a randomization of the
bytes within each column. The distance between the processing of the columns
and between the four S-box lookups of one column are constant. Thus there are
only two configuration parameters for the comb, resulting in a manageable set
of candidate combs.

Hence, the method of 2nd-order DPA attack followed by windowing can be
regarded as a fairly generic attack which requires only little more knowledge
about the implementation than a plain 1st-order DPA attack.

7 Conclusions

In this paper we have practically demonstrated the effectiveness of advanced
DPA attacks on an AES smart card implementation with state-of-the-art soft-
ware countermeasures. We have evaluated the three principal attack methods
described in [15], which have so far only been subject to theoretical estimation
and high-level simulation. Two of these methods work well in defeating the
masking and randomization of operations countermeasures of the AES software
implementation. One of the methods leads to a potentially higher correlation,
but requires the attacker to be able to profile the attacked device in detail. The
second attack is not quite as effective but is more general. It can be mounted
without profiling and requires only little knowledge about the implementation.
Nevertheless, it must not be overlooked that the effort for the attacks is consider-
ably larger than for an unprotected implementation. While 100 power traces are
normally enough to break the unprotected implementation, the advanced DPA
attacks on the protected implementation require a minimal number of about
50,000 traces for success. Hence, DPA becomes more than two orders of magni-
tude (i.e. 100 times) harder under use of the described attacks. Although there
is no guarantee that there are no better attacks on a specific implementation,
our work has delivered empirical evidence that a combination of masking and
operation randomization can offer significant protection against advanced DPA
attacks.
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include not only the affine points (x1, y1) satisfying the curve equation but also
an extra point at infinity serving as the neutral element. The standard formulas
to compute a sum P + Q fail if P is at infinity, or if Q is at infinity, or if P + Q
is at infinity, or if P is equal to Q. Each of these possibilities needs to be tested
for and handled separately; a complete addition algorithm is produced by gluing
together several incomplete addition formulas.

This plethora of cases has caused a seemingly neverending string of problems
for implementors of elliptic-curve cryptography, especially in cryptographic hard-
ware subject to side-channel attacks. Consider, for example, computing nP+mQ.
A typical two-scalar-multiplication algorithm would double P , add P , add Q,
etc., where the exact pattern of additions and doublings depends on the values
of n and m. What happens if 3P = Q? Does the implementation take the time
to see that 3P = Q and to switch from the addition formulas to doubling formu-
las? Can the attacker detect the switch through timing analysis, power analysis,
etc.? If the implementation fails to check for 3P = Q, what does it end up
computing? What about 3P = −Q? Can an attacker trigger failure cases—and
incorrect computations—by choosing inputs cleverly? Can these failures com-
promise cryptographic security?

Some papers have presented “unified” addition formulas that can be used for
doublings. See, e.g., [27], [18], [6], [3], and [5]; for overviews see [17], [25], and
[2, Section 5]. “Strongly unified” addition formulas eliminate the need to check
for equal inputs. However, they do not eliminate the need to check for inputs
and outputs at infinity and for other exceptional cases. The exceptional-points
attack presented in [16] targets the exceptional cases in these unified formulas.

Edwards Curves. In the recent paper [2], Bernstein and Lange show for fields
k with char(k) �= 2 that if d is not a square in k then the affine points on the
“Edwards curve”

x2 + y2 = 1 + dx2y2

form a group. The affine addition law introduced by Edwards in [10] is complete
for this curve, as are the fast projective formulas introduced in [2].

“Complete” is stronger than “unified”: it means that the addition formulas
work for all pairs of input points. There are no troublesome points at infinity.
In particular, the neutral element of the curve is an affine point (0, 1).

If k is finite then approximately 1/4 of all elliptic curves over k are birationally
equivalent to complete Edwards curves, i.e., Edwards curves with non-square d.
The formulas in [2] can therefore be used for elliptic-curve computations, and in
particular for elliptic-curve cryptography.

Implementors can—although they are not forced to!—gain speed by switching
from the addition formulas to dedicated doubling formulas when the inputs are
known to be equal. Bernstein and Lange show, for typical scalar-multiplication
problems, that their addition formulas and doubling formulas for Edwards curves
use fewer multiplications than the best available formulas for previous curve
shapes.

Unfortunately, x2+y2 = 1+dx2y2 is not elliptic over fields k with char(k) = 2.
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Contributions of This Paper. We introduce a new method of carrying out
computations on binary elliptic curves, i.e., elliptic curves over fields k with
char(k) = 2. In particular, we introduce “complete binary Edwards curves.”
We present explicit formulas for addition on these curves, an explicit birational
equivalence to an elliptic curve in short Weierstrass form, explicit formulas for
doubling, and explicit formulas for Montgomery-type differential addition. See
Section 2 for the curve shape and birational equivalence; Sections 3 and 5 for
the addition law; Section 6 for doubling; and Section 7 for differential addition.

Our curve equation has a surprisingly large number of terms but shares many
geometric features with non-binary Edwards curves x2 + y2 = 1 + dx2y2. In
particular, we prove that our formulas are complete. We also show that if n ≥
3 then every ordinary elliptic curve over F2n is birationally equivalent to a
complete binary Edwards curve. See Section 4.

Our doubling formulas and differential-addition formulas are extremely fast:
for example, 2M + 6S for projective doubling, and 5M + 4S for one step of a
Montgomery ladder, when curves are chosen to have small parameters. Here M
is a field multiplication and S is a field squaring. For comparison, state-of-the-
art formulas for small-parameter Weierstrass curves—the best formulas in the
literature, and some new speedups that we present—use 2M+ 4S for projective
doubling and 5M+4S for one step of a Montgomery ladder. There is one caveat,
namely that our general addition formulas use at best 16M+1S and are therefore
not as fast as previous (incomplete) formulas; we can nevertheless recommend
binary Edwards curves for a wide variety of applications.

2 Binary Edwards Curves

In this section we introduce the new curve shape and show that the affine points
are nonsingular. The points at infinity are singular; we give details on the blowup.
To prove that the curve describes an elliptic curve we state a birational map to
an ordinary elliptic curve in Weierstrass form.

Definition 2.1 (Binary Edwards curve). Let k be a field with char(k) = 2.
Let d1, d2 be elements of k with d1 �= 0 and d2 �= d2

1 + d1. The binary Edwards
curve with coefficients d1 and d2 is the affine curve

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

This curve is symmetric in x and y and thus has the property that if (x1, y1) is
a point on the curve then so is (y1, x1). We will see in Section 3 that (y1, x1) is
the negative of (x1, y1). The only curve points invariant under this negation law
are (0, 0) and (1, 1); (0, 0) will be the neutral element of the addition law while
(1, 1) will have order 2. We will also see that (x1, y1) + (1, 1) = (x1 + 1, y1 + 1).

Theorem 2.2 (Nonsingularity). Each binary Edwards curve is nonsingular.

Proof. By definition the curve EB,d1,d2 has d1 �= 0 and d2 �= d2
1 + d1. The partial

derivatives of the curve equation are d1 + y + y2 and d1 + x + x2. A singular
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point (x1, y1) must have d1 + y1 + y2
1 = 0 and d1 + x1 + x2

1 = 0, and therefore
(x1 + y1)2 = x1 + y1, implying x1 = y1 or x1 = y1 + 1.

The case x1 = y1 implies 0 = x2
1 + x4

1 by the curve equation and therefore
d2
1 = x2

1 + x4
1 = 0, contradicting the hypothesis that d1 �= 0.

The casex1 = y1+1 impliesd1+d2 = y2
1+y4

1 by the curve equationand therefore
d2
1 = y2

1 + y4
1 = d1 + d2, contradicting the hypothesis that d2 �= d2

1 + d1. ��

Singularities of the Projective Closure. The projective closure of the curve
EB,d1,d2 is

d1(X + Y )Z3 + d2(X2 + Y 2)Z2 = XY Z2 + XY (X + Y )Z + X2Y 2.

It has the points (1 : 0 : 0) and (0 : 1 : 0) at infinity. Both are singular. We
present details on the blowup for the first point; by the symmetry of the curve
equation all considerations also hold for the second point.

To study the curve around (1 : 0 : 0) we consider the affine curve d1(1+y)z3+
d2(1 + y2)z2 = yz2 + y(1 + y)z + y2. The partial derivatives d1z

3 + z2 + z and
d1(1+y)z2+y(1+y) both vanish in (0, 0) which shows that the point is singular.
We blow up the singularity by putting y = tz and dividing by z2, obtaining the
curve

d1(1 + tz)z + d2(1 + t2z2) = tz + t(1 + tz) + t2.

Substituting z = 0 produces the equation d2 + t+ t2 = 0, which has two distinct
roots in the algebraic closure of the base field k, corresponding to two distinct
points of the blowup. These points are nonsingular since the partial derivative
d1z

2 + z + 1 does not vanish for z = 0. These blowups are defined over the
smallest extension of k in which d2 + t + t2 = 0 has roots.

An Alternate Curve Shape. The curve

d1(1 + x + y) + d2(1 + x2 + y2) = xy + xy(x + y) + x2y2

is isomorphic to EB,d1,d2 via the map (x, y) �→ (x, y +1), and is another suitable
generalization of Edwards curves to the binary case. Since the addition and
doubling formulas look slightly simpler on EB,d1,d2 we picked that one but would
like to point out here that all considerations also apply to this shifted curve.

Birational Equivalence. Traditionally elliptic curves are given in Weierstrass
form; see, e.g., [9]. An ordinary elliptic curve over k can be expressed in short
Weierstrass form

v2 + uv = u3 + a2u
2 + a6

with a6 �= 0. The neutral element of the addition law is the point at infinity and
negation is defined as −(u1, v1) = (u1, v1 + u1).

The map (x, y) �→ (u, v) defined by

u = d1(d2
1 + d1 + d2)(x + y)/(xy + d1(x + y)),

v = d1(d2
1 + d1 + d2)(x/(xy + d1(x + y)) + d1 + 1)
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is a birational equivalence from EB,d1,d2 to the elliptic curve

v2 + uv = u3 + (d2
1 + d2)u2 + d4

1(d
4
1 + d2

1 + d2
2)

with j-invariant 1/(d4
1(d

4
1 + d2

1 + d2
2)). An inverse map is given as follows:

x = d1(u + d2
1 + d1 + d2)/(u + v + (d2

1 + d1)(d2
1 + d1 + d2)),

y = d1(u + d2
1 + d1 + d2)/(v + (d2

1 + d1)(d2
1 + d1 + d2)).

We define a function ϕ on all affine points of EB,d1,d2 by extending the rational
map (x, y) �→ (u, v) given above. Specifically, the rational map is undefined at
(0, 0); we define ϕ(0, 0) = P∞. There are no other exceptional cases: if xy +
d1(x + y) = 0 then d2(x2 + y2) = xy(x + y) + x2y2 = d1(x + y)2 + d2

1(x + y)2

so (d2 + d2
1 + d1)(x2 + y2) = 0 so x2 + y2 = 0 so x = y. Use xy + d1(x + y) = 0

again to see that xy = 0 so x2 = 0 so x = 0 so (x, y) = (0, 0).

3 The Addition Law

This section presents an addition law for the binary Edwards curve EB,d1,d2 and
proves that the addition law corresponds to the usual addition law on an elliptic
curve in Weierstrass form. One consequence of the proof is that the addition law
on EB,d1,d2 is strongly unified: it can be used with two identical inputs, i.e., to
double.

Here is the addition law. The sum of two points (x1, y1), (x2, y2) on EB,d1,d2

is the point (x3, y3) defined as follows:

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)
d1 + (x1 + x2

1)(x2 + y2)
,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)
d1 + (y1 + y2

1)(x2 + y2)
.

If the denominators d1+(x1+x2
1)(x2+y2) and d1+(y1+y2

1)(x2+y2) are nonzero
then the sum (x3, y3) is a point on EB,d1,d2 : i.e., d1(x3 + y3) + d2(x2

3 + y2
3) =

x3y3 + x3y3(x3 + y3) + x2
3y

2
3 . We present a script in the Sage computer-algebra

system [34] that verifies this:

R.<d1,d2,x1,y1,x2,y2>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2,
d1*(x2+y2)+d2*(x2^2+y2^2)+x2*y2+x2*y2*(x2+y2)+x2^2*y2^2

])
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)
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) / (d1+(y1+y1^2)*(x2+y2))
verif = d1*(x3+y3)+d2*(x3^2+y3^2)+x3*y3+x3*y3*(x3+y3)+x3^2*y3^2
0 == S(numerator(verif))

Inserting (x1, y1) = (0, 0) or (x2, y2) = (0, 0) into the addition law shows
that (0, 0) is the neutral element. Similarly (x1, y1) + (1, 1) = (x1 + 1, y1 + 1);
in particular (1, 1) + (1, 1) = (0, 0). Furthermore (x1, y1) + (y1, x1) = (0, 0), so
−(x1, y1) = (y1, x1). We emphasize that the addition law works without change
for all of these inputs.

The following lemma will be useful in Section 7 and later in this section.

Lemma 3.1. Let k be a field with char(k) = 2. Let d1, d2 be elements of k
with d1 �= 0 and d2 �= d2

1 + d1. Fix (x3, y3), (x2, y2) ∈ EB,d1,d2(k). Assume that
(x3, y3)+(x2, y2) is defined. Then (x3, y3)+(y2, x2) is also defined. Furthermore
define (x5, y5) = (x3, y3) + (x2, y2) and (x1, y1) = (x3, y3) + (y2, x2). Then d2

1 +
w2w3(d1(1 + w2 + w3) + d2w2w3) �= 0 and

w5 =
d1(d1(w2+w3) + x2x3(x2+x3+1) + y2y3(y2+y3+1) + (x2x3+y2y3)2)

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

w1w5 =
d2
1(w2 + w3)2

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

where wi = xi + yi.

Proof. The denominators of the coordinates of (x3, y3) + (x2, y2) are d1 + (x3 +
x2

3)(x2 + y2) and d1 + (y3 + y2
3)(x2 + y2); these formulas are symmetric in x2, y2,

so they are the same as the denominators of (x3, y3) + (y2, x2). Furthermore,
their product is

(d1 + (x3 + x2
3)(x2 + y2))(d1 + (y3 + y2

3)(x2 + y2))

= d2
1 + d1(x3 + x2

3 + y3 + y2
3)(x2 + y2) + (x3 + x2

3)(y3 + y2
3)(x2 + y2)2

= d2
1 + d1(w3 + w2

3)w2 + (d1w3 + d2w
2
3)w

2
2

= d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3),

so d2
1 +w2w3(d1(1+w2 +w3)+d2w2w3) is nonzero. Note that we used the curve

equation in the second-to-last equality.
Cross-multiplying and using the curve equation again gives the stated nu-

merator of w5; we omit the details. Similarly we obtain the numerator of w1.
Multiplying, using the curve equation again, and cancelling d2

1 + w2w3(d1(1 +
w2 + w3) + d2w2w3) produces the stated formula for w1w5. ��

The rest of this section is devoted to the proof that this addition law corre-
sponds to the addition law on the elliptic curve v2 + uv = u3 + (d2

1 + d2)u2 +
d4
1(d4

1 + d2
1 + d2

2) under the function ϕ defined in the previous section: i.e., that
ϕ(x3, y3) = ϕ(x1, y1) + ϕ(x2, y2).

Lemma 3.2. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 �= 0 and d2 �= d2

1+d1. Fix (x2, y2), (x3, y3) ∈ EB,d1,d2(k). If (x3, y3)+(x2, y2) =
(0, 0) then (x3, y3) = (y2, x2).
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Proof. Define wi as in Lemma 3.1. Then w5 = 0 so

d2
1(w2 + w3)2 = w1w5(d2

1 + w2w3(d1(1 + w2 + w3) + d2w2w3)) = 0

so w2 + w3 = 0; i.e., x2 + y2 + x3 + y3 = 0. Similarly

d1(d1(w2 + w3) + x2x3(x2 + x3 + 1) + y2y3(y2 + y3 + 1) + (x2x3 + y2y3)2) = 0

so x2x3(x2 + x3 + 1) + y2y3(y2 + y3 + 1) + (x2x3 + y2y3)2 = 0. Substitute
y3 = x2 + y2 + x3 to see that x2x3(x2 + x3 + 1) + y2(x2 + y2 + x3)(y2 + (x2 +
y2 + x3) + 1) + (x2x3 + y2(x2 + y2 + x3))2 = 0, and simplify to see that (x2 +
y2)(x2 + y2 + 1)(x3 + y2)(x3 + y2 + 1) = 0. We now separately consider the four
factors.

Case 1: x2 + y2 = 0. Then (x2, y2) is either (0, 0) or (1, 1). Furthermore
x3 + y3 = 0 so (x3, y3) is either (0, 0) or (1, 1). We must have (x3, y3) = (x2, y2)
since (0, 0) + (1, 1) �= (0, 0). Thus also (x3, y3) = (y2, x2).

Case 2: x2 + y2 = 1. Then x4
2 + x2

2 = d1 + d2 from the curve equation.
Furthermore x3 + y3 = 1 so x4

3 + x2
3 = d1 + d2 so x3 = x2 or x3 = x2 + 1.

If x3 = x2 then (x3, y3) + (x2, y2) = (1, 1) �= (0, 0). Thus x3 = x2 + 1 so
(x3, y3) = (x2 + 1, x2) = (y2, x2).

Case 3: x3 + y2 = 0. Then x2 + y3 = 0. Hence (x3, y3) = (y2, x2).
Case 4: x3 +y2 = 1. Then x2 +y3 = 1. Hence (x3, y3)+(x2, y2) = (y2 +1, x2 +

1) + (x2, y2) = (1, 1), contradiction. ��
Lemma 3.3. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 �= 0 and d2 �= d2

1 + d1. Fix (x1, y1), (x2, y2) ∈ EB,d1,d2(k). If ϕ(x1, y1) =
ϕ(x2, y2) then (x1, y1) = (x2, y2).

Proof. If (x1, y1) = (0, 0) then ϕ(x1, y1) = P∞ so ϕ(x2, y2) = P∞ so (x2, y2) =
(0, 0) = (x1, y1) as claimed. Similar comments apply if (x2, y2) = (0, 0). Assume
from now on that (x1, y1) �= (0, 0) and (x2, y2) �= (0, 0).

By definition of ϕ we have

y1(x2y2 + d1(x2 + y2)) = y2(x1y1 + d1(x1 + y1)),
x1(x2y2 + d1(x2 + y2)) = x2(x1y1 + d1(x1 + y1)).

Note for future reference that this system of equations is symmetric between 1
and 2, and between x and y. Multiply the first equation by x1 and the second
by y1 and add to obtain (x1y2 + x2y1)(x1y1 + d1(x1 + y1)) = 0. Recall that
x1y1 + d1(x1 + y1) �= 0 so x1y2 + x2y1 = 0. Now replace x1y2 with x2y1 in the
second equation and simplify to obtain x2(x1 + x2)y1 = 0.

If y1 = 0 then x1 �= 0. The curve equation now says d1x1 + d2x
2
1 = 0 so x1 =

d1/d2. Furthermore y2 = x2y1/x1 = 0 so also x2 = d1/d2 so (x1, y1) = (x2, y2).
Assume from now on that y1 �= 0. Apply symmetry between 1 and 2, and

between x and y, to obtain also x2 �= 0. Then x1 + x2 = 0. Apply symmetry
between x and y to see that y1 + y2 = 0. Thus (x1, y1) = (x2, y2). ��
Lemma 3.4. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 �= 0 and d2 �= d2

1+d1. Fix (x1, y1) ∈ EB,d1,d2(k). Then ϕ(y1, x1) = −ϕ(x1, y1).
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Proof. If (x1, y1) = (0, 0) then ϕ(y1, x1) = P∞ = ϕ(x1, y1). Assume from now
on that (x1, y1) �= (0, 0). Write (u1, v1) = ϕ(x1, y1) and (u2, v2) = ϕ(y1, x1).
Then u1 = u2 and v1 + v2 = u1 from the definition of ϕ. Hence (u2, v2) =
(u1, v1 + u1) = −(u1, v1). ��
Theorem 3.5. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 �= 0 and d2 �= d2

1 + d1. Fix (x1, y1), (x2, y2), (x3, y3) ∈ EB,d1,d2(k). Assume
that (x1, y1) + (x2, y2) = (x3, y3). Then ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3).

Proof. Write a2 = d2
1 + d2 and a6 = d4

1(d
4
1 + d2

1 + d2
2). There are two cases in the

definition of ϕ and several cases in the definition of addition on the Weierstrass
curve v2+uv = u3+a2u

2+a6; the proof splits into several cases correspondingly.
If (x1, y1) = (0, 0) then (x2, y2) = (x3, y3). Now ϕ(x2, y2) = ϕ(x3, y3) and

ϕ(x1, y1) = P∞, so ϕ(x1, y1) + ϕ(x2, y2) = P∞ + ϕ(x2, y2) = ϕ(x2, y2) =
ϕ(x3, y3). Similar comments apply if (x2, y2) = (0, 0).

If (x3, y3) = (0, 0) then (x2, y2) = (y1, x1) by Lemma 3.2. Now ϕ(x3, y3) =
ϕ(0, 0) = P∞ and ϕ(x2, y2) = ϕ(y1, x1) = −ϕ(x1, y1) by Lemma 3.4. Thus
ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x1, y1) − ϕ(x1, y1) = P∞ = ϕ(x3, y3).

Assume from now on that (x1, y1) �= (0, 0), (x2, y2) �= (0, 0), and (x3, y3) �=
(0, 0). Write (ui, vi) = ϕ(xi, yi).

Case 1: (u1, v1) = (u2, v2). Then (x1, y1) = (x2, y2) by Lemma 3.3. If u1 = 0
then x1 = y1 from the definition of ϕ so either (x1, y1) = (0, 0) or (x1, y1) = (1, 1);
in either case (x1, y1) + (x2, y2) = (x1, y1) + (x1, y1) = (0, 0), already handled
above. Assume from now on that u1 �= 0. The usual doubling formulas for
Weierstrass coordinates say that 2(u1, v1) = (u4, v4) where u4 = λ2 +λ+d2

1+d2,
v4 = v1 + λ(u1 + u4) + u4, and λ = (u2

1 + v1)/u1. A lengthy but straightforward
calculation then shows that (u3, v3) = (u4, v4); here is the corresponding Sage
script:

R.<d1,d2,x1,y1>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2

])
x2 = x1
y2 = y1
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)

) / (d1+(y1+y1^2)*(x2+y2))
u1 = d1*(d1^2+d1+d2)*(x1+y1)/(x1*y1+d1*(x1+y1))
v1 = d1*(d1^2+d1+d2)*(x1/(x1*y1+d1*(x1+y1))+d1+1)
u3 = d1*(d1^2+d1+d2)*(x3+y3)/(x3*y3+d1*(x3+y3))
v3 = d1*(d1^2+d1+d2)*(x3/(x3*y3+d1*(x3+y3))+d1+1)
lam = (u1^2+v1)/u1
u4 = lam^2+lam+d1^2+d2
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v4 = v1+lam*(u1+u4)+u4
0 == S(numerator(u3-u4))
0 == S(numerator(v3-v4))

Hence ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3).
Case 2: (u1, v1) �= (u2, v2). If u1 = u2 then (u1, v1) = −(u2, v2) so ϕ(x1, y1) =

−ϕ(x2, y2) = ϕ(y2, x2) by Lemma 3.4 so (x1, y1) = (y2, x2) by Lemma 3.3 so
(x1, y1)+(x2, y2) = (0, 0), already handled above. Assume from now on that u1 �=
u2. The usual addition formulas for Weierstrass coordinates say that (u1, v1) +
(u2, v2) = (u4, v4) where u4 = λ2+λ+u1+u2+d2

1+d2, v4 = v1+λ(u1+u4)+u4,
and λ = (v1 + v2)/(u1 + u2). Another lengthy but straightforward calculation
then shows that (u3, v3) = (u4, v4); here is the corresponding Sage script:

R.<d1,d2,x1,y1,x2,y2>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2,
d1*(x2+y2)+d2*(x2^2+y2^2)+x2*y2+x2*y2*(x2+y2)+x2^2*y2^2

])
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)

) / (d1+(y1+y1^2)*(x2+y2))
u1 = d1*(d1^2+d1+d2)*(x1+y1)/(x1*y1+d1*(x1+y1))
v1 = d1*(d1^2+d1+d2)*(x1/(x1*y1+d1*(x1+y1))+d1+1)
u2 = d1*(d1^2+d1+d2)*(x2+y2)/(x2*y2+d1*(x2+y2))
v2 = d1*(d1^2+d1+d2)*(x2/(x2*y2+d1*(x2+y2))+d1+1)
u3 = d1*(d1^2+d1+d2)*(x3+y3)/(x3*y3+d1*(x3+y3))
v3 = d1*(d1^2+d1+d2)*(x3/(x3*y3+d1*(x3+y3))+d1+1)
lam = (v2+v1)/(u2+u1)
u4 = lam^2+lam+u1+u2+d1^2+d2
v4 = v1+lam*(u1+u4)+u4
0 == S(numerator(u3-u4))
0 == S(numerator(v3-v4))

Hence ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3). ��

4 Complete Binary Edwards Curves

If d2 does not have the form t2 + t then the addition law on the binary Edwards
curve EB,d1,d2 has the very nice feature of completeness. This means that there
are no exceptions to the addition law: the denominators d1 + (x1 + x2

1)(x2 + y2)
and d1 + (y1 + y2

1)(x2 + y2) never vanish. The addition law always produces a
point on EB,d1,d2 corresponding to the usual sum of points on elliptic curves in
Weierstrass form.
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In this section we prove completeness for these d2’s. We also prove that over
finite fields F2n with n ≥ 3 all ordinary curves are birationally equivalent to
complete binary Edwards curves.

Theorem 4.1 (Completeness of the addition law). Let k be a field with
char(k) = 2. Let d1, d2 be elements of k with d1 �= 0. Assume that no element
t ∈ k satisfies t2 + t + d2 = 0. Then the addition law on the binary Edwards
curve EB,d1,d2(k) is complete.

Proof. We show for all (x1, y1), (x2, y2) ∈ EB,d1,d2(k) that the denominators
d1 + (x1 + x2

1)(x2 + y2) and d1 + (y1 + y2
1)(x2 + y2) are nonzero.

If x2 + y2 = 0 then the denominators are d1, which is nonzero by hypothesis.
Assume from now on that x2 + y2 �= 0, and suppose that d1/(x2 + y2) = x1 +x2

1.
Use the curve equation to see that

d1

x2 + y2
=

d1(x2 + y2)
x2

2 + y2
2

=
d2(x2

2 + y2
2) + x2y2 + x2y2(x2 + y2) + x2

2y
2
2

x2
2 + y2

2

= d2 +
x2y2 + x2y2(x2 + y2) + y2

2

x2
2 + y2

2
+

y2
2 + x2

2y
2
2

x2
2 + y2

2

= d2 +
y2 + x2y2

x2 + y2
+

y2
2 + x2

2y
2
2

x2
2 + y2

2

and hence that t2+ t+d2 = 0 where t = x1 +(y2+x2y2)/(x2 +y2) ∈ k. Contradic-
tion. Hence d1 +(x1 +x2

1)(x2 + y2) �= 0. Similarly d1 +(y1 + y2
1)(x2 + y2) �= 0. ��

Definition 4.2 (Complete binary Edwards curve). Let k be a field with
char(k) = 2. Let d1, d2 be elements of k with d1 �= 0. Assume that no element
t ∈ k satisfies t2+t+d2 = 0. The complete binary Edwards curve with coefficients
d1 and d2 is the affine curve

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

There is no conflict in notation or terminology here: the complete binary
Edwards curve EB,d1,d2 is the same as the binary Edwards curve EB,d1,d2 . The
complete case has the extra requirement that t2 + t + d2 �= 0 for all t ∈ k, not
just for t = d1. If k is a finite field F2n then an equivalent requirement is that
Tr(d2) = 1, where Tr is the absolute trace of F2n over F2.

Generality of EB,d1,d2. We now study which isomorphism classes of elliptic
curves over a finite field F2n are birationally equivalent to complete binary Ed-
wards curves EB,d1,d2 .

Theorem 4.3. Let n be an integer with n ≥ 3. Each ordinary elliptic curve over
F2n is birationally equivalent over F2n to a complete binary Edwards curve.

Proof. Each ordinary elliptic curve over F2n is isomorphic to v2 + uv = u3 +
a2u

2 + a6 for some a2 ∈ F2n and a6 ∈ F∗
2n . Note that if Tr(a2) = Tr(a′

2) then
the two curves v2 + uv = u3 + a2u

2 + a6 and v2 + uv = u3 + a′
2u

2 + a6 are
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isomorphic: there exists b such that a′
2 = a2 + b + b2, and the map v �→ v + bu is

an isomorphism from v2+uv = u3+a2u
2+a6 to v2+uv = u3+(a2+b+b2)u2+a6.

Fix a2, a6 for the rest of the proof. For each δ, ε ∈ F2 define

Dδ,ε =
{
d1 ∈ F∗

2n : Tr(d1) = δ, Tr(
√

a6/d2
1) = ε

}
.

If d1 ∈ DTr(a2)+1,1 then the pair (d1, d2) with d2 = d2
1 + d1 +

√
a6/d2

1 has
Tr(d2) = Tr(

√
a6/d2

1) = 1 and therefore defines a complete binary Edwards curve
EB,d1,d2 . This curve is birationally equivalent to v2 +uv = u3 +(d2

1 +d2)u2 +a6,
since d4

1(d
4
1 + d2

1 + d2
2) = a6, and therefore birationally equivalent to v2 + uv =

u3 + a2u
2 + a6, since Tr(d2

1 + d2) = Tr(d1) + Tr(d2) = Tr(a2).
Our goal is to show that DTr(a2)+1,1 is nonempty. We will do this by counting

the number of elements in both D01 and D11.
Observe first that #D00 + #D01 = 2n−1 − 1. Indeed, #D00 + #D01 is the

number of d1 ∈ F∗
2n with Tr(d1) = 0.

Observe next that #D01+#D11 = 2n−1. Indeed, #D01+#D11 is the number
of d1 ∈ F∗

2n with Tr(
√

a6/d2
1) = 1. As d1 runs through F∗

2n , the quotient
√

a6/d2
1

also runs through F∗
2n , so it has trace 1 exactly 2n−1 times.

The heart of the proof is a bound on #D00 + #D11, the number of d1 ∈ F∗
2n

with Tr(d1 +
√

a6/d2
1) = 0. For each such d1 there are exactly two choices of

s ∈ F2n such that s2+s = d1+
√

a6/d2
1, producing two choices of point (U1, V1) =

(d1, d1s) on the elliptic curve V 2 + UV = U3 +
√

a6. All points on this elliptic
curve appear uniquely in this way, except that the point at infinity and the
point (0, 0) do not appear. By Hasse’s theorem, this curve has 2n + 1 + t points
for some integer t in the interval [−2

√
2n, 2

√
2n]. Therefore #D00 + #D11 =

2n−1 + (t − 1)/2.
Now 2#D01 = (#D00 +#D01)+ (#D01 +#D11)− (#D00 +#D11) = 2n−1 −

1 + 2n−1 − 2n−1 − (t − 1)/2 = 2n−1 − (t + 1)/2 and 2#D11 = 2n − 2#D01 =
2n−1 + (t + 1)/2. The crude bound (

√
2n − 1)2 ≥ (

√
8 − 1)2 > 2 implies 2n >

2
√

2n + 1 ≥ |t| + 1, so both D01 and D11 are nonempty. ��

Given a2, a6 defining a Weierstrass curve, one can choose a random d1 with
Tr(d1) = Tr(a2) + 1, check whether Tr(

√
a6/d2

1) = 1, and if so compute d2 =
d2
1+d1+

√
a6/d2

1, obtaining a complete binary Edwards curve EB,d1,d2 birationally
equivalent to the original curve. The theorem says that this procedure succeeds
for at least one d1, but the proof actually shows more: the procedure succeeds
for approximately 50% of all d1 with Tr(d1) = Tr(a2)+1. Computer experiments
show that it suffices to search a few small field elements d1, where “small” means
“allowing very fast multiplications.”

5 Explicit Addition Formulas

This section presents explicit formulas for affine addition, projective addition,
and mixed addition on binary Edwards curves. The formulas are not as fast as
known formulas for Weierstrass curves but have the advantage of being strongly
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unified and, for suitable d2, the advantage of completeness. We are continu-
ing to investigate addition speed; we have already found several speedups and
incorporated those speedups into the formulas here.

See Section 6 for much faster doubling formulas, and Section 7 for much faster
differential-addition formulas. We intend to incorporate all new formulas into the
Explicit-Formulas Database, http://hyperelliptic.org/EFD.

Affine Addition. The following formulas, given (x1, y1) and (x2, y2) on the
binary Edwards curve EB,d1,d2, compute the sum (x3, y3) = (x1, y1) + (x2, y2) if
it is defined:

w1 = x1 + y1, w2 = x2 + y2, A = x2
1 + x1, B = y2

1 + y1, C = d2w1 · w2,

D = x2 · y2, x3 = y1 + (C + d1(w1 + x2) + A · (D + x2))/(d1 + A · w2),
y3 = x1 + (C + d1(w1 + y2) + B · (D + y2))/(d1 + B · w2).

These formulas use 2I + 8M + 2S + 3D, where I is the cost of a field inversion,
M is the cost of a field multiplication, S is the cost of a field squaring, and
D is the cost of a multiplication by a curve parameter. The 3D here are two
multiplications by d1 and one multiplication by d2. One can replace 2I with
1I + 3M using Montgomery’s inversion trick.

For complete binary Edwards curves the denominators d1 + A · w2 = d1 +
(x2

1 + x1)(x2 + y2) and d1 + B · w2 = d1 + (y2
1 + y1)(x2 + y2) cannot be zero. See

Theorem 4.1.

Mixed Addition. The following formulas, given (X1 : Y1 : Z1) and (x2, y2) on
the binary Edwards curve EB,d1,d2 , compute the sum (X3 : Y3 : Z3) = (X1 : Y1 :
Z1) + (x2, y2) if it is defined:

W1 = X1 + Y1, w2 = x2 + y2, A = x2
2 + x2, B = y2

2 + y2,

D = W1 · Z1, E = d1Z
2
1 , H = (E + d2D) · w2,

I = d1Z1, U = E + A · D, V = E + B · D, Z3 = U · V,

X3 = Z3 · y2 + (H + X1 · (I + A · (Y1 + Z1))) · V,

Y3 = Z3 · x2 + (H + Y1 · (I + B · (X1 + Z1))) · U.

These formulas use 13M + 3S + 3D. As above the 3D are two multiplications
by d1 and one multiplication by d2. For complete binary Edwards curves the
product Z3 = Z4

1 (d1 + (x2
2 + x2)(x1 + y1))(d1 + (y2

2 + y2)(x1 + y1)) cannot be
zero.

Projective Addition. The following formulas, given (X1 : Y1 : Z1) and (X2 :
Y2 : Z2) on the binary Edwards curve EB,d1,d2 , compute the sum (X3 : Y3 :
Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) if it is defined:

W1 = X1 + Y1, W2 = X2 + Y2, A = X1 · (X1 + Z1), B = Y1 · (Y1 + Z1),

C = Z1 · Z2, D = W2 · Z2, E = d1C
2, H = (d1Z2 + d2W2) · W1 · C,

I = d1C · Z1, U = E + A · D, V = E + B · D, S = U · V,

X3 = S · Y1 + (H + X2 · (I + A · (Y2 + Z2))) · V · Z1,

Y3 = S · X1 + (H + Y2 · (I + B · (X2 + Z2))) · U · Z1, Z3 = S · Z1.
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These formulas use 21M + 1S + 4D. The 4D are three multiplications by d1
and one multiplication by d2. For complete binary Edwards curves the product
Z3 = Z5

1Z4
2 (d1 + (x2

2 + x2)(x1 + y1))(d1 + (y2
2 + y2)(x1 + y1)) cannot be zero.

The following formulas are considerably better than the previous formulas
when d1 and d2 are small:

A = X1 · X2, B = Y1 · Y2, C = Z1 · Z2, D = d1C, E = C2, F = d2
1E,

G = (X1 + Z1) · (X2 + Z2), H = (Y1 + Z1) · (Y2 + Z2),
I = A + G, J = B + H, K = (X1 + Y1) · (X2 + Y2),
U = C · (F + d1K · (K + I + J + C)),
V = U + D · F + K · (d2(d1E + G · H + A · B) + (d2 + d1)I · J),

X3 = V + D · (A + D) · (G + D), Y3 = V + D · (B + D) · (H + D),
Z3 = U + (d2 + d1)C · K2.

These formulas use 18M+2S+7D. The 7D are three multiplications by d1, two
multiplications by d2 + d1, one multiplication by d2

1, and one multiplication by
d2. One can alternatively compute F as D2, replacing 1D with 1S. For complete
binary Edwards curves the denominator Z3 cannot be zero.

These formulas become simpler in the case d1 = d2:

A = X1 · X2, B = Y1 · Y2, C = Z1 · Z2, D = d1C, E = C2, F = d2
1E,

G = (X1 + Z1) · (X2 + Z2), H = (Y1 + Z1) · (Y2 + Z2),
I = A + G, J = B + H, K = (X1 + Y1) · (X2 + Y2), L = d1K,

U = C · (F + L · (K + I + J + C)),
V = U + D · F + L · (d1E + G · H + A · B),

X3 = V + D · (A + D) · (G + D), Y3 = V + D · (B + D) · (H + D),
Z3 = U.

These formulas use 16M+1S+4D. The 4D are three multiplications by d1 and
one multiplication by d2

1. As above one can replace 1D with 1S. For complete
binary Edwards curves the denominator Z3 cannot be zero.

6 Doubling

This section presents extremely fast doubling formulas on the binary Edwards
curve EB,d1,d2, first in affine coordinates and then in inversion-free projective
coordinates. The formulas are complete if the curve is complete.

Since the addition formulas on the curve are strongly unified, they can be used
to double. This is an interesting option when doublings occur “by accident” or
when side-channel uniformity is an issue. This section shows the relation of the
doubling formulas to the general addition formulas.

This section also reviews the literature on doubling formulas for binary elliptic
curves, presents two improvements to the best previous formulas for Weierstrass
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form, and compares the doubling speeds of binary Edwards curves and Weier-
strass curves.

Affine Doubling. Let (x1, y1) be a point on EB,d1,d2 , and assume that the sum
(x1, y1) + (x1, y1) is defined. Computing (x3, y3) = (x1, y1) + (x1, y1) we obtain

x3 =
d2(x1 + y1)2 + (x1 + x2

1)(x1 + y2
1)

d1 + (x1 + y1)(x1 + x2
1)

=
d1(x1 + y1) + x1y1 + x2

1(1 + x1 + y1)
d1 + x1y1 + x2

1(1 + x1 + y1)

= 1 +
d1(1 + x1 + y1)

d1 + x1y1 + x2
1(1 + x1 + y1)

,

where the second line uses that d2(x1 +y1)2 +x2
1y

2
1 +x1y

2
1 = d1(x1 +y1)+x1y1 +

x2
1y1 for all points on EB,d1,d2 . Likewise we have

y3 = 1 +
d1(1 + x1 + y1)

d1 + x1y1 + y2
1(1 + x1 + y1)

.

To compute the affine formulas with one inversion we note that the product
of the denominators of x3 and y3 is

(d1 + x1y1 + x2
1(1 + x1 + y1))(d1 + x1y1 + y2

1(1 + x1 + y1))

= d2
1 + (x2

1 + y2
1)(d1(1 + x1 + y1) + x1y1(1 + x1 + y1) + x2

1y
2
1)

= d2
1 + (x2

1 + y2
1)(d1 + d2(x2

1 + y2
1)) = d1(d1 + x2

1 + y2
1 + (d2/d1)(x4

1 + y4
1)),

where we used the curve equation again. This leads to the doubling formulas

x3 = 1 +
d1 + d2(x2

1 + y2
1) + y2

1 + y4
1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)
,

y3 = 1 +
d1 + d2(x2

1 + y2
1) + x2

1 + x4
1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)

needing 1I + 2M + 4S + 2D. The 2D are one multiplication by d2 and one
multiplication by d2/d1. For complete binary Edwards curves all denominators
here are nonzero.

If d1 = d2 some multiplications can be grouped as follows:

A = x2
1, B = A2, C = y2

1 , D = C2, E = A + C,

F = 1/(d1 + E + B + D), x3 = (d1E + A + B) · F, y3 = x3 + 1 + d1F.

These formulas use only 1I+1M+4S+2D. The 2D are two multiplications by
d1.

Projective Doubling. Here are explicit formulas to compute 2(X1 : Y1 : Z1) =
(X3 : Y3 : Z3) if it is defined:

A = X2
1 , B = A2, C = Y 2

1 , D = C2, E = Z2
1 , F = d1E

2,

G = (d2/d1)(B + D), H = A · E, I = C · E, J = H + I, K = G + d2J,

Z3 = F + J + G, X3 = K + H + D, Y3 = K + I + B.



258 D.J. Bernstein, T. Lange, and R. Rezaeian Farashahi

These formulas use 2M + 6S + 3D. The 3D are multiplications by d1, d2/d1,
and d2. For complete binary Edwards curves the denominator Z3 is nonzero.

Comparison with Previous Work. All of the doubling formulas for binary
elliptic curves presented in the literature have exceptional cases, such as doubling
a point of order 2. Our doubling formulas for complete Edwards curves are the
first complete doubling formulas in the literature. The following comparison
shows that our doubling formulas also provide quite attractive speeds.

The fastest inversion-free doubling formulas mentioned in [9, Table 13.4] are in
López-Dahab coordinates and take 4M+4S+1D; these formulas were introduced
by Lange in [26]. The 1D is a multiplication by a2 and is eliminated by typical
curve choices. Formulas in [9, page 294], introduced by López and Dahab in [28],
take 3M + 5S + 1D when a2 ∈ {0, 1}; here the 1D is a multiplication by the
curve parameter

√
a6.

For random curves, experiments show that we can always choose d1 to be
small, so our new 2M+6S+3D becomes at worst 4M+6S, slightly slower than
4M + 4S. By choosing curves where d1 and d2/d1 are both small we achieve
2M + 6S, which is significantly faster than 3M + 5S and 4M + 4S.

In [21] Kim and Kim present doubling formulas for curves of the form v2+uv =
u3+u2+a6 needing 2M+5S+2D, where the 2D are both by a6. Our 2M+6S+3D
formulas are slightly slower but have the advantages of extra generality and
completeness.

Our Improvements of Previous Work. We present here two improvements
to doubling formulas in López-Dahab coordinates for binary curves in Weier-
strass form. Of course, this makes the speed competition more challenging for
Edwards curves! ;–)

The first improvement is an easy speedup of the Kim–Kim formulas. Kim and
Kim represent an affine point (u1, v1) as (U1 : V1 : W1 : T1), where u1 = U1/W1,
v1 = V1/W 2

1 , and T1 = W 2
1 . Our improved formulas compute 2(U1 : V1 : W1 :

T1) = (U3 : V3 : W3 : T3) as

A = U2
1 , B = V 2

1 , W3 = T1 · A, T3 = W 2
3 ,

U3 = (A +
√

a6 T1)2, V3 = B · (B + U3 + W3) + a6T3 + T3.

These improved formulas use only 2M + 4S + 2D, where the 2D are one multi-
plication by a6 and one multiplication by

√
a6.

The second improvement achieves 2M + 5S + 2D for curves of the shape
v2 + uv = u3 + a6. We represent a point by (U1 : V1 : W1 : T1 : S1), where
additionally S1 = U1W1. The idea used by Kim and Kim does not carry over
to these curves but we have developed the following formulas to compute 2(U1 :
V1 : W1 : T1 : S1) = (U3 : V3 : W3 : T3 : S3):

A = U2
1 , B = V 2

1 , W3 = S2
1 , U3 = (A +

√
a6 T1)2,

T3 = W 2
3 , S3 = U3 · W3, V3 = B · (B + U3 + W3) + a6T3 + S3.

We caution the reader that these formulas are not complete.
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7 Differential Addition

This section presents fast explicit formulas for w-coordinate differential addition
on binary Edwards curves. Here w = x + y. Note that w(−P ) = w(P ), since
−(x, y) = (y, x).

“Differential addition” means computing Q + P given Q, P, Q − P : e.g., com-
puting (2m+1)P given (m+1)P, mP, P , or computing 2mP given mP, mP, 0P .
In particular, “w-coordinate differential addition” means computing w(Q + P )
given w(Q), w(P ), w(Q − P ). This section also discusses “w-coordinate differen-
tial addition and doubling”: computing both w(2P ) and w(Q + P ), again given
w(Q), w(P ), w(Q − P ).

More concretely, write (x1, y1) = Q−P , (x2, y2) = P , (x3, y3) = Q, (x4, y4) =
2P , and (x5, y5) = Q+P . This section presents fast explicit formulas to compute
x5 +y5 given x1 +y1, x2 +y2, and x3 +y3. This section also presents fast explicit
formulas to compute x4 + y4 and x5 + y5 given x1 + y1, x2 + y2, and x3 + y3. As
in previous sections, the formulas are complete if the curve is complete.

We analyze the costs of our formulas in several situations. The simplest sit-
uation is that inputs x1 + y1, x2 + y2, x3 + y3 and outputs x4 + y4, x5 + y5 are
represented in affine form, i.e., as field elements. If inversions are expensive—as
they usually are—and storage is available then it is better for each input and
output to be represented in projective form, i.e., as a ratio of two field elements.
Some applications use mixed differential additions, where x1 + y1 is given in
affine form while everything else is projective. We achieve the following speeds:

general case d2 = d1

affine diff addition 1I + 3M + 1S + 1D 1I + 1M + 1S + 1D
affine diff addition+doubling 2I + 4M + 3S + 2D 2I + 1M + 3S + 2D
mixed diff addition 6M + 1S + 2D 5M + 1S + 1D
mixed diff addition+doubling 6M + 4S + 2D 5M + 4S + 2D
projective diff addition 8M + 1S + 2D 7M + 1S + 1D
projective diff addition+doubling 8M + 4S + 2D 7M + 4S + 2D

Why Differential Addition Is Interesting. Montgomery in [30] presented
fast formulas for u-coordinate differential addition on non-binary elliptic curves
v2 = u3+a2u

2+u. As an application, Montgomery suggested what is now called
the “Montgomery ladder” to compute u(mP ), u((m+1)P ) given u(P ). The idea
is to recursively compute u(
m/2�P ), u((
m/2� + 1)P ), and then to compute
u(mP ), u((m + 1)P ) with a differential addition and doubling.

The Montgomery ladder is one of the most popular scalar-multiplication meth-
ods. It has several attractive features: it is fast; it fits into extremely small
hardware; and its uniform double-and-add structure adds a natural layer of pro-
tection against simple side-channel attacks. See [29], [6], [15], [11], and [19]. The
input u(P ) is normally given in affine form, creating affine differential additions
if inversions are inexpensive and mixed differential additions otherwise.

Montgomery also suggested a more complicated “PRAC” chain of differential
additions to compute u(mP ) from u(P ). This chain uses more memory than the
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Montgomery ladder and does not have the same simple structure, but it is faster
in some situations. This chain rarely reuses the input u(P ); it relies mainly on
projective differential additions if inversions are expensive.

Differential-Addition Formulas for Binary Elliptic Curves. Several au-
thors have given formulas for u-coordinate differential additions on binary ellip-
tic curves v2 + a1uv = u3 + a2u

2 + a6. The resulting Montgomery ladders for
binary elliptic-curve scalar-multiplication fit into even smaller hardware than
the ladders for the non-binary case, and they have similar resistance to simple
side-channel attacks.

Specifically, u-coordinate differential-addition formulas for the case a1 = 1
were presented by Agnew, Mullin, and Vanstone in [1, page 808]; by Lopez and
Dahab in [29, Lemma 2 and Section 4.2]; by Vanstone, Mullin, Antipa, and
Gallant, according to [33]; by Stam in [33, Section 3.1], and by Gaudry in [13,
page 33]. Lopez and Dahab say that their formulas use 6M + 5S for a mixed
differential addition and doubling; see [29, Lemma 5]. Stam, after pointing out
various speedups, says that projective differential addition takes 6M + 1S; that
mixed differential addition takes 4M + 1S; and that a doubling takes 1M +
3S + 1D. Stam also presents differential-addition formulas for the case a6 =
1/a2

1, using only 5M and an unspecified number of S for projective differential
addition. Gaudry states a cost of 5M + 5S + 1D for mixed differential addition
and doubling; Gaudry and Lubicz state the same cost in [14, page 16].

