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Preface to the Third Edition

Many developments and clarifications in the theory of creep and its applica-
tions to engineering proplems, which have occured since the publication of
the second edition in 2005, are reflected in numerous additions and emenda-
tions in the present edition. Many improvements have been made throughout,
e.g. by elimination and rearrangement as well as necessary additions.

Session 4.1 has been extended to the primary creep behaviour of austenitic
steel including own experimental data, where both the strain- and time-
hardening-theory have been taken into account in more detail.

Typical creep curves for metals, polymers, and ceramics have been dis-
cussed in a new Chapter 14.

Some new publications have been discussed in the text and added to the
list of References.

Furthermore, the navigation system on the CD on the inside back cover
of the book has been checked and improved.

Again, for users, executing the MAPLE worksheets interactively, the pro-
grams are indicated in the text by data names like

⊙
11 3.mws , for in-

stance. For a better overview, a MAPLE navigation worksheet (index.mws)
with a direct access to all application examples and algorithms, is also in-
cluded on the compact disk CD-ROM.

Finally, I would like to express my appreciation to my Assistant, Dipl.-
Ing. Uwe NAVRATH, for preparing the camera-ready manuscript in LATEX.
His competence and skill have been indispensable for me.

Thanks are due to Springer-Verlag, in particular to Mrs. Carmen WOLF

and Dr. Christoph BAUMANN for their readiness to publish the third edition
of this monograph and for their agreeable cooperation.

Aachen, April 2008 Josef Betten



Preface to the Second Edition

In the revision of this monograph for a second edition, the primary intention
and purpose of the first edition have been preserved.

The whole text has been reexamined, and many minor improvements
have been made throughout by elimination and rearrangement as well as
addition.

The major additions reflect developments and extensions of interest and
practical applicability that have occurred since the publication of the first
edition in 2002.

An essential feature of the new edition is the CD on the inside back cover
of the book. All the application examples and algorithms are included and ex-
tended in more detail in this compact disk CD-ROM, where the results, when
illustrated in Figures, are presented in colour. All the MAPLE programs are
saved as maple work sheets (*.mws) and for earlier releases in ascii-format.
For users executing the MAPLE worksheets interactively the programs are
indicated in the text by data names like

⊙
11 3.mws , for instance. For a

better overview a MAPLE navigation work sheet (index.mws) with a direct
access to all the application examples and algorithms, is also included on the
compact disk CD-ROM.

Finally, I would like to express my appreciation to my Assistant, Dipl.-
Ing. Uwe NAVRATH, for preparing the camera-ready manuscript in LATEX.
His competence and skill have been indispensable for me.

Thanks are due to Springer-Verlag, in particular to Dr. Dieter MERKLE

and Dr. Hubertus v. RIEDESEL for their readiness to publish the second edi-
tion of this monograph and for their agreeable cooperation.

Aachen, July 2004 Josef Betten



Preface to the First Edition

This book is based upon lectures on Mathematical Models in Materials Sci-
ence held at the University of Aachen, Germany, since 1969. Guest-lectures
at several Universities in Germany and abroad or representations at Interna-
tional Conferences have also been included. Furthermore, I represent some
parts of this book on ANSYS-Seminars about viscoelasticity and viscoplas-
ticity in Munich, Stuttgart, and Hannover. Some results of research projects,
which I have carried out in recent years, are also discussed in this exposition.

Over the last two or three decades much effort has been devoted to the
elaboration of phenomenological theories describing the relations between
force and deformation in bodies of materials, which obey neither the linear
laws of the classical theories of elasticity nor the hydrodynamics of viscous
fluids.

Material laws and constitutive theories are the fundamental bases for de-
scribing the mechanical behavior of materials under multi-axial states of
stress involving creep and creep rupture. The tensor function theory has be-
come a powerful tool for solving such complex problems.

The present book will provide a survey of some recent advances in the
mathematical modelling of materials behavior under creep conditions. The
mechanical behavior of anisotropic solids requires a suitable mathematical
modelling. The properties of tensor functions with several argumenttensors
constitute a rational basis for a consistent mathematical modelling of com-
plex material behavior.

This monograph presents certain principles, methods, and recent success-
ful applications of tensor functions in creep mechanics. Thus, a proper un-
derstanding of the subject matter requires fundamental knowledge of tensor
algebra and tensor analysis. Therefore, Chapter 2 is devoted to tensor no-
tation, where both symbolic and index notation have been discussed. For
higher-order tensors and for final results in most of the derivations the index
notation provides the reader with more insight.
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The simplest way to formulate the basic equations of continuum mechan-
ics and the constitutive or evolutional equations of various materials is to
restrict ourselves to rectangular cartesian coordinates. However, solving par-
ticular problems, for instance in Chapter 5, it may be preferable to work in
terms of more suitable coordinate systems and their associated bases. There-
fore, Chapter 2 is also concerned with the standard techniques of tensor anal-
ysis in general coordinate systems.

Creep mechanics is a part of continuum mechanics, like elasticity or plas-
ticity. Therefore, some basic equations of continuum mechanics are put to-
gether in Chapter 3. These equations can apply equally to all materials and
they are insufficient to describe the mechanical behavior of any particular
material. Thus, we need additional equations characterizing the individual
material and its reaction under creep condition according to Chapter 4, which
is subdivided into three parts: the primary, the secondary, and the tertiary
creep behavior of isotropic and anisotropic materials.

The creep behavior of a thick-walled tube subjected to internal pressure
is discussed in Chapter 5. The tube is partly plastic and partly elastic at time
zero. The investigation is based upon the usual assumptions of incompress-
ibility and zero axial creep. The creep deformations are considered to be of
such magnitude that the use of finite-strain theory is necessary. The inner
and outer radius, the stress distributions as functions of time, and the creep-
failure time are calculated.

In Chapter 6 the creep potentials hypothesis is compared with the tensor
function theory. It has been shown that the former theory is compatible with
the latter, if the material is isotropic, and if additional conditions are fulfilled.

However, for anisotropic materials the creep potential hypothesis only
furnishes restricted forms of constitutive equations, even if a general creep
potential has been assumed. Consequently, the classical normality rule is
modified for anisotropic solids based upon the representation theory of tensor
functions.

The existance of a creep potential in the tertiary creep phase is not justi-
fied. This phase is accompanied by the formation of microscopic cracks on
the grain boundaries, so that damage accumulation occurs. In some cases
voids are caused by a given stress history and, therefore, they are distributed
anisotropically among the grain boundaries.

Because of this microscopic nature, damage has an anisotropic char-
acter even if the material was originally isotropic. The fissure orientation
and length cause anisotropic macroscopic behavior. Therefore, damage in an
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isotropic or anisotropic material that is in a state of multiaxial stress can only
be described in a tensorial form.

Thus, the mechanical behavior will be anisotropic, and it is therefore
necessary to investigate this kind of anisotropy by introducing appropiately
defined anisotropic damage tensors into constitutive equations.

In Sections 4.3.2 and 6.4 constitutive equations involving damage and
initial ansisotropy have been formulated in detail. Chapter 7 is concerned
with the construction of damage tensors or tensors of continuity (Section
7.1). Then, the multiaxial state of stress in a damaged continuum is analized
in more detail (Section 7.2). Finally, some damage effective stress concepts
are also discussed (Section 7.3).

For engineering applications it is very important to generalize uniaxial
constitutive laws to multiaxial states of stress. This can be achieved by ap-
plying interpolation methods for tensor functions developed in Chapter 8.

In foregoing Chapters, the creep behavior of solids has been described.
Chapters 9 and 10 are devoted to fluids, where linear and nonlinear fluids and
memory fluids are taken into consideration.

Many materials exihibt both features of elastic solids and characteristics
of viscous fluids. Such materials are called viscoelastic, to which the ex-
tended Chapter 11 has been devoted. Several rheological models (both linear
and nonlinear) are discussed in more detail, and their creep or relaxation
behavior has been compared with experimental data.

In contrast to fluids (Chapter 9) viscoplastic materials can sustain a shear
stress even at rest. They begin to flow with viscous stress after a yield con-
dition has been satisfied. Chapter 12 is subdivided in linear and nonlinear
theory of viscoplasticity. As an example, viscoplastic behavior of metals in
comparison with experimental results is discussed.

Together with my coworkers I have carried out own experiments to ex-
amine the validity of the mathematical modelling. Furthermore, an overview
of some important experimental investigations in creep mechanics of other
scientists has been provided in Chapter 13.

The mathematical backround required has been kept to a minimum and
supplemented by explanations where it has been necessary to introduce spe-
cial topics, for instance, concerning tensor algebra and tensor analysis or
representation of tensor functions. Furthermore, two appendices have been
included to provide sufficient foundations of DIRAC and HEVISIDE func-
tions or of LAPLACE transformations, since these special techniques play a
fundamental role in creep mechanics.



XII Preface to the First Edition

In many examples or for many graphically representations the MAPLE

software has been utilized. MAPLE or MATHEMATICA and many other
symbolic manipulation codes are interactive computer programs, which are
called computer algebra systems. They allow their users to compute not only
with numbers, but also with symbols, formulae, equations, and so on. Many
mathematical operations such as differentiation, integration, LAPLACE trans-
formations, inversion of matrices with symbolic entries, etc. etc. can be car-
ried out with great speed and exactness of the results. Computer algebra sys-
tems are powerful tools for mathematicians, physicists, engineers, etc., and
are indispensable in scientific research and education.

I would like to express my appreciation to my Assistant, Dipl.-Ing. Uwe
NAVRATH, for preparing the camera-ready manuscript in LATEX. His compe-
tence and skill have been indispensable for me.

Thanks are due to Springer-Verlag, in particular to Dr. Dieter MERKLE

and Dr. Hubertus v. RIEDESEL for their readiness to publish this monograph
and for their agreeable cooperation.

Aachen, May 2002 Josef Betten
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1 Introduction

The increasing technical importance of high-temperature equipment, i.e.,
the urgent needs of designers and computing engineers dealing with high-
temperature machinery, jet engines, and high-velocity aeronautics have re-
sulted in a huge and rapidly growing literature in creep mechanics .

There is a tradition to organize IUTAM-Symposia on Creep in Structures
every ten years: the first one was organized by N.J. HOFF in Stanford (1960),
the second one by J. HULT in Göteburg (1970), the third one by A.R.S.
PONTER and D.R. HAYHURST in Leicester (1980), the fourth Symposium
by M. ŻYCZKOWSKI in Cracow (1990) and, finally, the fifth Symposium
was organized by S. MURAKAMI and N. OHNO in Nagoya (2000).

Other events are, for instance, the traditional Conferences on Creep and
Fracture of Engineering Materials and Structures organized by B. WILSHIRE

and D.R.J. OWEN in Swansea (1981, 1984 etc. every three years).
The aim of such conferences is to bring together experimentalists, the-

oreticians, and engineers interested in various features of creep mechanics,
in order to permit an interdisciplinary exchange of understanding, experi-
ence, and methods. Therefore, such conferences essentially contribute to the
progress in creep mechanics . The advances have been reviewed in the Con-
ference Proceedings from several points of view: mathematical, mechanical,
metallurgical, etc..

Over the last two decades much effort has been devoted to the elabora-
tion of phenomenological theories describing the relation between force and
deformation in bodies of materials which obey neither the linear laws of the
classical theories of elasticity nor the hydrodynamics of viscous fluids. Such
problems will play a central role for mathematticans, physicits, and engineers
in the future (ASTRARITA, 1979).

Material laws and constitutive theories are the fundamental bases for
describing the mechanical behavior of materials under multiaxial states of
stress involving creep and creep rupture. The tensor function theory has be-
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come a powerful tool (BETTEN, 1987b; 1987c) for solving such complex
problems.

The mechanical behavior of anisotropic solids (which are materials with
oriented internal structures produced by forming processes and manufac-
turing procedures or induced by permanent deformation) requires a suit-
able mathematical modelling. The properties of tensor functions with sev-
eral argumenttensors constitute a rational basis for a consistent mathemati-
cal modelling of complex material behavior ( BETTEN, 2001a; BOEHLER,
1987; RIVLIN, 1955, 1970; SPENCER, 1971; TRUESDELL and NOLL, 1965;
WANG, 1971 ).

In creep mechanics one can differentiate between three stages: the pri-
mary, secondary, and tertiary creep stage (Chapter 4). These terms corre-
spond to a decreasing, constant, and increasing creep strain rate, respectively,
and were introduced by ANDRADE (1910).

In order to describe the creep behavior of metals in the primary stage
tensorial nonlinear constitutive equations involving the strain hardening hy-
pothesis are proposed by BETTEN et al.(1989). Based upon these general re-
lations, the primary creep behavior of a thinwalled circular cylindrical shell
subjected to internal pressure is also analysed by BETTEN et al. (1989). The
creep buckling of cylindrical shells subjected to internal pressure and axial
compression was investigated by BETTEN and BUTTERS (1990) by consid-
ering tensorial nonlinearities and anisotropic primary creep . The problem
of creep buckling of cylindrical shells have earlier been discussed, for in-
stance, by MURAKAMI and TANAKA (1976), OBRECHT (1977) or HAYMAN

(1980).
Based upon a creep velocity potential JAKOWLUK and MIELESZKO

(1983) formulate constitutive equations of the primary creep stage in com-
parison with experimental data on FeMnAl steel.

In Chapter 4, the secondary creep stage of isotropic and anisotropic
solids in a state of multiaxial stress will be discussed. Creep deforma-
tions of metals usually remain unaffected if hydrostatic pressure is super-
imposed. In order to describe the secondary creep behavior of isotropic ma-
terials some authors use a creep potential (BETTEN, 1981a; JAKOWLUK and
MIELESZKO, 1985; RABOTNOV, 1969), which is a scalar-valued function of
CAUCHY’s stress tensor . One can show that the creep potential theory is
compatible with the tensor function theory provided the material is isotropic
and additional conditions are fulfilled (BETTEN, 1985). However, the creep
potential hypothesis only furnishes restricted forms of constitutive equations
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and, therefore, has only limited justification if the material is anisotropic , as
has been discussed in Chapter 6.

The tertiary creep phase is also considered in Chapter 4. In this phase, the
creep process is accompanied by the formation of microscopic cracks on the
grain boundaries, so that damage accumulation occurs. In some cases voids
are caused by a given stress history and, therefore, they are distributed an-
isotropically amongst the grain boundaries. Thus, the mechanical behavior
will be anisotropic and it is therefore necessary to investigate this kind of
anisotropy by introducing appropiately defined anisotropic damage tensors
into constitutive equations. Damage tensors have been constructed, for in-
stance, by BETTEN (1981b; 1983b) or by MURAKAMI and OHNO (1981). A
detailed survey of several damage variables is carried out in Chapter 7.

Problems of creep damage have been investigated by many authors. Very
extensive surveys into recent advances in damage mechanics are given by
BODNER and HASHIN (1986), KRAJCINOVIC (1996) and KRAJCINOVIC

and LEMAITRE (1987), for instance. Further contributions to the theory
of Continuum Damage Mechanics should be mentioned in the literature,
for example, AL-GADHIB et al (2000), BETTEN (1983b; 1986a; 1992),
CHABOCHE (1984; 1999), CHRZANOWSKI (1976), HAYAKAWA and MU-
RAKAMI (1998), JAKOWLUK (1993), KRAJCINOVIC (1983), LEMAITRE

(1992; 1996), LEMAITRE and CHABOCHE (1990), LITEWKA and HULT

(1989), LITEWKA and MORZÝNSKA (1989), MURAKAMI (1983; 1987),
MURAKAMI and KAMIYA (1997), MURAKAMI and OHNO (1981), MU-
RAKAMI and SAWCZUK (1981), MURAKAMI, SANOMURA and SAITOH

(1986), MURAKAMI, HAYAKAWA and LIU (1998), ONAT (1986), and SKR-
ZYPEK (1999).

In the past two decades there has been considerable progress and signif-
icant advances made in the development of fundamental concepts of dam-
age mechanics and their application to solve practical engineering problems.
For instance, new concepts have been effectively applied to characterize
creep damage, low and high cycle fatigue damage, creep-fatigue interac-
tion, brittle/elastic damage, ductile/plastic damage, strain softening, strain-
rate-sensitivity damage, impact damage, and other physical phenomena. The
materials include rubbers, concretes, rocks, polymers, composites, ceram-
ics, and metals. This area has attracted the interest of a broad spectrum of
international research scientists in micromechanics, continuum mechanics,
mathematics, materials science, physics, chemistry and numerical analysis.
However, sustained rapid growth in the development of damage mechanics
requires the prompt dissemination of original research results, not only for
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the benefit of the researchers themselves, but also for the practising engineers
who are under continued pressure to incorporate the latest research results
in their design procedures and processing techniques with newly developed
materials.

In this context an excellent book, recently published by SKRZYPEK and
GANCZARSKI (1999), should be recommended. This book is an extensive
and comprehensive survey of one- and three- dimensional damage models
for elastic and inelastic solids. The state–of-the-art is reported by more than
200 references. The book not only provides a rich current source of knowl-
edge, but also describes examples of practical applications, numerical proce-
dures and computer codes. The style of the presentation is systematic, clear,
and concise, and is supported by illustrative diagrams.

Because of the broad applicability and versatility of the concept of dam-
age mechanics, the research results have been published in over thirty En-
glish and non-English technical journals. This multiplicity has imposed an
unnecessary burden on scientists and engineers alike to keep abreast with
the latest development in the subject area. The new International Journal
of Damage Mechanics has been inaugurated to provide an effective mecha-
nism hitherto unavailable to them, which will accelerate the dissemination of
information on damage mechanics not only within the research community
but also between the research laboratory and industrial design department,
and it should promote and contribute to future development of the concept
of damage mechanics.

Furthermore, one should emphasize that special Conferences on Damage
Mechanics has contributed significantly to the development of theories and
experiments in Damage Mechanics, for instance, the Conference on Damage
Mechanics held in Cachan (1981) or the IUTAM-Symposium on Mechanics
of Damage and Fatigue held in Haifa and Tel Aviv (1985), CEEPUS Sum-
mer School on Analysis of Elastomers and Creep and Flow of Glas and
Metals held in Zilina,Slovakia (1996), CISM Advanced School on Appli-
cations of Tensor Functions in Solid Mechanics held in Udine (1984) and
in Bad Honnef (1986), CISM Advanced School on Modelling of Creep and
Damage Processes in Materials and Structures held in Udine (1998), Work-
shop on Modelling of Damage Localisation and Fracture Processes in En-
gineering Materials held in Kazimierz Dolny, Poland(1998), Symposium on
Anisotropic Behaviour of Damaged Materials, held in Kraków-Przegorzaly,
Poland (2002), to name just a few, gave many impulses. The keynote lectures
delivered during the last Symposium in Kraków have been printed in a new
book, edited by SKRZYPEK and GANCZARSKI (2003).



1 Introduction 5

This book provides a survey of various damage models focusing on
the damage response in anisotropic materials as well as damage-induced
anisotropy. There was a lack of such a book that would deal with the
anisotropic damage mechanics with micro-mechanical aspects and thermo-
mechanical coupling involved.

The book is divided into three parts. Part I General description of an-
isotropically damaged materials contains the Chapters 1-4 on: the mathe-
matical bases of tensor functions application to damage anisotropy (J. BET-
TEN, Technical University of Aachen); the multi-scale damage mechanics
(J.-L. CHABOCHE, ONERA, Chatillon, co-author N. CARRÈRE); an alterna-
tive approach to anisotropic damage via critical plane concept (Z. MRÓZ,
IPPT PAN, Warsaw, co-author J. MACIEJEWSKI) and a formal description
of damage induced anisotropy (J. GRABACKI, Cracow University of Tech-
nology, Kraków)

Part II Phenomenological- and micro-mechanical-based approaches to
anisotropic damage and fracture in brittle materials includes Chapters 5-7
on: anisotropic elastic-brittle damage and fracture description based on irre-
versible thermodynamics (J. J. SKRZYPEK, Cracow University of Technol-
ogy, Kraków, co-author H. KUNU-CISKAL); experimental nnd theoretical
investigations of anisotropic damage in concrete and fiber reinforced con-
crete (A. LITEWKA et al., Universidade da Beira Interior, Covilha) and
micro-mechanical damage model in rock-like solids (M. BASISTA, IPPT
PAN, Warsaw).

Part III Damage induced creep anisotropy of metallic materials under
thermo- mechanical loadings consists of Chapters 8-10 on: an extension of
isotropic creep damage theories to anisotropic materials (H. ALTENBACH,
Martin-Luther-University, Halle-Wittenberg); experimental investigations of
creep fracture anisotropy in weld metal at elevated temperature (T. H.
HYDE et al.,University of Nottingham) and non-classical problems of cou-
pled thermo-damage fields (A. GANCZARSKI, Cracow University of Tech-
nology, Kraków),

To summarize the scope of this book as well as to briefly present other
directions of research and future trends the Editors decided to include to the
book additional concluding remarks (M. ZYCZKOWSKI, Cracow University
of Technology, Kraków).

The best way to give a quick overview of some important works in dam-
age mechanics may be in form of a table as has proposed by MURAKAMI

(1987). The following Table 1.1 based upon MURAKAMI’s scheme (1987)
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has been modified by SKRZYPEK and GANCZARSKI (1999) and by BETTEN

(2001b).

Table 1.1: Classification of material damage, microscopic mechanisms and
chararacteristic features

References Microscopic mechanisms
and characteristic features

Elastic-brittle damage

GRABACKI (1994)
KRAJCINOVIC and FONSEKA (1981)
KRAJCINOVIC (1984; 1996)
LEMAITRE and CHABOCHE (1990)
LITEWKA (1985; 1989)
LITEWKA and HULT (1989)
MARIGO (1985)
MURAKAMI and KAMIYA (1997)
NAJAR (1994)

Nucleation and growth of microscopic
cracks caused by elastic deformations.
Change of effective stiffness and
compliance due to the strength reduction
and elastic modulus drop with damage
evolution. (Metals, rocks, concrete,
composites).

Elastic-plastic damage

TVERGAARD (1988)
CHOW and LU (1992)
DRAGON (1985)
LEMAITRE (1985)
MURZEWSKI (1992)
MOU and HAN (1996)
SAANOUNI (1994)
VOYIADJIS and KATTAN (1992)

Nucleation, growth, and coalescence of
microscopic voids caused by the (large)
elastic-plastic deformation. Intersection
of slipbands, decohesion of particles
from the matrix material, cracking of
particles. Void coalescence of shear
bands formation. (Metals, composite,
polymers).

Spall damage

DAVISON et al. (1977; 1978)
GRADY (1982)
JOHNSON (1981)
NEMES (1990)
PERZYNA (1986)

Elastic and elastic-plastic damage due to
impulsive loads. Propagation of shock
plastic waves. Coupling between
nucleation and growth of voids and
stress waves. Coalescence of microcrack
prior to the fragmentation process. Full
separation resulting from macrocrack
propagation through heavily damaged
material.

Fatigue damage

COFFIN (1954)
CHABOCHE (1974)
DUFAILLY and LEMAITRE (1995)
KRAJCINOVIC (1996)
LEMAITRE (1992)
LEMAITRE and CHABOCHE (1990)
MANSON (1979)
NAJAR (1994)
SKOCZEN (1996)

Nucleation and growth of microscopic
transgranular cracks in the vicinity of
surface. High cycle fatigue (number of
cycles to failure larger than 105): effect
of macroscopic plastic strain is
negligible. Very low cycle fatigue
(number of cycles below 10): crack
initiation in the vicinity of surface in the
slip bands in grains prior to the rapid
transgranular mode in the slip planes.

continued on next page
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Table 1.1: Classification of material damage, microscopic mechanisms and
chararacteristic features

References Microscopic mechanisms
and characteristic features

Creep damage

BETTEN (1983b; 1992)
BETTEN et al. (1999)
CHABOCHE (1981; 1988)
H.ALTENBACH et al. (1990; 1997)
HAYHURST and LECKIE (1973)
HAYHURST et al.(1984)
J.ALTENBACH et al. (1997)
KACHANOV (1958)
KOWALESKI (1996a,b,c)
KRAJCINOVIC (1983; 1996)
LECKIE and HAYHURST (1974)
MURAKAMI (1983)
NAUMENKO (1996)
NEEDLEMAN et al. (1995)
QI (1998)
QI and BERTRAM (1997)
RABOTNOV (1969)
STIGH (1985)
TRAMPCZYNSKI et al. (1981)
ZHENG and BETTEN (1996)

Nucleation and growth of microscopic
voids and cracks in metal grains (ductile
transgranular creep damage at low
temperatures), or on intergranular
boundaries (brittle intergranular damage
at high temperatures) mainly due to
grain boundaries sliding and diffusion.

Creep-fatigue damage

CHRZANOWSKI (1976)
DUNNE and HAYHURST (1994)
HELLE and TVERGAARD (1998)
JAKOWLUK (1993)
LEMAITRE and CHABOCHE (1975; 1990)
WANG (1992)

Damage induced by repeated mechanical
and thermal loadings at high
temperature. Coupled creep-cyclic
plasticity damage. Nonlinear interaction
between intergranular voids and
transgranular cracks. Slip bands
formation due to plasticity (low
temperature) combined with microcrack
development due to creep (high
temperature). (Metals, alloy steels,
aluminum alloy, copper).

Irradiation damage

GITTUS (1978)
MURAKAMI and MIZUNO (1992)
TETELMAN and MCEVILY (1970)

Damage caused by irradiation of neutron
particles and α rays. Knock-on of atoms,
nucleation of voids and bubbles,
swelling. Ductile behavior of creep
under irradiation and brittle behavior on
post-irradiation creep.

continued on next page
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Table 1.1: Classification of material damage, microscopic mechanisms and
chararacteristic features

References Microscopic mechanisms
and characteristic features

Anisotropic damage

BETTEN (1992)
CHABOCHE (1993)
CHABOCHE et al. (1995)
CHEN and CHOW (1995)
CHOW and WANG (1987a,b)
LADEVEZE (1990)
LIS (1992)
LITEWKA (1985)
MATZENMILLER and SACKMANN (1994)
MURAKAMI and KAMIYA (1997)
SIDOROFF (1981)
VOYIADJIS and VENSON (1995)
ZHENG and BETTEN (1996)

Damage induced anisotropy of solids or
damage anisotropic materials
(composites). Unilateral damage
(opening/closure effect). Anisotropic
elastic-brittle damage. Nonproportional
and cyclic loadings. Effective state
variables and damage effect tensor.
(Concrete, anisotropic ceramic
composites).

Thermo-creep damage

GANCZARSKI and SKRZYPEK
(1995; 1997)
KAVIANY (1995)
SAANOUNI et al. (1994)
SKRZYPEK and GANCZARSKI (1998)

Thermo-elastic-viscoplastic damage
(fully coupled approach). Damage effect
on heat flux in solids. Change of
temperature gradient due to damage
evolution.

Further reviews should be mentioned, for instance, the extended re-
ports by ZHENG (1994), KRAJCINOVIC (1984), MURAKAMI (1987), ZY-
CZKOWSKI (1988; 1996) or the comprehensive surveys in the monographs
and textbooks published by KRAJCINOVIC and LEMAITRE (1987), KA-
CHANOV (1986), KRAJCINOVIC (1996), LEMAITRE and CHABOCHE (1990),
LEMAITRE (1992), SKRZYPEK and GANCZARSKI (1999), to name but a
few.

The different types of material damage listed in Table 1.1 have (more
or less) a significant influence on the mechanical properties of the material,
e.g., on the elasticity modulus, the elastic stiffness, the velocities of elastic
waves, the plastic properties, the strength of materials, the fatigue strength,
the creep rupture time, etc.. Thus, damage mechanics and their application
play a central role in solving practical engineering problems.

Before formulating some basic equations of continuum mechanics and
constitutive equations for materials under multi-axial states of stress and
creep conditions, a short outline of tensor algebra should be given in the
next chapter.



2 Tensor Notation

It will be convenient in this monograph to use the compact notation often
referred to as indicial or index notation . It allows a strong reduction in the
number of terms in an equation and is commonly used in the current litera-
ture when stress, strain, and constitutive equations are discussed. Therefore,
a basic knowledge of the index notation is helpful in studying continuum
mechanics, especially constitutive modelling of materials. With such a no-
tation, the various stress-strain relationships for materials under multi-axial
states of stress can be expressed in a compact form. Thus, greater attention
can be paid to physical principles rather than to the equations themselves.
A short outline of this notation should therefore be given in the following.
In comparison, some expressions or equations shall also be written in sym-
bolic or matrix notation , employing whichever is more convenient for the
derivation or analysis at hand, but taking care to establish the interrelation-
ship between the two distinct notations.

2.1 Cartesian Tensors

We consider vectors and tensors in three-dimensional EUCLIDean space.
For simplicity, rectangular Cartesian coordinates xi, i = 1, 2, 3, are used
throughout. Results may, if desired, be expressed in terms of curvlinear coor-
dinate systems by standard techniques of tensor analysis (BETTEN, 1987c),
as has been pointed out in Section 2.2 and used in Chapter 5.

In a rectangular Cartesian coordinate system, a vector V can be decom-
posed in the following three components

V = (V1, V2, V3) = V1e1 + V2e2 + V3e3 , (2.1)

where e1, e2, e3 are unit base vectors:

ei · ej = δij . (2.2)
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In 2.2 the Symbol δij is known as KRONECKER’s delta. Thus, the set of unit
vectors, {ei}, constitutes an orthonormal basis .

A very useful notational device in the manipulation of matrix, vector,
and tensor expressions is the summation convention introduced by EINSTEIN

(1916):

Whenever an index occurs twice in the same term, summation over
the values 1, 2, and 3 of that index is automatically assumed, and the
summation sign is omitted.

Thus, the decomposition (2.1) can be written in the more compact form

V = Viei ≡ Vkek . (2.1*)

The repeated index i or k in (2.1*) is often called summation index or dummy
index because the choice of the letter for this index is immaterial. However,
we have to notice that an index must not appear more than twice in the same
term of an expression or equation. Otherwise, there is a mistake. An expres-
sion such as AijkBkk would be meaningless.

Consider a sum in which one of the repeated indices is on the KRO-
NECKER delta, for example,

δikAij = δ1kA1j + δ2kA2j + δ3kA3j .

Only one term in this sum does not vanish, namely the term in which
i = k = 1, 2, 3. Consequently, the sum reduces to

δikAij = Akj .

A similar example is: δijVj = Vi. Notice that the summation, involving one
index of the KRONECKER delta and one of another factor, has the effect of
substituting the free index of the delta for the repeated index of the other
factor. For this reason the KRONECKER delta could be called substitution
tensor (BETTEN, 1987c).

Another example of the summation convention is the scalar product (dot
product, inner product) of two vectors U and V . It can be written as

U · V = U1V1 + U2V2 + U3V3 ≡ UkVk . (2.3)

Note that the expression

(Aii)
2 ≡ (A11 +A22 +A33)

2
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is different from the sum

A2
ii ≡ A2

11 +A2
22 +A2

33 ,

where the first one is the square of the sum Aii, while the second one is the
sum of the squares.

The vector product (cross product) has the following form:

C = A × B =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
≡ εijkeiAjBk . (2.4a)

Its components are given by

Ci = εijkAjBk . (2.4b)

In (2.4a,b) the alternating symbol εijk (also known as permutation symbol
or third-order alternating tensor) is used. It is defined as:

εijk

⎧⎪⎨
⎪⎩

= +1 if ijk represents an even permutation of 123 ;

= 0 if any two of ijk indices are equal ;

= −1 if ijk represents an odd permutation of 123 .

(2.5)

It follows from this definition that εijk has the symmetry properties

εijk = εjki = εkij = −εikj = −εjik = −εkji . (2.6)

The triple scalar product can also be calculated by using the alternating
symbol:

(A × B) · C =

∣∣∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
= εijkAiBjCk . (2.7)

The following relation between the KRONECKER delta and the alternat-
ing tensor is very important and useful (BETTEN, 1987c):

εijkεpqr =

∣∣∣∣∣∣∣∣∣
δip δiq δir

δjp δjq δjr

δkp δkq δkr

∣∣∣∣∣∣∣∣∣
≡ 3! δi[p]δj[q]δk[r] , (2.8)
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where on the right-hand side the operation of alternation is used. This pro-
cess is indicated by placing square brackets around those indices to which
it applies, that is, the three indices pqr are permutated in all possible ways.
Thus, we obtain 3! terms. The terms corresponding to even permutations are
given a plus sign, those which correspond to odd permutations a minus sign,
and they are then added and divided by 3!.

From (2.8) we immediately obtain the contraction

εijkεpqk = δipδjq − δiqδjp , (2.9a)

for instance, i.e., the tensor of rank six in (2.8) is reduced to the fourth-order
tensor (2.9a). Other contractions are

εpqiεpqj = 2δij and εpqrεpqr = 6 , (2.9b,c)

for instance.
Now let us consider a coordinate transformation, i.e., we introduce a new

rectangular right-handed Cartesian coordinate system and new base vectors
e∗

i , i = 1, 2, 3. The new system may be regarded as having been derived
from the old by a rigid rotation of the triad of coordinate axes about the same
origin. Let a vector V have components Vi in the original coordinate system
and components V ∗

i in the new system. Thus, one can write:

V = Viei = V ∗
i e∗

i . (2.10)

We denote by aij the cosine of the angle between e∗
i and ej , so that

aij ≡ cos(e∗
i , ej) = e∗

i · ej , (2.11)

i.e., aij are the direction cosines of e∗
i relative to the first coordinate system,

or, equivalently, aij are the components of the new base vectors e∗
i , in the

first system. Thus
e∗

i = aijej . (2.12)

It is geometrically evident that the nine quantities aij are not independent.
Since e∗

i are mutually perpendicular unit vectors,

e∗
i · e∗

j = δij , (2.13)

we arrive at

e∗
i · e∗

j = aipep · ajrer = aipajrep · er = aipajrδpr = aipajp
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by considering (2.2) and (2.12). Hence

aipajp = δij or in matrix notation aat = δ , (2.14a)

where at is the transpose of the matrix a. Because of the symmetry δij = δji,
the result (2.14a) represents a set of six relations between the nine quantities
aij . Similarly to (2.14a), we find:

apiapj = δij or in matrix notation ata = δ . (2.14b)

It follows immediately from (2.14a,b) that |aij | = ±1 and, furthermore,
that the transpose at is identical to the inverse a−1. Thus, the matrix a is
orthogonal, and the reciprocal relation to (2.12) is

ei = ajie
∗
j . (2.15)

Inserting (2.15) or (2.12) into (2.10), we arrive at

V ∗
i = aijVj or Vi = ajiV

∗
j , (2.16a,b)

respectively. In particular, if V is the position vector x of the point P relative
to the origin, then

x∗i = aijxj and xi = ajix
∗
j , (2.17a,b)

where x∗i and xi are the coordinates of the point P in the new and original
coordinate systerns, respectively.

Now, let us consider a vector function

Y = f(X) or in index notation: Yi = fi(Xp) , (2.18a,b)

where X is the argument vector which is transformed to another vector Y .
The simplest form is a linear transformation

Yi = TijXj , (2.19)

where Tij are the cartesian components of a second-order tensor T , also
called second-rank tensor , i.e., a second-order tensor can be interpreted as a
linear operator which transforms a vector X into an image vector Y .

In extension of the law (2.16a,b), the components of a second-order ten-
sor T transform according to the rule

T ∗
ij = aipajqTpq or Tij = apiaqjT

∗
pq , (2.20a,b)
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which can be expressed in matrix notation:

T ∗ = aTat or T = atT ∗a . (2.21a,b)

Second-rank tensors play a central role in continuum mechanics, for in-
stance, strain and stress tensors are second-order tensors. It is sometimes
useful in continuum mechanics, especially in the theory of plasticity or in
creep mechanics, to decompose a tensor into the sum of its deviator and a
spherical tensor as follows:

Tij = T ′
ij + Tkkδij/3 . (2.22)

For instance, the stress deviator

σ′ij := σij − σkkδij/3 (2.23)

is responsible for the change of shape (distortion ), while the hydrostatic
stress σkkδij/3 produces volume change without change of shape in an
isotropic continuum, i.e., in a material with the same material properties in
all directions. Clearly, a uniform all-around pressure should merely decrease
the volume of a sphere of material with the same strength in all directions.
However, if the sphere were weaker in one direction, that diameter would be
changed more than others. Thus, hydrostatic pressure can produce a change
of shape in anisotropic materials.

The deviator (2.23) is often called a traceless tensor , since its trace
trσ′ ≡ σ′kk is identical to zero.

A second-order tensor has three irreducible invariants

J1 ≡ δijTji = Tjj ≡ Tkk , (2.24a)

J2 ≡ −Ti[i]Tj[j] = (TijTji − TiiTjj)/2 , (2.24b)

J3 ≡ Ti[i]Tj[j]Tk[k] = det(Tij) ≡ |Tij | , (2.24c)

which are scalar quantities appearing in the characteristic equation

det(λδij − Tij) = λ3 − J1λ
2 − J2λ− J3 = 0 . (2.25)

In (2.24b,c) the operation of alternation is used and indicated by placing
square brackets around those indices to which it applies. This process is al-
ready illustrated in the context with (2.8).

We read from (2.24a,b,c): The first (linear) invariant J1 is the trace of T ,
the second (quadratic) invariant J2 is defined as the negative sum of the three
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principal minors of order 2, while the third (cubic) invariant is given by the
determinant of the tensor. A deviator has only two non-vanishing invariants:

J ′2 = T ′
ijT

′
ji/2 , J ′3 = det(T ′

ij) . (2.26a,b)

Remark: Because of the definition (2.24b) the second invariant (2.26a) of
the deviator is always positive. Therefore, J2 is defined as the negative sum
of the principal minors in this text.

The invariants (2.24a,b,c) can be expressed through the principal values
TI , TII , TIII of the Tensor T , i.e., the elementary symmetric functions of
the three arguments TI , . . . , TIII are related to the irreducible invariants
(2.24a,b,c) as follows:

TI + TII + TIII = J1 , (2.27a)

TITII + TIITIII + TIIITI = −J2 , (2.27b)

TITIITIII = J3 . (2.27c)

After some manipulation one can arrive from (2.22), (2.24), and (2.26) at
the relations

J ′2 = J2 +
1

3
J2

1 , J ′3 = J3 +
1

3
J1J2 +

2

27
J3

1 . (2.28a,b)

In the theory of invariants the HAMILTON-CAYLEY theorem plays an
important role. It states that

T
(3)
ij − J1T

(2)
ij − J2Tij − J3δij = 0ij , (2.29)

where T (3)
ij ≡ TipTprTrj and T (2)

ij ≡ TipTpj are, respectively, the third and
the second power of the tensor T . Thus, every second-order tensor (linear
operator ) satisfies its own characteristic equation (2.25). BETTEN (1987c;
2001c) has proposed extended characteristic polynomials in order to find
irreducible invariants for fourth-order tensors (Section 4.3.2).

By analogy with (2.19), a fourth-order tensor A, having 81 components
Aijkl, can be interpreted as a linear operator:

Yij = AijklXkl (2.30)

where Xkl and Yij are the cartesian components of the second-rank tensors
X and Y . For example, the constitutive equation

σij = Eijklεkl (2.31)
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describes the mechanical behavior of an anisotropic linear-elastic material,
where σij are the components of CAUCHY’s stress tensor, εij are the compo-
nents of the infinitesimal strain tensor, and Eijkl are the components (elatic
constants) of the fourth-order material tensor characterising the anisotropy
of the material.

2.2 General Bases

In the foregoing Section we have introduced an orthonormal basis {ei} char-
acterized by (2.2), i.e., we have restricted ourselves to rectangular cartesian
coordinates. This is the simplest way to formulate the basic equations of
continuum mechanics and the constitutive or evolutional equations of var-
ious materials. However, solving particular problems, it may be preferable
to work in terms of more suitable coordinate systems and their associated
bases.

In particular, cylindrical polar coordinates are useful for configurations
which are symmetric about an axis, e.g., thick-walled tubes in Chapter 5. An-
other example is the system of spherical polar coordinates, which should be
preferred when there is some symmetry about a point. Thus, it is useful to ex-
press the basic equations of continuum mechanics and the constitutive laws
of several materials in terms of general (most curvlinear) coordinates. Thus,
in the following some fundamentals of curvlinear tensor calculus should be
discussed.

Let
xi = xi(ξ

p) ⇔ ξi = ξi(xp) (2.32)

be an admissible transformation of coordinates with JACOBIans

J ≡ |∂xi/∂ξ
j | and K ≡ |∂ξi/∂xj | ,

which does not vanish at any point of the considered region, then JK = 1.
Further important properties of admissible coordinate transformations are
discussed, for instance, by SOKOLNIKOFF (1964) and BETTEN (1974) in
more detail.

The coordinates xi in (2.32) referred to a right-handed orthogonal carte-
sian system of axes define a three-dimensional EUCLIDean space , while
the ξi are curvlinear coordinates . Because of the admissible transforma-
tion (2.32), each set of values of xi corresponds a unique set of values of
ξi, and vice versa. The values ξi therefore determine points in the defined
three-dimensional EUCLIDean space. Hence we may represent our space by
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the variables ξi instead by the cartesian system xi, but the space remains, of
course, EUCLIDean.

In this Section, we consider symbols characterized by one or several in-
dices which may be either subscripts or superscripts, such as Ai, Ai, Bij ,
Bij , Bi

j , etc., where indices as superscripts are not taken as powers. Some-
times it is necessary to indicate the order of the indices when subscripts and
superscripts occur together. In that case, for example, we write Ai

•j where
the dot before j indicates that j is the second index while i is the first one.

As explained later, the values Ai and Ai can be considered as the co-
variant and the contravariant components , respectively, of the vector A.
However, the position of the indices on the ”kernel” letters x and ξ in the
transformation of coordinates (2.32) has nothing to do with covariance or
contravariance and is therefore immaterial. In this context we refer to the
following remarks of other authors:

❒ FUNG (1965, p38): The differential dθi is a contravariant vec-
tor, the set of variables θi itself does not transform like a vector.
Hence, in this instance, the position of the index of θi must be
regarded as without significance.

❒ GREEN/ZERNA (1968, pp5/6): The differentials dθi transform
according to the law for contravariant tensors, so that the posi-
tion of the upper index is justified. The variables θi themselves
are in general neither contravariant nor covariant and the position
of their index must be recognized as an exception. In future the in-
dex in non-tensors will be placed either above or below according
to convenience. For example, we shall use either θi or θi.

❒ GREEN/ADKINS (1970, p1): The position of the index on coordi-
nates xi, yi and θi is immaterial and it is convenient to use either
upper or lower indices. The differential involving general curvi-
linear coordinates will always be denoted by dθi since dθi has a
different meaning and is not a differential. For rectangular coor-
dinates, however, we use either dxi, dxi for differentials, since
dxi = dxi.

❒ MALVERN (1969, p603): Warning: Although the differentials
dxm are tensor components, the curvilinear coordinates xm are
not, since the coordinate transformations are general functional
transformations and not the linear homogeneous transformations
required for tensor components.

According to the above remarks, it is immaterial, if we write ξi or
ξi. Since the differentials dξi transform corresponding to the law for con-
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travariant tensors, the position of the upper index, ξi, is justified. Thus, the
differential dT of a stationary scalar field T =T (ξi) should be written as
dT = (∂T/∂ξi)dξi.

The position of a point P can be determined by xi or, alternatively, by ξi

as illustrated in Fig.2.1.

P

3x

2x

1x

e1

e2

e3

R
g1

g2

g3

�
�

�
�

�
�

Fig. 2.1 Orthonormal and covariant base vectors

The position vector R of any point P (xi) can be decomposed in the form

R = xkek . (2.33)

Since the orthonormal base vectors ei are independent of the position of the
point P (xi), we deduce from (2.33) that

∂R/∂xi = ek(∂xk/∂xi) = ekδki = ei , (2.34)

i.e., the orthonormal base vectors can be expressed by partial derivatives of
the position vector R with respect to the rectangular cartesian coordinates
xi.

Analogous to (2.34), we find

∂R
/
∂ξi = (∂R /∂xp )

(
∂xp

/
∂ξi
)

= ep

(
∂xp

/
∂ξi
)

= gi , (2.35)

i.e., the geometrical meaning of the vector ∂R/∂ξi is simple: it is a base vec-
tor directed tangentially to the ξi-coordinate curve. From (2.35) we observe
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that the covariant base vectors gi are no longer independent of the coordi-
nates ξi, in contrast to the orthonormal base vectors. Furthermore, they need
not be mutually perpendicular or of unit length.

The inverse form to (2.35) is given by

ei ≡ ∂R/∂xi = (∂R/∂ξp) (∂ξp/∂xi) = gp (∂ξp/∂xi) . (2.36)

Besides the covariant base vectors defined in (2.35), (2.36), a set of con-
travariant base vectors gi is obtained from the constant unit vectors ei ≡ ei

as follows
gi =

(
∂ξi
/
∂xp

)
ep ⇔ ei = (∂xi/∂ξ

p) gp . (2.37)

This set of contravariant base vectors, gi, are often called the dual or recip-
rocal basis of the covariant basis gi, and they are denoted by superscripts.
In the special case of rectangular cartesian coordinates, the covariant and
contravariant base vectors are identical (ei ≡ ei).

From (2.35), (2.37) and considering the orthonormal condition we arrive
at the relation

gi · gj = δij ≡ δji . (2.38)

between the two bases. For example, the contravariant base vector g1 is or-
thogonal to the two covariant vectors g2 and g3. Since these vectors directed
tangentially to the ξ2- and ξ3-curves, the contravariant base vector g1 is per-
pendicular to the ξ1-surface (Fig.2.2).

�
�

g1

g2

g3 �
�

-surface�
�

-curve

-surface

e1

e2

e3 �
�

�
�

�
�

�
�

-curve

�
�

-surface

�
�

-curve

xi=xi
�( )

covariant basisorthonormal basis

ei ej = �ij
gi gj = gij

p

Fig. 2.2 Coordinate surfaces and base vectors
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In addition to the relation (2.38) one can form the following scalar prod-
ucts:

gi · gj ≡ gij , gi · gj ≡ gij . (2.39a,b)

These quantities, gij and gij , are called the covariant and contravariant met-
ric tensors , respectively, and, because of (2.38), the KRONECKER tensor
δij can be interpreted as a mixed metric tensor . The metric tensors (2.38),
(2.39a,b) are symmetric since the scalar products of two vectors are commu-
tative.

Inserting the base vectors (2.35) or (2.37) into (2.39a,b), respectively, we
can express the covariant or contravariant metric tensors as

gij =
(
∂xk/∂ξ

i
)(
∂xk/∂ξ

j
)

gij =
(
∂ξi/∂xk

)(
∂ξj/∂xk

)
,

(2.40a,b)
from which we immediately arrive at the reciprocal relation

gikg
jk = δji . (2.41)

This result represents a system of linear equations from which the con-
travariant metric tensor can be calculated accordingly

gij = Gij/g with Gij ≡ (−1)i+jU(gij) , (2.42)

when the covariant metric tensor is given, where Gij is the cofactor of the
element gij in the determinant g ≡ |gij |. From the reciprocal relation (2.41)
we deduce the determinant of the contravariant metric tensor as |gij | = 1/g.

The magnitudes of the covariant and contravariant base vectors follow
directly from (2.39a,b):

|gi| =
√

gi · g(i) =
√
gi(i) ,

∣∣gi
∣∣ =√gi · g(i) =

√
gi(i) , (2.43a,b)

where the index is not summed, as indicated by parentheses.
An increment dR of the position vector R in Fig.2.1 can be decomposed

in the following ways

dR = ei dxi = gi dξ
i = gi dξi . (2.44)

Forming the scalar product
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gj · ei dxi = gj · gi dξ
i = δji dξ

i = dξj ,

and then inserting (2.37), we find the transformation

dξj =
(
∂ξj /∂xp

)
ep · ei dxi =

(
∂ξj /∂xp

)
dxp

or
dξi =

(
∂ξi /∂xp

)
dxp , (2.45a)

i.e., the dξi in (2.44) transforms contravariant (matrix ∂ξi/∂xp) and can be
identified with the usual total differential of the variable ξi, so that the use of
upper index is justified.

In a similar way one can find the covariant transformation

dξi =
(
∂xp

/
∂ξi
)
dxp , (2.45b)

which essentially differs from (2.45a) and cannot be interpreted as the total
differential.

Using (2.44) with (2.39a,b) the square of the line element ds can be writ-
ten in the form

ds2 = dR · dR = dxk dxk = gij dξ
i dξj = gij dξi dξj . (2.46)

Hence, the reason for the term metric tensor gij is account for. In addition
to (2.46), the mixed form ds2 = dξkdξ

k is also possible. This form follows
immediately from (2.46) because of the rule of raising (gijAj = Ai) and
lowering (gijAj = Ai) the indices.

Considering the decompositions of two vectors

A = Akgk = Akg
k , B = Bkgk = Bkg

k , (2.47a,b)

we then can represent the scalar product in the following forms

A · B = gijA
iBj = AkBk = AkB

k = gijAiBj , (2.48)

from which we can determine the length of a vector B ≡ A as

|A| ≡ A =
√
gijAiAj =

√
AkAk =

√
AkAk =

√
gijAiAj . (2.49)

Alternatively, the scalar product (2.48) can be expressed byAB cosα, so that
the angle between two vectors can be calculated from the following formula:

cosα = gijA
iBj /(AB) . (2.50)
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In particular, the angle α12 between the ξ1-curve and ξ2-curve, i.e., between
the covariant base vectors g1 and g2 in Fig.2.2 can be determined in the
following way

g1 · g2︸ ︷︷ ︸ ≡ g12
|g1||g2| cosα12

}
⇒ cosα12 =

g12√
g11g12

, (2.51a)

where the relations (2.39a) and (2.43a) have been used. Cyclic permutations
yield

cosα23 =
g23√
g22g33

and cosα31 =
g31√
g33g11

. (2.51b,c)

From the result (2.51a,b,c) we deduce the following theorem:

A necessary and sufficient condition that a given curvlinear co-
ordinate system be orthogonal is that the gij vanish for i �= j at
every point in a region considered, i.e., the matrix (gij) has the
diagonal form.

According to (2.47a), there are two decompositions of a vector A: The
contravariant components Ak are the components of A in the directions of
the covariant base vectors gk, while the covariant components Ak are the
components of A corresponding with the contravariant base vectors gk, as
illustrated in Fig.2.3.

g gA1

g1

g1A

A

g g2

g2A

gA2

11

1

2

2

2

Fig. 2.3 Decomposition of a vector in covariant and contravariant components

A relation between the covariant and contravariant components, Ai and
Ai, can be achieved by forming the scalar products of (2.47a), respectively,
with the base vectors gi and gi according to
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Ai = gikA
k and Ai = gikAk . (2.52a,b)

These results express the rule of lowering and raising the indices , respec-
tively. This operation can also be applied to the base vectors in order to find
relations between the covariant and contravariant bases :

gi = gikg
k and gi = gikgk . (2.53a,b)

Comparing the decompositions (2.47a) with the decompositions

A = Āke
k ≡ Ākek (2.54)

with respect to the orthonormal basis ek≡ ek, and considering (2.36), (2.37),
one arrives at the folllowing relations between the covariant or contravariant
components, Ai or Ai, and the cartesian components Āk ≡ Āk of the vector
A:

Ai =
(
∂xp

/
∂ξi
)
Āp , Ai =

(
∂ξi /∂xp

)
Āp . (2.55a,b)

We see in (2.55a,b) the same transformation matrices (∂xp/∂ξ
i) and

(∂ξi/∂xp), respectively, as in (2.35) and (2.37).
In the tensor analysis the Nabla operator ∇, sometimes called del op-

erator , plays a fundamental role. It is a differential operator, and can be
decomposed with respect to the orthonormal basis:

∇ = ei∇i ≡ ei
∂

∂xi
. (2.56a)

Substituting ei ≡ ei in (2.56a) by (2.37), and utilizing the chain rule

∂

∂xi
=
∂ξp

∂xi

∂

∂ξp
,

we find the decomposition of the Nabla operator with respect to the con-
travariant basis:

∇ = gk ∂

∂ξk
. (2.56b)

The divergence of a vector field A is defined as the scalar product of the
Nabla operator (2.56b) and the vector (2.47a):
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div A = ∇ · A = ∂Ai/∂ξi +AiΓ j
.ij ≡ Ai|i . (2.57)

The functions T k
.ij in (2.57) are called the CHRISTOFFEL symbols of the sec-

ond kind . They are the coefficients in the following decompositions

∂gi/∂ξ
j ≡ Γ k

.ijgk ≡
{
k

ij

}
gk = Γijkg

k , (2.58a)

∂gi/∂ξj ≡ −Γ i
.kjg

k ≡ −
{
i

kj

}
gk . (2.58b)

Because of the definition (2.58a), and considering (2.35), (2.36), the CHRISTOF-
FEL symbols of the second kind can be expressed in the form

Γ k
.ij =

∂ξk

∂xp

∂2xp

∂ξi∂ξj
. (2.59a)

They are symmetric with respect to the lower indices (i, j) and can be related
to the metric tensors in the following way

Γ k
.ij ≡

{
k

ij

}
=

1

2
gkl
(
∂gil

/
∂ξj + ∂gjl

/
∂ξi − ∂gij

/
∂ξl
)
. (2.59b)

In addition, the CHRISTOFFEL symbols of the first kind are given by

Γkij ≡ [ij, k] = [ji, k] =
1

2

(
∂gik

/
∂ξj + ∂gjk

/
∂ξi − ∂gij

/
∂ξk
)
.

(2.60)
Comparing the two sets (2.59b) and (2.60), we read gklΓlij ≡ Γ k

.ij in agree-
ment with the rule of raising the indices.

Evidently there are n = 3 distinct CHRISTOFFEL symbols of each kind
for each independent gij , and, since the number of independent gij’s is

n(n+ 1)/2 ,

the number of independent CHRISTOFFEL symbols is

n2(n+ 1)/2 .

Note that the CHRISTOFFEL symbols, in general, are not tensors. This is
valid also for the partial derivatives ∂Ai/∂ξj and ∂Ai/∂ξ

j with respect to
curvlinear coordinates.
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However, the derivative

∂A/∂ξj = Ai|jgi = Ai|jgi (2.61)

is a tensor, where the expressions

Ai|j ≡ ∂Ai/∂ξj +AkΓ i
.kj and Ai|j ≡ ∂Ai/∂ξ

j −AkΓ
k
.ij (2.62a,b)

are the covariant derivatives of the contravariant and covariant vector com-
ponents, respectively. These derivatives transform like the components of a
second-rank-tensor. The trace of (2.62a) immediately yields the divergence
(2.57).

Let the vector A in (2.61) be the gradient of a scalar field. We then have

∂A
/
∂ξj = ∂(∇Φ)

/
∂ξj = Tijg

i , (2.63)

where

Tij = Tji =
∂2Φ

∂ξi∂ξj
− Γ k

.ij

∂Φ

∂ξk
≡ Φ,i| j (2.64)

is a symmetric second-rank covariant tensor.
The LAPLACE operatorΔ is defined asΔΦ=div gradΦ. Using (2.56b),

(2.57), (2.58), (2.39b), and the abbreviation (2.64), the following relation is
obtained:

ΔΦ = ∇ · ∇Φ =

(
gi ∂

∂ξi

)
·
(

gk ∂Φ

∂ξk

)
= gijTij ≡ gij Φ,i| j . (2.65)

The gradient of a vector A is formed by the dyadic product of the Nabla
operator (2.56b) and the field vector (2.47a) in connection with (2.62a,b):

T ≡ ∇⊗ A =

(
gj ∂

∂ξj

)
⊗ (Aigi

)
= Ai

∣∣
jg

j ⊗ gi ≡ T i
jg

j ⊗ gi

(2.66a)

T ≡ ∇⊗ A =

(
gj ∂

∂ξj

)
⊗ (Aig

i
)

= Ai| jg
j ⊗ gi ≡ Tijg

j ⊗ gi .

(2.66b)

In contrast to (2.64), the tensor Tij ≡ Ai|j in (2.66b) is not symmetric.
From the representations (2.66a,b) we read that the mixed components T i

j

and the covariant components Tij of dyadic T ≡ ∇ ⊗ A are identical with
the covariant derivatives (2.62a,b), respectively.
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In curvlinear coordinates, the constitutive equation (2.31) of the linear
theory of elasticity should be expressed in the form

τ ij = Eijklγkl , (2.67)

where the infinitesimal strain tensor γ is formed by covariant derivatives
from the displacement vector w according to

γij = (wi| j + wj | i) /2 . (2.68)

In the absence of body forces the divergence of the stress tensor must be
equal to zero. Thus, the equations of equilibrium are then given by

τ ij |i = 0j . (2.69)

Note that for applications in solid mechanics the physical components of
the tensors τij , γij andwi, used in (2.67), (2.68), (2.69), have to be calculated
accordingly to

σij = τ ij√g(ii)g(jj) , εij = γij

√
g(ii)g(jj) , ui = wi

√
g(ii) , (2.70a,b,c)

where the bracketed indices should not be summed.
Considering a vector (2.47a) the components of which, A1g1, A2g2,

A3g3, form the edges of the parallelepiped whose diagonal is A. Since the
gi are not unit vectors in general, we see that the lengths of edges of this
parallelepiped, or the physical components of A, are determined by the ex-
pressions

A1√g11 , A2√g22 , A3√g33 ,

since g11 = g1 · g1, . . . , g33 = g3 · g3.
As an example, let us introduce cylindrical coordinates

x1 = ξ1 cos ξ2 , x2 = ξ1 sin ξ2 , x3 = ξ3 , (2.71)

where ξ1 ≡ r, ξ2 ≡ ϕ and ξ3 ≡ z. The covariant base vectors (2.35) are
then given by

g1 = e1 cosϕ+ e2 sinϕ ,
g2 = −e1r sinϕ+ e2r cosϕ ,
g3 = e3 ,

⎫⎬
⎭ (2.72a)

while the contravariant base vectors (2.37) are immediately found according
to
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g1 = g1 , g2 = g2

/
r2 , g3 = g3 . (2.72b)

Since the cylindrical coordinates (2.71) are orthogonal, the metric tensors
(2.39a,b), (2.40a,b) have the diagonal forms

gij =

⎛
⎜⎜⎜⎝

1 0 0

0 r2 0

0 0 1

⎞
⎟⎟⎟⎠ , gij =

⎛
⎜⎜⎜⎝

1 0 0

0 1/r2 0

0 0 1

⎞
⎟⎟⎟⎠ , (2.73a,b)

while the nonvanishing CHRISTOFFEL symbols (2.59a,b), (2.60) are given
by

Γ122 ≡ −[12, 2] = Γ 1
.22 = −r, Γ221 ≡ [21, 2] = [12, 2] = r, Γ 2

.12 = 1/r.
(2.74)

Taking the covariant derivative (2.62b) into account, the tensor (2.68) can
also be represented in the following way

γij =
(
∂wi

/
∂ξj + ∂wj

/
∂ξi
)
/2 − wkΓ

k
.ij . (2.75)

The physical components (2.70c) of the displacement vector are in cylindri-
cal coordinates because of (2.42b) very simple:

ur = w1 , uϕ = w2/r , uz = w3 , (2.76)

and, likewise, we calculate from (2.70b) the physical components

εr = γ11 , εϕ = γ22/r
2 , εz = γ33 ,

εrϕ = γ12/r , εrz = γ13 , εzϕ = γ32/r ,

}
(2.77)

of the infinitesimal strain tensor, so that we finally arrive at the following
components

εr = ∂ur /∂r , εϕ = (∂uϕ /∂ϕ + ur) /r , εz = ∂uz /∂z ,

εrϕ = [(∂ur /∂ϕ) /r + ∂uϕ /∂r − uϕ /r ] /2 ,

εrz = (∂ur/∂z + ∂uz/∂r)/2 ,

εzϕ = [(∂uz /∂ϕ) /r + ∂uϕ /∂z ] /2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.78)

by considering (2.74), (2.75), and (2.76).
Finally, the physical components of the stress tensor are deduced from

(2.70a):
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σr = τ11 , σϕ = r2τ22 , σz = τ33 ,

σrϕ = rτ12 , σϕz = rτ23 , σzr = τ31 ,

}
(2.79)

so that we arrive from (2.69) by considering

Aij |k = ∂Aij
/
∂ξk + Γ i

.kpA
pj + Γ j

.kpA
ip (2.80)

and (2.74) at the equations of equilibrium

∂σr /∂r + (∂σrϕ /∂ϕ) /r + ∂σzr /∂z + (σr − σϕ) /r = 0 ,

∂σrϕ /∂r + (∂σϕ /∂ϕ) /r + ∂σϕz /∂z + 2σrϕ /r = 0 ,

∂σzr /∂r + (∂σϕz /∂ϕ) /r + ∂σz /∂z + σzr /r = 0 .

⎫⎪⎬
⎪⎭ (2.81)

For isotropic materials the fourth-order elasticity tensor in (2.31) has the
form

Eijkl = λδijδkl + μ (δikδjl + δilδjk) , (2.82a)

while the material tensor in (2.67) is represented by

Eijkl = λgijgkl + μ
(
gikgjl + gilgjk

)
, (2.82b)

so that we find from (2.67) in connection with (2.77) and (2.79) the following
constitutive equations:

σr = 2μεr + λ(εr + εϕ + εz) ,

σϕ = 2μεϕ + λ(εr + εϕ + εz) ,

σz = 2μεz + λ(εr + εϕ + εz) ,

σrϕ = 2μεrϕ , σϕz = 2μεϕz , σzr = 2μεzr .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.83)

According (2.65) together with (2.64), the LAPLACE operator is defined
in general. In the special case of cylindrical coordinates with (2.73a,b), (2.74)
this operator takes the form

Δ =
∂2

∂r2
+

1

r2
∂2

∂ϕ2
+

1

r

∂

∂r
+
∂2

∂z2
, (2.84)

which occurs as a differential, for example, in the LAPLACE or POISSON

equation. These partial differential equations are fundamental for many ap-
plications in continuum mechanic.

In the representation theory of tensor functions the irreducible basic in-
variants
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S1 = δijĀji , S2 = ĀijĀji , S3 = ĀijĀjkĀki (2,85a,b,c)

or, alternatively, the irreducible main invariants

J1 ≡ S1 , J2 =
(
S2 − S2

1

)
/2 , (2.86a,b)

J3 =
2S3 − 3S2S1 + S3

1

6
(2.86c)

play a central role, since they form an integrity basis . In (2,85a,b,c) the Āij

are the components of the tensor A with respect to the orthonormal basis
ei. The invariants (2,85a,b,c), e.g., can be expressed in terms of covariant or
contravariant components of the tensor A. To do this we need the following
transformations

Aij =
∂xp

∂ξi
∂xq

∂ξj
Āpq ⇔ Āij =

∂ξp

∂xi

∂ξq

∂xj
Apq , (2.87)

and

Aij =
∂ξi

∂xp

∂ξj

∂xq
Āpq ⇔ Āij =

∂xi

∂ξp
∂xj

∂ξq
Apq , (2.88)

which are extended forms of (2.35), (2.36), and (2.37). Inserting the trans-
formation (2.87) in (2,85a,b,c) and considering (2.40a,b), we finally find the
irreducible basic invariants in the following forms:

S1 = gpqApq = gpqA
pq = Ak

k , (2.89a)

S2 = gipgjqAjiApq = gipgjqA
jiApq = Ai

kA
k
i , (2.89b)

S3 = gipgjqgkrAijAqkArp = · · · = Ai
jA

j
kA

k
i , (2.89c)

and then the main invariants (2.86a,b,c) also in terms of covariant, con-
travariant or mixed tensor components.

A lot of tensor operations are included in the MAPLE tensor package.
Examples are illustrated in the following MAPLE program, where the metric
tensors and the CHRISTOFFEL symbols have been calculated for cylindrical
and spherical coordinates ⊙

2 1.mws

> with(tensor):

> cylindrical_coord:=[r,phi,z]:

covariant metric tensor:
> g_compts:=array(symmetric,sparse,1..3,1..3):
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> g_compts[1,1]:=1: g_compts[2,2]:=rˆ2:

> g_compts[3,3]:=1:

> g:=create([-1,-1], eval(g_compts));

g := table([compts =

⎡
⎣1 0 0

0 r2 0
0 0 1

⎤
⎦ , index char = [−1, −1]])

> D1g:=d1metric(g,cylindrical_coord):
> Gamma[kij]:=[ijk];

> CHRISTOFFEL[first_kind][cylindrical]:=

> Gamma[kij]=Christoffel1(D1g):

Γkij := [ijk ]

The results are printed as a list on the CD-ROM. They are identical
to those values in (2.74).
> spherical_coord:=[r,phi,theta]:

covariant metric tensor:
> g_compts:=array(symmetric,sparse,1..3,1..3):

> g_compts[1,1]:=1: g_compts[2,2]:=rˆ2:

> g_compts[3,3]:=(r*sin(phi))ˆ2:

> g:=create([-1,-1], eval(g_compts));

g := table([compts =

⎡
⎣1 0 0

0 r2 0
0 0 r2 sin(φ)2

⎤
⎦ , index char = [−1, −1]])

> D1g:=d1metric(g,spherical_coord):
> Gamma[kij]:=[ijk];

> CHRISTOFFEL[first_kind][spherical]:=

> Gamma[kij]=Christoffel1(D1g):

Γkij := [ijk ]

The results are printed as a list on the CD-ROM. In a similar way one can
find the CHRISTOFFEL symbols of the second kind.
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Creep mechanics is a part of continuum mechanics, like elasticity, plasticity,
viscoelasticity, and viscoplasticity.

Continuum Mechanics is concerned with the mechanical behavior of
solids and fluids on the macroscopic scale. It ignores the discrete nature of
matter, and treats material as uniformly distributed throughout regions of
space. It is then possible to define quantities such as density, displacement,
velocity, etc., as continous ( or at least piecewise continous) functions of
position. This procedure is found to be satisfactory provided that we deal
with bodies whose dimensions are large in comparison with the character-
istic lengths (e.g.: interatomic spacings in a crystal, or mean free paths in a
gas) on the microscopic scale.

Continuum mechanics can also be applied to a granular material such as
sand, concrete or soil, provided that the dimensions of the regions considered
are large compared with those of an individual grain.

The equations of continuum mechanics are of two main kinds. First, there
are equations which apply equally to all materials. They describe universal
physical laws, such as conservation of mass and energy. Second, there are
equations characterizing the individual material and its reaction to applied
loads; such equations are called constitutive equations (Chapter 4), since
they describe the macroscopic behavior resulting from internal constitution
of the particular materials.

In this Chapter, however, only the kinematics and the concept of stress
should briefly be discussed.

3.1 Analysis of Deformation and Strain

This section is concerned with the kinematics of a continuous medium. Kine-
matics is the study of motion without regard to the forces which produce it.
To describe the motion of a body, i.e., to specify the position of each particle
at each instant we select a particular configuration of the body, for instance
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the configuration of the body in its unloaded or undeformed state, and call
this the reference configuration at the reference time t = 0. The set of co-
ordinates ai, referred to fixed cartesian axes, uniquely determines a particle
of the body and may be regarded as a label by which the particle can be
identified for all time (Fig. 3.1).

3x

2x

1x

ai

path line

a1

a2

a3

t 0>

t 0=

i
x

Fig. 3.1 Motion of a particle; reference (t = 0) and current (t > 0) configurations

The motion of the body may now be described by specifying the position
xi of the particle ai at time t > 0 in the form

xi = xi(ap, t) , i, p = 1, 2, 3 . (3.1a)

In other words: The place xi is occupied by the body-point ap at time t. We
assume that this function is differentiable with respect to ap and t as many
times as required.

Sometimes we desire to consider only two configurations of the body, an
initial and a final configuration. We refer to the mapping from the initial to
the final configuration as a deformation of the body. The motion of the body
may be regarded as a one-parameter sequence of deformations.

The mapping (3.1a) has the unique inverse

ai = ai(xp, t) , i, p = 1, 2, 3 (3.1b)
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provided that the JACOBIan determinant

J := det(∂xi/∂aj) (3.2)

exists and that it is always positiv (J > 0) at each point. The physical signif-
icance of these assumptions is that the material of the body cannot penetrate
itself, and that material occupying a finite non-zero volume at time t = 0
cannot be compressed to a point or expanded to infinite volume during the
motion; remark: dV = J dV0.

The inverse form (3.1b) may be viewed as a description which provides
a tracing to its original position of the particle ai that now (at current time
t > 0) occupies the location xi. In other words: An observer placed on xi

registers a particle ai at time t.
The coordinates ai are known as material (or LAGRANGian) coordinates

since distinct sets of these coordinates refer to distinct material particles.
The coordinates xi are known as spatial (or EULERian) coordinates since
distinct sets refer to distinct points of space. Problems in continuum mechan-
ics may be formulated either with the material coordinates ai as independent
variables, in which case we employ the material description of the prob-
lem, or with the spatial coordinates xi as independent variables, in which we
employ the spatial description . In the material (LAGRANGian) description
attention is focused on what is happening at (or in the neighbourhood of) a
particular material particle. In the spatial (EULERian) description we concen-
trate on events at (or near to) a particular point in space. The mathematical
formulation of general physical laws and the description of the properties of
particular materials is often most easily accomplished in the material descrip-
tion, but for the solution of special problems it is frequently preferable to use
the spatial description. It is therefore necessary to employ both descriptions
and to relate them to each other. In principle it is possible to transform a
problem from the material to the spatial description or vice versa by using
(3.1a) or (3.1b). In practice the transition is not always accomplished easily.

The time rate of change of any property of a continuum with respect
to specific particles of the moving continuum is called the material time
derivative (or substantial derivative) of that property. This derivative may be
thought of as the time rate of change that would be measured by an observer
traveling with a specific particle ai. For instance, consider the temperature
field in a body

T = T (ai, t) or T = T (xi, t) . (3.3a,b)

Its material time derivative is expressed by
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Ṫ = dT/dt = ∂T (ai, t)/∂t . (3.4a)

The right-hand side of (3.4a) is sometimes written as [∂T (ai, t)/∂t]ai
to em-

phasize that the coordinates ai are held constant, i.e., a given particle is in-
volved when calculating the partial derivative.

If the temperature field is expressed by the spatial description in the form
(3.3b) we arrive, by using the chain rule of partial differentiation, at the fol-
lowing result

dT/dt = ∂T (xi, t)/∂t+ ẋk ∂T (xi, t)/∂xk , (3.4b)

where ẋi = vi is the velocity vector. From (3.4b) we read the operator

d

dt
=
∂

∂t
+ vk

∂

∂xk
or

d

dt
=
∂

∂t
+ v · grad , (3.5)

which can be applied to tensor fields of any order, Tij... = Tij...(xp, t), ex-
pressed in spatial coordinates.

The first term on the right-hand side of (3.4b) gives the rate of change
at a particular position and is accordingly called the local rate of change .
This term is sometimes written as [∂T (xi, t)/∂t]xi

to emphasize that xi is
held constant in this differentiation. The second term on the right-hand side
of (3.4b) arises because the specific particles are changing their positions in
space. This term expresses the contribution due to the motion of the particles
in the variable field, and it is therefore called the convection rate of change .

The displacement vector u = x−a of a typical particle from its position
a in the reference configuration to its position x at current time t can be
represented as a function of LAGRANGian or EULERian coordinates,

ui = ui(ap, t) = xi(ap, t) − ai , (3.6a)

ui = ui(xp, t) = xi − ai(xp, t) , (3.6b)

by taking (3.1a,b) into account. Partial differentiation of the displacement
vector (3.6a,b) with respect to the coordinates produces either the material
displacement gradient

∂ui/∂aj = ∂xi/∂aj − δij (3.7a)

or the spatial displacement gradient

∂ui/∂xj = δij − ∂ai/∂xj . (3.7b)

In a similar way we define the material and spatial deformation gradient
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Fij := ∂xi/∂aj and F
(−1)
ij := ∂ai/∂xj , (3.8a,b)

respectively. The deformation gradient (3.8a) can geometrically be inter-
preted in the following way. Two neighbouring particles which occupy points
P0 and Q0 before deformation, move to points P and Q, respectively, in the
deformed configuration (Fig. 3.2).

