
8 Tensorial Generalization of Uniaxial Creep Laws to
Multiaxial States of Stress

In this chapter a method is developed in order to find tensorial constitutive
and evolutional equations based upon empirical uniaxial constitutive laws
found in experimental investigations. For engineering applications it is very
important to generalize uniaxial relations to multiaxial states of stress. This
can be achieved by applying interpolation methods for tensor functions , as
pointed out in detail in this chapter. It is illustrated that the scalar coefficients
in tensorial constitutive equations can be expressed as functions of the irre-
ducible invariants of the argument tensors and of the empirical constitutive
laws found in uniaxial tests.

Some examples should be discussed. For instance, the NORTON-BAILEY

creep law and a uniaxial damage relation are generalized to tensorial consti-
tutive equations.

8.1 Polynomial Representation of Tensor Functions

Let
Yij = fij(X) = ϕ0δij + ϕ1Xij + ϕ2X

(2)
ij (8.1)

be an isotropic tensor function where ϕ0, ϕ1, ϕ2 are scalar-valued functions
of the integrity basis, the elements of which are the irreducible invariants of
the argument tensor X . Furthermore, they depend on experimental data.

First, it is possible to express the scalar functions through the principal
valuesXI , . . . , XIII and YI , . . . , YIII if we solve the system of linear equa-
tions

YI = ϕ0 + ϕ1XI + ϕ2X
2
I ,

YII = ϕ0 + ϕ1XII + ϕ2X
2
II ,

YIII = ϕ0 + ϕ1XIII + ϕ2X
2
III .

⎫⎪⎬
⎪⎭ (8.2)

The solution can be written in the form
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ϕ0 =
III∑

α=I

PαX(α+I)X(α+II)Y(α) , (8.3a)

ϕ1 =
III∑

α=I

Pα

(
X(α+I) +X(α+II)

)
Y(α) , (8.3b)

ϕ2 =
III∑

α=I

PαY(α) , (8.3c)

where the abbreviation

Pα :=

III∏
β=I
β �=α

1 /(Xα −Xβ) (8.4)

is introduced. A similar representation was used by SOBOTKA (1984) based
upon the SYLVESTER theorem (SEDOV, 1966).

Because of the products Pα, the expressions (8.3a-c) can only be used if
all principal values are different. Therefore, in the following an interpola-
tion method is used in order to determine the scalar coefficients, even if two
principal values coincide.

8.2 Interpolation Methods for Tensor Functions

In extending the LAGRANGE interpolation method to a tensor-valued func-
tion, we consider the principal values of the argument tensor as interpolating
points and find the tensorial representation

Yij = fij(X) =
III∑

α=1

αLijYα +Rij(X) (8.5)

with the tensor polynomials

αLij := Pα

(
Xik −X(α+I)δik

) (
Xkj −X(α+III)δkj

)
. (8.6)

Due to the HAMILTON-CAYLEY theorem, the tensor-valued remainder term
Rij in (8.5) is always equal to the zero tensor (BETTEN 1984; 1987b). As an
alternate approach, we find, by extending the NEWTON formula, the tensorial
representation

Yij = a0δij + a1 (Xij −XIδij)

+ a2 (Xik −XIδik) (Xkj −XIIδkj) ,
(8.7)
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Further terms in (8.7) are not possible because of the HAMILTON-CAYLEY

theorem. The coefficients in (8.7) can be found by inserting the principal
values:

a0 = YI , a1 = (YI − YII)/ (XI −XII) , (8.8a,b)

a2 = [a1 − (YIII − YI)/ (XIII −XI)]/ (XII −XIII) . (8.8c)

The interpolation formula (8.7) can be written as an isotropic tensor function
(8.1) if we define

ϕ0 ≡ a0 − a1XI + a2XIXII , (8.9a)

ϕI ≡ a1 − a2 (XI +XII) , ϕ2 ≡ a2 . (8.9b,c)

In the case of coincident points, we need the derivatives of the tensor function
(8.1):

f ′ij := ∂Yip/∂Xpj = ϕ1δij + 2ϕ2Xij , (8.10a)

f ′′ij := ∂f ′iq/Xqj = 2ϕ2δij . (8.10b)

For example, in the case ofXI �= XII = XIII , we find from (8.7) and (8.10a)
the coefficients

a0 = YI , a1 = (YI − YII)/ (XI −XII) , (8.11a,b)

a2 =
(
a1 − f ′II

)/
(XI −XII) , (8.11c)

if we substitute

YI = fII (X11 ≡ XI) ,

YII = f22 (X22 ≡ XII) ,

f ′22 (X22 ≡ XII) ≡ f ′II .