All of the formulas in [1], [29], [33], and [13] fail if the neutral element on
the curve appears. Our new formulas have no trouble with the neutral element,
and have the advantage of completeness for suitable d2. Our formulas are also
competitive in speed with previous formulas—slightly slower in some situations
but slightly faster in others.

The New Formulas. Let (x2, y2) be a point on the binary Edwards curve
EB,d1,d2 . Assume that the sum (x2, y2) + (x2, y2) is defined (as it always is on
complete binary Edwards curves). Write (x4, y4) = (x2, y2) + (x2, y2), and write
wi = xi + yi. Then d2

1 + d1w
2
2 + d2w

4
2 �= 0 and

w4 =
d1w

2
2 + d1w

4
2

d2
1 + d1w2

2 + d2w4
2

=
w2

2 + w4
2

d1 + w2
2 + (d2/d1)w4

2

by Lemma 3.1. In particular, if d2 = d1, then d1 + w2
2 + w4

2 �= 0 and

w4 = 1 +
d1

d1 + w2
2 + w4

2
.

More generally, assume that (x1, y1), (x2, y2), (x3, y3), (x5, y5) are points on
EB,d1,d2 satisfying (x1, y1) = (x3, y3) − (x2, y2) and (x5, y5) = (x2, y2) + (x3, y3),
and write wi = xi + yi as before. Then, by Lemma 3.1,

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3) �= 0
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and

w1 + w5 =
d1w2w3(1 + w2)(1 + w3)

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

w1w5 =
d2
1(w2 + w3)2

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

.

In particular, if d2 = d1, then d1 + w2w3(1 + w2)(1 + w3) �= 0 and

w1 + w5 = 1 +
d1

d1 + w2w3(1 + w2)(1 + w3)
,

w1w5 =
d1(w2 + w3)2

d1 + w2w3(1 + w2)(1 + w3)
.

Cost of Affine w-coordinate Differential Addition and Doubling. The
explicit formulas

R = w2 · w3, S = R2, T = R · (1 + w2 + w3) + S,

w5 = T · 1
d1 + T + (d2/d1 + 1)S

+ w1

use 1I+3M+1S+1D, where the 1D is a multiplication by the curve parameter
d2/d1 + 1. For complete binary Edwards curves the denominator is never zero.

If d2 = d1 then the explicit formulas

A = w2
2 , B = A + w2, C = w2

3 , D = C + w3, w5 = 1 + d1
1

d1 + B · D
+ w1

use just 1I+1M+2S+1D. For complete binary Edwards curves the denominator
is never zero.

Doubling: The explicit formulas

A = w2
2 , J = A2, K = A + J, w4 = K · 1

d1 + K + (d2/d1 + 1)J

use 1I+1M+2S+1D, where the 1D is a multiplication by the curve parameter
d2/d1 + 1. For complete binary Edwards curves the denominator is never zero.
The total cost of a differential addition and doubling is 2I + 4M + 3S + 2D, or
1I + 7M + 3S + 2D with Montgomery’s inversion trick.

If d2 = d1 then the explicit formulas

A = w2
2 , B = A + w2, w4 = 1 + d1

1
d1 + B2

use just 1I + 2S + 1D. For complete binary Edwards curves the denominator is
never zero. These formulas can share the computations of A and B with differ-
ential addition, reducing the total cost of a differential addition and doubling to
2I + 1M + 3S + 2D, or 1I + 4M + 3S + 2D with Montgomery’s inversion trick.



262 D.J. Bernstein, T. Lange, and R. Rezaeian Farashahi

Cost of Mixed w-coordinate Differential Addition and Doubling. As-
sume that w1 is given as a field element, that w2, w3 are given as fractions
W2/Z2, W3/Z3, and that w4, w5 are to be output as fractions W4/Z4, W5/Z5.

The explicit formulas

C = W2 · (Z2 + W2), D = W3 · (Z3 + W3), E = Z2 · Z3, F = W2 · W3,

V = C · D, U = V + (
√

d1 E +
√

d2/d1 + 1F )2, W5 = V + w1 · U, Z5 = U

use 6M + 1S + 2D, where the 2D are multiplications by the curve parameters√
d1 and

√
d2/d1 + 1. For complete binary Edwards curves Z5 cannot be zero.

If d2 = d1 then the explicit formulas

C = W2 · (Z2 + W2), D = W3 · (Z3 + W3), E = Z2 · Z3,

V = C · D, U = V + d1E
2, W5 = V + w1 · U, Z5 = U

use only 5M + 1S + 1D.
Doubling: The explicit formulas

C = W2 · (Z2 + W2), W4 = C2, Z4 = W4 + (( 4
√

d1 Z2 + 4
√

d2/d1 + 1W2)2)2

use 1M+3S+2D, where the 2D are multiplications by the curve parameters 4
√

d1
and 4

√
d2/d1 + 1. For complete binary Edwards curves Z4 cannot be zero. These

formulas can share the computation of C with differential addition, reducing the
total cost of differential addition and doubling to 6M + 4S + 4D.

If d2 = d1 then the explicit formulas

C = W2 · (Z2 + W2), W4 = C2, Z4 = d1(Z2
2 )2 + W4

use 1M+3S+1D and can share the computation of C with differential addition,
reducing the total cost of differential addition and doubling to 5M + 4S + 2D.

Cost of Projective w-coordinate Differential Addition and Doubling.
Assume that w1, w2, w3 are given as fractions W1/Z1, W2/Z2, W3/Z3, and that
w4, w5 are to be output as fractions W4/Z4, W5/Z5.

Replacing “W5 = V + w1 · U, Z5 = U” in any of the mixed formulas with
“W5 = V · Z1 + U · W1, Z5 = U · Z1” produces projective formulas costing
2M extra. For example, starting from the 5M + 4S + 2D formulas for mixed
differential addition and doubling with d2 = d1, one obtains 7M + 4S + 2D
formulas for projective differential addition and doubling with d2 = d1.

Our w1w5 formulas offer an interesting alternative. For example, the explicit
formulas

A = W2 · W3, B = Z2 · Z3, C = (W2 + Z2) · (W3 + Z3),

W5 = Z1 · (d1(C + A + B)2), Z5 = W1 · (A · C + (
√

d1 B +
√

d2/d1 + 1A)2)

use only 6M + 2S + 3D for differential addition. These formulas assume that
w1 is known, or checked, to be nonzero—if w1 = 0 then one must resort to the
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previous formulas for w5—but they still have the virtue of handling arbitrary
w2, w3, w4, w5. Note that w1 is fixed throughout the Montgomery ladder, and is
0 only if the starting point is (0, 0) or (1, 1).

Recovering 2P from Q − P, w(P ), w(Q). If w2
1 + w1 �= 0 then

x2
2+x2 =

w3

(
d1+w1w2(1+w1+w2)+

d2

d1
w2

1w
2
2

)
+d1(w1+w2)+(y2

1+y1)(w2
2+w2)

w2
1+w1

.

One can use this formula to compute 2(x2, y2) given x1, y1, w2, w3; i.e., to recover
2P given Q−P, w(P ), w(Q). The formula produces x2

2+x2; a “half-trace” compu-
tation reveals either x2 or x2 +1, and therefore either (x2, y2) or (x2, y2)+(1, 1).
The failure case w2

1 + w1 = 0 occurs only if 4(Q − P ) = (0, 0).
In particular, one can recover 2mP given P, w(mP ), w((m + 1)P ), except in

the easily recognizable case 4P = (0, 0). The Montgomery ladder can therefore
be used not just to compute w(mP ) given w(P ), but also to compute 2mP given
P . If P has odd order �, as it does in typical cryptographic applications, then
one can replace m by (m/2) mod �, obtaining mP = 2((m/2) mod �)P from P
via w(((m/2) mod �)P ).
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Abstract. In this paper we present a real-world hardware-assisted at-
tack on the well-known A5/1 stream cipher which is (still) used to secure
GSM communication in most countries all over the world. During the
last ten years A5/1 has been intensively analyzed [1,2,3,4,5,6,7]. How-
ever, most of the proposed attacks are just of theoretical interest since
they lack from practicability — due to strong preconditions, high com-
putational demands and/or huge storage requirements — or have never
been fully implemented.

In contrast to these attacks, our attack which is based on the work by
Keller and Seitz [8] is running on an existing special-purpose hardware
device, called COPACOBANA [9]. With the knowledge of only 64 bits
of keystream the machine is able to reveal the corresponding internal
64-bit state of the cipher in about 6 hours on average. We provide a
detailed description of our attack architecture as well as implementation
results.

Keywords: A5/1, GSM, special-purpose hardware, COPACOBANA.

1 Introduction

The Global System for Mobile communications (GSM) was initially developed in
Europe in the 1980s. Today it is the most widely deployed digital cellular com-
munication system all over the world. The GSM standard specifies algorithms
for data encryption and authentication. A5/1 and A5/2 are the two encryption
algorithms stipulated by this standard, where the stream cipher A5/1 is used
within Europe and most other countries. A5/2 is the intentionally weaker version
of A5/1 which has been developed — due to the export restrictions — for de-
ploying GSM outside of Europe. Though the internals of both ciphers were kept
secret, their designs were disclosed in 1999 by means of reverse engineering [10].
In this work we focus on the stronger GSM cipher A5/1.

1.1 The A5/1 Stream Cipher

A5/1 is a synchronous stream cipher accepting a 64-bit session key KS =
(k0, . . . , k63) ∈ GF (2)64 and a 22-bit initial vector IV = (v0, . . . , v21) ∈ GF (2)22

derived from the 22-bit frame number which is publicly known. It uses three

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 266–282, 2008.
c© International Association for Cryptologic Research 2008
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linear feedback shift registers (LFSRs) R1, R2, and R3 of lengths 19, 22, and
23 bits, respectively, as its main building blocks (see Figure 1). The taps of the
LFSRs correspond to primitive polynomials and, therefore, the registers produce
sequences of maximal periods. R1, R2, and R3 are clocked irregularly based on
the values of the clocking bits (CBs) which are bits 8, 10, and 10 of registers R1,
R2, and R3, respectively.
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Fig. 1. Design of A5/1

The A5/1 keystream generator works as follows. First, an initialization phase
is run. At the beginning of this phase all registers are set to 0. Then the key setup
and the IV setup are performed. In the initialization phase all three registers are
clocked regularly and the key bits followed by IV bits are xored with the least
significant bits of all three registers. Thus, after 64 + 22 = 86 clock-cycles the
state Si is achieved.

Based on this initial state Si the warm-up phase is performed where the
generator is clocked for 100 clock-cycles and the output is discarded. This results
directly in the state Sw producing the first output bit 101 clock-cycles after the
initialization phase. Note that already during the warm-up phase and also during
the stream generation phase which starts afterwards, the registers R1, R2, and
R3 are clocked irregularly. More precisely, the stop/go clocking is determined by
the bits R1[8], R2[10], and R3[10] in each clock-cycle as follows: the majority
of the three bits is computed, where the majority of three bits a, b, c is defined
by maj(a, b, c) = ab + ac + bc. R1 is clocked iff R1[8] agrees with the majority.
R2 is clocked iff R2[10] agrees with the majority. R3 is clocked iff R3[10] agrees
with the majority. Regarding to Table 1 in each cycle at least two of the three
registers are clocked. After these clockings, an output bit is generated from the
values of R1, R2, and R3 by xoring their most significant bits.

After warm-up A5/1 produces 228 output bits, one per clock-cycle. 114 of
them are used to encrypt uplink traffic, while the remaining bits are used to
decrypt downlink traffic. In the remainder of this paper we assume that we are
given at least 64 consecutive bits of such a 228 bit keystream.
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Table 1. Clockcontrol of A5/1

CB of R1: R1[8] 0 0 0 1 0 1 1 1
CB of R2: R2[10] 0 0 1 0 1 0 1 1
CB of R3: R3[10] 0 1 0 0 1 1 0 1

Majority 0 0 0 0 1 1 1 1

Clock R1?
√ √ √

– –
√ √ √

Clock R2?
√ √

–
√ √

–
√ √

Clock R3?
√

–
√ √ √ √

–
√

1.2 Related Work

During the last decade the security of A5/1 has been extensively analyzed. Pio-
neering work in this field was done by Anderson [11], Golic [5], and Babbage [12].

Anderson’s basic idea was to guess the complete content of the registers R1
and R2 and about half of the register R3. In this way the clocking of all three
registers is determined and the second half of R3 can be derived given 64 bits of
keystream. In the worst-case each of the 252 determined state candidates (i.e.,
candidates for Sw) needs to be verified against the keystream which imposes a
high workload when done in software.

The hardware-assisted attack by Keller and Seitz [8] is based on Anderson’s
idea. However, they proposed a way to exclude a significant fraction of pos-
sible candidates at a very early stage of the verification process. The authors
claim that their approach reduces the attack complexity to 241 · (3

2 )11 with an
expected computing time of 14 clock-cycles per guess. This results in a worst-
case complexity of 251.24 clock cycles. They implemented the attack on a Xilinx
XC4062 FPGA. The FPGA is hosting seven instances of the guessing algorithm
and operates at a frequency of 18.65MHz leading to an attack time of about 236
days. Unfortunately, the approach given in [8] does not only immediately discard
wrong candidates but a priori restricts the search for candidates to a certain sub-
space. This fact is not explicitly mentioned in the paper. Moreover, no complete
analysis of the attack is given. Our analyses in Section 2 show that the success
probability of their attack is only about 18% and the expected computing time
for a guess is slightly higher than the stated one.

The key idea of Golic’s attack [5] is to guess the lower half of each register
(these bits determine the register clocking in the first few clock-cycles) and clock
the cipher until the guessed bits “run-out”. Each output bit immediately yields a
linear equation in terms of the internal state bits belonging to the upper halves
of three registers. Then we continue guessing the clocking sequence yielding
again other linear equations that describe the output of the majority function.
Whenever 64 linearly independent equations are obtained in this way the system
is solved using Gaussian elimination. The complexity of this attack is O(240)
steps. However, each step is fairly complex since it comprises to compute the
solution of an 64 × 64 LSE (and the verification of the corresponding state
candidate).
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Pornin and Stern proposed a SW/HW tradeoff attack [7] that is based on
Golic’s approach but in contrast to Golic they are guessing the clocking se-
quence from the very first step, similarly to [13]. These guesses create a tree
with 4 branches in each node (each branch represents one clocking combina-
tion, cf. Table 1). While traversing a path down the tree, three equations are
obtained at each node (similarly to the second phase of Golic’s method), namely
two equations describing the clocking and one equation describing the output.
Hence, after n steps (in depth) one collected 3n equations. The tradeoff pa-
rameter n is chosen such that 3n < 64. Thus, each path in the tree leads to
an underdetermined LSE that is solved in software resulting in a parametric
solution on the internal state. The basis of the corresponding linear subspace
containing all solutions to such an LSE consists of (64 − 3n + 1) 64-bit vectors.
These vectors are sent to the hardware, where a brute force attack is performed,
i.e., each of the 264−3n elements of the subspace is generated and loaded to the
A5/1 instance. The instance is run after each load to verify the obtained output
keystream against the given keystream. The authors estimated an average run-
ning time of 2.5 days when using an XP-1000 Alpha station for the software part
and two Pamettes 4010E for the hardware part of the attack (where n = 18).

The authors consider to place twelve A5/1 instances into one Xilinx 4010E
FPGA, occupying 12 × 36 = 432 CLBs out of 576 (75% of the FPGA). Unfor-
tunately, any details (especially the area) of the unit generating 264−3n internal
states are missing which makes it hard to verify the stated figures. However,
these figures do not seem to be based on real measurements and we consider
them as too optimistic; we expect that the generator unit occupies a relatively
large area. For instance, when choosing n = 18 the transmitted basis consists
of 11 vectors, i.e., 11 × 64 = 704 bits. Since the deployed Xilinx 4010E FPGA
contains only 1152 flip-flops, more than 60% of them would be used just for
holding the coefficients of the basis. So there seems not to be enough space to
place twelve A5/1 units (needing further 12 × 64 = 768 flip-flops) on the FPGA
as stated in the paper.

Finally, there is a whole class of time-memory-data tradeoff (TMDTO) at-
tacks on A5/1 which share the common feature that a large amount of known
keystream must be available and/or huge amounts of data must be precomputed
and stored in order to achieve reasonable success rates and workloads for the
online phase of these attacks. Simple forms of such attacks have been indepen-
dently proposed by Babbage [12] and Golic [5]. Recently, Biryukov, Shamir, and
Wagner presented an interesting (non-generic) variant of an TMDTO [3] (see
also [14]) utilizing a certain property of A5/1 (low sampling resistance). The
precomputation phase of this attack exhibits a complexity of 248 and memory
requirements of only about 300 GB, where the online phase can be executed
within minutes with a success probability of 60%. However, 2 seconds of known
keystream (i.e., about 25000 bits) are required to mount the attack making it
impractical. Another important contribution in this field is due to Barkan, Bi-
ham, and Keller [15] (see also [16]). They exploit the fact that GSM employs
error correction before encryption — which reveals the values of certain linear
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combinations of stream bits by observing the ciphertext — to mount a ciphertext-
only TMDTO. However, in the precomputation phase of such an attack huge
amounts of data need to be computed and stored; even more than for known-
keystreamTMDTOs. For instance, if we assume that 3 minutes of ciphertext (from
the GSM SACCH channel) are available in the online phase, one needs to precom-
pute about 50 TB of data to achieve a success probability of about 60% (cf. [16]).
There are 2800 contemporary PCs required to perform the precomputation within
one year. These are practical obstacles making actual implementations of such at-
tacks very difficult. In fact, to the best of our knowledge no full implementation
of TMDTO attack against A5/1 has been reported yet.

1.3 Our Contribution

As seen in the previous section most of the proposed attacks against A5/1 lack
from practicability and/or have never been fully implemented. In contrast to
these attacks, we present a real-world attack revealing the internal state of A5/1
in about 6 hours on average (and about 12 hours in the worst-case) using an
existing low-cost (about US$ 10,000) special-purpose hardware device. To mount
the attack only 64 consecutive bits of a known keystream are required and we
do not need any precomputed data. Also the communication requirements with
the host computer are relatively small.

On the theoretical side, we present a modification and analysis of the ap-
proach sketched in [8]. Furthermore, we propose an optimization of the attack
implementation leading to an improvement of about 13% in computation time
compared to a plain implementation. Both plain and optimized version of the
attack have been fully implemented and tested on our target platform.

1.4 Implementation Platform

The COPACOBANA (Cost-Optimized Parallel Code Breaker) machine [9] is a
high-performance, low-cost cluster consisting of 120 Xilinx Spartan3-XC3S1000
FPGAs. Currently, COPACOBANA appears to be the only such reconfigurable
parallel FPGA machine optimized for code breaking tasks reported in the open
literature. Depending on the actual algorithm, the parallel hardware architecture
can outperform conventional computers by several orders of magnitude. COPA-
COBANA has been designed under the assumptions that (i) computationally
costly operations are parallelizable, (ii) parallel instances have only a very lim-
ited need to communicate with each other, (iii) the demand for data transfers
between host and nodes is low due to the fact that computations usually dom-
inate communication requirements and (iv) typical crypto algorithms and their
corresponding hardware nodes demand very little local memory which can be
provided by the on-chip RAM modules of an FPGA. Considering these charac-
teristics COPACOBANA appeared to be perfectly tailored for simple guess-and-
determine attacks on A5/1 like the one described in the next section.



A Real-World Attack Breaking A5/1 within Hours 271

2 Analysis and Modification of Keller and Seitz’s
Approach

The approach is based on a simple guess-and-determine attack proposed by R.
Anderson in 1994 where the shorter registers R1 and R2 are guessed and the
longer register R3 is to be determined. But because Anderson neglected the
asynchronous clocking of the registers at first, only the 12 most significant bits
of R3 can be determined from the known keystream while the remaining bits
have to be guessed as well.

Keller and Seitz’s attack can be divided into two phases, into the determina-
tion phase in which a possible state candidate consisting of the three registers of
A5/1 after its warm-up phase is generated and into a subsequent postprocessing
phase in which the state candidate is checked for consistency.

2.1 Analysis

In the determination phase, Keller and Seitz try to reduce the complexity of the
simple guess-and-determine attack further by early recognizing contradictions
that can occur by guessing the clocking bit (CB) of R3 such that R3 will not
be clocked. Therefore, they first completely guess the registers R1 and R2 and
then derive register R3 in the following manner. Let Ri(t)[n] denote the n-th
bit of register Ri at a time t, where t = 0 is immediately after the warm-up
phase of A5/1 and increases by 1 every clock-cycle. Then, foremost compute
the first most significant bit (MSB) of R3, which is R3(0)[22], immediately out
of R1(0)[18] and R2(0)[21] and the first bit of the known keystream (KS). Then
inspect the clocking bits of registers R1 and R2, which are R1(0)[8] and R2(0)[10],
and guess the first clocking bit of R3, namely R3(0)[10]. If R1(0)[8] and R2(0)[10]
are not equal, R3 will be clocked in either way and so both possibilities for
R3(0)[10] have to be checked. But if the CBs of R1 and R2 are identical then
at least these two registers will be clocked. Assume now the CB of R3 is chosen
to be different from the ones of R1 and R2, i.e., R3(0)[10] �= R1(0)[8], and as a
consequence R3 will not be clocked. Now in one half of these cases the generated
output bit of the MSBs of all three registers (which are R1(1)[18] = R1(0)[17],
R2(1)[21] = R2(0)[20], R3(1)[22] = R3(0)[22]) does not match the given keystream
bit and a contradiction occurs. As a consequence the CB of R3 has to be guessed
in a way that R3 will be clocked together with R1 and R2, i.e., the CB of R3
is to be chosen equal to the CBs of R1 and R2, so that a new MSB can be
computed.

By early recognizing this possible contradiction while guessing R3(t)[10], all
arising states of this contradictory guess neither need to be computed further on
nor checked afterwards. To further reduce the complexity of the attack they do
not only discard these described wrong possibilities for the CB of R3 in case of a
contradiction but they also limit the number of choices to the one of not-clocking
R3 if this is possible without any contradiction. After having computed the first
MSB of R3 the process of guessing a CB and computing another MSB of R3 is
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repeated until R3 is completely determined which is after having clocked R3 for
11 times.

This heuristic reduces the number of possibilities for R3(t)[10] in one half
of all cases from two to one. The number of possible state candidates to be
checked decreases thus from 211 to (2 − 1

2 )11 = (3
2 )11 ≈ 26.43 ≈ 86 for every

fixed guess of registers R1 and R2 in general. This results in 241 · 26.43 = 247.43

possible state candidates. But because they discard some valid states as well
as states leading to a contradiction they have only a low success probability.
The number of all valid state candidates for one fixed guess of R1 and R2 is
(2− 1

4 )11 = (7
4 )11 ≈ 28.88 ≈ 471. Thus, the number of state candidates inspected

by Keller and Seitz in proportion to the number of valid state candidates results
in a success probability of only 86

471 ≈ 0.18 = 18%.
Immediately after the determination phase, the A5/1 is performed with the

generated state candidate in the postprocessing phase and the generated output
bits are checked against the remaining bits of the 64bit known keystream. Keller
and Seitz just state that this consistency check in the postprocessing phase
will proceed fast and that both, determining a state candidate and checking it
against the known keystream, will take 14 ≈ 23.81 clock-cycles. This leads to a
complexity of 247.43 · 23.81 = 251.24 clock-cycles. But with this expected amount
of clock-cycles they underestimated the time complexity as will be shown in
Section 2.2.

One instance of Keller and Seitz’s guessing algorithm occupies 313 out of
the 2304 configurable logic blocks (CLBs) of the XC4062 FPGA. It is hard to
estimate how fast the original Keller-Seitz attack would be when implemented on
COPACOBANA, since the architecture and the performance of the XC4062 [17]
and the Spartan-3 XC3S1000 [18] FPGAs are different. For example, one XC4000
CLB only roughly corresponds to one Spartan-3 slice, because it contains two
4-input look-up tables (LUT), one 3-input LUT and two flip-flops (FF), while
a Spartan-3 slice contains only two 4-input LUTs and two FFs. Because the
available number of slices on a Spartan-3 XC3S1000 FPGA is 7680 and if we
assume that one instance of the guessing algorithm would occupy 313 slices, a
maximum number of 24 instances could be implemented on one FPGA. This
leaves just 168 slices for other circuits for controlling the instances. According to
the datasheets the “internal performance of XC4000 family chips can exceed 150
MHz” while the “maximum toggle frequency of Spartan-3 chips is 630 MHz”.
That represents a performance ratio of less than 4.2. Out of these figures we
estimate that the attack would not be faster than 24

7 × 4.2 × 120 = 1728 times
when run on COPACOBANA. This yields to a minimum of 3.27 hours to perform
the search of Keller and Seitz. But if we recall again that (i) the attack searches
only through 18% of the valid states, the search through all valid states would
take at least 18.19hours, (ii) the number of guessing instances implemented in
one FPGA would be less than 24 since at least an additional control logic has
to be implemented, and (iii) Keller and Seitz underestimate the time complexity
as will be shown in Section 2.2, the computation time is expected to increase
significantly.
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Fig. 2. Flowchart of the FSM of a guessing-engine

2.2 A Slight Modification

Our algorithm is similar to the one proposed by Keller and Seitz except that we
only discard wrong possibilities for R3(t)[10] that would immediately lead into a
contradiction. But if no contradiction appears we still check both possibilities for
R3(t)[10], which means clocking and not-clocking R3. Because of this, we take
every possible state candidate into account and therefore will find unlike Keller
and Seitz the correct state candidate in any case. This reduces only in 1

4 of all
cases the number of choices from two to one and, hence, the expected number of
possibilities for R3 that need to be checked is approximately 471 for every fixed
guess of registers R1 and R2 (cf. Section 2.1).

A flowchart of the decisions during the determination phase and the post-
processing phase shows Figure 2. A more detailed overview of how R3(t)[10] is
guessed and how certain subtrees are discarded is given in Figure 3.

Example. An example for the first steps of the reduction of possibilities per-
formed by the algorithm is given in Figure 4. It shows next to the first 4 bits of
a known keystream the first 4 MSBs and the first 3 CBs of the guessed registers
R1 and R2 and of the derived register R3. The algorithm proceeds as follows.

1. Compute R3(0)[22] = R1(0)[18] ⊕ R2(0)[21] ⊕ KS[0] = 0.
2. R1(0)[8] �= R2(0)[10]: Choose R3(0)[10] = 0 �= R1(0)[8] first and clock registers

R2 and R3.
3. Compute R3(1)[22] = R3(0)[21] = R1(0)[18] ⊕ R2(0)[20] ⊕ KS[1] = 0.
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Fig. 5. An example for a reduced binary
decision tree of R3(t)[10]

4. R1(0)[8] = R2(0)[9]: Not clocking register R3 would result in a contradiction
because R1(0)[17] ⊕ R2(0)[19] ⊕ R3(0)[21] �= KS[2].
Hence, discard the possibility R3(1)[10] = 0 = R3(0)[9] �= R1(1)[8], instead
choose R3(1)[10] = 1 = R3(0)[9] = R1(0)[8], and clock all registers R1, R2,
R3.

5. Compute R3(2)[22] = R3(0)[20] = R1(0)[17] ⊕ R2(0)[19] ⊕ KS[2] = 1.
6. ...

The example ends here because it is apparent from Figure 5, which shows the
binary decision tree for R3(t)[10] up to a depth of 3, that discarding possibilities
for R3(t)[10] results in cutting whole subtrees. In the example above we chose
edge a(0) = R3(0)[10] = 0 �= R1(1)[8] at the root node first and then discarded
the possibility a(1) = R3(1)[10] = 0 �= R1(1)[8] at the corresponding node of
depth 1.
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Time Complexity of the Attack. Generating one possible state candidate
during determination phase takes one clock-cycle for deriving R3(0)[22] and then
eleven times clocking register R3 to determine the remaining MSBs of the reg-
ister. With a probability of Pclk = 3

4 for clocking a register of A5/1 it takes
an expected number of 1 + 4

3 · 11 = 15 2
3 clock-cycles to generate the state can-

didate for fixed registers R1 and R2 and the known keystream. Because every
clock-cycle one bit of the known keystream is inspected, the expected number of
needed known keystream bits to generate a state candidate corresponds to the
number of clock-cycles needed for this process.

After having generated one state candidate it needs to be checked in the post-
processing phase further on against the remaining bits of the known keystream.
To be able to perform this check immediately after the determination phase
we additionally compute the feedback bits of register R3 with its linear feed-
back function. We start with this computation from the time when R3(3)[10] =
R3(0)[7] is guessed. So we already computed 8 of the 11 feedback bits of R3 when
the state candidate is generated. The remaining 3 feedback bits are computed
in parallel and we continue with performing A5/1. Now, the produced output is
compared to the known keystream. A contradiction between the generated out-
put and a known keystream bit is expected to occur with a probability of α = 1

2
in the first clock-cycle of postprocessing. Every cycle the algorithm is clocked
further on, the probability of a contradiction is again 1

2 . Generally speaking, it is
αn = 1

2n for the n-th cycle after the determination phase and the algorithm will
clock on with an expected value of 1

α = 2 further needed clock-cycles to inspect
the output. If it is clocked without any contradiction up to the 64-th bit of the
known keystream we found a valid state candidate for reconstructing the session
key. Although there might be more than just one state candidate generating the
same 64 bit of output, the probability for this event is negligible.

So, we get an expected number of T = 15 2
3 +2 = 17 2

3 clock-cycles to determine
a state candidate and check it for consistency with the given keystream instead
of just 14 clock-cycles as stated by Keller and Seitz. Thus, the time complexity
of our whole attack is C ≈ 241 · (7

4 )11 · 17 2
3 ≈ 254.02.

3 Breaking A5/1 on COPACOBANA

3.1 Our Hardware Architecture

This section presents an efficient implementation of a guessing-engine in hard-
ware which performs the determination phase and the postprocessing phase
of the attack. On every FPGA, several instances of this guessing-engine will
be implemented. Therefore, we will additionally introduce a hardware-software-
interface controlling these instances and providing intercommunication.

The Guessing-Engine. Figure 6 shows an overview of the guessing-engine with
its different components. A large part of the architecture for implementing this
guessing-engine consists of flip-flops (FFs) for storing the content of different
registers. This is in detail the state candidate register, storing the computed
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register R3 and the fixed guess of registers R1 and R2 in 64 bits. Additionally,
we need FFs to store the 64 bits of known keystream and an additional simple
shift register to evaluate a different known keystream bit every clock-cycle. To
perform the consistency check in the postprocessing phase, all three A5/1 LFSRs
have to be implemented, too. But the most important part of this architecture
is the finite state machine (FSM ) performing the determination phase and the
postprocessing phase. Its functionality was already presented in Figures 2 and 3.
The shown process is repeated until all possible state candidates, i.e., the whole
binary decision tree of R3(t)[10], for one fixed guess of registers R1 and R2 have
been checked. The fact, that the guess R3(t)[10] �= R1(t)[8] is always checked
first corresponds to the binary decision tree of Figure 5. This binary decision
tree storing the discarded or already checked possibilities is mapped into the
branching state register.

The most straightforward way of mapping such a binary decision tree with a
certain height h into hardware, is to use an h-bit wide binary counter. In our
case all leaves are at a depth of d = h = 11. Turning left at a node of the tree,
i.e., R3(t)[10] �= R1(t)[8], is represented by 0 in the corresponding counter bit
and turning right at a node, i.e., R3(t)[10] = R1(t)[8], is represented by 1. Now,
to reach all leaves from the leftmost unto the rightmost one by one, we initialize
the 11-bit wide counter to all 0 and read it in 11 clock-cycles bit by bit from
the most significant bit (MSB) to the least significant bit (LSB). When having
reached the leftmost leaf in such a manner, we increase the register by one and
restart reading bit by bit at the MSB again. This will lead us to the second
leaf from the left. To reach the rest of the leaves we count through this 11-bit
wide register up to all bits being 1. Now it is claimed by the attack that certain
subtrees of the binary decision tree are discarded (cf. Section 2.2). To be able
to do that while passing through the tree, we have to set the corresponding bits
of the 11-bit wide counter manually to 1 with an 1-to-11bit demultiplexer. The
FSM does this with bit number b every time a contradiction is detected at a
node of depth d = b+1 and a possibility of R3(t)[10] is discarded. This results in
the reduced number of leaves of the binary decision tree of (7

4 )11 ≈ 471 meaning
the amount of possible state candidates for a fixed guess of R1 and R2.

The Control-Interface. Because several instances of the guessing-engine are
implemented on one FPGA they need to be controlled continuously. This is done
by the control-interface and there is exactly one instance of it implemented on
each FPGA of COPACOBANA. It accepts the 64 bit known keystream and a
sub-searchspace which has to be searched by the FPGA. By sub-searchspace we
mean a certain amount of fixed guesses for registers R1 and R2. Therefore, a
software divides the searchspace consisting of the 241 possibilities into these sub-
searchspaces and transmits to each FPGA another one of them together with the
known keystream. The control-interface of the FPGA then counts through this
sub-searchspace and provides each guessing-engine with a fixed guess of registers
R1 and R2 to be searched. Every time a guessing-engine finishes its search it
sends a report to the control-interface whether it was successful or not on finding
a state candidate and requests for another fixed guess of registers R1 and R2
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Fig. 6. An overview of the guessing-engine

out of the current sub-searchspace. In case of success the valid state candidate
is propagated to the software. This is repeated until the whole sub-searchspace
is searched by the FPGA. During the search, the software retrieves regularly
at reasonable intervals the status information of each FPGA and assigns a new
sub-searchspace to an FPGA if requested. The search is finished when all state
candidates that can be generated with the 241 possibilities for guessing R1 and
R2, i.e., the whole searchspace, are checked for consistency.

3.2 Optimization: Storing Intermediate States

When completely passing through a binary decision tree, edges near the root
node are traversed much more often than edges near the leaf nodes. The number
of cycles R3 needs to be clocked to reach any leaf of the tree is 11 (cf. Section 3.1).
For example, when inspecting the two leftmost leaves we have to go bit by bit
through the states 00000000000 and 00000000001 of the 11-bit wide counter
corresponding to the tree. Apparently, the first ten edges up to the node of depth
10 for both leaves are identical. Therefore, we can create recovery points at some
depth in the search tree. More precisely, it is possible to store the intermediate
state (i.e., the content of all A5/1 registers) at such a point (node of tree) and
search the subtree starting at this recovery point instead of starting at the root
node. This apparently demands a larger area, but saves a certain amount of
clock-cycles.

Let us assume that reloading takes exactly one clock-cycle. If we store and
reload the intermediate states at depth d = 10, then the number of clock-cycles
for R3 reduces from 11 to 11+1+1

2 = 6.5 on average: 11 times clocking R3 to
reach the first leaf, one clock-cycle reloading the intermediate state, and one
time clocking R3 to reach the next leaf from the reloaded state. If we store the
intermediate states at depth d = 9, the corresponding subtree has 4 leaves. To
reach the leftmost one takes 11 clock-cycles, but to reach the other 3 leaves will
take just 1+2 = 3 clock-cycles each. Therefore, the average number of times R3
needs to be clocked is in this case only 11+3+3+3

4 = 8+3·4
4 = 5.
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Fig. 7. Functions f(b), g(b): The average number of cycles clocking R3 to generate a
state candidate with reloading intermediate states at recovery position b

Generalizing this approach of storing and reloading intermediate states at a
depth of d = 10 or d = 9 to a depth of d = b + 1, where b denotes the number
of the bit in the 11-bit wide counter consecutively numbered from 0 to 10, we
need to clock R3

f(b) =
b + (11 − b) · 2(10−b)

2(10−b) (1)

times on average to reach one leaf. The function has a minimum of 4.875 times
clocking R3 on average to reach a leaf for storing and reloading intermediate
states at a depth of bmin = 7 for b ∈ N.

Taking also into account that some subtrees are discarded while passing
through the tree (cf. Section 2.2) and the number of possibilities is reduced
from 2 to 7

4 for every guess, the function needs to be adapted:

g(b) =
b + (11 − b) · (7

4 )(10−b)

(7
4 )(10−b)

. (2)

Both functions f(b) and g(b) are shown in Figure 7. The value for the minimum
of the function g(b) now changes to approximately 5.31 at bmin = 7 for b ∈ N.
Therefore, the expected number of clock-cycles for generating and checking one
state candidate is now

Topt = 1 +
4
3

· 5.31 + 2 ≈ 10.10 ≈ 23.33

instead of T = 17 2
3 (cf. Section 2.2). This results in an optimized time complexity

of

Copt ≈ 241 · 28.88 · 23.33 ≈ 253.21
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and reduces the previous complexity of C ≈ 254.02 by 0.81bit. But when compar-
ing the time complexities of the standard and the optimized guessing-engine we
additionally have to take the required area into account. The optimized guessing-
engine is expected to occupy a larger area because of the storing elements for
intermediate states of several registers. Hence, we will be able to place less in-
stances on one FPGA. This comparison of time-area products is done after the
implementation process and will be discussed in Section 3.3.

3.3 Implementation Results for COPACOBANA

We used Xilinx ISE Foundation 9.2i to synthesize and implement all components
for a Xilinx Spartan3-XC3S1000-FT256 FPGA used in COPACOBANA. The
simulation of the hardware model was done in MentorGraphics ModelSim SE
6.3d.

First, we implemented and tested one single instance of the standard and
optimized guessing engine together with the control-interface for one instance.
Therefore, Table 2 shows the post place & route results of the implementation
process for a single instance of the control-interface and both guessing-engines.

Table 2. Implementation results for the control-interface and the guessing-engines

slices flip-flops look-up tables fmax [MHz]
control-interface 371 304 254 123.19

standard guessing-engine 202 179 256 112.84

optimized guessing-engine 311 312 412 115.01

To decide whether it is worth or not implementing the optimized guessing-
engine in spite of the increased area consumption we calculated the time-area
product. Table 3 shows a comparison of the computing time T and Topt in clock-
cycles (cf. Sections 2.2 and 3.2), the number of slices needed, and the time-area
product in clock-cycles·slices for our standard and optimized implementation
of the guessing-engine. The last row shows the quotient of the values of both
designs. The quotient of the time-area products shows an overall improvement
of about 12% for one single optimized guessing-engine compared to the standard
one. We omitted considering the operating frequencies in the time-area product
because both implementations run at nearly the same speed.

After having tested a single instance of each guessing-engine together with
the control-interface on one of the Spartan3-XC3S1000 FPGAs we attempted
to maximize the utilization ratio of the available hardware resources. For this
purpose, we implemented as many instances as possible of both types of guessing-
engines with one instance of the control-interface. We were able to place& route
36 instances of the standard engine on one of the target FPGAs. However, the
complexity of the control-interface grows with the number of guessing-engines.
For 36 such engines the critical path was transfered to the control-interface cre-
ating the bottle-neck of the design. Therefore, the achieved maximum frequency
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Table 3. Comparison of the implementation results of both guessing-engines

computing-time slices time-area product
[clock-cycles] [clock-cycles · slices]

optimized 10.10 311 3,141.10

standard 17.67 202 3,568.73
optimized
standard 0.57 1.54 0.88

Table 4. Implementation results of the maximally utilized designs

slices FFs LUTs fmax [MHz] ftest [MHz]
1 control-engine &
◦ 36 standard 6,953 ( 91 %) 10,730 10,576 81.85 72.00
◦ 32 standard 6,614 ( 86 %) 9,636 9,417 102.42 92.00
◦ 23 optimized 7,494 ( 98 %) 10,141 10,562 104.65 92.00
guessing-engines
Spartan3-XC3S1000 7,680 (100 %) 15,360 15,360 300.00 —

of 81.13MHz was relatively low. So we decided to implement less engines at a
higher frequency instead. The best trade-off for the standard guessing-engine
was to implement 32 instances at a maximum frequency of 102.42MHz. In case
of the optimized guessing-engine we were able to implement 23 instances running
at 104.65MHz. The implementation results of both complete designs are shown
in Table 4. Additionally, the available resources of one FPGA are listed, too.

Table 4 also shows the frequencies the designs were tested with. Thus, we
can calculate a preliminary estimation of the computation time to determine
and check all possible state candidates. For the slow design with the standard
guessing-engine and a time complexity of C = 254.02 (cf. Section 2.2) we expect
a computation time of

test =
254.02

120 · 36 · 72 · 106 · 1
3600

h ≈ 16.31 h.

This is an estimation for a fully equipped COPACOBANA with 120 FPGAs. In
accordance to the previous calculation, the preliminary estimation of the compu-
tation time for the smaller but faster standard design (32 instances @ 92MHz)
is t′est ≈ 14.36h. For the optimized guessing-engine (23 optimized instances
@ 92MHz) with a time complexity of Copt = 253.21 we expect a computation
time of t′′est ≈ 11.40h.

Time measurements of several extended test runs on COPACOBANA showed
an average computation time of t′ = 13.58h for the small and fast standard
design to perform a complete search for a given 64 bit known keystream. Com-
paring this result to the estimation of the computing time t′est shows that the
complexity differs only by 0.08 bit from our measurements. The optimized design
took an average computation time of t′′ = 11.78h for a full search. This equals a
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variation of only 0.05bit between the estimated and the measured computation
time. Because these were the computation times for a full search (i.e., the worst
case) the expected average time for finding the valid state candidate is 6.79h for
the standard design and 5.89h for the optimized design, respectively.

4 Conclusion

In this paper we presented a guess-and-determine attack on the A5/1 stream
cipher running on the special-purpose hardware device COPACOBANA. It re-
veals the internal state of the cipher in less than 6 hours on average needing
only 64 bits of known keystream. We like to stress that our attack is also very
attractive with regard to monetary costs which is a significant factor for the
practicability of an attack: The acquisition costs for COPACOBANA are about
US$ 10,000. Since COPACOBANA has a maximum power consumption of only
600 W, the attack also features very low operational costs. For instance, assum-
ing 10 cent per kWh the operational costs of an attack are only 36 cents.

We like to note that we just provided a machine efficiently solving the problem
of recovering a state of A5/1 after warm-up given 64 bits of known keystream.
There is still some work to do in order to obtain a full-fledged practical GSM
cracker: To finally recover the session key used for encryption, the cipher still
needs to be tracked back from the revealed state to its initial state. Albeit,
this backtracking and the extraction of the key can be done efficiently and in
a fraction of time on almost any platform. Further technical difficulties will
certainly appear when it actually comes to eavesdropping GSM calls. This is
due to the frequency hopping method applied by GSM which makes it difficult
to synchronize a receiver to the desired signal. Also the problem of obtaining
known plaintext is still under discussion in pertinent news groups and does not
seem to be fully solved. However, these are just some technical difficulties that
certainly cannot be considered serious barriers for breaking GSM.
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Abstract. The security challenges posed by RFID-tag deployments are well-
known. In response there is a rich literature on new cryptographic protocols and
an on-tag hash function is often assumed by protocol designers. Yet cheap tags
pose severe implementation challenges and it is far from clear that a suitable hash
function even exists. In this paper we consider the options available, including
constructions based around compact block ciphers. While we describe the most
compact hash functions available today, our work serves to highlight the difficul-
ties in designing lightweight hash functions and (echoing [17]) we urge caution
when routinely appealing to a hash function in an RFID-tag protocol.

1 Introduction

With RFID tags on consumer items, the potential for wired-homes, and large-scale sen-
sor networks becoming a reality, we are on the threshold of a pervasive computing
environment. But along with these new applications come new, and demanding, secu-
rity challenges. The cryptographic research community has been quick to identify some
of the issues, and device authentication and privacy have received considerable atten-
tion. As a result a variety of new protocols have been proposed and in many of them,
particularly ones intended to preserve user privacy and to anonymize tag interactions, it
is assumed that a cryptographic hash function will be used on the tag.

However which hash function might be used in practice is rarely identified. Look-
ing at dedicated hash functions from the last 20 years, we have become used to their
impressive hashing speed (though this is a view that we might have to change in the
future). This fast throughput might lead some designers to believe that hash functions
are “efficient” in other regards and that they can be routinely used in low-cost environ-
ments. This is a mistake, a point that was convincingly made in a paper by Feldhofer
and Rechberger [17]. Generally speaking, current hash functions are not at all suitable
for constrained environments. They require significant amounts of state and the opera-
tions in current dedicated designs are not hardware friendly. This is not surprising since
modern hash functions were designed with 32-bit processors in mind, but it means that
very few RFID-oriented protocols appealing to a hash function could ever be used on a
modestly-capable tag.

In this paper we consider RFID tag-enabled applications and the use of hash func-
tions in RFID protocols. We then turn our attention to the design of hash functions in

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 283–299, 2008.
c© International Association for Cryptologic Research 2008



284 A. Bogdanov et al.

Table 1. An overview of the performance of some current compact algorithms where block ci-
phers are ordered by block and key size while hash functions are ordered by the size of the output

Key Block Cycles per Throughput at Logic Area
size size block 100KHz (Kbps) process GE rel.

Block ciphers

PRESENT-80 [6] 80 64 32 200 0.18µm 1 570 1
PRESENT-80 [7] 80 64 563 11.4 0.18µm 1 075 0.68
DES [42] 56 64 144 44.4 0.18µm 2 309 1.47
mCrypton [32] 96 64 13 492.3 0.13µm 2 681 1.71
PRESENT-128 [6] 128 64 32 200 0.18µm 1 886 1.20
TEA [54] 128 64 64 100 0.18µm 2 355 1.50
HIGHT [24] 128 64 34 188.2 0.25µm 3 048 1.65
DESXL [42] 184 64 144 44.4 0.18µm 2 168 1.38
AES-128 [16] 128 128 1 032 12.4 0.35µm 3 400 2.17

Stream ciphers

Grain [15] 80 1 1 100 0.13µm 1 294 0.82
Trivium [15] 80 1 1 100 0.13µm 2 599 1.66

Hash functions

Hash output Cycles per Throughput at Logic Area
size block 100KHz (Kbps) process GE rel.

MD4 [17] 128 456 112.28 0.13µm 7 350 4.68
MD5 [17] 128 612 83.66 0.13µm 8 400 5.35
SHA-1 [17] 160 1 274 40.18 0.35µm 8 120 5.17
SHA-256 [17] 256 1 128 45.39 0.35µm 10 868 6.92
MAME [53] 256 96 266.67 0.18µm 8 100 5.16

Section 3 and we explore whether a block cipher makes an appropriate starting point
for a compact hash function instead of a dedicated design.1

In Section 4 we instantiate lightweight hash functions using literature-based con-
structions and the compact block cipher PRESENT [6]. This allows us to implement a
range of representative constructions that, for their given parameter sets, are the most
compact hash functions available today. In Section 5 we then look at some challenging
problems in designing hash functions with greater hash output lengths. While the paper
reveals positive results, our work also serves to highlight the difficult issue of compact
hash functions; we therefore close the paper with problems for future research.

2 Cryptography and RFID Tags

When considering applications based around the deployment of RFID tags we are work-
ing with very specific applications with rather unique requirements. The difficulty of
implementing cryptography in such environments has spurred considerable research,
and this can be roughly divided into two approaches:

1 This relates to proposals for future work identified in [17].
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1. Devise new algorithms and protocols for tag-based applications. Such new proto-
cols might use new cryptographic problems or might be based almost exclusively
on very lightweight operations, e.g. bitwise exclusive-or and vector inner-products.

2. Optimise existing algorithms and protocols so that they become suitable for RFID
tag-based applications. This approach might not give the compact results that some
of the more exotic proposals do, but the security foundations may be more stable.

The work in this paper is more in-line with the second approach—seeing what we can
do with what we have—though we hope it will be helpful to protocol designers. The
current state of the art for new compact block ciphers and stream ciphers is summarised
in Table 1 where most compact proposals offering 80-bit security seem to require 1 300–
1 600 gate equivalents (GE). For hash functions things are more complicated.

