
7 Damage Mechanics

In sections 4.3.2 and 6.4 constitutive equations involving damage and initial
anisotropy have been formulated in detail. This Chapter is concerned with
the construction of damage tensors or tensors of continuity (Section 7.1).

Then, the multiaxial state of stress in a damaged continuum will be ana-
lyzed in detail (Section 7.2).

Finally, some damage effective stress concepts are proposed and dis-
cussed in Section 7.3.

7.1 Damage Tensors and Tensors of Continuity

As has been already mentioned in Chapter 4, damage has in general an
anisotropic character even if the material was originally isotropic. This mat-
ter results from the microscopic nature of damage. The fissure orientation
and length cause anisotropic macroscopic behavior. Therefore, damage in an
isotropic or initial anisotropic material that is in a state of multiaxial stress
can only be described by taking a damage tensor into account.

There are some different ways to construct tensors suitable for analysing
the damage state in material. In the following second-rank and fourth-order
damage tensors are systematically developed.

In three-dimensional space a parallelogram formed by the vectors Ai and
Bi can be represented by

Si = εijk AjBk (7.1a)

or in the dual form

Sij = εijk Sk ⇔ Si = 1
2εijk Sjk , (7.1b)

where εijk is the third-order alternating tensor (εijk = 1, or −1 if i, j, k are
even or odd permutations of 1, 2, 3, respectively, otherwise the components
εijk are equal to zero) according to (2.5). From (7.1a,b) we immediately find
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Sij = 2!A[iBj] =

∣∣∣∣∣Ai Aj

Bi Bj

∣∣∣∣∣ . (7.2)

Because of the decomposition (7.2) as an alternating product of two vectors
the bivector S is called simple and has the following three nonvanishing
essential components

S12 = A1B2 −A2B1 , S23 = A2B3 −A3B2 , (7.3a,b)

S31 = A3B1 −A1B3 . (7.3c)

In rectilinear components in three-dimensional space, we see that the ab-
solute values of the components (7.3) are the projections of the area of the
parallelogram, considered above, on the coordinate planes. Thus Sij , accord-
ing to (7.2), represents an area vector in three-dimensional space and has an
orientation fixed by (7.1a).

According to (7.1b) a surface element dS with an unit normal ni, i.e.
dSi = nidS, is expressed by

dSij = εijkdSk ⇔ dSi = 1
2εijkdSjk (7.4.a)

and

nij = εijknk ⇔ ni = 1
2εijknjk . (7.4b)

The components of the bivector n are the direction cosines n1, n2, n3:

nij =

⎛
⎜⎜⎝

0 n3 −n2

−n3 0 n1

n2 −n1 0

⎞
⎟⎟⎠ . (7.5)

The principal invariants of (7.5), defined as

J1 ≡ nii , −J2 ≡ ni[i]nj[j] , J3 ≡ ni[i]nj[j]nk[k] , (7.6a,b,c)

take the following values:

J1(n) = 0 , −J2(n) = n2
1 + n2

2 + n2
3 = 1 , J3(n) = 0 , (7.7a,b,c)

i.e. the only nonvanishing invariant is determined by the length of the unit
normal vector ni. In (7.6a,b,c) the same notation is used as in (2.24a,b,c).
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Fig. 7.1 CAUCHY’s tetrahedron a) in an undamaged state, b) in a damaged state

Imagine that at a point ◦ in a continuous medium a set of rectangular coor-
dinate axes is drawn and a differential tetrahedron is bounded by parts of the
three coordinate planes through ◦ and a fourth plane not passing through ◦,
as shown in Fig. 7.1a. Such a tetrahedron can be characterized by a system
of bivectors,

d1Si = −1
2εijk(dx2)j(dx3)k ,

d2Si = −1
2εijk(dx3)j(dx1)k ,

d3Si = −1
2εijk(dx1)j(dx2)k ,

d4Si = −1
2εijk [(dx1)j − (dx3)j ] [(dx2)k − (dx3)k] ,

(7.8)

where the sum is the zero vector:

d1Si + d2Si + d3Si + d4Si = 0i . (7.9)

In a damaged continuum we define a ”net cross section” Ŝ ≡ ψS where
ψ ≤ 1 describes the ”continuity” of the material, as mentioned in Section
4.3.1. Then, by analogy of (7.8), a tetrahedron in a damaged continuum (Fig.
7.1b) can be characterized by the following system of bivectors:

d1Ŝi = −1
2αijk(dx2)j(dx3)k ≡ αd1Si ,

d2Ŝi = −1
2βijk(dx3)j(dx1)k ≡ β d2Si ,

d3Ŝi = −1
2γijk(dx1)j(dx2)k ≡ γ d3Si ,

d4Ŝi = −1
2κijk [(dx1)j − (dx3)j ] [(dx2)k − (dx3)k] ≡ κ d4Si ,

(7.10)
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where αijk ≡ αεijk, βijk ≡ βεijk, etc. are total skew-symmetric tensors of
order three, which have the essential components α123 ≡ α, β123 ≡ β, etc.,
respectively.

