
D. Weyns, S.A. Brueckner, and Y. Demazeau (Eds.): EEMMAS 2007, LNAI 5049, pp. 3–16, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Complex Systems and Agent-Oriented Software
Engineering

Juan Pavón1, Francisco Garijo2, and Jorge Gómez-Sanz1

1 Facultad de Informática, Universidad Complutense Madrid
Ciudad Universitaria s/n, 28040 Madrid, Spain

2 Telefónica I+D
C/ Emilio Vargas 6, 28043 Madrid, Spain

jpavon@fdi.ucm.es, fgarijo@tid.es, jjgomez@sip.ucm.es

Abstract. Although there is a huge amount of work and valuable proposals
about agent oriented software engineering, it seems that the paradigm has not
been yet widely adopted by software industry. Some claim that there is a need
for a killer application showing clearly the benefits of multi-agent systems with
respect to other techniques. Others may consider the approach as too academic
to be applied in real projects. However, in our opinion, the answer may be
found in the simple explanation of lessons learned while developing applica-
tions with agent-orientation, and confronting these with object and component
oriented solutions, especially when faced to the development of complex sys-
tems. This paper discusses contributions of multi-agent systems from a software
engineering perspective, as a way to put in value some of the properties of the
agent paradigm in the development of complex software systems.

1 Introduction

The conception of software engineering methodologies should take into account both
theoretical works and the experiences of lessons learned. In the first case, the scientist
collects and contrasts information from different sources, which are mainly academic
(e.g., journal and conference papers, books), and analyse the best ways to synthesise
the work done in a coherent set of methods. Usually, the result is the definition of
some new modelling language, guidelines and examples to apply it, and a process
model. Other issues, such as code production and the availability of tools, are funda-
mental to put the methodology into practice, but they are not always taken into ac-
count. On the other hand, some experimented developers can derive, as a result of
accumulation of successful practices, a set of recommendations, which are usually
accompanied by tools. A good example is object-oriented design patterns. Unfortu-
nately, application developers working in industry lack of time and motivation to
write papers, and this may hinder the dissemination and systematization of their
knowledge. Both approaches are complementary and need each other.

This is perhaps a simplistic view, however, the intention here is to underline
several aspects that are usually underestimated, but have great relevance in
software engineering. In fact, the purpose of this discussion is to review some

4 J. Pavón, F. Garijo, and J. Gómez-Sanz

experiences of the application of agent-oriented software engineering in the devel-
opment of real systems, which involve coping with certain types of complexity.
The starting point is that most agent-oriented methodologies have been defined in
the academia and the impact in industry is very low. There are at least three impor-
tant reasons for this failure. The first is that there is not too much reporting on
agent-based developments, from a software engineering perspective. In fact, the
lack of consideration of implementation issues by academics, who stay usually at
analysis and design levels, broadens the gap with practitioners. Also, it should be
taken into account that agent-oriented methodologies are mainly concerned with
the production process (e.g., analysis, design, implementation, validation, etc., of
the software product). Essential aspects in the whole life cycle such as the man-
agement process, planning and control of resources, which are equally important,
are usually ignored in agent-oriented methodologies. This makes it difficult to put
agent-oriented methodologies in practice as they fail in logistics. Furthermore,
agent technology, although an appealing paradigm, is not alone and must coexist
with other technical approaches. In concrete, there are many techniques that could
be combined with agents such as service oriented architecture, software component
frameworks, aspect oriented programming, model driven engineering, software
product lines, etc. This integration is necessary and paves the way for the adoption
of multi-agent systems (MAS) in well established frameworks.

This paper looks at several issues that, from the experience of the authors, could be
of interest to software practitioners when considering agent-oriented software engi-
neering. It starts by considering the role of MAS for the development of modern com-
plex systems, in section 0. This motivates the need for the MAS approach, and the
role of architecture in MAS as a way to organize the use of patterns, which result
from experience in the development of applications. An example of a component-
based architecture for MAS is described in section 0, with the purpose to show that a
framework can help to enforce the reuse of patterns, as a way to improve the devel-
opment process. Section 0 identifies issues to take into account from a management
perspective in the software process, which are not usually covered in most agent-
oriented software engineering proposals. There is also a need to measure the impact
of the agent paradigm in software processes, and with this purpose section 0 presents
some work on metrics for MAS developments, considering two aspects: cost estima-
tion and the value of reusability. To conclude, section 0 summarizes relevant issues
that should be addressed by agent-oriented software engineering.

