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Preface

Software intensive systems are increasingly expected to deal with changing user
needs and dynamic operating conditions at run time. Examples are the need for
life reconfigurations, management of resource variability, and dealing with par-
ticular failure modes. Endowing systems with these kinds of capabilities poses
severe challenges to software engineers and necessitates the development of new
techniques, practices, and tools that build upon sound engineering principles.
The field of multi-agent systems focuses on the foundations and engineering of
systems that consists of a network of autonomous entities (agents) that inter-
act to achieve the system goals. One line of research in multi-agent systems,
inspired by biological, physical and other naturally occurring systems, concerns
multi-agent systems in which agents share information and coordinate their be-
havior through a shared medium called an agent environment. Typical examples
are gradient fields and digital pheromones that guide agents in their local con-
text and as such facilitate the coordination of a community of agents. Since
environment-mediation in multi-agent systems has shown to result in manage-
able solutions with very adaptable qualities, it is a promising paradigm to deal
with the increasing complexity and dynamism of distributed applications.

Control in environment-mediated multi-agent systems is decentralized, i.e.,
none of the components has full access or control over the system. Self-organization
is an approach to engineer decentralized, distributed and resource-limited systems
that are capable of dynamically adapting to changing conditions and requirements
without external intervention. This useful system property is often reflected in
functions such as self-configuration, self-optimization, and self-healing. Engineer-
ing approaches to self-organizing systems often rely on global functionality to
emerge from local and autonomous decisions of individual agents that communi-
cate through a shared agent environment. When designing a system that is based
only on local interactions in the environment and the emergent properties result-
ing from these interactions, it is a difficult research problem on the one hand to
obtain the required global behavior of the system and on the other hand to avoid
undesired global properties.

A particular issue in the design of self-organizing systems is determining the
suitable complexity of the individual agents required to achieve the desired emer-
gent functions. Typically, agents in self-organizing systems are less complex in
their sensing, reasoning, and acting capabilities than agents in traditional multi-
agent systems that follow a deliberate organizing approach. But, depending on
the application domain, the functional requirements, and the sheer number of
agents available in a particular setting, individual agent complexity may vary. As
agent complexity increases, self-organization may become harder to achieve and
to prove. EEMMAS addresses the approach of environment mediation among self-
organizing agents that off-loads some of the agent complexity into the processes
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of the dynamic agent environment. Off-loading agent complexity into the agent
environment simplifies agent design, implementation, and evaluation and thus in-
creases the likelihood of a successful application development.

The papers in this volume include both selected and thoroughly revised pa-
pers from EEMMAS 2007 and invited papers. The papers show how the agent en-
vironment provides a design element that allows multi-agent system engineers to
manage complexity at different stages of the development life cycle. We hope that
the papers of this volume stimulate further research in environment-mediated
multi-agent systems.

March 2008 Danny Weyns
Sven Brueckner
Yves Demazeau
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Marco Dorigo Université Libre de Bruxelles, Belgium
Alexis Drogoul IRD/IFI/MSI, Hanoi, Vietnam
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Swarms of Self-assembling Robots 

Marco Dorigo 

IRIDIA, CoDE, Université Libre de Bruxelles 
Avenue Franklin Roosevelt 50, CP 194/6, B-1050 Brussels - Belgium 

mdorigo@ulb.ac.be 

Abstract. In this talk I present recent research in swarm robotics, the discipline 
that studies robotic systems composed of swarms of robots tightly interacting 
and cooperating to reach their goals. In particular, I will present a new type of 
robot, called swarm-bot, and the results of a number of experiments run with it. 
A swarm-bot [4,7] is an artifact composed of a swarm of assembled s-bots. The 
s-bots are mobile robots capable of connecting to, and disconnecting from, 
other s-bots. In the swarm-bot form, the s-bots are attached to each other and, 
when needed, become a single robotic system that can move and change its 
shape. S-bots have relatively simple sensors and motors and limited computa-
tional capabilities. A swarm-bot can solve problems that cannot be solved by s-
bots alone. In the talk, I first describe the s-bots hardware and the methodology 
we followed to develop algorithms for their control. Then I illustrate the capa-
bilities of the swarm-bot robotic system by showing video recordings of some 
of the many experiments we performed to study coordinated movement [1], 
path formation [8], collective transport [5], shape formation [2,3], and other col-
lective behaviors [6,9,10].  

Keywords: swarm robotics, swarm-bot, s-bots.  
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Abstract. Although there is a huge amount of work and valuable proposals 
about agent oriented software engineering, it seems that the paradigm has not 
been yet widely adopted by software industry. Some claim that there is a need 
for a killer application showing clearly the benefits of multi-agent systems with 
respect to other techniques. Others may consider the approach as too academic 
to be applied in real projects. However, in our opinion, the answer may be 
found in the simple explanation of lessons learned while developing applica-
tions with agent-orientation, and confronting these with object and component 
oriented solutions, especially when faced to the development of complex sys-
tems. This paper discusses contributions of multi-agent systems from a software 
engineering perspective, as a way to put in value some of the properties of the 
agent paradigm in the development of complex software systems. 

1   Introduction 

The conception of software engineering methodologies should take into account both 
theoretical works and the experiences of lessons learned. In the first case, the scientist 
collects and contrasts information from different sources, which are mainly academic 
(e.g., journal and conference papers, books), and analyse the best ways to synthesise 
the work done in a coherent set of methods. Usually, the result is the definition of 
some new modelling language, guidelines and examples to apply it, and a process 
model. Other issues, such as code production and the availability of tools, are funda-
mental to put the methodology into practice, but they are not always taken into ac-
count. On the other hand, some experimented developers can derive, as a result of 
accumulation of successful practices, a set of recommendations, which are usually 
accompanied by tools. A good example is object-oriented design patterns. Unfortu-
nately, application developers working in industry lack of time and motivation to 
write papers, and this may hinder the dissemination and systematization of their 
knowledge. Both approaches are complementary and need each other. 

This is perhaps a simplistic view, however, the intention here is to underline 
several aspects that are usually underestimated, but have great relevance in  
software engineering. In fact, the purpose of this discussion is to review some 
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experiences of the application of agent-oriented software engineering in the devel-
opment of real systems, which involve coping with certain types of complexity. 
The starting point is that most agent-oriented methodologies have been defined in 
the academia and the impact in industry is very low. There are at least three impor-
tant reasons for this failure. The first is that there is not too much reporting on 
agent-based developments, from a software engineering perspective. In fact, the 
lack of consideration of implementation issues by academics, who stay usually at 
analysis and design levels, broadens the gap with practitioners. Also, it should be 
taken into account that agent-oriented methodologies are mainly concerned with 
the production process (e.g., analysis, design, implementation, validation, etc., of 
the software product). Essential aspects in the whole life cycle such as the man-
agement process, planning and control of resources, which are equally important, 
are usually ignored in agent-oriented methodologies. This makes it difficult to put 
agent-oriented methodologies in practice as they fail in logistics. Furthermore, 
agent technology, although an appealing paradigm, is not alone and must coexist 
with other technical approaches. In concrete, there are many techniques that could 
be combined with agents such as service oriented architecture, software component 
frameworks, aspect oriented programming, model driven engineering, software 
product lines, etc. This integration is necessary and paves the way for the adoption 
of multi-agent systems (MAS) in well established frameworks. 

This paper looks at several issues that, from the experience of the authors, could be 
of interest to software practitioners when considering agent-oriented software engi-
neering. It starts by considering the role of MAS for the development of modern com-
plex systems, in section 0. This motivates the need for the MAS approach, and the 
role of architecture in MAS as a way to organize the use of patterns, which result 
from experience in the development of applications. An example of a component-
based architecture for MAS is described in section 0, with the purpose to show that a 
framework can help to enforce the reuse of patterns, as a way to improve the devel-
opment process. Section 0 identifies issues to take into account from a management 
perspective in the software process, which are not usually covered in most agent-
oriented software engineering proposals. There is also a need to measure the impact 
of the agent paradigm in software processes, and with this purpose section 0 presents 
some work on metrics for MAS developments, considering two aspects: cost estima-
tion and the value of reusability. To conclude, section 0 summarizes relevant issues 
that should be addressed by agent-oriented software engineering.  

2   Multi-agent Systems for Modern Complex Systems 

Software engineering was born in the late sixties as a way to cope with the software 
crisis. This term denotes the problems to master the trade-off between customers’ 
requirements and the development costs, as well as the difficulty of writing correct, 
understandable and verifiable computer programs as far as systems grow in complex-
ity [23]. As Dijkstra stated, the major cause for the software crisis was the fact that 
machines have become several orders of magnitude more powerful [9]. At that time, 
software was usually conceived to run in single computers. Various software method-
ologies contributed to manage complexity of software by considering several aspects 
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that go beyond formal methods to guarantee algorithms correctness. The definition of 
software processes, requirements engineering, analysis and design methods, etc., 
started to be applied with more or less intensity in software projects, and in some 
cases with a high degree of success. 

However, the last decade has introduced new elements for the complexity of soft-
ware systems, as a consequence of rapid and tremendous advances in networking and 
multi-modal interface technologies. The first implies great connectivity and commu-
nication among software entities, and the second new ways to make end-users interact 
with software systems. At the beginning, the development of object-oriented pro-
gramming languages and methodologies has, more or less, succeed to manage the 
development of new systems. Objects adapt well to the client-server paradigm where 
interface and implementation can be clearly separated. This promotes a kind of ab-
straction that facilitates interoperability in heterogeneous configurations. 

As far as distributed computing progresses, the environment of software entities is 
gaining complexity in several aspects, and this is motivating the need to review the 
distributed object computing paradigm. It is not merely the interaction between one 
entity and another, but of many to many. A software entity now is situated in a con-
text that only knows partially. For instance, which services are available, how to ac-
cess them, and with what quality of service. There are other issues in the environment 
that provide uncertainty, such as the availability at a certain time of required resources 
and services (e.g. there can be communication failures, security risks, disconnected 
servers, etc.) Also some new opportunities, such as the appearance in the environment 
of new entities that are able to provide new services, better quality of service, or a 
lower cost. Such changing environment motivates the need to build software that 
adapts continuously. And this ability to adaptation requires some degree of autonomy. 
The management of some of these problems has motivated the evolution of object-
orientation towards component frameworks, where some services and abstractions are 
made possible [25].  

Moving forward to add more flexibility, by providing greater degree of autonomy 
to components, is where the agent paradigm enters into scene. This autonomy is not 
only understood in terms of self-management, as it is the case of the autonomic com-
puting initiative [20]. More concretely, it refers to the ability to specify agent goals 
and the decision-making process [1, 8]. This has implications in the analysis and de-
sign of complex software systems, where most agent-oriented methodologies focus, 
and it is reflected in MAS architecture, as it is explained in the following section. But 
it should have also impact in the management process. MAS technology takes inputs 
from different fields, not only computer science, such as Sociology, Biology, Psy-
chology and Organizational studies. This may involve the participation of multi-
disciplinary teams and their management. The management process has to deal with 
setting a work environment for the fruitful collaboration of team members and with 
the customer, planning of activities, provision and availability of resources on time, 
quality assurance procedures, risk management, etc. In this respect, agent autonomy 
can contribute as it facilitates separation of concerns and better organization of re-
sponsibilities among team members. This should be explicitly addressed by the corre-
sponding methodologies. 
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3   Software Architectures for MAS 

One of the best ways to cope with complexity is abstraction. Software engineering 
deals with management of different levels of abstraction along the life-cycle of soft-
ware systems. For instance, requirements focus on what the system should provide, 
design is concerned on the definition of solutions, from a high level identification of 
system structure towards more complete specification of each component, and im-
plementation goes to the details of code. The accumulation of developers’ experiences 
is reflected as patterns, ranging from idioms that shape the use of a particular pro-
gramming language to mechanisms that define the collaboration among societies of 
objects, components, and other parts [4]. A system architecture enforces the use of a 
set of patterns. This implies the establishment of behaviour principles and a system 
structure. Both facilitate the management of complexity by a separation of concerns. 
In this way, the system architecture guides the developer in the identification of rele-
vant system features and the application of patterns. This means that system architec-
ture represents the link between the result of experience in the development of  
complex systems and the intention to reuse well-proven solutions. 

Traditionally, proposals for agent architectures are categorized as reactive, cogni-
tive, or hybrid. They are useful for building particular agents with specific abilities 
(e.g., reasoning, learning, real-time responsiveness). For complex systems, we need to 
consider also architectures with a wider scope, at the MAS level. In this sense, there is 
a growing number of proposals, which can be found in most agent-related confer-
ences, for particular applications. Here we present a MAS architecture, the ICARO-T 
framework by Telefónica I+D (TID), which can be applied for a wide scope of agent-
based applications. This MAS framework provides a component-based architecture 
for MAS to work at MAS organizational level and individual agent level.  It is the 
result from the cumulative experience in the development of agent-based applications 
in the last eight years. Therefore, the architecture has been elaborated, refined and 
validated through the realization of several agent-based applications. The first system 
discovered patterns for building reactive and cognitive agents. It was a cooperative 
working system [11], which was refined with the development of a project manage-
ment system for the creation of intelligent network services [14]. Scalability of the 
cognitive agent model was considered in a context with thousands of users, in a MAS 
that supported personalization of web sites [13], and the reuse of this solution in an 
online discussion and decision making system [22] and a prototype to validate the 
MESSAGE methodology [6]. Refinements where applied to several services with 
voice recognition at Telefónica [10].  

An application in the ICARO-T framework is modeled as an organization made up 
of controller components, which are agents, and resources. Therefore, there are two 
layers in the organization: the control layer, which is made up of controller compo-
nents, and the resource layer, made up of the components that supply information or 
provide some support functionality to the agents to achieve their goals. The service’s 
organization is shown in Figure 1. 

The Control Layer contains two categories of controller components: managers 
and specialists. Their interfaces and internal structure are similar; however, they play 
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Fig. 1. ICARO-T framework architecture 

different roles. Manager components are responsible for the management aspects of 
the service such as installation, configuration, activation, monitoring and exception 
handling. Specialist components are in charge of achieving the functionality of the 
service. Managers and specialists collaborate to accomplish their tasks during the 
whole service life cycle. It is important to note here the relevance of management 
components, as this is an issue normally underestimated in most agent prototypes. In 
this way the framework provides well-proved patterns to cope with common problems 
associated with installation, initialization, monitoring and reconfiguration of agents 
and resources in the system. Following these patterns, developers are forced to be 
aware of the basic management functionality that new components (agents or re-
sources) have to provide to be manageable. And the framework will take care of 
them. 
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To highlight the role of each controller, the control layer is divided into three areas 
(as shown in Figure 1):   

 

• Service Control. This area contains the application agents  implementing the 
service functionality.  

• Service Supervision. This area contains the Organization Manager, the Agent 
Manager Organization Manager and the Resource Manager. These  compo-
nents have hierarchical roles. The Organization Manager is responsible of the 
creation and supervision of the overall application,  while the  Agent Manager 
is in charge of the creation and supervision of application agents, and  the Re-
source Manager takes care of the availability of access to resources by agents 
that require them. Both agents reports to the Organization manager which in 
charge of taken  decisions.  Note that an efficient management of resources is 
one of the main goals for any organization. 

• Service Installation and Configuration. This area contains the Installation 
Manager and the Configuration Manager, which will provide service installa-
tion and configuration functionality. 

 

The Resource Layer considers three basic types of resources, although others could 
be considered when needed. These are: 

 

• Persistency Resources: provide object persistency through relational data-
base management. They offer operational interfaces to store and recover ap-
plication data. 

• Registry Resource: this component is used to register and access the sys-
tem’s available services. 

• Visualization Resources: they provide user interface facilities such as presen-
tation screens and user data acquisition for agents to interact with users. 

 

The ICARO-T framework provides the developer with agent patterns including de-
tailed design descriptions in UML, Java code consistent with the design description, 
and guidelines for creating application components using agent patterns. The main 
advantage of the ICARO-T framework is that it provides to engineers not only con-
cepts and models, but also architectural patterns and flexible components. The 
ICARO-T framework focus on providing an agent component fully compatible with 
software engineering standards, while in other agent based platforms, such as FIPA, 
the focus is on communication standards. In this sense both are complementary, but 
FIPA is more limited in scope as it provide engineers with communication infrastruc-
ture but nothing about the communicating  entities, which are the agents. In concrete, 
it provides two agent patterns, one for reactive agents and other for cognitive agents. 
The structure of components for building a cognitive agent is shown in Figure 2. This 
shows that a cognitive agent also follows the management pattern by providing a 
manager interface. The pattern shows that an agent has a perception and a knowledge 
processor component. This is usually the most complex part, and the architecture 
facilitates its implementation by structuring it in several components: a cognitive 
control component, and inference engine, a set of basic entities to represent agent 
mental state, and a task manager. The architecture provides the way these components 
interrelate from both structural and dynamic points of view. For this reason it is  
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important to represent dynamics. For this case, Figure 3 shows how a cognitive agent 
processes events from its environment (from applications, messages from other 
agents, or the result of tasks). These are taken by the Perception component, which 
filters events and decides which are considered by the agent to generate evidences in 
agent’s knowledge base. Evidences are put in a queue for processing by the inference 
engine, which takes into account the goals of the agent. Thus, with evidences, the rule 
engine will be able to determine goal resolution, task execution, or changing the focus 
of the agent.  

Observe that the cognitive agent architecture facilitates the work of the developer by 
providing the mechanisms for agent perception and reasoning. The developer has to con-
centrate on the definition of agent goals, the identification of agent perceptions and how 
they are represented in agent mental state, and the definition of tasks that the agent can 
execute. There is also flexibility to change some components. For instance, the rule engine 
has been changed from Jess [http://herzberg.ca.sandia.gov/] to ILOG Jrules [http:// 
www.ilog.com/products/rules/], and recently to Drools [http://labs.jboss.com/ drools/]. 

cd Cognitive Agent patternGeneralView

CognitiveAgentPattern

MgmIntfCgonitiveAgent

PerceptionIntfCongitiveAgent

Perception

+ AgentMessage
+ FactoriaPercepcionAgente
+ PercepcionAgenteAbstracto
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+ Imp
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+ GestionAgenteCognitivoAbstracto
+ InterfazGestion
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KnowlegeProcessor

BasicEntities

+ Believe
+ Focus
+ Objective
+ Task

TaskManager

+ TaskManager
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CognitiveControl

ItfCognitiveControl

InferenceEngine

IntfRuleEngine IntfWorkingMemory

InferenceEngine

+ FactoriaAdaptadorMotorReglas
+ ItfMotorReglas
+ OyenteMemoriaTrabajo
+ Drools

Control

+ ControlCognitivoAbstracto
+ FactoriaControlCognitivo
+ ItfControlCognitivo
+ Imp

 

Fig. 2. Cognitive Agent architecture 

In addition to agents, there are also other kind of patterns: 
 

• Organisations patterns modelling agent based applications. 
• Resource patterns encapsulating computing entities providing services to 

agents. These services include message oriented middleware, transaction 
monitors, security and authentication services, information services, databases, 
visualization, speech recognition and generation, etc. 

• Basic components, which model components for building new agent and re-
source models. This category includes abstract data types, specialized libraries, 
domain ontologies, rule processors, buffers, etc.  
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Fig. 3. Behaviour of a cognitive agent 

In the way to cope with complexity, the availability of a component-based archi-
tectural framework facilitates the development of MAS in several ways: 

 

• Software entities are categorized either as agents or resources. This implies a 
clear design choice for the developer. 

• Environment can be modelled as a set of resources, with clear usage and man-
agement interfaces. Availability of resources can be dynamic. But there are 
standard patterns and mechanisms in the framework to facilitate their access. 

• Management of agents and resources follows certain patterns and most man-
agement functionality is already implemented. This relieves the developer of a 
considerable amount of work, and guarantees that the component will be under 
control. 

• In concrete, the framework enforces a pattern for system initialization. This is 
particularly important in MAS where multiple distributed entities have to be ini-
tialized consistently and this turns out to be a complex issue in many systems. 

• Agents work as autonomous entities and encapsulate their behaviour (reactive, 
cognitive, hybrid) behind their interfaces.  

• Interactions can be defined at an application level, independently of the under-
lying middleware (remote objects, web services, FIPA, etc.) 

4   AOSE and Process Management 

The ICARO-T framework shows the relevance of management in any application. 
This is in fact one of the common functionality that is supported by component-based 
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frameworks. But management has to be considered also from the perspective of the 
software process, and this is a weak point in most agent-oriented methodologies. 
MAS-Common KADS [16], one of the first agent-oriented methodologies but now 
inactive, is probably the only to have addressed this issue, as it takes this from more 
classic software engineering approaches. 

Most agent-oriented applications now are mostly prototypes and do not involve 
teams of more than half a dozen persons. But there are several issues that agent-
oriented applications development will have to face. It is common to consider in soft-
ware engineer three basic elements, the three P: Persons, Process, and Product.  The 
product has been the focus by now, as it has been stated before, but there are issues to 
consider about the first two: Persons and Process. 

Persons are the most important factor for success of a software project. We have 
also mentioned that in the future we can expect more and more interdisciplinary 
teams, and as far as MAS are applied in more ambitious applications, MAS develop-
ment teams will increase in number of persons considerably. In order to manage per-
sons, several issues have to be taken into account, such as:  

 

• Difference in skills of the team members. 
• Variability of the composition of the team members. In academia it is common 

to have grant holders for specific periods of time. In industry, there is not a pe-
riodicity, but rather unexpected changes in the team composition (people that 
moves from one project or company to other). 

• Organization structure. This involves the identification of responsibilities of 
the team members, and the role of the team in its institution, i.e., how the team 
can get access to resources in its organization.  

• Corporate culture. 
• Development strategies and tactics. 
 

A way to cope with some of these issues is to have clear organizational norms  but 
also that the architecture of a complex system can be structured into flexible and in-
dependent parts which may be assigned to specific members of the team according to 
their personal profiles.  

Generally, the process is quite short in agent-oriented methodologies. It is usually 
defined as a set of some simple steps. The particularities of the development process 
when agent technology is involved needs a deeper study. The question is not trivial 
and requires a huge effort, since every argument needs weeks or months or work to 
test each development process instance. For instance, what are differences between a 
waterfall process model and a spiral process model for a specific problem domain 
when using the agent paradigm? These models have concrete features. The waterfall 
model is visible (its internal state is easy to be known even though many people may 
be involved), it is easy to comprehend (just a sequence of activities ordered lineally in 
time), it is very sensible to changes in the requirements (it hardly allows to go back 
and reconsider previous decisions easily), and it takes a long time until seeing some 
software running (software is elaborated at implementation stage, by the end). A spi-
ral process is not visible, it is not easy to comprehend (it includes the concept of de-
velopment iteration, increment, or risk management among others), it permits to react 
on unexpected changes in the requirements (it is possible because cycles of develop-
ment are shorter), and it produces software almost from the beginning of the project 
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(it proceeds incrementally focusing on concrete features step by step). Most works in 
agent oriented software engineering follow a waterfall model or a kind of customary 
evolutionary model (spiral model is a kind of evolutionary process model) that, in any 
case, are customized to the concrete specification language. The description of their 
activities is rather short and limited, in most cases, to the generation of concrete  
diagrams. To realize the gap between agent-oriented software engineering process 
models and previous processes, it is clarifying to look at the descriptions of many of 
existing process models. They require more than a sequence of steps in one page.  

4.1   Risk Management 

A software project manager faces a large list of issues. It is just illustrative to look up 
the list of risks identified by the Software Engineering Institute [7].  These risks can 
be managed in different ways, but in general they have to be identified, analyzed, 
monitored, and solving/alleviating/contingency plans have to be devised. The rele-
vance of these risks in an agent-oriented methodology is high in some aspects. For 
instance, there is a risk in [7] referring to the design area and the difficulty attribute. 
This risk is characterized by the existence of unrealistic client requirements; require-
ments whose design may pose a challenge and for which there is no trivial solution. 
This risk, and others that can be found in more recent risk management works [3], is 
supposed to be evaluated by a team of workers against current client requirements list. 
The team is assumed to determine what to do to attenuate the difficulty of these re-
quirements, for instance, by locating similar developments; to avoid the risk, for in-
stance finding a satisfactory solution to the requirement; or to deal with the negative 
impact of the risk if it cannot be avoided, for instance, contacting experts in the con-
crete problem and dedicating extra time in the development for studying the problem.   

4.2   Software Quality Assurance 

Another problem in academy developments is the quality of the generated prod-
ucts. In an industrial project, Software Quality Assurance activities are relevant 
since they ensure the product will meet client expectations as well as the criteria of 
a professional practice of software development [17]. The IEEE Glossary [26] 
provides two meanings for quality. The first refers to the extent to which a system, 
component, or process meets specified requirements. The second refers to the de-
gree a system, component, or process meets customer or user needs or expecta-
tions. The relevance of these aspects for an agent development is clear but has 
been considered slightly in the agent literature. For instance, from the perspective 
of the professional practice of software engineering, there are no guidelines for 
documenting a MAS. There are meta-models but these are not sufficient if the 
complete behaviour of the MAS is to be captured. Another example from the ge-
neric perspective of the specification satisfaction, there is little concern about the 
definition of specialized activities for the analysis of the specification elaborated 
so far. Some initial concerns about quality start to appear in works like [27], where 
a MAS architecture is developed pursuing some quality attributes, namely per-
formance, configurability, flexibility, and openness. 
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Testing activities are starting to be explored in the context of MAS.  The more 
complex the problem, the more difficult the definition of tests that ensure the satisfac-
tion of initial requirements. The agent community is starting to realise these problems 
and developing testing strategies integrated into agent oriented methodologies (see, 
for instance, the ACLAnalyser tool [5]).  

5   MAS Metrics 

Measuring the products and activities of software engineering is an important task. 
Metrics determine the degree to which an attribute is present in the measured element. 
Activities responsible of applying different metrics can be enacted during the devel-
opment or at the end. When executed during the development, they provide valuable 
information about the current state of the project. When used at the end, they permit 
to measure the effectiveness (productivity, reusability, defect detection rate) of the 
development team as well as the development process. Results from the different 
measurements in a software project are stored in what is called a baseline. This base-
line contains historical data about the developments and it is a key element towards 
predicting performance aspects of future projects.   

In an agent-oriented development, metrics are relevant as well. They provide ob-
jective arguments that support the claims of the agent community about the benefits 
of an agent oriented development. Therefore, it is an important task of the community 
to collect statistical data about the different agent oriented developments. In this line, 
we have already given preliminary steps, one about cost estimation [15] and other 
studying reusability of code in an agent oriented development [10]. Although these 
aspects are quite related to implementation, metrics benefit from the application of 
good architectures and design practices. In this sense, the availability of a MAS archi-
tecture has an impact on cost estimation and reusability. 

5.1   Cost Estimation 

Providing adjusted cost estimation values in a project is not trivial at all. Trying to 
translate traditional software engineering cost estimation techniques to the agent do-
main, we prepared a simple baseline made up of three projects with the participation 
of industry [15]. This baseline contained statistical data about the lines of code of 
each terminated product as well as an account of the average lines of code required to 
represent each logical component (event, goal, rule, state machine, or task) of the 
agents. Using this base line and well-known software engineering cost estimation 
techniques based on lines of code, concretely COCOMO II, it was possible to esti-
mate with a reasonable precision the real cost of each project.  

The reliability of these estimations depends greatly on the number of projects be-
longing to the baseline. In principle, the more projects are recorded, the more reliable 
is the prediction. Nevertheless, accurate predictions depend as well of more factors, 
like the problem domain, the experience of the development team, or the complexity 
of the problem.  
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5.2   Reusability 

Reusing agent software across projects should start to be a common practice. To illus-
trate the benefits of reuse, Garijo et al. [10] introduce some measurements showing 
important savings in the development of spoken dialog systems using a library of 
agent based components, BOGAR_LN, a precedent of the ICARO-T framework. 
Metrics were established to determine the percentage of reuse of library components, 
and the time and effort required for design and implementation of application compo-
nents and subsystems.  

In the design phase, metrics parameters focus on the number of classes and dia-
grams carried out. Metrics parameters for cognitive agent components also include 
the number of objectives, tasks and classes in the re-used domain. For reactive agents, 
the metrics parameters only consider the complexity of the control automaton (status, 
types of event and transitions). In the implementation phase, the metrics parameters 
consider the number of code lines corresponding to the implementation of classes. 
The number of rules for cognitive agents, and the number of states of the Finite State 
Automata of reactive agents, are also considered. 

Experience gathered during the development of the CITA2 project (a mixed-
initiative spoken dialog system for appointment management over the telephone),   
have  shown that using the components allows substantial reduction in development 
time and effort, concretely 65% less. Cost reduction was achieved without minimising 
or skipping activities like design, documentation and testing. The number of errors in 
the testing phase, and error detection/correction cycle duration, also decrease. The 
testing period for CITA2, was one third of those spent for previous services in BO-
GAR, and the amount of errors was 60% smaller. 

6   Conclusions 

Today, most works in the agent community focus on concrete isolated problems. The 
need of producing more pragmatic results has been already stated. Wooldridge et al. 
[19] point at the need of more applications, and for that goal, more tools that enable 
an agent oriented development. Luck et al. [21] continue this line, pointing at the lack 
of proper development methods as the reason for slow penetration of the agent tech-
nology in the industry.  

Various agent-oriented methodologies are contributing with agent-oriented model-
ling languages and tools to manage complexity of MAS development [1]. They have 
shown that the agent paradigm is a valid technical solution for developing software in 
an heterogeneous and changing environment. But they should look also at the logis-
tics for the production process and for the management process of the system. As it 
has been mentioned, agent-oriented software engineering approaches are addressing 
mainly the production process. How the agent concept can contribute to the manage-
ment process as a unit for work distribution, the role of the MAS and agents in the 
planning of the development activities, the definition of quality assurance procedures 
for agent-based applications, are pending issues. In this respect, the agent concept is 
still underestimated. 
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Given the degree of maturity in the development of agent-based applications, we 
can start to consider some agent-based frameworks that enforce the use of certain 
patterns, from system architecture to implementation, as the one shown in this paper. 
The availability of agent-based frameworks, supported by agent-oriented methodolo-
gies that address the whole software process, will make MAS complexity manage-
able, and will allow reducing costs. To demonstrate this, we need well-defined met-
rics and a large baseline of MAS applications. 
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Abstract. The increasing presence of application scenarios which are
based on large collections of active components having to adapt con-
tinuously to changing environmental requirements has led to several re-
search initiatives with the objective to create new concepts for the design
and operation of environment-mediated multiagent systems. In particu-
lar, Autonomic Computing (AC) and Organic Computing (OC) have
developed the vision of systems possessing life-like properties: They self-
organize, adapt to their dynamically changing environments, and estab-
lish other so-called self-x properties, like self-healing, self-configuration,
self-optimization etc. The impact of these initiatives will depend crucially
on our ability to demonstrate the benefits of these systems with respect
to some essential properties. Therefore, we need a clear understanding of
some key notions like adaptivity, robustness, flexibility, or their degree
of autonomy, allowing for self-x properties.

In this paper, a system classification of robust, adaptable, and adap-
tive systems is presented. Furthermore, a degree of autonomy is charac-
terized to be able to quantify how autonomously a system is working. The
degree of autonomy distinguishes and measures external control which is
exhibited directly by the user (no autonomy) from internal control of a
system which might be fully controlled by an observer/controller archi-
tecture that is part of the system (full autonomy). Finally, learning and
of trustworthiness are briefly addressed, since these are further essential
aspects of self-organizing, adaptive systems.

1 Introduction

Some of the major challenges for systems engineering arise from the trend of
increasing complexity in the design, development, and maintenance of technical
systems and from the necessity to adapt continuously to changing environmental
requirements. Organic Computing (OC), like other initiatives such as IBM’s
Autonomic Computing [1] or Proactive Computing [2], postulates the necessity
of a paradigm shift in the design of future technical applications, see e. g. [3]:

“It is not the question whether self-organised and adaptive systems will
arise but how they will be designed and controlled.”

This emphasizes the inherent challenge to provide appropriate concepts and
methods for dealing with intelligent, interacting systems, which might have to
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Fig. 1. Observer/controller architecture

cope with unanticipated events in their operating environment. In particular,
we have to endow these systems with more degrees of freedom allowing them to
self-organise in order to be able to adapt to potentially changing environmental
conditions and external goals and constraints, and on the other hand we have to
make sure that self-organization does not result in undesired behavior. Therefore,
there is a need for concepts to achieve controlled self-organization as a new design
paradigm. At first glance this seems to be a paradox, but it is necessary to cope
in an acceptable way with the degrees of freedom required by the process of
self-organization.

Within the German priority research program on OC [4] a generic architec-
tural concept for the design and analysis of OC systems has been developed,
the observer/controller architecture [5]. The (potentially) self-organizing system
under observation and control (SuOC), which constitutes some productive sys-
tem, will be endowed with a higher level of governance consisting of an observer
and a controller (cf. Fig. 1). The observer monitors the underlying system by
sampling the state and the properties of the different components and reports
an aggregated quantified context (i. e. a description of the currently observed
situation) to the controller. The controller evaluates this context with respect to
a given objective function and takes appropriate control actions whenever it is
necessary to influence the underlying system in order to meet the system goal.
This loop of observing and controlling has to guarantee that the behavior of
the SuOC stays within the external constraints. In particular, explicit control
actions should not be necessary unless a deviation from the desired behavior has
been detected or predicted, i. e. the SuOC would run autonomously as long as it
behaves well and satisfies the requirements as specified by the developer or the
user.
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The feasibility of the control actions is evaluated continuously by compar-
ing their predicted and observed impact. In this way, by on-line learning, every
action gets an associated fitness value. The generic controller architecture pro-
vides an additional loop for off-line learning which consists of a simulation-based
generation of new control actions having a minimal fitness level.

This generic observer/controller architecture bears similarities with concepts
and techniques known from other scientific disciplines like control theory, me-
chanical engineering [6,7], or autonomic computing [1,8]. However, OC empha-
sizes the crucial difference from these disciplines that the resulting architecture
is not a fully autonomous element. It is rather driven by external goals, and it
reports its system status to the user (or to some higher level object). The user
may intervene explicitly, e. g. by changing some system objectives or by initiating
directly some control actions. Furthermore, the generic architecture allows for
an adaptation of the control mechanism by utilizing on-line and off-line learning
simultaneously.

An abstract view of the generic observer/controller loop is serving as our
model for characterizing essential notions like robustness, adaptivity, or – ulti-
mately – controlled self-organization in technical application systems. Our goal is
to get significantly beyond the frequently followed attitude of using these terms
in an almost magical sense based on some black box model. Despite of the long-
term existence of these terms, in the context of technical applications based on
advanced information processing systems we still lack a precise quantitative def-
inition as a basis for a common understanding of these crucial concepts, which
is a necessary prerequisite for a systematic comparison of different designs of
self-organizing adaptive systems.

Based on a preliminary presentation at CEC 2007 [9], this paper elaborates
on ideas towards this end that have been developed within the German priority
research program on “Organic Computing” and it discusses some qualitative
and quantitative characterizations of the essential properties of self-organizing
technical systems. Section 2 introduces an abstract system model and provides
an organic traffic light controller as an example of a self-organizing system.
Characterizations of terms like robustness and adaptivity are given in Sect. 3,
followed by a quantitative notion of autonomy and (controlled) self-organization.
Aspects of learning and trustworthiness are briefly addressed in Sect. 5. Finally,
Sect. 6 provides some concluding remarks.

2 System Description

Our characterization of terms uses a rather abstract description of a system
which is based on the generic observer/controller architecture as depicted in
Fig. 1. Let S be some productive system (the system under observation and
control – SuOC), which processes some input and produces some output (cf.
Fig. 2). The specific nature of the input and output is not essential for the
purpose of this article, in a more detailed specification they would be specified
as some parameter vectors.
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Fig. 2. System description

S is assumed to be a structured system, consisting of (many) elements and
links, which interconnect these elements. We define the system structure to be an
attributed graph, the nodes of which are the elements, and its edges correspond
to the links between the elements. The attributes are associated to the system
(global attributes) or to the edges and elements (local attributes) giving infor-
mation like location, performance, storage capacity, communication bandwidth,
reliability etc. A re-organisation of S adds or removes nodes and/or edges from
the graph or modifies the attributes.

The behavior of the system may be influenced by its environment. This will
subsume everything that is external to S, including input and output of S, and
certain parameters (or attributes) which might have a disturbing effect on S.

At any given time t, the values of all the relevant attributes of the system
constitute its state z(t), i. e. if there are n attributes used to describe the state
of S, z(t) is a vector in some n-dimensional state space Z (also called parameter
space of S).

These parameters include a description of the evaluation criteria (also called
objectives) η1, . . . , ηk which are provided by the (external) user U (or by some
higher level entity). The evaluation criteria are assumed to map the system
state into the set of real numbers. The evaluation of the system might involve
rather complex operations, but this is irrelevant for the purpose of this paper.
The criteria allow to define a hierarchy of subspaces of Z characterizing the
performance of the system (cf. Fig. 3):

1. For simplicity, we assume that in an ideal state all the criteria evaluate to
zero, i.e. their values are assumed to measure the deviation from an ideal
state of the system. This set of ideal states is called target space TS. Typical
examples of evaluation criteria could be (i) “The load of the worker nodes
should be balanced.”, (ii) “All the nodes with red colour should be in the
upper half of the living space, the nodes with green colour should be in the
lower half.”, or (iii) “Move node x from A to B as fast as possible using not
more than k units of fuel.”. These examples show that the target space may
be quite large (although, in some cases, it might be a unique single state
zΩ).
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Fig. 3. State spaces of the SuOC

2. The system state z(t) is called acceptable if an acceptance criterion or thresh-
old θ on R

k is satisfied, i. e. θ(η1(z(t)), . . . , ηk(z(t))) is true. As a special case,
θ might refer to a vector of threshold values, which should not be violated
(i. e. surpassed) by the evaluation criteria. The set of all acceptable states is
also called the acceptance space AS. Obviously, the target space is a subset
of the acceptance space. A typical example of such a threshold would be
some upper bound on the accepted level of energy consumption while the
ultimate objective would be to achieve an optimal value.

3. If the system is in an inacceptable state (i. e. z(t) /∈ AS), two cases are
distinguished: If it is possible to modify the system state (by some control
action), such that at some later time t′ the state z(t′) is acceptable, the
system state is in the survival space SS. For example, if a car has a flat tire,
it can return into an acceptable state again by replacing the flat tire with a
spare tire. This might lead to reduced performance, i. e. the new state might
be acceptable, but not ideal. Otherwise, z(t) is in the “dead zone”, i. e. the
system cannot return into an acceptable state.

A crucial part of any system model is its dynamics, i. e. a specification of its
state transitions. We assume that the potential state transitions are specified
by some of the state attributes (e. g. a program or a transition table). Since we
are explicitly interested in a distinction between internal and external control
actions, we assume that there exist internal and/or external control mechanisms
CM , which allow to control the behavior of the system by setting some attributes
of the system and of its environment to specific values. Sometimes, it is assumed
that it is not possible to control environmental parameters. But, as e. g. in traffic
control, a speed limit could be viewed to be an environmental parameter which
might be modified by some external control unit. As mentioned in Sect. 1, in
the generic architecture of organic systems, CM will consist of an observer and
a controller having a number of standard components as described in detail in
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Fig. 4. System extended with control mechanism CM

[5]. The extended system model is sketched in Fig. 4; there, CM is external to
S but internal to the extended system S′.

As a concrete example of such a system we refer to an organic traffic control
system (OTC) as depicted in Fig. 5 (the example is taken from [10]). The system
under observation and control is a traffic light controller which determines the
length of the green periods for all the phases of a traffic light at some intersection.
This could be a simple fixed-time controller or a more sophisticated traffic-
adaptive controller which reacts to a number of different traffic parameters as
indicated in Fig. 6. For OTC, the control mechanism consists of two levels:

– Layer 1 observes the current traffic situation (using appropriate sensors for
detecting car frequencies, arrival rates etc.) and selects the most appropriate
parameter settings for the traffic controller. This is done using a learning
classifier system which is continuously evaluating the feasibility of its control
actions by some kind of on-line learning.

– Layer 2 is triggered whenever there is no appropriate or insufficient response
to a traffic situation: An evolutionary algorithm is used to generate more
appropriate parameter settings which are evaluated off-line using a micro-
scopic traffic simulator. Only those settings are transmitted to the lower level
which show a sufficient performance. This is a crucial aspect of this applica-
tion since it would not be acceptable to apply low quality control parameters
in real traffic.
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Fig. 5. Organic traffic control system (cf. [10])

Fig. 6. Traffic-responsive traffic control (cf. [10])

For further details of the OTC architecture the reader is referred to [10]. The
state vector of the OTC system consists of all the parameters that are relevant
for its behavior: Traffic sensors, traffic light control parameters, elements of the
rule base of the classifier system, the specification of the traffic simulator and
the evolutionary algorithm. Obviously, this is a very long list of parameters.
Therefore, the control mechanism has to select the most appropriate parame-
ters by defining a model of observation, which is focusing the observer on the
currently relevant attributes and selecting appropriate methods for analysis and
prediction.

The following sections characterize crucial properties of self-organizing sys-
tems based on the system description outlined in this section.
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Fig. 7. State changes due to disturbances and control actions

3 Adaptivity, Robustness, and Flexibility

An essential requirement on system performance is the capability to adapt rea-
sonably to changes in environmental parameters or in system objectives. In par-
ticular, a common objective is the capability to maintain a required behavior
or functionality in spite of a certain range of parameter variations. The stan-
dard notion for this is robustness. Different from this, the requirement to modify
the behavior because of certain changes of parameter values or of objectives
would correspond to the notion of flexibility. Obviously, both notions crucially
depend on the adaptivity of the system. In the following, a formalization of these
concepts is presented.

The basic assumption underlying all these notions is the necessity of the
system to react to changes of some parameter values. In our model, we are
dealing with changes in the system state which might have very different ori-
gin, e. g. there might occur spontaneous changes of internal system parameters
(e. g. due to component failures), or by environmental influences. Such a distur-
bance δ changes the state z(t) into some state δ(z(t)) (potentially with some
time delay ∆t and, consequently, the evaluation of the system changes from η
(= (η1(z(t)), . . . , ηk(z(t)))) to η + d with ηi(z(t)) + di = ηi(δ(z(t))).

As shown in Fig. 7 the state changes due to disturbances can be differently
severe with respect to the evaluation criteria. Some may leave the system within
the target space whereas others might move it into the survival space such that
it has to be “repaired” by some sequence of control actions. This leads to the
following characterization of robustness:

Let D be a nonempty set of disturbances. A system S is called strongly robust
with respect to D, iff all the disturbances δ ∈ D are mapping the target space
and the acceptance space into themselves (i. e. they are mapping ideal states into
ideal states and acceptable states into acceptable states).
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Furthermore, a system S is called weakly robust with respect to D, iff all the
disturbances δ ∈ D are mapping the acceptance space into itself (i. e. they might
map ideal states into acceptable states, which would refer to a degradation in
performance).

Obviously, strong robustness means that the system will continue to satisfy
the evaluation criteria even under certain parameter changes, whereas weakly
robust systems might show an acceptable deviation from an ideal behavior.

Example 1. An integrated circuit with automotive specification will function cor-
rectly from −30 °C to +50 °C. Within this temperature range, there is no control
action necessary, the system remains in an ideal state, and it is strongly robust
with respect to changes in temperature that do not go beyond the specified
range.

One could also define some quantitative notion of robustness by introducing
a degree of robustness : The degree of robustness would grow with the size of
D, and, if there exists some kind of distance measure on the state space, the
degree of robustness would increase with the distances between the original and
the disturbed state which do not lead to a significant deviation from ideal or
acceptable states. In particular, a system S would be more robust than a system
S′, if it would be (strongly or weakly) robust with respect to more or stronger
disturbances.

Using the distance measure on the state space, one could also characterize
the robustness of S with respect to smoothness, i. e. small deviations in the
parameter space should correspond to small(er) changes in the objective space.

By definition, if a system is in the survival space, there exists a sequence of
control actions which move it back into the acceptance space. Therefore, we call
a system adaptable with respect to a set of disturbances D, if the disturbances
in D will not move the system out of the survival space. We could call it per-
fectly adaptable with respect to a set of disturbances D if for every state in the
acceptance space and for every disturbance in D there is a sequence of control
actions leading the system into an ideal state.

Now, while adaptability merely states that there is the potential to move a
system back into the acceptance space or even into the target space, the much
more interesting case would be the capability of a system to do so without any
explicit external intervention. Consequently, a system S is called adaptive (with
respect to some set of disturances D), if – after some time interval ∆t – it returns
into an acceptable (or even ideal) state from any disturbed state without needing
any external control.

This definition of adaptivity does not refer explicitly to any internal control
actions by some (central or decentral) control mechanism. This is an essen-
tial point, since there are many examples of self-organising systems where the
adaptation to environmental requirements is an emergent effect of interactions
among the components of the system. The standard biological example for such
an adaptive system is the capability of ant colonies to find the shortest paths
around obstacles that are placed or moved spontaneously in their environment
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(cf. [11]). This capability is due to stigmergic interaction between the ants, plac-
ing pheromones on their paths and preferring directions with higher pheromone
concentrations when they are moving in their environment. Hence, the differ-
ence between adaptable and adaptive systems is not just a matter of setting
system borders appropriately (i. e. placing control mechanisms outside or inside
the system) but it addresses also the crucial emergent effects of interactions in
self-organizing systems (cf. [12]).

As is obvious from the definition, every (weakly or strongly) robust system is
also adaptive (since, in a robust system, the time interval ∆t equals zero).

While these definitions are referring to the complete sets of ideal or accept-
able states, one could define analogous notions of robustness or adaptivity with
respect to single states only. This would allow to define different degrees of ro-
bustness for individual states. In an inverse approach, one could also define the
notion of critical states:

A system S is in a critical state with respect to a set of disturbances D, iff
every disturbance in D will transform the current state of S into an inacceptable
state.

Although we did not specify how an adaptive system manages to move into an
acceptable state, we assume that in order to achieve adaptable and/or adaptive
behavior, control inputs c are triggered (such as switching on a cooling device or
lowering the clock frequency) whenever S enters a state outside of its acceptance
space (but inside its survival space, cf. Fig. 7), or whenever such a leave from
its acceptance space is predicted. These control inputs (which sometimes are
also called control actions) have to come from an external source (the user) in
the case of an adaptable system and will be triggered by the internal control
mechanism CM in the case of an adaptive system.

Hence, adaptive systems increase their effective robustness with the help of
the internal control mechanism, which modifies the values of some parameters
of the system or of the environment and thus influences the system behavior or
structure. However, this might involve a temporary deviation from the accep-
tance space and thus may lead to a (temporary) decrease in system quality.

The quality of an adaptive system may be measured in different ways, some
of which are listed below:

1. The distance of S from an ideal state (which may be defined as the norm of
η(z(t)) in R

k, e. g. a maximum norm), or, alternatively, the distance from
an acceptable state (both refer to distances in the objective space, not in the
parameter space),

2. The time it takes to move S from the present state in survival space back
into the acceptance space (this could refer to real time or to the number of
control actions that have to be applied),

3. The time it takes to move S into an ideal state, or
4. The maximum deviation of the system state from an ideal state (or the sum

of all such deviations) on the path from an initial state in the survival space
into the acceptance space.
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Fig. 8. Changes in state space structure due to changes in objectives

In general, we would like to distinguish two possible reasons for changes in
the state of S:

1. The system state z(t) changes due to a change of the system (e. g. a broken
component) or a change of the environment (disturbance δ) without any
changes in the evaluation criteria. If the system remains in the acceptance
space, this corresponds to the common understanding of a robust system.

2. The state z(t) changes due to modifications of the evaluation and acceptance
criteria. This would modify the target space and the acceptance space (as
indicated in Fig. 8). We call a system, which is able to cope with such changes
in its behavioral specification, a flexible system.

After having defined these different types of adaptive behavior the next sec-
tion focuses on a system classification with respect to different types of control
mechanisms.

4 Degree of Autonomy and Controlled Self-organization

While in the previous section we have looked at whether the behavior of a system
may be adjusted in response to changes in system or environmental attributes
such that the acceptance criteria are eventually met, we now turn to the question
to what extent this can be done by internal control actions only. That means we
characterize essential properties of self-organizing systems.

In our extended system model (cf. Fig. 4) we assumed the existence of some
control mechanism CM that could be used to influence the system appropriately,
if it deviates from the desired behavior. This requires adequate possibilities for
modifications of system parameters, either by using external control (by the user,
who might modify parameters of the CM) or by internal control which would
modify parameters of the SuOC only. In the following we assume that S is an
adaptable system.
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The range of possible modifications is characterized as follows:
An (internal) configuration of the SuOC S is determined by the values of a

collection of system or environmental attributes which are open to be modified
by control actions of the CM (cf. Fig. 4). These attributes will also be called
configuration attributes. The set of all the (theoretically) possible configurations
constitutes the (internal) configuration space of S. The variability of the internal
configuration space is measured by Vi = log(n) where n is the number of internal
configurations.

Obviously, Vi corresponds to the number of bits necessary to address all the
different configurations of the SuOC. The designer of a system has to specify
explicitly which of the system and environmental attributes will be configuration
attributes. Typically, this will include structural attributes of S. Furthermore,
any evaluation and acceptance criteria that are used inside of S will typically
belong to this set of attributes.

The control mechanism CM is responsible for selecting specific configurations
of S. Therefore, every control action influences the values of a subset of the
configuration attributes. We denote the number of bits of a specific control action
c by #c.

(a) internal configuration (b) external configuration

Fig. 9. Configuration spaces and control options

As mentioned already, the system S is assumed to be adaptable. Therefore,
the control mechanism CM has the task to direct the system back into the ac-
ceptance space whenever a violation of the acceptance threshold is detected or
predicted. Hence, a successful control mechanism will result in an adaptive sys-
tem S′ which is the combination of S and CM as indicated in Fig. 9. On the next
level, the user (or some higher level entity) should also be able to influence the
system. Therefore, there should be an adequate collection of external configura-
tion attributes, defining the external configuration space which has an external
variablility Ve (cf. Fig. 9(b)). These will be attributes of the control mechanism
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CM , including always the evaluation and acceptance criteria and possibly some
further attributes of this and the lower level SuOC S, in order to allow for direct
influence of the user on internal attributes of the system S. Corresponding to
these internal and external configuration spaces we distinguish between internal
and external control actions ci and ce, respectively.

An important design objective would be to reduce the variability of the config-
uration spaces going from the internal to the external level, i. e. in a multi-level
design we should have an increasing degree of abstraction going from lower to
higher levels. Nevertheless, it might be reasonable to provide direct higher-level
control access to some configuration attributes of lower levels. Furthermore, in
an adaptive system there should not be a necessity to specify anything more than
evaluation and acceptance criteria by external control actions ce. Therefore, we
distinguish between external control inputs cobj , specifying system objectives to
be observed by the control mechanism CM , and control actions clow directly
related to attributes of the lower level SuOC. According to our definition of
adaptive systems, there should not be a necessity for any control actions of type
clow as long as S remains within its survival space.

Using the definitions of internal and external variability, the complexity reduc-
tion from lower to upper level may be defined as R = Vi − Ve. R has a maximal
value, if the external variability is zero, i. e. there is no externally visible vari-
ability which could be used for changing the configuration of the system. On the
other hand, if the external configuration space includes attributes of the lower
level system S, the external variability could even be larger than Vi. In such
a case, the configuration task of the external user has even larger complexity
than the configuration task of the control mechanism CM and, consequently,
the complexity reduction R would be negative.

Now, these notions can be used to characterize the degree of autonomy of the
extended system S′. Intuitively, the autonomy of a system should increase with
a decrease in external interventions and vice versa. Therefore, the relationship
between the variabilities Vi and Ve should be an intuitively reasonable indicator
of the degree of autonomy. This leads to the following definition:

The (static) degree of autonomy α of system S′ is defined as

α =
R

Vi
=

Vi − Ve

Vi
(1)

The value of α will be at most one (if Ve equals zero). In this case, there is
no external variability, i. e. there is no possibility to modify any attributes of
S′ by external control actions. Therefore, such a system would be called fully
autonomous. The only way to interact with such a system would be to influence
the input values of S.

If the value of α is zero, the internal and the external variabilities are the
same, which indicates that there is no reduction in complexity. If α drops below
zero, we have a situation where the external configuration space contains more
controllable attributes than the internal configuration space. In an extreme case,
all the lower level attributes could be available externally, in addition to the
configuration attributes referring to the control mechanism CM . In this case,
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the system S could be controlled completely by external control actions, which
would be no autonomy at all. But, as is obvious from the definition, a low value
of α is merely indicating a potential loss of autonomy, since it does not take
into account, whether during any time interval any external control actions have
been used actually. That means, even in a system with a rather low value of α
the actual behavior might be more autonomous than indicated by α.

Referring to Fig. 7 and Fig. 9 again, CM influences (controls) S to keep it
within its acceptance space by selecting a sequence of control actions c1, c2, . . .
from its behavioral repertoire B. CM determines these control actions with re-
spect to the evaluation and acceptance criteria as given initially or some time
before by higher-level control. Ideally, it should be able to keep S within the ac-
ceptance space without additional intervention from a higher level. However, if
the acceptance criterion is violated for too long, the higher level controller might
intervene by sending further external control actions of type cobj to modify the
evaluation criteria or of type clow to influence directly some of the configuration
attributes of the SuOC.

Therefore, in order to characterize the actual degree of autonomy (or, the
actual amount of external control) one should consider the number of bits that
have been used in any control actions over some time period [t1, t2]. This leads
to a more refined, time dependent quantitative notion of autonomy:

Let ve(t) and vi(t) be the number of bits of the external and internal control
actions at time t, respectively.

(a) The dynamic complexity reduction r in S′ over some time interval [t1, t2] is
defined to be

rt1,t2 =
∫ t2

t1

(vi(t) − ve(t))dt (2)

(b) The dynamic degree of autonomy β in S′ over some time interval [t1, t2] is
defined to be

βt1,t2 =

∫ t2
t1

(vi(t) − ve(t))dt∫ t2
t1

vi(t)dt
(3)

This dynamic degree of autonomy measures the relative amount of external
control that has been used during a specific time interval. Hence, a system could
exhibit a fully autonomous behavior over some time period while being com-
pletely influenced by external control actions at a different time. This definitely
allows for a much more accurate characterization of the autonomy of a system,
based on the actual control flow. In particular, in the case of organic systems,
we might have a fully autonomous behavior over some time period, but might
use adequate control actions whenever the self-organized behavior of the system
does not satisfy the external constraints.

After having characterized the (dynamic) degree of autonomy of a system,
we may start to look at the so-called self-x-properties, as the degree of au-
tonomy would correspond to the degree of self. One of the central notions is
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“self-organization”, a term which has attracted growing attention by scientists
from different diciplines. F. Heylighen has presented valuable surveys on the
relevant literature (see e. g. [12]), and he provided concise specifications of a
range of relevant terms (for a very recent publication see [13]).

Heylighen states: “Self-organization can be defined as the spontaneous emer-
gence of global structure out of local interactions.” And, in the FAQ list on self-
organized systems [14], we find “The essence of self-organization is that system
structure often appears without explicit pressure or involvement from outside
the system.”.

Following these characterizations, a self-organizing system is a multi-element
system (consisting of m elements, m > 1), which needs no external control to
restructure itself (i. e. it has a high degree of autonomy). Furthermore, a common
assumption is that the internal control mechanism CM is distributed over the
elements. In natural systems, such a distributed control mechanism might be
difficult to localize which, sometimes, leads to almost magical connotations of
self-organization.

Obviously, in a controllable technical system there must always be some con-
trol mechanism. It can be centralized (one CM), distributed over the m elements
(m CMs) or distributed over a hierarchy of CMs (possibly more then m CMs).
These architectural variants are depicted in Fig. 10). Following a recent discus-
sion, the centralized variant could also be viewed to address only the aspect
of adaptivity, and therefore correponds to top-down design, whereas the decen-
tralized variant resembles self-organized systems, where the global behavior is
rather developed bottom-up (as an emergent process). Finally, the multilevel
design combines the two design approaches and corresponds to an intuitive idea
of controlled self-organization.

We could define a degree of self-organization by counting the number of CMs
(= k) in relation to the number of elements m of the system (k : m). An adaptive
system with one centralized CM could then be denoted as (1 : m), an adaptive
system with full distribution of CMs as (m : m). Definitely, an (m : m) system
may be called self-organized. It is a matter of taste whether we want to call a
system with lower degrees of self-organization still self-organized.

(a) central (b) decentral (c) multi-level

Fig. 10. Observer/controller realization
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Let S be an adaptive system consisting of m elements (m > 1) with a large
dynamic degree of autonomy (β) and fully or partially distributed k control
mechanisms CM (k ≥ 1) leading to a degree of self-organization of (k : m).

(a) S is called strongly self-organized, if k = m, i. e. the degree of self-organization
is (m : m).

(b) S is called self-organized, if k > 1, i. e. it has a medium degree of self-orga-
nisation (k : m).

(c) S is called weakly self-organized, if k = 1, i. e. there is a central control
mechanism and the degree of self-organization is (1 : m).

The weak definition would mean that any adaptive system is also called self-
organized. The authors of this article tend to use the medium definition. Speak-
ing about adaptive and self-organizing systems in an exact way requires to indi-
cate (1) the degree of autonomy and (2) the degree of self-organization (k : m).

Here, a remark seems to be necessary: In the literature about self-organizing
systems (see e. g. [15]) you sometimes find the additional requirement that a
self-organizing system should be structure-adaptive. This is not explicitly stated
in our definition, but it may be present in an implicit form: For example, if the
system objectives refer to structural configuration attributes of S then, after
some disturbance or after a change in the evaluation and acceptance criteria, an
adaptive system will be able to re-organize its structure such that it is acceptable
again.

A common way of characterizing changes in system structure would consider
the resulting changes of the system’s descriptional complexity or of the entropy
of appropriate structural attributes of S (e. g. by computing the classical in-
formation theoretic entropy as defined by Shannon). This has been done in a
systematic way in [16], it is beyond the scope of this paper.

Finally,we suggest the following characterizationof controlled self-organization:
A self-organized system S′ allows for controlled self-organization iff

(i) it has a nonempty external configuration space, i. e. we have Ve > 0 (essen-
tially we require that it has a small static degree of autonomy and allows
for detailed information on its current state),

(ii) it has some external control actions of type cobj ,
(iii) it has some external control actions of type clow, and
(iv) it has a large dynamic degree of autonomy (i. e. external control actions are

rare).

This characterization requires that the system is adaptive (which means that
it is capable of returning autonomously into an acceptable state after certain dis-
turbing events), but provides the option to the external user to redefine certain
objectives (by using a control input cobj) or to interfere directly with the oper-
ation of system S by using a control action of type clow. The simplest example
of the latter would be a control action to switch off the system.
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5 Learning and Trustworthiness

A major motivation for the interest in environment-mediated multiagent systems
is the expectation that they would be capable to overcome certain limitations
caused by incomplete knowledge about the potential operation environment at
design time.
In particular, the behavior of S′ may be limited by

(a) a limited configuration space of S or
(b) a limited behavioral repertoire B of CM .

Limitation (a) may be caused by an inappropriate design, i. e. the necessity
for including additional attributes of the system or of the environment into the
configuration space has not been seen at design time. There might also be some
system specific reasons that prohibit any external modifying access to certain
structural attributes of the system. In these cases, it does not seem reasonable to
expect a possibility to extend the configuration space at runtime of the system.

Limitation (b), however, might occur quite often in systems having a very large
configuration space but only a limited behavioral repertoire. In particular, it
might be a complex optimization problem to find the most suitable configuration
for satisfying the system objectives, as e. g. in traffic light control, where you have
to determine the most appropriate values for a number of control parameters
of an adaptive controller system (cf. [10]). In this example, the quality of a
particular parameter setting will be determined either off-line by a simulation or
on-line by observing and analysing the system behavior. Whenever the control
mechanism CM or the user detect that the currently available range of control
actions is not sufficient to get acceptable behavior, it should be possible to extend
the behavioral repertoire with new, more appropriate control actions. Definitely,
it would be desirable to have a system that is capable of generating the necessary
modifications of its behavioral repertoire in an autonomous way. This will be
addressed in the following subsection.

5.1 Learning

In this subsection we briefly address the aspect of learning in adaptive and self-
organizing systems.

In general, a system has the capability to learn, if it can improve autonomously
its response to input values from some set X . That means, there are time values
t1 and t2 > t1 such that for any t > 0 the response to an input from the set X at
time t2 + t has a higher quality than the response to the same input at time t1.
Consequently, the robustness and performance of a (self-)learning system should
improve over time.

This learning capability requires some learning mechanism LM which may
modify the behavior of the system S′ by

(a) changing the values of some attributes of the system S or of its environment,
or

(b) changing the behavioral repertoire B of the control mechanism CM .
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An interesting mechanism for learning by modifying parameters of the envi-
ronment is the stigmergic use of pheromones by ant colonies. This aggregation
of individual experiences combined with some degree of evaporation leads to the
amazing capability of constructing shortest path ant roads even in a dynamically
changing topography. This has inspired a whole range of new design patterns for
optimization algorithms (cf. [17]).

The design of the organic traffic control system may serve as an example for
the second type of learning method (cf. [10] and Sect. 2): A classifier system for
selecting parameter settings for a traffic light controller (in the real traffic system
S) is using on-line learning by associating a fitness value to classifier rules based
on the performance of their parameter settings in real traffic situations, combined
with off-line learning which produces new classifier rules for inadequately handled
traffic situations by using a genetic algorithm which generates new rules of some
minimum quality level by evaluating their performance in a traffic simulator. In
this way, the learning mechanism manages to improve the system performance on
known traffic situations and it is also capable of generating adequate responses
(i. e. control actions) to previously unknown traffic situations.

These are just two examples of a broad range of possible learning mechanisms,
which could make use of learning by experience, trial-and-error, reinforcement
learning, neural networks, or metaheuristics like genetic algorithms, ant colony
optimisation, or simulated annealing, to name a few.

In highly complex systems, autonomous learning is the most attractive way of
coping with the limitations of adaptivity as mentioned in the previous subsection.

5.2 Trustworthiness

Another important feature of systems that can adapt to their environmental re-
quirements and that can cope with unanticipated situations in a self-organized
way is their trustworthiness. That means, in spite of the flexibility and adaptive-
ness of the system, a user will ask, why or how she should build up trust in the
behavior of such a system? Simultaneously, a designer or service provider should
know what kind of methodology is appropriate to generate and comprehensibly
demonstrate and maintain trust in a system or service (potentially operating in
an insecure environment). Without adequate levels of trustworthiness we cannot
expect sufficient acceptance of these systems!

Obviously, there are many facets characterizing trustworthiness. In particular,
the following properties address essential aspects of trust:

– Correctness: Does the system actually do what it should do?
– Security: Does the system prevent any unauthorised access?
– Safety: Will there be any undesired effects by using the system or service?
– Availability / Reliability: What is the probability that a service is available

when it is needed and what is the expected time duration of satisfactory
service?

– Robustness : Will the service be provided even within an environment that
is changing due to some disturbances?
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– Privacy: Will the service use privacy information in an adequate way?
– Performance: Will the system show the expected response time or through-

put?
Sometimes, trust is reduced to CIA:

– Confidentiality
– Integrity
– Availability to authorized users.

The final three properties all relate to security, they are quite often summa-
rized as “Trusted Computing”. But, trustworthiness extends far beyond these
security-properties.

Some characterization has been given by S. Yau in his keynote talk at ATC
2006 [18] :

– Trust is a particular level of belief of an agent (the trustor) that some other
agent (the trustee) will act or intend to act beneficially.

– Trust forms the basis for agents to make decisions on what to interact with,
when to interact with, and how to interact with.