¿From Fig. 7.1a,b we find that only

dS1 = −n1 dS , d1Ŝ1 = αd1S1 , d2S2 = −n2 dS , etc.

are non vanishing components of the bivector systems (7.8) and (7.10). Then
the sum of (7.10) yields the vector

Σi ≡ d1Ŝi + . . .+ d4Ŝi =

⎛
⎜⎜⎝

(κ− α)n1

(κ− β)n2

(κ− γ)n3

⎞
⎟⎟⎠ dS , (7.11)

which is not the zero vector, unless in the isotropic damage case (α = β =
γ = κ) or in the undamaged case (α = β = γ = κ = 1) according to (7.9).

Furthermore, because of d1Ŝ1 �= 0, d1Ŝ2 = d1Ŝ3 = 0 etc., the damage
state of the continuum at a point is characterized by the bivectors

α1ij =

⎛
⎜⎜⎝

0 0 0

0 0 α

0 −α 0

⎞
⎟⎟⎠ , β2ij =

⎛
⎜⎜⎝

0 0 −β
0 0 0

β 0 0

⎞
⎟⎟⎠ , (7.12a,b)

γ3ij =

⎛
⎜⎜⎝

0 γ 0

−γ 0 0

0 0 0

⎞
⎟⎟⎠ . (7.12c)

In the following we will examine if the bivector

ψij = α1ij + β2ij + γ3ij =

⎛
⎜⎜⎝

0 γ −β
−γ 0 α

β −α 0

⎞
⎟⎟⎠ (7.13a)

ψij = αε1ij + βε2ij + γε3ij (7.13b)

could be a suitable tensor of continuity. Then the damage tensor ω would be
of the form

ωij = δ(k)kεkij − ψij =

⎛
⎜⎜⎝

0 1 − γ −(1 − β)

−(1 − γ) 0 1 − α
1 − β −(1 − α) 0

⎞
⎟⎟⎠ (7.14a)
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(no sum on the bracketed index k) or

ωij = (1 − α)ε1ij + (1 − β)ε2ij + (1 − γ)ε3ij . (7.14b)

If a tensor is symmetric or antisymmetric, respectively, in one cartesian
coordinate system, it is symmetric or antisymmetric in all such systems;
thus symmetry and antisymmetry are really tensor properties. Therefore, the
skew-symmetric tensor (7.13a) has only three essential components in any
cartesian system, for instance, α, β, γ in relation to the system xi or α∗, β∗,
γ∗ with respect to the system x∗i .

The only nonvanishing invariants of the bivectors (7.13) and (7.14) are
determined by their lengths:

−J2(ψ) ≡ −1
2 tr ψ2 ≡ −1

2ψijψji = α2 + β2 + γ2 , (7.15)

−J2(ω) = (1 − α)2 + (1 − β)2 + (1 − γ)2 . (7.16)

In the undamaged state (α = β = γ = 1) we have

−J2(ψ) = 3 , −J2(ω) = 0 ,

and

ψij → ηij ≡ ε1ij + ε2ij + ε3ij =

⎛
⎜⎜⎝

0 1 −1

−1 0 1

1 −1 0

⎞
⎟⎟⎠ . (7.17)

We see that the undamaged state does not yield an isotropic tensor, because
the components of η in (7.17) transform under the change of the coordinate
system.

Thus the bivector ψ defined by (7.13a,b) is not suitable to describe the
state of continuity of a damaged continuum, and we have to find another
tensor composed by the bivectors (7.12a,b,c). As shown below, a suitable
tensor of continuity may be defined by

ψijk ≡ ψi[jk] with

⎧⎪⎨
⎪⎩
ψ1jk ≡ α1jk = αε1jk

ψ2jk ≡ β2jk = βε2jk

ψ3jk ≡ γ3jk = γε3jk

. (7.18)

This tensor is skew-symmetric only with respect to the two bracketed indizes
[jk] and possesses the three essential components (α, β, γ), as illustrated in
Fig. 7.2.
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Fig. 7.2 Third-order tensor of continuity and its dual form

In the isotropic damage state (α = β = γ = κ) the tensor (7.18) is
total skew-symmetric, and the undamaged continuum (α = β = γ = 1)
is characterized by the third-order alternating tensor εijk. Supplementary to
(7.18) we introduce the ”damage tensor”

ωijk ≡ εijk − ψijk where

⎧⎪⎨
⎪⎩
ω1jk = (1 − α)ε1jk

ω2jk = (1 − β)ε2jk

ω3jk = (1 − γ)ε3jk

. (7.19)

