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Abstract. If we interpret the statistical likelihood function as a measure of the relative
plausibility of the probabilistic models considered, then we obtain a hierarchical description
of uncertain knowledge, offering a unified approach to the combination of probabilistic and
possibilistic uncertainty. The fundamental advantage of the resulting fuzzy probabilities with
respect to imprecise probabilities is the ability of using all the information provided by the data.
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1 Introduction

This paper presents a probabilistic-possibilistic hierarchical model based on the like-
lihood function. Thanks to the intuitivity and asymptotic properties of the likelihood
function, the hierarchical model is an ideal basis for inference and decision making:
this aspect is analyzed in [2]. The hierarchical model can be interpreted as a fuzzy
probability measure, and offers a unified approach to the combination of probabilistic
and possibilistic uncertainty.

Fuzzy probabilities generalize imprecise probabilities by additionally considering
the relative plausibility of different values in the probability intervals (imprecise proba-
bilities correspond to the crisp case of fuzzy probabilities). By abandoning the crispness
of imprecise probabilities, the hierarchical model solves a fundamental problem of the
imprecise probability approach: its statistical inconsistency.

2 Hierarchical Model

Let P be a set of probability measures on a measurable space (Ω ,A ) such that A
contains all singletons of Ω . Each P ∈ P is interpreted as a probabilistic model of
the reality under consideration. The interpretation of probability is not important: for
instance the elements of P can be statistical models, or describe the forecasts of a
group of experts.

When an event A ∈ A is observed, the likelihood function

lik : P �−→ P(A)

on P describes the relative ability of the probabilistic models in P to forecast the ob-
served data. Spurious modifications of the situation considered or of its mathematical
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representation can lead to likelihood functions proportional to lik. Therefore, propor-
tional likelihood functions are considered equivalent; in fact, Fisher [8] defined the like-
lihood of a statistical model as a quantity proportional to the probability of the observed
data. Hence, only ratios lik(P)/lik(P′) of the values of lik for different P,P′ ∈ P have
meaning: Kullback and Leibler [11] interpreted log[lik(P)/lik(P′)] as the information
in A for discrimination in favor of P against P′. When the realization of a continuous
random object is observed, the usual definition of likelihood function in terms of density
can be seen as an approximation of lik (see [2, Section 1.2]).

The likelihood function can thus be interpreted as a measure of the relative plausi-
bility of the probabilistic models in the light of the observed data alone. Under each
probabilistic model P ∈ P , the likelihood ratio lik(P)/lik(P′) of P against a different
probabilistic model P′ ∈P almost surely increases without bound when more and more
data are observed, and consequently lik tends to concentrate around P, if some regular-
ity conditions are satisfied. Thanks to this asymptotic property and to its intuitivity, the
likelihood function is an ideal basis for statistical inference and decision making (see
[13] for an introduction to the likelihood approach to statistics).

Example 1. Let P = {Pp : p ∈ [0.1, 0.6]} be a set of probability measures on a measur-
able space (Ω ,A ), such that for each Pp ∈ P the random variables X0, . . . ,X100 : Ω →
{0,1} satisfy the following conditions: Pp{X0 = 0}= 1

2 , and conditional on the realiza-
tion of X0 the random variables X1, . . . ,X100 are independent with Pp{Xi = 1 |X0 = 0}=
1
2 and Pp{Xi = 1 |X0 = 1} = p for all i ∈ {1, . . . ,100}.

The realizations of X1, . . . ,X100 are observed: 20 of them take the value 1. The re-
sulting likelihood function

lik : Pp �−→ 1
2

(
1
2

)100
+ 1

2 p20 (1− p)80

on P is concentrated around P0.2, which is the most plausible element of P in the light
of the observed data alone. The case with X0 = 0 has almost no influence on the form
of the likelihood function, and in fact this case is extremely implausible in the light of
the observed data and of the probabilistic models considered.