2 Multi-agent Systems for Modern Complex Systems

Software engineering was born in the late sixties as a way to cope with the software
crisis. This term denotes the problems to master the trade-off between customers’
requirements and the development costs, as well as the difficulty of writing correct,
understandable and verifiable computer programs as far as systems grow in complex-
ity [23]. As Dijkstra stated, the major cause for the software crisis was the fact that
machines have become several orders of magnitude more powerful [9]. At that time,
software was usually conceived to run in single computers. Various software method-
ologies contributed to manage complexity of software by considering several aspects

 Complex Systems and Agent-Oriented Software Engineering 5

that go beyond formal methods to guarantee algorithms correctness. The definition of
software processes, requirements engineering, analysis and design methods, etc.,
started to be applied with more or less intensity in software projects, and in some
cases with a high degree of success.

However, the last decade has introduced new elements for the complexity of soft-
ware systems, as a consequence of rapid and tremendous advances in networking and
multi-modal interface technologies. The first implies great connectivity and commu-
nication among software entities, and the second new ways to make end-users interact
with software systems. At the beginning, the development of object-oriented pro-
gramming languages and methodologies has, more or less, succeed to manage the
development of new systems. Objects adapt well to the client-server paradigm where
interface and implementation can be clearly separated. This promotes a kind of ab-
straction that facilitates interoperability in heterogeneous configurations.

As far as distributed computing progresses, the environment of software entities is
gaining complexity in several aspects, and this is motivating the need to review the
distributed object computing paradigm. It is not merely the interaction between one
entity and another, but of many to many. A software entity now is situated in a con-
text that only knows partially. For instance, which services are available, how to ac-
cess them, and with what quality of service. There are other issues in the environment
that provide uncertainty, such as the availability at a certain time of required resources
and services (e.g. there can be communication failures, security risks, disconnected
servers, etc.) Also some new opportunities, such as the appearance in the environment
of new entities that are able to provide new services, better quality of service, or a
lower cost. Such changing environment motivates the need to build software that
adapts continuously. And this ability to adaptation requires some degree of autonomy.
The management of some of these problems has motivated the evolution of object-
orientation towards component frameworks, where some services and abstractions are
made possible [25].

Moving forward to add more flexibility, by providing greater degree of autonomy
to components, is where the agent paradigm enters into scene. This autonomy is not
only understood in terms of self-management, as it is the case of the autonomic com-
puting initiative [20]. More concretely, it refers to the ability to specify agent goals
and the decision-making process [1, 8]. This has implications in the analysis and de-
sign of complex software systems, where most agent-oriented methodologies focus,
and it is reflected in MAS architecture, as it is explained in the following section. But
it should have also impact in the management process. MAS technology takes inputs
from different fields, not only computer science, such as Sociology, Biology, Psy-
chology and Organizational studies. This may involve the participation of multi-
disciplinary teams and their management. The management process has to deal with
setting a work environment for the fruitful collaboration of team members and with
the customer, planning of activities, provision and availability of resources on time,
quality assurance procedures, risk management, etc. In this respect, agent autonomy
can contribute as it facilitates separation of concerns and better organization of re-
sponsibilities among team members. This should be explicitly addressed by the corre-
sponding methodologies.

6 J. Pavón, F. Garijo, and J. Gómez-Sanz

3 Software Architectures for MAS

One of the best ways to cope with complexity is abstraction. Software engineering
deals with management of different levels of abstraction along the life-cycle of soft-
ware systems. For instance, requirements focus on what the system should provide,
design is concerned on the definition of solutions, from a high level identification of
system structure towards more complete specification of each component, and im-
plementation goes to the details of code. The accumulation of developers’ experiences
is reflected as patterns, ranging from idioms that shape the use of a particular pro-
gramming language to mechanisms that define the collaboration among societies of
objects, components, and other parts [4]. A system architecture enforces the use of a
set of patterns. This implies the establishment of behaviour principles and a system
structure. Both facilitate the management of complexity by a separation of concerns.
In this way, the system architecture guides the developer in the identification of rele-
vant system features and the application of patterns. This means that system architec-
ture represents the link between the result of experience in the development of
complex systems and the intention to reuse well-proven solutions.