0ds

=

ds = 0dsF

t 0>t 0=

path line

path line

Fig. 3.2 Geometrical interpretation of the deformation gradient (BETTEN, 2001a)

From (3.1a) and (3.8a) the distance differential dxi (line element vector
ds) can be expressed as follows:

dxi = (∂xi/∂aj) daj = Fij daj or ds = F ds0 . (3.9)

Thus, the deformation gradient F can be interpreted as a linear transforma-
tion or a second-rank tensor: the initial line element vector ds0 is mapped
onto the corresponding vector ds at time t, where a translation, a rigid ro-
tation , and a stretching of the line element is produced. This decomposition
of the total deformation corresponds with the polar decomposition theorem
which states that the non-singular deformation gradient (3.8) can be decom-
posed, uniquely, in either of the products

Fij = RikUkj , Fij = VikRkj , (3.10a,b)

i.e., in matrix notation: F = RU and F = V R, where R is an orthogo-
nal rotation tensor, and U , V are positive definite symmetric tensors which
are called right (U ) and left (V ) tensors (BETTEN, 2001a) . However, the
”translation part” of the total deformation is not involved in (3.10a,b) since a
parallel transport does not change the cartesian components of a vector, here
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the line element vector (3.9). The shifter, which shifts a vector from one co-
ordinate system to another, is here merely δij . But in curvlinear coordinates,
parallel transport does change the covariant and contravariant components
of a vector (BETTEN, 1987c) .

Although the deformation gradient tensor F plays a central role in the
analysis of deformation, it is not itself a suitable (direct) measure of strain ,
since a measure of strain must be unchanged in a rigid-body motion

xi = Rijaj + ci , (3.11)

where Rij is any orthogonal (rotation) tensor (RikRjk = δij). The vector
ci is independent of position and depends only on time t. Thus, the material
deformation gradient (3.8a) of the rigid-body motion (3.11) is identical to
the rotation tensor: Fij = Rij .

The difference (ds)2 − (ds0)
2 for two neighbouring particles of a contin-

uum can be taken for a suitable measure of strain which occurs in the neigh-
bourhood of the particles between the initial and current configurations. If
this difference is identical to zero for all neighbouring particles of a mate-
rial, a rigid-body motion (3.11) with RijRik = δjk results in:

(ds)2 − (ds0)
2 ≡ dxi dxi − dai dai = (RijRik − δjk)daj dak = 0 . (3.12)

In general, we arrive from (3.9) with (3.8a) at the relation

(ds)2 − (ds0)
2 = (FijFik − δjk)daj dak ≡ 2λjk daj dak (3.13)

in which the second-order tensor

λij := (FkiFkj − δij) /2 ≡ (gij − δij) /2 (3.14)

is known as the LAGRANGE finite strain tensor , and the tensor

Cij ≡ gij = FkiFkj or C = F tF (3.15a,b)

is called the right CAUCHY-GREEN tensor . This tensor and KRONECKER’s
tensor may be interpreted as metric tensors (BETTEN, 2001a), since the
squared lengths of the current and initial line-elements can be written as

(ds)2 = dxi dxi = gjk daj dak (3.16)
and

(ds0)
2 = dai dai = δjk daj dak , (3.17)

respectively.
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In terms of the displacements (3.6a), the LAGRANGE strain tensor (3.14)
takes the following form

λij =
1

2

(
∂ui

∂aj
+
∂uj

∂ai
+
∂uk

∂ai

∂uk

∂aj

)
, (3.18)

if Fij from (3.8a) with (3.7a) is substituted into (3.14).
In contrast to the material description (3.13), the ”strain measure” can be

formulated with the spatial coordinates xi as independent variables (spatial
description) :

(ds)2 − (ds0)
2 =

(
δjk − F (−1)

ij F
(−1)
ik

)
dxj dxk ≡ 2ηjk dxj dxk , (3.19)

where ηjk is known as the EULERian finite strain tensor . Contrary to (3.18),
this tensor takes the form

ηij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi
− ∂uk

∂xi

∂uk

∂xj

)
(3.20)

in terms of the displacements (3.6b). The LAGRANGE and EULER strain
tensors and the corresponding metric tensors are listed in Table 3.1.

Table 3.1 Finite strain and metric tensors

LAGRANGE EULER

m
et

ri
c

deformed
continuum

ds2 = gij dai daj ds2 = δij dxi dxj

undeformed
continuum

ds20 = δij dai daj ds20 = hij dxi dxj

m
et

ri
c

te
ns

or deformed
continuum

gij ≡ Cij = FkiFkj

C = F tF
δij

undeformed
continuum

δij
hij ≡ B(−1)

ij = F
(−1)
ki F

(−1)
kj

B = FF t

strain tensor
λij = 1

2(gij − δij)
λ = 1

2(C − δ)

ηij = 1
2(δij − hij)

η = 1
2(δ − B−1)

The logarithmic strain tensor is not listed in Table 3.1 although it plays
also a central role in the theory of finite deformation because it can be
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decomposed into a sum of an isochoric distortion and a volume change
(BETTEN, 2001a). This advantage is uilized, e.g., to describe the creep de-
formations of thick walled tubes subjected to internal pressure (Chapter 5).

The problem to represent logarithmic strain tensors as isotropic tensor
functions can be solved by using the interpolation method developed by
BETTEN(1984; 1989; 2001a).

In (3.18), if the displacement gradient components ∂ui/∂aj are each
small compared to δij , the squares and products of these derivatives may
be neglected in comparison to the linear terms. The resulting tensor is the
LAGRANGE infinitesimal strain tensor :

�ij = (∂ui/∂aj + ∂uj/∂ai) /2 = (Fij + Fji) /2 − δij . (3.21a)

Likewise for ∂ui/∂xj 	 δij in (3.20), the product terms may be dropped to
yield the EULERian infinitesimal strain tensor :

εij = (∂ui/∂xj + ∂uj/∂xi) /2 ≡ (ui,j + uj,i) /2 . (3.21b)

This tensor is sometimes called the classical strain tensor . In (3.21b) the no-
tation ui,j is adopted for the partial derivative ∂ui/∂xj . Such abbreviations
are often used in tensor analysis (BETTEN, 1987c).

If both the displacement gradients (3.7a,b) and the displacements (3.6a,b)
themselves are small, there is very little difference in the material (ai) and
spatial (xi) coordinates of a material particle. Accordingly, the material dis-
placement gradient (3.7a) and spatial displacement gradient (3.7b) are very
nearly equal, so that the infinitesimal tensors (3.21a,b) may be taken as equal:

λij ≈ ηij ≈ �ij ≈ εij .

In the elastic deformation of metals the small-strain theory is quite adequate,
whereas in rubber-like materials and some other synthetic plastics, for in-
stance, elastic deformation may be of much larger magnitude, requiring the
use of the finite-strain theory . In this theory, geometrical non-linearities are
considered expressed by the product terms in (3.18) and (3.20). The plastic
deformation of metals after yielding may also lead to large strains, but there
is usually a considerable range of deformation beyond yield in which small-
strain theories may still be used; in metal forming, where large deformations
occur, the small-strain components are of doubtful physical significance. In-
cremental theories of plasticity in effect and also creep theories (Chapter 4)
analyze these operations in terms of rate of deformation rather than strain.
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The rate-of-deformation tensor

dij = (vi,j + vj,i) /2 , (3.22)

sometimes called ”rate-of-strain” or ”strain-rate tensor”, is linear in the ve-
locity gradients ∂vi/∂xj ≡ vi,j . This linearity is exact and no approxima-
tion has been made in deriving it (BETTEN, 2001a). Furthermore, the tensor
(3.22) is not to be confused with the material time derivative ε̇ij ≡ dεij/dt
of the infinitesimal tensor (3.21b), because we have:

ε̇ij = dij − (ui,pvp,j + uj,pvp,i) /2 . (3.23)

Only in the case of small displacement gradients (ui,j ≡ ∂ui/∂xj) and small
velocity gradient tensors (vi,j ≡ ∂vi/∂xj), we have: ε̇ij ≈ dij .

If the displacements ui are given, the six components εij = εji can be
easily calculated from (3.21b), provided that the displacements are differen-
tiable functions of the coordinates xi. However, if the strain components εij
are given explicitly as functions of the coordinates xi, the six independent
equations (3.21b) may be viewed as a system of six partial differential equa-
tions for determining the three displacement components ui. The system is
over-determined and will not, in general, possess a solution for an arbitrary
choice of the strain components εij . Therefore, if the displacement compo-
nents ui are single-valued and continuous, some conditions must be imposed
upon the strain components. The necessary and sufficient conditions for in-
tegrability can be found by eliminating the displacements ui in (3.21b):

εij,k� + εk�,ij − εik,j� − εj�,ik = 0ijk� . (3.24)

Again the partial derivatives are denoted with a comma followed by the
indices of the independent variables (spatial coordinates xi), for example:
εij,k� ≡ ∂εij/∂xk∂x�. The conditions (3.24) are called compatibility equa-
tions of the infinitesimal strain tensor. There are 81 equations in all in (3.24),
but only six are distinct. These six conditions can be written in the compact
form

Rij := εiprεjqsεpq,rs
!
= 0ij (3.25)

where Rij = Rji is called the incompatibility tensor (BETTEN, 2001a), the
divergence of which is equal to the zero vector:

Rij,j = 0i . (3.26)

This condition is known as BIANCHI’s identity (BETTEN, 2001a).
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Caution: The permutation tensor εijk in (3.25) is not to be con-
fused with the strain tensor εij and its partial derivatives εij,k�.

For plane strain in the x1-x2-plane, x2-x3-plane, or x3-x1-plane the
six unique equations (3.26) reduce, respectivelely, to the following single
equtions

ε11,22 + ε22,11 = 2ε12,12, ..., ε33,11 + ε11,33 = 2ε31,31

which can easily deduced from (3.21b) by eliminating the displacements ui

as has been pointed out by BETTEN (2001a).

3.2 Analysis of Stress

In this section the definitions of stress vector and stress tensor will be given
and the equations of equilibrium will be derived. We will then show how the
stress components change when the frames of reference are changed from
one rectangular cartesian frame of reference to another. We will see that the
stress components transform according to the tensor transformation rules.
The symmetry of the stress tensor and its consequences will then be dis-
cussed.

Consider a configuration occupied by a loaded body B (Fig 3.3) at some
time.

3x

2x

1x

S

�S

�P

n

B

Fig. 3.3 Stress principle

Imagine a closed surface S within B. We would like to know the inter-
action between the material exterior to this surface and that in the interior.
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Let us consider a small surface element of area ΔS on our imaged surface
S. The unit vector n is normal to S with its direction outward from the in-
terior of S. Then we can distinguish the two sides of ΔS according to the
direction of n. Consider the part of material lying on the positive side of the
normal. This part exerts a force ΔP on the other part, which is situated on
the negative side of the normal. The force ΔP is a function of the area and
the orientation of the surface. We assume that the ratio ΔP /ΔS tends to a
definite limit as ΔS tends to zero:

p := lim
ΔS→0

(ΔP /ΔS) = dP /dS .

This limiting vector is called the stress vector , or also known as the trac-
tion vector . We also assume that the moment of the forces acting on the
small surface ΔS about any point within the area vanishes in the limit, i.e.,
a couple-stress vector is not taken into account. Such couple stresses have
in fact been included in continuum mechanics, for instance by E. and F.
COSSERAT in 1907. Materials in which there may be couple stresses are
called polar (→ COSSERAT continuum) .

Now let us consider three surfaces parallel to the coordinate planes. The
normals of these surfaces are in the positive directions of the coordinate axes
as drawn in Fig. 3.4.
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Fig. 3.4 Traction vectors on three planes perpendicular to coordinate axes and notations of
stress components

Each of the three traction vectors in Fig. 3.4 can be decomposed in its
components parallel to the coordinate axes:
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1p = σ11
1e + σ12

2e + σ13
3e (3.27a)

2p = σ21
1e + σ22

2e + σ23
3e (3.27b)

3p = σ31
1e + σ32

2e + σ33
3e . (3.27c)

These equations can be written in the following compact form

ip = σij
je , i = 1, 2, 3 , (3.27*)

where σij are the cartesian components of the stress tensor σ. As a rule
the first subscript on σij identifies the plane on which a stress vector is acting,
while the second index indicates the direction of the traction component:

σik = ip · ke . (3.28)

This relation immediately follows from (3.27*) since the unit base vectors
are mutually orthogonal: je · ke = δjk. The components perpendicular to
the planes (σ11, σ22, σ33) are called normal stresses . Those acting in (tan-
gentially to) the plane (σ12, σ13, . . . , σ32) are called shear stresses . A
stress component is positive, if it is acting on a positive plane in the positive
direction of a coordinate axis. Likewise, a stress component is positive, if it
is acting on a negative plane in the negative direction. Otherwise, the stress
components are negative. A plane in Fig. 3.4 is said to be positive if its outer
normal points in one of the positive coordinate directions. Otherwise it is
said to be negative. In accordance with the above determination of signs, the
stress components indicated in Fig. 3.5 are all positive. Thus, a normal stress
is considered to be positive for tension and negative for compression.

A

Fig. 3.5 Positive stress components
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The relationship between the stress tensor σ at some point and the stress
vector p on a plane of arbitrary orientation n at that point may be established
through the force equilibrium of an infinitesimal tetrahedron of the contin-
uum, having its vertex at the considered point. The base of this tetrahedron
is taken perpendicular to n, while the three faces are taken perpendicular to
the coordinate axes as illustrated in Fig. 3.6.
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Fig. 3.6 Infinitesimal tetrahedron

Designating the area of the base as dS, the areas of the faces are the pro-
jected areas n1 dS, n2 dS, and n3 dS. The force equilibrium in x1-direction
can then be expressed as follows:

p1 dS = σ11n1 dS + σ21n2 dS + σ31n3 dS ,

so that, by way of cyclic permutations, we arrive at CAUCHY’s formula:

p1 = σ11n1 + σ21n2 + σ31n3

p2 = σ12n1 + σ22n2 + σ32n3

p3 = σ13n1 + σ23n2 + σ33n3

⎫⎪⎬
⎪⎭ pi = σjinj . (3.29)

This formula expresses the components of the stress vector p acting on an
arbitrarily oriented infinitesimal area n dS at a considered point in terms of
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the components of the stress tensor, σ, at the point. Thus, the traction p for
any n may be calculated from a knowledge of nine basic quantities σij .

The result (3.29) can be interpreted as follows: The quantity σij serves
as a linear operator which operates on the argument vector ni to produce
the image vector pi. Hence, σij are the cartesian components of a second-
order tensor σ, known as CAUCHY’s stress tensor . Its components transform
according to the rule (2.20a,b).

It can easily be shown (BETTEN, 2001a) that CAUCHY’s stress tensor is
symmetric, σij = σji, so that only six of the nine components are specified
independently in order to define completely the state of stress at any point.
The symmetry of the stress tensor implies what is sometimes called the the-
orem of conjugate shear stresses , also known as BOLTZMANN’s axiom ,
which states that the shear stresses on perpendicular planes (having direc-
tions such that both stresses point either toward or away from the line of
intersection of the planes) are always equal in magnitude. This is not true in
the COSSERAT continuum or in damaged materials BETTEN (1982b; 2001a).

Furthermore, if we would like to study the influence of a strong elec-
tromagnetic field on the propagation of elastic waves, or such influence on
some high-frequency phenomenon in the material, then the stress level may
be very low and the body moment may be significant. In such problems the
stress tensor may not be assumed symmetric. Couple stresses and body cou-
ples are useful concepts in dealing with materials whose molecules have
internal structures, and in the dislocation theory of metals.

The symmetry property of CAUCHY’s stress tensor is an advantage in
view of several aspects, for instance in view of the principle stresses and
principal stress directions or with regard to the formulation of constitutive
equations.

Firstly, let us discuss the determination of the principle values and the
principal directions for the stress tensor. For that purpose, let us consider
Fig. 3.6, where, on the surface element dS, shear stresses are produced. On
those surface elements for which the vectors p and n are collinear , no shear
stresses can be produced. These surfaces are called principal planes ; their
normal directions and the normal stresses are known as principal directions
and principal stresses . If the vectors p and n are collinear, they differ only
in length. Thus, together with (3.29) and σij = σji, we find:

pi
!
= σni ≡ σδijnj

pi = σijnj

}
⇒ (σij − σδij)nj = 0i . (3.30)

The condition for (3.30) to have non-trivial solutions for n is:
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det(σij − σδij) = 0 ⇒ σ3 − J1σ
2 − J2σ − J3 = 0 . (3.31)

This is the characteristic equation (2.25) for the stress tensor, in which J1,
J2, J3 are the three irreducible invariants (2.24a,b,c) of the stress tensor.

The three roots of (3.31) are the three principal stress values σI , σII , σIII .
Associated with each principal stress σα, α = I, II, III, there is a princi-
pal stress direction for which the direction cosines nα

i are solutions of the
equations (3.30), where the eigenvectors nα, α = I, II, III, are normalized
without loss of generality; hence

(
σij − σ(α)δij

)
n

(α)
j = 0i ; n

(α)
k n

(α)
k = 1 , α = I, II, III . (3.32)

Caution: There is no sum on the repeated label α, which is there-
fore enclosed by parentheses.

From the symmetry property the following statements can be easily de-
duced:

1. The eigenvalues of a real symmetric second-order tensor are all
real.

2. The eigenvectors associated with two distinct eigenvalues of a
symmetric second-order tensor are orthogonal:

σα �= σβ ⇒ nα
kn

β
k = 0 , α �= β .

Eigenvalue problems of tensors of order higher than two are discussed by
BETTEN (1982a; 1998; 2001c), for instance.

In the following the equilibrium equations should be derived. Further-
more, the symmetry of CAUCHY’s stress tensor will be proved. We therefore
consider a material body (volume V , bounded by surface S) in equilibrium.
It may be subjected to a system of external (surface) forces p per unit area
and body forces b per unit mass (including inertia forces, if present) or vol-
ume forces f = ρb per unit volume as shown in Fig. 3.7.

Equilibrium of an arbitrary volume V of a continuum (Fig. 3.7) requires
that the resultant force and moment acting on the volume be zero. Summation
of surface and body forces results in the integral relation∫∫

S

pi dS +

∫∫∫
V

fi dV = 0i . (3.33)

Replacing pi by (3.29) and converting the resulting surface integral to a vol-
ume integral by using the divergence theorem of GAUSS ,
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Fig. 3.7 Volume and surface forces

∫∫
S

σjinj dS =

∫∫∫
V

σji,j dV , (3.34)

equation (3.33) becomes:∫∫∫
V

(σji,j + fi) dV = 0i . (3.35)

Since the volume V is arbitrary, the integrand in (3.35) must vanish, so that
we arrive at the equilibrium equations

σji,j + fi = 0i , (3.36)

where σji,j ≡ ∂σji/∂xj is the divergence of the stress tensor. The partial
differentiation is denoted with a comma followed by the index of the inde-
pendent variable.

For a moving continuum (mass density ρ; velocity field vi ≡ ẋi) we have
to take inertial forces ,

dTi = −ẋi dm ⇒ Ti = −
∫∫∫

V

ρẍi dV , (3.37)

into account (D’ALEMBERT’s principle) , so that the right-hand side in (3.36)
is not equal to zero:

σji,j + fi = ρẍi . (3.38)
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These equations are known as CAUCHY’s equations of motion .
In the absence of couple stresses , the equilibrium of moments about the

origin (Fig. 3.7) requires that∫∫
S

εijkxjpk dS +

∫∫∫
V

εijkxjfk dV = 0i , (3.39)

where εijk is the permutation tensor defined in (2.5) and xi is the position
vector of the surface and volume elements. Again, replacing pi by (3.29),
applying the divergence theorem of GAUSS, and using the equilibrium equa-
tions (3.36), the integrals in (3.39) are combined and reduced to∫∫∫

V

εijkσjk dV = 0i . (3.40)

Since the volume V is arbitrary, the integrand in (3.40) must vanish at any
point in the continuum:

εijkσjk = 0i ⇒ σij = σji . (3.41)

This result shows that CAUCHY’s stress tensor is symmetric .
The CAUCHY stress tensor field is defined as a function of the spatial

coordinates, σij = σij(xp, t), and the CAUCHY equations of motion (3.38)
apply to the current deformed configuration. A suitable strain measure to
use with the CAUCHY stress tensor would therefore be one of the strain
or deformation tensors of the EULERian formulation in terms of the spatial
position in the deformed configuration. However, the LAGRANGE or mate-
rial formulation is often preferred in the finite theory of elasticity , where
a natural state exists to which the body will return when it is unloaded. If
we formulate a strain tensor in material coordinates, we need also to ex-
press the stresses as functions of material coordinates and derive constitutive
equations in the reference state. The two PIOLA-KIRCHHOFF stress tensors
discussed by BETTEN (2001a) are two alternative definitions of stress in the
reference state. The first PIOLA-KIRCHHOFF stress tensor (sometimes called
the LAGRANGE stress tensor) has the disadvantage of being nonsymmetric.
It is therefore awkward to use it in constitutive equations with a symmetric
strain tensor. Furthermore, this tensor is not objective (BETTEN, 2001a). The
second PIOLA-KIRCHHOFF tensor T̃ij is symmetric whenever the CAUCHY

stress tensor σij is symmetric (nonpolar case) and objective. Thus, this ten-
sor is preferred in the finite theory of elasticity (BETTEN, 2001a). The rela-
tion between these two stress tensors can be expressed as follows:
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T̃ij =
ρ0
ρ
F

(−1)
ijpq σpq ⇔ σij =

ρ

ρ0
FijpqT̃pq (3.42)

where ρ and ρ0 are the mass densities of the current and reference configu-
rations, respectively. The fourth-order tensor in (3.42) is defined as:

Fijpq := (FipFjq + FiqFjp) /2 (3.43)

and has the following symmetry properties:

Fijpq = Fjipq = Fijqp . (3.44)

Its components can be determined by inserting the given components (3.8a)
of the material deformation gradient. It can be shown that the inverse form
of (3.43), used in (3.42), can be represented as

F
(−1)
ijpq =

(
F

(−1)
ip F

(−1)
jq + F

(−1)
iq F

(−1)
jp

)/
2 , (3.45)

where F (−1)
ij are the given components (3.8b) of the spatial deformation gra-

dient (BETTEN, 2001a).
In the foregoing Sections 3.1 and 3.2 we have discussed strain and stress

tensors, respectively. Fomulating constitutive equations we have to select
appropiate pairs of strain and stress tensors. Admissible pairs are called con-
jugate variables. For instance, in the linear constitutive equation of the finite
theory of elasticity,

T̃ij = Eijk�λk� , (3.46)

the LAGRANGE finite strain tensor (3.14), (3.18) and the second PIOLA-
KIRCHHOFF tensor (3.42) are conjugate variables in the reference configu-
ration. Another pair of conjungate variables are the rate-of-deformation ten-
sor (3.22) and CAUCHY’s stress tensor (3.29) in the deformed configuration.

The stress power in a volume V of the current deformed configuration
can be expressed by the conjungate variables λ̇ and T̃ in the volume V0

occupied by the same material in the reference configuration according to∫ ∫
V

∫
dijσjidV =

∫ ∫
V0

∫
FjpFiqdijT̃pqdV0 =

∫ ∫
V0

∫
λ̇ijT̃jidV0 . (3.47)

Further conjugate variables are derived by BERTRAM (2005), BETTEN

(2001a), HAUPT (2000), SKRZYPEK (1993), for instance.



4 Creep Behavior of Isotropic and Anisotropic
Materials; Constitutive Equations

The previous chapters are concerned with tensor notations and some basic
equations applicable to all continuous materials. However, these results are
insufficient to describe the mechanical behavior of any particular material.

Thus, we need additional equations characterizing the individual material
and its reaction to applied loads; such equations are called constitutive equa-
tions , since they describe the macroscopic behavior resulting from internal
constitution of the particular materials. But materials, especially in the solid
state, behave in such complex ways when the entire range of possible tem-
peratures and deformations is considered that it is not feasible to write down
one equation or set of equations to describe accurately a real material over its
entire range of behavior. Instead, we formulate separate equations describing
various kinds of ideal material response , each of which is a mathematical
formulation designed to approximate physical observations of a real mate-
rial’s response over a suitably restricted range.

Physical laws should be independent of the position and orientation of
the observer, i.e., if two scientists using different coordinate systems observe
the same physical event, it should be possible to state a physical law gov-
erning the event in such a way that if the law is true for one observer, it is
also true for the other. For this reason, the equations of physical laws are vec-
tor functions or tensor functions , since vectors and tensors transform from
one coordinate system to another in such a way that if the vector or tensor
equations holds in one coordinate system, it holds in any other coordinate
system not moving relative to the first one, i.e., in any other coordinate sys-
tem in the same reference frame. Invariance of the form of the physical law
referred to two frames of references in accelerated motion relative to each
other is more difficult and requires the apparatus of general relativity theory,
tensors in four-dimensional space-time. For simplicity, we limit ourselves in
this book to tensors in three-dimensional EUCLIDean space . Furthermore,
we use, with the exception of chapter 5, rectangular cartesian coordinates for
the components of vectors and tensors.
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Constitutive equations must be invariant under changes of frame of ref-
erence, i.e., two observers, even if in relative motion with respect to each
other, observe the same stress in a loaded material. The principle of ma-
terial frame-indifference is also called the principle of material objectivity
(BETTEN, 2001a; BASAR and WEICHERT, 2000).

The formulation of constitutive equations is essentially a matter of exper-
imental determination, but a theoretical framework is needed in order to de-
vise suitable experiments and to interpret experimental results. As has been
pointed out in more detail by AVULA (1987):

The validity of a model should not be judged by mathematical ratio-
nality alone; nor should it be judged purely by empirical validation
at the cost of mathematical and scientific principles. A combination
of rationality and empiricism (logic and pragmatism) should be used
in the validation.
Experimental observations and measurements are generally accepted
to constitute the backbone of physical sciences and engineering be-
cause of the physical insight they offer to the scientist for formulat-
ing the theory. The concepts that are developed from observations
are used as guides for the design of new experiments, which in turn
are used for validation of the theory. Thus, experiments and theory
have a hand-in-hand relationship.

However, it must be noted, that experimental results can differ greatly from
reality just like a bad mathematical model (BETTEN, 1973).

Creep tests are carried out on a specimen loaded, e.g., in tension or com-
pression, usually at constant load, inside a furnace which is maintained at
a constant temperature T . The extension of the specimen is measured as a
function of time. A typical creep curve for metals, polymers, and ceramics
is represented in Fig 4.1 and Chapter 14. The temperature at which materials
begin to creep depends on their melting point TM , for instance, T > 0, 4TM

for metals and T > 0, 5TM for ceramics.
The response of the specimen loaded by σ0 at time t = 0 can be divided

into an elastic and a plastic part as

ε0 = σ0/E(T ) + εp(σ0, T ) , (4.1)

where E(T ) is the modulus of Elasticity. The creep strain in Fig. 4.1 can
then be expressed according to

εc = ε(t) − ε0 ∝ tκ , (4.2)
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where κ < 1 in the primary, κ = 1 in the secondary, and κ > 1 in the ter-
tiary creep stage. These terms correspond to a decreasing, constant, and in-
creasing strainrate, respectively, and were introduced by ANDRADE (1910).
These three creep stages are often called transient creep, steady creep , and
accelerating creep ; respectively.

I II III

primary secondary tertiary

T const.=
rupture

�

�
0

t

Fig. 4.1 Typical creep curve

The results (4.1) and (4.2) from the creep test justify a classification of
material behavior in three disciplines: elasticity, plasticity, and creep me-
chanics .

Due to a proposal of HAUPT (2000) one can also distinguish four theories
of material behavior as follows:

❒ The theory of elasticity is concerned with the rate-independent
behavior without hysteresis.

❒ The theory of plasticity specifies the rate-independent behavior
with hysteresis.

❒ The theory of viscoelasticity describes the rate-dependent behav-
ior without equilibrium hysteresis.

❒ The theory of viscoplasticity is devoted to the rate-dependent be-
havior with equilibrium hysteresis.

The creep behavior exists in two of the above listed categories, namely in
the theories of viscoelasticity (Chapter 11) and viscoplasticity (Chapter 12).

In the following sections of this chapter let us discuss the primary, sec-
ondary, and tertiary creep behavior of isotropic and anisotropic materials.
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4.1 Primary Creep

The primary or transient creep is characterized by a monotonic decrease in
the rate of creep (Fig. 4.1), and the creep strain (4.2) can be described by the
simple formula

εc = Aσn tm , (4.3)

where the parameters A, n, m depend on the temperature. They can be de-
termined in a uniaxial creep test. For instance, PANTELAKIS (1983) found
in experiments on the austenitic steel X 8 Cr Ni Mo Nb 16 16 at 973 K the
values A = 3.85 · 10−15(N/mm2)−nh−m, n = 5.35, and m = 0.22. Based
upon a mechanical equation of state the time-hardening relation (4.3) can be
deduced as has been pointed out in more detail by BETTEN (2001a). Further
applications of mechanical equations of state were discussed by LUDWIK

(1909), LUBAHN and FELGAR (1961), TROOST et al.(1973), to name just a
few.

If the stress σ in (4.3) is assumed to be constant the creep rate d ≈ ε̇c is
given by

ε̇c = Amσn tm−1 . (4.4)

This relation may be generalized to multiaxial states of stress according to
the following tensorial linear constitutive equation

dij =
3

2
K(J ′2)

(n−1)/2 σ′ij t
m−1 (4.5)

(ODQUIST and HULT, 1962), where dij are the cartesian components of the
rate-of-deformation tensor (3.22), (3.23), and J ′2 is the quadratic invariant of
the stress deviator (σ′ij) according to (2.26a).

Inserting the time t from (4.3) into (4.4), we arrive at the relation

ε̇c = mA1/m σn/mε(m−1)/m
c , (4.6)

which characterizes the strain-hardening-theory , i.e., this strain rate equa-
tion (4.6) includes stress and strain as variables. In contrast to (4.6), the
strain rate equation (4.4) contains stress and time as variables and is there-
fore called the time-hardening-law .
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4.1.1 Primary Creep for Austenitic Steel

In the following MAPLE worksheet primary creep curves for austenitic
steel are represented.

> restart:

> epsilon[c]:=A*sigmaˆn*tˆm; # (4.3)

εc := Aσn tm

Inserting the experimental data for austenitic steel X 8 Cr Ni Mo Nb 16 16
at 973 K,

> Digits:=4:

> A:=3.85*10ˆ(-15)*(N/mmˆ2)ˆ(-n)*hˆ(-m);

A := 0.3850 10−14 (
N

mm2
)(−n) h(−m)

> n:=5.35; m:=0.22;

n := 5.35

m := 0.22

we find the following creep curve for austenitic steel:
> epsilon[creep](t,sigma):=subs({A=%%%,n=%%,m=%},
> epsilon[c]);

εcreep(t, σ) :=
0.3850 10−14 σ5.35 t0.22

(
N

mm2
)5.35 h0.22

> stress_parameter:=sigma=[150,175,200]*N/mmˆ2;

stress parameter := σ =
[150, 175, 200]N

mm2

> for i in [150,175,200] do
> EPSILON[i]:=3.85*10ˆ(-15)*iˆ5.35*tˆ0.22 od;

EPSILON 150 := 0.001689 t0.22

EPSILON 175 := 0.003854 t0.22

EPSILON 200 := 0.007869 t0.22

> alias(H=Heaviside,th=thickness,co=color):
> plot1:=plot({EPSILON[150],EPSILON[175],
> EPSILON[200]}, t=0..1, co=black, th=2):

> plot2:=plot({0.008,0.008*H(t-1)},t=0..1.001):
> plots[display](plot1,plot2);
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Fig. 4.2 Primary Creep Curves

The creep curves in Fig. 4.2. are valid for serval stress parameters [150, 175,
200] with values [0.0017, 0.0039, 0.0079] at t = 1, respectively.

4.1.2 Strain-Hardening-Theory

The strain-hardening-theory is characterized by the relation (4.6), which is
applied to austenitic steel in the following MAPLE worksheet.

> restart: Digits:=4:
> strain_rate:=
> m*Aˆ(1/m)*sigmaˆ(n/m)*epsilon[c]ˆ((m-1)/m);

strain rate := mA( 1
m

) σ( n
m

) εc
(m−1

m
)

Inserting the above experimental data for austenitic steel we arrive at the
relation:

> strain_rate:=subs({A=3.85*10ˆ(-15),
> n=5.35,m=0.22},%%);

strain rate :=
0.6736 10−66 σ24.32

εc3.545

> stress_parameter:=sigma=[150,175,200]*N/mmˆ2;

stress parameter := σ =
[150, 175, 200]N

mm2

> for i in [150,175,200]do STRAIN_RATE[i]:=
> 0.6736*10ˆ(-66)*iˆ24.32/epsilon[c]ˆ3.545 od;

STRAIN RATE 150 :=
0.5635 10−13

εc3.545
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STRAIN RATE 175 :=
0.2394 10−11

εc3.545

STRAIN RATE 200 :=
0.6158 10−10

εc3.545

> alias(H=Heaviside,th=thickness,co=color):
> plot1:=plot({STRAIN_RATE[150],
> STRAIN_RATE[175],STRAIN_RATE[200]},
> epsilon[c]=0..0.008,0..0.005):
> plot2:=plot({0.005,0.005*H(epsilon[c]-0.008)},
> epsilon[c]=0..0.008001,co=black):

> plots[display](plot1,plot2);
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Fig. 4.3 Strain-Hardening

The three curves in this Figure are valid for several stress parameters [150,
175, 200] running from left to right, respectively.

4.1.3 Time-Hardening-Theory

The time-hardening-theory is characterized by the relation (4.3), which is
applied to austenitic steel in the following MAPLE worksheet.

> restart: Digits:=4:

> epsilon[dot](t,sigma):=A*m*sigmaˆn*tˆ(m-1);

εdot(t, σ) := Amσn t(m−1)

Inserting the above experimental data for austenitic steel we arrive at the
relation:
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> epsilon[dot](t,sigma):=
> subs({A=3.85*10ˆ(-15),n=5.35,m=0.22},%%);

εdot(t, σ) :=
0.8470 10−15 σ5.35

t0.78

> stress_parameter:=sigma=[150, 175, 200]*N/mmˆ2;

stress parameter := σ =
[150, 175, 200]N

mm2

> for i in [150,175,200] do EPSILON[dot](t,i):=
> 0.847*10ˆ(-15)*iˆ5.35/tˆ0.78 od;

EPSILON dot(t, 150) :=
0.0003715

t0.78

EPSILON dot(t, 175) :=
0.0008478

t0.78

EPSILON dot(t, 200) :=
0.001731

t0.78

> alias(H=Heaviside,th=thickness,co=color):
> plot1:=plot({EPSILON[dot](t,150),
> EPSILON[dot](t,175), EPSILON[dot](t,200)},
> t=0..1,0..0.005,th=2,co=black):
> plot2:=plot({0.005,0.005*H(t-1)},
> t=0..1.001,co=black:

> plots[display](plot1,plot2);
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Fig. 4.4 Time-Hardening
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The three curves in this Figure are valid for several stress parameters [150,
175, 200] with values [0.00037, 0.00085, 0.0017] at t = 1 , respectively.

Note that for m = 1 both theories, the time-hardening (4.4) and the
strain-hardening (4.6), degenerate to NORTON-BAILEY’ s power law (4.15)
often used for describing the secondary creep behavior, for instance, for
metals, as has been pointed out in section 4.2 in more detail.

4.1.4 Comparison of Strain- and Time-Hardening

In this Section the reaction of austenitic steel in its primary phase on a stress
jump should be illustrated. As an example let us consider a stress step from
190 to 200 at t = 0.003.

> restart:

> alias(H=Heaviside,th=thickness,l=linestyle):

> H(t):=190+10*H(t-0.003);

H(t) := 190 + 10 H(t− 0.003)

> p[1]:=plot(H(t),t=0..0.01,180..210,th=3):
> p[2]:=plot({190,200,200*H(t-0.003)},
> t=0..0.01,xtickmarks=[0.001,0.003,0.007,
> 0.01],ytickmarks=[180,190,200,210],l=2):

> p[3]:=plot(200*H(t-0.003),t=0..0.00301,l=4):

> plots[display]({seq(p[k],k=1..3)});
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Fig. 4.5 Stress jump from 190 to 200
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The primary creep curves for the two stress parameters 190 and 200 for
austenitic steel according to Section 4.1.1 are given by:

> EPSILON[190]:=0.005983*tˆ0.22;
> EPSILON[200]:=0.007869*tˆ0.22;

EPSILON 190 := 0.005983 t0.22

EPSILON 200 := 0.007869 t0.22

> p[4]:=plot({EPSILON[190],EPSILON[200]},
> t=0..0.005,co=black, th=3
> xtickmarks=[0.0008636,0.003,0.005],
> ytickmarks=[0.001,0.001667,0.002192,0.0025]):
> p[5]:=plot({0.0025,0.0025*H(t-0.005)},
> t=0..0.00501,co=black):
> p[6]:=plot({0.001667,0.002192,
> 0.002192*H(t-0.003)},t=0..0.00301,co=black):
> p[7]:=plot({0.001667,0.001667*H(t-0.0008636)},
> t=0..0.000863601,co=black):

> plots[display]({seq(p[k],k=4..7)});
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Fig. 4.6 Primary creep curves for 190 and 200

From this Figure we read:
> sigma[1]:=190; sigma[2]:=200;

σ1 := 190

σ2 := 200
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> t[1]:=0.0008636; t[2]:=0.003;

t1 := 0.0008636

t2 := 0.003

> Delta[t]:=t[2]-t[1];

Δt := 0.0021364

> epsilon[1]:=0.001667; epsilon[2]:=0.002192;

ε1 := 0.001667

ε2 := 0.002192

> Delta[epsilon]:=epsilon[2]-epsilon[1];

Δε := 0.000525

At time t > t[2] = 0.003 with the stress sigma[2] = 200 we arrive by
integration the strain-hardening-relation (4.6) at the following formula:

> restart:

> Digits:=4:

> epsilon[s-h](t):=A*(sigma[2])ˆn*(t-Delta*t)ˆm;

εs−h(t) := Aσ2
n (t−Δt)m

In a similar way we arrive by integration the time-hardening-relation (4.4)
at the following formula (?):

> epsilon[t-h](t):=A*(sigma[2])ˆn*
> tˆm-Delta*epsilon;

εt−h(t) := Aσ2
n tm −Δε

> epsilon[s-h](t):=subs({A=3.85*10ˆ(-15),n=5.35,
> m=0.22,Delta*t=0.0021364,sigma[2]=200},%%);

εs−h(t) := 0.007869 (t− 0.0021364)0.22

> epsilon[t-h](t):=subs({A=3.85*10ˆ(-15),n=5.35,
> m=0.22,Delta*epsilon=0.0005254,
> sigma[2]=200},%%);

εt−h(t) := 0.007869 t0.22 − 0.0005254

> EPSILON[190]:=0.005983*tˆ0.22;

EPSILON 190 := 0.005983 t0.22

> EPSILON[200]:=0.007869*tˆ0.22;

EPSILON 200 := 0.007869 t0.22

> alias(H=Heaviside,th=thickness,co=color):
> p[1]:=plot(epsilon[s-h](t),t=0.003..0.01,
> th=3,co=black):
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> p[2]:=plot(epsilon[t-h](t),t=0.003..0.01,
> th=3,co=black,style=point,symbol=circle,
> symbolsize=15):
> p[3]:=plot({EPSILON[190],EPSILON[200]},
> t=0..0.01,co=black):
> p[4]:=plot({0.003,0.003*H(t-0.01)},
> t=0..0.0101,co=black):
> p[5]:=plot({0.001667,0.002192*H(t-0.003)},
> t=0..0.00301,co=black,
> xtickmarks=[0.003,0.007,0.01],
> ytickmarks=[0.001,0.001667,0.0025,0.003]):

> plots[display]({seq(p[k],k=1..5)});
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Fig. 4.7 Strain- and time-hardening

In this Figure the thick solid line, starting at t = 0.003 , characterizes the
strain-hardening-theory:

εs−h(t) = Aσ2
n (t−Δt)m

The time-hardening-theory

εt−h(t) = Aσ2
n tm −Δε

is symbolized by a sequence of small circles.
Both the strain- and time-hardening-curve are parts of the upper creep

curve with the stress parameter sigma[2] = 200 , i.e., by shifting this creep
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curve from t = 0.0008636 to t = 0.003 or from epsilon = 0.002192 to
epsilon = 0.001667 we arrive at the strain- or time-hardening-curve, respec-
tively.

Many scientists have observed in experiments that the strain-hardening-
theory predicts better the creep behavior of metals or polymers, for instance,
than the time-hardening-theory.

Based upon the creep potential hypothesis , BETTEN et al. (1989) gener-
alized (4.6) to a tensorial nonlinear constitutive equation , and they analysed
the primary creep behavior of thin-walled shells subjected to internal pres-
sure.

The creep buckling of cylindrical shells subjected to internal pressure
and axial compression was investigated by BETTEN and BUTTERS (1990)
by considering tensorial nonlinearities and anisotropic primary creep.

Further investigations based upon the creep potential hypothesis have
been carried out by JAKOWLUK (1993), KOLUPAEV (2006), NAUMENKO

and ALTENBACH (2007), to name but a few.
The creep potential hypothesis mentioned above, can also be applied in

the secondary creep stage, as pointed out in detail in the next section.

4.2 Secondary Creep

Creep deformations of the ”secondary” stage are large and of a similar char-
acter to ”pure” plastic deformations. For instance, creep deformations of
metals will usually be uninfluenced if a hydrostatic pressure is superim-
posed. Therefore, such creep behavior can be treated with methods of the
”mathematical theory of plasticity,” e.g. the theory of the plastic potential
(MISES, 1928; HILL, 1950) can be used in the mechanics of creep.

BETTEN (1975d) has based a generalized theory of invariants in creep
mechanics on the following hypotheses: an incompressible and isotropic
material, a creep rate independent of superimposed hydrostatic pressure,
the existence of a flow potential, and that NORTON-BAILEY’s power law
(NORTON, 1929; BAILEY, 1935) is valid for the special case of uniaxial
stress. Therefore, the flow potential is expressed in a general form of the
second- and third-order invariant of the deviatoric, or reduced, stress ten-
sor. It is also assumed that the equivalent stress is a function of dissipation.
In the special case of the MISES potential the generalized theory leads to
ODQUIST’s theory.
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In the following a creep potential theory of anisotropic solids is investi-
gated. For this purpose the mentioned isotropic concept (BETTEN, 1975d)
will be used by substituting a mapped stress tensor.

4.2.1 Creep Potential Hypothesis

Certain considerations that favor the creep potential hypothesis are pre-
sented, for instance, by RABOTNOV (1969). The strain rate-stress relations
for creep given below (section 4.2.2) are based on the assumption of the
existence of a creep potential.

To describe the isotropic creep behavior (BETTEN, 1975d) we can start
from a creep potential F = F (σ), which is a scalar-valued tensor function
of CAUCHY’s stress tensor σ. This function is said to be isotropic if the in-
variance condition F (aipajqσpq) = F (σij) is fulfilled under any orthogonal
transformation a. It is evident from the theory of isotropic tensor functions
that in an isotropic medium the creep potential

F = F [J1(σ), J2(σ), J3(σ)] (4.7)

or, assuming incompressibility,

F = F [J2(σ
′), J3(σ

′)] (4.8)

can depend only on the invariants

J1(σ) ≡ δijσji , (4.9a)

J2(σ) ≡ (σijσji − σiiσjj)/2 , (4.9b)

J3(σ) ≡ (2σijσjkσki − 3σijσjiσkk + σiiσjjσkk)/6 (4.9c)

of the stress tensor σ or on the invariants

J2(σ
′) ≡ σ′ijσ′ji/2 , (4.10a)

J3(σ
′) ≡ σ′ijσ′jkσ′ki/3 (4.10b)

of the stress deviator σ′, respectively, with the components

σ′ij = σij − σkkδij/3 .

The summation convention is utilized, and δij represents KRONECKER’s ten-
sor (Section 2.1).

The anisotropic behavior is described by the linear transformation
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τij = βijklσkl , (4.11)

which is used in the creep theory of anisotropic solids (BETTEN, 1981a). By
analogy of (4.9), the principal invariants of the image tensor (4.11) are given
by:

J1(τ ) = Apqσpq , (4.12a)

J2(τ ) = Apqrsσpqσrs/2 , (4.12b)

J3(τ ) = Apqrstuσpqσrsσtu/3 , (4.12c)

if we define:

Apq ≡ βiipq , (4.13a)

Apqrs ≡ βijpqβjirs − βiipqβjjrs , (4.13b)

Apqrstu ≡ βijpqβjkrsβkitu − 3βijpqβjirsβkktu/2

+ βiipqβjjrsβkktu/2 .
(4.13c)

Under the assumption that the anisotropy of the material is entirely involved
in a fourth-rank tensor β, the creep potential is a function F = F (σ,β), and
the central problem is to construct an integrity basis the elements of which
are the irreducible invariants of the single argument tensors σ, β, and the
simultaneous or joint invariants.

The invariants (4.12) are elements of the system of joint invariants, which
are only considered. Therefore the theory discussed is a simplified theory
but very useful in solving practical problems. With (4.12) the function (4.7)
takes a form which is often used as plastic potential of anisotropic materials
(SAYIR, 1970; DUBEY and HILLER, 1972; BETTEN, 1976b; 1977). The idea
of substituting the invariants (4.12) of the mapped stress tensor (4.11) for
the corresponding invariants (4.9) in the isotropic creep potential (4.7) is
schematically shown in Fig. 4.8.

The actual creep state of an anisotropic solid is mapped on to a fictitious
isotropic state with equivalent creep rate d = γ̇ by a suitable transforma-
tion τij = τij(σkl). The limiting creep stresses σcx, σcy, etc. in Fig. 4.8 for
specimens cut along the x direction, y direction, etc., and the transformed
fictitious isotropic limiting creep stress τc cause defined creep strain εc in a
defined time, e.g., l% creep strain in 105 h. Therefore, dc and σc are material
constants (ODQUIST, 1966).

The theory of creep potential, like the theory of the plastic potential, is
based upon the principle of maximum dissipation rate, from which, follow-
ing LAGRANGE’s method in connection with a creep condition F (σij) =
const. as a subsidiary condition, we obtain the flow rule:
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Fig. 4.8 Creep potentials in τij and σij space: - - -, |d| constant; —, |dc| constant.

dij = Λ̇[∂F (σ)/∂σij ] , (4.14a)

or

dij = Λ̇[∂F (τ )/∂τpq](∂τpq/∂σij) ≡ (∂τpq/∂σij)γ̇pq . (4.14b)

In (4.14) the factor Λ̇ is LAGRANGE’s multiplier . As known, the surfaces
F (σij) = const. or F (τij) = const. must be convex in the σij-space or
τij − space, respectively. Inserting (4.11) in (4.14b), we find the flow rule:

dij = βpqij [∂F (τ )/∂τpq]Λ̇ ≡ βpqij γ̇pq . (4.14c)

To determine the proportionality factor Λ̇ NORTON-BAILEY’s power law
(NORTON, 1929; BAILEY, 1935),

d = K σn ≡ dc(σ/σc)
n , (4.15)

is assumed and is used in different directions with its corresponding limiting
creep stresses σcx, σcy, etc.

Note that both theories, the time-hardening (4.4) and the strain-hardening
(4.6) degenerate to NORTON-BAILEY’s power law (4.15) by takingm = 1.

In a fictitious creep state, defined by

γ̇c
!
= dc or γ̇

!
= d , (4.16a,b)

we have by analogy of (4.15):
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γ̇ = Lτm ≡ γ̇c(τ/τc)
m = d(τ/τc)

m = d , (4.17)

so that, because of d11 ≡ d, we have from (4.14c):

Λ̇ = d/(∂F/∂τij)i=j=1 with τ11 ≡ τ . (4.18)

In (4.18) the fictitious ”isotropic” creep stress τ appears, which can be deter-
mined by the hypothesis of the equivalent dissipation rate . Thus, in connec-
tion with (4.16a,b) we require:

τd
!
= σijdij ≡ Ḋ , (4.19)

so that, using (4.14c), (4.18), and the inverse transformation σij = β
(−1)
ijkl τkl

of (4.11) the relation

τ(∂F/∂τij)i=j=1 = τij(∂F/∂τij) (4.20)

results, from which we can determine the fictitious stress τ . The rate of
dissipation of creep energy is obtained from (4.19), combined with (4.11),
(4.14c), and (4.18):

Ḋ = Λ̇τpq[∂F (τ )/∂τpq] . (4.21)

Considering homogeneous creep potentials F (τij) of degree r, we use EU-
LER’s theorem on homogeneous functions,

F (Sτij) = SrF (τij) ⇒ τij [∂F (τ )/∂τij ] = rF (τij) , (4.22)

and find from (4.21) the dissipation rate Ḋ = ϕrτ rΛ̇, if we assume a creep
condition F (τij) = ϕτ r of degree r. For instance, the square creep condition
F = τijτji/2 = τ2/2 with r = 2 and ϕ = 1/2 leads to the dissipation rate
Ḋ = Λ̇τ2 which, because of (4.18), i.e. Λ̇ = d/τ , agrees with (4.19).

4.2.2 Isochoric Creep Behavior

The assumption of isochoric creep behavior is very important; for instance,
metal creep of the ”secondary” stage will usually be uninfluenced by a su-
perimposed hydrostatic pressure and takes place without volume change.
Therefore, in this section incompressibility is adopted, and, using the creep
potential hypothesis described in section 4.2.1, the constitutive equations are
formulated, i.e., by analogy of (4.8) a creep potential of the form

F = F [J2(τ
′), J3(τ

′)] (4.23)



66 4 Creep Behavior of Isotropic and Anisotropic Materials; Constitutive Equations

is based in the anisotropic case. In (4.23) τ ′ is the deviator

τ ′ij = β′{ij}pqσ
′
pq (4.24)

where the tensor (BETTEN, 1976a)

β′{ij} ≡ βijpq − βkkpqδij/3 (4.25)

is deviatoric corresponding to the free index pair {ij}. The invariants of the
deviator (4.24) in (4.23) are given, as in (4.10), by

J2(τ
′) ≡ 1

2
τ ′ijτ

′
ji =

1

2
β′{ij}pqβ

′
{ji}rsσ

′
pqσ

′
rs (4.26a)

J3(τ
′) ≡ 1

3
τ ′ijτ

′
jkτ

′
ki =

1

3
β′{ij}pqβ

′
{jk}rsβ

′
{ki}tuσ

′
pqσ

′
rsσ

′
tu . (4.26b)

From the flow rule (4.14c), combined with the relations (4.17), (4.18), and
(4.20), we finally obtain the constitutive equations

dij = Φβ′pq{ij}

(
∂F

∂J2
τ ′qp +

∂F

∂J3
τ ′′qp

)
, (4.27)

in which the function Φ is defined by

Φ ≡ 1

2
L

{
3

/[(
∂F

∂J2

)
V

+
1

3
τ

(
∂F

∂J3

)
V

]}(m+1)/2

×
[
∂F

∂J2
J2(τ

′) +
3

2

∂F

∂J3
J3(τ

′)
](m−1)/2

. (4.28)

The Index V , appended to the round brackets in (4.28), indicates the uniaxial
equivalent fictitious stress state (τij)V ≡ diag{τ11 ≡ τ, 0, 0}. Contrary to
(4.25), the tensor

β′pq{ij} ≡ βpqij − βpqkkδij/3 (4.29)

in (4.27) is deviatoric corresponding to the second index pair. The symbol

τ ′′qp ≡ (τ ′qp
(2))′ = τ ′qrτ

′
rp −

2

3
J2(τ

′)δqp =
∂J3(τ

′)
∂τij

(4.30)

is the deviator of the square of the reduced tensor (4.24).
Inserting (4.27), together with (4.28), in (4.19), we obtain the rate of dis-

sipation of creep energy:
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Ḋ = [2(∂F/∂J2)J2(τ
′) + 3(∂F/∂J3)J3(τ

′)]Φ , (4.31a)

Ḋ = L

⎡
⎢⎢⎣3

∂F

∂J2
J2(τ

′) +
3

2

∂F

∂J3
J3(τ

′)(
∂F

∂J2

)
V

+
1

3
τ

(
∂F

∂J3

)
V

⎤
⎥⎥⎦

(m+1)/2

(4.31b)

in considering the following transvections:

β′pq{ij}σij = τpq , τpqτ
′
qp = 2J2(τ

′), and τpqτ
′′
qp = 3J3(τ

′) .

In the isotropic special case, given by βpqij = δpiδqj , L → K, m → n,
τ ′ij → σ′ij , and τ ′′ij → σ′′ij , the constitutive equations (4.27), together with
(4.28), immediately lead to the corresponding relations derived by BETTEN

(1981a).

4.2.3 Creep Parameters

The essential creep parameters L, m involved in the creep law (4.17) and in
the constitutive equations (4.27), (4.28) are related to experimental data. In
this section a determination of such parameters is described.

For instance, we consider an orthotropic material and use the creep law
(4.15) in tests on specimens cut along the mutually perpendicular directions
x, y, z. Then, with the notations from Fig. 4.8, we have:

d = KxX
nx , (4.32a)

d = KyY
ny , (4.32b)

d = KzZ
nz , (4.32c)

from which we find in the ”limiting creep stress” state:

dc = (KxKyKz)
1/3(σnx

cx σ
ny
cy σ

nz
cz )1/3 . (4.33)

According to the idea in Fig. 4.8 and using the mapping (4.11), the ”limiting
creep stresses” can be expressed by the fictitious isotropic ”limiting creep
stress” τc:

τc ≡ τxx = βxxxxσcx ≡ �xσcx , τc ≡ τyy , etc., (4.34)

so that then the relation (4.33) according to (4.17) takes the form

dc = Lτm
c ,
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if the fictitious creep factor L is the geometrical mean value

L ≡ [(Kx/�
nx
x )(Ky/�

ny
y )(Kz/�

nz
z )
]1/3

(4.35)

and the fictitious creep exponentm is the arithmetical mean value

m ≡ (nx + ny + nz)/3 (4.36)

from corresponding experimental data. In the case of an existing BAUSCHINGER

effect, the compression test data σ∗cx, σ∗cy, etc. appear in the equations (4.34),
(4.35), and (4.36), too.

In the orthotropic case, the transformation (4.11) can be specified accord-
ing to (BETTEN, 1976b):

βijpq ≡ ωipωjq ⇒ τij = ωipωjqσpq . (4.37)

If the second order tensor ωij is symmetric, then its principal values ωI ,
ωII , ωIII are all real. For isotropic materials the tensor is identical to KRO-
NECKER’s tensor δij . Using the notations from Fig. 4.8 and considering
(4.37), the diagonal form of the ”orthotropic tensor” ωij is given by

ωij = diag{
√
τ/X,

√
τ/Y ,

√
τ/Z} . (4.38)

If ωij has the diagonal form, then, in accordance with (4.37), the tensors τij
and σij are coaxial. For example, the assumptions of incompressibility (4.24)
and orthotropic material (4.37) with

β′{ij}pq = ωipωjq − ω(2)
pq δij/3 (4.39)

immediately lead from the quadratic creep condition

J2(τ
′) = τ2/3 (4.40)

to the HILL-condition (HILL, 1950).

4.2.4 Second-Order Effects

If a function y = f(x) can be approximated by a polynomial

y =
N∑

ν=0

aνx
ν (4.41)
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of N + 1 terms of order ν, we say that the terms a1x and a2x
2 are the

contributions of first and second orders, respectively, in the variable x. Thus,
the meaning of ”order” is mathematical, not physical (TRUESDELL, 1964).

If the anisotropic behavior can be approximated by a tensor power series
in one variable,

γ̇ij = γ̇ij(τpq) =

N∑
ν=0

Bντ
(ν)
ij where τij = βijklσkl , (4.42)

then, by using HAMILTON-CAYLEY’s theorem,

τ
(ν)
ij = Pν−2τ

(2)
ij +Qν−1τij +Rνδij , (4.43)

where Pν−2, Qν−1, and Rν are scalar-valued functions of the principal in-
variants (4.12a,b,c), and of the orders ν − 2, ν − 1, ν, respectively, in the
tensor τij (BETTEN, 1987c), and because of (4.14c), we find the representa-
tion (BETTEN, 1979a):

dij = βpqij(ϕ0δqp + ϕ1τqp + ϕ2τqrτrp) . (4.44)

Assuming incompressibility (4.8), we have, instead of (4.44), the anisotropic
representation

dij = β′pq{ij}(ψ0δqp + ψ1τ
′
qp + ψ2τ

′
qrτ

′
rp) , (4.45)

in which, by comparing (4.45) with the constitutive equations (4.27), (4.28),
and considering (4.30), the scalar-valued functions ψ0, ψ1, ψ2 are:

ψ0 ≡ −2

3
J2(τ

′)ψ2 , (4.46a)

ψ1 ≡ Φ ∂F

∂J2(τ ′)
, (4.46b)

ψ2 ≡ Φ ∂F

∂J3(τ ′)
. (4.46c)

Because of the incompressibility, not all the values ψ0, ψ1, ψ2 are indepen-
dent, as we see from (4.46a). The terms ϕ1τqpβpqij and ϕ2τ

(2)
qp βpqij in (4.44)

or ψ1τ
′
qpβ

′
pq{ij} and ψ2τ

′
qp

(2)β′pq{ij} in (4.45) are the contributions of first
and second orders, respectively, in the tensor τ or the deviator τ ′.

Similarly, the terms containing τ ′qp and τ ′′qp in (4.27) are the contributions
of first and second orders, respectively, in the mapped deviator τ ′.
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The following considerations are based upon the creep potential

F = J2(τ
′) + αJ3(τ

′)/τ where − 3 ≤ α ≤ 3/2 , (4.47)

which is suitable to describe second-order effects, as shown by BETTEN

(1975d; 1976b) for the isotropic case, for instance. The range −3 ≤ α ≤ 3/2
in (4.47) results from the convexity of the potential surface F = const. Using
(4.47), the constitutive equations (4.27) together with (4.28) become

dij =
1

2
L

(
3

1 + α/3

)(m+1)/2 [
J2(τ

′) +
3

2
α
J3(τ

′)
τ

](m−1)/2

× β′pq{ij}

(
τ ′qp +

ατ ′′qp

τ

)
. (4.48)

Comparing (4.48) with the representation (4.45) and considering (4.30), we
can express the scalar-valued functions (4.46b,c) as:

ψ1 =
1

2
L

(
3

1 + α/3

)(m+1)/2 [
J2(τ

′) +
3

2
α
J3(τ

′)
τ

](m−1)/2

(4.49a)

ψ2 = α(ψ1/τ) . (4.49b)

From (4.45) and (4.49b) we see that the parameter α in (4.47) is determined
by a second-order effect.

As mentioned before, the idea of ”order” is mathematical and has nothing
to do with the phenomenon occuring, since it results only from the mathe-
matical framework we choose in describing the phenomenon.

In the following we show that the POYNTING effect can be described by
the second-order contribution in the constitutive equation (4.48). The phe-
nomena observed by POYNTING in 1909 can be illustrated by considering
the effect of a pure shear stress state

σij = σ′ij = σ12

⎛
⎜⎝0 1 0

1 0 0

0 0 0

⎞
⎟⎠ . (4.50)

Then, the deviator (4.24) and the deviator of its square (4.30) are given by

τ ′ij = ωIωIIσ
′
ij (4.51a)

and
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τ ′′ij =
1

3
ω2

Iω
2
IIσ

2
12 diag{1, 1,−2} , (4.51b)

if the stress tensor σij and its image τij are coaxial. This coaxiality exists if
the orthotropic tensor ωij has the diagonal form (4.38). Because of (4.50),
the invariants of the deviator (4.51a) are given by J2(τ

′) = ω2
Iω

2
IIσ

2
12 and

J3(τ
′) = 0, so that the constitutive equation (4.48) is reduced to

dij =
1

6
L

(
3ω2

Iω
2
II

1 + α/3

)m/2

σm
12

⎛
⎜⎜⎜⎜⎝
αζI 3

τ

σ12
0

3
τ

σ12
αζII 0

0 0 −2αζIII

⎞
⎟⎟⎟⎟⎠ (4.52)

in using (4.29), (4.37), (4.50), and (4.51). In the matrix (4.52) the abbrevia-
tions

ζI ≡ (2ω2
I − ω2

II + 2ω2
III)/3 , (4.53a)

ζII ≡ (−ω2
I + 2ω2

II + 2ω2
III)/3 , (4.53b)

ζIII ≡ (ω2
I + ω2

II + 4ω2
III)/6 (4.53c)

are used, while the quotient

τ/σ12 = ωIωII

[
3

1 + α/3

]1/2

(4.54)

is determined from (4.20), considering (4.47), (4.50), and (4.51a).
From (4.52), (4.53c), and (4.54) we obtain the quotient of the longitudinal

strain rate d33 and the shearing strain rate d12,

d33

d12
= −ω

2
I + ω2

II + 4ω2
III

6ωIωII
· 2α

3
√

3

(
1 +

α

3

)1/2
, (4.55)

which can be considered as a suitable measure of the POYNTING effect
(Fig. 4.9a).

Regarding experimental investigations (FOUX, 1964; HECKER, 1967;
SWIFT, 1947) the α-values are not so large. The limits α = −3 and α = 3/2
are given by the convexity of the creep potential (4.47) and are compati-
ble with (4.55), in which the square root must be real. In the isotropic case,
ωI = ωII = ωIII = 1, the results from Fig. 4.9a are identical with those
calculated by BETTEN (1981a).

The anisotropic influence is contained in the factor

ω2
I + ω2

II + 4ω2
III

6ωIωII
,
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which is equal to one for isotropic materials, while the function

−(2
√

3 α/9) (1 + α/3)1/2

of equation (4.55) expresses the second-order effect. This possibility of a
”polar” decomposition is based on the fact that, because of (4.38), the ten-
sors σij and τij are coaxial. Similarly, the quotient d22/d12 is numerically
evaluated (Fig. 4.9b).
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33d

12d
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12d
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Fig. 4.9 POYNTING effect. ——-, ωI = 0.8, ωII = 1.05, ωIII = 1.2;
−−−, isotropy(ωI = ωII = ωIII = 1; −·−, ωI = 1.2, ωII = 1.05, ωIII = 0.8.
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As another example, let us consider a thin-walled circular cylindrical
tube (thickness s, mean radius r) subjected to internal pressure p. Its stress
state is given by the components

σ11 ≡ σr ≈ 0, σ22 ≡ σu =
r p

s
, and σ33 ≡ σz =

r p

2s
.

Then, the invariants (4.26a,b) of the deviator (4.24) become

J2(τ
′) =

1

3

(
ω4

I + ω2
Iω

2
II + ω4

II

) ( r
2s
p
)2

(4.56a)

J3(τ
′) =

1

27

(
2ω6

II − 3ω4
Iω

2
II + 3ω2

Iω
4
II − 2ω6

I

) ( r
2s
p
)3

(4.56b)

in the orthotropic case (4.37), (4.38). The cubic invariant (4.56b) is zero,
if the material reponse is isotropic in planes perpendicular to the tube axis
(ωI = ωII ).

From (4.20), together with (4.47), we find the cubic equation

(1 + α/3)τ3 − 3J2(τ
′)τ − 9αJ3(τ

′)/2 = 0 , (4.57)

which contains the solution (4.54) for the example (4.50).
Since all solutions for τ are real, the discriminant of (4.57),

Δ ≡ 81

16

[
αJ3(τ

′)
1 + α/3

]2
−
[
J2(τ

′)
1 + α/3

]3
(4.58)

must not be positive:
J3

2 ≥ 81

16

(
1 +

α

3

)
α2J2

3 . (4.59)

The right-hand side in (4.59) has a maximum for α = −2. Then, we have
J3

2/27 ≥ J2
3/4 in accordance with BETTEN (1987c). Therefore, the require-

ment (4.59) is fulfilled in the whole range −3 ≤ α ≤ 0 considered here. In
the following, we use an approximation of (4.57),

τ ≈
(

3J2(τ
′)

1 + α/3

)1/2

, (4.60a)

or, inserting (4.56a),

τ ≈
(
ω4

I + ω2
Iω

2
II + ω4

II

1 + α/3

)1/2
r p

2s
, (4.60b)

which is true for ωI = ωII or α = 0.



74 4 Creep Behavior of Isotropic and Anisotropic Materials; Constitutive Equations

From (4.48), together with (4.29), (4.37), (4.56), and (4.60b), we find the
constitutive equation of a thin-walled tube subjected to internal pressure:

dij =
1

2
L

(
3

1 + α/3

)(m+1)/2(N
3

)(m−1)/2 (r p
2s

)m

⎛
⎜⎝MI 0 0

0 MII 0

0 0 MIII

⎞
⎟⎠ ,

(4.61)
using the following abbreviations:

N ≡ ω4
I + ω2

Iω
2
II + ω4

II , (4.62a)

Q ≡ N + 3ω2
Iω

2
II , (4.62b)

MI ≡ −1

9

[
4ω4

I + 3ω2
Iω

2
II + 2ω4

II +
(
ω2

I − ω2
II

)
ω2

III

]
+ χI , (4.63a)

MII ≡ 1

9

[
2ω4

I + 3ω2
Iω

2
II + 4ω4

II −
(
ω2

I − ω2
II

)
ω2

III

]
+ χII , (4.63b)

MIII ≡ 2 (ωI − ωII)
(
ω2

I + ω2
II + ω2

III

)
/9 − 2χIII , (4.63c)

χI ≡ α

27

(
3 + α

3N

)1/2 (
4ω6

I − 4ω2
Iω

4
II + 5ω4

Iω
2
II − 2ω6

II +Qω2
III

)
,

(4.64a)

χII ≡ α

27

(
3 + α

3N

)1/2 (
4ω6

II − 4ω2
IIω

4
I + 5ω4

IIω
2
I − 2ω6

I +Qω2
III

)
,

(4.64b)

χIII ≡ α

54

(
3 + α

3N

)1/2 (
2ω6

I + ω2
Iω

4
II + ω4

Iω
2
II + 2ω6

II + 2Qω2
III

)
.

(4.64c)

Because of the incompressibility, the trace of the strain-rate tensor (4.61),
MI +MII +MIII , must be zero. This can easily be checked. In the isotropic
special case,

ωI = ωII = ωIII = 1 ,

we have
MI = −1 + χ ,

MII = 1 + χ ,

MIII = −2χ ,

χI = χII = χIII ≡ χ = α (1 + α/3)1/2
(
3
√

3
)
,
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in accordance with BETTEN (1981a).
To investigate the second-order effects, the quotient

(d11)α �=0

(d11)α=0
=
MI(α)/MI(α = 0)

(1 + α/3)(m+1)/2
(4.65)

of the radial strain-rates, obtained from (4.61) together with (4.62)-(4.64), is
numerically evaluated. The results are represented in Fig. 4.10.
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Fig. 4.10 Influence of the second-order effect on the radial creep strain rate.
——-, isotropy (ωI = ωII = ωIII = 1); −−−, ωI = 1.1, ωII = 0.9, ωIII = 1;
− · −, ωI = 0.9, ωII = 1.1, ωIII = 1.

Similarly, the influence of the second-order effect on the circumferential
strain-rate d22 can be expressed by the formula

(d22)α �=0

(d22)α=0
=
MII(α)/MII(α = 0)

(1 + α/3)(m+1)/2
, (4.66)

the numerical calculation of which is shown in Fig. 4.11.
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Fig. 4.11 Influence of the second-order effect on the circumferential creep strain rate.
——-, isotropy(ωI = ωII = ωIII = 1); −−−, ωI = 1.1, ωII = 0.9, ωIII = 1;
− · −, ωI = 0.9, ωII = 1.1, ωIII = 1.
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Fig. 4.12 Changes in length of a thin-walled tube as a result from ”second order” effect and
anisotropy. ——-, isotropy(ωI = ωII = ωIII = 1); −−−, ωI = 1.1, ωII = 0.9,
ωIII = 1; − · −, ωI = 0.9, ωII = 1.1, ωIII = 1.
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Finally, the quotient

d33

d22
=
MIII(α)

MII(α)
(4.67)

of the creep strain-rates in axial (d33) and circumferential (d22) directions is
illustrated in Fig. 4.12.

The maximal errors of the approximation (4.60b) are 6% and 8% for the
parameter sets {ωI = 1.1; ωII = 0.9; ωIII = 1} and {ωI = 0.9; ωII = 1.1;
ωIII = 1}, respectively, which are used in Figs. 4.4, 4.5, and 4.6.

4.3 Tertiary Creep

The tertiary creep phase is accompanied by the formation of microscopic
cracks on the grain boundaries, so that damage-accumulation occurs. In some
cases voids are caused by a given stress history and, therefore, they are dis-
tributed anisotropically among the grain boundaries. Thus, the mechanical
behavior will be anisotropic and it is therefore necessary to investigate this
kind of anisotropy by introducing appropiately defined anisotropic damage
tensors (Chapter 7) into constitutive equations (BETTEN, 1982b; 1983b).

Problems of creep damage have been investigated by many authors, some
of them are listed in the introduction to this monograph.

In the following sections the uniaxial and multiaxial tertiary creep behav-
ior will be discussed in detail.

4.3.1 Uniaxial Tertiary Creep

In a uniaxial tension specimen, material deterioration can be described by
introducing an additional variable ω or, alternatively, ψ ≡ 1 − ω into con-
stitutive equations, i.e. the strain rate d can be expressed as d = f(σ, ω),
or d = f(σ, ψ), where σ is the uniaxial stress (Kachanov, 1958; 1986;
RABOTNOV, 1969). The material parameters ω and ψ describe the current
damage state and the continuity of the material, respectively. The parameter
of continuity, ψ, represents that fraction of the cross-sectional area that is
not occupied by either voids or internal fissures. The net-stress acting over
the cross-section of the uniaxial specimen is then σ̂ = σ/ψ. When ψ = 1
the material is in its virgin undamaged state, and when ψ = 0, the material
can no longer sustain any load. In the latter case the constitutive equation
would be required in order to approach an infinite strain rate. Furthermore,
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it is assumed that the damage rate ω̇, or alternatively the rate of continuity
change ψ̇, is also governed by the uniaxial stress and by the current state of
continuity, i.e., ω̇ = g(σ, ω) or ψ̇ = −g(σ, ψ).

The forms of the functions f and g have been discussed in detail by
many scientists, for instance by RABOTNOV (1969), CHRZANOWSKI (1973),
LECKIE and PONTER (1974), LECKIE and HAYHURST (1977), GOEL (1975),
HAYHURST, TRAMPCZYNSKI and LECKIE (1980), NAUMENKO and AL-
TENBACH (2007). Often the forms

d

d0
=

(σ/σ0)
n

(1 − ω)m
,

ω̇

ω̇0
=

(σ/σ0)
ν

(1 − ω)μ
(4.68a,b)

are used, where n ≥ ν,m, μ, d0, ω̇0 and σ0 are constants. The undamaged
case (ω = 0) hereby leads to NORTON-BAILEY’s power law (4.15), which
is assumed to be valid for the secondary creep stage, while the creep rate d
approaches infinity as ω approaches 1.

Integrating the kinetic equation (4.68b) by considering the initial condi-
tion ω(t = 0) = 0 and inserting the result into (4.68a), one arrives at the
following relation (BETTEN, 1992):

d

d0
=

(
σ

σ0

)n [
1 − k

(
σ

σ0

)ν

ω̇0t

]−m/k

with k = 1 + μ . (4.69)

A further integration leads to the tertiary creep strain

εt =
a

b(1 − c)
[
1 − (1 − bt)1−c

]
, (4.70)

if we take the initial condition εt(0) = 0 into account. The abbreviations

a ≡ d0

(
σ

σ0

)n

, b ≡ k
(
σ

σ0

)ν

ω̇0 , c ≡ m

k
(4.71a,b,c)

have been introduced in (4.70).
Because creep rupture is characterized by ω = 1 or d → ∞ we can

immediately find the time to rupture from (4.69):

tr = [k (σ/σ0)
ν ω̇0]

−1 . (4.72)

If, for the sake of convenience, the constants m and μ are taken to be equal
to the parameters n and ν, respectively, the relations (4.68a,b) can then be
simplified to
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d = Kσ̂n , ω̇ = Lσ̂ν , (4.73a,b)

where σ̂ = σ/(1 − ω) is interpreted as the net-stress acting over the cur-
rent cross-sectional area of a uniaxial specimen. Thus, the simplification
(4.73a,b) can be called the net-stress concept. From (4.68a,b) and (4.73a,b)
we read:

K ≡ d0/σ
n
0 and L ≡ ω̇0/σ

ν
0 . (4.74a,b)

One immediately arrives at the first relation (4.73a) from NORTON-BAILEY’s
law (4.15) if we replace the nominal stress σ by the net-stress σ̂. Further-
more, a tensorial generalization of (4.73a,b) can be achieved in a very sim-
ilar manner to that described in section 4.3.2, where the NORTON-BAILEY

creep law is generalized. This generalization has been illustrated by BETTEN

(1991a).
Because of the simplificationsm = n and μ = ν, which lead to (4.73a,b),

the creep rupture time (4.72) takes the form

tr = [(1 + ν)Lσν ]−1 , (4.75)

where the nominal stress σ can be interpreted as the actual stress at the begin-
ning of the tertiary creep stage (ω = 0), i.e., considering NORTON-BAILEY’s
law (4.15) and starting from (4.75) we arrive at the formula

d
ν/n
mintr = Kν/n/L(1 + ν) . (4.76a)

The quantity dmin in (4.76) is the steady-state or minimum creep-rate. As-
suming ν = n, one arrives at the relationship

dmintr = K/L(1 + n) = const. (4.76b)

due to MONKMAN and GRANT (1956). Thus, the net-stress concept (4.73a,b)
with identical exponents, ν ≡ n, is compatible with the model of MONKMAN

and GRANT . The justification of this model has, for example, been ana-
lyzed by ILSCHNER (1973), EDWARD and ASHBY (1979), EVANS (1984)
and RIEDEL (1987).