The likelihood function lik measures the relative plausibility of the elements of P , but
a measure of the relative plausibility of the subsets of P is often needed. A simple and
effective way to obtain it consists in defining the plausibility of a set of probabilistic
models as the plausibility of its best element: the result is the set function

H �−→ sup
P∈H

lik(P)

on the power set 2P of P (in this paper, sup∅ = 0). Proportional set functions of
this form are equivalent, since they correspond to equivalent likelihood functions: to
underline this relative meaning, the expression “relative plausibility measure” is used
in [2] to denote an equivalence class of proportional set functions of this form. Their
normalized version LR associates to each H ⊆ P the corresponding likelihood ratio
statistic

LR(H ) =
supP∈H lik(P)
supP∈P lik(P)

.
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Fig. 1. Profile likelihood function from Example 2 and membership function of fuzzy probability
from Example 3

The likelihood ratio test discards the hypothesis that the data were generated by some
P ∈ H if LR(H ) is sufficiently small.

Let g : P → G be a function. The likelihood function lik on P induces the (normal-
ized) profile likelihood function

likg : γ �−→ LR(g−1{γ}) ∝ sup
P∈P :g(P)=γ

lik(P)

on G (in this paper, g−1 denotes the set function associating to each subset of G its
inverse image under g). The profile likelihood function likg measures the relative plau-
sibility of the values of g, on the basis of the above definition of plausibility for a set
of probabilistic models. The maximum likelihood estimate γ̂ML of g(P) is the γ ∈ G
maximizing likg(γ) (that is, likg(γ̂ML) = 1), when such a γ exists and is unique. The
likelihood-based confidence region for g(P) with cutoff point α ∈ (0,1) is the set
{γ ∈ G : likg(γ) > α}: it is the smallest G ⊆ G such that LR{P ∈ P : g(P) /∈ G} ≤ α .

Example 2. Consider the situation of Example 1, and let g : P → [0,1] associate to
each probabilistic model in P the probability of X0 = 0 conditional on the observed
realizations of X1, . . . ,X100:

g : Pp �−→
( 1

2

)100

(
1
2

)100
+ p20 (1− p)80

.

Figure 1 shows the graph of the profile likelihood function likg on [0, 5 · 10−7]: as ex-
pected, likg is extremely concentrated near 0, because X0 = 1 is compatible with the
observed data, while X0 = 0 is not. In fact, the maximum likelihood estimate of g(Pp)
is γ̂ML ≈ 0.04 · 10−7, and the likelihood-based confidence region for g(Pp) with cutoff
point α = 0.01 corresponds approximately to the interval (0.04 ·10−7, 4.26 ·10−7).

The probabilistic models in P and the likelihood function lik on P can be interpreted
as the two levels of a hierarchical model of the reality under consideration. The two
levels describe different kinds of uncertain knowledge: in the first level the uncertainty
is stochastic, while in the second one it is about which of the probabilistic models in P
is the best representation of the reality. It is important to underline that no probabilistic
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model in P is assumed to be in some sense “true”: the elements of P are simply
interpreted as more or less plausible representations of the reality (this interpretation of
the hierarchical model is shared by Edwards [7]). By contrast, the use of a probability
measure on P , suggested by the Bayesian approach, carries the implicit assumption
that exactly one of the probabilistic models in P is “true” (see [2, Section 3.1]).

The definition of likelihood function implies that when an event A ∈ A is observed,
the two levels P and lik of the hierarchical model are updated to

P ′ = {P( · |A) : P ∈ P, P(A) > 0} (1)

and to lik′ : P′ �−→ sup
P∈P :P( · |A)=P′

lik(P)P(A),

respectively. When A is the first observed event, the prior likelihood function lik can be
interpreted as a (subjective) measure of the relative plausibility of the probabilistic mod-
els in P according to the prior information. The choice of a prior likelihood function on
P seems to be better supported by intuition than the choice of a prior probability mea-
sure on P: in particular, a constant likelihood function describes complete ignorance
(in the sense of absence of information for discrimination between the probabilistic
models). In fact, if lik is constant, then lik′ is proportional to the profile likelihood func-
tion on P ′ induced by the observation A and the conditioning P �→ P( · |A). Moreover,
the choice of a prior likelihood function can be based on analogies with the likelihood
functions induced by hypothetical data (see also [3]).