By analogy of (7.1b) or (7.4a,b) the dual relations

ψijk ≡ ψi[jk] = εjkrψir ⇔ ψir = 1
2εrjkψijk , (7.20)

ωijk ≡ ωi[jk] = εjkrωir ⇔ ωir = 1
2εrjkωijk (7.21)

are valid.
Contrary to (7.13) and (7.14) the dual tensor of continuity ψij accord-

ing to (7.20) and the dual damage tensor ωij according to (7.21) have the
diagonal forms

ψij = diag {α, β, γ} (7.22)

and
ωij = diag {(1 − α), (1 − β), (1 − γ)} , (7.23)

respectively. For the undamaged continuum (ψijk → εijk) the dual tensor of
continuityψij is equal to KRONECKER’s tensor δij , as we can see from (7.20)
or immediately from (7.22). The relations (7.20) and (7.22) are illustrated in
Fig. 7.2.

Especially, from Fig. 7.2 we can see the skew-symmetric character of
the third order tensor of continuity indicated in (7.20) and its three essential
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components α, β, γ. These values are fractions which represent the net cross-
sectional elements perpendicular to the coordinate axes x1, x2, x3 (Fig. 7.1b)
and which can be measured in tests on specimens cut along three mutually
perpendicular directions x1, x2, x3.

According to (7.4a) a damaged surface element dŜ can be expressed in
the dual form

dŜij = εijkdŜk ⇔ dŜi = 1
2εijkdŜjk , (7.24)

and using the tensor of continuity (7.18) we find

dŜij = ψijkdSk ⇔ dŜi = 1
2ψijkdSjk . (7.25)

Note that the bivector dŜij or dSjk in (7.25) must have the same indices with
respect to which the tensor (7.18) is skew-symmetric. Combining (7.4a) and
(7.25) we have the linear transformations

dŜij = 1
2ψijpqdSpq , dŜi = ψirdSr , (7.26a,b)

where ψir is the tensor (7.20), (7.22), while ψijpq is a fourth-order non-
symmetric tensor defined as

ψijpq ≡ ψkijεkpq , (7.27a)

which, by using (7.20), can be expressed through

ψijpq = (δipδjq − δiqδjp)ψrr − (ψipδjq − ψiqδjp) − (δipψjq − δiqψjp) .
(7.27b)

This tensor has the antisymmetric properties

ψijpq = −ψjipq = −ψijqp = ψjiqp , (7.28)

and is symmetric only with respect to the index pairs, i.e.

ψijpq = ψpqij . (7.29)

More briefly, the properties of (7.28) and (7.29) can be indicated by

ψijpq = ψ([ij][pq]) . (7.30)

The essential components of the tensor (7.27) are given by

ψijpq =

⎧⎪⎨
⎪⎩
α, β, γ, if ij is an even permutation of pq

−α,−β,−γ, if ij is an odd permutation of pq,

0, otherwise

(7.31a)
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which means

ψ2323 = ψ3232 ≡ α , ψ3131 = ψ1313 ≡ β ,
ψ1212 = ψ2121 ≡ γ ,

ψ3223 = ψ2332 ≡ −α , ψ1331 = ψ3113 ≡ −β ,
ψ2112 = ψ1221 ≡ −γ .

(7.31b)

In the isotropic damage state (α = β = γ = κ) the tensor (7.27) is propor-
tional to KRONECKER’s generalized delta

δijpq ≡ εkijεkpq =

∣∣∣∣∣∣∣∣
δkk δkp δkq

δik δip δiq

δjk δjp δjq

∣∣∣∣∣∣∣∣ = δipδjq − δiqδjp ,
and is identical to that one in the undamaged continuum characterized by
(α = β = γ = 1).

In order to construct the tensor of continuity (7.22) we can use the fol-
lowing way. In addition to Fig. 7.1 let us consider a fictitious undamaged
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Fig. 7.3 CAUCHY’s tetrahedron a) undamaged configuration, b) anisotropic damaged
configuration, c) fictitious undamaged configuration

configuration as illustrated in Fig. 7.3c, which is, similar to (7.8) and (7.10),
characterized by the following system of bivectors:

d1S̃i = −1
2εijk(dx̃2)j(dx̃3)k ≡ d1Ŝi ,

d2S̃i = −1
2εijk(dx̃3)j(dx̃1)k ≡ d2Ŝi ,

d3S̃i = −1
2εijk(dx̃1)j(dx̃2)k ≡ d3Ŝi ,

d4S̃i = −1
2εijk [(dx̃1)j − (dx̃3)j ] [(dx̃2)k − (dx̃3)k] ,

(7.32)
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where, by analogy of (7.9), the vector sum is equal to the zero vector:

d1S̃i + d2S̃i + d3S̃i + d4S̃i = 0i . (7.33)