2.1 Hash Functions and Protocols for RFID Tags

Informally, a cryptographic hash function H takes an input of variable size and returns a
hash value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [33]. For a hash function with n-bit out-
put, compromising these should require 2n, 2n, and 2n/2 operations respectively. These
properties make hash functions very appealing in a range of protocols. For tag-based
applications, the protocols in question are often focused on authentication or on pro-
viding some form of anonymity and/or privacy [1,2,13,18,20,31,39]. However some
estimates suggest that no more than 2 000 GE are available for security in low-cost
RFID tags [26] and a glance at Table 1 shows that the hash functions available are un-
suitable in practice. When we consider what we need from a hash function in an RFID
tag-based application the following issues can be identified:

1. In tag-based applications we are unlikely to hash large amounts of data. Most tag
protocols require that the hash function process a challenge, an identifier, and/or
perhaps a counter. The typical input is usually much less than 256 bits.

2. In many tag-based applications we do not need the property of collision resistance.
Most often the security of the protocol depends on the one-way property. In certain
situations, therefore, it is safe to use hash functions with smaller hash outputs.

3. Applications will (typically) only require moderate security levels. Consequently
80-bit security, or even less, may be adequate. This is also the position taken in the
eSTREAM project [14]. An algorithm should be chosen according to the relevant
security level and in deployment, where success depends on every dollar and cent
spent, there is no point using extra space to get a 256-bit security level if 64-bit
security is all that is required.

4. While the physical space for an implementation is often the primary considera-
tion, the peak and average power consumption are also important. The time for a
computation will matter if we consider how a tag interacts with higher-level com-
munication and anti-collision protocols.

5. Some protocols use a hash function to build a message authentication code (MAC),
often by appealing to the HMAC construction [38]. When used as a MAC a num-
ber of interesting issues arise such as choosing an appropriate key length and un-
derstanding whether keys will be changed, something that will almost certainly be
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impossible in most tag-enabled applications. There might also be the possibility of
side-channel analysis on the MAC. However such attacks will rarely be worthwhile
for cheap tag-enabled applications and we do not consider this issue further.

Taking account of these considerations allows us to make some pragmatic choices.
There will be applications that just require one-wayness and the application may only
require 80-bit or 64-bit security. Note that this is the view adopted by Shamir in the
proposal SQUASH for use in RFID tags [49]. For other applications we might like to see
80-bit security against collision attacks.

Since current hash functions of dedicated design are either too big or broken, we
first consider hash functions that are built around block ciphers. In particular we use the
compact block cipher PRESENT [6] as a building block and we consider the implemen-
tation of a range of hash functions offering 64-bit and 128-bit outputs using established
techniques. We also consider hash functions that offer larger outputs and we highlight
some design directions along with their potential hardware footprint.

3 Hash Function Constructions

Hash functions in use today are built around the use of a compression function and
appeal to the theoretical foundations laid down by Merkle and Damgård [11,34]. The
compression function h has a fixed-length input, consisting of a chaining variable and
a message extract, and gives a fixed-length output. A variety of results [12,25,27] have
helped provide a greater understanding of this construction and while there are some
limitations there are some countermeasures [4]. Since our goal is to obtain represen-
tative performance estimates, we will not go into the details of hash function designs.
Instead we will assume that our hash function uses a compression function in an ap-
propriate way and that the compression function takes as input some words of chaining
variable, represented by Hi, and some words of (formatted) message extract, represented
by Mi. We then restrict our focus to the cost of implementing the compression function.

In the hash function literature it is common to distinguish between two popular ways
of building a compression function. The first is to use a compression function of a
dedicated design and the second is to use an established, and trusted, block cipher.

3.1 Dedicated Constructions

The separation of dedicated constructions from block cipher-based constructions tends
to disguise the fact that even dedicated hash functions like SHA-1 [36] and MD5 [46]
are themselves built around a block cipher. Remove the feed-forward from compression
functions in the MD-family and we are left with a reversible component that can be used
as a block cipher (such as SHACAL [19] in the case of SHA-1). However the underlying
block cipher we are left with is rather strange and has a much larger-than-normal block
and key size combination. The problem with dedicated hash functions is that recent
attacks [51,52] have shown that there is much to learn in designing block ciphers with
such strange parameter sizes. There is therefore some value in considering approaches
that use a more “classical” block cipher as the basis for a compression function.
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3.2 Block Cipher Constructions

The use of a block cipher as a building block in hash function design [10] is as old as
DES [35]. The topic has been recently revisited and Black et al. [5] have built on the
work of Preneel [44] to present a range of secure 2n- to n-bit compression functions
built around an n-bit block cipher that takes an n-bit key. Among these are the well-
known Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preneel constructions.

A hash function with an output of n bits can only offer a security level of 2n oper-
ations for pre-image and second pre-image attacks and 2n/2 operations against finding
collisions. While a security level of 128 bits is typical for mainstream applications, 80-
bit security is often a reasonable target for RFID tag-based applications. Either way,
there is a problem since the hash functions we need cannot always be immediately con-
structed out of the block ciphers we have to hand. This is not a new problem. But it is
not an easy one to solve either, and there has been mixed success in constructing 2n-bit
hash functions from an n-bit block cipher [8,10,28,29,30,43,45]. While limitations have
been identified in many constructions, work by Hirose [21,22] has identified a family
of double-block-length hash functions that possess a proof of security. These use block
ciphers with a key length that is twice the block length. Such a property is shared by
AES-256 [37] and PRESENT-128 [6] and so in Section 4.2 we consider the performance
of an Hirose-style construction instantiated using PRESENT-128.

When it comes to providing a replacement for SHA-1, the parameter sizes involved
provide a difficult challenge. If we are to use a 64-bit block cipher like PRESENT-128,
then in arriving at a hash function with an output of at least 160 bits we need a construc-
tion that delivers an output three times the block size (thereby achieving a 192-bit hash
function). There are no “classical” constructions for this and so Sections 5.1 and 5.2 il-
lustrate two possible design directions. These give representative constructions and we
use them to gauge the hardware requirements of different design approaches. We hope
that this will be of interest to future hash function designers.

4 Compact Hashing for 64- and 128-Bit Hash Outputs

In this section we will consider a variety of approaches to compact hashing when we
use the block cipher PRESENT [6] as a building block. PRESENT is a 64-bit SPN block
cipher which can be used with either an 80-bit or a 128-bit key. These will be referred to
as PRESENT-80 and PRESENT-128 and full details and design rationale for these ciphers
can be found in [6]. We denote encrypting a message M under the key K with PRESENT-
80 or PRESENT-128 to obtain the ciphertext C as C = E(M,K) and A‖B denotes the
concatenation of A and B.

4.1 Two Compact 64-Bit Proposals: DM-PRESENT-80 and DM-PRESENT-128

There are a variety of choices for building a 64-bit hash function from a 64-bit block ci-
pher. We will illustrate these with the Davies-Meyer mode where a single 64-bit chain-
ing variable Hi is updated using a message extract Mi according to the computation
H ′

i = E(Hi,M)⊕ Hi.
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Fig. 1. Compression functions for the 64-bit and 128-bit hash functions: DM-PRESENT-80 and
DM-PRESENT-128 (on the left) as well as H-PRESENT-128 (on the right)

In our case E denotes encryption with either PRESENT-80 or PRESENT-128, see Fig-
ure 1. Such hash functions will only be of use in applications that require the one-way
property and 64-bit security.2 At each iteration of the compression function 64 bits of
chaining variable and 80 bits (resp. 128 bits) of message-related input are compressed.
Therefore the two proposals DM-PRESENT-80 and DM-PRESENT-128 provide a simple
trade-off between space and throughput. We also provide figures for a serial and parallel
implementation of PRESENT, see Table 2.

While we have focused on using Davies-Meyer, it is important to note that these fig-
ures are a good indication of the cost for any single block-length hash function construc-
tion. If one prefers to implement Matyas-Meyer-Oseas or Miyaguchi-Preneel based on
PRESENT (instead of Davies-Meyer) then the cost of DM-PRESENT-80 will be a rea-
sonable guide. Moving away from PRESENT to a different block cipher will almost
certainly cause an increase to the space required for an implementation.

4.2 A Compact 128-Bit Proposal: H-PRESENT-128

When designing a 128-bit hash function from the 64-bit output block cipher PRESENT,
we have to appeal to so-called double-block-length hash function constructions. Natural
candidates are MDC-2 [10] and Hirose’s constructions [21,22]. These schemes possess
security proofs in the ideal cipher model, where the underlying block cipher is modeled
as a family of random permutations, one permutation being chosen independently for
each key. However MDC-2 is not an ideal construction [50] and so we base our 128-bit
hash function H-PRESENT-128 on the construction studied in [22].

The scheme H-PRESENT-128 is illustrated in Figure 1. The compression function
takes as input two 64-bit chaining variables and a 64-bit message extract, denoted by the
triple (H1,H2,M), and outputs the pair of updated chaining variables (H ′

1,H
′
2) according

to the computation

2 These properties are identical to those offered by the proposal SQUASH [49].



Hash Functions and RFID Tags: Mind the Gap 289

H ′
1 = E(H1,H2‖M)⊕ H1 and H ′

2 = E(H1 ⊕ c,H2‖M)⊕ H1

where E denotes PRESENT-128 and c is a non-zero constant that needs to be fixed [9].
Thus the chaining variable H1‖H2 is 128 bits long and 64 bits of message-related input
are hashed per iteration.

Hirose showed that, in the ideal cipher model, an adversary has to make at least 2n

queries to the cipher in order to find a collision with non-negligible advantage, where
n is the block size of the cipher. It is possible to make the same kind of analysis for
preimage resistance (see proof of Theorem 4 in [23]) and to show that any adversary
has to make at least 22n queries to the cipher to find a preimage. As for Section 4.1 our
implementation results are presented for both a parallel and serial implementation of
PRESENT-128, see Table 2. These results should be viewed as indicative of the cost of
a double-block-length construction using PRESENT. Since only one key schedule needs
to be computed per iteration of the compression function, the Hirose construction is
probably one of the most efficient constructions of this type, e.g. in the case of PRESENT

around 1000 GE can be saved in this way.

5 Compact Hashing for ≥ 160-Bit Hash Outputs

It is possible that some tag-enabled applications might need collision-resistance at a
security level of 280 operations. For this we need a hash output of 160 bits or greater.
However this is where the problems really begin and we consider two directions.

For the first, we continue the approach of the paper so far and we consider build-
ing a hash function with a hash output greater than 160 bits from PRESENT as is. So
in Section 5.1 we try to use PRESENT in this way and, using established results in the
literature, we make a proposal. However, at the same time, we use the very same results
to demonstrate that this approach is unlikely to be successful, a sentiment that is sup-
ported by our implementation results. Instead, for the second direction that is described
in Section 5.2, we move towards a dedicated hash function though we keep elements
of PRESENT in our constructions. Our dedicated proposals are deliberately simple and
obvious, and in this way we aim to provide some first results on the impact different
design choices might have in moving towards a new, compact, hash function.

5.1 Longer Hash Outputs Using PRESENT

Our goal is to build a hash function out of PRESENT that offers an output of at least 160
bits. Since PRESENT has a 64-bit block size, this means that we are forced to consider
a triple-block-length construction and we will end up with a 192-bit hash function.

Unfortunately very few designs for l-block length hash function with l ≥ 3 have been
studied so far. However Peyrin et al. [41] have identified some necessary conditions for
securely combining compression functions to obtain a new compression function with
a longer output. We can use these results and so, in the case we consider here, our
constituent compression functions will be based around PRESENT-128, i.e. we will use
DM-PRESENT-128 as the building block.
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More background to the construction framework is given in [41]. However, within
this framework, efficiency demands that we keep to a minimum the number of com-
pression functions that we need to use, where each compression function is instantiated
by DM-PRESENT-128. For reasons of simplicity and greater design flexibility we re-
strict ourselves to processing only a single 64-bit message extract, and so our inputs to
C-PRESENT-192, where we use C as shorthand for “constructed”, consist of a quadru-
plet (H1,H2,H3,M) while the output is a triplet (H ′

1,H
′
2,H

′
3). The compression function

C-PRESENT-192 is illustrated in Appendix I and the output is computed as

H ′
1 = f (1)(H3,H1,H2)⊕ f (3)(H3 ⊕ M,H1,H2)⊕ f (5)(H2,H3,M)

H ′
2 = f (1)(H3,H1,H2)⊕ f (4)(H1,H3,M)⊕ f (6)(H1 ⊕ H2,H3,M)

H ′
3 = f (2)(M,H1,H2)⊕ f (4)(H1,H3,M)⊕ f (5)(H2,H3,M) ,

with f (i)(A,B,C) = E(A ⊕ ci−1,B‖C)⊕ A for different constants ci and E denotes en-
cryption with PRESENT-128.

This construction might seem too complicated, but this is exactly the point we wish
to make. The particular set of parameter values that are forced upon us when trying to
build a large-output hash function from a small block cipher means that there will be no
simple construction. More precisely, work in [41] shows that for any construction that
uses a compression function with parameters equivalent to PRESENT-128 along with
linear mixing layers to combine chaining variables and intermediate values, at least
six compression functions are needed to resist all currently-known generic attacks. We
must therefore use at least six independent calls to DM-PRESENT-128. The construction
C-PRESENT-192 attains this minimum and more details of the construction are given
in Appendix I. Our implementation results and estimates are given in Table 2, but the
performance profile for C-PRESENT-192 suggests that building directly on PRESENT is
unlikely to be a good way forward. Instead we consider some dedicated elements.

5.2 Dedicated Design Elements Inspired by PRESENT

Hash function design is notoriously difficult and so an interesting first step is to identify
some general approaches and to understand their security and performance trade-offs.
In this section we describe the results of some prototyping which tests a range of ap-
proaches and provides good background to our ongoing work. Our basic premise is to
stay close to the design elements of PRESENT and to modify the design so as to give
a block cipher with a much larger block size. We then adapt the key schedule in two
alternative ways with the first being a natural proposal and the second having strong
similarities to Whirlpool [3]. We give implementation results for both approaches.

Our schemes will continue to be based on the Davies-Meyer (DM) scheme Hi+1 =
E(Hi,Mi)⊕ Hi though the form of our encryption function E will now change. In gen-
eral, the encryption function E can be described as:

E : F
n
2 ×F

k
2 → F

n
2 ,

E : PLAINTEXT × KEY �→ CIPHERTEXT

The detailed description of PRESENT can be found in [6]. At a top-level we can write
the r-round encryption of the plaintext STATE as:
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for i = 1 to r do
STATE ← STATE ⊕ eLayer(KEY, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
KEY ← genLayer(KEY, i)

end for
STATE ← STATE ⊕ eLayer(KEY,r + 1),

where eLayer describes how a subkey is combined with a cipher STATE, sBoxLayer and
pLayer describe how the STATE evolves, and genLayer is used to describe the generation
of the next subkey.

When used in the DM mode we recast the plaintext and ciphertext as hash function
STATE and use the (formatted) message extract as the key. For ease of design we will
choose the parameters k and n so that k|n and 4|n, and both our proposals will have the
following (unmodified) structure:

for i = 1 to r do
STATE ← STATE ⊕ eLayer(MESSAGE, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
MESSAGE ← genLayer(MESSAGE, i)

end for
STATE ← STATE ⊕ eLayer(MESSAGE,r + 1)

The following building blocks are unchanged between the two proposals and are merely
generalizations of the PRESENT structure to larger 160-bit block sizes.

1. sBoxLayer: This denotes use of the PRESENT 4-bit to 4-bit S-box S and it is applied
n/4 times in parallel.

2. pLayer: This is an extension of the PRESENT bit-permutation and moves bit i of
STATE to bit position P(i), where

P(i) =
{

i ·n/4 mod n − 1, if i ∈ {0, . . . ,n − 2}
n − 1, if i = n − 1.

It is in the specification of genLayer, which transforms the message of length k from
round-to-round, and eLayer : F

k
2 → F

n
2, that describes how the message extract is com-

bined with cipher state, that the two proposals differ.

PROP-1. For ease of comparison with PRESENT we keep exactly the same 80-bit key
input and the same 80-bit key schedule. Thus we modify a 160-bit chaining variable
using an 80-bit message input and, to make an implementation estimate, we use 64
rounds. This is equivalent to the parameters n = 160, k = 80, and r = 64. The sBoxLayer
and pLayer are as above and eLayer and genLayer are described as follows:

1. eLayer(MESSAGE, i) = MESSAGE‖genLayer(MESSAGE, i)
2. genLayer(MESSAGE, i) is defined as the 80-bit key schedule of PRESENT. Thus,

MESSAGE is rotated by 61 bit positions to the left, the left-most four bits are passed
through the PRESENT S-box, and the round counter i is exclusive-ored with some
bits of MESSAGE.
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In words, we use the key schedule of PRESENT-80 exactly as is and at each round we
use what would be two successive 80-bit round keys. At each round the key schedule is
updated only once, so the same subkey is used once on the right-hand side and, in the
following round, on the left-hand side.

PROP-2. For the second proposal, we consider a structure that has some similarity
to Whirlpool. Our parameter set is n = 160 and k = 160 which allows us to use a
longer message extract at each iteration of the compression function. For prototyping
and implementation estimates we set r = 80. The building blocks eLayer and genLayer
are specified as:

1. eLayer(MESSAGE, i) = MESSAGE

2. genLayer(MESSAGE, i) = pLayer(sBoxLayer(MESSAGE ⊕ i)), being just a copy of
the data path with round constant addition.

In words, we imagine that our message extract is a 160-bit key and we process the key
in a key-schedule that is identical to the encryption process.

We estimated the hardware figures for different architectures when implementing
PROP-1 and PROP-2. Our implementation estimates range from a 4-bit width data path
(highly serialized) up to a 160-bit width data path which offers one round of processing
in one cycle. Since PROP-2 uses a very similar key schedule (i.e. message path) and
encryption routine, we can give a further two different implementation options: one
with a shared sBoxLayer between the data path and the message path and one with an
individual sBoxLayer. The results are summarized below with the efficiency eff. being
measured in bps/GE.

Understanding the best trade-offs for the different approaches is not easy. As one
can see, all three implementations scale nicely, though it seems that PROP-2 is more
efficient in terms of throughput per area when compared to PROP-1. On the other hand
PROP-1 offers a lower minimal achievable gate count, though at the cost of a higher cy-
cle count. Much would also depend on a thorough security analysis of any final proposal
and while some initial analysis in Appendix II suggests the possibility of optimizations
to an approach like PROP-2, this is something to explore in future work during the
design of an explicit proposal.

data path PROP-1 PROP-2 (shared) PROP-2 (ind.)
width area (GE) cycles eff. area (GE) cycles eff. area (GE) cycles eff.

4 2 520 5 282 1.2 3 010 6 481 0.82 3 020 3 281 1.62
16 2 800 1 322 4.33 3 310 1 621 2.92 3 380 821 5.77
32 3 170 662 7.64 3 730 811 5.11 3 860 411 10.09
80 4 270 266 14.09 4 960 325 9.29 5 300 165 18.3
160 4 830 134 24.73 5 730 163 15.29 6 420 83 30.03

6 Implementation of the Standard Constructions

To consider the efficiency of the standard constructions, we implemented two dif-
ferent architectures (round-based and serial) in VHDL and simulated using Mentor
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Table 2. The performance of different hash functions based on the direct application of PRESENT.
For comparison with our hash functions with 128-bit output we include estimates for the AES-
based 128-bit hash function in Davies-Meyer mode. For comparison with MAME we include
estimates for the 256-bit hash function built from the AES in Hirose’s construction.

Hash Data Cycles Throughput Efficiency Logic Area
output path per at 100KHz (bps/GE) process GE
size size block (Kbps)

MD4 [17] 128 32 456 112.28 15.3 0.13µm 7 350
MD5 [17] 128 32 612 83.66 10 0.13µm 8 400
SHA-1 [17] 160 32 1 274 40.19 4.9 0.35µm 8 120
SHA-256 [17] 256 32 1 128 45.39 4.2 0.35µm 10 868
MAME [53] 256 256 96 266.67 32.9 0.18µm 8 100

In this paper

DM-PRESENT-80 64 64 33 242.42 109.5 0.18µm 2 213
DM-PRESENT-80 64 4 547 14.63 9.1 0.18µm 1 600
DM-PRESENT-128 64 128 33 387.88 153.3 0.18µm 2 530
DM-PRESENT-128 64 4 559 22.9 12.1 0.18µm 1 886
H-PRESENT-128 128 128 32 200 47 0.18µm 4 256
H-PRESENT-128 128 8 559 11.45 4.9 0.18µm 2 330
C-PRESENT-192 192 192 108 59.26 7.4 0.18µm 8 048
C-PRESENT-192 192 12 3 338 1.9 0.41 estimate 4 600
AES-based DM scheme 128 8 > 1 032 < 12.4 < 2.8 estimate > 4 400
AES-based Hirose scheme 256 8 > 1 032 < 12.4 < 1.3 estimate > 9 800

Graphics Modelsim SE PLUS 6.3a. Synopsys DesignCompiler version Z-2007.03-SP5
was used to synthesize the design to the Virtual Silicon (VST) standard cell library
UMCL18G212T3, which is based on the UMC L180 0.18µm 1P6M logic process and
has a typical voltage of 1.8 Volt. For synthesis we advised the compiler to use a clock
frequency of 100 KHz, a typical operating frequency for RFID applications.

We used Synopsys Power Compiler version Z-2007.03-SP5 to estimate the power
consumption of our implementations. At a clock frequency of 100 KHz DM-PRESENT-
80 consumes 6.28 µW in the round-based implementation and 1.83 µW in the serialized
implementation. The figures for the other designs are as follows: DM-PRESENT-128
7.49 µW and 2.94 µW , H-PRESENT-128 8.09 µW and 6.44 µW , and C-PRESENT-192
9.31 µW (round-based). Note that it is not easily possible to compare power consump-
tion of designs implemented in different technologies, hence we did not include these
figures in Table 2. However, the figures for SHA-256 (15.87 µW ) and SHA-1 (10.68 µW )
provided by Feldhofer et Rechberger [17] are in the same range as ours.

The area requirements of DM-PRESENT-80 and DM-PRESENT-128 comprise of the
area requirements of the appropriate PRESENT cores and a 64-bit register to store the
chaining variable (around 510 GE). Additionally, in the round-based variants a 64-bit
XOR gate (170 GE) is required and in the serial variants a 4-bit XOR gate (10 GE).3

3 Note that contrary to the constructions presented in this article the round-based PRESENT cores
do not require a finite state machine nor do they contain clock-gated flip-flops. Therefore all
in this paper presented constructions require additional logic which increases the area.



294 A. Bogdanov et al.

For the area estimates of the AES-based Davies-Meyer and Hirose schemes we used the
smallest known (3 400 GE) AES implementation [16]. We estimated the area require-
ments for storing one bit to be 8 GE as stated in [16]. For the AES-based Davies-Meyer
scheme we assumed that at least one additional register would be required to store the
128-bit value H1 (1 024 additional GE), summing up to at least 4 400 GE in total.

The H-PRESENT-128 implementation consists of a modified PRESENT-128 core, a
PRESENT data path (1010 GE), a 64-bit register for the chaining variable (510 GE), and
two 64-bit multiplexer (340 GE). Additionally, the round-based variant requires two
64-bit XOR gates (340 GE) and the serial variant two 4-bit XOR gates (20 GE). The
AES-based Hirose scheme requires an AES implementation with 256-bit key length.
However, no such low-cost implementation has been reported so far. Therefore we esti-
mate the area requirements starting from the Feldhofer et al. [16] implementation with
a 128-bit key. At least 128 additional key bits (1 024 GE) have to be stored to achieve
an AES implementation with 256 bits key length, summing up to at least 4 400 GE. The
Hirose scheme requires two instantiations of the block cipher and the storage of one
intermediate value H1, which has the same size as the block size. All together we esti-
mate the AES-based Hirose scheme to require at least 9 800 GE. The serial variant of
C-PRESENT-192 was not implemented, because the figures for the round-based variant
and the estimations indicate large area requirements with more than 4500 GE. In fact
this large area requirement for both variants of C-PRESENT-192 was the main reason to
look for other constructions such as PROP-1 and PROP-2.

Table 2 summarizes our results and compares them to other hashing functions and
AES-based schemes. When the hash output length is 128 bits or lower, a construction
based around PRESENT seems to have potential. Certainly they are far more competitive
than current hash functions, the primary reason being that there exist efficient block
cipher-based constructions for this size of hash output. Even a larger block cipher such
as AES makes for a more compact hash function than current dedicated designs at this
security level, though the throughput suffers.

7 Conclusions

While compact hash functions are often proposed in protocols for RFID tags, there are
currently no sufficiently compact candidates to hand. Here we have explored the pos-
sibility of building a hash function out of a block cipher such as PRESENT. We have
described hash functions that offer 64- and 128-bit outputs based on current design
strategies. For their parameter sets these are the most compact hash function candi-
dates available today. In particular, H-PRESENT-128 requires around 4 000 GE, which
is similar to the best known AES implementation and about 50% smaller than the best
reported MD5 implementation. At the same time, H-PRESENT-128 requires between
20–30 times fewer clock cycles than compact AES and MD5 implementations, giving
it a major time-area advantage.

Obviously 128-bit hash functions are relevant for applications where a security-
performance trade-off is warranted. To obtain larger hash outputs there are severe com-
plications and we suspect that dedicated designs could be more appropriate. Clearly
there are many areas of open research, not least the design of very compact hash
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functions. In parallel, it might also be worth revisiting tag-based protocols that use
hash functions to see if the same goals can be achieved in a different way.
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Appendix I

Using current best practice we outline a representative design for a 192-bit hash func-
tion, named C-PRESENT-192 in the text. Some of the background to the design and its
implementation are given in Section 5.1 with some additional explanation below.
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Motivation. Our goal was to design a 192-bit hash function using PRESENT as the
fundamental building block and to use linear mixing layers both before and after the
compression functions. Within this framework, it has been shown that the minimum
number of compression functions that can be used is six. In addition, the output map-
ping should be a (6,3,3) binary linear error-correcting code, while the input mapping
must satisfy the following constraints:

1. Every external output block must depend on all external input blocks, no matter
which invertible transformation of the external inputs and outputs is applied.

2. Every pair of external input blocks must appear as an identified pair for every in-
vertible combination of external output blocks, where a pair (A,B) is said to be
identified when A and B both appear within the internal inputs to some f (i), and
this no matter which invertible transformation of the external inputs is applied.

The input mapping for our representative was selected from among those that satisfy
these conditions and that also minimize the number of key schedules used to hash one
block of message. By reducing the number of key schedules we increase the perfor-
mance of the scheme and, potentially, reduce the space required by an implementation.
It can be proved that for the parameter sets of interest to us here, the minimal number
of key schedules is two.

For the results of Peyrin et al. to hold, the compression functions f (i) have to be
ideal compression functions with respect to collision and preimage resistance (that is,
finding a collision or a preimage must require on average Θ(2n/2) and Θ(2n) evaluations
of the function respectively) and must behave independently. Each inner compression
function f (i) is built around PRESENT-128 in a way similar to the Davies-Meyer mode.
That way, the results of Black et al. [5] ensure that, in the ideal cipher model, finding
a collision (resp. a preimage) for the compression functions f (i) requires Θ(2n/2) (resp.
Θ(2n)) queries to the cipher. Hence, in the ideal cipher model, each inner compression
function f (i) is ideal in the sense defined above.
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Making the six compression functions f (i) independent is not so easy. The most
secure way to do this would be to “tweak” the block cipher with e.g. the XE or XEX
construction of Rogaway [47]. However, these constructions are only efficient when one
has to compute ciphertexts for the same key and many different tweaks, which is not
our case. Using any known provably secure construction of a tweakable block cipher for
the C-PRESENT-192 scheme would imply one supplementary cipher call for each key,
thus increasing the number of block cipher calls per message block to eight. Instead we
might consider using the same kind of technique that is used in the Hirose construction
and we use five constants c1, . . . ,c5 to make the six instances of the compression func-
tion independent. In the absence of a structural weakness in PRESENT this is sufficient
for our purposes. Further, we are trying to estimate the space required for a construction
of this type and so this approach will help yield conservative estimates. The constants
were chosen to be linearly independent and of low Hamming weight. They are given by
c0 = 0 and ci = (0x0000000000000001)� (i−1) for i ≥ 1. While some limitations
of this construction follow from [48], assuming we can consider the inner compression
functions independent, Peyrin et al. show that there is no currently-known attack with
computational complexity less than brute-force on the larger compression function.

Appendix II

Our proposed design elements are not intended to be specifications. Nevertheless, some
preliminary analysis follows from the simple structures proposed. In particular, for a
fixed message block and two different chaining values we can apply Theorem 1 of [6]
directly. This states that at least 10 active S-boxes are involved in any 5-round differ-
ential characteristic. However, for the more important case of two different message
blocks, the analysis has to be slightly modified. The following two results on the differ-
ential behavior of the proposals can be viewed as a first step towards a deeper analysis:

Theorem 1. Let P(3)
(Δ1,Δ2) �→Δ be the probability of a differential characteristic over 3

rounds of PROP-1 with Δ2 �= 0, i.e. the probability that

PROP-13(H ⊕ Δ1,M ⊕ Δ2) = PROP-13(H,M)⊕ Δ,

where PROP-13 denotes three rounds of PROP-1. Then each 3-round differential char-

acteristic of this form has at least 4 active S-boxes and therefore P(3)
(Δ1,Δ2) �→Δ ≤ 2−8.

Theorem 2. Let P(Δ1,Δ2) �→Δ be the probability of a differential characteristic such that

PROP-2(H ⊕ Δ1,M ⊕ Δ2) = PROP-2(H,M)⊕ Δ

for Δ2 �= 0. Then P(Δ1,Δ2) �→Δ ≤ 2−400 for PROP-2.

Theorem 1 indicates that the probability of each 64-round differential characteristic can

be upper-bounded by (2−8)
64
3 ≈ 2−170. This observation as well as Theorem 2 show that

the differential properties may be strong enough to thwart pre-image, second pre-image
and collision attacks for the both proposals. Furthermore, Theorem 2 indicates that one
could probably decrease the number of rounds in PROP-2 without unduly compromis-
ing the security. The most appropriate trade-off remains an area of research.



A New Bit-Serial Architecture for Field

Multiplication Using Polynomial Bases

Arash Reyhani-Masoleh

Department of Electrical and Computer Engineering
The University of Western Ontario

London, Ontario, Canada
areyhani@uwo.ca
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1 Introduction

The multiplication over finite (or Galois) field GF (2m) is the main arithmetic
operation in the elliptic curve cryptography [7,11] and choosing a suitable basis
plays an important role in efficient implementation [6]. A field element can be
represented using different bases, such as polynomial basis (PB), normal basis,
and dual basis. Among them, representation of field elements using a polynomial
basis is simpler and has received more attention for hardware implementation.

A hardware implementation of a finite field multiplier can be categorized either
as a bit-parallel or bit-serial type. In a bit-parallel multiplier over GF (2m), once
2m bits of two inputs are received, m bits of the product are obtained together at
the output after a propagation delay through various logic gates. Such a parallel
type multiplier (see for example [16,10,15,5,18,13,12]) requires O(m2) number
of gates. On the other hand, a bit-serial multiplier takes m clock cycles for one
multiplication using O(m) number of gates.

Bit-serial multipliers can be categorized into two types of either parallel or
serial output. In the parallel-output bit-serial (POBS) multipliers, all m output
bits of the product are available at the end of the m-th cycle, whereas serial-
output bit-serial (SOBS) multipliers generate one bit of the product in each
of these m cycles. Examples of the former type includes the well known LSB-
and MSB-first bit-serial polynomial basis multipliers [14,3] and the normal basis
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multiplier due to Agnew et al. [1] while those of the latter type are Berlekamp’s
bit-serial dual basis multiplier [2] and Massey-Omura’s original bit-serial normal
basis multiplier [8]. Usually, POBS multipliers run at a much higher clock rate
than their SOBS counterparts. However, the latency to generate the first bit of
the product in the SOBS multipliers is one clock cycle as compared to m clock
cycles for the POBS ones. Therefore, in applications that require implementa-
tion on resource constrained environment such as smart cards, SOBS multipliers
result in faster overall computation than POBS multipliers since such a system
is usually running at low operating clock frequency. In this paper, we propose
a new SOBS PB multiplier for a general irreducible polynomial. To the best of
our knowledge, this is the first time that a SOBS PB multiplier is proposed for
general polynomials.

The organization of this article is as follows. In Section 2, the traditional bit-
serial architectures for PB multiplication over GF (2m) are introduced. In Section
3, the matrix formulations for the PB multiplication is revisited. Then, we derive
formulations for the proposed multiplier structure. A new serial-output bit-serial
multiplier is proposed in Section 4. Finally, conclusions are given in Section 5.

2 Traditional Bit-Serial Multipliers over GF (2m)

The finite field GF (2m) consists of 2m field elements and is constructed by the
polynomial basis {1, α, α2, · · · , αm−1}, where α is a root of the irreducible
polynomial

P (x) = xm +
ω−2∑
i=1

xti + 1. (1)

In (1), 1 ≤ t0 < t1 < · · · < tω−2, and ω is the number of non-zero terms. Then,
each field element B ∈ GF (2m) can be written with respect to this basis as

B = (bm−1, · · · , b1, b0) =
m−1∑
i=0

biα
i, bi ∈ {0, 1}, (2)

where bis are the coordinates of B. For convenience, these coordinates will be
denoted in vector notation as

b = [b0, b1, · · · , bm−1]T , (3)

where T denotes the transposition of a vector or a matrix.
There are two types of bit-serial, namely LSB-first and MSB-first, multipliers

[3]. The LSB-first bit-serial multiplier is shown in Figure 1(a). In this multiplier
structure, both X = 〈xm−1, · · · , x1, x0〉 and Y = 〈ym−1, · · · , y1, y0〉 are m
bit registers. Let X(n) and Y (n) denote the contents of X and Y at the n-th,
0 ≤ n ≤ m, clock cycle, respectively. Suppose the X register in Figure 1(a) is
initialized with A, i.e., X(0) = A, then the output of this register at the n-th
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clock cycle is X(n) = X(n) ∈ GF (2m), which is calculated from the input of this
register, i.e., X(n−1), using the α module shown in Figure 1(a) as

X(n) = α · X(n−1) mod P (α), 1 ≤ n ≤ m − 1, (4)

where X(0) = A. Also, suppose that the register Y is initially cleared, i.e., Y (0) =
0. Then, one can obtain the content of Y at the first clock cycle as Y (1) = b0A

and in general at the n-th clock cycle as Y (n) = b0A+
∑n−1

i=1 biX(i), 1 < n ≤ m.
Let C denote the PB multiplication of A and B, i.e., C = AB mod P (α). Then,
using (2) and (4) recursively, one can obtain

C =
m−1∑
i=0

bi · ((Aαi) mod P (α)) (5)

=
m−1∑
i=0

bi · X(i), (6)

and noting the fact that X(n) = X(n), one can determine that after m clock
cycles Y contains C = AB mod P (α) ∈ GF (2m), i.e., Y (m) = C. The imple-
mentation of bi · X(i) in (6) is done using m 2-input AND gates. This is shown
with the double circle module with a dot inside in Figure 1(a). Also, the sum
operation in (6) is implemented with m 2-input XOR gates which is shown with
a double circle module with a plus inside. Since the coordinates of B enter the
multiplier from the least significant bit (LSB), i.e., b0, this multiplier is referred
to as the LSB first bit-serial multiplier.

The MSB-first bit-serial multiplier is shown in Figure 1(b). This structure
implements

C = (((bm−1Aα + bm−2A)α + bm−3A) + · · · + b1A)α + b0A, (7)

where the mod P (α) operations after multiplications by α are omitted for sim-
plicity. If the registers U and V are initialized with A = (am−1, · · · , a1, a0) and
0 = (0, · · · , 0, 0), respectively, then one can verify that after the m-th clock
cycle the register V contains the coordinates of C, i.e., V (m) = C. It is noted
that for parallel load of inputs into the registers in Figure 1, multiplexers may
be used. These are not shown in the figure for simplicity.

3 Matrix Formulations for PB Multiplication Revisited

In [10,9], Mastrovito showed that the coordinates of C = AB mod P (α) are
obtained from the matrix-by-vector product of c = [c0, c1, · · · , cm−1]T = M · b,
where M is an m×m binary matrix whose entries depend on the coordinates of A
and the entries of the reduction matrix Q = [qi,j ], 0 ≤ i ≤ m − 2, 0 ≤ j ≤ m − 1,
defined by [9]

[αm, αm+1, · · · , α2m−2]T ≡ Q[1, α, · · · , αm−1]T (mod P (α)). (8)
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Fig. 1. (a) LSB first bit-serial multiplier. (b) MSB first bit-serial multiplier.

The Mastrovito matrix M has been studied in [15] and [5] for irreducible trinomi-
als and arbitrary polynomials, respectively. Then, a systematic design to obtain
the Mastrovito matrix M for general irreducible polynomials is presented in [18].

To find the PB multiplication, another approach is proposed in [17] and [12]
for irreducible trinomials and arbitrary polynomials, respectively. The multipli-
cation operation in this approach consists of two parts of the product of two
field elements A = (am−1, · · · , a1, a0), B ∈ GF (2m), i.e., AB, followed by the
modular reduction, i.e., C = AB mod P (α). Let us denote the result of the
product of two polynomials

AB =
m−1∑
j=0

bjα
jA = D + αmE, (9)
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where D = (dm−1, · · · , d1, d0) and E = (0 , em−2, · · · , e1, e0) are the field
elements in GF (2m). It is shown in [12] that the coordinates of E and D can be
obtained from the following:

d =

⎡⎢⎢⎢⎣
d0
d1
...

dm−1

⎤⎥⎥⎥⎦ = Lb =

⎡⎢⎢⎢⎣
a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
am−1 am−2 · · · a0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b0
b1
...

bm−1

⎤⎥⎥⎥⎦ , (10)

e =

⎡⎢⎢⎢⎣
e0
e1
...

em−2

⎤⎥⎥⎥⎦ = Ub =

⎡⎢⎢⎢⎣
0 am−1 · · · a2 a1
0 0 · · · a3 a2
...

...
. . .

...
...

0 0 · · · 0 am−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b0
b1
...

bm−1

⎤⎥⎥⎥⎦ . (11)

Then, one can calculate the coordinates of C = (cm−1, · · · , c1, c0) from the
following reduction equation [12]

c = [c0, c1, · · · , cm−1]T = d + QT e. (12)

Let us define the down shift of the matrix S by j rows as S[↓ j] and the right
shift of S by i columns as S[→ i], where the emptied positions after the shifts
are filled by zeros. Then, it is shown in [4] that the QT matrix in (12) can be
represented as

QT =
∑
i∈N

∑
j∈T

Im×(m−1) [↓ j][→ i], (13)

where the sets N ⊂ {0, 1, · · · , m − 1}, T = {0, t1, · · · , tω−2} (see P (x) in (1))
and

Im×(m−1) =

⎡⎣ Im−1×m−1

01×m−1

⎤⎦ . (14)

In (14), Im−1×m−1 is an m − 1 × m − 1 unity matrix and 01×m−1 is a zero row
vector with m − 1 zero entries. Then, using (13), the matrix reduction equation
of (12) is simplified in [4] to

c = d +
∑
j∈T

e′[↓ j], (15)

where
e′[↓ j] = [0, · · · , 0︸ ︷︷ ︸, e′0, · · · , e′m−1−j ]

j

T for j > 0, (16)

and
e′ = e′[↓ 0] = [e′0, · · · , e′m−2, 0]T =

∑
i∈N

Im×(m−1) [→ i]e. (17)

It is noted that to obtain the set N ⊂ {0, 1, · · · , m − 1} in (17), one can use
the algorithm proposed in [18]. For the irreducible polynomial P (x) with the
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second highest degree tω−2 ≤ (m + 1)/2, it is proved in [4] that N = {0, m −
tω−2, · · · , m − t1}. In the following, we show another approach to find this set
for arbitrary irreducible polynomial.

For a given irreducible polynomial P (x) stated in (1), the reduction matrix
defined in (8) is fixed. Thus, the entries of Q are constant, i.e., qi,j ∈ {0, 1},
and can be found from (8) for the underlying polynomial P (x). Let us assume
the entries of column 0 of Q, i.e., qi,0, 0 ≤ i ≤ m − 2, are given. Let n and rj

(0 ≤ j ≤ n − 1) be the number of nonzero entries and their row positions of the
column 0 in this matrix, respectively, i.e.,

qi,0 = 1, for i ∈ R, (18)

where
R = {r0, r1, · · · , rn−1}.

This column is equal to the row 0 of QT and is obtained from (13) for j = 0.
Then, one can easily see that R = N, i.e., the elements of N are the locations
of non-zero entries of column 0 of the reduction matrix.

Remark 1. Using (8) and xm =
∑ω−2

i=1 xti + 1 which is obtained from (1), one
can easily see that r0 = 0 for any irreducible polynomial [4].

Remark 2. It is noted that for the irreducible trinomial P (x) = xm + x + 1, i.e.,
tω−2 = 1, ω = 3, the column 0 of Q has only one nonzero entry, i.e., n = 1,
which is in the row r0 = 0.

Remark 3. If tω−2 > 1, then the second nonzero entry in the column 0 of Q is
r1 = m − tω−2.

In the following, we slightly simplify e′ in (17) to present the key formulation
for the proposed SOBS multiplier. Since

Im×(m−1)[→ i] =

⎡⎣0m×i

Im−1−i×m−1−i

0i+1×m−1−i

⎤⎦ , (19)

one can see that Im×(m−1) [→ i]e is equal to the up shift of the vector
[e0, · · · , em−2, 0]T by i rows, i.e.,

e[↑ i] = [ei, · · · , em−2, 0, · · · , 0︸ ︷︷ ︸]T .

i + 1

(20)

Therefore, we conclude the above discussion to state the following.

Lemma 1. Let the finite field GF (2m) be constructed by the general irreducible
polynomial P (x) = xm +

∑ω−2
i=1 xti + 1, then the coordinates of the PB multipli-

cation of C = AB mod P (α) can be obtained from two steps of

e′ = [e′0, · · · , e′m−2, 0]T =
∑
i∈R

e[↑ i] (21)
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followed by
c = d +

∑
j∈T

e′[↓ j], (22)

where d, e, e[↑ i] and e′[↓ j] are obtained from (10), (11), (20) and (16), re-
spectively.

Proposition 1. The reduction matrix method stated by (21) and (22) in Lemma
1 requires

(m − 1)(n + ω − 2) −
n−1∑
i=1

ri −
ω−2∑
j=1

tj (23)

number of two-input XOR gates with the critical path delay of at most

(�log2 n� + �log2 ω�)TX , (24)

where TX is the time delay of an XOR gate.

Proof. The number of bit-wise addition (XOR gates) required for (21) is

n−1∑
i=1

(m − 1 − ri) = (m − 1)(n − 1) −
n−1∑
i=1

ri. (25)

Similarly, implementation of (22) requires

m − 1 +
ω−2∑
j=1

(m − 1 − tj) = (m − 1)(ω − 1) −
ω−2∑
j=1

tj . (26)

Thus, by adding (25) and (26), the proof of (23) is complete. The time delay of
(24) is obtained if we add the delay of (21), i.e., �log2 n�TX , with the delay of
(22), i.e., �log2 ω� TX .

4 New Serial-Output Bit-Serial Multiplier

Unlike the bit-serial multipliers presented in Section 2, this multiplier generates
one bit of the multiplication in each clock cycle with the latency of one clock
cycle.

4.1 Architecture

In order to develop a bit-serial multiplier, Lemma 1 is used to generate the
coordinates of C in the order of c0, followed by c1, · · · , and cm−1. The new
architecture, which is referred to as serial-output bit-serial (SOBS) multiplier, is
shown in Figure 2(a). It consists of one register B = 〈b0, b1, · · · , bm−1〉 which
contains the coordinates of the field element B = (bm−1, · · · , b1, b0) as well as
three shift registers L = 〈lm−1, · · · , l1〉 , U = 〈um−1, · · · , u1, u0〉 , and X =〈
x1, x2, · · · , xtω−2

〉
.



A New Bit-Serial Architecture for Field Multiplication 307
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· · ·
r1

· · ·
rn−1

· · ·

...

· · ·

(d)

Fig. 2. (a) The architecture of serial output bit-serial (SOBS) PB multiplier over
GF (2m). (b) The details of binary tree of XOR (BTX) gates. (c) The architecture
of IP(m − 1), i.e., inner product with m − 1 AND gates. (d) The BTX array output
which requires m − 1 − r1 BTXs.

As seen in this figure, the output of shift register L are connected to n−1 right
shift (RS) blocks as well as the BTX array. The RS(ri), 1 ≤ i ≤ n−1, block shifts
the m − 1 − ri left most input lines to the right by ri positions. Let the input of



308 A. Reyhani-Masoleh

the re-wiring RS(ri) block be L = 〈lm−1, · · · , l1〉 , the output of the RS(ri) block
is L→ri = 〈−, · · · , −︸ ︷︷ ︸, lm−1, · · · , lri+1〉,

ri

where − denotes nothing is connected

to those ri left-most coordinates. The outputs of RS(r1) and RS(rn−1) blocks,
i.e., L→r1 and L→rn−1, respectively, are shown in Figure 2(b). This figure also
shows how the outputs of the BTX array, i.e., 〈vm−1, · · · , v1〉 , are obtained. As
seen in Figure 2(b), the BTX array requires m − 1 − r1 BTXs whose number
of inputs vary from 2 to n. Specifically, it consists of m − 1 − rn−1 BTXs with
n inputs, rn−1 − rn−2 BTXs with n − 1 inputs, · · · , and r2 − r1 BTXs with 2
inputs, i.e., 2-input XOR gates. In general, the BTX array includes ri+1 − ri

BTXs with i + 1 inputs for 1 ≤ i ≤ n − 1 (assume rn = m − 1). Therefore, as
seen in Figure 2(b), the outputs of the BTX array, i.e., vis, are obtain as follows:

vi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

li, if m − r1 ≤ i ≤ m − 1
li + li+r1 , if m − r2 ≤ i ≤ m − 1 − r1
li + li+r1 + li+r2 , if m − r3 ≤ i ≤ m − 1 − r2
...

...
li +

∑n−1
j=1 li+rj , if 1 ≤ i ≤ m − 1 − rn−1.

(27)

Using Figure 2(b) or (27), one can obtain the number of XOR gates required
for realizing the BTX array in Figure 2(a) as

# XORBTX array =
n−1∑
i=1

(m − 1 − ri) = (n − 1)(m − 1) −
n−1∑
i=1

ri. (28)

Also, the time delay of the longest path between the inputs and outputs of the
BTX array is �log2 n�TX .

Figure 2(a) also consists of two inner product (IP) blocks as denoted by IP(m)
and IP(m−1). Figure 2(c) shows the architecture of IP(m−1) which implements

x0 =
m−1∑
i=1

bivm−i = [vm−1, · · · , v1][b1, · · · , bm−1]T (29)

using m − 1 AND gates and m − 2 XOR gates with TA + �log2(m − 1)�TX time
delay. Similarly, the output of IP(m) generates

d =
m−1∑
i=0

bium−i−1, (30)

which requires m AND gates and m − 1 XOR gates with TA + �log2 m�TX time
delay.

4.2 Initialization and Multiplication Operation

In this section we show that by properly initialization of the shift registers, the
bit-serial multiplier generates the coordinates of C in such a way that c0 and
cm−1 are the first and last bits output from c, respectively.
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Let us initialize the shift register L and U with the coordinates of A as

L(0) = 〈am−1, · · · , a1〉 , U(0) = 〈a0, 0, · · · , 0〉 . (31)

In fact, only one bit of U, i.e., um−1, is initialized with a0 and other bits
are cleared. Also, the register B is initialized with the coordinates of B as
B(0) = 〈b0, b1, · · · , bm−1〉 and its contents remains unchanged during each clock
cycle until the end of multiplication process. Thus, we can state that B(τ) =
〈b0, b1, · · · , bm−1〉 for 0 ≤ τ ≤ m−1, where τ denotes the number of clock cycles
applied after initialization (τ = 0). Also, we assume that the contents of the shift
register X are cleared initially, i.e., X(0) =

〈
x1, x2, · · · , xtω−2

〉
= 〈0, 0, · · · , 0︸ ︷︷ ︸〉.

tω−2
It is noted that for parallel load of A and B into the registers L and B and the
last bit of U, multiplexers may be used. Those are not shown in the figure for
simplicity. However, for serial load such multiplexers are not needed.

