
9 Viscous Fluids

Materials are usually classified into solids and fluids, where fluids are sub-
divided into liquids and gases. These divisions are not always clear because
there are materials which possess both solid-like and fluid-like properties.
Any fluid is defined as a material which deforms continously as long as a
shearing stress is acting. A solid, on the other hand, can be in equilibrium
under a shear stress. Some solids have a natural configuration to which they
return if an imposed stress is removed. Such a configuration can be regarded
as the reference configuration. Fluids do not possess a natural configuration,
i.e., they take the shape of the surrounding boundary.

In the following we differentiate between linear viscous fluids and non-
linear viscous fluids , where the latter belong to the class of non-NEWTONian
fluids.

9.1 Linear Viscous Fluids

A fluid at rest cannot sustain any shear stress, i.e., the stress state in a fluid at
rest is characterized by a spherical tensor, σ ∼ δ, according to the constitu-
tive equation

σij = −p(ρ, T )δij (9.1)

employed in hydrostatics, where the hydrostatic pressure p is related to the
temperature T and the density ρ by a thermal equation of state having the
form F (p, ρ, T ) = 0. An example of an equation of state is the law p = ρRT
of an ideal gas, where R is the special gas constant for a particular gas not to
be confused with the general gas constant.

A fluid in motion (d �= 0) can sustain viscous stress, which can be ex-
pressed in the linear case by the linear transformation

τij = Vijkl(ρ, T )dkl . (9.2)

This tensor is called viscous stress tensor or sometimes extra stress tensor.
The cartesian components Vijkl of the viscosity tensor V reflect the viscous
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properties of the fluid. In general, one can assume that fluids are isotropic.
Then, the viscous stress tensor is a function of only one argument tensor,
namely the rate-of-deformation tensor d with components (3.22), i.e.,

τij = τij(dpq) , (9.3)

and the fourth-order viscosity tensor must be an isotropic tensor, the compo-
nents of which are expressed by

Vijkl = ξδijδkl + η (δikδjl + δilδjk) . (9.4)

This relation is similar to the elasticity tensor in (2.31) for isotropic linear
elastic materials.

Adding (9.1) and (9.2) with (9.4), we arrive at the constitutive equation

σij = [−p(ρ, T ) + ξ(ρ, T )dkk] δij + 2η(ρ, T )dij (9.5a)

or
τij ≡ σij + p(ρ, T )δij = ξdkkδij + 2ηdij , (9.5b)

which characterizes a NEWTONian fluid.
In the special case of a shearing flow (i = 1, j = 2), the constitutive

equation (9.5a) reduces to the simple relation τ = ηγ̇, where τ = τ12 ≡ σ12

and γ̇ = 2d12. Thus, the parameter η in (9.5a) is the shear viscosity. The
second parameter, ξ, in (9.5a) shall be interpreted later.

The constitutive equation (9.5a) fulfills the principle of material frame
indifference (objectivity), since the rate-of-deformation tensor is an objective
tensor (BETTEN, 2001a) and the right-hand side of (9.5a) is not affected by a
superimposed rigid-body motion. Thus, the constitutive equation (9.5a) has
the required property of being independent of any superimposed rigid-body
motion. This is not true for the linear constitutive equation of an isotropic
elastic material (BETTEN, 2001a).

By introducing the fourth-order spherical tensor (9.4) we have assumed
that the fluid behaves isotropic. As a matter of fact, isotropy is a consequence
of (9.2) and the requirement that the stress is not influenced by any rigid-
body motion. Thus, it was not necessary to consider isotropy as a special
assumption. However, fluids with anisotropic properties may exist, but their
behavior cannot be expressed by the linear transformation (9.2).