The three area vectors d1S̃i, . . . , d
3S̃i in (7.32) are identical to the corre-

sponding vectors in (7.10) of the damaged configuration. The fourth vector
d4S̃i in (7.32), having the same magnitude as d4Ŝi in (7.10), differ from the
vector d4Si in (7.8) not only in length, but also in its direction. Therefore,
the vectors d4S̃i and d4Si are connected by a linear operator ψ of rank two
(second order tensor):

d4S̃i = ψird
4Sr . (7.34)

Comparing the three systems of bivectors (7.8), (7.10), (7.32) and using
the equations (7.9), (7.33) in connection with the transformation (7.34), we
find the relation:

ψirεrjk [(dx2)j(dx3)k + (dx3)j(dx1)k + (dx1)j(dx2)k]

= αijk(dx2)j(dx3)k + βijk(dx3)j(dx1)k + γijk(dx1)j(dx2)k , (7.35)

where the transvection ψirεrjk leads to the third-order tensor of continuity:

ψirεrjk ≡ ψijk = ψi[jk] , (7.36)

which is skew-symmetric with respect to the bracketed index pair [jk]. The
result (7.36) is contained in (7.18) and (7.20).

Because of αijk ≡ αεijk, etc. the terms on the right-hand side of (7.35)
are vectors with magnitudes∣∣∣d1S̃i

∣∣∣ = 1
2α1jk(dx2)j(dx3)k , etc.

and with the directions of the basis vectors 1ei,
2ei,

3ei of the cartesian co-
ordinate system. Therefore, in connection with (7.36), relation (7.35) can be
written in the following form:

ψijk [(dx2)j(dx3)k + . . .] = 1eiα1jk(dx2)j(dx3)k + . . . , (7.37)

from which we immediately read the decomposition:

ψijk = 1eiα1jk + 2eiβ2jk + 3eiγ3jk , (7.38a)

or because of α1jk ≡ αε1jk, etc.:
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ψijk = α1eiε1jk + β2eiε2jk + γ3eiε3jk . (7.38b)

By analogy of (7.1b) we find the dual relation from (7.36):

ψijk = ψi[jk] = εjkrψir ⇔ ψir = 1
2εrjkψijk , (7.39)

and finally the diagonal form:

ψir = 1
2ψipqεjpq = diag{α, β, γ} (7.40a)

in accordance with (7.22). Inserting the decomposition (7.38b) into (7.40a)
and replacing δ1j ≡ 1ej , etc., we see that the second rank tensor of continuity
can be decomposed in terms of dyadics formed from the basis vectors:

ψij = α
(
1e ⊗ 1e

)
ij

+ β
(
2e ⊗ 2e

)
ij

+ γ
(
3e ⊗ 3e

)
ij
. (7.40b)

The relations (7.39) and (7.40a) are illustrated in Fig. 7.2. Especially, from
Fig. 7.2 we can see the skew-symmetric character of a third-order tensor of
continuity indicated in (7.36) and its three essential components (α, β, γ).
These values are fractions which represent the net cross-sectional elements
perpendicular to the coordinate axes x1, x2, x3 (Fig. 7.3b) and which can
be measured in tests on specimens cut along three mutually perpendicular
directions x1, x2, x3. Such experiments are carried out by BETTEN and his
coworkers as discussed in Chapter 13.

The damage may sometimes develop isotropically, as observed by JOHN-
SON (1960) for R.R. 59 Al alloy. In this special case (α = β = γ ≡ ψ), the
second rank tensor of continuity (7.39) is a spherical tensor:

ψijk = ψεjkrδir = ψεijk ⇔ ψir = 1
2ψεrjkεijk = ψδir (7.41)

and, contrary to (7.39), the third order tensor of continuity is now totally
skew-symmetric (ψijk ≡ ψ[ijk]).

Instead of the continuity tensor ψ according to (7.39) we can use the dam-
age tensor ω defined by (7.19), (7.23) and characterized by the dual relation
(7.21). In view of polynominal representations of constitutive equations it
is convenient to use the tensor (4.84), as discussed in Section 4.3.2 in more
detail.