Let x0(τ) denote the output of IP(m − 1) in Figure 2(a) after the τ -th clock
cycle. Then, by substituting (31) into (27) and using (29), one can obtain the
initial value of the output of IP(m − 1) in Figure 2(a) as

x0(0) =

⎛⎜⎜⎝∑
i∈R

[0, · · · , 0︸ ︷︷ ︸, am−1, · · · , ai+1]

i

⎞⎟⎟⎠ [b1, · · · , bm−1]T . (32)

Using (11) and (21), one can simplify (32) to x0(0) =
∑

i∈R ei = e′0. Similarly,
let U(τ) and d(τ) be the contents of the shift register U and signal d in Figure
2(a) after the τ -th, 0 ≤ τ ≤ m − 1, clock cycle. Then, by using (10) and (30),
one can see that

d(τ) =
m−1∑
i=0

bium−i−1(τ) = [aτ , · · · , a0, 0, · · · , 0][b0, b1, · · · , bm−1]T = dτ . (33)

Thus, noting that the contents of register X are initially cleared, i.e., xj = 0,
j = 0, one can find that c in Figure 2(a) outputs c0 after initialization, i.e.,

c(0) =
∑
j∈T

xj(0) + d(0) = 0 + e′0 + d0 = c0.

In the following, we show that the output c in Figure 2(a) generates cτ after
the τ -th clock cycle. At this time, the coordinates of register L is changed from
the initial value of L(0) = 〈am−1, · · · , a1〉 to

L(τ) =

〈
0, · · · , 0︸ ︷︷ ︸, am−1, · · · , aτ+1

τ

〉
. (34)
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Then, using (32) with the new value of L, the output of IP(m − 1) generates

x0(τ) =

⎛⎜⎜⎝∑
i∈R

[0, · · · , 0︸ ︷︷ ︸, am−1, · · · , ai+τ+1]

i + τ

⎞⎟⎟⎠ [b1, · · · , bm−1]T ,

which simplifies to
x0(τ) =

∑
i∈R

ei+τ = e′τ (35)

if (11) and (21) are used.
To obtain the output of c after the τ -th clock cycle, i.e., c(τ), we need to

obtain the content of the shift register X, which are found as

xi(τ) = xi−1(τ − 1), 1 ≤ i ≤ tω−2. (36)

By recursive using (36), one can find xi(τ) = x0(τ − i) for τ ≥ i, which can be
written to

xi(τ) =
{

e′τ−i, if τ ≥ i,
0 otherwise, (37)

if we use (35). Thus, the output of Figure 2(a) after the τ -th clock cycle is
c(τ) =

∑
j∈T xj(τ) + d(τ). Therefore, by using (33), (35), (37) and Lemma 1,

one can find c(τ) = cτ .

4.3 An Example

We consider the field GF (27) defined by the irreducible polynomial P (x) =
x7 + x5 + x3 + x + 1 for which the reduction matrix can be obtained as

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 1 0 1 0
0 1 1 0 1 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (38)

It is seen from the column 0 of (38) that n = 2, r0 = 0, and r1 = 2. For
this example, R = {0, 2} and T = {0, 1, 3, 5}. Table 1 shows how Figure 2(a)
generates the coordinates of C at each clock cycle τ .

4.4 Complexity Analysis

In this section, we obtain the space and time complexities of the proposed serial-
output bit-serial (SOBS) multiplier.

Proposition 2. For the finite field GF (2m) generated by the general irreducible
ω-nomial P (x) = xm +

∑ω−2
i=1 xti + 1, the SOBS PB multiplier (Figure 2(a))

requires 3m+ tω−2 −1 1-bit register, 2m−1 2-input AND gates, and (n+1)(m−
1) + ω − 2 − ∑n−1

i=1 ri 2-input XOR gates.



A New Bit-Serial Architecture for Field Multiplication 311

Table 1. The multiplication operation for GF (27) generated by x7 + x5 + x3 + x + 1

τ v6, v5, v4, v3, v2, v1 x0 x1, x2, x3, x4, x5 d c = x0 + x1 + x3 + x5 + d

0 a6, a5, a6 + a4, a5 + a3, a4 + a2, a3 + a1 e′0 0, 0, 0, 0, 0 d0 e′0 + d0 = c0

1 0, a6, a5, a6 + a4, a5 + a3, a4 + a2 e′1 e′0, 0, 0, 0, 0 d1 e′1 + e′0 + d1 = c1

2 0, 0, a6, a5, a6 + a4, a5 + a3 e′2 e′1, e
′
0, 0, 0, 0 d2 e′2 + e′1 + d2 = c2

3 0, 0, 0, a6, a5, a6 + a4 e′3 e′2, e
′
1, e

′
0, 0, 0 d3 e′3 + e′2 + e′0 + d3 = c3

4 0, 0, 0, 0, a6, a5 e′4 e′3, e
′
2, e

′
1, e

′
0, 0 d4 e′4 + e′3 + e′1 + d4 = c4

5 0, 0, 0, 0, 0, a6 e′5 e′4, e
′
3, e

′
2, e

′
1, e

′
0 d5 e′5 + e′4 + e′2 + e′0 + d5 = c5

6 0, 0, 0, 0, 0, 0 0 e′5, e
′
4, e

′
3, e

′
2, e

′
1 d6 e′5 + e′3 + e′1 + d6 = c6

Proof. The number of 1-bit registers includes the ones in the L and U shift
registers, i.e., 2m − 1, the register B, i.e., m, and the shift register X, i.e.,
tω−2, Thus, the multiplier requires 3m + tω−2 − 1 1-bit registers. The IP(m)
and IP(m − 1) blocks require m and m − 1 AND gates, respectively. Therefore,
the multiplier requires 2m − 1 2-input AND gates. The number of XOR gates is
obtained by adding those for the BTX array, the IP(m) and IP(m − 1) as well
as the BTX blocks, which are (28), m − 1, m − 2, and ω − 1, respectively. As a
result, the number of XOR gates required in the multiplier is (n − 1)(m − 1) −∑n−1

i=1 ri. + m − 1 + m − 2 + ω − 1 = (n + 1)(m − 1) + ω − 2 − ∑n−1
i=1 ri and the

proof is complete.

The time complexities of the multiplier are determined by three factors: latency,
the number of clock cycles required for whole multiplication, and the critical
path delay. Let us define the latency as the number of clock cycles needed that
the first bit of the output be available. Based on this definition, one can see
that the latency of the SOBS multiplier is one and the entire multiplication
requires m clock cycles. The critical path delay, which is the longest path from
the registers to the output c, determines the maximum operating frequency. By
properly implementation of the BTX block in Figure 2(a), one can minimize this
delay to obtain it as follows.

Proposition 3. Let TA and TX be the delay of an AND gate and an XOR gate,
respectively. Then, the critical path delay of the SOBS PB multiplier (Figure
2(a)) is at most TA+max(T1, T2), where T1 = (1 + �log2(ω − 1)� + �log2 m�)TX

and T2 = (1 + �log2(m − 1)� + �log2 n�)TX .

Proof. The critical path delay of the multiplier is determined by the maximum
delay between the two paths from the shift registers of L and U to the output c.
In order to minimize this delay, one can implement c in Figure 2(a) as c = c′+x0,
where

c′ =
∑

j∈T −{0}
xj + d. (39)

Since the path delay from the shift register U to the output d is TA+�log2 m� TX

and (39) requires �log2(ω − 1)� TX using a BTX, one can see that the delay to
generate c′ is at most T ′ = TA +(�log2(ω − 1)�+�log2 m�)TX . Also, the delay to
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generate x0 from the shift register L is T ′′ = TA+(�log2(m − 1)� + �log2 n�)TX .
Therefore, the total delay to generate c is TX + max(T ′, T ′′) which is equal to
TA + max(T1, T2) and the proof is complete.

4.5 Comparison

Table 2 shows the comparison of the proposed SOBS PB multiplier with the
traditional LSB-first and MSB-first ones presented in Section 2 in terms of time
and space complexities for irreducible ω-nominal and trinomial. To illustrate the
differences between the complexities of the proposed multiplier with the ones of
other multipliers, the complexities for irreducible trinomials are also tabulated
in this table. The number of XOR gates γ in this table is obtained for the
irreducible trinomial P (x) = xm + xk + 1, 1 ≤ k < m

2 . For the GF (2233) field
recommended by NIST, one can use m = 233, k = 74, and T3 = TA + 10TX in
this table. As seen from this table, the proposed SOBS multiplier has the lowest
latency at the expense of longer critical path and more area requirement.

Table 2. Comparison of multipliers in terms of time and space complexities for ir-
reducible ω-nomial and trinomial, where γ = (n + 1)(m − 1) + ω − 2 −

∑n−1
i=1 ri,

T1 = (1 + �log2(ω − 1)� + �log2 m�) TX , T2 = (1 + �log2(m − 1)� + �log2 n�) TX , and
T3 = TA + (2 + �log2 m�)TX

Multiplier Latency Critical path # AND # XOR # 1-bit Register

P (x) = xm +
∑ω−2

i=1 xti + 1, 1 ≤ t0 < t1 < · · · < tω−2

LSB-first m TA + TX m m + ω − 2 3m

MSB-first m TA + TX m m + ω − 2 3m

SOBS 1 TA + max(T1, T2) 2m − 1 γ 3m + tω−2 − 1

P (x) = xm + xk + 1, 1 ≤ k < m
2

LSB-first m TA + TX m m + 1 3m

MSB-first m TA + TX m m + 1 3m

SOBS 1 T3 2m − 1 2m + k − 2 3m + k − 1

5 Conclusions

A new serial-output bit-serial multiplier structure for general irreducible polyno-
mials has been proposed. The proposed multiplier can be used for applications,
such as, RFID tags, where the field size and irreducible polynomial are fixed.
We have obtained the complexities of the proposed multiplier and compared
them with the ones of the LSB-first and the MSB-first multipliers. Unlike the
parallel-output multipliers which require m clock cycles for the latency, the pro-
posed serial-output bit-serial multiplier has the latency of one clock cycle. This is
achieved at the expense of longer critical path delay and more area requirement.

It is interesting to note that by connecting the output of the proposed mul-
tiplier to the serial-input of the LSB-first multiplier, one can obtain a hybrid
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structure which performs two multiplications together. The results of such a hy-
brid structure are available in parallel after m clock cycles and it has practical
applications for fast cryptographic computations.

The proposed bit-serial multiplier can be extended to obtain a new serial-
output digit-serial multiplier by replicating the BTX, IP(m), and IP(m − 1)
blocks in Figure 2(a). The latency of such a digit-serial multiplier is one and it
generates K bits of the multiplication in each clock cycles with the total

⌈
m
K

⌉
clock cycles for the entire multiplication.
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Abstract. This paper proposes compact hardware (H/W) implemen-
tation for the MISTY1 block cipher, which is an ISO/IEC18033 stan-
dard encryption algorithm. In designing the compact H/W, we focused
on optimizing the implementation of FO/FI functions, which are the
main components of MISTY1. For this optimization, we propose two
new methods; reducing temporary registers for the FO function, and
shortening the critical path for the FI function. According to our logic
synthesis on a 0.18-μm CMOS standard cell library based on our pro-
posed method, the gate size is 3.95 Kgates, which is the smallest as far
as we know.

Keywords: Block cipher, MISTY1, Hardware, ASIC, Compact Imple-
mentation.

1 Introduction

The MISTY1 64-bit block cipher [1] is an ISO/IEC18033 [2] standard encryption
algorithm. MISTY1 can be implemented in various ways in order to meet differ-
ent performance requirements, such as compact design or high-speed preference.
So, MISTY1 is suitable for embedded systems, such as mobile phones.

A number of MISTY1 ASIC implementations have been studied [3] [4] [5]. In [3]
[4], compactMISTY1architectureswere designed.To realize compact design, these
architectures use the only one FI function module repeatedly, and use S-boxes that
are implemented in combinational logic. However, these architectures do not use
common methods for the compact design, in which extended keys are sequentially
generated in the encryption/decryption process in order to limit the register size of
extended keys to 16 bits. Furthermore, they do not optimize the implementation
method of the FO/FI function in consideration of using one FI function module.
This optimization is very significant for the compact MISTY1 H/W.

In this paper, we focus on four strategies for the compact design. First, we
choose to implement the H/W by using one FI function. Secondly, we use S-boxes
implemented in the combinational logic. Thirdly, extended keys are generated
sequentially in our H/W. Fourthly, we optimize the implementation of the FO/FI
function. To realize this optimization, we propose two new methods. One reduces
the temporary register for the FO function by the optimization of an FO function

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 315–330, 2008.
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structure. Another shortens the critical path around the FI function by reducing
the number of XOR gates in the critical path.

With our strategies, we synthesize MISTY1 H/W by a 0.18-μm CMOS stan-
dard cell library (CS86 technology[18]), and the performance evaluations are
shown. As a result, an extremely small size of 3.95 Kgates with 71.1 Mbps
throughput is obtained for our MISTY1 H/W. This is the smallest MISTY1
H/W, as far as we know.

Our proposed methods can be applied not only to MISTY1 but also to
MISTY2 [1] and KASUMI [6], which have a similarly structured MISTY1 FO
function. In [7], the compact H/W of KASUMI is proposed. A further gate count
reduction of the KASUMI H/W can be realized by using our proposal.

The rest of the paper is organized as follows. A survey of related work is found
in Chapter 2. Chapter 3 explains the algorithm of MISTY1. Our strategy for the
smallest H/W of MISTY1 is discussed in Chapter 4. Chapter 5 proposes two new
methods for an effective H/W implementation of MISTY1. Chapter 6 presents
evaluation results for gate counts and the performance of our H/W, compared
with previous results. Finally, we conclude with a summary and comment on
future directions in Chapter 7.

2 Previous Work

A large number of MISTY1 H/W implementation evaluations on FPGA and
ASIC have been studied.

The implementation on FPGA platform was reported in [8] [9] [10] [11] [12]
[13] [14]. In [8] [9] [10], designers of MISTY1 have implemented MISTY1 H/W
based on three types of H/W architectures; the fully loop unrolled architecture,
the pipeline architecture, and the loop architecture. The two former architec-
tures allow high processing speed, while the latter architecture allows a compact
circuit. The implemented H/W based on the loop architecture uses a large 128-
bit register for extended keys. In [11] [12], the implemented H/W was aimed not
at compact design but high H/W efficiency, and it had an encryption function
without a decryption function. In [13] [14], the implemented H/W had both
the encryption and decryption function. Also, RAM blocks embedded in the
considered FPGA devices were used for the implementation of S-boxes, so the
implemented H/W realized higher H/W efficiency.

Implementation on the ASIC platform was reported in [3] [4] [5]. In [3] [4],
developers of MISTY1 implemented and evaluated MISTY1 H/W. In particular,
the research purpose in [4] is to reduce the gate count, and the implementation
methods of FO/FI functions are well-studied. However, the gate size of their
H/W is not small enough because one large 128-bit register is used for the
extended key. The H/W performances of various block ciphers including MISTY1
are compared in [5]. In [5], the MISTY1 H/W is implemented straightforwardly
based on the cipher specification. S-boxes are implemented by a lookup table
in consideration of the fairness among ciphers, and a 128-bit register is used for
extended keys, so the gate count of the implemented H/W is not small.
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3 MISTY1

Figure 1 shows the nested structure of MISTY1 excluding the key scheduler [1].
MISTY1 encrypts a 64-bit plaintext using a 128-bit secret key. MISTY1 has the
Feistel network with a variable number of rounds n including FO functions and
FL/FL−1 functions. Since n = 8 is recommended in [1], we set n = 8 in the rest of
this paper. The FOi(1 ≤ i ≤ 8) function uses a 48-bit extended key KIi and a 64-
bit extended key KOi. The FLi(1 ≤ i ≤ 10) function is used in the encryption,
meanwhile the FL−1

i function is used in the decryption with a 32-bit extended
key KLi. In Fig. 1, 16-bit KLi1 and KLi2 are the left and right data of 32-bit
KLi, respectively. The FOi function has three FI functions FIij(1 ≤ j ≤ 3).
Here, KOij(1 ≤ j ≤ 4) and KIij(1 ≤ j ≤ 3) are left j-th 16-bit data of KOi and
KIi, respectively. The FI function uses the 7-bit S-box S7 and the 9-bit S-box
S9. Here, the zero-extended operation is performed to 7-bit blocks by adding
two ‘0’s. The truncate operation truncates the two most significant bits of a
9-bit string. KIij1 and KIij2 are the left 7 bits and the right 9 bits of KIij ,
respectively. Here, the key scheduler of MISTY1 is explained. Ki(1 ≤ i ≤ 8) is
the left i-th 16 bits of a 128-bit secret key. K ′

i(1 ≤ i ≤ 8) corresponds to the
output of FIij where the input of FIij is assigned to Ki and the key KIij is set
to K(i mod 8)+1. The assignment between the 16-bit secret/extended keys Ki, K ′

i

and the 16-bit round key KOij , KLij , KIij is defined in Table 1, where i equals
(i − 8) when (i > 8).

Table 1. The assignment between Ki, K′
i and KOij , KLij , KIij

Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Secret/ Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
(odd i) K′

i+1
2 +6

(odd i)

Extended K′
i
2+2 (even i) K′

i
2 +4 (even i)

4 Four Strategies for the Compact Design

4.1 The Number of the FO/FI Function Module

The FO/FI function is the main component of MISTY1, so the FO/FI function
is one of the most influential factors for gate counts of MISTY1 H/W. Thus,
it is important to decide the number of the FO/FI function module. MISTY1
has a nested structure including FO functions and FL/FL−1 functions, so the
number of the FO/FI function module can be variously selected. When MISTY1
is implemented with a pipelined H/W architecture, eight FO function modules
are performed in the same clock cycle. This is suitable for high-speed imple-
mentation, but leads to a large circuit size. Therefore, we choose to implement
only one FI function module for the compact design. That is, the FO function
is executed in three clock cycles by repeatedly using one FI function module.
This architecture leads to low speed processing, but is suitable for compact
implementation.
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Fig. 1. MISTY1 encryption algorithm

4.2 Extended Key Generation Method

The generation method of extended keys in MISTY1 is classified into two meth-
ods; called the “register method” and the “on-the-fly method”. It is important
for the compact design to choose between two methods. In the register method,
a 128-bit extended key is generated and stored into a 128-bit register in advance
of the encryption/decryption process, and the required extended key is read di-
rectly from the register. In the on-the-fly method, a 16-bit required extended key
is generated in the encryption/decryption process sequentially. The on-the-fly
method is more suitable for the compact design than the register method be-
cause of the 128-bit register. Therefore, we chose the on-the-fly method, which
has not been reported in the existing H/W implementation of MISTY1, but has
been employed in other algorithm implementations, such as AES. That is, all of
the previous architectures of MISTY1 are based on not the on-the-fly method
but the register method. Also, because of the MISTY1 algorithm, the FI function
is used not only in the encryption/decryption process but also in the extended
key generation process. Therefore, we chose the implemented method, in which
one FI function module is shared with these two processes. Thus, both the en-
cryption/decryption process and the extended key generation process cannot be
performed in the same cycle. So, a 16-bit register is required to retain a 16-bit
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extended key generated sequentially. Here, our on-the-fly method requiring a
16-bit register is called the “sequential method”.

4.3 S-Box Implementation Method

The S-box performance of MISTY1, including gate counts, depends on the S-box
implementation method, so it is important for the compact design to discuss
them. The implementation method of two S-boxes (S7 and S9) is considered
as follows. The two S-boxes of MISTY1 have been designed so that they can
be easily implemented in combinational logic as well as by a lookup table [1].
On MISTY1, S-boxes in combinational logic show better performance both in
terms of the area size and the delay time than that by a lookup table [3]. We
confirmed that the same results are obtained when the implemented S-boxes are
synthesized by using a 0.18-μm CMOS standard cell library. Therefore, we used
S-boxes implemented in combinational logic.

4.4 Optimization of FO/FI Function

The proposed H/W uses one FI function module repeatedly. Furthermore, it
is very significant for the smallest MISTY1 H/W to discuss the following two
methods; a concrete implementation method of FO function in three cycles by
using one FI function module, and the method of reducing the gate count of the
FI function itself. In Chapter 5, we propose these two new methods.

5 Proposed Methods for the Compact Design

5.1 Reducing the Temporary Register for the FO Function

When an FO function is executed in three cycles by repeatedly using one FI
function module, an intermediate result in each cycle must be stored into a
register. The FO function transforms 32-bit data, so a 32-bit temporary register
for the intermediate result (i.e., is “temporary register”) is required. We reduced
the size of the temporary register to 16 bits.

The concept of the proposed method is explained by reference to Fig. 2. It
shows the method of dividing an FO function into three cycles. The previous
method is straightforward based on MISTY1 specification. An FO function is
separated horizontally for every cycle in the previous method, so a 32-bit tempo-
rary register is required for left and right 16-bit data. Meanwhile, an FO function
is separated vertically for every cycle in the proposed method. In fact, the output
data from the FI function in Cycle2 is directly XORed with a data register, so
the 16-bit temporary register for the data is reduced by the proposed separation.

The detail and effectiveness of the proposed method is explained in the follow-
ing steps. First, the straightforward architecture based on MISTY1 specification
is explained as “existing method”. Next, the proposed architecture based on the
proposed concept shown in Fig. 2 is explained as “proposed method (a)”. Then,
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Fig. 2. Concept of temporary register reduction

we propose the second proposed architecture, which is maximally optimized
for compact design as “proposed method (b)”. Finally, the gate counts of FI
functions are estimated. By using proposed method (b), the size of the FO
function is estimated to be reduced 17% of the existing method.

Existing Method. The common partition algorithm based on MISTY1 specifi-
cation is shown in Fig. 3 (I) as the existing algorithm. Equation (1) in Appendix
shows each process for three cycles in this algorithm. Let Reg-RH, Reg-RL,
Reg-LH, and Reg-LL be 16-bit registers (called “Feistel data register”), respec-
tively. The Feistel data register means the register for storing intermediate results
for each round plaintext/ciphertext. Also, let Reg-FOR and Reg-FOL be the
16-bit temporary registers, so the total size of temporary registers is 32 bits in
the existing algorithm. Next, the existing architecture based on the existing al-
gorithm is shown in Fig. 3 (II). Note that the registers described in the following
architecture figures include a 2-1MUX. This 2-1MUX can select the value stored
in the register or the value of the external input. The value stored into the reg-
ister can be updated to the selected value. Consequently, two 16-bit registers,
Reg-FOR and Reg-FOL, are required in the existing method.

Proposed Method (a). We discuss the proposed algorithm (a) shown in Fig. 4
(I), which is designed based on the proposed concept shown in Fig. 2. Comparing
Fig. 4 (I) with Fig. 3 (I), the output data from the FI function is directly XORed
with Reg-RH and Reg-RL in Cycle2 in Fig. 4 (I). This makes it possible to
remove a 16-bit temporary register because the output data from the FI function
in Cycle2 does not need to be stored into the temporary register. The proposed
architecture (a) based on the proposed algorithm (a) is shown in Fig. 4 (II).
Equation (2) in Appendix shows each process for three cycles shown in Fig. 4
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(I). Although the proposed architecture (a) shown in Fig. 4 (II) can remove the
16-bit temporary register, there is another issue. The issue is that the number
of MUX operators is increased compared with the existing method, because
the circuit structure differs in every three cycles, which comes from the vertical
separation of the proposed method. Concretely, different values are input into
input1 and input4 in the FI function in three cycles, so the existing architecture
has two 16-bit 2-1MUX, meanwhile the proposed architecture (a) has two 16-bit
3-1MUX. Also, the proposed architecture (a) has a 16-bit 2-1MUX instead of a
16-bit XOR operator located above Reg-RH . This 2-1MUX selects the output
data from the FI function in Cycle2, and the extended key KOi4 in Cycle3. In
other words, the proposed method (a) reduces the 16-bit temporary register, but
increases the 48-bit 2-1MUX compared with the existing method.

Proposed Method (b). The algorithm (b) shown in Fig. 5 (I) aims to reduce
the 2-1MUX increased in the proposed method (a). One of the redundant MUX
operators is a 2-1MUX located above Reg-RH in Fig. 4 (II). If KOi4 is XORed
with Reg-RH without this 2-1MUX, then the 2-1MUX can be removed. To
remove the 2-1MUX, we focused on the input4 in the FI function. KOi4 is input
into the input4 in both Cycle2 and Cycle3 as shown in Fig. 5 (I). That is,
KOi4 is XORed with both Reg-RH and Reg-RL in Cycle2, and KOi4 is XORed
with only Reg-RL in Cycle3, so KOi4 is cancelled on Reg-RL, and XORed with
only Reg-RH finally. This algorithm can remove the 2-1MUX located above
Reg-RH. Moreover, the input4 in both Cycle2 and Cycle3 in this algorithm is
the same value KOi4. Therefore, not 3-1MUX but 2-1MUX is assigned above
the input4 in the proposed method (b). In other words, the proposed method
(b) reduces the 32-bit 2-1MUX compared with the proposed method (a). The
proposed architecture (b) based on the proposed algorithm (b) is shown in Fig.
5 (II). Equation (3) in Appendix shows each process for the three cycles shown
in Fig. 5 (I).

The gate counts of FI functions based on the above three architectures are
estimated as shown Table 2. Let MUX, REG, and XOR be the 2-1multiplexer,
the register, and the exclusive-OR, respectively. We supposed 1-bit 2-1MUX =
3.5 NAND gates, 1-bit REG = 13.5 NAND gates, 1-bit XOR = 2.5 NAND
gates. In the row of MUX in Table 2, the value is based on a 1-bit 2-1MUX.
For example, 16-bit 3-1MUX is regarded as two 16-bit 2-1MUX (= one 32-bit
2-1MUX). From Table 2, the gate count of the FI function based on the proposed
architecture (b) is 17% smaller than the existing architecture.

5.2 Shortening the Critical Path Around an FI Function

MISTY1 has a Feistel network with eight FO functions, and an FO function com-
prises three FI functions. Also, MISTY1 extended key is obtained by using the
FI function. Thus, the performance of any MISTY1 H/W depends on the pro-
cessing speed of the FI function. The proposed method improves the processing
speed, which is important as well as the area size for the compact H/W.
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Table 2. Comparison of gate counts of FI function

Existing Proposed (a) Proposed (b)

# 1-bit MUX 32 80 48

# 1-bit REG 64 48 48

# 1-bit XOR 80 64 64

Total [gate] (†) 1176 1088 976

(†) MUX = 3.5gate/bit (in 2-1MUX) REG = 13.5gate/bit
XOR = 2.5gate/bit
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Fig. 3. Existing method

Figure 6 shows the straightforward and the proposed algorithm of the FI
function. XOR gates under a FI function in a FO function are described in Fig.
6. In Fig. 6, the critical path with two S-boxes S9 in the FI function including
these XOR gates is illustrated by the thick line. The XOR gate into which KIij2
is input in the straightforward algorithm is transferred just below the first zero-
extend operation in the proposed algorithm (Move1). This movement reduces
one XOR gate on the critical path. To guarantee the logic equivalence in both
algorithms of the FI function, the KIij1 input in the straightforward algorithm is
modified to the (KIij1 XOR KIij2) input (Move2). Here, the two most significant
bits of KIij2 are truncated, and XORed with KIij1. Next, the 9-bit XOR gate
under the FI function is transferred just below the second zero-extend operation
(Move3). In other words, the proposed algorithm reduces two XOR gates on the
critical path in the FI function, and realizes higher processing speed of the FI
function almost without the gate counts increase.
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6 ASIC Performance Evaluation

6.1 Structure of Implemented H/W

The implemented H/W comprises two circuits; the interface circuit(called the
“I/F circuit”) and the core circuit. The I/F circuit comprises a plaintext/
ciphertext register and a secret key register. The core circuit comprises
FI/FL/FL−1 function, selectors, counter circuit, and various registers (four 16-
bit Feistel data registers, 16-bit temporary register, and 16-bit extended key
register). The core circuit has only one FI function module, and the module is
shared with the extended key generation process and the encryption/decryption
process. Also, the core circuit has a 16-bit temporary register because of the pro-
posed method, and has a 16-bit small extended key register due to the sequential
method. By connecting the core circuit to the I/F circuit, MISTY1 H/W can
be implemented as a VLSI chip. The block structure of the I/F circuit and the
core circuit is shown in Fig. 7.

The implemented H/W generates a 64-bit ciphertext (plaintext) from a 64-
bit plaintext (ciphertext) in 60 clock cycles. The details are as follows. The data
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input and output requires 2 cycles. The encryption/decryption processes in FO
and FL/FL−1 function require 24 cycles and 10 cycles, respectively. The extended
key generation process in the FI function requires 3 (cycles) × 8 (rounds) = 24
cycles, because an extended key generated by using the FI function is input into
FL/FL−1 function in the same cycle.

6.2 Comparison of Our MISTY1 H/W Results

This section evaluates the ASIC performance of the proposed H/W based on the
structure shown in Section 6.1. The evaluation environment is as follows.

H/W description language. Verilog-HDL
Design library. Fujitsu 0.18-μm CMOS standard cell library (CS86 technology

[18])
Logic synthesizer. Design Compiler 2006.06-SP5-1
Synthesis condition. Worst case condition (Supply voltage: 1.65V, Junction

temperature: 125̊ C)

In this evaluation, the proposed H/W is not based on scan design, and is synthe-
sized with the Design Compiler with size optimization and ungroup command.
Also, one gate is equivalent to 2-1NAND gate.

Table 3 shows the ASIC performance of three types of the proposed H/W; the
core circuit (Proposed 1), the core circuit with the secret key register
(Proposed 2), and the core and I/F circuit (Proposed 3). In Table 3, “Block
Structure” in the last column means the above-mentioned three types of the
proposed H/W. Also, “H/W efficiency” means the throughput per gate, so the
implementation with higher throughput and smaller gate counts show higher
values. In this paper, the H/W efficiency is defined as the throughput divided
by area size by reference to [5]. From Table 3, it is confirmed that a size
of 3.95 Kgates with 71.1 Mbps throughput is obtained for our MISTY1 core
(Proposed 1).
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Table 3. H/W performance comparison in ASICs

Source Process Cycle S-box Freq. Thr’put Area Efficiency Block
[μm] [Mhz] [Mbps] [Kgates] [Kbps/gates] Structure

Proposed 1 0.18 60 Logic 66.7 71.1 3.95 18.0 Core

Proposed 2 0.18 60 Logic 66.7 71.1 4.79 14.9 (‡)
Proposed 3 0.18 60 Logic 66.7 71.1 5.29 13.4 Core + I/F

[4] 0.60 35 (†) 29.9 66.3 8.099 8.19 Core

[5] 0.18 30 Table 92.6 197.5 9.3 21.3 (‡)
[15] 0.18 (†) (†) (†) 70.2 5.39 13.0 (†)
[16] 0.18 35 (†) (†) 78.4 6.10 12.85 (†)

(†) Unknown, (‡) Core + Secret Key Register

6.3 Further Comparison

This section compares the performance of existing and proposed architectures.
The lower rows in Table 3 show the performance of existing architectures re-
ported in [4] [5] [15] [16]. The implemented architectures shown in [4] [5] are
based on the register method and have the only one FI function module. The
core circuits in [4] [5] include a 128-bit extended key register. Meanwhile, the
information of implementation methods is not clear in [15] [16]. From Table 3,
our H/W is implemented with the smallest size and good efficiency.

Because the synthesis condition, such as design library, S-box implementation
method, and Block Structure, are different from one another, it might be diffi-
cult to fairly compare the performance of each implementation shown in Table
3. In the following evaluation, both MISTY1 H/W based on the available RTL
code [17] in [5] and the proposed H/W are synthesized under the same synthesis
condition in order to compare performance fairly. These two architectures are
based on the same implemented method except for two differences, one is to
apply the proposed methods or not, the other is the extended key generation
method. The following evaluation compares the performance of three imple-
mented architectures. First, implementation (a) is the MISTY1 H/W based on
the RTL code [17], which is implemented straightforwardly based on MISTY1
specification. Second, implementation (b) is obtained from the RTL code [17],
where the S-box code was changed from the lookup table to combinational logic.
Finally, implementation (c) is our MISTY1 H/W (Proposed 2 in Table 3), which
is the core circuit with a secret key register, because implementation (a) and (b)
have the only secret key register. Here, implementation (b) and (c) are based
on the same implementation methods of S-boxes and Block Structure, so the
performance of both implementations can be compared fairly.

Figure 8 shows a comparison of the gate counts of the above three imple-
mentations under various delay requirements. From Fig. 8, the gate count of
implementation (c) is about 2K gates smaller than that of implementation (b).
The reasons are as follows. First, implementation (b) has the 128-bit extended
key register due to the register method, while implementation (c) has the 16-bit
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Fig. 9. Comparison of the H/W efficiency under various delay requirements

small one due to the sequential method. Second, implementation (c) has reduced
the temporary register due to our proposal described in Section 5.1.

Next, Fig. 9 shows a comparison of the H/W efficiency of the above three
implementations under various delay requirements. From Fig. 9, the H/W ef-
ficiency of implementation (c) is lower than that of implementation (b). This
is mainly because implementation (b) is based on the register method, while
implementation (c) is based on the sequential method.
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Through the above evaluation, it is confirmed that the H/W efficiency of
our MISTY1 H/W is lower than implementation (b), but is better than that
of the other reports. The proposed H/W realized the smallest-area of less than
4K gates, which is about 2K gates smaller than the area of straightforward
implementation. This is because our MISTY1 H/W is based on the sequential
method and our proposed methods described in Section 5.1, 5.2. This paper aims
to implement the smallest H/W of MISTY1, so it is significant to maximally
reduce the gate count even though the H/W efficiency is not the highest.

7 Conclusion

In this paper, we presented the smallest H/W of the MISTY1 64-bit block cipher,
and proposed two new methods. The first method reduced the temporary register
for the FO function from 32 bits to 16 bits. The second method shortened the
critical path around the FI function by the reduction of the number of XOR
gates on the critical path. The implemented MISTY1 H/W was synthesized by
a 0.18-μm CMOS standard cell library, then an extremely small size of 3.95
Kgates with 71.1 Mbps throughput was obtained for our MISTY1 core circuit.
In this paper, it was first shown that MISTY1 H/W is implemented with a size of
less than 4K gates. Our two proposed methods described in Section 5.1, 5.2 can
be applied to MISTY2 [1] and KASUMI [6]. Future work will include discussion
on the smallest H/W implementation of MISTY2 and KASUMI by using the
proposed methods.
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Appendix

Existing Method

Cycle1 : Reg-FOR = FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

Reg-FOL = Reg-LL

Cycle2 : Reg-FOR = FI(Reg-FOL ⊕ KOi2) ⊕ Reg-FOR

Reg-FOL = Reg-FOR

Cycle3 : Reg-RH = Reg-RH ⊕ (Reg-FOR ⊕ KOi4)
Reg-RL = Reg-RL ⊕ FI(Reg-FOL ⊕ KOi3) ⊕ Reg-FOR (1)

Proposed Method (a)

Cycle1 : Reg-FO = FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

Cycle2 : Reg-RH = Reg-RH ⊕ FI(Reg-LL ⊕ KOi2) ⊕ Reg-FO

Reg-RL = Reg-RL ⊕ FI(Reg-LL ⊕ KOi2) ⊕ Reg-FO

 http://global.mitsubishielectric.com/bu/security/rd/rd01_01d.html 
 http://www.aoki.ecei.tohoku.ac.jp/crypto/items/JWIS2007.zip
http://edevice.fujitsu.com/fj/DATASHEET/e-ds/e620209.pdf
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Cycle3 : Reg-RH = Reg-RH ⊕ (KOi4 ⊕ 0)
Reg-RL = Reg-RL ⊕ FI(Reg-FO ⊕ KOi3) ⊕ 0 (2)

Proposed Method (b)

Cycle1 : Reg-FO =
{
FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Reg-RH = Reg-RH ⊕ {

FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Reg-RL = Reg-RL ⊕ {

FI(Reg-LH ⊕ KOi1) ⊕ Reg-LL

}
Cycle2 : Reg-RH = Reg-RH ⊕ {

FI(Reg-LL ⊕ KOi2) ⊕ KOi4
}

Reg-RL = Reg-RL ⊕ {
FI(Reg-LL ⊕ KOi2) ⊕ KOi4

}
Cycle3 : Reg-RH = Reg-RH

Reg-RL = Reg-RL ⊕ {
FI(Reg-FO ⊕ KOi3) ⊕ KOi4

}
(3)
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Abstract. Bit-slicing is a non-conventional implementation technique
for cryptographic software where an n-bit processor is considered as a
collection of n 1-bit execution units operating in SIMD mode. Particu-
larly when implementing symmetric ciphers, the bit-slicing approach has
several advantages over more conventional alternatives: it often allows
one to reduce memory footprint by eliminating large look-up tables, and
it permits more predictable performance characteristics that can foil time
based side-channel attacks. Both features are attractive for mobile and
embedded processors, but the performance overhead that results from
bit-sliced implementation often represents a significant disadvantage. In
this paper we describe a set of light-weight Instruction Set Extensions
(ISEs) that can improve said performance while retaining all advantages
of bit-sliced implementation. Contrary to other crypto-ISE, our design is
generic and allows for a high degree of algorithm agility: we demonstrate
applicability to several well-known cryptographic primitives including
four block ciphers (DES, Serpent, AES, and PRESENT), a hash function
(SHA-1), as well as multiplication of ternary polynomials.

1 Introduction

In some sense, the provision of cryptographic schemes to secure information be-
ing communicated or stored is a compromise: higher levels of security necessitate
higher levels of computational overhead. Given this fact, the study of low-cost
implementation techniques that improve the efficiency and/or memory footprint
of cryptographic schemes remains an ongoing research topic. In this context one
can consider a spectrum of approaches. At one extreme are software-based tech-
niques to manipulate algorithms so they are more efficient or more easily map to
the capabilities of the host platform; at the other are hardware-based techniques
which re-design or extend the platform to better suit algorithms. Somewhere in
this design space is the technique of identifying and implementing Instruction
Set Extensions (ISEs) [16,27,35]. The premise is that, after a careful workload
characterisation, it is possible to identify a small set of operations that dominate
the execution time of a software implementation. By supporting these specific
operations using additional or modified hardware and exposing their behaviour
to the programmer via the Instruction Set Architecture (ISA), performance can

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 331–345, 2008.
c© International Association for Cryptologic Research 2008
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be significantly improved. This is often possible with only minor penalties in
terms of datapath disruption and logic overhead; ideally a generic ISE is more
attractive than one which is suited for use in only a single algorithm.

The design of custom instructions to support the execution of cryptographic
workloads has been actively researched in the recent past. Previous work on
cryptography extensions for general-purpose processors covered both public-key
[2,16,30] and secret-key algorithms [9,15,8]. An example for the former are the
Cryptography Instruction Set (CIS) extensions to the SPARC V8 architecture
[17]. The CIS extensions consist of only six custom instructions, but allow one
to accelerate the full range of public-key algorithms standardised in IEEE 1363
[20]; these include RSA, DSA, Diffie-Hellman, as well as elliptic curve schemes
over prime and binary fields. Therefore, the CIS extensions are referred to as
domain-specific extensions, in contrast to application-specific extensions like the
ones described in [2,30], which support just a single public-key algorithm. The
idea of domain-specific extensions is based on the observation that virtually all
public-key algorithms of practical importance use either a multiplicative group
(Z∗

p or Z
∗
n), a prime field, or a field of characteristic 2 as underlying algebraic

structure. Thus, by designing custom instructions that accelerate the arithmetic
of large integers and binary polynomials, it is possible to support a wide range
of public-key cryptosystems.

Previous work on optimised architectures for secret-key cryptography consid-
ered the design Application-Specific Instruction set Processors (ASIPs) and the
integration of custom instructions into general-purpose processors. Most of the
published instructions are optimised for a single secret-key algorithm such as
DES [12] or AES [4,13,35]. Among the few exceptions are the instruction sets
of CryptoManiac [36], MOSES [32,33], and PAX [14], which were designed with
the objective of more general applicability. CryptoManiac’s architecture consists
of a conglomeration of different sets of custom instructions, each set crafted for a
specific algorithm based on its performance-critical core functions. Unfortunate-
ly, the design of custom instructions for a whole domain of algorithms is much
harder for secret-key cryptography than for public-key cryptography, mainly due
to the large number of different design strategies and underlying basic opera-
tions: instructions for accelerating the execution of one secret-key algorithm are
in most cases useless for other algorithms.

Look-up tables are a generic and low-cost processor extension to increase the
performance of various classes of applications, including secret-key algorithms
[38]. These look-up tables can be configured to implement different dataflow
subgraphs depending on the application being executed. Using this mechanism
reduces the latency of the subgraph’s execution and the number of temporary
values that need to be stored to the register file. In [29], Patterson demonstrated
the merits of this approach taking Serpent as example, whereby he achieved a
throughput of 10 Gbit/sec on an FPGA implementation.

In this paper we introduce an ISE which can be used to accelerate a range
of cryptographic algorithms that operate on data in a bit-oriented (rather than
word-oriented) manner. In particular, we consider bit-sliced algorithms [5]. The
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exemplar use of bit-slicing is given by Biham, who extracted a 5-fold performance
gain from DES [5]. However, beyond pure performance, one can identify another
more subtle advantage from the general approach. By, for example, eliminating a
(potentially very large) table used to represent S-box content, a typical bit-sliced
implementation will have a smaller data memory footprint; despite the fact that
the code memory footprint may slightly increase, the overall effect is usually a net
gain. Furthermore, elimination of such tables also eliminates the need to execute
instructions that access them. Depending on the exact memory hierarchy, this
can result in (more) predictable, data-independent execution and thus prevent
cache-based side-channel attacks [7,28]. Our proposed ISE capitalises on these
significant advantages of bit-sliced implementation while further improving their
performance, a factor which is often perceived as a disadvantage.

We organise the rest of this paper as follows. In Section 2 we recap on the
concept of bit-slicing and introduce the design of our ISE and the host platform
it is embedded into. We then use Section 3 to evaluate the ISE, demonstrating
its generic nature by presenting application in six different case studies; in each
case we are able to improve performance and reduce memory footprint versus
an implementation on the same platform without the use of our ISE. Finally, in
Section 5 we conclude and present some areas for further work.

2 ISE Definition

2.1 Bit-Sliced Implementation

Imagine a scalar processor with a w-bit word size, let xi denote the i-th bit
of a machine word x where i is termed the index of the bit. Such a processor
operates natively on word-sized operands. For example, with a single operation
one might perform addition of w-bit operands x and y to produce r = x + y,
or component-wise XOR to produce ri = xi ⊕ yi for all 0 ≤ i < w. This ability
is restricted however when an algorithm is required to perform some operation
involving different bits from the same word. For example, one might be required
to combine xi and xj , where i �= j, using an XOR operation in order to compute
the parity of x. In this situation one is required to shift (and potentially mask)
the bits so they are aligned at the same index ready for combination through a
native, component-wise XOR. The technique of bit-slicing, proposed by Biham
for efficient implementation of DES [5], offers a way to reduce the associated
overhead. Instead of representing the w-bit value x as one machine word, we
represent x using w machine words where word i contains xi aligned at the same
fixed index j. As such, there is no need to align bits ready for use in a component-
wise XOR operation. Additionally, since native word-oriented logical operations
in the processor operate on all w bits in parallel, one can pack w different values
(say x[k] for 0 ≤ k < w) into the w words and proceed using an analogy of a
SIMD-style parallelism. Conversion to and from a bit-sliced representation can
represent an overhead but this can be amortised if the cost of computation using
the bit-sliced values is significant enough.
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2.2 CRISP

A quarter century after many design decisions and assumptions were made by the
pioneers of RISC, we are still using largely similar processor designs. One expects
that such decisions were initially made using a mix of research and common sense
based on prevailing technologies of the time. Despite the huge success of these
assumptions, the technology landscape has now changed radically: the types
of program we execute today are different and many of the constraints which
guided initial thinking have disappeared. This is certainly true of cryptographic
workloads as evidenced by previous work on application specific processors such
as CryptoManiac [36] and Cryptonite [8].

CRISP (short for Cryptographic RISc Processor) represents an attempt to
reassess some of these design decisions in the context of cryptography. The aim
is to produce a processor design which is general purpose, but unencumbered
by the constraints of history. For this paper, it suffices to consider CRISP as a
conventional five-stage pipeline which, in contrast with the more conventional
3-address form, allows 6-address instructions. There are 16 general-purpose reg-
isters; this enables instructions to be encoded using a fixed 32-bit format. The
philosophy is that, although this approach might, for example, dictate a lower
clock frequency, central operations are more naturally described. Let the i-th
entry in the general-purpose register file be denoted by GPR[i], the datapath
width be w and xj denote the j-th bit of some w-bit word x. A representative
example of said philosophy is the instruction for addition which uses three source
operands (a, b and c) and two target operands (p and q). A conventional proces-
sor would maintain, and specify instruction for manipulating, a carry-flag; since
an instruction can produce two results, CRISP treats the carry-flag as a general
purpose register. The addition is therefore specified as

ADD p, q, a, b, c �→
t = (GPR[a] + GPR[b]) + GPR[c]
GPR[p] = tw−1...0
GPR[q] = t2w−1...w

such that the three source operands are added together and low and high w-bit
halves of the result are stored using the two target operands p and q. The clear
disadvantage of such an instruction is higher latency; the advantages include
removal for special-case management of the carry-flag and higher instruction
throughput. We are aiming to improve the instruction throughput with a level
of overhead somewhere between single issue and much more expensive multiple
issue. Although the 6-address instruction format of CRISP is unconventional, one
can imagine mechanisms to specify similar instructions in conventional 3-address
architectures. One example is the use of SIMD instructions that pack multiple
operands into registers addressed as one unit. Another approach is to serialise
the operand transfers from/to the register file, which effectively relaxes the port
constraints of instruction set extensions [31].

Within the general CRISP design we include three instructions which target
bit-sliced implementation of cryptography. The processor includes two special
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purpose registers LUT0 and LUT1, which are used as 4-input, 1-output Look-Up
Tables (LUTs). Configuration of the LUTs is performed by two instructions

CLUT0 a �→ LUT0i = ai

CLUT1 a �→ LUT1i = ai

each of which load the given LUT with a 16-bit immediate operand a, essentially
configuring the LUTs. Use of the LUTs is performed with a third instruction

ULUT p, q, a, b, c, d �→ GPR[p]i = LUT0[8 · ai + 4 · bi + 2 · ci + 1 · di]
GPR[q]i = LUT1[8 · ai + 4 · bi + 2 · ci + 1 · di]

which takes the i-th bit of each source operand and concatenates them to form
an index into each LUT; the LUT output forms the i-th bit of the result, two
of which are computed in parallel.

To illustrate the benefit of our approach, we use the dataflow subgraph in
Figure 1(a) as example, which takes four inputs and produces two outputs via a
series of simple logical instructions. On a general-purpose RISC processor, the
cost of evaluating this subgraph is exactly six instructions as depicted in Figure
1(b). However, this form of subgraph can be implemented naturally using the
LUTs described above; Figure 1(c) shows that the corresponding implementation
consists of only two CLUT instructions and one ULUT instruction.

Since many important block ciphers rely on the efficient computation of bit-
level permutations, we include architectural support for this type of operation
within our design. Extensive research in this area has been conducted by Lee et
al. [23,37,34]. In [23], Lee et al. described how a combination of GRP and SHIFT
PAIR instructions can be used to perform arbitrary bit permutations. The GRP
instruction is defined as follows

GRP Rs, Rc, Rd

It moves the bits in the source register Rs to the most significant bit positions
and to the least significant bit positions according to the control bits in Rc. On

AND XOR

ANDXOR

OROR

r1 r3r2 r4

r5 r6

(a)

AND r5, r1, r2
XOR r6, r3, r4
OR r5, r5, r3
OR r6, r6, r2
XOR r5, r5, r6
AND r6, r6, r5

(b)

CLUT0 14084
CLUT1 51448
ULUT r5, r6, r1, r2, r3, r4

(c)

Fig. 1. An example dataflow subgraph (a) with the corresponding pseudo assembly
code for a basic RISC machine (b) and for a LUT-based implementation (c)
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Fig. 2. GRP instruction [23]
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Fig. 3. Shift Pair instruction [23]

an n-bit processor, no more than log(n) GPR instructions are required to perform
an arbitrary n-bit permutation. Figure 2 illustrates the functionality of the GRP
instruction in case of 8-bit registers. The SHIFT PAIR instruction is instrumental
in supporting permutations that cross word boundaries. It concatenates two
source registers and separates the contiguous bit regions into two destination
registers as depicted in Figure 3.

