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Abstract. An interpretation of the label semantics framework is introduced based on prototype
theory. Within this interpretation it is shown that the appropriateness of an expression is char-
acterised by an interval constraints on a parameter ε . Here ε is an uncertain distance threshold
according to which an element x is sufficiently close to the prototype pi of a label Li for Li to be
deemed appropriate to describe x, if the distance between x and pi is less than or equal to ε . Ap-
propriateness measures and mass functions are then defined in terms of an underlying probability
density function δ on ε .

1 Introduction

In classical logic a concept label L is defined by the set of elements from an underlying
universe which satisfies L (the extension of L) and more generally in Kripke semantics
[5] as a mapping from a set of possible worlds into sets of elements (an interpretation
of L). Such an approach fails to capture certain aspects of our intuitive understanding
of concepts in natural language, in particular the role of similarity in establishing the
meaning of concept labels. Furthermore, a possible worlds model seems to overlook our
natural focus on understanding reality as represented by one particular possible world
(see [3] for discussion).

Prototype theory (Rosch [9]) is an alternative approach to concept representation ac-
cording to which decisions regarding the applicability of a concept label to a particular
instance are made on the basis of the similarity of that instance to a (set of) prototypical
element(s) for that concept. Prototypes may not correspond to actual perceptions of ob-
jects or experiences but instead may identify a particular point or region of conceptual
space [3] which is in some way representative of the concept. From this perspective the
human ability to rank elements in terms of the degree to which they satisfy a concept L
can be explained in terms of a comparison of their relative similarity (or distance) from
the prototype(s) for L.

Prototype theory has been proposed as the basis for a possible interpretation of mem-
bership functions in fuzzy set theory ([1, 2]), where the membership of an element x in a
concept L is taken to be a scaled version of the similarity between x and the prototype(s)
for L [10]. This rather intuitive approach has the drawback that the prototype similar-
ity interpretation of membership does not naturally result in a truth-functional calculus
when concepts are combined (See Lawry [7] chapter 2 for a discussion). Consequently a
prototype based model of membership does not seem to capture the underlying calculus
of fuzzy set theory.
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Label semantics (Lawry [6, 7, 8]) is an uncertainty theory for vague concepts which
encodes the meaning of linguistic labels according to how they are used by a popula-
tion of communicating agents to convey information. From this perspective, the focus
is on the decision making process an intelligent agent must go through in order to iden-
tify which labels or expressions can actually be used to describe an object or value. In
other words, in order to make an assertion describing an object in terms of some set
of linguistic labels, an agent must first identify which of these labels are appropriate
or assertible in this context. Given the way that individuals learn language through an
ongoing process of interaction with the other communicating agents and with the envi-
ronment, then we can expect there to be considerable uncertainty associated with any
decisions of this kind. In label semantics we quantify this uncertainty in terms of appro-
priateness measures, linked to an associated mass function through a calculus which,
while not truth-function, can be functional in a weaker sense (See Lawry [6] and [7]).
In the sequel we will propose a prototype theory interpretation of label semantics which
relates both appropriateness measures and mass functions to distance from prototypes
and naturally captures the label semantics calculus.

2 An Overview of Label Semantics

The underlying philosophy of label semantics [8] is very close to the epistemic view
of vagueness as expounded by Timothy Williamson [12]. Williamson assumes that for
the extension of a vague concept there is a precise but unknown dividing boundary
between it and the extension of the negation of that concept. However, while there are
marked similarities between the epistemic theory and the label semantics view, there are
also some subtle differences. For instance, the epistemic view would seem to assume
the existence of some objectively correct, but unknown, definition of a vague concept.
Instead of this we argue that individuals when faced with decision problems regarding
assertions find it useful as part of a decision making strategy to assume that there is a
clear dividing line between those labels which are and those which are not appropriate
to describe a given instance. We refer to this strategic assumption across a population
of communicating agents as the epistemic stance, a concise statement of which is as
follows:

Each individual agent in the population assumes the existence of a set of la-
belling conventions, valid across the whole population, governing what lin-
guistic labels and expressions can be appropriately used to describe particular
instances.

The idea is that the learning processes of individual agents, all sharing the fundamental
aim of understanding how words can be appropriately used to communicate informa-
tion, will eventually converge to some degree on a set of shared conventions. The very
process of convergence then to some extent vindicates the epistemic stance from the
perspective of individual agents.