Consequently, trust management has to consider the (dynamic) relationship
between trustor and trustee. The provision of certificates containing statements
on the expected behavior of a system or service may be necessary for the es-
tablishment of trust, but they do not suffice. In particular, trust is not a binary
property, there will always be a certain, dynamically changing level of trust only.
In our characterization of adaptable and adaptive systems we emphasized their
capability to return to satisfying or even to ideal behavior after the occurence of
failures. But, the level of trust will be reduced whenever a system shows unac-
ceptable behavior, and it will be more difficult to regain trust after the system
returned to its acceptance space again. Another mechanism besides certificates
is to use reputations for sharing experiences on system usage and performance.
In some way, these reputations have a similar impact as the pheromones in ant
systems: They may be used as an additional source of accumulated information
on the previous behavior of a system.

As emphasized in this paper, we are interested in robustness and adaptivity
because of potential deviations in system behavior from an ideal state. Conse-
quently, trust management is closely related to risk management. Self-organized,
adaptive services will always bear the risk of unexpected behavior and even a
well-engineered system may run into situations where it does not “behave well”.
Therefore, the more we know about the risks associated with using a system, the
more we will be prepared to cope with failures. It is important to note that in-
formation about the potential risks of a system provides the basis for the design
of methods for preventing the occurrence of risky behavior and for building up
trust. Hence, in order to fully appreciate the benefits of adaptive, self-organized
behavior, it would be detrimental to ignore potential risks.

These few statements underline the necessity to develop a methodology for
trust engineering for self-organizing environment-mediated systems which,
among others, has to address the following:
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– How do we build up initial trust?
– How can a trustor or trustee regain trust after failures?
– What can a producer do to create an initial level of trust for his product

and to support a reasonable trust management?

Currently, we are still far away from satisfying answers to these questions,
which might allow for coping with dynamic trust-relationships.

6 Conclusion

This contribution has given an overview on some recent characterization of im-
portant concepts and properties of self-organising and adaptive systems which
are closely related to environment-mediated multiagent systems. Considering the
increasing presence of interacting systems in our living environment, it is essen-
tial to design systems in a way which enables them to cope with unanticipated
situations in a reasonable way and which – in particular – provides them with
the capability to react appropriately to the frequently rather spontaneous and
unexpected behavior of human users.

A common understanding of basic properties of these systems is a prerequisite
for making reliable statements about their (expected) performance. Furthermore,
as system designers and users, we have to know about the requirements for build-
ing up trustworthy relationships between services or systems and their users. We
are beginning to be overloaded with undesired, unexpected, and sometimes even
malicious information services. Therefore, we are in urgent need of systematic
approaches to circumvent these problems and provide acceptable systems, which
will respond as requested to environmental requirements.

The challenge for system design lies in building systems,

– which meet their target performance (stay within the target space)
– with little external control effort (high dynamic degree of autonomy)
– for a large set of environmental conditions and possible disturbances (large

survival space).

It is essential for such a system to have a built-in control mechanism (consti-
tuting the self ). A system will become more robust if the control mechanism is
distributed, i. e. its degree of self-organization (k : m) is high since this avoids a
single point of failure.

Adaptive and self-organising systems will not always outperform conventional
systems but they may survive under a large diversity of environmental condi-
tions. Self-organising systems may be especially robust due to their internal
distributed architecture and their large structural variability.

The objective for system design should be to design controllable self-organising
systems, i. e. systems, which allow for external control but have a high degree
of autonomy as well. One major argument for the possibility of external control
is the necessity to support the generation of trust into the dependability of a
system.
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Abstract. The utilization of self-organizing processes promises scala-
bility, robustness and adaptivity in Multi-Agent Systems (MAS), solely
based on decentralized coordination of individual actors. Bionic devel-
opment approaches have been established, which reuse decentralized
coordination mechanisms that are derived from natural self–organizing
systems. In this paper, we address analysis activities in incremental MAS
development, concerning with the derivation of system architectures that
enable applications to meet system requirements. As the functional re-
quirements to self–organizing MAS comprise recurring types of system
wide dynamics, we propose a systemic approach to analysis and ar-
chitectural design activities by the iterative refinement of macroscopic
dynamics. Based on a catalog of dynamic models of currently applied
environment–mediated design metaphors, we discuss how intended MAS
dynamics can be modeled and refined to decentralized MAS designs. A
systemic design procedure is proposed and exemplified in a case study
that demands the combination of two established design metaphors to
enable an projected level of MAS adaptivity.

1 Introduction

Agent technology is an established tool to the development of complicated dis-
tributed software systems, where applications are decomposed into sets of au-
tonomous and pro-active agents that are embedded in an environment [1]. As
the intended system functionality results from agent interplay, a major design
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challenge for these Multi–Agent Systems (MAS) is to break down the intended
system functionalities into individual agent activities and interactions.

When MAS operate in highly dynamic environments, system adaptivity [2]
is needed. Since MAS are composed of collections of autonomous actors the
utilization of self–organizing processes, as observable in biological, physical and
social systems, has been proposed [3]. These processes allow the decentralized
establishment and maintenance of structures, i.e. MAS configurations and orga-
nization structures [4], solely based on local agent (inter–)actions and individual
reasoning. The decentralized nature, i.e. the absence of dedicated controlling
components, promises robust and scalable applications. However, the exploita-
tion of decentralized coordinations of autonomous components in large scale
distributed systems challenges traditional development techniques and method-
ologies [5].

Engineering efforts typically structure development procedures in iterations,
composed of sequences of activities (so-called workflows or disciplines) that de-
velopment teams are to complete successively. Development activities commonly
comprise requirements engineering, analysis, design, implementation and testing
(e.g. see [6]). Iterations typically start with requirements activities that purpose
agreements between developers and stakeholders on the intended functionality
of the system to be. The following system analysis (a.k.a. architectural design),
results in an architecture that allows to meet the requirements and is refined
during design activities to a level of detail that guides system implementation.
Finally, resulting executables are tested, validating intended functionalities.

While these top–down development efforts facilitate cost– and time–oriented
software development, their application to the construction of self–organizing
MAS is complicated by the inherent nonlinearities of the macroscopic system
behaviors that are introduced by self–organizing processes [7]. As these pro-
cesses impair straightforward anticipations of system wide dynamics as well as
the impact of changes of microscopic agent implementations on these dynamics,
a trend toward the recreation of well–examined macroscopic dynamics can be
observed [8,9,10,10]. Well studied natural self–organizing systems provide design
metaphors and the implementation of similar behaving applications is facilitated
by decentralized coordination mechanisms [9] that have been proposed as design
pattern [11,12] for MAS development. As these provide means to the establish-
ment of well understood dynamics, approaches to their selection and combination
during application design, targeted to meet specific demands (requirements) of
real world applications are still at early stages [13].

Based on the observation that development efforts to self–organizing MAS
typically intend recurring types if macroscopic system behaviors [14,15], each
inspired by natural design metaphors, we propose a systemic approach to MAS
analysis efforts. As self–organizing processes originate from the presence of feed-
back loops [16,17], modeling notions from system dynamics research [18] are
adopted that provide means to the description of causal relations between macro-
scopic system properties. We provide definitions of the causal structure and
resulting dynamics of typically utilized design metaphors and show how these
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models can be refined from early requirements to detailed MAS designs. A
systemic development procedure is demonstrated on the design of a simula-
tion model that demands the combination of two environment–mediated design
metaphors.

This paper is structured as follows. The next section summarizes current best
practices to the construction of self-organizing MAS, focusing on the utilization
of reusable decentralized coordination mechanisms. Afterwards, section 3 intro-
duces a systemic modeling approach to these mechanisms. The modeling notion
of causal loops – inspired by system dynamics research – is introduced, followed
by a catalog of environment mediated template designs and an discussion how
the consideration of the causal relations that are to be established enables a
design perspective on self–organizing MAS (section 3.5). An exemplification is
given in section 4 and finally, we conclude and give prospects for future work.

2 Engineering Self–organizing Multi–agent Systems

In [5], current best practices to the engineering of self–organizing MAS have
been reviewed, ranging form formal tools [19] to development methodologies
[20,21,22]. Decentralized, self–organizing processes are powerful tools to MAS
adaptivity as they support macroscopic observable, nonlinear phenomena, e.g.
phase changes. However, these phenomena hinder traditional top–down and
divide–and–conquer design strategies [7,20,23] and are therefore usually not con-
sidered by general–purpose development methodologies [24]. Solely the ADELFE
methodology provides an tailored extension of the Rational Unified Process [6]
that addresses the development of adaptive MAS composed of cooperative agents
[25]. ADELFE stresses the identification of cooperation failures (non-cooperative
situations) and means for individuals to recover from these.

Currently, a trend toward bionic development approaches can be observed
[8]. These approaches recreate well–known, field–tested template mechanisms.
Recreations are supported by decentralized coordination mechanisms [3,9] and
simulation based development procedures [20,21]. Figure 1 visualizes the support
of these tools for the generic software engineering activities [6].

Fig. 1. The support for generic software engineering activities by pattern–oriented
development approaches (extract from [5]). The bold cell is addressed in this paper.
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Reusable coordination mechanisms (SO–Pattern) [9,12,11] require the, yet
minor supported, selection of appropriate mechanisms during analysis activities
and focus on design and implementation issues by guiding agent and environ-
ment models. Simulation–based development procedures (Processes) address the
utilization of these mechanisms by iterative development activities, particularly
system simulations and parameter adjustment [20]. Modeling the requirements
for self–organizing solutions [14], the identification of appropriate mechanisms
[13], their adjustment [8] and the testability of their correct utilization [15] are
open research questions.

Figure 2 depicts a classification of applied coordination mechanisms from [5]
that facilitate the establishment of decentralized feedback loops in agent popu-
lations. Feedbacks require that agents perceive the MAS state (interdependency
level) and adjust their behavior (behavior adaption level) according to the gained
insights. Interdependency-level mechanisms are distinguished between direct in-
teractions of agents (right) and indirect interactions that are mediated by a (vir-
tual) environment. Individual behavior adaption is controlled by the employed
agent architectures, ranging from purely reactive mechanisms to, adaptive, co-
operative and generic architectures (reviewed in [3]). Environment mediated
mechanisms are attracting increasing attention [26] in MAS development and
their classification is highlighted in figure 2 (a). According to [10], the propaga-
tion of information can rely on diffusion or on serendipitous perceptions from
stochastic movement in shared data spaces.

Coordination mechanisms may depend on explicit data items (marker–based)
or agents infer implicit information directly from the perceived environment

Fig. 2. A classification of decentralized coordination mechanisms (following [5]). Envi-
ronment mediated mechanisms are highlighted (according to a taxonomy from [10]).
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(sematectonic). Behavior Implicit Communication (BIC) [27] denotes agent co-
ordination that is solely based on the observation and interpretation of neighbor-
ing agents activities. The required observations can be based on sematectonic
or marker–based perceptions. The prominent stigmergy mechanism [16] is an
application of BIC as it denotes the communication between individuals solely
via the modification of environment elements. Typically dedicated markers are
modified, e.g. digital pheromones are released which diffuse and evaporate [16].
The prominent co-field [28] approaches rely on virtual fields that are usually
computed within tuple spaces (see [10]).

Figure 3 relates the coordination mechanisms to the intended system be-
haviors and resulting MAS implementations. Self–organizing MAS developers
typically take inspiration from self-regulatory design metaphors (e.g. listed in
[10]) which exhibit a specific behavior space. Knowledge about the space of pos-
sible macroscopic system states, and transitions between them allows developers
to anticipate the system behavior and therefore select appropriate metaphors
to guide MAS design. Developers select metaphors and intend similar behav-
ioral regimes to be exhibited by the implemented MAS. Metaphor designs are
realized by the utilization of decentralized coordination mechanisms [9,3] that
provide means to the establishment of feedback loops among agent populations.
Each mechanisms defines how agents (locally) perceive the MAS state (interac-
tion mode), i.e. how information is communicated, and how individuals use the
perceived information to adjust their behavior (behavior selection mode) [5].

Fig. 3. The relation between design metaphors, distributed coordination mechanisms
and MAS implementations

MAS are composed of agents that perceive and modify an environment. Be-
havior selection modes directly guide agent implementations, while interaction
modes are to be implemented via specific computational techniques (e.g. de-
scribed in [11]), which enable the propagation of information through the en-
vironment and define the sensory inputs of agents. Established computational



44 J. Sudeikat and W. Renz

techniques for environment mediated MAS comprise evaporation, aggregation
and diffusion [11]. E.g. digital pheromone–based coordination mechanism [29],
a well–known exemplification of stigmergy [30], rely on a shared environment
where communication is enabled by diffusion and evaporation. Diffusion ensures
that pheromones are transported via the environment and evaporation degrades
information that is not reinforced, therefore erasing old information.

MAS developers that aim to apply decentralized coordination mechanisms
have to (1) select appropriate mechanisms, (2) map their constituent past (be-
havior selection and interaction modes) to the application domain at hand, (3)
implement them in an agent architecture of their choice and finally (4) tune
system / agent parameters to allow for the intended behavioral regimes (cf.
[21]). While mechanisms have been examined in relation to the applied com-
putational techniques to provide pattern languages [9,12,11], guidelines to their
selection have yet caught minor attention [13]. In the following section, we dis-
cuss how intended macroscopic dynamics of future MAS implementations as
well as nature–inspired design metaphors can be modeled. The proposed usage
of systemic modeling notions facilitates the identification of appropriate design
metaphors and coordination mechanisms.

3 Modeling the Dynamics of Decentralized Design
Metaphors

MAS research established numerous modeling approaches to static, organiza-
tional structures inside MAS [31]. Corresponding modeling techniques typically
arrange MAS in terms of groups and roles. MAS are partitioned in groups,
i.e. sets of agents that share common characteristics [31], while roles describe
functional properties of individual group members, e.g. commitments certain
conditions or goal achievement. The diversity of modeling approaches has been
examined and a deficiency of modeling notions to the dynamics of changes of
organizational structures in MAS has been identified [4].

Since self–organizing MAS distinguish themselves by their ability to steer the
adaptivity of (organizational) MAS structures at runtime (e.g. cf. [17,15]), the
lack of modeling approaches to structural dynamics and rearrangements impairs
development procedures. Developers face the challenge to design and validate
organizational changes, i.e. MAS reconfigurations. Adjustments typically take
place via group / coalition formations and run–time role adoptions. In [14,15],
macroscopic models, inspired by modeling notions from system dynamics re-
search [18], have been introduced and related to requirements engineering ac-
tivities. In addition, it has been found that developers typically intend specific
types of dynamics that recure in MAS from various applications domains [15].

In order to facilitate (iterative) design approaches to c omplex dynamics in
MAS, we discuss how macroscopic models can be iteratively refined in order to
allow derivation of the intended dynamics that map to the above discussed de-
sign metaphors. Since these metaphors are inherently linked to decentralized
coordination mechanisms (e.g. [9]), prepares the metaphor identification the
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selection of coordination mechanisms that influence the design of individual
agents and MAS environments. These refinement activities take place during
analysis activities (cf. figure 7).

3.1 System Dynamics

Self–organizing processes rely on the presence of underlying positive and negative
feedback loops [5,16,17]. Positive feedbacks are typically used to stimulate coher-
ent and/or cooperative agent behaviors [32], while negative feedbacks are often
applied to balance stimulations and remove obsolete stimuli. Combinations of
feedback loops are observable in physical, biological and social systems and have
been been examined and classified by interdisciplinary research communities.

These communities examine how the behavior of groups of interacting ar-
tifacts can be described and predicted. A family of systems theories (e.g. cy-
bernetics [33]) have been revised that apply macroscopic modeling approaches
to the analysis and simulation of complex systems. I.e. the relationships be-
tween system–wide observables are expressed by their rates of change. Available
tools range from purely mathematical, numerical settings [34,35] to dedicated
(equation–based) simulation packages.1 Similar macroscopic modeling has been
successfully applied to self–organizing MAS [36,37].

Among the system theoretic research communities, systems dynamics research
focuses on the examination of the circular, possibly interlocking and/or time–
delayed relationships among constituent entities ([38]). Causal loop diagrams
(CLD) are used to model system entities and the causal relations between them.
This notation is exemplified in the figures 5 and 6, where self-regulatory causal
relationships in metaphoric MAS are described. System observables and respec-
tively system state variables are connected via arrows that denote positive (+)
and negative (−) contributions. Positive contributions (+) mark direct causal
relations, where changes at origins produces changes at destinations in the same
direction (increases causes increase). Negative (−) causal links describe inverted
relations, i.e. the causation in the opposite direction. Circular relationships form
feedback loops and are distinguished by their occurrences of positive and neg-
ative causal links.2 Reinforcing loops (r) contain an even number of negative
causal links while balancing (b) feedback loops contain an odd number of nega-
tive causal links.

While mainly focusing on business domains [18], interdisciplinary analysis
efforts have lead to a number of common patterns of behavior – so–called System
Archetypes [39] – that recur in various application domains and describe unique
sets positive and negative causal loops. The identified archetypes provide generic
causal loop structures, used as templates to classify structures and behavioral
insights [40], by structuring causal relations between macroscopic system states
and relating these structures to the exhibited modes of dynamic behaviors [18].
These templates can be applied either diagnostically, to predict system behaviors

1 e.g.: http://ccl.northwestern.edu/netlogo/docs/systemdynamics.html
2 http://www.public.asu.edu/∼kirkwood/sysdyn/SDIntro/SDIntro.htm
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Fig. 4. CLD and canonical time series of logistic growth (according to [18])

from structural similarities, or prospectively, by anticipating structural changes
as they introduce archetype structures [40]. To exemplify the utilized models,
figure 4 shows a well–known mode of dynamic behavior [18], the logistic growth,3

a.k.a S-shaped growth, that can be traced back to the occurrence of a reinforcing
and a balancing causal loop (cf. [18]) steering the increase of a generic property
limited by a carrying capacity. A catalog of actual archetypes and their relation
to economic settings can be found in [39]. In the coming section, we show that
typically applied design metaphors provide similar sets of recuring dynamics that
can be understood in terms of sets of feedback loops.

3.2 A Catalog of Environment Mediated Coordination Mechanisms

While decentralized coordination mechanisms and bio–inspired design metaphors
have been proposed as design pattern for self–organizing MAS [11,12], the causal
link structures within them have not been considered yet. In the following, we
examine these structures in common template designs, proposing a novel ap-
proach toward the dynamic MAS models. These complements to design pattern
definitions are then used (section 3.5 and 4) for pattern selection and combina-
tion. Due to the targeted macroscopic description level, the here applied systemic
modeling approach is applicable to general–purpose coordination mechanisms.
Here, we exemplify this approach for situated, i.e. environment mediated coordi-
nation mechanisms. In [10], a comprehensive list of established design metaphors
(named mechanisms) for environment mediated agent coordination have been
summarized. In the following, we discuss their causal loop structures which steer
self–organizing applications dynamics. Examination of constituent reinforcing
and balancing feedbacks revealed a distinction between single–looped and multi–
looped design metaphors.

3.3 Single–Looped Design Metaphors

The following MAS designs allow for system adaptivity by providing single
causal loops that adjustments according to MAS external influences. Resulting
3 see: http://mathworld.wolfram.com/LogisticEquation.html
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Fig. 5. Single Looped Design Metaphors: Prominent template designs that describe
single looped dynamics

equilibrium states are established and maintained by either balancing or rein-
forcing feedback (cf. figure 5).

Molding and Aggregation. is a coordination scheme inspired by foraging
in bacteria populations [41]. When resources are available, agents wander the
environment to consume individually. If resources become scarce, individuals
cluster. The resulting formation then moves as a whole. Individuals leave the
cluster when an area is reached that allows individual foraging, i.e. resources
are available. This behavior is particularly applicable to team coordinations (see
[10]) allowing to aggregate group members.

While coordination typically takes place via pheromones [16], the macroscopic
model in figure 5 abstracts from the required implementation techniques of dif-
fusion and evaporation and highlights the macroscopic observable dynamics.
Molding is steered by a balancing loop that controlls the macroscopic observable
numbers of bound (clustered) and unbound (not clustered) agents. Two rates
control the binding (clustering rate) and release (distribution rate) of individu-
als. These are directly influenced by the availability of resources.

Quorum. describes the self–organized establishment of coherent agent activi-
ties, due to the ability of agents to sense the activities of population members,
and adopt the sensed behaviors. In biological [10] as well as physical [35] systems,
it has been observed that local agent activities can stimulate coherent activities
of neighboring agents, leading to coherent agent states. Agent activities can be
perceived either via communication of specific markers [10] or the observation of
agent activities, due to Behavior Implicit Communication (BIC) [27]. Prominent
examples are (ferro–)magnetic fields and laser phenomena [35].

In these MAS (cf. figure 5), the numbers of bound (coherent) and unbound
(non–coherent) agents are pertubated, i.e. driven out of sync, by external influ-
ences. Coherence of agent behaviors is (re–)established by a reinforcing feedback
loop that originated from the communication and perception of agent activities.
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Activity perception leads to individual activity adjustment, i.e. an increase of
the adaption rate, that in turn causes the fraction of bound agents to increase.

Web Weaving. is a source of inspiration for peer–to–peer system connections
and network routing is given by the web weaving activities of spiders species
[10]. Specific species prepare areas by connecting ground spots with draglines. A
web of connections, i.e. shortest paths, allows individuals to quickly roam areas
and hunt prey. Initially, individuals wander the area at random and establish ar-
bitrary connections. Webs are formed when individuals prefer to wander already
present draglines, leading to interconnected paths between ground spots.

Examining the causal relations in this MAS design, agent activity causes the
creation of connected and unconnected links (cf. figure 5). The connection rate
of links depends on the rate of traversals of already present links (walking rate),
which in turn is causally dependent on the amount of already present links,
forming an reinforcing causal loop that increases link interconnections.

Morphogenesis. controlls how cells in early development stages of organisms
differentiate. It has been found that specific cells in an embryo emit diffusing
morphogens [10]. Sensing gradients of these markers allow individual cells to
measure their distance to emitting sources and therefore conclude their differen-
tiation. Different morphogen types are typically combined to enforce adjustments
due to sets of gradients.

The causal relations are dominated by balancing loops between the emitting
distribution center and the morphogen density within the MAS (cf. figure 5).
While several morphogens can be present in a MAS, figure 5 visualizes a single
loop, originating from one morphogen type. An evaporation rate degrades (neg-
atively contributes) to the morphogen density that triggers agent specialization.

The above presented mechanisms provide single causal feedback loops, there-
fore facilitating analysis, behavior anticipation and parameter adjustment. Due
to the limited adaptivity of single steering forces enhanced mechanisms, i.e. com-
binations of causal feedbacks, are also utilized in MAS design.

3.4 Multi–looped Design Metaphors

The following design methaphors provide multiple, interplaying causal loops that
steer MAS adjustments. These mechanisms take inspiration from biological sys-
tems where population members coordinate individual activities [10].

Brood Sorting. inside ant colonies inspired fully decentralized, collective sort-
ing mechanisms [42,10]. Ants wander their nest randomly. When isolated or
outnumbered items (egg, larvea, etc.) are encountered, they are picked up and
transported till another item is encountered that satisfies a similarity criteria.
Then the load is deposited nearby, leading to clusters of similar items [8].

The causal relations within this clustering scheme form two balancing and
one reinforcing (b2r) feedback loops (cf. figure 6). First, the numbers of bound
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Fig. 6. Multi–looped design metaphors: Prominent template designs that describe sys-
tem dynamics which result from combinations of causal loops

(transporting) and unbound (wandering) agents are balanced as agents succes-
sively adopt both behaviors. The release of items both decreases the diversity
of elements and frees agents to adopt their initial wandering behavior. As the
actual clustering is achieved by the negative contribution to item diversity, the
remaining diversity contributes to the binding of (transporting) agents, forming
a balancing causal loop. Since any deposit frees agents to search, a reinforcing
causal loop is established.

Flocking, Schooling and Herding. behaviors in bird and fish swarms have
inspired motion coordination mechanisms in MAS [10]. Formations of coordi-
nated moving agents can be established by individual: collision avoidance, speed
matching and flock centering. It is sufficient to form coordinated flocks of agents
solely based on (1) the avoidance of direct collisions, (2) the adjustment of in-
dividual speed to the perceived speed of neighboring agents and (3) a constant
movement toward the estimated center of clustered agents. The resulting forma-
tions move randomly as emergent macroscopic structures.

Concerning the exhibited causal relations, agents contribute to cluster for-
mations by adopting common values for individual variables (aggregate property
agreement), i.e. they agree upon similar speed and distance values (cf. figure
6). Agreements are constantly disturbed due to agent reactivity to external tur-
bulences. These perturbations are balanced by two balancing loops (b2) as the
common agent distance is adjusted by collective movement toward the flocking
center and the aggregate flock speed is adjusted by individual speed match-
ing. Individual collision avoidance contributes positivley to the establishment of
an aggregate distance, while it pertubates aggregate speed values as agents are
forced to speed up and to slow down.

Nest Building. efforts in termite colonies have inspired approaches to the
collective, decentralized construction, e.g. performed by robot swarms [10]. Ter-
mites produce building bricks from bodily waste that contain pheromones [16].
Individual transport of these bricks is guided by pheromone gradients, and bricks
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are dropped at high pheromone concentrations. Therefore, the deposit of bricks
enforces future deposits, typically leading to vertical structures.

Decentralized construction is controlled by two reinforcing causal loops (r2)
that steer building brick production and deposit (cf. figure 6). Brick production is
performed by unbound agents which are bound to certain deposit sites by being
attracted (transportation and deposit) to certain deposit sites. Deposit positively
contributes to both the rate of further brick production and the communication
of deposits (via pheromones) that attract further transportation.

Foraging. behaviors, found in ant colonies, are prominent examples of swarming
systems [26]. Agents stochastically wander an environment to forage resources.
When clusters of resources are encountered individuals pick up a resource item
and transport it to a home base (nest). During transportation, pheromones are
released that diffuse and evaporate. Non–transporting agents sense pheromones
and move toward the perceived gradient. As ants are attracted by resource trans-
portation, the number of resource encounters increases leading to reliable estab-
lishments of shortest path between resources and nest(s) [26]. Realizations of
these dynamics typically utilize stigmergy mechanisms, i.e. the propagation of
digital pheromones.

These causal relations control the numbers of unbound (searching) and bound
agents that either follow a gradient, pick–up encountered resources or transport
these (homing). As the bound actions take place in sequence (positive contri-
butions), two causal loops (br) are established (cf. figure 6). Transported items
are delivered, freeing agents to search and limiting the available resources by
a balancing loop. As homing agents communicate their transportation, which
contributes to the binding rate of unbound agents, these communications cause
a reinforcing causal loop.

These combinations of causal feedback loops have been inspired by biological
systems. While their in vivo resulting dynamics are well–known, the realization
in software requires non-trivial parameter adjustments that are complicated by
the (multiple) relations between system states. In the following, we discuss how
the here modeled mechanisms can be selected and combined.

3.5 Using Dynamic Models in MAS Analysis

The previously examined design metaphors (cf. section 3.3) provide field–tested
utilizations of single and multiple causal loops in MAS. As the dynamics of the
embedded causal loops are well understood and their implementation is guided
by pattern catalogues [9,12,11] as well as microscopic modeling approaches [43].
It is desirable to guide the reuse of this constructive knowledge. The utilization
of these pattern requires developers to identify the decentralized coordination
mechanisms that are suitable to satisfy application requirements. The selection
of coordination mechanisms is typically approached by the examination of the
macroscopic system properties that are to be established [13]. As these properties
do not map uniquely to mechanisms (cf. [13]), we argue that non–ambiguous
identifications also require comparisons of intended dynamics.
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Different combinations of causal loops can lead to similar macroscopic states,
e.g. equilibrium and fixed points. When self–organizing dynamics are utilized in
MAS development, not only the established or maintained macroscopic prop-
erties but also the dynamics that steer establishment are of interest [14,15].
The time–dependent behavior of MAS adaptivity distinguishes different pattern
a.k.a. design metaphors. To express metaphor dynamics, we propose the mod-
eling of their inherent causal relations. The structure of the established causal
loops is application independent (cf. section 3.3), while the macroscopic prop-
erties in these models are application dependent. Decentralized coordination
mechanisms provide means to the establishment of these relations [12].

Building upon the elicitation and validation of requirements on self–organizing
dynamics [14,15], we propose a procedure of analysis activities (cf. figure 7),
which address the transition from requirements models to application design [6].

Fig. 7. Iterative causal link refinement activities. These activities guide the transfer
from application requirements to the detailed agent design that applied decentralized
coordination mechanisms.

These activities build upon descriptions of the macroscopic observable behav-
ior. In [15], it has been shown how the intended macroscopic MAS adaptivity
can be expressed in terms of CLDs and how the causal relations within these
can be validated by macroscopic system simulations. The here proposed activ-
ities address application design by refining the intended dynamics to sets of
metaphors that describe the required causal relations. These metaphors in turn
provide input to subsequent design activities that derive agent models and utilize
decentralized coordination mechanisms.

The derivation of application dependent models of MAS dynamics can be
carried out in a three step iterative process. First, an initial role model needs
to be derived from the system requirements. It denotes application dependent
agent roles that are to be played by different agent types.

Secondly, definitions of causal links between these roles form a macroscopic
model of the abstract MAS operation. The presence of causal loops indicates self–
regulatory MAS behaviors. When developers decide to realize these behaviors via
self–organization, i.e. decentralized agent coordination, applicable mechanisms
can be identified by the refinement of the causal links within the intended feed-
back loops. As this refinement poses a considerable modeling effort, it is guided
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by the foreseen causal relations. Each of the identified causal links may exhibit
dynamics, i.e. is subject to further causal loops and can therefore be refined
incrementally.

After sets of causal loops have been identified, developers can reason about
how to establish these. Intended loop structures are to be compared and mapped
to established MAS designs, i.e. the previously cataloged design metaphors. This
refinement may lead to combinations of mechanisms and the in principle possible
mappings are not necessarily unique. Therefore, developers are guided in mech-
anisms selection and combination, but are also forced to decide qualitatively
which mechanism, respectively mechanisms combinations, are appropriate for
specific application scenarios. These decisions are not only to be made on the
basis of the properties of the mechanisms at hand, but implementation and
project dependent issues as well.

As the design metaphors describe intended dynamics by taking inspiration
from natural systems, these metaphoric behaviors are associated to decentralized
coordination mechanisms (stigmergy, co–fields, etc.; cf. figure 3) and associated
computational techniques. Therefore, the derived analysis models are input for
further design activities that address the microscopic agent models [3,9,11,12].
In the following section, we exemplify the outlined procedure.

4 Case Study: A Stigmergic Intrusion Detection System

A prominent example to self–organizing, nature inspired computational systems
[44] are intrusion detection systems (IDS) (e.g. [45]). Immune systems have in-
spired agent–based IDS designs that exemplify the establishment of self–healing
properties. IDSs maintain computational infrastructures by the identification
and removal of malicious intruders. Detections are typically done by observing
and interpreting agent actions [45]. In the following, we exemplify how a systemic
view on MAS development and the iterative refinement of causal loop diagrams
can be used to derive combinations of design metaphors to met application re-
quirements [14]. The systemic analysis of an immune system inspired IDS is
outlined in figure 8. An initial role model identifies (1) malicious intruders, (2)
searcher agents that are equipped with specific algorithms to identify intruders
and (3) remover agents that are capable to delete intruders. The foreseen in-
teractions of these agent types describe macroscopic causal relations. Searcher
agents execute a searching behavior and detect infected nodes. Upon detection,
they recruit remover agents, i.e. trigger intruder removal. Remover agents get
activated by infection communication and are responsible for removals. These
relations are expected to establish a balancing causal loop (α) as the MAS behav-
ior is to limit the amount of intruders. Developers are faced with the challenge to
derive a MAS design that enforces this balancing loop in a totally decentralized
manner. In order to identify design metaphors that enable self–organization of
the intended causality (α), the participating causal links are refined (cf. figure
8; step 2). This refinement takes each of the relations between the elements of
the initial role model (cf. figure 8; step 1) into consideration and reveals three
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Fig. 8. Iterative refinement of the Intrusion Detection System case study. Based on an
initial, immune system inspired role model (1), the intended causal loops are identified
(2). Finally, the dynamics of these causal relations are refined by a mapping to the
causal loops of design metaphors.

additional, auxiliary causal relations that steer agent type interactions. For each
of the foreseen relations (detected by, recruit and remove), interaction rates can
be introduced (encounter rate, intruder communication and removal rate respec-
tively) that highlight the relations between agent roles.

In addition, the amount of intruders is related to an external infection rate,
that controlls the entry of intruders to the system. Searcher and remover agents
are refined to operate in two atomic states. They are either bound to the commu-
nication resp. removal of encountered intruders or are unbound, i.e. execute their
default behaviors. Detection of intruders is based on an encounter rate. This rate
denotes the binding of searchers to intruders, therefore balancing the amount of
intruders (α) and bound searchers (β). Encounters trigger the communication of
known malicious agents. These communications lead to the removal of intruders
and searchers are freed to continue their searching behavior. Therefore, success-
ful communication contribute to the amount of searching agents, forming a third
causal loop (γ). Finally removing agents are supposed to perceive communica-
tions which binds them to agent removal. As successful removals free removing
agents, a reinforcing loop (δ) is established.

The given refinement identifies two balancing and two reinforcing loops to be
established in the MAS to be (b2r2). Comparing the intended causal structure
with the given design metaphors reveals that the intended loop combination
is not available as a generic structure and is therefore to be established by a
combination of metaphors. Examination of the structural relationships between
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the identified causal loops indicates that the loops α, β and γ can be mapped
to brood sorting (b2r) and the loops α and δ can be resembled by the causalities
of foraging (br). Given the previously modeled coordination mechanisms (cf.
section 3), this mapping resembles the soonest the refined structure (cf. figure 8;
step 2). The α loop is present in both mappings, since it is the major causal loop
to be enforced. The auxiliary loops were introduced to refine the establishment
of this loop and therefore are to be realized by single metaphors.

Taking inspiration from both design metaphors, an agent–based simulation
model4 has been developed. Searching agents perform brood sorting, i.e. ran-
domly walk a virtual grid and stochastically encounter intruders. Encounters
lead to searcher bindings that trigger stigmergic communication by releasing
digital pheromones that indicate the presence of intruders in grid cells cause the
dynamics known from foraging systems. Due to the communication via diffus-
ing and evaporating pheromones, removers are attracted (bound) to occurrences
of intruders, follow gradients and finally reach / remove malicious agents. The
presence of the intended balancing loop can be validated by examining the cross–
correlation of intruder and (activated) remover agents (see [15] for a discussion
on this and quantitative data).

5 Conclusions

In this paper a macroscopic, systemic design approach to self–organizing MAS
has been proposed, describing MAS run–time adaptivity. Self–organizing MAS
development typically intends to establish nature–inspired pattern of system dy-
namics. Their construction requires the utilization of decentralized coordination
mechanisms. Systemic modeling allows to express the dynamics of these design
metaphors in terms of causal relations between macroscopic properties. A design
procedure has been proposed and exemplified that relies on a given catalog of
design metaphor dynamics. Starting from initial role models the intended causal
relations between macroscopic properties can be iteratively refined and mapped
to the causal relations that are exhibited inside design metaphors. After appro-
priate design metaphors have been identified, they guide the selection of suitable
distributed coordination mechanisms, and knowledge of the intended feedback
loops guide their utilization in MAS implementations.

Future work will examine further support of causal loop modeling for it-
erative development of self–organizing MAS. The here proposed notation has
been adopted from system dynamics research [18,39] and will be revised to sup-
port refinement activities. Iterative development efforts require both the design
of intended dynamics as well as the examination of causal relations in MAS
implementations to validate MAS redesigns. Tool–support for static MAS anal-
ysis and macroscopic runtime simulation [46] will be revised, in order to sup-
port round–trip engineering. The modeling approach presented here addresses
feedback loops on macroscopic scales and may be supplemented by explicitly
modeling the information flows within microscopic agent implementations [43].
4 Using the NetLogo simulation package: http://ccl.northwestern.edu/netlogo/
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Enabling the mapping and mutual use of both micro- and macroscopic modeling
levels promises full lifecycle support for self–organizing MAS design.
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Abstract. Complexity of near future and even nowadays applications
is exponentially increasing. In order to tackle the design of such complex
systems, being able to engineer self-organising systems is a promising
approach. This way, the whole system will autonomously changes its
behaviour as its parts locally reorganise themselves, always providing
an adapted function. This paper proposes to focus on engineering such
systems generating emergent functionalities. We will first define two im-
portant concepts to take into account in such a context: Emergence and
Self-Organisation. Building on these two concepts, we will highlight three
main challenges researchers have to cope with: (i) how to control the sys-
tem at the macro level by only focusing on the design of agents at the
micro level, (ii) what kind of tools, models and guides are needed to
develop such systems in order to help designers and (iii) how validation
of such systems can be achieved? Each of these three challenges will be
explained and positioned in regard to the main existing approaches. Our
solutions combining emergence and self-organisation will be expounded
for each challenge.

Keywords: Complex Systems, Engineering, Emergence, Multi-Agent
System, Self-Organisation.

1 Context, Definitions and the Three Challenges

Complexity of near future and even nowadays applications is exponentially in-
creasing. This is due to a combination of aspects such as the great number of
components taking part in the applications, the fact that knowledge and control
have to be distributed, the presence of non linear processes in the system, the
fact that the system is more and more often open, its environment dynamic and
the interactions unpredictable. In order to tackle the design of such complex
systems, being able to engineer self-organising systems is a promising approach
providing the needed robustness and adaptation in the light of the aforemen-
tioned difficulties.
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1.1 Understanding and Designing Complex Artificial Systems

The multidisciplinary community ONCE-CS (Open Network of Centres of Ex-
cellence in Complex Systems), clearly states the current interests in Complexity:
”the new Science of Complex System addresses the need to master the increasing
complexity we see in natural and social systems. Examples include the human
and new treatments for disease, managing the Internet, public administration,
and business. This new science will revolutionise our world, causing irresistible
changes”. In computer science, different kinds of techniques have been developed
to tackle complexity such as those based on heuristics and metaheuristics [1],
those based on learning such as genetic algorithm or neural network [2,3] and
those based on self-organisation processes [4,5,6]. Since a Multi-Agent System
(MAS) is defined as a macro-system composed of autonomous agents which pur-
sue individual objectives and which interact in a common environment to solve
a common task, it can be viewed as a paradigm to design complex applications.
To overcome difficulties coming from the openness and the dynamic of the

environment, the system must be adaptive. Most natural systems have the ability
to adapt themselves to a changing environment, such as the ability of the body to
adapt its internal temperature when the temperature outside changes. It is well
known that the process enabling these phenomena is self-organisation, defined by
Bonabeau et al. as: ”a set of dynamical interactions whereby structures appear at
the global level of a system from interactions among its lower-level components
[. . . ] The rules specifying the interactions are executed on the basis of purely
local information, without reference to the global pattern” [7].

1.2 Defining Self-organisation and Emergence for Artificial Systems

Self-organisation is a paradigm more and more used in MAS [8] and a definition
with an artificial systems point of view has been provided by the European
working group TFG SO (TFG SO1 of Agentlink III) [9]:

Definition 1. Self-organisation is the mechanism or the process enabling a sys-
tem to change its organisation without explicit external command during its ex-
ecution time.

In general, the environment plays a fundamental role in the self-organisation pro-
cess in constraining the system behaviour. It provides events which disturbs the
system and leads the system to change its behaviour in self-organising. But some
artificial systems can self-organise without interaction with the environment. In
this case, when the system becomes stable it cannot evolve more.
The concept of self-organisation is often coupled with the concept of emer-

gence [10]. And it seems that emergence is a suitable context to design complex
systems that cannot be controlled by a human in a centralised way. We com-
monly agree with the fact that an emergent phenomenon must be observable.

1 TFG SO: Technical Forum Group on Self-Organisation in MAS, see
http://www.irit.fr/TFGSO.
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From an observer point of view, we assume that if one can observe the content
of the entities of a system and if one can observe at the system level a behaviour
that cannot be reduced to the behaviour of the entities, the global behaviour
can be qualified as emergent. In other words, we can say that a human can-
not determine the global behaviour of the system only by looking at the agent
behaviour. We can also qualify a phenomenon as emergent if we need different
terms, vocabularies to explain the micro and the macro levels2. This leads to
give the following operational definition of emergence in artificial systems, based
on three points: what we want to be emergent (subject), at what condition it is
emergent and how we can use it (method) [11,12].

1. Subject. The goal of a computational system is to realise an adequate func-
tion, judged by a relevant user. This ”function” can be for instance a be-
haviour, a pattern, a property (which may evolve during time) that has to
emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
mechanisms facilitating the adaptation of the system during its coupling with
the environment, so as to tend toward a coherent and relevant function.

3. Method. The mechanisms which allow the changes are specified by self-orga-
nisation rules, providing autonomous guidance to the components’ behaviour
without any explicit knowledge about the collective function nor how to
reach it.

1.3 The Three Challenges for Engineering Systems Which Generate
Emergent Functionalities

Designers of complex systems have been taking inspiration from natural systems
in which complex structures or behaviours appear at the global level of a system
from interactions among its lower-level components. The phenomenon observed
at the macro-level emerges by self-organisation of the micro-level components
making up the system. From an engineering point of view, the potential of this
approach is important because it simplifies the design and diminishes the design
delays. To develop a complex system, it is sufficient to design its components
(called agents) which are less complex, to provide them with means to self-
organise through local interactions and to enable them to interact with parts of
the environment. But this is not so easy to do, as Parunak & Zambonelli [13]
have claimed: ”Such behaviour can also surface in undesirable ways”. So, systems
can reach undesirable states because the main difficulty lies in controlling global
behaviour while designing at micro-level.
In our point of view, there are three main challenges to overcome to design

self-organising applications. The first consists in answering the question: ”how to
control the emergence” or in others terms ”how to control the system behaviour
at the macro level by only focusing on the design of agents at the micro level?”

2 This criteria has been highlighted in the working group TFG SO.
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in order to avoid harmful global phenomena. The second challenge is to provide
tools, models and guides to develop such systems. Because the goal of engineering
self-organising systems is to deliver systems with a global behaviour which meets
the requirements or realizes the desired function, the third challenge is about
how to validate these systems. The aim of this paper is to briefly present these
challenges in regard to the main existing approaches and to expound our ideas
and solutions to address them.
In this paper, we first define the two important concepts to take into account

in such a context: Emergence and Self-Organisation (Section 2). Then, the three
challenges will be respectively explained in section 3,4 and 5, positioned in regard
to the main existing approaches and finally our approach will be expounded. The
paper ends by stating which research axes have to be pursued.

2 Challenge 1: An Emergence-Based Theory for the
Designer of Complex Systems

Designing such MAS requires to find rules to make the system achieves the
required collective behaviour, that is ”functions that are useful to the system’s
stakeholders” [14], ”the required macroscopic behaviour” [15], ”a functionally
adequate function” [11] ,... How does this produce a complex system with the
right behaviour at the global level? The environment plays here its key role
by constraining the system, and the system needs to be able to adapt to these
constraints. There is an apparent antinomic situation in the idea of engineering
applications with emergent functionalities. On one hand, emergent behaviour is
a behaviour which occurs and in a certain manner cannot be under control. On
the other hand, a software designer wants the system he is building to achieve a
desired function. So, we can conclude saying that we want to control the emergent
behaviour of the systems. The solution is then to better understand relations
between micro and macro levels and to build a system able to self-adapt to
environmental dynamics.

2.1 Some Mechanisms to Engineer Self-organising Applications

Currently, the objective of most researchers in self-organising MAS is to find
relevant mechanisms to guide the agent behaviour at the micro level, helping
the agents to self-organise and to obtain at the macro level, the behaviour of
the system the designer expects. But the previous definition framework needs to
be carefully instantiated with specific techniques enabling this self-organisation
while allowing emergent functionalities to appear. Usual techniques are based
on stigmergy, cooperation, gossip, natural selection, attraction and repulsion,
potential fields, social relationships, trust...
One of the first kind of artificial systems related to self-organisation is based on

the metaphor that only the better adapted individuals survive. In evolutionary
computation and genetic algorithms [16,17], the system finds a solution in a
huge state space in converging towards similar individuals which represent the
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solution. They are able to learn and adapt because the population evolves under
the pressure of a specific function. Designer have to face two difficulties: on one
hand, to give a well suited problem representation in terms of individuals and
genes, and on the other hand to provide, in addition to mutation and cross-over
operators, an efficient fitness function used by the individuals. This fundamental
function is in general established from global knowledge about the solution the
designer wants to achieve.
Neural networks [18,19] are usually composed of several layers: the entry, out-

put and the hidden ones. Each layer has several neurons connected by weighted
links. They are able to change the organisation between neurons of two consec-
utive layers during the learning phase by changing the weights. In general, it is
difficult to find the right number of hidden levels and the number of neurons per
level. The function used to update the weights of the links is dependent of the
solution the system has to reach. Moreover, the learning corpus is not so easy
to choose and requires a habit from the designer. The evolution of the system
can be viewed as the self-organisation of the neurons, in particular in Kohonen
maps [20].
Multi-agent systems are one of the most representatives among artificial sys-

tems dealing with complexity and distribution [21,22]. Self-organisation is a way
to simplify the design of these systems in having a bottom up approach. Three
kinds of inspirations are used to design these self-organising systems: the bio-
logic and natural one [23], the social one [24], and the artificial one [25]. The
mechanisms based on biologic approaches are closer to the work presented in
this paper.
The stigmergy mechanism has been widely used and was first observed in

societies of social insects by Grassé and can be summarised as ”the work excites
the workers” [26]. Agents leave information in the environment which can be
perceived by the others. In general, this information evaporates after a given
time. This mechanism allows task coordination and regulation within a group,
using only indirect interactions and without central control. There is no method
to develop this technique and the primary difficulty is to adjust the different pa-
rameters such as the speed of evaporation or the amount of information dropped.
Because the solution must be represented in the environment, the final goal of
the system guides the design phase. It is quite obvious that it cannot be applied
if agents cannot act directly on an environment.

2.2 Adapt the System by Its Parts

In our approach, we consider that each part Pi of a system S achieves a par-
tial function fPi of the global function fS (cf. figure 1). fS is the result of the
combination of the partial functions fPi , noted by the operator ”◦”. The combi-
nation being determined by the current organisation of the parts, we can deduce
fS = fP1 ◦ fP2 ◦ ...◦ fPn . As generally fP1 ◦ fP2 �= fP2 ◦ fP1 , by transforming the
organisation, the combination of the partial functions is changed and therefore
the global function fS changes. So, enabling a MAS to self-organise consists in
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Fig. 1. Adaptation: changing the function of the system by changing its organisation

enabling the agent to change inside the organisation. The global function realized
is the result of the organisation between agents in the system. This reorganisation
technique can be extended with two other techniques, we are currently working
on: self-tuning (parts can modify the parameters defining their behaviour) and
self-evolution (parts can appear and disappear when needed). To ensure that
the system will generate emergent behaviour, according to the definition of the
emergence and to be able to control this emergence, it is necessary to provide
to the agents a local criterion which enables them to self-organise. This requires
both a theoretical and engineering framework.
The cooperation is the engine of the self-organisation and the heart of our

bottom-up method. Cooperation is classically defined by the fact that two agents
work together if they need to share resources or competences [27]. We add to this
definition, the fact that an agent locally tries on one hand, to anticipate problems
and on the other hand to detect cooperation failures called Non Cooperative
Situations (NCS ) and try to repair these NCS [28]. To anticipate NCS, the
agent always chooses the actions which disturb the less other agents it knows.
In others words, the agents, by trying to always have a cooperative attitude, act
by reorganising their acquaintances and interactions with the others agents.

2.3 Controlling Emergence: The Theorem of Functional Adequacy

Cooperation was extensively studied in computer science by Axelrod [29] and
Huberman [30] for instance. ”Everybody will agree that cooperation is in general
advantageous for the group of cooperators as a whole, even though it may curb
some individual’s freedom” [31]. In order to show how cooperation improves ar-
tificial complex systems design, we have developed the AMAS (Adaptive Multi-
Agent System) [32,11] theory which is based upon the following theorem. This
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theorem describes the relation between cooperation in a system and the collec-
tive result which is ”functionally adequate3”.

Theorem 1. For any functionally adequate system, there exists at least one
cooperative internal medium system that fulfils an equivalent function in the same
environment.

Definition 2. A cooperative internal medium system is a system where no NCS
exist.

Definition 3. An agent is in a (NCS) when:

(¬cper) a perceived signal is not understood or is ambiguous;
(¬cdec) perceived information does not produce any new decision;
(¬cact) the consequences of its actions are not useful to others.

The objective is to design systems that do the best they can when they encounter
difficulties called NCS. The designer has to describe not only what an agent has
to do in order to achieve its goal but also which locally detected situations must
be avoided and when they are detected how to suppress them (in the same
manner that exceptions are treated in classical programs).
This theorem means that we only have to use (and hence understand) a subset

of particular systems (those with cooperative internal mediums) in order to
obtain a functionally adequate system in a given environment. We concentrate
on a particular class of such systems, those with the following properties [32]:

– The system is cooperative and functionally adequate to the constraints of
its environment. Its parts do not ’know’ the global function the system has
to achieve via adaptation (thus enabling emergent functionalities).
– The system does not have an explicitly defined goal, rather it acts using its
perceptions of the environment as a feedback in order to adapt the global
function to be adequate. The mechanism of adaptation is for each agent to try
and maintain cooperation using their skills, representations of themselves,
other agents and environment.
– Each part only evaluates whether the changes taking place are cooperative
from its point of view – it does not know if these changes are dependent on
its own past actions.

2.4 Architecture and Functioning of an AMAS Agent

A cooperative agent in the AMAS theory has the four following characteristics.
First, an agent is autonomous. Secondly, an agent is unaware of the global func-
tion of the system; this global function emerges (from the agent level towards

3 ”Functional” refers to the ”function” the system is producing, in a broad meaning,
i.e. what the system is doing, what an observer would qualify as the behaviour of a
system. And ”adequate” simply means that the system is doing the ”right” thing,
judged by an observer or the environment. So ”functional adequacy” can be seen as
”having the appropriate behaviour for the task”.
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the multi-agent level). Thirdly, an agent can detect NCSs and acts to return in
a cooperative state. And finally, a cooperative agent is not altruistic (it does not
always seeks to help the other agents), but benevolent (it seeks to achieve its
goal while being cooperative).
Cooperative agents are equipped with several modules representing a partition

of their “physical”, “cognitive” or “social” capacities. Each module represents
a specific resource for the agent during its “perceive-decide-act” life cycle. The
first four modules are quite classical in an agent model: Interaction Module (in
fact composed of Perception Module and Action Module), Skill Module, Repre-
sentation Module and Aptitude Module. The novelty comes from the Cooperation
Module which contains local rules to solve NCS. All the cooperative attitudes of
agents are implemented in this module: it must provide an action for a given state
of skills, representations and perceptions, if the agent is in a NCS. Therefore,
cooperative agents must possess rules to detect NCS. For each NCS detection
rule, the Cooperation Module associates one or several actions to process to
avoid or to solve the current NCS. During the perception phase of the agents’
life cycle, the Perception Modules updates the values of the sensors. These data
directly imply changes in the Skill and Representation Modules. Once the knowl-
edge updated, the decision phase must result on an action choice. During this
phase, the Aptitude Module computes from knowledge and proposes action(s)
or not. In the same manner, the Cooperation Module detects if the agent is in
a NCS or not. In the former case, the Cooperation Module proposes an action
that subsumes the proposed action by the Aptitude Module. In the latter case,
the only action4 proposed by the Aptitude Module is chosen. Once an action
is chosen during the action phase, the agent acts by activating its effectors or
changing its knowledge.
According to the AMAS theory, agents have to be able to detect when they

are in a NCS and how they can act to come back in a cooperative situation.
Agents also always try to stay in a cooperative situation and so the whole system
converges to a cooperative state within and with its environment. This leads –
according to the theorem of functional adequacy (theorem 1) – to an adequate
system.
Thus, this describes the typical decision process of a generic AMAS agent.

But the NCS and the actions which could be applied to solve them are not
generic: designers have to write their own specific NCS set and related actions
for each kind of agent they wish the system to contain.

3 Challenge 2: A Method and Tools for the Designer of
Complex Systems

The first and obvious problem software designers encounter when trying to en-
gineer complex systems lies of course in their nature: complexity. How can we
build something we do not even fully understand? Since the years 2000, agent

4 There is only one action possible, otherwise an NCS is detected.



66 M.-P. Gleizes et al.

oriented methodology field is in full rise; numerous new methodologies devoted
to particular problems appeared [33], but very few of them are devoted to design
multi-agent systems generating emergent functionalities.

3.1 Existing Works for Engineering Self-organising Multi-agent
Systems

Van Parunak and Bruckner propose a design guide for swarming systems engi-
neering [14] consisting of ten design principles: the four first are derived from
couples processes, the three next are derived from autocatalysis and the three
last are derived from functional adjustment. Even if swarming systems have
demonstrated their effectiveness as an alternative model of cognition and have
been applied to number of applications, this approach is not very easy to apply
because of the huge number of parameters to tune. The ten given principles are
very general and no associated tool exists. No guide is given to indicate if the
use of swarming systems is more relevant than conventional cognitive techniques
for designing the current application or problem.
De Wolf [15] has defined a full life-cycle methodology based on the Unified

Process customized to explicitly focus on engineering macroscopic behaviour of
such kind of systems. This customization takes place in the following steps of
the process:

– After the requirements analysis done, one checks if an autonomous behaviour
is needed, if the available information is distributed, if the system is subject
to high dynamics such as failures and frequent changes;
– In the design phase, general guidelines or principles, reference architectures,
decentralised mechanisms allowing coordination between agents to achieved
desirable macroscopic properties, have to be used to design self-organising
emergent MAS. In that sense, De Wolf proposes an initial catalogue including
the most widely used coordination mechanisms such as digital pheromones,
gradient fields, market based coordination, and tag based coordination. Fur-
thermore, he proposes ”Information flow” as a design abstraction which en-
ables designing a solution independently of the coordination mechanism.
– In the verification and testing phase, he combines agent-based simulations
with scientific numerical algorithms for dynamical systems design. More de-
tailed are given in the challenge 3 of this paper.

3.2 Engineering Adaptive Multi-agent Systems: ADELFE

ADELFE 5 is a methodology devoted to software engineering of adaptive multi-
agent according to the AMAS approach. ADELFE enables the development of
software with emergent functionality and consists of a notation based on UML
(Unified Modelling Language) and AUML (Agent-UML) [34], a design process

5 ADELFE is a French acronym for ”Atelier de Développement de Logiciels à Fonc-
tionnalité Émergente”.
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based on the RUP (Rational Unified Process), a platform made up of a graphical
design tool called OpenTool and a library of components that can be used to
make the application development easier.
Thedesignprocess (seefigure2)coversall thephasesofa classical softwaredesign

(from the requirements to the deployment) in adding some specific steps to design
adaptive systems. OMG’s SPEM (Software Process Engineering Metamodel) has
been used to express the ADELFE process and the SPEM vocabulary is used to
expound themethodology:WorkDefinitions (WDi),Activities (Aj) andSteps (Sk).

ADELFE : Design Methodology

– Final requirements. The environment of the system is central in the AMAS
theory; this is due to the fact that the adaptation process depends on the in-
teractions between the system and its environment. This characteristic has
led to the addition of one Activity (A6) and one Step (A7-S2) in the ”Final
Requirements”WD2. Designersmust characterize the environment of the sys-
tem by qualifying it as being accessible or not, deterministic or not, dynamic
or static and discrete or continuous. These terms represent a help to later de-
termine if the AMAS technology is required or not to build the studied system
(A11). At this point, designers must also begin to think about the situations
that can be ”unexpected” or ”harmful” for the system because these situa-
tions can lead to NCS at the agent level. Therefore, the determination of use
cases has been modified to take this aspect into account (S2).
– Analysis. The use of AMAS theory is not a solution fitted to every applica-
tion. For that reason, ADELFE provides an interactive tool (A11) to help a
designer to decide if the use of the AMAS theory is required to implement
his application. ADELFE does not assume that all the entities defined dur-
ing the final requirements are agents. Therefore, this methodology focuses
on the agents identification (A12) and some guidelines are then provided
to help designers to identify agents [35]. A Step (S3) has also been added
concerning the study of agents relationships.
– Design. Agents being identified and their relationships being studied, de-
signers have now to study the way in which the agents are going to interact
(A15) thanks to protocol diagrams. ADELFE also provides a model for de-
signing cooperative agents (A16), following the agent architecture presented
in section 2.5. The global function of a self-organising system is not coded;
designers have only to code the local behaviour of the parts composing it.
ADELFE provides some generic cooperation failures such as incomprehen-
sion, ambiguity, uselessness or conflict. Designers must fill up one table per
NCS to give the name of each NCS, its generic type, the state in which
the agent must be to detect it, the conditions of its detection and what ac-
tions the agent must perform to deal with it. A new Activity (A17) of fast
prototyping based on finite state machine has been added to the process. It
enables designers to verify the behaviour of the built agents. Now simulations
tools is included into ADELFE to complete the life cycle of its development
process [36,37].
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Fig. 2. ADELFE process

Tools Linked with ADELFE. Even if ADELFE is suited to develop appli-
cations based on the AMAS technology, it does not assume that the designer is
specialized in this field. Therefore, some additional notations are provided as well
as some tools to help or guide the designer throughout the process application
[38]:

1. A tool enabling to know if the use of the AMAS technology is useful to
implement the target system. Eleven questions are asked to designers using
a graphical interface. This adequacy is studied at two levels: the global one
(system) with 8 questions and the local one (components) with 3 questions.
A designer uses a slider to answer a question and to give a rate among twenty
possibilities ranging from ”yes” to ”no”. His answers are then analysed by
the support decision tool. The answers of ADELFE regarding the global level
and the local one are then given in a graphical tool and an interpretation of
the results can also be obtained.

2. An interactive tool which describes the process and helps the designer to
apply it (it can be downloaded at http://www.irit.fr/ADELFE). The first
functionality of the ADELFE interactive tool is to be a guide by describing
the process; each activity or step of the process is depicted and exemplified
by applying it to a timetabling problem (ETTO) [35]. The interactive tool
also provides a means to support the adopted notations and draw the needed
diagrams by integrating OpenTool which has been modified for ADELFE. It
checks the project consistency by displaying what stages (activities or steps)
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can be done depending on what has been already done or what documents
have been produced yet.

3. OpenTool, a graphical modelling tool supporting the UML notation and
embedded in the ADELFE toolkit. It enables applications modelling while
assuring that the produced models are valid. As some lacks exist in the UML
notation to deal with the specific modules composing a cooperative agent,
nine stereotypes have been defined to show how an agent is formed and/or
how its behaviour is expressed («cooperative agent» «characteristic» «skill»,
«aptitude», «representation», «interaction», «perception», «actions» and
«cooperation»). On the other hand, to model interaction protocols between
agents AUML interaction protocol model has been extended and included in
OpenTool functionalities. OpenTool has also been modified to enabling ex-
pression of cooperation failures. In the fast prototyping stage (A-17), agents’
behaviours are simulated using a functionality of OpenTool which requires
a dynamic model (state-chart) for each simulated entity (object or agent).
As agents’ behaviours are modelled as AIP protocol diagrams and a method
was proposed to transform a protocol diagram (a particular generic sequence
diagram) into a state-chart that OpenTool is able to simulate.

4 Challenge 3 : A Validation Framework for the Designer
of Complex Systems

It is quite obvious that the software validation phase, requested by industrials
and end-users, is necessary before its commercialization. So, validation of self-
organising applications is, even more, a mandatory step during development.
In software engineering, there are often many validation activities but in this
paper we focus on the global behaviour validation of the system which consists
in verifying that the system complies to the desired function. Validation is not a
new axis in computer science, but self-organising systems lead to new challenges
not yet taken into account by classical methods. In large scale dynamic and
adaptive systems such as self-organising systems, the methods, techniques and
tools for validation are still in a research phase [39]. In general, formal methods
[40] for validation, such as model checking, theorem proving... are adequate for
checking/proving desired properties of the system when the code is showing the
following properties: it is static and it runs in well-known environments. A static
code is a code which does not evolve and there is no learning at this level. A
well-known environment means that the system does not face unexpected events
or unexpected scenarii.

4.1 Related Works in Multi-agent Systems

The question of validation becomes more and more crucial in self-organising
MAS and some works attempts to deal with it. Tom De Wolf et all [41] use
simulation-based scientific analysis for designing self-organising systems achiev-
ing the required system behaviour. They combine realistic agent-based simu-
lation and existing scientific numerical analysis algorithms to design a system
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simulation. The main phase in the design process is to identify macroscopic
properties desired at the system level, macroscopic variables for measuring the
macroscopic properties and define microscopic variables for each macroscopic
one. Then when an analysis algorithm is chosen, simulations are launched so
as to analyse the global behaviour of the system in terms of desired properties
linked to specific parameters. Parameters are adjusted iteratively until the sys-
tems exhibits a satisfactory behaviour. The difficulty in this approach is to define
the different variables and express the link between the macro and micro levels.
Bruce Edmonds has shown in several papers [42,43] that formal methods are

insufficient to show the reliability of self-organised systems. He proposes to use
an experimental method to produce reliable self-organising systems and mixes
in his approach engineering and adaptation. After the process of construction
which constructs the multi-agent systems from the agents, the design process
consists in adaptation cycles. A cycle begins with a test and comparison of the
global behaviour of the system and the desired global behaviour. If it is not
satisfying the system adapts to change its global behaviour. This cycle stops
when the produced global behaviour fits the desired one. The validation is done
by experiments and is considered by the authors as the sole mean at this time.

4.2 Validation of AMAS

In ADELFE, the reliability of the global behaviour of the system, ensured by
the AMAS theory, is verified essentially at the design phase. In self-organising
system, the desired function cannot always be well defined, for example: what is
the global function of the Internet? What is the global function of a crowd? By
consequence the automatic verification is not always possible and must be done
by the designer. In ADELFE, this functional adequacy is checked at the end of
the design but also during the design. Our aim is to give more tools to automate
the verification-update cycle. We are very close to Edmonds’s approach. The
tests realized by simulation help to enhance the system and to improve the
functional adequacy, i.e. to verify that the system fits the desired function.
As explained in [11], we can consider in agent-based software engineering that

the object conceptual level and the agent conceptual level in the system design
process overlap. The test phase of the code realized with the targeted program-
ming language is done in parallel with the agent design phase (see figure 3). So,
in ADELFE, what we call Living Design is defined by the link between design
and test phases of the two processes. Namely, Living Design means ”construct
agents during run-time”. Therefore, the designer is like a biologist who studies
the behaviour of living creatures and who can modify its model according to his
observations. For doing this, simulation is used in order to help the designer to
develop the agents of the system by observing the system at the global level.
As we have say before, applying the AMAS theory consists in enumerating,

according to the current problem to solve, all the NCS that can appear during
the system functioning and then defining the actions the system must apply to
return to a cooperative state. Currently, during the preliminary requirements
phase, ADELFE provides tools to express NCS in the use case diagrams. During
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Fig. 3. Living Design

the design phase, it is possible to find if some deadlocks can take place within
an interaction protocol, or if some protocols are useless or inconsistent. The
protocol diagram notation has been extended to express these situations. Thus,
the behaviour of several agents could be judged in accordance (or not) with the
sequence diagrams described in the analysis phase. However, the core difficulty
lies in identifying NCS and in helping the designer to find all these NCS. Simu-
lation is used in ADELFE to help designers to find the correct behaviours of the
agents during the design stage: by simulating a simplified system and observ-
ing it during execution, the behaviour of agents can be modified and improved.
Currently, our work focuses only on situated multi-agent systems and not yet
on communicative ones. The main reason for such a choice was that the obser-
vation of the behaviour in an environment is easier to be judged by an observer.
Simulation enables to automatically identify these situations during execution
of a prototype of a targeted MAS. A model of cooperative agents [37] is imple-
mented under the SeSAm platform by using an architecture inspired from the
subsumption architecture proposed by Brooks and reusing the notion of priority
between the (conditions, actions) couple. This behaviour can be expressed with
a set of behavioural rules which follow this pattern:

if premise then consequent

where premise is a logical predicate made up of elements coming from agent
perceptions or characteristics, and consequent activates one of the possible
actions this agent may perform. The difference between Brooks’ architecture
and ours is that our agents have representations. The cooperative agent model
[37] automatically detects some NCS during the execution of a simulated MAS
and shows where and when NCS appear. The designer has then to modify the
agent behaviour.
In our more recent work [36], this goes a step further as during a simulation

cycle, an agent has the ability to self-design its behaviour considering that (i)
all the rules needed to design the decision process are given by a designer (that
is the agent does not learn new rules during the process), (ii) the set of given
rules is complete and correctly written and (iii) the system interacts with a
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dynamic environment. The Self-Design Behaviour Module (SDBM) inside an
agent is implemented as an adaptive MAS. Behavioural rules forming it have to
collectively adapt to the agent’s environment and are then considered as agents.
They have to self-organise in order to find the best hierarchy of rules that is
to say the most efficient behaviour for the agent it belongs to. This work is on
going but we obtained first encouraging results [36].
Because the systems are adaptive, it is necessary to validate them in a dy-

namic environment. The number of states and of events perceived by the system
must be very important and the validation can not currently be formal. The
formal validation can be done on the agent code but not yet at the global level,
so currently on these systems only partial formal validation can be done and
the global behaviour can be verified only by simulation. The role of the de-
signer/observer is fundamental because he participates to the co-construction of
the system. He plays the role of an environment which interacts with the system
and causes the change of the system behaviour.