Under certain conditions, the grain boundaries in polycrystals slide dur-
ing creep deformation. EDWARD and ASHBY (1979) illustrate that this slid-
ing can be accommodated in various ways: elastically, by diffusion, or by
non-uniform creep or plastic flow of the grains themselves. In other cases,
holes or cracks appear at the grain boundaries and grow until they link,
leading to an intergranular creep fracture. When fracture is of this sort,
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the MONKMAN and GRANT rule can be approximatively confirmed. Of-
ten, however, the MONKMAN-GRANT product , dmintr, is proportional to
the strain-to-rupture, εr, as has been observed by ILSCHNER (1973) and
RIEDEL (1987) or in our own experiments.

Because of its microscopic nature, damage generally has an anisotropic
character even if the material was originally isotropic. The fissure orientation
and length cause anisotropic macroscopic behavior. Therefore, damage in an
isotropic or anisotropic material which is in a state of multiaxial stress can
only be described in a tensorial form.

4.3.2 Multiaxial Tertiary Creep

It must be noted that, from the physical point of view (RICE, 1970), the
assumption of a creep potential has only limited justifications, especially in
the anisotropic case (chapter 6) and in the tertiary creep stage. Fortunately,
constitutive equations can be represented in full as tensor-valued functions,
as is pointed out in detail in the following.

When generalizing the uniaxial concept (4.68a,b) or (4.73a,b), constitu-
tive equations and anisotropic growth equations are expressed as the tensor-
valued functions

dij = fij(σ,ω) ,
◦
ωij = gij(σ,ω) , (4.77a,b)

respectively, where ◦ denotes the JAUMANN derivative, σ is the CAUCHY

stress tensor, and ω represents an appropriately defined damage tensor.
Damage tensors are constructed, for instance, by BETTEN (1981b; 1983a;

1983b). Furthermore, we also refer to the work of MURAKAMI and OHNO

(1981). They assumed that damage accumulating in the process of creep can
be expressed through a symmetric tensor of rank two.

Some details about damage tensors and tensors of continuity are dis-
cussed in section 7.1. Furthermore, the influence of material deterioration
on the stresses in a continuum is studied in section 7.2.

RABOTNOV (1968) has also introduced a symmetric second-order tensor
of damage and defined a symmetric net-stress tensor σ̂ by way of a linear
transformation

σij = Ωijk� σ̂k� , (4.78)

where the fourth-order tensor Ω is assumed to be symmetric.
However, it has been pointed out in more detail by BETTEN (1982b) that

the fourth-order tensor in (4.78) is only symmetric with reference to the first
index pair ij, but not to the second, k�. Thus, the net-stress tensor is not
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symmetric in a case of anisotropic damage. The net-stress tensor can be de-
composed into a symmetric part and into an antisymmetric one, where only
the symmetric part is equal to the net-stress tensor introduced by RABOT-
NOV (1968), as shown by BETTEN (1982b) in Section 7.2.

Starting from a third-order skew-symmetric tensor of continuity to repre-
sent area vectors (bivectors) of CAUCHY’s tetrahedron in a damaged state,
one finally arrives at a second-order damage tensor which has the diagonal
form with respect to the rectangular cartesian coordinate system under con-
sideration, as has been pointed out in detail by BETTEN (1983b).

The symmetric tensor-valued functions (4.77a,b) are valid for an isotropic
material in an anisotropic damage state. Furthermore, one must differen-
tiate between anisotropic damage growth and the initial anisotropy result-
ing from a forming process, for instance, rolling. Constitutive equations and
anisotropic damage growth equations are then represented by expressions
such as

dij = fij(σ,ω,A) and
◦
ωij = gij(σ,ω,A) , (4.79a,b)

respectively, where A is a fourth-order constitutive tensor with compo-
nents Apqrs characterizing the anisotropy from, for example rolling, i.e. the
anisotropy of the material in its undamaged state.

A general representation of (4.79a), and similarly (4.79b) is given through
a linear combination

d =
∑
α

ϕα
αG or dij =

∑
α

ϕα
αGij , (4.80)

where the G’s are symmetric tensor generators of rank two involving the
argument tensors σ, ω, A. Some possible methods in arriving at such tensor
generators have been discussed by BETTEN (1982b; 1983b; 1987c; 1998),
for instance. The coefficients ϕα in (4.80) are scalar-valued functions of the
integrity basis associated with the representation (4.80). They must also con-
tain experimental data measured in uniaxial creep tests. The main problems
are to construct an irreducible set of tensor generators and to determine the
scalar coefficients involving the integrity basis and experimental data.

A further aim is to represent the constitutive equation (4.80) in the canon-
ical form

dij = 0Hijk�δk� + 1Hijk�σk� + 2Hijk�σ
(2)
k� , (4.81)

where 0Hijk�, . . . ,
2Hijk� are the cartesian components of fourth-order tensor-
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valued functions 0H, . . . , 2H depending on the damage tensor ω and the
anisotropy tensor A . The canonical form (4.81) is a representation in three
terms, which are the contributions of zero, first, and second orders in the
stress tensor σ influenced by the functions 0H , 1H , and 2H , respectively.
In the isotropic special case the coefficient tensors 0H, . . . , 2H can be ex-
pressed as fourth-order spherical tensors:

Hijk� =
1

2
(δikδj� + δi�δjk)ϕλ , λ = 0, 1, 2 . (4.82)

In that case, the canonical form (4.81) simplifies to the standard form

dij = fij(σ) = ϕ0δij + ϕ1σij + ϕ2σ
(2)
ij , (4.83)

from which we obtain by transvection,

dijσji = ϕ0δijσji + ϕ1σijσji + ϕ2σikσkjσji ,

a set of three irreducible invariants

Sλ = trσλ, λ = 1, 2, 3, (2.85)

alternatively to the integrity basis (2.24):

J1 ≡ S1, J2 ≡ 1

2

(
S2 − S2

1

)
, J3 ≡ 1

6

(
2S3 − 3S2S1 + S3

1

)
.

(2.86a,b,c)
It may be impossible to find a canonical form (4.81) for all types of

anisotropy. However, for the most important kinds of anisotropy, namely
transversely isotropic and orthotropic behavior, the constitutive equation
(4.80) can be expressed in the canonical form (4.81) as has been illustrated
by BETTEN (1982b; 1983b; 1987c; 1998), for instance.

When formulating constitutive equations such as (4.79a) one has to take
the following into account: The undamaged case (ω → 0) immediately
leads to the secondary creep stage, while the rate-of-deformation tensor d

approaches infinity as ω approaches the unit tensor δ. In view of polynomial
representations of constitutive equations it is convenient to use the tensor

Dij := (δij − ωij)
(−1) ≡ ψ(−1)

ij (4.84)

as an argument tensor instead of the tensorial damage variable ω. Thus, sim-
ilar to (4.79a,b), expressions such as
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dij = fij(σ,D,A) and
◦
Dij = gij(σ,D,A) (4.85a,b)

must be taken into consideration, i.e., an irreducible set of invariants and
tensor generators of the representation (4.80) involving the argument ten-
sors σ, D, A should be constructed. Some possible representations of such
functions are discussed in the following.

In order to find irreducible sets of invariants for tensors of order higher
than two, BETTEN (1987c; 2001a; 2001c) proposed three methods:

❒ by way of an extended characteristic polynomial
(Section 6.4.4),

❒ application of a modified LAGRANGE-multiplier method
(Section 6.4.5),

❒ combinatorial method
(Section 6.4.6),

where the third one is most effective and not restricted to produce irreducible
invariants, but also leads to results on tensor-valued terms called tensor gen-
erators. For instance, the expressions

δijδk�Ak� ≡ Akkδij , δikδj�Ak� ≡ Aij , (4.86a,b)

δipδqrδsjApqArs ≡ AirArj ≡ A(2)
ij , (4.86c)

are the three irreducible tensor generators of a second-order tensor Aij or
σij in (4.83). Forming the traces (i = j) in (4.86a,b,c) we immediately arrive
at the three irreducible invariants (2.85). Note that trδ ≡ δjj = 3.

Other examples are the transvections

δipδqrδsjApqBrs ≡ AirBrj , (4.87a)

δipδqrδstδuvδwjApqrsAtuvw ≡ AirrsAsuuj , (4.87b)

which are index-combinations with the two free indices ij, that is, second-
order tensor-valued terms, the traces of which are invariants.

Our special developed computer programm forms all possible index-
combinations, such as (4.87a,b), and selects all redundant elements by con-
sidering index-symmetries. Thus, we find sets of irreducible tensor-generators,
which are complete, too. Some results are listed in Table 6.5 of Section 6.4.6.



5 Creep Behavior of Thick-Walled Tubes

The expansion of a long cylindrical tube by uniform internal pressure is an
eternal problem because of its connection with the autofrettage of pressure
vessels; the process has also been used to determine the influence of a stress
gradient on the criterion of yielding. Therefore, many scientists have exam-
ined the problem. Very detailed statements are given e.g. by HILL (1950),
SZABÓ (1964) and BUCHTER (1967).

The solution of the stress and deformation problem of thick-walled tubes
under axially symmetric loading in the elastic range is given by the familiar
LAMÉ equations (LAMÉ, 1852). The elastic-plastic state in a thick-walled
tube was first investigated by TURNER (1909).

The afore-mentioned publications are not concerned with problems of
creep in thick-walled tubes. The creep-behavior is treated for example by
BAILEY (1935), DAVIS (1960), RIMROTT (1959), RIMROTT, MILLS and
MARIN (1960), BESSELING (1962), ODQUIST and HULT (1962), ODQUIST

(1966), MARIOTT (1972), FAIRBAIRN and MACKIE (1972), ZYCZKOWSKI

and SKRZYPEK (1972), PENNY and MARIOTT (1971), SETH (1972), BHAT-
NAGAR and ARYA (1974), and HULT (1974).

In this chapter the creep-behavior of an elastic-plastic thick-walled cylin-
der subjected to a constant internal pressure is investigated. The tube may
be partly plastic (region I) and partly elastic (region II) at time zero. Then
creep will occur in the regions I and II , while the internal pressure is kept
constant.

5.1 Method to discribe the Kinematics

Let the current internal and external radii of the tube be denoted by a and b,
and their initial values by a0 and b0 (Fig. 5.1). The thick-walled cylinder is
subjected by uniformly distributed pressure p0 at time t = 0, so that there is
a plastic region (I) and an elastic (II) one. Generally we can say that the tube
is double-walled and that the material-behavior is different in the regions I
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and II . The radius of the boundary between the two regions is denoted by c
(initial value c0).

u

t = 0 t > 0
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region II

b
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Fig. 5.1 Thick-walled cylindrical tube subjected to internal pressure

If region I is plastic-rigid and region II is elastic at time t = 0, the initial
value c0 can be calculated by TURNER’s well-known equation (HILL, 1950;
TURNER, 1909). Another possibility will be found in this chapter.

As a result of creep by constant internal pressure p = p0, an arbitrary
point Q0 is carried into Q, while the internal radius a0, the external radius
b0, and the boundary c0 increase to a = a(t), b = b(t) and c = c(t), respec-
tively. This motion can be described in body-fixed or space-fixed coordinate
systems, e.g. in rectangular cartesian coordinate systems:

xα = xα(xi
0, t) ⇔ xi

0 = xi
0(x

α, t) ≡ xα
0 , (5.1a,b)

in which the material coordinates are denoted by the kernel letter x0 and
Latin indexes, whereas the spatial coordinates are denoted by the kernel let-
ter x and Greek indexes.
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The description (5.1b) is a dual form of (5.1a), or vice versa, i.e.: one
form is carried into the other by interchanging the kernel letters and the
indexes. This principle of duality (TRUESDELL and TOUPIN, 1960) is often
used in this book 1.

To describe the kinematics of circular cylinders it is expedient to use
cylindrical polar coordinates instead of (5.1a,b):

yα = yα(yi
0, t) ⇔ yi

0 = yi
0(y

α, t) ≡ yα
0 (5.2a,b)

with

yα =
{
y1, y2, y3

} ≡ {r, ϕ, z} , (5.3a)

yi
0 =

{
y1
0, y

2
0, y

3
0

} ≡ {r0, ϕ0, z0} . (5.3b)

In connection with (5.3a,b), the relation between (5.1a,b) and (5.2a,b) is
given by:⎧⎪⎨

⎪⎩
x1 = y1 cos y2 ≡ r cosϕ

x2 = y1 sin y2 ≡ r sinϕ

x3 = y3 ≡ z

⎫⎪⎬
⎪⎭⇔

⎧⎪⎨
⎪⎩
x1

0 = y1
0 cos y2

0 ≡ r0 cosϕ0

x2
0 = y1

0 sin y2
0 ≡ r0 sinϕ0

x3
0 = y3

0 ≡ z0

⎫⎪⎬
⎪⎭ ,
(5.4a,b)

so that the metric tensors are:

gαβ =
∂xγ

∂yα

∂xγ

∂yβ
=

⎛
⎜⎜⎜⎝

1 0 0

0 r2 0

0 0 1

⎞
⎟⎟⎟⎠⇔ g0ij =

∂xk
0

∂yi
0

∂xk
0

∂yj
0

=

⎛
⎜⎜⎜⎝

1 0 0

0 r20 0

0 0 1

⎞
⎟⎟⎟⎠ .

(5.5a,b)
The fundamental quantities for the analysis of local properties of the de-

formation are the two sets of the material deformation gradient and spatial
deformation gradient :

Fα
i =

∂xα

∂xi
0

=

√
g(αα)

g0(ii)

∂yα

∂yi
0

⇔ Gi
α =

∂xi
0

∂xα
=

√√√√ g0(ii)i

g(αα)

∂yi
0

∂yα
,

(5.6a,b)
where no sum on i and α is carried out. The deformation gradient is a double
tensor (MICHAL 1927; 1947) of rank two, which maps a line element vector

1 This is similar to the principle of dualtity of the projective geometry and of the determi-
nants theory (REICHARDT, 1968).
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dsi0 of the reference configuration (t = 0) onto the corresponding infinitesi-
mal vector dsα of the actual or current configuration (t > 0):

dsα = Fα
i ds

i
0 ⇔ dsi0 = Gi

α ds
α , (5.7a,b)

i.e. the deformation gradient maps the neighbourhood of a point x0 onto the
neighbourhood of its image x .

For plane strain deformation⎧⎪⎨
⎪⎩
y1 ≡ r = r(r0, ϕ0)

y2 ≡ ϕ = ϕ(r0, ϕ0)

y3 ≡ z = z0

⎫⎪⎬
⎪⎭ ⇔

⎧⎪⎨
⎪⎩
y1
0 ≡ r0 = r0(r, ϕ)

y2
0 ≡ ϕ0 = ϕ0(r, ϕ)

y3
0 ≡ z0 = z

⎫⎪⎬
⎪⎭ (5.8a,b)

the matrices of the deformation gradient (5.6a,b) together with (5.5a,b) are
given by:

Fα
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂r

∂r0

1

r0

∂r

∂ϕ0
0

r
∂ϕ

∂r0

r

r0

∂ϕ

∂ϕ0
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⇔ Gi
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂r0
∂r

1

r

∂r0
∂ϕ

0

r0
∂ϕ0

∂r

r0
r

∂ϕ0

∂ϕ
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.9a,b)
The special case of cylindrical expansion{

r = r0 + u(r0)

ϕ = ϕ0 ; z = z0

}
⇔

{
r0 = r − u(r)
ϕ0 = ϕ ; z0 = z

}
(5.10a,b)

leads to:

Fα
i =

⎛
⎜⎜⎜⎜⎝

1 +
∂u

∂r0
0 0

0 1 +
u

r0
0

0 0 1

⎞
⎟⎟⎟⎟⎠ ⇔ Gi

α =

⎛
⎜⎜⎜⎜⎝

1 − ∂u

∂r
0 0

0 1 − u

r
0

0 0 1

⎞
⎟⎟⎟⎟⎠ .

(5.11a,b)
In (5.10a,b) and (5.11a,b) u is the displacement in radial direction. As seen
in (5.10a,b), if we use the principle of duality, we must notice that

dual [u(r0)] = −u(r) vice versa: dual [u(r)] = −u(r0) . (5.12a,b)
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As a suitable measure of deformation the mixed-variant logarithmical
tensor [HENCKY’s strain tensor (HENCKY, 1925), LUDWIK-deformations
(LUDWIK, 1909) ] is used:

εij =
def

1

2
ln
(
F i

αF
α
j

) ⇔ εαβ =
def

−1

2
ln
(
Gα

i G
i
β

)
, (5.13a,b)

which can be decomposed into a sum of an isochoric distortion part and a
part of volume change (RICHTER, 1949). The definitions (5.13a,b) combined
with (5.11a,b) lead to:

εij =

⎛
⎜⎜⎜⎜⎜⎝

ln

(
1 +

∂u

∂r0

)
0 0

0 ln

(
1 +

u

r0

)
0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠

89

εαβ = −

⎛
⎜⎜⎜⎜⎝

ln

(
1 − ∂u

∂r

)
0 0

0 ln
(
1 − u

r

)
0

0 0 0

⎞
⎟⎟⎟⎟⎠ .

(5.14a,b)

The argument of the logarithmic function in (5.13a) is called the CAUCHY

strain tensor (MACVEAN, 1968) or sometimes also the right CAUCHY-
GREEN tensor (BECKER and BÜRGER, 1975; LEIGH, 1968; TRUESDELL,
1977), and the square root of the argument is known as ”rechte Streckung”
(MACVEAN, 1968), as ”Rechts-Streck-Tensor” (BECKER and BÜRGER,
1975) or as right stretch tensor (LEIGH, 1968; TRUESDELL, 1977). Often
the HENCKY strain tensor (5.13a) is expressed in the form 2

εij =
1

2
ln
(
gik
0 gkj

)
, (5.15)

in which the material contravariant metric tensor gij
0 at time t = 0 is calcu-

lated from (5.5b) or given by

gij
0 =

∂yi
0

∂xk
0

∂yj
o

∂xk
o

=

⎛
⎜⎜⎜⎝

1 0 0

0 1/r20 0

0 0 1

⎞
⎟⎟⎟⎠ (5.16)

2 This form is used by LEHMANN (1960; 1962; 1972).
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and the spatial covariant metric tensor gij at time t > 0 can be determined
in connection with (5.5a) by the formula

gij =
∂yα

∂yi
0

∂yβ

∂yj
0

gαβ =
∂xγ

∂yi
0

∂xγ

∂yj
0

(5.17a)

or combined with (5.4a) and (5.l0a):

gij =

⎛
⎜⎜⎜⎜⎝

(
∂r

∂r0

)2

0 0

0 r2 0

0 0 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(
1 +

∂u

∂r0

)2

0 0

0 (r0 + u)2 0

0 0 1

⎞
⎟⎟⎟⎟⎠ . (5.17b)

Formula (5.15), combined with the metric tensors (5.16) and (5.17b), results
in (5.14a).

5.2 Isochoric Creep Behavior

Creep deformations of metals are from a similar character as pure plastic
deformations, i.e. they will usually 3 be uninfluenced if a hydrostatic pressure
is superimposed. Therefore, such creep behavior can be treated with methods
of the ”mathematical theory of plasticity”, e.g. the ”theory of the plastic
potential” (HILL, 1950; MISES, 1928) can be used in the mechanics of creep
(ODQUIST and HULT, 1962; BETTEN, 1975a).

The isochoric deformation is defined by the condition that volumes are
unaltered. The change in volume can be expressed by the trace of the loga-
rithmical strain tensor (RICHTER, 1949; BETTEN, 2001a). From (5.13a,b)
we therefore have the necessary and sufficient local conditions for an iso-
choric deformation

εii = tr

[
1

2
ln
(
F i

αF
α
j

)]
= ln [det (Fα

i )]
!
= 0 , (5.18a)

εαα = − tr

[
1

2
ln
(
Gα

i G
i
β

)]
= − ln

[
det
(
Gi

α

)] !
= 0 . (5.18b)

As an alternative to (5.18a), we get from (5.15) combining with the familiar
rule for the multiplication of two determinants the incompressibility condi-
tion
3 The usual assumption of plastic incompressibility can be considered as a special case

(BETTEN, 1975a; 1977).



5.2 Isochoric Creep Behavior 91

εii = tr

[
1

2
ln
(
gik
0 gkj

)]
=

1

2
ln
[
det
(
gik
0 gkj

)]
=

1

2
ln

(
g

g0

)
!
= 0 ,

(5.19)
in which g represents the determinant of the covariant metric tensor (5.17b),
whereas g0 is the same determinant at time t = 0, i.e. we obtain g0 from
(5.17b) or g for u = 0.

The conditions (5.18a,b) are equivalent to requiring that the JACOBIan
determinants of the transformations (5.1a,b) must have the value one. Hence,
combining this with (5.6a,b), the incompressibility can be expressed by:

J ≡
∣∣∣∣∂xα

∂xi
0

∣∣∣∣ = det (Fα
i )

!
= 1 ⇔ J (−1) ≡

∣∣∣∣ ∂xi
0

∂xα

∣∣∣∣ = det
(
Gi

α

) !
= 1 .

(5.20a,b)
These requirements, together with (5.11a,b) and (5.12a,b), lead to a differen-
tial equation and its dual, respectively, for the displacements u = u(r0) and
u = u(r):

∂u

∂r0
+
u

r0
+
u

r0

∂u

∂r0
= 0 ⇔ ∂u

∂r
+
u

r
− u

r

∂u

∂r
= 0 , (5.21a,b)

which are from the separable type and which are solved by

u = u(r0; t) =
√
r20 + λ2 − r0 ⇔ u = u(r; t) = r −

√
r2 − κ2 .

(5.22a,b)
Therefore,

r = r0

√
1 + (λ/r0)

2 ⇔ r0 = r

√
1 − (κ/r)2 , (5.23a,b)

after using (5.10a,b).
In (5.22a,b) and (5.23a,b) the time functions λ = λ(t) and κ = κ(t) are

constants of integration relative to r0 and r. From (5.22a,b) and (5.23a,b) we
see:

λ(t) ≡ κ(t) , dual
[
λ2(t)

]
= −λ2(t) . (5.24a,b)

From (5.14a,b), combined with (5.22a,b) and (5.24a,b), we find the com-
ponents of the strain tensor in engineering notation (ε11 ≡ εr; ε22 ≡ εϕ;
ε33 ≡ εz = 0):

εϕ = −εr =
1

2
ln
[
1 + (κ/r0)

2
]

⇔ εϕ = −εr =
1

2
ln

1

1 − (κ/r)2
.

(5.25a,b)
With these components the equivalent creep strain
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ε =
√

2εijε
j
i/3 (5.26)

is determined by

ε =
2√
3
εϕ =

1√
3

ln

[
1 +

(
κ

r0

)2
]

=
1√
3

ln
1

1 −
(κ
r

)2 , (5.27)

and, using (5.23b), the creep strain-rate ε̇ is given by

ε̇ =
2√
3

κ̇κ

r20 + κ2
=

2√
3

κ̇κ

r2
=

2√
3

ṙ

r
. (5.28)

These equations and a creep law ε̇ = ε̇(σ) lead to the time functions a = a(t)
and b = b(t) for the cylindrical expansion and to the boundary function
c = c(t) between regions I and II (Fig. 5.1).

In the following, the power law of NORTON-BAILEY (BAILEY, 1935;
NORTON, 1929),

ε̇ = Kσn , (5.29)

is assumed, and is used for the regions I and II in Fig. 5.1 with different
material constants KI , nI and KII , nII , respectively. By considering (5.28)
and substituting r = c we thus get:

2√
3

ċ

c
=

⎧⎨
⎩KI [σ(c; t)]nI

KII [σ(c; t)]nII

(5.30)

and because of compatibility:

2√
3

ċ

c
=
√
KIKII [σ(c; t)](nI+nII)/2 . (5.31)

In (5.29) or (5.30) and (5.31), σ or σ(c; t) is the equivalent stress, which can
be calculated by VON MISES’ criteria (MISES, 1928):

σ =

√
3σ′ijσ′

j
i

/
2 , (5.32)

where σ′ij = σi
j − σk

kδ
i
j/3 is the deviatoric, or reduced, stress tensor.

In the case of multi-axial stress, the law (5.29) can be generalized accord-
ing to the theory of invariants (ODQUIST and HULT, 1962; BETTEN, 1975d)
combined with the quadratic plastic potential of MISES (1928), which agrees
with the second deviatoric invariant J ′2:
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ε̇ij =
3

2
K(3J ′2)

(n−1)/2 σ′ij . (5.33)

The hypotheses of incompressibility, isotropy, coaxiality, and independence
of superimposed hydrostatic pressure is applied in this case, too.

From (5.33) we find that for plane strain (ε̇33 ≡ ε̇z = 0) the deviatoric
stress component σ′33 ≡ σ′z vanishes. Hence

σz = (σr + σϕ) /2 , (5.34)

and the equivalent stress (5.32) becomes:

σ =
√

3 (σϕ − σr) /2 . (5.35)

After calculating the circumferential and radial stresses, σϕ and σr, and sub-
stituting these expressions in (5.35), we obtain from the differential equation
(5.31) by separating the variables c, t and by integrating the boundary r = c
between regions I , II as a function of time, c = c(t),

√
KIKII σ

(nI+nII)/2
F t =

2√
3

c∫
co

[
σF

σ(c∗)

]nI+nII
2 dc∗

c∗
. (5.36)

The left side in (5.36) is a dimensionless time, in which all material constants
are contained. The tensile yield stress σF can be considered as an initial
value, which is reached at time t = 0 on the elastic-plastic boundary r0 = c0,
i.e.: σF ≡ σ0(c0).

The calculation of the circumferential and the radial stresses, σϕ and σr

in (5.35) is dealt with in the next section.

5.3 Stress Field

For the thick-walled tube , loaded as in Fig. 5.1, the derivatives of stresses
with respect to the variables z and ϕ are equal to zero. Thus, the equation of
internal equilibrium take the simple form:

σϕ − σr = r ∂σr/∂r . (5.37)

The left side in (5.37) can be expressed by

σϕ − σr =

(
2√
3

) 1+n
n

K− 1
n (κ̇κ)

1
n r−

2
n , (5.38)
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if the relations (5.28), (5.29) and (5.35) are used. Thus the integration of
(5.37) leads to

σr = A(c/r)2/n +B (5.39)

with

A = A(t) ≡ −n
2

(
2√
3

) 1+n
2
(
κ̇κ

Kc2

) 1
n

= −n
2

(
2√
3

) 1+n
2
(
ċ

Kc

) 1
n

,

(5.40)
where the relation κ̇κ = ċc, resulting from (5.23b), is used. On the other
handA = A(t) and alsoB = B(t) are, in respect of the variable r, constants
of integration, which are determined from the boundary conditions. For that
purpose we formulate equation (5.39) for the two regions I and II in Fig. 5.1,
i.e.

region I: a ≤ r ≤ c with n = nI ; K = KI (5.41a)

region II: c ≤ r ≤ b with n = nII ; K = KII . (5.41b)

Hence,

Iσr = IA(c/r)2/nI + IB for r = 〈a, c〉 , (5.42a)
IIσr = IIA(c/r)2/nII + IIB for r = 〈c, b〉 . (5.42b)

Therefore, we have to determine four constants of integration. To do this, we
can use the two boundary conditions

Iσr(a, t) = −p ≡ −p0H(t) , IIσr(b, t) = 0 (5.43a,b)

(p internal pressure, H(t) HEAVISIDE-function) and the two conditions of
continuity

Iσr(c, t) = IIσr(c, t) ,

[
∂Iσr

∂r

]
r=c

=

[
∂IIσr

∂r

]
r=c

. (5.44a,b)

Thus

IA = −p nI

nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] , (5.45a)

IIA = (nII/nI)
IA , (5.45b)

IB = −p− IA(c/a)2/nI , IIB = −IA(c/b)2/nII . (5.46a,b)
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From the equations (5.40) and (5.45a,b), the boundary between regions I and
II can be immediately determined as a function of time, c = c(t). For this it
is not necessary to calculate the equivalent stress (5.35) from the stress field
as formula (5.36) requires.

Inserting the constants of integration (45a,b) and (5.46a,b) into equations
(5.42a,b), the final expressions for the radial stresses are then:

a ≤ r ≤ c :

Iσr

p
= −

nI

[( c
r

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

]
nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] , (5.47a)

c ≤ r ≤ b :

IIσr

p
= −

nII

[( c
r

)2/nII −
(c
b

)2/nII

]
nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] . (5.47b)

With these solutions we immediately obtain the circumferential stresses from
the equilibrium equation (5.37):

a ≤ r ≤ c :

Iσϕ

p
=

2
( c
r

)2/nI − nI

[( c
r

)2/nI − 1

]
− nII

[
1 −
(c
b

)2/nII

]
nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] ,

(5.48a)
c ≤ r ≤ b :

IIσϕ

p
=

2
( c
r

)2/nII − nII

[( c
r

)2/nII −
(c
b

)2/nII

]
nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] . (5.48b)

Finally, the longitudinal stresses Iσz and IIσz can be calculated by placing
the solutions (5.47a,b) and (5.48a,b) into equation (5.34).
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The radial stresses (5.47a,b) are continuous and have a continuous first
derivative in the whole range r = 〈a, b〉, especially on the boundary r = c,
whereas the circumferential stresses (5.48a,b) and the longitudinal stresses
are indeed continuous everywhere in the tube, but they have not a continuous
first derivative at r = c. For linear viscoelastic material in region I with
nI = 1 or in region II with nII = 1 the longitudinal stress Iσz or IIσz

respectively, is independent of the variable radius r in region I or region II .
The fact that the plane strain axial loadL agrees with the closed-end force

may be shown as follows: using the plane strain condition (5.34), together
with the solutions (5.47a,b) and (5.48a,b), we see

L = 2π

c∫
a

Iσz r dr + 2π

b∫
c

IIσz r dr = πp2a2 , (5.49)

which is just the closed-end condition. Without needing to use the solutions
(5.47a,b) and (5.48a,b), we immediately have the result (5.49) from (5.34)
employing the equilibrium equation (5.37):

L = 2π

b∫
a

σz r dr = π

b∫
a

∂
(
r2σr

)
∂r

dr = π
[
r2σr

]b
a

(5.50)

and the boundary conditions (5.43a,b).
The solutions (5.47a,b) and (5.48a,b) consist of terms like ±n [x2/n − 1

]
,

which approach ±2 lnx as n approaches infinity:

lim
n→∞n

[
x2/n − 1

]
= 2 lnx . (5.51)

Considering this limit, we find in (5.47a,b) and (5.48a,b) some special cases,
which are listed in Table 5.1.

The equivalent stress (5.35) in regions I and II follows from the stress
field (5.47a,b)/(5.48a,b):

Iσ(r, t)

σ(c, t)
=
( c
r

)2/nI

,
IIσ(r, t)

σ(c, t)
=
( c
r

)2/nII

. (5.52a,b)

In these relations, σ(c, t) is the equivalent stress on the boundary r = c:

σ(c, t) =

√
3p

nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

] . (5.53)
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Table 5.1 Some special cases of stress field (5.47a,b)/(5.48a,b)

Special cases Behavior Authors

c→ a or c→ b
nI = nII = n

creep with nI = nII = n
creep with c = a
or c = b

(BAILEY, 1935),
(ODQUIST and
HULT, 1962)

nI = nII = 1 elastic
(LAMÉ, 1852),
(TIMOSHENKO,
1934)

nI = nII = n→ ∞
nI → ∞
nII = 1

plastic-rigid
plastic-rigid in region I
elastic in region II

(TURNER, 1909),
(HILL, 1950),
(SZABÓ, 1964)

Considering (5.51), we find the following limits:

lim{
nI
nII

}
→∞

Iσ(r, t) = lim{
nI
nII

}
→∞

IIσ(r, t) ≡ σF =

√
3 pT

2 ln
b

a

(5.54)

from (5.52a,b) and (5.53) with pT as the pressure for the fully-plastic tube
(limit pressure) and

lim{
nI
nII

}
→1

Iσ(r, t) = lim{
nI
nII

}
→1

IIσ(r, t) ≡ eσ =

√
3 p(a/r)2

1 − (a/b)2
. (5.55)

This equation is true until the elastic equivalent stress eσ on the internal ra-
dius r = a approaches the yield stress σF . The corresponding yield pressure
pF is then given by:

pF = σF

[
1 − (a/b)2

]/√
3 . (5.56)

Eventually, the residual stresses are obtained (if a possible BAUSCHINGER

effect is neglected) by subtracting the corresponding elastic stress distribu-
tion (nI = nII = 1) from (5.47a,b), (5.48a,b) and (5.34), i.e.:

Eσr;ϕ;z =
def
σr;ϕ;z (r, t;nI , nII) − σr;ϕ;z(r, t; 1, 1) . (5.57)

5.4 Expansion and Failure Time

To describe the expansion a = a(t) and b = b(t) of the thick-walled tube as
result of creep, we use the solution (5.36) and the equivalent stress (5.53):
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τ =
2√
3

c∫
co

{
nI

[(
c∗

a∗

)2/nI

− 1

]
+ nII

[
1 −
(
c∗

b∗

)2/nII

]}nI+nII
2 dc∗

c∗
.

(5.58)
The variables a∗ and b∗ must be expressed by the integration variable c∗

when considering (5.23a,b) as shown later. The integration (5.58) leads to a
dimensionless time

τ =
def

√
KI KII

(√
3 p
)(nI+nII)/2

t , (5.59)

containing the material constantsKI;II , nI,II and the internal pressure p.
From the creep law (5.29), which is used in regions I and II (Fig. 5.1)

with different material constantsKI , nI andKII , nII (5.41a,b), respectively,
we get the initial creep rate of the boundary c0 at time t = 0+:

ε̇0(c0) =

√
KI KII

(√
3 p
)(nI+nII)/2

{
nI

[(
c0
a0

)2/nI

− 1

]
+ nII

[
1 −
(
c0
b0

)2/nII

]}nI+nII
2

,

(5.60)
after using (5.53). Immediately before creep beginning, t = 0− , the rela-
tionship between the internal pressure p0 and the boundary c0 is thus given
by

nI0

[(
c0
a0

)2/nI0

− 1

]
+ nII0

[
1 −
(
c0
b0

)2/nII0
]

=

√
3 p0

σ0(c0)
. (5.61)

For example, from (5.61) we find TURNER’s formula (TURNER, 1909) for
a cylindrical tube, which is stressed elastic-plastic immediately before the
beginning of creep (nI0 → ∞, nII0 = 1)

1 − (c0/b0)
2 + 2 ln (c0/a0) =

√
3 p0/σF (5.62)

in using the limits (5.51) and σ0(c0) → σF . The relation (5.61) or its special
case (5.62) characterizes the initial state of the cylinder (loading state be-
fore time-point at which creep begins). Because of (5.51), the relation (5.61)
immediately leads to the limit pressure (5.54) for nI0 = nII0 → ∞ or for
c0 → b0; nI0 → ∞, whereas the yield pressure (5.56) follows from (5.61)
when c = a0, nII0 = 1 is inserted. If r = a, r = b, r = c successively in
(5.23a) or (5.23b) we have the relations
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a2 − a2
0 = c2 − c20 = b2 − b20 , (5.63a,b)

which express the incompressibility. Then the integral (5.58) combined with
(5.59) and (5.60) takes the form

ε̇0(c0)t =
2/
√

3

[f(ζ = 1)]
nI+nII

2

1∫
ζ

[f (ζ∗)]
nI+nII

2
dζ∗

ζ∗
(5.64)

in which
ζ = ζ(t) ≡ c0/c with 0 ≤ ζ ≤ 1 (5.65)

is introduced as a dimensionless function of time to describe the expansion
of the boundary c = c(t) between regions I and II . Thus, the beginning of
creep is characterized by ζ = 1, whereas the failure state is approached as
ζ approaches zero, i.e. the creep-failure time is then defined as the time at
which the strains reach infinity. The function f(ζ) in (5.64) is defined as:

f(ζ) = nI

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎣

1

1 −
[
1 −
(
a0

c0

)2
]
ζ2

⎤
⎥⎦

1/nI

− 1

⎫⎪⎪⎬
⎪⎪⎭

+ nII

⎧⎪⎪⎨
⎪⎪⎩1 −

⎡
⎢⎣

1

1 +

[(
b0
c0

)2

− 1

]
ζ2

⎤
⎥⎦

1/nII

⎫⎪⎪⎬
⎪⎪⎭

. (5.66)

The solution (5.64) formally agrees e.g. with the analogous solutions of
compression creep, of elastic-plastic bending creep and of elastic-plastic tor-
sion creep. The differents are seen in the definition of the variable ζ and in
the function f(ζ), which correspond to the special problem (BETTEN, 1971).

The general solution (5.64) contains RIMROTT’s classical solution as a
special case for nI = nII (RIMROTT, 1959). To show this informal transi-
tion, the variable ζ ≡ c0/c in (5.64) is first expressed by the new introduced
variable ω ≡ a0/a. Hence, from (5.63a),

ζ = (c0/a0)ω

/√
1 +
[
(c0/a0)

2 − 1
]
ω2 . (5.67)

Therefore, equation (5.64) combined with (5.60) leads to the simplification
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K
(√

3 p
)n
t =

2nn

√
3

1∫
ω

⎡
⎢⎢⎣1 −

⎛
⎜⎝

1

1 +

[(
b0
c0

)2

− 1

]
ω∗2

⎞
⎟⎠

1/n
⎤
⎥⎥⎦

n

dω∗

ω∗

(5.68)
after inserting nI = nII ≡ n andKI = KII ≡ K. Substituting

x ≡
{

1 +
[
(b0/a0)

2 − 1
]
ω2
}−1/n

, (5.69)

equation (5.68) can be written in the form:

K
(√

3 p
)n

nn
t =

n√
3

x2∫
x1

(1 − x)n

1 − xn

dx

x
, (5.70)

where the lower and upper limit of integration are respectively given by

x1 = (a0/b0)
2/n and x2 =

{
1 +
[
(b0/a0)

2 − 1
]
ω2
}−1/n

.

(5.71a,b)
The theoretical failure state is characterized by an infinite expansion a→ ∞
i.e. by ω → 0 or because of (5.71b) by x2 → 1. From (5.27) and (5.23a,b)
we have the equivalent strain ε = 2[ln(r/r0)]/

√
3, which takes the value

εa = 2 [ln (1/ω)] /
√

3 (5.72)

on the internal radius r = a. Thus, the upper limit of integration (5.71b)
becomes:

x2 =

{
(a0/b0)

2 exp
(√

3 εa
)

1 + (a0/b0)
2 [exp

(√
3 εa
)− 1

]
}1/n

(5.73)

and has the limit one as εa approaches infinity at the failure time. The in-
tegral (5.70) with the limits of integration (5.71a) and (5.73) is known as
RIMROTT’s solution (RIMROTT, 1959).

5.5 Numerical Computation and Examples

For numerical computation it is expedient to introduce the dimensionless
variables

ξ ≡ (r − a)/(b− a) , η ≡ (c− a)/(b− a) (5.74a,b)
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with:

ξ =

{
〈0, η〉 ∧

= region I ,

〈η, 1〉 ∧
= region II .

(5.75)

Thus, at every time-point the inner and outer surface of the cylinder are
characterized by ξ = 0 and ξ = 1, respectively, whereas the time func-
tion η = η(t) characterizes the position of the boundary between regions I
and II in the range ξ = 〈0, 1〉 at time t.

In all solutions which are numerically represented below, the time depen-
dent quotients c/a, c/b and c/r can be expressed by the variables (5.74a,b):

c/a = 1 + (b/a− 1)η , (5.76a)

c/b = a/b+ (1 − a/b)η , (5.76b)

c/r = [1 + (b/a− 1)η] / [1 + (b/a− 1)ξ] . (5.76c)

The corresponding initial values are given by:

c0/a0 = 1 + (b0/a0 − 1)η0 , (5.77a)

c0/b0 = a0/b0 + (1 − a0/b0)η0 . (5.77b)

In these the parameter b0/a0 characterizes the initial geometry of the cylinder
and, combining (5.77a,b) with (5.62), the value η0 ≡ (c0 − a0)/(b0 − a0)
can be interpreted as a measure of the loading state immediately before the
onset of creep (Fig. 5.2).

Fig. 5.2 The loading state immediately before creep beginning using (5.62) and 5.77a,b)
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In (5.76a,b,c) we must insert the quotient b/a as a function of time. To do
this we first express the time functions a = a(t) and b = b(t) as functions of
ζ ≡ c0/c

a0/a = (a0/c0)ζ
/{

1 − [1 − (a0/c0)
2
]
ζ2
}1/2

, (5.78a)

b0/b = (b0/c0)ζ
/{

1 +
[
(b0/c0)

2 − 1
]
ζ2
}1/2

, (5.78b)

in using (5.63a,b) and find:

b/a =
{
1 +
[
(b0/c0)

2 − 1
]
ζ2
}1/2

/{
1 − [1 − (a0/c0)

2
]
ζ2
}1/2

. (5.79)

Inserting (5.79) and (5.78a) in (5.74b), we have a relation between η and ζ:

η =

1 −
{

1 −
[
1 −
(
a0

c0

)2
]
ζ2

}1/2

{
1 +

[(
b0
c0

)2

− 1

]
ζ2

}1/2

−
{

1 −
[
1 −
(
a0

c0

)2
]
ζ2

}1/2
(5.80)

with the limits
lim
ζ→1

η =
c0 − a0

b0 − a0
≡ η0 (5.81a)

and

lim
ζ→0

η =
c20 − a2

0

b20 − a2
0

=
2 + (b0/a0 − 1)η0

1 + b0/a0
η0 , (5.81b)

which are approached at the beginning of creep and in the state of failure,
respectively (Fig. 5.3).

Because of (5.79) and (5.80), the quotients (5.76a,b,c) can be expressed
by ζ, too. Therefore, the time influence, e.g. on the stress field (5.47a,b),
(5.48a,b), can be measured by the time function ζ = ζ(t). This function
is obtained from (5.64) by numerical integration. If the cylinder is elastic-
plastic stressed at time zero, the function ζ = ζ(t) is calculated from (5.64)
together with (5.60), (5.62) and (5.66), i.e. from:

κσν
F t =

2
/√

3[
1 −
(
c0
b0

)2

+ 2 ln
c0
a0

]ν

1∫
ζ

[f(ζ∗)]ν
dζ∗

ζ∗
. (5.82)
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0
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0
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 −
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Fig. 5.3 The position of the boundary between regions I and II using equation (5.80)

In equation (5.82) the parameter κ ≡ √
KI KII is the geometrical mean

value from the material constants KI , KII , while ν ≡ (nI + nII)/2 repre-
sents the arithmetical mean value from the exponents nI , nII .

The integral in (5.82) is numerically evaluated for a sufficient number
of ζ-values in the range ζ = 〈0, 1〉 by the subroutine ROMINT, which
uses ROMBERG’s method of numerical integration (ENGELN-MÜLLGES and
REUTER, 1993). The integration with ζ = 0 immediately leads to the value
tcr, which is called the failure time.

ROMBERG’s integration method is a very suitable one, if digital comput-
ers are used (ENGELN-MÜLLGES and REUTER, 1993).

Some results of the mentioned numerical evaluation of the integral in
(5.82) are represented in Fig. 5.4.

In addition to Fig. 5.4, the cylindrical expansion a = a(t), b = b(t) is
shown in Fig. 5.5.

We clearly see the influence of the initial loading state expressed by the
parameter η0 taken from Fig. 5.2. As expected, greater η0-values lead to
shorter failure times tcr, which can be seen from Fig. 5.4 on the time axis. In
Table 5.2 more parameter sets are listed.

From (5.82), the numerical evaluation of the stress distributions (5.47a,b),
(5.48a,b) and of the equivalent stresses (5.52a,b), combined with (5.76a,b,c),
(5.79), and (5.80), is based on the time function ζ = ζ(t), i.e., the time
influence can be considered by the time parameter ζ = 〈0, 1〉, which can be
taken from Fig. 5.4.
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Table 5.2 Creep-failure time tcr = lim t(ζ) calculated from (5.82)

√
K1K11σ

(n1 + n11/2)
F tcr

n {nI , nII} η0 = 0 η0 = 0.25 η0 = 0.5 η0 = 0.75 η0 = 1

{2,1} 1.150 0.546 0.404 0.342 0.313
{4,1} 0.837 0.326 0.225 0.182 0.156
{6,1} 0.684 0.229 0.154 0.122 0.104
{8,1} 0.571 0.172 0.116 0.091 0.077

n
I

>
n

I
I

=
1

{10,1} 0.058 0.142 0.093 0.072 0.061
{4,3} 3.140 0.467 0.219 0.153 0.135
{6,3} 4.520 0.439 0.173 0.110 0.091
{8,3} 6.717 0.437 0.148 0.087 0.069
{10,3} 10.230 0.451 0.132 0.072 0.056
{6,4} 7.725 0.512 0.175 0.105 0.088
{8,4} 12.578 0.535 0.153 0.084 0.067
{10,4} 21.012 0.577 0.139 0.070 0.054
{8,6} 35.130 0.734 0.161 0.080 0.064
{10,6} 64.560 0.830 0.150 0.067 0.051

n
I

>
n

I
I

>
1

{10,8} 170.600 1.136 0.160 0.066 0.050
{2,2} 1.680 0.546 0.352 0.292 0.275
{4,4} 4.895 0.516 0.215 0.146 0.131
{6,6} 19.450 0.664 0.179 0.100 0.085
{8,8} 87.868 0.973 0.170 0.078 0.063n

I
=

n
I
I

{10,10} 425.292 1.525 0.172 0.066 0.050
{1,2} 1.674 0.697 0.536 0.520 0.567
{1,4} 2.721 0.674 0.534 0.649 0.960
{1,6} 5.002 0.781 0.677 1.084 2.227
{1,8} 9.846 0.995 0.974 2.077 5.904

n
I

=
1

<
n

I
I

{1,10} 20.222 1.344 1.500 4.277 16.905
{3,4} 3.940 0.532 0.250 0.185 0.176
{3,6} 8.370 0.625 0.249 0.184 0.189
{3,8} 17.870 0.762 0.264 0.195 0.217
{3,10} 38.690 0.958 0.290 0.217 0.262
{4,6} 11.010 0.625 0.214 0.151 0.132
{4,8} 24.400 0.776 0.224 0.144 0.141
{4,10} 53.740 0.980 0.240 0.150 0.156
{6,8} 45.750 0.851 0.187 0.099 0.086
{6,10} 106.010 1.099 0.190 0.0996 0.089

1
<

n
I

<
n

I
I

{8,10} 211.221 1.270 0.180 0.078 0.063
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Fig. 5.4 The boundary between regions I and II as function of time

Fig. 5.5 Cylindrical expansion

In the equations (5.47a,b), (5.48a,b) the internal pressure p ≡ p0 is cho-
sen as a reference value. Because of its relation to η0, according to (5.62)
and (5.77a,b) or Fig. 5.2, it is more advisable to choose a material constant,
e.g. the yield stress σF , as reference value. Thus, from (5.62), we have the
conversion relation:
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I;IIσr;ϕ

σF
=
Z√
3

I;IIσr;ϕ

p
with Z =

def
1 −
(
c0
b0

)2

+ 2 ln
c0
a0
, (5.83)

which is used to represent the stress distribution (Fig. 5.6).

Fig. 5.6 Stress distributions from (5.83) combined with (5.47a,b), (5.48a,b), (5.74a,b),
(5.74a,b), (5.77a,b) and (5.79) with {nI , nII} = {4, 1}

The absolute stress values increase if the time parameter ζ ≡ c0/c de-
creases, i.e. because of Fig. 5.4, if the time t increases, while the boundary
ξ = η takes the position which is characterized by η < η0 (Fig. 5.3) and
which approaches the limit position (5.81) at the failure time (ζ → 0), e.g.
the limit 0,65625 if η0 = 0, 75. This fact is indicated in Fig. 5.6 by a broken
curve.

Similarly to the numerical evaluation of the stress distributions (5.83), the
equivalent stresses Iσ and IIσ may be calculated, i.e., from (5.52a,b) together
with (5.53) and (5.62), we find the formulae:

Iσ/σF = (Z/N)(c/r)2/nI , IIσ/σF = (Z/N)(c/r)2/nII , (5.84a,b)
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in which the numerator Z is defined in (5.83) while the denominator N is
given by:

N =
def
nI

[
(c/a)2/nI − 1

]
+ nII

[
1 − (c/b)2/nII

]
. (5.85)

Some numerical examples to equations (5.84a,b) are shown in Fig. 5.7.

Fig. 5.7 Equivalent stresses from (5.84a,b) with {nI , nII} = {4, 1}

If the set {nI , nII} approaches {∞, 1} at time zero (ζ = 1), the denomi-
nator (5.85) in (5.84a,b) approaches the numerator Z, so that the equivalent
stresses (5.84a,b) agree with the yield stress σF on the boundary r = c.

Finally, the equivalent strain-rate ε̇ is obtained from (5.29), (5.41a,b),
(5.52a,b), (5.53) and (5.60),

ε̇(r, t)

ε̇0(c0)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
nI

[(
c0
ao

)2/nI

− 1

]
+ nII

[
1 −
(
c0
bo

)2/nII

]

nI

[( c
a

)2/nI − 1

]
+ nII

[
1 −
(c
b

)2/nII

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

nI+nII
2

( c
r

)2
,

(5.86)
which is continuous and continuously differentiable. For numerical evalua-
tion of equation (5.86), the formulae (5.76a,b,c), (5.77a,b), (5.79) and (5.80)
are used. The results are represented in Fig. 5.8.
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Fig. 5.8 Equivalent strain-rates from (5.86) with {nI , nII} = {4, 1}

Similarly,the strain-rates ε̇r and ε̇ϕ can be numerically evaluated:

ε̇r/ε̇r(c0, 0) = ε̇ϕ/ε̇ϕ(c0, 0) = ε̇(r, t)/ε̇0(c0) . (5.87)

In this chapter a long thick-walled circular cylindrical tube subjected to
internal pressure is considered. The tube is partly plastic (region I) and partly
elastic (region II) at time zero. Then creep occurs in both regions while the
internal pressure is constant.

To describe the creep behavior, NORTON-BAILEY’s power law is adopted,
and is used in the regions I and II with different creep exponents nI and nII ,
respectively.

The investigation is based upon the usual assumptions of incompressibil-
ity and zero axial creep. The creep deformations are considered to be of such
magnitude that the use of finite-strain theory is necessary. Therefore, we use
HENCKY’s strain tensor .

The inner and outer radius, the position of the boundary between regions
I and II , the stress distributions as functions of time and the creep-failure
time are calculated.

In addition to the numerical computation and examples discussed in this
chapter, a lot of further numerical calculations have been carried out by BET-
TEN (1980; 1982c).



6 The Creep Potential Hypothesis in Comparison
with the Tensor Function Theory

In this chapter the creep potential hypothesis is compared with the tensor
function theory . It will be shown that the former theory is compatible with
the latter, if the material is isotropic, and if additional conditions are fulfilled.

However, for anisotropic materials the creep potential hypothesis only
furnishes restricted forms of constitutive equations, even if a general plastic
potential has been assumed (BETTEN, 1985). Consequently, the classical
normality rule dij = Λ̇ ∂F/∂σij according to (4.14a) must be modified for
anisotropic solids. In the following, appropiate modifications are discussed
and resulting conditions of ”compatibility” are derived.

6.1 Isotropy

For isotropic materials the creep potential F = F (σij) can be expressed
as a single-valued function F = F [Sν(σ)] of the irreducible invariants
Sν ≡ trσν , ν = 1, 2, 3, of the stress tensor. Thus, considering the form
F = F (S1, S2, S3) and using the classical flow rule (4.14a), one immedi-
ately obtains the constitutive equation

dij = Λ̇

[(
∂F

∂S1

)
δij + 2

(
∂F

∂S2

)
σij + 3

(
∂F

∂S3

)
σ

(2)
ij

]
. (6.1)

Instead of (6.1), one can represent the rate of deformation tensor dij as a
symmetric tensor-valued function of one second-order argument tensor:

dij = fij(σ) = ϕ0δij + ϕ1σij + ϕ2σ
(2)
ij , (6.2)

where ϕ0, ϕ1, ϕ2 are scalar-valued functions of the integrity basis, the ele-
ments of which are the irreducible invariants S1, S2, S3.

Comparing the ”minimum polynomial representation” (6.2) with the re-
sult (6.1) based upon the creep potential hypothesis, one can find the follow-
ing identities:
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ϕ0 ≡ Λ̇ ∂F
∂S1

, ϕ1 ≡ 2Λ̇
∂F

∂S2
, ϕ2 ≡ 3Λ̇

∂F

∂S3
. (6.3)

By eliminating the creep potential F in (6.3) we can find additional re-
strictions imposed on the scalar functions ϕ0, ϕ1, ϕ2, if the existence of a
creep potential is assumed:

2
∂ϕ0

∂S2
=
∂ϕ1

∂S1
, 3

∂ϕ0

∂S3
=
∂ϕ2

∂S1
, 3

∂ϕ1

∂S3
= 2

∂ϕ2

∂S2
. (6.4)

Thus, in the isotropic special case the creep potential hypothesis is compat-
ible with the tensor function theory, if the conditions of ”compatibility” in
(6.4) have been fulfilled.

For example, the requirements in (6.4) can be satisfied, if one assumes:

ϕ0 = ϕ0(S1) , ϕ1 = ϕ1(S2) , ϕ2 = ϕ2(S3) . (6.5)

Then, because of (6.3), the creep potential can be represented as

F = F (S1, S2, S3) = g1(S1) + g2(S2) + g3(S3) , (6.6)

where g1, g2 and g3 are arbitrary functions of the invariants S1, S2, and S3,
respectively.

The conditions of ”compatibility” in (6.4) can be found in the following
way. The identities (6.3) can be written in the form

∂F

∂S1
≡ ϕ0L ,

∂F

∂S2
≡ ϕ1L/2 ,

∂F

∂S3
≡ ϕ2L/3 , (6.7)

where
L ≡ 1/dΛ = L(S1, S2, S3) (6.8)

is normally a scalar-valued function of the integrity basis. The creep potential
F in (6.7) can be eliminated, if we consider the

(
3
2

)
equalities

∂2F

∂S1 ∂S2
=

∂2F

∂S2 ∂S1
,

∂2F

∂S1 ∂S3
=

∂2F

∂S3 ∂S1
,

∂2F

∂S2 ∂S3
=

∂2F

∂S3 ∂S2
,

(6.9)

i.e., assuming the second partial derivatives of the creep potential to be con-
tinuous. Hence, from (6.7) and (6.9) we find a system of linear equations in
the partial derivatives ∂L/∂Sλ ≡ L,λ with λ = 1, 2, 3:

ϕ1L,1 − 2ϕ0L,2 + 0 = [2(ϕ0),2 − (ϕ1),1]L

ϕ2L,1 + 0 − 3ϕ0L,3 = [3(ϕ0),3 − (ϕ2),1]L

0 + 2ϕ2L,2− 3ϕ1L,3 = [3(ϕ1),3 − 2(ϕ2),2]L .

⎫⎪⎬
⎪⎭ (6.10)
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On the right hand side in (6.10) the abbreviations (ϕ0),2 ≡ ∂ϕ0/∂S2, . . . ,
(ϕ2),2 ≡ ∂ϕ2/∂S2 are used. Because the coefficient determinant in (6.10)
vanishes, ∣∣∣∣∣∣∣∣∣

ϕ1 −2ϕ0 0

ϕ2 0 −3ϕ0

0 2ϕ2 −3ϕ1

∣∣∣∣∣∣∣∣∣
= 0 , (6.11)

one can assume that the right hand side of the system (6.10) is also equal to
zero. It is possible to find the three conditions of ”compatibility” in (6.4) .
Note that these conditions are only sufficient. But if we use CRAMER’s rule,
we find the following sufficient and necessary condition

(
3
∂ϕ1

∂S3
− 2
∂ϕ2

∂S2

)
ϕ0+

(
∂ϕ2

∂S1
− 3
∂ϕ0

∂S3

)
ϕ1+

(
2
∂ϕ0

∂S2
− 2
∂ϕ1

∂S1

)
ϕ2 =0 ,

(6.12)
which contains (6.4) as a special case. As has already been mentioned be-
fore, the conditions in (6.4) are only sufficient, whereas similar conditions in
elasticity are both sufficient and necessary (BETTEN, 2001c).

For more complicated examples than the above mentioned the creep po-
tential hypothesis is not compatible with the tensor function theory. For in-
stance, MURAKAMI and SAWCZUK (1979) found that for the model of pre-
strained plastic solids the flow theory of classical plasticity only furnishes
restricted forms of constitutive equations. LEHMANN (1972) proposed an
extended form of the classical flow rule (4.14a) with respect to experimen-
tal results and based upon thermodynamical considerations. BETTEN (1985)
considered oriented solids and discussed an appropiate modification of the
classical flow rule.

6.2 Oriented Solids

In order to describe yielding and failure of oriented solids BOEHLER and
SAWCZUK (1976; 1977) use the tensor generator A = v ⊗ v, where the
vector v specifies a privileged direction. The constitutive equation can then
be represented by the minimum polynomial

dij = fij(σpq, Apq) =
1

2

2∑
λ,ν=0

ϕ[λ,ν]

(
M

[λ,ν]
ij +M

[λ,ν]
ji

)
, (6.13)
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where [λ, ν] several symmetric tensor generators are formed by matrix prod-
ucts of the forms

M
[λ,ν]
ij ≡ σ(λ)

ik A
(ν)
kj , λ, ν = 0, 1, 2 . (6.14)

The ϕ[λ,ν]’s in (6.13) are nine scalar functions of the integrity basis, the el-
ements of which can be found by forming all the irreducible traces of the
matrix products (6.14) according to:

M [λ,ν]
rr ≡ σ(λ)

pq A
(ν)
qp , with

⎧⎪⎨
⎪⎩
λ, ν = 1, 2

λ = 0 ⇒ ν = 1, 2, 3

ν = 0 ⇒ λ = 1, 2, 3,

⎫⎪⎬
⎪⎭ (6.15a)

which can be written as:

Sλ ≡ tr σλ , Tν ≡ trAν ; λ, ν = 1, 2, 3 ;

Ω1 ≡ tr σA , Ω2 ≡ trσA2 , Ω3 ≡ trAσ2 , Ω4 ≡ trσ2A2 .
(6.15b)

¿From the ten invariants in (6.15a,b) only the seven stress-dependent invari-
ants are essential for the creep potential:

F = F
(
M [λ,ν]

rr

)
, with

{
λ, ν = 1, 2

ν = 0 ⇒ λ = 1, 2, 3 .

}
(6.16)

Thus, by using the normality rule (4.14a), one can find the constitutive equa-
tion

dij = Λ̇
∑
λ,ν

(
∂F
/
∂M [λ,ν]

rr

)
Q

[λ]
ijpqA

[ν]
qp

with

{
λ, ν = 1, 2

ν = 0 ⇒ λ = 1, 2, 3 .

}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.17)

In (6.17) the λ several fourth-rank tensors Q[λ] are defined as

Q
[λ]
pqij ≡ ∂σ(λ)

pq

/
∂σij =

1

2

λ−1∑
α=0

[
σ

(α)
pi σ

(λ−1−α)
qj + σ

(α)
pj σ

(λ−1−α
qi

]
(6.18)

and have the following properties of symmetry:

Q
[λ]
pqij = Q

[λ]
qpij = Q

[λ]
pqji = Q

[λ]
ijpq . (6.19)

One can see that, because of (6.18), the value λ cannot be equal to zero.
Therefore, only the seven stress-dependent invariants of the integrity basis
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(6.15a,b) are relevant for the creep potential (6.16). Furthermore, by com-
paring the constitutive equations (6.13) and (6.17), one can see that the min-
imum polynomial (6.13) consists of nine tensor generators, whereas (6.17)
has only seven terms, i.e., the creep potential theory furnishes only restricted
forms of constitutive equations, even if a general creep potential is assumed
in an anisotropic case.

It may be more useful for practical applications to represent the constitu-
tive equation (6.13) in a canonical form

dij = 0Hijklδkl + 1Hijklσkl + 2Hijklσ
(2)
kl , (6.20)

where the fourth-order tensor-valued functions 0H , 1H , and 2H are defined
in the following way:

0Hijkl ≡ ϕ[0,0]m
(0)
ijkl + ϕ[0,1]mijkl + ϕ[0,2]m

[2]
ijkl (6.21a)

1Hijkl ≡ ϕ[1,0]m
(0)
ijkl + ϕ[1,1]mijkl + ϕ[1,2]m

[2]
ijkl (6.21b)

2Hijkl ≡ ϕ[2,0]m
(0)
ijkl + ϕ[2,1]mijkl + ϕ[2,2]m

[2]
ijkl (6.21c)

having the symmetric tensors m[ν], ν = 0, 1, 2, of rank four:

m
[ν]
ijkl ≡

1

4

(
A

(ν)
ik δjl +A

(ν)
il δjk + δikA

(ν)
jl + δilA

(ν)
jk

)
. (6.22)

Especially, for ν = 0 one finds in (6.22) the zero power tensor of rank four:

m
[0]
ijkl ≡ m(0)

ijkl ≡ mijpqm
(−1)
pqkl =

1

2
(δikδjl + δilδjk) = m

(−1)
ijpq mpqkl .

(6.23)
The representation found in the canonical form (6.20) consists of three terms,
which are the contributions of zero, first, and second-orders in the stress ten-
sor σ, influenced by the functions 0H , 1H , and 2H , respectively. In finding
these fourth-order tensor-valued functions, the identities{

1

2

(
XλY ν + Y νXλ

)}
ij

≡ η[ν]
ijklX

(λ)
kl ≡ ξ[λ]

ijklY
(ν)
kl ,

ξ
[λ]
ijkl ≡

1

4

(
X

(λ)
ik δjl +X

(λ)
il δjk + δikX

(λ)
jl + δilX

(λ)
jk

)
,

η
[ν]
ijkl ≡

1

4

(
Y

(ν)
ik δjl + Y

(ν)
il δjk + δikY

(ν)
jl + δilY

(ν)
jk

)
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have been used (BETTEN, 1982b; 1985) where X and Y are two symmet-
ric second-order tensors. Similar identities for non-symmetric tensors were
introduced by BETTEN (1982b).

In the isotropic special case the coefficient tensors 0H , . . . , 2H in (6.20)
can be expressed as fourth-order spherical tensors:

λHijkl =
1

2
(δikδjl + δilδjk)ϕλ , λ = 0, 1, 2 .

In that case, the canonical form (6.20) simplifies to the standard form (6.2).
Remark: It may be impossible to find a canonical form (6.20) for all types
of anisotropy. However, for the most important kinds of anisotropy, namely,
transversely isotropic and orthotropic behavior, the constitutive equation can
be expressed in the canonical form (6.20) as has been illustrated by BETTEN

(1982b; 1983b; 1998), for instance.
Similarly to (6.20), one can represent the constitutive equation (6.17),

derived from the creep potential hypothesis, in a canonical form:

dij = 0hijklδkl + 1hijklσkl + 2hijklσ
(2)
kl , (6.24)

where the fourth-order tensor-valued functions 0h, 1h and 2h are defined by
using (6.22) in the following way:

0hijkl ≡ Λ̇

(
∂F

∂S1
m

(0)
ijkl +

∂F

∂Ω1
mijkl +

∂F

∂Ω2
m

[2]
ijkl

)
, (6.25a)

1hijkl ≡ 2Λ̇

(
∂F

∂S2
m

(0)
ijkl +

∂F

∂Ω3
mijkl +

∂F

∂Ω4
m

[2]
ijkl

)
, (6.25b)

2hijkl ≡ 3Λ̇

(
∂F

∂S3
m

(0)
ijkl + 0 + 0

)
. (6.25c)

Without loss of generality in the case of incipient motion, the vector v

can be regarded as a unit vector in the reference configuration. Therefore,
only ν = 0, 1 in (6.14) has to be taken into account. The number of tensor
generators in the constitutive equation (6.13) is reduced from nine to six, i.e.,
the fourth-order tensor-valued functions (6.22a,b,c) can be simplified into:

0Hijkl ≡ ϕ[0,0]m
(0)
ijkl + ϕ[0,1]mijkl , (6.26a)

1Hijkl ≡ ϕ[1,0]m
(0)
ijkl + ϕ[1,1]mijkl , (6.26b)

2Hijkl ≡ ϕ[2,0]m
(0)
ijkl + ϕ[2,1]mijkl . (6.26c)
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Furthermore, the number of irreducible invariants (6.15a,b) is reduced from
ten to five,

Sλ ≡ trσλ , λ = 1, 2, 3 , Ω1 ≡ tr σA , Ω3 ≡ trAσ2 , (6.27)

if we regard the vector v as a unit vector.
The fourth-order tensor-valued functions (6.25a,b,c), resulting from the

creep potential hypothesis, can be simplified into:

0hijkl ≡ Λ̇

(
∂F

∂S1
m

(0)
ijkl +

∂F

∂Ω1
mijkl

)
, (6.28a)

1hijkl ≡ 2Λ̇

(
∂F

∂S2
m

(0)
ijkl +

∂F

∂Ω3
mijkl

)
, (6.28b)

2hijkl ≡ 3Λ̇

(
∂F

∂S3
m

(0)
ijkl + 0

)
. (6.28c)

Comparing the fourth-rank tensors (6.26a,b,c) with the corresponding ten-
sors (6.22a,b,c) or, alternatively, (6.29a,b,c) with (6.27a,b,c), one can see
that the scalar functions ϕ[2,1] and ϕ[2,2] in (6.21c) or ϕ[2,1] in (6.26c) cannot
be expressed through the creep potential (6.16), i.e., in the anisotropic case
the creep potential hypothesis with its classical flow rule (4.14a) only fur-
nishes restricted forms of constitutive equations even where a general creep
potential F = F (σij , Aij) is assumed. Furthermore, if one considers the
functions (6.26a,b,c) or alternatively (6.29a,b,c) one can see that any terms
containing mijkl and m[2]

ijkl do not appear in (6.25c) or in (6.28c), i.e. the
second-order effect in (6.24), characterized through (6.25c) or (6.28c), is not
influenced by the anisotropy (6.22) of the material. Consequently, the nor-
mality rule (4.14a) of the classical flow theory of creep should be modified
in the anisotropic case.

The results mentioned above can also be applied to perforated materials
or damaged materials, if the anisotropy tensor Aij in (6.22) is substituted
with a perforation tensor (LITEWKA and SAWCZUK, 1981) or a damage
tensor (BETTEN, 1982b; 1983b).

6.3 Modification of the Normality Rule

By taking the representation theory into account we can justify the following
expansion of the flow rule (4.14a):
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dij = Λ̇

(
∂F

∂σij
+ αmijkl

∂F

∂Akl

)
. (6.29)

Assuming that the creep potential F = F (σij , Aij) is a scalar-valued func-
tion of the integrity basis (6.15a,b) and by using the modified flow rule (6.29),
we can find a constitutive equation which is compatible with the representa-
tion theory of tensor functions (6.13), (6.20), (6.21a,b,c), i.e., all nine scalar-
valued functions ϕ[λ,ν], λ, ν = 0, 1, 2, in (6.13) or (6.21a,b,c) can be ex-
pressed through the creep potential F :

ϕ[0,0] ≡ Λ̇
(
∂F

∂S1
+ 3αK2

∂F

∂T3

)
, (6.30a)

ϕ[0,1] ≡ Λ̇
(
∂F

∂Ω1
+ α

∂F

∂T1
+ 3αK2

∂F

∂T3

)
, (6.30b)

ϕ[0,2] ≡ Λ̇
(
∂F

∂Ω2
+ 2α

∂F

∂T2
+ 3αK1

∂F

∂T3

)
, (6.30c)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ[1,0] ≡ 2Λ̇
∂F

∂S2
(6.30d)

ϕ[1,1] ≡ Λ̇
[
∂F

∂Ω3
+ (α/2)

∂F

∂Ω1

]
, (6.30e)

ϕ[1,2] ≡ Λ̇
(
∂F

∂Ω4
+ α

∂F

∂Ω2

)
, (6.30f)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ[2,0] ≡ 3Λ̇
∂F

∂S3
, (6.30g)

ϕ[2,1] ≡ (α/2)Λ̇
∂F

∂Ω3
, (6.30h)

ϕ[2,2] ≡ αΛ̇
∂F

∂Ω4
, (6.30i)

where the abbreviations

K1 ≡ T1 , K2 ≡ 1

2

(
T2 − T 2

1

)
, K3 ≡ 1

6

(
T 3

1 − 3T1T2 + 2T3

)
(6.31a,b,c)

have been used. In this way the second-order effect in (6.24) is influenced
through the material tensor A because of α �= 0 found in (6.30h,i). This
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influence is not at all possible if we use the tensor-valued function (6.25c)
which results from the normality rule (4.14a) which does not contain the pa-
rameter α. Thus, the creep potential hypothesis is compatible with the tensor
function theory, if the modified flow rule (6.29) is used instead of (4.14a). But
among the scalar functions (6.30a, . . . , i) we can find additional relationships
(”conditions of compatibility”) by eliminating the plastic potential F . This
can be done by closely adhering to the following procedure. First, one must
find the partial derivatives ∂F/∂S1, . . . , ∂F/∂Ω4 of the creep potential F
from the system of linear equations (6.30a, . . . , i). Second, one must apply
the
(
10
2

)
equalities

∂2F

∂S1 ∂S2
=

∂2F

∂S2 ∂S1
, . . . ,

∂2F

∂Ω3 ∂Ω4
=

∂2F

∂Ω4 ∂Ω3
(6.32)

to every pair of the above mentioned ten derivatives. In this way we have
eliminated the creep potential F and found 45 conditions of compatibility .

If the vector v is regarded as a unit vector, then it is possible to find the
following identities by first taking (6.26a,b,c), (6.27) into consideration and
by then using the modified flow rule (6.29):

ϕ[0,0] ≡ Λ̇
∂F

∂S1
, ϕ[0,1] ≡ Λ̇

∂F

∂Ω1
, (6.33a,b)

ϕ[1,0] ≡ 2Λ̇
∂F

∂S2
, ϕ[1,1] ≡ 4

ϕ[2,1]

α
+ αϕ[0,1] , (6.33c,d)

ϕ[2,0] ≡ 3Λ̇
∂F

∂S3
, ϕ[2,1] ≡

α

2
Λ̇
∂F

∂Ω3
. (6.33e,f)

The results of (6.33a, . . . , f) can be used to find the partial derivatives of the
plastic potential:

∂F

∂S1
≡ ϕ[0,0]L ,

∂F

∂S2
≡ ϕ[1,0]

L

2
,

∂F

∂S3
≡ ϕ[2,0]

L

3
,

∂F

∂Ω1
≡ ϕ[0,1]L ,

∂F

∂Ω3
≡ 2ϕ[2,1]

L

α
.

⎫⎪⎪⎬
⎪⎪⎭ (6.34)

In (6.34)
L ≡ 1/dΛ = L(S1, S2, S3, Ω1, Ω3) (6.35)

is a scalar-valued function of the integrity basis (6.27). The reader may note
the analogy between (6.35) and (6.8). The creep potential F in (6.34) can be
eliminated by regarding every pair of the derivatives (6.34), and by using the(
5
2

)
equalities
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∂2F

∂S1 ∂S2
=

∂2F

∂S2 ∂S1
, . . . ,

∂2F

∂Ω1 ∂Ω3
=

∂2F

∂Ω3 ∂Ω1
. (6.36)

Then we will find, similar to (6.10), a system of ten linear equations in the
partial derivatives

L,1 ≡ ∂L

∂S1
, L,2 ≡ ∂L

∂S2
, L,3 ≡ ∂L

∂S3
,

L,4 ≡ ∂L

∂Ω1
, L,5 ≡ ∂L

∂Ω3

⎫⎪⎪⎬
⎪⎪⎭ (6.37)

and, using a procedure described by BETTEN (1985), a complete set of ten
sufficient and necessary ”conditions of compatibility” is obtained. In the
isotropic special case these ten conditions are reduced to only one equation,
which is identical to (6.12).