3 Fuzzy Probabilities

A possibility distribution on a set G is a function π : G → [0,1]. The possibility measure
on G with possibility distribution π is the set function

G �−→ sup
γ∈G

π(γ)

on 2G . A possibility distribution π on G can also be considered as the membership func-
tion of a fuzzy subset of G (see [17]); when π is crisp (that is, π can take only the values
0 and 1), the subset is not fuzzy and π is its indicator function on G . The likelihood ratio
statistic LR is a possibility measure on P with possibility distribution proportional to
the likelihood function lik on P . In fact, the membership function of a fuzzy set has
often been interpreted as a likelihood function (see for example [10, 5]), even though
proportional membership functions were not always considered equivalent (see for in-
stance [6]). In the present paper, membership functions and possibility distributions
are interpreted as proportional to likelihood functions. Hence, it suffices to consider
normalized fuzzy sets and normalized possibility measures (that is, supγ∈G π(γ) = 1
is assumed), but grades of membership and degrees of possibility have only a relative
meaning.

The hierarchical model considered in the previous section can thus be interpreted
as consisting of a probabilistic level (described by P) and a possibilistic level (de-
scribed by LR). That is, it can be interpreted as a probabilistic-possibilistic hierarchical
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description of uncertain knowledge about ω ∈ Ω . Both the purely probabilistic and the
purely possibilistic descriptions of uncertain knowledge about ω ∈ Ω appear as special
cases. In fact, when P is a singleton, the uncertainty about ω ∈ Ω is purely proba-
bilistic (LR on P = {P} contains no information, since its meaning is only relative).
By contrast, when P consists of all the Dirac measures (that is, P = {δω : ω ∈ Ω}
with δω{ω} = 1), the uncertainty about ω ∈ Ω is purely possibilistic (LR can be con-
sidered as a possibility measure on Ω , since each δω ∈ P can be identified with the
corresponding ω ∈ Ω ).

The hierarchical model can also be interpreted as a fuzzy probability measure on
(Ω ,A ), in the sense that it is a fuzzy subset of the set of all probability measures
on (Ω ,A ), with membership function proportional to lik on P and constant equal
to 0 outside P . More generally, the uncertain knowledge about the value g(P) of a
function g : P → G is described by the induced possibility measure LR ◦ g−1 on G ;
that is, by the fuzzy subset of G with membership function likg. In particular, when
g : P → R, the uncertain knowledge about g(P) is described by a fuzzy number (that
is, a fuzzy subset of R). For example, g can associate to each probabilistic model P
the expectation g(P) = EP(X) of a random variable X , or the probability g(P) = P(A)
of an event A ∈ A : the membership function likg describes then the fuzzy expectation
of X , or the fuzzy probability of A, respectively. Sometimes a fuzzy number can be a
satisfactory conclusion about the value of g(P), but it is often necessary to evaluate the
fuzzy number by a single real number (such as the maximum likelihood estimate γ̂ML)
or by a couple of real numbers (such as the infimum and the supremum of a likelihood-
based confidence region {γ ∈ R : likg(γ) > α}). The discussion on how to evaluate
a fuzzy number by one or more real numbers goes beyond the scope of the present
paper, but see [2, Section 4.1] for some interesting results (to each evaluation method
corresponds a likelihood-based decision criterion).

Example 3. The prior fuzzy probability measure on (Ω ,A ) considered in Examples 1
and 2 is crisp, in the sense that its membership function on the set of all probability mea-
sures on (Ω ,A ) is crisp. In fact, the only prior (non-stochastic) uncertainty is about the
value of the probability of Xi = 1 conditional on X0 = 1 (with i ∈ {1, . . . ,100}), and the
only prior information about this value is that it lies in the interval [0.1, 0.6]. But the up-
dated fuzzy probability measure on (Ω ,A ) obtained after having observed the realiza-
tions of X1, . . . ,X100 is not crisp anymore: the fuzzy (conditional) probability of X0 = 0
has membership function likg (plotted in Figure 1). Hence, any reasonable evaluation
of the fuzzy (conditional) probability of X0 = 0 by a real number (such as the maximum
likelihood estimate γ̂ML ≈ 0.04 · 10−7, or the lower and upper evaluations 0.04 · 10−7

and 4.26 ·10−7 considered at the end of Example 2) would be approximately 0.