Traditionally, proposals for agent architectures are categorized as reactive, cogni-
tive, or hybrid. They are useful for building particular agents with specific abilities
(e.g., reasoning, learning, real-time responsiveness). For complex systems, we need to
consider also architectures with a wider scope, at the MAS level. In this sense, there is
a growing number of proposals, which can be found in most agent-related confer-
ences, for particular applications. Here we present a MAS architecture, the ICARO-T
framework by Telefónica I+D (TID), which can be applied for a wide scope of agent-
based applications. This MAS framework provides a component-based architecture
for MAS to work at MAS organizational level and individual agent level. It is the
result from the cumulative experience in the development of agent-based applications
in the last eight years. Therefore, the architecture has been elaborated, refined and
validated through the realization of several agent-based applications. The first system
discovered patterns for building reactive and cognitive agents. It was a cooperative
working system [11], which was refined with the development of a project manage-
ment system for the creation of intelligent network services [14]. Scalability of the
cognitive agent model was considered in a context with thousands of users, in a MAS
that supported personalization of web sites [13], and the reuse of this solution in an
online discussion and decision making system [22] and a prototype to validate the
MESSAGE methodology [6]. Refinements where applied to several services with
voice recognition at Telefónica [10].

An application in the ICARO-T framework is modeled as an organization made up
of controller components, which are agents, and resources. Therefore, there are two
layers in the organization: the control layer, which is made up of controller compo-
nents, and the resource layer, made up of the components that supply information or
provide some support functionality to the agents to achieve their goals. The service’s
organization is shown in Figure 1.

The Control Layer contains two categories of controller components: managers
and specialists. Their interfaces and internal structure are similar; however, they play

 Complex Systems and Agent-Oriented Software Engineering 7

cmp OrganizationView Resources

Resource Layer

Control Layer

Application Resources

Persistency Resources

Information Resources

Visualization Resources

Service Control

Service Installation
&Configuration

Service Supervision

OrganizationManager

OrganizationManagerUseIntf

ResourceManager

ResourceManagerUseIntf

ResourceManagerMngtItf

AgentManager

AgentManagerUseIntf

AgentManagerMgmtItf InstallationManagement

ConfigurationManagamente

ApplicationAgent2

ApplicationPersistanceComp1

ApplicationPersistanceComp2

ApplicationPersistanceComp2useItf

ApplicationPersistanceComp2MgntI

VisualizationComp2

DomainInformationComp1
DomainInformationComp2

DomainInformationComp2UseItf

DomainInformationComp2MgntItfApplicationResource1
ApplicationResource2

ApplicationResource3

ApplicationResource3UseItf

ApplicationResource3MgntItf

ApplicationAgent3ApplicationAgent1

ApplicationAgent1useItf

ApplicationAgent1MgntItf

VisualizationComp1

VisualizationComp1useItf

VisualizationComp1MgntItf

«repports»«repports»

«Manages»

«Manages»

«repports»

«Manages»

«Manages»

«use» «use»

Fig. 1. ICARO-T framework architecture

different roles. Manager components are responsible for the management aspects of
the service such as installation, configuration, activation, monitoring and exception
handling. Specialist components are in charge of achieving the functionality of the
service. Managers and specialists collaborate to accomplish their tasks during the
whole service life cycle. It is important to note here the relevance of management
components, as this is an issue normally underestimated in most agent prototypes. In
this way the framework provides well-proved patterns to cope with common problems
associated with installation, initialization, monitoring and reconfiguration of agents
and resources in the system. Following these patterns, developers are forced to be
aware of the basic management functionality that new components (agents or re-
sources) have to provide to be manageable. And the framework will take care of
them.

8 J. Pavón, F. Garijo, and J. Gómez-Sanz

To highlight the role of each controller, the control layer is divided into three areas
(as shown in Figure 1):

• Service Control. This area contains the application agents implementing the
service functionality.

• Service Supervision. This area contains the Organization Manager, the Agent
Manager Organization Manager and the Resource Manager. These compo-
nents have hierarchical roles. The Organization Manager is responsible of the
creation and supervision of the overall application, while the Agent Manager
is in charge of the creation and supervision of application agents, and the Re-
source Manager takes care of the availability of access to resources by agents
that require them. Both agents reports to the Organization manager which in
charge of taken decisions. Note that an efficient management of resources is
one of the main goals for any organization.