7.2 Stresses in a Damaged Continuum

In the undamaged continuum (Fig. 7.4a) CAUCHY’s formula
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pi = σjinj (7.42)

is derived from equilibrium, where pi and ni are the components of the stress
vector p and the unit vector normal n, respectively. In the same way we get
to the corresponding relation for a damaged continuum,

p̂iψ(n) = ψjkσ̂kinj , (7.43)

where ψjk are the components of the continuity tensor ψ according to (7.22).
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Fig. 7.4 Stress tensor regarding a) an undamaged, b) a damaged continuum

The surface elements dS and dŜ in Fig. 7.4 are subjected to the same
force vector:

dPi = pi dS ≡ p̂i dŜ = dP̂i . (7.44)

Thus, considering (7.42) and (7.43), we finally find the actual net-stress ten-
sor σ̂ as a transformation from CAUCHY’s tensor:

σij = ψirσ̂rj = σji ⇔ σ̂ij = ψ
(−1)
ir σrj �= σ̂ji . (7.45)

By suitable transvections we find σij σ̂
(−1)
jk = ψik and σ̂ijσ

(−1)
jk = ψ

(−1)
ik .

As indicated in (7.45), the actual net-stress tensor σ̂ is non-symmetric,
unless we have isotropic damage expressed by ψir = ψδir.

Because of the symmetry σij = (σij +σji)/2 of CAUCHY’s stress tensor
σ we find the representations

σij = 1
2 (ψipδjq + δiqψjp) σ̂pq ≡ ϕijpqσ̂pq , (7.46a)
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σ̂ij = 1
2

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp

)
σpq ≡ Φijpqσpq (7.46b)

from (7.45). We see that the fourth-order tensors ϕ and Φ defined as
(7.46a,b) are only symmetric with respect to two indices:

ϕijpq = ϕjipq , Φijpq = Φijqp , (7.47a,b)

that is, the actual net-stress tensor σ̂ is non-symmetric in the anisotropic
damage case:

σ̂12

σ̂21
=
β

α
,

σ̂23

σ̂32
=
γ

β
,

σ̂31

σ̂13
=
α

γ
. (7.48)

This fact is a disadvantage, and it is awkward to use the actual net-stress ten-
sor σ̂ in constitutive equations with a symmetric strain rate tensor d. There-
fore, we introduce a transformed net-stress tensor t defined by the operation

tij = 1
2

(
σ̂ikψ

(−1)
kj + ψ

(−1)
ki σ̂jk

)
, (7.49)

which is symmetric. Inserting (7.46b) into (7.49) we have

tij = C
(−1)
ijpq σpq , (7.50)

where
C

(−1)
ijpq = 1

2

(
ψ

(−1)
ip ψ

(−1)
jq + ψ

(−1)
iq ψ

(−1)
jp

)
(7.51)

is a symmetric fourth-order tensor

C
(−1)
ijpq = C

(−1)
jipq = C

(−1)
ijqp = C

(−1)
pqij , (7.52)

which is identical to the tensor Dijpq in (4.94). In the undamaged (ψ → δ)
and total damaged state (ψ → 0) we have

C
(−1)
ijpq → Eijpq ⇒ tij → σij (7.53)

and

C
(−1)
ijpq → ∞ijpq ⇒ tij → ∞ij(singular) , (7.54)

respectively, where

Eijpq = 1
2 (δipδjq + δiqδjp) (7.55)
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is the zero power tensor of rank four.
The inverse form of (7.50) is given by

σij = Cijpqtpq , (7.56)

where
Cijpq = 1

2 (ψipψjq + ψiqψjp) (7.57)

is a symmetric fourth-order tensor of continuity,

Cijpq = Cjipq = Cijqp = Cpqij , (7.58)

which is connected with the tensor (7.51) by the relation

CijpqC
(−1)
pqk� = C

(−1)
ijpq Cpqk� = C

(0)
ijk� ≡ Eijk� . (7.59)

Because of the symmetry properties (7.52) and (7.58) the fourth-order tensor
of continuity (7.57) and its inversion (7.51) can be represented by 6×6 square
matrices, which, because of (7.40a,b), have the diagonal forms:

Cijk� = diag {C1111, C2222, C3333, C1212, C2323, C3131} , (7.60a)

Cijk� = diag
{
α2, β2, γ2, 1

2αβ,
1
2βγ,

1
2γα
}
, (7.60b)

and

C
(−1)
ijk� = diag

{
C

(−1)
1111 , C

(−1)
2222 , C

(−1)
3333 , C

(−1)
1212 , C

(−1)
2323 , C

(−1)
3131

}
, (7.61a)

C
(−1)
ijk� = diag

{
1

α2
,

1

β2
,

1

γ2
,

2

αβ
,

2

βγ
,

2

γα

}
, (7.61b)

that is, the components of the pseudo-net stress tensor t, according to (7.50),
are given in the following manner:

t11 =
1

α2
σ11 , t12 =

1

αβ
σ12 , t13 =

1

αγ
σ13 ,

t21 = t12 , t22 =
1

β2
σ22 , t23 =

1

βγ
σ23 , (7.62)

t31 = t13 , t32 = t23 , t33 =
1

γ2
σ33 .