Finally, if all principal values coincide, we calculate

a0 = fI , a1 = f ′I , a2 = f ′′I
/

2 . (8.12a,b,c)

However, in this special case the argument tensor is a spherical one,
Xij = XIδij , and therefore the formula (8.7) reduces to the trivial result:
Yij = fij = fIδij . Note that the interpolation formula for a scalar function
y = f(x) approaches the TAYLOR expansion for f(x) at x0 if we make xα,
α = 1, 2, . . . , n, coincide at x0. An interpolation method for tensor func-
tions with two argument tensors can be developed in a similar way (BETTEN

1987b; 1987c).
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The interpolation method for tensor functions is a very useful and power-
ful tool. Besides many applications in tensor algebra or tensor analysis dis-
cussed by BETTEN (1987b; 1987c), engineering applications are also very
important.

In the theory of finite deformation the tensorial HENCKY measure of
strain and strain rate plays a central role see FITZGERALD (1980) and BET-
TEN (1987b; 2001a) because it can be decomposed into a sum of an isochoric
distorsion and a volume change. The problem to represent the logarithmic
function

Y = lnX or Yij = {lnX}ij (8.13)

as an isotropic tensor function (8.1) is solved by determining the scalar func-
tions ϕ0, ϕ1, ϕ2. This can be done by using the interpolation method de-
scribed before by BETTEN (1987b; 2001a).

Other examples are Y = expX or Y = sinX etc., which can be treated
in the same way. These functions play a central role, for instance, in problems
concerning vibro creep (JAKOWLUK, 1993).

8.3 Tensoral Generalization of NORTON-BAILEY’s Creep Law

The following example is concerned with the generalization of NORTON-
BAILEY’s power law (Section 4.2)

d/d0 = (σ/σ0)
n or d = Kσn (8.14a,b)

to multi-axial states of stress where d is the strain rate, σ the uniaxial true
stress, and d0, σ0, n, K are constants. To solve this problem, we use an
isotropic tensor function

dij = fij(σ) = ϕ∗
0δij + ϕ∗

1σij + ϕ∗
2σ

(2)
ij (8.15)

and determine the scalar coefficients ϕ∗
0, . . . , ϕ

∗
2 as functions of experimental

data (K,n) in (8.14b) and of the integrity basis, the elements of which are
the irreducible invariants of the CAUCHY stress tensor σ.

Alternatively, we can represent the constitutive equation in the form

dij = fij
(
σ′) = ϕ0δij + ϕ1σ

′
ij + ϕ2σ

′(2)
ij , (8.16)

where σ′ij := σij − σkkδij/3 are the cartesian components of the stress
deviator σ′. For the special case of incompressible behavior (dkk ≡ 0), we
find from (8.16) the condition
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3ϕ0 + ϕ2σ
′(2)
kk = 0 ⇒ ϕ0 = −2ϕ2J

′
2

/
3 (8.17)

with the quadratic invariant J ′2 ≡ σ′ikσ′ki/2 of the stress deviator, so that the
constitutive equation (8.16) is reduced to the simple form

dij = ϕ1σ
′
ij + ϕ2σ

′′
ij (8.18)

containing the traceless tensors

σ′ij ≡ ∂J ′2
/
∂σij and σ′′ij ≡ ∂J ′3

/
∂σij (8.19a,b)

with the cubic invariant J ′3 ≡ σ′ijσ
′
jkσ

′
ki/3 of the stress deviator. The uni-

axial equivalent state of stress (index V ) is characterized through the tensor
variables