• Service Installation and Configuration. This area contains the Installation
Manager and the Configuration Manager, which will provide service installa-
tion and configuration functionality.

The Resource Layer considers three basic types of resources, although others could
be considered when needed. These are:

• Persistency Resources: provide object persistency through relational data-
base management. They offer operational interfaces to store and recover ap-
plication data.

• Registry Resource: this component is used to register and access the sys-
tem’s available services.

• Visualization Resources: they provide user interface facilities such as presen-
tation screens and user data acquisition for agents to interact with users.

The ICARO-T framework provides the developer with agent patterns including de-
tailed design descriptions in UML, Java code consistent with the design description,
and guidelines for creating application components using agent patterns. The main
advantage of the ICARO-T framework is that it provides to engineers not only con-
cepts and models, but also architectural patterns and flexible components. The
ICARO-T framework focus on providing an agent component fully compatible with
software engineering standards, while in other agent based platforms, such as FIPA,
the focus is on communication standards. In this sense both are complementary, but
FIPA is more limited in scope as it provide engineers with communication infrastruc-
ture but nothing about the communicating entities, which are the agents. In concrete,
it provides two agent patterns, one for reactive agents and other for cognitive agents.
The structure of components for building a cognitive agent is shown in Figure 2. This
shows that a cognitive agent also follows the management pattern by providing a
manager interface. The pattern shows that an agent has a perception and a knowledge
processor component. This is usually the most complex part, and the architecture
facilitates its implementation by structuring it in several components: a cognitive
control component, and inference engine, a set of basic entities to represent agent
mental state, and a task manager. The architecture provides the way these components
interrelate from both structural and dynamic points of view. For this reason it is

 Complex Systems and Agent-Oriented Software Engineering 9

important to represent dynamics. For this case, Figure 3 shows how a cognitive agent
processes events from its environment (from applications, messages from other
agents, or the result of tasks). These are taken by the Perception component, which
filters events and decides which are considered by the agent to generate evidences in
agent’s knowledge base. Evidences are put in a queue for processing by the inference
engine, which takes into account the goals of the agent. Thus, with evidences, the rule
engine will be able to determine goal resolution, task execution, or changing the focus
of the agent.

Observe that the cognitive agent architecture facilitates the work of the developer by
providing the mechanisms for agent perception and reasoning. The developer has to con-
centrate on the definition of agent goals, the identification of agent perceptions and how
they are represented in agent mental state, and the definition of tasks that the agent can
execute. There is also flexibility to change some components. For instance, the rule engine
has been changed from Jess [http://herzberg.ca.sandia.gov/] to ILOG Jrules [http://
www.ilog.com/products/rules/], and recently to Drools [http://labs.jboss.com/ drools/].

cd Cognitive Agent patternGeneralView

CognitiveAgentPattern

MgmIntfCgonitiveAgent

PerceptionIntfCongitiveAgent

Perception

+ AgentMessage
+ FactoriaPercepcionAgente
+ PercepcionAgenteAbstracto
+ ItfObtencionCreencias
+ ItfPercepcionAgente
+ Imp

Management

+ FactoriaGestionAgenteCognitivo
+ GestionAgenteCognitivoAbstracto
+ InterfazGestion
+ Imp

KnowlegeProcessor

BasicEntities

+ Believe
+ Focus
+ Objective
+ Task

TaskManager

+ TaskManager
+ Imp

CognitiveControl

ItfCognitiveControl

InferenceEngine

IntfRuleEngine IntfWorkingMemory

InferenceEngine

+ FactoriaAdaptadorMotorReglas
+ ItfMotorReglas
+ OyenteMemoriaTrabajo
+ Drools

Control

+ ControlCognitivoAbstracto
+ FactoriaControlCognitivo
+ ItfControlCognitivo
+ Imp

Fig. 2. Cognitive Agent architecture

In addition to agents, there are also other kind of patterns:

• Organisations patterns modelling agent based applications.
• Resource patterns encapsulating computing entities providing services to

agents. These services include message oriented middleware, transaction
monitors, security and authentication services, information services, databases,
visualization, speech recognition and generation, etc.