The results (7.50) and (7.56) can also be found in the following way.
Using the linear transformations



152 7 Damage Mechanics

tij = 1
2

(
δirψ

(−1)
js + ψ

(−1)
is δjr

)
σ̂rs (7.63)

and
σ̂pq = 1

2 (δprψqs + δpsψqr) trs , (7.64)

which connect a fictitious symmetric tensor t with the actual non-symmetric
net stress tensor σ̂, we immediately find (7.50) by inserting (7.46b) into
(7.63) and (7.56) by inserting (7.64) into (7.46a), respectively.

Because of the non-symmetric property of the actual net-stress tensor we
find from (7.64) the decomposition

σ̂pq = σ̂(pq) + σ̂[pq] , (7.65)

where the symmetric and antisymmetric parts are given by

σ̂(pq) = (tprψrq + ψprtrq)/ 2 (7.66)

and
σ̂[pq] = (tprψrq − ψprtrq)/ 2 , (7.67)

respectively. In the special case of isotropic damage (ψij = ψδij) we have
σ̂(pq) = ψtpq and σ̂[pq] = 0pq.

An interpretation of the introduced pseudo-net stress tensor (7.49) can be
given in the following way. An alternative form of CAUCHY’s formula (7.42)
is

dPi = σji dSj , (7.68)

where dPi is the actual force vector (7.44), and according to (7.26b) we can
write

dPi = σjiψ
(−1)
jr dŜr , (7.69a)

or inserting (7.56) we find the relation

dPi = ψiptpr dŜr , (7.69b)

which can be multiplied by ψ(−1)
ki , so that we have

ψ
(−1)
ki dPi = tkr dŜr , (7.70a)

or after changing the indices:

ψ
(−1)
ik dPk ≡ dP̃i = tji dŜj . (7.70b)
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Comparing (7.68) and (7.70b) we see that (7.70b) can be interpreted as
CAUCHY’s formula for the damaged configuration, which is subjected to
the pseudo-force dP̃i ≡ ψ(−1)

ik dPk instead to the actual force dPi.
Because of the non-symmetric properties of the ”net-stress tensor” σ̂ and

the operator ϕ, i.e.,

σ̂ij = 1
2 (σ̂ij + σ̂ji) + 1

2 (σ̂ij − σ̂ji) (7.71)

and
ϕijpq = 1

2 (ϕijpq + ϕijqp) + 1
2 (ϕijpq − ϕijqp) , (7.72)

respectively, we find, from (7.46a), the decompositions:

σij = 1
4 (ϕijpq + ϕijqp) (σ̂pq + σ̂qp)

+ 1
4 (ϕijpq − ϕijqp) (σ̂pq − σ̂qp) ,

(7.73a)

σij = 1
8 (ψipδjq + ψjpδiq + ψiqδjp + ψjqδip) (σ̂pq + σ̂qp)

+ 1
8 (ψipδjq + ψjpδiq − ψiqδjp − ψjqδip) (σ̂pq − σ̂qp) .

(7.73b)

Because of (7.47a) the right-hand sides in (7.73a) and (7.73b) are symmet-
ric with respect to the indices i and j. Furthermore, we see the symme-
try with respect to the indices p and q. This fact can be seen immediately
from (7.46a). In the special case of isotropic damage, i.e., ψij = ψδij or
σ̂pq = σ̂qp, the second term of the right-hand side in (7.73b) vanishes. Then,
equation (7.73b) is identical to those formulated by RABOTNOV (1969).

In a similar way, from (7.46b) we find the decomposition of the ”net
stress tensor” σ̂ into a symmetric and an antisymmetric part:

σ̂ij = 1
2 (Φijpq + Φjipq)σpq + 1

2 (Φijpq − Φjipq)σpq , (7.74a)

σ̂ij = 1
4

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp + ψ

(−1)
jp δiq + ψ

(−1)
jq δip

)
σpq

+ 1
4

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp − ψ(−1)

jp δiq − ψ(−1)
jq δip

)
σpq .

(7.74b)

The results given above may be expressed by the damage tensor ω. For
instance, from (7.27a,b) in connection with (7.19) and because of the substi-
tution ψij ≡ δij − ωij we have

ψijpq = δijpq − ωkijεkpq ≡ (εkij − ωkij) εkpq , (7.75a)

ψijpq = (δipδjq − δiqδjp) (1 − ωrr) + (ωipδjq − ωiqδjp)

+ (δipωjq − δiqωjp) .
(7.75b)
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Furthermore, instead of (7.46a) and (7.73b) we find

σij = 1
2 [δipδjq + δiqδjp − (ωipδjq + δiqωjp)] σ̂pq (7.76a)

and

σij = 1
2 (σ̂ij + σ̂ji)

− 1
8 (ωipδjq + δiqωjp + ωiqδjp + δipωjq) (σ̂pq + σ̂qp)

− 1
8 (ωipδjq + δiqωjp − ωiqδjp − δipωjq) (σ̂pq − σ̂qp) .