Finally, the special case of incompressibility should be considered. In
such instances it is more practical to use the stress deviator σ′ in the integrity
basis (6.15a,b) than to use the stress tensor σ. Furthermore, the modified flow
rule

dij = Λ̇

(
∂F

∂σij
+ αm{ij}kl

∂F

∂Akl

)
(6.38)

should be used instead of (6.29), where the fourth-order tensor

m{ij}kl ≡ mijkl − 1

3
mrrklδij = mijkl − 1

3
δijAkl (6.39)

is deviatoric with respect to the free indices {ij}.

6.4 Anisotropy expressed through a Fourth-Rank Tensor

A more general case than that in (6.13) is described by BETTEN (2001c) by
using a material tensor of rank four with index symmetries according to

Aijkl = Ajikl = Aijlk = Aklij . (6.40)

Then, the creep condition (section 4.2) has the form

f (σij , Aijkl) = 1 , (6.41)

which can be expressed as a single-valued function of the integrity basis, the
elements of which are the irreducible invariants. Together with the invariants
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of the single argument tensors, the set of simultaneous or joint invariants
forms the integrity basis. The theory of invariants for several argument ten-
sors of rank two has been developed, for instance, by RIVLIN (1970) and
SPENCER (1971; 1987). Integrity bases for tensors of an order higher than
two are discussed by BETTEN (1982a; 1987a; 1998).

To formulate a creep criterion (6.41), it is not necessary to consider the
complete set of irreducible invariants. In finding the ”essential invariants” we
first formulate the constitutive equation

dij = fij (σpq, Apqrs) , (6.42)

which is a symmetric (fij = fji) tensor-valued tensor function of two argu-
ment tensors. This function has to fulfill the condition of form invariance

aikaj�fk� (σpq, Apqrs) ≡ fij (aptaquσtu, aptaquarvaswAtuvw) (6.43)

under the transformations of the orthogonal group (aikajk = δij).

6.4.1 Irreducible Sets of Tensor Generators and Invariants

A suitable form of the constitutive equation (6.42) is given by a linear com-
bination

dij =
∑
λ,μ,ν

Φ[λ,μ,ν]G
[λ,μ,ν]
ij (6.44)

of several symmetric tensor generators

G
[λ,μ,ν]
ij =

(
M

[λ,μ,ν]
ij +M

[λ,μ,ν]
ji

)/
2 (6.45)

formed by matrix products of the forms

M
[λ,μ,ν]
ij ≡ σ(λ)

ik A
(μ)
kjpqσ

(ν)
pq , (6.46)

which fulfill the condition of form invariance (6.43). Note that in (6.46) those
values of λ, μ, ν that are enclosed by parentheses are exponents, whereas a
square bracket gives any set λ, μ, ν the character of a label to indicate several
matrix products.

In finding an irreducible set of tensor generators, we note that, accord-
ing to the HAMILTON-CAYLEY theorem, none of the exponents λ, μ of
the second-order tensor σ needs to be larger than two. In generalizing the
HAMILTON-CAYLEY theorem, we find (BETTEN, 1982a; 1987a; 1988a) that
a symmetric fourth-order tensor of power six and all higher powers can be
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expressed in terms of lower powers, that is μ ≤ 5. For μ = 0, we must no-
tice that the combinations [λ, 0, ν] are symmetric with respect to λ, ν, and
that the restriction λ + ν ≤ 2 follows. Thus we have 48 irreducible matrix
products of the form (6.46), which are listed in Table 6.1 (BETTEN, 1982a;
1987a; 1988a).

Table 6.1 Matrix products (6.46)

μ = 0; M
[λ,0,ν]
ij with λ+ ν ≤ 2

λ ν = 0 ν = 1 ν = 2

0 δij σij σ
(2)
ij

1 σij σ
(2)
ij

2 σ
(2)
ij

μ = 1, 2, . . . , 5; M
[λ,μ,ν]
ij

λ ν = 0 ν = 1 ν = 2

0 A
(μ)
ijrr A

(μ)
ijpqσpq A

(μ)
ijpqσ

(2)
pq

1 σikA
(μ)
kjrr σikA

(μ)
kjpqσ

(2)
pq σikA

(μ)
kjpqσ

(2)
pq

2 σ
(2)
ik A

(μ)
kjrr σ

(2)
ik A

(μ)
kjpqσpq σ

(2)
ik A

(μ)
kjpqσ

(2)
pq

The coefficients Φ[λ,μ,ν] in (6.44) are scalar-valued functions of the in-
tegrity basis associated with the representation given in (6.44). In finding
this integrity basis, we notice the theorem which says that the trace of any
product formed from matrices and their transposes is a polynomial invari-
ant under the full or proper orthogonal group. Thus we form the following
traces:

σjidij =
∑
λ,μ,ν

Φ[λ,μ,ν]σjiG
[λ,μ,ν]
ij (6.47)

and
dijAjirsσrs =

∑
λ,μ,ν

Φ[λ,μ,ν]G
[λ,μ,ν]
ij Ajirsσrs , (6.48)

from which we read the following systems of invariants:

A[λ,μ,ν] ≡ σ(λ+1)
ij A

(μ)
jik�σ

(ν)
�k (6.49)
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and
B[λ,μ,ν] ≡ σ(λ)

ij A
(μ)
jrk�Arimnσ

(ν)
�k σnm , (6.50)

respectively, if we consider the abbreviations (6.45) and (6.46). The 28 irre-
ducible elements of the system (6.49) are listed in Table 6.2 and discussed
by BETTEN, (1987c; 1988a; 2001c).

Table 6.2 Irreducible invariants of the system (6.49)

σijM
[λ,0,ν]
ij = σ

(λ+ν+1)
kk where λ+ ν ≤ 2

λ ν = 0 ν = 1 ν = 2

0 S1 ≡ trσ S2 ≡ trσ2 S3 ≡ trσ3

1 S2 S3

2 S3

σijM
[λ,μ,ν]
ij = σ

(λ+1)
ij A

(μ)
ijk�σ

(ν)
�k ; μ = 1, 2, . . . , 5

λ ν = 0 ν = 1 ν = 2

0 σijA
(μ)
ijk� σijA

(μ)
ijk�σk� σijA

(μ)
ijk�σ

(2)
k�

1 σ
(2)
ij A

(μ)
ijk� −→ σ

(2)
ij A

(μ)
ijk�σ

(2)
k�

Since (6.47) represents the rate of dissipation of creep energy of creep
energy, the invariants of Table 6.2 are most important. Thus we use them to
formulate the creep conditions

f
(
σ

(λ+1)
ij A

(μ)
jik�σ

(ν)
�k

)
= 1 , (6.51)

where λ = 0, 1 and ν = 0, 1, 2 for μ = 1, 2, . . . , 5. For μ = 0, we have
the isotropic special case with

A
(0)
ijk� = (δikδj� + δi�δjk)/ 2 . (6.52)

Then the restriction λ+ ν ≤ 2 must be noted (Table 6.2).

6.4.2 Special Formulations of Constitutive Equations
and Creep Criteria

The special case of transverse isotropy is contained in (6.51). This case can
be specified by a symmetric tensor of rank two, Aij , as pointed out in detail
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by BOEHLER and SAWCZUK (1977) or by BETTEN (1988a). We can also
describe the creep behavior of such a material by using a fourth-rank tensor
specified by

Aijk� ≡ (AikAj� +Ai�Ajk)/ 2 , (6.53)

which has the symmetry properties (6.40). Then we find the tensor power

A
(μ)
ijk� =

(
A

(μ)
ik A

(μ)
j� +A

(μ)
i� A

(μ)
jk

)/
2 . (6.54)

Inserting this relation in (6.46), we immediately find the constitutive equa-
tion (6.13)from (6.44) and (6.45), if we select reducible elements like σAσ

or AσA or Aσ2A. Furthermore, substituting the special tensor (6.53) in
(6.49) and (6.51), we find the integrity basis (6.15a,b) after omitting redun-
dant elements. The tensor A in (6.15a,b) is a second-order tensor.

To describe the creep-strength-differential effect it is convenient to sub-
stitute the difference tensor

σij = σij −Bij (6.55)

for the stress tensor σ in all the above equations. Then, for instance, the
simultaneous invariant A[0,1,1] from Table 6.2 takes the form

A[0,1,1] = Aijk� (σij −Bij) (σk� −Bk�) (6.56)

and a creep criterion containing this invariant only may be expressed in the
simplest relation

Aijk� (σij −Bij) (σk� −Bk�) = 1 . (6.57)

In the isotropic special case characterized by

Aijk� = a1δijδk� + a2 (δikδj� + δi�δjk) ,

and Bij = bδij , the criterion in (6.57) reduces to the form

J ′2 + c1J
2
1 + c2J1 = c3 , (6.58)

where the constants c1, c2, and c3 can be determined by experimental data
(BETTEN, 1982d).

Furthermore, substituting c1 = −α2, c2 = 2αβ, and c3 = β from (6.58)
we recover the well-known DRUCKER-PRAGER criterion√

J ′2 + αJ1 = β , (6.59)
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where the parameters α and β are determined by experimental data:

α =
1√
3

σ∗c − σc

σ∗c + σc
, (6.60)

β =
2√
3

σ∗cσc

σ∗c + σc
. (6.61)

The symbols σc and σ∗c characterize the limiting creep stresses (Fig 4.2)
in tension and compression, respectively. Thus the parameter in (6.60) ex-
presses the creep-strength differential or C-S-D effect.

6.4.3 Incompressibility and Volume Change

The constitutive equation (6.44) can be expressed in the form

dij =
∑
λ,μ,ν

Φ[λ,μ,ν]A
[μ]
ijpqrsσ

(ν)
pq σ

(λ)
rs (6.62)

by introducing several tensors A[μ] of rank six, the components of which can
be determined from the given fourth-order tensor (6.40):

A
[μ]
ijpqrs ≡

1

4

(
A

(μ)
irpqδjs +A

(μ)
ispqδjr + δisA

(μ)
jspq + δisA

(μ)
jrpq

)
. (6.63)

These tensors have the symmetry conditions

A
[μ]
ijpqrs = A

[μ]
jipqrs = A

[μ]
ijqprs = A

[μ]
ijpqsr (6.64a)

and

A
[μ]
ijpqrs = A

[μ]
rspqij . (6.64b)

Further symmetry conditions are not valid because the form of (6.62) is not
symmetric with respect to λ and ν, except for μ = 0, i.e., for the isotropic
special case given by (6.52).

In order to study the magnitude of volume change or an incompress-
ible deformation, it is convenient to decompose (6.62) into two functions,
a scalar one and a deviatoric one:

drr =
∑
λ,μ,ν

Φ[λ,μ,ν]σ
(λ)
ij A

(μ)
ijk�σ

(ν)
k� , (6.65a)

d′ij =
∑
λ,μ,ν

Φ[λ,μ,ν]A
[μ]
{ij}pqrsσ

(ν)
pq σ

(λ)
rs , (6.65b)
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where the tensors

A
[μ]
{ij}pqrs ≡ A

[μ]
ijpqrs −

1

3
δijA

(μ)
pqrs (6.66)

are deviatoric with respect to the braced index pair {ij}, and

d′ij = dij − drrδij/3

is the deviator of the strain-rate tensor (3.22).
Another decomposition of (6.62) is given by

drr =
5∑

μ=0

A
(μ)
ijk�P

(μ)
ijk� , (6.67a)

d′ij =
5∑

μ=0

A
(μ)
{ij}pqrsP

(μ)
pqrs , (6.67b)

where the fourth-rank tensors P [μ] can be presented in the following matrix
product form:

P
[μ]
ijk� =

(
δk� σ′k� σ′′k�

)
⎡
⎢⎢⎢⎣
Ψ(0,μ,0) Ψ(0,μ,1) Ψ(0,μ,2)

Ψ(1,μ,0) Ψ(1,μ,1) Ψ(1,μ,2)

Ψ(2,μ,0) Ψ(2,μ,1) Ψ(2,μ,2)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
δij

σ′ij

σ′′ij

⎤
⎥⎥⎥⎦ , (6.68)

i.e., we have a representation in the traceless tensors

σ′ij ≡ ∂J ′2/∂σij = σij − σkkδij/3 , (6.69)

σ′′ij ≡ ∂J ′3/∂σij = σ
′(2)
ij − 2J ′2δij/3 . (6.70)

The elements Ψ[.,μ,.] in the matrix of (6.68) can be expressed by the scalar-
valued functions Φ[λ,μ,ν] for example,

Ψ[1,μ,1] ≡ Φ[1,μ,1] +
2

3
J1

(
Φ[1,μ,1] + Φ[2,μ,1] +

2

3
J1Φ[2,μ,2]

)
,

≡ Φ[1,μ,2] + 2J1Φ[2,μ,2]/3 ,

Ψ[2,μ,1] ≡ Φ[2,μ,1] + 2J1Φ[2,μ,2]/3 ,

etc. The coefficients Φ[λ,μ,ν] are themselves scalar-valued functions of the
integrity basis (6.49), (6.50) associated with the representation (6.44).
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Using the representation (6.67a,b), we read from the rate of dissipation
of creep energy σijdij the following 34 irreducible invariants (BETTEN,
1988a):

J1, J
′
2, J

′
3, J1A

(μ)
iijj , J1A

(6)
iijj , σ

′
ijA

(μ)
ijkk, σ

′
ijA

(μ)
ijk�σ

′
k�,

σ′ijA
(μ)
ijk�σ

′′
k�, σ

′′
ijA

(μ)
ijkk, σ

′′
ijA

(μ)
ijk�σ

′′
k�; μ = 1, 2, . . . , 5.

⎫⎬
⎭ (6.71)

For practical use, it may be sufficient to consider the anisotropy by μ = 1
only. Then, we have the creep condition

f
(
J1, J

′
2, J

′
3, Π1, Π

′
1, Π

′
2, Π

′
3, Π

′′
1 , Π

′′
2

)
= 1 , (6.72)

where the J1 ≡ S1, J
′
2, J

′
3 are defined by (4.9a) and (4.10a,b). The in-

variant Π1 = J1Aiijj expresses the hydrostatic pressure accompanied by
anisotropy. The remaining simultaneous invariants are defined by

Π ′
1 ≡ σ′ijAijkk , Π ′

2 ≡ σ′ijAijk�σ
′
k� ,

Π ′
3 ≡ σ′ijAijk�σk� ,

Π ′′
1 ≡ σ′′ijAijkk , Π ′′

2 ≡ σ′′ijAijk�σ
′′
k� .

⎫⎪⎬
⎪⎭ (6.73)

In the isotropic special case characterized by (6.52), the invariants Π1 to
Π ′′

2 in the condition (6.72) reduce to

Π1 = 3J1 , Π ′
1 = 0 , Π ′

2 = 2J ′2 ,

Π ′
3 = 3J ′3 , Π ′

1= 0 , Π ′′
2 = 2J ′22 /3 ,

i.e., they are expressible by the invariants (4.9a) and (4.10a,b) and are there-
fore redundant elements in this case.

For oriented solids we can specify the fourth-rank tensor Aijk� in (6.73)
by

Aijk� ≡ 1

4
(Aikδj� +Ai�δjk + δikAj� + δi�Ajk) , (6.74)

and the creep condition (6.72) reduces to the form

f
(
J1, J

′
2, J

′
3, σ

′
ijAji, σ

′(2)
ij Aji

)
= 1 , (6.75)

which is an alternative representation of the yield criterion formulated by
BOEHLER and SAWCZUK (1977). The results given by (6.13), (6.45), (6.51),
and (6.62) are summarized in Table 6.3.

Finally, we remark that in addition to an initial anisotropy as given in
(6.42) corresponding to a forming process, for instance rolling, a deforma-
tion induced anisotropy can appear, for instance, by the formation of micro-
scopic cracks. Because of its microscopic nature, damage has, in general, an
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Table 6.3 Tensor generators and creep criteria

tensor generators creep criteria

general
anisotropy

G
[λ,μ,ν]
ij = A

[μ]
ijpqrsσ

(ν)
pq σ

(λ)
rs f

(
σjiG

[λ,μ,ν]
ij

)
= 1

λ, ν = 0, 1 2 λ = 0, 1; ν = 0, 1, 2

μ = 1, 2, . . . , 5 for μ = 0 ⇒ λ+ ν ≤ 2

ν = 0
⇓

oriented
solids

G
[λ,μ]
ij = A

[μ]
ijrsσ

(λ)
rs f

(
σjiG

[λ,μ]
ij

)
= 1

λ, μ = 0, 1, 2 λ, μ = 0, 1, 2

but for μ �= 0 ⇒ λ < 2

μ = 0
⇓

isotropy
G

[λ]
ij = σ

(λ)
ij ; λ = 0, 1, 2 f

(
σjiG

[λ]
ij

)
= 1

A
(μ)
ijpqrs ≡ 1

4

(
A

(μ)
irpqσjs +A

(μ)
ispqσjr + σirA

(μ)
jspq + σisA

(μ)
jrpq

)
A

(μ)
ijrs ≡ 1

4

(
A

(μ)
ir σjs +A

(μ)
is σjr + σirA

(μ)
js + σisA

(μ)
jr

)

anisotropic character even if the material is originally isotropic. The orienta-
tion of fissures and their length result in anisotropic macroscopic behavior.
Thus, it is necessary to consider this kind of anisotropy by introducing appro-
priately defined anisotropic damage tensors into the constitutive equations.
In view of polynomial representations of constitutive equations, it is conve-
nient to use the tensor

Dij ≡ (δij − ωij)
(−1) ≡ ψ(−1)

ij (6.76)

as an additional argument tensor where ω and ψ are the second-rank damage
tensor and the tensor of continuity, respectively (Section 4.3.2). The undam-
aged state is characterized by ω → 0 or ψ → δ. Considering (6.76), the
constitutive equation takes the form

dij = fij (σpq, Dpq, Apqrs) (6.77)

instead of (6.42). The representation of (6.77), that is, of a symmetric second-
order tensor-valued function of two symmetric tensors of rank two and one
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symmetric tensor of rank four is pointed out in detail by BETTEN (1983b),
and, again, the essential invariants to formulate the creep criterion can be
read from the rate of dissipation of creep energy σjidij .

Based upon (6.47) one arrives at a system of invariants (6.49), which
is most important to formulate creep conditions of type (6.51). However,
the system (6.49) contains irreducible invariants, but this system cannot be
complete, because a lot of irreducible invariants cannot be expressed through
(6.49). Thus, we have to look for other methods in order to find complete
sets of invariants of a single fourth-order tensor and mixed invariants. These
methods should be discussed in the following three sections (6.4.4 to 6.4.6).

6.4.4 Characteristic Polynomial for a Fourth Order Tensor

In order to construct an irreducible set of principal invariants of a fourth-
order tensor A, the characteristic polynomial

Pn(λ) ≡ det
(
Aijk� − λA(0)

ijk�

)
=

n∑
ν=0

Jν(A)λn−ν (6.78)

is considered by BETTEN, (1982a; 1988a).
The principal invariants Jν in (6.78) can be determined by performing

the operation of alternation

(−1)n−νJν ≡ Aα1[α1]Aα2[α2] . . . Aαν [αν ] , (6.79)

where (−1)nJ0 ≡ 1. The right-hand side in (6.79) is equal to the sum of all
principal minors of order ν ≤ n, where ν = 1, and ν = n lead to trA and
det A, respectively.

Assuming the usual symmetry conditions (6.41), the number n in (6.78)
and (6.79) is equal to 6. Thus, we have found six irreducible invariants de-
fined in (6.79). However, this system cannot be complete because some irre-
ducible invariants like Aiijj , AiipqApqjj , AijipApjqrArsqs etc. cannot be ex-
pressed through (6.79). Consequently, the characteristic polynomial (6.78)
must be generalized. This can be achieved by using the fourth-order tensor

Iijk� = λδijδk� + μ (δikδj� + δi�δjk) (6.80)

instead of the spherical tensor λA(0)
ijk� where A(0)

ijk� is the zero power tensor
defined in (6.52). Thus, we take into consideration the characteristic poly-
nomial

P (λ, μ) = det (Aijk� − Iijk�) = 0 , (6.81)
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that is, we formulate the eigenvalue problem

Aijk�Xk� = Iijk�Xk� . (6.82)

The isotropic tensor (6.80) yield an image dyad

Yij = Iijk�Xk� = λXrrδij + 2μXij , (6.83)

which is coaxial with the dyad X .
In continuum mechanics, the relation (6.83) is known as the constitutive

equation for an isotropic linear elastic solid. Such a material is character-
ized by the two elastic constants λ and μ, which are called the LAME con-
stants. Using the notation Yα = IαβXβ , α, β = 1, 2, . . . , 6, we see that the
isotropic tensor I in (6.83) can be represented in the matrix form

Iijkl ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ+ λ λ λ 0 0 0

λ 2μ+ λ λ 0 0 0

λ λ 2μ+ λ 0 0 0

0 0 0 2μ 0 0

0 0 0 0 2μ 0

0 0 0 0 0 2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.84)

which is quasi-diagonal of the structure {3, 1, 1, 1}. The inverse tensor of

(6.80) can be found from Xij = I
(−1)
ijk� Yk� in connection with (6.83):

I
(−1)
ijk� =

1

4μ
(δikδj� + δi�δjk) − λ

2μ(3λ+ 2μ)
δijδk� . (6.85)

To control this result, we prove

I
(−1)
ijpq Ipqkl = IijpqI

(−1)
pqkl ≡ A(0)

ijkl , (6.86)

where the zero-power tensor has the diagonal form

A
(0)
ijkl = {1, 1, 1, 1, 1, 1} . (6.87)

We see that in the special case (λ = 0, μ = 1/2) the isotropic tensor
(6.84) tends to the unit tensor as given in (6.87). Then we find from (6.81)
the simplified characteristic polynomial given in (6.78). The determinant of
the form (6.84) is
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det(Iijkl) = 32(2μ+ 3λ)μ5 ,

which tends to det(A0
ijkl) = 1 in the special case (λ = 0, μ = 1/2).

In the following we shall calculate irreducible invariants as coefficients
in the characteristic polynomial (6.81). Due to (6.40) and (6.84), the charac-
teristic polynomial (6.81) can be written as

∣∣∣∣∣∣∣∣∣∣∣∣∣

A1111 − Ω A1122 − λ A1133 − λ 2A1112 2A1123 2A1131

A2211 − λ A2222 − Ω A2233 − λ 2A2212 2A2223 2A2231

A3311 − λ A3322 − λ A3333 − Ω 2A3312 2A3323 2A3331

A1211 A1222 A1233 2A1212 − 2μ 2A1223 2A1231

A2311 A2322 A2333 2A2312 2A2323 − 2μ 2A2331

A3111 A3122 A3133 2A3112 2A3123 2A3131 − 2μ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(6.88a)
or as∣∣∣∣∣∣∣∣∣∣∣∣∣

A1111 − Ω A1122 − λ A1133 − λ 2A1112 2A1123 2A1131

A2222 − Ω A2233 − λ 2A2212 2A2223 2A2231

A3333 − Ω 2A3312 2A3323 2A3331

2A1212 − 2μ 2A1223 2A1231

2A2323 − 2μ 2A2331

symm. 2A3131 − 2μ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(6.88b)
where the abbreviation Ω ≡ 2μ + λ is used. The determinant (6.88) is a
polynomial of degree 3 in λ and degree 6 in μ:

P (λ, μ) =
∑
p,q

C(p,q)λ
pμq ,

p = 0, 1, 2, 3; q = 0, 1, . . . , 6, p+ q ≤ 6

⎫⎪⎬
⎪⎭ (6.89)

with 22 scalar coefficients C(p,q). However, the characteristic equation
P (λ, μ) = 0 can be divided by the coefficient C(0,6), so that we can find no
more than 21 invariants. Now the main problem is to expand the determinant
(6.88) and to find out if all 21 coefficients are irreducible invariants.

To avoid the lengthy expansion of the determinant (6.88), we propose the
following method. If we consider a second-order tensor, we can start from
the diagonal form

σij = diag {σI , σII , σIII} . (6.90)

Then the determinant, det(σij −λδij), is identical to the characteristic poly-
nomial
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P3(λ) = (λ− σI)(λ− σII)(λ− σIII) = λ3 − J1λ
2 − J2λ− J3 . (6.91)

Similarly, we could consider the orthotropic case with

A1112 = A1123 = A1131 = A2212 = A2223 = A2231

= A3312 = A3323 = A3331 = 0 .

Thus the dyads X and Y in Yij = AijklXkl are coaxial and, instead the
polynomial of (6.88), the following determinant is to be used:∣∣∣∣∣∣∣∣∣∣∣∣∣

AI − (2μ + λ) BI − λ BII − λ 0 0 0

BI − λ AII − (2μ + λ) BIII − λ 0 0 0

BII − λ BIII − λ AIII − (2μ + λ) 0 0 0

0 0 0 AIV − 2μ 0 0

0 0 0 0 AV − 2μ 0

0 0 0 0 0 AVI − 2μ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(6.92)
¿From the determinant (6.92) we find the characteristic polynomial

P (λ, μ) = 64μ6 − 32I1μ
5 + 16I2μ

4 − 8I3μ
3 + 4I4μ

2

− 2I5μ+ I6λ+ I7λμ+ I8λμ
2 + I9λμ

3

+ I10λμ
4 + 96λμ5 + I11 ,

(6.93)

where the 11 invariants I1, . . . , I11 are listed below:

I1 ≡ K1 +M1 ,

I2 ≡ K2 +M2 +K1M1 − L2
1 + 2L2 ,

I3 ≡ D +M3 +K1M2 +M1

(
K2 − L2

1 + 2L2

)
,

I4 ≡M1D +K1M3 +M2

(
K2 − L2

1 + 2L2

)
,

I5 ≡M2D +M3

(
K2 − L2

1 + 2L2

)
,

I6 ≡M3

(
L2

1 − 4L2 −K2 + 2N
)
,

I7 ≡ 4M3 (K1 − L1) − 2M2

(
L2

1 − 4L2 −K2 + 2N
)
,

I8 ≡ 4M1

(
L2

1 − 4L2 −K2 − 2N
)− 8M2(K1 − L1) − 12M3 ,

I9 ≡ 8
[
2M1(K1 − L1) − L2 + 4L2 +K2 − 2N + 3M2

]
,

I10 ≡ −16 [2(K1 − L1) + 3M1] ,

I11 =M3D .

(6.94)

In the system (6.94) the following abbreviations are used:



6.4 Anisotropy expressed through a Fourth-Rank Tensor 131

K1 ≡ AI +AII +AIII ,

M1 ≡ AIV +AV +AVI ,

K2 ≡ AIAII +AIIAIII +AIIIAI ,

M2 ≡ AIVAV +AVAVI +AVIAIV ,

K3 ≡ AIAIIAIII ,

M3 ≡ AIVAVAVI ,

L1 ≡ BI +BII +BIII ,

L2 ≡ BIBII +BIIBIII +BIIIBI ,

L3 ≡ BIBIIBIII ,

N ≡ AIBIII +AIIBII +AIIIBI ,

D ≡ K3 + 2L3 −
(
AIB

2
III +AIIB

2
II +AIIIB

2
I

)
.

(6.95)

We see that in the system (6.94) the invariants I1 and I11 are the trace and
determinant of the fourth-order tensor, respectively.

In the special case (λ = 0), only the six invariants I1, . . . , I5, I11 are
relevant, and they are identical to the six invariants (6.79), if BI = BII =
BIII = 0.

In the two-dimensional case (i, j, k, l = 1, 2), the eigenvalue problem
(6.82) leads to a characteristic equation P (λ, μ) = 0 from which we read
five irreducible invariants as illustrated by BETTEN (1988a).

6.4.5 LAGRANGE Multiplier Method

In order to find the characteristic equation of a fourth-order tensor, one can
utilize the LAGRANGE multiplier method. To do this, we start from the
scalar-valued function

F = Aijk�XijXk� . (6.96)

Since the second-order tensor X in (6.96) has three irreducible invariants

S1 ≡ trX , S2 ≡ trX2 , S3 ≡ trX3 (6.97)

being the elements of the integrity basis, we take into consideration the fol-
lowing three ”auxiliary” conditions:

L = δijδk�XijXk� − S2
1 = 0 ,

M = (δikδj� + δi�δjk)XijXk� − 2S2 = 0 ,

N = (δjkδp� + δj�δpk)XipXijXk� − 2S3 = 0 .

⎫⎪⎬
⎪⎭ (6.98)
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Thus, the quadratic form (6.96) of the dyad X is modified to the form

Φ = F − λL− μM − νN , (6.99)

which is to be made stationary, that is, we require

∂Φ/∂Xrs = 0rs . (6.100)

From (6.100), we find the system of nonlinear equations in the dyad X ,

(Aijk� − Iijk�)Xk� = 3νX
(2)
ij , (6.101)

where Iijk� are the components of the fourth-order isotropic tensor defined
in (6.80). In the special case when ν = 0, we find from (6.101) the eigen-
value problem (6.82) which yields the characteristic equation (6.81). Some
more details concerning the system (6.101) will be investigated by BETTEN

(2009). Furthermore, applications of the LAGRANGE multiplier method to
tensors of order six will also be discussed by BETTEN (2009).

6.4.6 Combinatorial Method

In order to find irreducible sets of invariants for a fourth-order material ten-
sor, two methods have been discussed above:

❒ by way of an extended characteristic polynomial,
❒ application of a modified LAGRANGE-multiplier method.

In the following a third one,

❒ combinatorial method,

is proposed, which is most effective and able to produce both irreducible and
complete sets of invariants. As an example, let us form irreducible invariants
of a fourth-order symmetric tensor

Aijk� = Ajik� = Aij�k = Ak�ij . (6.40)

Since
δijδk�δpqδrs = δjiδk�δrpδqs = . . . = δsrδk�δqpδij

represent P8 =
8!

24 · 4!
= 105 independent combinations one can form by

transvections like
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δipδjqδkrδ�sAijk�Apqrs ≡ Aijk�Aijk� ≡ I2,4 ,

δisδjrδkqδ�pAijk�Apqrs ≡ Aijk�A�kji ≡ I2,4 ,

δipδ�qδjrδksAijk�Apqrs ≡ Aijk�Ai�jk ≡ I2,5 ,

⎫⎪⎬
⎪⎭ (6.102a)

altogether 105 invariants. However, considering the index symmetries (6.40),
this number is reduced to the following 5 different invariants of degree 2:

I2,1, I2,2, . . . , I2,5 , where

I2,1 ≡ Aiij�Ajkk� ,

I2,2 ≡ AiijkAjk�� ,

I2,3 ≡ Ai�ijAjkk� ,

I2,4 ≡ Aijk�Aijk� ,

I2,5 ≡ Aijk�Ai�jk .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.102b)

In 3-dimensional EUCLIDian space the fourth-order permutation tensor εijk�

is a zero tensor so that the determinant

εijk�εpqrs ≡

∣∣∣∣∣∣∣∣∣∣∣∣

δip δiq δir δis

δjp δjq δjr δjs

δkp δkq δkr δks

δ�p δ�q δ�r δ�s

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.103)

vanishes. Thus, from

εijk�εpqrsAijk�Apqrs = 0 (6.104)

we find the relation

8I2,1 = 4I2,2 + 4I2,3 + 2I2,4 + 2I2,5 . (6.105)

Consequently, the invariant I2,1 is redundant, and there are only 4 irreducible
invariants of degree 2 for a fourth-order symmetric tensor (6.40). Following
this way by using a special developed computer program, we find more than
65 irreducible invariants of a fourth-order tensor listed in Table 6.4.

Table 6.4 Numbers of irreducible invariants of a fourth-order symmetric tensor

degree 1 2 3 4 5 6

invariants 2 4 10 16 33 ?
∑

> 65

The highest degree is 6, which has to be taken into account (BETTEN,
1982a; 2001c). However, the complete set of invariants of degree 6 for a
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fourth-order symmetric tensor cannot be calculated up to now because of
missing computer capacities.

The combinatorial method is not restricted to the formation of invariants,
but also leads to results on tensor-valued terms called tensor generators. For
instance, the expressions

δijδk�Ak� ≡ Akkδij , δikδj�Ak� ≡ Aij ,

δipδqrδsjApqArs ≡ AirArj ≡ A(2)
ij

}
(6.106)

are the three irreducible tensor generators of a second-order tensor. Further-
more, the transvections

δipδqrδsjApqBrs ≡ AirBrj ,

δipδqrδstδuvδwjApqrsAtuvw ≡ AirrsAsuuj

}
(6.107)

are index-combinations with the two free indices ij, i.e., second-order tensor-
valued terms. Our special developed computer program forms all possi-
ble index-combinations, such as (6.107), and selects all redundant elements
by considering index-symmetries. Thus, we find sets of irreducible tensor-
generators, which are complete, too. Some results are listed in Table 6.5.

Table 6.5 The numbers of irreducible invariants and tensor generators

Symmetric
Argumenttensors

Irred.
Invari-
ants

Tensor Functions
fij =

∑
α
ϕα

αGij

Tensor Generators
αGij = αGji

Xpq 3 Yij = fij(Xpq) 3

Xpq, Apq 10 fij(Xpq, Apq) 9

Xpq, Apq, Bpq 28 fij(Xpq, Apq, Bpq) 46

Apqrs > 65 fij(Apqrs) > 108

Xpq, Apqrs > 156 fij(Xpq, Apqrs) > 314

Xpq, Dpq, Apqrs > 512 fij(Xpq, Dpq, Apqrs) > 884

Further mathematical considerations and possible engineering applica-
tions are discussed and illustrated, for instance, by BETTEN (1998) and
BETTEN and HELISCH (1995), or by ZHENG and BETTEN (1995;1996), or
ZHENG, BETTEN and SPENCER (1992). An extended survey of the theory
of representations for tensor functions was provided by ZHENG (1994) and
BETTEN (2001b) in the Applied Mechanics Review (AMR).
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As one can see from Table 6.5, constitutive equations and anisotropic
damage growth equations of the forms (4.79a,b), (4.85a,b) or (6.43) con-
taining complete sets of irreducible invariants and tensor generators may be
too complicated for practical use. Therefore, we have to look for simplified
representations as proposed in the following.

6.4.7 Simplified Representations

As an example, we suggest the following simplified constitutive equation

dij = fij(t, τ ) =
1

2

2∑
ν,μ=0

Φ[ν,μ]

[
t
(ν)
ik τ

(μ)
kj + τ

(μ)
ik t

(ν)
kj

]
, (6.108)

where the linear transformations

tij = Dijpqσpq = tji , Dijpq :=
1

2
(DipDjq +DiqDjp) (6.109)

and
τij = Aijpqσpq = τji (6.110)

have been introduced by BETTEN (1983b). We can see that the first linear
transformation (6.109) considers the anisotropic damage state, while the sec-
ond one (6.110) expresses the initial anisotropy of the material. The main
problem now is to determine the scalar coefficients Φ[ν,μ] in (6.108) as func-
tions of the integrity basis and experimental data. This can be achieved by
using the interpolation method developed by BETTEN(1984; 1987c) and ap-
plied also by BETTEN (1986a; 1989).

The tensor t defined in (6.109) is called the pseudo-net-stress tensor (sec-
tion 7.2). This tensor is symmetric even in the anisotropic damage case. The
non-symmetric property of the actual net-stress tensor σ̂ in (4.78) is a dis-
advantage, and this tensor is awkward to use in constitutive equations.

In recent years much effort has been devoted to the elaboration of evo-
lutional equations such as (4.79b) or (4.85b). The results are discussed by
BETTEN and MEYDANLI (1995). For the sake of simplicity, we can once
again use the linear transformations (6.109) and (6.110), i.e., as in (6.108),

we have to represent the tensor-valued function
◦
Dij = gij(t, τ) where

◦
Dij

is the JAUMANN derivative of the tensor (4.84), (6.76).
The representation (6.108) involves nine tensor generators, where Φ[ν,μ]

are scalar-valued functions of the integrity basis associated with the repre-
sentation (6.108), which can be found by forming tr t d and tr τ d. In this
way we find the following invariants
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t
(ν+1)
ij τ

(μ)
ji ≡ tr tν+1τμ (6.111a)

and

t
(ν)
ij τ

(μ+1)
ji ≡ tr tντμ+1 , (6.111b)

some of them are reducible or equivalent, which can be found by using the
following Lemmas:

❒ If G is a reducible generator, then trX G and trG X are re-
ducible, where X is an arbitrary tensor.

❒ The trace of a matrix product is unaltered by cyclic permutations
of its factors.

❒ The trace of a matrix product is equal to the trace of the transpose
of the product.

❒ The transpose of a matrix product π is the matrix product formed
by writing down the transposes of the factors of π in reverse order,
for instance: tra b c = tr c′ b′ a′.

Further deliberations concerning reducibility and equivalence and conse-
quences from the HAMILTON-CAYLEY theorem are given, for instance, by
BETTEN (1987c) or by ZHENG (1994).

In selecting the redundant elements, we find from (6.111a,b) the integrity
basis

tr t , tr t2 , tr t3 , tr τ , tr τ 2 , tr τ 3 ,

tr tτ , tr tτ 2 , tr t2τ , tr t2τ 2 ,

}
(6.112)

associated with the representation (6.108).
We can write the constitutive equation (6.108) in a canonical form, like

(4.81), if we introduce the following identities for tensor generators:
Let X and Y be two symmetric second-order tensors, i.e., Xij = Xji

and Yij = Yji, respectively. Then, the identities{
1

2
(XμY ν + Y νXμ)

}
ij

≡ η[ν]
ijk�X

(μ)
k� ≡ ξ[μ]

ijk�Y
(ν)
k� (6.113)

are valid for arbitrary values μ and ν, where the symbols ξ[μ]
ijk� and η[ν]

ijk� are
μ and ν several fourth-order tensors defined by

ξ
[μ]
ijk� ≡

1

4

(
X

(μ)
ik δj� +X

(μ)
i� δjk + δikX

(μ)
j� + δi�X

(μ)
jk

)
(6.114a)
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and

η
[ν]
ijk� ≡

1

4

(
Y

(ν)
ik δj� + Y

(ν)
i� δjk + δikY

(ν)
j� + δi�Y

(ν)
jk

)
, (6.114b)

respectively. Note that in (6.113) and (6.114a,b) those values of μ and ν
which are bracketed by parentheses are exponents, while a square bracket
gives any μ or ν the character of a label.

Furthermore, from (6.113) and (6.114a,b) we read the simple identities

δij ≡ 1

2
(δikδj� + δi�δjk) δk� ≡ Eijk�δk� (6.115)

and
X

(μ)
ij ≡ EijklX

(μ)
k� ≡ ξ[μ]

ijk�δk� , (6.116)

where Eijkl is the zero power tensor of fourth-order defined by

Eijkl =
1

2
(δikδj� + δi�δjk) . (6.117)

In using the introduced algebraic relations (6.113) to (6.116), we finally
find a canonical form

dij = 0hijk�δk� + 1hijk�tk� + 2hijk�t
(2)
k� (6.118)

of the constitutive equation (6.108) in the pseudo-net-stress tensor t, where
the fourth-order tensor-valued functions 0h, 1h, 2h are defined by

0hijk� ≡ Φ[0,0]T
(0)
ijk� + Φ[0,1]Tijk� + Φ[0,2]T

[2]
ijk� , (6.119a)

1hijk� ≡ Φ[1,0]T
(0)
ijk� + Φ[1,1]Tijk� + Φ[1,2]T

[2]
ijk� , (6.119b)

2hijk� ≡ Φ[2,0]T
(0)
ijk� + Φ[2,1]Tijk� + Φ[2,2]T

[2]
ijk� , (6.119c)

which can be expressed in the compact form

λhijk� ≡
2∑

ν=0

Φ[λ,ν]T
[ν]
ijk� , λ = 0, 1, 2 , (6.120)

where, by analogy of (6.114b), the symmetric tensors T [ν] of rank four are
defined by

T
[ν]
ijk� ≡

1

4

(
τ

(ν)
ik δj� + τ

(ν)
i� δjk + δikτ

(ν)
j� + δi�τ

(ν)
jk

)
. (6.121)
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For example, for ν = 0 we read from (6.121) the symmetric zero power
tensor of rank four T [0]

ijk� ≡ T (0)
ijk� = Eijk� defined by (6.117).

The result (6.120) elucidates that the anisotropy expressed by the tensors
T [ν] according to (6.121) has equal influence on the contributions of orders
zero, first, and second in the pseudo-net-stresses tk� contained in (6.118).
The functions (6.119a,b,c) or (6.120) express the anisotropy of the undam-
aged state (6.110), while the effect of anisotropic damage is considered in
(6.118) by the pseudo-net-stress tensor t according to (6.109) with (6.76). In
the total damaged state, i.e. when ω → δ or ψ → 0, the tensors D and t are
singulär, and the strain rates (6.118) approach infinity.

In the undamaged state (ω → 0 or D → δ) the pseudo-net-stress tensor
(6.109) is identical to CAUCHY‘s stress tensor σ. If, furthermore, the initial
state is isotropic [A → E according to (6.117) or τ → σ in (6.110)], then
the constitutive equation yields to the simple form (4.83) valid for isotropic
materials in the secondary creep stage.

Finally, because of (6.120), one can write the constitutive equation (6.118)
in the very short form

dij ≡
2∑

λ,ν=0

Φ[λ,ν]T
[ν]
ijk�t

(λ)
k� . (6.122)

Replacing the pseudo-net-stress tensor t according to (6.109) in (6.118) we
find the representation

dij = 0Kij + 1Kijk� σk� + 2Kijk�mn σk� σmn (6.123)

of the constitutive equation (6.108), if we define:
0Kij ≡ 0hijpqδpq , (6.124a)

1Kijk� ≡ 1hijpqDpqk� , (6.124b)
2Kijk�mn ≡ 2hijpqDprk�Drqmn . (6.124c)

The coefficent tensors (6.124b,c) are decomposed into anisotropy charac-
terized by the fourth-rank tensors (6.119b,c) and into anisotropic damage
determined by the fourth-rank tensor (Dijk�) defined in (6.109) in a multi-
plicative way. In the undamaged case [Dij → δij according to (6.76)] the
tensor (Dijk�) in (6.109) is identical to the symmetric zero power tensor of
fourth-order defined by (6.117), and in the total damage state (ω → δ) the
fourth-order tensor D in (6.109) is singular, i. e., the strain rates according
to (6.108) or (6.123) approach infinity as the damage tensor ω approaches
the unit tensor δ or as the continuity tensor ψ in (6.76) approaches the zero
tensor 0.



7 Damage Mechanics

In sections 4.3.2 and 6.4 constitutive equations involving damage and initial
anisotropy have been formulated in detail. This Chapter is concerned with
the construction of damage tensors or tensors of continuity (Section 7.1).

Then, the multiaxial state of stress in a damaged continuum will be ana-
lyzed in detail (Section 7.2).

Finally, some damage effective stress concepts are proposed and dis-
cussed in Section 7.3.

7.1 Damage Tensors and Tensors of Continuity

As has been already mentioned in Chapter 4, damage has in general an
anisotropic character even if the material was originally isotropic. This mat-
ter results from the microscopic nature of damage. The fissure orientation
and length cause anisotropic macroscopic behavior. Therefore, damage in an
isotropic or initial anisotropic material that is in a state of multiaxial stress
can only be described by taking a damage tensor into account.

There are some different ways to construct tensors suitable for analysing
the damage state in material. In the following second-rank and fourth-order
damage tensors are systematically developed.

In three-dimensional space a parallelogram formed by the vectors Ai and
Bi can be represented by

Si = εijk AjBk (7.1a)

or in the dual form

Sij = εijk Sk ⇔ Si = 1
2εijk Sjk , (7.1b)

where εijk is the third-order alternating tensor (εijk = 1, or −1 if i, j, k are
even or odd permutations of 1, 2, 3, respectively, otherwise the components
εijk are equal to zero) according to (2.5). From (7.1a,b) we immediately find
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Sij = 2!A[iBj] =

∣∣∣∣∣Ai Aj

Bi Bj

∣∣∣∣∣ . (7.2)

Because of the decomposition (7.2) as an alternating product of two vectors
the bivector S is called simple and has the following three nonvanishing
essential components

S12 = A1B2 −A2B1 , S23 = A2B3 −A3B2 , (7.3a,b)

S31 = A3B1 −A1B3 . (7.3c)

In rectilinear components in three-dimensional space, we see that the ab-
solute values of the components (7.3) are the projections of the area of the
parallelogram, considered above, on the coordinate planes. Thus Sij , accord-
ing to (7.2), represents an area vector in three-dimensional space and has an
orientation fixed by (7.1a).

According to (7.1b) a surface element dS with an unit normal ni, i.e.
dSi = nidS, is expressed by

dSij = εijkdSk ⇔ dSi = 1
2εijkdSjk (7.4.a)

and

nij = εijknk ⇔ ni = 1
2εijknjk . (7.4b)

The components of the bivector n are the direction cosines n1, n2, n3:

nij =

⎛
⎜⎜⎝

0 n3 −n2

−n3 0 n1

n2 −n1 0

⎞
⎟⎟⎠ . (7.5)

The principal invariants of (7.5), defined as

J1 ≡ nii , −J2 ≡ ni[i]nj[j] , J3 ≡ ni[i]nj[j]nk[k] , (7.6a,b,c)

take the following values:

J1(n) = 0 , −J2(n) = n2
1 + n2

2 + n2
3 = 1 , J3(n) = 0 , (7.7a,b,c)

i.e. the only nonvanishing invariant is determined by the length of the unit
normal vector ni. In (7.6a,b,c) the same notation is used as in (2.24a,b,c).
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Fig. 7.1 CAUCHY’s tetrahedron a) in an undamaged state, b) in a damaged state

Imagine that at a point ◦ in a continuous medium a set of rectangular coor-
dinate axes is drawn and a differential tetrahedron is bounded by parts of the
three coordinate planes through ◦ and a fourth plane not passing through ◦,
as shown in Fig. 7.1a. Such a tetrahedron can be characterized by a system
of bivectors,

d1Si = −1
2εijk(dx2)j(dx3)k ,

d2Si = −1
2εijk(dx3)j(dx1)k ,

d3Si = −1
2εijk(dx1)j(dx2)k ,

d4Si = −1
2εijk [(dx1)j − (dx3)j ] [(dx2)k − (dx3)k] ,

(7.8)

where the sum is the zero vector:

d1Si + d2Si + d3Si + d4Si = 0i . (7.9)

In a damaged continuum we define a ”net cross section” Ŝ ≡ ψS where
ψ ≤ 1 describes the ”continuity” of the material, as mentioned in Section
4.3.1. Then, by analogy of (7.8), a tetrahedron in a damaged continuum (Fig.
7.1b) can be characterized by the following system of bivectors:

d1Ŝi = −1
2αijk(dx2)j(dx3)k ≡ αd1Si ,

d2Ŝi = −1
2βijk(dx3)j(dx1)k ≡ β d2Si ,

d3Ŝi = −1
2γijk(dx1)j(dx2)k ≡ γ d3Si ,

d4Ŝi = −1
2κijk [(dx1)j − (dx3)j ] [(dx2)k − (dx3)k] ≡ κ d4Si ,

(7.10)
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where αijk ≡ αεijk, βijk ≡ βεijk, etc. are total skew-symmetric tensors of
order three, which have the essential components α123 ≡ α, β123 ≡ β, etc.,
respectively.

¿From Fig. 7.1a,b we find that only

dS1 = −n1 dS , d1Ŝ1 = αd1S1 , d2S2 = −n2 dS , etc.

are non vanishing components of the bivector systems (7.8) and (7.10). Then
the sum of (7.10) yields the vector

Σi ≡ d1Ŝi + . . .+ d4Ŝi =

⎛
⎜⎜⎝

(κ− α)n1

(κ− β)n2

(κ− γ)n3

⎞
⎟⎟⎠ dS , (7.11)

which is not the zero vector, unless in the isotropic damage case (α = β =
γ = κ) or in the undamaged case (α = β = γ = κ = 1) according to (7.9).

Furthermore, because of d1Ŝ1 �= 0, d1Ŝ2 = d1Ŝ3 = 0 etc., the damage
state of the continuum at a point is characterized by the bivectors

α1ij =

⎛
⎜⎜⎝

0 0 0

0 0 α

0 −α 0

⎞
⎟⎟⎠ , β2ij =

⎛
⎜⎜⎝

0 0 −β
0 0 0

β 0 0

⎞
⎟⎟⎠ , (7.12a,b)

γ3ij =

⎛
⎜⎜⎝

0 γ 0

−γ 0 0

0 0 0

⎞
⎟⎟⎠ . (7.12c)

In the following we will examine if the bivector

ψij = α1ij + β2ij + γ3ij =

⎛
⎜⎜⎝

0 γ −β
−γ 0 α

β −α 0

⎞
⎟⎟⎠ (7.13a)

ψij = αε1ij + βε2ij + γε3ij (7.13b)

could be a suitable tensor of continuity. Then the damage tensor ω would be
of the form

ωij = δ(k)kεkij − ψij =

⎛
⎜⎜⎝

0 1 − γ −(1 − β)

−(1 − γ) 0 1 − α
1 − β −(1 − α) 0

⎞
⎟⎟⎠ (7.14a)
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(no sum on the bracketed index k) or

ωij = (1 − α)ε1ij + (1 − β)ε2ij + (1 − γ)ε3ij . (7.14b)

If a tensor is symmetric or antisymmetric, respectively, in one cartesian
coordinate system, it is symmetric or antisymmetric in all such systems;
thus symmetry and antisymmetry are really tensor properties. Therefore, the
skew-symmetric tensor (7.13a) has only three essential components in any
cartesian system, for instance, α, β, γ in relation to the system xi or α∗, β∗,
γ∗ with respect to the system x∗i .

The only nonvanishing invariants of the bivectors (7.13) and (7.14) are
determined by their lengths:

−J2(ψ) ≡ −1
2 tr ψ2 ≡ −1

2ψijψji = α2 + β2 + γ2 , (7.15)

−J2(ω) = (1 − α)2 + (1 − β)2 + (1 − γ)2 . (7.16)

In the undamaged state (α = β = γ = 1) we have

−J2(ψ) = 3 , −J2(ω) = 0 ,

and

ψij → ηij ≡ ε1ij + ε2ij + ε3ij =

⎛
⎜⎜⎝

0 1 −1

−1 0 1

1 −1 0

⎞
⎟⎟⎠ . (7.17)

We see that the undamaged state does not yield an isotropic tensor, because
the components of η in (7.17) transform under the change of the coordinate
system.

Thus the bivector ψ defined by (7.13a,b) is not suitable to describe the
state of continuity of a damaged continuum, and we have to find another
tensor composed by the bivectors (7.12a,b,c). As shown below, a suitable
tensor of continuity may be defined by

ψijk ≡ ψi[jk] with

⎧⎪⎨
⎪⎩
ψ1jk ≡ α1jk = αε1jk

ψ2jk ≡ β2jk = βε2jk

ψ3jk ≡ γ3jk = γε3jk

. (7.18)

This tensor is skew-symmetric only with respect to the two bracketed indizes
[jk] and possesses the three essential components (α, β, γ), as illustrated in
Fig. 7.2.
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Fig. 7.2 Third-order tensor of continuity and its dual form

In the isotropic damage state (α = β = γ = κ) the tensor (7.18) is
total skew-symmetric, and the undamaged continuum (α = β = γ = 1)
is characterized by the third-order alternating tensor εijk. Supplementary to
(7.18) we introduce the ”damage tensor”

ωijk ≡ εijk − ψijk where

⎧⎪⎨
⎪⎩
ω1jk = (1 − α)ε1jk

ω2jk = (1 − β)ε2jk

ω3jk = (1 − γ)ε3jk

. (7.19)

By analogy of (7.1b) or (7.4a,b) the dual relations

ψijk ≡ ψi[jk] = εjkrψir ⇔ ψir = 1
2εrjkψijk , (7.20)

ωijk ≡ ωi[jk] = εjkrωir ⇔ ωir = 1
2εrjkωijk (7.21)

are valid.
Contrary to (7.13) and (7.14) the dual tensor of continuity ψij accord-

ing to (7.20) and the dual damage tensor ωij according to (7.21) have the
diagonal forms

ψij = diag {α, β, γ} (7.22)

and
ωij = diag {(1 − α), (1 − β), (1 − γ)} , (7.23)

respectively. For the undamaged continuum (ψijk → εijk) the dual tensor of
continuityψij is equal to KRONECKER’s tensor δij , as we can see from (7.20)
or immediately from (7.22). The relations (7.20) and (7.22) are illustrated in
Fig. 7.2.

Especially, from Fig. 7.2 we can see the skew-symmetric character of
the third order tensor of continuity indicated in (7.20) and its three essential
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components α, β, γ. These values are fractions which represent the net cross-
sectional elements perpendicular to the coordinate axes x1, x2, x3 (Fig. 7.1b)
and which can be measured in tests on specimens cut along three mutually
perpendicular directions x1, x2, x3.

According to (7.4a) a damaged surface element dŜ can be expressed in
the dual form

dŜij = εijkdŜk ⇔ dŜi = 1
2εijkdŜjk , (7.24)

and using the tensor of continuity (7.18) we find

dŜij = ψijkdSk ⇔ dŜi = 1
2ψijkdSjk . (7.25)

Note that the bivector dŜij or dSjk in (7.25) must have the same indices with
respect to which the tensor (7.18) is skew-symmetric. Combining (7.4a) and
(7.25) we have the linear transformations

dŜij = 1
2ψijpqdSpq , dŜi = ψirdSr , (7.26a,b)

where ψir is the tensor (7.20), (7.22), while ψijpq is a fourth-order non-
symmetric tensor defined as

ψijpq ≡ ψkijεkpq , (7.27a)

which, by using (7.20), can be expressed through

ψijpq = (δipδjq − δiqδjp)ψrr − (ψipδjq − ψiqδjp) − (δipψjq − δiqψjp) .
(7.27b)

This tensor has the antisymmetric properties

ψijpq = −ψjipq = −ψijqp = ψjiqp , (7.28)

and is symmetric only with respect to the index pairs, i.e.

ψijpq = ψpqij . (7.29)

More briefly, the properties of (7.28) and (7.29) can be indicated by

ψijpq = ψ([ij][pq]) . (7.30)

The essential components of the tensor (7.27) are given by

ψijpq =

⎧⎪⎨
⎪⎩
α, β, γ, if ij is an even permutation of pq

−α,−β,−γ, if ij is an odd permutation of pq,

0, otherwise

(7.31a)
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which means

ψ2323 = ψ3232 ≡ α , ψ3131 = ψ1313 ≡ β ,
ψ1212 = ψ2121 ≡ γ ,

ψ3223 = ψ2332 ≡ −α , ψ1331 = ψ3113 ≡ −β ,
ψ2112 = ψ1221 ≡ −γ .

(7.31b)

In the isotropic damage state (α = β = γ = κ) the tensor (7.27) is propor-
tional to KRONECKER’s generalized delta

δijpq ≡ εkijεkpq =

∣∣∣∣∣∣∣∣
δkk δkp δkq

δik δip δiq

δjk δjp δjq

∣∣∣∣∣∣∣∣ = δipδjq − δiqδjp ,
and is identical to that one in the undamaged continuum characterized by
(α = β = γ = 1).

In order to construct the tensor of continuity (7.22) we can use the fol-
lowing way. In addition to Fig. 7.1 let us consider a fictitious undamaged
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Fig. 7.3 CAUCHY’s tetrahedron a) undamaged configuration, b) anisotropic damaged
configuration, c) fictitious undamaged configuration

configuration as illustrated in Fig. 7.3c, which is, similar to (7.8) and (7.10),
characterized by the following system of bivectors:

d1S̃i = −1
2εijk(dx̃2)j(dx̃3)k ≡ d1Ŝi ,

d2S̃i = −1
2εijk(dx̃3)j(dx̃1)k ≡ d2Ŝi ,

d3S̃i = −1
2εijk(dx̃1)j(dx̃2)k ≡ d3Ŝi ,

d4S̃i = −1
2εijk [(dx̃1)j − (dx̃3)j ] [(dx̃2)k − (dx̃3)k] ,

(7.32)
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where, by analogy of (7.9), the vector sum is equal to the zero vector:

d1S̃i + d2S̃i + d3S̃i + d4S̃i = 0i . (7.33)

The three area vectors d1S̃i, . . . , d
3S̃i in (7.32) are identical to the corre-

sponding vectors in (7.10) of the damaged configuration. The fourth vector
d4S̃i in (7.32), having the same magnitude as d4Ŝi in (7.10), differ from the
vector d4Si in (7.8) not only in length, but also in its direction. Therefore,
the vectors d4S̃i and d4Si are connected by a linear operator ψ of rank two
(second order tensor):

d4S̃i = ψird
4Sr . (7.34)

Comparing the three systems of bivectors (7.8), (7.10), (7.32) and using
the equations (7.9), (7.33) in connection with the transformation (7.34), we
find the relation:

ψirεrjk [(dx2)j(dx3)k + (dx3)j(dx1)k + (dx1)j(dx2)k]

= αijk(dx2)j(dx3)k + βijk(dx3)j(dx1)k + γijk(dx1)j(dx2)k , (7.35)

where the transvection ψirεrjk leads to the third-order tensor of continuity:

ψirεrjk ≡ ψijk = ψi[jk] , (7.36)

which is skew-symmetric with respect to the bracketed index pair [jk]. The
result (7.36) is contained in (7.18) and (7.20).

Because of αijk ≡ αεijk, etc. the terms on the right-hand side of (7.35)
are vectors with magnitudes∣∣∣d1S̃i

∣∣∣ = 1
2α1jk(dx2)j(dx3)k , etc.

and with the directions of the basis vectors 1ei,
2ei,

3ei of the cartesian co-
ordinate system. Therefore, in connection with (7.36), relation (7.35) can be
written in the following form:

ψijk [(dx2)j(dx3)k + . . .] = 1eiα1jk(dx2)j(dx3)k + . . . , (7.37)

from which we immediately read the decomposition:

ψijk = 1eiα1jk + 2eiβ2jk + 3eiγ3jk , (7.38a)

or because of α1jk ≡ αε1jk, etc.:
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ψijk = α1eiε1jk + β2eiε2jk + γ3eiε3jk . (7.38b)

By analogy of (7.1b) we find the dual relation from (7.36):

ψijk = ψi[jk] = εjkrψir ⇔ ψir = 1
2εrjkψijk , (7.39)

and finally the diagonal form:

ψir = 1
2ψipqεjpq = diag{α, β, γ} (7.40a)

in accordance with (7.22). Inserting the decomposition (7.38b) into (7.40a)
and replacing δ1j ≡ 1ej , etc., we see that the second rank tensor of continuity
can be decomposed in terms of dyadics formed from the basis vectors:

ψij = α
(
1e ⊗ 1e

)
ij

+ β
(
2e ⊗ 2e

)
ij

+ γ
(
3e ⊗ 3e

)
ij
. (7.40b)

The relations (7.39) and (7.40a) are illustrated in Fig. 7.2. Especially, from
Fig. 7.2 we can see the skew-symmetric character of a third-order tensor of
continuity indicated in (7.36) and its three essential components (α, β, γ).
These values are fractions which represent the net cross-sectional elements
perpendicular to the coordinate axes x1, x2, x3 (Fig. 7.3b) and which can
be measured in tests on specimens cut along three mutually perpendicular
directions x1, x2, x3. Such experiments are carried out by BETTEN and his
coworkers as discussed in Chapter 13.

The damage may sometimes develop isotropically, as observed by JOHN-
SON (1960) for R.R. 59 Al alloy. In this special case (α = β = γ ≡ ψ), the
second rank tensor of continuity (7.39) is a spherical tensor:

ψijk = ψεjkrδir = ψεijk ⇔ ψir = 1
2ψεrjkεijk = ψδir (7.41)

and, contrary to (7.39), the third order tensor of continuity is now totally
skew-symmetric (ψijk ≡ ψ[ijk]).

Instead of the continuity tensor ψ according to (7.39) we can use the dam-
age tensor ω defined by (7.19), (7.23) and characterized by the dual relation
(7.21). In view of polynominal representations of constitutive equations it
is convenient to use the tensor (4.84), as discussed in Section 4.3.2 in more
detail.

7.2 Stresses in a Damaged Continuum

In the undamaged continuum (Fig. 7.4a) CAUCHY’s formula
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pi = σjinj (7.42)

is derived from equilibrium, where pi and ni are the components of the stress
vector p and the unit vector normal n, respectively. In the same way we get
to the corresponding relation for a damaged continuum,

p̂iψ(n) = ψjkσ̂kinj , (7.43)

where ψjk are the components of the continuity tensor ψ according to (7.22).
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Fig. 7.4 Stress tensor regarding a) an undamaged, b) a damaged continuum

The surface elements dS and dŜ in Fig. 7.4 are subjected to the same
force vector:

dPi = pi dS ≡ p̂i dŜ = dP̂i . (7.44)

Thus, considering (7.42) and (7.43), we finally find the actual net-stress ten-
sor σ̂ as a transformation from CAUCHY’s tensor:

σij = ψirσ̂rj = σji ⇔ σ̂ij = ψ
(−1)
ir σrj �= σ̂ji . (7.45)

By suitable transvections we find σij σ̂
(−1)
jk = ψik and σ̂ijσ

(−1)
jk = ψ

(−1)
ik .

As indicated in (7.45), the actual net-stress tensor σ̂ is non-symmetric,
unless we have isotropic damage expressed by ψir = ψδir.

Because of the symmetry σij = (σij +σji)/2 of CAUCHY’s stress tensor
σ we find the representations

σij = 1
2 (ψipδjq + δiqψjp) σ̂pq ≡ ϕijpqσ̂pq , (7.46a)
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σ̂ij = 1
2

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp

)
σpq ≡ Φijpqσpq (7.46b)

from (7.45). We see that the fourth-order tensors ϕ and Φ defined as
(7.46a,b) are only symmetric with respect to two indices:

ϕijpq = ϕjipq , Φijpq = Φijqp , (7.47a,b)

that is, the actual net-stress tensor σ̂ is non-symmetric in the anisotropic
damage case:

σ̂12

σ̂21
=
β

α
,

σ̂23

σ̂32
=
γ

β
,

σ̂31

σ̂13
=
α

γ
. (7.48)

This fact is a disadvantage, and it is awkward to use the actual net-stress ten-
sor σ̂ in constitutive equations with a symmetric strain rate tensor d. There-
fore, we introduce a transformed net-stress tensor t defined by the operation

tij = 1
2

(
σ̂ikψ

(−1)
kj + ψ

(−1)
ki σ̂jk

)
, (7.49)

which is symmetric. Inserting (7.46b) into (7.49) we have

tij = C
(−1)
ijpq σpq , (7.50)

where
C

(−1)
ijpq = 1

2

(
ψ

(−1)
ip ψ

(−1)
jq + ψ

(−1)
iq ψ

(−1)
jp

)
(7.51)

is a symmetric fourth-order tensor

C
(−1)
ijpq = C

(−1)
jipq = C

(−1)
ijqp = C

(−1)
pqij , (7.52)

which is identical to the tensor Dijpq in (4.94). In the undamaged (ψ → δ)
and total damaged state (ψ → 0) we have

C
(−1)
ijpq → Eijpq ⇒ tij → σij (7.53)

and

C
(−1)
ijpq → ∞ijpq ⇒ tij → ∞ij(singular) , (7.54)

respectively, where

Eijpq = 1
2 (δipδjq + δiqδjp) (7.55)
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is the zero power tensor of rank four.
The inverse form of (7.50) is given by

σij = Cijpqtpq , (7.56)

where
Cijpq = 1

2 (ψipψjq + ψiqψjp) (7.57)

is a symmetric fourth-order tensor of continuity,

Cijpq = Cjipq = Cijqp = Cpqij , (7.58)

which is connected with the tensor (7.51) by the relation

CijpqC
(−1)
pqk� = C

(−1)
ijpq Cpqk� = C

(0)
ijk� ≡ Eijk� . (7.59)

Because of the symmetry properties (7.52) and (7.58) the fourth-order tensor
of continuity (7.57) and its inversion (7.51) can be represented by 6×6 square
matrices, which, because of (7.40a,b), have the diagonal forms:

Cijk� = diag {C1111, C2222, C3333, C1212, C2323, C3131} , (7.60a)

Cijk� = diag
{
α2, β2, γ2, 1

2αβ,
1
2βγ,

1
2γα
}
, (7.60b)

and

C
(−1)
ijk� = diag

{
C

(−1)
1111 , C

(−1)
2222 , C

(−1)
3333 , C

(−1)
1212 , C

(−1)
2323 , C

(−1)
3131

}
, (7.61a)

C
(−1)
ijk� = diag

{
1

α2
,

1

β2
,

1

γ2
,

2

αβ
,

2

βγ
,

2

γα

}
, (7.61b)

that is, the components of the pseudo-net stress tensor t, according to (7.50),
are given in the following manner:

t11 =
1

α2
σ11 , t12 =

1

αβ
σ12 , t13 =

1

αγ
σ13 ,

t21 = t12 , t22 =
1

β2
σ22 , t23 =

1

βγ
σ23 , (7.62)

t31 = t13 , t32 = t23 , t33 =
1

γ2
σ33 .

The results (7.50) and (7.56) can also be found in the following way.
Using the linear transformations
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tij = 1
2

(
δirψ

(−1)
js + ψ

(−1)
is δjr

)
σ̂rs (7.63)

and
σ̂pq = 1

2 (δprψqs + δpsψqr) trs , (7.64)

which connect a fictitious symmetric tensor t with the actual non-symmetric
net stress tensor σ̂, we immediately find (7.50) by inserting (7.46b) into
(7.63) and (7.56) by inserting (7.64) into (7.46a), respectively.

Because of the non-symmetric property of the actual net-stress tensor we
find from (7.64) the decomposition

σ̂pq = σ̂(pq) + σ̂[pq] , (7.65)

where the symmetric and antisymmetric parts are given by

σ̂(pq) = (tprψrq + ψprtrq)/ 2 (7.66)

and
σ̂[pq] = (tprψrq − ψprtrq)/ 2 , (7.67)

respectively. In the special case of isotropic damage (ψij = ψδij) we have
σ̂(pq) = ψtpq and σ̂[pq] = 0pq.

An interpretation of the introduced pseudo-net stress tensor (7.49) can be
given in the following way. An alternative form of CAUCHY’s formula (7.42)
is

dPi = σji dSj , (7.68)

where dPi is the actual force vector (7.44), and according to (7.26b) we can
write

dPi = σjiψ
(−1)
jr dŜr , (7.69a)

or inserting (7.56) we find the relation

dPi = ψiptpr dŜr , (7.69b)

which can be multiplied by ψ(−1)
ki , so that we have

ψ
(−1)
ki dPi = tkr dŜr , (7.70a)

or after changing the indices:

ψ
(−1)
ik dPk ≡ dP̃i = tji dŜj . (7.70b)
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Comparing (7.68) and (7.70b) we see that (7.70b) can be interpreted as
CAUCHY’s formula for the damaged configuration, which is subjected to
the pseudo-force dP̃i ≡ ψ(−1)

ik dPk instead to the actual force dPi.
Because of the non-symmetric properties of the ”net-stress tensor” σ̂ and

the operator ϕ, i.e.,

σ̂ij = 1
2 (σ̂ij + σ̂ji) + 1

2 (σ̂ij − σ̂ji) (7.71)

and
ϕijpq = 1

2 (ϕijpq + ϕijqp) + 1
2 (ϕijpq − ϕijqp) , (7.72)

respectively, we find, from (7.46a), the decompositions:

σij = 1
4 (ϕijpq + ϕijqp) (σ̂pq + σ̂qp)

+ 1
4 (ϕijpq − ϕijqp) (σ̂pq − σ̂qp) ,

(7.73a)

σij = 1
8 (ψipδjq + ψjpδiq + ψiqδjp + ψjqδip) (σ̂pq + σ̂qp)

+ 1
8 (ψipδjq + ψjpδiq − ψiqδjp − ψjqδip) (σ̂pq − σ̂qp) .

(7.73b)

Because of (7.47a) the right-hand sides in (7.73a) and (7.73b) are symmet-
ric with respect to the indices i and j. Furthermore, we see the symme-
try with respect to the indices p and q. This fact can be seen immediately
from (7.46a). In the special case of isotropic damage, i.e., ψij = ψδij or
σ̂pq = σ̂qp, the second term of the right-hand side in (7.73b) vanishes. Then,
equation (7.73b) is identical to those formulated by RABOTNOV (1969).

In a similar way, from (7.46b) we find the decomposition of the ”net
stress tensor” σ̂ into a symmetric and an antisymmetric part:

σ̂ij = 1
2 (Φijpq + Φjipq)σpq + 1

2 (Φijpq − Φjipq)σpq , (7.74a)

σ̂ij = 1
4

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp + ψ

(−1)
jp δiq + ψ

(−1)
jq δip

)
σpq

+ 1
4

(
ψ

(−1)
ip δjq + ψ

(−1)
iq δjp − ψ(−1)

jp δiq − ψ(−1)
jq δip

)
σpq .

(7.74b)

The results given above may be expressed by the damage tensor ω. For
instance, from (7.27a,b) in connection with (7.19) and because of the substi-
tution ψij ≡ δij − ωij we have

ψijpq = δijpq − ωkijεkpq ≡ (εkij − ωkij) εkpq , (7.75a)

ψijpq = (δipδjq − δiqδjp) (1 − ωrr) + (ωipδjq − ωiqδjp)

+ (δipωjq − δiqωjp) .
(7.75b)
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Furthermore, instead of (7.46a) and (7.73b) we find

σij = 1
2 [δipδjq + δiqδjp − (ωipδjq + δiqωjp)] σ̂pq (7.76a)

and

σij = 1
2 (σ̂ij + σ̂ji)

− 1
8 (ωipδjq + δiqωjp + ωiqδjp + δipωjq) (σ̂pq + σ̂qp)

− 1
8 (ωipδjq + δiqωjp − ωiqδjp − δipωjq) (σ̂pq − σ̂qp) .

(7.76b)

By using the inverse

ψ
(−1)
ir ≡ 1

2 det(ψ)
εrqpεik�ψpkψq� (7.77)

and because of the symmetry σij = (σij + σji)/2, we find the following
relations for the net stress tensor:

σ̂ij =
1

2 det(δ − ω)

[
(δisδjt + δitδjs) (1 − ωrr)

+ (ωisδjt + ωitδjs) + 1
2εik� (εspqδjt + εtpqδjs)ωpkωq�

]
σst ,

(7.78a)

=
1

det(δ − ω)
[(1 − ωrr)σij + ωirσrj

+ 1
2εik�εspqωpkωq�σsj

]
,

(7.78b)

=
1

det(δ − ω)

{
[1 − J1(ω) − J2(ω)]σij

+ [1 − J1(ω)]ωirσrj + ω
(2)
ir σrj

}
,

(7.78c)

where

J1(ω) ≡ δijωji , J2(ω) ≡ 1
2 (ωijωji − ωiiωjj) (7.79a,b)

are invariants of the damage tensor ω.
Finally, we consider CAUCHYs stress equations of equilibrium,

σji,j = 0i , (7.80)

in the absence of the body forces. Then by using the transformation (7.45),
we have the equilibrium equations in the net stresses:
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σ̂riψjr,j + ψjrσ̂ri,j = 0i . (7.81)

The symmetry of CAUCHY’s stress tensor (σij = σji) resulting from moment
equilibrium yields the condition

ψipσ̂pj = ψjqσ̂qi or σ̂ij = ψ
(−1)
iq ψjpσ̂pq , (7.82a,b)

which states that the net stress tensor is non-symmetric. From (7.82b) we
find the decomposition into a symmetric part and an antisymmetric one:

σ̂ij = 1
4

(
ψ

(−1)
iq ψjp + ψ

(−1)
ip ψjq

)
(σ̂pq + σ̂qp)

+ 1
4

(
ψ

(−1)
iq ψjp − ψ(−1)

ip ψjq

)
(σ̂pq + σ̂qp) .

(7.83)

For the isotropic damage case (ψij = ψδij), the relation (7.83) is equal to
the decomposition

σ̂ij = (σ̂ji + σ̂ij)/ 2 + (σ̂ji − σ̂ij)/ 2 ≡ σ̂ji , (7.84)

i.e., the net stress tensor is symmetric in this special case only.