5 Conclusion

We have presented the three main challenges for engineering systems with emer-
gent functionalities will be confronted with, as well as current investigated leads
and work relating to the use of self-organisation and emergent phenomena.

1. System control related problems can be partially solved by providing the sys-
tem with capability to self-adapt to the environment. Common decentralized
mechanisms used to achieve such a control are inspired by existing natural
systems (ants colony, collective movements) or social-related behaviours (co-
operation, competition). This is the case for the AMAS theory which is based
on an environmental constraints driven process and enables engineering sys-
tems whose parts self-organise according to local cooperative criteria.

2. In order to support those new ways to design complex systems, new tools
and methodologies have to focus on local behaviours, environment character-
ization and emergent phenomena. Unfortunately, the few existing method-
ologies are yet in the research domain and/or incomplete (no deployment
and maintenance phases). Moreover, system design analysis is still strongly
focused on global ends analysis which cannot fit with some application re-
quirements: for instance, in Ambiant Intelligence it is not possible to fully
specify what the system has to do.

3. Given that emergence and self-organisation had not seriously been studied
as hard science subject, classical formal methods are not suitable. Engi-
neered complex systems verification and validation can only be achieved
using simulation-based approaches. Nowadays, the most reliable way con-
sists in iteratively improving the designed system using mathematical tools
(statistical analysis, behavioural parameters optimisation) or semi-
autonomous adaptive programming (Living Design).

Emergence and self-organisation have only recently been considered as serious
alternatives in industrial software engineering. As anyone can notice by reading
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strategic agendas of some European platforms (ARTEMIS, eMobility, EPoSS),
the main displayed concerns about these ”new paradigms” are validation and
verification aspects:

”These system-design principles seem to be compatible with the good
average-case performance. However, these often conflict with a design’s
predictability.” (Artist2 Network of Excellence, 20066)

Nevertheless, in our opinion, industry does not really have a choice: as software
becomes more complex, this approach is the only viable option currently known.
True artificial complex systems will thus be built using emergence and self-
organisation: Ambient Intelligence, Swarm Robotics, Autonomous Computing,
e-Health-care, Computational Biology...
Another major effort has to be done towards methodologies supporting (en-

abling) pure local analysis without any need to specify what the system has to
do or underspecified system. As a matter of fact, the core of the complex system
engineering problem remains the lack of accepted theories (even non complete
ones) of emergence and self-organisation.Without such a fundamental key, it will
be difficult to legitimate and disseminate this approach, as well as to promote
and explain any future successful ”killer applications”.
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Abstract. There is a growing interest in the study and development of
self-* systems motivated by the need for information systems capable of
self-management in distributed, open, and dynamic scenarios. Unfortu-
nately,there is a lack of frameworks that support the intricate task of
developing self-* systems. We try to make headway along this direction
by introducing a framework, EIDE-*, to support the engineering of a par-
ticular type of self-* systems, namely autonomic electronic institutions:
regulated environments capable of adapting their norms to comply with
institutional goals despite the varying behaviours of their participating
agents.

1 Introduction

There is a growing interest in the study and development of self-* systems
[12] (where the * sign indicates a variety of properties: self-organization, self-
configuration, self-diagnosis, self-repair, etc) motivated by the need for infor-
mation systems capable of self-management in distributed, open, and dynamic
scenarios. A particular approximation to the construction of self-* systems is
represented by the vision of autonomic computing [10], which constitutes an
approximation to computing systems with a minimal human interference. Un-
fortuntately, there is a lack of frameworks that support the intricate task of
developing systems with autonomic capabilities. As an exception we can con-
sider the Living Systems framework [17]. Nonetheless, it is hard to conceive
a general-purpose development framework for self-* systems. Therefore, our en-
deavour can be eased if we depart from a particular model of open system [9] that
can eventually be endowed with self-management capabilities. A review of the
literature indicates that electronic institutions (EIs) [5], regulated environments
wherein the relevant interactions among participating agents take place, have
proved to be valuable to develop open agent systems. Indeed, EIs do even count
on a development environment (EIDE) to ease their engineering [1]. However,
the challenges of building open systems as EIs are still considerable, not only
because of the inherent complexity involved in having adequate interoperation
of heterogeneous agents, but also because the need for adapting regulations to
comply with institutional goals despite varying agents’ behaviours. Particularly,
when dealing with self-interested agents as noticed in [3].
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In this paper we try to make headway in the engineering of self-* systems
by introducing a framework to support the development of a particular type of
these systems, namely autonomic electronic institutions : EIs with self capabil-
ities. The framework we introduce, EIDE-*, must be regarded as an extension
of EIDE, the current development framework for EIs. Specifically, the new en-
gineering requirements imposed by the autonomic capabilities brought about a
new approach in the agent development tool (aBUILDER) and in the simulation
tool (SIMDEI ).

Furthermore, we illustrate the capabilities of the framework through the anal-
ysis of a power electricity market inspired on the actual operation of the Spanish
electricity market. The main goal of an electricity market is to provide a set of
rules for conciliating the demand of electricity and its generation. There are two
issues that must be avoided: a lack of production that can leave customers with-
out supply and an unwanted overproduction. Moreover, these goals have to be
achieved while maintaining a reasonable electricity price. We show how EIDE-*
can support self-configuration policies in such setting.

The paper is organized as follows: Section 2 introduces the formal concepts
around autonomic electronic institutions. Section 3 describes the set of tools
we provide for helping in the engineering of autonomic electronic institutions.
Section 4 presents the electricity market problem and shows how all the concepts
and tools are used to design a specific institution. Finally, conclusions and future
work are presented in section 5.

2 Autonomic Electronic Institutions

Loosely speaking, EIs are computational realizations of traditional institutions
(cf. North [14] pp. 3 ss.); that is, coordination artifacts that establish an environ-
ment where agents interact according to stated conventions, and in such a way
that interactions within the (electronic) institution would count as interactions
in the actual world.

According to the basic definition of an electronic institution (see [5]), an EI is
composed of three components: a dialogical framework that establishes the social
structure, the ontology, and a communication language to be used by partici-
pating agents; a performative structure defining the activities along with their
relationships; and a set of norms defining the consequences of agents’ actions.

MAS applications are usually concerned with some external environment. The
environment is application-specific and refers to the part of the world that is
relevant to the MAS application. For instance, in the electricity market example
that will be presented in section 4, the power demand is modeled by an equation-
based tool that simulates real electrical consumption patterns.

Environments are plugged into EIs as institutional services [2]. In our ap-
proach, agents cannot directly sense and act over the environment. Instead, and
likewise all interactions of external agents in the realm of an EI, they are medi-
ated by the institution wherein they interact. The link of an institution with an
environment enriches the functionality of the EI components.
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2.1 Self-organizing Capabilities

From this basic definition of an EI we have extended the model to support self-
configuration [3]. The notion of Autonomic Electronic Institutions (AEIs) has
been proposed as a model for providing self-configuration capabilities to EIs.
AEIs incorporate three new main components: en explicit set of institutional
goals G, an information model I, and a normative transition function δ that
allows to transform interaction conventions.

The main objective of an AEI is to accomplish its goals. For this purpose,
an AEI has to be able to both dynamically observe/analyze the performance
of the institution and to adapt its interaction conventions. We assume that an
institution can observe its environment, the institutional state of the agents
participating in the institution, and its own state to assess whether its goals are
accomplished or not. Thus, from the observation of environmental properties,
institutional properties, and agents institutional properties, an AEI maintains
the information model I required to determine the fulfillment of goals.

Formally, we define the goals of an AEI as a tuple G = 〈V, C〉 composed of :
(i) a set of reference values V = 〈v1, . . . , vq〉 where each vj results from applying
an evaluation function hj upon the information model; v = h(I), 1 ≤ j ≤ q;
and (ii) a finite set of constraints C = {c1, . . . , cp} where each ci is defined
as an expression gi(V ) � [mi, Mi] where mi, Mi ∈ R, � stands for either ∈ or
/∈, and gi is a function over the reference values. In this manner, each goal is
a constraint upon the reference values where each pair mi and Mi defines an
interval associated to the constraint. Thus, the institution achieves its goals if
all gi(V ) values satisfy their corresponding constraints of being within (or not)
their associated intervals.

Finally, the normative transition function δ defines the set of actions allowed
for re-configuring the institution at runtime. The re-configuration is performed
by changing the interaction conventions. Specifically, δ actions will have effects
over the performative structure and the normative rules. For instance, the role
flow policy among activities can be modified by δ.

Nowadays, we are not dealing with the re-configuration of the dialogical frame-
work (i.e. the social structure, the domain ontology, and the communication
language are invariant).

Because staff agents are those in charge of the institutional activities, only
staff agents will be allowed to observe the fulfillment of the institutional goals
and will be able to change the interaction conventions.

3 Development and Simulation Framework

In order to facilitate the engineering of AEIs we have developed a set of software
tools that give support to all the design and execution phases. These tools are in-
tegrated in the Development Environment for Autonomic Electronic Institutions
(EIDE-∗). EIDE-∗ allows for engineering both the institutional rules and the par-
ticipating agents. Figure 1 depicts the EIDE-∗ framework. The tools provided by
the EIDE-∗ framework are: a graphical tool that supports the specification and
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ISLANDER SIMDEI
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Fig. 1. The EIDE-∗ Framework

static verification of institutional rules (ISLANDER); an agent development tool
(aBUILDER); a simulation tool to animate and analyse ISLANDER specifications
(SIMDEI ); and a software platform to run EIs (AMELI ). All these tools have been
enhanced to provide the new requirements of autonomic electronic institutions.

To design an AEI we have a tool, ISLANDER [6], that allows us to make a
graphical specification of the AEI components and produces an XML file with
the specification. That specification is used to enact instances of the institution,
by agent designers to build agents that conform to the institutional conventions,
and to design and run experiments with different agent populations.

The core of EIDE-∗ is AMELI [7], an institutional engine that provides a
run-time middleware for the agents that participate in the enactment of a given
institution. The middleware is deployed to guarantee the correct evolution of each
scene, to warrant legal movements between scenes, and to control the obliga-
tions or commitments that participating agents acquire and fulfill. Furthermore,
the middleware handles the information agents need within the institution. The
AMELI generated middleware mediates between agents in order to facilitate
agent communication within scenes. Broadly speaking, AMELI achieves those
functions because on the one hand it generates the staff agents and the institu-
tional governors that mediate all communications with external agents and, on
the other hand, it handles all the institutional communication traffic by wrapping
illocutions as messages that are handled by a standard agent-communication
layer. AMELI has been extended so that staff agents can observe the fulfillment
of the institutional goals and change the interaction conventions at run-time.

Additionally, AMELI provides a set of new monitoring facilities that allow
a graphical depiction of all the events that occur during the enactment of an
AEI. Fairness, trust and accountability are the main motivations for the de-
velopment of a monitoring tool that registers all interactions in a given enact-
ment of an electronic institution [13,18]. Giving accountability information to the
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Fig. 2. Monitoring the Electricity Market

participants increases their trust in the institution. This is specially important for
electronic institutions where people delegate their tasks to agents. Furthermore,
the tool permits them to analyse their agent(s) behaviour within the institution
in order to improve it.

Figure 2 shows some of the monitoring facilities activated for the electricity
market. The left frame contains a list of the institution’s scenes and transitions
along with their executions. In the monitoring snapshot shown in the figure, the
execution of the secondary market is monitored at state W5. The right frame
depicts the events occurring during scene execution: agents’ entrance (second
event); the utterance of valid (third event) and wrong (fourth event) illocutions;
transitions caused by timeouts; and agents’ exit. Furthermore, the monitoring
tool allows the tracking of the institution information model and the tracking of
the institution goals achievement. For instance, figure 2 depicts the tracking of
the energy cost parameter. The chart allows the tracking of the evolution of the
energy cost along the time together with the maximum cost (calculated using
the monitoring facilities of the tool).

External environments are plugged into AMELI by implementing a required
Java interface, the so-called EInstitutionService, providing all methods for
observing and acting with them. Thereafter, different interfaces to acces the
service can be incorporated into AMELI as implementations of the
ServiceProfile interface. These service profiles can be regarded as different
views to an environment. The motivation to consider different profiles is that
an AEI may require that external agents have different views to the environ-
ment depending on their roles. An example of a market forecast service for the
electricity market is described in the next section.

EIDE-∗ provides a software tool, aBUILDER, for agent development based
on ISLANDER specifications. Specifically, aBUILDER takes an ISLANDER
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specification and produces for each role that may be played in the institution
an ”agent skeleton”. Those skeletons comply with all the conventions of the
specified institution, in particular with its dialogical framework and the perfor-
mative structure. The previous vesion of aBUILDER presented in [1] has been
extended to support the graphical specification of agent skeletons. Hence, staff
agents may be easily built —on top of the aBUILDER skeletons— by concen-
trating the programming efforts on the decision policies and having the skeleton
take care of navigation and communication within the AEI. Additionally, exter-
nal agents may be modeled as parametric skeletons and used in the simulation
environment to validate the institution goals.

Validating the desired behavior of an AEI is a highly intricate and computa-
tionally expensive task, as illustrated by [8,11,21,22]. Such validation becomes
even more complicated when we incorporate into the AEI an environment with a
partially observable behavior. We have developed an extended version of SIMDEI
(formerly introduced in [1]). SIMDEI allows to run discrete event simulations
of AMELI along the lines of multi-agent simulations produced with the aid of
libraries like Repast [16]. As to environment simulations, we must choose the
modelling simulation tool (e.g. Simile [19], Simulink [20], EJS [4]) that best fits
the domain features. Chosen a simulation tool, it is necessary to glue it with
AMELI so that agents in an AEI can sense and act upon the simulated environ-
ment. This required simulation bridge (see the arrow connecting the simulation
environment with AMELI in figure 1), is a software component whose main pur-
pose is: (i) to synchronise both simulators; (ii) to forward environment variables’
values to SIMDEI ; and (iii) to translate actions within the simulated AEI into
environment actions. At present, we do offer implementations of the simulation
bridge to connect SIMDEI simulations to either Simulink [20] or EJS [4].

SIMDEI can exploit parametrised agent skeletons to generate agent popu-
lations by setting the number of agents to create from a given skelenton along
with the means to set up values for their parameters. An agent’s action can be
parametrised in two ways: (i) by defining whether an action is carried out or not
as a parameter; (ii) by defining (some of) the actual values of each action as pa-
rameters. Figure 3 illustrates how to generate a population of energy producers
whose production capacity will be randomly generated by a normal distribution.

In summary, we have extended the original EIDE development framework
providing a set of tools for engineering (specify and test) autonomic electronic
institutions (EIDE-∗). EIDE-∗ has been used for designing an testing the elec-
tricity market problem that is described below.

4 Electricity Market

We will illustrate the capabilities of the framework through the Power Electric-
ity Market problem. The main goal of an electricity market is to provide a set
of rules to conciliate the demand of electricity and its generation. There are two
issues that must be avoided: a lack of production that can leave some customers
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Fig. 3. Generating Agent Populations for the Electricity Market with SIMDEI

without electricity and an unwanted overproduction. Moreover, these goals have
to be achieved while maintaining a reasonable electricity price.

We will model an electricity market as an electronic institution where the power
demand is the environment where the institution is situated and the market is only
able to partially observe the impact of their decisions in the environment.

4.1 Market Goals

As we mentioned above, the first goal of the electricity market AEI is to guar-
antee that the energy demand is always satisfied and that the overproduction is
minimized. Because each producer is obliged to guarantee a safety power that
is a 10% of its production, we are interested in minimizing the amount of safety
power required.

The second goal of the electricity market AEI is to keep the power cost in
a reasonable interval. For instance, the power cost in a working winter day
oscillates from a minimum of 30 Euros/MWh to a maximum of 70 Euros/MWh.

Given these goals, we defined four reference values in the AEI: the power
deficit percentage (PDP); the overproduction percentage (OPP); the power cost
average (AvgC); and the power cost deviation (DevC).

Because we are interested in experimenting with different scenarios, the con-
straints associated to the reference values (the maximum and minimum ranges)
will be parameters to be filled when enacting specific institutions.

4.2 Market Players

The players of the market are the producers, the consumers, and the system
operator. Producers and consumers are external roles in the institution whereas
the system operator is a staff role.



Engineering Autonomic Electronic Institutions 83

Producers: The producers use different technologies for electricity generation
in order to satisfy the demand. The three main types of power stations mod-
eled are: Thermic (coal-fired, gas fired and fuel-fired) stations, Nuclear stations,
and Hydroelectric stations. Each type of power station has its own production
features. For instance, nuclear and hydroelectric are cheap and come on stream
rapidly. However, if nuclear plants are backed-off significantly, recovery time
is slow. Thermic-based generation is relatively expensive and slow to come on
stream.

Consumers: The consumers that participate in an electricity market are large
industrial companies and local energy wholesalers that sell the energy to smaller
or domestic consumers. The main goal of the consumers is to buy energy for half
an hour periods according to the information provided by the demand model.

System Operator: The task of the system operator is to guarantee the voltage
level and the dynamic security of the electricity network. Specifically, the system
operator controls that the power deficit is never greater than a 10% of the total
production, which is the obliged safety power that each power station must fulfill.
Notice that, in our example, producers are autonomous about deciding their own
production and the system operator is only responsible for the distribution of
the demand.

4.3 Market Activities

The electricity market is organized in three different markets: the primary mar-
ket, the secondary market, and the balancing market.

Primary Market: The primary market performs periodic auctions of transmis-
sion rights, in the form of tickets valid for the injection or extraction of energy
over the next half an hour period. We have modeled the primary market with a
double auction protocol. Every half an hour a new auction is launched.

Secondary Market: Once the auction has taken place, the goal of the secondary
market is to provide an additional round for the trading of transmission tickets.
The market allows the trading of a ticket until half an hour before the ticket
time. This time is known as “gate closure”.

Balancing Market: This market exists to permit the system operator to adapt
the plans of production to the quality and security restrictions. Based on the
analysis of the tickets held in the previous markets, the system operator is able to
identify shortfalls or excesses of energy that will arise during the ticket window.
The only actions available are: the dispatching of additional generation and the
back-off of scheduled generation.

4.4 Simulation Environment

The power demand has been modeled following the electrical consumption in
Spain every hour. The information has been taken from the “Red Eléctrica
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Fig. 4. Plugging a Forecast Service to the market

Española” [15] which controls the electrical power distribution in Spain. The
power demand has been simulated using the EJS tool [4]. We have modeled four
diffenent consumption patterns: working days, Saturday, Sunday, and holidays.
Moreover, some perturbations can be introduced arbitrarily into the simulated
patterns. We have developed the MarketForecast service that offers the forecast
methods—namely expected demand (getDemand); expected energy production
(getProduction); and expected MWh price (getExpectedPrice)—as well as a
method to retrieve past market price on a particular date getPrice(Date d).
Furthermore, it provides a method for acting into forecast calculi: the method
setClearing(Contracts c) sets the contract information corresponding to a
market cleared by the system operator. THe setClearing method is employed
by affecting the demand simulation and, consequently, the subsequent forecasts.
The idea behind this method is to disturb the estimation of the next expected
price by means of analyzing the production and consumption mismatches.

The ForecastProfile profile only allows external agents to obtain infor-
mation about past market prices on particular dates, and the expected energy
demand and production. The ForecastProfile has been further split so that
only consumers can access the production forecast, whereas only producers can
access the demand forecast. Figure 4 summarizes the MarketForecast service.

4.5 Self-configuration Policies

The system operator is the agent in charge of tracking the fulfillment of the in-
stitutional goals and the one responsible for re-configuring them when necessary.

The interest of the institution is the market autonomy, i.e. that producers
and consumers would reach all the required agreements in the primary and
secondary markets with the minimum mismatch between offer and demand. The
intervention of the system operator in the balancing market has to be minimized
and the task of the system operator is to dynamically adapt the institutional
rules for enforcing this result.
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After each execution round in the balancing market, the institutional goals
are automatically updated by AMELI. First at all, the result of a balanc-
ing market round fires the updating of the reference values: the power deficit
percentage (PDP); the overproduction percentage (OPP); the power cost av-
erage (AvgC); and the power cost deviation (DevC). Then, the fulfillment of
the goals is updated by checking the constraints related to each goal, i.e. by
contrasting position of the reference values into the desired intervals.

The most important goal of the institution is to minimize the amount of
reserve power consumed (PDP). Because the guaranteed reserve power is only
a 10% of the production, the priority of the system operator must be to avoid
the usage of this reserve. The system operator uses the MarketForecast service
for assessing whether a usage of the reserve power is the product of a punctual
demand peak (the power demand usually has two maximum peaks per day) or
reflects a problem between offer and demand. Only this second phenomenon is
considered as an indicator to re-configure the institutional rules. We assume that
producers and consumers follow a rational behavior. Producers are interested in
offering all the energy they are able to produce when demand peaks arise because
the price in those situations is usually high. On the counter part, consumers
are aware that they have to pay an extra price when the global demand is
high. Thus, the main reason of this market mismatch is the partial awareness
that each consumer or producer has about the global market behavior. The
scope for action of the system operator focuses the secondary and balancing
markets. The system operator may change the role flow policies for enforcing
the participation of producers in the secondary market and for re-configuring
the protocol parameters in the secondary market providing more flexibility to
the consumers.

The overproduction is preferable to the lack of production but also has to be
minimized. Assuming again a rational behavior in producers and consumers, the
system operator will change the role flow policies for inhibiting the participation
of producers in the secondary market. Furthermore, the system operator may
change the window of the demand forecast the producers are able to access, i.e
re-configuring the ForecastProfile for helping the producers in the planning
of their optimal production.

Finally, maintaining the energy cost in a reasonable interval should be a natu-
ral consequence of any balanced market. Because of the openness of participants
this hypothesis cannot be assumed and the system operator has to prevent also
unexpected low/high prices. The way a system operator may enforce reason-
able prices is by modifying the normative rules of the institution by increas-
ing/decreasing punishments.

5 Conclusions

In this paper we have tried to make headway in the engineering of self-* systems
by introducing a framework, EIDE-*, to support the development of a particu-
lar type of these systems, namely autonomic electronic institutions (AEIs). We
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have introduced the formal concepts around autonomic electronic institutions
and described the set of tools we provide for helping in the engineering of auto-
nomic electronic institutions. Furthermore, we have illustrated the capabilities
of the framework through the analysis of self-configuration policies in a power
electricity market.

As future work, we plan to deal with the reasoning capabilities required by a
participating agent in order to cope with institutional changes.
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Abstract. One motivation for many agent-based models is to predict the future. 
The nonlinearity of agent interactions in most non-trivial domains mean that the 
usefulness of such predictions will be limited beyond a certain point (the “pre-
diction horizon”), due to unbounded divergence of their trajectories. The 
model’s predictions are increasingly useful out to the prediction horizon, but 
become misleading beyond that point. We exhibit and characterize this behavior 
in a simple model, based on the polyagent modeling construct, which uses mul-
tiple ghost agents mediated through a shared environment to explore alternative 
futures concurrently for a domain entity. We also discuss how a single agent in 
such a model can estimate the prediction horizon based on locally available in-
formation, and use this estimate to modulate dynamically how far it seeks to 
look into the future.  

Keywords: non-linear dynamics, complex adaptive systems, environment-
mediated interactions, swarming multi-agent systems. 

1   Introduction 

“Det er svært at spå - især om fremtiden.”1  Nevertheless, prediction is important in 
any domain that requires planning, and has been the object of extensive study. 
Laplace believed that to an observer with enough information about the present and 
sufficient computing capability, no detail of the future could remain hidden [9], and 
many technologies have been developed in an effort to realize his vision.  

Laplace’s optimism foundered on the discovery of irreversible processes in  
thermodynamics, as well as sensitivity to initial conditions. Nonlinearities in the dy-
namics of most realistic systems drive the exponential divergence of trajectories 
originating close to one another, a phenomenon popularly denominated as “chaos.” 
As a result, while we can predict a short distance into the future, our vision becomes 
blurred as we look further.  

We cannot see as far as Laplace anticipated, but we can estimate how far we can 
see. A predictive tool that assists a planner in the short term will be a detriment if the 
planner relies on it beyond the prediction horizon, the point at which its predictions 
                                                           
1 “Prediction is difficult, especially of the future.” The most authoritative account of this vari-

ously attributed phrase traces it to the Danish parliament in the 1930’s [1]. 
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degrade. Predictive tools should incorporate mechanisms to monitor their own behav-
ior, so that they can warn the user about their decreasing acuity with increased looka-
head. 

The polyagent modeling construct [12, 13] can fit a model of an agent to its observed 
behavior, and then extend this model into the future to provide predictions [14]. In ex-
periments on military operations, this mechanism outperforms both experienced human 
soldiers and game-theoretic mechanisms, but it is not immune to the nonlinearities that 
defeated Laplace. This paper demonstrates the prediction horizon for polyagents in a 
simple experiment, and discusses how it may be detected. However, the polyagent 
mechanism is not the only one that is vulnerable to a prediction horizon. Any predictive 
mechanism is subject to this limitation, and the lessons we draw from a polyagent ex-
ample apply to other predictive approaches as well. 

Section 2 reviews the polyagent prediction mechanism and the dynamical concept 
of divergent trajectories. Section 3 describes the structure and behavior of a simple 
experiment demonstrating this phenomenon. Section 4 offers discussion and analysis. 
Section 5 concludes. 

2   Polyagents and Divergent Trajectories 

The two technical foundations of this paper are polyagent-based prediction and trajec-
tory divergence in nonlinear systems. 

The Polyagent Modeling Construct 

The polyagent modeling construct associates each domain entity with multiple agents: 
a single persistent avatar (which may use complex reasoning) and a swarm of tran-
sient ghosts (which typically coordinate stigmergically [10]). The avatar manages the 
stream of ghosts, which explore alternative behaviors in order to advise the avatar. 
This concept has been applied to a number of applications, in manufacturing [3], 
robotic routing [17], and combat modeling [15], and is related to the delegate systems 
developed at Katholieke Universiteit Leuven [7, 19]. 

The polyagents use their ghost populations to jointly emulate their interactions 
with each other and with the (physical) environment their domain entities are embed-
ded in. Each ghost is a simple probabilistic abstraction of the domain entities, explor-
ing a possible trajectory around the current space-time location of that entity from its 
recent past to the near future. Ghosts of different polyagents may emulate the interac-
tions of their entities (e.g., military engagements of fighting units) through successive 
manipulation of markers in a shared computational environment that also presents 
states (e.g., weather conditions) or constraints (e.g., buildings, roads, rivers) of the 
domain to the ghosts. Thus, our polyagent modeling construct relies heavily on the 
mediation of multi-agent interactions through a shared environment. 

To use the polyagent for prediction, we borrow a model from nonlinear dynamics. 
Many systems can be described by a time-varying state vector, often analyzed as 

vector differential equations, 
)(xf

dt

xd =
. When f is nonlinear, the system can be for-

mally chaotic, making long-range prediction impossible. However, one can anticipate 
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the system’s near-term behavior, by fitting a 
convenient functional form for f to the system’s 
trajectory in the recent past, and then extrapo-
lating this fit (Figure 1, [8]). Iterating this proc-
ess provides a limited look-ahead. 
This approach requires systems described by 
mathematical equations that can be fit using 
regression methods such as least squares. It can 
be applied it to ghost agents whose behaviors 
are derived from digital pheromones that they 
sense in their environment. Each ghost has a 
personality vector of weights in [-1, 1] that 
describes how strongly it is attracted or repelled by each flavor of pheromone. To 
predict the future, the avatar generates ghosts with random personality vectors and 
inserts them into the recent past in a faster-than-real-time simulation of the domain. 
The ghosts follow their personalities in moving through the recent past to the present, 
at which point the avatar selects the fittest ghosts (based on their behavioral similarity 
to the observed entity) and breeds their personality vectors genetically. The fittest 
ghosts are then allowed to run into the future to predict likely futures of the entity 
(Figure 2). In realistic wargames, this mechanism predicts the future better than both 
experienced human staff and game-theoretic reasoners [16]. 

Trajectory Divergence in Nonlinear Dynamics 

Nonlinear systems (which in 
principle account for virtu-
ally all realistic systems) exh-
ibit sensitive dependence on 
initial conditions (known inf-
ormally as “chaos” or the 
“butterfly effect”) [23]. That 
is, if otherwise identical in-
stances of the system are star-
ted with initial condi-tions th-
at differ only min-utely, their 
state trajectories may ultimo-
ately diverge arbitrarily far.  

For example, consider the 
logistic equation, 

)1(31 tttt pppp −+=+ .  

The 1000th iterate of this equation from p0 = 0.01 is2 0.136739. However, if we 
add 10-13 to p0, the result is 0.0423537, a difference of more than three times. 

                                                           
2 Readers may obtain different results due to differences in the numerical processors, algo-

rithms, or system libraries. 
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Fig. 2. Behavioral Evolution and Extrapolation 
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In physical systems, this divergence lies at the root of the failure of Laplace’s pro-
gram. Crutchfield et al. have argued that the only true randomness in the universe 
originates at the quantum level, and that pervasive evidence of randomness at the 
macro level is due to the action of chaos in effectively pumping quantum-level uncer-
tainty to macroscopic levels [6]. 

Nonlinear systems may exhibit the butterfly effect. But is this effect a rarely-
occurring academic curiosity, or a common problem? The question is empirical, but 
we can build intuitions from the behavior of a very simple system, the one-
dimensional cellular automaton. Perhaps the simplest such system to exhibit nontriv-
ial behavior is one in which each cell can have one of two states, and the state of a 
cell at time t depends on the state of itself and its two immediate neighbors at t – 1. 
The behavior of 256 such automata has been extensively studied [24]. Sixty show 
high-entropy evolution with the potential for the butterfly effect. Thus sensitive de-
pendence characterizes a sizeable region of the behavioral space of a very simple 
system. Furthermore, as the size of the CA’s rulespace increases (with more possible 
values per cell and a wider neighborhood), chaotic rules become more frequent, and 
ordered rules less frequent [25]. For systems whose complexity is comparable with 
the real world, chaotic behavior is likely to be ubiquitous. 

Thus responsible use of any predictive mechanism requires that we recognize that 
the farther we look into the future, the less accurate our predictions will be. At some 
point, looking further into the future will stop being an advantage, and will lead to 
decreased performance. We call this point, the “prediction horizon.” We must recog-
nize the existence of this horizon and take steps to estimate it if we are to make re-
sponsible use of predictive tools.  

Superficially, the challenges of the prediction horizon resemble those of overfitting 
in pattern recognition as was pointed out by reviewers of our research. In both cases a 
system is trained against one set of data and its output compared against another, and 
in both cases failure to attend to the issue reduces the accuracy of the output. But the 
two issues are fundamentally different (Table 1). 

Table 1. Distinguishing the Prediction Horizon from Overfitting 

Overfitting Prediction Horizon 
Cause  Defective model (over-

specializes to the data)  
Divergence of correct model due to 
nonlinear dynamics 

Detection Information criteria (e.g., [1]) Local estimates of divergence 
Correction Detune the model (e.g., 

regularization [2]) 
Detect horizon and don’t predict too far 

 

• They have different causes. Overfitting yields a defective model that is overspe-
cialized to the training data. The prediction horizon results from the inevitable di-
vergence of a perfectly correct model due to nonlinear dynamics. 

• Different mechanisms are used to detect them. Information criteria (e.g., the 
Akaike or Schwartz information criteria) can detect overfitting, by balancing the 
information content of a model against the degree of fit that it offers. Such crite-
ria are inappropriate for dealing with the prediction horizon, which can arise even 
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when the information content of the model is at the appropriate level. Local esti-
mates of divergence must be sought, some of which we discuss in this paper. 

• The correction differs in the two cases. Overfitting is corrected by detuning the 
model (e.g., omitting some degrees of freedom by regularization). The correction 
for the prediction horizon is to detect it and not try to predict past it. 

3   A Simple Experiment 

We demonstrate the prediction horizon with a simple experiment involving pursuit 
and flight. Our experimental setup consists of two randomly distributed populations 
of avatars, c Cowards and r Rambos3, situated in a toroidal arena k units on a side (a 
kxk square whose top and bottom are connected, as are its left and right sides). Cow-
ards flee from Rambos, while Rambos approach Cowards. Each avatar deposits a 
digital pheromone in the environment, tracking its location. At each time step, each 
avatar samples the pheromone of avatars of the other side in its environment, and 
probabilistically decides whether it has engaged the adversary. The higher the phero-
mone concentration, the more likely an engagement is. If an engagement takes place, 
the Coward avatar dies with probability p (1.0 in our current experiments). Rambo 
avatars are immortal. When a Coward avatar dies, a new one is born at a random 
location, keeping the population constant. 

Each avatar generates ghosts (one per time step) to guide its movement. The ghosts 
execute a random walk starting with their avatar, for a number of steps (the lookahead 
of the prediction). The ghosts determine the likelihood of an encounter by sampling 
the other side’s pheromone. Rambo ghosts sense the Coward avatar pheromone, while 
Coward ghosts sense the Rambo ghost pheromone. When a Coward ghost and a 
Rambo ghost encounter each other, with probability p (again 1.0 in current experi-
ments) they kill each other, and their avatars are notified of the location where the 
encounter took place. (Rambo ghosts, unlike Rambo avatars, are not immortal.) 

Rambo ghosts live for 100 time steps (but only report their deaths within 10 steps 
of the avatar). The lifetime of Coward ghosts is the main independent variable in our 
experiment, and represents the distance into the future that the Coward looks ahead. 

Periodically, each avatar takes a step. The interval between steps is the maximum 
of the Rambo and Coward ghost lifetimes. Each Rambo avatar wants to find Coward 
avatars, so it is attracted toward locations where its ghosts have died in encounters 
with Coward ghosts. It takes one step in the direction of the weighted sum of unit 
vectors from its current location to each of its ghosts that have died since it last 
moved. We call this weighted sum, the avatar’s “guidance vector.” 

We weight the distances to dead ghosts to give more emphasis to nearby threat lo-
cations. The weighted sum is computed by scaling the distance r of dead ghosts from 
the avatar by 
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and summing the resulting vectors.  
                                                           
3 We use this term as the semantic opposite to “Coward,” to denote an agent that aggressively 

seeks to engage its adversaries. 
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Coward avatars want to avoid Rambo avatars. Each Coward avatar computes a 
weighted sum of unit vectors to its dead ghosts and takes a step in the opposite direc-
tion. 

Preliminary probes show that the optimum lookahead for the configurations we 
explore is in the range [0, 25], so we run the system with settings of Coward looka-
head ranging over [0,25] in steps of 1 and then over [25,100] in steps of 25. Rambo 
lookahead is fixed at 100 for all runs. Each run of the system has a fixed length of 500 
avatar cycles.  

We expect performance of Cowards first to increase as the lookahead increases, 
and then to decrease as it passes the prediction horizon. Success for a Coward means 
evading the Rambos, and thus experiencing fewer casualties. Since runs are of a fixed 
length, we use the total number of Coward avatar casualties as a performance figure. 
Thus our dependent variable can be interpreted in terms of the death rate of Cowards.  

The mechanism leading to decreased performance beyond the prediction horizon in 
this case is confusion arising from detecting multiple adversaries. When the lookahead 
is too small, the Coward ghosts seldom reach any Rambo ghosts, and thus cannot give 
the Coward any information on the direction of danger, so it cannot avoid Rambos. 
When the lookahead is too long, the ghosts of both sides can reach all areas of the arena. 
Now a Coward learns of dead ghosts in every direction. Again, it cannot learn the direc-
tion of greatest danger. The predictive functionality enhances the Coward’s performance 
most at an intermediate level of lookahead, the prediction horizon.  

We are also interested in information that reflects the guidance available to a single 
avatar. For this purpose, we collect the number of dead ghosts on which each avatar 
bases each movement decision, the magnitude and angle of the sum of vectors to 
those ghosts (both scaled and unscaled), and the total distance covered by the avatar 
in its lifetime. 

4   Analysis and Discussion 

We consider evidence for the existence of a prediction horizon in our simple scenario, 
then explore its variation with configuration, and describe some ways that an agent 
can estimate it locally. Fina-
lly, we compare our work 
with related research. Unless 
otherwise noted, points in 
these plots are the mean over 
five separate runs. 

As a general note referr-
ing to the initial discussion 
of the practicality of predict-
ting non-linear complex sys-
tems, this model is very 
simplistic and should be 
considered an illustration of 
the proposed problem and 
the suggested approach to 
identifying and controlling 
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Fig. 3. Coward deaths as function of lookahead, 10x10 
arena 
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prediction horizon effects. The “complexity” of the space of future states that we are 
trying to control is primarily due to the random walk of the ghosts that rapidly accu-
mulates variance in estimating the future. 

Evidence for the Prediction Horizon 

For a run of 500 steps with ten Cowards and five Rambos on a 10x10 arena, Figure 3 
plots the number of Coward deaths at prediction horizons ranging from 0 to 100. As 
expected, the number of deaths at first drops rapidly with increasing lookahead, from 
nearly 110 with 0 lookahead to about 35 with a lookahead of 4. Then it climbs rapidly 
and asymptotes around 90. Cowards can usefully predict and avoid threats for hori-
zons on the order of 3-5, but then the future becomes increasingly murky. 

Variation of the Prediction Horizon 

The prediction horizon depends on the system’s configuration. To illustrate this,  
Figure 4 plots the same statistic as Figure 3, but for different configurations, varying 
the overall arena size (in the columns) and the relative number of Cowards and  
Rambos (in the rows). The absolute numbers of Cowards killed varies with both pa-
rameters: smaller arenas and larger Rambo populations lead to higher casualties. Fur-
thermore, all the curves have the same basic shape, with casualties at first decreasing 
rapidly with increasing lookahead, then increasing to an asymptote (incompletely 
achieved in the 20x20 arena).  

The dip in the curve, indicating the region of useful predictions, varies considera-
bly in width. The x-axis is the same in all four figures. On a larger arena, Cowards 
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Fig. 4. Effects of Configuration Change 
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can make useful predictions out to a lookahead of 20 or 25 (upper-right), a point at 
which their predictions would seriously degrade on the smaller arena. The ratio of 
Rambos to Cowards also impacts the width of the useful region, most noticeably on 
the 20x20 arena, where fewer Rambos lead to a much broader minimum and much 
gentler approach to the asymptote. 

This simple example shows that the prediction horizon is not constant for all 
agents or for a single agent at all times. It depends on the complexity of the agent’s 
environment (illustrated in our example by the overall density of agents and the 
relative population of Cowards and Rambos). This complexity varies from agent to 
agent and from one moment to the next. For example, in real combat, agents are 
not reborn to keep the population constant, as they are in our system, so the density 
will vary over time. In addition, the density will vary spatially, leading agents in 
different portions of the arena to require different lookaheads. The dependence on 
density is a characteristic of our application, and other applications might depend 
on some other parameter, but the point remains. To use prediction effectively, 
agents must not only recognize the existence of the prediction horizon, but also 
learn how to estimate it dynamically. 

Estimating the Prediction Horizon Locally 

The prediction horizon is a 
global emergent feature of the 
system. We observe it by 
looking at the number of dead 
Coward avatars per fixed-
length run (equivalently, the 
rate of Coward deaths).  
Making such information 
available to each agent comp-
romises the locality of agent 
interaction that many appli-
cations require [11]. It would 
be much better if we can 
identify local indicators that 
an agent can use to adjust its 
lookahead dynamically, indi-
cators that are available to 
each agent without directly 
consulting other agents or 
some system-level oracle. 

We have studied three  
possible local indicators: the 
avatar’s net speed over its 
lifetime, and two features 
(length and angle) of its guid-
ance vector. All three are mo-
tivated by the intuition that an 
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Fig. 5. Mean Coward avatar speed as function of lookahead 
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Fig. 6. Angle variation with lookahead 
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agent that is getting useful information from its predictive process should show this in its 
movement. Its guidance vector should tend to be longer and will tend to point in the same 
direction from one step to the next, and its overall speed should be greater than if the 
avatar were executing a random walk. These are only heuristics. An agent that is effec-
tively evading numerous adversaries could exhibit as many sudden turns as one that is 
wandering randomly. But it is instructive to evaluate all three candidates. 

Figure 5 shows the dependence of Coward avatar speed (total distance covered di-
vided by lifetime) as a function of lookahead on the 20x20 arena. There is no clear cor-
relation between speed and the prediction horizon. The most effective avatars in terms 
of survival cover no more territory overall than do those executing a random walk. 

Given this result, we might not expect any correlation in angle changes. Computing 
angle changes is subtle, because at some steps an avatar may not have any dead 
ghosts, and in this case the angle of the ghost’s vector is not defined. For each avatar, 
we compute the angle (in [0, 2π]) of its vector at each step, dropping those steps for 
which its angle is undefined. Then we compute the smallest difference in angle be-
tween each pair of succe-ssive vectors. We compute the mean value of angle differ-
ence for each avatar, and then 
over all avatars with the same 
lookahead.  

Figure 6 shows the result. 
Again, there does not seem to 
be any significant variation as 
a function of lookahead.  

Our third candidate for a lo-
cal indicator of the prediction 
horizon is the len-gth of the 
guidance vector. If the agent is 
seeing many adver-saries, the 
vector will be shorter (since it 
will be the sum of components 
pointing in different direc-
tions). So we expect a large 
vector to correspond to good 
agent performance.  

The number of dead ghosts 
contributing to the guidance 
vector varies from step to step. 
So we normalize the vector 
length by the number of dead 
ghosts. Figure 7 shows how 
the scaled, normalized vector 
length varies with lookahead. 
As expected, scaled vector 
length is maxi-mal at the pre-
diction horizon, and drops off 
on both sides.  
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Fig. 7. Scaled vector length (20x20 arena) 
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Fig. 8. Scaled vector length (10x10 arena, five Rambos) 
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Fig. 9. Standard Deviation of Scaled Guidance Vector length (running medians of 5) 

However, the length is not adequate to guide a Coward’s decision. Figure 8 shows 
the same plot for the 10x10 arena. Even though the region of accurate prediction is 
much narrower for this case than for the 20x20 arena (Figure 4), the scaled vector 
length is too noisy to capture this difference. 

But there is still hope. Figure 9 shows the standard deviation of the scaled guidance 
vector as a function of lookahead for the same configurations as Figure 4. This statis-
tic clearly shows the broader width of the useful prediction region in the 20x20, five 
Rambo configuration. To use this information, the agent should keep a record of the 
length of its guidance vector, and adjust its forecast horizon to maximized the vari-
ance of this history. In the case of a polyagent, the avatar would not allow its ghosts to 
run past the point at which the variance of guidance vector length drops off. 

The usefulness of the variance of normalized length depends on the decision 
scheme used by the agents in this experiment, whose structure has been kept simple to 
highlight the basic processes in operation. Brueckner et al. in [4] describe the more 
general principle. The entropy over the set of choices available to the agent at any 
time (the “option set entropy”) is a local estimator of a system’s global convergence. 
High entropy corresponds to low guidance for the agent, suggesting that it should not 
take further action. In this case, the length of the guidance vector directly reflects the 
guidance given to the agent, so it should be correlated with the option set entropy, 
consistent with their work. (It is not immediately clear why the variation in the guid-
ance vector length is a more discriminating indicator than the length itself.) 

Relation to Other Work 

Our research bears comparison with several other bodies of work. 
Crutchfield and Shalizi [21] have developed a theory of ε-machines, the minimal 

state machines that can accurately predict the future behavior of a system. The  
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number of states in the ε-machine corresponds to the minimal amount of memory that 
must be maintained to predict the system’s behavior. Increasing the memory size will 
not increase performance. Their theory also draws upon Kolmogorov and Chaitin’s 
definition of a random time series of data as one that is not compressible. As a sys-
tem’s output becomes more and more complicated, and thus seems more and more 
random, the amount of state memory that must be maintained increases. However, 
predicting a completely random system requires no past state information, since fu-
ture behavior is effectively uncorrelated from the past. Thus, there is an optimal 
memory horizon. Adding more memory than this is wasteful but is not inherently 
harmful to the ε-machine’s prediction accuracy. This system admits a continuous 
measure of prediction uncertainty (the entropy) up to the memory of the state ma-
chine, beyond which point it is constant. Increasing an ε-machine’s memory size 
neither increases nor decreases performance - outdated states are simply uncorrelated 
with the future and thus ignored. Our concern is with looking too far, not into the past, 
but into the future, where performance does degrade. 

In our experiment, the mechanism by which increased lookahead confuses an agent 
is apparently the appearance of multiple Rambos in the ghosts’ predictions. A Coward 
can flee effectively from a few Rambos, but its simple algorithm provides no effective 
way to flee from a large number at different azimuths. Thus the degradation of perform-
ance in this case can be traced to the limited information processing capability of the 
agents.4 The effect of cognitive overload on agents, and the resulting pattern of increas-
ing, then decreasing performance as the amount of information is increased, has been 
described in the context of a predator-prey experiment [22]. That system, unlike ours, is 
not predictive, and does not involve agent reasoning over multiple time steps.  

The curves in Figure 3 and Figure 4 have the same general shape as the loss curve 
as-sociated with the Minority Game, a simple model of multi-agent competition for 
scarce resources [5]. In the classic form of this game, n agents (an odd number) repeat-
edly choose between two resources, each with capacity ⎣n/2⎦. Thus at every step, ex-
actly one resource will be overloaded. The agents have available a history of which 
resource was not overloaded at each round in the past, and they base their decision on a 
suffix of length m of that history. The score for each round is the population of the un-
der-subscribed resource. The loss function for the system is the variance of that popula-
tion. For an agent population of a given size, as m (and thus the amount of information 
available to each agent increases, the loss decreases to a minimum (a performance maxi-
mum), followed by an asymptotic return to an intermediate level (Figure 10). This gen-
eral shape is the same as that of the death rate in our game (Figure 4 and Figure 6). 

The two systems differ in their superficial structure. The minority game is driven 
by competition for scarce resources, while our example is based on pursuit and eva-
sion. But there are important similarities. 

First, one could consider the space occupied by the agents in our game as a re-
source that is in contention. The desire of Cowards to avoid Rambos is analogous to 
the desire of agents in the Minority Game to avoid overloading the same resou-rce, 
though in our case the space being deconflicted is continuous rather than discrete. 
                                                           
4 This explanation does not invalidate our motivation of the prediction horizon by the theory of 

nonlinear processes. The nonlinear interactions between Cowards and Rambos include the 
mechanisms of perception and analysis that they employ, and the horizon we observe is due to 
the emergent divergence of trajectories as these processes are iterated over successive steps of 
the game. 
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Second, the behavior of 
both systems varies as 
agents make decisions based 
on information that is in-
creasingly remote in time. In 
our system, performance 
first improves, then decli-
nes, as we apply knowledge 
of the present to predictions 
that reach farther into the 
future. In the Minority Ga-
me, the same pattern of 
perfor-mance change appe-
ars as agents use informa-
tion farther and farther into 
the past to inform a decision 
in the present. 

In the Minority Game, 
the asymptotic performance 
approached as m increases is what the agents would achieve if they made their selec-
tions randomly. The approach to the asymptote might be due5, not to dilution of the 
information in the history from nonlinear effects, but to the limited processing capac-
ity of the population of agents. If one increases the size of the agent population, the 
point of optimal performance moves higher, suggesting that there is information in 
longer suffixes that can be retrieved by a more complex mechanism (i.e., a larger 
population). However, the history is not identical with the history analyzed by fewer 
agents, since the agents themselves generate the history by their interactions, and it 
may be that the asymptote does in fact reflect dilution of the history’s information 
content by nonlinear effects. To our knowledge, the relation of nonlinear divergence 
of trajectories to the dynamics of the Minority Game has not been studied. The simi-
larity between Figure 10 and Figure 4 may be another instance of universality in 
multi-agent systems [18], in which similarly constrained patterns of interaction lead to 
similar outcomes in systems whose internal reasoning mechanisms are very different 
from one another. We intend to explore a deeper connection between the two systems 
in further research. 

5   Conclusion 

Prediction is an important task in planning, but must be applied with care. If one seeks 
to look too far into the future, one may be deceived, for the nonlinear dynamics of 
realistic problems impose a prediction horizon. Beyond this point, increased looka-
head leads to a decrease, rather than an increase, in performance. Systems that look 
into the future must be aware of this horizon, and should take steps to monitor their 
approach to it so that they do not mislead their users with useless information. 
                                                           
5 Proposed by Prof. Robert Savit of the University of Michigan. 

 

Fig. 10. Loss function in the minority game [20] 
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We have demonstrated the existence of a prediction horizon in one particularly 
successful prediction mechanism, based on polyagents that use a computational model 
of the domain as a mediating environment for the emulation of complex entity inter-
actions. We have also suggested how individual avatars in such a system can adjust 
their lookahead to avoid over-predicting, on the basis of local estimators of how much 
guidance they are receiving from their ghosts. But our results are not restricted to 
systems of polyagents. The basic principles we have demonstrated are critical for any 
prediction mechanism: 

1. Recognize the existence of a prediction horizon. 
2. Identify locally accessible indicators that are correlated with the degradation of 

performance as one moves away from that horizon. 
3. Use these indicators to adjust the lookahead that one uses to inform decisions. 

The results in this paper 
point to several directions for 
future research, which we are 
pursuing. 

We have compared the 
area of effective prediction 
for different configurations 
somewhat qualitatively, by 
reference to visually apparent 
differences in the width of the 
region of low loss. We need a 
more quantitative measure of 
this region. A possible course 
is to fit an analytic form to 
the loss function. Figure 11 
shows an instance of one promising family of functions, )3(/315 −−−+= xexy . 

Then the width w of the dip at a specified fraction θ of the distance α between the 
bottom of the dip and the asymptote will serve as a consistent measure of the region 
of useful predictions. 

More work is needed on local heuristics that an agent can use to avoid predicting be-
yond the prediction horizon. The criterion that we have identified, standard deviation of 
the length of the guidance vectors, is correlated only crudely with the useful prediction 
region (compare Figure 4 with Figure 9). Application of the option set entropy concept 
from [4] should permit derivation of more satisfactory local heuristics. 

The shape of the performance curve as a function of lookahead is qualitatively 
similar to the performance curve for the Minority Game. This similarity may reflect a 
deeper relation between the dynamics of these superficially similar systems, which we 
plan to explore. 

Acknowledgments. This research was conducted with the support of the office of 
Naval Research (Contract # N00014-06-1-0467). The results presented do not neces-
sarily reflect the opinion of the sponsor. 
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Fig. 11. Notional fit to predictive loss data 
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Abstract. A web site presents a graph–like spatial structure composed
of pages connected by hyperlinks. This structure may represent an envi-
ronment in which situated agents associated to visitors of the web site
(user agents) are positioned and moved in order to monitor their naviga-
tion. This paper presents a heterogeneous multi-agent system supporting
the collection of information related to user’s behaviour in a web site by
specific situated reactive user agents. The acquired information is then
exploited by interface agents supporting advanced adaptive functionali-
ties based on the history of user’s movement in the web site environment.
Interface agents also interact with user agents to acquire information on
other visitors of the web site and to support a context aware form of
interaction among web site visitors.

1 Introduction

Adaptive web research area [1] aims at considering the problem of how large web
sites that encompass several heterogeneous topics can be adapted so to take into
account the heterogeneous information needs of different visitors who have very
different characteristics, goals, backgrounds and needs. In this vein, we aim at de-
signing adaptive web applications considering a web site as a graph representing
a spatial structure composed of pages connected by hyperlinks. Consequently, we
propose to exploit the graph-like structure of a web site as a Multi–Agent Sys-
tem (MAS) environment [2] on which agents representing visitors of the web site
(hereafter user agents) are positioned and moved according to their navigation.

In particular, the environment represents a virtual structure where it is pos-
sible to gather information related to users’ navigation in the web space in a
more structured way, simplifying subsequent phases of analysis and adaptation
of site contents. Though this approach can be used to propose additional links
providing shortcuts to the terminal web pages as a sort of suggestion to the web
site visitor, our proposal provides more than just gather information on users’
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behaviours for sake of web pages adaptation or navigation support, but exploits
the MAS environment to provide users a means for mutual perception and in-
teraction. In fact, information related to users’ positions on the environment
representing the web site can also be used to supply them awareness informa-
tion on other visitors who are currently browsing the same page or pages close
to it within the site. Moreover, keeping track of this information allows to make
possible a form of interaction among users that is based on their positions on the
site. Essentially, more than just showing a user the other registered visitors that
are “nearby” (i.e. viewing the same page or adjacent ones), the system could
also allow them to communicate each other. This form of interaction, in addi-
tion to the web page adaptation function, requires the adoption of a supporting
technology that goes beyond the request/response model.

The overall system architecture we designed requires thus proper interface
agents, able to interact with user agents situated in the previously introduced
environment in order to exploit the acquired information on users’ behaviours.
This second type of agent is totally different from user agents, both from a
modelling point of view and with reference to the supporting technology. In fact,
the web interface agent must be active as long as the related web page is being
viewed by a visitor and it must be able to proactively modify the page to improve
the user’s browsing experience. The overall system architecture, summarized in
Fig. 1, includes thus heterogeneous agents collaborating to achieve this goal.

The following section describes the general framework of this approach, the
mapping between the web site structure and user agents’ environment. Section 3
describes an application providing the exploitation of this information for the
adaptation of web pages by proper interface agents. A brief comparison of this
approach and related work can be found in Sect. 4, and finally concluding re-
marks and future developments will end the paper.

2 Site Structure and Reactive User Agents

A web site is made up of a set of HTML pages (generally including multimedia
contents) connected by means of hyperlinks. It is possible to obtain a graph-
like structure mapping pages to nodes and hyperlinks to edges interconnecting
these nodes. This kind of spatial structure could be exploited as an environment
on which user agents related to site visitors are placed and move according
to the related users’ activities. This structure can be either static or dynamic:
for instance it could vary according to specific rules and information stored
in a database (i.e. database driven web sites). However, this kind of structure
(both for static and dynamic web sites) can generally be obtained by means of
a crawler, then it could be maintained by having periodic updates.

Given this spatial structure, a multi-agent model allowing an explicit represen-
tation of this aspect of agents’ environment is needed to represent and exploit
this kind of information. Situated agents models represent a useful source of
abstractions and mechanisms supporting the definition environments for MAS,
towards a precise definition of concepts such as locality and perception. There are
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Fig. 1. A diagram showing the different components of system architecture and their
interactions

not many models for situated agents, which provide an explicit representation
of agent’s environment. Some of them are mainly focused on providing mecha-
nisms for coordinating situated agent’s actions [3], others provide the interaction
among agents through a modification of the shared environment (see, e.g., [4,5]).
The Multilayered Multi Agent Situated Systems (MMASS) [6] model, that was
adopted for the proposed system, supports an explicit representation of agents’
environment through a set of interconnected layers whose structure is a graph
of nodes (also referred to as sites in the model terminology; from now on we will
use the term node to avoid confusion with web sites). The model was adopted
due to the similarity among the defined spatial structure of the environment and
the structure underlying a web site. Moreover, the model defines a set of allowed
actions for agents’ behavioural specification (including a primitive for agents’
movement), that are useful to support the specification of situated agents mim-
icking the behaviour of web site visitors, for sake of monitoring and acquisition
of user related data.

A platform for the specification and execution of simulations based on the
MMASS model [7] was exploited to implement the part of the system devoted to
the management of agents in their environments. The definition of spatial struc-
ture of the environment was supplied by a web crawler, while agents’ movement is
guided by external inputs generated by the requests issued by the related web site
visitor. The general architecture of the system is shown in Fig. 1: the Agent server
module is implemented through the MMASS platform, while the Web server is a
Tomcat servlet container hosting SnipSnap1, a Java-based weblog and wiki soft-
ware. The highlighted Tracker module is a implemented through a Java Servlet,
which is invoked by every page of the site but does not produce a visible effect
on the related web page. The Tracker is responsible for triggering the creation

1 http://snipsnap.org
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and the movement of agents related to visitors in the environment related to the
web site structure. In particular, when a user makes his/her first page request the
Tracker is invoked by the interface agent associated to the page. Then the Tracker
tries to set a cookie on the client including the session information. If the cookie
is accepted, it is possible to use the session information to identify the user; on
the other hand, requests from clients not accepting cookies will not be monitored.

The management of agents creation and movement is not as simple as its in-
tuitive description might indicate. In fact, the same user could be using different
browser pages or tabs to simultaneously view distinct pages of the site. In other
words, a user might be simultaneously following different trajectories in his/her
web site navigation. In order to manage these situations, a user can be related
to different agents, and his/her requests must be associated to the correct agent
(possibly a new one). Finally, agents related to finished (or interrupted) user
navigation should be eliminated by the system, storing the relevant part of their
state in a persistent way, until the related user requires again a page of the site.
In particular, remote users’ requests may be divided into two main classes, ac-
cording to their effects on the Tracker and Agent server. A request may bring
to the creation of a new agent : whenever a new user requires a web page, the
Tracker will invoke the Agent Server requiring the creation of an agent whose
starting position is the node related to the required page. On the other hand,
a request might generate the movement of an agent : when the viewer of a page
follows one of the provided links, the related web browser will generate a request
for a page that is adjacent to one of the related agents which must be moved to
the node related to the required page.

Consequently to the movements of user agents in the nodes of the graph
structure which mimic the navigation of the users within a web site, the system
is able to keep tracks of them into proper data structure called traces. A trace
keeps three kinds of information: the identifier of the user agent to which the
trace is related (that, in turn, can be related to an authenticated user that
actually generated the trace in one of its navigations in the web site), the starting
node related to the agent and destination node related to the browsing sequence
related to the trace. Additionally, this information is stored with other data
(e.g. a time stamp) in a database to allow for the provision of more advanced
functionalities and for the evaluation of the system.

3 The Web Interface Agent

The aim of the Interface Agent is to improve the browsing experience of a user
by adapting the page he/she is currently viewing to his/her preferences, needs
or habits. To do so, it must be active during the time–span in which the page is
visualized by the browser, and it must be able to dynamically alter its appear-
ance. To do so, it must also be able to interact with the previously introduced
system to be informed about past user’s behaviour. In other words the interface
agent is a client–side component, “living” in the web browser and interacting
with it in a proactive way.
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Fig. 2. A screenshot of a web page adapted according to gathered traces

After the analysis of the various candidate technologies for the design of the
interface agent, we have chosen to adopt AJAX to this aim. With AJAX (short-
hand for Asynchronous JavaScript and XML)2 in fact it is possible to create
an agent hosted in the web browser that remains alive and active during the
visualization of a web page. AJAX makes it is possible to go beyond the classic
web request/response model and develop proactive interface agents. Conversely,
other approaches have different drawbacks: Java applets3 lack of facilities to be
integrated with the web browser, since they are confined in a sandbox and can-
not manipulate the data of the page in which they are executed. Flash4 instead,
lacks of a proper full-featured Open Source IDE due also to its commercial na-
ture. More details on the actual implementation of the interface agent can be
found in [8].

3.1 Direct Guidance Adaptive Functionality

Every interface agent provides personalized suggestions about items that a given
user could find interesting, according to the navigation history of the user and
of other site visitors. These suggested links are selected from the previously
introduced traces. As shown in Fig.1, in fact, interface agents can access the
database of stored traces through the Suggestion Servlet. The strategy adopted
to select the most relevant traces to be presented to a given user considers
the occurrence of trace generation and the success rate of the traces that were
proposed.

2 Garrett, J.J.: AJAX: A new approach to web applications. Technical report, Adap-
tive Path Essay (2005). http://www.adaptivepath.com/publications/essays/
archives/000385.php

3 http://www.sun.com/applets/
4 http://www.adobe.com/products/flash/

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
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A first element of this strategy is adopted when new users (or non authenti-
cated ones) enter the site. In this case the user has no previous history (or it is
not possible to correlate the user with his/her history), and the adopted strategy
considers all stored traces, not considering the user which generated them. An
additional information that is stored with traces is the number of times that the
related trace was really selected and shown to a user and the number of times
that the related link was actually exploited by a user. This kind of information
allows to obtain an indication of the success rate of the suggestions that were
chosen by the agent, and can be exploited to select the traces to be shown in
the adaptive block. When the agent has an indication of the user which issued
the request, it may focus the selection activity to those traces that compose
the history of user’s activities in the web site, in a web customization frame-
work. In fact traces include an indication of the agent which generated them,
and in turn agents are related to registered users. Moreover, in order to focus
on a specific user’s history but do not waste the chance to exploit other users’
experiences, just two of the three available slots for emergent links are devoted
to traces that were generated by that user and one is selected according to the
strategy adopted for anonymous or new users. Because the time spent on a page
had a strong correlation with explicit interest [9], the adopted strategy uses this
information to refine the proposed suggestions.

An example of page adaptation refers to the adoption of a recurrent trace
leading from the index of the web site to a content page, that is not directly
connected to the index but that is visited very frequently. This kind of “vertical”5

adaptive hyperlink is frequently observed in the prototypal implementation of the
system, which is installed in a web site presenting information about a research
laboratory as well as information on courses held by members of the group6. Since
the number of students of some of these courses is very high, they frequently
generate traces connecting the index to the page related to those courses. These
traces represent effective shortcuts allowing to bypass intermediate index pages
related to education activities and university courses. However, suggested links
can also connect pages deep in the site structure. For example, a page related to a
project might not be explicitly connected to another page describing a particular
modeling approach adopted in that project, but a user might browse the web
site and effectively discover that page, causing the generation by the system of
a correspondent trace connecting the project and the modeling approach. This
trace might not be extremely relevant to all visitors of the web site, due to the
fact that this navigation path will probably be not very frequent, but if the
visitor is a registered user the trace could be stored and suggested anyway, since
a number of slots in the adaptive area of the page is reserved to user–generated
emerging links.

This strategy for the exploitation of the gathered and stored traces, based on
users’ behaviours and movement in the web site environment, represents a very

5 Here vertical is intended as describing the typical navigation path starting from an
index page and going deeper into the web site.

6 http://www.lintar.disco.unimib.it
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Fig. 3. An example of users interaction through the messanger component of the in-
terface agent

simple way of exploiting this kind of information without requiring an off-line
analysis of the logs generated by the web server.