For the sake of practical applications it may be useful to split the consti-
tutive equation (9.5a) into a scalar and a deviatoric part. To do this, we firstly
equalize the trace
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σkk ≡ 3σ̄ = −3p̄ (9.6)

and the trace of (9.5a) arriving at the scalar relation

p̄ = p(ρ, T ) −
(
ξ +

2

3
η

)
dkk . (9.7a)

The deviatoric equation can be derived from the stress deviator (2.23) by
taking the relations (9.5a), (9.6), and (9.7a) into account:

σ′ij = 2ηd′ij , (9.7b)

in which d′ij := dij − dkkδij/3 are the components of rate-of-deformation
deviator d′. In a similar way we arrive from (9.5b) at the following two
equations

τ̄ ≡ 1

3
τkk =

(
ξ +

2

3
η

)
dkk and τ ′ij = 2ηd′ij . (9.8a,b)

By analogy with the bulk modulus, also called volume elasticity modulus
(BETTEN, 2001a),

K ≡ EVol := σVol/εVol ≡ σ̄/εkk , (9.9)

we define the bulk viscosity (volume viscosity) as the quotient from viscous
volume stress τVol and volume strain rate dVol:

ηVol := τVol/dVol ≡ τ̄ /dkk , (9.10)

so that we find by considering (9.8a) the result

ηVol = ξ +
2

3
η . (9.11)

Hence, the parameter ξ is immaterial since the constitutive equations (9.7a,b)
and (9.8a,b) can be expressed according to

p̄ = p(ρ, T ) − ηVoldkk , σ′ij = 2ηd′ij , (9.12a,b)

and

τ̄ = ηVoldkk ≡ p(ρ, T ) − p̄ , τ ′ij = 2ηd′ij , (9.13a,b)
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respectively, by taking (9.11) into account. The relation (9.12a) associates the
mean normal stress σkk/3 = −p̄ with the thermodynamic pressure p(ρ, T )
and the bulk viscosity ηVol, while the equation (9.12b) relates the shear effect
of the motion with the stress deviator.

The volume viscosity ηVol takes into account the molecular degrees of
freedom and vanishes for one-atomic gases. Experimental investigations
have shown that the volume viscosity (9.11) is very small or even negligi-
ble. Thus, in such cases it is justified in assuming the STOKES condition

ξ +
2

3
η = 0 . (9.14)

On this condition or in an incompressible NEWTONian fluid (dkk = 0) the
mean pressure p̄ in (9.7a) equals the thermodynamic pressure p(ρ, T ) at all
times. For nonlinear viscous fluids (section 9.2), the assumption of incom-
pressibility does not imply p̄ = p.

Assuming the STOKES condition (9.14), we immediately arrive from
(9.5a) at the constitutive equation

σij = −pδij − 2

3
ηdkkδij + 2ηdij ≡ −pδij + 2ηd′ij , (9.15)

which describes the so called STOKES fluid.
The importance of the volume viscosity (9.10), (9.11) becomes also visi-

ble when discussing the dissipation power

Ḋ := τijdji = ξd2
kk + 2ηdijdji , (9.16a)

which can be deduced from (9.5b) and represented in the form

Ḋ = ηVold
2
kk + 2ηd′ijd

′
ji , (9.16b)

if we split the rate-of-deformation tensor d into the deviator (d′ij) and the
spherical tensor (dkkδij/3). We can also express (9.16b) as

Ḋ = ηVolI
2
1 + 4ηI ′2 , (9.16c)

where the invariants I1 ≡ dkk and I ′2 ≡ d′ijd
′
ji/2 have been introduced.

According to (9.16b,c), the dissipation power can be decomposed into two
parts characterizing the volume change (without change of shape) and the
distortion, respectively.
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Based upon the second law of thermodynamics, dissipation is required to
be nonnegative. Thus, we deduce from (9.16b,c):

ηVol ≥ 0 and η ≥ 0 , (9.17a,b)

or, considering (9.11), we find:

ξ ≥ −2

3
η . (9.17c)

Now, let us discuss an extension flow (DIN 13 342) characterized by the
uniaxial stress component

τ11 = (1 − 2ν)ξd11 + 2ηd11 , (9.18)

which results from (9.5b) by inserting i = j = 1, where

ν := −d22/d11 = −d33/d11 (9.19)

is the isotropic transverse contraction ratio. In contrast to the shear viscosity
η in (9.5a,b) and the volume viscosity (9.10), we define an extension viscosity
according to

ηD := τ11/d11 . (9.20)

Hence, we deduce from (9.18) for a NEWTONian fluid

ηD = (1 − 2ν)ξ + 2η . (9.21)

On the other hand, we follow from (9.8b) the relation

τ ′11 = 2ηd′11 , (9.22)

so that for the extension flow

τij = diag{τ11, 0, 0} , dij = diag{d11,−νd11,−νd11} (9.23a,b)

with τ ′11 = 2τ11/3 and d′11 = 2(1 + ν)d11/3 the extension viscosity (9.20)
yields

ηD = 2(1 + ν)η . (9.24)

This result corresponds with the similar relation of the linear theory of
elasticity,

E = 2(1 + ν)G , (9.24*)

where E and G are the elasticity and the shear modulus, respectively.