7.3 Damage Effective Stress Concepts

During the last two or three decades many scientists have devoted much
effort to the stress analysis in a damaged material, and the notation damage
effective stress has been introduced. In the following some various damage
effective stress concepts should be reviewed.

In the case of damage being isotropic measured in terms of a single scalar
parameter ω(0 ≤ ω ≤ 1), the effective stress tensor σ̄ is expressed in the
form

σ̄ = σ/(1 − ω) (model I)

where σ denotes the CAUCHY stress tensor. This assumption leads to sim-
ple models of mechanical behavior coupling damage and is adequate in
some cases, especially under conditions of proportional loading (LEMAITRE,
1984,1992) or in some materials (JOHNSON, 1960). However, many scien-
tists ( HAYHURST, 1972; LECKIE and HAYHURST, 1974; LEE, PENG and
WANG, 1985; CHOW and WANG, 1987; 1988 ) experimentally observed that
all initially isotropic or anisotropic materials under conditions of nonpro-
portional loading and most brittle materials even though under conditions
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of proportional loading develop anisotropic damage, for which the dam-
age variables can no longer be scalars, but are of tensorial nature (LECKIE

and ONAT, 1981). The damage variables are then vectors, second-order or
fourth-order tensors (BETTEN, 2001b). ONAT (1986), ONAT and LECKIE

(1988) and ADAMS et al. (1992) showed that the damage variables in isother-
mal mechanical behavior are irreducible tensors of even orders.

MURAKAMI and OHNO (1981) derived an asymmetric effective stress
tensor,

σ∗ = σ(1 − ω)−1 ,

where 1 denotes the second-order identity tensor and ω is a symmetric
second-order damage tensor. Only the symmetric part of σ∗, i.e.,

σ̄ =
[
σ(1 − ω)−1 + (1 − ω)−1σ

]/
2 (model II) ,

has been considered by MURAKAMI (1988) in constitutive equations.
CHOW and WANG (1987) postulated an alternative model of the effective

stress tensor in the damage principal coordinate system, which was applied
in elasticity, plasticity and ductile fracture ( CHOW and WANG, 1987; 1988;
KATTAN and VOYIADJIS, 1990; VOYIADJIS and KATTAN, 1990 ) . It is easy
to show that this model coincides with the following tensorial expression:

σ̄ = (1 − ω)−1/2σ(1 − ω)−1/2 (model III) .

In particular, if σ and ω are coaxial in their principal directions, then they
are commutative, σω = ωσ, and both models, II and III, reduce to:

σ̄ = (1 − ω)−1σ = σ(1 − ω)−1 (model IV) .

This model is the tensorial generalization of those proposed by SIDOROFF

(1981), LECKIE and HAYHURST (1974), and LEE et al. (1985) in the princi-
pal coordinate system.

In each of the above discussed models I-IV the effective stress tensor σ̄

depends linear on the CAUCHY stress tensor σ. In general, the fourth-order
tensor M as a linear transformation in the relation

σ̄ = M [σ] or σ̄ij = Mijk�σk�

is named the damage effective tensor (ZHENG and BETTEN, 1996). Origi-
nally, RABOTNOV (1968) had not considered the relation σ̄ = M [σ] but
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defined a symmetric net-stress tensor σ̂ by way of a linear transformation
σ = Ω[σ̂] or in index notation according to (4.78), where the fourth-order
tensor Ω is assumed to be symmetric.

However, BETTEN (1982b) has pointed out in more detail that the fourth-
order tensor Ω in the linear transformation σ = Ω[σ̂] and consequently the
net-stress tensor σ̂ cannot be symmetric if the damage develops anisotrop-
ically. Instead of σ̂, BETTEN (1983b) introduced a transformed net-stress
tensor t, called pseudo-net-stress tensor, as an effective stress tensor,

σ̄ = (1 − ω)−1σ(1 − ω)−1 (model V) ,

which is symmetric even in cases of anisotropic damage. This model can be
expressed in index notation according to (7.50) with (7.51), if we take the
relation (4.84) into account.

Because of the broad applicability and versatility of model V to engineer-
ing problems (BETTEN, 1986a; 1991b; 1998), this model has been developed
step by step and discussed in more detail in Section 7.2.

It must be emphasized that there is no substantive difference between
models V and III since both tensors (1 − ω) and (1 − ω)1/2 are positive-
definite second-order symmetric tensors and are phenomenological measures
of the anisotropic damage state. Furthermore, it has been pointed out by
ZHENG and BETTEN (1996) that the difference between models II and III
is negligible, if the damage is not highly developed.

Besides the concepts of damage effective stress (models I-V) various
damage equivalence principles play an important role in the development of
continuum damage mechanics. For instance, the strain equivalence hypothe-
sis (LEMAITRE, 1985; 1992; CHABOCHE, 1988; LEMAITRE and CHABOCHE,
1990; BETTEN, 2001a; 2001c; OMERSPAHIC and MATTIASSON, 2007)
states that a damaged material element under the applied stress σ exhibits the
same strain response as the undamaged one submitted to the effective stress
σ̄. Unfortunately, this hypothesis leads to asymmetric effective compliance
and stiffness matrices if anisotropic damage develops. To remove this incon-
sistency, SIDOROFF (1981) proposed the complementary energy equivalence
hypothesis by replacing the equivalence for strain response with the equiv-
alence for complementary energy. We particularly stress that the concept of
effective stress becomes meaningful, only if either the strain or complemen-
tary equivalence hypothesis (as well as some other additional equivalence
hypotheses for yield criterion function, failure criterion function, etc.) is em-
ployed.
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Assume that the damage state can be characterized in terms of a set � of
scalars, vectors, and/or tensors of different orders, which operate as internal
variables. The remarkable role of the effective stress tensor concept requires
the most general representation for the damage effect tensor, or more gener-
ally, the effective stress tensor:

σ̄ = M [σ] with M = M(�)

or

σ̄ = σ̄(σ, �) .

ZHENG and BETTEN (1996) postulate a generalized damage equivalence
hypothesis. Then, the so-called damage isotropy principle is established that
in order to coincide with the damage equivalence hypothesis, the effective
stress tensor σ̄ = σ̄(σ, �) as a second-order tensor-valued function of σ

and � has to be isotropic. Particularly, this property is irrespective of the
initial material symmetry (isotropy or anisotropy) and the type of damage
variables. As a consequence, the damage effect tensor M(�) is an isotropic
fourth-order tensor-valued function of the damage state variables �. As
isotropic tensor functions, the effective stress tensor σ̄(σ, �) and the dam-
age effect tensor M(�) can be formulated in general invariant forms ac-
cording to the theory of representations for tensor functions ( RIVLIN, 1970;
SPENCER, 1971; WANG, 1971; BOEHLER, 1979; 1987; ZHENG, 1994; BET-
TEN, 1986a; 1998; 2001c; 2003a ). Damage material constants are then con-
sistently introduced to these invariant damage models.



8 Tensorial Generalization of Uniaxial Creep Laws to
Multiaxial States of Stress

In this chapter a method is developed in order to find tensorial constitutive
and evolutional equations based upon empirical uniaxial constitutive laws
found in experimental investigations. For engineering applications it is very
important to generalize uniaxial relations to multiaxial states of stress. This
can be achieved by applying interpolation methods for tensor functions , as
pointed out in detail in this chapter. It is illustrated that the scalar coefficients
in tensorial constitutive equations can be expressed as functions of the irre-
ducible invariants of the argument tensors and of the empirical constitutive
laws found in uniaxial tests.

Some examples should be discussed. For instance, the NORTON-BAILEY

creep law and a uniaxial damage relation are generalized to tensorial consti-
tutive equations.

8.1 Polynomial Representation of Tensor Functions

Let
Yij = fij(X) = ϕ0δij + ϕ1Xij + ϕ2X

(2)
ij (8.1)

be an isotropic tensor function where ϕ0, ϕ1, ϕ2 are scalar-valued functions
of the integrity basis, the elements of which are the irreducible invariants of
the argument tensor X . Furthermore, they depend on experimental data.

First, it is possible to express the scalar functions through the principal
valuesXI , . . . , XIII and YI , . . . , YIII if we solve the system of linear equa-
tions

YI = ϕ0 + ϕ1XI + ϕ2X
2
I ,

YII = ϕ0 + ϕ1XII + ϕ2X
2
II ,

YIII = ϕ0 + ϕ1XIII + ϕ2X
2
III .

⎫⎪⎬
⎪⎭ (8.2)

The solution can be written in the form
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ϕ0 =
III∑

α=I

PαX(α+I)X(α+II)Y(α) , (8.3a)

ϕ1 =
III∑

α=I

Pα

(
X(α+I) +X(α+II)

)
Y(α) , (8.3b)

ϕ2 =
III∑

α=I

PαY(α) , (8.3c)

where the abbreviation

Pα :=

III∏
β=I
β �=α

1 /(Xα −Xβ) (8.4)

is introduced. A similar representation was used by SOBOTKA (1984) based
upon the SYLVESTER theorem (SEDOV, 1966).

Because of the products Pα, the expressions (8.3a-c) can only be used if
all principal values are different. Therefore, in the following an interpola-
tion method is used in order to determine the scalar coefficients, even if two
principal values coincide.

8.2 Interpolation Methods for Tensor Functions

In extending the LAGRANGE interpolation method to a tensor-valued func-
tion, we consider the principal values of the argument tensor as interpolating
points and find the tensorial representation

Yij = fij(X) =
III∑

α=1

αLijYα +Rij(X) (8.5)

with the tensor polynomials

αLij := Pα

(
Xik −X(α+I)δik

) (
Xkj −X(α+III)δkj

)
. (8.6)

Due to the HAMILTON-CAYLEY theorem, the tensor-valued remainder term
Rij in (8.5) is always equal to the zero tensor (BETTEN 1984; 1987b). As an
alternate approach, we find, by extending the NEWTON formula, the tensorial
representation

Yij = a0δij + a1 (Xij −XIδij)

+ a2 (Xik −XIδik) (Xkj −XIIδkj) ,
(8.7)
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Further terms in (8.7) are not possible because of the HAMILTON-CAYLEY

theorem. The coefficients in (8.7) can be found by inserting the principal
values:

a0 = YI , a1 = (YI − YII)/ (XI −XII) , (8.8a,b)

a2 = [a1 − (YIII − YI)/ (XIII −XI)]/ (XII −XIII) . (8.8c)

The interpolation formula (8.7) can be written as an isotropic tensor function
(8.1) if we define

ϕ0 ≡ a0 − a1XI + a2XIXII , (8.9a)

ϕI ≡ a1 − a2 (XI +XII) , ϕ2 ≡ a2 . (8.9b,c)

In the case of coincident points, we need the derivatives of the tensor function
(8.1):

f ′ij := ∂Yip/∂Xpj = ϕ1δij + 2ϕ2Xij , (8.10a)

f ′′ij := ∂f ′iq/Xqj = 2ϕ2δij . (8.10b)

For example, in the case ofXI �= XII = XIII , we find from (8.7) and (8.10a)
the coefficients

a0 = YI , a1 = (YI − YII)/ (XI −XII) , (8.11a,b)

a2 =
(
a1 − f ′II

)/
(XI −XII) , (8.11c)

if we substitute

YI = fII (X11 ≡ XI) ,

YII = f22 (X22 ≡ XII) ,

f ′22 (X22 ≡ XII) ≡ f ′II .

Finally, if all principal values coincide, we calculate

a0 = fI , a1 = f ′I , a2 = f ′′I
/

2 . (8.12a,b,c)

However, in this special case the argument tensor is a spherical one,
Xij = XIδij , and therefore the formula (8.7) reduces to the trivial result:
Yij = fij = fIδij . Note that the interpolation formula for a scalar function
y = f(x) approaches the TAYLOR expansion for f(x) at x0 if we make xα,
α = 1, 2, . . . , n, coincide at x0. An interpolation method for tensor func-
tions with two argument tensors can be developed in a similar way (BETTEN

1987b; 1987c).
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The interpolation method for tensor functions is a very useful and power-
ful tool. Besides many applications in tensor algebra or tensor analysis dis-
cussed by BETTEN (1987b; 1987c), engineering applications are also very
important.

In the theory of finite deformation the tensorial HENCKY measure of
strain and strain rate plays a central role see FITZGERALD (1980) and BET-
TEN (1987b; 2001a) because it can be decomposed into a sum of an isochoric
distorsion and a volume change. The problem to represent the logarithmic
function

Y = lnX or Yij = {lnX}ij (8.13)

as an isotropic tensor function (8.1) is solved by determining the scalar func-
tions ϕ0, ϕ1, ϕ2. This can be done by using the interpolation method de-
scribed before by BETTEN (1987b; 2001a).

Other examples are Y = expX or Y = sinX etc., which can be treated
in the same way. These functions play a central role, for instance, in problems
concerning vibro creep (JAKOWLUK, 1993).

8.3 Tensoral Generalization of NORTON-BAILEY’s Creep Law

The following example is concerned with the generalization of NORTON-
BAILEY’s power law (Section 4.2)

d/d0 = (σ/σ0)
n or d = Kσn (8.14a,b)

to multi-axial states of stress where d is the strain rate, σ the uniaxial true
stress, and d0, σ0, n, K are constants. To solve this problem, we use an
isotropic tensor function

dij = fij(σ) = ϕ∗
0δij + ϕ∗

1σij + ϕ∗
2σ

(2)
ij (8.15)

and determine the scalar coefficients ϕ∗
0, . . . , ϕ

∗
2 as functions of experimental

data (K,n) in (8.14b) and of the integrity basis, the elements of which are
the irreducible invariants of the CAUCHY stress tensor σ.

Alternatively, we can represent the constitutive equation in the form

dij = fij
(
σ′) = ϕ0δij + ϕ1σ

′
ij + ϕ2σ

′(2)
ij , (8.16)

where σ′ij := σij − σkkδij/3 are the cartesian components of the stress
deviator σ′. For the special case of incompressible behavior (dkk ≡ 0), we
find from (8.16) the condition
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3ϕ0 + ϕ2σ
′(2)
kk = 0 ⇒ ϕ0 = −2ϕ2J

′
2

/
3 (8.17)

with the quadratic invariant J ′2 ≡ σ′ikσ′ki/2 of the stress deviator, so that the
constitutive equation (8.16) is reduced to the simple form

dij = ϕ1σ
′
ij + ϕ2σ

′′
ij (8.18)

containing the traceless tensors

σ′ij ≡ ∂J ′2
/
∂σij and σ′′ij ≡ ∂J ′3

/
∂σij (8.19a,b)

with the cubic invariant J ′3 ≡ σ′ijσ
′
jkσ

′
ki/3 of the stress deviator. The uni-

axial equivalent state of stress (index V ) is characterized through the tensor
variables

(σij)V = diag {σ, 0, 0} , (8.20a)(
σ′ij
)
V

= diag {2σ/3, −σ/3, −σ/3} , (8.20b)

(dij)V = diag {d, −νd, νd} , (8.20c)

where ν is the transverse contraction ratio.
In the following the diagonal elements in (8.20) are considered as inter-

polating points where two points coincide. Since the two coincident points
in (8.20a) are zero, it may be more convenient to determine the coefficients
ϕ0, . . . , ϕ2 in the constitutive equation (8.16) instead of (8.15). Thus, we use
the uniaxial creep law

d = (3/2)nK(σ′)n (8.21)

instead of (8.14b). Because of (8.20b), i.e. XII = XIII ≡ −σ/3, and (8.21),
we find from (8.11a) the coefficient

a0 = Y1 ≡ (3/2)nK(σ′)n = Kσn . (8.22a)

Furthermore, because of (8.20b), (8.22a), and YII = −νd = −νKσn, we
find from (8.11b) the coefficient

a1 = (1 + ν)Kσn−1 . (8.22b)

The derivative f ′II at the coincident pointsXII = XIII can be determined
in the following way. From (8.21) we derive

f ′ ≡ ∂d/∂σ′ = n (3/2)n (σ′)n−1
= nd/σ′ , (8.23a)

f ′II = ndII

/
σ′II . (8.23b)
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From (8.20a,b) we read σ′ = −σ/3 and dII = −νd1 ≡ −νd = −νKσn, so
that (8.23b) can be written as

f ′II = 3νnKσn−1 . (8.23c)

Considering (8.20b) and (8.22b), we calculate from (8.11c) the coefficient

a2 = (1 + ν − 3νn)Kσn−2 . (8.22c)

Inserting (8.22a,b,c) in (8.9a,b,c), we finally determine the scalar functions

ϕ0 =
1

9
(1 − 8ν + 6νn)Kσn , (8.24a)

ϕ1 =
2

3

(
1 + ν + 3

2νn
)
Kσn−1 , (8.24b)

ϕ2 = (1 + ν − 3νn)Kσn−2 . (8.24c)

Assuming the incompressibility (8.18) and neglecting tensorial nonlin-
earity (ϕ2 = 0 ⇒ a2 = 0, ϕ0 = 0, and ϕ1 = a1) we find from (8.16) the
simplified constitutive equation

dij = a1σ
′
ij or dij =

3

2
Kσn−1σ′ij , (8.25a,b)

if we use (8.22b) with ν = 1/2. The result (8.25b) is identical to a constitu-
tive equation proposed by LECKIE and HAYHURST (1977). If we insert the
MISES equivalent stress σ =

√
3J ′2 into (8.25b), we can find the constitutive

equation

dij =
3

2
K
(
3J ′2
)(n−1)/2

σ′ij (8.25c)

used by ODQUIST and HULT (1962).
The equivalent stress σ in (8.24a,b,c) can be determined as a function of

the stress invariants if we use the hypothesis of the equivalent dissipation
rate:

Ḋ := σijdji
!
=σd , (8.26)

where Ḋ is called the rate of dissipation of creep energy. The result is

σ3 +Aσ2 +Bσ + C = 0 , (8.27)

where the abbreviations

A ≡ − (1 − 8ν + 6νn)J1/9 , (8.28a)

B ≡ −4 (1 + ν + 3νn/ 2) J ′2
/

3 , (8.28b)

C ≡ − (1 + ν − 3νn)
(
3J ′3 + 2J1J

′
2

/
3
)

(8.28c)
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have been used. Thus, the scalar coefficients (8.24a,b,c) are functions of the
irreducible invariants

J1 ≡ σkk , J ′2 ≡ σ′ikσ
′
ki

/
2 , J ′3 ≡ σ′ijσ

′
jkσ

′
ki

/
3 (8.29a,b,c)

and of experimental data (K, n, ν):

ϕα = ϕα

(
J1, J

′
2, J

′
3; K, n, ν

)
, α = 0, 1, 2 . (8.30)

This statement is compatible with the representation theory of tensor-valued
functions (4.80) in which the coefficients ϕα are scalar-valued functions of
the integrity basis (8.29a,b,c).

In the case of incompressible behavior (ν = 1/2), the first invariant J1

has no influence. The cubic equation (8.27) then takes the reduced form

σ3 +B∗σ2 + C∗ = 0 (8.27*)

with the abbreviations

B∗ ≡ − (2 + n)J ′2 and C∗ ≡ 9

2
(n− 1)J ′3 (8.28*b,c)

depending on the irreducible invariants (8.29b,c) of the stress deviator.
Some authors (BROWN et al. 1986) are losing faith in NORTON-BAI-

LEY’s law since they feel that their new θ projection concept provides a far
more comprehensive description of creep behavior for design. In this new ap-
proach, normal creep curves are envisaged as the sum of a decaying primary
and an ascending tertiary stage, i.e., the secondary stage is merely the period
of ostensibly constant rate observed when the decay in the creep rate during
the primary stage is offset by the gradual acceleration caused by tertiary pro-
cesses. This concept neglects the secondary component and may be valid for
some special materials, e.g. 1

2Cr
1
2Mo

1
4V , as has been discussed in detail

by BROWN et al.(1986). However, an extended secondary creep stage can be
observed for many materials. Thus, in spite of the discussion by BROWN et
al. (1986), it is very important that NORTON-BAILEY’s law be generalized
to multi-axial states of stress. This can be achieved by applying a tensorial
interpolation method as has been illustrated above.

8.4 Tensorial Generalization of a Creep Law including Damage

Involving the damage state in the tertiary creep stage (section 4.3.1) the uni-
axial relation
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d/d0 = (σ/σ0)
nDm with D := 1/(1 − ω) (8.31)

should be generalized to multi-axial states of stress where ω is the dam-
age parameter (material deterioration) introduced by KACHANOV (1958) and
also used by RABOTNOV (1969).

To generalize (8.31), we consider the tensor-valued function

dij =

⎧⎪⎨
⎪⎩
fij(σ, D)

1
2

2∑
ν,,μ=0

ψ[ν, μ]

(
σ

(ν)
ik D

(μ)
kj +D

(μ)
ik σ

(ν)
kj

)
,

(8.32)

where ν and μ are exponents of the CAUCHY stress tensor σ and the second-
rank tensor D with the components

Dij = (δij − ωij)
(−1)

given by the damage tensor ω.
Now, the main problem is to determine the scalar coefficients ψ[ν, μ] as

functions of the integrity basis containing 10 irreducible invariants (BETTEN,
1987b; 1987c) and experimental data. To solve this problem, we suggest the
following method which may be useful for practical applications as has been
discussed by BETTEN, (1988b; 2001c) .

A representation with the same tensor generators as contained in the func-
tion (8.32) can be found by seperating the two variables σ and D in the
following way:

dij = fij (σ, D) =
1

2
(XikYkj + YikXkj) , (8.33)

where the isotropic tensor functions

Xij = Xij(σ) = ϕ∗
0δij + ϕ∗

1σij + ϕ∗
2σ

(2)
ij

ϕ∗
ν = ϕ∗

ν(tr σλ) = ϕ∗
ν (σI , σII , σIII)

}
, (8.34)

Yij = Yij(D) = Φ0δij + Φ1Dij + ϕ2D
(2)
ij

Φμ = Φμ(trDλ) = Φμ (DI , DII , DIII)

}
(8.35)

(μ, ν = 0, 1, 2 and λ = 1, 2, 3) are used.
Thus, we find the representation (8.32) with the scalar coefficients

ψ[ν, μ] = ϕ∗
νΦμ , μ, ν = 0, 1, 2 , (8.36)
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where the scalars ϕ∗
ν are determined by BETTEN (1986a; 1986b):

ϕ∗
0 = ϕ0 − J1ϕ1/3 + J2

1ϕ2/9 , (8.37a)

ϕ∗
1 = ϕ1 − 2J1ϕ2/3 , ϕ∗

2 ≡ ϕ2 . (8.37b,c)

The coefficients Φμ can be found by solving the following system of linear
equations:

Φ0 +DIΦ1 +D2
IΦ2 = (DI)

mI ,

Φ0 +DIIΦ1 +D2
IIΦ2 = (DII)

mII ,

Φ0 +DIIIΦ1 +D2
IIIΦ2 = (DIII)

mIII .

⎫⎪⎬
⎪⎭ (8.38)

The exponentsmI , . . . , mIII in (8.38) are determined by using the creep law
(8.31) in tests on specimens cut along the mutually perpendicular directions
x1, x2, x3.

Because of

Dij := (δij − ωij)
(−1) ≡ ψ(−1)

ij and ψij = diag{α, β, γ}

according to (4.84) and (7.40a), respectively, the principal values in (8.38)
can be expressed through

DI = 1/α , DII ≡ 1/β , DIII ≡ 1/γ , (8.39)

where the essential components α, β, γ are fractions that represent the net
cross-sectional elements of CAUCHY’s tetrahedron perpendicular to the co-
ordinate axes (BETTEN, 1983a). In the case of two equal parameters, for in-
stance α �= β = γ, the scalars Φμ, μ = 0, 1, 2, in (8.38) can be determined
by using the interpolation method described above in (8.1) to (8.12).

Instead of (8.34), we can use the isotropic tensor function

Xij = Xij

(
σ′) = ϕ0δij + ϕ1σ

′
ij + ϕ2σ

′(2)
ij (8.40)

and find the representation

dij =
1

2

2∑
ν, μ=0

ϕνΦμ

(
σ
′(ν)
ik D

(μ)
kj +D

(μ)
ik σ

′(ν)
kj

)
, (8.41)

where the scalar coefficients ϕν are determined in the functions (8.24a,b,c)
and the Φμ are taken from (8.38).

The scalar coefficients ψ[ν, μ] ≡ ϕνΦμ in the representation (8.41) must
be functions of the integrity basis
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J1 ≡ σkk , J ′2 ≡ σ′
ijσ′

ji

2 , J ′3 ≡ σ′
ijσ′

jkσ′
ki

3 ,

L1 ≡ Dkk , L2 ≡ D(2)
kk , L3 ≡ D(3)

kk ,

Ω′
1 ≡ σ′ijDji , Ω

′
2 ≡ σ′(2)ij Dji , Ω

′
3 ≡ σ′ijD(2)

ji , Ω
′
4 ≡ σ′(2)ij D

(2)
ji

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.42)

and experimental data. To show this we can start from the hypothesis (8.26)
and find similarly to (8.27) the cubic equation

σ3 +A∗σ2 +B∗σ + C∗ = 0 , (8.43)

if we insert (8.33), (8.35) and (8.24a,b,c) into the hypothesis (8.26). In (8.43)
the following abbreviations are used:

A∗ ≡ −1
9 (1 − 8ν + 6νn)

[
Φ0J1 + Φ1

(
Ω′

1 + 1
3J1L1

)
+ Φ2

(
Ω′ + 1

3J1L2

)]/
Dm ,

(8.44a)

B∗ ≡ −2
3

(
1 + ν + 3

2νn
) [

2Φ0J
′
2 + Φ1

(
Ω′

2 + 1
3J1Ω

′
1

)
+ Φ2

(
Ω′

4 + 1
3J1Ω

′
3

)]/
Dm ,

(8.44b)

C∗ ≡ −(1 + ν − 3νn)
[
3Φ0

(
J ′3 + 2

9J1J
′
2

)
+ Φ1

(
J ′2Ω

′
1 + J ′3L1 + 1

3J1Ω
′
2

)
+ Φ2

(
J ′2Ω

′
3 + J ′3L2 + 1

3J1Ω
′
4

)]/
Dm ,

(8.44c)

D ≡ (DIDIIDIII)
1/3 , m ≡ (mI +mII +mIII)/ 3 . (8.44d,e)

We see that the elements of the integrity basis (8.42) and experimental data
are contained in (8.44a-e). Thus the coefficients ψ[ν, μ] ≡ ϕνΦμ in (8.41) are
scalar functions of the integrity basis (8.42) and experimental data

K, n, ν; mI , mII , mIII ; DI , DII , DIII

found in creep tests on specimens cut along three mutually perpendicular
directions.

In the case (4.79) of damage and initial anisotropy we can use for simpli-
fication the constitutive equation

dij = fij(t, τ ) =
1

2

2∑
ν, μ=0

ψ∗
[ν, μ]

(
t
(ν)
ik τ

(μ)
kj + τ

(μ)
ik t

(ν)
kj

)
, (8.45)

where the linear transformations
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tij = Dijpqσpq = tji with Dijpq := (DipDjq +DiqDjp)/ 2 , (8.46)

τij = Aijpqσpq = τji , (8.47)

have been introduced in section 4.3.2 according to (4.94) and (4.95), respec-
tively. Then the scalar functions in (8.45) can be determined in a very similar
way as described above.

Further applications concerning the tensorial generalization of uniaxial
relations in continuum mechanics have been considered by BETTEN (1989;
2001c). For example, the plastic behaviour of solids loaded under uni-axial
stress σ may be expressed by the stress-strain-relations

σ/σF = [tanh (Eε/σF )n](1/n) , (8.48a)

σ/σF = (Eε/σF ) / [1 + (Eε/σF )n](1/n) , (8.48b)

proposed by BETTEN (1975b), where σF ist the yield stress in a uni-
axial tension test, and E represents the modulus of elasticity - often called
”YOUNG‘s modulus”(1807); however, this modulus was already used by
EULER (1760). The exponent n regulates the elastic-plastic transition. For
instance, an elastic-perfectly plastic behaviour is characterized by n→ ∞.

It has been shown by BETTEN (1975c) that independently of the param-
eter n the limit carying capacity coincides wth that for a percectly plastic
body (n→ ∞). Hence a new aspect of the uniqueness of the limit load may
be formulated as we can read in the book of ZYCZKOWSKI (1981, page 210):

Uniqueness understood as the independence of that load of the
assumed stress-strain diagram belonging to the class of asymptoti-
cally perfect plasticity. Such independence may be observed in many
cases.

For engineering applications, it is very important to generalize the rela-
tions (8.48a,b) to multiaxial states of stress. This can be achieved by using
an isotropic tensor function (8.1).

Similar to (8.48a,b) we can assume the following creep functions

κ(t) = [tanh (tn)](1/n) , (8.49a)

κ(t) = t/ (1 + tn)(1/n) , (8.49b)

which are compared with the creep function (11.8) of the KELVIN solid (Fig.
11.17) by using the following MAPLE program.
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⊙
8 1.mws> kappa(t)[KELVIN]:=1-exp(-G*t/eta);

κ(t)KELVIN := 1 − e(−G t
η

)

> kappa(t)[tan_hyper]:=(tanh(tˆn))ˆ(1/n);

κ(t)tan hyper := tanh(tn)(
1
n

)

> kappa(t)[root]:=t/(1+tˆn)ˆ(1/n);

κ(t)root :=
t

(1 + tn)(
1
n

)

> alias(H=Heaviside, th=thickness):
> plot1:=plot({1,H(t-5),1-exp(-t)},

t=0..5.001, th=1,color=black):
> plot2:=plot({tanh(t),(tanh(tˆn))ˆ(1/n)},

t=0..5.001, th=4,color=black, style=point,
symbolsize=12,symbol=cross):

> plot3:=plot({t/(1+t), t/(1+tˆn)ˆ(1/n)},
t=0..5.001, th=2,color=black, style=point,
symbolsize=12,symbol=circle):

> plots[display]({plot1,plot2,plot3});

0
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0.4

0.6

0.8

1

1 2 3 4 5
t

(8.49b)

KELVIN

+ + +    (8.49a)
n = 1

Fig. 8.1 Creep functions

Another example is the tensorial generalization of the RAMBERG-OSGOOD

relation, also discussed by BETTEN (1989; 2001c) including own experi-
ments on aluminium alloy.



9 Viscous Fluids

Materials are usually classified into solids and fluids, where fluids are sub-
divided into liquids and gases. These divisions are not always clear because
there are materials which possess both solid-like and fluid-like properties.
Any fluid is defined as a material which deforms continously as long as a
shearing stress is acting. A solid, on the other hand, can be in equilibrium
under a shear stress. Some solids have a natural configuration to which they
return if an imposed stress is removed. Such a configuration can be regarded
as the reference configuration. Fluids do not possess a natural configuration,
i.e., they take the shape of the surrounding boundary.

In the following we differentiate between linear viscous fluids and non-
linear viscous fluids , where the latter belong to the class of non-NEWTONian
fluids.

9.1 Linear Viscous Fluids

A fluid at rest cannot sustain any shear stress, i.e., the stress state in a fluid at
rest is characterized by a spherical tensor, σ ∼ δ, according to the constitu-
tive equation

σij = −p(ρ, T )δij (9.1)

employed in hydrostatics, where the hydrostatic pressure p is related to the
temperature T and the density ρ by a thermal equation of state having the
form F (p, ρ, T ) = 0. An example of an equation of state is the law p = ρRT
of an ideal gas, where R is the special gas constant for a particular gas not to
be confused with the general gas constant.

A fluid in motion (d �= 0) can sustain viscous stress, which can be ex-
pressed in the linear case by the linear transformation

τij = Vijkl(ρ, T )dkl . (9.2)

This tensor is called viscous stress tensor or sometimes extra stress tensor.
The cartesian components Vijkl of the viscosity tensor V reflect the viscous
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properties of the fluid. In general, one can assume that fluids are isotropic.
Then, the viscous stress tensor is a function of only one argument tensor,
namely the rate-of-deformation tensor d with components (3.22), i.e.,

τij = τij(dpq) , (9.3)

and the fourth-order viscosity tensor must be an isotropic tensor, the compo-
nents of which are expressed by

Vijkl = ξδijδkl + η (δikδjl + δilδjk) . (9.4)

This relation is similar to the elasticity tensor in (2.31) for isotropic linear
elastic materials.

Adding (9.1) and (9.2) with (9.4), we arrive at the constitutive equation

σij = [−p(ρ, T ) + ξ(ρ, T )dkk] δij + 2η(ρ, T )dij (9.5a)

or
τij ≡ σij + p(ρ, T )δij = ξdkkδij + 2ηdij , (9.5b)

which characterizes a NEWTONian fluid.
In the special case of a shearing flow (i = 1, j = 2), the constitutive

equation (9.5a) reduces to the simple relation τ = ηγ̇, where τ = τ12 ≡ σ12

and γ̇ = 2d12. Thus, the parameter η in (9.5a) is the shear viscosity. The
second parameter, ξ, in (9.5a) shall be interpreted later.

The constitutive equation (9.5a) fulfills the principle of material frame
indifference (objectivity), since the rate-of-deformation tensor is an objective
tensor (BETTEN, 2001a) and the right-hand side of (9.5a) is not affected by a
superimposed rigid-body motion. Thus, the constitutive equation (9.5a) has
the required property of being independent of any superimposed rigid-body
motion. This is not true for the linear constitutive equation of an isotropic
elastic material (BETTEN, 2001a).

By introducing the fourth-order spherical tensor (9.4) we have assumed
that the fluid behaves isotropic. As a matter of fact, isotropy is a consequence
of (9.2) and the requirement that the stress is not influenced by any rigid-
body motion. Thus, it was not necessary to consider isotropy as a special
assumption. However, fluids with anisotropic properties may exist, but their
behavior cannot be expressed by the linear transformation (9.2).

For the sake of practical applications it may be useful to split the consti-
tutive equation (9.5a) into a scalar and a deviatoric part. To do this, we firstly
equalize the trace
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σkk ≡ 3σ̄ = −3p̄ (9.6)

and the trace of (9.5a) arriving at the scalar relation

p̄ = p(ρ, T ) −
(
ξ +

2

3
η

)
dkk . (9.7a)

The deviatoric equation can be derived from the stress deviator (2.23) by
taking the relations (9.5a), (9.6), and (9.7a) into account:

σ′ij = 2ηd′ij , (9.7b)

in which d′ij := dij − dkkδij/3 are the components of rate-of-deformation
deviator d′. In a similar way we arrive from (9.5b) at the following two
equations

τ̄ ≡ 1

3
τkk =

(
ξ +

2

3
η

)
dkk and τ ′ij = 2ηd′ij . (9.8a,b)

By analogy with the bulk modulus, also called volume elasticity modulus
(BETTEN, 2001a),

K ≡ EVol := σVol/εVol ≡ σ̄/εkk , (9.9)

we define the bulk viscosity (volume viscosity) as the quotient from viscous
volume stress τVol and volume strain rate dVol:

ηVol := τVol/dVol ≡ τ̄ /dkk , (9.10)

so that we find by considering (9.8a) the result

ηVol = ξ +
2

3
η . (9.11)

Hence, the parameter ξ is immaterial since the constitutive equations (9.7a,b)
and (9.8a,b) can be expressed according to

p̄ = p(ρ, T ) − ηVoldkk , σ′ij = 2ηd′ij , (9.12a,b)

and

τ̄ = ηVoldkk ≡ p(ρ, T ) − p̄ , τ ′ij = 2ηd′ij , (9.13a,b)
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respectively, by taking (9.11) into account. The relation (9.12a) associates the
mean normal stress σkk/3 = −p̄ with the thermodynamic pressure p(ρ, T )
and the bulk viscosity ηVol, while the equation (9.12b) relates the shear effect
of the motion with the stress deviator.

The volume viscosity ηVol takes into account the molecular degrees of
freedom and vanishes for one-atomic gases. Experimental investigations
have shown that the volume viscosity (9.11) is very small or even negligi-
ble. Thus, in such cases it is justified in assuming the STOKES condition

ξ +
2

3
η = 0 . (9.14)

On this condition or in an incompressible NEWTONian fluid (dkk = 0) the
mean pressure p̄ in (9.7a) equals the thermodynamic pressure p(ρ, T ) at all
times. For nonlinear viscous fluids (section 9.2), the assumption of incom-
pressibility does not imply p̄ = p.

Assuming the STOKES condition (9.14), we immediately arrive from
(9.5a) at the constitutive equation

σij = −pδij − 2

3
ηdkkδij + 2ηdij ≡ −pδij + 2ηd′ij , (9.15)

which describes the so called STOKES fluid.
The importance of the volume viscosity (9.10), (9.11) becomes also visi-

ble when discussing the dissipation power

Ḋ := τijdji = ξd2
kk + 2ηdijdji , (9.16a)

which can be deduced from (9.5b) and represented in the form

Ḋ = ηVold
2
kk + 2ηd′ijd

′
ji , (9.16b)

if we split the rate-of-deformation tensor d into the deviator (d′ij) and the
spherical tensor (dkkδij/3). We can also express (9.16b) as

Ḋ = ηVolI
2
1 + 4ηI ′2 , (9.16c)

where the invariants I1 ≡ dkk and I ′2 ≡ d′ijd
′
ji/2 have been introduced.

According to (9.16b,c), the dissipation power can be decomposed into two
parts characterizing the volume change (without change of shape) and the
distortion, respectively.
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Based upon the second law of thermodynamics, dissipation is required to
be nonnegative. Thus, we deduce from (9.16b,c):

ηVol ≥ 0 and η ≥ 0 , (9.17a,b)

or, considering (9.11), we find:

ξ ≥ −2

3
η . (9.17c)

Now, let us discuss an extension flow (DIN 13 342) characterized by the
uniaxial stress component

τ11 = (1 − 2ν)ξd11 + 2ηd11 , (9.18)

which results from (9.5b) by inserting i = j = 1, where

ν := −d22/d11 = −d33/d11 (9.19)

is the isotropic transverse contraction ratio. In contrast to the shear viscosity
η in (9.5a,b) and the volume viscosity (9.10), we define an extension viscosity
according to

ηD := τ11/d11 . (9.20)

Hence, we deduce from (9.18) for a NEWTONian fluid

ηD = (1 − 2ν)ξ + 2η . (9.21)

On the other hand, we follow from (9.8b) the relation

τ ′11 = 2ηd′11 , (9.22)

so that for the extension flow

τij = diag{τ11, 0, 0} , dij = diag{d11,−νd11,−νd11} (9.23a,b)

with τ ′11 = 2τ11/3 and d′11 = 2(1 + ν)d11/3 the extension viscosity (9.20)
yields

ηD = 2(1 + ν)η . (9.24)

This result corresponds with the similar relation of the linear theory of
elasticity,

E = 2(1 + ν)G , (9.24*)

where E and G are the elasticity and the shear modulus, respectively.
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For an incompressible (ν = 1/2) NEWTONian fluid, we read from (9.24)
the TROUTON number (1906)

NTr := ηD/η = 3 . (9.25)

Combining (9.21) and (9.24), the parameter ξ may be expressed as

ξ =
2ν

1 − 2ν
η , (9.26)

so that the volume viscosity (9.11) becomes

ηVol =
2

3

1 + ν

1 − 2ν
η , (9.27)

and by eliminating the shear viscosity η from (9.24) and (9.27) we arrive at
the relation

ηVol =
1

3(1 − 2ν)
ηD , (9.28)

which corresponds with the similar formula of elasticity,

K ≡ EVol =
1

3(1 − 2ν)
E , (9.28*)

where EVol is the volume elasticity modulus, most called bulk modulus.
In a similar way, by eliminating the transvection ratio ν, we arrive from

(9.27) and (9.28) at the formula

ηD = 9ηVolη/ (3ηVol + η) , (9.29)

which contains the TROUTON number (9.25) for 3ηVol � η, while for
3ηVol 	 η th relation ηD = 9ηVol follows.

Experimental investigations on non-NEWTONian fluids have shown that
the extension viscosity or the shear viscosity is a function of the strain rate,
ηD = ηD(d), or of the shear rate, η = η(γ̇), respectively. For example,
LAUN and MÜNSTEDT (1978) have carried out experiments on the LDPE
melt IUPACA at T = 150◦C. The results are illustrated in Fig. 9.1.

We see that for small deformation rates the viscosities are approaching
the TROUTON number (9.25):

lim
d→0

ηD(d) = 3 lim
γ̇→0

η(γ̇) (9.30)

Further experiments on non-NEWTONian fluids are carried out by BALL-
MANN (1965), MEISSNER (1971; 1972), STEVENSON (1972), ASTARITA
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Fig. 9.1 Viscosities in strain and shear as functions of deformation rates

and MARRUCCI (1974), WALTERS (1975), BIRD et al. (1977), MIDDLE-
MAN (1977), LAUN (1978), SCHOWALTER (1978), and EBERT (1980), to
name just a few.

Inserting the constitutive equation (9.5a) of a NEWTONian fluid into
CAUCHY’s equation of motion (3.38) yield the NAVIER-STOKES equations
for compressible fluids as illustrated in more detail in the following.

The partial derivative σji,j ≡ ∂σji/∂xj of the constitutive equation
(9.5a) can be expressed in the form

∂σji

∂xj
= − ∂p

∂xj
δij + ξ

∂dkk

∂xj
δij + 2η

∂dji

∂xj

or, by utilizing the substitution rule Ajδij = Ai, as

∂σji

∂xj
= − ∂p

∂xi
+ ξ

∂dkk

∂xi
+ 2η

∂dji

∂xj
. (9.31a)

Inserting the partial derivative of the rate-of-deformation tensor,

dji,j =
1

2
(vj,ij + vi,jj) and dkk,i = vk,ki ≡ vj,ij ,
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we arrive at
σji,j = −p,i + (ξ + η)vk,ki + ηvi,jj . (9.31b)

With this result we finally arrive from CAUCHY’s equation of motion (3.38)
at the NAVIER-STOKES-equations for compressible fluids

−p,i + (ξ + η)vk,ki + η vi,jj + fi = ρ v̇i (9.32a)

or in symbolic notation

− grad p+ (ξ + η) grad div v + η Δv + f = ρ v̇ . (9.32b)

Assuming the STOKES condition (9.14), the factor (ξ + η) in (9.32a,b)
can be substituted by η/3.

In the special case of incompressibility the NAVIER-STOKES-equations
(9.32a,b) governing the motion of viscous fluids take the following forms:

−p,i + η vi,jj + fi = ρ v̇i (9.33a)

and
− grad p+ η Δv + f = ρ v̇ . (9.33b)

The mechanical interpretation of each term in (9.33a,b) can be obtained
as follows. The first term on the left-hand side represents the pressure gra-
dient, the second one expresses the viscous frictional force, and the third
term represents the body force. Taking into account the operator (3.5), the
right-hand side of (9.33a,b) can be split into two parts,

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
symbolic ρ

(
∂v

∂t
+ v · ∇v

)
, (9.34a,b)

where the first term represents the inertia force arising because of the local
rate, while the second one characterizes the convective rate of change of
linear momentum. Note, all terms listed above are computed per unit volume
of the fluid and are acting on each fluid particle. Thus, the NAVIER-STOKES-
equations (9.33a,b) or (9.32a,b) state that the pressure gradient force, the
viscous force, the body force, and the inertia force acting on a fluid particle
are in balance.
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9.2 Nonlinear Viscous Fluids

For non-NEWTONian fluids we first assume a constitutive equation of the
form

σij = σij(Lpq, ρ, T ) , (9.35)

where Lij := ∂vi/∂xj ≡ vi,j are the cartesian components of the velocity-
gradient tensor L. This tensor can be split, according to

Lij = dij + wij ,

into the symmetric rate-of-deformation tensor d and the skew-symmetric
spin or vorticity tensor w.

Constitutive equations must be invariant under changes of frame of ref-
erence, i.e., two observers, even if in relative motion with respect to each
other, observe the same stress in a loaded material. The principle of material
frame-indifference is also called the principle of material objectivity. As has
been pointed out in more detail by BETTEN (2001a), the spin tensor is not
objective, while the rate-of-deformation tensor is an objective tensor. This
can be proved in the following way.

Let us consider a rigid-body motion, which can be split into a time depen-
dent rotation, characterized by the orthogonal tensor Q(t), and into transla-
tion, characterized by the time dependent vector c(t), so that this motion is
described by the transformation

x̄i(ap, t) = Qij(t)xj(ap, t) + ci(t) . (9.36)

Hence, by differentiating with respect to time t, we arrive at the result

v̄i ≡ ˙̄xi = Qipvp + Q̇ipxp + ċi �= Qipvp , (9.37)

from which we read that the transformation law of a vector, v̄i = Qipvp, is
not satisfied, i.e., the velocity vector is not objective.

With the result (9.37) we first find for the velocity-gradient tensor L

L̄ij ≡ ∂v̄i/∂x̄j = (∂v̄i/∂xq) (∂xq/∂x̄j)

L̄ij =
(
Qipvp,q + Q̇iq

)
(∂xq/∂x̄j) .

⎫⎬
⎭ (9.38)

By transvection with Qik and considering the orthogonal relation

QikQij = δkj ,
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we find from the motion (9.36) its inversion:

xk = Qik(x̄i − ci) or xi = Qji(x̄j − cj) (9.39)

hence
∂xq/∂x̄j = Qjq , (9.40)

so that (9.38) becomes

L̄ij ≡ v̄i,j = QipQjqvp,q + Q̇iqQjq �= QipQjqvp,q , (9.41)

i.e., the velocity gradient tensor L in (9.35) is not objective.
For the rate-of-deformation tensor d, we find:

d̄ij = (∂v̄i/∂x̄j + ∂v̄j/∂x̄i)/ 2

= QipQjqdpq +
(
Q̇iqQjq +QiqQ̇jq

)/
2 ,

(9.42)

where
Q̇iqQjq +QiqQ̇jq = (QiqQjq )̇ ≡ δ̇ij ≡ 0ij , (9.43)

so that the objectivity of d is proved:

d̄ij = QipQjqdpq . (9.44)

Consequently, equation (9.35) must be modified according to

σij = σij(dpq, ρ, T ) . (9.45)

Furthermore, because of the principle of material objectivity, the components
of the stress tensor (σij) must be independent of superposed rigid-body mo-
tion, so that the requirement

σij (QprQqsdrs, ρ, T ) = QipQjqσpq (9.46)

is satisfied, where Qij are the cartesian components of an orthogonal tensor.
A tensor-valued function with the property (9.46) is called an isotropic ten-
sor function of the argumenttensor d. The most general tensor polynomial
function which fulfills (9.46) is of the form

σij = −pδij + αdij + βd
(2)
ij , (9.47)

where p, α, and β are functions of ρ, T and the three irreducible invariants of
the argumenttensor d. The representation (9.47) is complete because of the
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HAMILTON-CAYLEY theorem, which states that a tensor satisfies its own
characteristic equation (BETTEN, 1987c).

Materials which obey the constitutive equation (9.47) are called REINER-
RIVLIN fluids . They belong to the class of the non-NEWTONian fluids.

As an example, let us consider a simple shear flow characterized by the
velocity field

v = (γ̇x2, 0, 0)T , (9.48)

for which the nonvanishing components of the rate-of-deformation tensor d

are given by d12 = d21 = γ̇/2, while the square d2 has the diagonal form

with components d(2)
11 = d

(2)
22 = γ̇2/4 and d(2)

33 = 0. The invariants are
I1 = I3 = 0 and I2 = trd2 = γ̇2/2. With these values we calculate from
(9.47) the following nonvanishing stress components:

σ12 = α
(
γ̇2
)
γ̇/2 ≡ η (γ̇2

)
γ̇ , (9.49a)

σ11 = σ22 = −p+ β
(
γ̇2
)
γ̇2/4 , σ33 = −p . (9.49b,c)

We see, in contrast to a NEWTONian fluid, the shear viscosity in (9.49a) is
an even function of the shear rate γ̇, i.e., it is a function of the square γ̇2.

From (9.41) and (9.44) we read that the velocity gradient tensor L is
not objective, while the rate-of-deformation tensor d fulfills the requirement
of material objectivity, for instance. Further examples are discussed in the
following.

For the spin or vorticity tensor w, which is the skew-symmetric part of
the velocity gradient tensor L, we obtain

w̄ij = QipQjqwpq + Q̇iqQjq �= QipQjqwpq , (9.50)

i.e., the spin tensor is not objective. In arriving at the result (9.50) we have
taken into consideration the relation (9.43).

Because of (3.29) the CAUCHY stress tensor is objective, i.e.,

σ̄ij = QipQjqσpq . (9.51)

Thus we find

˙̄σij = QipQjqσ̇pq +
(
Q̇ipQjq +QipQ̇jq

)
σpq �= QipQjqσ̇pq , (9.52)

hence, the material time derivative of CAUCHY’s stress tensor is not objec-
tive. Whereas the JAUMANN stress rate

◦
σij = σ̇ij − wikσkj + σikwkj (9.53)
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fulfills the requirement of objectivity, since we arrive from

◦
σ̄ij = ˙̄σij − w̄ikσ̄kj + σ̄ikw̄kj (9.54)

at the relation

◦
σ̄ij = QipQjq

◦
σpq +

(
Q̇ipQjq +QipQjrQkqQ̇kr

)
σpq , (9.55)

where the second term on the right-hand side is equal to zero because of the
orthogonal relation QkqQkr = δqr and (9.43), hence

◦
σ̄ij = QipQjq

◦
σpq . (9.56)

The convective stress rate

Δ
σij =

◦
σij + dikσkj + σikdkj = σ̇ij + σikLkj + Lkiσkj (9.57)

is obtained by adding the objective expression dikσkj + σikdkj to the JAU-
MANN stress rate. Thus, the convective stress rate is objective.

By analogy of (3.8a), we define a deformation gradient according to
F̄ij := ∂x̄i/∂aj and arrive by differentiation of (9.36) and application of
the chain rule at the following result

F̄ij =
∂x̄i

∂aj
=
∂x̄i

∂xp

∂xp

∂aj
= QipFpj , (9.58)

from which we can follow that the deformation gradient does not fulfill the
requirement of objectivity (BETTEN, 2001a).

The LAGRANGE strain tensor (3.14) is defined as

λij =
1

2
(FkiFkj − δij) . (9.59)

Considering a rigid-body motion, we have the following relations

λ̄ij =
1

2

(
F̄kiF̄kj − δ̄ij

)
F̄ki = QkpFpi

F̄kj = QkqFqj

δ̄ij = QipQjqδpq

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ λ̄ij =
1

2
(QkpQkqFpiFqj −QipQjqδpq) .

(9.60)
Inserting the orthogonal relationQkpQkq = δpq and applying the substitution
rule, one obtains from (9.60) the result
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λ̄ij =
1

2
(δpqFpiFqj − δij) =

1

2
(FriFrj − δij) ≡ λij , (9.61)

which states that the components of the LAGRANGE strain tensor are not
effected by a superimposed rigid-body motion, i.e., the principle of material
objectivity is fulfilled.

The material time derivative of the LAGRANGE strain tensor (9.59) can
be expressed by

λ̇ = F T d F or by λ̇ij = F T
ipdpqFqj = FpiFqjdpq . (9.62a,b)

Thus, a superimposed rigid-body motion yields

¯̇
λij = F̄pjF̄qid̄pq . (9.63)

Taking (9.44) and (9.58) into account, equation (9.63) can be written in the
form

¯̇
λij = QpkFkiQqlFljQprQqsdrs . (9.64)

Since Q is an orthogonal tensor, we arrive from (9.64) at the relation

¯̇
λij = δkrδlsFkiFljdrs = FriFsjdrs . (9.65)

Comparing (9.65) with (9.62b), we finally obtain the result

¯̇
λij ≡ λ̇ij , (9.66)

stating that the material time derivative of the LAGRANGE strain tensor is
objective.

The EULER strain tensor in (3.19) is defined as

ηip =
1

2

(
δip − F (−1)

ki F
(−1)
kp

)
, (9.67)

hence

η̄ip =
1

2

(
δ̄ip − F̄ (−1)

ki F̄
(−1)
kp

)
, (9.68)

where

F̄
(−1)
ij := ∂ai/∂x̄j = (∂ai/∂xp) (∂xp/∂x̄j) = F

(−1)
ip (∂xp/∂x̄j) . (9.69)

From (9.36) we read

xi = Q
(−1)
ij (x̄j − cj) = Qji (x̄j − cj) ⇒ ∂xp/∂x̄j = Qjp = Q

(−1)
pj ,
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so that (9.69) reduces to the relation

F̄
(−1)
ij = F

(−1)
ip Q

(−1)
pj , (9.70)

which is the inverse form of (9.58). Note that the inverse of a matrix product
π is the matrix product formed by writing down the inverses of the factors of
π in reverse order, for instance

(ABC . . .Z)−1 = Z−1 . . .C−1B−1A−1 . (9.71)

This rule can also be applied to the transpose of a matrix product.
Inserting the inverse (9.70) into (9.68), we obtain

η̄ip =
1

2

(
δ̄ip − F (−1)

kr Q
(−1)
ri F

(−1)
ks Q(−1)

sp

)
. (9.72)

Because Q is an orthogonal tensor, i.e., the inverse of Q is identical to the
transpose of Q, and since

δ̄ip = QirQpsδrs (9.73)

the relation (9.72) reduces to

η̄ip =
1

2
QirQps

(
δrs − F (−1)

kr F
(−1)
ks

)
. (9.74)

Considering the definition (9.67), we can write (9.74) in the following form

η̄ip = QirQpsηrs , (9.75)

showing that the EULERian strain tensor is an objective tensor.
The material time derivative of the EULERian strain tensor (9.67) can be

expressed by

η̇ = d − ηL − LT η or by η̇ij = dij − ηipLpj − ηjpLpi . (9.76a,b)

Thus, a superimposed rigid-body motion yields

¯̇ηij = d̄ij − η̄ipL̄pj − η̄jpL̄pi . (9.77)

Inserting (9.41) into (9.77) and considering (9.44) and (9.75), we obtain the
result

¯̇ηij = QikQjlη̇kl − (QikQjl +QilQjk)QpsQ̇plηks , (9.78)
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stating that the material time derivative of the EULERian strain tensor is not
an objective tensor.

The OLDROYD time derivative of a symmetric second rank tensor T is
defined according to

∇

T ij := Ṫij + TipLpj + TjpLpi . (9.79)

Applying this derivative to the EULERian strain tensor, Tij ≡ ηij , and taking
into account the relation (9.76b), we immediately obtain the identity

∇
ηij ≡ dij , (9.80)

i.e., the OLDROYD time derivative of the EULERian strain tensor can be
interpreted as the rate-of-deformation tensor. Hence, the requirement of ma-
terial objectivity is fulfilled.

The second PIOLA-KIRCHHOFF stress tensor (3.42) is defined as

T̃ij =
ρ0
ρ
F

(−1)
ip F

(−1)
jq σpq = T̃ji , (9.81)

hence
¯̃Tij =

ρ0
ρ
F̄

(−1)
ip F̄

(−1)
jq σ̄pq . (9.82)

Considering (9.51) and (9.69), i.e.,

σ̄pq = QpsQqtσst and F̄
(−1)
ip = F

(−1)
ir Q(−1)

rp = F
(−1)
ir Qpr ,

respectively, we arrive at the relations

¯̃Tij =
ρ0
ρ
F

(−1)
ir F

(−1)
jk QprQps︸ ︷︷ ︸

δrs

QqkQqt︸ ︷︷ ︸
δkt

σst

¯̃Tij =
ρ0
ρ
F̄

(−1)
ir F̄

(−1)
jk σrk . (9.83)

Comparing (9.83) with the definition (9.81), we finally obtain the result

¯̃Tij ≡ T̃ij , (9.84)

stating that, analogous to (9.66), the second PIOLA-KIRCHHOFF stress ten-
sor is objective.
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The first PIOLA-KIRCHHOFF stress tensor

Tij =
ρ0
ρ
F

(−1)
ik σkj �= Tji (9.85)

can be expressed by the second one (9.81) according to

T̃ij = TiqF
(−1)
jq ⇒ Tij = T̃ikFjk , (9.86)

hence
T̄ij = ¯̃TikF̄jk

F̄jk = QjrFrk

¯̃Tik = T̃ik

⎫⎪⎪⎬
⎪⎪⎭ ⇒ T̄ij = T̃ikFrk︸ ︷︷ ︸

Tir

Qjr ,

T̄ij = TirQjr , (9.87)

i.e., the first PIOLA-KIRCHHOFF stress tensor is not objective in contrast to
the second one according to (9.84).

The above discussed examples illustrate that the components of objective
tensors defined in the reference configuration (material description) do not
change, if a rigid-body motion is superimposed, for instance, the components
of the LAGRANGE strain tensor:

λ̄ij ≡ λij . (9.61)

Whereas the components of objective tensors defined in the actual configura-
tion (spatial description) change according to the transformation law of the
tensor, if a rigid-body motion is superimposed, for instance, the components
of the EULERian strain tensor:

η̄ij = QipQjrηpr . (9.75)

The above discussed examples are listed in Table 9.1.
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Table 9.1 Objective and non-objective tensors

tensor material objectivity

deformation gradient not fulfilled (9.58)

velocity gradient tensor not fulfilled (9.41)

rate-of-deformation tensor fulfilled (9.44)

spin tensor not fulfilled (9.50)

CAUCHY stress tensor fulfilled (9.51)

material time derivative of
CAUCHY’s stress tensor

not fulfilled (9.52)

JAUMANN stress rate fulfilled (9.56)

convective stress rate fulfilled (9.57)

LAGRANGE strain tensor fulfilled (9.61)

material time derivative
of the LAGRANGE strain tensor

fulfilled (9.66)

EULERian strain tensor fulfilled (9.75)

material time derivative
of the EULERian strain tensor

not fulfilled (9.78)

OLDROYD time derivative
of the EULERian strain tensor

fulfilled (9.80)

first PIOLA-KIRCHHOFF stress tensor not fulfilled (9.87)

second PIOLA-KIRCHHOFF stress tensor fulfilled (9.84)
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This Chapter is concerned with fluids, which exhibit the strain history . Such
materials belong to the class of non-NEWTONian fluids, in which the viscous
stress tensor (9.2) or (9.3) depends not only of the actual motion, but also of
the motion in the past. Hence, the notation memory fluid has been introduced.

Since the tensors L or d do not take memory effects into account, consti-
tutive equations (9.35) or (9.45), respectively, are not suitable to describe the
behavior of memory fluids. Therefore, we would like briefly concern mem-
ory fluids in the following.

10.1 MAXWELL Fluid

The MAXWELL model is a two-element model consisting of a linear spring
element and a linear dashpot element connected in series (Section 11.3). This
model can be regarded as a representative example of a memory fluid.

Based upon BOLTZMANN’s superposition principle (Section 11.1), we
arrive at the relation

τ(t) =
η

λ

t∫
−∞

exp [−(t− θ)/λ] γ̇(θ) dθ , (10.1)

which describes the shear flow of the MAXWELL fluid, where η is the shear
viscosity, λ ≡ η/G a constant relaxation time, and θ < t a time in the past.
The constant parameter G ≡ η/λ is known as the elastic shear modulus.

The exponential function in (10.1) represents weight function, which
causes that the influence of the shear rate γ̇(θ) in the far past on the shear
stress τ(t) at present time is less than that in recent history, i.e., the memory
diminishes. This effect is known as fading memory.

The integral in (10.1) is called a hereditary integral since it expresses the
shear stress at time t as a function of the entire shear rate history from the
time θ = −∞ to the present time θ ≡ t. This integral, first suggested by
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VOLTERRA (1909), belongs to the class of linear functionals since the shear
rate γ̇ appears linear. Because of the substitutions t − θ ≡ s and η/λ ≡ G
the relation (10.1) can be written in the alternative form

τ(t) = G

∞∫
0

exp(−s/λ)γ̇(t− s) ds , (10.1*)

where the kernel function

K(t− θ) = G · exp [−(t− θ)/λ] (10.2)

describes the shear rate history dependence of shear stress and character-
izes the particular fluid considered. In the case of fading memory the kernel
function must approach zero if the past time θ tends to infinity:

lim
θ→−∞

K(t− θ) = 0 ⇒ fading memory. (10.3)

Considering a special shear flow with γ̇ = const. starting at time t = 0,
we arrive from (10.1) at the simple relation

τ(t) =
η

λ
γ̇ · exp(−t/λ)

t∫
0

exp(θ/λ) dθ = ηγ̇ [1 − exp(−t/λ)] , (10.4)

which approaches the following limits:

τ = ηγ̇ (NEWTON) (10.5)

for t� λ or G ≡ η/λ→ ∞ (rigid HOOKE’s part) and

τ = Gγ (HOOKE) (10.6)

for t	 λ or η ≡ Gλ→ ∞ (rigid NEWTON’s part).

10.2 General Principle

The previous Section has been concerned with a simple shear flow. A gen-
eralization is possible by applying tensor-valued functionals suitable to de-
scribe the behavior of fluids involving the history dependence, i.e. memory
effects.
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Fig. 10.1 Motion of two infinitesimal neighbouring fluid particles P1 and P2

Let us consider the motion of two infinitesimal neighbouring particles P1

and P2 from the past θ < t to the present time t, as illustrated in Fig. 10.1.
The distance vectors in the past, dx(θ), and at the present time, dx(t),

relate to the linear transformation

dxi(θ) = Fik(θ; t,x)dxk(t) , (10.7)

where Fij := ∂xi(θ)/∂xk(t) are the cartesian components of the relative
deformation gradient F , which reflects a line element vector at the present
time back to the corresponding vector in the past.

With respect to the principle of material frame-indifference (material ob-
jectivity), we consider the square of the distance between the two particles,

since the quotient P1P2
2
/P̃1P̃2

2
is not affected by any superimposed rigid-

body motion. Thus, we take into consideration the relation

dxi(θ)dxi(θ) = FijFikdxj(t)dxk(t) (10.8)

derived from (10.7), where

FijFik := Cjk(θ; t,x) or F tF := C (10.9a,b)

represents a symmetric second-order tensor known as the relative right
CAUCHY-GREEN tensor. This tensor is a local measure of the past defor-
mation relative to its present configuration. At the present time (θ = t) the
tensor C reduces to C(θ = t; t,x) = δ.
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The volume elements in Fig. 10.1 are related according to

dV (θ) = (detF )dV (t) , (10.10)

i.e., det F is identical to the JACOBIan determinant. For incompressible flow,
dV (θ)=dV (t), we have det F =1, hence, because of (10.9), also det C =1.

A rigid body motion is characterized by dx(θ) = dx(t), so that we read
from (10.7) the simplification Fik = δik and then from (10.9) the trivial
result Cjk = δjk, i.e., the CAUCHY-GREEN tensor C is a spherical one in
this case.

Now let us discuss a simple shear flow the motion of which is character-
ized by the transformation

x1(θ) = x1(t) − γ̇(t− θ)x2(t) ,

x2(θ) = x2(t) ,

x3(θ) = x3(t) .

⎫⎪⎬
⎪⎭ (10.11)

Hence the relative deformation gradient (10.7) yields

Fij := ∂xi(θ)/∂xj(t) =

⎛
⎜⎜⎜⎝

1 −γ̇(t− θ) 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ (10.12)

and the relative right CAUCHY-GREEN tensor (10.9) is determined as

Cij := FkiFkj =

⎛
⎜⎜⎝

1 −γ̇(t− θ) 0

−γ̇(t− θ) 1 + γ̇2(t− θ)2 0

0 0 1

⎞
⎟⎟⎠ . (10.13)

Because of the steady character of the considered flow (10.11), both F and
C according to (10.12) and (10.13), respectively, depend only on the remote
past t − θ ≡ s and not on the present time t. Furthermore, the shear flow
(10.11) is assumed to be homogen, so that neither F nor C depend on the
position vector x.

The general constitutive equation involving the dependence of the defor-
mation history is defined as

σij(x, t) = −p(ρ, T )δij +
t

Fij
θ=−∞

[C(θ; t,x)] , (10.14)
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where the symbol F characterizes a general tensor-valued functional of the
CAUCHY-GREEN tensor C(θ; t,x) with t and x as parameters.

As a simple equation let us consider a linear functional

τij(x, t) := σij(x, t)+pδij =

t∫
−∞

K(t−θ) [Cij(t− θ) − δij ] dθ . (10.15)

Assuming fluids with fading memory, the kernel function in (10.15) can be
expressed by 1

K(t− θ) =
η

λ2
· exp [−(t− θ)/λ] , (10.16)

so that we arrive from (10.15) with (10.13) at the following viscometric func-
tions:

τ12 ≡ τ(γ̇) = ηγ̇ , (10.17a)

N1(γ̇) := τ11 − τ22 = −2ηλγ̇2 = −2
η2

G
γ̇2 , (10.17b)

N2(γ̇) := τ22 − τ33 = 2ηλγ̇2 = −N1(γ̇) , (10.17c)

which completely determine the behavior of simple fluids in viscomet-
ric flows. Examples for such flows are capillar flows, COUETTE-flow, and
POISEUILLE-flow. Viscometric flows are discussed in more detail by BECKER

and BÜRGER (1975), EBERT (1980), TRUESDELL and NOLL (1965), SCHOWAL-
TER (1978), and RIVLIN and ERICKSEN (1955), to name just a few.

10.3 Effects of Normal Stresses

The example in the previous Section shows that the first viscometric function
(10.17a) is identical to the shear stress in a NEWTONian fluid. Furthermore,
from (9.5a) we calculate σ11 = σ23 = σ33 = −p for a simple shear flow of
a NEWTONian fluid, so that the viscometric functions N1 and N2 are iden-
tical to zero. However, non vanishing normal stress differences, for instance
according to (10.17b,c), are essential features of non-NEWTONian fluids.

The special normal stress functions (10.17b,c) are functions of γ̇2, i.e.,
they are even functions of γ̇ and do not change if the shear direction is re-
versed.
1 Note, that the factors G ≡ η/λ in (10.2) and η/λ2 in (10.16) are different, since the kernel

functions in (10.1) and (10.15) have different dimensions.
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The finite normal stress differences are the cause of normal stress effects
in non-NEWTONian fluids, for instance, WEISSENBERG (1947) observed
that non-NEWTONian fluids (e.g. cream, some motor oils, silicone putty etc.)
climb at a rotating rod of a common kitchen mixer, whereas NEWTON fluids
climb at the wall of the vessel. The normal stress effect observed by WEIS-
SENBERG is called the WEISSENBERG effect.

Another well-known effect is the phenomenon of die swell, which can be
observed when a non-NEWTONian fluid, e.g. putty, leaves a circular cylin-
drical tube.

A lot of other anomalous flows of non-NEWTONian fluids have been dis-
cussed and illustrated by WALKER (1978) and BÖHME (2000), for instance.



11 Viscoelastic Materials

Many materials exhibit both features of elastic solids and characteristics of
viscous fluids. Such materials are called viscoelastic . One of the main fea-
tures of elastic behavior is the capacity for materials to store mechanical en-
ergy when deformed by loading, and to set free this energy completely after
removing the load. In viscous flow, however, mechanical energy is contin-
uously and totally dissipated. Viscoelastic materials store and dissipate en-
ergy in varying degrees during loading/unloading cycles. Constitutive equa-
tions for viscoelastic materials include elastic deformation and viscous flow
as special cases, as has already been expressed, for example, by the limits
(10.5) and (10.6) of the MAXWELL body.

The behavior of polymers, e.g. PMMA (plexiglass), at moderate temper-
ature and loading may be effectively described by a linear elastic constitu-
tive equation. However, at elevated temperature, the same material should be
considered as a viscous fluid.

Furthermore, most materials exhibit linear behavior under small stress
levels, while the same material behave more and more nonlinear, when the
load is increasing. In the following Sections both linear and nonlinear vis-
coelastic models are taken into consideration.

11.1 Linear Theory of Viscoelasticity

Linear models consist of several combinations of linear springs (HOOKE)
and linear viscous dashpots (NEWTON). Such rheological models are suit-
able to describe the linear viscoelastic behavior of materials under uni-axial
loading.

Based upon BOLTZMANN’s superposition principle , which can be uti-
lized in the linear theory, we arrive at the tensorial hereditary integral

εij(t) =

t∫
−∞

Cijkl(t− θ)∂σk�(θ)

∂θ
dθ, (11.1)
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describing the multi-axial creep behavior of linear viscoelastic materials.
This integral expresses the strain tensor ε(t) at the present time t as a func-
tion of the entire stress history σ(θ) from the beginning θ = −∞ The fourth-
order creep tensor C depends of the particular material considered. In the
special case of isotropic behavior, this tensor is a spherical one with compo-
nents as

Cijk� = Aδijδk� +B(δikδj� + δi�δjk) (11.2)

producing the following simplification:

εij(t) = δij

t∫
−∞

A(t− θ)∂σkk(θ)

∂θ
dθ + 2

t∫
−∞

B(t− θ)∂σij(θ)

∂θ
dθ . (11.3)

Thus, only two scalar creep functions , A(t − θ) and B(t − θ), are relevant
in this particular case.

Similarly, the stress relaxation process in a linear viscoelastic material
can be described by the hereditary integral

σij(t) =

t∫
−∞

Rijk�(t− θ)∂εk�(θ)

∂θ
dθ , (11.4)

where Rijk� are the components of the fourth-order tensor-valued relaxation
function R.

For uni-axial stress state we obtain by employing integration by parts the
creep relation

Eε(t) = σ(t)κ(0) −
t∫

−∞
σ(θ)

∂κ(t− θ)
∂θ

dθ , (11.5)

where E is the elastic modulus, while the creep function κ is defined accord-
ing to

Eε(t)

σ0
:= κ(t; material constants) . (11.6)

For example, the MAXWELL fluid is characterized by the creep function

κ = 1 +
G

η
t , (11.7)

while the KELVIN solid has the following creep function
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κ = 1 − exp

(
−G
η
t

)
. (11.8)

The shear modulus G in (11.7) and (11.8) results from HOOKE’s part,
whereas the shear viscosity η is descended from NEWTON’s part in the vis-
coelastic material.

Similarly to (11.5), the uni-axial stress relaxation can be represented in
the following way:

σ(t)

E
= ε(t)r(0) −

t∫
−∞

ε(θ)
∂r(t− θ)
∂θ

dθ , (11.9)

where the relaxation function r is defined as

σ(t)

Eε0
:= r(t; material constants) (11.10)

(BETTEN, 1972). For example, the MAXWELL fluid is characterized by the
relaxation function

r = exp

(
−G
η
t

)
(11.11a)

whereas the KELVIN solid has the following relaxation function

r = 1 +
η

G
δ(t) . (11.11b)

In (11.11b) the DIRAC delta function δ(t) has been introduced (Appendix
A), where δ(t) = 0 for t �= 0 and δ(t) = ∞ for t = 0. Hence, the stress
caused by applying a step change in strain ε0 at time t > 0 has the constant
value σ(t > 0) = Eε0, i.e., the viscous stress part in (11.10) tends to infinity
at time t = 0 and approaches immediately zero at time t > 0. Thus, the
KELVIN solid does not relax with time.

The hereditary integrals in (11.1) and (11.4) or in (11.5) and (11.9) can
be deduced by utilizing BOLTZMANN’s superposition principle as shown in
the following.

Consider a linear viscoelastic body loaded by several stress steps in the
past as illustrated on the left side in Fig. 11.1. Then, based upon the super-
position principle and the creep function (11.6), the creep response of the
model will be given by the following series:

Eε(t) = σ0κ(t) +Δσ1κ(t− θ1) +Δσ2κ(t− θ2) + . . . =

=
n∑

i=0

Δσiκ(t− θi) ,
(11.12)



198 11 Viscoelastic Materials

�
0

��
1

��
2

��
3

�1 �2 �3
t � t

�d

� (t)

�d

� �( )

� �

Fig. 11.1 Stepped and continuos stress history.

where θi denotes a time in the past at which a new stress step begins. If the
steps are incremental small

Δσi → dσ = (∂σ(θ)/∂θ) dθ

and its number increases indefinitely, the discrete response function (11.12)
yields the hereditary integral

Eε(t) =

t∫
−∞

∂σ(θ)

∂θ
κ(t− θ) dθ . (11.13)

Employing integration by parts and because of the initial value σ(−∞) = 0
we immediately arrive from (11.13) at the creep response (11.5). In a similar
way we obtain the stress relaxation according to (11.9).