3.2 Context-Aware User Interaction Functionality

In addition to more traditional functionalities usually provided in relation to
web adapation, we provided also a functionality aiming at supporting interac-
tions among users. In fact, we are aware about the current trends of web which
is being always more considered not only as an information space, but also as
a social space. Accordingly, we are focusing on a specific aspect of how the web
could be considered as a social space, i.e. a web in the small vision. This vision
is about considering not the support to sociality involving a large number of
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undifferentiated users, rather we aim at promoting interactions among people
who could constitute small communities built dynamically around common in-
terests, e.g., students of a computer science course who require to interact to
exchange information about specific topics. To this aim we enriched the web in-
terface agent with some additional contextual information related to other users
who are visiting the same page or pages close to the considered one both in
terms of number of links, but also in terms of topics by relying on the underly-
ing MMASS agent model. In fact with this model it is possible to model differ-
ent spaces encompassing both information about proximity of pages (in terms
of hyperlink structure) and information about closeness of pages (in terms of
arguments which are similar and put in relation through the modeled space).
In this way it is possible to provide the users with two kinds of context-aware
interaction functionalities: one is about synchronous direct communication and
the second one relates to multicast indirect communication. In the first case,
the list of contacts of a user is dynamically populated according to her current
position in the space; in this case the system gather all the user agents located
on the same page and on pages close to the considered one. In this way a single
user is made aware of other users who are close to her in the navigation and
could be interested to the same topics. Always in the educational case this could
facilitate a single student in identifying possible collaborators for an exam. In
the second case, the modality of interaction is different: the system allows a user
to send a message to a set of potential users. The sender is not aware of who
will receive the message, in fact the system is able to dynamically propagate the
message only to potentially interested users: the potential interest is computed
again taking into account users who are close to the sender in terms of position
on the pages: users visiting the same page or proxy pages according to the hy-
pertextual structure of the site; users visiting pages which are close in terms of
related topics. In the educational case this also could be useful to facilitate stu-
dents in finding potential experts able to answers to specific problems described
in the message.

In order to test the above mentioned user interactions’ functionalities, we
designed a multi user Java Tutorial scenario. In this scenario, we integrated the
pages related to Sun’s Java Tutorial 7 with the MMASS system and an Ajax-
based instant messenger. Three different MMASS layer has been defined: one
layer represents the web ‘physical’ space, with the links between the pages, the
other two layers represent the links between the pages by topics and by difficulty
levels. Through the instant messaging interface, users are allowed to show the
list of users who are viewing the same page of the tutorial or related pages and
to communicate with them. The spaces are used both to diffuse the messages
and to build the list of the neighbors.

In this scenario, we used ajax im8 to build the messenger interface. ajax im is
a browser-based instant messaging client written in JavaScript, employing AJAX
to interact with the server. In particular, the client communicates with the server

7 http://java.sun.com/docs/books/tutorial/
8 http://www.unwieldy.net/ajaxim/
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Fig. 4. The flow of information in the system in a case of user interaction

through JSON (JavaScript Object Notation) 9 messages. JSON is a lightweight
data-interchange format, supported both by the client side JavaScript and the
server-side Java (the language used by the Agent Server).

An example of users interaction is shown in Fig. 3. In this example, Alice, who
is viewing the Java Tutorial “Thread Interference” page, needs some help on the
topic. According to the current context, the Alice’s interface shows the list of
users who are proxy to her. In this case Bob, who is viewing a page related to
“Processes and Threads”, is considered to populate Alice’s contact list. In fact,
as shown in Fig. 4, Alice’s and Bob’s user agents are located in the ’physical’
space just at a three links distance. Since the system is configured for building
neighbors considering up to four links distant user agents, then Bob becomes
part of the Alice’s contact list. In this way, Alice can contact directly by using
the IM interface to ask him some hints about the topic. The message is then
delivered as a field by the MMASS Agent Server through the space to Bob, who
is viewing the “Processes and Threads”.

4 Related Work

There are several different approaches and relevant experiences in the area of
web site adaptation, and some of them are also related to agent technologies.
In particular, a relevant approach provides the adoption of information agents
supporting users in their navigation [10]. These agents generally consider both
the specific behaviour of the user and the actions of other visitors, and adopt
multiple strategies for making recommendations (e.g. similarity, proximity, ac-
cess frequency to specific documents). Instead in [11], Letizia is a user interface
agent that assists a user browsing the Web by suggesting some links that are
identified considering her past browsing behavior.

9 http://www.json.org/, RDF 4627
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The Footprints system [12] instead provides a site optimization through the
metaphor of site visitors leaving traces in their navigation. These signals ac-
cumulate in the environment, generating awareness information on the most
frequently visited areas of the web site. No user profile is needed, as visitors
are essentially provided this information which could represent an indicator of
the most interesting pages to visit. The metaphor of the structure of the web
site as an environment on which visitors move in their search for information
is very similar to the one on which the proposed framework is based, but we
also propose the exploitation of the gathered information on users’ paths for
user specific customization. Another interesting recent work [13] represents an
attempt to integrate interaction mechanisms similar to the one adopted by Foot-
prints, often referred to as stigmergic interaction mechanisms [14], and cognitive
agents. This line of research could represent an interesting way to integrate the
proposed approach, which is able to generate and manage awareness contextual
information, with higher level mechanisms and strategies of adaptation.

Other approaches provide instead the generation of index pages [15], that are
pages containing links to other pages covering a specific topic. These pages, re-
sulting from an analysis of access logs aimed at finding clusters grouping together
pages related to a topic, are proposed to web masters in a computer-assisted site
optimization scheme. A different approach provides the real-time generation of
shortcut links [16], through a predictive model of web usage based on statistical
techniques and the concept of expected saving of a shortcut, which considers both
the probability that the generated link will be effectively used and the amount
of effort saved (i.e. intermediate links to follow). In particular, this framework is
very similar to the one proposed here with reference to the aims of the overall
system, but it incorporates a complex algorithm for off-line analysis of logs, while
the proposed approach provides a light and dynamic generation of most proba-
ble useful links and the storage of these proposals and high level information on
site usage for a possible further off-line analysis.

A different approach to web site adaptation provides the adoption of a learning
network to model the evolution of a distributed hypertext network, such as a
web site [17]. Also in this case the adaptation provides a modification in the
structure of a web site, and the concept of emergent link and the underlying
mechanisms present a similarity with the learning rules adopted for that kind
of learning network. However that approach also provides a deep modification
in the architecture of the site and modifications in the web protocols, while this
work aims at providing a solution that can be easily integrated with a traditional
web architecture.

A final but significant note, regarding in general all adaptive web applications,
must be mentioned: there is a tension between personalization and privacy. The
former in fact, needs gathering information about the behaviors of web site
visitors to provide the enhanced personalization functionalities, and this may
contrast privacy concerns. However, some approaches tries to reconcile this ten-
sion [18], we aim at considering also these approaches to deal with this privacy
issues in the future.
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5 Conclusions and Future Developments

This paper introduced a heterogeneous multi-agent system, comprising an en-
vironment on which agents related to visitors move and possibly interact. This
approach allows the gathering of a structured form of information on users’
behaviours and activities in the web site. The concept of traces has been in-
troduced in order to support an application exploiting information on users’
browsing history for sake of web pages adaptation. The introduced framework
and the application to web site adaptation have been designed and implemented,
exploiting a platform supporting systems based on the MMASS model.

A campaign of tests aimed at evaluating the effectiveness of the adaptation ap-
proach, and also for sake of tuning the involved parameters (e.g. timings, number
of presented possible emerging links) is currently under way. Some preliminary
results [19] show that the suggested links are effectively used as shortcuts lead-
ing to interesting pages. A more comprehensive evaluation of the system will be
based on user interviews in addition to quantitative data on the frequency of
use of adaptive hyperlinks. The results of this evaluation might also lead to con-
sider the modelling, design and implementation of more complex trace selection
strategies, and thus a more complex behaviour for the interface agent.

A prototype supporting context-aware interaction among web site visitors
through the introduced architecture was also implemented and it is currently
being evaluated in a specific case study. In this framework, the environment
related to the web site also supports the mutual perception of the agents situ-
ated in it and it also supports a form of interaction among them depending on
their relative positions. The latter can be thus considered as a form of context–
dependant interaction. A more thorough analysis of the possible applications of
this approach can be found in [19].

Additional future works will be focused on the introduction and exploitation
of higher level semantic information related to the site structure and contents,
in order to design additional forms of adaptation also working on images and
multimedia contents.
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Abstract. We investigate the application of a logic-based framework
representing an agent environment as a composite structure that evolves
over time. Such a complex structure contains the interaction between
two main classes of entities: agents and objects. Interactions between
these entities are specified in term of events whose occurrence is governed
by a set of physical laws specifying the possible evolutions of the agent
environment, including how these evolutions are perceived by agents and
affect objects and processes in the agent environment. We illustrate the
work using GOLEM1, a protype platform whose aim is to implement
the framework to build situated cognitive agents in a distributed agent
environment.

1 Introduction

It is widely acknowledged in the agent literature the need to model the agent
environment in which agents are situated [1, 2, 3]. Early attempts to engineer
MAS applications involved a MAS platform that implemented such an agent
environment by enabling agents to interact with each other by sending and
receiving messages [4, 5]. However, these early attempts in modeling the agent
environment as a message transport system (or broker infrastructure) has been
criticized to be inadequate for complex applications [6] requiring the treatment
of an agent environment as a first class entity [7, 8].

1.1 Motivation

We are concerned with situating cognitive agents in an agent environment. In-
formally, by an “agent environment” we mean the virtualisation of an electronic
or real environment inside an agent middleware, in such a way that agents de-
ployed in the agent middleware can access virtual or real resources by means
of standard interfaces and abstractions. As a running example, we consider the
electronic environment of a virtual world called Packet-World [9]. This example
has been proposed to evaluate the behaviour of Multi-Agent Systems (MAS)
in which agents are explicitly situated in an environment. As shown in Fig. 1,

1 GOLEM stands for Generalised Onto-Logical Environment for Multi-agent systems.
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Fig. 1. The Packet-World [9]

the basic setup of the Packet-World consists of a number of differently coloured
packets inside a rectangular grid, whose destination is a circle with the same
colour. Each agent living in the Packet-World has a battery that discharges as
the agent moves in different locations in the grid. The battery can be recharged
using a battery charger. This charger emits a gradient whose value is larger if
the agent is far away from the charger and smaller if the agent is closer to the
charger. To locate the battery charger an agent must follow the direction of de-
creasing gradient values. The agents have the goal to bring the packets to the
collection points and can communicate with other agents to create collaborations
or to ask information about the position of the collection points.

Shortcomings of Previous Work. In an attempt to situate cognitive agents
built according to the KGP model of agency [10] we have developed in previous
work the PROSOCS platform [11]. The main assumption behind PROSOCS is
that an agent must have a logical mind [12] that is situated in the distributed
environment of network via a body [11]. For the agent’s mind PROSOCS sup-
ported a developer with the generic reasoning capabilities of KGP, which had to
be programmed to allow an agent to act in the environment it was situated. For
example, in the context of the Packet World, a rule of the form:

[ self(Picker),
observed(see(packet(P, Colour, Position)), T),
my_position(MyPosition),
is_close(P, Position, MyPosition),
destination_for(Colour, Dest)

] implies
[ assume_happens_after_once(do(Picker, pick(P)), T)].

would make a picker agent to perform a pick action, provided the agent has ob-
served a packet that is close to its position and the agent knows the destination
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for packets of this colour. In the rest of this paper, we will refer to agents that
are capable of processing this kind of rules as cognitive agents. To support this
basic kind of cognition PROSOCS relied upon the CIFF proof-procedure (see
[13] for details). CIFF enabled KGP agents to react and plan within the envi-
ronment in which they were situated, including support for temporal reasoning.
A summary of the reasoning capabilities of KGP agents and their computational
characteristics, as implemented in PROSOCS, are described in [14].

PROSOCS also provided the middleware for agents to be deployed and com-
municate with each other by sending and receiving messages via their body.
Two implementations of the middleware were developed: (a) one built on top
of the JXTA peer-to-peer infrastructure and (b) another based on the TuCSON
blackboard-based infrastructure. What characterised PROSOCS from other
platforms of its time was that generic sensor and effector components were linked
to an agent’s body to enable the agent send and receive messages, including
support with physical interactions between agents and objects. Experimenta-
tion with the platform [15] showed that although the development of a reusable
middleware to enable communicative interaction was generally straightforward,
providing general rules for the interaction between agents and objects for differ-
ent applications was more a limitation than a strength. The issue here was that
different applications imposed different requirements on how agents and objects
need to be manipulated and coordinated. A more acceptable solution was to
allow the developer to specify the low-level physical interaction for different ap-
plications, as if this developer designed the agent environment and programmed
its middleware to serve the purpose of the application.

Contribution, Scope, and Significance. This paper develops a logic-based
framework representing an agent environment as a composite structure that
evolves over time. Such a complex structure contains the interaction between two
main classes of entities: agents and objects. Interactions between these entities
are specified in term of events whose occurrence is governed by a set of physical
laws specifying the possible evolutions of the agent environment, including how
these evolutions are perceived by agents and affect objects and other agents in
the environment. The emphasis of the work is to specify the representation of the
agent environment declaratively, in a logic-based way, so that the programming
of the agent environment is easy to understand and change. To specify what
is perceived in the agent environment we use of the notion of affordances, to
enable cognitive agents to perceive the external states of objects and other agents
in order to interact with them. Through affordances a designer specifies what
is possible in the agent environment at a level that can be processed directly
by cognitive agents. We show how to turn the overall representation from a
specification to an implementation that we call GOLEM, which is a general
and reusable platform across applications and whose features are examplified
by the Packet World simulation in the context of this paper. The significance
of the implemented system is that it can support complex applications through
the deployment of cognitive agents situated in a distributed environment over a
network.
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1.2 Organisation

Section 2 introduces the general architecture of GOLEM, following the ideas
presented in [16]. Section 3 shows how to represent interaction in a GOLEM
agent environment on top of an extension of the Event Calculus based on objects
[17], including any implementation issues. Section 4 places our research in the
context of existing literature and compares it to related work. We summarise
our effort in Section 5 where we also chart out directions for future work.

2 Description of Environment Affordances

We propose to investigate the design of the agent environment using the con-
cept of affordances. This concept is normally taken to describe “all the action
possibilities latent in the environment, objectively measurable, and independent
of an agent’s ability to recognise those possibilities” [18]. As with research in
HCI [19], we rely upon perceived affordances where entities of an environment
“suggest” to agents (whether artificial or human) how they should interact with
them. In other words, we do not expect our agents to learn how to interact with
an object by randomly taking actions [20] according to previous experience[21].
Instead, we propose an agent’s environment to be designed in advance, assum-
ing a particular ontology, very much like an interactive system, with the aim to
treat cognitive agents like we treat users. This does not prevent an agent from
learning how to use the object, because knowing the interface of the object, the
agent could just try to explore the functionality by observing an action’s effect
on the agent environment.

We answer what the developer needs to design by relying on the conceptual
framework described in [16]. This defines an agent environment as a container
where agents interact with other agents and objects using sensors and effec-
tors. We expand this preliminary work by providing a framework stating how to
specify logically these entities and their interaction using events. Events describe
what happens in the agent environment as a result of actions being executed by
effectors. According to the happening of an event the agent environment notifies
those sensors capable of perceiving the action of the event. For the purposes
of this paper we distinguish between three types of acts embedded in an event:
speech acts - to allow agents to communicate with other agents and users; sensing
acts - to allow an agent to perceive the environment actively; and physical acts -
to allow the agent to interact with other entities, in particular objects, but also
agents as well. To simulate these acts we will rely upon different kinds of sensors
and effectors the agent should possess to capture the interaction in the agent
environment. Our primary concern is to provide a computable specification of
the interaction rather than a formal definition; the latter is beyond the scope of
this paper.

2.1 Objects

GOLEM uses a particular architecture for objects shown in Fig. 2. As part of
this architecture the object is described in terms of the perceived affordances.
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To present these perceived affordances we use the object-based notation used
by C-logic [22], a formalism that allows the description of complex objects. A
description of the form:

packet: p1[ colour ⇒ red,
methods ⇒ {pick, drop, hit},
position ⇒ square:sq1,
receptors ⇒ { receptor:r1 },
emitters ⇒ { emitter:em1 }

]

states that p1 is a complex term of class packet, with a functional attribute
describing that the colour is red, a multi-valued attribute methods stating that
the actions afforded by the object the term represents are pick, drop, and hit, a
functional attribute asserting that the position of the packet is in square sq1, a
multi-valued attribute receptors containing one receptor sensor r1, and a multi-
valued attribute emitters containing one emmiter effector em1. Some of the at-
tribute values are complex terms themselves, for example, sq1 is a complex term
containing information such as the coordinates of the packet in the Packet-World
grid. The C-logic syntax to represent the perceived affordances of an object as
a complex term has a first-order logic translation, as we can see for a packet
object below:

is a(p1, packet). method of(p1, hit). attribute(packet, colour, single).
colour(p1, red). position(p1, sq1). attribute(packet, method, multi).
method of(p1, pick). receptor of(p1, r1). attribute(packet, receptors, multi).
method of(p1, drop). emitter of(p1, em1). attribute(packet, emitters, multi).

In this way, we represent all the related information that is perceived of an
object, including its relationship with other entities in the agent environment.

The idea behind having receptor sensors for an object is that they receive
notifications from the agent environment as a results of actions executed on that
object. In general, the receptor sensor of an object can only capture notifications
of physical acts performed on the object by entities in the agent environment

Fig. 2. A GOLEM object whose receptor S is receiving a notification of an event Ev1
at time T1 and whose emitter attempts to make event Ev2 happen at time T2
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that are capable of executing these actions. To represent events that receptors
can capture we use complex terms too. The term:

do:e1 [actor ⇒ agent:ag1 [effector ⇒ ef1], act ⇒ hit, object ⇒ packet:p1]

describes an event e1 where the effector ef1 of agent ag1 performs a physical
act hit on packet p1. Such an event will be captured by the receptor of the
object via notification sent to the object by the environment. Then the object’s
processor will call a method of the internal object. The general idea behind the
internal object is that it wraps in it a resource of the external environment, thus
hiding from the agents the complexity of interfacing with the external resource.
In other words the object abstraction can be a virtual entity, as for objects in
Packet World, or a virtualisation of an external resource of the external real
environment. The method call will typically result in the output of the call
transmitted as another event via the object’s emitter effector. As before, emitted
events are complex terms. To simulate a packet’s reaction to the physical act
represented by e1, the event description:

hearing:e2 [emitter ⇒ packet:p1 [effector ⇒ em1], sound ⇒ packet hit]

showing the kind of event emitted by the object. Events may be emitted by the
processor also upon conditions determined entirely upon the state of the internal
object and not necessarily as a reaction to an external trigger. The details we
omit as these events can be described similarly, the only part that changes is the
type and content of the event.

2.2 Cognitive Agents

GOLEM agents are organised as an extension of the PROSOCS anthropomor-
phic architecture of an agent [11], shown in Fig. 3. In this architecture an agent
has a body whose affordances can be perceived by other agents. A description of
the form:

picker: ag1[ understands ⇒ ontology:o1,
sensors ⇒ {sight:s1, hearing:s2, smell:s3},
effectors ⇒ {speak:ef1, arm:ef2, arm:ef3},
position ⇒ square:sq3,
activity ⇒ idle

]

states that ag1 is a packet picker understands the ontology o1 (of packet world),
has sensors of class sight, hearing and smell, and effectors of class speak and arm,
its position is square sq3 in the container, and it is currently idle. The position of
the agent describes a set of relative terms relating the agent with other entities in
the agent environment. As with objects, the effectors of an agent attempt to exe-
cute physical actions in the agent environment. Similarly, agent sensors respond
to event notifications by the agent environment. These notifications enable an
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agent’s sensors to passively observe the agent environment [10]. Alternatively,
sensors actively observe the agent environment through sensing acts, giving rise
to active observations [10]. Active observation is expressed as a sensing act that
attempts to perceive certain properties of the agent environment. For example,
the term below shows how agent ag1 focuses on a specific part of the agent
environment:

sensing:e3 [actor⇒ ag1[sensor⇒ s1], act ⇒ look, focus ⇒ p1[color⇒ X]]

by looking with sensor s1 to find the colour of packet p1, denoted by the variable
X. The outcome of such a request will result in an asynchronous call to the agent
environment to return the variable substitution, as we will see later in section
3.2.

Apart from situating the agent in the agent environment, the body contains
a brain to connect the various sensors attached to it. The brain also provides
an interface to the mind, a cognitive component giving the agent the ability to
reason logically and make decisions. This mind-brain separation allows different
cognitive models of agency to be interfaced to the body, thus making the archi-
tecture more flexible. From an agent environment perspective, a user can use an
agent’s body to access the electronic environment, in which case the brain of the
agent provides simply a convenient interface for the user to select actions using
his own mind.

2.3 Containers

An agent environment in GOLEM is a first class entity referred to as a set
of containers. As shown in Figure 4 the container has a state that acts as
a directory of all the present agents and objects in it, including information
about their topology and configuration. Interactions between the entities of an
agent environment are governed by a set of physical laws. These laws specify the
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Fig. 4. A GOLEM Container

possible evolutions of the container, including how these evolutions are perceived
by agents and affect objects and processes in the environment.

As with agents and objects, the container has its own perceived affordances
that include the ways in which an agent can configure itself (or other basic,
object, agent, and containers) to became part of the container’s internal state.
For example the description:

container:c1[address ⇒ “container://one@134.219.7.1:13000”,
laws ⇒ physics:pw1,
type ⇒ open,
entities ⇒ {agent:ag1, packet:p1, packet:p2, destination:d1, battery:b1}
]

describes a container whose address is container://one@134.219.7.1:13000, its
laws are represented by another object pw1 of class physics, it is an open con-
tainer in that any agent can enter it, and whose internal state contains five
entities, one agent (ag1), two packets (p1, p2), a destination for packets (d1),
and a battery (b1). Before an agent enters the container it can inspect the laws
attribute containing the physics for the Packet-World, further specified as:

physics:pw1[name ⇒ ”PacketWorld”
mediates ⇒ {see, speak, listen, do},
entities ⇒ {agent, object},
processes ⇒ {pheromon evaporation},
ontology ⇒ {”PacketWorldOntology”}
]

By examining a physics term such as pw1 above, an agent can perceive the
container by looking at the classes of events a container mediates, and other
information regarding the kind of entities that the container contains, and the
ontology specifying the features of these entities.
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3 Interactions in a GOLEM Environment

The main task of our work has been to describe an agent environment in a form
that is usable by the cognitive agents situated in it. So far we have discussed
how a domain application can be described in terms of the perceived objects and
agent bodies that are part of a container that acts as the agent environment. We
have also shown how such a container can be represented as a complex term. In
this section, we show how to describe the evolution of a container as an event
calculus theory extended with a part that enables objects and agents to interact.
We close the discussion with a summary of our implementation.

3.1 The Agent Environment and Its Evolution

To represent how phenomena change the state of a GOLEM container we use
the object-based event calculus (OEC) described by Kesim and Sergot in [17].
The OEC extends the data model of the original event calculus with one that
describes how instances of complex terms evolve over time. This framework
allows the developer of a GOLEM application to specify the effects of actions
to/from objects and agents as events. A subset of the clauses describing the OEC
is given in Fig. 5.

Clauses C1-C2 provide the basic formulation of OEC deriving how the value
of an attribute for a complex term holds at a specific time. Clause C3 describes
how to represent derived attributes of objects treated as method calls computed
by means of a solve at/2 meta-interpreter as specified in [23]. C4-C5 support
a monotonic inheritance of attributes names for a class limited to the subset
relation. As C1-C2 describe what holds at a specific time, C6-C7 determine how
to derive the instance of a class at a specific time. The effects of an event on
a class is given by assignment assertions; the clause C8 states how any new
instance of a class becomes a new instance of the super-classes. Finally, deletion
of objects is catered for by clauses C9-C11. C9 deletes single valued attributes
that have been updated, while C10-C11 delete objects and dangling references.

To describe how the affordances in the agent environment evolves as a result of
events happening in it we need to define domain specific initiates and terminates
clauses. For example, to describe an agent moving in the Packet-World grid, we
write:

initiates(E, picker, A, position, Pos, T) ←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]].

To complete with describing the effects of the event we also need to terminate
the attribute holding the old position of the agent, in this case, this is handled
by the general rule described in clause C9.

3.2 Representation of Interaction

Given the OEC to support the evolution of the agent environment’s state we use
on top of it a set of logic programs that work together with the event calculus,
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(C1) holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

(C2) broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

(C3) holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),
solve at(Body, T).

(C4) attribute of(Class, X, Type)←
attribute(Class, X, Type).

(C5) attribute of(Sub, X, Type)←
is a(Sub, Class),
attribute of(Class, X, Type).

(C6) instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,
assigns(E, Id, Class),
not removed(Id, Class, Ti, T).

(C7) removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,
destroys(E, Id).

(C8) assigns(E, Id, Class)←
is a(Sub, Class),
assigns(E, Id, Sub).

(C9) terminates(E, Id, Class, Attr, )←
attribute of(Class, Attr, single),
initiates(E, Id, Class, Attr, ).

(C10) terminates(E, Id, , Attr, )←
destroys(E, Id).

(C11) terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

Fig. 5. A subset of the Object-based Event Calculus from [17]

to represent the interactions in a GOLEM environment. In what follows, we are
presenting extracts of our formulation, to exemplify the approach.

Action Execution. As we discussed in section 2, the execution of actions in
GOLEM are represented as attempts. Attempts are the same as what Ferber
[24] calls influences, we prefer the use of attempt because it captures better our
intention, namely the action that is about to occur as an event in the agent
environment. Attempts are described by assertions of events at a specific time.
We keep the description of events separately from attempts. Suppose for instance
that an agent (ag1) is attempting to make a move to square sq3 at time 120. In
GOLEM this will be represented by an attempt as shown below:

attempt(e14, 120).
do:e14 [actor ⇒ ag1, act ⇒ move:m1 [destination⇒ sq3]].

Such an attempt causes the event of moving to happen, provided the event
described in the attempt is possible according to the physics of the agent envi-
ronment. There are two ways we propose to define this:

(H1) happens(Event, T)← (H2) happens(Event, T)←
attempt(Event, T), attempt(Event, T),
possible(Event, T). not impossible(Event, T).

Definition H1 suggests that we must describe for every agent environment when
an event is possible at a specific time. Often, as the number of events that
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happen is large, H2 suggests that it would be easier if we described what events
are impossible at a specific time. Depending on the application, the developer
of an agent environment can choose between H1 or H2. In the Packet-World, for
example, we have found easier to describe what is impossible rather than what is
possible, and rely upon the use of negation-as-failure to handle what is possible
by default. As an example of an impossible event description, consider how to
define what is impossible when an agent attempts to move to a square in the
grid that is occupied already:

impossible(E, T)←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]],
holds at(Pos, square, status, occupied, T).

We need to define similarly additional impossible/2 constraints of this kind to
deal with situations where an agent is trying to move outside the grid, for ex-
ample. Impossibility constraints can also be used to handle more than one event
attempted at the same time, thus making the approach quite expressive.

Using the definition H1, a developer has also the option to combine possi-
ble/impossible constraints if the following general rule is added:

possible(E,T)← not impossible(E,T).

This new definition makes H1 more general, since the developer is now in a
position to specify both domain specific rules of both what is possible or what is
impossible, case by case, thus allowing representations that are more expressive.

Passive Perceptions. When an event happens, it is notified instantaneously
to all types of sensors that are capable of detecting it. Put another way, certain
types of sensors will be filtering out specific kind of perceptions. This fact is
reflected in the definition of event notification that takes into consideration the
type of event that happens. For passive perceptions we need to check that the
event does not contain a sensing action, so the notification is defined as:

notify(E, S, T) ←
happens(E, T),
not sensing(E),
detectable(E,S,T)
not interfered(E, S, T).

We assume that event types contain, as part of their description, the sensor types
that can detect it. We use the notion of detectable as possibility for percepts.
For the packet world we define it as:

detectable(E,S,T) ←
E [is detected by ⇒ SensorClass],
instance of(S, SensorClass, T),
holds at(S, SensorClass, status, open, T).
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The definition of notify/3 also checks that when an event is notified it is not
interfered by an obstacle. Interference is a domain specific constraint that for
some applications may remain undefined. To exemplify it in the Packet-World,
we try simulate the fact that some events will not be possible to perceive because
there is an entitiy (object or agent) that hides its occurrence. To do this we define
the following rule:

interfered(E, S, T) ←
E [coordinates ⇒ XYe],
instance of(S, sight, T),
holds at(A, picker, sensor of, S, T),
holds at(A, picker, coordinates, XYa, T),
holds at(Entity, entity, coordinates, XYent, T),
in between(XYent, XYa, XYe).

In other words, a notification is interfered only when there is an entity between
the position of the agent and the location in which the event happened.

Active Perceptions. Agents in GOLEM are enabled to actively perceive ob-
jects in the agent environment. Such perceptions assume that the agent has
attempted to perform a sensing act with a specific focus query for the object.
This is initiated by an attempt of an sensing act with a particular focus. We
specify this as:

perceive(E, S, T) ←
happens(E, T),
sensing(E),
detectable(E, S, T),
E [sensor of⇒ S, focus⇒ Focus],
solve at(Focus, T).

The call to solve at is assumed to be an asynchronous call to the agent environ-
ment which returns the variable substitutions to the Focus, if any. It is important
to note that the time T is not instantiated by the agent who is trying to perceive,
but by the agent environment who receives the call.

3.3 Implementation Issues

We have implemented GOLEM according to the reference model of Fig. 6. In
this figure actions coming from containers, agents, objects, or internal Processes,
are collected by an Attempts module. Attempts of action are mediated by a
Physics component ensuring that these actions are possible before they happen
as events in the state. The physics module is in charge to mediate the three
kind of events described in section 2. As a consequence, physics acts, speech acts
and sensing acts are mediated before taking place in the agent environment, or,
in other words, the agent environment allows to define laws of interaction for
these three kind of events. The physics also describe how events cause changes



Situating Cognitive Agents in GOLEM 127

Fig. 6. The GOLEM Reference Model

to the perceivable state of the agent environment. Once an event has happened,
it is directed by the notification module to the Passive Perception module that
notifies the sensors of agents and objects.

Active perceptions of agents on objects are handled by the Active Perception
module that accesses the state of the agent environment to support the requested
perceptions. Containers are recursively deployed as objects, so that the agents
in the agent environment can access a container from another container. The
use of a Connector component allows the agent environment to forward/receive
messages to/from other containers via the transportation layer.

We have implemented our framework according to the above reference model
using tuProlog [25] and Java. Using this combination we use Java to implement
Agents, Objects and the Container. The container has inside a Physics component
that uses tuProlog to define the logic-based agent environment. To implement the
specification we need to slightly change some of the rules specified earlier. For ex-
ample, the rule H1 is rewritten so that attempts become agent environment calls
that assert event descriptions in the state of the agent environment:

attempt(Event, T):- not impossible(Event, T), add(happens(Event, T)).
Agents, objects, containers, or internal processes will instantiate the Event at
the time of the call, while the time T is instantiated by the agent environment.
add/2 asserts separately the happening of the event from the event’s description.

Other features of the tuProlog/Java combination include allowing a developer
to support asynchronous communication and primitives to register Java objects
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Fig. 7. A container node with Packet World inside

inside a Prolog context, using the Java Reflection API [26]. We use these facilities
to define declaratively how to deploy agents, objects, agent sensors and services
to create the GOLEM distributed environment. Defining the rules of the agent
environment using a Prolog theory is particularly helpful when a developer needs
to change the interaction inside a container. With the GOLEM’s toolset, we
allow a platform administrator to open a container, inspect it, and subsequently
change the physical laws governing it. There are a number of issues that we
have to take into consideration here, in particular, ensuring consistency of the
physics and the atomicity of action execution. A detailed discussion of these
issues, however, is beyond the scope of this paper.

To allow a container’s affordances to be discoveredwithin a distributed environ-
ment, we translate our complex terms describing a GOLEM container to WSMO
[27] ontologies and concepts. Thismapping is straightforward as there is a syntactic
link between OEC and F-logic[28] upon which WSMO relies. For example, a picker
agent description in GOLEM can be translated to a WSMO concept as follows:

concept Picker subConceptOf Agent
UnderstandOntology ofType (1 1) iri
hasSensors ofType Sensor
useEffectors ofType Effector
hasPosition ofType Square
hasActivity ofType (1 1) string
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The motivation behind the use of WSMO is to use it as a standard for al-
lowing agents from other platforms to discover and use resources of GOLEM.
A cognitive agent that looks at the affordances of an entity, knows immediately
the messages to interact with the entity, as well as its observable properties. Fig.
7 shows an example of execution where GOLEM entities and their affordances
are described in WSMO.

4 Related Work

There is a growing research and development effort on how to model situ-
ated multi-agent systems, see [6] for a discussion. Our work is inspired by the
influence-reaction model by Ferber and Müller [2] and its extensions as for-
malised by the work of Weyns and Holvoet [29]. In our framework influences are
represented as attempts of events and reactions as environment notifications.
However, in this work we are not concerned with synchronisation issues as [2]
and [29] but rather with how to specify interaction in computational logic, thus
providing executable specifications of agent environments. Despite an apparent
similarity of our container with the description of the agent environment in [8],
at a closer look the two approaches rely upon different reference models.

Our representation of active perception relates naturally to the work of Weyns
et al [30] who divide an agent’s perception in three parts: sensing, interpreting
and filtering. Our work is really about the first part, namely, the mapping of the
external environment to a symbolic representation suitable for the agent using
what we called sensing acts. As in Weyns et al, the agent can select a set of foci
that enables an agent to direct its perception and perceive only specific types of
information, simulating a kind of artificial sight for agents. The interpretation
part of the perception mechanism of Weyns et al maps the representation of the
agent environment in the actual percept of the agent. These percepts have the
function to describe the sensed agent environment in the language understood
by the agent. In our approach, we have tried to minimize interpretation and
standardize it to be logical terms. We have left filtering outside the framework
as this part concerns the way sensors work, which is beyond the scope of this
work.

Vizzari in [31] models the concept of environment as a multi-layer multi-agent
situated system (MMASS). The environment is composed by a set of graphs
interconnected by interfaces, forming thus a multilayered structure with some
interfaces among layers. Every layer, and thus every graph, may represent a spe-
cific aspect of agents’ environment: for instance one of them may represent an
abstraction of agents’ physical environment, while other ones may be related to
other conceptual topologies such as organization charts or dependency graphs.
In GOLEM, instead of defining layers, we define rules. Different sets of rules can
then describe different layers of the agent environment. What we have presented
here is only a framework for the physical interaction where attempts for ac-
tion result in events, which for Vizzari generate fields, signals capable to diffuse
through the layers, according to the interfaces between these layers. In addition,
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signals in Vizzari’s framework can be perceived by agents according to specific
rules of perception based on functions such as diffusion, composition and com-
parison. For us diffusion is notification, composition is complex term creation,
while comparison is our use of having different sensors capturing different types
of events.

The coordination artifact theory [32] defines as an abstract model that takes
inspiration from concrete objects supporting the interaction of physical entities.
Agents perform their activities in the environment helped by coordination arti-
facts, generally passive entities that defines a usage interface, a set of operating
instruction and a coordination behaviour specification. For an agent to under-
stand how to interact with an artifact one has to understand the interfaces of that
artifact. GOLEM follows the TuCSoN idea that the infrastructure must be pro-
grammable. While coordination artifacts for agent interaction take inspiration
from actual concrete objects of the real world, our approach brings the metaphor
of agent environment to the extreme by taking into account spatio-temporal fea-
tures. These features are represented (possibly in an explicit way) and have an
influence on perception, interaction and as a result on agent behaviour.

A more recent technology supporting the coordination artifact model is called
CartAgO, proposed by Ricci et al in [33], which is in the process of being integrated
with Jason [34]. This technology proposes a model of perception and actions that
is similar to the one proposed by Weyns et al in [30]: Agents can have sensors that
perceive well-defined kind of perceptions and filter them at runtime. The notion
of workspaces contain artifacts and agents, used also to define the topology of the
working environment. Through workspaces it is possible to model a notion of lo-
cality, in terms of the artifacts that an agent can use and observe.

There are many similarities of GOLEM with CArtAgO: they both use sensors
andeffectors for agents,asPROSOCSdid [11],CArtAgOworkspaces correspond to
GOLEM containers, and as in CArtAgO we distinguish between speech acts, phys-
ical acts, and sensing acts. Moreover the Jason integration offers the possibility to
defines user defined agent environments specifying pre-conditions, post-conditions
and effects of the action in the environment, as well as offering a language to define
BDI agents acting in the agent environment. However, there are many differences
as well, the most important being that in GOLEM we keep the rules of the physical
environment in the container, not in the artifacts, and we expect the implementa-
tion to enforce them in a distributed manner. Finally, instead of manuals keeping
operating instructions for artifacts GOLEM uses affordances.

Affordances are also strongly related with the work reported by Platon et al.
in [35], [36], and [37]. As in PROSOCS, this work puts forward the use of an agent
soft body which has a state that is public and available to an observer. The act
of observing such a state in the Platon et al. framework is based on the notion of
oversensing [35] and overhearing [36]. In our work the oversensing/overhearing
acts are modelled as active perception on the affordances of environment enti-
ties. Other differences with the Platon et al. work are that GOLEM affordances
express more than a simple state, they express also the interaction interface of
both agents and objects, rather than only agents.



Situating Cognitive Agents in GOLEM 131

5 Conclusions

We have presented a logic-based framework representing an agent environment as
a composite structure that evolves over time. Such a complex structure contains
agents and objects in containers, whose interaction is specified in term of events.
Occurrence of events is governed by a set of physical laws specifying the possible
evolutions of the environment, including how these evolutions are perceived by
agents and affect objects and processes in the environment.

We have implemented the framework in GOLEM, a prototype platform ex-
emplified here using the Packet-World. The benefits of our approach can be
summarised as follows. By using a declarative approach we define the rules that
constrain the interactions in an agent environment and then update them at run
time, without the need to restart the application (an important issue if we want
to incrementally introduce patches to an application environment). We do not
need to translate the perceptions from the environment to the mind of the agent
as the agent environment and mind of an agent use the same representation
language, thus making the situating of cognitive agents easier. By introducing
the idea of affordances and wrapping external resources in objects we hide the
complexity of how an agent can interact with the external world; knowing the af-
fordances of an object the agent has the interface of that object standardised by
the use of ontologies. Finally, by keeping a history of events we can easily play-
back interactions and therefore debug an application through a log, in the case
that the agent environment models a simulation that does not involve external
resources, wrapped in the object abstraction.

We are currently studying the benefits of our approach in the ArguGRID
project [38], where the mind of the agent is defined using argumentation [39].
Now interaction with objects is interaction of agents and/or users with semantic
web-services defined in WSMO. As part of this work we are seeking to build upon
the lemma generation mechanism discussed in [23] to improve the scalability of
the GOLEM’s approach.
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Abstract. In this paper, we discuss a way to model Agent-Environment
interactions in adaptive multi-agent systems. We describe the interac-
tions at various levels of abstraction starting with the highest. For each
level, we specify the interactions from four viewpoints functional, behav-
ioral, data and structural. This results into a set of models that capture
the main properties of agent-environment interactions.

1 Introduction

This paper focuses on a specific category of MAS, the Agent-Environment Sys-
tem (AES) [1,2,3]. AESs are adaptive systems where the environment is open
(i.e., inaccessible, non-deterministic, dynamic, and continuous) and can be mod-
eled as a MAS. An AES can be viewed as a system composed of an agent-MAS, an
environment-MAS , and interaction mechanisms between the two MASs. Hence
it can be defined as (agMAS, envMAS, Interaction(agMAS, envMAS). An ex-
ample of an AES is an agent-based social simulation system where agMAS con-
sists of the population of social entities and their interactions, envMAS consists
of the environment entities and their interactions, and Interaction(agMAS,-
envAS) consists of the interaction mechanisms between the social and physical
MASs (see Figure 1).

In this paper, we discuss an approach to model AES. We do not propose
a methodology but rather discuss a software engineering modeling approach
that can be incorporated in existing agent-oriented processes. For the sake of
conciseness, we restrict our discussion to the specification of interactions between
agMAS and envMAS.

In Software Engineering, when dealing with a complex, multi-faceted problem,
it is customary to describe the system from various levels of abstraction and
different viewpoints. Abstraction allows an engineer to concentrate on those
features that are the most important at a particular stage of the process while
multiple viewpoints allow the engineer to address different concerns of the same
problem.
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Fig. 1. Interactions in AES

In this paper, we propose to specify agent-environment interaction from four
viewpoints. The data viewpoint describes the interaction in terms of its concep-
tual entities and associations; the functional viewpoint describes the interaction
in term of its functionality; the behavioral viewpoint describes the interaction in
terms of its reaction to events, and state changes; finally the structural viewpoint
describes the interaction in terms of its design components. We start by discussing
the problem at the highest level of abstraction, considering agents and environ-
ment as black boxes, then proceed through the next three levels of detail.

2 Agent-Environment Interactions in MAS

The environment only recently has been proposed as a ”first-class entity” [4]. As
such, the amount of engineering practices and methodologies focusing on this
topic is limited.

There exist many Agent Oriented Software Engineering methodologies that
have a foundation in object orientation, requirements engineering and knowledge
engineering. However, most of them fail to address the needs of the environment.
Falling into this category are Tropos [5], Prometheus [6], Zeus [7], MESSAGE [8],
OPM/MAS [9], and MaSE [10]. These methodologies consider the environment
as external to the MAS (i.e., actors on the MAS [10]) or consider it the operating
system on which the MAS executes. This approach tends either to trivialize the
environment’s function or couples it too tightly with the agents.

Recently, Gaia has been extended to accept the environment as a primary
abstraction for MAS [11]. To the best of our knowledge, this is the only AOSE
methodology that does so. Gaia treats the environment in terms of abstract
computation resources that the agent can sense, affect or consume. However, in
the hope of keeping the environment general, Gaia recommends that the en-
vironment only holds components that are capable of performing simple tasks
and operations such as a data lookup. Anything more complex should be agen-
tified, i.e., complex tasks should be handled by a proper agent and not be
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considered a service of the environment. Regarding communication with the
agent, the environment has sensors and effectors.

Another general methodology that considers the environment is SODA [12].
SODA focuses on societies and inter-agent issues. During the analysis phase,
the resource model which represents the highest level of abstraction of the en-
vironment is defined. In the design phase the environment model is described
by mapping resources onto an infrastructure. Recently, “zooming” has been ap-
plied to SODA which enables MAS to be viewed at different layers of abstraction.
However, the layers start at a low abstraction and miss showing truly higher ab-
stractions. Also, zooming would benefit from showing a clear distinction between
agent and environment.

Another methodology used to describe environment functionality is presented
using artifacts[13]. According to the authors, artifacts reside in the environment
independent of agents and expose a set of operations. Agents are aware of these
artifacts and invoke operations and perceive their effect as necessary. Artifacts
generalize the research done for SODA regarding the coordination infrastructures
[12]. Artifacts are responsible for providing the services that agents may need to
achieve their goals.

One methodology that follows RUP and the traditional workflow is ADELFE
[14]. This methodology covers the entire software process. The environment is
addressed during the final requirements phase. The outcome of requirements
describe the interaction, the context and the characteristics of the environment.
During analysis, the modules of the environment are identified. However, during
design, no explicit modeling of the environment occurs.

In [15,16], Ferber presents a agent-environment model based on the principles
of influences and reaction. Once agents execute actions, they produce influences
that are synchronously communicated to the environment. The environment
interprets these influences, reacts to them, and changes its state. The new state
is then synchronously communicated to the agents. In this manner, all agents
have the same information about the environment at the same time.

In [16], Ferber proposes a formal approach to specify the influence reaction
model for two categories of agents, i.e., tropistic and hysteretic when the envi-
ronment is centralized.

In our work, Agent-Environment interactions follow the influence-reaction
model. To illustrate our functional viewpoint, we build on Ferber’s formal model
and propose a model of interactions where agents are hysteretic and the envi-
ronment decentralized.

Before going into the details of our approach, in the next section we discuss
the properties of Agent-Environment Systems.

3 Agent Environment Systems

In our approach, we use the word agent to refer to a structured abstract data
type that has the well known properties of autonomy, awareness, sociality/
interactivity, pro-activeness and reactiveness.
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In the remainder of this paper, and for the sake of clarity, we illustrate our
discussion on AES through the example of a social simulation system, where
social entities represent “humans”, and the environment represents the world.
In this case, it is clear that the agent concept is a natural abstraction of “hu-
mans”. From the environment perspective, we might consider the case where
the environment includes entities (i.e., components) that exhibit the properties
discussed above. For example, a plant is an entity that is autonomous, aware of
its surroundings, able to interact with other environment entities, proactive (its
goal being to stay alive) and reactive. Hence, the agent abstraction can be used
to model this type of environment entity.

From a Software Engineering perspective, when dealing with large open envi-
ronments [17] it is necessary to split the environment into cells. Cells represent
a division of continuous space. They are not necessarily contiguous and hence
can form a network. The cell’s main purpose is to divide the environment into
easily manageable partitions.

Also, from a Software Engineering perspective, when dealing with adaptive
environments, it is necessary to relieve the agents from the continuous burden
of finding the environment’s latest state. The principle of separation of concerns
leads to the definition of cell controllers [1,2,18,19]. A cell controller is a design
entity whose responsibility is to 1) manage and control its own portion of the
environment (i.e., cell); 2) inform other controllers of any change that may affect
their cell; and 3) inform its local agents of the latest state of the environment.
Since these controllers serve as an interface between the environment and the
agents, in a layered architecture, they will form the middle layer (see Figure 2).

From a requirements perspective, a cell controller is expected to 1) be au-
tonomous; 2) be aware of the agent population and environment composition;
3) be able to interact with agents to provide them with a “picture” of their
surroundings, interact with environment components to get information about
their latest state, and communicate with other cell controllers to inform them of
the propagation of the effect of external events [1]; 4) be proactive, its goal being
for example to maintain a stable state for its cell; and 5) be reactive. Given these
properties, it seems clear that the agent abstraction can also be used to model
cell controllers.

To summarize our discussion, an AES might be viewed as a system that
includes two types of agents, conceptual agents and design agents. Conceptual
agents include agents which represent application specific entities such as social-
agents and environment-agents. Design agents represent entities that are defined
solely for engineering purposes such as controller-agents. It is clear that the level
of proactivity (and therefore “intelligence”) is higher in social-agents than it
is in controller-agents and environment-agents. Due to size limitation, in the
remainder of this paper, we restrict our discussion to social and controller agents.

Definitions. We define an Agent-Environment System (AES) as a system
composed of a) a set of interacting social-agents, b) a distinct open environ-
ment in which these agents are situated, and c) a mechanism for social-agent/
environment interactions [3,2].
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Fig. 2. AES layers

A social-agent is a software entity which 1) is driven by a set of tendencies in
the form of individual objectives; 2) can 4) has a partial representation of this
environment; 5) acts in an environment; 6) reacts to external events; 7) possesses
skills and can offer services; 8) is mobile.

A cell controller-agent is a software entity which 1) is driven by a set of ten-
dencies in the form of individual objectives; 2) can communicate with other
environment entities; 3) possesses resources of its own; 4) has a partial represen-
tation of the agent population; 5) reacts to agents 6) reacts to external events;
7) possesses skills and can offer services.

4 Levels and Viewpoints for AES

In this Section, we introduce a means for expressing the AES at various levels of
abstraction. We discuss representations for the data, functional, behavior, and
structural viewpoints.

4.1 UWEA Levels

There exist few methodologies that allows the software engineer to view a MAS
at finer grained levels of detail [8,12,20,21]. In this paper we follow Humphrey’s
approach [22] and propose four telescoping levels of abstractions:

– Universe. This level is the highest level and is appropriate when the viewer
is an observer of the situation.

– World. This abstraction is appropriate when the viewer has a closer view
of the situation.

– Entity. In this layer, the viewer is an entity in the situation. Protocols are
available and for each entity more detail is known.
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– Atomic. At this level, the viewer is within the entity and knows all the
atomic details.

4.2 Viewpoints

The notion of a viewpoint puts a particular emphasis upon the role of a represen-
tation. A representation is the means that we use to capture certain properties of
a design [23]. Design viewpoints for the UWEA levels consist of Data, Functional,
Behavioral, and Structural. We define these viewpoints as such:

– Data Viewpoint. This viewpoint describes the AES in terms of the con-
ceptual objects and their associations. The data viewpoint is concerned with
the description of the conceptual data model, if we are at the early stage of
development, or the description of data structures if we are at the detailed
design phase.

– Functional Viewpoint. This viewpoint defines the architectural elements
of the AES’s in terms of their tasks and emphasizes the functionality the
AES provides.

– Behavioral Viewpoint. This viewpoint describes the causal links between
events and system responses during execution. The main concern of this view
is with the dynamic relationships between components.

– Structural Viewpoint. This viewpoint defines the static aspects of the
system by defining the components and how they relate.

Several notations can be used to represent the various viewpoints. We use entity
relationship diagrams to represent the data viewpoint, functions to represent
the functional viewpoint, statecharts to represent the behavioral viewpoint, and
class diagrams to represent the structural viewpoint. This choice of notation is
arbitrary and it can be complemented with other notations.

5 Agent-Environment Interaction Models

In this section we discuss the various models for AES interactions. Given that
there has been much work regarding agent modeling, when discussing interac-
tions, will give more weight to the environment.

5.1 Data Viewpoint Illustrations

For the Universal level, the only information available is that social agents influ-
ence the environment and the environment reacts to agents. At the World level,
we are exposed to more detail. For example, we learn that the environment has
a state and a structure, and is composed of cells. We also learn that each cell is
managed by a controller agent. At this level, we determine that the interactions
will happen between the social agents and the controller agents. At the Entity
Level, more data is exposed (see Fig. 3). We can see that the controller agent
has a synchronizer while cells form a hierarchy.
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5.2 Functional Viewpoint Illustrations

The levels of abstractions in this viewpoint correspond to the box structures in
the Cleanroom methodology. A box structure is a description of functions that
exhibit properties essential for effective system specification and design [24].
Hence, the UWEA levels can be mapped into four box structures: black box,
grey box, white box and clear box. These structures exhibit identical external
behavior, but increasing internal visibility.

At the Universal level, a social agent is a function that processes environment
states, and produces influences. The environment is a function that processes
social agent influences and external influences to produce a new state.

At the World level, the environment is composed of a set of cells. Each cell is
managed by a controller agent represented by a function that takes as input the
set of influences produced by the social agents within its boundaries, as well as
external influences. It produces a new state that is passed onto the local social
agents, and outputs information to be passed onto adjacent controllers.

At the Entity level (see Figs. 4- 8), we are able to see the main components
that make up social agents and controller agents. A social agent consists of a
Perception, a Decision-Making and an Execution component. A controller agent
consists of two components, Influence Combination and Decision Making. A cell
state is consumed by a social agent’s Perception module. This produces a percept
that is processed by the Decision-Making module resulting in an action. The
execution of the action produces the social agent influences. External influences
and local social agents influences are combined by the controller to determine the
total influence on the cell. This is processed by the controller’s Decision Making
component to define the new cell state, and generate information to be passed
onto adjacent controllers.

At the Atomic level, we realize that the decision making component of social
agents and controller agents includes a memorization function. Hence, when a
social agent perceives the cell’s state, the new percept, the cell’s previous state
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(t0): initial state of the environment (at time t0)

σ (t+1) = k=1∪m σ k (t+1)
k=1∪m σ k (t0)(t0) =σ 

σ (t+1) = process−inflk (combinek (S−Agent1 (σ (t)), ..., S−Agentn (σ k k(t)),
γ γ extm (t))ext1  (t), ...,  

σ 

Fig. 8. E level Interaction Specification

and the agent’s previous state are used to determine the next action to perform.
The same applies to the controller agent: after the influences are combined, the
total influence and the cell’s previous state are used to determine the cell’s new
state.

5.3 Behavioral Viewpoint Illustrations

At the Universal level, there is very little observable behavior. The social agents
are either idle or acting, and the environment is either idle or reacting. At the
World level, we see that the interactions occur between the social agents and
the controller agents. The social agent can be either in state idle, processing cell
info or acting. The controller agent can be in states idle, processing influences
or reacting. When a social agent is created it will produce influences that will
force the controller to move from state idle to state processing influences. Once
the processing is complete, the controller transitions to state reacting that will
produce event new-cellstate-rdy. Upon detection of this event, the social agent
will transition from state idle to state processing cell info, then state acting that
will produce new influences. And the cycle resumes.

At the E level (see Figure 9), we know more about the internal states of the
social and controller agents.We also know that controller agents make use of
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synchronizers. The synchronizer, if the time interval has expired, will execute
a heartbeat. When the controller agent receives a heartbeat and influences, the
controller combines all of the internal influences produced by the agents within
its boundaries as well as the external influence received. The total influence is
then passed to the deciding state which produces an action to be received by
the reacting state. The event produced by reacting will cause the social agent to
move from state idle to the perceiving state followed by the deciding state which
determines the next course of action. Executing produces a new influence to be
received by the cell.

5.4 Structural Viewpoint Illustrations

At the Universal level, we see, at a high level, the environment and the agent
communication infrastructure. Agents communicate through an Agent to Agent
Communication Service and the environment and agents communicate over the
system’s Message Transport Service.

At the World level, we can see that both social and controller agents have a
means of interacting differently with different entities (Interaction Management
component), a place to store information necessary for deliberating and com-
municating (Information Management component), a means of deliberating (the
Planning and Control module), and a place to hold assigned tasks (the Task
Management component).

At the Entity level (see Figure 10), we see deepest into the various components
that make up the social and controller agents. For example, we see that detailed
composition of the Planning and control Module as well as the Task Management
component. We also see that the controller has a synchronizer as part of its
Interaction Management component.
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At the Atomic level, the Structural model is represented by UML class dia-
grams.

6 Conclusion

In this paper, we described a modeling approach for interactions in AES. These
interactions were described at telescoping levels of abstraction with each level
containing viewpoints for functional, behavioral, data and structural concerns.
This approach results in a set of models that captures the main properties of
agent-environment interactions. This concept was illustrated specifically for in-
teractions between social-agents and controller-agents.

The presented approach was used to introduce students to the complex prob-
lem of modeling adaptive MAS. We discovered that students grasped the con-
cepts more easily when we followed the levels of abstraction. Also, using standard
software engineering notations as much as possible allowed our students to focus
on the problem rather than on a notation. However, it should be noted that this
approach is not intended to be complete and can be complemented with other
viewpoints and notation as necessary. In addition, this approach can be included
as part of existing AOSE methodologies.

Furthermore, while not discussed in this paper, we have defined additional
models (e.g., communication model, social-agent organizational model, etc.) in
order to specify other components of the AES. Given that the problem can be
viewed from different perspectives, it seems natural to define several models.
As with interactions, keeping these models separate and distinct allowed for a
better understanding of the various aspects.

We conclude that, by describing the AES based on levels of abstraction, a
clear understanding of the AES can occur and we believe that the consistency
between diagrams at the same level can only increase that understanding. We
also believe that one of the challenges with architecting environments for MAS
is the fact that the environment typically is considered at different levels of
abstraction from the agent. In order to architect a cohesive, unified MAS, the
agent and environment should always be considered at the same level when
describing MAS.
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Abstract. Behind the curtains at check-in desks in airports hide a very
complex material handling systems, which manage to get your bag trans-
ported to the correct departure gate of your flight.

The conventional control software uses a strategy primarily based on
a shortest path algorithm, not taking into account dynamical changes or
utilization of less packed areas of the BHS.

We changed that perspective towards a decentralizedmulti-agent based
solution by developing strongly collaborating agents. The agents replace
the existing control software without modifying the layout of the BHS.

In this paper we describe the BHS problem and the agent-based de-
sign. We pay special attention to the impact of the local environments of
the agents, and finally give examples of implemented decision strategies.

1 Introduction

Burdened by the fear of never seeing the suitcase again, you observe it disappear-
ing in the back at check-in, even though is usually arrive out of nowhere at your
destination. Looking into this ”blackbox” one will experience a complex system
unlike many others. Baggage-handling systems (BHS) of airports are shrouded
in mystery due to both security reasons and the general size and complexity,
which overshadows the entire air traffic industry.

In this paper we will present research experiences we have conducted by apply-
ing multi-agent technologies to a real BHS at a major airport hub in Asia. The
intension was not to design a MAS-based system from scratch, but to evaluate
an approach of exchanging the traditional control software with a multi-agent
based solution, thus the solution described in the paper is truly mediated by the
problems and constraints of the environment in which the BHS is situated.

1.1 DECIDE Project

The research case of the BHS is the primary case of a larger research project
called DECIDE, which focus on promoting and proving the appropriateness of
� This research was supported by The Ministry of Science, Technology and Innovation
in Denmark under the IT Cooridor Foundation.
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multi-agent based control in production and manufacturing systems. Other cases
in the project have a focus on logistic control and scheduling of tasks in chemical
processes. Major Danish manufactures are among the other partners of the con-
sortium: Lego, Grundfos, Bang & Olufsen (B&O), and Odense Steel Shipyard.

1.2 Handling Baggage

To understand the baggage handling task of an airport, a short introduction is
required. Handling baggage is usually not a problem in charter or minor airports,
where almost all passengers are either departing or have reached their final
destination, but sorting and routing baggage in airport hubs of modern airports
with many connecting flight ought to be handled by an automatic BHS.

In principles the general task of a BHS is to bring baggage from one desti-
nation to another, A to B, but the number of bags, the unsorted inflow, the
mechanics, and the number of different destinations complicates the task. Thus
the BHS apparently shares several control characteristics with routing of pack-
ages in network traffic, but the density of alternative routes is much lower in the
BHS than a typical telecommunication network. Also the important fact that
lost packages cannot be resubmitted in the BHS introduces other foci in the
control of the BHS. SWARM-based approaches like Schoonderwoerd’s ant-based
control [22] or Di Caro & Dorigo’s AntNet are examples of intelligent agent-
based approaches for routing in networks, but for the BHS we have to consider
the settings and constraints of the environment to a much larger extend.

The BHS more or less covers an area similar to the basements of the terminals
of an airport, and tunnels with pathways connect the terminals. The system is
rather vulnerable around the tunnels, because typically there are no alternative
routes and the tunnels only contain one or two FIFO-based lanes that could
be several kilometers long. Thus the topology of the BHS could be regarded as
connected clusters of smaller networks, but even within a terminal, the network
of conveyors is far from being homogeneous, as special areas to some degree serve
special purposes. A snapshot from a BHS is shown in figure 1.

A BHS is a huge mechanical system, usually composed of conveyor-like mod-
ules capable of transferring totes (plastic barrels) carrying one bag each. The
BHS we have researched has more than 5000 of these modular components each
with a length between 2-9 meters that run at speeds between 2-7 meters per.
second. The BHS alone can easily be up to 20 km. in total length, may cover
an area of up to 600.000 square meters, and should be capable of handling more
than 100.000 pieces of baggage every day.

Besides the physical characteristics of the BHS, also a numbers of external
factors from the environment influence the performance

– Arriving baggage from either flights or check-in are not sorted, but arrives
mixed from different destinations1.

– Identity and destination of bags are unknown until the bag is scanned at the
input facilities, thus preplanning and traditional scheduling is not an option.

1 Baggage for baggage-claim are usually separated and handled by other systems.
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Fig. 1. Snapshot of a BHS with a moving tote containing a bag in the foreground

– Constant changes in flight schedules, due to both weather conditions and
delayed flights.

Eliminating delayed bags are the top priority criteria for a BHS, because it
can delay flights, and airports are charged to compensate the airline companies.
Thus the BHS must comply with a specified maximum allowed transfer time on
the BHS, which is our case is between 8-11 minutes. Besides that, the airport
operates with the concept of rush bags. A bag becomes a rush bag, when it enters
a certain timeframe (e.g. 20 min) before departure and then it cannot reach the
plane using the standard procedures and moved by baggage wagons. Instead the
bag will be discharged at a special location in the BHS and handled manually,
and driven to the plane one by one. Naturally the number of rush bags should
be minimized in order to keep handling expenses low.

Also if the bag enters the BHS very early (e.g. more than 3 hours before
departure), a specific discharge point for this destination have not been allocated
yet, and the BHS would not allow the bag to circulate on the system until that.
Thus many BHSs have certain areas to temporally store early bags, called Early
Baggage Storage (EBS). On a timeline the phase and concepts of moving bags
on the BHS could be illustrated as in figure 2.
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D
eparture

-20 min-3 hours

Standard bag Rush-bagEBS-bag

Fig. 2. The different states of a bag relative to departure time

Besides securing that bags reach their destination in time the capacity of the
BHS should also be maximized, and the control system should try to distributed
the load andutilize the entire system, if it shouldbe capable of handling peak times.

Robustness and reliability is also of top priority, as breakdowns and dead lock
situations inevitable will lead to delayed baggage, and in worst case stop the
airport for several hours.

Given those criteria the traditional approach for controlling a BHS use a
rather simplified policy of routing the totes along static shortest paths in the
system. By the static shortest paths is meant the shortest path in an empty
system, but during operation minor queues are unavoidable, which lengthen
the static shortest routes. In the traditional control all totes are sent along the
static shortest routes irrespective to the time of their departure in order the
keep the control simple and reliable. A more optimal solution would be to group
urgent baggage and clear the route by detouring bags with a distant departure
time along less loaded areas. On top of the basic approach described above the
control software are fine-tuned against a number of case-studies to avoid dead
lock situations, but basically it limits the number of active totes in different
areas of the system, which will be described later. The fine-tuning process is
time-consuming and costly for the developers, a more general and less system
specific solution is therefore one of the goals of an agent-based solution.

1.3 Worst Case Scenario

Apparently from the descriptions above there should be opportunities for im-
provement of the control logic in the BHS, and one might ask why it has not
been tried before, but it has...

Still listed as one of the history’s top ten worst software scandals are the BHS
of Denver airport in Colorado, US. The Denver International Airport was sched-
uled to open in October 1993, but caused by a non-working BHS the opening of
the airport was delayed in 16 months costing $1 million every day [25]. When
it finally opened in 1995 it only worked on outbound flights in one of the three
terminals, and a backup-system and labor-intensive system was used in the other
terminals [13].

The original plan for the BHS developed and built by BAE was also extremely
challenging, even compared to many BHS built today. Instead of moving totes
by conveyors the BHS in Denver is based on more than 4,000 autonomous DCV2

running at impressive speeds of up to 32 kph on the 30 km long rail system. It
was a kind of agent-based with many computers coordinating the task, but the
2 Destination coded vehicles.
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first serious troubles was caused by the overloaded 10Mbit Ethernet. Also the
optimistic plan of loading and unloading DCVs while running caused DCVs to
collide, baggage to be damaged or thrown out of the DVCs. Even unloading a bag
from one running DVC into another was part of the original plan, whereas many
systems today still stops a tote or DCV before unloading, even at stationary
discharging points.

2 Agent-Based Approach

Recent year’s advancement in computer and graphics performance has made
it possible to do realistic real-time simulations of very complex environments,
including productions systems like the BHS. The ability to continuously interact
with the simulation model during operation creates a perfect off-site test-suite
for the control-software, which emulates the real BHS.

2.1 Emulation Model

Together with another consortium partner, Simcon, the BHS company FKI Lo-
gistex has created an emulation model of the researched BHS using the AutoMod
simulation and modeling package [5]. AutoMod is a de-facto-standard for systems
analysis of manufacturing and material handling systems. One of the strong ad-
vantages of using AutoMod is that you can communicate with the model over a
standard socket connection, which is almost identical to the connection between
the control server and the PLCs in the real hardware. Thus the control software
cannot see the difference, if it is connected to the emulation model or the real hard-
ware. The same protocol and telegrams are used, which simplifies the development
process, and makes the emulation model reliable, whenever the basic communica-
tion has been tested correct. A snapshot of the emulation model is shown in figure
3. It shows the area with input facilities for terminal 3 of the airport.