(7.76b)

By using the inverse

ψ
(−1)
ir ≡ 1

2 det(ψ)
εrqpεik�ψpkψq� (7.77)

and because of the symmetry σij = (σij + σji)/2, we find the following
relations for the net stress tensor:

σ̂ij =
1

2 det(δ − ω)

[
(δisδjt + δitδjs) (1 − ωrr)

+ (ωisδjt + ωitδjs) + 1
2εik� (εspqδjt + εtpqδjs)ωpkωq�

]
σst ,

(7.78a)

=
1

det(δ − ω)
[(1 − ωrr)σij + ωirσrj

+ 1
2εik�εspqωpkωq�σsj

]
,

(7.78b)

=
1

det(δ − ω)

{
[1 − J1(ω) − J2(ω)]σij

+ [1 − J1(ω)]ωirσrj + ω
(2)
ir σrj

}
,

(7.78c)

where

J1(ω) ≡ δijωji , J2(ω) ≡ 1
2 (ωijωji − ωiiωjj) (7.79a,b)

are invariants of the damage tensor ω.
Finally, we consider CAUCHYs stress equations of equilibrium,

σji,j = 0i , (7.80)

in the absence of the body forces. Then by using the transformation (7.45),
we have the equilibrium equations in the net stresses:
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σ̂riψjr,j + ψjrσ̂ri,j = 0i . (7.81)

The symmetry of CAUCHY’s stress tensor (σij = σji) resulting from moment
equilibrium yields the condition

ψipσ̂pj = ψjqσ̂qi or σ̂ij = ψ
(−1)
iq ψjpσ̂pq , (7.82a,b)

which states that the net stress tensor is non-symmetric. From (7.82b) we
find the decomposition into a symmetric part and an antisymmetric one:

σ̂ij = 1
4

(
ψ

(−1)
iq ψjp + ψ

(−1)
ip ψjq

)
(σ̂pq + σ̂qp)

+ 1
4

(
ψ

(−1)
iq ψjp − ψ(−1)

ip ψjq

)
(σ̂pq + σ̂qp) .

(7.83)

For the isotropic damage case (ψij = ψδij), the relation (7.83) is equal to
the decomposition

σ̂ij = (σ̂ji + σ̂ij)/ 2 + (σ̂ji − σ̂ij)/ 2 ≡ σ̂ji , (7.84)

i.e., the net stress tensor is symmetric in this special case only.

7.3 Damage Effective Stress Concepts

During the last two or three decades many scientists have devoted much
effort to the stress analysis in a damaged material, and the notation damage
effective stress has been introduced. In the following some various damage
effective stress concepts should be reviewed.

In the case of damage being isotropic measured in terms of a single scalar
parameter ω(0 ≤ ω ≤ 1), the effective stress tensor σ̄ is expressed in the
form

σ̄ = σ/(1 − ω) (model I)

where σ denotes the CAUCHY stress tensor. This assumption leads to sim-
ple models of mechanical behavior coupling damage and is adequate in
some cases, especially under conditions of proportional loading (LEMAITRE,
1984,1992) or in some materials (JOHNSON, 1960). However, many scien-
tists ( HAYHURST, 1972; LECKIE and HAYHURST, 1974; LEE, PENG and
WANG, 1985; CHOW and WANG, 1987; 1988 ) experimentally observed that
all initially isotropic or anisotropic materials under conditions of nonpro-
portional loading and most brittle materials even though under conditions
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of proportional loading develop anisotropic damage, for which the dam-
age variables can no longer be scalars, but are of tensorial nature (LECKIE

and ONAT, 1981). The damage variables are then vectors, second-order or
fourth-order tensors (BETTEN, 2001b). ONAT (1986), ONAT and LECKIE

(1988) and ADAMS et al. (1992) showed that the damage variables in isother-
mal mechanical behavior are irreducible tensors of even orders.

MURAKAMI and OHNO (1981) derived an asymmetric effective stress
tensor,

σ∗ = σ(1 − ω)−1 ,

where 1 denotes the second-order identity tensor and ω is a symmetric
second-order damage tensor. Only the symmetric part of σ∗, i.e.,

σ̄ =
[
σ(1 − ω)−1 + (1 − ω)−1σ

]/
2 (model II) ,

has been considered by MURAKAMI (1988) in constitutive equations.
CHOW and WANG (1987) postulated an alternative model of the effective

stress tensor in the damage principal coordinate system, which was applied
in elasticity, plasticity and ductile fracture ( CHOW and WANG, 1987; 1988;
KATTAN and VOYIADJIS, 1990; VOYIADJIS and KATTAN, 1990 ) . It is easy
to show that this model coincides with the following tensorial expression:

σ̄ = (1 − ω)−1/2σ(1 − ω)−1/2 (model III) .