• Basic components, which model components for building new agent and re-
source models. This category includes abstract data types, specialized libraries,
domain ontologies, rule processors, buffers, etc.

10 J. Pavón, F. Garijo, and J. Gómez-Sanz

Fig. 3. Behaviour of a cognitive agent

In the way to cope with complexity, the availability of a component-based archi-
tectural framework facilitates the development of MAS in several ways:

• Software entities are categorized either as agents or resources. This implies a
clear design choice for the developer.

• Environment can be modelled as a set of resources, with clear usage and man-
agement interfaces. Availability of resources can be dynamic. But there are
standard patterns and mechanisms in the framework to facilitate their access.

• Management of agents and resources follows certain patterns and most man-
agement functionality is already implemented. This relieves the developer of a
considerable amount of work, and guarantees that the component will be under
control.

• In concrete, the framework enforces a pattern for system initialization. This is
particularly important in MAS where multiple distributed entities have to be ini-
tialized consistently and this turns out to be a complex issue in many systems.

• Agents work as autonomous entities and encapsulate their behaviour (reactive,
cognitive, hybrid) behind their interfaces.

• Interactions can be defined at an application level, independently of the under-
lying middleware (remote objects, web services, FIPA, etc.)

4 AOSE and Process Management

The ICARO-T framework shows the relevance of management in any application.
This is in fact one of the common functionality that is supported by component-based

ad CicloBasicoFuncionamiento

Goal Resolution Engine

Rule Engine

PerceptionEnvironment

Appl Resource Send
Event

Communication
Resource

Send
Message

Generate
Evidence Asimilate

Evidence

Check Goal
resolution

Check
Focalization
conditions

Process
Perceived Item

Check TaskExecution
Conditions

Task Send Event

Filter

Evidence Queue

Decode

Change
Focus

(::)

Execute
Task
(::)

Solve Goal
(::)

Environment
Info Queue

Process New
Evidence

Get
Item

queued
Evidence

Send to Goal
Res Eng

Process
item

queued
item

Get new
Evidence

 Complex Systems and Agent-Oriented Software Engineering 11

frameworks. But management has to be considered also from the perspective of the
software process, and this is a weak point in most agent-oriented methodologies.
MAS-Common KADS [16], one of the first agent-oriented methodologies but now
inactive, is probably the only to have addressed this issue, as it takes this from more
classic software engineering approaches.

Most agent-oriented applications now are mostly prototypes and do not involve
teams of more than half a dozen persons. But there are several issues that agent-
oriented applications development will have to face. It is common to consider in soft-
ware engineer three basic elements, the three P: Persons, Process, and Product. The
product has been the focus by now, as it has been stated before, but there are issues to
consider about the first two: Persons and Process.

Persons are the most important factor for success of a software project. We have
also mentioned that in the future we can expect more and more interdisciplinary
teams, and as far as MAS are applied in more ambitious applications, MAS develop-
ment teams will increase in number of persons considerably. In order to manage per-
sons, several issues have to be taken into account, such as:

• Difference in skills of the team members.
• Variability of the composition of the team members. In academia it is common

to have grant holders for specific periods of time. In industry, there is not a pe-
riodicity, but rather unexpected changes in the team composition (people that
moves from one project or company to other).

• Organization structure. This involves the identification of responsibilities of
the team members, and the role of the team in its institution, i.e., how the team
can get access to resources in its organization.

• Corporate culture.
• Development strategies and tactics.

A way to cope with some of these issues is to have clear organizational norms but
also that the architecture of a complex system can be structured into flexible and in-
dependent parts which may be assigned to specific members of the team according to
their personal profiles.

Generally, the process is quite short in agent-oriented methodologies. It is usually
defined as a set of some simple steps. The particularities of the development process
when agent technology is involved needs a deeper study. The question is not trivial
and requires a huge effort, since every argument needs weeks or months or work to
test each development process instance. For instance, what are differences between a
waterfall process model and a spiral process model for a specific problem domain
when using the agent paradigm? These models have concrete features. The waterfall
model is visible (its internal state is easy to be known even though many people may
be involved), it is easy to comprehend (just a sequence of activities ordered lineally in
time), it is very sensible to changes in the requirements (it hardly allows to go back
and reconsider previous decisions easily), and it takes a long time until seeing some
software running (software is elaborated at implementation stage, by the end). A spi-
ral process is not visible, it is not easy to comprehend (it includes the concept of de-
velopment iteration, increment, or risk management among others), it permits to react
on unexpected changes in the requirements (it is possible because cycles of develop-
ment are shorter), and it produces software almost from the beginning of the project