2.2 Related Work

Multi-agent technologies have been applied to a number of both research and
practical cases of production systems and material handling systems, such as
the Production 2000+ project at DaimlerChrysler [7]. The Production P2000+
project has a strong focus on flexibility in a more traditional shop floor manufac-
turing environment, where high diversity in orders and production flow through
operational stations is the main issue. The BHS could also be considered as a pro-
duction system, because we have the input facilities (toploaders), which receive
baggage from arriving planes or check-in. In production terms that would be
the procurement of the production system [6]. There are a number of processing
stations in the BHS as well, but primarily they fall into the category of diverters
and mergers, which split or merge conveyor pathways respectively. There ex-
ists special processing stations in the system, such as manual handling stations,
which are used e.g. for baggage, which have lost their tracking id. Also elements
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Fig. 3. Snapshot of the input area of the investigated BHS

as lifts or temporary storage elements are some specials versions elements that
form the entire conveyor system of the BHS.

A number of research papers deal with agent-based manufacturing control or
holonic manufacturing systems from a more general perspective, such as [20,16].
Primarily the research has focused on flexibility in scheduling and planning of
resources in the productions environment. Approaches for planning are more or
less formalized, such as the Generalized Partial Global Planning (GPGP) applied
e.g. for scheduling and resource optimization in [9,10,11]. Other general strategies
include the PACO planning, described in [17], and more deliberate agents using
BDI-based agents for local optimizations [14]. But the BHS problem is highly
constrained by the environment and less general in the required tasks to be
handled than what could be described be general planning and routing.

With a focus on real-time decisions agent-based approaches have also been
applied to material handling systems, such as [4], but compared to our case their
approach is aiming for low-order systems (only tenth of orders to be produced are
tested), and the approach taken is aiming for distributing jobs among machines.
In contrast to our case the conducted research is based on designed scenarios that
are being simulated, and not a real life applications, which must be converted into
an agent-based system. There is a huge difference between designing a system to
be agent-based or implementing agent-based control logic to an existing system.
Flavor technology has applied their PIM and Paracell design model as an agent-
based approach to the baggage-handling problem of a real BHS [15], but the case
is quiet different from ours. First it contains check-in baggage which is addressed
as a sorting problem, and the other problem addressed is batch processing of
baggage to a particular departure, which is a classic scheduling problem. Whereas
our system must handle mixed and unsorted baggage in the entire system, similar
to a flexible manufacturing system with a high concurrent product variety.
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Some inspiration can gained from real life agent-based traffic observation sys-
tems, such as [18,23] presented at EEMMAS 2007, but the flexibility of individual
vehicles is much higher in traffic systems than a conveyor system.

3 Agent Design

In this section we will go into details about different tasks of the different ele-
ments of the BHS, which will form the final strategies we have applied to control
the BHS. The elements are the building block of the BHS and from an intuitive
point of view the potential candidates for agents in the system. An alternative
approach would be to consider the totes as “consumer” agents and the BHS as
a collection of “producer” agents, as the BHS can solve the tasks that the totes
want to have performed. In principle a tote could then negotiate is way through
the system, and urgent bags would be willing to pay more. Because the BHS
generally consists of pathways of FIFO queuing lanes with little and often no
possibilities of overtaking it is more appropriate to design the agents around
the flow control of the BHS. The element agents should then coordinate their
activities to optimize system performance and should therefore be considered as
collaborative agents, rather than competitive agents.

3.1 Toploader

Fig. 4. Toploader element; an empty tote is ready
underneath the traditional conveyor belt, where the
bags will arrive

The input facilities of the
BHS are called toploaders, as
they drop bags into the totes
from a conventional conveyor
belt so they can be tracked at
all times.

Basically the task of the
toploader could be decom-
posed into id-scanning of the
bag. Secondly it initiates the
journey of the tote on the
BHS. In order to start the
routing of the tote, the end-
point (discharger) must be set
for the tote, but several dis-
chargers are often allocated to
the same flight destination. Therefore the toploader agents initiate a negotiation
with the possible dischargers (a FIPA contract net) to find the best suited dis-
charger, the evaluation of the proposals from the dischargers is not trivially
chosen as the lowest offer, but weighted with the current route length to the
dischargers, which is requested from a route agent - a mediator agent with a
global focus on dynamic route lengths.

The toplader can take two different approaches for routing the tote.
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Fig. 5. The principal tasks of the toploader

Routing by Static Shortest Path. After the toploader has chosen the dis-
charger it could instruct all diverters along the route to follow that path for
the given tote, similar to the traditional control system, which send all totes
along predefined static shortest routes.

Routing on the Way. Alternatively, the toploader could just send the tote to
the next decision point along the shortest route. A more flexible approach,
as the tote can be rerouted, if the route conditions have changed.

More formally the principal tasks of the toploader can be illustrated as the state
diagram in figure 5, but it hides the advanced decision logic between the state
changes and message interactions. Parts of that will be described in the next
section.

It is important to note from the figure the destination and route information
do not have to be fully determined, before the full tote can leave the toploader,
and it can stay ready to induct the next tote.

3.2 Diverters

A diverter splits a conveyor lane into two, either a left or right turn and straight
ahead.

In respect to the strategies described above the diverter would either just for-
ward the tote in the direction determined by the toploader, or it would reconsider
alternative routes by restarting the negotiation process.

A diverter should be concerned about the relevancy of reconsidering the route
for a tote, because in many cases there is only one possible direction at a given
diverter for a given tote. We want to generalize the control logic of the diverter
agents instead of customizing it according to the placement of the diverter in the
BHS layout. Thus initially it adjusts itself to the actual environment, such as pos-
sible destinations and route information. As mentioned for many diverters there
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Fig. 6. Divert element; possible to choose be-
tween two alternative routes

are no alternative direction, for
some the decision will have little
impact. For a few diverters the
decision would have great impact
on future decisions. In particular
diverters placed, where it is pos-
sible to change layers3. Thus the
environment of the agent highly
influence the scope of decisions for
diverts.

Similar to the toploader, the
principal tasks of the diverter can
be illustrated as in figure 7.
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Fig. 7. The principal tasks of the diverter

3.3 Straight Elements

Most elements of a BHS are naturally straight or curved elements that connect
the nodes of the routing graph. Straight or curved elements are not considered
as agents in our current design, because mechanically they will always forward
a tote to the next element if it free. In principle the speed of each element could
be adjusted to give a more smooth flow and avoid queuing, but in the current
setup it would generate an enormous communication overhead.
3 The BHS is constructed as two layers of conveyor to save both space and cost.
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3.4 Mergers

Mergers are the opposite of diverters, as they merge two lanes. Traditionally
mergers are not controlled, as there are no alternatives to continuing on the
single lane ahead, and the merger simply alters between taking one tote from
either input lane, if both are occupied.

Obviously, more intelligent decisions could be considered than just switching
between the input lanes. The ratio between merging totes from the input lanes
should be determined by the aggregated data of the totes in either of the two
lanes. E.g. if the number of urgent totes waiting to be merged are higher in one
lane that lane should be given higher priority.

3.5 Dischargers

Fig. 8. Discharge element; unloads a tote by
tilting it, so the bag falls onto a conventional
conveyor belt

Dischargers are responsible for un-
loading bags from the totes, when
the tote reaches its destination.
Dischargers also have to take care
of the empty totes. Some BHSs
have separate conveyor system for
the empty totes, but many sys-
tems including the researched BHS
use the same lanes for routing the
empty totes back to the tote stack-
ers at the toploaders.

The task is similar to routing
full totes, but actually much more
complex, due to several consider-
ations that must be taken into
account.

– The number of destinations (tote stackers) is larger than alternative dis-
chargers for full totes (typically 2), whereas the number of tote stackers is
equal to the number of toploaders, which is 12 in our case.

– The status of empty tote stackers. If a stacker runs empty, no totes will be
available at the toploaders for new bags.

– The distance to the stackers. It is more appropriate to return the empty tote
to a stacker nearby than sending it half way through the system.

Again also the principal tasks of the discharger can be illustrates as in figure 9.

3.6 Route Agent

As mentioned in section 3.1 the agents are assisted by a mediator agent, when
they require information about the dynamic distances in the BHS. The static
lengths of routes between nodes A and B are rather easy to measure, but also of
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Fig. 9. The principal tasks of the discharger

less importance when the system starts to be loaded, as the distances (measured
in seconds) increase when queues arise in the lanes and totes are delayed. Thus,
the dynamic length of routes and distances is defined as the static length of
routes add with the current delay of segments of the route.

The Route agent is an example of a mediator agent, which based on reported
information from local agents can calculate the dynamic route length and dis-
tances between nodes, so they can be queried by other agents. In other words
the route agent acts as a blackboard for the reactive node agents, so they do not
have to maintain a world model by themselves.

In the initialization process the Route agent generates all possible routes in
the system by building up a graph for the BHS with nodes corresponding to the
element agents. During operation it constantly monitors traffic on edges of the
graph by subscribing to such information of queues and the node agents and
update the weights in the graph, so dynamic shortest paths can be calculated
using classic Dijkstra for dynamic shortest path calculations [12].

4 Agent Strategies

In this section we present some of the implemented strategies for the agents
evolved from the tasks and considerations mentioned in the previous section. The
strategies includes basic local observations, which are used partly in some of the
strategies. The strategies are highly influenced and mediated by the environment,
as decisions are primarily based on observation of e.g. queues in the neighborhood
of the agent.

All agents are implemented in the JADEtm agent platform [24], and all com-
munication comply with the FIPA specifications [1]. One special agent, called
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the AdapterAgent, act as a gateway agent to the emulation model described in
section 2.1, and communicate according to the telegram based protocol used
for the real BHS system. To abstract message handling and queries among the
agents we have defined and implemented an ontology for the BHS domain.

Three strategies will be described in the following subsections to give examples
of the formulated problems above. The described examples do not complete the
picture of the entire agent system, but present some of the decision formulas,
which proved to be successful through simulation. We where aiming for heuristics
that can solve the intended problem behind the strategies.

The mentioned queue statuses used throughout the strategies are local obser-
vations, where each element agent observes queue conditions of its input lanes.
Only mergers have two input queues, other agents have only one. The dynamic
queue conditions include measurements of average number of active totes lined
up in the queue, the urgency of the totes, the delay if totes are moving slower
than full element speed, etc.

4.1 Choosing a Tote Stacker for Empty Totes

Considering tote stackers in the return strategy of empty totes take into account
the content state of stackers, the number of stackers, and the distance to each
stacker. The full status of stackers are defined as ration between the full capacity
and the current content. The status is converted into a priority for extra totes
using a standard indeed fuzzy hedge [21]

si =
{

2r2
i 0 ≤ ri < 1

2
1 − 2(1 − ri)2 1

2 ≤ ri ≤ 1 (1)
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Fig. 10. Priority function for the tote stacker
in routing strategy of empty totes

where ri is the full-ratio for the
i’th stacker, and si is its priority
for requesting extra totes. The pri-
ority determined are used to scale
the dynamic route length to each
tote stacker, so an almost empty
stacker will have a very low value,
whereas a full stacker will be eval-
uated on its full route length.

vi = di · si (2)

where di is the dynamic distance to
the stacker from the decision point.
Refer to section 3.6 for the definition of the dynamic length.

The strategy has clearly indicated that it can serve the task of filling up the
tote stackers appropriately for the tested scenarios, but obviously it is also highly
dependent on how good the forward routing algorithm is to distribute the load
on the system, as it naturally complicates the job, if all totes are unloaded in
the same area. As long as tote stackers are not running empty of totes, we can
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claim that the strategy is successful, and it is hard to say that one algorithm is
better than another, but the load on the return lane is important at least for the
segments shared with forward running totes. In the tested scenarios no problems
with heavy loads on the return paths have been experienced.

4.2 Overtaking Totes within a Group of Diverters and Mergers

The overtaking strategy is an example of a collaborating strategy, which allows
urgent bags to overtake non-urgent bags, by detouring non-urgent bags. A typical
constellation of diverters and mergers in the discharging area can be seen in figure
11. The bottom lane is the fast forward transport line, the middle a slower lane
with the dischargers and the upper lane is the return path. A diverter (in the
bottom lane) has the option to detour non-urgent to the middle lane to give way
for urgent baggage in the transport line. When the routes merge in the middle
lane, higher priority is given to totes from the merging leg with most urgent
totes.

Fastforward transport lane

Return lane
Dischargers

Diverter

Merger

Fig. 11. Typical collection of diverters and mergers in the discharge area

The urgency is defined by a constructed function that serves the intension
of giving high priority to urgent totes and negative priority to totes, which
remaining time exceed a certain threshold value.

uj =

{
1
t2j

tj < UT

1
(Umax−UT )2

(
−t2j + 2UT tj − U2

T

)
tj ≥ UT

(3)
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Fig. 12. Urgency function for totes

where Umax is the maximum re-
maining time a tote can hold be-
fore departure, which usually is
180 min. UT is the threshold value,
which is set to 20 min, as no tote
should be considered urgent, if it
has more than 20 min left before
the discharger closes. tj is the re-
maining time for the j’th tote.

Again we convert this urgency
factor to a scalar that can be mul-
tiplied to the dynamic route length
of alternatives routes in order to
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a route

stay with the simple principle that the decision of an agent is to chose the short-
est route among alternatives. By shortening route lengths with a low scaling
factor, it will be more likely that the agent will chose that route. Thus, for ur-
gent totes the scalar should be low if the route is appropriate for urgent totes,
and low for non-urgent totes if the route contains many non-urgent totes (a
detour).

sj =
{

(1 − uj)(1 + vk+1) uj < 0 (non-urgent tote)
(1 − uj)(1 − vk+1) uj ≥ 0 (urgent tote) (4)

where vk+1 is the aggregated urgency value for the next decision point along the
route, which is requested from the divert agent. The aggregated urgency value
of the next node is calculated as the average urgency of current totes between
this agent and the next node.

Using this formula secures that urgent totes will group along the shortest
route (as vk+1 is close to 1), whereas non-urgent are punished with a detour. If
there are no queues on the routes the vk+1 is 0, and the scale factor has no effect.
Figure 13 gives a visual explanation of the scalar-function, where it is rather easy
to see that agents will have the requested switching decision principle based on if
the tote is urgent or not, and that non-urgent totes groups with other non-urgent
totes. Similar urgent totes (t < 20) will have lower scalars for routes with many
urgent totes.

The mergers in the discharger lane, then simply give higher priority to input
lanes with more urgent totes. The ratio between the aggregated urgency factors
of the input lanes becomes the ratio for merging totes from the input lanes. Here
it is important to note that the aggregated urgency value is the average urgency
of totes queued at each input leg. An average value secures that the function is
independent of the length of each input leg. In addition only a limited number of
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elements in the input legs behind the merger is observed, not the full lane back
to the previous decision node, also to equalize the conditions of the input legs.

It is very easy to visually validate the success of the strategy in a live running
simulator, and as the criteria for success is to enable urgent totes to group and
overtake non-urgent totes, we can claim that also the intention of this strategy
has been achieved.

4.3 Saturation Management

Saturation management is a strategy intended for avoiding queues at all by
minimizing the load on the system in critical areas. Acceleration ramps and
reaction times result in a typical characteristic of a flexible manufacturing system
(FMS) known as the work in-progress against capacity curve (WIPAC), which is
further described in [19]. By principle it states that the capacity of the systems
goes dramatically down, if the load on the system exceeds a certain threshold
value - almost a deadlock situation. The strategy is simply to block a toploader if
the routes from the toploader are overloaded and let the system resolve. Queues
close to the toploader are most critical, as the toploader have great impact on
filling up those queues, whereas the parts of the route far from the toploader
could be resolved before the new totes arrive. Instead of blocking the toploader
completely, we can just slow down the release of new totes using the following
fraction of full speed for the toploader.

vt =
∑

i wiqi∑
i wi

=

∑
i

α
di

qi∑
i

α
di

(5)

where vt is the velocity of the current toploader, when running at full speed, and
wi are weights of the queue statues, qi, along the routes. The weight is given by
a fitted coefficient, α, and the distance from the toploader di. Queue statuses,
qi, are always a number between 0 and 1, where 1 indicates no queue. The effect
of the saturation management strategy is clearly documented by the graph in
figure 14, where it is compared to traditional centralized control approach.

One could argue that it is irrelevant to include all the nodes to the destination,
as they are weighted less than nodes close to the toploader, but given the layout
of a typical BHS the lanes near the toploader is shared for many routes, and
then split closer to the destination. So the heavily scaled impact of the nodes
close to the toploader is good for a quick response to overloaded lanes close to
the toploader, and to even the load of all toploaders because the neighborhood
varies. If the load is low around the toploaders, but distributed in the rest of the
system around the dischargers, then the toploaders should still react by not as
rapid.

The discussion of balancing local versus centralized observations was taken in
section 3.6, but is the only decision point, where the decision actually is vital.
Not choosing the optimal route at a node and perhaps be solved by choosing
alternative routes later on the path, but here is it more or less a matter of
releasing the tote into the system or not. Thus we allow it base its decision on
a more global view of the status of the entire system.
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5 Conclusion

Is this paper we have presented important research contributions from a baggage
handling system (BHS) in a major airport hub in Asia. Agents were intended to
substitute existing control logic, but not change the layout of the BHS, therefore
design of the agent-based control software is highly influenced by the environ-
ment of the BHS, and the control logic of each individual agent constantly adapt
to the current situation of the local neighborhood of the agent, by observing sta-
tus of the environment like queues, urgent bags, etc. in spite of that we still
believe, we have succeeded in keeping the decision logic of the agents rather gen-
eral in order to improve reusability and understandability for the agent based
control.

Special attention has been given to the task of the different type of agents,
and examples of implemented decision logic have proven successful compared to
the traditional approach.

Future Work

We continue our research on the BHS and will develop more new strategies for the
local agents, and increase their mutual collaboration to maximize the utilization
of the BHS during peak times. We will try to avoid the use of centralized mediator
agents (the route agent) and rely on roles and profiles for the agents. Ideally a
swarm of local agents would provide the most general setup, which easily can be
ported to other manufacturing and material handling systems, which hopefully
can lead to new abstract and general design methodologies for the topological
domain of impact for agent collaborations.

Another important focus point of the future research will be to develop an
application oriented agent platform, which is similar than the JADE frame-
work that is the reason for serious performance problems. Environments and
resources of material handling systems are more deterministic, than many other
agent communities, thus interactions can be based on simpler and more efficient
mechanisms.
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Abstract. Organizations are at the heart of multi-agent systems. To deal with the
ongoing dynamics and changes in the system, organizations have to adapt. Typi-
cally, agents are responsible to deal with the complexity of organization dynamics.
In this paper, we present an approach for context-driven dynamic organizations
in which the agent environment takes the burden of managing organization dy-
namics. Driven by the context, the agent environment manages the evolution of
organizations and actively advertises roles to the agents, supporting the necessary
collaborations between agents needed in the current context. We introduce a con-
ceptual model for context-driven dynamic organizations and present a software ar-
chitecture that supports the model in a distributed setting. The proposed approach
separates the management of dynamic evolution of organizations from the actual
functionality provided by the agents playing roles in the organizations. Separating
these concerns makes it easier to understand, design, and manage organizations in
multi-agent systems.

We show how we have applied context-driven dynamic organizations in a con-
crete case of monitoring traffic jams. In this case, camera agents associated with
traffic monitoring cameras collaborate in organizations. Depending on the con-
text, camera agents play different roles, with responsibilities ranging from simple
measurement to data aggregation. When a traffic jam covers the viewing range
of multiple cameras, organizations are dynamically merged, assuring cameras
detecting the same traffic jam can collaborate. Vice versa, when a traffic jam dis-
solves, the organization is dynamically split up. Test results indicate that context-
based dynamic organizations is a promising approach to support decentralized
traffic monitoring.

1 Introduction

Structuring and managing interactions among agents is a crucial part of the design of
any multi-agent system. A typical way to manage these interactions is by means of
organizations in which agents play roles [24,26,9]. Multi-agent systems are often ap-
plied to problems and domains which are very dynamic in nature. To deal with the
ongoing dynamics and changes, organizations have to adapt. In many systems the in-
teractions between agents in organizations are imposed or driven by the current context
or environment of the system. Depending on the context, agents have to collaborate in
organizations and play certain roles. Most of the existing work on organizations defines
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roles and organizations at the level of agents [11,13,14,30]. As such, agents have a dual
role: on the one hand agents play roles providing the associated functionality in the or-
ganization, on the other hand agents are responsible to set up and manage organizations,
and deal with the complexity of organization dynamics.

In this paper, we propose an approach called context-driven dynamic organizations
that considers an organization as a first-class abstraction which is explicitly supported
by the agent environment.1 In particular, the agent environment takes the burden of
managing organizations and their dynamics. Driven by the context, the agent environ-
ment manages the evolution of organizations and actively advertises roles to agents,
supporting the necessary collaborations between agents needed in the current context.

The proposed approach separates the management of dynamic evolution of organi-
zations from the actual functionality provided by the agents playing roles in the orga-
nizations. Separating these concerns makes it easier to understand, design, and manage
organizations in multi-agent systems. We present a software architecture that supports
our model for context-driven dynamic organizations in a distributed setting. In this ar-
chitecture the agent environment consists of a group of distributed local agent environ-
ments. The local agent environment provides functionality to the agents for perception,
action and interaction, and it manages organizations which it dynamically evolves ac-
cording to the current context.

We apply context-driven dynamic organizations to a concrete case. The case covers
the coordinated monitoring of traffic jams and clearly shows the need for context-driven
dynamic organizations. In this case, camera agents associated with traffic monitoring
cameras collaborate in organizations. Depending on the context, camera agents play
different roles, with responsibilities ranging from simple measurement to data aggrega-
tion. When a traffic jam covers the viewing range of multiple cameras, organizations are
dynamically merged, assuring cameras detecting the same traffic jam can collaborate.
Vice versa, when a traffic jam dissolves, the organization is dynamically split up. Test
results indicate that context-driven dynamic organizations is a promising approach to
support decentralized traffic monitoring.

Overview of the Paper. Section 2 starts by introducing the concrete case on coor-
dinated monitoring of traffic jams. In Sect. 3 we introduce the conceptual model for
context-driven dynamic organizations and in Sect. 4 we present a software architecture
that supports this model. Section 5 shows a prototype implementation for the traffic
monitoring case, giving an initial validation of our model and applicability of our ap-
proach. Section 6 discusses related work, and in Sect. 7 we draw conclusions.

2 Case Study: Coordinated Monitoring of Traffic Jams

Intelligent transportation systems are a worldwide initiative to exploit information and
communication technology in traffic monitoring and control, aiming to improve safety

1 In line with [37], we consider the agent environment as an explicit building block in a multi-
agent system that encapsulates its own clear-cut responsibilities, irrespective of the agents.
Note that the agent environment should not be confused with the environment in which the
system is deployed, i.e., the part of the external world with which the multi-agent system
interact, and in which the effects of the system will be observed and evaluated [21].
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Fig. 1. An example of a highway with traffic cameras

and to reduce vehicle wear, transportation times and fuel consumption [20,12]. In this
case, we focus on monitoring traffic jams on highways with a number of intelligent
cameras. Traffic monitoring knows many applications, such as informing drivers about
expected travel time delays, driving traffic control applications such as traffic light reg-
ulation, collecting data for long term structural decision making, etc.

The monitoring application we consider, consists of a set of intelligent cameras which
are distributed evenly along the highway, as shown in Fig. 1. Each camera has a limited
viewing range and cameras are placed to get an optimal coverage of the highway with
a minimum in overlap. Each camera is able to measure three traffic variables within its
viewing range: the current density (k ≈ number of vehicles per length unit), intensity
(q ≈ sum of all speeds off all vehicles in the viewing range, devided by the total road
length in the viewing range) and average speed (u). These three variables can be used
to determine the current congestion level and decide whether there is a traffic jam or not
in the viewing range of a camera [36]. Every camera is equipped with a data processing
unit, capable of processing the monitored data, and a communication unit, to commu-
nicate with other cameras. The task of the cameras is to detect and monitor traffic jams
on the highway. This case will follow an approach in which traffic jams are monitored
in a decentralized way, avoiding the bottleneck of a centralized control center.

Because a camera has only a limited viewing range, no single camera will be able
to monitor the complete highway or even a single traffic jam. Traffic jams can cover
the viewing range of multiple cameras and can dynamically grow and dissolve. When
growing or dissolving, traffic jams can enter and leave the viewing range of several
cameras. To monitor a traffic jam, data observed by multiple cameras has to be aggre-
gated. Because there is no central point of control, cameras will have to collaborate, and
distribute the aggregated data to the necessary clients, such as traffic light controllers,
driver assistance systems, etc.

By default each camera will simply monitor the traffic variables (density, intensity
and average speed) of the traffic within its viewing range. When a traffic jam occurs,
in the viewing range of a camera, the locally observed variables will pass a certain
threshold. The camera will then have to collaborate with other cameras, detecting the
same traffic jam. In the collaboration, the data each camera is monitoring is aggregated
to get a complete image of the traffic jam. Cameras will enter or leave the collaboration,
whenever the traffic jam enters or leaves their viewing range.

An example of such a collaboration is shown in figure 2. At t0, there is no traffic jam
and all cameras monitor the traffic variables. At t1, an accident occurs in the viewing
range of camera c5 and a traffic jam arises. The traffic jam is only visible in the viewing
range of camera c5 and there is no collaboration necessary among the cameras. The
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Fig. 2. An example of collaborations between traffic cameras

traffic jam, however, starts to grow and at t2 it has entered the viewing range of camera
c4. Camera c4 and c5 start to collaborate because they are now both monitoring the
same traffic jam. At t3, the accident is solved but the traffic jam has further grown and
entered the viewing range of camera c3. Therefore, camera c3 now participates in the
collaboration between camera c4 and c5. At t4, the traffic jam has entered the viewing
range of camera c2 but has dissolved in the viewing range of camera c4 and c5. Camera
c4 and c5 have stopped collaborating while camera c2 is collaborating with camera c3.
This example scenario illustrates how the collaboration between the cameras is driven
by the context.

The dynamic nature of the traffic phenomena demands for dynamic collaborations
between the cameras. Cameras will have to collaborate in organizations, which have
to evolve dynamically according to the current traffic conditions, which make up the
context of the highway. In the following sections, we will show how our conceptual
model and architecture for context-driven dynamic organizations can be applied to the
case of monitoring traffic jams and offer support for the complex collaborations required
between the cameras.

3 Model for Context-Driven Dynamic Organizations

In this section, we present a conceptual model for context-driven dynamic organiza-
tions. The complete model is shown in Fig. 3. The model offers support for organiza-
tions and roles which dynamically evolve according to the current context. The idea
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Fig. 3. Conceptual model for context-driven dynamic organizations

behind the model is to separate the context-driven dynamic evolution of organizations
from the actual functionality provided by the agents playing roles in the organizations.
This separation of concerns supports a system in which the agent environment provides
support for organizations and manages organization dynamics, while the agents provide
the actual functionality and behavior required in the organizations.

The main focus of the model is on how existing organizations dynamically evolve.
How organizations are set up and what the relations are between roles is currently out-
side the scope of the model. Relations between roles, however, is a well researched
topic, as we will cover in Sect. 6, and we consider it future work to add explicit support
for this to our model.

Section 3.1 starts with explaining the conceptual model, and how the concepts allow
to separate the dynamics of organizations from the actual functionality and behavior.
After the introduction of each concept, it is mapped to the traffic monitoring case, in-
troduced in Sect. 2. In Sect. 3.2 we illustrate how organizations can dynamically evolve,
driven by the context, and finally in Sect. 3.3 we cover how the context itself is repre-
sented in the model.

3.1 Organizations, Role Positions and Roles

An organization (Organization) is defined by a set of related role positions (Role
Position). A role position is very similar to a job opening in a company. It represents
the specification of a coherent part of functionality required in an organization, but it can
also include a part of the infrastructure needed to realize the required functionality. A
role (Role) realizes the actual functionality specified by a role position. To collaborate
with each other, agents can play one or multiple roles in one or more organizations.
There is a potential conflict between the use of the terms role and role positions in our
work and the use in other work. We will reflect on this issue in Sect. 6.



Managing Agent Interactions with Context-Driven Dynamic Organizations 171

The abstraction of organization allows us to group collaborating agents as one entity,
hiding the details of the individual agents. The abstraction of role position separates the
dynamics of an organization, driven by the current context, from the actual functionality
of the organization, provided by the agents playing the corresponding roles. It also
allows agents to transparently swap roles within or between organizations, while leaving
the decision to do so to the agents.

The difference between a role position and a role is clarified by the following anal-
ogy. A hospital has a role position for a surgeon. This role position represents the spec-
ification of the job as a surgeon, but also includes the necessary infrastructure, such as
an office with a telephone and an internet connection, and an operating room, needed
by the doctor playing the role of surgeon. It is clear that the role position of surgeon can
exist without a doctor actually playing the role of surgeon, and that different doctors
with the necessary qualifications and approval can decide whether or not to play the
role of surgeon. The hospital management can decide whether or not to open a new role
position for surgeon or to close an existing one, depending on the current demand of pa-
tients. The notion of role positions allows the hospital management to define and change
the organizational structure, independent of the doctors providing the actual service of
a surgeon.

Organizations, Role Positions and Roles in the Traffic Monitoring Case. In the
traffic monitoring case, a software agent is deployed on every camera. The agent is
capable of playing roles and will further be referred to as camera agent. An organiza-
tion allows camera agents to collaborate, in order to detect and monitor traffic jams.
When a camera agent enters the system, it is automatically added to a new organiza-
tion. Within the organization, there are three kinds of role positions possible: data ob-
server (Data Observer), data pusher (Data Pusher) and data aggregator (Data
Aggregator). The data observer role is responsible for monitoring the three traffic
variables (density, intensity and average speed) and deciding whether the congestion
level is high enough to be considered a traffic jam. The data pusher role is responsible
for pushing the observed data to the data aggregator role, which in turn is responsible
for aggregating the data and distributing it to the necessary clients, such as traffic lights,
driver assistance systems, etc.

3.2 Context-Driven Evolution of Organizations

The evolution of organizations and their role positions is context-driven. Organizational
evolution (Organizational Evolution) uses one or more views on the current
context (Context view) as input to evolve an organization and its role positions.
Context consists of information such as existing role positions and their associated
roles, information on external resources probed by sensors, or data related to physi-
cal entities. Organizations can evolve by splitting up or merging together, regrouping
the agents to support the necessary collaborations between agents, needed in the current
context. Role positions are evolved by opening new positions or closing existing ones.

Organizational evolution (Organizational Evolution) uses a set of laws
(Organization Laws), which define the way organizations and role positions
should evolve given the current context. Currently the model supports three kinds of
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Fig. 4. Different kinds laws used by the organizational evolution

laws: split laws (Split Law), merge laws (Merge Law) and role positioning laws
(Role Positioning Law).

Role positioning laws define whether existing role positions should be closed or
whether new positions should be opened. Merge laws define whether two or more or-
ganizations should be merged into one organization, and split laws define whether an
organization should be split up. Organizational evolution is the evolution of organiza-
tions according to these laws. Whenever something changes in the context, the laws are
re-evaluated and organizations and role positions are updated accordingly.

The model assumes that laws are applied atomically and that laws can be executed
in any order when multiple laws apply. Figure 5 shows a statechart representation of
an example of a possible evolution of organizations and role positions. In the example,
the current configuration of organizations and role positions, and the current context is
represented as a state. Whenever something changes in the context or when laws are
applied, a new state is reached. In the example the context in state S0 is changed and
a new state S1 is reached. Because the context is changed, laws are re-evaluated and
applied in an atomic and unordered manner. In the example lawB is first applied and a
new state S2 is reached, representing an updated configuration of organizations and role
positions and an updated context. Next lawA is applied and a new state S3 is reached,
again with an updated configuration and context.

Context-Driven Evolution of Organizations in the Traffic Monitoring Case. When
a camera agent enters the system, the agent is automatically added to a new organi-
zation. The further life of the organization is guided by the organizational evolution.
Camera agents can not join or leave new organizations, but the existing organizations
can be merged together or split up, regrouping the agents according to the current con-
text. Role positions can be dynamically opened and closed.

Organizational evolution is defined by one merge law, one split law and one role
positioning law per type of role position. The merge law states that organizations should

Fig. 5. Statechart representation of an example of organizational evolution
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be merged when they are neighbouring organizations in space and when they are both
monitoring a traffic jam. The split law states that camera agents in an organization with
no traffic jam in their viewing range, should be split up in separate organizations, one
per agent. The role positioning laws state that within an organization there is always a
data observer role position available for every agent in the organization, which camera
agents are supposed to play by default. The role positions for data pusher and data
aggregator are only available when the organization is currently monitoring a traffic
jam and data needs to be aggregated. If the organization is monitoring a traffic jam, the
role position of data pusher will be available for every agent in the organization, but
only one position will be available for the data aggregator role.

According to these laws, when there is no traffic jam, organizations will consist of
single camera agents. The camera agents in these organizations will then play the de-
fault role of data observer, to detect whether a traffic jam arises. When a traffic jam is
detected, the organization will grow along with the traffic jam in order to fully monitor
it. Organizations grow by merging with neighbouring organizations, detecting the same
traffic jam, as defined by the merge law. When the traffic jam dissolves or leaves the
viewing range of a camera, the organization is split up again, as defined by the split law.
This way, only camera agents with the traffic jam in the viewing range of their camera
will be grouped in one organization.

Figure 6, shows a reprise of the example in Fig. 2, but now with the model applied
to it. At t0, there is no traffic jam and all camera agents are member of a separate
organization. At t1, an accident occurs in the viewing range of camera c5 and a traffic
jam originates. The traffic jam starts to grow and at t2 it has entered the viewing range
of camera c4. The organizations of camera agents c4 and c5 are merged together because
they are both monitoring the same traffic jam. At t3, the accident is solved but the traffic
jam has further grown into the viewing range of camera c3. The organization of camera
agent c3 is therefore merged with the organization of camera agents c4 and c5. At t4,
the traffic jam has grown into the viewing range of camera c2 but has left the viewing
range of camera c4 and c5. The organization is split up, camera agents c4 and c5 are
in separate organizations and the organizations of camera agents c2 and c3 are merged
together. Whenever the organizations merge together or split up, new role positions are
opened or existing role positions are closed, according to the role positioning laws.

3.3 World Representation and Context View

As mentioned before, context is an important concept in our model, it is used as input
for the organizational evolution. World representation (World Representation)
represents the current state or context of the world. World representation can contain in-
formation on the state of the real world, such as existing entities or input readings from
sensors, as well as information on the state of the virtual world, such as existing organi-
zations and role positions. However, world representation contains a lot of information
which is often not relevant or needed and is therefore not accessed directly, but through
a context view (Context View). A context view represents a specific view on the
world representation, only focussing on relevant information. Organizational evolution
can have one or more of these context views, e.g., each focussing on information of a
specific organization.
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Fig. 6. An example of congestion monitoring organizations

World Representation and Context View in the Traffic Monitoring Case. In the
traffic monitoring case the world consist of a highway with cars on it, a set of distributed
cameras, their organizations and their roles. The organizational evolution will have a
context view on each organization. The context view on an organization consists among
other things of the open and implemented role positions, the current congestion level in
the viewing range of individual cameras and information on neighbouring organizations
it can be merged with.

4 Supporting Architecture

In this section, we present a high-level software architecture that supports the pre-
sented model for context-driven dynamic organizations. Figure 7 shows the collabo-
rating components view of the software architecture that is deployed on each node or
intelligent camera. The collaborating components view shows the agent system as a
set of interacting components that use a set of shared data repositories to realize the
required system functionalities. The main software components are Local Agent
Environment and Agent. The local agent environment enables agents to coordi-
nate their behavior [37]. It provides functionality to the agents for perception, action
and interaction, but it also provides organizations, which it dynamically evolves ac-
cording to the current context. The local agent environment is connected to the external
world which contains the given hardware and software with which the software system
interacts.
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The evolution of organizations, or organizational evolution, is managed by the
Organization Manager components. The world representation is maintained by
the Local World Representation and the Local Orgs State repositories.
The local world representation repository contains a representation of the external
world. This representation includes data about external resources probed by sensors,
and data related to entities, associated with the agents in the system such as the spatial
position of cameras. The local orgs state repository contains state about the organiza-
tions currently active on the intelligent camera, such as agent-role pairs. The data of the
local world representation is kept up to date by the Synchronization component,
which maintains the representation of relevant local resources in the external world
and synchronizes its state with synchronization components on other nodes, using the
Inter Node Communication Infrastructure. The local orgs state repository
also has a synchronization component which synchronizes its state with other nodes.

The Organization Controller can control the way the local world repre-
sentation and the local orgs state repositories are synchronized with the repositories in
other nodes. This enables the organization controller to decide which data should be
send to other nodes and which data should be retrieved to get an up to date version.
Based on the current context derived from the local world representation and the local
orgs state repository, the organization controller can initiate an organization. It there-
fore opens a number of Open Role Positions. The Role Position Pool
advertises the open role positions. When an agent selects an open role posi-
tion, the organization controller instantiates a Role Position that is attached to a
corresponding Role played by the agent. The organization controller maintains the
state about the current organizations in the local orgs state repository. The organization
controller monitors changes in the local world representation as well as changes in the
local orgs state. Based on these observations, an organization law in the Laws reposi-
tory can be triggered, inducing a change in an organization. If such a change occurs, the
organization controller may interact with controllers on other nodes and subsequently
adapt the set of role positions accordingly (positions may be closed, or new positions
may be opened) which in turn will inform the roles of the organization.

Agents that play a role in an organization can interact by sending messages to one
another through their role positions. The Inter Role Communication compo-
nent uses the local orgs state repository to translate the role position to the correct node
address. The agent itself can also read the local orgs state repository through its role
positions. This enables the agent to get information on the organizations it is involved
in, such as other role positions it can interact with. The Perception Manager [38]
enables an agent to perceive the external world according to a particular perception
request, resulting in a percept. It allows the agent to perceive the external world in
an indirect manner through the local world representation or in a direct manner through
the Direct Perception component. Direct perception is used to access data in the
external world, which is to big to be kept up to date in a local repository, such as video
images from a camera sensor. The Action Manager enables an agent to perform
actions in the external world, such as tilting the camera or adjusting the camera’s focus,
and to update the local world representation with high-level or interpreted data, such as
the current congestion level in the camera’s viewing range.
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Fig. 8. Software architecture applied to the traffic monitoring application

Figure 8 shows an excerpt of the software architecture applied to the traffic monitor-
ing application. The figure reflects the organization structure of cameras c4, c5, and c6

at time t2 in Fig. 6. In the depicted situation, the camera agents of c4 and c5 form an
organization, monitoring a traffic jam. Since there is no traffic jam within the viewing
range of c6, the camera agent of c6 makes up an organization on its own.

5 Prototype, Evaluation and Applicability

The goal of the prototype and evaluation is twofold. First, it is used as a validation
for the model for context-driven dynamic organizations, introduced in Sect. 3, applied
to the traffic monitoring case. Second, it is used to give an initial indication of the
communication cost to support dynamic evolution of organizations and the applicability
of our approach. This section will first explain the setup used for the validation and the
assumptions the prototype is built on, before explaining the concrete experiments.

The prototype is built on a cellular automaton based traffic simulator [6]. It allows
for the discrete simulation of individual vehicles, based on different selectable driver
models. We extended the simulator with the notion of cameras, for measuring density,
intensity and average speed. On top of the extended simulator, we built a prototype
implementation of the architecture, presented in Sect. 4, explicitly supporting the ab-
stractions provided by the model, introduced in Sect. 3. It is important to note that we
have currently made abstraction from distribution issues.

5.1 Experiments

In our experiments we modelled a straight highway with a length of 4500 metres,
one lane and one direction. Thirty cameras are equally distributed along the highway.
First, we examined the dynamic evolution of organizations in four different scenarios.
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Second, we used the same scenarios to give an indication of the number of messages
needed for the dynamic evolution of organizations.

The results of the experiment are presented by a set of snapshots, an example of such
a snapshot is given in Fig. 9(a), the key is given in Fig. 9(d). The top of the Fig. 9(a) is
a space time plot. It shows the trajectory of each individual vehicle through time. Time
t in the plot indicates the time step on which the snapshot was taken. Values on the
time axis, smaller than t, happened at a time in the past relative to the snapshot. This
way the space time plot shows the evolution of all the different vehicle trajectories in
a fixed sized time frame. The color of each point in the graph represents the speed of
a vehicle at the specified time and position. Green indicates the maximum speed, red
indicates the lowest speed. Beneath the space time plot is a snapshot of the situation on
the highway at time step t. It is aligned with the space axis and therefore maps directly to
the different trajectories in the space time plot. At the bottom, another space time plot
is given, showing the state of the congestion monitoring organizations. The different
columns in the plot represent the thirty cameras. The color of each column represents
the organizational situation of each camera. Green means that at that specific time the
camera sees no congestion and sits all by itself in its organization playing the role of
data observer. Blue means that the camera sees congestion but still sits alone in its
organization, playing both the role of data pusher and data aggregator. Red means that
the camera observes congestion and forms an organization with neighbouring cameras
if they also have a red color. This way, adjacent red columns represent one organization.

Free Flow Traffic: In a first scenario we monitored free flow traffic, which constitutes
of a continuous stream of vehicles traversing the highway. A snapshot of the situation is
given in Fig. 9(a), which, as expected, shows that there is no congestion and all cameras
are playing the role of data observer in their own organization.

Obstacle Blocking Highway: In a second scenario we simulated an obstacle in the
middle of the highway to initiate a traffic jam. The evolution of this scenario is shown
in Fig. 9(b), 9(c) and 10(a). In Fig. 9(b) we see in the space time plot at the top, that a
traffic jam has emerged and is propagating backwards over the highway. The snapshot
of the highway itself supports this finding. If we look at the bottom of the figure we
see that the camera monitoring the congested part of the highway, is now also playing
the role of data pusher and data aggregator, indicated by the blue color. Figure 9(c)
and 10(a) show the further evolution of the traffic jam. Different adjacent columns have
a red color indicating that these cameras are observing congestion and all form one
organization. As expected, cameras detect the congestion and over time evolve into one
large organization along the congested part of the highway.

Obstacle Removed: In a third scenario we removed the obstacle. The traffic jam slowly
dissolved in the front, while propagating backwards. The organization formed in the
previous scenario should adapt itself accordingly. Figure 10(b) and 10(c) show the out-
come of this scenario. The traffic jam slowly dissolves at the front while propagating
backwards. As expected, cameras in the front of the organization are split up in separate
organizations, while the organizations of cameras in the back are merged in one large
organization.
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New Obstacle Introduced: Figure 10(d) shows the fourth and final scenario, in which
after the initial obstacle was removed, a new obstacle is introduced at the same location.
The initial traffic jam is still propagating backwards while a new traffic jam arises in
the middle. This leads to two different organizations, which both evolve over time each
following a traffic jam.

5.2 Communication Costs

Figure 11 shows the communication overhead throughout the four different scenarios.
The counted messages are solely messages needed to dynamically evolve organizations.
We make the following two observations. First, the larger an organization is the more
overhead it takes to merge it, split it or change role positions in it. This can be seen in the
second scenario in which a single organization grows larger and larger together with an
increase in message overhead. When the organization splits up in smaller organizations
in the third scenario, the number of needed messages also starts to drop. Second, the
message overhead depends on the number of organizations. This can be observed in
fourth scenario, in which the overhead starts to rise again because a second organization
has formed.

5.3 Applicability

Although this is only an initial protoype and we made an abstraction of the distribution
issues, it is clear that communication and synchronization are potential issues or bottle-
necks, when applying our approach in a distributed setting. As an initial rule of thumb,
we can say that context-driven dynamic organizations are applicable to problems where
the phenomena or context (e.g., traffic jams) to which the organizations map are orders
of magnitude slower than the speed at which the virtual organizations can evolve.

6 Related Work

We focus our discussion of related work on organizational concepts in multi-agent sys-
tems and on traffic monitoring techniques.

6.1 Organizations and Multi-agent Systems

We focus on two areas of related work with respect to multi-agent systems research: (1)
representation of context information by means of an explicit environment model and
(2) roles and organizations in multi-agent systems.

Research on environments in multi-agent systems devotes a lot of attention to repre-
senting context information of the external world in an explicit manner, i.e. by means
of an explicit model of the environment. For example, to present relevant information
of the physical world to agents, [7] introduces a cognitive middle layer in the envi-
ronment that employs a shared ontology to present environmental information to the
agents. MMASS [2] introduces a multi-layered model of the environment, with each
layer an explicit representation of a particular spatial or conceptual structure of the real
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(a) Free flow traffic. (b) Obstacle blocking highway - part 1.

(c) Obstacle blocking highway - part 2. (d) Key

Fig. 9. Validation scenarios, part a

environment. ELMS [29] is an environment description language with explicit support
for specifying perception and interaction of cognitive agents. The main difference be-
tween these approaches and our approach is that we employ the environment to support
organizations. As such, the context information used in our approach exceeds a rep-
resentation of the external world, and includes information about the organizational
setting of the system.

Roles, organizations and groups are recognized to be valuable abstractions for build-
ing multi-agent systems [22,10,34,15]. For example, [27] analyzes role changes in
dynamic environments, distinguishing between two categories of changes: dynamic ac-
tivation of roles and dynamic classification of roles. In [8], the authors define relations
between agents and roles, e.g., the way an agent takes up a role and enacts it. Possible
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(a) Obstacle blocking highway - part 3. (b) Obstacle removed - part 1.

(c) Obstacle removed - part 2. (d) New obstacle introduced.

Fig. 10. Validation scenarios, part b

Fig. 11. Message overhead throughout the four different scenarios
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relations between roles and agents and architectural and functional changes that an
agent must undergo when it enters an open agent system, are discussed. [5] proposes
XRoles to exploit roles as intermediaries in interactions and as intermediaries between
application needs and environment needs. A role is defined as the behavior and the ca-
pabilities expected from the agent playing such a role. From the environment point of
view, a role imposes a defined behavior on an entity, such as an agent. From the ap-
plication point of view, a role provides a set of capabilities or actions, which can be
exploited by agents to carry out their tasks.

We recognize there is a potential conflict between the use of the terms role and role
positions in our work and the use in other work. Most of the existing work on roles has
no explicit concept for what we call role position. In fact, by using the concept of role
position we separate the specification of a role (role position) from the actual fulfillment
of the role (role). Most of the existing work does not make this explicit separation and
uses the term role to denote a specification, assignment and a possible implicit position.
This separation, however, is also made in [28]. In this work, the term role defines a
normative behavioral repertoire of an agent, much like a specification and the term role
position denotes a formally recognized role assigment that may occur. A role position
may or may not have an agent assigned to it.

An overview of the different types of organizations and their characteristics that
can be found in the literature, is given in [19]. The focus of our paper is the context-
driven dynamic evolution of organizations. We therefore compare it with related re-
search from the perspective of how organizational evolution is supported. AGR (Agent
Group Role) [13] is a generic meta-model of multi-agent systems in which agents, play-
ing roles, are organized into groups. Groups can be seen as our concept of organization.
Agents can join or leave a group by communicating with a special agent playing the
role of group manager. This role, which is automatically awarded to the group creator,
has the responsibility for handling requests for group admission or role requests. It can
also revoke roles or group membership. In [14] the AGR model is extended to AGRE
with the E standing for environment. Groups are now grouped together into worlds.
These worlds offer primitives for agents to join a particular group and to play a particu-
lar role. In both models an agent-centric perspective is taken on the dynamic evolution
of groups. It is the responsibility of the agents themselves to decide which group they
want to join or leave and which role they want to play. This differs from our approach
in which the dynamic evolution of organizations is actively managed and driven by the
agent environment instead of the agents themselves. The AGR(E) concepts also offer
no explicit support to model evolutional changes at the inter-organization level. It is for
example not clear how to model that two or more organizations should merge or split
in function of the context of the agent system. Our model on the other hand allows to
model inter-organizational evolution by means of the first-class concepts of organiza-
tional evolution and organization laws.

TuCSoN [31] offers programmable tuplespaces that encapsulate coordination rules
between roles. It enables agents to interact at a higher level of abstraction, and in a
way that is tailored to the their needs. In [30], TuCSoN is extended to support the
description and enacting of organizational models. A TuCSoN node also serves as an
organization node, hosting tuple centres as coordination artefacts/services available to
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agents. In order to access the tuple centres hosted by a node, an agent must join the
organization and choose a role to play. As is the case with AGRE, this conforms to an
agent-centric approach. Each node also has a special tuple centre that explicitly hosts
the description of the organization, represented by that node. It contains, for example,
dynamic information about the current set of roles and related relationships (agent-role
and inter-role). These organizational settings can be dynamically inspected and changed
by agents, by suitably reading and modifying the tuple contents. This allows agents, for
example, to add or delete roles from the organization. However, it is only possible to
make changes on the intra-organizational level this way. Reorganizations on the inter-
organizational level are not supported.

In [11], reorganization issues in agent societies are discussed. It explores how and
why organizations change, and how reorganization can be done dynamically, with min-
imal interference from the system designer (i.e., by the system itself). A classification
is given of reorganization situations, based on the focus of the reorganization, the au-
thority to modify the organization, and how reorganization decisions are taken. With
respect to the latter, two possible approaches are identified. First, the decision making
to change the organization could be the responsibility of one role in the organization.
This corresponds to a master/slave relationship between agents acting at the different
levels of autonomy and is called role-based control. Second, all or some roles are col-
lectively responsible for a change decision. Changes are then achieved by collaboration
or consensus among the agents. This is called shared control. This does not cover our
model, in which it is the agent environment that has the authority and decision making
power to change organizations.

6.2 Traffic Monitoring

Traffic monitoring is an extensively studied field of research. We discuss a number of
representative approaches used for vehicle detection by means of image analysis and
multi-sensor fusion.

A lot of research has been done on vision-based traffic surveillance. Many algorithms
and processing techniques exist for vehicle detection and/or recognition from single
or multiple frames obtained from a camera [3,17,23]. [32] describes an approach to
identify vehicles in images of congested traffic. They rely on the strong shadows present
under each vehicle to detect and localize vehicles. [25] proposes a tracking system,
which processes traffic video streams, to track vehicles and to classify these vehicles
into three classes, i.e. (1) sedans, (2) semi and (3) truck, SUV or van.

In the traffic monitoring research community, there is an increasing interest in com-
bining footage from multiple (image) sensors to improve the analysis of a traffic situ-
ation. For example, [16] uses the imagery of three cameras, to track the trajectory of
passing vehicles. [4] presents a color stereo vision system to extract 3D edges of an
observed obstacle. [33] describes an approach, to detect traffic incidents, that relies on
different types of sensors: i.e., image sensors and supersonic wave sensors. This allows
more accurate detection of traffic incidents.

Support exists to underpin multi-sensor fusion. AROCCAM [35], is a software
framework, to design and implement data fusion applications. It provides support for
unsynchronized sensors and delayed observations. Other approaches for multi-sensor
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fusion are [18,1]. In contrast to our approach, these approaches provide no explicit sup-
port to enable sensors to play different roles, or to form organizations between sensors
in a context-driven, dynamic manner.

7 Conclusion and Future Work

In this paper, we presented an approach for context-driven dynamic organizations.
Contrary to most existing approaches, in which agents have the dual responsibility of
playing roles, providing the associated functionality in the organization, and managing
organization dynamics, in context-driven dynamic organizations the agent environment
takes the burden of managing organization dynamics. Separating the management of
dynamic evolution of organizations from the actual functionality, provided by the agents
playing roles in the organizations, improves understandability, and enables better reuse,
making the design and management of organizations in multi-agent systems easier.

The model is built around four key abstractions: organization, role position, role
and context view. An organization is defined by a set of related role positions. A role
position represents the specification of a coherent part of functionality required in an
organization. A role realizes the actual functionalities specified in a role position. To
collaborate with each other, agents can play one or multiple roles in one or more orga-
nizations. The dynamical aspects of the organizations are context-driven. The agent en-
vironment uses the context as input to manage the dynamic evolution of organizations.
Organizations evolve by adapting available role positions, splitting up and merging to-
gether, regrouping the agents to support the necessary collaborations between agents
needed in the current context.

We presented a high-level software architecture that supports the model for context-
driven dynamic organizations and applied it to a traffic monitoring case. With an initial
prototype we validated the model and implemented the presented architecture. We also
gave an indication about the communication overhead for dynamically evolving orga-
nizations and the applicability of our approach. Test results indicate that context-based
dynamic organizations is a promising approach to support decentralized traffic moni-
toring.

Future work consists of formalizing the model for context-driven dynamic organiza-
tions, investigating the feasibility of introducing explicit support for interaction proto-
cols and relations between roles in the model, and expanding the software architecture
to offer middleware support for the presented abstractions.
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Abstract. Multiagent simulations can be elegantly modeled and de-
signed by enhancing the role of the environment in which agents evolve,
called the agent environment. In particular, the agent environment may
have the role of a governing infrastructure that regulates with laws or
norms the actions taken by the agents. The focus of modeling and design
is thus shifted from a subjective view of agents towards a more objective
view of the whole multiagent system. In this paper, we apply the idea
of a governing environment to model and design a multi-agent system
for a micro-simulation of the Swiss highway network. The goal of the
simulation is to show how traffic jams and accordion phenomena may
be handled with appropriate local regulations on speed limits. A natural
modeling would give segments the capacity to regulate the speed based
on observed local events. We developed the simulation platform from
scratch in order to accommodate our design choices and a realistic com-
plexity. This paper presents in details our modeling and design choices,
and first experimental results.

1 Introduction

Agent-based micro-simulations are becoming a popular application area of mul-
tiagent systems (MAS), in areas such as social sciences, traffic management,
biology, geography, or environmental sciences. Agent technology has opened a
whole new methodology for studying real-world complex systems by simulating
every individual through an autonomous agent. Individual behavior can thus be
easily modeled, and the MAS captures the aggregated behavior of the collective.
These agent-based micro-simulations help to better understand the emergence
of specific reality; they can also be a mean to test virtually some settings that
would be very costly to test in real experiment. Traffic management is a typical
example. For instance, a micro-simulation may help to visualize the effect of
constructing new roads on the overall traffic.
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Some MASs (and a fortiori agent-based micro simulations) may be elegantly
modeled and designed by enhancing the role of the environment in which agents
evolve. In particular, the environment may have the role of a governing infrastruc-
ture that regulates with laws or norms any action within the system. This has the
strong advantage of a flexible modeling and design, where the focus is shifted from
a subjective view of agents towards a more objective view of the whole MAS.

In this paper, we show first experiments on how we apply the governing envi-
ronment to the modeling and design of a micro-simulation of the Swiss highway
network. The goal of the simulation is to show how accordion phenomena and
traffic jams may be handled with appropriate local regulations on the speed
limit. For example, adaptive speed limitations my be implemented in order to
maximize the throughput of the network.

A natural model gives segments the capacity to regulate the speed based on lo-
cally observed events. Therefore, regulating highway segments perfectly captures
the design of a governing environment. Because of the complexity of the simula-
tion and our choice in the above described modeling, we developed a simulation
platform from scratch. This paper presents in details our modeling choices for the
simulation platform. First experimental results of our implementation are also
eluded. The adaptive distributed speed regulation will however be the subject
of another paper, as it is still under development.

The paper is organized as follows. Section 2 introduces and explains the notion
of governing environment. Section 3 explains our problematic of traffic simula-
tion in Switzerland. After discussing our global modeling in Sect. 4 following the
governing idea, we describe how we model the agent behaviors in Sect. 5. Sec-
tion 6 presents our platform design. In Sect. 7, we discuss experiments. Section 8
concludes the paper.

2 The Governing Environment

Most research in MAS has focused on the internal capacities of agents, and not
on the medium in which they evolve. This vision is however changing towards
enhancing the function of the environment in MAS (see for instance [13,1]). Ac-
tually, such a vision was already implicit in the early days of software agent
research. This is shown by a definition of an autonomous agent as a system situ-
ated within and a part of an environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so as to effect what it senses
in the future [3]. This description stresses the importance of the environment as
the living medium, the condition for an agent to live, or the first entity an agent
interacts with. Thus an agent is inextricably bound up with an environment. But
it remains autonomous, so that the environment may not “force” the agent’s in-
tegrity. It is in this environment that an agent (autonomously) senses and acts.
The acting of the agent on the environment directly influences its future sensing,
because the environment is changed by the agent actions.

Even if the notion of environment was stressed as a main component of MAS,
most approaches have viewed it as something being modeled in the “minds” of
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the agents, thus using a minimal and implicit environment that is not a first-
order abstraction, but rather the sum of all data structures within agents that
represent an environment. This is a typical subjective view of the MAS inherited
from distributed artificial intelligence, which contrasts with an objective view
that deals with the system from an external point of view of the agents [10].
This objective point of view sees the environment as a central component for
the modeling and design of MASs. Multiagent simulations belong to the type of
systems that most explicitly model the environment.

The notion of environment in MASs has been an intensive topic of research.
It is useful to differentiate its use in different contexts, as for instance discussed
in [14]. In this paper, our notion of environment refers to the agent environment
as explained in [14]. It is a design abstraction that offers services to agents, and
that actually maps the simulated environment [5], i.e. the real environment that
is simulated. Thus, through this paper, when we will simply refer to the envi-
ronment, we will always refer to the agent environment as a design abstraction.

Whenever a MAS is to be implemented and deployed, an underlying infras-
tructure becomes essential [8]. It offers to the MAS basic services to be used by
the agents. Example functionalities are agent communication, naming or life-
cycle management. The abstractions provided by such infrastructures are essen-
tial for agent-oriented software engineering, as they should be as close as possible
to the concepts used for analysis and design. Today’s infrastructures primarily
offer agent-related abstractions for the programming of agent architectures using
for instance libraries for BDI agents [4], thus supporting subjective coordination.
They only offer implicit support for objective coordination, as they establish the
conditions necessary for running agent programs (e.g. life-cycle management)
and for setting the basic interaction means (e.g. message-enabled middleware
between agents).

An appealing way to exert the necessary level of control out of agents is the use
of a governing infrastructure to structure and shape the space of actions within a
MAS [8]. This governing perspective mainly allows managing agent interactions
from an external point-of-view. This has the strong advantage that agents may
be defined independently, and that some control is overtaken externally. In the
area of virtual organizations, the Electronic Institutions (EI) approach [7] does
this by defining so-called governors which are middle agents that mediate all
(communicative) actions within a MAS 1. This solution has, however, important
disadvantages. Providing each agent with a governor puts a heavy computa-
tional burden on the infrastructure. But, more importantly, middle agents do
not capture a natural modeling for the functionality they are expected to ful-
fill, i.e. mediation of communication. The governing or regulating responsibility
should be transferred from specialized middle agents to the environment of a
MAS, calling for the environment as a governing infrastructure [11]. This can be
done with the idea of a programmable coordination medium [2], which essentially
defines reactions to events happening in a shared dataspace. This schema has
the strong advantage to allow the definition of laws that not only regulate agent

1 All actions that the EI approach accounts for are communicative by nature.
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interactions, but also any happening within an environment. Overall, we expect
that viewing the environment as a governing infrastructure simplifies the design
of MASs. We will show this in the area of agent-based micro-simulation applied
to traffic management.

3 Micro-simulation of the Swiss Highway Network

We modeled, designed and implemented an agent-based micro-simulation that
captures the ideas of governing environment. The application area is the simu-
lation of the whole highway traffic in Switzerland of about 1700 km (see Fig. 1).
We extended the platform also to the national roads, which are roads of national
importance (e.g. the Gothard pass).

The highways are split into segments. This segmentation is given by the real
data received from the Federal Office for Spatial Development2. Each segment
has an arbitrary length, its own speed limit and can have multiple lanes (from
one to a maximum of four). On a segment, cars can only drive in one predefined
direction. This means that a standard highway part is composed of two segments:
one for each direction.

The platform is bound to a geographical information system3 that allows
zooming from the global country view to the local view of each vehicle. We did
not develop over an existing platform for agent-based simulation, because the
complexity of the problem is much too big. Furthermore, it would be difficult to
capture our modeling. We therefore built a new platform from scratch.

Our final goal is to study adaptive and decentralized speed limitation to have
an optimal car throughput. Actually, there are some settings in which mod-
ern highways perform very poorly. First, the accordion is a transient mode in
which cars accelerate to a given speed S, only to brake to almost a full stop
immediately after reaching the speed S. Secondly, traffic jams usually occur in
highway segments preceding a bottleneck (e.g. tunnels or accidents). Our goal
of the simulation is to show that adaptive distributed speed limitations on the
highway segments preceding (and including) the one where problems might ap-
pear will drastically decrease the negative effects previously discussed. Therefore
we want to investigate whether speeding restrictions can increase the efficiency
of highways, and to determine automatic speeding restrictions that optimize
highway utilization. As a methodology we decided to develop an agent-based
micro-simulation to investigate the above hypothesis and to determine optimal
speeding policies. A distributed speed regulation needs to split highways into
segments with constant length so that on each segment one speed limitation can
be imposed. Constraints between the speed limit on neighboring segments have
to ensure that the vehicles do not have to break too abruptly.

An adequate modeling of a micro-simulation allowing distributed decision
making on segments can elegantly use the paradigm of a governing environ-
ment. Actually, the segment naturally build the environment of the MAS. Each
2 http://www.are.admin.ch
3 http://www.geotools.org



Modeling and Design of an Agent-Based Micro-simulation 191

Fig. 1. Swiss national roads with limits of the cantons, as displayed in our simulation
platform

segment has a set of rules that regulate the state of the highway segment (num-
ber of cars, average speed, etc) and can decide on the speed limitation for that
segment. Neighboring segments can propagate events to one another. Each vehi-
cle is modeled by one agent which takes decisions based on a local view: a driver
wants to get to the destination as fast as possible and guides her action de-
pending on the traffic in her immediate vicinity. We further assume that drivers
respect the speed limits (within certain bounds).

This paper reports the modeling and design of our simulation platform, and
not the distributed adaptive decision process for optimal speed regulation. Ac-
tually, we are currently working on this with the DPOP [9] algorithms for dis-
tributed constraint satisfaction. This will be reported in a future paper.

4 Modeling

We describe in this section the modeling of the MAS of the micro-simulation.
According to the governing environment paradigm [11], laws are defined within
the environment. The environment reacts to raised events according to the rules
that we define. Unlike the agents, the environment has no behavior and does not
act itself: it can just react to events which are intercepted.

Static Model. We identified two types of agents that are organized around
highway segments that represent the environment (see Fig. 2). The Vehicle class4

has three state attributes : its position (relative to its current segment), its speed
and its lane position. Each vehicle has : a Plan which is an ordered collection of
HighwaySegment telling it which way to take; a Behavior which describes its ac-
celeration, deceleration and lane changing behavior. VehicleCreator is a dedicated
agent which takes care of creating new agents in the system.
4 We use the UML profile described in [12], where rounded rectangles are agents.
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Vehicle

− position : double

− speed : double

− lane : int

Plan

Behavior

HighwaySegment

− length : double

− numberOfLanes : int

− currentSpeedLimit : int

− maxLawSpeedLimit : int

− nationalRoad : boolean

− slope : double:

− curve : double

− flow : double

− density : double

− meanSpeed : double

previous+

*

next+

*

segments+
1..*

{ ordered }vehicles+ *

segment+

VehicleCreator

− nbAliveVehicles : int

Policy

segment+

Fig. 2. Agent diagram of the system

The highway is divided in segments. Each Vehicle lives in a HighwaySegment
which can be considered as a continuous space. Each one is connected to its next
following segments and its previous preceding segments. Vehicles can only move
from their current segment to one of the next segments. HighwaySegment has a few
constant attributes (length, numberOfLanes, maxLawSpeedLimit, nationalRoad, slope,
curve) and a few variable attributes (currentSpeedLimit, flow, density, meanSpeed).
All these attributes are part of the environment and can be perceived by agents.

The choice for a continuous space is given by the better precision and the light
implementation that follows, but one could consider a discrete space. Nagel [6]
shows how to build a cellular automata simulation with discrete space. It should
be easily transposed to our agent-based simulation.

Dynamic Description. The time of the simulation is discrete. We send a time
step message to every agent at each step of the simulation, and they return an ac-
tion depending on their perception and their internal behavior. The environment
has a governor role and can react to some events.