(σij)V = diag {σ, 0, 0} , (8.20a)(
σ′ij
)
V

= diag {2σ/3, −σ/3, −σ/3} , (8.20b)

(dij)V = diag {d, −νd, νd} , (8.20c)

where ν is the transverse contraction ratio.
In the following the diagonal elements in (8.20) are considered as inter-

polating points where two points coincide. Since the two coincident points
in (8.20a) are zero, it may be more convenient to determine the coefficients
ϕ0, . . . , ϕ2 in the constitutive equation (8.16) instead of (8.15). Thus, we use
the uniaxial creep law

d = (3/2)nK(σ′)n (8.21)

instead of (8.14b). Because of (8.20b), i.e. XII = XIII ≡ −σ/3, and (8.21),
we find from (8.11a) the coefficient

a0 = Y1 ≡ (3/2)nK(σ′)n = Kσn . (8.22a)

Furthermore, because of (8.20b), (8.22a), and YII = −νd = −νKσn, we
find from (8.11b) the coefficient

a1 = (1 + ν)Kσn−1 . (8.22b)

The derivative f ′II at the coincident pointsXII = XIII can be determined
in the following way. From (8.21) we derive

f ′ ≡ ∂d/∂σ′ = n (3/2)n (σ′)n−1
= nd/σ′ , (8.23a)

f ′II = ndII

/
σ′II . (8.23b)
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From (8.20a,b) we read σ′ = −σ/3 and dII = −νd1 ≡ −νd = −νKσn, so
that (8.23b) can be written as

f ′II = 3νnKσn−1 . (8.23c)

Considering (8.20b) and (8.22b), we calculate from (8.11c) the coefficient

a2 = (1 + ν − 3νn)Kσn−2 . (8.22c)

Inserting (8.22a,b,c) in (8.9a,b,c), we finally determine the scalar functions

ϕ0 =
1

9
(1 − 8ν + 6νn)Kσn , (8.24a)

ϕ1 =
2

3

(
1 + ν + 3

2νn
)
Kσn−1 , (8.24b)

ϕ2 = (1 + ν − 3νn)Kσn−2 . (8.24c)

Assuming the incompressibility (8.18) and neglecting tensorial nonlin-
earity (ϕ2 = 0 ⇒ a2 = 0, ϕ0 = 0, and ϕ1 = a1) we find from (8.16) the
simplified constitutive equation

dij = a1σ
′
ij or dij =

3

2
Kσn−1σ′ij , (8.25a,b)

if we use (8.22b) with ν = 1/2. The result (8.25b) is identical to a constitu-
tive equation proposed by LECKIE and HAYHURST (1977). If we insert the
MISES equivalent stress σ =

√
3J ′2 into (8.25b), we can find the constitutive

equation

dij =
3

2
K
(
3J ′2
)(n−1)/2

σ′ij (8.25c)

used by ODQUIST and HULT (1962).
The equivalent stress σ in (8.24a,b,c) can be determined as a function of

the stress invariants if we use the hypothesis of the equivalent dissipation
rate:

Ḋ := σijdji
!
=σd , (8.26)

where Ḋ is called the rate of dissipation of creep energy. The result is

σ3 +Aσ2 +Bσ + C = 0 , (8.27)

where the abbreviations

A ≡ − (1 − 8ν + 6νn)J1/9 , (8.28a)

B ≡ −4 (1 + ν + 3νn/ 2) J ′2
/

3 , (8.28b)

C ≡ − (1 + ν − 3νn)
(
3J ′3 + 2J1J

′
2

/
3
)

(8.28c)
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have been used. Thus, the scalar coefficients (8.24a,b,c) are functions of the
irreducible invariants

J1 ≡ σkk , J ′2 ≡ σ′ikσ
′
ki

/
2 , J ′3 ≡ σ′ijσ

′
jkσ

′
ki

/
3 (8.29a,b,c)

and of experimental data (K, n, ν):

ϕα = ϕα

(
J1, J

′
2, J

′
3; K, n, ν

)
, α = 0, 1, 2 . (8.30)

This statement is compatible with the representation theory of tensor-valued
functions (4.80) in which the coefficients ϕα are scalar-valued functions of
the integrity basis (8.29a,b,c).