3 Performance Evaluation

We implemented an early prototype of the CRISP processor using the Processor
Designer tool-chain from CoWare. The tool-chain is based on the Language for
Instruction Set Architectures (LISA), which allows one to describe a processor
architecture at a high level of abstraction; the description allows automatic gen-
eration of an instruction set simulator, a complete suite of software development
tools, and synthesisable VHDL code. As such, although the results are often less
optimal than a hand-written alternative, the tool-chain allows one to quickly
explore the ISE design space in order to identify and assess the relative merits
of different custom instructions.

Starting with a LISA description of the CRISP 5-stage pipeline, we equipped
the processor with Harvard-style data and instruction RAMs, each of 4KB, and
synthesised the generated VHDL code using Xilinx ISE 7.3. Our experimental
platform was an ADM-XRC-II PCI card which hosts a Xilinx Virtex-II FPGA
(XC2V6000-4FF1152) device with 33, 000 slices. The synthesis report indicated
that the processor core can operate at a maximum clock frequency of 30 MHz
and occupies a total of roughly 9, 500 slices. The integration of our proposed
LUTs has no negative impact on the critical path delay and requires about 280
slices. In order to demonstrate correct in-circuit behaviour, we augmented the
processor core to include an interface with Xilinx Chipscope. In terms of both
performance and area we posit that there is room for improvement: the automat-
ically generated VHDL code is not ideal in a number of cases. For instance, the
register file and RAM components are implemented as distributed RAM instead
of dedicated block RAM; this leads to a significant overhead in terms of slices
occupied by RAM resources and to long routing delays. Moreover, the tool-chain
is not able to identify exclusive read operations to the register file from different
instructions; it generates a total of 20 read ports although at most four would
be sufficient. As a consequence, the critical path of the design lies in this specific
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part of the implementation and not in the ALU which would allow an operating
frequency of nearly 50 MHz. We plan to address these issues at a later stage
of the project when the definition of the instruction set architecture has been
finalised.

Regardless of the implementation quality, our functional processor model is
sufficient to accurately assess the merits of our LUT-based ISE. We developed
six case studies which represent different cryptographic primitives with different
demands; the results presented below identify each algorithm, the potential for
LUT-based acceleration within the algorithm, and compare implementation re-
sults (in terms of performance and memory footprint) versus a non-LUT-based
alternative. It should be mentioned that bit-sliced ciphers use a non-traditional
format to represent data; hence, the format conversion from standard into the
bit-sliced domain introduces additional overhead before and after the encryption
operation. However, in a closed environment the data can be kept in bit-sliced
representation and so the need for a data conversion is omitted. In the following
performance evaluation we do not consider the overhead caused by conversion
to and from bit-slice representation.

3.1 SHA-1

SHA-1 is a cryptographic hash function which was designed and published by
the NIST in 1995. Although SHA-1 is today considered to be cryptographically
insecure, it is still employed in a vast range of standard applications and protocols
such as SSL, SSH, and IPSec. The algorithm accepts an arbitrary length input
message, split into 512-bit blocks, and produces a 160-bit message digest. The
state of computation is held in five 32-bit chaining variables a, b, c, d and e which
the algorithm processes in four rounds each composed of twenty operations. A
different nonlinear function is used in each of the four rounds; for instance the
nonlinear function for the third round is given by

f3(a, b, c) : (a ∧ c) ∨ ((a ∨ b) ∧ c).

Using a conventional RISC processor the evaluation of this function takes four
instructions; with our LUT-based approach the same function can be realised
with one ULUT instruction plus one initial CLUT instruction to configure the LUT
before the round starts. In Table 1, we compare results using our LUT-based
approach with the performance of SHA-1 on the same CRISP pipeline without
using LUTs; the ISE permits a performance improvement by a factor of 1.11
while code memory footprint is reduced by 21%.

Table 1. Implementation results for SHA-1 compression function

Implementation Performance (cycles) Code footprint (bytes)

Standard SHA-1 1602 2620
SHA-1 with LUTs 1441 2060
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3.2 Multiplication of Ternary Polynomials

Fast arithmetic in finite fields of characteristic three is important for efficient
pairing evaluation using particular parameterisations. In algorithms for pairing
evaluation, multiplication in some extension field represents the time-critical
operation; the performance of this operation in turn depends on the efficiency
of the underlying base field arithmetic.

Using a polynomial basis representation, one can hold an element a ∈ F3n as
two n-element bit-vectors aH and aL [19]. Using aH

i and aL
i to denote the i-th

bit of aH and aL, respectively, the vectors aH and aL are constructed from a
such that for all i

aH
i = ai div 2

aL
i = ai mod 2.

That is, aH and aL are a bit-sliced representation of the coefficients of a where
aH and aL hold the high and low bits of a given coefficient, respectively. Given
such a representation, one can construct component-wise addition using logical
operations. For example, a component-wise addition ri = ai + bi of two field
elements a and b is specified by

rH
i = (aL

i ∨ bL
i ) ⊕ t

rL
i = (aH

i ∨ bH
i ) ⊕ t

where t = (aL
i ∨ bH

i ) ⊕ (aH
i ∨ bL

i ).
Using a conventional RISC processor, the cost of each component-wise addi-

tion is seven logical operations; with our LUT-based approach the same addition
can be collapsed to obtain the high and low bits with two CLUT instructions and
one ULUT instruction. To demonstrate the impact of this, we implemented the
comb method for field multiplication in F397 (the characteristic-two analogue is
detailed in [18, Algorithm 2.35]). A summary of the results is shown in Table 2;
in comparison to the CRISP processor without LUTs, the LUT-based approach
improves performance by a factor of 1.51 while code memory footprint is reduced
by 33%.

Table 2. Implementation results for multiplication in F397

Implementation Performance (cycles) Code footprint (bytes)

Standard Multiply 8652 2656
Multiply with LUTs 5750 1784

3.3 Serpent

Serpent was one of five finalists in the AES competition; it is a 32-round substi-
tution-permutation block cipher that operates on 128-bit data blocks. Anderson
et al. [1] describe an efficient bit-sliced implementation in which each round is
constructed from three layers: a key mixing operation, an S-box operation, and
a linear transformation operation. In particular, the S-box layer is realised using
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a sequence of logical instructions that are applied to four 32-bit input words to
produce four output words; each S-box is represented, on average, by about 17
logical instructions.

Implementing each S-box operation on a conventional RISC processor is ham-
pered by the resulting register pressure which, in turn, can enforce costly spills
to memory. The advantage of using our LUTs for the S-box layer in Serpent is
two-fold: firstly, a series of logical operations can be implemented with only four
CLUT and two ULUT instructions; secondly, we reduce the number of temporary
variables such that there is less need to spill values into memory. To further
improve the performance of the Serpent encryption operation, specific portions
of the linear transformation layer can also be implemented with LUTs.

In Table 3 we compare the LUT-based approach to the original, reference
approach of Anderson et al. [1]. The LUT-based approach improves performance
by a factor of 2.2 and reduces code memory footprint by 53%.

Table 3. Implementation results for Serpent encryption

Implementation Performance (cycles) Code footprint (bytes)

Bit-sliced Serpent 2031 2112
Bit-sliced Serpent with LUTs 922 984

3.4 AES

AES can, by design, be implemented efficiently on 8-bit or 32-bit platforms. In
order to perform encryption (resp. decryption), the AES algorithm iteratively
applies a round function (resp. inverse round function) to a 4 × 4 state matrix
of elements in F28 . The round function is composed of four steps: SubBytes, a
non-linear substitution via an S-box that roughly equates to inversion in F28 ;
AddRoundKey, the addition of key material via XOR; ShiftRows, which simply
rotates rows of the state; and MixColumns, which multiplies columns of the state
by a constant matrix.

An 8-bit implementation typically represents the state matrix as an array
of sixteen bytes and implements each step of the round function in a direct
fashion [11, Section 4.1]. A 32-bit implementation typically packs the columns
of the state matrix into four words and combines the round function steps into
a set of table look-ups [11, Section 4.2]. Previous work has developed effective
alternatives for bit-sliced implementations of AES [24,25,21]. Könighofer [21]
gives a detailed description of a fast bit-sliced AES implementation on a 64-bit
AMD Opteron processor. In this work, the state matrix is stored in eight different
registers throughout the encryption routine and four blocks are processed in
parallel. We implemented Könighofer’s method on our CRISP processor; the
half-sized datapath width means we process two blocks at a time.

In a bit-sliced AES implementation, SubBytes represents the time-critical
operation. In contrast to conventional implementations that usually store the S-
box as a table in memory, the S-box is expressed by a series of logical operations
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according to the description of Canright [10]. The basic idea is to decompose the
calculation of the multiplicative inverse in F28 into the calculation of the inverse
in F24 and F22 , respectively. Certain parts of these subfield computations can be
mapped efficiently to our LUTs, for instance the inverse of x = (x0, x1, x2, x3) ∈
F24 is given by

e = ((x3 ⊕ x2) ∧ (x1 ⊕ x0)) ⊕ x3 ⊕ x1
d1 = (x3 ∧ x1) ⊕ e
d0 = (x2 ∧ x0) ⊕ e ⊕ x2 ⊕ x0

On a conventional RISC processor, the cost of computing the inverse in F24 is
eleven instructions; using a LUT-based approach the computation can be per-
formed with as little as two CLUT instructions and one ULUT instruction. Similar
to the Serpent case, the LUTs are useful in terms of both reducing the number
of logical instructions as well as reducing the spills into memory. However, the
ShiftRows operation requires a closer examination. Each single byte within a
register that holds the state needs to be rotated by a different distance; on a
conventional RISC processor this can require a number of shift-and-mask type
operations. To overcome this problem, one can integrate a custom instruction for
efficient bit-level permutation, as proposed by Lee et al. [37], which reduces the
cost of ShiftRows dramatically. The execution times of these implementations
are given in Table 4; comparing our LUT-based implementation to the standard
bit-sliced AES implementation of Könighofer [21], we improve performance by
a factor of 1.23 and reduce code memory footprint by 36%. Having a dedicated
instruction for efficient bit-level permutation further improves performance by a
factor of 2.21 and reduces code memory footprint by some 59%. In [3], Bertoni
et al. describe a fast non-bit-sliced software implementation of the AES for a
32-bit RISC processor. Comparing this implementation to the fastest bit-sliced
version, our ISE permits a performance improvement by a factor of 1.36 on a
per-block basis and reduces code memory footprint by 26%.

Table 4. Implementation results on a per-block basis for AES encryption

Implementation Performance (cycles) Code footprint (bytes)

Standard AES [3] (i.e. 32-bit) 1662 1160
Bit-sliced AES [21] 2699 2080

Bit-sliced AES with LUTs 2203 1328
Bit-sliced AES with LUTs & perm. 1222 858

3.5 PRESENT

Bogdanov et al. [6] describe PRESENT, a light-weight block cipher that can
be efficiently implemented in hardware. PRESENT is a 31-round substitution-
permutation network block cipher operating on 64-bit blocks. The S-box layer
is realised as a table which maps 4-bit inputs to 4-bit outputs. In a bit-sliced
implementation, the 64-bit blocks are stored in sixty four different words such
that the i-th bit of each block is held in the i-th word; on a 32-bit datapath this
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allows us to process thirty two blocks in parallel. The S-box layer is expressed
by a sequence of thirty logical operations; in a LUT-based implementation this
is realised using four CLUT instructions and two ULUT instructions. The results
are summarised in Table 5; compared to the reference implementation executed
on CRISP, our ISE improve performance by a factor of 1.42 and reduce code
memory footprint by 18%.

Table 5. Implementation results for PRESENT encryption

Implementation Performance (cycles) Code footprint (bytes)

Bit-sliced PRESENT 39986 500
Bit-sliced PRESENT with LUTs 28082 408

3.6 DES

The performance-critical operations in a standard DES software implementation
are bit-oriented (e.g. permutation); in some sense this is a result of the hardware
based origins of the algorithm. These sorts of operation are costly in software
when implemented on a conventional RISC processor. As mentioned previously,
Biham [5] described a fast implementation of DES using bit-slicing where the
overhead caused by bit-oriented permutations is vastly reduced. Each S-box
operation maps a 6-bit input to a 4-bit output and use of bit-slicing means their
application is a bottleneck; the S-boxes require at most 132 logical operations
and 100 instructions on average.

To reduce this cost, Kwan [22] presented an algorithm to generate S-boxes
with an average of 56 logical operations. We examined each S-box using the
Mimosys Clarity tool-chain [26] to identify where our ISE could be applied. The
tool-chain takes C source code as input and analyses the data-flow graph to find
subgraphs which can be implemented using a given ISA; in our case we had it
search for 4-input, 2-output subgraphs consisting only of logical operations. The
obtained speed-up factors of the bit-sliced DES S-boxes are detailed in Table 6;
compared to Kwan’s implementation we improve the performance of the S-box
layer by a factor of 1.12 using the LUT-mechanism.

Table 6. Analysis of bit-sliced DES S-Boxes

S-Box S1 S2 S3 S4 S5 S6 S7 S8

Speed-up factor 1.10 1.11 1.09 1.12 1.12 1.13 1.13 1.13

4 Comparison and Discussion

In recent years, custom instructions for secret-key cryptography have been inte-
grated into a wide variety of platforms, ranging from high-performance ASIPs to
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Table 7. Comparison of general-purpose processors with crypto extensions

Design Base arch. Algorithms and throughput (in cycles per byte)

MOSES [32] Xtensa (32-bit) 3DES: 42.1 cpb, AES: 87.5 cpb
PAX [15] RISC (64-bit) 3DES: 79.5, AES: 7.86, Twofish: 39.0, Mars: 85.21
O’Melia [27] SPARC (32-bit) 3DES: 56.1 cpb, AES: 47.5 cpb, IDEA: 60.6 cpb
CRISP RISC (32-bit) SHA-1: 45.0 cpb, AES: 76.4 cpb, Serpent: 57.6 cpb

embedded processors optimised for small area and low power consumption. The
plethora of target applications makes a fair comparison of the different designs
very difficult, if not impossible. For example, Cryptonite [8] is an ASIP dedicated
to cryptographic algorithms1 and not a general-purpose processor with crypto
extensions like CRISP. On the other hand, the custom instructions described in
[4,13,35] were designed for integration into general-purpose processors, but their
applicability is restricted to a single cryptosystem (AES), while the instructions
introduced in this paper allow one to accelerate any cryptographic algorithm
that can be implemented via bit-slicing.

Table 7 shows a comparison of CRISP with other general-purpose processors
with crypto extensions which followed a similar design strategy, namely support
of more than just a single cryptographic algorithm and orientation towards the
embedded domain, which requires to consider both performance and hardware
cost rather than focussing solely on the former. We omitted CryptoManiac as
it is a 4-way VLIW processor optimised for high-bandwidth applications. Even
though we restrict our comparison to closely related designs, the figures in Ta-
ble 7 should be taken with a pinch of salt due to differences in the respective
base architectures (e.g. 32-bit vs. 64-bit). MOSES supports only two secret-key
algorithms (3DES and AES) while the instruction set of PAX is applicable to
a wider range of algorithms of which seven were evaluated in [15] on basis of a
64-bit version of the architecture. The throughput figures of all four designs lie
between 40 and 90 cycles per byte for the different algorithms, except of AES on
PAX, which is extremely fast. In summary, the results of CRISP compare very
well with that of previous work, especially when considering the flexibility and
cost-efficiency of its crypto instructions.

5 Conclusions

We have presented a light-weight, generic instruction set extension for a 32-bit
RISC processor with a 6-address instruction format (four source registers and
two destination registers). Focusing on bit-sliced implementation, the ISE helps
to address the disadvantages of this technique; for example, it improves perfor-
mance and reduces code memory footprint, while maintaining all the advantages
including low data memory footprint and predictable execution. Thanks to the
1 The programmability of an ASIP is limited to applications within the application do-

main it has been designed for (e.g. cryptography), while a general-purpose processor
can execute any kind of application.
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generic nature of the proposed extensions, our processor architecture allows for
a high degree of algorithm agility. This is a desirable feature when executing
algorithm-independent security protocols, such as SSL/TLS or IPSec, where the
support of several secret-key algorithms is essential. Moreover, the flexibility
of our design can even be exploited by next-generation algorithms rather than
being restricted to current-generation algorithms. In terms of hardware cost, the
implementation of our ISE represents a modest overhead (just 280 slices of a
Virtex-II device). Even though the proposed ISE might not be applicable in a
high-performance processor design, it represents an excellent trade-off between
implementation quality and cost for embedded and mobile processors.
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Abstract. Dynamically reconfigurable systems are known to have many
advantages such as area and power reduction. The drawbacks of these
systems are the reconfiguration delay and the overhead needed to provide
reconfigurability. We show that dynamic reconfiguration can also improve
the resistance of cryptographic systems against physical attacks. First,
we demonstrate how dynamic reconfiguration can realize a range of coun-
termeasures which are standard for software implementations and that
were practically not portable to hardware so far. Second, we introduce a
new class of countermeasure that, to the best of our knowledge, has not
been considered so far. This type of countermeasure provides increased
resistance, in particular against fault attacks, by randomly changing the
physical location of functional blocks on the chip area at run-time. Third,
we show how fault detection can be provided on certain devices with neg-
ligible area-overhead. The partial bitstreams can be read back from the
reconfigurable areas and compared to a reference version at run-time
and inside the device. For each countermeasure, we propose a prototype
architecture and evaluate the cost and security level it provides. All pro-
posed countermeasures do not change the device’s input-output behavior,
thus they are transparent to upper-level protocols. Moreover, they can
be implemented jointly and complemented by other countermeasures on
algorithm-, circuit-, and gate-level.

1 Introduction

After the production of the first Complex Programmable Logic Devices (CPLD)
and Field Programmable Gate Arrays (FPGA) in the 1980s, research in pro-
grammable devices has evolved in many directions. To put our idea in context,
the following advances are worth mentioning. Partial reconfiguration increases
the performance of a reconfigurable system by reducing the reconfiguration time.
This can be done dynamically at run-time and without user interaction, while
the static part of the chip is not interrupted. The idea we put into practice is
a coarse-grained partially dynamically reconfigurable implementation of a cryp-
tosystem. Our prototype implementation consists of a FPGA which is partially
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Power and Fault Analysis Resistance 347

reconfigured at run-time to provide countermeasures against physical attacks.
The static part is only configured upon system reset.

Some advantages of dynamic reconfiguration for cryptosystems have been ex-
plored before. In such systems, the main goal of dynamic reconfigurability is to
use the available hardware resources in an optimal way. This is the first work
that considers to use a coarse-grained partially dynamically reconfigurable ar-
chitecture in cryptosystems to prevent physical attacks by introducing temporal
and/or spatial jitter. Note that the proposed countermeasures do not represent
an all embracing security solution and should be complemented by other coun-
termeasures.

The first experimental results of power analysis attacks on FPGAs were given
by Örs et al. [20]. Standaert et al. examined the effect of pipelining and unrolling
techniques on the power consumption of FPGAs [23]. Power analysis counter-
measures based on the random pre-loading of pipelining registers are evaluated
in [22]. Successful fault injection on FPGAs is reported by Maingot et al. in [16].
The concept of spatial jitter for hardware implementations has been addressed
in [2] and [8], where architectures are proposed that consist of several identical
elementary cells. An algorithm’s suboperations are randomly mapped on these
cells. In our solution, the suboperations are always performed in the same func-
tional blocks, but these blocks are randomly relocated.

This paper is organized as follows: Section 2 gives an overview of the physical
attacks and countermeasures relevant for this work. Section 3 describes the initial
assumptions and the setup. Sections 4, 5, and 6 introduce the countermeasures
temporal jitter, combination of spatial and temporal jitter, and fault detection
for partially dynamically reconfigurable systems. Finally, Sect. 7 concludes the
paper.

2 Physical Attacks and Countermeasures

Differential Side Channel Attacks (DSCA), as introduced by Kocher et al. [14],
are passive attacks. They exploit the fact that there exists a relation between
the bit-flips in an electronic cryptographic device and its instantaneous power
dissipation. Since the bit-flips in the device depend on the values it is processing,
and since these data depend on a secret, e.g. a cryptographic key, there exists a
link between the secret and the power dissipation. First, an adversary observes
the target device’s power dissipation during the encryption of several messages
X . She targets an intermediate result fkc(X) of the cryptographic computation
that depends on the known and varying data X and a (small) part of the secret
key kc. At the time instant tc when this particular value is computed, there
exists a significant correlation between the intermediate values fkc(X) and the
observed power dissipation O(tc). Since, in general, both tc and kc are unknown,
the adversary performs an exhaustive search over all time instants t and key
hypotheses k. For this search, she computes the values of fk′(X) based on a
key guess k′ and applies a power consumption model to derive hypothetical
power consumption values h(·). Then, she applies a statistical test to measure
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the correlation between the predicted and the observed power dissipation at
all instants t. For one combination of the parameters t and k′, the correlation
will be significantly higher than for all others. This reveals not only the correct
key kc but also the time instant tc when the targeted intermediate result is
computed. We apply Correlation Power Analysis [7], predict the hypothetical
power dissipation h(fk′(X), R) as the Hamming distance between fk′(X) and
a reference state R, and use the Pearson correlation coefficient ρ(h(·), O(t)) as
statistical test.

In practice, countermeasures aim at making an attack more difficult and ide-
ally infeasible. In this context infeasible means to raise the cost of an attack
beyond the gain due to a success. A metric for measuring the difficulty of an
attack is the number of samples required. Although this is not an ideal met-
ric (the number depends on too many factors which are difficult to rate) it is
often applied in practice. Hence, DSCA countermeasures aim at increasing the
number of required samples. There exist many approaches to achieve this goal.
They can be categorized along the implementation axis (algorithm-, circuit-, and
gate-level) or according to their functionality (masking and hiding), see Table 1.

Table 1. Overview of Differential Side Channel Analysis Countermeasures

Algorithm Circuit Gate

Masking Algorithmic masking – Gate level masking

Random precharge Noise Generators Dual-Rail Precharge
Hiding Dummy cycles Decoupled power Logic

Random Order Execution supply Current Mode Logic

Reference [18] presents a coarse-grained architecture that uses reconfigurabil-
ity to provide an algorithmic masking scheme. In this work we focus on power
analysis countermeasures that aim at introducing temporal jitter into the se-
quence of operations, i.e. distributing the instant tc over time for several ob-
servations. Such countermeasures are effective because the intermediate result
fkc(X) is no longer computed at a fixed instance. It rather occurs at a set of
different time instants T with probability distribution P . Examples of this type
of countermeasure for software implementations are Random Process Interrupts
(Dummy Cycles) [10], and Random Order Execution [24]. Reference [1] presents
a “Smart Processor” that inserts random delays autonomously and code inde-
pendent. For hardware implementations the only countermeasure of this cate-
gory we are aware of are asynchronous circuits [6]. Note that they can introduce
vulnerabilities to timing attacks, since the execution time of the implementa-
tion might depend on the processed data itself. Moreover, asynchronous circuits
generally require a longer design time than synchronous circuits. While the soft-
ware countermeasures are easy to implement and virtually platform independent,
an asynchronous circuit needs to be designed from scratch and implemented
carefully.
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Fault attacks are active attacks. In the broadest sense, they expose the target
device to physical stress in order to provoke abnormal behavior. An additional
information flow can be caused, if the cryptographic device returns erroneous
cryptograms or a modified execution path is entered. The exploitation of faulty
cryptograms may involve mathematical cryptanalysis. We distinguish between
transient and permanent faults. A fault is transient if the device remains fully
functional and the effect is of short duration (e.g. one clock cycle). A fault is per-
manent if its effect persists during the lifetime of the device. We also distinguish
two classes of attacks. One class is composed of attacks that require a single suc-
cessful fault injection to achieve the goal as for example the Bellcore attack [5]
against a RSA-CRT implementation. Attacks in the other class usually require
many successfully injected faults to achieve their goal. As examples we mention
Collision Fault Analysis (CFA) [12], Differential Fault Analysis (DFA) [3], and
Ineffective Fault Analysis (IFA) [9, 4].

Fault analysis countermeasures can be divided in at least three categories.
Countermeasures of the first kind do not aim at preventing fault injection and the
fault’s effect, but intend to make the exploitation of the fault difficult and ideally
infeasible. These countermeasures aim, as in the context of DSCA, at distributing
the instant tc at which a given operation is executed over a time interval. The
second kind of countermeasure aims at detecting a fault injection by, for instance,
introducing redundancy and checking for errors. This can be done at the data
level using a suitable code and at the software level by executing the algorithm
twice and comparing the results. In hardware, one can also implement the circuit
twice and run both executions in parallel, or implement the circuit in dual-rail
logic with a dedicated error state. The third kind of countermeasure aims at
detecting the fault injection attempt. Usually, dedicated sensors are integrated
into the circuit and/or the chip package.

In this paper we introduce countermeasures of all aforementioned types for
partially dynamically reconfigurable devices.

3 Setup and Assumptions

3.1 Adversarial Model

The adversary is a malicious user of the device under attack, though she can be
the legitimate owner. She wants to extract confidential data, e.g. cryptographic
keys. The adversary can perform all kinds of passive attacks, in particular power
analysis.

With respect to fault analysis, we apply the notions of the adversarial model
introduced by Lemke-Rust and Paar in [15]. The adversary can also perform a
range of active attacks, namely those categorized as semi-invasive. Summarizing
this means, that the adversary can penetrate the device as much as to open the
chip’s package. Penetration of what is called the cryptographic boundary is not
included. However, the adversary may use fault injection mechanisms that cross
this line, e.g. photons.
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An attack is successful, if enough key information is obtained to recover the
entire key with or without further cryptanalysis. The adversary is able to inject
at most q faults per second, where q is a small number. The adversary can
use r fault injection setups in parallel where again r is a small number. Fault
injection is a probabilistic process with success rate p. Complementary events
with probability 1−p have no or not the intented effect and cannot be exploited.
In specific attack scenarios, unsuccessful fault injection can even turn an attack
infeasible because the adversary can not distinguish a cryptogram where the
fault effect is as desired from a cryptogram where the fault effect is different.

Faults can be injected by precisely timed modifications of the clock signal or
the power supply (glitches), intense illumination with focused white light or a
laser beam, intense electromagnetic fields, rapid changes of the temperature, etc.
Note that we exclude precise and deterministic permanent modification of the
chip, e.g. cutting and re-wiring using a focused ion beam, from the adversary’s
capabilities. That is, we do not consider invasive adversaries. For all fault injec-
tion techniques, we assume that a successfully injected fault has a random and
non-predictable effect on the targeted volume in the device. Although this makes
the adversary appear weaker than she might be, it allows a compact analysis
of the security level of the proposed countermeasures. Further, it is without
doubt the most general and realistic model. Considering more specific fault mod-
els, such as deterministic bit-set and bit-reset, is beyond the scope of this work.
To evaluate the adversary’s success probability, we use the following definitions
from [15].

Spatial resolution: let dA denote the target area at depth z with depth dz so
that dA · dz is the target volume. ΔA is the area and Δz is the depth affected
by the fault. The probability to stimulate the correct area on the chip surface is
given as parea = 1 if ΔA ≤ dA, and as parea = dA/ΔA else. Since the penetra-
tion depth depends on various technological factors and cannot be estimated for
a general case, we conservatively assume that the fault injection process always
penetrates to the right depth, i.e. pdepth = 1. Combining the probabilities for
area and depth therefore leads to pvolume = parea.

Temporal resolution: let dt denote the targeted time interval during which
a fault must be injected in order to be successful. Let ΔT denote the time
resolution of the fault injection process. The probability to inject a fault at an
instant where it leads to success is given as ptime = 1, if ΔT ≤ dt, and as
ptime = dt/ΔT else.

The overall success probability is a function of (at least) these two probabili-
ties. Thus in our case and given that they are independent p = pvolume · ptime.

3.2 Reference Architecture and System Overview

To explain our countermeasures, we assume that the cryptographic algorithm to
be implemented is a repetitive instruction that consists of a number of subfunc-
tions. This is a realistic assumption for both symmetric and public key cryp-
tosystems. Figure 1 shows the general architecture (bottom right) and floorplan
(top right), respectively, consisting of n blocks each representing a subfunction.
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Fig. 1. General architecture and floorplan for the implementation of a repetitive algo-
rithm consisting of n subfunctions (right) and reference architecture for our AES-128
prototype implementation (left)

These n blocks are executed a number of times and the intermediate result is
saved in a register.

Moreover, we propose prototype implementations of AES with a 128-bit key
[19]. The architecture of the fully parallel reference design of AES is depicted in
Fig. 1 (left), where ARK, SB, SR and MC denote the subfunctions AddRound-
Key, SubstituteBytes, ShiftRows and MixColumns, respectively. AES-128 con-
sists of 10 rounds, where the round results are stored in an intermediate register.
The roundkeys are computed on-the-fly using the KeyExpansion (KE) function
and stored in the roundkey register. The intermediate register, the roundkey reg-
ister, the multiplexors and the output buffer are controlled by the Finite State
Machine (FSM) in combination with the round counter (CTR).

Our reference and prototype architectures are implemented on a Virtex-II Pro
FPGA of Xilinx. In order to provide self-reconfiguration, an Internal Configu-
ration Access Port (ICAP) [25] is added to the design. Figure 2 shows how a
softcore MicroBlaze (μB) processor is connected to the partially reconfigurable
AES coprocessor, the True Random Number Generator (TRNG) and the ICAP
through the On-chip Peripheral Bus (OPB). The connection of the processor
to the data and instruction memory (block RAM or BRAM) is realized over
the Local Memory Bus (LMB). Since this paper only focuses on the security
of the AES coprocessor, the bitstreams for our prototype implementations are
stored in an external flash memory. More secure solutions include storing the
bitstreams in the internal block RAM, although this has a limited capacity, or
using secure external flash memory, as for example described by Handschuh and
Trichina in [11].
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Fig. 2. Architectural view of the reconfigurable system

4 Temporal Jitter

As stated above, many attacks against physical implementations of crypto-
graphic algorithms require that the timing of the executed operations is aligned
for multiple executions. Since software countermeasures are flexible to apply and
provide a high level of protection at the same time, we dedicate this section to
the application of these well studied techniques to hardware implementations.

4.1 Description of a Generic Architecture

To port the idea of temporal jitter to hardware implementations, many registers
could be foreseen in combination with multiplexors deciding whether to bypass
a register or not. Because this would create a large overhead in resources, this
option is highly impractical. We propose an architecture with a dynamically re-
configurable switch matrix to avoid such a problem. The matrix determines the
position of one or more registers in between functional blocks. Since a register
causes a delay of one clock cycle, randomly positioning registers in between sub-
functions de-synchronizes the observations. Our architecture is shown in Fig. 3.
It is an improvement of the reference architecture shown in Fig. 1 in Sect. 3.2.

The number of possible configurations depends on the number m of registers
and the number n of blocks. The value n depends on the number of reasonable
subfunctions in the algorithm, which may depend on the width of the data-path.
The number of options increases if we allow cascaded registers in between func-
tional blocks. This is shown in the third option for the switch matrix in Fig. 3.
Note, however, that if we allow cascaded registers, there exist several configu-
ration options that lead to identical sequences of combinatorial and sequential
logic. Concerning this matter and allowing up to m cascaded registers, the num-
ber c of distinct configurations is

(
n+m−1

m

)
, i.e. the number of combinations of

m elements out of n, where the order does not matter and repetition is allowed.
The probability to observe the same configuration twice is 1/c. However, the
number of possible configurations determines the size of the memory needed to
store the configuration data and is therefore bounded. Further, an increasing
number of intermediate registers increases the number of cycles needed for one
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encryption. The number of registers, however, does not affect the maximal clock
frequency, because we allow more than one register to be cascaded. In general,
the number of options for the temporal shift is determined by the number m of
registers and the number n of blocks, and is bounded above by c.

As illustrated in Fig. 3, a True Random Number Generator (TRNG) is used
to select the next configuration of the switch matrix. It is important to note
that the security of the architecture depends on strength of the TRNG and its
resistance against fault and power analysis attacks. In this paper, we assume
that the TRNG provides strong random numbers and withstands all adversaries
covered by our model.

4.2 Example for AES-128 Encryption

In the fully parallel implementation of AES-128 in Fig. 1, four obvious sub-
functions can be distinguished: AddRoundKey (ARK), SubstituteBytes (SB),
ShiftRows (SR), and MixColumns (MC). We implemented a prototype based
on the generic architecture proposed in the previous section where n = 4 and
m = 2. The prototype and some options for the reconfiguration matrix are
shown in Fig. 4. In this particular case and if we allow up to m cascaded
registers in between functional blocks, the number of distinct configurations is
c =

(4+2−1
2

)
= 10.

The performance results of our implementation are compared to a static de-
sign in Table 2. The static design contains one register after each AES round,
while the partially reconfigurable design contains m = 2 registers. The reconfig-
uration time of the switch matrix is approximately 3 ms. However, technological
improvements reduce this number by a factor of at least 10. We also observed a
decrease of the maximal clock frequency by a factor of more than 3. This is due
to the communication between the static and the dynamic part of the design.
The static part of the prototype design is larger than the fully static design. This
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Table 2. Implementation results for the static design (one register) and the prototype
dynamic design (two registers) on a Virtex-II Pro FPGA

occupied max. clock through- reconf. reconf. # conf.
area frequency put time data size options

(# slices) (MHz) (Mbit/s) (ms) (kB)

Static design 685(5%) 111 10 1

Prototype: 3251(23%) 33 1.5 3 91 10
static/dynamic 1547(11%)/1704(12%)
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is because of the extra 128-bit register and because of the logic that is needed
for the communication over the boundaries between the static and the dynamic
part of the design.

4.3 Can the Countermeasure Be Circumvented?

An obvious approach to circumvent the countermeasure is to distinguish the dif-
ferent active configurations. If that is possible, an adversary can entirely undo
the effect of the countermeasure by using only an appropriate subset of the ob-
servations that represent a single configuration. Therefore we examine, whether
such a distinction is feasible using Timing Analysis (TA) [13] and Simple Power
Analysis (SPA) [14].

The overall encryption time is constant and does therefore not reveal infor-
mation about the circuit’s internal configuration. The execution time is equal to
11 · m cycles, where m ≥ 1 is the number of intermediate registers.

Figure 5 shows power traces obtained from the prototype implementation
while performing AES encryption in 2 out of 10 possible configurations. The
two intermediate registers are pre-loaded with random data before the encryp-
tion starts. In this way, an attacker cannot deduce the position of the registers
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from the height of the first two peaks. This technique is similar to randomly
pre-loading registers in a pipeline, as described in [22]. The plots support our
claim that all implementations execute the algorithm in the same constant time.
Additionally one can see that both plots look very similar, though not exactly
the same. The slight differences are due to the pre-loading with random data
and they are not configuration dependent features. These observations hold for
all 10 possible configurations. Hence the power traces do not allow the distinc-
tion of the circuit’s internal configuration. However, both TA and SPA allow an
adversary to find out the number m of registers, which was fixed at design time.
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Fig. 5. Power traces of AES encryption in 2 configurations, with n = 4, m = 2 and a
clock frequency of 1 MHz

Another approach to circumvent the countermeasure could consist of analyz-
ing the circuit during dynamic reconfiguration. If an adversary can distinguish
the different configurations, an attack as outlined above is feasible. We examine
whether TA or SPA of the reconfiguration process might leak information about
the circuit’s current or next configuration. The spatial size of the reconfigurable
area is constant and so is the size of the different bitstreams. Therefore, the tim-
ing of the entire reconfiguration process is constant and TA cannot reveal the
circuit’s current or next configuration. Similarly, the power consumption during
reconfiguration does not show obvious configuration dependent features.

Without having exhausted all possibilities of TA and SPA, we assume that
more elaborate analysis of both, the reconfiguration process and the actual en-
cryption, does not allow to distinguish the configurations with a significant rate
of success.

4.4 Resistance against DSCA

In this section we evaluate the level of protection that our countermeasure pro-
vides against DSCA. Recall that (standard) DSCA requires intermediate results
to be synchronized in the time domain and that our countermeasure introduces
time jitter.

In [17], Mangard studies the effectiveness of temporal de-synchronization as
a DSCA countermeasure. He derives that, in the case of insertion of random
delays, tc is binomially distributed over time. Our proposal has the same effect.
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Note that he implicitly assumes that tc occurs at each t ∈ T equally likely, which
is the most obvious choice. He derives a formula which allows to easily estimate
the maximum correlation coefficient ρmax as seen by an adversary. Taking his
further simplifying steps into account and adapting to our notation, the equation
becomes

ρmax =
ρ(h(fkc(X), R), O(tc))√

1 + 1
SNR

· p̂ = ρ′ · p̂ (1)

where ρ(h(fkc(X), R), O(tc)) is the correlation coefficient achieved for the correct
key hypothesis kc at the correct time instant tc at an unprotected implementation
and SNR is the signal to noise ratio. p̂ is the the maximum probability in P and
indicates the time instant t̂c ∈ T at which the targeted intermediate result occurs
most likely. It is further possible to estimate the number S of samples required
to break the protected implementation based on ρmax and a quantile Zα:

S = 3 + 8

(
Zα

ln(1+ρmax

1−ρmax
)

)
= 3 + 8

(
Zα

ln(1+ρ′·p̂
1−ρ′·p̂ )

)
. (2)

The probability α expresses the likelihood of an attack to be successful.
We evaluate our AES-128 prototype implementation w.r.t. these figures. When

an attacker focuses on the storage of an intermediate result in a register, the
first round is hard to attack, since all intermediate registers are pre-loaded with
random values. Attacking the second round is difficult because of the diffusion
property of AES. Therefore, we evaluate the effectiveness of our countermeasure
under the assumption that an attacker analyzes the power consumption of the
combinatorial logic. In our prototype design, the number of options for the tem-
poral shift depends on which functional block is analyzed. Since SB is a common
choice, we evaluate the number of options for the temporal shift of the computa-
tion of SB. We take into account that SB and SR can be swapped, which doubles
the number of distinct configuration options and leads to c = 20. However, since
tc only depends on the number of registers preceding SB and the position of
the last register, some configurations lead to the same temporal shift. In fact,
there are 8 options with probabilities between 1/20 and 6/20, thus p̂ = 6/20.
Under the conservative assumption of ρ′ = 1, ρmax decreases to 6/20 and S, the
amount of measurements required to break the implementation, increases by a
factor of more than 3 for Zalpha = 0.5 (the median). This number is not impres-
sive at first sight, but note that this countermeasure can be complemented with
for example a masking scheme and that we assumed ρ′ = 1.

In [10], Clavier et al. propose the Sliding Window DPA. Although this attack
is smarter since it takes into account what is actually happening in the target
device, it is also much more difficult to mount in practice. The basic idea is to
jointly analyze several time instants where the target value might occur, there-
fore effectively reversing the process of de-synchronization. The attack consists of
a usual DSCA attack and a postprocessing of the differential traces. Clavier et al.
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suggest to choose a suitable number of instants with a suitable distance between
them to form a “comb”. They suggest to slide the comb over each differential
trace with a given offset and, at each position, to integrate the trace at all instants
selected by the comb. As a result, one obtains the same number of integrated
traces as differential traces. The integrated trace corresponding to the correct
key guess does not show not a spike, but a clearly visible Gaussian ’peak’. They
conclude that if the targeted intermediate result is spread over g consecutive
cycles (a cycle is the smallest time unit for a software implementation) their
attack requires g times more measurements. It remains, however, unclear how to
choose the number of instants or their distance in practice, when one has little
knowledge about the device and the implementation. For our prototype with
two registers the spreading factor g is 8.

We also note that this countermeasure does not protect the functional blocks
but rather the overall architecture.

4.5 Resistance against Fault Analysis

Here we evaluate the level of protection against fault attacks provided by the
time jitter countermeasure. Using the definitions introduced in Sect. 3.1, the
probability of a successful fault injection is p = pvolume · ptime = 6/20, since
we assume pvolume = 1. However, it is not necessarily possible for the adversary
to distinguish between a successful and a non-successful fault injection. This
can have a major impact if the fault attack requires multiple successful fault
injections and further mathematical cryptanalysis, which is sensitive to incorrect
input data. DFA, for example, usually requires several successful fault injections
and might sieve out the correct key if a non-successfully faulted cryptogram
is amongst the input data. Therefore, the countermeasure is effective although
p = 6/20 is not that small in this example.

An adversary could also try to inject a fault that alters the circuit’s behavior.
The effect of a successfully injected fault on the switch matrix would only remain
until the next dynamic reconfiguration of the matrix. Since the fault is transient,
reconfiguration will bring the circuit back to its normal behavior. A successfully
injected fault on any other functional block, on the other hand, remains until
system reset. However, since we assume the random fault model and do not
consider invasive adversaries it is highly unlikely that an adversary can modify
the circuit’s behavior in an exploitable way. Nevertheless, the functional blocks
can be protected with complementary countermeasures.

We want to mention here one specific attack, though out of the model, that
can pose a great risk. Should it be possible to inject a fault that flips a random
number of bits in the key register to either zero or one with high probability, an
attack as described in [3] can be carried out. Therefore a system designer might
want to add further protection. For instance this can be done by duplicating the
key register and comparing the contents to the original key register or apply-
ing the techniques described in the next section. These countermeasures can in
general be applied to the static control part of the design.
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5 Spatial and Temporal Jitter

In this section, we protect the cryptographic implementation using both tem-
poral and spatial jitter. To achieve this, not only the moment in time when a
value is stored or computed needs to be determined by dynamic reconfigura-
tion, but also the position of the functional blocks. Therefore the time and place
when/where a subfunction is executed in the resulting architecture is based on
the reconfiguration option.

5.1 Description of a Generic Architecture

In order to further improve the resistance of the implementation against fault
analysis attacks, we propose a dynamically reconfigurable architecture in which
the location of the subfunctions and intermediate registers is altered randomly
based on the output of a TRNG. The general architecture of a system including
this countermeasure is depicted in Fig. 6. For each functional block, both a
registered and a non-registered variant can be inserted dynamically, depending
on the output of the TRNG, causing temporal jitter as described in Sect. 4.1.
Moreover, the position of the blocks can be altered depending on a second output
of the TRNG, causing spatial jitter. In order to connect the output of the last
subfunction in the algorithm to the output of the design, all blocks have an extra
output, which is connected to an OR-gate that combines all these extra outputs.
Only the last block sends a value to the output, while the other blocks provide
the OR-gate with zeros.

Suppose that the order of execution of the subfunctions in the algorithm is
fixed and equal to f0, f1, . . ., fn−1, where fi is the function that is implemented
in block i. Then the number of possible positions of the functional blocks is

Fig. 6. Modified architecture for improved fault attack resistance
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n. The probability of injecting a fault at a certain intended area on the chip
surface, as denoted by parea in Sect. 3.1, depends on the technology and the
fault injection process. This countermeasure aims in particular at preventing
local fault injection processes such as optical fault injection. We assume that the
typical spatial focus in such an attack, e.g. the focus of a laser, is so small that
the probability that a laser fault injection at the same (x,y) coordinates would
still affect the same functional block after it has been relocated is negligible.
Hence we have parea = 1/n.

Suppose that each block can be followed by at most one register. Then the
number of possible positions for the intermediate registers is n. The probability
of injecting a fault at a certain intended moment in time, as denoted by ptime

in Sect. 3.1, depends on the targeted subfunction and has a lower bound of
1/(m + 1).

5.2 Example for AES-128 Encryption

The high-level architecture of our AES-128 prototype is the same as the one in
Fig. 2 in Sect. 3.2. The AES coprocessor is implemented according to the general
architecture in Fig. 6 with n = 4. This means there are four regions which can
be configured in eight possible ways, i.e. each region can be loaded with ARK,
SB, SR, or MC, and each of these functions can be followed by a register. In
this case, parea = 1/4 and ptime = 1/3 with m = 2. Note that SR and SB can
also be interchanged in the round sequence of AES, which increases the number
of possible configurations even more. The reconfiguration time for this design is
significantly higher than for the one shown in Fig. 4, since more regions need to
be reconfigured. The maximal clock frequency on the other hand is similar.

5.3 Can the Countermeasure Be Circumvented?

Again we examine whether the countermeasure can be undone using TA or SPA.
The results are similar to those presented in Sect. 4.3. In summary we observed
a constant execution time both of the encryption and the partial reconfiguration
process and no remarkable patterns in the power traces in either case. Therefore
we conclude that neither TA nor SPA enables an adversary to distinguish the
configurations with a significant rate of success.

5.4 Resistance against Fault Analysis

Here we evaluate the level of protection against fault attacks provided by the com-
bined spatial and temporal jitter countermeasure. Most of the analysis presented
in Sect. 4.5 also applies in this case. However, thanks to the jitter in both domains,
the probability of a successful fault injection is p = pvolume · ptime = 1/12.

Another interesting property of the spatial jitter is, that all functional blocks of
the cryptosystem are now implemented in reconfigurable areas. Since the effect of
a long-lasting transient fault can be undone by dynamic partial reconfiguration,
the circuit can effectively recover from an injected fault. For the proposed fault
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attack countermeasure, the trade-off between security and reconfiguration delay
should be seen in the context of the fault injection frequency. For example: the op-
tical fault injection setup presented in [21] has a maximum laser pulse frequency
of 50 Hz. Assuming a fault injection process with this kind of laser, the reconfig-
uration frequency can be lowered to 50 Hz (plus an additional security margin).

6 Fault Detection

In particular for FPGAs, fault detection can be realized by reading back one, some,
or all bitstreams from the reconfigurable areas and comparing them with the ref-
erence copy stored in the block RAM. Certain FPGAs already allow to read back
bistreams. Comparison to the reference bitstream can be done using (protected)
logic gates inside the FPGA. Some vendors provide the stored bitstream with re-
dundant CRC bits. In this case, it is more efficient to examine the bitstream that
is read back based on its CRC value. The procedure of reading back the bitstream
and comparing it (through logic or CRC check) to the reference copy of the bit-
stream only detects faults if the reference bitstream cannot be altered in the same
way as the bitstream in the reconfigurable area. In our fault model, it is practically
infeasible to insert a fault in the reconfigurable area and on the bitstream stored
in block RAM with the same effect. Therefore, the probability that this kind of
fault detection fails is negligible. Moreover, the scheme can be complemented with
traditional fault detection mechanisms such as dual-rail precharge logic with an
error state. Another option is to execute the implemented algorithm twice, either
in parallel (which doubles the area) or sequentially (which doubles the execution
time). In the architectures that we propose, both executions can run in different
configurations, which increases the probability of fault detection.

All methods mentioned in this section focus on fault detection. It remains the
system designer’s choice how to react to an alarm signal. We note that for some
attacks outputting the result first and then checking the bitstream for faults
might raise an alarm when it is already too late. Checking before outputting
seems to be more appropriate in such cases.

7 Conclusion

This paper introduces the use of partial dynamic reconfigurability as a counter-
measure against physical attacks. On the one hand, side channel attack resistance
can be improved by introducing temporal jitter. On the other hand, fault attack
resistance can be improved by introducing spatial and/or temporal jitter. We
also suggest a method to add a fault detection mechanism to a reconfigurable
hardware design with negligible area overhead.
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Abstract. Radio Frequency Identification (RFID) is a rapidly upcom-
ing technology that has become more and more important also in
security-related applications. In this article, we discuss the impact of
faults on this kind of devices. We have analyzed conventional passive
RFID tags from different vendors operating in the High Frequency (HF)
and Ultra-High Frequency (UHF) band. First, we consider faults that
have been enforced globally affecting the entire RFID chip. We have in-
duced faults caused by temporarily antenna tearing, electromagnetic in-
terferences, and optical inductions. Second, we consider faults that have
been caused locally using a focused laser beam. Our experiments have
led us to the result that RFID tags are exceedingly vulnerable to faults
during the writing of data that is stored into the internal memory. We
show that it is possible to prevent the writing of this data as well as to al-
low the writing of faulty values. In both cases, tags confirm the operation
to be successful. We conclude that fault analysis poses a serious threat
in this context and has to be considered if cryptographic primitives are
embedded into low-cost RFID tags.

Keywords: RFID, Fault Analysis, Antenna Tearing, Optical Injections,
Electromagnetic Analysis, Implementation Attacks.