In particular, if σ and ω are coaxial in their principal directions, then they
are commutative, σω = ωσ, and both models, II and III, reduce to:

σ̄ = (1 − ω)−1σ = σ(1 − ω)−1 (model IV) .

This model is the tensorial generalization of those proposed by SIDOROFF

(1981), LECKIE and HAYHURST (1974), and LEE et al. (1985) in the princi-
pal coordinate system.

In each of the above discussed models I-IV the effective stress tensor σ̄

depends linear on the CAUCHY stress tensor σ. In general, the fourth-order
tensor M as a linear transformation in the relation

σ̄ = M [σ] or σ̄ij = Mijk�σk�

is named the damage effective tensor (ZHENG and BETTEN, 1996). Origi-
nally, RABOTNOV (1968) had not considered the relation σ̄ = M [σ] but
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defined a symmetric net-stress tensor σ̂ by way of a linear transformation
σ = Ω[σ̂] or in index notation according to (4.78), where the fourth-order
tensor Ω is assumed to be symmetric.

However, BETTEN (1982b) has pointed out in more detail that the fourth-
order tensor Ω in the linear transformation σ = Ω[σ̂] and consequently the
net-stress tensor σ̂ cannot be symmetric if the damage develops anisotrop-
ically. Instead of σ̂, BETTEN (1983b) introduced a transformed net-stress
tensor t, called pseudo-net-stress tensor, as an effective stress tensor,

σ̄ = (1 − ω)−1σ(1 − ω)−1 (model V) ,

which is symmetric even in cases of anisotropic damage. This model can be
expressed in index notation according to (7.50) with (7.51), if we take the
relation (4.84) into account.

Because of the broad applicability and versatility of model V to engineer-
ing problems (BETTEN, 1986a; 1991b; 1998), this model has been developed
step by step and discussed in more detail in Section 7.2.

It must be emphasized that there is no substantive difference between
models V and III since both tensors (1 − ω) and (1 − ω)1/2 are positive-
definite second-order symmetric tensors and are phenomenological measures
of the anisotropic damage state. Furthermore, it has been pointed out by
ZHENG and BETTEN (1996) that the difference between models II and III
is negligible, if the damage is not highly developed.

Besides the concepts of damage effective stress (models I-V) various
damage equivalence principles play an important role in the development of
continuum damage mechanics. For instance, the strain equivalence hypothe-
sis (LEMAITRE, 1985; 1992; CHABOCHE, 1988; LEMAITRE and CHABOCHE,
1990; BETTEN, 2001a; 2001c; OMERSPAHIC and MATTIASSON, 2007)
states that a damaged material element under the applied stress σ exhibits the
same strain response as the undamaged one submitted to the effective stress
σ̄. Unfortunately, this hypothesis leads to asymmetric effective compliance
and stiffness matrices if anisotropic damage develops. To remove this incon-
sistency, SIDOROFF (1981) proposed the complementary energy equivalence
hypothesis by replacing the equivalence for strain response with the equiv-
alence for complementary energy. We particularly stress that the concept of
effective stress becomes meaningful, only if either the strain or complemen-
tary equivalence hypothesis (as well as some other additional equivalence
hypotheses for yield criterion function, failure criterion function, etc.) is em-
ployed.
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Assume that the damage state can be characterized in terms of a set � of
scalars, vectors, and/or tensors of different orders, which operate as internal
variables. The remarkable role of the effective stress tensor concept requires
the most general representation for the damage effect tensor, or more gener-
ally, the effective stress tensor:

σ̄ = M [σ] with M = M(�)

or

σ̄ = σ̄(σ, �) .

ZHENG and BETTEN (1996) postulate a generalized damage equivalence
hypothesis. Then, the so-called damage isotropy principle is established that
in order to coincide with the damage equivalence hypothesis, the effective
stress tensor σ̄ = σ̄(σ, �) as a second-order tensor-valued function of σ

and � has to be isotropic. Particularly, this property is irrespective of the
initial material symmetry (isotropy or anisotropy) and the type of damage
variables. As a consequence, the damage effect tensor M(�) is an isotropic
fourth-order tensor-valued function of the damage state variables �. As
isotropic tensor functions, the effective stress tensor σ̄(σ, �) and the dam-
age effect tensor M(�) can be formulated in general invariant forms ac-
cording to the theory of representations for tensor functions ( RIVLIN, 1970;
SPENCER, 1971; WANG, 1971; BOEHLER, 1979; 1987; ZHENG, 1994; BET-
TEN, 1986a; 1998; 2001c; 2003a ). Damage material constants are then con-
sistently introduced to these invariant damage models.