Label semantics proposes two fundamental and inter-related measures of the appro-
priateness of labels as descriptions of an object or value. We begin by assuming that for
all agents there is a fixed shared vocabulary in the form of a finite set of basic labels
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LA for describing elements from the underlying universe Ω . A countably infinite set of
expressions LE can then be generated through recursive applications of logical connec-
tives to the basic labels in LA. The measure of appropriateness of an expression θ ∈ LE
as a description of instance x is denoted by μθ (x) and quantifies the agent’s subjective
probability that θ can be appropriately used to describe x. From an alternative perspec-
tive, when faced with describing instance x, an agent may consider each label in LA
and attempt to identify the subset of labels that are appropriate to use. This is a totally
meaningful endeavour for agents who adopt the epistemic stance. Let this complete set
of appropriate labels for x be denote by Dx. In the face of their uncertainty regarding
labelling conventions agents will also be uncertain as to the composition of Dx, and
we represent this uncertainty with a probability mass function mx : 2LA → [0,1] defined
on subsets of labels. We now provide formal definitions for the set of expressions LE
and for mass functions mx, following which we will propose a link between the two
measures μθ (x) and mx for expression θ ∈ LE .

Definition 1 (Label Expressions)
The set of label expressions LE generated from LA, is defined recursively as follows: If
L ∈ LA then L ∈ LE; If θ ,ϕ ∈ LE then ¬θ ,θ ∧ϕ ,θ ∨ϕ ∈ LE.

Definition 2 (Mass Function on Labels)
∀x ∈ Ω a mass function on labels is a function mx : 2LA → [0,1] such that ∑S⊆LA
mx (S) = 1.

Note that there is no requirement for the mass associated with the empty set to be zero.
Instead, mx( /0) quantifies the agent’s belief that none of the labels are appropriate to de-
scribe x. We might observe that this phenomena occurs frequently in natural language,
especially when labelling perceptions generated along some continuum. For example,
we occasionally encounter colours for which none of our available colour descriptors
seem appropriate. Hence, the value mx( /0) is an indicator of the describability of x in
terms of the labels LA.

The link between the mass function mx and the appropriateness measures μθ (x) is
motivated by the intuition that the assertion ‘x is θ ’ directly provides information de-
pendent on θ , as to what are the possible values for Dx. For example, the assertion
‘x is blue’ would mean that blue is an appropriate label for x, from which we can in-
fer that blue ∈ Dx. Similarly, the assertion ‘x is green and not blue’ would mean that
green is an appropriate label for x while blue is not, so that we can infer green ∈ Dx

and blue �∈ Dx. Another way of expressing this information is to say that Dx must be
a member of the set of sets of labels which contain green but do not contain blue i.e.
Dx ∈ {S ⊆ LA : green ∈ S, blue �∈ S}. More generally, we can define a functional map-
ping λ from LE into 22LA

(i.e. the set containing all possible sets of label sets) for
which the assertion ‘x is θ ’ enables us to infer that Dx ∈ λ (θ ). This mapping is defined
recursively as follows:

Definition 3 (λ -mapping)
λ : LE → 2F is defined recursively as follows: ∀L ∈ LA, ∀θ , ϕ ∈ LE; λ (L) = {S ∈F :
L ∈ S}; λ (θ ∧ϕ) = λ (θ )∩λ (ϕ); λ (θ ∨ϕ) = λ (θ )∪λ (ϕ); λ (¬θ ) = λ (θ )c.
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The λ -mapping then provides us with a means of evaluating the appropriateness mea-
sure of an expression θ directly from mx, as corresponding to the subjective belief that
Dx ∈ λ (θ ) so that:

Definition 4 (Appropriateness Measures)
For any expression θ ∈ LE and x ∈ Ω , the appropriateness measure μθ (x) can be
determined from the mass function mx according to:

∀θ ∈ LE μθ (x) = ∑
S∈λ (θ)

mx(S)

From this relationship the following list of general properties hold for expressions θ
and ϕ in LE [6]:

Theorem 1 (Lawry [6, 7])

• If θ |= ϕ then ∀x ∈ Ω μθ (x) ≤ μϕ(x)
• If θ ≡ ϕ then ∀x ∈ Ω μθ (x) = μϕ(x)
• If θ is a tautology then ∀x ∈ Ω μθ (x) = 1
• If θ is a contradiction then ∀x ∈ Ω μθ (x) = 0
• ∀x ∈ Ω μ¬θ (x) = 1− μθ(x)

Notice, here that the laws of excluded middle, non-contradiction and idempotence are
all preserved.