176 9 Viscous Fluids

For an incompressible (ν = 1/2) NEWTONian fluid, we read from (9.24)
the TROUTON number (1906)

NTr := ηD/η = 3 . (9.25)

Combining (9.21) and (9.24), the parameter ξ may be expressed as

ξ =
2ν

1 − 2ν
η , (9.26)

so that the volume viscosity (9.11) becomes

ηVol =
2

3

1 + ν

1 − 2ν
η , (9.27)

and by eliminating the shear viscosity η from (9.24) and (9.27) we arrive at
the relation

ηVol =
1

3(1 − 2ν)
ηD , (9.28)

which corresponds with the similar formula of elasticity,

K ≡ EVol =
1

3(1 − 2ν)
E , (9.28*)

where EVol is the volume elasticity modulus, most called bulk modulus.
In a similar way, by eliminating the transvection ratio ν, we arrive from

(9.27) and (9.28) at the formula

ηD = 9ηVolη/ (3ηVol + η) , (9.29)

which contains the TROUTON number (9.25) for 3ηVol � η, while for
3ηVol 	 η th relation ηD = 9ηVol follows.

Experimental investigations on non-NEWTONian fluids have shown that
the extension viscosity or the shear viscosity is a function of the strain rate,
ηD = ηD(d), or of the shear rate, η = η(γ̇), respectively. For example,
LAUN and MÜNSTEDT (1978) have carried out experiments on the LDPE
melt IUPACA at T = 150◦C. The results are illustrated in Fig. 9.1.

We see that for small deformation rates the viscosities are approaching
the TROUTON number (9.25):

lim
d→0

ηD(d) = 3 lim
γ̇→0

η(γ̇) (9.30)

Further experiments on non-NEWTONian fluids are carried out by BALL-
MANN (1965), MEISSNER (1971; 1972), STEVENSON (1972), ASTARITA
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Fig. 9.1 Viscosities in strain and shear as functions of deformation rates

and MARRUCCI (1974), WALTERS (1975), BIRD et al. (1977), MIDDLE-
MAN (1977), LAUN (1978), SCHOWALTER (1978), and EBERT (1980), to
name just a few.

Inserting the constitutive equation (9.5a) of a NEWTONian fluid into
CAUCHY’s equation of motion (3.38) yield the NAVIER-STOKES equations
for compressible fluids as illustrated in more detail in the following.

The partial derivative σji,j ≡ ∂σji/∂xj of the constitutive equation
(9.5a) can be expressed in the form

∂σji

∂xj
= − ∂p

∂xj
δij + ξ

∂dkk

∂xj
δij + 2η

∂dji

∂xj

or, by utilizing the substitution rule Ajδij = Ai, as

∂σji

∂xj
= − ∂p

∂xi
+ ξ

∂dkk

∂xi
+ 2η

∂dji

∂xj
. (9.31a)

Inserting the partial derivative of the rate-of-deformation tensor,

dji,j =
1

2
(vj,ij + vi,jj) and dkk,i = vk,ki ≡ vj,ij ,
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we arrive at
σji,j = −p,i + (ξ + η)vk,ki + ηvi,jj . (9.31b)

With this result we finally arrive from CAUCHY’s equation of motion (3.38)
at the NAVIER-STOKES-equations for compressible fluids

−p,i + (ξ + η)vk,ki + η vi,jj + fi = ρ v̇i (9.32a)

or in symbolic notation

− grad p+ (ξ + η) grad div v + η Δv + f = ρ v̇ . (9.32b)

Assuming the STOKES condition (9.14), the factor (ξ + η) in (9.32a,b)
can be substituted by η/3.