Both the creep integral in (11.5) and the relaxation integral in (11.9) or
the hereditary integral (11.13) and the corresponding integral for the relax-
ation process characterize the linear viscoelastic behavior of one particular
material. Hence, there must exist a relation between the creep function κ(t)
and the relaxation function r(t). In other words, it should be possible to de-
termin the corresponding creep function from the given relaxation function,
and vice versa. In order to find such a relation it is convenient to utilize the
LAPLACE transforms

L{κ} ≡ κ̂(s) =

∞∫
0

κ(t)e−stdt (11.14a)
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and

L{r} ≡ r̂(s) =

∞∫
0

r(t)e−stdt . (11.14b)

Then, by considering the convolution theorem , we arrive at the following
relation (BETTEN, 1969):

κ̂(s)r̂(s) = 1/s2 . (11.15a)

Applying the convolution theorem to the left hand side of (11.15a) and be-
cause of the inverse LAPLACE transform, L−1{1/s2} = t, applied to right
hand side of (11.15a), we finally obtain the result

t∫
0

κ(t− θ)r(θ)dθ =

t∫
0

κ(θ)r(t− θ)dθ = t . (11.15b)

Based upon the results (11.15a,b), it is possible to determine the creep
function κ(t) from a given relaxation function r(t), and vice versa, for a
particular linear viscoelastic material.Two examples are listed in Table 11.1.

Table 11.1 Relation between creep and relaxation functions

MAXWELL fluid KELVIN solid

r(t) = exp

(
−G
η
t

)
(11.11a) κ(t) = 1 − exp

(
−G
η
t

)
(11.8)

⇓ ⇓
r̂(t) =

1

s+G/η
(11.14b) κ̂(t) =

1

s
(
1 +

η

G
s
) (11.14a)

⇓ ⇓
κ̂(t) =

1

s
+
G

η

1

s2
(11.15a) r̂(t) =

1

s
+
η

G
(11.15a)

⇓ ⇓
κ(t) = 1 +

G

η
t (11.7) r(t) = 1 +

η

G
δ(t) (11.11b)

Convolution theorem. The relation (11.15a) can be obtained by utilizing
the convolution theorem . The convolution of two functions, say f1(t) and
f2(t), is defined according to
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ϕ(t) :=

t∫
0

f1(θ) f2(t− θ)dθ ≡ f1 ∗ f2 .

Introducing the substitution τ = t− θ, the above definition can alternatively
be expressed in the form

ϕ(t) :=

t∫
0

f2(τ) f1(t− τ)dτ ≡ f2 ∗ f1 .

Comparing both forms, we see that the convolution of two functions is com-
mutative, i.e., f1 ∗ f2 = f2 ∗ f1.

Applying the LAPLACE transform to the convolution ϕ(t), we arrive at
the convolution theorem :

ϕ̂(s) ≡ L {f1 ∗ f2} = L {f1}L {f2} ≡ f̂1 f̂2 ,

which states that the convolution in the original region corresponds to the
usual multiplication in the transformed region (Appendix B). In other words:

The LAPLACE transform of the convolution of two functions is
identical with the product of the LAPLACE transforms of these
two functions.

In order to derive the relation (11.15a), we apply the convolution theo-
rem to the integral (11.13) with θ = 0 as the lower limit, i.e., we apply the
convolution theorem to the following integrals:

Eε(t) =

t∫
0

∂σ(θ)

∂θ
κ(t− θ)dθ and

σ(t)

E
=

t∫
0

∂ε(θ)

∂θ
r(t− θ)dθ .

Then, because of

f1(t) ≡ ∂σ(t)/∂t and f2(t) ≡ κ(t)

or
f1(t) ≡ ∂ε(t)/∂t and f2(t) ≡ r(t) ,

we obtain the following relations (Appendix B)

E ε̂ (s) = [s σ̂ (s) − σ(0)] κ̂ (s) and
σ (s)

E
= [s ε̂ (s) − ε (0)] r̂(s),
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which are simplified as

Eε̂(s) = sσ̂(s)κ(s) and σ̂(s) = sEε̂(s)r̂(s) ,

since the initial conditions σ(0) and ε(0) = 0 are valid. From these simple
relations we immediately arrive at the result (11.15a).

The integrals in (11.15b) are convolutions of the functions κ(t) and r(t).
Let us apply the LAPLACE transform to (11.15b). Then, by utilizing the con-
volution theorem and because of L{t} = 1/s2, we arrive back at the result
(11.15a).

The derivatives with respect to time t yield the following two relations

t∫
0

∂κ(t− θ)
∂t

r(θ)dθ + κ(0)r(t) = 1 ,

t∫
0

∂r(t− θ)
∂t

κ(θ)dθ + r(0)κ(t) = 1 ,

where the second result is a dual form of the first one, and vice versa. By
exchanging κ for r the one expression turns into the other.

For instance, inserting the creep function (11.7) of the MAXWELL fluid
into the first form and then differentiating with respect to time t, we arrive at
the differential equation

G

η

t∫
0

r(θ)dθ + r(t) = 1 ⇒ dr

dt
+
G

η
r = 0 ,

the solution of which is the relaxation function (11.11) of the MAXWELL

fluid.
Many different problems of the linear theory of viscoelasticity have been

discussed and solved in detail by CHRISTENSEN (1982), SOBOTKA (1984),
KRAWIETZ (1986), TSCHOEGL (1989), and HAUPT (2000), to name just a
few.

11.2 Nonlinear Theory of Viscoelasticity

Describing the mechanical behavior of a nonlinear viscoelastic material it is
no longer possible to utilize the superposition principle. Then, the constitu-
tive equations should be represented, in general, by functionals as
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σij(t) =
θ=t
Fij

θ=−∞
[∂xp(θ)/∂aq] , (11.16)

where ∂xp/∂aq = Fpq are the cartesian components of the deformation gra-
dient tensor F . Because of material objectivity a supersosed rigid-body mo-
tion (11.32) or

x̄i = Qij(t)xj(ap, t) (11.17)

should not influence the CAUCHY stress tensor. Thus, the representation
(11.16) is reduced to

σij(t) = FipFjq

θ=t
Fpq

θ=−∞
[Crs(θ)] (11.18)

and further reductions are possible, if there are any material symmetry. The
tensor Cij = FkiFkj in (11.18) is known as the right CAUCHY-GREEN ten-
sor (10.9a,b). An example of (11.18) is the linear functional (10.15) employ-
ing fading memory .

Further representations have been proposed by TRUESDELL and NOLL

(1965) or by HAUPT (2000), for instance. Nonlinear problems are also con-
cerned in Sections 11.3.2 and 11.3.5, where the creep behavior of concrete
and the relaxation behavior of glass, respectively, is investigated in more de-
tail. Applications to several polymers have been discussed by GIESEKUS

(1994), LUDWIG (2001), LIN (2002), DÜNGER (2005), and KOLUPAEV

(2006), to name but a few.

11.3 Special Visoelastic Models

The phenomenological behavior of viscoelastic materials can be illustrated
by spring-dashpot models consisting of several elastic springs and viscous
dashpots in parallel or in series. In the following some examples should be
discussed in more detail based upon the fundamental rheological models of
KELVIN-VOIGT (solid) and MAXWELL (fluid).

11.3.1 Creep Spectra and Creep Functions for the Generalized
KELVIN Model

The KELVIN-VOIGT model (more briefly called KELVIN model) consists of
one linear spring (HOOKE) and one linear dashpot (NEWTON) connected in
parallel as illustrated in Fig. 11.2.
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Fig. 11.2 KELVIN model loaded in shear (τ) or in tension (σ)

The KELVIN body may be loaded in shear (τ) or in tension (σ), where the
model parameters are shear modulus G and shear viscosity η or YOUNG’s
modulus E and extension viscosity ηD, respectively, according to (9.24) and
(9.24*).

Since the basic elements, spring and dashpot, are connected in parallel,
the total stress in the model is the sum of

τH = Gγ (HOOKE) and τN = η γ̇ (NEWTON) .

Thus, the KELVIN model is charcterized by the following ordinary differen-
tial equation with constant coefficients:

τ = Gγ + η γ̇ , (11.19)

which can be solved by introducing the integrating factor exp(t/λ) accord-
ing to

γ̇ et/λ +
G

η
γet/λ

︸ ︷︷ ︸
d

dt
(γ et/λ)

=
1

η
τ(t)et/λ ⇒ γ (t) =

1

η

t∫
−∞

e− (t−θ)/λ τ(θ) dθ

(11.20)
The constant λ ≡ η/G in (11.20) is called the retardation time .

The creep function (11.6) for the KELVIN body (11.8) can be determined
by inserting the constant shear stress τ(t) = τ0 into (11.20) and integrating
from θ = 0 to θ = t as stated by

κ(t) :=
Gγ(t)

τ0
= 1 − exp(−t/λ) . (11.21)

This result is compatible with (11.6) and (11.8), if we assume that the same
creep function κ is valid for both loading in tension and in shear. A difference
could only be between the parameters λD = ηD/E and λ = η/G due to
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tension and shear, respectively. However, because of (9.24) and (9.24*) we
have λD ≡ λ, i.e., the retardation times in tension and in shear are identical.

In the following a rheological model consisting of one HOOKE element
and n KELVIN elements in series is analysed (Fig. 11.3).

Fig. 11.3 Model with one HOOKE element and n KELVIN elements in series

The tension viscosities of the various KELVIN elements are briefly de-
noted by ηn instead of ηDn.

The model in Fig. 11.3 contains the standard solid model (n = 1) as as-
pecial case with three parametersE0, E1, η1. Due to (11.6), (11.8) or (11.21)
this model is characterized by the following creep function

1

σ0
ε(t) := J(t) = J0 + J1 [1 − exp(−t/λ1)] (11.22a)

containing the three parameters

J0 ≡ 1/E0, J1 ≡ 1/E1 , and λ1 ≡ η1/E1 .

Substituting the constant loading σ0 in (11.22a) by σ0H(t), we arrive at the
representations

σ

t

0

⇒ ε(t) = σ0H(t)J(t) (11.22b)

σ

t

0

a b

⇒ ε(t) = σ0 [H(t− a)J(t− a) −H(t− b)J(t− b)] ,

(11.22c)
where H(t) or H(t − a) is the HEAVISIDE unit step function discussed

in Appendix A in more detail. The response function (11.22c) is illustrated
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in Fig. 11.4. A similar representation is shown in Fig. B.3 for the KELVIN-
model . ⊙

11 1.mws

> alias(H=Heaviside):

> plot1:=plot(H(t-1)-H(t-6),t=0..12,0..1):
> plot2:=plot(H(t-1)*(0.2+0.8*(1-exp(-(t-1)/2)))
> -H(t-6)*(0.2+0.8*(1-exp(-(t-6)/2))),t=0..12):

> plots[display]({plot1,plot2});
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Fig. 11.4 Creep behavior of the standard solid model subjected to a constant load between
t = 1 and t = 6

Supplementing the standard solid model by further KELVIN elements as
illustrated in Fig. 11.3, we arrive from (11.22a) to the generalized creep func-
tion :

J(t) = J0 +
n∑

k=1

Jk[1 − exp(−t/λk)] , (11.23)

where Jk ≡ 1/Ek is the reciprocal modulus, called compliance , while λk ≡
η/Ek represents the corresponding retardation time of a KELVIN element
within the series in Fig. 11.3. The values (λk, Jk) form a discrete retardation
spectrum as drawn on the left side in Fig. 11.5.
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Fig. 11.5 Discrete and continous creep spectrum

The number of KELVIN elements in Fig. 11.3 may increase indefinitely
(n → ∞). Then the discrete retardation spectrum proceeds to a continuous
f = f(λ), as illustrated in Fig. 11.5. The creep function defined by

J(t) :=
1

σ0
ε(t) (11.24)

and given in the discrete form (11.23) results for n→ ∞ in the integral form

J(t) = J0 + α

∞∫
0

f(λ)(1 − exp(−t/λ))dλ , (11.25)

where the parameter α can be determined from J(∞) ≡ J∞ by assuming
normalized creep spectra ,

∞∫
0

f(λ)dλ ≡ 1 , (11.26)

according to
α ≡ J∞ − J0 . (11.27)

Hence, the creep function (11.25) is represented in the following dimension-
less form

K(t) :=
J(t) − J0

J∞ − J0
= 1 −

∞∫
0

f(λ)e−t/λdλ . (11.28)
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For the sake of convenience, the integral in (11.28) is solved by utilizing a
LAPLACE transformation (Appendix B). Thus, we introduce the substitution

1

λ
= ξ with dλ = − 1

ξ2
dξ (11.29)

and arrive from (11.28) at the result

J(t) − J0

J∞ − J0
= 1 −

∞∫
0

f(λ = 1/ξ)

ξ2
e−tξdξ (11.30a)

or J(t) − J0

J∞ − J0
= 1 − L{g(ξ)} , (11.30b)

where L{g(ξ)} is the LAPLACE transform of the function

g(ξ) =
1

ξ2
f(λ = 1/ξ) . (11.31)

In the following some examples should be discussed. At first we select
the POISSON distribution

f1(λ) =
1

n!
λne−λ with n = 0, 1, 2, ... (11.32)

which is normalized in the sense of (11.26) as we can immediately see by
considering the gamma function

Γ (n) =

∞∫
0

λn−1e−λdλ with Γ (n+ 1) = n! (11.33)

If we substitute n − 1 for n , the POISSON distribution (11.32) proceeds
to the gamma distribution . Note, the function Γ (n + 1) in (11.33) may be
called the factorial function (Appendix B) because of its connection with n!
Furthermore, the gamma function is not restricted to an integer n, as pointed
out in Appendix B.

The numerical evaluation of (11.30a,b) with (11.32) is carried out by the
following MAPLE computer-program. ⊙

11 2.mws

> restart:
> alias(th=thickness,co=color):
> macro(la=lambda,inf=infinity):

> K:=(J(t)-J[0])/(J[inf]-J[0]);
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K :=
J(t) − J0

J∞ − J0
> K:=1-int((f[1](xi)/xiˆ2)*exp(-t*xi),
> xi=0..inf);

K := 1 −
∫ ∞

0

f1(ξ) e
(−t ξ)

ξ2
dξ

Example:
> f[1](la,n):=(1/n!)*(laˆn)*exp(-la);

f1(λ, n) :=
λn e(−λ)

n!
This spectrum (POISSON distribution) is represented in Fig. 11.6.
> p[0]:=plot((1/0!)*(laˆ0)*exp(-la),
> la=0..5,0..1,co=black,axes=boxed):
> p[1]:=plot((1/1!)*(laˆ1)*exp(-la),
> la=0..5,co=black):
> p[2]:=plot((1/2!)*(laˆ2)*exp(-la),
> la=0..5,co=black):
> p[3]:=plot((1/3!)*(laˆ3)*exp(-la),
> la=0..5,co=black):

> plots[display](seq(p[k],k=0..3),th=2);
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Fig. 11.6 POISSON distributions (11.32) as creep spectra
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Because of
df1
dλ

=
λn−1

n!
(n− λ)e−λ

the curves in Fig. 11.6 possess a maximum at λ = n > 0.
From the creep spectra (11.32) illustrated in Fig. 11.6 we find the creep

functions J(t, n) in dimensionless form (11.30b) as shown in Fig. 11.7.
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K(t) := J(t)−J0

J∞−J0

Fig. 11.7 Dimensionless creep functions (11.30) based upon the POISSON distributions
(11.32) used as creep spectra

The creep functions (11.30) in Fig 11.7 have been calculated by the fol-
lowing Maple program including the LAPLACE transform. ⊙

11 3.mws

> with(inttrans):

> g[1](xi):=subs(la=1/xi,f[1](la,n))/xiˆ2;

g1(ξ) :=

(
1

ξ
)n e

(− 1
ξ
)

n! ξ2

> K[n]:=1-laplace(g[1](xi),xi,t);

Kn := 1 − 2 t(
n
2
+1/2) BesselK(n+ 1, 2

√
t)

n!
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> for i in [0,1,2,3] do
K[i]:=subs(n=i,K[n]) od;

K0 := 1 − 2
√
tBesselK(1, 2

√
t)

0!

K1 := 1 − 2 tBesselK(2, 2
√
t)

1!

K2 := 1 − 2 t(3/2) BesselK(3, 2
√
t)

2!

K3 := 1 − 2 t2 BesselK(4, 2
√
t)

3!
> plot({seq(K[k],k=0..3)},t=0..5,0..1,

th=2,axes=boxed,co=black);

The second example is concerned with the MAXWELL distribution func-
tion ⊙

11 4.mws

> f[2](la):=(a/2/sqrt(Pi)/(laˆ(3/2))
*exp(-(aˆ2/4/la)));

f2(λ) :=
1

2

a e(−1/4 a2

λ
)

√
π λ(3/2)

(11.34)

which is normalized in the sense of (11.26) and therefore admissible. This
spectrum is illustrated in Fig. 11.8.
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Fig. 11.8 MAXWELL distribution functions (11.34) used as creep spectra.
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The distribution function (11.34) in Fig 11.8 has been calculated by the
following Maple program.

> p[1]:=plot(subs(a=3/2,f[2](la)),
> la=0..1,0..1.75,co=black):
> p[2]:=plot(subs(a=1,f[2](la)),
> la=0..1,0..1.75,co=black,axes=boxed):
> p[3]:=plot(subs(a=3/4,f[2](la)),
> la=0..1,0..1.75,co=black):

> plots[display]({seq(p[k],k=1..3)});

Because of
df2
dλ

=
a

8
√
π

a2 − 6λ

λ(7/2)
e−a2/4λ

the MAXWELL distribution functions (11.34) possess a maximum at the po-
sition λ = (1/6)a2. The associated creep functions J(t, a) in dimensionless
form (11.30b) have been calculated by the following MAPLE computer pro-
gram and illustrated in Fig. 11.9. ⊙

11 5.mws

> K[a]:=1-laplace((a/2/sqrt(Pi)/((1/xiˆ(3/2)))/

> (xiˆ2))*exp(-xi*aˆ2/(4)),xi,t);

Ka := 1 − 1

2

a√
t+

1

4
a2

> for i in [3/2,1,3/4]
> do K[i]:=subs(a=i,K[a]) od;

K3/2 := 1 − 3

2

√
4 t+

9

4

K1 := 1 − 1√
4 t+ 1

K3/4 := 1 − 3

4

√
4 t+

9

16
> plot({K[3/2],K[1],K[3/4]},t=0..5,0..1,
> th=2,co=black,axes=boxed);
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Fig. 11.9 Dimensionless creep functions (11.30) based upon the MAXWELL distrbution
functions (11.34) used as creep spectra

The third example takes into consideration the Chi-square distribution ,
which is also normalized in the sense of (11.26) and therefore admissible.⊙

11 6.mws

> with(Statistics):

> X:=RandomVariable(ChiSquare(n)):
> f[3](la,n):=PDF(X,la) assuming la>= 0;
% # Probability Density Function (11.35)

f3(λ) :=
λ(1/2 n−1) e(−1/2 λ)

2(1/2 n) Γ (
1

2
n)

(11.35)

> Int(f[3],la=0..inf)=int(f[3](la,n),la=0..inf);∫ ∞

0
f3 dλ = 1

The Chi-square distribution (11.35) is a special case of the gamma distribu-
tion

f(λ) =
λ(n−1e−λ

Γ (n)
, (11.36)
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as we can see by comparing (11.35) with (11.36). The spectrum (11.35) is
illustrated in Fig. 11.10 for several parameters n.

> for i in [1,2,3,4] do f[3](la,i):=
> subs(n=i,f[3](la,n)) od:
> plot({seq(f[3](la,k),k=1..4)},
> la=0..5,0..0.5,th=2,axes=boxed,co=black);
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Fig. 11.10 Chi-square distributions (11.35) used as creep spectra

The curves in Fig. 11.10 with n > 2 possess a maximum at the position
λ = n− 2.

From the creep spectra (11.35) illustrated in Fig. 11.10 we arrive at
the creep functions J(t, n) in dimensionless form (11.30b) illustrated in

Fig. 11.11 calculated by the MAPLE program
⊙

11 6.mws utilizing the
LAPLACE transformation.

> with(inttrans):

> g[3](xi,n):=subs(la=1/xi,f[3](la,n))/xiˆ2;

g3(ξ, n) :=

(
1

ξ
)(

n
2
−1) e

(− 1
2 ξ

)

2(n
2
) Γ (

n

2
) ξ2

> K[n]:=1-laplace(g[3](xi,n),xi,t);

Kn := 1 −
BesselK(

n

2
,
√

2
√
t) 2(−n

4
+1) t(

n
4
)

Γ (
n

2
)
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> for i in [1,2,3,4] do K[i]:=subs(n=i,K[n]) od;

K1 := 1 −
BesselK(

1

2
,
√

2
√
t) 2(3/4) t(1/4)

Γ (
1

2
)

K2 := 1 − BesselK(1,
√

2
√
t)
√

2
√
t

Γ (1)

K3 := 1 −
BesselK(

3

2
,
√

2
√
t) 2(1/4) t(3/4)

Γ (
3

2
)

K4 := 1 − BesselK(2,
√

2
√
t) t

Γ (2)
> plot({seq(K[n],n=1..4)},t=0..5,0..1,
> th=2,axes=boxed,co=black);
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Fig. 11.11 Dimensionless creep functions (11.30) based upon the Chi-square distrbutions
(11.35) used as creep functions
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11.3.2 Creep Behavior due to the
√

t - Law

In the previous Section 11.3.1 we started from selected creep spectra and cal-
culated the associated creep functions . Conversely, we can determine creep
spectra from given creep functions by using inverse LAPLACE transforms .

For example, let us concern the creep behavior of concrete , which can
be described in many situations according to the uni-axial law

ε(t) := a+ b
(
1 − e−c

√
t
)
. (11.37)

The three parameters a, b, and c have been determined by using the MAR-
QUART-LEVENBERG algorithm in connection with experimental data of
concrete B 300 (HUMMEL et al., 1962) according to a = 0.17, b = 1.475,
and c = 0.109. The associated creep spectrum is obtained by applying the
inverse LAPLACE transform as shown in the following Maple output.

Creep function for concrete: ⊙
11 7.mws

> epsilon(t):=a+b*(1-exp(-c*sqrt(t)));

ε(t) := a+ b (1 − e(−c
√

t))
From this equation and considering (11.24), (11.30) we arrive at the LA-
PLACE transform

> L(g(xi)):=exp(-c*sqrt(t));

L(g(ξ)) := e(−c
√

t) (parabolic exponential function) (11.38)

> with(inttrans):
> g(xi):=invlaplace(exp(-c*sqrt(t)),t,xi);

g(ξ) :=
1

2

c e
(−1/4 c2

ξ
)

√
π ξ(3/2)

(MAXWELL distribution function) (11.34)

Then, from (11.31) the following spectrum is obtained:

> f(la):=(1/laˆ2)*(subs(xi=1/la,g(xi)));

f(λ) :=
1

2

c e(−1/4 c2 λ)

λ2
√
π (1/λ)(3/2)

(11.39)

which is plotted for c = 0.109 in Fig. 11.12.

> plot(subs(c=0.109,f(la)),la=0..5,0..0.10,);
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Fig. 11.12 Normalized creep spectrum (11.39) associated with the creep function (11.37)

In the next two Figures (11.13a,b) two several creep curves, εA and εB ,
according to (11.37) and (11.40), respectively, have been compared with ex-
perimental data, where in Fig. 11.13a the abscissa is devided linear in t,
while in Fig. 11.13b we have chosen a

√
t-scale. The experiments have been

carried out by HUMMEL et al. (1962) on concrete B 300. ⊙
11 8.mws

> data:=[0.0,0.17],[0.851,0.3928],[3.997,0.52],
[7.67,0.6],[17.22,0.72],[30.69,0.858],
[59.13,1.0],[95.64,1.1],[159.01,1.26],
[193.21,1.31],[286.28,1.4],[334.94,1.43],
[377.91,1.45],[900.0,1.58],[1103.56,1.65],
[1207.56,1.64]:

> epsilon[A](t):=a+b*(1-exp(-c*sqrt(t)));

εA(t) := a+ b (1 − e(−c
√

t)) (11.37)

> epsilon[B](t):=a+b*(1-exp(-c*t));

εB(t) := a+ b (1 − e(−c t)) (11.40)

> plot1:=plot(subs(a=0.17, b=1.475,
> c=0.109,epsilon[A](t)),t=0..1200):
> plot2:=plot(subs(a=0.17,b=1.289,c=0.0216,
> epsilon[B](t)),t=0..1200):

> plot3:=plot([data],style=point,symbol=cross):

> plots[display]({plot1,plot2,plot3});
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Fig. 11.13a Creep curves for concrete in comparison with experimental data

In the next Figure 11.13b the
√
t-scale as abscissa has been chosen.⊙

11 9.mws

> data:=[0.0,0.17],[0.92,0.3928],[1.99,0.52],
[2.77,0.6],[4.15,0.72],[5.54,0.858],
[7.69,1.0],[9.78,1.1],[12.61,1.26],
[13.90,1.31],[16.92,1.4],[18.84,1.43],
[19.44,1.45],[30.0,1.58],[33.22,1.65],
[34.75,1.64]:

> epsilon[A](t):=a+b*(1-exp(-c*sqrt_t));

εA(t) := a+ b (1 − e(−c sqrt t)) (11.37*)
> epsilon[B](t):=a+b*(1-exp(-c*sqrt_tˆ2));

εB(t) := a+ b (1 − e(−c sqrt t2))

> plot1:=plot(subs(a=0.17,b=1.475,c=0.109,
> epsilon[A](t)),sqrt_t=0..40,colour=black):
> plot2:=plot(subs(a=0.17,b=1.289,c=0.0216,
> epsilon[B](t)),sqrt_t=0..40,colour=black):

> plot3:=plot([data],style=point,symbol=cross):

> plots[display]({plot1,plot2,plot3});
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Fig. 11.13b Creep curves for concrete in comparison with experimental data

The Figures 11.13a,b illustrate that the creep curve εA(t) according to
(11.37) agrees with experimental data better than εB(t) given by the equation
(11.40). This difference becomes clearer in Fig. 11.13b than in Fig. 11.13a.

BLOK (2006) has shown that the
√
t-law according to (11.37) with only

three parameters can also be successfully applied to serval polymers, e.g.,
EVA copolymers at room temperature. The use of PRONYseries was less
successful.

11.3.3 Creep as a Diffusion Process

Because of the good agreement between the
√
t-law and experimental results

(Fig. 11.13a,b), we assume that creep can be interpreted as a diffusion con-
trolled process (BETTEN, 1971), since the

√
t-law plays also a central role

in the kinetic theory of diffusion.
The creep strain (4.2), i.e., the viscous part of the total strain is based

upon thermal activated processes, for instance, climbing of dislocations
(ASHBY and JONES, 1980). Besides the dislocation creep another creep
mechanism is important: the diffusional creep . Diffusion of atoms can un-
lock dislocations from obstructions in their path. Hence, the movement of
these unlocked dislocations under the applied stress results in dislocation
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creep . This explains the progressive, continuous nature of creep as a diffu-
sion controlled process .

The temperature influence on thermal activated processes can usually be
expressed by an ARRHENIUS function . Thus, the creep behavior of solids at
high temperature can be described by the law

ε̇ = Af(σ, T ) · exp(−Qk/RT ) , (11.41)

where A is a material constant, Qk[J/mol] is called the activation energy
for creep , R = 8.37J/(molK) is known as the universal gas constant , and
T denotes the ablolute temperature .

For many materials, in particular metals, the function f(σ, T ) in (11.41)
is given by [σ/E(T )]n with exponents n between 4 and 8. For many metals
one can observe an agreement of the activation energy for creep , Qk, with
the activation energy for self-diffusion , QD,

D = D0 · exp(−QD/RT ) . (11.42)

Consequently, creep at temperatures in the range 0.4 ≤ T/TM ≤ 0.5 can be
interpreted as a diffusion controlled process (BETTEN, 1971).

In order to describe the diffusion, we consider in the following the one
dimensional differential equation

∂c

∂t
= D

∂2c

∂x2
, (11.43)

where the diffusion coefficient D, according to (11.42), is assumed to be
indepent on distance x and on concentration c = c(x, t).

For integration the differential equation (11.43), it is convenient to intro-
duce the mixed dimensionless variable

ξ ≡ x

2
√
Dt

with

⎧⎪⎨
⎪⎩
∂ξ

∂t
= − x

4
√
D t3/2

∂ξ

∂x
=

1

2
√
D t

.
(11.44)

Hence, inserting the partial derivatives

∂c

∂t
=
∂c

∂ξ

∂ξ

∂t
= − x

4
√
Dt3/2

= − 1

2t
ξ
∂c

∂ξ
(11.45)

and
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∂c

∂x
=

1

2
√
Dt

∂c

∂ξ
⇒ ∂2c

∂x2
=

1

4Dt

∂2c

∂ξ2
(11.46a,b)

into (11.43), we arrive at the ordinary differential equation

d2c

dξ2
+ 2ξ

dc

dξ
= 0 , (11.47)

which can be solved by substitution u ≡ dc/dξ and separation of the vari-
ables (u, ξ) according to

du

u
= −2ξdξ ⇒ lnu = −ξ2 + b ⇒ u = Be−ξ2

,

and, because of u ≡ dc/dξ, we obtain by integration the concentration

c(x, t) − c0 = B

ξ∫
0

exp(−ξ∗2)dξ∗ (11.48a)

or in the form

c(x, t) − c0 =
B

2

√
π erf(ξ) . (11.48b)

The function

erf(ξ) =
2√
π

ξ∫
0

exp(−ξ∗2)dξ∗ (11.49)

in (11.48b) is known as the GAUSS error function , which is implied in the
MAPLE software as a standard function (Fig. 11.14)

⊙
11 10.mws .
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Fig. 11.14 GAUSS error function
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The integration constant B in (11.48a,b) depends on boundary condi-
tions, i.e. on the special problem considered. As an example, two specimens
may by welded at a postion x = 0, where the left specimen, for instance,
has a carbon content of a concentration c0, while the right specimen is free
of carbon at time t = 0. For t > 0 we can observe a diffussion from the left
specimen to the right one (Fig. 11.15) until the concentration is balanced in
both specimens to c0/2.

−2 −1 0 1 2

weld seam

c0 = c(x,0) c(x,t)

Fig. 11.15 Diffusion down a concentration gradient

For this diffusion process we arrive from (11.48b) at the concentration

c(x, t) =
1

2
c0

[
1 − erf

(
x

2
√
Dt

)]
(11.48c)

with the concentration gradient

∂c(x, t)

∂x
= −1

2

c0√
πDt

exp

(
− x2

4Dt

)
, (11.48d)

which is a normal dustribution like (A.15). Both relations, the concentration
(11.48c) and its gradient (11.48d), have been numerical evaluated with the
MAPLE software and are illustrated in Fig. 11.16 ⊙

11 11.mws

> c(x,t):=(c[0]/2)*(1-erf(x/2/sqrt(D*t)));

c(x, t) :=
1

2
c0 (1 − erf(

1

2

x√
D t

))

> gradient:=diff(c(x,t),x);

gradient := −1

2

c0 e
(−1/4 x2

D t
)

√
π
√

D t
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> alias(th=thickness,inf=infinity):
> p[1]:=plot(subs(c[0]=1,D=1,t=0.15,{c(x,t),

gradient}),x=-2..2,-1..1,th=3):
> p[2]:=plot(subs(c[0]=1,D=1,t=0.8,{c(x,t),

gradient}),x=-2..2,-1..1,th=3):
> p[3]:=plot(subs(c[0]=1,D=1,t=inf,{c(x,t),

gradient}),x=-2..2,-1..1,th=3):
> p[4]:=plot(subs(c[0]=1,D=1,t=0.0001,{c(x,t),

gradient}),x=-2..2,-1..1,th=3):
> plots[display]({seq(p[k],k=1..4)});
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Fig. 11.16 Concentration balance and gradient

From the result (11.48b) we obtain the inverse function ξ = ξ(c) and then
by considering the substitution (11.44) the penetration of a concentration c,
i.e., the diffusion way according to

x = x(c, t) = 2
√
Dξ(c)

√
t . (11.50)

This result is known as the
√
t -law for the diffusion way.

Some details about the inverse function ξ = ξ(c) are discussed in the
appendix B referring to (B.118b).
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By analogy with (11.50) the
√
t -law can also be applied in order to de-

scribe the nonlinear creep behavior of concrete (Fig. 11.13a,b) or the stress
relaxation in glass (Section 11.3.4).

In the linear theory of viscoelasticity the viscous component is taken into
account by the NEWTON term τ = ηγ̇ in (11.19) or σN = ηDε̇, so that the
response of a NEWTON dashpot loaded by a constant τ0 or σ0 is given by
γ = (τ0/η)t or ε = (σ0/ηD)t, respectively. Utilizing the

√
t-law, i.e., sub-

stituting
√
t for t, we obtain the response of the nonlinear dashpot according

to the relations

γ = C(τ0/G)
√
t or ε = c(σ0/E)

√
t . (11.51a,b)

Hence, the derivatives with respect to time t lead to:

τ0 = (2/C)G
√
t γ̇ or σ0 = (2/c)E

√
t ε̇ . (11.52a,b)

If spring element and dashpot are in parallel (Fig. 11.2), we add to (11.52a,b)
the HOOKE term τ0 = Gγ or σ0 = Eε, repectively, and find in contrast to
(11.19) the differential equation

γ + (2/C)
√
t γ̇ = τ0/G or ε+ (2/c)

√
t ε̇ = σo/E . (11.53a,b)

The second equation (11.53b), for instance, can be solved analogous to
(11.20) by introducing the integrating factor exp(c

√
t) as follows:

ε̇ec
√

t +
c

2
√
t
εec

√
t

︸ ︷︷ ︸
d

dt
(εec

√
t)

=
σ0

E

c

2
√
t
ec

√
t ⇒ ε(t) =

σ0

E
+Ae−c

√
t . (11.54)

Inserting the initial condition ε(0) = 0 into (11.54) yields the integration
constant A = −σ0/E, so that we finally oabtain the solution

εa(t) =
σ0

E

[
1 − exp(−c

√
t)
]
. (11.55a)

In contrast with (11.55a) the creep function of the KELVIN body is, because
of (11.8) and (11.21), given by the relation

εb(t) =
σ0

E
[1 − exp(−t/λ)] . (11.55b)
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Fig. 11.17 Creep curves (11.55a,b)

Both results, (11.55a,b), are represented in Fig. 11.17 for σ0/E = 1 and
c = 1/λ = 1.

In extension of (11.55a,b) let us consider the standard solid model (n=1
in Fig. 11.3) and its modified model based upon the

√
t-law . We then obtain

the following relations

εA(t) = a1 + b1
[
1 − exp(−c1

√
t)
]

εB(t) = a2 + b2 [1 − exp(−c2t)]
(11.56a,b)

which are identical with (11.37), (11.40) and compared with experimental
data in Fig. 11.13a,b.

The difference between the two creep curves (11.56a,b) in a range of
0 ≤ τ ≤ t, also called the distance of the two functions, can be expressed by
the L2-error norm defined as

L2 ≡ ‖εA(t) − εB(t)‖2 :=

√√√√√1

t

t∫
0

[εA(τ) − εB(τ)]2 dτ . (11.57)

With the experimental data of concrete (Fig. 11.13a,b) we calculate by
using the MARQUART- LEVENBERG algorithm the following coefficients of
the relations (11.56a,b):
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a1 = 0.17 b1 = 1.475 c1 = 0.109

a2 = 0.17 b2 = 1.289 c2 = 0.0216

Hence, the error norm (11.57) on 0 ≤ τ ≤ 1200 takes the value

L2 = 0.1106 ,

which is too large, i.e., the linear standard solid model (11.56b) is not suit-
able to describe the creep behavior of concrete B 300, while the modified
model (11.56a) predicts a good agreement with experimental data as has
been illustrated in (Fig. 11.13a,b). Further remarks on

⊙
11 12.mws

11.3.4 Relaxation Spectra and Relaxation Functions for the
Generalized MAXWELL Model

In contrast to the KELVIN model (Fig. 11.2) the MAXWELL model consists
of one linear spring (HOOKE) and one linear dashpot (NEWTON) connected
in series. Thus, by analogy of (11.19), the MAXWELL body is characterized
by the following ordinary differential equation with constant coefficients:

γ̇ = τ̇/G+ τ/η , (11.58)

which can be solved by introducing the integrating factor exp(t/λ) accord-
ing to

τ̇ et/λ +
G

η
τ et/λ

︸ ︷︷ ︸
d

dt

(
τet/λ

)
= G γ̇ et/λ ⇒ τ(t) = G

t∫
−∞

e−(t−θ)/λ γ̇(θ) dθ .

(11.59)
The constant λ ≡ η/G in (11.59) is called the relaxation time .

The relaxation function (11.10) for the MAXWELL body (11.11) can
be determined by inserting the shear rate γ̇ = 0 into (11.58), since the
MAXWELL body is assumed to be subjected by a constant shear strain γ0

during the relaxation process. Then, (11.58) possesses the simple solution

r(t) :=
τ(t)

Gγ0
= exp(−t/λ) , (11.60)

if we take the initial condition τ(0) = Gγ0 into consideration. This result
is compatible with (11.10) and (11.11a), if we, in a similar way to (11.21),
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assume that the same relaxation function r is valid for both longitudinal con-
stant strain ε0 and constant shear strain γ0. A difference could only be be-
tween the parameters λD = ηD/E and λ = η/G due to longitudinal strain
and shear strain, respectively. However, because of (9.24) and (9.24*) we
have λD ≡ λ, i.e., the relaxation times in longitudinal strain and shear strain
are identical.

In the following a rheological model consisting of one HOOKE element
and n MAXWELL elements is analysed (Fig. 11.18).

Fig. 11.18 Model with one HOOKE element and n MAXWELL elements in parallel

The model in Fig. 11.18 contains the POYNTING-THOMSON model (n = 1)
as a special case with three parameters (E∞, E1, η1). Due to (11.10), (11.11)
or (11.60) this model is characterized by the following relaxation function

1

ε0
σ(t) := E(t) = E∞ + E1 · exp(−t/λ1) . (11.61)

Supplimenting the POYNTING-THOMSON model by further MAXWELL

elements as illustrated in Fig. 11.18, we arrive, by analogy with (11.23), from
(11.61) to the generalized relaxation function :

E(t) = E∞ +

n∑
k=1

Ek · exp(−t/λk) , (11.62)

where Ek are the spring constants of the several MAXWELL elements, while
λk ≡ ηk/Ek reprisent the corresponding relaxation times . Analogous to
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the discrete creep spectrum in Fig. 11.5, the values (λk, Ek) form a discrete
relaxation spectrum . The parameter E∞ in (11.62) can be interpreted as the
long-time equilibrium value of the relaxation modulus E(t).

The number of MAXWELL elements in Fig. 11.18 may increase indefi-
nitely (n→ ∞). Then the discrete relaxation spectrum proceeds, by analogy
with Fig. 11.5, to a continuous one, h = h(λ). The relaxation function de-
fined as

E(t) :=
1

ε0
σ(t) (11.63)

and given in the discrete form (11.62) results for n→ ∞ in the integral form

E(t) = E∞ + β

∞∫
0

h(λ) · exp(−t/λ)dλ , (11.64)

where the parameter β can be determined from E(0) ≡ E0 by assuming
normalized relaxation spectra ,

∞∫
0

h(λ)dλ ≡ 1 , (11.65)

according to
β = E0 − E∞ . (11.66)

Hence, the relaxation function (11.64) is represented in the following dimen-
sionless form

R(t) :=
E(t) − E∞
E0 − E∞

=

∞∫
0

h(λ) · exp(−t/λ)dλ . (11.67)

For the sake of convenience, the integral in (11.67) is solved by utilizing
a LAPLACE transform . Thus, we introduce the transformation (11.29) and
arrive from (11.67) at the following result

E(t) − E∞
E0 − E∞

=

∞∫
0

h(λ = 1/ξ)

ξ2
exp(−tξ)dξ (11.68a)

or
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E(t) − E∞
E0 − E∞

= L{H(ξ)} , (11.68b)

where L{H(ξ)} is the LAPLACE transform of the function

H(ξ) =
1

ξ2
h(λ = 1/ξ) . (11.69)

As an example, let us select the POISSON distribution h(λ) ≡ f1(λ) ac-
cording to (11.32), which has already been used in (11.28) as a creep func-
tion and represented in Fig. 11.6. For this example, the numerical evaluation
of (11.68a,b) with (11.32) for h(λ) is carried out by the following MAPLE

Computer-Program, and the results are plotted in Fig. 11.19.⊙
11 13.mws

> restart:

> with(inttrans):

> H(xi,n):=exp(-1/xi)/n!/xiˆn/xiˆ2;

H(ξ, n) :=
e
(− 1

ξ
)

n! ξn ξ2

> R[n]:=laplace(H(xi,n),xi,t);

Rn :=
2 t(

n
2
+1/2) BesselK(n+ 1, 2

√
t)

n!
> for i in [0,1,2,3] do
> R[i]:=subs(n=i,R[n]) od;

R0 :=
2
√
tBesselK(1, 2

√
t)

0!

R1 :=
2 tBesselK(2, 2

√
t)

1!

R2 :=
2 t(3/2) BesselK(3, 2

√
t)

2!

R3 :=
2 t2 BesselK(4, 2

√
t)

3!
> alias(th=thickness,co=color):
> plot({seq(R[n],n=0..3)},t=0..5,0..1,
> th=2,axes=boxed,co=black);
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Fig. 11.19 Dimensionless relaxation functions (11.68) based upon the POISSON distributions
(11.32) used as relaxation spectra

11.3.5 Relaxation Behavior due to the
√

t−Law

In the previous Section 11.3.4 and also in the following stress relaxation has
been analyzed in more detail. Besides this sort of relaxation another kind,
namely the structural relaxation , is also very important (SCHERER, 1986),
which governs the time-dependent response of a fluid to a change in temper-
ature. For instance, a liquid is held at temperature T1 until property p(t, T1)
reaches its equilibrium value p(∞, T1), then it is suddenly cooled to T2. The
instantaneous change in p is proportional to the difference T2 −T1, followed
by relaxation toward the equilibrium value p(∞, T2).

The stress relaxation in glass can be described by a modified POYNTING-
THOMSON model based upon the

√
t-law. Thus, by analogy with the modi-

fied standard solid Model (11.56a,b), we take into consideration the follow-
ing two relations in comparison with relaxation experiments:

σA(t) = a3 + b3 exp
(−c3√t)

σB(t) = a4 + b4 exp (−c4t)
. (11.70a,b)

Hence, the dimensionless relaxation functions defined as



230 11 Viscoelastic Materials

R :=
E(t) − E∞
E0 − E∞

=
σ(t) − σ∞
σ0 − σ∞ (11.71)

are given by

RA = exp(−c3
√
t) RB = exp(−c4t) . (11.72a,b)

The first equation (11.72a) is the modified form, the second one (11.72b)
refers to the MAXWELL model (Fig. 11.20).
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Fig. 11.20 Relaxation functions (11.72a,b)

Based upon a lot of experiments on glass, SCHERER (1986) has shown
that both the stress and structural relaxation in glass can be predicted by the
relation

r(t) = exp
[
−(t/λ)b

]
(11.73)

often called KOHLRAUSCH function or b-function, which is a modified form
of the MAXWELL relaxation function (11.60). The exponent b in (11.73) for
a variety of glasses was found to be near the value of b ≈ 0.5, so that the
assumption of the

√
t-law is justified. However, the relation (11.73) is valid

only for stabilized glass , i.e., the glass is held at a given temperature until
its properties do no longer change with time, then the load can be applied.

In unstabilized glasses the viscosity η and other typical properties, e.g.
the density, vary with time. Then, the relaxation function (11.73) should be
replaced by the formula
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r(t) = exp

⎡
⎢⎣−
⎛
⎝ t∫

0

G0dt
∗

η(t∗)

⎞
⎠b
⎤
⎥⎦ (11.74)

where, in agreement with experimental results, the exponent b can again be
assumed to b ≈ 1/2, as has been discussed in more detail by SCHERER

(1986).
AIMEDIEU (2004) has investigated the nonlinear relaxation of brain tis-

sue and found very good agreement between the
√
t−law according to

(11.70a) and his own experiments. The use of PRONY-series was less suc-
cesful.

11.3.6 Mechanical Hysteresis of Rheological Models

In order to discuss the dynamic behavior of rheological bodies, it is expedient
to determine, both experimental and analytical, the hysteresis loops in σ −
ε− diagrams, which becomes significant in cyclic loading because of the
energy dissipation . The damping capacity of a material can be investigated
by taking the mechanical hysteresis effect into account.

In the following the hysteresis loop of the KELVIN body is determined
assuming harmonic loading according to

σ(t) = σ0 cosΩt (11.75a)

or in complex form
σ(t) = σ0Re

(
eiΩt
)
, (11.75b)

where σ0 is the stress amplitude, and Ω is the vibration frequency. Con-
sidering (11.8) and (11.75b) we arrive from the general form (11.5) at the
following response:

Eε(t) =
σ0

λ
e−t/λ Re

⎧⎨
⎩

t∫
−∞

eiΩθeΩ/λdθ

⎫⎬
⎭ (11.76a)

the integration of which and seperation of real and imaginary parts yield

Eε(t) =
1

1 +Ω2λ2
(σ0 cosΩt+Ωλσ0 sinΩt) . (11.76b)

Since the loading (11.75a) is an oscillatory stress, the strain response will
be an oscillation at the same frequency as the stress but lagging behind by a
phase angle α, hence
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Eε(t) =
σ0

1 +Ω2λ2
cos(Ωt− α) . (11.77)

Applying the addition theorem to (11.77) and considering (11.76b) we im-
mediately obtain the phase angle as

α = arc tanΩλ = arc tanΩ (η/G) , (11.78)

which is often called the loss angle and is influenced by the internal friction
of the material. The amplitude εa of the response is obtained by applying the
condition ε̇ = 0 to (11.76b), hence

Eεa = σ0

/√
1 +Ω2λ2 . (11.79)

In order to obtain the equation of the hysteresis in σ−ε− coordinates, we
insert (11.75a) into (11.75b) and find by considering (11.79) the quadratic
form (

1 +Ω2λ2
)
ε2 − 2ε (σ/E) + (σ/E)2 −Ω2λ2ε2a = 0 , (11.80)

which represents an ellipse. Experimental determined hysteresis of real ma-
terials can more or less deviate from the elliptical shape (BETTEN, 1969).
Such deviations can be interpreted as nonlinear effects .

The KELVIN body satisfies the following tensorial equation

σ′ij = 2Gε′ij + 2 η ε̇′ij , (11.81)

where σ′ij and ε′ij are the stress and strain deviators, respectively.
The second term in (11.81) is the dissipative part of the stress deviator:(

σ′ij
)
d

= 2 ηε̇′ij . (11.82a)

For the uniaxial equivalent state the tensorial form (11.82a) is simplified
according to

σd = 2 η (1 + ν) ε̇ = E (η/G) ε̇ (11.82b)

with ν as the isotropic transverse contraction ratio .
The dynamic behavior of the KELVIN body is based upon the linear dif-

ferential equation
mẍ+ k ẋ+ cx = P (t) , (11.83)

where the second term represents the dissipative force , so that the dissipative
stress is given by

σd = k ẋ/F = k (�/F ) ε̇ , (11.84)
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hence, a comparison with (11.82b) yields:

λ = η/G = k/c . (11.85)

The damping factor k in (11.83) can be expressed by LEHR’s damping mea-
sure D:

k = 2 (c/ω)D , (11.86)

where ω is the eigenfrequency of the undamped free vibration, so that (11.85)
leads to

λ = 2D/ω . (11.87)

With this expression and the nondimensional frequency ratio ζ ≡ Ω/ω we
obtain the elliptical hysteresis

(
1 + 4D2ζ2

)
ε2 − 2ε (σ/E) + (σ/E)2 − 4D2ζ2ε2a = 0 . (11.88)

The material damping is defined as (BETTEN, 1969)

ϑ = Ad/A , (11.89)

where Ad is the dissipative energy per cycle, i.e. the area of the hysteresis
loop, and A is selected as a reference value:

Ad = π/
√
γ1γ2 (11.90)

and

A =
1

2

σ

E
εa =

1

2
ε2a , (11.91)

respectively.
The values γ1 and γ2 in (11.90) are known as the characteristic roots of

the quadratic form (11.88). Thus

γ1γ2 = (1/4)D2ζ2ε4a , (11.92)

so that the material damping defined in (11.89) with (11.90) and (11.91) is
given by the simple expression (BETTEN, 1969)

ϑ = 4πDζ , (11.93)

which depends on the nondimensional frequency ratio ζ ≡ Ω/ω.
For damped free vibration , BETTEN (1969) derived the material damping

according to
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ϑ = (1 +D2)
[
1 − exp

(
− 4πD

/√
1 −D2

)]
, (11.94)

which is simplified to ϑ ≈ 4πD for small energy dissipation (D 	 1) and
leads to (11.93) for resonance ζ = 1.

11.3.7 Complex Parameters of Rheological Models

Besides the mechanical hysteresis effect discussed in the previous Section
complex parameters play also a fundamental role, when the dynamic behav-
ior of rheological models should be investigated.

Complex modulus , complex compliance , and complex viscosity , for in-
stance, essentially depend on the vibration frequency Ω as should be ex-
plained in the following.

Let us assume harmonic shear loading according to

τ∗(t) = τ0e
iΩt ⇒ γ∗(t) = γ0e

i(Ωt−α) , (11.95a,b)

where complex values are marked by a star. The phase angle is α as has been
used in (11.77).

Analogous to the usual shear modulus G = τ/γ of the HOOKE body we
define a complex shear modulus as

τ∗/γ∗ := G∗(iΩ) = G1(Ω) + iG2(Ω) , (11.96)

which depends on the vibration frequency Ω. Considering (11.95a,b), the
real and imaginary parts in (11.96) are given by

G1(Ω) = (τ0/γ0) cos α storage modulus (elasticity) , (11.97a)

G2(Ω) = (τ0/γ0) sin α loss modulus (energy dissipation) . (11.97b)

The ratio
G2(Ω)/G1(Ω) = tanα(Ω) (11.98)

is called loss factor or also known as mechanical damping . In contrast to
(11.96) the ratio

γ∗/τ∗ := J∗(iΩ) = J1(Ω) − iJ2(Ω) (11.99)

is defined as the complex compliance with

J1(Ω) = (τ0/γ0) cos α storage compliance , (11.100a)

J2(Ω) = (τ0/γ0) sin α loss compliance . (11.100b)
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Analogous to the shear viscosity η = τ/γ̇ of a NEWTON fluid, we define,
similar to (11.96), a complex shear viscosity as

τ∗/γ̇∗ = τ∗/(i Ω γ∗) := η∗(i Ω) = η1(Ω) − i η2(Ω) , (11.101)

which is a function of the vibration frequency Ω . Comparing (11.101) with
(11.96), we find the relation G∗ = i Ω η∗, hence:

G1(Ω) = Ωη2(Ω) , G2(Ω) = Ωη1(Ω) . (11.102a,b)

The real partsG1 (dynamic shear modulus) and η1 (dynamic shear viscosity)
represent the elastic and viscous portions, respectively, in the material.

These material properties relate to the relaxation function of the fluid.
To show that we start from the constitutive equation (11.59) represented in
complex variables (τ∗, γ̇∗) according to

τ∗(t) = G

∞∫
0

e−s/λ γ̇∗ (t− s) ds , (11.103)

where the substitution t− θ ≡ s has been introduced.
Assuming a harmonic shear strain γ∗ = γ0 exp(i Ω t) and considering

(11.101), we arrive at the relation

τ∗(t) = γ̇∗G

∞∫
0

e−(1/λ+iΩ)sds ≡ γ̇∗ η∗(iΩ) (11.104)

from which we immediately read the complex shear viscosity

η∗(iΩ) = G

∞∫
0

e−(1/λ+iΩ)sds =
Gλ

1 + iλΩ
=
η (1 − iλΩ)

1 + λ2Ω2
(11.105)

possessing the following real and imaginary parts:

η1
η

=
1

1 + λ2Ω2

η2
η

=
λΩ

1 + λ2Ω2
. (11.106a,b)

Thus, the corresponding moduli (11.102a,b) can be expressed as

G1

G
=

λ2Ω2

1 + λ2Ω2

G2

G
=
η2
η

. (11.107a,b)
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We see, that the sum of the real parts (11.106a) and (11.107a) is equal to one:
η1/η +G1/G = 1.

Note, the integration in (11.105) can also be carried out by the LAPLACE

transform
η∗ = GL{1} = G/p where p ≡ 1/λ+ iΩ

is the transformed variable, also called the LAPLACE parameter .
The results (11.106a,b) and (11.107a,b) have been graphically reresented

in Fig. 11.21.
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Fig. 11.21 Complex moduli of the MAXWELL body according to (11.106a,b) and (11.107a,b)

In order to find the complex parameters of the KELVIN body , let us intro-
duce in (11.20) the substitution t−θ ≡ s and the complex variables (γ∗, τ∗).
Thus, we obtain, analogous to (11.103), the following complex constitutive
equation of the KELVIN body:

γ∗(t) =
1

η

∫ ∞

0
e−s/λ τ∗ (t− s) ds (11.108)

and inserting the harmonic loading (11.95a), we arrive at the complex com-
pliance (11.99) according to
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J∗(i Ω) =
1

G∗ =
1

η

∞∫
0

e−(1/λ+iΩ)sds =
1

η p
, (11.109)

where p ≡ 1/λ+ iΩ denotes again the LAPLACE parameter .
The integral in (11.109) formally agrees with the corresponding integral

in (11.105). The difference results from the constant λ ≡ η/G, which is
interpreted as the relaxation time in (11.105) and as the retardation time in
(11.109).

Between the complex viscosity (11.105) of the MAXWELL body and the
complex compliance (11.109) of the KELVIN body the relation η∗/η = GJ∗

is valid, if both models possess the same λ-values. Thus, because of (11.99)
and (11.101) the real part GJ1 agrees with (11.106a), while the imaginary
part GJ2 formally agrees with (11.106b). Further on, from G∗ = η p ac-
cording to (11.109) we deduceG1/G = 1 andG2/G = λΩ for the KELVIN

body , in contrast to the relations (11.107a,b) valid for the MAXWELL body.
Experimental determined parameters can strongly disagree with the re-

sults illustrated in Fig. 11.21 for the MAXWELL body. For example, some
experiments have been carried out by ASHARE (1968) on a polymer solution
(4% Polystyrene in Chlordiphenyl at 25C) or by HAN et al. (1975) on a poly-
mer melt (Polystyrene at 200C) and by MEISSNER (1975) on Polyethylene,
to name just a few.

11.3.8 BURGERS Model

The BURGERS model consists of a MAXWELL and a KELVIN element cou-
pled in series as shown in Fig. 11.22.

Fig. 11.22 The BURGERS model; nomenclature

The creep behavior of the BURGERS model is described in the following
by considering the strain response under constant stress of piecewise con-
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stant stress of the single elements connected in series (Fig. 11.22). Thus, the
total strain at time t is decomposed into three parts,

ε(t) = ε0 + ε1 + ε2 , (11.110)

where the first part is the strain of HOOKE’s spring,

ε0 = σ/EM , (11.111a)

the second one results from NEWTON’s dashpot with a strain rate according
to

ε̇1 = σ/ηM , (11.111b)

and, finally, the third part is the strain in the KELVIN unit satisfying the
following ordinary differential equation

ε̇2 + (EK/ηK)ε2 = σ/ηK . (11.111c)

To find the constitutive equation of the BURGERS model, i.e. the relation
ε(t) = f(σ) between the external variables , we have to eliminate the inter-
nal variables ε0, ε1, ε2 from the equations (11.110) to (11.111c). This can
be done by utilizing the LAPLACE transformation having the advantages of
simplicity and consistency (Appendix B), which is applied to the set of the
above equations:

L{ε(t)} ≡ ε̂(s) = ε̂0(s) + ε̂1(s) + ε̂2(s) , (11.112)

ε̂0 = σ̂(s)/EM , (11.113a)

sε̂1 − ε1(0) = σ̂(s)/ηM , (11.113b)

sε̂2 − ε2(0) + (EK/ηK)ε̂2 = σ̂(s)/ηK . (11.113c)

The transformed quantities, for example ε̂(s), σ̂(s) etc., are functions of
the transformed variable s instead of the ”actual” variable time t.

Assuming th initial values ε1(0−) = ε2(0
−) = 0 and after that inserting

the transforms (11.113a,b,c) of the internal variables into (11.112), we arrive
at the following algebraic relation between the transforms of the external
variables:

ε̂(s) =

(
1

EM
+

1

ηMs
+

1

EK + ηKs

)
σ̂(s) . (11.114)

If the BURGERS model is loaded by a constant stress,

σ(t) = σ0H(t) ⇒ σ̂(s) = σ0/s , (11.115)
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we obtain from (11.114) the LAPLACE transforms

1

σ0
ε̂(s) =

1

EMs
+

1

ηMs2
+

1

EK

1

s(1 + λ2s)
, (11.116)

the inverse of which immediately furnishes the constitutive equation or the
creep function of the BURGERS model :

1

σ0
ε(t) := J(t) = J0 (1 + t/λ1) + J2

(
1 − e−t/λ2

)
, (11.117)

where the abbreviations J0 ≡ 1/EM , J2 ≡ 1/EK and the retardation times
λ1 ≡ ηM/EM , λ2 ≡ ηK/EK have been introduced. For λ1 → ∞ the
BURGERS model tends to the standard solid model(11.22a). Note, forming
the inverse of (11.116), we have read from a table (Appendix B) the follow-
ing pairs of LAPLACE transforms:

L−1{1/s} = 1 L−1{1/s2} = t L−1

{
1

s(1 + as)

}
= 1 − e−t/a

As an example, the creep behavior of the BURGERS model under piece-
wise constant stress, according to

ε(t) = σ0[H(t− a)J(t− a) −H(t− b)J(t− b)] (11.118)

is illustrated in Fig. 11.23, whereH(t− a) is the HEAVISIDE unit step func-
tion discussed in Appendix A in more detail. ⊙

11 14.mws

> alias (H=Heaviside, th=thickness):
> plot1:=plot(H(t-1)-H(t-5)-((1/2)*(H(t-6.8)-
> H(t-7.2))),t=0..12,-1/2..2,th=2):
> plot2:=plot(H(t-1)*(0.5+0.1*(t-1)+(1-exp(-
> (1/2)*(t-1))))-H(t-5)*(0.5+0.1*(t-5)+(1-exp
> (-(1/2)*(t-5))))-(1/2)*H(t-6.8)*(0.5+0.1*(t-
> 6.8)+(1-exp(-(1/2)*(t-6.8))))+(1/2)*H(t-7.2)*
> (0.5+0.1*(t-7.2)+(1-exp(-(1/2)*(t-7.2)))),
> t=0..12,-1/2..2,th=3):
> plot3:=plot(H(t-1)*(0.5+0.1*(t-1)+(1-exp(-
> (1/2)*(t-1))))-H(t-5)*(0.5+0.1*(t-5)+(1-exp(
> -(1/2)*(t-5)))),t=6.8..12,-1/2..2,style=point,
> symbol=cross,numpoints=5):

> plots[display]({plot1,plot2,plot3});



240 11 Viscoelastic Materials

–0.5

0

0.5

1

1.5

2

2 4 6 8 10 12
t

Fig. 11.23 Creep behavior and recovery of the BURGERS model subjected to constant loads
between 1 ≤ t ≤ 5 and 6.8 ≤ t ≤ 7.2

The relaxation function (11.10) or (11.61) of the BURGERS model should
be determined in the following. The LAPLACE transforms of the creep func-
tion (11.6) or (11.24) and of the relaxation function (11.10) or (11.61) are
related by (11.15a):

κ̂(s)r̂(s) = Ĵ(s)Ê(s) = 1/s2 , (11.119)

where the LAPLACE transform Ĵ(s)of the BURGERS model is identical to
the right-hand side of (11.116), which can be written in the form

Ĵ(s) =
s2 +As+B

EMs2(s+ EK/ηK)
(11.120)

with the following abbreviations:

A ≡ EM

ηM
+
EM

ηK
+
EK

ηK
and B ≡ EMEK

ηMηK
. (11.121a,b)

Taking (11.120) into account, we arrive from (11.119) at the transform of
the relaxation function :



11.3 Special Visoelastic Models 241

Ê(s) =
EM (s+ EK/ηK)

s2 +As+B
≡ EM (s+ EK/ηK)

(s− s1)(s− s2) (11.122)

where

s1;2 = −1

2
A
(
1 ∓
√

1 − 4B/A2
)

(11.123)

are negative and real values, which can be determined from (11.121a,b), i.e.
from the four material data EM , EK , ηM , ηK .

Applying the partial-fraction expansion to (11.122), we obtain the de-
composition of the LAPLACE transform

Ê(s) =
C1

s− s1 +
C2

s− s2 with

⎧⎪⎨
⎪⎩
C1 =

EM (s1 + EK/ηK)
s1 − s2

C2 =
EM (s2 + EK/ηK)

s2 − s1 .

(11.124)

Its inverse is the relaxation function

1

ε0
σ(t) := E(t) = C1e

s1t + C2e
s2t with s1 < 0, s2 < 0 , (11.125)

since

L−1

{
1

s+ a

}
= e−at . (11.126)

The stress at time t = 0 immediately follows from (11.125):

σ(0) = (C1 + C2) ε0 ≡ EMε0 (11.127)

in accordance with (11.111a), i.e. the stress in HOOKE’s spring.
As an example, the relaxation (11.125) of the BURGERS model under

piecewise constant strain, according to

σ(t) = ε0 [H(t− a)E(t− a) −H(t− b)E(t− b)] , (11.128)

is illustrated in Fig. 11.24, whereH(t− a) is the HEAVISIDE unit step func-
tion also used in (11.118). ⊙

11 15.mws

> alias(H=Heaviside,th=thickness):
> epsilon(t):=epsilon[0]*[H(t-1)-H(t-5)];

ε(t) := ε0 [H(t− 1) −H(t− 5)]

> sigma(t):=epsilon[0]*(C[1]*exp(s[1]*t)+
> C[2]*exp(s[2]*t));
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σ(t) := ε0 (C1 e
(s1 t) + C2 e

(s2 t))

> plot1:=plot(H(t-1)*(0.4*exp(-0.4*(t-1))+
> 0.6*exp(-0.6*(t-1)))-H(t-5)*(0.4*exp(-0.4*
> (t-5))+0.6*exp(-0.6*(t-5))),t=0..10,th=3):
> plot2:=plot(H(t-1)-H(t-5),t=0..10,th=2):
> plots[display]({plot1,plot2});
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Fig. 11.24 Relaxation behavior of the BURGERS model under constant strain ε0 between
1 ≤ t ≤ 5

The relaxation function (11.125) has been deduced from (11.119). Alter-
natively, we can start from the relation (11.114), which can be written in the
form

s2σ̂(s) +Asσ̂(s) +Bσ̂(s) = EMs
2ε̂(s) +

EMEK

ηK
s ε̂(s) , (11.129)

the inverse LAPLACE form of which (Appendix B) immediately yields the
differential equation

σ̈(t) +Aσ̇(t) +Bσ(t) = EM ε̈(t) +
EMEK

ηK
ε̇(t) (11.130)

of the BURGERS model, where the abbreviations A and B are defined by
(11.121a,b).

Assuming a step of strain ε0 at time t = 0+, i.e.,
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ε(t) = ε0H(t), ε̇(t) = ε0δ(t), ε̈(t) = ε0δ̇(t) , (11.131a,b,c)

then the differential equation (11.130) takes the special form

σ̈(t) +Aσ̇(t) +Bσ(t) = ε0

[
EM δ̇(t) +

EMEK

ηK
δ(t)

]
. (11.132)

Applying the LAPLACE transformation to this differential equation and tak-
ing the transforms

L{δ(t)} = 1 and L{δ̇(t)} = s (11.133)

into account (Appendix B), we arrive at the relation

s2σ̂(s) +Asσ̂(s) +Bσ̂(t) = EMε0 (s+ EK/ηK) , (11.134)

from which we read the transform (11.122) of the relaxation function E(t).
By analogy with the creep behavior of the BURGERS model represented

in Fig. 11.23 the relaxation behaviour under piecewise constant strains ε0
and α between 1 ≤ t ≤ 5 and 6.8 ≤ t ≤ 7.2, respectively, should be
discussed in the following. In that case the strain ε(t) can be expressed as

ε(t) = ε0 [H(t− a) −H(t− b)] + α [H(t− c) −H(t− d)] ,
(11.135)

while the relaxation (11.125) results in an extended form of (11.128), ac-
cording to

σ(t) = ε0 [H(t− a)E(t− a) −H(t− b)E(t− b)] +
α [H(t− c)E(t− c) −H(t− d)E(t− d)] . (11.136)

Assuming the parameters from Fig. 11.24, the relaxation (11.136) is illus-
trated in Fig. 11.25. ⊙

11 16.mws

> alias(H=Heaviside,th=thickness,co=color):
> plot1:=plot(H(t-1)-H(t-5)+
> 0.3*(H(t-6.8)-H(t-7.2)),t=0..10,co=black):
> plot2:=plot(H(t-1)*(0.4*exp(-0.4*(t-1))+
> 0.6*exp(-0.6*(t-1)))-H(t-5)*(0.4*
> exp(-0.4*(t-5))+ 0.6*exp(-0.6*(t-5)))+
> 0.3*H(t-6.8)*(0.4*exp(-0.4*(t-6.8))+
> 0.6*exp(-0.6*(t-6.8)))-0.3*H(t-7.2)*
> (0.4*exp(-0.4*(t-7.2))+ 0.6*
> exp(-0.6*(t-7.2))),t=0..10,co=black,th=3):
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> plot3:=plot(H(t-1)*(0.4*exp(-0.4*(t-1))+
> 0.6*exp(-0.6*(t-1)))-H(t-5)*
> (0.4*exp(-0.4*(t-5))+ 0.6*exp(-0.6*(t-5))),
> t=6.8..10,co=black,style=point,
> symbol=circle,symbolsize=10,numpoints=5):

> plots[display]({plot1,plot2,plot3});
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Fig. 11.25 Relaxation behavior of the BURGERS model under picewise constant
strains ε0 and α between [1, 5] and [6.8, 7.2]

A general representation of the relaxation (11.136) resulting from the
piecewise constant strains (11.135) can be seen on the CD

⊙
11 17.mws .

Two further worksheets,
⊙

11 18.mws and
⊙

11 19.mws on the
CD, should be mentioned. In the first one, the two dimensionless relaxation
functions (11.72a,b) have been discussed in more detail by assumining sev-
eral parameters c[3] and c[4]. In particular, optimal parameters c[4] as func-
tions of c[3] have been calculated in such a way that (11.72b) leads to a best
approximation to (11.72a).

The second worksheet is concerned with the comparison between PRONY-
series and relaxation functions due to the

√
t-law including experimental

data. AIMEDIEU (2004) has investigated the nonlinear relaxation of brain
tissue and found very good agreement between (11.70a) and his own exper-
iments. The use of PRONY-series was less successful.



12 Viscoplastic Materials

In contrast to fluids (chapter 9) viscoplastic materials can sustain a shear
stress even at rest. They begin to flow with viscous stresses after a yield
condition has been satisfied. Thus, viscoplastic materials are considered as
solids. The first viscoplastic model was proposed by BINGHAM (1922). In
the introduction to the Proceedings of the ”First Plasticity Symposium” in
Lafayette College (1924) BINGHAM writes:

Our discussion of plasticity therefore concerns itself with the ’flow
of solids’. The Greek philosopher HERAKLITUS was literally correct
when he said that ’everything flows’ (Panta rhei). It is therefore nec-
essary to limit our discussion by excluding the flow of those things
which we are accustomed to refer to as fluids, i.e., the pure liquids
and gases. But the circle of our lives is not concerned principally
with the fluids, even air and water, but with plastic materials. Our
very bodies, the food we eat, and the materials which we fashion in
our industries are largely plastic solids. Investigation leads us to the
belief that plasticity is made up of two fundamental properties which
have been made ’yield value’ and ’mobility’, the former being de-
pendent upon the shearing stress required to start the deformation
and the mobility being proportional to the rate of deformation after
the yield value has been exceeded.

HOHENEMSER and PRAGER (1932) constructed a viscoplastic constitutive
equation using the relation of stress-strain rate derived from experiments.
Based upon their results, PERZYNA (1966) proposed a generalized elastovis-
coplastic model, which considered the material stability criterion postulated
by DRUCKER (1959).

In the past three decades, there has been considerable progress and sig-
nificant advances made in the development of fundamental concepts of the
theory of viscoplasticity and their application to solve practical engineering
problems. A lot of results have been published by PHILLIPS and WU (1973),
CHABOCHE (1977), EISENBERG and YEN (1981), BODNER and PARTOM
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(1975), LIU and KREMPL (1979), KREMPL (1987), CRISTESCU and SULI-
CIU (1982), SOBOTKA (1984), SKRZYPEK (1993), SHIN (1990), BETTEN

and SHIN (1991; 1992), HAUPT (2000), LIN, BETTEN and BROCKS (2006),
to name just a few.

12.1 Linear Theory of Viscoplasticity

A linear viscoplastic model called BINGHAM body (1922) consists of a linear
viscous dashpot (NEWTON) and a solid friction element (MISES) connected
in parallel, i.e., the HOOKE element of the KELVIN model has been replaced
by the MISES element acting as a rigid body for |σ12| < k and sliding at
constant friction k with a shear rate d12 ≥ 0, when |σ12| ≥ k. Thus, for
simple shear the viscoplastic material law is given by

2ηd12 =

{
0 for F < 0

Fσ12 for F ≥ 0 ,
(12.1)

where η is a material constant (plastic viscosity) analogous the shear viscos-
ity of a fluid. The function F in (12.1) is defined as

F := 1 − k /|σ12| . (12.2)

The friction constant k of the model is interpreted as the yield strength in
pure shear of the material considered (Fig. 12.1).

Fig. 12.1 BINGHAM model

In generalizing the BINGHAM model (12.1) to multiaxial states of stress
we substitute the rate-of-deformation tensor dij for the shear rate d12 and
the stress deviator σ′ij for the shear stress σ12 ≡ σ′12 and furthermore the
function
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F = 1 − k√
J ′2

(12.3)

with the quadratic deviator invariant,

J ′2 := σ′ijσ
′
ji/2 , (12.4)

for the function (12.2). Thus, we arrive at the tensorial constitutive equation

2ηdij = Fσ′ij (12.5)

valid for isotropy. The solution of this equation for σ′ij is the viscoplastic
analogy of the tensorial equation (9.7b) of a NEWTON fluid. In solving (12.5)
for σ′ij we first square both sides of (12.5) according to

4η2dijdji = F 2σ′ijσ
′
ji (12.6)

and find by introducing the quadratic invariants (12.4) and

I ′2 = dijdji/2 (12.7)

the relation
F
√
J ′2 = 2η

√
I ′2 (12.8)

and finally with (12.3) the following yield function

F =
2η
√
I ′2

k + 2η
√
I ′2

with 0 ≤ F ≤ 1 . (12.9)

We see, at the onset of yielding (dij = 0ij or I ′2 = 0) the yield function (12.9)
is equal to zero, while it is approaching one for large rates (dij � δij/s). In
that case the material behaves like a NEWTON fluid.

Inserting (12.9) into (12.5) we obtain the constitutive equation

σ′ij =

(
2η +

k√
I ′2

)
dij (12.5*)

consisting of two parts: a viscous part (parameter η) and a solid part (param-
eter k).

The transvection of (12.5) with CAUCHY’s stress tensor σij yields
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2ησijdji = Fσijσ
′
ji = Fσ′ijσ

′
ji ≡ 2FJ ′2 . (12.10)

Assuming the hypothesis of the equivalent dissipation rate

Ḋ := σijdji
!
=σd (12.11)

we obtain from (12.10) the quadratic deviator invariant in the form

J ′2 = ησd/F = ηḊ/F (12.12)

and then the yield function (12.3) according to

F = 1 +
A

2Ḋ
−
√
A

Ḋ

(
1 +

A

4Ḋ

)
with A ≡ k2/η . (12.13)

In this representation the essential parameter is A, which relates the yield
strength in pure shear k and the shear viscosity η, i.e., the MISES and NEW-
TON influence. The BINGHAM model approaches the following limits:

A→ 0 ⇒ F = 1 (NEWTON fluid),

A/4Ḋ � 1 ⇒ F = 0 (MISES solid).