12 J. Pavón, F. Garijo, and J. Gómez-Sanz

(it proceeds incrementally focusing on concrete features step by step). Most works in
agent oriented software engineering follow a waterfall model or a kind of customary
evolutionary model (spiral model is a kind of evolutionary process model) that, in any
case, are customized to the concrete specification language. The description of their
activities is rather short and limited, in most cases, to the generation of concrete
diagrams. To realize the gap between agent-oriented software engineering process
models and previous processes, it is clarifying to look at the descriptions of many of
existing process models. They require more than a sequence of steps in one page.

4.1 Risk Management

A software project manager faces a large list of issues. It is just illustrative to look up
the list of risks identified by the Software Engineering Institute [7]. These risks can
be managed in different ways, but in general they have to be identified, analyzed,
monitored, and solving/alleviating/contingency plans have to be devised. The rele-
vance of these risks in an agent-oriented methodology is high in some aspects. For
instance, there is a risk in [7] referring to the design area and the difficulty attribute.
This risk is characterized by the existence of unrealistic client requirements; require-
ments whose design may pose a challenge and for which there is no trivial solution.
This risk, and others that can be found in more recent risk management works [3], is
supposed to be evaluated by a team of workers against current client requirements list.
The team is assumed to determine what to do to attenuate the difficulty of these re-
quirements, for instance, by locating similar developments; to avoid the risk, for in-
stance finding a satisfactory solution to the requirement; or to deal with the negative
impact of the risk if it cannot be avoided, for instance, contacting experts in the con-
crete problem and dedicating extra time in the development for studying the problem.

4.2 Software Quality Assurance

Another problem in academy developments is the quality of the generated prod-
ucts. In an industrial project, Software Quality Assurance activities are relevant
since they ensure the product will meet client expectations as well as the criteria of
a professional practice of software development [17]. The IEEE Glossary [26]
provides two meanings for quality. The first refers to the extent to which a system,
component, or process meets specified requirements. The second refers to the de-
gree a system, component, or process meets customer or user needs or expecta-
tions. The relevance of these aspects for an agent development is clear but has
been considered slightly in the agent literature. For instance, from the perspective
of the professional practice of software engineering, there are no guidelines for
documenting a MAS. There are meta-models but these are not sufficient if the
complete behaviour of the MAS is to be captured. Another example from the ge-
neric perspective of the specification satisfaction, there is little concern about the
definition of specialized activities for the analysis of the specification elaborated
so far. Some initial concerns about quality start to appear in works like [27], where
a MAS architecture is developed pursuing some quality attributes, namely per-
formance, configurability, flexibility, and openness.

 Complex Systems and Agent-Oriented Software Engineering 13

Testing activities are starting to be explored in the context of MAS. The more
complex the problem, the more difficult the definition of tests that ensure the satisfac-
tion of initial requirements. The agent community is starting to realise these problems
and developing testing strategies integrated into agent oriented methodologies (see,
for instance, the ACLAnalyser tool [5]).

5 MAS Metrics

Measuring the products and activities of software engineering is an important task.
Metrics determine the degree to which an attribute is present in the measured element.
Activities responsible of applying different metrics can be enacted during the devel-
opment or at the end. When executed during the development, they provide valuable
information about the current state of the project. When used at the end, they permit
to measure the effectiveness (productivity, reusability, defect detection rate) of the
development team as well as the development process. Results from the different
measurements in a software project are stored in what is called a baseline. This base-
line contains historical data about the developments and it is a key element towards
predicting performance aspects of future projects.

In an agent-oriented development, metrics are relevant as well. They provide ob-
jective arguments that support the claims of the agent community about the benefits
of an agent oriented development. Therefore, it is an important task of the community
to collect statistical data about the different agent oriented developments. In this line,
we have already given preliminary steps, one about cost estimation [15] and other
studying reusability of code in an agent oriented development [10]. Although these
aspects are quite related to implementation, metrics benefit from the application of
good architectures and design practices. In this sense, the availability of a MAS archi-
tecture has an impact on cost estimation and reusability.