In the special case of incompressibility the NAVIER-STOKES-equations
(9.32a,b) governing the motion of viscous fluids take the following forms:

−p,i + η vi,jj + fi = ρ v̇i (9.33a)

and
− grad p+ η Δv + f = ρ v̇ . (9.33b)

The mechanical interpretation of each term in (9.33a,b) can be obtained
as follows. The first term on the left-hand side represents the pressure gra-
dient, the second one expresses the viscous frictional force, and the third
term represents the body force. Taking into account the operator (3.5), the
right-hand side of (9.33a,b) can be split into two parts,

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
symbolic ρ

(
∂v

∂t
+ v · ∇v

)
, (9.34a,b)

where the first term represents the inertia force arising because of the local
rate, while the second one characterizes the convective rate of change of
linear momentum. Note, all terms listed above are computed per unit volume
of the fluid and are acting on each fluid particle. Thus, the NAVIER-STOKES-
equations (9.33a,b) or (9.32a,b) state that the pressure gradient force, the
viscous force, the body force, and the inertia force acting on a fluid particle
are in balance.
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9.2 Nonlinear Viscous Fluids

For non-NEWTONian fluids we first assume a constitutive equation of the
form

σij = σij(Lpq, ρ, T ) , (9.35)

where Lij := ∂vi/∂xj ≡ vi,j are the cartesian components of the velocity-
gradient tensor L. This tensor can be split, according to

Lij = dij + wij ,

into the symmetric rate-of-deformation tensor d and the skew-symmetric
spin or vorticity tensor w.

Constitutive equations must be invariant under changes of frame of ref-
erence, i.e., two observers, even if in relative motion with respect to each
other, observe the same stress in a loaded material. The principle of material
frame-indifference is also called the principle of material objectivity. As has
been pointed out in more detail by BETTEN (2001a), the spin tensor is not
objective, while the rate-of-deformation tensor is an objective tensor. This
can be proved in the following way.

Let us consider a rigid-body motion, which can be split into a time depen-
dent rotation, characterized by the orthogonal tensor Q(t), and into transla-
tion, characterized by the time dependent vector c(t), so that this motion is
described by the transformation

x̄i(ap, t) = Qij(t)xj(ap, t) + ci(t) . (9.36)

Hence, by differentiating with respect to time t, we arrive at the result

v̄i ≡ ˙̄xi = Qipvp + Q̇ipxp + ċi �= Qipvp , (9.37)

from which we read that the transformation law of a vector, v̄i = Qipvp, is
not satisfied, i.e., the velocity vector is not objective.

With the result (9.37) we first find for the velocity-gradient tensor L

L̄ij ≡ ∂v̄i/∂x̄j = (∂v̄i/∂xq) (∂xq/∂x̄j)

L̄ij =
(
Qipvp,q + Q̇iq

)
(∂xq/∂x̄j) .

⎫⎬
⎭ (9.38)

By transvection with Qik and considering the orthogonal relation

QikQij = δkj ,
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we find from the motion (9.36) its inversion:

xk = Qik(x̄i − ci) or xi = Qji(x̄j − cj) (9.39)

hence
∂xq/∂x̄j = Qjq , (9.40)

so that (9.38) becomes

L̄ij ≡ v̄i,j = QipQjqvp,q + Q̇iqQjq �= QipQjqvp,q , (9.41)

i.e., the velocity gradient tensor L in (9.35) is not objective.
For the rate-of-deformation tensor d, we find:

d̄ij = (∂v̄i/∂x̄j + ∂v̄j/∂x̄i)/ 2

= QipQjqdpq +
(
Q̇iqQjq +QiqQ̇jq

)/
2 ,

(9.42)

where
Q̇iqQjq +QiqQ̇jq = (QiqQjq )̇ ≡ δ̇ij ≡ 0ij , (9.43)

so that the objectivity of d is proved:

d̄ij = QipQjqdpq . (9.44)

Consequently, equation (9.35) must be modified according to

σij = σij(dpq, ρ, T ) . (9.45)

