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Abstract. By means of a logical condition between two partitions L and L ′ (“weak logical
independence”), we find connections between probabilities and possibilities. We show that the
upper envelope of the extensions of a probability on L is a possibility on the algebra generated
by L ′. Moreover we characterize the set of possibilities obtained as extensions of a coherent
probability on an arbitrary set: in particular, we find the two “extreme” (i.e., dominated and
dominating) possibilities.
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1 Introduction

The classic approaches to knowledge acquisition or decision processes start from a
knowledge–base able to settle once for all the set of objects ruling the inferential pro-
cess (states of nature, events, “rules”, functions measuring uncertainty, etc.), requiring
also further conditions (such as closure of the family of events with respect to Boolean
operations). In particular, for semantic reasons a framework of reference (probability
theory, Dempster-Shafer theory, possibility theory, default logic, fuzzy set theory and
so on) is usually chosen once for all. Actually, often we need to manage uncertainty
relative to a set of events while having information only for a different family of events.
In fact, making inference essentially means extending a structured information (carried,
for example, by a particular measure of uncertainty) to “new” events, and this is done
by taking into account only the logical relations among the events of the two given
families.

In general, in the extension processes, the enlargements can lead to uncertainty mea-
sures different from the initial ones. For instance, in [2] it has been proved that, if we
start from a (coherent) assessment P on a set L of pairwise incompatible events, and
consider any algebra of events A , then the lower [upper] envelope of the class of co-
herent probabilities extending P to L ∪A is a belief [plausibility] function. Vice versa,
for any belief function Bel on an algebra A , there exists a partition L and a relevant
probability P such that the lower bound of the class of probability extending P on A co-
incides with Bel (similarly for a plausibility function, and referring to the upper bound).
This result is independent of any logical relation between the partition L and that L ′
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of atoms of A . Obviously, any logical constraint between the two partitions rules the
numerical values of the belief (or plausibility) function.

In [3] we proved that under suitable logical conditions between the partitions, the
upper envelope (i.e., plausibility) is a possibility and the lower envelope is a necessity.
Moreover, any possibility measure on an algebra A , can be obtained as an enlarge-
ment of a probability distribution on a partition satisfying the same logical condition.
This logical condition between the partitions is a suitable weakening of logical indepen-
dence (see Sect. 3). A particular case is that corresponding to the logical independence
of the two aforementioned partitions, in which we get a plausibility equal to 1 on A \ /0
for any P (which is also a noninformative possibility). These results are based on the
assumption that the initial information consists of a probability distribution on the ele-
ments of a partition of Ω . But this is not realistic in real problems, so we study what
happens starting from a (coherent) probability on an arbitrary set of events E and en-
larging this assessment to an other finite set E ′ : we need to handle a class of probability
P0 (all those consistent with the coherent assessment) on the partition C constituted by
the set of atoms generated by E . Clearly, for every distribution on P0, we obtain (as
lower and upper envelope of the relevant extension on E ′) a coherent belief function
and a plausibility respectively, and when C and C ′ are weakly logically independent
(C ′ is the set of atoms generated by E ′) we obtain a coherent necessity and a possi-
bility on E ′, respectively. Obviously, it is interesting to characterize the class of these
measures and in particular to study whether there is a minimum and a maximum ele-
ment: in general this characterization is not possible, since the upper [lower] envelope
of plausibilities [belief function] is not a plausibility [belief]. On the contrary, we prove
that a characterization is possible when C and C ′ are weakly logically independent,
obtaining a class of possibilities such that both its upper and lower envelopes Π∗ and
Π∗ are (respectively, the dominating and dominated) possibilities. This class contains
all the possibilities weakly comonotone with Π∗ and Π ∗ (equivalent results hold for
necessities).

These results contribute to the deepening of hybrid models involving probability,
plausibility and possibility, which have been studied in many papers, e.g. [7, 8, 9, 10,
11, 13]: our approach is essentially syntactic and emphasizes an inferential point of
view.

2 Coherent Assessments and Their Enlargements

The axioms defining an uncertainty measure strictly refer to the assumption that its
domain is a Boolean algebra. Then dealing with an arbitrary set of events requires to
characterize assessments which are coherent (or consistent) with a specific measure on
a Boolean algebra containing this set.

In probability theory it is well known the concept of coherence introduced by de
Finetti [6] through a betting scheme, or its dual version based on the solvability of a
linear system. An analogous notion of coherence for possibilities has been introduced
in [4].
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Definition 1. Let E = {E1, ...,En} be a finite set of events and denote by A the algebra
generated by E . An assessment ϕ on E is a coherent possibility [probability] if there
exists a possibility [probability] Φ defined on A extending ϕ (i.e. Φ|E = ϕ).