In practice an agent’s estimation of both mx and μθ (x) should depend on their expe-
rience of language use involving examples similar to x. Clearly the form of this knowl-
edge is likely to be both varied and complex. However, one natural type of assessment
for an agent to make would be to order or rank label in terms of their estimated ap-
propriateness for x. This order information could then be combined with estimates of
appropriateness measure values for the basic labels (i.e. elements of LA) in order to
provide estimates of values for compound expressions (i.e. elements of LE).

Definition 5 (Ordering on Labels)
For x ∈ Ω let 
x be an ordering on LA such that for L,L′ ∈ LA, L′ 
x L means that L is
at least as appropriate as a label for x as L′.

For any labels Li,Lj ∈ LA if Li 
x L j it follows that if Lj ∈ Dx then Li ∈ Dx and con-
sequently when 
x is a total ordering then the mass function mx must be nested. In
that case the following theorem shows that the min and max rules for conjunction and
disjunction hold for a restricted class of expressions:

Theorem 2 ([6, 11])
Let LE∧,∨ ⊆ LE denote those expressions generated recursively from LA using only
the connectives ∧ and ∨. If the appropriateness of the basic labels as descriptions for
x is ranked according to a total ordering 
x on LA then ∀θ ,ϕ ∈ LE∧,∨ it holds that
μθ∧ϕ (x) = min

(
μθ (x) ,μϕ (x)

)
, μθ∨ϕ (x) = max

(
μθ (x) ,μϕ (x)

)
.

3 A Prototype Theory Interpretation of Label Semantics

Suppose that a distance metric d is defined on Ω such that d : Ω 2 → [0,∞) and satisfies
d(x,x) = 0 and d(x,y) = d(y,x) for all elements x,y ∈ Ω . For each label Li ∈ LA let
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Fig. 1. Identifying Dε
x as ε varies; For ε1, ε2 and ε3 shown in the diagram Dε1

x = /0, Dε2
x =

{L1,L2}, Dε3
x = {L1,L2,L3,L4}

there be a single element pi ∈ Ω 1 corresponding to a prototypical case for which Li is
certainly an appropriate description. Within this framework Li is deemed to be appro-
priate to describe an element x ∈ Ω provided x is sufficiently close or similar to the
prototypical element pi. This is formalized by the requirement that x is within a maxi-
mal distance threshold ε of pi. i.e. Li is appropriate to describe x if d(x, pi) ≤ ε where
ε > 0. From this perspective an agent’s uncertainty regarding the appropriateness of a
label to describe a value x is characterised by his or her uncertainty regarding the dis-
tance threshold ε . Here we assume that this uncertainty is represented by a probability
density function δ for ε defined on [0,∞). Within this interpretation a natural definition
of the description of an element Dx and the associated mass function mx can be given
as follows:

Definition 6. For ε ∈ [0,∞) Dε
x = {Li ∈ LA : d(x, pi) ≤ ε} and mx(F) = δ ({ε :

Dε
x = F})2.

Intuitively speaking Dε
x identifies the set of labels with prototypes lying within ε of

x. Figure 1 shows Dε
x in a hypothetical conceptual space as ε varies. Notice that the

sequence Dε
x as ε varies generates a nested hierarchy of label sets. Furthermore, the

distance metric d naturally generates a total ordering on the appropriateness of labels
for any element x, according to which label Lj is as least as appropriate to describe x as
label Li if x is closer (or equidistant) to p j than to pi i.e. Li 
x L j iff d(x, pi) ≥ d(x, p j).
The following theorem shows that this ordering constrains the labels contained in Dε

x
as suggested in Section 2:

Theorem 3. If Li 
x L j (as defined above) then ∀ε ≥ 0 Li ∈ Dε
x implies that L j ∈ Dε

x .

1 For simplicity of notation we assume that each label has a single prototype. However, the
case where there is a set of prototypes Pi for Li can easily be accommodated by extending the
distance metric d such that d(x,Pi) = inf{d(x, pi) : pi ∈ Pi}.

2 For Lesbegue measurable set I, we denote δ (I) =
∫

I δ (ε)dε .
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Proof. Suppose ∃x ∈ Ω for which Li 
x L j and ∃ε ≥ 0 such that Li ∈ Dε
x and Lj �∈ Dε

x .
From this it follows that d(x, pi) ≤ ε and d(x, p j) > ε and hence Li �
x L j which is a
contradiction as required. ��
Also notice from Definition 6, that for Li ∈ LA the appropriateness measure μLi(x) is
given by δ ({ε : Li ∈Dε

x }). Consequently, if we view Dε
x as a random set from [0,∞) into

2LA then μLi(x) corresponds to the single point coverage function of Dε
x . This provides

us with a link to the random set interpretation of fuzzy sets (See [1], [2] or [4] for an
exposition) except that in this case the random set maps to sets of labels rather than sets
of elements. Hence, the interpretation of label semantics as proposed above provides a
link between random set theory and prototype theory.