Furthermore, because of the principle of material objectivity, the components
of the stress tensor (σij) must be independent of superposed rigid-body mo-
tion, so that the requirement

σij (QprQqsdrs, ρ, T ) = QipQjqσpq (9.46)

is satisfied, where Qij are the cartesian components of an orthogonal tensor.
A tensor-valued function with the property (9.46) is called an isotropic ten-
sor function of the argumenttensor d. The most general tensor polynomial
function which fulfills (9.46) is of the form

σij = −pδij + αdij + βd
(2)
ij , (9.47)

where p, α, and β are functions of ρ, T and the three irreducible invariants of
the argumenttensor d. The representation (9.47) is complete because of the
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HAMILTON-CAYLEY theorem, which states that a tensor satisfies its own
characteristic equation (BETTEN, 1987c).

Materials which obey the constitutive equation (9.47) are called REINER-
RIVLIN fluids . They belong to the class of the non-NEWTONian fluids.

As an example, let us consider a simple shear flow characterized by the
velocity field

v = (γ̇x2, 0, 0)T , (9.48)

for which the nonvanishing components of the rate-of-deformation tensor d

are given by d12 = d21 = γ̇/2, while the square d2 has the diagonal form

with components d(2)
11 = d

(2)
22 = γ̇2/4 and d(2)

33 = 0. The invariants are
I1 = I3 = 0 and I2 = trd2 = γ̇2/2. With these values we calculate from
(9.47) the following nonvanishing stress components:

σ12 = α
(
γ̇2
)
γ̇/2 ≡ η (γ̇2

)
γ̇ , (9.49a)

σ11 = σ22 = −p+ β
(
γ̇2
)
γ̇2/4 , σ33 = −p . (9.49b,c)

We see, in contrast to a NEWTONian fluid, the shear viscosity in (9.49a) is
an even function of the shear rate γ̇, i.e., it is a function of the square γ̇2.

From (9.41) and (9.44) we read that the velocity gradient tensor L is
not objective, while the rate-of-deformation tensor d fulfills the requirement
of material objectivity, for instance. Further examples are discussed in the
following.

For the spin or vorticity tensor w, which is the skew-symmetric part of
the velocity gradient tensor L, we obtain

w̄ij = QipQjqwpq + Q̇iqQjq �= QipQjqwpq , (9.50)

i.e., the spin tensor is not objective. In arriving at the result (9.50) we have
taken into consideration the relation (9.43).

Because of (3.29) the CAUCHY stress tensor is objective, i.e.,

σ̄ij = QipQjqσpq . (9.51)

Thus we find

˙̄σij = QipQjqσ̇pq +
(
Q̇ipQjq +QipQ̇jq

)
σpq �= QipQjqσ̇pq , (9.52)

hence, the material time derivative of CAUCHY’s stress tensor is not objec-
tive. Whereas the JAUMANN stress rate

◦
σij = σ̇ij − wikσkj + σikwkj (9.53)
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fulfills the requirement of objectivity, since we arrive from

◦
σ̄ij = ˙̄σij − w̄ikσ̄kj + σ̄ikw̄kj (9.54)

at the relation

◦
σ̄ij = QipQjq

◦
σpq +

(
Q̇ipQjq +QipQjrQkqQ̇kr

)
σpq , (9.55)

where the second term on the right-hand side is equal to zero because of the
orthogonal relation QkqQkr = δqr and (9.43), hence

◦
σ̄ij = QipQjq

◦
σpq . (9.56)

The convective stress rate

Δ
σij =

◦
σij + dikσkj + σikdkj = σ̇ij + σikLkj + Lkiσkj (9.57)

is obtained by adding the objective expression dikσkj + σikdkj to the JAU-
MANN stress rate. Thus, the convective stress rate is objective.

By analogy of (3.8a), we define a deformation gradient according to
F̄ij := ∂x̄i/∂aj and arrive by differentiation of (9.36) and application of
the chain rule at the following result

F̄ij =
∂x̄i

∂aj
=
∂x̄i

∂xp

∂xp

∂aj
= QipFpj , (9.58)

from which we can follow that the deformation gradient does not fulfill the
requirement of objectivity (BETTEN, 2001a).