In the case of incompressible behavior (ν = 1/2), the first invariant J1

has no influence. The cubic equation (8.27) then takes the reduced form

σ3 +B∗σ2 + C∗ = 0 (8.27*)

with the abbreviations

B∗ ≡ − (2 + n)J ′2 and C∗ ≡ 9

2
(n− 1)J ′3 (8.28*b,c)

depending on the irreducible invariants (8.29b,c) of the stress deviator.
Some authors (BROWN et al. 1986) are losing faith in NORTON-BAI-

LEY’s law since they feel that their new θ projection concept provides a far
more comprehensive description of creep behavior for design. In this new ap-
proach, normal creep curves are envisaged as the sum of a decaying primary
and an ascending tertiary stage, i.e., the secondary stage is merely the period
of ostensibly constant rate observed when the decay in the creep rate during
the primary stage is offset by the gradual acceleration caused by tertiary pro-
cesses. This concept neglects the secondary component and may be valid for
some special materials, e.g. 1

2Cr
1
2Mo

1
4V , as has been discussed in detail

by BROWN et al.(1986). However, an extended secondary creep stage can be
observed for many materials. Thus, in spite of the discussion by BROWN et
al. (1986), it is very important that NORTON-BAILEY’s law be generalized
to multi-axial states of stress. This can be achieved by applying a tensorial
interpolation method as has been illustrated above.

8.4 Tensorial Generalization of a Creep Law including Damage

Involving the damage state in the tertiary creep stage (section 4.3.1) the uni-
axial relation
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d/d0 = (σ/σ0)
nDm with D := 1/(1 − ω) (8.31)

should be generalized to multi-axial states of stress where ω is the dam-
age parameter (material deterioration) introduced by KACHANOV (1958) and
also used by RABOTNOV (1969).

To generalize (8.31), we consider the tensor-valued function

dij =

⎧⎪⎨
⎪⎩
fij(σ, D)

1
2

2∑
ν,,μ=0

ψ[ν, μ]

(
σ

(ν)
ik D

(μ)
kj +D

(μ)
ik σ

(ν)
kj

)
,

(8.32)

where ν and μ are exponents of the CAUCHY stress tensor σ and the second-
rank tensor D with the components

Dij = (δij − ωij)
(−1)

given by the damage tensor ω.
Now, the main problem is to determine the scalar coefficients ψ[ν, μ] as

functions of the integrity basis containing 10 irreducible invariants (BETTEN,
1987b; 1987c) and experimental data. To solve this problem, we suggest the
following method which may be useful for practical applications as has been
discussed by BETTEN, (1988b; 2001c) .

A representation with the same tensor generators as contained in the func-
tion (8.32) can be found by seperating the two variables σ and D in the
following way:

dij = fij (σ, D) =
1

2
(XikYkj + YikXkj) , (8.33)

where the isotropic tensor functions

Xij = Xij(σ) = ϕ∗
0δij + ϕ∗

1σij + ϕ∗
2σ

(2)
ij

ϕ∗
ν = ϕ∗

ν(tr σλ) = ϕ∗
ν (σI , σII , σIII)

}
, (8.34)

Yij = Yij(D) = Φ0δij + Φ1Dij + ϕ2D
(2)
ij

Φμ = Φμ(trDλ) = Φμ (DI , DII , DIII)

}
(8.35)

(μ, ν = 0, 1, 2 and λ = 1, 2, 3) are used.
Thus, we find the representation (8.32) with the scalar coefficients

ψ[ν, μ] = ϕ∗
νΦμ , μ, ν = 0, 1, 2 , (8.36)
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where the scalars ϕ∗
ν are determined by BETTEN (1986a; 1986b):

ϕ∗
0 = ϕ0 − J1ϕ1/3 + J2

1ϕ2/9 , (8.37a)

ϕ∗
1 = ϕ1 − 2J1ϕ2/3 , ϕ∗

2 ≡ ϕ2 . (8.37b,c)

The coefficients Φμ can be found by solving the following system of linear
equations:

Φ0 +DIΦ1 +D2
IΦ2 = (DI)

mI ,

Φ0 +DIIΦ1 +D2
IIΦ2 = (DII)

mII ,

Φ0 +DIIIΦ1 +D2
IIIΦ2 = (DIII)

mIII .