5.1 Cost Estimation

Providing adjusted cost estimation values in a project is not trivial at all. Trying to
translate traditional software engineering cost estimation techniques to the agent do-
main, we prepared a simple baseline made up of three projects with the participation
of industry [15]. This baseline contained statistical data about the lines of code of
each terminated product as well as an account of the average lines of code required to
represent each logical component (event, goal, rule, state machine, or task) of the
agents. Using this base line and well-known software engineering cost estimation
techniques based on lines of code, concretely COCOMO II, it was possible to esti-
mate with a reasonable precision the real cost of each project.

The reliability of these estimations depends greatly on the number of projects be-
longing to the baseline. In principle, the more projects are recorded, the more reliable
is the prediction. Nevertheless, accurate predictions depend as well of more factors,
like the problem domain, the experience of the development team, or the complexity
of the problem.

14 J. Pavón, F. Garijo, and J. Gómez-Sanz

5.2 Reusability

Reusing agent software across projects should start to be a common practice. To illus-
trate the benefits of reuse, Garijo et al. [10] introduce some measurements showing
important savings in the development of spoken dialog systems using a library of
agent based components, BOGAR_LN, a precedent of the ICARO-T framework.
Metrics were established to determine the percentage of reuse of library components,
and the time and effort required for design and implementation of application compo-
nents and subsystems.

In the design phase, metrics parameters focus on the number of classes and dia-
grams carried out. Metrics parameters for cognitive agent components also include
the number of objectives, tasks and classes in the re-used domain. For reactive agents,
the metrics parameters only consider the complexity of the control automaton (status,
types of event and transitions). In the implementation phase, the metrics parameters
consider the number of code lines corresponding to the implementation of classes.
The number of rules for cognitive agents, and the number of states of the Finite State
Automata of reactive agents, are also considered.

Experience gathered during the development of the CITA2 project (a mixed-
initiative spoken dialog system for appointment management over the telephone),
have shown that using the components allows substantial reduction in development
time and effort, concretely 65% less. Cost reduction was achieved without minimising
or skipping activities like design, documentation and testing. The number of errors in
the testing phase, and error detection/correction cycle duration, also decrease. The
testing period for CITA2, was one third of those spent for previous services in BO-
GAR, and the amount of errors was 60% smaller.

6 Conclusions

Today, most works in the agent community focus on concrete isolated problems. The
need of producing more pragmatic results has been already stated. Wooldridge et al.
[19] point at the need of more applications, and for that goal, more tools that enable
an agent oriented development. Luck et al. [21] continue this line, pointing at the lack
of proper development methods as the reason for slow penetration of the agent tech-
nology in the industry.

Various agent-oriented methodologies are contributing with agent-oriented model-
ling languages and tools to manage complexity of MAS development [1]. They have
shown that the agent paradigm is a valid technical solution for developing software in
an heterogeneous and changing environment. But they should look also at the logis-
tics for the production process and for the management process of the system. As it
has been mentioned, agent-oriented software engineering approaches are addressing
mainly the production process. How the agent concept can contribute to the manage-
ment process as a unit for work distribution, the role of the MAS and agents in the
planning of the development activities, the definition of quality assurance procedures
for agent-based applications, are pending issues. In this respect, the agent concept is
still underestimated.

 Complex Systems and Agent-Oriented Software Engineering 15

Given the degree of maturity in the development of agent-based applications, we
can start to consider some agent-based frameworks that enforce the use of certain
patterns, from system architecture to implementation, as the one shown in this paper.
The availability of agent-based frameworks, supported by agent-oriented methodolo-
gies that address the whole software process, will make MAS complexity manage-
able, and will allow reducing costs. To demonstrate this, we need well-defined met-
rics and a large baseline of MAS applications.

Acknowledgments

This work has been funded by the Spanish Council for Science and Technology
with grant TIN2005-08501-C03-01.