1 Introduction

Fault analysis is a powerful technique to reveal secret information out of cryp-
tographic devices. Instead of passive techniques where power or electromagnetic
side channels are exploited, fault attacks make use of active methods to cause
errors during the processing of cryptographic primitives. This article focuses on
such active methods that have been applied to RFID, a technology that has
become more security related over the last time.

RFID devices consist of a small microchip attached to an antenna. These so-
called tags can be powered actively or passively. Actively powered tags use an
own power supply, typically a battery. Passive ones are powered by the electro-
magnetic field generated by a reader. This field is also used for data communica-
tion and the transmission of the clock signal. There are numerous types of tags
available that can be differentiated depending on the application. They differ in
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their size, shape, functionality, prize, and operating frequency. However, the use
of RFID tags is already widespread not only in industry but also in everyday
life. They are used in applications such as inventory control, pet identification,
e-passports, or in pharmaceutical products. In particular, as RFID is more widely
integrated into sensitive areas such as health care or access-control systems, the
question of security becomes increasingly important. Currently, there has been
much effort to make cryptography applicable to RFID devices. While the in-
tegration of cryptographic functions in many typical applications is somewhat
straightforward, it is not in the field of RFID. Implementations must have a small
footprint not to exceed the costs, and they have to be designed for low power in
order to allow a certain reading range. A lot of proposals have been published
so far that deal with lightweight cryptography for RFID by using coupon-based
signature functions like GPS [23,18], stream ciphers [7,12,9], asymmetric algo-
rithms like ECC [30,4], or symmetric algorithms like AES [10], PRESENT [6],
SEA [28], HIGHT [13], or DES variants [22]. At the time, the security features
of conventional RFID tags range from simple secure memory-lock functionalities
to integrated cryptographic engines like Mifare [19], SecureRF [26], or Cryp-
toRF [2].

Nevertheless, in the last decade, a lot of articles have been published that
point out specific physical weaknesses of cryptographic implementations. Initi-
ated by the pioneering work of Kocher et al. [15,16], a lot of attacks have been
proposed on different kinds of devices that emphasize the need for hardware and
software countermeasures. Especially fault attacks provide a variety of attacking
possibilities that can evade effective side-channel countermeasures. Therefore,
they are a field of increasing interest. S. Skorobogatov et al. [27] induced optical
faults on microcontrollers. J.-J. Quisquater et al. [24] made use of active sen-
sors to inject eddy currents. They have been able to insert permanent faults as
well as transient faults into a circuit. Glitch attacks have been performed, for
example, by O. Kömmerling et al. [17] or H. Bar-El et al. [3]. In the light of
RFID, only a few articles have been published so far that focus on side-channel
attacks. In [14], M. Hutter et al. discussed power and EM attacks on passive HF
tags. Y. Oren et al. [20] and T. Plos [21] focused on power analysis of UHF tags.
However, there is no dedicated article covering the topic of fault injections on
RFID so far.

In this article, we introduce fault-analysis attacks performed on different kinds
of commonly-used passive RFID tags in the form of adhesive labels. Several
tags from various vendors have been examined including HF and UHF tags.
The tags include neither cryptographic primitives nor countermeasures against
fault-analysis attacks. The main intention of this article is to investigate the
susceptibility of faults on RFID devices. This enables the verification whether
the threat of faults on such kind of devices is realistic or not. We have focused on
the writing of data since this operation is considered critical in respect of power
consumption and execution time. Therefore, the target of the analysis has been
the time between a reader request and the tag response.
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Fault-injection methods can be divided into two categories dependent on how
they are injected: globally and locally. For global fault injections, we have an-
alyzed the impact of temporarily antenna tearing as well as electromagnetic
interferences and optical laser-beam inductions. Temporarily antenna tearing
has been obtained by simply interconnecting the antenna pins of the RFID chip.
Electromagnetic interferences have been caused by a high-voltage generator. Op-
tical faults have been induced by irradiating the chip using a simple laser diode.
For local fault injections, a microscope has been used in order to get a focused
laser beam. This beam has been concentrated on the control logic of the internal
memory. The experiments have led us to several interesting results. At first, all
investigated tags are vulnerable to faults during the writing of data. We show
that fault-injection methods allow the prevention of writing data into the tag
memory and, even worse, to allow the writing of faulty values. In both scenarios,
the tags confirm the write operation to be successful. This is the first article that
discusses fault analysis on RFID and emphasizes the need of countermeasures
against fault-analysis attacks based on practical experiments.

This article is structured as follows. Section 2 gives an overview to the state-
of-the-art security mechanisms of common RFID tags. Section 3 focuses on dif-
ferent fault-injection methods that can be applied on RFID tags. In Section 4,
the performed analyses are described in detail. Section 5 deals with the mea-
surement setups that are needed for fault analyses. The obtained results are
given in Section 6. Section 7 summarizes the results and conclusions are drawn
in Section 8.

2 State-of-the-Art Security Mechanisms for Passive
RFID Tags

It is somehow evident that wireless devices like passive RFID tags require spe-
cial efforts to reach a comparable security level as contact-based powered devices
like smart cards and conventional microcontrollers. While these devices require
physical contact to the power supply, passive tags gain their power from the
radio frequency (RF) field generated by a reader. This field is rather unstable
due to noise and interferences of the proximity. The certainty of the proper
tag operation becomes therefore largely infeasible. Thus, conventional tags com-
monly include protection mechanisms against unintended failures. One of the
most sensitive tag operations are the reading and writing of data. This data can
be verified by using, for example, cyclic redundancy checks (CRC). The CRC is
commonly used to detect failures during RFID-protocol communication but can
also be applied to internal memory structures to prevent the storing of faulty
values. There also exist so-called anti-tearing mechanisms that provide the ver-
ification of data integrity and data consistency when the tag is pulled out of
the reader field or if the tag has not enough power to complete a certain opera-
tion. These tags may include data backup and shadow-memory techniques that
allow the recovery of the data when the tag is powered up the next time after
the occurrence of an interruption. In view of intended intervention, tags often



366 M. Hutter, J.-M. Schmidt, and T. Plos

support password protection mechanisms to restrict the reading or writing into
the memory. If a transmitted password is valid, the corresponding memory zone
becomes accessible as long as the tag is powered up and in active state. The
major concern of this weak authentication is the insufficient protection against
passive eavesdropping and the potential use of replay attacks. In order to pre-
vent any attempt of impersonalization, one-time passwords or challenge-response
protocols are commonly used to proof the origin of the transmitted data from
either the tag, the reader, or both. In many cases these protocols implement
zero-knowledge concepts or make use of symmetric or asymmetric cryptography
to offer strong authentication. There are actually tags available that support
the encryption of the transmitted data stream which prevents from skimming
attacks or eavesdropping. There are only a few tags available on the market that
provide countermeasures against active attacks by using, for example, tamper
sensors [2].

3 Fault Analysis on RFID Tags

As soon as security becomes a major concern in an application, the perspective of
adversaries has to be taken into account. When having physical interaction with
the device under attack, a lot of possibilities arise with respect to compromise
secret information. Faults pose one of these threats that are caused by either in-
tended or unintended misuse of the system. In the following, we focus on intended
fault injections as a method for active attacks. Essentially, faults can be induced
globally or locally. Global fault-injection methods influence the entire device and
are therefore quite imprecisely. Local fault-injection methods, in contrast, affect
only specific parts of the device. There, it is possible to focus on specific regions
that are assumed to contain sensitive information. The control of an adversary
depends on the fault-injection method which can be non-invasive, semi-invasive,
or invasive. While non-invasive methods leave the package of a device untouched,
semi-invasive as well as invasive techniques apply a decapsulation procedure to
expose the chip surface. Invasive methods also establish direct electrical contact
to the chip. In addition to the control of fault injections, the precision of timing
constitutes an important factor for an attack. In the following, the structure of an
RFID tag is analyzed. After that, the most promising fault-injection methods are
described and they are further related to RFID tags.

In general, there are two proven approaches for the manufacturing of an RFID
tag. The first one directly mounts the chip onto its antenna. However, this
method needs a high precision in the handling and the operating condition and
is therefore often outsourced by companies using the second approach. There, a
special flip-chip package called strap is used which is typically a small Printed
Circuit Board (PCB). First, the RFID chip is bonded onto that strap PCB.
Second, the strap is mounted onto the antenna. In Figure 1, the cross section of
a tag is shown where the chip is interconnected to the antenna circuit. Often,
a special ink layer is inserted between the chip and the antenna circuit and a
Polyethylene Terephthalate (PET) film is used as a carrier for RFID inlays [11].
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Fig. 1. Cross section of a tag where the
RFID chip is interconnected to a conduc-
tive circuit (antenna)

Response timeReader request Tag response

Fig. 2. The tag performs computational
work in the response time that is located
between reader request and tag response

Temperature Variations. The heating of cryptographic devices Variations in
the operating temperature of cryptographic devices cause faulty computations
or random modifications of memory cells. Although CMOS technology is quite
resistant to low temperatures, high temperatures lead to variances in the de-
vice characteristics like circuit conductance, leakage current, or diode voltage
drops [24,3]. Nevertheless, the heating of semiconductors can only be achieved
by global means. The adversary has no precise control concerning the timing
and the resulting behavior.

In the light of the fact that RFID tags include analog circuits and that these
circuits are quite susceptible to temperature variations, tags in high temperature
conditions will not be able to communicate with the reader anymore. At a certain
temperature, tags are unable to write data into the memory. For common passive
RFID tags this is typically around 180 ◦C. Exceeding higher temperature limits
will lead to a complete blackout of tags. In order to avoid the deformation of the
tag antenna and the destruction of the inlay label, the chip has to be preferably
separated from its antenna before it is stressed with heating.

Power and Clock Variations. Sudden changes in power levels or signal clock
cycles are called spikes and glitches, respectively. These variations may cause
the chip to either misinterpret instructions or to modify the values of internal
data-bus lines of semiconductors [1,3]. This form of intervention can only be
performed in a global manner but have to be injected very precisely in time.

In the context of RFID, both the power supply and the clock signal are ex-
tracted out of the reader field. The RFID tag only possesses two input pads that
are normally connected to the tag antenna. By temporarily conducting these in-
put pads, the antenna is bypassed for a certain amount of time. Tearing attacks
like on smart cards focus on such supply interruptions and have to be considered
especially in contact-less powered devices.

Electromagnetic Interferences. A fast-changing electromagnetic field in-
duces current into conductors. Such a field is generated by a fast-changing cur-
rent that is flowing through a coil. The characteristic of the coil, its windings,
and the distance from the coil to the chip surface define the pulse strength and



368 M. Hutter, J.-M. Schmidt, and T. Plos

efficiency of the electromagnetic injection [24,25]. Although there is no need for
a chip-decapsulation procedure, a proper probing station is necessary in order to
be able to precisely place the probe. Thus, global as well as local fault injections
are feasible both with precise timing.

As stated in [5], RFID devices that operate in higher frequencies like UHF
tags, are considered to be more sensitive to electromagnetic interferences. Their
antenna is largely receptive to high-frequency signals, which are around 900MHz.

Optical Inductions. Light that hits the surface of a chip induces current.
This current is often referred to as Optical Beam Induced Current (OBIC) [29].
This optical injection leads transistors to switch and causes faults during the
processing of the chip [27]. In order to induce faults, the light beam has to be
focused on the chip surface. Thus, it is essential to have intervisibility to regions
that are intended to be attacked. As already described in Section 3, many RFID
tags are only covered by a transparent PET inlay. Parts of the chip are also
hidden by the antenna circuit. Remaining PET layers, adhesive, and dirt can
be either removed by carefully scratching off or by using chemicals. Optical
faults can be induced very precisely in time and can be applied globally and
locally. Moreover, they are semi-invasive and need the decapsulation of the chip.
For tags that use transparent inlays, optical inductions are performed innately
without further de-packaging. In this context, they are therefore considered to
be non-invasive.

4 Performed Analyses

There exist many possibilities to induce faults on RFID devices. In this arti-
cle, we focus on power and clock variations as well as on electromagnetic in-
terferences and optical laser-beam inductions. Power and clock variations have
been achieved by temporarily interconnecting the antenna pins of the RFID
tag. Electromagnetic injections have been carried out with the help of a self-
designed high-voltage generator that is capable of producing sharp-edged EM
pulses. Optical laser-beam inductions have been conducted globally by using a
simple low-cost laser diode as well as locally by using an additional microscope.
In Figure 2, the basic communication process in an RFID system is shown. At
first, the reader interrogates the tag by sending a request to the tag. The tag
receives and processes the request accordingly and sends the response back to
the reader. The time when the tag processes the request of the reader is called
the response time. During this time, the tag performs some computational work
like writing data into the internal memory or calculating the CRC that is needed
and used in the tag response. In our experiments, we have induced faults dur-
ing this response time in order to disturb the writing of data into the internal
memory of the tag. In this time, no RF communication is done neither from
reader to tag nor from tag to the reader. The faults have been induced only in
the response time after which the tag sends a response back to the reader, if the
faults have not caused a reset of the tag actually. Furthermore, the faults have
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been induced in a very short period of time that is defined by the trigger width.
In addition to the trigger width, we have also varied the point in time at which a
fault injection is performed. We have implemented an automatic fault-injection
sweep that covers the whole response time from its beginning to its end. The
whole response time depends on the memory programming time, the underlying
protocol, and the used data rate. In our experiments the response time takes a
few milliseconds. The memory programming time, in particular, has taken a few
hundred microseconds. We have analyzed tags using the ISO 15693 protocol for
HF tags and the ISO 18000-6C (EPC Gen2) protocol for UHF tags. The data
rate for HF tags has been 26.48 kbps (fast mode) for both reader to tag and tag
to reader communication. For the UHF tags, a data rate of 26.67 kbps for reader
to tag communication and 40 kbps for tag to reader communication has been
used.

5 Measurement Setups

In order to perform fault injections, various measurement setups have been used
in our experiments. All measurement setups use a PC, a standard RFID reader,
a tag emulator, and the device under attack. The PC controls the devices using
appropriate measurement scripts. Therefore, Matlab has been used which pro-
vides serial-connection options as well as useful functionalities like plotting and
post-processing facilities. For both HF and UHF frequencies, a tag emulator has
been used that is capable of eavesdropping the reader-to-tag communication.
The emulators include an antenna, an analog front-end, and a programmable
microcontroller. They are used to provide a trigger event that gets activated at
the beginning of the response time. The trigger offset is then increased by steps
of about 300ns until the end of the response time is reached and the modulation
of the tag response starts. Thus, a precise event is provided in order to trigger
the antenna tearing, electromagnetic injection, and the optical induction per-
formed by using the setups described in the following. First, the measurement
setups for global fault injections are described. Second, the measurement setup
for the local fault injections is described.

5.1 Setups for Global Fault Injections

The setups for global fault injections and the setup for local fault injections differ
in several ways. One of the major advantages of global injections is the fact that
no sophisticated equipment like probing stations or microscopes are required.
The location of the fault induction is therefore fairly imprecise. Faults affect the
entire chip and make an accurate knowledge of the chip circuit unessential. In
fact, global faults can be performed using low-cost equipment and are rather
versatile compared to immotile equipment.

Temporarily Antenna Tearing. For this setup, we have separated the chip
from the tag antenna in a similar way as done by [8]. Between the chip and the
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RFID
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PC
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chip

Tag 
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Trigger parameters

Reader
control

Trigger

Device under attack

Fig. 3. Schematic view of the measure-
ment setup for performing antenna-tearing
attacks using an optocoupler that is placed
between tag antenna and chip

Fig. 4. Picture of the antenna-tearing
setup where the chip has been separated
from its antenna

antenna an optocoupler has been placed that is used to temporarily interconnect
the antenna pins of the RFID chip. Optocouplers, in general, use a short optical
transmission path that allows the transmission of signals without having electric
contact. On the one hand, this is useful to protect the tag emulator against
high-voltage interferences. On the other hand, it prevents against additional
capacitive coupling through the galvanic isolation. This is especially necessary
for antenna circuits that are matched for higher frequencies as it is used in UHF
tags. In Figure 3, the used measurement setup is shown. A PC is used to control
the overall measurement process. The PC is connected to an RFID reader and
to the tag emulator. For UHF measurements, a reader has been used that has a
field strength of about 60mW. The distance between the reader and the device
under attack and the tag emulator has been about 10 cm. For HF measurements,
a field strength of about 400mW was chosen and the device under attack and
the tag emulator have been placed directly upon the reader antenna. However,
the PC has been used to send write commands to the reader and to set trigger
parameters to the tag emulator which has been programmed to perform the
triggering. The tag emulator has therefore been placed inside the reader field
to identify the beginning of the response time. Furthermore, it is connected to
the optocoupler which allows us to interconnect the antenna of the chip for a
user-defined interval. In Figure 4, a picture is given that shows the detachment
of the tag antenna and the integration of an optocoupler.

Electromagnetic Interferences. A high-voltage generator has been built to
achieve electromagnetic fault injections (see Figure 5). This device is capable of
generating up to 18 kV. The circuit consists of a digital part that is used to pro-
duce a pulsating square wave of about 100V. This pulse is then amplified using
a DC voltage converter and a charge-pump circuit. However, the Electrostatic
Discharge (ESD) of the high voltage generates electromagnetic interferences that
can influence or damage electronic devices in the proximity. So as to protect all
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Fig. 5. High-voltage generator that pro-
duces fast-changing discharges through a
probe needle (upper left)

Fig. 6. Measurement setup for local fault
injections on RFID tags using a micro-
scope to focus the light of a laser diode

involved measurement devices and to produce electromagnetic injections only at
a dedicated location, which is the top layer of the RFID tag, we have shielded
the circuit using an aluminium case. The case has been connected to the earth
ground. The output of the high-voltage generator is connected to a probe coil
using a high-voltage shielded cable. As soon as the current flows through the
coil, an eddy current is induced into the chip that influences the processing of
operations. Electromagnetic fault injections using high-voltage pulses are more
dangerous but offer a non-invasive technique as opposed to antenna tearing.

Optical Inductions. Like electromagnetic interferences, optical inductions on
RFID tags with transparent inlays provide a non-invasive injection technique.
We have placed a simple laser diode directly upon the chip surface. The diode
emits an optical output power of 100mW with a wavelength of 785 nm. In fact,
the light of the laser diode illuminates the whole chip surface at once. Since
RFID chips are typically mounted between a metallic thin-film antenna circuit
and the transparent PET layer, no decapsulation procedure has to be performed.
In our experiments, not all but a few regions of the chip die have been susceptive
to the light beam.

5.2 Setup for Local Fault Injections

For local fault injections, we have used an optical microscope. The microscope
has an integrated incident illumination device as well as a camera port. Instead
of a camera, a laser diode has been used and mounted on top of the port. A
collimator lens is used to parallelize the laser beam. Furthermore, the beam is
focused using an optical objective which has a magnification of 50 diameters.
Using the microscope it is possible to explore the device under attack very ac-
curately. It allows the injection of focused laser beams into specific chip-circuit
locations. In addition to that, it is possible to interfere data and control lines as
well as memory blocks and driver circuits. Figure 6 shows the measurement setup
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for our local fault-injection experiments. The focused laser beam illuminates an
RFID tag that lies upon an HF RFID-reader antenna. The tag emulator has also
been placed inside the reader field in order to determine the beginning of the
response time. The reader and the tag emulator are connected to the PC using
a serial interface.

6 Results

In our experiments, different kinds of passive tags have been analyzed. Various
faults have occurred that are described in the following.

Generally, five fault types have emerged during the injection of faults and are
listed in Table 1. Each tag has its own behavior pattern such as the writing
time, the duration of writing, and the writing strategy, for example, erasing the
memory before writing. There are tags that are more sensitive to certain classes
of faults while there exist other tags that are less sensitive. Once the offset and
the length of the fault-injection trigger is adjusted accordingly, all examined tags
show the same faulty behavior and the same results have been obtained during all
our tests. Note that the microchips of the tags are different and are definitely not
the same. Two types of faults occurred that are also defined in common RFID-
protocol standards. We have denoted these faults by Unconfirmed Lazy Write
and by Unconfirmed Successful Write. Unconfirmed Lazy Write indicates an un-
successful write operation where the tag does not confirm the write-operation
request. The value of the tag memory remains untouched. Unconfirmed Success-
ful Write, in contrast, represents a successful write operation but the tag does
not confirm the operation. Though, the new value is stored into the memory. In
case of errors, protocol standards provide a certain waiting time in which tags
can send an error response like insufficient power.

However, our experiments have shown also other tag behaviors when they
are stressed within a write operation. Unconfirmed Faulty Write indicates the
behavior where the tag does not confirm the reader request but different values
are stored into the memory. These values are not random and depend on the
trigger delay, the trigger width, the original memory value, the value that has
to be written, and the type of fault injection. Another interesting fault that has
occurred has been denoted by Confirmed Lazy Write. Thereby, the tag did not
perform the memory writing but confirms the operation to be successful. At last,

Table 1. Overview of the specified fault types and the resulting EEPROM values

Fault type EEPROM value
Unconfirmed Lazy Write old
Unconfirmed Successful Write new
Unconfirmed Faulty Write influenced by adversary
Confirmed Lazy Write old
Confirmed Faulty Write influenced by adversary
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we have observed the case where the tag writes different values to the memory
but confirms the operation to be successful. This case is denoted by Confirmed
Faulty Write and is one of the most critical type of faults.

6.1 Global Fault Injections

For all global injection methods, the same results have been obtained. We have
induced faults by temporarily antenna tearing, electromagnetic interferences,
and optical inductions. By using an automatic sweep, faults have been induced
during the response time of a tag as already described in Section 5. Thus, the
width as well as the offset of the trigger signal have been varied. First, we discuss
the impact of the trigger-width variation. Second, results are given that have
been obtained by varying the trigger offset.

The duration of an injected fault is an important factor for an attack. If it is
chosen too short, it does not have an impact on the device under attack. If the
fault duration is chosen too long, the tag performs a reset due to the absence of
power supply and will not answer to reader requests anymore. The time when
the tag actually causes a reset due to these induced faults depends on several
factors. These factors are, for example, the field strength of the reader device and
the distance between the tag and the reader, respectively, or the fault-injection
technique (antenna tearing, optical inductions, or electromagnetic interferences).
If the distance between the tag and the reader is chosen short, the duration of the
fault has to be longer as compared to the scenario where the distance between
the tag and the reader is chosen long. In general, the more power is available
for the tag, the longer must be the fault-injection duration to cause the chip to
fail. However, while the duration of the fault is important for antenna tearing
and optical inductions, it is not for electromagnetic injections. The high-voltage
generator produces EM pulses which have a fixed pulse width of only a few
nanoseconds. Our experiments have shown that even one pulse is sufficient to
force a reset of the tag. For antenna tearing, the trigger width constitutes the
time in which the tag is not supplied by the field anymore. For optical inductions,
the trigger width defines the period of time when the laser diode is illuminating
the chip. During our experiments on antenna tearing and optical inductions, we
finally have chosen a fault-injection period (trigger width) of about 100µs which
essentially causes the tags to force a reset.

Next, we have varied the trigger offset by starting at the beginning of the
response time. Figure 7 shows different types of occurred faults. Depending on
the offset value, we observed the occurrence of three different fault types: Uncon-
firmed Lazy Write, Unconfirmed Faulty Write, and Confirmed Successful Write.
In fact, if the offset is chosen small, the reset is performed before the writing of
data. Thus, the tag does not send an answer anymore and the content of the
memory keeps the same. If the offset is chosen very high, the tag performs a
reset after the writing of data. The tag is able to write the new memory content
but is disturbed before sending the answer. However, if the offset of the fault
trigger is chosen to occur during the writing of data, the content of the memory
becomes modified. In addition, varying the offset very slightly leads to different
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memory contents. In Figure 8, the memory values are depicted as a function of
the trigger offset. The black curve has been achieved by initializing two bytes
of the memory with zero and setting all bits of them to one during an Uncon-
firmed Faulty Write operation. The gray curve describes the same for writing
zeros to the memory that was first initialized with ones. It can be observed that
the data bits are serially written into the memory and that different bits are
flipped at different positions in time. The more time is proceeded the more bits
are actually written. In fact, 16 bits are written while the Most-Significant Bit
(MSB) makes the highest value step. The Least-Significant Bits (LSB) have only
a small impact on the written value and thus cause only small value steps which
are not clearly discernable in the given figure. Nevertheless, note that we have
influenced the bits not sequentially (i.e. from the LSB to the MSB) but we have
rather influenced specific bits at specific points in time.

With the help of an automatic sweep, we are able to detect the writing of data
into the memory within a few minutes. It is possible to determine the time when
the writing of data starts and how long it takes. It is further possible to detect
if the memory content is cleared before the real writing of data. This allows
fingerprinting of tags by identifying device-specific patterns for operations like
writing to the memory.

While the same results have been obtained for all three injection methods,
optical inductions have led us to further interesting findings. Besides Uncon-
firmed Faulty Write faults, we have been able to produce Confirmed Lazy Write
and even Confirmed Faulty Write faults. This has been achieved by accurately
adjusting the trigger width of the fault to a limit where the tag has barely
enough power to confirm the write operation but it is not able to write the exact
value. The tag either keeps the old value or it stores a different one. However,
by choosing the right trigger width and by varying the trigger delay we have
been able to roughly influence the modification of individual bits that have to
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be written. Following these facts, it appears that this allows the modification of
memory content at several points in time during one tag operation. Hence, it is
possible to bypass common security features which make use of backup facilities
or memory-shading techniques. It is further possible to skip the increasing or de-
creasing of counter values. Counters are commonly used in cashing applications
or they are used to limit the number of authentication steps to avoid differential
side-channel attacks.

As a simple countermeasure against these attacks, a comparison of the value
that has to be written and the actually written value becomes reasonable. How-
ever, if the register that stores the new value is modified by faults before the
writing into non-volatile memory, a comparison does not help to detect the fail-
ure, obviously. This article focuses only on the modification of writing into the
non-volatile memory and does not analyze the susceptibility of faults on register-
values. This point keeps unclear at this stage but is marked for future work.

6.2 Local Fault Injections

Next, we focus on local fault injections using an optical laser beam. In fact, the
injection of local faults offers more control for an adversary. Depending on the
position of the light beam, different components of the integrated circuit are
affected. The occurred faults range from simple resets to definite modifications
of tag memory contents. We have been able to generate all kinds of faults that
have been described in the section above.

By increasing the power of the light or by broadening the beam of the laser,
simple resets have been enforced. As soon as the laser beam has been focused
on the memory control logic, various faults are initiated such as they have been
obtained by global fault injections. All in all, for local fault injections the timing
of faults is not that relevant as the issue of fault-injection location. Once the
laser beam has been focused to a specific position, injecting faults is rather easy.
The fault type Confirmed Faulty Write has been achieved without accurately
adjusting the illumination time to a certain period. However, this convenience
is compensated by higher costs for the equipment.

7 Summary of the Results

In Table 2, a summary of the occurred fault types and their fault-reproducibility
rate is given for different fault-injection techniques. For the antenna tearing,
which has a global fault-injection scope, Unconfirmed Lazy Write, Unconfirmed
Successful Write, and also Unconfirmed Faulty Write types have been obtained.
All faults occurred with a reproducibility rate of more than 95 %. Note that
especially in UHF measurements the distance between the tag and the reader
antenna constitutes an important factor for a successful attack. If the tag is
placed very close to the reader antenna, the tag-antenna de-tuning becomes
ineffective due to parasitic inductions that inhibit further power losses on the tag
side. The reproducibility of electromagnetic interferences, in contrast, is rather
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Table 2. Summary of the occurred fault types and their fault-reproducibility rate

Antenna Electromagnetic Optical
tearing interferences inductions

Fault type global global global local1

Unconfirmed Lazy Write > 95 % < 10% > 95 % > 95 %
Unconfirmed Successful Write > 95 % < 10% > 95 % > 95 %
Unconfirmed Faulty Write > 95 % < 10% > 95 % > 95 %
Confirmed Lazy Write — — > 90 % > 95 %
Confirmed Faulty Write — — > 90 % > 95 %

low (< 10 %) for our experiments. This has its reason in the imprecise timing
of our EM fault-injection setup. Nevertheless, we have obtained the same fault
types as obtained by antenna tearing.

For optical inductions, we have to distinguish between global as well as local
fault injections. Both fault-injection techniques led to all types of faults. How-
ever, the laser beam has to be adjusted accordingly before the attacks. After
the adjustment, each kind of fault type is reproducible with high probability
(> 90 %) depending on the time and duration of the fault injection.

8 Conclusions

This article presents fundamental observations about the vulnerability of
commonly-used passive RFID tags. It is the first work that provides concrete
results of practical experiments in the context of fault analysis on RFID devices.
We have demonstrated global as well as local fault-injection methods on HF
and UHF tags. Global fault-induction methods affect the whole chip at once,
local-fault induction methods apply only to dedicated parts of the chip. Beside
temporarily antenna tearing, we have analyzed the impact of electromagnetic in-
terferences as well as optical inductions. In particular, optical inductions pointed
out to be a very convenient fault-injection method because of its non-invasive
and effective manner. The main intention of this article is to investigate the
susceptibility of faults on RFID devices and to identify potential weaknesses.
Thus, we have only examined tags that do not include any countermeasures
against fault-analysis attacks at this stage. Instead, we have focused on write
operations which are considered critical in respect of power consumption and
execution time. We have shown that fault-injection methods allow the preven-
tion of writing data into the tag memory and, even worse, to allow the writing
of faulty values. In both scenarios, the tag confirms the write operation to be
successful. Hence, countermeasures have to be integrated that have to contend
with limited resources as well as limited power supply and their price has to be

1 For local optical inductions, the focus and position of the laser beam has to be
adjusted accordingly to achieve high reproducibility.
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competitive for a large deployment. This article demonstrates potential weak-
nesses of RFID tags to faults and provides a basis for future work like analysis
of the susceptibility of cryptographic-enabled RFID tags to faults. We conclude
that countermeasures against fault analysis have to be considered especially in
applications where security is of increasing interest.
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Abstract. Since its first introduction by Bellcore researchers [BDL97],
fault injections have been considered as a powerful and practical way to
attack cryptosystems, especially when they are implemented on embed-
ded devices. Among published attacks, Brier et al. followed the work initi-
ated by Seifert to raise the problem of protecting RSA public
elements.

We describe here a new fault attack on RSA public elements. Under
a very natural fault model, we show that our attack is more efficient
than previously published ones. Moreover, the general strategy described
here can be applied using multiple transient fault models, increasing the
practicability of the attack.

Both the theoretical analysis of the success probability, and the ex-
perimental results – obtained with the GMP Library on a PC –, provide
evidence that this is a real threat for all RSA implementations, and con-
firm the need for protection of the public key.

Keywords: RSA, fault attacks, DFA, public key.

1 Introduction

Since the advent of fault attacks, most cryptographic algorithms have been en-
dangered [BECN+04, BS97, CJRR99]. The difficulty of modeling the fault, de-
pending on the attacker abilities, makes it uneasy to define countermeasures
[Gir05b]. It is particularly the case for the RSA algorithm, which has been shown
vulnerable to many attacks injecting faults on temporary values during the com-
putation, or on value of the private key itself.

Moreover, the vulnerability of the public key elements has been recently
proved to be a new security potential threat against various RSA implemen-
tations [Sei05, Mui06, BCMCC06]. As the effect of a computation perturbation
can take multiple forms, mounting an attack based on the use of an altered
public modulus is quite realistic.

In this context we describe here a new efficient attack that exploits a few
faults on the modulus and leads to a full recovery of the private exponent in a
very reasonable time.

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 380–395, 2008.
c© International Association for Cryptologic Research 2008
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After a brief presentation of RSA, Sect. 3 provides an overview of the previous
attacks on standard RSA. We particularly focus on modulus attacks so as to
compare them with our new attack. Then we will explain the principle of our
method, and give a detailed theoretical analysis of its complexity, based on a
detailed computation of the involved probabilities.

2 Background

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime
to ϕ(N) = (p − 1) · (q − 1), where ϕ(·) denotes Euler’s totient function. The
public key exponent e is linked to the private exponent d by the equation
e · d ≡ 1 mod ϕ(N). The private exponent d is used to perform the following
operations:

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡
Cd mod N ≡ C

∑ i=n−1
i=0 2i·di mod N where di stands for the i-th bit of d. If

no error occurs during computation, transmission or decryption of C, then
m̃ equals m.

RSA Signature: The signature of a message m is given by S = ṁd mod N
where ṁ = μ(m) for some hash and/or deterministic padding function μ.
The signature S is validated by checking that Se ≡ ṁ mod N .

2.1 Modular Exponentiation: ”Right-To-Left” Algorithm

In all the paper, we will consider the ”Right-To-Left” algorithm (see for instance
[YKLM02]), which is one of the most used algorithm to perform the modular
exponentiation. This algorithm scans the bits of the private exponent d from the
least to the most significant ones.

Algorithm 1. ”Right-To-Left” modular exponentiation

INPUT: m, N , d
OUTPUT: A ≡ md mod N

1 : A:=1;
2 : B:=m;
3 : for i from 0 upto (n − 1)
4 : if (di == 1)
5 : A := (A · B) mod N ;
6 : endif
7 : B := B2 mod N ;
8 : endfor
9 : return A;
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3 Previous Work

3.1 Bellcore’s DFA against Standard RSA

Bellcore’s researchers not only introduced the concept of Differential Fault Anal-
ysis [BDL97] by attacking RSA in CRT mode but they also showed how this
new side channel attack can be applied to many public key cryptosystems and
their various implementations, such as standard RSA. They explain in [BDL97]
and [BDL01] how to advantageously analyse the injection of a fault during the
standard RSA signature process to recover the secret exponent. Their attack
is described against a particular exponentiation algorithm: the ”Right-To-Left”
one (see Sect. 2.1).

The considered fault model is a transient or permanent bit modification of
the memory area containing the current value of the exponentiation algorithm.
According to [BDL97, BDL01], recovering d by using windows of length l with a
probability greater than 1/2 requires (n/l) · log(2n) (message, faulty signature)
pairs. In terms of complexity, this attack needs to perform O(n3 · 2l · log2(n)/l2)
modular exponentiations. It is worth noticing that the choice of the window
length l has an impact on the global complexity of the attack.

This attack principle was later studied and generalized by J. Blömer and M.
Otto [Ott04].

Bellcore’s Attack Principle. The attack can be divided into two parts. The
first one is “on-line” and consists in getting sufficiently many erroneous signa-
tures Ŝi from known plaintexts mi that are randomly distributed over Z/NZ.
The second part is completely “off-line” and consists in analysing the previously
obtained faulty signatures. The attack principle is described below in the case
of a transient fault model:

1. Getting sufficiently many (mi, Ŝi) pairs, by injecting a transient fault on the
current value during each signature execution.

2. Error analysis. Let Sv be the correct signature and ε = ±2b the induced
error with 0 ≤ b < n. The effects of such a transient error, that has occurred
during some unknown iteration j, can be modeled as:

Ŝv ≡
[(

j−1∏
i=0

ṁv
2idi

)
± 2b

]
·

n−1∏
i=j

ṁv
2idi (1)

≡ Sv ±
⎛⎝2b ·

n−1∏
i=j

ṁv
2idi

⎞⎠ mod N (2)

⇒ Sv ≡ Ŝv ± 2b · ṁv
w mod N, where w =

n−1∑
i=j

2idi (3)

Using the public exponent e, we finally obtain:

ṁv ≡ (Ŝv ± 2b · ṁv
w)e mod N (4)
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One can notice from the previous equation that it only depends on the message
ṁv and its faulty signature Ŝv.

The analysis consists in recovering the whole private exponent d by scanning
l-bit long windows from the most to the least significant bits. To reach this goal,
the values of b and w satisfying (4) are simultaneously searched. The value of w
contains a known part of d and at most l unknown bits. These bits are recovered
by testing values in [[0; 2l − 1]] until one of them satisfies (4). A priori, from a
given pair (mi, Ŝi), an attacker can not guess when the fault occurs during the
signature’s computation. So, for each searched value of w, he has to test all the
obtained couples (mi, Ŝi).

In [BDL01], Boneh et al. proved that this method allows an attacker to recover
the whole private exponent d with a probability greater than 1/2.

3.2 Fault Attack on RSA Private Exponent

This attack was published by F. Bao et al. in [BDJ+96, BDJ+98] and then
in [BECN+04]. The principle is to induce a transient error during the decryption,
that produces the same effect as a bit modification of the private exponent. In
practice this fault will be a shunt of the conditional test on the private bit value
during the binary exponentiation algorithm.1 Note that this attack is suitable
for multiple errors [BDJ+98]. Moreover the principle can be adapted to attack
cryptosystems based on discrete logarithm (DSA, El-Gamal, . . . ). The following
paragraph only describes the attack for a bit error on the exponent d.

Attack Principle. In case of a faulty computation, the deciphered text m̂ is:

m̂ ≡ C d̂ mod N

The fault is exploited by dividing the erroneous result by a correct one: m̂
m . The

induced error can be modeled as a bit-flip of the j-th bit of d. We thus have:

m̂ ≡ C
∑ i=n−1

i=0,i�=j 2i·di+2j d̄j mod N

That implies, either m̂
m ≡ 1

C2j mod N ⇒ dj = 1,

or m̂
m ≡ C2j

mod N ⇒ dj = 0.
This method can be repeated until we obtain enough information on the

private exponent. This attack strategy was later extended and generalized by
M. Joye et al. [JQBD97], who describes an improved attack relying on the mere
knowledge of the faulty deciphered text.

3.3 J-P. Seifert and J. Muir’s Attacks

Seifert’s attack on RSA signature [Sei05] was the first one using a modification
of some public parameter (i.e. the modulus N). Unlike the previously described
attacks, the objective does not consist in retrieving the secret key, but in com-
promising the signature verification mechanism.
1 Algorithms ”Right-To-Left” or ”Left-to-Right”.
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Attack Principle. Seifert’s attack is composed of two different phases.
The first – “off-line” – phase consists in finding an altered modulus N̂ , that

satisfy some interesting properties, and generating the corresponding signature.
In practice the attacker modifies the modulus N̂ so that e is coprime to ϕ(N̂) 2

and N̂ is a possible altered value of N . Then the attacker has to choose an
adequate model for the fault that will disrupt the signature verification mecha-
nism. Seifert proposes to require N̂ to be prime, so that the previous condition
is satisfied and d̂ ≡ e−1 mod ϕ(N̂ ) is easily computable. Muir generalizes the
condition and imposes that N̂ should be easily factorized [Mui06]. The attacker
signs a message m with the computed d̂ value and saves the signature with its
corresponding message (m,Ŝ).

In the second – “on-line” – phase, the attacker inputs (m,Ŝ) into the signa-
ture’s verification mechanism and tries to inject a fault during the loading of the
N value, so that all computations are performed with this altered modulus. The
generated fault has to correspond to the chosen fault model (i.e. the altered N
value equals to previously computed N̂ value). In that case, the signature Ŝ will
be accepted by the algorithm. Otherwise, the attacker performs the “on-line”
phase until its faulty signature is accepted.

The success rate of this attack and the average number of faults depends on
the suitability of the chosen fault model. Moreover the attacker must be able
to induce a fault corresponding to N̂ with a reasonable probability. The re-
sulting implementation of this attack and a further optimization are proposed
in [Mui06].

3.4 E. Brier et al.’s Attack

Whether it is necessary or not to protect RSA public elements was an open
question until Brier et al. attack proposal for recovering the whole private key.
This attack, inspired from Seifert’s one [Sei05], was published in [BCMCC06]
and reviewed in [Cla07]. It makes it possible to extract the private key using
a modulus perturbation. Moreover, in its simplest version, it does not require
any hypothesis on the type of induced fault during the signature process. This
represents a significant advantage, compared to Seifert’s attack.

Attack Principle without Dictionary. The attacker proceeds in two distinct
phases. The feature of this method (without dictionary) is that it does not require
any fault model.

In the first “on-line” phase, the attacker conducts a perturbation campaign in
order to obtain a large enough number of (message, faulty signature) pairs of the
form (mi, Ŝi)1≤i≤K , corresponding to computations with unknown (modified)
moduli N̂i �= N . As in Seifert’s attack, the N value is modified during its loading,
so that each pair satisfies the following relation:

∀i ∈ [[1; K]], Ŝi ≡ ṁi
d mod N̂i

2 This is equivalent to e being invertible in Z/ϕ(N̂)Z.
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The ”off-line” phase consists in analysing the gathered data in order to retrieve
the secret key, by an application of the Chinese Remainder Theorem. The value
d mod rk is gradually determined for small power of some small prime numbers rk.
When R =

∏
k rk is greater than N (and so than ϕ(N)), the Chinese Remainder

Theorem is applied for finding d. The way the values dk ≡ d mod rk are found,
is based on a probabilistic approach that is described in [BCMCC06, Cla07]. We
note that the method does not require to model the induced fault.

Implementing the attack shows that approximately 25000 faults are necessary
to recover 512 bits of exponent d. In comparison, approximately 60000 faults
(more than twice) are necessary to extract 1024 bits.

Attack Principle with a Dictionary. The attack with dictionary requires
the choice of a fault model. From this model and the correct modulus N , the
attacker builds a list of possible modified moduli, called modulus dictionary. As
in the previous case, this attack is divided into two phases.

The first phase is “on-line”. As before, the attacker conducts a fault campaign
in order to obtain sufficiently many (message, faulty signature) pairs, denoted
by (mi, Ŝi)1≤i≤K .

The attacker begins the “off-line” phase by building the dictionary. To do so,
the attacker experiments and validates an adequate fault model. Then he lists all
the possible values for a modified public modulus. Next, for each dictionary entry
vj , he identifies the pairs (mi, Ŝi) satisfying vj = N̂i. Each pair that matches a
value in the dictionary, a so-called “touch”, brings some information about d as
shown in [BCMCC06, Cla07].

In terms of performance the use of a dictionary is advantageous, because 1100
faults and 28 “touches” are necessary to retrieve 1024 key bits. On the other
hand, it requires a relevant fault model.

A third attack proposed in [BCMCC06] and revisited in [Cla07] explains how
to optimally exploit fault injections. Authors claims that, in good conditions,
this allows to reduce the number of fault injections from 1100 to a dozen.

3.5 Summary

The RSA standard algorithm is not immune to fault attacks. The previously pre-
sented attacks show that the protection of the public modulus during the decryp-
tion or signature processing has to be considered. Now we will present a brand
new attack on the public modulus that have some advantages over the previous
methods because of the use of a realistic fault model and greater performance.

4 Principle of Our Attack

4.1 Fault Model

Our attack is based on modifying the public modulus during the computation
of the exponentiation corresponding to the signature scheme. The injected fault
affects a byte of the modulus by modifying it in a random way, namely:
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N̂ = N ⊕ ε (5)

where ε = R8 · 28i, i ∈ [[0; n
8 − 1]] and R8 is a non-zero random byte value. These

two values are supposed unknown by the attacker because they depend on the
fault injection itself. The fault is supposed to be transient, and the modified
value N̂ is used until the end of the exponentiation. The consistency of this
model was already checked in the smart card context, leading to successful ap-
plications [BECN+04, Gir05a, BO06].

To make our description easier, we assume that the ”Right-To-Left” algo-
rithm is used for the exponentiation and the attack will be presented in that
specific context. Moreover, whereas the transient fault can first occur during the
computation of a square or a multiplication, we will focus on the effect of the
perturbation on the square. Perturbating the multiplication will be treated in
Appendix A.

4.2 Faulty Computation

Let d =
∑n−1

i=0 2i · di be the binary representation of d. Then an RSA signature
can be written as:

S ≡ ṁ
∑ n−1

i=0 2i·di mod N (6)

If a fault occurs j steps before the end of the exponentiation, then this step will
begin with a faulty square, whatever the value of dn−j may be:

B̂ ≡
(
ṁ2(n−j−1)

mod N
)2

mod N̂ (7)

Then the algorithm continues its execution by computing faulty operations. De-
noting by A ≡ ṁ

∑ (n−j−1)
i=0 2i·di mod N as the correct beginning of the computa-

tion, we finally obtain:

Ŝ ≡ ((A · B̂)...)B̂2j−1
mod N̂ (8)

≡ A · B̂
∑ n−1

i=(n−j) 2[i−(n−j)]·di mod N̂ (9)

≡ [(ṁ
∑ (n−j−1)

i=0 2i·di mod N) (10)

·(ṁ2(n−j−1)
mod N)

∑ n−1
i=(n−j) 2[i−(n−j)+1]·di ] mod N̂

As a consequence, the fault injection splits the computation into a correct part
and a faulty one. For a given faulty signature Ŝ, the value of j is supposed to be
known by the attacker. This assumption comes from the fact that an attacker
can trigger its fault injection using a Simple Power Analysis. Hence, he can
know which step of the computation was first infected by the fault and – as a
consequence – the number of bits of d that are handled with the wrong modulus.

4.3 Cryptanalysis

The attack consists in recovering a part of the private exponent using the effects
of the fault. It is a pure differential analysis because it requires the knowledge of
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both the correct signature S and the faulty one Ŝ. Indeed, the difference between
these two computations resides in the end of the exponentiation (which is faulty
in the case of Ŝ). Therefore if the attacker chooses a candidate value for the faulty
modulus N̂ ′, and another candidate for the first part of d: d′(1) =

∑n−1
i=n−j 2i ·di

′,
he can then compute:

S′
(d′

(1),N̂
′) ≡ [(S · ṁ−d′

(1)) mod N · (ṁ2(n−j−1)
mod N)2

[1−(n−j)] ·d′
(1) ] mod N̂ (11)

The idea of the attack consists in simulating a faulty computation from a
correct one. The first multiplication in Z/NZ is done to go backwards to the
perturbated step of the computation, whereas the second multiplication sim-
ulates the effects of the induced fault. Then he checks whether the following
equation is satisfied or not:

S′
(d′

(1),N̂
′) ≡ Ŝ mod N̂ (12)

If it is the case, this means that the chosen candidates are the searched values
with high probability. If no solution is found among the candidate pairs, this
means that the attack occurs during a multiplication and the attacker has to
perform the cryptanalysis described in Appendix A.

The attacker can optimize the search of candidates for N̂ ′ by noticing that
the faulty modulus, has to be greater than Ŝ. Indeed, Ŝ is a result of a modular
reduction by the faulty modulus. This simple property can dramatically reduce
the search space for a suitable N̂ candidate.

The subsequent secret bits will be found by repeating this attack using the
knowledge of the (already found) most significant bits of d and a signature faulted
earlier in the process. As a consequence, the attacker has to gather a set of faulty
signatures Ŝk obtained by injecting faults at different steps jk before the end of
the exponentiation. Then, the collected information (Ŝk, jk)1≤k≤n/l are sorted
in descending fault location.

The number of bits recovered each time corresponds to the window length
denoted by l. Hence, the k-th l-bit part of d recovered is d(k) =

∑n−j(k−1)−1
i=n−jk

2i·di.
For the sake of clarity, we assume that j0 = 0 and ∀k ∈ [[0; n

l ]], jk+1 − jk = l.
But, this assumption can be easily extended to a more general case where faults
are not injected regularly: ∀k ∈ [[0; n

l ]], jk+1 − jk < lmax.

4.4 Attack Algorithm

In this section, we detail the implementation of our new Differential Fault Anal-
ysis, described above. It generalizes the analysis to recover the whole private
exponent by taking advantages of faults injected during squaring operations of
the ”Right-To-Left” algorithm. The following attack algorithm has been suc-
cessfully implemented on PC using the GMP Library. We assume that, in input,
the set of pairs (faulty signature, fault location) is sorted in descending fault
location.

From our presented algorithm, one can notice that correct and faulty signa-
tures are obtained from the same plaintext m. But, the attacker can recover
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Algorithm 2. DFA against RSA in Standard mode

INPUT: N , ṁ, the correct signature S, the set of pairs (Ŝk, jk)1≤k≤n/l

OUTPUT: the private exponent d

1: //Initialisation
2: d := 0;
3: for k from 1 upto �n/l�
4: //We want to recover the next l-bit window d(k) of d

5: for d′
(k) from 0 upto (2l − 1)

6: d′ := [d′
(k) << (n − jk)] + d;

7: //We search a suitable value for N̂
8: for R8 from 1 upto (28 − 1)
9: for pos from 0 upto (n

8 − 1)

10: N̂ ′ := N ⊕ (R8 << 8.pos);

11: S′
(d′,N̂′) := [(S · ṁ−d′

) mod N

12: ·(ṁ2(n−jk−1)
mod N)2

[1−(n−jk)]·d′
] mod N̂ ;

13: //We test if the rebuilt value equals the faulty one
14: if (S′

(d′,N̂′) == Ŝ mod N̂)

15: //If the condition is satisfied, the current value of d′ suits
16: d := d′;
17: //So, we can search the next l-bit of d
18: goto line 3 ;
19: end if
20: end for
21: end for
22: end for
23: end for
24: //Don’t forget the purpose of our attack ...
25: return d;

parts of d from different plaintexts and their associated correct and faulty signa-
tures. To perform this he has to replace the algorithm’s input by the quadruplets
(ṁk, Sk, Ŝk, jk)1≤k≤n/l.