The hierarchical model offers a unified approach to the combination of probabilistic
and possibilistic uncertainty (in particular, fuzzy data would pose no problem). Since
membership functions and possibility distributions are interpreted as proportional to
likelihood functions, the rules for manipulating fuzzy probabilities are implied by the
well-established theories of probability and likelihood (the same holds for the approach
of De Cooman [4], which uses a different interpretation of possibility measures). By
contrast, approaches based on the arithmetic of fuzzy numbers (see for example [14, 1])
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face the problem of choosing and justifying such rules: the choice of a consistent way
of updating the fuzzy probability models in the light of data seems to be particularly
difficult.

4 Imprecise Probabilities

The mathematical representations of reality used in the classical and Bayesian ap-
proaches to statistics can be considered as special cases of the hierarchical model (see
[2, Section 3.2]). By contrast, the imprecise probability model cannot be considered
as a special case of the hierarchical model, because the updating rules are different.
The mathematical representation of reality used in the imprecise probability approach
to statistics can be described as a (convex) set P of probabilistic models, without in-
formation for discrimination between them. This corresponds to a hierarchical model
with constant likelihood function on P , but the imprecise probability model is usu-
ally updated by regular extension (see [15, Appendix J]): that is, by conditioning each
P ∈ P on the observed data, without considering the information provided by the like-
lihood function on P . More precisely, when an event A ∈ A is observed, the set P
is updated to the set P ′ as in (1), but the constant likelihood function on P is not
updated: the likelihood function on P ′ is still constant; that is, the information in A for
discrimination between the elements of P is disregarded.

For instance, if the probabilistic models in P describe the opinions of a group of
Bayesian experts, then the updating by regular extension corresponds to update the
opinion of each expert without reconsidering her/his credibility, independently of how
bad her/his forecasts were when compared to the forecasts of the other experts. This is
not very reasonable, and in fact the updating by regular extension can lead to incon-
sistency, in the statistical sense of not tending to the correct conclusion, even when the
amount of information provided by the data tends to infinity.

Example 4. The set P of probabilistic models considered in Examples 1, 2, and 3 can
be interpreted as an imprecise probability measure on (Ω ,A ). If it is updated by reg-
ular extension, when the realizations of X1, . . . ,X100 are observed, then the resulting
imprecise probability measure is described by the set P ′. In particular, the resulting
uncertain knowledge about the (conditional) probability of X0 = 0 is described by the
lower and upper probabilities

inf
P′∈P ′ P

′{X0 = 0} ≈ 4.26 ·10−9 and sup
P′∈P ′

P′{X0 = 0} ≈ 1−6.77 ·10−7.

That is, despite the overwhelming information in favor of X0 = 1 against X0 = 0,
almost complete ignorance about the (conditional) probabilities of X0 = 0 and X0 = 1
is obtained when the imprecise probability model is updated by regular extension (it is
important to note that these results do not change when P is replaced by its convex
hull). In fact, the resulting interval probability of X0 = 0 is the support {γ ∈ [0,1] :
likg(γ) > 0} of the membership function likg of the fuzzy (conditional) probability of
X0 = 0 (plotted in Figure 1): likg is extremely concentrated near 0, but this information
is disregarded when updating the imprecise probability model by regular extension (the
present example was proposed by Wilson [16]).
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The imprecise probability model can be seen as the crisp (and convex) case of the
fuzzy probability model, but in general the crispness of the fuzzy probability model
is lost when it is updated. Hence, from the point of view of the hierarchical model, the
regular extension forces the crispness of the updated model by disregarding a part of the
information provided by the data, and this can lead to statistical inconsistency. Many
authors (see for example [16, 12]) have replaced, in particular problems, the regular
extension with alternative updating rules making use of some information contained in
the likelihood function on P . But no alternative rule updating P to a subset of P ′
can assure the statistical consistency, because any discarded probabilistic model can
become the most plausible one in the light of new data.

5 Conclusion

Statistical inconsistency is a fundamental problem of the theory of imprecise proba-
bilities: a simple solution is to generalize imprecise probabilities to fuzzy probabilities,
and use the probabilistic-possibilistic hierarchical model presented in this paper. In fact,
fuzzy probabilities seem to be very intuitive: many authors (see for example [9, 4]) have
studied models similar to the hierarchical one to accommodate the fact that usually not
all the values in probability intervals are considered equally plausible.
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