⎫⎪⎬
⎪⎭ (8.38)

The exponentsmI , . . . , mIII in (8.38) are determined by using the creep law
(8.31) in tests on specimens cut along the mutually perpendicular directions
x1, x2, x3.

Because of

Dij := (δij − ωij)
(−1) ≡ ψ(−1)

ij and ψij = diag{α, β, γ}

according to (4.84) and (7.40a), respectively, the principal values in (8.38)
can be expressed through

DI = 1/α , DII ≡ 1/β , DIII ≡ 1/γ , (8.39)

where the essential components α, β, γ are fractions that represent the net
cross-sectional elements of CAUCHY’s tetrahedron perpendicular to the co-
ordinate axes (BETTEN, 1983a). In the case of two equal parameters, for in-
stance α �= β = γ, the scalars Φμ, μ = 0, 1, 2, in (8.38) can be determined
by using the interpolation method described above in (8.1) to (8.12).

Instead of (8.34), we can use the isotropic tensor function

Xij = Xij

(
σ′) = ϕ0δij + ϕ1σ

′
ij + ϕ2σ

′(2)
ij (8.40)

and find the representation

dij =
1

2

2∑
ν, μ=0

ϕνΦμ

(
σ
′(ν)
ik D

(μ)
kj +D

(μ)
ik σ

′(ν)
kj

)
, (8.41)

where the scalar coefficients ϕν are determined in the functions (8.24a,b,c)
and the Φμ are taken from (8.38).

The scalar coefficients ψ[ν, μ] ≡ ϕνΦμ in the representation (8.41) must
be functions of the integrity basis
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J1 ≡ σkk , J ′2 ≡ σ′
ijσ′

ji

2 , J ′3 ≡ σ′
ijσ′

jkσ′
ki

3 ,

L1 ≡ Dkk , L2 ≡ D(2)
kk , L3 ≡ D(3)

kk ,

Ω′
1 ≡ σ′ijDji , Ω

′
2 ≡ σ′(2)ij Dji , Ω

′
3 ≡ σ′ijD(2)

ji , Ω
′
4 ≡ σ′(2)ij D

(2)
ji

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.42)

and experimental data. To show this we can start from the hypothesis (8.26)
and find similarly to (8.27) the cubic equation

σ3 +A∗σ2 +B∗σ + C∗ = 0 , (8.43)

if we insert (8.33), (8.35) and (8.24a,b,c) into the hypothesis (8.26). In (8.43)
the following abbreviations are used:

A∗ ≡ −1
9 (1 − 8ν + 6νn)

[
Φ0J1 + Φ1

(
Ω′

1 + 1
3J1L1

)
+ Φ2

(
Ω′ + 1

3J1L2

)]/
Dm ,

(8.44a)

B∗ ≡ −2
3

(
1 + ν + 3

2νn
) [

2Φ0J
′
2 + Φ1

(
Ω′

2 + 1
3J1Ω

′
1

)
+ Φ2

(
Ω′

4 + 1
3J1Ω

′
3

)]/
Dm ,

(8.44b)

C∗ ≡ −(1 + ν − 3νn)
[
3Φ0

(
J ′3 + 2

9J1J
′
2

)
+ Φ1

(
J ′2Ω

′
1 + J ′3L1 + 1

3J1Ω
′
2

)
+ Φ2

(
J ′2Ω

′
3 + J ′3L2 + 1

3J1Ω
′
4

)]/
Dm ,

(8.44c)

D ≡ (DIDIIDIII)
1/3 , m ≡ (mI +mII +mIII)/ 3 . (8.44d,e)

We see that the elements of the integrity basis (8.42) and experimental data
are contained in (8.44a-e). Thus the coefficients ψ[ν, μ] ≡ ϕνΦμ in (8.41) are
scalar functions of the integrity basis (8.42) and experimental data

K, n, ν; mI , mII , mIII ; DI , DII , DIII

found in creep tests on specimens cut along three mutually perpendicular
directions.