For anisotropic viscoplastic solids constitutive equations are very com-
plicated similar to that already discussed in chapter 4 or 8. Therefore, for
practical use we substitute the stress deviator σ′ij in the isotropic concept
(12.5) by the linear transformation

τ ′ij = β{ij}pqσpq with β{ij}pq := βijpq − 1

3
βkkpqδij (12.14)

and find the modified constitutive equation

2ηdij = Fτ ′ij with F = 1 − k√
J ′2

, (12.15)

where, in contrast to (12.4) the invariant J ′2 is defined as

J ′2 := τ ′ijτ
′
ji/2 . (12.16)

The fourth-order tensor β{ij}pq in (12.14) is deviatoric corresponding to the
free indices {ij} and contains the anisotropic properties of the viscoplastic
material (BETTEN,1981a; 1981b).
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12.2 Nonlinear Theory of Viscoplasticity

In the nonlinear case the constitutive equation (12.5) may be expanded by an
additional term,

2ηdij = F
(
σ′ij + κσ′′ij

)
, (12.17)

which is quadratic in stresses and characterizes the second-order-effect reg-
ulated by the parameter κ. The tensor σ′′ in the second term is traceless and
defined as

σ′′ij = ∂J ′3
/
∂σij = σ′ikσ

′
kj − 2J ′2δij

/
3 , (12.18)

where J ′2 is the quadratic deviator invariant (12.4), while J ′3 is cubic and
defined as

J ′3 := σ′ijσ
′
jkσ

′
ki

/
3 . (12.19)

The yield function (12.3) is generalized according to

F = 1 − k /f (J ′2, J ′3) (12.20)

as a function of both deviator invariants. For example, the function f (J ′2, J
′
3)

may be assumed in the form

f
(
J ′2, J

′
3

)
=
√
J ′2 + αJ ′3/σF , (12.21)

where σF is the yield strength in uniaxial tension. The admissible range of
the parameter α is

− 3 ≤ α ≤ 3/2 (12.22)

resulting from the convexity of the surface f = const. as has been pointed
out in more detail by BETTEN (1979b).

The proposed nonlinear constitutive equation (12.17) is compatible with
the minimum polynomial representation (chapter 6)

dij = fij(σ
′
pq) = φ0δij + φ1σ

′
ij + φ2σ

′(2)
ij , (12.23)

hence, by comparing (12.17) with (12.23) we arrive at the following identi-
ties:

φ0 ≡ −2

3
J ′2φ2 , φ1 ≡ F

2η
, φ2 ≡ κφ1 . (12.24a,b,c)
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Because of the incompressibility the function φ0 can be expressed by φ2

according to (12.24a). The parameter κ in (12.24c) regulates the second-
order-effect as mentioned above.

The nonlinear constitutive equation (12.17), valid for isotropy, may be
modified to anisotropy again by introducing the linear transformation (12.14)
and the corresponding quadratic tensor

τ ′′ij = τ ′ikτ
′
kj − 2J ′2(τ

′)δij/3 , (12.25)

hence

2ηdij = F
(
τ ′ij + κτ ′′ij

)
, (12.26)

where the invariants (12.16) and

J ′3 = τ ′ijτ
′
jkτ

′
ki

/
3 (12.27)

of the linear transformation (12.14) should be inserted into the yield function
(12.20).

12.3 Viscoplastic Behavior of Metals

For example, in the following the rate-dependent deformation of an Fe-0.05
weight percent carbon steel at temperatures in excess of a homologous tem-
perature of 0.5 should be discussed in comparison with suitable experiments.

In order to describe the tensile tests at elevated temperatures, we propose
the following viscoplastic constitutive equation

σ = σ
(
Pε
)

= σ∗ − (σ∗ − σ0) exp
(−Pε

/
Pε∗
)
, (12.28)

where the parameters σ∗, σ0 and Pε∗ have been determined from results of
continuous isothermal tension tests, at a number of constant strain rates, per-
formed by P.J. WRAY of the U.S. Steel Research Laboratory and pulished
by ANAND (1982). The strain-rate and temperature ranges spanned by these
tests were 1.4 · 10−4/s to 2.3 · 10−2/s and 1173 to 1573 K, respectively. In
the temperature range the steel has a fcc crystal structure called austenite.

The three parameters determined by using the MARQUARDT-LEVEN-
BERG algorithm and the experimental data are listed in Table 12.1 and equa-
tion (12.28) is represented in Fig. 12.2.

In order to interprete more physically the results from tensile tests at ele-
vated temperatures ANAND (1985) and BROWN et al. (1989) have introduced
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internal variables characterizing the resistance to plastic flow offered by the
internal microstructural state of the material. They found also the simple phe-
nomenological equation (12.28) sometimes called VOCE equation (1955).

Table 12.1 Parameters in equation (12.28)

Pε̇ [s−1] σ∗ [MPa] σ0 [MPa] Pε∗ [-]
mean
error [%]

0.00014 18.63 8.42 0.0385 1.4

0.0028 29.45 11.87 0.0435 1.05

0.023 42.32 12.83 0.0444 1.96

plastic strain P
ε
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Fig. 12.2 Constitutive law (12.28) in comparison with experimental data
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For engineering applications it is very important to generalize uniaxial
constitutive relations to multiaxial states of stress. The method and some
examples have already been discussed in chapter 8 in more detail. In the
same way the uniaxial relation (12.28) may be generalized to a tensorial
form. Thus, we start from the tensor-valued function

σ′ij = ϕ1
Pε′ij + ϕ2

Pε′′ij , (12.29)

where
Pε′′ij := Pε

′(2)
ij − 1

3
Pε′(2)rr δij ≡

(
Pε

′(2)
ij

)′
(12.30)

is, similar to (12.18), a traceless tensor. The scalar-valued functions ϕ1 and
ϕ2 in (12.29) are determined by applying the tensorial interpolation method
introduced in chapter 8. The results are:

ϕ1 =
4

9

σ
Pε

[
1 +

1

2

Pε
Pε∗

(
1 − σ∗

σ

)]
, (12.31a)

ϕ2 =
4

9

σ
Pε2

[
1 −

Pε
Pε∗

(
1 − σ∗

σ

)]
, (12.31b)

where the second function ϕ2 regulates the tensorial nonlinearity in (12.29).
In the linear case (ϕ2 = 0) equation (12.29) is simplified to the relation

σ′ij =
2

3

σ
Pε

Pε′ij , (12.32)

which is analogous to the plastic part Pε′ = Λ∗σ′ij of the HENCKY equation
(BETTEN, 2001a).
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As has been pointed out in more detail by AVULA (1987), ”the validity of
a model should not be judged by mathematical rationality alone; nor should
it be judged purely by empirical validation at the cost of mathematical and
scientific principles. A combination of rationality and empiricism (logic and
pragmatism) should be used in the validation”.

”Experimental observations and measurements are generally accepted
to constitute the backbone of physical sciences and engineering because
of the physical insight they offer to the scientist for formulating the the-
ory. The concepts that are developed from observations are used as guides
for the design of new experiments, which in turn are used for validation of
the theory. Thus, experiments and theory have a hand-in-hand relationship”
(AVULA, 1987).

However, it must be noted that experimental results can differ greatly
from the reality just like a bad mathematical model (BETTEN, 1973).

In his review article KOLSKY (1978) ”attempts to assess the role of ex-
perimental work in the development of the subject of solid mechanics.” He
is inevitably influenced to a very considerable extend by his own experience
as an experimenter, and most of the examples discussed in his review article
are concerned with experiments carried out by himself and his coworkers.

An excellent treatise, Experimental Foundations of Solid Mechanics ,
which is ”historical in perspective and comprehensive in content”, has been
published by BELL (1973). If one wishes to pursue the detailed development
of solid mechanics as an interaction between theory and experiment, then it
is strongly recommended to consult BELL’s authoritative and monumental
work.

The development of the experimental aspects in creep mechanics has to
a large extend been concerned with the measurement of the stress-strain re-
sponse of real solids and various conditions of loading, or in other words,
the determination of constitutive relations of materials under creep condi-
tions and, furthermore, the development of evolutional equations character-
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izing the damage state during the tertiary creep phase. In contrast with the
theories of elasticity and plasticity, the essential feature of creep is the time-
dependence of the stress-strain relations leading to more experimental ex-
pense and difficulties. The simplest type of time-dependent measurement is
that of extensional creep, i.e., the dependence of the magnitude of the exten-
sional strain as a function of time (and temperature) for which a longitudinal
stress has been applied to a rod specimen. Ideally to carry out this experiment
we need to apply a stress that will be kept constant with time and observe
how the length of the specimen increases during the constant stress has been
applied. If the load is suddenly applied to a specimen, oscillations are set up,
and measurements made before these oscillations have effectively died down
are difficult to interpret. Consequently, the direct measurement of creep be-
havior for very short times is a matter of some difficulty even if measuring
apparatus is available for recording the extensional strains at very short times
after the load has been applied (KOLSKY, 1972).

Further, if the strain is finite the cross section area of the specimen is
less than it was in the unloaded state. Consequently, the true stress is greater
than the nominal (engineering) stress , and as creep progresses the true stress
continues to grow as a result of the decreasing cross section area of the tensile
specimen. Various mechanisms have been proposed to compensate for this
effect, for instance, one possible way proposed by ANDRADE (1914).

In his review article KOLSKY (1978) has discribed and discussed a num-
ber of experimental techniques in the field of solid mechanics.

Worldwide there are a lot of laboratories specialized to carry out dif-
ferent experiments under creep conditions , for instances, experimentally
well-equipped instituts in Cachan (Paris), Grenoble (France), Jülich, Aachen
(Germany), Leicester (England), Lyngby (Denmark), Kiev (Ukraine), Nagoya
(Japan), Paderborn (Germany), Swansea (Walse), Teddington (England), Ur-
bana (Illinois), Warsaw (Poland), etc., etc. Thus, one can image that not only
a lot of theoretical and numerical results but also many experimental meth-
ods and data have been published.

Consequently, only a very short survey of some experimental ressults in
materials behavior under creep conditions should be provided in the follow-
ing, and a lot of excelent experimental investigations cannot be taken into
account.

A large amount of experimental data has been collected on the fracture
properties of a number of materials under both uniaxial and multiaxial states
of stress (COCKS and LECKIE, 1987). In general, these experiments have
been conducted at constant stress, or when the stress has been varied, this
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has been done in a proportional manner. An exception to this are the ex-
periments of TRAMPCZYNSKI et al. (1981) on thin-walled tubes of cop-
per, an aluminium alloy, and a nimonic. In these experiments the axial load
was kept constant while the torque experienced by the tube was cycled be-
tween two prescribed limits. COCKS and LECKIE (1987) considered the case
of constant load and developed constitutive equations that can deal specifi-
cally with this situation. Further, they considered the situation of nonpropor-
tional loading. In particular, they concentrated on development constitutive
equations for copper and an aluminium alloy, which have been extensively
tested by LECKIE and HAYHURST (1974; 1977) over the temperature range
150 − 300◦C.

The aim of COCKS’ and LECKIE’s (1987) investigations was to try to
obtain a structure for creep constitutive equations through an understand-
ing of the microscopic mechanisms responsible for deformation and failure.
This work extends the thermodynamic approach adopted by RICE (1971)
and COCKS and PONTER (1985) to include the effects of damage, which ex-
ist either in the form of microscopic voids or as dislocation networks that aid
the dislocation climb process.

The approach adopted by COCKS and LECKIE (1987) is similar in some
respects to that used by LEMAITRE and CHABOCHE (1990). Their measures
of damage and their kinetic relationships are, however, entirely phenomeno-
logical .

Over the range of stress and temperature used in the experiments of
LECKIE and HAYHURST (1974; 1977) and TRAMPCZYNSKI et al. (1981),
the results of their tests on copper can be explained in terms of COCKS’ and
LECKIE’s (1987) understanding of the void nucleation and growth mecha-
nisms .

In a polycrystalline metal subject to creep at elevated temperature, the
nucleation and growth of voids to coalescence also play a major role in the
failure process (TVERGAARD, 1989). In these circumstances, the voids occur
primarily at the grain boundaries and the growth mechanism differs signif-
icantly from that at ductile fracture discussed by TVERGAARD (1989). In
addition to dislocation creep of the grains, grain boundary diffusion plays a
significant role.

Experimental results show that high temperature cavitation occurs mainly
on grain boundary facets normal to the maximum principle tensile stress di-
rection (ARGON, 1982; COCKS and ASHBY, 1982). Coalescence of these
cavities leads to micro-cracks , and the final intergranular creep fracture oc-
curs as the micro-cracks link up. In cases where diffusion gives the dominant
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contribution to the growth of cavities, the rate of growth is often constrained
by the rate of dislocation creep of the surrounding material, as has been noted
by DYSON (1976).

A set of constitutive relations for creep with grain boundary cavitation
has been proposed by TVERGAARD (1984) as an extension of the works
by RICE (1981) and HUTCHINSON (1983). For the rate of growth of a single
cavity both the contributions of diffusion and dislocation creep are accounted
for, and furthermore, the model incorporates the creep constraint on the rate
of cavity growth .

Further investigations concerning the metallographical analysis of the
microstructure in polycrystalline metals and alloys have been carried out by
EVANS (1984), GOODS and NIX (1978), KRAJCINOVIC (1996), LEMAITRE

(1992), etc. etc., to name but a few.
The best way to provide a quick overview of some important experimen-

tal investigations in creep mechanics may be in form of a table, for instance,
as proposed by BETTEN (2001b), which is devided in three parts concerning
the primary, secondary, and tertiary creep stages.

Table 13.1: Experimental investigations in creep mechanics

References Tests

Primary Creep

ALTENBACH et al.
(1995)

various materials, many examples

ARONS and TIEN

(1980)
hot-pressed silicon nitride, 1477K, tensile
stress 103 Mpa

BROWN et al.(1986) 1/2Cr 1/2Mo 1/4V , tensile tests

BRUELLER (1991) thermoplastic polymers under uniaxial
loading and pure shear (torsion of thin
walled tubes)

GOREV et al. (1979a) titanium alloy VT9, 673K, uniaxial
tension / compression, pure torsion, and
thin-walled tubes

HAYMAN (1981) creep buckling, review

HEEMANN and STEIN

(1991)
rock salt, 293K, uniaxial loading

continued on next page
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Table 13.1: Experimental investigations in creep mechanics

References Tests

IGARI et al. (1991) perforated plates (ASTM B435-77),
1073K and 1223K, creep strain
measurement by Moire method

KOSSOWSKY et al.
(1975)

hot pressed Si3N4, 1533K, tensile stress
69 MPa

KOWALEWSKI (1991) pure copper, 573K, biaxial stress,
duration of primary creep

LEMAITRE and
CHABOCHE (1990)

material parameters for some materials
and alloys at several temperatures

LUCAS and PELLOUX

(1981)
Zircaloy-2, 673K, tension and
compression

NISHITANI (1978) cellulose nitrate, 338K, uniaxial tension,
biaxial compression, and various
three-dimensional stress states

OHASHI et al. (1986) 316 stainless steel, 923K, tension,
compression, pure torsion, and
thin-walled tubes.

RABOTNOV (1969) austenitic steel EI-257, 873K, uniaxial
tension, pure torsion

SKELTON et al. (1977) EN 25, 623K, thick-walled cylinders b/a
= 1.67, internal pressure 325N/mm2

TAIRA et al. (1965) C19, 723K, thick-walled cylinders b/a =
1.986, internal pressure 100N/mm2

Secondary Creep

ALTENBACH et al.
(1995)

various materials, many examples

BLUM and ILSCHNER

(1967)
single crystal NaCl, 1010K, various
tensile stresses

CHENG et al. (1968) polycrystalline pure Ni, at several
temperatures

FETT et al. (1988) hot-pressed silicon nitride, HPSN (2.5%
MgO), 1473K, bending tests

continued on next page
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Table 13.1: Experimental investigations in creep mechanics

References Tests

FINNIE (1966) testing method, bending tests

GOREV et al. (1978) aluminium alloy AK4-1T, 473K, uniaxial
tension, compression, pure torsion, and
thin-walled tubes

GOREV et al. (1979a) titanium alloy OT4, 748K, thin-walled
tubular specimens

IGARI et al. (1991) perforated plates (ASTM B435-77),
1073K and 1223K, creep strain
measurement by Moire method

KOWALEWSKI (1987) austenitic steel, 873K, pure copper, 573K,
thin-walled tubes

LEMAITRE and
CHABOCHE (1990)

NORTON’s Law parameters for some
materials and alloys at several
temperatures

NORMAN and
DURAN (1970)

mixed crystal alloy Fe-Si, at several
temperatures

OYTANA et al. (1982) combined stresses, anisotropic behavior

PINTSCHOVIUS

(1989)
ceramics (HPSN), 1473K, tension and
compression

REED-HILL (1973) activation energy (creep = self diffusion)

RUBANOV (1987) aluminium alloy AK4-1T, 473K,
thin-walled tubes

SAWCZUK and
ANISIMOWICZ (1981)

prestrained materials, induced anisotropy

SÖDERQUIST (1968) Mg-alloy, 513K, plate specimens in two
perpendicular directions

TALTY and DIRKS

(1978)
ceramic metals, bending tests

Tertiary Creep

ALTENBACH et al.
(1995)

various materials, many examples

continued on next page
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Table 13.1: Experimental investigations in creep mechanics

References Tests

BERTRAM and
OLSCHEWSKI (1996)

nickel-based superalloy SRR 99, 1033K,
uniaxial creep in different orientations
and under different loads

CHAN et al. (1997) clean salt from New Mexico, 298K,
triaxial compression

DUFAILLY and
LEMAITRE (1995)

Inconel 718, 823K, servo-hydraulic
tension-compression maschine,
experimental numbers of cycles to failure
in the range of 1 to 102 cycles

DUNNE et al. (1990) 21
4Cr1Mo steel, 823K, and alloy 800H,

1073K, uni-axial creep tests

FRÈRES (1996) notched bar specimens, 973K, X6CrNi
1811, various geometries and creep
stresses

GOREV et al. (1979a) titanium alloy OT4, 748K, thin-walled
tubular specimens

GOREV et al. (1979b) aluminium alloy AK4-1T, 473K, tension,
compression, torsion, specimens taken
from plates in several directions

GRATHWOHL (1984) hot-pressed silicon nitride, 1473K,
bending tests

HAYAKAWA and
MURAKAMI (1997)

spheroidized graphite cast iron JIS FCD
400, a series of experiments on tubular
specimens, experimental validation of a
damage potential

LEMAITRE and
CHABOCHE (1990)

material parameters for some materials
and alloys at several high temperatures

LI and SMITH (1995) nickel-based superalloy SRR 99, 1033K,
fatigue-creep

MILES and MCLEAN

(1977)
metal matrix composites, creep damage,
creep rupture time

continued on next page
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Table 13.1: Experimental investigations in creep mechanics

References Tests

MURAKAMI et al.
(1998)

spheroidized graphite cast iron JIS FCD
400, a series of experiments on tubular
speciments, damage surfaces in
tension-torsion stress space

NICOLINI (1999) incoloy alloy 800HT, 1073K, tensile and
compression tests

OTHMANN et al.
(1993)

316 stainless steel, several elevated
temperatures

QI (1998) single crystal superalloy CMSX-6 and
SRR 99, 1033K, uniaxial creep in
different orientations and different loads

RIDES et al. (1989) copper, 573K, uniaxial tensile tests

RUBANOV (1987) aluminium alloy AK4-1T, 473K, tension,
compression, torsion, specimens taken
from plates in several directions

SHAMMAS (1988) 1CrMo,HAZ, 823K, metallographical
observations, creep damage

TEOH et al. (1992) several polymers, creep rupture
experiments

Only some arbitrary selected experimental investigations under creep
conditions are listed in Table 13.1. This list cannot be complete, and it is
not difficult to expand it to a nearly unlimited length. Thus, many scientists
may please accept my apology for the loss of completeness, if the Table is
very shortened in this context.

Apart from experimental data taken from literature, the author and his
coworkers have also taken results from their own experimental measure-
ments in order to examine the validity of a mathematical model, for instance,
experiments by WANIEWSKI(1984; 1985), BETTEN and WANIEWSKI (1989;
1995), BETTEN et al. (1990) and BETTEN et al. (1995), to name but a few.

In the following some of these experiments should be explained in more
detail.

In order to justify the simplified theory based on the mapped stress tensor
(4.11) a lot of tests were performed by BETTEN and WANIEWSKI (1989) on
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thin-walled tubes (Fig. 13.1) of austenitic, chromium-nickel steel at 873K
and of pure copper at 573K.
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Fig. 13.1 Thin-walled tube loaded under combined tension, torsion and internal pressure

The tubes have been loaded under combined tension, torsion, and internal
pressure. The anisotropy of the material is entirely involved in the fourth-
rank tensor β in (4.11), the components of which are related to the experi-
mental data. From these experiments we could illustrate that the simplified
theory is very useful to describe the creep process under non-proportional
multiaxial load paths, assuming different inclination θ between load direc-
tions and the orthonormal frame of the material.

Plastic prestrain can produce anisotropy in materials which are initial
isotropic. This anisotropy strongly influences the creep behavior of such ma-
terials. Non-linear constitutive equations with two argument tensors for the
secondary creep behavior have been proposed, based upon the representa-
tion theory of tensor functions. The two argument tensors in these constitu-
tive equations are the CAUCHY stress tensor and the appropriately defined
second-rank tensor characterizing the plastic predeformation as a function
of different plastic prestrain paths. A few experimental tests have been car-
ried out on round specimens of INCONEL 617. Firstly, the strain-induced
anisotropy were produced at room temperature by several combinations of
tension and torsion. After that, the specimens have been loaded uniaxially
under creep conditions at 1223K in Helium-gas-atmosphere.
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For rolled sheet-metal, the internal structure generally presents three or-
thogonal planes of symmetry; the macroscopic behavior is thus orthotropic.
The initial orthotropy of the material is modified according to the orienta-
tion of the principal directions of the irreversible deformation with respect
to the rolling direction; this is the phenomenon of anisotropic hardening .
The multiaxial anisotropic creep behavior of rolled sheet-metals is analysed
within an invariant formulation of the secondary creep constitutive equations
by BETTEN et al. (1990), develoved in the framework of the theory of ten-
sor function representation. The biaxial tension method has been improved
in order to determine complex stress state in specimens of orthotropic rolled
sheet-metal. The shape of the specimen, for instance, the biaxial tension cru-
ciform specimen in Fig. 13.2 has been taken into account with respect to the
uniform stress distribution in the central part of the specimen.

Fig. 13.2 Biaxial tension cruciform specimen

Other experiments have been carried out by BETTEN et al. (1995) in
order to predict the influence of creep history, e.g. pre-damage and pre-
loading, on the further creep behavior after changing the loading direction.
From preloading specimens (loading direction x1) smaller specimens were
cut along in several directions θx1 and then loaded under creep conditions
(Fig. 13.3).

The creep tests were performed on flat specimens of austenitic steel
X 8 Cr Ni Mo Nb 16 16 at 953K and 973K as well as on flat specimens of
ferritic steel 13 Cr Mo 4 4 at 803K and 823K.

A continuum damage mechanics model for the dislocation creep re-
sponse associated with the growth of parallel planar mesocracks in initially
isotropic materials has been developed by BETTEN et al. (1998). This model
describes simultaneously different damage development in tension, compres-
sion and torsion, damage-induced anisotropy, as well as different creep prop-
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Fig. 13.3 Loading directions x1 and θx1

erties in tension, compression and torsion. The proposed constitutive equa-
tion for creep and the damage growth equation contain joint invariants of the
stress tensor and the second-order damage tensor constructed by BETTEN

(1982b, 1983). The material parameters required in the proposed equations
have been determined by BETTEN et al. (1998) based upon the following
experiments:

❒ creep behavior in the primary stage of a tinanium alloy VT 9 at 673K
under uniaxial tension, uniaxial compression or pure torsion,

❒ secondary creep behavior of aluminium alloy AK 4-1 T at temperature of
473K again under tension, compression and torsion,

❒ damage accumulation in two materials in the tertiary creep phase, i.e.,
again aluminium alloy AK 4-1 T at 473K and, furthermore, titanium alloy
OT 4 at 748K under proportional and non-proportional loading.

The comparison of the theory with experimental results showed satisfac-
tory agreement.

Extensive experimental research is being carried out by BETTEN, SKLE-
PUS and ZOLOCHEVSKY (1999) concerning the creep behavior of mate-
rials with different damage in tension and compression, namely the in-
corporation of the microstructural creep characteristics of polycrystalline
materials in the damage model and, furthermore, the description of creep
behavior of initially anisotropic materials (BETTEN, ZOLOCHEVSKA and
ZOLOCHEVSKY, 1999).

Some tensile tests have recently carried out by the author and coworkers
on aluminum alloy AA 7075 T 7351 at room temperature, as ilustrated in
Fig. 13.4a,b.
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Fig. 13.4a Tensil test on aluminium alloy at room temperature
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Fig. 13.4b Loading/unloading tests on aluminium alloy at room temperature

If En = (1 − ω)E0 is defined as the effective elasticity modulus of the dam-
aged material, the values of the damage parameter may be derived from mea-
surements of En according to ω = 1 − En/E. The curves in Fig. 13.4c can
be interpreted as the evolution of damage with permanent strains of loading/
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unloading tests. The linear decreasing of the elasticity modulus with damage,
En = (1 − ω)E0, is based upon the assumption of the hypothesis of strain
equivalence, while the relation ω∗ = 1 − (En/E0)

1/2 in Fig. 13.4c can be
derived, if the hypothesis of energy equivalence is assumed (CHOW and LU

(1992); SKRZYPEK and GANCZARSKI (1999); BETTEN (2001a)).
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εplplastic-strain ( % )

Fig. 13.4c Evolution of damage with permanent strains
of loading/unloading tests in Fig. 13.4b

Note that the symbols � � � and + + + in Fig 13.4.c indicate calcu-
lated points from the formula ω = 1 − En/E0 and ω∗ = 1 − (En/E0)

1/2,
respectively, where Ei, i = 0, 1, 2, ..., n, are experimental data taken from
Fig. 13.4b. The damage parameters, ω and ω∗, depend on plastic-strains εpl

also taken from Fig. 13.4b and listed in the following table.

n 0 1 2 3 4 5

εpl [%] 0 0.32 1.27 2.23 3.2 4.17

En/E0 1 0.979 0.957 0.932 0.899 0.888

ω 0 0.021 0.043 0.068 0.0101 0.112

ω∗ 0 0.011 0.022 0.035 0.052 0.058
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The solid curves in Fig. 13.4c are the best approximations to the calcu-
lated points based upon cubic BÉZIER-spline (1972).

Further results concerning the evolution of damage in the tested alu-
minium alloy AA 7075 T 7351 have been achieved by the following MAPLE
program. ⊙

13 1.mws

> with(CurveFitting):

> omega[n]:=1-E[n]/E[0];

ωn := 1 − En

E0
> for i in [1,0.979,0.957,0.932,0.899,0.888]
> do omega[i]:=1-i od;

ω1 := 0
ω0.979 := 0.021
ω0.957 := 0.043
ω0.932 := 0.068
ω0.899 := 0.101
ω0.888 := 0.112

> omega_star[n]:=1-(E[n]/E[0])ˆ(1/2);

omega starn := 1 −
√
En

E0

> for i in [1,0.979,0.957,0.932,0.899,0.888]
> do omega_star[i]:=1-sqrt(i) od;

omega star1 := 0
omega star0.979 := 0.0105557115
omega star0.957 := 0.0217362319
omega star0.932 := 0.0345985291
omega star0.899 := 0.0518438947
omega star0.888 := 0.0576624808

> data:=[0,0], [0.32, 0.021], [1.27, 0.043],
> [2.23,0.068], [3.2,0.101], [4.17,0.112]:

> DATA:=[0,0], [0.32, 0.011], [1.27, 0.022],
> [2.23,0.035], [3.2,0.052], [4.17,0.058]:
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> omega[experiment](epsilon[pl]):=Spline([data],
> epsilon[pl], degree=3):
> omega_star[experiment](epsilon[pl]):=
> Spline([DATA], epsilon[pl], degree=3):

> alias(H=Heaviside, th=thickness):

> p[1]:=plot({0.12,0.12*H(epsilon[pl]-5)},
> epsilon[pl]=0..5.001):

> p[2]:=plot({omega[experiment](epsilon[pl]),
> omega_star[experiment](epsilon[pl])},
> epsilon[pl]=0..5.001, th=2,):

> p[3]:=plot([data],epsilon[pl]=0..5,
> style=point, symbol=diamond, symbolsize=30):

> p[4]:=plot([DATA],epsilon[pl]=0..5,
> style=point, symbol=cross, symbolsize=30):

> plots[display]({seq(p[k],k=1..4)});
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Fig. 13.5 Cubic Splines

> with(stats):
> fit[leastsquare[[x,y],y=a[0]+a[1]*x+a[2]*xˆ2,
> {a[0],a[1],a[2]}]]([[0,0.32,1.27,2.23,3.2,
> 4.17],[0,0.021,0.043,0.068,0.101,0.112]]);

y = 0.003647183500 + 0.03549888036x− 0.002159727141x2
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> f[omega]:=subs(x=epsilon[pl], rhs(%));
> # plastic strains in percent:

fω := 0.003647183500 + 0.03549888036 εpl − 0.002159727141 εpl
2

> fit[leastsquare[[X,Y],Y=a[0]+a[1]*X+a[2]*Xˆ2,
> {a[0],a[1],a[2]}]]([[0,0.32,1.27,2.23,3.2,
> 4.17],[0,0.011,0.022,0.035,0.052,0.058]]);

Y = 0.001981770866 + 0.01805435336X − 0.001046674668X2

> F[omega_star]:=subs(X=epsilon[pl], rhs(%));

> # plastic strains in percent:

Fomega star :=

0.001981770866 + 0.01805435336 εpl − 0.001046674668 εpl
2

> p[5]:=plot({0.12,0.12*H(epsilon[pl]-5)},
> epsilon[pl]=0..5.001

> p[6]:=plot({f[omega],F[omega_star]},
> epsilon[pl]=0..5, 0..0.12,th=2):

> plots[display]({seq(p[k],k=3..6)});
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Fig. 13.6 Quadratic leastsquare curve fitting
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The distance vector between the quadratic leastsquare curve fω and the
experimental data [data] can be determined by using a ”do-loop”:

> with(linalg):
> for i from 1 to 6 do
> v[i]:=subs(epsilon[pl]=data[i][1],
> f[omega])-data[i][2]
> od;

v1 := 0.003647183500
v2 := −0.00621433084
v3 := 0.00224733765
v4 := 0.00406957960
v5 := −0.00587200522
v6 := 0.0021222353

> V:=vector([seq(v[i], i=1..6)]);

V := [0.003647183500, −0.00621433084, 0.00224733765,

0.00406957960, −0.00587200522, 0.0021222353]

The error norm L2 for the distance between the quadratic leastsquare curve
fω and the experimental data [data] is given as:

> L[2][omega]:=(1/sqrt(6))*Norm(V,2)=
> evalf((1/sqrt(6))*norm(V,2));

L2ω :=
1

6

√
6 Norm(V, 2) = 0.004330438545

> L[infinity][omega]:=((1/6)ˆ(1/infinity))*
> Norm(V,infinity)=((1/6)ˆ(1/infinity))*
> norm(V,infinity);

L∞ω := Norm(V, ∞) = 0.00621433084
> L[infinity][omega]*Max(abs(v[1..6]))=
> abs(v[2]);

L∞ω := Max(|V1..6|) = 0.00621433084

In a similar way one can find the L2 error norm for the distance between
the quadratic leastsquare curve Fω∗ and the experimatal data [DATA]:

> for i from 1 to 6 do
> w[i]:=subs(epsilon[pl]=DATA[i][1],
> F[omega_star])-DATA[i][2]
> od;
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w1 := 0.001981770866
w2 := −0.003348015545
w3 := 0.00122261807
w4 := 0.00203797040
w5 := −0.00296224698
w6 := 0.00106790325

> W:=vector([seq(w[i],i=1..6)]);

W := [0.001981770866, −0.003348015545, 0.00122261807,

0.00203797040, −0.00296224698, 0.00106790325]

> L[2][omega_star]:=(1/sqrt(6))*Norm(W,2)=
> evalf((1/sqrt(6))*norm(W,2));

L2omega star :=
1

6

√
6 Norm(W, 2) = 0.002262007467

> L[infinity][omega_star]:=
> ((1/6)ˆ(1/infinity))*Norm(W,infinity)=
> ((1/6)ˆ(1/infinity))*norm(W,infinity);

L∞omega star := Norm(W, ∞) = 0.003348015545

> L[infinity][omega_star]:= Max(abs(w[1..6]))=
> abs(w[2]);

L∞omega star := Max(|w1..6|) = 0.003348015545

The error norms show that the quadratic leastsquare curves are good
approximations to the given experimental data.

At the beginning of the creep process (t = 0 in Fig. 4.1) the response of a
specimen loaded by a constant uniaxial stress σ0 can divided into an elastic
and a plastic part according to (4.1).

For variable stresses σ one can assume, for instance, the stress-strain re-
lations

ε = σ/E + k(σ/E)n or ε = σ/E + k(σ/σF )n

proposed by RAMBERG-OSGOOD (1943) or BETTEN (1989; 2001c), re-
spectively, where E is the modulus of Elasticity, while σF represents the
yield stress.

In Fig. 13.7a the RAMBERG-OSGOOD (1943) stress-strain curve and
a modified relation are compared with the experimental results from Fig.
13.4a. One can see that the RAMBERG-OSGOOD relation does not agree
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Fig. 13.7a Comparison of the RAMBERG-OSGOOD relation and a modfied relation
with the experimental curve from Fig. 13.4a

with the tension test on aluminium alloy. Thus, a modification is neces-
sary (BETTEN, 1989; 2001c). Finally, the hardening of aluminium alloy AA
7075 T 7351 at room temperature can be expressed by the simple formula
σ = σF + kεnpl as illustrated in Fig. 13.7b, where the yield stress σF = 350
MPa, the hardening coefficient = 146.91MPa, and the hardening expo-
nent n = 0.1758 have been determined based upon the experimental re-
sults from Fig. 13.4a by using the nonlinear MARQUARDT-LEVENBERG-
algorithm with MAPLE. This algorithm has also been applied in order to
find out the parameters in Fig. 13.7a.

Instead of the MARQUARD-LEVENBERG-algorithm one can also effec-
tively apply the least squares method in order to determine the hardening
parameters, since the yield stress σF in the relation is known. Thus, we can
transform the nonlinear problem to a linear regression by conssidering the
logarithm of the hardening relation:

ln(σ − σF ) = ln k + n ln εpl

Y = K + nX .
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Fig. 13.7b Hardening parameters k and n for alumimium alloy at room temperature

The function leastsquare of the MAPLE package stats[fit, leastsquare]
fits a curve to the given data using the method of least squares, as shown in
the following MAPLE program.

Hardening of aluminium alloy AA7075 T 7351
⊙

13 2.mws

> data:=[0,350], [0.32, 472], [1.27, 501.2],
> [2.23,517], [3.2, 530], [4.17,541]:
> for i in [472, 501.2, 517, 530, 541] do
> Y[i]:=ln(i-350.) od;

Y472 := 4.804021045
Y501.2 := 5.018603464
Y517 := 5.117993812
Y530 := 5.192956851
Y541 := 5.252273428

> with(stats):
> fit[leastsquare[[x,y], y=K+n*ln(x),
> {K,n}]]([[0.32,1.27,2.23,3.2,4.17],
> [4.804,5.019,5.118,5.193,5.252]]);
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y = 4.991336579 + 0.1722331357 ln(x)

> k:=(exp(4.991336579))*MPa; n:=0.1722;

k := 147.1329469MPa ; n := 0.1722

> sigma(epsilon[pl]):=(350+(k/MPa)*
> epsilon[pl]ˆ(n))*MPa;

σ(εpl ) := (350 + 147.1329469 εpl
0.1722)MPa

> yield_stress:=sigma[F]=350*MPa;

yield stress := σF = 350MPa

> alias(H=Heaviside, th=thickness):

> p[1]:=plot(sigma(epsilon[pl])/MPa,
> epsilon[pl]=0..5, 350..600, th=2):

> p[2]:=plot([data],epsilon[pl]=0..5.,
> style=point,symbol=cross, symbolsize=30):

> p[3]:=plot({600,600*H(epsilon[pl]-5)},
> epsilon[pl]=0..5.001, 350..600):

> plots[display]({seq(p[k],k=1..3)});
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Fig. 13.8a Hardening σ(εp
) of aluminium alloy

distance vector between the leastsquare approximation and experimental
data:
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> sigma[dimensionless]:=1+(k/350/MPa)*
> epsilon[pl]ˆ(0.1722); # plast. strains in %

σdimensionless := 1 + 0.4203798483 εpl
0.1722

> DATA:=[0,1],[0.32,472./350],
> [1.27,501.2/350],[2.23,517./350],
> [3.2, 530./350],[4.17,541./350]:

> p[4]:=plot(sigma[dimensionless],
> epsilon[pl]=0..5, 1..1.6,th=2):

> p[5]:=plot([DATA],epsilon[pl]=0..5.,
> style=point,symbol=cross, symbolsize=30):

> p[6]:=plot({1.6,1.6*H(epsilon[pl]-5)},
> epsilon[pl]=0..5.01,1..1.6,):

> plots[display]({seq(p[k],k=4..6)});
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Fig. 13.8b Hardening σdimensionless of aluminium alloy

> for i from 1 to 6 do v[i]:=(subs(
> epsilon[pl]=data[i][1],
> sigma[dimensionless])-(1/350)*data[i][2])
> od;
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v1 := 0.
v2 := −0.003086811
v3 := 0.006043146
v4 := 0.005493447
v5 := −0.000681338
v6 := −0.008151349

> with(linalg):

> V:=vector([seq(v[i], i=1..6)]); # dist. vector

V := [0., −0.003086811, 0.006043146, 0.005493447, −0.000681338,

−0.008151349]

L-two error norm:

> L[2]:=(1/sqrt(number_of_points))*Norm(V,2)=
> evalf((1/sqrt(6))*norm(V,2));

L2 :=
Norm(V, 2)√

number of points
= 0.004884238045

> L[infinity]:=
> (1/(number_of_points)ˆ(1/infinity))*
> Norm(V,infinity)=(1/(number_of_points)ˆ(1/
> infinity))*norm(V,infinity);

L∞ := Norm(V, ∞) = 0.008151349

> L[infinity]:=Max(abs(v[1..6]))=abs(v[6]);

L∞ := Max(|v1..6|) = 0.008151349

> L[p]:=(1/(number_of_points)ˆ(1/p))*Norm(V,p);

Lp :=
Norm(V, p)

number of points
( 1

p
)

> for i from 1 by 5 to 31 do
> N[i]:=norm(V,i) od;
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N1 := 0.023456091
N6 := 0.008474448012
N11 := 0.008187749433
N16 := 0.008156489928
N21 := 0.008152169845
N26 := 0.008151490898
N31 := 0.008151374877

> for i from 1 by 1000 to 6001 do
> L[i]:=(1/(6.)ˆ(1/i))*norm(V,i) od;

L1 := 0.003909348501
L1001 := 0.008136771388
L2001 := 0.008144053288
L3001 := 0.008146483659
L4001 := 0.008147699417
L5001 := 0.008148429060
L6001 := 0.008148915562

The error norms show that we have determined a suitable approximation
to the given experimental data. In the following part of this MAPLE-program
the above leastsquare approximation should be compared with the hardening
curve in Fig. 13.5b based upon the nonlinear MARQUARDT-LEVENBERG-
algorithm:

The relative difference between the two approaches is defined as:
> rel_difference:=1-sigma[LEASTSQUARE]/
> sigma[MARQUARDT_LEVENBERG];

rel difference := 1 − σLEASTSQUARE

σMARQUARDT LEVENBERG

> alias(x=epsilon[pl]): # epsilon[pl] in [%]
> Delta[rel](x):=1-(147.1329469*xˆ0.1722)/
> (146.9071*xˆ0.1758);

Δrel (x) := 1 − 1.001537345

x0.0036

> Delta[rel][mean_value]:=(1/5)*
> Int(abs(Delta[rel]),x=0..5)=(1/5)*int(abs
> (Delta[rel](x)),x=0.00000000001..5);

Δrelmean value :=
1

5

∫ 5

0
|Δrel | dx = 0.002865461116

> zero_of_Delta:=
> fsolve(1.001537345-xˆ0.0036=0,x);
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zero of Delta := 1.532211872
> difference:=(sigma[MARQUARDT_LEVENBERG]-
> sigma[LEASTSQUARE])/sigma[yield];
> DELTA(x):=(146.9071*xˆ0.1758-
> 147.1329469*xˆ0.1722)/350;

difference :=
σMARQUARDT LEVENBERG − σLEASTSQUARE

σyield

DELTA(x) := 0.4197345714x0.1758 − 0.4203798483x0.1722

> plot({0.0035,0.0035*H(x-5),abs(DELTA(x))},
> x=0..5.001,title="difference DELTA(x)");
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Fig. 13.9 Difference DELTA(x)

error norms:
> L[p]:=
> ((1/5)*Int((abs(DELTA))ˆp,x=0..5))ˆ(1/p);

Lp := (
1

5

∫ 5

0
|DELTA|p dx)( 1

p
)

> for i from 1 to 5 do L[i]:=((1/5)*
> (int((-DELTA(x))ˆi,x=0..1.532211872) +
> int((DELTA(x))ˆi,x=1.532211872..5)))ˆ(1/i)

> od;
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L1 := 0.001288306839
L2 := 0.001487235818
L3 := 0.001629074679
L4 := 0.001741275711
L5 := 0.001836670740

These error norms illustrate that in the present case the least squares
method furnishes comparable approximations with the nonlinear MAR-
QUARDT-LEVENBERG-algorithm. However, the approximations obtained in
this manner are not the least squares approaches for the original problem,
and these approximations can in some cases significantly differ from the
least squares approximations to the original problem.



14 Creep Curve

As has been outlined in Chapter 13 in more detail creep tests are carried
out on specimens loaded, e.g., in tension or compression, usually at constant
load, inside a furnace which is maintained at a constant temperature. The
extension of the specimen is measured as a function of time.

A typical creep curve for metals, polymers, and ceramics exsists of three
parts and is schematically shown in Fig. 4.1 characterizing the three creep
stages called transient creep, steady creep, and accelerating creep.

In the following MAPLE worksheet an exponential description of a creep
curve has been represented : ⊙

14 1.mws

Exponential Description
> restart:
> epsilon[creep](t):=A[11]*(1-exp(-A[12]*
> sqrt(t)))+A[21]*t+A[31]*(exp(A[32]*tˆn)-1);

εcreep(t) := A11 (1 − e(−A12

√
t)) +A21 t+A31 (e(A32 tn) − 1)

> Digits:=5:
> epsilon[c](t):=subs({A[11]=0.4,A[12]=5,
> A[31]=0.02,A[32]=3, n=10},%%);

εc(t) := 0.38 − 0.4 e(−5
√

t) +A21 t+ 0.02 e(3 t10)

> epsilon[c](0):=evalf(subs(t=0,%));

εc(0) := 0.

> epsilon[c](1):=evalf(subs(t=1,%%));

εc(1) := 0.77902 +A21

> A[21]:=solve(epsilon[c](1)=1,A[21]);

A21 := 0.22098

> alias(H=Heaviside,th=thickness,co=color):

> plot1:=plot(epsilon[c](t),t=0..1,th=2):
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> plot2:=plot({epsilon[c](1),epsilon[c](1)
> *H(t-1)}, t=0..1.001):

> plots[display]({plot1,plot2});
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t

Fig. 14.1 Creep curve, exponential discription

Time Derivative

> time_derivative(t):=diff(epsilon[c](t),t);

time derivative(t) :=
1.0000 e(−5

√
t)

√
t

+A21 + 0.60 t9 e(3 t10)

> time_derivative(0):=infinity;

time derivative(0) := ∞
> time_derivative(1):=evalf(subs({A[21]=0.22098,
> t=1},%%));

time derivative(1) := 12.280
> plot3:=plot(time_derivative(t),
> t=0..1,0..2,th=2,co=black):

> plot4:=plot({2,2*H(t-1)},t=0..1.001,co=black):
> plots[display]({plot3,plot4});
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Fig. 14.2 Time derivative of a creep curve

> plots[display]({plot1,plot2,plot3,plot4});
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Fig. 14.3 Creep curve, exponential discription and time derivative
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Creep Parameters
The creep curve exsists of three parts:

> restart:
> parameters_of_the_primary_term:=A[11], A[12];

parameters of the primary term := A11, A12
> parameters_of_the_scondary_term:=A[21]=
> K*sigmaˆm; # NORTON-BAILEY

parameters of the scondary term := A21 = K σm

> parameters_of_the_tertiary_term:=A[31],
> A[32],n;

parameters of the tertiary term := A31, A32, n

For the primary creep the sqrt(t)-law has been assumed, the justification
of which has been analysed in Chapter 11.

The exponent n in the tertiary term regulates the tangent of the creep
curve at the creep rupture time. The creep parameters can be determined by
suitable experiments, some of which are discussed in Chapter 13.

Creep Rate and Acceleration

> restart: Digits:=5:
> epsilon[creep](t):=A[11]*(1-exp(-A[12]*
> sqrt(t)))+A[21]*t+A[31]*(exp(A[32]*tˆn)-1);

εcreep(t) := A11 (1 − e(−A12

√
t)) +A21 t+A31 (e(A32 tn) − 1)

> creep_rate(t):=diff(epsilon[creep](t),t);

creep rate(t) :=
1

2

A11A12 e
(−A12

√
t)

√
t

+A21 +
A31A32 t

n n e(A32 tn)

t
> creep_rate(0):=infinity;

creep rate(0) := ∞
> creep_rate(1):=subs(t=1,%%);

creep rate(1) :=
1

2
A11A12 e

(−A12) +A21 +A31A32 n e
A32

> creep_rate(1):=evalf(subs({A[11]=0.4,A[12]=5,
> A[21]=0.22098,A[31]=0.02,A[32]=3,n=10},%%));

creep rate(1) := 12.280
> Creep_rate(t):=evalf(subs({A[11]=0.4,A[12]=5,
> A[21]=0.22098,A[31]=0.02,A[32]=3,n=10},
> creep_rate(t)));

Creep rate(t) :=
1.0000 e(−5.

√
t)

√
t

+ 0.22098 + 0.60 t9 e(3. t10)
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> acceleration(t):=diff(epsilon[creep](t),t$2);

acceleration(t) := −1

4

A11A12 e
(−A12

√
t)

t(3/2)
−

1

4

A11A12
2 e(−A12

√
t)

t
+
A31A32 t

n n2 e(A32 tn)

t2
−

A31A32 t
n n e(A32 tn)

t2
+
A31A32

2 (tn)2 n2 e(A32 tn)

t2

> Acceleration(t):=evalf(subs({A[11]=0.4,A[12]=5,
> A[31]=0.02,A[32]=3,n=10},%),3);

Acceleration(t) := −0.50000 e(−5.
√

t)

t(3/2)
− 2.5000 e(−5.

√
t)

t

+5.40 t8 e(3. t10) + 18.00 t18 e(3. t10)

> alias(H=Heaviside, th=thickness, co=color):
> plot1:=plot({Creep_rate(t),Acceleration(t)},
> t=0..1,-10..10,co=black,th=2):
> plot2:=plot({10,-10,10*H(t-1),-10*H(t-1)},
> t=0..1.001,co=black):

> plots[display]({plot1,plot2});
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Fig. 14.4 Creep rate and acceleration
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A similar worksheet has been submitted to the Maplesoft Application
Center (www.maplesoft.com) as an Application Demonstration by BETTEN

(2007).
Furthermore, some other worsheets have also been submitted to Maple-

soft in several categories, e.g., Mathematics: Engineering-Mathematics, Dif-
ferential Geometry, Linear Algebra; Engineering: Mechanics, Engineering-
Mathematics.



A The HEAVISIDE and DIRAC Functions

The HEAVISIDE unit function , also called the unit step function, is defined
according to

H(t− a) :=

{
1 for t ≥ a,
0 for t < a,

or H(t− a) :

⎧⎪⎨
⎪⎩

1 for t > a,
1
2 for t = a,

0 for t < a,

(A.1a,b)

where t is the time variable and t = a denotes a time at which a step change
has been occured (Fig.A.1).
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Fig. A.1 HEAVISIDE functions (A.1a,b)

A step change in shear stress from τ = 0 to τ = τ0 at t = a may be
expressed by

τ(t) = τ0H(t− a) . (A.2)

Another step function is shown in Fig. 11.1, which can be represented as
follows

σ(t) = σ0H(t) +Δσ1H(t−Θ1) +Δσ2H(t−Θ2) + . . . (A.3a)

σ(t) = σ0H(t) +
n∑

i=1

ΔσiH(t−Θi) , (A.3b)
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if we use the HEAVISIDE function H(t− a) defined in (A.1).
Similarly to (A.3) and Fig.11.1 the step function

h(t) = H(t− a) + 2H(t− 2a) + 3H(t− 4a) (A.4)

is drawn in Fig. A.2.
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Fig. A.2 Several steps

Adding and subtracting unit step functions at times t equal to a, 2a, 3a, ...
we arrive at the square wave

h(t) = H(t) + 2
N∑

n=1

(−1)nH(t− na) (A.5)

illustrated in Fig. A.3.
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Fig. A.3 Square wave (A.5)
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The unit step function (A.1) is defined in MAPLE under the name Heavi-
side. For example, the influence of the HEAVISIDE function on sin(t) and
cos2(t) is illustrated in Fig. A.4a. ⊙

A 1.mws

> alias(H=Heaviside,th=thickness):
> plot1:=plot(H(t-1),t=0..Pi,th=3):
> plot2:=plot(sin(t)*H(t-1), t=0..Pi, th=3):
> plot3:=plot((cos(t))ˆ2*H(t-1),
> t=0..Pi,th=3):
> plots[display]({plot1,plot2,plot3});
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2H(t−1)cos  (t)
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H(t−1)sin(t)

t

Fig. A.4a Influence of the HEAVISIDE function on sin(t) and cos2(t)

Another example is illustrated in Fig. A.4b, where the vertical lines have
been produced by HEAVISIDE functions. ⊙

A 2.mws

> alias(H=Heaviside,th=thickness):
> plot1:=plot({-1,1,2,3,4,5}, X=0..5,-1..5,
> scaling=constrained, color=black,th=2):
> plot2:=plot({5*H(x-1)+5*H(x-1.001),
> -H(x-1)-H(x-1.001), 5*H(x-2)+5*H(x-2.001),
> 2+H(x-3.5)+3*H(x-3.501),5*H(x-5)+
> 5*H(x-5),-H(x-5)-H(x-5.001)},
> x=0..5.00001, -1..5, color=black, th=3):

> plots[display]({plot1,plot2});



288 A The HEAVISIDE and DIRAC Functions
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Fig. A.4b Vertical lines generated by HEAVISIDE functions

In some Figures, for instance in Fig. B.1, HEAVISIDE functions have been
used in order to generate vertical lines.

Besides the HEAVISIDE unit function (A.1) the DIRAC delta function,
also called the unit impulse function, plays a central role in creep mechanics,
for instance in (11.11b), and is defined according to

δ(t− a) :=

{
0 for t �= a,
∞ for t = a .

(A.6)

This function has the properties

∞∫
0

δ(t− a)dt = 1 (A.7)

and
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∞∫
0

δ(t− a) f(t)dt = f(a) (A.8)

for every continuous function f(t) and also valid for a = 0.
The property (A.7) of the delta function can geometrically interpreted as

illustrated in Fig. A.5.
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Fig. A.5 DIRAC delta function with ε > 0

In Fig. A.5 the ”modified”delta function

δε(t− a) :=

{
1/ε for a < t < a+ ε

0 for t < a and t > a+ ε
(A.9)

is represented,which tends to (A.6) as ε tends to zero, where the hatched area
in Fig. A.5 is always unity. Hence, the property (A.7) is valid.

If any continuous function f(t) is multiplied by the DIRAC delta function
δ(t − a) the product vanishes everywhere except at t = a, while the value
f(a) is independent of t and can therefore be written outside the integral.
Thus, considering (A.7), we arrive at the result (A.8), which is also applied
in the collocation method according to

L∫
0

δ(x− xi)R(x)dx = R(Xi)
!
= 0 , (A.10)

where R(x) is the residuum of an approximation, for instanceΔΦ− g(x) =
R(x) �= 0, and Xi is an optimal selected collocation point. The integral in
(A.10) is setting over a domain L considered.
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The collocation method can be shown to be a special case of the weighted-
residual method

L∫
0

Wi(x)R(x)dx
!
= 0 , (A.11)

whereWi(x) are weight functions (BETTEN, 2004).
A relation between the unit step function (A.1) and the unit impulse func-

tion (A.6) is given by

δ(t− a) =
d

dt
H(t− a) ≡ Ḣ(t− a) (A.12)

and may be deduced in the following way. The modified delta function (A.9)
can be represented by the HEAVISIDE function (A.1) as

δε(t− a) =
1

ε
[H(t− a) −H(t− a− ε)] (A.13a)

or for a = 0 according to

δε(t) =
1

ε
[H(t) −H(t− ε)] . (A.13b)

Then, we immediately find the DIRAC delta function by forming the follow-
ing limit

δ(t) = lim
ε→0

δε(t) = lim
ε→0

H(t) −H(t− ε)
ε

= Ḣ(t) (A.14)

in accordance with (A.12), that is, the DIRAC delta function is the deriva-
tion of the HEAVISIDE function. This relation is illustrated in Fig. A.6a,b by
comparing Fig. A.1 with Fig. A.5. ⊙

A 3.mws

> with(stats):

> with(statevalf):

> H:=statevalf[pdf,normald[1,0.2]]:

> delta:=statevalf[cdf,normald[1,0.2]]:

> plot({H(t),delta(t)},t=0..2,thickness=3);
> H:=statevalf[pdf,normald[1,0.03]]:

> delta:=statevalf[cdf,normald[1,0.03]]:
> plot({H(t),delta(t)},
> t=0..2,0..2,thickness=3);
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Fig. A.6a Relation between the modified HEAVISIDE function (A.16) and the modified
DIRAC function (A.15); parameters: a = 1, σ = 0.2
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Fig. A.6b Relation between the modified HEAVISIDE function (A.16) and the modified
DIRAC function (A.15); parameters: a = 1, σ = 0.03
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As an example, the normal distribution (GAUSS distribution)

δ(t− a;σ) :=
1

σ
√

2π
exp

[
−1

2

(
t− a
σ

)2
]

−∞ < t <∞,
σ > 0

(A.15)

is considered in Fig. A.6 as a modified DIRAC delta function, and is, ac-
cording to (A.14), the derivative of the modified (continuous) HEAVISIDE

function

H(t− a;σ) :=
1

σ
√

2π

t∫
−∞

exp

[
−1

2

(
x− a
σ

)2
]
dx . (A.16)

The parameter σ in (A.16) regulates the continuous transition of the HEAVI-
SIDE function at the position t = a of the step.

The GAUSS distribution (A.15) has the property (A.7) or

∞∫
−∞

δ(t− a;σ)dt = 1 , (A.17)

as can be shown by utilizing the MAPLE software, hence, it is a suitable
impulse function. ⊙

A 4.mws
> delta(t):=(1/sigma/sqrt(2*Pi))*
> exp((-1/2)*((t-a)/sigma)ˆ2);

δ(t) :=
1

2

√
2 e(−

(t−a)2

2 σ2 )

σ
√
π

> Int(delta,t=0..infinity)=int(subs(a=1,
> sigma=1./10, delta(t)),t=0..infinity);∫ ∞

0
δ dt = 1.000000000

In the following, let us discuss the modified (continuous) HEAVISIDE

function

H(t− a;D) :=
1

π
arctan

2Dt

a2 − t2 , (A.18)

where the parameter D ≥ 0 regulates the continuous transition at the posi-
tion t = a of the step, (Fig. A.7). For D = 0, we arrive at the ”original”
HEAVISIDE function (Fig. A.7).
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Remark: The formula (A.18) remembers us at the phase difference ϕ between
the impressed force or impressed support movement and the resulting steady-state
vibration of a damped system. In that case the parameter D is the damping factor,
while the variable t is interpreted as the frequency ratio Ω/ω. ⊙

A 5.mws> y(t):=2*D*t; x(t):=1-tˆ2;

y(t) := 2 D t

x(t) := 1 − t2

> H(t):=(1/Pi)*arctan(y(t),x(t));

H(t) :=
arctan(2 D t, 1 − t2)

π

> plot1:=plot(subs(D=infinity,H(t)),
> t=0..3,0..1):
> plot2:=plot(subs(D=0.5,H(t)),t=0..3,0..1):
> plot3:=plot(subs(D=0.1,H(t)),t=0..3,0..1):
> plot4:=plot(subs(D=0.05,H(t)),t=0..3,0..1):
> plot5:=plot(subs(D=0,H(t)),t=0..3,0..1):
> plots[display]({plot1,plot2,plot3,
> plot4,plot5});
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Fig. A.7 Modified HEAVISIDE function (A.18)
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From (A.18) we deduce the corresponding DIRAC delta functions:

δ(t− a;D) := Ḣ(t− a;D) =
2D

π

a2 + t2

(a2 − t2)2 + 4D2t2
, (A.19)

which are graphically represented in Fig. A.8 as MAPLE-plot.⊙
A 6.mws

> delta(t):=(2*D/Pi)*(1+tˆ2)/
> ((1-tˆ2)ˆ2+4*(Dˆ2)*tˆ2);

δ(t) :=
2 D (1 + t2)

π ((1 − t2)2 + 4 D2 t2)
> plot1:=plot(subs(D=0.5,delta(t)),t=0..3):
> plot2:=plot(subs(D=0.1,delta(t)),t=0..3):
> plot3:=plot(subs(D=0.01,delta(t)),
> t=0..3,0..2):

> plots[display]({plot1,plot2,plot3});
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Fig. A.8 Modified DIRAC delta functions (A.19)

As we can see in the MAPLE output (Fig. A.8), the ”modified” DIRAC

delta functions (A.19) have the property (A.7) for all D > 0. For D = 0 the
delta function (A.19) is a vertical line at t = a = 1 with an area identi-
cal to zero in contrast to the GAUSS distribution (A.15), which satisfies the
condition (A.7) also for σ identical to zero.



B The LAPLACE Transformation

The LAPLACE transformation is an elegant procedure, which can be used,
for instance, to solve ordinary and partial differential equations or integral
equations. It often yields results more readily than other techniques. Es-
pecially in the theory of viscoelasticity (Chapter 11), operational calculus,
electricity, etc., many authors utilize this convenient tool.

The general two-sided LAPLACE transformation is defined as

F (s) :=

∞∫
−∞

f(t)e−stdt , (B.1)

where the function f(t) of t is mapped into a function F (s) of the trans-
formed variable s, which may be real or complex. In the following, the lower
limit of the integral in (B.1) is fixed at t = 0, i.e., the one-side (right side)
LAPLACE transformation

L{f(t)} ≡ f̂(s) :=

∞∫
0

f(t)e−stdt (B.2)

is taken into consideration (Chapter 11).
A function f(t) is transformable according to (B.2), if it is piecewise

continuous with at most exponential growth, i.e.,

| f(t) |≤Meat or | e−atf(t) |≤M with M,a ∈ IR . (B.3)

Then, the LAPLACE transform L{f(t)} exists for all s > a, and the function
f(t) is of exponential order a.

Proof:

| L{f(x)} |≤
∞∫
0

| f(t) | e−stdt ≤M
∞∫
0

e−(s−a)tdt =
M

s− a . (B.4)
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Since M/(s − a) has a finite value for s > a, the integral in (B.2) is
bounded. This establishes the absolute convergence of the integral defining
L{f(t)}. The convergence is uniform, if s ≥ α0 > a, where α0 is fixed. If
s is complex, the above integral converges absolutely, provided the real part
Re(s) ≥ α0 > a.

Due to the theorem (B.3) the class of admissible functions f(t), for which
the LAPLACE transform (B.2) exists, is large enough for practical applica-
tions. A lot of LAPLACE transform pairs, f̂(s) ⇐⇒ f(t), is listed in a table
at the end of this appendix. Further examples can be found in the MAPLE

program. The exponential function exp(at) is admissible as has been shown
in (B.4) for M = 1. Any periodic function that is piecewise continuous on
its periodic is transformable. Polynomials are also admissible.

Let f(t) = exp(at) with a = iωt. Then, the LAPLACE transformation
(B.2) yields

L{eiωt} = L{cosωt+ i sinωt} =
1

s− iω ≡ s+ iω

s2 + ω2
. (B.5)

Since the operator L{} is linear,

L{αf(t) + βg(t)} = αL{f(t)} + βL{g(t)} , (B.6)

we arrive from (B.5) at the decomposition

L{cosωt} + iL{sinωt} =
s

s2 + ω2
+ i

ω

s2 + ω2
, (B.7)

hence:

L{cosωt} =
s

s2 + ω2
and L{sinωt} =

ω

s2 + ω2
(B.8a,b)

for all real s and ω.
The linearity (B.6) immediately follows from the definiton (B.2). Differ-

entiation of the transforms (B.8a,b) with respect to ω yields

L{t sinωt} =
2sω

(s2 + ω2)2
and L{t cosωt} =

s2 − ω2

(s2 + ω2)2
. (B.9a,b)

Another example is f(t) = tp. Introducing the substitution st ≡ x, we
obtain the following LAPLACE transform:

L{tp} ≡
∞∫
0

tpe−stdt =

∞∫
0

(x
s

)p
e−x dx

s
=

1

sp+1

∞∫
0

xpe−xdx , (B.10)
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where the latter integral is convergent for p > −1 and represents the GAMMA

function (11.33) defined as

Γ (p+ 1) :=

∞∫
0

xpe−xdx with p > −1 (B.11a)

or

Γ (r) :=

∞∫
0

xr−1e−xdx with r > 0 . (B.11b)

Partial integration of the latter integral yields

Γ (r) :=
1

r

∞∫
0

xre−xdx ≡ 1

r
Γ (r + 1). (B.12)

The GAMMA function (B.11b) is drawn with MAPLE in Fig. B.1, where
some integer points are marked. ⊙

B 1.mws
> alias(H=Heaviside, th=thickness):
> plot1:=plot({6,6*H(r-4)},r=0..4.001):
> plot2:=plot(GAMMA(r),r=0..4,0..6,th=3):

> plots[display]({plot1, plot2});
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Fig. B.1 GAMMA function
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For r = 1 we obtain from (B.11b)

Γ (1) =

∞∫
0

e−xdx = 1

and then by considering (B.12) for the following integers:

Γ (2) = 1 · Γ (1) ≡ 1!, Γ (3) = 2 · Γ (2) ≡ 2!, Γ (4) = 3 · Γ (3) ≡ 3!,

and finally

Γ (n+ 1) = n! , (B.13)

where n ≥ 0 is an integer. Because of this connection with n! the function
Γ (n+ 1) may be called the factorial function.

Comparing (B.11a) or (B.13) with (B.10), we obtain the following alter-
native LAPLACE transforms

L{tp} =
Γ (p+ 1)

sp+1
or L{tn} =

n!

sn+1
, (B.14a,b)

where s > 0 and p > −1, while n ≥ 0 is an integer.
For p = −1 the condition (B.3) is not satisfied, and for the function

f(t) = 1/t the LAPLACE transform L{1/t} does not exist, since the inte-
gral (B.2) is divergent in that case. However, there may be transformable
functions, which do not satisfy the criterion (B.3). Thus, the condition is suf-
ficient, but not necessary.

The essential advantage and usefulness of the LAPLACE transformation is
that it is necessary to know only some simple rules for solving practical prob-
lems. Therefore, the most important properties and rules of the LAPLACE

transformation should be collected in the following.

B.1 Linearity

The linearity according to (B.6) of the operator L{} immediately follows
from the definition (B.2) and has been utilized in order to find the LAPLACE

transforms (B.8a,b), for instance. Another example is:

L{sinhωt} =
1

2
L{eωt} − 1

2
L{e−ωt} =

ω

s2 − ω2
, (B.15)

where s > ω.
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B.2 Inverse LAPLACE Transforms

The inverse LAPLACE transform of (B.2) is written in the form

f(t) = L−1{f̂(s)} (B.16)

and is unique, if f(t) satisfies the condition (B.3).
Example:

f̂(s) =
3 + 2s

2 − 3s+ s2
=

−5

s− 1
+

7

s− 2
= L{−5et + 7e2t} . (B.17)

Its inverse form according to (B.16) yields

f(t) = −5et + 7e2t . (B.18)

Note, we have used the partial fraction expansion and the linearity (B.6) and
the transform L{eωt} = 1/(s− ω) in the decomposition (B.17).

B.3 Similarity Rule

The similarity rule

L{f(ωt)} =
1

ω
f̂

(
1

ω
s

)
with ω > 0 (B.19)

can be proofed by substituting ϕ = ωt in (B.2). The rule (B.19) is also valid
for ω = 1/α.

B.4 Shift Rule

The shift rule

L{f(t− a)} = e−asf̂(s) (B.20a)

or

L{f(t+ a)} = eas[f̂(s) −
a∫

0

f(t)dt] (B.20b)

with a > 0 can be proofed by substituting τ = t − a or τ = t + a,
respectively, in (B.2).
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B.5 Damping Rule

The damping rule

L{f(t)e−at} = f̂(s+ a) (B.21a)

immediately follows from (B.2):

L{f(t)e−at} :=

∞∫
0

f(t)e−(s+a)tdt ≡ f̂(s+ a) , (B.21b)

where the parameter a is real and positiv.

B.6 LAPLACE Transforms of Derivatives

In order to utilize the LAPLACE transformation for solving ordinary differ-
ential equations we need the transform of the derivative f (n)(t), which is
given by the rule

L{f (n)(t)} = snL{f(t)} − sn−1f(0+) − sn−2f ′(0+)

−sn−3f ′′(0+) − . . .− f (n−1)(0+)
. (B.22)

It is assumed that f (n)(t) is admissible in the sense of (B.3) and that all the
lower derivatives are continuous for t > 0. The values at 0+ are limits as
t→ 0 from the right.

The derivative rule (B.22) can be deduced by induction in the following
way.

Assuming that f(t) is a continuous function which an admissible deriva-
tive f ′(t), integration by parts yields:

L{f ′(t)} =

∞∫
0

f ′(t)e−stdt =
∣∣f(t)e−st

∣∣∞
0

+ s

∞∫
0

f(t)e−stdt ,

where the upper limit of the first term on the right-hand side vanishes, while
the lower limit is equal to f(0+). Thus, we obtain the following fundamental
result:

L{f ′(t)} = sL{f(t)} − f(0+) . (B.23)
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Substituting f(t) ≡ g′(t), we arrive from (B.23) at the following relations:

L{g′′(t)} = s L {g′(t)} − g′(0+)

L {g′(t)} = sL{g(t)} − g(0+)

}
⇒

L{g′′(t)} = s2L{g(t)} − sg(0+) − g′(0+) . (B.24)

Continuing this process, we finally arrive at the derivative rule (B.22).
As an example, let us solve the initial-value problem

ẍ+ 6ẋ+ 5x = 0 with x(0) = 1 and ẋ(0) = −2. (B.25)

Taking into consideration (B.23) and (B.24), the differential equation (B.25)
with the initial values transforms according to

(s2L{x(t)} − s+ 2) + 6(sL{x(t)} − 1) + 5L{x(t)} = 0 ,

hence

L{x(t)} =
s+ 4

s2 + 6s+ 5
=

s+ 4

(s+ 1)(s+ 5)
=

3

4(s+ 1)
+

1

4(s+ 5)

and, similar to (B.17), the inverse transform, taken from the table of trans-
forms, is the solution

x(t) =
3

4
e−t +

1

4
e−5t (B.26)

of the initial-value problem (B.25).

B.7 Differentiation of LAPLACE Transforms

The differentiation of the transform f̂(s) with respect to the transformed
variable s yields

f̂ (n)(s) =
d(n)f̂(s)

dsn
= (−1)nL{tnf(t)} . (B.27)

This rule can be obtained as follows. The first derivative of (B.2) with respect
to s is:

df̂(s)

ds
= −

∞∫
0

tf(t)e−stdt ≡ −L{tf(t)} ,
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the second one is:

d2f̂(s)

ds2
= −

∞∫
0

t2f(t)e−stdt ≡ +L{t2f(t)} .

Following this way, we finally arrive at the rule (B.27).
For f(t) = cosωt we obtain from (B.27) by considering (B.8a) the fol-

lowing result

L{t cosωt} = − d

ds
L{cosωt} =

s2 − ω2

(s2 + ω2)2
,

which is identical to (B.9b).
Another example is f(t) = eωt with L{eωt} = 1/(s− ω), hence

L{t2eωt} = +
d2

ds2
L{eωt} =

2

(s− ω)3
.

Continuing this procedure, we finally obtain the following result:

L{tneωt} =
n!

(s− ω)n+1
. (B.28)

B.8 LAPLACE Transform of an Integral

The LAPLACE transform of an integral,

L

⎧⎨
⎩

t∫
0

f(τ)dτ

⎫⎬
⎭ :=

∞∫
0

e−st

⎡
⎣ t∫

0

f(τ)dτ

⎤
⎦ dt =

1

s
L{f(t)} , (B.29)

can be obtained in the following way. Bearing in mind that

d

dt

t∫
0

f(τ)dτ = f(t)

and integrating by parts, we arrive at

∞∫
0

e−st

⎡
⎣ t∫

0

f(τ)dτ

⎤
⎦ dt = −1

s
e−st

t∫
0

f(τ)dτ

∣∣∣∣∞
t=0

+
1

s

∞∫
0

e−stf(t)dt ,
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where the first term on the right-hand side is zero at both limits, t = 0 and

t = ∞, if the integral
∞∫
0

f(τ)dτ converges. Thus, the integration rule (B.29)

has been proofed.
As an example, we find

L

⎧⎨
⎩

t∫
0

sinωτdτ

⎫⎬
⎭ =

1

s
L{sinωt} ≡ ω

s(s2 + ω2)
, (B.30)

where (B.8b) has been taken into account.

B.9 Convolution Theorem

The convolution is of major importance, for instance, in the study of heat
conduction, wave motion, plastic flow, creep, and, especially, in the theory
of viscoelasticity (Section 11.1).

Based upon BOLTZMANN’s superposition principle, the creep response
of linear viscoelastic materials can be described by the hereditary integral
(11.3) or, starting in the history at time Θ = 0, by the constitutive equation

Eε(t) =

t∫
0

∂σ(Θ)

∂Θ
κ(t−Θ)dΘ . (B.31)

The integral in (B.31) can be interpreted as a convolution integral.
Definition: The convolution of two functions, say f1(t) and f2(t), is de-

fined according to

ϕ(t) :=

t∫
0

f1(Θ)f2(t−Θ)dΘ ≡ f1 ∗ f2 . (B.32a)

Introducing the substitution τ = t − Θ, the definition (B.32a) can alterna-
tively be expressed in the form

ϕ(t) :=

t∫
0

f2(τ)f1(t− τ)dτ ≡ f2 ∗ f1 . (B.32b)

Comparing both forms, we see that the convolution of two functions is com-
mutative, i.e.,
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f1 ∗ f2 = f2 ∗ f1 . (B.33)

Applying the LAPLACE transform (B.2) to the convolution integral ϕ(t),
we arrive at the convolution theorem

ϕ̂(s) ≡ L{f1 ∗ f2} = L{f1(t)}L{f2(t)} = f̂1(s)f̂2(s) , (B.34)

which states that the convolution in the original region corresponds to the
usual multiplication in the transformed region. In other words:

The LAPLACE transform of the convolution of two functions is
identical with the product of the LAPLACE transforms of these
two functions.

This theorem can be proofed in the following way. For

f̂1(s) =

∞∫
0

e−suf1(u)du and f̂2(s) =

∞∫
0

e−svf2(v)dv , (B.35a,b)

the right-hand side in (B.34) can be written as:

f̂1(s)f̂2(s) =

∞∫
0

e−suf̂2(s)f1(u)du =

∞∫
0

⎡
⎣ ∞∫

0

f2(v)e
−s(u+v)dv

⎤
⎦ f1(u)du .