The LAGRANGE strain tensor (3.14) is defined as

λij =
1

2
(FkiFkj − δij) . (9.59)

Considering a rigid-body motion, we have the following relations

λ̄ij =
1

2

(
F̄kiF̄kj − δ̄ij

)
F̄ki = QkpFpi

F̄kj = QkqFqj

δ̄ij = QipQjqδpq

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ λ̄ij =
1

2
(QkpQkqFpiFqj −QipQjqδpq) .

(9.60)
Inserting the orthogonal relationQkpQkq = δpq and applying the substitution
rule, one obtains from (9.60) the result



9.2 Nonlinear Viscous Fluids 183

λ̄ij =
1

2
(δpqFpiFqj − δij) =

1

2
(FriFrj − δij) ≡ λij , (9.61)

which states that the components of the LAGRANGE strain tensor are not
effected by a superimposed rigid-body motion, i.e., the principle of material
objectivity is fulfilled.

The material time derivative of the LAGRANGE strain tensor (9.59) can
be expressed by

λ̇ = F T d F or by λ̇ij = F T
ipdpqFqj = FpiFqjdpq . (9.62a,b)

Thus, a superimposed rigid-body motion yields

¯̇
λij = F̄pjF̄qid̄pq . (9.63)

Taking (9.44) and (9.58) into account, equation (9.63) can be written in the
form

¯̇
λij = QpkFkiQqlFljQprQqsdrs . (9.64)

Since Q is an orthogonal tensor, we arrive from (9.64) at the relation

¯̇
λij = δkrδlsFkiFljdrs = FriFsjdrs . (9.65)

Comparing (9.65) with (9.62b), we finally obtain the result

¯̇
λij ≡ λ̇ij , (9.66)

stating that the material time derivative of the LAGRANGE strain tensor is
objective.

The EULER strain tensor in (3.19) is defined as

ηip =
1

2

(
δip − F (−1)

ki F
(−1)
kp

)
, (9.67)

hence

η̄ip =
1

2

(
δ̄ip − F̄ (−1)

ki F̄
(−1)
kp

)
, (9.68)

where

F̄
(−1)
ij := ∂ai/∂x̄j = (∂ai/∂xp) (∂xp/∂x̄j) = F

(−1)
ip (∂xp/∂x̄j) . (9.69)

From (9.36) we read

xi = Q
(−1)
ij (x̄j − cj) = Qji (x̄j − cj) ⇒ ∂xp/∂x̄j = Qjp = Q

(−1)
pj ,
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so that (9.69) reduces to the relation

F̄
(−1)
ij = F

(−1)
ip Q

(−1)
pj , (9.70)

which is the inverse form of (9.58). Note that the inverse of a matrix product
π is the matrix product formed by writing down the inverses of the factors of
π in reverse order, for instance

(ABC . . .Z)−1 = Z−1 . . .C−1B−1A−1 . (9.71)

This rule can also be applied to the transpose of a matrix product.
Inserting the inverse (9.70) into (9.68), we obtain

η̄ip =
1

2

(
δ̄ip − F (−1)

kr Q
(−1)
ri F

(−1)
ks Q(−1)

sp

)
. (9.72)

Because Q is an orthogonal tensor, i.e., the inverse of Q is identical to the
transpose of Q, and since

δ̄ip = QirQpsδrs (9.73)

the relation (9.72) reduces to

η̄ip =
1

2
QirQps

(
δrs − F (−1)

kr F
(−1)
ks

)
. (9.74)

Considering the definition (9.67), we can write (9.74) in the following form

η̄ip = QirQpsηrs , (9.75)

showing that the EULERian strain tensor is an objective tensor.
The material time derivative of the EULERian strain tensor (9.67) can be

expressed by

η̇ = d − ηL − LT η or by η̇ij = dij − ηipLpj − ηjpLpi . (9.76a,b)

Thus, a superimposed rigid-body motion yields

¯̇ηij = d̄ij − η̄ipL̄pj − η̄jpL̄pi . (9.77)

Inserting (9.41) into (9.77) and considering (9.44) and (9.75), we obtain the
result

¯̇ηij = QikQjlη̇kl − (QikQjl +QilQjk)QpsQ̇plηks , (9.78)
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stating that the material time derivative of the EULERian strain tensor is not
an objective tensor.