4.5 Complexity

Computational Complexity. To perform our attack, we need to recover both
the induced fault and the part of d affected by the perturbation. For each possible
candidate pair, a modular exponentiation is performed. Therefore, according to
the previously presented algorithm, the complexity Cattack of our attack is :

Cattack ∼ O(
n2 · 2l · (28 − 1)

8.l
) exponentiations (13)

Observing the algorithm, one can notice that the computation of candidates for
the faulty modulus can be replaced by a precomputed dictionary of candidates
N̂ ′. But, such a time optimisation has to be done according to the chosen fault
model.
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As a comparison, the attack presented by Bellcore researchers against a stan-
dard RSA [BDL97, BDL01] requires O(n3 ·2l · log2(n)/l2) full modular exponen-
tiations (i.e. mod N), which is more complex. Concerning the attack of Brier et
al. [BCMCC06], it needs to resolve O(n) discrete logarithm problems of reason-
able sizes (i.e. less than 230 bits). If the Shank’s Baby-Step Giant-Step algorithm
(∼ O(

√
N · log(N)) is used, the associated complexity is in O(n ·230 ·30 · log(2)).

If the chosen window length l is small enough (i.e. l ≤ 20 bits for a 1024-bit
RSA) this computational complexity is bigger than our attack’s one.

Number of Required Faults. The principle of our algorithm is based on
recovering the secret exponent by using windows of bits. Each faulty signature
is used to recover a different window of d. Therefore, if l is the length of the
window, recovering the whole secret exponent requires:

Number of faults ∼ O(n/l) (14)

For Bellcore’s attack against a plain RSA [BDL97, BDL01], the number of re-
quired faults is O((n/l) · log(2n)) and for Brier et al. [BCMCC06] it is O(n).

4.6 Performance

The performance of our proposed attack are evaluated according to our detailed
cryptanalysis (see Sect. 4.3). So, to determine the real (d(1), N̂) pair among all
possible candidates, the attacker tests if (12) is satisfied by its rebuilt value
S′

(d′
(1),N̂

′)
(see (11)). However this equation is checked in Z/N̂Z, so that some

wrong candidates for the searched values d(1) and N̂ could be accepted by mis-
take. This is the problem of false-acceptance. We thus have to evaluate the prob-
ability for a given (accepted) pair to be a false one. This phenomenon can be
modeled as the probability to pass the test knowing that the values are incorrect:

Pr[Equation (12) is satisfied | (d′(1), N̂
′) �= (d(1), N̂)] (15)

⇐⇒ Pr[Equation (12) is satisfied | (d′(1) �= d(1) or N̂ ′ �= N̂)] (16)

Since, this probability is quite difficult to evaluate, we propose in next section
a method to maximize it. First, we use the well-known property of conditional
probability. If A and B are two dependent events, then, the probability of the
event A to occur knowing that B has occurred is:

Pr[A|B] =
Pr[A ∪ B]

Pr[B]
(17)

This property can be applied to evaluate our probability of false-acceptance by
substituting:

– A by the event: “Equation (12) is satisfied”;
– B by the event: “d′(1) or N̂ ′ is a false candidate value respectively for d(1)

and N̂”.



390 A. Berzati, C. Canovas, and L. Goubin

Our probability will be given by computing Pr[A ∪ B] and Pr[B]. For the sake
of clarity, both computations are detailed in Appendix B. The obtained results
are summarized below:

– Pr[A∪B]: This represents the probability that (12) is satisfied if at least one
candidate is not equal to its expected value. Hence:

0 < Pr[A ∪ B] < min

(
N̂ − 1

N̂
,
2l · n · (28 − 1) − 1

8 · N̂

)
(18)

– Pr[B]: Applying the B’s above definition, this is the probability that at least
one candidate is not equal to its expected value.

Pr[(d′(1), N̂
′) �= (d(1), N̂)] =

n · (28 − 1) · 2l − 8
n · (28 − 1) · 2l

(19)

The False-Acceptance Probability. Using the two partial results, established
in Appendix B, and the property of conditional probabilities, the false acceptance
probability can be approximated by:

0 < Pr[A|B] < min

(
n·(N̂−1)·(28−1)·2l

n·N̂ ·(28−1)·2l − 8
,
(n·(28−1)·2l−1)·n·(28−1)·2l

N̂ ·(n·(28−1)·2l − 8))

)
(20)

Even though the false-acceptance probability is bounded by a value close to 1
when n < 16 bits, it is interesting to notice that this probability decreases with N̂
(and so exponentially with n). As a consequence, the false-acceptance probability
rapidly becomes negligible. These theoretical results have been confirmed by our
GMP implementation of the attack.

5 Extension of the Attack Model

5.1 Extension of Our Fault Model

The fault model we have chosen to present our attack principle can be extended
to another transient fault model. Such a fault can be induced by the pertur-
bation of a read-access to the public modulus N before computing a square or
a multiplication. The perturbation has to influence only the current operation.
Indeed, subsequent accesses to N must remain error-free [Wag04]. As previously
described, the fault still modifies a byte of N by adding a random byte value.
With this new assumption, the attacker has to face different cases, depending on
the value of d and on the targeted operation. These cases are described below
for a fault injected j steps before the end of the exponentiation:

1. dn−j = 0 or 1 and the square is perturbated. Whatever the value of dn−j may
be, A keeps the same expression: A ≡ ṁ

∑ (n−j−1)
i=0 2i·di mod N . Moreover, the

fault injection modifies the value of B such that the square is computed with
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a faulty modular reduction B̂ ≡ (ṁ2(n−j−1)
mod N)2 mod N̂ . This faulty

computation then spreads in the exponentiation:

Ŝ ≡ ((A · B̂)...) · B̂2j−1
mod N (21)

≡ A · B̂
∑ n−1

i=(n−j) 2[i−(n−j)]·di mod N (22)

≡ (ṁ
∑ (n−j−1)

i=0 2i·di mod N) (23)

·[(ṁ2(n−j−1)
mod N)2 mod N̂ ]

∑ n−1
i=(n−j) 2[i−(n−j)]·di mod N

This case differs from the previously described one by the modular reduc-
tion by N̂ applied to the second part of the expression. Moreover, the main
product is done here in the finite field Z/NZ instead of Z/N̂Z. Hence, under
this transient fault model, the attacker has to apply small changes on the
cryptanalysis described in Sect. 4.3 to recover l bits of d.

2. dn−j = 1 and the multiplication is perturbated. This second case deals with
a perturbation of the multiplication performed j steps before the end of the
exponentiation. If Â stands for the faulty result, then:

Â ≡ [(ṁ
∑ [(n−j−2)]

i=0 2i·di mod N) · (ṁ2(n−j−1)
mod N)] mod N̂ (24)

≡ (ṁ
∑ (n−j−1)

i=0 2i·di mod N) mod N̂ (25)

No more error occurs during the end of the computation. As a consequence,
B ≡ ṁ2n−j

mod N and the faulty signature Ŝ can be explained as:

Ŝ ≡ ((Â · B)...)B2j−1
mod N (26)

≡ Â · B
∑ n−1

i=(n−j) 2[i−(n−j)]·di mod N (27)

≡ [(ṁ
∑ (n−j−1)

i=0 2i·di mod N) mod N̂ (28)

.(ṁ
∑ n−1

i=(n−j) 2i·di mod N)] mod N

This expression can also be cryptanalyzed as described in Sect. 4.3 to obtain
l bits of d by noticing that a modular reduction by N̂ is applied to A whereas
B is not infected by the fault. Moreover the main multiplication is, in this
case, computed in Z/NZ.
Finally, one can notice that the case ”dj = 0 and the multiplication is per-
turbated” is missing. In fact, this case can not occur if we consider the
previously presented ”Right-To-Left” algorithm.

The previous analysis shows that our new attack is not limited to a unique
transient fault model. Accordingly, this increases the practicability of the attack
on cryptographic devices that implement the ”Right-To-Left” algorithm.

6 Conclusion

This paper introduces a new fault attack against the ”Right-To-Left” implemen-
tation of RSA. We detail a new way of exploiting faulty RSA public elements
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(i.e. the public modulus N). We show in our theoretical analysis that our at-
tack is more efficient than previously published ones [Sei05, Mui06, BCMCC06].
Moreover its GMP implementation as well as the use of practicable fault mod-
els demonstrate that this new attack represents a real threat for RSA public
elements. As a consequence, the protection of RSA public key elements against
Differential Fault Analysis is more than ever a hot topic.
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A Fault Injection before a Multiplication

The principle of our attack was described for a permanent fault injected before a
square. But, if dn−j = 1, then a multiplication is done and can be the first opera-
tion modified. So, in this appendix, we present the effects of such a perturbation
and how to take advantage of it to recover the bits of the private exponent d.

A.1 Faulty Computation

Our attack is performed against the ”Right-To-Left” exponentiation algorithm
with the fault model previously described (see Sect. 4.1). In this case, the fault
first occurs during a multiplication, j steps until the end of the exponentiation,
so:

Â ≡ (ṁ
∑ n−j−2

i=0 2i·di mod N) · B mod N̂ (29)

≡ [(ṁ
∑ n−j−2

i=0 2i·di mod N) · ṁ2(n−j−1)
mod N ] mod N̂ (30)

Then, this operation is followed by a square:

B̂ ≡ (ṁ2(n−j−1)
mod N)2 mod N̂ (31)

After, the cryptographic device finishes the exponentiation:

Ŝ ≡ ((Â · B̂)...) · B̂2j

mod N̂ (32)

≡ Â · B̂
∑ n−1

i=n−j 2i−(n−j)·di mod N̂ (33)

≡ [(ṁ
∑ n−j−2

i=0 2i·di mod N) (34)

·(ṁ2(n−j−1)
mod N)

∑ n−1
i=n−j−1 2i−(n−j)+1·di] mod N̂

where dn−j = 1
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A.2 Cryptanalysis

As shown in Sect. 4.3, the cryptanalysis consists in guessing possible values for
the private exponent’s value d′(1) =

∑n−1
i=n−j−1 2i ·d′i and the public modulus one

N̂ ′. Then the attacker uses the correct signature to forge a possible faulty one.
If this forged signature equals to the real faulty one, this means that the chosen
candidates are probably the searched values. As described before, the attacker
has to compute:

S′
(d′

(1),N̂
′) ≡ [(S · ṁ−d′

(1)) mod N · (ṁ2(n−j−1)
mod N)2

−(n−j)·d′
(1) ] mod N̂ ′ (35)

And then, he checks if the following equation is satisfied :

S′
(d′

(1),N̂
′) ≡ Ŝ mod N̂ ′ (36)

In that case, the value d′(1) gives l − 1 bits of d (and dn−j is already known).

B Details of Performance Evaluation

B.1 Evaluation of Pr[A ∪ B]

According to A and B’s respective definitions (see Sect. 4.6), Pr[A∪B] represents
the probability that the equation is satisfied if at least one candidate, d′(1) or N̂ ′,
is not equal to its expected value. This probability is quite difficult to evaluate
since it depends on all the unknown values of (12). However, we can find a
maximum and a minimum for this probability. Indeed, this equation is satisfied
in the finite field Z/N̂Z, so that, if the correct value is removed, the probability
of this event to occur is at least (1 − 1)/N̂ = 0. But d′(1) is a l-bit value and

so, can take 2l possible values. N̂ ′ can take (28 − 1) · n
8 values (possible values

and position for the error ε). Hence, at most, the equation can be satisfied for
2l·n·(28−1)−1

8·N̂ different values. As a result, the probability can be upper-bounded:

0 < Pr[A ∪ B] < min

(
N̂ − 1

N̂
,
2l · n · (28 − 1) − 1

8 · N̂

)
(37)

B.2 Evaluation of Pr[B]

This probability seems easier to evaluate than the last one. Indeed, it is the
probability that at least one of the two candidates d′(1) or N̂ ′, is not equal to
its expected value. But one can notice that this event can be divided into two
independent events. Hence, we have:

Pr[(d′(1), N̂
′) �= (d(1), N̂)] (38)

= 1 − Pr[(d′(1) = d(1)) and (N̂ ′ = N̂)] (39)

= 1 − Pr[d′(1) = d(1)] · Pr[N̂ ′ = N̂ ] (40)
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As seen in the previous paragraph, d′(1) and N̂ ′ can take respectively 2l and
(28 − 1) · n

8 possible values. In both cases, there is only one correct value to find.
As a consequence, we finally obtain:

Pr[(d′(1), N̂
′) �= (d(1), N̂)] = 1 − 8

n · (28 − 1) · 2l
(41)

=
n · (28 − 1) · 2l − 8

n · (28 − 1) · 2l
(42)
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Abstract. Dual Rail Precharge circuits offer an effective way to address
Differential Power Analysis Attacks, provided routing of differential sig-
nals is fully balanced. Fat Wire [1] and Backend Duplication [2] methods
address this problem. However they do not consider the effect of coupling
capacitance on adjacent differential signals. In this paper we propose a
new method, Divided Backend Duplication, which is based on Divided
Wave Dynamic Differential Logic [3] and Backend Duplication [2], that
effectively addresses balanced routing problem of Dual Rail Precharge
circuits. Experimental results on an AES test circuit in 130nm technol-
ogy show improvements in achieving a balanced dual rail design. Further
our method can also be successfully applied to FPGAs. Results from an
sbox test circuit implementation on a Xilinx FPGA are presented.

Keywords: Differential Power Analysis, Dual Rail Routing, Dual Rail
FPGA Implementation.

1 Introduction

Security is an important and often primary design goal in embedded systems such
as smart-cards [4] sidelining other design parameters such as cost, performance
and power consumption. Differential Power Analysis Attack (DPA) [5] pose a
serious threat to secure embedded systems such as smart-cards. As a result,
researchers have developed several DPA countermeasures [3,6,7,8,9,10,11]. Of
these, the logic level countermeasures that fall under Dynamic and Differential
logic (also referred to as Dual Rail Precharge - DRP) style, theoretically offer
more resistance to DPA. The basic principle behind DRP logic is to eliminate
any information leaks, by consuming the same amount of power in every clock
cycle. DRP circuits have been proved to prevent DPA, provided the routing of
differential nets is balanced [12].

Balancing differential nets (balanced Dual Rail routing) is not, however, a triv-
ial task. To address the routing problem, to date the following proposals have
been put forward: DWDDL [3], FatWire [1], Backend Duplication [2], Three
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c© International Association for Cryptologic Research 2008
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Phase Dual Rail [13], Path Switching [9], Double WDDL [14] and an iterative
correction flow [15]. Of these, three proposals [1,2,3] impose some constraints
on backend implementation flows. Three Phase Dual Rail [13] tries to avoid the
routing problem by introducing a third phase, which is an additional overhead.
Path Switching [9] offers an improvement to dual rail circuits and only protects
registers and buses with high capacitance. Double WDDL, as the name implies,
has two separate WDDL implementation thereby increasing the area overheads
by four times. Double WDDL was developed mainly for use in FPGAs [14]. The
first WDDL part is implemented using normal place & route flow. The second
WDDL part is obtained by copying the first WDDL part, including the routing
details, and reversing the orginal and complementary logic [14]. Backend correc-
tion flow, described in [15], is iterative and can consume a significant amount of
time to implement a design.

In this paper we concentrate on the implementation of balanced Dual Rail
Precharge logic styles rather than the alternatives. We try to present a simple yet
effective solution to improve Dual Rail circuit routing capacitance. In Section 2
we discuss Dual Rail Precharge Logic Styles, give a brief introduction to backend
design flow, and discuss existing methods and their shortcomings. In Section 3 we
present the inversion problem and discuss its solutions. In Section 4 we present
our proposed methodology. In Section 4.1 & Section 4.2 we present ASIC &
FPGA implementations respectively and then conclude the paper.

2 Background

2.1 Dual Rail Precharge Logic Styles

Dynamic and Differential Logic (also referred to as Dual Rail Precharge - DRP)
[3,7,8] has been proposed to prevent DPA. The idea is to consume the same
amount of power for any combination of inputs. This is achieved by using differ-
ential logic (two signals instead of one) and by precharging both the differential
nets in every clock cycle. In DRP circuits for every logic gate, a complementary
gate exists, usually referred to as false logic (or false part).

Dual Rail Precharge logic styles can be classified into two types based on
the way precharge is applied. Sense Amplifier Based Logic (SABL) is a DRP
logic based on the principles of domino logic, where a special precharge signal is
applied to every gate to force the gate to precharge. Wave Dynamic Dual Rail
(WDDL) and Dual Spacer Dual Rail (DSDR) on the other hand propagate the
precharge signal from a design’s primary inputs and state-elements (flip-flops).
WDDL and DSDR have the following differences over SABL: 1) WDDL and
DSDR can be constructed using existing CMOS standard cells and 2) that the
true logic and false logic are two different cells. The second point is not true in
all cases. WDDL and DSDR both need special inverters, where the true and false
wires are cross connected. As differential logic has both true and false outputs,
an inverter is implemented by exchanging the outputs. Moreover an inverter is
an inverting gate, it will stop the precharge wave propagation. Fig. 1 shows the
basic building blocks of WDDL with master slave WDDL flip-flops. Although
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Fig. 1. Building blocks of WDDL,with Master Slave WDDL flip-flops

double the clock frequency is required to get same data rate using master slave
flops, these are recommended [3]. All primary inputs are driven by a ‘precharge
wave generation’ block, so that individual gates will propagate the precharge.
Note that the inverter is implemented by exchanging the dual rail pairs.

2.2 Backend Design Flow

Most of the digital designs implemented today are based on a standard cell
flow. A set of commonly used standard cells are designed and characterized
such that CAD tools can be used to automate most of the design flow. Design
entry is typically in behavioral HDL and is synthesized and mapped to the
target technology’s standard cells. After the synthesis, the resulting netlist is
placed and routed to get the final design. Backend design is usually referred to
the implementation of the design after the synthesis phase and mainly involves
floorplanning, placement and routing. A placer partitions the available core area
into rows, where the standard cells are placed. In a similar fashion, a router
partitions the core area into horizontal and vertical routing grids. Each grid has
a minimum size defined by the target technology’s wire pitch size.

The place and route flow usually involves the following steps, shown in Fig. 2.
First a floorplan is made (Fig. 2(a)). This is where the aspect ratio (or the dimen-
sions) of the chip are determined. Next the standard cells are placed (Fig. 2(b))
and finally the wires are routed (Fig. 2(c)).

2.3 Existing Methods

Divided Wave Dynamic Differential Logic (DWDDL) was proposed by Tiri and
Verbauwhede [3] to address routing imbalances in DRP logic styles. DWDDL’s
idea is to place and route a single ended design (the true part), copy it and
replace the complementary cells (for example ‘and’ with ‘or’ and vice versa) to
get the false part. However, this method assumes that there is no inversion in
the single rail design, as an inverting cell would stop the precharge wave propa-
gation. However, in practice it is difficult to have logic without inversion. This is
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the only known limitation for DWDDL and no further work has been reported
on it.

Fat Wire was proposed by Tiri and Verbauwhede [1] to address routing im-
balances in DRP logic styles. In this methodology a Fat Wire is constructed by
two adjacent normal wires. For the Fat Wire method to work, first the dual rail
netlist, instantiating dual rail cells, has to be placed. Then instead of routing
two differential wires (for the true and false signals) a single Fat Wire is routed
and later decomposed into two normal single wires which will have same wire
length.

Backend Duplication was proposed by Guilley et al. [2] to address routing
imbalances in DRP logic styles. The basic idea of backend duplication is based
on placement and routing obstructions (constraints to the CAD tool). The first
step of Backend Duplication is to constrain the CAD tool (1) to only use alternate
rows for placing cells and routing horizontal routes (2) and to use the alternate
routing pitches for routing vertical routes. Thus, when the placer has finished
placing the single rail design, a dual rail design can be obtained from copying
(and transforming) the single rail into the previously obstructed rows. Note that
this operation is a simple shift in coordinates of the placed cells. Duplicating
the routes is done in two steps. Once the design is routed, horizontal routes are
duplicated in the same way as cells. Vertical routes are duplicated by simple
shift in the x-axis of the routing pitch.

2.4 Shortcomings of the Existing Methods

Coupling capacitance (crosstalk) has become one of the most critical issues in
deep sub micron physicaql designs because of 1) interconnect dominated circuit
delay and 2) strong coupling effects between intqerconnect wires [16]. As tech-
nology scales the wire widths, their height is increased and coupling capacitance
between wires increases [16] (Fig. 3(a)).

In the Fat Wire and Backend Duplication methods (vertical routes) dual rail
wires end up next to each other, as shown in Fig. 3(b). With coupling capacitances
increasing, the effective capacitance seen by a true and false signal will vary. For
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example consider dual rail pairs b t & b f . The coupling capacitance seen by b t
is C2 & C3 whereas the coupling capacitance seen by b f is C3 & C4. Now if the
capacitances C2 & C4 vary by a huge difference, the resulting design can have
unbalanced wire capacitance and can lead to information leaks. Note that this
effect becomes more and more dominant as technology scales down. The effect
of coupling between differential wires is more significant in the Fat Wire method
than in Backend Duplication as the horizontal wires are also next to each other.

Of course spacing between dual rail wires can always be increased to reduce the
coupling capacitance, however such an increase comes at the expense of increased
area and reduced routing resources. Of the three methods to address routing prob-
lems, DWDDL is the simplest and most effective. However practical designs will
always have inversion and hence will not be able to use the DWDDL method.

3 Inversion Problem in DRP Logic

Inversion in Dual Rail Precharge Logic styqles is considered as a free operation,
as dual rail signal pairs are coqmplementary; inversion is simply obtained by
exchanging the dual rail pairs. On the other hand an inverter cannot exist in
a WDDL or DSDR style design as it would stop the precharge wave propaga-
tion. In other words, inversion is only possible by exchanging the dual rail pair.
This property of WDDL and DSDR logic styles prevents designs from using a
DWDDL style of implementation. Of course dual rail pairs can be exchanged
after DWDDL implementation, but there is no systematic way of doing this.
Moreover the extra wire capacitance from this exchange can add to the critical
path delay of a design and can introduce unbalanced wires. This issue of ex-
changing wires can be worst when the number of unused inverters in a design
increases. As an example a 8ns clock period, 128 bit AES had 5,762 inverters
from a total gate count of 22,704, excluding buffers used for the clock tree. For
this example, we increased the area and delay cost of the original inverter by 10
times so that synthesis tool will use it only when inversion is needed and not for
buffering.
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3.1 Mitigating the Inversion Problem in DRP Logic

Inverters cannot exists in WDDL and DSDR style designs as they would stop
the precharge wave propagation. On the other hand, designing logic without
inversion is difficult. It is possible to have a cell that behaves as an inverter and
still not prevent the precharge wave propagation. This is possible by using a
two input Exclusive-OR (XOR) gate instead of an inverter and connecting the
second input of XOR to the negated precharge signal that is used in generating
the precharge wave (Fig. 1).
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Fig. 4. Using XOR instead of Inverter (Inputs a t & a f are driven by Precharge Wave
Generation Block shown in Fig. 1)

Consider the example circuit on the left side of Fig. 4, with the truth table
shown. When the prch signal is high all primary inputs are set to logic 1 (Inputs
at & af are driven by Precharge Wave Generation Block shown in Fig. 1).
However intermediate signal i t (output of the inverter) will not propagate the
precharge wave and the output signal z t will not be precharged. Now consider
the circuit on the right of Fig. 4. A two input Exclusive-Or (XOR) gate is used
instead of an inverter. The original input and output of the inverter are connected
as before to the XOR. The second input of the XOR is connected to the prch
signal, which is used in precharge wave propagation. When prch is high the XOR
will act as a buffer allowing the precharge wave to propagate and when prch is
low XOR will act as an inverter as intended in the original circuit.

It is also possible to use a Domino-style inverter (similar to the one presented
in [13]) instead of an XOR gate. As in the case of the XOR, prch is used to
precharge the domino-inverter. In the case of a domino style inverter, the timing
of prch is important for the circuit to work. Because of this, we prefer to use an
XOR gate and in the rest of this paper we use XOR gates to replace inverters.
Note that inverters that are used in clock tree synthesis need not be replaced,
as the clock signal is not precharged like normal inputs. Based on this, we now
present a method to implement a fully balanced dual rail design.
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4 Proposed Method: Divided Backend Duplication

With XOR gates replacing inverters, a dual rail circuit can be implemented as
physically separate (without any connections) true part (original single-ended
part) and false part (complementary part). The primary inputs and outputs will
still remain common for both the true and false parts. With this advantage the
Divided WDDL implementation, [3], can now be implemented provided that 1)
the pins of complementary standard cells should be same, i.e at same location
and same metal layer and 2) the size of the complementary standard cells are
the same.

(a) Initial Floor Plan (b) Reserve space for duplicat-
ing complimentary logic

(c) Flip every object (cells &
routes) to right

Fig. 5. Proposed method overview

Fig. 5 shows the overview of our proposed method for balanced dual rail
routing. This method is similar to the Backend Duplication method, [2]. A single
ended design is used for the initial place and route process and then duplicated
to get the final dual rail design. The process can be divided into the following
steps (shown in Fig. 6).

1. A WDDL-compliant single rail design is processed to replace the inverter
cells with XOR cells (Fig. 4). A program has been written for this conversion,
based on OPENACCESS [17]. At this stage the design is still single rail.

2. A floorplan is made for the processed single rail design, with utilization of
half the required final utilization. This ensures that there is enough space
for duplicating the complementary part (Fig. 5(a)).

3. Half of the floorplan area is reserved (obstructed) for the complementary
part (Fig. 5(b)).

4. The Single Rail design is implemented in the usual way, i.e place and route,
timing analysis, SI analysis, ECO fixes, etc.
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5. After the Single Rail design is finalized, the complementary part can be
obtained by flipping every object in the single rail design to the right and by
replacing the complementary cells, AND with OR and vice versa, as shown
in Fig. 5(c). This step can be done by processing the DEF file and is similar
to the process used in Fat Wire [1] and Backend Duplication [2].

As our proposed method is derived from DWDDL and Backend Duplication,
we call it Divided Backend Duplication (DBD). A small variation to the dupli-
cation process can be made: 1) Instead of flipping the design objects to right,
they can be shifted by half of the core width. 2) Instead of flipping the design
objects along the x-axis, this can be done on the y-axis too (flipping to top or
bottom).

4.1 ASIC Implementation

To show the effectiveness of Divided Backend Duplication, we implemented an
AES test circuit with 20k+ gates in a 130nm process. Three different designs are
implemented. All designs have the same constraints and netlist. The difference
is in implementation. The first implementation, which we call “regular place
& route design”, is implemented without any special techniques. The second
implementation, which we call “backend duplicated design”, is implemented as
suggested in [2] and is based on the WDDL logic style [3]. The third design,
which we call “divided backend duplicated design”, is implemented as suggested
in Section 4 and is also based on WDDL logic style [3]. All the designs as-
pect ratios are set to 1. The row utilization of “regular place & route design”
is set to 0.70 while for “backend duplicated design” and “divided backend du-
plicated design” it is set to 0.35 (half the required utilization, so that enough
room is available for duplication). We used Cadence Encounter tools [18] to per-
form the backend implementation. For parasitic extractions we used Encounter’s
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native extractor and set the “detailed” and “coupling” switches to true. After
the parasitic extraction, all the parasitic information was exported into a Stan-
dard Parasitic Exchange Format (SPEF) file containing the ground capacitance,
coupling capacitance and resistance of every wire.

Fig. 7 shows histograms in which the internal interconnect capacitance of
the regular place and route design, the Backend Duplicated design and Divided
Backend Duplicated (DBD) design are compared. We have not implemented
Fat Wire [1] as the effect of coupling on dual rail signal pairs from Fat Wire
should be similar to that of the Backend Duplication method [2]. The capacitance
per net was extracted from the SPEF file, which in turn was reported from
Encounter. Fig. 7(a) shows the distribution of the ratio between the capacitance
at the true signal net and the capacitance at the corresponding false signal
net (Ctrue/Cfalse). The ratio Ctrue/Cfalse for regular place & route method is
between 0.01 & 10 and for the backend duplication method it is between 0.70 &
1.5. On the other hand, for the divided backend duplication method this ratio
is only between 0.90 & 1.1. The percentage of nets that have a ratio of 1 for
Divided Backend Duplication is 93.25% when compared to 28.34% for backend
duplication.

Fig. 7(b) is similar as Fig. 7(a) except that coupling capacitance is only con-
sidered instead of total capacitance. The cumulative coupling capacitance per
net was extracted from SPEF file, which in turn was reported from Encounter.
Coupling capacitance ratio, Coupling Ctrue/Cfalse for regular place & route
method are not shown as the ratio for some nets was as high as 70. For the
backend duplication method, the ratio Coupling Ctrue/Cfalse is between 0.22 &
3.52 while for divided backend duplication is 0.60 & 1.9. The percentage of nets
that have a ratio of 1 for Divided Backend Duplication is 85.15% when compared
to 24.86% for Backend Duplication. As discussed in Section 2.4, this increase in
capacitance ratio for Backend Duplication method is due to unevenly distributed
coupling capacitance, whereas the Divided Backend Duplication method shows
much less variation.
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4.2 FPGA Implementation

Differential routing on FPGAs is more difficult than on ASICs as the routing
resources are limited. Tiri and Verbauwhede [19] have discussed a WDDL imple-
mentation on FPGAs and proposed a synthesis flow. However, the differential
routing problem in FPGAs has not been addressed to the best of our knowledge.
In this section we discuss how the Divided Backend Duplication method can be
applied to get balanced differential routing in FPGAs.

Before implementing a design in FPGA, it has to be synthesized to the target
FPGA. Synthesizing for a secure dual rail implementation has been discussed
in detail in [19]. We adopt the flow presented in [19] to synthesize for Divided
Backend Duplication implementation with the modifications shown in Fig. 8.
After replacing the inverters with XORs, FPGA synthesis can be done with a
commercial CAD tool or “Clustering” technique described in [19]. Care needs
to be taken if Commercial CAD tools are used, to preserve the wave dynamic
nature of the design. Note that the structural true and false part are identical
for FPGAs, the only difference being the LUT programming value.

FPGAs have highly regular structure as shown in Fig. 9(a). Each box in
Fig. 9(a) corresponds to a Configurable Logic Block (CLB) and its associated
routing resources. Unlike ASICs, the place & route process of FPGAs is not
standardized. This makes it difficult to duplicate the placement and routing
information for complementary parts of a dual rail design. Although each FPGA
vendor has a specific implementation tool, most of the tools offer procedures to
1) floorplan and 2) constrain a design’s instance to a specific location. However,
constraining a net to a specific routing resource is not supported. Based on this,
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(a) Floorplan view of duplicated design on a
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Fig. 10. Divided Backend Duplication implementation results on a Xilinx FPGA

the process to implement a balanced dual rail design in FPGAs can be divided
into the following steps.

1. The WDDL-compliant single rail design is processed to replace the inverter
cells with XOR cells and to transform the netlist into a FPGA-specific netlist
(Fig. 8).

2. The floorplan area is divided into two equal parts (for the true and false
parts), comprising equal number of CLBs, local routing resources and global
routing resources (Fig. 9(b)).

3. The top-level dual-rail design is implemented in the usual way, without vio-
lating the boundary constraints set above. The implementation steps usually
are place & route, timing analysis, ECO fixes, etc.

4. After the top-level dual-rail design is successfully implemented, locations of
all the instances of true part are saved to a file. Based on the location of
a true part’s instance, the corresponding false part’s instance is calculated
and written to a constraint file.

5. Based on the new constraints, the false part is re-implemented.

To see the effectiveness of backend duplication, we implemented a DES sbox on
a Xilinx FPGA [20]. Xilinx’s XST tool was used for synthesis and ISE was used
for implementation. The Xilinx Floorplan editor was used to constrain the floor-
plan. After the initial place & route Xilinx’s Floorplan editor was used to save all
the instance locations. The final place & route process was constrained by using
Xilinx’s UCF file. Fig. 10(a) shows a floorplan view of such a duplicated design.
Although FPGA implementation tools do not report detailed parasitic informa-
tion, they report delays associated with an instance and interconnect in a Stan-
dard Delay File (SDF). This SDF file was analyzed and the resulting distribution
of the ratio between the delay at the true signal net and the delay at the corre-
sponding false signal net (Delaytrue/Delayfalse) is shown in Fig. 10(b). The delay
ratio Delaytrue/Delayfalse for the regular place & route method is between 0.40
& 2.7 and for the divided backend duplication method it is between 0.8 & 1.2. The
percentage of nets that have a ratio of 1 for Divided Backend Duplication is 64.25%
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compared to 46.34% for regular place & route. Although we have constrained an
instance to be at a specific location, the implementation tool is free to connect
the wires and may be the reason for only 64.25% of nets to have a ratio of 1. Note
that we are not constraining the FPGA tool to duplicate the routes, as we could
not find a way to achieve this. Yu and Schaumont have implemented a duplica-
tion method for Double WDDL style on Xilinx FPGAs [14] that can be used to
completely balance the routing of differential nets on FPGAs.

4.3 Advantages of Divided Backend Duplication

The main advantage of Divided Backend Duplication is that both the true and
false parts see the same environment. The coupling capacitance problem dis-
cussed in Section 2.4 is now eliminated. As Divided Backend Duplication is
based on standard cells implementation styles such as WDDL and DSDR, it can
be adapted to both ASICs and FPGAs.

Divided Backend Duplication will not have a problem with diagonal routing,
an upcoming interconnect technology (already available in Xilinx FPGAs and
supported by the Cadence X architecture router), whereas Backend Duplication
currently cannot handle it. Implementing Divided Backend Duplication process
is a straightforward process. Neither specific design rules need to be changed nor
specific routing blocks have to be imposed on the design. In our example imple-
mentation for ASIC, the run time was 3 times less when compared to Backend
Duplication. As the true and false parts are not interleaved, implementing any
Engineering Change Orders (ECOs) is also simple and straightforward.

The only requirements to implement Divided Backend Duplication are that 1)
the pins of complementary standard cells should be same, i.e. at same location
and same metal layer and 2) the size of complementary standard cells are the
same. This is an advantage when compared to the requirements imposed by Fat
Wire [1] and Backend Duplication [2].

As Divided Backend Duplication separates the true and false part, a by-
product is that two separate data sets can be processed at the same time, in-
stead of one. Divided Backend Duplication designs can have a random mode
where one part can process the required data and the other can process random
data. Further the entire design can be configured such that the design can ran-
domly switch from dual rail mode to random mode and back. Divided Backend
Duplication designs can even be configured to operate either the true or false
part at a given time to reduce power consumption, when DPA countermeasure is
not required. The only requirement to achieve this is to change the input/output
interface to the dual rail design.

4.4 Disadvantages of Divided Backend Duplication

The main disadvantage of the Divided Duplication method is the additional
area and delay overhead introduced by replacing inverters with XOR gates. The
number of XOR cells used depends on the design and cannot be generalized. For
our AES test circuit about 25% of cells were XORs. This increased the critical
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path delay by 1.2 times. The delay and area overhead introduced by XOR can
be minimized by using a domino style inverter instead of XOR. Also the prch
signal needs to be buffered as it drives all the extra XOR cells.

As the true and false part of the design are physically separated, there may
be a concern that EM analysis attacks [21] may be successful, by only observing
the true or false part. Although this may seem unlikely, one may minimize the
extent of this concern by taking a hierarchical approach to implementing Divided
Backend Duplication compared with that shown in Fig. 6. An example floorplan
for a hierarchical Divided Backend Duplication is shown in Fig. 11. Another
approach would be to use the Backend Duplication method [2], but with the
following difference for duplication: instead of shifting to the right, every object
can be flipped to the right.

5 Conclusion

We have shown that coupling capacitance between dual rail nets can cause rout-
ing imbalances. To address this, we have proposed a new method, called Divided
Backend Duplication. We have shown that the Divided Backend Duplication
method can be applied to get a balanced dual rail design in both ASICs and
FPGAs and that it offers a significant improvement in balancing routing capac-
itance compared to previous methods. Divided Backend Duplication is the first
method to address routing imbalances in FPGAs. Divided Backend Duplication
has an area overhead of around 25% and a delay overhead of around 1.2 times.
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Abstract. The power consumption and electromagnetic radiation are
among the most extensively used side-channels for analyzing physically
observable cryptographic devices. This paper tackles three important
questions in this respect. First, we compare the effectiveness of these
two side-channels. We investigate the common belief that electromag-
netic leakages lead to more powerful attacks than their power consump-
tion counterpart. Second we study the best combination of the power
and electromagnetic leakages. A quantified analysis based on sound in-
formation theoretic and security metrics is provided for these purposes.
Third, we evaluate the effectiveness of two data dimensionality reduction
techniques for constructing subspace-based template attacks. Selecting
automatically the meaningful time samples in side-channel leakage traces
is an important problem in the application of template attacks and it usu-
ally relies on heuristics. We show how classical statistical tools such as
Principal Component Analysis and Fisher Linear Discriminant Analysis
can be used for efficiently preprocessing the leakage traces.

1 Introduction

Power Analysis Attacks have been introduced in the late nineties as a power-
ful cryptanalytic technique to extract secret data from cryptographic hardware
devices [12,13]. Shortly after, the ElectroMagnetic (EM) radiation of a chip ap-
peared as an alternative source of physical leakages [8,16]. Since the publication
of these seminal papers, different lines of research have been followed, mainly
ranging between attempts to prevent and counteract side-channel attacks and
attempts to develop their understanding and discuss their optimality.

For example, Template Attacks (TAs) were introduced in [7] as the most pow-
erful type of side-channel attack from an information theoretic point of view. TAs
assume a probabilistic noise model for the leakages and use maximum likelihood
as a similarity measure between actual leakage traces and their key-dependent
predictions. Because of computational restrictions, TAs usually rely on heuristics
� Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).
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in order to determine the leakage samples for which a model will be estimated.
A more systematic approach is to use dimensionality reduction techniques for
this purpose. Assuming that the information content of a leakage trace resides
mainly at the time instants of maximum variability, Principal Subspace Tem-
plate Attacks (PSTAs) have been introduced in [4]. Principal Component Anal-
ysis (PCA) [11] is then used to find the linear transformation that maximizes the
inter-class distance when projecting the data into a low-dimensional subspace.
Finally, Multi-Channel Attacks (MCAs) [2] exploit similar statistical techniques
as TAs, but utilize simultaneously several side-channels like power and EM.

In parallel to these algorithmic advances, a number of practical experiments
have been conducted and underlined the advantages of EM attacks compared
to power analysis. For example, the ability to carefully position a small probe
in the near field of a chip and to defeat certain countermeasures against power
analysis attacks has been exhibited [1]. More recently, the exploitation of better
leakage models than the usual Hamming weight/distance ones by monitoring
the EM field sign has been detailed in [14]. Such improved models involve the
improvement of non-profiled side-channel attacks, e.g. using the correlation co-
efficient [6]. They suggest that the EM leakage of a chip generally provides the
adversary with more information than the power consumption of the same chip.

In this paper, we first intend to take both the comparison of the power and
EM leakages and their combination one step further. For this purpose, we use
different types of template attacks to evaluate the information theoretic and
security metrics introduced in [18]. We apply these tools and metrics to an
exemplary leaking implementation and bring a quantified confirmation of the
previous intuitions: when accessible, near-field EM measurements provide more
information than power leakages. Our results also demonstrate that the real
power and EM channels are significantly more informative than their idealized
models based on Hamming weights/distances (or even signed distances [14]).
Similarly, we confirm the advantages of a multi-channel approach in which one
channel is used to correct/improve the weaknesses of the other one.

In addition, we take advantage of the available power and EM measurements
to compare different data dimensionality reduction techniques. PSTAs are very
powerful in practice since a “small sample size” PCA can be applied in cases
where there are much more time samples in the traces than key classes in the
attack. But PSTAs only maximize the variance between average traces (each
trace corresponding to a key class candidate) without considering the intra-class
scatter. Hence, the resulting subspace might be suboptimal. Fisher’s Linear Dis-
criminant Analysis (LDA) [10] is more appropriate with this respect. LDA seeks
the subspace that maximizes the ratio between inter-class and intra-class scatter.
It finds the subpace in which the average traces are maximally separated, while
minimizing the spread of the individual traces within their respective classes.

The rest of this paper is structured as follows. Section 2 describes our target
implementation. Section 3 defines the evaluation metrics for the analysis of our
experiments. Section 4 describes the PCA- and LDA-based template attacks.
Experimental results are presented in Section 5 and conclusions are in Section 6.



Using Subspace-Based Template Attacks 413

2 Target Implementation

Our target device for the following experiments is a PIC 16F877 8-bit RISC-
based microprocessor. Our measurements exploit the setup described in [14].
The microchip was clocked at a frequency around 4 MHz. We monitored the
power consumption by inserting a small resistor at the ground pin of the device.
The value of the resistor was chosen so that it disrupts the voltage supply by at
most 5% of its reference. In order to get accurate near field EM measurements,
the chip was depackaged following the guidelines given in [3]. We monitored the
EM leakages with a small hand-made loop probe that was soldered on a coax
mounted on a SMA connector. The signal was then amplified with a large band,
low noise pre-amplifier and sampled with a 1 GHz bandwidth oscilloscope.

Since the primary goal of this paper is to evaluate the effectiveness of the
power consumption and EM side-channels and to discuss their relation with
different leakage models, we did not directly target a cryptographic algorithm.
Rather, we programmed the microchip so that it processed all the possible 4-bit
transitions in order to determine the extent to which these transitions could be
recovered through physical observations. That is, we targeted the 256 possible
transitions between two 4-bit values x1 and x2 on the bus. Considering 4-bit
(rather than 8-bit) transitions was justified by the need to keep a reasonable
number of transitions (hence, templates) under investigation. In practice, recov-
ering a transition through side-channel measurements can be straightforwardly
exploited e.g. to recover the secret key of a block cipher. This is similar to re-
covering, e.g. the Hamming weight of a key dependent intermediate value after
the application of a substitution box. Consequently and for simplicity, we will
denote each 4-bit transition as a a key class s in the rest of the paper.

3 Evaluation Metrics

Following the framework introduced in [18], we will evaluate our different exper-
iments with a combination of information theoretic and security metrics.

Information Theoretic Metric. Let S be a discrete random variable indicat-
ing the target key class associated to a side-channel attack and s be a realization
of this variable corresponding to one particular transition x1 → x2 on the bus.
Let Lq be a random vector denoting the side-channel observations generated with
q queries to the target physical computer and lq = [l1, l2, . . . , lq] be a realization
of this random vector. Let finally Pr[s|lq] be the conditional probability of a key
class s given a leakage lq. We first define a conditional entropy matrix as:

Hq
s,s∗ = −

∑
lq

Pr[lq|s] · log2 Pr[s∗|lq], (1)

where s∗ denotes a possible key class candidate in the attack. Second, we derive
Shannon’s conditional entropy as follows:

H[S|Lq] = −
∑

s

Pr[s]
∑
lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

Hq
s,s,
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where E denotes the mathematical expectation and Pr[s|lq] is derived from the
Bayes law. We note that this definition is equivalent to the classical one since:

H[S|Lq] = −
∑
lq

Pr[lq]
∑

s

Pr[s|lq] · log2 Pr[s|lq]

= −
∑

s

Pr[s]
∑
lq

Pr[lq|s] · log2 Pr[s|lq]

Then, we define an entropy reduction matrix: H̃
q

s,s∗ = H[S] −Hq
s,s∗ , where H[S]

is the entropy of the key class variable S before any side-channel attack has been
performed: H[S] = Es − log2 Pr[s]. It directly yields the mutual information:

I(S;Lq) = H[S] − H[S|Lq] = E
s

H̃
q

s,s (2)

Security Metric. We consider a side-channel key recovery adversary of which
the aim is to guess a key class s with non negligible probability. For this purpose
and for each candidate s∗, he compares the actual observation of a leaking device
lq with some key dependent model for these leakages M(s∗, .). The construction
of these models (otherwise said templates) will be detailed in the next section.
Let T(lq, M(s∗, .)) be the statistical test used in the comparison. We assume that
the highest value of the statistic corresponds to the most likely key candidate. For
each observation lq, we store the result of the statistical test T in a vector gq =
T(lq, M(s∗, .)) containing the key candidates sorted according to their likelihood:
gq := [g1, g2, . . . , g|S|] (e.g. in our present context |S|=256). Then, for any side-
channel attack exploiting a leakage vector lq and giving rise to a result gq, we
define the success function of order o against a key class s as: So

s(gq) = 1 if
s ∈ [g1, . . . , go], else So

s(gq) = 0. It directly leads to the oth-order success rate:

Succo
S = E

s
E
lq

So
s(gq) (3)

Intuitively, a success rate of order 1 (resp. 2, . . . ) relates to the probability that
the correct key is sorted first (resp. among the two first ones, . . . ) by the ad-
versary. From a theoretical point of view, the information theoretic metric is
purposed for the comparison of different implementations. It is therefore conve-
nient to compare different side-channels and is central in the present analysis. A
security metric is additionally provided for discussion (but we do not consider
all the success rate orders and the guessing entropy defined in [18]).

4 Statistical Tools

In this section, we present the different tools that will be used to extract the
side-channel information from the actual observations of our target device. We
first describe a classical template attack as it is the strongest form of side-channel
attack from an information theoretic point of view. Hence, it provides the best
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way to evaluate the information theoretic metric of the previous section. Then
we discuss how to solve the main practical problem that arises in the application
of template attacks, namely the automatic selection of meaningful samples in a
leakage trace. For this purpose, we propose to use PCA or LDA.

4.1 Template Attacks

Templates construction. Suppose that an adversary is provided with Nt leak-
age vectors for a given operation, e.g. the transition between two values x1 → x2
on the bus of a microchip represented by a key class s. In template attacks, a mul-
tivariate Gaussian noise model is generally considered, which means that these
vectors {ls,i

q }Nt

i=1 are assumed to be drawn from the multivariate distribution:

N (ls,i
q |μs, Σs) =

1

(2π)
N
2 |Σs|

1
2

exp

{
−1

2
(ls,i

q − μs)
�Σ−1

s (ls,i
q − μs)

}
,

where the mean μs and the covariance matrix Σs specify completely the noise
distribution associated to each key class s. Constructing the templates consists
then in estimating the sets of parameters {μs}|S|

s=1 and {Σs}|S|
s=1. A standard

approach is to use the empirical mean and covariance matrix associated to the
observations {ls,i

q }Nt

i=1: μ̂s = 1
Nt

∑Nt

i=1 ls,i
q , Σ̂s = 1

Nt

∑Nt

i=1(l
s,i
q − μ̂s)(l

s,i
q − μ̂s)�.

Attack. Assume now that there are |S| possible secret key classes. In order
to determine by which secret signal a new vector lnew was generated, we apply
Bayes’ rule. This leads to the following classification rule:

s̃ = argmax
s∗

P̂r[s∗|lnew] = argmax
s∗

P̂r[lnew|s∗] Pr[s∗], (4)

where P̂r[lnew|s∗] = N (lnew|μ̂s∗ , Σ̂s∗) and Pr[s∗] is the prior probability of the
class candidate s∗. The classification rule assigns lnew to the candidate s∗ with
the highest posterior probability. In general, we have Pr[s∗] = 1

|S| .

Limitations. Although template attacks are theoretically the strongest ones,
computational issues arise in their application. Mainly, the number of samples
N per leakage trace can be very large which prevents the direct computation of a
leakage covariance matrix. As a consequence, a number of heuristics are usually
deployed in order to reduce the dimensions of the traces before the construction
of the templates. In summary, the first template attacks (e.g. in [7]) selected the
time samples showing the largest difference between the mean traces {μ̂s}|S|

s=1 as-
sociated to the classes [1, 2, . . . , s]. The PCA-based attacks [4] that are described
below were suggested as a way to improve and automatize this process.