References

1. Barber, K.S., Martin, C.E.: Agent autonomy: Specification, measurement, and dynamic
adjustment. In: Proceedings of the Autonomy Control Software Workshop (1999)

2. Bernon, C., Cossentino, M., Pavón, J.: An Overview of Current Trends in European AOSE
Research. Informatica, An International Journal of Computing and Informatics 29(4), 379–
390 (2005)

3. Boehm, B.W., DeMarco, T.: Software risk management. IEEE Software 14(3), 17–19
(1997)

4. Booch, G.: Handbook of Software Architecture,
http://www.booch.com/architecture

5. Botía Blaya, J.A., Hernansaez, J.M., Gómez-Skarmeta, A.: Towards an approach for de-
bugging multi-agent systems through the analysis of agent messages. Computer Systems:
Science & Engineering 20(4) (2005)

6. Caire, G., et al.: Agent Oriented Analysis using MESSAGE/UML. In: Wooldridge, M.J.,
Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 119–135. Springer, Hei-
delberg (2002)

7. Carr, M., Kondra, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-Based Risk Identifi-
cation. Software Engineering Institute, Carnegie Mellon University. Technical Report
CMU/SEI-93-TR-006 (1993)

8. Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-based Reasoning
Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)

9. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10), 859–866
(1972)

10. Garijo, F.J., Bravo, S., Gonzalez, J., Bobadilla, E.: BOGAR_LN: An Agent Based Com-
ponent Framework for Developing Multi-modal Services using Natural Language. In:
Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS
(LNAI), vol. 3040, pp. 207–220. Springer, Heidelberg (2004)

11. Garijo, F.J., et al.: Development of a Multi-Agent System for Cooperative Work with
Network Negotiation Capabilities. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS,
vol. 1793, pp. 204–219. Springer, Heidelberg (2000)

12. Gómez-Sanz, J.J.: The Construction of Multi-agent Systems as an Engineering Discipline.
In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS
(LNAI), vol. 4457, pp. 25–37. Springer, Heidelberg (2007)

16 J. Pavón, F. Garijo, and J. Gómez-Sanz

13. Gómez-Sanz, J., Pavón, J., Díaz Carrasco, A.: The PSI3 Agent Recommender System. In:
Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.)
ICWE 2003. LNCS, vol. 2722, pp. 30–39. Springer, Heidelberg (2003)

14. Gómez-Sanz, J.J., Pavón, J., Garijo, F.: Intelligent Interface Agents Behavior Modeling.
In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 598–609. Springer,
Heidelberg (2000)

15. Gómez-Sanz, J.J., Pavón, J., Garijo, F.: Estimating Costs for Agent Oriented Software. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 218–230. Springer,
Heidelberg (2006)

16. Iglesias, C.A., Garijo, M., Centeno-González, J., Velasco, J.R.: Analysis and Design of
Multiagent Systems Using MAS-Common KADS. In: Rao, A., Singh, M.P., Wooldridge,
M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 313–327. Springer, Heidelberg (1998)

17. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.L. (eds.): Guide to de Software
Engineering Book of Knowledge. IEEE Computer Society, Los Alamitos (2004)

18. Jennings, N.: On agent-based software engineering. Artificial Intelligence 117(2), 277–296
(2000)

19. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Devel-
opment. Int. Journal of Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

21. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Com-
puting (A Roadmap for Agent Based Computing). AgentLink (2003)

22. Luehrs, R., Pavón, J., Schneider-Fontán, M.: DEMOS Tools for Online Discussion and
Decision Making. In: Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz,
M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 525–528. Springer, Hei-
delberg (2003)

23. Naur, P., Randell, B. (eds.): Software Engineering: report on a conference sponsored by
the nato science committee, Garmisch, Germany, NATO Science Committee (1968)

24. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 236–276.
Idea Group Publishing (2005)

25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Ad-
dison-Wesley, ACM Press (2002)

26. Software Engineering Standards Committee of the Software Engineering Technical Com-
mittee of the IEEE Computer Society. IEEE standard glossary of software enginering ter-
minology. Institute of Electrical and Electronics Engineers, Inc. Standard IEEE Std. 610–
612 (1990)

27. Weyns, D.: An Architecture-Centric Approach for Software Engineering with Situated
Multiagent Systems. Ph.D. Dissertation. Katholieke Universiteit Leuven (2006)

	Complex Systems and Agent-Oriented Software Engineering
	Introduction
	Multi-agent Systems for Modern Complex Systems
	Software Architectures for MAS
	AOSE and Process Management
	Risk Management
	Software Quality Assurance

	MAS Metrics
	Cost Estimation
	Reusability

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