The so–called fundamental theorem of probability assures that, given a coherent assess-
ment P on an arbitrary finite family E , it can be extended (possibly not in a unique way)
to any set E ′ ⊃ E ; moreover, for each event E ∈ E ′ \E there exist two events E∗ and
E∗ (possibly E∗ = /0 and E∗ = Ω ) that are, respectively, the “maximum” and the “min-
imum” union of atoms Ar (generated by the initial family E ) such that E∗ ⊆ E ⊆ E∗ . If
E is logical dependent on E , then E∗ = E = E∗. Then, given the set {P̃} of all possible
extensions of P, coherent assessments of P̃(E) are all real numbers of a closed interval
[p∗, p∗], with

p∗ = inf P̃(E∗) = inf ∑r
Ar⊆E∗

P̃(Ar) , p∗ = sup P̃(E∗) = sup ∑r
Ar⊆E∗

P̃(Ar) . (1)

We proved in [4] for a possibility Π a similar result: coherence of a possibility as-
sessment assures its extendibility to new events, and for any new event the coherent
possibility values belong to an interval [π∗,π∗] with

π∗ = min

(
max

Ar⊆E∗
Π ′(Ar)

)
, π∗ = max

(
max

Ar⊆E∗ Π ′(Ar)
)

,

where {Π ′} is the set of all possible extensions of Π .
It is well known that by computing for some “new” events the relevant coherence

probability [possibility] intervals, not all the choices of values in these intervals lead
to “an overall” coherent probability [possibility]. In the probabilistic framework, if we
choose for any event the minimum [the maximum] value (which correspond essentially
to natural extension, see [14]), we obtain a lower [upper] probability. Furthermore, in
the possibilistic setting we get different results: in fact, the upper envelope of possibil-
ities is still a possibility [4], while the lower envelope of possibilities is not necessarily
a possibility.

3 Weakly Logically Independent Partitions

We recall that two partitions L ,L ′ of Ω are logically independent if for every Ei ∈L
and E ′

j ∈L ′ one has Ei∧E ′
j 	= /0 (or, equivalently, Ω =

∨
Ei∧E ′

j 	= /0 Ei for any E ′
j ∈L ′).

In [3] we introduced the following “weaker” condition: for any E ′
j ∈ L ′, denote by A j

the minimal (with respect to the inclusion) event logically dependent on L containing
E ′

j, that is
A j =

∨
Ei∧E ′

j 	= /0

Ei .

(Obviously, A j is an element of the algebra A spanned by L ). Given L ,L ′, for any
E ′

j ∈ L ′ we consider the corresponding A j ∈ A .

Definition 2. The partition L ′ is weakly logically independent of the partition L (in
symbols, L ′⊥w L ) if, for any given E ′

i ∈ L ′, every other E ′
k ∈ L ′ (k 	= i) satisfies al

leat one of the following conditions
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- E ′
k ⊆ Ai

- E ′
k ∧E j 	= /0 for any E j ⊆ Ai.

Clearly, if L ,L ′ are logically independent, then L ′⊥w L , but the vice versa does not
hold: let L = {E,Ec}, L ′ = {F,Fc} with F ⊂ E , then L ′⊥w L , but L ′ and L are
not logically independent. As proved in [3] the notion of weakly logically independent
partitions is symmetric (i.e. L ′⊥w L =⇒ L⊥w L ′).

We recall now some properties of weakly logically independent partitions.

Proposition 1. Let L ,L ′ be two partitions of Ω . If L ′⊥w L , then the following state-
ments hold:

1. for every E ′
i,E ′

j ∈ L ′, A j ⊆ Ai or Ai ⊆ A j;
2. there exists E ′

i ∈ L ′ such that E ′
i ∧E j 	= /0 for any E j ∈ L ;

3. if there exist E ′
i ∈ L ′ and E j ∈ L such that E ′

i ⊆ E j, then, for every E ′
r ∈ L ′, we

have E ′
r ∧E j 	= /0 .

4. there exists at most one Ek ∈ L such that E ′
i ⊆ Ek for some E ′

i ∈ L ′.

Proposition 1 easily implies that if L is a refinement of L ′, then L ′ 	⊥w L .

Theorem 1. Let L = {E1, ...,Ei, ...,En} and L ′ = {E ′
1, ...,E ′

j, ...,E ′
m} be two parti-

tions of Ω . The following two conditions are equivalent:

1. L ′⊥w L ;
2. there exists a permutation of the indices 1, ...,m such that the corresponding events

A1, ...,A j, ...Am are completely ordered by inclusion.