The environment generates events. SpeedPolicyChangedEvent is generated by a
segment each time the speed restriction is changed in a segment. The governing
environment will tell the neighbor segments to reconsider their current speed
limit. StepBeginEvent is an internal event which is generated by the environment
itself to warn the segment that a time step has begun. StepEndEvent is the same
type of event as StepBeginEvent, but it warns the segment against the end of a
time step event. VehicleDestructedEvent is raised by the environment each time a
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vehicle finished its planning and should die. VehicleDensityChangedEvent is raised
by a segment each time the density of the segment has changed. It tells the
environment to reconsider its speed limit.

Agent actions generate events. VehicleCreatedEvent is launched by VehicleCreator
each time it creates a new vehicle. VehicleChangedLaneEvent is posted by Vehicle
every time it changes its lane position. VehicleChangedSegmentEvent is posted by
Vehicle every time it leaves a segment and enters a new one.

5 Behavior Models

Vehicle behaviors are described by two different but connected models: i) the
car following model describes how a car speeds up and brakes, and the ii) the
lane changing model describes how a driver decides to change lane.

Car Following Model. Our model is inspired by the Intelligent-Driver Model
(IDM) from Martin Treiber5, which makes the vehicle accelerate to its speed
objective (see Alg. 1). it does not have a constant acceleration. It decreases from
the initial acceleration (a) to zero when approaching the speed objective (so).
The deceleration value increases from b and is not limited in the theoretical
model. Because of this, the vehicles can have unrealistic deceleration, but the
system is collision free.

Algorithm 1. IDM car following model (acceleration computation)
Require: v, vf , s, T , vlimit, a, b, smin

1: vo ← humanizeSpeed(vlimit)
2: ∆v ← vf − v
3: s∗ ← max{smin, smin + vT + v∆v

2
√

ab
}

4: ac ← a

[
1 −

(
v
vo

)4
+

(
s∗

s

)2
]

5: return max{−3b, min{ac, a}}

In Alg. 1, T is a the safety time with the ahead vehicle, values can be from
0.8 to 2 seconds. Here we use a normal distribution (µ = 1.5, σ = 0.5) for this
value. a is the maximum acceleration (0.8 m/s2 for cars, 1.5 m/s2 for trucks). b
is the minimum deceleration (−2.5 m/s2 for cars and trucks).

This model has interesting advantages since it is not based on the fact that
vehicles will always keep a safe distance with the vehicle ahead. On the other
hand, deceleration can be high and this can lead to bizarre behaviors, like when
cars drive at a high speed and suddenly brake down with a high deceleration
because of a traffic slow-down or a slowest car.

Lane Changing Model. Each vehicle must at each iteration consider changing
lane or not. This decision is based on two main criterions for the agent : is it
5 http://www.traffic-simulation.de
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safe to go on the other lane? (safety criterion) and do I get a reward to go on
the other lane? (incentive criterion). In our model, the safety criterion just says
that the car behind would be able to brake in order to avoid a collision. We also
check that the car ahead is not to close and that if it brakes, we will have the
time to avoid a collision. The incentive criterion is quite simple. Vehicles change
lane every time they can increase their speed on the other lane. Furthermore we
add a few biases to make vehicles go to the right lane whenever the highway is
going to change from a N lanes to N-1 lanes. Informally, this gives algorithm 2.

Algorithm 2. Basic lane changing model (incentive criterion)
1: if lane will end soon and already on the correct lane then
2: ← do not change lane
3: end if
4: if lane will end soon AND not on the correct lane then
5: ← go to right lane with an increasing probability when approaching to the end

of the lane
6: end if
7: if already changed lane in the last 10 seconds then
8: ← do not change lane
9: end if
10: if distance to car ahead is more than 200 meters then
11: ← do not change lane
12: end if
13: ← change lane if we can increase speed on the other lane

The two first conditions make the vehicle go to the right lane if its lane will
end soon. The third condition (line 8) avoids an oscillation movement from a
lane to another. Imagine five vehicles on the right lane, and no vehicles on the
left lane. They all have an incentive to go the left lane, once they changed, there
is no vehicles on the right lane, so they all have an incentive to change for the
right, and so on. They will all change at each step to the other lane. Condition
at line 10 tries to avoid cars going to the left lane when they have no other car
in front of them.

Combining the Car Following and the Lane Changing Models. Alg.
3 presents how to execute the car following and the lane changing models to-
gether. It ensures that all agents will have the same information when taking
the decisions. A problem can occur when two vehicles compete for the same lane
and think it is safe. They both will have an incentive to change for the target
lane and both think that it is safe. Figure 3 shows an example of this. To avoid
it, we only change to the right at odd time steps and change to the left at even
time steps.

Generation of Vehicles and Plans. For the generation of vehicles, we used
the number of registered vehicles in the canton (swiss regions) where the segment
is. We put a defined percentage of vehicles (N) on highways. We also generate
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c2

c1

Fig. 3. Problem with +3 lanes highways

Algorithm 3. Vehicle state update loop
1: for all the vehicles do
2: state ← current state of the environment
3: decide to change lane or not according to state
4: end for
5: for all the vehicles do
6: change lane if decided
7: end for
8: for all the vehicles do
9: newState ← current state of the environment
10: acceleration ← compute the new acceleration according to newState
11: end for
12: for all the vehicles do
13: update the speed
14: update the position
15: end for

trucks on the basis of country statistics. Concerning the starting place, vehicles
are created uniformly in the canton. Therefore every canton generates a prede-
fined flow of vehicles in respect to its registered car population. Because official
data from the Swiss Federal Roads Authority6 were not of sufficient granularity,
we decided to create cars continuously. A realistic simulation should take into
account different timing.

Each generated vehicle immediately has a deterministic assigned route plan,
which can not change. This plan is however generated randomly. In future work,
we will use demographic statistics and short-path algorithms to generate more
realistic plans.

6 Platform Design

Wedescribe in this section thedesignofouragent-basedmicro-simulationplatform.
After presenting the simulation engine interfaces, we discuss the simulation core.

6.1 Simulation Engine Interfaces

Figure 4 shows the class diagrams of the ch.epfl.lia.simengine package. This package
intends to provide useful interfaces or classes in order to implement a simulation
6 http://www.verkehrsdaten.ch/downloads/AVZ-StandorteStand012005.pdf
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DefaultSimulationEvent

# source :Object

<< create >>+DefaultSimulationEvent () :DefaultSimulationEvent
<< create >>+DefaultSimulationEvent (source :Object ):DefaultSimulationEvent
+getSource ():Object

<< interface >>

Agent

+step():StepAction

<< interface >>

CreationDestructionListener

+agentCreation (agent:Agent):void

+agentDestruction (agent:Agent):void

<< interface >>
Governor

+postEvent (event:SimulationEvent ):void

ch::epfl::lia::simengine::gui

<< interface >>

SimulationEngine

+begin():void

+step():void

+reset ():void

<< interface >>

SimulationEvent

+getSource ():Object

<< interface >>

SimulationInfoProvider

+getTick ():long

+getNumberOfAgents ():int

+getNumberOfActions ():int

<< interface >>

StepAction

+preExecute ():void

+execute ():void

+postExecute ():void

StepActionAdapter

+preExecute ():void

+execute ():void

+postExecute ():void

Fig. 4. Class diagram of the ch.epfl.lia.simengine package

core with a governing environment. Most of the types are abstract or even just
interfaces:

StepAction represents an action made by an agent at one step of the simulation.
A StepAction provides a way to execute a first piece of code (preExecute()),
then execute a second piece of code (execute()) and finally execute a third
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HighwaySegmentImpl VehicleImpl

segment−

VehicleCreatorImplcreator−

segment−

IHSimulationEngine

SegmentGoverner

HighwaySegmentData

parameters−

Territory territory−

<< interface >>
HighwaySegment

<< interface >>
Vehicle

Displayable

PropertyDisplayable

Highlightable

DisplayProvider

Agent

Governor

SimulationEngine

<< interface >>
VehicleCreator

Visitor

<< interface >>
Behavior

<< interface >>
Policy

policy−

− behavior

<< interface >>
Planplan−

***

VehicleParameters
− parameters

TerritoryData
data−

next−
*

previous−
*

*

*

Fig. 5. Elided class diagram of the ch.epfl.lia.ih.sim

piece of code (postExecute). preExecute() will be called on every agent before
the call to execute(), and execute on every agent before postExecute..

StepActionAdapter is just an empty StepAction provided for convenience.
Agent each agent should implement this interface. step() method is called at each

step of the simulation and should return a StepAction instance.
Governor must be implemented by the governing environment classes, and pro-

vides a way to post events.
SimulationEngine must be implemented by the core class of the simulation engine.
SimulationInfoProvider is generally implemented by the same class as Simulatio-

nEngine. It helps other parts of the software to get a few basic informations
about the simulation.

SimulationEvent represents a synchronous event of our event-based simulation
engine.

DefaultSimulationEvent is a generic implementation of the SimulationEvent inter-
face.

CreationDestructionListener should be implemented by classes which want to be
warned about agent creations and destructions.

6.2 Simulation Core

Static Description. Figure 5 presents an elided and simplified class diagram of
the simulation’s core. Interfaces which are not part of the ch.epfl.lia.ih.sim package
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(or one of its sub-package) are represented as provided interface (a circle) as the
UML specification lets us do it.

IHSimulationEngine gathers the logic of the simulation engine. We find in this
class references to all the agents, space objects and the method which exe-
cutes a step of the simulation.

HighwaySegment and HighwaySegmentImpl are the interface and the default im-
plementation of our space. Each one is connected to a list of previous and
next segments, and contains also a list of Vehicle.

SegmentGovernor contains the governing rules and reactions to events posted by
other entities. Note that each segment is also a governor, so there are many
governors.

Vehicle and VehicleImpl are the interface and the default implementation of the
vehicle agent. Each vehicle keeps a reference to its creator and to its current
segment.

VehicleCreator and VehicleCreatorImpl are the interface and the default imple-
mentation of the vehicle creator agent. Each one keeps a reference to the
segment where it creates new vehicles.

Here are some other comments about this diagram :

– HighwaySegmentImpl, VehicleImpl and VehicleCreatorImpl classes contain our de-
fault implementation of the agent’s logic.

– HighwaySegment, Vehicle and VehicleCreator interfaces define the method their
implementation must follow. We designed it this way in order to let someone
change completely the implementation without a huge change elsewhere in
the software.

– HighwaySegmentImpl and VehicleImpl externalize a large part of their code. This
is done in order to make a very clear separation between the logic of the
agent and their intrinsic model or their constant parameters. For instance,
VehicleImpl updates at each step of the simulation its speed according to
the new acceleration which is computed by an instance of Behavior. This
separation has a great advantage since it provides an easy way to change
the behavior model or the plan computation of a vehicle. One can even have
multiple instance of VehicleImpl with different types of behavior.

Dynamic Description. The core of the simulation is the class IHSimulatio-
nEngine. This class keeps references to every agent and space. At each step of
the simulation, method step() is executed. Figure 6 shows a simplified activity
diagram of this method.

Environment State. As we said in Sect. 5, we first need to execute some code
on all agents and then execute another piece of code, and so on. This is easily
done with StepAction facilities.

We also need to save the state of an agent. We can not simply perceive prop-
erties of the agent whenever we want. Even if the step method is theoretically
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actions = new Collection()

post(StepBeginEvent) to all HighwaySegment

execute step() on every VehicleCreator

execute step() on every Vehicle

call preExecute() on every StepAction of actions

step() method returns a 
StepAction which is added
to the actions collection.

call execute() on every StepAction of actions

call postExecute() on every StepAction of actions

post(StepEndEvent) to every HighwaySegment

Fig. 6. The IHSimulationEngine.step() method activity diagram

executed simultaneously on every agent. In reality a few agents will change their
state before others. Therefore agents need a way to correct state when taking
decisions. To do this, we use VehicleState and LaneState which help to keep agent
or environment state.

6.3 The Events

Static Description. Figure 7 presents the static description of the events sys-
tem and Fig. 8 shows the attributes of every event.

We use here a visitor design pattern to make the implementation and extensi-
bility easier. We could even imagine a way to generate automatically code of the
SimulationEventVisited subclasses and the Visitor. It would be useful for a project
with a huge amount of different events. The SimulationEventFactory is used here
for performance reason.

Dynamic Behavior. Events are launched and treated synchronously (one
would need to make a few design changes to make the system asynchronous).
Events are launched each time it is needed. For instance, when a vehicle wants
to move from one segment to the next one, it launches a VehicleChangedSegment
by posting it to its current governor. Figure 9 shows how this event is posted
and treated.



200 M. Schumacher, L. Grangier, and R. Jurca

SimulationEventVisited

<< create >>+SimulationEventVisited (): SimulationEventVisited
<< create >>+SimulationEventVisited (source :Object ): SimulationEventVisited
+accept (v:Visitor):void

<< Singleton >>
SimulationEventFactory

instance−

SegmentGoverner

−creationDestructionListeners :Collection= new HashSet()

<< create >>+SegmentGoverner (): SegmentGoverner
+addCreationDestructionListener (listener :CreationDestructionListener ): void
+removeCreationDestructionListener( listener :CreationDestructionListener ): void

<< interface >>
SimulationEvent

+getSource (): Object

<< interface >>
Governor

+postEvent( event:SimulationEvent ): void

DefaultSimulationEvent

#source :Object

<< create >>+DefaultSimulationEvent (): DefaultSimulationEvent
<< create >>+DefaultSimulationEvent (source :Object ): DefaultSimulationEvent
+getSource (): Object

Visitor

Fig. 7. Class diagram of types related with the event system

SimulationEventVisited

VehicleLaneChangedEvent

−oldLane:byte
−newLane :byte

−segment :HighwaySegment
−vehicle: Vehicl e

VehicleDensityChangedEvent

−segment :HighwaySegment

StepEndEvent

−segment :HighwaySegment

VehicleChangedSegmentEvent

−oldSegment:HighwaySegment
−newSegment :HighwaySegment
−vehicle: Vehicl e

SpeedPolicyChangedEvent

−segment :HighwaySegment

VehicleDestructedEvent

−segment :HighwaySegment
−vehicle: Vehicl e
−creator :VehicleCreator

VehicleCreatedEvent

−segment :HighwaySegment
−vehicle: Vehicl e
−creator :VehicleCreator

StepBeginEvent

−segment :HighwaySegment

Fig. 8. Class diagram of all the events
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v:VehicleImpl :SimulationEventFactory

1 : getInstance()

2 : e := getVehicleChangedSegment(v, v, s, ns)

s :SegmentGoverner

3 : postEvent(e)

e:VehicleChangedSegmentEvent
3.1 : accept(s)

3.2 : perform(e)

Fig. 9. An event launch example collaboration diagram

7 Experiments

Vehicle Generation. As said in Sect. 5, we can calibrate the simulation to
generate a percentage of the registered vehicles. This is difficult since knowing
how many vehicles can drive simultaneously on Swiss highways is not obvious.

Swiss highways are composed of 1’855 km of roads. Since these roads have
two possible directions and can have multiple lanes, the total length of lanes
is about 7’550 km. Supposing a high congestion of 40 vehicles/km everywhere
(this means one car each 25 meters on every lane and every highway segment),
this leads to an estimation of 302’000 vehicles. It means that N = 6% of the
Swiss vehicles would be on the highways. It can seem very low but, we should
not forget that all the cars are never used at the same time and that there is
a lot of other roads than highways in Switzerland. And of course, in reality at
some place there is much more vehicles than at others, 40 vehicles/km is just an
overestimated value of what could be a maximal congestion level.

We have made tests with different values of N (the maximal percentage of alive
vehicles at a precise time). Table 1 shows how many vehicles can be simultaneously
alive and how much time it costs to simulate a certain time. The first remark is
about the theoretical value which is not equal to the practical one. It comes from
the way of generating vehicles. Each creator segment has a physical maximum flow
of vehicles and depending of the local conditions (i.e. a traffic jam on this segment),
it can be lower that what it should be to ensure the theoretical production of cars.
Thus it is absolutely normal to have a lower value.

Tests of the Models. We ran the simulation with different values of N and
looked at some randomly chosen place to see if the flow of vehicles we simulate
is near reality or not. Vehicles were not always perceiving the current reality and
were basing their decision on a partial future state. This was leading to many
collisions, but since they are automatically cleared7, the simulation was realistic.
Table 2 shows the measures we found depending on the N value. The simulated
time is the value given in table 1.
7 The vehicle which causes the collision (the vehicle at the back) is deleted and every-
thing continues as if nothing happened.
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Table 1. Maximum number of vehicles with respect to N

N Theoretical Practical Simulated time [h] Real time [h]8

10 % 492’230 249’000 1:30 24:00
5 % 246’115 192’000 2:35 60:00
2 % 98’445 95’000 1:00 8:00

Table 2. Mean flow measurements with respect to N

Place Real flow N = 10% N = 5%

Muttenz 10700 4140 4551
Wuennewil 2342 3318 3533
Grandvaux 5662 3941 3798

Monte Ceneri 3243 3432 3732
Giessbachtunnel 983 2053 2103

Erstfeld 2192 2143 1366
Bardonnex 3656 1834 1783
Oftringen 5928 3304 3625

Values are very far from reality. However we remark that where there is a
high mean flow value in reality, there is also a relative high mean flow in the
simulation. This lets us think that even if our vehicle generation method is not
realistic, it does not give arbitrary values.

8 Conclusion

We developed a micro-simulation of the Swiss highway network in order to show
that the governing environment can be useful for the modeling and design of
agent-based micro-simulations. In our simulation platform, the design has shown
to be very flexible. Future work will consist in improving the vehicle behavior
modeling and the performance of the platform, and in actually implementing the
adaptive and distributed speed limit regulations in order to achieve an optimal
car throughput. We shortly explain hereafter those points.

The model of a vehicle should become more realistic. Collisions should be
avoided when two segments merge in one, including highway entries. We think
this is very tricky to solve since road granularity information is not detailed
enough to let us have finer grained models. The lane changing model should also
be improved, especially at the end of lanes (when N ways merge to N-1 ways).
Our model is not yet very good and produces unrealistic traffic jams.

Running a simulation with hundreds of thousands of agents is not costless. To
simulate a real scenario with many vehicles in a reasonable time, we have to make
deeper changes in the architecture. A way to do it is to distribute the compu-
tation on several computers. We estimate that our architecture should be easily

8 Tests made on a 4 x 3 Ghz 64-bits processors computer with 4 Gb RAM.
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transformable into a distributed one, for instance with segment distribution and
asynchronous events.

However, the most important remains the realization and testing of an intelli-
gent distributed speed restriction policy. We are currently working on this using
a family of distributed constraint optimization algorithm [9].
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Abstract. Collaborative Ubiquitous Environments (CUEs) are environments
supporting collaboration among persons in a ubiquitous computing setting. This
paper shows how results of the research in the Multi–Agent System (MAS) area,
and in particular on MAS environments, can be used to model, design and en-
gineer CUEs, with specific reference to the management of context–awareness
information. The CUE reference scenario will be introduced, then the Multilay-
ered Multi–Agent Situated System model will be briefly described and applied
to represent and to manage several types of awareness information (both physi-
cal and logical contextual information). Finally, the paper introduces a prototypal
framework based on DJess supporting the definition and management of MMASS
based CUEs.

1 Introduction

The current trend of technological advancements allows foreseeing a radically new sce-
nario for computer systems, a scenario in which persons will not be forced to sit down
in front of a PC, representing the single spot of the environment in which both computa-
tional power and connectivity are concentrated. The environment is growingly endowed
with sensors, information sources, hidden (or disappearing) computational devices that
can exploit the pervasive presence of wired and wireless communication infrastruc-
tures [1]. One of the most current challenges for computer scientists and engineers is
the design and realization of environments supporting human activities in this novel
technological context, providing the possibility of a “natural” interaction and collabo-
ration between the persons. We call such environments Collaborative Ubiquitous Envi-
ronments (CUEs).

The full potential of this new technological setting is still not fully explored and ex-
ploited by current applications; according to [2] the new scenario provides possibilities
and challenges that will necessarily lead to a revolutionary shift of paradigm in the way
computer systems are modeled and engineered. To choose an approach to the defini-
tion of innovative computer systems trying to face the challenges posed by this new
situation, we started considering one of the most relevant features of this scenario: the
presence of devices that must interact in order to provide a rich and articulated sup-
port to human activities. This need to effectively establish suitable interactions in an
opportunistic way lead us to consider Multi–Agent Systems [3] as a relevant source
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c© Springer-Verlag Berlin Heidelberg 2008



Management of Context Awareness Information 205

of abstractions, models and instruments to analyze the scenario and design systems
effectively realizing CUEs. In fact, a device that is part of the overall system can be
enhanced by the presence of an agent able to perceive the local context, detect relevant
information sources, communicate its presence, and in general establish meaningful in-
teractions. However, the single agent “reasoning” capabilities are not the most relevant
element of this scenario. The abstractions and mechanisms supporting mutual agent
perception and interaction are in fact extremely relevant, in the general setting of MAS
research and even more in this specific application area. These abstractions and mech-
anisms are typical functions that can be ascribed to a MAS environment [4].

Even if agent definitions generally highlight the presence of an environment in which
agents are situated, may perceive each other, act and interact, agent research has often
been focused on specific aspects and features of agency, like the individual reasoning
and decision making processes, the possibility to communicate by sending and receiv-
ing messages expressed into some shared language according to a given domain ontol-
ogy. Recent research efforts have highlighted the general relevance of the environment
as a first class concept that is on one hand a necessary element of a MAS, and on the
other a source of abstractions and mechanisms to support the analysis, modelling and
design of a MAS to solve a specific problem or face a specific requirement of the desired
system.

The Multilayered Multi–Agent Situated System (MMASS) [5] is a formal and com-
putational framework supporting the modeling of agents as well as the environment
in which they are situated. One of the aims of this paper is to show how this model
can be suitably adopted to design an infrastructure for the management and distribu-
tion of awareness information in CUEs. In particular, the following Sect. will intro-
duce in a more extensive way the CUEs scenario and its specific requirements, while
Sect. 3 will describe the MMASS model, and Sect. 4 will show how this model can be
applied to effectively face these requirements, employing a sample CUE scenario re-
lated to a smart environment in a University. In this framework, this work differs from
other existing proposals that employ agents and agent–based infrastructures simply as
a middleware for the design and implementation of pervasive computing systems (see,
e.g., [6,7]). Section 5 will thus present a prototypal platform realizing specific envi-
ronmental mechanisms described by the MMASS model employing the DJess middle-
ware [8]. The choice of this particular technological support is based on an analysis
of different existing frameworks and middlewares that is extensively described in [9].
Section 5 will introduce the actual rules that were realized and tested in the realization
of the sample CUE scenario, as well as specific support tools for the design of this kind
of environment. Conclusions and future developments will end the paper.

2 Reference Scenario: Collaborative Ubiquitous Environments

The need of a support for collaboration in ubiquitous computing environments has
emerged during the last years [10]; a Collaborative Ubiquitous Environment (CUE) is
composed of objects (we also include electronic and computational devices in this term)
that show a variety of computational capabilities: from sensors to wallboards, from ac-
tual documents to pieces of furniture, from desks to doors, and so on, up to traditional
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general purpose computers that can play the hidden role of servers or the visible role
of terminals supporting individual work. The main characteristic of CUEs is that all the
devices are explicitly intended to support collaborative work among persons instead of
only the individual work of each one of them. To achive this aim CUEs require sup-
port both for coordination [11] to manage expected behaviours and awareness [12] to
manage contextual information.

A way to connect ubiquitous computing and cooperation is through the notion of
context, since ubiquitous computing and context-aware computing share the same goal:
to make the environment “alive” and its context an important part of what determines
the application’s behaviour. More specifically, we like the idea to view context not as a
representational problem but as an interactional problem, as proposed in [14]. In fact,
this view is more coherent with what we consider the main advantage of ubiquitous
computing (once adequately developed): to bring back the notion of context as currently
mediated and constrained by the desktop metaphor to its natural connotation, that of
physical context, with all its affordances, possibly augmented by computing capabilities
to become more significant.

Additional motivations to the need of managing both coordination and awareness
dimensions are presented in [13]. Our goal, however, is to maintain a strong separation
between the computational abstractions and mechanisms devoted to them, in terms of
their behavior, their language and the design approach; in particular, we actually have
different interaction-space models and there is thus no reason to mix them.

From the context awareness point of view, it is important to represent information
about both physical and logical aspects related to actors; in fact, people freely move
in the physical space carrying and approaching objects that altogether provide differ-
ent forms of computational connectivity, as well as meet other people and establish
with them various forms of cooperation. Moreover, considering the logical dimension,
which is the dimension where information and coordination resources are managed to
support these forms of cooperation, we can recognize a similar kind of dynamism: ac-
tors own, make available, approach and coordinate their access to these resources in a
flexible way according to their needs, interests, duties or simply because they realize
that an opportunity is offered to them or that the current state of affairs requires their
coordinated intervention.

The physical spatial representation is made possible by the use of suitable localiza-
tion technologies but it is not limited by them in the sense that the representation does
not necessarily reflect the technological localization (e.g., small localization areas iden-
tified by the technology could be aggregated in one localization area in the modeled
space); of course, the logical dimension by its nature is not related to physical aspects,
so the concept of granularity is not related to a physical property. However, we can
model different kinds of relationships among actors and sometimes these can represent
the “same” information but at a different level of abstraction, so granularity is a valid
concept also for the logical dimension.

Beyond the representation of the space, both physical and logical, context awareness
is built on the information dynamically diffused in the spaces in accord to the view of
context as an interactional problem; the modulated propagation of information is a key
requirement of CUEs and allows dynamic interaction and perception among actors in
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terms of perception by proximity, dynamic configuration of the environment, acquisi-
tion of contextualized information and so on.

The characteristics of CUEs depicted above as generic requirements can be found
immediately in the typical situations managed by CUEs such as the ones described in
Sect. 4, on one hand to analyze in a deeper way and exemplify the introduced refer-
ence scenario. Moreover, the MMASS model will be adopted to represent the notions
and mechanisms regulating these CUEs. To this end, the following Sect. will briefly
introduce the MMASS model.

3 Multilayered Multi-agent Situated System

The Multilayered Multi-Agent Situated Systems (MMASS) is a model supporting the
definition of systems made up of a set of autonomous entities acting and interacting in a
structured environment. It has been successfully applied to different contexts, from the
simulation of complex systems (e.g. crowds [15]), to the support of human interactions
in the Computer Supported Cooperative Work area [16]. This Sect. does not represent
an extensive formal description of the model (that can be found in [5]), but it will briefly
introduce its main concepts, specifically focusing on the environmental structure. In fact
the latter deeply influences agents behaviour, as the environment is the source of their
perceptions and a constraint limiting their actions (e.g. their movement), but it also
provides them a medium to interact with other entities.

MMASS Environment – Agents in MMASS are necessarily situated in a site, that is, a
node of the graph related to a single layer of the environment (i.e. a single Multi-Agent
Situated System). The overall agent environment is generally composed of several in-
teracting layers, each one representing a different aspect such as, for instance, a physical
spatial abstraction (i.e. a discretization of a physical space), or the relationships among
specific organizational roles related to the environment. We will now consider a single
MASS to introduce its structure, as well as the abstractions and mechanisms supporting
the definition of agents, their behaviours and interactions.

A MASS, from a structural point of view, is an undirected graph. An edge connect-
ing two sites indicates possibility of agents to move from one of those sites to the other
(and vice versa), to perceive the presence of signals (i.e. fields, which will be introduced
later on) and agents in the adjacent site. Adjacency between sites enables thus agents’
movements and local perception, but it also supports the diffusion of fields, according
to specific rules managing their distribution in the environment (i.e. diffusion function).
Originally edges were not weighted; however, in this specifica case of application, since
it is possible to adopt one MMASS layer to represent the social relationships among in-
dividuals, it can be useful to support the definition of graph including weighted arcs: in
social relationship representations a weight will be employed to indicate the strength of
a given relationship between two roles. An additional difference between the adopted
version of the model and the original definition is the possibility more than one agent
to be situated in a given site. In fact, since there can be several coordinated spatial rep-
resentations of the environment, for instance related to different levels of granularity,
it could be necessary to relax the non-interpenetration principle that limited to one the
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maximum number of agents present in a site. Considering, for example, the representa-
tion of a physical environment based on the mapping of one room to a single MMASS
site, it is necessary to allow different agents related to different electronic devices cur-
rently positioned in the room to be situated in that site.

Environment Mediated Agent Interaction – The main mechanism for environment
mediated interaction defined by the MMASS model in the CUE context provides the
possibility for agents to emit fields, that are signals diffused through the environment
that can be perceived by other agents according to specific rules. This indirect interac-
tion mechanism is also related to stigmergic approaches to agent communication, but
fields are not just associated to an intensity value that persists through time in a given
position, but it rather conveys more complex kind of information also through the spatial
dimension of the environment. For every field type a diffusion function must be speci-
fied in order to define how related signals decay (or are amplified) during their diffusion
in the environment, from the source of emission to destination sites. Additional func-
tions must given to specify how fields of the same kind can be composed (for instance
in order to obtain the intensity of a given field type at a given site) or compared. Fields
are neutral, from a semantic point of view, even if they can have related information in
addition to their intensity: in fact, they are only signals, with an indication on how they
diffuse in the environment, how they can be compared and composed. The interpreta-
tion of these signals and the reaction to their perception is part of agents’ behavioural
specification.

Agent Perception and Action – Agents of different types may be able to perceive the
same signal in a totally different way; moreover they may have completely different re-
actions to the perception of the same signal, according to their behavioural specification.
With reference to perception, an agent may perceive a field with a non–null intensity
active in the site it is situated on according to two parameters characterizing its type
and related to the specific field type: the sensitivity threshold, indicating the minimum
field intensity that an agent of that type is able to perceive and the receptiveness coeffi-
cient, representing an amplification factor modulating (amplifying or attenuating) field
value before the comparison with the sensitivity threshold. Employing these parame-
ters it is possible to model dynamism in the perceptive capabilities of agents of a given
type, since these parameters are determined according to agent’s state. In this way, for
instance, the same agent that was unable to perceive a specific field value could be-
come more sensitive (increase its own receptiveness coefficient) as a consequence of a
change in its state. This allows to model physical aspects of perception, but also concep-
tual ones such as agent interests. Field emission is one of the possible actions available
for the specification of agent behaviour. Other actions are related to the possibility to
move (transport operation) and change the state upon the perception of a specific event
in their local context (trigger operation) or according to a coordinated change of state
among adjacent agents (reaction operation).

Representing and Integrating Different Aspects of the CUE – The overall agent
environment, as previously mentioned, can be composed of several interacting layers.
In order to allow this interaction (i.e. intra-MASS interaction) the model introduces the
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notion of interface. An interface of a given MASS specifies fields imported from and
exported into each MASS, and more precisely it is defined as

Interface(MASSi , export : E ; import : I )

where E and I are respectively the set of fields exported into and imported from
MASSi . Imported fields (that must be correspondingly exported by another MASS),
can be used in specifying agent actions exactly as fields that are internal to the agent
MASS. The value of an external field in any site of the local Space of a MASS is the
value specified at its emission.

The Model and the Other Parts of the CUE – In order to coordinate different aspects
of the MMASS environment, layers must also be open to the influences and signals
generated by sensors and devices spread in the actual environment. Additionally, the
effects of the computation carried out in the MMASS environment, and more precisely
the actions of agents situated in it, must have an effect on the world, not only through
the MMASS environment, but also by communicating with the devices that are hosting
them. To this aim, it is necessary to introduce both a new input primitive that can be
included in the behavioural specification of a given agent type and the possibility to in-
voke an external input operation when expressing conditions triggering agents’ actions,
in order to represent both intentional and reactive behaviours. Both the operations must
support the interaction of the MMASS agent with the coordination world (through the
Manager agent as described in Sect. 4). The new primitive is defined as request(s, o), as
the specific intentional request operation for an external object o. The input(e) function
can instead be used as a conditional element for the activation of a primitive, specifying
that an external object e can be used to express further conditional elements. To support
the possibility of an agent to provide awareness information to the coordination world
an output primitive must be provided by the model: the output(s, o) primitive specifies
that the agent triggers the Manager agent by sending an o message. The information
specified by o is determined on the basis of the information locally accessible to the
current agent, and precisely it state s and the elements of its local context.

4 MMASS and CUEs

As introduced in Section 2, CUEs treat both coordination and awareness facets. Of
course they are tightly coupled to provide support to collaboration; thus, the entities
of the two “worlds” must have a way to interact. Moreover, the awareness side of a
CUE can encompass several different aspects, such as the physical position of an actor
(it could be a person as well as a device endowed with an agent managing awareness
information) in a given representation of the CUE as well as logical position, such as
the role in an organization or project. Fig. 1 depicts the reference model for MMASS–
based awareness management in a CUE. In particular, beyond k MMASS layers (the
topological spaces related to the various aspects of represented awareness information)
there are some additional elements:

– Awareness agent (Ai,j): this kind of agent is situated on the awareness graph j and
it is associated to actor i of the CUE; its behaviour is described in accord to the
MMASS model thus this agent reasons on fields, by perceiving and emitting them.
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Fig. 1. Reference model for MMASS–based awareness management in a CUE

– Manager agent (Mi): the agent that bridges the awareness and coordination worlds
for actor i; it translates information expressed in term of fields (exported by the
Ai agents) into awareOf statements (the kind of information that the agents of the
coordination world can understand) and, in the other direction, imports fields in
the proper Ai,j agent when requests of propagation come from the agents of the
coordination world.

– Personal fulcrum: the space of interaction of the agents of the coordination world.

In this paper we do not provide details on the coordination component of a CUE
(see [17,18] to have more information on this topic) because it is not strictly related
to topological spaces and their representation, instead it is focused on information and
behaviour exchange. However, to let the reader better understand the following sections
and the Section 5 here we put in evidence that the coordination part of the model is
implemented by adopting DJess [8] because it is a middleware that easily allows the
sharing of facts (to represent statements) and rules (to describe behaviours). In the fol-
lowing we will show how to model a scenario that exploit the characteristics of CUE
depicted in Section 2 by applying the MMASS model.

4.1 Lesson Setup Scenario

This scenario describes how the perception of entities in the neighborhood can be real-
ized by the propagation of a presence field. Each agent situated on the topological space
(can) emits a presence field in order to let the other ones to be aware of its presence.
The presence field is characterized by the emitter id and by a diffusion function that de-
creases the field intensity (to obtain a small neighborhood a quickly decreasing function
must be defined). When the agent moves around the space, it emits the presence field
again and the neighborhood changes consequently; in fact, the presence field emitted
before disappears and the new one defines the new neighborhood.

In an university department people can perceive the presence of the other ones thanks
to the propagation of the presence field, moreover, agents that represent either tecno-
logical (such as a desk) or logical (such as a lesson) artifacts can perceive the presence
of persons, and eventually emit their own. Although it is not presented in this scenario,
it is important to put in evidence that the presence field could be propagated both on
physical and logical topological spaces, so the neighborhood could not necessary be
driven by the physical proximity.
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Scenario. In the smart department, classrooms are equipped with a minimal set
of devices providing: people identification or localization, projection on a large
surface, audio-video recording, and interaction with electronic documents. In
addition, personal devices seamlessly operate into an organization-wide coop-
erative infrastructure.

Mrs. Jameson is a teacher of the Institute, and she is allowed to use its mod-
ern facilities. She can seamlessly work in her office or in a classroom: when
she is sitting at her desk, she can use her habitual PC applications, and she
is aided by the cooperative infrastructure when interacting with other devices
(such as her PDA or mobile phone) and to access documents in a content man-
agement system. She can schedule lessons and prepare them by selecting the
material to be used in the classroom (e.g., slides, videos), and the readings
and exercises to be assigned. When Mrs. Jameson enters the classroom where
one of her lessons is scheduled currently, the environment automatically sets
up according to the situation: teaching materials are retrieved from the content
management system and presented to the teacher on the interactive surface of
her desk, the projecting equipment switches on to display the presentation, and
the audio/video equipment starts recording and streaming to remote students.

Whenever Mrs. Jameson creates a new lesson, it can be considered to be located in
the same site where she is. When she leaves her office, she moves in the institute and
is localized by the system. Her lessons follow Mrs. Jameson in the topological space
(thanks to the propagation of her presence field): the presence field is perceived to be
weaker, the lessons check the source of the field (i.e., where the teacher is), and move to
the same site. Then, the new position is confronted with lessons’ location: if the place
where a lesson is scheduled is reached, and the time is right, then the lesson activates
the setup.

All the devices in the classroom, according to the services they are able to provide,
react on the presence of the lesson and execute the proper behaviors. Such operation
represents the setup of the system for the lesson that is beginning: once devices have set
up, they are ready to provide the desired services, and feedback regarding the acquired
status is published in the fulcrum.

When all the required services are available the lesson officially begins, its status
changes accordingly, a webcam starts recording and streaming the lesson, the material
for the teacher is retrieved from the CMS and displayed on the desk (ready to be shown
on a larger screen to the audience), and a sign can automatically light outside, above the
door to warn people passing by to be quiet.

4.2 Modeling the Environment

An environment for agents is designed to let them move and interact in the university
department; in fact, they inhabit a topological space that represents the topology of the
department as depicted in Fig. 2. The weights of the arcs of the topological space are
defined both for the presence and lesson-setup fields (Fig. 3).

For the presence field, the weight of the arcs between a room (e.g. U701) and its
entrance area (e.g. U701E) is 2 because the presence field has to be perceived only in
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Fig. 2. The topological space that models the department. U7101 and U7102 are teachers’ offices,
U701-03 are classrooms, U701-03E are the corresponding entrances, U7T01 and U7T02 are areas
with tables where students can stay, and U7C01 and U7C01 are the corridor areas.

the room when the agent is there; in fact, the default (emission) intensity of the presence
field is 3 and its diffusion function is subtraction.

Instead, the lesson-setup field has to be perceived in all the department, so also stu-
dents around the department are able to perceive this information. Its diffusion function
is subtraction with 1 as minimum and its default intensity is 3: this allows to have a
field that decreases its intensity in the first two sites it traverses and then diffuse with
a constant intensity. In this manner the agents located in the first two sites perceive the
field with a higher intensity and react accordingly.

4.3 Defined Agents

In this scenario we defined different types of agents: teacher, student, lesson, and desk. A
teacher agent is instantiated for Mrs. Jameson; for each lesson she defined a lesson agent
is instantiated. Of course, a student agent is instantiated for each student of the university.

Teacher and lesson are agents able to change their location in the environment in
accord to the current location of the person they are related to. In particular, the Teacher
agent is actually moved by the system according to localization information gathered by
the smart department infrastructure; similarly, also student agents are moved to mimic
the actual position of localized students. Lesson is instead an autonomous agent, that is
programmed to follow the teacher of the lesson it represents (the actual implementation
of this behavioural element is presented in Sect. 5.3) until they are both in the lesson
classroom. Finally, desk does not move at all.
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Fig. 3. Arcs’ weights for the presence and lesson-setup fields

Lesson is an agent that perceives the presence field of its teacher, i.e. the teacher that
created the lesson. Students agents perceive le lesson-setup fields, but only of the the
lesson they are interested in, i.e. the lesson of the courses they are attending. All the
other lessons are ignored to avoid information overload.

Finally, an agent is instantiated for each device that is deployed in the environment:
for example, for each desk in the classrooms a desk agent is instantiated and it perceives
the lesson-setup field and it is in charge of display the proper information to the teacher.
In particular, they perceive only the lesson that is situated in the same classroom thanks
to the topology of the space and the weights assigned to arcs for the lesson-setup field.

5 A DJess MMASS-Based Collaborative Ubiquitous Architectures

In this Sect. we describe a first effort in the realization of a prototypal framework
supporting the definition of MMASS–based CUEs and provide real rules written to
achieve the right behavior of the framework as defined for the model. Before describing
the adopted approach, some considerations must be done on the specific features of the
scenario and on the suitability of existing middlewares and frameworks to support the
development of CUEs.

5.1 General Considerations

First of all, it must be noted that a CUE is surely (and not surprisingly) a distributed
system. However, a single layer of environmental representation, such as those intro-
duced in the previous Sect., can be suitably hosted by a single computational node of
the network: the latter can act as an awareness server for the specific aspect of the CUE
represented in the hosted layer. Devices scattered in the actual environment that are part
of the CUE are assumed to be able to communicate with these nodes1, in order to signal
their presence and perceive the signals coming from the CUE.

1 This is a basic assumption of the Ubiquitous Computing scenario, which is rapidly becoming
a reasonable one at least in several urban contexts and built environments.
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Fig. 4. A deployment diagram for the CUE architecture based on DJess

Every layer is thus responsible to maintain updated the current state of the related
aspect of the overall environment (e.g. reflecting the actual physical position of a device
on the discrete representation of the environment, managing the diffusion of fields).
Information related to the current position of an agent could be provided by some sensor
installed on the device hosting it (e.g. a GPS receiver, in case of physical position), by
an infrastructure of sensors installed in the environment (e.g. a wireless network or a
RFID infrastructure [19]), or by a user (e.g. its current availability to interact or carry
out a task, in case of a conceptual position). In other words, according to the specific
aspect of the environment represented in a given layer, the information on agent position
could be provided by the agent, obtained by an infrastructure or even inferred. However,
nodes managing environmental layers are currently assumed to be well known by every
device that is part of the CUE (their addresses could be set during the configuration of
the adopted middleware).

This kind of network structure had an influence on the preliminary selection of the
frameworks and middlewares to consider and evaluate. The TOTA middleware [20],
for instance, offers a rich and sophisticated support to the design and engineering of
Pervasive Computing applications exploiting the abstractions of agents and MAS en-
vironment. However, one of TOTA’s most distinguishing features is the possibility to
diffuse and keep updated context–awareness information in a dynamic environment,
and in particular it offers the possibility to maintain the structure of Co-Fields over a
changing network. In this case, however, the structure of the network is not very relevant
in determining the context of a given node, and instead the reference scenario requires
the capability to integrate several spatial representations, related to different aspects of
the CUE.

The relevance of environment related abstractions and mechanisms highlighted in
the previous Sect. (i.e. spatial structure in which agents are situated, fields and related
functionalities and services) in the representation of contextual information led us to
focus on those MAS approaches actually providing some specific support to environ-
mental aspects. The adoption of a middleware providing a communication infrastruc-
ture supporting direct agent interaction (e.g. JADE [21]) would require the design and
implementation of additional structures and interaction mechanisms or the realization
of an agent (or a set of agents) specifically devoted to the management of environment
related abstractions and mechanisms to enable context-aware forms of agent interaction.

A relevant approach to the design and engineering of Environments for MASs is rep-
resented by artifacts [22]: artifacts are a conceptual, formal and computational frame-
work supporting the realization of function–oriented elements of a MAS. In particular,
a single layer of environmental representation could be suitably modeled and managed
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;; Site template
(deftemplate Site "A site"

(slot id)) ;; identifier of the site (used to define arcs)
;; Arc between two sites template
(deftemplate Arc "An arc between two sites"

(slot siteA) (slot siteB) ;; the connected sites
(slot id)) ;; the identifier of the arcs

;; Weight of an arc, defined for a particular field type
(deftemplate Weight "The weight of an arc for a particular field type"

(slot arc) ;; identifier of the arc
(slot fieldType) (slot value)) ;; field type and weight

Fig. 5. Fact templates representing the configuration of the related MMASS layer

by means of an artifact, encapsulating the internal spatial structure of the layer as well
as the various related mechanisms (e.g. field diffusion), realized in the form of reaction
rules considering the TuCSoN [23] approach to artifact implementation. This approach
can provide a suitable support to the design and implementation of an MMASS–based
CUE, but since there is an ongoing activity aimed at realizing coordination aspects of a
CUE adopting DJess, the latter was adopted for a prototypal implementation of a frame-
work for MMASS–based CUEs. Most important, DJess allows to easly and naturally
define an A-agent as a reactive agent and describe its reactive behavior in term of rules,
and to distribute the execution of agents and topological spaces in a transparent way for
the system designer and of course for the agents too.

5.2 DJess and MMASS: Environment Management

DJess [8] is a communication middleware whose main aim is to support the remote and
transparent interaction of computational nodes hosting instances of the Jess2 rule based
inference system [24].

DJess is essentially an extension of Jess that adds a communication layer underneath
its inferential capabilities. In particular, it is possible to define a web of inferential sys-
tems transparently sharing facts and rules across a network. For this specific application
only the first functionality was exploited, in particular to support the possibility of A-
agents to communicate with the related M-agents by means of the adoption of the input
and output primitives introduced in Sect. 3. This is necessary to support the interaction
between the awareness and the collaboration aspects of the CUE. However, it must be
noted that the rule–sharing function was used in the modules that manage the coor-
dination aspects of the CUE, that are effectively implemented in DJess. The overall
deployment diagram of this architecture is shown in Fig. 4.

DJess was thus considered as a support for the modeling and implementation of
MMASS–based environmental representations of CUEs. In particular, it is possible to
define fact templates for basic configuration and state of a specific MMASS layer. Fig-
ures 5 and 6 show how the deftemplate command can be used to define a specific
structure for a given fact type. In this case, templates are respectively defined for facts
representing the building blocks of a MMASS layer (i.e. sites and weighted arcs con-
necting them) and other information related to the configuration and current state of the

2 http://www.jessrules.com/
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;; Field type template
(deftemplate FieldType "A field Type"

(slot id) ;; identifier of the type
;; name of the diffusion function
(slot diffuseFunction (default "diffuse-subtract"))
;; name of the composition function for fields of the same instance
(slot composeInstanceFunction (default "compose-max"))
;; name of the composition function for fields of different instances
(slot composeFunction (default "compose-avg"))
;; name of the comparation function
(slot compareFunction (default "compare-great-then-or-equal"))
;; default arc weight for this field type (used in layer compilation)
(slot defaultArcWeight (default 1))
;; default emission intensity
(slot defaultEmitIntensity (default 1)))

;; Field instance template
(deftemplate Field "A field instance"

(slot site) ;; id of the site on which this field is
(slot instanceId (default "null")) ;; id of the field instance
(slot fieldType (default "null")) ;; id of the field type
(slot spec (default "null")) ;; specialization
(slot intensity (default 1)) ;; intensity of the field
(slot info (default "null")) ;; additional information content
;; local source site for the field (used during diffusion)
;; defaults to ’nil’ for newly emitted fields
(slot sourceSite (default "null"))
;; level (or time step) in which this field was diffused,
;; defaults to 0 for emitted fields
(slot level (default 0))
;; collection state of this field, can be "TRUE" or "FALSE"
(slot collected (default "FALSE"))
;; this slot is true if the represented field is the result of a
;; composition, can be only "TRUE" or "FALSE"
(slot isComposition (default "FALSE")))

Fig. 6. Fact templates representing field types and instances

layer (e.g. the specification of a field type and the format for a specific field instance).
Other templates are used to represent information about the current state of the envi-
ronment, such as the position of an agent, the presence of fields in sites (Field), and
so on.

It is now possible to specify rules granting the layer the possibility to react to the
stimuli represented by agent actions, such as a field emission. The basic idea is that the
emission of a field (i.e. the assertion of a Field fact associated to a given site), triggers
rules analyzing the surrounding of the emission site and evaluating the possibility to
propagate the field value, modulated according to the diffusion function (the field is
propagated when it is not voided by the diffusion function and the destination site was
not already visited by the diffusion process). By modifying the working memory, adding
new field value, this rule is able to recursively trigger further activations on different
sites, stopping only when the emitted field has been propagated to all sites that are
reached according to the spatial structure of the layer and to the diffusion function of
the related field type.

More precisely, Fig. 7 shows the support structures and rules that were defined to
manage field diffusion. This operation is actually triggered by the presence of a new
Field fact that causes the firing of the start-diffusion rule, that asserts a Diffuse
fact that is used to manage and monitor the diffusion. In particular, the level slot
indicates the distance (in terms of number or arcs, not considering their weight) from the
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;; Directives for diffusion start
(deftemplate Diffuse "A level diffusion directive"

(slot instanceId) ;; id of the field instance to be diffused
;; type of the field to be diffused (can be the original type or "*")
(slot fieldType)
;; level to be diffused
(slot level))

(defrule start-diffusion
(declare (salience 1))
(Field (isComposition "FALSE") (collected "FALSE") (instanceId ?id)

(fieldType ?type) (site ?site) (sourceSite "null") (level 0))
=>

(assert (Diffuse (instanceId ?id) (fieldType ?type) (level 0))))
;; Diffuse a field to one site of the current level
(defrule diffuse-level-not-present (declare (salience 3))

(Diffuse (instanceId ?instId) (fieldType ?type) (level ?level))
;; ensure the field can be diffused (see template definition for details)
(Field (collected "FALSE") (sourceSite ?source) (level ?level)

(site ?site) (instanceId ?instId) (fieldType ?type) (spec ?spec)
(intensity ?int) (info ?info))

;; get the diffusion function name
(FieldType (id ?type) (diffuseFunction ?diffuse))
;; get an adjacent site (different from the local source site)
(Arc (siteA ?site) (siteB ?dest&˜?source) (id ?arcId))
;; verify that this same field does not exists on the adjacent site
(not (Field (site ?dest) (fieldType ?type) (instanceId ?instId)

(level ?l&:(<= ?l ?level))))
;; get the arc weight for the specified field type
(Weight (arc ?arcId) (fieldType ?type) (value ?weight))

=>
(bind ?newInt (apply ?diffuse ?int ?weight FALSE))
(if (neq ?newInt nil) then

(assert (Field (sourceSite ?site) (level (+ ?level 1))
(site ?dest) (instanceId ?instId) (fieldType ?type) (spec ?spec)
(intensity ?newInt) (info ?info)))))

;; this rule is identical to the diffuse-level-not-present except for
;; an ’exists’ instead of a ’not’ and a TRUE instead of a FALSE
(defrule diffuse-level-present (declare (salience 3))

(Diffuse (instanceId ?instId) (fieldType ?type) (level ?level))
;; ensure the field can be diffused (see template definition for details)
(Field (collected "FALSE") (sourceSite ?source) (level ?level)

(site ?site) (instanceId ?instId) (fieldType ?type) (spec ?spec)
(intensity ?int) (info ?info))

;; get the diffusion function name
(FieldType (id ?type) (diffuseFunction ?diffuse))
;; get an adjacent site (different from the local source site)
(Arc (siteA ?site) (siteB ?dest&˜?source) (id ?arcId))
;; verify that this same field exists on the adjacent site
(exists (Field (site ?dest) (fieldType ?type) (instanceId ?instId)

(level ?l&:(<= ?l ?level))))
;; get the arc weight for the specified field type
(Weight (arc ?arcId) (fieldType ?type) (value ?weight))

=>
(bind ?newInt (apply ?diffuse ?int ?weight TRUE))
(if (neq ?newInt nil) then

(assert (Field (sourceSite ?site) (level (+ ?level 1))
(site ?dest) (instanceId ?instId) (fieldType ?type) (spec ?spec)
(intensity ?newInt) (info ?info)))))

(defrule increment-level (declare (salience 1))
?diffuse <- (Diffuse (instanceId ?id) (fieldType ?type) (level ?level))
(exists (Field (instanceId ?id) (fieldType ?type) (level =(+ ?level 1))))

=>
(modify ?diffuse (level (+ ?level 1))))

;; rule used to keep the facts base clean, retracts the diffusion directive if
;; no new field was asserted in the previous level
(defrule end-diffusion (declare (salience 1))

?diffuse <- (Diffuse (instanceId ?id) (fieldType ?type) (level ?level))
(not (Field (instanceId ?id) (fieldType ?type) (level =(+ ?level 1))))

=>
(retract ?diffuse))

Fig. 7. Jess rules supporting field diffusion
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source site currently covered by the operation. Rules diffuse-level-not-present
and diffuse-level-present actually propagate the modulated value of the field to
sites having level distance from the source of emission. In fact a diffused field can
actually reach a given site with different paths in the layer, and the framework must be
able to manage this possibility3. The last rule, finally, detects the end of the diffusion
operation, when the previously described rules do not cause the assertion of new Field

facts for a given level.

5.3 DJess and MMASS: Agents

DJess can thus be adopted to represent facts about an MMASS environment and to
manage its internal mechanisms, such as field diffusion. In addition, it can be suitably
adopted to represent and manage abstractions related to agents. The behavioural speci-
fication of an MMASS agent is made up of a set of primitives, specifying an action to
be carried out at certain conditions. These primitives can be easily mapped to Jess rules,
whose left hand side specify conditions on the local context perceived by an agent, and
whose right hand side cause modifications of the agent internal state (for trigger and
react operations) and modifications in the environment (for emit and transport).

Note that rules are preprocessed when they are loaded; during this operation the
match on a Field fact is replaced by LAYER::Field so for example:
(Field (fieldType presence) (spec ?teacherId) (intensity ?int))

is changed in:
(LAYER::Field (fieldType presence) (spec ?teacherId)

(intensity ?int)).
In this manner the Field facts are matched on the LAYER’s working memory instead
of the agent’s working memory.

We will now present two sample elements of an agent behavioural specification, to
exemplify the adopted approach in the smart department scenario introduced in Sect. 4.
In particular, Fig. 8 shows some sample rules respectively related to the Lesson and
Student agents.

The first rule of the Lesson agent allows him to effectively exploit the perception of the
teacher and to follow its movement in the spatial layer by means of a transport operation.
The teacher is a human, an external entity moving in the environment according to his/her
free will. However, we suppose that a localization infrastructure is present and that the
system can be able to trace his/her position in the physical environment, mapping it to
the MMASS spatial layer by means of a teacher agent. Whenever the teacher moves,
for instance from his/her room to the corridor and then to one of the classrooms, the
teacher agent moves accordingly and it emits a presence field, whose specialization is
the teacher identifier. This field will thus be centered on the site associated to the current
teacher position. For instance, when the teacher exits his/her room (U7-101 in Fig. 2) and
enters the corridor the teacher agent moves too and the presence field, previously cen-
tered in the site associated to the room, is deleted from the layer and emitted from the site

3 The decision on how to manage this case (e.g. consider only the shortest path and discard
other diffusion paths, or combine the intensities) is actually delegated to the diffusion function
definition; note that this function can distinguish the case fields reaching a site from the shortest
path or deeper ones by means of the last parameter.
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;; Lesson agent behavioural specification
[...]
;; ALL THE FOLLOWING FACTS ARE ASSERTED IN THE AGENT’S WORKING MEMORY
;; the ID of the lesson
(assert (LessonId operatingsystems))
;; the room of the lesson
(assert (LessonRoom U701))
;; the ID of the teacher to follow
(assert (Teacher Jameson))

;; rule to follow the teacher
(defrule follow-teacher

(State following)
(Teacher ?teacherId)
(Field (fieldType presence) (spec ?teacherId) (intensity ?int))
(test (< ?int 3))

=>
(bind ?site (max-adj-site presence ?teacherId))
(transport ?site))

;; rule to emit the lesson-setup field
(defrule emit-lesson-setup

(State following)
(LessonRoom ?site)
(CurrentSite ?site) ;; matches if the current position is the lesson’s room
(LessonId ?lessonId) ;; to be used in the emit

=>
;; change state

(trigger lesson-setup)
(emit lesson-setup ?lessonId))

[...]

;; Student agent behavioural specification
[...]
;; THE FOLLOWING FACT IS ASSERTED IN THE AGENT’S WORKING MEMORY
;; the IDs of the lessons to which the student is interested in
(assert (InterestedIn (operatingsystems math1)))

;; rule to show a message when a lesson is about to start (using lesson-setup)
(defrule lesson-setup-notify
(Field (fieldType lesson-setup) (spec ?lessonId) (intensity ?int))
;; the perceived lesson must be of interest
(InterestedIn ?lessonsIds)
(test (member$ ?lessonId ?lessonsIds)) ;; true if the lessonId is in the list
;; the intensity must be equal to 1
(test (= ?int 1))

=>
(printout t The lesson (id = ?lessonId ) is starting. crlf))

[...]

Fig. 8. A part of the behavioural specification for Lesson and Student agent

associated to the corridor (U7C01 in Fig. 2). Under this assumption, the Lesson agent
can follow the teacher agent (and thus the teacher) in the MMASS spatial layer by per-
ceiving this specific type of field (comparing the field specialization to the fact Teacher
available to the lesson agent) in its site and adjacent ones and moving towards the one
having the highest level of intensity (selected invoking the max-adj-site function).
It must be noted that transport is a library function provided to agent designers by
the framework. Similarly, the second rule causes the emission of a lesson-setup field
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whenever the Lesson agent reaches the room assigned for the related lesson (indicated
by the fact LessonRoom also available to the lesson agent).

The only rule indicated for Student agents realizes the other side of this pattern of
indirect interaction with the Lesson agent, that is, the perception of the lesson-setup
field related to the lessons to which the student is interested in (this relation is checked
by looking for the perceived lesson in the fact InterestedIn). Since also students are
not automatic devices, the only action that can be carried out is the notification to the
human student carrying the device in which the Student agent is deployed. Similar rules
are present in the behavioural specification of device agents, that will instead actually
start the classroom setup.

6 Conclusions and Future Developments

This paper has described a Multi–Agent approach to the modelling and design of CUEs,
that are environments that support collaboration among persons in a context of ubiqui-
tous computing. In particular, the paper has shown how results of the research in the
topic of MAS environment has provided both modeling abstractions and concrete com-
putational supports for the analysis, design and engineering of CUEs. In particular, the
MMASS model was applied to represent and to manage several types of awareness
information (both physical and logical contextual information), which is an essential
part of a CUE. Moreover, an approach based on DJess to the design and engineering
of CUEs was introduced. Support tools for the definition and design of this kind of
environment were also realized (Fig. 9).

Future works are on one hand aimed at identifying a concrete situation for an eval-
uation of a CUE integrated with existing applications already adopted by users of the
environment (e.g. the CMS of the smart department scenario), aimed at further evalu-
ating the adequacy of the approach as well as testing the introduced prototype, in order
to identify problems and necessary additional features.

Fig. 9. A tool supporting the design of an MMASS spatial layer (on the left) and the testing of
field diffusion in it (on the right)
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Abstract. Multiagent systems for mobile and pervasive computing should ex-
tensively exploit contextual information both to adapt to user needs and to en-
able autonomic behavior. This raises the problem of how to represent, organize, 
aggregate, and make available such data so as to have it become meaningful 
and usable knowledge, facilitating the design and development of agents, and 
enabling them to acquire high-degrees of context awareness at limited efforts. 
In this paper, we identify the key software engineering challenges introduced by 
the need of accessing and exploiting huge amount of heterogeneous contextual 
information. Following, we survey the relevant proposals in the area of context-
aware pervasive computing, data mining and granular computing discussing 
their potentials and limitations. On these bases, we propose the W4 model for 
contextual data and show how it can represent an effective model to enable 
flexible general-purpose management of contextual knowledge, to facilitate 
agents in achieving high degrees of context-awareness and, overall, to facilitate 
the design and development of complex multiagent systems.  

Keywords: Context-awareness, Autonomic services, W4 Model, Knowledge 
engineering. 

1   Introduction 

Pervasive and mobile computing scenarios consider the possibility of providing users 
with ubiquitous and on-the-move access to digital services, and of supporting users 
interactions with their surrounding environments [18, 24, 10]. For this possibility to 
become practical and satisfying, agents should be able to understand situations occur-
ring in the surrounding physical context, autonomously adapt their behavior to the 
context from which they are requested, and proceed with their execution in an auto-
nomic (i.e., self-organizing, self-adapting, and self-healing) way [24]. The enforce-
ment of these features requires both the technology to capture contextual data and the 
capability of agents to exploit it.  

The technology to acquire contextual information is becoming increasingly avail-
able, and it will soon become widespread via the increasing deployment of RFID tags, 
sensor networks, localization systems, users’ and organizations’ profiles. This fact, 
together with the increasing success of participatory Web 2.0 tools, will soon make 
available to agents overwhelming amounts of information about facts and events 
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occurring in the physical and social world. This opens up the possibility of exploiting 
all such information for the provisioning of pervasive context-aware services for 
“browsing the world”, i.e., for facilitating users in gathering information about the 
world, interacting with it, and understanding it.  Those services require accessing to 
great amount of distributed and continuously updating data, however due to the 
amount of data and the inherent distribution the challenge is not getting the freshest 
data or all data available everywhere but getting a good approximation is real time. 
Accordingly, the real challenge for future pervasive applications is the investigation 
of principles, algorithms, and tools, via which this growing amount of distributed 
information can be represented, organized, aggregated, and made more meaningful, 
so as to facilitate the exploitation by agents [5].  

In the past few years, a number of different research communities, from pervasive 
computing, to data mining and granular computing, have recognized the above prob-
lems, and have proposed solutions aimed at engineering large amounts of contextual 
data and at turning them into usable knowledge [DeyA00, 11, 13, 34]. Thus, a first 
contribution of this paper is to survey such diverse proposals in different areas and 
critically analyze their potentials and limitations. The result of our analysis is that, 
despite the potentials of specific approaches for specific problems, none of them can 
qualify as a fully-fledged general-purpose solution for the challenges raised by perva-
sive autonomic multiagent systems.  Following, the second contribution of this paper 
is to present a novel data model to represent context information, and discuss its  
potential to act as a general-purpose model to handle several kinds of context infor-
mation. The model, which we call “W4”, is based on the consideration that most in-
formation about the world (i.e., about facts occurring in the world) can be simply 
represented in terms of four “W”s – Who, What, Where, When. Despite its simplicity, 
such a representation enables for very expressive and flexible data usages. In particu-
lar, W4 data can be easily queried and accessed by agents, tolerate the effective exe-
cution of semantic data organization and data aggregation, and can be effectively used 
to represent both primitive data and high-level knowledge related to a situation.   

2   Agents and Context-Awareness 

Our everyday environments (houses, offices, and cities) are increasingly populated by 
a variety of communication-enabled computing devices, forming the basis of a truly 
pervasive network and generating increasing amounts of information about the physi-
cal world and its processes. Embedded and wireless sensors collect and make avail-
able information about physical phenomena, RFID tags can be attached to objects to 
describe them and to track their usage. We, as humans, typically carry on a mobile 
phone and/or a PDA, possibly a GPS device and some additional wearable sensors, 
and can generate a lot of information about ourselves and about our own activities and 
movements. Similar considerations increasingly apply to cars and home furniture. In 
addition, the success of participatory Web tools (aka Web 2.0 technologies) and of 
geographic Web tools (e.g., Google Earth and alike), is increasingly making available 
nearly-up-to-date information about various facts and events occurring in the physical 
and social worlds. The above trend paves the way for the design and development of  
a wide variety of innovative, autonomic and context-aware, pervasive multiagent 
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systems. However, it also raises peculiar challenges in engineering such agents, 
mostly due to the issue of engineering all available data and turning it into usable 
knowledge. 

2.1   Context-Awareness vs. Situation-Awareness 

Agents have to be inherently context-aware. In fact, collecting information about 
situations around and acting accordingly is the very core of their activities [24]. The 
need for context-awareness also arises when one wants to enforce autonomic behavior 
in agents, i.e., their capability of self-organizing their activities, self-reconfigure and 
self-heal on need. Given the intrinsic dynamics and decentralization of pervasive 
scenarios, where components and devices belonging to different stakeholders can 
come and go at any time and where the structure of the network is inherently dynamic 
and unreliable, autonomic behavior is necessary to ensure agents’ continuity without 
forcing costly and hard to be managed human intervention. However, for such auto-
nomic features to be enabled, agents require the capability of understanding what’s 
happening around and react accordingly. 

Given that, as stated at the beginning of this section, a number of technologies ex-
ists that contribute producing large amounts of contextual information, one may think 
that achieving context-awareness is simply a non issue. Whatever the data source 
producing some raw item of contextual information (i.e., “data atom”), all of them 
contribute populating a large cloud of data atoms and at making it available to agents 
(see Fig. 1-left). An agent in need of understanding what’s happening around can 
access (i.e., internalize) the needed data atoms and analyze them.  