The OLDROYD time derivative of a symmetric second rank tensor T is
defined according to

∇

T ij := Ṫij + TipLpj + TjpLpi . (9.79)

Applying this derivative to the EULERian strain tensor, Tij ≡ ηij , and taking
into account the relation (9.76b), we immediately obtain the identity

∇
ηij ≡ dij , (9.80)

i.e., the OLDROYD time derivative of the EULERian strain tensor can be
interpreted as the rate-of-deformation tensor. Hence, the requirement of ma-
terial objectivity is fulfilled.

The second PIOLA-KIRCHHOFF stress tensor (3.42) is defined as

T̃ij =
ρ0
ρ
F

(−1)
ip F

(−1)
jq σpq = T̃ji , (9.81)

hence
¯̃Tij =

ρ0
ρ
F̄

(−1)
ip F̄

(−1)
jq σ̄pq . (9.82)

Considering (9.51) and (9.69), i.e.,

σ̄pq = QpsQqtσst and F̄
(−1)
ip = F

(−1)
ir Q(−1)

rp = F
(−1)
ir Qpr ,

respectively, we arrive at the relations

¯̃Tij =
ρ0
ρ
F

(−1)
ir F

(−1)
jk QprQps︸ ︷︷ ︸

δrs

QqkQqt︸ ︷︷ ︸
δkt

σst

¯̃Tij =
ρ0
ρ
F̄

(−1)
ir F̄

(−1)
jk σrk . (9.83)

Comparing (9.83) with the definition (9.81), we finally obtain the result

¯̃Tij ≡ T̃ij , (9.84)

stating that, analogous to (9.66), the second PIOLA-KIRCHHOFF stress ten-
sor is objective.
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The first PIOLA-KIRCHHOFF stress tensor

Tij =
ρ0
ρ
F

(−1)
ik σkj �= Tji (9.85)

can be expressed by the second one (9.81) according to

T̃ij = TiqF
(−1)
jq ⇒ Tij = T̃ikFjk , (9.86)

hence
T̄ij = ¯̃TikF̄jk

F̄jk = QjrFrk

¯̃Tik = T̃ik

⎫⎪⎪⎬
⎪⎪⎭ ⇒ T̄ij = T̃ikFrk︸ ︷︷ ︸

Tir

Qjr ,

T̄ij = TirQjr , (9.87)

i.e., the first PIOLA-KIRCHHOFF stress tensor is not objective in contrast to
the second one according to (9.84).

The above discussed examples illustrate that the components of objective
tensors defined in the reference configuration (material description) do not
change, if a rigid-body motion is superimposed, for instance, the components
of the LAGRANGE strain tensor:

λ̄ij ≡ λij . (9.61)

Whereas the components of objective tensors defined in the actual configura-
tion (spatial description) change according to the transformation law of the
tensor, if a rigid-body motion is superimposed, for instance, the components
of the EULERian strain tensor:

η̄ij = QipQjrηpr . (9.75)

The above discussed examples are listed in Table 9.1.



9.2 Nonlinear Viscous Fluids 187

Table 9.1 Objective and non-objective tensors

tensor material objectivity

deformation gradient not fulfilled (9.58)

velocity gradient tensor not fulfilled (9.41)

rate-of-deformation tensor fulfilled (9.44)

spin tensor not fulfilled (9.50)

CAUCHY stress tensor fulfilled (9.51)

material time derivative of
CAUCHY’s stress tensor

not fulfilled (9.52)

JAUMANN stress rate fulfilled (9.56)

convective stress rate fulfilled (9.57)

LAGRANGE strain tensor fulfilled (9.61)

material time derivative
of the LAGRANGE strain tensor

fulfilled (9.66)

EULERian strain tensor fulfilled (9.75)

material time derivative
of the EULERian strain tensor

not fulfilled (9.78)

OLDROYD time derivative
of the EULERian strain tensor

fulfilled (9.80)

first PIOLA-KIRCHHOFF stress tensor not fulfilled (9.87)

second PIOLA-KIRCHHOFF stress tensor fulfilled (9.84)