The following results show how the appropriateness of an expression θ ∈ LE to
describe an element x is equivalent to a constraint ε ∈ I(θ ,x), for some measurable
subset I(θ ,x) of [0,∞).

Definition 7. ∀x ∈ Ω and θ ∈ LE, I(θ ,x) ⊆ [0,∞) is defined recursively as follows:
∀Li ∈ LA, ∀θ ,ϕ ∈ LE; I(Li,x) = [d(x, pi),∞); I(θ ∧ ϕ ,x) = I(θ ,x) ∩ I(ϕ ,x); I(θ ∨
ϕ ,x) = I(θ ,x)∪ I(ϕ ,x); I(¬θ ,x) = I(θ ,x)c.

Theorem 4. ∀θ ∈ LE,∀x ∈ Ω I(θ ,x) = {ε : Dε
x ∈ λ (θ )}.

Corollary 1. ∀θ ∈ LE, ∀x ∈ Ω μθ (x) = δ (I(θ ,x)).

Definition 8. We define k : LE∧,∨ ×Ω → [0,∞) recursively as follows: ∀x ∈ Ω , ∀Li ∈
LA, ∀θ ,ϕ ∈ LE∧,∨; k(Li,x) = d(x, pi); k(θ ∧ϕ ,x) = max(k(θ ,x),k(ϕ ,x)) and k(θ ∨
ϕ ,x) = min(k(θ ,x),k(ϕ ,x)).

Theorem 5. ∀x ∈ Ω , ∀x ∈ LE∧,∨, then I(θ ,x) = [k(θ ,x),∞).

ε

δ (ε)

d(x, p1) d(x, p2) d(x, p3) d(x, p4)

mx( /0)

mx({L1})

mx({L1,L2})

mx({L1,L2,L3})

mx({L1,L2,L3,L4})

Fig. 2. Let LA = {L1,L2,L3,L4} and L4 
x L3 
x L2 
x L1. This figure shows the values of mx

as areas under δ .
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From Theorem 5 we have that

μθ∨ϕ(x) = δ ([k(θ ∨ϕ ,x),∞)) = δ ([min(k(θ ,x),k(ϕ ,x)),∞))
= max(δ ([k(θ ,x),∞)),δ ([k(ϕ ,x),∞))) = max(μθ (x),μϕ (x)).

Similarly, μθ∧ϕ(x) = min(μθ (x),μϕ (x)) as is consistent with Theorem 2.

Example 1. I(Li,x) = [d(x, pi),∞) , I(¬Li,x) = [0,d(x, pi)), I(Li ∧ Lj,x)
= [max(d(x, pi),d(x, p j)),∞), I(Li ∨ Lj,x) = [min(d(x, pi),d(x, p j)),∞). Also
I(Li ∧¬Lj,x) = [d(x, pi),d(x, p j)) provided d(x, pi) < d(x, p j) and = /0 otherwise.

From Lawry [7] we have that for F ⊆ LA mx(F) = μαF (x) where αF =
(
∧

L∈F L)∧ (
∧

L�∈F ¬L). Hence, mx(F) = δ (I(αF ,x)) where I(αF ,x) = [max{d(x, pi) :
Li ∈ F},min{d(x, pi) : Li �∈ F}) provided that max{d(x, pi) : Li ∈ F} < min{d(x, pi) :
Li �∈ F} and = /0 otherwise.

Figure 2 shows the areas under δ corresponding to the values of the mass function mx.

4 Conclusions

Label semantics is an epistemic theory of uncertainty for vague concepts based on
appropriateness measures and mass functions. The underlying calculus is not truth-
functional but can be functional in a weaker sense, with the min and max rules for
conjunction and disjunction being preserved for a restricted class of expressions.

Appropriateness measures and mass functions can be interpreted, within prototype
theory, as the probability that a distance threshold ε lies in a measurable subset of [0,∞)
as determined by the relevant label or expression. Here ε represents an upper-bound on
the distance that an element x can be from the prototype pi for a label Li, in order that
Li is still deemed an appropriate description of x.
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