Unfortunately, such description is far too simplistic and does not emphasize a 
number of complexities inherent in it. First, the process of data internalization can 
lead to high communication and computational costs for a multiagent system, in that 
it may require accessing large amounts of data atoms possibly distributed across dif-
ferent devices and analyze which data may serve its current purposes. Second, the 
process of analyzing retrieved contextual data atoms and turning them into useful 
knowledge may be non-trivial. In other words, getting access to context information 
does not automatically imply the capability of reaching “situation-awareness”, i.e., the 
capability of recognizing a situation. That is, acquiring contextual information does 
not imply the capability of understanding situations, especially in the presence of an 
overwhelming amount of unrelated contextual data atoms. Such problem is even ex-
acerbated by the increasing heterogeneity of devices and tools that contribute produc-
ing contextual information, and by the consequent need of handling heterogeneity in 
data representation and semantics. 

In our view there must be an evolution from a model of simple context-awareness, 
in which agents access isolated pieces of contextual data and are directly in charge of 
digesting them, towards a model of situation-awareness, in which agents access prop-
erly structured and organized information, reflecting comprehensive knowledge that 
is related to a “situation” of interest and which can be exploited in a standardized 
fashion [5]. With reference to Fig. 1-right, we envision that the access by agents to 
contextual information does no longer occur directly, but rather via a “knowledge 
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network” layer. Such layer should encapsulate mechanisms and tools to analyze and 
(self-)organize contextual information into sorts of structured collections of related 
data items, i.e. knowledge networks. Such knowledge networks, by pre-digesting 
contextual information and by providing compact and expressive information to 
agents, may support them in reaching, with reduced efforts, a comprehensive under-
standing of “situations” around and, consequently, a higher-degree of adaptability and 
autonomicity. 
 

    

Fig. 1. (left) Pervasive devices and sensors make available to agents a sort of “data cloud 
layer”, fed with large amounts of heterogeneous data atoms. To serve their purposes, a multi-
agent system needs to retrieve contextual information (i.e., internalize data atoms from the 
cloud), analyze it to properly understand situations, and finally exploit such knowledge as 
needed for their own goals. (right) By exploiting a knowledge network layer, agents are no 
longer forced to access the raw data cloud layer. Knowledge organization and analysis is exter-
nalized in the middleware, and agents are given access to pre-digested information.  

From the software engineering viewpoint, an approach based on knowledge net-
works has the advantage of providing a clear separation of concerns between data 
analysis and data exploitation. While data analysis and organization is delegated to 
the knowledge network layer, agents are left with the only duty of exploiting such 
data to reach specific functionalities. As always in software engineering, this separa-
tion of concerns can notably reduce the complexity of developing and maintaining 
agents. A possible criticism of the approach is that it does not eradicate the problem 
of analyzing large amounts of information, but simply passes it to a different compo-
nent that either exists at application or at knowledge network level. However, in a 
distributed setting, knowledge networks can take care of knowledge management 
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duties that would have been otherwise replicated inside each agent, with an overall 
saving in computation and communication efforts.    

2.2   Engineering Challenges 

For agents to effectively achieve situation-awareness, and for our general idea of 
knowledge networks to become a practical tool, several engineering challenges have 
to be faced.  

Data Model. Our idea of knowledge networks requires the identification of a simple, 
general-purpose, and uniform model to represent contextual information. The model 
should enable representing very diverse facts about the context, typically generated by 
a variety of heterogeneous sources and at different levels of granularity. Also, the 
model should enable ease of manipulation of the data atoms, both by the algorithms 
and that will be embedded in knowledge networks and by agents. Furthermore, the 
model should enable to deal with incomplete information and information of limited 
accuracy. 

Access to Data. The very goal of knowledge networks is to provide knowledge to 
agents and to digest data from any possible contextual data source. First, it is neces-
sary to identify suitable methods (i.e., APIs) by which agents can be given access to 
the knowledge network layer and the information within. Such methods should enable 
flexible querying of the knowledge network layer, yet should limit the amount of 
information required by agents to fruitfully access it. Also, given the intrinsic distrib-
uted and decentralized nature of contextual information, access to knowledge net-
works by multiagent systems should abstract from the actual distribution and alloca-
tion of data and knowledge. Second, a similar general API should be provided for 
enabling data sources (which may include agents themselves) to inject new data in the 
knowledge network layer. 

General Approaches for Data Aggregation and Networking. Our idea of knowl-
edge networks is to have it as a “live” layer, which is in charge of continuously and 
autonomously analyzing information to aggregate data atoms, relate existing knowl-
edge atoms with each other, and extract meaningful knowledge from the available 
data. Thus, it will be necessary to identify algorithmic approaches for performing 
such analysis without explicit human intervention. Also, it is necessary for such algo-
rithmic approaches to be as general as possible, so as to be flexibly adaptable to a 
variety of application needs without having to re-think from scratch the knowledge 
network architecture for any new application needs. 

Application-specific Views. Strictly related to the above, we have clear in mind that 
the idea of a single knowledge network capable of capturing of the possible needs of 
all possible agents, is illusionary. In a given pervasive environment, a variety of 
agents by different stakeholders may exist and new ones can be deployed at any mo-
ment, each with its own goals. Such agents may, of course, have very diverse needs 
for what concerns to accessing contextual knowledge, and may require organiza-
tion/aggregation along different dimensions and based on different algorithms. For 
instance, some agents may be more interested in organizing/analyzing knowledge 
along the spatial dimension (e.g., for detecting spatial patterns of activities in an  
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environment), some along the temporal dimension (e.g., for detecting temporal pat-
terns of activities by users), some along some mixed spatio-temporal dimension or 
along any other application-specific dimension. Thus, agents may require the dynamic 
instantiation within the knowledge networks of application-specific algorithms for 
knowledge analysis. Accordingly, a general approach to knowledge networks should 
account for this possibility and enable the dynamic instantiation of any new knowl-
edge analysis algorithm.    

3   Critical Survey of Relevant Related Works 

In the last years the role of the environment has being rapidly considered as a funda-
mental one in modeling and engineering multi-agent systems. The environment abstrac-
tion suits to some extent our idea of knowledge network. For this perspective, the 
knowledge network can be perceived as an information environment where agents live.  

[3] provides an explicit representation of the spatial structure of the environment. 
They define a Multilayered Multi–Agent Situated System (MMASS) that describes 
the spatial structure of the environment as a multilayered network of sites. Agents 
diffuse fields throughout the environment, and since fields values can decrease during 
propagation, agents perceive them depending from where their position in space. The 
work in [32] interprets the environment as a locus to be explicitly designed and de-
veloped to provide agents with services. They introduce the notion of artifact for 
MAS, i.e. entities residing in the environment independently of the existence of 
agents. The artifact exposes a set of operations, which an agent aware of the artifact 
can invoke. [9] proposes a cognitive middle layer, starting from the idea that agents 
must be able to understand the environment and capture its dynamic nature. It is real-
ized as a three-layered architecture. The bottom layer is the physical environment.  
The middle layer is the concept model, it is merged into the environment and shared 
among all agents providing a common conceptual basis. And finally the topmost layer 
is the subjective mind, which resides in an agent. [28] considers the problem of dis-
tributed mobile application where the interactions between agents is complicated by 
the dynamics of the environment. They propose a distributed interaction protocol 
based upon roles called ObjectPlaces.  

All these approaches provides interesting models that could be applied to our 
knowledge network idea. However, even if the knowledge network base infrastructure 
could be based on environment-based modes, the fact that we are dealing explicitly 
with context acquisition and processing requires dedicated models and algorithms. In 
the rest of this section, we survey and analyze several approaches that, in different 
areas, are somewhat contributing pieces towards the realization of our knowledge 
network vision. Yet, none of the approaches we have analyzed properly addresses all 
the identified challenges.  

3.1   Context-Awareness 

In the past few years, a lot of research work has focused on identifying proper models 
for context-aware information, mainly with the goals of engineering usable context 
representation from low-level sensor data. 
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Early work in this area, as from Schmidt et al. [30] and Dey et al. [14], concen-
trates on the issue of acquiring context data from sensors and of the processing such 
data to make it available to processes/agents in the form of abstract components. Such 
approaches thus partially address the data model challenge, in that they recognize the 
need for a data model able to abstract raw contextual data at higher level. However, 
they generally miss in identifying a uniform model and a common semantics to de-
scribe the data. This forces developers to build new query languages and new compo-
nents in dependence of the kind of information at hand.  

A different thread of researchers focuses on the issue of providing rich data models 
for contextual information and of facilitating querying by agents. [29] proposes a 
context model in which each contextual data atom is represented by a set of environ-
ments variables – each one dealing with a different aspect of the context – that can be 
accessed in a flexible way. Similarly, [18] models contextual data by making possible 
to enrich it with several meta-information such as temporal aspects, information im-
perfection, etc. Such approaches well address the data model challenge, in that they 
aim at developing a general and flexible data model. However, working with data 
atoms made up of a long list of elements/variables does not go toward simplicity and 
generality, which we instead feel should both be goals. More recently, other proposals 
have adopted a similar endeavor but have considered the issue of adopting specific 
ontologies to model context-information and enable – other than efficient querying – 
also efficient context-reasoning [12, 27, 22]. Although such approaches tend to be 
application-specific, they attribute the importance of linking independent atoms of 
contextual information (with ontological relations) and of reasoning not only on indi-
vidual data items but also on their relations, an idea which is fully shared by our 
knowledge network vision. 

An increasing number of research work get inspiration from tuple space data mod-
els [1] and proposes representing contextual information in the form of tuples, storing 
them across a set of distributed tuple spaces holding local contextual information, and 
accessing them via associative (i.e., pattern-matching based) query operations on 
tuple spaces. Egospaces [20] adopts this perspective, without committing to a specific 
pre-defined structure for context tuple, which can make it difficult for agents to uni-
formly deal with tuples representing different aspects of the context represented in 
different formats. However, Egospaces proposes a so called “egocentric” notion of 
context, in which different agents can perceive a different context-dependent repre-
sentation of the contextual information, depending on their current location. We con-
sider such a feature very important in that it allows to tailor information to specific 
users’ needs and viewpoints. The Context Fabric model [19] improved the Egospaces 
idea in that it relies on well-structured context tuples each describing a single piece of 
context data in terms of entities (people, place, thing), attributes (e.g., the name). 
Moreover, even if it does not propose solutions for enforcing application-specific 
views, it considers the possibility of identifying relationships between context tuples. 
Recent proposals focusing on sensor networks, suggest exploiting a tuple-based ap-
proach to flexibly access sensorial information [26]. The idea is to have agents inject 
code into the sensors for aggregating/elaborating data within the network, and eventu-
ally enabling agents to directly access aggregated data according to their own specific 
needs.  
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In general we consider tuple-based approaches very suitable for organizing and ac-
cessing contextual information, but we also think that there is need of more structur-
ing and flexibility than those exhibited by the existing approaches.  

Some recent proposals focus on providing models for contextual data that adopt a 
uniform well-defined structure, capturing those specific aspects which are of interest 
by agents, a characteristic which we consider very promising. The approach proposed 
in the Nexus platform [23] proposes representing different contextual data uniformly 
accounting for fields such as spatial references and temporal references, for enabling 
general spatial and temporal queries over a context database. Similarly, the proposal 
described in [33] suggests adopting a seven-field data structure to describe the con-
text. The suggested fields include subject, predicate, object, time, area, certainty, 
freshness, which overall provide quite a complete characterization of contextual in-
formation. Finally, the system described in [7] proposes describing contextual infor-
mation contained in RFID tags in terms of identity, purpose of tag, location of tag, 
time of information production. Although the system is a special-purpose one, having 
been applied to RFID tags only, we consider it interesting in that is consider a simple 
enough yet quite informative structured data model, able to represent in a uniform 
way different data coming from different sources. Indeed, our proposal accounts for a 
very similar structuring for contextual information, and enriches it with a well defined 
API, and with the possibility of linking data atoms and of providing application-
specific views. 

3.2   Data Mining and Pattern Discovery 

As stated in Sect. 2.1, the potentially overwhelming amount of data that can be gener-
ated by pervasive sensing infrastructures does not constitute knowledge per se, in that 
agents have may have to face complex analysis tasks to get a meaning out of it. Such 
analysis task, which we think should be delegated to a knowledge network layer, is in 
the end a sort of data mining process [16].  

Data mining concerns analyzing large amounts of typically unrelated data to infer 
hidden linkages, correlations, rules, constraints, (i.e., broadly speaking, patterns) in 
such data [15, 4], to present such inferences to user for subsequent interpretation, i.e., 
to have the user give a meaning to data by analyzing the identified patterns. In gen-
eral, all the mechanisms proposed in this field can be naturally be employed within 
the knowledge network layer to extract knowledge from raw data collected by sensing 
devices.   

In the wide data mining research area, a variety of algorithms and approaches have 
been proposed, most of which rely on a general two step process: identifying relevant 
sets of related data item within the global dataset and, following, inferring patterns 
from this sets. This two-steps process can be of inspiration for knowledge networks, 
and in particular with regard to the need of identifying flexible and general algo-
rithmic approaches for continuously and autonomously aggregate and analyze data 
atoms. In fact, it may lead to a modular algorithmic approach, in which the two issues 
of relating data atoms and of extracting higher-level knowledge form such relations 
can be clearly separated.  

Data mining activities may, in general, identify thousands of patterns from data 
sets, all of them of general interest. With this regard, several researches involve the 



 Engineering Contextual Information for Pervasive Multiagent Systems 231 

specialization of association mining fundamentals to address the problems of specific 
application domains, e.g. spatial or temporal association rules, to limit the number of 
mined association to the most relevant ones [2, 31]. Of course, for applying the les-
sons of data mining to agents and knowledge networks, a similar application-specific 
approach must be taken.   

Recently many researchers applied data mining techniques to wireless sensor net-
works. Sensor network offers new challenges to classical data mining. The large 
amount of sensed data has to be modeled has a stream, there may be a large number 
of nodes in the network, calling for decentralized approaches and should account for 
data losses, and finally the power consumption issue must be considered. Some ap-
proaches[6, 25] focuses on mining sensed data for prediction purpose. [6] proposes a 
framework for data mining upon sensor network for supervised learning (prediction, 
classification, etc.) according to a specified level of precision and quality. The frame-
work is based on a two step process: the first step performs aggregation of sensors in 
clusters, in the second one, each cluster sends the aggregate to a data mining server 
that performs the analysis. Similarly, [25] proposes a framework for prediction based 
on the flow of local predictors through the network. At the root, predictors are com-
bined via a voting mechanism. Other approaches [17, 21] focuses on the general prob-
lem of identification of pattern by using neural networks algorithm in a distributed 
setting. In particular, these approaches: (i) uphold the need for data mining for analyz-
ing the vast amount of data in pervasive computing application, (ii) show that decen-
tralized approaches are effective and operable in distributed network with several 
nodes.  

As an additional note, typical data mining approaches are human-centered and 
query-based, i.e., assuming humans are the end users of data mining activities. In 
pervasive computing, instead, we require automatic methodologies for discovering 
relations between contextual data and for making these available to computational 
agents. Moreover, conventional data mining assumes the independence between the 
attributes and the independence between the values of these attributes, but in context-
awareness diverse attributes and their corresponding values are often related. Some 
researches has been done in areas where correlation between attributes exist [16], 
however they result in human-centered and visual data mining methodologies that are 
not suitable for pervasive multiagent systems.   

3.3   Data Aggregation Granular Computing 

Granular computing is an emerging inter-disciplinary research area that considers the 
general issue of processing “information granules”, i.e., collections of data atoms, and 
extract knowledge from them. The idea is to organize information granules together 
based on their similarity, functional properties, spatial/temporal adjacency, or identi-
fied regularities in data, and eventually provide higher knowledge-level views, at 
different scales, of the phenomena underlying information granules. Although the 
strict relations between data mining and granular computing are evident, the latter 
adopts a more theoretical and inter-disciplinary viewpoint, and specifically focuses on 
the idea that, at different level of observation and analysis, the same data can provide 
different knowledge [34]. 
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The ideas and principles of granular computing have been investigated in many re-
search fields from computer science to psychology: computational intelligence, artifi-
cial intelligence, the theory of hierarchy, divide and conqueror, the theory of small 
groups, etc. Such a wide range of researches demonstrates the potential of granular 
computing approach. Indeed, the underlying assumption of granular computing is that 
the basic principles and methodologies are independent from specific problem do-
mains. Granular computing naturally fits also our perspective on context-awareness 
and situation-awareness, and specifically our idea of knowledge networks. First, the 
goal of extracting knowledge from information granules directly maps into the idea of 
introducing a layer above the cloud of contextual data to access higher-level informa-
tion. Second, the idea of relating information granules based on different characteris-
tics and rules directly maps into our idea of knowledge networks. Finally, the idea of 
granular computing of providing multi-level views for serving different purposes 
directly maps into our goal of providing application-specific views of knowledge 
networks.  

To the best of our knowledge, there are no studies directly related to applying 
granular computing ideas to support context-awareness by pervasive multiagent sys-
tems. Nevertheless, there are studies related to applying granular computing tech-
niques to model spatial and temporal data at different levels of granularity, an issue 
which is of specific relevance to pervasive multiagent systems (which are inherently 
situated in space and time). Camossi et. al. [8] proposes a spatiotemporal data model 
relying on an extended ODMG model, which provides a uniform management of both 
moving entities and temporal maps. The model allows for the multi-level manage-
ment of such data, and also deals with temporal indeterminacy and spatial inaccuracy. 
Granular GeoGraph [13] provides a conceptual spatial data model with two granular-
ity dimensions: a purely spatial one and a semantic one. Spatial granularity refers the 
possible variations of the geometry of an object with respect to different scales, se-
mantic granularities refers to the possible variations of set of domain objects with 
respect to the levels of detail requested by different users/applications.  

Although the above researches help us providing some inspiration with spatial and 
temporal data, context-awareness and situation-awareness especially, involves more 
contextual factors and more rich set of relations to be taken into account, something 
which we indeed try to account in our proposal.  

4   The W4 Approach 

The result of the previous survey is that, despite diverse approaches address specific 
engineering challenges, none of them propose fully-fledged solutions for the need of 
modern autonomic pervasive multiagent systems.  

Our proposal for a novel, simple yet effective, data model for expressing contex-
tual knowledge about the world starts from the consideration that any elementary data 
atoms as well as any higher-level piece of contextual knowledge, in the end, repre-
sents a “fact” which has occurred. Accordingly, our proposal simply account that any 
of such facts – and therefore any data/knowledge atom – can be expressed by means 
of a simple yet expressive 4-fields tuples (Who, What, Where, When): “someone or 
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something (Who) does/did some activity (What) in a certain place (Where) at a spe-
cific time (When)”.  

W4 knowledge atoms may be created by proper software agents associated to data 
sources or sensor. Their four-fields structure is flexible and general enough to uni-
formly deal with information coming from sources as diverse as embedded devices, 
cameras, users, or Web 2.0 sites, and can account for adaptation to context and in-
complete information (i.e., some of the four fields being unspecified). W4 knowledge 
atoms, as tuples in tuple spaces, can be stored in suitable shared data spaces, whatever 
distributed and implemented. Users and agents, from everywhere, can retrieve knowl-
edge atoms via a simple API, based on “à la Linda” [1] pattern-matching query 
mechanisms. Such API supports context-aware queries and incomplete information, 
to enable agents to interact with the world and to enforce autonomic and context-
aware functionalities. In addition, the simple W4 structure support general distributed 
algorithms for data aggregation and manipulation, and facilitates the building of se-
mantic knowledge networks and of multiple, application-specific views. 

4.1   Data Representation 

The four-fields (Who, What, Where, When) of the W4 data model each describes a 
different aspect of a contextual fact. 

The Who field associates a subject to a fact, and may represent a human person 
(e.g., a username) or an unanimated part of the context acting as a data source (e.g., 
the ID of an RFID tag). The Who field is represented by a type-value pair, in the form 
of a string, with an associated namespace that defines the “type” of the entity that is 
represented. For example, valid entries for this field are: “person:Gabriella”, 
“tag:tag#567”.  

The What field describes the activity performed by the subject. This information 
can either come directly from the data source (e.g., a sensor is reading a temperature 
value), or be inferred from other context parameters (e.g., an accelerometer on a PDA 
can reveal that the user is running), or it can be explicitly supplied by the user. This 
field is represented as a string containing a predicate:complement statement. For ex-
ample, valid entries for the What field are: “read:book”, “work:pervasive computing 
group”, “read:temperature=23”. 

The Where field associates a location to the fact. In our model the location may be 
a physical point represented by its coordinates (longitude, latitude), a geographic 
region (we currently adopt the PostGIS language to describe such regions), or it can 
also be a logical place. In addition, context-dependent spatial expressions like “here” 
or “within:300m” can be used for context-aware querying, as described in the follow-
ing of this section. 

The When field associates a time or a time range to a fact. This may be an exact 
time/time range (e.g., “2006/07/19:09.00am - 2006/07/19:10.00am”), or a concise 
description (e.g., 9:28am). For example 9:28am = 2006/07/19:9:28am ± 5min. Also in 
this case, context-dependent expressions can be defined (e.g., “now”, “today”, “yes-
terday”, “before”) and can be used for context-dependent querying. 
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In summary, in our current implementation, the content of each W-field is a string 
of formatted text containing either some keywords like “yesterday”, “within”, etc.,  or 
some general unformatted words “read”, “work”, “temperature”, etc.  

While the 4 Ws structure the information contained in a knowledge atom meaning-
fully, the content of each field is still difficult to be analyzed and, in general, to an agent 
something like “What = read:book” has the same meaning of “What = djhxf:wyktx”. In 
our experiments and applications, this problem is trivially solved by using a predefined 
small ontology hardcoded into the agent and enabling the agent to recognize specific 
words. This of course, while vey simple to implement, presents all sorts of problems 
with regard to openness and scalability of the knowledge network. In any case, this kind 
of problem (i.e., the need to use shared ontologies) is not peculiar of our approach, and 
it troubles all open systems. Accordingly, in our future work, we plan to describe the 
content of each W-field by making use of well-defined ontologies supporting interop-
erability between agents also in open and large scenarios. 

4.2   Data Access and Multiagent system Engineering 

As already stated, it is fundamental to define a simple API for agents to access to 
contextual knowledge and enabling data sources and agents to inject new data in the 
knowledge network layer. Since knowledge atoms are stored in the form of W4 tuples 
in a shared data space (or in multiple data spaces), we took inspiration from tuple-
space approaches to define the following API: 

 

void inject(KnowledgeAtom a);  
KnowledgeAtom[] read(KnowledgeAtom a);  

 
The inject operation is equivalent to a tuple space “in” operation: an agent accesses 

the shared data space to store a W4 tuple there.  
The read operation is used to retrieve tuples from the data space via querying. A 

query is represented in its turn as a W4 tuple with some unspecified or only partly 
specified values (i.e., a template tuple). Upon invocation, the read operation triggers a 
pattern matching procedure between the template and the W4 tuples that already 
populate the data space. A vector of all matching tuples – i.e., those for which all the 
defined fields match those provided in the template – is returned as the result of the 
query. In any case, pattern matching operations work differently from the traditional 
tuple space model. In fact, our proposal relies on the W4 structure to enforce more 
expressive pattern matching operations, which may exploit differentiated mechanisms 
for the various W4 fields. Current mechanisms work as follows: 

Who and What. Pattern-matching operations in these fields are based on string-
based regular expressions. For example, “user:*” will match any user. 

Where. Pattern matching in this field involves spatial operations inspired by Post-
GIS operations. Basically, the template defines a bounding box (e.g., “circle, cen-
ter(lonY,latX), radius:500m”) and everything within the bounding box matches the 
template. All tuples with a Where field within the circle will match this field of the 
template. Contextual places such as “within:300m” can be specified in the template 
and are translated into actual spatial regions – based on the current location from 
where the query is performed – before going through the pattern matching.    

When. In this case, the template defines a time interval. Everything that happened 
within that interval matches the template. Concise time descriptions as well as  
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contextual ones (e.g., “now” or “before”) are converted into actual time intervals 
before pattern matching.  

Two simple examples follow to illustrate the querying process. Let us assume Gab-
riella is walking in the campus and wants to know if some colleagues are near. She 
will ask (via a read operation): 

 

Who: user:* 
What: works:pervasive computing group 
Where: circle,center(lonY,latX),radius:500m 
When: now 

 
Then, she will get in return the tuples representing all the colleagues of her group 

currently around (at least, of all those colleagues having decided to expose themselves 
via a W4 tuple). Similarly, Gabriella can ask if some of her colleagues have gone to 
work in the morning: 

 

Who: user:* 
What: works:pervasive computing group 
Where: office 
When: 2006/07/19:09am- 2006/07/19:10am 

 
We emphasize that the returned answers have not to be “complete” W4 tuples. The 

pattern matching mechanism also allows for matches between incomplete informa-
tion. Thus, unlike in traditional tuple space approaches, applications are based on 
components entering complete and incomplete context information and getting in 
response refined (but possibly still incomplete) information. 

In summary, the proposed data access model reflects standard tuple-space opera-
tions, but can rely on a predefined structure in the tuples to support more meaningful 
and semantic kind of pattern matching.  

4.3   Data Generation 

In the W4 model, we rely on the reasonable assumption that software drivers (or, 
more in general, software agents) are associated with data sources and are in charge of 
creating W4 tuples and inserting them in some sorts of shared data spaces. In the end, 
any data source must be somehow associated with some software to gather and store 
data items, W4 agents have the additional goal of collecting all the necessary informa-
tion to produce a W4 tuple which is as accurate and complete as possible. This occurs 
by sensing and inferring information from all the devices and sources available (e.g., 
RFID tags, GPS devices, Web agents), and by combining them in a W4 tuple. Three 
simple examples may clarify this concept.  

Let us assume Gabriella is walking in the campus park. Agents running on her 
GPS-equipped PDA, can periodically create the following tuple: 

 

Who: user:Gabriella  
What: walk:4km/h 
Where: lonY, latX 
When: 2006/10/17:10.59am 
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Where the Who is entered implicitly by the user at the login, What and Where can be 
derived by the GPS (e.g., the speed of Gabriella as measured by the GPS can be used 
to deduce that she is walking), When can be provided both by the PDA or by the GPS. 
Viewing this from a different, more fine-grained perspective, we can imagine that one 
agent controlling the user profile can create a raw W4 tuple in which only the who 
and where are specified; another agent controlling the GPS agent create a tuple in 
which only where and what (i.e., the speed) are specified. Accordingly, the merging 
of these two raw W4 atoms into the complete one represented below can be consid-
ered as an action of the knowledge networking that produces a more complete and 
expressive information.  

Now, let us assume that Gabriella’s PDA is connected with a RFID tag reader. A 
specific RFID agent controls the reader and handles the event of “tag recognition” 
whenever a tag enters in the reading range. In this case, either the tag contains its own 
Who and What description in its limited memory, or the tag ID can be resolved in a 
database (mapping tag IDs into the associated Who-What descriptions) that the agent 
may access to fill in the W4 fields. Otherwise, the Who reduces to the tag ID (which 
enables to access to the database later) and the What is left empty. As in the previous 
example, the Where and When can be read from the GPS of the user. The resulting 
tuple is as follows: 

 

Who: tag:#456 
What: - 
Where: lonY, latX 
When:  2006/10/17:10.59am 

 
The agent running in the knowledge network can use both the data coming from 

the GPS and the tag to provide a better localization of Gabriella. For example a good 
policy is that the RFID based location may be more accurate than the GPS one. So the 
resulting tuple describing Gabriella is the result of the merging between the previous 
ones: 

 

Who: user:Gabriella  
What: walk:4km/h 
Where: tag#456 
When: 2006/10/17:10.59am 

 
This last example shows again a task of knowledge networking, in that it includes 

and action for relating individual atoms to increase their informative values. 

5   Conclusion and Open Issues 

The W4 Model is our proposal for expressing contextual knowledge about the world. 
It tackles the majority of challenges in Sect. 2.2. However we are still working on it to 
extend the aggregation mechanism and to test them in distributed environments. Its 
simple four-fielded structure can uniformly represents data coming from diverse 
sources, it can represent simple data atoms as well as aggregated atoms. The examples 
in Sect. 4 shows the expressiveness of the data model in diverse situations. The  
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developed API to access the knowledge network layer and to inject new data is simple 
yet flexible in that it is based upon the classical tuple spaces mechanism, the query 
interface is based on expressive pattern matching  upon the four fields. Respect to first 
works in the field of Context-awareness such as [30] and [14],  the W4 Model can 
uniformly deal with multiple context information in a coherent way, without leading 
to a long list of all the characteristics of the context as [29] and [18]. Differently from 
the tuple based approaches ( [20] , [19]) the W4 representation strongly structures the 
context representation, so that the context representation can be easily browsed. The 
W4 Model represents the context similarly to [23], [33] and [7], but our approach is 
general purpose and able to represent a large number of context information. 

About the knowledge network, our idea is to exploit the four fielded structure to 
identify some preferential dimensions between atoms, and create new atoms repre-
sented the inferred knowledge. In this, the proposed approach is similar to the classi-
cal data mining process, in which in a first step is devoted to identify all data sets, and 
then patterns and rules are inferred from sets. 

Although powerful some problems and limitations affects the current W4 Model. 
The first criticism of the W4 approach is that it does not eradicate the problem of 
analyzing large amount of data, but simply passes it to a different abstraction level. It 
should be considered that knowledge network can take care of knowledge manage-
ment duties that would have been otherwise replicated inside each agent.  

A serious limitation of our model is the lacks of meta data about the context, such 
as the freshness of the data, the source of the data, etc. that are traditionally available 
to the agents. We plan to tackle this requirements in the future works.  

Another problem deals with the storage of historical information. Although histori-
cal data are useful to do inferences, for learning procedures and in general for query-
ing, it is not possible to store all W4 atoms, some mechanism to aggregate or delete 
old data must be developed. Moreover it must considered that the knowledge network 
leads to a multiplication of new atoms coming from the inferences process. 

In our future work we will try to tackle all these challenges to finally develop 
flexible and autonomic knowledge networks. 
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Abstract. The increasingly complex and dynamic nature of contempo-
rary markets demands that a business engages in an ongoing dialogue
with all aspects of its environment, including other cooperative and com-
petitive businesses. Whilst the concept of a business ecosystem captures
the essence of such a domain, the lack of a convincing software archi-
tecture for its support has resulted in solutions which only partially
leverages the potential of the forementioned concept. In this paper, we
present an architecture for a business ecosystem supporting application
based on Dynamic Agent-based Ecosystem Model (DAEM:) a novel and
promising approach to support business ecosystems and their adaptation
capabilities where the environment plays an identifiable mediating role.

1 Introduction

The increasingly complex and dynamic nature of contemporary markets means
that to achieve a sustainable growth and improve competitiveness, many busi-
nesses participate in agile partnerships of collaborating organisations having
complementary expertise. Typically, such partnerships form opportunistically
and require that a business engages in an ongoing dialogue with other members
of its environment.

The term business ecosystem denotes a strategic planning concept, introduced
by Moore [1], that captures the essence of such a domain. Moore defined a busi-
ness ecosystem to be a collection of companies which co-evolve developing capa-
bilities in response to new, wide-ranging innovations; companies both cooperate
and compete, as appropriate, as they contend for survival and dominance. A
business ecosystem is obtained when a set of (initially randomly) interacting
companies develops into a more structured community; and typically supports
competition at a higher level, i.e., competition among business ecosystems.
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Natural ecosystems—where species compete for same resources and interact
to create complex networks, such as food webs—do indeed offer a clarifying
metaphor. A natural ecosystem is an example of a so-called complex adaptive
system (CAS.) It comprises sets of individuals exhibiting emergent behaviours
which are not apprehended by any one individual. Such systems continuously
adapt to changes in their extremely dynamic environment, as defined by Hol-
land [2]. Yet, whilst Holland has likened a business environment (cf. financial
market) to a CAS, he has not provided any convincing means to explore the
metaphor of a business ecosystem. Needless to say about any indication on how
to develop one.

In this paper we present an architecture for a business ecosystem supporting
application based on Dynamic Agent-based Ecosystem Model (DAEM) [3]. The
latter comprises a synthesis of ideas from natural ecosystems and multi-agent
systems (MASs) providing an approach to leverage the strategic concept of a
business ecosystem along with its adaptation capabilities. In our architecture we
assume the existence of an MAS layer supporting business transactions. We then
add an extra layer where DAEM is played out. The novelty of our architecture
over other approaches is that it makes use of a mediating environment to support
all aspects of a business ecosystem according to [1] namely, encouragement to
innovate, resource competition, creation of alliances, detection of innovations
and changes, and the capability to react to those changes. Our motivation is to
help businesses to survive in their dynamically changing environment. Thus, we
focus on the uninterrupted and opportunistic discovery of potential long-lasting
partnerships such as those in a supply chain.

We begin by briefly explaining DAEM and how adaptation emerges from lo-
cal interaction occurring on a mediating environment. Then in Sect. 3 we present
our architecture which allows us to connect the ecosystem aspects of DAEM to
intra- and inter-organisational business interactions and supporting adaptation.
Afterwards, we contrast some aspects of our architecture against others and dis-
cuss how it is related to other environment mediation views found in literature.
Finally, we close the paper in Sect. 5 with a summary and future work.

This work lies in part within the EC-funded project SUDDEN (see [4].) Its
aim is to empower SME suppliers to collaboratively design and coordinate supply
networks in automotive ecosystems.

2 An Overview of the Dynamic Agent-Based Ecosystem
Model (DAEM)

In [3] we presented DAEM as a synthesis of ideas from natural ecosystems and
MASs. Its purpose is to provide an approach to leverage the strategic concept
of a business ecosystem. Thus, we focus on the uninterrupted search and op-
portunistic discovery of potential long-lasting partnerships, such as those in a
supply chain. We subscribe to the view that local, dynamic interactions are fun-
damental to the creation of ecosystems [5] and to the development of adaptive
behaviours [6]. In addition, we abstract from the details of a particular trade
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or transaction between two organisations and assume the presence of only three
elements in a business interaction, namely: services being offered; services being
evaluated; and feedback of service evaluations. That is, the actual exchange of
money for services is not considered here.

Typically, an organisation functions as both a supplier of one service and a
customer (cf. consumer) of another. An organisation offers its services to poten-
tial customers and receives service offers from potential suppliers. As a customer,
service offers are evaluated to determine who is more convenient to buy from,
and therefore, to tag him as a preferred supplier. Service evaluations are sent
back to the potential suppliers, so that they know how good their services are
perceived. These evaluations are relativised (i.e. they have values within the
range [0, 1]) according to the best service offer recently evaluated. Any customer
sending a relative evaluation of 1 is telling the supplier that his service offer is
considered the best one so far. Thus, the supplier knows he is the preferred one
for that specific customer.

Likewise, suppliers determine who are their preferred customers according to
received evaluations. Because these evaluations are relativised, the closer the
evaluation is to 1 the better that customer is preferred over others. Therefore,
any organisation knowing it is the preferred supplier of its preferred customer
will seek to increase the interaction frequency with its counterpart; and vice
versa. Preferred supplier and preferred customer will together become partners
and constitute a link in a supply chain.

Relative evaluations give an idea of how good a service offer is perceived
compared to the best one a customer has recently found. This information is
useful to determine how much improvement the supplier needs to better the
top supplier. This mechanism encourages competition so essential for a business
ecosystem to function [1].

Because we are interested in the capacity of an organisation as a whole to
respond effectively to changes in a business ecosystem, it is convenient to have a
single agent to represent an entire organisation. Typically, organisations are in an
uninterrupted process of potential partnership discovery. Thus, agents interact
with certain frequency, i.e. service offers are re-sent in order to detect whether
there has been any preference change.

Figure 1 depicts an agent interaction example in the automotive industry.
For instance, say agent i represents a car manufacturer who is about to start
a new car design. Among other parts, it needs a new instrument panel design
(IPD.) Agents j and h represent each an instrument panel designing company.
Say agent j sends his service offer (ipdp, adv)j to agent i where ipdp represents
the service description, i.e. IPD proposal, and adv is the service added value, i.e.
a quotation along with manufacturing time, warranty, etc. Then agent i analyses
the offer according to his own standards and grants an absolute evaluation of 400.
Because this is the best offer i has received, he sends back a relative evaluation
of 1.0 meaning that agent j knows his offer is the best one recently received (see
Fig. 1(a).) Service offers are compared against other recent offers as a mechanism
to implement the “forgetting” MAS engineering principle [7,3].
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(a) Agent j provides the best service
so far.

(b) But then agent h offers an improved,
better service.

(c) Agent j is notified that someone
else provides an even better service.

Fig. 1. Changes are detected through service evaluations

Now let us say that a similar situation occurs with agent h. He sends his
service offer (with a different added value, though) to agent i. After analysing
it, the latter concedes 500 as the absolute evaluation, i.e. higher that agent j’s
offer evaluation. Thus, agent i sends a relative evaluation of 1.0 to agent h. Thus
now, agent h knows he is i’s preferred supplier to do the IPD (see Fig. 1(b).)

Nevertheless, when agent i receives again a service offer from agent j, the
former analyses again j’s same offer and grants an absolute evaluation of 400
again. However, because now the highest absolute evaluation is 500 (agent j’s,)
agent i sends back a relative evaluation of 400/500 = 0.8. At this point, agent j
will know that a better supplier has appeared and that he has been replaced as
the preferred supplier (see Fig. 1(c).) Notice that agent j re-sent his service offer
even though he already knew he was the preferred supplier. In DAEM, agents
interact with certain frequency in order to detect preference changes.

In summary, if an agent improves his service, offers a new service or stops
offering one, it will be noticed in service evaluations and preferences will change:
replacing a supplier for a better one or giving preference to one customer over
another. This is how local adaptations (cf. innovations) are detected, which in
turn encourages competition as required by a business ecosystem [1].

2.1 DAEM and Environment-Mediated Interactions

An environment is a fundamental element of both businesses and natural ecosys-
tems, and is not omitted in DAEM. For our purposes, an environment is defined
as a virtually observable surface where inhabitants (i.e. agents) wander across
and encounter others in order to interact. It supports capabilities such as a sense



244 C.A. Maŕın, I. Stalker, and N. Mehandjiev

of positioning and displacement, and surrounding awareness. These capabilities
permit an agent to orient himself and follow notional gradients on the environ-
ment [7,8]. An environment as a surface allows spatial diversity and the creation
of niches [8] around keystone species [9,5], complying with the view of business
ecosystems [1].

The environment mediates agent interactions in a number of ways. In partic-
ular, it supports the use of “senses”, namely proximity sensing, sight, and smell.
The first one permits an agent to identify who are in his near vicinity and the
services being offered and required. Moreover, the environment restricts agent
communication, so that only agents close to each other are able to interact. The
sight sense lets an agent to “see” beyond his near vicinity and identify others
within a certain distance. This is mainly for deciding whether to come closer or
not for interacting depending on the services the agent is interested in.

In addition, all agents leave a trail of evaporative marks on the environment.
These marks contain information about the services the agent offers and requires,
but not information about the agent himself. Thus, when agents move (i.e. walk)
across the environment they can be tracked down by means of “smelling” the
mark trail. The smell sense lets an agent to detect a notional gradient on the
environment and guide his exploratory behaviour towards where it seems to
be something of his interest. These senses permit agents to forage for services
required and provided by those who have given the best evaluation and have
offered the best service, accordingly.

It is important to remark that there is no mapping between walking in the
DAEM environment and performing an action in the real world or acquiring
new valuable knowledge. The DAEM environment is a place for agents to “sense”
gradients, so that they easily explore interest gradients and track down the source
to find a potential customers and suppliers. Equally, the DAEM environment
allows DAEM agents to readily create these interest gradients around them by
means of leaving trails. This sense of attraction and service foraging resembles
food foraging in natural ecosystems and encourages the creation of niches around
keystone species [9,5]. Therefore, complying with the original view of business
ecosystems [1].

In particular, the idea of leaving and perceiving evaporative mark trails is
inspired by the concept of stigmergy (cf. [7]); we use mark trails as an indirect
communication medium to guide the agent exploratory behaviour and find other
agents. Other approaches are inspired by the same concept and used for the same
purpose, but applied differently. For instance, digital pheromones are used for
guiding agent movements through a space, either in a virtual environment [10]
or in the physical world [11]: pheromones left on the environment diffuse and
disseminate producing different levels of pheromone concentration, thus creating
gradient fields. The latter permits an agent to perform a hill climbing search
guiding the agent displacements either away or towards the pheromone source,
i.e. another agent.

In that approach, agents read the pheromone concentration on the spot.
Thus, to determine the gradient field direction agents have to read at least
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(a)

(b) (c)

Fig. 2. An example of agent senses

two pheromones on two different spots. That is, they have to navigate through
the environment first in order to decide what direction they want/have to take.
Once a direction is determined, the agent have to actually follow the trail, ei-
ther uphill or down hill, even though the pheromone source has already changed
direction. In contrast, in our approach agents have a smell sense and perceive
evaporative marks in a wider area. This permits agents to detect partial trails,
hence a gradient, and immediately determine its direction whilst being on the
same spot. Our approach permits agents to react promptly to a sudden direction
change of the agent being tracked down.

There is yet another example inspired by stigmergy called cognitive stig-
mergy [12]: an approach to consider annotations as an alternative to pheromones
for stigmergy coordination and cognitive agents rather than ant-like agents. An-
notations keep information about mediating artifacts; they contain symbolic
values representing an information piece along with a semantic, and denoting
an ontology; they are created by agents and other mediating artifacts to provide
feedback on other artifacts, e.g. session information, number of agents utilising
the artifact, number of times an artifact is used, etc. Although this approach
is motivated by stigmergy as well, its usage and purpose is completely different
from ours.

Another difference between the approaches mentioned above and ours is that
in those approached the agent is responsible for leaving the pheromone trail or
the annotations on the environment. This allows the possibility for an agent to
decide not to leave them. Thus, creating confussion among other agents and
possibly an undesired system behaviour. Whereas in our approach, leaving mark
trails is an environment property; they are managed by the environment through
all their existence avoiding confussion among agents.
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Fig. 3. Agents forming business ecosystems on the environment. Arrows exemplify
supplier-to-customer relationship: solid arrows correspond to preferred interactions, i.e.
links in supply chains, whereas dashed lines represent competitors trying to participate
in the main links.

To illustrate how to utilise agent senses, let us resume our previous example
of a car manufacturer looking for the best IPD provider. Let us say that agent
i is foraging for agent h because the latter has provided the best offer so far.
However, agent h is not found at the place where both agents interacted last time.
Nonetheless, agent i smells three mark trails at the distance (see Fig. 2(a):) trail
a) happens to belong to someone offering an IPD; trail b) was left by some
requiring a car insurance; and trail c) also belong to someone offering an IPD as
well. Thus, agent i moves towards the closest trail, i.e. trail c). Then it happens
that the sources of both trail a) and trail c) appear at sight reach, thus mapping
them to agent h and agent j, correspondingly. At this point, agent i identifies
agent h —the agent originally being looked for— and decides to move closer
to him rather than to agent j, thus changing its current route (see Fig. 2(b).)
Finally, both agents i and h has moved close to each other to have an interaction
(see Fig. 2(c).) Notice that agent j may decide on his own to move closer to agent
i to interact anyway.

In general, when any agent p is the preferred supplier for agent q and at the same
time q has given the highest evaluation p has received, they will forage for each
other. If no other agent with a better service comes across, p and q will eventually
reduce the distance between them on the environment, creating and strengthening
in this way a link in a supply chain. Thus, a supply chain is a collection of links
going from the supplier offering the basic service (cf. a basic resource) up to the
final customer acquiring a transformed product or composite service.

Additionally, participating in more than one different supply chain by offering
and/or requiring more than one service, agents become nodes in supply webs.
Due to supply chain links formed by individual preferences on suppliers and
customers, and on initial environment positions, two non-exclusive situations
might arise: (1) competitors will be attracted closer to the links in their attempt
to be part of the chain; besides, (2) one or more separate, similar, competing
supply chains might emerge along with its competitors swarming around the
links (see Fig. 3) resembling competition between business ecosystems [1].

Consequently, when an agent improves his service it will trigger changes to
local preferences at the individual level: better suppliers will usually be preferred
over others. Yet, at system level supply chains remain and survive to changes
occurring at the individual level.
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Fig. 4. DAEM architecture from a conceptual point of view; it is composed of three
layers namely, business layer, agency layer, and the DAEM layer

3 DAEM Architecture

We are interested in the capacity of organisations to respond effectively to
changes in a business ecosystem, thereby encouraging the survival of an or-
ganisation as whole, i.e. viewed as a single entity. Thus, as we have mentioned
above, in DAEM we envisage a single agent representing an entire organisation
and possessing (all) descriptions of the services provided and required by itself.
This emphasises organisation interactions because it orients the agents towards
service discovery and possible attendant interaction changes. However, we as-
sume that a company might be already supported by a composite agent or a
complete MAS with possibly high-level reasoning mechanisms to facilitate other
different important goals. Thus, we have decided to project this MAS as a single
agent onto a separate new conceptual layer where we have envisaged DAEM.
This projection is inspired by the aggregation property of CAS where a collec-
tion of interacting individuals can be seen as a single organism when treated as
a whole [2].

Conceptually, as we mentioned above the consider three major layers (see
Fig. 4:) (1) a business layer where service descriptions and business rules exist;
(2) an existing supporting agency layer where actual transactions are carried
out, and (3) a DAEM layer where business ecosystem interactions are played
out for opportunistic discovery of long-lasting partnership.

The business layer is where business rules exist and where (all) actual interac-
tions between organisation systems and users occur. Each organisation specifies
its services here and propagates service descriptions to the other layers for car-
rying out transactions (agency layer) and partnership discovery (DAEM layer.)
Moreover, interactions in this layer consist of service fulfilment, e.g. shipping
seats to the car assembly factory.

The agency layer is where software agents and associated MASs undertake
various, disparate tasks within an organisation. An MAS interacts with an-
other MAS (from another company) in order to engage transactions. When a
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Fig. 5. DAEM architecture: a collection of many business interacting systems assisted
by the DAEM layer to find potential partnerships

transaction needs more attention, e.g. a specific authorisation, it is sent to the
business layer for further consideration.

The DAEM layer is where each MAS from the agency layer is projected into as
a single agent. It is in this layer where the ecosystem interactions are played out
(see Sect. 2:) both potential partnerships are discovered and preference changes
are detected. Then, promising alliances are recommended to the upper layers for
their actual arrangement.

Each organisation along with the its corresponding MAS and DAEM agent
constitutes a system in the business ecosystem. Thus from the conceptual point
of view, the DAEM architecture represents a collection of interacting systems
portraying an open, collective system forming the business ecosystem. Then,
the DAEM layer functions as a first point of contact between any two companies
when looking for potential alliances. Figure 5 presents the DAEM architecture in
more detail: it shows any two typical agent-based systems of different companies
assisted by a unique DAEM layer for partnership discovery.

Users represent the business layer. A user interacts with the company’s system
for giving instructions or solving conflicts the underlying agents have not been
able to sort out. An example will be given in Sect. 3.1.

Software agents represent the agency layer counterpart. In this context, agents
engage transactions with peers from other companies. Moreover, they manage
supplies and the services their company provides among other important activ-
ities specific to the company itself.

The local environment application is the generic environment where the soft-
ware agents exist and perform their activities. The level of interaction media-
tion [13] as well as the deployment context may vary from company to company.
We assume the existence of three main internal components namely, a service
descriptor, a transaction manager, and a task manager. The service descriptor
is used to keep track of all the details of the services the company provides or
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requires in order to then establish corresponding transactions. Changes in service
provision are registered here as well as service evaluation standards. This com-
ponent helps to send service information to the DAEM agents. The transaction
manager is utilised for assisting in carrying out the transactions themselves, i.e.
the actual exchange of money for services. Finally, the task manager is a generic
component aiding agents in other important activities they are responsible for.

We now introduce the DAEM layer and its internal components. They are
slightly based on the environment reference model presented by [13]. This layer
is represented as a separate unique system with its own agents, environment,
and corresponding deployment context. Typically, a keystone enterprise would
be responsible for the development of such a system in order to coordinate its
own business ecosystem members [14]. The DAEM layer internal representation
basically contains two main entities: the DAEM environment and DAEM agents.
The former represents the space where DAEM agents inhabit; it provides the
mechanisms and dynamics to enhance DAEM agents with senses namely, prox-
imity, sight, and smell. These are used to guide the DAEM agent exploratory
behaviour on the virtual surface in order to find potential partnerships and de-
tect preference changes in the business ecosystem. Each DAEM agent represents
an MAS from the agency layer. DAEM agent interactions are mediated by the
DAEM environment in such a way that they have to be close to one another on
the virtual surface in order to interact. Figure 6 shows the internal structure of
the DAEM layer.

The virtual surface manager deals with the maintenance of the virtual surface,
i.e. it keeps a record of the current environment state. It is composed of four
internal components, three entity registries (agent, mark, and service) and the
map. The agent registry holds references of all DAEM agents existing on the
environment. This means that they have to register to this component when
entering the business ecosystem. The service registry keeps descriptions of all
services offered by all DAEM agents. Service descriptions are registered upon
entering the business ecosystem and whenever a new service is offered or one is no
longer offered. The service registry assists on the creation of marks by providing
the service descriptions only. The mark registry maintains all the actual marks
on the environment. As can be appreciated in Fig. 6, the DAEM agents do not
interact with the mark registry because the former do not decide whether to
leave a mark on the environment: mark dropping is an environment property,
thus it is managed by the environment itself. Finally, the map is the virtual
surface itself: it is a toroidal grid containing all possible positions or cells. Cells
contain pointers to an agent reference or a mark, in the corresponding registry,
to indicate an occupied position. DAEM agents interact with this component
when they want to move on the environment.

Dynamics is the component in charge of updating the virtual surface: it han-
dles the rules for its operation. It controls agent displacements according to the
direction the agent wants to move to. In addition, it manipulates directly the
mark registry for managing the creation, evaporation and the eventual deletion
of marks.
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Fig. 6. DAEM layer internal structure: the DAEM environment is a separate entity
from the DAEM agents; it mediates DAEM agent interactions

Perception periodically sends each to DAEM agent a set of information re-
garding his surroundings in the environment. This information is sent to all
DAEM agents regardless of whether they have performed any action or not.
This component queries the map to obtain the current position of all entities
on the surface. Then it calculates what each agent senses in terms of proximity,
sight, and smell. Afterwards, two lists are created containing agent identifiers
and associated service descriptions. One list relates to the proximity sense and
the other one to the sight sense. There is a third list created as well containing
copies of marks “smelled” in the surrounding area. Let us recall that marks only
contain service descriptions and no agent identifier.

The communication manager is the one that actually mediates DAEM agent
interactions. When a DAEM agent sends a message to another one it passes first
through this component. Then, it queries the perception component to see that
the recipient of the message is within the proximity space of the message sender.
If such is the case, then the message is delivered. Otherwise, the message is
simply discarted. Notice that this component does not mediate inter-layer com-
munication, i.e. communication between a DAEM agent and his corresponding
MAS in the agency layer.
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The mediating nature of the DAEM environment complies with the interac-
tion mediation supporting level according to [13]. Moreover, the DAEM envi-
ronment is a virtual surface mediating agent communication in such a way that
DAEM agents have to be close to one another on such the surface in order to
interact. Encouraging in this way local and dynamic interactions so fundamental
for creating ecosystems [5] and developing adaptive behaviours [6]. These ele-
ments are fundamental for maintaining a business ecosystem because they allow
agents to react timely to innovations and changes in preferences occurring in the
environment.

Service-oriented architectures (SOAs) are commonly used for supporting
business interaction due to their flexibility and modularity regarding economic
transactions [14] (e.g. [15]), and their capacity to inter-operate regardless of the
underlying implementation. Typically, an SOA consist of a service provider who
register a service in a service directory. Then a service consumer reads the direc-
tory and finds a service which suits its needs. Finally, the consumer invokes the
service. In terms of finding, for the first time, a suitable service and consuming
it, SOA and our DAEM architecture are similar. Nevertheless, the advantage of
our approach is the capacity of timely reaction to innovations and preference
changes occurring in the business environment, which SOA cannot cope with
that easily [16]. SOA is independent of the underlying technology, i.e. it survives
technical changes, but not interaction changes in the business environment. An
example of the advantage of our approach is given in the next section.

3.1 Supporting Adaptation: A Practical Example

We have explained in Sect. 2.1 how adaptation in supported by DAEM. We now
present how adaptation in the DAEM layer is reflected on both the agency layer
and the business layer making the whole organisation to react to innovations
and changes. At the same time, the DAEM layer is affected by decisions taken
in the business layer which triggers back more changes making the DAEM layer
to adapt again. Let us see a practical example, in the automotive industry, where
the three conceptual layers participate in the adaptation process.

Let us say that a company p manufactures car radios and is looking for a
new CD laser unit supplier. Thus, the corresponding DAEM agent p registers
a new service request to the DAEM environment, so that the latter produces
marks on the virtual surface containing the new information. Eventually, DAEM
agent p attracts three other DAEM agents: q, r, and s. They offer to supply the
required CD laser unit. DAEM agent p evaluates the three offers and provides
the corresponding feedback. Finally, DAEM agent p prefers DAEM agent q over
the other two whose offers were good but not better than q’s. Thus, DAEM
agent p suggests to his corresponding MAS p to engage interactions with MAS q
over the offered CD laser unit. (Please, refer to Fig. 1 and Fig. 2 for visualising
of how agent interactions work in the DAEM layer.)

MAS p tries to interact with MAS q but it cannot due to discrepancies in the
response time. Thus, MAS p informs accordingly to the corresponding user in the
business layer (see Fig. 7.) Upon analysing the situation, it is pointed out that
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Fig. 7. Interaction suggested by the DAEM agent is rejected in the business layer

they have had response time issues when being supplied by Organisation q, even
though the CD laser units are of good quality. Therefore, it is decided to avoid
further commercial relationships with Organisation q. Thus, MAS p is informed
about the decision and instructed to avoid further contact. Consequently, MAS p
instructs DAEM agent p about the taken decision triggering preference changes
which will be reflected in future interactions.

From this moment on, DAEM agent p grants a low relative evaluation (close to
0) to DAEM agent q whenever they interact. And no interactions with MAS q are
suggested to the agency layer any longer. Notice that future interaction are not
discouraged because no one knows when DAEM agent q will improve his service.
Thus, DAEM agent p looks for the second best CD laser unit supplier instead.
Immediately, DAEM agent p remembers that DAEM agent r is the second best
supplier. Therefore, DAEM agent p forage for DAEM agent r to confirm part
evaluations. Once they interact again and DAEM agent p confirms the quality
of the offer, he grants a relative evaluation of 1.0 making his counterpart know
he is the preferred supplier.

Afterwards, MAS p is informed about MAS r as a potential supplier. Thus,
MAS p tries to engage an interaction with it. But then again, a conflict in the
interaction shows up when arranging the minimum shipment size. Increasing
slightly the price. Once again, MAS p has to ask for authorisation to the cor-
responding user in the business layer (see Fig. 8.) The decision reached is to
carry on with the transaction. MAS p is informed accordingly and finally en-
gages the interaction successfully. Afterwards, the user in the business layer is
acknowledged about the transaction.

A business ecosystem is dynamic in the sense that changes occur highly fre-
quent due to businesses trying to survive and dominate in their environment.
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Fig. 8. Interaction suggested by the DAEM agent is authorised in the business layer

Furthermore in our example, let us say now that DAEM agent s improves the
service he offers: good quality CD laser units, low price and an even better re-
sponse time. DAEM agent p notices this improvement and when compared to
DAEM agent r’s service, it turns out that p’s is better, making him the new
preferred CD laser unit supplier. Thus after being suggested about it, MAS p
tries to engage the transaction and succeeds (see Fig. 9.) Finally, the user in the
business layer in informed about it.

Using SOA in the same example could prove difficult to make the whole system
adapt to changes in the environment. For instance, when the company p is looking
for a CD laser unit supplier, a web service can look for it in a service directory. Once
company q’s service is found, transactions could be made directly between web
services from both companies. Nonetheless, there is a problem that may arise at
this point: if a negotiation process is needed, services will not be able to perform it
and act upon it because they are usually statically predefined [16], as opposing to
MASs. This means that under the assumption of a static environment SOA works
fine. A business ecosystem is not a static environment, but rather a dynamic one
where changes and innovations are always happening.

Let us say that transactions between company p and q occur with no further
problem. Then, company s improves its product and its willing to have a new
partner. However, because services do not offer the possibility to dynamically
discover either new service offers or changes in the existing ones [16], company p
will find it difficult to know about it. And thus, wasting a profitable opportunity.
There are two ways to cope with this situation: one is to continuously check the
service registry in order to find new services; and the other one is to continuously
try all service providers in order to detect innovations and determine who is
better to interact with. Both solutions may prove costly and inefficient.
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Fig. 9. Successful engagement of suggested interaction

SOA supports transactions and the service execution stage, however a business
ecosystem requires more than just execution and transactions [16]. It requires ne-
gotiation support and mechanisms to detect innovations and preference changes
like our DAEM architecture offers, specially the mediating environment in the
DAEM layer. Therefore, our approach provides the means to support a business
ecosystem better than a SOA solution.

4 Discussion and Related Work

There has been an increasing effort in the research community to explore and
support environment-mediated MAS approaches (e.g. this volume.) Accordingly,
some definitions have been established to uphold the movement. Thus regarding
the related literature, by definition the DAEM layer constitutes a first-class ab-
straction environment [13] and functions as both resource context manager and
overlay data structure according to [17]. Moreover, it reaffirms the importance of
such an environment observed by others, e.g. [18], cf. common environment [19].
In general, our architecture complies with a composite configuration according
to [20]: in the DAEM layer (i) we have a simulation configuration because it is
mainly a virtual world where agents opportunistically find potential suppliers;
and in the agency layer (ii) we have an adaptive structured information system
configuration because MAS typically interact with other information systems
and users.

More broadly, a digital environment has been loosely defined as a virtual
space containing digital species such as software components, agents, services,
business models, or rules, etc. [21]. The DAEM environment complies with this
definition because it contains agents, marks, and rules of interactions. Moreover,
a digital ecosystem has been conceptualised as a software system purposely for
exploring properties of natural ecosystems in practical domains [22]. Again, the
DAEM abide by this definition. Finally, a digital business ecosystem (DBE) is
generally defined as a software platform to support business interactions similarly
to natural ecosystems [22]. We do not agree with this definition because it is
misleading: it does not refer in any specific way to the original business ecosystem
concept defined by [1], such as competition and response to innovations.
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We believe that the digital business ecosystem concept should be re-defined
and consider Moore’s business ecosystem properties. Thus, we extend the above
definition and based on Moore’s business ecosystem concept we re-define a digital
business ecosystem as follows:

A digital business ecosystem is a software platform supporting a collec-
tion of businesses permitting them to detect and respond to innovations
and market changes; it stimulates them to cooperate and form alliances;
it encourages them to improve their services, and to compete for re-
sources as they endure for survival and dominance.

Regarding other approaches to support business ecosystems, SOA is the most
straightforward to use because it is already focused on business transactions.
We present an example of it. In contrast, there is a work in particular we will
describe that strongly criticises SOA for business ecosystem support. Addition-
ally, we explain two other approaches using agent technology and evolutionary
computation:

Customer-centric business ecosystem [14] is an approach to conceptualise and
develop business ecosystems around the customer. The example they use to ex-
plain the idea is that of a car company who has to deal with many part suppliers.
However, the final product is not the car itself. But the a composite product in-
cluding recycling of the old car, signing up with a car insurance company, asking
for a loan at the bank, etc. Thus, in this example a business model is presented
where the customer is surrounded by many business ecosystems. Furthermore, a
single point of interaction is proposed between the customer and many ecosys-
tems through a single configurable platform. According to the authors, this is
possible by means of SOA because complex services can be easily composed.
However, as explained in Sect. 3.1, SOA struggles with dynamic service discov-
ery and detecting new services, which our DAEM architecture can easily handle.

Ecosystem oriented architecture (EOA) [16] is a new perspective for devel-
oping business ecosystem applications. First, SOA is exposed as an inadequate
technology for supporting business ecosystems due mainly to its lack of han-
dling dynamic interactions, so essential in a business ecosystem. Then, several
main mechanisms and components are described as substantial for developing an
EOA, an alternative approach to SOA. Among the mechanisms, a way to search
the most adequate service according to needs; publishing a reference model; and
allowing adaptation. DAEM architecture permits a service search through the
virtual surface which at the same time permit agents to react effectively to pref-
erence changes and innovations. Among the components enumerated, a model
repository is mentioned for maintaining business models; a service registry holds
references to the actual services; and a set of basic services is considered in-
cluding payment and a service discovery among others. The service registry is
already included in the DAEM environment; payment mechanism is handled by
MASs in the agency layer; finally, service discovery is possible by means of using
senses on the DAEM environment. Regardless of not mentioning any technol-
ogy at all as a suitable solution for supporting business ecosystems, we believe
that software agents are the most appropriate option due to their capability of
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autonomous problem-solving, and the simplicity of creating decentralised and
distributed systems.

The Open Negotiation Environment (ONE) [21] studies adaptation and spon-
taneous composition of disparate services by means of Dynamic Electronic Insti-
tutions (DEIs) formed by agents. They make analogies between DEI and DBE
and argue that DBEs can be constructed using DEIs. Short of presenting an ar-
chitecture or model, they analogise a DEI with a DBE and propose a process to
form DBEs by mean of DEIs focusing on short-term associations (cf. temporary
electronic institutions) whose members align their norms and objectives “on the
fly”. This approach does not comply entirely with Moore’s business ecosystem
definition because it does not mention any means of detecting changes in the
environment or supporting competition.

The Digital Business Ecosystem project [23] primarily makes extensive use of
evolutionary processes to find the optimal composition of suppliers for a specific
service request. They consider inter-connected nodes (called habitats) where in-
dividuals co-exist. These individuals represent services (as in SOA) and are the
base unit for evolutionary processes. A population of individuals is evolved by
means of a genetic algorithm to find the optimal composition of individuals to
fulfil a specific composite service request. Individual composing the optimal so-
lution create duplicates of themselves and migrate (via mobile agents) to other
habitats in order to participate in other requests. Services have a tendency to
remain where they are more requested making clusters cross habitats. In sum-
mary, they focus on the optimisation of one-shot service requests where supplier
compositions only last until the service is fulfilled. Indeed, this approach may
provide a profitable support to organisations. But falls short of entirely comply-
ing with Moore’s definition of business ecosystem because it does not provide
any means of detecting changes in the environment.

Contrasting with works mentioned above (except EOA [16]), DAEM and the
DAEM architecture provide support to businesses in order to construct and main-
tain a business ecosystem as defined above. This is the novelty of our approach.

5 Conclusions

We have presented the architecture of an environment-mediated business ecosys-
tem called Dynamic Agent-based Ecosystem Model, a novel and promising ap-
proach to model business ecosystems where the environment plays an undeniably
mediating role.

Our architecture assumes the existence of an agency layer already supporting or-
ganisations. From here, we project the agency layer into an additional layer called
DAEM layer where business ecosystem interactions are played out. The novelty of
our conceptual architecture over other approaches is that it supports all aspects of a
business ecosystem according to [1] namely, detection of changes and innovations
(cf. service improvements,) creation of alliances (cf. links in a supply chain,) en-
couragement to innovate (through a service evaluation feedback mechanism) and
competition for resources (through a service evaluation feedback as well.)
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We have put forward the notion of a digital business ecosystem and extended
the definition to abide by Moore’s definition of a business ecosystem.

We are currently developing a DAEM layer prototype. With it, we will go
through an iterative cycle to identify a set of conditions / parameters under
which a business ecosystem can be maintained. For example, the environment
size; amount of service offers required for the agents to gain global structure;
number of agents necessary to maintain a stable system; etc. None of the projects
mentioned in Sect. 4, focus on this aspect. Findings can both enhance the theo-
retical underpinnings of DAEM and provide valuable input into new models of
business ecosystems.