4.2 PCA-Based Template Attacks

Consider the 256 mean (power and EM) traces associated to the 256 possible
transitions x1 → x2 on the microchip bus that are represented in Figure 1. PCA
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Fig. 1. Average power and EM traces

can be applied in order to find a single linear transform that maximizes the inter-
class variance between these different empirical mean traces {μ̂s}|S|

s=1 associated
to the classes [1, 2, . . . , s]. PCA looks for the first principal directions {wm}Nc

m=1
such that N ≥ Nc and which form an orthonormal basis of the Nc-dimensional
subspace capturing maximal variance of {μ̂s}|S|

s=1. It can be shown [11] that the
principal directions are the eigenvectors U of the empirical covariance matrix:

S̄ =
1

|S|
|S|∑
s=1

(μ̂s − μ̄)(μ̂s − μ̄)�, S̄ = UΔU�.

The quantity μ̄ = 1
|S|

∑|S|
s=1 μ̂s is the average of the mean traces. The principal

directions {wm}Nc
m=1 are the columns of U corresponding to the Nc largest eigen-

values of Δ. We denote these eigenvalues by the diagonal matrix Λ ∈ IRNc×Nc

and the corresponding matrix of principal directions by W ∈ IRN×Nc .
In order to built principal subspace templates, we simply estimate the pro-

jected means {νs}|S|
s=1 and the covariance matrices of the projected traces along

the (retained) principal directions {Λs}|S|
s=1. These parameters are given by:

νs = W�μ̂s, Λs = W�Σ̂sW.

As in standard template attacks, the noise model is a multivariate Gaussian
distribution. However, the number of principal directions Nc is much smaller
than N . In practice, a direction can be considered as not being principal if the
associated eigenvalue is small compared to the largest one.

Then, in order to classify a new trace lnew, we apply Bayes theorem in the
principal subspace of the empirical means which leads to the following rule:

s̃ = argmax
s∗

P̂r[W�lnew|s∗] Pr[s∗], (5)

with (as in classical template attacks) P̂r(W�lnew|s∗) = N (W�lnew|νs∗ , Λs∗).
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Properties and Limitations. PSTAs improve simple heuristics selecting time
samples according to the variance between the mean traces {μ̂s}|S|

s=1 because
they first project the traces in a subspace where these variances are maximized.
Additionally, they have the significant advantage of having a “small sample size”
variant (see [4] for details), which is particularly useful in contexts where there
are much more time samples in the traces than key classes in the attack. However,
PSTAs do not consider the intra-classes variance which may theoretically result
in poor classification performances. A natural extension (described in the next
section) is to exploit LDA [5,10], which allows projecting the traces in a subspace
that maximizes the ratio between the inter- and intra-class variance.

4.3 LDA-Based Template Attacks

Instead of seeking the directions maximizing the variance of the mean traces, it is
intuitively more appropriate to seek for the directions {w̃m}Nc

m=1 that maximize
the ratio between the inter-class scatter SB and the total intra-class scatter SW

after projection. That is, to maximize the objective: w̃�SBw̃
w̃�SW w̃ , where:

SB =
|S|∑
s=1

Nt(μ̂s − μ̄)(μ̂s − μ̄)�,

SW =
|S|∑
s=1

Nt∑
i=1

(ls,i
q − μ̂s)(l

s,i
q − μ̂s)

�.

Note that these quantities are equal to covariances up to multiplicative constants
that do not play a role in the subsequent derivation. Since SB is positive definite
and symmetric and since w̃ is scale invariant, the maximization problem can be
replaced by the following eigendecomposition:

S1/2
B S−1

W S1/2
B = ŨΔ̃Ũ�,

where SB = UBΔBU�
B → S1/2

B = UBΔ
1/2
B U�

B . The projection directions are
subsequently given by Ṽ = S−1/2

B Ũ. We denote the directions corresponding to
the Nc largest eigenvalues of Δ̃ as {w̃m}Nc

m=1 and stack them in a projection
matrix W̃ ∈ IRN×Nc . The templates are then constructed as in PSTAs, but in
the subspace obtained by LDA. Therefore and as previously, the parameters of
the multivariate Gaussian noise model are given by:

ν̃s = W̃�μ̂s, Λ̃s = W̃�Σ̂sW̃.

Finally, the attack is also performed in the same way as in PSTAs, i.e. by
applying (5), but using the projection matrix W̃ found by LDA, as well as the
projected means {ν̃s}|S|

s=1 and the projected covariances {Λ̃s}|S|
s=1.

Properties and Limitations. While PSTAs can perform well in practice, LDA-
based TAs (LDTAs for short) optimize an objective function which is more



418 F.-X. Standaert and C. Archambeau

meaningful. Its limitation arises from the fact that we have to compute the
(total) intra-class scatter matrix, which becomes singular when the number of
traces Nt is smaller than the number of time samples in the traces N . Hence, for
very long traces, one needs to take a lot of measures which may be a practical
issue. Also, the resulting matrices have to be computed and stored which may be
another issue. In other words, LDA is not suitable in the “small sample size” case
in contrast to PCA. But this is not always a problem since side-channel traces
can be reasonably short (as in the next section). And when they are not, they
can always be divided into several pieces or preliminarily reduced by heuristics
or PCA. In summary, LDTAs bring another tradeoff to the side-channel toolbox:
they optimize a more meaningful criteria at the cost of more constraints on the
size and amount of measurements performed by the adversary.

5 Experimental Results

In this section, we present our experimental results for which we used the follow-
ing parameters. For each of the 256 possible transitions on the bus, we generated
simultaneously 1000 traces (such as those illustrated in Figure 1). Among those
traces, Nt=500 were used for the construction of the PCA-based and LDA-based
templates. The remaining 500 traces were used for testing the templates and eval-
uate the information and security metrics of Section 3. From these experiments,
we detail both the comparison of the PCA and LDA dimensionality reductions
and the comparison/combination of the power and EM side-channels. Note that
for the combination of the power and EM leakages, we simply use straightfor-
wardly concatenated traces containing an EM leakage followed by a power one,
as initially suggested in [2]. This leads to 800-sample traces that are illustrated
in Figure 2. In order to keep N < Nt, we simply rejected one every two samples.

5.1 PCA Versus LDA

Selection of the Time Samples. Before detailing the information theoretic
and security metrics, an intuitive way to analyze the behavior of the PCA and
LDA is to observe how they select the meaningful time samples in the traces.
For this purpose, it is convenient to plot the eigenvectors of the transforms, as
in Figures 3 and 4 for the power + EM combination.

It yields the following observations:

1. In Figure 3, the eigenvectors corresponding to the first three components of
the PCA and LDA are pictured. They clearly show that the EM leakage is
dominating in the first component while the power one comes as a backup
in the second component. The same figure shows that PCA and LDA select
time samples in a similar (and intuitive) way. Namely, they select the points
where most of the variability occurs in the curves.

2. In Figure 4, the same eigenvectors are pictured for the last three compo-
nents of the PCA and LDA. They confirm the expectation that these last
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Fig. 2. Average combined power and EM traces
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Fig. 3. Eigenvectors for the combined power and EM leakage, first three components
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Fig. 4. Eigenvectors for the combined power and EM leakage, last three components
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components mainly (only) contain noise and therefore can be discarded. In-
terestingly, these figures show a clear difference between the PCA and LDA.
While the noise is uniformly distributed in the PCA eigenvectors, there is a
significant absence of noise in the (intuitive) regions of interest for the LDA.
This suggest a possibly better information extraction for LDTAs.

Figures 6 and 7 in appendix represent the same eigenvectors for the power and
EM channels taken independently. They highlight similar intuitions. Note that
the dominance of the EM channel in the first component of the combined power
and EM eigenvectors already suggest that EM leakages are the most informative.

Entropy Scores. Let H1
s,s∗ be the entropy matrix defined in Section 3, Equa-

tion (1), where the superscript 1 comes from the fact that we classify the different
transitions on the bus based on single traces (or queries). From the estimated
probability distributions P̂r[l1|s] that are provided by the PCA- or LDA-based
templates and the set of 500 traces to test these templates, one can derive an
estimation Ĥ

1
s,s∗ of this matrix. We say that a leakage model is (i.e. that our

templates are) sound if for each line of the estimated entropy matrix (corre-
sponding to a key class or transition s), the minimum value occurs for s∗ = s.
The entropy score is simply the fraction of key classes for which this condition is
respected. As demonstrated in [18], it corresponds to the faction of key classes
for which a Bayesian side-channel attack will be be asymptotically successful.

The entropy scores of the power, EM and power + EM template attacks ex-
ploiting both the PCA and LDA are represented in Figure 5. A first observation
from these pictures is that none of these channels leads to a 100% entropy score.
This is natural since we do not aim to perform a real attack but to evaluate the
effectiveness of different side-channels. Similarly, e.g. in the Hamming weight
leakage model, some key classes will remain undistinguishable (i.e. those cor-
responding to the same Hamming weight values). But since in a real attack,
each actual key class (that are not transitions as in this paper but real parts of
e.g. a block cipher key) can be identified thanks to all the transitions possibly
generated by different input plaintexts, a practical attack will be successful.

More importantly, these pictures exhibit (as expected) that the best entropy
score occurs for the power + EM channel, followed by the EM and the power
channels. They also highlight that LDTAs lead to (slightly) better results than
PSTAs, in particular for the combination of the power and EM channels.

Figure 8 in appendix shows a similar evaluation of the success rates. Inter-
estingly, they do not reach as high values as the entropy scores. This follows
the theoretical expectation that success rates do not measure the quality of an
implementation (nor the information leakage of a side-channel) but the effec-
tiveness of an adversary. Again, the combination of several leakages would lead
to higher success rates. Under the conditions discussed in [18], the more infor-
mation leaked (measured with the conditional entropy defined in Section 3), the
faster a Bayesian adversary exploiting a sound leakage model will converge to-
wards a 100% success rate. Note that even if the success rates are lower than
the entropy scores, they underline that the EM side-channel leads to extremely
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Fig. 5. Entropy scores for the PCA and LDA

powerful attacks. Indeed, even the leakage of a single clock cycle leads to a non
negligible success rate in the recovery of the transitions on the bus.

Entropy Values. Since as previously mentioned, less entropy in the traces
involves (under certain conditions) a more efficient Bayesian side-channel attack,
this section finally provides the conditional entropy values extracted from the
leakage traces for both the PCA- and LDA-based templates and different number
of components. They are summarized in Table 1.

It yields the following observations:

1. This table confirms all the previous conclusions. Namely, LDA leads to a
better information extraction than PCA; the EM channel is significantly
more informative than the power one; and the combination of both channels
(i.e. power + EM) leads to the most powerful type of attack.

2. The lowest conditional entropy values and the maximum entropy scores do
not occur for the same number of components (although they are strongly
correlated). This highlights that there exist situations where more key classes
can be asymptotically recovered, but reaching a 100% success rate will be
slower than in a context where less classes can be asymptotically recovered.

3. Compared to previous works on multi-channel or template attacks, this quan-
tified comparison is justified by theoretical statements on the evaluation

Table 1. Conditional entropy of the power, EM and power + EM traces

Number of components 3 5 7

power (PCA) 4.62 4.49 4.57
power (LDA) 4.41 4.48 4.62

EM (PCA) 3.92 3.65 3.55
EM (LDA) 3.21 3.15 3.24

power + EM (PCA) 3.57 3.36 3.20
power + EM (LDA) 2.92 2.80 2.87
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metrics. Therefore, it is expected that Table 1 provides the best possible
comparison of the information leakages for the different channels.

5.2 Power Versus EM, Power + EM

While comparing LDA and PCA in the previous section, most important quan-
titative analyzes and conclusions on the respective effectiveness of the power and
EM channels have already been drawn. However, one question that has not yet
been tackled is: “how far as these real leakages from the idealized (e.g. Hamming
weight) models that are frequently considered in the side-channel literature?”.

In order to answer this question, we can fortunately use the same framework
again. Let us start with the power channel for which a usual assumption is
to correlate it with the Hamming distances of the transitions on the bus. In
our present example, 5 possible Hamming distances can be observed (i.e. hd ∈
[0 . . . 4]) which leads to the following conditional entropy:

H[S|L1] = −
4∑

hd=0

24 ·
(

4
hd

)
28 · log2

⎛⎜⎜⎝ 1

24 ·
(

4
hd

)
⎞⎟⎟⎠ = 5.9694

This indicates that such a model is significantly less informative than a real
power consumption channel which would reduce the conditional entropy down to
4.41 in exactly the same context. Looking back at Figure 1, this simply means
that traces corresponding to the same Hamming distance HW (x1 ⊕ x2) can
actually be distinguished by a carefully profiled template adversary. Such traces
can be seen as included in one of the packets of curves in the figure.

A very similar analysis can be performed for the EM channel. Let us for ex-
ample take the signed distance model proposed in [14]. Such a model is purposed
to better incorporate the specificities of the EM channel since it allows to dis-
tinguish between x1 → x2 and x2 → x1 transitions. In practice, it means that 9
possible signed distances can be observed by the adversary (i.e. sd ∈ [−4, . . . , 4])
which leads to the following conditional entropy:

H[S|L1] = −
4∑

sd=−4

(
8

sd + 4

)
28 · log2

1(
8

sd + 4

) = 5.4558

While such a model is slightly more informative than the standard Hamming
distance model, it is again by far less informative than the real EM channel that
would reduce the entropy down to 3.15 in exactly the same context.

6 Conclusions

Following recent developments in physically observable cryptography, this paper
provides theoretical and practical insights in the analysis of the power and EM
side-channels and their efficient exploitation with powerful statistical tools.
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First, we use fair information theoretic and security metrics to evaluate and
compare these two side-channels. The resulting analysis demonstrates the sig-
nificantly higher information leakages of the EM channel when near field mea-
surements of a cryptographic chip are available.

Second, we propose the Linear Discriminant Analysis as an alternative to
the Principal Component Analysis for the best selection of the meaningful leak-
age samples in template attacks. We apply these tools to both the power and
EM channels as well as to their comparison in a multi-channel attack context.
The results show that Linear Discriminant Analysis is an interesting alternative,
bringing a better information extraction at the cost of more constraints in the
size and amount of measurements performed by a side-channel adversary. It is
therefore a very interesting tool to combine with Principal Component Analysis
in any practical application of the template attacks.

Finally, we compare the information leakages of the power and EM channels
with some idealized (e.g. Hamming weight) models used to predict these leak-
ages. Our results confirm that not only the distinguishers that usually exploit
these models (e.g. the correlation coefficient) are suboptimal, but also that the
models themselves are far less informative than the actual power and EM obser-
vations. This highlights the importance of template attacks when the provable
(or arguable) security of cryptographic implementations is discussed and the rel-
evance of strong models such as the noisy identity leakages introduced in [15] in
this context. In summary, if you are an adversary trying to recover the key of a
cryptographic device, Hamming weight (or similar) models can be useful. But if
you are a designer trying to convince that your cryptographic implementation
is secure against side-channel attacks, they are definitely not sufficient.

We note that these results only considered the application of PCA and LDA to
the original template attacks of [7]. However, these techniques could be similarly
applied to the stochastic models of [9,17]. The direct use of templates in our
experiments was reasonable since we were not limited in the number of samples
to build the templates (due to our evaluation goal). But stochastic models could
be very efficient in more constrained contexts. Combining data dimensionality
reduction techniques with stochastic models is a scope for further research.
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Fig. 6. Eigenvectors for the power leakage, first three components
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Fig. 7. Eigenvectors for the EM leakage, first three components
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Fig. 8. Success rates for the PCA and LDA
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Abstract. We propose a generic information-theoretic distinguisher for
differential side-channel analysis. Our model of side-channel leakage is
a refinement of the one given by Standaert et al. An embedded device
containing a secret key is modeled as a black box with a leakage function
whose output is captured by an adversary through the noisy measure-
ment of a physical observable. Although quite general, the model and
the distinguisher are practical and allow us to develop a new differen-
tial side-channel attack. More precisely, we build a distinguisher that uses
the value of the Mutual Information between the observed measurements
and a hypothetical leakage to rank key guesses. The attack is effective
without any knowledge about the particular dependencies between mea-
surements and leakage as well as between leakage and processed data,
which makes it a universal tool. Our approach is confirmed by results
of power analysis experiments. We demonstrate that the model and the
attack work effectively in an attack scenario against DPA-resistant logic.

Keywords: Differential Side-Channel Analysis (DSCA), Information
Theory, Mutual Information, DPA-resistant logic.

1 Introduction

Pervasive devices such as smart cards, mobile phones, PDAs and more recently
RFIDs and sensor nodes are now closely integrated into our lives. The devices
typically operate in hostile environments and hence the data contained might
be relatively easy compromised. This physical accessibility has led to a number
of very powerful attacks targeting implementations. As an example we mention
Differential Power Analysis (DPA) [9] which demonstrates that by monitoring
the power dissipation of a smart card, the cryptographic keys can be rather effi-
ciently extracted if no special countermeasures are taken. In the last decade many
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other side-channels have been described such as electromagnetic emanation [15],
timing [8], acoustics [16] etc. Both theory and practice have been developed
and as a consequence several more advanced power analysis attacks such as cor-
relation [2], template [3], and higher-order attacks [11] have been proposed as
well as a broad range of countermeasures [4,6,7,10]. For all side-channels we use
the terminology Differential Side-Channel Analysis (DSCA) when we refer to
differential attacks.

DSCA attacks as introduced by Kocher et al. [9] use a boolean partitioning func-
tion to sort a set of power curves into two subsets. The function is usually defined
on an intermediate value which can be predicted on the basis of a key hypothesis
and known data. The difference between the averages of the power consumption
curves of the two subsets shows a clear peak for the correct key guess. In this con-
text, we refer to a statistical test, e.g. difference of means [9], Pearson correlation
coefficient [2], Bayesian classification [3], as a side-channel distinguisher.

Micali and Reyzin propose theoretical models for side-channel security in [14].
In the model, the assumptions are very strong and in particular the adversary is
the strongest possible, which makes their model hard to work with in practice.
This was the motivation for the work of Standaert et al. [17]. They also use the-
oretical concepts such as Mutual Information to investigate side-channel leakage
and attacks. In their work, the Mutual Information only measures the average
amount of information present in measurements.

We introduce a Mutual Information-based distinguisher that constitutes the
core of a new and generic differential side-channel attack: Mutual Information
Analysis (MIA). In contrast to [17], we apply information theory to develop a
powerful attack without any device characterization. The distinguisher uses only
generic assumptions and is therefore more effective. Yet, the lack of assumptions
may sometimes result in less efficient attacks. Further on, our model and the
attack are successfully tested in practice. In general, while previous side-channel
attacks tried to keep reducing the number of measurements needed by ever
more sophisticated power consumption models, we take the opposite direction:
we attempt to produce attacks that are still effective in more realistic attack
scenarios, at the cost of a limited increase in the number of measurements.

This paper is organized as follows. Section 2 recalls the basic notions of infor-
mation theory and introduces our information-theoretic model for side-channel
leakage and analysis. In Sect. 3 we outline the construction of a distinguisher
and we give a theoretical reasoning for our approach. Sect. 4 discusses practical
aspects of MIA. In Sect. 5 we compare MIA with other known distinguishers.
Sect. 6 gives empirical evidence for the correctness of our model and for the
effectiveness of the proposed attack. We conclude our work in Sect. 7.

2 Preliminaries

2.1 Information Theory

We introduce some notions of information theory. For more details we refer to [5]
and to the Appendix.
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Let X and Y be random variables on the (discrete) spaces X and Y with
probability distributions PX and PY respectively. The reduction in uncertainty
on X that is obtained by having observed Y, is exactly equal to the information
that one has obtained on X by having observed Y. Hence the formula for the
Mutual Information I(X;Y) is given by

I(X;Y) = H(X) − H(X|Y) = H(X) + H(Y) − H(X,Y) = I(Y;X) . (1)

The Mutual Information satisfies 0 ≤ I(X;Y) ≤ H(X). The lower bound is
reached if and only if X and Y are independent. The upper bound is achieved
when Y fully determines X. Hence, the larger the Mutual Information, the more
close the relation between X and Y is to a one-to-one relation.

2.2 Side-Channel Model

In this section we introduce our information-theoretic model for side-channel
leakage of cryptographic devices, which is a refinement of the model proposed
by Standaert et al. in [17].

We consider a device (e.g. an IC) that carries out a cryptographic operation
Ek, depending on a secret key k from a key space K = {0, 1}m. The unknown
key is modeled as a random variable K on K. In order to analyze the impact of
an adversary who can (up to a certain extent) observe the device’s internal state,
the device’s side-channel leakage is modeled by a side-channel leakage function L.
We assume that the values L of the leakage function depend on state transitions
W (e.g. bit flips) in the device. The physical observable O represents (possibly
noisy) measurements of L.

Summarizing, we have the following model which consists of a cascade of two
channels (see also Fig. 1): W → L → O.

1. W → L: The leakage channel through which information on the words W
is leaked in L.

2. L → O: The (possibly noisy) observation channel through which O provides
information on L. An adversary has access to the output of this channel.

In the following we make these ideas more precise. We assume that the values
of L are determined by state transitions (e.g. bit flips) in the device. These
state transitions are provoked by a pair of words (υ1, υ2) ∈ {0, 1}n × {0, 1}n =
W , where n is the device’s word length, (e.g. previous and next state) being
processed by the device. When a cryptographic operation Ek is executed, the
pair (υ1, υ2) of words usually depends on the secret key k and is randomly
distributed from an adversary’s point of view. Therefore we model the occurring
pairs as the random variable W on W . The values of the leakage function L
contain information on W and hence, while Ek is executed, information on the
secret key k used in the device. Therefore we model the images of W under L
as a random variable L on a discrete space L

L : W → L ; W �→ L = L(W) . (2)



Mutual Information Analysis 429

Fig. 1. Schematic illustration of the cascaded channels

Later, we will make the dependency of L on the key k explicit and denote it
by Lk. It is furthermore assumed that L is at most of size 22n, i.e. the leak-
age function L is surjective. For example, the Hamming weight model implies
L = {0, 1, . . . , 7, 8}. The random variable L is observed by measuring a physical
observable (voltage, radiation, etc.). The physical observable is modeled as the
random variable O on a space O.

Before an attack, the adversary obtains q > 0 measurement traces oxi(t),
i = 1 . . . , q, by measuring O(t) while the device processes known data xi with
the cryptographic operation Ek over time t. During the attack, the adversary
uses the information on L contained in O and aims at reconstructing the word
sequence W, which would allow to discriminate the secret key k.

The real side-channel leakage function of the device might not be known to
the adversary. We thus denote her guess, i.e. the hypothetical leakage function,
by L̂. For the sake of explanation, we assume L̂ = L for the moment and address
this issue later in Sect. 4.1. The adversary makes a guess k̂ ∈ K on the key k
stored in the device. This implies a guess Wk̂ on the occurred pairs of words
W. The guess Wk̂ in turn implies a guess L̂k̂ = L̂(Wk̂) on the output values Lk

of the real leakage function. In the last step the adversary checks whether her
guess L̂k̂ is compatible with the observed measurement values O.

In order to explain the attack, we first restrict ourselves to the interesting
point(s) in time t = τj when the pair of words W being processed depends on
the result of a function fk : {0, 1}m → {0, 1}n,X �→ fk(X) applied to a known
input X. We assume that the cryptographic primitive Ek and its implementation
are known to the adversary, that fk(·) is a suitable intermediate result of Ek(·),
and that the inputs X are chosen uniformly at random from {0, 1}m. Further,
we assume that the key space is {0, 1}m.

2.3 Side-Channel Attack

We denote by M = {ox1 , . . . , oxq} the multiset of q measurements of the physical
observable O obtained when the known inputs x1, . . . , xq were processed by the
device. Our side-channel adversary uses a distinguisher D, which takes as input
the measurements ox1 , . . . , oxq and the inputs x1, . . . , xq, and outputs the key
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guess k∗. The adversary’s advantage of using this distinguisher is defined as the
probability that the distinguisher’s key guess k∗ is indeed the correct key k.

3 The Information-Theoretic Distinguisher

In this section we derive our distinguisher and analyze it formally in our attack
scenario.

3.1 Construction

Let L0, . . . , Ll be subsets of the space L. The set {L0, . . . , Ll} is a partition of
L and the elements Li, i = 0, . . . , l are called atoms.

To each possible key guess k̂ ∈ K, which implies a guess Wk̂ on the pairs
of words, we associate a partition {Lk̂

0 , . . . , L
k̂
l } of L which is defined by Lk̂

i =
{x ∈ {0, 1}m | L̂(Wk̂) = i ∧ Wk̂ = (υ1, fk̂(x))} for i = 0, . . . , l. That is,
we associate all inputs values X = x that leak L̂k̂ = i under the key guess k̂ to
Lk̂

i . Each partition {Lk̂
0, . . . , L

k̂
l } of L induces a subdivision1 of the measurement

space O, since each measurement is associated with an input x.
Let PL̂k̂

and PO denote the probability distributions of the random variables

L̂k̂ and O respectively.
Given the multiset of measurements M = {ox1 , . . . , oxq} and a partition of L,

we define the following set of conditional distributions {PO|Lk̂
i
}l

i=0. The distri-

butions PO|Lk̂
i

describe the random variable O given the atoms Lk̂
i for a hypo-

thetical key k̂. They represent a (possibly noisy) observation channel L̂k̂ → O
which depends on the hypothetical key k̂ and the actual key k. The attacker will
look for the distribution that is most likely compatible with the measurement
results.

We compute an estimation of the Mutual Information I(L̂k̂;O) under the key
guess k̂ while the actual key is k as

Ĩ(L̂k̂;O) = H̃(O) − H̃(O|L̂k̂), (3)

where H̃(·) denotes an estimated entropy.
The distributions PO|Lk̂

i
are determined empirically by generating the his-

tograms of the measurements ox1 , . . . , oxq associated to the atoms of the parti-
tion {Lk̂

0, . . . , L
k̂
l }. They are estimated by

P̃O|Lk̂
i

=
|{oxj = o| xj ∈ Lk̂

i }|
|Lk̂

i |

1 In contrast to a partition, the atoms of a subdivision do not necessarily have an
empty intersection.
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where |{·}| denotes the cardinality of a set. The distribution PO is determined
empirically as P̃O = |{oxj = o}|/q.

We define our distinguisher D : Oq ×{0, 1}m → K as follows: given a multiset
M = {ox1 , . . . , oxq} of observations and the corresponding plaintexts x1, . . . , xq,
it outputs the key guess k∗ that maximizes the mutual information between the
observations and the hypothetical leakage values,

D(ox1 , . . . , oxq ; x1, . . . , xq) → k∗ iff Ĩ(L̂k∗ ;O) = max
k̂

Ĩ(L̂k̂;O). (4)

We extend the distinguisher D defined above to retrieve also the interesting
point(s) in time t = τj when the intermediate result fk(·) is computed. It takes
as input the multiset of observed traces M = {ox1(t), . . . , oxq(t)} and the inputs
x1, . . . , xq. The extended distinguisher is defined by,

D(ox1(t), . . . , oxq(t); x1, . . . , xq) → (k∗, τj) iff

Ĩ(L̂k∗ ;O(τj)) = max
(k̂,t)

Ĩ(L̂k̂;O(t)). (5)

Note that there may exist additional points in time where O(t) (partially) de-
pends on Lk but where Ĩ(L̂k;O(t)) is not maximal. To cover this case we denote
τj as all instants when O(t) (partially) depends on Lk.

3.2 Theoretical Reasoning

We consider the Mutual Information between the output of a guessed leakage
function L̂k̂ and an observable O(t), i.e. the reduction in the uncertainty on L̂k̂

due to the knowledge of O(t) for a key hypothesis k̂. There exist four interesting
combinations of time instants and key candidates to study.

1) incorrect key hypotheses k̂ �= k and wrong time instants t �= τj

In this case I(L̂k̂;O(t)) = 0 because the two variables are independent (see Ap-
pendix). However, the equality holds only theoretically. In practice we compute
Ĩ(L̂k̂;O(t)) close to 0 as we are working with estimates of entropy.
2) correct key guess k̂ = k and wrong time instants t �= τj

In this case I(L̂k̂;O(t)) = 0 because the two variables are independent. Recall
that t �= τj implies independence by definition. Again, in practice we obtain
values only close to 0.
3) correct key guess k̂ = k and correct instant(s) t = τj

In this case I(L̂k̂;O(τj)) = H(O(τj)) − H(O(τj)|L̂k̂) > 0 because the variables
are dependent by definition. The value of H(O(τj)|L̂k̂) is minimized. So, at the
right point(s) in time t = τj , the correct key guess k̂ = k leads to the highest
Mutual Information. In practice, high values of Mutual Information can appear
for several points in time if the targeted intermediate result is computed, stored,
and reused later. Both facts are empirically confirmed in Sect. 6.
4) incorrect key guess k̂ �= k and correct time instants t = τj

In this case I(L̂k̂;O(t)) = 0 if and only if an incorrect key guess leads to random
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hypothetical leakage values. In practice we might observe Mutual Information
values greater than zero. These “ghost peaks” occur if a wrong key guess does
not lead to hypothetical leakage values that are independent of the real leakage
values. This phenomenon is also observed for other distinguishers and studied
in detail in [2].

4 Practical Aspects of Mutual Information Analysis

In this section we address aspects of Mutual Information Analysis that are of
importance for its practical application.

The Mutual Information distinguisher, as most statistical tests, is bounded in
its efficiency to recover keys by the hypothetical leakage function L̂. The closer
the partition induced by L̂k̂ is to the a priori unknown physical data-dependency
inherent in O(t), the more efficient and effective the statistical test will be.

Hence, a side-channel analyst faces several problems which we will summarize
using our model’s notation. The flow of information from k to O(t) has to be
examined via the transition caused by W. It involves the hypothetical leakage
function L̂ and the electrical properties of the observation channel. The choice
of fk̂(·) is usually an easy task and can be performed device independently. Any
intermediate result that combines a small part of the (constant) unknown key
and a known varying value may be chosen (here “small” means that exhausting
all k̂ should be feasible). On the other hand, the choice of L̂ as well as the ab-
straction of the observation channel pose a non-trivial task. Typically, the latter
is modeled as a (linear) one-to-one relation (one-to-many if noise is considered)
such that the model’s complexity is concentrated in L̂. Based on the choice of L̂
and a key guess k̂ an adversary predicts the device’s power dissipation and uses a
statistical test to quantify the fitness of her simulation. However, obviously this
approach requires an engineer’s insight into the device’s leakage behavior if the
goal is to obtain significant results. As long as the target device has been built
in standard CMOS technology, this behavior can be approximated by the Ham-
ming weight [13] or Hamming distance [2] model. Then, the complexity is shifted
to the architecture level as one has to define the exact transition (υ1, υ2) that
leaks, which usually involves previously computed values, counters, conditional
branches, or memory addresses (cf. [2]).

The approach for our attack follows the opposite idea. Instead of crafting an
attack for a specific device and implementation, we propose to shift the com-
plexity from the modeling step into the distinguisher. Rather than trying to
model the leakage function and the system’s electrical properties as good as
possible and measuring the (linear) correlation between the simulated and the
observed power dissipation, we propose the following. Assume a one-to-many
relation between the leaked and observed values, i.e. do not average measure-
ments unless the Gaussian assumption is justified. Assume a suitable leakage
function L̂. Compute an estimation of the Mutual Information Ĩ(Lk̂,O(t)) be-
tween the hypothetical leakage and the observations and use it as a distinguisher
to discriminate keys.
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4.1 Hypothetical Side-Channel Leakage

Up to now we assumed that L̂ = L which reflects a powerful adversary that knows
the exact side-channel leakage function of the device under attack. Although this
assumption might be justified in some cases, e.g. it might be known that the
target device leaks the Hamming distance of υ1 and υ2, we relax the assumption
and hence also cover cases where the real leakage function is unknown.

There exist two important restrictions for the adversary’y choice of L̂. By
assumption, L is a surjective mapping L : W → L ; W �→ L = L(W). The best
the adversary can do in order not to deliberately loose information and to ensure
that the distinguisher D works as expected is to ensure that L̂ does not produce
collisions where L does not. Since L is unknown, the only way to guarantee this
property is to choose L̂ as a bijective mapping of W. Such a setting suggests
that L̂ might produce less collisions than L, which makes our distinguisher less
efficient but does not tackle its effectiveness.

The second restriction arises due to the generic character of the distinguisher.
L̂ must be chosen such that different key hypotheses k̂ do not yield a permutation
of L̂k̂. If this would happen, Ĩ(L̂k̂;O) would be constant and more important,
independent of the guess k̂. The distinguisher would not be able to discriminate
key candidates.

In the following example, the choice of L̂ does not allow to discriminate key
candidates using our distinguisher: suppose that Ek is AES encryption and that
the targeted transition W is (υ1, fk̂(·)) for a constant reference state υ1 ∈ {0, 1}n

and for fk̂(·) being a Sbox lookup during the first round. The AES Sbox is a
bijective map. Therefore, different key candidates k̂ lead to permutations of the
guess Wk̂. Choosing L̂ as a bijective map of Wk̂ implies that the partition
{Lk̂

i }l
i=0 is merely permuted, which has no effect on the entropy H̃(O|L̂k̂) and

thus no effect on Ĩ(L̂k̂;O). A simple workaround for this problem is to choose
L̂ as a bijective map of a subspace of W , e.g. one could choose L̂k̂ := the seven
least significant bits of Wk̂. In the same context, the DES Sboxes do not lead
to a problem since they are not bijective.

Another interesting property of bijective hypothetical leakage functions is,
that the sometimes unknown reference state υ1 is transparent to them and can
simply be ignored, as long as it is constant.

4.2 Estimation of Probability Densities

In practice, an adversary does not know the probability distributions PO|L̂k̂
and

PO and has to estimate them. Since all successive computations are based on
these estimations, the estimation of probability densities is a key issue.

The estimation technique we use relies on histograms. In our experience, it
is a simple and efficient technique to address the issue. A histogram estimates
the probability distribution of data in a given sample set by counting how many
samples fall into a certain bin.

The arising questions are: “How many bins should be used?” and “Should all
bins be equally wide?”. As far as we know, there exists no strategy that leads
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to the best estimation in all scenarios. By applying this technique in numerous
side-channel attack scenarios we extracted the following basic guidelines.

1) The first design principle of Mutual Information Analysis is the exploitation
of information. We thus aim at estimating the probability distributions as good
as possible. This means to use as many bins as there are distinct values in the
domain covered by the sample set. This approach may require a limited increase
of measurements, but it ensures that no information is lost.
2) Generating histograms is different depending on whether the observations of
the random variable are deterministic or probabilistic (noisy). In the determin-
istic case, we can at least be sure about the value of an observed datum while
this does not hold in the probabilistic case.
3) We usually work with bins of equal width. In general, less bins imply less
information and vice versa. If we work with noisy observations, choosing less
bins may have the effect of noise reduction. In practice this means that several
distinct samples can fall into the same bin, which reflects the assumption that
they stem from the same datum.

5 Contrasting MIA and Other Distinguishers

In the seminal paper on Differential Power Analysis [9], Kocher et al. suggest
to use a single-bit partitioning function. In our notation this is the hypothetical
leakage function. An advantage of a single-bit approach is that it does not require
an assumption on the real leakage function. One merely assumes that different bit
values leak differently. A disadvantage is the loss of information due to ignoring
all other bits.

The extension to consider several bits at once was first proposed by Messerges
et al. in [12]. More precisely, the authors proposed to use a partitioning function
based on more than one bit and to analyze those atoms that are maximal different
(e.g. all zeros vs. all ones). However, this approach requires an assumption on
the real leakage function to identify those two atoms. Further, it does not allow
to exploit the available information in an optimal way, since only to atoms of
the partition are considered.

Other methods, e.g. the Hamming models, require even more sophisticated
assumptions on the real leakage function and try to estimate it as good as pos-
sible. A disadvantage of these methods is, that they can only be applied if the
assumptions are justified.

Independent of single- or multi-bit partitioning functions, an adversary can
choose amongst several distinguishers. Kocher et al. suggested the difference
of means test. Later publications suggested further distinguishers including the
t-test [1] and the Pearson correlation coefficient [2]. These distinguishers an-
alyze a probability distribution at most by its mean and variance (Gaussian
assumption). Hence they do not exploit all information available and are inap-
propriate if the Gaussian assumption does not hold. Pearson’s correlation coeffi-
cient requires the additional assumption of a linear relation between leakage and
observation.
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Template Attacks [3] are a different kind of attack. They assume a powerful
adversary that fully controls a training device which is used to estimate the prob-
ability densities of the physical observable for each Lk̂

i . Effectively this is equiv-
alent to knowing L. For a side-channel measurement from a target device, the
maximum-likelihood test derives which previously estimated probability density
is the most likely origin of the sample. Template attacks constitute the strongest
form of side-channel attacks, if the Gaussian assumption holds. A disadvantage
of the approach is the need for a training device.

In contrast, MIA requires neither a training device, nor a restrictive assump-
tion about the real leakage function, nor the Gaussian assumption. MIA esti-
mates the full probability density for each Lk̂

i from observations of the target
device’s leakage. Due to the lack of reference data, e.g. templates, MIA cannot
apply the maximum-likelihood test. Instead, MIA uses our information-based
distinguisher. An important advantage of MIA is, that it can exploit arbitrary
relationships between Lk and O.

The work of Standaert et al. [17] is different from ours in the following sense:
they propose a Mutual Information-based metric for measuring an amount of
side-channel leakage. That is, they do not propose an attack but a leakage anal-
ysis/evaluation tool.

6 Experimental Results for Mutual Information

In this section, we apply the theoretical framework from Sect. 2 and 3 and
provide experimental results based on power measurements from an AT90S8515
micro controller (n = 8 bit) performing Ek := AES-128 encryption in software2.
The measurements O(t) represent the voltage drop over a 50Ω resistor inserted
in the smart card’s ground line. We sample the power consumption at instants
t = 1, . . . , 1800 during the first round of the AES-128 encryption of randomly
chosen plaintexts with a constant key. Our experiments focus on the first key
byte denoted by K ∈ {0, 1}8 and the first plaintext byte denoted by X ∈ {0, 1}8.

6.1 Mutual Information Applied to Side Channel Leakage

We empirically confirm that Mutual Information Analysis is indeed effective
using relaxed assumptions with the following experiment:

– population size q = 1000 power curves oxi(t), i = 1, . . . , q

– fk̂(X) = Sbox(X ⊕ k̂) , Wk̂ = (υ1, fk̂(X)) , υ1 constant and unknown
– L̂(Wk̂) := the rth bit of fk̂(X), where r = 0 denotes the LSB.

Hence, each oxi(t) is associated to an atom of {Lk̂
i }1

i=0 by L̂(Wk̂) which is the rth
bit of Sbox(X⊕k̂). For the dependence between leaked value and observed power
dissipation we assume a one-to-many relation due to noise, i.e. each distinct value
of Lk leads to exactly one power consumption value under noise-free conditions,
2 We would like to point out that the AES encryption terminates in constant time.
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but in reality it might lead to differing observations. The probability densities P̃O

and P̃O|L̂k̂
are empirically determined by sampling the distributions of L̂k̂ and

O with histograms. The number of bins for the histograms is chosen according
to size of L, i.e. the number of distinguishable values in L̂k̂, which is two.

We compute the Mutual Information Ĩ(L̂k̂;O(t)) for k̂ = k according to
Eq. (1) and (3) for each t. Figure 2 shows the resulting Mutual Information
traces for r = 0, 1, 2. The obvious peaks in the upper plot (r = 0) appear during
the jointly implemented SubBytes and ShiftRows operations as well as during
the MixColumn operation, which involve the targeted value Wk̂ several times.
These peaks are less significant in the plots for r = 1 and r = 2 which clearly
indicates that the single bits leak different amounts of information.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

Time

I(
L k;O

(t
))

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

Time

I(
L k;O

(t
))

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

Time

I(
L k;O

(t
))

Fig. 2. Mutual Information of 1-bit leakages for bit r = 0, 1, 2, from top to bottom

However, the information leaked adds up as shown in Fig. 3 which depicts the
Mutual Information trace of the 2-bit leakage function L̂(Wk̂) := the two LSBs
of fk̂(X). We used four bins to estimate the probability distributions.
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Fig. 3. Mutual Information for 2-bit leakages

6.2 Empirical Evidence

This section provides empirical evidence showing that the attack and the dis-
tinguisher are effective and hence confirms the theoretical considerations of
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Sect. 3.2. We empirically verify that our distinguisher is effective in our gen-
eral setting with the following experiment:

– population size q = 1000 power curves oxi(t), i = 1, . . . , q

– fk̂(X) = Sbox(X ⊕ k̂), Wk̂ = (υ1, fk̂(X)) , υ1 constant and unknown
– L̂(Wk̂(·)) := the three MSBs of fk̂(X) .

As before, we assume a one-to-many relation between leaked and observed values
due to noise. Based on a key guess k̂ ∈ K, each oxi(t) is associated to an atom
of {Lk̂

i }7
i=0 by L̂(Wk̂) which is equal to the three MSBs of Sbox(X ⊕ k̂). We

estimate the probability distributions PO and PO|L̂k̂
with histograms for which

we use eight bins and compute the Mutual Information of L̂k̂ and O(t) according
to Eq. (1) and (3). Figure 4 depicts the resulting Mutual Information trace for
the correct key guess k̂ = k.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

Time

I(
L k;O

(t
))

Fig. 4. Mutual Information over time for the correct key hypothesis

As can be seen when comparing to Fig. 2 and 3 the trace shows clear peaks
at the points of interest t = τj where the targeted intermediate result fk̂(·) is
processed. Next, we compute the same Mutual Information trace for all other
key hypotheses k̂ and test, if the highest derived Mutual Information value for
any wrong k̂ is lower than the one for k̂ = k. More formally that is: argmaxt,k̂=k

Ĩ(L̂k̂,O(t)) > argmaxt,k̂ �=k Ĩ(L̂k̂,O(t)). Figure 5 shows the highest Mutual In-
formation value (selected from the whole time frame t) for every key hypothesis.
The peak for the correct key hypothesis k̂ = k is clearly distinguishable.

0 50 100 150 200 250
0

0.1

0.2

Key hypothesis

m
ax

t I(
L k;O

(t
))

Fig. 5. Maximum Mutual Information per key hypothesis

6.3 MIA and Dual Rail Precharge Logic

In this section we apply our distinguisher in a scenario for which it seems partic-
ularly promising: special logic, e.g. Wave Dynamic Differential Logic (WDDL)
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[18], designed to resist differential side-channel analysis. While the assumption
of the Hamming weight or distance leakage function is justified and leads to
efficient attacks against devices implemented in standard CMOS, the situation
is very different when facing dual rail precharge (DRP) logic. Let us look back
to the initial foundations of those models. In standard CMOS, the instanta-
neous dynamic power dissipation of a logic or sequential gate is directly linked
to whether the bit-pattern on the inputs lead to a transition (bit-flip) in the gate
and/or on the output wire(s) or not. Although the energy required to perform
the flip is not equal amongst cell types and not even amongst equal cells spread
over the silicon area with process variations, the differences are usually negligible
in a power analysis attack context. In particular, this is the case for sets of gates
that drive large capacitive loads, e.g. bus lines in a microcontroller. This is why
attacking a microcontroller when performing a memory lookup instruction with
a correlation attack and the Hamming weight or distance leakage model can lead
to correlation coefficients of almost one.

However, these models and assumptions do not hold for DRP logic. The fun-
damental idea of DRP logic is to encode one bit of information in a differential
pair, e.g. 0 = (0,1) and 1 = (1,0), that is signaled over a wire pair. Further, the
entire circuit is precharged to a constant pair (0,0) or (1,1) in the first half of each
clock cycle. During the evaluation phase, the second half of each clock cycle, the
logic evaluates and each wire pair takes either (0,1) or (1,0) depending on the bit
value that is encoded. Doing so ensures that, whether the logical input to a gate
changes or not, the gate performs exactly one bit flip in each evaluation phase.
Obviously, hypothetical leakage functions that relate to the number of “logical”
bit flips only are meaningless in this context. The circuit performs a constant
number of bit flips per cycle, independent of the logical data values. Still, DRP
logic leaks information. The relatively small differences that we neglected in the
standard CMOS context now have a major impact.

For simplicity, consider two gates in DRP logic that each drive two differential
outputs with capacities (α, β) and (γ, δ). If α > β and γ > δ holds, the Hamming
models do not describe the power dissipation well, but they will work because
the direction of the differential is the same for both logical output bits. The same
holds if we replace > with <. In the case that the directions of the differentials
are not equal, the Hamming models no longer represent effective estimators of
power dissipation behavior and side-channel leakage. This discrepancy increases
with the number of logical bits, starting from two bits.

Since our distinguisher does not rely on a restrictive assumption about the
leakage function, it is the method of choice for an attack against DRP logic. We
confirm the correctness of this statement with empirical evidence.

The experimental platform is an 8051 microcontroller implemented in a DRP
variant with differentially routed wire pairs. We implemented a simple yet rep-
resentative test program which consists of a single table lookup of the Sbox S1
of the Data Encryption Standard. We obtained power measurements while the
microcontroller performed lookups for randomly chosen plaintexts and a con-
stant key. Before each measurement, the memory bus and the target register
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were reset to zero. Thus the previous state is zero. The measurements represent
the voltage drop over a 50Ω resistor inserted in the microcontrollers VDD line.
We sampled the voltage drop at a rate of 2GS/s.

Let X be the six plaintext bits and k be the 6-bit subkey. Further experimental
settings are:

– population size q = 100 000 power curves oxi(t), i = 1, . . . , q
– fk̂(X) = S1(X ⊕ k), Wk̂ = (υ1, fk̂(X)) , υ1 = 0
– L̂(Wk̂(·)) := all four bits of fk̂(X) .

Figure 6 shows the result of a standard correlation attack, where we used the
Hamming weight of S1(X⊕k̂) as the predicted power dissipation. The correlation
trace for the correct key is plotted in black, for all other key candidates in gray.
As can be seen, the correct key hypothesis does not lead to a maximal or minimal
correlation coefficient with respect to the whole period.
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Fig. 6. Correlation traces: correct key in black, all other in gray

Figure 7 on the other hand shows the result of an attack with the Mutual
Information-based distinguisher. The Mutual Information trace for the correct
key is plotted in black, for all other key candidates in gray. At time index 600
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Fig. 7. Mutual Information traces, correct key in black, all other in gray

the correct key hypothesis leads to a Mutual Information value that is maximal
for all key hypotheses and the whole time.

To emphasize the difference, we present in Fig. 8 plots of the maximal and
minimal correlation values as well as of the maximal Mutual Information values
per key hypothesis, chosen from the overall time frame.
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Fig. 8. Maximum Mutual Information per key hypothesis (upper plot); Maximal and
minimal correlation coefficient per key hypothesis (lower plot)

7 Conclusion

We described a generic differential side-channel attack that is based on an
information-theoretic distinguisher. The distinguisher uses the Mutual Infor-
mation between the observed measurements and the values of a hypothetical
leakage function to rank key guesses. We showed why the attack is particularly
promising when the target device is implemented in dual rail precharge logic.
The effectiveness of our approach is confirmed by results of power analysis ex-
periments.
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an experiment is performed, is expressed by the Shannon entropy of X which is
usually denoted by H(X) or H(PX). It is defined by the following equation

H(X) = −
∑
x∈X

PX[X = x] log2 PX[X = x] . (6)

H(X) expresses the uncertainty in bits. The entropy of the pair of random vari-
ables (X,Y) (where Y is a random variable on a space Y) is denoted by H(X,Y)
and it expresses the uncertainty one has about both. We note that the entropy
of two random variables is sub-additive i.e.

H(X,Y) ≤ H(X) + H(Y) (7)

with equality if and only if X and Y are independent. Often one is interested
in the uncertainty about X given that one has obtained the outcome of an
experiment on a related random variable Y. This is expressed by the conditional
entropy H(X|Y) which is defined as follows,

H(X|Y) = −
∑

x∈X ,y∈Y
PX,Y[X = x,Y = y] log2 PX|Y[X = x|Y = y], (8)

where PX,Y denotes the joint probability distribution of X and Y and PX|Y
stands for the conditional probability distribution of X given Y. When Y can
be considered as an observation of X over a noisy channel, then one often char-
acterizes the channel by its set of conditional distributions {PY|X=x}x∈X .
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