4 Possibility as Enlargement of a Coherent Probability

In [2, 5] it has been proved that, if L ,L ′ are two partitions of Ω and A ′ the algebra
spanned by L ′, and P a probability distribution on L , then, considering the family P of
probabilities Pi extending P on L ∪A ′, the lower bound of P on A ′ is a belief function
(and the upper bound a plausibility function). Vice versa, for any belief function Bel on
an algebra A ′ there exists a partition of Ω and a relevant probability distribution such
that the lower bound of the class of probability extending P on A ′ coincides with Bel [2]
(similarly for a plausibility function). This result is independent of any logical relation
between the partition L and that of atoms of A ′. Obviously, the logical constraints rule
the numerical values of the belief (or plausibility) function.

In [3] we proved that if two partitions are weakly logically independent, then the
plausibility obtained as upper envelope of the class P is a possibility:

Theorem 2. Let L ,L ′ be two partitions of Ω and A ′ the algebra spanned by L ′. Let
P be a probability distribution on L and P the upper envelope of the class P = {P′}
of all the probabilities extending P onto L ∪A ′. If L ′⊥w L , then P is a possibility
measure on A ′.

This result is related to that given in [9]: any set of lower bounds on a nested class
A1, ...,Am induces an upper probability, that is a possibility. As shown in [3] a possibility
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can be obtained also when L ′ 	⊥w L (but not if the probability distribution is strictly
positive).

Theorem 3 shows how weakly logically independent partitions rule the transition
from probability to possibility and also the other way round.

Theorem 3. Consider a possibility measure Π on an algebra A and let L be the set
of atoms of A . Then, there exists a partition L ′ and a probability distribution on L ′
such that:

1. L ′⊥w L ,
2. the upper envelope P of the class P = {P′} of all the probabilities extending P on

L ′ ∪A coincides on A with the possibility measure Π .

Remark 1. In [3] we proved that, given two logically independent partitions L and L ′,
the upper envelope of the extensions on L ∪A ′ of a probability P on L is a possibility
on A ′ and, for any A ∈ A ′ \ /0, P(A) = 1. Thus, we get in this case the non informative
possibility independently of the initial probability distribution.

5 From a Coherent Probability to the Upper Possibility

All the results of the previous Section are based on the assumption that the initial infor-
mation is handled by a probability distribution on the elements of a partition of Ω . Now
we start instead from a coherent probability on an arbitrary set of events E . Then, we
need to consider all the extensions on any other finite set E ′. Since coherence implies
the existence of a class P = {Pi} of probabilities on the set C of atoms generated by E ,
for any such probability distributions Pi ∈ P we have a plausibility [belief] as an upper
[lower] bound of the probabilities extending Pi in E ′; moreover if C⊥w C ′ (with C ′ the
set of atoms generated by E ′) for each Pi ∈ P we obtain a possibility.

In general it is not possible to characterize the set of plausibilities, since the upper
envelope of plausibilities is not a plausibility. In this Section we prove instead that,
when C⊥w C ′, we obtain a class of possibilities such that both their upper and lower
envelopes are possibilities (i.e., that dominating and that dominated by all other possi-
bilities, respectively).

Theorem 4. Let E ,E ′ be two finite sets of events and C ,C ′ the corresponding sets of
atoms generated by E and E ′. Moreover, let P be a coherent probability on E , and P
the set of coherent probability extensions of P on E ∪E ′. If C⊥w C ′, then the upper
envelope of P on E ′ is a coherent possibility.

Proof. The coherent probability P on E can be extended on E ∪C and let P = {P′} be
the set of all the coherent probability extensions of P on E ∪C . Since C is finite [12]
there exists a finite subset Pm of P such that

P(C) = sup
P′∈P

P′(C) = sup
P′∈Pm

P′(C)

for any C ∈ C . Since C⊥w C ′, the upper envelope of the extensions of a probability
P′ ∈ Pm is a possibility distribution on the algebra A ′ generated by C ′ by Theorem 2.
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Then, we can consider the finite set {Π} of possibilities on A ′ associated to Pm. The
upper envelope Π ∗ of {Π} is a possibility and then the restriction of Π ∗ on E ′ ⊆ A ′
is a coherent possibility. The coherent possibility Π ∗ on E ′ coincides with the upper
envelope of P on E ′, in fact for any E ∈ E ′

Π ∗(E)= supΠ(E)= sup
P′∈Pm

∑
Cr∧E 	= /0

P′(Cr)= sup
P′∈P

∑
Cr∧E 	= /0

P′(Cr)= P(E). �

The coherent possibility Π ∗ of the above result is the less informative, in the sense that it
dominates any possibility arising in the enlargement procedure. Now, we are interested
also to look for the most informative one, in the sense that is dominated by any other
one.

Theorem 5. Let E ,E ′ be two finite sets of events, C ,C ′ the corresponding sets of atoms
generated by E and E ′ and A ,A ′ the algebras spanned by E ,E ′, respectively. Given
a coherent probability P on E , consider the lower envelope P of the set P = {P′} of
extensions of P on A and the function Π∗ defined on A ′ as follows: for any B ∈ A ′

Π∗(B) = inf
A∈A :A⊇B

P(A).