We believe DAEM is a novel and promising approach for modelling business
ecosystems; and the presented DAEM architecture will help to the development
of applications for creating and maintaining digital business ecosystems, where
the environment plays an identifiable mediating role.
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Abstract. Proximity is a key to scalable and meaningful interactions in
distributed systems, both natural and artificial, and in particular in per-
vasive computing environments. However, proximity as such is a vague
notion that can be considered both in a very factual manner (spatial
distance) and in a very abstract and subjective manner (user affinity).
We claim that an adequate system or programming language for ambient
intelligence applications ought to support an open notion of proximity,
making it possible to rely on different, possibly subjective, understand-
ings of proximity, as well as their combinations. We explore how to ex-
tend the Ambient-Oriented Programming language AmbientTalk with
language constructs that give programmers flexible control over subjec-
tive proximity definitions in both service advertising and discovery.

1 Introduction

Proximity can be defined as a state of nearest, the perception of being close
to something or someone. As a concept it naturally plays a significant role in
how, as humans, we interact with our environment. This can be observed in
the relationships we maintain with others, or in the manner in which we interact
with everyday objects around us. For instance, how we hold one friendship above
another, or in the way we relate the topics of different books to each other.

The concept of proximity is also of interest to the field of pervasive computing
and ambient intelligence, where the focus is on unobtrusively managing and
assisting the tasks of users. In these systems the introduction of proximity allows
interactions to be bounded locally. The approach aids scalability [35] as entity
interaction is scoped. In addition, the application of proximity allows entities to
demarcate content of interest [19] making it easier to discover services or data
that are of relevance.
� J. Dedecker is funded by Interuniversity Attraction Poles Programme Belgian State,
Belgian Science Policy.

�� É. Tanter is partially financed by the Millennium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile, and FONDECYT Project 11060493.

D. Weyns, S.A. Brueckner, and Y. Demazeau (Eds.): EEMMAS 2007, LNAI 5049, pp. 259–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



260 V. Ramiro et al.

For example, consider a proximity defined by a geometric distance of 10 meters
and a degree of separation between friends of 1. The former scopes interactions
to a 10 meter radius and recognises that content exceeding the boundary is of
less relevance. The later demarcates content which, in this case, are from close
friends. For pervasive computing the determination of such proximities should
be done at the service discovery level as this is the initial point of interaction. In
this paper, we present such an approach using a broad notion of proximity that
can be use in mobile ad-hoc environments.

Traditional applications of proximity have focused on the physical distance
between entities. However, by providing a broader notion of proximity that in-
corporates a more open application of the concept it is possible to gain greater
control over the interaction between entities. Unfortunately, such an open ap-
plication of proximity is currently not supported by the state of the art. From
this point of motivation, that open notions of proximity should be supported by
pervasive computing systems, this paper makes the following contributions:

– a taxonomy of possible useful notions of proximity is presented in Section 2.
– from this taxonomy we present, in Section 2.4, a set of requirements capable

of supporting these notions of proximity within a system.
– we propose a model that supports these requirements in Section 3.
– we present and discuss a technical implementation of this model in Ambi-

entTalk in Sections 4 and 5.

2 What Do You Mean, “Proximity”?

“Proximity is defined as the state, quality, sense, or fact of being near
or next” – The American Heritage

The above definition of proximity leads us to considering two orthogonal dimen-
sions when it comes to analysing proximity1. First, being near or next depends
on the notion of distance used; that is, one entity is close to another with re-
spect to a given metric. Such a metric can be based on physical properties of
the entities (e.g. physical location), or on a more abstract criteria, not related to
the material world (e.g. nearness of relatives). We discuss physical vs. abstract
proximity in Section 2.1, and then consider the interests of being able to compose
several proximity metrics in Section 2.2.

Second, the definition mentions the word “sense” in addition to “state” or
“fact”, which tends to suggest a subjective notion of proximity, that depends
on the actual perception of the subject entity. This is in contrast to objective
criteria or metrics, for which all entities share the same understanding of what
it means to be close. We elaborate on this dimension in Section 2.3

2.1 Physical vs. Abstract Proximity

Physical Proximity. In current pervasive computing and ambient intelligence
systems, the proximity of entities is primarily determine by physical
1 The most part of this section first appeared in [3].



Experimenting with Language Support 261

(a) Defining prox-
imity in the form a
polygon.

(b) Defining prox-
imity using a phys-
ical boundary of a
room.

(c) Defining prox-
imity using the sig-
nal propagation of
a wireless network.

Fig. 1. Different notions of physical proximity (B is “near” A, but C is not)

(a) Defining proximity using the re-
lationships of users. Distance is de-
termine by the degree of separation
between two users.

(b) Defining proximity base on
the interests or hobbies of users.
Weightings on links indicate simi-
larity of hobbies.

Fig. 2. Different notions of abstract proximity

considerations. For example in YABS [2], a domain specific language devel-
oped for pervasive computing, interactions are limited to the local environment,
where “local” is defined by a geometric parameter (Fig. 1(a)). In Gaia [34] a
middleware framework developed for pervasive computing, proximity is admin-
istratively bound to a physical location which, in this case, is a meeting room
(Fig. 1(b)). Taking a different approach, systems such as AmbientTalk [11] im-
plicitly define proximity based on the signal strength of wireless communications
(Fig. 1(c)): interactions can only take place when entities are in range of com-
munication.

Abstract Proximity. Physical notions of proximity are very useful in devel-
oping pervasive computing systems [19,35], but it is also possible to extend the
benefits of proximity considerations by examining abstract notions of proximity:
an abstract proximity does not directly map to physical characteristics of the
considered entities, but rather relies on logical, domain specific criteria.

First of all, one may consider a virtual rather than physical concept of place:
e.g. although video conference participants may be in geographically different
places, they all share the same virtual meeting room. On another line, one can
define proximity based on the relationships of users - friends, acquaintances, or
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friends of friends. The distance between two users (or entities owned by users) is
the degree of separation between them, i.e. the length of the path relating them
on a relationship graph (Fig. 2(a)). This metric can be used for instance to allow
access to your personal devices to yourself, your friends, and friends of friends
(that is, a friendship distance of at most 2). One can consider that present instant
messenger applications consider the buddy relationship, restricting interactions
to a distance of 1. In a different vain, it is possible to define proximity based
on the interests or hobbies of users. The distance in this case can be described
in terms of the similarity of one hobby or interest to another. For instance,
jogging is arguably much more similar to trekking than to knitting (Fig. 2(b)).
It is likewise possible to devise a wide number of abstract proximities, related
to particular domains or applications.

2.2 Composite Proximity

Most pervasive computing systems consider proximity as a singular concept: the
idea of composing different proximities to refine the overall scope of interactions
is generally not considered. This is a strong limitation, because considering the
potentially wide variety of proximity notions we have discussed above, it is clear
that there is a lot to gain in being able to combine different types of proximity
to express a more subtle requirement.

For example, composing a proximity based on geometric distance (Fig. 1(a))
and user hobbies (Fig. 2(b)) would first, aid scalability through the scoping of
interactions within the local environment, and secondly, highlight content in
the local environment that may be of interest. One could also consider spatio-
temporal proximity, relating entities that are or have been, within a given time
frame, in the same local environment. Another example is to combine spatial
locality with network link quality, e.g. to aid in the development of an application
disseminating multimedia content to local participants.

Alternatively, combining geometric distance (Fig. 1(a)) with the wireless sig-
nal strength (Fig. 1(c)) between nodes would define a proximity that not only
scopes interactions of nodes to their physical locality but by their closeness in
terms of signal strength. Such a proximity might be useful in disseminating mul-
timedia content to local participants where link quality is important.

2.3 Objective vs. Subjective Proximity

We now turn to a crucial issue when it comes to considering different notions of
proximity in the context of open networks.

Objective Proximity. Existing pervasive computing systems support a notion
of proximity that can be defined as objective in the sense that the semantics of
the proximity function are hardwired in the middleware layer. That is, all entities
in the system share the same notion(s). In a system like AmbientTalk, where
network connectivity is the only proximity factor, this shared understanding is
obvious. In Gaia as well, proximity is defined by physical presence in an active
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proximity(5); // circle of radius 5
proximity(-5,-5,-10,5,-10,20,10,20,10,5,5,-5); // polygon as in Fig.1(a)
proximity(F34); // symbolic location as in Fig.1(b)

Fig. 3. Proximity definitions in YABS

space, i.e. a meeting room. In a system like YABS, each entity can define its
own proximity requirement using the proximity function (Fig. 3). Although
the actual parameters of the proximity functions are specific to each entity, the
interpretation of the proximity function is defined in the infrastructure, and
cannot be changed.

Subjective Proximity. The way systems reliant on objective proximity work
implies that the different shared interpretations of proximity are installed or
configured upfront in the infrastructure. Although this approach is feasible if we
consider a limited and fixed number of interpretations (like in YABS), it does
not fit our claim that many proximity notions are of interest, both physical and
abstract, and that these notions are potentially specific to certain applications
or domains. It is necessary that clients be able to define, compose and use new
notions of proximity.

In other words, if a new entity joins a certain environment and looks for
services of a certain type that are “close” to it, this entity ought to be able to
use its own notion of what it means to be nearby. This means that the proximity
function should possible be defined by the client itself, not predefined by the
underlying infrastructure. In this case there is no globally shared understanding
of the proximity, rather a subjective view of the client, that reflects the particular
requirements of the application.

2.4 Requirements for Proximity Relationships

In order for a software system to support a notion of proximity it must be capable
of defining proximity relationships. A proximity relationship (PR) defines when
a party is considered to be in proximity of another party. The type of proximity
relationship that can be expressed in a system determines its support for the
notions of proximity we identified above. For example, a system will support
physical proximity when it supports the proximity relationship to be expressed
in terms of a physical distance.

To express the different notions of proximity we described above the under-
lying system needs to support evaluating proximity relationships. We distilled
five requirements for these PRs, that need to be supported by the underlying
system, such that they can express the identified types of proximity:

1. Open PRs: proximity relations should be general such that they can sup-
port both physical and abstract proximity. PRs can be defined in terms
of physical location parameters (such as GPS coordinates) or application-
specific parameters (such as database information).
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2. Composite PRs: proximity relations can be constructed as a composition
of a set of simpler or more comprehensible proximity relations.

3. Idiosyncratic PRs: proximity relations should be custom definable by both
clients and servers in the network. Since a network is built from heteroge-
neous components, each having their own requirements, it is impossible to
define a set of shared definitions of proximity. Being able to define idiosyn-
cratic proximity relationships enables one to express subjective proximity.

4. Distributed PR evaluation: proximity relations are defined over a set of
networked parties with the aim to reduce the number of interactions in the
system. Hence, it is important that the proximity evaluation process scales
and is therefore distributed over the network.

5. Dynamic PRs: proximity relationships should be definable with values that
change in time.

A model where it is possible to define PRs with these properties provides a
good basis to express the different notions of proximity we defined above. These
notions ought to be supported by system software for pervasive computing. In
the remainder of this paper we study how proximity can be used to scope the
context in which service discovery and advertising is performed.

3 Open Proximity Model for Scoping Service Discovery

The scope of service discovery is typically defined by the broadcasting range
of packets in the network. In practice this broadcasting range is limited to the
subnet of the network to reduce unnecessary network traffic in other subnets. The
scope of this mechanism is implicit and determined by the network configuration
rather than the application requirements.

In this work, we propose to scope the service discovery based on a proximity
model. In this section, we first give a brief overview of the model followed, and
then discuss some of its details. We finally evaluate it in the light of the PR
requirements established previously.

3.1 Overview of the Model

Service discovery is the combination of two processes: a service query, issued
by a client, and a service advertisement, issued by a server. Typically, a service
advertisement includes a number of attributes characterizing the service, and a
service query defines constraints on these attributes, specifying what the client
is looking for.

We propose to define explicit scopes based on proximity for both the query
and advertising processes. This allows a server to restrict its advertisements so
that they are visible only to clients within a given scope. Reciprocally, a client
is able to specify the scope within which it is interested in querying services.
Only if the scope of both parties intersect can the client actually see the service,
check its specific characteristics according to the query, and start using it if
appropriate.
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Fig. 4. Printer Scenario: Clients searching for printers around in a 10m proximity range
and Printers advertise if and only if the client is in the Social scope defined by a friend
network graph

The scope of a particular process is defined by a proximity function. Such
a function is a predicate over the properties that characterize the other party.
Properties are key-value pairs, that can include information such as the physical
location and application-specific data such as a social network database from an
application. The type and naming of the property information that is included
should be based on an ontology shared by the involved parties.

As an example, consider the scenario depicted in Figure 4. A client application
(running on a PDA) is searching for a printer server:

– The client application defines an objective and physical proximity function:
it considers any printer that is in a radius of 10 meters. This proximity
function defines the scope of client query.

– The printer services define an abstract and subjective proximity function
based on a social network: when the owner of the PDA and the owner of
the printer know each other directly (1st degree) or indirectly (until the
2nd degree) then the service considers the client to be in proximity. This
proximity function defines the scope of service advertisement.

When the owner of the PDA is within the social range of the owner’s printer,
and the printer is located within 10 meters around the PDA, the PDA sees the
printer and can run its service query to determine if the printer has the right
properties (eg. resolution), and if so, use it.

3.2 Distributed Evaluation Semantics

Figure 5 illustrates the distributed evaluation process for doing service discovery.
In the first phase, the client starts broadcasting in the network the requested
service and its properties. In this phase the scope of service query and service
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C : Client S : Server

[find(S, propsc)]

ps(propsc) ? continue : abort[propss]

[request]

[return]

pc(propss) ? continue : abort

pattern(propss) ? ask : abort

[1st phase: proximity scope]

[2nd phase: service discovery]

B : Broadcast

[S, propsc]

Fig. 5. Evaluation of proximity between server and client

1st phase: Proximity Scope
[proxserver(propsclient)]server the scope of the service advertisement

[proxclient(propsserver)]client the scope of the client query

2nd phase: Service Discovery
[queryclient(propsserver)]client if a service matches client requirements

Fig. 6. Distributed evaluation of service discovery with proximity

advertisement is determined, by evaluating both the client and server proximity
functions. Each function is evaluated at the site where it has been defined using
the properties that characterize the other party. The second phase, the execution
of the service query, is only performed when both client and server consider each
other in proximity. In this stage the client considers whether the service prop-
erties match its application requirements. In the printer example, this could be
the properties of the printer such as for example its printing resolution, printing
speed or the number of jobs that are in its queue.

The sequence diagram intuitively describes the evaluation semantics. Figure 6
summarizes the semantics. The notation [exp]site denotes that the expression exp
is executed on the node site in the network.

3.3 Efficiency of the Model

Our objective in presenting the proximity model was simplicity in its design
and usability. However, among the motivation for scoping service discovery with
proximity functions is the fact of increasing scalability of the system. For this
reason it is important that the model can be implemented efficiently.
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Costs of Proximity. We claim that proximity relationships can reduce inter-
actions among peers in the environment because a client and a service will not
initiate an interaction when they are not considered to be in one another’s prox-
imity. In particular, the actual service query is not executed unless both client
and server have agreed that they are in scope.

In the overall cost model, we have to consider (a) the amount of data that is
transferred over the network, (b) the number of connections that are established,
and (c) the computational resources used to compute the proximity.

Of course, we have to keep in mind what the cost would be if no support for
proximity were provided. For obtaining the same semantics without the support
of proximity relations, for instance in Jini [26], the client first retrieves all the
available services that match the query, and then have to filters them according
to his criteria of proximity.

So, our model implies the transmission of the properties required to compute
proximity on both sides. In Jini, server properties used to compute client-defined
scope would have to be passed also, after the query has succeeded. Client prop-
erties are not passed over the network, but this is due to the fact that it is
impossible to express server-side proximity with Jini: a published service is vis-
ible to any client in reach.

So overall, the gain of our approach in terms of efficiency is that queries do
not have to be evaluated against service providers that are out of scope. For this
to represent a gain, the cost of evaluating a query should be higher than the
cost of evaluating proximity. We believe this makes sense in most cases, where
proximity is a first approximation of the range in which services should be found,
while the actual service query potentially discriminates on each and every detail
of the provided services. This of course depends on a design decision that the
programmer has to commit to.

Staging Proximity Evaluation. If needed, it is possible to further enhance
the efficiency of proximity evaluation by adopting a staged evaluation approach.
The basic idea is as follows: since a proximity function is a predicate on the
properties of a peer, it can be decomposed in smaller functions that only require
a subset of these properties.

The smaller functions represent logical evaluation steps. Their composition
with boolean operators allows optimization of the traffic (at the expense of con-
nections). Indeed, if two functions f1 and f2 are composed with an and operator,
if f1 rejects the peer, then it is not needed to evaluate f2 (and therefore, we avoid
sending over the network the properties required by f2).

In the worst case, all smaller functions have to be evaluated, and so all prop-
erties have to be transmitted. The difference with the non-staged approach then
is that more connections have been necessary (one per evaluation stage). But on
average, this approach performs better.

Decomposing proximity functions in smaller functions to allow staged evalua-
tion has some consequences with respect to the simplicity of the approach. First,
the developer has to take special care into decomposing the proximity functions
manually, to keep the desired semantics. Second, each functions must indicate
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the precise properties it requires for evaluation. This is crucial to allow the run-
time to transmit only the required properties at each step of the evaluation. For
example, as we will see in Section 5.2, our solution in AmbientTalk simply relies
on a naming convention: a formal parameter of a proximity function must be the
name of the property it is denoting. Finally, attention must be paid to the order
of the functions because if the programmer has knowledge about the relative size
of properties, he can take advantage of this fact to evaluate first the functions
that require the smallest properties. We show an example of this in Section 5.2.

3.4 Discussion

Now that we have defined a model of proximity functions we can review its
capabilities to express the required types of proximity relationships we distilled
in Section 2.4:

1. Open PRs: proximity functions can express open PRs because they can be
used to express both proximity based on a physical location or on application-
specific information.

2. Composite PRs: Representing the proximity relationships as functions
has the advantage that the relationships can be composed using function
composition operators.

3. Idiosyncratic PRs: proximity functions are not predefined and both the
client applications and services can define idiosyncratic PRs tailored to their
requirements. As a consequence, both objective (when the functions refer to
a shared library of proximity concepts) and subjective (when the functions
define custom semantics for proximity) PRs be expressed in the model.

4. Distributed PR evaluation: In our model a PR is defined by two prox-
imity functions, one for the client and one for the server, such that each
proximity function is computed locally given the properties of each party.

5. Dynamic PRs: The model can support partially dynamic proximity rela-
tionships because the properties can be re-evaluated each time they are sent
over the network.

The proposed model of proximity functions is capable of expressing the re-
quired proximity relationships. In order to experiment with this model, we extend
the service discovery abstractions of a contemporary distributed programming
language for mobile networks, called AmbientTalk [11,9]. The next section briefly
explains the important programming concepts found in AmbientTalk. Section 5
then extends AmbientTalk’s service discovery abstractions to support our model.
If the reader is already familiar with AmbientTalk, it is safe to skip the next sec-
tion and proceed to Section 5.

4 AmbientTalk in a Nutshell

The Ambient-Oriented Programming (AmOP) paradigm [10] addresses the dis-
tributed computing problems associated with the interactions of mobile devices.
Interconnected mobile devices are different from traditional distributed systems:
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– Volatile Connections: Mobile devices are communicating using wireless
technology, which is subject to frequent interference such that failure is the
norm rather than the exception.

– Zero Infrastructure: Mobile devices are expected to operate autonomously
in different environments. These environments can offer infrastructure to
support interactions. However, such infrastructure is not always available
and a programming model should support software that does not rely on
infrastructure.

The AmOP paradigm [10] has defined a number of principal criteria for dis-
tributed programming models in order to address these characteristics:

– Time decoupling implies that it is not necessary to have both parties
of the communication connected at the same time. This criterium supports
communication between mobile devices that are temporarily unavailable due
to volatile connections.

– Synchronization decoupling means that the control flow of the commu-
nicating parties is not blocked upon sending or receiving messages. This cri-
terium ensures that the availability of shared resources, which can be locked
in a thread of control, does not depend on the availability of other resources
in the network.

– Space decoupling implies that the communicating parties do not need to
know each others addresses beforehand. This criterium is required to support
communication that does not rely on infrastructure.

In order to support these AmOP criteria a distributed programming language
called AmbientTalk [9] has been conceived. AmbientTalk is a distributed object-
oriented programming language specifically designed for composing service ob-
jects in mobile (ad-hoc) networks. AmbientTalk inherits most of its standard
language features from Scheme, Self and Smalltalk. From Scheme, it inherits
the notion of lexically scoped closures. From Self and Smalltalk, it inherits an
expressive block closure syntax, the representation of closures as objects and the
use of block closures for the definition of control structures. The object model of
AmbientTalk is derived from Self: classless, slot-based objects using delegation
as a reuse mechanism. The language also supports reflection [28]. The remain-
der of this section will be used to summarize AmbientTalk’s (distributed) object
model and its syntax.

4.1 AmbientTalk Objects

AmbientTalk is a domain specific language designed to support distributed pro-
gramming abstractions. Despite that, AmbientTalk remains a complete object-
based language with dynamic typing support. AmbientTalk bases its object
model in the prototype model from Self [39]. To explain how objects work in
AmbientTalk, consider the definition of a printer object:
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1 def Pr in t e r := object : {
2 def dpi ;
3 def queue ;
4 def i n i t ( dpi ){
5 s e l f . dpi := dpi ;
6 s e l f . queue := Queue .new ( 1 0 ) ;
7 } ;
8 def addJob ( aJob ) { queue . add ( aJob ) ; } ;
9 def getQueueSize ( ) { queue . l ength ( ) ; } ;

10 def pr in t ( ) {
11 queue . f o r e ach : { | doc |
12 doc . p r i n t ( ) ;
13 queue . remove ( doc ) ;
14 } ;
15 } ;
16 } ;

In the code excerpt above we define a Printer object ex-nihilo [20] with the
object: construct. This printer object has two fields: the printer resolution dpi
and an internal queue to store the incoming jobs. The init method is used to
initialize new objects when the new method is invoked. Rather than creating
a new instance like in class based object oriented languages, the new message
returns a clone of the receiver object. The init method initializes the object with
a coherent value to all fields. There are three methods defined in the Printer
object to manipulate the object’s internal state, addJob, getQueueSize and
print. The print illustrates the use of keyword syntax and closures. The queue
object has a method foreach: that takes a closure2 as its argument. The method
is, unlike the other methods in the example, not of a canonical form. Instead it
is based on the keyword syntax, which was first introduced in Smalltalk.

Keyword syntax can be recognized by the trailing colons after each word
and can take multiple arguments. For example, an iteration is expressed as
1.to: 10 do: { |i| system.println(i); }, where the keyword to:do: rep-
resents a function that take two arguments, an integer and a closure. A closure is
syntactically created with { |arg1 ... argN| exp1; ... expN }. In the code
excerpt above a closure is used in the print method to iterate (using foreach:)
over the printer’s queue. The closure has one argument doc, it prints the doc-
ument and removes the documents from the queue. In other words, the print
method iterates over the documents in the queue and removes each document
after it has been printed.

4.2 Concurrent Programming

The concurrency model of AmbientTalk is based on the communicating event
loops model from the E distributed programming language [27], which is an ex-
tension of the Actors Model [1]. The E model combines actors and objects into
a unified concurrency model. Unlike other actor languages such as Act1 [21],
ABCL [42] and Actalk [4] an actor is a container of regular objects that can
be individually sent asynchronous messages. Hence, whereas in traditional actor
languages only actors can be sent asynchronous messages, regular objects can
2 A closure is a nameless function that encapsulates its lexical scope.
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now also be sent asynchronous messages. The container is responsible for exe-
cuting these messages one at a time. To have a better understanding on how
AmbientTalk actors behave, we first need to describe the fundamental concur-
rency properties of the event loop concurrency.

Event Loop Concurrency. The communicating event loop of the E language is an
event driven concurrency model. In this model, the event loop is a thread that
perpetually processes events from its event queue by invoking a corresponding
event handler. In addition, an event loop can enforce three concurrency control
properties:

– Serial execution: An event loop processes incoming events from its event
queue one by one, i.e. in a strictly serial order.

– Non-blocking communication: An event loop never suspends its execution
to wait for another event loop to finish a computation. Rather, all com-
munications between event loops occurs by means of asynchronous event
notifications.

– Exclusive state access: Event handlers and their associated state belong to
a single event loop. In other words, an event loop has exclusive access to its
mutable state.

Actors. In AmbientTalk concurrent event loops are created with actors. Actors
represent the event queue with a message queue. This means that events are rep-
resented as messages, event notifications as asynchronous messages and events
handlers are represented as methods or closures. The thread event loop of the
actor is perpetually dispatching the messages of the message queue to the cor-
responding method in the receiver object of the message. Messages in the event
queue are processed serially to avoid race conditions on shared state of objects.
By default, all objects created belong to the virtual machine actor. Other actors
can be created as well:

1 def anActor := actor : { | arg1 , arg2 , . . . , argN |
2 . . .
3 } ;

In the code above a new actor anActor is defined with the actor: constructor.
An actor is isolated from its lexical scope to avoid sharing state with the actor
that spawned it, a set of arguments can be given to be copied in the lexical scope
of the created actor.

Communication. Each object belongs to one and only one actor. If the objects
belong to different actors, the communication must be asynchronous by means
of a far reference. A far reference is a proxy to the object belonging to another
actor. Figure 7 illustrates AmbientTalk actors as communicating event loops.
The dotted line represent the event loop threads of the actors which are taking
messages from the actor’s message queue and synchronously execute the corre-
sponding method on the actor’s owned objects. If two objects belong to the same
actor, they can communicate either asynchronously or using sequential message
passing.
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Fig. 7. AmbientTalk actors as communicating event loops

An asynchronous message is enqueued in the message queue of the actor that
hosts the target object. AmbientTalk distinguishes between sequential message
passing using the dot operator (obj.m()); and asynchronous message passing
using the arrow operator (obj<-m()). Asynchronous messages can return fu-
tures [27], which is a placeholder for the real return value of the asynchronous
call.

1 def pr inte rQueueSizeFut := pr in t e r<−getQueueSize ( ) ;

The printerQueueSizeFut is assigned to a future, in this case a placeholder
for the queue size of the printer. After the printer has eventually processed the
getQueueSize message the future will be resolved with the value returned by
the getQueueSize method invocation:

1 when : p r inte rQueueSizeFut becomes : { | queueS ize |
2 system . p r i n t ( ”The Queue S i z e i s : ” + queueS ize ) ;
3 }

The when:becomes: keyword takes a future and a closure as its arguments,
and registers the closure as an observer of the future. If the future is resolved to
a proper value, the closure is executed with the resolved value of the future as
parameter.

4.3 Distributed Programming

In the previous section we discussed the AmbientTalk’s concurrency model. Each
actor encapsulates one thread and a collection of objects that are serially acces-
sible by means of asynchronous message passing. From a distributed perspective
traditional actor languages also employ actors as the unit of distribution and
this is also the case in AmbientTalk. However, as opposed to traditional actor
languages AmbientTalk’s model of distribution makes it possible to remotely
reference regular objects using far references as a communication channel. This
means that, since far references only support asynchronous method invocations,
all remote communication is asynchronous too. Hence, the concept of far ref-
erences is used both for local and remote concurrent distributed computations.
AmbientTalk also provides programming abstractions to deal with partial fail-
ures [9] but these are beyond the scope of this paper.
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4.4 Summary

AmbientTalk is a language for distributed computing in mobile networks. Its con-
currency and distribution model is based on actors and communicating event
loops. This model is based on asynchronous messages exchanged between ob-
jects encapsulated in actor. The programming language features a number of
language constructs, such as futures and first-class event-handlers, to marry an
object-oriented distributed programming style with distributed asynchronous
concurrent computations.

5 Service Discovery and Proximity in AmbientTalk

In this section we explain AmbientTalk’s current service discovery abstractions
and discuss its limitations. In the light of these limitations we then present an
extension of AmbientTalk’s service discovery language constructs based on the
proximity model we proposed in Section 3.

5.1 Service Discovery in AmbientTalk

Service discovery is an important feature in ambient-oriented programming [11].
This paradigm assumes no network infrastructure such that service discovery
is important to bootstrap the system and find services as users move from one
location to another. Therefore an expressive and scalable manner to publish and
subscribe services in the network is required.

Pattern-Based Discovery. In AmbientTalk service discovery is facilitated with a
pattern matching system. A pattern has a similar structure as regular objects
but differs in the interpretation of its fields. In objects, fields always refer to
values (methods are also values in the form of closures) whereas a pattern’s
fields represent matching expressions. These matching expressions are evaluated
with the service’s fields. The matching expressions can be:

– Equality: a field must have a specific value, for instance x := 10 means
that the field obj.x must be 10 in the exported service obj.

– Wildcards: a field may have any value, for instance x := * means that the
field obj.x may have any value in the exported service obj.

– Constraints: a field may have any value in the range defined by the con-
straints, for instance x := constraint: { < 10} means that obj.x can
be any value less than 10. Notice that “ ” is bound to the runtime value of
the field.

As an example, a pattern to match the printer object we defined in Section 4.1:

1 def pr i n t e rSpe c s := pattern : {
2 def type := Pr in t e rSe rve r ;
3 def dpi := 700 ;
4 def queue := c on s t r a i n t : { . s i z e ( ) < 5 } ;
5 } ;
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In the code above, note that the pattern has a subset of the fields defined
by the properties of the printer. The printerSpecs defines that the expected
service must have exactly seven hundred dpi and less than five jobs in its queue.
Furthermore, the pattern defines the field type, which specifies the desired type
of the exported service.

Exporting and Querying Objects. An object is advertised together with a type
tag using the export:as: construct. Since AmbientTalk is a dynamically typed
language a type tag is used to universally identify the type of objects. In the code
below, the printer service creates a Printer object and then exports it tagged
as a PrinterServer.

1 def hp := Pr in t e r .new( Port .new( ”usb” ) , ” hp9200xl ” ) ;
2 export : hp as : P r i n t e rS e rv e r ;

On the client side we register a handler that, upon discovery of an object
matches the printerSpecs, and sends an addJob message to the discovered
printer object. Registering the handler, which is a closure parameterized with
printer, is done using the when:discovered: function:

1 when : p r i n t e rSpe c s discovered : { | pr i n t e r |
2 p r i n t e r<−addJob ( job ) ;
3 }

This function initiates a service query based on the pattern we defined above.
Note that this function does not block until a service has been found. Instead
it immediately terminates and the registered handler is asynchronously invoked
when a printer has been discovered.

Evaluation. AmbientTalk has an expressive pattern matching system to specify
service queries. However, the programming constructs do not provide support for
an evaluation of proximity prior to evaluating the queries. As a consequence, a
client has to encode his proximity requirement in the query itself. But the server,
like in Jini, has no means to scope his advertisement. Services are advertised
in the network based on a datagram broadcasting protocol. As a consequence,
service advertisements are propagated to all clients in the network broadcasting
range.

5.2 Open Proximity Model in AmbientTalk

In our extension, In line with the model we presented in Section 3, we introduce
two constructs to support proximity in AmbientTalk: properties and proximity
functions. Their usage is explained below from the server (service advertisement)
and client (service query) perspectives using the printer example introduced in
Section 3.

Properties. Properties define the context information that is exposed to servers
and clients. They are used in proximity functions for determining the scope of
the service queries and advertisements.
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1 def hp := Pr in t e r .new( Port .new( ”usb” ) , ” hp9200xl ” ) ;
2
3 def pr inte rProps := properties : { | hp , gps , myAddressBook |
4 def type := Pr in t e rSe rve r ;
5 def owner := ” J e s s i e Dedecker”
6 def dpi := hp . getMaxDPI ( ) ;
7 def queue ( ) { hp . getQueueSize ( ) } ;
8 def x ( ) { gps . getX ( ) } ;
9 def y ( ) { gps . getY ( ) } ;

10 def addressBook := myAddressBook ;
11 } ;

The code above defines the printer properties. These properties are parame-
terized with three objects hp, gps, and myAddressBook that are defined in the
surrounding lexical scope. These objects are encapsulated in the properties and
their values are exposed through the properties via regular fields and a method
invocation protocol. Fields are used to define a constant property value (such
as the maximum resolution of the printer, dpi) whereas the method invocations
are used to compute the latest value of a dynamic property (such as current
printer queue size, queue()). Whenever the properties are requested by a server
or a client all dynamic properties are computed and the results are communi-
cated to the requesting party. Hence, only the fields are communicated and not
the encapsulated objects such that this information remains hidden to the other
party.

Similarly, the client also defines the properties that are needed to compute
the proximity function.

1 def c l i en tProp s := properties :{ | gps , pda |
2 def owner := ” Vic tor Ramiro”
3 def addressBook := pda . getAddressBook ( ) ;
4 def x ( ) { gps . getX ( ) } ;
5 def y ( ) { gps . getY ( ) } ;
6 } ;

Computing the Scope of Service Advertisements. In the example in Sec-
tion 3 we specified that the printer service should only advertise itself to clients
whose owners are either direct or indirect (two degrees of separation) acquain-
tances. This type of constraints are expressed as functions that define the prox-
imity scope in which the service is advertised to potential clients. The scope is
defined by the socialScope function:

1 def soc i a l S c ope (){ | c l i e n t |
2 i f : s e rv e r . addressBook . c on ta in s ( c l i e n t . owner ) then : {
3 true ;
4 } else : {
5 def i n t e r := se rve r . addressBook . i n t e r s e c t ( c l i e n t . addressBook ) ;
6 i n t e r . l ength ( ) > 0 ;
7 } ;
8 }

The function takes one argument, client, which upon invocation is bound to
the client properties. The server properties are represented by the server object,
assumed to be in the lexical scope of the function definition. The socialScope
function checks if the owner of the client device (client.owner) is either a



276 V. Ramiro et al.

direct acquaintance or if the client’s owner indirectly knows acquaintances of the
server’s owner. This is a case where the information transmitted over the network
is heavy weight. In this specific case we need to know the friends connections
graph to resolve the social scope. If we do not have information of it beforehand
we need to calculate it completely. If we have information, for example using a
service available in the network, the function could delegate this task to a server
which knows and maintains the social graph (such as a Facebook web service).

Using Staged Evaluation. Another option to reduce network traffic is to
decompose our function in stages as described in Section 3.3. For that, we need
to realize that the socialScope function depends on the evaluation of an if
clause, which can be divided into two smaller functions. If the first clause yields
true, we do not need to evaluate the other function. We therefore reduce the if
to the composition of two smaller functions using the or operator, as follows:

1 def so c i a l S copeRe f i n ed ( ) {
2 def f 1 := { | owner |
3 my. addressBook . c on ta in s ( owner )
4 } ;
5 def f 2 := { | addressBook |
6 def i n t e r := my. addressBook . i n t e r s e c t ( addressBook ) ;
7 i n t e r . l ength ( ) > 0 ;
8 } ;
9 compose (or ( f1 , f 2 ) ) ;

10 }

Although the two proposed proximity functions, the socialScope function and
its refinement socialScopeRefined, have a different structure, they return the
same results. Note that in order to specify which properties are needed for each
function f1 and f2, these functions declare their formal parameter with the
actual property name (owner and addressBook). The runtime uses this infor-
mation to handle the optimized staged evaluation of the proximity. In this case,
if f1 evaluates to true, we do not need to evaluate f2, and therefore we avoid
transmitting the address book over the network.

Advertising the Service within its Scope. We have extended AmbientTalk’s
export:as: function such that the service’s properties and scope function can
be taken into account:

1 export : hp with : p r inte rProps in : s o c i a l S copeRe f i n ed ( ) ;

In the code above, export:with:in: exports the object hp with its properties
and the scope of the service advertisement is defined using a proximity function
socialScope.

Computing the Scope of Service Discovery. In the example we specified
that the client would restrict its service discovery scope based on a physical
proximity of ten meters radius. We define a euclidean proximity function:

1 def i sWithinRadius ( maxDistance ){ | s e rv e r |
2 def d := ( ( c l i e n t . x−s e rve r . x ) . expt (2 ) +
3 ( c l i e n t . y−s e rv e r . y ) . expt ( 2 ) ) . sq r t ( ) ;
4 d < maxDistance ;
5 }
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This function is parameterized with the server argument that will be bound
to the properties of the server. The client argument is bound in the lexical
scope of the function. The function computes the euclidean distance based on
the coordinates it finds in the client and server’s properties and checks if the
PDA is within the maximum radius of the server.

Initiating the Service Discovery. After we have defined the scope of service
query we can register the handlers to discover a service matching our description:

1 when : p r i n t e rSpe c s discovered : { | p r in t e r |
2 p r i n t e r<−addJob ( job ) ;
3 when : p r i n t e r<−l o c a t i o n ( ) becomes : { | l o c a t i o n |
4 gui<−showDialog ( ”Job added to p r i n t e r @ ” + l o ca t i o n ) ;
5 }
6 } with : c l i e n tProp s in : i sWithinRadius ( 1 0 ) ;

The client registers itself with when:discovered:with:in: the printerSpecs
to match services in the network and a handler to execute when a matching
service is found. This handler adds the printing job in the queue of the printer
server and announces where the document is being printed. It also attaches the
properties of the client (clientProps) and scopes the service query to a circular
area of ten meters of radius.

5.3 Discussion

We have extended AmbientTalk’s service discovery abstractions such that both
service queries and advertisements can be scoped with proximity functions.
These proximity functions are used to express PRs in AmbientTalk. We eval-
uate our service discovery extensions to express the different PRs we defined in
section 2.4:

1. Open PRs: functions can be defined in terms of physical location param-
eters or application-specific parameters. The only prerequisite is that this
information is exposed in the properties such that functions can access this
information.

2. Composite PRs: functions in AmbientTalk are first-class. Thus proxim-
ity function are first-class and can be composed. An example is shown the
composition made on the socialScope refinement.

3. Idiosyncratic PRs: functions can be idiosyncratically defined. Both clients
and servers can attach such a function to the service query and advertisement
such that each party can define its scope based on (subjective) proximity.

4. Distributed PR evaluation: client and service define their own proximity
function, just requiring the properties defined by the other as a parameter
to locally evaluate the function. Properties are distributed in the network
where each node evaluate them to determine the proximity scope. Staged
evaluation further optimizes the process by avoiding evaluating superfluous
conditions; this is at the cost of a manual decomposition of a proximity
function into sub-functions composed by logical operators.
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5. Dynamic PRs: the properties support dynamic fields which are re-
evaluated with each transmission such that only the most recent values of
the properties are used to compute the scope. The issue of how to deal with
interactions that have begun based on an assumption of proximity that turns
out to be invalid at some point in time is left unaddressed and represents a
non-trivial challenge for future work.

6 Related Work

We focus our discussion of related work on the use of proximity in managing
system interaction. In particular, we investigate the use of proximity in multi-
agent systems. Also, we look at how the concept of proximity has been applied
to service discovery in pervasive and ubiquitous computing.

6.1 Multi-agent Systems

The concept of proximity, or that of locality, is a technique that multi-agent
systems have used to manage and coordinate agent interaction. This can be
particularly seen in systems inspired by stigmergy [13], where the locality of
interaction with the environment is an essential construct in determining agent
behavior. For instance, Brueckner and Parunak [5] use stigmergy in a multi-agent
system to find global patterns across spatially distributed real-time data. Each
agent’s interaction is limited spatially to the local pheromone concentrations on
the individual nodes. Other applications of stigmergy can also be observed in
[14,24,33,40]. In these instances, while the environment used to perform stig-
mergy may differ, the notion of proximity is still evident.

The application of proximity is also apparent in other multi-agent systems us-
ing different forms of swarming such as flocking and shoaling [31,37,38]. In these
cases, agents coordinate their behavior based on that of neighboring agents. In
[30,29], for example, De Nardi et al. control a fleet of miniature helicopters using
the concept of flocking. Neighboring helicopters are determined through their
physical presence or proximity to each other. In another instance, Cui and Po-
tok [8] have developed a technique for clustering documents using a multi-agent
system based on flocking. Neighbours are determined via similarities between
the documents.

The use of proximity is not just limited to multi-agent systems inspired by bi-
ology. Castelli et al. [6] presents a system that allows agents to retrieve context
information via a spatial proximity centered around a specific physical loca-
tion. In a different approach, to aid collaboration among agents in a ubiquitous
computing environment, Locatelli et al. have devised a method [23] that allows
agents to perceive the physical or logical presence of other nearby agents. In [16],
Hanssens et al. structures agents within societies that represent, and which also
act on behalf of a user or space. Interaction is bound to agents within a society,
and hence to a specific physical proximity.

Julien and Roman have developed a middleware abstraction [18] that provides
agents with a view of the data in the system. The view, in terms of proximity, is
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defined using either a metric based on the geometric distance or the hop count
between an agent and the data within an ad-hoc network. It is also possible for
agents to define multiple views in which further access to the data can be gained
using a tuple based mechanism. In a similar approach, Schelfthout et al. have
developed a framework called ObjectPlaces [36]. The distance metric, in this
case, is defined on a per application basis. However, in practice it would appear
the metric needs also to include a hop count between nodes to ensure correct
operation.

In reviewing the usage of proximity it is evident that the concept, whether
it is used implicitly or explicitly, is one that is prevalent among research in
multi-agent systems. This is most likely due to multi-agent systems using the
environment as a primary abstraction [41] in their design. However, the extensive
support that we propose for proximity, and which we have outlined in this paper,
has not been fully realised in the multi-agent systems we have reviewed. As
such, there is limited support for open, idiosyncratic and composite proximity
relationships, as well as for their distributed evaluation.

6.2 Service Discovery

Within pervasive computing and ambient intelligence, service discovery is one of
the more useful techniques for supporting spontaneous interoperability between
components [19,12]. The approach facilitates the dynamic location of compo-
nents that allows interaction between components to occur with little or no prior
knowledge. It is a technique that has been applied successfully to a number of
pervasive computing systems [32,17]. However, traditional service discovery sys-
tems such as SLP [15], Jini [26] and Salutation [7], do not fully meet the demands
of pervasive systems. They tend to be designed for fixed infrastructures rather
than mobile ad hoc environments which are more prevalent in pervasive comput-
ing. Also, the use of proximity to improve the discovery mechanism, as outline
in Section 2.4, is not explicitly supported.

For instance, Jini [26] does service discovery based on an attribute matching
system. The default matching system checks for object equality and treats null
values as wildcards. The default matching process can be customized such that
boolean expressions can be used to match the attribute objects. While the com-
bination of attribute objects with a customized matching process enables one to
support open proximity relationships, it does not permit dynamic relationships,
because attributes cannot be changed at run time. As a result, it is not possible
to manage devices with changing GPS positions or to look up a printer with
a small number of documents in the queue of a printer. However, it is feasible
to define composite relationships using object composition techniques such as
aggregation and inheritance. It is not possible to support idiosyncratic proxim-
ity relationships because the attribute classes need to be known beforehand in
order for the clients to be able to refer to the attributes of the system. Finally,
while Jini does support some of the underlying system requirements of evalu-
ating proximity relationships, it is not explicitly provided for, nor is there the
ability to operate such functionality in, mobile ad hoc environment.
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There is, however, a number of service discovery systems that have been de-
signed for mobile ad hoc environments. Some of these systems have also used
proximity to improve their service discovery mechanism. For instance, Meier et
al. [25] have develop a system where service providers can define a proximity in
which their services are available from. The definition of the proximity is limited
to a geometric distance - physical proximity. The notion of abstract proximity
is not supported, nor is the concept of idiosyncratic or composite PRs. Once
a client registers an interest in a service they are continuously notified of any
matching services as they move through the environment.

In a different approach, Yoon et al [43] have developed an overlay routing
algorithm based on proximity. The approach is aimed at improving the discovery
of services in mobile ad hoc networks. While the algorithm does not allow the
explicit definition of a proximity, it does return the nearest service in terms of the
current state of the network. This is determined periodically through measuring
different aspects of the network. Liu and Issarny also use a similar approach [22]
to determining proximity. In this case they use the signal strength between nodes
to measure the nearness of services to a client. Open proximity relationships are
not supported by these approaches, nor is the ability to compose or distribute
the evaluation of these relationships.

While the use of proximity is evident among service discovery systems its
application tends to be limited. In our approach we have looked to provide a
verbose implementation of the concept that is both open and flexible.

7 Future Work and Conclusion

7.1 Future Work

The model we presented above has been partially implemented but there are two
important open issues that require further work. First, our implementation does
not explicitly consider the topology of the underlying network. This means that
our protocols only consider devices within the multicasting capabilities of the
network. In order to expand the range we are considering a publish-subscribe
architecture where nodes are selected to act as routers. These routers link de-
vices together that have an intersecting proximity scope. The second issue we are
investigating is how to manage dynamic proximity relations once the discovery
process has occurred. This implies determining an efficient way to recompute
proximity conditions when required, and give programmers a way to handle the
case where a proximity condition becomes false. Finally, we have to pursue em-
pirical evidence of the benefits of the staged evaluation and property-sending
mechanism described in this paper, through more complex examples and bench-
marks.

7.2 Conclusion

In pervasive computing, being able to scope interactions based on a notion of
proximity is important both for scalability and demarcation of content of inter-
est. Still, proximity is a vague concept whose semantics often rely on the implicit
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context of its subjects. From this observation we have argued for the support of
open notions of proximity in pervasive computing. We presented a taxonomy on
the concept proximity from an application perspective. From this taxonomy we
derived a set of requirements for defining proximity relationships between enti-
ties. This set of requirements was then used to design an open proximity model
for service discovery. Our model scopes the interactions between devices by defin-
ing a scope for service query and advertisements. Hence, evaluation of service
queries is scaled down to devices within this scope thus enhancing the scalability
of the overall system by reducing the number of interactions. A notable differ-
ence with other discovery mechanisms is the fact that service providers can scope
the advertising of services. Furthermore, since proximity is an open concept, in
this model we can define the scope of interactions based on any application re-
quirements, not only physical location. Finally, we have discussed and illustrated
a first integration of this model with the service discovery abstractions of the
AmbientTalk language.

References

1. Agha, G.: ACTORS: a model of concurrent computation in distributed systems.
The MIT Press, Cambridge (1986)

2. Barron, P., Cahill, V.: YABS: a domain-specific language for pervasive comput-
ing based on stigmergy. In: Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L. (eds.)
Proceedings of the 5th ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Component Engineering (GPCE 2006), Portland, Oregon, October
2006, pp. 285–294. ACM Press, New York (2006)
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Abstract. Interactions represent an important issue to be faced in the
development of complex agent systems, and deserve for appropriate sup-
port. In this context, roles have been successfully exploited to design
and deal with agent interactions. In this paper we explain how the role
management can be supported by the environment and which the related
advantages are. We will also present an infrastructure, RoleX, that can
be exploited to accomplish this task.

1 Introduction

The development of today’s complex systems clearly points out the need of new
methodologies and tools to face the emerging requirements. Complex software
systems are very dynamic, heterogeneous, and unpredictable. This requires high
adaptability, scalability, decentralization, and flexible interacting capability. Tra-
ditional development approaches show their limitations, while the agent-oriented
approach is emerging as a feasible solution. Software agents, thanks to their
capability of both executing in a proactive way and reacting to environment
changes, can naturally deal with dynamism, heterogeneity and unpredictabil-
ity [26]. Moreover, their sociality leads to autonomy in interactions, allowing
scalable decompositions of applications in terms of a decentralized multi-agent
organizations [16], and enabling interactions between agents not only belonging
to the same application, but also to different ones. So, agents are typically aggre-
gated in set of interacting agents, called Multi Agent Systems (MAS). Further,
we assist to an evolution toward societies, open sets involving agents coming
from different users and acting on behalf of them, and imposing rules for their
actions by means of social norms.

Mature but also recent work emphasizes the effectiveness of adopting role-
based approaches for managing interactions inside MAS and in particular inside
societies, since these approaches make it possible to specify security policies in
terms of organisation abstractions, such as roles, role permissions and inter-
role relationships [30]. One of the first and perhaps most known approaches is
RBAC, where a role is properly viewed as a semantic construct around which
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access control policies are formulated, bringing together a particular collection
of users and permissions, in a transitory way [33]. But several other approaches
have been proposed and fruitfully adopted (see Section 4).

The main contribution of this paper is the discussion about the chance of
supporting the agent role management by the underlying environment, sketching
the advantages of this kind of approaches in general and applied to a simple
application example (Section 2). To be concrete, we present also RoleX [10],
an infrastructure developed inside the BRAIN framework [14]. It is reported
as an example of infrastructure that can provide environment-level support for
the management of agent roles (Section 3). We report some related work in the
field of role-based approaches for agents (Section 4), and discuss it in connection
with environment support. Before the conclusion (Section 6), we propose some
open issues (Section 5), which, in our opinion, must be faced by the research
community.

2 Roles and Environments

As mentioned in the introduction, roles are considered useful to develop agent
systems that faces complex scenarios. In this section we give more details about
roles and introduce the connection with environments, sketching the possible
advantages; at the end of the section, an application example is exploited to
provide concrete examples of the proposed advantages.

2.1 Roles

We can consider a role as a stereotype of behavior common to different agents in
a given situation. Such a behavior is exhibited by the agent, but is also expected
by other entities, mainly other agents, organizations [30,39] and environments.
Biddle and Thomas defined a role as “a set of rights and duties”, in order to
remark the twofold aspect of this concept [6]. Their work inspired the most of
the role-agent approaches.

The role concept is particularly useful in managing interactions between
agents and the related coordination and collaboration [9]. In fact, since agents
live in a “social world”, roles are useful to model their interactions abstracting
from the actual specific agents that will perform them; moreover, this concept
is useful in the different phases of the agent system development.

There are different advantages in modeling interaction by roles and, conse-
quently, in exploiting derived infrastructures. First, it enables a separation of
concerns between the algorithmic issues and the interaction issues in developing
agent-based applications, leaving the former to agents and the latter to roles.
Second, it enables the reuse of solutions and experiences; in fact, roles are related
to an application scenario, and designers can exploit roles previously defined for
similar applications. In particular, roles can also be seen as sort of design pat-
terns [2]: a set of related roles along with the definition of the way they interact
can be considered as a solution to a well-defined problem, and reused in different
similar situations.
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These advantages are particularly useful in developing complex systems, as
mentioned in the introduction.

2.2 Environment Support

Environments represent the places where agents live, where resources are made
available, where services are provided, and in general where computation takes
place. They are the component often taken for granted in a system and thus
less considered, but their explicit engineering as first-class citizens can provide
an edge over the today’s approaches [31,36]. Environments are not limited to
simply host entities; conversely, they often are in charge of defining, applying
and managing organizational rules for the entities they host, which play specific
roles inside the organization [39]. In this paper, the term environment is meant
as a place composed of both “truly external” entities, which are considered as
“facts” by the agents, and a sort of “configurable” layer, which is not part of
the agents themselves, but can be exploited to supporting agents activities in
general, and interactions in particular.

With regard to the organizational point of view, strictly connected with the
environments, agent societies are emerging as interesting and useful for agent
systems. The sociality feature of agents empowers this paradigm by enabling
the definition of sets of agents, where different agents can interact to carry out
a global or a single goal. These sets of agents are called MAS (Multi Agent
Systems), and they have evolved to societies. The most important feature that
a society provides is to rule the interaction between members; so we can define
different kinds of societies from different coordination models [17,18]. Different
degrees of openness have been defined for societies [15], but in general we can say
that open societies better model complex systems, since they are more flexible
than closed ones.

In the following we identify some features that an environment should provide
to effectively support the role management:

– Role repository. The roles available in a given environment should be main-
tained in an appropriate repository. An important aspect, better detailed
later, is that each repository local to an environment contains the roles local
to the environment itself, not only in terms of “kind”, but also in terms of
“implementation”.

– Role management services. The environment should provide the basic ser-
vices to manage the roles; in particular we mention services to perform a
lookup in the role repository, services to assume and discard one or more
roles, and services to actually use the roles (for instance, to perform role
actions).

– Policies. The environment should provide mechanisms to define and to en-
force policies; polices can be related to different aspects, from the assumption
of roles to the interaction between agents playing given roles. These services
are particularly relevant in the societies’ context.
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So, environments should provide effective “glue” between roles and agents, not
limited to hosting both kinds of entities, but also actively participating in the
global computation, starting from a knowledge of the situations that is wider
than the one of the single entities.

In our opinion, the advantages of providing an environment-level support for
roles are the following:

– Dynamism. If the roles are provided by the environment, along with mech-
anisms to assume, use and discard them, they are not statically bound to
agents, enabling the dynamic discovering and exploitation of the role(s) that
better suit the agents’ needs.

– Social policy. The global view of the environment point of view enables not
only the definition of policies that are valid for all agents present in a given
environment, but also their control and the capability of enforcing them by
means of roles.

– Context dependency. The environment can provide not only specific kinds
of local roles, but also specific implementations of widely-known roles. In
this way, roles become a sort of “interface” between the agents and the local
resources/services [7].

– Security. The environment can be seen as a “trusted third party”, not only
in providing roles, also in managing the interactions enabled by the roles
themselves.

– Maintenance. The maintenance of roles is made easier by the fact that they
are kept in a well-defined entity (the environment) and only there their main-
tenance occurs, still being they available to agents living in the environment.

– Global view. In general, the environment can control the whole situation, so
it can not only provide roles and control their use, but also “suggesting”
roles to agents [12], in order to enable them better planning their actions.

2.3 An Application Example

In the following we provide readers with some concrete examples of the above-
mentioned advantages. The application exploited here is an agents-based auc-
tion. Even if this could be an “abused” example, it is well-known and quite
simple, not requiring a detailed explanation.

The scenario is as follows: an environment represents an auction house, where
agents can attend auctions playing different roles. In particular, the bidder, seller
and auctioneer roles are made available to agents. The system is open, so what-
ever agent can join, providing it can play the available roles.

The previously-mentioned advantages can be made actual as follows:

– Dynamism. The incoming agents can dynamically discover which roles are
provided by the environment.

– Social policy. An example of local policy is to forbid the interactions between
the bidders attending the same auction, to avoid collusion. If the interactions
occur via the environment, it can actively check them, even in a more so-
phisticated way.
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– Context dependency. The environment can make available “kinds” of roles
useful for the local requirements; for instance, a multiple auction bidder
can be provided where agents can attend multiple auctions. Moreover, the
same role can be implemented in different ways according to local poli-
cies/mechanisms; for instance, the same bidder role can rely on message
passing on an environment, while exploiting a shared dataspace on another
environment.

– Security. The environment can grant the correct transaction after the end
of the auction, for instance the payment by the bidder and the providing of
the good/service by the seller.

– Maintenance. When the implementation of roles must be updated, the de-
velopers can act on the role repository only, without needing to know which
agents has played the roles in the past, nor which agents will play them in
the future.

– Global view. With regard to the suggestion of roles, the above-mentioned
multiple auction bidder role can suggested to agents that attend different
auctions by means of the “simple” bidder role.

This subsection did not aim at proposing a complete application example, but
provided some hints to better understand the advantages in a concrete
scenario.

3 RoleX

In this section we present RoleX as an example of infrastructure that can be
exploited to provide environment support to the role management.

The BRAIN (Behavioural Roles for Agent INteractions) framework [1] pro-
poses an approach where the interactions among agents are based on the concept
of role. A role can be seen as a stereotype of behaviour, and is very useful to
manage agents without knowing their details.

In the context of BRAIN, the RoleX (Role eXtension) interaction infrastruc-
ture has been implemented [8]. RoleX can easily associated to Java agent plat-
forms by adapting the few platform-dependent classes.

In RoleX, A role is defined as a set of actions that an agent playing such role
can perform to achieve its task, and a set of events that an agent is expected
to manage in order to “behave” as requested by the role it plays. Interactions
among agents are then represented by couples action-event ; in particular, an
action of an agent A is translated into an event delivered to an agent B. So,
on the one hand the interaction is determined by the role-available actions and
events; on the other hand, such a translation can be performed and managed by
the underlying interaction system.

The meta-model of RoleX is reported in Figure 1, which shows the main
entities of RoleX and their relationships.

The management of roles in RoleX is highly dynamic, since an agent can
assume at runtime roles even unknown at compile time, thanks to a special
class loader called RoleLoader. Such a high dynamism is also granted by the



Environment-Supported Roles to Develop Complex Systems 289

Fig. 1. RoleX meta-model

exploitation of descriptors, which uncouple the physical implementation of a role
(i.e., the Java class) from its features.

In RoleX, the fact that an agent assumes a role means that the infrastructure,
via the already-mentioned RoleLoader, dynamically adds each role implemen-
tation member (both methods and fields) to agent members, in order to add
the set of capabilities of the role, thus modifying and extending the agent class
bytecode.

The sequence of activity performed in RoleX when an agent assumes roles
and perform actions is reported in Figure 2.

When an agent wants to assume one or more roles to carry out its tasks, it
queries the role repository in order to find the best role(s) for its needs. Then,
the agent asks the RoleLoader to reload itself with the new role (or, better, with
the role members added to the agent’s one). This step can be repeated if the
found roles are more than one. If everything is right, the RoleLoader sends the
agent an event to indicate that the agent has been reloaded. After the reload
event the agent can resume its execution.

The programmers do not know anything about the role implementation but
know by the descriptors, which actions can be used, and which events can occur.
In the following, we focus on the action use, because the management of the
events is similar and simpler. The use of descriptors means that the program-
mer cannot write code that invokes methods corresponding to role actions in
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Fig. 2. RoleX sequence diagram

the usual way, because a compile-time error will occur. Therefore, there must
be an invocation translator that does introspection on the extended agent to
dynamically find which method must be call in response to an invocation on an
action description. When the agent invokes a role action, it specifies to the invo-
cation translator a descriptor of the action that wants to perform, the translator
searches for a method that corresponds to the description and then invokes it
using the reflection.

To release a role, the process is similar to the addition, but this time the agent
is reloaded without that role.

The RoleX infrastructure can be exploited to implement the part of the en-
vironment devoted to the role management, and the previously-introduced ad-
vantages can be concretely implemented by means of the RoleX features.

As explained, RoleX enables a high degree of dynamisms not only in assuming,
using and discarding roles, but also in finding appropriate roles for the agents’
needs. The fact that the interactions are dealt with by the underlying interac-
tion system, enforces local policies and rules. Context dependency relies on the
availability of a local repository, but it is particularly enforced by the separation
between roles’ description and their implementation. Security is supported by
JAAS-based mechanisms [11], which enable the control over the single method
call. The repository is the place where the only role maintenance is performed,
making the administrator’s work easier.
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4 Related Work

In this section we briefly present some role-based approaches, and in the next
section we propose some related considerations.

An interesting approach is AALAADIN [21], a meta-model to define models
of organizations [22]. It is based on three core concepts: agent, group and role.
Fasli’s proposal is based on social agents, and joins several concepts, such as
commitments and obligations, with the powerful of roles, promoting the use of
a formal notation and analysis of the applications [20]. The GAIA [38] main
aim is modelling multi-agent systems as organizations where different roles in-
teract; GAIA exploits roles in particular in the analysis phase. E. Kendall well
describes the importance of modeling roles for agent systems [19], and she pro-
poses to exploit the Aspect Oriented Programming [27] to concretely implement
the concept of role in agent applications. The Role/Interaction/Communicative
Action (RICA) theory [34] was born with the main aim of improving the FIPA
standard with support for social concepts, which are implemented in RICA-J.
The Role based Evolutionary Programming (RoleEP) treats cooperative mobile
agents, which belong to the same application and that collaborate to achieve a
common goal [35]. The ROPE project [3] addresses the collaboration issues and
recognizes the importance of defining roles as first-class entities, which can be
assumed dynamically by agents. TRANS is a multi-agent system that provides
for role and group behaviors, and takes into consideration mobile agents [23];
an interesting feature of TRANS is the capability of defining rules on the role
assumption by agents, such as priority, exclusivity, compatibility and the dis-
tinction between permanent and temporary roles. The Tasks and Roles in a
Unified Coordination Environment (TRUCE) is a script-based language frame-
work for the coordination of agents [25], which aims to overtake problems related
to adaptability, heterogeneity and concurrency. Yu and Schmid [37] exploit roles
assigned to agents to manage workflow processes; they traditionally model a role
as a collection of rights (activities an agent is permitted on a set of resources) and
duties (activities an agent must perform); an interesting issue of this approach is
that it aims to cover different phases of the application development, proposing a
role-based analysis phase, an agent-oriented design phase, and an agent-oriented
implementation phase. In [40] Zhu and Zhou describe a role model which is
tied to both the computer and human parts involved in collaborations, and in
particular tries to provide help to human in computer-supported collaborations.

5 Open Issues

In the following we briefly sketch some open issues in connection with agents,
roles and environments.

The first issue comes from the analysis of the reported in the previous section.
The role concept is widely adopted to face collaboration and cooperation require-
ments, as expected. But some approaches go further, by providing some ideas of
social agreement about shared norms that rule the activities not only of a single
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agent, but also of the whole community of interacting agents (called “society”
as previously discussed). So, an “entity” that provides such social norms and
enforces them is needed, and the environment is our best candidate. Even if the
presented approaches do not explicitly consider the environment as a first-class
entity, the most of them can be exploited in the definition of environments.

A second issue is the gap between methodologies and infrastructures, and
concerns the development of agent systems in general. In fact, on the one hand,
the development of agent-based applications requires appropriate methodologies
and different ones for the analysis and design of MASs and societies have been
proposed so far [5]. On the other hand, there are different emerging approaches
in agent-oriented software engineering that rise from concrete application needs,
and propose infrastructures to support agent development and execution; this
leads to bottom-up approaches, which start from very concrete aspects such as
languages, protocols, runtime supports and so on and evolve towards abstract
concepts [4,24,28]. A lot of work has been done about agent methodologies and
agent infrastructures, but a relevant drawback is the separation existing be-
tween these two aspects, which has led to a gap between methodologies and
infrastructures, or, better, between analysis and design from the one hand, and
implementation and execution from the other hand. In addition, in our opinion
this separation also delays the acceptance of the agent paradigm by the industry
world, which cannot fruitfully applies it to the development of software. With
regard to systems where environments are considered as first-class entities, this
issue is very relevant because environments often exploit infrastructures, while
are disregarded by the methodologies. Some efforts in the direction of mapping
methodologies and infrastructures have been made [13,29].

The third issue relates to the dynamic exploitation of the role services made
available by the environment. Note that the capability of dynamically finding
out and exploiting the role services can be extremely useful, because agents
can then find and exploit other kind of services by means of played roles. For
instance, an agent that wants to attend an auction, but does not know a priori
the exact services of a given environment, can require the bidder role, which
provides it all the “knowledge” to access the auction-related service (e.g., the
capability of bidding, of knowing the current highest bid, and so on). In open
scenarios, environments should provide “open” way for letting agents manage
roles, in particular in assumption process and in operation invocation.

The fourth issue is strictly connected to the third one. An appropriate de-
scription system is required to enable agents to play the desired roles in open
scenarios. In fact, we can envision an open agent world developed by different
developers, for instance some focusing on agents and others on roles, not neces-
sarily with a detailed agreement on interfaces and mechanisms. Nevertheless, if
the world is open, it must enable different agents to play the needed roles. Be-
sides the discovering and exploitation mechanisms above described, the agents
need to specify which role is needed, or, better, which functionalities they need
in one or more roles. We are talking about a “semantic” search for roles, which
must be enabled by environments.
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An approach that can be proposed to face the two previous issues is the one
based on knowledge networks [32]: inspired by biology, it provides mechanisms of
information crunching and re-assembly that enable to semantically find services
even based on different interfaces or standards. This can be useful to face the
above mentioned heterogeneity, unpredictability and high dynamism.

6 Conclusion

In this paper we have discussed about the support for agent roles provided by
the environment level. We have depicted different advantages, from both the
conceptual and the concrete point of view. The use of roles can significantly
improve the development of agent-based systems that model complex scenarios,
but their support by the environment can provide further advantages.

We proposed also different considerations, in connection with both existing
approaches and the agent-role development in general.

With regard to future work, we are exploring some of the issues proposed in
Section 5, proposing some research directions [13,32] that must be further eval-
uated by the scientific community, but in their early stage seems to be effective.
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