In the case (4.79) of damage and initial anisotropy we can use for simpli-
fication the constitutive equation

dij = fij(t, τ ) =
1

2

2∑
ν, μ=0

ψ∗
[ν, μ]

(
t
(ν)
ik τ

(μ)
kj + τ

(μ)
ik t

(ν)
kj

)
, (8.45)

where the linear transformations
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tij = Dijpqσpq = tji with Dijpq := (DipDjq +DiqDjp)/ 2 , (8.46)

τij = Aijpqσpq = τji , (8.47)

have been introduced in section 4.3.2 according to (4.94) and (4.95), respec-
tively. Then the scalar functions in (8.45) can be determined in a very similar
way as described above.

Further applications concerning the tensorial generalization of uniaxial
relations in continuum mechanics have been considered by BETTEN (1989;
2001c). For example, the plastic behaviour of solids loaded under uni-axial
stress σ may be expressed by the stress-strain-relations

σ/σF = [tanh (Eε/σF )n](1/n) , (8.48a)

σ/σF = (Eε/σF ) / [1 + (Eε/σF )n](1/n) , (8.48b)

proposed by BETTEN (1975b), where σF ist the yield stress in a uni-
axial tension test, and E represents the modulus of elasticity - often called
”YOUNG‘s modulus”(1807); however, this modulus was already used by
EULER (1760). The exponent n regulates the elastic-plastic transition. For
instance, an elastic-perfectly plastic behaviour is characterized by n→ ∞.

It has been shown by BETTEN (1975c) that independently of the param-
eter n the limit carying capacity coincides wth that for a percectly plastic
body (n→ ∞). Hence a new aspect of the uniqueness of the limit load may
be formulated as we can read in the book of ZYCZKOWSKI (1981, page 210):

Uniqueness understood as the independence of that load of the
assumed stress-strain diagram belonging to the class of asymptoti-
cally perfect plasticity. Such independence may be observed in many
cases.

For engineering applications, it is very important to generalize the rela-
tions (8.48a,b) to multiaxial states of stress. This can be achieved by using
an isotropic tensor function (8.1).

Similar to (8.48a,b) we can assume the following creep functions

κ(t) = [tanh (tn)](1/n) , (8.49a)

κ(t) = t/ (1 + tn)(1/n) , (8.49b)

which are compared with the creep function (11.8) of the KELVIN solid (Fig.
11.17) by using the following MAPLE program.
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⊙
8 1.mws> kappa(t)[KELVIN]:=1-exp(-G*t/eta);

κ(t)KELVIN := 1 − e(−G t
η

)

> kappa(t)[tan_hyper]:=(tanh(tˆn))ˆ(1/n);

κ(t)tan hyper := tanh(tn)(
1
n

)

> kappa(t)[root]:=t/(1+tˆn)ˆ(1/n);

κ(t)root :=
t

(1 + tn)(
1
n

)

> alias(H=Heaviside, th=thickness):
> plot1:=plot({1,H(t-5),1-exp(-t)},

t=0..5.001, th=1,color=black):
> plot2:=plot({tanh(t),(tanh(tˆn))ˆ(1/n)},

t=0..5.001, th=4,color=black, style=point,
symbolsize=12,symbol=cross):

> plot3:=plot({t/(1+t), t/(1+tˆn)ˆ(1/n)},
t=0..5.001, th=2,color=black, style=point,
symbolsize=12,symbol=circle):

> plots[display]({plot1,plot2,plot3});

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
t

(8.49b)

KELVIN

+ + +    (8.49a)
n = 1

Fig. 8.1 Creep functions

Another example is the tensorial generalization of the RAMBERG-OSGOOD

relation, also discussed by BETTEN (1989; 2001c) including own experi-
ments on aluminium alloy.