If C⊥w C ′, then Π∗ is a coherent possibility on E ′. Moreover, the upper envelope Π1

on A ′ of the extensions of any P′ ∈ P dominates Π∗.

Proof. If C ′⊥w C , then by Theorem 1 there exists an ordering on the elements of C ′ =
{E ′

1, ...,E ′
m} such that Ai ⊆ Ai+1 for i = 1, ...,m−1. Hence, for any E ′

i ∈ C ′ one has

Π∗(E ′
i) = inf

A∈A :A⊇E ′
i

P(A) = P(Ai).

In particular, since Am = Ω , it follows Π∗(E ′
m) = 1. Consider any F =

∨
j∈J E ′

j: there
exists j ∈ J such that j < j for any j ∈ J (with j 	= j), then A j ⊆ A j and so

Π∗(F) = inf
A∈A :A⊇F

P(A) = P(A j) = max
j∈J

{P(A j)} = max
E ′

i⊆F
Π∗(E ′

i)

then Π∗ is a possibility on A ′ and so Π∗ on E ′ is a coherent possibility. Now, given
P′ ∈ P, since C ′⊥w C , by Theorem 2 the upper envelope Π1 of the extensions of P′
on A ′ is a possibility and for any F ∈ A ′, F =

∨
j∈J E ′

j, there exists j ∈ J such that
A j ⊆ A j for any j ∈ J, F ⊆ A j and

Π∗(F)= inf
A∈A :A⊇F

P(A) = P(A j)≤P′(A j)= Π1(F). �

By the previous result we obtain a possibility Π∗ that is dominated by any possibil-
ity obtained as the upper envelope of the extensions of a coherent probability (on the
assumption that the two sets of atoms are weakly logically independent). Note that in
general the minimum of a set of possibilities is not a possibility, while in the case that
the possibilities are obtained through the inferential procedure shown in Section 4 their
infimum, that coincides with Π∗, is still a possibility. Then, for any F ∈ A ′ we get two
(possibly coincident) values Π∗(F) and Π ∗(F). The following Theorem 6 shows that
any possibility Π weakly comonotone with (Π∗,Π ∗) can be obtained as the upper enve-
lope of the extensions of a coherent probability, where weakly monotonicity is defined
as follows:
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Definition 3. A possibility Π on A ′ is weakly comonotone with (Π∗,Π ∗) if Π∗(F)
≤Π(F)≤Π ∗(F) for any F ∈A ′ and for any pair of atoms E ′

i,E ′
j ∈A ′ the following

conditions hold:

- if Π∗(E ′
i) < Π∗(E ′

j) or Π ∗(E ′
i) < Π ∗(E ′

j), then Π(E ′
i) ≤ Π(E ′

j),
- if Π∗(E ′

i) = Π∗(E ′
j) and Π ∗(E ′

i) = Π ∗(E ′
j), then Π(E ′

i) = Π(E ′
j).

Theorem 6. Let E ,E ′, C ,C ′, A ,A ′, P and Π∗ as in Theorem 5 and consider the upper
envelope Π ∗ on A ′ of the coherent extensions of P. If C⊥w C ′, then Π∗ and Π ∗ are
possibilities on A ′. Moreover, Π∗ is dominated by Π ∗ and, for any coherent possibility
Π on A ′ weakly comonotone with (Π∗,Π ∗), there exists a coherent probability P on E
such that the upper envelope of the extensions of P on A ′ coincides with Π .

Proof. By Theorem 5 and by Theorem 4 the functions Π ∗ and Π ∗ are possibilities and
Π∗(F) ≤ Π ∗(F) for any F ∈A ′. Now, consider any possibility Π on A ′ satisfying the
conditions in the hypothesis. Let us assume (without loss of generality, see Proposition
1) that the partition C ′ = {E1, ...,Ek} is ordered in a way that for any i < j one has
Π(Ei) ≤ Π(E j) for any Ei,E j ∈ C ′. This order is compatible with that built starting
from Π∗ or Π ∗, then the partition C ′ = {F1, ...,Fm} is such that C ′⊥w L and consider-
ing E ′

i,E ′
j ∈ C ′ if i < j, then Π(E ′

i)≤ Π(E ′
j), since the associated Ai and A j are such

that Ai ⊆ A j. Hence, there exists a probability on A such that P(Ai) ≤ P(A j) for any
i < j and P(A j) = Π(E ′

j)−Π(E ′
j−1) for any j = 1, ...,k by putting Π(E ′

0) = Π( /0).
This probability on A generates Π through the inferential process. �
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