(B.36)
To make this integral applicable to a LAPLACE transformation, let us

introduce a substitution

u = u(t, w)

v = v(t, w)

}
⇐⇒

{
t = t(u, v)

w = w(u, v)
(B.37)

according to the linear form

u = t− w
v = w

}
⇐⇒

{
t = u+ v

w = v
(B.38)

where the JACOBI determinant is given by:

J :=

∣∣∣∣∣∣∣
∂u

∂t

∂v

∂t
∂u

∂w

∂v

∂w

∣∣∣∣∣∣∣ = 1 or J (−1) :=

∣∣∣∣∣∣∣
∂t

∂u

∂w

∂u
∂t

∂v

∂w

∂v

∣∣∣∣∣∣∣ = 1 . (B.39)
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Thus, the area element dtdw in the mapped t-w-plane is equal to the corre-
sponding area element dudv in the u-v-plane (Fig. B.2). Then, the double
integral in (B.36) can be expressed as

f̂1(s)f̂2(s) =

∞∫
0

⎡
⎣ t∫

0

f2(w)f1(t− w)dw

⎤
⎦ e−stdt ≡ L{f2 ∗ f1} (B.40)

in accordance with (B.34) and (B.33). The ranges of integration of the double
integrals in (B.36) and (B.40) are illustrated in Fig. B.2.
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Fig. B.2 Ranges of integration in the u-v- and t-w-plane

Utilizing the convolution theorem (B.34) it is easy to proof the associative
property

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3) , (B.41a)

which can alternatively be expressed as

g ∗ f3 = f1 ∗ h (B.41b)

by substituting
g ≡ f1 ∗ f2 and h ≡ f2 ∗ f3 . (B.42a,b)

Applying the convolution theorem to the left-hand side and right-hand side
of (B.41b), we obtain

L{g ∗ f3} = ĝf̂3 = L{f1 ∗ f2}f̂3 = (f̂1f̂2)f̂3 (B.43a)
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and
L{f1 ∗ h} = f̂1ĥ = f̂1L{f2 ∗ f3} = f̂1(f̂2f̂3) , (B.43b)

respectively. Since the ordinary multiplication on the right-hand sides in
(B.43a,b) is associative,

(f̂1f̂2)f̂3 = f̂1(f̂2f̂3) , (B.44)

it follows that the convolution of three functions is associative according to
(B.41a,b).

In a similar way, the distributive property,

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3 (B.45)

can be proofed: Substituting k ≡ f2 +f3 and considering the linearity (B.6),
we obtain the following relations

L{f1 ∗ k} = f̂1k̂ = f̂1L{f2 + f3} = f̂1(L{f2} + L{f3}) =

= f̂1(f̂2 + f̂3) = f̂1f̂2 + f̂1f̂3

L{f1 ∗ (f2 + f3)} = L{f1 ∗ f2} + L{f1 ∗ f3}
(B.46)

in accordance with (B.46).
To illustrade the convolution theorem, let us consider the equation of mo-

tion
mẍ+ kx = F (t) (B.47a)

or
ẍ+ ω2x = ω2f(t) with x(0) = ẋ(0) = 0 , (B.47b)

where the abbreviations ω2 = k/m and f(t) = F (t)/k have been intro-
duced. The LAPLACE transformation

∞∫
0

(ẍ+ ω2x)e−stdt = ω2

∞∫
0

f(t)e−stdt (B.48)

carried out on both sides of the equation of motion (B.47b) by taking the
transform (B.24) into account yields

s2L{x(t)} − sx(0) − ẋ(0) + ω2L{x(t)} = ω2L{f(t)} .

Inserting the initial values x(0) = ẋ(0) = 0, we obtain
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L{x(t)} =
ω2

s2 + ω2
L{f(t)} ≡ L{g(t)}L{f(t)} . (B.49)

Thus, applying the convolution theorem (B.34), the solution of the problem
(B.47b) can be represented as (B.32a,b), i.e.:

x(t) = g(t) ∗ f(t) =

t∫
0

f(Θ)g(t−Θ)dΘ , (B.50)

and because of (B.8b), we finally arrive at the solution

x(t) = ω

t∫
0

f(Θ) sinω(t−Θ)dΘ (B.51)

with an arbitrary forcing function F (t) = kf(t) and with the assumed initial
values x(0) = 0 and ẋ(0) = 0.

If the system is subjected to an external harmonic function of magnitude
F (t) = F0 sinΩt, we obtain the following special solution:

x(t) = ω
F0

k

t∫
0

sinΩΘ sinω(t−Θ)dΘ ,

x(t) = ω
F0

k
Im

t∫
0

eiΩΘ sinω(t−Θ)dΘ ,

F (t) = F0 sinΩt =⇒ x(t) =
F0/k

1 − (Ω
ω )2

(
sinΩt− Ω

ω
sinωt

)
.

(B.52a)

If the external harmonic function has a magnitude of F (t) = F0 cosΩt, we
find in a similar way the following solution of the initial-value problem
(B.47b):

F (t) = F0 cosΩt =⇒ x(t) =
F0/k

1 − (Ω
ω )2

(
cosΩt− cosωt

)
.

(B.52b)
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B.10 LAPLACE Transforms of the HEAVISIDE and
DIRAC Functions

The HEAVISIDE and DIRAC functions (Appendix A) play a central role, for
instance, in the theory of viscoelasticity (Chapter 11).

The LAPLACE transform of the HEAVISIDE function (A.1a) is given by

L{H(t− a)} =
1

s
e−as , (B.53a)

since

L{H(t− a)} =

∞∫
0

H(t− a)e−stdt =

a∫
0

0 · e−stdt+

∞∫
a

1 · e−stdt ≡ 1

s
e−sa .

Similarly, we find the following transform

a b t

1
f(t)

L{H(t− a) −H(t− b)} =
1

s

(
e−as − e−bs

)
,

(B.53b)
which is utilized, when the response of the KELVIN model subjected to the

shear stress
τ(t) = τ0 [H(t− a) −H(t− b)] (B.54)

should be analysed. The differential equation (11.19) of the KELVIN model
can be written as

γ̇ + γ/λ = τ/η with λ ≡ η/G . (B.55)

Applying the LAPLACE transformation with (B.23) and taking the loading
(B.54) with its transform (B.53b) into account, we arrive at the LAPLACE

transform

L{γ(t)} =
τ0
G

e−as − e−bs

s(1 + λs)
, (B.56)

the inverse of which is the response γ = γ(t) of the KELVIN model. First let
us find the inverse of the transform

L{ϕ(s)} =
e−as

s(1 + λs)
≡ f̂1(s)f̂2(s) , (B.57)
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where

f̂1(s) ≡ e−as

s
and f̂2(s) ≡ 1

1 + λs
(B.58a,b)

have been introduced. Because of (B.53a) and by considering (B.28) with
n = 0 and ω = −1/λ, the inverse forms of (B.58a,b) are given by

L−1{f̂1(s)} ≡ f1(t) = H(t− a) (B.59a)

and

L−1{f̂2(s)} ≡ f2(t) =
1

λ
e−t/λ . (B.59b)

Applying the convolution theorem (B.34) with (B.32a) and (B.57) to
(B.59a, b), we find the inverse of (B.57) according to

ϕ(t) = f1 ∗ f2 =

t∫
0

H(Θ − a) 1

λ
e−(t−Θ)/λdΘ (B.60a)

or

ϕ(t) =

t∫
a

1

λ
e−(t−Θ)/λdΘ = 1 − e−(t−a)/λ . (B.60b)

Thus, the solution γ = γ(t) of (B.56), i.e., the creep behavior of the KELVIN

model subjected to a step loading (B.54) can be expressed by the following
creep function:

G

τ0
γ(t) = H(t− a)

[
1 − e−(t−a)/λ

]
−H(t− b)

[
1 − e−(t−b)/λ

]
(B.61)

This function and the HEAVISIDE function (B.54) are illustrated in Fig. B.3.

⊙
B 2.mws

> alias(H=Heaviside, th=thickness):

> plot1:=plot(H(t-1)-H(t-6),t=0..12,th=3):
> plot2:=plot(H(t-1)*(1-exp(-(1/2)*(t-1))-
> H(t-6)*(1-exp(-(1/2)*(t-6))),t=0..12,th=3):

> plots[display]({plot1,plot2});
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Fig. B.3 Creep behavior of a KELVIN model subjected to a constand load between
t = 1 and t = 6

The LAPLACE transform of the DIRAC function (A.6) is given by

L{δ(t− a)} = e−as and L{δ(t)} = 1 . (B.62a,b)

This can be deduced as follows. The LAPLACE transform of the modified
distribution (A.9), represented in Fig. A.5, is

L{δε(t− a)} =

∞∫
0

1

ε
e−stdt =

1

ε

a+ε∫
a

e−stdt =

= − 1

sε

[
e−s(a+ε) − e−sa

]
.

Then, by forming the limit ε → 0 and applying the L’HOSPITAL rule, we
obtain:

L{δ(t− a)} = lim
ε→0

L{δε(t− a)} = e−as

in accordance with (B.62a), and for a→ 0 identical to (B.62b).
One can find the transform (B.62a) also in the following way. Since

δ(t− a) = Ḣ(t− a)
according to (A.12) and because of (B.23) together with H(0) = 0 and
(B.53a), we immediately arrive at the result
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L{δ(t− a)} = L{Ḣ(t− a)} = sL{H(t− a)} ≡ e−as , (B.63)

which agrees with (B.62a).
As an example, in which the transform (B.62b) is taken into account, let

us discuss the response of an undamped vibration-system to a unit impulse
at time t = 0. This initial-value problem is described according to the differ-
ential equation

ẍ+ ω2x =
F0

k
ωδ(t) with x(0) = 0 and ẋ(0) = 0 . (B.64)

Because of (B.24), (B.62b), and (B.8b) we obtain:

L{x(t)} =
F0

k

ω

s2 + ω2
⇒ x(t) =

F0

k
sinωt (B.65)

for t > 0. The initial value ẋ(0) = 0 assumed in (B.64) is not satisfied.
Because of

ẋ(t) =
F0

k
ω cosωt → ẋ(0) =

F0

k
ω ,

the unit DIRAC impuls produces a jump of magnitude ωF0/k in the velocity
ẋ(0) at time t = 0. Thus, the function x(t) is continuous indeed, but not
differentiable at t = 0.

Another example is concerned with the deflection curve of a statically in-
determinate beam rigidly clamped at both ends and loaded by a concentrated
Force F as schown in Fig. B.4.

a

y

EI
F

x

Fig. B.4 Statically interdeterminate beam

This problem can easily be solved by applying the LAPLACE transforma-
tion to the differential equation
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d4y

dx4
=
F

EI
δ(x− a) (B.66)

taking the following boundary conditions into account:

y(0) = 0, y′(0) = 0, y(�) = 0, y′(�) = 0 . (B.67a-d)

Because of (B.22) and (B.62a) we obtain

s4L{y(x)} − s3y(0) − s2y′(0) − sy′′(0) − y′′′(0) =
F

EI
e−as ,

and with (B.67a,b) and y′′(0) ≡ C1 and y′′′(0) = C2 we find:

L{y(x)} =
C1

s3
+
C2

s4
+
F

EI

e−as

s4
. (B.68)

From (B.28) we read the inverse transforms

L−1{1/s3} =
x2

2!
and L−1{1/s4} =

x3

3!
. (B69a,b)

The third term on the right-hand side in (B.68) can be decomposed according
to

exp(−as)
s4

= f̂1(s)f̂2(s) , (B.70)

where the transforms

f̂1(s) :=
1

s3
and f̂2(s) :=

exp(−as)
s

, (B.71a,b)

have been introduced. The inverse transforms can be read from (B.69a) and
(B.53a), respectively,

f1(x) := L−1{f̂1(s)} =
x2

2!
(B.72a)

and

f2(x) := L−1{f̂2(s)} = H(x− a) . (B.72b)

Thus, utilizing the convolution theorem (B.34) and considering (B.32b), we
arrive at the inverse transform of the product (B.70):

L−1{f̂1(s)f̂2(s)} = f1(x) ∗ f2(x) =

x∫
0

(x− τ)2
2!

H(τ − a)dτ
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or

L−1

{
1

s4
exp(−as)

}
=

x∫
a

(x− τ)2
2!

dτ =
(x− a)3

3!
. (B.73)

Adding the parts (B.69a,b) and (B.73) we obtain from (B.68) the deflection
curve of the statically indeterminate beam (Fig. B.4) according to

y(x) =
C1

2!
x2 +

C2

3!
x3 +

F

EI

(x− a)3
3!

H(x− a) , (B.74)

where the constants C1 and C2 can be determined by inserting the end con-
ditions (B.67c,d) into (B.74) as:

C1 = α(1 − α)2
F�

EI
and C2 = −(1 + 2α)(1 − α)2

F

EI
, (B.75a,b)

respectively. Thus, the final solution in dimensionless representation is given
by

192
EI

F�3
y(ξ) ≡ η(ξ;α) = 96(1 − α)2

[
α− 1

3 (1 + 2α)ξ
]
ξ2

+32(ξ − α)3H(ξ − α)
(B.76)

where ξ ≡ x/� and α ≡ a/�. The deflection curve (B.76) has a maximum at

ξopt = 1/(3 − 2α) for α ≤ 1/2 (B.77a)

and

ξopt = 2α/(1 + 2α) for α ≥ 1/2 (B.77b)

as can be seen in Fig. B.5. ⊙
B 3.mws

> alias(H=Heaviside):
> eta(xi):=96*((1-alpha)ˆ2)*(alpha-(1+2*alpha)*
> xi/3)*(xiˆ2)+32*((xi-alpha)ˆ3)*H(xi-alpha);

η(ξ) := 96 (1 − α)2 (α− 1

3
(1 + 2α) ξ) ξ2 + 32 (ξ − α)3 H(ξ − α)

> plot1:=plot(subs(alpha=1/4,-eta(xi)),xi=0..1):

> plot2:=plot(subs(alpha=1/2,-eta(xi)),xi=0..1):

> plot3:=plot(subs(alpha=2/3,-eta(xi)),xi=0..1):

> plots[display]({plot1,plot2,plot3});
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–1

–0.8

–0.6

–0.4
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=2/3α
=1/4α

=1/2α

0.2 0.4 0.6 0.8 1
ξ

Fig. B.5 Deflection curve (B.76) of a beam clamped at both ends according to Fig. B4

B.11 LAPLACE Transformation for Integral Equations

Integral equations, for instance,

y(t) = f(t) +

b∫
a

K(Θ, t) y(Θ)d(Θ) , (B.78)

where the function f(t) and the kernel function K(Θ, t) are known, while
y(t) is unknown, can easily be solved by utilizing the LAPLACE transforma-
tion: We differentiate the following types:

❒ If a and b are constant, then equation (B.78) is called a FRED-
HOLM integral equation.

❒ If a is constant and b = twe have a VOLTERRA integral equation.
❒ If a = 0 and b = t, the equation (B.78) is an integral equation of

a convolution type.

The last type,

y(t) = f(t) +

t∫
0

K(t−Θ)y(Θ)d(Θ) , (B.79)
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can be written as
y(t) = f(t) +K(t) ∗ y(t) , (B.80)

since the integral in (B.79) is the convolution of the kernel functionK(t) and
the unknown function y(t) according to the definition (B.32a,b).

Applying the LAPLACE transformation to (B.80) and taking the convolu-
tion theorem (B.34) into account, we arrive at the transforms:

L{y(t)} = L{f(t)} + L{K(t)}L{y(t)}

or
L{y(t)} = L{f(t)}/ [1 − L{K(t)}] , (B.81)

from which we find the solution by forming the inverse:

y(t) = L−1{ŷ(s)} = L−1
{
f̂(s)

/[
1 − K̂(s)

]}
. (B.82)

To find the creep function (11.7) of a MAXWELL fluid, if the relaxation
function (11.11a) is assumed to be known, then we have to solve the integral
equation

t∫
0

∂r(t−Θ)

∂t
κ(Θ)dΘ + r(0)κ(t) = 1 , (B.83)

which follows from (11.15b) by differentiation with respect to time t. In-
serting (11.11a), i.e., r(t) = exp(−t/λ), into (B.83), we obtain the integral
equation of the convolution type (B.79) according to

κ(t) = 1 +
1

λ

t∫
0

e−(t−Θ)/λκ(Θ)dΘ . (B.84)

The Laplace transformation yields

κ̂(s) =
1

2
+

1

1 + λs
κ(s) =⇒ κ̂(s) =

1 + λs

λs2
. (B.85)

Using a table of transforms, we obtain the inverse of (B.85), i.e. the creep
function

κ(t) = 1 + t/λ (B.86)

of the MAXWELL fluid in accordance with (11.7).
Similar to (B.83) we arrive from (11.15b) at the integral equation
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t∫
0

∂κ(t−Θ)

∂t
r(Θ)d(Θ) + κ(0)r(t) = 1 , (B.87)

which takes the form

1

λ

t∫
0

e−(t−Θ)/λr(Θ)d(Θ) = 1 (B.88)

for the KELVIN creep function (11.8). The LAPLACE transformation yields

1

1 + λs
r̂(s) =

1

s
=⇒ r̂(s) =

1

s
+ λ . (B.89)

Using a table of transforms, we obtain the inverse of (B.89), i.e. the relax-
ation function

r(t) = 1 + λδ(t) (B.90)

of the KELVIN model in accordance with (11.11b).
Another example is the integral equation

y(t) = 1 − e−t/λ +
1

λ

t∫
0

e−(t−Θ)/λy(Θ)d(Θ) , (B.91)

the LAPLACE transform of which is given by

ŷ(s) =
1

s(1 + λs)
+

1

1 + λs
ŷ(s) ⇒ ŷ(s) =

1

λs2
. (B.92)

Thus, from a table of transforms we read the solution

y(t) = t/λ . (B.93)

This solution satisfies the integral equation (B.91).
The integral equation

y(t) = ωt+ ω

t∫
0

sinω(t− θ)y(θ)dθ (B.94)

has the LAPLACE transform
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ŷ(s) =
ω

s2
+

ω2

s2 + ω2
ŷ(s) ⇒ ŷ(s) = ω

(
1

s2
+
ω2

s4

)
, (B.95)

hence the solution can be taken from a table of transforms:

y(t) = ωt

[
1 +

1

6
(ωt)2

]
. (B.96)

This result has been checked by utilizing the following MAPLE program:⊙
B 4.mws

> int_eqn:=y(t)-
> omega*int((sin(omega*(t-Theta))*y(Theta),
> Theta=0..t))=omega*t;

int eqn := y(t) − ω
∫ t

0
sin(ω (t−Θ)) y(Θ) dΘ = ω t

> with(inttrans):

> laplace(int_eqn,t,s);

laplace(y(t), t, s) − ω2 laplace(y(t), t, s)

s2 + ω2
=
ω

s2

> readlib(isolate)(%,laplace(y(t),t,s)):

> simplify(%);

laplace(y(t), t, s) =
ω (s2 + ω2)

s4

> invlaplace(%,s,t):

> y(t,omega):=simplify(rhs(%));

y(t, ω) :=
ω t (6 + ω2 t2)

6

> Y(Theta,omega):=subs(t=Theta, y(t,omega));

Y(Θ, ω) :=
ωΘ (6 + ω2Θ2)

6
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> # check:
> int_eqn:=simplify(y(t,omega)-
> omega*int(sin(omega*(t-Theta))*
> Y(Theta,omega),Theta=0..t));

int eqn := ω t

> # Thus, the solution (B.96) is correct.

Further integral equations are solved in the next MAPLE programs.⊙
B 5.mws

> int_eqn:=y(t)+
> omega*integrate((sin(omega*(t-Theta))*
> y(Theta),Theta=0..t))=1;

int eqn := y(t) + ω

∫ t

0
sin(ω (t−Θ)) y(Θ) dΘ = 1

> with(inttrans):

> laplace(int_eqn,t,s);

laplace(y(t), t, s) +
ω2 laplace(y(t), t, s)

s2 + ω2
=

1

s

> readlib(isolate)(%,laplace(y(t),t,s)):

> simplify(%);

laplace(y(t), t, s) =
s2 + ω2

s (s2 + 2ω2)

> invlaplace(%,s,t):

> y(t,omega):=simplify(rhs(%));

y(t, ω) :=
1

2
+

1

2
cos(

√
2ω t)

> Y(Theta,omega):=subs(t=Theta,y(t,omega));

Y(Θ, ω) :=
1

2
+

1

2
cos(

√
2ωΘ)

> # check
> int_eqn:=y(t,omega)+
> omega*int(sin(omega*(t-Theta))
> *Y(Theta,omega),Theta=0..t);

int eqn := 1
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⊙
B 6.mws

> int_eqn:=
> y(t)+omega*integrate((cos(omega*(t-Theta))
> *y(Theta),Theta=0..t))=1;

int eqn := y(t) + ω

∫ t

0
cos(ω (t−Θ)) y(Θ) dΘ = 1

> with(inttrans):

> laplace(int_eqn,t,s);

laplace(y(t), t, s) +
ω laplace(y(t), t, s) s

s2 + ω2
=

1

s

> readlib(isolate)(%,laplace(y(t),t,s)):

> simplify(%);

laplace(y(t), t, s) =
s2 + ω2

s (s2 + ω2 + ω s)

> evalc(invlaplace(%,s,t)):

> y(t,omega):=simplify(rhs(%));

y(t, ω) := 1 − 2

3
e(−

ω t
2

)
√

3 sin(
t
√

3ω

2
)

> Y(Theta,omega):=subs(t=Theta,%);

Y(Θ, ω) := 1 − 2

3
e(−

ω Θ
2

)
√

3 sin(
Θ
√

3ω

2
)

> # check:
> int_eqn:=y(t,omega)+
> omega*int(cos(omega*(t-Theta))*
> Y(Theta,omega),Theta=0..t);

int eqn := 1

> # Thus, the solution is correct.

> y(t,1/2):=subs(omega=1/2,y(t,omega));

y(t,
1

2
) := 1 − 2

3
e(−

t
4
)
√

3 sin(
t
√

3

4
)

> y(t,2):=subs(omega=2,y(t,omega));
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y(t, 2) := 1 − 2

3
e(−t)

√
3 sin(t

√
3)

> alias(H=Heaviside, th=thickness,c=color):
> plot1:=plot({1,1.1,1.1*H(t-8*Pi/sqrt(3))},
> t=0..8.001*Pi/sqrt(3),c=black):
> plot2:=plot({y(t,1/2),y(t,2)},
> t=0..8.001*Pi/sqrt(3),0.4..1.1001,c=black):

> plots[display]({plot1,plot2});
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t

ω =1/2ω = 2

Fig. B.6 Solution of the above integral equation for ω = 1/2 and ω = 2

⊙
B 7.mws

> VOLTERRA:=y(t)-omega*integrate((t-Theta)*
> y(Theta),Theta=0..t)=exp(I*omega*t);

VOLTERRA := y(t) − ω
∫ t

0
(t−Θ) y(Θ) dΘ = e(ω t I)

> VOLTERRA:=convert(%,‘trig‘);

VOLTERRA := y(t) − ω
∫ t

0
(t−Θ) y(Θ) dΘ = cos(ω t) + sin(ω t) I

> with(inttrans):

> laplace(VOLTERRA,t,s);

laplace(y(t), t, s) − ω laplace(y(t), t, s)

s2
=

s

s2 + ω2
+

ω I

s2 + ω2

> readlib(isolate)(%,laplace(y(t),t,s)):
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> simplify(%);

laplace(y(t), t, s) =
(s+ ω I) s2

(s2 + ω2) (s2 − ω)
> invlaplace(%,s,t):

> y(t,omega):=simplify(rhs(%));

y(t, ω) :=
ω cos(ω t) + cosh(

√
ω t) +

√
ω sinh(

√
ω t) I + ω sin(ω t) I

1 + ω
> y[re](t,omega):=(omega*cos(omega*t)+

> cosh(sqrt(omega)*t))/(1+omega);

yre(t, ω) :=
ω cos(ω t) + cosh(

√
ω t)

1 + ω
> y[im](t,omega):=(omega*sin(omega*t)+
> sqrt(omega)*sinh(sqrt(omega)*t))/(1+omega);

yim(t, ω) :=
ω sin(ω t) +

√
ω sinh(

√
ω t)

1 + ω
> # check of the real part:

> Y[re](t,omega):=subs(t=Theta,%%);

Yre(t, ω) :=
ω cos(ωΘ) + cosh(

√
ωΘ)

1 + ω
> VOLTERRA[re]:=simplify(y[re](t,omega)-

> omega*int((t-Theta)*%,Theta=0..t)):

> VOLTERRA[re]:=simplify(convert(%,‘trig‘));

VOLTERRAre := cos(ω t)
> # Thus the real part of the above solution
> is correct.
> # In a similar way one can check the
> imiginary part.
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⊙
B 8.mws

> volterra:=y(t)-int((t-Theta)ˆ3*y(Theta),
Theta=0..t)=1-t+tˆ2-tˆ3;

volterra := y(t) −
∫ t

0
(t−Θ)3 y(Θ) dΘ = 1 − t+ t2 − t3

> with(inttrans):

> laplace(volterra,t,s);

laplace(y(t), t, s) − 6 laplace(y(t), t, s)

s4
=

1

s
− 1

s2
+

2

s3
− 6

s4

> simplify(readlib(isolate)
> (%,laplace(y(t),t,s)));

laplace(y(t), t, s) =
s3 − s2 + 2 s− 6

s4 − 6

> Digits:=4;
> evalf(invlaplace(%%,s,t));

Digits := 4

y(t) = 0.9082 cosh(1.565 t) + 0.0918 cos(1.565 t)

− 1.102 sinh(1.565 t) + 0.4631 sin(1.565 t)
> 0.9082=convert(0.9082,‘rational‘):
> 0.0918=convert(0.0918,‘rational‘):
> 1.102=convert(1.102,‘rational‘):
> 0.4631=convert(0.4631,‘rational‘):
> 1.565=convert(1.565,‘rational‘):

> macro(a=36/23):
> Y(t):=(10/11)*cosh(a*t)+(9/98)*cos(a*t)-
> (54/49)*sinh(a*t)+(19/41)*sin(a*t);

Y(t) :=
10

11
cosh(

36 t

23
) +

9

98
cos(

36 t

23
) − 54

49
sinh(

36 t

23
) +

19

41
sin(

36 t

23
)

> Y[i](Theta):=subs(t=Theta,%);

Yi(Θ) :=
10

11
cosh(

36Θ

23
) +

9

98
cos(

36Θ

23
) − 54

49
sinh(

36Θ

23
)

+
19

41
sin(

36Θ

23
)

> volterra:=Y(t)-int((t-Theta)ˆ3*Y[i](Theta),
> Theta=0..t):DELTA(t):=1-t+tˆ2-tˆ3-%:
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> error_norm:=
> L[2]=evalf(sqrt(int(%ˆ2,t=0..1)),15);

error norm := L2 = 0.00142880337743571

For Digits:=10 the error-norm is given by L2 = 0.2246731 10−6 as
shown on the CD-ROM

⊙
B 9.mws . ⊙

B 10.mws

> ABEL:=int((1/sqrt(t-Theta))*y(Theta),
> Theta=0..t)=T;

ABEL :=

∫ t

0

y(Θ)√
t−Θ dΘ = T

This is a singular integral equation. For the special case of
the tautochrone the right hand side T is independent of t.

> with (inttrans):

> laplace(ABEL,t,s);

laplace

(∫ t

0

y(Θ)√
t−Θ dΘ, t, s

)
=
T

s

# appliction of the convolution theorem:

> laplace(1/sqrt(t),t,s)*laplace(y(t),t,s)=
> laplace(T,t,s);

√
π laplace(y(t), t, s)√

s
=
T

s

> readlib(isolate)(%,laplace(y(t),t,s));

laplace(y(t), t, s) =
T√
s
√
π

> invlaplace(%,s,t);

y(t) =
T

π
√
t

# check:

> ABEL:=Int(T/Pi/sqrt(Theta)/sqrt(t-Theta),
> Theta=0..t)=int(T/Pi/sqrt(Theta)/
> sqrt(t-Theta),Theta=0..t);
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ABEL :=

∫ t

0

T

π
√
Θ
√
t−Θ dΘ = T

# Thus, the solution is correct.

Further results are listed in the following Table:

T const. at at2 at3/2 a
√
t ln(at)

y(t)
T

π
√
t

2 a

π

√
t

8 a

3π
t3/2 3 a

4
t

a

2

1

π
√
t
ln(4at)

The last result in the table is explained in more detail in the following
MAPLE-program. ⊙

B 11.mws

> abel:=int((1/sqrt(t-Theta))*y(Theta),
Theta=0..t)=ln(a*t);

abel :=

∫ t

0

y(Θ)√
t−Θ dΘ = ln(a t)

This is a singular integral equation.
> with (inttrans):

> laplace(abel,t,s);

laplace

(∫ t

0

y(Θ)√
t−Θ dΘ, t, s

)
= −γ + ln(s)

s
+

ln(a)

s

appliction of the convolution theorem:
> laplace(1/sqrt(t),t,s)*laplace(y(t),t,s)=

> laplace(ln(a*t),t,s);√
π laplace(y(t), t, s)√

s
= −γ + ln(s)

s
+

ln(a)

s
> readlib(isolate)(%,laplace(y(t),t,s));

laplace(y(t), t, s) =
(−γ + ln(s)

s
+

ln(a)

s
)
√
s

√
π

> invlaplace(%,s,t);

y(t) =

2 ln(2)√
π
√
t

+
ln(t)√
π
√
t

+
ln(a)√
t
√
π√

π
> simplify(%);
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y(t) =
2 ln(2) + ln(t) + ln(a)

π
√
t

> y(t):=ln(4*a*t)/Pi/sqrt(t);

y(t) :=
ln(4 a t)

π
√
t

> # check:
> Int(ln(4*a*Theta)/Pi/sqrt(Theta)/
> sqrt(t-Theta),Theta=0..t)=
> simplify(int(ln(4*a*Theta)/Pi/sqrt(Theta)/
> sqrt(t-Theta),Theta=0..t));∫ t

0

ln(4 aΘ)

π
√
Θ
√
t−Θ dΘ = ln(t) + ln(a)

> # Thus, the solution is correct. ⊙
B 12.mws

> integro_diff_eqn:=
> diff(y(t),t)+int(cos(omega*(t-Theta))*
> y(Theta),Theta=0..t)=sin(omega*t);

integro diff eqn := ( d
dt y(t)) +

∫ t

0
cos(ω (t−Θ)) y(Θ) dΘ = sin(ω t)

> # initial value y(0)

> with(inttrans):

> laplace(integro_diff_eqn,t,s);

s laplace(y(t), t, s) − y(0) +
laplace(y(t), t, s) s

s2 + ω2
=

ω

s2 + ω2

> simplify(readlib(isolate)
> (%,laplace(y(t),t,s)));

laplace(y(t), t, s) =
ω + y(0) s2 + y(0)ω2

s (s2 + ω2 + 1)
> invlaplace(%,s,t);

y(t) =
(y(0) − ω) cosh(

√−ω2 − 1 t) + ω (1 + y(0)ω)

ω2 + 1
> # example: y(0)=1, omega = 4

> subs (y(0)=1, omega=4,%);

y(t) = − 3

17
cosh(

√−17 t) +
20

17
> simplify(%);
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y(t) = − 3

17
cos(

√
17 t) +

20

17
> # check:
>
> Diff(y(t),t)+Int(cos(4*(t-Theta))*(20/17-(3/17)*
> cos(sqrt(17)*Theta)),Theta=0..t)=(3/sqrt(17))*
> sin(sqrt(17)*t)+int(cos(4*(t-Theta))*
> (20/17-(3/17)*cos(sqrt(17)*Theta)),Theta=0..t):

> Delta:=rhs(%)-sin(4*t);

Δ := 8 sin(t) cos(t)3 − 4 sin(t) cos(t) − sin(4 t)

> Delta:=simplify(%);

Δ := 0

> # Thus, the solution is correct.

B.12 Periodic Functions

A function f(x) is said to be periodic if f(x + L) = f(x) for all x ∈ IR,
where L is a nonzero constant. Any number L with this property is a period
of the function f(x). For instance, sinx has the periods 2π,−2π, 4π, ...

In the following we take into consideration a periodic function with a
period T > 0 and defined as

f(t) =

{
f(t+ nT ), where t > 0 and n ∈ IN
0 for t < 0.

(B.97)

Its LAPLACE transform can be calculated by the fundamental formula

L{f(t)} =
1

1 − exp (−sT )

T∫
0

f(t) exp (−st) dt , (B.98)

which can be deduced in the following way.
We represent the LAPLACE transformation (B.2) as an infinite series ac-

cording to
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L{f(t)} =

∞∫
0

f(t)e−stdt =

=

T∫
0

f(t)e−stdt+

2T∫
T

f(t)e−stdt+ ...

(n+1)T∫
nT

f(t)e−stdt+ ...

L{f(t)} =
∞∑

n=0

(n+1)T∫
nT

f(t)e−stdt .

(B.99)

Substituting t ≡ τ + nT yields

L{f(t)} =

∞∑
n=0

T∫
0

f(t+ nT )e−s(τ+nT )dτ =

=

∞∑
n=0

e−snT

T∫
0

f(τ + nT )e−sτdτ ,

(B.100)

where the geometric series converges to:

∞∑
n=0

e−snT = lim
n→∞

1 − exp (−snT )

1 − exp(−sT )
=

1

1 − exp(−sT )
(B.101)

since | exp(−sT )| < 1, and because f(τ + nT ) = f(τ) by periodicity
(B.97), we finally obtain from (B.100) the formula (B.98).

As an example, let us consider the periodic function

f(t) = H(t) + 2

∞∑
n=1

(−1)nH(t− na) (B.102)

illustrated in Fig. B.7. ⊙
B 13.mws> alias(H=Heaviside,th=thickness):

> f:=H(t)+2*sum(((-1)ˆn)*H(t-n*a),
> n=1..infinity);

f := H(t) + 2 (
∞∑

n=1

(−1)n H(t− na))
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> assume(a>0):

> f[1]:=H(t)+2*sum(((-1)ˆn)*H(t-n*a),n=1..5):
> plot(subs(a=1,f[1]),t=0..5,th=3,scaling=
> constrained,style=point,numpoints=10000);
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0.2
0.4
0.6
0.8

1

1 2 3 4 5
t

Fig. B.7 Periodic function (B.102) with a = 1

The function (B.102) has a period of T = 2a. Thus, we have to insert into
the formula (B.98) only the following part of the periodic function(B.102),

f(t) = H(t) − 2H(t− a) +H(t− 2a) , (B.103)

which represents (B.102) within the first period 0 ≤ t < 2a. The result is
given by

L{f(t)} =
1

s

1 − exp (−as)
1 + exp (−as) ≡ 1

s
tanh

(as
2

)
, (B.104)

which has been calculated by using the following MAPLE programm.⊙
B 14.mws

> LAPLACE(f(t)):=(1/(1-exp(-s*T)))*Int(f(t)*
> exp(-s*t),t=0..T);

LAPLACE(f(t)) :=

∫ T

0
f(t) e(−s t) dt

1 − e(−s T )
(B.98)

> alias(H=Heaviside):

> f:=H(t)-2*H(t-a)+H(t-2*a);
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f := H(t) − 2 H(t− a) + H(t− 2 a) (B.103)

> LAPLACE:=simplify((1/(1-exp(-2*a*s)))*
> int(f*exp(-s*t),t=0..2*a));

LAPLACE := −−e(−a s) + 2 H(a) e(−a s) − 2 H(a) + 1

s (e(−a s) + 1)

> LAPLACE:=subs(H(a)=1,%);

LAPLACE := − e(−a s) − 1

s (e(−a s) + 1)
(B.104)

>

Alternatitively, we can find the LAPLACE transform (B.104) in the fol-
lowing way.

Because of the LAPLACE transform (B.53a) and taking the linearity rule
(B.6) into account, we immediately arrive at the LAPLACE transform

L{f(t)} =
1

s

[
1 + 2

∞∑
n=1

(−1)n exp (−nas)
]

(B.105)

of the periodic function (B.102), where the infinite series can be expressed
as

∞∑
n=1

(−1)n exp (−nas) =
∞∑

n=0

(−1)n exp (−nas) − 1 . (B.106)

The first term on the right-hand side in (B.106) is a geometric series, which
converges to the limit

lim
n→∞

1 − (−1)n exp (−nas)
1 + exp(−as) =

1

1 + exp (−as) . (B.107)

Hence, the LAPLACE transform (B.105) yields the result (B.104).
Another example is f(t) = sin(ωt) with a period of T = 2π/ω. The

formula (B.98) immediately furnishes the LAPLACE transform (B.8b).

B.13 Application to Partial Differential Equations

The LAPLACE transformation is also suitable to solve partial differential
equations.
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In creep mechanics the diffusion equation

∂c

∂t
= D

∂2c

∂x2
with t ≥ 0 and x ≥ 0 (B.108)

plays an important role, since creep of metals, for instance, at temperatures
in the range 0.4 ≤ T/TM ≤ 0.5 can be interpreted as a diffusion controlled
process (BETTEN, 1971).The diffusion coefficient D in (B.108) according
to (11.42) is assumed to be independent on distance x and on concentration
c = c(x, t). The usual integration method has been discussed in section
11.3.3 in more detail. In the following the LAPLACE transformation should
be applied to the diffusion equation (B.108).

Because of (B.23) the LAPLACE transform of the left-hand side in (B.108)
is given by

L{∂c(x, t)/∂t} = sL{c(x, t)} − c(x, 0) . (B.109)

In contrast to this, we find:

L{∂c(x, t)/∂x} =
∂

∂x
L{c(x, t)} =

∂

∂x
ĉ(x, s) , (B.110)

L{∂2c(x, t)/∂x2} =
∂

∂x
L{∂c(x, t)/∂x} =

∂2

∂x2
ĉ(x, s) . (B.111)

Note that the LAPLACE operator L{...} in (B.109) to (B.111) is taken with
respect to the transformed variable t:

L{c(x, t)} = ĉ(x, s) :=

∞∫
0

c(x, t) exp(−st)dt. (B.112)

We call ĉ(x, s) the time transform of c(x, t). Thus, the LAPLACE transforma-
tion in (B.110) and (B.111) is assumed to be interchangeable with the partial
derivative ∂/∂x with respect to the non-transformed spatial variable x.

Assuming the conditions

c(x, 0) = 0 and c(0, t) = c0 (B.113a,b)

we arrive from the partial differential equation (B.108) by considering the
LAPLACE transforms (B.109), (B.111) and (B.112) at the ordinary differen-
tial equation

D
∂2ĉ(x, s)

∂x2
− sĉ(x, s) = 0 , (B.114)
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where s > 0 and D > 0 are constant. Its solution is given by

ĉ(x, s) = A exp(−x
√
s/D) +B exp(x

√
s/D) . (B.115)

Since the growth of ĉ(x, s) is restricted, the second constant B in (B.115)
must be equal to zero, while the first constant A follows from the condition
(B.113b) to

A = ĉ(0, s) = L{c0} = c0/s , (B.116)

hence

ĉ(x, s) = c0
1

s
exp(−x

√
s/D) . (B.117)

From a table of transforms or using the MAPLE software we find the inverse
of (B.117), i.e. the solution

c(x, t) = c0 erfc

(
x

2
√
Dt

)
≡ c0 erfc(ξ) , (B.118a)

where the mixed dimensionless variable ξ has already been introduced in
(11.44). Instead of the complementary error function erfc(ξ) in (B.118a) one
can use the GAUSS error function erf(ξ). Hence, the solution (B.118a) can
be written as

c(ξ, t) = c0 [1 − erf(ξ)] with ξ ≡ x

2
√
Dt

(B.118b)

in accordance with (11.48a,b).
Some details about the best approximation to the error function erf(ξ) on

[0, r] by tanh(aξ) and the corresponding inverse function are explained in
the following MAPLE program. ⊙

B 15.mws

Best approximation to the error function erf(xi) on [0, r] by tanh(a*xi)
and the corresponding inverse function:

> approximant:=tanh(a*xi);

approximant := tanh(a ξ)

This function is suitable because it is similar to erf(xi). Furthermore, the
inverse can easily be determined:

> inverse:=(1/a)*arctanh(xi);

inverse :=
arctanh(ξ)

a
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Note that the Area Tangent, artanh(...), is indicated as arctanh(...) in
MAPLE. The best approximation by the hyperbolic tangent is guaranteed
by an optimal parameter a which minimizes the L-two error norm:

> L[2][r]:=sqrt((1/r)*int((erf(xi)-
> tanh(a*xi))ˆ2,xi=0..r))=minimum;

L2r :=

√
1

r

∫ r

0
(erf(ξ) − tanh(a ξ))2 dξ = minimum

Thus, the derivative of the integral with respect to the parameter a should
be equal to zero.

> derivative[r]:=
> diff(int((erf(xi)-tanh(a*xi))ˆ2, xi=0..r),a);

derivativer :=

∫ r

0
− 2 (erf(ξ) − tanh(a ξ)) (1 − tanh(a ξ)2) ξ dξ

Depending on the range [0, r] considered, we obtain the following opti-
mal parameters:

> for r in [1,2,3,4,5,infinity] do
> a[optimal][r]:= fsolve(int(xi*(erf(xi)-
> tanh(a_*xi))*(1-(tanh(a_*xi))ˆ2),
> xi=0..r)=0,a_) od;

aoptimal1 := 1.172868316

aoptimal2 := 1.201270935

aoptimal3 := 1.202760580

aoptimal4 := 1.202782281

aoptimal5 := 1.202782515

aoptimal∞ := 1.202782517

The corresponding L-two error norms are given as:
> for r in [1,2,3,4,5,infinity] do
> L[2][r]:=evalf(sqrt((1/r)*int((erf(xi)-
> tanh(a[optimal][r]*xi))ˆ2,xi=0..r)))
> od;

L21 := 0.008219954058



B.13 Application to Partial Differential Equations 333

L22 := 0.01428838030

L23 := 0.01216051374

L24 := 0.01053649880

L25 := 0.009424169402

L2∞ := 0.

Depending on the range [0, r] we obtain the following inverse functions:
> for r in [1,2,3,4,5,infinity] do
> inverse[r]:=(1/a[optimal][r])*arctanh(xi)
> od;

inverse1 := 0.8526106353 arctanh(ξ)

inverse2 := 0.8324516734 arctanh(ξ)

inverse3 := 0.8314206640 arctanh(ξ)

inverse4 := 0.8314056632 arctanh(ξ)

inverse5 := 0.8314055014 arctanh(ξ)

inverse∞ := 0.8314055001 arctanh(ξ)

In the following some examples should be plotted:
> alias(H=Heaviside,th=thickness,
> con=constrained):
> plot({1,H(xi-2),erf(xi),tanh(a[optimal][2]*
> xi)},xi=0..2.001,color=black);
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Fig. B.8 Error function and approximant on [0, 2]
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> Delta(xi):=erf(xi)-tanh(a[optimal][2]*xi);

Δ(ξ) := erf(ξ) − tanh(1.201270935 ξ)
> for i from 1 to 3 do
> zero[i-1]:=fsolve(Delta(xi)=0,
> xi,(i-1)/2..i/2) od;

zero0 := 0.
zero1 := 0.8439158081

zero2 := fsolve(erf(ξ) − tanh(1.201270935 ξ) = 0, ξ, 1..
3

2
)

> plot1:=
> plot({-0.02,0.02,0.02*H(xi-5),-0.02*H(xi-5)},
> xi=0..5.001,color=black):
> plot2:=
> plot(erf(xi)-tanh(a[optimal][5]*xi),
> xi=0..5,color=black,th=3):

> plots[display]({plot1,plot2});

–0.02

–0.01

0

0.01

0.02

1 2 3 4 5
xi

Fig. B.9 Deviation between erf(ξ) and tanh(a, ξ) on [0, 5]

> L[2][5]:=sqrt((1/5)*Int((Delta)ˆ2,xi=0..5))=
> evalf(sqrt((1/5)*int((erf(xi)-
> tanh(a[optimal][5]*xi))ˆ2,xi=0..5)));

L25 :=
1

5

√
5

√∫ 5

0
Δ2 dξ = 0.009424169402

The following Figures illustrate the erro function erf(xi) and some inverse
approximations (1/a)*arctanh(xi):

> plot1:=plot({1,xi,H(xi-1)},xi=0..1.001,
> scaling=con,color=black):
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> plot2:=plot({erf(xi),(1/a[optimal][1])*
> arctanh(xi)},xi=0..1,0..1,color=black,th=2):
> plots[display]({plot1,plot2});
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Fig. B.10a erf(ξ) and (1/a) arctanh(ξ) on [0, 1]

> plot1:=plot({1,2,xi,2*H(xi-2),2*H(xi-1),
> -2*H(xi-1.002)},xi=0..2.001,scaling=con):
> plot2:=plot({erf(xi),(1/a[optimal][2])*
> arctanh(xi)},xi=0..2,0..2,th=2):
> plots[display]({plot1,plot2});

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2
xi

Fig. B.10b erf(ξ) and (1/a) arctanh(ξ) on [0, 2]
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> plot1:=plot({1,5,xi,5*H(xi-5),
> 5*H(xi-1),-5*H(xi-1.002)},
> xi=0..5.001,scaling=con,color=black):
> plot2:=plot({erf(xi),
> (1/a[optimal][5])*arctanh(xi)},
> xi=0..5,0..5,color=black,th=2):

> plots[display]({plot1,plot2});

0

1

2

3

4

5

1 2 3 4 5
xi

Fig. B.10c erf(ξ) and (1/a) arctanh(ξ) on [0, 5]

The results show that the approximant tanh(aξ) furnishes a suitable ap-
proximation to the error function erf(xi). In view of the inverse (1/a) tanh(ξ)
and the approximant tanh(aξ) the influence of the range [0, r] on the param-
eter a is less important.

In the following tables some pairs of LAPLACE transforms are listed. Ad-
ditional examples can be found in many textbooks, for instance in the books
of AMELING (1984), BRONSTEIN et al.(2000; 2004), DOETSCH (1971-73),
to name just a few. Furthermore, it is very convenient to use modern com-
puter algebra systems, for instance MATHEMATICA or MAPLE, which are
powerful tools indispensable in modern pure and applied scientific research
and education.
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Table B.1: LAPLACE transform pairs

f(t) for t > 0 L{f(t)} ≡ f̂(s) =
∞∫
0

f(t)e−stdt

a a/s

at a/s2

(1/2!)t2 1/s3

(1/3!)t3 1/s4

(1/n!)tn
1

sn+1
; (n ≥ 0, integer)

tn−1 exp(at)
(n− 1)!

(s− a)n
; (n ≥ 1, integer)

tn
n!

sn+1
; (n ≥ 0, integer)

tp
Γ (p+ 1)

sp+1
; (p > −1)

δ(t) DIRAC 1

δ(t− a) exp(−as)

exp(at)
1

s− a
1

λ
exp(−t/λ) 1

1 + λs

1 − exp(−t/λ) 1

s(1 + λs)

t exp(at)
1

(s− a)2
1

a2
t exp(−t/a) 1

(1 + as)2

continued on next page
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Table B.1: LAPLACE transform pairs

f(t) for t > 0 L{f(t)} ≡ f̂(s) =
∞∫
0

f(t)e−stdt

exp(at) − exp(bt)

a− b
1

(s− a)(s− b)
a exp(at) − b exp(bt)

a− b
s

(s− a)(s− b)

(1 + at) exp(at)
s

(s− a)2
1

2
t2 exp(at)

1

(s− a)3(
t+

1

2
at2
)

exp(at)
s

(s− a)3

exp(iωt)
1

s− iω ≡ s+ iω

s2 + ω2

sinωt
ω

s2 + ω2

cosωt
s

s2 + ω2

sin2 ωt
2ω2

s(s2 + 4ω2)

cos2 ωt
s2 + 2ω2

s(s2 + 4ω2)

sin(ωt+ ϕ)
s sinϕ+ ω cosϕ

s2 + ω2

cos(ωt+ ϕ)
s cosϕ− ω sinϕ

s2 + ω2

exp(αt) sinωt
ω

(s− α)2 + ω2

expαt cosωt
s− α

(s− α)2 + ω2

continued on next page
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Table B.1: LAPLACE transform pairs

f(t) for t > 0 L{f(t)} ≡ f̂(s) =
∞∫
0

f(t)e−stdt

sinhωt
ω

s2 − ω2

coshωt
s

s2 − ω2

sinh2 ωt
2ω2

s(s2 − 4ω2)

cosh2 ωt
s2 − 2ω2

s(s2 − 4ω2)

exp(αt) sinhωt
ω

(s− α)2 − ω2

exp(αt) coshωt
s− α

(s− α)2 − ω2

t

2
sinωt

ωs

(s2 + ω2)2

t cosωt
s2 − ω2

(s2 + ω2)2

t

2
sinhωt

ωs

(s2 − ω2)2

t coshωt
s2 + ω2

(s2 − ω2)2

t2 sinhωt

2ω

3s2 + ω2

(s2 − ω2)3

1

2
t2 coshωt

s3 + 3ω2s

(s2 − ω2)3

1√
πt

1√
s

2

√
t

π

1

s
√
s

continued on next page
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Table B.1: LAPLACE transform pairs

f(t) for t > 0 L{f(t)} ≡ f̂(s) =
∞∫
0

f(t)e−stdt

4

3
t

√
t

π

1

s2
√
s

exp(−at)√
πt

1√
s+ a

erf
√
at√
a

1

s
√
s+ a

tν−1

Γ (ν)
exp(−at) 1

(s+ a)ν

a

2
√
πt3

exp(−a
2

4t
) exp(−a)√s

exp(−a
2

4t
)

√
πt

exp(−a√s)√
s

erf

(
x

2
√
Dt

)
1

s

[
1 − exp(−x

√
s/D)

]
erfc

(
x

2
√
Dt

)
1

s
exp
(
−x
√
s/D

)
1 − exp(at)

t
ln
s− a
s

exp(bt) − exp(at)

t
ln
s+ a

s− a
a+ b [1 − exp(−ct)] a

s
+ b

(
1

s
− 1

s+ c

)

a+ b
[
1 − exp(−c√t)] a

s
+

1

2

bc
√
π exp

(
c2

4s

)
erfc

(
c

2
√
s

)
s3/2

erf(t)
exp(s2/4) erfc(s/2)

s
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Table B.2: LAPLACE transfrom of HEAVISIDE functions

HEAVISIDE H(t) 1/s

ta

1
H (t−a)

1

s
exp(−as)

a

1

b t

H (t−a) − H (t−b)
1

s
[exp(−as) − exp(−bs)]

H(t− a) + 2H(t− 2a) + 3H(t− 4a)

a 2a 4a t

3

6

1

1

s
[exp(−as) + 2 exp(−2as)

+3 exp(−4as)]

H(t) + 2
N∑

n=1

(−1)nH(t− na)

1

−1

2a 3a 4aa t

(geometrical series)

1

s

[
1 + 2

N∑
n=1

(−1)n exp(−nas)
]

for N → ∞
⇓

1

s
· 1 − exp(−as)
1 + exp(−as)

continued on next page
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Table B.2: LAPLACE transfrom of HEAVISIDE functions

HEAVISIDE H(t) 1/s

H(t) −
N∑

n=0

(−1)nH(t− na)

1

2a 3a 4aa t

1

s

[
1 −

N∑
n=0

(−1)n exp(−nas)
]

for N → ∞
⇓
1

s(1 + exp(as))

H(t−a)−H(t−b)−H(t−c)+H(t−d)
1

−1

tba c d

1

s
[exp(−as) − exp(−bs)
− exp(−cs) + exp(−ds)]

(t− a)H(t− a) − (t− b)H(t− b)
1

tba

1

s2
[exp(−as) − exp(−bs)]

exp [−(t− a)/λ]H(t− a)

λa+

1

ta

λ

1 + λs
exp(−as)

{1 − exp [−(t− a)/λ]}H(t− a)

λa+

1

ta

λ
1

s(1 + λs)
exp(−as)
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Table B.3: LAPLACE transfrom of periodic functions

f(t) = f(t+ nT ) n ∈ IN 1

1 − e(−sT )

T∫
0

f(t)e(−st)dt

H(t) − 2H(t− a) + 2H(t− 2a)

1

t

T = 2a

a 3a2a

1

s
·1 − exp(−as)
1 + exp(−as) ≡ tanh

(as
2

)

H(t− a) − 2H(t− 2a)

a

1

t2a 3a

T = 2a 1

s [1 + exp(as)]

cosωt; T = 2π/ω

−1

1

2π/ω tπ/ω

s

s2 + ω2

sinωt; T = 2π/ω

−1

1

π/ω 2π/ω t

ω

s2 + ω2
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Encyclopedia of Physics, Vol. VIa/1, Springer Verlag, Berlin / New York.
BERTRAM, A. (2005). Elasticity and Plasticity of Large Deformations, Springer-Verlag,

Berlin/Heidlberg/New York.
BERTRAM, A. and OLSCHEWSKI, J. (1996). Anisotropic creep modeling of the single crystal

superalloy SRR 99, J. Comp. Math. Sci. 5: 12–16.
BESSELING, J. (1962). Investigation of transient creep in thick-walled tubes under axi-

ally symmetric loading, IUTAM Colloquium on Creep in Structures, Stanford University
1960, Springer, Berlin, pp. 174–194.

BETTEN, J. (1969). Mathematische Modelle in der Werkstoffkunde. Vorlesung an der RWTH
Aachen seit SS 1969.

BETTEN, J. (1971). Lösung von Festigkeitsproblemen unter Berücksichtigung des Kriechens.
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Eisenhüttenwes. 46: 317–323.

BETTEN, J. (1975b). Bemerkungen zum Versuch von Hohenemser, Z. Angew. Math. Mech.
55: 149–158.

BETTEN, J. (1975c). Zum Traglastverfahren bei nichtlinearem Stoffgesetz, Ing.-Archiv
44: 199–207.

BETTEN, J. (1975d). Zur Verallgemeinerung der Invariantentheorie in der Kriechmechanik,
Rheol. Acta 14: 715–720.

BETTEN, J. (1976a). Ein Beitrag zur Invariantentheorie in der Plastomechanik anisitroper
Werkstoffe, ZAMM 56: 557–559.

BETTEN, J. (1976b). Plastische Anisotropie und Bauschinger-Effekt; allgemeine For-
mulierung und Vergleich mit experimentell ermittelten Fließortkurven, Acta Mechanica
25: 75–94.

BETTEN, J. (1977). Plastische Stoffgleichungen inkompressibler anisotroper Werkstoffe, Z.
angew. Math. Mech. (ZAMM) 57: 671–673.

BETTEN, J. (1979a). Theory of Invariants in Creep Mechanics of Anisotropic Materi-
als, in J. P. BOEHLER (ed.), Euromech Colloquium 115 on ”Mechanical Behaviour of
Anisotropic Solids”, Grenoble, pp. 65–80.
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t-law, 218, 222-224, 229

L2-error norm, 224

A
ABEL integral equation, 315-316
accelerating creep, 51
activation energy for creep, 219
activation energy for self-diffusion, 219
actual net-stress tensor, 135, 150
alternating symbol, 11
anisotropic, 3, 113, 115
anisotropic damage, 138, 156-157
anisotropic damage growth, 81
anisotropic damage state, 81, 135
anisotropic damage tensors, 3, 77, 126
anisotropic hardening, 262
anisotropic materials, 109
anisotropic primary creep, 2, 61
anisotropic viscoplastic solids, 248
anisotropy tensor, 82
anomalous flows, 194
approximant, 331
ARRHENIUS function, 219
asymmetric effective stress tensor, 156
austenite, 250
austenitic steel, 52–61

B
BAUSCHINGER effect, 68, 97
best approximation, 266, 331–332
BINGHAM model, 246, 248
bivector, 81, 140–143
biaxial specimen, 262
body-fixed, 86
BOLTZMANN’s axiom, 44
BOLTZMANN’s superposition principle,

189, 197
brain tissue 231
BURGERS model, 229–236,
bulk modulus, 173, 176
bulk viscosity, 173–174

C
C-S-D effect, 123
canonical form, 82, 113–114, 136–137
capillar flows, 193
CAUCHY’s equation of motion, 47, 177
CAUCHY’s stress tensor, 44–48, 80, 138,

149, 155, 261
CAUCHY’s tetrahedron, 81
cavitation, 255
cavity growth, 256
characteristic equation, 14–15, 45, 132
characteristic polynomial, 127–130
Chi-square distribution, 204–205
CHRISTOFFEL symbols, 29–30
CHRISTOFFEL symbols of the first kind, 24,

27
CHRISTOFFEL symbols of the second kind,

24, 27
circumferential stresses, 95
classical flow rule, 111
classical normality rule, 109
classical strain tensor, 38
climbing of dislocations, 218
coaxial, 156
collocation method, 289
collocation point, 289
compatibility equations, 39
complementary energy, 157
complementary error function, 331
complex compliance, 234, 236
complex modulus, 234
complex parameters, 234, 236
complex shear modulus, 234
complex shear viscosity, 235
complex viscosity, 234, 237
compliance, 205
compressible fluids, 178
computer algebra systems, 336
condition of form invariance, 119
conditions of compatibility, 117
conjugate variables, 48
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constitutive equations, 31, 48–49, 119, 139,
239, 253–256

continuous transition, 292
Continuum Damage Mechanics, 3
Continuum Mechanics, 31
contravariance, 17
contravariant base, 22–23
contravariant base vectors, 19
contravariant components, 17, 22
contravariant components of a vector, 36
contravariant metric tensors, 20
contravariant tensor components, 29
convection rate of change, 34
convective rate, 178
convective stress rate, 182
convexity, 249
convolution, 199–200, 303, 315
convolution integral, 303
convolution theorem, 199–200, 304–307,

309, 312, 315
convolution type, 314
copolymer, 218
COSSERAT continuum, 41, 44
COUETTE-flow, 185
couple stresses, 47
couple-stress vector, 41
covariance, 17
covariant base vectors, 19, 22
covariant basis, 19, 23
covariant components, 17, 22
covariant components of a vector, 36
covariant derivatives, 25
covariant metric tensors, 20
covariant tensor components, 29
creep acceleration, 282–284
creep behavior, 237
creep behavior of concrete, 215
creep buckling, 2, 61
creep condition, 63, 121, 125, 253–254
creep criterion, 119
creep curve, 50–54, 58, 60, 165, 216–

218,224, 279–284
creep curves for concrete, 217–218
creep damage, 3, 77
creep function, 196–199, 201, 203–204,

206, 209, 211, 213, 215, 223, 239, 309,
315

creep integral, 198
creep mechanics, 1, 51, 330
creep parameters, 67, 282
creep potential, 2, 53, 62–63, 65, 70–71, 80,

109–110, 116

creep potential hypothesis, 2, 61, 109,
113–115

creep rate, 52, 61, 63, 78–79, 98, 165,
282–283

creep relation, 196
creep response, 198
creep spectra, 213, 215
creep strain, 218
creep tensor, 196
creep velocity potential, 2
creep-failure, 108
creep-strength-differential effect, 122–123
cubic splines, 267
curve fitting, 266
curvlinear coordinates, 16
cylindrical coordinates, 29

D
D’ALEMBERT’s principle, 46
damage effective stress, 139, 155, 157
damage effective tensor, 156, 158
damage equivalence hypothesis, 158
damage equivalence principles, 157
damage isotropy principle, 158
damage mechanics, 3–4
damage state, 254
damage tensor, 3, 80, 82, 115, 126, 139, 144
damage variables, 156
damaged continuum, 141, 143, 149
damaged materials, 115
damped free vibration, 233
damping factor, 233, 293
damping rule, 300
deflection curve, 311, 313
deformation gradient, 182, 202
del operator, 23
deviator, 14
deviatoric, 118, 123
die swell, 194
differentiation of the transform, 301
diffusion coefficient, 219
diffusion controlled process, 218–219, 330
diffusional creep, 218
diffusion equation, 330
diffusion way, 222
DIRAC function, 197, 288, 290, 294, 308,

310
discrete relaxation spectrum, 227
discrete retardation spectrum, 205–206
dislocation creep, 218–219, 256, 262
displacement vector, 34
dissipation power, 174
dissipative energy, 233
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dissipative force, 232
dissipative stress, 232
distortion, 14, 174
divergence of a vector field , 23
divergence theorem of GAUSS, 45
double tensor, 87
dual basis, 19
dual damage tensor, 144
dual tensor of continuity, 144
dyadic product, 25
dynamic behavior, 231
dynamic shear modulus, 235
dynamic shear viscosity, 235

E
effective stress tensor, 155, 158
eigenfrequency, 233
eigenvalue problem, 128, 131–132
eigenvalues, 45
eigenvectors, 45
elastic modulus, 196, 203
elastic solids, 195
elastoviscoplastic, 245
elementary symmetric functions, 15
elliptical hysteresis, 233
energy equivalence hypothesis, 157, 275,

372
energy dissipation, 231
equation of state, 171
equations of equilibrium, 26, 28, 46
equivalent creep strain, 91
equivalent stresses, 106
EUCLIDean space, 16, 49
EULER’s theorem on homogeneous

functions, 65
EULERian coordinates, 33
EULERian finite strain tensor, 37, 183–184
EULERian infinitesimal strain tensor, 38
EVA copolymer, 218
evolution of damage, 257
evolutional equations, 135, 253
experimental foundations of solid

mechanics, 253
extension flow, 167
expotential growth, 295
expotential order, 295
extension viscosity, 175, 203
external variables, 238
extra stress tensor, 171

F
fading memory, 189–190, 193, 202
failure time, 106

finite theory of elasticity, 47
finite-strain theory, 38, 108
first PIOLA-KIRCHHOFF stress tensor, 47,

186
flow potential, 61
flow rule, 63-64
fourth-order constitutive tensor, 81
fourth-order damage tensors, 139
fourth-order material tensor, 132
fourth-order permutation tensor, 133
fourth-order symmetric tensor, 133
fourth-order tensor, 15, 118, 138
FREDHOLM integral equation, 300
frequency ratio, 293

G
gamma distribution, 207
gamma function, 207, 297
GAUSS distribution, 292
GAUSS error function, 220, 331
generalized creep function, 205
generalized relaxation function, 226
geometrical non-linearities, 38
gradient of a vector, 25
grain boundary cavitation, 256
grain boundary diffusion, 255
growth mechanisms, 255

H
HAMILTON-CAYLEY theorem, 15, 69, 119,

160–161, 181
hardening of aluminium alloy, 272–274
harmonic loading, 231, 236
HEAVISIDE function, 95, 204, 239–241,

285–288, 290, 308
HENCKY equation, 252
HENCKY’s strain tensor, 89, 108
hereditary integral, 189, 195–198, 303
HILL-condition, 68
HOOKE element, 204, 226
hypothesis of energy equivalence, 157, 275,

372
hypothesis of strain equivalence, 157, 275,

377
hypothesis of the equivalent dissipation rate,

65, 164, 248
hysteresis, 231-234
hysteresis loop, 231

I
ideal material response, 49
impulse function, 292
incompatibility tensor, 39
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incompressibility, 250
incompressible NEWTONian fluid, 174
index notation, 9
inertial force, 46, 178
initial anisotropy, 81, 135, 139
integral equation, 295, 314–318
integrity basis, 29, 109, 112, 116, 118–120,

122, 131, 136, 165
integro differential equation, 325
intergranular creep fracture, 79, 255
internal variables, 238, 251
interpolation methods for tensor functions,

135, 159–160
invariant damage models, 158
invariant forms, 158
inverse LAPLACE transform, 215, 299
irreducible invariants, 14–15, 28–29, 45,

135, 165–166
irreducible tensor-generators, 134
isochoric, 90
isochoric distortion, 38
isotropic, 2, 114, 148
isotropic creep potential, 63
isotropic material, 81
isotropic tensor function, 158, 180

J
JAUMANN derivative, 80, 135
JAUMANN stress rate, 181
joint invariants, 119

K
KELVIN creep function, 316
KELVIN elements, 204
KELVIN model, 202–203, 205, 225, 26–237,

308–309, 316
KELVIN solid, 197
kernel function, 190, 315
kinetic equation, 78
KOHLRAUSCH function, 230
KRONECKER tensor, 20

L
LAGRANGE finite strain tensor, 36–38, 48,

182
LAGRANGE’s multiplier, 64
LAGRANGE infinitesimal strain tensor, 38
LAGRANGE multiplier method, 131–132
LAGRANGian coordinates, 33
LAME constants, 128
LAPLACE operator, 25, 28
LAPLACE parameter, 236–237
LAPLACE transform, 198, 207, 227–228,

236, 295, 298, 308, 310, 316, 326

LAPLACE transformation, 207, 295, 298,
306

LAPLACE transform of an integral, 302
LAPLACE transform pairs, 337-340
leastsquare curve fitting, 268–269
LEHR’s damping measure, 233
limiting creep stresses, 123
linear functional, 190, 193, 202
linear operator, 15, 44
linear standard solid model, 225
linear transformation, 13, 62, 156
linear viscoelastic, 198
linear viscous fluids, 171
linearity rule, 329
local rate, 178
local rate of change, 34
logarithmic strain tensor, 37–38, 90
longitudinal stresses, 95
loss angle, 232
loss compliance, 234
loss factor, 234
loss modulus, 234
LUDWIK-deformations, 89

M
mapped stress tensor, 63, 260
MARQUART-LEVENBERG algorithm, 215,

224, 250
material contravariant metric tensor, 89
material coordinates, 33, 86
material damping, 233
material deformation gradient, 34, 87
material description, 33, 186
material displacement gradient, 34
material objectivity, 181, 191, 202
material tensor of rank four, 118
material time derivative, 33, 39
material time derivative of the EULERian

strain tensor, 185
material time derivative of the LAGRANGE

strain tensor, 183
matrix notation, 9
MAXWELL distribution function, 210, 212,

215
MAXWELL fluid, 197, 201, 315
MAXWELL model, 189, 225, 237
measure of strain, 36
mechanical equation of state, 52
mechanical damping, 234
memory fluid, 189
mesocracks, 262
metallographical analysis, 256
metric tensor, 21, 87
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micro-cracks, 255
microscopic mechanisms, 255
microstructural creep, 263
minimum polynomial, 111, 113
minimum polynomial representation, 109,

249
MISES solid, 248
mixed metric tensor, 20
mixed tensor components, 29
model of MONKMAN and GRANT, 79
modified DIRAC delta functions, 294
modified POYNTING-THOMSON model,

229
modified flow rule, 116–118
modified standard solid model, 229
modified (continuous) HEAVISIDE

function, 292
modified delta function, 289
MONKMAN-GRANT product, 80
multi-axial creep behavior, 196
multiaxial, 159
multiaxial state of stress, 139

N
NAVIER-STOKES equations, 177–178
net-stress concept, 79
net-stress tensor, 80–81, 149, 155, 157
NEWTONian fluid, 172, 177, 248
nominal (engineering) stress, 254
non-NEWTONian fluids, 171, 176, 179, 181,

189, 193
nonlinear creep behavior, 223
nonlinear dashpot, 223
nonlinear effects, 232
nonlinear viscous fluids, 171, 174
nonpolar case, 47
normal distribution, 221, 292
normal stress effects, 194
normality rule, 112
normalized creep spectra, 206
normalized relaxation spectra, 227
NORTON-BAILEY creep law, 61, 64, 78–79,

162, 165

O
objective tensor, 184
OLDROYD time derivative, 185
OLDROYD time derivative of the EULERian

strain tensor, 185
operational calculus, 295
orthogonal tensor, 184
orthonormal basis, 10, 16
orthotropic behavior, 114

orthotropic material, 67

P
parabolic exponential function, 215
partial differential equation, 295, 329
partial fraction expansion, 241, 299
perforated materials, 115
perforation tensor, 115
phenomenological, 255
physical components, 26
PIOLA-KIRCHHOFF stress tensors, 47
plastic potential, 61, 63–64, 90, 92
plastic viscosity, 246
polar decomposition theorem, 35
polymer melt, 237
polymer solution, 237
polymers, 195, 202, 218
POISEUILLE-flow, 193
POISSON distribution, 207–209, 228
POYNTING effect, 70–71
POYNTING-THOMSON model, 226
primary creep curve, 53-54, 58
primary stage, 263
principal directions, 44
principal invariants, 127
principal minors, 15
principal planes, 44
principal stresses, 44
principal values, 160
principle of duality, 87
principle of material frame-indifference, 50,

172, 179, 191
principle of material objectivity, 50, 179
principle of maximum dissipation rate, 63
PRONY-series, 218, 231
projection concept, 165
pseudo-net-stress tensor, 135, 137–138, 151,

157

R
RAMBERG-OSGOOD relation, 270–271
rate of dissipation, 164
rate of dissipation of creep energy, 65, 121,

127
rate-of-deformation tensor, 39, 48, 82, 109,

179–180
reciprocal basis, 19
reference configuration, 32
reference time, 32
REINER-RIVLIN fluids, 181
relative deformation gradient, 191-192
relative right CAUCHY-GREEN tensor, 191
relaxation, 196
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relaxation function, 197–199, 201, 225–227,
235, 240–243, 316

relaxation integral, 198
relaxation modulus, 227
relaxation spectra, 225, 227, 229
relaxation time, 189, 225–226, 237
representations for tensor functions, 158
residual stresses, 97
resonance, 234
retardation time, 203–205, 237
rheological models, 195
right CAUCHY-GREEN tensor, 36, 89, 192,

202
right stretch tensor, 89
rigid rotation, 35
rigid-body motion, 36
RIMROTT’s solution, 100
ROMBERG’s integration method, 103
rule of lowering and raising the indices, 21,

23

S
second PIOLA-KIRCHHOFF tensor, 47, 48,

185
second law of thermodynamics, 175
second-order effect, 70–72, 75–76,

115–116, 249–250
second-rank tensor, 13, 139
secondary creep, 263
secondary stage, 165
shear effect, 174
shear flow, 189
shear modulus, 197, 203
shear viscosity, 172, 175, 189, 203, 248
shearing flow, 172
shift rule, 299
similarity rule, 299
simplified representations, 135
simplified theory, 260–261
simultaneous invariants, 119, 125
small-strain theory, 38
solid part, 247
spatial coordinates, 33, 86
spatial covariant metric tensor, 90
spatial deformation gradient, 34, 87
spatial description, 33, 37, 186
spatial displacement gradient, 34
spherical coordinates, 30
spherical tensor, 14, 148
spring-dashpot models, 202
square wave, 286
stabilized glass, 230
standard form, 114

standard solid model, 204–205, 224, 239
steady creep, 51
STOKES condition, 174, 178
STOKES fluid, 174
storage compliance, 234
storage modulus, 234
strain equivalence hypothesis, 157, 275, 372
strain history, 189
strain-hardening-theory, 52, 54, 60
strain-to-rupture, 80
stress deviator, 162, 174
stress relaxation, 197–199, 223, 229
stress tensor, 2, 40, 42
stress vector, 40–41
structural relaxation, 229
substantial derivative, 33
substitution rule, 177
substitution tensor, 10
sufficient and necessary conditions of

compatibility, 118
summation convention, 10
superposition principle, 197
SYLVESTER theorem, 160
symbolic notation, 9

T
tautochrone, 323
tensor analysis, 23
tensor function theory, 2, 109
tensor functions, 49
tensor generators, 81, 112–113, 119,

134–136
tensor of continuity, 126, 142–143
tensor-valued functional, 190, 193
tensor-valued functions, 80
tensorial constitutive equations, 159
tensorial generalization, 79
tensorial interpolation method, 165, 252
tensorial nature, 156
tensorial nonlinear constitutive equation, 61
tensorial nonlinear constitutive equations

involving the strain hardening hypothesis,
2

tensorial nonlinearities, 2, 61, 252
tensors of continuity, 80
tertiary creep, 77, 80, 263
theorem of conjugate shear stresses, 44
theory of viscoplasticity, 245
thermodynamic pressure, 174
thin-walled shells, 61
thin-walled tube, 74
time transform, 330
time-dependence, 254
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time-dependent measurement, 254
time-hardening-theory, 52, 55–56, 60–61
tissue, 231
traceless tensor, 14, 124
traction vector, 41
transformable functions, 298
transformed net-stress tensor, 150
transient creep, 51–52
transvections, 132, 134
transverse contraction ratio, 175, 232
transversely isotropic, 82, 114
TROUTON number, 176
true stress, 254
two-sided LAPLACE transformation, 295

U
unit impulse function, 288
unit step function, 285, 287

V
vector functions, 49
velocity gradient tensor, 180
vibro creep, 162
viscoelastic, 195
viscometric flows, 193
viscometric functions, 193

viscoplastic constitutive equation, 250
viscoplastic materials, 245
viscoplastic model, 246
viscosity tensor, 171
viscous fluids, 178, 195
viscous part, 247
viscous stress, 171
viscous stress tensor, 171, 189
void nucleation, 255
VOLTERRA integral equation, 314
volume change, 38, 174
volume elasticity modulus, 173, 176
volume viscosity, 173–176
vorticity tensor, 179, 181

W
weight function, 189, 290
weighted-residual method, 290
WEISSENBERG effect, 194

Y
yield condition, 245
yield function, 247, 249–250
yield strength in pure shear, 248
YOUNG’s modulus, 203




